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Abstract

A use of heterogeneous materials such as composites is very attractive in the sense
of a lightweight construction, thus becoming more common in industrial practice.
The growing demands on a computer simulation of such materials are not only
related to a more profound theoretical treatment, but also to the associated high
computational cost. This motivates the development of adaptive methods in this
thesis for balancing the accuracy and the numerical efficiency of such simulations in
a systematic and automated manner. Our attention is limited to a two-scale Cauchy
and a micromorphic continuum, respectively in micromechanics and generalized
mechanics. We handle both linear elastic and elastoplastic material behavior within
a small strain theory. The adaptive procedures are mainly developed on the basis
of goal-oriented error estimates, aiming at errors in a user-defined quantity of
interest representing the goal of a simulation. Therewith, we control both model and
discretization errors of the finite element method. For homogenization of physically
nonlinear heterogeneous materials, an adaptive procedure based on an effective
empirical indicator is additionally proposed.

Zusammenfassung

Heterogene Materialien wie Verbundwerkstoffen zeigen ein hohes Potenzial in Leicht-
bau und finden daher in der industriellen Praxis häufig ihre Anwendung. Die wach-
senden Anforderungen an eine numerische Simulation solcher Materialien beziehen
sich nicht nur auf eine tiefere theoretische Behandlung, aber auch auf den damit
verbundenen hohen numerischen Aufwand. Dies motiviert die Entwicklung adaptiver
Methoden in dieser Dissertation, um die Genauigkeit und die numerische Effizienz
solcher Simulation systematisch und automatisiert auszugleichen. Dabei wird es auf
ein Zweiskalen-Cauchy und ein mikromorphes Kontinuum jeweils aus der Mikro-
mechanik und der verallgemeinerten Mechanik zurückgegriffen. Im Rahmen einer
Theorie kleiner Verformungen werden sowohl linear elastisches als auch elastoplasti-
sches Materialverhalten behandelt. Die adaptiven Verfahren werden hauptsächlich
auf der Grundlage von zielorientierten Fehlerschätzern entwickelt, die auf den Fehler
in einer benutzerdefinierten Zielgröße abzielen. Damit werden sowohl Modell- als
auch Diskretisierungsfehler der Finite-Elemente-Methode kontrolliert. Zur Homoge-
nisierung von physikalisch nichtlinearen heterogenen Materialien wird zusätzlich ein
adaptives Verfahren auf Basis eines wirksamen empirischen Indikators entwickelt.
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1 Introduction

1.1 Heterogeneous materials

A material is heterogeneous, if individual constituents of different properties can be
identified on a certain length scale. Typical examples are:

• Natural materials: polycrystals, granular materials, wood, soils etc.

• Synthetic materials: composites, foams, concrete, coating systems etc.

In some cases, several different materials are combined to design a new material
of enhanced properties. For instance, fiber-reinforced polymers are attractive for
a lightwight construction, by overcoming the drawbacks of their two consituents:
the fibers are too brittle, while the polymer matrix is too compliant, see e.g. Fig.
1.1a for a fiber-reinforced epoxide resin. Dual-phase steel is a typical example for
a material, which is made of different states (phases) of the same material. Given
the fact that even microscale imperfections like microcracks or voids result into
heterogeneities, see e.g. Fig. 1.1b for a porous medium, we can say that most
materials are heterogeneous.

(a) (b)

Figure 1.1: Several micrographs of heterogeneous materials: a) a fiber-reinforced
epoxide resin (provided by Department of Chemistry – Coatings, Mate-
rials and Polymers, University of Paderborn) and b) a porous ceramic
layer [56].

The study of heterogeneous materials is interdisciplinary. One important task of
materials science is to characterize the microstructure of heterogeneous materials.
It is of engineering interest to study the relation between the overall material
properties and the underlying microstructure, for which the mathematical theory
of homogenization becomes necessary. The characterization of the properties of
a heterogeneous material itself is diversified, involving mechanics for mechanical
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properties, thermodynamics for thermal properties, chemistry for chemical properties,
electricity for electrical properties, magnetism for magnetic properties etc.

In this thesis, we focus on the mechanical behavior of heterogeneous materials. The
challenges on a simulation of such behavior are, on the one hand, the need to capture
subscale or microscale heterogeneities, see e.g. [49, 132, 106] for fiber-reinforced
composites, [33, 139] for coating systems, [53] for polycrystalline materials and [121]
for dual-phase steels. On the other hand, the mechanical behavior often shows size
dependence, see e.g. [143] for metal matrix composites, [42] for multilayer materials
and [113, 4, 35] for metallic and polymeric foams. Evidently, for a satisfactory
description of heterogeneous materials, an in-depth theoretical treatment based on
applied mechanics and mathematics is required.

1.2 Classical continuum mechanics

Continuum mechanics aims at the analysis of the mechanical behavior of a material,
which is considered as a continuous mass rather than discrete particles in molecular
dynamics, see e.g. [54, 71]. It was originated by the French mathematician Augustin-
Louis Cauchy in the nineteenth century.

A classical Cauchy continuum. As illustrated in Fig. 1.2a, let us consider a body
Ω bounded by Γ , where no underlying microstructure is assumed. The subscripts
0 and t distinguish the reference and the current configuration, respectively. The
displacement vector u is defined as

u = x−X, (1.1)

where X and x are the reference and the current position vector, respectively. In a
finite strain theory, one further defines

F = ∇Xx, (1.2a)

H = ∇Xu = F − 1, (1.2b)

C = F
T · F , (1.2c)

E =
1

2
(C − 1), (1.2d)

as the deformation gradient, the displacement gradient, the right Cauchy-Green
strain tensor and the Green-Lagrange strain tensor, respectively. By 1 we denote the
second-order identity tensor. In combination with the equations (1.2b) and (1.2c),
Eq. (1.2d) takes an additive split as

E =
1

2
(H +H

T
)

︸ ︷︷ ︸
=:E

lin
=:ε

+
1

2
(H

T ·H)
︸ ︷︷ ︸

=:E
nonlin

. (1.3)

For infinitesimal deformations assumed throughout this thesis, the nonlinear part

E
nonlin

becomes sufficiently small, such that the linear part ε := E
lin

, usually referred
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to as a small strain tensor, dominates. As a result, a geometric linearization, i.e.
E ≈ ε, can be made by neglecting the difference between the reference and the
current configuration. Furthermore, the notion of a second-order stress tensor σ is
deduced from the Cauchy lemma

N · σ = t, (1.4)

where t is the traction vector on a surface with an outward normal vector N . It
follows from conservation of momentum and conservation of moment of momentum,
respectively, that

Div(σ) + b = 0, (1.5a)

σ = σT , in Ω. (1.5b)

Here, the divergence operator Div(•) is defined as Div(σ) := σ · ∇ = σij,jei with
σij,j = ∂σij/∂Xj , while b denotes the body force. By neglecting an acceleration term,
the equations (1.5a) and (1.5b) describe the equilibrium of the body Ω subjected to
the following boundary conditions of Neumann and Dirichlet type

N · σ = t, on Γ t, (1.6a)

u = u∗, on Γ u, (1.6b)

respectively.

Constitutive modeling. To complete a continuum model, the relation between
σ and ε remains to be postulated to reproduce, amongst others, isotropy, anisotropy,
time dependency, isotropic hardening, Bauschinger effects, strength difference effects
and/or softening effects, see e.g. [127].

There seem to be two ways to model a heterogeneous material as a classical Cauchy
continuum:

1. A direct inclusion of microstructural details.

2. Phenomenological modeling.

The former way requires an extremely high resolution onto the microscale, which is
not practicable for a structural analysis. The latter way heavily relies on expensive
experiments and does not provide a sufficient basis for a profound understanding.
Hence, a need for a more comprehensive theoretical treatment arises.

1.3 Homogenization methods

The mathematical theory of homogenization provides an elegant way to study
partial differential equations with rapidly oscillating coefficients, see e.g. [11, 65].
When applied in continuum mechanics, a subject of mechanics of materials, namely
micromechanics, emerges. It studies the macroscopic behavior of a material by
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Figure 1.2: Illustration of the difference between a) Cauchy, b) two-scale Cauchy
and c) micromorphic continuum.

considering its microstructure. Under the premise that the material properties of each
micro constituent and the microstructure are known, it can predict the macroscopic
material behavior without the need of physical experiments, thus providing a powerful
tool for engineering design of optimum microstructures. By means of the asymptotic
homogenization theory [125, 32], and assuming a clear scale separation, i.e. l� L in
Fig. 1.2b, and local periodicity, one may arrive at a two-scale problem as follows.

A two-scale Cauchy continuum. As illustrated in Fig. 1.2b, the classical Cauchy
continuum is equipped with a heterogeneous microstructure, which constitutes a
subscale (or a microscale) continuum Ω in addition to the macro continuum Ω. In
addition to the macroscale equilibrium equation (1.5a), the microscale equilibrium
equation

Div(σ) = 0, in Ω (1.7)

holds, where the symmetry of the micro stress tensor σ ensures the conservation of
moment of momentum on the microscale. By means of volume averaging theorems,
the scale transition is established as

ε = 〈ε(x)〉 , (1.8a)

σ = 〈σ(x)〉 , (1.8b)

where ε denotes the micro strain tensor and the volume averaging operator is defined
as 〈•〉 = 1

Ω

∫
Ω
• dv. As a result, the two-scale Cauchy continuum does not alter the

nature of a classical Cauchy continuum, i.e. the symmetry of stress tensors and local
material formulations.
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The well-known Hill-Mandel condition [57]

〈σ : ε〉 = σ : ε (1.9)

is of utmost importance, which establishes the equivalence between the macroscopic
and the microscopic energy. Accordingly, homogenization can be interpreted as a
process to find a homogeneous effective material, which is energetically equivalent
to the heterogeneous one under study. Moreover, Eq. (1.9) also serves as a basis to
formulate different microscale boundary conditions, which are crucial to complete
the micro problem (1.7). A central role is played by the concept of the so-called
representative volume element (RVE), which is defined by [57] as a sample

• which is entirely typical of the whole microstructure on average,

• which contains a sufficient number of inclusions for the apparent effective
properties to be independent of the surface values of traction and displacement.

In the past decades, many different methods for solving the micro problem, like
Eq. (1.7) for small strain problems, have been developed, see e.g. [61, 118, 148, 32],
leading to the following different classes of homogenization methods.

• Mean-field methods: This kind of methods resolves the heterogeneous micro
fields merely to their means over individual material phases. Based on some
assumptions and a potential use of analytical solutions, they are usually
numerically efficient. In doing so, the simplest ways are the Voigt [136] and the
Reuss bound [119], which fail to account for microscopic equilibrium in general.
The first idea of analytical methods may be traced back to the seminal work of
Eshelby [30], who considered an ellipsoidal inclusion embedded in an infinite
matrix material. The solution of such a problem is often referred to as a dilute
solution, due to the fact that it does not account for inclusion interaction. For
a remedy, more sophisticated methods have subsequently been developed, see
e.g. Mori-Tanaka scheme [104], self-consistent scheme [58] and generalized
self-consistent scheme [62]. For a method, which possesses both an explicit
structure and the ability to account for inclusion distributions, we mention
the interaction direct derivative (IDD) method proposed by [142]. Nonlinear
materials were also treated e.g. in [74, 78, 12].

• Computational methods: This class of methods employs numerical methods
like the finite element method (FEM) [31, 47, 103] or the fast Fourier transform
(FFT) [105, 102] to solve the RVE problem. These methods have attracted
considerable attention of the international research, since they enable the
possibilty to consider complex microstructures, complex (nonlinear) material
behaviors and further effects like imperfect interfaces. However, the main
drawback is the associated high computational effort, which makes a structural
analysis impracticable.

• Model order reduction methods: These methods aim at a numerically
efficient analysis by reducing the number of degrees of freedom (DoFs) in
the system, while retaining a certain level of accuracy. Concerning physical
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nonlinearities, the transformation field analysis (TFA) [21, 20] enables one to
precompute some localization operators under a piecewise uniform approxima-
tion, such that only a reduced set of nonlinear equations needs to be solved
during an online phase of the analysis. For many cases, the inherent nonuni-
formity of inelastic strain fields make the piecewise uniform approximation
too rough to obtain satisfactory predictions. For an accuracy improvement,
more sophisticated schemes like the nonuniform transformation field analysis
(NTFA) [99, 100] and the hybrid impotent-incompatible eigenstrain based
homogenization [34] were developed. For large deformation problems, a model
order reduction method based on the proper orthogonal decomposition (POD)
was proposed in [141]. The issue of imperfect interfaces is also addressed e.g.
in [88].

• Variational methods: They rely on variational principles and provide a
powerful tool to establish higher order bounds of linear elastic properties [18,
75]. For nonlinear cases, the effective nonlinear material behavior is expressed
in terms of a so-called linear comparison material, see e.g. [116, 15, 79, 80]. In
this manner, classical bounds and estimates of linear elastic materials can be
used to derive those of nonlinear ones.

The above classification is directed to first order homogenization for the case where the
macroscale solution holds constant over the RVE. In the case where the macroscale
solution varies rapidly over the RVE, one has to resort to certain higher order
homogenization theories [72, 73, 46], which are closely related to the generalized
continuum theories introduced in the subsequent Section 1.4. Additionally, for
approaches considering multiple scales (more than two), we refer to [48, 92, 93].

1.4 Generalized continuum mechanics

The classical Cauchy continuum as well as the two-scale Cauchy continuum related
to the first order homogenization theory, introduced in the previous sections 1.2 and
1.3, due to the lack of an internal length scale, are not able to capture size-dependent
effects. Another issue related to an illposedness (mesh dependence) arises in the case
of numerical simulation of softening behavior, see e.g. [98, 60, 19, 46]. In order to
overcome these limitations, many different theories have been developed under the
term of generalized continuum mechanics, which can be subdivided into the following
three subclasses (see e.g. [98]):

• Higher order theories: They introduce additional DoFs. We will consider
them in some detail below.

• Higher grade theories: They suggest a use of higher order gradients of the
displacement field, see e.g. [115, 66].

• Nonlocal theories: They rely on certain integral formulations of constitutive
equations, see e.g. [29, 76].
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In this thesis, our attention is limited to higher order theories, which suggest a
microstructural consideration. Indeed, higher order theories and homogenization
methods share a common idea of introducing a microstructure, however, differ from
each other in the way of considering it. Let us first consider a general case of higher
order continua according to Eringen [26] as follows.

A micromorphic continuum. As illustrated in Fig. 1.2c, the underlying mi-
crostructure is assumed to undergo an affine micro deformation gradient F , which
is related to the micro displacement gradient H by H = F − 1. Consequently,
the microstructure can be seen as a vector triad of directors. A small strain frame-
work following [19, 38] is considered, where the enriched kinematics requires an
introduction of additional strain measures: the (second-order) relative deformation
tensor

er = H −H (1.10)

and the gradient of the micro displacement gradient being a third-order tensor

G = ∇H , (1.11)

respectively. In Eq. (1.10), H denotes the macro displacement gradient. Accordingly,
the balance equations for momentum and for moment of momentum are

Div(σ + s) + b = 0, (1.12a)

Div(S) + s = 0, on Ω, (1.12b)

respectively. Here, the moment of momentum equation (1.12b) largely differs from
Eq. (1.5b) for a classical Cauchy continuum, since the relative stress tensor s is
generally nonsymmetric. Moreover, the relative stress tensor s and the relative
deformation tensor er, the third-order hyperstress tensor S and the gradient of the
micro displacement gradient G are two further work conjugate pairs, in addition to
the macro stress tensor σ and the macro strain tensor ε.

In a micromorphic continuum, the microstructure is endowed with full DoFs
described by the micro deformation gradient F , see e.g. [37, 36, 59, 50, 51, 52] for
plasticity problems and [36, 51, 52] for a damage analysis. Special cases may be
obtained by restricting the DoFs. The microstructure in a Cosserat continuum can
only rotate, see e.g. [27, 131, 24, 23, 107] for a micropolar theory. On the contrary,
microstrain theories account for the micro deformation part without rotation, see
e.g. [39]. The microstretch theory [28] is a further special case of the micromorphic
continua.

Furthermore, as shown in [90], higher order theories can be seen as special cases
within the framework of generalized stresses [43, 44, 55, 41, 3]. The connection
between higher order and higher grade theories was studied e.g. in [19]. The link
between homogenization methods and generalized continua was addressed e.g. in
[40, 22, 64, 13]. Most interestingly, recent studies [64, 13] show that a micromorphic
continuum can be recovered by homogenization of a Cauchy continuum, such that a
clear physical interpretation can be attached to the morphic variables.
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1.5 From a physical problem to its numerical

solution

Many physical problems are described by a set of partial differential equations
(PDEs), see e.g. (1.5a), (1.7), (1.12a) and (1.12b) for different equilibrium problems
introduced in the previous sections. This kind of PDEs is usually referred to as a
strong form of the actual physical problem. Based on the principle of virtual work,
the strong form can be transformed into a weak form

B(u; δu) = F (δu), ∀ δu ∈ V , (1.13)

where u and δu denote the primal solution and its variation belonging to an appropri-
ate Sobolev space V , respectively. B is a semilinear form, which is linear with respect
to the argument behind the semicolon, however, may be nonlinear with respect to the
argument in front of the semicolon. Moreover, F represents a linear form. Obviously,
for instationary problems like plasticity, additional evolution equations are required
for a complement to the weak form (1.13), see e.g. [127]. For brevity, we will not
include such equations in the introductory part of this thesis. In order to establish
an adaptive framework, we assume that the continuous form (1.13) is an exact model
problem giving a perfect description of the actual physical problem. It serves as a
datum, with which other surrogate models can be compared, see e.g. [110]. Given
the fact that the exact model (1.13) is generally intractable, one has to choose a
(simpler) surrogate model

B0(u0; δu0) = F (δu0), ∀ δu0 ∈ V0, (1.14)

which creates an essential basis for the numerical method considered below.

The finite element method (FEM). It was invented by first publications [17,
133] for elasticity problems and has become a widely used tool for solving many
different kinds of problems, see e.g. [146, 145, 140, 63]. As illustrated in Fig. 1.3,
the basic idea is the discretization of continuous space and time into a finite number
of elements, which are well supported by their shape functions. Thereby, the infinite
DoFs embodied in a continuous formulation are reduced to finite ones on nodes and
at time points. Formally, apart from a potential temporal discretization, we have

B0(u0
h; δu0

h) = F (δu0
h), ∀ δu0

h ∈ V0
h, (1.15)

for a spatially discretized version of (1.14), where V0
h is a regular FE space.

Now, it becomes clear that a numerical simulation is a process from the actual
physical problem perfectly described by Eq. (1.13) to its numerical (approximate)
solution u0

h of Eq. (1.15). Note that, for Eq. (1.13) to perfectly describe the actual
physical problem, parameter identification [94, 95, 91, 89, 23, 137] is additionally
required, however, not considered in this thesis. As a result, the following two
different issues arise (cf. [122, 5, 112, 83, 84, 129]):
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a)

b)

ttn¡1 tn

Figure 1.3: Basic concept of the FEM: a) temporal discretization and b) spatial
discretization.

1. Numerical validation: It determines if a mathematical model of a physical
problem represents the actual physical problem with sufficient accuracy. It
remains in a numerical sense, since no experimental data are considered in this
thesis.

2. Numerical verification: It determines if a computational model obtained by
discretizing a mathematical model of a physical problem represents the mathe-
matical model with sufficient accuracy.

To address these issues, certain error assessment becomes necessary as shown in
the subsequent Section 1.6. Note that there are other definitions of experimental
verification and experimental validation related to parameter identification based on
experimental data, see e.g. [89].

1.6 Goal-oriented error estimate and adaptivity

A posteriori error estimate is a class of error estimate, where the primal solution u
itself is used to assess the error, see e.g. [25, 135, 2, 77, 6, 128]. As an error estimate
directed to a global energy norm [7] does not necessarily meet the real engineering
interest, the power of goal-oriented error estimate [25, 9] is its ability to account for
a quantity of interest Q, which is a user-defined function depending on the primal
solution u. For instance, Q could represent a real engineering interest by being local
displacements or stresses on a certain domain. Within a goal-oriented framework,
one may introduce different error sources by an additive split as

E(u,u0
h) = Q(u)−Q(u0

h)︸ ︷︷ ︸
total error

= Q(u)−Q(u0)︸ ︷︷ ︸
model error

+Q(u0)−Q(u0
h)︸ ︷︷ ︸

discretization error

, (1.16)

whereby both issues of model validation and numerical verification in Section 1.5
are separated, see [109, 108, 83, 110]. Indeed, model validation requires an access
to the model error, while the discretization error has to be handled for a numerical
verification. An important task of mathematics is to find exact error representations,
for which the following concept of duality arguments plays a key role.
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h-refinement

p-refinement

model refinement

Figure 1.4: A finite element with a hierarchical improvement potential (◦: existing
nodes in a lower order element, •: additional nodes in a higher order
element and ×: integration point).

Duality techniques. By means of a dual solution z of a dual (auxiliary) problem

B∗S(u,u0
h; z, δu) = QS(u,u0

h; δu), ∀ δu ∈ V , where (1.17a)

BS(u,u0
h; e, δu) :=

∫ 1

0

B′(u0
h + se; e, δu)ds, (1.17b)

QS(u,u0
h; e) :=

∫ 1

0

Q′(u0
h + se; e)ds, (1.17c)

the total error becomes

E(u,u0
h) = %(u0

h; z) := F (z)−B(u0
h; z), (1.18)

see e.g. [124, 84]. Here, the relation e = u− u0
h holds. In the dual problem (1.17a),

the argument replacements δu→ z and e→ δu are performed, while B∗ denotes
the adjoint form of B. In the equations (1.17b) and (1.17c), B′ and Q′ are the
Gâteaux differentials of B and Q, respectively. Note that the definition of a dual
problem is not unique. For instance, in [9, 110], a dual problem in a tangent form is
obtained from a Lagrange method. It is obvious from Eq. (1.18) that the total error
E is represented as a residual % weighted by the dual solution z. Thereby, z can
be interpreted as an influence vector or a generalized Green’s function. Hence, such
kind of approach is often called the dual weighted residual (DWR) method, see e.g.
[10]. A direct connection to the Betti’s (reciprocal) theorem applied in structural
mechanics was found in [16].

With this mathematical foundation at hand, one may establish an adaptive strategy
for an error control. The premise for that is the hierarchical structure for both the
surrogate models and the FEM. The additive error split in Eq. (1.16) enables
a separate treatment of model and discretization errors with respective concerns
of model validation and numerical verification, thus leading to the following two
well-established research fields:

• Adaptive FEM: It deals with the issue of numerical verification, where the
discretization error is estimated and adaptively controlled. For a treatment
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of the temporal discretization error of time-dependent problems, which is not
considered in this thesis, the interested reader is referred to [87, 126, 138]
for time step adaptivities. In this thesis, we merely focus on the spatial
discretization error with respect to the quantity of interest Q in Eq. (1.16), see
also [9, 114, 16, 117]. An obstacle is the fact that the exact solution required
for an exact error representation is generally intractable. For an error estimate,
the exact solution is approximately replaced by an enhanced solution based
on the working one. This requires the finite elements to have a hierarchical
improvement potential, as illustrated in Fig. 1.4. Indeed, the quality of a finite
element may be generally improved by reducing the element size (h-refinement)
or increasing the polynominal order of the shape functions (p-refinement).
Considerable effort has been also paid towards an efficient construction of
the fine solution, see e.g. [82, 138] for several recovery techniques. For a
practical evaluation of the dual problem (1.17a), a linearization towards a
tangent problem is additionally required, see e.g. [82, 124, 84]. This tangent
problem usually preserves a similar structure as that of the primal (actual
physical) problem. An essential step for an adaptive control is to localize the
global error to its local (element-wise or point-wise) contributions, which serve
as local error indicators, see e.g. [8, 120] for several localization techniques. On
this basis, one of the common refinement strategies like fixed element quota or
fixed error reduction can be chosen for an error control, where the hierarchical
finite element structure is used again. The adaptive control loop is repeated
until a user-defined error tolerance is reached. In this manner, an economic
mesh meeting the preset accuracy level becomes accessible.

• Model adaptivity: It handles the issue of model validation, where the model
error is estimated and adaptively controlled. Earlier works on this topic can
be found e.g. in [147, 111, 134, 129, 108, 109, 110, 14, 83] for both linear and
nonlinear problems. In analogy to the adaptive FEM, a hierarchical model
structure is of crucial importance. It is common to establish a model hierarchy,
consisting of a series of mathematical models, from the simplest to the most
complex (state-of-the-art) model with an ascending hierarchical order. Within
the model hierarchy, a fine model, with a higher hierarchical order than the
working model, is then used to estimate and adaptively control the model error.
As illustrated in Fig. 1.4, a model refinement is referred to as a switch from the
working to the fine model, at an integration point in the context of the FEM.
Similar localization concepts and refinement strategies as for the adaptive FEM
can be adopted, such that an economic model distribution becomes accessible,
see e.g. [84, 110]. In the context of multiscale modeling, the so-called Goals
algorithm was proposed in several different versions [111, 134, 110] for linear
elastic heterogeneous materials. A domain of influence is determined by the
goal-oriented error estimate, where a fine-scale model has to be chosen, whereas
in other domains an efficient homogenization scheme is adopted. In [96], this
procedure was referred to as a binary model switch. Additionally, the work [96]
shed some new light on model adaptivity by considering it as an optimization
problem. Finite deformation problems were considered by [84] in a fully coupled
two-scale manner, where the macro model error is considered as a consequence
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of discretization errors on the micro scale. In [85], different micro boundary
conditions for computational homogenization were used to establish a model
hierarchy, where the so-called power of duality was shown: the dual solution
can be used to compute both errors and algorithmic tangents for the primal
problem.

For balancing both model and discretization error, model adaptivity and adaptive
FEM are frequently applied in a coupled manner, see e.g. [84, 130, 14, 83]. Further-
more, the work [86] extended two-scale adaptive FE analysis to account for a seamless
scale-bridging. The so-called adaptive reduced basis finite element heterogeneous
multiscale method [1] incorperates the adaptive FEM with reduced basis.
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2 Objectives

This thesis intends to cover the following two cases in the mechanics of heterogeneous
materials:

1. The characteristic length of heterogeneities is much smaller than the wavelength
of strain and stress field variations in the structure, where classical (first order)
homogenization methods apply.

• For linear elasticity, a general adaptive framework will be established,
which couples both model adaptivity and adaptive FEM on the basis of
goal-oriented error estimate, as depicted in Fig. 2.1. Particular attention
will be paid to establish hierarchical models for model adaptivity. To this
end, an investigation of various homogenization methods is required.

Macro continuum RVE Model adaptivity

adaptive FEM

Model error

Model n− 1

Model n

Model n+ 1

Discretization
error

Figure 2.1: A coupled adaptive computational strategy.

• For nonlinear cases, a reduced order homogenization scheme considering
softening effects will be developed towards an efficient two-scale damage
analysis. The strong nonlinearities caused by the softening behavior might
give rise to a less accurate prediction of such reduced order scheme. Hence,
strategies for an accuracy improvement will be additionally considered,
where an adaptive strategy for a selective model reduction is particularly
relevant.

2. If a clear scale separation is not given, a need for generalized continuum
mechanics arises. Here, our attention is limited to micromorphic continua for
two reasons: 1. an analogy to the homogenization methods can be seen in view
of a microstructural consideration, and 2. the micromorphic continuum is a
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general case of higher order continua. However, we will not deal with the way
to obtain such a continuum as an effective continuum, which is related to higher
order homogenization theories. In other words, we consider a conventional
micromorphic continuum on a phenomenological basis. While the concept of
the adaptive FEM has been well developed and widely applied in classical
mechanical problems in the literature, an application to micromorphic problems
seems to be a completely open research area. In this context, by means of
goal-oriented error estimate, adaptive finite elements will be developed for both
linear elasticity and elastoplasticity in a micromorphic continuum. Due to the
time-dependent feature of the later case (micromorphic elastoplasticity), errors
accumulate over time. Apparently, this makes a goal-oriented error estimate
much more complex than that of the elastic case. For simplicity, we merely
deal with spatial discretization errors of the FEM.

For the topic to be limited, small strains are assumed throughout this thesis.
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3 Summary of the papers

Paper A aims at a development of a coupled adaptive strategy for homogenization
of linear elastic heterogeneous materials. Model adaptivity and adaptive FEM are
simultaneously applied on the macro scale. In this manner, a balance of macroscale
model and macroscale discretization error is achieved. In the framework of goal-
oriented adaptivity aiming at a quantity of interest, exact error representations are
derived by means of duality techniques. A crucial step towards a computable error
estimate is to approximate the unknown exact solutions, for which a novel patch
recovery technique is proposed. This recovery technique is inspired by the well-known
superconvergent patch recovery [144], where the main idea is to extrapolate the
working solution onto an enhanced FE space, such that the issue of the Galerkin
orthogonality with a direct use of the working solution can be avoided. Compared
with other existing techniques like local type recovery techniques [137], the proposed
technique is shown to be more effective for both error estimate and error control.
For model adaptivity, a variational method [18, 75] for higher order bounds of
effective properties is used, where a hierarchical model structure is established by
a truncation of the related Neumann series. Most importantly, this eliminates the
need of combining different methods based on a priori knowledge. For a practical
evaluation of these bounds, a singular approximation is made. As a new finding,
this may, under certain circumstances, give rise to an overlap effect. For a remedy,
a correction is additionally proposed. The effectiveness of the proposed adaptive
procedure is illustrated by three different classes of materials: macroscopically
homogeneous composites, functionally graded composites and random composites.

Paper B presents a continuation of Paper A by considering two major concerns
arising in homogenization of linear elastic heterogeneous materials:

• The need for a computational (full-field) method where a mean-field method
does not suffice for the pursued accuracy level.

• An adaptive selection of the unit cell size for the case where the working unit
cell does not represent the micro heterogeneities with a sufficient accuracy.
Here, we refer to a unit cell as an arbitrary sample of microstructure, which
does not necessarily meet the requirements of an RVE.

It is shown that these two concerns can be simultaneously addressed by one single
model hierarchy within the framework of goal-oriented adaptivity. This model
hierarchy is established on the basis of mean-field and full-field homogenization
methods. For the former we consider several well-established schemes like Mori-
Tanaka or self-consistent as basic models, and for the latter, as superior models, unit
cell problems are solved via the FEM under an a priori chosen boundary condition.
To limit the use of computational methods for error estimate, hierarchical models, as
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an intermediate stage of the model hierarchy, are additionally established within the
frame of mean-field methods using a priori knowledge. For a final stage of the model
hierarchy, we consider hierarchical unit cells within the frame of the FEM towards
an adaptive selection of the unit cell size. The generality of the proposed model
hierarchy is discussed in some detail. On this basis, the coupled adaptive strategy
developed in Paper A is used for balancing both model and discretization errors of
the finite element method (FEM) on a macroscale. By means of several numerical
examples, the effectiveness of the resulting adaptive procedure is illustrated.

Paper C develops a reduced order homogenization framework for physically
nonlinear materials. Particular attention is paid to a softening material behavior
after a certain hardening stage within the frame of elastoplasticity. For a model
reduction, the nonuniform transformation field analysis (NTFA) [99, 100] is tailored
for the present case, where a new macroscopic evolution law with an even model
structure is proposed to account for the softening behavior. Hence, we refer to it as
even NTFA. The thermodynamic consistency is guaranteed on both scales (micro and
macro). Like many other model reduction techniques, the even NTFA consists of two
phases of analysis: an offline phase allows to precompute some relevant information
including the so-called plastic modes as reduced basis functions for heterogeneous
microscopic plastic strains and some related reduced variables, such that only a
reduced set of equations have to be solved during an online phase. Since the number
of plastic modes is much less than that of the primal DoFs in the system, a striking
numerical efficiency of the even NTFA is ensured. However, it is found that the
even NTFA is not able to give a good prediction on the softening initiation and
the softening rates for some reasons. For an accuracy improvement, a new method
named as uneven NTFA is proposed, where additional correction parameters are
introduced, thus leading to an uneven model structure. Alternatively, a so-called
adaptive NTFA is developed by incorporating the concept of adaptive modeling.
Based on an empirical indicator, a model reduction is only adopted on the region,
where an accurate prediction is expected.

Paper D incorporates the well-established concept of goal-oriented adaptivity with
linear micromorphic elasticity, where the discretization error of the FEM is controlled.
Using a notion of the generalized solution, the abstract setting preserves the classical
format. Goal-oriented error estimator is derived in terms of duality techniques,
where a novel patch recovery technique is proposed to efficiently approximate the
exact dual solution and compared to a full computation technique. Additionally, the
FE discretizations are shown to be consistent for the primal problem and adjoint-
consistent for the dual problem. This theoretically ensures an optimal convergence
order of the proposed adaptive procedure. Several numerical examples illustrate the
effectiveness of the adaptive procedure.

Paper E extends the topic of Paper D to consider micromorphic elastoplasticity,
where both a spatial and a temporal discretization have to be performed for an FE
solution. For simplicity, we merely focus on the spatial discretization errors. Due
to the time-dependent character of the underlying problem, discretization errors
accumulate over time. As pointed out in [83], there are two different sources for error
accumulation:

• Error generation: discretization errors are newly generated on each single time
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step.

• Error transport : discretization errors generated on the current time step are
transported into the next time step.

For ease of the derivation of a goal-oriented error estimate, a double multifield
formulation of micromorphic plasticity problems is proposed. The first multifield
formulation stems from the nature of micromorphic continua, where the notion of
generalized solution is introduced for an abstract setting. The second multifield
formulation accounts for local evolution of internal variables, where a general matrix
representation is adopted. Accordingly, weak forms in a time integration sense are
established for both formulations, respectively. For a goal-oriented error estimate, a
backwards-in-time dual problem is deduced from a Lagrange method. It is shown
to be able to account for both error generation and error transport, where terms
for error transport, called transport terms, are additionally identified. As a merit,
the dual problem preserves a similar structure as for the primal one such that
many terms and structures of the primal problem can be reused, see also [138].
Additionally, a forwards-in-time dual problem is obtained by omitting the transport
terms. This approximate dual problem is quite attractive from a computational
point of view, since it eliminates the need of additional memory to store the primal
solutions computed over all time steps. By means of duality techniques, exact
error representations are derived. For practice, four computable error estimators
are proposed, where both dual problems are considered in combination with two
different methods for enhanced solutions. By means of certain localization techniques,
these estimators are used to drive an adaptive mesh refinement algorithm. Their
effectiveness is confirmed by several numerical examples based on a prototype model.
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properties coupled with adaptive FEM
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Chair of Engineering Mechanics, University of Paderborn,

Warburger Str. 100, 33098 Paderborn, Germany

Abstract

The research field of model adaptivity is well established, aiming at adap-
tive selection of mathematical models from a well defined class of models
(model hierarchy) to achieve a preset level of accuracy. The present work ad-
dresses its application to a class of linear elastic composite problems. We will
show that the classical bounding theories can provide a model hierarchy in
a natural and theoretically consistent manner, without combination of differ-
ent methods using a priori knowledge. To arrive at computable higher order
bounds, the classical singular approximation is made. As a new finding, this
may, under certain circumstances, give rise to an overlap effect. To overcome
this, a correction is proposed. Additionally, the model adaptivity is coupled
to the well established adaptive finite element method (FEM), such that both
macro model and macro discretization errors are controlled. The proposed
adaptive procedure is driven by a goal-oriented a posteriori error estimator
based on duality techniques. For efficient computation of the dual solution, a
patch-based recovery technique is proposed and compared to existing meth-
ods. For illustration, numerical examples are presented.

