
Faculty for Computer Science, Electrical Engineering and Mathematics

IMPROVEMENT OF SOFTWARE
REQUIREMENTS QUALITY BASED ON

SYSTEMS ENGINEERING

PhD Thesis
to obtain the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

by
JÖRG HOLTMANN

Referees:
Prof. Dr.-Ing. Roman Dumitrescu
Prof. Dr. rer. nat. Joel Greenyer

Paderborn, June 2019

Abstract

Software-intensive systems increasingly pervade our society and economy, and their application
in safety-critical contexts can even decide about life or death (e.g., driver assistance systems).
Such systems are typically developed in a multidisciplinary manner, are often subject to real-
time requirements, and are executed on distributed and concurrent platforms influencing their
timing behavior.

A high quality of the requirements on these systems’ software is crucial, because the software
requirements are the basis for the software design and development. The application of mod-
els in Requirements Engineering (RE) is considered beneficial, because they foster automatic
analysis techniques that aim at ensuring high-quality requirements. However, existing model-
based RE approaches take neither the transition from multidisciplinary to discipline-specific
RE phases nor platform-induced timing effects during real-time requirements validation suffi-
ciently into account. This results in potential software requirements defects introduced during
the transition as well as costly development iterations due to timing analyses conducted in late
engineering phases.

This thesis proposes and evaluates a model-based RE approach that addresses these problems
by means of two techniques. First, it presents a semi-automatic technique for the transition from
multidisciplinary system models to software RE models. Second, it presents a technique for
the semi-automatic verification of timing-relevant platform properties against real-time require-
ments as part of the software RE models. These contributions improve the quality of software
requirements by reducing the likelihood to introduce requirements defects during the transition
from multidisciplinary system to software RE models and by early revealing platform-induced
real-time requirement violations.

The thesis evaluates the approach by conducting case studies based on an automotive Vehicle-
to-X driver assistance system example. These case studies indicate the effectiveness and effi-
ciency of both techniques.

III

Zusammenfassung

Software-intensive Systeme durchdringen zunehmend unsere Gesellschaft und Industrie, und
ihre Anwendung in sicherheitskritischen Bereichen kann sogar über Leben und Tod entschei-
den (z. B. im Fall von Fahrerassistenzsystemen). Solche Systeme werden typischerweise mul-
tidisziplinär entwickelt, unterliegen oft Echtzeitanforderungen und werden auf verteilten und
nebenläufigen Plattformen ausgeführt, die ihr Zeitverhalten beeinflussen.

Eine hohe Qualität der Anforderungen an die Software dieser Systeme ist unabdingbar, da die
Softwareanforderungen die Basis für den Entwurf und die Entwicklung der Software sind. Die
Anwendung von Modellen im Requirements Engineering (RE) wird als vorteilhaft angesehen,
da Modelle automatische Analysetechniken zur Sicherstellung von hochqualitativen Anforde-
rungen fördern. Jedoch berücksichtigen existierende modellbasierte RE-Ansätze weder den
Übergang von multidisziplinären zu disziplinspezifischen RE-Phasen noch plattforminduzierte
Zeiteffekte während der Echtzeitanforderungsvalidierung in ausreichender Weise. Dies resul-
tiert zum einen in potentiellen Softwareanforderungsdefekten, die sich während des Übergangs
einschleichen. Zum anderen entstehen kostspielige Entwicklungsiterationen durch Zeitanaly-
sen, die erst in späten Entwicklungsphasen durchgeführt werden.

Diese Dissertation präsentiert und evaluiert einen modellbasierten RE-Ansatz, der diese Pro-
bleme durch zwei Techniken adressiert. Zum einen führt sie eine semiautomatische Technik für
den Übergang von multidisziplinären Systemmodellen zu Software-RE-Modellen ein, sodass
sich die Wahrscheinlichkeit für die Entstehung von Anforderungsdefekten bei dem Übergang
verringert. Zum anderen stellt sie eine Technik zur semiautomatischen Verifikation von Platt-
formeigenschaften gegenüber Echtzeitanforderungen in den Software-RE-Modellen vor, sodass
eine plattforminduzierte Verletzung von Echtzeitanforderungen bereits in frühen Phasen aufge-
deckt werden kann. Insgesamt verbessern diese Techniken somit die Qualität der Softwareanf-
orderungen.

Diese Dissertation evaluiert den Ansatz mittels Fallstudien, die unter anderem ein Vehicle-
to-X Fahrerassistenzsystem als Beispiel benutzen. Die Durchführung der Fallstudien zeigt die
Effektivität und Effizienz beider Techniken.

V

Acknowledgements

“You’re only as good as your team”—my working motto is also (or particularly) valid for the
outcomes of this thesis.

First of all, I want to thank my original doctoral advisor Prof. Dr. Wilhelm Schäfer. Wilhelm
incorporated me in the Software Engineering Group and the s-lab – Software Quality Lab but
unfortunately could not supervise me until finishing my thesis due to health reasons. Likewise,
I thank Prof. Dr.-Ing. Roman Dumitrescu for taking over the supervision on the finishing line.
I further thank Roman and Prof. Dr. Joel Greenyer for writing their reports and additionally
Joel for his valuable feedback regarding earlier versions. I thank Roman, Joel, Prof. Dr. Eric
Bodden, Dr. Matthias Meyer, and Dr. Stefan Sauer for attending my PhD defense.

During the period of conceiving the approaches presented in this thesis, I had the pleasure to
work together with a bunch of internal as well as external colleagues and students. Shouts out
to (multiple mentions only in reasonable exceptions):
My Office Mates That is, I thank my longest and still current “spouse” David Schmelter,

Dr. Dietrich Travkin, Dr. Markus Fockel, Dr. Jens Frieben (“Mount Doom”!), Dr. Chris-
tian Heinzemann, Renate Löffler, as well as the original “s-lab automotive office E1.111
crew” (piggy bank for stupid jokes and later for finished PhD theses ftw!) Dr. Jan Meyer,
Dr. Matthias Schnelte, and Christian Nawratil for bearing me for better or for worse.

The RE Expert Group That is, I thank Markus, David, and Thorsten Koch for valuable discus-
sions and the joint elaboration of concepts, publications, and examples in the context of
RE as well as joint work in diverse industrial and research projects.

The Software Engineering Group / Department Particularly, I thank Dr. Uwe Pohlmann (after-
work beer!), Dr. Stefan Dziwok, Dr. Marie Christin Platenius-Mohr, David Schubert,
Christopher Gerking, Johannes Geismann, Dr. Matthias Meyer, Dr. Johannes Späth, Sven
Merschjohann, Andreas Dann, Lars Stockmann, Ingo Budde, Dr. Matthias Becker, Oli-
ver Sudmann, Dr. Jan Rieke, Dr. Christian Heinzemann, Dr. Markus von Detten, and
Prof. Dr. Matthias Tichy for the joint work, feedback, discussions, coffee breaks, and/or
(early) evening drinks.

My colleagues in the it’s OWL – SE project Particularly, I thank Dr.-Ing. Lydia Kaiser, Martin
Rabe, Dr. Anja Schierbaum, Dr.-Ing. Arno Kühn, and Dr. Stefan Herbrechtsmeier for
the interdisciplinary joint work and discussions in the context of Systems Engineering.

My colleagues at the Fraunhofer IEM Particularly, I thank Dr. Christian Tschirner, Christian
Bremer, Alexander Albers, Lukas Bretz, Matthias Greinert, Dr.-Ing. Peter Ebbesmeyer,
Christopher Lankeit, and Fabian Ernst for the interdisciplinary joint work and discussions
in diverse industrial and research projects.

My external colleagues Particularly, I thank Assoc. Prof. Julien DeAntoni for the inter-
university and unfunded joint work and for supporting me as well as my students
with ideas, advices, and bugfixes regarding Chapter 4. Furthermore, I thank Dr. Ernst
Sikora, Prof. Dr. Bastian Tenbergen, Marian Daun, Prof. Dr. Alexander Metzner, Dr. Eike
Thaden, and Philipp Reinkemeier for the inter-university joint work and discussions on
embedded systems software engineering in the German SPES2020 project.

VII

My former student assistants and mentees Particularly, I thank Ruslan Bernijazov whose ba-
chelor’s / master’s theses as well as student assistant work strongly contributed to this
thesis. Furthermore, I particularly thank Sergej Japs, Marcel Sander, Kai Biermeier, and
Sebastian Otutuama for their work as student assistants. Finally, I particularly thank Ser-
gej Japs, Thorsten Koch, Dimitar Shipchanov, Simon Schwichtenberg, and Christopher
Brune for their results in the context of master’s / bachelor’s theses and the project group.

My administrative colleagues That is, I thank Jutta Haupt, Jürgen “Sammy” Maniera, Sabine
Illigen, and Vera Meyer for caring about administrative or technical issues directly or
indirectly connected to my thesis or work.

Of course, I also had a social life, which influenced my thesis and vice versa. In this context,
I thank my friends who accompanied me in all living situations. A large part of you was always
kidding me with finishing my thesis—here it is, and now read it!, Furthermore, I thank my
former girlfriends who accompanied me partly for long times and had to “suffer” from my
thesis. Moreover, I thank my parents and the small remainder of my family for giving me all the
required space and support. Finally, a special shout out to Keith Flint, who sadly passed away
shortly before my oral exam and whose band I followed the last 25+ years. One line of your
lyrics even made it onto my mortarboard—raise the roof and fly high!

VIII

Contents

Abstract III

Zusammenfassung V

Acknowledgements VIII

Table of Contents XII

1 Introduction 1
1.1 Approaches for the Development of Software-intensive Systems Considered in

this Thesis . 3
1.1.1 The Specification Technique CONSENS for Model-based Systems En-

gineering . 3
1.1.2 Modal Sequence Diagrams (MSDs) for Scenario-based Software Re-

quirements Specification and Analysis 4
1.1.3 Timing Analysis . 4

1.2 Problem Description . 4
1.2.1 Manual and Unsystematic Transition from MBSE to SwRE 5
1.2.2 Late Timing Analyses . 5

1.3 Approach to Solution and Contributions . 5
1.3.1 Semi-automatic Technique for the Transition from MBSE to SwRE . . 6
1.3.2 Early Timing Analyses based on MSDs 6

1.4 Thesis Structure . 6

2 Foundations 7
2.1 Model-based Traceability . 7

2.1.1 Terminology . 7
2.1.2 The Model-based Traceability Management Tool CAPRA 11

2.2 Model-based Systems Engineering with CONSENS 11
2.2.1 Analyze Environment . 11
2.2.2 Identify Application Scenarios . 12
2.2.3 Define Requirements . 14
2.2.4 Define Function Hierarchy . 14
2.2.5 Define Active Structure . 15
2.2.6 Allocate Engineering Disciplines . 15
2.2.7 Define System Behavior . 16

2.3 Automatic Derivation of Discipline-specific Design Models from CONSENS

System Models . 16
2.4 Modal Sequence Diagrams (MSDs) . 17

2.4.1 Structure of MSD Specifications . 18

IX

Contents

2.4.2 MSD Semantics . 20
2.4.3 Analysis Techniques . 22

2.5 UML Profiles . 23
2.5.1 The Modal Profile . 23
2.5.2 The Systems Modeling Language (SysML) 24
2.5.3 Modeling and Analysis of Real-Time Embedded Systems (MARTE) . . 25

2.6 Timing Analysis Techniques for Hard Real-time Systems 30
2.6.1 Response Time Analysis . 31
2.6.2 End-to-End Response Time Analysis 31

2.7 Clock Constraint Specification Language (CCSL) 32
2.7.1 CCSL Semantics and its Realization in TIMESQUARE 32
2.7.2 Pre-defined CCSL Constraints . 33
2.7.3 User-defined Constraints . 36

2.8 Specifying Modeling Language Semantics with GEMOC 37

3 Integrated Systems Engineering and Software Requirements Engineering 39
3.1 Extensions to the CONSENS Specification Technique 41

3.1.1 Port Specifications . 42
3.1.2 Behavior – Sequences . 43
3.1.3 Behavior – States . 43

3.2 Component-based MSD Specifications . 45
3.3 Process Description . 48
3.4 Model Transformation Rules Overview . 51

3.4.1 Derive MSD Use Cases . 52
3.4.2 Derive Structure . 53
3.4.3 Derive MSDs . 56

3.5 Support for Manual Refinement of MSD Specifications 57
3.5.1 Informal Guidelines . 58
3.5.2 Automatic Coverage Check . 60
3.5.3 Automatic Derivation of Existential MSDs 61

3.6 Exemplary Application of the Transition Technique 62
3.6.1 Initial Process Iteration . 64
3.6.2 Subsequent Process Iterations . 69

3.7 Semi-automatic Establishment of Explicit Inter-model Traceability Between
CONSENS System Models and MSD Specifications 74
3.7.1 Lifecycle Traceability . 74
3.7.2 Transformation Traceability . 77

3.8 Model Transformations and Coverage Check More Formally 82
3.8.1 Preconditions for the CONSENS System Model 82
3.8.2 Model Transformation Approach and Algorithm 84
3.8.3 Coverage Check between MSD Specifications and Behavior – States . . 90

3.9 Realization and Evaluation . 95
3.9.1 Implementation . 95
3.9.2 Case Study . 102

3.10 Related Work . 110
3.10.1 Transition from MBSE to Discipline-specific Models 110

X

Contents

3.10.2 System Modeling Languages and Methods with Discipline-specific In-
formation . 111

3.10.3 Component-based Scenario Notations 112
3.10.4 Semi-automatic Establishment of Explicit Lifecycle Traceability 112

3.11 Summary . 113

4 Early Timing Analysis based on Software Requirements Specifications 115
4.1 Platform-specific MSD Specifications . 116

4.1.1 Specifying Execution Platforms . 118
4.1.2 Specifying Allocations . 121
4.1.3 Annotating the Application Software 121
4.1.4 Specifying Analysis Contexts . 122

4.2 Process Description . 123
4.3 Extension of MSD Message Event Handling Semantics 125

4.3.1 Asynchronous Messages . 125
4.3.2 Message Creation and Consumption 126
4.3.3 Task Processing . 126

4.4 MSD Semantics for Timing Analyses . 127
4.4.1 Encoding of Additional Event Kinds and their Unification 128
4.4.2 Encoding of Timing Effects Induced by Platform Properties 136
4.4.3 Encoding of Real-time Requirements and Timing Analysis Contexts . . 147

4.5 Exemplary Timing Analysis . 154
4.6 Realization and Evaluation . 158

4.6.1 Implementation . 158
4.6.2 Case Study . 175

4.7 Related Work . 183
4.7.1 Timing Analyses based on System Models 183
4.7.2 Scenario-based Timing Analyses . 184
4.7.3 Architecture-based Timing Analyses 185

4.8 Summary . 186

5 Conclusion 187
5.1 Summary . 187
5.2 Future Work . 188

Bibliography 191
Own Peer-reviewed Publications . 191
Own Non-peer-reviewed Publications . 195
Supervised and Own Theses . 196
Preliminary Work . 197
Literature . 203
Standards and Specifications . 221
Research Projects . 223
Tool Suites and Tool Frameworks . 223

List of Figures 225

XI

Contents

List of Tables 233

List of Algorithms 235

Listings 237

Appendices 241

A Supplementary Material for the Transition Technique from MBSE to SwRE241
A.1 Guidelines for Manual MSD Refinement . 241
A.2 EBEAS Models Applied in the Transition from MBSE with CONSENS to SwRE

with MSDs . 248
A.2.1 CONSENS System Model . 248
A.2.2 MSD Specification . 256

A.3 Case Study Details: Hypothesis H2 for the Transition Technique from MBSE
to SwRE . 283

B Supplementary Material on the MSD Semantics for Timing Analysis 287
B.1 Further Examples of the MSD Semantics for Timing Analyses 287
B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification

and User-defined MoCCML Relations . 311
B.3 Exemplary Timing Analysis: TIMESQUARE Screenshot 327
B.4 Case Study Details: Hypotheses H2 and H3 for the Timing Analysis based on

MSDs . 329

C Own Publication Contributions 333

XII

1

Introduction

Information and communication have become a key innovation force for technical systems
[GDS+15]. The software part of these technical systems drives their information and com-
munication capabilities and hence is rising both in size [McK18; VBK10] and market value
[McK16; BBH+10]. Such software-intensive systems [ISO17] are comprised of software as well
as hardware, inter alia, and include embedded systems [HS07], mechatronic systems [Aus96;
VDI04], and cyber-physical systems [aca11; Poo10; SW07]. There is a shift toward cyber-
physical systems accompanied by an increasing functionality and complexity [AT16]. Further-
more, software-intensive systems often operate in safety-critical application areas. An example
of a safety-critical software-intensive system is an automotive Vehicle-to-X driver assistance
system, the so-called Emergency Braking & Evasion Assistance System (EBEAS) [*HFK+16,
Chapter 4]. The EBEAS senses the vehicle’s environment, coordinates its actions with other
vehicles, and actively performs emergency braking or evasion maneuvers in case a potential
hazard occurs.

In this thesis, we propose and evaluate an approach for improving the quality of the re-
quirements on the message-based interactions within and between software-intensive systems.
Software-intensive systems have a multitude of characteristics, of which we particularly consi-
der the following ones in this thesis:

Multidisciplinary Development One characteristic of software-intensive systems is their mul-
tidisciplinary development [GDS+15]. That is, such systems are jointly developed by
several engineering disciplines like software engineering, control engineering, electrical
engineering, and mechanical engineering.

Real-time Criticality Software-intensive systems often have to operate under hard real-time
constraints. That is, the correctness of the behavior of the system under development
(SUD) is not only dependent on correct value computations but also on the time in which
the values are produced and delivered [But11]. For example, performing emergency bra-
king only milliseconds too late can harm the life of the passengers in the case of the
EBEAS.

Distributed and Concurrent Computation The growing functionality of software-intensive
systems has led to thousands of software operations distributed across hundreds of
ECUs that communicate via multiple bus systems (e.g., in the case of modern vehicles
[VBK10]).

The increasing complexity of software-intensive systems requires a rigorous development pro-
cess. Such a process encompasses several phases, in which different approaches are applied. In
this thesis, we focus on the following phases:

1

Chapter 1 Introduction

Systems Engineering The multidisciplinary development of software-intensive systems re-
quires a holistic and interdisciplinary consideration of the overall system to obtain a com-
mon understanding of the SUD for all roles involved in the development. “Systems engi-
neering is an interdisciplinary approach and means to enable the realization of successful
systems” [INCOSE; WRF+15] and aims at achieving such a common understanding.

Requirements Engineering The basis for the design and development of all systems inclu-
ding software-intensive systems are requirements on them. “Requirements Engineering
[(RE)]1 is a systematic and disciplined approach to the specification and management of
requirements with [the goal] [...] to minimize the risk of delivering a system that does not
meet the stakeholders’ desires and needs.” [PR11] RE is one of the most important pha-
ses during the development of a software-intensive system [GDS+15], since errors in the
requirements specification are hard and hence costly to fix in the subsequent development
phases (e.g., [Boe81; Boe83; PR11]). Consequently, the requirements quality strongly
influences the success or failure of development projects [KEF09; KT07]. In the develop-
ment process of a software-intensive system, RE is conducted for the overall system (i.e.,
RE for system requirements) as well as for the tasks of the particular disciplines (e.g., RE
for software requirements).

Software Design and Development After the development goals have become clear for all
involved disciplines by means of systems engineering and the discipline-specific RE,
the discipline-specific design and development can be approached. We distinguish the
engineering of continuous (feedback-)control behavior and the engineering of discrete
coordination behavior [*PHMG14].

Like in [*PHMG14; HSST13; Rie15; GRS14], we regard the discipline of software engi-
neering as the one that designs the coordination behavior. The requirements engineering for
software is regarded as a branch of systems engineering [NE00]. More specifically, we regard
software requirements engineering (SwRE) as a sub-discipline of software engineering, that is,
as RE for the coordination behavior of the overall system.

The goal of this thesis is to provide an SwRE approach for improving the quality of re-
quirements on the coordination behavior of software-intensive systems, where the approach
encompasses two techniques. First, we describe a technique for semi-automatically deriving
such coordination behavior requirements from more abstract systems engineering requirements,
thereby systematizing the requirements refinement in a multidisciplinary development process.
Second, we describe a technique for the early simulative verification of timing-relevant plat-
form properties against coordination behavior requirements with real-time constraints, thereby
validating real-time requirements on the distributed and concurrent coordination behavior.

1RE encompasses the core activities elicitation, documentation, validation/negotiation, and management [PR11].
Within this thesis, we focus on the activities requirements documentation and requirements validation, which has
the goal to discover errors in the documented requirements. Despite this focus, we use the abbreviated term RE
for these two core activities if not otherwise stated.

2

1.1 Approaches for the Development of Software-intensive Systems Considered in this Thesis

1.1 Approaches for the Development of Software-intensive
Systems Considered in this Thesis

A multitude of approaches are applied in the overall development process of software-intensive
systems. Figure 1.1 visualizes the application of the approaches that we consider in this thesis
by means of an alignment into a Vee model based on the VDI guideline 2206 [VDI04].

s
y
s
te

m
 d

e
s
ig

n
mechanical engineering

electrical engineering
control engineering

software engineering
s
y
s
te

m
 i
n
te

g
ra

ti
o
n

discipline-specific development

customer

requirements product

modeling and model analysis

assurance of properties

Software Requirements

Engineering (SwRE)

Model-based Systems

Engineering (MBSE)

Timing Analysis

t

Figure 1.1: Overview of the approaches considered in this thesis (Vee model visualization based
on [VDI04])

1.1.1 The Specification Technique CONSENS for Model-based Systems
Engineering

According to the INCOSE Systems Engineering Vision 2025 [INC14], the current transition
from traditional document-based systems engineering to Model-Based Systems Engineering
(MBSE) will establish systems engineering as the future development paradigm for software-
intensive systems. In order to follow the MBSE paradigm, we apply the model-based speci-
fication technique CONSENS (CONceptual design Specification technique for the ENgineering
of complex Systems) [DDGI14; GFDK09; Fra06] within the interdisciplinary system design
phase (cf. upper left part of Figure 1.1). This specification technique is explicitly designed to
cover all aspects of software-intensive systems and to facilitate the communication between
all disciplines at eye level. CONSENS encompasses a modeling language and a tailored met-
hod for the language application. The resulting CONSENS system models serve as input to the
discipline-specific requirements analysis conducted in the particular engineering disciplines.

3

Chapter 1 Introduction

1.1.2 Modal Sequence Diagrams (MSDs) for Scenario-based Software
Requirements Specification and Analysis

The use of models in SwRE for software-intensive systems is considered beneficial [STP12].
The main advantages of requirements models as documentation format are that they facilitate
the understanding of requirements [NT09] by raising the abstraction level in requirements des-
criptions [CA09; CA07] and foster automatic analysis techniques. A well-suited notation for the
requirements documentation in model-based SwRE is a scenario-based formalism. Scenarios
describe sequences of events of tasks that the SUD has to accomplish [HRD10]. Scenario-
based notations have an intuitive representation [HRD10] and improve the comprehension of
functional requirements for people experienced in modeling [AGI+13].

The modal semantics of the scenario-based formalism Live Sequence Charts (LSCs) [DH01]
allows requirements engineers to specify which event sequences produced by the SUD may,
must, or must not occur, which is crucial for a requirements language [Har01; Har00]. Greenyer
[Gre11] developed an SwRE approach based on a recent LSC variant compliant to the Unified
Modeling Language (UML) [OMG17b], so-called Modal Sequence Diagrams (MSDs) [HM08;
HM06]. Greenyer conceived an MSD dialect suited to address some of the characteristics of
mechatronic systems. For this purpose, he extended the original MSD formalism by modeling
constructs to specify real-time requirements and assumptions on the environment, inter alia. Ba-
sed on this MSD dialect, Greenyer applied and extended two complementary automatic analysis
techniques enabling the early detection of requirements defects in the beginning of the software
engineering phase (cf. lower left part of Figure 1.1).

1.1.3 Timing Analysis

The distributed and concurrent computation in software-intensive systems leads to a wide range
of platform properties that influence the timing behavior of the SUD. This can lead to violations
of the real-time requirements.

Nowadays, the timing-relevant platform properties and their effects on the timing behavior are
verified against real-time requirements by means of different simulative and analytical timing
analysis techniques. One class of these techniques applies response time analysis [SAÅ+04;
ABD+95], which relies on computing worst-case execution time bounds for the code compiled
to a specific target platform or on execution measurements [WEE+08]. Thus, such techniques
are applied in the end of the software engineering development phase (cf. bottom right in Fi-
gure 1.1) when the target platform is known and the software code exists [DWUL17; MNS+17;
MSN+15]. A second class of these techniques applies Hardware-in-the-Loop simulation to exe-
cute the software on an existing target platform and hence is applied in the system integration
phase (cf. middle right in Figure 1.1).

1.2 Problem Description

Even with a formal scenario-based SwRE approach that ensures consistent requirements, there
remain the following problems that we address within this thesis.

4

1.3 Approach to Solution and Contributions

1.2.1 Manual and Unsystematic Transition from MBSE to SwRE

Although MBSE endeavors to coordinate the overall development process for software-
intensive systems by means of interdisciplinary system models, the transition from MBSE to
SwRE is not trivial. System models contain much information that is only partly relevant to
each involved discipline. Thus, the Software Requirements Engineer must carefully identify
the SwRE-relevant information in the system models and transfer this information into MSD
specifications.

Although CONSENS system models are amenable for automatisms to extract the SwRE-
relevant information, this is a manual and thereby error-prone and time-consuming task up to
now. Thus, the Software Requirements Engineers can introduce defects (e.g., incompleteness,
incorrectness w.r.t. the CONSENS system models) into the MSD specifications. In such cases,
the analysis techniques for MSDs can yield wrong results like false positives.

1.2.2 Late Timing Analyses

Timing analyses are nowadays conducted in late engineering phases despite the fact that coarse-
grained information about the timing-relevant platform properties is mostly known in the SwRE
phase from prior projects [MSN+15; HH04] or from technology decisions determined during
the interdisciplinary system design. Applying validation and verification techniques early in the
development process is desirable since the detection and fixing of defects in later engineering
phases causes costly development iterations (e.g., [Boe81; Boe83; PR11]). Thus, the platform
properties and their effects on the timing behavior should be verified as early as possible w.r.t.
the real-time requirements in order to identify and resolve potential requirements violations,
ideally in the SwRE phase.

Whereas we improved MSDs and their analysis techniques regarding real-time aspects
[*BGH+14; *Jap15; *BBG+13], MSDs address the platform-independent requirements on the
system’s coordination behavior. That is, the timing and event handling abstractions in the
platform-independent timed analysis techniques for MSDs are not designed to consider de-
tailed platform-specific effects on the timing behavior emerging from the software execution in
distributed systems. Hence, platform-aware timing analysis techniques verifying such timing
behaviors against real-time requirements are not in the scope of the platform-independent timed
MSD analysis techniques up to now.

1.3 Approach to Solution and Contributions

The goal of this thesis is to improve the quality of the requirements on the coordination beha-
vior of software-intensive systems. In order to address the problems described in Section 1.2,
we present in this thesis two techniques sketched in the remainder of this section. The first
technique reduces the likelihood to introduce requirements defects during the transition from
MBSE with CONSENS to SwRE with MSDs. The second technique reveals platform-induced
real-time requirement violations in the early SwRE phase based on MSD specifications. We im-
plemented all concepts as extensions to the tool suite SCENARIOTOOLS MSD [ST-MSD] and
evaluated the techniques for effectiveness and efficiency.

5

Chapter 1 Introduction

1.3.1 Semi-automatic Technique for the Transition from MBSE to SwRE

In order to address the first problem, we present a semi-automatic and systematic technique
for the transition from MBSE with CONSENS to SwRE with MSDs [*HBM+16; *HBM+15;
*HBM+17; *Ber15]. We identify aspects of the system model that are relevant to SwRE with
MSDs and describe how SwRE integrates into MBSE. We automate steps of the transition where
possible (i.e., for the automatically processable information in CONSENS system models) to
avoid error-prone and time-consuming manual tasks. This particularly includes incremental
and traceability-establishing model transformations that derive initial and update existing MSD
specifications from CONSENS system models. For the informal information part of CONSENS

system models, we provide an semi-automatic approach for the systematic manual refinement
of such initially derived or updated MSD specifications.

1.3.2 Early Timing Analyses based on MSDs

In order to enable early timing analyses based on MSDs, we present an approach for the verifi-
cation of timing-relevant platform properties w.r.t. the functional and particularly the real-time
requirements specified by means of timed MSDs [*Ber17]. To this end, we first propose a UML
profile to provide modeling means for the timing-relevant platform properties. Second, we con-
ceptually extend the event handling semantics of timed MSDs so that the timing analysis is able
to take the delays between different timing-relevant events into account. Based on this, we third
apply the GEMOC approach [LCD+15; CAL+13] to specify MSD semantics dedicated to the
purpose of timing analyses. This semantics enables the consideration of the platform properties
through encoding their effects on the timing behavior as well as the MSD real-time require-
ments in order to verify them w.r.t. the timed MSDs. Taking this information as input, GEMOC

generates timed models that are executable in a simulative timing analysis tool for distributed
systems.

1.4 Thesis Structure

Chapter 2 introduces the foundations that are necessary for the understanding of the remainder
of this thesis. We present our transition technique from MBSE to SwRE in Chapter 3 and its
supplementary material in Appendix A. Subsequently, we present our approach enabling early
timing analyses based on MSDs in Chapter 4 and its supplementary material in Appendix B.
Finally, we conclude this thesis and summarize its future work in Chapter 5.

6

2

Foundations

In Section 2.1, we present and extend terminology for model-based traceability. Section 2.2
introduces the specification technique CONSENS for MBSE, and Section 2.3 presents prior work
on the automatic derivation of discipline-specifific models from CONSENS system models. In
Section 2.4, we introduce foundations on MSDs. Section 2.5 present UML profile excerpts
that we use and extend in this thesis. We give an overview on conventional timing analysis
techniques for hard real-time systems in Section 2.6. Subsequently, we introduce a modeling
language, semantics, and tool support for simulative timing analyses in Section 2.7. Finally, we
sketch an approach for specifying semantics for arbitrary modeling languages dedicated to this
timing analysis approach in Section 2.8.

2.1 Model-based Traceability

Traceability is the basis for many management activities throughout the development lifecycle.
For example, such management activities encompass impact analyses after requirements or ot-
her work products have been changed, assessing that requirements are satisfied, deriving and
associating test cases from/with the corresponding requirements, or reasoning about the “right
to exist” of design artifacts. For such purposes, traceability is demanded by many standards for
the development of software-intensive systems (e.g., [ASIG17; ISO18a; RTCA11]), which aim
at ensuring a high quality of the development process and thereby of the resulting product.

In the following section, we introduce the foundational traceability terminology used in this
thesis and extend it for model-based aspects where required. Subsequently, we introduce a
model-based traceability management tool that we apply in this thesis to semi-automatically
establish traceability between CONSENS system models and MSD specifications.

2.1.1 Terminology

In this section, we first introduce the foundational terminology used in this thesis. Subsequently,
we add more precise definitions for the model-based aspects of traceability that we address in
this thesis in order to distinguish between different kinds of traceability in the remainder of this
thesis.

2.1.1.1 Foundational Terminology

In this section, we present the existing terminology introduced by the traceability literature used
in this thesis. We first introduce generic terms, and we explain the distinction between implicit
and explicit traceability subsequently.

7

Chapter 2 Foundations

Basic Terms
Gotel et al. [GCH+12] present a common, generic terminology for traceability: “Traceability
is the potential for traces [...] to be established (i.e., created and maintained) and used”, where
a trace encompasses “a source artifact, a target artifact[,] and a trace link associating the two
artifacts”. Source and target artifacts (together called trace artifacts) as well as trace links
have a certain trace artifact type and trace link type, respectively. These types are labels that
characterize those artifacts or links “that have the same or similar structure (syntax) and/or
purpose (semantics)”. A trace relation includes “all the trace links created between two sets of
specified trace artifact types”, where a “trace relation is the instantiation of the trace relationship
and hence is a collection of traces”. A traceability information model defines “the permissible
trace artifact types, the permissible trace link types and the permissible trace relationships”.
Trace links are typically bidirectional and can be traversed in the primary trace link direction
(i.e., from the source to the target artifact) or in the reverse trace link direction (i.e., from the
target to the source artifact). The trace granularity is “the level of detail at which a trace is
recorded and performed”, where “the granularity of a trace is defined by the granularity of the
source artifact and the target artifact.” [GCH+12]

Implicit vs. Explicit Traceability
Mäder et al. [MPR07] distinguish between vaguely documented information about traces and
distinct, explicitly specified traces:
Implicit Traceability “Implicit traceability results from existing associations between [trace ar-

tifacts]. For example, the use of the same identifier in an analysis and a design art[i]fact
expresses a dependency between both. The creation of this [kind of] traceability link
does not cause any additional effort.” [MPR07] Implicit traceability impedes traceability-
based management activities because, for example, impact analyses have to be conducted
by means of awkward and error-prone searching for the same or similar identifier or term
to determine an implicit trace [*HFKS16].

Explicit Traceability “Explicit [t]raceability results from the establishing of connections bet-
ween two art[i]facts during the [...] development process by a developer. [...] The crea-
tion of explicit traceability requires additional effort of the developer.” [MPR07] Explicit
traceability is required to conduct traceability-based management activities like impact
analyses etc. in an adequate and tool-supported way [*HFKS16; MPR07]. Furthermore,
explicit traceability is required if traceability is applied to enable incremental model trans-
formations [CH06]. We focus on explicit traceability in this thesis.

2.1.1.2 Extended Terminology for Model-based Traceability

The term traceability and its definition originates from the requirements management commu-
nity [GF94]. This implies the need for a broader definition of traceability to also cover tracea-
bility in the domain of model-based engineering [WP10; ANRS06]. However, the traceability
literature does not define a unified terminology for model-based traceability as we apply it in
our thesis until now. Thus, we define an extended terminology for model-based traceability
used throughout this thesis in the following. This extended terminology enables to precisely
distinguish between the different kinds of traceability that we apply in this thesis.

8

2.1 Model-based Traceability

Intra- vs. Inter-model Traceability
The notion of horizontal and vertical traceability [RE93; GCH+12] distinguishes traceability
between trace artifacts belonging to the same project phase or level of abstraction and tracea-
bility between trace artifacts belonging to different ones, respectively [WP10]. However, this
distinction can be ambiguous depending on the level of detail at which the engineering process
is taken into account [WP10]. For example, there is, on the one hand, vertical traceability be-
tween partial models specified in earlier and later steps of the CONSENS specification method
and thereby within a CONSENS system model. On the other hand, there is vertical traceabi-
lity between a CONSENS system model and an MSD specification. Hence, we distinguish the
following terms to define the terminology more precisely:
Intra-model Traceability The potential to establish and use traces that do not cross the borders

of a model. An intra-model trace link associates a source model element and a target
model element, both residing in the same model. Intra-model traceability can be both
horizontal and vertical.

Inter-model traceability The potential to establish and use traces where source and target ar-
tifacts are elements of different models. An inter-model trace link associates a source
model element and a target model element, where one model element resides in one
model and the other one in another model. Whereas also inter-model traceability can be
both horizontal and vertical, we focus in this thesis on vertical inter-model traceability as
we semi-automatically establish traceability between CONSENS system models and MSD
specifications belonging to different engineering phases.

Relational vs. Referential Traceability
We distinguish between relational trace links provided as first-class citizens by a modeling lan-
guage or by a traceability management tool and referential traceability provided by the abstract
syntax of a modeling language:
Relational Traceability The potential to establish and use traces by means of relational trace

links. A relational trace link associates a source model artifact with a target model arti-
fact by means of a dedicated model element provided by the metamodel of a modeling
language (with both a concrete and abstract syntax) or of a traceability management tool
(e.g., by providing a dedicated trace link type in a traceability metamodel). In terms of
the UML [OMG17b], such trace links typically are instances of (metaclass specializati-
ons of) the metaclass DirectedRelationship that has two association ends pointing to the
source and to the target artifact, respectively. In terms of graphs, a relational trace link is
represented by a dedicated node with two incident directed edges pointing to the source
and to the target artifact node, respectively. In terms of relational databases, relational
trace links are captured by dedicated relational tables with two foreign keys that represent
primary keys in the source and the target artifact tables, respectively.

Referential Traceability The potential to establish and use traces by means of referential trace
links. A referential trace link associates a source model artifact with a target model arti-
fact by means of a direct reference that is provided by the abstract syntax of a modeling
language. In terms of the UML [OMG17b], such trace links are instances of an associ-
ation between two metaclasses, referencing directly from the source artifact to the target
artifact. In terms of graphs, a referential trace link is a directed edge from the node
representing the source artifact to the node representing the target artifact. In terms of
relational databases, referential trace links are captured by one foreign key in the source
artifact table; this foreign key represents the primary key in the target artifact table.

9

Chapter 2 Foundations

Lifecycle vs. Transformation Traceability
We distinguish between trace links as the basis for typical model management activities throug-
hout the development lifecycle as exemplified in the beginning of Section 2.1 (e.g., impact
analyses) and trace links as the basis for the “Target-Incrementality” feature [CH06] of model
transformations (e.g., the correspondence model of Triple Graph Grammars [Sch95]):

Lifecycle Traceability The potential to establish and use traces as the basis for model manage-
ment activities throughout the development lifecycle. A lifecycle trace link associates a
source model artifact with a target model artifact for the purpose of enabling lifecycle-
oriented management activities. To serve this purpose, the trace link associates model
elements that are relevant to the conductor of the management activities. Such model
elements are typically represented by the concrete syntax of the corresponding modeling
languages and have a rather high granularity For example, the management activity con-
ductor wants to investigate which software components are related to a system element.
Thus, the corresponding trace granularity is analogously high. Furthermore, the trace link
should be valid w.r.t. to predefined rules regarding the corresponding artifact and trace
link types.

Transformation Traceability The potential to establish and use traces as the basis for the
“Target-Incrementality” feature of model transformations. A transformation trace link
associates a source model artifact with a target model artifact for the purpose of enabling
the “Target-Incrementality” feature of a model transformation approach. To serve this
purpose, these trace links have to associate all model elements that are covered by the
model transformation. Such model elements typically include many ones that have no
concrete syntax representation and that have a rather low granularity (e.g., two connector
ends, each having several properties, are needed to link two structural elements via one
connector). Thus, the corresponding trace granularity is analogously low. Furthermore,
the trace link validity is ensured by the actual model transformation.

Valid Traceability
We distinguish between a trace link associating a source and a target artifact, and the fact whet-
her both artifacts are indeed semantically related to each other [*FHM12]. Requirements ma-
nagement tools, traceability management tools, or modeling languages typically allow arbitrary
linking between trace artifacts, whereas the checks they provide only determine whether a trace
artifact is linked at all. This leads to the problem that a trace link can accidentally be created
between actually unrelated artifacts, or that two formerly related and linked artifacts are not
related anymore after one of the linked artifacts has changed.

We consider a trace link as valid, iff the associated source and target artifact are indeed
related to each other [*FHM12]. That is, a trace link is valid, if its source and target artifacts
are in a traceability relation that can be described by a set of constraints. Several such relations
are discussed in literature [BLY09; EAG06; ZSPK03], and we focus on the overlap relation
[ZSPK03]. This is a relation between two different trace artifacts, which refer to a common
feature of the SUD. Trace link validity can be determined, for example, by evaluating predefined
rules w.r.t. to the overlap relation based on a traceability information model [MGP09], as we
have also shown in [*FHM12].

Traceability literature published at the same time or later as our definition [*FHM12] refers to
trace link validity also as the correctness property of the overall traceability quality [GCH+12]
or as trace integrity [CGH+14].

10

2.2 Model-based Systems Engineering with Consens

2.1.2 The Model-based Traceability Management Tool CAPRA

In this thesis, we apply the model-based traceability management tool CAPRA [MS16; CA-
PRA] to semi-automatically establish vertical inter-model traceability between CONSENS sys-
tem models and MSD specifications. The traceability information model is specified by means
of a traceability metamodel, which is freely specifiable through an extension point. The per-
missible trace link types can be further constrained by means of Java customizations. The
traceability metamodel as well as its resulting models are accessible to automatisms. The tra-
ceability models can hence be exploited or modified by model transformations. Furthermore,
the traceability models store traces external to the models containing the actual trace artifacts,
which does not unnecessarily “pollute” the latter ones [PDK+11; KPP06; DPFK06]. Visual
impact analyses can be conducted based on the traceability models.

2.2 Model-based Systems Engineering with CONSENS

In this section, we describe the CONSENS specification technique including its modeling lan-
guage and the method to apply the language. As an example, we introduce a CONSENS system
model of the EBEAS that also serves as illustrative basis for the description of our transition
technique in this thesis.

The CONSENS modeling language is divided into eight partial models describing different
aspects of a software-intensive system: Environment , Application Scenarios , Requirements ,
Functions , Active Structure , Shape , System of Objectives , and Behavior . The partial model
Behavior is furthermore subdivided into Behavior – States and Behavior – Activities .

All aspects specified by means of the CONSENS partial models are strongly interconnected
by means of so-called cross-references or interrelations [DDGI14]. In terms of our extended
terminology for model-based traceability (cf. Section 2.1.1.2), these cross-references are spe-
cified by means of relational, intra-model, and explicit trace links of different types between
elements of different partial models. In the following, we refer to this kind of cross-references
as relational trace links.

Based on the method presented in [GV14], Figure 2.1 depicts the process step order to specify
the particular partial models documented by means of the Business Process Model and Notation
(BPMN) [OMG14b]. The overall process is specified by means of a BPMN private process.
Work results are specified as BPMN data objects (document icons), and persistent models that
are subject to update and retrieval operations are specified as BPMN data stores (database icon).
The process steps relevant in this thesis are grouped into the BPMN sub-processes Planning
and Clarifying the Task and Conceptual Design on the System Level.

Figure 2.2 depicts excerpts of six SwRE-relevant partial models specified in CONSENS for
the EBEAS. In the following, we exemplarily perform each of the process steps (cf. Figure 2.1)
for this running example system model.

2.2.1 Analyze Environment

As usual in model-based RE (cf. [CHQW16; DTW12; PR11; DeM79]), the first process step in
the CONSENS specification method is the analysis of the environment. It has the aim to define
the scope of the SUD, its system boundaries, and its external interfaces. The Environment is a
structural partial model and distinguishes between the system (i.e., the SUD) and environment

11

Chapter 2 Foundations

Conceptual Design on the System Level

Planning and Clarifying the Task

Analyze

Environment

Identify

Application

Scenarios

Environment
Application
Scenarios

Define

Requirements

Requirements

Function
Hierarchy

Active
Structure

Relevance
Annotations

CONSENS

System Model

Define

Function

Hierarchy

...

System
Behavior

...

Define

Active

Structure

Allocate

Engineering

Disciplines

Define

System

Behavior

Legend

Nodes Connections

Control Flow

Data FlowActivity Step

Work Product

Persistent Model

Start Event

Figure 2.1: Excerpt of the CONSENS specification method (based on [GV14])

elements, where the system is viewed as a black box. The system and the environment ele-
ments represent non-physical elements like software components as well as physical elements
like parts, assemblies, or modules. Different kinds of flows (i.e., material flows, energy flows,
and information flows) represent the relationships between the system and the environment ele-
ments. The flows connect ports of the system and of the environment elements [Rie15].

For example, the Environment excerpt in the top left of Figure 2.2 embeds the SUD EBEAS
into its environment. This environment encompasses other driver assistance systems and bus
systems within the car. For example, the EBEAS shall continuously compute evasion maneuver
trajectories and control the vehicle movement w.r.t. to these trajectories. For this purpose, the
EBEAS sends trajectoryCommands to the environment element ActiveFrontSteering, which in
turn sends back the current vehicle position on the trajectory via the information flow steer-
ingInfo, resulting in a feedback loop. A FlexRay bus system delivers this logical information
via the energy flow FlexRay signals. Furthermore, disturbing energy flows are indicated on
the left-hand side representing interference factors that can disturb the SUD functionality (e.g.,
electromagnetic disturbances or temperatures). Countermeasures have to be conducted in the
subsequent system design to tackle these interference factors. Figure A.7 in Appendix A.2.1
depicts the complete Environment for the EBEAS.

2.2.2 Identify Application Scenarios

Similarly to use cases [BS02], application scenarios represent initial assumptions of the system’s
behavior. They describe the most common operation modes of the system and the corresponding
behavior on a coarse-grained abstraction level. Every application scenario describes a specific
technical situation and the required behavior of the system by means of informal texts and
sketches.

For example, the application scenario Emergency Evasion (top right of Figure 2.2) infor-
mally describes the trigger situation as well as the intended behavior for the overall emergency

12

2.2 Model-based Systems Engineering with Consens

MiddleOrFollowingRole

emcyBrakeWarning /

EmergencyBrake

WarningReceived

emcyBrake
Response(true) /

emcyBrakeWarning

evade
Response

(true) / evade
Warning

laneChanged /

entry: activatePrecrash

do: emcyBraking

Precrash and

Emergency Braking

do: trajectory

Emergency Evasion

[lastBrake && !lastEvade]
/ evadeRequest

[!lastBrake]
/ emcyBrakeRequest

after(tfollowingCoord) ˅
setLastBrake(true) ˅

emcyBrakeResponse(false)
/ evadeRequest

after(tovertakingCoord) ˅

setLastEvade(true) ˅

evadeResponse(false)

/ emcyBrakeWarning

standstill /

positionAt
Trajectory /

Following

Coordination

Overtaking

Coordination

[la
stE

vade]

/ e
mcyBrakeW

arning

do: emcyBraking

Emergency Braking standstill /

EBEAS

Negotiate

with Other

Vehicles

Send and

Receive

Warnings

Perform

Emergency

Braking

Perform

Evasion

Maneuver

Prepare

for Crash

Communicate

with Other

Vehicles

Ensure

Passenger

Safety

V2X-Bus

Interface

V2X
signals

FlexRay

Interface

EE

Situation

Analysis

SE

signals
FlexRay
Signals

FlexRay
Signals

V2X
signals

V2X
signals

braking
Commands

precrash
Commands

μC1

EE
EE

decisions

Trajectory

Generation

CE

Vehicle

Control

SE

μC2

evasion
Commands

obstacle
Info

lane
PositionInfo

Passive

Cooling

EE

bolted
Joint

Passive

Cooling

EE

trajectory
Commands

steeringInfo

velocity
Info

V2V
Messages

Active Structure

Environment Application Scenarios

Behavior – States

realizes

Legend

System Element

Environment Element

Information Flow

Energy Flow

Transition

Nodes Connections Relevance Annotations: System Element relevant to...

SE Software Engineering

CE Control Engineering

Electrical Engineering

Mechanical Engineering

EE

ME

Relational
Trace Link

State

affects

affects

Mechanical Connection

Emergency Braking and Precrash Measures

Emergency Braking

Obstacle Detection

Emergency Evasion

Situation:

1) The middle vehicle receives the emergency brake warning of the

leading vehicle ahead within a time frame such that it is not possible for

the middle vehicle to safely perform an emergency braking itself.

2) The middle vehicle negotiated with a following vehicle about

performing emergency braking, but this maneuver would not be safe

for the following vehicle.

Intended behavior: The middle vehicle shall negotiate with a potential

overtaking vehicle, whether an evasion to the second lane is safe for

overtaking. If it is safe, middle shall perform the evasion maneuver.

Adaptive

Cruise Control

obstacleInfo

Electronic

Stability Control

Active Front

Steering

Lane Keeping

Assist

trajectory
Commands

lane

PositionInfo

braking
Commands

FlexRay

FlexRay
signals

velocity
Info

FlexRay signals

Precrash

Unit

FlexRay
signals

FlexRay signals

precrash

Commands

Gateway

FlexRay signals

FlexRay signals
EBEAS

steering
Info

FlexRay signals

trigger event [condition] / effect

ID Description
… …

5 Emergency Evasion
… …

5.6
The overtaking vehicle shall confirm or reject an evadeRequest of the

middle vehicle via an evadeResponse based on […].

5.7 The overtaking coordination has to be finished within tovertakingCoord.

5.8 The evasion maneuver has to be finished within tevade.
… …

Requirements

Disturbing Energy Flow

Entry-/Do-
Operationentry/do: ...

EBEAS

V2V
Messages

V2X

Comm-

unication

V2X
signals

1: evade-
Request

2: evade-
Response

over-
taking

middle

if safe for overtaking:
affects

affects

Functions

induces inducesrefines

Figure 2.2: Excerpt of the CONSENS system model of the EBEAS with partial models relevant
to SwRE

13

Chapter 2 Foundations

evasion functionality. More concretely, the application scenario specifies that the participating
vehicles shall negotiate about an evasion maneuver if there is no time for emergency braking or
if emergency braking is unsafe for the following vehicle. Figure A.8 in Appendix A.2.1 depicts
all application scenarios for the EBEAS.

The environment elements have relational trace links of the type affects to the application
scenarios in which they are involved. For example, the environment elements ActiveFrontSteer-
ing and LaneKeepingAssist are involved in the application scenario Emergency Evasion but
not in the remaining ones. Table A.1 in Appendix A.2.1 presents the full relational traceability
between the partial models Environment and Application Scenarios .

2.2.3 Define Requirements

Based on the partial models Environment and Application Scenarios , the actual requirements
have to be defined, specified, and managed. The partial model Requirements contains an orga-
nized collection of requirements that need to be fulfilled by the SUD. Requirements enable to
expose what is expected from the future system. They form a milestone for the validation and
verification in the subsequent development phases. In this thesis, we apply the Requirements
partial model to refine and breaks down the application scenarios into particular, individually
testable requirements.

For example, requirement 5.7 (center left of Figure 2.2) specifies that the overtaking coordi-
nation has to be finished within tovertakingCoord.

All requirements with ID 5.x have refines trace links to the application scenario Emergency
Evasion. These trace links enable that all requirements refining an application scenario can be
identified from it and vice versa.

2.2.4 Define Function Hierarchy

A solution-neutral, functional view on the system is often applied in the model-based design
of software-intensive systems [EAST13; VEFR12; DeM79]. A function is the general and
required coherence between input and output parameters, aiming at fulfilling a task. Functions
are realized by solution patterns and their concretizations. Starting with the overall function, a
breakdown into subfunctions is conducted until useful technical solutions can be found for the
functions.

In our example, the function hierarchy (center right in Figure 2.2) decomposes the over-
all functionality Ensure Passenger Safety into separate subfunctions for emergency braking,
emergency evasion, and crash preparation. Figure A.9 in Appendix A.2.1 depicts the complete
function hierarchy for the EBEAS.

The Systems Engineers specify a function to enable the realization of Application Scenarios
or due to a disturbing influence in the Environment . They document such design decisions by
means of relational traceability from the partial models Application Scenarios or Environment
to the partial model Functions, that is, through trace links of the type induces. For example,
the function Control Steering is induced from the application scenario Emergency Evasion.
Tables A.2 and A.3 in Appendix A.2.1 present the full relational traceability from the partial
models Environment and Application Scenarios , respectively, to the partial model Functions.

We furthermore provide a controlled natural language (e.g., [WAB+10]) representation of
the function hierarchy by means of so-called requirement patterns [*FH15; *FHM14; *FH14;
*DFHT13; *FHH+12; *FHM12; *HMD11; *HMM11; *Hol10].

14

2.2 Model-based Systems Engineering with Consens

2.2.5 Define Active Structure

By means of the Active Structure , the SUD is considered a white box. The Active Structure
defines the internal structure of the system through system elements and relationships between
themselves as well as from/to environment elements. As in the Environment (cf. Section 2.2.1),
the relationships are specified by means of different kinds of flows. We call the combination
of Environment and Active Structure together system architecture, which is one of the most
important artifacts in a system model [*Mer15].

For example, the Active Structure (bottom left in Figure 2.2) considers the SUD EBEAS as
white box and modularizes it into subsystems. It comprises the system elements µC1 and µC2
representing micro controllers that contain further system elements, which are connected to the
environment elements from the Environment via delegation connectors. For example, the Tra-
jectoryGeneration sends trajectoryCommands to the environment element ActiveFrontSteering
and receives the steeringInfo from it (cf. Section 2.2.1). The Situation Analysis software serving
as a sensor fusion component is deployed to µC1, and the Vehicle Control software controlling
other driver assistance systems from the Environment is deployed to µC2. Furthermore, the
EBEAS contains bus interfaces and micro controller cooling systems. Figure A.10 in Appen-
dix A.2.1 depicts the complete Active Structure for the EBEAS.

The system elements have realizes trace links to the functions of the partial model Functions
if they contribute to the realization of a function. In our example, the Situation Analysis, the
Vehicle Control, and the TrajectoryGeneration realize the function Perform Evasion Maneuver.
Table A.4 in Appendix A.2.1 presents the full relational traceability between the partial models
Active Structure and Functions.

In general, the CONSENS modeling language does not distinguish between types and their
actual applications in the model in the form of parts/roles or instances. This difference to
object-oriented modeling languages like UMLstemming from the software engineering disci-
pline exists due to the fact that the CONSENS modeling language stems from the mechanical
engineering discipline where object-oriented concepts are only of theoretical nature. Thus, the
CONSENS modeling language is more amenable to mechanical engineers, who find it difficult to
understand the object-oriented concepts of the UML.The absent distinction between types and
applications implies that only applications of environment and system elements are present in
the structural partial models Environment and Active Structure . That is, a system element like
Situation Analysis represents the actual corresponding software component in the SUD but does
not define an additional, reusable type. However, the CONSENS modeling language distinguis-
hes between environment/system element templates and exemplars for the case that reusability
is required. That is, one can specify a system element template Passive Cooling with multiple
exemplars if the system element occurs multiple times in the Active Structure .

2.2.6 Allocate Engineering Disciplines

While conceiving the Active Structure , the Systems Engineers determine during the discussion
with the discipline-specific experts (e.g., the Software Engineers) which system elements are
to be concretized in which disciplines. The Systems Engineers apply so-called relevance an-
notations [Rie15; HSST13] to specify the relevance of a system element to a certain discipline
in the Active Structure . This information can be exploited to enable the automatic derivation
of discipline-specific models from CONSENS system models (cf. Section 2.3). The relevance
annotation “SE” specifies the relevance of a system element to the discipline of software engi-

15

Chapter 2 Foundations

neering. That is, the system element represents a discrete software component, which realizes
coordination behavior and hence communicates via messages and is concretized by means of
state-based models. We call such system elements SwE-relevant.

For example, the discrete software components Situation Analysis and Vehicle Control in the
Active Structure (bottom left in Figure 2.2) are deployed to µC1 and µC2, respectively. µC2 ad-
ditionally contains the continuous software component TrajectoryGeneration, which is concre-
tized in the control engineering discipline (relevance annotation “CE”). Furthermore, the micro
controllers contain cooling systems and the EBEAS encompass bus interfaces. These system
elements are relevant to the electrical engineering discipline. Figure A.10 in Appendix A.2.1
depicts the complete Active Structure including all relevance annotations for the EBEAS.

2.2.7 Define System Behavior

Software-intensive systems are characterized by different kinds of behavior. This is reflected
in CONSENS by the two different behavior models Behavior – States and Behavior – Activities .
The usage of the models depends on the underlying development task and on the kind of the
SUD. Behavior – Activities specify flow-based behavior and are typically applied for the design
of transformational systems [HP85] like production systems, for example. In this thesis, we
focus on reactive systems, which continuously interact with their environment [HP85]. State-
based behavioral models are well-suited for this system class [HP85], which are provided by
the CONSENS language by means of the partial model Behavior – States .

We omit the description of the Behavior – States example excerpt in the bottom right of Fi-
gure 2.2 in this section and refer to Section 3.1.3 instead. This is due to the fact that we introduce
assumptions on the way this partial model has to be specified in Chapter 3 in order to apply au-
tomatisms.

2.3 Automatic Derivation of Discipline-specific Design
Models from CONSENS System Models

Based on an initial idea presented by Gausemeier et al. [GGS+07], Rieke [Rie15; Rie14;
GSG+09; Rie08] exploits the relevance annotations in the Active Structure (cf. Section 2.2.6)
for the automatic derivation of platform-independent MECHATRONICUML software engineer-
ing and control engineering design models. This enables the exploitation of the information spe-
cified in CONSENS system models and reducing the manual effort to transfer the system model
information to the discipline-specific design. Furthermore, the approach ensures the consistency
between the system models and the discipline-specific models, facilitating the orchestration of
the development process by means of the system models. The declarative, bidirectional, and sy-
nchronizing model transformation approach Triple Graph Grammars (TGGs) [Sch95] is applied
and extended for this purpose.

For example, Figure 2.3 depicts the platform-independent MECHATRONICUML software
architecture that is automatically derived from the CONSENS Active Structure of the EBEAS
(cf. Figure 2.2) using the approach of Rieke et al. It distinguishes between so-called discrete
and continuous software components. Discrete software components realize the coordination
behavior and are implemented by using MECHATRONICUML. The two discrete component
parts (including their corresponding types) as well as their port interfaces and connectors in
Figure 2.3 are derived from the equally named SwE-relevant system elements (labeled with

16

2.4 Modal Sequence Diagrams (MSDs)

the relevance annotation “SE”) Situation Analysis and Vehicle Control in the CONSENS Active
Structure . Continuous software components realize the control behavior and are implemen-
ted using commercial-off-the-shelf control engineering tools like MATLAB/Simulink [Hei15;
HRS13; HPR+12] or Dymola [Poh18; *PHMG14]. The continuous component part (including
its corresponding type) tg: TrajectoryGeneration is derived from the corresponding system ele-
ment labeled with the relevance annotation “CE”. The encapsulating structured software com-
ponent type EBEAS is of hybrid nature due to the contained discrete as well as continuous
component parts.

EBEAS

tg: Trajectory

Generation

vc: VehicleControl sa: SituationAnalysis

trajectory
Commands

steering
Info

evasionCommands

evasionCommands

braking
Commands

precrash
Commands

decisions

decisions

V2V
Messages

lane
PositionInfo

obstacle
Info

velocity
Info

V2V
Messages

lane
PositionInfo

obstacle
Info

velocity
Info

precrash
Commands

braking
Commands

trajectory
Commands

steering
Info

Legend

Discrete Component Part Unidirectional Discrete Port

Continuous Port

Software Components Ports

Bidirectional Discrete Port

Hybrid PortContinuous Component Part

Hybrid Component Type

Figure 2.3: Platform-independent MECHATRONICUML software architecture automatically
derived from the CONSENS Active Structure of the EBEAS (cf. Figure 2.2)

Beyond deriving and synchronizing structural models, Rieke specifies the behavior of the
SwE-relevant system elements with the CONSENS partial model Behavior – States , automati-
cally derives initial MECHATRONICUML behavioral models for the corresponding software
components, and ensures the consistency of these models [RDS+12; RS12]. Furthermore,
we transferred the structural part of the consistency-preserving transformation approach to
SYSML4CONSENS [*PHM14] and to the automotive sector [*FHH+12; *FHM12; *HMM11;
*MH11]. However, these approaches aim at deriving and refining discipline-specific design
models but lack a transition to SwRE.

2.4 Modal Sequence Diagrams (MSDs)

In this section, we present foundations on Greenyer’s dialect of Modal Sequence Diagrams
(MSDs) (cf. Section 1.1.2) relevant to this thesis. We refer to [*HFK+16] for the complete MSD
dialect language and the method for its application. The dialect and the corresponding analysis
techniques are implemented in the tool suite SCENARIOTOOLS MSD [ST-MSD], which bases
on the UML modeling environment PAPYRUS [PAPYRUS]. The language of the MSD dialect
is specified by means of the UML language [OMG17b] and the Modal UML profile, which we
present in Section 2.5.1.

17

Chapter 2 Foundations

We introduce the overall structure of MSD specifications in Section 2.4.1, the MSD semantics
in Section 2.4.2, and the MSD analysis techniques in Section 2.4.3.

2.4.1 Structure of MSD Specifications

An MSD specification is structured by means of MSD use cases, which encapsulate the overall
requirements on the message-based coordination behavior to be provided by the system under
development regarding a self-contained situation. An MSD use case encompasses a set of MSDs
as well as the underlying structural elements, where the MSDs specify requirements on the inter-
element coordination behavior.

For example, Figure 2.4 shows in the top an excerpt of an MSD specification, which resides at
metamodel level M1. The MSD specification defines requirements on the coordination behavior
of the EBEAS. Figure 2.4 depicts the MSD use case ObstacleDetection as part of the overall
MSD specification. This MSD use case describes the requirements on the behavior that is
expected in the case that an obstacle is detected by the leading vehicle in a semi-autonomous
platoon.

MSD use cases specify UML classes encompassing operations as structural classifier basis
for the remaining MSD specification elements. For example, the topmost class diagram Obsta-
cleDetection contains a class VehicleControl, inter alia. This class encompasses an operation
enableBraking().

Based on the classes, UML collaborations (dashed ellipse symbol) specify the roles that par-
ticipate in an MSD use case, for example, within the collaboration ObstacleDetection. These
roles are typed by the UML classes, for example, the role vc: VehicleControl is typed by the class
VehicleControl. Like CONSENS (cf. Section 2.2), MSD specifications distinguish between sys-
tem and environment entities. That is, system roles (UML part symbols) are controlled by the
system under development and environment roles (cloud symbols) are controlled by the envi-
ronment. For example, the system roles sa: SituationAnalysis and vc: VehicleControl represent
objects that are part of the system under development. The remaining roles are environment
roles, which are outside the boundary of the system under development.

Furthermore, the UML collaborations encompass the actual MSDs (cf. referential trace links
ownedBehavior). We distinguish MSDs into requirement MSDs (no stereotype applied) and
assumption MSDs (an MSD with the stereotype «EnvironmentAssumption» applied). The for-
mer ones specify requirements on the coordination behavior of the system under development,
whereas the latter ones specify assumptions on the behavior of the environment. For example,
the MSD EmcyBrakingOnObstacleDetection is a requirement MSD specifying the emergency
braking behavior of the EBEAS in the case the adaptive cruise detects an obstacle. The indica-
ted assumption MSD CriticalPointsUntilCrash specifies which critical points in the environment
(e.g., the last point to brake) are passed and sensed by the vehicle’s driver assistance systems
until a crash occurs, including their order (cf. Figure A.34 in Appendix A.2.2.3).

An MSD encompasses MSD messages, which are associated with a sending and a receiving
lifeline as well as an operation signature. Such associations are established through referential
trace links to the roles of the UML collaboration and to the class operations, respectively. For
example, the receiving lifeline vc: VehicleControl of the MSD message enableBraking re-
presents the equally named role in the UML collaboration. Furthermore, the MSD message
enableBraking has the equally named operation of the class VehicleControl as signature.
We explain the language constructs specific to MSD messages as well as other MSD ingredients
and their semantics in Section 2.4.2.

18

2.4 Modal Sequence Diagrams (MSDs)

:ObstacleDetection

msd ...

«EnvironmentAssumption» msd CriticalPointsUntilCrash

msd EmcyBrakingOnObstacleDetection

c3

ObstacleDetection

esc:
Electronic
Stability
Control

acc:
Adaptive
Cruise
Control

v2x:V2X
Communication

obstacle

emcy
Braking

emcyBrake
Warning

enable
Braking

esc1: Electronic
StabilityControl

acc1: Adaptive
CruiseControl

v2x1: V2X
Communication

Metamodel Level 1: MSD Specification

Metamodel Level 0:

Object System

at Runtime

esc:
Electronic
Stability
Control

standstill

c4

c2

c0

c5

acc:
Adaptive
Cruise
Control

c = 0
Clock

Reset

c6

c < tbrake

Time

Condition

(Maximal

Delay)

Cuts

MSD

Messages

Message

Locations

sa: Situation

Analysis
vc: Vehicle

Control

v2x:V2X
Commu-
nication

sa:
Situation

Analysis

vc:
Vehicle
Control

sa1: Situation

Analysis

vc1: Vehicle

Control

represents

class [Package] ObstacleDetection

+ enableBraking()

VehicleControl

+ emcyBraking()

Electronic

StabilityControl

+ obstacle()

SituationAnalysis

+ emcyBrakeWarning()
+ trajectoryBeacon()

V2XCommunication

Adaptive

CruiseControl

signature

type

owned
Behavior

Message

Event

legend

Referential Trace LinkSystem Role / Object

Environment Role / Object

«instanceOf»

:Role2

Object

:Role2
Object Correspondence Object for Lifeline Binding

NOT lastPointToBrakeExceeded

c1Cold

Condition

Figure 2.4: MSD use case ObstacleDetection in an MSD specification and at runtime

19

Chapter 2 Foundations

The bottom of Figure 2.4 depicts an object system at runtime (metamodel level M0), that is,
during Play-out or an actual system execution. Here, the UML collaborations as well as its par-
ticular roles are instantiated. More specifically, SCENARIOTOOLS MSD Play-out derives the
object system including a corresponding runtime metamodel from the structural MSD specifi-
cation elements by means of model transformations (the runtime metamodel is not depicted in
Figure 2.4). For example, the UML collaboration object :ObstacleDetection encompasses ob-
jects that are instances of the classes of the MSD specification. That is, the object acc1: Adapti-
veCruiseControl has an «instanceOf» relationship to the class AdaptiveCruiseControl. In order
to specify the relationship between the objects and the roles, SCENARIOTOOLS MSD Play-out
provides a correspondence model that associates the objects with the roles through referential
trace links. For example, the object :Role2Object associates the environment object acc1: Adap-
tiveCruiseControl and the corresponding environment role acc: AdaptiveCruiseControl. Via this
mapping, lifelines are bound to objects in the object system that play the roles that the lifeline
refers to. Actual message events at runtime at metamodel level M0 (e.g., the message event
enableBraking depicted in the object system) correspond to MSD messages at metamodel
level M1, as we explain in the following section.

2.4.2 MSD Semantics

Intuitively, an MSD progresses as message events occur in the object system at runtime as des-
cribed in the MSD. The SCENARIOTOOLS MSD analysis techniques only consider synchronous
messages where the sending and the receiving of the message together form a single message
event. Each MSD message has a temperature and an execution kind, represented by its color
and its line style, respectively. The temperature of a message represents its modality and can
be cold (blue color) or hot (red color). The execution kind of a message can be executed (solid
line) or monitored (dashed line).

If the progress reaches a monitored MSD message, the corresponding message event may
or may not occur. If the MSD message is executed, the message event must eventually occur
(liveness). If the MSD message is hot, no message event must occur (safety) that the scenario
specifies to occur earlier or later. If such a message event occurs, this represents a hot or safety
violation. If the MSD message is cold and a message event occurs that is specified to occur
earlier or later, this “aborts” the progress of the MSD, representing a cold violation and a legal
trace. Message events that have no corresponding MSD message specified in an MSD are
ignored. That is, they do not influence the progress of the MSD, and the MSD does not impose
requirements on them.

More specifically, the semantics of MSD messages and message events is as follows: A
message event is unified with an MSD message iff the event name equals the message name (and
hence the name of the associated operation signature) and the sending and receiving lifelines of
the message are bound to the sending and the receiving objects. When a message event occurs
in the object system that can be unified with the first message in an MSD an active MSD is
created. Such a first message in an MSD is also called minimal message and is always cold
and monitored. As further message events occur that can be unified with the subsequent MSD
messages, the active MSD progresses. This progress is captured by the cut, which marks for
every lifeline the locations of the MSD messages that were unified with the message events. If
the cut reaches the end of an active MSD, the active MSD is terminated.

If the cut is in front of an MSD message on its sending and receiving lifeline, the message
is enabled. For example, let us assume that the MSD EmcyBrakingOnObstacleDetection in

20

2.4 Modal Sequence Diagrams (MSDs)

Figure 2.4 is active and in the cut c2, that is, the MSD message emcyBrakeWarning is
enabled. If in this state the message event emcyBrakeWarning occurs at runtime, it is unified
with the equally named MSD message, and the cut moves from c2 to c3. However, if in this state
a message event enableBraking occurs at runtime (i.e., the sending of a warning is expected
but the EBEAS omits this and directly engages the emergency braking), a hot violation occurs.
In all active MSDs, the cut progresses for all enabled MSD messages on the occurrence of an
unifiable message event. That is, one message event can be simultaneously unified with multiple
MSD messages (defined by the sending/receiving lifeline and the operation signature) specified
in several MSDs.

MSD messages and message events that are sent from environment roles and objects are cal-
led environment messages and environment events, respectively. Analogously, MSD messages
and message events that are sent from system roles and objects are called system messages and
system events, respectively.

2.4.2.1 Conditions

Beyond MSD messages and lifelines, MSDs can contain hot or cold conditions, which are
represented as hexagons that cover one or more lifelines. Cold conditions are colored blue
and hot conditions are colored red. Conditions can contain Object Constraint Language (OCL)
[OMG14a] expressions that evaluate to a Boolean value. Conditions, if enabled, are evaluated
immediately. If the expression of a hot or cold condition evaluates to true, the cut progresses
beyond the condition. If the expression evaluates to false and the condition is cold, the active
MSD terminates (cold violation). If a hot condition evaluates to false, the cut stays in front of
the condition until it evaluates to true. If the condition never becomes true, this represents a
liveness violation. If another message event occurs in such a cut that the MSD specifies to occur
earlier or later or the cut reaches a hot condition with the expression false, this is a safety
violation.

For example, the cold condition in the MSD EmcyBrakingOnObstacleDetection in Figure 2.4
contains the expression NOT lastPointToBrakeExceeded. That is, if the MSD is acti-
vated through an obstacle message event and the last point to brake is already exceeded, the
subsequent message event sequence is not expected to occur anymore.

2.4.2.2 Real-time Requirements

Extending conditions, real-time requirements can be specified in MSDs by referring to clock
variables. Clock variables are adopted from Timed Automata [AD94] relying on symbolic,
dense time and represent real-value variables that increase synchronously and linearly with
time. We distinguish between clock resets and time conditions. Clock resets are visualized as
rectangles with an expression of the form c = 0 over a clock variable c. Time conditions have a
temperature and define assertions w.r.t. clock variables. To this end, each time condition defines
an expression of the form c ./ value, with a clock c, an operator ./∈ {<,≤,>,≥}, and an
integer value value. For hot timed conditions, we distinguish minimal delays (./∈ {>,≥})
and maximal delays (./∈ {<,≤, }). If a minimal delay is enabled, but evaluates to false, the
cut progresses as soon as it becomes true. Meanwhile the cut is hot, that is, no message that
is not currently enabled in the active MSD is allowed to occur. If a maximal delay is enabled
and evaluates to false, this is a liveness violation of the MSD because the MSD cannot progress.
Due to the fact that once a maximal delay evaluates to false (i.e., the specified upper bound

21

Chapter 2 Foundations

time constraint is violated) it can never evaluate to true afterward because the time linearly
progresses, this also represents a safety violation.

For example, the MSD EmcyBrakingOnObstacleDetection in Figure 2.4 contains a clock
reset and a maximal delay specifying that the message events unifiable with the MSD messages
specified in between must occur within tbrake time units. This combination of a clock reset and
a maximal delay forms a real-time requirement. Once the clock variable c has a value that is
greater than tbrake, this represents a liveness and safety violation. In this thesis, we call this also
a real-time requirement violation.

2.4.2.3 Existential and Universal MSDs

Typically, scenario-based specifications can be interpreted in an existential or in a universal
way [SUB08]. An existential scenario specifies exemplary behavior of the system under de-
velopment, where the system shall be able to produce at least one trace that fits the scenario.
A universal scenario specifies requirements on all traces produced by the system under deve-
lopment, which is crucial for safety requirements, for example. Some scenario-based forma-
lisms, for example Live Sequence Charts (LSCs) [DH01; HM03a], provide dedicated language
constructs for both interpretations. Whereas our MSD dialect focuses on universal scenarios
[Gre11; *HFK+16], an existential scenario can be expressed in our dialect through an MSD
containing only cold and executed system messages and cold and monitored environment mes-
sages [HM08].

2.4.3 Analysis Techniques

Based on the MSD dialect presented in the last two sections, Greenyer [Gre11; GF12; BGP13;
GBC+13] applied and extended two complementary automatic analysis techniques enabling the
early detection of unintended behavior and inconsistencies between scenarios on requirements
level. First, the Play-out algorithm (originally conceived for LSCs [HM03b; HM03a] and later
also applied to the original MSD formalism [MH06; HKM07; HMSB10]) enables to simula-
tively validate untimed MSDs and thereby help the requirements engineer to understand the
behavior emerging from the interplay of the scenarios [Gre11; GF12; BGP13]. Second, the
synthesis of a global controller from an untimed or timed MSD specification [Gre11; GF12;
GBC+13] is a formal verification technique [Wan04] that enables ensuring the consistency and
realizability of the requirements: An MSD specification is consistent and hence realizable iff
a global controller can be synthesized from it (i.e., there exists a state-based, non-distributed
implementation of the requirements).

We improved the MSD analysis techniques regarding real-time aspects by means of the Real-
time Play-out approach [*BGH+14; *BBG+13] and a timed synthesis on top of it [*Jap15].
Real-time Play-out and thereby the timed synthesis apply the dense, symbolic time model
known from Timed Automata [AD94]. However, these analysis techniques assume that the
software is always fast enough to perform any finite number of steps before the occurrence
of the next environment event [Gre11; HM03a]. Furthermore, MSDs address the platform-
independent requirements on the system’s coordination behavior. Platform-specific effects on
the timing behavior have to be explicitly specified by means of minimal delays in order to ana-
lyze the timing behavior emerging from the software execution in distributed systems, resulting
in awkward and cumbersome MSD specifications. Thus, we regard the timed MSD analysis
techniques as platform-independent analysis techniques. In [*HS14; *Shi14], we presented an

22

2.5 UML Profiles

initial approach considering timing effects induced by target execution platforms in Real-time
Play-out. However, this approach only considers static message send and task execution de-
lays but misses more complex delay computations and dynamic timing behavior due to mutual
exclusions of platform resources.

2.5 UML Profiles

The Unified Modeling Language (UML) [OMG17b] is a general-purpose and de-facto standard
modeling language for the software engineering discipline. The UML provides an extension
mechanism by means of so-called profiles for the specification of domain-specific modeling
languages. In this section, we describe the UML profiles that we apply or extend in this thesis.

2.5.1 The Modal Profile

The language for our dialect of MSD specifications (cf. Section 2.4) is specified at metamodel
level M2 by means of the UML language [OMG17b] and the Modal UML profile [Gre11;
ST-MSD], whose original version was introduced by Harel and Maoz [HM08]. The Modal
profile introduces the MSD-specific language constructs to the UML language, for example, the
temperature and the execution kind of MSD messages as well as the real-time requirements and
their temperature. Figure 2.5 depicts the Modal profile, and we explain its particular stereotypes
in the following.

«profile» Modal

«metaclass»
UML::Interaction

«stereotype»
Environment
Assumption

«metaclass»
UML::Property

partKind: PartKind

«stereotype»
SpecificationPart

System
Environment

«enumeration»
PartKind

«metaclass»
UML::Message

execution: ExecutionKind
temperature:
 TemperatureKind

«stereotype»
ModalMessage

Cold
Hot

«enumeration»
TemperatureKind

Monitor
Execute

«enumeration»
ExecutionKind

«metaclass»
UML::CombinedFragment

temperature: TemperatureKind

«stereotype»
Condition

«stereotype»
TimeCondition

«stereotype»
ClockReset

Legend

Existing, Reused Metaclass Modal Stereotype

Figure 2.5: The Modal profile

SpecificationPart A role as part of a UML collaboration.

partKind Specifies whether the role is a system role or an environment role.

EnvironmentAssumption An environment MSD.

ModalMessage An MSD message.

execution Specifies whether the MSD message is monitored or executed.
temperature Specifies whether the MSD message is cold or hot.

23

Chapter 2 Foundations

Condition A condition.

temperature Specifies whether the condition is cold or hot.

TimeCondition A time condition.

temperature Specifies whether the time condition is cold or hot.

ClockReset A clock reset.

2.5.2 The Systems Modeling Language (SysML)

The Systems Modeling Language (SysML) [OMG17a] is a general-purpose and de-facto stan-
dard modeling language for MBSE. SysML is defined as a profile based on a subset of the
UML, the UML4SysML. Figure 2.6 depicts the excerpt of the UML4SysML UML subset and the
SysML profile that we use and extend in Chapter 3, and we explain the particular metaclasses
and stereotypes that we extend in the following.

«profile» SysML

Legend

Existing, Reused Metaclass SysML Stereotype

«stereotype»
Blocks::Block

«metaclass»
UML4SysML::

Class

«metaclass»
UML4SysML::

UseCase

«stereotype»
Ports&Flows::

FullPort

«metaclass»
UML4SysML::

Port

«metaclass»
UML4SysML::

Property

«metaclass»
UML4SysML::
Abstraction

«metaclass»
UML4SysML::

NamedElement

«metaclass»
UML4SysML::
Dependency

client*supplier *

«metaclass»
UML4SysML::

Connector

«metaclass»
UML4SysML::
Association

«stereotype»
Ports&Flows::
InterfaceBlock

...

«metaclass»
UML4SysML::

Interaction

Figure 2.6: Excerpt of the UML4SysML UML subset and the SysML profile used in this thesis

Block “A Block is a modular unit that describes the structure of a system or element.”
[OMG17a, Section 8.3.2.4]

Property “Properties are the primary structural feature of blocks. [...] Part properties are used
to describe the composition hierarchy of a block and define a part in the context of its
whole.” [FMS12, Section 7.1]

InterfaceBlock “A [...] port is typed by an interface block which specifies the features that can
be accessed via the port.” [FMS12, Section 7.6]

24

2.5 UML Profiles

FullPort “Full ports specify a separate element of the system from the owning block or its
internal parts.” [OMG17a, Section 9.3.2.8]

Abstraction “An Abstraction is a Relationship that relates two Elements or sets of Elements
that represent the same concept at different levels of abstraction or from different vie-
wpoints.” [OMG17b, Section 7.8.1.1] It provides a modeling concept for relational tra-
ceability, because it specializes the UML metaclass Dependency that in turn specializes
DirectedRelationship (cf. Section 2.1.1.2 and [OMG17b]).

Association “A link is a tuple of values that refer to typed objects. An Association classifies
a set of links, each of which is an instance of the Association. Each value in the link
refers to an instance of the type of the corresponding end of the Association.” [OMG17b,
Section 11.8.1.1]

Connector “A Connector specifies links that enables communication between two or more
instances. In contrast to Associations, which specify links between any instance of the
associated Classifiers, Connectors specify links between instances playing the connected
parts only.” [OMG17b, Section 11.8.10.1]

UseCase “A UseCase specifies a set of actions performed by its subjects, which yields an
observable result that is of value for one or more Actors or other stakeholders of each
subject.” [OMG17b, Section 18.2.5.1]

2.5.3 Modeling and Analysis of Real-Time Embedded Systems (MARTE)

The UML profile Modeling and Analysis of Real-Time Embedded Systems (MARTE) [OMG11]
provides modeling means for design and analysis aspects for the embedded software part of
software-intensive systems. For the most part, we cite descriptions of [OMG11], [SG14], or
[OMG17b] in the following.

2.5.3.1 Subprofile Non-functional Properties Modeling (NFPs) and the Model
Library MARTE_Library

In Chapter 4, we either use the UML primitive data types Boolean and Integer or more complex
data types as provided by the MARTE subprofile Non-functional Properties Modeling (NFPs)
[OMG11, Chapter 7/Annex F.2] and its model library MARTE_Library [OMG11, Annex D].
We introduce the used latter ones in the following.

Figure 2.7 depicts the excerpt of the NFPs subprofile that we use in Chapter 4, and we explain
its particular stereotypes in the following.

Dimension “A Dimension is a relationship between a quantity and a set of base quantities in a
given system of quantities.” [OMG11, Section 8.3.2.2]

symbol “This attribute represents the symbol used to designate the dimension.” [OMG11,
Section 8.3.2.2]

baseDimension “This attribute represents the base dimensions by which the dimension of
a derived quantity unit is created. Basic dimensions do not require this attribute.”
[OMG11, Section 8.3.2.2]

Unit “Unit is a qualifier of measured values in terms of which the magnitudes of other quantities
that have the same physical dimension can be stated.” [OMG11, Section 8.3.2.6]

25

Chapter 2 Foundations

«profile» MARTE::NFPs [Excerpt]

«metaclass»
UML::DataType

unitAttrib: Property
exprAttrib: Property

«stereotype»
NfpType

«metaclass»
UML::EnumerationLiteral

convFactor: Real
baseUnit: Unit

«stereotype»
Unit

symbol: String
baseDimension: Dimension [*]

«stereotype»
Dimension

«metaclass»
UML:::Enumeration

owned
Literal

*

...

Legend

Existing, Reused Metaclass MARTE Stereotype

Figure 2.7: Excerpt of the MARTE NFPs subprofile used in this thesis

convFactor “This parameter allows referencing measurement units to other base units by
a numerical factor.” [OMG11, Section 8.3.2.6]

baseUnit “This attribute represent the base unit by which a derived measurement unit is
created. Basic units do not require this attribute.” [OMG11, Section 8.3.2.6]

NfpType “The actual physical values are modeled by specialized UML data types, called NFP
types, represented by the standard MARTE stereotype, NfpType.” [SG14, Section 3.2]

unitAttrib “measurement unit declaration that apply to all the value specifications of the
NFP. Usually, it is an enumeration data type with a list of the valid measurement
units.” [OMG11, Section 8.3.2.4]

exprAttrib “attributes representing an expression. MARTE uses the [Value Specification
(VSL)] language to define expressions.” [OMG11, Section 8.3.2.4] We use this
attribute specified by means of VSL expressions [OMG11, Annex B] to specify
interval values.

The MARTE model library MARTE_Library [OMG11, Annex D] defines pre-defined Dimen-
sions and NfpTypes, inter alia, for convenience. Figure 2.8 depicts the excerpt of Dimensions
and NfpTypes that we use in Chapter 4, and we explain them in the following.

NFP_CommonType “This is the parent NfpType that contains common parameters [...] of the
various NfpTypes defined in MARTE.” [OMG11, Annex D.2.7]

expr “This attribute is bound to the exprAttrib attribute of the NfpType stereotype
[(cf. description above)], to denote that it is the attribute that contains the value
expression.” [SG14, Appendix A]

NFP_Integer Specifies Integer intervals in Chapter 4.

NFP_Real “This is a general type used as a base for any physical data types whose values can
be represented by real numbers.” [SG14, Section 3.2] By means of this NfpType, we
specify intervals of real-numbered values.

NFP_Duration “NFP_Duration is used to type elements that represent intervals in time [...]”
[SG14, Section 3.3] with the unit of type TimeUnitKind.

26

2.5 UML Profiles

«modelL brary» MARTE_Library [Excerpt]

«modelL brary» BasicNFP_Types

«dataType»
«nfpType»
NFP_Real

«dataType»
«nfpType»

NFP_Integer

unit: TimeUnitKind

«dataType»
«nfpType»

{unitAttrib = unit}
NFP_Duration

unit: DataTxRateUnitKind

«dataType»
«nfpType»

{unitAttr b = unit}
NFP_DataTxRate

unit: DataSizeUnitKind

«dataType»
«nfpType»

{unitAttr b = unit}
NFP_DataSize

unit: String = “%”

«dataType»
«nfpType»

{unitAttrib = unit}
NFP_Percentage

expr: VSL_Expression

«dataType»
«nfpType»

{exprAttrib = expr}
NFP_CommonType

«modelLibrary»
MARTE_DataTypes

«primitive»
VSL_Expression

«modelL brary» MeasurementUnits

«unit» s
«unit» ms
 {baseUnit=s, convFactor=0.001}
«unit» us
 {baseUnit=ms, convFactor=0.001}
...

«enumeration»
«dimension»

TimeUnitKind
{symbol = T}

«unit» bit
«unit» kbit
 {baseUnit=bit, convFactor=1000}
...

«enumeration»
«dimension»

DataSizeUnitKind
{symbol = D}

«unit» bit/s
«unit» kbit/s
 {baseUnit=bit/s, convFactor=1000}
...

«enumeration»
«dimension»

DataTxRateUnitKind
{baseDimension = {D,T}}

Figure 2.8: Excerpt of the MARTE_Library used in this thesis

NFP_DataSize By means of this NfpType, we specify intervals of data sizes with the unit of
type DataSizeUnitKind.

NFP_DataTxRate By means of this NfpType, we specify intervals of data transmission rates
with the unit of type DataTxRateUnitKind.

NFP_Percentage By means of this NfpType, we specify percentage intervals.

2.5.3.2 Subprofile Generic Resource Modeling (GRM)

The MARTE subprofile Generic Resource Modeling (GRM) [OMG11, Chapter 10/Annex F.4]
provides modeling means for the specification of generic resources of execution platforms. The
bottom of Figure 2.9 depicts the excerpt of the GRM subprofile that we use in Chapter 4, and
we explain its particular stereotypes in the following.

Resource “[...] represents a physically or logically persistent entity that offers one or more
services.” [OMG11, Annex F.4.20] (cf. [OMG11, Section 10.3.2.12])

CommunicationMedia “[...] represents the means to transport information from one location
to another.” [OMG11, Annex F.4.7] (cf. [OMG11, Section 10.3.2.4])

capacity “Capacity of the communication element [...]” [OMG11, Section 10.3.2.4]

27

Chapter 2 Foundations

«profile»
GRM

«profile» Alloc

«profile» GQAM

«stereotype»
Resource

speedFactor: NFP_Real

«stereotype»
ProcessingResource

«metaclass»
UML::Classifier

«stereotype»
StorageResource

commTxOvh: NFP_Duration
commRcvOvh: NFP_Duration

«stereotype»
GaExecHost

...

capacity: NFP_DataTxRate
blockT: NFP_Duration

«stereotype»
CommunicationMedia

...

«stereotype»
GaWorkloadBehavior

«stereotype»
GaAnalysisContext

«stereotype»
GaResourcesPlatform

workload

1..*

platform

1..*

«stereotype»
GaWorkloadEvent

demand

*

«stereotype»
GaScenario

behavior

*

«metaclass»
UML::

NamedElement

isPreempt ble: Boolean
schedPolicy: SchedPolicyKind

«stereotype»
Scheduler

execTime: NFP_Duration
msgSize: NFP_DataSize
usedMemory: NFP_DataSize

«stereotype»
ResourceUsage

...

«metaclass»
UML::

Dependency

client*supplier *

...

«stereotype»
Allocate

Legend

Existing, Reused Metaclass MARTE Stereotype

«metaclass»
UML::

Connector...

«metaclass»
UML::Property

Figure 2.9: Excerpt of the MARTE subprofiles GRM, GQAM, and Alloc used in this thesis

28

2.5 UML Profiles

blockT “Time the communicationMedia is blocked and cannot transmit due to the trans-
mission of one communication quantum.” [OMG11, Section 10.3.2.4]

ProcessingResource “[...] an active, protected, executing-type resource that is allocated to
the execution of schedulable resources [...].” [OMG11, Section 10.3.2.10]

speedFactor “[...] a relative factor for annotating the processing speed expressed as a
ratio to the speed of the reference processingResource for the system under consi-
deration.” [OMG11, Section 10.3.2.10]

StorageResource “[...] represents the different forms of memory.” [OMG11, Annex F.4.36]
(cf. [OMG11, Section 10.3.2.17])

Scheduler “[...] brings access to [...] resources following a certain scheduling policy.”
[OMG11, Annex F.4.30] (cf. [OMG11, Section 10.3.2.15]).

isPreemptible “Qualifies the capacity of the scheduler for preempting schedulable resour-
ces once the access to the processing capacity has been granted upon the arrival of
a new situation where a different schedulable resource has to execute.” [OMG11,
Section 10.3.2.15]

schedPolicy “Scheduling policy implemented by the scheduler.” [OMG11,
Section 10.3.2.15]

ResourceUsage “[...] represents the run-time mechanism that effectively requires the usage
of the resource.” [OMG11, Annex F.4.27]). (cf. [OMG11, Section 10.3.2.13]).

execTime “Time that the resource is in use due to the usage.” [OMG11,
Section 10.3.2.13]

msgSize “Amount of data transmitted by the resource.” [OMG11, Section 10.3.2.13]
usedMemory “Amount of memory that will be used from a resource but that will be

immediately returned, and hence should be available while the usage is in course.”
[OMG11, Section 10.3.2.13]

2.5.3.3 Subprofile Generic Quantitative Analysis Modeling (GQAM)

The MARTE subprofile Generic Quantitative Analysis Modeling (GQAM) [OMG11, Chap-
ter 15/Annex F.10] provides modeling means for the specification of generic and quantitative
aspects relevant to automatic analysis techniques. The top of Figure 2.9 depicts the excerpt of
the GQAM subprofile that we use in Chapter 4, and we explain its particular stereotypes in the
following.

GaAnalysisContext “For a given analysis, the context identifies the model elements [...] of
interest and specifies global parameters of the analysis.” [OMG11, Section 15.3.2.2]

platform “Logical containers for the resources used in the behavior to be analyzed.”
[OMG11, Annex F.10.2]

workload “Logical container for the workload model and for the system-level behavior
triggered by it.” [OMG11, Annex F.10.2]

GaResourcesPlatform “A logical container for the resources used in an analysis context.”
[OMG11, Section 15.3.2.10]

GaWorkloadBehavior “A logical container for the analyzed behavior and the workload that
triggers it, in an analysis context.” [OMG11, Section 15.3.2.15]

29

Chapter 2 Foundations

demand “Indicates the request event streams that are part of this container.” [OMG11,
Annex F.10.19]

behavior “Indicates the set of system behaviors used for analysis.” [OMG11, An-
nex F.10.19]

GaScenario “[...] defines the behavior in response to a request event, including the se-
quence of steps and their use of resources.” [OMG11, Annex F.10.3] (cf. [OMG11,
Section 15.3.2.12])

GaWorkloadEvent “A stream of events that initiate system-level behavior.” [OMG11,
Section 15.3.2.16]

GaExecHost “A CPU or other device that executes functional steps.” [OMG11, Annex F.10.8]
(cf. [OMG11, Section 15.3.2.7])

commTxOvh “[...] denotes the overhead involved in sending a message.” [SG14,
Section 9.4.4]

commRcvOvh “[...] denotes the overhead involved in receiving a message.” [SG14,
Section 9.4.4]

2.5.3.4 Subprofile Allocation Modeling (Alloc)

The MARTE subprofile Allocation Modeling (Alloc) [OMG11, Chapter 11/Annex F.5] provides
modeling means for the specification of allocations of typically logical (i.e., application soft-
ware) elements to physical and technical (i.e., execution platform) elements. The middle of
Figure 2.9 depicts the excerpt of the Alloc subprofile that we use in Chapter 4, and we explain
its used stereotype in the following.

Allocate “[...] a mechanism for associating elements from a logical context, application model
elements, to named elements described in a more physical context, execution platform
model elements.” [OMG11, Section 11.3.2.1] It provides a modeling concept for relatio-
nal traceability, because it extends the UML metaclass Dependency that in turn speciali-
zes DirectedRelationship (cf. Section 2.1.1.2 and [OMG17b]).

client “The Element(s) dependent on the supplier Element(s).” [OMG17b,
Section 7.8.4.5]

supplier “The Element(s) on which the client Element(s) depend in some respect.”
[OMG17b, Section 7.8.4.5]

2.6 Timing Analysis Techniques for Hard Real-time Systems

Real-time systems are distinguished into hard and soft real-time systems [But11]. The violation
of hard real-time requirements may cause catastrophic consequences (e.g., people are harmed),
whereas the violation of soft real-time requirements has some utility but causes a performance
degradation [But11].

Hard real-time systems must be designed to tolerate worst-case conditions [JP86]. In general,
schedulability analysis (e.g., [But11]) for hard real-time systems investigates whether jobs with
each an activation time, a processing time, and a deadline w.r.t. the activation time can be
scheduled on resources so that always all deadlines are met.

In the following two sections, we present two concrete techniques for the schedulability anal-
ysis of hard real-time systems.

30

2.6 Timing Analysis Techniques for Hard Real-time Systems

2.6.1 Response Time Analysis

Response time analysis [SAÅ+04; ABD+95] is a well established a-priori analysis technique to
check the schedulability of hard real-time systems. It calculates upper bounds on the response
times of all jobs and checks whether all response times fulfill the corresponding deadlines. In
simplified terms, the response time of a job is defined as its activation time plus its processing
time plus the sum of potential preemption times by other jobs. A job can be a task to be
executed on a processing unit resource or a message to be transmitted via a communication
medium resource.

In the case of tasks, the processing time is the execution time that the processing unit needs
to execute the task. Worst-case execution times (WCETs) of the tasks are input to task response
time analyses [PB00]. For this purpose, WCETs have to be measured or upper bounds have
to be computed in WCET analyses, which requires the final platform-specific code or a very
detailed model of the system, respectively [WEE+08].

In the case of messages, the processing time is the transmission time that the communication
medium needs to transmit the message. For the corresponding message response time analyses,
the properties of the physical medium and of the communication protocol influencing the trans-
mission time are typically known. However, the activation time also encompasses a queuing
jitter that is inherited from the worst-case response time of the sending task [THW94]. Thus,
the results of message response time analyses also depend on the final platform-specific code.

2.6.2 End-to-End Response Time Analysis

Whereas response time analyses as described in the last section enable determining the sche-
dulability of individual tasks and messages, determining the overall schedulability of distribu-
ted systems requires a more holistic view on the overall system [Kop11]. That is, distributed
real-time systems encompass event chains [AUTOSAR; EAST13; *KHD14; *Koc13; *Tee12]
starting with an initial system stimulus and involving multiple software components that may be
deployed at different ECUs until the system provides an externally observable response event.
The timing behavior of event chains converges from the occurrence of task start and completion
events as well as of different events involved in the message transmission. The end-to-end re-
sponse time of an event chain is defined as the amount of time elapsed between the arrival of an
event at the first task and the production of the response by the last task in the chain [MNS+17].

High-level real-time requirements are formulated w.r.t. such event chains. That is, they im-
pose timing constraints on the event chains between an initial system stimulus and an externally
observable response event. In order to verify whether an overall system meets its high-level
real-time requirements, end-to-end response time analyses [TC94; FRNJ08; MMS13; MMS14]
determine whether the aggregated response times of the individual tasks and messages of an
event chain fulfill the real-time requirements. Since techniques and tools providing such ana-
lyses rely on the response times of the individual jobs (cf. last section), they require the final
platform-specific implementation [DWUL17; MNS+17; MSN+15]. Thus, they can also be only
applied in late development phases like the techniques and tools for the analysis of the individual
response times.

31

Chapter 2 Foundations

2.7 Clock Constraint Specification Language (CCSL)

The MARTE time domain model [OMG11, Chapter 9] defines three different classes of time
abstraction. The most abstract of these three classes relies on logical time [Lam78; Fid91],
which is designed for distributed and concurrent systems and treats time as partial orders of
causally and temporally related event occurrences. In the logical time interpretation of the
MARTE time domain model, a timed event occurrence refers to one instant, where discrete-time
logical clocks give access to such instants.

In order to provide modeling means for the symbolic specification of partial order sets on the
instants of the clocks, MARTE defines the textual concrete syntax and the informal semantics of
the declarative Clock Constraint Specification Language (CCSL) [OMG11, Annex C.3]. André
[And09] formalizes the semantics of CCSL, thereby enabling the simulation of CCSL models
in the tool suite TIMESQUARE [DM12a; T2]. TIMESQUARE has particularly been applied for
the timing analysis (cf. Section 2.6) of software-intensive systems (e.g., [GDM+15; GDPM13;
PD11; XJMZ11; MAD09; MPA09]).

Section 2.7.1 sketches the semantics of CCSL and its realization in TIMESQUARE. Subse-
quently, we explain the pre-defined CCSL constraints that we apply in Chapter 4. Finally, we
explain an extension of CCSL that enables to specify user-defined constraints.

2.7.1 CCSL Semantics and its Realization in TIMESQUARE

André [And09] defines the semantics of CCSL with respect to a time system TS, which consists
of a clock model M = (C, S) and an initial configuration X0. From a static point of view, a
clock model M = (C, S) is specified by a CCSL model and encompasses a finite set of discrete
clocks C as well as a constraint specification S for these clocks. That is, S defines constraints
on the clocks in C by means of clock expressions and relations (cf. Section 2.7.2). The initial
configuration X0 defines the initial instants for all clocks in C.

From a dynamic point of view, a time system TS changes its state by firing clocks, where
firing a clock means that the clock ticks. A set of simultaneous clock firings is named a step.
In order to compute a step, all enabled clocks that are fireable are determined in a set E ⊂
C. A subset F ⊂ E of simultaneously fireable clocks is identified according to the constraint
specification S and fired during the transition to the next step. A particular execution of TS is
called a run, which is a possibly infinite sequence of steps.

In order to compute the set of simultaneously fireable clocks F, André [And09] presents a
mapping from CCSL models to a Boolean expression on C , where C is a set of Boolean va-
riables in bijection with C. For any c ∈ C , the corresponding clock ticks iff c is evaluated
to true. Such a Boolean expression representing a CCSL model is encoded as a Reduced Or-
dered Binary Decision Diagram (ROBDD) [Bry86; Ake78; Lee59], so that a BDD solver can
efficiently compute the particular CCSL specification steps. This approach is implemented in
the simulation tool TIMESQUARE [DM12a; T2], which automatically transforms CCSL mod-
els into ROBDDs and computes the steps with a BDD solver. A step that cannot be computed
results in a deadlock of the simulation.

TIMESQUARE stores the resulting traces of particular runs in Value Change Dump (VCD)
[IEC04] files. VCD files originate from the domain of electronic design automation and are
originally intended to store signal traces from logic simulation tools to predict the behavior
of digital circuits and hardware description languages. Such VCD files storing signal traces
can be used to visualize the particular signal values by means of waveforms. TIMESQUARE

32

2.7 Clock Constraint Specification Language (CCSL)

reinterprets VCD files and their waveform visualization by not storing and visualizing signal
values but ticks of the CCSL specification clocks. That is, a clock ticks (value 1) or does not
tick (value 0) at a point in time. This leads to a visualization of CCSL specification runs that is
similar to UML timing diagrams [OMG17b].

If the state space is bounded, TIMESQUARE allows also a complete exploration of the CCSL
model state space as well as a controller synthesis on this basis [YTB+11], similarly to the MSD
analysis techniques (cf. Section 2.4.3).

2.7.2 Pre-defined CCSL Constraints

The constraint specification S on the clock set C (cf. Section 2.7.1) encompasses the two CCSL
constraint kinds clock expressions and clock relations, which apply to the clocks’ particular
instant sets. André [And09] formalizes a set of pre-defined CCSL constraints, which TIME-
SQUARE provides as a model library. Thereby, these CCSL constraints can conveniently be
used during the specification and simulation of CCSL models. In the following, we explain the
clock expressions and relations that we apply in Chapter 4 and Appendix B.

2.7.2.1 Clock Expressions

Clock expressions define a new clock based on other clocks and possibly extra parameters.
Figure 2.10 depicts exemplary TIMESQUARE simulation runs of the clock expressions that we
use in Chapter 4 and Appendix B. We describe these expressions in the following.

Union (clocks: Set(Clock))1 The clock specified by this expression ticks whenever one of the
clocks in its parameter set clocks ticks (cf. Figure 2.10(a)).

Intersection (clocks: Set(Clock))1 The clock specified by this expression ticks whenever all of
the clocks in its parameter set clocks tick (cf. Figure 2.10(b)).

DelayFor (clockForCounting: Clock, clockToDelay: Clock, delay: Integer) This clock expression
delays any tick of the clock clockToDelay by delay ticks of the clock clockForCounting.
Note that we define in this thesis an always ticking clock globalTime as argument for
clockForCounting so that the clock defined by this expression simply ticks delay ticks
after clockToDelay (cf. Figure 2.10(c)).

PeriodicOffsetP (baseClock: Clock, period: Integer) The clock specified by this expression ticks
any periodth tick of the baseClock. Note that we define in this thesis an always ticking
clock globalTime as argument for baseClock so that the clock defined by this expression
simply ticks any periodth tick (cf. Figure 2.10(d)).

Sup (clocks: Set(Clock))1 The clock specified by this expression ticks with a clock in the para-
meter set that does not precede the other clocks, that is, it specifies the supremum of the
particular instant sets (cf. Figure 2.10(e)).

Inf (clocks: Set(Clock))1 The clock specified by this expression ticks with a clock in the para-
meter set that precedes the other clocks, that is, it specifies the infimum of the particular
instant sets (cf. Figure 2.10(f)).

1For the sake of simplicity, we describe clock expressions and relations that have two clock parameters but can be
arbitrarily chained as expressions with a clock set parameter.

33

Chapter 2 Foundations

clock1

0 5

t

unionOfCl1Cl2

clock2

Expression unionOfCl1Cl2 = Union (
 clocks-> { clock1, clock2 })

(a) Union

clock1

0 5

t

intersectionOfCl1Cl2

clock2

Expression intersectionOfCl1Cl2 =
 Intersection (clocks-> { clock1, clock2 })

(b) Intersection

globalTime

0 5

t

delayedClock

clock

Expression delayedClock = DelayFor (
 clockForCounting->globalTime,
 clockToDelay->clock, delay->3)

(c) DelayFor

globalTime

0 5

t

periodicClock

Expression periodicClock = PeriodicOffsetP (
 baseClock->globalTime, period->2)

(d) PeriodicOffsetP

clock1

0 5

t

supremumOfCl1Cl2

clock2

Expression supremumOfCl1Cl2 =
 Sup (clocks-> { clock1, clock2 })

(e) Sup

clock1

0 5

t

infimumOfCl1Cl2

clock2

Expression infimumOfCl1Cl2 =
 Inf (clocks-> { clock1, clock2 })

(f) Inf

„results from“

legend

clock t ick
Expression <clockName> =
 <expressionType> (
 parameter1->argument1, ...)

CCSL model syntax

(g) Legend

Figure 2.10: Exemplary simulation runs of CCSL clock expressions

34

2.7 Clock Constraint Specification Language (CCSL)

2.7.2.2 Clock Relations

Clock relations between clocks impose ordering constraints between the clocks’ particular in-
stant sets. Figure 2.11 depicts exemplary TIMESQUARE simulation runs of the clock relations
that we use in Chapter 4 and Appendix B. We describe these relations in the following.

clock1

0 5

t

clock2

Relation cl1PrecedesCl2 [Precedes] (
 leftClock->clock1, rightClock->clock2)

(a) Precedes

clock1

0 5

t

clock2

Relation cl1NonStrictPrecedesCl2
 [NonStrictPrecedes] (leftClock->clock1,
 rightClock->clock2)

(b) NonStrictPrecedes

clock1

0 5

t
clock2

Relation cl1CoincidesWithCl2
 [Coincides] (clock1->clock1,
 clock2->clock2)

(c) Coincides

clock1

0 5

t

clock2

Relation cl2SubclocksCl1
 [SubClock] (subClock->clock2,
 superClock->clock1)

(d) SubClock

clock1

0 5

t

clock3

clock2

Relation exclusionCl123 [Exclusion] (
 clocks->{ clock1, clock2, clock3 })

(e) Exclusion

relat ion
dependency

legend

clock t ick

Relation <relationName>
 [<relationType>] (
 parameter1->argument1, ...)

CCSL model
syntax

(f) Legend

Figure 2.11: Exemplary simulation runs of CCSL clock relations

Precedes (leftClock: Clock, rightClock: Clock) This relation constrains the kth instant of left-
Clock to precede the kth instant of rightClock ∀k ∈ N. That is, the event represented
by leftClock always occurs before rightClock (cf. Figure 2.11(a)).

NonStrictPrecedes (leftClock: Clock, rightClock: Clock) This non-strict version of the Precedes
relation constrains the kth instant of leftClock to coincide with or precede the kth instant of
rightClock ∀k ∈N. That is, the events can also occur simultaneously (cf. Figure 2.11(b)).

Coincides (clock1: Clock, clock2: Clock) This relation constrains all instants of clock1 and
clock2 to coincide. That is, the events represented by clock1 and clock2 must occur si-
multaneously (cf. Figure 2.11(c)).

35

Chapter 2 Foundations

SubClock (subClock: Clock, superClock: Clock) This relation constrains all ticks of subClock to
coincide with a tick of superClock but not vice versa. That is, subClock can only tick
when superClock ticks, but it does not have to (cf. Figure 2.11(d)).

Exclusion (clocks: Set(Clock))1 This relation constrains the parameter clocks to tick in mutual
exclusion to each other. That is, the instants of any parameter clocks must not coincide
(cf. Figure 2.11(e)).

2.7.3 User-defined Constraints

In order to enable a convenient specification of user-defined CCSL constraints based on au-
tomata, DeAntoni et al. [DDC+14] extend CCSL with the Model of Concurrency and Com-
munication Modeling Language (MoCCML). MoCCML allows to specify user-defined clock
relations by means of MoCCML relations, which can be simulated in TIMESQUARE and stored
in user-defined model libraries. Figure 2.12 depicts an exemplary MoCCML relation whose
concepts we use in this thesis and a corresponding exemplary TIMESQUARE simulation run,
which we explain in the following.

MoCCML-Relation MyUser-definedRelation (
 cl1: Clock, cl2: Clock, cl3: Clock)

cl1, cl2
[counter < 1] /

counter++

A

cl3 /
counter = 0

local variable counter: Integer = 0

B

(a) Exemplary MoCCML relation

clock1

t

clock3

clock2

myRelation in state “A”
(clock3 not allowed to occur)

/* Init ialize clocks and apply
 MoCCML relat ion: * /
Clock clock1
Clock clock2
Clock clock3

Relation myRelation
 [MyUser-definedRelation] (
 cl1->clock1, cl2->clock2,
 cl3->clock3)

myRelation: Transition “cl1, cl2
[counter < 1] / counter++” from
state “A” to “B” (clock1/2 must occur
simultanously)

myRelation: Transition “cl3 /
counter = 0” from state “B” to “A”

myRelation in state “B”
(clock1/2 not allowed to occur)

(b) Exemplary simulation run

Figure 2.12: Exemplary MoCCML relation and simulation run

Figure 2.12(a) depicts the MoCCML relation MyUser-definedRelation, which has three clock
parameters and a local Integer variable counter that is initialized with zero. Figure 2.12(b)
depicts an exemplary simulation run that initializes three clocks and applies the clock relation
myRelation typed by the MoCCML relation on them. The automaton specifies two states A
and B as well as each a transition from one state to the other. Such transitions allow to specify
possibly coincident parameter clock triggers, guards, and effects. For example, the transition
from A to B fires when both the clock parameters cl1 and cl2 (i.e., the clock arguments clock1
and clock2 in the simulation run) tick simultaneously and additionally the guard [counter < 1]
holds. When it fires, the transition effect counter++ increments the counter. The transition from

36

2.8 Specifying Modeling Language Semantics with Gemoc

state B to A fires on the tick of the clock parameter cl3 (i.e., the clock clock3 in the simulation
run) and sets the counter back to zero.

The triggers of the transitions leaving a state specify in which state which clocks are allowed
to tick. For example, the clock parameter cl3 is not allowed to tick in state A, and the clock
parameters cl1 and cl2 are not allowed to tick in B. Furthermore, cl1 and cl2 are not allowed to
tick independently but must tick simultaneously in order to fire the transition from state A to B.

2.8 Specifying Modeling Language Semantics with GEMOC

According to Harel and Rumpe [HR04], a modeling language consists of an abstract syntax
specifying the language concepts and their relations, a semantic domain describing the lan-
guage meaning, and a semantic mapping relating the language concepts to the semantic domain
elements. The GEMOC approach [CAL+13; LCD+15] enables to flexibly specify (potentially
different) semantics for a modeling language following these definitions.

Figure 2.13 depicts an overview of the GEMOC approach. Specifically, the semantic domain
is specified by means of a Model of Concurrency and Communication (MoCC). This MoCC is
defined by semantic constraints in the form of pre-defined CCSL constraints (cf. Section 2.7.2.1)
as well as user-defined MoCCML constraints (cf. Section 2.7.3. The MoCC defines the con-
currency, the synchronizations, and the possibly timed way the elements of a program interact
during an execution. The semantic mapping is specified by the declaration of Domain-Specific
Events (DSEs), which associate the abstract syntax and the MoCC. The DSEs are specified by
means of the declarative Event Constraint Language (ECL) [DM12b]. ECL is an extension
of the Object Constraint Language [OMG14a], augmented with the notion of DSEs as well as
behavioral invariants that use CCSL and MoCCML constraints.