Keywords: effective properties, higher order bounds, model adaptivity, adaptive
finite element method, goal-oriented error estimate, recovery techniques

1 Introduction

For the development of innovative industrial products, increasing demands are posed
on simulation methods, which have to meet two major requirements: enhancement of
prediction qualities and reduction of computational costs. To fulfill the first require-
ment, subscale effects have to be taken into account, e.g. typically for simulation of
composites, however, giving rise to an increased computational complexity. Hence,
it becomes important to develop a systematic method for keeping the two above
mentioned requirements balanced. This can be achieved by an interdisciplinary in-
teraction between multiscale and adaptive methods, including the following three
well established research fields: multiscale methods, adaptive finite element method
(FEM) and model adaptivity.
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Multiscale methods have been an active area of research for several decades.
They are particularly helpful to understand the overall (effective) behavior of a
material by taking certain subscale effects into account. A comprehensive overview
on this field can be found e.g. in [14, 65, 52, 20]. We restrict ourselves to two-
scale problems, where the following main groups of homogenization methods can be
distinguished:

• Mean-field methods: They are usually based on certain approximations on
the micro level. As a main merit, they are computationally efficient. Well
established methods of this kind are, just to mention a few of them, the Es-
helby solution [13], Mori-Tanaka [41] and interaction direct derivative [10] etc.
Nonlinear materials are also treated e.g. in [26, 30, 5].

• Variational methods: This kind of methods derives bounds for potentials, such
as free energy function or dissipation potential (see e.g. [50]). For linear elastic
properties, the formal theory for higher order bounds is proposed in [9] and
subsequently extended by [28]. For nonlinear cases, we refer to [49, 31, 32].

• Computational methods: These allow consideration of any substructures and
any material behaviors on the subscale, whereas the extremely high computa-
tional cost is its main drawback, see e.g. [17, 40, 65] for the FE2 method.

• Model reduction: This kind of methods focuses on reduction of the degrees
of freedom in the equation system, while retaining certain accuracy. For in-
stance, the transformation field analysis (TFA) [11] and its nonuniform exten-
sion (NTFA) [39] are concerned with approximation of inelastic fields on the
micro level. A standard proper orthogonal decomposition is applied e.g. in
[62].

Adaptive refinement is a systematic methodology to find a proper mesh for the
simulations and thus save computational costs compared to uniform refinement.
The basis for adaptive refinement is error estimate, for which there are different
possibilities. In this work, goal-oriented a posteriori error estimate is considered.
On the one hand, this procedure can be employed to calculate an estimate of a
quantity of the solution. In this step, no mesh refinement is involved. On the other
hand, one can use the local residuals calculated from the goal-oriented error estimate
procedures to steer optimal mesh refinement with respect to that quantity. Both
procedures can be effectively combined. For the general framework of a posteriori
error estimate, we refer to [12, 58, 1, 29, 2, 55]. The term “goal-oriented”means
that the refinement is governed w.r.t. a quantity of interest. Usually, the aim of
a simulation is to find solutions for a certain quantity. Adaptive mesh refinement
is then governed by error indicators which are localizations of the global error to
elements. It is then advantageous to refine the mesh with the goal of minimizing
the error in this quantity of interest. Contributions to this topic can be found in
[3, 48, 8, 51]. An application on phase field problems can be found in [37]. In our
recent work [24], goal-oriented adaptivity has also been applied to micromorphic
continua.

The notion of model adaptivity was established much later than the adaptive
FEM, where the error due to modeling can be defined, estimated and adaptively
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controlled. Earlier works on this topic can be found e.g. in [66, 45, 57, 56, 44, 46,
47, 7, 33, 34] for both linear and nonlinear problems. The key idea is to establish
a model hierarchy, consisting of a series of mathematical models, from the simplest
to the most complex (state-of-the-art) model with an ascending hierarchical order.
Within the model hierarchy, a better model, with a higher hierarchical order than
the working model, is then used to estimate and adaptively control the model errors
(the errors due to modeling). Similarly to the adaptive FEM, the goal-oriented error
estimate can be used to estimate the error w.r.t. a quantity of interest, such that
an optimal model distribution becomes accessible. Concerning multiscale problems,
the so-called Goals algorithm was proposed in several different versions [45, 57, 47]
for linear elastic heterogeneous materials. A domain of influence is determined by
the goal-oriented error estimate, where the heterogeneous material is simulated in
a full resolution, whereas in other domains an analytical homogenization scheme is
adopted. In [38], this procedure is referred to as a binary model switch. However,
the manner, solving composite problems in a full resolution, is not practicable for
real three-dimensional problems. Large deformation problems were considered by
[34] in a fully coupled two-scale manner, where the macro model error is considered
as a consequence of discretization errors on the micro scale. In [35], different micro
boundary conditions for computational homogenization were used to establish a
model hierarchy.

In our preparatory works [22, 23] concerning nonlinear homogenization, a reduced
order homogenization method (NTFA) and the FE2 method are adaptively coupled
to arrive at an acceptable accuracy for simulation of softening effects, where an em-
pirical indicator for a model switch is proposed. In this work, we restrict ourselves
to linear elastic composite problems. In order to determine the effective properties,
the classical bounding theory according to Dederichs and Zeller [9] and Kröner [28],
belonging to the category of variational methods, is adopted. As a main advantage,
the bounding theory provides a model hierarchy with convergence properties, re-
quired for model adaptivity. The model hierarchy is established in a theoretically
consistent manner, where the hierarchical order is well defined. To arrive at a com-
putable solution, the singular approximation is made (see e.g. [15, 16, 21]). As a
new result, this may lead to an overlap effect. Consequently, a corrected version is
proposed. Two different adaptive strategies (model adaptivity and adaptive FEM)
are applied in a coupled manner. Based on a goal-oriented a posteriori error esti-
mator, we consider both macro discretization and macro model errors. For efficient
computation of the enhanced dual solution, which is essential for error estimate, a
patch-based recovery technique proposed in our recent work [24] is tailored for the
present case. A comparison with other existing methods is also given.

This paper is structured as follows: In Section 2, the general framework of a
two-scale modeling is introduced; some relevant basics in micromechanics and the
bounding theory are briefly revisited, then, a singular approximation is introduced
and a corrected version is proposed. Section 3 is concerned with goal-oriented adap-
tivity, for which a dual problem is introduced and computable error representations
for both discretization and model errors are derived; additionally, different methods
for computation of the enhanced dual solution are compared. For illustration pur-
poses, numerical examples are presented in Section 4. A conclusion and an outlook
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on further research are given in Section 5.
Notation: The scalar products of two vectors a and b, and two second-order

tensors A and B are

a · b = aibi, A : B = AijBij, (1)

respectively, using the Einstein summation convention for repeated indices. The
gradient operator ∇ is introduced as

∇c := c⊗∇ = ci,jei ⊗ ej, with ci,j =
∂ci
∂Xj

, (2)

where ei, i = 1, 2, 3 is a Cartesian orthonormal basis and Xi are coordinates of the
reference position X. The divergence operator Div(•) is defined as

Div(σ) := ∇ · σ = σij,iej, with σij,i =
∂σij
∂Xi

. (3)

Additionally, the volume averaging operator on a domain Ω is defined as

〈•〉 =
1

Ω

∫
Ω

•dv. (4)

Let φ = φ(ω), ∀ ω ∈ Ω be a variable statistically depending on a realization ω out
of the ensemble Ξ, then the ensemble average is defined as

〈φ〉Ξ = lim
M→∞

1

M

M∑
i=1

φ(ωi). (5)

Gâteaux differentation of a linear form F and a semilinear form B w.r.t. the argu-
ment u is denoted as

DuF (u;v) = lim
θ→0

1

θ
[F (u+ θv)− F (u)], (6a)

DuB(u;w,v) = lim
θ→0

1

θ
[B(u+ θv;w)−B(u;w)], (6b)

respectively.

2 A linear elastic composite problem

2.1 Two-scale problem

We consider a two-scale problem of solids, where each material point at the macro
level is associated with an additional microscopic problem. These relations are
shown in Fig. 1, where Ω0 and Ωt represent the macroscopic domains with respect
to the initial and the current configuration, respectively. An analogous notation is
used for the microscopic problems with the underlying domains Ω0 and Ωt, denoted
as the representative volume elements (RVE).
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Figure 1: Illustration of a two-scale problem

The displacement of a material point and the small strain tensor are defined as

u = x−X, (7a)

ε = sym(5xu), (7b)

respectively. In Eq. (7a), X and x are the location vectors with respect to a refer-
ence point O, respectively in the initial and the current state. Moreover, the macro-
scopic equilibrium problem P and the underlying microscopic equilibrium problem
P read

P :


Div (σ) + b = 0, in Ω

σn = t, on Γ t

u = u∗, on Γ u

, (8a)

P :

{
Div (σ) = 0, in Ω

+ boundary conditions
, (8b)

respectively. In problem P , σ denotes the macroscopic stress tensor and t represents
the tractions imposed on Γ t satisfying the Neumann boundary condition. The body
force is symbolized by b, while u∗ indicates the prescribed displacements on the
Dirichlet boundary Γ u with the properties Γ u

⋃
Γ t = Γ and Γ u

⋂
Γ t = Ø, where

Γ symbolizes the total boundary for the macroscopic problem. To solve the macro
problem P with the FEM, let us establish its weak form:∫

Ω

ε[δu] : σ(ε[u])dv︸ ︷︷ ︸
:=B(u;δu)

=

∫
Ω

δu · bdv +

∫
Γt

δu · tda︸ ︷︷ ︸
:=F (δu)

, ∀δu ∈ V0, (9)

where u and δu are the macro displacement vector and its variation, respectively.
V0 is an appropriate Sobolev space. By definition B(·; ·) is a semilinear form, which
is linear w.r.t. the arguments behind the semicolon and may be nonlinear w.r.t. the
arguments in front of the semicolon, while F (·) is a linear form. We shall rewrite
Eq. (9) in a residuum form as

%(u; δu) := F (δu)−B(u; δu) = 0. (10)

The micro problem P is completed with some proper boundary conditions, depend-
ing on the chosen homogenization method. Here σ and ε are, respectively, the
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microscopic stress and the microscopic strain tensor, which are generally heteroge-
neously distributed within the RVE, while ε denotes the macroscopic strain tensor.
In this work, P is solved by an analytical method, for which a weak form is not
required.

Additionally, the scale transition, which couples both problems P and P , is
established by

ε = 〈ε(x)〉 , (11a)

σ = 〈σ(x)〉 , (11b)

〈σ : ε〉 = 〈σ〉 : 〈ε〉 = σ : ε. (11c)

For any microscopic statically admissible stress fields σ(x) and any microscopic
compatible strain fields ε(x), the well established Hill-Mandel condition (11c) is
valid (see [19]).

2.2 Lippmann-Schwinger equation for the micro problem

We restrict ourselves to linear elastic problems, for which Hooke’s law applies for
each micro coordinate x as

σ(x) = C(x)ε(x) = (C0 + C(x)− C0︸ ︷︷ ︸
:=∆C(x)

)ε(x) = C0ε(x) + ∆C(x)ε(x)︸ ︷︷ ︸
:=p(x)

, (12)

with the micro elasticity tensor C. Here we adopt the classical concept of stress
polarization, where a homogeneous comparison material with the elastic property
C0 is introduced. Furthermore, p is the polarization stress, while ∆C denotes the
difference of elastic properties between the current and the comparison material.
Inserting Eq. (12) into the micro equilibrium condition in Eq. (8b) renders the
reformulated problem

Div(σ(x)) = Div
(
C0ε(x) + p(x)

)
= 0, (13)

which has a general formal solution (see e.g. [43, 52])

ε(x) = ε0 − G[p(x)], where (14a)

G[p(x)] :=

∫
V ′
�(x,x′)p(x)dV ′. (14b)

Here ε0 denotes the strain in the comparison material, G is an integral operator and
the nonlocal strain Green operator �(x,x′) depends on the second spatial derivatives
of the Green function g(x,x′) for the comparison material and formally reads

�(x,x′) =
1

2

(
∂2gik
∂xj∂x′l

+
∂2gjk
∂xi∂x′l

)
ei ⊗ ej ⊗ ek ⊗ el, (15)

see e.g. [63, 28]. Inserting the definition of p in Eq. (12) into Eq. (14a) renders an
equivalent form of (14a) as

ε(x) + G[∆C(x)ε(x)] = ε0, (16)
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which is nothing else but the strain-based Lippmann-Schwinger equation (see e.g.
[42]). As shown in [27], the stress-based Lippmann-Schwinger equation, which is
equivalent to (16), takes the form

σ(x) + H[∆S(x)σ(x)] = σ0, (17)

where σ = Cε, σ0 = C0ε0, ∆S = S−S0 and H = C0−C0GC0, and where S = C−1 and
S0 = (C0)−1 are the elastic compliance tensors for the current and the comparison
material, respectively.

2.3 Variational principles

Starting from the two definitions

C 〈ε〉 := 〈Cε〉 , (18a)

S 〈σ〉 := 〈Sσ〉 (18b)

for the effective elasticity tensor C and the effective elastic compliance tensor S,
respectively, we obtain from (11c) the equivalent forms of the Hill condition (11c)
as

〈ε〉 : C 〈ε〉 = 〈ε : Cε〉 , (19a)

〈σ〉 : S 〈σ〉 = 〈σ : Sσ〉 . (19b)

In order to establish a bounding theory, which will be introduced in Section 2.5, we
recall the well-known result of [18], i.e. the minimum energy and the complementary
energy principle as

〈ε〉 : C 〈ε〉 = 〈ε : Cε〉 ≤ 〈δε : Cδε〉 , ∀δε, (20a)

〈σ〉 : S 〈σ〉 = 〈σ : Sσ〉 ≤ 〈δσ : Sδσ〉 , ∀δσ, (20b)

respectively. Here δε represents an arbitrary strain field compatible with the given
surface displacements, while δσ denotes an arbitrary stress field compatible with
the given surface forces.

2.4 Exact representations of the effective elastic properties

It is shown, e.g. in [9, 28, 61, 21], that there are several different ways to express the
exact effective elastic properties on the basis of the Lippmann-Schwinger equations
(16) and (17). In order to have a point of departure for the bounding theory in the
subsequent section, we choose, in the following, a statistical method according to
[28].

As common in scattering theories [4], we introduce a deviation operator P, which
extracts the deviation part of an arbitrary quantity φ(x) as

Pφ(x) :=φ(x)− 〈φ(x)〉 (21a)

=⇒ 〈Pφ(x)〉 =0, (21b)

Pφ0 =0. (21c)

27



Eq. (21b) follows from the idempotence property 〈〈φ(x)〉〉 = 〈φ(x)〉 and Eq. (21c)
is valid for a homogeneous field φ0(x) = const. Applying P to the Lippmann-
Schwinger equation (16) with ε = Pε+ 〈ε〉 yields

Pε(x) + PG∆C(x)ε(x) = Pε(x) + PG∆C(x)[Pε(x)] + PG∆C(x) 〈ε(x)〉 = 0, (22)

where (21c) is used for the right hand side of (16). Multiplication of (22) by ∆C
from the left and a simple transformation yield the identity

∆CPε = −(IS + ∆CPG)−1∆CPG∆C 〈ε〉 , (23)

where IS is the fourth-order identity tensor on symmetric second-order tensors.
Based on the definition (18a), we may further write

C 〈ε〉 = 〈Cε〉 = 〈C(〈ε〉 + Pε)〉 = 〈C〉 〈ε〉 + 〈CPε〉
= 〈C〉 〈ε〉 + 〈∆CPε〉 +

〈
C0Pε

〉︸ ︷︷ ︸
=C0〈Pε〉=0

, (24)

because of Eq. (21b). Inserting (23) into (24) and eliminating 〈ε〉, we finally obtain
a formal result for the effective elasticity tensor C as

C = 〈C〉 −
〈
(IS + ∆CPG)−1∆CPG∆C

〉
. (25)

Expanding the expression (IS + ∆CPG)−1 into a Neumann series as

(IS + ∆CPG)−1 =
∞∑
k=0

(−∆CPG)k, (26)

Eq. (25) becomes

C = 〈C〉 − 〈∆CPG∆C〉 + 〈∆CPG∆CPG∆C〉 + · · · . (27)

For the special choice of the comparison material C0 = 〈C〉, the identity

P∆C = P[C− 〈C〉] = C− 〈C〉 − 〈C− 〈C〉〉︸ ︷︷ ︸
=0

= ∆C (28)

holds, thus leading to a simplified version of (27) as

C = 〈C〉 − 〈∆CG∆C〉 + 〈∆CG∆CG∆C〉 + · · · . (29)

In exactly the same way, proceeding with the stress-based Lippmann-Schwinger
equation (17), we may write the effective compliance tensor as

S = 〈S〉 − 〈∆SH∆S〉 + 〈∆SH∆SH∆S〉 + · · · , (30)

where we make the choice C0 = (S0)−1 = (〈S〉)−1.

Remark 1. The results represented in the series (29) and (30) are exact. Specific
micromorphologies are considered by the integral operator G based on the corre-
sponding Green functions g(x,x′).
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Remark 2. For the sake of a better comprehension, we have not introduced the
notion of a random composite as done in the works [9, 28], where the statistical
distribution of the micro elastic moduli is given in terms of n-point correlation
functions. Instead, the heterogeneity of the material remains in its natural sense,
i.e. spatial dependencies are used throughout this work. The equivalence to [9, 28]
is given by the hypothesis of ergodicity (see e.g. [15, 21]), which states that the
ensemble average in Eq. (5) of a certain quantity φ(x, ω) is equivalent to its volume
average in Eq. (4), i.e. 〈φ(ω)〉Ξ = 〈φ(x)〉. Given the difficulty to have an infinite
number of realizations, it is more practicable to use volume averages instead of
ensemble averages.

2.5 A bounding theory for effective elastic properties

To establish a model hierarchy, which is essential for model adaptivity, in this section
the bounding theory following [9, 28] for a class of disordered materials is briefly
revisited.

In order to show an upper bound for a truncated series of C, by use of C =
C0 + ∆C, Eq. (27) is rewritten as

C = C0 + 〈∆CA〉 = 〈CA〉 , where (31a)

A = IS − PG∆C + PG∆CPG∆C + · · · =
∞∑
k=0

(−PG∆C)k. (31b)

Note that the fourth-order tensor A is nothing else but the strain localization tensor
with the definition ε(x) = A(x)ε. Also note that the latter equality in Eq. (31a) is
obtained by using the property 〈A(x)〉 = IS. Using the definition δε := Bε with a
trial strain localization tensor B, the minimum energy principle (20a) becomes

C ≤
〈
BTCB

〉
. (32)

Then, we adopt

A(m) =
m∑
k=0

(−PG∆C)k = B (33)

as a trial field, being the series (31b) truncated after the (m + 1)-th term with
m = 0, 1, 2, · · · , and obtain from (32)

C ≤
〈
(A(m))

TCA(m)

〉
=
〈
CA(n0−1)

〉
=: C

n0
, where n0 = 2m+ 1 = 1, 3, 5, · · · . (34)

For a detailed proof of the first equality in (34), we refer to [28]. Here, the upper
bounds C

n0
of an odd order n0 correspond to the series (27) truncated after the

n0-th term.
In exactly the same way, based on the complementary energy principle (20b), we

may obtain

S
n0

:=
〈
(A(m))TSA(m)

〉
=
〈
SA(n0−1)

〉
≥ S, where A(m) =

m∑
k=0

(−PH∆S)k (35)

29



as an upper bound of S being the series (30) truncated after the n0-th term with
the choice S0 = 〈S〉, thus leading to a lower bound of C as

Cn0 := (S
n0

)−1 ≤ C, (36)

see [9, 28] for further details.
The results (34) and (36) for the bounds C

n0
and Cn0 were firstly derived in

[9, 28]. They fulfill the requirement of model adaptivity in such a manner that, with
a higher approximation order n0, the bounds are closer to the exact solution (as will
be shown in Fig. 4), however, more computationally expensive. These bounds will
be used to establish a model hierarchy (see the sections 3.4 and 4.2 for details).

Remark 3. The bounds (34) and (36) contain some well-known bounds as special

cases. For instance, the first order bounds C
1

and C1, with m = 0 and n0 = 1,
correspond to the classical Voigt and Reuss bound, respectively.

Remark 4. For simplicity, only odd order bounds suggested in [9] are considered in
this work. Even bounds extended by [28] involve additional optimization problems.

Remark 5. As already stated in the original works [9, 28], the results (34) and
(36) are formal, since the multiple integrals involved are generally too complicated to
lead to analytical results. Hence, to arrive at easily computable results, especially
for higher order bounds, we resort to the singular approximation, which will be
introduced in the subsequent section.

Remark 6. If required, the micro scale solution of a corresponding approximation
order n0 can be recovered by the localization tensors A(n0−1) and A(n0−1) in the
equations (34) and (35), see e.g. [52, 21]. The microscopic strain field ε(x) and the
microscopic stress field σ(x) associated to the approximation order n0 are formally
obtained w.r.t. upper bounds by

εn0(x) =A(n0−1)(x) ε, (37a)

σn0(x) =C(x)A(n0−1)(x) ε, (37b)

and w.r.t. lower bounds by

εn0(x) =S(x)A(n0−1)(x) σ, (38a)

σn0(x) =A(n0−1)(x) σ, (38b)

respectively.

2.6 Singular approximation

To arrive at easily computable results, a singular approximation according to [15, 16]
is introduced. Within this concept, only the local part of the Green operator in Eq.
(14b) is considered, i.e.

�(x,x′) = �0δ(x,x
′)︸ ︷︷ ︸

local

+�1(x,x′)︸ ︷︷ ︸
nonlocal

≈ �0δ(x,x
′)︸ ︷︷ ︸

local

, (39)
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where δ(x,x′) denotes the Dirac delta function. As shown in [6], if the comparison
material is chosen as an isotropic medium with two eigenvalues c1 and c2

C0 = c1P1 + c2P2, P1 =
1

3
1⊗ 1, P2 = IS − P1, (40)

the integral operator G can be replaced by

G[•] = G0 = g1P1 + g2P2, g1 =
1

c1 + 2c2

, g2 =
2(c1 + 3c2)

5c2(c1 + 2c2)
. (41)

Here 1 denotes the second-order identity tensor. Obviously, the localized operator
G0 makes the evaluation of the terms in the series (29) and (30) much simpler.

Remark 7. The singular approximation (39) neglects the nonlocal part of the
Green operator �(x,x′), and hence, does not account for fine micromorphology
effects such as phase distributions in a composite. Therefore, G0 in Eq. (41) cor-
responds to the Hill polarization tensor for isotropic two-point statistics, see e.g.
[61, 21]. As a result, the two-scale scheme reduces to a mean-field one, meaning
that the micro scale fields in the equations (37a), (37b), (38a) and (38b) become
phase-wise uniform. Despite of this restriction, the singular approximation seems to
be suitable for certain kinds of materials, e.g. silicon nitride in [6].

Remark 8. For a convergence investigation of the bounds (34) and (36) obtained
by the singular approximation, we adopt the singular approximation estimate fol-
lowing e.g. [61, 21] as a reference solution. In doing so, we solve the Lippmann-
Schwinger equation (16) for ε(x) and find

ε(x) = (IS + G∆C)−1ε0 := A(x)ε, (42)

where the last equality corresponds to the standard definition of the strain localiza-
tion tensor A(x). Applying the volume average on both sides of the latter equality
in (42) yields〈

(IS + G∆C)−1
〉
ε0 = 〈A(x)〉 ε =⇒ ε0 = (

〈
(IS + G∆C)−1

〉
)−1ε, (43)

which, together with (42), indicates

A = (IS + G∆C)−1(
〈
(IS + G∆C)−1

〉
)−1. (44)

Inserting Eq. (44) and the approximation (41) into Eq. (31a), we finally obtain a
singular approximation estimate for the effective elasticity tensor

C = 〈CA〉 ≈
〈
C(IS + G0∆C)−1

〉
(
〈
(IS + G0∆C)−1

〉
)−1. (45)

It should be pointed out that the maximum accuracy level of the bounds (34) and
(36) in combination with the singular approximation is that of the singular approx-
imation estimate (45). For a higher level of accuracy one has to resort to numerical
methods, which will not be considered in this work. For instance, Kabel and Andrä
[25] developed a numerical solver to compute bounds of effective elastic properties
for multi-phase composites.
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2.7 A corrected version

As will be shown in Section 4.2, an overlap effect, as a deficiency of the singular
approximation (39), might occur for higher order bounds. As the work [6] considered
only bounds up to the approximation order n0 = 5, no reference on this point exists.
Hence, we may consider this overlap effect as a new result. The reason is that, due
to the strong simplification (41), the micro strain fields become phase-wise uniform,
and this may make the strain fields incompatible. In other words, as stated in [28],
in contrast to Gτ with an arbitrary function τ , the approximate expression G0τ is
not generally a compatible strain field, thus violating the compatibility condition
for the variational principle (20a) or (32).

As these issues may not be known a priori, we propose here a simple correction
as

C
nc
0 = Cnc

0
=

1

2
(C

n0
+ Cn0), if E

n0
< En0 , (46)

where we adopt the effective elasticity modulus E as an indicator, and where C
nc
0

and Cnc
0

represent the corrected upper and the corrected lower bound of the effective

elasticity tensor C, respectively. Moreover, the effective elasticity moduli E
n0

and
En0 are calculated from the original bounds C

n0
and Cn0 , respectively.

Remark 9. Although the singular approximation loses its mathematical rigor, it
is the most efficient method to solve the series (29) and (30) for any odd approxi-
mation order n0. The convergence of the corresponding bounds will be numerically
investigated in Section 4.2.

Remark 10. For simplicity, we consider, in this work, only macroscopically isotropic
materials, whose elastic properties can be described by two elasticity constants.

3 Goal-oriented adaptivity

In this section, we focus on fitting a model hierarchy based on the bounding theory
in the sections 2.5-2.7 into the common framework of the well established goal-
oriented adaptivity. In the following, we keep in mind that Q(u) is a quantity of
interest depending on macroscale solution u, which is our goal for solving problem
P . The error w.r.t. Q is intended to be estimated and controlled in a systematic
and automated manner.

3.1 Exact error representations

The exact model (10) is, in general, highly complex, even intractable. It serves as
a datum, with which other (simpler) models can be compared. To further establish
model adaptivity and adaptive FEM, additionally to Eq. (10) we introduce the
working (surrogate) model

%(n)(u(n); δu) = F (δu)−B(n)
(u(n); δu) = 0, ∀δu ∈ V0 (47)
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with a hierarchical order n ≥ 0 and the computable model

%(n)(u
(n)
h ; δu) = F (δu)−B(n)

(u
(n)
h ; δu) = 0, ∀δu ∈ V0

h . (48)

Here V0
h ∈ V0 represents the approximate FE-space.

Following the lines of [34, 35], with the computable solution u
(n)
h , we formulate

a residuum as

%(u
(n)
h ; δu) = F (δu)−B(u

(n)
h ; δu)

= F (δu)−B(n)
(u

(n)
h ; δu)︸ ︷︷ ︸

:=%h

+B
(n)

(u
(n)
h ; δu)−B(u

(n)
h ; δu)︸ ︷︷ ︸

:=%m

, (49)

which defines the discretization error %h and the model error %m. Note that the
special cases % = %m and % = %h are obtained for h → 0 and n → ∞, respectively.
To arrive at the exact error representation, we rewrite the total residuum % in Eq.
(49) as

%(u
(n)
h ; δu) = B(u; δu)−B(u

(n)
h ; δu) = BS(u,u

(n)
h ; δu, e), (50)

with the error w.r.t. primal solution e = u − u(n)
h . Here we introduce the secant

form of B as

BS(u,u
(n)
h ; δu, e) :=

∫ 1

0

DuB(u
(n)
h + se; δu, e)ds, (51)

with 0 ≤ s ≤ 1, see e.g. [53]. In the same way, the total error E w.r.t. the quantity
of interest Q is formally formulated as

E(u,u
(n)
h ) := Q(u)−Q(u

(n)
h ) = QS(u,u

(n)
h ; e), (52)

with the secant form of Q

QS(u,u
(n)
h ; e) =

∫ 1

0

DuQ(u
(n)
h + se; e)ds. (53)

To set a link between the two secant forms (51) and (53), we introduce a dual
Lagrangian functional L as

L(u,u
(n)
h ; δz, z) := QS(u,u

(n)
h ; δz)−B∗S(u,u

(n)
h ; z, δz), (54)

whereB
∗
S is the adjoint form ofBS, satisfyingB

∗
S(u,u

(n)
h ; z, δz) = BS(u,u

(n)
h ; δz, z).

Furthermore, δz ∈ V0 and z ∈ V0 are test functions. The dual problem is then es-
tablished by

statδz{L(u,u
(n)
h ; δz, z)} =⇒ QS(u,u

(n)
h ; δu)−B∗S(u,u

(n)
h ; z, δu) = 0, (55)

with the dual solution z. For self-adjoint problems (true for the present case), we
have

BS(u,u
(n)
h ; z, δu) = QS(u,u

(n)
h ; δu). (56)
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Combining equations (52), (56), (49) and (50) renders

E(u,u
(n)
h ) = %(u

(n)
h , z) = %h(u

(n)
h , z) + %m(u

(n)
h , z) (57)

as an exact error representation, requiring the knowledge of the exact model B
and depending on the exact dual solution z. In combination with the Galerkin
orthogonality, we finally obtain

E(u,u
(n)
h ) = %h(u

(n)
h , z − πz)︸ ︷︷ ︸

:=Eh(u,u
(n)
h )

+ %m(u
(n)
h , z)︸ ︷︷ ︸

:=Em(u,u
(n)
h )

, (58)

where πz ∈ V0
h is the projection of z onto the FE-space V0

h .

3.2 Approximations for a computable error representation

To arrive at a computable error representation, the following three approximations
have to be made:

1. The exact model of hierarchical order n→∞ is replaced by a fine model of a
hierarchical order n+ > n. Hence, we obtain from (49)

%m(u
(n)
h , z) ≈ %+

m(u
(n)
h , z) := B

(n)
(u

(n)
h ; z)−B(n+)

(u
(n)
h ; z). (59)

2. The exact dual problem (56) also depends on the exact primal solution u and
requires knowledge of the exact model. Hence, we introduce an approximate
dual problem

B
(n)

S (u
(n)
h ,u

(n)
h ; z, δu) = Q

(n)
S (u

(n)
h ,u

(n)
h ; δu) (60)

by the replacements BS ≈ B
(n)

S , QS ≈ Q
(n)
S and u ≈ u

(n)
h , leading to a

linearization of (56).

3. In practice, the approximate dual problem (60) is not solved exactly. Instead
a spatially discretized version of (60), i.e.

B
(n)

S (u
(n)
h ,u

(n)
h ; zh, δu) = Q

(n)
S (u

(n)
h ,u

(n)
h ; δu), (61)

is solved via FEM, using the same mesh as for the primal problem and thus
preserving an analogous structure of the primal problem (see e.g. [60]). Here
zh is the FE solution of the approximate dual problem (60), which is not di-
rectly useful for the error formula (58). Methods to compute an approximation
of the exact dual solution z will be described in Section 3.3.

Remark 11. An alternative way to approximate (56) is to apply the trapezoidal
rule on both sides of (56) as

BS(u,u
(n)
h ; δu, e) ≈ 1

2

(
DuB(u

(n)
h ; δu, e) + DuB(u; δu, e)

)
, (62a)

QS(u,u
(n)
h ; e) ≈ 1

2

(
DuQ(u

(n)
h ; e) + DuQ(u; e)

)
, (62b)
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leading to a linearized version of (56) as

DuB(u
(n)
h ; z, δu) + DuB(u; z, δu) = DuQ(u

(n)
h ; δu) + DuQ(u; δu), (63)

see also [54]. Using the approximations B ≈ B
(n)

, Q ≈ Q(n) and u ≈ u(n)
h , we arrive

at
DuB

(n)
(u

(n)
h ; z, δu) = DuQ

(n)(u
(n)
h ; δu), (64)

which is the same result as obtained from (60).

3.3 Different methods for computation of the enhanced dual
solution

For a practical evaluation of the exact error representation (58), we need a better
approximation of the dual solution zh+ than zh, which replaces the exact one z. To
this end, several ways shown in literature, e.g. [36, 59] and references therein, can
be adopted. They usually share a common idea that zh+ belongs to an enhanced
FE-space V0

h+ satisfying V0
h ⊂ V0

h+ ⊂ V0, using the hierarchical FE structure by in-
creasing the polynomial interpolation order. In this work, we adopt linear triangular
elements for V0

h, whose enhanced space V0
h+ consists of quadratic triangular elements.

We additionally introduce two indices 1 and 2, which represent the degrees of free-
dom associated with V0

h and the additional degrees of freedom in V0
h+ , respectively.

In this manner, we may write the enhanced dual solution as zh+ = [ẑ1 ẑ2].

(a) Full computation: The most straightforward way to obtain zh+ is to compute

DuB
(n)

(û
(n)

1 + û
(n)

2 ; ẑ1 + ẑ2, δû1 +δû2) = DuQ
(n)(û

(n)

1 + û
(n)

2 ; δû1 +δû2) (65)

directly on the enhanced FE-space V0
h+ , where ẑ1 = πzh+ . Consequently, the

computational cost is much higher than for (61).

(b) Decoupled computation: To reduce the computational cost of (65), the approx-
imation ẑ1 ≈ zh is made. Consequently, only a reduced version of (65)

DuB
(n)

(û
(n)

1 + û
(n)

2 ; zh+ ẑ2, δû1 +δû2) = DuQ
(n)(û

(n)

1 + û
(n)

2 ; δû1 +δû2) (66)

has to be solved for ẑ2, whose computational cost is of the order as for (61).

(c) Local recovery - variant 1 : Alternatively, zh+ can be obtained by certain
recovery techniques without computations of the type (65) or (66), leading
to a further reduction of computational cost. Two local variants of recovery
methods are suggested in our preparatory work [59]. Taking gradients into
account, these approaches require merely information from one single element
after a smoothing procedure. We consider here the first variant, where all
nodal values on the enhanced FE-space are fully recovered.

(d) Local recovery - variant 2 : The second variant in [59] has the difference from
the first variant that only the additional nodal values on the enhanced FE-
space are recovered. For further details, we refer to the original paper [59].
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Figure 2: Illustration of patch-based recovery approach: (a) Regular case for in-
terior elements (◦: existing nodes and •: additional nodes in the locally enhanced
FE-space) and (b) Special case for boundary elements (◦: extended nodes and •:
boundary nodes in the locally enhanced FE-space)

(e) Patch recovery : A patch-based recovery technique, based on the idea of a
locally enhanced FE-space in [36], is proposed in our recent work [24] for
micromorphic continuum problems. With the approximation ẑ1 ≈ zh, we
focus on determining ẑ2. As shown in Fig. 2a, we define a locally enhanced
FE-space eV0

h+ for each element e, which is referred to as patch. Similarly to the
so-called superconvergent patch recovery [64], in eV0

h+ , each component ezih+ of
ezh+ is assumed to be expressed as a higher order polynomial representation

ezih+ = P · ai, (67)

where the index i is related to nodal degrees of freedom. For two-dimensional
cases, we have i = 1, 2. For an enhanced quadratic representation, we define
P := [1 x1 x2 x

2
1 x1x2 x

2
2], while ai := [ai1 · · · aik · · · ai6]T contains six unknown

coefficients. Here xi,with i = 1, 2, correspond to single components of the
coordinate x. To determine the unknown coefficients in a, minimization prob-
lems are formulated as

f(zih,
e zih+) :=

Nh∑
j=1

(
zih(x

j
1, x

j
2)−e zih+(xj1, x

j
2)
)2 → min, for i = 1, 2, (68)

where zih is the corresponding component of the dual solution obtained from
(61). Furthermore, Nh is the number of existing nodes in the current FE-space
eV0

h. Combining (67) and (68) renders

f(zih,
e zih+) =

Nh∑
j=1

(
zih(x

j
1, x

j
2)− P (xj1, x

j
2) · ai

)2 → min, for i = 1, 2, (69)

which has a simple formal solution

ai = A−1bi, where (70a)

A :=
Nh∑
j=1

P T (xj1, x
j
2)P (xj1, x

j
2), (70b)

bi :=
Nh∑
j=1

zih(x
j
1, x

j
2)P T (xj1, x

j
2). (70c)
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Note that the matrix A is independent on the index i. With the result ai, the
additional nodal values eẑ2 can be simply obtained from (67). Obviously, to
obtain the global vector ẑ2, the equations (70) have to be solved for all elements
e = 1, · · · , Nel and all nodal degrees of freedom i = 1, 2. Given that different
nodal values on the same node can be obtained by different computations
of (70), the global vector ẑ2 is calculated by weighted averaging of eẑ2 from
adjacent elements. As shown in Fig. 2b, special care must be paid for boundary
elements, which do not have sufficient number of surrounding elements in the
same manner as shown in Fig. 2a. Consequently, additional nodes have to be
included to arrive at a sufficient number of surrounding elements. Additionally,
the boundary values must be corrected correspondingly.