The approach is implemented in the modeling language workbench GEMOC Studio
[BDV+16] for building and composing executable modeling languages. GEMOC Studio ta-
kes a language metamodel, an ECL mapping specification, and semantic constraints specified
through a MoCC as inputs and automatically derives a modeling workbench with simulation
and debugging facilities. Specifically, it derives a dedicated QVT-O model transformation
[OMG16]. This model transformation takes an instance of the language metamodel as input
and generates a dedicated CCSL model that parametrizes an execution engine based on TIME-
SQUARE. The model transformation maps the associated DSEs to CCSL clocks based on the
ECL mapping specification and applies the semantic constraints from the behavioral invariants
on these clocks.

For example, Listing 2.1 specifies ECL code that describes the causal/temporal behavior of
asynchronous message events. For this purpose, it references the UML metaclass Message-
Event by setting the context to it. Within this context, two DSEs msgSendEvt and msgRe-
ceiveEvt are specified. Given a UML model containing any model element :MessageEvent, the
derived QVT-O Transformation each generates two clocks corresponding to the DSEs as part of
the CCSL model (cf. metamodel level M1 in Figure 2.13). The invariant asynchronousMessa-
geSending specifies the semantic constraints between the DSEs. For this purpose, it references
the CCSL clock relation Precedes (cf. Section 2.7.2.2) from the model library Pre-defined
CCSL Constraints (cf. metamodel level M2 in Figure 2.13). Given a UML model containing
any model element :MessageEvent, the derived QVT-O Transformation each generates a clock
relation typed by Precedes using the two clocks as arguments. During the execution of the
resulting CCSL model, TIMESQUARE computes a simulation trace similar to the one depicted

37

Chapter 2 Foundations

Mapping

Specification

«references»

Metamodel Level M2

Metamodel Level M1

«references»
«model»

ECL

Specification

Declaration of Domain-
specific Events (DSEs)

«instanceOf»

«model»

CCSL Model

«transformation»

QVT-O

Transformation

«derivedFrom» «uses»

«model»

A Model

Semantic

Constraints

«modelLibrary»

Pre-defined

CCSL Constraints

«modelLibrary»

User-defined

MoCCML Constraints

Model of Concurrency
and Communication (MoCC)

«metamodel»

Abstract Syntax

Metamodel Level M0 (Runtime) «executes»

t

Figure 2.13: Specifying semantics for executable modeling languages with GEMOC

in Figure 2.11(a) where the msgSendEvt clock ticks always precede the msgReceiveEvt clock
ticks. Likewise, user-defined MoCCML relations or clock expressions for the definitions of
auxiliary clocks can be referenced from ECL.

Listing 2.1: ECL code specifying the causal/temporal behavior of asynchronous message events
1 / * r e f e r e n c i n g a UML m e t a c l a s s * /
2 c o n t e x t UML: : MessageEvent
3 / * d e c l a r a t i o n o f two DSEs * /
4 def : msgSendEvt : Event
5 def : msgReceiveEvt : Event
6
7 / * s p e c i f i c a t i o n o f s e m a n t i c c o n s t r a i n t s on t h e DSEs * /
8 inv asynch ronousMessageSend ing :
9 / * r e f e r e n c i n g t h e p r e d e f i n e d CCSL c l o c k r e l a t i o n P r e c e d e s * /

10 R e l a t i o n Precedes (leftClock→ s e l f . msgSendEvt , rightClock→ s e l f . msgReceiveEvt)

Note that GEMOC does not consider a runtime metamodel for the CCSL model execution
in TIMESQUARE as SCENARIOTOOLS MSD Play-out (cf. Section 2.4.1) or the Dynamic Meta
Modeling approach [EHHS00; Hau05; Sol13]. This implies that if such modeling concepts
that explicitly describe the dynamic runtime behavior [LBTA11] are required in the resulting
CCSL models, dedicated abstract syntax elements have to be provided in order to specify the
corresponding DSEs and their semantic constraints.

38

3

Integrated Systems Engineering and
Software Requirements Engineering

In this chapter, we present a technique for the transition from MBSE with CONSENS to model-
based SwRE with MSDs [*HBM+16; *HBM+15; *HBM+17; *Ber15] (cf. Figure 3.1). This
technique applies automatisms and systematization to make the transition more effective and
efficient. That is first, we make the transition more effective through reducing the likelihood to
introduce defects into the software requirements. That is second, we make the transition more
efficient through reducing the effort for the Software Requirements Engineers. Similar techni-
ques for the transition from system models to discipline-specific models support the transition to
software design but not requirements models [Rie15; Thr10; OMG12; CLP11], do not support
behavioral models [BHH+14; Thr10], and/or do not provide automatisms [BHH+14; AGD+12].

s
y
s
te

m
 d

e
s
ig

n

mechanical engineering
electrical engineering
control engineering

software engineering

s
y
s
te

m
 i
n
te

g
ra

ti
o
n

discipline-specific development

customer

requirements product

modeling and model analysis

 Model-based Systems

Engineering (MBSE)

Software Requirements

Engineering (SwRE)

/

Contributions
SwRE Model Derivation / Update through

Incremental Model Transformations

Semi-automatic Support

for Systematic Refinement
C1 C2

C1 C2

/

Figure 3.1: The transition from model-based systems engineering to software requirements en-
gineering (based on [*HBM+17; VDI04])

39

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Figure 3.1 sketches the main contributions of our transition technique:
• We automate steps of the transition where possible by means of incremental and

traceability-establishing model transformations (C1) (cf. Sections 3.4, 3.7, and 3.8.2).
This reduces error-prone and time-consuming manual tasks through automatically deri-
ving initial and updating existing MSD specifications from CONSENS system models.

• Not all transition steps are automatable due to informal information in the system models.
We provide a systematic refinement approach (C2) that encompasses semi-automatic tool
support complemented by a set of informal guidelines (cf. Sections 3.5 and 3.8.3 and Ap-
pendix A.2.2.2). This further supports the Software Requirements Engineers during the
manual refinement of automatically derived or updated MSD specifications.

Furthermore, we introduce the following supporting contributions:
• We present a SysML-based CONSENS language variant by means of a SysML profile cal-

led SYSML4CONSENS [*KDHM13; IKDN13] and transfer the relevance annotations of
[Rie15] to a further SysML profile [*Ber15] (cf. Section 3.9.1.1). This abstract syntax
language specification based on SysML [OMG17a] enables us conceiving automatisms
to automatically process SYSML4CONSENS models as part of our transition technique.
Furthermore, the transfer of the conventional CONSENS modeling language to SysML
provides Systems Engineers a mature tool support for CONSENS by means of the wide-
spread UML/SysML modeling tools.

• The other way round, we introduce SysML concepts into the conventional CONSENS

modeling language (cf. Section 3.1). This includes language means to thoroughly specify
system architecture interfaces as well as to establish referential traceability from the be-
havioral to the structural partial models. Furthermore, we introduce a new variant of the
partial model Behavior – Sequences to specify discipline-spanning, sequentially ordered
actions to specify existential interaction behavior for refining Application Scenarios or
to define test cases. We consolidate these aspects and several former publications to a
CONSENS language specification, for which we refer to [*Wör14].

• We extend the MSD modeling language to reflect hierarchical software component
architectures encompassing components, ports, connectors, and hierarchies [*HM13;
*BBG+13] (cf. Section 3.2). This aligns the MSD modeling language more closely to
CONSENS as well as other modeling languages for software-intensive systems and the-
reby enables a smooth transition from CONSENS system models to MSD specifications.

• We identify aspects of the CONSENS system models that are relevant to SwRE and docu-
ment these artifact dependencies in a process description including role responsibilities
(cf. Section 3.3). This process description guides the Systems Engineers and the Software
Requirements Engineers to perform their particular steps in a systematic way, where the
task assignment to roles clarifies the distribution of their respective responsibilities.

• We present a model transformation approach that borrows concepts of the imperative
model transformation approach QVT-O [OMG16] and the traceability-establishing model
transformation approach Triple Graph Grammars (TGGs) [Sch95] (cf. Section 3.8.2.1).
On the one hand, the imperative logic of QVT-O enables to determine and process
the SwRE-relevant information scattered across several CONSENS partial models in a
compact and efficient way. On the other hand, the traceability-establishing concepts of
TGGs enable incremental updates through transformation traceability as well as the esta-
blishment of lifecycle traceability for the purpose of model management activities.

40

3.1 Extensions to the Consens Specification Technique

• We present a novel terminology for model-based traceability extending the generic ter-
minology from traceability literature (cf. Section 2.1.1). This enables us precisely distin-
guishing between the different kinds of traceability that we apply throughout this chapter.

3.1 Extensions to the CONSENS Specification Technique

Every model has a certain purpose, inter alia [Sta73]. In the automatic part of our transition
technique presented in this chapter, we exploit CONSENS system models with the purpose of
automatically deriving MSD specifications. This purpose requires a more detailed and formal-
ized system model than an initial, informal system model for the purpose of system requirements
elicitation or the clarification of a coarse-grained system architecture, for which CONSENS is
typically applied for [Tsc16; TDBG15]. In terms of the MBSE concept classification of Tschir-
ner et al. [Tsc16; TDBG15], the system model should be specified for our modeling purpose
according to the concept of “Mechatronic Systems Modeling”. This MBSE concept requires
more modeling effort than concepts with lightweight modeling purposes like interdisciplinary
communication.

Our modeling purpose imposes certain preconditions on the CONSENS system models. First,
we expect that the behavioral partial models reference the underlying system architecture in
terms of the contents that the particular interfaces of environment/system elements allow to pro-
duce or consume. This is due to the fact that executable MSD specifications require referential
traceability from the actual MSDs to their structural basis, and consequently we need this in-
formation also in CONSENS system models for the automatic parts of our transition techniques.
Second, we extend and rigorously define the partial model Behavior – Sequences in order to
reflect sequential behavior similar to MSDs. This is due to the fact that up to now this par-
tial model is introduced in a very restricted way [Ana15; AGD+12] or is even only mentioned
[DDGI14; GFDK09]. However, in industrial projects there is often the need for a discipline-
spanning description of partially ordered interactions between few system and environment ele-
ments [*Wör14]. Furthermore, an adequate partial model for the description of such discipline-
spanning interactions would be a well-suited basis for the transition to MSD specifications.

For both the rigorous specification of the behavioral descriptions on the basis of system archi-
tectures and the definition of Behavior – Sequences , we apply modeling means based on SysML.
This is because SysML provides adequate modeling language means for these purposes and is
a well-established, de-facto standard language for systems modeling. Consequently, our actual
implementation bases on a SysML profile called SYSML4CONSENS (cf. Section 3.9.1.1). We
present the SysML modeling means for a rigorous specification of CONSENS system models for
our purposes in this section and summarize a complete list of the preconditions for CONSENS

models in Section 3.8.1.
In Section 3.1.1, we introduce port specifications as basis for the referential traceability from

the behavioral partial models to the architecture. We introduce our version of the partial model
Behavior – Sequences and its referential traceability to the port specifications in Section 3.1.2.
Finally, we explain how we specify the partial model Behavior – States with language concepts
of UML/SysML State Machines [OMG17b] including referential traceability to the port speci-
fications in Section 3.1.3.

41

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

3.1.1 Port Specifications

We exemplarily introduce interfaces for the particular environment/system elements as struc-
tural basis for the behavioral partial models in this section and refer to [*Wör14] for a full
language definition. Figure 3.2 depicts excerpts of the partial models relevant in this and the
subsequent section. In contrast to the interdisciplinary view on the system model in Figure 2.2 in
Section 2.2, we focus in Figure 3.2 on the logical view of the Environment and Active Structure .
The logical view considers only logical software components and information flows, which are
realized by the disciplines of software and control engineering (cf. [EMV12; Kru95])1.

Negotiate

with Other

Vehicles

Send and

Receive

Warnings

Perform

Emergency

Braking

Perform

Evasion

Maneuver

Prepare

for Crash

Emergency Braking and Precrash Measures Situation

Emergency Braking Situation for Leading Vehicle

Emergency Braking Situation for Middle Vehicle

Emergency Evasion Situation

V2X

Commun-

ication

Situation

Analysis

emcyBrake
Warning

evadeRe-
sponse(true)

enable
Evasion

lane
Changed

evade
Request

Vehicle

Control

Trajectory

Generation

Active

Front

Steering

Lane

Keeping

Assist

evade
Warning

evade

trajectory

positionAt
Trajectory

loop

Functions

Situation

Analysis

SE

braking
Commands

precrash
Commands

Trajectory

Generation

CE

Vehicle

Control

SE

obstacle
Info

lane
PositionInfo

trajectory
Commands

steeringInfo

velocity
Info

V2V
Messages

Active Structure (Logical View)

Environment (Logical View) Application Scenarios

Behavior – Sequences

realizes

Legend

System Element

Environment Element

Information Flow

Nodes Connections
Relevance Annotations:

System Element relevant to...

SE Software Engineering

CE Control Engineering

Relational
Trace Link

affects

affects

EBEAS

represents

refines

ActionLifeline

Referential
Trace Link

EBEAS

Electronic

StabilityControl

ActiveFront

Steering Precrash

Unit

in

out

out

in

+ trajectory

«information»
trajectory

Commands

+ standstill

«information»

velocityInfo

out

in

in

out

+ emcyBraking

«information»
brakingCommands

+ obstacle

+ setLastBrake(

 lastBrake: Boolean)

...

«information»

obstacleInfo

in

inout

LaneKeeping

Assist

in

out

V2X

Comm-

unication

inout

+ laneChanged

«information»

lanePositionInfo

Adaptive

CruiseControl

out

in

out

+ enableBraking
+ enableEvasion
+ enablePrecrash

«information»

decisions
in

out

+ evade

«information»
evasion

Commands

in

out

in

out out

in

out out

outoutinout

inout

in in

in in

in

in

signature

Port Specification

+ emcyBrakeRequest

+ emcyBrakeResponse(

 isSafe: Boolean)

+ emcyBrakeWarning

+ evadeRequest

+ evadeResponse(

 isSafe: Boolean)

+ evadeWarning

«information»

V2VMessages

Emergency Braking and Precrash Measures

Emergency Braking

Obstacle Detection

Emergency Evasion

...

induces

connector

+ activatePrecrash

«information»

precrashCommands

+ positionAtTrajectory

«information»

steeringInfo

decisions

Figure 3.2: Logical view on the partial models Environment and Active Structure with port
specifications as well as excerpt of the partial model Behavior – Sequences for the
EBEAS

1The term logical view also exists in the MBSE community as part of the Requirements/Functional/Logical/Physi-
cal (RFLP) view/viewpoint approach (e.g., [EGZ12]). All system elements responsible for realizing functions—
without a restriction to a certain discipline—are considered logical elements to distinguish them from require-
ments, functions, and physical elements in this terminology.

42

3.1 Extensions to the Consens Specification Technique

Similarly to SysML interfaces, we apply port specifications to specify the messages and sig-
nals sent via the particular information flows (as well as energy and material transferred via
energy and material flows, respectively). This facilitates the reuse of interfaces, for example,
across multiple hierarchy levels. For example, the port specification trajectoryCommands is an
information flow specification. It defines that the information flow item trajectory can be sent via
the corresponding information flows from the port of the system element TrajectoryGeneration
via the port of the system EBEAS to the port of the environment element ActiveFrontSteering
(cf. top and bottom left of Figure 3.2). All port specifications in the logical view of Figure 3.2
define that the corresponding flows represent information flows due the stereotype «informa-
tion», where the kind of information can be of discrete or continuous nature.

3.1.2 Behavior – Sequences

We exemplarily introduce our new variant of the partial model Behavior – Sequences in this
section and refer to [*Wör14] for a full language definition, which borrows the main concepts
of UML/SysML Interactions. In contrast to MSDs, the partial model Behavior – Sequences
focuses on discipline-spanning actions, is semi-formal, and provides no means for specifying
modalities, execution kinds, or real-time requirements. Furthermore, we assume in this thesis
that Behavior – Sequences are used to specify exemplary behavior (e.g., for refining one or two
positive cases of an Application Scenario). Thus, in contrast to MSD specifications descri-
bing the universal behavior partitioned across multiple MSD use cases, Behavior – Sequences
exemplarily specify excerpts of this behavior, that is, existential behavior in terms of MSDs
(cf. Section 2.4.2.3).

The bottom right of Figure 3.2 depicts the Behavior – Sequence Emergency Evasion Situation
and indicates three other ones. Similar to other scenario-based modeling languages, Behavior –
Sequences specify lifelines and partially ordered interactions between them. The traceability
to the remainder of the CONSENS system model is established by a combination of referential
and relational trace links. A lifeline represents a system element or environment element in the
Active Structure and the Environment , respectively (e.g., the lifeline Vehicle Control represents
the equally named system element). An interaction between lifelines is specified by means of
an action. Such an action represents a discrete message, a continuous signal, an energetic actua-
tion, or a mechanical movement depending on the content of a port specification it refers to. This
reference is specified by means of the referential trace link signature. For example, the action
evade has the equally named signature of the port specification evasionCommands and repre-
sents a discrete message. Furthermore, each Behavior – Sequence has a relational trace link of
the type refines to an Application Scenario (e.g., the Behavior – Sequence Emergency Evasion
Situation refines the Application Scenario Emergency Evasion). Finally, combined fragments
as known from the UML [OMG17b] can be applied within Behavior – Sequences . For example,
the continuous interactions between the lifelines Trajectory Generation and ActiveFrontSteer-
ing are embedded into a loop fragment, representing the steady signal interchange between the
corresponding system and environment elements until the message laneChanged occurs.

3.1.3 Behavior – States

We assume in this thesis, that the partial model Behavior – States specifies the state-based be-
havior of the overall system (i.e., EBEAS) but not, as in [Rie15], for its particular subsystems
(e.g., SituationAnalysis). The latter specification step is subject to the discipline-specific design

43

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

as we experienced in industrial projects. Thus, Behavior – States specify requirements on the
particular state-based subsystems of the SUD, whose individual and interconnected behaviors
have to yield the overall system behavior. The Software Requirements Engineer defines these
semi-formal requirements more concretely by means of MSDs through adding system-internal
messages between the particular software components. Hence, the Systems Engineer has to
specify the Behavior – States in terms of an input/output (I/O) automaton [TL89] for the overall
SUD, where the I/O automaton has no internal actions.

We use the specification means of UML/SysML Behavior StateMachines [OMG17b] for a
thorough specification of the partial model Behavior – States . That is, we distinguish between
transition triggers occurring at the in-ports of the SUD, and transition effects or state opera-
tions performing actions on the environment elements. The referential traceability from the
Behavior – States to the Environment is established through the corresponding UML/SysML
referential trace links.

For example, Figure 3.3 shows on the left-hand side an excerpt of the logical view of the
partial model Environment with port specifications and on the right-hand side an excerpt of the
partial model Behavior – States . A message trigger as laneChanged is associated to a call
event. This call event has a referential trace link operation to an equally named operation of a
port specification, that is, lanePositionInfo. Furthermore, such a message trigger has a referential
trace link port to the port of the SUD that the corresponding event occurs at.

Environment (Logical View Excerpt) Behavior – States Excerpt

Legend

System Element

Environment Element

Information Flow

Nodes

Connections

Referential
Trace Link

EBEAS

ActiveFront

Steering

out

out

in

+ trajectory

«information»
trajectory

Commands

inout

in

inout

LaneKeeping

Assist

in

out

V2X Comm-

unication

inout

in

out

Port Specification

+ emcyBrakeRequest

+ emcyBrakeResponse(

 isSafe: Boolean)

+ emcyBrakeWarning

+ evadeRequest

+ evadeResponse(

 isSafe: Boolean)

+ evadeWarning

«information»

V2VMessages

MiddleOrFollowingRole

evade
Response

(true) / evade
Warning

lane
Changed /

do: trajectory

Emergency Evasion

positionAt
Trajectory /

Overtaking

Coordination

port

specification

specification

+ laneChanged

«information»

lanePositionInfo
operation

...

...

State

trigger event [condition] / effect

Entry-/Do-
Operationentry/do: ...

+ positionAtTrajectory

«information»

steeringInfo

...

Figure 3.3: Logical view excerpt of the partial model Environment with port specifications as
well as excerpt of the partial model Behavior – States for the EBEAS

Actions performed by the SUD on the environment elements are either specified by means of
transition effects or the entry-/do-/exit-operations of a state. Both a transition effect and a state
operation are specified by means of a referential trace link specification from a transition effect
(e.g., evadeWarning) or a state operation (e.g., the do-operation trajectory) to an equally

44

3.2 Component-based MSD Specifications

named information flow item of a port specification (i.e., the corresponding information flow
items in the port specifications V2VMessages and trajectoryCommands, respectively).

Furthermore, we use the concepts of hierarchical state machines as originally introduced as
Statecharts by Harel [Har87]. That is, we distinguish between simple states that are atomic and
composite states encompassing sub states and/or regions. For example, the state MiddleOrFol-
lowingRole is a composite state because it contains further sub states. In contrast, these sub
states are not further decomposed and hence are simple states. Figure A.12 in Appendix A.2.1
depicts the complete Behavior – States for the EBEAS. This partial model contains at the top-
most level the composite state EBEAS System Behavior that is divided into the two regions
Main Behavior and Critical Points Notification, which are concurrently active at the same time.

Finally, we use transition guards that have to evaluate to the Boolean value true so that
a transition enabled by an event can fire. The bottom right in Figure 2.2 in Section 2.2.7 de-
picts a larger Behavior – States excerpt. The sub state machine MiddleOrFollowingRole gets
active when the trigger event emcyBrakeWarning occurs. If, for example, this warning occurs
at a point in time such that an emergency braking is unsafe because the last point to brake is
exceeded (first part lastBrake of the guard condition of the transition between the states
EmergencyBrakeWarningReceived and OvertakingCoordination) but the last point to evade is
not exceeded (second part !lastEvade of the guard condition), the overtaking coordination
takes place. If this negotiation yields that an emergency evasion is safe for the overtaking vehicle
(trigger event evadeResponse(true)), the state EmergencyEvasion gets active. The trajectory
is continuously updated based on the current vehicle position at the trajectory until the trigger
event laneChanged occurs.

3.2 Component-based MSD Specifications

In this section, we present component-based MSD specifications [*HM13; *BBG+13]. These
extend conventional MSD specifications (cf. Section 2.4) with hierarchical component archi-
tectures encompassing ports, interfaces and directed connectors to foster component and inter-
face reusability as well as encapsulation. Like conventional MSDs, the modeling language for
component-based MSD specifications bases on a subset of modeling constructs of the UML
[OMG17b] and extends these constructs by means of the Modal profile (cf. Section 2.5.1).
Component-based MSD specifications are the target models of our technique for the transition
from MBSE with CONSENS to SwRE with MSDs described in this chapter, and we use them as
modeling basis for platform-specific timing analyses in Chapter 4.

We partition component-based MSD specifications into three different view types [GBB12]
that reflect different stakeholder-specific viewpoints [ISO11] and adhere to different UML
[OMG17b] metamodel parts. “A view type defines rules according to which views of the re-
spective type are created”, and “a view can [...] be considered an instance of a view type”
[GBB12]. In the following, we hence use the term view type for general aspects common to
all component-based MSD specifications and the term view for concrete models or diagrams.
Figure 3.4 depicts a conceptual overview of the ingredients of component-based MSD specifica-
tions and their assignments to the view types. Figure 3.5 depicts an example component-based
MSD specification based on the example conventional MSD specification depicted in Figure 2.4
of Section 2.4.

45

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

class [Component-based MSD Specification] Concept Taxonomy

Environment
Component Role

System
Component Role

Collaboration
Role

«viewtype»
Classifier
View Type

Collaboration
«viewtype»

Architecture
View Type

«viewtype»
Interaction
View Type

Component
Type

Component
Interface

Component
Port

ports *

1

type

Operation

operations*

1

type

Connector

1

targetPartWithPort1

sourcePartWithPort

connectors roles

MSD

Lifeline MSD Message

1

represents

1 connector

1

signature

1

sender

1

receiver

messages lifelines

*

msdUseCases

*

msds

*

componentTypes

* componentInterfaces

* msds

Figure 3.4: Concept taxonomy for component-based MSD specifications

The classifier view type provides reusable types (cf. topmost part of Figure 3.4). First, it con-
tains interfaces defining operations. Second, this view type encompasses software component
types owning ports that are typed by the interfaces.

For example, the Classifier View in the top of Figure 3.5 encompasses interfaces and com-
ponent types for the EBEAS specification. The topmost class diagram depicts excerpts of the
package Obstacle Detection Interfaces, which contains the interface Decisions defining the ope-
ration enableBraking() (UML classes with the stereotype «interface»). The class diagram
below depicts excerpts of the package Obstacle Detection Types, which contains the software
component types SituationAnalysis and VehicleControl (UML component symbols). The for-
mer one owns a port that uses the interface Decisions as required interface, whereas the latter
one owns a port that uses the interface as provided interface.

The architecture view type contains the architectural part of MSD use cases (cf. middle part of
Figure 3.4). Like in conventional MSD specifications, we use UML collaborations to specify the

46

3.2 Component-based MSD Specifications

Electronic

Stability

Control

Vehicle

Control

Situation

Analysis

msd
«Environmen Assumption» msd CriticalPointsUntilCrash

msd EmcyBrakingOnObstacleDetection

c3

+ emcyBraking()

«interface»

Braking

Commands

+ obstacle()

«interface»
ObstacleInfo

+ enableBraking()

«interface»
Decisions

class [Package] ObstacleDetection Interfaces

+ emcyBrakeWarning()
+ trajectoryBeacon()

«interface»
V2VMessages

ObstacleDetection

esc2sa
esc:

Electronic
Stability
Control

acc:
Adaptive
Cruise
Control

v2x:V2X
Comm-

unication

sa:
Situation
Analysis

vc:
Vehicle
Control vc2esc

acc2sa

vv2sa

sa2vv

sa2vc

class [Package] ObstacleDetection Types

:Braking
Com-

mands

:Velocity
Info

:V2V
Messages

:Decisions

:Obstacle
Info

:V2V
Messages

:Braking
Commands

:Decisions

obstacle

emcy
Braking

emcyBrake
Warning

v2x:V2X
Commu-
nication

sa:

Situation

Analysis

enable
Braking

...

...

C
la

s
s

if
ie

r
V

ie
w

A
rc

h
it

e
c
tu

re
 V

ie
w

In
te

ra
c

ti
o

n
 V

ie
w

esc:
Electronic
Stability
Control

signature

standstill

c4

c2

c0

c5

acc:
Adaptive
Cruise
Control

c = 0

c6

vc:

Vehicle

Control

c < tbrake

Directed Connector

from sa to vc

represents

legend

Referential Trace Link

System Component Role

Environment Component Role

NOT lastPointToBrakeExceeded

owned
Behavior

c1

connector

Required
Interface

Provided
Interface

Port

type

typetype

Figure 3.5: Example of a component-based MSD specification

47

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

structural basis for the actual MSDs. For component-based MSD specifications, this structural
basis is specified by means of software component architectures. The collaborations define the
participants of an MSD use case by means of roles classified by the software component types in
the classifier view type. We distinguish between software components of the SUD (called system
component roles in the following) and environment component roles. Beyond conventional
MSD specifications, the collaborations contain directed communication links between these
roles specified by connectors that interconnect the ports of the software component roles.

For example, the Architecture View in the middle of Figure 3.5 depicts the UML collaboration
for the MSD use case ObstacleDetection. This collaboration specifies the software component
architecture for the MSD use case. The system component role sa: SituationAnalysis can send
messages to the system component role vc: VehicleControl via the directed connector sa2vc,
but not vice versa. The communication direction is specified through the usage kind of the
port interfaces of the corresponding component types in the classifier view type. That is, the
port :Decisions of the software component type VehicleControl uses its classifying interface
as provided interface and hence can only receive but not send the messages defined by the
interface; this is vice versa for the corresponding port of SituationAnalysis. The remaining
roles in the architecture are environment component roles, which are visualized by means of
cloud symbols.

Each use case contains a set of MSDs, which are specified in the interaction view type (cf. bot-
tommost part of Figure 3.4). Each lifeline in the MSD represents a role within the collaboration
of a specific use case. The messages correspond to the operations of the interfaces in the classi-
fier view type and are associated to a directed connector in the architecture view type.

For example, the Interaction View in the bottom of Figure 3.5 depicts an MSD EmcyBraking-
OnObstacleDetection and indicates further MSDs. The contents are similar to the example of
conventional MSD specifications depicted in Figure 2.4. However, component-based lifelines
represent system component roles or environment component roles. Furthermore, a message
is sent via a connector and has a signature referencing an operation defined in an interface as
specified through referential trace links. For example, the message enableBraking is sent
from the lifeline representing the system component role sa: SituationAnalysis to the lifeline re-
presenting the system component role vc: VehicleControl via the connector sa2vc. Furthermore,
its signature references the equally named operation as part of the interface Decisions.

The static semantics of component-based MSD specifications are described by means of OCL
constraints [OMG14a] in [*BBG+13, Appendix B]. They specify, for example, that MSD mes-
sages may only be sent in the direction that the connector and the interfaces allow.

3.3 Process Description

This section describes the overall process for applying our technique for the transition from
MBSE with CONSENS to SwRE with MSDs. This process description has the purpose to cla-
rify which engineering roles conduct which steps and produce which work products including
specifying interactions between the roles. Particularly, the process description specifies which
artifacts of CONSENS system models are input to which step of our transition technique, and
which parts of MSD specifications the respective steps of our transition technique produce.

Figure 3.6 depicts our idealized overall process for the application of our transition technique.
The process is specified by means of a BPMN collaboration describing the interplay between
MBSE and SwRE. The main contribution of this chapter is emphasized with gray tasks and

48

3.3 Process Description

artifacts. The steps that we could automate are visualized by means of BPMN service tasks
(cogwheel in the upper left corner of the task). We visualize manual steps by means of BPMN
manual tasks (hand in the upper left corner of the task) and tool-supported steps by means of
a BPMN user tasks (person in the upper left corner of the task). Work products are specified
as BPMN data objects (document icons), and persistent models that are subject to update and
retrieval operations are specified as BPMN data stores (database icon). Multiple equally named
data store occurrences represent a BPMN data store reference, that is, a reference to the same
data store.

..
.

Other

Engineering

Disciplines

C
u
s
to

m
e

r

In
te

rf
a

c
e

S
o

ft
w

a
re

 E
n

g
in

e
e

r

S
o

ft
w

a
re

 A
rc

h
it
e

c
t

/

R
e
q

u
ir

e
m

e
n

ts
 E

n
g

in
e

e
r

S
y
s
te

m
s
 E

n
g

in
e

e
r

R
e
q

u
ir

e
m

e
n

ts

O
w

n
e

r
S

y
s
te

m
 D

e
s
ig

n
e
r

Analyze

Environment

Identify

Application

Scenarios

Environment
Application
Scenarios

Define

Requirements

Requirements

Define

Active

Structure

Allocate

Engineering

Disciplines

S
y
s
te

m
 A

n
a

ly
s
t

Function
Hierarchy

Active
Structure

Relevance
Annotations

Behavior –
Sequences

Application
Scenarios

Relevance
Annotations

MSD Use
Cases [empty]

Derive

MSD Use

Cases

Derive

Structure

Environment Function
Hierarchy

Active
Structure

Classi-
fiers

Archi-
tecture

Derive

MSDs

MSDs
[initial]

Behavior –
Sequences

MSD Spec.
[initial]

MSD Spec.
[complete]

Customer
Requirements

Consolidate

Discipline-specific

Analysis Results

...

System Requirements

CONSENS

System Model

MSD
Specification

Refine
MSD

Specification

Analyze

Coordination

Behavior Reqs.

Define

Function

Hierarchy

Clarify

System

Requirements

...

...

MSD Spec.

Analysis
Results

System
Requirements

Initial
Iteration

Sub-
sequent
Iteration

Initial
Iteration

Sub-
sequent
Iteration

...

Legend

Nodes
Connections

Automated Step

Tool-supported Step

Main Contribution

Work Product

Persistent Model*

Start Event

Arbitrary Event

Input Data

Logical Group

Collapsed Sub-process

Manual Step

Message Flow

Control Flow

Data Flow

Define

System

Behavior

CONSENS

System Model

 *multiple equally named occurrences represent the same data store [OMG14b]

Figure 3.6: Idealized overall process excerpt for the integration of MBSE with CONSENS and
SwRE with MSDs (based on [*HBM+16; *HBM+15])

In the following, we sketch the particular steps that are conducted by the different engineering
roles. For this purpose, we introduce the systems engineering and software engineering roles
that are relevant to our transition technique and are specified in Figure 3.6 as BPMN pools and
lanes. Whereas the coarse-grained roles Systems Engineer and Software Engineer are specified

49

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

by means of BPMN pools, the fine-grained, specialized roles introduced in the following are
specified by means of BPMN lanes.

Within the systems engineering domain, we stick to the CONSENS specification method as
presented in Figure 2.1. However, we introduce different systems engineering roles and parti-
ally additional process steps to this method in order to clarify the collaboration with the software
engineering discipline. These roles base on Kaiser [Kai14], who defines which systems engi-
neering roles according to Sheard [She96] participate in MBSE and which aspects of system
models are of interest for them.

The Customer Interface as part of the Systems Engineer is the “face to the customer” and
responsible for eliciting the right customer requirements. One of its tasks is to elicit and collect
the Customer Requirements (cf. BPMN data input in Figure 3.6) from the external stakehol-
ders and to analyze the environment jointly with the Requirements Owners (whose tasks are
described in the following). In this task, the Customer Interface represents the market issues
(e.g., external stakeholders like customers). Another task of the Customer Interface is the cla-
rification of the system requirements, which we introduce in our transition process as explicit
process step. We regard the CONSENS partial models Environment , Application Scenarios ,
and Requirements altogether as System Requirements (cf. BPMN group in Figure 3.6), which
propose a technically oriented solution of the SUD functionality as demanded by the Customer
Requirements. These system requirements have to be clarified by the Customer Interface with
the external stakeholders before the actual system design starts.

The Requirements Owners start with the definition of technical requirements on system level
(system requirements) based on given customer requirements. In the task of analyzing the Envi-
ronment jointly with the Customer Interface, the Requirements Owners represent all technical
issues and are responsible for the correct usage of the method. Furthermore, the Requirements
Owners are responsible for the identification of the Application Scenarios , but is supported by
other stakeholders, for example, from manufacturing and especially validation and verification.
They have to consolidate all Application Scenarios and evaluate their significance. Finally, they
are responsible for the definition and management of the Requirements .

Based on the system requirements, the System Designer creates the high-level, discipline-
spanning system architecture. This usually includes the definition of system functions, the
selection of adequate top-level components, and their allocation to engineering disciplines. In
contrast to [She96], we define in this thesis that the System Designers instead of the Require-
ments Owners are responsible for specifying the function hierarchy. This is due to the fact that
the System Designers know the technologies available at the company or at suppliers for reali-
zing the functions. Furthermore, they conduct the definition of the function hierarchy together
with the Requirements Owners as proposed by [She96].

The System Analysts ensure that the SUD meets the system requirements through providing
an optimal starting point for the discipline-specific issues. Beyond the specification of the be-
havioral CONSENS partial models, the System Analyst continuously consolidates discipline-
specific analysis results and work products to ensure a reasonable system design. We introduce
this task in our transition process since it is not part of the CONSENS specification method
(cf. Figure 2.1).

Within the software engineering discipline, we focus in this chapter on the roles Software
Requirements Engineer and Software Architect. The former role is responsible to document
and validate the requirements on the coordination behavior and negotiate them with the System
Analyst. The latter role is responsible for the specification of the software architectures as part
of component-based MSD specifications (cf. Section 3.2).

50

3.4 Model Transformation Rules Overview

Our transition technique semi-automatically supports these roles in conceiving MSD speci-
fications based on CONSENS system models. The technique is divided into a fully automatic
model transformation part that derives initial or updates existing MSD specifications (cf. ser-
vice tasks in Figure 3.6) and a manual part, in which the MSD specifications are systematically
refined (cf. collapsed sub-process Refine MSD Specification in Figure 3.6). We provide an
overview of the model transformation rules in Section 3.4 and describe them more formally
in Section 3.8.2.2. We support the manual refinement by a set of guidelines and further semi-
automatic means, which we describe in Section 3.5. The tool-supported step Analyze Coordina-
tion Behavior Requirements is conducted by means of the MSD analysis techniques (Real-time)
Play-out and (timed) synthesis (cf. Section 2.4.3).

Note that despite the task assignment to roles might indicate a strict separation of respon-
sibilities, we encourage the involvement of all disciplines in the specification of the system
requirements and design since issues resulting from a strict separation of responsibilities can
cause major problems [Boe00]. Furthermore, we assume that the Systems Engineer has a “T-
shaped” competency profile [Gue91] with deep knowledge in one discipline as well as basic
knowledge in the remaining disciplines, as also proposed by Pyster et al. [PAA+15]. This en-
ables the Systems Engineer to understand and respect the needs of all discipline experts like the
Software Engineer.

In contrast to [Rie15], our transition technique is intentionally unidirectional. Based on our
experiences from multidisciplinary discussions, we follow the MBSE idea envisioning the sys-
tem model to orchestrate the discipline-specific models. Thus, changes in a discipline-specific
model shall not influence the system model. This implies that the Software Requirements En-
gineers must not directly manipulate the automatically derived parts of an MSD specification,
which could introduce inconsistencies between system model and MSD specification. Instead,
they have to contact the Systems Engineers in order to trigger changes on the CONSENS system
model that influence the automatically derived part of an MSD specification.

3.4 Model Transformation Rules Overview

This section presents the functional principle of our model transformation rules in a coarse-
grained way. Section 3.8.2.2 concretizes them by means of pseudocode algorithms.

Our model transformation rules use the system elements with relevance annotations
(cf. Section 2.2.6) as the central basis to determine SwRE-relevant elements in CONSENS sys-
tem models and to derive the corresponding elements of component-based MSD specifications
from them. Figure 3.7 depicts on the left-hand side the concept taxonomy of SwRE-relevant
structural elements of CONSENS system models and on the right-hand side the concept taxo-
nomy of structural elements of component-based MSD specifications (cf. Figure 3.4) as well as
the mappings in between.

Regarding the SwRE-relevant structural elements of CONSENS system models (left-hand side
of Figure 3.7), we distinguish SwRE-relevant structural elements of CONSENS system models
into SwRE-relevant system elements and SwRE-relevant environment elements (cf. left-hand side
of Figure 3.7). Similarly to the transition from CONSENS to the platform-independent MECH-
ATRONICUML software design (cf. Section 2.3), we further distinguish SwRE-relevant system
elements into discrete software components and SwRE-relevant continuous software compo-
nents.

51

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

class [CONSENS] Concept Taxonomy

[SwRE-relevant Structural Elements]

class [Component-based MSD Specification]
Concept Taxonomy

[Architecture View Type – Collaboration Roles]

SwRE-relevant
Structural
Element

Environment
Component Role

System
Component Role

Discrete
Software

Component

SwRE-relevant
Continuous

Software
Component

SwRE-relevant
System Element

SwRE-relevant
Environment

Element

Legend

Collaboration
Role

Mapping

Figure 3.7: Mappings between SwRE-relevant structural elements of CONSENS system models
and structural elements of component-based MSD specifications

Discrete software components realize the SUD’s coordination behavior, communicate via
messages, and are concretized by means of state-based models in the discipline of software
engineering (cf. Section 2.2.6). Thus, they are an inherent part of MSD specifications docu-
menting requirements on the coordination behavior. We consider all system elements with a
relevance annotation “SE” discrete software components (cf. Section 2.2.6), and we define in
which cases we consider the remaining CONSENS system model element kinds SwRE-relevant
in the following. Furthermore, we sketch how our model transformation rules exploit discrete
software components to determine other SwRE-relevant CONSENS system model elements and
how these are mapped to component-based MSD specification elements.

3.4.1 Derive MSD Use Cases

The partial model Application Scenarios (cf. Section 2.2.2) in CONSENS system models provi-
des a system-level structuring of the desired SUD functionality that is similar to the structuring
by means of use cases in MSD specifications. In order to reuse this structuring, we create an
empty MSD use case for each SwRE-relevant application scenario in the system model.

We consider an application scenario SwRE-relevant, if at least one discrete software compo-
nent realizes one of the functions that are induced by the application scenario (cf. Figure 3.8).
For any SwRE-relevant application scenario <appScenName>, our model transformations each
derive (cf. Figure 3.8):

• A package MSD Use Case <appScenName>,
• an empty collaboration <appScenName> as part of the package MSD Use Case <app-

ScenName>,
• an empty package <appScenName> Interfaces as part of the package MSD Use Case

<appScenName>,
• and an empty package <appScenName> Types as part of the package MSD Use Case

<appScenName>.

52

3.4 Model Transformation Rules Overview

...

CONSENS Component-based MSD Specification

<appScenName>

Situation: …

Intended behavior: ...

emcyB a arning

SE

realizes

<appScen
Name>

Interfaces

<appScen
Name>
Types

MSD Use Case
<appScenName>

<appScenName>

induces

Figure 3.8: Derive MSD use cases—mapping of SwRE-relevant application scenarios

3.4.2 Derive Structure

The CONSENS partial models Environment (cf. Section 2.2.1) and Active Structure
(cf. Section 2.2.5) together specify the SUD’s system architecture in a discipline-spanning
manner, thereby providing the basis for the software architectures of MSD use cases. In order
to derive such software architectures, we again exploit the relational trace links within the
system models to determine the SwRE-relevant structural elements realizing an application
scenario. We distinguish between the following kinds of SwRE-relevant structural elements
and its particular mappings (cf. Figure 3.7 for a coarse-grained overview of these mappings).

3.4.2.1 Derive System Component Roles from Discrete Software Components

We consider a system element a discrete software component and thereby SwRE-relevant if it
has a relevance annotation “SE”. For any discrete software component <sysElemName> reali-
zing at least one of the functions that are induced by an application scenario <appScenName>,
our model transformations each derive (cf. Figure 3.9):

• A component type <sysElemName> as part of the package <appScenName> Types
• and a system component role :<sysElemName> as part of the collaboration <appScen-

Name>, where the system component role has the component type as classifier.

3.4.2.2 Derive Environment Component Roles from Environment Elements

Environment elements are elements outside the SUD’s boundary that the SUD interacts with
(cf. Section 2.2.1). Not all of them are SwRE-relevant, because some of them only interact with
SwRE-irrelevant system elements. However, we consider the direct communication between
discrete software components and environment elements via information flows SwRE-relevant
as it imposes requirements on the interactions between the SUD’s coordination behavior part and
its environment. In terms of MSD specifications, we hence treat SwRE-relevant environment
elements as environment component roles (cf. Figure 3.7).

More precisely, we consider an environment element SwRE-relevant if it is connected via
an information flow with a discrete software component. For any SwRE-relevant environment

53

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

MSD Use Case
<appScenName>

...

CONSENS Component-based MSD Specification

<appScenName>

<appScenName>

Situation: …

Intended behavior: ...

:<sysElem

Name>

<appScen
Name>
Types

<sysElem
Name>

type

<sysElem

Name>

SE

realizes

emcyB a arning

induces

Figure 3.9: Derive structure—mapping of discrete software components

element <envElemName> affecting an SwRE-relevant application scenario <appScenName>
and connected via an information flow with a discrete software component that is associated via
functions with <appScenName>, our model transformations each derive (cf. Figure 3.10):

• A component type <envElemName> as part of the package <appScenName> Types
• and an environment component role :<envElemName> as part of the collaboration <app-

ScenName>, where the environment component role has the component type as classifier.

SE

...

realizes

<envElem

Name>

CONSENS Component-based MSD Specification

MSD Use Case
<appScenName>

<appScenName>

<appScen
Name>
Types

<envElem
Name>

:<envElem
Name>

type

<appScenName>

Situation: …

Intended behavior: ...

emcyB a arning

affects

induces

Figure 3.10: Derive structure—mapping of SwRE-relevant environment elements

3.4.2.3 Derive Environment Component Roles from Continuous Software
Components

Continuous software components realize the SUD’s control behavior and are concretized in
the control engineering discipline (cf. Sections 2.2.6 and 2.3). Not all of them are SwRE-
relevant, because some of them only interact with SwRE-irrelevant system and environment
elements. However, we consider the direct communication between discrete and continuous

54

3.4 Model Transformation Rules Overview

software components via information flows SwRE-relevant as it imposes requirements on the
interactions between the SUD’s coordination and control behavior parts. In terms of MSD
specifications, we hence treat SwRE-relevant continuous software components as environment
component roles (cf. Figure 3.7).

More precisely, we consider a continuous software component (i.e., a system element with
the relevance annotation “CE”) SwRE-relevant if it is connected via an information flow with
a discrete software component. For any SwRE-relevant continuous software component <cont-
SysElemName> adjacent with a discrete software component, where both software components
are associated via functions with an SwRE-relevant application scenario <appScenName>, our
model transformations each derive (cf. Figure 3.11):

• A component type <contSysElemName> as part of the package <appScenName> Types
• and an environment component role :<contSysElemName> as part of the collaboration

<appScenName>, where the environment component role has the component type as
classifier.

SE

...

<appScenName>

Situation: …

Intended behavior: ...

realizes

CONSENS Component-based MSD Specification

MSD Use Case
<appScenName>

<appScenName>

<appScen
Name>
Types

<contSys

ElemName>

:<contSys
ElemName>

type

<contSys

ElemName>

CE

realizes

emcyB a arning

induces

Figure 3.11: Derive structure—mapping of SwRE-relevant continuous software components

3.4.2.4 Derive Interfaces, Ports, and Connectors

We consider an information flow SwRE-relevant if it connects ports of SwRE-relevant structural
elements. For any SwRE-relevant information flow between ports of structural elements associ-
ated with an application scenario <appScenName>, the ports each having the same information
flow specification <portSpecName> that encompasses one or several information flow item(s)
<informationItemName>, our model transformations each derive (cf. Figure 3.12):

• An interface <portSpecName> as part of the package <appScenName> Interfaces,
• one or several operations <informationItemName>() as part of the interface <portSpec-
Name>,

• a port as part of the sending component type using <portSpecName> as required interface,
• a port as part of the receiving component type using <portSpecName> as provided inter-

face,

55

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

• and an assembly connector :<portSpecName> connecting the required and provided in-
terface of the roles’ ports as part of the collaboration <appScenName>.

SwRE-
relevant Str.
Element B

CONSENS Component-based MSD Specification

MSD Use Case <appScenName>

<appScenName>

SwRE-
relevant Str.
Element A

<informationItemName>

«information»
<portSpecName>

inout

...

 :SwRE-
 relevant Str.
 Element A

 :SwRE-
 relevant Str.
 Element B

<appScenName> Types

SwRE-

relevant

Str. Element A
SwRE-

 relevant

Str. Element B
:<portSpec

Name>

:<portSpec
Name>

<appScenName>
Interfaces

 + <informationItemName>()

«interface»

<portSpecName>

typetype

typetype

<appScenName>

Situation: …

Intended behavior: ...

emcyB a arning

:<portSpec
Name>

Figure 3.12: Derive structure—mapping of SwRE-relevant information flows

3.4.3 Derive MSDs

Similarly to MSDs and scenario-based formalisms in general, the partial model Behavior –
Sequences (cf. Section 3.1) specifies partially ordered sequences of actions. Therefore, we
reuse the information contained in this partial model to derive initial MSDs for the MSD speci-
fication.

We consider a Behavior – Sequence SwRE-relevant, if it refines an SwRE-relevant applica-
tion scenario and encompasses both SwRE-relevant lifelines and actions. We consider a Beha-
vior – Sequence lifeline SwRE-relevant, if it represents a SwRE-relevant structural element. We
consider a Behavior – Sequence action SwRE-relevant, if it is incident to two SwRE-relevant
lifelines, associates an information flow between the SwRE-relevant structural elements that
the lifelines represent, and associates an item of an information flow port specification used
by the SwRE-relevant structural elements. For any SwRE-relevant Behavior – Sequence <beh-
SeqName> refining an SwRE-relevant application scenario <appScenName> and its SwRE-
relevant lifelines <lifelineNameA>/<lifelineNameB> and actions <actionName>, where the life-
lines represent elements associated with <appScenName> and the action associates an SwRE-
relevant information flow as well as an information item <informationItemName> as part of an
information flow specification <portSpecName>, our model transformations each derive (cf. Fi-
gure 3.13):

• An MSD <behSeqName> as part of the collaboration <appScenName>,
• lifelines <lifelineNameA>/<lifelineNameB> as part of the MSD <behSeqName>, where

the lifelines represent the collaboration roles corresponding to the SwRE-relevant struc-
tural CONSENS elements,

56

3.5 Support for Manual Refinement of MSD Specifications

• and MSD messages <actionName> between <lifelineNameA> and <lifelineNameB>,
where the MSD messages associate the connector :<portSpecName> and the operation
<informationItemName>() as part of the interface <portSpecName>.

SwRE-
relevant Str.
Element B

CONSENS Component-based MSD Specification

MSD Use Case <appScenName>

<appScenName>

SwRE-
relevant Str.
Element A

<informationItemName>

«information»
<portSpecName>

inout

...

 :SwRE-
 relevant Str.
 Element A

 :SwRE-
 relevant Str.
 Element B

:<portSpec
Name>

<appScenName> Interfaces

<appScenName>

Situation: …

Intended behavior: ...

emcyB a arning

<behSeqName>

<lifeline
NameA>

<lifeline
NameB>

<actionName>

refines

represents
repre-
sents signature

connector

 + <informationItemName>()

«interface»

<portSpecName>

msd <behSeqName>

<actionName>

owned
Behavior<lifeline

NameB>
<lifeline
NameA>

signature

repre-
sents

represents connector

Figure 3.13: Derive MSDs—mapping of SwRE-relevant Behavior – Sequences

3.5 Support for Manual Refinement of MSD Specifications

Our model transformations (cf. Section 3.4) do not derive any MSD-specific modeling con-
structs specifying the modality and the execution kind of messages nor conditional behavior.
This is due to the fact that this information is specified in the CONSENS system models in-
formally by means of text and graphics as part of the partial models Application Scenarios
and Requirements . Thus, we cannot extract this information automatically by means of model
transformations.

Furthermore, the way of specifying the CONSENS partial model Behavior – Sequences is
different than the way of specifying MSDs (cf. Section 3.1.2 and Section 2.4.2.3, respectively).
That is on the one hand, Behavior – Sequences exemplarily describe existential behavior that
refine whole situations of Application Scenarios in a self-contained manner. On the other hand,
MSD specifications describe the universal behavior partitioned across multiple MSD use cases
and fine-granular MSDs. Another input to MSD specifications are CONSENS Behavior – States ,
which semi-formally describe the overall, discipline-spanning behavior of the SUD in a state-
based instead of a scenario-based way (cf. Section 3.1.3). MSD specifications shall cover the
SwRE-relevant parts of this partial model. Such semantic translations require cognitive and
creative effort and cannot be automated by model transformations.

Thus, the initially derived MSD specifications have to be manually refined by the Software
Requirements Engineers. In this section, we present different means that support them in this

57

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

task. Figure 3.14 shows the expanded BPMN sub-process Refine MSD Specification, which
is collapsed in the overall process depicted in Figure 3.6. The sub-process encompasses four
manual steps and two tool-supported steps, which we explain in the following. First, we support
the manual steps by means of nine informal and constructive guidelines (cf. Section 3.5.1).
Second, we provide an automatic check of static coverage rules between MSD specifications
and the CONSENS partial model Behavior – States (cf. Section 3.5.2). Third, for any Behavior –
Sequence, we derive each an existential MSD whose traces have to be producible by any system
satisfying the MSD specification (cf. Section 3.5.3).

Refine MSD Specification

1: Specify
Additional

MSDs

 2: Specify
Trigger and
Execution
Behavior

 3:Specify
Temperatures
and Execution

Kinds

4: Specify
Conditional
Behavior

Legend

Nodes Connections

Control FlowManual StepStart Event

Expanded Sub-process

End Event Tool-supported Step

Section 3.5.1

Guidelines 1a/b Guideline 2 Guidelines 3a/b Guidelines 4a/b

Behavior – States

Section 3.5.2

Section 3.5.3
Play-out

 5a: Check
Coverage

w.r.t. Behavior
– States

Coverage
Check

Existential MSDs Derived
from Behavior – Sequences

 5b: Validate
Existential
Behavior

Data Flow

Work
Product

Persistent
Model

Input Data

Logical Group

Parallel
Gateway

...
Tool
Support

MSDs [Manually Refined]

MSD
Specification

CONSENS

System Model

Figure 3.14: Expanded BPMN sub-process Refine MSD Specification (cf. Figure 3.6)

3.5.1 Informal Guidelines

The guidelines encompass common patterns for the manual refinement of each aspect of a deri-
ved or updated MSD specification w.r.t. a CONSENS system model, like the most likely source
of information (e.g., the part “Situation” of Application Scenarios) in CONSENS or certain ke-
ywords (e.g., “if” or “shall”). We partitioned all guidelines in four parts with the purpose of
a uniform presentation. Furthermore, each guideline compactly includes all relevant informa-
tion on one page. Both the uniform and compact presentation aid the Software Requirements
Engineers in quickly finding the information that is required for their specific needs.

For example, Figure 3.15 presents the guideline for specifying additional assumption MSDs.
Part I of this guideline explain its overall purpose, part II sketches the semantics of the con-
sidered MSD modeling elements, part III presents concrete proposals for the procedure of the
refinement, and part IV illustrates the guideline by means of examples. We present the remai-
ning guidelines in Appendix A.1.

In the following, we sketch the particular four manual guideline-supported steps depicted in
Figure 3.14. We exemplarily conduct these steps in Appendix A.2.2.2.

58

3.5 Support for Manual Refinement of MSD Specifications

1. Specify Additional MSDs

a) Add Assumption MSDs

I. Goal IV. Examples

Software-intensive systems depend on their environment, that is, the behav-

ior of external systems and of physical processes. Assumptions on this envi-

ronment behavior have to be considered and documented in a requirements

specification (cf. [ISO18b]). The Software Requirements Engineer can spec-

ify restrictions on the events that occur in the environment by means of as-

sumption MSDs. In many cases, only such environment assumptions enable

that the software requirements are realizable at all. The goal of this guideline

is the manual specification of such environment assumptions.

* Plain fixed order (cf. [Gre11]):

* Environment reaction envMsgA

must occur before environment

event envMsgB (cf. [BGP13]):

** Environment event envMsgA

may occur at most every minTime

time units (cf. [*HFK+16]):

II. Description of Elements

An environment assumption is specified by means of a dedicated assumption

MSD, which has the stereotype «EnvironmentAssumption» applied.

An assumption MSD specifies the following aspects:

 Fixed order of environment events*

 Conditional behavior

- Environment events may occur iff certain conditions hold

- Assumed real-time restrictions on the environment**

 Forbidden environment events or event sequences (cf. Guideline 4a)

III. Guidelines

General:

 Partial models with informal/semi-formal information relevant to this re-

finement step: Behavior – States, Application Scenarios, and Require-

ments.

 Investigate Application Scenarios for a dedicated section “Environment

assumptions” (cf. [Gre11]).

 Investigate Requirements for requirements with attribute “Assumption”

(cf. [ISO18b]).

 Often, the execution kinds of the messages in contrast to the requirement

MSDs have to be reversed since an assumption MSD takes a different

perspective than a requirement MSD (cf. [BGP13]).

* Determine information about fixed environment event sequences:

 Investigate Behavior – States for plain input sequences:

 Investigate Application Scenarios for sequential environment behavior

(keywords: “after”, “afterward”, “subsequently”, “following”).

envMsgA

envMsgB

envMsgC

envMsgA

true

envMsgB

envMsgA

c = 0

c ≥ minTime

envMsgA / envMsgB / envMsgC /

Figure 3.15: Guideline 1a—Specify additional MSDs: Add assumption MSDs

59

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Step 1: Specify Additional MSDs

Before adding further requirement MSDs, the Software Requirements Engineers has to under-
stand the behavior of the environment that the SUD interacts with. Thus, they should start
with specifying environment assumptions. Guideline 1a (cf. Figure 3.15 supports the Software
Requirements Engineers in determining the relevant information for this refinement step.

Afterward, the Software Requirements Engineer has to investigate the CONSENS system
model for SwRE-relevant system behavior that is not specified as part of the exemplary Be-
havior – Sequences (cf. Guideline 1b in Figure A.1 in Appendix A.1). This behavior has to be
specified manually by means of additional requirement MSDs due to the fact that we automati-
cally derive initial MSDs only from exemplary Behavior – Sequences . That is, behavior that is
not specified as part of this partial model is not automatically derived.

Step 2: Specify Trigger and Execution Behavior

The behavior of an application scenario and an MSD use case, respectively, is often triggered
by different situations. Thus, an MSD use case behavior can often be distinguished into a
trigger behavior and the actual execution behavior. In this case, the Software Requirements
Engineer should divide these behaviors accordingly to avoid the redundant specification of the
same execution behavior intertwined with n trigger behaviors in n MSDs. This also includes
the consideration of the partial model Behavior – States , which specifies the complete system
behavior. The Software Requirements Engineer should formalize the remaining paths leading
to the Behavior – States state(s) corresponding to the initially generated MSD by means of other
MSDs. Thereby, the redundant specification of several trigger behaviors is avoided. Typically,
this refinement step leads to a rearrangement of the message sequences that are initially derived
from the Behavior – Sequences . We provide the corresponding Guideline 2 in Figure A.2 in
Appendix A.1.

Step 3: Specify Temperatures and Execution Kinds

The third step in refining an MSD specification is to investigate the informal information of
the partial models Application Scenarios and Requirements in terms of the temperature and the
execution kind for the particular messages of the initially generated MSDs, which may have
been modified in step 2. We provide the corresponding Guidelines 3a for adding temperatures
and 3b for adding execution kinds in Figure A.3 and Figure A.4 in Appendix A.1, respectively.

Step 4: Specify Conditional Behavior

The fourth step in refining an MSD specification is to investigate the informal/semi-formal in-
formation of the partial models Application Scenarios , Requirements , and Behavior – States in
terms of conditional behavior. We provide Guideline 4a for adding conditions and Guideline 4b
for adding real-time requirements in Figure A.5 and Figure A.6 in Appendix A.2, respectively.

3.5.2 Automatic Coverage Check

Step 5a: Check Coverage w.r.t. the Partial Model Behavior – States

During the manual refinement, the Software Requirements Engineers can overlook particular
message sequences indicated by the CONSENS system model despite both the automatic de-

60

3.5 Support for Manual Refinement of MSD Specifications

rivation and the guideline-supported refinement of MSD specifications. Furthermore, they can
introduce message sequences that are not intended by the CONSENS system model specification.
The CONSENS partial model Behavior – States provides a universal and discipline-spanning be-
havior description for the overall system and hence provides an adequate basis to validate the
completeness and conciseness of MSD specifications. Thus, we provide an automatic coverage
check between MSD specifications and the CONSENS partial model Behavior – States , which
we sketch in Figure 3.16.

<SwRE-

relevantEnv

ElemB>

CONSENS Component-based MSD Specification

<systemUnder

Development>

<informationItemOut>

«information»
<portSpecOut>

inout

<SwRE-

relevantEnv

ElemA>

inout

owned
Behavior

<informationItemIn> /

do: <information-
 ItemOut>

/ <informationItemOut>

port
specifi-
cation

<informationItemIn>

«information»
<portSpecIn>

operation

<appScenName> Types

<SwRE-

 relevantEnv

ElementA>

<SwRE-

 relevantEnv

ElementB>:<portSpecOut>

:<portSpecIn>

<appScenName>
Interfaces

 + <informationItemIn>()

«interface»
<portSpecIn>

type

msd ...

<information
ItemIn>

 + <informationItemOut>()

«interface»
<portSpecOut>

signature

:<SwRE-
relevantEnv
ElementA>

msd ...

<information
ItemOut>

:<SwRE-
relevantEnv
ElementB>

signature

type

Each MSD message sent from/to the environment covered?

Each SwRE-relevant trigger/action covered?

Figure 3.16: Automatic coverage check between MSD specifications and Behavior – States

The check statically checks two sets of coverage rule sets. The first rule set aims at checking
the completeness of MSD specifications w.r.t. the CONSENS partial model Behavior – States .
It encompasses two rules for checking whether each SwRE-relevant Behavior – States trigger
and action is covered by the MSD specification through an environment message and a system
message sent to the environment, respectively. If the rule set is not fulfilled, some interactions
with the environment that the partial model Behavior – States specifies are missing in the MSD
specification. The second rule set aims at checking the conciseness of MSD specifications
w.r.t. the CONSENS partial model Behavior – States . It encompasses two rules for checking
whether each environment message and a system message sent to the environment in the MSD
specification is covered by an SwRE-relevant Behavior – States trigger and action, respectively.
If the rule set is not fulfilled, either the MSD specification contains superfluous interactions with
the environment or the partial model Behavior – States is incomplete. We describe the particular
coverage rules more formally in Section 3.8.3.

3.5.3 Automatic Derivation of Existential MSDs

Step 5b: Validate Existential Behavior

The CONSENS partial model Behavior – Sequences provides exemplary existential scenarios of
whole self-contained situations, whereas MSD specifications describe universal scenarios parti-
tioned across several fine-granular MSDs and multiple MSD use cases (cf. Section 2.4.2.3).
Thus, the Software Requirements Engineer typically rearranges the contents of MSDs ini-
tially derived from Behavior – Sequences , particularly in the guideline-supported step 2

61

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

(cf. Section 3.5.1). However, the Behavior – Sequences are an important input to the manual
refinement since the MSD specifications have to fulfill the exemplary scenarios as described by
the Behavior – Sequences .

Existential MSDs describe exemplary behavior, where the overall MSD specification shall
be able to produce at least one trace that fulfills this exemplary behavior (cf. Section 2.4.2.3).
Existential MSDs can be expressed through MSDs containing only cold and executed system
messages and cold and monitored environment messages (cf. Section 2.4.2.3). By means of
Play-out, the Software Requirements Engineers can check whether there is a trace in the overall
state space of an MSD specification that fulfills an existential MSD. That is, they simulate the
MSD specification and checks whether there is an event sequence that is able to activate and
terminate such an existential MSD, which thereby serves as a test oracle.

Thus, we derive for any SwRE-relevant Behavior – Sequence and its SwRE-relevant contents
each an existential MSD. The Software Requirements Engineers should check by means of
Play-out whether their manual refinement is complete w.r.t. the Behavior – Sequences . A more
automated approach could try to synthesize a controller that fulfills the existential scenario or
perform a reachability analysis on the MSD specification state space.

More specifically, for any SwRE-relevant Behavior – Sequence <behSeqName> refining an
SwRE-relevant application scenario <appScenName> and its SwRE-relevant lifelines <lifeline-
NameA>/<lifelineNameB> and actions <actionName>, where the lifelines represent elements
associated with <appScenName> and the action associates an SwRE-relevant information flow
as well as an information item <informationItemName> as part of an information flow specifi-
cation <portSpecName>, our model transformations each derive (cf. Figures 3.17 and 3.18):

• An MSD Existential<behSeqName> as part of the collaboration <appScenName>,
• lifelines <lifelineNameA>/<lifelineNameB> as part of the MSD <behSeqName>, where

the lifelines represent the corresponding collaboration roles,
• if the sending lifeline of <actionName> represents an SwRE-relevant environment ele-

ment or an SwRE-relevant continuous system element (cf. Figure 3.17): cold and mo-
nitored environment messages <actionName> between <lifelineNameA> and <lifeline-
NameB>, where the environment messages each associate the operation <information-
ItemName>() and the connector :<portSpecName>,

• if the sending lifeline of <actionName> represents a discrete software component (cf. Fi-
gure 3.18): cold and executed system messages <actionName> between <lifelineNameA>
and <lifelineNameB>, where the system messages each associate the operation <informa-
tionItemName>() and the connector :<portSpecName> (cf. Figure 3.18).

3.6 Exemplary Application of the Transition Technique

In this section, we exemplarily apply our semi-automatic transition technique. For this purpose,
we assume that the Systems Engineers specified a CONSENS system model for the EBEAS as
shown in excerpts in Figures 2.2, 3.2, and 3.3, which is input to our transition technique. In
the following, we show extracts of the initially derived and manually refined component-based
MSD specifications. We provide the complete CONSENS system model and MSD specification
in Appendix A.2.1 and Appendix A.2.2, respectively.

62

3.6 Exemplary Application of the Transition Technique

 SwRE-
relevant env/
contSysElem

<sysElem

Name>

CONSENS Component-based MSD Specification

MSD Use Case <appScenName>

<appScenName>

<informationItemName>

«information»
<portSpecName>

inout

...

:SwRE-
relevant env/
contSysElem

 :<sys
 Elem
 Name>

:<portSpec
Name>

<appScenName> Interfaces

<appScenName>

Situation: …

Intended behavior: ...

emcyB a arning

<behSeqName>

<lifeline
NameB>

<actionName>

refines

representssignature

connector

 + <informationItemName>()

«interface»

<portSpecName>

msd Existential<behSeqName>

<actionName>

owned
Behavior<lifeline

NameB>
<lifeline

NameA>

signature

repre-
sents

represents connector

<lifeline
NameA>

repre-
sents

CE

Figure 3.17: Derive environment messages for existential MSDs

SwRE-
relevant Str.

Element

CONSENS Component-based MSD Specification

MSD Use Case <appScenName>

<appScenName>

<sysElem
Name>

<informationItemName>

«information»
<portSpecName>

inout

...

 :<sys
 Elem
 Name>

 :SwRE-
 relevant Str.
 Element

:<portSpec
Name>

<appScenName> Interfaces

<appScenName>

Situation: …

Intended behavior: ...

emcyB a arning

<behSeqName>

<lifeline
NameA>

<lifeline
NameB>

<actionName>

refines

represents
repre-
sents signature

connector

 + <informationItemName>()

«interface»

<portSpecName>

msd Existential<behSeqName>

<actionName>

owned
Behavior<lifeline

NameB>
<lifeline
NameA>

signature

repre-
sents

represents connector

SE

Figure 3.18: Derive system messages for existential MSDs

63

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

In Section 3.6.1, we exemplarily perform an initial transition from CONSENS to MSDs. In
Section 3.6.2, we exemplarily change the initial CONSENS system model and incrementally
update the MSD specification.

3.6.1 Initial Process Iteration

As sketched in the overview of the model transformation rules (cf. Section 3.4), a key aspect
of the model transformation part is the identification of information in the system models that
is relevant to SwRE. For this purpose, the model transformation rules exploit the relevance
annotations in the CONSENS Active Structure (cf. Section 2.2.6 and Section 2.3) to identify the
SwRE-relevant system elements. Based on these system elements, the model transformation
follows the trace links between the different partial models and the information flows to identify
further SwRE-relevant system model elements. Thereby, information that is not relevant to
SwRE is filtered, and the model transformations derive MSD specification elements from the
SwRE-relevant system model elements.

The target model of our transition technique are component-based MSD specifications
(cf. Section 3.2). Figure 3.19 shows the initial component-based MSD specification that is
automatically derived from a SYSML4CONSENS model as depicted in excerpts in Figure 3.29
in Section 3.9.1.1. This SYSML4CONSENS model encompasses the contents of the CONSENS

system model depicted in excerpts in Figures 2.2, 3.2, and 3.3.
The classifier view of the MSD specification is depicted on the left of Figure 3.19. First, it

contains interfaces defining operations that are depicted in the class diagrams named ...Inter-
faces. Second, it encompasses software component types owning ports that are typed by the
interfaces in the class diagrams named ...Types.

The architecture view is depicted in the top right of Figure 3.19. It encompasses UML colla-
borations specifying the particular software component architectures of each MSD use case as
the structural basis for the actual MSDs. These architectures define the participants of an MSD
use case by means of roles typed by the software component types in the classifier view.

Each use case contains a set of MSDs, which are specified in the interaction view depicted in
the bottom right of Figure 3.19. The MSDs formally specify requirements on the coordination
behavior of the use case participants (i.e., of the particular software component roles). Each
lifeline in the MSD represents a role within the collaboration of a specific use case. The mes-
sages correspond to the operations of the interfaces in the classifier view and associate directed
connectors in architecture view.

In the following, we exemplarily perform and explain each of the process steps of the Soft-
ware Requirements Engineer and the Software Architect depicted in the process description in
Figure 3.6.

3.6.1.1 Derive MSD Use Cases

Our model transformations create an empty MSD use case for each SwRE-relevant application
scenario in the system model (cf. Section 3.4.1). We call an application scenario SwRE-relevant,
if at least one SwRE-relevant system element realizes one of the functions that are induced by
this scenario. We use the bidirectional relational trace links in the system model to determine
the SwRE-relevance of an application scenario and to identify the system elements that are
used to realize the functionality specified in this scenario. Furthermore, we use the relevance

64

3.6 Exemplary Application of the Transition Technique

class [Package] Emcy.
Br & Precrash Interfaces

class [Package] Emcy.
Br & Precrash Types

class [Package]
Emcy Braking Interfaces

class [Package]
Emcy Braking Types

class [Package]
Obst Det Interfaces

class [Package]
Obst Det Types

msd Emergency Braking and Precrash Measures Situation

msd Emergency Braking Situation for Middle Vehicle

msd Emergency Braking Situation for Leading Vehicle

Emergency Braking
and Precrash Measures

Emergency Braking

Obstacle Detection

Emergency Evasion

ka: Lane
Keeping
Assist

acc:
Adaptive
Cruise
Control

sa: Situation
Analysis

tg: Trajectory
Generation

:Evasion
Commands

:Lane
Position

Info

:V2V
Messages

:V2V
Messages

:Deci-
sions

vc: Vehicle
Control

:Obstacle
Info

Classifier View

Architecture View

Interaction View

msd Emergency Evasion Situation

laneChanged

lka: Lane
Keeping
Assist

evade
Response(true)

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade

tg:
Trajectory
Generation

emcy
BrakeWarning

evadeRequest

connector represents

Legend

MSD Use Case Obstacle Detection

Referential
Trace Link

MSD Use Case Emergency Evading

class [Package]
Emcy. Evasion Interfaces

class [Package]
Emcy. Evasion Types

type

MSD Use Case Emergency Braking

MSD Use Case Emergency Braking
and Precrash Measures

System Component Role

Environment Component
Role

(c/m)

v2x:
V2XComm-

unication

v2x: V2X-
Comm-

unication

Electronic
StabilityControl

:Evasion
Commands

:Decisions

:Lane
Position

Info

:Velocity
Info

:V2V
Messages

:V2V
Messages

:Obstacle
Info

:Lane
Position

Info

:Braking
Commands

:Velocity
Info

:Precrash
Commands

Vehicle
Control

:Evasion
Commands

:Decisions

:Braking
Commands

:Precrash
Commands

:Obstacle
Info

:V2V
Messages

Lane
KeepingAssist

Adaptive
CruiseControl

Precrash
Unit

V2XComm-
unication

Trajectory
Generation

 + lastBrake
 :Boolean
 + lastEvade
 :Boolean
 + lastPrecrash
 :Boolean
 + crash
 :Boolean

Situation
Analysis

:V2V
Messages

+ emcyBraking()

«interface»
Braking

Commands

+ standstill()

«interface»
VelocityInfo

+ activatePrecrash()

«interface»
PrecashCommands

+ obstacle()
+ setLastBrake(
 lastBrake:Boolean)
+ setLastEvade(
 lastEvade:Boolean)
+ setLastPrecrash(
 lastPrecrash:Boolean)
+ setCrash(
 crash:Boolean)

«interface»
ObstacleInfo

+ laneChanged()

«interface»
LanePositionInfo

+ enableBraking()
+ enableEvasion()
+ enablePrecrash()

«interface»
Decisions

+ evade()

«interface»
EvasionCommands

+ emcyBrakeRequest()
+ emcyBrakeResponse(
 isSafe:Boolean)
+ emcyBrakeWarning()
+ evadeRequest()
+ evadeResponse(
 isSafe:Boolean)
+ evadeWarning()

«interface»
V2VMessages

signature

type

Figure 3.19: Initially generated MSD specification

65

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

annotations of these system elements: If one of the system elements is annotated with “SE” and
hence is SwRE-relevant, then also the application scenario is SwRE-relevant.

For example, the application scenario Emergency Evasion in Figure 2.2 in Section 2.2 is
SwRE-relevant since the system element Vehicle Control is annotated with “SE” and realizes the
function Control Steering induced by this application scenario. Thus, our model transformations
add the empty MSD use case Emergency Evasion to the MSD specification, which is depicted
by means of the equally named UML collaboration in the architecture view of Figure 3.19. The
same principle holds for the remaining MSD use cases.

3.6.1.2 Derive Structure

Derive System Component Roles from Discrete Software Components
For any discrete software component associated with an application scenario, our model trans-
formations derive each a system component role as part of the MSD use case collaboration and
a corresponding component type in the classifier view type (cf. Section 3.4.2.1).

For example, the system elements Situation Analysis and Vehicle Control realize the applica-
tion scenario Emergency Evasion and are discrete software components due to their “SE” rele-
vance annotations (cf. Figure 2.2). Thus, the transformation derives the system component roles
sa: SituationAnalysis and vc: VehicleControl as part of collaboration Emergency Evasion (cf. ar-
chitecture view in Figure 3.19). Furthermore, the transformation derives their corresponding
component types SituationAnalysis and VehicleControl as part of the package Emcy. Evasion
Types (cf. classifier view in Figure 3.19).

Derive Environment Component Roles from SwRE-relevant Environment Elements
We consider all CONSENS environment elements that are connected via information flows with
discrete software components SwRE-relevant (cf. Section 3.4.2.2).

For example, this encompasses all ECUs like Active Front Steering or Lane Keeping As-
sist (cf. Figure 2.2). Bus systems like FlexRay are disregarded since they are connected to the
EBEAS via energy flows and are of no interest to the Software Requirements Engineer caring
only about the logical view. Furthermore, we use the relational trace links of the type affects to
determine the environment elements involved in an application scenario to derive the environ-
ment component roles of the corresponding use case. For example, we derive the environment
component roles lka: LaneKeepingAssist and acc: AdaptiveCruiseControl for the use case Emer-
gency Evasion but neglect the environment element Precrash Unit for this use case since it only
participates in the application scenario Emergency Braking and Precrash Measures. Besides
deriving the environment component roles within the collaborations in the architecture view
type, we also generate the corresponding component types in the classifier view type.

Derive Environment Component Roles from SwRE-relevant Continuous System Elements
We consider all continuous software components that are connected via information flows with
discrete software components and affect the corresponding application scenario SwRE-relevant
(cf. Section 3.4.2.3).

For example, the system element Trajectory Generation is only relevant to the discipline
of control engineering since it is tagged with the relevance annotation “CE” (cf. Figure 3.2).
However, the Trajectory Generation is activated by the SwRE-relevant system element Vehicle
Control via the information flow evasionCommands. Thus, we consider the system element Tra-
jectory Generation SwRE-relevant. We derive environment component roles from continuous

66

3.6 Exemplary Application of the Transition Technique

software components, since the Software Requirements Engineer focuses on discrete software
components and leaves the design of continuous software components to the Control Engi-
neer. Thus, the transformation derives an environment component role tg: TrajectoryGeneration
as part of the MSD use case Emergency Evasion. Furthermore, it derives the corresponding
component type.

Derive Interfaces, Ports, and Connectors
Finally, we consider information flows between SwRE-relevant structural elements in the struc-
tural CONSENS partial models SwRE-relevant (cf. Section 3.4.2.4). This includes informa-
tion flows between discrete software components as well as information flows between discrete
software components and SwRE-relevant environment elements or SwRE-relevant continuous
software components. For any SwRE-relevant flow and its adjacent two ports and their port
specification, we derive a corresponding connector, its adjacent two ports, and an interface used
one time as provided and one time as required interface by the two ports.

For example, there is an information flow decisions from one port of the discrete software
component SituationAnalysis to one port of the discrete software component VehicleControl
(cf. Figure 3.2). The ports associate the port specification decisions, encompassing three in-
formation flow items. Thus, the model transformations derive an interface Decisions encom-
passing three operations derived from the three information flow items as part of the package
Emcy. Evasion Interfaces (cf. classifier view in Figure 3.19). Furthermore, it derives each a
port :Decisions as part of the component types SituationAnalysis and VehicleControl, using
the interface as required and provided, respectively (cf. classifier view in Figure 3.19). Finally,
it derives the connector :Decisions between the system component roles sa: SituationAnalysis
and vc: VehicleControl as part of the collaboration Emergency Evasion (cf. architecture view in
Figure 3.19).

Another example is the system element Trajectory Generation, which has two ingoing infor-
mation flows as well as one outgoing information flow (cf. Figure 3.2). The two information
flows trajectoryCommands and steeringInfo describe signal-based communication with the en-
vironment element ActiveFrontSteering, covering the continuous control behavior of the SUD.
As motivated before, the Software Requirements Engineer is mainly interested in the SUD’s
coordination behavior. Thus, the model transformation determines from these three informa-
tion flows only the flow evasionCommands between the SwRE-relevant structural elements as
SwRE-relevant. From this information flow, it derives the connector :EvasionCommands be-
tween the ports of vc: VehicleControl and tg: TrajectoryGeneration in the MSD use case Emer-
gency Evasion (cf. Figure 3.19). Furthermore, the transformation derives the corresponding
ports and interface.

3.6.1.3 Derive MSDs

For any Behavior – Sequence refining an SwRE-relevant application scenario in the sys-
tem model, our model transformations derive each one MSD in the MSD specification
(cf. Section 3.4.3).

For example, our model transformations derive the MSDs in the lower right of Figure 3.19
from the Behavior – Sequences in Figure 3.2. We map an initially derived MSD to an MSD
use case if the source Behavior – Sequence has a relational trace link of the type refines to the
corresponding application scenario (cf. shades of gray for MSDs and MSD use cases in Fi-
gure 3.19). Thus, our model transformations derive the MSD Emergency Evasion Situation

67

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

from the equally named Behavior – Sequence refining the application scenario Emergency Eva-
sion. The SwRE-relevant Behavior – Sequence lifelines are mapped to lifelines in the correspon-
ding MSD, and the SwRE-relevant actions are mapped to MSD messages between the corre-
sponding MSD lifelines. Thus, our model transformations derive the lifelines vc: VehicleControl
and tg: TrajectoryGeneration as well as the MSD message evade in between as part of the MSD
Emergency Evasion Situation. Furthermore, our model transformations derive the correspon-
ding referential trace links of these elements as depicted in the figure.

As it is the case for the structural partial models, the partial model Behavior – Sequences
contains discipline-spanning information that can be irrelevant to SwRE. For example, the Be-
havior – Sequence Emergency Evasion Situation specifies looping actions like the continuous
signal-based interaction between the system element Trajectory Generation and the environment
element Active Front Steering. Since such actions are not part of the message-based coordi-
nation behavior between discrete software components, our model transformations filter such
information. That is, they determine the lifeline Active Front Steering SwRE-irrelevant, because
it represents a SwRE-irrelevant environment element. Consequently, the model transformations
determine the also incident actions SwRE-irrelevant.

3.6.1.4 Refine MSD Specification

The initially derived MSDs have no MSD-specific modeling constructs specifying the moda-
lity and the execution kind of messages or the conditional behavior since the information for
this is specified informally in the partial models Application Scenarios and Requirements . Fur-
thermore, the way of specifying Behavior – Sequences and Behavior – States is different than
the way of specifying MSDs (cf. Sections 3.1.2 and 3.1.3, respectively). That is on the one
hand, Behavior – Sequences describe exemplary existential behavior that refine whole situati-
ons of Application Scenarios in a self-contained manner, and Behavior – States describe the
discipline-spanning overall system behavior in a state-based manner. On the other hand, an
MSD specification describes the universal behavior partitioned across multiple MSD use cases
and fine-granular MSDs.

Thus, the initially derived MSD specification has to be refined. CONSENS system models
provide information relevant to this refinement within the partial models Application Scenarios ,
Requirements , Behavior – Sequences , and Behavior – States . Since the information contained
in the Application Scenarios and Requirements is informal text and graphics and Behavior –
Sequences and Behavior – States semi-formally describe the system behavior in different way
than MSD specifications, we cannot automate this step by means of model transformations.
Thus, the Software Requirements Engineer has to perform it manually. Section 3.5 presents dif-
ferent means that support the Software Requirements Engineer in this task, and we exemplarily
conduct this refinement step in Appendix A.2.2.2.

3.6.1.5 Analyze Coordination Behavior Requirements

The formal semantics of MSDs enable different, techniques for the tool-supported analysis of
the requirements on the coordination behavior of the SUD (cf. Section 2.4.3). The Software Re-
quirements Engineer is able to identify unintended behavior (e.g., the unintended triggering of
execution behavior [*HBM+15]) and scenario inconsistencies (e.g., [*Jap15]) on requirements
level.

68

3.6 Exemplary Application of the Transition Technique

3.6.1.6 Consolidate Discipline-specific Analysis Results

Beyond the specification of the behavioral partial models in CONSENS, the System Analysts
consolidate discipline-specific work products to ensure a reasonable system design. The Soft-
ware Requirements Engineers as well as the requirements engineers and designers from the
other engineering disciplines hand over their respective analysis results to the System Analysts.
They consolidate the different discipline-specific analysis results w.r.t. to the System Require-
ments and decide how to proceed.

Furthermore, our transition technique is intentionally unidirectional as outlined in
Section 3.3. Thus, the Software Requirements Engineers do not only hand over their anal-
ysis results but also trigger change requests to the System Analysts. These requests encompass
changes on the CONSENS system model that influence the automatically derived part of MSD
specifications (e.g., changes on interfaces, on the software architecture, or on MSDs that are
derived from Behavior – Sequences).

3.6.2 Subsequent Process Iterations

In this section, we exemplarily present how changes in the system model are automatically
handled by our approach. For this purpose, we assume a change request that introduces an
additional system element to the Active Structure . Such a change conduct implicates a broad
range of changes to several of the remaining partial models. Applying these changes to the
initially derived and refined MSD specification (cf. last section) manually would be very tedious
and error-prone.

We apply the graph transformation formalism (Component) Story Diagrams [FNTZ00;
*THHO08; *HT08; *Hol08] to visualize manual changes to the CONSENS system model as
well as changes automatically propagated to the MSD specification in terms of the concrete
syntax. We distinguish between two basic modification operations of (Component) Story Dia-
grams: Adding objects/links to our models (visualized by green outlines and the additional label
“++”) and deleting objects/links (visualized by red outlines and the additional label “--”).

In the following section, we exemplarily illustrate the system model changes conducted by
the Systems Engineer in detail. In Section 3.6.2.2, we present how these changes are applied to
the MSD specification automatically in terms of an incremental update mechanism. We present
excerpts of these changes to the source and target models in terms of the abstract syntax in
Section 3.7.2.

3.6.2.1 Manual Changes to the CONSENS System Model

All Application Scenarios of the EBEAS are safety-critical since they describe functionality that
actively intervenes in the vehicle’s braking and steering systems. Safety standards like [ISO18a;
IEC10; RTCA11] demand dedicated and expensive safety measures in the development of sys-
tem elements participating in such application scenarios. The system element Situation Analysis
realizes many of the Functions induced by these Application Scenarios . However, it is also re-
sponsible for Functions that are not as safety-critical as the intervention in the vehicle’s braking
and steering. For example, the function Send and Receive Warnings is less safety-critical
than the functions decomposed from the function Ensure Passenger Safety (cf. Figure 2.2 in
Section 2.2) since the vehicle can determine obstacles and braking/evasion maneuvers through
sensors. Thus, Send and Receive Warnings describes redundant functionality and has a lower
safety level than other functions.

69

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

The automotive safety standard ISO 26262 [ISO18a] proposes to allocate functions with dif-
ferent safety levels to dedicated architecture elements, thereby separating the functionality with
different safety levels in the realizing system/software architecture. This enables to approach
the development of the particular architectural elements with different levels of rigor. Thus, we
assume a change request to reduce the effort spent on safety measures in the overall develop-
ment of the system element Situation Analysis. In this change request, the Safety Engineer2

decides to encapsulate the part of Situation Analysis realizing the less safety-critical function
Send and Receive Warnings into a new, dedicated system element Warning Communication.

Changes to the Partial Model Environment
In the context of the change request, the Safety Engineers decide to change port specifications
and information flows in the Environment (cf. upper left in Figure 3.20) so that the functiona-
lity related to sending/receiving warnings is separated from the functionality related to negotiate
with other vehicles. For this purpose, they move the information flow items emcyBrakeWarning
and evadeWarning from the port specification V2VMessages to the new information flow port
specification V2VWarnings. Moreover, the Safety Engineers rename the generic port specifi-
cation name V2VMessages to V2VNegotiation to reflect this change. They add two new inout
ports typed by V2VWarnings to the environment element V2X Communication and the system
EBEAS, respectively. Finally, they add an additional, bidirectional information flow between
these ports.

Changes to the Partial Model Active Structure
The Safety Engineers add the new system element Warning Communication to the Active Struc-
ture and connects it with the Environment (i.e., with the environment element V2X Communi-
cation) by means of a delegation connector connecting ports that are typed by V2VWarnings.
Furthermore, they add a new port specification warningTranslation as well as a bidirectional in-
formation flow between Situation Analysis and Warning Communication. By means of this port
specification and the corresponding information flow, the Warning Communication shall trans-
late warning send requests by Situation Analysis into warning messages to the V2X Commu-
nication and translate incoming warning messages from V2X Communication into meaningful
interpretations for Situation Analysis. Finally, the Safety Engineers move the realizes trace link
to the function Send and Receive Warnings from the system element Situation Analysis to the
newly added system element Warning Communication.

Changes to the Partial Model Behavior – Sequences
Based on the changes in the Environment and Active Structure , the Safety Engineers add a
new lifeline Warning Communication that represents the equally named system element. They
move the receiving and sending lifeline of the messages emcyBrakeWarning and evadeWarning,
respectively, from Situation Analysis to Warning Communication. Furthermore, they adapt the
signature referential trace links of these messages according to the movement of the correspon-
ding information flow items emcyBrakeWarning and evadeWarning to the new port specifica-
tion V2VWarnings. Finally, the Safety Engineers introduce the new messages leadingVehicle-
Brakes and communicateEvasion between the lifelines Warning Communication and Situation
Analysis, and they set the signature referential trace link of these messages to the corresponding
information flow items of the newly added port specification warningTranslation.

2The Safety Engineer is not explicitly included in our process roles (cf. Section 3.3) since we focus only on the
roles that are influenced directly by our transition technique.

70

3.6 Exemplary Application of the Transition Technique

Emergency Braking and Precrash …

 Emergency Braking Situation for …

Emergency Braking Situation for …

 Emergency Evasion Situation

V2X

Commun-

ication

Situation

Analysis

emcyBrake
Warning

evadeRe-
sponse(true)

...

...

evade
Request

evade
Warning

Functions

Situation

Analysis

SE

Active Structure (Logical View Excerpt)

Environment (Logical View Excerpt) Application Scenarios

Behavior – Sequences

Legend

System Element

Environment Element

Information Flow

Nodes Connections
Relevance Annotations:

System Element relevant to...

SE Software Engineering

CE Control Engineering

Relational
Trace Link

affects

EBEAS

represents

ActionLifeline

Referential
Trace Link

EBEAS

inout

V2X

Comm-

unication

inout

out

inout

inout

in in

in

Port Specification

Emergency Braking and Precrash Measures

Emergency Braking

Obstacle Detection

Emergency Evasion

...

inout

inout

+ +

+ +
– –

inout

inout

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Warning

Communication

SE

inout

inout

Warning

Communication

emcyBrake
Warning

leadingVehicle
Brakes

communicate
Evasionevade

Warning

+ communicateBraking
+ communicateEvasion
+ leadingVehicleBrakes
+ overtakingVehicleEvades

«information»

warningTranslation

+ +

signature

connector

+ +

+ +

+ +

+ +
+ +

– –

+ +

+ +

– –

+ +

out

out

inout

in

in

+ emcyBrakeRequest

+ emcyBrakeResponse(

 isSafe: Boolean)

+ emcyBrakeWarning

+ evadeRequest

+ evadeResponse(

 isSafe: Boolean)

+ evadeWarning

«information»

V2VMessages

V2VNegotiation

– –

+ +

– –

– –

Modifications

+ +

– –

Added Model Element

Removed Model Element

signature
– –

signature
+ +

Determ

Negotiate

with Other

Vehicles

Send and

Receive

Warnings

Perform

Emergency

Braking

Perfor

Evasio

Maneu

+ +

refines

inducesinduces

realizes realizes realizes

+ emcyBrakeWarning

+ evadeWarning

«information»

V2VWarnings

Figure 3.20: Changes in the CONSENS system model

71

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

3.6.2.2 Automatic Incremental Update of the MSD Specification

Everything that is subject to the initial automatic transformation (cf. Sections 3.4 and 3.6.1.1
to 3.6.1.3) is incrementally updated when changes to the system model occur. Particularly, no
manually added information (cf. Sections 3.5 and 3.6.1.4) gets lost in this case. We apply an
intermediate transformation traceability model to enable this incremental update mechanism
(cf. Section 3.9.1.2). We present the details of its functional principle in terms of the abstract
syntax of the source and target models in Section 3.7.2.

As explained in the last section, the newly added system element Communication Warning
fulfills the tasks of sending/receiving warnings formerly conducted by the system element Si-
tuation Analysis after a second development process iteration. To reflect this task change, the
system element Communication Warning is assigned to the function Send and Receive War-
nings induced by the application scenario Emergency Evasion (cf. Figure 3.20). These manual
changes to the CONSENS system model influence all three views of the initially derived and
refined MSD specification. In the following, we present the changes for the MSD specification
in terms of Figure 3.21.

Impact on the Classifier View
The incremental update of our transition technique adapts the contents of the classifier view
(cf. left of Figure 3.21) in the following way. In the package Emcy. Evasion Interfaces, it
adds the new interfaces V2VWarnings and WarningTranslation. Furthermore, the interface
V2VMessages is renamed to V2VNegotiation and the operations emcyBrakeWarning()
and evadeWarning()move from this interface to the newly added interface WarningTrans-
lation. In the package Emcy. Evasion Types, it adds a component type WarningCommunica-
tion including four ports using the two new interfaces each as provided and required interface.
The component types V2XCommunication and SituationAnalysis get ports typed by the new
interfaces V2VWarnings and WarningTranslation, respectively.

Impact on the Architecture View
In terms of the architecture view (cf. top right of Figure 3.21), the incremental update adds
the system component role wc: WarningCommunication to the initially generated MSD use case
Emergency Evasion. Furthermore, it adds adds connectors between the roles’ new ports and
the corresponding ports of wc: WarningCommunication. Note that the incremental update also
adds/removes/modifies roles and incident connectors to other MSD use cases according to the
trace links between Active Structure , Functions, and Application Scenarios .

Impact on the Interaction View
After the structural changes have been performed, the interaction view (cf. bottom right of
Figure 3.21) can be updated. First, the lifeline wc: WarningCommunication as well as a re-
presents referential trace link to the equally named role in the MSD use case is added to the
initially generated MSD Emergency Evasion Situation. Second, the message evadeWar-
ning from sa: SituationAnalysis to v2x: V2XCommunication as well as its referential trace links
are removed. Third, one message communicateEvasion sent by sa: SituationAnalysis and
one message evadeWarning sent to v2x: V2XCommunication are added to the new lifeline
wc: WarningCommunication as received and sent message, respectively. The connector refe-
rential trace links of these messages are set to the newly added connectors in the MSD use
case (visualized for evadeWarning in Figure 3.21). Furthermore, the signature referential

72

3.6 Exemplary Application of the Transition Technique

Emergency Evasion

evade
Response(true)

msd Emergency Evasion Situation

(c/m)

(h/e)

sa: Situation
Analysis

evadeWarning

...

(c/m)
...

(h/e)

wc: Warning
Communication

– –

+ +

communicate
Evasion

(h/e)
+ +

evadeWarning
(h/e)

+ +

sa: Situation
Analysis

:V2V
Messages

:V2V
Negotiation

:V2V
Messages

:V2V
Negotiation

wc: Warning
Communication

:Warning
Translation

:Warning
Translation:V2V

Warnings

:V2V
Warnings

+ +

+ +

+ ++ +
+ + + +

+ +

:V2V
Messages

:V2V
Negotiation

:V2V
Messages

:V2V
Negotiation

:V2V
Messages

:V2V
Negotiation

V2X
Communication

 + lastBrake
 :Boolean
 + lastEvade
 :Boolean
 + lastPrecrash
 :Boolean
 + crash
 :Boolean

Situation
Analysis

+ +

– –

+ +

– –

+ ++ +

+ +

– –

:V2V
Messages

:V2V
Negotiation

:V2V
Warnings :V2V

Warnings

:V2V
Warnings :V2V

Warnings

+ +
+ +

+ +

– –

+ +

– –

+ +

– –

+ +

+ +

...

...

...

...

class [Package] Emcy. Evasion Interfaces

class [Package] Emcy. Evasion Types

represents

Warning
Communication

:V2V
Warnings :V2V

Warnings

+ +

type

+ emcyBrakeRequest()
+ emcyBrakeResponse(
 isSafe:Boolean)
+ emcyBrakeWarning()
+ evadeRequest()
+ evadeResponse(
 isSafe:Boolean)
+ evadeWarning()

«interface»
V2VMessages

V2VNegotiation + +
– –

– –

– –

+ communicateBraking()
+ communicateEvasion()
+ leadingVehicleBrakes()
+ overtakingVehicleEvades()

«interface»
WarningTranslation

+ +

+ emcyBrakeWarning()
+ evadeWarning()

«interface»
V2VWarnings

+ +

:Warning
Translation

+ +

:Warning
Translation

+ +

signature
+ +

type

+ +

+ +

connector
+ +

Legend

Referential
Trace Link

+ +
– –

Added Model Element

Removed Model Element

signature
+ +

C
la

s
s

if
ie

r
V

ie
w

Architecture View

Interaction

View

v2x:
V2XComm-

unication

v2x: V2X-
Comm-

unication

:Warning
Translation

:Warning
Translation

Figure 3.21: Automatically updated MSD specification

trace links are set to the corresponding, equally named operations of the newly added interfa-
ces in the classifier view. Note that the incremental update automatically updates the message
evadeWarning that the Software Requirements Engineer did not modify earlier, but does not
restore the message emcyBrakeWarning that the Software Requirements Engineer moved to
the MSD NoSafeEmcyBraking (cf. Appendix A.2.2.2). We explain in Section 3.7.2 in terms of
the abstract syntax of the particular models how the incremental update handles these different
cases.

Summary
In summary, our example shows that a rather small change in the system model can imply a
multitude of changes in the MSD specification in terms of concrete and abstract syntax. Thus,

73

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

the automatic incremental update of our transition technique saves a lot of manual and hence
extensive as well as error-prone effort on keeping both models consistent.

3.7 Semi-automatic Establishment of Explicit Inter-model
Traceability Between CONSENS System Models and MSD
Specifications

Based on the semi-automatic derivation of MSD specifications from CONSENS system models,
we present in this section the semi-automatic establishment of vertical, explicit inter-model tra-
ceability between both kinds of models (see also our work on this topic in the context of automo-
tive design models [*FHM12]). We apply the traceability framework CAPRA (cf. Section 2.1.2)
for this purpose. We provide each one traceability information model for lifecycle traceabi-
lity and for transformation traceability that define the permissible trace link types between the
particular trace artifacts of MSD specifications and CONSENS system models. The resulting
traceability models store the trace links external to the MSD specifications and to the CONSENS

system models, which has the advantage that these models are not “polluted” with the trace links
[PDK+11; DPFK06; KPP06]. We present the traceability information models in Section 3.9.1.2.

In the following section, we present the concepts for the establishment of the lifecycle tra-
ceability. In Section 3.7.2, we present the concepts for the establishment of the transformation
traceability.

3.7.1 Lifecycle Traceability

For all parts of our transition technique that derive MSD specification elements automatically
from CONSENS system models, we also establish (i.e., create as well as maintain) lifecycle
trace links between the elements of CONSENS and of the MSD specification automatically.
Such automatically established trace links are valid (cf. Section 2.1.1) by construction, because
the underlying model transformation associates only semantically related trace artifacts with
each other based on our mapping rules (cf. Sections 3.4 and 3.8.2.2). Analogously, the lifecycle
traceability has to be established manually for the manual parts of our transition technique. We
cannot guarantee the validity of such manually established trace links, but we constrain the
lifecycle traceability information model in such a way that the chances of manually establishing
invalid trace links are minimized (cf. Section 3.9.1.2).

For example, Figure 3.22 depicts an excerpt of the trace links between the structural elements
of the EBEAS CONSENS system model and the corresponding MSD specification. Since the
structural elements in the MSD specification can be derived automatically, all of the depicted
trace links can also be established automatically. Our model transformations associate the inter-
face PrecrashCommands to the equally named port specification by means of the trace link of
the type Interface2FlowSpecification. Furthermore, they relate the software component types
AdaptiveCruiseControl and TrajectoryGeneration to their corresponding environment/sy-
stem element templates by means of the trace links :Component2EnvironmentElementTemplate
and :Component2SystemElementTemplate, respectively. Analogously, the model transforma-
tions link the MSD use case roles to the environment/system element exemplars they are derived
from.

Our model transformations only derive MSDs from CONSENS system models in the case that
Behavior – Sequences are specified. The Software Requirements Engineers have to manually

74

3.7 Semi-automatic Establishment of Explicit Inter-model Traceability Between Consens
System Models and MSD Specifications

Emergency Evasion

+ activatePrecrash()

«interface»

PrecashCommands

class [Package] Emcy.

Evasion Interfaces

class [Package]

Emcy. Evasion Types

braking
Commands

precrash
Commands

Trajectory

Generation

CE

Vehicle

Control

SE

trajectory
Commands

steeringInfo

Active Str. (Logical V.)

Environment (Logical V.)

EBEAS

 EBEAS

Precrash

Unit

in

out

in

Adaptive

CruiseControl

out

in

in

out

in

out out

in

out out

outout

+ activatePrecrash

«information»

precrashCommands

...

...

...

tg: Trajectory
Generation

vc: Vehicle
Control

...

:SystemRole2System

ElementExemplar

:Component2

SystemElementTemplate

:EnvironmentRole

2

System

ElementExemplar

acc:
Adaptive
Cruise
Control

:Component2Environment

ElementTemplate

:Interface2

FlowSpecification

:EnvironmentRole

2

Environment

ElementExemplar

Adaptive

Cruise

Control

Trajectory

Generation

Legend

Explicit, Relational Trace Links

Automatically established trace link

Figure 3.22: Trace link excerpt between structural elements of the CONSENS system model and
of the MSD specification, established automatically

add further MSDs in order to get a complete MSD specification. For such manually added
model elements, the Software Requirements Engineers have to likewise add the corresponding
trace links manually.

For example, Figure 3.23 depicts an excerpt of the trace links between the non-structural
elements of the EBEAS CONSENS system model and the corresponding MSD specification.
Our model transformations associate the MSD use cases to the Application Scenarios they
are derived from by means of :MSDUseCase2ApplicationScenario trace links. Analogously,
they relate the MSDs that are initially derived from Behavior – Sequences to them by means of
:MSD2BehaviorSequence trace links.

If parts of initially derived MSDs are moved to newly created MSDs, the Software Require-
ments Engineers have to manually establish :MSD2BehaviorSequence trace links to the corre-
sponding Behavior – Sequences . For example, this is the case for the MSD NoSafeEmcyBraking
in Figure 3.23 (cf. refinement step 2 in Section 3.5.1 and Appendix A.2.2.2). Likewise, they
have to manually link MSDs that are newly specified based on the partial model Requirements

75

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Requirements

Application Scenarios

Behavior – Sequences

Emergency Braking and Precrash Measures

Emergency Braking

Obstacle Detection

Emergency Evasion

...

Emergency Braking and Precrash Measures Situation

Emergency Braking Situation for Leading Vehicle

Emergency Braking Situation for Middle Vehicle

Emergency Evasion Situation

msd NoSafeEmcyBraking

msd EmcyEvasionTimingConstraint

c = 0

c < tevade

Emergency Braking

and Precrash Measures

Emergency Braking

Obstacle Detection

Emergency Evasion

msd Emergency Braking and

Precrash Measures Situation

msd Emergency Braking Situation

for Middle Vehicle

msd Emergency Braking Situation

for Leading Vehicle

msd Emergency Evasion Situation

...

:MSD2BehaviorSequence

:MSD2BehaviorSequence

:MSDUseCase

2

ApplicationScenario

...

refines

ID Description
… …

5 Emergency Evasion
… …

5.6 …

5.7 …

5.8 The evasion maneuver has to be finished within tevade.
… …

:MSD2Requirement

refines

Legend

Explicit, Relational Trace Links

Manually established trace linkAutomatically established trace link

Figure 3.23: Trace link excerpt between non-structural elements of the CONSENS system model
and of the MSD specification, established semi-automatically

76

3.7 Semi-automatic Establishment of Explicit Inter-model Traceability Between Consens
System Models and MSD Specifications

to their corresponding requirement elements by means of :MSD2Requirement trace links. For
example, this is the case for the MSD EmcyEvasionTimingConstraint in Figure 3.23 (see also
Figure A.25 as part of the exemplary refinement step 4 in Appendix A.2.2.2).

Such manually established trace links can be potentially invalid since the Software Require-
ments Engineer can erroneously associate the wrong requirement with an MSD, or manually
added MSDs can become obsolete and link to formerly related Behavior – Sequences or Re-
quirements . However, we cannot ensure the validity of manually established trace links in a
tool-supported way due to the informal nature of the CONSENS trace artifacts associated with
MSD specifications.

As outlined in Section 2.1.1, the granularity of the lifecycle trace links is rather high in con-
trast to the transformation trace links (cf. Section 3.7.2), as we only associate model elements
that are relevant for the management activities conducted by the Systems Engineer and Software
Requirements Engineer. For example, we associate CONSENS elements with whole MSDs and
not their particular lifelines, messages or their underlying model elements that have no concrete
syntax. This is due to the fact that the latter ones are too fine-grained to be meaningful for
management activities like impact analyses.

3.7.2 Transformation Traceability

Transformation traceability is one possibility to enable the “Target-Incrementality” feature of
model transformation approaches [CH06], which we need for the automatic incremental updates
of MSD specifications (cf. Sections 3.6.2.2 and 3.8.2.1). Thus, we establish transformation
traceability for the automatic part of our transition technique for this purpose. Like for the
lifecycle traceability, we apply CAPRA to this end.

We present the corresponding traceability information model in Section 3.9.1.2. In contrast
to the lifecycle traceability information model, this metamodel is very generic since it allows to
associate every arbitrary CONSENS model element with each arbitrary MSD specification model
element. The model transformation algorithm (cf. Section 3.8.2.2) defines which actual model
elements are associated with each other. Furthermore, the transformation trace information
model defines no constraints for ensuring the trace link validity. Instead, the trace link validity
is completely ensured by the model transformations in a constructive manner.

In the following section, we exemplarily explain how we exploit the transformation trace
links to perform incremental updates of MSD specifications that were not subject to manual
refinements. We explain how we preserve manual changes to MSD specifications in the incre-
mental update in the subsequent section. Similarly to Section 3.6.2, we apply a variant of Story
Diagrams to visualize the changes to the CONSENS system model, the MSD specification, and
the transformation traceability model.

3.7.2.1 Incremental Update of not Manually Modified MSD Specifications

Figure 3.24 depicts abstract syntax excerpts of the CONSENS system model, the MSD speci-
fication, and the transformation traceability model in terms of our running EBEAS example.
The figure exemplarily sketches how the transformation trace links are exploited to perform an
incremental update after the CONSENS system model was changed in the case that the affected
part of the MSD specification is not manually refined before.

More specifically, the figure shows the particular outcomes of the following four steps (cf.
the corresponding four steps in the figure):

77

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

CONSENS System Model

Transformation Trace Links

:ModelElement
2

ModelElement

MSD Specification

name = „wc“

:Lifeline

name = „evadeWarning“

:Message

name = „v2x“

:Lifeline

:MessageOccurrence
Specification

:MessageOccurrence
Specification

:MessageOccurrence
Specification

name = „sa“

:Lifeline

– –

+ +

covered

coveredBy

receive
Event

send
Event

coveredBy

covered

sendEvent

coveredBy

covered

– – + +

+ +

+ +

name = „wc“

:Lifeline

name = „evadeWarning“

:Message

name = „v2x“

:Lifeline

:MessageOccurrence
Specification

:MessageOccurrence
Specification

:MessageOccurrence
Specification

name = „sa“

:Lifeline

covered

coveredBy
receive
Event

send
Event

covered
By

covered

sendEvent

covered

coveredBy

consensElement

msd
Element

:ModelElement
2

ModelElement

:ModelElement
2

ModelElement

consens
Element

msd
Element

consens
Element

msd
Element

– –

:ModelElement
2

ModelElement

consens
Element

msdElement

:ModelElement
2

ModelElement

msdElement

:ModelElement
2

ModelElement

consens
Element

consens
Element

msdElement

+ ++ +

:ModelElement
2

ModelElement

consens
Element

msdElement

+ +

– –

– –

+ + + +

...

...

...

1

3

2 4

Legend

+ +
– –

Automatically Added Model Element

Automatically Removed Model ElementModel Element Removed by Engineer

Model Element Added by Engineer

1 Initially Specified CONSENS System Model

2 Initially Derived MSD Specification and Transformation Traceability

3 Manual Changes to the CONSENS System Model

4 Incremental Update of the MSD Specification and the Transformation Traceability

– –

+ +

Figure 3.24: Exploiting transformation traceability during the incremental update of the MSD
Emergency Evasion Situation—updating messages and lifelines

78

3.7 Semi-automatic Establishment of Explicit Inter-model Traceability Between Consens
System Models and MSD Specifications

1. The Systems Engineer specifies the initial CONSENS system model as presented in
Section 2.2 and Section 3.1. The abstract syntax excerpt in the top depicts the corre-
sponding objects and the referential traceability for the lifelines v2x and sa as well as for
the message evadeWarning sent from sa to v2x.

2. The initial MSD specification as well as the transformation traceability model is automa-
tically derived by our transition technique (cf. Sections 3.4 and 3.6.1.1 to 3.6.1.3). The
abstract syntax excerpt in the bottom depicts model elements of this initially derived MSD
specification. The abstract syntax excerpt in the center depicts the corresponding :Model-
Element2ModelElement transformation trace links associating the particular source and
target model elements.

3. The Systems Engineer changes the CONSENS system model as described in
Section 3.6.2.1. The abstract syntax excerpt of the situation depicts the part where
the Systems Engineer moves the send event of the message evadeWarning from the
lifeline sa to the newly created lifeline wc (cf. Figure 3.20). That is, a :Lifeline object
as well as an adjacent send :MessageOccurrenceSpecification object are created (plus
icons), whereas the original send :MessageOccurrenceSpecification is deleted (cross
icon).

4. The automatic incremental update of the MSD specification is performed
(cf. Section 3.6.2.2).

First, there are no changes regarding the lifelines v2x and sa as well as the message
evadeWarning and its receive event in the CONSENS system model. We define the
transformation trace links associating such existing source and target objects with the
same, unchanged properties (e.g., the names of the lifelines) as valid. The incremental
update does not perform any actions on the source/target objects and the transformation
trace links in this case.

Second, the send :MessageOccurrenceSpecification in the MSD specification is associa-
ted by a :ModelElement2ModelElement trace link. This trace link associates an existing
MSD specification element with no corresponding CONSENS system model element due
to its deletion in step 3. We define such a transformation trace link and its associated
MSD specification element as source-invalid. In this case, the incremental update deletes
the MSD specification model element as well as the associating trace link.

Finally, there are no transformation trace links associating the CONSENS system model
objects newly created in step 3. We define such source model elements as unprocessed.
In such a case, the transformation algorithm creates the corresponding objects in their
MSD representation as well as the associating transformation trace links (i.e., the :Lifeline
and :MessageOccurrenceSpecification objects in the MSD specification as well as the
corresponding :ModelElement2ModelElement objects in the transformation traceability
model). Furthermore, the referential traceability is established according to the referential
traceability in the source model (e.g., the link from the :MessageOccurrenceSpecifica-
tion object to the :Lifeline object), and the properties of the target objects are set with the
values of the corresponding properties of the source objects (e.g., the lifeline name v2x).

79

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

3.7.2.2 Preservation of Manual Modifications to MSD Specifications

Figure 3.25 exemplarily sketches how the transformation trace links are exploited to perform an
incremental update after the affected part of the MSD specification was manually refined and
the CONSENS system model is changed afterward.

More specifically, the figure shows the particular outcomes of the following five steps (cf. the
corresponding five steps in the figure):

1. The Systems Engineer specifies the initial CONSENS system model as presented in
Section 2.2 and Section 3.1. The abstract syntax excerpt depicts the corresponding ob-
jects and the referential traceability for the lifelines v2x and sa as well as for the message
emcyBrakeWarning sent from v2x to sa.