3.4 The linear elastic composite problem

We are now in the position to specify the abstract setting described in the sections
3.1-3.3 for the case of linear elasticity. For this purpose, we define the exact, the
working and the fine model as

B(u; δu) =

∫
Ω

ε[δu] : (Cε[u])dv, (71a)

B
(n)

(u; δu) =

∫
Ω

ε[δu] : (C
(n)
ε[u])dv, (71b)

B
(n+)

(u; δu) =

∫
Ω

ε[δu] : (C
(n+)

ε[u])dv, (71c)

respectively. To complete the definitions (71b) and (71c), we make a choice based
on the bounding theory described in Section 2.5 as

C
(n)

=
1

2
(C

n0
+ Cn0), C

(n+)
=

1

2
(C

n0+2
+ Cn0+2), (72)

where n0 = 2n + 1 holds. Note that one could also make a different choice like

C
(n)

= C
n0

and C
(n+)

= Cn0+2 for the purpose of a safe design.
Using the enhanced dual solution zh+ obtained by one of the methods described

in Section 3.3 and combining equations (49), (58), (59) and (71), we finally obtain
the computable error representations for the model error

Em(u,u
(n)
h ) = %m(u

(n)
h , z) ≈

∫
Ω

ε[zh+ ] :
(

(C
(n) − C

(n+)
)ε[u

(n)
h ]
)
dv = Ẽm (73)

and for the discretization error

Eh(u,u
(n)
h ) = %h(u

(n)
h , z − πz)

≈ F (zh+ − πzh+)−
∫

Ω

ε[zh+ − πzh+ ] : (C
(n)
ε[u

(n)
h ])dv = Ẽh,

(74)

respectively. The local errors ηem and ηeh for each single element e are then obtained
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from the corresponding elemental contributions of (73) and (74), respectively, i.e.

Ẽm =

Nel∑
e=1

ηem, (75a)

Ẽh =

Nel∑
e=1

ηeh, (75b)

Ẽ = Ẽm + Ẽh. (75c)

Note that the sign of ηem and ηeh indicates the direction of the deviation w.r.t.
the quantity of interest Q, hence, only their absolute values are considered as local
indicators in the adaptive algorithm, which will be described in the subsequent
section.

3.5 Adaptive algorithm

Up to now, both the model and the discretization error can be estimated. In order
to control both errors adaptively, we propose the algorithm in Algorithm 1.

Initialization: set the initial mesh V0
h0 with the initial (uniform) elastic

property C
(n=0)

;

Define a the stopping criterion Ẽ = Ẽh + Ẽm ≤ TOL for the adaptive
refinement loop, where TOL is a user-defined threshold value related to the
desired accuracy;

while Ẽ = Ẽh + Ẽm > TOL do
Solve the computable working model problem (48);
Solve the approximate dual problem (61) on the current mesh and
compute the enhanced dual solution following one of the methods in
Section 3.3;

Compute the local fine models C
(n+

e )
;

Compute the error representations (local and global) according to the
equations (73), (74) and (75);

Adaptive refinement: a fixed refinement ratio, such as α = 10%, of the
elements with the largest | ηeh | and | ηem | is spatially refined and

enhanced by C
(ne) → C

(n+
e )

, respectively; update the local hierarchical
order ne → n+

e for enhanced elements.
end

Algorithm 1: Adaptive algorithm

Remark 12. For linear elasticity, the effective properties need to be computed
only once for a certain microstructure. For macroscopically homogeneous materials,

in each adaptive step i = 0, 1, 2, · · · , the (maximal reachable) fine model C
(n+=i+1)

is computed only once for all and stored for a possible call by subsequent steps.
Obviously, computational cost can not be saved in this manner, when the consid-
ered material is macroscopically heterogeneous, or when the mechanics problem is
coupled to an additional problem such as phase transformation.
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4 Numerical examples

4.1 Preliminaries

In this section, a perforated sheet is investigated. As shown in Fig. 3a, we consider a
quarter model, which is stretched by a displacement u = 0.01 mm in the horizontal
direction. We restrict ourselves to a two-dimensional case, where the thickness of
the sheet is t = 1 mm. The indices 1 and 2 represent the horizontal and the vertical
direction, respectively. A plane strain state is assumed, where the third strain
component ε33 implying the strain in the thickness direction is always zero.

u
37.5

R5

1
2
.5

1
2

Ω
0
r

Ω

[mm]

t = 1

(a) Geometry and boundary conditions

(b) Initial mesh (c) Fine mesh for reference solution

Figure 3: Perforated sheet in linear elasticity

The sheet is made of a composite material, consisting of a matrix material (E0 =
70000 MPa and ν0 = 0.2) and unoriented short fibers (E1 = 147000 MPa and
ν1 = 0.285). In the subsequent examples, we will consider three different types of
materials as follows:

• macroscopically homogeneous composite with a constant volume fraction of
the fibers cf = const.

• functionally graded composite with a given function cf = cf (x)

• macroscopically random composite with cf (x) according to certain statical
properties.

Obviously, for the latter two cases, the material is macroscopically heterogeneous,
such that an individual computation of effective properties for each macro material
point is required.

The adaptive procedure starts with the initial mesh V0
h0 shown in Fig. 3b, consist-

ing of linear triangular elements. To illustrate the power of goal-oriented adaptivity,
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we define the quantity of interest Q as a local type quantity

Q :=

∫
Ω

′
σijdv, (76)

where σij represents coefficients of the macro stress tensor σ. For this work, we

choose i = j = 1. Furthermore, Ω
′
is a local domain out of the whole domain Ω, i.e.

the green area marked in Fig. 3a, with r = 8 mm.

4.2 Model hierarchy

Before getting started with goal-oriented adaptivity, we first investigate the bound-
ing theory in the sections 2.5-2.7 and show how a model hierarchy is established. We
choose for computation of the upper bounds the comparison material as the Voigt
bound, i.e. C0 = 〈C〉, and for computation of the lower bounds the comparison
material C0 = (S0)−1 = (〈S〉)−1 as the Reuss bound. The volume fraction of the
fibers is assumed to be cf = 5%. As described in the sections 2.5 and 2.6, the upper
bounds C

n0
and the lower bounds Cn0 are computed via the series (29) and (30)

for odd order n0, respectively. By means of the effective elasticity modulus E, the
numerical results without and with correction according to Eq. (46) are illustrated
in the figures 4a and 4b, respectively. Fig. 4a shows that a slight overlap effect
occurs for n0 > 27. The reason has already been discussed in Section 2.7. Despite
of this deficiency, a comparison with the reference solution obtained by the estimate
(45) shows a satisfactory convergence behavior of the bounds (see figures 4a and
4b). Additionally, according to the results shown in Fig. 4a, the original bounds
with n0 ≤ 27, which do not require a correction, are still sufficient for our purpose,
since the bounds of higher order n0 ≥ 19 are fairly narrow. To further establish a
model hierarchy, we make use of Eq. (72), where the arithmetic means of the bounds
are adopted. Based on the results shown in Fig. 4b, the obtained model hierarchy
is illustrated in Fig. 4c, where the effective elasticity modulus E with increasing
hierarchical order n tends to a constant. Note that the hierarchical order n has to
be distinguished from the approximation order n0, i.e. there holds n = (n0 − 1)/2.
Obviously, the bounds without correction in Fig. 4a would render the same result
as shown in Fig. 4c.
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(a) uncorrected bounds
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Figure 4: Results of the bounding theory

4.3 Goal-oriented adaptivity for a macroscopically homoge-
neous composite

In this section, we consider a macroscopically homogeneous composite, where the
volume fraction of the fibers is assumed to be cf = const. = 5%. In the following, a
detailed comparison of adaptive results based on different enhanced dual solutions
will be given. We consider the five methods (a)-(e) described in Section 3.3. For an
efficiency investigation, we set the refinement ratio α in Algorithm 1 to be sufficiently
small, i.e. α = 5%.

In Fig. 5, different distributions of the local discretization error indicator | ηeh |,
obtained from all five different methods, are shown for different adaptive steps. For
the initial step, the distributions are rather different for different methods, indicating
that the enhanced dual solution zh+ has a large influence on the error computation.
The full computation by (65) serves as a reference solution for the remaining four
methods. For further adaptive steps, the differences between the distributions ob-
tained from the remaining four methods and the reference one become larger, since
the resulted adaptive refinements (meshes and model distributions) are also different.
The local discretization error | ηeh | is strongly reduced by the adaptive algorithm
for all methods. In the final step, a strongly heterogeneous distribution of | ηeh |,
computed by the first variant of local recovery, is still observable, whereas the local
error | ηeh | is balanced by the other four methods.
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Initial step 0 Adaptive step 7 Final step 14

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

Figure 5: Macroscopically homogeneous composite - Comparison of local discretiza-
tion error indicator | ηeh |
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Initial step 0 Adaptive step 7 Final step 14

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

Figure 6: Macroscopically homogeneous composite - Comparison of local model
error indicator | ηem |

In Fig. 6, different distributions of the local model error indicator | ηem | are
illustrated in the same manner, supporting the same statements as in Fig. 5. The
main difference is that, in the final step, a heterogeneous distribution of the local
model error | ηem | is still clearly observable for all methods.
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Adaptive step 1 Adaptive step 7 Final step 14

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

Figure 7: Macroscopically homogeneous composite - Comparison of adaptively re-
fined meshes

A comparison of adaptively refined meshes is given in Fig. 7, while Fig. 8 makes
a comparison of model distributions. The final meshes of both local recovery meth-
ods (c) and (d) are quite similar, however, strongly differ from the reference mesh
obtained from full computation. The final meshes of decoupled computation and
patch recovery are fairly close to the reference mesh, where adaptive refinements are
mainly concentrated in the local domain Ω

′
, especially in its boundary regions. Con-

cerning model distributions, the maximal possible hierarchical order, here nmax = 14,
is not reached for all methods, since the distributions of the local model error | ηem |
always change for different meshes and different model distributions, such that the
peak values of | ηem | are not always located in a certain region. Furthermore, both
local recovery methods (c) and (d) achieve the highest hierarchical order (9). For all
methods, the highest hierarchical orders are located on the right side of the sheet,
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where coarsest discretizations are adopted.

Adaptive step 1 Adaptive step 7 Final step 14

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

Figure 8: Macroscopically homogeneous composite - Comparison of model distribu-
tions
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(c) Estimated error Ẽ of Q (normalized)
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(d) Estimated error Ẽ of Q on the same
sequence of refinements obtained from full
computation

Figure 9: Macroscopically homogeneous composite - Comparison of the quantity of
interest Q
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Primal solution σ11 Dual solution z1

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

(f) Reference

Figure 10: Macroscopically homogeneous composite - Comparison of primal and
dual solutions for the final step 14

In Fig. 9, we consider the quantity of interest Q and the estimated global errors,
in order to investigate the effectivity of the proposed adaptive procedure. Fig. 9a
shows the quantity of interest Q versus the adaptive step for different methods,
giving a comparison with the reference solution, which is computed with the fine
mesh shown in Fig. 3c and the maximal reached hierarchical order ne = const. = 9.
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In Fig. 9b, a normalized measure representing the global error E is defined as

Ê :=

∣∣∣∣Qref −QFEM

Qref

∣∣∣∣ , (77)

where Qref represents the reference value shown in Fig. 9a. Note that Ê is still an
estimate, since Qref is not exact. Although differences between different methods

are visible in the intermediate steps in Fig. 9b, the global error represented by Ê
is strongly reduced by all methods, showing a satisfactory convergence behavior of
the adaptive procedure. For a comparison with the reference error measure Ê, the
estimated global error Ẽ defined in Eq. (75c) is plotted in a normalized manner in
Fig. 9c. For all methods, the global error E in Eq. (58) is significantly underesti-
mated, especially for the previous steps. However, this underestimate effect is quite
reasonable, and we will list the possible reasons in the final section. In Fig. 9c, a full
comparability is only given for the initial step, where both the same mesh and the
same model distribution are adopted for all methods. In order to obtain a full com-
parability throughout the adaptive steps, we have done an additional computation,
where the total errors are estimated by different methods on the same sequence of
refined meshes obtained from the full computation approach. In Fig. 9d, the es-
timated errors Ẽ are compared with the reference error Ê. Taking the deviations
from the reference as a criterion, we may make a descending order according to the
accuracy as follows: 1. full computation (a) (reference), 2. decoupled computation
(b), 3. patch recovery (e) and 4. local recoveries (c) and (d).

Finally, Fig. 10 gives a comparison of the primal solution σ11 and the dual
solution z1 for the final step, where z1 represents the first component of zh computed
from (61). The reference solution is computed with the fine mesh shown in Fig.
3c and the uniform model distribution ne = const. = 9. All methods render a
satisfactory result, which is fairly close to the reference one, especially for the local
domain Ω

′
involved in the quantity of interest Q.

4.4 Goal-oriented adaptivity for a functionally graded com-
posite

In this section, we consider a functionally graded composite, whose volume fraction
of fibers cf depends on macro coordinates x = [x1 x2] and is known as

cf = cf (x) = 0.5− 3 · 10−4mm−2 · x2
1 − 2 · 10−4mm−2 · x2

2, (78)

resulting into a macroscopically heterogeneous distribution shown in Fig. 11. Here,
cf varies spatially from 1.7% to 49.5%. The same material parameters given in
Section 4.1 are used. Since cf varies within each single element, a three integration
point version of quadrature is adopted to evaluate the element integrals in our
FE implementation. At each integration point, the effective elasticity tensor is
individually computed according to the actual fiber volume fraction given by (78).
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Figure 11: Functionally graded composite - Illustration of the heterogeneous distri-
bution of the fiber volume fraction cf

Final meshes Final model distributions

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

Figure 12: Functionally graded composite - Comparison of final adaptive results

The adaptive computations with the same parameterization as Section 4.3 are
done. Fig. 12 shows the final adaptive results by different methods after 14 adaptive
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steps, supporting the same statements as Section 4.3. Amongst the three recovery
methods (c), (d) and (e), patch recovery provides an adaptive mesh that is closest
to the reference mesh obtained from full computation, where adaptive refinements
are mainly concentrated in the local domain Ω

′
, especially in its boundary regions.

The decoupled computation approach performs also well. Concerning model dis-
tributions, the local recovery method (d) achieves the highest hierarchical order
(8). As a coupling effect with the adaptive mesh refinement, for all methods, the
highest hierarchical orders are located on the right side of the sheet, where coarsest
discretizations are adopted.

In Fig. 13, we consider the quantity of interest Q, the actual and the estimated
global errors (Ê and Ẽ), where we make use of a reference solution computed with
the fine mesh shown in Fig. 3c and the uniform model distribution ne = const. = 9.
A satisfactory convergence behavior for all methods can be observed in Fig. 13b,
although the three recovery methods converge somewhat slower that the full and
decoupled computation. By a comparison of the estimated error Ẽ in Fig. 13c with
Ê in Fig. 13b, the performance of the full and decoupled computation is striking.
Amongst recovery methods (c), (d) and (e), patch recovery (e) shows an improved
accuracy on error estimate.
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Figure 13: Functionally graded composite - Comparison of the quantity of interest
Q
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4.5 Goal-oriented adaptivity for a macroscopically random
composite

In this section, we handle a macroscopically random composite, which may result
from inaccuracies and uncertainties of the production process. While the same
material parameters given in Section 4.1 are used, the fiber volume fraction cf is
randomly distributed on the macro domain Ω. The distribution of the fiber volume
fraction is assumed to satisfy some statistical properties like the statistical mean
〈cf〉Ξ = 25% and the standard deviation dev(cf ) = 5 · 10−3. For simplicity, we
consider here only one of the possible realizations. In doing so, we choose 1124
sampling points, which are, as illustrated in Fig. 14, uniformly located on the
macro domain Ω. Then, by means of a random number generator we generate 1124
different values of cf satisfying the given statistical information, where each value is
assigned to a corresponding sampling point, see Fig. 14 for a result. Moreover, cf
varies randomly from 23.4% to 26.8%. Note that this sampling procedure is done
once for all the following FE computations and serves as a basis for determining
cf (e) for each element e. In our numerical implementation, if the element e contains
at least one of those sampling points, the element volume fraction cf (e) is set to
be the arithmetic mean of all the involved sampling point(s). For the case that the
element e does not contain any sampling points, the element volume fraction cf (e)
is set to be the value of the sampling point at a nearest distance from the element.

Figure 14: Macroscopically random composite - Illustration of the heterogeneous
distribution of the fiber volume fraction cf on chosen sampling points

The adaptive computations with the same parameterization as the previous sec-
tions 4.3 and 4.4 are done. The final adaptive results by different methods after 14
adaptive steps are summarized in Fig. 15, supporting the same statements as in the
sections 4.3 and 4.4. The main difference is that the achieved highest hierarchical
order (5) is relatively low in comparison with the previous examples in sections 4.3
and 4.4. This might be due to the fact that the element volume fraction distributions
based on the statistical sampling shown in Fig. 14 largely changes in the course of
the adaptive refinement, thus increasing the change of the regions with the peak
values of the local indicators | ηem |.

Finally, we investigate the quantity of interest Q, the actual and the estimated
global errors (Ê and Ẽ) in Fig. 16, where we make use of a reference solution
computed with the fine mesh shown in Fig. 3c and the uniform model distribution
ne = const. = 9. Similarly to sections 4.3 and 4.4, Fig. 13b shows a satisfactory
convergence behavior of all methods. By a comparison of the estimated error Ẽ in
Fig. 16c with Ê in Fig. 16b, patch recovery provides an improved accuracy on error
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estimate, amongst all the considered recovery methods.

Final meshes Final model distributions

(a) Full computation

(b) Decoupled computation

(c) Local recovery - variant 1

(d) Local recovery - variant 2

(e) Patch recovery

Figure 15: Macroscopically random composite - Comparison of final adaptive results
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Figure 16: Macroscopically random composite - Comparison of the quantity of in-
terest Q

5 Conclusion and outlook

In this work, the well established model adaptivity has been applied to a class of
homogenization problems for linear elastic materials. Analytical methods, as an
important class of homogenization methods, have been considered. Meeting the
requirement of model adaptivity with convergence properties, we chose the classical
bounding theory. As an efficient solver of the terms in the Neumann series for
higher order bounds, the classical singular approximation is made. The convergence
of these bounds has been checked by a comparison with a reference solution. It is also
found that a (slight) overlap effect, as a deficiency, may occur, since the singular
approximation may violate the compatibility condition for the minimum energy
principle. As a remedy, we proposed a simple correction in this work. However, the
development of a better approximation method avoiding this overlap effect is not
an objective of this work, hence, still remains for future work. Based on the results
of the bounding theory, we have then shown how a model hierarchy is established.

Furthermore, the model adaptivity has been coupled to the well established
adaptive FEM, such that the macro discretization errors are additionally controlled.
An efficient goal-oriented a posteriori error estimator based on duality techniques,
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driving the adaptive procedure, has been derived. For efficient computation of the
enhanced dual solution, a patch-based recovery technique has been tailored for the
present case, where a detailed comparison with other existing methods has also been
given. According to the numerical results, the effectivity of the proposed recovery
technique has been confirmed. Among these considered recovery techniques, we
prefer the most recent patch-based recovery technique. However, it is still difficult
to decide on the most reliable technique, hence, further investigations are required.
By comparison with a reference solution, a good convergence behavior of the pro-
posed adaptive procedure, using all the considered methods for the enhanced dual
solution, has been observed. Nevertheless, we summarize possible reasons for the
underestimate effect w.r.t. the global error as follows:

• linearization of the exact dual problem in (60) or (64)

• discretization of the linearized dual problem in Section 3.3

• replacement of the exact model by a fine model in (59)

• the fact that the local domain involved in the quantity of interest is rather
crudely reproduced in the previous steps.

Obviously, our work is still in the initial stage. The work [25] sheds some light
on numerical evaluation of bounds of effective elastic properties for a high level of
accuracy, which is of our great interest. Moreover, in order to arrive at an accurate
fine-scale solution, we will make use of certain numerical methods, e.g. FEM- or
FFT-based methods. Based on straightforward extensions of the present work, we
will also consider nonlinear homogenization problems, taking large deformations or
plasticity into account and including the aspects of model adaptivity for reduced
order homogenization schemes.
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Abstract

Homogenization methods are drawing increasing attention for simulation
of heterogeneous materials like composites. For balancing the accuracy and
the numerical efficiency of such strategies, we deal with both model and
discretization errors of the finite element method (FEM) on a macro scale.
Within a framework of goal-oriented adaptivity, we consider linear elastic het-
erogeneous materials, for which first order homogenization schemes apply. A
novel model hierarchy is proposed based on mean-field and full-field homoge-
nization methods. For the former we consider several well-established schemes
like Mori-Tanaka or self-consistent as basic models, and for the latter, as su-
perior models, unit cell problems are solved via the FEM under an a priori
chosen boundary condition. For a further stage of the model hierarchy, we
consider hierarchical unit cells within the frame of the FEM towards an adap-
tive selection of the unit cell size. By means of several numerical examples,
we illustrate the effectiveness of the proposed adaptive approach.

Keywords: model adaptivity, unit cell size, mean-field methods, full-field meth-
ods, adaptive finite element method, goal-oriented error estimate

1 Introduction

Many engineering materials like steel, alloy and composites are heterogeneous, when
viewed on a certain (for instance micro) scale. On that scale, several constituents
of different material properties can be distinguished. Under the premise that the
individual material properties as well as the distribution of the different constituents
are known, homogenization methods provide a powerful tool to predict their overall
behavior, which is often of engineering interest. Another advantage of homoge-
nization methods is their potential on optimum material design by avoiding high
experimental cost. For a comprehensive overview, the interested reader is referred
to [15, 65, 55, 20]. In this work, we limit our attention to methods assuming a clear
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scale separation, that is, the characteristic length of the subscale is much smaller
than that of the macro scale. Otherwise, one has to resort to certain higher order
homogenization schemes, see e.g. [17, 16, 18]. Within the framework of first order
homogenization, we distinguish two main groups of homogenization methods:

• Mean-field methods: They are established on the basis of the Eshelby solution
[13] to an ellipsoidal inclusion embedded in an infinite matrix, see e.g. Mori-
Tanaka [41], self-consistent [27] and interaction direct derivative [10], and also
find applications to nonlinear materials, see e.g. [27, 30, 4]. By means of
analytical solutions, this kind of methods is most efficient. As a drawback,
they are not able to account for complex microstructures and some fine effects
like unit cell size or periodic boundary conditions. As an important feature,
they resolve the microscopic fields only to their means over the individual
material phases.

• Full-field methods: They achieve a much higher resolution of the microscopic
fields than the mean-field methods. A most straightforward way is to adopt
computational methods at the expense of a large computational cost, see e.g.
[14, 65] for the FE2 method and [42, 39] for fast fourier transformation (FFT)
based methods. For a numerical efficiency, model order reduction methods
focus on an effective reduction of the number the degrees of freedom, see e.g.
the transformation field analysis (TFA) [11], its nonuniform extension (NTFA)
[38] and proper orthogonal decomposition (POD) [63].

It is also worth mentioning another kind of homogenization methods, which relies
on variational principles and provides a powerful tool to derive bounds of effective
properties, see e.g. [8, 28] for linear elasticity. For nonlinear cases, the concept of
linear comparison material is introduced, such that classical bounds or estimates of
linear materials can be used to derive those of the nonlinear one, see e.g. [52, 53,
31, 32]. Depending on what microscopic resolution they achieve, they also may fall
into one of the above two categories.

Furthermore, the influence of different micro boundary conditions on the effective
properties are examined e.g. in [21, 22, 50]. The Dirichlet type and the Neumann
type boundary condition are shown to provide the upper and the lower bounds,
respectively. The periodic boundary condition usually shows the fastest convergence
behavior, when the size of the chosen unit cell is enlarged, see e.g. [48, 26]. In this
context, we refer to a unit cell as an arbitrary sample of microstructure, which does
not necessarily meet the requirements of a representative volume element (RVE)
according to Hill [19]:

• An RVE is entirely typical of the whole mixture on average.

• An RVE contains a sufficient number of inclusions for the apparent effective
properties to be independent of the surface values of traction and displacement.

The apparent effective properties refer to those provided by a unit cell. For a unit
cell to be an RVE, its size should be sufficiently large. The issue of a minimum RVE
size is addressed e.g. in [9].
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To address the issue of model validation, the notion of model adaptivity has been
well established, see e.g. [66, 45, 60, 59, 44, 46, 47, 5, 33, 34] for both linear and
nonlinear problems. It aims at an adaptive model selection to efficiently achieve a
preset level of accuracy, for which an assessment of model error is required. In this
context, a model hierarchy, consisting of a series of mathematical models, from the
simplest to the most complex (state-of-the-art) model with an ascending hierarchical
order, plays a central role. A model, which is of a higher hierarchical order than the
current one, can be used for both, error estimate and a possible model refinement.
If the error estimate is directed to a user-defined quantity of interest, the resulted
adaptivity is called goal-oriented adaptivity, see e.g. [3, 49, 7, 54]. For applications
to multiscale problems, we refer to [45, 60, 47, 37, 34, 35].

The issue of numerical verification is addressed by the adaptive FEM, which
is developed to estimate and adaptively control the discretization error, see e.g.
[12, 61, 1, 29, 2, 58] for the general framework of a posteriori error estimate and
[3, 49, 7, 54, 36, 24] for goal-oriented error estimate.

In our recent work [25], a general coupled framework of model adaptivity and
adaptive FEM was developed for linear elastic heterogeneous materials. For a model
hierarchy, a bounding theory according to [8, 28] was used. On this basis, in this
work, we intend to establish a single model hierarchy, which consistently addresses
the following issues:

• For an adaptive approach to start, a basic model is required, which should
be computationally efficient with an improvement potential. Meeting this
requirement, several well-established mean-field methods are considered. For
an accuracy improvement, they are replaced by a full-field approximation,
where a unit cell problem is solved via the FEM under an appropriate boundary
conditon. To avoid the need of computational methods for error estimation
of the basic model, hierarchical models, as an intermediate stage of the model
hierarchy, are established within the frame of mean-field methods using a priori
knowledge.

• Since an arbitrary choice of a unit cell does not necessarily meet the require-
ments of an RVE, it should have a sufficient size for a pursued accuracy level.
As a larger unit cell gives rise to increasing computational cost in view of the
FEM, adaptive selection of unit cell size is crucial for a numerical efficiency.
This is achieved by integrating the unit cell size into the model hierarchy. For
a fast convergence behavior with respect to the unit cell size, different mi-
cro boundary conditions are examined. One of them is selected prior to the
adaptive approach.

This paper is structured as follows: In Section 2, the general framework of a
two-scale modeling is introduced including the aspects of scale separation, scale
transition and related boundary conditions as well as a full-field formulation to-
wards effective properties. An equivalent mean-field formulation to the full-field
formulation is established at the beginning of Section 3. Subsequently, several well-
established mean-field and FE-based full-field methods are revisited and interpreted
as two different approximations of full-field formulations. Section 4 briefly reviews
the coupled adaptive strategy developed in our previous work [25] for a structural
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analysis. As a highlight, a novel model hierarchy is proposed for model adaptivity
based on mean-field and full-field homogenization methods, including an additional
aspect of hierarchical unit cells. Its generality is discussed in some detail. Several
numerical experiments are presented in Section 5, while Section 6 gives a conclusion
and an outlook on further research.

Notation: The scalar products of two vectors a and b, and two second-order
tensors A and B are

a · b = aibi, A : B = AijBij, (1)

respectively, using the Einstein summation convention for repeated indices. The
gradient operator ∇ is introduced as

∇c := c⊗∇ = ci,jei ⊗ ej, with ci,j =
∂ci
∂Xj

, (2)

where ei, i = 1, 2, 3 is a Cartesian orthonormal basis and Xi are coordinates of the
reference position X. The divergence operator Div(•) is defined as

Div(σ) := σ · ∇ = σij,jei, with σij,j =
∂σij
∂Xj

. (3)

Additionally, the volume averaging operator on a domain Ω is defined as

〈•〉 =
1

Ω

∫

Ω

•dv. (4)

Gâteaux differentation of a linear form F and a bilinear form B w.r.t. the argument
u is denoted as

DuF (u;v) = lim
θ→0

1

θ
[F (u+ θv)− F (u)], (5a)

DuB(u;w,v) = lim
θ→0

1

θ
[B(u+ θv;w)−B(u;w)], (5b)

respectively.

2 A full-field formulation for two-scale problems

2.1 Scale separation and transition

By means of the asymptotic homogenization theory [57, 15], we consider a two-scale
mechanical problem of first order, making the assumption of scale separation, i.e.
l/L � 1, as depicted in Fig. 1. To each material point of the macro domain Ω a
micro domain Ω, i.e. the RVE, is associated, where the subscripts 0 and t denote
the reference and the current configuration, respectively.
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Figure 1: Illustration of a two-scale problem

Neglecting the difference between the reference and the current configuration,
we assume a framework of small strains, with the macro displacement vector and
the macro small strain tensor as

u = x−X, (6a)

ε = ∇symu, (6b)

respectively. In Eq. (6a), X and x are the position vectors with respect to a
reference point O, respectively in the reference and the current state. Moreover,
the macroscopic equilibrium problem P and the underlying microscopic equilibrium
problem P read

P :





Div(σ) + b = 0, in Ω

σN = t, on Γ t

u = u∗, on Γ u

, (7a)

P :

{
Div(σ) = 0, in Ω

+ boundary conditions
, (7b)

respectively. In problem P , σ denotes the macroscopic stress tensor and t represents
the tractions imposed on Γ t satisfying the Neumann boundary condition. The body
force is symbolized by b, while u∗ indicates the prescribed displacements on the
Dirichlet boundary Γ u with the properties Γ u

⋃
Γ t = Γ and Γ u

⋂
Γ t = Ø, where

Γ symbolizes the total boundary for the macroscopic problem. To solve the macro
problem P with the FEM, let us establish its weak form:

∫

Ω

ε[δu] : σ(ε[u])dV

︸ ︷︷ ︸
:=B(u;δu)

=

∫

Ω

δu · bdv +

∫

Γt

δu · tdA
︸ ︷︷ ︸

:=F (δu)

, ∀δu ∈ V0
, (8)

where u and δu are the macro displacement vector and its variation, respectively.

V0
is an appropriate Sobolev space. For linear elasticity, B(·; ·) is a bilinear form,

while F (·) is a linear form. We shall rewrite Eq. (8) in a residual form as

%(u; δu) := F (δu)−B(u; δu) = 0. (9)

The micro problem P is completed with some proper boundary conditions. This
will be separately discussed in Section 2.2. Moreover, σ and ε are, respectively,
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the microscopic stress and the microscopic strain tensor, which are generally het-
erogeneously distributed within the RVE, while ε denotes the macroscopic strain
tensor.

Additionally, the scale transition, which couples both problems P and P , is
established by

ε = 〈ε(x)〉 , (10a)

σ = 〈σ(x)〉 , (10b)

〈σ : ε〉 = 〈σ〉 : 〈ε〉 = σ : ε, (10c)

where Eq. (10c) is nothing else but the well-established Hill-Mandel condition [19].

2.2 Micro boundary conditions

In this work, we consider the following three micro boundary conditions, which are
consistent with the Hill-Mandel condition (10c).

1. Linear displacement boundary condition: As depicted in Fig. 2b, this Dirichlet
type boundary condition takes the form

u(x) = ε x, ∀ x ∈ Γ. (11)

2. Constant traction boundary condition: As shown in Fig. 2c, a Neumann type
boundary condition is established by

t(x) = σ n(x), ∀ x ∈ Γ, (12)

where n is the outward normal vector at the micro boundary point x ∈ Γ .

3. Periodic boundary condition: As illustrated in Fig. 2d, while the entire bound-
ary is decomposed into two parts Γ = Γ+ ∪ Γ− with associated point pairs
x+ ∈ Γ+ and x− ∈ Γ−, we assume periodic displacements and antiperiodic
tractions on Γ as

u(x+)− u(x−) = ε (x+ − x−), (13a)

t(x+) + t(x−) = 0, ∀ x+ ∈ Γ+, x− ∈ Γ−, (13b)

respectively. Eq. (13a) guarantees the kinematical conformity of the deformed
boundary with neighboring RVEs, while the statical equilibrium is ensured by
Eq. (13b).

An FE implementation of these boundary conditions will be discussed in some
detail in Section 3.3.2.
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Figure 2: Illustration of different boundary conditions (b.c.): a) undeformed RVE,
b) linear displacement b.c., c) constant traction b.c. and d) periodic b.c.

2.3 Full-field localization operators and effective properties

For linear elastic materials, the following two equivalent linear constitutive relations
apply

σ(x) =C(x)ε(x), (14a)

ε(x) =S(x)σ(x), (14b)

with the micro elasticity tensor C and the micro compliance tensor S = C−1, respec-
tively. A common approach towards a structural (macroscopic) analysis consists
of two steps: 1. solve the micro problem (7b) and 2. perform the scale transition
(10a) or (10b). For the first step, the micro problem (7b) can be defined either via
a prescribed macro strain ε or via a prescribed macro stress σ. Accordingly, there
exist linear localization operations

ε(x) =A(x) ε, (15a)

σ(x) =B(x) σ, (15b)

where A and B are referred to as the micro strain and the micro stress localization
tensor, respectively. Moreover, inserting Eq. (15a) into Eq. (10a) renders the
identity

〈A(x)〉 = IS, (16)

where IS denotes the fourth-order symmetric identity tensor. Similarly, by inserting
Eq. (15b) into Eq. (10b) we obtain

〈B(x)〉 = IS. (17)

The equations (15a) and (15b) can be interpreted as formal solutions of the micro
problem (7b).

For the second step, we combine the equations (15a), (14a) and (10b) and obtain

σ = 〈C(x)A(x)〉︸ ︷︷ ︸
:=C

ε, (18)

for a prescribed ε, where we refer to C as the effective elasticity tensor. If σ is
prescribed, one may use Eq. (15b) in combination with the equations (14b) and
(10a), and obtain

ε = 〈S(x)B(x)〉︸ ︷︷ ︸
:=S

σ, (19)

where S is nothing else but the effective compliance tensor.
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3 Approximations of full-field formulations

The exact solution of the micro problem (7b), formally in Eq. (15a) or Eq. (15b), is
generally intractable. In the following, we first show that the full-field formulation
in Section 2.3 may equivalently reduce to a mean-field formulation, which forms
a basis for the mean-field methods. Subsequently, well-established mean-field and
full-field methods are revisited and interpreted as two different approximations of
full-field formulations. As a full-field method, we adopt the FEM to achieve a full-
field approximation.

3.1 An equivalent mean-field formulation to full-field

In contrast to the full-field representations in Section 2.3, the mean-field methods re-
solve the relevant microscopic fields to their means over N individual material phases
distinguished by a subscript r = 0, 1, · · · , N − 1. Correspondingly, the localization
rules (15a) and (15b) reduce to

εr =Ar ε, (20a)

σr =Br σ, (20b)

where Ar and Br are the average strain and the average stress localization tensor,
respectively, and

εr = 〈ε〉Ωr
, (21a)

σr = 〈σ〉Ωr
, (21b)

are the average strain and the average stress tensor over the local domain Ωr occupied
by the r-th material phase, respectively. By inserting the equations (15a) and (20a)
into Eq. (21a) and inserting the equations (15b) and (20b) into Eq. (21b) we obtain

Ar = 〈A〉Ωr
, (22a)

Br = 〈B〉Ωr
, (22b)

respectively. The mean-field version of effective properties are obtained from the
equations (18) and (19) as

C =
N−1∑

r=0

crCrAr, (23a)

S =
N−1∑

r=0

crSrBr, (23b)

respectively. Here, cr, Cr and Sr represent the volume fraction, the elasticity ten-
sor and the compliance tensor of the phase r, respectively. Correspondingly, the
equations (16) and (17) become

N−1∑

r=0

crAr =IS, (24a)

N−1∑

r=0

crBr =IS, (24b)
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Figure 3: Basic concepts of mean-field methods: a) actual composite problem, b)
single inclusion problem and c) Eshelby’s problem

respectively.
In the following subsections, we will consider some composite materials of matrix-

inclusion type as shown in Fig. 3a. For our convenience, a subscript 0 is assigned
to the matrix material, while the subscript i = 1, · · · , Ni denotes the i-th inclusion.
Consequently, we have r = [0, i] and Ni = N−1. In combination with the equations
(24a) and (24b), the equations (23a) and (23b) become

C =C0 +

Ni∑

i=1

ci(Ci − C0)Ai, (25a)

S =S0 +

Ni∑

i=1

ci(Si − S0)Bi, (25b)

respectively.

Remark 1. The above mean-field representations are equivalent to the full-field
ones in Section 2.3 in the sense of determining effective properties. For its formula-
tions, no approximations have been made.

3.2 Mean-field approximations of full-field formulations

The mean-field methods are fundamental in micromechanics [43, 55, 20]. In this
section, we review some well-established mean-field methods based on the mean-
field formulation in Section 3.1. It is obvious from the equations (25a) and (25b)
that the effective properties C or S require the knowledge about the localization
tensors Ai or Bi of each single inclusion i = 1, · · · , Ni. These localization tensors
are determined by means of a single inclusion problem illustrated in Fig. 3b, see
Section 3.2.2 below for details.

3.2.1 Eshelby’s solution

The origin of the mean-field approximate methods may be traced back to the seminal
work of Eshelby [13], who considered an infinite matrix material with an ellipsoidal
inclusion i which is made of the same material with the property C′ but with a
uniform eigenstrain ε∗i , see Fig. 3c. No remote load is applied. The strain field in
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that inclusion induced by the release of ε∗i is uniform, and can be expressed as

εei = S ′iε∗i , (26)

where S ′i is the Eshelby tensor depending on the material property C′ as well as the
shape and orientation of the inclusion i. Additionally, the superscript e stands for
this eigenstrain problem for a distinction from the problems considered in Section
3.2.2 below. The corresponding stress is obtained from

σei = C′(εei − ε∗i ) = C′(S ′iε∗i − ε∗i ) = −C ′iε∗i , (27)

where the eigenstiffness tensor is defined as

C ′i := C′(IS − S ′i). (28)

3.2.2 The equivalent inclusion concept

For the actual composite material in Fig. 3a with Ni inclusions, the localization
tensors Ai in Eq. (25a) or Bi in Eq. (25b) are determined by Ni single inclusion
problems in Fig. 3b. The interaction between different inclusions may be considered
by modifying the matrix material properties C′ or the remote load ε′ or σ′, see A.2–
A.4. As shown in Fig. 3b, the inclusion i is made of a material with Ci other than
C′ of the matrix material, where we do not assume an eigenstrain. For the Eshelby’s
solution of the problem in Fig. 3c to apply, we may find a proper eigenstrain ε∗i
for a prescribed strain ε′, such that the stresses in the inclusion of both cases are
equivalent, i.e.

σei = C′(ε′ + εei − ε∗i ) = Ci(ε
′ + εei ), (29)

which in combination with Eq. (26) suggests the claimed eigenstrain

ε∗i = ((Ci − C′)S ′i + C′)−1(C′ − Ci)ε
′, (30)

where we have splitted the strain within the inclusion i into a constant and a fluc-
tuation part, i.e. εi = ε′ + εei . Together with the equations (26) and (30), we
have

εi = ε′ + εei = ε′ + S ′iε∗i = A′iε
′, (31)

where we identify
A′i = (IS + S ′iC′−1(Ci − C′))−1. (32)

Correspondingly, the stress in the inclusion i reads

σi = CiA
′
iε
′ = CiA

′
iS
′σ′ = B′iσ

′, (33)

where we identify
B′i = CiA

′
iS
′ = (Si − Si(Si − S′))−1S′. (34)

In A, we consider some well-established mean-field methods by specifying the
single inclusion problem in Fig. 3b.
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Remark 2. The mean-field methods in Appendix A include approximations and
simplifications. For instance, the subdivision of the actual composite problem into
Ni single inclusion problems in Fig. 3b is an approximation, which together with the
dilute method in A.1 completely neglects the inclusion interaction. The inclusion
interaction can be considered to a certain extent, but not exactly, by some advanced
schemes in A.2–A.4. Additionally, the mean-field methods in A.1–A.3 do not account
for possible anisotropic inclusion distributions, while the interaction direct derivative
(IDD) method in A.4 is restricted to ellipsoidal distributions. Hence, in contrast to
the mean-field formulation in Section 3.1, the effective properties determined by
the mean-field methods are not equivalent to those of the full-field formulation in
Section 2.3, but approximations.

3.3 FE approximation of full-field formulations

In this subsection, we consider the FEM as a further approximation of the micro
problem (7b).

3.3.1 Weak formulation and FE discretization

For the FEM to apply, we introduce a weak residual form of the micro problem (7b)

%(u; δu) =

∫

Γ

δu · tdA
︸ ︷︷ ︸

:=F (δu)

−
∫

Ω

ε[δu] : σ(ε[u])dV

︸ ︷︷ ︸
:=B(u;δu)

= 0, ∀δu ∈ V0, (35)

where B, F and V0 are a bilinear form, a linear form and an appropriate Sobolev
space, respectively. Clearly, the primal solution of (35) is the micro displacement
vector u. By introducing a regular FE-space V0

h, we may further arrive at a dis-
cretized version of (35)

%(uh; δuh) = F (δuh)−B(uh; δuh) = 0, ∀δuh ∈ V0
h. (36)

3.3.2 Implementation of different boundary conditions

Now, we consider the different micro boundary conditions introduced in Section 2.2:

1. Linear displacement boundary condition: the load term in Eq. (35) vanishes,
i.e F (δu) = 0. Formally, we have

%(u; δu) = −B(u; δu) = 0, ∀δu ∈ V0, (37)

with the constraint (11).

2. Constant traction boundary condition: using Eq. (12), the load term in Eq.
(35) becomes

F (δu) =

∫

Γ

δu · σ · ndA. (38)

Note that for a strain-driven approach additional effort has to be paid to ensure
a prescribed macro strain ε instead of σ, see e.g. [40] for an approach based
on Lagrange multipliers.
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3. Periodic boundary condition: with the strain polarization ε = ε + ε̃ in mind,
where ε̃ is a fluctuation part, we correspondingly split the micro displacement
vector into two parts, i.e. u(x) = u0(x) + ũ(x), where u0 = ε x. In this
manner, using Eq. (10a), the primal micro problem (7b) or (35) becomes an
equivalent eigenstrain problem of the strong form

{
Div(σ) = Div(C(ε̃+ ε)) = 0, in Ω

〈ε̃〉 = 0,
, (39)

and of the weak residual form

%(ũ; δũ) = −
∫

Ω

ε̃[δũ] : C(ε̃(ũ) + ε)dV

︸ ︷︷ ︸
:=B(ũ;δũ)

= 0, ∀δũ ∈ Ṽ0, (40)

where F (δũ) = 0. Note that the fluctuation part of the micro displacement
vector ũ is the primal solution of the eigenstrain problem (40), while the
homogeneous part u0 constitutes the constant eigenstrain ε. Then, we split
the micro displacement vector into three parts as ũ(x) = [ũin ũ+ ũ−]. While
ũin corresponds to the displacement in the interior domain, ũ+ and ũ− are
the displacements at x+ ∈ Γ+ and x− ∈ Γ−, respectively. On this basis, we
arrive at an alternative version of (13a)

ũ+(x+) = ũ−(x−). (41)

In the context of the FEM, the combination of the equations (40) and (41)
leads to a reduced equation system for solving ũinh and ũ+

h , see e.g. [51] for
details.

For detailed FE algorithms, the interested reader is referred to [40, 51].

Remark 3. Fig. 4a schematically depicts the relation between solution spaces of
mean-field and FE approximations as well as an exact solution. For illustration pur-
poses, material properties and microstructural information (like inclusion shape or
distribution) are chosen as independent variables. In particular, we assume that the
solution space of the mean-field approximation is completely included within that of
the FE approximation. Since the FEM allows to consider some fine micromorphol-
ogy effects, which cannot be considered analytically via a mean-field approximation,
it is expected to be more accurate than the mean-field methods in general. However,
the FE approximation is still not exact due to the underlying discretization errors
or due to the lack of knowledge about an RVE.
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Figure 4: Schematic illustration of the relations between mean-field and FE approx-
imations for determining effective properties

4 Goal-oriented adaptivity on the macro scale

With the different approximation methods for homogenization introduced in the
previous sections 3.2 and 3.3 at hand, we are now in a position to establish the
macro scale adaptivity. To this end, we first briefly recall the general goal-oriented
adaptive approach developed in our previous work [25]. Then, we propose a novel
model hierarchy, including the aspects of mean-field and full-field homogenization
methods as well as unit cell size.

4.1 Quantity of interest and dual problem

For the exact model (9) to be practically solved, we need to introduce two additional
models: the working (surrogate) model

%(n)(u(n); δu) = F (δu)−B(n)
(u(n); δu) = 0, ∀δu ∈ V0

(42)

with a hierarchical order n ≥ 0 and the computable model

%(n)(u
(n)
h ; δuh) = F (δuh)−B(n)

(u
(n)
h ; δuh) = 0, ∀δuh ∈ V0

h. (43)

Here V0
h ⊂ V

0
represents the approximate FE-space. In the case where the quality of

the simulation is measured by a quantity of interest Q(u) depending on a macroscale
solution u, we define the total error E as

E(u,u
(n)
h ) := Q(u)−Q(u

(n)
h ). (44)

For duality techniques [33, 34, 35] to apply, we first formulate a residuum as

%(u
(n)
h ; δu) = F (δu)−B(u

(n)
h ; δu) = B(u; δu)−B(u

(n)
h ; δu) = B(e; δu), (45)

with the error of the primal solution e = u − u(n)
h , where we used the Galerkin

orthogonality (9) for the second equality and the last equality is ensured by the fact
that B is bilinear. Since the quantity of interest Q in Eq. (44) does not necessarily
have to be linear, we rewrite Eq. (44) as

E(u,u
(n)
h ) = Q(u)−Q(u

(n)
h ) = QS(u,u

(n)
h ; e), (46)
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where we introduce a secant form as

QS(u,u
(n)
h ; e) =

∫ 1

0

DuQ(u
(n)
h + se; e)ds, (47)

with 0 ≤ s ≤ 1, see also [56]. To set a link between the equations (45) and (47), we
introduce a dual Lagrangian functional L as

L(u,u
(n)
h , z; δz) := QS(u,u

(n)
h ; δz)−B∗(z; δz), (48)

where B
∗

is the adjoint form of B, satisfying B
∗
(z; δz) = B(δz; z). Furthermore,

δz ∈ V0
and z ∈ V0

are test functions. The dual problem is then established by

statδz

{
L(u,u

(n)
h , z; δz)

}
=⇒ QS(u,u

(n)
h ; δu)−B∗(z; δu) = 0, (49)

with the dual solution z. For self-adjoint problems (true for the present case), we
have

B(z; δu) = QS(u,u
(n)
h ; δu). (50)

4.2 Exact error representations

To distinguish two different error sources, we rewrite the residuum (45) as

%(u
(n)
h ; δu) = F (δu)−B(u

(n)
h ; δu)

= F (δu)−B(n)
(u

(n)
h ; δu)︸ ︷︷ ︸

:=%h

+B
(n)

(u
(n)
h ; δu)−B(u

(n)
h ; δu)︸ ︷︷ ︸

:=%m

, (51)

which defines the discretization error %h and the model error %m, see also [34, 35].
Note that the special cases % = %m and % = %h are obtained for h→ 0 and n→∞,
respectively. Finally, by combining the equations (44), (45), (46), (50) and (51), we
obtain

E(u,u
(n)
h ) = %h(u

(n)
h , z − πz)︸ ︷︷ ︸

:=Eh

+ %m(u
(n)
h , z)︸ ︷︷ ︸

:=Em

, (52)

where Eh and Em are the discretization error and the model error of the quantity of
interest Q, respectively. In Eq. (52) for Eh, the Galerkin orthogonality (43) is used,

and πz ∈ V0
h is a projection of z onto the FE-space V0

h.

4.3 Approximations for a computable error representation

To arrive at a computable error representation, we make the following three approx-
imations:

1. The exact model of hierarchical order n→∞ is replaced by a fine model of a
hierarchical order n+ > n. Hence, we obtain for Eq. (51)

%m(u
(n)
h , z) ≈ %+

m(u
(n)
h , z) := B

(n)
(u

(n)
h ; z)−B(n+)

(u
(n)
h ; z). (53)
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2. The exact dual problem (50) also depends on the exact primal solution u and
requires knowledge of the exact model. Hence, we introduce an approximate
dual problem

B
(n)

(z; δu) = Q
(n)
S (u

(n)
h ,u

(n)
h ; δu) (54)

by the replacements B ≈ B
(n)

, QS ≈ Q
(n)
S and u ≈ u(n)

h , leading to a lineariza-
tion of (50).

3. In practice, the approximate dual problem (54) is not solved exactly. Instead
a spatially discretized version of (54), i.e.

B
(n)

(zh; δuh) = Q
(n)
S (u

(n)
h ,u

(n)
h ; δuh), (55)

is solved via the FEM, using the same mesh as for the primal problem and
thus preserving an analogous structure of the primal problem (see e.g. [62]).
Here zh is the FE solution of the approximate dual problem (54), which is
not directly useful for the error representation (52) due to the Galerkin or-
thogonality. For this reason, we use, in this work, a patch recovery approach
developed in our previous works [25, 24] to construct an approximate solution
of

B
(n)

(zh+ ; δuh+) = Q
(n)
S (u

(n)

h+ ,u
(n)

h+ ; δuh+), (56)

on an enhanced FE-space δuh+ ∈ V
0

h+ satisfying V0

h ⊂ V
0

h+ ⊂ V
0
, using the

hierarchical FE structure by increasing the polynomial interpolation order.

4.4 A model hierarchy based on mean-field and full-field
homogenization methods

To obtain a computable error estimate, we specify the exact, the working and the
fine model as

B(u; δu) =

∫

Ω

ε[δu] : (Cε[u])dv, (57a)

B
(n)

(u; δu) =

∫

Ω

ε[δu] : (C
(n)
ε[u])dv, (57b)

B
(n+)

(u; δu) =

∫

Ω

ε[δu] : (C
(n+)

ε[u])dv, (57c)

respectively. To complete the working model (57b), we recall the solution spaces of
mean-field and FE approximation in Fig. 4a. On this basis, we propose a model
hierarchy consisting of the following stages:

1. The basic model of hierarchical order n = 0 is chosen as one of the mean-field
methods presented in A.

2. As an accuracy improvement, a further mean-field method is chosen as n = 1.
Due to the lack of a hierarchical model structure, this method does not have
to be computationally more expensive than the basic one. Most importantly,
this choice eliminates the need of a full-field method for an error estimate of
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the basic model for n = 0. For a structural analysis, it is expected that the use
of the two mean-field methods n = 0 and n = 1 is sufficient for a comparably
large domain of the whole structure, and for both purposes of modeling and
the error estimate to be specified in the equations (59), (60) and (61).

3. For a further accuracy improvement, the FE-based method in Eq. (36) with
an appropriately chosen boundary condition is adopted for n > 1 towards a
full-field approximation. Here, the key role is played by hierarchical unit cells
with increasing sizes n = ns + 1 = 2, 3, · · · , see Remark 4.

Furthermore, we choose n+ = n+ 1 > n for the fine model (57c).

Remark 4. As a representative example, a model hierarchy used in Section 5 is
as follows:

1. n = 0 : Self-consistent in Eq. (A.12),

2. n = 1 : IDD in Eq. (A.14),

3. n = ns + 1 = 2, 3, · · · : FEM (periodic) in Eq. (40).

(58)

Remark 5. Based on the solution spaces of mean-field and FE approximations in
Fig. 4a, the resulting hierarchical models are schematically illustrated in Fig. 4b.

Remark 6. In Tab. 1, we recall the accuracy level of some mean-field methods
from the literature [10, 64], where c =

∑Ni

i=1 ci denotes the total volume fraction of
all inclusions. A function f(c) is said to be o(cm), if there exist two c-independent
positive constants A and m such that | f(c) |≤ Acm as c → 0. The accuracy level
given in Tab. 1 provides a two-step model hierarchy, however, is only restricted
to a limit case of a very low inclusion volume fraction c → 0 and does not have a
generality for all possible inclusion volume fractions. Therefore, the special choice
for n = 0, 1 in the model hierarchy (58) does not have generality due to the lack of
a hierarchical model structure. The choice should be tailored for the problem under
study.

Methods Accuracy

Eshelby (dilute) o(c)
Mori-Tanaka o(c2)
Self-consistent o(c)
IDD o(c2)

Table 1: Comparative properties of several mean-field methods [10]

Remark 7. For an alternative approach to model adaptivity based on a clear
hierarchical model structure, we refer to our recent work [25].
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Remark 8. The switch from Stage 2 to Stage 3 of the above model hierarchy
is based on the hierarchical model structure in Fig. 4b. As already discussed in
Remark 3, the FEM is capable of considering some fine micromorphology effects,
which cannot be considered analytically via the mean-field methods. Therefore, it
may be considered as a more accurate method than the mean-field methods in view
of determining effective properties. A mathematical proof of this assumption is still
lacking.

Remark 9. Additionally to the effective properties in Remark 8, for some sce-
narios like a damage analysis, a localization in the equations (15a) and (15b) is of
interest. The basis of the mean-field methods used for Stage 2 is the mean-field
formulation in Section 3.1, leading to a rather low microscopic resolution that might
suffice for uncritical regions of a structure. In contrast to that, at the expense of a
larger computational effort, the FEM used in Stage 3 provides a much more detailed
localization, which becomes useful for the critical region. Therefore, a clear model
structure also preserves in view of a localization.

Remark 10. An RVE is defined as a statistical representative of the microstruc-
ture of the material under study. The choice of an RVE is not unique, but by
definition any RVE should return the same effective properties C in Eq. (18) or S
in Eq. (19). However, this is not always practicable, such that, instead of an RVE,
a unit cell is used for formulation of the micro problem (7b), as already mentioned
in Section 1. Fig. 5a schematically depicts some possible choices of a unit cell for
a given microstructure, which do not necessarily meet the requirements of an RVE.
With increasing unit cell size, a better estimate of effective properties is expected, as
illustrated in Fig. 5b for different boundary conditions, see e.g. [15]. When unit cell
size ns is fixed, the linear displacement boundary condition gives the stiffest predic-
tion, whereas the constant traction boundary condition provides the most compliant
behavior. In most cases, the periodic boundary condition gives the best prediction,
such that the fastest convergence rate may be expected. The unit cell corresponds
to an RVE, when a certain size is reached, such that the exact effective properties
can be reproduced. In this work, we consider hierarchical unit cells ns = 1, 2, · · · ,
starting with a basic unit cell ns = 1 and enlarging their size with an increasing ns.
Additionally, a unit cell of a size ns contains all microstructural information of the
one of ns− 1. The hierarchical unit cells are considered within Stage 3 of the above
model hierarchy by means of the FEM. Since a clear hierarchical model structure is
obtained by enlarging the unit cell size, this ansatz is quite general.
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Figure 5: Schematic illustration of the influence of unit cell size

Remark 11. An adaptive selection of micro boundary conditions is not included
in the model hierarchy, and a selection is suggested to be done prior to the adaptive
approach, since, for our case, a switch of boundary conditions does not have a
significant influence on the numerical effort associated with the FEM.

Remark 12. It is remarkable that the aspects of mean-field and full-field methods
as well as hierarchical unit cells can be consistently included in one single model
hierarchy as shown above.

4.5 A computable error estimator

Using the enhanced dual solution zh+ of the dual problem (56) and combining the
equations (51), (52), (53) and (57), we finally obtain the model error estimate

Em = %m(u
(n)
h , z) ≈

∫

Ω

ε[zh+ ] :
(

(C
(n) − C

(n+)
)ε[u

(n)
h ]
)
dv =: Ẽm (59)

and the discretization error estimate

Eh = %h(u
(n)
h , z − πz)

≈ F (zh+ − πzh+)−
∫

Ω

ε[zh+ − πzh+ ] : (C
(n)
ε[u

(n)
h ])dv =: Ẽh,

(60)

respectively. The local error indicators ηem and ηeh for each single element e are then
obtained from the corresponding element contributions of their global counterparts
(59) and (60), respectively, i.e.

Ẽm =

Nel∑

e=1

ηem, ηem =

∫

Ω
e
ε[zh+ ] :

(
(C

(n) − C
(n+)

)ε[u
(n)
h ]
)
dv, (61a)

Ẽh =

Nel∑

e=1

ηeh, ηeh = −
∫

Ω
e
ε[zh+ − πzh+ ] : (C

(n)
ε[u

(n)
h ])dv, (61b)

Ẽ := Ẽm + Ẽh, (61c)

where Ω =
⋃Nel

e=1 Ω
e
. In Eq. (61c), we introduce Ẽ as an error estimate of the total

error E in Eq. (44).
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Remark 13. For the second equation in Eq. (61b), the load term F in Eq. (60)
is neglected for a localization. This does not have any influence on the effectivity
for a displacement-controlled approach in Section 5, where F (zh+ − πzh+) = 0.
Otherwise, for an effectivity improvement, one could use the Galerkin orthogonality

F (zh+)−
∫

Ω

ε[zh+ ] : (C
(n)
ε[u

(n)

h+ ])dv = 0, (62)

which suggests to solve the primal problem (43) on an enhanced FE-space V0

h+ for an

enhanced primal solution u
(n)

h+ . In this manner, the load term F can be equivalently
replaced by the second term in Eq. (62), which can be easily localized into its
element contributions. For a numerical efficiency, the patch recovery [25, 24] can be
used to approximate the enhanced primal problem (62) in a similar manner as for
the enhanced dual solution zh+ in Section 4.3.

Remark 14. The sign of ηem and ηeh in the equations (61) indicates the direction
of the deviation w.r.t. the quantity of interest Q, hence, only their absolute values
are considered as local indicators in the adaptive algorithm, which will be described
in the subsequent section.

4.6 Adaptive algorithm

For both model and discretization errors to be controlled in a systematic and auto-
mated manner, we adopt Algorithm 1.

Initialization: set the initial mesh V0
h0 with the initial (uniform) elastic

property C
(n=0)

and adaptive step i = 0;

Define a stopping criterion Ẽ = Ẽh + Ẽm ≤ TOL for the adaptive refinement
loop, where TOL is a user-defined threshold value related to the desired
accuracy;

while Ẽ = Ẽh + Ẽm > TOL do
Solve the computable working model problem (43) with (57b);
Solve the approximate dual problem (55) on the current mesh and
compute the enhanced dual solution zh+ in Eq. (56) using the patch
recovery technique [25, 24];

Compute the local fine models C
(n+

e )
;

Compute the error representations ηem, ηeh, Ẽm, Ẽh and Ẽ according to the
equations (59), (60) and (61);

Adaptive refinement: a fixed refinement ratio, such as α = 3%, of the
elements with the largest | ηeh | and | ηem | is spatially refined and

enhanced by C
(ne) → C

(n+
e )

, respectively; update the local hierarchical
order ne → n+

e for enhanced elements and adaptive step i→ i+ 1.
end

Algorithm 1: Adaptive algorithm

Remark 15. For linear elasticity, the effective properties need to be computed
only once for a certain microstructure. For macroscopically homogeneous materials,
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in each adaptive step i = 0, 1, 2, · · · , the (maximal reachable) fine model C
(n+=i+1)

is computed only once for all and stored for a possible call by subsequent steps.

Remark 16. The computational cost cannot be saved in this manner, when the
considered material is macroscopically heterogeneous, see e.g. a random composite
in Section 5.3, or when the mechanical problem is coupled to an additional problem
such as phase transformation.

5 Numerical examples

5.1 Preliminaries

In this section, a compact tension (CT) specimen is investigated, where no crack is
assumed. As shown in Fig. 6a, we consider a half model. The specimen is stretched
by a displacement u∗ = 0.01 mm in the vertical direction, which is uniformly dis-
tributed on the entire boundary of the hole. The indices 1 and 2 represent the
horizontal and the vertical direction, respectively. We restrict ourselves to a two-
dimensional case following the notations given in B, where a plane strain state is
assumed.

1
2 Ω

[mm]

30

10

10

u∗

13 2

Ω
0

R3

r

2

50

(a) Geometry and boundary conditions (b) Initial mesh

Figure 6: A CT specimen in linear elasticity

The specimen is made of a composite material, consisting of a matrix material
and fibers of respective properties given in Tab. 2. In the subsequent examples, we
will consider two different classes of materials as follows:

• Periodic composite: The macrostructure is made of a periodic repetition
of the microstructure. As illustrated in Fig. 7a, the basic unit cell with
ns = 1 is assumed to be a square matrix (white) with a centrally located
circular fiber (black). Higher order unit cells (ns > 1) are generated by a
repetition of the basic unit cell in such a way that the same number ns of
basic unit cells is contained for both rows i and columns j. In this manner,
any unit cell with ns > 1 remains a square and automatically contains all
microstructural information of the one with ns − 1. Since size effects (in the
context of generalized continuum mechanics [18]) are not considered by the
present approach, the absolute size of the unit cell does not play a role for
computation of the effective properties. For this reason, a specification of the
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volume fraction of the fibers cf suffices for a microscopic geometric description
in this case. Due to the fiber arrangement in Fig. 7a, the resulting effective
material is orthotropic.

• Random composite: It contains randomly distributed fibers. Local peri-
odicity is assumed such that homogenization schemes apply. As illustrated
in Fig. 7b, the fibers are randomly deviated from the center position, such
that the effective properties can be expected to be isotropic. For simplicity,
the deviations are controlled in such a way that the fibers do not cross the
boundaries of the square unit.

Young’s modulus Poisson’s ratio
E [MPa] ν [-]

matrix 7 · 104 0.25

fiber 7 · 105 0.25

Table 2: Summary of material parameters

In order to solve the underlying micro problem (7b), we will consider the following
two classes of methods:

• Mean-field methods: Eshelby (A.3), Mori-Tanaka (A.9), Self-consistent
(A.12) and IDD (A.14) in Section 3.2.

• Full-field methods: FEM (linear displacement) in Eq. (37), FEM (constant
traction) in Eq. (38) and FEM (periodic) in Eq. (40) in Section 3.3.
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(a) Periodic composite
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(b) Random composite

Figure 7: Artificial generation of hierarchical unit cells

Algorithm 1 starts with the initial mesh V0
h0 shown in Fig. 6b, consisting of linear

triangular elements, and with a uniform model distribution n(x) = const. = 0. An
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artificial constraint is added to avoid a mesh refinement around the hole boundary
for two reasons: 1. the hole is made for imposing a load and does not correspond to
our investigation region, 2. this avoids a varying mesh quantity for reproducing the
hole geometry, thus enabling a pure effectiveness study of our error estimate (61).

To illustrate the power of goal-oriented adaptivity, we define the quantity of
interest Q as a local type quantity

Q :=

∫

Ω
′
σijdv, (63)

where σij represents coefficients of the macro stress tensor σ. For this work, we

choose i = j = 2. Furthermore, Ω
′
is a local domain out of the whole domain Ω, i.e.

the green area marked in Fig. 6a, with r = 4 mm.
For an effectiveness study of the proposed adaptive approach, we introduce an

accurate estimate of the exact global error Ei in Eq. (44), called the actual error
Êi, as

Ei = Q−Q(n),i
h ≈ Qref −Q(n),i

h =: Êi, i = 0, 1, · · · , Ns. (64)

Here Q
(n),i
h represents the quantity of interest computed on the current (i-th) mesh

with a corresponding (i-th) model distribution, where Ns denotes the number of
adaptive refinement steps. Furthermore, Qref represents a reference solution, which
is independent of i. Additionally, we introduce a relative actual error

Êi
rel :=

Êi

Qref

, (65)

and a relative error estimate

Ẽi
rel :=

Ẽi

Qref

, (66)

respectively.

5.2 Example 1: Periodic composite

In this example, we deal with the periodic composite illustrated in Fig. 7a. The
volume fraction of the fibers is assumed to be cf = 40%.

5.2.1 Example 1.1: Model hierarchy

Fig. 8 shows several hierarchical unit cells discretized with linear triangular elements
for the FEM with different micro boundary conditions (37), (38) and (40). Using
the mesh in Fig. 8c, different results are obtained for different boundary conditions,
as exemplarily shown in Fig. 9 for contour plots of the von Mises stresses σv under a
pure shear loading ε12 = 0.005. A maximum von Mises stress is locally achieved by
the linear displacement boundary condition (11), while a periodic stress distribution
is ensured by the periodic boundary condition (13) as expected. Additionally, the
stress distribution obtained by the constant traction boundary condition (12) is
quite similar to that for the periodic boundary condition.
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(a) ns = 1 (b) ns = 2 (c) ns = 3

Figure 8: Example 1.1: A sequence of FE-discretized unit cells with different sizes
ns

As stated in Section 5.1, different methods are used to obtain the effective elas-
ticity matrix C in Eq. (B.1). As the considered effective material is orthotropic, the
effective moduli K, G1 and G2 defined in Eq. (B.4) are shown in Figs. 10a–10c, re-
spectively, where we consider the unit cell size ns. Since all four mean-field methods,
i.e. Eshelby (A.3), Mori-Tanaka (A.9), self-consistent (A.12) and IDD (A.14), are
not able to account for unit cell size effect, their courses remain constant versus ns
in Fig. 10. Moreover, Eshelby (A.3), Mori-Tanaka (A.9) and self-consistent (A.12)
method are not able to consider the fiber distribution, thus leading to isotropic pre-
dictions of effective properties as can be seen from a comparison between Figs. 10b
and 10c for G1 = G2, which is not the case for the FEM. As discussed in A.4, the
IDD method may account for ellipsoidal distribution, which does not correspond to
the present case. The underlying inclusion-matrix cell is assumed to be of the same
shape of the corresponding inclusion, leading to an isotropic prediction of effective
properties. As a result, the IDD estimate coincides with the Mori-Tanaka one as
also reported e.g. in [64, 10]. Interestingly, the Eshelby estimate performs very
well when compared to the FEM for the effective shear modulus G2 in Fig. 10c,
whereas a relative large deviation can be observed for the effective moduli K and
G1 in Figs. 10a and 10b, respectively. Additionally, its prediction becomes poor,
running outside of the Reuss bound, for a higher fiber concentration like cf > 50%.

(a) Linear displacement
via Eq. (37)

(b) Constant traction
via Eq. (38)

(c) Periodic via Eq. (40)

Figure 9: Example 1.1: Contour plots of von Mises stress σv [MPa] under different
micro boundary conditions (deformation scaling factor of 10)

As depicted in Figs. 10a–10c, using the FEM, the linear displacement boundary
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condition (11) provides an upper bound of the effective elastic moduli, while the
constant traction one (12) renders a lower bound. With increasing unit cell size ns,
the bounds become narrower. Most strikingly, the estimate made by the periodic
boundary condition (13) lies between the bounds and holds constant with increasing
unit cell size ns. In this case, it stays rather close to the lower bound (the constant
traction boundary condition) for the effective shear modulus G2 in Fig. 10c, which
is quite reasonable due to the similar stress distributions in Figs. 9b and 9c for a
pure shear loading. In contrast to that, Fig. 10b shows that the periodic estimate is
very close to the upper bound (the linear displacement boundary condition) for the
effective shear modulus G1, while the periodic estimate approximately lies in the
middle of the bounds for the effective bulk modulus K in Fig. 10a. Most impor-
tantly, as illustrated in Fig 10, the basic unit cell ns = 1 can be used along with the
periodic boundary condition to compute an accurate estimate of the effective elas-
ticity matrix C at a comparably low computational cost. Once a periodic boundary
condition is chosen, there is no need to enlarge the unit cell size ns for an accuracy
improvement. This illustrates the power of the periodic boundary condition for pe-
riodic composites. Note that the effective elasticity matrix C obtained by the FEM
(periodic) in Eq. (40) is still not exact due to the discretization errors.
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Figure 10: Example 1.1: Comparison between different methods for different unit
cell sizes ns
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Correspondingly, we establish the model hierarchy in Eq. (58), which is illus-
trated for the effective elastic moduli K, G1 and G2 in Figs. 11a–11c, respectively.
For n = 0 and n = 1, mean-field methods are used, while a switch to full-field
methods follows by n ≥ 2. Compared to the results of full-field methods, a large de-
viation is observed for the basic model (self-consistent) n = 0, which is significantly
enhanced by the IDD estimate n = 1. At the expense of a much larger computa-
tional effort, the IDD estimate is further enhanced by a full-field approximation via
the FEM for a basic unit cell problem ns = 1 or n = 2. As discussed above, since
a periodic boundary condition is chosen, no further accuracy improvement can be
made by enlarging the unit cell size ns for n > 2.
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Figure 11: Example 1.1: Illustration of hierarchical models

5.2.2 Example 1.2: Pure model adaptivity

Based on the model hierarchy in Eq. (58), we investigate a special case of pure model
adaptivity on the initial mesh in Fig. 6b, which is not refined during the adaptive
approach. For an effectiveness study, we introduce an estimate of the exact model
error Ei

m in Eq. (52), called the actual model error Êi
m, as

Ei
m ≈ Qh,ref −Q(n),i

h =: Êi
m, i = 0, 1, · · · , Ns. (67)
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Here Q
(n),i
h represents the quantity of interest computed on the initial mesh with the

i-th model distribution, where Ns denotes the number of adaptive refinement steps.
Furthermore, Qh,ref represents a reference solution, which is computed on the initial
mesh in Fig. 6b with a uniform model distribution n(x) = const. = 2. Similarly to
the equations (65) and (66), we introduce a relative actual model error

Êi
m,rel :=

Êi
m

Qh,ref

, (68)

and a relative model error estimate

Ẽi
m,rel :=

Ẽi
m

Qh,ref

, (69)

respectively. The adaptive approach is stopped until the actual model error Êi
m

completely vanishes, where Ns = 86 adaptive steps are needed. Exemplarily, Figs.
12a–12c show several distributions of the local model errors | ηem | in Eq. (61a)
for different adaptive steps, while the resulting model distributions are depicted in
Figs. 12d–12f, respectively. In the course of the adaptive model refinements, the
local model errors | ηem | are balanced and significantly reduced.