2. The initial MSD specification as well as the transformation traceability model is automa-
tically derived by our transition technique (cf. Sections 3.4 and 3.6.1.1 to 3.6.1.3). The
abstract syntax excerpt in the bottom depicts model elements of this initially derived MSD
specification. The abstract syntax excerpt in the center depicts the corresponding :Model-
Element2ModelElement transformation trace links associating the particular source and
target model elements.

3. The Software Requirements Engineer manually refines the MSD specification and, in-
ter alia, moves the message emcyBrakeWarning from the MSD Emergency Evasion
Situation to another MSD (cf. step 2 in Section 3.5.1 and Appendix A.2.2.2). That is,
the corresponding :Message object as well as the send and receive :MessageOccurrence-
Specification objects are deleted from the depicted abstract syntax excerpt (cross icons).

4. The Systems Engineer changes the CONSENS system model (cf. Figure 3.20 as described
in Section 3.6.2.1). The abstract syntax excerpt of the situation depicts the part where the
Systems Engineer moves the receive event of the message emcyBrakeWarning from
the lifeline sa to the newly created lifeline wc (cf. Figure 3.20). That is, a :Lifeline object
as well as an adjacent receive :MessageOccurrenceSpecification object are created (plus
icons), whereas the original receive :MessageOccurrenceSpecification is deleted (cross
icon).

5. The automatic incremental update of the MSD specification is performed
(cf. Section 3.6.2.2). There are three transformation trace links that associate CONSENS

model elements but have no msdElement link to their corresponding MSD specification
element counterpart due to the fact that the corresponding MSD specification elements
were manually deleted in step 3. We define such transformation trace links as target-
invalid. For any target-invalid transformation trace links associating MSD specification
elements that are not child elements of MSDs (i.e, structural elements), the transformation
algorithm restores the corresponding MSD specification elements.

However, the incremental update does not perform any changes on target model elements
that are part of an MSD (i.e., objects typed by the UML metaclasses Lifeline, Message,
and MessageOccurrenceSpeci�cation). This is due to the fact that the Software Require-
ments Engineer typically conducts manual changes on the MSDs in the course of the MSD
specification refinement (cf. Sections 3.5 and 3.6.1.4 and Appendix A.2.2.2). Thus, we
preserve the Software Requirements Engineer’s changes for target-invalid transformation
trace links associating source model elements that would be transformed to target model

80

3.7 Semi-automatic Establishment of Explicit Inter-model Traceability Between Consens
System Models and MSD Specifications

CONSENS System Model

Transformation Trace Links

MSD Spec fication

consens
Element

name = „wc“

:Lifeline

name = „emcyBrake
Warning“

:Message

name = „v2x“

:Lifeline

:MessageOccurrence
Specification

:MessageOccurrence
Specification

:MessageOccurrence
Specification

name = „sa“

:Lifeline

covered

coveredBy
send
Event

receive
Event

coveredBy

covered

receiveEvent

covered

coveredBy

consensElement

consens
Element

consens
Element

consens
Element

consens
Element

...

:ModelElement
2

ModelElement

name = „wc“

:Lifeline

name = „emcyBrake
Warning“

:Message

name = „v2x“

:Lifeline

:MessageOccurrence
Specification

:MessageOccurrence
Specification

name = „sa“

:Lifeline

+ +covered

coveredBy

send
Event

receive
Event

coveredBy

covered

msd
Element

:ModelElement
2

ModelElement

msd
Element

:ModelElement
2

ModelElement

msdElement

:ModelElement
2

ModelElement

msdElement

:ModelElement
2

ModelElement

msdElement

+ +

:ModelElement2ModelElement

msdElement

+ +

– –

+ +

...

...

1

2

3

4

5

Legend

+ +
– –

Automatically Added Model Element

Automatically Removed Model ElementModel Element Removed by Engineer

Model Element Added by Engineer

1 Initially Specified CONSENS System Model

2 Initially Derived MSD Specification and Transformation Traceability

3 Manual Refinement of the MSD Specification

4 Manual Changes to the CONSENS System Model

5 Incremental Update of the MSD Specification and the Transformation Traceability

Figure 3.25: Exploiting transformation traceability during the incremental update of the MSD
Emergency Evasion Situation—no recreation of once manually moved messages

81

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

elements as childs of MSDs (see also the feature “Preservation of User Edits in the Tar-
get” of model transformation approaches [CH06]). Hence, the transformation algorithm
neither restores the MSD message emcyBrakeWarning nor its referenced message
occurrence specifications. The algorithm neither deletes the corresponding transforma-
tion trace links so that this procedure is repeatable in further transformation executions.

Note that this procedure does not influence the handling of source-invalid transformation
trace links or unprocessed source model elements. For example, the message evade-
Warning that is not subject to manual modification by the Software Requirements En-
gineer is updated automatically as described in the last paragraph and in Section 3.6.2.2.

However, the transformation algorithm deletes the source-invalid :ModelEle-
ment2ModelElement trace link associated with the receive :MessageOccurrenceSpecifi-
cation that was deleted in the CONSENS model in step 4. This is due to the fact that the
trace link would be futile in further executions.

We also define target-property-invalid transformation trace links that associate an existing
MSD specification element with an existing CONSENS system model element where the
value of one or more source element properties has changed (e.g., a name property or
an incident referential trace link). In this case, the transformation algorithm updates the
obsolete property of the target model element according to the source model changes.
This aspect is not part of the example in this section.

3.8 Model Transformations and Coverage Check More
Formally

In this section, we describe general aspects of the automatic part of our transition technique
more formally. We provide details about the design of the model transformation approach and
the model transformation algorithm in Section 3.8.2. Furthermore, we concretize the rules
sketched in Section 3.5.2 for the automatic coverage check between MSD specifications and the
CONSENS partial model Behavior – States in Section 3.8.3. Both the transformation algorithm
and the coverage check impose preconditions for the CONSENS system models, which we first
of all explain in the following section.

3.8.1 Preconditions for the CONSENS System Model

The automatisms of our transition technique require a thoroughly specified system model in
order to be executable. That is, the Systems Engineers have to specify a more detailed and
formalized system model than an initial, informal system model for the purpose of system re-
quirements elicitation or the clarification of a coarse-grained system architecture. In terms of the
MBSE concept classification of Tschirner et al. [Tsc16; TDBG15], the system model should be
specified according to the concept “Mechatronic Systems Modeling” that requires more model-
ing effort than concepts with lightweight modeling purposes like communication. With such a
thoroughly specified system model with the purpose of orchestrating the particular disciplines,
the manual effort on conceiving a correct MSD specification is reduced by means of our tran-
sition technique (cf. Section 3.9.2). Moreover, further automatisms to facilitate other transition
steps like the transition to the software/control engineering design phase (cf. Section 2.3) can

82

3.8 Model Transformations and Coverage Check More Formally

be applied. Thus, putting slightly more effort into the specification of system models can sig-
nificantly reduce the effort on many manual transition steps throughout the whole development
process.

We assume that the system model is present in a SYSML4CONSENS model with relevance
annotations (cf. Section 3.9.1.1). However, we mainly apply the original CONSENS notation
throughout this thesis for illustration purposes. The preconditions on SYSML4CONSENS sys-
tem models can be transferred to the corresponding constructs of the CONSENS modeling lan-
guage as we introduced it in Section 2.2 and as we extended it in Section 3.1.

In the following, we explain the preconditions for the particular CONSENS partial models and
for the relational traceability between them. These preconditions have to mainly hold for the
execution of the transformation algorithm and the coverage rules explained in Section 3.8.2.2
and Section 3.8.3, respectively. However, they also provide means for the Software Require-
ments Engineers to identify all relevant information during the manual refinement of MSD
specifications.

3.8.1.1 Relational Traceability Between Partial Models

As exemplarily illustrated in Section 2.2, the following preconditions for the relational tracea-
bility between the particular partial models have to hold:

• Explicit, relational traceability has to be established between the partial models Environ-
ment and Application Scenarios , Application Scenarios and Functions, Functions and
Active Structure , Behavior – Sequences and Application Scenarios . Thereby, the trans-
formation algorithm can collect and link the system model information spread over the
particular partial models in order to automatically derive an MSD specification.

• Explicit, relational traceability has to be established between the partial models Require-
ments and Application Scenarios . Thereby, the Software Requirements Engineer can
identify the informal, more detailed Requirements corresponding to each particular Ap-
plication Scenario/MSD use case during the manual refinement.

3.8.1.2 Environment and Active Structure

As exemplarily illustrated in Section 3.1.1, the following preconditions for the structural partial
models Environment and Active Structure have to hold, thereby enabling the transformation
algorithm to derive the structural aspects of an MSD specification from a SYSML4CONSENS

system model (cf. Section 3.4.2 and Section 3.8.2.2):

• Each system element type must have relevance annotations applied, particularly system
element types representing discrete and continuous software component types that shall
be transferred to an MSD specification.

• Each environment/system element must be connected via ports to their incident flows,
where each port’s specification specifies which items can flow over the port3.

• The port specifications encompassing contents that shall be transferred to interfaces of
an MSD specification must have the stereotype «information» applied. Furthermore, the

3This is not obligatory for incident mechanical connections since they typically not transfer items. However, it can
be meaningful to link mechanical connections with ports if there is a dedicated recess as part of the connection’s
incident system/environment element.

83

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

contents of these interfaces must be specified, as they are specified for the interfaces of
an MSD specification.

3.8.1.3 Behavior – Sequences

As exemplarily illustrated in Section 3.1.2, referential traceability has to be established from
the partial model Behavior – Sequences to the partial models Environment and Active Struc-
ture . Thereby, the transformation algorithm is able to derive the behavioral aspects of an MSD
specification from a SYSML4CONSENS system model (cf. Section 3.4.3 and Section 3.8.2.2).
The following concrete preconditions have to hold:

• Each lifeline has to represent a environment/system element in the partial models Envi-
ronment and Active Structure , respectively.

• Each action has to refer to an interface content, thereby specifying which item is transfer-
red or which process is triggered via the action.

• Each action has to refer to a flow, thereby specifying via which flow the action is executed.

3.8.1.4 Behavior – States

As explained and exemplarily illustrated in Section 3.1.3, the System Analyst has to specify the
partial model Behavior – States as an input/output automaton [TL89] for the overall SUD, and
referential traceability has to be established to the partial models Environment and Active Struc-
ture . Thereby, our static coverage checks are able to ensure coverage of an MSD specification
w.r.t. the Behavior – States (cf. Section 3.5.2 and Section 3.8.3). The following preconditions
have to hold:

• Transition triggers as well as actions have to refer to an port specification content, thereby
specifying which item is transferred or which process is triggered via the trigger/action.
A port that is attached to the SUD has to be typed by the encompassing port specification.

• Each transition trigger referring to an SwRE-relevant information flow item additionally
has to refer to a port that is typed by the port specification encompassing the flow item.
The port has to be attached to the SUD.

3.8.2 Model Transformation Approach and Algorithm

In this section, we outline general aspects on the applied model transformation approach and the
model transformation algorithm. We explain the general requirements on the model transforma-
tion approach and its resulting selection and extension in the following section. Subsequently,
we explain how the model transformation algorithm derives MSD specifications from CONSENS

system models and provide details on the incremental update mechanism.

3.8.2.1 Selection and Extension of the Model Transformation Approach

Czarnecki and Helsen categorize different model transformation approaches according to their
features [CH06]. From these, the setting for the selection of one of these model transformation
approaches for our transition technique requires or implies the following features:

84

3.8 Model Transformations and Coverage Check More Formally

Unidirectional Our transition technique is intentionally unidirectional. We address chan-
ges on the system model needed by the discipline experts through the communication
between the respective engineering roles in our transition process (cf. Figure 3.6 and
Section 3.6.1.6). Thus, a unidirectional model transformation approach to derive MSD
specifications from CONSENS system models is sufficient.

Target-Incrementality The unavoidable iterations in the development processes of software-
intensive systems require a model transformation approach that supports the “Incremen-
tality” feature. Since we do not need a bidirectional approach, “Target-Incrementality” is
sufficient. That is, the model transformation approach can update an existing target model
with changes that occurred in the corresponding source model. Such incremental updates
are up to now only rarely supported by model transformation tools [KBC+18].

Destructive Source-Target Relationship Changes to the CONSENS system model typically
do not only encompass the addition of new model elements but also their deletion
(cf. Section 3.6.2.1). Thus, the model transformation approach has to support also the
deletion of the corresponding model elements in the MSD specification while updating it
(cf. Sections 3.6.2.2 and 3.7.2.1), which is covered by this feature.

Preservation of User Edits in the Target This feature is required because the Software Re-
quirements Engineer is expected to manually refine an initially derived MSD specification
(cf. Sections 3.5 and 3.6.1.4). Thus, such an edited target model has to be automatically
updated when changes in the CONSENS system models occur without losing the manual
changes to the MSD specification (cf. Sections 3.6.2.2 and 3.7.2.2).

Automatic Tracing / Separate Storage Location In order to automatically establish traceabi-
lity between system models and MSD specifications, the feature “Automatic Tracing” is
required. Furthermore, we argue that a separate storage location distinct from system
model and MSD specification is well-suited (cf. Section 3.7). Both features are relevant
to the lifecycle traceability as well as to the transformation traceability, which enables
the latter three features. Built-in traceability is up to now only rarely supported by model
transformation tools [KBC+18].

Imperative Logic Czarnecki and Helsen [CH06] distinguish model-to-model transformation
approaches into operational and relational ones, inter alia. Rules of operational model
transformation approaches are specified through imperative logic similar to programming
languages, whereas rules of relational approaches are specified through declarative map-
pings. We favor an operational approach due to the following reasons. First, the model
transformations have to collect information scattered across several CONSENS partial
models to derive the particular MSD specification elements. Furthermore, we have to
deal with fine-grained exceptions for the “Destructive Source-Target Relationship” fea-
ture like the non-modification of once manually moved messages (cf. Section 3.7.2.2).
Thus, declarative mapping rules would be cumbersome for such complex and conditio-
nal transformations [Bud18]. Furthermore, a declarative model transformation approach
has to traverse all elements of the source model (e.g., by non-deterministic graph pat-
tern matching or constraint solving). In contrast, the mapping rules of an operational
model transformation approach can be designed such that only the relevant parts of the
source model are traversed, which strongly improves the execution performance of the
model transformation. Finally, unidirectionality is sufficient for us, and relational model
transformation approaches naturally support multidirectionality [CH06].

85

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

On the one hand, operational model transformation approaches like Query/View/Transfor-
mation-Operational (QVT-O) [OMG16] provide the features “Unidirectional” and “Imperative
Logic” by default. The Eclipse implementation [QVTo] of QVT-O also supports the features
“Target-Incrementality” and “Automatic Tracing” / “Separate Storage Location” as of version
3.5. However, the combination of the features “Preservation of User Edits in the Target” and
“Destructive Source-Target Relationship” is only supported to a certain degree. That is, QVT-O
is only capable of additively updating the target model without deleting elements that were
manually added to it.

On the other hand, the features “Target-Incrementality” and “Automatic Tracing” / “Sepa-
rate Storage Location” are fully supported by relational model transformation approaches like
Triple Graph Grammars (TGGs) [Sch95]. However, TGGs do not provide “Destructive Source-
Target Relationship” in their original form [Sch95]. Several extensions were introduced to
TGGs [GW09; Wag09; GH09; Hil14; Anj14; GPR11; Rie15] to cope with the absence of this
feature in the context of model-driven engineering. Likewise, the next missing feature “Pre-
servation of User Edits in the Target” including fine-grained exceptions could be expressed in
TGGs with extensions like (negative) application conditions (cf. [HHT96] for their general in-
troduction to graph grammars and [GLO09; AVS12; LHGO12] for applications in the context
of TGGs) and refinement rules [RS12; Rie15]. Finally, TGGs do not provide the feature “Impe-
rative Logic” so that the application of TGGs in our setting would yield very complex mapping
rules in terms of the abstract syntax as well as a poor execution performance.

In order to enable the technical advantages of both QVT-O and TGGs, we combine certain
concepts of both approaches. That is, we use QVT-O as basic, unidirectional model transforma-
tion approach with imperative logic to specify the processing logic of CONSENS models through
a compact algorithm that is executed efficiently. Furthermore, we apply a transformation tra-
ceability information model—similarly to the correspondence model of TGGs—to provide the
features that are not fully supported by QVT-O (cf. Section 3.9.1.2). The transformation tra-
ceability enables to incrementally add or delete target model elements based on additions and
deletions in the source model, respectively. Moreover, it allows to preserve user edits in the
target model for certain target model elements. Finally, we semi-automatically establish lifecy-
cle traceability based on a dedicated lifecycle traceability information model for the purpose of
model management activities (cf. Section 3.9.1.2).

3.8.2.2 Model Transformation Algorithm

Concretizing the coarse-grained description of the model transformation rules in Section 3.4,
this section presents our model transformation rules for deriving component-based MSD spec-
ifications from CONSENS system models more formally by means of pseudocode algorithms.
The algorithms enable the replicability to other MBSE and SwRE approaches as pointed out
in the related work section. The system models have to fulfill the preconditions described in
Section 3.8.1 for the model transformations to be applicable.

The source models for the transformation algorithm are system models specified in a CON-
SENS language variant based on the SysML profile SYSML4CONSENS [*KDHM13; IKDN13]
in the UML/SysML modeling tool PAPYRUS [PAPYRUS]. The target models are MSD speci-
fications for hierarchical component architectures [*HM13] based on the UML Modal profile
provided by the SCENARIOTOOLS MSD [ST-MSD; MUML] tool suite. Since both the source
and target models make use of the UML profiling extension mechanism, the approach can also
be implemented in other UML/SysML tools.

86

3.8 Model Transformations and Coverage Check More Formally

Algorithm 3.1 presents an abstract pseudocode version of the overall QVT-O transformation.
This pseudocode describes in which cases the algorithm considers a CONSENS Application Sce-
nario SwRE-relevant. In these cases, the algorithm derives the corresponding MSD use case and
calls sub-procedures for deriving the structural MSD specification elements (cf. Algorithm 3.2)
and for deriving the actual MSDs (cf. Algorithm 3.3).

Algorithm 3.1: Overall transformation from CONSENS to MSDs (based on [*HBM+16])
transformation DERIVEMSDSPECIFICATION (in systemModel, inout msdSpecification, inout transfTraceLinks)
forall appScenario ∈ systemModel.applicationScenarios do

discreteSoftwareComponents ← sysElemExemplar ∈ systemModel.activeStructure | (∃ funct ∈ system-
Model.functions | (appScenario induces funct ∧ sysElemExemplar realizes funct ∧ sysElemExemplar has re-
levance annotation “SE”))
if discreteSoftwareComponents 6= ∅ then . Application Scenario is SwRE-relevant

. Derive MSD use cases (cf. Algorithm 3.4, Section 3.4.1, and Section 3.6.1.1)
msdUseCase← appScenario.deriveCollaboration(transfTraceLinks)
SwRE-relevantStructuralElements, SwRE-relevantInformationFlows← ∅
. Derive structure (cf. Algorithm 3.2, Section 3.4.2, and Section 3.6.1.2)
SwRE-relevantStructuralElements, SwRE-relevantInformationFlows ← systemModel.deriveStructure (dis-

creteSoftwareComponents, msdUseCase, transfTraceLinks)
. Derive MSDs (cf. Algorithm 3.3, Section 3.4.3, and Section 3.6.1.3)
systemModel.deriveBehavior(SwRE-relevantStructuralElements, SwRE-relevantInformationFlows, msdUse-

Case, transfTraceLinks)
msdSpecification += msdUseCase

end
end
deleteSourceInvalidTraceLinksAndTargetObjects (transfTraceLinks, msdSpecification) . cf. Algorithm 3.5

There are two execution scenarios for the algorithm: The initial generation of an MSD spec-
ification and the incremental update of an existing one. The system model is passed as value
for the input parameter systemModel in both application scenarios. The MSD specification is
represented by the inout parameter msdSpecification, and the intermediate transformation trace-
ability model is contained in the inout parameter transfTraceLinks. Both the MSD specification
and the transformation traceability model are null in the first execution scenario. In the se-
cond execution scenario, msdSpecification as well as transfTraceLinks contain as input value
the corresponding model from a prior process iteration before the algorithm execution and the
updated corresponding model as output value afterward.

Algorithms 3.1 to 3.3 together refine the coarse-grained transformation rules as sketched in
Section 3.4. These algorithms call concrete versions of the generic Algorithm 3.4 for the crea-
tion or the update of MSD specification elements. That is, for each <CONSENSElementType>
and each corresponding <MSDElementType> there is a concrete algorithm that works according
to the functional principle of Algorithm 3.4.

In Section 3.7.2, we exemplify properties of the transformation trace links and transformation
trace artifacts for the update execution scenarios. We define these properties more detailed in
the following:

• A transformation trace link is source-invalid, if it associates an existing MSD specification
element with a non-existing CONSENS system model element. This case occurs due to
the manual deletion of CONSENS system elements.

• A transformation trace link is target-invalid, if it associates an existing CONSENS model
element with a non-existing MSD specification element. This case occurs due to the
manual deletion of MSD specification elements.

87

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Algorithm 3.2: Procedure for deriving structural elements
procedure Model::deriveStructure(in discreteSoftwareComponents: Set(Property), inout msdUseCase: Collabora-
tion, inout transfTraceLinks: Set(TraceLink)) : Set(Property), Set(Connector)
otherSwRE-relevantStructuralElements← ∅
. Derive system component roles from discrete software components (cf. Section 3.4.2.1)
forall discreteSoftwareComponent ∈ discreteSoftwareComponents do

systemComponentRole← discreteSoftwareComponent.deriveProperty(transfTraceLinks) . cf. Algorithm 3.4
systemComponentRole.specificationKind←Modal::SpecificationKind::System
componentType← discreteSoftwareComponent.type.deriveComponent(transfTraceLinks) . cf. Algorithm 3.4
systemComponentRole.type← componentType
msdUseCase += systemComponentRole
msdUseCase += componentType
. Determine and cache SwRE-relevant environment elements / continuous software components
forall port ∈ discreteSoftwareComponent.type.ports | (port.type is SysML4CONSENS::InformationFlow-

Specification) do
connectedSwRE-relevantStructuralElement ← port.connectedElement | ((port.connectedElement
∈ self.environment ∧ port.connectedElement affects appScenario) ∨ (port.connectedElement ∈
self.activeStructure ∧ port.connectedElement has relevance annotation “CE” ∧ ∃ funct ∈ self.functions |
(appScenario induces funct ∧ port.connectedElement realizes funct))

otherSwRE-relevantStructuralElements += connectedSwRE-relevantStructuralElement
SwRE-relevantInformationFlows += informationFlow between discreteSoftwareComponent and

connectedSwRE-relevantStructuralElement
end

end
. Derive environment component roles from SwRE-relevant environment elements / continuous SW components
(cf. Section 3.4.2.2 and Section 3.4.2.3)
forall SwRE-relevantStructuralElemExemplar ∈ otherSwRE-relevantStructuralElements do

environmentComponentRole ← SwRE-relevantStructuralElemExemplar.deriveProperty(transfTraceLinks)
. cf. Algorithm 3.4

environmentComponentRole.specificationKind←Modal::SpecificationKind::Environment
componentType← SwRE-relevantStructuralElemExemplar.deriveComponent(transfTraceLinks) . cf. Algo-

rithm 3.4
environmentComponentRole.type← componentType
msdUseCase += environmentComponentRole
msdUseCase += componentType

end
. Derive connectors from information flows between already processed SwRE-relevant structural elements
(cf. Section 3.4.2.4)
forall informationFlow ∈ SwRE-relevantInformationFlows do

forall connectorEnd ∈ informationFlow.flow.end do
. Multiple calls of <ConsensElement>.derive<MSDElement> (cf. Algorithm 3.4) on the same object return
the already derived and unaltered MSD element
alreadyDerivedComponentType ← connectorEnd.partWithPort.owner.deriveComponent(transfTraceLinks)
. cf. Algorithm 3.4

port← connectorEnd.partWithPort.derivePort(transfTraceLinks) . cf. Algorithm 3.4
interface← connectorEnd.partWithPort.type.deriveInterface(transfTraceLinks) . cf. Algorithm 3.4
forall informationFlowItem in connectorEnd.partWithPort.type do

interface += informationFlowItem.deriveOperation(transfTraceLinks) . cf. Algorithm 3.4
end
port.type← interface
alreadyDerivedComponentType += port
msdUseCase += interface

end
msdUseCase += informationFlow.deriveConnector(transfTraceLinks) . cf. Algorithm 3.4

end
return discreteSoftwareComponents ∪ otherSwRE-relevantStructuralElements, SwRE-relevantInformationFlows

88

3.8 Model Transformations and Coverage Check More Formally

Algorithm 3.3: Procedure for deriving MSDs
procedure Model::deriveBehavior(in SwRE-relevantStructuralElements: Set(Property), in SwRE-
relevantInformationFlows: Set(Connector), inout msdUseCase: Collaboration, inout transfTraceLinks:
Set(TraceLink))
forall behaviorSequence ∈ self.behaviorSequences | (behaviorSequence refines appScenario) do

msd← behaviorSequence.deriveInteraction(transfTraceLinks) . cf. Algorithm 3.4
SwRE-relevantLifelines← ∅
forall behaviorSequenceLifeline ∈ behaviorSequence.lifelines | (behaviorSequenceLifeline.represents ∈ SwRE-

relevantStructuralElements) do
SwRE-relevantLifelines += behaviorSequenceLifeline.deriveLifeline(transfTraceLinks) . cf. Algorithm 3.4

end
msd += relevantLifelines
forall behSeqMsg ∈ behaviorSequence.messages | (behSeqMsg.sender ∈ SwRE-relevantLifelines ∧ behSeq-

Msg.receiver ∈ SwRE-relevantLifelines ∧ behSeqMsg.connector ∈ SwRE-relevantInformationFlows ∧ behSeq-
Msg.signature.owner is SysML4CONSENS::InformationFlowSpecification) do

msd += behSeqMsg.deriveMessage(transfTraceLinks) . cf. Algorithm 3.4
end
msdUseCase += msd

end

Algorithm 3.4: Generic procedure for creating or updating an MSD specification element
procedure <CONSENSElementType>::derive<MSDElementName> (inout transfTraceLinks: Set(TraceLink)) :
<MSDElementType>
msdElementToReturn: <MSDElementType>← null
if ∃ transformationTraceLink ∈ transfTraceLinks | (transformationTraceLink.consensElement = self) then

. Source element exists already
if transformationTraceLink.msdElement 6= null then . Trace link is target-invalid

if transformationTraceLink.msdElement.type is UML::Lifeline ∨ UML::Message ∨ UML::Message-
OccurrenceSpecification then . MSD specification element is child of an MSD

. Do nothing, so that this algorithm returns null and the calling transformation adds nothing to the
corresponding list

end
else . Target object has to be restored

msdElementToReturn← self.map <CONSENSElementType> 2<MSDElementType> ()
transformationTraceLink.msdElement← msdElementToReturn

end
end
else . Trace link is potentially target-property-invalid

msdElementToReturn← transformationTraceLink.msdElement
synchronizeProperties(msdElementToReturn, self)

end
end
else . Source element is unprocessed⇒ create target object and link both with each other

msdElementToReturn← self.map <CONSENSElementType> 2<MSDElementType> ()
transformationTraceLink← new ModelElement2ModelElement()
transformationTraceLink.msdElement← msdElementToReturn
transformationTraceLink.consensElement← self
transfTraceLinks += transformationTraceLink

end
return msdElementToReturn

89

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

• A transformation trace link is target-property-invalid, if it associates a CONSENS model
element with an MSD specification element where at least one property of the MSD spec-
ification element is not synchronized with the corresponding CONSENS model element
property. This case occurs due to the manual change of the property of MSD specifica-
tion elements (e.g., a name change).

• A transformation trace source artifact is unprocessed, if there is no transformation trace
link that associates a CONSENS system model element that is input to the transforma-
tion algorithm with an MSD specification element. This case occurs due to the manual
addition of CONSENS system elements.

The functional principle of Algorithm 3.4 describes in which cases a transformation trace
link is considered target-(property-)invalid and a trace source artifact is considered unproces-
sed. Particularly, the principle defines which actions have to be performed in these cases
(cf. Section 3.7.2 for exemplary executions of the algorithm). The called map operations re-
present the QVT-O mappings for the particular source and target element types. The called ope-
ration synchronizeProperties(<MSDElementType>, <CONSENSElementType>) sy-
nchronizes all relevant properties of the particular source and target element types. We do
not present these operations here due to their simplicity.

At the end, Algorithm 3.1 calls Algorithm 3.5 to delete all remaining source-invalid trans-
formation trace links and target objects. The functional principle of this algorithm describes
in which cases a transformation trace link is considered source-invalid. Such objects are re-
moved from the transformation traceability model and the MSD specification, respectively
(cf. Section 3.7.2 for exemplary executions of the algorithm).

Algorithm 3.5: Procedure for deleting source-invalid transformation trace links and MSD spec-
ification elements

procedure deleteSourceInvalidTraceLinksAndTargetObjects (inout transfTraceLinks: Set(TraceLink), inout
msdSpecification: Model)

forall transformationTraceLink ∈ transfTraceLinks | (transformationTraceLink.consensElement = null) do
. Source element does not exist⇒ transformationTraceLink is source-invalid
if transformationTraceLink.msdElement 6= null then . Source-invalid MSD specification element exists

msdSpecification.remove(transformationTraceLink.msdElement) . Remove MSD specification element
end
transfTraceLinks.remove(transformationTraceLink) . Remove source-invalid transformation trace link

end

Although we exploit the relevance annotations similarly to Rieke [Rie15] as described in
Section 2.3, he points out that the mappings covering the purely structural aspects in the au-
tomatic derivation of discipline-specific design models from CONSENS system models “are
rather straightforward” [Rie15]. In contrast, our transformation for this automatic part is more
complex due to the facts that source and target models are structurally more different and the
SwRE-relevant information in CONSENS is spread across several partial models and hence has
to be collected through trace links.

3.8.3 Coverage Check between MSD Specifications and
Behavior – States

Concretizing the coarse-grained description of the rules for automatically checking an MSD
specification for coverage w.r.t. the CONSENS partial model Behavior – States in Section 3.5.2,

90

3.8 Model Transformations and Coverage Check More Formally

we describe these rules in this section more formally. The partial model Behavior – States has
to adhere to the preconditions for CONSENS system models as described in Section 3.8.1. We
exemplarily explain the violation of one of these coverage rules and a corresponding correction
in step 5a of the manual refinement of the EBEAS MSD specification in Appendix A.2.2.2.

We provide checks for static coverage rules to reveal simple coverage violations but no for-
mal refinement verification approach (e.g., proving a simulation relationship [Mil71; HBDS15]
between the MSD stategraph and the Behavior – States) for two reasons. First, both the Sys-
tem Analyst and the Software Requirements Engineer would be strongly constrained in their
particular specification freedom if they had to conceive their respective models in such a way
that the stategraph resulting from the MSD specification fulfills a formal refinement relationship
w.r.t the Behavior – States . Second, the partial model Behavior – States describes the interdis-
ciplinary behavior of the overall system, and hence only certain parts of it are SwRE-relevant
(e.g., the state Emergency Evasion including its do-operation and its self-transition is only rele-
vant to the Control Engineer). This would strongly complicate a formal refinement check since
the overall automaton could be partitioned into several disjoint SwRE-relevant parts.

Thus, our static checks provide no guarantee that the MSD specification correctly refines
the SwRE-relevant parts of the Behavior – States . In fact, checking the coverage rules reveals
whether there is at least one corresponding model element in the MSD specification for certain
SwRE-relevant model elements in the Behavior – States and vice versa. Ensuring that there is
at least one corresponding model element representation for each model element counterpart
in the other model is optimistic, that is, there are potentially false positives. Nevertheless,
information is missing or superfluous in the MSD specification for sure if one of the coverage
rules is violated. Thus, the static checks improve the completeness and conciseness of the
respective models.

In the following, we present the two sets of static coverage rules. The first one has the aim to
improve the completeness of the MSD specification w.r.t. to the Behavior – States . The second
one aims at improving the completeness of the Behavior – States w.r.t. the MSD specification
and the conciseness of the MSD specification w.r.t. the Behavior – States . All coverage rules
are specified by means of a simplified pseudocode variant of the OCL [OMG14a].

3.8.3.1 Rule Set 1: Check Whether Each SwRE-relevant Trigger/Effect in the
Behavior – States is Represented in any Requirement MSD

This rule set has the aim to improve the completeness of the MSD specification w.r.t. to the
Behavior – States . It checks whether there is at least one corresponding model element in the
MSD specification for certain SwRE-relevant model elements in the Behavior – States .

Algorithm 3.6 presents the coverage rule for checking whether there is at least one corre-
sponding environment message in any requirement MSD for each SwRE-relevant trigger in the
Behavior – States . We consider a Behavior – States trigger SwRE-relevant iff it has a referential
trace link operation to an operation defined in an information flow specification as well as a re-
ferential trace link port to a system template’s port typed by the information flow specification,
where the port is connected to an SwRE-relevant environment element (cf. Section 3.1.3).

Algorithm 3.7 presents the coverage rule for checking whether there is at least one correspon-
ding system message sent to the environment in any requirement MSD for each SwRE-relevant
effect on an SwRE-relevant environment element in the Behavior – States . We consider a Be-
havior – States effect of a transition or the entry-/do-/exit-operation of a state SwRE-relevant
iff it has a referential trace link specification to an operation defined in an information flow

91

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Algorithm 3.6: Coverage rule for ensuring that each SwRE-relevant trigger in the Behavior –
States is represented by at least one environment message in any requirement
MSD

. The set of SwRE-relevant environment message triggers contains triggers with the following properties:

• The trigger’s event is a UML4SysML::CallEvent.
• The corresponding operation is defined in a SysML4CONSENS::InformationFlowSpecification.
• The corresponding port is owned by the system template and connected to an SwRE-relevant environment

element exemplar.

For any of such SwRE-relevant environment message triggers in the Behavior – States, there must be an environment
message in any requirement MSD with the following properties:

• The message corresponds to an operation named equally to the corresponding operation of any of the triggers
defined above.

• This operation has to be defined within an interface that is derived from the InformationFlowSpecification
encompassing the trigger’s operation.

• The MSD message has to be sent by an environment role that is derived from an environment element
exemplar causing the message event trigger.

context UML4SysML::Trigger inv:

self.owner is UML4SysML::Transition ∧ self.event is UML4SysML::CallEvent
∧ ∃ flowSpecification ∈ systemModel.flowSpecifications | (((UML4SysML::CallEvent)
self.event).operation.owner = flowSpecification ∧ flowSpecification is
SysML4CONSENS::InformationFlowSpecification
∧ self.port.type = flowSpecification ∧ self.port.owner is SysML4CONSENS::SystemTemplate
∧ self.port.owner is connected to envElem ∈ systemModel.environment)
implies
∃ message ∈ msdSpecification.MSDs.messages | (message is environment message ∧
message.owner not is Modal::EnvironmentAssumption ∧
message.signature.name = ((UML4SysML::CallEvent) self.event).operation.name ∧
∃ :Interface2FlowSpecification trace link from message.signature.owner to flowSpecification ∧
∃ :EnvironmentRole2EnvironmentElementExemplar trace link from message.connector.connectedSourceElement
to self.port.connectorEnd.connector.connectedSourceElement)

specification that types a port of an environment template, where the port is connected to an
SwRE-relevant environment element (cf. Section 3.1.3).

We do not define a coverage rule specifying that each trigger with a relative time event
after(<time>) in the Behavior – States is represented by a cold time condition with the
expression clockname > <time>. For example, the transition in Figure 2.2 leading from the
state Following Coordination to Overtaking Coordination has a trigger with the relative time
event after(t f ollowingCoord). This is due to the fact that triggers with time events are not spe-
cific to any engineering discipline and have no referential traceability to the system architecture
(e.g., a port). Thus, their SwRE-relevance cannot be determined.

3.8.3.2 Rule Set 2: Check Whether Each MSD Message Sent from/to the
Environment in a Requirement MSD is Represented in the
Behavior – States

This rule set aims at improving the completeness of the Behavior – States w.r.t the MSD speci-
fication and the conciseness of the MSD specification w.r.t. the Behavior – States (i.e., to detect
superfluous aspects in the MSD specification). It checks whether there is at least one corre-

92

3.8 Model Transformations and Coverage Check More Formally

Algorithm 3.7: Coverage rule for ensuring that each SwRE-relevant action on an SwRE-relevant
environment element in the Behavior – States is represented by at least one sys-
tem message sent to the environment in any requirement MSD

. The set of Behavior – States SwRE-relevant actions on the environment contains opaque behaviors with the follo-
wing properties:

• The opaque behavior belongs to a Behavior – States transition or state operation and references a
UML4SysML::Operation.

• This operation is defined in a SysML4CONSENS::InformationFlowSpecification.
• The port typed by this flow specification is owned by an SwRE-relevant environment element template and

connected to the system exemplar.

For any of such SwRE-relevant actions on the environment in the Behavior – States, there must be a system message
in any requirement MSD with the following properties:

• The message corresponds to an operation named equally to the operation referenced by the opaque behavior.
• This operation has to be defined within an interface that is derived from the InformationFlowSpecification

encompassing the operation referenced by the opaque behavior.
• The MSD message has to be sent to an environment role that is derived from an environment element exem-

plar providing the operation referenced by the opaque behavior.

context UML4SysML::OpaqueBehavior inv:

(self.owner is UML4SysML::Transition ∨ self.owner is UML4SysML::State)
∧ self.specification is UML4SysML::Operation ∧ ∃ flowSpecification ∈ systemModel.flowSpecifications |
(self.specification.owner = flowSpecification ∧
flowSpecification is SysML4CONSENS::InformationFlowSpecification ∧
∃ port ∈ systemModel.environment | (port.type = flowSpecification ∧
port.owner is SysML4CONSENS::EnvironmentElementTemplate ∧
port is connected to the systemModel.systemExemplar))
implies
message ∈ msdSpecification.MSDs.messages | (message is system message ∧
message.owner not is Modal::EnvironmentAssumption ∧
message.signature.name = self.specification.name ∧
∃ :Interface2FlowSpecification trace link from message.signature.owner to flowSpecification) ∧
∃ :EnvironmentRole2EnvironmentElementExemplar trace link from
message.connector.connectedTargetElement to port.owner

sponding SwRE-relevant trigger or action in the Behavior – States for environment messages or
system messages sent to the environment in the MSD specification.

If the Behavior – States are not specified, the checks return a positive result so that the Be-
havior – States specification is optional. Furthermore, the Behavior – States specify the beha-
vior w.r.t. inputs and outputs between the system under development and the environment
(cf. Section 3.1.3). Since we also derive environment roles from system-internal SwRE-relevant
continuous software components, we have to ensure in this rule set that we exclude these and
only consider environment roles derived from SwRE-relevant environment elements.

Algorithm 3.8 presents the coverage rule for checking whether there is at least one SwRE-
relevant trigger in the Behavior – States for each environment message in any requirement MSD.
Algorithm 3.9 presents the coverage rule for checking whether there is at least one SwRE-
relevant effect on a SwRE-relevant environment element in the Behavior – States for each sys-
tem message sent to the environment in any requirement MSD.

93

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Algorithm 3.8: Coverage rule for ensuring that each environment message in any requirement
MSD is represented by at least one SwRE-relevant environment message trigger
in the Behavior – States

. For any environment message not sent from an environment role derived from a continuous software component
(i.e., the sender is derived from an SwRE-relevant environment element) in any requirement MSD, there must be an
SwRE-relevant environment message trigger in the Behavior – States (if specified) with the following properties:

• The trigger’s event is a UML4SysML::CallEvent.
• The trigger corresponds to an operation named equally to the corresponding operation of any of the environ-

ment messages in a requirement MSD.
• This operation has to be defined within an interface, from which an InformationFlowSpecification encom-

passing the message’s operation is derived.
• The trigger has to be sent by an SwRE-relevant environment element exemplar, from which an environment

element exemplar sending the message is derived.

context UML::Message inv:

∃ systemModel.behaviorStates ∧ self is Modal::ModalMessage ∧ message is environment message ∧
not message.connector.sender.transformationTraceLink.consensStructuralElement has relev. annotation “CE” ∧
not message.owner is Modal::EnvironmentAssumption
implies
∃ trigger ∈ systemModel.behaviorStates.transitions.triggers | (trigger.event is UML4SysML::CallEvent ∧
self.signature.name = ((UML4SysML::CallEvent) trigger.event).operation.name ∧
∃ :Interface2FlowSpecification trace link from
self.signature.owner to ((UML4SysML::CallEvent) trigger.event).operation.owner ∧
∃ :EnvironmentRole2EnvironmentElementExemplar trace link from
self.connector.connectedSourceElement to trigger.port.connectorEnd.connector.connectedSourceElement)

Algorithm 3.9: Coverage rule for ensuring that each system message sent to the environment in
any requirement MSD is represented by at least one SwRE-relevant action on an
SwRE-relevant environment element in the Behavior – States

. For any system message sent to an environment role not derived from a continuous software component (i.e., it is
derived from an SwRE-relevant environment element) in any requirement MSD, there must be an SwRE-relevant
action on an environment element in the form of a transition effect or a state operation in the Behavior – States (if
specified) with the following properties:

• The action is an opaque behavior belonging to a Behavior – States transition or state operation and references
a UML4SysML::Operation.

• This operation is named equally to the message’s signature.
• This operation has to be defined within a SysML4CONSENS::InformationFlowSpecification, from which an

interface encompassing the message’s signature is derived.

context UML::Message inv:

∃ systemModel.behaviorStates ∧ self is Modal::ModalMessage ∧ self is system message ∧
message.owner not is Modal::EnvironmentAssumption ∧
message.connector.receiver is environment role ∧
not message.connector.receiver.transformationTraceLink.consensStructuralElement has relev. annotation “CE”
implies
∃ behavior ∈ (systemModel.behaviorStates.transitions.effects ∪ systemModel.behaviorStates.states.operations) |
(behavior is UML4SysML::OpaqueBehavior ∧ behavior.specification not is null ∧
behavior.specification is UML4SysML::Operation ∧ self.signature.name = behavior.specification.name ∧
∃ :Interface2FlowSpecification trace link from self.signature.owner to behavior.specification.owner) ∧
∃ port ∈ systemModel.environment | (∃ :EnvironmentRole2EnvironmentElementExemplar trace link from
self.connector.connectedTargetElement to port.owner ∧ port.type = behavior.specification.owner))

94

3.9 Realization and Evaluation

3.9 Realization and Evaluation

We present the implementation aspects for the concepts described throughout this chapter in
Section 3.9.1 and describe the conduct of a case study to evaluate the concepts in Section 3.9.2.

3.9.1 Implementation

Figure 3.26 depicts the coarse-grained software architecture that realizes the concepts described
in this chapter. The architecture visualization encompasses the components and UML profiles
newly implemented in the course of this thesis, the existing and hence reused frameworks, tool
suites, and UML profiles, as well as the dependencies between these components. The overall
implementation bases on the Eclipse Modeling Framework (EMF) [EMF] and hence applies the
component EMF as root component.

pkg [Package] Implementation Root [Coarse-grained Architecture]

SCENARIO

TOOLS MSD

CONSENS

2
MSDs

CAPRA PAPYRUS

SYSML4CONSENS

SysML

UML2EMF

OCL QVT-O

Component-
based SCENARIO

TOOLS MSD

Relevance
Annotations

Legend

Existing, Reused Frame-
work / Tool Suite / Profile

Newly Implemented
Component / Profile

Figure 3.26: Coarse-grained architecture of the implementation and the reused components

The profiles RelevanceAnnotations and SysML4Consens that we present in Section 3.9.1.1
both extend the existing UML profile SysML and hence depend on it. SysML4Consens has
further dependencies to Papyrus due to its contributions to the user interface and to the di-
agrammatic visualization as well as to UML2 due to metaclass extensions. The component
Component-based ScenarioToolsMSD extends the tool suite ScenarioToolsMSD with
hierarchical software components as structural basis for MSDs.

The component Consens2MSDs implements the transformation algorithm as described in
Section 3.8.2.2 through a set of QVT-O mappings including Java black-box libraries. Fur-
thermore, it encompasses the CAPRA traceability information models (cf. Section 3.7) that
we present in Section 3.9.1.2. The transformation algorithm takes SYSML4CONSENS mod-
els with relevance annotations as well as potential CAPRA trace links as inputs, and it outputs
component-based MSD specifications as well as newly created or updated CAPRA trace links.

95

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

Thus, the component has dependencies to the three newly implemented components described
in the last paragraph, to the QVT-O framework [QVTo], and to the traceability management tool
Capra [CAPRA]. The static coverage checks between MSD specifications and the CONSENS

partial model Behavior – States as described in Section 3.8.3 by means of pseudocode are cur-
rently not yet realized. One option for their realization is the implementation by means of the
OCL framework, resulting in the dependency to this component.

In Section 3.9.1.1, we present the SysML profiles SysML4Consens and Relevance Anno-
tations. We subsequently present the CAPRA traceability information models as part of the
component Consens2MSDs in Section 3.9.1.2.

3.9.1.1 SysML Profiles

In this section, we present the SysML profiles that we introduce in this thesis to provide a
solid basis for the automatic part of our transition technique presented in this chapter. We
implemented them in the UML/SysML open source modeling tool PAPYRUS.

In the following, we present the SysML profile SYSML4CONSENS and subsequently the
SysML profile for the relevance annotations. Finally, we exemplify the application of both
profiles.

SYSML4CONSENS

The SYSML4CONSENS profile depicted in Figure 3.27 is a language profile [SG14], which
specifies a stand-alone language by augmenting the SysML language profile (cf. Section 2.5.2)
with concepts of the CONSENS modeling language.

The main part of the profile focuses on extending the SysML language w.r.t. the struc-
tural modeling elements, that is, elements that define the partial models Environment and
Active Structure . In terms of these structural modeling elements, SysML and its base language
UML explicitly distinguish between types/classifiers and their roles/parts. The UML subset
UML4SysML, which is the basis for the actual SysML profile, captures these concepts by means
of the metaclasses UML4SysML::Property and UML4SysML::Class, respectively. SysML furt-
her specializes the latter metaclass by extending it through the stereotype SysML::Blocks::Block,
which represents a generic structural element type.

The CONSENS modeling language captures types and roles by means of templates and exem-
plars, respectively (cf. Section 2.2.5). Furthermore, CONSENS distinguishes between the SUD,
its system elements, and its environment elements (cf. Section 2.2.1 and Section 2.2.5). To spe-
cialize SysML with these concepts, we hence refine the stereotype SysML::Blocks::Block and
extend the metaclass UML4SysML::Property with stereotypes representing this terminology.
First, we refine SysML::Blocks::Block with the stereotypes SystemTemplate, SystemElement-
Template, and EnvironmentElementTemplate to provide modeling means for templates of the
system, of system elements, and of environment elements, respectively. Second, we extend
UML4SysML::Property with the stereotypes SystemExemplar, SystemElementExemplar, and
EnvironmentElementExemplar to provide modeling means for exemplars of the system, of
system elements, and of environment elements, respectively. By specializing these structural
modeling constructs of SysML, we also inherit their modeling means for ports without defining
dedicated stereotypes for them. That is, the user of the profile can attach ports to the system as
well as to system and environment elements. We ensure that the particular exemplar kinds have
the corresponding template kind as block type by means of OCL constraints.

96

3.9 Realization and Evaluation

«profile» SYSML4CONSENS

«metaclass»
UML4SysML::

Property

«stereotype»
Flow

Specification

«stereotype»
EnergyFlow
Specification

«stereotype»
InformationFlow

Specification

«stereotype»
MaterialFlow
Specification

«stereotype»
SysML::Ports&Flows::

InterfaceBlock

«stereotype»
SystemElement

Template

«stereotype»
SysML::Blocks::

Block

«stereotype»
System

Template

«stereotype»
Environment

ElementTemplate

«stereotype»
SysML::Ports&
Flows::FullPort

«stereotype»
Measurement

Point

«metaclass»
UML4SysML::

Connector

«metaclass»
UML4SysML::

Class

«stereotype»
Function

«metaclass»
UML4SysML::
Association

«stereotype»
Function

Containment

«metaclass»
UML4SysML::

UseCase

situation: String
intendedBehavior:
 String

«stereotype»
Application

Scenario

«metaclass»
UML4SysML::
Abstraction

«stereotype»
Induces

«stereotype»
Affects

«stereotype»
Refines

«stereotype»
Realizes

«stereotype»
SystemElement

Exemplar

«stereotype»
System

Exemplar

«stereotype»
Environment

ElementExemplar

«stereotype»
Mechanical
Connection isDisturbing:

 Boolean

«stereotype»
Flow

Legend

Existing, Reused Stereotype / Metaclass Newly Defined Stereotype

client.isStereotypeAppl ied(
 EnvironmentElementExemplar)
and supplier.isStereotypeAppl ied(
 ApplicationScenario)

client.isStereotypeAppl ied(
 Applica ionScenario) and
supplier.isStereotypeAppl ied(
 Function)

client.isStereotypeAppl ied(
 SystemElementExemplar)
and
supplier.isStereotypeAppl ied(
 Func ion)

(client.isStereotypeAppl ied(
 Requirement) or
client.isStereotypeAppl ied(
 BehaviorSequence)) and
supplier.isStereotypeAppl ied(
 Applica ionScenario)

«stereotype»
Behavior
Sequence

«metaclass»
UML4SysML::

Interaction

type.isStereotypeAppl ied(
 SystemTemplate)

type isStereotypeAppl ied(
 EnvironmentElement-
 Template)

type.isStereotypeAppl ied(
 SystemElementTemplate)

Figure 3.27: The SYSML4CONSENS profile

Furthermore, the CONSENS modeling language distinguishes different kind of flows, that is,
energy flows, information flows, and material flow (cf. Section 2.2.1 and Section 2.2.5). In
SysML, such flows can be represented by connectors between ports. However, the interface of
the ports defines the connector’s kind in SysML. This facilitates the reuse of interfaces, for ex-
ample, across multiple hierarchy levels. Thus, we introduce the distinction between the different
flow kinds to these port interfaces. SysML defines port interfaces by means of the stereotype
SysML::Ports&Flows::InterfaceBlock, which refines the generic SysML::Blocks::Block. We
specialize this stereotype with the abstract stereotype FlowSpeci�cation, which we further sub-
divide into the particular stereotypes for the corresponding CONSENS flow kinds. We do not
constrain the compatibility of the flow specifications of ports connected with each other, because
the static semantics of UML/SysML are sufficient to ensure this interface compatibility.

Since mechanical connections simply connect mechanical elements and hence do not adhere
to interfaces that specify which elements can flow over a connector, we extend the metaclass

97

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

UML4SysML::Connector with the corresponding stereotype MechanicalConnection. We also
introduce the stereotype Flow as extension to the metaclass UML4SysML::Connector to repre-
sent disturbing flows of the partial model Environment with a corresponding Boolean attribute.
Finally, we refine the SysML::Ports&Flows::FullPort with the stereotype MeasurementPoint
to provide modeling means for the equally named CONSENS modeling concept.

We introduce further stereotypes for the integration of the CONSENS partial models Appli-
cation Scenarios and Functions into SysML. First, we specialize SysML use cases by exten-
ding the metaclass UML4SysML::UseCase with the stereotype ApplicationScenario that in-
troduces additional String attributes for the textual differentiation between the trigger situa-
tion and the intended behavior of an Application Scenario. Second, we extend the metaclass
UML4SysML::Class with the stereotype Function and the metaclass UML4SysML::Association
with the stereotype FunctionContainment to provide modeling means to specify function hier-
archies.

Finally, we introduce the relational trace link types of CONSENS to SysML. In our ex-
tended terminology for model-based traceability (cf. Section 2.1.1), we define relational
trace links in terms of the UML as dedicated modeling elements that are instances of the
UML metaclass DirectedRelationship or of its metaclass specializations. The metaclass
UML4SysML::Abstraction is such a specialization, where “[a]n Abstraction is a [directed] Rela-
tionship that relates two Elements or sets of Elements that represent the same concept at different
levels of abstraction or from different viewpoints” [OMG17b]. Thus, we extend this metaclass
with the corresponding stereotypes. We ensure that the relational trace links unidirectionally
connect only the intended partial model elements by means of OCL constraints.

Relevance Annotations
The profile for relevance annotations depicted in Figure 3.28 is an annotation profile [SG14],
which attaches supplementary information to a model. Thereby, the relevance annotation profile
can be applied to any SysML-based language since the relevance annotations refine the basic
structural SysML stereotype SysML::Blocks::Block.

«profile»
Relevance Annotations

«stereotype»

SysML::Blocks::

Block

«stereotype»

CE

«stereotype»

SE

«stereotype»

EE

«stereotype»

ME

Figure 3.28: Profile for relevance annotations

In terms of terminology, we define it analogously to the relevance annotations of Rieke
[Rie15]. That is, we use the stereotype SE to annotate that a system element is relevant to the
discipline of software engineering, CE for control engineering, EE for electrical engineering,
and ME for mechanical engineering.

By refining the SysML stereotype SysML::Blocks::Block, which represents a type (cf. last
paragraph), we enable the user of the profile to non-redundantly apply the stereotype on sys-

98

3.9 Realization and Evaluation

tem element templates. We define the semantics of a relevance annotation applied to a system
element template that each system element exemplar typed by this template inherits the rele-
vance annotation. Other profile design options, like allowing to apply relevance annotations to
system element exemplars or both to system element exemplars and templates, would lead to
redundancies in the resulting SYSML4CONSENS models and to additional modeling effort.

Exemplary Application of the Profiles
We exemplify the application of the SYSML4CONSENS profile as well as of the SysML profile
for specifying the relevance annotations in this paragraph.

Figure 3.29 depicts the combined application of SYSML4CONSENS and the SysML profile
for the relevance applications with an example excerpt for the µC1 of the EBEAS (cf. Figure 2.2
in Section 2.2). Similarly to Section 3.1, we focus on the logical view within the µC1 in this
figure.

ibd [Block] μC2 [Logical View]

bdd [Package] ValueTypes [Logical ValueTypes]

«valueType»
XY-Position

bdd [Package] FlowSpecifications [Logical FlowSpecifications]

properties
+ positionAtTrajectory:
 XY-Position

«information
FlowSpecification»

SteeringInfo

«valueType»
Trajectory

operations
+ evade()

«information
FlowSpecification»

EvasionCommands

bdd [Package] Active Structure Templates

«systemElement
Template»

«CE»
TrajectoryGeneration

:~Trajectory
Commands

:SteeringInfo

:Evasion
Commands

«systemElement
Template»

«SE»
VehicleControl

:~Evasion
Commands

:Decisions

:~Braking
Commands

:~Precrash
Commands

«systemElementTemplate»
«EE»
μC2

...

...

...

...

«systemElementExemplar»
vc: VehicleControl:Decisions

«systemElementExemplar»
tg: TrajectoryGeneration

:~Braking
Commands

:~Precrash
Commands

:EvasionCommands

:~EvasionCommands

:~Trajectory
Commands

:SteeringInfo

class [Package] Functions

«function»
Control
Steering

«function»
Signalize

Lane Change

«function»
Perform

Evasion Maneuver

«function
Containment»

«function
Containment»

...

uc [Package] Application Scenarios

«applicationScenario»
Emergency Evasion

...

«realizes»

«induces»

type

type

properties
+ trajectory: Trajectory

«information
FlowSpecification»

TrajectoryCommands

type

Legend

Nodes Connections
Relevance Annotations:
System Element relevant to...

Software
Engineering

Control Engineering

Electrical
Engineering

Relational
Trace Link

Referential
Trace Link

«EE»«SE»

«CE»

Information Flow
System Element
Template/Exemplar

... ...

Figure 3.29: Excerpt of the SYSML4CONSENS system model for the µC1 of the EBEAS

The right-hand side of the figure depicts an excerpt of the partial models Application Sce-
narios , Functions , and Active Structure . The relational trace links are specified by means of
stereotyped links between the corresponding partial model elements. For example, the appli-

99

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

cation scenario Emergency Evasion (i.e., a UML4SysML use case with the stereotype «appli-
cationScenario») has a relational trace link with the stereotype «induces» to the function Con-
trol Steering (i.e., a UML4SysML class with the stereotype «function»). The system element
exemplar tg: TrajectoryGeneration (i.e., a UML4SysML property with the stereotype «system-
ElementExemplar») in turn has a link with the stereotype «realizes» to the aforementioned
function.

The left-hand side of Figure 3.29 depicts information that is needed in SysML to thoroughly
specify the types of the system element exemplars (depicted in the block definition diagram
Active Structure Templates), their port interfaces (i.e., flow specifications depicted in the block
definition diagram Logical FlowSpecifications), and the actual value types (depicted in the block
definition diagram Logical ValueTypes) used in the port interfaces. For example, the system
element exemplar tg: TrajectoryGeneration is typed by the system element template Trajectory-
Generation (i.e., a SysML block with the stereotype «systemElementTemplate»). This system
element template has a conjugated port of the information flow specification TrajectoryCom-
mands (i.e., a SysML interface block with the stereotype «informationFlowSpecification»), me-
aning that it can send the contents of the flow specification via this port. The information flow
specification TrajectoryCommands contains the flow property trajectory that is typed by the
value type Trajectory, which is expressed with modeling means of the conventional SysML.

In the conventional CONSENS modeling language (cf. Section 2.2), the connector kind (i.e.,
information flow, energy flow, or material flow) as well as the contents that can flow via a
connector are specified at the connector level. In contrast, the flow specification kind of the
ports that a connector links determines the connector kind in SYSML4CONSENS. For example,
the connector linking the ports of vc: VehicleControl and tg: TrajectoryGeneration represents an
information flow since both ports are typed by the same information flow specification Evasion-
Commands.

As described in the last paragraph, we specify the relevance annotations on the type level
for the system element templates. For example, the system element template µC2 is relevant
to the electrical engineering discipline (stereotype «EE»), TrajectoryGeneration is relevant to
control engineering (stereotype «CE»), and VehicleControl is relevant to software engineering
(stereotype «SE») in the block definition diagram Active Structure Templates.

3.9.1.2 CAPRA Traceability Information Models

This section presents the traceability information models defining the permissible trace link ty-
pes between the permissible trace artifact types of an MSD specification and a CONSENS system
model (cf. Section 3.7). We distinguish between a lifecycle and a transformation traceability
information model (cf. Section 2.1.1). Both traceability information models are specified by
means of the traceability metamodel specification capabilities of the traceability management
tool CAPRA (cf. Section 2.1.2).

The following paragraph presents the lifecycle traceability information model, whereas the
subsequent paragraph presents the transformation traceability information model.

Lifecycle Traceability Information Model
For readability reasons, we divide the lifecycle traceability information model into concepts
regarding the classifier view type, the architecture view type, and the interaction view type of
component-based MSD specifications (cf. Section 3.2). We conceptually constrain the meta-
model with OCL constraints [OMG14a] to improve the validity of the particular trace links

100

3.9 Realization and Evaluation

(cf. Section 2.1.1), since it is intended that the Software Requirements Engineer partially es-
tablishes corresponding traces in a manual manner. We implemented these conceptual OCL
constraints by means of a Java implementation within the Traceability Metamodel extension
point of CAPRA. One CONSENS model element typically results in several elements spread
across multiple MSD use cases within an MSD specification. Thus, most multiplicities for
the trace link type references to trace artifact types of CONSENS system models and of MSD
specifications are 1:* if not mentioned otherwise in the following.

Figure 3.30 presents the metamodel for the lifecycle traces between the classifier view type
of component-based MSD specifications and SYSML4CONSENS system models. It relates
component types of an MSD specification with environment/system element templates of a
SYSML4CONSENS system model as well as interfaces of an MSD specification with informa-
tion flow specifications of a SYSML4CONSENS system model.

Component
2

EnvironmentElementTemplate

UML4SysML::
Class

UML::
Component1

environment
ElementTemplate

isStereotypeApplied(
 SysML4CONSENS::EnvironmentElementTemplate)

component

*

Component
2

SystemElementTemplate

UML4SysML::
Class

UML::
Component1

system
ElementTemplate component

*

isStereotypeApplied(
 SysML4CONSENS::SystemElementTemplate)

Interface
2

FlowSpecification

UML4SysML::
Class

UML::
Interface1

flowSpecification interface

*

isStereotypeApplied(
 SysML4CONSENS::InformationFlowSpecification)

class [Package] Lifecycle Trace
Metamodel [Classifier View Type] MSDs2CONSENS

Lifecycle
TraceMetaModel

Figure 3.30: Metamodel for the lifecycle traces between the classifier view type of component-
based MSD specifications and SYSML4CONSENS system models

Figure 3.31 presents the metamodel for the lifecycle traces between the architecture view
type of component-based MSD specifications and SYSML4CONSENS system models. It re-
lates use cases of an MSD specification with Application Scenarios of a SYSML4CONSENS

system model as well as environment/system component roles of an MSD specification with
environment/system element exemplars of a SYSML4CONSENS system model. Since exactly
one MSD use case is generated out of a CONSENS application scenario, the multiplicities of
the association ends of the trace link type MSDUseCase2ApplicationScenario are 1:1. The
OCL constraints for the trace link types between the artifact types representing environment/sy-
stem component roles of an MSD specification and environment/system element exemplars in
SYSML4CONSENS constrain the resulting trace links to be instantiable according to parts of the
mapping rules from SYSML4CONSENS to MSD specifications (cf. Sections 3.4 and 3.8.2.2): A
SystemRole2SystemElementExemplar trace link can be instantiated between an MSD system

101

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

component role and an CONSENS system element exemplar with relevance annotation “SE”, an
EnvironmentRole2SystemElementExemplar trace link can be instantiated between an MSD
environment component role and a CONSENS system element exemplar with relevance anno-
tation “CE”, and an EnvironmentRole2EnvironmentElementExemplar trace link can be be
instantiated between an MSD environment component role and a CONSENS environment exem-
plar.

Figure 3.32 presents the metamodel for the lifecycle traces between the interaction view
type of component-based MSD specifications and SYSML4CONSENS system models. It re-
lates MSDs with SYSML4CONSENS Requirements as well as with Behavior – Sequences .
Since an MSD can emerge from arbitrary many requirements and one requirement can be
reflected by multiple MSDs, the multiplicities of the association ends of the trace link type
MSD2Requirement are *:*.

Transformation Traceability Information Model
Figure 3.33 presents the transformation traceability information model, which enables the in-
cremental updates of our transition technique through establishing fine-grained transformation
trace links between the corresponding trace artifacts. We provide concrete examples on the
model level in Section 3.7.2.

In contrast to the lifecycle traceability information models, the transformation traceability
information model is more generic in the sense that it allows to associate arbitrary UML/-
SysML trace artifacts with each other (i.e., the trace artifact type Element) via the trace link
type ModelElement2ModelElement. The transformation algorithm automatically ensures the
trace link validity—constraints at the metamodel level are not necessary since no manual trace
establishment is intended. The multiplicities of the association ends of the trace link type are
1:* since partially multiple MSD specification elements have to be associated with one CON-
SENS system model element (e.g., a software component derived from one system element can
participate in multiple MSD use cases).

3.9.2 Case Study

We conduct a case study based on the guidelines by Kitchenham et al. [KPP95] and by Runeson
et al. [RHAR12; RH08] for the evaluation of our transition technique. In our case study, we
investigate the usefulness of our approach within the domain of software-intensive systems.

3.9.2.1 Case Study Context and Cases

The objective of our case study is to evaluate whether our transition technique is useful for the
Software Requirements Engineers. For this purpose, we evaluate the following questions:

Evaluation Question 1 (EQ1) Does the transition technique derive reasonable MSD specifica-
tions as a basis for the manual refinement?

Evaluation Question 2 (EQ2) Does the transition technique reduce the engineering effort for
conceiving MSD specifications based on CONSENS system models?

We do not aim at generalizing the case study conclusions to all possible CONSENS system
models and MSD specifications but conduct the study for the following two cases:

102

3.9 Realization and Evaluation

MSDs2CONSENS

Lifecycle
TraceMetaModel

MSDUseCase
2

ApplicationScenario

UML4SysML::
UseCase

UML::
Collaboration

msdUseCase

11

application
Scenario

isStereotypeApplied(
 SysML4CONSENS::ApplicationScenario)

EnviromentRole
2

EnvironmentElementExemplar

UML4SysML::
Property

UML::
Property1

environment
ElementExemplar environment

Role

*

isStereotypeApplied(
 SysML4CONSENS::EnvironmentElementExemplar)

EnviromentRole
2

SystemElementExemplar

UML4SysML::
Property

UML::
Property1

system
ElementExemplar environment

Role

*

isStereotypeApplied(
 SysML4CONSENS::SystemElementExemplar)
 and
not type.isStereotypeApplied(RelevanceAnnotations::SE)
 and
type.isStereotypeApplied(RelevanceAnnotations::CE)

SystemRole
2

SystemElementExemplar

UML4SysML::
Property

UML::
Property1

system
ElementExemplar systemRole

*

isStereotypeApplied(
 SysML4CONSENS::SystemElementExemplar)
 and
type.isStereotypeApplied(RelevanceAnnotations::SE)

let appliedStereotype: Stereotype
 = getAppliedStereotype('Modal::SpecificationPart') in

appliedStereotype <> null
 and
getValue(appliedStereotype, 'partKind')
 = Modal::PartKind::Environment)

let appliedStereotype: Stereotype
 = getAppliedStereotype('Modal::SpecificationPart') in

appliedStereotype <> null
 and
getValue(appliedStereotype, 'partKind')
 = Modal::PartKind::Environment

let appliedStereotype: Stereotype
 = getAppliedStereotype('Modal::SpecificationPart') in

appliedStereotype <> null
 and
getValue(appliedStereotype, 'partKind')
 = Modal::PartKind::System

class [Package] Lifecycle Trace
Metamodel [Architecture View Type]

Figure 3.31: Metamodel for the lifecycle traces between the architecture view type of
component-based MSD specifications and SYSML4CONSENS system models

103

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

MSD
2

Requirement

UML4SysML::
Class

UML::
Interaction*

requirement msd

*

isStereotypeApplied(
 SysML::Requirements::Requirement)

MSD
2

BehaviorSequence

UML4SysML::
Interaction

UML::
Interaction1

behavior
Sequence msd

*

class [Package] Lifecycle Trace Metamodel [Interaction View Type]

MSDs2CONSENS

Lifecycle
TraceMetaModel

Figure 3.32: Metamodel for the lifecycle traces between the interaction view type of
component-based MSD specifications and SYSML4CONSENS system models

UML4SysML::
Element

UML::
Element1

consens
Element

msd
Element

*

class [Package] Transformation Trace Metamodel

ModelElement
2

ModelElement

MSDs2CONSENS

Transformation
TraceMetaModel

Figure 3.33: Metamodel for the transformation traces enabling incremental updates

Emergency Braking & Evasion Assistance System (EBEAS) The EBEAS used throughout this
thesis as a running example. In contrast to the second case, the EBEAS does not in-
volve mechanical elements fulfilling concrete functional requirements, and its models are
specified in more detail.

Car Access System (CAS) A car access system encompassing a mechatronic door lock system
and the central locking functionality of a car’s body control module ECU, which we
presented in [*HBM+16; *HBM+15] based on the example in [*Ber15]. Despite being
software-intensive, the system has in contrast to the EBEAS a more mechatronic character
where all disciplines are equally involved.

3.9.2.2 Setting the Hypotheses

Based on the aforementioned case study objective and evaluation questions, we define the fol-
lowing evaluation hypotheses:

Hypothesis H1 Our transition technique derives and updates correct MSD specifications w.r.t. to
initial and changed CONSENS system models, respectively (cf. evaluation question EQ1).

For evaluating H1, we give the two cases to each one of two students. The respective stu-
dent qualitatively evaluates for the case he is responsible for whether all SwRE-relevant
and whether no SwRE-irrelevant elements of the CONSENS model are present in the MSD
specification.

104

3.9 Realization and Evaluation

We consider H1 fulfilled if the students judge that their respective generated/updated
MSD specifications encompass all SwRE-relevant and no SwRE-irrelevant elements from
the SYSML4CONSENS models.

Hypothesis H2 Our transition technique reduces the engineering effort for conceiving and mod-
eling MSD specifications based on the respective CONSENS system models (cf. evaluation
question EQ2).

For evaluating H2, we determine for any case the amounts of the overall and the SwRE-
relevant model elements in the initial CONSENS system model. Furthermore, we deter-
mine the amounts of model elements that are initially derived and manually refined in the
respective MSD specifications.

We consider H2 fulfilled if in average ≥20% of SwRE-relevant system model elements
are identified and ≥50% of the final MSD specification is initially generated.

3.9.2.3 Data Collection Preparation

Besides ourselves, we employ two different students student-1 and student-2 to support the eva-
luation. Student-1 has approximately three years experience in modeling SYSML4CONSENS

system models as well as in modeling and simulating MSD specifications during the case study
conduct. Furthermore, he conceived and implemented the automatic derivation part of our tran-
sition technique [*Ber15]. Student-2 has little experience with CONSENS and approximately
one year of experience in modeling and simulating MSD specifications during the case study
conduct.

For both cases, student-1 prepares each an initial as well as a changed SYSML4CONSENS

model. For this purpose, he conducts the steps allocated to the Systems Engineer in the process
described in Section 3.3. We present the initial SYSML4CONSENS model for the EBEAS case
as CONSENS variant in Appendix A.2.1 and describe its changed version in Section 3.6.2.1.
We present the initial as well as the changed SYSML4CONSENS model for the CAS case as
CONSENS variant in [*HBM+16].

The SYSML4CONSENS system models have to be complete and correct w.r.t. the transforma-
tion algorithm (cf. Section 3.8.2.2) in order to be subject to a successful model transformation.
For example, the relational traceability as shown in Appendix A.2.1 has to be specified, all
ports with incident information flows have to be typed by the corresponding port specifications,
and the relevance annotations have to be specified. For this purpose, student-1 specifies the
SYSML4CONSENS system models in such a way that they adhere to the preconditions descri-
bed in Section 3.8.1.

3.9.2.4 Data Collection Procedure

In the following, we describe the procedure for the data collection for hypothesis H1 and sub-
sequently the procedure for the data collection for hypothesis H2.

Hypothesis H1
For evaluating H1, we give the initial and changed SYSML4CONSENS models for the EBEAS
case to student-1 and the initial and changed SYSML4CONSENS models for the CAS case to
student-2. Both students conducts the following procedure for their respective case:

1. They derive an initial MSD specification from the initial SYSML4CONSENS model.

105

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

2. They qualitatively evaluate whether all SwRE-relevant and whether no SwRE-irrelevant
elements from the SYSML4CONSENS model are present in the initial MSD specification.

3. They manually refine the initially derived MSD specification.

4. They update the initial MSD specification based on the changed SYSML4CONSENS

model.

5. They qualitatively evaluate whether all SwRE-relevant and whether no SwRE-irrelevant
elements from the SYSML4CONSENS model are present in the updated MSD specifica-
tion.

The evaluation of H1 yields for both cases that all SwRE-relevant elements and no superfluous
SwRE-irrelevant elements are present in the initially generated as well as in the updated MSD
specification. For the incremental update, each student moreover observes that none of his
manual refinements from the particular initial process iterations is lost.

Hypothesis H2
For evaluating hypothesis H2, both students follow the same procedure as described for the
evaluation of H1. That is, for both cases they initially derive and update an MSD specification
and refine it afterward.

Beyond that, student-1 determines for both cases the amounts of the overall (variable H2.1)
and the SwRE-relevant (variable H2.2) model elements in the initial SYSML4CONSENS system
model. Furthermore, student-1 determines for both cases the amounts of model elements that
are initially derived (variable H2.3, cf. Section 3.6.1.1 to Section 3.6.1.3) and manually refined
(variable H2.4, cf. Section 3.6.1.4 and Appendix A.2.2.2) in the respective MSD specifications.

Student-1 determines the model element amount variables H2.1, H2.3, and H2.4 automa-
tically based on the respective models. In contrast, student-1 determines H2.2 partially in a
manual way since the identification of SwRE-relevant model elements is hidden in the trans-
formation. That is, there is no corresponding intermediate SwRE-relevant SYSML4CONSENS

system model that can be input to an automatism. However, ourselves determine a part of H2.2
by means of OCL [OMG14a] queries where reasonable.

On the counting of model elements, we orientate toward the manual modeling effort within
PAPYRUS since the granularity level w.r.t. the question “what is a distinct model element?” is
very arguable. That is, we count every model operation that has to be actively conducted by
the Software Requirements Engineer in the modeling tool. For example, we count the speci-
fication of an MSD message as one action because the Software Requirements Engineer only
has to connect the message to two lifelines, whereas the two associated send and receive mes-
sage occurrence specifications are created automatically by the modeling tool. Accordingly, we
count the establishment of the referential traceability (e.g., the referential trace links connector
and signature of an MSD message to elements of the other view types) and setting mandatory
name attributes as dedicated model operations, because the Software Requirements Engineer
has to actively conduct the respective operation (cf. detailed model element variable amounts in
Appendix A.3).

We follow the same procedure for the changed SYSML4CONSENS system models and the
corresponding updated MSD specifications but focus on the changed model elements. For this
purpose, we define the variables H2.1-update for the amount of system model elements that
were manually changed and H2.3-update for the amount of MSD specification model elements
that were automatically updated due to the system model changes. We determine these amounts

106

3.9 Realization and Evaluation

manually, because simply comparing the respective overall model element amounts before and
after a change would ignore potential relevant changes (e.g., a model element movement is not
counted as change to the model in terms of the overall model element amount).

The determination of the model element amounts for H2 yields the results as listed in Ta-
ble 3.1. The table lists the results for H2 for the EBEAS case (column # EBEAS) as well as the
car access system case (column # CAS). Additionally, the table provides percentage-wise rela-
tions between certain model element amounts as well as the average of these percentage values
(column ∅%).

Table 3.1: Results of model element amount variables for hypothesis H2

ID Description # EBEAS # CAS ∅∅∅%
H2.1 Overall system model elements 1008 748
H2.2 Automatically identified SwRE-relevant system model elements 342 296
H2.2÷H2.1 Percentage of identified SwRE-relevant system model elements ~34% ~40% ~37%
H2.3 Automatically generated MSD specification model elements 703 359
H2.4 Overall MSD specification elements after manual refinement 1307 403
H2.3÷H2.4 Percentage of final MSD specification automatically generated ~54% ~89% ~67%
H2.1-update Changed system model elements 153 65
H2.3-update Automatically updated MSD specification elements 273 51

The H2 results for the case of the EBEAS are as follows. In terms of relationships between the
amounts for the initial generation, ~34% (H2.2÷H2.1) SwRE-relevant elements are identified
in the SYSML4CONSENS system model and ~54% (H2.3÷H2.4) of the final MSD specifica-
tion is generated. The amounts for the incremental update yield that manually changing 153
system model elements (H2.1-update) results in automatically updating 273 model elements in
the MSD specification (H2.3-update). In contrast to the car access system case, the amount
of updated MSD specification model elements is higher than the amount of changed system
model elements since the system model change influences all four automatically derived MSD
use cases and hence all their contained model elements, which are partly redundant.

The H2 results for the case of the car access system slightly differ from the ones presented
in [*HBM+16] due to an updated transformation algorithm and a more detailed model element
amount determination method, and they are are as follows. In terms of relationships between the
amounts for the initial generation, ~40% (H2.2÷H2.1) SwRE-relevant elements are identified
in the SYSML4CONSENS system model and ~89% (H2.3÷H2.4) of the final MSD speci-
fication is generated. There are more MSD specification elements than SwRE-relevant system
model elements due to the fact that several MSD use cases typically encompass redundant model
elements, which is also true for the EBEAS case. The amounts for the incremental update yield
that manually changing 65 system model elements (H2.1-update) results in automatically up-
dating 52 model elements in the MSD specification (H2.3-update). The lesser amount of the
updated MSD specification model elements in comparison to the amount of the system model
elements is due to two reasons. First, it arises from the flattening of the architecture hierarchies
in the transformation to the MSD specification. Second, the system model change influences
only one MSD use case so that there are no redundancies.

There is only a little difference between the percentage of identified SwRE-relevant system
model elements for the EBEAS case (~34%) and the car access system case (~40%), respecti-
vely. This indicates that the kind of the system (software-focused EBEAS vs. mechatronic car
access system) seems not to strongly influence the amounts of identified system model elements.

107

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

In contrast, the values on the automatically generated part of the final MSD specification
(~54% for the EBEAS and ~89% for the car access system) indicate that more parts of the
MSD specification have to be manually specified or updated if more software is involved in
the SUD. This is reasonable due to the higher degree of software-intensive complexity of the
EBEAS compared with the car access system. That is, we specified only the most relevant, ex-
emplary Behavior – Sequence for each SwRE-relevant Application Scenario, which is common
in the practice of specifying coarse-grained CONSENS system models. However, it is necessary
to consider all possible situations in SwRE in order to gain a complete and realizable MSD
specification. Thus, the Software Requirements Engineer has to specify many more MSDs ma-
nually for the EBEAS than for the car access system to cover the whole state space (cf. the
Behavior – States in Figure A.12 in Appendix A.2.1 as well as the differences between the
initially generated MSD specification in Appendix A.2.2.1 and the final MSD specification in
Appendix A.2.2.3).

Summarizing, the averaged percentage relations between the particular model element
amounts yield that ~37% of the system model is automatically identified (i.e., is SwRE-relevant)
and ~67% of the final MSD specification is automatically generated.

3.9.2.5 Interpreting the Results

The results for H1 show that the initially derived as well as the updated MSD specifications
are correct in the sense that they only encompass SwRE-relevant modeling elements and no
superfluous SwRE-irrelevant modeling elements. Thus, we consider our hypothesis H1 fulfilled.

The results for H2 show three aspects. First, a large part of the system model is automatically
identified such that the Software Requirements Engineer does not have to care about the filte-
red SwRE-irrelevant model elements. Second, more than the half of the MSD specification is
automatically generated, and only the remainder has to be specified manually. Third, the results
for the incremental update indicate that the ratio between manually changed system model ele-
ments and automatically updated MSD specification model elements depends on the amount of
MSD use cases impacted by the system model change. All such automatically conducted acti-
vities would have been performed completely manually without our transition technique. Since
20% of the SwRE-relevant system model elements are identified and more than 50% of the final
MSD specification is initially generated, we also consider H2 fulfilled.

In summary, the fulfilled hypotheses yield that our transition technique guides the Software
Requirements Engineers with reasonable MSD specifications and reduces their manual effort.
This gives rise to the assumption that the approach is indeed useful for the Software Require-
ments Engineers.

3.9.2.6 Threats to Validity

The threats to validity in our case study (structured according to the taxonomy of Runeson et al.
[RHAR12; RH08]) are as follows.

Construct Validity
• Student-1 and ourselves conceived the CONSENS system models for both cases by our-

selves, knowing the functional principle of our transition technique. Thus, the case study
would be more significant if other CONSENS experts would have conceived the system
models.

108

3.9 Realization and Evaluation

However, we through extensive discussions with other researchers as well as industry ex-
perts. Furthermore, the system models base on examples that ourselves conceived in other
contexts. That is first, we conceived the EBEAS case based on real-world advanced driver
assistance systems for the purpose of exemplifying the MSD language together with other
researchers from our research institute and our university’s research group [*HFK+16].
Afterward, we further discussed the example with external researchers and industry ex-
perts in the European research project “AMALTHEA4Public” [A4P]. Second, the car
access system case bases on artifacts that we conceived together with an automotive tier-1
supplier based on a real-world product from them in the automotive application project of
the German research project “SPES 2020” [SPES2020] (e.g., [*MHNM10; *DFHT13]).
Furthermore, we discussed these artifacts with external “SPES 2020” researchers and en-
hanced these artifacts in the context of the cross-sectional project “Systems Engineering”
[itsOWL-SE] of the leading-edge cluster “it´s OWL” [itsOWL] (e.g., [*PHM14]) as well
as in industry projects. These procedures assure that the CONSENS system models base
on reasonable, internally as well as externally reviewed, and partly real-world examples
for software-intensive systems.

• Student-1 who conceived the initial transition technique [*Ber15] evaluated H1 for the
EBEAS case and H2 for both cases. Thus, he could have been biased toward the approach
under investigation.

However, we mitigate this threat by employing student-2 for the evaluation of H1 with
the car access system case and by automating the evaluation of H2 as far as possible.

• There might be better metrics for quantifying the engineering effort of model manipu-
lations than counting the conducted model element operations. For example, we only
measure the actual specification effort in PAPYRUS (i.e., setting a referential trace link
or specifying a name attribute) but do not measure the cognitive effort that is needed to
prepare the actual tooling operation (i.e., thinking about which model element has to be
traced and about how the model element should be named, respectively).

Nevertheless, the results are easily reproducable, are determined mainly automatically,
and do not depend on the general cognitive abilities or the current cognitive state of the
model-manipulating person. Moreover, we mitigate this threat by using our own modeling
experience with PAPYRUS so that we yield realistic results by, for example, not counting
optional model operations (cf. the details about the counting method in Appendix A.3).
Furthermore, Durisic et al. [DSTH17] report that using such simple and atomic metrics,
like the number of changes or of model elements, is “a good indicator” for predicting the
effort though having certain threats to validity as every metric.

Internal Validity
We judge in two steps (i.e., H2.2÷H2.1 and H2.3÷H2.4) via the model element amount va-
riables for H2 about a causal relation between model sizes and the reduction of the effort for
the Software Requirements Engineer. The ratio between SwRE-relevant system elements and
system elements relevant to other disciplines results in different model element amounts that we
apply as basis for the judgment on the effort reduction.

On the one hand, the higher the portion of SwRE-relevant system elements the lower the
portion of filtered (i.e., SwRE-irrelevant) system elements (H2.2÷H2.1). Thus, a higher ratio
of SwRE-relevant system elements reduces the effectiveness of our approach for this first step.
On the other hand, the higher the portion of SwRE-relevant system elements the higher the

109

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

amount of automatically derived MSD specification elements and at the same time the higher
the amount of manually refined MSD specification elements (H2.3÷H2.4). Thus, a higher
ratio of SwRE-relevant system elements partly increases the effectiveness of our approach for
this second step. All in all, both effects should neutralize each other. However, other factors not
taken into account can influence these observations.

External Validity
We only considered two cases, and both cases stem from the automotive sector. Furthermore,
exemplary case studies in general cannot ensure external validity. Thus, we cannot generalize
the conclusions to all possible CONSENS system models and MSD specifications, other types of
software-intensive systems, or software-intensive systems in other industry sectors. Neverthe-
less, the examples are typical for software-intensive systems, and we hence do not expect large
deviations for other types of systems.

Reliability
• Student-1 judging H1 for the car access system case has little experience with CONSENS

and hence could have judged incorrectly whether only SwRE-relevant elements are pre-
sent in the MSD specification. Furthermore, student-2 might also have incorrectly judged
H1 for the EBEAS case. Anyhow, both could judge the correct execution by investiga-
ting the SYSML4CONSENS model with relevance annotations and reenacting the model
transformation algorithm (cf. Section 3.8.2.2).

• The partially manual counting of model elements in the context of H2 might be incorrect.
However, we do not expect a large discrepancy between actual and counted elements so
that the derived conclusion regarding H2 is not affected.

3.10 Related Work

In this section, we investigate related work on the transition from MBSE to discipline-specific
models (cf. Section 3.10.1), on system modeling languages with discipline-specific information
(cf. Section 3.10.2), on component-based scenario notations (cf. Section 3.10.3), and on semi-
automatic traceability establishment (cf. Section 3.10.4).

3.10.1 Transition from MBSE to Discipline-specific Models

Greenyer [Gre11] exemplarily uses the information in CONSENS system models as a basis to
manually conceive MSD specifications. However, a systematic method or an automatism for
this task is not in the scope of his thesis. Beyond that, two approaches exist for the transi-
tion from MBSE with CONSENS to software engineering. As the first one, Heinzemann et al.
[HSST13] present a systematic development process for the software comprising control and
coordination behavior. This process utilizes automatisms to derive initial discipline-specific de-
sign models and keep them consistent with the system model afterward [Rie15; Rie14; RDS+12;
GSG+09; Rie08; GGS+07]. Furthermore, we transferred this approach to SYSML4CONSENS

[*PHM14] and to the automotive sector by deriving purely structural software design mod-
els from system models in a consistency-preserving manner [*FHH+12; *FHM12; *HMM11;
*MH11]. However, these approaches aim at deriving and refining design models but lack a
transition to SwRE. As the second one, Anacker et al. [AGD+12] present a systematic process

110

3.10 Related Work

for the transition from MBSE with CONSENS to SwRE with MSDs. However, this approach
provides no automatic support. Furthermore, it relies on reusable solution patterns (i.e., there
must be prior projects in which these patterns have been successfully developed) and thereby
does not support greenfield development.

Similar to our work, Böhm et al. [BHH+14] present a model-based method for the transi-
tion from systems engineering to software engineering that is compliant to established process
models. They also address that these process models demand a software requirements analysis
phase prior to the software design: A system element to be concretized in software engineer-
ing is input to the context model of the SPES requirements viewpoint [DTW12]. This context
model is comparable to the CONSENS partial model Environment . However, they do not pro-
vide automatisms to support the transition. Furthermore, they only consider structural but no
behavioral models, which are crucial for the specification of functional requirements.

Regarding the derivation of behavioral models from system models, the OMG developed a
bidirectional transformation between SysML and Modelica [OMG12]. Similarly, Cao et al.
present an integration between SysML and MATLAB/Simulink models based on a bidirectional
model transformation [CLP11]. Such approaches focus on the derivation of discipline-specific
design and analysis models. In contrast to our work, the derivation or refinement of discipline-
specific requirements from multidisciplinary system requirements is not addressed.

Thramboulidis [Thr10] presents an interdisciplinary mechatronic view concept specified by
means of SysML stereotypes for discipline-specific system elements and interfaces, which is
very similar to our combination of discipline-specific relevance annotations and port specifica-
tions. However, the approach aims at deriving several discipline-specific structural models and
at synchronizing them with the purely structural mechatronic view. The transition to SwRE, the
consideration of behavioral models, and engineering support by means of automatisms are not
considered or regarded as future work.

3.10.2 System Modeling Languages and Methods with
Discipline-specific Information

The SysML-based MBSE methods Object-Oriented Systems Engineering Method (OOSEM)
[FMS12, Chapter 17] and SYSMOD [Wei16] serve the same purpose as CONSENS. Both met-
hods only propose to refine the system requirements within a typical software engineering pro-
cess, but the actual transition to the software requirements is out of their scope. Furthermore,
both methods provide each a SysML profile introducing method-specific language concepts,
including language concepts similar to our relevance annotations. Regarding discipline-specific
relevance annotations, OOSEM only distinguishes between software and hardware, and SYS-
MOD additionally considers mechanical elements. In contrast, distinguishing between discrete
and continuous software components is crucial for our transition technique. Nevertheless, the
basic principle of our transition technique could also be transferred to OOSEM and SYSMOD
by introducing this distinction into to the particular profiles and adapting our algorithms to
them. Furthermore, our semi-automatic support for the manual refinement has to be adapted to
the particular methods.

Vogel-Heuser et al. [KFV18; KV13; BKFV14; FKV14] present a systems engineering ap-
proach based on the SysML extension SysML4Mechatronics. They describe a coarse-grained
design process and introduce stereotypes for system elements to be concretized in their re-
spective engineering disciplines. These stereotypes are similar to our relevance annotations.
However, the approach aims on analyzing discipline-spanning change influences and not on the

111

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

transition to discipline-specific models. Furthermore, the discipline-specific information in the
system model is not exploited to facilitate automated tool support.

3.10.3 Component-based Scenario Notations

Combes et al. [CHK08] present a case study that applies LSCs to a component-based archi-
tecture for telecommunication systems. These models are validated by means of Play-out and
formally verified for the non-satisfiability of anti-scenarios using Smart Play-out [HKMP02;
HKMP03; HKP04]. Similar to our view-based approach, they divide their modeling approach
into a structural, a dynamical, and an extra-functional view. The structural view of the system
encompasses components, ports, port interfaces containing the messages that can be exchanged
between the ports, and connectors specifying communication channels between the component
ports. The dynamic view consists of LSCs that are specified based on the structural view. The
extra-functional view adds timing constraints to the LSCs. However, there are only scenarios
that describe interactions between a component and its ports as well as between ports of dif-
ferent components on the same hierarchy level. Thus, there are no means to specify or refine
scenarios across component hierarchy levels.

Atir et al. [AHKM08] adapt the original MSD Play-out approach [MH06; HKM07;
HMSB10] to hierarchical object compositions. For this purpose, the authors syntactically and
semantically extend MSDs by the PartDecomposition concept of the UML [OMG17b]. To adapt
the Play-out approach to be compatible with the PartDecomposition concept, trees consisting
of several part scenarios that together reflect the object composition hierarchy including con-
sistency rules are conceived. A composition algorithm integrates this scenario hierarchy into
overall flattened MSDs that are executable in Play-out. Although the approach is able to tra-
verse hierarchies, only class models are supported. Thus, the typical concepts of components
like ports, interfaces, and directed connectors are not considered.

Other approaches like [LM09] and [SDP10] reflect hierarchies in combination with scenario-
based specifications in a simple way, but do not intend to provide any tool support for automatic
analysis techniques. The UML [OMG17b] as well as its profiles SysML [OMG17a] and MARTE

[OMG11] in general provide the means to specify hierarchical components including ports and
directed connectors as well as scenarios describing their dynamic behavior. However, the ab-
sence of formal semantics in the UML introduces semantic ambiguities and thereby prevents
the application of automatic analysis techniques [HM08; HM06].

3.10.4 Semi-automatic Establishment of Explicit Lifecycle Traceability

Winkler and von Pilgrim survey and classify (semi-)automatic traceability approaches [WP10].
In contrast to our transition technique, most establishment approaches of these surveyed ones
establish traceability a posteriori between already existing artifacts. Since in this case only trace
link candidates can be proposed, such trace links are usually more imprecise [WP10].

In the category of fully automated inter-model traceability creation, Jouault presents an ap-
proach using model transformations [Jou05]. Like in our approach, the trace link creation is
specified as part of the transformation rules so that the trace links are created together with the
target model, where the admissible trace link types are specified in a traceability information
model. However, the maintenance of traceability is out of his scope, because updates of the
target models are not supported.

112

3.11 Summary

Drivalos-Matragkas et al. [DKPF10] present an approach considering inter-model traceability
maintenance and trace link validity. Like our approach, they use a traceability information
model to define which trace artifact types can be associated by which trace link types. Based
on that, they semi-automatically analyze an existing trace link set for well-formedness and trace
validity. For invalid traces, a traceability engineer has to select the semantically valid trace links.
In some cases, the approach can automatically repair broken or invalid trace links by means of
fuzzy matching. However, the approach does not consider the creation of traceability.

Zisman et al. [ZSPK03] automatically establish traceability between three different ab-
straction levels of requirements specifications, where the two most abstract ones are expressed
in natural language and the most concrete one is expressed in UML. They use a natural language
parser for automatically processing the natural language specifications and establish the trace
links mainly by name comparison. Thus, trace link validity is only considered in a limited way.
Furthermore, they do not generate initial models from the natural language requirements but
establish the trace links a posteriori from existing specifications.

3.11 Summary

In this chapter, we presented a technique for the semi-automatic and systematic transition from
MBSE with CONSENS to SwRE with MSDs. Particularly, the transition technique applies in-
cremental model transformations to automatically derive initial and update existing MSD spec-
ifications based on CONSENS system models. The model transformations are complemented
by a semi-automatic part, which supports the Software Requirements Engineers in the manual
refinement of the derived or updated MSD specifications. This support encompasses informal
guidelines for the systematic refinement of MSD specifications, automatic checks for coverage
of refined MSD specifications w.r.t. CONSENS Behavior – States , and the generation of exis-
tential MSDs from CONSENS Behavior – Sequences serving as a test oracle for refined MSD
specifications. As a basis for the automatic part, we extend existing modeling languages by pro-
viding the SYSML4CONSENS profile as well as the SysML relevance annotation profile, and
we apply MSD specifications to component-bases software architectures. Our extension to the
QVT-O model transformation approach enables the model transformations incrementally upda-
ting MSD specifications due to changes in CONSENS system models while preserving infor-
mation added during the manual refinement. Furthermore, the model transformations automa-
tically establish lifecycle traceability between CONSENS system models and the automatically
derived parts of the MSD specifications. Our traceability information model further enables the
Software Requirements Engineer to manually add lifecycle traces between CONSENS system
models and the manually added parts of MSD specifications. We provide a process description
that clarifies the role responsibilities between the particular disciplines, the artifact inputs to the
particular process steps, and the application of the transition technique. Using a case study, we
evaluate the transition technique by means of two cases from the automotive sector.

The transition technique supports Software Requirements Engineers in effectively and effi-
ciently conceiving MSD specifications that are correct, complete, and concise w.r.t. CONSENS

system models. That is first, it increases the effectiveness of the transition by reducing error-
prone cases in which the Software Requirements Engineers overlook or misinterpret informa-
tion in the CONSENS system models. That is second, it increases the efficiency of the Software
Requirements Engineers’ tasks by reducing their time-consuming manual work. The coverage
checks address the completeness and conciseness of MSD specifications w.r.t. CONSENS Beha-

113

Chapter 3 Integrated Systems Engineering and Software Requirements Engineering

vior – States , and the generation of existential MSDs addresses the correctness of refined MSD
specification w.r.t. CONSENS Behavior – Sequences . Furthermore, the resulting MSD speci-
fications do not depend completely on the way the particular persons fulfilling the role of the
Software Requirements Engineer proceed during the transition process anymore. Our exten-
sions to QVT-O allow us to apply its efficient and compact imperative logic combined with
the traceability establishment concepts of TGGs. These extensions enable user-edit-preserving
incremental updates, which allow the application of the model transformation part in iterative
settings. The semi-automatic establishment of explicit lifecycle traceability between CONSENS

system models and MSD specifications enables all stakeholders conducting traceability-based
model management activities. The algorithms enable the replicability to other MBSE and SwRE
approaches, and the case study indicates the effectiveness and the efficiency of the technique for
the Software Requirements Engineers.

114

4

Early Timing Analysis based on Software
Requirements Specifications

In this chapter, we present a technique for simulative end-to-end response time analyses
(cf. Section 2.6.2) based on MSDs [*Ber17] (cf. Figure 4.1). This technique enables Timing
Analysts verifying timing-relevant execution platform properties against real-time requirements
as part of MSD specifications. Thereby, platform-induced real-time requirement violations can
be revealed so that the real-time requirements or the execution platform can be adapted du-
ring the early SwRE phase. Similar techniques enabling early timing analyses consider real-
time requirements insufficiently [Fri17; Mey15; MH11], do not enable interactive simulations
and provide insufficient platform modeling means [Has15; WT04; HY12], or require more de-
tailed platform models close to the final implementation [LBD+10; LK01; MNS+17; MNL+16;
NIE+17].

s
y
s
te

m
 d

e
s
ig

n

mechan
electr
control engineering

software engineering

te
m

 i
n
te

g
ra

ti
o
n

cip ine-sp

customer

requirements product

modeling and model analysis

assurance of properties

Platform Modeling

Simulative Timing Analysis

t

Contributions

MSD Semantics for

Timing Analyses

C1

Language for

Platform Modeling
C1 C3

Verification

Software Requirements

Engineering (SwRE)

C2
Extended MSD Message

Event Handling Semantics

C2 C3

Figure 4.1: Early Timing Analysis based on Software Requirements Specifications

115

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

The main contribution of our technique is the specification of platform-aware MSD semantics
dedicated to timing analyses (C3 in Figure 4.1, see Section 4.4). This semantics encompasses a
subset of the conventional MSD semantics, an extended MSD message event handling seman-
tics, and the platform properties’ effects on the timing behavior. We apply the GEMOC approach
(cf. Section 2.8) to declaratively specify the semantics, which makes the platform-induced ti-
ming effect behavior of MSD specifications explicit. Based on the semantics specification, GE-
MOC automatically derives models that are input to the timing simulation tool TIMESQUARE

[DM12a; T2].
Furthermore, we introduce the following supporting contributions:

• We conceptually extend the message event handling semantics of MSDs by introducing
additional event kinds that occur during the software execution on a target platform (C2
in Figure 4.1, see Section 4.3). This enables our end-to-end response time analyses to
take the delays between different timing-relevant events into account.

• We propose a MARTE-based UML profile to enable platform modeling for MSDs (C1 in
Figure 4.1, see Section 4.1). This encompasses specification means for platform models,
for the allocation of component-based MSD specifications to platform models, and for an-
notating the resulting platform-specific models with timing-relevant properties. The sepa-
ration of the platform models from the platform-independent MSD specifications enables
to initially analyze the coordination behavior requirements and to subsequently validate
the results by additionally considering the platform in a minimally invasive manner.

• We provide a process description including artifact dependencies and role responsibilities
for the specification of the platform-independent and -specific parts of MSD specifica-
tions and for the conduct of timing analyses (cf. Section 4.2). This process description
guides the particular engineering roles to perform their respective steps in a systematic
way, where the task assignment to roles clarifies the distribution of their corresponding
responsibilities.

4.1 Platform-specific MSD Specifications

In Section 3.2, we introduced component-based MSD specifications in terms of platform-
independent software requirements specifications. That is, the software architecture specified in
the architecture view type has no correlation to any concrete target execution platform.

For example, Figure 4.2 depicts the interaction view of such a platform-independent MSD
specification as a deliberately small variant of the EBEAS MSD specification. In this EBEAS
variant, the vehicles exchange information about their particular trajectories among each ot-
her through trajectory beacons beyond the coordination of the emergency maneuvers. Fi-
gure 4.2(a) depicts an MSD specifying the v2x: V2XCommunication to send a trajectory-
Beacon message to the sa: SituationAnalysis, which shall acknowledge the reception by sen-
ding back an ack message. Figure 4.2(c) depicts an MSD specifying the vc: VehicleControl
to engage the esc: ElectronicStabilityControl for an emergency braking within 50 time units af-
ter the sa: SituationAnalysis was notified about an obstacle. The assumption MSD depicted
in Figure 4.2(b) specifies the esc: ElectronicStabilityControl to notify the sa: SituationAnalysis
when the vehicle has stopped through a standstill message after its engagement for an
emergency braking.

In this chapter, we want to consider the timing behavior emerging from the allocation of
such component-based MSD specifications to concrete target execution platforms, which we

116

4.1 Platform-specific MSD Specifications

msd BeaconAcknowledgement

trajectory
Beacon

sa:

Situation

Analysis

v2x:
V2XComm-

unication

ack

(a) MSD specifying an reception
acknowledgment of a trajectory bea-
con

«EnvironmentAssumption»

msd StandstillAfterEmcyBraking

emcy
Braking

sa:

Situation

Analysis

standstill

vc:

Vehicle

Control

esc:
Electronic
Stability
Control

(b) Environment assumption specifying a
standstill after an emergency braking

msd EmcyBraking

obstacle

emcy
Braking

sa:

Situation

Analysis

enable
Braking

esc:
Electronic
Stability
Control

standstill

acc:
Adaptive
Cruise
Control

vc:

Vehicle

Control

c < 50

c = 0

(c) MSD specifying an emergency braking engagement after an
obstacle detection

Figure 4.2: Interaction view of an EBEAS MSD specification variant for a timing analysis

together call platform-specific MSD specifications. An end-to-end response time analysis has to
determine whether such platform-specific MSD specifications can fulfill their high-level real-
time requirements (cf. Section 2.6.2). One key question of such timing analyses is whether
the resources provided by the platform have a sufficient performance to execute the appli-
cation software consuming the resources. For example, the processing resources executing
sa: SituationAnalysis and vc: VehicleControl may not be fast enough to process some operations
in time, or the latency of the communication media could be too large to deliver some messages
in time. Answering this question is exaggerated when dynamic situations with a high workload
occur. For example, several messages like obstacle and trajectoryBeacon can arrive
at sa: SituationAnalysis within a small time frame so that the receiving software component
has to process them concurrently. Another example is the delivery of several messages via a
communication medium at the same time.

In order to provide a modeling basis for our timing analysis approach in terms of a language
for platform-specific MSD specifications, we present in this section the most important concepts
of our Timing Analysis Modeling (TAM) UML profile. Furthermore, we illustrate it through an

117

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

exemplary EBEAS platform-specific MSD specification as basis for the semantics specification
in Section 4.4 and for an overall timing analysis example in Section 4.5.

The TAM profile enables to specify platform models, allocations of logical software compo-
nents to the platform elements, and the specification of the platform properties that have to be
considered in our timing analysis approach. The concepts introduced in the profile stem from a
literature review on platform properties that influence the timing behavior of software-intensive
systems on an abstraction level that is suitable during SwRE [*Ber17, Chapter 3].

The platform properties induce effects on the dynamic timing behavior of the system, and
we encode these effects in the MSD semantics for timing analyses (cf. Section 4.4). The TAM
profile extends the MARTE UML profile [OMG11] (cf. Section 2.5.3). Figure 4.3 depicts an
excerpt of the TAM profile encompassing the most important concepts that we exemplarily
use throughout this chapter. The profile is partitioned into the subprofiles ApplicationSoftware,
Platform, and AnalysisContext. The Platform profile in turn is subdivided into the subprofiles
ControlUnit, Communication, and OperatingSystem. We explain the particular stereotypes in
the remainder of this section as we apply them to the example models, and we present the full
profile definition in Section 4.6.1.

In Figure 4.4, we exemplarily apply the TAM profile for the specification of a target execution
platform and its properties for the EBEAS. Thereby, we add platform-specific information to
the variant of the platform-independent MSD specification derived from the CONSENS system
model in the last chapter as depicted in Figure 4.2.

4.1.1 Specifying Execution Platforms

Beyond the three view types presented for component-based MSD specifications
(cf. Section 3.2), we additionally introduce the platform view type for platform-specific MSD
specifications. This view type is specified by means of the Platform subprofile of TAM
(cf. Figure 4.3).

4.1.1.1 Specifying the Hardware

The TAM subprofile Platform::ControlUnit provides means to specify hardware elements of an
execution platform (cf. Figure 4.3). For example, the Platform View in Figure 4.4 contains
the micro controllers :µC1 and :µC2. The stereotype «TamECU» is applied to these modeling
elements, which serves as a container for further hardware and operating system elements.

One important hardware element of a «TamECU» is the «TamProcessingUnit», which de-
scribes properties of the actual processing unit of an ECU or a micro controller. One of these
properties is the amount of cores that the processing unit provides, specified by means of the
tagged value numCores. For example, both the processing units :PUµC1 and :PUµC2 have one
core. Another property and thereby tagged value is the speedFactor, which describes the rela-
tive speed w.r.t. to the normalized speed of a reference processing unit (cf. Section 2.5.3.2). For
example, the processing unit :PUµC2 is two times faster than :PUµC1.

4.1.1.2 Specifying the Real-time Operating System

The TAM subprofile Platform::OperatingSystem provides means to specify aspects of real-time
operating systems, which run on ECUs and provide services for the application software (cf. Fi-
gure 4.3). The stereotype «TamRTOS» as part of a «TamECU» describes properties of the

118

4.1 Platform-specific MSD Specifications

«profile» TAM
«profile» MARTE::GRM

execTime:
 NFP_Duration
msgSize:
 NFP_DataSize

«stereotype»
ResourceUsage

«stereotype»
Resource

speedFactor:
 NFP_Real

«stereotype»
Processing
Resource

isPreempt ble:
 Boolean
schedPolicy:
 SchedPolicyKind

«stereotype»
Scheduler

blockT:
 NFP_Duration
capacity:
 NFP_DataTxRate

«stereotype»
Communication

Media

«profile»
AnalysisContext

«stereotype»
TamAssumptionMSD

«stereotype»
TamArrival

Pattern

«metamodel» UML

«metaclass»
NamedElement

«metaclass»
Classifier

«profile» Platform

«profile»
ApplicationSoftware

«profile» Communication

«profile» ControlUnit

«profile» OperatingSystem

«stereotype»
TamCom

Connection

«stereotype»
TamECU

numCores: Integer

«stereotype»
TamProcessingUnit

processingUnit

«stereotype»
TamRTOS

«stereotype»
TamScheduler

scheduler

«stereotype»
TamOperation

...
rtos

«profile» MARTE::GQAM

«stereotype»
GaWorkload

Event

...

«stereotype»
TamComInterface

commTxOvh: NFP_Duration
commRcvOvh: NFP_Duration

«stereotype»
GaExecHost

connection
interfaces 2

1

...

«stereotype»
TamResourcePlatform

«stereotype»
TamAnalysisContext

workload

1..*

platform

1..*

«stereotype»
TamWorkloadBehavior

demand*

«stereotype»
GaScenario

...

«stereotype»
GaWorkloadBehavior

«stereotype»
GaResourcesPlatform

«stereotype»
GaAnalysisContext

behavior

*

Legend

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

pattern

period: NFP_Duration

«stereotype»
TamPeriodicPattern

minArrivalRate:
 NFP_Duration
maxArrivalRate:
 NFP_Duration

«stereotype»
TamSporadicPattern

«metaclass»
Property

Figure 4.3: Excerpt of the TAM profile (cf. full profile definition in Section 4.6.1)

119

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

ObstacleDetection

sa:
Situation
Analysis

vc:
Vehicle
Control:Deci-

sions

sa2vc

C
la

s
s

if
ie

r
V

ie
w

A
rc

h
it

e
c
tu

re
 V

ie
w

class [Package] Platform Model

«TamResource-
 Platform»
EBEASPlatform

«TamECU»

:µC1

numCores = 1
speedFactor = 1

«TamProcessingUnit»
:PUµC1

«TamECU»

:µC2

CANBus

«TamComConnection»
blockT = 1ms
capacity = 100kbit/s

«allocate»«allocate»

P
la

tf
o

rm
 V

ie
w

«allocate»

numCores = 1
speedFactor = 2

«TamProcessingUnit»
:PUµC2

~:V2V-
Messages

«TamRTOS»
:OSEK/VDX-µC2

isPreemptible
 = false
schedPolicy
 = FixedPriority

«TamScheduler»
:OSEK/VDX

-Scheduler-µC2

«TamRTOS»
:OSEK/VDX-µC1

isPreemptible
 = false
schedPolicy
 = FixedPriority

«TamScheduler»
:OSEK/VDX

-Scheduler-µC1

v2x:
V2XComm-

unication

acc:
Adaptive
Cruise
Control

«TamECU»

:ACC-ECU

«TamECU»

:v2x-

Transceiver «TamCom-
Connection»
DSRCAccess

«TamCom-
Connection»

FlexRay

«TamECU»

:ESC-ECU

«TamCom-
Connection»

FlexRay

«TamCom-
Connection»

FlexRay

esc:
Electronic
Stability
Control

«allocate»

«allocate»

«allocate»

«allocate» «allocate»

«allocate»

«allocate»

«allocate»

+ enableBraking()
...

«interface»
Decisions

class [Package] ObstacleDetection::Interfaces

+ trajectoryBeacon()

«interface»
V2VMessages

...

«TamOperation»

execTime = 5ms

«TamOperation»

execTime = 9ms

msgSize = 500bit...

«TamComInterface»
commTxOvh = 1ms

«TamComInterface»
commRcvOvh = 1ms

+ obstacle()

«interface»
ObstacleInfo

«TamOperation»

execTime = 5ms

Figure 4.4: Platform-specific MSD specification excerpt for the EBEAS

real-time operating system of an ECU or a micro controller. We focus on its applied schedu-
ler, specified through the stereotype «TamScheduler». The most important scheduler properties
defining its strategy are the scheduling policy (tagged value schedPolicy) and whether the sche-
duler can preempt executing tasks (tagged value isPreemptible).

For example, the schedulers of both :PUµC1 and :PUµC2 implement the most prominent
[NMH08; DB08; SAÅ+04] real-time operating system scheduling policy, FixedPriority. In this
policy, all tasks have fixed priorities so that the scheduler dispatches the highest priority task
of all tasks ready to execute after a task has finished. Furthermore, the property isPreemptible
with the value false specifies that an already executing task cannot be preempted by another
task. This scheduling strategy is supported by the widespread real-time operating systems of
AUTOSAR [AUTOSAR] and OSEK/VDX [ISO05], for example.

4.1.1.3 Specifying Communication Facilities

The TAM subprofile Platform::Communication provides means to specify aspects of the commu-
nication facilities applied in an execution platform (cf. Figure 4.3). We provide the stereotype
«TamComConnection» to specify the properties of a communication medium. The first im-

120

4.1 Platform-specific MSD Specifications

portant property of a communication medium is its latency, specified through the tagged value
blockT. For example, the connector CANBus between both micro controllers has a latency of
1ms. The second important property of a communication medium is its throughput, specified
through the tagged value capacity. For example, the throughput of the CANBus connector is
100kbit/s.