Furthermore, Fig. 13a shows the quantity of interest Q
(n),i
h versus adaptive steps,

where a convergence to the reference value Qh,ref can be clearly observed. For a
numerical efficiency of a structural analysis, it is preferable to limit the use of the
FEM for the underlying unit cell computation as strongly as possible. Fig. 13b
depicts the relation between the faction cfem of elements using the FEM and the

relative actual model error Êm,rel, where a comparison to the relative model error
estimate Ẽm,rel is additionally given. The reduction of the relative actual model

error Êm,rel is rapid at the beginning for cfem < 30%, then becomes somewhat
slower until a sudden jump to zero for cfem = 100%. The relative model error

estimate Ẽm,rel somewhat underestimates the relative actual model error Êm,rel, but

with a very good effectivity. Additionally, Ẽm,rel correctly predicts the sign of Êm,rel
except for only 2 out of 86 adaptive steps at the end of the model refinements. Most
strikingly, the zero actual model error Êm,rel = 0 for cfem = 100% is reproduced by
Ẽm,rel to working precision. Finally, Figs. 12g–12i show several model distributions
obtained by the adaptive approach for different error levels. We observe that the
actual model error Êm,rel can be reduced from 26.4% for the initial step to 0.24%
by a use of the FEM in a comparably small region, showing the effectiveness of the
proposed adaptive approach.
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Localization of macro model error | ηem |

(a) i = 1 (b) i = 7 (c) i = 14

Adaptively refined model distributions n

(d) i = 1 (e) i = 7 (f) i = 14

Model distributions for different error levels
(green: mean-field and red: full-field FEM)

(g) | Êm,rel |= 11% (h) | Êm,rel |= 0.91% (i) | Êm,rel |= 0.23%

Figure 12: Example 1.2: Results of pure model adaptivity – Part I
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Figure 13: Example 1.2: Results of pure model adaptivity – Part II

5.2.3 Example 1.3: Coupled model and mesh adaptivity

Now, we consider a fully coupled adaptivity using Algorithm 1, where model adap-
tivity and adaptive FEM are simultaneously applied. Local model error indicators
| ηem | and local discretization error indicators | ηeh | in Eq. (61) are depicted in Figs.
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14a–14c and Figs. 14g–14i for different adaptive steps, respectively. In the course of
the adaptive refinements, both of them are balanced and significantly reduced. The
balance effect is weaker around the hole due to the artificial constraint avoiding a
mesh refinement there, see Figs. 14h and 14i. As shown in Figs. 14j–14l, the local
mesh refinements are mainly located within the local domain Ω

′
in the quantify

of interest (63). Similar trends can also be found for model refinements shown in
Figs. 14d–14f. Since Algorithm 1 aims at a balanced model error distribution, as
a coupling effect to the adaptive mesh refinements, the model on coarsest meshes
(sooner or later) starts to be refined as can be seen from Fig. 14f. Compared to
Figs. 12d–12f for a pure model adaptivity, Figs. 14d–14f show a different model
refinement pattern due to the coupling effect with the adaptive mesh refinements.
More precisely, the mesh adaptivity results into a varying distribution of element
size, which has a further influence on the model error distribution. Additionally,
a hierarchical order n > 2 is not achieved, since it does not provide any accuracy
improvement to the model n = 2 due to the periodic boundary condition. This is
also reflected by the local model error distributions in Figs. 14b and 14c, where
ηeh = 0 holds for regions using the model n = 2 (yellow regions in Figs. 14e and 14f).

Fig. 15a shows the quantity of interest Q
(n),i
h versus adaptive steps, where a

convergence to a reference value Qref can be clearly observed. The reference value
Qref is obtained by using a mesh, that is refined uniformly from the last adaptive
mesh in Fig. 14l, with a uniform model distribution n(x) = const. = 2. In Fig. 15b,
the relative actual error Êi

rel in Eq. (65) is shown to be effectively reduced by the
adaptive approach, where an additional comparison to the relative error estimate
Ẽi
rel in Eq. (66) is given. The error estimate Ẽi appears to somewhat underestimate

the actual error Êi, and is able to mimic the decreasing trend of the actual error Êi.
These observations are quite similar to those obtained from our previous work [25] for
a different model hierarchy, where a more detailed discussion on the error estimator
was given. Finally, Figs. 14m–14o show several model distributions obtained by
the adaptive approach for different error levels. We observe that the actual error
Êrel can be reduced from 35.9% for the initial step to 4.61% by a use of the FEM
in a comparably small region, confirming the effectiveness of the proposed adaptive
approach. Compared to Figs. 12g–12i for a pure model adaptivity, a different model
refinement pattern is obtained here due to the coupling effect with the adaptive mesh
refinements, as already discussed above.
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Localization of macro model error | ηem |

(a) i = 1 (b) i = 7 (c) i = 14

Adaptively refined model distributions n

(d) i = 1 (e) i = 7 (f) i = 14

Localization of macro discretization error | ηeh |

(g) i = 1 (h) i = 7 (i) i = 14

Adaptively refined meshes

(j) i = 1 (k) i = 7 (l) i = 14

Model distributions for different error levels
(green: mean-field and red: full-field FEM)

(m) | Êrel |= 14.1% (n) | Êrel |= 7.68% (o) | Êrel |= 4.61%

Figure 14: Example 1.3: Results of coupled adaptivity – Part I
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Figure 15: Example 1.3: Results of coupled adaptivity – Part II

5.3 Example 2: Random composite

In this example, we deal with the random composite illustrated in Fig. 7b. The
distribution of the fiber volume fraction cf is macroscopically random and assumed
to satisfy some statistical properties like the statistical mean mean(cf ) = 40% and
the standard deviation dev(cf ) = 0.012. We consider one specific realization shown
in Fig. 16a for 357 given sampling points. Additionally, the distribution of fibers
is random for each sampling point, as exemplarily shown for the sampling points
A, B and C in Figs. 16b–16d, respectively. This sampling procedure is done once
for all the following FE computations and serves as a basis for determining the un-
derlying microstructure for each macro element. In our calculations, the underlying
microstructure for each element is assumed to be the same as of the sampling point
with a nearest distance from the element center. Furthermore, all fibers are assumed
to have a same diameter, such that different volume fractions can be reached by
adapting the size of the matrix. As for Example 1, the model hierarchy in Eq. (58)
is used. Despite of the random composite rather than a periodic one, the periodic
boundary condition (13) is chosen for a fast convergence rate, see e.g. [48, 26, 15].

On this basis, as for Example 1.3, we consider a fully coupled adaptivity using
Algorithm 1. For an investigation of hierarchical unit cells, a larger refinement ratio
α = 6% is used. Local model error indicators | ηem | and local discretization error
indicators discretization error | ηeh | in Eq. (61) are depicted in Figs. 17a–17c and
Figs. 17g–17i for different adaptive steps i, respectively. In the course of the adaptive
refinements, both of them are balanced and significantly reduced. The balance effect
is weaker around the hole due to the artificial constraint avoiding a mesh refinement
there, see Figs. 17h and 17i. As shown in Figs. 17j–17l, the local mesh refinements
are mainly located within the local domain Ω

′
in the quantify of interest (63) at

the beginning and then spread to surrounding regions for a balanced discretization
error distribution. Similar trends can also be found for model refinements shown
in Figs. 17d–17f. A maximal hierarchical order n = 4 is achieved in Fig. 17f for
a very small region, whereas for a comparably large region a basic unit cell n = 2
suffices to consider hierarchical unit cells. This illustrates the power of the periodic
boundary condition even for the random composite under study.
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For an effectiveness study, Fig. 18a shows the quantity of interest Q
(n),i
h ver-

sus adaptive steps, where a convergence to the reference value Qref can be clearly
observed. Here, Qref is obtained by using a mesh, that is refined uniformly once
from the last adaptive mesh in Fig. 17l, with a uniform model distribution n(x) =
const. = 5. In Fig. 18b, the relative actual error Êi

rel in Eq. (65) is shown to be
effectively reduced by the adaptive approach, where an additional comparison to the
relative error estimate Ẽi

rel in Eq. (66) showing a good effectivity is given. Addi-
tionally, Figs. 17m–17o depict several model distributions obtained by the adaptive
approach for different error levels, showing that the actual error Êrel can be reduced
from 37.1% for the initial step to 4.98% by a use of the FEM in a comparably small
region. A similar model refinement pattern as for Example 1.3 in Figs. 17m–17o is
obtained here due to the coupling effect with the adaptive mesh refinements. The
effectiveness of the proposed adaptive approach is confirmed again.

In view of a numerical efficiency, compared to a uniform model distribution
n(x) = const. = 2, the model distributions in Figs. 17m–17o achieve a speed-up
factor of 13, 4.8 and 2.9, respectively.
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(a) Heterogeneous distribution of the fiber volume
fraction cf on chosen sampling points
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Figure 16: Example 2: Illustration of a random composite
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Localization of macro model error | ηem |

(a) i = 1 (b) i = 7 (c) i = 14

Adaptively refined model distributions n

(d) i = 1 (e) i = 7 (f) i = 14
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(j) i = 1 (k) i = 7 (l) i = 14

Model distributions for different error levels
(green: mean-field and red: full-field FEM)

(m) | Êrel |= 15.09% (n) | Êrel |= 7.21% (o) | Êrel |= 4.98%

Figure 17: Example 2: Results of coupled adaptivity – Part I
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Figure 18: Example 2: Results of coupled adaptivity – Part II

6 Conclusion and outlook

This work presents a continuation of our previous work [25] by considering two major
concerns arising in homogenization of linear elastic heterogeneous materials:

• The need for a full-field approximation obtained by a computational method
(here FEM) where an analytical (mean-field) method does not suffice for the
pursued accuracy level.

• An adaptive selection of unit cell size for a further accuracy improvement of
computational methods.

We have shown that these two concerns can be simultaneously addressed by an
appropriately formulated model hierarchy within the framework of goal-oriented
adaptivity. Three typical micro boundary conditions have been examined and sug-
gested to be chosen prior to the adaptive approach. Considering both model and
discretization errors, the proposed adaptive approach has been shown to be effec-
tive for two different classes of materials. Compared to a uniform FE2 approach,
a promising speed-up factor is achieved by the model distribution obtained from
model adaptivity.

The proposed methodology provides a basis for an extension to nonlinear ho-
mogenization problems, like large deformations or plasticity, for future work. Model
adaptivity for reduced order homogenization schemes is of our particular interest.
Our previous work [23] developed an adaptive reduced order homogenization scheme
on an empirical basis. For an error control, a framework of goal-oriented adaptivity
should be incorporated in future. Furthermore, an eventuell mathematical proof of
the assumption in Fig. 4b is another challenging task.
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A Several well-established mean-field methods

In the following, we describe some well-established mean-field methods by specifying
the single inclusion problem in Fig. 3b.

A.1 Eshelby (dilute) method

Typically in micromechanics, a prescribed macro strain tensor ε is ensured by the
linear displacement boundary condition (11), while a prescribed macro stress ten-
sor σ is imposed by the traction boundary condition (12). The Eshelby method
considers a single inclusion problem by defining

C′ := C0, ε′ := ε, (A.1)

where the inclusion interaction is completely neglected. It follows from Eq. (32)
that

Adilute
i = (IS + S0

i C−1
0 (Ci − C0))−1, (A.2)

where S0
i is the Eshelby tensor depending on the materix material property C0 and

the shape of the inclusion i. Inserting Eq. (A.2) into Eq. (25a) renders the dilute
estimate of C as

C
dilute

= C0 +

Ni∑

i=1

ci(Ci − C0)(IS + S0
i C−1

0 (Ci − C0))−1. (A.3)

Alternatively, one may proceed with Eq. (12) and have σ′ = σ. Then, it follows
from Eq. (34) that

Bdilute
i = (Si − S0

i (Si − S0))−1S0, (A.4)

together with Eq. (25b), leading to the dilute estimate of S as

S
dilute

= S0 +

Ni∑

i=1

ci(Si − S0)(Si − S0
i (Si − S0))−1S0. (A.5)

It is not difficult to identify C
dilute

S
dilute 6= IS, such that the dilute estimate is not

reciprocal-invariant. In other words, the dilute method gives different predictions
on effective properties, depending on the applied boundary conditions (11) or (12).
In contrast to that, the methods introduced in the subsequent subsections are all
reciprocal-invariant.

A.2 Mori-Tanaka method

To take into account the inclusion interaction, the work [41] suggests a single inclu-
sion problem by defining

C′ := C0, ε′ := ε0, (A.6)

where ε0 is the average strain in the matrix material. It is shown that the strain
localization tensor for the inclusion i in Eq. (32) becomes

AMT
i = A0

i (c0I
S +

Ni∑

j=1

cjA
0
j)
−1, (A.7)
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where the local localization tensor A0
i is the same as Eq. (A.2), i.e.

A0
i = (IS + S0

i C−1
0 (Ci − C0))−1. (A.8)

Finally, inserting Eq. (A.7) into Eq. (25a) renders

C
MT

= C0 +

Ni∑

i=1

ci(Ci − C0)

(
A0
i (c0I

S +

Ni∑

j=1

cjA
0
j)
−1

)
. (A.9)

A.3 Self-consistent method

The self-consistent method [27] assumes

C′ := C, ε′ := ε, (A.10)

such that Eq. (32) becomes

ASC
i =

(
IS + S i (C

SC
)−1(Ci − C

SC
)
)−1

, (A.11)

where S i differs from S0
i by using the effective elasticity tensor C

SC
rather than the

elasticity tensor of the matrix C0. Inserting Eq. (A.11) into Eq. (25a) renders the
self-consistent estimate of C as

C
SC

= C0 +

Ni∑

i=1

ci(Ci − C0)
(

IS + S i (C
SC

)−1(Ci − C
SC

)
)−1

. (A.12)

Clearly, Eq. (A.12) is an implicit equation, which has to be solved iteratively.

A.4 Interaction direct derivative (IDD)

The so-called interaction direct derivative (IDD) method of [64, 10] possesses the
following features:

• It has an explicit structure.

• It is valid for multiphase composites with various inclusion geometries and
isotropic or anisotropic properties.

• It accounts for interaction between inclusions and matrix as well as inclusion
distributions.

The IDD method is an explicit version of the effective self-consistent method, which
is deduced from the generalized self-consistent method [6] based on a three-phase
model. As shown in [64], it may be interpreted as the single inclusion problem in
Fig. 3b with

C′ := C0, σ′ := σE =

(
IS −

Ni∑

i=1

(
ciCDi

Ni∑

j=1

((Sj − S0)−1 + Cj)
))−1

σ. (A.13)
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Here Cj is the eigenstiffness tensor computed by using the matrix material property
C0 and the geometry of the inclusion j, while the eigenstiffness tensor CDi

is com-
puted by using the matrix material property C0 and the geometry of the so-called
inclusion-matrix cell Di, which is designed to account for inclusion distributions.
The effective elasticity tensor of the IDD estimate reads

C
IDD

= C0 +

(
IS −

Ni∑

j=1

cj(Cj − C0)A∗jS0
Dj

S0

)−1 Ni∑

i=1

ci(Ci − C0)A∗i , (A.14)

where
A∗i = (IS + S0

i C−1
0 (Ci − C0))−1, (A.15)

and S0
i is the Eshelby tensor computed by using the matrix material property C0

and the geometry of the inclusion i, while the Eshelby tensor S0
Dj

is computed by
using the matrix material property C0 and the geometry of an inclusion-matrix cell
Dj. By comparing Eq. (A.14) with Eq. (25a), we conclude that

AIDD
i = (Ci − C0)−1

(
IS −

Ni∑

j=1

cj(Cj − C0)A∗jS0
Dj

S0

)−1

(Ci − C0)A∗i . (A.16)

According to [64, 10], the geometry of the inclusion-matrix cell Dj accounts for
the inclusion distribution. For anisotropic distributions, additional effort has to be
paid to identify the correct geometry of Dj. For the orthotropic effective material
in Fig. 7a, the inclusion-matrix cell would be a square rather than an ellipsoidal,
thus violating the requirement of the IDD, i.e. ellipsoidal distribution given in [10].
For the model hierarchy in Eq. (58), the inclusion-matrix cell is assumed to be of
the same shape of the corresponding inclusion for simplicity. As shown in Section
5.2, this simplification still provides a sufficient accuracy improvement to the self-
consistent estimate in Eq. (A.12) for the considered example.

B Some notations for a two-dimensional imple-

mentation

In the following, we declare some notations used in Section 5. In a two-dimensional
case, a matrix representation of Eq. (18) takes the form

σ = C ε, (B.1)

or more precisely 

σ11

σ22

σ12


 =



C11 C12 C14

C22 C24

sym. C44





ε11

ε22

2 · ε12


 . (B.2)

For a plane strain state, we have ε33 = 0 and σ33 6= 0 for the strain and the stress
component normal to the plane, respectively. For an orthotropic material, Eq. (B.2)
reduces to 


σ11

σ22

σ12


 =



C11 C12 0

C22 0
sym. C44





ε11

ε22

2 · ε12


 . (B.3)
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For the periodic composite in Fig. 7a, the relation C11 = C22 holds. Following
the line of [50], we define three independent effective material parameters for this
two-dimensional case, i.e. a bulk modulus and two shear moduli, as

K := (C11 + C12)/2, (B.4a)

G1 := (C11 − C12)/2, (B.4b)

G2 := C44, (B.4c)

respectively. For an isotropic material like the random composite in Fig. 7b, the
number of independent effective material parameters further reduces to two, due to
the relation G1 = G2.
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Abstract

In this work, we consider a two-scale mechanical problem of solids, where
a microscopic heterogeneity is taken into account. In addition to plasticity,
another irreversible process is our focus: softening, which is introduced on
the micro scale and homogenized on the macro scale by model reduction with
the so-called nonuniform transformation field analysis (NTFA, originally pro-
posed by Michel and Suquet, 2003). Based on dissipative considerations, new
NTFA constitutive equations with even model structure, accounting for soft-
ening effects, are proposed and validated theoretically and numerically for a
homogeneous microstructure. For an accuracy improvement, we propose two
new methods: the ’uneven NTFA’ method and the ’adaptive NTFA’ method,
which introduce the additional aspects of parameter identification and adap-
tive modeling, respectively. The related numerical issues of both new meth-
ods are outlined. Two procedures for mode identification are studied for the
present case, where the modes are actually basis functions for the reduced
homogenization scheme. By means of the finite element method (FEM), nu-
merical examples with regard to a fiber-reinforced composite are presented,
where the accuracy and the numerical efficiency of the NTFA methods are
investigated by comparison with the FEM solution. The mesh dependence of
the different NTFA methods is also studied.

Keywords: finite element method, multiscale simulation, nonuniform transforma-
tion field analysis, continuum damage mechanics, parameter identification, adaptive
modeling

1 Introduction

In general, solid materials in industrial engineering are treated as homogeneous,
from a structural point of view. Thus, with the finite element method (FEM), they
are constitutively modeled solely on the macro scale, under the assumption of ho-
mogeneity. However, upon increasing the resolution on a much smaller scale, the
homogeneity is lost due to a heterogeneous microstructure. Therefore, the enhance-
ment of the modern computational level in the last decades has led to a so-called
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multiscale simulation. Here the heterogeneity, optionally at a micro level, is con-
sidered in a separate domain, which is attached to the macro domain. The macro
domain is usually assumed to be homogeneous, whose effective quantities such as
stresses are obtained by averaging quantities of the underlying micro domain.

In recent years the international research tends to develop accurate approaches
for the homogenization. A so-called FE2 method drew some attentions, because of
the outstanding accuracy as well as the simplicity of the theory. Several researches
focused on, e.g. the boundary condition (see [16, 33]) or the gradient extensions
(see [17, 18]) etc. For instance, an overview on these issues can be found in [13].
However, the major drawback of this method is the enormous computational cost,
which makes a structural computation impracticable. Therefore, proper procedures
of model reduction are required.

To this end, a so-called nonuniform transformation field analysis (NTFA) was
introduced by [26], where the consideration of the nonuniform plastic strain fields in
the underlying micro domain is simplified, such that the computational effort can be
significantly reduced. This approximate model is a generalization of the transforma-
tion field analysis (TFA) proposed by Dvorak and coworkers (see [2, 3]), where the
microscopic fields of internal variables are assumed to be piecewise uniform. The
NTFA overcomes the extremely stiff prediction of the effective stresses by the TFA,
leading to an improved accuracy, as demonstrated by [26, 27] for two-dimensional
computations of composites. In combination with the outstanding computational
efficiency, a remarkable efficiency-accuracy ratio of the NTFA is striking, which was
also confirmed for the three-dimensional implementation e.g. by [7, 6].

In the context of the NTFA, most of the present research is focused on the exten-
sion or generalization of its theory to allow for more microscopic material models.
Amongst them, [37] dealt with incompressible and compressible viscoplasticity and
proposed firstly a Karhunen-Loève decomposition based approach to identify a set
of basis functions. A further application to cyclic loading conditions and life time
predictions was addressed in [28]. Pressure-dependent materials were considered in
[15], while a generalization to viscoelastic composites was addressed by [8]. Subse-
quently, an extended version of [8] accounting for more viscoelastic phases in the
presence of aging and swelling effects was proposed by [19]. Furthermore, an ap-
proach using a mixed incremental formulation that handles e.g. nonlinear viscous
materials and crystal plasticity was developed by [9] and numerically implemented
with an GPU acceleration in [11]. Moreover, a so-called nonuniform TFA technique,
tailored for shape memory alloys, was proposed by [40], while a comparison between
this approach and the one of [9, 11] was given in [12]. Most recently, a so-called
potential-based reduced basis model order reduction procedure considering materi-
als with cohesive interfaces was developed by [10]. To the authors knowledge, very
few contributions in literature are provided for consideration of the additional effect
of damage or softening at present. In this work, we intend to give an adaptation of
the NTFA to consider plasticity coupled with softening effects.

Our preparatory work by [39, 38] implements a thermo-mechanical coupled two
scale framework, which is applied to reproduce the damage effect of a coating system.
However, as the underlying scale problem, a mesomodel is chosen, where the Taylor
assumption is adopted, i.e. a homogeneous distribution of the mesoscopic strain

108



fields is assumed. The NTFA-based framework proposed in this work considers
a two scale problem undergoing small strains, under an isothermal condition. The
major improvement is the additional consideration of heterogeneous microstructures.

Based on the assumption of even micro and macro model structures, where the
macroscopic variables such as damage variable have the same evolution functions
as their microscopic counterparts, a prototype model with uneven micro and macro
model structures is proposed. More precisely, the accuracy of the NTFA predictions
is improved at the expense of introduction of three additional correction parameters.
In order to identify these new parameters, a gradient-free approach based on the
Downhill-Simplex method (see e.g. [29]) is provided.

Moreover, for accuracy improvement, an alternative method based on the idea
of adaptive modeling is proposed. It will be referred to as the adaptive NTFA
method, where a reduced homogenization scheme is merely applied to those regions
where sufficient accuracy is expected. The proposed adaptive method belongs to
the class of a priori methods, sharing the common ideas with e.g. [36, 35, 34] in
the context of POD (Proper Orthogonal Decomposition). Another class of error
estimates based methods can be additionally found in the homogenization context
(see e.g. [5, 31, 30, 20]).

The outline of this work is as follows: In Section 2, the multiscale problem is
described and the constitutive equations applied on the micro scale are summarized;
the theory of the NTFA is briefly reviewed, then, a new coupled model accounting for
additional softening effects is derived; a prototype model with even model structure
is described; for accuracy improvement, the uneven NTFA and the adaptive NTFA
method are proposed. Subsequently, the framework of the numerical implementation
based on the FEM is summarized in Section 3. Finally, Section 4 presents several
numerical examples.

Notation: All quantities on the macro scale are symbolized by overlined letters
like A, and quantities on the micro scale are not overlined. The norm of a tensor
or a vector a is operated by ‖a‖. Additionally, the volume averaging operator on a
domain Ω is defined as

〈. . .〉Ω =
1

Ω

∫

Ω

· · · dv.

2 NTFA-based multiscale modeling considering soft-

ening effects

2.1 Multiscale problem

We consider a two scale problem of solids, where each material point at the macro
level is associated with an additional microscopic problem. These relations are
shown in Fig. 1, where Ω0 and Ωt represent the macroscopic domains with respect
to the initial and the current configuration, respectively. An analogous notation is
used for the microscopic problems with the underlying domains Ω0 and Ωt, called
the representative volume elements (RVE).
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Figure 1: Illustration of a two scale problem

The displacement of a material point and the small strain tensor are defined as

1. u = x−X, 2. ε = sym(5xu), (1)

respectively. In Eq. (1.1), X and x are the location vectors with respect to a refer-
ence point O, respectively in the initial and the current state. Moreover, the macro-
scopic equilibrium problem P and the underlying microscopic equilibrium problem
P read

1. P :





Div (σ) = 0, in Ω

σn = t, on Γ t

u = u∗, on Γ u

, 2. P :

{
Div (σ) = 0, in Ω

〈ε〉 = ε
, (2)

respectively. In problem P , σ denotes the macroscopic stress tensor and t rep-
resents the tractions imposed on Γ t satisfying the Neumann boundary condition.
u∗ indicates the prescribed displacements on the Dirichlet boundary Γ u with the
properties Γ u

⋃
Γ t = Γ and Γ u

⋂
Γ t = Ø, where Γ symbolizes the total boundary

for the macroscopic problem. For problem P , the boundary condition of the RVE
is assumed to be linear, i.e. the displacement in spatial and temporal dependence
ub(x, t), on the RVE boundary Γ , takes the form

ub(x, t) = ε(t)x, for x ∈ Γ. (3)

Additionally, the scale transition, which couples both problems P and P , is
established by

1. ε = 〈ε(x)〉 , 2. σ = 〈σ(x)〉 , 3. 〈σ : ε̇〉 = 〈σ〉 : 〈ε̇〉 = σ : ε̇, (4)

where σ and ε are the microscopic stress and the microscopic strain tensor, which are
generally heterogeneously distributed within the RVE. The effective quantities σ and
ε denote the macroscopic stress and the macroscopic strain tensor, respectively. For
any microscopic statically admissible stress fields and any microscopic compatible
strain fields, the so-called Hill-Mandel condition (4.3) is valid (see [14]).

2.2 Constitutive modeling at the micro level

It is assumed that the microscopic material behavior of each constituent resulting
into a heterogeneous microstructure can be constitutively modeled. For an inelastic
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constituent, the following typical continuum damage mechanic model, considering a
rate-independent von Mises plasticity coupled with an isotropic damaging effect, is
adopted:

1. Hooke’s law: σ = Cεe = σvol + σdev,

2. Yield function: φ =
∥∥σdeveff

∥∥−
√

2

3
Y (q),

where σdeveff =
σdev

W
, Y = Y0 +R,

3. Flow rule: ε̇p = λ̇
∂φ

∂σdev
=

λ̇

W
n, where n =

σdev

‖σdev‖ ,

4. Strain like internal variable: q̇ =

√
2

3
λ̇,

5. Isotropic hardening stress: R = R(q),

6. Isotropic damage variable: W = W (q).

(5)

Here σvol, σdev and C represent the volumetric, the deviatoric part of the stress
tensor σ and the elasticity tensor, respectively. The elastic strain tensor εe is given
by εe = ε−εp, where ε and εp are the total and the plastic strain tensor. By means of
the effective stress concept, the effective deviatoric stress tensor σdeveff is introduced,
whereas Y and W represent the yield stress and the independent damage variable,
both depending on the strain like internal variable q. Additionally, the dependent
damage variable is defined as D = 1−W, where 0 ≤ D ≤ 1. Moreover, λ is a plastic
multiplier satisfying the Karush-Kuhn-Tucker complementary conditions

λ̇φ = 0, φ ≤ 0, λ̇ ≥ 0. (6)

According to the second law of thermodynamics, considering inelastic cases (λ̇ >
0 and φ = 0) and combining the equations (5.2), (5.3) and (5.4), we write the
dissipation inequality as

D = σ : ε̇p −Rq̇ =
λ̇

W
σ :

σdev

‖σdev‖ −Rq̇ =
λ̇

W

∥∥σdev
∥∥−Rq̇

=
λ̇

W
W

√
2

3
Y −Rq̇ =

√
2

3
λ̇(Y0 +R)−

√
2

3
Rλ̇ =

√
2

3
λ̇Y0 > 0,

(7)

thus proofing thermodynamic consistency of the present model.

Remarks 2.1.

1. The model (5) is a simplified version of the model proposed by [23] and does
not account for strength difference effects and damage caused by volumetric
stresses, which are highlighted in [23]. An extension of the NTFA theory to
consider these additional issues still remains an aspect of our work.

2. A typical model in continuum damage mechanics, where the damage state has
impact on the elasticity tensor C, is not considered here for simplicity. It
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would make the application of the superposition principle in the NTFA theory
(see equations (9), (10.1) and (10.2) in Section 2.3) difficult, because of the
dependence of the elasticity tensor on the changing damage state.

3. An alternative formulation for the yield function (5.2) that also accounts for
softening effects is

φ =
∥∥σdev

∥∥−
√

2

3
W (q)Y (q).

However, it would render a different associated flow rule.

4. A typical plasticity model with isotropic hardening can be simply recovered
by setting W = 1 6= W (q). Hence, the present model may be considered as a
generalized model of that.

2.3 Nonuniform transformation field analysis

The NTFA proposed by [26] is an order reduction based homogenization method,
originally for plasticity problems, where the number of internal variables is signif-
icantly reduced to enhance the computational efficiency. This section intends to
adapt this method to consider the additional softening effect introduced in Sec-
tion 2.2. The key idea of the NTFA is the assumption that the initial space-time
dependency of the plastic strain εp(x, t) can be approximately decomposed as

εp(x, t) ≈
N∑

i=1

ξi(t)µ
i(x). (8)

Here ξi is a set of time dependent variables named mode activity coefficients, while
µi represents several spatial heterogeneous plastic strain fields, which are called
plastic modes, having the same number N as ξi. Thereby, fairly large number of
degrees of freedom in the case of the initial microscopic problem described in Eq.
(2.2) is reduced to N , which is generally of the order of ten. Consequently, there
are two essential tasks for the NTFA: 1. identification of plastic modes µi and 2.
determination of the evolution of the mode activity coefficients ξi(t).

According to the proposal of [26, 27] under consideration of the modification by
[7], the choice of the plastic modes is free, provided the following four requirements
are satisfied: 1. normalization condition, i.e. 〈‖µi‖〉Ωp

= 1; 2. the support of each
mode is entirely contained in one single material phase, for which macroscopic con-
stitutive equations will be defined (see equations (23) and (24)); 3. incompressibility,
i.e. tr(µi) = 0; 4. orthogonality, i.e. 〈µi : µj〉 = 0,when i 6= j.

In this work, we deal with microstructures, which contain merely one inelas-
tic constituent (phase). Hence, a specific notation for the inelastic phases is not
necessary.

We move on to the second task, under the assumption that the modes are known.
In combination with Hooke’s law (5-1), we rewrite the initial microscopic problem
P in Eq. (2.2) as

P :

{
Div (C(ε− εp)) = 0, in Ω

〈ε〉 = ε.
(9)
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According to the superposition principle under consideration of the approximation
(8), similarly to e.g. [7, 6], the problem P becomes approximately the superposition
of an elastic problem Pe and N eigenstress problems P i

σ as

1. Pe :

{
Div (Cεe) = 0, in Ω

〈εe〉 = ε
,

2. P i
σ :

{
Div (C(εi∗ − µi)) = 0

〈εi∗〉 = 0
, i = 1, · · · , N,

(10)

respectively. Here εe and εi∗ denote the elastic strain and the eigenstrain tensor,
respectively, thus leading to the localization rule for the microscopic strain field as

ε(x, t) = εe(x, t) +
N∑

i=1

ξi(t)ε
i
∗(x) = A(x)ε(t) +

N∑

i=1

ξi(t)ε
i
∗(x). (11)

Furthermore, the fourth-order tensor A(x) symbolizes the elastic strain localization
operator, with εe(x, t) = A(x)ε(t) and 〈A(x)〉 = 1. In principle, A(x) can be
determined either analytically or numerically. In this work, it will be determined
numerically by several elastic computations (see Section 3.2 on more details). Ac-
cording to Hooke’s law (5-1), in combination with the approximation (8) and Eq.
(11), the localization rule for the microscopic stress field is derived by

σ(x, t) = C(x)εe(x, t) ≈ C(x)A(x)ε(t) +
N∑

i=1

ξi(t)σ
i
∗(x),

where σi∗ = C(εi∗ − µi),
(12)

where σi∗ is the eigenstress tensor. Then, we formulate the macroscopic dissipation
power D at a macroscopic material point by volume averaging of Eq. (7) and
combine equations (8) and (12) as

D = 〈D〉 = 〈σ : ε̇p −Rq̇〉

=
N∑

i=1

ξ̇i

(
〈
ATCµi

〉
: ε+

N∑

j=1

ξj
〈
σj∗ : µi

〉
)
− 〈Rq̇〉 = τ̂ · ˙̂

ξ − 〈Rq̇〉 . (13)

Here the mode activity coefficients are represented in vector form ξ̂ = [ξ1 · · · ξi · · · ξN ]T

and their thermodynamic conjugates are denoted by a vector τ̂ as

τ̂ =
[
τ̂1 · · · τ̂i · · · τ̂N

]T
,

where τ̂i =
〈
ATCµi

〉
: ε+

N∑

j=1

ξj
〈
σj∗ : µi

〉
.

(14)

Fritzen and Böhlke [7] suggest the orthonormal basis

Σ =





Σi = ei ⊗ ei, for i = 1, 2, 3

Σ4 =
√

2sym(e1 ⊗ e2),

Σ5 =
√

2sym(e1 ⊗ e3),

Σ6 =
√

2sym(e2 ⊗ e3),

(15)
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defined by [4], primarily for their three-dimensional implementation, whereby any
symmetric second-order tensor can be represented by a convenient vector notation.
Note that the orthonormal basis Σ can be simply adapted for two-dimensional cases
by omitting the components Σ5 and Σ6. The macroscopic strain tensor ε obtains its
vector representation ε̂ with coefficients ε̂i = ε : Σi, i = 1, ..., nst. Here nst denotes
the number of stress components, nst = 4 and nst = 6 hold for two-dimensional and
three-dimensional problems, respectively. Moreover, the system matrices Â and D̂
are defined with the coefficients

1. Âik =
〈
ATCµi

〉
: Σk, 2. D̂ij =

〈
σj∗ : µi

〉
, i, j = 1, ..., N, k = 1, ..., nst, (16)

respectively, such that the conjugate forces τ̂ can be rewritten in a simplified form
as

τ̂ = Âε̂+ D̂ξ̂. (17)

Furthermore, the macroscopic stress tensor σ is obtained from volume averaging of
Eq. (12) as

σ(t) = 〈σ(x, t)〉 = 〈C(x)A(x)〉 ε(t)+
N∑

i=1

ξi(t)
〈
σi∗
〉

= Cε(t)+
N∑

i=1

ξi(t)
〈
σi∗
〉
, (18)

where C = 〈C(x)A(x)〉 is the macroscopic elasticity tensor. By means of the
orthonormal basis (15), the macroscopic stress tensor σ can be represented by the
stress vector σ̂ with coefficients σ̂i = σ : Σi, i = 1, · · · , nst. Then, Eq. (18) obtains
its convenient vector-matrix representation as

1. σ̂ = Ĉ ε̂+ R̂ξ̂, where 2. R̂ij = Σi :
〈
σj∗
〉
, i = 1, ..., nst, j = 1, · · · , N, (19)

where the system matrix Ĉ is the symmetric macroscopic elasticity matrix corre-

sponding to the macroscopic elasticity tensor C. It will be evaluated numerically
(see Section 3.2 for more details). Note that the relation

R̂ = −ÂT , for C = CT , (20)

holds (see e.g. [6]), indicating that the system matrices Â and R̂ do not need to be
determined individually for the considered class of materials.