Furthermore, the network interfaces between a «TamECU» and a «TamComConnection»
need time to encode messages from their logical application software representation to a repre-
sentation suitable for the transport via a communication medium and vice versa. Such properties
are captured as part of the stereotype «TamComInterface» for ports of TamECUs, inter alia. For
example, the tagged value commTxOvh of the «TamComInterface» of :µC1’s port connecting
the CANBus specifies the timing overhead for encoding a message with 1ms. Analogously, the
tagged value commRcvOvh of the «TamComInterface» of :µC2’s port connecting the CANBus
specifies the timing overhead for decoding a message with the same value.

4.1.2 Specifying Allocations

The MARTE subprofile Alloc provides means to allocate logical application software elements
to resources of execution platforms (cf. Section 2.5.3.4). We apply the «allocate» stereotype to
specify such allocations.

For example, the micro controllers :µC1 and :µC2 execute the software components sa: Situ-
ationAnalysis and vc: VehicleControl, respectively. This fact is expressed by means of allocation
links from the logical software components to the micro controllers. Analogously, logical con-
nectors between the software components in the architecture view type are allocated to «Tam-
ComConnection» links in the platform view type. For example, the logical connector sa2vc be-
tween sa: SituationAnalysis and vc: VehicleControl is allocated to the CANBus connecting :µC1
and :µC2.

4.1.3 Annotating the Application Software

The TAM subprofile ApplicationSoftware provides means to annotate information about the
estimated resource consumption of the application software to the classifier view type of
component-based MSD specifications (cf. Figure 4.3). Its most important element is the «TamO-
peration» stereotype, which serves for annotating the operations used as MSD message signatu-
res with platform-specific properties. One of its properties is the execution time of an operation,
specified by the tagged value execTime. For example, both the obstacle and trajectory-
Beacon operations have an execution time of 5ms, whereas the enableBraking operation
has an execution time of 9ms. These execution times are normalized w.r.t. a reference pro-
cessing unit, where the speed of the particular processing units is specified as relative factor in
relation to the speed of the reference processing unit (cf. Section 4.1.1.1). The second important
property is the size of the corresponding message, specified by the tagged value msgSize. For
example, the enableBraking operation has a message size of 500bit.

The direct annotation of the application software with platform-specific stereotypes is inten-
ded by MARTE. The alternative would be an allocation specification that contains the platform-
specific information to further separate platform-independent and -specific aspects. However,
this would result in cumbersome allocation specifications, in which, for example, any operation
has to be allocated to a platform element separately so that the platform-specific information
can be specified as part of the allocation.

121

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

4.1.4 Specifying Analysis Contexts

The TAM subprofile AnalysisContext provides means to specify concrete trigger situations for
our timing analyses in terms of TIMESQUARE simulation runs (cf. Figure 4.3). More generally,
such simulation scenarios are called analysis contexts [SG14, Chapter 9] (cf. Section 2.5.3.3).

For example, Figure 4.5 depicts an example of such an analysis context. The entry
point for the specification of an analysis context is the «TamAnalysisContext» (e.g., the
EBEASAnalysisContext). It references a platform (e.g., the EBEASPlatform depicted in Fi-
gure 4.4) as well as the concrete workload (e.g., EBEASWorkload) for the analysis context.

«EnvironmentAssumption»

msd BeaconFrequency

trajectory
Beacon

sa:

Situation

Analysis

v2x:
V2XComm-

unication

«TamAssumptionMSD»
pattern =
 TamPeriodicPattern {
 period = 25ms
 }

«EnvironmentAssumption»

msd ObstacleArrivalRate

obstacle

sa:

Situation

Analysis

«TamAssumptionMSD»
pattern =
 TamSporadicPattern {
 minArrivalRate = 50ms
 maxArrivalRate = 55ms
 }

acc:
Adaptive
Cruise
Control

platform = [EBEASPlatform]

«TamAnalysisContext»
EBEASAnalysisContext

behavior = [EmcyBraking,
 BeaconAcknowledgement,
 StandstillAfterEmcyBraking]

«TamWorkloadBehavior»
EBEASWorkloadworkload

demand demand

Figure 4.5: Analysis context example

The workload is specified through the stereotype «TamWorkloadBehavior». This stereotype
references behavior elements specifying the system behavior to be considered in the analysis
context and demand elements describing specific trigger scenarios (cf. Section 2.5.3.3). For ex-
ample, the EBEASWorkload references the behavior MSDs depicted in Figure 4.2. Furthermore,
the workload references demand scenarios, which are specified with the stereotype «TamAs-
sumptionMSD». A «TamAssumptionMSD» specifies a scenario with typically one environment
message triggering the system behavior, where the timing of the environment message is con-
strained by an arrival pattern. This arrival pattern is specified by the tagged value pattern, which
references the abstract stereotype «TamArrivalPattern».

We support periodic and sporadic arrival patterns. A periodic arrival pattern, specified by
the stereotype «TamPeriodicPattern» refining «TamArrivalPattern», constrains the environment
message to occur periodically every period time units. For example, the «TamAssumption-
MSD» BeaconFrequency depicted in Figure 4.5 specifies the trajectoryBeacon message
to occur periodically every 25ms. A sporadic arrival pattern, specified by the stereotype «Tam-
SporadicPattern» refining «TamArrivalPattern», constrains the environment message to occur
sporadically between a minArrivalRate and/or a maxArrivalRate. For example, the «TamAs-
sumptionMSD» ObstacleArrivalRate depicted in Figure 4.5 specifies the obstacle message
to occur sporadically at some instant between any 50ms and 55ms.

122

4.2 Process Description

4.2 Process Description

In this section, we provide an application view on our approach by means of a process des-
cription. This process description has the purpose to clarify which MSD analysis technique
is applied in which development process phase and which information is needed by which
engineering role as input for applying our timing analysis approach. In terms of MSD anal-
ysis techniques, we distinguish between the platform-independent MSD analysis techniques
(cf. Section 2.4.3) and the timing analysis technique presented in this chapter. In terms of the
needed information, the process describes which kind of information has to be provided by
means of which part of our TAM profile (cf. Section 4.1) by which engineering role.

Figure 4.6 depicts the process for the conduct of our timing analysis approach by means of
a BPMN diagram. The process has correlations to the integrated MBSE and SwRE process
description depicted in Figure 3.6 in Section 3.3 and partially bases on the platform modeling
and allocation engineering processes described by Pohlmann et al. [Poh18; PH18; PMDB14].

P
la

tf
o

rm
 A

rc
h

it
e

c
t

A
llo

c
a

ti
o
n

 E
n

g
in

e
e

r
S

y
s
te

m
 A

n
a

ly
s
t

S
o

ft
w

a
re

 A
rc

h
it
e

c
t

/
R

e
q

u
ir

e
m

e
n

ts

E
n

g
in

e
e

r

T
im

in
g

 A
n

a
ly

s
t

...

Analysis
Results

MSD
Specification

Platform
Requirements

Platform
Model

Allocation
Specification

Analysis
Contexts

...

• Real-time Play-out
• Timed Synthesis

Define

Platform

Model

TAM::Platform MARTE::Alloc

Define

Allocation

TAM::
Application
Software

TAM::Analysis

Context

Define

Simulation

Scenarios

TIMESQUARE

Platform Artifacts,
prior Platform

Models

Estimate

Software Component

Resource Consumption

Consolidate

Discipline-specific

Analysis Results

...
...

System
Requirements

Legend

Nodes
Connections

Tool-supported
Step

Work Product

Persistent Model

Start Event

End Event

Input Data

Logical Group

Manual Step

Message Flow

Control Flow

Data FlowSpecification/

Analysis Means

... ...

Analyze

Coordination

Behavior Reqs.

... ...

Conduct

Timing

Analysis

CCSL
Model

Automated Step

Compute
Timing

Information

Collapsed
Sub-process

Figure 4.6: Process for conducting timing analyses based on MSDs (cf. Figure 3.6 in
Section 3.3, partially based on [Poh18; PH18; PMDB14])

The process starts with the analysis of the requirements on the coordination behavior, which is
also depicted in the integrated MBSE and SwRE process description in Figure 3.6 in Section 3.6.
This step is conducted by the Software Requirements Engineer by means of the platform-

123

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

independent MSD analysis techniques Real-time Play-out [*BGH+14; *BBG+13] and timed
synthesis [*Jap15] (cf. Sections 2.4.3 and 3.6.1.5). Thus, we assume that the timed coordina-
tion behavior requirements that are input to our approach have a high quality from a platform-
independent point of view and are, for example, consistent and realizable.

The Platform Architects are responsible for the overall platform, which mainly includes com-
puting resources like ECUs, communication media like bus systems, and their topology. Thus,
they participate also intensively in the definition of the Active Structure conducted by the Sys-
tem Designer role (cf. Figure 3.6 in Section 3.3). In order to describe the platform, the Platform
Architects define a Platform Model. One input for this step are Platform Requirements, which
include technological considerations (e.g., performance, compatibility topics, best practice ex-
periences) and economic requirements (e.g., customer requirements, pricing, availabilities). An-
other input encompasses Platform Artifacts (i.e., the particular ECUs and bus systems as well
as their respective properties) and practice-proven prior Platform Models from previously con-
ducted development projects. We provide the subprofile TAM::Platform for the specification of
the Platform Model (cf. Section 4.1.1 for an introduction and Section 4.6.1.1 for the complete
profile definition).

The Allocation Engineers are responsible for allocating the particular application software
components to the particular ECUs as well as for allocating the logical software component
interconnections to buses. They have the knowledge and experience about the resource con-
sumption of the software architecture parts and about the available resources of the platform
and hence are able to plan an adequate allocation and estimate the resulting resource consump-
tion. The Allocation Engineers first conduct the step Define Allocation, which has the applica-
tion software components and their logical interconnections defined in the MSD Specification
as well as the ECUs and communication media defined in the Platform Model as input. The
step outputs an Allocation Specification, which is a separate model importing elements of the
MSD Specification and of the Platform Model and defines allocations between these imported
elements. The Allocation Engineers apply the MARTE::Alloc subprofile for this step (cf. Secti-
ons 2.5.3 and 4.1.1).

Based on the allocations, the Allocation Engineers can estimate the resource consumption of
the software components w.r.t. the available resources of the ECUs and the communication me-
dia in the subsequent step. The output is a set of annotations for the software component types
and interfaces as part of the classifier view type of the MSD Specification. These annotations are
specified by means of the subprofile TAM::ApplicationSoftware (cf. Sections 4.1.3 and 4.6.1.1).

The Timing Analysts are responsible for conducting timing analyses. For this purpose, they
define in the first step simulation scenarios, which describe concrete trigger situations for TIME-
SQUARE simulation runs. These simulation scenarios are more generally called Analysis Con-
texts [SG14, Chapter 9] (cf. Section 2.5.3.3) and are specified by means of the subprofile
TAM::AnalysisContext (cf. Sections 4.1.4 and 4.6.1.1).

The Analysis Contexts and the models specified in the previous steps (i.e., the MSD Specifica-
tion, the Platform Model, and the Allocation Specification) are input to the collapsed sub-process
Compute Timing Information. This step is fully automatic and stems from our specification of
semantics for timing analyses in GEMOC (cf. Sections 2.8 and 4.4). We expand this sub-process
and explain it with more implementation details in Section 4.6.1.

Finally, the Timing Analysts perform the step Conduct Timing Analysis by means of the
simulation tool TIMESQUARE. As it is the case for other discipline-specific results, the Timing
Analysts hand over and discuss their Analysis Results with the System Analysts as part of the

124

4.3 Extension of MSD Message Event Handling Semantics

Systems Engineer role (cf. Section 3.3). We provide details on the timing analysis conduct in the
overall simulation example in Section 4.5 and the evaluation of our approach in Section 4.6.2.

4.3 Extension of MSD Message Event Handling Semantics

As explained in Section 2.4.2, message events are synchronously unified with complete MSD
messages in the platform-independent semantics of MSDs and thereby in the MSD analysis
techniques. This abstraction is well-suited to initially consider an idealized system but not ade-
quate for detailed end-to-end response time analyses (cf. Section 2.6.2). Such analyses require
the consideration of several events per message occurring during the execution on a platform in
order to take the particular delays in between into account.

Thus, we introduce in this section additional event kinds for the purpose of platform-aware
timing analyses based on MSDs. We associate each event kind with an equally named MSD
lifeline location kind (cf. Section 2.4), which leads to a more fine-grained cut progression.
Furthermore, we argue which delays between the event kinds we have to take into account in
timing analyses based on the four components of real-time communication end-to-end delays
defined by Tinkell et al. [TBW95]. We present a coarse-grained computation of these delays in
Section 4.4.2.1 and the detailed computation in Section 4.6.1.2.

We exemplarily visualize the location kinds, the fine-grained cuts, and the delays for the
MSD messages enableBraking and emcyBraking in Figure 4.7 and explain them in the
remainder of this section.

Message

Send

Message

Reception

Message

Consumption

Task Start

Task Completion

c2.1

c2

c2.3

c2.4

c2.5

c3

Message

Creation

sa:

Situation

Analysis

esc:
Electronic
Stability
Control

vc:

Vehicle

Control

c2.2

...

c3.1Message

Creation
c3.2

Message

Send ...

Message Dispatch Delay

Message Send Delay

Message Consumption Delay

Task Execution Delay

Immediately

Immediately when task
can be dispatched

Figure 4.7: Additional events for MSD messages

4.3.1 Asynchronous Messages

The semantics for platform-independent MSD specifications only considers synchronous mes-
sage events, where the sending and reception of a message in the object system at runtime
happen simultaneously (cf. Section 2.4.2). However, the used communication media and com-
munication protocols (e.g., the properties of the connector CANBus in Figure 4.4) cause a mes-

125

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

sage send delay, which must be taken into account by a timing analysis [TBW95]. Thus, there
is the need for the consideration of asynchronous message events, which distinguish between
the sending and the reception of messages.

In order to consider such events, we apply the concept of Harels original Play-out semantics
[HM03a] for Live Sequence Charts (LSCs) [DH01], which distinguishes synchronous and asyn-
chronous messages. That is, we introduce asynchronous messages by distinguishing between
message send events and message reception events. These event kinds are not synchronously
unified with a whole MSD message but with the message send and the message reception lo-
cation of the corresponding MSD message, respectively. Figure 4.7 visualizes these location
kinds exemplarily for the MSD message enableBraking. Here, the cut c2.2 marks that the
message is sent but not yet received whereas the cut c2.3 marks that the message is received.

4.3.2 Message Creation and Consumption

The notion of message reception in scenario-based formalisms is ambiguous, because it is not
clear whether a message reception is the instant when the message arrives at the receiver com-
munication interface or the instant when the receiver application software consumes the message
[HHRS05]. The distinction between message reception and message consumption is necessary
in order to take message consumption delays into account [TBW95]. Such delays occur due to
the decoding of network messages from a representation suitable for the transport via a network
to a logical representation suitable to be processed by the application software. Similarly, there
is a message dispatch delay between the instant when a message is created by the sending soft-
ware component and the instant when it is actually dispatched to the network by its network
interface [TBW95]. Such delays occur due to the encoding of a logical representation into a
representation suitable for the transport via a communication medium.

In order to distinguish between message creation and message sending as well as between
message reception and message consumption, we introduce two additional message event kinds,
namely the message creation event and the message consumption event. These event kinds cap-
ture the instant when a message is created by the sending software component and consumed
by the receiving software component, respectively. Likewise, we introduce two additional lo-
cation kinds for each MSD message, namely the message creation location and the message
consumption location. Figure 4.7 visualizes these locations exemplarily for the MSD message
enableBraking. We define the message creation location to be positioned on the sending
lifeline directly before the message sending location (cf. cut c2.1). Similarly, the message con-
sumption location is positioned on the receiving lifeline directly after the message reception
location (cf. cut c2.4).

4.3.3 Task Processing

The semantics for platform-independent MSD specifications focuses on the message exchange
between software components. However, it neglects internal procedures (i.e., tasks) that are
executed by the software components to process consumed messages and to create the messages
to be sent. Task execution interferences lead to additional task execution delays that affect
the timing behavior of the system [TBW95] (cf. the execution times of the particular software
operations in Figure 4.4).

In order to consider such effects, we do not specify explicit task models but simplifying de-
fine that each message is associated with exactly one task that is executed upon the consumption

126

4.4 MSD Semantics for Timing Analyses

of the message by the receiving software component. That is, we introduce the two new event
kinds task start event and task completion event. These event kinds represent the start and the
end of the execution of the task that processes a consumed message and creates a message to be
sent. Furthermore, we define the corresponding two equally named location kinds. Figure 4.7
visualizes these location kinds exemplarily for the MSD message enableBraking. We de-
fine the task start location to be positioned on the receiving lifeline directly after the message
consumption location (cf. cut c2.5). Similarly, the task completion location is positioned on the
receiving lifeline directly after the task start location, representing also the cut for the next MSD
message (cf. cut c3). The next location is the message creation location (cf. cut 3.1), and so on.

4.4 MSD Semantics for Timing Analyses

Our goal is to derive CCSL models (cf. Section 2.7) from platform-specific MSD specifications
(cf. Section 4.1) with extended event handling semantics (cf. Section 4.3) in order to enable
simulative timing analyses in TIMESQUARE. To this end, we apply the GEMOC approach
(cf. Section 2.8) in order to specify MSD semantics dedicated to timing analyses in terms of
CCSL. Figure 4.8 gives an overview of our application of the GEMOC approach.

Mapping

SpecificationAbstract Syntax

«metamodel»

UML

«profile»

Modal

«profile»

TAM

«profile»

MARTE

«reference»

«import»«reference»

«import»

«reference»

Metamodel Level M2

Metamodel Level M1

«reference»
«model»

ECL

Specification

Declaration of Domain-
specific Events (DSEs)

«instanceOf»

«model»

CCSL Model

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«derivedFrom» «uses»

«model»

Platform-specific

MSD Specification

Semantic

Constraints

«modelLibrary»

Pre-defined

CCSL Constraints

«modelLibrary»

User-defined

MoCCML Constraints

Model of Concurrency
and Communication (MoCC)

Metamodel Level M0 (Runtime) «executes»

t

Figure 4.8: Specifying MSD semantics for timing analyses with GEMOC

The abstract syntax of platform-specific MSD specifications is defined at the metamodel level
(M2) by several parts of the UML metamodel and the Modal profile (cf. Section 2.5.1). We ex-
tend this abstract syntax by our TAM profile introduced in Section 4.1 and presented in detail in
Section 4.6.1.1, which bases on parts of the MARTE profile (cf. Section 2.5.3). The declaration
of domain-specific events (DSEs) and their mapping between the abstract syntax and the MoCC
are specified by means of the Event Constraint Language (ECL) (cf. Section 2.8). The MoCC
is specified through a set of semantic constraints, encompassing pre-defined CCSL constraints
(cf. Section 2.7.2) as well as user-defined MoCCML constraints (cf. Section 2.7.3). These con-

127

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

straints are referenced by the ECL specification and are used to constrain the DSEs defined in
the context of metaclasses from the abstract syntax (cf. Section 2.8).

The GEMOC studio automatically derives a QVTo [OMG16] model transformation from our
MoCC. This model transformation takes platform-specific MSD specifications as inputs and
encodes the functional and real-time requirements as well as the timing-relevant platform pro-
perties into constrained timing effects as part of a CCSL model. The Timing Analyst can si-
mulate such CCSL models in TIMESQUARE in order to reveal potential real-time requirement
violations.

We do not intend to encode the full MSD semantics into our timing analysis semantics, be-
cause this would result in a very fine-grained analog of Real-time Play-out in TIMESQUARE.
Such a low level Real-time Play-out would be cumbersome and inefficient due to the high
amount of the more fine-grained event kinds (cf. Section 4.3) occurring in the platform-specific
simulation. Instead, we cover only the MSD semantics subset that is required to conduct ti-
ming analyses w.r.t. the real-time requirements as part of the MSD specifications. This subset
covers real-time requirements constraining the unification of message events (cf Section 2.4.2)
and, consequently, the distinction of message events and hot and cold MSD messages for en-
coding the unification concept. Thus, we foster a process in which the coordination behavior
requirements are validated for safety and liveness on a higher abstraction level by means of the
platform-independent MSD analysis techniques before our timing analysis approach is applied
(cf. Section 4.2).

In the following, we overview how we specify the MSD semantics dedicated to timing ana-
lyses. For reasons of comprehensibility, we describe the most important concepts of this se-
mantics through illustrating the relationships between abstract syntax, mapping specification,
and semantic constraints at metamodel level M2. Furthermore, we illustrate the implications
on metamodel level M1 and provide corresponding exemplary CCSL simulation runs at meta-
model level M0. We present illustrations of further concepts in Appendix B.1 and the complete
semantics in Appendix B.2.

Section 4.4.1 describes how we encode the message event unification concept of MSDs with
extended message event handling semantics in terms of CCSL. Section 4.4.2 describes how we
encode the timing effects induced by the platform properties. Section 4.4.3 describes how we
encode real-time requirements on these effects and how we encode concrete timing analysis
contexts.

4.4.1 Encoding of Additional Event Kinds and their Unification

In order to enable timing analyses based on MSD specifications, we have to encode a subset
of the basic semantics of MSDs in terms of CCSL. This subset encompasses the unification of
events with hot and cold MSD messages, enabling the separation of the actual timed system
behavior and the requirements imposed on it. Particularly, we encode the additional event kinds
introduced in Section 4.3 in our semantics for timing analyses in order to consider the delays
between these event kinds.

In order to encode the unification concept of the MSD semantics, we have to distinguish
between MSD messages and message events. As noted in Section 2.8, GEMOC requires to dis-
tinguish the respective abstract syntax elements to specify dedicated semantics for both model
levels. Thus, we distinguish between the occurrences of a unification of message events with
MSD messages and the occurrences of the triggering message events. Whereas the MSD
language provides MSD messages as an abstract syntax anchor for unification occurrences,

128

4.4 MSD Semantics for Timing Analyses

there is no abstract syntax element dedicated to message events since the object system inclu-
ding metamodel is derived as a separate runtime model in SCENARIOTOOLS MSD Play-out
(cf. Section 2.4.1). Thus, we introduce an explicit abstract syntax element for this purpose.

In Section 4.4.1.1, we present the encoding of occurrences of a unification of the particular
event kinds with the corresponding MSD message locations. Subsequently, we present the
abstract syntax element dedicated to the particular event kind occurrences and its relation to the
unification occurrences in Section 4.4.1.2. Note that the timing of the event occurrences does
not matter for this semantics part, so that we assume arbitrary instants throughout this section.

4.4.1.1 Unification Occurrences

In this section, we present how we encode occurrences of the unification of the particular event
kinds with the corresponding message location kinds (cf. Section 4.3). That is, we explicitly de-
fine DSEs and constraints that define in which cases and in which order unifications may occur
(e.g., the unification of a send event with the send location of the corresponding MSD message,
of a reception event with a reception location, etc.). The consecutive order of unification occur-
rences represents the fine-grained cut progression w.r.t. the particular MSD message locations
(cf. Figure 4.7).

Figure 4.9 depicts a specification excerpt of the semantics for unification occurrences at meta-
model level M2 (upper part of the figure) as well as corresponding example models at meta-
model level M1 (lower part of the figure). Figure 4.10 depicts an exemplary corresponding
CCSL run at metamodel level M0. We exemplarily focus on the semantics for hot messages.
We provide specification excerpts, example models, and example CCSL runs for cold unifica-
tion occurrences in Appendix B.1 (cf. Figures B.2, B.3, and B.6) and the complete semantics
specification in Appendix B.2.

Metamodel Level M2
The upper part of Figure 4.9 depicts excerpts of the Modal profile, of the ECL Mapping Specifi-
cation, and of the applied semantic constraints.

The ECL Mapping Specification in the middle upper part of Figure 4.9 defines DSEs and an
invariant for the Modal stereotype «ModalMessage». The DSEs introduce potential occurrences
of the unification for the particular event kinds. The invariant unificationOrderHot specifies
the allowed order of these unification occurrences by means of a reference to the user-defined
MoCCML relation UnificationOrderRelationHot. Its arguments are all unification occurrence
DSEs in the order from the unification of message creation events to the unification of task
completion events.

Analogously, the parameters of the MoCCML relation unificationOrderHot are clocks repre-
senting the unification occurrences for the particular message event kinds. The constraint auto-
maton of the relation defines the allowed order of these parameter clocks. That is, it specifies
that the particular event kinds must be unified with the corresponding hot message location kinds
in the order message creation, message sending, message reception, message consumption, task
start, and task completion.

Metamodel Level M1
The lower part of Figure 4.9 exemplarily depicts excerpts of the Platform-specific MSD Spec-
ification and of the corresponding CCSL Model generated through the automatically derived
MSD-to-CCSL QVT-O Transformation.

129

C
ha

pt
er

4
E

ar
ly

Ti
m

in
g

A
na

ly
si

s
ba

se
d

on
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

ns

Abstract Syntax

«profile» Modal

Mapping Specification

context ModalMessage

def: msgCreateUnification: Event
def: msgSendUnification: Event
def: msgReceiveUnification: Event
def: msgConsumeUnification: Event
def: taskStartUnification: Event
def: taskCompleteUnification: Event

inv unificationOrderHot:
self.isHot() implies

Relation UnificationOrderRelationHot (

self.msgCreateUnification, self.msgSendUnification,
self.msgReceiveUnification, self.msgConsumeUnification.
self.taskStartUnification, self.taskCompleteUnification,

)

Semantic Constraints

User-defined Constraints

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS Clock EmcyBraking.enableBraking_msgCreateUnification
Clock EmcyBraking.enableBraking_msgSendUnification
Clock EmcyBraking.enableBraking_msgReceiveUnification
Clock EmcyBraking.enableBraking_msgConsumeUnification
Clock EmcyBraking.enableBraking_taskStartUnification
Clock EmcyBraking.enableBraking_taskCompleteUnification

Relation EmcyBraking.enableBraking_unificationOrderHot
[UnificationOrderRelationHot] (

msgCreateUnification->EmcyBraking.
enableBraking_msgCreateUnification,

msgSendUnification->EmcyBraking.
enableBraking_msgSendUnification,

msgReceiveUnification->EmcyBraking.
enableBraking_msgReceiveUnification,

… ,
taskCompleteUnification->EmcyBraking.

enableBraking_taskCompleteUnification
)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom» «uses»

«references»

- hot

- cold

«enumeration»

TemperatureKind

enableBraking

Message

Send

Message

Reception

Message

Consumption

Task Start

Task Completion

Message

Creation

sa:

Situation

Analysis

vc:

Vehicle

Control

... ...

MoCCML-Relation UnificationOrderRelationHot (

 msgCreateUnification: Clock, msgSendUnification: Clock,
 …, taskCompleteUnification: Clock)

1 2

msgCreate
Unification /

msgSend
Unification /

3

4

msgReceive
Unification /

5
msgConsume
Unification /

6
taskStart

Unification /

taskComplete
Unification /

temperature:

 TemperatureKind

«stereotype»

ModalMessage

msd EmcyBraking

...

Figure 4.9: Specification excerpt of semantics for the order of unification occurrences for hot messages with additional event kinds

13
0

4.4 MSD Semantics for Timing Analyses

The MSD excerpt in the left lower part shows the MSD message enableBraking and its
particular event kinds as part of the MSD EmcyBraking.

As indicated in the generated CCSL Model excerpt in the right lower part of Figure 4.9,
the derived transformation translates any MSD message of all MSDs to each six clock vari-
ables. These clock variables represent the potential unification occurrences of the particular
event kinds with the particular locations of any MSD message enableBraking of all MSDs.
For example, the MSD message enableBraking of the MSD EmcyBraking is translated to
six clock variables ranging from EmcyBraking.enableBraking_msgCreateUnification to Emcy-
Braking.enableBraking_taskCompleteUnification.

Furthermore, the transformation generates for any MSD message of all MSDs each a CCSL
model clock relation using the MoCCML relation UnificationOrderRelationHot specified at
metamodel level M2. This clock relation gets the six clock variables representing the poten-
tial unification occurrences as arguments. For example, the transformation translates the MSD
message enableBraking of the MSD EmcyBraking to the CCSL model relation Emcy-
Braking.enableBraking_unificationOrderHot using the MoCCML relation UnificationOrderRe-
lationHot. This relation gets the arguments EmcyBraking.enableBraking_msgCreateUnification
for the parameter msgCreateUnification, EmcyBraking.enableBraking_msgSendUnification for
the parameter msgSendUnification, and so on.

Metamodel Level M0
Figure 4.10 depicts an exemplary CCSL run resulting from the CCSL model excerpt depicted in
the right lower part of Figure 4.9. This CCSL run simulates the order of unification occurrences
of the particular event kinds with the corresponding locations of the MSD message enable-
Braking of the MSD EmcyBraking.

All rows depict ticks of the particular clocks representing the unification occurrences for
the corresponding MSD message locations. They are ordered from the top to bottom, where
the topmost row represents the unification of a message creation event and the bottom-
most row represents the unification of a task completion event. The ticks correspond to
the transitions in the MoCCML relation UnificationOrderRelationHot., and the We assume
that at instant 0 the MoCCML relation is in state 1, so that due to the tick of the clock
EmcyBraking.enableBrakingmsgCreateUnification the state is changed to 2. After the subsequent
tick of the clock representing the message send unification occurrence at instant 2, the rela-
tion is in state 3 for the next 3 instants, and so on. The arrows visualize the causal/temporal
dependencies between the clock ticks.

The concrete instants are chosen arbitrarily since the exact timing of the unification occur-
rences does not matter for this semantics part, which only considers causal/temporal event de-
pendencies.

4.4.1.2 Unification of Message Events with MSD Message Locations

Based on the last section describing the encoding of the allowed orders of unification occur-
rences, we describe in this section how we encode the actual unification of the particular event
kind with the corresponding MSD message location kinds. That is, we describe how we en-
code the relationship between the actual system behavior event occurrences and the unification
occurrences that represent the cut progression of an MSD.

Figure 4.12 depicts a specification excerpt of the semantics for event unification at metamodel
level M2 (upper part of the figure) as well as corresponding example models at metamodel level

131

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

EmcyBraking.
enableBrakingmsgCreateUnification

EmcyBraking.
enableBrakingmsgSendUnification

EmcyBraking.
enableBrakingtaskCompleteUnification

EmcyBraking.
enableBrakingtaskStartUnification

EmcyBraking.
enableBrakingmsgConsumeUnification

0 5

t

10

legend

causal/temporal dependency

EmcyBraking.
enableBrakingmsgReceiveUnification

clock t ick

EmcyBraking obstacle_unification-
OrderHot [UnificationOrder-
RelationHot] in state “2”

EmcyBraking obstacle_unification-
OrderHot [UnificationOrder-
RelationHot] in state “3”

EmcyBraking obstacle_unification-
OrderHot [UnificationOrder-
RelationHot] in state “1”

Figure 4.10: Example—order of message unification occurrences in CCSL, enforced by
the CCSL model clock relation EmcyBraking.enableBraking_unificationOrderHot
(cf. CCSL model in the lower right of Figure 4.9)

M1 (lower part of the figure). Figure 4.13 depicts an exemplary corresponding CCSL run at
metamodel level M0. We exemplarily focus on the unification of send and receive events with
hot send and receive locations. We provide specification excerpts, example models, and example
CCSL runs for the unification of send and receive events with cold send and receive locations
in Appendix B.1 (cf. Figures B.4 to B.6). However, we first introduce a new abstract syntax
element in the following.

Metamodel Level M2
The Play-out algorithm for MSDs requires no explicit modeling concept for the specification of
message events. That is, message events occurring at runtime (i.e., metamodel M0) in the object
system are directly unified with MSD messages at metamodel level M1. However, the GEMOC

approach requires an abstract syntax concept in order to define semantic constraints for such
runtime events at metamodel level M2 (cf. Section 2.8). Thus, we introduce such a dedicated
abstract syntax concept to enable the definition of the semantics for the unification of runtime
events.

For this purpose, we follow the definitions of Harel’s and Marelly’s unification concept for
Live Sequence Charts (LSCs) [HM03a]. Beyond LSC messages and system events (analogous
to MSD messages and message events, respectively), they define system messages. System
messages associate a sender and receiver object in the actual system (analogous to the object

132

4.4 MSD Semantics for Timing Analyses

system for MSD specifications) and define which system events can occur between sender and
receiver at runtime. A system message is associated by an LSC message, where multiple LSC
messages in different LSCs can associate the same system message. Likewise, a system event
associates a system message.

For the application of the LSC system message concept as explicit abstract syntax element in
GEMOC, we introduce the object system message as stereotype in the TAM profile. Figure 4.11
depicts an abstract overview of the additional TAM subprofile SimulationExtensions, which de-
fines the corresponding stereotype «ObjectSystemMessage» (cf. the full subprofile definition
in Section 4.6.1.1). This stereotype extends the UML metaclass MessageEvent, where UML
events do not describe an actual event occurrence at runtime “but can be considered a clas-
sification of its occurrences” [OMG17b, Section 13.3.1]. Thus, UML message events fit to
our definition of object system messages. An object system message associates a sender role,
a receiver role, a connector between sending and receiving role, an interface signature, and
multiple MSD messages. We determine the object system messages and its associations au-
tomatically from the MSD specifications in a preprocessing step before generating the CCSL
models (cf. Section 4.6.1.2).

«profile» TAM::SimulationExtensions [coarse-grained overview]

«stereotype»
ObjectSystem

Message

«metaclass»
UML::Message

Event

«metaclass»
UML::Operation

«metaclass»
UML::Connector

«stereotype»
Modal::

ModalMessage

«stereotype»
Modal::

SpecificationPart

connector

1

signature

1

msdMessages

*

1

sender

1

receiver

Legend

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

Figure 4.11: The object system message as part of the TAM subprofile SimulationExtensions

Based on the introduction of the «ObjectSystemMessage» stereotype, the upper part of Fi-
gure 4.12 depicts excerpts of the TAM profile, the ECL Mapping Specification, and of the applied
semantic constraints.

The ECL Mapping Specification in the middle upper part of Figure 4.12 defines DSEs for
the TAM stereotype «ObjectSystemMessage» introduced above. Analogously to the concept
of Harel’s and Marelly’s LSC system messages defining which LSC system events can occur at
runtime, these «ObjectSystemMessage» DSEs define message events that can occur at runtime
during a CCSL run. Particularly, we define one event DSE for each message event kind intro-
duced in Section 4.3. For example, the ECL Mapping Specification excerpt defines the DSEs
msgSendEvt and msgReceiveEvt representing a message send and a message reception event,
respectively.

Furthermore, the ECL Mapping Specification defines DSEs and invariants for the Modal ste-
reotype «ModalMessage». We explained the DSEs representing the unification occurrences
and their semantic constraints in Section 4.4.1.1. We define an invariant for the unification of

133

C
ha

pt
er

4
E

ar
ly

Ti
m

in
g

A
na

ly
si

s
ba

se
d

on
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

ns

Abstract Syntax

«profile» Modal

Mapping Specification

context ObjectSystemMessage
…
def: msgSendEvt: Event
def: msgReceiveEvt: Event
...

context ModalMessage

def: msgCreateUnification: Event
def: msgSendUnification: Event
def: msgReceiveUnification: Event
...

inv sendUnificationHot:
self.isHot() implies (

let objectSystemMessage = self.getObjectSystemMessage() in
Relation UnificationRelationHot (

objectSystemMessage.msgSendEvt, self.msgSendUnification,
self.msgCreateUnification)

)

inv receiveUnificationHot:
self.isHot() implies (

let objectSystemMessage = self.getObjectSystemMessage() in
Relation UnificationRelationHot (

objectSystemMessage.msgReceiveEvt,
self.msgReceiveUnification, self.msgSendUnification)

)

Semantic Constraints

User-defined Constraints

«stereotype»

TAM:Object

SystemMessage

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS

...
Clock enableBraking_msgSendEvt
Clock enableBraking_msgReceiveEvt
...
Clock EmcyBraking.enableBraking_msgCreateUnification
Clock EmcyBraking.enableBraking_msgSendUnification
Clock EmcyBraking.enableBraking_msgReceiveUnification

Relation EmcyBraking.enableBraking_sendUnificationHot
[UnificationRelationHot] (

msgEvent->enableBraking_msgSendEvt,
msgEventUnification->EmcyBraking.

enableBraking_msgSendUnification,
enableMsgEvtUnification->EmcyBraking.

enableBraking_msgCreateUnification)

Relation EmcyBraking.enableBraking_receiveUnificationHot
[UnificationRelationHot] (

msgEvent->enableBraking_msgReceiveEvt,
msgEventUnification->EmcyBraking.

enableBraking_msgReceiveUnification,
enableMsgEvtUnification->EmcyBraking.

enableBraking_msgSendUnification)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom»

«uses»

enable-
Braking

Message

Send

Message

Reception

sa:

Situation

Analysis

vc:

Vehicle

Control

... ...

...

msdMessages*
MoCCML-Relation UnificationRelationHot (

 msgEvt: Clock, msgEvtUnification: Clock,

 enableMsgEvtUnification: Clock)

enableMsg
EvtUnification /

msgEvt,
msgEvtUnification /

msgEvt /

Enabled
Not

Enabled

...

«references»

«references» temperature: TemperatureKind

«stereotype»

ModalMessage

- hot

- cold

«enumeration»

TemperatureKind

msd EmcyBraking

Figure 4.12: Specification excerpt of semantics for unification of hot messages including example models

13
4

4.4 MSD Semantics for Timing Analyses

each message event kind with the corresponding message location kind. For this purpose, the
invariant relates each kind of object system message event DSE with the corresponding modal
message unification occurrence DSEs.

For example, the «ModalMessage» invariant sendUnificationHot first determines the corre-
sponding object system message in the case of a hot temperature of the context MSD message.
Subsequently, it specifies the behavior of the unification of the send events of the object system
message with the send unification location of the context MSD message with a reference to
the user-defined MoCCML relation UnificationRelationHot. Its arguments are the send event of
the object system message, the send unification occurrence of the context MSD message, and
the message creation unification occurrence of the context MSD message. Analogously, the
invariant receiveUnificationHot also uses the MoCCML relation UnificationRelationHot but with
different arguments that are relevant for the unification of message receive events.

The parameters of the MoCCML relation UnificationRelationHot are msgEvt for the object
system message event to be unified, msgEvtUnification for the occurrence of the event unifi-
cation, and enableMsgEvtUnification for the occurrence of the preceding event unification that
enables the parameter msgEvtUnification. In the initial state Not Enabled, ticks of the parameter
clock msgEvt have no effect due to the self-transition. If the parameter clock enableMsgEvt-
Unification ticks, the transition to the state Enabled is fired. In this state, the parameter clocks
msgEvt and msgEvtUnification are allowed to tick simultaneously, which represents the actual
event unification. In this case, the transition back to the state Not Enabled is fired.

Metamodel Level M1
The lower part of Figure 4.12 depicts excerpts of the Platform-specific MSD Specification and
of the corresponding CCSL Model generated through the automatically derived MSD-to-CCSL
QVT-O Transformation.

The MSD excerpt in the left lower part shows the MSD message enableBraking with the
focus on its Message Send and Message Reception events.

The derived transformation translates any object system message and any MSD message of all
MSDs to each six clock variables representing the particular event kinds and unification occur-
rences for the message location kinds. From these clock variables, the generated CCSL Model
excerpt in the right lower part of Figure 4.12 depicts five ones. For example, the derived trans-
formation translates the object system message enableBraking to the two clock variables
enableBraking_msgSendEvt and enableBraking_msgReceiveEvt. These clock variables repre-
sent the message send and message reception event of the object system message, respectively
(cf. the corresponding DSEs for the «ObjectSystemMessage» at M2). Furthermore, it trans-
lates the equally named MSD message to the corresponding three unification occurrence clock
variables (cf. Section 4.4.1.1).

Moreover, the transformation generates for any MSD message of all MSDs and for any
«ModalMessage» ECL invariant referencing the user-defined MoCCML relation each a corre-
sponding CCSL model relation using the referenced relation. For example, the transformation
translates the MSD message enableBraking of the MSD EmcyBraking to the CCSL model
relation EmcyBraking.enableBraking_sendUnificationHot using the MoCCML UnificationRe-
lationHot relation at metamodel level M2. This relation gets the arguments enableBraking_-
msgSendEvt for the parameter msgEvent, EmcyBraking.enableBraking_msgSendUnification
for msgEventUnification, and EmcyBraking.enableBraking_msgCreateUnification for enable-
MsgEvtUnification. With this argument set, the MoCCML relation switches to the state Ena-
bled when EmcyBraking.enableBraking_msgCreateUnification occurs, and the unification takes

135

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

place when enableBraking_msgSendEvt and EmcyBraking.enableBraking_msgSendUnifica-
tion tick simultaneously in this state. Furthermore, the translation translates the second depicted
«ModalMessage» ECL invariant to the CCSL model relation EmcyBraking.enableBraking_re-
ceiveUnificationHot with an analogue set of arguments.

Metamodel Level M0
Figure 4.13 depicts an exemplary CCSL run resulting from the CCSL model excerpt depicted
in the right lower part of Figure 4.12. This CCSL run simulates a situation in which object
system message send/receive event clocks are synchronized with the send/receive unification
occurrence clocks.

enableBrakingmsgSendEvt

enableBrakingmsgReceiveEvt

EmcyBraking.
enableBrakingmsgReceiveUnification

0 5

t

10

legend
UnificationRelationHot: Trans t on
“msgEvt, msgEvtUnification /” from state
“Enabled” to state “Not Enabled”

EmcyBraking.
enableBrakingmsgSendUnification

clock t ick

EmcyBraking enable-
Braking_sendUnificationHot
[UnificationRelationHot] in state
“Enabled”

EmcyBraking enable-
Braking_receiveUnificationHot
[UnificationRelationHot] in state
“Enabled”

Figure 4.13: Example—message event unification in CCSL simulation for hot messages

The two topmost rows depict ticks of clocks representing the actual object message events.
Here, we focus on the clocks that represent the message send event and the message reception
event unifiable with the corresponding location types for the message enableBraking. We
assume that the CCSL model relation enableBraking_sendUnificationHot is in the state Ena-
bled at instant 0. If an event occurs in this state (i.e., the clock enableBrakingmsgSendEvent
ticks at instant 1), we enforce the corresponding enabled unification occurrence clocks to
tick simultaneously by means of the transition to the state Not Enabled. Thus, the clock
EmcyBraking.enableBrakingmsgSendUnification also ticks at instant 1. The unification of the mes-
sage reception event at instant 3 follows the same functional principle.

Figure B.1 in Appendix B.1 depicts an exemplary CCSL run where object system message
send/receive event clocks are synchronized with multiple send/receive unification occurrence
clocks representing the locations from MSD messages in different MSDs.

4.4.2 Encoding of Timing Effects Induced by Platform Properties

In this section, we present how we encode in our semantics the timing effects that are induced
by the properties of the software execution platform. We support two general classes of ti-
ming behavior effects. The first class encompasses the different kinds of static delays between

136

4.4 MSD Semantics for Timing Analyses

the particular event kinds discussed in Section 4.3. The second class encompasses delays that
dynamically emerge from the blocking of resources when different software components have
to access the same resource (e.g., the processor for the task execution, peripheral hardware,
or an operating system service) at the same time. This blocking of resources is called mutual
exclusion of resources.

Section 4.4.2.1 presents an example for the encoding of the static delay effects.
Section 4.4.2.2 presents an example for the encoding of mutual resource exclusion, which
induces dynamic delays.

4.4.2.1 Static Delays Between Message Event Kinds

As discussed in Section 4.3, message-based communication involves multiple events during the
actual execution on a target platform, and static delays occur between each kind of such events.
In this section, we present how we encode and compute these static delays. Whereas the most
important input to response time analyses is the WCET (cf. Section 2.6), the best case times for
the operation execution and the message transmission is also of high interest [BEGL05]. Thus,
we present in this section abstract computations of intervals of both the minimum and maximum
values of the delays. After we present the full TAM profile definition in Section 4.6.1.1, we
refine these computations exploiting in detail each TAM platform property in Section 4.6.1.2.

In our semantics, we support the following four kinds of static delays inferred from
Section 4.3 and based on the four components of real-time communication end-to-end delays
defined by Tinkell et al. [TBW95] (cf. Figure 4.7):

Message Dispatch Delays occur between message creation and message send event
(cf. Section 4.3.2). Message dispatch delays encompass the time to gain write access
to a communication channel as well as the time to encode a message from its logical
representation to a format suitable for the transfer via the communication channel. This
encoding time depends on the overall message size (i.e., net size plus potential overheads)
in relation to the encoding rate of the communication channel. Thus, we compute the
message dispatch delay as

(4.1)
[
msg::msgDispatchDelaymin , msg::msgDispatchDelaymax

]
=
[
msg.connector.supplier::<dispatchOverhead>min , msg.connector.supplier::<dispatchOverhead>max

]
+
[

msg.signature::<overallMsgSize>min
msg.connector.supplier::<overallEncodeRate>max

,
msg.signature::<overallMsgSize>max

msg.connector.supplier::<overallEncodeRate>min

]
,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection or a TamOSComChannel that the connector is allocated to,

and msg.signature is a TamOperation associated by the MSD message msg

Message Send Delays occur between message send and message reception event
(cf. Section 4.3.1). Message send delays encompass the overall propagation latency
(i.e., net latency plus potential overheads) of the applied communication channel as
well as the time to transmit the message. This transmission time depends on the overall
message size in relation to the overall throughput (i.e., gross throughput minus potential
overhead deductions) of the communication channel. Thus, we compute the message

137

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

send delay as

(4.2)
[
msg::msgSendDelaymin , msg::msgSendDelaymax

]
=
[
msg.connector.supplier::<overallLatency>min , msg.connector.supplier::<overallLatency>max

]
+
[

msg.signature::<overallMsgSize>min
msg.connector.supplier::<overallThroughput>max

,
msg.signature::<overallMsgSize>max

msg.connector.supplier::<overallThroughput>min

]
,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection or a TamOSComChannel that the connector is allocated to,

and msg.signature is a TamOperation associated by the MSD message msg

Message Consumption Delays occur between message reception and message consumption
event (cf. Section 4.3.2). Analogously to message dispatch delays, message consump-
tion delays encompass the time to gain read access to a communication channel as well
as the time to decode a message from the communication channel format to its logical
representation. The decoding time depends on the overall message size in relation to the
decoding rate of the communication channel. Thus, we compute the message consump-
tion delay as

(4.3)
[
msg::msgConsumptionDelaymin , msg::msgConsumptionDelaymax

]
=
[
msg.connector.supplier::<consumptionOverhead>min , msg.connector.supplier::<consumptionOverhead>max

]
+
[

msg.signature::<overallMsgSize>min
msg.connector.supplier::<overallDecodeRate>max

,
msg.signature::<overallMsgSize>max

msg.connector.supplier::<overallDecodeRate>min

]
,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection or a TamOSComChannel that the connector is allocated to,

and msg.signature is a TamOperation associated by the MSD message msg.

Task Execution Delays occur between task start and task completion event (cf. Section 4.3.3).
Task execution delays encompass the normalized overall execution time (i.e., net exe-
cution time plus potential overheads) required to process a message in relation to the
relative speed factor of the executing processing unit (cf. Section 4.1) as well as the times
for accessing memory and resources. Thus, we compute the task execution delay as[

msg::taskExecutionDelaymin , msg::taskExecutionDelaymax
]

=
[

msg.signature::<normalizedOverallExecTime>min
msg.connector[receiver].supplier.processingUnit::speedFactormax

,

msg.signature::<normalizedOverallExecTime>max

msg.connector[receiver].supplier.processingUnit::speedFactormin

]
+
[
msg::<overallMemoryAccessTime>min , msg::<overallMemoryAccessTime>max

]
+
[
msg::<overallResourceAccessTime>min , msg::<overallResourceAccessTime>max

]
,

where msg.signature is a TamOperation associated by the MSD message msg,

msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector[receiver] is a Modal::Speci�cationPart representing the receiving software component,

msg.connector[receiver].supplier is a TamECU that the receiving software component is allocated to,

and msg.connector[receiver].supplier.processingUnit is the TamProcessingUnit of the ECU.

(4.4)

We define a task to start immediately after it has consumed its corresponding message if the
scheduler can dispatch it. If the scheduler cannot dispatch it immediately, a dynamic delay
occurs (cf. Section 4.4.2.2). Furthermore, we define that after a component completed a task,

138

4.4 MSD Semantics for Timing Analyses

it creates a potential subsequent message immediately afterward. Thus, we do not consider ex-
plicit static delays between such message consumption and task start events as well as between
task completion and message creation events. Instead, we define the subsequent corresponding
event to occur one tick after the occurrence of the corresponding preceding event in the case
that no dynamic delay occurs (cf. Figure 4.7).

For the computation of message dispatch, send, and consumption delays, it is relevant whet-
her the communicating components are allocated to different ECUs (i.e., the components are
distributed) or to the same ECU. That is, other and typically more platform properties have to
be considered for a distributed communication in contrast to an internal communication. Thus,
we distinguish in the refined computations in Section 4.6.1.2 between distributed and internal
message dispatch/send/consumption delays.

Figure 4.14 exemplarily depicts a specification excerpt of the semantics for task execution de-
lays at metamodel level M2 (upper part of the figure) as well as corresponding example models
at metamodel level M1 (lower part of the figure). Figure 4.15 depicts an exemplary correspon-
ding CCSL run at metamodel level M0. We provide specification excerpts, example models, and
example CCSL runs for the remaining static delays in Appendix B.1 (cf. Figures B.7 to B.14).

Metamodel Level M2
The upper part of Figure 4.14 depicts excerpts of the TAM profile, the ECL Mapping Specifica-
tion, and of the applied semantic constraints.

In order to consider timing behavior, we have to keep track of the global time progress. For
this purpose, we introduce a DSE globalTime for each Model in the ECL Mapping Specification
in the middle upper part of Figure 4.14. We do not specify any semantic constraints for this
DSE so that the corresponding CCSL clock always ticks. We utilize this clock as a reference
clock for other clocks whose time differences we need to determine w.r.t. to globalTime, like
the delay clocks that we introduce in the following.

The resolution in terms of the time unit of this discrete reference clock influences the accu-
racy as well as the performance of the timing analysis. That is, a too coarse-grained time unit
may yield imprecise analysis results, and a too fine-grained time unit may produce many unne-
cessary steps of the CCSL run. We exemplarily apply milliseconds as the normalized time unit
throughout this thesis.

Furthermore, the ECL Mapping Specification defines DSEs and invariants for the TAM ste-
reotype «ObjectSystemMessage». The task processing of an object system message takes place
in between occurrences of the «ObjectSystemMessage» DSEs taskStartEvt and taskComplete-
Evt. The invariant minExecutionDelay defines the timing behavior taking minimum delays of
task executions for the message processing into account. To this end, we first determine the
minimum execution time of the object system message (cf. Equation (4.4)). We subsequently
define a new event taskStartDelayedByMinExecTime by means of the pre-defined CCSL expres-
sion DelayFor that delays the taskStartEvt DSE by the minimum execution time. Finally, we
specify that the taskCompleteEvt DSE can occur not earlier than this delayed event by means
of the pre-defined CCSL relation NonStrictPrecedes. The invariant maxExecutionDelay defines
the timing behavior taking maximum delays of task executions for the message processing into
account and restricts the taskCompleteEvt DSE to occur not later than the maximum execution
delay.

139

C
ha

pt
er

4
E

ar
ly

Ti
m

in
g

A
na

ly
si

s
ba

se
d

on
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

ns

«derivedFrom»

Abstract Syntax

«profile» TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage
...
def: taskStartEvt: Event
def: taskCompleteEvt: Event

inv minExecutionDelay:
let minExecutionTime: Integer = self.getMinExecTime() in
let taskStartDelayedByMinExecTime: Event

= Expression DelayFor (self.getModel().globalTime,
 self.taskStartEvt, minExecutionTime)

Relation NonStrictPrecedes (
taskStartDelayedByMinExecTime, self.taskCompleteEvt)

inv maxExecutionDelay:
let maxExecutionTime: Integer = self.getMaxExecTime() in
let taskStartDelayedByMaxExecTime: Event =

Expression DelayFor (self.getModel().globalTime,
self.taskStartEvt, maxExecutionTime)

Relation NonStrictPrecedes (
self.taskCompleteEvt, taskStartDelayedByMaxExecTime)

Semantic Constraints

Pre-defined Constraints

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«stereotype»

Object

SystemMessage

«references»

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS

Clock globalTime
Clock enableBraking_taskStartEvt
Clock enableBraking_taskCompleteEvt

Integer enableBraking_minExecutionTime = 3

Integer enableBraking_maxExecutionTime = 5

Expression enableBraking_taskStartDelayedByMinExecTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_taskStartEvt,
delay->enableBraking_minExecutionTime)

Expression enableBraking_taskStartDelayedByMaxExecTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_taskStartEvt,
delay->enableBraking_maxExecutionTime)

Relation enableBraking_minExecutionDelay [NonStrictPrecedes] (
leftClock->enableBraking_taskStartDelayedByMinExecTime,
rightClock->enableBraking_taskCompleteEvt)

Relation enableBraking_maxExecutionDelay [NonStrictPrecedes] (
leftClock->enableBraking_taskCompleteEvt,
rightClock->enableBraking_taskStartDelayedByMaxExecTime)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf»

«uses»

enableBraking

vc:

Vehicle

Control

...

«stereotype»

TamOperation

execTime:

 NFP_Duration

«stereotype»

MARTE::GRM::

ResourceUsage

«metaclass»

UML::Operation

«metaclass»

UML::Named

Element

...

signature1

«metaclass»

UML::Message

msd
Messages

*

signature

0..1

Task Start

Task Completion

...

Obstacle

Detection

vc:
Vehicle
Control

:Decisions
...

...

+ enableBraking()

«interface»

Decisions

«TamOperation»

execTime = [6..9]ms

«TamECU» :µC2

speedFactor = 2

«TamProcessingUnit»
:PUµC2

«allocate»
signature type

enableBraking.minExecTime

PU_µC2.speedFactor

6ms

2
=

enableBraking.maxExecTime

PU_µC2.speedFactor

9ms

2
=

«references»

represents

Task Execution Delay

Figure 4.14: Specification excerpt of semantics for task execution delays including example models

14
0

4.4 MSD Semantics for Timing Analyses

Metamodel Level M1
The lower part of Figure 4.14 depicts excerpts of the Platform-specific MSD Specification and
of the corresponding CCSL Model generated through the automatically derived MSD-to-CCSL
QVT-O Transformation.

The MSD excerpt in the left lower part shows the MSD message enableBraking with
the focus on its Task Start and Task Completion events. The MSD message has a referential
trace link to the equally named «TamOperation» with a minimum execution time of 6ms and a
maximum execution time of 9ms. The lifeline vc: VehicleControl represents the equally named
component role that is allocated to the «TamECU» :µC2. This ECU contains a «TamProcessing-
Unit» with the speed factor 2.

As indicated by the generated CCSL Model excerpt in the right lower part of Figure 4.14, the
derived transformation generates for any MSD specification each the clock variable globalTime
representing the always ticking reference clock. Furthermore, the transformation translates any
object system message to each six clock variables in the generated CCSL Model that repre-
sent the particular event kinds (cf. Section 4.4.1.2). From these clock variables, the generated
CCSL Model excerpt depicts the task start and task completion event clocks. Moreover, the
transformation generates for any object system message each an Integer variable specifying the
minimum and maximum task execution delay values. As defined by Equation (4.4), these de-
lay values are determined by the minimum and maximum execution times of the associated
«TamOperation» in relation to the relative speed factor of the processing unit, inter alia. For
example, the minimum and maximum task execution delay values of the object system mes-
sage are stored in Integer variables with the values trajectoryBeacon::minExecTime

PUµC2::speedFactor = 6ms
2 = 3ms and

trajectoryBeacon::maxExecTime
PUµC2::speedFactor = 9ms

2 ≈ 5ms, respectively.
Furthermore, the transformation generates for any object system message each two clock

variables delaying the task start clock by the minimum and maximum execution time, respecti-
vely. For example, the object system message enableBraking is translated to two CCSL
expressions DelayFor defining the new clock variables enableBraking_taskStartDelayedByMin-
ExecTime and enableBraking_taskStartDelayedByMaxExecTime, respectively. These expressi-
ons delay the task start event clock enableBraking_taskStartEvt by the corresponding minimum
and maximum task execution delays w.r.t. the globalTime clock.

Finally, the transformation restricts the task completion event clock to tick not earlier than the
minimum task execution delay clock and not later than the maximum task execution delay clock.
For example, the transformation generates the CCSL model relations enableBraking_minExecu-
tionDelay and enableBraking_maxExecutionDelay using the CCSL relation NonStrictPrecedes
at metamodel level M2. Both relations enforce the clock enableBraking_taskCompleteEvt to
tick in between the ticks of the clocks enableBraking_taskStartDelayedByMinExecTime and
enableBraking_taskStartDelayedByMaxExecTime.

Metamodel Level M0
Figure 4.15 depicts an exemplary CCSL run resulting from the CCSL model excerpt depicted
in the right lower part of Figure 4.14. This CCSL run simulates the task execution delay of
the enableBraking message w.r.t. to the minimum and maximum execution time of its
«TamOperation».

The topmost row depicts the ticks of the reference clock globalTime that always
ticks. The row below depicts the tick of the clock enableBrakingtaskStartEvt at instant 1.
This clock tick is delayed by 3 and 5 instants with the amount of ticks of the clocks

141

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

enableBrakingtaskStartEvt

0 5

t

10

legend

enableBrakingtaskCompleteEvt

clock t ick

enableBrakingtaskStartDelayedByMinExecTime

globalTime

enableBrakingtaskStartDelayedByMaxExecTime

task
execution
time interval

clock relation
NonStrictPrecedes

clock expression
DelayFor

Figure 4.15: Exemplary CCSL run simulating delays due to task execution

enableBrakingtaskStartDelayedByMinExecTime and enableBrakingtaskStartDelayedByMaxExecTime, re-
spectively. The two NonStrictPrecedes clock relations enforce the clock enableBra-
kingtaskCompleteEvt to tick at some instant between 4 and 6, and it ticks at instant 5 in the
example.

4.4.2.2 Dynamic Delays due to Mutual Exclusion of Resources

Target execution platforms of software-intensive systems have restricted resources, which can-
not be completely used by different parts of the application software at the same time. For
example, at one instant only a certain application software part can be processed by a core of
the processing unit the application software is deployed to, and at one instant a communication
medium channel can only transfer a certain amount of message bits. Middleware and operating
system services take care of the management of these restricted resources for the competing
software parts. That is, such services provide mechanisms ensuring that the resources are used
by the software in a mutually exclusive manner. For example, schedulers select according to
a scheduling algorithm at certain instants a task for the execution of an application software
operation on a processing unit. Analogously, the communication services of the middleware or
of the operating system manage the message scheduling for the communication media. In our
semantics, we support delays that dynamically emerge from the mutual exclusion of processing
units, communication media, peripherals, and operating system resources.

Figure 4.16 depicts a specification excerpt of the semantics for the scheduling of tasks on pro-
cessing units at metamodel level M2 (upper part of the figure) as well as corresponding example
models at metamodel level M1 (lower part of the figure). Figure 4.17 depicts an exemplary cor-
responding CCSL run at metamodel level M0. Furthermore, we provide specification excerpts,
example models, and example CCSL runs for the message scheduling for communication media
as well as shared operating system resources in Appendix B.1 (cf. Figures B.15 to B.18).

Metamodel Level M2
The upper part of Figure 4.16 depicts excerpts of the TAM profile, the ECL Mapping Specifica-
tion, and of the applied semantic constraints.

142

4.4
M

SD
Sem

antics
forTim

ing
A

nalyses

Abstract Syntax

«profile» TAM

Mapping Specification

context ObjectSystemMessage
...
def: taskStartEvt: Event
def: taskCompleteEvt: Event

inv claimCoreOnTaskStart:
let relevantScheduler: TamScheduler = getRelevantScheduler() in

Relation SubClock (self.taskStartEvt, relevantScheduler.dispatch)
...

context TamScheduler
...
def: dispatch: Event

inv occupyCoreOnTaskStart:
let numCores: Integer = getProcessingUnit()::numCores in
/* all object systemmessages incoming at any software component
allocated to the TamECU containing the context TamScheduler */
let relevantObjSysMsgs: Set(ObjectSystemMessage) =

getRelevantObjectSystemMessages() in
let anyTaskStart: Event =

Expression Union (relevantObjSysMsgs.taskStartEvt) in
let anyTaskComplete: Event =

Expression Union (relevantObjSysMsgs.taskCompleteEvt) in

Relation NonPreemptiveTaskExecution (

self.dispatch, anyTaskStart, anyTaskComplete, numCores)
...

Semantic Constraints

User-defined Constraints

Pre-defined Constraints

Relation SubClock (subClock: Clock, superClock: Clock) {...}
Expression Union (clocks: Set(Clock)): Clock {...}«stereotype»

Object

SystemMessage

numCores: Integer

«stereotype»

TamProcessingUnit

«stereotype»

TamECU

1 1

«stereotype»

TamScheduler

«stereotype»

TamRTOS

1

MoCCML-Relation NonPreemptiveTaskExecution (

 occupy: Clock, newTask: Clock, taskFinish: Clock,

 numCores: Integer)

local variable runningTasks: Integer = 0

occupy, newTask
[runningTasks + 1

== numCores] /
runningTasks++

Cores

Available

All Cores

Busy
taskFinish /

runningTasks--

taskFinish /
runningTasks--

occupy, newTask
[runningTasks + 1

< numCores] /
runningTasks++

«references»

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS

obstacle

Task Start

Task Completion

sa:

Situation

Analysis

...

Obstacle

Detection

sa:
Situation
Analysis

...

«allocate»

...

«TamECU» :µC1

numCores = 1

«TamProcessingUnit»
:PUµC1

«TamRTOS»
:OSEK/VDX

«TamScheduler»
:OSEK/VDX-

Scheduler

represents

...
Clock obstacle_taskStartEvt
Clock obstacle_taskCompleteEvt
Clock OSEK/VDX-Scheduler_dispatch
Integer PUµC1_numCores = 1

Relation obstacle_claimCoreOnTaskStart [SubClock] (
subClock->obstacle_taskStartEvt,
superClock->OSEK/VDX-Scheduler_dispatch)

Expression OSEK/VDX-Scheduler_anyTaskStart = Union (
clocks->{obstacle_taskStartEvt, ...}),

Expression OSEK/VDX-Scheduler_anyTaskComplete = Union (
clocks->{obstacle_taskCompleteEvt, ...}),

Relation OSEK/VDX-Scheduler_occupyCoreOnTaskStart
[NonPreemptiveTaskExecution] (

occupy->OSEK/VDX-Scheduler_dispatch,
newTask->OSEK/VDX-Scheduler_anyTaskStart,
taskFinish->OSEK/VDX-Scheduler_anyTaskComplete,
numCores->PUµC1_numCores)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom» «uses»

...

Figure 4.16: Specification excerpt of semantics for task scheduling including example models143

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

The ECL Mapping Specification in the middle upper part of Figure 4.16 defines DSEs and
invariants for the TAM stereotypes «ObjectSystemMessage» and «TamScheduler». The exe-
cution of a task that processes an object system message takes place in between the «Object-
SystemMessage» DSEs taskStartEvt and taskCompleteEvt. We define a DSE dispatch for the
«TamScheduler», which represents the point in time when the scheduler selects a task for the
execution on a processing unit (i.e., the scheduler dispatches the task). We express the rela-
tion between the «ObjectSystemMessage» DSE taskStartEvt and the «TamScheduler» DSE
dispatch by means of the «ObjectSystemMessage» invariant claimCoreOnTaskStart. This in-
variant uses the pre-defined CCSL relation SubClock to associate the taskStartEvt DSE with
the dispatch DSE. The SubClock relation prevents the subClock argument clock taskStartEvt
from ticking in the case that the superClock argument clock dispatch cannot tick. We determine
whether the superClock argument clock dispatch can tick through the «TamScheduler» invari-
ant occupyCoreOnTaskStart, which we explain below. By doing so, we prevent that a scheduler
dispatches a task that processes an object system message when the corresponding processing
unit is busy with the execution of other tasks.

We determine whether the scheduler is able to dispatch a task on the processing unit through
the «TamScheduler» invariant occupyCoreOnTaskStart. First, we determine the amount of co-
res of the corresponding processing unit. Subsequently, we determine all object system messa-
ges incoming at any software component allocated to the «TamECU» that contains the context
«TamScheduler». From these object system messages, we define through the pre-defined CCSL
expression Union the DSEs anyTaskStart and anyTaskComplete that represent the union of all
taskStartEvt and taskCompleteEvt DSEs, respectively. By doing so, we determine whether any
task is ready to be started or any task gets completed.

The actual behavior of the «TamScheduler» invariant occupyCoreOnTaskStart is specified
by means of the user-defined MoCCML relation NonPreemptiveTaskExecution. Its arguments
are the dispatch DSE for the parameter clock occupy, the clocks representing the union of all
relevant taskStartEvt and taskCompleteEvt DSEs for the newTask and the taskFinish clock, re-
spectively, and the amount of cores of the corresponding processing unit for the Integer parame-
ter numCores. Furthermore, we define a local variable runningTasks that captures the amount
of tasks currently running on the processing unit. The initial state of the MoCCML relation
is Cores Available, which defines that the scheduler is able to dispatch new tasks because the
processing unit is not busy with processing other tasks. When a new task is ready to be dispat-
ched in this state and hence the occupy parameter clock as well as the newTask parameter clock
tick simultaneously, the variable runningTasks is incremented if the guard [runningTasks + 1 <

numCores] holds. Analogously, when any task running on the processing unit is finished in this
state and hence the parameter clock taskFinish ticks, the variable runningTasks is decremented.
If the amount of currently running tasks equals the amount of cores in this state, the transition to
the state All Cores Busy is fired. In this state, the dispatching of new tasks is not allowed. When
any task running on the processing unit gets completed in this state and hence the parameter
clock taskFinish ticks, the variable runningTasks is decremented and the transition to the initial
state is fired.

Our semantics support multiple software components allocated to one processing unit,
multiple cores per processing unit, and different task priorities. However, it currently
only supports non-preemptive scheduling, where tasks cannot be preempted by other tasks
and hence run to completion. Preemptive scheduling is more dynamic and can be spe-
cified in future work through the GEMOC concept of domain-specific actions [LCD+15;
DCB+15]. We specify the actual scheduling policy, which the scheduler applies to

144

4.4 MSD Semantics for Timing Analyses

select and dispatch tasks, through the object system message invariants nonPreempti-
veFixedPriorityPolicy_noInterferenceWithHigherPrioTasks and nonPreemptiveFixedPriority-
Policy_syncWithLowerPrioTasks in Listing B.2 in Appendix B.2. Currently, our semantics
only supports the policy fixed-priority scheduling, which is the predominant scheduling policy
used for real-time systems [NMH08; DB08; SAÅ+04] due to enabling dynamic as well as a
predictable behavior [ABD+95]. Further scheduling policies can be flexibly added through
adding the corresponding invariants.

Metamodel Level M1
The lower part of Figure 4.16 depicts excerpts of the Platform-specific MSD Specification and
of the corresponding CCSL Model generated through the automatically derived MSD-to-CCSL
QVT-O Transformation.

The MSD excerpt in the left lower part shows the MSD message obstacle with the fo-
cus on its Task Start and Task Completion events. The lifeline has a referential trace link to
the component role sa: SituationAnalysis, which is allocated to the «TamECU» :µC1. This ele-
ment encompasses a «TamProcessingUnit» :PUµC1 and a «TamRTOS» with a «TamScheduler»
:OSEK/VDX-Scheduler-µC1.

The derived transformation translates any object system message to each six clock variables
in the generated CCSL Model that represent the particular event kinds (cf. Section 4.4.1.2).
From these clock variables, the generated CCSL Model excerpt in the right lower part of Fi-
gure 4.16 depicts the task start and task completion event clocks. Furthermore, the trans-
formation generates for any «TamScheduler» each a scheduler dispatch clock variable. For
example, the transformation generates the clock variable OSEK/VDX-Scheduler_dispatch for
the :OSEK/VDX-Scheduler. Moreover, the transformation translates the tagged value num-
Cores of any «TamProcessingUnit» to each a corresponding Integer variable. For example,
the tagged value numCores of the processing unit :PUµC1 is translated to the Integer variable
PUµC1_numCores.

Furthermore, the transformation translates any object system message to a SubClock clock
relation that restricts the object system message task start event clock to tick only when the
scheduler dispatch clock can tick simultaneously. For example, the object system message
obstacle is translated to the CCSL model relation obstacle_claimCoreOnTaskStart using the
SubClock relation at metamodel level M2. This relation gets the arguments obstacle_taskStart
and OSEK/VDX-Scheduler_dispatch for the parameters subClock and superClock, respectively.

For any «TamScheduler», the transformation generates each two clock variables defined by
Union clock expressions that determine the union of potential ticks of all task start and task
completion event clocks. For example, the scheduler :OSEK/VDX-Scheduler is translated to the
clock variables OSEK/VDX-Scheduler_anyTaskStart and OSEK/VDX-Scheduler_anyTaskCom-
plete. These expressions get the clock variables obstacle_taskStartEvt and obstacle_taskCom-
pleteEvt as a set argument, along with other task start and task completion events.

Finally, the transformation generates for any «TamScheduler» a CCSL model relation
that uses the user-defined MoCCML relation NonPreemptiveTaskExecution at metamodel le-
vel M2. For example, the transformation translates the scheduler :OSEK/VDX-Scheduler
to the CCSL model relation OSEK/VDX-Scheduler_occupyCoreOnTaskStart. This relation
gets the argument OSEK/VDX-Scheduler_dispatch for the parameter occupy, OSEK/VDX-
Scheduler_anyTaskStart for newTask, OSEK/VDX-Scheduler_anyTaskComplete for taskFin-
ish, and PUµC1_numCores for numCores.

145

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

Metamodel Level M0
Figure 4.17 depicts an exemplary CCSL run resulting from the CCSL model excerpt de-
picted in the right lower part of Figure 4.16. This CCSL run simulates a situation in which
two different computations have to be performed concurrently by the software component
sa: SituationAnalysis allocated to the «TamECU» :µC1 (cf. MSD specification excerpt in left
lower part of Figure 4.16).

trajectoryBeaconmsgConsumeEvt

trajectoryBeacontaskStartEvt

obstaclemsgConsumeEvt

OSEK/VDX-ScheduleranyTaskComplete

OSEK/VDX-Schedulerdispatch

0 5

t

10

legend

clock relation
SubClock

trajectoryBeacontaskCompleteEvt

obstacletaskCompleteEvt

obstacletaskStartEvt

clock t ck

OSEK/VDX-ScheduleranyTaskStart

clock expression
Union

MoCCML-Relat on
NonPreemptiveTask-
Execution in state “All
Cores Busy” (i.e., PU-
µC1 blocked)

MoCCML-Relat on
NonPreemptiveTask-
Execution: Triggers transition
from State “Cores Available”
to “All Cores Busy”

MoCCML-Relat ion
NonPreemptiveTask-
Execution in state
“Cores Available”

MoCCML-Relat ion
NonPreemptiveTask-
Execution: Triggers transition
from State “All Cores Busy” to
“Cores Available”

Figure 4.17: Exemplary CCSL run simulating task scheduling

The MSD BeaconAcknowledgement in Figure 4.2(a) specifies that sa: SituationAnalysis is
responsible for processing information about the trajectories of other vehicles via a message
trajectoryBeacon. The three topmost rows in Figure 4.17 depict the ticks of the clocks
representing the corresponding message consume, task start, and task completion events. The
processing unit of :µC1 is not busy with other computations at instant 1 when the message
is consumed. That is, the MoCCML relation TaskExecution used by the CCSL model re-
lation OSEK/VDX-Scheduler_occupyCoreOnTaskStart is in the state Cores Available (cf. Fi-
gure 4.16). Hence, the clock OSEK/VDX-Schedulerdispatch is allowed to tick, meaning that the
scheduler of :µC1 is able to dispatch the corresponding task. Since this clock is able to tick, the
clock relation SubClock allows the clock trajectoryBeacontaskStartEvent to tick simultaneously at
instant 2. Consequently, the clock OSEK/VDX-ScheduleranyTaskStart ticks at this instant as defi-
ned by the clock expression Union. Analogously, the clock OSEK/VDX-ScheduleranyTaskComplete
ticks at instant 5 due to the tick of trajectoryBeacontaskStartComplete.

146

4.4 MSD Semantics for Timing Analyses

The message obstacle is consumed at instant 2, resulting in the tick of the clock
obstaclemsgConsumeEvt at this instant. Due to the fact that :PUµC1 has only one core and due to
the dispatching of the trajectoryBeacon processing task, the MoCCML relation NonPre-
emptiveTaskExecution is in the state All Cores Busy from instant 3 to instant 5. Thus, :PUµC1
is blocked in this time period so that the task processing of the obstacle message can be
dispatched at instant 6 at the earliest, causing the clock obstacletaskStartEvt to tick at this instant.
This causes a dynamic delay of 3 time units between the consumption and the actual processing
of the message obstacle.

4.4.3 Encoding of Real-time Requirements and Timing Analysis Contexts

In this section, we present the encoding of aspects in our semantics that are crucial for the timing
analysis results and the timing analysis setup. In Section 4.4.3.1, we explain how we encode
MSD clock resets and hot time conditions in terms of real-time requirements in CCSL, which
the TIMESQUARE timing analysis determines as fulfilled or violated by the timing behavior
of the system. In Section 4.4.3.2, we explain how we encode analysis contexts defined by the
Timing Analysts to investigate the simulation scenarios that they are interested in.

4.4.3.1 Clock Resets and Time Conditions

The combination of a clock reset and a hot time condition in an MSD represents a real-time
requirement. A violation of such real-time requirements can lead to hazards in the case of safety-
critical systems. Our timing analysis approach intends to consider a detailed timing behavior
of the system incorporating a target execution platform model in order to reveal potential real-
time requirement violations in an early development phase. In this section, we present how we
encode combinations of clock resets and hot time conditions in our semantics.

Figure 4.18 depicts a specification excerpt of the semantics for clock resets combined with
maximal delays at metamodel level M2 (upper part of the figure) as well as corresponding exam-
ple models at metamodel level M1 (lower part of the figure). Figure 4.19 depicts an exemplary
corresponding CCSL at metamodel level M0. We exemplarily focus on the semantics for maxi-
mal delays with a strict upper bound in this section. Furthermore, we provide the complete ECL
pseudocode specification for non-strict upper bound maximal delays as well as minimal delays
(both strict and non-strict lower bounds) in Listing B.7 in Appendix B.2.

Metamodel Level M2
The upper part of Figure 4.18 depicts excerpts of the Modal profile, the ECL Mapping Specifi-
cation, and of the applied semantic constraints.

The ECL Mapping Specification in the middle upper part of Figure 4.9 the invariant rtReq-
StrictUpperBound for the Modal stereotype «ClockReset». For strict upper bound maximal
delays, we define that a real-time requirement constrains the time between the message recep-
tion event occurrence prior to a clock reset and the task completion event occurrence prior to the
maximal delay. Thus, the invariant constrains the task completion unification of the message
prior to a hot time condition to occur before the upper bound value of the time condition w.r.t.
the message reception unification of the message prior to a clock reset. To this end, the invariant
initially determines the time condition following the clock reset. If the time condition is hot and
its operator defines a strict upper bound (i.e., the operator equals “<”), the implication becomes
true and hence the invariant is relevant to the context clock reset.

147

C
ha

pt
er

4
E

ar
ly

Ti
m

in
g

A
na

ly
si

s
ba

se
d

on
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

ns

«derivedFrom»

Abstract Syntax

«profile» Modal

Mapping Specification

context ClockReset

inv rtReqStrictUpperBound:
let timeCondition: String = self.getAssociatedTimeCondition() in
(timeCondition.isHot() and timeCondition.getOperator() = “<”)

implies (
/* messages before context clock reset */
let precedingMessages: Set(ModalMessage) =

self.getPrecedingMessages() in
/* last msg. reception unification occurrence before context

clock reset */
let precedingMsgReceiveUnification: Event = Expression Sup (

precedingMessages.msgReceiveUnification) in
/* messages in between context clock reset and time condition */
let constrainedMessages: Set(ModalMessage) =

self.getMessagesUntil(timeCondition) in
/* last task compl. unification occurrence before time condition */
let constrainedTaskCompleteUnification: Event

= Expression Sup (
constrainedMessages.taskCompleteUnification) in

let upperBoundEvent: Event = Expression DelayFor (
precedingMsgReceiveUnification, self.getModel().globalTime,
timeCondition.getValue())

Relation Precedes (
constrainedTaskCompleteUnification, upperBoundEvent)

)

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS Clock globalTime
Clock EmcyBraking.obstacle_msgReceiveUnification
Clock EmcyBraking.standstill_taskCompleteUnification

Expression EmcyBraking.cr1_precedingMsgReceiveUnification =
 Sup (

clocks->{EmcyBraking.obstacle_msgReceiveUnification})
Expression EmcyBraking.cr1_constrainedTaskCompleteUnification =

 Sup (
clocks->{…, EmcyBraking.standstill_taskCompleteUnification})

Expression EmcyBraking.cr1_upperBoundEvent = DelayFor (
clockToDelay->

EmcyBraking.cr1_precedingMsgReceiveUnification,
clockForCounting->globalTime,
delay->t_brake)

Relation EmcyBraking.cr1_rtReqStrictUpperBound[Precedes] (
leftClock->EmcyBraking.cr1_constrainedTaskCompleteUnification,
rightClock->EmcyBraking.cr1_upperBoundEvent)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «uses»

«references»

- hot

- cold

«enumeration»

TemperatureKind

temperature:

 TemperatureKind

«stereotype»

Condition

«stereotype»

TimeCondition

«stereotype»

ModalMessage

«stereotype»

ClockReset

msd EmcyBraking

obstacle

:Situation

Analysis

:Electronic
Stability
Control

standstill

:Adaptive
Cruise
Control

c < tbrake

Message

Reception

Task Completion

c = 0Clock reset

with ID “cr1” ...

...

Semantic Constraints

Pre-defined Constraints

Expression Sup (clocks: Set(Clock)): Clock {...}

Expression DelayFor (clockToDelay: Clock,
clockForCounting: Clock, delay: Integer): Clock {...}

Relation Precedes (leftClock: Clock, rightClock: Clock) {...}

Figure 4.18: Specification excerpt of semantics for clock resets and hot time conditions including example models

14
8

4.4 MSD Semantics for Timing Analyses

If the invariant is relevant, we determine all message reception unification DSEs of all MSD
messages prior to the context clock reset. From these, we determine the last message recep-
tion unification DSE precedingMsgReceiveUnification directly prior to the context clock reset
by means of the pre-defined CCSL clock expression Sup (cf. Section 2.7.2.1). This expression
defines a new clock that is the fastest among all clocks in a given parameter clock set. Sub-
sequently, we determine the last task completion unification DSE constrainedTaskCompleteU-
nification of all MSD messages prior to the associated time condition in an analogous manner.
We define a new clock upperBoundEvent representing the upper bound of the time condition
through the clock expression DelayFor, which delays precedingMsgReceiveUnification by the
upper bound value. Finally, we constrain the ticks of constrainedTaskCompleteUnification to
occur before the ticks of upperBoundEvent by means of the clock expression Precedes.

Metamodel Level M1
The lower part of Figure 4.18 exemplarily depicts excerpts of the Platform-specific MSD Spec-
ification and of the corresponding CCSL Model generated through the automatically derived
MSD-to-CCSL QVT-O Transformation.

The left lower part of the figure shows an excerpt of the MSD EmcyBraking encompassing
the MSD message obstacle prior to the clock reset with the identifier cr1 as well as the
MSD message standstill prior to the hot time condition c < tbrake. The focus is on the
message reception location for obstacle and on the task completion location for standstill.

The derived transformation generates the CCSL Model as indicated by the excerpt in the right
lower part of Figure 4.18. As explained in Section 4.4.2.1, the derived transformation generates
a generic clock variable globalTime that keeps track of the overall time progress. Furthermore,
it translates any MSD message to each a clock variable representing the occurrence of message
reception as well as task completion unifications, inter alia (cf. Section 4.4.1.1). For exam-
ple, a clock variable EmcyBraking.obstacle_msgReceiveUnification is generated for the MSD
message obstacle of the MSD EmcyBraking, and a clock variable EmcyBraking.standstill_-
taskCompleteUnification is generated for the message standstill.

Furthermore, the transformation generates for any clock reset of all MSDs three CCSL model
clock expressions using the pre-defined clock expressions referenced at metamodel level M2.
That is first, a new clock is defined that represents the occurrence of the message reception unifi-
cation of the last MSD message prior to the clock reset. In terms of the example model, the clock
EmcyBraking.obstacle_msgReceiveUnification serves as argument for the parameter set clocks
of the clock expression Sup. Since this is the only clock in the parameter set due to the fact that
the MSD message obstacle is the only message prior to the clock reset with the identifier
cr1, this clock is newly defined as EmcyBraking.cr1_precedingMsgReceiveUnification. Second,
a new clock is defined that represents the occurrence of the task completion unification of the
last MSD message prior to the time condition. For example, the clock EmcyBraking.standstill_-
taskCompleteUnification together with other task completion unification clocks serve as argu-
ments for the parameter set clocks of the Sup expression. From the parameter set, this clock is
chosen because it is the fastest among the argument clock set and hence the last task comple-
tion unification prior to the time condition. The clock is newly defined in the variable Emcy-
Braking.cr1_constrainedTaskCompleteUnification. Third, the transformation generates a clock
expression using DelayFor that delays the message reception unification clock stemming from
the last MSD message prior to the clock reset by the value of the time condition. For exam-
ple, the expression defines a new clock EmcyBraking.cr1_upperBoundEvent that is delayed by
t_brake time units w.r.t. the clock EmcyBraking.cr1_precedingMsgReceiveUnification.

149

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

Finally, the transformation generates for each clock reset a CCSL model clock relation using
the pre-defined clock relation Precedes referenced at metamodel level M2. This relation enfor-
ces the task completion unification clock stemming from the last MSD message prior to the time
condition to tick before the delayed clock representing the upper bound value of the time con-
dition. For example, the relation EmcyBraking.cr1_rtReqStrictUpperBound applies the clock
EmcyBraking.standstill_constrainedTaskCompleteUnification as argument for leftClock and the
clock EmcyBraking.cr1_upperBoundEvent as argument for rightClock.

Metamodel Level M0
Figure 4.19 depicts an exemplary CCSL run resulting from the CCSL model excerpt depicted
in the right lower part of Figure 4.18. This CCSL run simulates an situation, where the time
condition value placeholder tbrake has each two exemplary concrete values, leading one time
to the fulfillment and another time to the violation of the real-time requirement.

0 5

t

10

legend

clock expression
Sup

clock
tick

clock expression
DelayFor

clock relation
Precedes

globalTime

EmcyBraking.obstaclemsgReceiveUnification

EmcyBraking.cr1constrainedTaskCompleteUnification

EmcyBraking.cr1upperBoundEvent: tbrake=4

EmcyBraking.cr1upperBoundEvent: tbrake=8

EmcyBraking.standstilltaskCompleteUnification

EmcyBraking cr1precedingMsgReceiveUnification

2:

1:

5:

4:

6:

7:

3:

Row

Figure 4.19: Exemplary CCSL run simulating a real-time requirement fulfillment and violation

The ticks of the clocks EmcyBraking.obstaclemsgReceiveUnification (second topmost row)
and EmcyBraking.standstilltaskCompleteUnification (row 7) represent the occurrences of the
message reception and task completion unification of the MSD messages obsta-
cle and standstill, respectively. Based on both clocks, the clock expression
Sup defines each a new clock EmcyBraking.cr1precedingMsgReceiveUnification (row 3) and
EmcyBraking.cr1constrainedTaskCompleteUnification (row 6). Furthermore, the clock expression
DelayFor delays the clock EmcyBraking.cr1precedingMsgReceiveUnification by tbrake time units,
defining the new clock EmcyBraking.cr1upperBoundEvent.

This clock is depicted in row 4 and 5 with each two exemplary concrete values for tbrake.
The clock relation Precedes enforces the tick of EmcyBraking.cr1constrainedTaskCompleteUnification
to occur before the tick of EmcyBraking.cr1upperBoundEvent. In the example situation,
EmcyBraking.cr1constrainedTaskCompleteUnification ticks at the instant 7. This clock tick fulfills
the Precedes relation if the value tbrake is 8 so that EmcyBraking.cr1upperBoundEvent ticks at

150

4.4 MSD Semantics for Timing Analyses

the instant 9 (row 4). This means that the software execution on the specified platform fulfills
the real-time requirement for the given analysis context. However, if the value tbrake is 4 (row
5), the tick of EmcyBraking.cr1constrainedTaskCompleteUnification cannot fulfill the Precedes relation
because the real-time requirement is too tight. That is, the BDD solver of TIMESQUARE

cannot solve the underlying Boolean expression, and the simulation stops with a deadlock
(cf. Section 2.7.1). This situation represents a real-time requirement violation.

4.4.3.2 Timing Analysis Contexts

In order to conduct a particular timing analysis, the Timing Analysts have to specify the concrete
simulation scenario that they want to investigate (cf. process step Define Simulation Scenarios
in the lower left of Figure 4.6). Such an analysis scenario is known as analysis context [SG14;
OMG11]. For the specification of such timing analysis contexts, we provide the TAM sub-
profile AnalysisContext (cf. Section 4.1). This profile enables the Timing Analysts annotating
assumption MSDs with timing specifications for the environment events triggering a simulation
scenario, and it provides further specification means for the simulation configuration. The ti-
ming specifications define how often and at which instants an environment events triggering the
system behavior can occur, and like MARTE [OMG11] we refer to them as arrival patterns.

We support periodic as well as sporadic arrival patterns in our semantics. Whereas periodic
arrival patterns specify the triggering of environment events that occur repeatedly with a fix
period, sporadic arrival patterns specify the triggering of environment events that occur spora-
dically with certain restrictions. These restrictions encompass a minimum arrival rate before an
event may occur, a maximum arrival rate until an event has to occur, and combinations of both.

Figure 4.20 depicts a specification excerpt of the semantics for the definition of analysis
context scenarios with a periodic arrival rate at metamodel level M2 (upper part of the figure)
as well as corresponding example models at metamodel level M1 (lower part of the figure).
Figure 4.21 depicts an exemplary corresponding CCSL run at metamodel level M0. We provide
specification excerpts, example models, and example CCSL runs for sporadic arrival patterns in
Appendix B.1 (cf. Figures B.19 to B.24), and the complete ECL pseudocode specification for
analysis contexts in Listing B.8 in Appendix B.2.

Metamodel Level M2
The upper part of Figure 4.20 depicts excerpts of the TAM profile, the ECL Mapping Specifica-
tion, and of the applied semantic constraints.

The ECL Mapping Specification in the middle upper part of Figure 4.20 defines the invariant
periodicPattern for the Tam stereotype «TamAssumptionMSD», inter alia. This invariant en-
forces the occurrence of message creation events associated with the initial MSD message of
a «TamAssumptionMSD» to occur periodically. To this end, we first determine the period of
the «TamPeriodicPattern» associated with the «TamAssumptionMSD». We define a new clock
periodicActivation that ticks every period ticks by means of the pre-defined CCSL clock ex-
pression PeriodicOffsetP. Its arguments are the globalTime clock and the period value. Finally,
we determine the object system message associated with the initial MSD message of the con-
text TamAssumptionMSD. We enforce the msgCreateEvt DSE of this object system message
to tick simultaneously with the periodicActivation clock through the pre-defined CCSL relation
Coincides.

151

C
ha

pt
er

4
E

ar
ly

Ti
m

in
g

A
na

ly
si

s
ba

se
d

on
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

ns

«derivedFrom»

Abstract Syntax

«profile» TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage

def: msgCreateEvt: Event

context TamAssumptionMSD

inv periodicPattern:
self.pattern.isPeriodic() implies (

let period: Integer = self.pattern::period in
let periodicActivation: Event = Expression PeriodicOffsetP

(self.getModel().globalTime, period) in
let initialMSDMsg: ModalMessage = self.getInitialMessage() in
let initialObjSysMsg: ObjectSystemMessage =

initialMSDMsg.getObjectSystemMessage() in

Relation Coincides (
initialObjSysMsg.msgCreateEvt, periodicActivation)

)

«references»

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS Clock globalTime

Clock trajectoryBeacon_msgCreateEvt

Integer BeaconFrequency.period = 3

Expression BeaconFrequency_periodicActivation
 = PeriodicOffsetP (

baseClock->globalTime,

period->BeaconFrequency.period)

Relation BeaconFrequency_periodicPattern [Coincides] (
clock1->trajectoryBeacon_msgCreateEvt,

clock2->BeaconFrequency_periodicActivation)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «uses»

pattern:
 TamArrivalPattern

«stereotype»
TamAssumptionMSD

msd BeaconFrequency

trajectory
Beacon

:Situation

Analysis
:V2XComm-

unication

Message

Creation

Semantic Constraints

Pre-defined Constraints

Expression PeriodicOffsetP
 (baseClock: Clock, period: Integer): Clock {...}

Relation Coincides (
clock1: Clock, clock2: Clock) {...}

«references»

«stereotype»

TamArrival

Pattern

period: NFP_Duration

«stereotype»
TamPeriodicPattern

«references»

«TamAssumptionMSD»
pattern =
 TamPeriodicPattern {
 period = 3ms
 }

«stereotype»

ObjectSystemMessage

msdMessages

*

«stereotype»

Modal::ModalMessage

Figure 4.20: Specification excerpt of semantics for periodic arrival patterns including example models

15
2

4.4 MSD Semantics for Timing Analyses

Metamodel Level M1
The lower part of Figure 4.20 exemplarily depicts excerpts of the Platform-specific MSD Spec-
ification and of the corresponding CCSL Model generated through the automatically derived
MSD-to-CCSL QVT-O Transformation.

The MSD excerpt in the left lower part shows the «TamAssumptionMSD» BeaconFrequency.
It specifies the MSD message trajectoryBeacon to be sent from the environment lifeline
:V2XCommunication to the :SituationAnalysis. The contents of the stereotype «TamAssump-
tionMSD» define that this happens periodically every 3ms.

As indicated in the generated CCSL Model excerpt in the right lower part of Figure 4.20,
the derived transformation translates the period of any «TamAssumptionMSD» with a perio-
dic arrival pattern to each an Integer variable. For example, the tagged value period of the
«TamPeriodicPattern» of the MSD BeaconFrequency is translated to the Integer variable Bea-
conFrequency.period with the value 3.

Furthermore, the transformation generates for any «TamAssumptionMSD» with a periodic
arrival pattern each a CCSL model clock expression using the expression PeriodicOffsetP pre-
defined at metamodel level M2. This CCSL model clock expression takes the globalTime as
argument for the baseClock parameter and the Integer variable representing the period value as
argument for the period clock parameter. For example, the transformation generates the Periodi-
cOffsetP expression, where the Integer variable BeaconFrequency.period is applied as argument
for period. This expression defines the new clock BeaconFrequency_periodicActivation.

Finally, the transformation generates for any «TamAssumptionMSD» with a periodic arrival
pattern each a CCSL model clock relation using the relation Coincides pre-defined at metamodel
level M2. This clock relation gets the clock representing the message creation event of the
object system message associated with the initial MSD message of the «TamAssumptionMSD»
as argument for the parameter clock1. Furthermore, it gets the newly defined clock representing
the periodic activation of the «TamAssumptionMSD» as argument for the parameter clock2.
For example, the transformation generates the relation BeaconFrequency_periodicPattern of
the type Coincides with the clocks trajectoryBeacon_msgCreateEvt and BeaconFrequency_-
periodicActivation as arguments. This relation enforces the trajectoryBeacon_msgCreateEvt
clock to tick every 3 instants, meaning that the message creation event of the object system
message associated with the initial MSD message trajectoryBeacon occurs every 3ms.

Metamodel Level M0
Figure 4.21 depicts an exemplary CCSL run resulting from the CCSL model excerpt depicted
in the right lower part of Figure 4.20. This CCSL run simulates the periodic occurrence of the
message creation event of the object system message associated with the initial MSD message
trajectoryBeacon in the «TamAssumptionMSD» BeaconFrequency.

The topmost row depicts the ticks of the reference clock globalTime. The middle row depicts
the ticks of the clock BeaconFrequencyperiodicActivation, which ticks every 3th tick of the global-
Time clock. The bottommost row depicts the ticks of the clock trajectoryBeaconmsgCreateEvt,
where the Coincides relation enforces this clock to tick simultaneously with the clock
BeaconFrequencyperiodicActivation.

153

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

BeaconFrequencyperiodicActivation

0 5

t

10

legend

clock t ick

trajectoryBeaconmsgCreateEvt

globalTime

clock relation
Coincides

clock expression
PeriodicOffsetP

Figure 4.21: Examplary CCSL run simulating a periodic arrival pattern

4.5 Exemplary Timing Analysis

In this section, we illustrate how the different aspects of the semantics as presented in Section 4.4
work together. For this purpose, we explain an exemplary execution of a CCSL model automati-
cally generated from the platform-specific MSD specification example presented in Section 4.1.

Figure 4.22 depicts an excerpt of the CCSL simulation run, where we only show the most
important clocks. We refer to the particular semantics aspects for the particular complete under-
lying sets of clock expressions and relations as exemplified in Section 4.4 and Appendix B.1.
Note that TIMESQUARE likewise allows to select only the clocks of interest in the VCD vi-
sualization although the BDD solver in the background considers the complete clock model
(cf. Section 2.7.1). Figure B.30 in Appendix B.3 depicts the corresponding VCD screenshot
resulting from the simulation in TIMESQUARE.

The topmost row depicts the tick of the clock trajectoryBeaconmsgCreateEvt at instant 50.
This tick stems from the environment message trajectoryBeacon in the «TamAssump-
tionMSD» BeaconFrequency (cf. Figure 4.5). The arrival pattern of this MSD specifies that the
corresponding message event occurs periodically any 25ms. As explained in Section 4.4.3.2, the
corresponding semantics enforce the message create unification (cf. Section 4.4.1.1) to occur not
at other instants than this period. Thus, the message creation event trajectoryBeaconmsgCreateEvt
unifiable with the corresponding location (cf. Section 4.4.1.2) also occurs any 25ms, where the
figure excerpt depicts its second tick in the overall run.

The MSD message trajectoryBeacon is sent via the logical connector from
v2x: V2XCommunication to sa: SituationAnalysis. The ports of the TamECUs that these com-
ponents are allocated to have no «TamComInterface» applied, and the «TamComConnection»
that the logical connector is applied to has no quality-of-service information specified (cf. Fi-
gure 4.4). Thus, the not depicted message send, reception, and consumption events occur in the
example run at the instants 51, 52, and 53, respectively. Row 2 depicts the subsequent tick of
the clock trajectoryBeacontaskStartEvt at instant 54.

As described in Section 4.4.2.1, the static task execution delay until the following tick of the
clock trajectoryBeacontaskCompleteEvt depicted in row 3 is computed as follows. The operation
signature of trajectoryBeacon is a «TamOperation» having an execTime with the value
5ms (cf. Figure 4.4). The corresponding receiving component role sa: SituationAnalysis is al-
located to the «TamECU» :µC1, whose «TamProcessingUnit» :PUµC1 has a speedFactor with
the value 1 (cf. Figure 4.4). Thus, the task executing the operation needs 5ms

1 = 5ms for the
processing, and trajectoryBeacontaskCompleteEvt ticks at instant 59.

154

4.5
E

xem
plary

Tim
ing

A
nalysis

t

55

60

65

70

75

80

100

50

Occurs peridically each 25ms (second occurrence in the run)

Occurs sporadically any [50. 55]ms

(first occurrence in the run)

trajectoryBeacon execTime = 5ms, speedFactor

of PUµC1 = 1  5 instants task execution delay

Scheduler cannot dispatch obstacle task as

long trajectoryBeacon task is not completed

(numCores of PUµC1 = 1)

Subsequent message is created

immediately (1 instant) after task completion

(CANBus capacity = 100kbit/s for 500bit

enableBraking msgSize) + (blockT = 1ms)

 5+1 = 6 instants message send delay

Task complete event for standstill

occurs at instant 105 and is unified

with the corresponding locat on in MSD

EmcyBraking

This clock cannot tick because the Precedes relat ion

to EmcyBraking cr1upperBoundEvent cannot be fulfilled

 real-time requirement violation

Overhead for dispatching message from µC1 to CAN bus

1ms (commTxOvh of «TamComInterface» on port from µC1 to

CANBus = 1ms)  1 instant message dispatch delay

Overhead for dispatching message from CAN bus to µC2 1ms

(commRcvOvh of «TamComInterface» on port from CANBus to

µC2 = 1ms)  1 instant message consumption delay

Scheduler dispatches

trajectoryBeacon task

2:

1:

5:

4:

6:

8:

9:

3:

16:

15:

11:

12:

13:

14:

10:

18:

17:

trajectoryBeacontaskStartEvt

trajectoryBeaconmsgCreateEvt

obstaclemsgCreateEvt

OSEK/VDX-Scheduler-µC1dispatch

EmcyBraking.cr1precedingMsgReceiveUnification

obstaclemsgConsumeEvt

obstacletaskStartEvt

trajectoryBeacontaskCompleteEvt

standsti ltaskCompleteEvt

EmcyBraking cr1upperBoundEvent

enableBrakingmsgCreateEvt

enableBrakingmsgSendEvt

enableBrakingmsgReceiveEvt

enableBrakingmsgConsumeEvt

obstacletaskCompleteEvt

EmcyBraking cr1constrainedTaskCompleteUnification

EmcyBraking standstilltaskCompleteUnifica ion

Row

7: obstaclemsgReceiveEvt

Real-time requirement expects standstill task

completion to occur at last at instant 102, i e.,

less than 50ms after the obstacle message

reception event that occured at instant 53 obstacle execTime = 5ms,

speedFactor of PUµC1 = 1

 5 instants task execution delay

Scheduler dispatches

obstacle task

obstaclemsgReceiveEvt

occurs so that clock for

clock reset cr1 ticks
obstacle task cannot be

dispatched directly after

message consumption

Figure 4.22: Exemplary simulation run excerpt for the CCSL model automatically generated from the platform-specific MSD specification descri-
bed in Section 4.1 (only selected clocks depicted)

155

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

Row 4 depicts the ticks of the clock OSEK/VDX-Scheduler-µC1dispatch. As described in
Section 4.4.2.2, this clock can only tick if the corresponding processing unit for the execu-
tion of a requested task dispatching has a free core. In our example, this is the case at instant 54,
so that also the clock trajectoryBeacontaskStartEvt depicted in the row above is allowed to tick as
mentioned above. However, OSEK/VDX-Scheduler-µC1dispatch must not tick at the following 5
instants. This is because the task for processing obstacle is not completed until then and the
«TamProcessingUnit» :PUµC1 has numCores of 1 (cf. Figure 4.4).

Row 5 depicts the tick of the clock obstaclemsgCreateEvt. This tick stems from the environ-
ment message obstacle in the «TamAssumptionMSD» ObstacleArrivalRate (cf. Figure 4.5).
The arrival pattern of this MSD specifies that the corresponding environment event occurs spo-
radically between any 50 and 55ms. As sketched in Figures B.23 and B.24 in Appendix B.1,
the semantics enforce the corresponding message creation event to occur not at other instants
outside this interval. Thus, the message creation event obstaclemsgCreateEvt unifiable with the
corresponding location (cf. Section 4.4.1.2) of the initial MSD message obstacle also occurs
within this instant interval. In our example run, it occurs at instant 51, where the figure excerpt
depicts its first tick in the overall run.

The row below depicts the tick of the clock EmcyBraking.cr1precedingMsgReceiveUnification at
instant 53. This clock stems from the clock reset (assuming that it has the identifier cr1)
in the MSD EmcyBraking (cf. Figure 4.2(c)), which is specified directly below the environ-
ment message obstacle. As explained in Section 4.4.3.1, the corresponding semantics
enforce EmcyBraking.cr1precedingMsgReceiveUnification to tick on the last message receive unifi-
cation occurrence before the clock reset. Thus, this clock ticks on the tick of the not de-
picted clock EmcyBraking.obstaclemsgReceiveUnification, which in turn ticks due to the tick of
obstaclemsgReceiveEvt (row 7, cf. Section 4.4.1.2).

Row 8 depicts the tick of the clock obstaclemsgConsumeEvt, which ticks at instant 54. As
described in Section 4.4.2.2, the scheduler tries to dispatch the following task processing
obstacle directly at the following instant. However, the executing «TamProcessingUnit»
:PUµC1 has numCores of 1 (cf. Figure 4.4), and the task processing trajectoryBea-
con has not finished yet (cf. rows 3 and 4). Thus, a dynamic delay occurs since the sche-
duler can dispatch the obstacle processing task not earlier than after the tick of the clock
trajectoryBeacontaskCompleteEvt (cf. row 3). This results in simultaneous ticks of the clocks
obstacletaskStartEvt and OSEK/VDX-Scheduler-µC1dispatch at instant 60.

The obstacle task is completed with the tick of the clock obstacletaskCompleteEvt at instant
65 (cf. row 10), where the task execution delay is computed analogously as described above
for trajectoryBeacon. The next MSD message in the MSD EmcyBraking is enable-
Braking sent by the lifeline sa: SituationAnalysis in reaction to the environment message ob-
stacle (cf. Figure 4.2(c)). As mentioned in Section 4.4.2.1, we do not consider an explicit
delay between task completion and message creation but define the corresponding events to
occur immediately consecutive for two subsequent messages covering the same lifeline. Thus,
enableBrakingmsgCreateEvt occurs at instant 66 (cf. row 11).

In the following three paragraphs, we describe the timing effects and computation of the
static message dispatch, send, and consumption delays (cf. Section 4.4.2.1 and Appendix B.1),
respectively. The MSD message enableBraking is a message sent between distributed com-
ponents, that is, sa: SituationAnalysis and vc: VehicleControl are allocated to different «Tam-
ECU»s (cf. Figure 4.4). As mentioned in Section 4.4.2.1, our semantics consider different and
typically more platform properties for the resulting distributed message dispatch/send/consump-
tion delays than for internal ones (see also Section 4.6.1.2).

156

4.5 Exemplary Timing Analysis

Row 12 depicts the tick of the clock enableBrakingmsgSendEvt. As sketched in Figures B.7
and B.8 in Appendix B.1, we compute the message dispatch delay between the preceding tick
of the clock enableBrakingmsgCreateEvt and this tick by considering the underlying distributed
platform communication properties. The sending software component as: SituationAnalysis is
allocated to the «TamECU» :µC1, and the logical connector sa2vc sending the MSD message
is allocated to the «TamComConnection» CANBus (cf. Figure 4.4). The port connecting :µC1
with the CANBus is a «TamComInterface» with a commTxOvh of 1ms. This specifies a duration
overhead for encoding the message from its logical representation into a technical representation
suitable for sending it via the CAN bus. Thus, the distributed message dispatch delay is one
instant, and enableBrakingmsgSendEvt ticks at instant 68.

Row 13 depicts the tick of the clock enableBrakingmsgReceiveEvt. As sketched in Figu-
res B.9 and B.10 in Appendix B.1, we compute the message send delay between the pre-
ceding tick of the clock enableBrakingmsgSendEvt and this tick by considering the underlying
distributed platform communication properties. The operation signature of the MSD mes-
sage enableBraking has a msgSize of 500bit (cf. tagged value of the «TamOperation»
enableBraking() in Figure 4.4). This message is sent via the «TamComConnection»
CANBus, which has a throughput of 100kbit/s (cf. tagged value capacity in Figure 4.4). Fur-
thermore, it is blocked for sending one message for 1ms (cf. tagged value blockT). Thus,
the distributed message send delay is 500bit

100kbit/s + 1ms = 500bit
100bit/ms + 1ms = 5ms + 1ms, and

enableBrakingmsgReceiveEvt ticks at instant 74.
Row 14 depicts the tick of the clock enableBrakingmsgConsumeEvt. As sketched in Figures B.13

and B.14 in Appendix B.1, we compute the message consumption delay between the preceding
tick of the clock enableBrakingmsgReceiveEvt and this tick by considering the underlying distribu-
ted platform communication properties. The receiving software component vc: VehicleControl
is allocated to the «TamECU» :µC2, and the logical connector sa2vc sending the MSD mes-
sage is allocated to the «TamComConnection» CANBus (cf. Figure 4.4). The port connecting
the CANBus with :µC2 is a «TamComInterface» with a commRcvOvh of 1ms. This specifies a
duration overhead for decoding the message from its technical bus representation into a logi-
cal representation suitable for the application software component vc: VehicleControl. Thus, the
distributed message consumption delay is one instant, and enableBrakingmsgConsumeEvt ticks at
instant 76.

The computation of the static delays and the determination of the dynamic delays for the
particular events of the remaining MSD messages follows the same principle. Thus, we skip
their description and focus at last on the clocks that are generated from the elements specified
at the end of the MSD EmcyBraking.

Row 15 depicts the tick of the clock EmcyBraking.cr1upperBoundEvent. As explained in
Section 4.4.3.1, our semantics use this clock to represent the maximal delay c<50 w.r.t. the
clock reset in the MSD EmcyBraking (cf. Figure 4.2(c)). As explained above, the clock reset is
represented by the clock EmcyBraking.cr1precedingMsgReceiveUnificiation in row 6. In order to repre-
sent the maximal delay value 50, EmcyBraking.cr1upperBoundEvent ticks at instant 103, that is, 50
instants after the tick of EmcyBraking.cr1precedingMsgReceiveUnificiation at instant 53.

Due to the static and dynamic delays between the event occurrences before, the clock
standstilltaskCompleteEvt representing the final task completion event for the message stand-
still ticks at instant 105 (row 16). As explained in Section 4.4.1.2, this event is
unified with corresponding MSD message location. This is represented by the clock
EmcyBraking.standstilltaskCompleteUnification ticking at the same instant (row 17). As explained
in Section 4.4.3.1, this represents the last unification of a task completion event before a time

157

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

condition and is captured by the clock EmcyBraking.cr1constrainedTaskCompleteUnification ticking at
the same instant (row 18).

For maximal delays in terms of MSD real-time requirements, our semantics enforce the last
task complete unification clock to tick before the upper bound event clock (cf. Section 4.4.1.2).
However, due to the occurred platform-induced timing effects in terms of dynamic and static de-
lays this is not the case for the clock EmcyBraking.cr1constrainedTaskCompleteUnification. Thic clock
ticks at instant 105 after EmcyBraking.cr1upperBoundEvent, which ticks at instant 103. Thus, the
BDD solver of TIMESQUARE (cf. Section 2.7.1) cannot solve the underlying Boolean expres-
sion, and the simulation stops with a deadlock. This represents a real-time requirement violation
for the analysis context in which the trajectoryBeacon and obstacle are almost simul-
taneously received by the software component sa: SituationAnalysis.

The detection of such a real-time requirement violation typically opens up a variety of po-
tential countermeasures to fix the defect. One possible countermeasure would be to speed up
the «TamECU» :µC1 that the software component is allocated to: A speedFactor of 2 would
allow to process trajectoryBeacon and obstacle within each 3 instants. This would
reduce the end-to-end response time until the task completion of standstill by altogether 4
instants, thereby fulfilling the real-time requirement. Other countermeasures are the addition of
an additional core to :µC1 enabling the concurrent processing of the two messages, an exchange
of the communication media between the two TamECUs improving the message transmission
times, the relaxation of the real-time requirement in communication with all stakeholders, etc.

4.6 Realization and Evaluation

We sketch the implementation aspects for the concepts described throughout this chapter in
Section 4.6.1 and describe the conduct of a case study to evaluate the concepts in Section 4.6.2.

4.6.1 Implementation

Figure 4.23 depicts the expanded BPMN sub-process Compute Timing Information, which is
collapsed in the overall process description depicted in Figure 4.6 (Section 4.2). This process
encompasses the automatic process steps that the Timing Analysts conduct by means of our
implementation, including the particular work product inputs and outputs. First, they deter-
mine the particular object system messages and compute their static delays in the automatic
step Preprocessing, which we implemented through a QVT-O [OMG16; QVTo] model trans-
formation. These object system messages are added to the Platform-specific MSD Specification.
Subsequently, the Timing Analysts generate the CCSL model by means of GEMOC Studio [GE-
MOC] based on the object system messages and the pre-computed static delays. For this pur-
pose, GEMOC Studio takes the Platform-specific MSD Specification, our ECL Specification, GE-
MOC’s CCSL library (pre-defined CCSL constraints), and our MoCCML library (user-defined
MoCCML constraints) as inputs.

Figure 4.24 depicts the coarse-grained software architecture that realizes the concepts des-
cribed in this chapter. The architecture visualization encompasses the components and UML
profiles newly implemented in the course of this thesis, the existing and hence reused frame-
works, tool suites, and UML profiles, as well as the dependencies between these components.
The overall implementation bases on the Eclipse Modeling Framework (EMF) [EMF] and hence
applies the component EMF as root component.

158

4.6 Realization and Evaluation

Compute Timing Information

ECL
Specification

CCSL
Model

Object System
Messages with
Static Delays

GEMOC Studio

CCSL/
MoCCML
Library

Legend

Nodes Connections

Persistent Model

Start Event

End Event

Output Data Control Flow

Data FlowAutomated Step

QVT-O

Tool FrameworkWork Product

Generate

CCSL Model
Preprocessing

Expanded
Sub-process

Platform-
specific MSD
Specification

Figure 4.23: Expanded BPMN sub-process Compute Timing Information (cf. Figure 4.6)

pkg [Package] Implementation Root [Coarse-grained Architecture]

SCENARIO-
TOOLS MSD

ECL Specification
 &
MoCCML Library

PAPYRUS

TAM

MARTE

UML2EMF

QVT-O

Component-
based SCENARIO-
TOOLS MSD

Preprocessing

Legend

Existing, Reused Frame-
work / Tool Suite / Profile

Newly Implemented
Component /
Specification / Profile

GEMOC Studio

CCSL &
CCSL Library

MoCCML

ECL

Figure 4.24: Coarse-grained architecture of the implementation and the reused components

159

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

The TAM profile (cf. Section 4.1), which we present in detail in Section 4.6.1.1, as part of
the component Tam extends both the MARTE profile as part of the component Marte and
the Modal profile as part of ScenarioToolsMSD. Furthermore, the profiles TAM, MARTE,
and Modal extend the UML metamodel as part of the component UML2 so that the respective
components containing these profiles depend on UML2. The component Component-based
ScenarioToolsMSD extends the tool suite ScenarioToolsMSD with hierarchical software
components as structural basis for MSDs (cf. Sections 3.2 and 3.9.1). The component Prepro-
cessing provides a set of QVT-O mappings and queries including Java black-box libraries for
automatically setting up the particular object system messages and computing their static de-
lays. Thus, it depends on the QVT-O framework [QVTo] as well as the Tam component, whose
TAM profile defines the object system messages.

The component ECL Speci�cation & MoCCML Library implements our MSD semantics
dedicated to timing analyses (cf. Section 4.4 and Appendix B.2). Thus, it encompasses our
ECL specification for the declaration of DSEs and our user-defined semantic constraints for the
MoCC specified by means of MoCCML. The component thereby depends on the component
Gemoc Studio [GEMOC]. This component provides the languages ECL, CCSL, and MoCCML
in its corresponding subcomponents. Beyond the CCSL language, the component CCSL &
CCSL Library provides also the pre-defined semantic constraints for the MoCC by means of a
CCSL library, which we reference in our ECL specification.

In the following section, we present the TAM profile in detail. Subsequently, we present the
concrete computation of the particular static delay kinds exploiting the TAM profile details and
refining the abstract computations in Section 4.4.2.1 as part of the component Preprocessing.

4.6.1.1 The Timing Analysis Modeling (TAM) Profile in Detail

Figure 4.25 depicts the detailed overview of our Timing Analysis Modeling (TAM) profile. It
imports the subprofiles GRM and GQAM as well as the model library MARTE_Library from
MARTE (cf. Section 2.5.3). Furthermore, it imports the Modal profile (cf. Section 2.5.1). We
divide TAM itself into the subprofiles Platform, ApplicationSoftware, AnalysisContext, and Simu-
lationExtensions. Platform is further subdivided into the profiles ControlUnit, Communication,
and OperatingSystem. We describe these subprofiles in the following.

Subprofile AnalysisContext
Figure 4.26 depicts the TAM subprofile AnalysisContext. It provides stereotypes for describing
the analysis context of a concrete timing analysis in TIMESQUARE. The profile imports and
specializes stereotypes of the MARTE subprofile GQAM (cf. Section 2.5.3.3). We describe the
depicted stereotypes in the following.

TamAnalysisContext The analysis context for a concrete timing analysis in TIMESQUARE.

The OCL invariant restricts the properties derived from GaAnalysisContext. That is, it
ensures that there is exactly one platform property that has the stereotype «TamResource-
Platform» applied and that the workload properties have the stereotype «TamWorkload-
Behavior» applied.

TamResourcePlatform The root container for the platform model of a platform-specific MSD
specification.

TamWorkloadBehavior A container for the MSDs to be analyzed for a concrete timing analysis
in TIMESQUARE.

160

4.6 Realization and Evaluation

pkg TAM Profile Stucture

«profile»
Platform

«profile»
Application

Software

«profile»
Analysis
Context

«profile»
ControlUnit

«profile»
Communication

«profile»
Operating

System

«profile»
Simulation
Extensions

«profile»
TAM

«profile»
GRM

«profile»
GQAM

«modelL brary»
MARTE_Library

«profile»
Modal

«profile»
MARTE

«metamodel»
UML

«reference»

«import»

«reference» «reference»

«import» «import»

«import»

Legend

Existing, Reused Profile / Metamodel Newly Implemented Profile«profile»
«profile» /

«metamodel»

Figure 4.25: Detailed overview of the TAM subprofiles

The OCL invariant restricts the properties derived from GaWorkloadBehavior. That is,
it ensures that the demand properties have the stereotype «TamAssumptionMSD» applied
and that the behavior properties have the type UML Interaction and have not the stereo-
type «TamAssumptionMSD» applied.

TamAssumptionMSD An assumption MSD associating an arrival pattern.

TamArrivalPattern An abstract arrival pattern.

Note that MARTE also defines a multitude of arrival patterns with each a variety of fine-
grained setting options including periodic and sporadic arrival patterns. However, we
define our own stereotypes that are supported by our semantics for the sake of modeling
language usability.

TamPeriodicPattern A periodic arrival pattern.

period The events unifiable with the MSD messages of the associated TamAssumption-
MSD occur every periodth time unit.

TamSporadicPattern A sporadic arrival pattern.

161

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

«profile» TAM::AnalysisContext

«stereotype»
MARTE::GQAM::

GaWorkloadBehavior

«stereotype»
MARTE::GQAM::

GaAnalysisContext

«stereotype»
MARTE::GQAM::

GaResourcesPlatform

«stereotype»
TamResourcePlatform

«stereotype»
TamAnalysisContext

workload

1..*

platform

1..*

«stereotype»
TamWorkloadBehavior

platform.size() = 1 and
platform->forAll (p | p.isStereotypeAppl ied (
 TAM::AnalysisContext::TamResourcePlatform))
 and workload.size() = 1 and
workload->forAll (w | w.isStereotypeAppl ied (
 TAM::AnalysisContext::TamWorkloadBehavior))

«stereotype»
MARTE::GQAM::

GaWorkloadEvent

«stereotype»
TamAssumptionMSD

demand

*

«stereotype»
Modal::Environment-

Assumption

«stereotype»
TamArrivalPattern

«metaclass»
UML::Comment

period: Integer

«stereotype»
TamPeriodicPattern minArrivalRate: Integer

maxArrivalRate: Integer

«stereotype»
TamSporadicPattern

«stereotype»
MARTE::GQAM::

GaScenario

behavior

*

Legend

Stereotype from

other TAM Subprof le

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

«metaclass»
UML::Classifier

«metaclass»
UML::NamedElement

...
«metaclass»

UML::Interaction

pattern

1

demand->forAll (d | d.isStereotypeAppl ied (
 TAM::AnalysisContext::TamAssumptionMSD))
 and
behavior->forAll (b | b.oclIsTypeOf(UML::Interaction)
 and not b.isStereotypeAppl ied (
 TAM::AnalysisContext::TamAssumptionMSD))

Figure 4.26: The TAM subprofile AnalysisContext

minArrivalRate The events unifiable with the MSD messages of the associated TamAs-
sumptionMSD occur sporadically but at least every minArrivalRateth time unit.

maxArrivalRate The events unifiable with the MSD messages of the associated TamAs-
sumptionMSD occur sporadically but at most every maxArrivalRateth time unit.

Subprofile Platform::Communication
Figure 4.27 depicts the TAM subprofile Platform::Communication. It provides stereotypes
for describing the communication system of a platform for distributed software components.
The profile imports and specializes stereotypes of the MARTE subprofiles GRM and GQAM
(cf. Section 2.5.3.2, respectively). We describe the depicted stereotypes in the following.

TamComInterface The interface of an ECU with a communication system, encompassing hard-
ware and driver properties. Applicable only to ports of TamECUs (cf. OCL constraint).

In contrast to the use of the super stereotype GaExecHost as intended by MARTE, we
apply TamComInterface to ports of ECUs due to the adequate tagged values of the super
stereotype (cf. Section 2.5.3.3). One TamComConnection connects two such stereotyped
ports of different ECUs.

162

4.6 Realization and Evaluation

«profile» TAM::Platform::Communication

networkOvhd:
 NFP_Percentage
networkBlockT:
 NFP_Duration

«stereotype»
TamComConnection

capacity: NFP_DataTxRate
blockT: NFP_Duration

«stereotype»
MARTE::GRM::CommunicationMedia

arbitrationT: NFP_Duration

«stereotype»
TamComInterface

commTxOvh: NFP_Duration
commRcvOvh: NFP_Duration

«stereotype»
MARTE::GQAM::GaExecHost

«stereotype»
TAM::AnalysisContext::
TamResourcePlatform

«stereotype»
MARTE::GRM::

Resource

«metaclass»
UML::Classifier

... ...

interfaces1

connection 2

connections

*

«stereotype»
TamComService *

usedCom
Services

transmOvhd:
 NFP_Percentage
msgCtrlOvhd:
 NFP_Percentage
encodeRate:
 NFP_DataTxRate
decodeRate:
 NFP_DataTxRate

«stereotype»
TamProtocol

0..1

used
Protocol

...

Legend

Stereotype from

other TAM Subprof ile

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

«metaclass»
UML::Named

Element

...

«metaclass»
UML::Connector

«metaclass»
UML::Property

self->isTypeOf(UML::Por t) and
owner.isStereotypeAppl ied(
 TAM::ControlUnit::TamECU)

Figure 4.27: The TAM subprofile Platform::Communication

commTxOvh ECU -> communication system encoding duration at the sender.
commRcvOvh Communication system -> ECU decoding duration at the receiver.
arbitrationT Average waiting duration for gaining access of the sending communication

node to the communication medium, additional to the ECU -> communication sys-
tem encoding duration at the sender. This waiting duration is induced by the applied
media access policy, which arbitrates the communication medium between all par-
ticipating communication nodes.

TamComConnection A physical communication channel (e.g., a bus system) between two
ECUs, as part of a TamResourcePlatform.

capacity The gross throughput of the communication channel.
blockT Net propagation delay duration of the communication channel.
networkOvhd Percentage network management overhead, reducing the gross throughput.
networkBlockT Network latency duration overhead, increasing the net propagation delay

duration.

TamProtocol Transmission protocol applied by a communication channel (e.g., a bus protocol).

transmOvhd The percentage transmission protocol overhead additional to the net mes-
sage size.

163

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

msgCtrlOvhd The percentage message control overhead (e.g., induced by checksums) of
the particular transmission protocol, increasing the net message size.

encodeRate The transmission protocol’s rate for encoding messages into the transmission
protocol format at the sender.

decodeRate The transmission protocol’s rate for decoding messages from the transmis-
sion protocol format at the receiver.

TamComService A communication service provided by a middleware. A communication chan-
nel can apply several communication services.

transmOvhd The percentage middleware communication service transmission overhead
(e.g., induced by message buffers), reducing the gross throughput of a physical com-
munication channel.

msgCtrlOvhd The percentage message control overhead (e.g., induced by checksums) of
the particular middleware communication service, increasing the net message size.

encodeRate The middleware communication service’s rate for encoding messages at the
sender.

decodeRate The middleware communication service’s rate for decoding messages at the
receiver.

Subprofile Platform::ControlUnit
Figure 4.28 depicts the TAM subprofile Platform::ControlUnit. It provides stereotypes for des-
cribing control units as part of an execution platform. The profile imports and specializes stereo-
types of the MARTE subprofile GRM (cf. Section 2.5.3.2). We describe the depicted stereotypes
in the following.

TamECU An ECU or a microcontroller, as part of a TamResourcePlatform.

TamProcessingUnit The actual processing unit of an ECU.

speedFactor The processing speed factor relative to the speed of a reference processing
unit.

numCores The amount of processing cores.
coreSyncOvhd The task execution overhead for synchronizing multiple processing cores,

increasing the net operation execution time. The overhead is [0..0] in the case of
numCores = 1 (cf. OCL constraint).

TamAccessibleResource An abstract accessible resource.

TamPeripheryUnit An abstract periphery entity.

TamSensor A sensor periphery entity.

accessDelay The delay duration for accessing the sensor.

TamActuator An actuator periphery entity.

accessDelay The delay duration for accessing the actuator.

TamIO An I/O periphery entity (e.g., human machine interfaces or interfaces for connections
with external devices).

accessDelay The delay duration for accessing the I/O device.

TamMemoryUnit A memory unit.

164

4.6 Realization and Evaluation

«profile» TAM::Platform::ControlUnit

«stereotype»
TamPeripheryUnit

«stereotype»
MARTE::GRM::

Resource
speedFactor: NFP_Real

«stereotype»
MARTE::GRM::

ProcessingResource

«metaclass»
UML::Classifier

«stereotype»
TamECU

numCores: Integer
coreSyncOvhd: NFP_Percentage

«stereotype»
TamProcessingUnit

processing
Unit

peripherals*

accessDelay: NFP_Duration
throughput: NFP_DataTxRate

«stereotype»
TamMemoryUnit

memory0..1

«stereotype»
TAM::Platform::

Communication::
TamComInterface

«stereotype»
MARTE::GRM::

StorageResource

network
Interfaces*

«stereotype»
TAM::AnalysisContext::
TamResourcePlatform

ecus*

«stereotype»
TamSensor

«stereotype»
TamActuator

«stereotype»
TamIO

Legend

Stereotype from

other TAM Subprof ile

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

accessDelay: NFP_Duration

«stereotype»
TamAccessibleResource

numCores = 1 implies
coreSyncOvhd = [0..0]

«metaclass»
UML::Property

Figure 4.28: The TAM subprofile Platform::ControlUnit

accessDelay The delay duration for accessing the memory unit.
throughput The memory unit access throughput.

Subprofile Platform::OperatingSystem
Figure 4.29 depicts the TAM subprofile Platform::OperatingSystem. It provides stereotypes
for describing the operating systems applied in a platform. The profile imports and speciali-
zes stereotypes of the MARTE subprofiles GRM and GQAM (cf. Sections 2.5.3.2 and 2.5.3.3,
respectively). We describe the depicted stereotypes in the following.

TamOSResource An abstract operating system resource.
TamRTOS A real-time operating system as part of a TamECU.

backgroundUtilization The percentage task execution overhead induced by the real-time
operating system, increasing the net operation execution time.

TamOSService A service provided by the real-time operating system.

backgroundUtilization The percentage task execution overhead induced by the service,
increasing the net operation execution time.

165

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

«profile» TAM::Platform::OperatingSystem

«stereotype»
TamRTOS

«stereotype»
TAM::Platform::ControlUnit::TamECU

rtos
«stereotype»

MARTE::GRM::
Resource

«metaclass»
UML::Classifier

backgroundUtilization:
 NFP_Percentage

«stereotype»
TamOSResource

«stereotype»
TamScheduler

isPreempt ble: Boolean
schedPolicy: SchedPolicyKind

«stereotype»
MARTE::GRM::Scheduler

«stereotype»
TamOSComChannel

«stereotype»
TAM::Platform::

Communication::
TamComConnection

capacity: NFP_DataTxRate
blockT: NFP_Duration

«stereotype»
MARTE::GRM::CommunicationMedia

«stereotype»
TAM::Platform::Communication::

TamComInterface
commTxOvh: NFP_Duration
commRcvOvh: NFP_Duration

«stereotype»
MARTE::GQAM::GaExecHost

«stereotype»
TamOSService

*

osServices

«stereotype»
TamSharedOSResource

*

comChannels

*

shared
Resources

1

scheduler

...

Legend

Stereotype from

other TAM Subprof le

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

self.usedProtocol = null and self.usedComServices->isEmpty()

accessDelay: NFP_Duration

«stereotype»
TAM::Platform::ControlUnit::

TamAccessibleResource

«metaclass»
UML::Property

Figure 4.29: The TAM subprofile Platform::OperatingSystem

TamSharedOSResource A resource provided by the real-time operating system, where the ser-
vice is shared with multiple applications.

backgroundUtilization The percentage task execution overhead induced by the resource,
increasing the net operation execution time.

accessDelay The delay duration for accessing the shared operating system resource.
TamScheduler A scheduler as part of a real-time operating system of an ECU.

isPreemptible Specifies whether the scheduling algorithm is preemptive or not. Currently,
our semantics only supports non-preemptive scheduling.

schedPolicy “Scheduling policy implemented by the scheduler.” [OMG11,
Section 10.3.2.15] Currently, our semantics only supports fixed-priority sche-
duling, which is the predominant scheduling policy for real-time systems [NMH08;
DB08; SAÅ+04].

backgroundUtilization The percentage task execution overhead induced by the scheduler,
increasing the net operation execution time.

166

4.6 Realization and Evaluation

TamOSComChannel A communication channel provided by the real-time operating system
(OS) for communicating software components that are deployed to the same ECU (e.g.,
a shared memory area). Such an internal communication channel must not use any Tam-
Protocol nor any TamComService (cf. OCL constraint), which are applied only for dis-
tributed communication channels.

capacity The gross throughput of the OS communication channel.
blockT The net propagation delay duration of the OS communication channel.
backgroundUtilization The percentage task synchronization overhead induced by the OS

communication channel, increasing the net message size.
commTxOvh The OS communication channel dispatching delay duration at the sender

(e.g., the latency for writing to a shared memory area).
commRcvOvh The OS communication channel consumption delay duration at the recei-

ver (e.g., the latency for reading from a shared memory area).

Subprofile ApplicationSoftware
Figure 4.30 depicts the TAM subprofile ApplicationSoftware. It provides stereotypes for descri-
bing the timing-relevant aspects of the application software. The profile imports and specializes
stereotypes of the MARTE subprofile GRM (cf. Section 2.5.3.2). We describe the depicted ste-
reotypes in the following.

«profile» TAM::ApplicationSoftware

execTime: NFP_Duration
msgSize: NFP_DataSize
usedMemory: NFP_DataSize

«stereotype»
MARTE::GRM::

ResourceUsage

memAccessFreq: NFP_Integer
priority: Integer

«stereotype»
TamOperation

isExclusive: Boolean
numAccess: NFP_Integer

«stereotype»
TamResourceAccess

resource
Accesses

*

resource

«metaclass»
UML::

NamedElement

«stereotype»
UML::

Component

implExecOvhd:
 NFP_Percentage
implMemOvhd:
 NFP_Percentage

«stereotype»
TamImplementation

Legend

Stereotype from

other TAM Subprof ile

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

accessDelay: NFP_Duration

«stereotype»
TAM::Platform::ControlUnit::

TamAccessibleResource

Figure 4.30: The TAM subprofile ApplicationSoftware

TamOperation An operation associated by an MSD message.

execTime Net operation execution time that a task needs for processing the associating
MSD message.

msgSize Net size of the MSD message.

167

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

usedMemory Memory occupied on the memory unit of an ECU.
memAccessFreq Amount of memory accesses.
priority Priority for the task that processes the associated MSD message.

TamResourceAccess An access by an associating operation to an accessible resource.

isExclusive Specifies whether other operations may access the associated resource at the
same time.

numAccess Amount of accesses to the associated resource.
TamImplementation Implementation details for a software component type.

implExecOvhd Percentage task execution overhead due to the programming language
choice, compiler options, etc, increasing the net operation execution time.

implMemOvhd Percentage task execution overhead due to implementation-specific me-
mory consumption, increasing the net operation execution time.

Subprofile SimulationExtensions
In Section 4.4.1.2, we motivated and introduced object system messages. In Figure 4.11 we
defined that an object system message associates MSD messages, sender and receiver software
component, the operation signature, and the logical connector between sender and receiver com-
ponent.

Refining Figure 4.11, Figure 4.31 depicts the detailed TAM subprofile SimulationExtensions
that defines further convenience information for the stereotype ObjectSystemMessage. This
additional information encompasses associations to the platform-specific elements TamPro-
cessingUnit, TamSharedOSResource, and TamPeripheryUnit. Furthermore, the additional
information also encompasses for any static delay kind between the particular message event
kinds as introduced in Section 4.4.2.1 each the minimum and maximum value as tagged value
of ObjectSystemMessage. We present in Section 4.6.1.2 how these values are computed by
means of a preprocessing step.

The additional information is also directly accessible in the ECL specification. However,
accessing this information would lead to cumbersome ECL statements, particularly for the de-
lay computation. Thus, we preprocess this information and store it as part of object system
messages for convenience purposes.

4.6.1.2 Preprocessing

In Section 4.4.2.1, we presented abstract computations for the different static delay kinds be-
tween the particular message event kinds. In Section 4.6.1.1, we presented the detailed TAM
profile including all stereotypes and tagged values. In the following, we present the detailed
computations of the different static delay kinds between the particular message event kinds, ex-
ploiting the detailed TAM profile information. The computed delay values are stored as part of
the object system messages (cf. Figure 4.31) before generating the CCSL model.

For the computation of all delay kinds except the task execution delay, we have to distin-
guish whether the communicating software components are deployed to the same ECU (i.e.,
intra-ECU communication) or to different ECUs (i.e., inter-ECU communication). In the case
of intra-ECU communication, a communication channel provided by the operating system is
applied for the message sending (e.g., a shared memory area). In the case of inter-ECU commu-
nication, a physical communication channel with a dedicated communication system is applied

168

4.6 Realization and Evaluation

«profile» TAM::SimulationExtensions

minMsgDispatchDelay: Integer
maxMsgDispatchDelay: Integer
minMsgSendDelay: Integer
maxMsgSendDelay: Integer
minMsgConsumptionDelay: Integer
maxMsgConsumptionDelay: Integer
minTaskExecutionDelay: Integer
maxTaskExecutionDelay: Integer

«stereotype»
ObjectSystemMessage

«metaclass»
UML::Message

Event

«metaclass»
UML::Operation

«metaclass»
UML::Connector

«stereotype»
Modal::

ModalMessage

«stereotype»
Modal::

SpecificationPart

connector

1

signature

1

msdMessages

*

1

sender

1

receiver

«stereotype»
TAM::Platform::

ControlUnit::
TamProcessingUnit

«stereotype»
TAM::Platform::

ControlUnit::
TamPeripheryUnit

«stereotype»
TAM::Platform::

ControlUnit::
TamSharedOSResource

osResources *
peripherals

*

processing
Unit 1

Legend

Stereotype from

other TAM Subprof ile

Existing, Reused

Metaclass / Stereotype

Newly Implemented

Stereotype

Figure 4.31: The TAM subprofile SimulationExtensions

for the message sending (e.g., a bus system). The computation of the latter distributed mes-
sage delays for inter-ECU communication considers more characteristics like network proper-
ties than the computation of the former internal message delays for intra-ECU communication.

Computation of Message Dispatch Delays
Message dispatch delays occur between message create events and message send events
(cf. Sections 4.3.2 and 4.4.2.1).

In the case of intra-ECU communication, the internal message dispatch delay only encom-
passes the latency for writing to the communication channel. Refining Equation (4.1) in
Section 4.4.2.1, we hence compute the internal minimum message dispatch delay (internal max-
imum message dispatch delay analogously) as

(4.5)

msg::internalMsgDispatchDelaymin

= msg.connector.supplier::commTxOvhmin,

where msg.connector is a UML::Connector associated by the MSD message msg,

and msg.connector.supplier is a TamOSComChannel that the connector is allocated to.

In the case of inter-ECU communication, the distributed message dispatch delay is determi-
ned by several characteristics. That is, the latency for accessing the communication channel,
the arbitration time for gaining access to the overall communication system, and the time for
encoding the message from its logical format into a format suitable for the communication
system. The time for encoding messages for the communication between distributed software
components depends on the overall message size in relation to the encode rate of the applied
transmission protocol and of the applied middleware communication services. Refining Equa-
tion (4.1) in Section 4.4.2.1, we hence compute the distributed minimum message dispatch delay

169

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

(distributed maximum message dispatch delay analogously) as

msg::distributedMsgDispatchDelaymin

= msg.connector.supplier.inter f aces[sender]::commTxOvhmin

+ msg.connector.supplier.inter f aces[sender]::arbitrationTmin

+
msg::<overallDistributedMsgSizemin>

msg.connector.supplier.usedProtocol::encodeRatemax

+ ∑
tamComService∈

msg.connector.supplier.usedComServices

msg::<overallDistributedMsgSizemin>
tamComService::encodeRatemax

,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection that the connector is allocated to,

msg.connector.supplier.inter f aces are TamComInterfaces of ECUs connected by the TamComConnection,

msg.connector.supplier.inter f aces[sender] is a TamComInterface of the sending ECU,

msg::<overallDistributedMsgSizemin> is computed in Equation (4.7),

msg.connector.supplier.usedProtocol is a TamProtocol of the TamComConnection,

and msg.connector.supplier.usedComServices are the TamComServices of the TamComConnection.

(4.6)

In the case of distributed communication, the overall message size encompasses the net mes-
sage size plus the percentage message control overheads (e.g., checksums) of the applied trans-
mission protocol and of the applied middleware communication services. Thus, we compute the
overall minimum size (overall maximum size analogously) for messages sent between two dis-
tributed software components (i.e., they are deployed to different ECUs) via a communication
system as

msg::<overallDistributedMsgSizemin>

= msg.signature::msgSizemin

∗ (1 + msg.connector.supplier.usedProtocol::msgCtrlOvhdmin)

∗ ∏
tamComService∈

msg.connector.supplier.usedComServices

(1 + tamComService::msgCtrlOvhdmin),

where msg.signature is a TamOperation associated by the MSD message msg,

msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection that the connector is allocated to,

msg.connector.supplier.usedProtocol is a TamProtocol of the TamComConnection,

and msg.connector.supplier.usedComServices are the TamComServices of the TamComConnection.

(4.7)

Computation of Message Send Delays
Message send delays occur between message send events and message reception events
(cf. Sections 4.3.1 and 4.4.2.1).

In the case of intra-ECU communication, the internal message send delay encompasses the
propagation delay and the net message size plus an operating system background utilization
(e.g., a resource management overhead) in relation to the throughput of the operating system
communication channel. Refining Equation (4.2) in Section 4.4.2.1, we hence compute the

170

4.6 Realization and Evaluation

internal minimum message send delay (internal maximum send delay analogously) as

(4.8)

msg::internalMsgSendDelaymin

= msg.connector.supplier::blockTmin

+
msg.signature::msgSizemin ∗ (1 + msg.connector.supplier::backgroundUtilizationmin)

msg.connector.supplier::capacitymax
,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamOSComChannel that the connector is allocated to,

and msg.signature is a TamOperation associated by the MSD message msg.

In the case of inter-ECU communication, the distributed message send delay encompasses
the latency of the physical communication channel, the latency of the overall network, and the
time for the actual sending. The time for the actual sending depends on the overall message
size in relation to the overall throughput of the underlying communication channel. Refining
Equation (4.2) in Section 4.4.2.1, we hence compute the distributed minimum message send
delay (distributed maximum send delay analogously) as

(4.9)

msg::distributedMsgSendDelaymin

= msg.connector.supplier::blockTmin

+ msg.connector.supplier::networkBlockTmin

+
msg::<overallDistributedMsgSizemin>

msg.connector.supplier::<overallThroughputmax>
,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection that the connector is allocated to,

msg::<overallDistributedMsgSizemin> is computed in Equation (4.7),

and msg.connector.supplier::<overallThroughputmax> is computed in Equation (4.10).

The overall throughput of a physical communication channel encompasses its net throughput
minus the percentage transmission overhead of the applied transmission protocol and of the ap-
plied middleware communication services. Thus, we compute the overall maximum throughput
(overall minimum throughput analogously) of a message’s connector allocated to a phyiscal
communication channel connecting two different ECUs as

(4.10)

msg.connector.supplier::<overallThroughputmax> = msg.connector.supplier::capacitymax

∗ (1− msg.connector.supplier::networkOvhdmin)

∗ (1− msg.connector.supplier.usedProtocol::transmOvhdmin)

∗ ∏
tamComService∈

msg.connector.supplier.usedComServices

(1− tamComService::transmOvhdmin),

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection that the connector is allocated to,

msg.connector.supplier.usedProtocol is the TamProtocol of the TamComConnection,

and msg.connector.supplier.usedComServices are the TamComServices of the TamComConnection.

Computation of Message Consumption Delays
Message consumption delays occur between message reception events and message consump-
tion events (cf. Sections 4.3.2 and 4.4.2.1).

171

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

In the case of intra-ECU communication, the internal message dispatch delay only encom-
passes the latency for reading from the applied operating system communication channel. Refi-
ning Equation (4.3) in Section 4.4.2.1, we hence compute the internal minimum message con-
sumption delay (internal maximum message consumption delay analogously) as

(4.11)

msg::internalMsgConsumptionDelaymin

= msg.connector.supplier::commRcvOvhmin,

where msg.connector is a UML::Connector associated by the MSD message msg,

and msg.connector.supplier is a TamOSComChannel that the connector is allocated to.

In the case of inter-ECU communication, the distributed message dispatch delay encompasses
the latency for accessing the communication channel and the time for decoding the message
from a format suitable for the communication system into its logical representation. The time
for decoding messages depends on the overall message size in relation to the decode rate of
the applied transmission protocol and of the applied middleware communication services. Re-
fining Equation (4.3) in Section 4.4.2.1, we hence compute the distributed minimum message
consumption delay (distributed maximum message consumption delay analogously) as

msg::distributedMsgConsumptionDelaymin

= msg.connector.supplier.inter f aces[receiver]::commRcvOvhmin

+
msg::<overallDistributedMsgSizemin>

msg.connector.supplier.usedProtocol::decodeRatemax

+ ∑
tamComService∈

msg.connector.supplier.usedComServices

msg::<overallDistributedMsgSizemin>
tamComService::decodeRatemax

,

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector.supplier is a TamComConnection that the connector is allocated to,

msg.connector.supplier.inter f aces are TamComInterfaces of ECUs connected by the TamComConnection,

msg.connector.supplier.inter f aces[receiver] is a TamComInterface of the receiving ECU,

msg.connector.supplier.usedProtocol is the TamProtocol of the TamComConnection,

msg.connector.supplier.usedComServices are the TamComServices of the TamComConnection,

and msg::<overallDistributedMsgSizemin> is computed in Equation (4.7).

(4.12)

Computation of Task Execution Delays
Task delays occur between message send events and message reception events (cf. Sections 4.3.3
and 4.4.2.1). They are determined by the normalized overall operation execution time required
to process a message in relation to the processing power of the executing processing unit plus
the overall times to access memory units as well as other resources. Refining Equation (4.4) in
Section 4.4.2.1, we hence compute the minimum task execution delay (maximum task execution

172

4.6 Realization and Evaluation

delay analogously) as

msg::taskExecutionDelaymin

=
msg::<normalizedOverallOperationExecTimemin>

msg.connector[receiver].supplier.processingUnit::speedFactormax
+ msg::<overallMemoryAccessTimemin>

+ msg::<overallResourceAccessTimemin>,

where msg::<normalizedOverallOperationExecTimemin is computed in Equation (4.14),

msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector[receiver] is a Modal::Speci�cationPart representing the receiving software component,

msg.connector[receiver].supplier is a TamECU that the receiving software component is allocated to,

msg.connector[receiver].supplier.processingUnit is the TamProcessingUnit of the ECU,

msg::<overallMemoryAccessTimemin is computed in Equation (4.16),

and msg::<overallResourceAccessTimemin is computed in Equation (4.17).

(4.13)

The normalized overall operation execution time encompasses the net execution time plus
overheads induced by the implementation, by a synchronization of potentially multiple cores,
and by the overall background utilization of the real-time operating system. Thus, we com-
pute the minimum normalized overall operation execution time (maximum normalized overall
operation execution time analogously) as

msg::<normalizedOverallOperationExecTimemin>

= msg.signature::execTimemin

∗ (1 + msg.connector[receiver].type::implExecOvhdmin)

∗ (1 + msg.connector[receiver].supplier.processingUnit::coreSyncOvhdmin)

∗ (1 + msg.connector[receiver].supplier.rtos::<overallBackgroundUtilizationmin>),

where msg.signature is a TamOperation associated by the MSD message msg,

msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector[receiver] is a Modal::Speci�cationPart representing the receiving software component,

msg.connector[receiver].type is a TamImplementation of the receiving software component type,

msg.connector[receiver].supplier is a TamECU that the receiving software component is allocated to,

msg.connector[receiver].supplier.processingUnit is the TamProcessingUnit of the ECU,

processingUnit::coreSyncOvhdmin = 0 if processingUnit::numCores = 1 (cf. OCL constraint in Figure 4.28),

msg.connector[receiver].supplier.rtos is the TamRTOS of the ECU,

and rtos::<overallBackgroundUtilizationmin> is computed in Equation (4.15).

(4.14)

The overall background utilization of the real-time operating system encompasses its own
background utilization as well as the background utilization of its scheduler, of its communi-
cation channels, of its shared resources, and of its services. Thus, we compute the minimum

173

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

overall background utilization (maximum overall background utilization analogously) as

(4.15)msg.connector[receiver].supplier.rtos::<overallBackgroundUtilizationmin>

= msg.connector[receiver].supplier.rtos::backgroundUtilizationmin

+ msg.connector[receiver].supplier.rtos.scheduler::backgroundUtilizationmin)

+ ∑
tamComChannel∈

msg.connector[receiver].supplier.rtos.comChannels

(tamComChannel::backgroundUtilizationmin)

+ ∑
tamOSResource∈

msg.connector[receiver].supplier.rtos.sharedResources

(tamOSResource::backgroundUtilizationmin)

+ ∑
tamOSService∈

msg.connector[receiver].supplier.rtos.osServices

tamOSService::backgroundUtilizationmin),

where msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector[receiver] is a Modal::Speci�cationPart representing the receiving software component,

msg.connector[receiver].supplier is a TamECU that the receiving software component is allocated to,

msg.connector[receiver].supplier.rtos is the TamRTOS of the ECU,

msg.connector[receiver].supplier.rtos.scheduler is the TamScheduler of the RTOS,

msg.connector[receiver].supplier.rtos.comChannels are TamComChannels of the RTOS,

msg.connector[receiver].supplier.rtos.sharedResources are TamSharedOSResources of the RTOS,

and msg.connector[receiver].supplier.rtos.osServices are TamOSServices of the RTOS.

The overall time for accessing a memory unit encompasses the frequency of memory
accesses multiplied with the particular access delays as well as the used net memory plus a
implementation-specific overhead in relation to the memory throughput. Thus, we compute the
minimum overall memory access time (maximum overall memory access time analogously) as

msg::<overallMemoryAccessTimemin>

= (msg.signature::memAccessFreqmin ∗ msg.connector[receiver].supplier.memory::accessDelaymin)

+
msg.signature::usedMemorymin ∗ (1 + msg.connector[receiver].type::implMemOvhdmin)

msg.connector[receiver].supplier.memory::throughputmax
,

where msg.signature is a TamOperation associated by the MSD message msg,

msg.connector is a UML::Connector associated by the MSD message msg,

msg.connector[receiver] is a Modal::Speci�cationPart representing the receiving software component,

msg.connector[receiver].type is a TamImplementation of the receiving software component type,

msg.connector[receiver].supplier is a TamECU that the receiving software component is allocated to,

msg.connector[receiver].supplier.memory is the TamMemoryUnit of the ECU.

(4.16)

The overall time for accessing periphery and operating system resources is determined by the
number of accesses multiplied with the particular access delays, summed up over all resource
accesses. Thus, we compute the minimum overall resource access time (maximum overall
resource access time analogously) as

(4.17)msg::<overallResourceAccessTimemin>

= ∑
tamResourceAccess∈

msg.signature.resourceAccesses

tamResourceAccess::numAccessmin ∗ tamResourceAccess.resource::accessDelaymin,

where msg.signature is a TamOperation associated by the MSD message msg,

msg.signature.resourceAccesses are TamResourceAccesses associated by the operation,

and tamResourceAccess.resource is a TamAccessibleResource associated by the resource access.

174

4.6 Realization and Evaluation

4.6.2 Case Study

We conduct a case study based on the guidelines by Kitchenham et al. [KPP95] and by Runeson
et al. [RHAR12; RH08] for the evaluation of our timing analysis approach. In our case study, we
investigate the applicability of our approach within the domain of software-intensive systems.

4.6.2.1 Case Study Context and Cases

The objective of our case study is to evaluate whether our timing analysis approach is useful for
the Timing Analysts. For this purpose, we evaluate the following questions:

Evaluation Question EQ1 Does our timing analysis approach generate syntactically and seman-
tically correct CCSL models?

Evaluation Question EQ2 Does our timing analysis approach reduce the engineering effort for
conceiving and specifying CCSL models?

We conduct the case study with the case of the EBEAS. In order to answer the evaluation
questions above, we apply different variants of the platform-independent EBEAS MSD specifi-
cation introduced in the last chapter. These variants are complemented by platform-specific in-
formation as exemplarily shown in extracts throughout this chapter (cf. particularly Section 4.1),
resulting in platform-specific MSD specifications.

4.6.2.2 Setting the Hypotheses

Based on the aforementioned case study objective and evaluation questions, we define the fol-
lowing evaluation hypotheses:

Hypothesis H1 Our MSD semantics for timing analyses correctly encodes the timing effects that
are induced by the platform properties provided as modeling means by our TAM profile
(cf. evaluation question EQ1).

For evaluating H1, two different students prepare a set of platform-specific MSD spec-
ifications that jointly cover all platform properties that are provided as modeling means
by our TAM profile. Afterward, they investigate whether any of the platform properties
induces each the expected timing effect with the expected delay duration.

We consider H1 fulfilled if at least 90% of the platform properties specifiable with our
TAM profile are covered by our semantics, and from these ≥90% each induced timing
effect is observed as expected (i.e., 100% test coverage).

Hypothesis H2 A platform-specific MSD specification is more compact than the corresponding
derived CCSL model (cf. evaluation question EQ2).

For evaluating H2, two different students conceive three different platform-specific MSD
specifications with each different model element amounts and generate CCSL models
from them. Afterward, we count for any platform-specific MSD specification and the cor-
responding CCSL model each the model elements and compare their respective amounts.

We consider H2 fulfilled if at least as many CCSL model elements as MSD specification
elements are generated.

175

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

Hypothesis H3 Automatically deriving CCSL models from platform-specific MSD specifica-
tions with our timing analysis approach is more efficient conceiving and specifying them
manually (cf. evaluation question EQ2).

For evaluating H3, a student measures the time for the automatic derivation of the CCSL
models from the three platform-specific MSD specifications conceived for hypothesis H2.
Furthermore, we take the CCSL model element amounts determined for H2 into account.

We consider H3 fulfilled if at least one CCSL model element is generated per second.

Hypothesis H4 The generated CCSL models are syntactically correct (cf. evaluation question
EQ1).

For evaluating H4, all generated CCSL models used for the evaluation of H1-H3 are
opened in the CCSL model editor and simulated in TIMESQUARE.

We consider H4 fulfilled if all CCSL models generated during the evaluation of H1-H3
can be opened in the CCSL model editor and can be simulated in TIMESQUARE without
the occurrence of any error.

4.6.2.3 Data Collection Preparation

Besides ourselves, we employ two different students student-1 and student-2 to support the
evaluation. Student-1 has approximately four years experience in modeling and simulating
MSD specifications as well as one year experience with the GEMOC approach during the case
study conduct. Furthermore, he conceived and implemented the initial version of our timing
analysis approach [*Ber17]. Student-2 has approximately one year experience with modeling
and simulating MSD specifications as well as with the GEMOC approach during the case study
conduct.

As a basis for evaluating H1, the students prepare a set of platform-specific MSD specifica-
tions that jointly cover all platform properties that are supported by our semantics.

A large part of these platform properties is covered by a platform-specific MSD specifica-
tion that is presented in [*Ber17, Section 7.2] as a proof of concept by student-1, which we
call MSD-spec-1. In this proof of concept, typical use cases in the course of a timing analysis
are constructed, where the Timing Analysts determine several real-time requirement violati-
ons through the timing analysis and adapt the specification multiple times until the real-time
requirements are fulfilled.

For any of the remaining platform properties that are not covered by MSD-spec-1, student-
2 specifies each a dedicated model (altogether 17 further models) that covers the respective
platform property to reproduce the corresponding induced timing effect. For this purpose, he
initially creates a base model adapted from MSD-spec-1. Subsequently, for any platform pro-
perty to investigate he creates each a dedicated copy of the base model and adds the property.

MSD-spec-1 has only one system-internal TamComConnection between two system-internal
TamECUs and each two requirement MSDs and TamAssumptionMSDs. As a basis for evalua-
ting H2 and H3, student-2 copies MSD-spec-1, completes the platform model to five TamCom-
Connections connecting five TamECUs, and allocates the software architecture to it. We present
the resulting model in Figure 4.4 and call it MSD-spec-2. Furthermore, student-1 specifies a
variant of the platform-independent MSD specification introduced in the last chapter encom-
passing one merged MSD use case with 24 MSDs (cf. Appendix A.2.2.3) and allocates it to
the platform model of MSD-spec-1, which we call MSD-spec-3. Finally, student-2 copies the

176

4.6 Realization and Evaluation

variant of the platform-independent MSD specification introduced in the last chapter, extends
the platform model of MSD-spec-2 (i.e., he adds ECUs as well as bus connections for the lane
keeping assist and the precrash unit), and adds the allocation specification. We call the resulting
model MSD-spec-4.

4.6.2.4 Data Collection Procedure

We describe the respective procedures for the data collection for evaluating the four hypotheses
in the following four paragraphs.

Hypothesis H1
For evaluating hypothesis H1 with MSD-spec-1, student-1 conducts the specification and timing
analysis process described in Section 4.2:

1. He specifies a platform-independent MSD specification in terms of a variant of the
EBEAS MSD specification as introduced in the last chapter, playing the role of the Soft-
ware Requirements Engineer.

2. He specifies a platform model based on information about real-world platforms, playing
the role of the Platform Architect.

3. He specifies an allocation from the MSD specification to the platform model and anno-
tates software component resource consumption properties, playing the role of the Allo-
cation Engineer.

4. He specifies analysis contexts and iteratively conducts the timing analysis in TIME-
SQUARE, playing the role of the Timing Analyst. In the course of the timing analysis,
he iteratively encounters platform-induced real-time requirement violations, determines
their respective causes, and adapts the platform properties until all real-time requirements
are fulfilled. This procedure enables him to reenact every timing effect induced by a
platform property that is both considered by our semantics and specified in the proof of
concept model. Particularly, he simulatively determines whether for any specified plat-
form property each the expected timing effect occurs.

In order to evaluate hypothesis H1 for the remaining platform properties not covered by MSD-
spec-1, student-2 proceeds for any dedicated model specific to a platform property as follows:

1. He specifies the platform property with one value each so that the expected induced ti-
ming effect in one case fulfills a real-time requirement and in the other case violates the
same real-time requirement. For this purpose, he reenacts the semantics for the corre-
sponding platform property to conceive a property value so that the desired timing effect
for each the real-time requirement fulfillment and violation should occur according to his
expectation. In the case of static delays, he reenacts the respective delay computation
formula (cf. Section 4.6.1.2). One example for dynamic delays is the construction of a
runtime situation in which two software components concurrently access one resource.

2. He conducts the timing analysis in TIMESQUARE. For the static delays, he already deter-
mines in the intermediate preprocessed model (cf. Section 4.6.1) whether the correspon-
ding delay changes according to his expectations. For both dynamic and static delays, he
simulatively determines whether the corresponding timing effect as well as the real-time
requirement fulfillment or violation for the platform property under investigation occurs
as expected.

177

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

Table 4.1 lists the test results for all platform properties that induce static timing effects as
covered by our MSD semantics for timing analyses. It documents how the particular platform
property (column Platform Property) induces the respective timing effect (column Induced Ti-
ming Effect) and how this timing effect sums up to which kind of static delay (column Static
Delay). Furthermore, the table documents which platform-specific MSD specification covers
the platform property (column Platform-specific MSD specification) and whether the student
observes the static delay as expected (column Test Result).

Table 4.2 lists the test results for all platform properties that induce dynamic timing effects
as covered by our MSD semantics for timing analyses. It documents how the particular runtime
platform property (column Platform Property at Runtime) induces the respective timing effect
(column Induced Timing Effect). Furthermore, the table documents which platform-specific
MSD specification covers the platform property (column Platform-specific MSD specification)
and whether the student observes the dynamic effect as expected (column Test Result).

Hypothesis H2
In order to evaluate hypothesis H2, ourselves count the model elements of MSD-spec-1, MSD-
spec-2, MSD-spec-3, and MSD-spec-4. For this purpose, we use the automatic counting method
used in the evaluation of the last chapter (cf. Section 3.9.2.4). The specification process descri-
bed in Section 4.2 assumes that several roles add platform-specific aspects to an already existing
platform-independent MSD specification. Thus, we distinguish between platform-independent
and platform-specific MSD specification elements during counting to get an impression how
much effort for adding these platform-specific aspects is required. Table 4.3 summarizes the
model element amounts (cf. Table B.1 and Table B.2 in Appendix B.4 for the detailed model
element amounts).

Afterward, we count the elements of the corresponding generated CCSL models CCSL-
model-1, CCSL-model-2, CCSL-model-3, and CCSL-model-4. We distinguish between Inte-
ger variables, clock variables, clock expressions, and clock relations. The CCSL model editor
automatically supports this counting method by displaying the amount of selected elements.
Table 4.4 documents the results.

Hypothesis H3
For evaluating hypothesis H3, student-2 performs several times the transformation from the
platform-specific MSD specifications MSD-spec-1, MSD-spec-2, and MSD-spec-3 to the CCSL
models CCSL-model-1, CCSL-model-2, and CCSL-model-3, respectively. As explained in
Section 4.6.1, this transformation consists of a self-developed preprocessing step and the actual
MSD-to-CCSL transformation that is automatically derived by GEMOC Studio. For measuring
the particular times of both transformation steps, student-2 instruments the particular QVT-O
transformations so that timestamps are generated. He measures the preprocessing step six times
per model and the MSD-to-CCSL transformation four times per model. These measurements
are conducted on a HP EliteDesk 800 G3 TWR with an Intel Core i7-6700 CPU, which runs at a
speed of 3.4 GHz. The personal computer has 8GB RAM and a Micron SDD with a capacity of
512GB, and it applies Windows 7 Enterprise (64 Bit) as operating system. Table 4.5 summarizes
the averaged execution times (cf. Table B.3 in Appendix B.4 for the detailed measurements).

Hypothesis H4
During the evaluation of H1, H2, and H3, the students open every generated CCSL model in the
CCSL model editor and simulate it in TIMESQUARE. These models encompass CCSL-model-1,

178

4.6
R

ealization
and

E
valuation

Table 4.1: Test results static delays for hypothesis H1

Platform Property TAM Subprofile Modeling Means Induced Timing Effect Static Delay Platform-specific MSD Specification Test
Result

Communication transmission overhead Platform::Communication TamComInterface::commTxOvhd ECU -> comm system encoding delay distr message dispatch delay MSD-spec-1 ✔
Communication reception overhead Platform::Communication TamComInterface::commRcvOvhd comm system -> ECU decoding delay distr msg consumption delay MSD-spec-1 ✔
Media access policy arbitration time Platform::Communication TamComInterface::arbitrationT arbitration delay at sender distr message dispatch delay MSD-spec-1 ✔
Transmission protocol encoding at sender Platform::Communication TamProtocol::encodeRate encoding delay distr message dispatch delay MSD-spec-1 ✔
Transmission protocol decoding at receiver Platform::Communication TamProtocol::decodeRate decoding delay distr msg consumption delay MSD-spec-1 ✔
Transmission protocol overhead Platform::Communication TamProtocol::transmOvhd distributed throughput reduction distributed message send delay MSD-spec-1 ✔
Transmission protocol msg ctrl overhead Platform::Communication TamProtocol::msgCtrlOvhd throughput reduction distributed message send delay MSD-spec-1 ✔
Transmission protocol msg ctrl overhead Platform::Communication TamProtocol::msgCtrlOvhd encoding delay distr message dispatch delay MSD-spec-1 ✔
Transmission protocol msg ctrl overhead Platform::Communication TamProtocol::msgCtrlOvhd decoding delay distr msg consumption delay MSD-spec-1 ✔
Middleware encoding at sender Platform::Communication TamComService::encodeRate encoding delay distr message dispatch delay dedicated middleware encoding delay model ✔
Middleware decoding at receiver Platform::Communication TamComService::decodeRate decoding delay distr msg consumption delay dedicated middleware decoding delay model ✔
Middleware overhead Platform::Communication TamComService::transmOvhd throughput reduction distributed message send delay dedicated middleware overhead model ✔
Middleware message control overhead Platform::Communication TamComService::msgCtrlOvhd throughput reduction distributed message send delay dedicated middleware msg ctrl ovhd model ✔
Middleware message control overhead Platform::Communication TamComService::msgCtrlOvhd encoding delay distr message dispatch delay dedicated middleware msg ctrl ovhd model ✔
Middleware message control overhead Platform::Communication TamComService::msgCtrlOvhd decoding delay distr msg consumption delay dedicated middleware msg ctrl ovhd model ✔
Communication medium latency Platform::Communication TamComConnection::blockT propagation delay distributed message send delay MSD-spec-1 ✔
Communication medium capacity Platform::Communication TamComConnection::capacity distributed gross throughput distributed message send delay MSD-spec-1 ✔
Network latency Platform::Communication TamComConnection::networkBlockT network delay distributed message send delay dedicated network delay model ✔
Network management overhead Platform::Communication TamComConnection::networkOvhd distributed throughput reduction distributed message send delay dedicated network management ovhd model ✔
Processing power Platform::ControlUnit TamProcessingUnit::speedFactor processing time task execution delay MSD-spec-1 ✔
Core synchronization overhead Platform::ControlUnit TamProcessingUnit::coreSyncOvhd core synchronization delay task execution delay dedicated core synchronization ovhd model ✔
Memory access latency Platform::ControlUnit TamMemoryUnit::accessDelay memory access delay task execution delay dedicated memory delay model ✔
Memory access throughput Platform::ControlUnit TamMemoryUnit::throughput memory access throughput task execution delay dedicated memory delay model ✔
Sensor latency Platform::ControlUnit TamSensor::delay PeripheryUnit delay task execution delay dedicated periphery delay model ✔
Actuator latency Platform::ControlUnit TamActuator::delay PeripheryUnit delay task execution delay dedicated periphery delay model ✔
I/O latency Platform::ControlUnit TamIO::delay PeripheryUnit delay task execution delay dedicated periphery delay model ✔
Communication medium latency Platform::OperatingSystem TamOSComChannel::blockT internal propagation delay internal message send delay dedicated internal msg send delay model ✔
Task communication delay Platform::OperatingSystem TamOSComChannel::commTxOvhd internal propagation delay overhead internal message send delay dedicated internal msg send delay model ✔
Task communication delay Platform::OperatingSystem TamOSComChannel::commTxOvhd internal dispatch delay internal message dispatch delay dedicated internal msg send delay model ✔
Task communication delay Platform::OperatingSystem TamOSComChannel::commRcvOvhd internal comsumption delay internal msg consumption delay dedicated internal msg send delay model ✔
Task communication capacity Platform::OperatingSystem TamOSComChannel::capacity internal gross throughput internal message send delay dedicated internal msg send delay model ✔
Task communication overhead Platform::OperatingSystem TamOSComChannel::backgroundUtilization internal throughput reduction internal message send delay dedicated internal msg send delay model ✔
RTOS overhead Platform::OperatingSystem TamRTOS::backgroundUtilization RTOS delay task execution delay MSD-spec-1 ✔
Resource access time Platform::OperatingSystem TamSharedOSResource::accessDelay access delay task execution delay MSD-spec-1 ✔
Resource management overhead Platform::OperatingSystem TamOSResource::backgroundUtilization resource management delay task execution delay dedicated resource management delay model ✔
Scheduling overhead Platform::OperatingSystem TamScheduler::backgroundUtilization scheduling management delay task execution delay dedicated scheduling mgmt delay model ✔
Background utilization Platform::OperatingSystem TamOSService::backgroundUtilization execution delay task execution delay MSD-spec-1 ✔
Implementation execution overhead Platform::OperatingSystem TamImplementation::implExecOvhd implementation induced execution delay task execution delay dedicated impl induced delay model ✔
Implementation memory overhead Platform::OperatingSystem TamImplementation::implMemOvhd implementation induced memory delay task execution delay dedicated impl induced delay model ✔
Message size ApplicationSoftware TamOperation::msgSize throughput communication channel distributed message send delay MSD-spec-1 ✔
Message size ApplicationSoftware TamOperation::msgSize throughput internal ECU communication internal message send delay MSD-spec-1 ✔
Message size ApplicationSoftware TamOperation::msgSize encoding delay distr message dispatch delay MSD-spec-1 ✔
Message size ApplicationSoftware TamOperation::msgSize decoding delay distr msg consumption delay MSD-spec-1 ✔
Execution time ApplicationSoftware TamOperation::execTime processing time task execution delay MSD-spec-1 ✔
Memory consumption ApplicationSoftware TamOperation::usedMemory memory access throughput reduction task execution delay dedicated memory delay model ✔
Amount memory accesses ApplicationSoftware TamOperation::memAccessFreq memory delay task execution delay dedicated memory delay model ✔
Amount resource accesses ApplicationSoftware TamResourceAccess::numAccess resource access delay task execution delay MSD-spec-1 ✔179

C
ha

pt
er

4
E

ar
ly

Ti
m

in
g

A
na

ly
si

s
ba

se
d

on
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

ns

Table 4.2: Test results dynamic timing effects for hypothesis H1

Platform Property at Runtime TAM Subprofile Modeling Means Induced Timing Effect Platform-specific MSD Specification Test
Result

concurrent communication channel access Platform::Communication TamComConnection mutual exclusion of accessing tasks dedicated communication channel access model ✔

concurrent periphery resource access Platform::ControlUnit
TamPeripheryUnit, TamResourceAccess::isExclusive,
TamResourceAccess::peripheryResource

mutual exclusion of accessing tasks dedicated periphery resource access model ✔

concurrent OS resource access Platform::OperatingSystem TamOSSharedResource, TamResourceAccess::isExclusive,
TamResourceAccess::osResource mutual exclusion of accessing tasks dedicated OS resource access model ✔

task scheduling on processing unit cores Platform::OperatingSystem TamScheduler::isPreemptible, TamScheduler::schedPolicy,
TamOperation::schedParameters,
TAMProcessingUnit: numCores

task dispatch delay dedicated task scheduling model ✔

18
0

4.6 Realization and Evaluation

Table 4.3: Summarized model element amounts of the platform-specific MSD specifications for
H2 (cf. Table B.1 and Table B.2 for detailed model element amounts)

MSD-spec-1 # MSD-spec-2 # MSD-spec-3 # MSD-spec-4
Platform-independent model elements 193 193 883 883
Platform-specific model elements 88 172 88 201
Overall model elements 281 365 971 1,084

Table 4.4: Model element amounts of the generated CCSL models for hypothesis H2

CCSL-model-1 # CCSL-model-2 # CCSL-model-3 # CCSL-model-4
Integer variables 19 29 31 99
Clock variables 85 114 746 754
Clock expressions 92 171 1,410 1,648
Clock relations 159 241 1,280 1,747
Overall model elements 355 555 3,467 4,248

CCSL-model-2, CCSL-model-3, CCSL-model-4, and the 17 further CCSL models dedicated to
certain platform properties (cf. Table 4.1 and Table 4.2). The students can open and simulate all
models without the occurrence of any error.

4.6.2.5 Interpreting the Results

Both Table 4.1 and Table 4.2 document that our semantics encode the timing effects induced by
the platform properties as expected. Furthermore, all modeling means as provided by our TAM
profile are considered by the semantics. Thus, we consider our hypothesis H1 fulfilled.

Interpreting the results for hypothesis H2, we observe that the CCSL-model-1 model element
amount is ~126% of the MSD-spec-1 model element amount, # CCSL-model-2 is ~152% of
MSD-spec-2, # CCSL-model-3 is ~357% of # MSD-spec-3, and # CCSL-model-4 is ~391%
of # MSD-spec-4. These observations indicate that the size of the generated CCSL models is
proportionally increasing w.r.t. the size of the input platform-specific MSD specification. This
assumption is consistent with the fact that in general for any MSD specification model element
each several CCSL model elements are generated, as exemplified in Section 4.4. Summarizing,
we consider our hypothesis H2 fulfilled because the sizes of the examined CCSL models are
>100% of the sizes of the respective platform-specific MSD specification counterparts.

For interpreting the results for hypothesis H3, we relate the CCSL model sizes determined
for hypothesis H2 with the measured averaged execution times. By doing so, we observe that
per second ~36 CCSL model elements are generated from MSD-spec-1, ~51 CCSL model ele-
ments from MSD-spec-2, ~80 CCSL model elements from MSD-spec-3, and ~80 CCSL model
elements from MSD-spec-4. These observations indicate that the relative transformation speed
initially increases with the size of the generated CCSL models and stabilizes after a certain

Table 4.5: Averaged transformation execution times for deriving CCSL models from platform-
specific MSD specifications for H3 (cf. Table B.3 for individual measurements)

MSD-spec-1 MSD-spec-2 MSD-spec-3 MSD-spec-4
∅∅∅Preprocessing runs 434 ms 369 ms 4,948 ms 4,769 ms
∅∅∅MSD-to-CCSL Transformation runs 9,427 ms 10,443 ms 38,528 ms 48,523 ms
∅∅∅Overall transformation execution time 9,860 ms 10,812 ms 43,476 ms 53,292 ms

181

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

CCSL model size is reached. We consider hypothesis H3 fulfilled because more than one CCSL
model element is generated per second.

Finally, we consider hypothesis H4 fulfilled because 100% of the 21 CCSL models genera-
ted during the evaluation of H1-H3 were opened in the CCSL model editor and simulated in
TIMESQUARE without the occurrence of any error.

The fulfilled hypotheses indicate a positive answer to our evaluation questions. That is, our
timing analysis approach generates syntactically and semantically CCSL models and reduces
the engineering effort for conceiving and specifying them. The effort is even less because
the specification process described in Section 4.2 assumes that the platform-specific aspects
are added to an already existing platform-independent MSD specification. Summarizing, the
fulfilled hypotheses give rise to the assumption that our timing analysis approach is indeed
useful for the Timing Analysts.

4.6.2.6 Threats to Validity

The threats to validity in our case study (structured according to the taxonomy of Runeson et al.
[RHAR12; RH08]) are as follows.

Construct Validity
• Student-1 conceived the initial timing analysis approach [*Ber17] as well as MSD-spec-

1, and the other platform-specific MSD specifications are variants of it. Thus, he knew
the functional principle of the approach and could have been biased toward it.

However, we complementary employed student-2 for conceiving the other platform-
specific MSD specifications as well as evaluating the hypotheses, and ourselves had com-
prehensive discussions with him. Furthermore, the platform-specific MSD specifications
base on a platform-independent MSD specification and a CONSENS system model for
the EBEAS (cf. last chapter) that we extensively discussed with other both internal and
external researchers as well as industry experts (cf. Section 3.9.2.6).

• Regarding the evaluation of H1, the platform properties provided as modeling means by
our TAM profile might not be extensive enough, might not be useful, or might not be
applicable during the early development phase of SwRE.

However, we argue that the considered platform properties represent typical timing-
relevant ones at an adequate abstraction level due to their systematic determination by
means of a literature review [*Ber17, Chapter 3]. This literature review considered scien-
tific as well as industrial-grade publications and investigated which platform properties
influence the timing behavior of software-intensive systems and which concrete effects
on the timing behavior they induce. Furthermore, it ensured the applicability during
SwRE by excluding publications describing platform properties that have a too detailed
abstraction level for a timing analysis during this early development phase.

Internal Validity
Regarding the evaluation of H3, we set the amount of the generated CCSL model elements in
ratio with the transformation execution time and conclude that the generation of CCSL models
is more efficient than a manual specification. This causal relation might be incorrect. However,
it is obvious that manually specifying a CCSL model cannot outperform an automatic CCSL
model generation.

182

4.7 Related Work

External Validity
We only considered one case, and the platform-specific MSD specifications are variants of the
automotive EBEAS. Furthermore, exemplary case studies in general cannot ensure external
validity. Thus, we cannot generalize the conclusions to all possible platform-independent MSD
specifications, other types of software-intensive systems, or software-intensive systems in other
industry sectors. Nevertheless, the examples are typical for software-intensive systems, and we
hence do not expect large deviations for other types of systems.

Reliability
Regarding the evaluation of H1, the students could have judged incorrectly whether the
platform-induced timing effects occur as expected. However, we mitigate this threat by em-
ploying two students, whose judgments complement each other.

4.7 Related Work

We present early timing analysis approaches based on system models in Section 4.7.1,
for scenario-based formalisms in Section 4.7.2, and for component-based architectures in
Section 4.7.3.

4.7.1 Timing Analyses based on System Models

The approaches described in the following base on system models to enable simulative perfor-
mance or timing analyses. They have in common that much information only relevant to the
Platform Architects, Allocation Engineers, and Timing Analysts (e.g., B/WCETs, task models,
latencies, etc.) has to be specified in the system model to apply the simulations. Thus, the inter-
disciplinary system model is overloaded with information specific to the particular discipline-
specific analysis goals. The approaches hence are applicable in their restricted domains but not
in general in multidisciplinary settings. Furthermore, both approaches do not consider functio-
nal behavior requirements.

Frieben et al. [Fri17; FHMB13; FH12] present an approach for the early simulative validation
of factors influencing the performance of software-intensive systems in the automation sector.
The simulation is based on a fine-grained automation model encompassing system properties
influencing the timing behavior such as hardware, operating system, and scheduling proper-
ties. However, they focus on performance analysis, which applies stochastic approaches. Such
approaches are not suitable for hard real-time systems as they cannot guarantee the correct wor-
king of a system under worst-case conditions [JP86; Sta88] (cf. Section 2.6). Furthermore, the
approach is restricted to the automation sector.

Meyer et al. [Mey15; *MHM11; NMK10] present an approach enabling early real-time
simulations to validate system properties influencing the timing behavior and partly to verify
them against real-time requirements for software-intensive systems in the automotive sector.
The real-time simulation is applied in the system design as well as in the design part of the soft-
ware engineering phase (cf. Figure 1.1) and requires information from a system and a software
design model as input. However, the approach bases on design models and does not focus on
requirements.

183

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

4.7.2 Scenario-based Timing Analyses

Most approaches described in this section annotate scenario-based requirements formalisms
with real-time requirements as well as timing-relevant effects and provide different non-sim-
ulative techniques for their respective timing analyses. However, the outputs of these timing
analysis techniques are plain yes/no results and partly logged information about the processing
times. In contrast, our timing analysis of the generated CCSL time models in TIMESQUARE

enables to comprehensively detect real-time requirement violations straightaway by means of
interactive simulation.

Furthermore, the approaches only allow to describe the timing effects (typically static delays)
induced by the system in a very generic way. However, they do not allow to describe the causes
of the effects, that is, a platform property inducing the particular timing effect. In contrast,
we provide modeling means based on MARTE that enable to annotate a component-based MSD
specification allocated to a platform model with timing-relevant platform properties. We encode
the induced timing effects in terms of the simulative execution in TIMESQUARE by means of
our semantics for timing analyses. The separation of the platform property specification from
the timing effects that they induce enables to use the platform properties also for other purposes
(e.g., for design reviews or as requirements for the subsequent design phases).

Hassine [Has15; Has09] annotates the scenario notation of Timed Use Case Maps (TUCM)
[HRD06] and its underlying architecture with annotations about timing-relevant effects. The
annotated TUCM model is transformed into an Abstract State Machine model [BS03] that is
simulated in an external tool, similarly to our approach. However, the simulation tool is not
capable of interpreting the annotations. Instead, it is instrumented so that execution traces are
generated and persisted in a text file. These execution traces potentially contain log messages
about real-time requirement violations and have to be inspected manually to verify platform
properties against real-time requirements. In contrast, we generate CCSL specifications that
we directly simulate in TIMESQUARE, where we detect and comprehend potential real-time
requirement violations straightaway. Furthermore, the approach only allows to specify delays
(i.e., an excerpt of our effects) induced by the platform in a very generic way, but not the
causes of the effects. In contrast, we provide modeling means based on MARTE that enable
annotating a component-based MSD specification allocated to a platform model with timing-
relevant platform properties, where the induced timing effects are encoded in our semantics.

Wang and Tsai [WT04] apply Message Sequence Charts [ITU11] to specify functional re-
quirements and the Specification and Description Language [ITU16] to specify the underlying
architecture. They annotate these models with a task model including real-time requirements
and with timing-relevant effects, respectively. They use algorithms to first compute an allocation
of tasks to processing resources and subsequently perform a schedulability analysis to verify the
effects against real-time requirements, yielding a plain yes/no result. In contrast, we explicitly
specify the allocation of software components to processing resources in our platform-specific
MSD specifications and simulate the resulting CCSL specifications, where the simulation faci-
litates to comprehend potential real-time requirement violations. Again, the approach does not
distinguish between platform properties and the timing effects that they induce.

Han and Youn [HY12] apply Interval Timed Colored Petri Nets [Bou08] to specify delays for
the execution of event sequences and annotate these models with real-time requirements. They
present algorithms for the computation of event sequence processing delays and for the verifi-
cation of the delays w.r.t. the real-time requirements. Similarly to the approaches mentioned
above, the outputs of these algorithms are plain yes/no results as well as the logged proces-

184

4.7 Related Work

sing times. Thus, our simulative approach again enables a better comprehension of real-time
requirement violations. Furthermore, the approach only allows to specify static delays in terms
of timing effects.

Larsen et al. [LBD+10; LLNP09; LLNP10] present an approach to formally verify real-time
design behavior specified through Timed Automata (TA) [AD94] against scenario-based functi-
onal and real-time requirements specified by means of time-enriched Live Sequence Charts
(LSCs) [DH01]. For this purpose, the LSC requirements are translated to observer TA that are
composed with the design behavior TA that encompass timing effects. The resulting TA net-
work is verified against reachability properties on the observer TA in a model checking tool.
However, the need for detailed intra-component design models encompassing timing effects
impedes the application of the approach in SwRE.

Lettrari and Klose [LK01] simulatively verify real-time design models against scenario-based
functional and real-time requirements that are specified by means of time-constrained UML
1.3 Sequence Diagrams augmented with concepts from LSCs. For this purpose, they generate
instrumented code from the design models so that timestamps are recorded in the simulative
code execution. These timestamps are used to check whether the implementation fulfills the
real-time requirements specified in the scenarios. However, the need for executable software
code generated from detailed design models impedes the application of the approach in SwRE.

Maoz et al. [MH11; MKH07] present an approach to visualize and inspect traces of system
executions in correspondence with their functional requirements specified by means of Maoz’
and Harel’s original MSD language [HM08]. Amongst other things, they provide a time-based
view to visualize the concrete timestamps of the traces to address timing aspects. However, the
approach does not aim at verification, and the MSDs do not specify real-time requirements.

4.7.3 Architecture-based Timing Analyses

The approaches described in the following enable implementation-level timing analyses w.r.t.
real-time requirements specified at a higher abstraction level based solely on component-based
architectures, or reuse architecture-based knowledge from prior projects. However, the approa-
ches do not consider functional requirements and require conducting timing analyses on the final
system implementation like typical timing analysis tools (i.e., based on executed platform code
or models of it). In contrast, we provide early timing analyses based on functional requirements
on the implementation.

Mubeen et al. [MNS+17] present an approach to annotate real-time requirements to
component-based architectures (both specified on a coarse-grained, high abstraction level) and
to automatically refine the abstract real-time requirements into concrete real-time requirements
for a low-level implementation model (that is also automatically derived from the high-level ar-
chitecture). However, their actual timing analysis still requires the final system implementation.

Another line of research of Mubeen et al. [MNL+16; MSN+15] focuses on enabling early
timing analyses based on legacy systems. To this end, they provide differently precise timing
analysis techniques for different kinds of components: Precise timing analysis for white-box
components whose internal architectures were developed in prior projects, less precise timing
analysis for gray-box components whose internals have to be adapted, and imprecise timing
analysis for black-box components whose internals are unknown and have to be newly concei-
ved.

Noyer et al. [NIE+17] provide a tool chain that enables to specify informal real-time require-
ments, to specify a UML/MARTE design, to generate source code, to extract traces from the

185

Chapter 4 Early Timing Analysis based on Software Requirements Specifications

executed implementation, and to conduct timing analyses in a commercial-off-the-shelf tool.
They focus on the stepwise refinement and on the traceable data exchange from the informal re-
quirements down to the actual timing analysis, but their timing analysis requires the final system
implementation like typical timing analysis tools.

4.8 Summary

In this chapter, we presented an approach that enables end-to-end response time analyses based
on MSD specifications encompassing real-time requirements. For this purpose, we introduced
the MARTE-based TAM profile providing modeling means for platforms, their timing-relevant
properties, and the allocation of component-based MSD specifications to the platform models.
This profile enables the participating engineering roles to model platform-specific MSD spec-
ifications. Furthermore, we conceptually extended the event handling semantics of MSDs by
introducing additional event kinds for the consideration of static and dynamic delays in bet-
ween that occur during the software execution on a target platform. As major contribution, we
specified the semantics of platform-specific MSD specifications with extended event handling
for the purpose of conducting timing analyses. This semantics encompasses a subset of the
conventional MSD semantics extended by the additional event types, the platform properties’
effects on the timing behavior in terms of the static and dynamic delays, and the encoding of
the MSD real-time requirements as well as timing analysis contexts. To this end, we applied the
GEMOC approach that enables the automatic derivation of CCSL models from platform-specific
MSD specifications based on our semantics specification. These CCSL models are executable
in the simulative timing analysis tool TIMESQUARE. We provided a process description that
clarifies the artifact dependencies and role responsibilities for the specification of the particular
platform-independent and -specific aspects and the application of the approach. Using a case
study, we evaluated the transition technique by means of the automotive EBEAS example and
outlined the timing problems that we are able to identify on this abstraction level.

The timing analysis approach provides Software Requirement Engineers and Timing Analysts
means for the platform-aware validation of the platform-independent MSD analysis results du-
ring the early phase of SwRE. The TAM profile provides comprehensive modeling means to add
timing-relevant platform-specific aspects to MSD specifications at an abstraction level suitable
for SwRE. The extended event handling semantics for MSDs enables a more realistic consi-
deration of the particular event occurrences during the observation of the message-based coor-
dination behavior of the system under development. The specification of the MSD semantics
dedicated to timing analyses encodes a subset of the conventional MSD semantics, the exten-
ded MSD event handling, and the platform properties’ effects on the timing behavior in terms
of CCSL. Furthermore, the declarative semantics specification with GEMOC allows the flexible
encoding of additional platform properties’ timing effects or the adaption to other scenario-
based formalisms. The model transformation generation feature of GEMOC Studio takes this
declarative specification as input and thereby reduces the effort of moving from MSDs to the
CCSL formalism. The conducted case study indicates the effectiveness and the efficiency of the
approach.

186

5

Conclusion

Section 5.1 summarizes this thesis, and Section 5.2 outlines future work.

5.1 Summary

The software part of software-intensive systems has become their key innovation force
[GDS+15] and consequently provides more and more functionality. Thus, the software part of
these systems is increasing both in size [VBK10; MF10; PBKS07] and market value [BBH+10].
Requirements are the basis for all engineering tasks in the further development process and
hence must have a high quality, particularly for the increasingly complex software. The contri-
butions of this thesis enable Software Requirements Engineers to improve the quality of their re-
quirements specifications for software-intensive systems. Our contributions focus on the SwRE
approach applying the scenario-based modeling language MSDs [*HFK+16]. However, the
results are transferable to other scenario-based SwRE approaches. We implemented all contri-
butions on top of the tool suite SCENARIOTOOLS MSD [ST-MSD].

As our first contribution, we provide a technique for the semi-automatic and systematic tran-
sition from MBSE with CONSENS to SwRE with MSDs. This transition technique reduces the
likelihood of defects in MSD specifications that can be introduced by the Software Require-
ments Engineers during the transition. Furthermore, it reduces the manual effort for conceiving
MSD specifications based on CONSENS system models. Particularly, the transition technique
applies incremental model transformations to automatically derive initial and update existing
MSD specifications based on CONSENS system models. Furthermore, these model transforma-
tions semi-automatically establish lifecycle traceability between CONSENS system models and
the MSD specifications. The model transformations are complemented by a semi-automatic
part, which supports the Software Requirements Engineers in the manual refinement of the ini-
tially derived MSD specifications. Using a case study, we evaluate that our transition technique
provides effective and efficient support for the Software Requirements Engineers by means of
two cases from the automotive sector.

As our second contribution, we provide an approach that enables end-to-end response time
analyses based on MSD specifications. This timing analysis approach identifies platform-
induced real-time requirement violations in MSD specifications that could otherwise be revealed
only in late engineering phases through conventional timing analysis techniques. Thereby, we
provide Timing Analysts means for the platform-aware validation of the platform-independent
MSD analysis results during the early phase of SwRE. Particularly, we present an MSD se-
mantics dedicated to timing analyses, which we specify declaratively by means of the GEMOC

approach. This approach automatically generates simulative timing analysis models from MSD
specifications with timing-relevant platform properties based on the semantics specification. As

187

Chapter 5 Conclusion

a basis for the semantics, we introduce a MARTE-based profile providing modeling means for
adding the timing-relevant platform properties to MSD specifications. Furthermore, we extend
the MSD message event handling semantics by introducing additional event kinds and the ti-
ming effect delays in between for the consideration in the semantics and thereby in the timing
analyses. Using a case study, we evaluate that our timing analysis approach provides effective
and efficient support for the Timing Analysts by means of an example from the automotive
sector.

In combination, our contributions improve the quality of software requirements specifications
for software-intensive real-time systems that are developed in a multidisciplinary manner and
deployed to distributed and concurrent execution platforms. We achieve this quality impro-
vement by reducing the likelihood to introduce defects during the transition from the interdisci-
plinary MBSE and by early revealing platform-induced real-time requirement violations.

5.2 Future Work

Consolidation with other CONSENS and MECHATRONICUML Integrations Our thesis inte-
grates the CONSENS specification technique and the MECHATRONICUML SwRE met-
hod. However, a variety of other approaches exist that integrate aspects of CONSENS and
MECHATRONICUML. First, Anacker et al. [AGD+12] present an approach for the transi-
tion from MBSE with CONSENS to SwRE with MSDs in the context of brownfield deve-
lopment. Second, Rieke [Rie15] and Heinzemann et al. [HSST13] present approaches for
the transition from MBSE with CONSENS to the software design with MECHATRONIC-
UML. Finally, Bröggelwirth et al. [*BBG+13] and Basak et al. [BBB+16] present early
results for the transition from the SwRE method to the software design method of MECH-
ATRONICUML. These integration approaches should be consolidated with our transition
technique in order to combine them to a seamless and holistic method for the design of
software-intensive systems.

Discipline-spanning, Tool-supported Requirements Validation Our thesis focuses on the
documentation and the tool-supported validation of the requirements on the coordination
behavior part of software-intensive systems. However, the coordination behavior engages
control behavior, which actuates electronic elements that trigger physical actions. Thus,
the MSD analysis techniques should be combined with tool-supported requirements vali-
dation approaches from other disciplines (e.g., [HLMR13; GKS00] for formal languages
for the specification of requirements on the control behavior). Such a combination would
enable tool support that allows to analyze the interactions between the disciplines on re-
quirements level.

Further Support for Conceiving MSD Specifications Our thesis provides semi-automatic
means to support the manual refinement of initially derived MSD specifications based and
informal or semi-formal information in CONSENS system models. However, we partially
contributed to other complementary approaches that can be utilized to constructively as-
sure a high quality of MSD specifications or to interpret the informal system model infor-
mation. First, we present initial results of an approach that uses evolutionary algorithms
to complete missing parts of underspecified MSD specifications [*SGH17]. Second, we
provide MSD requirement patterns [*FHKS18; *FHKS17] that provide reusable and esta-
blished building blocks to assemble high-quality MSD specifications. Third, the informal

188

5.2 Future Work

textual information in system models can be formalized trough controlled natural lan-
guage (e.g., [WAB+10]) so that this information is interdisciplinarily understandable and
automatically processable at the same time, as we showed in [*FH15; *FHM14; *FH14;
*DFHT13; *FHH+12; *FHM12; *HMD11; *HMM11; *Hol10]. Finally, natural lan-
guage processing can extract a representation amenable to automatisms from the informal
textual information in system models. Combining such approaches would further support
the Software Requirements Engineers to conceive or refine MSD specifications by means
of automatisms.

Allocation Engineering across Different Engineering Phases Planning, specifying, and
analyzing allocations of software components to execution platforms is part of the al-
location engineering, which is regarded as a part of the software engineering discipline
(e.g., [ŠCV13; Poh18]. However, allocation engineering is obviously interdisciplinary
due to its hardware dependencies and hence should be already considered in the system
design phase. Thus, our CONSENS system models contain coarse-grained allocations of
software components to execution hardware elements, and our platform-specific MSD
specifications contain more fine-grained allocations of software architectures to execu-
tion platforms as basis for our timing analysis approach during SwRE. Furthermore,
recent improvements of the MECHATRONICUML design method enable a constructive
schedulability assurance through computing feasible allocations based on even more
fine-grained software design and platform models [GHK+18; Poh18; PH18; PH15] in
a later software engineering phase. Future work should thoroughly define at which
abstraction levels allocations shall be specified in system models and software/platform
models w.r.t. to the particular modeling purposes [Sta73] and how the transitions and
refinements across the different engineering phases shall look like (see also [JVTM17]
and [FMS12, Section 14.4.4]).

Coupled Platform-independent and -specific Requirements Validation The MSD analysis
techniques address safety and liveness properties of functional and real-time platform-
independent requirements. For this purpose, they apply a dense time model and abstract
event handling semantics. TIMESQUARE as instrumented by our semantics addresses the
verification of platform-induced timing effects w.r.t. the real-time requirements, applying
a discrete logical time model. For this purpose, our approach considers a subset of the
complete MSD semantics regarding functional requirements but refines this subset for
platform-specific timing aspects with more fine-grained event handling semantics. Thus,
both approaches complement each other and induce a process, in which initially timed
MSD specifications are analyzed for general realizability and are subsequently enriched
with platform properties that are verified w.r.t. the real-time requirements. The cou-
pling of both approaches could enable a synchronized simulation in both Real-time Play-
out and TIMESQUARE, directly tracing back real-time requirement violations detected in
TIMESQUARE to MSD specifications. Furthermore, the TIMESQUARE simulation could
be guided by timed controllers synthesized from the MSD specification, so that only the
realizable state space paths are considered in the timing analyses.

Generalizing the MBSE to SwRE Model Transformation Approach Our model transforma-
tion approach for the transition from MBSE to SwRE combines the efficient and compact
imperative logic of QVT-O with the user-edit-preserving target-incrementality and the
destructive source-target relationship known from TGGs. However, we realized the TGG
features by means of hard-coded rules for the particular source and target model element

189

Chapter 5 Conclusion

types as part of our model transformation algorithm. Future work should combine the ad-
vantages of operational and relational model transformation approaches in a more general
way. This can be achieved through generalizing the hard-coded rules to parameterizable
features of QVT-O or through identifying/conceiving a hybrid (i.e., mixed operational and
relational) transformation approach [CH06; KBC+18] that fulfills all of our requirements.

190

Bibliography

The publication keys of all literature that I contributed to (i.e., my publications/theses as well as
the theses supervised by me) have the prefix * to identify them easily within this thesis. From
these, I do not only list literature that was directly conducive to my PhD thesis but all literature
that I contributed to during my time as PhD student.

Own Peer-reviewed Publications

[*BGH+14] CHRISTIAN BRENNER; JOEL GREENYER; JÖRG HOLTMANN; GRISCHA LIE-
BEL; GERALD STIEGLBAUER; MATTHIAS TICHY: “ScenarioTools Real-Time
Play-Out for Test Sequence Validation in an Automotive Case Study”. In: Pro-
ceedings of the 13th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT 2014). Vol. 67. Electronic Communicati-
ons of the EASST. European Association for the Study of Science and Techno-
logy (EASST), 2014. DOI: 10.14279/tuj.eceasst.67.948.

[*FH14] MARKUS FOCKEL; JÖRG HOLTMANN: “A Requirements Engineering Metho-
dology Combining Models and Controlled Natural Language”. In: Proceedings
of the 4th International Model-Driven Requirements Engineering Workshop
(MoDRE 2014). Ed. by ANA MOREIRA; PABLO SÁNCHEZ; GUNTER MUSS-
BACHER; JOÃO ARAÚJO. Piscataway, USA: IEEE, 2014, pp. 67–76. ISBN: 978-
1-4799-6343-0. DOI: 10.1109/MoDRE.2014.6890827.

[*FH15] MARKUS FOCKEL; JÖRG HOLTMANN: “ReqPat: Efficient Documentation of
High-quality Requirements using Controlled Natural Language.” In: Proceed-
ings of the 23rd IEEE International Requirements Engineering Conference
(RE), Posters and Tool Demos Track. Los Alamitos, USA: IEEE, 2015, pp. 280–
281. ISBN: 978-1-4673-6905-3. DOI: 10.1109/RE.2015.7320438.

[*FHKS18] MARKUS FOCKEL; JÖRG HOLTMANN; THORSTEN KOCH; DAVID SCHMEL-
TER: “Formal, Model- and Scenario-based Requirement Patterns”. In: Pro-
ceedings of the 6th International Conference on Model-Driven Engineering
and Software Development (MODELSWARD 2018). Setúbal, Portugal: SCITE-
PRESS, 2018, pp. 311–318. ISBN: 978-989-758-283-7. DOI: 10 . 5220 /
0006554103110318.

[*FHM12] MARKUS FOCKEL; JÖRG HOLTMANN; JAN MEYER: “Semi-automatic Es-
tablishment and Maintenance of Valid Traceability in Automotive Develop-
ment Processes”. In: Proceedings of the 2nd International Workshop on Soft-
ware Engineering for Embedded Systems (SEES). Piscataway, USA: IEEE,
2012, pp. 37–43. ISBN: 978-1-4673-1852-5. DOI: 10.1109/SEES.2012.
6225489.

191

https://doi.org/10.14279/tuj.eceasst.67.948
https://doi.org/10.1109/MoDRE.2014.6890827
https://doi.org/10.1109/RE.2015.7320438
https://doi.org/10.5220/0006554103110318
https://doi.org/10.5220/0006554103110318
https://doi.org/10.1109/SEES.2012.6225489
https://doi.org/10.1109/SEES.2012.6225489

Bibliography

[*GTH16] MATTHIAS GREINERT; CHRISTIAN TSCHIRNER; JÖRG HOLTMANN: “An-
wendung von Methoden der Produktentstehung auf Basis des Systemmodells
mechatronischer Systeme”. In: Tag des Systems Engineering (TdSE 2016). Ed.
by SVEN-OLAF SCHULZE; CHRISTIAN TSCHIRNER; RÜDIGER KAFFENBER-
GER; SASCHA ACKVA. München, Germany: Hanser, 2016, pp. 77–86. ISBN:
978-3-446-45126-1 (Print), 978-3-446-45141-4 (Online). DOI: 10 . 3139 /
9783446451414.008.

[*HBM+15] JÖRG HOLTMANN; RUSLAN BERNIJAZOV; MATTHIAS MEYER; DAVID

SCHMELTER; CHRISTIAN TSCHIRNER: “Integrated Systems Engineering and
Software Requirements Engineering for Technical Systems”. In: Proceedings
of the 2015 International Conference on Software and System Process (ICSSP).
Best Full Paper. New York, USA: ACM, 2015, pp. 57–66. ISBN: 978-1-4503-
3346-7. DOI: 10.1145/2785592.2785597.

[*HBM+16] JÖRG HOLTMANN; RUSLAN BERNIJAZOV; MATTHIAS MEYER; DAVID

SCHMELTER; CHRISTIAN TSCHIRNER: “Integrated and iterative systems en-
gineering and software requirements engineering for technical systems”. In:
Journal of Software Evolution and Process (Special Issue on Best Papers of In-
ternational Conference on Software and Systems Process 2015) 28:9 (2016). Ed.
by DIETMAR PFAHL; MARCO KUHRMANN; REDA BENDRAOU; RICHARD

TURNER, pp. 722–743. ISSN: 2047-7481. DOI: 10.1002/smr.1780.

[*HM13] JÖRG HOLTMANN; MATTHIAS MEYER: “Play-out for Hierarchical Compo-
nent Architectures”. In: Proceedings of the 11th Workshop on Automotive Soft-
ware Engineering. Ed. by MATTHIAS HORBACH. Vol. P-220. GI-Edition – Lec-
ture Notes in Informatics (LNI). Bonn, Germany: Köllen, 2013, pp. 2458–2472.
ISBN: 978-3-88579-614-5.

[*HMD11] JÖRG HOLTMANN; JAN MEYER; MARKUS von DETTEN: “Automatic Vali-
dation and Correction of Formalized, Textual Requirements”. In: Proceedings
of the IEEE 4th International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). Los Alamitos, USA: IEEE, 2011, pp. 486–495.
ISBN: 978-1-4577-0019-4. DOI: 10.1109/ICSTW.2011.17.

[*HMM11] JÖRG HOLTMANN; JAN MEYER; MATTHIAS MEYER: “A Seamless Model-
Based Development Process for Automotive Systems”. In: ENVISION 2020 –
Zweiter Workshop zur Zukunft der Entwicklung softwareintensiver, eingebet-
teter Systeme. Ed. by RALF REUSSNER; ALEXANDER PRETSCHNER; STE-
FAN JÄHNICHEN. Vol. P-184. GI-Edition – Lecture Notes in Informatics (LNI).
Bonn, Germany: Köllen, 2011, pp. 79–88. ISBN: 978-3-88579-278-9.

[*HMSN10] JÖRG HOLTMANN; JAN MEYER; WILHELM SCHÄFER; ULRICH NICKEL:
“Eine erweiterte Systemmodellierung zur Entwicklung von softwareintensiven
Anwendungen in der Automobilindustrie”. In: ENVISION 2020 – Erster Work-
shop zur Zukunft der Entwicklung softwareintensiver, eingebetteter Systeme.
Ed. by GREGOR ENGELS; MARKUS LUCKEY; ALEXANDER PRETSCHNER;
RALF REUSSNER. Vol. P-160. GI-Edition – Lecture Notes in Informatics (LNI).
Bonn, Germany: Köllen, 2010, pp. 149–158. ISBN: 978-3-88579-254-3.

192

https://doi.org/10.3139/9783446451414.008
https://doi.org/10.3139/9783446451414.008
https://doi.org/10.1145/2785592.2785597
https://doi.org/10.1002/smr.1780
https://doi.org/10.1109/ICSTW.2011.17

Own Peer-reviewed Publications

[*HS14] JÖRG HOLTMANN; DIMITAR SHIPCHANOV: “Considering Architectural Pro-
perties in Real-time Play-out”. In: Proceedings of the 12th Workshop on
Automotive Software Engineering. Ed. by ERHARD PLÖDEREDER; LARS

GRUNSKE; ERIC SCHNEIDER; DOMINIK ULL. Vol. P-232. GI-Edition – Lec-
ture Notes in Informatics (LNI). Bonn, Germany: Köllen, 2014, pp. 2169–2180.
ISBN: 978-3-88579-626-8.

[*HT08] JÖRG HOLTMANN; MATTHIAS TICHY: “Component Story Diagrams in Fu-
jaba4Eclipse”. In: Proceedings of the 6th International Fujaba Days. Ed. by
UWE ASSMANN; JENDRIK JOHANNES; ALBERT ZÜNDORF. 2008, pp. 44–47.

[*KDHM13] LYDIA KAISER; ROMAN DUMITRESCU; JÖRG HOLTMANN; MATTHIAS

MEYER: “Automatic Verification of Modeling Rules in Systems Engineering
for Mechatronic Systems”. In: Proceedings of the ASME International Design
Engineering Technical Conferences & Computers and Information in Engineer-
ing Conference (ASME IDETC/CIE). New York, USA: American Society of
Mechanical Engineers (ASME), 2013. ISBN: 978-0-7918-5586-7. DOI: 10.
1115/DETC2013-12330.

[*KHD14] THORSTEN KOCH; JÖRG HOLTMANN; JULIEN DEANTONI: “Generating
EAST-ADL Event Chains from Scenario-Based Requirements Specifications”.
In: Proceedings of the 8th European Conference on Software Architecture
(ECSA). Ed. by PARIS AVGERIOU; UWE ZDUN. Vol. 8627. Lecture Notes
in Computer Science (LNCS). Cham, Switzerland: Springer, 2014, pp. 146–
153. ISBN: 978-3-319-09969-9 (Print), 978-3-319-09970-5 (Online). DOI: 10.
1007/978-3-319-09970-5_14.

[*KHL17] THORSTEN KOCH; JÖRG HOLTMANN; TIMO LINDEMANN: “Flexible Spec-
ification of STEP Application Protocol Extensions and Automatic Derivation
of Tool Capabilities”. In: Proceedings of the 5th International Conference on
Model-Driven Engineering and Software Development (MODELSWARD 2017).
Ed. by LUÍS FERREIRA PIRES; SLIMANE HAMMOUDI; BRAN SELIC. Setú-
bal, Portugal: SCITEPRESS, 2017, pp. 53–64. ISBN: 978-989-758-210-3. DOI:
10.5220/0006137400530064.

[*KHSL16] THORSTEN KOCH; JÖRG HOLTMANN; DAVID SCHUBERT; TIMO LIN-
DEMANN: “Towards Feature-based Product Line Engineering of Technical
Systems”. In: Proceedings of the 3rd International Conference on System-
Integrated Intelligence – New Challenges for Product and Production En-
gineering. Vol. 26. Procedia Technology. Elsevier, 2016, pp. 447–454. DOI:
10.1016/j.protcy.2016.08.057.

[*MFH15] JAN MEYER; MARKUS FOCKEL; JÖRG HOLTMANN: “Systementwurf un-
ter Einbeziehung funktionaler Sicherheit bei automobilen Steuergeräten”. In:
Tag des Systems Engineering (TdSE 2015). Ed. by SVEN-OLAF SCHULZE;
CHRISTIAN MUGGEO. München, Germany: Hanser, 2015, pp. 365–374. ISBN:
978-3-446-44729-5 (Print), 978-3-446-44728-8 (Online). DOI: 10 . 3139 /
9783446447288.036.

193

https://doi.org/10.1115/DETC2013-12330
https://doi.org/10.1115/DETC2013-12330
https://doi.org/10.1007/978-3-319-09970-5_14
https://doi.org/10.1007/978-3-319-09970-5_14
https://doi.org/10.5220/0006137400530064
https://doi.org/10.1016/j.protcy.2016.08.057
https://doi.org/10.3139/9783446447288.036
https://doi.org/10.3139/9783446447288.036

Bibliography

[*MH11] JAN MEYER; JÖRG HOLTMANN: “Eine durchgängige Entwicklungsmethode
von der Systemarchitektur bis zur Softwarearchitektur mit AUTOSAR”. In: Ta-
gungsband des 7. Dagstuhl-Workshops Modellbasierte Entwicklung eingebet-
teter Systeme (MBEES VII). Ed. by HOLGER GIESE; MICHAELA HUHN; JAN

PHILIPPS; BERNHARD SCHÄTZ. München, Germany: fortiss, 2011, pp. 21–30.

[*MHKM15] JAN MEYER; JÖRG HOLTMANN; THORSTEN KOCH; MATTHIAS MEYER:
“Generierung von AUTOSAR-Modellen aus UML-Spezifikationen”. In: 10.
Paderborner Workshop Entwurf mechatronischer Systeme. Ed. by JÜRGEN

GAUSEMEIER; ROMAN DUMITRESCU; FRANZ-JOSEF RAMMIG; WILHELM

SCHÄFER; ANSGAR TRÄCHTLER. Vol. 343. HNI-Verlagsschriftenreihe. Pad-
erborn, Germany: Heinz Nixdorf Institut, 2015, pp. 159–172. ISBN: 978-3-
942647-62-5.

[*MHM11] JAN MEYER; JÖRG HOLTMANN; MATTHIAS MEYER: “Formalisierung von
Anforderungen und Betriebssystemeigenschaften zur frühzeitigen Simulation
von eingebetteten, automobilen Systemen”. In: 8. Paderborner Workshop
Entwurf mechatronischer Systeme. Ed. by JÜRGEN GAUSEMEIER; FRANZ-
JOSEF RAMMIG; WILHELM SCHÄFER; ANSGAR TRÄCHTLER. Vol. 294.
HNI-Verlagsschriftenreihe. Paderborn, Germany: Heinz Nixdorf Institut, 2011,
pp. 203–215. ISBN: 978-3-942647-13-7.

[*PHMG14] UWE POHLMANN; JÖRG HOLTMANN; MATTHIAS MEYER; CHRISTOPHER

GERKING: “Generating Modelica Models from Software Specifications for the
Simulation of Cyber-physical Systems”. In: Proceedings of the 40th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2014, pp. 191–198. DOI: 10.1109/SEAA.2014.18.

[*SGH17] DAVID SCHMELTER; JOEL GREENYER; JÖRG HOLTMANN: “Toward Learning
Realizable Scenario-Based, Formal Requirements Specifications”. In: Proceed-
ings of the 4th International Workshop on Artificial Intelligence for Require-
ments Engineering (AIRE). 2017, pp. 372–378. DOI: 10.1109/REW.2017.
14.

[*SNH+10] HELLA SEEBACH; FLORIAN NAFZ; JÖRG HOLTMANN; JAN MEYER; MAT-
THIAS TICHY; WOLFGANG REIF; WILHELM SCHÄFER: “Designing Self-
healing in Automotive Systems”. In: Proceedings of the 7th International
Conference on Autonomic and Trusted Computing (ATC 2010). Ed. by BING

XIE; JUERGEN BRANKE; S. MASOUD SADJADI; DAQING ZHANG; XINGSHE

ZHOU. Vol. 6407. Lecture Notes in Computer Science (LNCS). Berlin/Heidel-
berg, Germany: Springer, 2010, pp. 47–61. ISBN: 978-3-642-16575-7 (Print),
978-3-642-16576-4 (Online). DOI: 10.1007/978-3-642-16576-4_4.

[*THHO08] MATTHIAS TICHY; STEFAN HENKLER; JÖRG HOLTMANN; SIMON OBERT-
HÜR: “Component Story Diagrams – A Transformation Language for Com-
ponent Structures in Mechatronic Systems”. In: Proceedings of the 4th Work-
shop on Object-oriented Modeling of Embedded Real-Time Systems (OMER4).
Ed. by MATTHIAS GEHRKE; HOLGER GIESE; JOACHIM STROOP. Vol. 236.
HNI-Verlagsschriftenreihe. Paderborn, Germany: Heinz Nixdorf Institut, 2008,
pp. 27–38. ISBN: 978-3-939350-55-2.

194

https://doi.org/10.1109/SEAA.2014.18
https://doi.org/10.1109/REW.2017.14
https://doi.org/10.1109/REW.2017.14
https://doi.org/10.1007/978-3-642-16576-4_4

Own Non-peer-reviewed Publications

Own Non-peer-reviewed Publications

[*DFHT13] MARIAN DAUN; MARKUS FOCKEL; JÖRG HOLTMANN; BASTIAN TENBER-
GEN: Goal-Scenario-Oriented Requirements Engineering for Functional De-
composition with Bidirectional Transformation to Controlled Natural Language
– Case Study “Body Control Module”. ICB Research Report no. 55. University
of Duisburg-Essen, 2013.

[*FHH+12] MARKUS FOCKEL; PETER HEIDL; JÖRG HOLTMANN; WILFRIED HORN;
JENS HÖFFLINGER; HARALD HÖNNINGER; JAN MEYER; MATTHIAS

MEYER; JÖRG SCHÄUFFELE: “Application and Evaluation in the Automo-
tive Domain”. In: Model-Based Engineering of Embedded Systems – The SPES
2020 Methodology. Ed. by KLAUS POHL; HARALD HÖNNINGER; REINHOLD

E. ACHATZ; MANFRED BROY. Berlin/Heidelberg, Germany: Springer, 2012.
Chap. 12, pp. 157–175. ISBN: 978-3-642-34613-2 (Print), 978-3-642-34614-9
(Online). DOI: 10.1007/978-3-642-34614-9_12.

[*FHKS17] MARKUS FOCKEL; JÖRG HOLTMANN; THORSTEN KOCH; DAVID SCHMEL-
TER: Model-based Requirement Pattern Catalog. Tech. rep. tr-ri-17-354. Ver-
sion 1.0. Paderborn, Germany: Software Engineering Department, Fraunhofer
IEM, 2017.

[*FHM14] MARKUS FOCKEL; JÖRG HOLTMANN; MATTHIAS MEYER: “Mit Satzmustern
hochwertige Anforderungsdokumente effizient erstellen”. In: OBJEKTspektrum
RE/2014 (Online Themenspecial Requirements Engineering) (2014).

[*HBM+17] JÖRG HOLTMANN; RUSLAN BERNIJAZOV; MATTHIAS MEYER; DAVID

SCHMELTER; CHRISTIAN TSCHIRNER: “Integrated and Iterative Systems En-
gineering and Software Requirements Engineering for Technical Systems (Pré-
cis)”. In: Software Engineering 2017. Ed. by JAN JÜRJENS; KURT SCHNEIDER.
Vol. P-267. GI-Edition – Lecture Notes in Informatics (LNI). Bonn, Germany:
Köllen, 2017, pp. 109–110. ISBN: 978-3-88579-661-9.

[*HFK+16] JÖRG HOLTMANN; MARKUS FOCKEL; THORSTEN KOCH; DAVID SCHMEL-
TER; CHRISTIAN BRENNER; RUSLAN BERNIJAZOV; MARCEL SANDER: The
MechatronicUML Requirements Engineering Method – Process and Language.
Tech. rep. tr-ri-16-352. Version 1.0. Paderborn, Germany: Software Engineering
Department, Fraunhofer IEM and Software Engineering Group, Heinz Nixdorf
Institute, Paderborn University, 2016. DOI: 10.13140/RG.2.2.33223.
29606.

[*HFKS16] JÖRG HOLTMANN; MARKUS FOCKEL; THORSTEN KOCH; DAVID SCHMEL-
TER: “Requirements Engineering – Zusatzaufgabe oder Kernkompetenz?” In:
OBJEKTspektrum RE/2016 (Online Themenspecial Requirements Engineer-
ing) (2016).

[*Hol10] JÖRG HOLTMANN: “Mit Satzmustern von textuellen Anforderungen zu Mo-
dellen”. In: OBJEKTspektrum RE/2010 (Online Themenspecial Requirements
Engineering) (2010).

195

https://doi.org/10.1007/978-3-642-34614-9_12
https://doi.org/10.13140/RG.2.2.33223.29606
https://doi.org/10.13140/RG.2.2.33223.29606

Bibliography

[*KHL18] THORSTEN KOCH; JÖRG HOLTMANN; TIMO LINDEMANN: “Model-Driven
STEP Application Protocol Extensions Combined with Feature Modeling Con-
sidering Geometrical Information”. In: Revised Selected Papers of the 5th In-
ternational Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD 2017). Ed. by LUÍS FERREIRA PIRES; SLIMANE HAM-
MOUDI; BRAN SELIC. Vol. 880. Communications in Computer and Information
Science. Cham: Springer, 2018, pp. 173–197. ISBN: 978-3-319-94763-1 (Print),
978-3-319-94764-8 (Online). DOI: 10.1007/978-3-319-94764-8_8.

[*MHNM10] JAN MEYER; JÖRG HOLTMANN; ULRICH NICKEL; MATTHIAS MEYER: Be-
schreibung der Fallstudie “Komfortsteuergerät”. SPES 2020: Project-internal
Case Study Description. Version 1.1. Lippstadt/Paderborn, Germany: Hella
KGaA Hueck & Co. and Paderborn University, 2010.

[*PHM14] CLAUDIA PRIESTERJAHN; JÖRG HOLTMANN; MATTHIAS MEYER: “Smarte
Entwicklung für smarte Systeme – Softwareentwicklung im Kontext des Ge-
samtsystems”. In: Tagungsband Embedded Software Engineering Kongress
2014. 2014, pp. 619–627. ISBN: 978-3-8343-2409-2.

[*PHM16] UWE POHLMANN; JÖRG HOLTMANN; MATTHIAS MEYER: “Das Erwachen
der Macht – automatische Softwareverteilung”. In: Tagungsband Embedded
Software Engineering Kongress 2016. 2016, pp. 587–592. ISBN: 978-3-8343-
2504-4.

Supervised and Own Theses

[*BBG+13] JANA BRÖGGELWIRTH; CHRISTOPHER BRUNE; FAEZEH GHASSEMI; VINAY

AKKASETTY GOPAL; ARGYRIS KOLLIAS; SIJIA LI; SVEN MERSCHJOHANN;
SIMON SCHWICHTENBERG; DIMITAR SHIPCHANOV: “Project Group Safe-
Bots III”. Co-supervised by STEFAN DZIWOK and OLIVER SUDMANN. Final
Documentation. Paderborn, Germany: Paderborn University, 2013.

[*Ber15] RUSLAN BERNIJAZOV: “Systems and Software Requirements Engineering for
Cyber-Physical Systems”. Bachelor’s Thesis. Paderborn, Germany: Paderborn
University, 2015.

[*Ber17] RUSLAN BERNIJAZOV: “Early Timing Analysis of Scenario-based Software
Requirements”. Master’s Thesis. Paderborn, Germany: Paderborn University,
2017.

[*Edl12] FABIAN EDLING: “Debugging von simulierter AUTOSAR-Software auf Mo-
dellebene”. Co-supervised by MARKUS FOCKEL. Master’s Thesis. Paderborn,
Germany: Paderborn University, 2012.

[*Gre15] MATTHIAS GREINERT: “Vorgehen zur Unterstützung von Managementauf-
gaben mit dem Systemmodell mechatronischer Systeme”. Co-supervised by
CHRISTIAN TSCHIRNER. Master’s Thesis. Paderborn, Germany: Paderborn
University, 2015.

[*Hol08] JÖRG HOLTMANN: “Graphtransformationen für komponentenbasierte Softwa-
rearchitekturen”. Diploma Thesis. Paderborn, Germany: Paderborn University,
2008.

196

https://doi.org/10.1007/978-3-319-94764-8_8

Preliminary Work

[*Jap15] SERGEJ JAPS: “Synthese globaler Controller aus szenariobasierten Spezifika-
tionen unter Berücksichtigung von Echtzeitanforderungen”. Bachelor’s Thesis.
Paderborn, Germany: Paderborn University, 2015.

[*Koc13] THORSTEN KOCH: “Combining Scenario-based and Architecture-based Ti-
ming Requirements”. Master’s Thesis. Paderborn, Germany: Paderborn Uni-
versity, 2013.

[*Mer15] SIMON MERS: “Dedizierte Werkzeugunterstützung für Anwendungsfälle des
Model-Based Systems Engineering”. Co-supervised by CHRISTIAN BREMER.
Master’s Thesis. Paderborn, Germany: Paderborn University, 2015.

[*Sch13] DANIEL SCHOLZ: “Refinement of Requirement Specifications for Automotive
Systems”. Master’s Thesis. Paderborn, Germany: Paderborn University, 2013.

[*Shi14] DIMITAR SHIPCHANOV: “Considering Message Delays in Timed Play-Out”.
Master’s Thesis. Paderborn, Germany: Paderborn University, 2014.

[*Tee12] ALEXANDER TEETZ: “Werkzeuggestützter Übergang von der plattformunab-
hängigen zur plattformabhängigen Modellebene für eingebettete Systeme im
Automobilbereich”. Master’s Thesis. Paderborn, Germany: Paderborn Univer-
sity, 2012.

[*Wör14] MAX WÖRDEHOFF: “Spezifikation der Sprache CONSENS”. Co-supervised by
CHRISTIAN BREMER. Master’s Thesis. Paderborn, Germany: Paderborn Uni-
versity, 2014.

Preliminary Work

[AGD+12] HARALD ANACKER; JÜRGEN GAUSEMEIER; ROMAN DUMITRESCU; STE-
FAN DZIWOK; WILHELM SCHÄFER: “Solution Patterns of Software Engineer-
ing for the System Design of Advanced Mechatronic Systems”. In: MECATRO-
NICS REM. Piscataway, USA: IEEE, 2012, pp. 101–108. ISBN: 978-1-4673-
4771-6. DOI: 10.1109/MECATRONICS.2012.6450994.

[Ana15] HARALD ANACKER: “Instrumentarium für einen lösungsmusterbasierten Ent-
wurf fortgeschrittener mechatronischer Systeme”. PhD thesis. Paderborn, Ger-
many: Paderborn University, 2015.

[BBB+16] AINDRILA BASAK; RUSLAN BERNIJAZOV; PAUL BÖRDING; HENDRIK EI-
KERLING; PATRICK ERNSTE; ANDREAS FLOHRE; CONRAD NEUMANN;
FLORIAN STOLTE: “Project Group Aramid”. Final Documentation. Paderborn,
Germany: Paderborn University, 2016.

[BGP13] CHRISTIAN BRENNER; JOEL GREENYER; PANZICA LA MANNA, VALERIO:
“The ScenarioTools Play-Out of Modal Sequence Diagram Specifications with
Environment Assumptions”. In: Proceedings of the 12th International Work-
shop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2013). Vol. 58. Electronic Communications of the EASST. European Asso-
ciation for the Study of Science and Technology (EASST), 2013. DOI: 10.
14279/tuj.eceasst.58.856.

197

https://doi.org/10.1109/MECATRONICS.2012.6450994
https://doi.org/10.14279/tuj.eceasst.58.856
https://doi.org/10.14279/tuj.eceasst.58.856

Bibliography

[Bud18] INGO BUDDE: “Verfeinerung deklarativer Mappingmodelle durch imperative
Modelltransformationen”. Bachelor’s Thesis. Paderborn, Germany: Paderborn
University, 2018.

[DDGI14] RAFAŁ DOROCIAK; ROMAN DUMITRESCU; JÜRGEN GAUSEMEIER; PETER

IWANEK: “Specification Technique CONSENS for the Description of Self-
Optimizing Systems”. In: Design Methodology for Intelligent Technical Systems
– Develop Intelligent Technical Systems of the Future. Ed. by JÜRGEN GAUSE-
MEIER; FRANZ-JOSEF RAMMIG; WILHELM SCHÄFER. Lecture Notes in Me-
chanical Engineering. Berlin/Heidelberg, Germany: Springer, 2014. Chap. 4.1,
pp. 119–127. ISBN: 978-3-642-45434-9 (Print), 978-3-642-45435-6 (Online).

[EHHS00] GREGOR ENGELS; JAN HENDRIK HAUSMANN; REIKO HECKEL; STEFAN

SAUER: “Dynamic Meta Modeling: A Graphical Approach to the Operational
Semantics of Behavioral Diagrams in UML”. In: Proceedings of the 3rd Inter-
national Conference on the Unified Modeling Language (�UML� 2000—The
Unified Modeling Language: Advancing the Standard). Ed. by ANDY EVANS;
STUART KENT; BRAN SELIC. Vol. 1939. Lecture Notes in Computer Science
(LNCS). Berlin/Heidelberg: Springer, 2000, pp. 323–337. ISBN: 978-3-540-
41133-8 (Print), 978-3-540-40011-0 (Online). DOI: 10 . 1007 / 3 - 540 -
40011-7_23.

[FH12] JENS FRIEBEN; HENNING HEUTGER: “Case Study: Palladio-based Modular
System for Simulating PLC Performance”. In: Proceedings of the Palladio
Days 2012. Ed. by STEFFEN BECKER; JENS HAPPE; ANNE KOZIOLEK; RALF

REUSSNER. Vol. 2012,21. Karlsruhe Reports in Informatics. Karlsruhe, Ger-
many: Karlsruhe Institute of Technology, 2012, pp. 27–35.