In accordance with the coupled model proposed by [26], we introduce the macro-
scopic hardening variable R and the macroscopic independent damage variable W
representing the state of the whole inelastic phase. They both depend on the macro-
scopic equivalent plastic strain q, whose rate is given by

q̇ =

√
2

3
λ̇, (21)

where λ is the macroscopic inelastic multiplier. Then, we can rewrite the macro-
scopic dissipative power in Eq. (13) as

D = τ̂ · ˙̂ξ− 1

Ω

∫

Ω

Rq̇dv = τ̂ · ˙̂ξ− 1

Ω

∫

Ωp

Rq̇dv = τ̂ · ˙̂ξ− Ωp

Ω
〈Rq̇〉Ωp

≈ τ̂ · ˙̂ξ− cpRq̇, (22)
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where cp denotes the volume fraction of the inelastic constituent in the total RVE,
i.e. cp = Ωp/Ω. It shall be noted that the initial heterogeneous variable fields R(x)
and q(x) are approximately treated as homogeneous here, i.e. R = R(x) = const
and q = q(x) = const. Similarly to [26] and [7], the macroscopic yield function φ is
proposed as

φ(τ̂ , q) =
‖τ̂‖
W (q)

−
√

2

3
cpY (q), where Y = Y0 +R(q), (23)

where Y , Y0 and R are the macroscopic flow stress, the microscopic initial flow stress
and the macroscopic hardening variable, respectively. Consequently, we define the
rate of the mode activity coefficient vector ξ̂ as

˙̂
ξ = λ̇

∂φ

∂τ̂
=

λ̇

W

τ̂

‖τ̂‖ , (24)

where τ̂ / ‖τ̂‖ returns the direction of the evolution.
Additionally, a dependent damage variable D is defined by

D = 1−W, 0 ≤ D ≤ 1, (25)

where D = 0 and D = 1 indicate the undamaged and the fully damaged state at
the macro level, respectively.

Similarly to the microscopic case in Eq. (7), combining the equations (21), (23)
and (24) with Eq. (22), one obtains the result

D =

√
2

3
cpY0λ̇ > 0, (26)

proofing thermodynamic consistency of the coupled model for inelastic cases (φ = 0

and λ̇ > 0).
In order to verify our coupled model, we assume that the RVE is homogeneous

without any cavities and fully occupied by the inelastic constituent, i.e. cp = 1.
Consequently, all microscopic and macroscopic quantities are identical. Inserting
Eq. (24) into Eq. (22), the macroscopic dissipation power becomes

D =
λ̇

W

τ̂

‖τ̂‖ · τ̂ −Rq̇ = λ̇
‖τ̂‖
W
−Rq̇. (27)

For comparison with the microscopic model, we recall the microscopic dissipation
power from Eq. (7) in the form

D = λ̇

∥∥σdev
∥∥

W
−Rq̇. (28)

Due to the equivalence of microscopic and macroscopic quantities, we conclude

D = D ⇒
∥∥σdev

∥∥ = ‖τ̂‖ ⇒ φ = φ, (29)

indicating that the coupled model is exact for the homogeneous case (see Section
4.1 for numerical verification).
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Remarks 2.2.

1. An important feature of the NTFA theory is that it is merely available (in its
present form) to problems where the superposition principle applies. For our
present case in a geometrically linear context, the main framework of [26, 27]
does not change and the notion of system matrices primarily used in [7, 6] is
adopted.

2. Based on dissipative considerations, a new coupled model, including both the
yield function (23) and the evolution law (24), is derived. It differs from both
[26] and [7] by introducing the independent macroscopic damage variable W
accounting for additional softening effects.

2.4 Prototype model

Up to now, the microscopic hardening variable R and the microscopic damage vari-
able W as well as their macroscopic counterparts R and W introduced in Section 2.2
and Section 2.3 remain to be specified. In principle, the specification is free to users
according to their needs. In the following we propose a prototype model, which will
be investigated in the examples in Section 4.

In order to specify the framework of Section 2.3, we assume that the microscopic
material behavior of the inelastic constituent is characterized by the mixed isotropic
hardening law

R(q) = Hq + c(1− exp(−bq)) (30)

and a damage evolution function based on the proposal of [23] as

W (q) =

{
1, if q ≤ e

exp((e− q)nw̃), if q > e,

where w̃ =





q − e
d

w, if e < q ≤ e+ d

w, if q > e+ d.

(31)

Here H, b, c, e, d, w and n are material parameters, which, generally, may not have
a specific physical meaning. They are usually identified by comparison with proper
experimental data (e.g. stress-strain-curve from a uniaxial tensile experiment). For
an overview of parameter identification for more general cases we refer to [21, 22].
The hardening law (30) is of large practical meaning and was used e.g. in [24, 38],
for simulation of an adhesive material (Betamate 1496) and an NiCr alloy coating,
respectively. Here, H and c are factors for the linear and the nonlinear part, re-
spectively, whereas b is an exponential factor. The damage evolution function (31)
is a non-increasing function with range [0, 1]. It was postulated primarily by [23]
for softening representation of glue materials, where e is a threshold value, n is an
exponent, d and w are additional parameters for the scalar value w̃, respectively.
The function (31) finds also its application, e.g. on simulating the damaging behav-
ior of a coating system under transient thermomechanical loading conditions (see
[39, 38]).
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Comparing to previous publications on the NTFA, e.g. [26, 27, 7] amongst
others, the constitutive equations are complemented with an even micro and macro
model structure. More precisely, the macroscopic hardening variable R and the
macroscopic damage variable W coincide with their microscopic counterparts R and
W , respectively, i.e.

even NTFA: R(q) = R(q), W (q) = W (q). (32)

Hence, the NTFA computations done via Eq. (32) will be referred to as even NTFA
computations.

On the micro scale, the hardening law (30), in combination with the damage
function (31), leads to three different material stages: a pure elastic stage, a plastic
hardening stage and an inelastic stage coupled to softening. The latter two stages
are related to the plastic strain fields approximated via Eq. (8). Because of the
additional softening effects, the nonlinearity of the material becomes much more
stronger (compared to a pure hardening type plasticity case). The state of the plastic
strain fields changes largely by loading as well as localization effects. Therefore,
it becomes difficult to identify a set of universal modes that are simultaneously
suitable for representing both plastic hardening and softening. Hence, theoretically
it is expected that the even NTFA predictions become (more or less) inaccurate (see
Section 4.4 for details).

2.5 Methods for accuracy improvement

In order to improve the accuracy of the even NTFA predictions, we present, in the
following, two methods: the uneven NTFA method and the adaptive NTFA method,
which will be described in Section 2.5.1 and Section 2.5.2, respectively. Additionally,
a comparative adjustment of both methods will be given in Section 2.5.3

2.5.1 The uneven NTFA method

The first method is based on the idea of parameter identification, which is, in general
cases, applied to fit experimental data for a given constitutive model. To compensate
the approximation error made in Eq. (8), we introduce an additional correction
parameter set

puneven =
[
ϑ > 0 α > 0 β > 0

]
, (33)

leading to a modified macroscopic yield function

φ
∗
(τ̂ , q) =

‖τ̂‖
W (q)

−
√

2

3
cpϑY (q), (34)

and a modified macroscopic damage function

W
∗
(q) =

{
1, if q ≤ βe

exp((e− q)nw̃α), if q > βe,

where w̃ =





q − e
d

w, if βe < q ≤ βe+ d

w, if q > βe+ d.

(35)
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(a) Influence of α with β = 1 (b) Influence of β with α = 1

Figure 2: Influence on the macroscopic damage function

Contrary to the even NTFA in Eq. (32), this results into uneven micro and macro
model structures. Here ϑ has an influence on the initiation of macroscopic flow,
whereas α and β have the task to fit the rate and the initiation of the macroscopic
damage evolution, as illustrated in figures 2a and 2b respectively. The other pa-
rameters used here are e = 10−2, d = 10−3, w = 105 and n = 3, respectively. For
simplicity, the macroscopic hardening law R(q) still has the same model structure
as the microscopic one R(q). Note also that the parameter set puneven =

[
1 1 1

]

returns the NTFA computation in the sence of an even model structure. Other-
wise, the NTFA predictions are referred to as uneven NTFA, meaning the NTFA
predictions with uneven micro and macro model structures.

In principle, the additional correction parameter set puneven can be identified in
several ways (see e.g. [21, 22] for an overview). In the sence of least-squares, we
consider a minimization problem

find puneven∗ ∈ κ : f(puneven) :=
1

2

∥∥sNTFA(puneven)− sfull
∥∥→ min, (36)

where puneven∗ is referred to as an ordinary least squares estimate and f is a function
representing the sum of the errors between the NTFA predictions and full-field
simulations. κ = {ϑ, α, β > 0} denotes the permissible parameter space of puneven.

sNTFA and sfull are the predictions by the (uneven) NTFA computation and by the
full-field simulation via FEM, respectively. To generate problem (36), any strain
path loading can be used. One can also use several different loadings that the
material is likely subjected to. Here, s is defined as the vector of macroscopic
powers, calculated by Eq. (4.3) through a given strain path, although it could also
be the norms of macroscopic stresses. Note that the vector sfull is computed once
for all. Given the outstanding numerical efficiency of the NTFA, the numerical effort
of the parameter identification procedure is acceptable.

Furthermore, the newly introduced fitting parameter set puneven depends on the
overall loading direction and on the overall load amplitude (see Section 4.5 for more
details). Due to this limitation, the uneven NTFA has only an approximation prop-
erty.

118



2.5.2 The adaptive NTFA method

In order to overcome the approximation property of the uneven NTFA method, we
propose a more accurate, however more expensive, method: the adaptive NTFA
method. Here the (even) NTFA procedure is merely applied to suitable regions,
whereas a full-field computation is performed, e.g. via FEM, for the remaining ’un-
suitable’ regions. For selection of the different regions, a proper indicator has to be
developed first. Given the good suitability of the even NTFA shown in the literature
(see e.g. [26, 27, 7]) for pure hardening plasticity case, we replace the (even) NTFA
by full-field computations, when the microscopic softening is initialized. Based on
the plastic strain fields approximated by NTFA via Eq. (8), a spurious microscopic
strain like variable field q̃(x, t) is reconstructed by

˙̃q(x, t) =

√
2

3
‖ε̇p(x, t)‖ ≈

√
2

3

∥∥∥∥∥
N∑

i=1

ξ̇i(t)µ
i(x)

∥∥∥∥∥ . (37)

This relation can be easily concluded from the microscopic constitutive equations
(5.3) and (5.4), for the case of W = 1 representing the absence of softening. Then,
we propose an empirical indicator for replacement by full-field computations as

max (q̃(x, t)) ≥ e, (38)

where max(•) represents the maximum operator returning the maximal value of
the field q̃(x) at time t. In order to initialize the full-field computation properly,
direct after the switch, a localization approach has to be performed, which is not
necessary for the even NTFA. More details will be revealed in Section 3.6. As
already stated in Section 1, a methodologically similar approach using adaptive
sub-structuring criteria was proposed in a slightly different context for the so-called
adaptive selective POD in [35, 34]. However, a different model reduction method
(POD) in relation to plasticity problems was applied and homogenization problems
were not considered.

2.5.3 Comparative adjustment of uneven NTFA and adaptive NTFA

For accuracy improvement, we have introduced two new different alternatives to the
even NTFA theory: parameter identification and adaptive modeling, leading to the
uneven NTFA and the adaptive NTFA method, respectively.

The uneven NTFA method is more suitable for structural computations where
only the macroscopic quantities are of interest, since it is an empirical method on
the macro scale and does not account for accuracy improvements of localization.
However, accurate microscopic predictions are usually not necessary for most ho-
mogenization problems (see e.g. Eshelby-solution based methods). Moreover, the
fitting parameter set puneven introduced in Eq. (33) is dependent on the concerning
microstructure (geometry and material properties) and the modes used in the NTFA
theory (see Eq. (8)). The dependence of loading cases will be studied and discussed
in Section 4.5.

The adaptive NTFA method is particularly useful for those cases where the
softening region of a structure is small (compared to the whole region) or where
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the softening stage is merely activated in a limited extent. The adaptive NTFA
method is more accurate however more expensive than the uneven NTFA method
(see Section 4.3).

3 Numerical implementation

This section focuses on the numerical implementation of the NTFA methods and is
structured as follows: In Section 3.1, we give an overview on the framework of the
numerical implementation based on the FEM. Then, further details are given in the
referred subsections.

3.1 Algorithmic steps

As illustrated in Fig. 3, the framework implemented by our self-programmed code
in MATLAB [25] is subdivided into the following algorithmic steps:

1. Microscopic modeling, which consists of FE-discretization (meshing) and ma-
terial modeling.

2. Numerical experiments (see Section 3.2), including the linear elastic analysis
to investigate the elastic properties, the linear eigenstress analysis preparing
the eigenstress and the eigenstrain field data as well as the inelastic analysis
preparing the field data required by mode identification (see Section 3.3).

3. Determination of system matrices (via equations (16.1), (41), (16.2) and (19.2)),
based on the field data obtained from the numerical experiments described in
Section 3.2. Note that, due to Eq. (20), the number of independent system
matrices is reduced to three for the present case.

4. Local integration procedure (see Section 3.4), optionally for the even, uneven
and adaptive NTFA method, where the evolution of the mode activity coeffi-
cients is computed and the homogenization is done, for each integration point
at the macro level. Section 3.5 provides a gradient-free approach for parameter
identification of the uneven NTFA, whereas numerical implementation of the
adaptive NTFA method and the related localization procedure are described
in Section 3.6.

5. Macroscopic (structural) problem, which is solved using the Newton-Raphson
method at the macro level.

3.2 Numerical experiments

Similarly to e.g. [7] amongst others, several numerical experiments are performed
to investigate the elastic and inelastic properties of the microstructures. Those
numerical experiments are also called strain path computations. The elastic and the
inelastic strain path computations are respectively as follows for two-dimensional
plane strain cases (nst = 4):
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Microscopic modeling
• Spatial discretization

• Assignment of local material properties
→ mesh, local material models

Numerical experiments

Linear eigenstress analysis
→ field data σi∗, ε

i
∗, . . .

Linear elastic analysis
→ σie, A, . . .

Inelastic analysis
→ field data εpi , . . .

Mode identification
→ µi

System matrices

→ Ĉ,D̂, R̂ = −ÂT

Local integration procedure
• at each integration point of the macro model

→ σ̂, Ĉ, . . .
• for even NTFA, uneven NTFA or adaptive NTFA

Structural problem
• Application of Newton-Raphson method

→ Macroscopic quantities

Figure 3: Framework of algorithmic steps

• Linear elastic strain path computations:
The linear elastic properties are identified by three linear FE computations of
the RVE as

Div (σie) = Div (Cεie) = 0,
〈
εie
〉

= ε0Σ
i, i = 1, 2, nst, (39)

where σie and εie denote respectively the elastic stress and the elastic strain
tensor. ε0 is a positive constant. Then, the linear strain localization operator
A(x) of Eq. (11) is computed as

A(x) =
1

ε0

nst∑

i=1

εie(x)⊗Σi. (40)

According to Eq. (19), the macroscopic elasticity matrix Ĉ is assembled with
the coefficients computed by

Ĉij =
1

ε0

Σi :
〈
σje
〉

= Ĉji, i, j = 1, · · · , nst. (41)
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Additionally, the eigenstress field data σi∗, required for computation of the
NTFA system matrices via equations (16.2) and (19.2), are obtained from the
N eigenstress problems in Eq. (10.2), as soon as the modes are identified.

• Inelastic strain path computations:
The inelastic computations prepare the field data required for the mode iden-
tification in Section 3.3. In general, any strain path directions can be chosen.
One can also choose several strain paths that the structure is likely subjected
to. To hold the generality, the following three simple strain loading directions
are used here:

Σ1
∗ = e1 ⊗ e1, Σ2

∗ = e2 ⊗ e2, Σ3
∗ = e1 ⊗ e2 + e2 ⊗ e1, (42)

leading to three individual computations with the corresponding strain loading
directions

ε̇
i

= ε̇iΣi
∗, i = 1, · · · , 3, where ε̇i 6= 0. (43)

Each single inelastic strain path computation is temporally discretized into Nf

frames, such that the i-th computation returns plastic strain fields ε
p(n)
i (x), n =

1, · · · , Nf with chronological sequence. Here i = 1, · · · , Np and Np represents
the number of the strain path computations (for the present case Np = 3). We
note that both these inelastic strain path computations and the FE computa-
tions for reference solutions require solving the inelastic problem in Eq. (9).
This is done using a two-level (local and global) Newton method. On the local
level, a return-mapping algorithm is applied (see e.g. [41] amongst others).
Since this is not the main objective of this paper, we will omit more details
on it.

3.3 Mode identification

In order to identify a set of modes µi, which are essential for the NTFA, two ap-
proaches are used and studied here: the Karhunen-Loève decomposition (see [37, 19])
and the modified Gram-Schmidt procedure (see [7]) in the NTFA context. They both
rely on snapshots that are, in the present case, several spatially heterogeneous plastic
strain fields ε

p(n)
i (x) obtained from the inelastic strain path computations described

in Section 3.2. The number of snapshots totals Np · Nf . The two approaches are
briefly described below.

According to the experience published in [19], most accurate NTFA predic-
tions can be obtained from modes identified using two successive applications of
Karhunen-Loève decomposition. Hence, we apply first such a procedure and refer
it to as the two-level Karhunen-Loève decomposition. The total snapshots are di-
vided into several partitions with a number of Npar, where each partition contains
N s snapshots. N s with s = 1, · · · , Npar can differ from each other. Criteria of
the partitioning can be different strain path loading or/and activity of the damage
state. For each partition, a Karhunen-Loève decomposition is done and modes are
individually obtained. These modes are naturally orthogonal to each other within
one partition, while the modes from different partitions do not necessarily fullfill
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the orthogonality condition. Therefore, a second application of the Karhunen-Loève
decomposition needs to be done to these modes.

Alternatively, a modified Gram-Schmidt procedure proposed by [7] is also ap-
plied here for study purpose. This procedure has an improved numerical efficiency
compared to the Karhunen-Loève decomposition, since the number of the compu-
tations of

〈
εp(i) : εp(j)

〉
is significantly reduced and the computation of eigenvalue

problems of correlation matrices is avoided (see [7]). One important feature of this
procedure is the use of the snapshots in opposite direction per strain path loading.

For detailed algorithms of the two-level Karhunen-Loève decomposition and the
modified Gram-Schmidt procedure, we refer to [19] and [7], respectively. Moreover,
δk (’α’ in [19]) and δ0 (’rmin’ in [7]) are the algorithm parameters for the threshold
criterion of the two-level Karhunen-Loève decomposition and the modified Gram-
Schmidt procedure, respectively, which determine the number N of modes.

3.4 Local integration procedure of NTFA

The local integration is the key part of the implementation of the NTFA, which
determines the evolution of the mode activity vector ξ̂. To this end, the N conju-

gate forces τ̂ in addition to the increment of the plastic multiplier ∆λ have to be
computed. Similarly to the approach in [7], an (N + 1)-dimensional root finding
problem is adopted:

r̂(x̂) =




τ̂ − τ̂ tr −
∆λ

W (qn+1)

D̂τ̂

‖τ̂‖
‖τ̂‖

W (qn+1)
−
√

2/3cpϑY (qn+1)


 = 0, where x̂ =

[
τ̂

∆λ

]
. (44)

Here the internal variable q is updated as

qn+1 = qn +
√

2/3∆λ, (45)

The Newton-Raphson iteration scheme solving Eq. (44) reads

x̂i = x̂i−1 − Ĵ−1
r̂(x̂i−1), (46)

with the initial guess τ̂ 0 = τ̂ tr and ∆λ0 = 0 for the iteration step i = 1, where the
trial state of τ̂ , under the assumption of linear elastic behavior for the current strain
increment ∆ε̂, reads

τ̂ tr = τ̂n + Â∆ε̂. (47)

Moreover, Ĵ denotes the Jacobi matrix given by

Ĵ =
∂r̂

∂x̂
=




Î −
∆λD̂

W ‖τ̂‖

(
Î − τ̂ τ̂T

τ̂T τ̂

)
−
W −

√
2

3
∆λ

∂W

∂q

W
2

D̂τ̂

‖τ̂‖
τ̂T

W ‖τ̂‖ −
√

2

3

‖τ̂‖
W

2

∂W

∂q
− 2

3
cpϑ

∂Y

∂q



. (48)
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The iteration is completed, when the predefined tolerance (here TOL = 1e − 8) is
achieved, i.e. ‖r̂‖ < TOL. Furthermore, the macroscopic stress σ̂ is updated as

σ̂n+1 = σ̂ + Ĉ∆ε̂+ R̂∆ξ̂. (49)

The macroscopic consistent stiffness matrix Ĉ, required for application of the Newton-
Raphson method at the macro level, is obtained from a straightforward differentia-
tion of Eq. (49) as

Ĉ =
∂σ̂

∂ε̂
= Ĉ + R̂

∂∆ξ̂

∂x̂

∂x̂

∂ε̂
. (50)

Here the partial derivative ∂∆ξ̂/∂x̂ is given by

∂∆ξ̂

∂x̂
=


 ∆λ

W ‖τ̂‖

(
Î − τ̂ τ̂T

τ̂T τ̂

) W −
√

2

3
∆λ

∂W

∂q

W
2

τ̂

‖τ̂‖


 (51)

and the partial derivative ∂x̂/∂ε̂ is obtained from

1.
dr̂

dε̂
=
∂r̂

∂ε̂
+
∂r̂

∂x̂

∂x̂

∂ε̂
=

[
−Â
0T

]
+ Ĵ

∂x̂

∂ε̂
= 0

⇒ 2.
∂x̂

∂ε̂
= −Ĵ−1∂r̂

∂ε̂
= Ĵ

−1
[
Â

0T

]
.

(52)

The matrix Ĉ computed via Eq. (50) is found to be symmetric for the considered
class of materials (see e.g. [6] on a detailed proof for a material without softening).
We remark that our approach differs from [7] by the macroscopic damage variable
W , which makes the integration procedure somewhat more complicated. Note also
that this integration procedure is simultaneously valid to the even, uneven and
adaptive NTFA method. The only difference is that different parameters (puneven)
are used in the uneven NTFA method for an empirical correction (see Section 3.5).
For a replacement by full-field computations, a localization procedure needs to be
performed by the adaptive NTFA method (see Section 3.6).

3.5 Parameter identification for the uneven NTFA method

In this section, the parameter identification procedure for the uneven NTFA method
is described. To solve the minimization problem (36), we choose a gradient-free
approach, i.e. Downhill-Simplex or Nelder-Mead procedure (see e.g. [29]). This
algorithm is quite simple and robust, and requires no gradients. Let Nd = 3 be the
number of the parameter set puneven. In the following, the index ’uneven’ will be
omitted for simplicity. The parameters αd, γd, βd and σd are the algorithm control
parameters for the reflection, expansion, contraction and compression procedure,
respectively. To initialize the Downhill-Simplex procedure, (Nd + 1) permissible
initial parameter sets pi, forming an initial simplex, have to be chosen. Note that
the choice of the initial parameters has an influence on the efficiency and quality of
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this algorithm. For the present case, p1 =
[
1 1 1

]
is fixed. Then, we give each

parameter a second permissible value, such that each other parameter set pi, for
i = 2, · · · , 4, is formed on the basis of p1, but replacing the value 1 by the second
value for each of all three parameters, respectively. Examples will be given in Section
4.5 and the detailed algorithm can be found elsewhere e.g. in [29].

3.6 Numerical implementation of the adaptive NTFA method

In this section, details about the adaptive NTFA method are revealed. For regions,
where the indication condition (38) is not fullfilled, the local integration procedure
of Section 3.4 for the even NTFA is performed. Additionally, the spurious variable
field reconstruction via Eq. (37) is performed for evaluation of (38) by the backward
Euler time integration

q̃i(x) = q̃i−1(x) +

√
2

3

∥∥∥∥∥
N∑

j=1

∆ξij(t)µ
j(x)

∥∥∥∥∥ , (53)

for the current time step i, where the index (i− 1) denotes the previous time step.
Once the condition (38) is fullfilled for the time step i, the replacement of the even
NTFA by a full-field computation has to be performed. To initialize the full-field
computation properly, the state variable field qfull(x), the plastic strain field εpfull(x),

and the displacement field ufull are reconstructed as

1. qfull(x) ≈ q̃i−1(x), 2. εpfull(x) ≈
N∑

j=1

ξi−1
j µj(x),

3. ufull(x) ≈ 1

ε0

nst∑

j=1

εi−1
j uej(x) +

N∑

j=1

ξi−1
j u∗j(x),

(54)

respectively. In Eq. (54.3), uej and u∗j are the displacement fields obtained from the
linear elastic and the elastic eigenstress computations (via equations (39) and (10.2)),
respectively. Note that the localization procedure, performed by the equations (54),
has to be done only once for the replacement. This is achieved straightforward with
function evaluations based on known quantities. Hence, the computational effort
for the additional localization procedure is acceptable. This localization procedure
is of great practical interest, since the Newton-Raphson method used for solving
full-field FE-problem converges (as well-known) merely locally. The accuracy gains
of the adaptive NTFA method, both on the macroscopic and on the microscopic
(fields) predictions, will be illustrated in Section 4.3.

Furthermore, the time integration (53) requires only the state variable field q̃(x)
from the previous step. More precisely, the field q̃(x) on each macro integration
point is updated step by step and a storage of the whole history is not necessary
(though optional). Hence, the additional storage memory requirement is limited.
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4 Numerical examples

In order to illustrate and validate the methods presented in this work, we provide
in the following several numerical examples. This section is organized as follows:
First, the even NTFA method explained in Section 2.3 is validated by means of a
simple microscopic computation of a homogeneous microstructure. With regard to
a fiber-reinforced composite, the mesh dependence is studied via FEM, even NTFA
and adaptive NTFA, respectively. Subsequently, the adaptive NTFA method is il-
lustrated. The influence of different approaches of mode identification (see Section
3.3) on the accuracy of the even NTFA predictions is investigated. Then, the uneven
NTFA approach is illustrated and discussed. Finally, a macroscopic example demon-
strating future structural applications is given, where the different approaches are
investigated with a structural loading condition selected at a macroscopic integration
point.

The results are presented in Voigt notation, that is the vector representations of
the stress tensor σ and the strain tensor ε for the two-dimensional case as

σ =
[
σ11 σ22 σ33 τ12

]T
, ε =

[
ε11 ε22 ε33 γ12

]T
, where γ12 = 2ε12. (55)

Here the indices 1 and 2 represent the horizontal and the vertical direction, respec-
tively. Due to the plane strain state assumed throughout all examples, the third
strain component ε33 implying the strain in the thickness direction is always zero.
Additionally, a scale factor of 5 is used for presentation of deformations. The linear
displacement boundary condition (3) is applied for all examples. For illustration
purpose, we will employ a pseudo-time axis for individual computations, although
no time dependence of the plasticity and softening is considered.

4.1 Example 1: Homogeneous microstructure

Firstly, we consider a homogeneous microstructure fully occupied by a nonlinear
component constitutively modeled by the equations (5). This is simply done with
two linear triangular elements as shown in Fig. 4a. For spatial discretization, one
could also use more elements, but the same results are obtained for this case. The
material parameters are identical with the matrix material shown in Table 1. For
mode identification, three inelastic strain path computations are carried out with
the three loading directions defined by Eq. (43), where ε̇1 = ε̇2 = ε̇3 = 0.05/s
for a simulation time of 1s. Snapshots are captured every 0.02s, leading totally
to 150 snapshots. Based on the snapshots, both the two-level Karhunen-Loève
decomposition and the modified Gram-Schmidt procedure (see Section 3.3) return
the same modes in Voigt notation

µ1(x) =




0.9164
−0.4082
−0.4082

0


 , µ2(x) =




0
0.7071
−0.7071

0


 , µ3(x) =




0
0
0

1.4142


 ,
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where each of the modes is a homogeneous field. For verification purpose, we define
a macroscopic strain path computation with two different strain rates

ε̇
1

=




0.03 0
0 −0.03

0


 ei ⊗ ej

s
, ε̇

2
=



−0.01 0.015
0.015 0.01

0


 ei ⊗ ej

s
, (56)

where each of these strain rates holds constant for 0.5s. The computation is done
by even NTFA and FEM, respectively, where identical results are obtained. In Fig.
4, the macroscopic stress coefficients and the macroscopic damage evolution are
shown, respectively. Note that the macroscopic damage variable for the FEM full-

field computation is computed by D
FEM

= 〈D(x)〉Ωp
. Here, for the homogeneous

case, there is no difference between the microscopic and the macroscopic quantities.
This simple example is a numerical verification for the conclusion derived by the
equations (27), (28) and (29) in Section 2.3.
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(a) Coefficients of macroscopic stresses
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(b) Macroscopic damage evolution

Figure 4: Example 1; results for the homogeneous case

Material E ν Y0 H b c e d w n
[MPa] [-] [MPa] [MPa] [-] [MPa] [-] [-] [-] [-]

inelastic
Matrix 70000 0.3 80 1500 25 360 5 · 10−3 10−3 105 3

elastic
Fiber 210000 0.24 - - - - - - - -

Table 1: Example 2; summary of material parameters

4.2 Example 2: A study of mesh dependence

In this example, we deal with a fiber-reinforced composite. In order to study the
mesh dependence, we provide three different FE discretizations of the RVE, where
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linear triangular elements are used. They are spatially discretized with three differ-
ent meshes, as shown in Fig. 5. The fibers (the dark-displayed phase, volume frac-
tion 18.54%) are elastic with relatively high Young’s modulus and distributed ran-
domly in the matrix, while the matrix (gray-displayed, volume fraction cp = 81.46%)
is assumed to be inelastic. Moreover, the inelastic material behavior of the matrix is
characterized by the prototype model described in Section 2.4. The corresponding
material parameters are summarized in Table 1.

 

 

(a) Coarse mesh
(570 elements)

 

 

(b) Medium mesh
(1004 elements)

 

 

(c) Fine mesh (1672 elements)

Figure 5: Example 2; different FE discretizations of the RVE for fiber-reinforced
composite

With respect to all three different FE meshes shown in Fig. 5, the strain path
computation defined by Eq. (56) is done by the even NTFA, the adaptive NTFA
and the FEM, respectively, leading totally to nine single computations. For all three
meshes, the mode identification procedures for the even NTFA and the adaptive
NTFA approach are equally parameterized, respectively. For the even NTFA, three
inelastic strain path computations are carried out with the three loading directions
defined by Eq. (43), where ε̇1 = ε̇2 = ε̇3 = 0.05/s for a simulation time of 1s.
Snapshots are captured every 0.02s, leading totally to 150 snapshots for the mode
identification procedure. For the adaptive NTFA, the three inelastic strain path
computations, defined by Eq. (43), are performed without damage evolution. This
is simply done by setting the parameter e to a sufficient large value like e.g. 102.
With ε̇1 = ε̇2 = ε̇3 = 0.02/s for a simulation time of 1s, 150 snapshots are also
captured. Then, the modified Gram-Schmidt procedure returns different number of
plastic modes, as summarized in Table 2. Here the cut-off parameters δ0 = 10−7

and δ0 = 10−8 are used for the even NTFA and the adaptive NTFA computation,
respectively.

coarse mesh medium mesh fine mesh

even NTFA 21 modes 23 modes 28 modes

adaptive NTFA 9 modes 9 modes 9 modes

Table 2: Example 2; results of mode identification

Two components of the first mode, related to the even NTFA computation of
the fine mesh, are depicted in Fig. 6. The regions of fibers are displayed in gray,
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u111 u112

Figure 6: Example 2; a representative example of plastic modes: u1

since the modes have their support merely in the matrix. The results of all nine
computations are summarized in Fig. 7. Fig. 7a shows the macroscopic von Mises
stress plot over the time, while the damage evolutions are summarized in Fig. 7b.
From all three FEM computations, a mesh dependence is obviously observed. This
is also theoretically expected, since no non-local damage models is considered in
this work. One can clearly see that the same mesh dependence is preserved by the
reduced schemes, i.e. the even and the adaptive NTFA. Furthermore, the predictions
of the adaptive NTFA are very accurate, whereas an obvious deviation of the even
NTFA predictions (from t ≈ 0.1s) is observed. Further studies on the adaptive
NTFA and the even NTFA will be done in Section 4.3 and Section 4.4, respectively.
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(a) Macroscopic von Mises stresses
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(b) Macroscopic damage evolution

Figure 7: Example 2; results of mesh dependence study

4.3 Example 3: A study of the adaptive NTFA method

Without loss of generality, we choose the fine mesh in Fig. 5c for a further study
of the adaptive NTFA method. The strain path computations of Section 4.2 are
recalled. In Fig. 8, the individual components of the macrocopic stresses are shown,
where the results of the adaptive NTFA computation coincide with the reference
FEM solutions. In the adaptive NTFA computation, an even NTFA computation
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is done at the beginning of loading up to 0.05s, where no microscopic damage is
initialized. The final time steps up to 1s are computed via FEM, where damage
evolution is activated. For both the even NTFA and the FEM procedure, a quadratic
convergence rate is observed.
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Figure 8: Example 3; comparison of macroscopic stresses

adaptive NTFA FEM

σv(x) [MPa]

‖εp(x)‖ [-]

‖ε(x)‖ [-]

Figure 9: Example 3; comparison of the micro fields reconstructed by the adaptive
NTFA to the FEM reference fields selected at t = 0.05s
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By a simple post-processing via equations (12), (11) and (8), a micro field re-
construction is done for the microscopic stress, strain and plastic strain field, re-
spectively. For a comparison between the micro field reconstructions and the FEM
reference fields, we select the time t = 0.05s where an even NTFA procedure is
performed. The comparison is illustrated in Fig. 9, where a good accordance is
obtained. Fig. 9 shows also that the stress concentration is overpredicted by the
even NTFA. This effect coincides with the results in e.g. [7] for a three-dimensional
computation with a pure hardening type plasticity.

Furthermore, Fig. 10 gives a comparison of the microscopic von Mises stress
fields between the adaptive NTFA and the FEM at the end of the computation.
Interestingly, the fields are almost identical, the error made in the microscopic re-
constructions by the even NTFA computation (see Fig. 9) is almost completely
compensated.

adaptive NTFA FEM

σv(x) [MPa]

Figure 10: Example 3; comparison of the stress field reconstructed by the adaptive
NTFA to the FEM reference field at the end of the computation (t = 1s)

4.4 Example 4: Several even NTFA computations with dif-
ferent modes

The aim of this example is to investigate which approach of mode identification pro-
vides a better primary prediction for an even NTFA computation. Without loss of
generality, we choose the fine mesh of the fiber-reinforced composite shown in Fig.
5c. Then, six even NTFA strain path computations (described by Eq. (56)) are
performed using six different sets of modes, respectively as summarized in Table 3.
Two approaches for mode identification (see Section 3.3) are studied here. They are
used three times with three different parameterizations, based on the same snapshots
(obtained in Section 4.2), respectively. For the two-level Karhunen-Loève decompo-
sition (KL), the same threshold parameter δk = 0.9999 but different partitions are
used. In the test ’even NTFA 01’, the snapshots are subdivided according to three
different strain paths, leading to three partitions. In ’even NTFA 02’ and ’even
NTFA 03’, the individual partitions from ’even NTFA 01’ are evenly subdivided
into 2 and 5 sections again, resulting into 6 and 15 partitions, respectively. Inter-
estingly, with more partitions, the KL procedure needs less CPU time, but returns
larger number of modes. For the modified Gram-Schmidt procedure (GS), different
cut-off parameters δ0 are used. Using a smaller δ0, the GS procedure renders larger
number of modes, at the expense of a longer CPU time. With a proper value of δ0
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(see e.g. ’even NTFA 04’), a considerable numerical efficiency, compared to the KL
procedure, is achieved.