[FHMB13] JENS FRIEBEN; HENNING HEUTGER; MATTHIAS MEYER; STEFFEN BEC-
KER: “Modulare Leistungsprognose von Kompaktsteuerungen”. In: 9. Pader-
borner Workshop Entwurf mechatronischer Systeme. Ed. by JÜRGEN GAUSE-
MEIER; ROMAN DUMITRESCU; FRANZ-JOSEF RAMMIG; WILHELM SCHÄ-
FER; ANSGAR TRÄCHTLER. Vol. 310. HNI-Verlagsschriftenreihe. Paderborn,
Germany: Heinz Nixdorf Institute, 2013, pp. 147–160. ISBN: 978-3-942647-29-
8.

[FNTZ00] THORSTEN FISCHER; JÖRG NIERE; LARS TORUNSKI; ALBERT ZÜNDORF:
“Story Diagrams – A new Graph Rewrite Language based on the Unified Mod-
eling Language”. In: Theory and Application of Graph Transformations. Ed. by
HARTMUT EHRIG; GREGOR ENGELS; HANS-JÖRG KREOWSKI; GRZEGORZ

ROZENBERG. Vol. 1764. Lecture Notes in Computer Science (LNCS). Berlin/-
Heidelberg, Germany: Springer, 2000, pp. 157–167. ISBN: 978-3-540-67203-6
(Print), 978-3-540-46464-8 (Online). DOI: 10.1007/978-3-540-46464-
8_21.

[Foc16] MARKUS FOCKEL: “ASIL Tailoring on Functional Safety Requirements”. In:
Computer Safety, Reliability, and Security – Proceedings of the SAFECOMP
2016 Workshops, ASSURE, DECSoS, SASSUR, and TIPS. Ed. by AMUND SKA-
VHAUG; JÉRÉMIE GUIOCHET; ERWIN SCHOITSCH; FRIEDEMANN BITSCH.
Vol. 9923. Lecture Notes in Computer Science (LNCS). Cham, Switzerland:

198

https://doi.org/10.1007/3-540-40011-7_23
https://doi.org/10.1007/3-540-40011-7_23
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1007/978-3-540-46464-8_21

Preliminary Work

Springer, 2016, pp. 298–310. ISBN: 978-3-319-45479-5 (Print), 978-3-319-
45480-1 (Online). DOI: 10.1007/978-3-319-45480-1_24.

[Fra06] URSULA FRANK: “Spezifikationstechnik zur Beschreibung der Prinziplösung
selbstoptimierender Systeme”. PhD thesis. Paderborn, Germany: Paderborn
University, 2006. ISBN: 978-3935433846.

[Fri17] JENS FRIEBEN: “Early Performance Analysis of Automation Systems Based
on Systems Engineering Models”. PhD thesis. Paderborn, Germany: Paderborn
University, 2017.

[GBB12] THOMAS GOLDSCHMIDT; STEFFEN BECKER; ERIK BURGER: “Towards a
Tool-Oriented Taxonomy of View-Based Modelling”. In: Modellierung 2012.
Ed. by ELMAR J. SINZ; ANDY SCHÜRR. Vol. P-201. GI-Edition – Lecture
Notes in Informatics (LNI). Bonn, Germany: Köllen, 2012, pp. 59–74. ISBN:
978-3-88579-295-6.

[GBC+13] JOEL GREENYER; CHRISTIAN BRENNER; MAXIME CORDY; PATRICK

HEYMANS; ERIKA GRESSI: “Incrementally Synthesizing Controllers from
Scenario-based Product Line Specifications”. In: Proceedings of the 9th Joint
Meeting of the European Software Engineering Conference and the ACM SIGS-
OFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
Ed. by BERTRAND MEYER; LUCIANO BARESI. New York, USA: ACM,
2013, pp. 433–443. ISBN: 978-1-4503-2237-9. DOI: 10.1145/2491411.
2491445.

[GDS+15] JÜRGEN GAUSEMEIER; ROMAN DUMITRESCU; DANIEL STEFFEN; ANJA

CZAJA; OLGA WIEDERKEHR; CHRISTIAN TSCHIRNER: Systems Engineering
in Industrial Practice. Paderborn, Germany: Heinz Nixdorf Institute, Fraunho-
fer IEM, and Unity AG, 2015.

[GF12] JOEL GREENYER; JENS FRIEBEN: “Consistency Checking Scenario-Based
Specifications of Dynamic Systems by Combining Simulation and Synthesis”.
In: Proceedings of the 4th Workshop on Behaviour Modelling – Foundations and
Applications. New York, USA: ACM, 2012, pp. 1–9. ISBN: 978-1-4503-1187-8.
DOI: 10.1145/2325276.2325278.

[GFDK09] JÜRGEN GAUSEMEIER; URSULA FRANK; JÖRG DONOTH; SASCHA KAHL:
“Specification technique for the description of self-optimizing mechatronic sys-
tems”. In: Research in Engineering Design 20:4 (2009), pp. 201–223. ISSN:
0934-9839 (Print), 1435-6066 (Online). DOI: 10.1007/s00163- 008-
0058-x.

[GGS+07] JÜRGEN GAUSEMEIER; HOLGER GIESE; WILHELM SCHÄFER; BJÖRN AXE-
NATH; URSULA FRANK; STEFAN HENKLER; SEBASTIAN POOK; MATTHIAS

TICHY: “Towards the Design of Self-Optimizing Mechatronic Systems: Consis-
tency Between Domain-Spanning and Domain-Specific Models”. In: Proceed-
ings of the 16th International Conference of Engineering Design (ICED’07).
Ed. by JEAN-CLAUDE BOCQUET. Design Society, 2007.

199

https://doi.org/10.1007/978-3-319-45480-1_24
https://doi.org/10.1145/2491411.2491445
https://doi.org/10.1145/2491411.2491445
https://doi.org/10.1145/2325276.2325278
https://doi.org/10.1007/s00163-008-0058-x
https://doi.org/10.1007/s00163-008-0058-x

Bibliography

[GHK+18] JOHANNES GEISMANN; ROBERT HÖTTGER; LUKAS KRAWCZYK; UWE

POHLMANN; DAVID SCHMELTER: “Automated Synthesis of a Real-Time
Scheduling for Cyber-Physical Multi-core Systems”. In: Revised Selected Pa-
pers of the 5th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2017). Ed. by LUÍS FERREIRA PIRES;
SLIMANE HAMMOUDI; BRAN SELIC. Communications in Computer and In-
formation Science. Cham: Springer, 2018, pp. 72–93. ISBN: 978-3-319-94763-1
(Print), 978-3-319-94764-8 (Online). DOI: 10.1007/978-3-319-94764-
8_4.

[GPR11] JOEL GREENYER; SEBASTIAN POOK; JAN RIEKE: “Preventing Information
Loss in Incremental Model Synchronization by Reusing Elements”. In: Pro-
ceedings of the 7th European Conference on Modelling Foundations and Appli-
cations (ECMFA 2011). Ed. by ROBERT B. FRANCE; JOCHEN M. KUESTER;
BEHZAD BORDBAR; RICHARD F. PAIGE. Vol. 6698. Lecture Notes in Com-
puter Science (LNCS). Berlin/Heidelberg: Springer, 2011, pp. 144–159. ISBN:
978-3-642-21469-1 (Print), 978-3-642-21470-7 (Online). DOI: 10 . 1007 /
978-3-642-21470-7_11.

[Gre11] JOEL GREENYER: “Scenario-based Design of Mechatronic Systems”. PhD the-
sis. Paderborn, Germany: Paderborn University, 2011.

[GRS14] JÜRGEN GAUSEMEIER; FRANZ-JOSEF RAMMIG; WILHELM SCHÄFER: De-
sign Methodology for Intelligent Technical Systems – Develop Intelligent
Technical Systems of the Future. Lecture Notes in Mechanical Engineering.
Berlin/Heidelberg, Germany: Springer, 2014. ISBN: 978-3-642-45434-9 (Print),
978-3-642-45435-6 (Online). DOI: 10.1007/978-3-642-45435-6.

[GSG+09] JÜRGEN GAUSEMEIER; WILHELM SCHÄFER; JOEL GREENYER; SASCHA

KAHL; SEBASTIAN POOK; JAN RIEKE: “Management of Cross-Domain
Model Consistency During the Development of Advanced Mechatronic Sys-
tems”. In: Proceedings of the 17th International Conference on Engineering
Design (ICED’09). Ed. by MARGARETA NORELL BERGENDAHL; MARTIN

GRIMHEDEN; LARRY LEIFER; PHILIPP SKOGSTAD; UDO LINDEMANN. De-
sign Society, 2009, pp. 1–12. ISBN: 978-1-904670-10-0.

[GV14] JÜRGEN GAUSEMEIER; MAREEN VASSHOLZ: “Domain-Spanning Conceptual
Design”. In: Design Methodology for Intelligent Technical Systems – Develop
Intelligent Technical Systems of the Future. Ed. by JÜRGEN GAUSEMEIER;
FRANZ-JOSEF RAMMIG; WILHELM SCHÄFER. Lecture Notes in Mechanical
Engineering. Berlin/Heidelberg, Germany: Springer, 2014. Chap. 3.2, pp. 69–
73. ISBN: 978-3-642-45434-9 (Print), 978-3-642-45435-6 (Online).

[GW09] HOLGER GIESE; ROBERT WAGNER: “From Model Transformation to Incre-
mental Bidirectional Model Synchronization”. In: Software & Systems Model-
ing 8:1 (2009), pp. 21–43. ISSN: 1619-1366 (Print), 1619-1374 (Online). DOI:
10.1007/s10270-008-0089-9.

[Hau05] JAN HENDRIK HAUSMANN: “Dynamic Meta Modeling: A Semantics Descrip-
tion Technique for Visual Modeling Languages”. PhD thesis. Paderborn, Ger-
many: Paderborn University, 2005.

200

https://doi.org/10.1007/978-3-319-94764-8_4
https://doi.org/10.1007/978-3-319-94764-8_4
https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1007/978-3-642-45435-6
https://doi.org/10.1007/s10270-008-0089-9

Preliminary Work

[HBDS15] CHRISTIAN HEINZEMANN; CHRISTIAN BRENNER; STEFAN DZIWOK; WIL-
HELM SCHÄFER: “Automata-based refinement checking for real-time sys-
tems”. In: Computer Science – Research and Development 30:3 (2015),
pp. 255–283. ISSN: 1865-2034. DOI: 10.1007/s00450-014-0257-9.

[Hei15] CHRISTIAN HEINZEMANN: “Verification and Simulation of Self-Adaptive Me-
chatronic Systems”. PhD thesis. Paderborn, Germany: Paderborn University,
2015.

[HPR+12] CHRISTIAN HEINZEMANN; UWE POHLMANN; JAN RIEKE; WILHELM

SCHÄFER; OLIVER SUDMANN; MATTHIAS TICHY: “Generating Simulink
and Stateflow Models from Software Specifications”. In: Proceedings of the
12th International Design Conference (DESIGN 2012). Ed. by DORIAN MAR-
JANOVIĆ; MARIO ŠTORGA; NEVEN PAVKOVIĆ; NENAD BOJČETIĆ. Zagreb,
Croatia: Faculty of Mechanical Engineering and Naval Architecture, 2012,
pp. 475–484. ISBN: 978-953-7738-17-4.

[HRS13] CHRISTIAN HEINZEMANN; JAN RIEKE; WILHELM SCHÄFER: “Simulating
Self-Adaptive Component-Based Systems Using MATLAB/Simulink”. In: Pro-
ceedings of the 2013 IEEE 7th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2013). Piscataway, USA: IEEE, 2013, pp. 71–
80. ISBN: 978-0-7695-5129-6. DOI: 10.1109/SASO.2013.17.

[HSST13] CHRISTIAN HEINZEMANN; OLIVER SUDMANN; WILHELM SCHÄFER; MAT-
THIAS TICHY: “A Discipline-Spanning Development Process for Self-Adaptive
Mechatronic Systems”. In: Proceedings of the 2013 International Conference
on Software and Systems Process (ICSSP). Ed. by JÜRGEN MÜNCH; JO ANN

LAN; HE ZHANG. New York, USA: ACM, 2013, pp. 36–45. ISBN: 978-1-4503-
2062-7. DOI: 10.1145/2486046.2486055.

[IKDN13] PETER IWANEK; LYDIA KAISER; ROMAN DUMITRESCU; ALEXANDER

NYSSEN: “Fachdisziplinübergreifende Systemmodellierung mechatronischer
Systeme mit SysML und CONSENS”. In: Tag des Systems Engineering 2013
(TdSE 2013). Ed. by MAIK MAURER; SVEN-OLAF SCHULZE. München,
Germany: Hanser, 2013, pp. 337–346. ISBN: 978-3-446-43915-3 (Print), 978-
3-446-43946-7 (Online). DOI: 10.3139/9783446439467.032.

[Kai14] LYDIA KAISER: “Rahmenwerk zur Modellierung einer plausiblen Systemstruk-
tur mechatronischer Systeme”. PhD thesis. Paderborn, Germany: Paderborn
University, 2014.

[Mey15] JAN MEYER: “Eine durchgängige modellbasierte Entwicklungsmethodik für
die automobile Steuergeräteentwicklung unter Einbeziehung des AUTOSAR
Standards”. PhD thesis. Paderborn, Germany: Paderborn University, 2015.

[NMK10] ULRICH NICKEL; JAN MEYER; TAPIO KRAMER: “Wie hoch ist die Perfor-
mance?” In: Automobil-Elektronik 3 (2010), pp. 36–38.

[PH15] UWE POHLMANN; MARCUS HÜWE: “Model-Driven Allocation Engineering”.
In: 2015 30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). Ed. by MYRA COHEN; LARS GRUNSKE; MICHAEL WHA-
LEN. Los Alamitos, USA: IEEE, 2015, pp. 374–384. ISBN: 978-1-5090-0024-1.
DOI: 10.1109/ASE.2015.18.

201

https://doi.org/10.1007/s00450-014-0257-9
https://doi.org/10.1109/SASO.2013.17
https://doi.org/10.1145/2486046.2486055
https://doi.org/10.3139/9783446439467.032
https://doi.org/10.1109/ASE.2015.18

Bibliography

[PH18] UWE POHLMANN; MARCUS HÜWE: “Model-driven allocation engineering:
specifying and solving constraints based on the example of automotive sys-
tems”. In: Automated Software Engineering (2018). ISSN: 0928-8910 (Print),
1573-7535 (Online). DOI: 10.1007/s10515-018-0248-3.

[PMDB14] UWE POHLMANN; MATTHIAS MEYER; ANDREAS DANN; CHRISTOPHER

BRINK: “Viewpoints and Views in Hardware Platform Modeling for Safe
Deployment”. In: Proceedings of the 2nd Workshop on View-Based, Aspect-
Oriented and Orthographic Software Modelling (VAO’14). Ed. by COLIN AT-
KINSON. New York, USA: ACM, 2014, pp. 23–30. ISBN: 978-1-4503-2900-2.
DOI: 10.1145/2631675.2631682.

[Poh18] UWE POHLMANN: “A Model-driven Software Construction Approach for
Cyber-physical Systems”. PhD thesis. Paderborn, Germany: Paderborn Univer-
sity, 2018. ISBN: 978-3-00-059657-5.

[RDS+12] JAN RIEKE; RAFAŁ DOROCIAK; OLIVER SUDMANN; JÜRGEN GAUSEMEIER;
WILHELM SCHÄFER: “Management of Cross-Domain Model Consistency for
Behavior models of Mechatronic Systems”. In: Proceedings of the 12th Inter-
national Design Conference (DESIGN 2012). Ed. by DORIAN MARJANOVIĆ;
MARIO ŠTORGA; NEVEN PAVKOVIĆ; NENAD BOJČETIĆ. Zagreb, Croatia: Fa-
culty of Mechanical Engineering and Naval Architecture, 2012, pp. 1781–1790.
ISBN: 978-953-7738-17-4.

[Rie08] JAN RIEKE: “Konsistenzerhaltung zwischen domänenübergreifenden und dom-
änenspezifischen Modellen im Entwicklungsprozess mechatronischer Sys-
teme”. Diploma Thesis. Paderborn, Germany: Paderborn University, 2008.

[Rie14] JAN RIEKE: “Automatic Model Transformation and Synchronization”. In:
Design Methodology for Intelligent Technical Systems – Develop Intelligent
Technical Systems of the Future. Ed. by JÜRGEN GAUSEMEIER; FRANZ-JOSEF

RAMMIG; WILHELM SCHÄFER. Lecture Notes in Mechanical Engineering.
Berlin/Heidelberg, Germany: Springer, 2014. Chap. 5.1, pp. 186–197. ISBN:
978-3-642-45434-9 (Print), 978-3-642-45435-6 (Online).

[Rie15] JAN RIEKE: “Model Consistency Management for Systems Engineering”. PhD
thesis. Paderborn, Germany: Paderborn University, 2015.

[RS12] JAN RIEKE; OLIVER SUDMANN: “Specifying Refinement Relations in Verti-
cal Model Transformations”. In: Proceedings of the 8th European Conference
on Modelling Foundations and Applications (ECMFA 2012). Ed. by ANTO-
NIO VALLECILLO; JUHA-PEKKA TOLVANEN; EKKART KINDLER; HARALD

STÖRRLE; DIMITRIOS S. KOLOVOS. Vol. 7349. Lecture Notes in Computer
Science (LNCS). Berlin/Heidelberg: Springer, 2012, pp. 210–225. ISBN: 978-
3-642-31490-2 (Print), 978-3-642-31491-9 (Online). DOI: 10.1007/978-
3-642-31491-9_17.

[Sol13] CHRISTIAN SOLTENBORN: “Quality Assurance with Dynamic Meta Model-
ing”. PhD thesis. Paderborn, Germany: Paderborn University, 2013.

202

https://doi.org/10.1007/s10515-018-0248-3
https://doi.org/10.1145/2631675.2631682
https://doi.org/10.1007/978-3-642-31491-9_17
https://doi.org/10.1007/978-3-642-31491-9_17

Literature

[SW07] WILHELM SCHÄFER; HEIKE WEHRHEIM: “The Challenges of Building Ad-
vanced Mechatronic Systems”. In: Proceedings of the Conference on Future of
Software Engineering (FOSE). Ed. by LIONEL C. BRIAND; ALEXANDER L.
WOLF. Washington, USA: IEEE, 2007, pp. 72–84. ISBN: 0-7695-2829-5. DOI:
10.1109/FOSE.2007.28.

[TDBG15] CHRISTIAN TSCHIRNER; ROMAN DUMITRESCU; MICHAEL BANSMANN;
JÜRGEN GAUSEMEIER: “Tailoring Model-Based Systems Engineering – Con-
cepts for Industrial Application”. In: Proceedings of the 9thAnnual IEEE Sys-
tems Conference (SysCon). Piscataway, USA: IEEE, 2015, pp. 69–76. ISBN:
978-1-4799-5926-6. DOI: 10.1109/SYSCON.2015.7116731.

[Tsc16] CHRISTIAN TSCHIRNER: “Rahmenwerk zur Integration des modellbasierten
Systems Engineering in die Produktentstehung mechatronischer Systeme”. PhD
thesis. Paderborn, Germany: Paderborn University, 2016.

[Wag09] ROBERT WAGNER: “Inkrementelle Modellsynchronisation”. PhD thesis. Pad-
erborn, Germany: Paderborn University, 2009.

Literature

[ABD+95] NEIL C. AUDSLEY; ALAN BURNS; ROBERT I. DAVIS; KEN W. TINDELL;
ANDY J. WELLINGS: “Fixed priority pre-emptive scheduling: An historical
perspective”. In: Real-Time Systems 8:2 (1995), pp. 173–198. ISSN: 0922-6443.
DOI: 10.1007/BF01094342.

[aca11] ACATECH, ed.: Cyber-Physical Systems – Driving force for innovation in mobi-
lity, health, energy and production. acatech BEZIEHT POSITION. Berlin/Hei-
delberg, Germany: Springer, 2011. ISBN: 978-3-642-29090-9. DOI: 10.1007/
978-3-642-29090-9.

[AD94] RAJEEV ALUR; DAVID L. DILL: “A theory of timed automata”. In: Theo-
retical Computer Science 126:2 (1994), pp. 183–235. ISSN: 0304-3975. DOI:
10.1016/0304-3975(94)90010-8.

[AGI+13] SILVIA ABRAHÃO; CARMINE GRAVINO; EMILIO INSFRAN; GIUSEPPE

SCANNIELLO; GENOVEFFA TORTORA: “Assessing the Effectiveness of Se-
quence Diagrams in the Comprehension of Functional Requirements: Results
from a Family of Five Experiments”. In: IEEE Transactions on Software Engi-
neering 39:3 (2013), pp. 327–342. ISSN: 0098-5589. DOI: 10.1109/TSE.
2012.27.

[AHKM08] YORAM ATIR; DAVID HAREL; ASAF KLEINBORT; SHAHAR MAOZ: “Object
Composition in Scenario-Based Programming”. In: Proceedings of the 11th In-
ternational Conference on Fundamental Approaches to Software Engineering
(FASE). Ed. by JOSÉ LUIZ FIADEIRO; PAOLA INVERARDI. Vol. 4961. Lec-
ture Notes in Computer Science (LNCS). Berlin/Heidelberg, Germany: Sprin-
ger, 2008, pp. 301–316. ISBN: 978-3-540-78742-6 (Print), 978-3-540-78743-3
(Online). DOI: 10.1007/978-3-540-78743-3_23.

203

https://doi.org/10.1109/FOSE.2007.28
https://doi.org/10.1109/SYSCON.2015.7116731
https://doi.org/10.1007/BF01094342
https://doi.org/10.1007/978-3-642-29090-9
https://doi.org/10.1007/978-3-642-29090-9
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/TSE.2012.27
https://doi.org/10.1109/TSE.2012.27
https://doi.org/10.1007/978-3-540-78743-3_23

Bibliography

[Ake78] SHELDON B. AKERS: “Binary Decision Diagrams”. In: IEEE Transactions on
Computers C-27:6 (1978), pp. 509–516. ISSN: 0018-9340. DOI: 10.1109/
TC.1978.1675141.

[And09] CHARLES ANDRÉ: Syntax and Semantics of the Clock Constraint Specification
Language (CCSL). Research Report RR-6925. INRIA, 2009.

[Anj14] ANTHONY ANJORIN: “Synchronization of Models on Different Abstraction
Levels using Triple Graph Grammars”. PhD thesis. Darmstadt, Germany:
Darmstadt University of Technology, 2014.

[ANRS06] NETTA AIZENBUD-RESHEF; BRIAN T. NOLAN; JULIA RUBIN; YAEL

SHAHAM-GAFNI: “Model Traceability”. In: IBM Systems Journal 45:3 (2006),
pp. 515–526. ISSN: 0018-8670. DOI: 10.1147/sj.453.0515.

[AT16] SOFIANE ACHICHE; TETSUO TOMIYAMA: “Design of Multidisciplinary Cyber
Physical Systems”. In: Journal of Integrated Design and Process Science 19:3
(2016). Editorial, pp. 1–3. ISSN: 1092-0617 (Print), 1875-8959 (Online). DOI:
10.3233/jid-2015-0015.

[Aus96] DAVID M. AUSLANDER: “What is Mechatronics?” In: IEEE/ASME Transacti-
ons on Mechatronics 1:1 (1996), pp. 5–9. ISSN: 1083-4435. DOI: 10.1109/
3516.491404.

[AVS12] ANTHONY ANJORIN; GERGELY VARRÓ; ANDY SCHÜRR: “Complex Attri-
bute Manipulation in TGGs with Constraint-Based Programming Techniques”.
In: Proceedings of the 1st International Workshop on Bidirectional Transforma-
tions (BX 2012). Ed. by FRANK HERRMANN; JANIS VOIGTLÄNDER. Vol. 49.
Electronic Communications of the EASST. 2012. DOI: 10.14279/tuj.
eceasst.49.707.

[BBH+10] PETER BRAUN; MANFRED BROY; FRANK HOUDEK; MATTHIAS KIRCH-
MAYR; MARK MÜLLER; BIRGIT PENZENSTADLER; KLAUS POHL;
THORSTEN WEYER: “Guiding requirements engineering for software-intensive
embedded systems in the automotive industry – The REMsES approach”. In:
Computer Science – Research and Development 29:1 (2010), pp. 21–43. ISSN:
1865-2034. DOI: 10.1007/s00450-010-0136-y.

[BDV+16] ERWAN BOUSSE; THOMAS DEGUEULE; DIDIER VOJTISEK; TANJA MAY-
ERHOFER; JULIEN DEANTONI; BENOÎT COMBEMALE: “Execution Frame-
work of the GEMOC Studio (Tool Demo)”. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering. Ed.
by TIJS VAN DER STORM; EMILIE BALLAND; DANIEL VARRO. New York,
USA: ACM, 2016, pp. 84–89. ISBN: 978-1-4503-4447-0. DOI: 10.1145/
2997364.2997384.

[BEGL05] SUSANNA BYHLIN; ANDREAS ERMEDAHL; JAN GUSTAFSSON; BJÖRN LIS-
PER: “Applying Static WCET Analysis to Automotive Communication Soft-
ware”. In: Proceedings of the 17th Euromicro Conference on Real-Time Systems
(ECRTS’05). Los Alamitos, USA: IEEE, 2005, pp. 249–258. ISBN: 0-7695-
2400-1. DOI: 10.1109/ECRTS.2005.7.

204

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.3233/jid-2015-0015
https://doi.org/10.1109/3516.491404
https://doi.org/10.1109/3516.491404
https://doi.org/10.14279/tuj.eceasst.49.707
https://doi.org/10.14279/tuj.eceasst.49.707
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1109/ECRTS.2005.7

Literature

[BHH+14] WOLFGANG BÖHM; STEFAN HENKLER; FRANK HOUDEK; ANDREAS VO-
GELSANG; THORSTEN WEYER: “Bridging the Gap between Systems and
Software Engineering by Using the SPES Modeling Framework as a General
Systems Engineering Philosophy”. In: Procedia Computer Science 28 (2014),
pp. 187–194. ISSN: 1877-0509. DOI: 10.1016/j.procs.2014.03.024.

[BKFV14] GIACOMO BARBIERI; KONSTANTIN KERNSCHMIDT; CESARE FANTUZZI;
BIRGIT VOGEL-HEUSER: “A SysML Based Design Pattern for the High-Level
Development of Mechatronic Systems to Enhance Re-Usability”. In: Proceed-
ings of the 19th IFAC World Congress. Ed. by EDWARD BOJE; XIAOHUA XIA.
International Federation of Automatic Control (IFAC), 2014, pp. 3431–3437.
ISBN: 978-3-902823-62-5. DOI: 10.3182/20140824- 6- ZA- 1003.
00615.

[BLY09] LIONEL C. BRIAND; YVAN LABICHE; TAO YUE: “Automated traceability
analysis for UML model refinements”. In: Information and Software Techno-
logy 51:2 (2009), pp. 512–527. ISSN: 0950-5849. DOI: 10 . 1016 / j .
infsof.2008.06.002.

[Boe00] BARRY W. BOEHM: “Unifying Software Engineering and Systems Engineer-
ing”. In: Computer 33:3 (2000), pp. 114–116. ISSN: 0018-9162. DOI: 10 .
1109/2.825714.

[Boe81] BARRY W. BOEHM: Software Engineering Economics. Englewood Cliffs,
USA: Prentice-Hall, 1981. ISBN: 978-0138221225.

[Boe83] BARRY W. BOEHM: “Seven Basic Principles of Software Engineering”. In:
Journal of Systems and Software 3:1 (1983), pp. 3–24. ISSN: 0164-1212. DOI:
10.1016/0164-1212(83)90003-1.

[Bou08] HANIFA BOUCHENEB: “Interval timed coloured Petri net: efficient construction
of its state class space preserving linear properties”. In: Formal Aspects of Com-
puting 20:2 (2008), pp. 225–238. ISSN: 0934-5043 (Print), 1433-299X (Online).
DOI: 10.1007/s00165-007-0050-7.

[Bry86] RANDAL E. BRYANT: “Graph-Based Algorithms for Boolean Function Mani-
pulation”. In: IEEE Transactions on Computers C-35:8 (1986), pp. 677–691.
ISSN: 0018-9340. DOI: 10.1109/TC.1986.1676819.

[BS02] KURT BITTNER; IAN SPENCE: Use Case Modeling. Amsterdam, Netherlands:
Addison Wesley, 2002. ISBN: 978-0201709131.

[BS03] EGON BÖRGER; ROBERT STARK: Abstract State Machines: A Method for
High-Level System Design and Analysis. Berlin/Heidelberg, Germany: Sprin-
ger, 2003. ISBN: 978-3-642-62116-1 (Print), 978-3-642-18216-7 (Online). DOI:
10.1007/978-3-642-18216-7.

[But11] GIORGIO C. BUTTAZZO: Hard real-time computing systems – Predictable
scheduling algorithms and applications. 3rd edition. New York: Springer, 2011.
ISBN: 978-1-4614-0675-4 (Print), 978-1-4614-0676-1 (Online). DOI: 10 .
1007/978-1-4614-0676-1.

205

https://doi.org/10.1016/j.procs.2014.03.024
https://doi.org/10.3182/20140824-6-ZA-1003.00615
https://doi.org/10.3182/20140824-6-ZA-1003.00615
https://doi.org/10.1016/j.infsof.2008.06.002
https://doi.org/10.1016/j.infsof.2008.06.002
https://doi.org/10.1109/2.825714
https://doi.org/10.1109/2.825714
https://doi.org/10.1016/0164-1212(83)90003-1
https://doi.org/10.1007/s00165-007-0050-7
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1

Bibliography

[CA07] CHENG, BETTY H. C.; JOANNE M. ATLEE: “Research Directions in Require-
ments Engineering”. In: Proceedings of the Conference on Future of Software
Engineering (FOSE). Ed. by LIONEL C. BRIAND; ALEXANDER L. WOLF.
Washington, USA: IEEE, 2007, pp. 285–303. ISBN: 0-7695-2829-5. DOI: 10.
1109/FOSE.2007.17.

[CA09] CHENG, BETTY H. C.; JOANNE M. ATLEE: “Current and Future Research
Directions in Requirements Engineering”. In: Design Requirements Engineer-
ing: A Ten-Year Perspective – Revised and Invited Papers. Ed. by KALLE LYY-
TINEN; PERICLES LOUCOPOULOS; JOHN MYLOPOULOS; BILL ROBINSON.
Vol. 14. Lecture Notes in Business Information Processing. Berlin/Heidelberg:
Springer, 2009, pp. 11–43. ISBN: 978-3-540-92965-9 (Print), 978-3-540-92966-
6 (Online). DOI: 10.1007/978-3-540-92966-6_2.

[CAL+13] BENOÎT COMBEMALE; JULIEN de ANTONI; MATIAS VARA LARSEN; FRÉ-
DÉRIC MALLET; OLIVIER BARAIS; BENOIT BAUDRY; ROBERT B. FRANCE:
“Reifying Concurrency for Executable Metamodeling”. In: Proceedings of the
6th International Conference on Software Language Engineering. Ed. by MAR-
TIN ERWIG; RICHARD F. PAIGE; ERIC VAN WYK. Vol. 8225. Lecture Notes
in Computer Science (LNCS). Cham, Switzerland: Springer, 2013, pp. 365–
384. ISBN: 978-3-319-02653-4 (Print), 978-3-319-02654-1 (Online). DOI: 10.
1007/978-3-319-02654-1_20.

[CGH+14] JANE CLELAND-HUANG; ORLENA C. Z. GOTEL; JANE HUFFMAN HAYES;
PATRICK MÄDER; ANDREA ZISMAN: “Software Traceability – Trends and
Future Directions”. In: Proceedings of the Conference on Future of Software
Engineering (FOSE). Ed. by MATTHEW DWYER; JAMES HERBSLEB. FOSE
2014. New York, USA: ACM, 2014, pp. 55–69. ISBN: 978-1-4503-2865-4. DOI:
10.1145/2593882.2593891.

[CH06] KRZYSZTOF CZARNECKI; SIMON HELSEN: “Feature-based survey of model
transformation approaches”. In: IBM Systems Journal 45:3 (2006), pp. 621–
645. ISSN: 0018-8670. DOI: 10.1147/sj.453.0621.

[CHK08] PIERRE COMBES; DAVID HAREL; HILLEL KUGLER: “Modeling and verifica-
tion of a telecommunication application using live sequence charts and the Play-
Engine tool”. In: Software & Systems Modeling 7:2 (2008), pp. 157–175. ISSN:
1619-1366 (Print), 1619-1374 (Online). DOI: 10.1007/s10270- 007-
0069-5.

[CHQW16] THORSTEN CZIHARZ; PETER HRUSCHKA; STEFAN QUEINS; THORSTEN

WEYER: Handbook of Requirements Modeling According to the IREB Stan-
dard. Version 1.2. 2016.

[CLP11] YUE CAO; YUSHENG LIU; CHRISTIAAN J. J. PAREDIS: “System-level model
integration of design and simulation for mechatronic systems based on SysML”.
In: Mechatronics 21:6 (2011), pp. 1063–1075. ISSN: 0957-4158. DOI: 10 .
1016/j.mechatronics.2011.05.003.

206

https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1007/978-3-540-92966-6_2
https://doi.org/10.1007/978-3-319-02654-1_20
https://doi.org/10.1007/978-3-319-02654-1_20
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/s10270-007-0069-5
https://doi.org/10.1007/s10270-007-0069-5
https://doi.org/10.1016/j.mechatronics.2011.05.003
https://doi.org/10.1016/j.mechatronics.2011.05.003

Literature

[DB08] ROBERT I. DAVIS; ALAN BURNS: “Response Time Upper Bounds for Fixed
Priority Real-Time Systems”. In: Proceedings of the 2008 Real-Time Systems
Symposium (RTSS). Los Alamitos, USA: IEEE, 2008, pp. 407–418. ISBN: 978-
0-7695-3477-0. DOI: 10.1109/RTSS.2008.18.

[DCB+15] THOMAS DEGUEULE; BENOÎT COMBEMALE; ARNAUD BLOUIN; OLIVIER

BARAIS; JEAN-MARC JÉZÉQUEL: “Melange: A Meta-language for Modu-
lar and Reusable Development of DSLs”. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering (SLE
2015). Ed. by RICHARD F. PAIGE; DAVIDE DI RUSCIO; MARKUS VÖLTER.
New York, USA: ACM, 2015, pp. 25–36. ISBN: 978-1-4503-3686-4.

[DDC+14] JULIEN DEANTONI; ISSA PAPA DIALLO; JOËL CHAMPEAU; BENOÎT COM-
BEMALE; CIPRIAN TEODOROV: Operational Semantics of the Model of Con-
currency and Communication Language. Research Report RR-8584. INRIA,
2014.

[DeM79] TOM DEMARCO: Structured Analysis and System Specification. Upper Saddle
River, USA: Prentice-Hall, 1979. ISBN: 0-13-854380-1.

[DH01] WERNER DAMM; DAVID HAREL: “LSCs: Breathing Life into Message Se-
quence Charts”. In: Formal Methods in System Design 19 (2001), pp. 45–80.
ISSN: 0925-9856. DOI: 10.1023/A:1011227529550.

[DKPF10] NIKOLAOS DRIVALOS-MATRAGKAS; DIMITRIOS S. KOLOVOS; RICHARD F.
PAIGE; KIRAN J. FERNANDES: “A State-based Approach to Traceability Main-
tenance”. In: Proceedings of the 6th ECMFA Traceability Workshop. Ed. by JON

OLDEVIK. New York, USA: ACM, 2010, pp. 23–30. ISBN: 978-1-60558-993-0.
DOI: 10.1145/1814392.1814396.

[DM12a] JULIEN DEANTONI; FRÉDÉRIC MALLET: “TIMESQUARE: Treat Your Models
with Logical Time”. In: Proceedings of the 50th International Conference on
Objects, Models, Components, Patterns (TOOLS Europe). Ed. by CARLO A.
FURIA; SEBASTIAN NANZ. Vol. 7304. Berlin/Heidelberg, Germany: Springer,
2012, pp. 34–41. ISBN: 978-3-642-30560-3 (Print), 978-3-642-30561-0 (On-
line). DOI: 10.1007/978-3-642-30561-0_4.

[DM12b] JULIEN DEANTONI; FRÉDÉRIC MALLET: ECL: the Event Constraint Lan-
guage, an Extension of OCL with Events. Research Report RR-8031. INRIA,
2012.

[DPFK06] NICOLAS DRIVALOS; RICHARD F. PAIGE; KIRAN J. FERNANDES; DI-
MITRIOS S. KOLOVOS: “Towards Rigorously Defined Model-to-Model Trace-
ability”. In: Proceedings of the 2nd ECMDA Traceability Workshop (ECMDA-
TW). 2006.

[DSTH17] DARKO DURISIC; MIROSLAW STARON; MATTHIAS TICHY; JÖRGEN HANS-
SON: “Assessing the impact of meta-model evolution: a measure and its auto-
motive application”. In: Software & Systems Modeling (2017). ISSN: 1619-1366
(Print), 1619-1374 (Online). DOI: 10.1007/s10270-017-0601-1.

207

https://doi.org/10.1109/RTSS.2008.18
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1145/1814392.1814396
https://doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1007/s10270-017-0601-1

Bibliography

[DTW12] MARIAN DAUN; BASTIAN TENBERGEN; THORSTEN WEYER: “Requirements
Viewpoint”. In: Model-Based Engineering of Embedded Systems – The SPES
2020 Methodology. Ed. by KLAUS POHL; HARALD HÖNNINGER; REINHOLD

E. ACHATZ; MANFRED BROY. Berlin/Heidelberg, Germany: Springer, 2012.
Chap. 4, pp. 51–68. ISBN: 978-3-642-34613-2 (Print), 978-3-642-34614-9 (On-
line). DOI: 10.1007/978-3-642-34614-9_4.

[DWUL17] CHRISTIAN DIETRICH; PETER WÄGEMANN; PETER ULBRICH; DANIEL

LOHMANN: “SysWCET: Whole-System Response-Time Analysis for Fixed-
Priority Real-Time Systems”. In: 2017 IEEE 23rd Real-Time and Embedded
Technology and Applications Symposium (RTAS). Ed. by GABRIEL PARMER.
Piscataway, USA: IEEE, 2017, pp. 37–48. ISBN: 978-1-5090-5269-1. DOI: 10.
1109/RTAS.2017.37.

[EAG06] ANGELINA ESPINOZA; P. PEDRO ALARCÓN; JUAN GARBAJOSA: “Analy-
zing and Systematizing Current Traceability Schemas”. In: Proceedings of the
30th Annual IEEE/NASA Software Engineering Workshop. Los Alamitos, USA:
IEEE, 2006, pp. 21–32. ISBN: 0-7695-2624-1. DOI: 10.1109/SEW.2006.
12.

[EGZ12] MARTIN EIGNER; TORSTEN GILZ; RADOSLAV ZAFIROV: “Proposal for
Functional Product Description as Part of a PLM Solution in Interdisciplinary
Product Development”. In: Proceedings of the 12th International Design Confe-
rence (DESIGN 2012). Ed. by DORIAN MARJANOVIĆ; MARIO ŠTORGA; NE-
VEN PAVKOVIĆ; NENAD BOJČETIĆ. Vol. 70. DS. Zagreb, Croatia: Faculty of
Mechanical Engineering and Naval Architecture, 2012, pp. 1667–1676. ISBN:
978-953-7738-17-4.

[EMV12] SEBASTIAN EDER; JAKOB MUND; ANDREAS VOGELSANG: “Logical Vie-
wpoint”. In: Model-Based Engineering of Embedded Systems – The SPES
2020 Methodology. Ed. by KLAUS POHL; HARALD HÖNNINGER; REINHOLD

E. ACHATZ; MANFRED BROY. Berlin/Heidelberg: Springer, 2012. Chap. 6,
pp. 85–93. ISBN: 978-3-642-34613-2 (Print), 978-3-642-34614-9 (Online).
DOI: 10.1007/978-3-642-34614-9_6.

[Fid91] COLIN FIDGE: “Logical time in distributed computing systems”. In: Computer
24:8 (1991), pp. 28–33. ISSN: 0018-9162. DOI: 10.1109/2.84874.

[FKV14] STEFAN FELDMANN; KONSTANTIN KERNSCHMIDT; BIRGIT VOGEL-
HEUSER: “Combining a SysML-based Modeling Approach and Semantic
Technologies for Analyzing Change Influences in Manufacturing Plant Mod-
els”. In: Procedia CIRP (Variety Management in Manufacturing — Proceedings
of the 47th CIRP Conference on Manufacturing Systems) 17 (2014). Ed. by
HODA ELMARAGHY, pp. 451–456. DOI: 10.1016/j.procir.2014.
01.140.

[FMS12] SANFORD FRIEDENTHAL; ALAN MOORE; RICK STEINER: A Practical Guide
to SysML – The Systems Modeling Language. 2nd edition. Waltham, USA: Mor-
gan Kaufmann, 2012. ISBN: 978-0-12-385206-9.

208

https://doi.org/10.1007/978-3-642-34614-9_4
https://doi.org/10.1109/RTAS.2017.37
https://doi.org/10.1109/RTAS.2017.37
https://doi.org/10.1109/SEW.2006.12
https://doi.org/10.1109/SEW.2006.12
https://doi.org/10.1007/978-3-642-34614-9_6
https://doi.org/10.1109/2.84874
https://doi.org/10.1016/j.procir.2014.01.140
https://doi.org/10.1016/j.procir.2014.01.140

Literature

[FRNJ08] NICO FEIERTAG; KAI RICHTER; JOHAN NORDLANDER; JAN JONSSON: “A
Compositional Framework for End-to-End Path Delay Calculation of Automo-
tive Systems under Different Path Semantics”. In: Proceedings of the 1st In-
ternational Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS). 2008.

[GCH+12] ORLENA C. Z. GOTEL; JANE CLELAND-HUANG; JANE HUFFMAN HAYES;
ANDREA ZISMAN; ALEXANDER EGYED; PAUL GRÜNBACHER; ALEX DEK-
HTYAR; GIULIANO ANTONIOL; JONATHAN MALETIC; PATRICK MÄDER:
“Traceability Fundamentals”. In: Software and Systems Traceability. Ed. by
JANE CLELAND-HUANG; ORLENA GOTEL; ANDREA ZISMAN. London, UK:
Springer, 2012, pp. 3–22. ISBN: 978-1-4471-2238-8 (Print), 978-1-4471-2239-5
(Online). DOI: 10.1007/978-1-4471-2239-5_1.

[GDM+15] CALIN GLITIA; JULIEN DEANTONI; FRÉDÉRIC MALLET; JEAN-VIVIEN

MILLO; PIERRE BOULET; ABDOULAYE GAMATIÉ: “Progressive and expli-
cit refinement of scheduling for multidimensional data-flow applications using
UML MARTE ”. In: Design Automation for Embedded Systems 19:1-2 (2015),
pp. 1–33. ISSN: 0929-5585 (Print), 1572-8080 (Online). DOI: 10 . 1007 /
s10617-014-9140-y.

[GDPM13] ARDA GOKNIL; JULIEN DEANTONI; MARIE-AGNÈS PERALDI-FRATI; FRÉ-
DÉRIC MALLET: “Tool Support for the Analysis of TADL2 Timing Con-
straints Using TIMESQUARE ”. In: Proceedings of the 18th International Con-
ference on Engineering of Complex Computer Systems (ICECCS). Piscataway,
USA: IEEE, 2013, pp. 145–154. ISBN: 978-0-7695-5007-7. DOI: 10.1109/
ICECCS.2013.28.

[GF94] ORLENA C. Z. GOTEL; ANTHONY C. W. FINKELSTEIN: “An Analysis of the
Requirements Traceability Problem”. In: Proceedings of the 1st International
Conference on Requirements Engineering (RE). Los Alamitos, USA: IEEE,
1994, pp. 94–101. ISBN: 0-8186-5480-5. DOI: 10.1109/ICRE.1994.
292398.

[GH09] HOLGER GIESE; STEPHAN HILDEBRANDT: Efficient Model Synchronization
of Large-Scale Models. Tech. rep. 28. Potsdam, Germany: Hasso Plattner Insti-
tute at the University of Potsdam, 2009.

[GKS00] RADU GROSU; INGOLF KRÜGER; THOMAS STAUNER: “Hybrid Sequence
Charts”. In: Proceedings of the 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2000). Los Alamitos, USA:
IEEE, 2000, pp. 104–111. ISBN: 0-7695-0607-0. DOI: 10.1109/ISORC.
2000.839517.

[GLO09] ESTHER GUERRA; JUAN de LARA; FERNANDO OREJAS: “Pattern-Based
Model-to-Model Transformation: Handling Attribute Conditions”. In: Proceed-
ings of the 2nd International Conference on Theory and Practice of Model
Transformations (ICMT 2009). Ed. by RICHARD F. PAIGE. Vol. 5563. Lecture
Notes in Computer Science (LNCS). Berlin/Heidelberg: Springer, 2009, pp. 83–
99. ISBN: 978-3-642-02407-8 (Print), 978-3-642-02408-5 (Online). DOI: 10.
1007/978-3-642-02408-5_7.

209

https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/s10617-014-9140-y
https://doi.org/10.1007/s10617-014-9140-y
https://doi.org/10.1109/ICECCS.2013.28
https://doi.org/10.1109/ICECCS.2013.28
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ISORC.2000.839517
https://doi.org/10.1109/ISORC.2000.839517
https://doi.org/10.1007/978-3-642-02408-5_7
https://doi.org/10.1007/978-3-642-02408-5_7

Bibliography

[Gue91] DAVID GUEST: “The Hunt is on for the Renaissance Man of Computing”. In:
The Independent (London) 17 (1991).

[Har00] DAVID HAREL: “From Play-In Scenarios to Code: An Achievable Dream”. In:
Fundamental Approaches to Software Engineering. Ed. by TOM MAIBAUM.
Vol. 1783. Lecture Notes in Computer Science (LNCS). Berlin/Heidelberg, Ger-
many: Springer, 2000, pp. 22–34. ISBN: 978-3-540-67261-6 (Print), 978-3-540-
46428-0 (Online). DOI: 10.1007/3-540-46428-X_3.

[Har01] DAVID HAREL: “From Play-In Scenarios to Code: An Achievable Dream”.
In: Computer 34:1 (2001), pp. 53–60. ISSN: 0018-9162. DOI: 10.1109/2.
895118.

[Har87] DAVID HAREL: “Statecharts: a visual formalism for complex systems”. In:
Science of Computer Programming 8:3 (1987), pp. 231–274. ISSN: 0167-6423.
DOI: 10.1016/0167-6423(87)90035-9.

[Has09] JAMELEDDINE HASSINE: “Early Schedulability Analysis with Timed Use Case
Maps”. In: Proceedings of the 14th International SDL Forum – Design for Mo-
tes and Mobiles (SDL 2009). Ed. by RICK REED; ATTILA BILGIC; REINHARD

GOTZHEIN. Vol. 5719. Lecture Notes in Computer Science (LNCS). Berlin/-
Heidelberg, Germany: Springer, 2009, pp. 98–114. ISBN: 978-3-642-04553-0
(Print), 978-3-642-04554-7 (Online). DOI: 10.1007/978-3-642-04554-
7_7.

[Has15] JAMELEDDINE HASSINE: “Early modeling and validation of timed system re-
quirements using Timed Use Case Maps”. In: Requirements Engineering 20:2
(2015), pp. 181–211. ISSN: 0947-3602. DOI: 10.1007/s00766- 013-
0200-9.

[HH04] NADINE HEUMESSER; FRANK HOUDEK: “Experiences in Managing an Auto-
motive Requirements Engineering Process”. In: Proceedings of the 12th IEEE
International Requirements Engineering Conference (RE). Los Alamitos, CA:
IEEE, 2004, pp. 322–327. ISBN: 0-7695-2174-6. DOI: 10.1109/ICRE.
2004.1335690.

[HHRS05] ØYSTEIN HAUGEN; KNUT EILIF HUSA; RAGNHILD KOBRO RUNDE; KETIL

STØLEN: “Why Timed Sequence Diagrams Require Three-Event Semantics”.
In: Scenarios: Models, Transformations and Tools. Ed. by STEFAN LEUE;
TARJA JOHANNA SYSTÄ. Vol. 3466. Lecture Notes in Computer Science
(LNCS). Berlin/Heidelberg: Springer, 2005, pp. 1–25. ISBN: 978-3-540-26189-
6. DOI: 10.1007/11495628_1.

[HHT96] ANNEGRET HABEL; REIKO HECKEL; GABRIELE TAENTZER: “Graph gram-
mars with negative application conditions”. In: Fundamenta Informaticae (Spe-
cial Issue) 26:3,4 (1996). Ed. by GREGOR ENGELS; HARTMUT EHRIG; GRZE-
GORZ ROZENBERG, pp. 87–313. ISSN: 0169-2968 (Print), 1875-8681 (Online).
DOI: 10.3233/FI-1996-263404.

[Hil14] STEPHAN HILDEBRANDT: “On the Performance and Conformance of Tri-
ple Graph Grammar Implementations”. PhD thesis. Potsdam, Germany: Hasso
Plattner Institute at the University of Potsdam, 2014.

210

https://doi.org/10.1007/3-540-46428-X_3
https://doi.org/10.1109/2.895118
https://doi.org/10.1109/2.895118
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-642-04554-7_7
https://doi.org/10.1007/978-3-642-04554-7_7
https://doi.org/10.1007/s00766-013-0200-9
https://doi.org/10.1007/s00766-013-0200-9
https://doi.org/10.1109/ICRE.2004.1335690
https://doi.org/10.1109/ICRE.2004.1335690
https://doi.org/10.1007/11495628_1
https://doi.org/10.3233/FI-1996-263404

Literature

[HKM07] DAVID HAREL; ASAF KLEINBORT; SHAHAR MAOZ: “S2A: A Compiler for
Multi-modal UML Sequence Diagrams”. In: Proceedings of the 10th Internati-
onal Conference on Fundamental Approaches to Software Engineering (FASE).
Ed. by MATTHEW B. DWYER; ANTÓNIA LOPES. Vol. 4422. Lecture Notes
in Computer Science (LNCS). Berlin/Heidelberg, Germany: Springer, 2007,
pp. 121–124. ISBN: 978-3-540-71288-6 (Print), 978-3-540-71289-3 (Online).
DOI: 10.1007/978-3-540-71289-3_11.

[HKMP02] DAVID HAREL; HILLEL KUGLER; RAMI MARELLY; AMIR PNUELI: “Smart
Play-out of Behavioral Requirements”. In: Proceedings of the 4th International
Conference on Formal Methods in Computer-Aided Design (FMCAD). Ed. by
MARK D. AAGAARD; JOHN W. O’LEARY. Vol. 2517. Lecture Notes in Com-
puter Science (LNCS). Berlin/Heidelberg: Springer, 2002, pp. 378–398. ISBN:
978-3-540-00116-4 (Print), 978-3-540-36126-8 (Online). DOI: 10.1007/3-
540-36126-X_23.

[HKMP03] DAVID HAREL; HILLEL KUGLER; RAMI MARELLY; AMIR PNUELI: “Smart
Play-out”. In: Companion Proceedings of the 18th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and Applicati-
ons (OOPSLA). New York, USA: ACM, 2003, pp. 68–69. ISBN: 1-58113-751-6.
DOI: 10.1145/949344.949353.

[HKP04] DAVID HAREL; HILLEL KUGLER; AMIR PNUELI: “Smart Play-Out Extended:
Time and Forbidden Elements”. In: Proceedings of the 4th International Con-
ference on Quality Software (QSIC). Ed. by HANS-DIETER EHRICH; KLAUS-
DIETER SCHEWE. Los Alamitos, USA: IEEE, 2004, pp. 2–10. ISBN: 0-7695-
2207-6. DOI: 10.1109/QSIC.2004.1357938.

[HLMR13] MATS P.E. HEIMDAHL; LIAN DUAN; ANITHA MURUGESAN; SANJAI RAYA-
DURGAM: “Modeling and Requirements on the Physical Side of Cyber-Physical
Systems”. In: 2nd International Workshop on the Twin Peaks of Requirements
and Architecture (TwinPeaks). 2013, pp. 1–7. DOI: 10.1109/TwinPeaks.
2013.6614716.

[HM03a] DAVID HAREL; RAMI MARELLY: Come, let’s play: Scenario-based program-
ming using LSCs and the play-engine. Berlin/Heidelberg, Germany: Springer,
2003. ISBN: 3540007873.

[HM03b] DAVID HAREL; RAMI MARELLY: “Specifying and executing behavioral re-
quirements: the play-in/play-out approach”. In: Software & Systems Modeling
2:2 (2003), pp. 82–107. ISSN: 1619-1366 (Print), 1619-1374 (Online). DOI:
10.1007/s10270-002-0015-5.

[HM06] DAVID HAREL; SHAHAR MAOZ: “Assert and Negate Revisited: Modal Seman-
tics for UML Sequence Diagrams”. In: Proceedings of the 2006 International
Workshop on Scenarios and State Machines: Models, Algorithms, and Tools
(SCESM). Ed. by JON WHITTLE; LEIF GEIGER; MICHAEL MEISINGER. New
York, USA: ACM, 2006, pp. 13–20. ISBN: 1-59593-394-8. DOI: 10.1145/
1138953.1138958.

211

https://doi.org/10.1007/978-3-540-71289-3_11
https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1145/949344.949353
https://doi.org/10.1109/QSIC.2004.1357938
https://doi.org/10.1109/TwinPeaks.2013.6614716
https://doi.org/10.1109/TwinPeaks.2013.6614716
https://doi.org/10.1007/s10270-002-0015-5
https://doi.org/10.1145/1138953.1138958
https://doi.org/10.1145/1138953.1138958

Bibliography

[HM08] DAVID HAREL; SHAHAR MAOZ: “Assert and negate revisited: Modal seman-
tics for UML sequence diagrams”. In: Software and Systems Modeling 7:2
(2008), pp. 237–252. ISSN: 1619-1374. DOI: 10.1007/s10270- 007-
0054-z.

[HMSB10] DAVID HAREL; SHAHAR MAOZ; SMADAR SZEKELY; DANIEL BARKAN:
“PlayGo: Towards a Comprehensive Tool for Scenario Based Programming”.
In: Proceedings of the IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). New York, USA: ACM, 2010, pp. 359–360. ISBN:
978-1-4503-0116-9. DOI: 10.1145/1858996.1859075.

[HP85] DAVID HAREL; AMIR PNUELI: “On the Development of Reactive Systems”.
In: Logics and Models of Concurrent Systems. Ed. by KRZYSZTOF R. APT.
Vol. 13. NATO ASI Series, Series F: Computer and Systems Sciences. Berlin/-
Heidelberg, Germany: Springer, 1985, pp. 477–498. ISBN: 978-3-642-82455-5
(Print), 978-3-642-82453-1 (Online). DOI: 10.1007/978-3-642-82453-
1_17.

[HR04] DAVID HAREL; BERNHARD RUMPE: “Meaningful modeling: What’s the se-
mantics of ‘semantics’?” In: Computer 37:10 (2004), pp. 64–72. ISSN: 0018-
9162. DOI: 10.1109/MC.2004.172.

[HRD06] JAMELEDDINE HASSINE; JÜRGEN RILLING; RACHIDA DSSOULI: “Timed
Use Case Maps”. In: Revised Selected Papers of the 5th International Work-
shop on System Analysis and Modeling: Language Profiles (SAM 2006). Ed.
by REINHARD GOTZHEIN; RICK REED. Vol. 4320. Lecture Notes in Com-
puter Science (LNCS). Berlin/Heidelberg, Germany: Springer, 2006, pp. 99–
114. ISBN: 978-3-540-68371-1 (Print), 978-3-540-68373-5 (Online). DOI: 10.
1007/11951148_7.

[HRD10] JAMELEDDINE HASSINE; JÜRGEN RILLING; RACHIDA DSSOULI: “An eva-
luation of timed scenario notations”. In: Journal of Systems and Software 83:2
(2010), pp. 326–350. ISSN: 0164-1212. DOI: 10.1016/j.jss.2009.09.
014.

[HS07] THOMAS A. HENZINGER; JOSEPH SIFAKIS: “The Discipline of Embedded
Systems Design”. In: Computer 40:10 (2007), pp. 32–40. ISSN: 0018-9162.
DOI: 10.1109/MC.2007.364.

[HY12] SEUNGWOK HAN; HEE YONG YOUN: “Modeling and Analysis of Time-
Critical Context-Aware Service Using Extended Interval Timed Colored Pe-
tri Nets”. In: IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans 42:3 (2012), pp. 630–640. ISSN: 1083-4427. DOI: 10.
1109/TSMCA.2011.2170064.

[INC14] INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING (INCOSE): A
World in Motion – Systems Engineering Vision 2025. 2014.

[INCOSE] INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING (INCOSE): What
is Systems Engineering? http : / / www . incose . org / AboutSE /
WhatIsSE. Last accessed: January 2018.

[Jou05] FRÉDÉRIC JOUAULT: “Loosely Coupled Traceability for ATL”. In: Proceed-
ings of the 1st ECMDA-FA Traceability Workshop. 2005, pp. 29–37.

212

https://doi.org/10.1007/s10270-007-0054-z
https://doi.org/10.1007/s10270-007-0054-z
https://doi.org/10.1145/1858996.1859075
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/11951148_7
https://doi.org/10.1007/11951148_7
https://doi.org/10.1016/j.jss.2009.09.014
https://doi.org/10.1016/j.jss.2009.09.014
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1109/TSMCA.2011.2170064
https://doi.org/10.1109/TSMCA.2011.2170064
http://www.incose.org/AboutSE/WhatIsSE
http://www.incose.org/AboutSE/WhatIsSE

Literature

[JP86] MATHAI JOSEPH; PARITOSH PANDYA: “Finding Response Times in a Real-
Time System”. In: The Computer Journal 29:5 (1986), pp. 390–395. DOI: 10.
1093/comjnl/29.5.390.

[JVTM17] MIGUEL JIMÉNEZ; NORHA M. VILLEGAS; GABRIEL TAMURA; HAUSI A.
MÜLLER: “Deployment Specification Challenges in the Context of Large Scale
Systems”. In: Proceedings of the 27th Annual International Conference on
Computer Science and Software Engineering. Riverton, USA: IBM, 2017,
pp. 220–226.

[KBC+18] NAFISEH KAHANI; MOJTABA BAGHERZADEH; JAMES R. CORDY; JUERGEN

DINGEL; DANIEL VARRÓ: “Survey and classification of model transformation
tools”. In: Software & Systems Modeling (2018). ISSN: 1619-1366 (Print), 1619-
1374 (Online). DOI: 10.1007/s10270-018-0665-6.

[KEF09] ERIC KNAUSS; CHRISTIAN EL BOUSTANI; THOMAS FLOHR: “Investigating
the Impact of Software Requirements Specification Quality on Project Success”.
In: Proceedings of the 10th International Conference on Product-Focused Soft-
ware Process Improvement (PROFES). Ed. by FRANK BOMARIUS; MARKKU

OIVO; PÄIVI JARING; PEKKA ABRAHAMSSON. Berlin/Heidelberg: Springer,
2009, pp. 28–42. ISBN: 978-3-642-02151-0 (Print), 978-3-642-02152-7 (On-
line).

[KFV18] KONSTANTIN KERNSCHMIDT; STEFAN FELDMANN; BIRGIT VOGEL-
HEUSER: “A model-based framework for increasing the interdisciplinary
design of mechatronic production systems”. In: Journal of Engineering Design
29:11 (2018), pp. 617–643. ISSN: 0954-4828 (Print), 1466-1837 (Online). DOI:
10.1080/09544828.2018.1520205.

[Kop11] HERMANN KOPETZ: Real-time systems – Design principles for distributed
embedded applications. 2nd edition. New York, USA: Springer, 2011. ISBN:
1441982361.

[KPP06] DIMITRIOS S. KOLOVOS; RICHARD F. PAIGE; FIONA A.C. POLACK: “On-
Demand Merging of Traceability Links with Models”. In: Proceedings of the
2nd ECMDA Traceability Workshop (ECMDA-TW). 2006.

[KPP95] BARBARA KITCHENHAM; LESLEY PICKARD; SHARI LAWRENCE

PFLEEGER: “Case Studies for Method and Tool Evaluation”. In: IEEE Software
12:4 (1995), pp. 52–62. ISSN: 0740-7459. DOI: 10.1109/52.391832.

[Kru95] PHILIPPE B. KRUCHTEN: “The 4+1 View Model of architecture”. In: IEEE
Software 12:6 (1995), pp. 42–50. ISSN: 0740-7459. DOI: 10.1109/52.
469759.

[KT07] MAYUMI ITAKURA KAMATA; TETSUO TAMAI: “How Does Requirements
Quality Relate to Project Success or Failure?” In: Proceedings of the 15th IEEE
International Requirements Engineering Conference (RE). Ed. by ALISTAIR

SUTCLIFFE. Los Alamitos, USA: IEEE, 2007, pp. 69–78. ISBN: 978-0-7695-
2935-6. DOI: 10.1109/RE.2007.31.

213

https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1080/09544828.2018.1520205
https://doi.org/10.1109/52.391832
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/RE.2007.31

Bibliography

[KV13] KONSTANTIN KERNSCHMIDT; BIRGIT VOGEL-HEUSER: “An interdiscipli-
nary SysML based modeling approach for analyzing change influences in pro-
duction plants to support the engineering”. In: 2013 IEEE International Confe-
rence on Automation Science and Engineering (CASE). 2013, pp. 1113–1118.
DOI: 10.1109/CoASE.2013.6654030.

[Lam78] LESLIE LAMPORT: “Time, Clocks, and the Ordering of Events in a Distribu-
ted System”. In: Communications of the ACM 21:7 (1978), pp. 558–565. ISSN:
0001-0782. DOI: 10.1145/359545.359563.

[LBD+10] SHUHAO LI; SANDIE BALAGUER; ALEXANDRE DAVID; KIM G. LARSEN;
BRIAN NIELSEN; SAULIUS PUSINSKAS: “Scenario-based verification of real-
time systems using UPPAAL”. In: Formal Methods in System Design 37:2
(2010), pp. 200–264. ISSN: 0925-9856 (Print), 1572-8102 (Online). DOI: 10.
1007/s10703-010-0103-z.

[LBTA11] GRZEGORZ LEHMANN; MARCO BLUMENDORF; FRANK TROLLMANN; SA-
HIN ALBAYRAK: “Meta-modeling Runtime Models”. In: Proceedings of the 5th

International Workshop on Models@run.time (Reports and Revised Selected
Papers). Ed. by JUERGEN DINGEL; ARNOR SOLBERG. Lecture Notes in Com-
puter Science (LNCS). Berlin/Heidelberg: Springer, 2011, pp. 209–223. ISBN:
978-3-642-21209-3 (Print), 978-3-642-21210-9 (Online).

[LCD+15] FLORENT LATOMBE; XAVIER CRÉGUT; JULIEN DEANTONI; MARC PAN-
TEL; BENOÎT COMBEMALE: “Coping with Semantic Variation Points in
Domain-Specific Modeling Languages”. In: Proceedings of the 1st Internati-
onal Workshop on Executable Modeling (EXE’15). Ottawa, Canada: CEUR,
2015.

[Lee59] C. Y. LEE: “Representation of Switching Circuits by Binary-Decision Pro-
grams”. In: Bell System Technical Journal 38:4 (1959), pp. 985–999. ISSN:
1538-7305. DOI: 10.1002/j.1538-7305.1959.tb01585.x.

[LHGO12] LEEN LAMBERS; STEPHAN HILDEBRANDT; HOLGER GIESE; FERNANDO

OREJAS: “Attribute Handling for Bidirectional Model Transformations: The
Triple Graph Grammar Case”. In: Proceedings of the 1st International Work-
shop on Bidirectional Transformations (BX 2012). Ed. by FRANK HERRMANN;
JANIS VOIGTLÄNDER. Vol. 49. Electronic Communications of the EASST.
2012. DOI: 10.14279/tuj.eceasst.49.706.

[LK01] MARC LETTRARI; JOCHEN KLOSE: “Scenario-Based Monitoring and Testing
of Real-Time UML Models”. In: Proceedings of the 4th International Con-
ference on the Unified Modeling Language (�UML� 2001 — The Unified
Modeling Language: Modeling Languages, Concepts, and Tools). Ed. by MAR-
TIN GOGOLLA; CRIS KOBRYN. Lecture Notes in Computer Science (LNCS).
Berlin/Heidelberg, Germany: Springer, 2001, pp. 317–328. ISBN: 978-3-540-
42667-7 (Print), 978-3-540-45441-0 (Online). DOI: 10 . 1007 / 3 - 540 -
45441-1_24.

214

https://doi.org/10.1109/CoASE.2013.6654030
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/s10703-010-0103-z
https://doi.org/10.1007/s10703-010-0103-z
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.14279/tuj.eceasst.49.706
https://doi.org/10.1007/3-540-45441-1_24
https://doi.org/10.1007/3-540-45441-1_24

Literature

[LLNP09] KIM G. LARSEN; SHUHAO LI; BRIAN NIELSEN; SAULIUS PUSINSKAS: “Ve-
rifying Real-Time Systems against Scenario-Based Requirements”. In: Pro-
ceedings of the 2nd World Congress on Formal Methods (FM 2009). Ed. by
ANA CAVALCANTI; DENNIS R. DAMS. Vol. 5850. Lecture Notes in Computer
Science (LNCS). Berlin/Heidelberg: Springer, 2009, pp. 676–691. ISBN: 978-
3-642-05088-6 (Print), 978-3-642-05089-3 (Online). DOI: 10.1007/978-
3-642-05089-3_43.

[LLNP10] KIM G. LARSEN; SHUHAO LI; BRIAN NIELSEN; SAULIUS PUSINSKAS:
“Scenario-based Analysis and Synthesis of Real-time Systems Using UPPAAL”.
In: Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE 2010). 2010, pp. 447–452. ISBN: 978-3-9810801-6-2. DOI:
10.1109/DATE.2010.5457164.

[LM09] DAVID LO; SHAHAR MAOZ: “Mining Hierarchical Scenario-Based Specifica-
tions”. In: 24th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2009, pp. 359–370. DOI: 10.1109/ASE.2009.19.

[MAD09] FRÉDÉRIC MALLET; CHARLES ANDRÉ; JULIEN DEANTONI: “Executing
AADL Models with UML/MARTE ”. In: 2009 14th IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS). Piscataway,
USA: IEEE, 2009, pp. 371–376. ISBN: 978-0-7695-3702-3. DOI: 10.1109/
ICECCS.2009.10.

[McK16] MCKINSEY: Automotive revolution – Perspective Towards 2030: How the con-
vergence of disruptive technology-driven trends could transform the auto indu-
stry. 2016.

[McK18] MCKINSEY CENTER FOR FUTURE MOBILITY: Ready for Inspection – The
Automotive Aftermarket in 2030. 2018.

[MF10] JOHN PAUL MACDUFFIE; TAKAHIRO FUJIMOTO: “Why Dinosaurs Will Keep
Ruling the Auto Industry”. In: Harvard Business Review 88:6 (2010), pp. 23–
25.

[MGP09] PATRICK MÄDER; ORLENA C. Z. GOTEL; ILKA PHILIPPOW: “Getting Back
to Basics: Promoting the Use of a Traceability Information Model in Practice”.
In: Proceedings of the 5th ICSE Workshop on Traceability in Emerging Forms
of Software Engineering (TEFSE). Piscataway, USA: IEEE, 2009, pp. 21–25.
ISBN: 978-1-4244-3741-2. DOI: 10.1109/TEFSE.2009.5069578.

[MH06] SHAHAR MAOZ; DAVID HAREL: “From Multi-modal Scenarios to Code: Com-
piling LSCs into AspectJ”. In: Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. Ed. by MICHAL

YOUNG; PREMKUMAR DEVANBU. New York, USA: ACM, 2006, pp. 219–
230. ISBN: 1-59593-468-5. DOI: 10.1145/1181775.1181802.

[MH11] SHAHAR MAOZ; DAVID HAREL: “On tracing reactive systems”. In: Software
& Systems Modeling 10:4 (2011), pp. 447–468. ISSN: 1619-1366 (Print), 1619-
1374 (Online). DOI: 10.1007/s10270-010-0151-2.

[Mil71] ROBIN MILNER: “An algebraic definition of simulation between programs”. In:
Proceedings of the 2nd International Joint Conference on Artificial Intelligence.
1971, pp. 481–489.

215

https://doi.org/10.1007/978-3-642-05089-3_43
https://doi.org/10.1007/978-3-642-05089-3_43
https://doi.org/10.1109/DATE.2010.5457164
https://doi.org/10.1109/ASE.2009.19
https://doi.org/10.1109/ICECCS.2009.10
https://doi.org/10.1109/ICECCS.2009.10
https://doi.org/10.1109/TEFSE.2009.5069578
https://doi.org/10.1145/1181775.1181802
https://doi.org/10.1007/s10270-010-0151-2

Bibliography

[MKH07] SHAHAR MAOZ; ASAF KLEINBORT; DAVID HAREL: “Towards Trace Visua-
lization and Exploration for Reactive Systems”. In: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC
2007). Ed. by PHILIP COX; JOHN HOSKING. Los Alamitos, USA: IEEE, 2007,
pp. 153–156. ISBN: 978-0-7695-2987-5. DOI: 10.1109/VLHCC.2007.27.

[MMS13] SAAD MUBEEN; JUKKA MÄKI-TURJA; MIKAEL SJÖDIN: “Support for end-
to-end response-time and delay analysis in the industrial tool suite: Issues, expe-
riences and a case study”. In: Computer Science and Information Systems 10:1
(2013), pp. 453–482. DOI: 10.2298/CSIS120614011M.

[MMS14] SAAD MUBEEN; JUKKA MÄKI-TURJA; MIKAEL SJÖDIN: “Communications-
oriented development of component-based vehicular distributed real-time em-
bedded systems”. In: Journal of Systems Architecture 60:2 (2014), pp. 207–220.
ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2013.10.008.

[MNL+16] SAAD MUBEEN; THOMAS NOLTE; JOHN LUNDBÄCK; MATTIAS GÅLNAN-
DER; KURT-LENNART LUNDBÄCK: “Refining Timing Requirements in Ex-
tended Models of Legacy Vehicular Embedded Systems Using Early End-to-
end Timing Analysis”. In: Information Technology: New Generations. Ed. by
SHAHRAM LATIFI. Vol. 448. Advances in Intelligent Systems and Computing
(AISC). Cham, Switzerland: Springer, 2016, pp. 497–508. ISBN: 978-3-319-
32466-1 (Print), 978-3-319-32467-8 (Online). DOI: 10.1007/978-3-319-
32467-8_44.

[MNS+17] SAAD MUBEEN; THOMAS NOLTE; MIKAEL SJÖDIN; JOHN LUNDBÄCK;
KURT-LENNART LUNDBÄCK: “Supporting timing analysis of vehicular em-
bedded systems through the refinement of timing constraints”. In: Software &
Systems Modeling (2017). ISSN: 1619-1366 (Print), 1619-1374 (Online). DOI:
10.1007/s10270-017-0579-8.

[MPA09] FRÉDÉRIC MALLET; MARIE-AGNÈS PERALDI-FRATI; CHARLES ANDRÉ:
“MARTE CCSL to Execute East-ADL Timing Requirements”. In: 2009 IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC’09). Los Alamitos, USA: IEEE, 2009, pp. 249–
253. ISBN: 978-0-7695-3573-9. DOI: 10.1109/ISORC.2009.18.

[MPR07] PATRICK MÄDER; ILKA PHILIPPOW; MATTHIAS RIEBISCH: “Customizing
Traceability Links for the Unified Process”. In: Proceedings of the 3rd Inter-
national Conference on Quality of Software Architectures (QoSA) – Revised
Selected Papers. Ed. by SVEN OVERHAGE; CLEMENS A. SZYPERSKI; RALF

REUSSNER; JUDITH A. STAFFORD. Berlin/Heidelberg: Springer, 2007, pp. 53–
71. ISBN: 978-3-540-77617-8 (Print), 978-3-540-77619-2 (Online). DOI: 10.
1007/978-3-540-77619-2_4.

[MS16] SALOME MARO; JAN-PHILIPP STEGHÖFER: “Capra: A Configurable and Ex-
tendable Traceability Management Tool”. In: Proceedings of the 24th IEEE In-
ternational Requirements Engineering Conference (RE). Los Alamitos, USA:
IEEE, 2016, pp. 407–408. ISBN: 978-1-5090-4121-3. DOI: 10.1109/RE.
2016.19.

216

https://doi.org/10.1109/VLHCC.2007.27
https://doi.org/10.2298/CSIS120614011M
https://doi.org/10.1016/j.sysarc.2013.10.008
https://doi.org/10.1007/978-3-319-32467-8_44
https://doi.org/10.1007/978-3-319-32467-8_44
https://doi.org/10.1007/s10270-017-0579-8
https://doi.org/10.1109/ISORC.2009.18
https://doi.org/10.1007/978-3-540-77619-2_4
https://doi.org/10.1007/978-3-540-77619-2_4
https://doi.org/10.1109/RE.2016.19
https://doi.org/10.1109/RE.2016.19

Literature

[MSN+15] SAAD MUBEEN; MIKAEL SJÖDIN; THOMAS NOLTE; JOHN LUNDBÄCK;
MATTIAS GÅLNANDER; KURT-LENNART LUNDBÄCK: “End-to-End Timing
Analysis of Black-Box Models in Legacy Vehicular Distributed Embedded Sys-
tems”. In: 2015 IEEE 21st International Conference on Embedded and Real-
Time Computing Systems and Applications (RTSCA). Los Alamitos, USA: IEEE
Computer Society, 2015, pp. 149–158. ISBN: 978-1-4673-7855-0. DOI: 10.
1109/RTCSA.2015.24.

[NE00] BASHAR NUSEIBEH; STEVE EASTERBROOK: “Requirements Engineering: A
Roadmap”. In: Proceedings of the Conference on The Future of Software En-
gineering (FOSE). Ed. by ANTHONY C. W. FINKELSTEIN. New York, USA:
ACM, 2000, pp. 35–46. ISBN: 1-58113-253-0. DOI: 10.1145/336512.
336523.

[NIE+17] ARNE NOYER; PADMA IYENGHAR; JOACHIM ENGELHARDT; ELKE PUL-
VERMUELLER; GERT BIKKER: “A model-based framework encompassing a
complete workflow from specification until validation of timing requirements
in embedded software systems”. In: Software Quality Journal 25:3 (2017),
pp. 671–701. ISSN: 1573-1367. DOI: 10.1007/s11219-016-9323-9.
URL: https://doi.org/10.1007/s11219-016-9323-9.

[NMH08] MIKAEL NOLIN; JUKKA MÄKI-TURJA; KAJ HÄNNINEN: “Achieving Indus-
trial Strength Timing Predictions of Embedded System Behavior”. In: Proceed-
ings of the 2008 International Conference on Embedded Systems & Applicati-
ons (ESA). Ed. by HAMID R. ARABNIA; MUN YOUNGSONG. CSREA Press,
2008, pp. 173–178. ISBN: 1-60132-065-5.

[NT09] JOAQUÍN NICOLÁS; AMBROSIO TOVAL: “On the Generation of Requirements
Specifications from Software Engineering Models: A Systematic Literature Re-
view”. In: Information and Software Technology 51:9 (2009), pp. 1291–1307.
ISSN: 0950-5849. DOI: 10.1016/j.infsof.2009.04.001.

[PAA+15] ART PYSTER; RICK ADCOCK; MARK ARDIS; ROB CLOUTIER; DEVANAND-
HAM HENRY; LINDA LAIRD; HAROLD ‘BUD’ LAWSON; MICHAEL PEN-
NOTTI; KEVIN SULLIVAN; JON WADE: “Exploring the Relationship between
Systems Engineering and Software Engineering”. In: Processings of the 2015
Conference on Systems Engineering Research. Vol. 44. Procedia Computer
Science. 2015, pp. 708–717. DOI: 10.1016/j.procs.2015.03.016.

[PB00] PETER PUSCHNER; ALAN BURNS: “Guest Editorial: A Review of Worst-Case
Execution-Time Analysis”. In: Real-Time Systems 18:2 (2000), pp. 115–128.
ISSN: 1573-1383. DOI: 10.1023/A:1008119029962.

[PBKS07] ALEXANDER PRETSCHNER; MANFRED BROY; INGOLF KRÜGER; THOMAS

STAUNER: “Software Engineering for Automotive Systems: A Roadmap”. In:
Proceedings of the Conference on Future of Software Engineering (FOSE). Ed.
by LIONEL C. BRIAND; ALEXANDER L. WOLF. Washington, USA: IEEE,
2007, pp. 55–71. ISBN: 0-7695-2829-5. DOI: 10.1109/FOSE.2007.22.

217

https://doi.org/10.1109/RTCSA.2015.24
https://doi.org/10.1109/RTCSA.2015.24
https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1007/s11219-016-9323-9
https://doi.org/10.1007/s11219-016-9323-9
https://doi.org/10.1016/j.infsof.2009.04.001
https://doi.org/10.1016/j.procs.2015.03.016
https://doi.org/10.1023/A:1008119029962
https://doi.org/10.1109/FOSE.2007.22

Bibliography

[PD11] MARIE-AGNÈS PERALDI-FRATI; JULIEN DEANTONI: “Scheduling Multi
Clock Real Time Systems: From Requirements to Implementation”. In: 2011
14th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC’11). Piscataway, USA: IEEE, 2011,
pp. 50–57. ISBN: 978-1-61284-433-6. DOI: 10.1109/ISORC.2011.16.

[PDK+11] RICHARD F. PAIGE; NIKOLAOS DRIVALOS; DIMITRIOS S. KOLOVOS;
KIRAN J. FERNANDES; CHRISTOPHER POWER; GORAN K. OLSEN; STEF-
FEN ZSCHALER: “Rigorous identification and encoding of trace-links in model-
driven engineering”. In: Software & Systems Modeling 10:4 (2011), pp. 469–
487. ISSN: 1619-1366 (Print), 1619-1374 (Online). DOI: 10.1007/s10270-
010-0158-8.

[Poo10] RADHA POOVENDRAN: “Cyber-Physical Systems: Close Encounters Between
Two Parallel Worlds”. In: Proceedings of the IEEE 98:8 (2010). Point of View,
pp. 1363–1366. ISSN: 0018-9219. DOI: 10.1109/JPROC.2010.2050377.

[PR11] KLAUS POHL; CHRIS RUPP: Requirements Engineering Fundamentals. 1st edi-
tion. Santa Barbara, USA: Rocky Nook, 2011. ISBN: 978-1-933952-81-9.

[RE93] BALASUBRAMANIAM RAMESH; MICHAEL EDWARDS: “Issues in the Deve-
lopment of a Requirements Traceability Model”. In: Proceedings of the IEEE
International Symposium on Requirements Engineering. Los Alamitos, USA:
IEEE, 1993, pp. 256–259. ISBN: 0-8186-3120-1. DOI: 10.1109/ISRE.
1993.324849.

[RH08] PER RUNESON; MARTIN HÖST: “Guidelines for conducting and reporting case
study research in software engineering”. In: Empirical Software Engineering
14:2 (2008), pp. 131–164. ISSN: 1382-3256 (Print), 1573-7616 (Online). DOI:
10.1007/s10664-008-9102-8.

[RHAR12] PER RUNESON; MARTIN HÖST; RAINER AUSTEN; BJÖRN REGNELL: Case
Study Research in Software Engineering – Guidelines and Examples. 1st edi-
tion. Hoboken, USA: Wiley, 2012. ISBN: 9781118104354.

[SAÅ+04] LUI SHA; TAREK ABDELZAHER; KARL-ERIK ÅRZÉN; ANTON CERVIN;
THEODORE BAKER; ALAN BURNS; GIORGIO BUTTAZZO; MARCO CAC-
CAMO; JOHN LEHOCZKY; ALOYSIUS K. MOK: “Real Time Scheduling The-
ory: A Historical Perspective”. In: Real-Time Systems 28:2-3 (2004), pp. 101–
155. ISSN: 0922-6443. DOI: 10.1023/B:TIME.0000045315.61234.
1e.

[Sch95] ANDY SCHÜRR: “Specification of Graph Translators with Triple Graph Gram-
mars”. In: Graph-Theoretic Concepts in Computer Science. Ed. by ERNST W.
MAYR. Vol. 903. Lecture Notes in Computer Science (LNCS). Berlin/Heidel-
berg, Germany: Springer, 1995, pp. 151–163. ISBN: 3540590714. DOI: 10.
1007/3-540-59071-4_45.

[ŠCV13] IVAN ŠVOGOR; IVICA CRNKOVIĆ; NEVEN VRČEK: “An Extended Model for
Multi-Criteria Software Component Allocation on a Heterogeneous Embedded
Platform”. In: Journal of Computing and Information Technology 21:4 (2013),
pp. 211–222. DOI: 10.2498/cit.1002284.

218

https://doi.org/10.1109/ISORC.2011.16
https://doi.org/10.1007/s10270-010-0158-8
https://doi.org/10.1007/s10270-010-0158-8
https://doi.org/10.1109/JPROC.2010.2050377
https://doi.org/10.1109/ISRE.1993.324849
https://doi.org/10.1109/ISRE.1993.324849
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.2498/cit.1002284

Literature

[SDP10] ERNST SIKORA; MARIAN DAUN; KLAUS POHL: “Supporting the Consis-
tent Specification of Scenarios across Multiple Abstraction Levels”. In: Re-
quirements Engineering: Foundation for Software Quality (REFSQ). Ed. by
ROEL WIERINGA; ANNE PERSSON. Vol. 6182. Lecture Notes in Computer
Science (LNCS). Berlin/Heidelberg: Springer, 2010, pp. 45–59. ISBN: 978-3-
642-14191-1 (Print), 978-3-642-14192-8 (Online). DOI: 10.1007/978-3-
642-14192-8_6.

[SG14] BRAN SELIC; SÉBASTIEN GÉRARD: Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE – Developing Cyber-Physical Sys-
tems. Amsterdam, Netherlands: Elsevier, 2014. ISBN: 978-0-12-416619-6.

[She96] SARAH A. SHEARD: “Twelve Systems Engineering Roles”. In: INCOSE In-
ternational Symposium 6:1 (1996), pp. 478–485. ISSN: 2334-5837. DOI: 10.
1002/j.2334-5837.1996.tb02042.x.

[Sta73] HERBERT STACHOWIAK: Allgemeine Modelltheorie. Vienna, Austria: Sprin-
ger, 1973. ISBN: 978-3211811061.

[Sta88] JOHN A. STANKOVIC: “Misconceptions About Real-Time Computing – A
Serious Problem for Next-Generation Systems”. In: Computer 21:10 (1988),
pp. 10–19. ISSN: 0018-9162. DOI: 10.1109/2.7053.

[STP12] ERNST SIKORA; BASTIAN TENBERGEN; KLAUS POHL: “Industry Needs and
Research Directions in Requirements Engineering for Embedded Systems”. In:
Requirements Engineering 17 (2012), pp. 57–78. ISSN: 0947-3602. DOI: 10.
1007/s00766-011-0144-x.

[SUB08] GERMAN SIBAY; SEBASTIAN UCHITEL; VICTOR BRABERMAN: “Existen-
tial Live Sequence Charts Revisited”. In: 2008 ACM/IEEE 30th Internatio-
nal Conference on Software Engineering. 2008, pp. 41–50. DOI: 10.1145/
1368088.1368095.

[TBW95] KEN TINDELL; ALAN BURNS; ANDY J. WELLINGS: “Analysis of hard real-
time communications”. In: Real-Time Systems 9:2 (1995), pp. 147–171. ISSN:
1573-1383. DOI: 10.1007/BF01088855.

[TC94] KEN TINDELL; JOHN CLARK: “Holistic schedulability analysis for distribu-
ted hard real-time systems”. In: Microprocessing and Microprogramming 40:2
(1994), pp. 117–134. ISSN: 0165-6074. DOI: 10.1016/0165-6074(94)
90080-9.

[Thr10] KLEANTHIS THRAMBOULIDIS: “The 3+1 SysML View-Model in Model In-
tegrated Mechatronics”. In: Journal of Software Engineering and Applications
3:2 (2010), pp. 109–118. DOI: 10.4236/jsea.2010.32014.

[THW94] KEN W. TINDELL; HANS HANSSON; ANDY J. WELLINGS: “Analysing real-
time communications: controller area network (CAN)”. In: Proceedings of the
1994 Real-Time Systems Symposium (RTTS). IEEE, 1994, pp. 259–263. DOI:
10.1109/REAL.1994.342710.

[TL89] MARK R. TUTTLE; NANCY A. LYNCH: “An Introduction to Input/Output Au-
tomata”. In: CWI Quarterly 2:3 (1989), pp. 219–246. ISSN: 0922-5366.

219

https://doi.org/10.1007/978-3-642-14192-8_6
https://doi.org/10.1007/978-3-642-14192-8_6
https://doi.org/10.1002/j.2334-5837.1996.tb02042.x
https://doi.org/10.1002/j.2334-5837.1996.tb02042.x
https://doi.org/10.1109/2.7053
https://doi.org/10.1007/s00766-011-0144-x
https://doi.org/10.1007/s00766-011-0144-x
https://doi.org/10.1145/1368088.1368095
https://doi.org/10.1145/1368088.1368095
https://doi.org/10.1007/BF01088855
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.4236/jsea.2010.32014
https://doi.org/10.1109/REAL.1994.342710

Bibliography

[VBK10] K. VENKATESH PRASAD; MANFRED BROY; INGOLF KRÜGER: “Scanning
Advances in Aerospace & Automobile Software Technology”. In: Proceedings
of the IEEE 98:4 (2010), pp. 510–514. ISSN: 0018-9219. DOI: 10.1109/
JPROC.2010.2041835.

[VEFR12] ANDREAS VOGELSANG; SEBASTIAN EDER; MARTIN FEILKAS; DANIEL

RATIU: “Functional Viewpoint”. In: Model-Based Engineering of Embedded
Systems – The SPES 2020 Methodology. Ed. by KLAUS POHL; HARALD HÖN-
NINGER; REINHOLD E. ACHATZ; MANFRED BROY. Berlin/Heidelberg: Sprin-
ger, 2012. Chap. 5, pp. 69–83. ISBN: 978-3-642-34613-2 (Print), 978-3-642-
34614-9 (Online). DOI: 10.1007/978-3-642-34614-9_5.

[WAB+10] ADAM WYNER; KRASIMIR ANGELOV; GUNTIS BARZDINS; DANICA DAM-
LJANOVIC; BRIAN DAVIS; NORBERT E. FUCHS; STEFAN HOEFLER; KEN

JONES; KAAREL KALJURAND; TOBIAS KUHN; MARTIN LUTS; JONATHAN

POOL; MIKE ROSNER; ROLF SCHWITTER; JOHN SOWA: “On Controlled Na-
tural Languages: Properties and Prospects”. In: Controlled Natural Language.
Ed. by NORBERT E. FUCHS. Vol. 5972. Lecture Notes in Computer Science
(LNCS). Berlin/Heidelberg, Germany: Springer, 2010, pp. 281–289. ISBN: 978-
3-642-14417-2. DOI: 10.1007/978-3-642-14418-9_17.

[Wan04] FARN WANG: “Formal Verification of Timed Systems: A Survey and Per-
spective”. In: Proceedings of the IEEE 92:8 (2004), pp. 1283–1305. ISSN: 0018-
9219. DOI: 10.1109/JPROC.2004.831197.

[WEE+08] REINHARD WILHELM; JAKOB ENGBLOM; ANDREAS ERMEDAHL; NI-
KLAS HOLSTI; STEPHAN THESING; DAVID WHALLEY; GUILLEM BER-
NAT; CHRISTIAN FERDINAND; REINHOLD HECKMANN; TULIKA MITRA;
FRANK MUELLER; ISABELLE PUAUT; PETER PUSCHNER; JAN STASCHU-
LAT; PER STENSTRÖM: “The Worst-case Execution-time Problem—Overview
of Methods and Survey of Tools”. In: ACM Transactions on Embedded Com-
puting Systems 7:3 (2008), 36:1–36:53. ISSN: 1539-9087. DOI: 10.1145/
1347375.1347389.

[Wei16] TIM WEILKIENS: SYSMOD – The Systems Modeling Toolbox (Version 4.1):
Pragmatic MBSE with SysML. 2nd edition. Victoria, Canada: Leanpub, 2016.
ISBN: 978-3-9817875-9-7.

[WP10] STEFAN WINKLER; JENS von PILGRIM: “A Survey of Traceability in Require-
ments Engineering and Model-driven Development”. In: Software & Systems
Modeling 9:4 (2010), pp. 529–565. ISSN: 1619-1366 (Print), 1619-1374 (On-
line). DOI: 10.1007/s10270-009-0145-0.

[WRF+15] DAVID D. WALDEN; GARRY J. ROEDLER; KEVIN J. FORSBERG; R. DOUG-
LAS HAMELIN; THOMAS M. SHORTELL, eds.: Systems Engineering Handbook
– A Guide for System Lifecycle Processes and Activities. 4th edition. INCOSE–
TP–2003–002–04. Hoboken, USA: Wiley, 2015. ISBN: 9781118999400.

[WT04] SHUHUA WANG; GRACE TSAI: “Specification and Timing Analysis of Real-
Time Systems”. In: Real-Time Systems 28:1 (2004), pp. 69–90. ISSN: 1573-
1383. DOI: 10.1023/B:TIME.0000033379.78994.1a.

220

https://doi.org/10.1109/JPROC.2010.2041835
https://doi.org/10.1109/JPROC.2010.2041835
https://doi.org/10.1007/978-3-642-34614-9_5
https://doi.org/10.1007/978-3-642-14418-9_17
https://doi.org/10.1109/JPROC.2004.831197
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1023/B:TIME.0000033379.78994.1a

Standards and Specifications

[XJMZ11] XIAOHONG CHEN; JING LIU; FRÉDÉRIC MALLET; ZHI JIN: “Modeling Ti-
ming Requirements in Problem Frames Using CCSL”. In: 18th Asia-Pacific
Software Engineering Conference (APSEC). Ed. by DAN THU TRAN. Pisca-
taway, USA: IEEE, 2011, pp. 381–388. ISBN: 978-1-4577-2199-1. DOI: 10.
1109/APSEC.2011.30.

[YTB+11] HUAFENG YU; JEAN-PIERRE TALPIN; LOÏC BESNARD; THIERRY GAUTIER;
HERVÉ MARCHAND; PAUL LE GUERNIC: “Polychronous controller synthe-
sis from MARTE CCSL timing specifications”. In: 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign (MEMOCODE). Pis-
cataway, USA: IEEE, 2011, pp. 21–30. ISBN: 978-1-4577-0116-0. DOI: 10.
1109/MEMCOD.2011.5970507.

[ZSPK03] ANDREA ZISMAN; GEORGE SPANOUDAKIS; ELENA PÉREZ-MIÑANA; PAUL

KRAUSE: “Tracing Software Requirements Artefacts”. In: Proceedings of the
2003 International Conference on Software Engineering Research and Practice
(SERP). Ed. by BAN AL-ANI; HAMID R. ARABNIA; YOUNGSONG MUN. CS-
REA Press, 2003, pp. 448–455. ISBN: 1-932415-20-3.

Standards and Specifications

[ASIG17] AUTOMOTIVE SPECIAL INTEREST GROUP / VDA QMC WORKING GROUP

13: Automotive SPICE Process Reference and Assessment Model. Version 3.1.
2017.

[AUTOSAR] AUTOMOTIVE OPEN SYSTEM ARCHITECTURE: AUTomotive Open System
ARchitecture (AUTOSAR) Standard. URL: http://www.autosar.org.

[EAST13] EAST-ADL ASSOCIATION: EAST-ADL Domain Model Specification. Ver-
sion V2.1.12. 2013.

[IEC04] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC) / INSTITUTE OF

ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE): IEC/IEEE Behaviou-
ral Languages – Part 4: Verilog Hardware Description Language (Adoption of
IEEE Std 1364-2001). IEC 61691-4:2004(E) / IEEE 1364-2001(E). 2004. ISBN:
2-8318-7675-3. DOI: 10.1109/IEEESTD.2004.95753.

[IEC10] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): Functional sa-
fety of electrical/electronic/programmable electronic safety-related systems.
IEC 61508:2010. 2010.

[ISO05] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: Road vehicles –
Open interface for embedded automotive applications – Part 3: OSEK/VDX
Operating System (OS). ISO 17356-3:2005. 2005.

[ISO11] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO) / IN-
TERNATIONAL ELECTROTECHNICAL COMMISSION (IEC) / INSTITUTE OF

ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE): Systems and software
engineering – Architecture description. ISO/IEC/IEEE 42010:2011(E). 2011.
ISBN: 978-0-7381-7142-5. DOI: 10.1109/IEEESTD.2011.6129467.

221

https://doi.org/10.1109/APSEC.2011.30
https://doi.org/10.1109/APSEC.2011.30
https://doi.org/10.1109/MEMCOD.2011.5970507
https://doi.org/10.1109/MEMCOD.2011.5970507
http://www.autosar.org
https://doi.org/10.1109/IEEESTD.2004.95753
https://doi.org/10.1109/IEEESTD.2011.6129467

Bibliography

[ISO17] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO) / IN-
TERNATIONAL ELECTROTECHNICAL COMMISSION (IEC) / INSTITUTE OF

ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE): Systems and soft-
ware engineering – Vocabulary. ISO/IEC/IEEE 24765-2017(E). New York,
USA, 2017. ISBN: 978-1-5044-4118-6. DOI: 10.1109/IEEESTD.2017.
8016712.

[ISO18a] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): Road
vehicles – Functional safety. ISO 26262:2018. 2018.

[ISO18b] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO) / IN-
TERNATIONAL ELECTROTECHNICAL COMMISSION (IEC) / INSTITUTE OF

ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE): Systems and soft-
ware engineering – Life cycle processes – Requirements engineering. ISO/IE-
C/IEEE 29148-2018. 2018. ISBN: 978-1-5044-5302-8. DOI: 10 . 1109 /
IEEESTD.2018.8559686.

[ITU11] ITU TELECOMMUNICATION STANDARDIZATION SECTOR: ITU-T Recom-
mendation Z.120 (02/2011): Message Sequence Chart (MSC). 02/2011. Z.120.
2011.

[ITU16] ITU TELECOMMUNICATION STANDARDIZATION SECTOR: ITU-T Recom-
mendation Z.101 (04/2016): Specification and Description Language – Basic
SDL-2010. 2016.

[OMG11] OBJECT MANAGEMENT GROUP (OMG): UML Profile for MARTE: Model-
ing and Analysis of Real-Time Embedded Systems. OMG Document Number:
formal/2011-06-02. Version 1.1. 2011. URL: http://www.omg.org/
spec/MARTE/1.1/.

[OMG12] OBJECT MANAGEMENT GROUP (OMG): OMG SysML-Modelica Transforma-
tion (SyM). OMG Document Number: formal/2012-11-09. Version 1.0. 2012.
URL: http://www.omg.org/spec/SyM/1.0/.

[OMG14a] OBJECT MANAGEMENT GROUP (OMG): OMG Object Constraint Language
(OCL). OMG Document Number: formal/2014-02-03. Version 2.4. 2014. URL:
http://www.omg.org/spec/OCL/2.4.

[OMG14b] OBJECT MANAGEMENT GROUP (OMG): Business Process Model and No-
tation (BPMN). OMG Document Number: formal/2013-12-09. Version 2.0.2.
2014. URL: http://www.omg.org/spec/BPMN/2.0.2/.

[OMG16] OBJECT MANAGEMENT GROUP (OMG): Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification. OMG Document Number:
formal/2016-06-03. Version 1.3. 2016. URL: http://www.omg.org/
spec/QVT/1.3/.

[OMG17a] OBJECT MANAGEMENT GROUP (OMG): OMG Systems Modeling Language
(OMG SysML). OMG Document Number: formal/2017-05-01. Version 1.5.
2017. URL: http://www.omg.org/spec/SysML/1.5/.

[OMG17b] OBJECT MANAGEMENT GROUP (OMG): OMG Unified Modeling Language
(OMG UML). OMG Document Number: formal/2017-12-05. Version 2.5.1.
2017. URL: http://www.omg.org/spec/UML/2.5.1/.

222

https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2018.8559686
https://doi.org/10.1109/IEEESTD.2018.8559686
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/SyM/1.0/
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/QVT/1.3/
http://www.omg.org/spec/QVT/1.3/
http://www.omg.org/spec/SysML/1.5/
http://www.omg.org/spec/UML/2.5.1/

Research Projects

[RTCA11] RADIO TECHNICAL COMMISSION FOR AERONAUTICS (RTCA): Software
Considerations in Airborne Systems and Equipment Certification. DO-178C.
2011.

[VDI04] ASSOCIATION OF GERMAN ENGINEERS (VEREIN DEUTSCHER INGENI-
EURE, VDI): VDI Guideline 2206 – Design Methodology for Mechatronic Sys-
tems. Berlin, Germany: Beuth, 2004.

Research Projects

[A4P] European research project “Amalthea4Public”: An open platform project for
embedded multicore systems. Last accessed April 2019. URL: http://www.
amalthea-project.org/.

[itsOWL] German leading-edge cluster “Intelligent Technical Systems OstWestfalenLippe
(it’s OWL)”. Last accessed April 2019. URL: https://www.its-owl.
com/.

[itsOWL-SE] it’s OWL cross-sectional project “Systems Engineering”. Last accessed April
2019. URL: https : / / www . its - owl . com / projects / cross -
sectional-projects/details/systems-engineering/.

[SPES2020] German research project “Software Plattform Embedded Systems 2020
(SPES 2020)”. Last accessed April 2019. URL: http : / / spes2020 .
informatik.tu-muenchen.de/spes-home.html.

Tool Suites and Tool Frameworks

[CAPRA] Capra Traceability Management Tool. Last accessed January 2019. URL:
http://projects.eclipse.org/projects/modeling.capra.

[GEMOC] Eclipse GEMOC Studio. Last accessed January 2019. URL: https : / /
projects.eclipse.org/projects/modeling.gemoc.

[PAPYRUS] Papyrus Modeling Environment. Last accessed January 2019. URL: http://
www.eclipse.org/papyrus.

[EMF] Eclipse Modeling Framework (EMF). Last accessed January 2019. URL:
http://www.eclipse.org/modeling/emf.

[MUML] MechatronicUML Tool Suites. Last accessed January 2019. URL: http://
www.mechatronicuml.org/en.

[QVTo] Eclipse QVT Operational. Last accessed January 2019. URL: http : / /
projects.eclipse.org/projects/modeling.mmt.qvt-oml.

[ST-MSD] ScenarioTools MSD. Last accessed January 2019. URL: http : / /
scenariotools.org/projects2/msd.

[T2] TimeSquare Model Development Kit. Last accessed January 2019. URL: http:
//timesquare.inria.fr/.