Test Mode identification Number CPU time (normalized) Error
of modes for mode identification [%]

even NTFA 01 KL (3 partitions) 13 0.8190 15.28

even NTFA 02 KL (6 partitions) 15 0.3290 14.95

even NTFA 03 KL (15 partitions) 19 0.2016 14.96

even NTFA 04 GS (δ0 = 10−6) 17 0.1230 15.83

even NTFA 05 GS (δ0 = 10−7) 28 0.2094 15.92

even NTFA 06 GS (δ0 = 10−8) 44 0.3483 15.51

Table 3: Example 4; summary of results for different even NTFA computations

Furthermore, the results of the six even NTFA computations are compared with
the FEM reference solution in Fig. 11. For clarity, the components of macrocopic
stresses are subdivided in Fig. 11a and Fig. 11b. Fig. 11c and Fig. 11d show the
macrocopic von Mises stresses and the macroscopic damage evolutions, respectively.
No strong difference between the even NTFA computations is observed. Similar
mean errors, defined as Error =

∥∥PNTFA − P FEM
∥∥ /
∥∥P FEM

∥∥, are made by the

even NTFA computations (see Table 3). Here PNTFA and P FEM denote the vectors
of the macroscopic stress powers through the strain path (via Eq. (4.3)) obtained
from the even NTFA and the FEM, respectively. An obvious deviation from the
FEM reference solution can be clearly seen, particularly since t ≈ 0.15s where the
damage evolution is activated considerably. The damage evolution is somewhat
delayed, whereas the macrocopic damage is overpredicted from t ≈ 0.3s (see Figure
11d). Additionally, a speed-up factor up to 2000 compared to the FE computations
is observed.

Besides the reasons already stated in Section 2.4, the delay effect might have
another reason that the (even) NTFA method is merely driven by the macrocopic
quantities, unlike the fully microscopically motivated full-field computation. One
can see the fact that the additional consideration of softening effects leads to inac-
curate (even) NTFA predictions, particularly when the damage evolution is activated
to a certain extent. The performance of the uneven NTFA method, which corrects
the macrocopic predictions empirically, will be shown in the subsequent section.
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(d) Macroscopic damage evolution

Figure 11: Example 4; influence of different modes on the accuracy of the even
NTFA method

4.5 Example 5: A study of the uneven NTFA method

In this example, we intend to show the performance of the uneven NTFA method.
Without loss of generality, we choose the ’even NTFA 01’ in Section 4.5. For sim-
plicity, we consider the following three simple cases with three constant strain path
directions

Case 1: ε̇
1

=




0.02 0
0 −0.02

0


 ei ⊗ ej

s
, Case 2: ε̇

2
=




0 0.015
0.015 0

0


 ei ⊗ ej

s
,

Case 3: ε̇
3

=



−0.01 0.01
0.01 0.015

0


 ei ⊗ ej

s
,

respectively. Each loading takes 1s. The initial parameter sets for initialization of
the Downhill-Simpplex procedure (see Section 3.5) are p1 = [1 1 1], p2 = [2 1 1], p3 =
[1 0.1 1] and p4 = [1 1 0.1], respectively. The corresponding algorithm parameters
are αd = 1, γd = 2, βd = 0.5 and σd = 0.5, respectively. The results of parameter
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identification are summarized in Table 4. All of them are returned by the Downhill-
Simplex procedure within 100 iteration steps.

uneven NTFA ϑ [-] α [-] β [-]

Case 1 1.0886 1.7987 0.5440

Case 2 1.2277 2.3222 0.3516

Case 3 1.1203 1.9645 0.4356

Table 4: Example 5; results of parameter identification for different uneven NTFA
computations

The results of all three uneven NTFA computations, using the parameter sets in
Table 4, are shown in Fig. 12a, Fig. 12b and Fig. 12c, respectively. A comparison
with the FEM reference solutions and the even NTFA predictions is given. Consid-
erable corrections are made by the uneven NTFA method, leading to an improved
accuracy.
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Figure 12: Example 5; results of three uneven NTFA computations
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In Fig. 13, the micro von Mises stress fields reconstructed by the even and uneven
NTFA, at the end of the ’case 1’ computation, are compared with the FEM reference
field. An obvious deviation of both the even and uneven NTFA computation from
the FEM reference solution is observed, while a difference between the even and the
uneven NTFA computation is also given. It becomes obvious that the uneven NTFA
does not account for an accuracy improvement on the micro field reconstructions.

even NTFA uneven NTFA FEM

σv [MPa]

Figure 13: Example 5; comparison of the stress field reconstructed by the even and
uneven NTFA to the FEM reference field at the end of the computation (t = 1s)

Furthermore, the parameter sets, identified for the different loading conditions
in Table 4, are not identical, unfortunately. This means that the fitting parameter
set depends also on different loading conditions. Therefore, the use of the uneven
NTFA method for structural applications still remains a challenging task for future
research.

4.6 Example 6: Macroscopic computations

In order to verify the macroscopic stiffness matrix derived in Section 3.4, we perform
a macroscopic example of a tensile-shear test, as illustrated in Fig. 14a. Two
equal-sized rods are glued together with a thin layer, which is characterized by the
homogenized (NTFA) material. The microstructure of the layer is represented by the
RVE with the fine mesh shown in Fig. 5c. The corresponding material parameters
are those of Table 1. The rods are assumed to be elastic, with E = 2 · 106 MPa
and ν = 0.25. A displacement-driven algorithm is applied, where the displacement
u is initialized by u0 = 0 mm and grows with a constant rate u̇ = 0.05 mm/s.
Additionally, the thickness of rod and the computation time are defined as 10 mm
and 1 s, respectively. For a macroscopic computation, the geometry is spatially
discretized with 560 quadratic triangular elements, as shown in Fig. 14b.
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(a) (b)

Figure 14: Example 6; a tensile-shear test: (a) Schmematic representation; (b) FE
discretization

Two computations are performed using the even NTFA and the uneven NTFA
method for case 1 in Section 4.5, respectively. For both computations, a quadratic
convergence rate is observed for the Newton-Raphson method . The FE results of
both computations with regard to the von Mises stress σv and the damage vari-
able D are presented in Fig. 15. The force-displacement (F -u) diagrams for both
computations are shown in Fig. 16a, where a softening effect of the force F due
to the damage evolution is present. The even NTFA and the uneven NTFA render
completely different results, where the damage evolution is empirically advanced by
the uneven NTFA method (see figures 15 and 16a).

even NTFA uneven NTFA even NTFA uneven NTFA

σv [MPa] t = 1s D [-]

Figure 15: Example 6; FE results of the macroscopic NTFA computations: contour
plot of von Mises stress σv and damage variable D
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(b) Macroscopic von Mises stresses obtained by dif-
ferent methods with respect to a strain path record

Figure 16: Example 6; results of the macroscopic NTFA computations

Based on the recorded strain path on a selected integration point of the macro-
scopic even NTFA (see Fig. 16b), five strain path computations are done using the
even NTFA, the uneven NTFA with the three different parameter sets in Table 4
and the FEM, respectively. Their results with respect to the macrocopic von Mises
stress are summarized in Fig. 16b. The delay effect of the damage evolution is
compensated by all three uneven NTFA computations, whereas slight deviations of
the stress amplitudes are observed.

      
          

: (even) NTFA

: FEM (FE2)

t = 0:2s, 0:25s, 0:3s, 0:35s, 0:5s.

Figure 17: Example 6; illustration of selection within the thin layer of different
regions according to Eq. (38) for the adaptive NTFA method

Additionally, to illustrate the structural application of the adaptive NTFA method,
the macroscopic example shown in Fig. 14 is performed, where the thin layer is ho-
mogenized by the even NTFA with the same parameterization as in Section 4.3.
According to the indication condition (38) proposed in the adaptive NTFA method,
the selection of different regions is illustrated in Fig. 17, which adaptively changes
over the time. Here those quadratic triangular elements, whose integration points
(at least one) require a microscopic full-field FE-computation, are displayed in dark
gray, leading to a partial FE2 problem. A complete computation saving could be
made by the even NTFA from the beginning of the computation up to t ≈ 0.2 s,
whereas the adaptive NTFA computation would become a complete FE2 computa-
tion since a certain time (t > 0.5 s).
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Note also that the selection of different regions, shown in Fig. 17, approximately
illustrates that of a macrocopic adaptive NTFA computation, since only the even
NTFA is performed for the homogenization of the thin layer, for an acceptable
computation time. However, due to the full-field computation regions, resulting
into a (partial) FE2 problem that is beyond the scope of this work, macroscopic
examples by means of the adaptive NTFA method are not provided.

5 Conclusion and outlook

In this work, an extension on the classical NTFA has been given to consider an addi-
tional softening effect. Based on dissipative considerations, a new coupled model for
the even NTFA has been derived, where large part of the NTFA theory, such as the
approximation of the plastic strains and the localization rules, remains unchanged.
Subsequently, the new coupled model has been theoretically and numerically veri-
fied for a homogeneous microstructure. This new model is actually a generalization
of the classical one with a pure hardening type plasticity, where softening effects
are additionally coupled to isotropic hardening type plasticity and a pure hardening
type plasticity can be simply recovered by deactiving the damage evolution. It has
also been found by the authors that the additional introduction of softening effects
gives rise to inaccurate predictions using the even NTFA method. One reason is
that the strong material nonlinearity makes the mode identification procedures dif-
ficult. More precisely, a set of universal modes may be hardly found for an ideal
representation throughout the damaging course. Another reason is that the (even)
NTFA for the homogenized material is macroscopically driven, whereas the full-field
FE-computations are fully microscopically motivated.

For an accuracy improvement based on the even NTFA predictions, we have
presented two new methods. The first method is based on the idea of parameter
identification, which fits, in more general cases, experimental data for a given con-
stitutive material model. With this in mind, we have introduced three additional
empirical fitting parameters, resulting into uneven micro and macro model struc-
tures. Hence, this method has been referred to as the uneven NTFA method. The
corresponding parameter identification problem has been formulated in the sence
of least-squares and numerically solved by the Downhill-Simplex method. The use
of the uneven NTFA method has also been illustrated by several numerical exam-
ples. A considerable accuracy improvement for the macroscopic predictions has been
achieved for different loading conditions. However, the success of the uneven NTFA
method (in its present form) is merely limited to one or a group of loading condi-
tion(s) on an integration point level, due to the dependence of loadings. Therefore,
the structural application of the uneven NTFA method still remains a challenging
task for our future research.

Moreover, the second method for accuracy improvement has been referred to
as the adaptive NTFA method, which is motivated by adaptive modeling. In this
method, the reduced homogenization scheme by the even NTFA procedure is merely
applied to the elastic and the plastic region. The remaining inelastic region coupled
with softening effects, which causes inaccurate NTFA predictions, has to be solved
via the FEM. The related localization procedure, required for the numerical im-
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plementation, has been proposed. A microscopically motivated indicator has been
developed and checked with an example for a fiber-reinforced composite. It has
been found that the adaptive NTFA method renders very accurate results of both
macroscopic predictions and the microscopic field reconstructions. The main draw-
back of this method might be the additional computational effort for regions where
FEM has be performed for a full-field computation. Given that the damage zone is
usually localized in a comparably small region in the case of structural applications,
considerable computational savings can be made by the adaptive NTFA method.

Additionally, two-dimensional macroscopic examples have been done by the even
and the uneven NTFA method, respectively, to validate the derived macroscopic
consistent stiffness matrix. A quadratic convergence rate of the Newton method
has been obtained. Furthermore, the numerical efficiency of the NTFA method has
been confirmed. A speed-up factor up to 2000 compared to the FE computations
has been observed. Another point is that the NTFA procedures have a noticeably
better convergence behavior than the full-field FE-computations, since the NTFA
procedures are macroscopically driven. The full-field computations need usually
more time steps to converge. Note also that our approaches can be extended to
three-dimensional applications without any methodological gains.

The gradient theory conventionally used in continuum damage mechanics sim-
ulating localization phenomena (see e.g. [32] amongst others) is not considered in
this work so far. Additional consideration of damage caused by volumetric stresses
is also one of the priorities of our future work.

In last decades, many model reduction schemes, e.g. POD for more general
cases (see e.g. [42, 1]), have been developed. Amongst them, the NTFA method
still remains an attractive method for homogenization of nonlinear composites. The
main limitation of the NTFA is the superposition principle, which is no longer valid
e.g. for problems with large deformations. An additional application of the NTFA
in adaptive modeling is of our interest.
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Abstract

Microscopic considerations are drawing increasing attention for modern
simulation techniques. Micromorphic continuum theories, considering micro
degrees of freedom (DoFs), are usually adopted for simulation of localization
effects like shear bands. The increased number of DoFs clearly motivates an
application of adaptive methods. In this work, the adaptive FEM is tailored
for micromorphic elasticity. The proposed adaptive procedure is driven by
a goal-oriented a posteriori error estimator based on duality techniques. For
efficient computation of the dual solution, a patch-based recovery technique
is proposed and compared to a reference approach. In order to theoretically
ensure optimal convergence order of the proposed adaptive procedure, adjoint
consistency of the FE-discretized solution for the linear elastic micromorphic
continua is shown. For illustration, numerical examples are provided.

Keywords: finite element method, micromorphic continuum, goal-oriented adap-
tivity, error estimate, recovery techniques, primal and adjoint consistency

1 Introduction

Many materials show size-dependent behavior, e.g. for metals and ceramics the
indentation hardness increases with decreasing indenter size for micro-size indents,
see [48, 37, 42, 6]. Additionally, there are localization phenomena, such as shear
bands, which occur under softening. The classical continuum theory is not able to
account for these phenomena, which is why different extensions of classical contin-
uum theory have been developed. Supplementary quantities are introduced, that
lead to nonlocal behavior, meaning that the stresses of a material point are depen-
dent on a finite neighborhood. To govern the nonlocality an internal length scale
is introduced. This leads to a regularization of the boundary value problem, when
localization phenomena arise, and the internal length scale can be used to represent
size dependence. When higher order gradients of strain or internal variables are used
to account for nonlocal behavior, the theories are called gradient theories [41, 31].
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The so-called micromorphic theories were originally introduced by Eringen in
[12], who intends to capture the microstructure of a material by introducing addi-
tional degrees of freedom (DoFs), labeled as micro DoFs. In doing so, an additional
micro continuum representing a deformation of this point is attached to each ma-
terial point. As well known, the micromorphic theories incorporate micropolar and
microstrain theories as special cases. The subsequent publications, e.g. [13], focused
on micropolar continua, which have a rigid micro continuum that can only rotate,
whereas a micromorphic continuum has fully deformable micro continua. The mi-
cropolar continuum is covered extensively in the literature, see e.g. [47, 10, 9, 39]
for the aspects of plasticity and parameter identification. Microstrain theories are
treated, e.g. in [18]. Plasticity for micromorphic continua has been the subject of
various publications in recent years, see e.g. [16, 15, 29, 23, 24, 25]. The papers
[15, 24, 25] are also concerned with damage. A detailed comparison of micromor-
phic, micropolar and microstrain continua is given in [36]. As shown in [38], these
theories can be seen as special cases within the framework of generalized stresses
[20, 21, 26, 19, 2].

Adaptive refinement is a systematic methodology to find a proper mesh for the
simulations and thus save computational costs compared to uniform refinement. The
basis for adaptive refinement is error estimate, for which there are different possibil-
ities. In this paper goal-oriented a posteriori error estimate is considered, where an
auxiliary dual (adjoint) problem is required. On the one hand, this procedure can be
employed to calculate an estimate of a quantity of the solution. In this step, no mesh
refinement is involved. On the other hand, one can use the local residuals calculated
from the goal-oriented error estimate procedures to steer optimal mesh refinement
with respect to that quantity. Both procedures can be effectively combined. For the
general framework of a posteriori error estimate, we refer to [11, 49, 1, 34, 4, 46].
The term “goal-oriented”means that the refinement is governed with respect to a
quantity of interest. Usually, the aim of a simulation is to find solutions for a certain
quantity. Adaptive mesh refinement is then governed by error indicators which are
localizations of the global error to elements. It is then advantageous to refine the
mesh with the goal of minimizing the error in this quantity of interest. Contributions
to this topic can be found in [5, 40, 7, 43]. To the authors’ knowledge goal-oriented
error estimate has not been applied to micromorphic continua, and subsequently,
no literature exists on this kind of problem. The present paper intends to close this
gap. For efficient computation of the dual solution, which is essential for the error
estimate, a patch-based recovery technique is proposed and compared to a reference
approach. For a more detailed comparison of the proposed recovery technique w.r.t.
model adaptivity of multiscale problems, we refer to our recent work [33].

In addition to consistency in the numerical analysis for the primal problem,
the so-called adjoint consistency is drawing increasing attention, see e.g. [3, 27] for
discontinuous Galerkin methods. Adjoint consistency is a key property of discretiza-
tions, which ensures optimal order of convergence of the error measured in an energy
norm as well as in terms of a specific quantity of interest. A general framework for
adjoint consistency analysis was suggested by Hartmann [28]. According to [28], we
perform, in this work, a primal and an adjoint consistency analysis for the linear
elastic micromorphic continua.
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The paper is structured as follows: In Section 2, the classical micromorphic
continuum framework is revisited, including kinematic relations, balance laws in
strong and weak form as well as a linear elastic constitutive model. Section 3 is
concerned with goal-oriented adaptivity, for which a dual problem is introduced and
a computable error representation for discretization errors is derived. For illustration
purposes, three numerical examples are presented in Section 4. A conclusion and an
outlook on further research are given in Section 5. Finally, a primal and an adjoint
consistency analysis are performed in Appendix A.

Notation: The scalar products of two vectors a and b, two second-order tensors
A and B and two third-order tensors Q and R are

a · b = aibi, A : B = AijBij, Q :·R = QijkRijk, (1)

respectively, using the Einstein summation convention for repeated indices. Addi-

tionally, we define a modified scalar product
(•)· , for instance, ∇ (2)· C := ∇jCijklei⊗

ek ⊗ el, using the Einstein summation convention for repeated indices. By ⊗ we

denote the standard dyadic product and by
(•,•)
⊗ a modified one. There holds, for

instance, Q
(2,4)

⊗ A := QikmAjlei ⊗ ej ⊗ ek ⊗ el ⊗ em. The gradient operator ∇ is
introduced as

∇c := c⊗∇ = ci,jei ⊗ ej, with ci,j =
∂ci
∂Xj

, (2)

where ei, i = 1, 2, 3 is a Cartesian orthonormal basis and Xi are coordinates of the
reference placement X. The divergence operator Div(•) is defined as

Div(σ) := σ · ∇ = σij,jei, with σij,j =
∂σij
∂Xj

. (3)

Partial derivatives are denoted as ∂x(•) := ∂(•)/∂x. Gâteaux differentation of a
linear form F and a (generally) semilinear form B w.r.t. the argument u is denoted
as

1. DuF (u;v) = lim
θ→0

1

θ
[F (u+ θv)− F (u)],

2. DuB(u;w,v) = lim
θ→0

1

θ
[B(u+ θv;w)−B(u;w)],

(4)

respectively.

2 Linear elasticity in micromorphic continuum

2.1 Kinematics

As illustrated in Fig. 1, a classical framework of micromorphic continuum is con-
sidered. The macro deformation gradient is defined as

F (X) = ∇ϕ(X), (5)
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with the operator ϕ mapping the initial coordinates X to the current coordinates
x = ϕ(X). The macro displacement is given by u = x −X. For simplicity, small
strains

ε := ∇symu =
1

2
(H +HT ) (6)

are assumed, where
H = ∇u = F − 1 (7)

is the displacement gradient, and where 1 represents the second-order identity ten-
sor. The underlying microstructure is assumed to undergo an affine micro de-
formation gradient F , which is related to the micro displacement gradient H by
H = F − 1. Hence, an introduction of a specific microstructure, unlike homoge-
nization schemes [44, 14, 32], is not required. Furthermore, we define two additional
strain measures: the relative deformation (second-order)

e(X) = H(X)−H(X) (8)

and the gradient of the micro displacement gradient being a third-order tensor

G(X) = ∇H(X), (9)

respectively, depending merely on the macro coordinates X.

0 t

0 t

Figure 1: Kinematics of a micromorphic continuum

2.2 Balance laws and weak formulations

According to [8, 17] within the small strain framework, the following coupled balance
laws for momentum and moment of momentum must be satisfied:

1. Div(σ + s) = 0, 2. Div(S) + s = 0. (10)

Here σ is the (symmetric) Cauchy stress tensor, s the generally nonsymmetric rel-
ative stress tensor and S the third-order hyperstress tensor. Their thermodynamic
counterparts, i.e. the corresponding strain tensors, are the small strain tensor ε, the
relative strain tensor e and the third-order tensor G, respectively. Note that body
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forces, couples and double forces are not considered here. The following boundary
conditions, acting on B = B0 = Bt for small strains, apply:

1. u = upre on ∂Bu, 2. H = H
pre

on ∂BH ,
3. (σ + s) ·N = t on ∂Bt, 4. S ·N = T on ∂BQ.

(11)

Here N is the outward normal vector on the boundary ∂B and t the macro traction
on the Neumann boundary ∂Bt. The micro traction on the boundary ∂BQ in Eq.
(11.4) is denoted as T . A possible micro traction T is here neglected, i.e. T = 0,
since it can be hardly identified by an experimental setup.

Upon introducing test functions δu and δH , the final expressions for the weak
forms of the balance laws (10) are established as

1.

∫

B
(ε[δu] : σ[u] +H [δu] : s[u,H ])dV −

∫

∂Bt
δu · t dA = 0, ∀ δu ∈ Vu,

2.

∫

B
(G[δH ] :·S[H ]− δH : s[u,H ])dV −

∫

∂BQ
δH : T dA

︸ ︷︷ ︸
=0

= 0, ∀ δH ∈ VH ,

(12)
respectively, where Vu and VH are appropriate Sobolev spaces. A simple combination
of the coupled weak forms (12) renders a compact representation

∫

B

(
ε[δu] : σ[u] + e[δu, δH ] : s[u,H ] +G[δH ] :·S[H ]

)
dV

︸ ︷︷ ︸
:=B(u,H;δu,δH)

=

∫

∂Bt
t · δudA+

∫

∂BQ
δH : T dA

︸ ︷︷ ︸
:=F (δu,δH)

∀ δu ∈ Vu, δH ∈ VH ,
(13)

whose left hand side clearly shows three work conjugate pairs. Finally, upon intro-
ducing the notion of the generalized solution û and its variation δû as

û :=

[
u
H

]
, δû :=

[
δu
δH

]
, (14)

Eq.(13) rewrites in a compact residual form as

%(û; δû) = F (δû)−B(û; δû) = 0, ∀ δû ∈ V := Vu ∪ VH . (15)

2.3 Constitutive relations for linear elastic micromorphic
continua

We restrict ourselves to linear isotropic elasticity, where the following constitutive
equations apply:

1. σ = Ktr(ε)1 + 2Gεdev =: C : ε,

2. s = λstr(e)1 + 2µse
s + 2µcse

a =: A : H + B : H ,

3. S = l2(λm1⊗∇tr(H) + 2µmG) =: D :·G.
(16)
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In Eq. (16.1), εdev represents the deviatoric part of the strain tensor ε, where
εdev = ε− 1

3
tr(ε)1 holds, while C is the fourth-order elasticity tensor, described by

two material parameters K and G. In Eq. (16.2), es and ea are the symmetric and
the skew-symmetric part of e in Eq. (8), respectively. Furthermore, A and B are
fourth-order tensors depending on three material parameters λs, µs and µcs, whereas
D is a sixth-order tensor depending on three further material parameters l, λm and
µm. The constant material tensors C, A, B and D are found as

1. C = ∂εσ = K1⊗ 1 + 2GIdev, where

Idev = I− 1

3
1⊗ 1,

I = 1
(2,4)

⊗ 1,

2. A = ∂es ∂He, where

∂es = λs1⊗ 1 + (µs + µcs)I + (µs − µcs)IT ,
∂He = I,

3. B = ∂es ∂He, where

∂He = − I,

4. D = ∂GS = l2λm1⊗ 1
(4,5)

⊗ 1 + 2l2µm1
(2,4)

⊗ 1
(3,6)

⊗ 1,

(17)

respectively. From the equations (17.2) and (17.3) we clearly observe that

A = −B. (18)

Also note that all the material tensors C, A, B and D have major symmetry in the
sense that

Cijkl = Cklij, Aijkl = Aklij, Bijkl = Bklij, Dijklmn = Dlmnijk, (19)

and the elasticity tensor C also has minor symmetry such that

Cijkl = Cijlk = Cjikl. (20)

2.4 Compact weak form for linear elastic micromorphic con-
tinua

In this section, we specify the compact representation defined in (13) for our specific
model problem. Inserting the constitutive relation (16) into the weak form (12)
renders a linear variational form

1.

∫

B

(
ε[δu] : (Cε[u]) +H [δu] : (AH [u] + BH)

)
dV −

∫

∂Bt
δu · t dA = 0,

2.

∫

B

(
G[δH ] :· (DG[H ])− δH : (AH [u] + BH)

)
dV = 0,

(21)

which, together with the underlying kinematic relations (6), (7) and (9), becomes

1.

∫

B

(
∇symδu : (C∇symu) +∇δu : (A∇u+ BH)

)
dV −

∫

∂Bt
δu · t dA = 0,

2.

∫

B

(
∇δH :· (D∇H)− δH : (A∇u+ BH)

)
dV = 0,

(22)
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∀ δu ∈ Vu, δH ∈ VH , where
∫
∂BQ δH : T dA = 0. For our convenience, the scalar

products used in the constitutive equations in (16) are omitted here and hereafter.
Due to the minor symmetry of the elasticity tensor C in (20), the relation

C∇symu = C∇u (23)

holds. Then, the compact form (13) becomes

∫

B

[
δu
δH

]
·
:





∇

(2)· C · ∇+∇ (2)· A · ∇ ∇ (2)· B

−A · ∇ ∇ (3)· D · ∇ − B




︸ ︷︷ ︸
:=K

·
:

[
u
H

]


dV

−
∫

∂Bt

[
δu
δH

]
·
:

[
t
0

]

︸︷︷︸
:=t̂

dA = 0,

(24)

whereby the compact residual form (15) is specified as

%(û; δû) =

∫

∂Bt
δû · t̂dA

︸ ︷︷ ︸
:=F (δû)

−
∫

B
δû ∗ K ∗ ûdV

︸ ︷︷ ︸
:=B(û;δû)

= 0, ∀ δû ∈ V , (25)

and where we make use of the notion of the generalized solution û and its variation
δû in (14). We denote K introduced in Eq. (24) as a generalized stiffness operator
for the linear elastic micromorphic continuum. Additionally, the scalar products
[· : ]T in Eq. (24) are denoted as ∗ in the compact residual form (25). Furthermore,
due to the equations (18) and (19), the identity

δû ∗ (K ∗ û) = (K ∗ δû) ∗ û (26)

holds, which shows K = K∗, i.e. the considered problem is self-adjoint.

3 Goal-oriented adaptivity

3.1 The general abstract setting

Generally, the exact form (15) can not be solved (exactly). Hence, a numerical
method like FEM, providing an approximate solution ûh, has to be applied, where
we introduce a proper approximate FE-space Vh ⊂ V . We may write the discretized
version of (15) as

%(ûh; δûh) = F (δûh)−B(ûh; δûh) = 0, ∀ δûh ∈ Vh. (27)

The error w.r.t. the primal solution û is defined as ê := û− ûh.
Following the lines of goal-oriented adaptivity [35, 45], we introduce a quantity

of interest Q, which has to be Gâteaux differentiable and can be chosen rather
arbitrarily. We are then interested in the error E w.r.t. Q as

E(û, ûh) := Q(û)−Q(ûh), (28)
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which can also be formulated as a secant form (see e.g. [45])

E(û, ûh) = QS(û, ûh; ê) =

∫ 1

0

DûQ(ûh + sê; ê)ds, (29)

with 0 ≤ s ≤ 1. We may also construct a secant form w.r.t. the form B as

BS(û, ûh; δû, ê) = %(ûh; δû) = B(û; δû)−B(ûh; δû), (30)

where

BS(û, ûh; δû, ê) :=

∫ 1

0

DûB(ûh + sê; δû, ê)ds. (31)

To set a link between the two secant forms (29) and (31), we introduce a dual
Lagrangian functional

L(û, ûh; δẑ, ẑ) := QS(û, ûh; δẑ)−B∗S(û, ûh; ẑ, δẑ), (32)

where B∗S(û, ûh; ẑ, δẑ) is the adjoint of BS(û, ûh; δẑ, ẑ), and where δẑ and ẑ are
test functions. The dual problem is then established by

statδẑ{L(û, ûh; δẑ, ẑ)} =⇒
QS(û, ûh; δû)−B∗S(û, ûh; ẑ, δû) = 0, ∀ δû ∈ V , (33)

where we refer to ẑ as the dual solution. Combining equations (29), (30) and (33)
renders

E(û, ûh) = %(ûh, ẑ) = B(û; ẑ)−B(ûh; ẑ) = F (ẑ)−B(ûh; ẑ) (34)

as an exact error representation, where the last equality is obtained from (25). In
combination with the Galerkin orthogonality (27), we finally obtain

E(û, ûh) = %(ûh, ẑ − πẑ) = F (ẑ − πẑ)−B(ûh; ẑ − πẑ), (35)

where πẑ ∈ Vh is the projection of ẑ onto the FE-space Vh.

3.2 The special case of linear elastic micromorphic continua

The abstract setting described in Section 3.1 is general and thus valid for nonlinear
cases. In the following, we specify the general setting to linear elastic micromorphic
continua of Section 2.4. With the specific definition of the bilinear form B in Eq.
(25), the secant form (31) becomes

BS(û, ûh; δû, ê) =

∫ 1

0

DûB(ûh + sê; δû, ê)ds

=

∫ 1

0

(∫

B
δû ∗ K ∗ ê dV

)
ds

=

∫

B
δû ∗ K ∗ êdV = B(ê; δû).

(36)
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Observe that for δû = δûh ∈ Vh, the Galerkin orthogonality condition

B(ê; δûh) =

∫

B
δûh ∗ K ∗ êdV = B(û; δûh)−B(ûh; δûh)

= F (δûh)−B(ûh; δûh) = 0

(37)

holds, where for the third equality we make use of (15) and the last equality cor-
responds to (27). This means that the error of the primal solution ê is orthogonal
to the variation δûh w.r.t. the generalized stiffness operator K in a volume integral
sense.

Furthermore, we assume that the considered quantity of interest is also linear,
such that the secant form (29) becomes

E(û, ûh) = QS(û, ûh; ê) =

∫ 1

0

DûQ(ûh + sê; ê)ds = Q(ê), (38)

i.e. in this case the error of quantity of interest E(û, ûh) = Q(û) − Q(ûh) equals
the quantity of error Q(ê). Then, the dual problem (33) simplifies to

Q(δû)−B∗(ẑ; δû) = 0, ∀ δû ∈ V , (39)

where B∗(ẑ; δû) = B(δû; ẑ) is the adjoint of B. For self-adjoint problems (true for
the present case, see Eq. (26)), we have

Q(δû)−B(ẑ; δû) = 0 =⇒

Q(δû) = B(ẑ; δû) =

∫

B
δû ∗ K ∗ ẑdV, ∀ δû ∈ V . (40)

In combination with the definitions in (25), the error representation (35) is specified
as

E(û, ûh) =

∫

∂Bt
(ẑ − πẑ) · t̂ dA−

∫

B
(ẑ − πẑ) ∗ K ∗ ûhdV. (41)

3.3 FE discretizations of the dual problem

Clearly, the exact error representation (41) requires the knowledge of the exact dual
solution ẑ obtained from (40), which in general is intractable. Hence, we have to
resort to numerical methods (FEM in this case) again. Using the same FE-mesh as
for the primal problem (27), one obtains the discretized version of (40) as

Q(δûh)−B(ẑh; δûh) = 0 =⇒

Q(δûh) =

∫

B
δûh ∗ K ∗ ẑhdV, ∀ δûh ∈ Vh.

(42)

Note that the working dual solution ẑh is not directly useful for the error formular
(41), because of its Galerkin orthogonality to the working primal solution ûh shown
in Eq. (37), rendering it unable to give us information in the unresolved directions
which contribute to the error representation (41). Hence, we need an enhanced dual
solution ẑh+ , which replaces the exact one ẑ in (41). To this end, we introduce
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an enhanced FE-space Vh+ , satisfying Vh ⊂ Vh+ ⊂ V . Here we make use of the
hierarchical FE structure, meaning that the enhanced FE-space Vh+ is obtained by
increasing the polynomial interpolation order on the basis of Vh. Obviously, the
exact enhanced dual solution ẑh+ can be computed from the enhanced discretized
dual problem

Q(δûh+)−B(ẑh+ ; δûh+) = 0 =⇒

Q(δûh+) =

∫

B
δûh+ ∗ K ∗ ẑh+dV, ∀ δûh+ ∈ Vh+ .

(43)

which is computationally much more expensive than (42).

3.4 Primal and adjoint consistency of the FE discretizations

In addition to consistency of the primal problem, adjoint consistency is a key prop-
erty of discretizations, which ensures optimal order of convergence of the error in
terms of a specific quantity of interest, see e.g. [3, 27] for discontinuous Galerkin
methods. Therefore, following the general framework suggested by Hartmann [28],
we perform a primal and an adjoint consistency analysis for the linear elastic micro-
morphic continua of sections 2.4 and 3.3 in Appendix A.

3.5 Efficient computation of the enhanced dual solution

The computation of the enhanced dual solution ẑh+ directly from (43) is quite
expensive, therefore, not practicable in general. There exist several contributions
in the literature, focused on efficient methods replacing (43). Amongst them, the
methods of decoupled computations and locally enhanced FE-space are proposed
in [35]. Two variants of local recovery methods are suggested in our preparatory
work [50], requiring merely information within one single element after a smoothing
procedure.

In the following, we propose a recovery technique based on the idea of locally
enhanced FE-space in [35]. Note that the computations on the locally enhanced FE-
space in [35] rely on local formulations of the enhanced dual problem (43). Here,
these local computations will be replaced by certain minimization problems, which
do not require any knowledge about (43). Our approach is illustrated here for linear
triangular elements, whose enhancement is the quadratic triangular element. As
shown in Fig. 2a, we define a locally enhanced FE-space eVh+ for each element e,
which is associated to a patch. Hence, we refer to our approach as a patch-based
recovery technique. Next, we use the notion ẑh+ ≈ ẑh+ = [ẑ1 ẑ2], where ẑ1 and ẑ2
are nodal values on existing nodes in Vh and on additional nodes in Vh+ , respectively.
With the approximation ẑ1 ≈ ẑh, we focus on determining ẑ2. To this end, we make
a modification on the so-called superconvergent patch recovery [51]. In eVh+ , each

component eẑ
i

h+ of eẑh+ is assumed to be expressed as a higher order polynomial
representation

eẑ
i

h+ = p(x) · ai ∈ eVh+ , for i = 1, · · · , ndof, (44)
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where the index i is related to nodal DoFs. For three-dimensional cases, the number
of nodal DoFs is ndof = Dim(z) + Dim(z) = 3 + 9 = 12, where Dim(•) designates
the number of coefficients of a vector or a tensor, respectively. For the present two-
dimensional cases, we have ndof = 2 + 4 = 6. For an enhanced quadratic represen-
tation, we define p(x) := [1 x1 x2 x

2
1 x1x2 x

2
2], while ai := [ai1 · · · aik · · · ai6]T contains

six unknown coefficients. Here xd,with d = 1, 2, corresponds to single components
of the coordinate x. To determine the unknown coefficients in ai, minimization
problems are formulated as

f(ẑih,
e ẑ

i

h+) :=
Nh∑

j=1

(
ẑih(x

j)−e ẑih+(xj)
)2
→ min, for i = 1, · · · , ndof, (45)

where ẑih is the corresponding component of the dual solution obtained from (42).
Further, Nh is the number of existing nodes on the patch. Combining (44) and (45)
renders

f(ẑih,
e ẑ

i

h+) =
Nh∑

j=1

(
ẑih(x

j)− p(xj) · ai
)2 → min, for i = 1, · · · , ndof, (46)

which has a simple analytical solution

1. ai =A−1bi, where

2. A :=
Nh∑

j=1

pT (xj)p(xj),

3. bi :=
Nh∑

j=1

pT (xj)ẑih(x
j).