223

http://www.amalthea-project.org/
http://www.amalthea-project.org/
https://www.its-owl.com/
https://www.its-owl.com/
https://www.its-owl.com/projects/cross-sectional-projects/details/systems-engineering/
https://www.its-owl.com/projects/cross-sectional-projects/details/systems-engineering/
http://spes2020.informatik.tu-muenchen.de/spes-home.html
http://spes2020.informatik.tu-muenchen.de/spes-home.html
http://projects.eclipse.org/projects/modeling.capra
https://projects.eclipse.org/projects/modeling.gemoc
https://projects.eclipse.org/projects/modeling.gemoc
http://www.eclipse.org/papyrus
http://www.eclipse.org/papyrus
http://www.eclipse.org/modeling/emf
http://www.mechatronicuml.org/en
http://www.mechatronicuml.org/en
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://scenariotools.org/projects2/msd
http://scenariotools.org/projects2/msd
http://timesquare.inria.fr/
http://timesquare.inria.fr/

List of Figures

1.1 Overview of the approaches considered in this thesis (Vee model visualization
based on [VDI04]) . 3

2.1 Excerpt of the CONSENS specification method (based on [GV14]) 12
2.2 Excerpt of the CONSENS system model of the EBEAS with partial models rele-

vant to SwRE . 13
2.3 Platform-independent MECHATRONICUML software architecture automati-

cally derived from the CONSENS Active Structure of the EBEAS (cf. Figure 2.2) 17
2.4 MSD use case ObstacleDetection in an MSD specification and at runtime . . . 19
2.5 The Modal profile . 23
2.6 Excerpt of the UML4SysML UML subset and the SysML profile used in this thesis 24
2.7 Excerpt of the MARTE NFPs subprofile used in this thesis 26
2.8 Excerpt of the MARTE_Library used in this thesis 27
2.9 Excerpt of the MARTE subprofiles GRM, GQAM, and Alloc used in this thesis . 28
2.10 Exemplary simulation runs of CCSL clock expressions 34

(a) Union
(b) Intersection
(c) DelayFor
(d) PeriodicOffsetP
(e) Sup
(f) Inf
(g) Legend

2.11 Exemplary simulation runs of CCSL clock relations 35
(a) Precedes
(b) NonStrictPrecedes
(c) Coincides
(d) SubClock
(e) Exclusion
(f) Legend

2.12 Exemplary MoCCML relation and simulation run 36
(a) Exemplary MoCCML relation
(b) Exemplary simulation run

2.13 Specifying semantics for executable modeling languages with GEMOC 38

3.1 The transition from model-based systems engineering to software requirements
engineering (based on [*HBM+17; VDI04]) 39

3.2 Logical view on the partial models Environment and Active Structure with port
specifications as well as excerpt of the partial model Behavior – Sequences for
the EBEAS . 42

225

List of Figures

3.3 Logical view excerpt of the partial model Environment with port specifications
as well as excerpt of the partial model Behavior – States for the EBEAS 44

3.4 Concept taxonomy for component-based MSD specifications 46
3.5 Example of a component-based MSD specification 47
3.6 Idealized overall process excerpt for the integration of MBSE with CONSENS

and SwRE with MSDs (based on [*HBM+16; *HBM+15]) 49
3.7 Mappings between SwRE-relevant structural elements of CONSENS system

models and structural elements of component-based MSD specifications 52
3.8 Derive MSD use cases—mapping of SwRE-relevant application scenarios . . . 53
3.9 Derive structure—mapping of discrete software components 54
3.10 Derive structure—mapping of SwRE-relevant environment elements 54
3.11 Derive structure—mapping of SwRE-relevant continuous software components 55
3.12 Derive structure—mapping of SwRE-relevant information flows 56
3.13 Derive MSDs—mapping of SwRE-relevant Behavior – Sequences 57
3.14 Expanded BPMN sub-process Refine MSD Specification (cf. Figure 3.6) . . . 58
3.15 Guideline 1a—Specify additional MSDs: Add assumption MSDs 59
3.16 Automatic coverage check between MSD specifications and Behavior – States 61
3.17 Derive environment messages for existential MSDs 63
3.18 Derive system messages for existential MSDs 63
3.19 Initially generated MSD specification . 65
3.20 Changes in the CONSENS system model . 71
3.21 Automatically updated MSD specification . 73
3.22 Trace link excerpt between structural elements of the CONSENS system model

and of the MSD specification, established automatically 75
3.23 Trace link excerpt between non-structural elements of the CONSENS system

model and of the MSD specification, established semi-automatically 76
3.24 Exploiting transformation traceability during the incremental update of the

MSD Emergency Evasion Situation—updating messages and lifelines 78
3.25 Exploiting transformation traceability during the incremental update of the

MSD Emergency Evasion Situation—no recreation of once manually moved
messages . 81

3.26 Coarse-grained architecture of the implementation and the reused components . 95
3.27 The SYSML4CONSENS profile . 97
3.28 Profile for relevance annotations . 98
3.29 Excerpt of the SYSML4CONSENS system model for the µC1 of the EBEAS . . 99
3.30 Metamodel for the lifecycle traces between the classifier view type of

component-based MSD specifications and SYSML4CONSENS system models . 101
3.31 Metamodel for the lifecycle traces between the architecture view type of

component-based MSD specifications and SYSML4CONSENS system models . 103
3.32 Metamodel for the lifecycle traces between the interaction view type of

component-based MSD specifications and SYSML4CONSENS system models . 104
3.33 Metamodel for the transformation traces enabling incremental updates 104

4.1 Early Timing Analysis based on Software Requirements Specifications 115
4.2 Interaction view of an EBEAS MSD specification variant for a timing analysis . 117

(a) MSD specifying an reception acknowledgment of a trajectory beacon

226

List of Figures

(b) Environment assumption specifying a standstill after an emergency bra-
king

(c) MSD specifying an emergency braking engagement after an obstacle de-
tection

4.3 Excerpt of the TAM profile (cf. full profile definition in Section 4.6.1) 119
4.4 Platform-specific MSD specification excerpt for the EBEAS 120
4.5 Analysis context example . 122
4.6 Process for conducting timing analyses based on MSDs (cf. Figure 3.6 in

Section 3.3, partially based on [Poh18; PH18; PMDB14]) 123
4.7 Additional events for MSD messages . 125
4.8 Specifying MSD semantics for timing analyses with GEMOC 127
4.9 Specification excerpt of semantics for the order of unification occurrences for

hot messages with additional event kinds . 130
4.10 Example—order of message unification occurrences in CCSL, enforced by the

CCSL model clock relation EmcyBraking.enableBraking_unificationOrderHot
(cf. CCSL model in the lower right of Figure 4.9) 132

4.11 The object system message as part of the TAM subprofile SimulationExtensions 133
4.12 Specification excerpt of semantics for unification of hot messages including ex-

ample models . 134
4.13 Example—message event unification in CCSL simulation for hot messages . . 136
4.14 Specification excerpt of semantics for task execution delays including example

models . 140
4.15 Exemplary CCSL run simulating delays due to task execution 142
4.16 Specification excerpt of semantics for task scheduling including example models 143
4.17 Exemplary CCSL run simulating task scheduling 146
4.18 Specification excerpt of semantics for clock resets and hot time conditions in-

cluding example models . 148
4.19 Exemplary CCSL run simulating a real-time requirement fulfillment and violation150
4.20 Specification excerpt of semantics for periodic arrival patterns including exam-

ple models . 152
4.21 Examplary CCSL run simulating a periodic arrival pattern 154
4.22 Exemplary simulation run excerpt for the CCSL model automatically generated

from the platform-specific MSD specification described in Section 4.1 (only
selected clocks depicted) . 155

4.23 Expanded BPMN sub-process Compute Timing Information (cf. Figure 4.6) . . 159
4.24 Coarse-grained architecture of the implementation and the reused components . 159
4.25 Detailed overview of the TAM subprofiles . 161
4.26 The TAM subprofile AnalysisContext . 162
4.27 The TAM subprofile Platform::Communication 163
4.28 The TAM subprofile Platform::ControlUnit . 165
4.29 The TAM subprofile Platform::OperatingSystem 166
4.30 The TAM subprofile ApplicationSoftware . 167
4.31 The TAM subprofile SimulationExtensions . 169

A.1 Guideline 1b—Specify additional MSDs: Add requirement MSDs 242
A.2 Guideline 2—Specify trigger and execution behavior 243
A.3 Guideline 3a—Specify temperatures and execution kinds: Add temperatures . . 244

227

List of Figures

A.4 Guideline 3b—Specify temperatures and execution kinds: Add execution kinds 245
A.5 Guideline 4a—Specify conditional behavior: Add conditions 246
A.6 Guideline 4b—Specify conditional behavior: Add real-time requirements . . . 247
A.7 Partial model Environment . 248
A.8 Partial model Application Scenarios . 249

(a) Obstacle Detection
(b) Emergency Braking
(c) Emergency Evasion
(d) Emergency Braking and Precrash Measures

A.9 Partial model Functions . 250
A.10 Partial model Active Structure . 251
A.11 Partial model Application Scenarios . 252

(a) Emergency Braking Situation for Leading Vehicle
(b) Emergency Braking Situation for Middle Vehicle
(c) Emergency Evasion Situation
(d) Emergency Braking and Precrash Measures Situation

A.12 Partial model Behavior – States . 253
A.13 MSD use case Obstacle Detection—classifier view 256
A.14 MSD use case Obstacle Detection—architecture view 257
A.15 MSD use case Obstacle Detection—interaction view 257
A.16 MSD use case Emergency Braking—classifier view 258
A.17 MSD use case Emergency Braking—architecture view 259
A.18 MSD use case Emergency Braking—interaction view 259
A.19 MSD use case Emergency Braking and Precrash Measures—classifier view . 260
A.20 MSD use case Emergency Braking and Precrash Measures—architecture view 261
A.21 MSD use case Emergency Braking and Precrash Measures—interaction view 261
A.22 Refinement step 1—specify additional MSDs 263

(a) Assumption MSD specifying the critical points until a crash occurs
(b) Requirement MSD specifying that an emergency evasion of the middle

vehicle would be safe for the overtaking vehicle
(c) Requirement MSD specifying that an emergency evasion of the middle

vehicle would be unsafe for the overtaking vehicle
A.23 Refinement step 2—specify trigger and execution behavior 264

(a) Requirement MSD specifying the start of the overtaking coordination af-
ter passing the last point to brake (trigger behavior)

(b) Requirement MSD specifying the start of the overtaking coordination af-
ter a rejected emergency braking maneuver (trigger behavior)

(c) Initially generated requirement MSD (cf. Figure 3.19) after removing the
first two messages (execution behavior)

A.24 Refinement step 3—MSD Emergency Evasion Situation after adding tempera-
tures and execution kinds . 265

A.25 Refinement step 4—MSD EmcyEvasionTimingConstraint specifying a safety-
critical real-time requirement for the functional behavior in MSD Emergency
Evasion Situation (cf. Figure A.24) . 266

A.26 Refinement step 5a—manually specified MSDs after coverage check w.r.t. the
partial model Behavior – States . 267

228

List of Figures

(a) Requirement MSD specifying the cancellation of the following coordina-
tion due to passing the last point of brake (trigger behavior)

(b) Requirement MSD specifying the cancellation of the following coordina-
tion due to exceeding the maximum time (trigger behavior)

A.27 Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Braking Situation for Leading Vehicle complementing the initially derived
corresponding MSD of Figure A.15 . 268

A.28 Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Braking Situation for Middle Vehicle complementing the initially derived
corresponding MSD of Figure A.18 . 268

A.29 Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Evasion Situation complementing the initially derived corresponding
MSD of Figure 3.19 . 269

A.30 Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Braking and Precrash Measures Situation complementing the initially
derived corresponding MSD of Figure A.21 269

A.31 MSD use case overview . 270
A.32 MSD use case General Environment Assumptions—classifier view 271
A.33 MSD use case General Environment Assumptions—architecture view 271
A.34 MSD use case General Environment Assumptions—assumption MSD speci-

fying the critical points in time until a crash occurs 272
A.35 MSD use case General Environment Assumptions—assumption MSD speci-

fying the minimal time bound between occurrences of obstacle 272
A.36 MSD use case Obstacle Detection—requirement MSD Emergency Braking Si-

tuation for Leading Vehicle manually refined by temperatures and execution
kinds (cf. initially derived MSD in Figure A.15 in Appendix A.2.2.1) 273

A.37 MSD use case Obstacle Detection—requirement MSD restricting the behavior
of the MSD Emergency Braking Situation for Leading Vehicle (Figure A.36), of
the MSD Emergency Braking Situation for Middle Vehicle (Figure A.40), and of
the MSD Emergency Braking and Precrash Measures Situation (Figure A.46)
with a real-time requirement . 273

A.38 MSD use case Emergency Braking—requirement MSD specifying that an
emcyBrakeRequest has to be sent if an emcyBrakeWarning was re-
ceived from the preceding vehicle before the own last point to brake is passed
(cf. transition from state EmergencyBrakeWarningReceived to state Following-
Coordination in composite state MiddleOrFollowingRole in Figure A.12 in Ap-
pendix A.2.1) . 274

A.39 Trigger behavior of the MSD use cases Emergency Braking and Emergency
Evasion leading to a positive or negative emcyBrakeResponse (cf. compo-
site state FollowingRole in Figure A.12 in Appendix A.2.1) 275
(a) Requirement MSD specifying that emergency braking is safe for the fol-

lowing vehicle since it has not passed the last point to brake (trigger be-
havior for the MSD Emergency Braking Situation for Middle Vehicle in
Figure A.40)

(b) Requirement MSD specifying that emergency braking is unsafe for the
following vehicle since it has passed the last point to brake (trigger beha-
vior for the MSD FollowingCoordinationNegative) in Figure A.41(d))

229

List of Figures

A.40 Execution behavior of the MSD use case Emergency Braking—requirement
MSD specifying the engagement of the esc: ElectronicStabilityControl to per-
form a braking maneuver (cf. transition from the state FollowingCoordination to
the state Emergency Braking within the composite state MiddleOrFollowingRole
in Figure A.12 in Appendix A.2.1) . 275

A.41 Trigger behavior of the MSD use case Emergency Evasion leading to an eva-
deRequest . 277
(a) Requirement MSD specifying the start of the overtaking coordination af-

ter passing the last point to brake (cf. transition from the state Emergen-
cyBrakeWarningReceived to the state OvertakingCoordination within the
composite state MiddleOrFollowingRole in Figure A.12)

(b) Requirement MSD specifying the cancellation of the following coordi-
nation due to missing a real-time requirement (cf. relative time event
after(t f ollowingCoord) of the transition from the state FollowingCoor-
dination to the state OvertakingCoordination within the composite state
MiddleOrFollowingRole in Figure A.12)

(c) Requirement MSD specifying the cancellation of the following coordina-
tion due to passing the last point to brake (cf. trigger event setLast-
Brake(true) of the transition from the state FollowingCoordination to
the state OvertakingCoordination within the composite state MiddleOrFol-
lowingRole in Figure A.12)

(d) Requirement MSD specifying the start of the overtaking coordination af-
ter an rejected emergency braking maneuver (cf. trigger event emcy-
BrakeResponse(false) of the transition from the state Following-
Coordination to the state OvertakingCoordination within the composite
state MiddleOrFollowingRole in Figure A.12)

A.42 Trigger behavior of the MSD use case Emergency Evasion leading to a po-
sitive or negative evadeResponse (cf. composite state OvertakingRole in
Figure A.12 in Appendix A.2.1) . 278
(a) Requirement MSD specifying that an emergency evasion of the middle

vehicle would be safe for the overtaking vehicle
(b) Requirement MSD specifying that an emergency evasion of the middle

vehicle would be unsafe for the overtaking vehicle
A.43 Execution behavior of the MSD use case Emergency Evasion—requirement

MSD specifying the activation of the tg: TrajectoryGeneration to perform an
evasion maneuver . 278

A.44 Real-time requirement for execution behavior of the MSD use case Emergency
Evasion—requirement MSD restricting the behavior of the MSD Emergency
Evasion Situation (cf. Figure A.41) with a real-time requirement 279

A.45 Trigger behavior of the MSD use case Emergency Braking and Precrash Mea-
sures . 281
(a) Requirement MSD specifying that an evadeRequest is rejected

(cf. trigger event evadeResponse(false) of the transition from the
state OvertakingCoordination to the state Precrash and Emergency Bra-
king within composite state MiddleOrFollowingRole in Figure A.12)

230

List of Figures

(b) Requirement MSD specifying that the last point to evade is passed during
the overtaking coordination (cf. trigger event setLastEvade(true)
of the transition from the state OvertakingCoordination to the state Pre-
crash and Emergency Braking within the composite state MiddleOrFol-
lowingRole in Figure A.12)

(c) Requirement MSD specifying that the time for the overtaking coordina-
tion is exceeded (cf. relative time event after(tovertakingCoord) of the
transition from the state OvertakingCoordination to the state Precrash and
Emergency Braking within the composite state MiddleOrFollowingRole in
Figure A.12)

(d) Requirement MSD specifying that the last point to evade is already pas-
sed when receiving an emcyBrakeWarning (cf. guard lastEvade
of the transition from the state EmergencyBrakeWarningReceived to the
state Precrash and Emergency Braking within the composite state Mid-
dleOrFollowingRole in Figure A.12)

A.46 Execution behavior of the MSD use case Emergency Braking and Precrash
Measures—requirement MSD specifying the activation of precrash measures
and of an emergency braking maneuver . 282

B.1 Example—message event unification with multiple hot MSD messages in
CCSL simulation . 287

B.2 Specification excerpt of semantics for the order of unification occurrences for
cold messages with additional event kinds (focus on metamodel level M2) . . . 288

B.3 Example models of semantics for the order of unification occurrences for cold
messages with additional event kinds (focus on metamodel level M1) 289

B.4 Specification excerpt of semantics for unification of cold messages (focus on
metamodel level M2) . 290

B.5 Example models of semantics of semantics for unification of cold messages
(focus on metamodel level M2) . 291

B.6 Example—order of message unification occurrences and message event unifica-
tion in CCSL simulation for cold messages (cf. CCSL models in the lower right
of Figure B.3 and Figure B.5) . 292

B.7 Specification excerpt of semantics for distributed message dispatch delays in-
cluding example models . 293

B.8 Exemplary CCSL run simulating distributed message dispatch delays (cf. CCSL
model in the lower right of Figure B.7) . 294

B.9 Specification excerpt of semantics for distributed message send delays including
example models . 295

B.10 Exemplary CCSL run simulating distributed message send delays (cf. CCSL
model in the lower right of Figure B.9) . 296

B.11 Specification excerpt of semantics for internal message send delays including
example models . 297

B.12 Exemplary CCSL run simulating internal message send delays (cf. CCSL model
in the lower right of Figure B.11) . 298

B.13 Specification excerpt of semantics for distributed message consumption delays
including example models . 299

231

List of Figures

B.14 Exemplary CCSL run simulating distributed message consumption delays
(cf. CCSL model in the lower right of Figure B.13) 300

B.15 Specification excerpt of semantics for access to communication channels inclu-
ding example models . 301

B.16 Exemplary CCSL run simulating exclusive communication channel access . . . 302
B.17 Specification excerpt of semantics for access to shared OS resources including

example models . 303
B.18 Exemplary CCSL run simulating exclusive shared OS resource access 304
B.19 Specification excerpt of semantics for sporadic arrival patterns with minimum

arrival rate including example models . 305
B.20 Example—sporadic arrival pattern with minimum arrival rate in CCSL 306
B.21 Specification excerpt of semantics for sporadic arrival patterns with maximum

arrival rate including example models . 307
B.22 Example—sporadic arrival pattern with maximum arrival rate in CCSL 308
B.23 Specification excerpt of semantics for sporadic arrival patterns with both mini-

mum and maximum arrival rate including example models 309
B.24 Example—sporadic arrival pattern with both minimum and maximum arrival

rate in CCSL . 310
B.25 MoCCML relation NonPreemptiveFixedPriorityTaskReadiness 316
B.26 MoCCML relations for unification occurrence orders 320

(a) MoCCML relation UnificationOrderRelationHot
(b) MoCCML relation UnificationOrderRelationCold

B.27 MoCCML relations for unification . 320
(a) MoCCML relation UnificationRelationHot
(b) MoCCML relation UnificationRelationCold

B.28 MoCCML relation NonPreemptiveTaskExecution 321
B.29 MoCCML relation ExclusiveResourceAccess 322
B.30 Exemplary Timing Analysis—TIMESQUARE Screenshot (cf. Section 4.5) . . . 328

232

List of Tables

3.1 Results of model element amount variables for hypothesis H2 107

4.1 Test results static delays for hypothesis H1 . 179
4.2 Test results dynamic timing effects for hypothesis H1 180
4.3 Summarized model element amounts of the platform-specific MSD specifica-

tions for H2 (cf. Table B.1 and Table B.2 for detailed model element amounts) . 181
4.4 Model element amounts of the generated CCSL models for hypothesis H2 . . . 181
4.5 Averaged transformation execution times for deriving CCSL models from

platform-specific MSD specifications for H3 (cf. Table B.3 for individual mea-
surements) . 181

A.1 Relational traceability between Environment and Application Scenarios 254
A.2 Relational traceability between Environment and Functions 254
A.3 Relational traceability between Application Scenarios and Functions 255
A.4 Relational traceability between Active Structure and Functions 255
A.5 Relational traceability between Behavior – Sequences and Application Scenarios 255
A.6 Detailed results of the model element amount variables H2.1, H2.2, and H2.1-

update . 283
A.7 Detailed results of the model element amount variables H2.3, H2.4, and H2.3-

update . 284

B.1 Detailed model element amounts of the platform-specific MSD specifications
for hypothesis H2—platform-independent model elements 329

B.2 Detailed model element amounts of the platform-specific MSD specifications
for hypothesis H2—platform-specific model elements 330

B.3 Individual transformation execution time measurements for deriving CCSL
models from the platform-specific MSD specifications for hypothesis H3 331

233

List of Algorithms

3.1 Overall transformation from CONSENS to MSDs (based on [*HBM+16]) 87
3.2 Procedure for deriving structural elements . 88
3.3 Procedure for deriving MSDs . 89
3.4 Generic procedure for creating or updating an MSD specification element . . . 89
3.5 Procedure for deleting source-invalid transformation trace links and MSD spec-

ification elements . 90
3.6 Coverage rule for ensuring that each SwRE-relevant trigger in the Behavior –

States is represented by at least one environment message in any requirement
MSD . 92

3.7 Coverage rule for ensuring that each SwRE-relevant action on an SwRE-
relevant environment element in the Behavior – States is represented by at least
one system message sent to the environment in any requirement MSD 93

3.8 Coverage rule for ensuring that each environment message in any requirement
MSD is represented by at least one SwRE-relevant environment message trigger
in the Behavior – States . 94

3.9 Coverage rule for ensuring that each system message sent to the environment in
any requirement MSD is represented by at least one SwRE-relevant action on
an SwRE-relevant environment element in the Behavior – States 94

235

Listings

2.1 ECL code specifying the causal/temporal behavior of asynchronous message
events . 38

B.1 ECL pseudocode for the overall MSD specification 311
B.2 ECL pseudocode for object system messages 311
B.3 ECL pseudocode for MSD messages . 315
B.4 ECL pseudocode for TamSchedulers . 319
B.5 ECL pseudocode for TamComConnections 321
B.6 ECL pseudocode for TamAccessibleResources 322
B.7 ECL pseudocode for ClockResets . 323
B.8 ECL pseudocode for analysis contexts . 325

237

Appendices

239

A

Supplementary Material for the Transition
Technique from MBSE to SwRE

A.1 Guidelines for Manual MSD Refinement

This appendix presents the guidelines for the manual refinement of MSDs based on informal or
semi-formal information in CONSENS system models (cf. Section 3.5.1). These guidelines are
exemplarily applied in Appendix A.2.2.2.

The Guidelines 1a and 1b (cf. Figure 3.15 and Figure A.1, respectively) focus on the specifi-
cation of additional MSDs, whereas Guideline 2 (cf. Figure A.2) focuses on the distinct specifi-
cation of trigger and execution behavior. Subsequently, the Guidelines 3a and 3b (cf. Figure A.3
and Figure A.4, respectively) present best practices on the specification of temperatures and exe-
cution kinds, which are not automatically derived from CONSENS. Finally, the Guidelines 4a
and 4b (cf. Figure A.5 and Figure A.6, respectively) focus on the specification of conditional be-
havior like conditions and real-time requirements, which are again not subject to the automatic
part of our technique for the transition from CONSENS to MSD specifications.

241

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

1. Specify Additional MSDs

b) Add Requirement MSDs

I. Goal IV. Examples

Requirement MSDs specify the actual requirements on the SUD. The goal of

this guideline is the manual specification of additional requirement MSDs

that are not automatically derived because they have no representation in the

partial model Behavior – Sequences.

* Plain fixed order:

II. Description of Elements

The requirements on the SUD are specified by means of requirement MSDs.

Similar to assumption MSDs but taking the perspective of the SUD, re-

quirement MSDs specify the following aspects:

 Fixed order of system events*

 Conditional behavior: System events may occur iff certain conditions

hold (cf. Guideline 4.a) or under real-time constraints (cf. Guideline 4.b)

 Forbidden system events or event sequences (cf. Guideline 4.a)

III. Guidelines

General:

 Partial models with informal/semi-formal information relevant to this re-

finement step: Behavior – States, Application Scenarios, and Require-
ments.

 Investigate Behavior – States for behavior that is not specified by means

of Behavior – Sequences and hence is not part of automatically derived

Requirement MSDs.

 Check consistency of the execution kinds of messages w.r.t. assumption

MSDs (cf. Guideline 1.a).

* Determine information about fixed system event sequences:

 Investigate Application Scenarios for sequential system behavior, key-

words: “after”, “afterward”, “subsequently”, “following”.

 Investigate Behavior – States for plain output sequences:

envMsg

sysMsgA

sysMsgB

envMsg / / sysMsgA / sysMsgB

envMsg /
sysMsgA / sysMsgB

envMsg /
sysMsgA

entry/do/exit:
sysMsgB

Figure A.1: Guideline 1b—Specify additional MSDs: Add requirement MSDs

242

A.1 Guidelines for Manual MSD Refinement

2. Specify Trigger and Execution Behavior

I. Goal IV. Examples

The actual execution behavior of application scenarios and MSD use cases,

respectively, is often triggered by different situations. The goal of this guide-

line is to…

1) …identify these trigger situations and formalize them by means of addi-

tional MSDs that are not automatically derived because they have no rep-

resentation in the partial model Behavior – Sequences as well as to…

2) …rearrange the manually added trigger behavior and the combined trig-

ger/execution behavior that is automatically derived from the exemplary

Behavior – Sequences such that the execution behavior is not specified

redundantly.

* Specifying trigger behavior:

** Specifying execution behavior:

II. Description of Elements

The trigger and the execution behavior of MSD use cases is specified by

means of requirement MSDs. The focus is on separating both kinds of be-

havior in such a way that…

 * …internal system messages of multiple requirement MSDs specifying

the trigger behavior…

 ** …can be unified as minimal events in as few as possible requirement

MSDs specifying the execution behavior. If such MSDs are automatically

derived, this procedure results in moving messages to dedicated MSDs

specifying only the trigger behavior.

III. Guidelines

 Partial models with informal/semi-formal information relevant to this re-

finement step: Application Scenarios and Behavior – States.
 Investigate Application Scenarios for multiple trigger situations resulting

in the same intended behavior (trigger situations and intended behavior

can also overlap between multiple Application Scenarios):

 Investigate Behavior – States for multiple transitions leading to the same

state or transitions with multiple effects:

envMsgA internal
SysMsg

envMsgB
internal
SysMsg

envMsgC
internal
SysMsg

sysMsg

internal
SysMsg

Application Scenario

Situation: Either envMsgA or envMsgB occurs.

Intended behavior: sysMsg has to be sent.

Application Scenario 1

Situation: envMsgA occurs.

Intended behavior: sysMsg

has to be sent.

Application Scenario 2

Situation: envMsgB occurs.

Intended behavior: sysMsg

has to be sent.

envMsgA /

envMsgB /

envMsgC /

/ sysMsg

envMsgA ˅
envMsgB ˅
envMsgC /

entry/do/exit:

sysMsg

Figure A.2: Guideline 2—Specify trigger and execution behavior

243

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

3. Specify Temperatures and Execution Kinds

a) Add Temperatures

I. Goal IV. Examples

Modal messages differ in their temperature, which is not automatically de-

rived by our transition technique since there is no automatically processable

information about this aspect in CONSENS system models. Thus, the goal of

this guideline is to determine temperatures in the course of refining automat-

ically derived messages or in the course of specifying a message manually.

Automatically derived MSD with-

out any temperatures for messages

except for the first message:

Declaring remaining messages as

hot:

II. Description of Elements

The temperature of messages is distinguished into:

 Cold: The MSD is discarded if an event occurs that is specified in the

MSD to occur earlier or later.

 Hot: No message must occur that the MSD specifies to occur only earlier

or later (safety).

III. Guidelines

General:

 Partial models with informal information relevant to this refinement step:

Application Scenarios, Requirements, and Behavior – States.

Determine cold messages:

 The first message of an MSD is always cold.

 Investigate Application Scenarios and Requirements for conditional or

temporally dependent events (keywords: “if”, “in case”, “when”, “once”).

 The part “Situation” of an Application Scenario typically can be formal-

ized by means of cold messages (cf. envMsg in the “Situation” part of the

Application Scenario in the figure).

Determine hot messages:

 Investigate Application Scenarios and Requirements for safety-critical

events (keywords: “obligatory”, “absolutely”, “by all means”).

 The part “Intended Behavior” of an Application Scenario often can be

formalized by means of hot messages (cf. sysMsg in the “Situation” part

of the Application Scenario in the figure).

 Safety standards (e.g., [IEC10; ISO18a; RTCA11]) classify the safety-

criticality by means of safety integrity levels (SILs). System modeling

languages often provide means [EAST13] or are extended [Foc16] to an-

notate SILs to model elements, like Application Scenarios, Requirements,

and Behavior – States. Investigate these partial models of the CONSENS

system model for high SILs to determine safety-critical requirements and

event sequences (cf. SIL annotation for the Application Scenario and the

Behavior – States transition in the figure).

envMsg internal
SysMsg

sysMsg

(c/m)

envMsg internal
SysMsg

sysMsg

(c/m)

(h)

(h)Application Scenario

Situation: envMsg occurs.

Intended behavior: sysMsg has to be sent by all means.
SIL 4 [IEC10]

envMsg / / sysMsg

Figure A.3: Guideline 3a—Specify temperatures and execution kinds: Add temperatures

244

A.1 Guidelines for Manual MSD Refinement

3. Specify Temperatures and Execution Kinds

b) Add Execution Kinds

I. Goal IV. Examples

Modal messages differ in their execution kind, which is not automatically

derived by our transition technique since there is no automatically processa-

ble information about this aspect in CONSENS system models. Thus, the goal

of this guideline is to determine execution kinds in the course of refining

automatically derived messages or in the course of specifying a message

manually.

Automatically derived MSD with-

out any execution kinds for mes-

sages except for the first message:

* Declaring remaining messages

as executed (both messages have

to be executed in at least one of the

requirement MSDs of the MSD

use case, sysMsg is moreover a

system message sent to the envi-

ronment):

** Monitoring messages that are

executed in another MSD to spec-

ify dedicated reactions or con-

straints:

II. Description of Elements

The execution kind of messages can be distinguished into:

 Monitored: The corresponding event may or may not occur.

 Executed: The corresponding event must eventually occur (liveness).

III. Guidelines

General:

 Partial models with informal information relevant to this refinement step:

Application Scenarios, Requirements, and Behavior – States.

Determine monitored messages:

 The first message of an MSD is always monitored.

 Investigate Application Scenarios and Requirements for possibly occur-

ring events (keywords: “may”, “optional”, “optionally”, “possibly”, “po-

tentially”, “maybe”, “perhaps”, “in case of”, “as may be the case”).

 The part “Situation” of an Application Scenario typically can be formal-

ized by means of monitored messages.

 Typically, environment messages are monitored in requirement MSDs

since the SUD has no influence on the environment behavior. Conse-

quently, trigger events in the Behavior – States (cf. envMsg in Behavior
– States figures) typically result in monitored environment messages.*

The consistency with the execution kind of the corresponding messages

in assumption MSDs has to be checked (cf. Guideline 1.a, [BGP13]): Sys-

tem messages are typically monitored in assumption MSDs.

 There are MSDs that monitor messages that are executed in other MSDs

to specify dedicated reactions or constraints (cf. Guideline 4b,

[*HFK+16]). These messages are typically monitored, too.**

Determine executed messages:

 Investigate Application Scenarios and Requirements for mandatory

events (keywords: “must”, “shall”, “has to”, “eventually”).

 The part “Intended Behavior” of an Application Scenario typically can be

formalized by means of executed messages.

 Typically, for each operation there is one system message that is executed

in at least one of the requirement MSDs of an MSD use case. Conse-

quently, effect events in the Behavior – States (cf. sysMsg in Behavior –
States figures) typically have to correspond with at least one executed

system message to the environment.* Furthermore, the consistency with

the execution kind of the corresponding messages in assumption MSDs

has to be checked (cf. Guideline 1.a, [BGP13]): Environment messages

are typically executed in assumption MSDs.

envMsg internal
SysMsg

sysMsg

(c/m)

envMsg internal
SysMsg

sysMsg
(e)

(e)

(c/m)

envMsg internal
SysMsg

sysMsg

condition

(m)

(m)

(c/m)

envMsg / / sysMsg

envMsg /
entry/do/exit:
sysMsg

Figure A.4: Guideline 3b—Specify temperatures and execution kinds: Add execution kinds

245

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

4. Specify Conditional Behavior

a) Add Conditions

I. Goal IV. Examples

Modal conditions are not automatically derived by our transition technique

since there is no automatically processable information about this aspect in

CONSENS system models. Thus, the goal of this guideline is to determine con-

ditions and their temperatures in the course of refining automatically derived

MSDs or in the course of specifying an MSD manually (cf. Guidelines 1a/b).

* Conditional system behavior

corresponding to guards in Behav-

ior – States (sysMsgA has to be

sent if condition holds, and

sysMsgB has to be sent other-

wise):

** Forbidden event sequence

(sysMsgB is not allowed to occur

after the occurrence of sysMsgA):

*** Forbidden events (as long as

the MSD is active and the enabled

message is neither sysMsgA nor

sysMsgB, sysMsgA will lead to a

cold violation and sysMsgB to a

safety violation (cf. [*BGH+14]):

II. Description of Elements

Conditions contain OCL expressions that evaluate to a Boolean value. The

cut progresses beyond an enabled condition if its expression evaluates to

true. The temperature of conditions is distinguished into:

 Cold: The MSD is discarded if the condition expression evaluates to

false.

 Hot: A safety violation occurs if the condition expression evaluates to

false.

III. Guidelines

General:

 Partial models with informal information relevant to this refinement step:

Application Scenarios, Requirements, and Behavior – States.

 If conditions refer to parameters of parameterized messages or setter mes-

sages and these parameters were not derived automatically, it is necessary

to extend the corresponding operations manually (cf. [*HBM+16,

*HBM+15]).

Determine cold conditions:

 Investigate Application Scenarios and Requirements for conditional be-

havior (keywords: “if”, “in case”) (cf. [*HBM+16, *HBM+15]).

 Investigate Behavior – States for transitions with guards:*

Determine hot conditions:

 Investigate Application Scenarios and Requirements for safety-critical

behavior (keywords: “obligatory”, “absolutely”, “by all means”) or for-

bidden concrete event sequences (keywords: “must not”, “forbidden”,

“not allowed to”).

 Investigate Application Scenarios, Requirements, Behavior – States for

annotated high SILs (cf. Guideline 3a).

 Investigate Application Scenarios and Requirements for forbidden event

sequences** or forbidden events***. A forbidden event sequence de-

scribes one fix event sequence leading to a violation, whereas a forbidden

event describes one particular forbidden event in a certain context speci-

fiable with a negate fragment.

envMsg

sysMsgA

condition

envMsg

sysMsgB

!condition

envMsg

sysMsgA

false

sysMsgB

neg

envMsg

sysMsgA

sysMsgB

..
.

envMsg /

[condition]
/ sysMsgA

[!condition]
/ sysMsgB

Figure A.5: Guideline 4a—Specify conditional behavior: Add conditions

246

A.1 Guidelines for Manual MSD Refinement

4. Specify Conditional Behavior

b) Add Real-time Requirements

I. Goal IV. Examples

Real-time requirements (i.e., clock resets combined with time conditions) are

not automatically derived by our transition technique since there is no auto-

matically processable information about this aspect in CONSENS system mod-

els. Thus, the goal of this guideline is to determine clock resets and time con-

ditions and their temperatures in the course of refining automatically derived

MSDs or in the course of specifying an MSD manually (cf. Guidelines 1a/b).

* If sending sysMsgA lasts more

than time, sysMsgB has to be

sent:

** Constraining a monitored mes-

sage with a hot timing condition:

*** Enforce sysMsg to be sent af-

ter at least time after envMsg has

ben received:

II. Description of Elements

Time conditions contain Boolean expressions of the form x ● expr where x is

a clock variable, expr an expression evaluating to an Integer value, and ● is

an operator <, ≤, >, ≥. Cold time conditions are treated like cold untimed

conditions (cf. Guideline 4a), and hot time conditions are distinguished into:

 Minimal delays (●{>, ≥}): If an enabled minimal delay evaluates to

false, the cut progresses as soon as the condition becomes true.

 Maximal delay (●{<, ≤}): If an enabled maximal delay evaluates to

false, this is a liveness violation (which is equivalent with a safety vi-

olation in this case [Gre11]).

III. Guidelines

General:

 Partial models with informal information relevant to this refinement step:

Application Scenarios, Requirements, and Behavior – States.

Determine cold time conditions:

 Investigate Application Scenarios and Requirements for conditional tim-

ing behavior (keywords: “if … more than <time>”, “after <time>”).

 Investigate Behavior – States for transitions with relative time events:*

Determine hot time conditions:

 Investigate Application Scenarios and Requirements for hard real-time re-

quirements (keywords: “shall/must/have to … within <time>”,

“shall/must/have to … not longer than <time>”.

 Investigate Application Scenarios, Requirements, Behavior – States for

annotated high SILs (cf. Guideline 3a).

 Specify the messages to be constrained as monitored messages in a dedi-

cated MSD to gain separation of concerns and atomic MSDs correspond-

ing to atomic real-time requirements.**

 Apply minimal delays to enforce the system/environment to delay or to

let it run into a safety violation otherwise [*BGH+14].***

 Apply a mix of cold time conditions and hot untimed conditions with the

expression false to specify strict time(s) (intervals), where missing such

a time (interval) shall lead to a safety violation [*BGH+14].

envMsg

sysMsgA

c > time

c = 0

sysMsgB

envMsg

sysMsg

c < time

c = 0

envMsg

sysMsg

c > time

c = 0

envMsg
/ sysMsgA

after(time)
/ sysMsgB

Figure A.6: Guideline 4b—Specify conditional behavior: Add real-time requirements

247

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

A.2 EBEAS Models Applied in the Transition from MBSE
with CONSENS to SwRE with MSDs

A.2.1 CONSENS System Model

V2X

Communication

Adaptive

CruiseControl

obstacleInfo

V2V
Messages

Electronic

StabilityControl

ActiveFront

Steering

LaneKeeping

Assist

trajectory
Commands

lane

PositionInfo

braking
Commands

FlexRay

V2X

Bus

Powertrain

CAN

V2X
signals

FlexRay
signals

velocity
Info

FlexRay signals

Precrash

Unit

FlexRay
signals

FlexRay signals

precrash

Commands

Gateway

ptCAN signals

FlexRay signals
V2X

signals

Environment

vibrations

vehicle
Temperature

environment
Temperature

Vehicle

Electronics

electromagnetic
Disturbances

FlexRay signalsVehicle

Body
EBEAS

screw
Joint

ptCAN signals

Vehicle

Battery

electrical
Power

steering
Info

FlexRay signals

Figure A.7: Partial model Environment

248

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

Obstacle Detection

Situation: The leading vehicle detects an obstacle that is so

near to the last point to brake that there is no time to negotiate

with other vehicles about what to do.

Intended behavior: The leading vehicle shall perform an

emergency braking and shall inform the following middle vehicle

about it.

emcyBrakeWarning
middle leading

(a) Obstacle Detection

Emergency Braking

Situation: The middle vehicle receives the emergency brake

warning of the leading vehicle ahead within a time frame such

that it is possible for the middle vehicle to safely perform an

emergency braking itself.

Intended behavior: The middle vehicle shall negotiate with a

potential following vehicle, whether emergency braking is safe for

following. If it is safe, middle shall perform an emergency

braking.

1: emcyBrakeRequest

2: emcyBrakeResponse

following middle

if safe for following:

(b) Emergency Braking

Emergency Evasion

Situation:

1) The middle vehicle receives the emergency brake warning of

the leading vehicle ahead within a time frame such that it is not

possible for the middle vehicle to safely perform an emergency

braking itself.

2) The middle vehicle negotiated with a following vehicle about

performing emergency braking, but this maneuver would not be

safe for the following vehicle.

Intended behavior: The middle vehicle shall negotiate with a

potential overtaking vehicle, whether an evasion to the second

lane is safe for overtaking. If it is safe, middle shall perform an

evasion maneuver.

1: evade-
Request

2: evade-
Response

over-
taking

middle

if safe for overtaking:

(c) Emergency Evasion

Emergency Braking and Precrash Measures

Situation:

1) The middle vehicle receives the emergency brake warning of

the leading vehicle ahead within a time frame such that it is

neither possible for the middle vehicle to safely perform an

emergency braking nor to evade to the second lane.

2) The middle vehicle negotiated with a overtaking vehicle about

performing an emergency evasion, but this maneuver would not

be safe for the overtaking vehicle.

Intended behavior:

The middle vehicle shall perform an emergency braking, warn

the following vehicle about it, and initiate precrash measures

since a crash with the leading and/or following vehicle is

presumably not avoidable.

emcyBrakeWarning
following middle

(d) Emergency Braking and Precrash Measures

Figure A.8: Partial model Application Scenarios

249

A
pp

en
di

x
A

Su
pp

le
m

en
ta

ry
M

at
er

ia
lf

or
th

e
Tr

an
si

tio
n

Te
ch

ni
qu

e
fr

om
M

B
SE

to
Sw

R
E

EBEAS

Perform

Emergency

Braking

Perform

Evasion

Maneuver

Prepare

Crash

Negotiate

with Other

Vehicles

Send and

Receive

Warnings

Analyze

Environment

Analyze

Ego Data

Shield

against

Temperature

Compensate

Vibrations

Ensure

Electromagnetic

Compability (EMC)

Analyze

Situation

(Sensor Fusion)

Communicate

with Other

Vehicles

Ensure

Passenger

Safety

Ensure

Robustness

Figure A.9: Partial model Functions

25
0

A
.2

E
B

E
A

S
M

odels
A

pplied
in

the
Transition

from
M

B
SE

w
ith

C
onsens

to
Sw

R
E

w
ith

M
SD

s

 EBEAS

 Case

PCB

Situation

Analysis

signals

V2X-Bus

Interface

Power

Supply

RAM

EEPROM

FlexRay
Signals

FlexRay
Signals

FlexRay
Signals

V2X
signals

V2X
signals

electrical
Power

electrical
Power

electrical
Power

signals

signals

bolted
Joint

screw
Joint

braking
Commands

velocity
Info

V2V
Messages

precrash
Commands

obstacleInfo

lane

PositionInfo

μC1

signals

signals

V2X
signals

trajectory
Commands

SE

EE

EE

EE

EE

EE

EE

ME

ME

Passive

Cooling

EE

decisions

steeringInfo

Passive

Cooling

EE

FlexRay

Interface

EE

Trajectory

Generation

CE

Vehicle

Control

SE

μC2

evasion
Commands

bolted
Joint

EE

bolted
Joint

Figure A.10: Partial model Active Structure

251

A
pp

en
di

x
A

Su
pp

le
m

en
ta

ry
M

at
er

ia
lf

or
th

e
Tr

an
si

tio
n

Te
ch

ni
qu

e
fr

om
M

B
SE

to
Sw

R
E

Emergency Braking Situation for Leading Vehicle

Adaptive

Cruise

Control

Situation

Analysis

Vehicle

Control

Electronic

Stability

Control

V2X

Comm-

unication

obstacle

standstill

emcy
Braking

(a) Emergency Braking Situation for Leading Vehicle

Emergency Braking Situation for Middle Vehicle

V2X

Comm-

unication

Situation

Analysis

emcyBrake
Warning

emcyBrake
Request

emcyBrake
Response(true)

Vehicle

Control

Electronic

Stability

Control

emcyBrake
Warning enable

Braking

standstill

emcyBraking

(b) Emergency Braking Situation for Middle Vehicle

Emergency Evasion Situation

V2X

Comm-

unication

Situation

Analysis

evadeRe-
sponse(true)

enable
Evasion

laneChanged

evade
Request

Vehicle

Control

Trajectory

Generation

Active

Front

Steering

Lane

Keeping

Assist

evadeWarning

evade

trajectory

positionOf
Trajectory

loop

(c) Emergency Evasion Situation

Emergency Braking and Precrash Measures Situation

V2X

Comm-

unication

Situation

Analysis

emcyBrake
Warning

evadeRe-
sponse(false)

evade
Request

emcyBrake
Warning

Vehicle

Control

enable
Precrash

standstill

Electronic

Stability

Control

Precrash

Unit

activate
Precrash

emcyBraking

(d) Emergency Braking and Precrash Measures Situation

Figure A.11: Partial model Application Scenarios

25
2

A
.2

E
B

E
A

S
M

odels
A

pplied
in

the
Transition

from
M

B
SE

w
ith

C
onsens

to
Sw

R
E

w
ith

M
SD

s

EBEAS System Behavior

Idle

LeadingRole

standstill /

FollowingRole

Middle

Coordination

[!lastBrake] /
emcyBrakeResponse

(true)

[lastBrake] /
emcyBrakeResponse

(false)

OvertakingRole

Middle

Coordination

[!lastBrake] /
evadeResponse

(true)

[lastBrake] /
evadeResponse

(false)

MiddleOrFollowingRole

emcyBrakeWarning /

emcyBrakeRequest / evadeRequest /

EmergencyBrake

WarningReceived

emcyBrake
Response(true) /

emcyBrakeWarning

evade
Response

(true) / evade
Warning

laneChanged /

entry: activatePrecrash

do: emcyBraking

Precrash and

Emergency Braking

do: trajectory

Emergency Evasion

[lastBrake && !lastEvade]
/ evadeRequest

[!lastBrake]
/ emcyBrakeRequest

after(tfollowingCoord) ˅
setLastBrake(true) ˅

emcyBrakeResponse(false)
/ evadeRequest

standstill /

positionAt
Trajectory /

NoHazard

Situation

LastPointTo

BrakeExceeded

LastPointTo

EvadeExceeded

LastPointTo

PrecrashExceeded

Crashed

setLastBrake(true) /

setLastEvade(true) /

setLastPrecrash(true) /

setCrash(true) /

Following

Coordination

Overtaking

Coordination

Main Behavior Critical Points
Notification

do: emcyBraking

Emergency Braking

do: emcyBraking

Emergency Braking

/ emcyBrake
Warning

Figure A.12: Partial model Behavior – States

253

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

Table A.1: Relational traceability between Environment and Application Scenarios

Environment Element

Affects Application

Scenario

O
bs

ta
cl

e
D

et
ec

tio
n

Em
er

ge
nc

y
B
ra

ki
ng

Em
er

ge
nc

y
Eva

si
on

Em
er

ge
nc

y
B
ra

ki
ng

 a
nd

Pre
cr

as
h

M
ea

su
re

s

Active Front Steering X

Adaptive Cruise Control X X

Electronic Stability Control X X X

Environment

FlexRay X X X X

Gateway X X X X

Lane Keeping Assist X

Powertrain CAN X X X X

Precrash Unit X

V2X Communication X X X X

V2X Bus X X X X

Vehicle Battery

Vehicle Body

Vehicle Electronics

Table A.2: Relational traceability between Environment and Functions

Environment Element

Induces Function

A
na

ly
ze

 E
nv

iro
nm

en
t

A
na

ly
ze

 E
go

 D
at

a

N
eg

ot
ia

te
 w

ith
 O

th
er

 V
eh

ic
le

s

Sen
d

an
d

R
ec

ei
ve

 W
ar

ni
ng

s

Per
fo

rm
 E

m
er

ge
nc

y
B
ra

ki
ng

Per
fo

rm
 E

va
si
on

 M
an

eu
ve

r

Pre
pa

re
 C

ra
sh

Shi
el

d
A

ga
in

st
 T

em
pe

ra
tu

re

C
om

pe
ns

at
e
V

ib
ra

tio
ns

Ens
ur

e
EM

C

Active Front Steering

Adaptive Cruise Control

Electronic Stability Control

Environment X

FlexRay

Gateway

Lane Keeping Assist

Powertrain CAN

Precrash Unit

V2X Communication

V2X Bus

Vehicle Battery

Vehicle Body X X

Vehicle Electronics X

254

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

Table A.3: Relational traceability between Application Scenarios and Functions

Application Scenario

Induces Function

A
na

ly
ze

 E
nv

iro
nm

en
t

A
na

ly
ze

 E
go

 D
at

a

N
eg

ot
ia

te
 w

ith
 O

th
er

 V
eh

ic
le

s

Sen
d

an
d

R
ec

ei
ve

 W
ar

ni
ng

s

Per
fo

rm
 E

m
er

ge
nc

y
B
ra

ki
ng

Per
fo

rm
 E

va
si
on

 M
an

eu
ve

r

Pre
pa

re
 C

ra
sh

Shi
el

d
A

ga
in

st
 T

em
pe

ra
tu

re

C
om

pe
ns

at
e
V

ib
ra

tio
ns

Ens
ur

e
EM

C

Obstacle Detection X X X

Emergency Braking X X X X X

Emergency Evasion X X X X X

Emergency Braking

and Precrash Measures
X X X X X X

Table A.4: Relational traceability between Active Structure and Functions

System Element

Realizes Function

A
na

ly
ze

 E
nv

iro
nm

en
t

A
na

ly
ze

 E
go

 D
at

a

N
eg

ot
ia

te
 w

ith
 O

th
er

 V
eh

ic
le

s

Sen
d

an
d

R
ec

ei
ve

 W
ar

ni
ng

s

Per
fo

rm
 E

m
er

ge
nc

y
B
ra

ki
ng

Per
fo

rm
 E

va
si
on

 M
an

eu
ve

r

Pre
pa

re
 C

ra
sh

Shi
el

d
A

ga
in

st
 T

em
pe

ra
tu

re

C
om

pe
ns

at
e
V

ib
ra

tio
ns

Ens
ur

e
EM

C

Case X X X

EEPROM X X X X X X X

FlexRay Interface X X X X X

µC1 X X X X

µC2 X X X

Passive Cooling (µC1) X

Passive Cooling (µC2) X

PCB X X X X X X X

Power Supply

RAM X X X X X X X

Situation Analysis X X X X

Trajectory Generation X

V2X-Bus Interface X X

Vehicle Control X X X

Table A.5: Relational traceability between Behavior – Sequences and Application Scenarios

Behavior-Sequence Refines

Application Scenario

O
bs

ta
cl

e
D

et
ec

tio
n

Em
er

ge
nc

y
B
ra

ki
ng

Em
er

ge
nc

y
Eva

si
on

Em
er

ge
nc

y
B
ra

ki
ng

 a
nd

Pre
cr

as
h

M
ea

su
re

s

Emergency Braking Situation for Leading Vehicle X

Emergency Braking Situation for Middle Vehicle X

Emergency Evasion Situation X

Emergency Braking and Precrash Measures Situation X

255

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

A.2.2 MSD Specification

A.2.2.1 Initially Derived MSD Specification

Whereas the initially derived MSD use case Emergency Evasion is depicted in Figure 3.19
in Section 3.6.1, we present the remainder of the initially derived MSD specification in the
following.

MSD Use Case Obstacle Detection

Electronic
StabilityControl

+ emcyBraking()

«interface»
Braking

Commands

+ standstill()

«interface»
VelocityInfo

+ obstacle()
+ setLastBrake(
 lastBrake:Boolean)
+ setLastEvade(
 lastEvade:Boolean)
+ setLastPrecrash(
 lastPrecrash:Boolean)
+ setCrash(
 crash:Boolean)

«interface»
ObstacleInfo

+ enableBraking()
+ enableEvasion()
+ enablePrecrash()

«interface»
Decisions

:Decisions

:Velocity
Info

:V2V
Messages

:Obstacle
Info

:Braking
Commands

:Velocity
Info

Vehicle
Control

:Decisions
:Braking

Commands

:Obstacle
Info

class [Package]
Obst. Detection Interfaces

class [Package]
Obst. Detection Types

+ emcyBrakeRequest()
+ emcyBrakeResponse(
 isSafe:Boolean)
+ emcyBrakeWarning()
+ evadeRequest()
+ evadeResponse(
 isSafe:Boolean)
+ evadeWarning()

«interface»
V2VMessages

Adaptive
CruiseControl

 + lastBrake
 :Boolean
 + lastEvade
 :Boolean
 + lastPrecrash
 :Boolean
 + crash
 :Boolean

Situation
Analysis

:V2V
Messages

:V2V
Messages

:V2V
Messages V2X Com-

munication

Figure A.13: MSD use case Obstacle Detection—classifier view

256

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

Obstacle Detection

:Velocity
Info

esc:
Electronic
Stability
Control

acc:
Adaptive
Cruise
Control

sa: Situation
Analysis

vc: Vehicle
Control

:Braking
Commands

:Obstacle
Info

:V2V
Messages

:V2V
Messages

:Decisions

v2x: V2X
Commu-
nication

Figure A.14: MSD use case Obstacle Detection—architecture view

obstacle

emcyBraking

emcyBrake
Warning

standstill

msd Emergency Braking Situation for Leading Vehicle

acc:
AdaptiveCruise

Control
sa: Situation

Analysis
vc: Vehicle

Control

esc: Electronic
StabilityControl

enableBraking

v2x: V2X
Commu-
nication

Figure A.15: MSD use case Obstacle Detection—interaction view

257

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

MSD Use Case Emergency Braking

Electronic
StabilityControl

+ emcyBraking()

«interface»
Braking

Commands

+ standstill()

«interface»
VelocityInfo

+ obstacle()
+ setLastBrake(
 lastBrake:Boolean)
+ setLastEvade(
 lastEvade:Boolean)
+ setLastPrecrash(
 lastPrecrash:Boolean)
+ setCrash(
 crash:Boolean)

«interface»
ObstacleInfo

+ enableBraking()
+ enableEvasion()
+ enablePrecrash()

«interface»
Decisions

:Decisions

:Velocity
Info

:V2V
Messages

:Obstacle
Info

:Braking
Commands

:Velocity
Info

Vehicle
Control

:Decisions
:Braking

Commands

:Obstacle
Info

class [Package]
Emcy. Braking Interfaces

class [Package]
Emcy. Braking Types

+ emcyBrakeRequest()
+ emcyBrakeResponse(
 isSafe:Boolean)
+ emcyBrakeWarning()
+ evadeRequest()
+ evadeResponse(
 isSafe:Boolean)
+ evadeWarning()

«interface»
V2VMessages

Adaptive
CruiseControl

 + lastBrake
 :Boolean
 + lastEvade
 :Boolean
 + lastPrecrash
 :Boolean
 + crash
 :Boolean

Situation
Analysis

:V2V
Messages

:V2V
Messages

:V2V
Messages V2X Com-

munication

Figure A.16: MSD use case Emergency Braking—classifier view

258

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

Emergency Braking

:Decisions

:Velocity
Info

esc:
Electronic
Stability
Control

acc:
Adaptive
Cruise
Control

sa: Situation
Analysis

vc: Vehicle
Control

:Braking
Commands

:Obstacle
Info

:V2V
Messages

:V2V
Messages

v2x: V2X
Commu-
nication

Figure A.17: MSD use case Emergency Braking—architecture view

emcyBrake
Warning

sa: Situation
Analysis

emcyBrakeRequest

msd Emergency Braking Situation for Middle Vehicle

v2x: V2X
Commu-
nication

vc: Vehicle
Control

enableBraking

emcyBraking

esc: Electronic
StabilityControl

standstill

emcyBrake
Response(true)

emcyBrake
Warning

Figure A.18: MSD use case Emergency Braking—interaction view

259

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

MSD Use Case Emergency Braking and Precrash Measures

Electronic
StabilityControl

+ emcyBraking()

«interface»
Braking

Commands

+ standstill()

«interface»
VelocityInfo

+ activatePrecrash()

«interface»
PrecashCommands

+ obstacle()
+ setLastBrake(
 lastBrake:Boolean)
+ setLastEvade(
 lastEvade:Boolean)
+ setLastPrecrash(
 lastPrecrash:Boolean)
+ setCrash(
 crash:Boolean)

«interface»
ObstacleInfo

+ enableBraking()
+ enableEvasion()
+ enablePrecrash()

«interface»
Decisions

+ evade()

«interface»
EvasionCommands :Evasion

Commands

:Decisions

:Lane
Position

Info

:Velocity
Info

:V2V
Messages

:Obstacle
Info

:Braking
Commands

:Velocity
Info

:Precrash
Commands

Vehicle
Control

:Evasion
Commands

:Decisions

:Braking
Commands

:Precrash
Commands

:Obstacle
Info

class [Package]
Emcy. Br. & Precrash
Measures Interfaces

class [Package]
Emcy. Br. & Precrash

Measures Types

+ emcyBrakeRequest()
+ emcyBrakeResponse(
 isSafe:Boolean)
+ emcyBrakeWarning()
+ evadeRequest()
+ evadeResponse(
 isSafe:Boolean)
+ evadeWarning()

«interface»
V2VMessages

Adaptive
CruiseControl

Precrash
Unit

Trajectory
Generation

 + lastBrake
 :Boolean
 + lastEvade
 :Boolean
 + lastPrecrash
 :Boolean
 + crash
 :Boolean

Situation
Analysis

:V2V
Messages

:V2V
Messages

:V2V
Messages V2X Com-

munication

Figure A.19: MSD use case Emergency Braking and Precrash Measures—classifier view

260

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

Emergency Braking and Precrash Measures

:Velocity
Info

esc:
Electronic
Stability
Control

acc:
Adaptive
Cruise
Control

v2x: V2X
Commu-
nication

sa: Situation
Analysis

tg: Trajectory
Generation

pu:
Precrash

Unit

vc: Vehicle
Control

:Evasion
Commands

:Braking
Commands

:Precrash
Commands

:Obstacle
Info

:V2V
Messages

:V2V
Messages

:Decisions

Figure A.20: MSD use case Emergency Braking and Precrash Measures—architecture view

emcyBrake
Warning

sa: Situation
Analysis

evadeRequest

msd Emergency Braking and Precrash Measures Situation

v2x: V2X
Commu-
nication

vc: Vehicle
Control

enableBraking

emcyBraking

esc: Electronic
StabilityControl

standstill

evade
Response(false)

emcyBrake
Warning

pu: Precrash
Unit

enablePrecrash
activate
Precrash

Figure A.21: MSD use case Emergency Braking and Precrash Measures—interaction view

261

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

A.2.2.2 Example: Manual Refinement of an Initially Derived MSD Specification

Step 1: Specify Additional MSDs
a) Add Assumption MSDs Regarding the specification of missing environment assumpti-
ons, some transitions within the composite state MiddleOrFollowingRole of the Behavior – States
(cf. Figure A.12 in Appendix A.2) are associated with guards evaluating the Boolean variables
lastBrake and lastEvade in order to react to exceeding the last point to brake or to evade,
respectively. The region Critical Points Notification (cf. Figure A.12 in Appendix A.2) speci-
fies the fixed order of these and further critical points in time until a crash occurs. According
to Guideline 1a (cf. Figure 3.15), the Software Requirements Engineer has to consider this
information in the MSD specification and hence specifies the assumption MSD CriticalPoints-
UntilCrash depicted in Figure A.22(a). The acc: AdaptiveCruiseControl determines whether the
vehicle reached one of the critical points and notifies the sa: SituationAnalysis about this, one
after the other. The message temperatures and execution kinds can be specified directly in this
refinement step. For example, the environment component acc: AdaptiveCruiseControl is not
allowed to disregard one of the messages or change their (physically fixed) order. Thus, the
Software Requirements Engineer declares the corresponding messages as hot and executed.

b) Add Requirement MSDs Two examples for sources of missing system behavior are the
composite states FollowingRole and OvertakingRole (cf. Figure A.12 in Appendix A.2.1). We
exemplarily focus on the latter one in the following: An evadeResponse of an overtaking
vehicle can evaluate to true or false according to whether it exceeded the last point to
brake w.r.t. to a potential evasion maneuver of the following vehicle (see also the requirement
with ID 5.6 in Figure 2.2 in Section 2.2). The Software Requirements Engineer specifies this
information by means of the requirement MSDs EmergencyEvasionSafeForOvertakingVehicle
and EmergencyEvasionUnsafeForOvertakingVehicle, respectively (cf. Figure A.22(b) and Fi-
gure A.22(c)). The assignment of the Boolean variable of the evadeResponse depends on
the valuation of the attribute lastBrake of the sa: SituationAnalysis, which may be set in the MSD
CriticalPointsUntilCrash described above. If the point to last brake for the overtaking vehicle was
not exceeded (cold condition NOT sa.lastBrake in MSD EmergencyEvasionSafeForOver-
takingVehicle), then the sa: SituationAnalysis sends an evadeResponse(true) signalizing
that it is safe for the overtaking vehicle if the middle vehicle performs an evasion maneuver.
If the last point to brake was exceeded (cold condition sa.lastBrake in MSD Emergen-
cyEvasionUnsafeForOvertakingVehicle), the sa: SituationAnalysis answers with an evadeRe-
sponse(false).

Step 2: Specify Trigger and Execution Behavior
An example of an application scenario triggered by different situations is the application sce-
nario Emergency Evasion. This application scenario describes two starting situations (cf. Fi-
gure 2.2 in Section 2.2). In the Behavior – States , there are even more transitions (one of them
with multiple transition triggers) leading to the state Overtaking Coordination representing a part
of this application scenario—each of these transitions have an evadeRequest effect. Only
if an event evadeResponse(true) occurs in this state, the actual evasion maneuver is per-
formed in the state Emergency Evasion. The trigger behavior of the MSD use case Emergency
Evasion is defined by the different transition paths leading to the state Overtaking Coordination,
which all trigger an evadeRequest). The actual execution behavior of the MSD use case
Emergency Evasion is defined by the behavior of the state Emergency Evasion.

262

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

«EnvironmentAssumption»
msd CriticalPointsUntilCrash

(h/e)

sa: Situation
Analysis

acc:
AdaptiveCruise

Control

(c/m)

setLastPrecrash(true)

setLastEvade(true)

setLastBrake(true)

setCrash(true)

(h/e)

(h/e)

obstacle

(h/e)

(a) Assumption MSD specifying the
critical points until a crash occurs

evadeRequest
(c/m)

(h/e)

sa: Situation
Analysis

NOT sa.lastBrake

evade
Response(true)

(c)

msd EmergencyEvasionSafe
ForOvertakingVehicle

v2x:
V2XComm-

unication

(b) Requirement MSD specifying that
an emergency evasion of the middle
vehicle would be safe for the overta-
king vehicle

msd EmergencyEvasionUnsafe
ForOvertakingVehicle

evadeRequest
(c/m)

(h/e)

sa: Situation
Analysis

sa.lastBrake

evade
Response(false)

(c)

v2x:
V2XComm-

unication

(c) Requirement MSD specifying that
an emergency evasion of the middle
vehicle would be unsafe for the over-
taking vehicle

Figure A.22: Refinement step 1—specify additional MSDs

An example of a Behavior – Sequence describing an exemplary situation is the Behavior
– Sequence Emergency Evasion Situation (cf. Figure 3.2 in Section 3.1.2). It incompletely
(i.e., without conditional behavior) specifies the first trigger situation of the application scenario
Emergency Evasion (cf. Figure 2.2 in Section 2.2), which is represented in the Behavior – States
by the transition from the state EmergencyBrakeWarningReceived to the state Overtaking Coor-
dination. Furthermore, the Behavior – Sequence Emergency Evasion Situation specifies the
execution behavior of the application scenario (“intended behavior”) represented by the Beha-
vior – States state Emergency Evasion.

An example for formalizing the remaining paths leading to the Behavior – States state(s)
corresponding to the initially generated MSD by means of other MSDs is depicted in Fi-
gure A.23(a). The depicted the MSD NoSafeEmergencyBraking specifies the first trigger situ-
ation of the application scenario: If the emcyBrakeWarning occurs at a point in time when
the last point to brake is exceeded (cold condition part sa.lastBrake) and the last point to
evade is not exceeded (cold condition part NOT sa.lastEvade), the sa: SituationAnalysis
has to send an evadeRequest to the overtaking vehicle via the v2x: V2XCommunication.

263

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

The second trigger situation of the application scenario is specified by means of the MSD Fol-
lowingCoordinationNegative in Figure A.23(b): If the following vehicle rejects an emergency
braking request with the message emcyBrakeResponse(false), the middle vehicle starts
the overtaking coordination with the overtaking vehicle by means of the message evadeRe-
quest.

emcyBrake
Warning

msd NoSafeEmcyBraking

sa: Situation
Analysis

sa.lastBrake AND
NOT sa.lastEvade

evadeRequest

(c/m)

(h/e)

(c)

v2x:
V2XComm-

unication

(a) Requirement MSD specifying the
start of the overtaking coordination af-
ter passing the last point to brake (trig-
ger behavior)

emcyBrake
Response(false)

msd FollowingCoordinationNegative

(c/m)

(h/e)

sa: Situation
Analysis

evadeRequest

v2x:
V2XComm-

unication

(b) Requirement MSD specifying the
start of the overtaking coordination after
a rejected emergency braking maneuver
(trigger behavior)

msd Emergency Evasion Situation

laneChanged

lka: Lane
Keeping
Assist

evade
Response(true)

v2x:
V2XComm-

unication

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade

tg:
Trajectory
Generation

(c) Initially generated requirement MSD (cf. Figure 3.19) after removing the first
two messages (execution behavior)

Figure A.23: Refinement step 2—specify trigger and execution behavior

As described above, parts of the latter message sequence are already covered incomple-
tely by the first two messages of the initially generated MSD Emergency Evasion Situation
(cf. Figure 3.19). The actual execution behavior within this MSD takes place after the message
evadeReponse(true) (see also the transition from the Behavior – States state Overtaking
Coordination to the state Emergency Evasion in Figure 2.2 in Section 2.2). Thus, the Software
Requirements Engineer has to remove the exemplary and incomplete trigger behavior from the
initially generated MSD Emergency Evasion Situation (i.e., the messages emcyBrakeWarn-
ing and evadeRequest) to restrict the MSD to the execution behavior and thereby avoid
redundant specification of this execution behavior (cf. Figure A.23(c)). To be more precise,
the two messages are moved to the MSD NoSafeEmcyBraking and refined afterward. Further

264

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

MSDs for the MSD use case Emergency Evasion specifying the trigger behavior and covering
all paths to the Behavior – States state Overtaking Coordination can be found in Figures A.41
and A.42 in Appendix A.2.2.3. We describe in Section 3.7.2.2 how the incremental update of
our transition technique handles such manual changes to MSDs.

Step 3: Specify Temperatures and Execution Kinds
Figure A.24 depicts the MSD Emergency Evasion Situation after the refinement step 3 has been
conducted. The initially generated, first two messages emcyBrakeWarning and evadeRe-
quest have been moved in the last refinement step to the MSD NoSafeEmcyBraking speci-
fying one particular trigger behavior. The MSD-specific modeling constructs temperature and
execution kind have to be added to the remaining messages in this refinement step. The now
first message evadeResponse(true) corresponds to the “intended behavior” part of the
application scenario Emergency Evasion “If [the evasion maneuver] is safe [for the overtaking
vehicle] [...]” and to the transition from the Behavior – States state Overtaking Coordination to
Emergency Evasion. Thus, this message triggers this execution behavior MSD and has to be
specified as cold and monitored like every first message in an MSD.

evade
Response(true)

msd Emergency Evasion Situation

(c/m)

(h/e)

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade
(h/e)

(c/m)

tg: Trajectory
Generation

laneChanged

(h/e)

ka: Lane
KeepingAssist

v2x:
V2XComm-

unication

Figure A.24: Refinement step 3—MSD Emergency Evasion Situation after adding temperatures
and execution kinds

The next message corresponds to the action of the transition entering the Behavior – States
state Emergency Evasion: Before an evasion maneuver is performed, the overtaking vehicle
has to be warned about it. The next two messages describe the behavior internal to the EBEAS
and are thus not covered by the Behavior – States . However, it is obvious that these correspond
to the mandatory execution behavior of the MSD use case. Thus, the Software Requirements
Engineer declares all three messages as hot and executed.

The last message laneChanged is sent by the lka: LaneKeepingAssist when the evasion
maneuver is finished. The Software Requirements Engineer declares it as cold and monitored
since this environment message must neither lead to a safety violation nor a liveness violation
for the SUD.

Step 4: Specify Conditional Behavior
We exemplarily focus on real-time requirements in this paragraph. For example, the requirement
with ID 5.8 demands that the evasion maneuver has to be finished within the time frame tevade.
For this purpose, the Software Requirements Engineer copies the MSD Emergency Evasion

265

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

Situation into the MSD EmcyEvasionTimingConstraint (cf. Figure A.25), declares all messages
as cold and monitored, and adds a clock reset after the minimal message as well as the maximal
delay after the last message.

evade
Response(true)

msd EmcyEvasionTimingConstraint

(c/m)

(c/m)

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade
(c/m)

(c/m)

tg: Trajectory
Generation

laneChanged

(c/m)

lka: Lane
KeepingAssist

c = 0

c < tevade(h)

v2x:
V2XComm-

unication

Figure A.25: Refinement step 4—MSD EmcyEvasionTimingConstraint specifying a safety-
critical real-time requirement for the functional behavior in MSD Emergency Eva-
sion Situation (cf. Figure A.24)

This procedure of specifying a dedicated MSD for monitoring messages under real-time re-
quirements has the advantage of separating the concerns (cf. [*FHKS18; *FHKS17]). That is,
the original MSD specifies the purely functional behavior and the newly specified MSD imposes
timing constraints on it. Furthermore, the MSDs can be atomically traced to the corresponding
information in the CONSENS model. That is, the Software Requirements Engineers establish a
trace link from the original MSD Emergency Evasion Situation specifying the functional beha-
vior to the equally named Behavior – Sequence, and they establish a trace link from the newly
specified MSD EmcyEvasionTimingConstraint to the real-time requirement with ID 5.8 in the
CONSENS Requirements (cf. Section 3.7).

Step 5a: Check Coverage w.r.t. the Partial Model Behavior – States
In step 2, the Software Requirements Engineers formalized the transitions leading to the state
Overtaking Coordination in the Behavior – States (cf. Figure 2.2 in Section 2.2) by means
of MSDs. That is, they formalized the transition leading from the state Emergency Brake
Warning Received to Overtaking Coordination through the MSD NoSafeEmcyBraking (cf. Fi-
gure A.23(a)), and they formalized the transition leading from the state Following Coordi-
nation to Overtaking Coordination through the MSD FollowingCoordinationNegative (cf. Fi-
gure A.23(b)). However, while formalizing the latter transition, they focused on the message
event trigger emcyBrakeResponse(false) but neglected the two remaining triggers for
this transition.

In such a case, our coverage check reveals that the current state of the MSD specification is in-
complete: The message event trigger setLastBrake(true) for the same transition, which
specifies the cancellation of the following coordination due to passing the last point of brake, has
no representation in any requirement MSD. The corresponding coverage rule (cf. Algorithm 3.6

266

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

in Section 3.8.3) demands that there is at least one environment message in any requirement
MSD for each SwRE-relevant message event trigger in the Behavior – States . The only en-
vironment message setLastBrake(true) in the current MSD specification is present in
the assumption MSD CriticalPointsUntilCrash (cf. Figure A.22(a)), but there is no requirement
MSD encompassing it. Thus, the Software Requirements Engineer newly specifies the MSD
LastBrakePassedDuringFollowingCoordination (cf. Figure A.26(a)).

sa: Situation
Analysis

emcyBrake
Request

(c/m)

(h/e)

(c/m)

msd LastBrakePassedDuringFollowingCoordination

acc:
AdaptiveCruise

Control

setLastBrake
(true)

evadeRequest

v2x:
V2XComm-

unication

(a) Requirement MSD specifying the cancellation of the
following coordination due to passing the last point of
brake (trigger behavior)

emcyBrake
Request

emcyBrake
Warning

msd FollowingCoordination
TimeExceeded

(c/m)

(c/m)

sa: Situation
Analysis

NOT sa.lastBrake

c = 0

c > tfollowingCoord(c)

evadeRequest
(h/e)

v2x:
V2XComm-

unication

(b) Requirement MSD specifying the
cancellation of the following coordi-
nation due to exceeding the maximum
time (trigger behavior)

Figure A.26: Refinement step 5a—manually specified MSDs after coverage check w.r.t. the
partial model Behavior – States

Furthermore, the Software Requirements Engineers realize during investing the transition
leading from the state Following Coordination to Overtaking Coordination that they neglected
the transition trigger after(t f ollowingCoord). This relative time event specifies the cancella-
tion of the following coordination due to exceeding the maximum time. Thus, the Software
Requirements Engineers newly specify the MSD FollowingCoordinationTimeExceeded (cf. Fi-
gure A.26(b)).

Step 5b: Validate Existential Behavior
Beyond the initial MSDs that are subject to the manual refinement, we automatically derive
from any Behavior – Sequence each an existential MSD. These existential MSDs serve as test
oracle for the refined MSD specification, where the specified system must be able to produce
at least one trace that fits to one of the existential scenarios. Figures A.27 to A.30 depict these
existential MSDs for the example specification. The Software Requirements Engineer is able to
simulatively produce the corresponding traces in Play-out, so that no further corrections to the
MSD specification are necessary.

267

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

obstacle

emcyBraking

emcyBrake
Warning

standstill

msd Existential Emergency Braking Situation for Leading Vehicle

acc:
AdaptiveCruise

Control
sa: Situation

Analysis
vc: Vehicle

Control

esc: Electronic
StabilityControl

enableBraking

v2x: V2X
Commu-
nication

Figure A.27: Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Braking Situation for Leading Vehicle complementing the initially derived
corresponding MSD of Figure A.15

emcyBrake
Warning

sa: Situation
Analysis

emcyBrakeRequest

msd Existential Emergency Braking Situation for Middle Vehicle

v2x: V2X
Commu-
nication

vc: Vehicle
Control

enableBraking

emcyBraking

esc: Electronic
StabilityControl

standstill

emcyBrake
Response(true)

emcyBrake
Warning

Figure A.28: Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Braking Situation for Middle Vehicle complementing the initially derived
corresponding MSD of Figure A.18

268

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

msd Existential Emergency Evasion Situation

laneChanged

ka: Lane
Keeping
Assist

evade
Response(true)

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade

tg:
Trajectory
Generation

emcy
BrakeWarning

evadeRequest

v2x:
V2XComm-

unication

Figure A.29: Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Evasion Situation complementing the initially derived corresponding MSD
of Figure 3.19

emcyBrake
Warning

sa: Situation
Analysis

evadeRequest

msd Existential Emergency Braking and Precrash Measures Situation

v2x: V2X
Commu-
nication

vc: Vehicle
Control

enableBraking

emcyBraking

esc: Electronic
StabilityControl

standstill

evade
Response(false)

emcyBrake
Warning

pu: Precrash
Unit

enablePrecrash
activate
Precrash

Figure A.30: Refinement step 5b—Automatically derived existential MSD Existential Emer-
gency Braking and Precrash Measures Situation complementing the initially de-
rived corresponding MSD of Figure A.21

269

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

A.2.2.3 MSD Specification After Manual Refinement

Figure A.31 depicts the overview of the particular MSD use cases as well as their merge re-
lationships. Besides the initially derived MSD use cases (cf. Appendix A.2.2.1), the Software
Requirements Engineer specifies an MSD use case General Environment Assumptions for as-
sumption MSDs that are relevant for the remaining MSD use cases. Furthermore, the Software
Requirements Engineer adds the merge relationships [Gre11; *HFK+16], which are not auto-
matically derived.

General
Environment
Assumptions

pkg [Model] EBEAS-MSDSpecification

Obstacle
Detection

Emergency
Braking

Emergency
Evasion

Emergency
Braking and

Precrash
Measures

«merge»

«merge»

«merge»

«merge»

Figure A.31: MSD use case overview

270

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

MSD Use Case General Environment Assumptions
The Software Requirements Engineer specified an additional assumption MSD CriticalPoints-
UntilCrash during step 1 of the manual refinement of the initially derived MSD specification
(cf. Figure A.22(a)). This assumption MSD is also depicted in Figure A.34 and explicitly
defines the critical points in time until a crash happens as well as their order of occurrence.
Furthermore, the Software Requirements Engineer specifies the minimal time bound between
multiple obstacle event occurrences in an assumption MSD ObstacleDetectionTimeBound
(cf. Figure A.35), which enables that the remaining real-time requirements do not result in a
safety violation and moreover reduces the state space of the MSD specification.

The Software Requirements Engineer specifies these assumption MSDs as well as the cor-
responding classifier view (cf. Figure A.32) and architecture view (cf. Figure A.33) as part of
the MSD use case General Environment Assumptions since it is relevant for all other MSD use
cases.

+ obstacle()
+ setLastBrake(
 lastBrake:Boolean)
+ setLastEvade(
 lastEvade:Boolean)
+ setLastPrecrash(
 lastPrecrash:Boolean)
+ setCrash(
 crash:Boolean)

«interface»
ObstacleInfo

:Obstacle
Info

:Obstacle
Info

class [Package]
Gen. Env. Ass.

Interfaces

class [Package]
Gen. Env. Ass. Types

Adaptive
CruiseControl

 + lastBrake
 :Boolean
 + lastEvade
 :Boolean
 + lastPrecrash
 :Boolean
 + crash
 :Boolean

Situation
Analysis

Figure A.32: MSD use case General Environment Assumptions—classifier view

General
Environment Assumptions

acc:
Adaptive
Cruise
Control

sa: Situation
Analysis

:Obstacle
Info

Figure A.33: MSD use case General Environment Assumptions—architecture view

271

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

«EnvironmentAssumption»
msd CriticalPointsUntilCrash

(h/e)

sa: Situation
Analysis

acc:
AdaptiveCruise

Control

(c/m)

setLastPrecrash(true)

setLastEvade(true)

setLastBrake(true)

setCrash(true)

(h/e)

(h/e)

obstacle

(h/e)

Figure A.34: MSD use case General Environment Assumptions—assumption MSD specifying
the critical points in time until a crash occurs

obstacle

c = 0

c > obstDetMin

«EnvironmentAssumption»
msd ObstacleDetectionTimeBound

(c/m)

(h)

acc:
AdaptiveCruise

Control
sa: Situation

Analysis

Figure A.35: MSD use case General Environment Assumptions—assumption MSD specifying
the minimal time bound between occurrences of obstacle

272

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

MSD Use Case Obstacle Detection
The classifier view and architecture view do not differ from the ones of the initially derived
MSD use case depicted in Figure A.13 and Figure A.14 (cf. Appendix A.2.2.1), respectively.

obstacle

emcyBraking

emcyBrake
Warning

standstill

msd Emergency Braking Situation for Leading Vehicle

(c/m)

(h/e)

(h/e)

(c/m)

acc:
AdaptiveCruise

Control

v2x: V2X
Commu-
nication

sa: Situation
Analysis

vc: Vehicle
Control

esc: Electronic
StabilityControl

enableBraking
(h/e)

Figure A.36: MSD use case Obstacle Detection—requirement MSD Emergency Braking Situ-
ation for Leading Vehicle manually refined by temperatures and execution kinds
(cf. initially derived MSD in Figure A.15 in Appendix A.2.2.1)

emcyBraking

emcyBrake
Warning

standstill

msd EmcyBrakingTimingConstraint

(c/m)

(c/m)

(c/m)

(h)

sa: Situation
Analysis

vc: Vehicle
Control

esc: Electronic
StabilityControl

enableBraking
(c/m)

c < tbrake

c = 0

v2x: V2X
Commu-
nication

Figure A.37: MSD use case Obstacle Detection—requirement MSD restricting the behavior of
the MSD Emergency Braking Situation for Leading Vehicle (Figure A.36), of the
MSD Emergency Braking Situation for Middle Vehicle (Figure A.40), and of the
MSD Emergency Braking and Precrash Measures Situation (Figure A.46) with a
real-time requirement

273

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

MSD Use Case Emergency Braking
The classifier view and architecture view do not differ from the ones of the initially derived
MSD use case depicted in Figure A.16 and Figure A.17 (cf. Appendix A.2.2.1), respectively.

emcyBrake
Warning

sa: Situation
Analysis

NOT sa.lastBrake

emcyBrakeRequest

(c/m)

(h/e)

(c)

msd EmcyBrakeWarning
ReceivedBeforeLastBrake

v2x: V2X
Commu-
nication

Figure A.38: MSD use case Emergency Braking—requirement MSD specifying that an emcy-
BrakeRequest has to be sent if an emcyBrakeWarning was received from
the preceding vehicle before the own last point to brake is passed (cf. transition
from state EmergencyBrakeWarningReceived to state FollowingCoordination in
composite state MiddleOrFollowingRole in Figure A.12 in Appendix A.2.1)

Figure A.40 depicts the manually refined version of the MSD Emergency Braking Situation
for Middle Vehicle. The Software Requirements Engineer moves the first messages representing
the trigger behavior of the initially derived version of this MSD (cf. Figure A.18 in Appen-
dix A.2.2.1) to the MSDs EmcyBrakeWarningReceivedBeforeLastBrake (cf. Figure A.38) and
EmcyBrakingSafeForFollowingVehicle (cf. Figure A.39(a)) in the course of step 2 of the manual
refinement process (cf. Appendix A.2.2.2). Besides the temperatures and execution kinds for the
messages, the Software Requirements Engineer adds the cold condition NOT sa.lastBrake
for the case that the last point to brake is passed during the state FollowingCoordination before an
emcyBrakeResponse(true) is received (cf. trigger event setLastBrake(true) of
the transition from the state FollowingCoordination to the state OvertakingCoordination within
the composite state MiddleOrFollowingRole in Figure A.12).

274

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

msd EmcyBrakingSafe
ForFollowingVehicle

emcyBrake
Request

(c/m)

(h/e)

sa: Situation
Analysis

NOT sa.lastBrake

emcyBrake
Response(true)

(c)

v2x: V2X
Commu-
nication

(a) Requirement MSD specifying that
emergency braking is safe for the follo-
wing vehicle since it has not passed the
last point to brake (trigger behavior for
the MSD Emergency Braking Situation for
Middle Vehicle in Figure A.40)

msd EmcyBrakingUnsafe
ForFollowingVehicle

emcyBrake
Request

(c/m)

(h/e)

sa: Situation
Analysis

sa.lastBrake

emcyBrake
Response(false)

(c)

v2x: V2X
Commu-
nication

(b) Requirement MSD specifying that
emergency braking is unsafe for the
following vehicle since it has passed
the last point to brake (trigger behavior
for the MSD FollowingCoordinationNe-
gative) in Figure A.41(d))

Figure A.39: Trigger behavior of the MSD use cases Emergency Braking and Emergency Eva-
sion leading to a positive or negative emcyBrakeResponse (cf. composite state
FollowingRole in Figure A.12 in Appendix A.2.1)

msd Emergency Braking Situation for Middle Vehicle

(c/m)

(h/e)

sa: Situation
Analysis

emcyBrakeWarning

vc: Vehicle
Control

enableBraking

emcyBraking
(h/e)

(c/m)

esc: Electronic
StabilityControl

standstill

(h/e)

NOT sa.lastBrake

v2x: V2X
Commu-
nication

(c)

Figure A.40: Execution behavior of the MSD use case Emergency Braking—requirement MSD
specifying the engagement of the esc: ElectronicStabilityControl to perform a bra-
king maneuver (cf. transition from the state FollowingCoordination to the state
Emergency Braking within the composite state MiddleOrFollowingRole in Fi-
gure A.12 in Appendix A.2.1)

275

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

MSD Use Case Emergency Evasion
The classifier view and architecture view do not differ from the ones of the initially derived
MSD use case depicted in Figure 3.19 in Section 3.6.1.

276

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

emcyBrake
Warning

msd NoSafeEmcyBraking

sa: Situation
Analysis

sa.lastBrake AND
NOT sa.lastEvade

evadeRequest

(c/m)

(h/e)

(c)

v2v:
V2VComm-

unication

(a) Requirement MSD specifying
the start of the overtaking coordina-
tion after passing the last point to
brake (cf. transition from the state
EmergencyBrakeWarningReceived
to the state OvertakingCoordination
within the composite state MiddleOr-
FollowingRole in Figure A.12)

emcyBrake
Request

emcyBrake
Warning

msd FollowingCoordination
TimeExceeded

(c/m)

(c/m)

sa: Situation
Analysis

NOT sa.lastBrake

c = 0

c > tfollowingCoord(c)

evadeRequest
(h/e)

v2x:
V2XComm-

unication

(b) Requirement MSD specifying the
cancellation of the following coor-
dination due to missing a real-time
requirement (cf. relative time event
after(t f ollowingCoord) of the transi-
tion from the state FollowingCoordina-
tion to the state OvertakingCoordina-
tion within the composite state Middle-
OrFollowingRole in Figure A.12)

sa: Situation
Analysis

emcyBrake
Request

(c/m)

(h/e)

(c/m)

msd LastBrakePassedDuringFollowingCoordination

acc:
AdaptiveCruise

Control

setLastBrake
(true)

evadeRequest

v2x:
V2XComm-

unication

(c) Requirement MSD specifying the cancellation of the
following coordination due to passing the last point to
brake (cf. trigger event setLastBrake(true) of the
transition from the state FollowingCoordination to the state
OvertakingCoordination within the composite state Mid-
dleOrFollowingRole in Figure A.12)

emcyBrake
Response(false)

msd FollowingCoordinationNegative

(c/m)

(h/e)

sa: Situation
Analysis

evadeRequest

v2x:
V2XComm-

unication

(d) Requirement MSD specifying
the start of the overtaking coordi-
nation after an rejected emergency
braking maneuver (cf. trigger event
emcyBrakeResponse(false) of
the transition from the state Following-
Coordination to the state Overtaking-
Coordination within the composite state
MiddleOrFollowingRole in Figure A.12)

Figure A.41: Trigger behavior of the MSD use case Emergency Evasion leading to an evade-
Request

277

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

evadeRequest
(c/m)

(h/e)

sa: Situation
Analysis

NOT sa.lastBrake

evade
Response(true)

(c)

msd EmergencyEvasionSafe
ForOvertakingVehicle

v2x:
V2XComm-

unication

(a) Requirement MSD specifying that an
emergency evasion of the middle vehicle
would be safe for the overtaking vehicle

msd EmergencyEvasionUnsafe
ForOvertakingVehicle

evadeRequest
(c/m)

(h/e)

sa: Situation
Analysis

sa.lastBrake

evade
Response(false)

(c)

v2x:
V2XComm-

unication

(b) Requirement MSD specifying that an
emergency evasion of the middle vehicle
would be unsafe for the overtaking vehicle

Figure A.42: Trigger behavior of the MSD use case Emergency Evasion leading to a positive or
negative evadeResponse (cf. composite state OvertakingRole in Figure A.12
in Appendix A.2.1)

evade
Response(true)

msd Emergency Evasion Situation

(c/m)

(h/e)

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade
(h/e)

(c/m)

tg: Trajectory
Generation

laneChanged

(h/e)

ka: Lane
KeepingAssist

v2x:
V2XComm-

unication

Figure A.43: Execution behavior of the MSD use case Emergency Evasion—requirement MSD
specifying the activation of the tg: TrajectoryGeneration to perform an evasion ma-
neuver

278

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

evade
Response(true)

msd EmcyEvasionTimingConstraint

(c/m)

(c/m)

sa: Situation
Analysis

evadeWarning

vc: Vehicle
Control

enableEvasion

evade
(c/m)

(c/m)

tg: Trajectory
Generation

laneChanged

(c/m)

lka: Lane
KeepingAssist

c = 0

c < tevade(h)

v2x:
V2XComm-

unication

Figure A.44: Real-time requirement for execution behavior of the MSD use case Emergency
Evasion—requirement MSD restricting the behavior of the MSD Emergency Eva-
sion Situation (cf. Figure A.41) with a real-time requirement

279

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

MSD Use Case Emergency Braking and Precrash Measures
The classifier view and architecture view do not differ from the ones of the initially derived
MSD use case depicted in Figure A.19 and Figure A.20 (cf. Appendix A.2.2.1), respectively.

Figure A.46 depicts the manually refined version of the MSD Emergency Braking and
Precrash Measures Situation. The Software Requirements Engineer moves the lifeline
v2x: V2XCommunication and the first messages representing the trigger behavior of the ini-
tially derived version of this MSD (cf. Figure A.21 in Appendix A.2.2.1) to the MSDs No-
SafeEmcyBraking (cf. Figure A.41(a)), EmergencyEvasionUnsafeForOvertakingVehicle (cf. Fi-
gure A.42(b)) (both part of MSD use case Emergency Evasion), and OvertakingCoordination-
Negative (cf. Figure A.45(a)) in the course of step 2 of the manual refinement process (cf. Ap-
pendix A.2.2.2).

280

A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with
MSDs

evade
Response(false)

msd OvertakingCoordinationNegative

(c/m)

(h/e)

sa: Situation
Analysis

emcyBrakeWarning

vc: Vehicle
Control

enableBraking
(h/e)

enablePrecrash
(h/e)

v2x: V2X
Commu-
nication

(a) Requirement MSD specifying that an
evadeRequest is rejected (cf. trigger event
evadeResponse(false) of the transition
from the state OvertakingCoordination to the
state Precrash and Emergency Braking within
composite state MiddleOrFollowingRole in
Figure A.12)

emcyBrake
Warning

msd LastEvadePassedDuringOvertakingCoordination

(c/m)

(c/m)

sa: Situation
Analysis

(h/e)

vc: Vehicle
Control

enableBraking

enablePrecrash

(h/e)

(h/e)

emcyBrake
Warning

setLastEvade(true)

acc:
AdaptiveCruise

Control

v2x: V2X
Commu-
nication

(b) Requirement MSD specifying that the last point to evade
is passed during the overtaking coordination (cf. trigger event
setLastEvade(true) of the transition from the state
OvertakingCoordination to the state Precrash and Emergency
Braking within the composite state MiddleOrFollowingRole in
Figure A.12)

evade
Request

emcyBrake
Warning

msd OvertakingCoordinationTimeExceeded

(c/m)

(c/m)

sa: Situation
Analysis

sa.lastBrake

c = 0

c > tovertakingCoord(c)

(h/e)

enableBraking

enablePrecrash

(h/e)

(c)

(h/e)

emcyBrake
Warning

v2x: V2X
Commu-
nication

alt

emcyBrake
Response(false)

vc: Vehicle
Control

(c/m)

(c) Requirement MSD specifying that
the time for the overtaking coordina-
tion is exceeded (cf. relative time event
after(tovertakingCoord) of the transition
from the state OvertakingCoordination to the
state Precrash and Emergency Braking within
the composite state MiddleOrFollowingRole in
Figure A.12)

emcyBrake
Warning

msd EmcyBrakeWarningReceivedAfterLastEvade

(c/m)

sa: Situation
Analysis

sa.lastEvade

(h/e)

vc: Vehicle
Control

enableBraking

enablePrecrash

(h/e)

(c)

(h/e)

emcyBrake
Warning

v2x: V2X
Commu-
nication

(d) Requirement MSD specifying that the last
point to evade is already passed when re-
ceiving an emcyBrakeWarning (cf. guard
lastEvade of the transition from the state
EmergencyBrakeWarningReceived to the state
Precrash and Emergency Braking within the
composite state MiddleOrFollowingRole in Fi-
gure A.12)

Figure A.45: Trigger behavior of the MSD use case Emergency Braking and Precrash Measu-
res

281

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

sa: Situation
Analysis

(c/m)

vc: Vehicle
Control

emcyBraking
(h/e)

(c/m)

esc: Electronic
StabilityControl

activatePrecrash

enableBraking

enablePrecrash

standstill

(c/m)

(h/e)

msd Emergency Braking and Precrash Measures Situation

pu: Precrash
Unit

Figure A.46: Execution behavior of the MSD use case Emergency Braking and Precrash Me-
asures—requirement MSD specifying the activation of precrash measures and of
an emergency braking maneuver

282

A.3 Case Study Details: Hypothesis H2 for the Transition Technique from MBSE to SwRE

A.3 Case Study Details: Hypothesis H2 for the Transition
Technique from MBSE to SwRE

This appendix presents the detailed results of the model element variables in the context of
the case study conducted for the transition technique from MBSE to SwRE (cf. Section 3.9.2).
Table A.6 presents the results for the variables H2.1, H2.2, and H2.1-update, whereas Table A.7
presents the results for the variables H2.3, H2.4, and H2.3-update.

Table A.6: Detailed results of the model element amount variables H2.1, H2.2, and H2.1-update

Partial Model Model Element (-> Attribute) H2.1 H2.2 H2.1-
update H2.1 H2.2

H2.1-
update

Application Scenario 4 4 0 5 3 0
Application Scenario -> name 4 4 0 5 3 0
Function 15 7 0 28 9 0
Function -> name 15 7 0 28 9 0
Environment Template 14 5 0 7 4 0
Environment Template -> name 14 5 0 7 1 0
Environment Element Exemplar 14 5 0 7 4 0
Environment Element Exemplar -> name 14 5 0 7 4 0
Environment Element Exemplar -> type 14 5 0 7 4 0
System Element Template 14 3 1 11 3 1
System Element Template -> name 14 3 1 11 3 1
System Element Exemplar 14 3 1 11 3 1
System Element Exemplar -> name 14 3 1 11 3 1
System Element Exemplar -> type 14 3 1 11 3 1
FlowSpecification 18 8 3 18 8 1
FlowSpecification -> name 18 8 3 18 8 1
Operation 21 19 8 24 11 1
Operation -> name 21 19 8 24 11 0
Parameter 6 6 0 0 0 0
Parameter -> name 6 6 0 0 0 0
Port 123 17 16 66 32 11
Port -> name 123 17 16 66 32 11
Port -> type 123 17 16 66 32 11
Port -> isConjugated 54 8 8 24 12 5
Connector 88 11 10 44 7 6
Connector -> name 88 11 10 44 7 6
Behavior - Sequence 4 4 0 7 4 0
Behavior - Sequence -> name 4 4 0 7 4 0
Lifeline 20 19 4 35 15 0
Lifeline -> represents 20 19 4 35 15 1
Message 30 28 14 38 14 0
Message -> signature 30 28 14 38 14 1
Message -> connector 30 28 14 38 14 5
Message -> argument 3 3 0 0 0 0

1008 342 153 748 296 65

CAS# EBEAS

Sum

Application Scenarios

Functions

Environment / Active
Structure

Behavior - Sequences

We count everything that is subject to manual effort in the context of the Software Require-
ments Engineers’ modeling activities to yield a realistic approximation of their effort. This is
reflected by several aspects described in the following.

283

Appendix A Supplementary Material for the Transition Technique from MBSE to SwRE

Table A.7: Detailed results of the model element amount variables H2.3, H2.4, and H2.3-update

View Type Model Element (-> Attribute) H2.3 H2.4 H2.3-
update H2.3 H2.4 H2.3-

update
Component Type 21 23 4 13 13 1
Component Type -> name 21 23 4 13 13 1
Port 48 50 32 26 26 7
Port -> name 48 50 32 26 26 7
Port -> type 48 50 32 26 26 7
Port -> isConjugated 24 25 16 13 13 3
Interface 20 21 4 13 13 1
Interface -> name 20 21 8 13 13 1
Operation 60 65 24 20 20 1
Operation -> name 60 65 16 20 20 1
Parameter 20 24 0 3 3 0
Parameter -> name 20 24 0 3 3 0
Parameter -> type 20 24 0 3 3 0
Collaboration 4 5 0 3 3 0
Collaboration -> name 4 5 0 3 3 0
Component Role 21 23 4 13 13 1
Component Role -> name 21 23 4 13 13 1
Component Role -> type 21 23 4 13 13 1
Component Role -> partKind 21 23 4 13 13 1
Connector 24 25 16 13 13 4
Connector -> name 24 25 16 13 13 4
MSD 4 22 0 4 4 0
MSD -> name 4 22 0 4 4 0
Lifeline 19 68 4 15 15 0
Lifeline -> represents 19 68 4 15 15 1
Message 28 86 15 14 14 0
Message -> signature 28 86 15 14 14 4
Message -> connector 28 86 15 14 14 4
Message -> argument 3 15 0 3 3 1
ModalMessage -> ExecutionKind 0 86 0 0 14 0
ModalMessage -> Temperature 0 86 0 0 14 0
ModalCondition 0 10 0 0 2 0
ModalCondition -> Expression 0 10 0 0 2 0
ModalCondition -> Temperature 0 10 0 0 2 0
ClockReset 0 7 0 0 2 0
ClockReset -> Expression 0 7 0 0 2 0
TimeCondition 0 7 0 0 2 0
TimeCondition -> Expression 0 7 0 0 2 0
TimeCondition -> Temperature 0 7 0 0 2 0

703 1307 273 359 403 52Sum

CAS# EBEAS

Classifier

Architecture

Interaction

284

A.3 Case Study Details: Hypothesis H2 for the Transition Technique from MBSE to SwRE

We do not only count the creation or update of a model element, but also the creation or update
of the particular attributes of a model element. That is, if the Software Requirements Engineer
has to specify a name of a model element or has to set a referential trace link or an attribute,
we count such modeling activities. We only count mandatory attributes and neglect optional
ones. For example, we do not count the name attribute of lifelines or messages since PAPYRUS

renders the display name of these model elements depends on the lifeline’s represents and
the message’s signature referential trace link, respectively. Thus, the Software Requirements
Engineer does typically not specify the name attribute for these model elements.

In the context of updates, we count one add and one remove activity as one activity if it can
be conducted as an copy and paste activity. Furthermore, if a model element can be updated
by changing one or more attributes, we count only the necessary change activities but do not
assume that the Software Requirements Engineer deletes the model element and creates a new
one as replacement. For instance, if the Software Requirements Engineer can update a lifeline
by only changing its represents referential trace link, we do not count the model element itself
or its name attribute.

We do not count the relational trace links in the system models as they do not have a cor-
responding representation in the MSD specifications. Furthermore, we do not count the Beha-
vior – States in the system models since we do not derive parts of the MSD specifications from it
but apply it as the basis for our coverage check between MSD specifications and system models.

285

B

Supplementary Material on the MSD
Semantics for Timing Analysis

B.1 Further Examples of the MSD Semantics for Timing
Analyses

enableBrakingmsgSendEvt

enableBrakingmsgReceiveEvt

AnotherMSD.
enableBrakingmsgReceiveUnification

AnotherMSD.
enableBrakingmsgSendUnification

EmcyBraking.
enableBrakingmsgReceiveUnification

0 5

t

10

legend
UnificationRelationHot: Transit ion
“msgEvt, msgEvtUnification /” from state
“Enabled” to state “Not Enabled”

EmcyBraking.
enableBrakingmsgSendUnification

clock t ick

EmcyBraking enable-
Braking_sendUnificationHot
[UnificationRelationHot] in
state “Enabled”

EmcyBraking enable-
Braking_rece iveUnificationHot
[UnificationRelationHot] in
state “Enabled”

Figure B.1: Example—message event unification with multiple hot MSD messages in CCSL
simulation

287

A
pp

en
di

x
B

Su
pp

le
m

en
ta

ry
M

at
er

ia
lo

n
th

e
M

SD
Se

m
an

tic
s

fo
rT

im
in

g
A

na
ly

si
s

Mapping Specification

context ObjectSystemMessage

def: msgCreateEvt: Event
...
def: taskCompleteEvt: Event
def: anyEvt: Event

inv anyEventTriggering:
/* a new clock that ticks on the tick of any of the msg. eventclocks */

let allEvents: Event = Expression Union (self.msgCreateEvt , ...
self.taskCompleteEvt) in

/* let the anyEvt clock tick together with the allEvents clock */

Relation Coincides (self.anyEvt, allEvents)

context ModalMessage
def: msgCreateUnification: Event
...
def: taskCompleteUnification: Event

inv unificationOrderCold:
self.isCold() implies (

/* all remaining MSG messages in MSD of context message */
let notEnabledMessages: Set(ModalMessage) =

self.getMSD().getNotEnabledMessages() in
/* all object system messages for the not enabled MSD messages */
let notEnabledObjSysMsgs: Set(ObjectSystemMessage) =

notEnabledMessages.getNotEnabledObjSysMsgs() in
/* define a new clock ticking together with the anyEvt
clock for the not enabled object system messages */
let terminate: Event = Expression Union (

notEnabledObjSysMsgs.anyEvt) in
Relation UnificationOrderRelationCold (

self.msgCreateUnification, self.msgSendUnification,
self.msgReceiveUnification, self.msgConsumeUnification.
self.taskStartUnification, self.taskCompleteUnification,
terminate)

)

Semantic Constraints

User-defined Constraints

CCSL Model

M2

M1

Platform-specific MSD Specification «transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom» «uses»

MoCCML-Relation UnificationOrderRelationCold (

 msgCreateUnification: Clock, …,

 taskCompleteUnification: Clock, terminate: Clock)

1 2

msgCreate
Unification /

msgSend
Unification /

3

4

msgReceive
Unification /

5
msgConsume
Unification /

6
taskStart

Unification /

taskComplete
Unification /

terminate /

terminate /

terminate /

terminate /

«references»

Pre-defined Constraints

Expression Union (clocks: Set(Clock)): Clock {...}

Relation Coincides (clock1: Clock, clock2: Clock) {...}

Abstract Syntax

«profile» TAM

«references»

«references»

«stereotype»

TAM:Object

SystemMessage

msdMessages*

 temperature: TemperatureKind

«stereotype»

ModalMessage

- hot

- cold

«enumeration»

TemperatureKind

Figure B.2: Specification excerpt of semantics for the order of unification occurrences for cold messages with additional event kinds (focus on
metamodel level M2)

28
8

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

Abstract Syntax Mapping Specification Semantic Constraints

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS Clock obstacle_msgCreateEvt
…
Clock obstacle_taskCompleteEvt
Clock emcyBrakeWarning_anyEvt

Expression emcyBrakeWarning_allEvents = Union (
clocks->{emcyBrakeWarning_msgCreateEvt, …,

 emcyBrakeWarning_taskCompleteEvt})

Relation emcyBrakeWarning_anyEventTriggering [Coincides] (
 clock1->emcyBrakeWarning_anyEvt,
clock2->emcyBrakeWarning_allEvents)

Clock EmcyBraking.obstacle_msgCreateUnification
…
Clock EmcyBraking.obstacle_taskCompleteUnification

Expression EmcyBraking.obstacle_terminate = Union (
clocks->{emcyBrakeWarning_anyEvt, …, })

Relation EmcyBraking.obstacle_unificationOrderCold
[UnificationOrderRelationCold] (

msgCreateUnification->EmcyBraking.
obstacle_msgCreateUnification,

… ,
taskCompleteUnification->EmcyBraking.

obstacle_taskCompleteUnification,
terminate->EmcyBraking.obstacle_terminate)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom» «uses»

obstacle

Message

Send

Message

Reception

Message

Consumption

Task Start

Task Completion

Message

Creation

sa:

Situation

Analysis

msd EmcyBraking

...

acc:
Adaptive
Cruise
Control

emcyBrake
Warning

v2x:
V2XComm-

unication

Figure B.3: Example models of semantics for the order of unification occurrences for cold messages with additional event kinds (focus on meta-
model level M1)

289

A
pp

en
di

x
B

Su
pp

le
m

en
ta

ry
M

at
er

ia
lo

n
th

e
M

SD
Se

m
an

tic
s

fo
rT

im
in

g
A

na
ly

si
s

Abstract Syntax

«profile» Modal

Mapping Specification

context ObjectSystemMessage
…
def: msgSendEvt: Event
def: msgReceiveEvt: Event
def: anyEvt: Event
inv anyEventTriggering:

/* a new clock that ticks on the tick of any of the msg. eventclocks */

let allEvents: Event = Expression Union (self.msgCreateEvt , ...
self.taskCompleteEvt) in

/* let the anyEvt clock tick together with the allEvents clock */

Relation Coincides (self.anyEvt, allEvents)

context ModalMessage

def: msgCreateUnification: Event
def: msgSendUnification: Event
def: msgReceiveUnification: Event
...

inv sendUnificationCold:
self.isCold() implies (

let objectSystemMessage = self.getObjectSystemMessage() in
/* all object system messages for the not enabled MSD messages */
let notEnabledObjSysMsgs: Set(ObjectSystemMessage) =

notEnabledMessages.getNotEnabledObjSysMsgs() in
/* define a new clock ticking together with the anyEvt
clock for the not enabled object system messages */
let terminate: Event = Expression Union (

notEnabledObjSysMsgs.anyEvt) in
Relation UnificationRelationCold (

objectSystemMessage.msgSendEvt, self.msgSendUnification,
self.msgCreateUnification, terminate)

)

inv receiveUnificationCold:
self.isHot() implies (

let objectSystemMessage = self.getObjectSystemMessage() in
let notEnabledObjSysMsgs: Set(ObjectSystemMessage) =

notEnabledMessages.getNotEnabledObjSysMsgs() in
let terminate: Event = Expression Union (

notEnabledObjSysMsgs.anyEvt) in
Relation UnificationRelationCold (

objectSystemMessage.msgReceiveEvt,
self.msgReceiveUnification, self.msgSendUnification, terminate)

)

Semantic Constraints

User-defined Constraints

«references»

M2

M1 «instanceOf» «derivedFrom» «uses»

MoCCML-Relation UnificationRelationCold (

 msgEvt: Clock, msgEvtUnification: Clock,

 enableMsgEvtUnification: Clock, terminate: Clock)

enableMsg
EvtUnification /

msgEvt,
msgEvtUnification /

msgEvt /

Enabled
Not

Enabled

«references»

«references»

terminate /

terminate /

Pre-defined Constraints

Expression Union (clocks: Set(Clock)): Clock {...}

Relation Coincides (clock1: Clock, clock2: Clock) {...}

CCSL ModelPlatform-specific MSD Specification «transformation»

MSD-to-CCSL

QVT-O

Transformation

«references»

«stereotype»

TAM:Object

SystemMessage

msdMessages*

 temperature: TemperatureKind

«stereotype»

ModalMessage

- hot

- cold

«enumeration»

TemperatureKind

Figure B.4: Specification excerpt of semantics for unification of cold messages (focus on metamodel level M2)

29
0

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

CCSL Model

M2

M1

...
Clock obstacle_msgSendEvt
Clock obstacle_msgReceiveEvt
Clock emcyBrakeWarning_anyEvt
…
Expression emcyBrakeWarning_allEvents = Union (

clocks->{emcyBrakeWarning_msgCreateEvt, …,
 emcyBrakeWarning_taskCompleteEvt})

Relation emcyBrakeWarning_anyEventTriggering [Coincides] (
 clock1->emcyBrakeWarning_anyEvt,
clock2->emcyBrakeWarning_allEvents)

Clock EmcyBraking.obstacle_msgCreateUnification
Clock EmcyBraking.obstacle_msgSendUnification
Clock EmcyBraking.obstacle_msgReceiveUnification

Expression EmcyBraking.obstacle_terminate = Union (
clocks->{emcyBrakeWarning_anyEvt, …, })

Relation EmcyBraking.obstacle_sendUnificationCold
[UnificationRelationCold] (

msgEvent->obstacle_msgSendEvt,
msgEventUnification->EmcyBraking.

obstacle_msgSendUnification,
enableMsgEvtUnification->EmcyBraking.

obstacle_msgCreateUnification,
terminate->EmcyBraking.obstacle_terminate)

Relation EmcyBraking.obstacle_receiveUnificationHot
[UnificationRelationHot] (

msgEvent->obstacle_msgReceiveEvt,
msgEventUnification->EmcyBraking.

obstacle_msgReceiveUnification,
enableMsgEvtUnification->EmcyBraking.

obstacle_msgSendUnification,
terminate->EmcyBraking.obstacle_terminate)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom» «uses»

Abstract Syntax Mapping Specification Semantic Constraints

Platform-specific MSD Specification

EBEAS

obstacle

Message

Send

Message

Reception

vc:

Vehicle

Control

...

msd EmcyBraking

acc:
Adaptive
Cruise
Control

emcyBrake
Warning

...

v2x:
V2XComm-

unication

Figure B.5: Example models of semantics of semantics for unification of cold messages (focus on metamodel level M2)

291

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

EmcyBraking.
obstaclemsgSendUnification

0

t

10

legend

emcyBrakeWarningmsgCreateEvent

clock
tick

EmcyBraking.
obstaclemsgCreateUnification

obstaclemsgCreateEvent

obstaclemsgSendEvent

obstaclemsgCreateEvent

EmcyBraking obstacle_unification-
OrderCold [UnificationOrder-
Re ationCold]: transition “terminate /”
from state “3” to state “1”:
Event unif iable with not enabled
message term nates obstacle event
uni ication chain

EmcyBraking obstacle_unification-
OrderCold [UnificationOrder-
RelationCold] in state “1”

EmcyBraking obstacle_unification-
OrderCold [UnificationOrder-
RelationCold] in state “2”

EmcyBraking obstacle_unificationOrderCold
[UnificationOrderRelationCold]: State between
corresponding clock-triggered transit ions

EmcyBraking.
obstaclemsgSendUnification

EmcyBraking.
obstacletaskCompleteUnification

EmcyBraking.
obstacletaskStartUnification

EmcyBraking.
obstaclemsgConsumeUnification

EmcyBraking.
obstaclemsgReceiveUnification

EmcyBraking.
obstaclemsgCreateUnification

EmcyBraking.
obstaclemsgSendUnification

EmcyBraking.
obstacletaskCompleteUnification

EmcyBraking.
obstacletaskStartUnification

EmcyBraking.
obstaclemsgConsumeUnification

EmcyBraking.
obstaclemsgReceiveUnification

EmcyBraking obstacle_unification-
OrderCold [UnificationOrder-
RelationCold] in state “3”

UnificationRelationCold: Trans t on
“msgEvt, msgEvtUnification /” from state
“Enabled” to state “Not Enabled”

Figure B.6: Example—order of message unification occurrences and message event unification
in CCSL simulation for cold messages (cf. CCSL models in the lower right of Fi-
gure B.3 and Figure B.5)

292

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax

«profile» TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage
def: msgCreateEvt: Event
def: msgSendEvt: Event
...

inv minDispatchDelay:
let minDispatchTime: Integer = self.getMinDispatchTime() in
let msgCreationDelayedByMinDispatchTime: Event

= Expression DelayFor (self.getModel().globalTime,
 self.msgCreateEvt, minDispatchTime)

Relation NonStrictPrecedes (msgCreation-
DelayedByMinDispatchTime, self.msgSendEvt)

inv maxDispatchDelay:
let maxDispatchTime: Integer = self.getMaxDispatchTime() in
let msgCreationDelayedByMaxDispatchTime: Event =

Expression DelayFor (self.getModel().globalTime,
self.msgCreateEvt, maxDispatchTime)

Relation NonStrictPrecedes (self.msgSendEvt,
msgCreationDelayedByMaxDispatchTime)

Semantic Constraints

Pre-defined Constraints

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«stereotype»

Object

SystemMessage

«references»

CCSL Model

M2

M1

Clock globalTime
Clock enableBraking_msgCreateEvt
Clock enableBraking_msgSendEvt

Integer enableBraking_minDispatchTime = 5

Integer enableBraking_maxDispatchTime = 8

Expression enableBraking_msgCreationDelayedByMinDispatchTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgCreateEvt,
delay->enableBraking_minDispatchTime)

Expression enableBraking_msgCreationDelayedByMaxDispatchTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgCreateEvt,
delay->enableBraking_maxDispatchTime)

Relation enableBraking_minDispatchDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgCreationDelayedByMinDispatchTime,
rightClock->enableBraking_msgSendEvt)

Relation enableBraking_maxDispatchDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgSendEvt,
rightClock->enableBraking_msgCreationDelayedByMaxDispatchTime

)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf»

«uses»

connector1

«metaclass»
UML::Message

msd
Messages

*

connector
0..1

enableBraking.msgSize * (1 + CAN.minMsgCtrlOvhd)

CAN.maxEncodeRate

500+200 bit

150 kbit/s
=

«references»

Platform-specific MSD Specification

EBEAS

ObstacleDetection

sa:
Situation
Analysis

vc:
Vehicle
Control

«TamECU»
:µC1

...

«TamECU»
:µC2

CANBus

«allocate»
enable-
Braking

sa:

Situation

Analysis

vc:

Vehicle

Control

... ...

...

...

connector

«TamComConnection»
protocol

msgCtrlOvhd = [40..60]%
encodeRate = [100..150] kbit/s

«TamProtocol» CAN

Message

Send

Message

Creation

msgCtrlOvhd:

 NFP_Percentage

encodeRate:
 NFP_DataTxRate

«stereotype»
TamProtocol

«stereotype»

TamCom

Connection

«metaclass»
UML::Named

Element

...

+ enableBraking()

«interface»

Decisions

«TamOperation»

msgSize = 500 bit

type

«stereotype»
TamOperation

msgSize:
 NFP_DataSize

«stereotype»
MARTE::GRM::

ResourceUsage

signature1

enableBraking.msgSize * (1 + CAN.maxMsgCtrlOvhd)

CAN.minEncodeRate

500+300 bit

100 kbit/s
=

0..1
used

Protocol

...

«metaclass»

UML::Connector

Figure B.7: Specification excerpt of semantics for distributed message dispatch delays including example models293

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

enableBrakingmsgCreateEvent

0 5

t

10

legend

enableBrakingmsgSendEvent

clock t ick

enableBrakingmsgCreationDelayedByMinDispatchTime

globalTime

enableBrakingmsgCreationDelayedByMaxDispatchTime

dispatch
time
interval

clock relation
NonStrictPrecedes

clock expression
DelayFor

Figure B.8: Exemplary CCSL run simulating distributed message dispatch delays (cf. CCSL
model in the lower right of Figure B.7)

294

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax

«profile» TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage
...
def: msgSendEvt: Event
def: msgReceiveEvt: Event

inv minSendDelay:
let minSendTime: Integer = self.getMinSendTime() in
let msgSendDelayedByMinSendTime: Event

= Expression DelayFor (self.getModel().globalTime,
 self.msgSendEvt, minSendTime)

Relation NonStrictPrecedes (
msgSendDelayedByMinSendTime, self.msgReceiveEvt)

inv maxSendDelay:
let maxSendTime: Integer = self.getMaxSendTime() in
let msgSendDelayedByMaxSendTime: Event =

Expression DelayFor (self.getModel().globalTime,
self.msgSendEvt, maxSendTime)

Relation NonStrictPrecedes (self.msgReceiveEvt,
msgSendDelayedByMaxSendTime)

Semantic Constraints

Pre-defined Constraints

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«stereotype»

Object

SystemMessage

«references»

CCSL Model

M2

M1

Clock globalTime
Clock enableBraking_msgSendEvt
Clock enableBraking_msgReceiveEvt

Integer enableBraking_minSendTime = 5

Integer enableBraking_maxSendTime = 8

Expression enableBraking_msgSendDelayedByMinSendTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgSendEvt,
delay->enableBraking_minSendTime)

Expression enableBraking_msgSendDelayedByMaxSendTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgSendEvt,
delay->enableBraking_maxSendTime)

Relation enableBraking_minSendDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgSendDelayedByMinSendTime,
rightClock->enableBraking_msgReceiveEvt)

Relation enableBraking_maxSendDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgReceiveEvt,
rightClock->enableBraking_msgSendDelayedByMaxSendTime)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf»

«uses»

«metaclass»

UML::Connector

connector1

«metaclass»
UML::Message

msd
Messages

*

con-
nector

0..1

enableBraking.msgSize * (1+ CAN.minMsgCtrlOvhd)

CANBus.maxCapacity

500+200 bit

150 kbit/s
=

«references»

Platform-specific MSD Specification

EBEAS

ObstacleDetection

sa:
Situation
Analysis

vc:
Vehicle
Control

«TamECU»
:µC1

...

«TamECU»
:µC2

CANBus

«allocate»
enable-
Braking

sa:

Situation

Analysis

vc:

Vehicle

Control

... ...

...

...

connector

«TamComConnection»
capacity = [100..150]kbit/s

protocol

msgCtrlOvhd = [40..60]%

«TamProtocol» CAN

Message

Send

Message

Reception

msgCtrlOvhd:
 NFP_Percentage

«stereotype»
TamProtocol

«stereotype»

TamCom

Connection

«metaclass»
UML::Named

Element

...

+ enableBraking()

«interface»

Decisions

«TamOperation»

msgSize = 500bit

type

«stereotype»
TamOperation

msgSize:
 NFP_DataSize

«stereotype»
MARTE::GRM::

ResourceUsage

signature1

enableBraking.msgSize * (1+ CAN.maxMsgCtrlOvhd)

CANBus.minCapacity

500+300 bit

100 kbit/s
=

capacity: NFP_DataTxRate

«stereotype»
MARTE::GRM::

CommunicationMedia

Figure B.9: Specification excerpt of semantics for distributed message send delays including example models295

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

enableBrakingmsgSendEvent

0 5

t

10

legend

enableBrakingmsgReceiveEvent

clock t ick

enableBrakingmsgSendDelayedByMinSendTime

globalTime

enableBrakingmsgSendDelayedByMaxSendTime

reception
time
interval

clock relation
NonStrictPrecedes

clock expression
DelayFor

Figure B.10: Exemplary CCSL run simulating distributed message send delays (cf. CCSL
model in the lower right of Figure B.9)

296

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax

«profile» TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage
...
def: msgSendEvt: Event
def: msgReceiveEvt: Event

inv minSendDelay:
let minSendTime: Integer = self.getMinSendTime() in
let msgSendDelayedByMinSendTime: Event

= Expression DelayFor (self.getModel().globalTime,
 self.msgSendEvt, minSendTime)

Relation NonStrictPrecedes (
msgSendDelayedByMinSendTime, self.msgReceiveEvt)

inv maxSendDelay:
let maxSendTime: Integer = self.getMaxSendTime() in
let msgSendDelayedByMaxSendTime: Event =

Expression DelayFor (self.getModel().globalTime,
self.msgSendEvt, maxSendTime)

Relation NonStrictPrecedes (self.msgReceiveEvt,
msgSendDelayedByMaxSendTime)

Semantic Constraints

Pre-defined Constraints

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«stereotype»

Object

SystemMessage

«references»

CCSL Model

M2

M1

Clock globalTime
Clock enableBraking_msgSendEvt
Clock enableBraking_msgReceiveEvt

Integer enableBraking_minSendTime = 3

Integer enableBraking_maxSendTime = 5

Expression enableBraking_msgSendDelayedByMinSendTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgSendEvt,
delay->enableBraking_minSendTime)

Expression enableBraking_msgSendDelayedByMaxSendTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgSendEvt,
delay->enableBraking_maxSendTime)

Relation enableBraking_minSendDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgSendDelayedByMinSendTime,
rightClock->enableBraking_msgReceiveEvt)

Relation enableBraking_maxSendDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgReceiveEvt,
rightClock->enableBraking_msgSendDelayedByMaxSendTime)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf»

«uses»

connector1

«metaclass»
UML::Message

msd
Messages

*

connector
0..1

enableBraking.msgSize

SharedMem.maxCapacity

500 bit

150 kbit/s
=

«references»

Platform-specific MSD Specification

EBEAS

ObstacleDetection

sa:
Situation
Analysis

vc:
Vehicle
Control

...

enable-
Braking

sa:

Situation

Analysis

vc:

Vehicle

Control

... ...

...

...

connector

Message

Send

Message

Reception

«metaclass»
UML::Named

Element

...

+ enableBraking()

«interface»

Decisions

«TamOperation»

msgSize = 500 bit

type

«stereotype»
TamOperation

msgSize:
 NFP_DataSize

«stereotype»
MARTE::GRM::

ResourceUsage

signature1

enableBraking.msgSize

SharedMem.minCapacity

500 bit

100 kbit/s
=

«TamECU»
:µC

«TamRTOS»
:OSEK/VDX

«TamScheduler»
:OSEK/VDX-

Schedulercapacity = 100 kbit/s

«TamOSComChannel»
:SharedMem

«allocate»

«stereotype»
TamOSComChannel

capacity: NFP_DataTxRate

«stereotype»
MARTE::GRM::

CommunicationMedia

«metaclass»

UML::Connector

Figure B.11: Specification excerpt of semantics for internal message send delays including example models297

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

enableBrakingmsgSendEvent

0 5

t

10

legend

enableBrakingmsgReceiveEvent

clock t ick

enableBrakingmsgSendDelayedByMinSendTime

globalTime

enableBrakingmsgSendDelayedByMaxSendTime

reception
time
interval

clock relation
NonStrictPrecedes

clock expression
DelayFor

Figure B.12: Exemplary CCSL run simulating internal message send delays (cf. CCSL model
in the lower right of Figure B.11)

298

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax

«profile»TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage
def: msgReceiveEvt: Event
def: msgConsumeEvt: Event
...

inv minConsumptionDelay:
let minConsumeTime: Integer = self.getMinConsumeTime() in
let msgReceptionDelayedByMinConsumeTime: Event

= Expression DelayFor (self.getModel().globalTime,
 self.msgReceiveEvt, minConsumeTime)

Relation NonStrictPrecedes (msgReception-
 DelayedByMinConsumeTime, self.msgConsumeEvt)

inv maxConsumptionDelay:
let maxConsumeTime: Integer = self.getMaxConsumeTime() in
let msgReceptionDelayedByMaxConsumeTime: Event =

Expression DelayFor (self.getModel().globalTime,
self.msgReceiveEvt, maxConsumeTime)

Relation NonStrictPrecedes (self.msgConsumeEvt,
msgReceptionDelayedByMaxConsumeTime)

Semantic Constraints

Pre-defined Constraints

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«stereotype»

Object

SystemMessage

«references»

CCSL Model

M2

M1

Clock globalTime
Clock enableBraking_msgReceiveEvt
Clock enableBraking_msgConsumeEvt

Integer enableBraking_minConsumeTime = 5

Integer enableBraking_maxConsumeTime = 8

Expression enableBraking_msgReceptionDelayedByMinConsumeTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgReceiveEvt,
delay->enableBraking_minConsumeTime)

Expression enableBraking_msgReceptionDelayedByMaxConsumeTime
= DelayFor (clockForCounting->globalTime,

clockToDelay->enableBraking_msgReceiveEvt,
delay->enableBraking_maxConsumeTime)

Relation enableBraking_minConsumptionDelay[NonStrictPrecedes] (
leftClock->enableBraking_msgReceptionDelayedByMinConsumeTime,
rightClock->enableBraking_msgConsumeEvt)

Relation enableBraking_maxConsumptionDelay [NonStrictPrecedes] (
leftClock->enableBraking_msgConsumeEvt,
rightClock->enableBraking_msgReception-

DelayedByMaxConsumeTime)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf»

«uses»

connector1

«metaclass»
UML::Message

msd
Messages

*

connector
0..1

enableBraking.msgSize * (1 + CAN.minMsgCtrlOvhd)

CAN.maxDecodeRate

500+200 bit

150 kbit/s
=

«references»

Platform-specific MSD Specification

EBEAS

ObstacleDetection

sa:
Situation
Analysis

vc:
Vehicle
Control

«TamECU»
:µC1

...

«TamECU»
:µC2

CANBus

«allocate»
enable-
Braking

sa:

Situation

Analysis

vc:

Vehicle

Control

... ...

...

...

connector

«TamComConnection»
protocol

msgCtrlOvhd = [40..60]%
decodeRate = [100..150]kbit/s

«TamProtocol» CAN

Message

Consumption

Message

Reception

msgCtrlOvhd:

 NFP_Percentage

decodeRate:
 NFP_DataTxRate

«stereotype»
TamProtocol

«stereotype»

TamCom

Connection

«metaclass»
UML::Named

Element

...

+ enableBraking()

«interface»

Decisions

«TamOperation»

msgSize = 500bit

type

«stereotype»
TamOperation

msgSize:
 NFP_DataSize

«stereotype»
MARTE::GRM::

ResourceUsage

signature1

enableBraking.msgSize * (1 + CAN.maxMsgCtrlOvhd)

CAN.minDecodeRate

500+300 bit

100 kbit/s
=

0..1
used

Protocol

...

«metaclass»

UML::Connector

Figure B.13: Specification excerpt of semantics for distributed message consumption delays including example models299

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

enableBrakingmsgReceiveEvent

0 5

t

10

legend

enableBrakingmsgConsumeEvent

clock t ick

enableBrakingmsgReceptionDelayedByMinConsumeTime

globalTime

enableBrakingmsgReceptionDelayedByMaxConsumeTime

consump-
tion time
interval

clock relation
NonStrictPrecedes

clock expression
DelayFor

Figure B.14: Exemplary CCSL run simulating distributed message consumption delays
(cf. CCSL model in the lower right of Figure B.13)

300

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

Abstract Syntax

«profile» TAM

Mapping Specification

context ObjectSystemMessage
...
def: msgSendEvt: Event
def: msgReceiveEvt: Event

inv claimConnectionOnMsgSending:
let usedConnection: TamComConnection = getUsedConnection() in

Relation SubClock (self.msgSendEvt, usedConnection.acquire)
...

context TamComConnection
...
def: acquire: Event

inv acquireConnectionOnMsgSending:
/* all object system messages incoming at any logical connector
allocated to the context TamComConnection */
let relevantObjSysMsgs: Set(ObjectSystemMessage) =

getRelevantObjectSystemMessages() in
let anyMsgSend: Event =

Expression Union (relevantObjSysMsgs.msgSendEvt) in
let anyMsgReceive: Event =

Expression Union (relevantObjSysMsgs.msgReceiveEvt) in

Relation ExclusiveResourceAccess (

self.aquire, anyMsgSend, anyMsgReceive)
...

Semantic Constraints

User-defined Constraints

Pre-defined Constraints

Relation SubClock (subClock: Clock, superClock: Clock) {...}
Expression Union (clocks: Set(Clock)): Clock {...}«stereotype»

Object

SystemMessage

MoCCML-Relation ExclusiveResourceAccess (

occupy: Clock, startUsage: Clock, endUsage: Clock)

occupy,
startUsage

Free Locked

endUsage

«references»

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS

Clock DSRCAccess_acquire
Clock trajectoryBeacon_msgSendEvt
Clock trajectoryBeacon_msgReceiveEvt
Relation trajectoryBeacon_claimConnectionOnMsgSending

[SubClock] (subClock->trajectoryBeacon_msgSendEvt,
superClock->DSRCAccess_acquire)

Clock emcyBrakeWarning_msgSendEvt
Clock emcyBrakeWarning_msgReceiveEvt
Relation emcyBrakeWarning_claimConnectionOnMsgSending

[SubClock] (subClock->emcyBrakeWarning_msgSendEvt,
superClock->DSRCAccess_acquire)

Expression DSRCAccess_anyMsgSend = Union (
clocks->{trajectoryBeacon_msgSendEvt,

 emcyBrakeWarning_msgSendEvt, ...})
Expression DSRCAccess_anyMsgReceive = Union (

clocks->{trajectoryBeacon_msgReceiveEvt,
 emcyBrakeWarning_msgReceiveEvt, ...})

Relation DSRCAccess_acquireConnectionOnMsgSending
[ExclusiveResourceAccess] (

occupy->DSRCAccess_acquire,
startUsage->DSRCAccess_anyMsgSend,
endUsage->DSRCAccess_anyMsgReceive)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «derivedFrom»

«uses»

«stereotype»

TamCom

Connection

sa:
Situation
Analysis

«TamECU»
:v2x-

Transceiver

...

«TamECU»
:µC1«TamCom-

Connection»
DSRCAccess

«allocate»

trajectory
Beacon

sa:

Situation

Analysis

...

...

connector

v2x:
V2XComm-

unication

v2x:
V2XComm-

unication

«references»

«references»

emcyBrake
Warning

Message

Reception

sa:

Situation

Analysis

Msg.

Send

...

v2x:
V2XComm-

unication

Figure B.15: Specification excerpt of semantics for access to communication channels including example models301

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

trajectoryBeaconmsgCreateEvt

trajectoryBeaconmsgSendEvt

emcyBrakeWarningmsgCreateEvt

DSRCAccessanyMsgReceive

DSRCAccessacquire

0 5

t

10

legend

clock relation
SubClock

trajectoryBeaconmsgReceiveEvt

emcyBrakeWarningmsgReceiveEvt

emcyBrakeWarningmsgSendEvt

clock t ck

DSRCAccessanyMsgSend

clock expression
Union

MoCCML-Relat on
ExclusiveResource-
Access: State “Locked”
(i.e., DSRCAccess blocked)

MoCCML-Relat ion
ExclusiveResource-
Access: Triggers transition
from State “Free” to “Locked”

MoCCML-Relat ion
ExclusiveResource-
Access: Triggers transition
from State “Locked” to “Free”

MoCCML-Relat ion
ExclusiveResource-
Access: State “Free”

Figure B.16: Exemplary CCSL run simulating exclusive communication channel access

302

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

Abstract Syntax

«profile» TAM

Mapping Specification

context ObjectSystemMessage
...
def: taskStartEvt: Event
def: taskCompleteEvt: Event

inv claimResourcesOnTaskStart:
let accessedResources: Set(TamAccessibleResource) =

getAccessedResources() in
let acquireAllResources: Event =

Expression Intersection (accessedResources.acquire)

Relation SubClock (self.taskStartEvt, acquireAllResources)
...

context TamAccessibleResource

def: acquire: Event

inv acquireAccessibleResourceOnTaskStart:
/* get all object system messages associating the TamOperation that
has a TamResourceAccess to the context TamAccessibleResource */
let relevantObjSysMsgs: Set(ObjectSystemMessage) =

getRelevantObjectSystemMessages() in
let anyTaskStart: Event =

Expression Union (relevantObjSysMsgs.taskStartEvt) in
let anyTaskComplete: Event =

Expression Union (relevantObjSysMsgs.taskCompleteEvt) in

Relation ExclusiveResourceAccess (

self.aquire, anyTaskStart, anyTaskComplete)

Semantic Constraints

User-defined Constraints

Pre-defined Constraints

Expression Intersection (clocks: Set(Clock)): Clock {...}

Relation SubClock (subClock: Clock, superClock: Clock) {...}

Expression Union (clocks: Set(Clock)): Clock {...}

«stereotype»

Object

SystemMessage

MoCCML-Relation ExclusiveResourceAccess (

occupy: Clock, startUsage: Clock, endUsage: Clock)

occupy,
startUsage

Free Locked

endUsage

CCSL Model

M2

M1

Platform-specific MSD Specification

Clock VicinityVehiclesTble_acquire
Clock obstacle_taskStartEvt
Clock obstacle_taskCompleteEvt
Expression obstacle_acquireAllResources = Intersection (

clocks->{VicinityVehiclesTble_acquire, ...}),
Relation obstacle_claimConnectionOnMsgSending

[SubClock] (subClock->obstacle_taskStartEvt,
 superClock->obstacle_acquireAllResources)

Clock trajectoryBeacon_taskStartEvt
Clock trajectoryBeacon_taskCompleteEvt
Expression trajectoryBeacon_acquireAllResources = Intersection (

clocks->{VicinityVehiclesTble_acquire, ...}),
Relation trajectoryBeacon_claimConnectionOnMsgSending

[SubClock] (subClock->trajectoryBeacon_taskStartEvt,
 superClock->trajectoryBeacon_acquireAllResources)

Expression VicinityVehiclesTble_anyTaskStart = Union (
 clocks->{obstacle_taskStartEvt, trajectoryBeacon_taskStartEvt, ...})
Expression VicinityVehiclesTble_anyTaskComplete = Union (

clocks->{obstacle_taskCompleteEvt,
 trajectoryBeacon_taskCompleteEvt...})

Relation VicinityVehiclesTble_acquireAccessible-
ResourceOnTaskStart [ExclusiveResourceAccess] (

occupy->VicinityVehiclesTble_acquire,
startUsage->VicinityVehiclesTble_anyTaskStart,
endUsage->VicinityVehiclesTble_anyTaskComplete)

«instanceOf»

«uses»

«stereotype»
TamOperation

signature1

isExclusive: Boolean

«stereotype»

TamResourceAccess

resource
Accesses*

«stereotype»
TamAccessibleResource

resource

«stereotype»

TamSharedOSResource

EBEAS

obstacle

sa:

Situation

Analysis

...

Obstacle

Detection

sa:
Situation
Analysis

...

«allocate»

...

«TamECU» :µC1

«TamSharedOSResource»
:VicinityVehiclesTbl

represents

...

+ obstacle()

«interface»

ObstacleInfo

«TamOperation»

+ trajectoryBeacon()

«interface»

V2VMessages

isExclusive = true

«TamResourceAccess»
:VicVehTblAccessACC

resource
Accesses

resource
Accesses

resource

resource

isExclusive = true

«TamResourceAccess»
:VicVehTblAccessV2V

sa:

Situation

Analysis

trajectory
Beacon

...

Task Start

Task

Completion

...

«Tam

Operation»

type

type

Figure B.17: Specification excerpt of semantics for access to shared OS resources including example models303

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

obstaclemsgConsumeEvt

obstacletaskStartEvt

trajectoryBeaconmsgConsumeEvt

VicinityVehiclesTblanyTaskComplete

VicinityVeh clesTblacquire

0 5

t

10

legend

clock relation
SubClock

obstacletaskCompleteEvt

trajectoryBeacontaskCompleteEvt

trajectoryBeacontaskStartEvt

clock t ick

VicinityVeh clesTblanyTaskStart

MoCCML-Relat ion
ExclusiveResourceAccess :
State “Locked” (i.e.,
VicinityVeh clesTbl blocked)

obstacleacquireAllResources

trajectoryBeaconacquireAl Resources

clock
expression
Union

clock
expression
Intersection

MoCCML-Relat ion
ExclusiveResource-
Access: Triggers transition
from State “Locked” to “Free”

MoCCML-Relat ion
ExclusiveResource-
Access: Triggers transition
from State “Free” to “Locked”

MoCCML-Relat ion
ExclusiveResource-
Access: State “Free”

Figure B.18: Exemplary CCSL run simulating exclusive shared OS resource access

304

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage

def: msgCreateEvt: Event

context TamAssumptionMSD

inv sporadicPattern-minInterarrivalRate:
(self.pattern.isSporadic() and self.pattern::minArrivalRate <> -1)
implies (

let minInterarrivalRate: Integer = self.pattern::minArrivalRate in
let sporadicMinInterarrival: Event = Expression PeriodicOffsetP

(self.getModel().globalTime, minInterarrivalRate) in
let initialMSDMsg: ModalMessage = self.getInitialMessage() in
let initialObjSysMsg: ObjectSystemMessage =

initialMSDMsg.getObjectSystemMessage() in

Relation NonStrictPrecedes (
sporadicMinInterarrival, initialObjSysMsg.msgCreateEvt)

)

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS Clock globalTime

Clock obstacle_msgCreateEvt

Integer ObstacleArrivalRate.minInterarrivalRate = 3

Expression ObstacleArrivalRate_sporadicMinInterarrival
= PeriodicOffsetP (

baseClock->globalTime,

period->ObstaclePattern.minInterarrivalRate)

Relation ObstacleArrivalRate_sporadicPattern_minInterarrivalRate
[NonStrictPrecedes] (

leftClock->ObstacleArrivalRate_sporadicMinInterarrival,

rightClock->obstacle_msgCreateEvt)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «uses»

msd ObstacleArrivalRate

obstacle

:Situation

Analysis

:Adaptive
Cruise
Control

Message

Creation

Semantic Constraints

Pre-defined Constraints

Expression PeriodicOffsetP
 (baseClock: Clock, period: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«references»

«TamAssumptionMSD»
pattern =
 TamSporadicPattern {
 minArrivalRate = 3ms
 }

«profile» TAM

«references»

pattern:
 TamArrivalPattern

«stereotype»
TamAssumptionMSD «references»

«stereotype»

TamArrival

Pattern

maxArrivalRate:
 NFP_Duration

«stereotype»
TamSporadicPattern

«stereotype»

ObjectSystemMessage

msdMessages

*

«stereotype»

Modal::ModalMessage

Figure B.19: Specification excerpt of semantics for sporadic arrival patterns with minimum arrival rate including example models

305

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

ObstacleArrivalRatesporadicMinInterarr ival

0 5

t

10

legend

clock t ick

obstaclemsgCreateEvt

globalTime

clock relation
NonStrictPrecedes

clock expression
PeriodicOffsetP

Figure B.20: Example—sporadic arrival pattern with minimum arrival rate in CCSL

306

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage

def: msgCreateEvt: Event

context TamAssumptionMSD

inv sporadicPattern-maxInterarrivalRateOnly:
(self.pattern.isSporadic() and self.pattern::maxArrivalRate <> -1 and

self.pattern::minArrivalRate = -1) implies (
let maxInterarrivalRate: Integer = self.pattern::maxArrivalRate in
let sporadicMaxInterarrival: Event = Expression PeriodicOffsetP

(self.getModel().globalTime, maxInterarrivalRate) in
let initialMSDMsg: ModalMessage = self.getInitialMessage() in
let initialObjSysMsg: ObjectSystemMessage =

initialMSDMsg.getObjectSystemMessage() in

Relation NonStrictPrecedes (
initialObjSysMsg.msgCreateEvt, sporadicMaxInterarrival)

)

CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS Clock globalTime

Clock obstacle_msgCreateEvt

Integer ObstacleArrivalRate.maxInterarrivalRate = 5

Expression ObstacleArrivalRate_sporadicMaxInterarrival
= PeriodicOffsetP (

baseClock->globalTime,

period->ObstacleArrivalRate.maxInterarrivalRate)

Relation ObstacleArrivalRate_sporadicPattern-
maxInterarrivalRateOnly [NonStrictPrecedes] (

leftClock->obstacle_msgCreateEvt,

rightClock->ObstacleArrivalRate_sporadicMaxInterarrival)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf» «uses»

msd ObstacleArrivalRate

obstacle

:Situation

Analysis

:Adaptive
Cruise
Control

Message

Creation

Semantic Constraints

Pre-defined Constraints

Expression PeriodicOffsetP
 (baseClock: Clock, period: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

«references»

«TamAssumptionMSD»
pattern =
 TamSporadicPattern {
 maxArrivalRate = 5ms
 }

«profile» TAM

«references»

pattern:
 TamArrivalPattern

«stereotype»
TamAssumptionMSD «references»

«stereotype»

TamArrival

Pattern

maxArrivalRate:
 NFP_Duration

«stereotype»
TamSporadicPattern

«stereotype»

ObjectSystemMessage

msdMessages

*

«stereotype»

Modal::ModalMessage

Figure B.21: Specification excerpt of semantics for sporadic arrival patterns with maximum arrival rate including example models

307

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

ObstacleArrivalRatesporadicMaxInterarr ival

0 5

t

10

legend

clock t ick

obstaclemsgCreateEvt

globalTime

clock relation
NonStrictPrecedes

clock expression
PeriodicOffsetP

Figure B.22: Example—sporadic arrival pattern with maximum arrival rate in CCSL

308

B
.1

FurtherE
xam

ples
ofthe

M
SD

Sem
antics

forTim
ing

A
nalyses

«derivedFrom»

Abstract Syntax

«profile» TAM

Mapping Specification

context Model
def: globalTime: Event

context ObjectSystemMessage
def: msgCreateEvt: Event

context TamAssumptionMSD
inv sporadicPattern-minInterarrivalRate:

…
let minInterarrivalRate: Integer = self.pattern.minArrivalRate in
let sporadicMinInterarrival: Event = Expression PeriodicOffsetP

(self.getModel().globalTime, minInterarrivalRate) in
…

inv sporadicPattern-maxInterarrivalRateWithMinInterarrival:
(self.pattern.isSporadic() and self.pattern::maxArrivalRate <> -1 and

self.pattern::minArrivalRate <> -1) implies (
let minMaxInterarrivalRateDiff: Integer =

self.pattern::maxArrivalRate – self.pattern::minArrivalRate in
let sporadicMinMaxInterarrivalDiff: Event =

Expression DelayFor (self.getModel().globalTime,
sporadicMinInterarrival, minMaxInterarrivalRateDiff)

let initialMSDMsg: ModalMessage = self.getInitialMessage() in
let initialObjSysMsg: ObjectSystemMessage =

initialMSDMsg.getObjectSystemMessage() in

Relation NonStrictPrecedes (
initialObjSysMsg.msgCreateEvt, sporadicMaxInterarrivalDiff)

)
CCSL Model

M2

M1

Platform-specific MSD Specification

EBEAS

Clock globalTime
Clock obstacle_msgCreateEvt
Integer ObstacleArrivalRate.minInterarrivalRate = 3
Integer ObstacleArrivalRate.minMaxInterarrivalRateDiff = 2

Expression ObstacleArrivalRate_sporadicMinInterarrival
= PeriodicOffsetP (

baseClock->globalTime,
period->ObstaclePattern.minInterarrivalRate)

Expression ObstacleArrivalRate_sporadicMinMaxInterarrivalDiff
= DelayFor (

clockForCounting->globalTime,
clockToDelay->ObstacleArrivalRate_sporadicMinInterarrival,
delay->ObstacleArrivalRate.minMaxInterarrivalRateDiff)

Relation ObstacleArrivalRate_sporadicPattern-
maxInterarrivalRateWithMinInterarrival [NonStrictPrecedes] (

leftClock->obstacle_msgCreateEvt,
rightClock->ObstacleArrivalRate_sporadicMinMaxInterarrivalDiff

)

«transformation»

MSD-to-CCSL

QVT-O

Transformation

«instanceOf»

«uses»

msd ObstacleArrivalRate

obstacle

:Situation

Analysis

:Adaptive
Cruise
Control

Message

Creation

Semantic Constraints

Pre-defined Constraints

Expression PeriodicOffsetP
 (baseClock: Clock, period: Integer): Clock {...}

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}«stereotype»

TamArrival

Pattern
minArrivalRate:
 NFP_Duration
maxArrivalRate:
 NFP_Duration

«stereotype»
TamSporadicPattern

«references»

«TamAssumptionMSD»
pattern =
 TamSporadicPattern {
 minArrivalRate = 3ms
 maxArrivalRate = 5ms
 }

«references»

pattern:
 TamArrivalPattern

«stereotype»
TamAssumptionMSD

«references»

«stereotype»

ObjectSystemMessage

msdMessages

*

«stereotype»

Modal::ModalMessage

Figure B.23: Specification excerpt of semantics for sporadic arrival patterns with both minimum and maximum arrival rate including example
models

309

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

ObstacleArrivalRatesporadicMinInterarr ival

0 5

t

10

legend

obstaclemsgCreateEvt

clock t ick

ObstacleArrivalRatesporadicMinMaxInterarriva Diff

globalTime

clock relation
NonStrictPrecedes

clock expression
PeriodicOffsetP

clock expr.
DelayFor

Figure B.24: Example—sporadic arrival pattern with both minimum and maximum arrival rate
in CCSL

310

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

B.2 Complete MSD Semantics for Timing Analyses: ECL
Mapping Specification and User-defined MoCCML
Relations

Listing B.1: ECL pseudocode for the overall MSD specification
1 c o n t e x t M S D S p e c i f i c a t i o n
2 / * The r e f e r e n c e c l o c k . T i c k s a lways s i n c e no c o n s t r a i n t s are a p p l i e d t o i t . * /
3 def : g l o b a l T i m e : Event

Listing B.2: ECL pseudocode for object system messages
1 c o n t e x t Objec tSys temMessage
2 def : msgCrea teEv t : Event
3 def : msgSendEvt : Event
4 def : msgReceiveEvt : Event
5 def : msgConsumeEvt : Event
6 def : t a s k S t a r t E v t : Event
7 def : t a s k C o m p l e t e E v t : Event
8 def : anyEvt : Event
9 def : t a s k S y n c F l a g : Event

10
11 / * E n f o r c e s msgCrea teEv t t o t i c k o n l y on t i c k s o f t h e g l o b a l T i m e DSE c l o c k o f

t h e MSD s p e c i f i c a t i o n (c f . Listing B.1) * /
12 inv c r e a t e E v t O n l y W i t h G l o b a l C l o c k :
13 R e l a t i o n SubClock (
14 subClock→ s e l f . msgCrea teEvt ,
15 superClock→ s e l f . ge tModel () . g l o b a l T i m e
16)
17
18 / * E n f o r c e s msgSendEvt t o t i c k o n l y on t i c k s o f t h e g l o b a l T i m e DSE c l o c k o f t h e

MSD s p e c i f i c a t i o n (c f . Listing B.1) * /
19 inv sendEv tOnlyWi thGloba lC lock :
20 R e l a t i o n SubClock (
21 subClock→ s e l f . msgSendEvt ,
22 superClock→ s e l f . ge tModel () . g l o b a l T i m e
23)
24
25 / * E n f o r c e s msgRece i veEv t t o t i c k o n l y on t i c k s o f t h e g l o b a l T i m e DSE c l o c k o f

t h e MSD s p e c i f i c a t i o n (c f . Listing B.1) * /
26 inv r e c e i v e E v t O n l y W i t h G l o b a l C l o c k :
27 R e l a t i o n SubClock (
28 subClock→ s e l f . msgReceiveEvt ,
29 superClock→ s e l f . ge tModel () . g l o b a l T i m e
30)
31
32 / * E n f o r c e s msgConsumeEvt t o t i c k o n l y on t i c k s o f t h e g l o b a l T i m e DSE c l o c k o f

t h e MSD s p e c i f i c a t i o n (c f . Listing B.1) * /
33 inv consumeEvtOnlyWithGloba lClock :
34 R e l a t i o n SubClock (
35 subClock→ s e l f . msgConsumeEvt ,
36 superClock→ s e l f . ge tModel () . g l o b a l T i m e
37)
38
39 / * E n f o r c e s t a s k S t a r t E v t t o t i c k o n l y on t i c k s o f t h e g l o b a l T i m e DSE c l o c k o f

t h e MSD s p e c i f i c a t i o n (c f . Listing B.1) * /
40 inv t a s k S t a r t E v t O n l y W i t h G l o b a l C l o c k :
41 R e l a t i o n SubClock (
42 subClock→ s e l f . t a s k S t a r t E v t ,
43 superClock→ s e l f . ge tModel () . g l o b a l T i m e
44)
45

311

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

46 / * E n f o r c e s t a s k C o m p l e t e E v t t o t i c k o n l y on t i c k s o f t h e g l o b a l T i m e DSE c l o c k o f
t h e MSD s p e c i f i c a t i o n (c f . Listing B.1) * /

47 inv t a s k C om p le t e Ev t O n l y Wi t h Gl o ba l C lo c k :
48 R e l a t i o n SubClock (
49 subClock→ s e l f . t a skComple t eEv t ,
50 superClock→ s e l f . ge tModel () . g l o b a l T i m e
51)
52
53 inv a n y E v e n t T r i g g e r i n g :
54 / * d e f i n e a new c l o c k t h a t t i c k s on t h e t i c k o f any o f t h e message e v e n t DSE

c l o c k s * /
55 l e t a l l E v e n t s : Event = Express ion Union (
56 clocks→{ s e l f . msgCrea teEvt , s e l f . msgSendEvt , s e l f . msgReceiveEvt , s e l f .

msgConsumeEvt , s e l f . t a s k S t a r t E v t , s e l f . t a s k C o m p l e t e E v t }
57) in
58 / * l e t t h e anyEv t DSE c l o c k t i c k t o g e t h e r w i t h t h e a l l E v e n t s c l o c k * /
59 R e l a t i o n Coinc ides (
60 clock1→ s e l f . anyEvt ,
61 clock2→ a l l E v e n t s
62)
63
64 inv c l a i m C o r e O n T a s k S t a r t :
65 / * g e t t h e TamScheduler o f t h e TamRTOS o f t h e TamECU t h a t t h e s o f t w a r e

component i s a l l o c a t e d t o * /
66 l e t r e l e v a n t S c h e d u l e r : TamScheduler = g e t R e l e v a n t S c h e d u l e r () in
67 / * l e t t h e t a s k S t a r t E v t DSE c l o c k o n l y t i c k i f t h e d i s p a t c h DSE c l o c k o f t h e

c o r r e s p o n d i n g TamScheduler can t i c k (c f . Listing B.4) * /
68 R e l a t i o n SubClock (
69 subClock→ s e l f . t a s k S t a r t E v t ,
70 superClock→ r e l e v a n t S c h e d u l e r . d i s p a t c h
71)
72
73 inv n o n P r e e m p t i v e F i x e d P r i o r i t y P o l i c y _ n o I n t e r f e r e n c e W i t h H i g h e r P r i o T a s k s :
74 / * g e t a l l o b j e c t s y s t e m messages c o r r e s p o n d i n g t o TamOperat ions o f a l l

s o f t w a r e components d e p l o y e d t o t h e same ECU, where t h e s e TamOperat ions
have a h i g h e r p r i o r i t y t han t h e TamOperat ion o f t h e c o n t e x t o b j e c t s y s t e m
message * /

75 l e t h i g h e r P r i o T a s k O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =
g e t R e l e v a n t H i g h e r P r i o T a s k O b j e c t S y s t e m M e s s a g e s () in

76 / * d e f i n e a new c l o c k t h a t t i c k s o n l y when t h e r e i s no h i g h e r p r i o t a s k t h a t i s
ready t o e x e c u t e . That i s , i f any h i g h e r p r i o t a s k i s i n t h e s t a t e “Ready

t o E x e c u t e ” o f t h e MoCCML r e l a t i o n “ N o n P r e e m p t i v e F i x e d P r i o r i t y T a s k R e a d i n e s s
” (c f . Figure B.25 and i n v a r i a n t
n o n P r e e m p t i v e F i x e d P r i o r i t y P o l i c y _ s y n c W i t h L o w e r P r i o T a s k s) , t h i s c l o c k does
n o t t i c k . * /

77 l e t noHighe rPr ioTaskReady : Event = Express ion I n t e r s e c t i o n (
clocks→h i g h e r P r i o T a s k O b j e c t S y s t e m M e s s a g e s . t a s k S y n c F l a g) in

78 / * a l l o w t h e t a s k S t a r t E v t o f t h e c o n t e x t o b j e c t s y s t e m message t o t i c k o n l y on
t i c k s o f noHigherPr ioTaskReady (i . e . , t h e t a s k c o r r e s p o n d i n g t o t h e
c o n t e x t s y s t e m messages i s a l l o w e d o n l y t o s t a r t when t h e r e i s no h i g h e r
p r i o r i t y t a s k ready t o e x e c u t e) . The TamScheduler (c f . Listing B.4) f u r t h e r
d e c i d e s abou t whe ther t a s k S t a r t E v t i s a l l o w e d t o t i c k (i . e . , i t d e t e r m i n e s

whe ther t h e c o r r e s p o n d i n g p r o c e s s i n g u n i t i s f r e e and hence t h e t a s k can
be d i s p a t c h e d) . * /

79 R e l a t i o n SubClock (
80 subClock→ s e l f . t a s k S t a r t E v t ,
81 superClock→noHighe rPr ioTaskReady
82)
83
84 inv n o n P r e e m p t i v e F i x e d P r i o r i t y P o l i c y _ s y n c W i t h L o w e r P r i o T a s k s :
85 / * a l l o w s t h e t a s k S y n c F l a g o f t h e c o n t e x t o b j e c t s y s t e m message t o t i c k o n l y i n

t h e s t a t e “ I d l e or Running” (c f . MoCCML r e l a t i o n i n Figure B.25) * /
86 R e l a t i o n NonPreempt iveFixedPrior i tyTaskReadiness (
87 lowerPrioTaskAllowedToBeDispatched→ s e l f . t a s k S y n c F l a g ,
88 msgConsume→ s e l f . msgConsumeEvt ,
89 taskStart→ s e l f . t a s k S t a r t E v t

312

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

90)
91
92 inv c la imConnec t ionOnMsgSending :
93 l e t a l l o c a t e d C o n n e c t i o n : TamComConnection = g e t A l l o c a t e d C o n n e c t i o n () in
94 / * l e t t h e msgSendEvt DSE c l o c k o n l y t i c k i f t h e a c q u i r e DSE c l o c k o f t h e

c o r r e s p o n d i n g TamComConnection can t i c k (c f . Listing B.5) * /
95 R e l a t i o n SubClock (
96 subClock→ s e l f . msgSendEvt ,
97 superClock→ a l l o c a t e d C o n n e c t i o n . a c q u i r e
98)
99

100 inv c l a i m R e s o u r c e s O n T a s k S t a r t :
101 / * g e t a l l T a m A c c e s s i b l e R e s o u r c e s t h a t t h e a s s o c i a t e d TamOperat ion has a

TamResourceAccess t o * /
102 l e t a c c e s s e d R e s o u r c e s : Set (TamComConnection) = g e t A c c e s s e d R e s o u r c e s () in
103 / * l e t t h e t a s k S t a r t E v t DSE c l o c k o n l y t i c k i f a l l a c q u i r e DSE c l o c k s o f t h e

c o r r e s p o n d i n g T a m A c c e s s i b l e R e s o u r c e s can t i c k (c f . Listing B.6) * /
104 l e t a c q u i r e A l l R e s o u r c e s : Event = Express ion I n t e r s e c t i o n (clocks→ a c c e s s e d R e s o u r c e s

. a c q u i r e) in
105 R e l a t i o n SubClock (
106 subClock→ s e l f . t a s k S t a r t E v t ,
107 superClock→ a c q u i r e A l l R e s o u r c e s
108)
109
110 inv minDispa t chDe lay :
111 / * c f . Equation (4.5) on Page 169 and Equation (4.6) on Page 170 * /
112 l e t minDispa tchTime : I n t e g e r = s e l f . ge tMinDispa tchTime () in
113 l e t msgCrea t ionDelayedByMinDispa tchTime : Event = Express ion DelayFor (
114 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
115 clockToDelay→ s e l f . msgCrea teEvt ,
116 delay→minDispa tchTime)) in
117 R e l a t i o n N on St r i c tP re ce de s (
118 leftClock→msgCrea t ionDelayedByMinDispatchTime ,
119 rightClock→ s e l f . msgSendEvt
120)
121
122 inv maxDispa tchDelay :
123 / * c f . Equation (4.1) on Page 137 * /
124 l e t maxDispatchTime : I n t e g e r = s e l f . ge tMaxDispatchTime () in
125 l e t msgCreat ionDelayedByMaxDispatchTime : Event = Express ion DelayFor (
126 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
127 clockToDelay→ s e l f . msgCrea teEvt ,
128 delay→maxDispatchTime)) in
129 R e l a t i o n N on St r i c tP re ce de s (
130 leftClock→ s e l f . msgSendEvt ,
131 rightClock→msgCreat ionDelayedByMaxDispatchTime
132)
133
134 inv minSendDelay :
135 / * c f . Equation (4.8) on Page 171 and Equation (4.9) on Page 171 * /
136 l e t minTransmiss ionTime : I n t e g e r = s e l f . g e tMinTransmis s ionT ime () in
137 l e t msgSendingDelayedByMinTransmiss ionTime : Event = Express ion DelayFor (
138 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
139 clockToDelay→ s e l f . msgSendEvt ,
140 delay→minTransmiss ionTime)) in
141 R e l a t i o n N on St r i c tP re ce de s (
142 leftClock→msgSendingDelayedByMinTransmiss ionTime ,
143 rightClock→ s e l f . msgReceiveEvt
144)
145
146 inv maxSendDelay :
147 / * c f . Equation (4.2) on Page 138 * /
148 l e t maxTransmiss ionTime : I n t e g e r = s e l f . ge tMaxTransmiss ionTime () in
149 l e t msgSendingDelayedByMaxTransmiss ionTime : Event = Express ion DelayFor (
150 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
151 clockToDelay→ s e l f . msgSendEvt ,

313

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

152 delay→maxTransmiss ionTime)) in
153 R e l a t i o n N on St r i c tP re ce de s (
154 leftClock→ s e l f . msgReceiveEvt ,
155 rightClock→msgSendingDelayedByMaxTransmiss ionTime
156)
157
158 inv minConsumptionDelay :
159 / * c f . Equation (4.11) on Page 172 and Equation (4.12) on Page 172 * /
160 l e t minConsumptionTime : I n t e g e r = s e l f . getMinConsumptionTime () in
161 l e t msgRecept ionDelayedByMinConsumptionTime : Event = Express ion DelayFor (
162 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
163 clockToDelay→ s e l f . msgReceiveEvt ,
164 delay→minConsumptionTime)) in
165 R e l a t i o n N on St r i c tP re ce de s (
166 leftClock→msgReceptionDelayedByMinConsumptionTime ,
167 rightClock→ s e l f . msgConsumeEvt
168)
169
170 inv maxConsumptionDelay
171 / * c f . Equation (4.3) on Page 138 * /
172 l e t maxConsumptionTime : I n t e g e r = s e l f . getMaxConsumptionTime () in
173 l e t msgReceptionDelayedByMaxConsumptionTime : Event = Express ion DelayFor (
174 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
175 clockToDelay→ s e l f . msgReceiveEvt ,
176 delay→maxConsumptionTime)) in
177 R e l a t i o n N on St r i c tP re ce de s (
178 leftClock→ s e l f . msgConsumeEvt ,
179 rightClock→smsgRecept ionDelayedByMaxConsumptionTime
180)
181
182 inv minExecu t ionDe lay :
183 / * c f . Equation (4.13) on Page 173 * /
184 l e t minExecut ionTime : I n t e g e r = s e l f . getMinExecTime () in
185 l e t t a skS ta r tDe layedByMinExecTime : Event = Express ion DelayFor (
186 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
187 clockToDelay→ s e l f . t a s k S t a r t E v t ,
188 delay→minExecut ionTime)) in
189 R e l a t i o n N on St r i c tP re ce de s (
190 leftClock→ t a skS ta r tDe layedByMinExecTime ,
191 rightClock→ s e l f . t a s k C o m p l e t e E v t
192)
193
194 inv maxExecut ionDelay :
195 / * c f . Equation (4.4) on Page 138 * /
196 l e t maxExecut ionTime : I n t e g e r = s e l f . getMaxExecTime () in
197 l e t t a skSta r tDe layedByMaxExecTime : Event = Express ion DelayFor (
198 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
199 clockToDelay→ s e l f . t a s k S t a r t E v t ,
200 delay→maxExecut ionTime)) in
201 R e l a t i o n N on St r i c tP re ce de s (
202 leftClock→ s e l f . t a skComple t eEv t ,
203 rightClock→ t a skSta r tDe layedByMaxExecTime
204)
205
206 / * s t a t e space r e d u c t i o n : a l l o w o b j e c t s y s t e m message c l o c k s o n l y t o t i c k when

c o r r e s p o n d i n g u n i f i c a t i o n o c c u r r e n c e c l o c k can t i c k * /
207 inv m s g C r e a t e E v t O n l y O n M s g C r e a t e U n i f i c a t i o n :
208 l e t m s g C r e a t e U n i f i c a t i o n O c c u r r e n c e : Event = Express ion Union (
209 clocks→ s e l f . msdMessages . m s g C r e a t e U n i f i c a t i o n
210) in
211 R e l a t i o n SubClock (
212 subClock→ s e l f . msgCrea teEvt ,
213 superClock→m s g C r e a t e U n i f i c a t i o n O c c u r r e n c e
214)
215

314

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

216 / * s t a t e space r e d u c t i o n : a l l o w o b j e c t s y s t e m message c l o c k s o n l y t o t i c k when
c o r r e s p o n d i n g u n i f i c a t i o n o c c u r r e n c e c l o c k can t i c k * /

217 inv msgSendEvtOnlyOnMsgSendUnif ica t ion :
218 l e t m s g S e n d U n i f i c a t i o n O c c u r r e n c e : Event = Express ion Union (
219 clocks→ s e l f . msdMessages . m s g S e n d U n i f i c a t i o n
220) in
221 R e l a t i o n SubClock (
222 subClock→ s e l f . msgSendEvt ,
223 superClock→m s g S e n d U n i f i c a t i o n O c c u r r e n c e
224)
225
226 / * s t a t e space r e d u c t i o n : a l l o w o b j e c t s y s t e m message c l o c k s o n l y t o t i c k when

c o r r e s p o n d i n g u n i f i c a t i o n o c c u r r e n c e c l o c k can t i c k * /
227 inv msgRece iveEv tOnlyOnMsgRece iveUni f i ca t ion :
228 l e t m s g R e c e i v e U n i f i c a t i o n O c c u r r e n c e : Event = Express ion Union (
229 clocks→ s e l f . msdMessages . m s g R e c e i v e U n i f i c a t i o n
230) in
231 R e l a t i o n SubClock (
232 subClock→ s e l f . msgReceiveEvt ,
233 superClock→msgSendRece iveOccur rence
234)
235
236 / * s t a t e space r e d u c t i o n : a l l o w o b j e c t s y s t e m message c l o c k s o n l y t o t i c k when

c o r r e s p o n d i n g u n i f i c a t i o n o c c u r r e n c e c l o c k can t i c k * /
237 inv msgConsumeEvtOnlyOnMsgConsumeUnification :
238 l e t msgConsumeUni f i c a t i onOccu r r ence : Event = Express ion Union (
239 clocks→ s e l f . msdMessages . msgConsumeUni f i ca t ion
240) in
241 R e l a t i o n SubClock (
242 subClock→ s e l f . msgConsumeEvt ,
243 superClock→msgConsumeOccurrence
244)
245
246 / * s t a t e space r e d u c t i o n : a l l o w o b j e c t s y s t e m message c l o c k s o n l y t o t i c k when

c o r r e s p o n d i n g u n i f i c a t i o n o c c u r r e n c e c l o c k can t i c k * /
247 inv t a s k S t a r t E v t O n l y O n T a s k S t a r t U n i f i c a t i o n :
248 l e t t a s k S t a r t U n i f i c a t i o n O c c u r r e n c e : Event = Express ion Union (
249 clocks→ s e l f . msdMessages . t a s k S t a r t U n i f i c a t i o n
250) in
251 R e l a t i o n SubClock (
252 subClock→ s e l f . t a s k S t a r t E v t ,
253 superClock→ t a s k S t a r t O c c u r r e n c e
254)
255
256 / * s t a t e space r e d u c t i o n : a l l o w o b j e c t s y s t e m message c l o c k s o n l y t o t i c k when

c o r r e s p o n d i n g u n i f i c a t i o n o c c u r r e n c e c l o c k can t i c k * /
257 inv t a s k C o m p l e t e E v t O n l y O n T a s k C o m p l e t e U n i f i c a t i o n :
258 l e t t a s k C o m p l e t e U n i f i c a t i o n O c c u r r e n c e : Event = Express ion Union (
259 clocks→ s e l f . msdMessages . t a s k C o m p l e t e U n i f i c a t i o n
260) in
261 R e l a t i o n SubClock (
262 subClock→ s e l f . t a skComple t eEv t ,
263 superClock→ t a s k C o m p l e t e O c c u r r e n c e
264)

Listing B.3: ECL pseudocode for MSD messages
1 c o n t e x t ModalMessage
2 def : m s g C r e a t e U n i f i c a t i o n : Event
3 def : m s g S e n d U n i f i c a t i o n : Event
4 def : m s g R e c e i v e U n i f i c a t i o n : Event
5 def : msgConsumeUni f i ca t ion : Event
6 def : t a s k S t a r t U n i f i c a t i o n : Event
7 def : t a s k C o m p l e t e U n i f i c a t i o n : Event
8

315

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

MoCCML-Relation
 NonPreemptiveFixedPriorityTaskReadiness (
 lowerPrioTaskAllowedToBeDispatched: Clock,
 msgConsume: Clock, taskStart: Clock
)

msgConsume /

Idle or

Running

Ready to

Execute

taskStart /

lowerPrioTaskAllowedToBeDispatched /

Figure B.25: MoCCML relation NonPreemptiveFixedPriorityTaskReadiness

9 inv u n i f i c a t i o n O r d e r H o t :
10 s e l f . i s H o t () i m p l i e s
11 / * c f . MoCCML r e l a t i o n i n Figure B.26(a) * /
12 R e l a t i o n U n i f i c a t i o n O r d e r R e l a t i o n H o t (
13 msgCreateUnification→ s e l f . m s g C r e a t e U n i f i c a t i o n ,
14 msgSendUnification→ s e l f . m s g S e n d U n i f i c a t i o n ,
15 msgReceiveUnification→ s e l f . m s g R e c e i v e U n i f i c a t i o n ,
16 msgConsumeUnification→ s e l f . msgConsumeUnif ica t ion ,
17 taskStartUnification→ s e l f . t a s k S t a r t U n i f i c a t i o n ,
18 taskCompleteUnification→ s e l f . t a s k C o m p l e t e U n i f i c a t i o n ,
19)
20)
21
22 inv u n i f i c a t i o n O r d e r C o l d :
23 s e l f . i s C o l d () i m p l i e s (
24 / * a l l r e m a i n i n g MSD messages i n t h e p a r e n t MSD o f t h e c o n t e x t MSD message * /
25 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
26 / * a l l o b j e c t s y s t e m messages f o r t h e n o t e n a b l e d MSD messages * /
27 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
28 / * d e f i n e a new c l o c k t i c k i n g t o g e t h e r w i t h t h e anyEv t c l o c k f o r t h e n o t

e n a b l e d o b j e c t s y s t e m messages * /
29 l e t t e r m i n a t e : Event = Express ion Union (
30 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
31) in
32 / * c f . MoCCML r e l a t i o n i n Figure B.26(b) * /
33 R e l a t i o n U n i f i c a t i o n O r d e r R e l a t i o n C o l d (
34 msgCreateUnification→ s e l f . m s g C r e a t e U n i f i c a t i o n ,
35 msgSendUnification→ s e l f . m s g S e n d U n i f i c a t i o n ,
36 msgReceiveUnification→ s e l f . m s g R e c e i v e U n i f i c a t i o n ,
37 msgConsumeUnification→ s e l f . msgConsumeUnif ica t ion ,
38 taskStartUnification→ s e l f . t a s k S t a r t U n i f i c a t i o n ,
39 taskCompleteUnification→ s e l f . t a s k C o m p l e t e U n i f i c a t i o n ,
40 terminate→ t e r m i n a t e
41)
42)
43
44 / * Chains t a s k c o m p l e t i o n u n i f i c a t i o n o c c u r r e n c e and message c r e a t i o n

u n i f i c a t i o n o c c u r r e n c e o f two c o n s e c u t i v e MSD messages i n one MSD * /
45 inv m es sa ge Pr ec ed en ce :
46 not s e l f . i s I n i t i a l M e s s a g e () i m p l i e s (
47 l e t p r e c e d i n g M e s s a g e : Message = s e l f . g e t P r e c e d i n g M e s s a g e () in
48 R e l a t i o n Precedes (
49 leftClock→p r e c e d i n g M e s s a g e . t a s k C o m p l e t e U n i f i c a t i o n ,
50 rightClock→ s e l f . m s g C r e a t e U n i f i c a t i o n
51)
52)
53
54 inv c r e a t e U n i f i c a t i o n I n i t i a l C o l d :

316

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

55 (s e l f . i s C o l d () and s e l f . i s I n i t i a l M e s s a g e ()) i m p l i e s (
56 l e t o b j ec t Sy s t e mM es s ag e = s e l f . g e tOb jec tSys t emMessage () in
57 R e l a t i o n Coinc ides (
58 clock1→o b j ec t Sy s t e mM e ss ag e . msgCrea teEvt ,
59 clock2→ s e l f . m s g C r e a t e U n i f i c a t i o n
60)
61)
62
63 inv c r e a t e U n i f i c a t i o n N o t i n i t i a l H o t :
64 (s e l f . i s H o t () and not s e l f . i s I n i t i a l M e s s a g e ()) i m p l i e s (
65 l e t o b j ec t Sy s t e mM es s ag e = s e l f . g e tOb jec tSys t emMessage () in
66 l e t p r e c e d i n g M e s s a g e : ModalMessage = s e l f . g e t P r e c e d i n g M e s s a g e () in
67 / * c f . MoCCML r e l a t i o n i n Figure B.27(a) * /
68 R e l a t i o n U n i f i c a t i o n R e l a t i o n H o t (
69 msgEvt→o b j ec t Sy s t e mM es s ag e . msgCrea teEvt ,
70 msgEvtUnification→ s e l f . m s g C r e a t e U n i f i c a t i o n ,
71 enableMsgEvtUnification→p r e c e d i n g M e s s a g e . t a s k C o m p l e t e U n i f i c a t i o n
72)
73)
74
75 inv c r e a t e U n i f i c a t i o n N o t i n i t i a l C o l d :
76 (s e l f . i s C o l d () and not s e l f . i s I n i t i a l M e s s a g e ()) i m p l i e s (
77 l e t o b j ec t Sy s t e mM es s ag e = s e l f . g e tOb jec tSys t emMessage () in
78 l e t p r e c e d i n g M e s s a g e : ModalMessage = s e l f . g e t P r e c e d i n g M e s s a g e () in
79 / * a l l r e m a i n i n g MSD messages i n t h e p a r e n t MSD o f t h e c o n t e x t MSD message * /
80 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
81 / * a l l o b j e c t s y s t e m messages f o r t h e n o t e n a b l e d MSD messages * /
82 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
83 / * d e f i n e a new c l o c k t i c k i n g t o g e t h e r w i t h t h e anyEv t c l o c k f o r t h e n o t

e n a b l e d o b j e c t s y s t e m messages * /
84 l e t t e r m i n a t e : Event = Express ion Union (
85 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
86) in
87 / * c f . MoCCML r e l a t i o n i n Figure B.27(b) * /
88 R e l a t i o n U n i f i c a t i o n R e l a t i o n C o l d (
89 msgEvt→o b j ec t Sy s t e mM es s ag e . msgCrea teEvt ,
90 msgEvtUnification→ s e l f . m s g C r e a t e U n i f i c a t i o n ,
91 enableMsgEvtUnification→p r e c e d i n g M e s s a g e . t a s k C o m p l e t e U n i f i c a t i o n ,
92 terminate→ t e r m i n a t e
93)
94)
95
96 inv s e n d U n i f i c a t i o n H o t :
97 s e l f . i s H o t () i m p l i e s (
98 l e t o b j ec t Sy s t e mM es s ag e = s e l f . g e tOb jec tSys t emMessage () in
99 / * c f . MoCCML r e l a t i o n i n Figure B.27(a) * /

100 R e l a t i o n U n i f i c a t i o n R e l a t i o n H o t (
101 msgEvt→o b j ec t Sy s t e mM es s ag e . msgSendEvt ,
102 msgEvtUnification→ s e l f . m s g S e n d U n i f i c a t i o n ,
103 enableMsgEvtUnification→ s e l f . m s g C r e a t e U n i f i c a t i o n
104)
105)
106
107 inv s e n d U n i f i c a t i o n C o l d :
108 s e l f . i s C o l d () i m p l i e s (
109 / * a l l r e m a i n i n g MSD messages i n t h e p a r e n t MSD o f t h e c o n t e x t MSD message * /
110 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
111 / * a l l o b j e c t s y s t e m messages f o r t h e n o t e n a b l e d MSD messages * /
112 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
113 / * d e f i n e a new c l o c k t i c k i n g t o g e t h e r w i t h t h e anyEv t c l o c k f o r t h e n o t

e n a b l e d o b j e c t s y s t e m messages * /
114 l e t t e r m i n a t e : Event = Express ion Union (

317

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

115 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
116) in
117 / * c f . MoCCML r e l a t i o n i n Figure B.27(b) * /
118 R e l a t i o n U n i f i c a t i o n R e l a t i o n C o l d (
119 msgEvt→o b j ec t Sy s t e mM e ss ag e . msgSendEvt ,
120 msgEvtUnification→ s e l f . m s g S e n d U n i f i c a t i o n ,
121 enableMsgEvtUnification→ s e l f . m s g C r e a t e U n i f i c a t i o n ,
122 terminate→ t e r m i n a t e
123)
124)
125
126 inv r e c e i v e U n i f i c a t i o n H o t :
127 s e l f . i s H o t () i m p l i e s (
128 l e t o b j ec t Sy s t e mM e ss ag e = s e l f . g e tOb jec tSys t emMessage () in
129 / * c f . MoCCML r e l a t i o n i n Figure B.27(a) * /
130 R e l a t i o n U n i f i c a t i o n R e l a t i o n H o t (
131 msgEvt→o b j ec t Sy s t e mM e ss ag e . msgReceiveEvt ,
132 msgEvtUnification→ s e l f . m s g R e c e i v e U n i f i c a t i o n ,
133 enableMsgEvtUnification→ s e l f . m s g S e n d U n i f i c a t i o n
134)
135)
136
137 inv r e c e i v e U n i f i c a t i o n C o l d :
138 s e l f . i s C o l d () i m p l i e s (
139 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
140 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
141 l e t t e r m i n a t e : Event = Express ion Union (
142 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
143) in
144 / * c f . MoCCML r e l a t i o n i n Figure B.27(b) * /
145 R e l a t i o n U n i f i c a t i o n R e l a t i o n C o l d (
146 msgEvt→o b j ec t Sy s t e mM e ss ag e . msgReceiveEvt ,
147 msgEvtUnification→ s e l f . m s g R e c e i v e U n i f i c a t i o n ,
148 enableMsgEvtUnification→ s e l f . m s g S e n d U n i f i c a t i o n ,
149 terminate→ t e r m i n a t e
150)
151)
152
153 inv c o n s u m e U n i f i c a t i o n H o t :
154 s e l f . i s H o t () i m p l i e s (
155 l e t o b j ec t Sy s t e mM e ss ag e = s e l f . g e tOb jec tSys t emMessage () in
156 / * c f . MoCCML r e l a t i o n i n Figure B.27(a) * /
157 R e l a t i o n U n i f i c a t i o n R e l a t i o n H o t (
158 msgEvt→o b j ec t Sy s t e mM e ss ag e . msgConsumeEvt ,
159 msgEvtUnification→ s e l f . msgConsumeUnif ica t ion ,
160 enableMsgEvtUnification→ s e l f . m s g R e c e i v e U n i f i c a t i o n
161)
162)
163
164 inv c o n s u m e U n i f i c a t i o n C o l d :
165 s e l f . i s C o l d () i m p l i e s (
166 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
167 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
168 l e t t e r m i n a t e : Event = Express ion Union (
169 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
170) in
171 / * c f . MoCCML r e l a t i o n i n Figure B.27(b) * /
172 R e l a t i o n U n i f i c a t i o n R e l a t i o n C o l d (
173 msgEvt→o b j ec t Sy s t e mM e ss ag e . msgConsumeEvt ,
174 msgEvtUnification→ s e l f . msgConsumeUnif ica t ion ,
175 enableMsgEvtUnification→ s e l f . m s g R e c e i v e U n i f i c a t i o n ,
176 terminate→ t e r m i n a t e

318

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

177)
178)
179
180 inv t a s k S t a r t U n i f i c a t i o n H o t :
181 s e l f . i s H o t () i m p l i e s (
182 l e t o b j ec t Sy s t e mM es s ag e = s e l f . g e tOb jec tSys t emMessage () in
183 / * c f . MoCCML r e l a t i o n i n Figure B.27(a) * /
184 R e l a t i o n U n i f i c a t i o n R e l a t i o n H o t (
185 msgEvt→o b j ec t Sy s t e mM es s ag e . t a s k S t a r t E v t ,
186 msgEvtUnification→ s e l f . t a s k S t a r t U n i f i c a t i o n ,
187 enableMsgEvtUnification→ s e l f . msgConsumeUni f i ca t ion
188)
189)
190
191 inv t a s k S t a r t U n i f i c a t i o n C o l d :
192 s e l f . i s C o l d () i m p l i e s (
193 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
194 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
195 l e t t e r m i n a t e : Event = Express ion Union (
196 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
197) in
198 / * c f . MoCCML r e l a t i o n i n Figure B.27(b) * /
199 R e l a t i o n U n i f i c a t i o n R e l a t i o n C o l d (
200 msgEvt→o b j ec t Sy s t e mM es s ag e . t a s k S t a r t E v t ,
201 msgEvtUnification→ s e l f . t a s k S t a r t U n i f i c a t i o n ,
202 enableMsgEvtUnification→ s e l f . msgConsumeUnif ica t ion ,
203 terminate→ t e r m i n a t e
204)
205)
206
207 inv t a s k C o m p l e t e U n i f i c a t i o n H o t :
208 s e l f . i s H o t () i m p l i e s (
209 l e t o b j ec t Sy s t e mM es s ag e = s e l f . g e tOb jec tSys t emMessage () in
210 / * c f . MoCCML r e l a t i o n i n Figure B.27(a) * /
211 R e l a t i o n U n i f i c a t i o n R e l a t i o n H o t (
212 msgEvt→o b j ec t Sy s t e mM es s ag e . t a skComple t eEv t ,
213 msgEvtUnification→ s e l f . t a s k C o m p l e t e U n i f i c a t i o n ,
214 enableMsgEvtUnification→ s e l f . t a s k S t a r t U n i f i c a t i o n
215)
216)
217
218 inv t a s k C o m p l e t e U n i f i c a t i o n C o l d :
219 s e l f . i s C o l d () i m p l i e s (
220 l e t no tEnab l edMessages : Set (Message) = s e l f . getMSD () . ge tNo tEnab ledMessages ()

in
221 l e t n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

no tEnab l edMessages . g e t O b j e c t S y s t e m M e s s a g e s () in
222 l e t t e r m i n a t e : Event = Express ion Union (
223 clocks→n o t E n a b l e d O b j e c t S y s t e m M e s s a g e s . anyEvt
224) in
225 / * c f . MoCCML r e l a t i o n i n Figure B.27(b) * /
226 R e l a t i o n U n i f i c a t i o n R e l a t i o n C o l d (
227 msgEvt→o b j ec t Sy s t e mM es s ag e . t a skComple t eEv t ,
228 msgEvtUnification→ s e l f . t a s k C o m p l e t e U n i f i c a t i o n ,
229 enableMsgEvtUnification→ s e l f . t a s k S t a r t U n i f i c a t i o n ,
230 terminate→ t e r m i n a t e
231)
232)

Listing B.4: ECL pseudocode for TamSchedulers
1 c o n t e x t TamScheduler
2 def : d i s p a t c h : Event

319

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

MoCCML-Relation
UnificationOrderRelationHot (
 msgCreateUnification: Clock,
 msgSendUnification: Clock,
 msgReceiveUnification: Clock,
 msgConsumeUnification: Clock,
 taskStartUnification: Clock,
 taskCompleteUnification: Clock)

1 2

msgCreate
Unification /

msgSend
Unification /

3

4

msgReceive
Unification /

5
msgConsume
Unification /

6
taskStart

Unification /

taskComplete
Unification /

(a) MoCCML relation UnificationOrderRelationHot

MoCCML-Relation UnificationOrderRelationCold (
 msgCreateUnification: Clock,
 msgSendUnification: Clock,
 msgReceiveUnification: Clock,
 msgConsumeUnification: Clock,
 taskStartUnification: Clock,
 taskCompleteUnification: Clock, terminate: Clock)

1 2

msgCreate
Unification /

msgSend
Unification /

3

4

msgReceive
Unification /

5
msgConsume
Unification /

6
taskStart

Unification /

taskComplete
Unification /

terminate /

terminate /

terminate /

terminate /

(b) MoCCML relation UnificationOrderRelationCold

Figure B.26: MoCCML relations for unification occurrence orders

MoCCML-Relation
UnificationRelationHot (
 msgEvt: Clock,
 msgEvtUnification: Clock,
 enableMsgEvtUnification: Clock)

enableMsg
EvtUnification /

msgEvt,
msgEvtUnification /

msgEvt /

(a) MoCCML relation UnificationRela-
tionHot

MoCCML-Relation UnificationRelationCold (
 msgEvt: Clock, msgEvtUnification: Clock
 enableMsgEvtUnification: Clock,
 terminate: Clock)

enableMsg
EvtUnification /

msgEvt,
msgEvtUnification /

msgEvt /

terminate /

terminate /

(b) MoCCML relation UnificationRelationCold

Figure B.27: MoCCML relations for unification

320

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

3
4 inv occupyCoreOnTaskS ta r t :
5 l e t numCores : I n t e g e r = g e t P r o c e s s i n g U n i t () : : numCores in
6 / * a l l o b j e c t s y s t e m messages incoming a t any s o f t w a r e component a l l o c a t e d t o

t h e TamECU c o n t a i n i n g t h e c o n t e x t TamScheduler * /
7 l e t r e l e v a n t O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

g e t R e l e v a n t O b j e c t S y s t e m M e s s a g e s () in
8 l e t a n y T a s k S t a r t : Event = Express ion Union (
9 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . t a s k S t a r t E v t

10) in
11 l e t anyTaskComple te : Event = Express ion Union (clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s

. t a s k C o m p l e t e E v t) in
12 / * c f . MoCCML r e l a t i o n i n Figure B.28 * /
13 R e l a t i o n NonPreemptiveTaskExecution (
14 occupy→ s e l f . d i s p a t c h ,
15 newTask→ a n y T a s k S t a r t ,
16 taskFinish→anyTaskComplete ,
17 numCores→numCores
18)
19
20 / * complement t o l a s t i n v a r i a n t : e n f o r c e t h a t o n l y one t a s k s t a r t s i n t h e case

o f m u l t i p l e t a s k s t h a t are s i m u l t a n e o u s l y ready t o s t a r t * /
21 inv o n l y O n e T a s k S t a r t :
22 / * a l l o b j e c t s y s t e m messages incoming a t any s o f t w a r e component a l l o c a t e d t o

t h e TamECU c o n t a i n i n g t h e c o n t e x t TamScheduler * /
23 l e t r e l e v a n t O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

g e t R e l e v a n t O b j e c t S y s t e m M e s s a g e s () in
24 / * e n f o r c e t h a t o n l y one t a s k S t a r t E v t DSE o f r e l e v a n t O b j e c t S y s t e m M e s s a g e s t i c k s

i n t h e case o f m u l t i p l e f i r e a b l e ones * /
25 R e l a t i o n Exc lus ion (
26 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . t a s k S t a r t E v t
27)

MoCCML-Relation NonPreemptiveTaskExecution (
 occupy: Clock, newTask: Clock, taskFinish: Clock,
 numCores: Integer)

occupy, newTask
[runningTasks + 1
== numCores] /
runningTasks++

Cores

Available

All Cores

Busy

taskFinish /
runningTasks--

taskFinish /
runningTasks--

occupy, newTask
[runningTasks + 1

< numCores] /
runningTasks++

local variable runningTasks: Integer = 0

Figure B.28: MoCCML relation NonPreemptiveTaskExecution

Listing B.5: ECL pseudocode for TamComConnections
1 c o n t e x t TamComConnection
2 def : a c q u i r e : Event
3
4 inv acqu i reConnec t ionOnMsgSend ing :
5 / * g e t a l l o b j e c t s y s t e m messages incoming a t any l o g i c a l c o n n e c t o r a l l o c a t e d

t o t h e c o n t e x t TamComConnection * /
6 l e t r e l e v a n t O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

g e t R e l e v a n t O b j e c t S y s t e m M e s s a g e s () in

321

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

7 l e t anyMsgSend : Event = Express ion Union (
8 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . msgSendEvt
9) in

10 l e t anyMsgReceive : Event = Express ion Union (
11 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . msgReceiveEvt
12) in
13 / * c f . MoCCML r e l a t i o n i n Figure B.29 * /
14 R e l a t i o n Exc lus iveResourceAcces s (
15 occupy→ s e l f . a q u i r e ,
16 startUseage→anyMsgSend ,
17 endUsage→anyMsgReceive
18)
19
20 / * complement t o l a s t i n v a r i a n t : e n f o r c e t h a t o n l y one message i s s e n t i n t h e

case o f m u l t i p l e messages t h a t are s i m u l t a n e o u s l y ready t o be s e n t * /
21 inv onlyOneMessageSend :
22 / * g e t a l l o b j e c t s y s t e m messages incoming a t any l o g i c a l c o n n e c t o r a l l o c a t e d

t o t h e c o n t e x t TamComConnection * /
23 l e t r e l e v a n t O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

g e t R e l e v a n t O b j e c t S y s t e m M e s s a g e s () in
24 / * e n f o r c e t h a t o n l y one msgSendEvt DSE o f r e l e v a n t O b j e c t S y s t e m M e s s a g e s t i c k s

i n t h e case o f m u l t i p l e f i r e a b l e ones * /
25 R e l a t i o n Exc lus ion (
26 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . msgSendEvt
27)

MoCCML-Relation ExclusiveResourceAccess (
 occupy: Clock, startUsage: Clock, endUsage: Clock
)

occupy,
startUsage

Free Locked

endUsage

Figure B.29: MoCCML relation ExclusiveResourceAccess

Listing B.6: ECL pseudocode for TamAccessibleResources
1 c o n t e x t TamAccess ib l eResou rce
2 def : a c q u i r e : Event
3
4 inv a c q u i r e A c c e s s i b l e R e s o u r c e O n T a s k S t a r t :
5 / * g e t a l l o b j e c t s y s t e m messages a s s o c i a t i n g t h e TamOperat ion t h a t has a

TamResourceAccess t o t h e c o n t e x t T a m A c c e s s i b l e R e s o u r c e * /
6 l e t r e l e v a n t O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

g e t R e l e v a n t O b j e c t S y s t e m M e s s a g e s () in
7 l e t a n y T a s k S t a r t : Event = Express ion Union (
8 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . t a s k S t a r t E v t
9) in

10 l e t anyTaskComple te : Event = Express ion Union (
11 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . t a s k C o m p l e t e E v t
12) in
13 / * c f . MoCCML r e l a t i o n i n Figure B.29 * /
14 R e l a t i o n Exc lus iveResourceAcces s (
15 occupy→ s e l f . a q u i r e ,
16 startUseage→ a n y T a s k S t a r t ,
17 endUsage→anyTaskComple te
18)
19
20 / * complement t o l a s t i n v a r i a n t : e n f o r c e t h a t o n l y one t a s k s t a r t s i n t h e case

o f m u l t i p l e t a s k s t h a t are s i m u l t a n e o u s l y ready t o s t a r t * /

322

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

21 inv o n l y O n e T a s k S t a r t :
22 / * a l l o b j e c t s y s t e m messages incoming a t any s o f t w a r e component a l l o c a t e d t o

t h e TamECU c o n t a i n i n g t h e c o n t e x t TamScheduler * /
23 l e t r e l e v a n t O b j e c t S y s t e m M e s s a g e s : Set (Objec tSys temMessage) =

g e t R e l e v a n t O b j e c t S y s t e m M e s s a g e s () in
24 / * e n f o r c e t h a t o n l y one t a s k S t a r t E v t DSE o f r e l e v a n t O b j e c t S y s t e m M e s s a g e s t i c k s

i n t h e case o f m u l t i p l e f i r e a b l e ones * /
25 R e l a t i o n Exc lus ion (
26 clocks→ r e l e v a n t O b j e c t S y s t e m M e s s a g e s . t a s k S t a r t E v t
27)

Listing B.7: ECL pseudocode for ClockResets
1 c o n t e x t C l o c k R e s e t
2
3 / * Hot t i m e c o n d i t i o n has t h e form c < v a l u e (maximal d e l a y) * /
4 inv r t R e q S t r i c t U p p e r B o u n d :
5 l e t t i m e C o n d i t i o n : S t r i n g = s e l f . g e t A s s o c i a t e d T i m e C o n d i t i o n () in
6 (t i m e C o n d i t i o n . i s H o t () and t i m e C o n d i t i o n . g e t O p e r a t o r () = “<”) i m p l i e s (
7 / * g e t messages b e f o r e c o n t e x t c l o c k r e s e t * /
8 l e t p r e c e d i n g M e s s a g e s : Set (ModalMessage) = s e l f . g e t P r e c e d i n g M e s s a g e s () in
9 / * g e t l a s t message r e c e p t i o n u n i f i c a t i o n o c c u r r e n c e b e f o r e c o n t e x t c l o c k

r e s e t * /
10 l e t p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n : Event = Express ion Sup (
11 clocks→p r e c e d i n g M e s s a g e s . m s g R e c e i v e U n i f i c a t i o n
12) in
13 / * g e t messages i n be tween c o n t e x t c l o c k r e s e t and t i m e c o n d i t i o n * /
14 l e t c o n s t r a i n e d M e s s a g e s : Set (ModalMessage) = s e l f . g e t M e s s a g e s U n t i l (

t i m e C o n d i t i o n) in
15 / * g e t l a s t t a s k c o m p l e t i o n u n i f i c a t i o n o c c u r r e n c e b e f o r e t i m e c o n d i t i o n * /
16 l e t c o n s t r a i n e d T a s k C o m p l e t e U n i f i c a t i o n : Event = Express ion Sup (
17 clocks→ c o n s t r a i n e d M e s s a g e s . t a s k C o m p l e t e U n i f i c a t i o n
18) in
19 / * d e f i n e a new e v e n t t h a t t i c k s t i m e C o n d i t i o n . g e t V a l u e () t i m e u n i t s a f t e r

t h e t i c k o f p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n * /
20 l e t upperBoundEvent : Event = Express ion DelayFor (
21 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
22 clockToDelay→ p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n ,
23 delay→ t i m e C o n d i t i o n . g e t V a l u e ()) in
24 / * e n f o r c e t h a t t h e l a s t t a s k c o m p l e t e u n i f i c a t i o n o c c u r r e n c e o f t h e

c o n s t r a i n e d MSD messages t i c k s b e f o r e upperBoundEvent . I f t h e s i m u l a t i o n
ca nn o t s o l v e t h i s , t h i s r e p r e s e n t s a r e a l− t i m e r e q u i r e m e n t v i o l a t i o n .

* /
25 R e l a t i o n Precedes (
26 leftClock→ c o n s t r a i n e d T a s k C o m p l e t e U n i f i c a t i o n ,
27 rightClock→upperBoundEvent
28)
29)
30
31 / * Hot t i m e c o n d i t i o n has t h e form c ≤ v a l u e (maximal d e l a y) * /
32 inv r tReqNonS t r i c tUppe rBound :
33 l e t t i m e C o n d i t i o n : S t r i n g = s e l f . g e t A s s o c i a t e d T i m e C o n d i t i o n () in
34 (t i m e C o n d i t i o n . i s H o t () and t i m e C o n d i t i o n . g e t O p e r a t o r () = “≤”) i m p l i e s (
35 l e t p r e c e d i n g M e s s a g e s : Set (ModalMessage) = s e l f . g e t P r e c e d i n g M e s s a g e s () in
36 l e t p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n : Event = Express ion Sup (
37 clocks→p r e c e d i n g M e s s a g e s . m s g R e c e i v e U n i f i c a t i o n
38) in
39 l e t c o n s t r a i n e d M e s s a g e s : Set (ModalMessage) = s e l f . g e t M e s s a g e s U n t i l (

t i m e C o n d i t i o n) in
40 l e t c o n s t r a i n e d T a s k C o m p l e t e U n i f i c a t i o n : Event = Express ion Sup (
41 clocks→ c o n s t r a i n e d M e s s a g e s . t a s k C o m p l e t e U n i f i c a t i o n
42) in
43 l e t upperBoundEvent : Event = Express ion DelayFor (
44 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
45 clockToDelay→ p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n ,

323

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

46 delay→ t i m e C o n d i t i o n . g e t V a l u e ()) in
47 / * e n f o r c e t h a t t h e l a s t t a s k c o m p l e t e u n i f i c a t i o n o c c u r r e n c e o f t h e

c o n s t r a i n e d MSD messages t i c k s b e f o r e or a t t h e same i n s t a n t t han
upperBoundEvent . I f t h e s i m u l a t i o n can no t s o l v e t h i s , t h i s r e p r e s e n t s a
r e a l− t i m e r e q u i r e m e n t v i o l a t i o n . * /

48 R e l a t i o n N on St r i c tP re ce de s (
49 leftClock→ c o n s t r a i n e d T a s k C o m p l e t e U n i f i c a t i o n ,
50 rightClock→upperBoundEvent
51)
52)
53
54 / * Hot t i m e c o n d i t i o n has t h e form c > v a l u e (min imal d e l a y) * /
55 inv r t R e q S t r i c t L o w e r B o u n d :
56 l e t t i m e C o n d i t i o n : S t r i n g = s e l f . g e t A s s o c i a t e d T i m e C o n d i t i o n () in
57 (t i m e C o n d i t i o n . i s H o t () and t i m e C o n d i t i o n . g e t O p e r a t o r () = “>”) i m p l i e s (
58 l e t p r e c e d i n g M e s s a g e s : Set (ModalMessage) = s e l f . g e t P r e c e d i n g M e s s a g e s () in
59 / * g e t l a s t message r e c e p t i o n u n i f i c a t i o n o c c u r r e n c e b e f o r e c o n t e x t c l o c k

r e s e t * /
60 l e t p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n : Event = Express ion Sup (
61 clocks→p r e c e d i n g M e s s a g e s . m s g R e c e i v e U n i f i c a t i o n
62) in
63 / * g e t messages a f t e r t i m e c o n d i t i o n * /
64 l e t messagesToDelay : Set (ModalMessage) = s e l f . g e t M e s s a g e s A f t e r (t i m e C o n d i t i o n)

in
65 / * g e t f i r s t message c r e a t i o n u n i f i c a t i o n o c c u r r e n c e a f t e r t i m e c o n d i t i o n * /

66 l e t d e l a y e d M s g C r e a t e U n i f i c a t i o n : Event = Express ion I n f (
67 clocks→messagesToDelay . m s g C r e a t e U n i f i c a t i o n
68) in
69 / * d e f i n e a new e v e n t t h a t t i c k s t i m e C o n d i t i o n . g e t V a l u e () t i m e u n i t s a f t e r

t h e t i c k o f p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n * /
70 l e t lowerBoundEvent : Event = Express ion DelayFor (
71 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
72 clockToDelay→ p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n ,
73 delay→ t i m e C o n d i t i o n . g e t V a l u e ()) in
74 / * e n f o r c e t h a t t h e f i r s t message c r e a t i o n u n i f i c a t i o n o c c u r r e n c e o f t h e MSD

messages t o d e l a y t i c k s a f t e r lowerBoundEven t * /
75 R e l a t i o n Precedes (
76 leftClock→ lowerBoundEvent ,
77 rightClock→ d e l a y e d M s g C r e a t e U n i f i c a t i o n
78)
79)
80
81 / * Hot t i m e c o n d i t i o n has t h e form c ≥ v a l u e (min imal d e l a y) * /
82 inv r tReqNonSt r i c tLowerBound :
83 l e t t i m e C o n d i t i o n : S t r i n g = s e l f . g e t A s s o c i a t e d T i m e C o n d i t i o n () in
84 (t i m e C o n d i t i o n . i s H o t () and t i m e C o n d i t i o n . g e t O p e r a t o r () = “≥”) i m p l i e s (
85 l e t p r e c e d i n g M e s s a g e s : Set (ModalMessage) = s e l f . g e t P r e c e d i n g M e s s a g e s () in
86 l e t p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n : Event = Express ion Sup (
87 clocks→p r e c e d i n g M e s s a g e s . m s g R e c e i v e U n i f i c a t i o n
88) in
89 l e t messagesToDelay : Set (ModalMessage) = s e l f . g e t M e s s a g e s A f t e r (t i m e C o n d i t i o n)

in
90 l e t d e l a y e d M s g C r e a t e U n i f i c a t i o n : Event = Express ion I n f (
91 clocks→messagesToDelay . m s g C r e a t e U n i f i c a t i o n
92) in
93 l e t lowerBoundEvent : Event = Express ion DelayFor (
94 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
95 clockToDelay→ p r e c e d i n g M s g R e c e i v e U n i f i c a t i o n ,
96 delay→ t i m e C o n d i t i o n . g e t V a l u e ()) in
97 / * e n f o r c e t h a t t h e f i r s t message c r e a t i o n u n i f i c a t i o n o c c u r r e n c e o f t h e MSD

messages t o d e l a y t i c k s a f t e r or a t t h e same i n s t a n t t han
lowerBoundEven t * /

98 R e l a t i o n N on St r i c tP re ce de s (
99 leftClock→ lowerBoundEvent ,

100 rightClock→ d e l a y e d M s g C r e a t e U n i f i c a t i o n

324

B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and
User-defined MoCCML Relations

101)
102)

Listing B.8: ECL pseudocode for analysis contexts
1 c o n t e x t TamAssumptionMSD
2 inv p e r i o d i c P a t t e r n :
3 s e l f . p a t t e r n . i s P e r i o d i c () i m p l i e s (
4 l e t p e r i o d : I n t e g e r = s e l f . p a t t e r n : : p e r i o d in
5 l e t p e r i o d i c A c t i v a t i o n : Event = Express ion P e r i o d i c O f f s e t P (
6 baseClock→ s e l f . ge tModel () . g loba lT ime ,
7 period→ p e r i o d) in
8 l e t in i t ia lMSDMsg : ModalMessage = s e l f . g e t I n i t i a l M e s s a g e () in
9 l e t i n i t i a l O b j S y s M s g : Objec tSys temMessage = in i t ia lMSDMsg .

ge tOb jec tSys t emMessage () in
10 R e l a t i o n Coinc ides (
11 clock1→ i n i t i a l O b j S y s M s g . msgCrea teEvt ,
12 clock2→ p e r i o d i c A c t i v a t i o n
13)
14)
15
16 inv s p o r a d i c P a t t e r n m i n I n t e r a r r i v a l R a t e :
17 (s e l f . p a t t e r n . i s S p o r a d i c () and s e l f . p a t t e r n : : A r r i v a l R a t e <> 1) i m p l i e s (
18 l e t m i n I n t e r a r r i v a l R a t e : I n t e g e r = s e l f . p a t t e r n : : m i n A r r i v a l R a t e in
19 l e t s p o r a d i c M i n I n t e r a r r i v a l : Event = Express ion P e r i o d i c O f f s e t P (
20 baseClock→ s e l f . ge tModel () . g loba lT ime ,
21 period→m i n I n t e r a r r i v a l R a t e) in
22 l e t in i t ia lMSDMsg : ModalMessage = s e l f . g e t I n i t i a l M e s s a g e () in
23 l e t i n i t i a l O b j S y s M s g : Objec tSys temMessage = in i t ia lMSDMsg .

ge tOb jec tSys t emMessage () in
24 R e l a t i o n N on St r i c tP re ce de s (
25 leftClock→ s p o r a d i c M i n I n t e r a r r i v a l ,
26 rightClock→ i n i t i a l O b j S y s M s g . msgCrea teEv t
27)
28)
29
30 / * In case no min a r r i v a l r a t e i s s p e c i f i e d , o n l y t h e max a r r i v a l r a t e v a l u e i s

e n f o r c e d * /
31 inv s p o r a d i c P a t t e r n m a x I n t e r a r r i v a l R a t e O n l y :
32 (s e l f . p a t t e r n . i s S p o r a d i c () and s e l f . p a t t e r n : : m a x A r r i v a l R a t e <> 1 and s e l f .

p a t t e r n : : m i n A r r i v a l R a t e = 1) i m p l i e s (
33 l e t m a x I n t e r a r r i v a l R a t e : I n t e g e r = s e l f . p a t t e r n : : m a x A r r i v a l R a t e in
34 l e t s p o r a d i c M a x I n t e r a r r i v a l : Event = Express ion P e r i o d i c O f f s e t P (
35 baseClock→ s e l f . ge tModel () . g loba lT ime ,
36 period→m a x I n t e r a r r i v a l R a t e) in
37 l e t in i t ia lMSDMsg : ModalMessage = s e l f . g e t I n i t i a l M e s s a g e () in
38 l e t i n i t i a l O b j S y s M s g : Objec tSys temMessage = in i t ia lMSDMsg .

ge tOb jec tSys t emMessage () in
39 R e l a t i o n N on St r i c tP re ce de s (
40 leftClock→ i n i t i a l O b j S y s M s g . msgCrea teEvt ,
41 rightClock→ s p o r a d i c M a x I n t e r a r r i v a l
42)
43)
44
45 / * In case a min a r r i v a l r a t e i s s p e c i f i e d , t h e d i f f e r e n c e t o t h e min a r r i v a l

r a t e i s e n f o r c e d * /
46 inv s p o r a d i c P a t t e r n m a x I n t e r a r r i v a l R a t e W i t h M i n I n t e r a r r i v a l :
47 (s e l f . p a t t e r n . i s S p o r a d i c () and s e l f . p a t t e r n : : m a x A r r i v a l R a t e <> 1 and s e l f .

p a t t e r n : : m i n A r r i v a l R a t e <> 1) i m p l i e s (
48 l e t m i n M a x I n t e r a r r i v a l R a t e D i f f e r e n c e : I n t e g e r = s e l f . p a t t e r n : : m a x A r r i v a l R a t e

s e l f . p a t t e r n : : m i n A r r i v a l R a t e in
49 l e t s p o r a d i c M a x I n t e r a r r i v a l D i f f e r e n c e : Event = Express ion DelayFor (
50 clockForCounting→ s e l f . ge tModel () . g loba lT ime ,
51 clockToDelay→ s p o r a d i c M i n I n t e r a r r i v a l ,
52 delay→m i n M a x I n t e r a r r i v a l R a t e D i f f e r e n c e) in

325

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

53 l e t in i t ia lMSDMsg : ModalMessage = s e l f . g e t I n i t i a l M e s s a g e () in
54 l e t i n i t i a l O b j S y s M s g : Objec tSys temMessage = in i t ia lMSDMsg .

ge tOb jec tSys t emMessage () in
55 R e l a t i o n N on St r i c tP re ce de s (
56 leftClock→ i n i t i a l O b j S y s M s g . msgCrea teEvt ,
57 rightClock→ s p o r a d i c M a x I n t e r a r r i v a l D i f f e r e n c e
58)
59)

326

B.3 Exemplary Timing Analysis: TimeSquare Screenshot

B.3 Exemplary Timing Analysis: TIMESQUARE Screenshot

327

A
pp

en
di

x
B

Su
pp

le
m

en
ta

ry
M

at
er

ia
lo

n
th

e
M

SD
Se

m
an

tic
s

fo
rT

im
in

g
A

na
ly

si
s

Dynamic delay

Task completion event of standstill occurs
too late so that a simulation deadlock occurs

Real-time requirement constrains task completion event of

standstill to occure ≤ 50ms after obstacle message reception

Figure B.30: Exemplary Timing Analysis—TIMESQUARE Screenshot (cf. Section 4.5)

32
8

B.4 Case Study Details: Hypotheses H2 and H3 for the Timing Analysis based on MSDs

B.4 Case Study Details: Hypotheses H2 and H3 for the
Timing Analysis based on MSDs

Table B.1: Detailed model element amounts of the platform-specific MSD specifications for
hypothesis H2—platform-independent model elements

View Type Model Element (-> Attribute) # MSD-spec-1 # MSD-spec-2 # MSD-spec-3 # MSD-spec-4

Component Type 6 6 8 8

Component Type -> name 6 6 8 8

Port 12 12 18 18

Port -> name 12 12 18 18

Port -> type 12 12 18 18

Port -> isConjugated 6 6 9 9

Interface 6 6 8 8

Interface -> name 6 6 8 8

Operation 6 6 32 32

Operation -> name 6 6 32 32

Parameter 0 0 0 0

Parameter -> name 0 0 0 0

Parameter -> type 0 0 0 0

Collaboration 1 1 1 1

Collaboration -> name 1 1 1 1

Component Role 6 6 8 8

Component Role -> name 6 6 8 8

Component Role -> type 6 6 8 8

Component Role -> partKind 6 6 8 8

Connector 6 6 10 10

Connector -> name 6 6 10 10

MSD 4 4 24 24

MSD -> name 4 4 24 24

Lifeline 12 12 81 81

Lifeline -> represents 12 12 81 81

Message 8 8 86 86

Message -> signature 8 8 86 86

Message -> connector 8 8 86 86

Message -> argument 0 0 0 0

ModalMessage -> ExecutionKind 8 8 86 86

ModalMessage -> Temperature 8 8 86 86

ModalCondition 0 0 0 0

ModalCondition -> Expression 0 0 0 0

ModalCondition -> Temperature 0 0 0 0

ClockReset 1 1 6 6

ClockReset -> Expression 1 1 6 6

TimeCondition 1 1 6 6

TimeCondition -> Expression 1 1 6 6

TimeCondition -> Temperature 1 1 6 6

193 193 883 883

Classifier

Architecture

Interaction

Sum

329

Appendix B Supplementary Material on the MSD Semantics for Timing Analysis

Table B.2: Detailed model element amounts of the platform-specific MSD specifications for
hypothesis H2—platform-specific model elements

View Type Model Element (-> Attribute) # MSD-spec-1 # MSD-spec-2 # MSD-spec-3 # MSD-spec-4

TamResourcePlatform 1 1 1 1

TamResourcePlatform -> name 1 1 1 1

TamComConnection 1 5 1 7

TamComConnection -> name 1 5 1 7

TamComConnection -> capacity 1 5 1 7

TamComConnection -> protocol 1 5 1 7

TamComConnection -> usedComServices 1 5 1 7

TamProtocol 1 3 1 3

TamProtocol -> name 1 3 1 3

TamProtocol -> transmOvhd 1 3 1 3

TamProtocol -> msgCtrlOvhd 1 3 1 3

TamProtocol -> encodeRate 1 3 1 3

TamProtocol -> decodeRate 1 3 1 3

TamComService 1 1 1 1

TamComService -> name 1 1 1 1

TamComService -> transmOvhd 1 1 1 1

TamECU 2 5 2 7

TamECU -> name 2 5 2 7

TamProcessingUnit 2 5 2 5

TamProcessingUnit -> name 2 5 2 5

TamProcessingUnit -> numCores 2 5 2 5

TamProcessingUnit -> speedFactor 2 5 2 5

TamRTOS 2 2 2 2

TamRTOS -> name 2 2 2 2

TamRTOS -> scheduler 2 2 2 2

TamRTOS -> comChannels 1 1 1 1

TamRTOS -> sharedRes 1 1 1 1

TamRTOS -> osServices 1 1 1 1

TamOSComChannel 1 1 1 1

TamOSComChannel -> name 1 1 1 1

TamOSComChannel -> capacity 1 1 1 1

TamSharedOSResource 1 1 1 1

TamSharedOSResource -> name 1 1 1 1

TamSharedOSResource -> accessDelay 1 1 1 1

TamOSService 1 1 1 1

TamOSService -> name 1 1 1 1

TamOSService -> backgroundUtilization 1 1 1 1

TamScheduler 2 2 2 2

TamScheduler -> name 2 2 2 2

TamScheduler -> isPreemptible 2 2 2 2

TamScheduler -> schedPolicy 2 2 2 2

TamComInterface 2 9 2 11

TamComInterface -> name 2 9 2 11

TamComInterface -> commTxOhvh 2 9 2 11

TamComInterface -> commRcvOhvh 2 9 2 11

TamResourceAccess 1 1 1 1

TamResourceAccess -> numAccess 1 1 1 1

TamResourceAccess -> resource 1 1 1 1

TamOperation 6 6 6 6

TamOperation -> execTime 6 6 6 6

TamOperation -> msgSize 6 6 6 6

Allocation 5 11 5 18

88 172 88 201Sum

Platform

330

B.4 Case Study Details: Hypotheses H2 and H3 for the Timing Analysis based on MSDs

Table B.3: Individual transformation execution time measurements for deriving CCSL models
from the platform-specific MSD specifications for hypothesis H3

MSD-spec-1 MSD-spec-2 MSD-spec-3 MSD-spec-4
Preprocessing run 1 442 379 4,998 4,646
Preprocessing run 2 424 350 4,901 4,973
Preprocessing run 3 432 417 4,970 4,717
Preprocessing run 4 407 344 4,989 4,709
Preprocessing run 5 471 360 4,938 4,726
Preprocessing run 6 427 365 4,894 4,842
Ø Preprocessing runs 434 369 4,948 4,769
MSD-to-CCSL transformation run 1 10,042 10,644 39,708 48,218
MSD-to-CCSL transformation run 2 9,075 10,683 39,302 49,099
MSD-to-CCSL transformation run 3 9,006 10,158 38,503 48,451
MSD-to-CCSL transformation run 4 9,583 10,285 36,599 48,324
Ø MSD-to-CCSL transformation runs 9,427 10,443 38,528 48,523
Ø Overall transformation execution time 9,860 10,812 43,476 53,292

331

C

Own Publication Contributions

[*BGH+14] This paper introduces Real-time Play-out. Based on initial concepts developed in
[*BBG+13], I contributed to the main section describing an exemplary timed state graph.

[*DFHT13] This technical report describes a requirements engineering approach integrating
two existing approaches (one based on controlled natural language and one based on
semi-formal models) and the application of the integrated approach to a case study. I
am one of the main authors of this report, and contributed to the basic controlled natural
language approach as well as further sections.

[*FH14; *FH15; *FHM14] Markus Fockel and I were the main authors of these papers and
jointly developed the underlying concepts of controlled natural language requirements
and their synchronization with model-based engineering.

[*FHKS18; *FHKS17] These publications present requirement patterns for MSDs. I contributed
to the real-time requirement patterns as well as the abstract (for [*FHKS18]), each the
introduction, and each the conclusion.

[*FHH+12] This book chapter reports results of the the automotive application project in the
context of the German research project “SPES 2020” [SPES2020]. I was the deputy coor-
dinator of the automotive application project and contributed to the concepts, texts, and
figures presented in Section 12.3.2, particularly to the parts on the requirement patterns
and the transition to MBSE.

[*FHM12] This paper extends the automotive development process presented in [*HMM11]
with the semi-automatic establishment of valid traceability between systems requirements
engineering and MBSE using model transformations as well as OCL constraint checks.
Markus Fockel and I were the main authors of this paper, and we jointly developed the
underlying concepts as well as contributed the major parts to all sections. Furthermore, I
presented the paper.

[*GTH16] This paper extends SYSML4CONSENS as part of a commercial MBSE tool with the
possibility to apply project management activities for non-technical stakeholders. Based
on initial concepts developed in [*Gre15], I reviewed the overall paper.

[*HFK+16] This technical report introduces the EBEAS and consolidates the MSD syntax and
semantics that this thesis works with. I coordinated the creation of the technical report
and contributed to all chapters, particularly to the process description and the EBEAS
example. In addition, I reviewed other sections of the report.

[*HBM+15; *HBM+16] These publications build the basis for Chapter 3. Based on initial con-
cepts developed in [*Ber15], I coordinated the creation of all publications, contributed to
each all sections, and presented the conference paper [*HBM+15].

[*HBM+17] Based on the results published in [*HBM+15; *HBM+16], I wrote this consolida-
ting extended abstract and presented it.

333

Appendix C Own Publication Contributions

[*HFKS16] This publication introduces maturity levels for requirements engineering based on
the author’s industrial experiences. I coordinated the overall publication and contributed
to all sections in joint work with the other authors.

[*HM13] This paper builds the basis for Section 3.2. Based on initial concepts developed in
[*BBG+13], I coordinated the creation of the publication, contributed the major part to
all sections, and presented the paper.

[*HMD11] This paper describes an approach for the identification and correction of requirement
defects in controlled natural language requirements. I coordinated the creation of the
publication, contributed the major part to all sections, and presented the paper.

[*HMM11] This paper describes the constructive part of a model-based automotive develop-
ment process. I coordinated the creation of the publication and contributed to all sections,
particularly to the parts on the requirement patterns and the transition to MBSE. Further-
more, I presented the paper.

[*HMSN10] This paper introduces MECHATRONICUML real-time statecharts to SysML. I con-
tributed to the concepts presented in the paper.

[*Hol10] This publication introduces our initial tool support for controlled natural language
requirements specification in the automotive sector. I wrote the publication.

[*HS14] This paper introduces the consideration of delays induced by connector latencies and
software execution times in Real-time Play-out and thereby presents preliminary work for
Chapter 4. Based on initial concepts developed in [*Shi14], I coordinated the creation of
the publication, contributed to all sections, and presented the paper.

[*HT08] This paper presents the technical realization of a new MECHATRONICUML compo-
nent metamodel and component story diagrams. Based on initial concepts developed in
[*Hol08], I contributed to all sections and presented the paper.

[*KDHM13] This paper builds the basis for Section 3.9.1.1 and introduces SYSML4CONSENS,
a further language extension to specify system models more rigorously, and static model-
ing rules that the system models are verified against automatically. I particularly contribu-
ted to the conceptual and technical sections (i.e., the SYSML4CONSENS profile section,
the example system model, the verification concept, and the implementation / evaluation
section).

[*KHD14] This paper introduces model transformations from MSD specifications to CCSL
models and thereby presents preliminary work for Chapter 4. Based on initial concepts
developed in [*Koc13], I coordinated the creation of the publication, contributed to all
sections, and presented the paper.

[*KHL18; *KHL17; *KHSL16] These publications present results from a research project on
variant modeling and on the data exchange by means of STEP models for mechatronic
production systems. I wrote each the abstract, introduction, and conclusion as well as
reviewed each (parts of) the publications.

[*MFH15] This publication describes the application of SysML for the purpose of functional
safety in the automotive sector. I contributed to the parts on MBSE and CONSENS as well
as reviewed the overall publication.

[*MH11] This publication describes a semi-automatic transition from MBSE with SysML to
the software design with AUTOSAR in the automotive sector. I contributed to all parts
and reviewed the overall paper.

334

[*MHKM15] This publication describes an automatic derivation of initial AUTOSAR models
from UML software design specifications in the automotive sector. I contributed to all
parts and reviewed the overall paper.

[*MHM11] This publication describes an approach for automatically verifying automotive ope-
rating system properties inducing timed event chains w.r.t. real-time requirements spe-
cified in controlled natural language using a commercial timing analysis tool. Thereby,
it presents preliminary work for Chapter 4. I contributed to all parts, particularly to the
controlled natural language real-time requirements.

[*MHNM10] This project-internal publication describes an example of the automotive system
“Body Control Module”. I contributed to all parts.

[*PHM14] This publication presents an automatic derivation of MECHATRONICUML software
design models from SYSML4CONSENS system models. I contributed the major part to
all sections.

[*PHMG14] This paper introduces the distinction between coordination and control behavior
in terms of terminology and presents an automatic derivation of Modelica models from
MECHATRONICUML software design specifications. Particularly, I contributed to the
introduction, the conclusion, and the transformation part.

[*PHM16] This publication presents a concept for the automatic computation of allocations
of MECHATRONICUML software component models to MECHATRONICUML platform
models. I contributed to the abstract, introduction, and conclusion as well as reviewed the
publication.

[*SGH17] This paper introduces an approach for learning environment assumptions for under-
specified MSD specifications by means of genetic algorithms. I wrote the abstract, the
introduction, and the conclusion as well as presented the paper.

[*SNH+10] This paper introduces an automatic self-healing approach for automotive systems. I
particularly contributed to the running example of the driver assistance system “Adaptive
Cruise Control”.

[*THHO08] This paper introduces a new component metamodel as well as component story
diagrams to the MECHATRONICUML design language. Based on initial concepts deve-
loped in [*Hol08], I contributed technical details.

335

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Approaches for the Development of Software-intensive Systems Considered in this Thesis
	1.1.1 The Specification Technique Consens for Model-based Systems Engineering
	1.1.2 Modal Sequence Diagrams (MSDs) for Scenario-based Software Requirements Specification and Analysis
	1.1.3 Timing Analysis

	1.2 Problem Description
	1.2.1 Manual and Unsystematic Transition from MBSE to SwRE
	1.2.2 Late Timing Analyses

	1.3 Approach to Solution and Contributions
	1.3.1 Semi-automatic Technique for the Transition from MBSE to SwRE
	1.3.2 Early Timing Analyses based on MSDs

	1.4 Thesis Structure

	2 Foundations
	2.1 Model-based Traceability
	2.1.1 Terminology
	2.1.1.1 Foundational Terminology
	Basic Terms
	Implicit vs. Explicit Traceability

	2.1.1.2 Extended Terminology for Model-based Traceability
	Intra- vs. Inter-model Traceability
	Relational vs. Referential Traceability
	Lifecycle vs. Transformation Traceability
	Valid Traceability

	2.1.2 The Model-based Traceability Management Tool Capra

	2.2 Model-based Systems Engineering with Consens
	2.2.1 Analyze Environment
	2.2.2 Identify Application Scenarios
	2.2.3 Define Requirements
	2.2.4 Define Function Hierarchy
	2.2.5 Define Active Structure
	2.2.6 Allocate Engineering Disciplines
	2.2.7 Define System Behavior

	2.3 Automatic Derivation of Discipline-specific Design Models from Consens System Models
	2.4 Modal Sequence Diagrams (MSDs)
	2.4.1 Structure of MSD Specifications
	2.4.2 MSD Semantics
	2.4.2.1 Conditions
	2.4.2.2 Real-time Requirements
	2.4.2.3 Existential and Universal MSDs

	2.4.3 Analysis Techniques

	2.5 UML Profiles
	2.5.1 The Modal Profile
	2.5.2 The Systems Modeling Language (SysML)
	2.5.3 Modeling and Analysis of Real-Time Embedded Systems (Marte)
	2.5.3.1 Subprofile Non-functional Properties Modeling (NFPs) and the Model Library Marte_Library
	2.5.3.2 Subprofile Generic Resource Modeling (GRM)
	2.5.3.3 Subprofile Generic Quantitative Analysis Modeling (GQAM)
	2.5.3.4 Subprofile Allocation Modeling (Alloc)

	2.6 Timing Analysis Techniques for Hard Real-time Systems
	2.6.1 Response Time Analysis
	2.6.2 End-to-End Response Time Analysis

	2.7 Clock Constraint Specification Language (CCSL)
	2.7.1 CCSL Semantics and its Realization in TimeSquare
	2.7.2 Pre-defined CCSL Constraints
	2.7.2.1 Clock Expressions
	2.7.2.2 Clock Relations

	2.7.3 User-defined Constraints

	2.8 Specifying Modeling Language Semantics with Gemoc

	3 Integrated Systems Engineering and Software Requirements Engineering
	3.1 Extensions to the Consens Specification Technique
	3.1.1 Port Specifications
	3.1.2 Behavior–Sequences
	3.1.3 Behavior–States

	3.2 Component-based MSD Specifications
	3.3 Process Description
	3.4 Model Transformation Rules Overview
	3.4.1 Derive MSD Use Cases
	3.4.2 Derive Structure
	3.4.2.1 Derive System Component Roles from Discrete Software Components
	3.4.2.2 Derive Environment Component Roles from Environment Elements
	3.4.2.3 Derive Environment Component Roles from Continuous Software Components
	3.4.2.4 Derive Interfaces, Ports, and Connectors

	3.4.3 Derive MSDs

	3.5 Support for Manual Refinement of MSD Specifications
	3.5.1 Informal Guidelines
	3.5.2 Automatic Coverage Check
	3.5.3 Automatic Derivation of Existential MSDs

	3.6 Exemplary Application of the Transition Technique
	3.6.1 Initial Process Iteration
	3.6.1.1 Derive MSD Use Cases
	3.6.1.2 Derive Structure
	Derive System Component Roles from Discrete Software Components
	Derive Environment Component Roles from SwRE-relevant Environment Elements
	Derive Environment Component Roles from SwRE-relevant Continuous System Elements
	Derive Interfaces, Ports, and Connectors

	3.6.1.3 Derive MSDs
	3.6.1.4 Refine MSD Specification
	3.6.1.5 Analyze Coordination Behavior Requirements
	3.6.1.6 Consolidate Discipline-specific Analysis Results

	3.6.2 Subsequent Process Iterations
	3.6.2.1 Manual Changes to the Consens System Model
	Changes to the Partial Model Environment
	Changes to the Partial Model Active Structure
	Changes to the Partial Model Behavior–Sequences

	3.6.2.2 Automatic Incremental Update of the MSD Specification
	Impact on the Classifier View
	Impact on the Architecture View
	Impact on the Interaction View
	Summary

	3.7 Semi-automatic Establishment of Explicit Inter-model Traceability Between Consens System Models and MSD Specifications
	3.7.1 Lifecycle Traceability
	3.7.2 Transformation Traceability
	3.7.2.1 Incremental Update of not Manually Modified MSD Specifications
	3.7.2.2 Preservation of Manual Modifications to MSD Specifications

	3.8 Model Transformations and Coverage Check More Formally
	3.8.1 Preconditions for the Consens System Model
	3.8.1.1 Relational Traceability Between Partial Models
	3.8.1.2 Environment and Active Structure
	3.8.1.3 Behavior–Sequences
	3.8.1.4 Behavior–States

	3.8.2 Model Transformation Approach and Algorithm
	3.8.2.1 Selection and Extension of the Model Transformation Approach
	3.8.2.2 Model Transformation Algorithm

	3.8.3 Coverage Check between MSD Specifications and Behavior–States
	3.8.3.1 Rule Set 1: Check Whether Each SwRE-relevant Trigger/Effect in the Behavior–States is Represented in any Requirement MSD
	3.8.3.2 Rule Set 2: Check Whether Each MSD Message Sent from/to the Environment in a Requirement MSD is Represented in the Behavior–States

	3.9 Realization and Evaluation
	3.9.1 Implementation
	3.9.1.1 SysML Profiles
	SysML4Consens
	Relevance Annotations
	Exemplary Application of the Profiles

	3.9.1.2 Capra Traceability Information Models
	Lifecycle Traceability Information Model
	Transformation Traceability Information Model

	3.9.2 Case Study
	3.9.2.1 Case Study Context and Cases
	3.9.2.2 Setting the Hypotheses
	3.9.2.3 Data Collection Preparation
	3.9.2.4 Data Collection Procedure
	Hypothesis H1
	Hypothesis H2

	3.9.2.5 Interpreting the Results
	3.9.2.6 Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	3.10 Related Work
	3.10.1 Transition from MBSE to Discipline-specific Models
	3.10.2 System Modeling Languages and Methods with Discipline-specific Information
	3.10.3 Component-based Scenario Notations
	3.10.4 Semi-automatic Establishment of Explicit Lifecycle Traceability

	3.11 Summary

	4 Early Timing Analysis based on Software Requirements Specifications
	4.1 Platform-specific MSD Specifications
	4.1.1 Specifying Execution Platforms
	4.1.1.1 Specifying the Hardware
	4.1.1.2 Specifying the Real-time Operating System
	4.1.1.3 Specifying Communication Facilities

	4.1.2 Specifying Allocations
	4.1.3 Annotating the Application Software
	4.1.4 Specifying Analysis Contexts

	4.2 Process Description
	4.3 Extension of MSD Message Event Handling Semantics
	4.3.1 Asynchronous Messages
	4.3.2 Message Creation and Consumption
	4.3.3 Task Processing

	4.4 MSD Semantics for Timing Analyses
	4.4.1 Encoding of Additional Event Kinds and their Unification
	4.4.1.1 Unification Occurrences
	Metamodel Level M2
	Metamodel Level M1
	Metamodel Level M0

	4.4.1.2 Unification of Message Events with MSD Message Locations
	Metamodel Level M2
	Metamodel Level M1
	Metamodel Level M0

	4.4.2 Encoding of Timing Effects Induced by Platform Properties
	4.4.2.1 Static Delays Between Message Event Kinds
	Metamodel Level M2
	Metamodel Level M1
	Metamodel Level M0

	4.4.2.2 Dynamic Delays due to Mutual Exclusion of Resources
	Metamodel Level M2
	Metamodel Level M1
	Metamodel Level M0

	4.4.3 Encoding of Real-time Requirements and Timing Analysis Contexts
	4.4.3.1 Clock Resets and Time Conditions
	Metamodel Level M2
	Metamodel Level M1
	Metamodel Level M0

	4.4.3.2 Timing Analysis Contexts
	Metamodel Level M2
	Metamodel Level M1
	Metamodel Level M0

	4.5 Exemplary Timing Analysis
	4.6 Realization and Evaluation
	4.6.1 Implementation
	4.6.1.1 The Timing Analysis Modeling (TAM) Profile in Detail
	Subprofile AnalysisContext
	Subprofile Platform::Communication
	Subprofile Platform::ControlUnit
	Subprofile Platform::OperatingSystem
	Subprofile ApplicationSoftware
	Subprofile SimulationExtensions

	4.6.1.2 Preprocessing
	Computation of Message Dispatch Delays
	Computation of Message Send Delays
	Computation of Message Consumption Delays
	Computation of Task Execution Delays

	4.6.2 Case Study
	4.6.2.1 Case Study Context and Cases
	4.6.2.2 Setting the Hypotheses
	4.6.2.3 Data Collection Preparation
	4.6.2.4 Data Collection Procedure
	Hypothesis H1
	Hypothesis H2
	Hypothesis H3
	Hypothesis H4

	4.6.2.5 Interpreting the Results
	4.6.2.6 Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	4.7 Related Work
	4.7.1 Timing Analyses based on System Models
	4.7.2 Scenario-based Timing Analyses
	4.7.3 Architecture-based Timing Analyses

	4.8 Summary

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	Bibliography
	Own Peer-reviewed Publications
	Own Non-peer-reviewed Publications
	Supervised and Own Theses
	Preliminary Work
	Literature
	Standards and Specifications
	Research Projects
	Tool Suites and Tool Frameworks

	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Appendices
	A Supplementary Material for the Transition Technique from MBSE to SwRE
	A.1 Guidelines for Manual MSD Refinement
	A.2 EBEAS Models Applied in the Transition from MBSE with Consens to SwRE with MSDs
	A.2.1 Consens System Model
	A.2.2 MSD Specification
	A.2.2.1 Initially Derived MSD Specification
	MSD Use Case Obstacle Detection
	MSD Use Case Emergency Braking
	MSD Use Case Emergency Braking and Precrash Measures

	A.2.2.2 Example: Manual Refinement of an Initially Derived MSD Specification
	Step 1: Specify Additional MSDs
	a) Add Assumption MSDs
	b) Add Requirement MSDs

	Step 2: Specify Trigger and Execution Behavior
	Step 3: Specify Temperatures and Execution Kinds
	Step 4: Specify Conditional Behavior
	Step 5a: Check Coverage w.r.t. the Partial Model Behavior–States
	Step 5b: Validate Existential Behavior

	A.2.2.3 MSD Specification After Manual Refinement
	MSD Use Case General Environment Assumptions
	MSD Use Case Obstacle Detection
	MSD Use Case Emergency Braking
	MSD Use Case Emergency Evasion
	MSD Use Case Emergency Braking and Precrash Measures

	A.3 Case Study Details: Hypothesis H2 for the Transition Technique from MBSE to SwRE

	B Supplementary Material on the MSD Semantics for Timing Analysis
	B.1 Further Examples of the MSD Semantics for Timing Analyses
	B.2 Complete MSD Semantics for Timing Analyses: ECL Mapping Specification and User-defined MoCCML Relations
	B.3 Exemplary Timing Analysis: TimeSquare Screenshot
	B.4 Case Study Details: Hypotheses H2 and H3 for the Timing Analysis based on MSDs

	C Own Publication Contributions