(47)

Note that the matrix A is independent on index i. With the result ai, the additional
nodal values eẑ2 can be simply recovered by (44). Obviously, to obtain the global
vector ẑ2, Eq. (47) has to be computed for all elements e = 1, · · · , Nel and all nodal
DoFs i = 1, 2, · · · , 6. Given that different nodal values on the same node can be
obtained by different computations of (47), the global vector ẑ2 is calculated by
weighted averaging of eẑ2 from adjacent elements. In our calculation, we use the
arithmetic means in case of two adjacent elements as

ẑ
n,i

2 =
1

2

2∑

e=1

eẑ
n,i

2 , (48)

where the indices n, i and e = 1, 2 represent the global node, the coefficient of ẑ2
and the two adjacent elements, respectively. As shown in Fig. 2b, special care must
be paid for boundary elements, which do not have sufficient number of surround-
ing elements in the same manner as shown in Fig. 2a. Consequently, additional
nodes have to be included to arrive at a sufficient number of surrounding elements.
Additionally, the boundary values must be corrected correspondingly.
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Figure 2: Illustration of patch based recovery approach: (a) Regular case for interior
elements (◦: existing nodes and •: additional nodes in locally enhanced FE-space)
and (b) special case for boundary elements (◦: extended nodes and •: boundary
nodes in locally enhanced FE-space)

3.6 Adaptive algorithm

In order to adaptively control the discretization error, we adopt the following algo-
rithm:

1. Initialization: set an initial mesh Vh0 .

2. Solve the discretized model problem (27).

3. Solve the approximate dual problem (42) on the current mesh and compute
the enhanced dual solution via the recovery technique (44)-(47).

4. Compute the estimated error representations (global and local) via

Ẽ(û, ûh) = F (ẑh+ − πẑh+)−B(ûh; ẑh+ − πẑh+) =

Nel∑

e=1

ηe, (49)

which is obtained from (35) by the approximation ẑ ≈ ẑh+ . Here, ηe is the
contribution of element e for the estimated global error Ẽ.

5. Check the stopping criterion Ẽ < TOL , where TOL is a user-defined threshold
value related to the desired accuracy. If the stopping criterion is fulfilled, then
break and return the current solution.

6. Otherwise, do refinement: a fixed quota, here α = 5%, of the elements with
the largest | ηe | is spatially refined; go to step 2.

4 Numerical examples

In this section, a perforated sheet is investigated as a linear elastic micromorphic
continuum. As shown in Fig. 3a, we consider a quarter model of the sheet, which
is stretched by a displacement u = 0.01 mm in 1-direction. The indices 1 and 2
represent the horizontal and the vertical direction, respectively. We restrict our-
selves to a two-dimensional case. The thickness of the sheet is 1 mm. A plane strain
state is assumed, where the third strain component ε33 implying the strain in the
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thickness direction is always zero. The used material parameters are summarized
in Tab. 1. The adaptive FEM starts with the initial mesh Vh0 shown in Fig. 3b,
consisting of linear triangular elements. For an efficiency study of the proposed
adaptive procedure, a comparison with uniform refinements will be done. Addi-
tionally, a comparison between the patch recovery technique proposed in Section
3.5 and a reference approach based on full computation of the enhanced discretized
dual problem (43) will be performed.
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(a) Geometry and boundary conditions

(b) Initial mesh

Figure 3: Perforated sheet in micromorphic elasticity

K G λs µs µcs l λm µm

[MPa] [MPa] [MPa] [MPa] [MPa] [-] [MPa] [MPa]

175000 80769 175000 80769 80769 0.1 175000 80769

Table 1: Summary of material parameters

According to the results of the adjoint consistency analysis in Appendix A, it
turns out that the used discretizations are adjoint-consistent only for certain quan-
tities of interest. For simplicity, we consider, in this work, quantities of interest of
a volume integral type, for which adjoint consistency is ensured. In practice, one
might be interested in a particular quantity on a certain domain. For illustration,
we will present three numerical examples, considering three different types for the
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quantity of interest Q

1. global: Q(u) :=

∫

B
σijdV =

∫

B
{C : ∇u}ijdV,

2. local: Q(u) :=

∫

B′
σijdV =

∫

B
φ(x)σijdV,

3. local: Q(H) :=

∫

B′
H ijdV =

∫

B
φ(x)H ijdV,

(50)

respectively, with a regularization function

φ(x) =

{
1, if x ∈ B′,
0, otherwise.

(51)

Here σij and H ij are coefficients of the stress tensor σ and the micro displacement
gradient H , respectively. Note that (50.1) and (50.2) are concerned with stresses,
which are of engineering interest, whereas (50.3) is more of academic interest, how-
ever, demonstrates the general applicability of the proposed methodology. Further,
B′ is a local domain out of the whole domain B, i.e. the green area marked in Fig.
3a, with r = 8 mm.

4.1 Example 1: Global quantity of interest w.r.t. stresses

This example deals with the global quantity of interest defined in Eq. (50.1), with
the choice i = j = 1. The primal solution σ11 and the dual solution ẑ1 using uniform
refinements are shown in Figs. 4a-4c and 4d-4f, respectively, where ẑ1 represents
the first component of ẑh computed from (42). Note that the working dual solution
ẑh is not used in the error computation (see Section 3.3). For a computational
saving of error estimate, we make use of an (approximate) enhanced dual solution
ẑh+ obtained by the recovery technique proposed in Section 3.5 on the basis of ẑh.
As a representative example, a comparison of the working dual solution ẑh and the
enhanced dual solution by full computation (ẑh+) and by patch recovery described
in Section 3.5 (ẑh+) is given in Fig. 5. By full computation we mean the reference
approach, where the enhanced dual solution ẑh+ is fully computed from the enhanced
discretized dual problem (43). The full computation approach is computationally
expensive and only used here for a comparison with the proposed patch recovery
technique. From the Figs. 5a and 5c we observe that the recovered enhanced dual

solution ẑ
1

h+ is smoother than the working dual solution ẑ1h. Moreover, a slight

deviation of the recovered enhanced dual solution ẑ
1

h+ from the actual enhanced
dual solution ẑ1h+ is revealed by a comparison of the Figs. 5c and 5b. Consequently,
with the recovery technique we somehow extrapolate the working dual solution to
an enhanced FE-space and expect to circumvent the issue of Galerkin orthogonality
stated in Section 3.3. The following results substantiate our approach.
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Primal solution σ11 for different meshes with uniform refinements

(a) Initial mesh (0) (b) Mesh 2
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Figure 4: Example 1: Summary of results

Fig. 4i depicts the final mesh after 15 adaptive refinements based on the patch
recovery technique. The primal solution σ11 and the dual solution ẑ1 of this mesh,
shown in Figs. 4g and 4h, respectively, are rather close to their references in Figs. 4c
and 4f. The distributions of the local error indicators | ηe | are depicted for different
meshes in Fig. 4j-4l, showing that the discretization errors are strongly reduced by
the adaptive procedure using patch recovery. From the local error indicator formular
(49) we observe that the local error indicators | ηe | depend on the working primal
solution ûh, the enhanced dual solution ẑh+ as dual weights and the magnitude of
the element volume or area etc. Since the difference of the volume or area between
individual elements on the initial mesh is much smaller than that on the subsequent
nonuniformly refined meshes, a clear error distribution pattern is recognized in Fig.
4j, which is not observed in the Figs. 4k and 4l. Moreover, the Figs. 4j-4l illustrate
a balanced error distribution with increasing refinement.
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Finally, a comparison between the adaptive procedures (patch recovery and full
computation) and uniform refinements is given in Fig. 6. Fig. 6a shows Q for
different procedures versus the number of DoFs. In Fig. 6b, a normalized measure
representing the global error E is defined as

Ê :=

∣∣∣∣
Qref −QFEM

Qref

∣∣∣∣ , (52)

where Qref represents the reference value shown in Fig. 6a. In order to exploit
our limited computation source for a highly accurate reference value, the reference
solution is obtained by using a mesh that is refined uniformly once from the last
adaptive mesh represented in Fig. 4i. Note that Ê is still an estimate, since Qref

is not exact. The efficiency of both adaptive procedures (in comparison with uni-
form refinements) is striking, while a good convergence behavior is also noticeable.
Although the error Ê by full computation is reduced slightly faster than that by
patch recovery at the beginning of the adaptive steps, the results of patch recovery
are quite reliable and satisfactory.

(a) Working dual solution ẑ1h (b) Enhanced dual solution
(full computation) ẑ1h+

0 
-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 
-9 

(c) Enhanced dual solution

(patch recovery) ẑ
1

h+

Figure 5: Example 1: Comparison of working and enhanced dual solutions for the
initial mesh
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(b) Error measure Ê w.r.t. Q

Figure 6: Example 1: Comparison with uniform refinements

4.2 Example 2: Local quantity of interest w.r.t. stresses

This example is concerned with the local quantity of interest defined in Eq. (50.2),
with the choice i = j = 1. The only difference from Example 1 is that we now

160



consider σ11 in the local domain B′. Naturally, the primal solution of uniform
refinements remains unchanged, cf. Figs. 4a-4c and 7a-7c. The dual solution ẑ1
illustrated in Figs. 7d-7f shows large differences from Figs. 4d-4f, since the first
term in the dual problem (42) differs from that of Example 1. In Fig. 7i, the final
mesh after 15 adaptive refinements is presented, where the refinements are mainly
concentrated in the local domain B′, especially in its boundary regions. The primal
solution σ11 and the dual solution ẑ1 shown in Figs. 7g and 7h, respectively, are
also close to their references in Figs. 7c and 7f. The distributions of the local error
indicators | ηe | are depicted for different meshes in Figs. 7j-7l, showing that the
discretization errors are strongly reduced by the adaptive procedure.

Primal solution σ11 for different meshes with uniform refinements
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Dual solution ẑ1 for different meshes with uniform refinements

(d) Initial mesh (0) (e) Mesh 2

2.5 

2 

1.5 

1 

0.5 

0 

(f) Fine mesh (4)

Results after 15 adaptive refinements (patch recovery)

110 

100 

90 

80 

70 

60 

50 

40 

30 

(g) Primal solution σ11

2.5 

2 

1.5 

1 

0.5 

0 

(h) Dual solution ẑ1 (i) Final mesh
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Figure 7: Example 2: Summary of results

As done in Example 1, a comparison with uniform refinements is given in Fig.
8, showing the effectiveness of the adaptive procedure. In contrast to Fig. 6b in
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Example 1, the error curves of the adaptive procedures depicted in Fig. 8b is less
smooth. This might be due to the fact that the local domain B′ is not exactly
reproduced by the FE discretizations and the reproduction quality changes in the
course of the adaptive refinement. In Fig. 8b, there is only a slight difference
between the error curves of both adaptive procedures on the previous steps, whereas
the difference becomes larger in the course of the adaptive refinements. Interestingly,
the patch recovery technique converges faster than the full computation approach at
the intermediate steps, however, slower at the end. Nevertheless, the patch recovery
technique shows a good effectiveness and a satisfactory convergence behavior.
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Figure 8: Example 2: Comparison with uniform refinements

4.3 Example 3: Local quantity of interest w.r.t. the micro
displacement gradient

In this example, we consider the local quantity of interest defined in Eq. (50.3),
with the choice i = j = 1. The difference from Example 2 is that the quantity of
interest is now related to a peculiar quantity in micromorphic continuum. As done
in examples 1 and 2, we present the results of uniform refinements in Figs. 9a-9f.
The adaptive results are shown in Figs. 9g-9l, supporting the same statements as
Example 2. A comparison between the adaptive procedures and uniform refinements
is given in Fig. 10, showing the effectiveness of the adaptive procedures. In Fig.
10b, it can be seen that a similar accuracy level is finally reached by both adaptive
procedures (patch recovery and full computation), although the error convergence
curve of the full computation is overall smoother than that of the patch recovery.
Given the fact that the patch recovery technique converges all times much faster
than uniform refinements, despite of a possible erratic error reduction pattern on
the small error regions, the proposed patch recovery technique is a promising choice
for an efficient computational saving.
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Primal solution H11 for different meshes with uniform refinements
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Figure 9: Example 3: Summary of results

5 Conclusion and outlook

In this work, the well established goal-oriented adaptivity has been applied to a
class of micromorphic continuum problems. Using the notion of the generalized
solution, the abstract setting preserves the classical format. An efficient a posteri-
ori error estimator, driving the adaptive FEM, has been derived, where a tailored
patch-based recovery technique is proposed and compared to the full computation
approach. For illustration, three numerical examples have been presented, giving a
comparison with uniform refinements. The results are quite satisfactory, showing
the effectiveness of the proposed adaptive procedure, both for global and local quan-
tities of interest. Furthermore, the FE discretizations are shown to be consistent for
the primal problem and adjoint-consistent for the dual problem.
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Figure 10: Example 3: Comparison with uniform refinements

In future, nonlinear problems, such as large deformations or plasticity, will be
considered. The parameter identification for micromorphic problems is also a great
challenge for us.
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A Primal and adjoint consistency analysis for lin-

ear elastic micromorphic continua

According to the general framework suggested by Hartmann [28], we perform, in the
following, a primal and an adjoint consistency analysis for linear elastic micromor-
phic continua.

General framework for linear problems. Let
{
Lu = f , in B
Bu = g, on ∂B (A.1)

be a linear differential problem with a linear differential operator L on the domain
B and a linear differential operator B on the boundary ∂B. One might be interested
in a target function as

Q(u) =

∫

B
qB · udv +

∫

∂B
q∂B · Cuda, (A.2)

where C is a boundary differential operator on ∂B. The target function (A.2) is
compatible with (A.1), provided that

(Lu, z)B + (Bu, C∗z)∂B = (u,L∗z)B + (Cu,B∗z)∂B (A.3)

164



holds, where L∗, B∗ and C∗ are the adjoint operators to L, B and C, respectively.
Additionally, (•, •)B and (•, •)∂B denote the L2 scalar products over the domain B
and over the boundary ∂B, respectively. Assuming that Eq. (A.3) holds, the adjoint
problem associated to (A.1) and (A.2) is then given by

{
L∗z = qB, in B
B∗z = q∂B, on ∂B, (A.4)

which ensures that

Q(u) = (u, qB)B + (Cu, q∂B)∂B = (f , z)B + (g, C∗z)∂B , (A.5)

see e.g. [22]. Introducing an approximate space Vh ⊂ V by means of the finite
element method, where V is an appropriate Sobolev space, one can establish a
discretized variational format of (A.1) as

B(uh,v) = F (v), ∀ v ∈ Vh, (A.6)

with a bilinear form B and a linear form F . The discretization (A.6) for the primal
problem is said to be consistent, if the exact solution u ∈ V to (A.1) satisfies

B(u,v) = F (v), ∀ v ∈ V . (A.7)

Similarly, the discretization (A.6) is said to be adjoint consistent, if the exact solution
z ∈ V to the adjoint problem (A.4) satisfies

B(w, z) = Q(w), ∀ w ∈ V . (A.8)

Linear elastic micromorphic continua. To specify the general differential prob-
lem (A.1), we recall the strong form (10) together with the boundary conditions in
(11) as 




−(σ + s) · ∇ = 0, in B
−S · ∇ − s = 0, in B

u = upre, on ∂Bu
H = H

pre
, on ∂BH

(σ + s) ·N = t, on ∂Bt
S ·N = 0, on ∂BQ,

(A.9)

which, in combination with the constitutive relations (16) and the kinematic rela-
tions (6), (7) and (9) as well as Eq. (23), becomes





−(C∇u+ A∇u+ BH) · ∇ = 0, in B
−(D∇H) · ∇ − A∇u− BH = 0, in B

u = upre, on ∂Bu
H = H

pre
, on ∂BH

(C∇u+ A∇u+ BH) ·N = t, on ∂Bt
D∇H ·N = 0, on ∂BQ.

(A.10)
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In accordance with the notion of generalized solution introduced in (24), we may
identify the primal operators as

L̂û = −


∇

(2)· C · ∇+∇ (2)· A · ∇ ∇ (2)· B

A · ∇ ∇ (3)· D · ∇+ B


 ·

:

[
u
H

]
, in B

B̂û =

[
u
H

]
, on ∂Bu ∪ ∂BH

Ĉû =

[
(C∇u+ A∇u+ BH) ·N

D∇H ·N

]
, on ∂Bu ∪ ∂BH

B̂û =

[
(C∇u+ A∇u+ BH) ·N

D∇H ·N

]
, on ∂Bt ∪ ∂BQ

Ĉû =

[
u
H

]
, on ∂Bt ∪ ∂BQ,

(A.11)
whereby the differential equation (A.1) becomes





L̂û = 0, in B
B̂û = ûpre, on ∂Bu ∪ ∂BH
B̂û = t̂, on ∂Bt ∪ ∂BQ,

(A.12)

where ûpre = [upre H
pre

]T and t̂ is defined in Eq. (24). Subsequently, we may
specify the general definition of a linear quantity of interest (A.2) as

Q(û) =

∫

B
qB · udV +

∫

∂Bu
qu · ((C∇u+ A∇u+ BH) ·N )dA

+

∫

∂Bt
qt · udA+

∫

B
qB : HdV

+

∫

∂BH
qH : (D∇H ·N )dA+

∫

∂BQ
qQ : HdA.

(A.13)

With the dual solution ẑ := [z z]T , the compatibility condition (A.3) becomes

(
−(C∇u+ A∇u+ BH) · ∇, z

)
B +

(
−(D∇H) · ∇ − A∇u− BH , z

)
B

+ (u,−(C∇z + A∇z + Bz) ·N )∂Bu +
(
H ,−D∇z ·N

)
∂BH

+
(
(C∇u+ A∇u+ BH) ·N , z

)
∂Bt +

(
D∇H ·N , z

)
∂BQ

= (u,−(C∇z + A∇z + Bz) · ∇)B +
(
H ,−(D∇z) · ∇ − A∇z − Bz

)
B

+
(
−(C∇u+ A∇u+ BH) ·N , z

)
∂Bu +

(
−D∇H ·N , z

)
∂BH

+ (u, (C∇z + A∇z + Bz) ·N )∂Bt +
(
H ,D∇z ·N

)
∂BQ ,

(A.14)

166



where we identify the adjoint operators as

L̂∗ẑ = −


∇

(2)· C · ∇+∇ (2)· A · ∇ ∇ (2)· B

A · ∇ ∇ (3)· D · ∇+ B


 ·

:

[
z
z

]
, in B

B̂∗ẑ = −
[
z
z

]
, on ∂Bu ∪ ∂BH

Ĉ∗ẑ = −
[
(C∇z + A∇z + Bz) ·N

D∇z ·N

]
, on ∂Bu ∪ ∂BH

B̂∗ẑ =

[
(C∇z + A∇z + Bz) ·N

D∇z ·N

]
, on ∂Bt ∪ ∂BQ

Ĉ∗ẑ =

[
z
z

]
, on ∂Bt ∪ ∂BQ.

(A.15)
Accordingly, the adjoint problem of type (A.4) takes the form





−(C∇z + A∇z + Bz) · ∇ = qB, in B
−(D∇z) · ∇ − A∇z − Bz = qB, in B

z = qu, on ∂Bu
z = qH , on ∂BH

(C∇z + A∇z + Bz) ·N = qt, on ∂Bt
D∇z ·N = qQ, on ∂BQ.

(A.16)

As usual in the Galerkin finite element method [53, 52, 30], the discretized weak
form of the primal problem (A.9) is established as

B(ûh, δûh) :=

∫

B
{∇δuh : (C∇uh) +∇δuh : (A∇uh + BHh)

+∇δHh :· (D∇Hh)− δHh : (A∇uh + BHh)}dV

=

∫

∂Bt
δuh · tdA =: F (δûh), ∀ δûh ∈ Vh,

(A.17)
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which is denoted as an abstract form in (27) and with integration by parts becomes

B(ûh, δûh) := −
∫

B
δuh · {(C∇uh + A∇uh + BHh) · ∇}dV

−
∫

B
δHh : {(D∇Hh) · ∇+ A∇uh + BHh}dV

+

∫

∂Bt
δuh · {(C∇uh + A∇uh + BHh) ·N}dA

+

∫

∂BQ
δHh : {D∇Hh ·N}dA

+

Nel∑

e=1

∫

∂Be*∂B
δuh · {(C∇uh + A∇uh + BHh) ·N}dA

+

Nel∑

e=1

∫

∂Be*∂B
δHh : {D∇Hh ·N}dA

=

∫

∂Bt
δuh · tdA =: F (δûh), ∀ δûh ∈ Vh.

(A.18)

Here, ∂Be and Nel denote element boundaries and number of elements, respectively.
For the interior element boundaries ∂Be * ∂B, the last two terms in Eq. (A.18) exist
due to the jumps of stresses between two neighboring elements sharing one common
interior element boundary. Then, Eq. (A.18) can be rewritten in a discretized primal
residual form as

%(ûh; δûh) = F (δûh)−B(ûh; δûh)

=

∫

B
δuh · {(C∇uh + A∇uh + BHh) · ∇}︸ ︷︷ ︸

:=RB(uh,Hh)

dV

+

∫

B
δHh : {(D∇Hh) · ∇+ A∇uh + BHh}︸ ︷︷ ︸

:=RB(uh,Hh)

dV

+

∫

∂Bt
δuh · {t− (C∇uh + A∇uh + BHh) ·N}︸ ︷︷ ︸

:=Rt(uh,Hh)

dA

−
∫

∂BQ
δHh : {D∇Hh ·N}︸ ︷︷ ︸

:=RQ(Hh)

dA

−
Nel∑

e=1

∫

∂Be*∂B
δuh · {(C∇uh + A∇uh + BHh) ·N}dA

−
Nel∑

e=1

∫

∂Be*∂B
δHh : {D∇Hh ·N}dA = 0.

(A.19)

Obviously, according to the strong form (A.10), if the FE solution ûh is replaced
by the exact one û, the four residuals defined in (A.19) vanish, i.e. RB(u,H) = 0,
RB(u,H) = 0, Rt(u,H) = 0 and RQ(H) = 0. Additionally, the last two terms
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vanish due to a smooth stress distribution (i.e. no interior stress jumps in an exact
solution). Hence, the FE discretization (A.17) is consistent. Similarly, for an adjoint
consistency analysis, we proceed with the discretized weak form of the dual problem
(40)

B(ẑh, δûh) := −
∫

B
δuh · {(C∇zh + A∇zh + Bzh) · ∇}dV

−
∫

B
δHh : {(D∇zh) · ∇+ A∇zh + BHh}dV

+

∫

∂Bt
δuh · {(C∇zh + A∇zh + Bzh) ·N}dA

+

∫

∂BQ
δHh : {D∇zh ·N}dA

+

Nel∑

e=1

∫

∂Be*∂B
δuh · {(C∇zh + A∇zh + Bzh) ·N}dA

+

Nel∑

e=1

∫

∂Be*∂B
δHh : {D∇zh ·N}dA

=

∫

B
δuh · qBdV +

∫

B
δHh : qBdV

+

∫

∂Bu
((C∇δuh + A∇δuh + BδHh) ·N ) · qudA

+

∫

∂Bt
δuh · qtdA

+

∫

∂BH
(D∇δHh ·N ) : qHdA+

∫

∂BQ
δHh : qQdA

=: Q(δûh), ∀ δûh ∈ Vh.

(A.20)

Note that Eq. (A.20) is obtained from (A.18), where we replace the loading term F
by the quantity of interest Q defined in (A.13) and replace their arguments corre-

169



spondingly. Now, we rewrite Eq. (A.20) in a discretized dual residual form as

%∗(ẑh; δûh) = Q(δûh)−B(ẑh; δûh)

=

∫

B
δuh · {(C∇zh + A∇zh + Bzh) · ∇+ qB}︸ ︷︷ ︸

:=R∗B(zh,zh)

dV

+

∫

B
δHh : {(D∇zh) · ∇+ A∇zh + Bzh + qB}︸ ︷︷ ︸

:=R
∗
B(zh,zh)

dV

+

∫

∂Bt
δuh · {qt − (C∇zh + A∇zh + Bzh) ·N}︸ ︷︷ ︸

:=R∗t (zh,zh)

dA

+

∫

∂BQ
δHh : {qQ − D∇zh ·N}︸ ︷︷ ︸

:=R
∗
Q(zh)

dA

+

∫

∂Bu
((C∇δuh + A∇δuh + BδHh) ·N ) · qudA

+

∫

∂BH
(D∇δHh ·N ) : qHdA

−
Nel∑

e=1

∫

∂Be*∂B
δuh · {(C∇zh + A∇zh + Bzh) ·N}dA

−
Nel∑

e=1

∫

∂Be*∂B
δHh : {D∇zh ·N}dA = 0.

(A.21)

Obviously, according to the strong form (A.16), if the FE solution ẑh is replaced
by the exact one ẑ, the four residuals defined in (A.21) vanish, i.e. R∗B(z, z) = 0,
R
∗
B(z, z) = 0, R∗t (z, z) = 0 and R

∗
Q(z) = 0. Additionally, the last two jump terms

vanish. As a result, the FE discretization (A.20) is adjoint consistent only if
∫

∂Bu
((C∇δuh+A∇δuh+BδHh)·N )·qudA+

∫

∂BH
(D∇δHh ·N ) : qHdA = 0. (A.22)

If we consider a simplified target function of the type

Q(û) =

∫

B
qB · udV +

∫

B
qB : HdV (A.23)

as a special case where qu = qt = 0 and qH = qQ = 0, the strong form of the adjoint
problem (A.16) becomes





−(C∇z + A∇z + Bz) · ∇ = qB, in B
−(D∇z) · ∇ − A∇z − Bz = qB, in B

z = 0, on ∂Bu
z = 0, on ∂BH

(C∇z + A∇z + Bz) ·N = 0, on ∂Bt
D∇z ·N = 0, on ∂BQ.

(A.24)

This ensures the adjoint consistency by satisfying (A.22).
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concept of generalized stresses for computational manufacturing and beyond.
GAMM-Mitt 39(2):229–265, DOI I 10.1002/gamm.201610013

[39] Neff P, Jeong J, Fischle A (2010) Stable identification of linear isotropic
Cosserat parameters: bounded stiffness in bending and torsion implies
conformal invariance of curvature. Acta Mechanica 211(3):237–249, DOI
10.1007/s00707-009-0230-z

[40] Paraschivoiu M, Peraire J, Patera A (1997) A posteriori finite element bounds
for linear-functional outputs of elliptic partial differential equations. Comput
Methods Appl Mech Engrg 150(1):289–312, DOI 10.1016/S0045-7825(97)00086-
8

[41] Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical
comparison of nonlocal and gradient-enhanced softening continua. Int J Solids
Struct 38(44-45):7723–7746, DOI 10.1016/S0020-7683(01)00087-7

173



[42] Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and
work-hardened copper polycrystals. Scripta Materialia 34(4):559–564, DOI
10.1016/1359-6462(95)00524-2

[43] Prudhomme S, Oden J (1999) On goal-oriented error estimation for elliptic
problems: application to the control of pointwise errors. Comput Methods Appl
Mech Engrg 176(1–4):313–331, DOI 10.1016/S0045-7825(98)00343-0

[44] Qu J, Cherkaoui M (2006) Fundamentals of Micromechanics of Solids. Wiley,
Hoboken, New Jersey
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Abstract

Generalized continuum theories become necessary for many scenarios like
strain localization phenomena or size effects. In this work, we consider a class
of higher order continua, namely micromorphic continua, where the kine-
matics is enhanced by means of a microstructure undergoing an affine micro
deformation. The increasing number of the degrees of freedom in such a the-
ory clearly motivates an application of adaptive methods. For linear elastic
micromorphic problems, we have shown the consistency of the resulted dual
problem, ensuring an optimal convergence order, in [39]. In this work, we ex-
tend the framework of goal-oriented adaptivity to time-dependent problems,
i.e. plasticity problems, where a backwards-in-time dual problem is crucial to
account for the error accumulation over time caused by both error generation
and error transport. Our focus is limited to an adaptive control of spatial
discretization errors of the finite element method (FEM), while the temporal
discretization errors are not considered for simplicity. Based on duality tech-
niques, we derive exact error representations. For practice, four computable
error estimators are proposed, where two different ways to obtain enhanced
solutions are considered, and where additionally an approximate forwards-
in-time dual problem neglecting error transport is introduced. By means of
certain localization techniques, these estimators are used to drive an adaptive
mesh refinement algorithm. Their effectiveness is shown by several numerical
examples based on a prototype model.

Keywords: finite element method, micromorphic continua, elasto-plasticity, a
posteriori error estimate, dual problems, goal-oriented adaptivity

1 Introduction

Size effects are well reported in the literature, see e.g. [65, 46, 58, 8] for metals
and ceramics w.r.t. indentation hardness, [55, 3] for mechanical behavior of metallic
foams and [21] for hole size effects of metallic and polymeric foams. The classical
Cauchy-Boltzmann continuum theory is, on the one hand, not able to account for
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such effects due to the lack of an internal length. On the other hand, an illposedness
(mesh dependence) arises in the case of numerical simulation of softening behavior,
see e.g. [51, 34, 11]. For a remedy, many different theories have been developed
under the term of generalized continuum mechanics, including gradient theories
[57, 37, 19], higher order theories as well as nonlocal theories, see e.g. [51, 70].

In this work, we focus on a class of higher order continuum theories, where addi-
tional degrees of freedom are introduced to each (macro) material point. Directors
attached to each material point may evolve in different ways. Cosserat directors can
only rotate, see e.g. [17, 64, 13, 12, 53] for a micropolar theory. On the contrary,
microstrain theories account for the micro deformation part without rotation, see
e.g. [25]. The so-called micromorphic theories were originally introduced as a gen-
eral case by Eringen in [16], who endowed the microstructure with full degrees of
freedom. As well known, the microstretch theory in [18] is a further special case
of the micromorphic continua. Plasticity in micromorphic continua has been the
subject of various publications in recent years, see e.g. [23, 22, 35, 29, 30, 31, 45].
The papers [22, 30, 31, 4] are also concerned with damage. A detailed comparison
of micromorphic, micropolar and microstrain continua is given in [44]. As shown in
[50], these theories can be seen as special cases within the framework of generalized
stresses [27, 28, 32, 26, 2].

The finite element method (FEM) was invented by first publications [10, 67] for
elasticity problems and has become a widely used tool for solving many different
kinds of problems, see e.g. [73, 72, 36]. In order to obtain reliable results, the
discretization errors of the FEM have to be properly controlled. Meeting both a
user-defined accuracy level and a relatively high computational efficiency, adaptive
FEM based on error estimators has been a well-established research field for several
decades. While many error estimators were developed to control the discretization
error in global norms since the seminal work [5], the so-called goal-oriented error
estimate, aiming at a user-defined quantity of interest, was established by [15] and
further developed by [7]. For the general framework of a posteriori error estimate,
we refer to [15, 69, 1, 41, 6, 63]. Adaptive mesh refinement is then guided by
error indicators which are localizations of the global error to elements. It is then
advantageous to refine the mesh with the goal of minimizing the error in this quantity
of interest. Relevant contributions to this topic can be found in [7, 56, 9, 59].
For time-dependent problems, a backwards-in-time dual problem is necessary to
consider error accumulation over time, see e.g. [43, 62, 71]. Phase-field problems
are considered e.g. in [48]. It is also worth mentioning that model adaptivity
addressing modeling errors by a similar philosophy as the adaptive FEM is another
well-established research field, see e.g. [54, 68, 66, 40]. In our previous work [39],
goal-oriented error estimate has been applied to micromorphic continua for linear
elasticity problems, where a primal and an adjoint consistency analysis have been
performed, respectively. The present paper intends to extend the framework to
micromorphic plasticity problems including the following aspects:

• Due to the time-dependent character of these problems, both a spatial and a
temporal discretization are required for an FE solution. For simplicity, we will
only deal with the spatial discretization errors of the FEM, whereas temporal
discretization errors are not considered.
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• It is common to introduce certain internal (state) variables to account for the
time-dependency. These are usually governed by certain partial differential
equations to be solved via a time integration, for which a temporal discretiza-
tion (time-stepping) scheme has to be applied in practice. As a result, the
spatial discretization errors accumulate over time. As pointed out in [42],
there are two different sources for error accumulation:

1. Error generation: discretization errors are newly generated on each single
time step of user’s interest.

2. Error transport : discretization errors generated on the current time step
are transported into the next time step. This effect was not considered
in [42].

To account for both sources of error accumulation, we will derive a backwards-
in-time dual (auxiliary) problem.

• Additionally, we propose an approximate forwards-in-time dual problem by
neglecting error transport, which is quite attractive for a numerical implemen-
tation.

• Based on these two dual problems, four error estimators will be presented and
studied, where the patch recovery technique for enhanced solutions proposed
in [39, 40] is also considered.

This paper is structured as follows: In Section 2, the micromorphic continuum
theory is revisited, including kinematic relations, balance laws in strong and weak
form. Interpreting the considered framework as differential-algebraic equations, we
adopt a general matrix form of local evolution equations and establish a corre-
sponding weak form accounting for time integration. Subsequently, we provide a
space-time FE formulation for a numerical solution of the primal (actual physical)
problem. At the end of this section, we specify a prototype model. Section 3 is con-
cerned with goal-oriented adaptivity, for which a dual problem is deduced from the
Lagrange method. Correspondingly, a space-time FE formulation is given, clearly
showing a backwards-in-time feature of the dual problem. By a further approxima-
tion, a forwards-in-time dual problem is additionally obtained. Based on duality
techniques, exact error representations for spatial discretization errors are derived.
For a practical implementation, we discuss four different possibilities towards a com-
putable error estimate. In order to study the effectiveness of the proposed error esti-
mators, three numerical examples are performed in Section 4. Finally, a conclusion
and an outlook on further research are given in Section 5.

Notation: The scalar products of two vectors a and b, two second-order tensors
A and B and two third-order tensors Q and R are

a · b = aibi, A : B = AijBij, Q :·R = QijkRijk, (1)

respectively, using the Einstein summation convention for repeated indices. The
gradient operator ∇ is introduced as

∇c := c⊗∇ = ci,jei ⊗ ej, with ci,j =
∂ci
∂Xj

, (2)
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where ei, i = 1, 2, 3 is a Cartesian orthonormal basis and Xi are coordinates of
the reference placement X. By ⊗ we denote the dyadic product. The divergence
operator Div(•) is defined as

Div(σ) := σ · ∇ = σij,jei, with σij,j =
∂σij
∂Xj

. (3)

Gâteaux differentiation of a linear form F and a semilinear form B w.r.t. the
argument u is denoted as

DuF (u;v) = lim
θ→0

1

θ
[F (u+ θv)− F (u)], (4a)

DuB(u;w,v) = lim
θ→0

1

θ
[B(u+ θv;w)−B(u;w)], (4b)

respectively. Moreover, the semilinear form B is nonlinear w.r.t. the arguments in
front of the semicolon but linear w.r.t. the ones behind.

2 Elastoplasticity in micromorphic continuum

2.1 Kinematics

As illustrated in Fig. 1, a classical framework of micromorphic continuum is consid-
ered for quasi-static problems in solid mechanics. The macro deformation gradient
is defined as

F (X, t) = ∇ϕ(X, t), (5)

with the time t and the operator ϕ mapping the initial coordinates X to the current
coordinates x = ϕ(X). The macro displacement is given by u = x − X. For
simplicity, small strains

ε := ∇symu =
1

2
(H +HT ) (6)

are assumed, where
H = ∇u = F − 1 (7)

is the displacement gradient, and where 1 represents the second-order identity ten-
sor. The underlying microstructure is assumed to undergo an affine micro defor-
mation gradient F , which is related to the micro displacement gradient H by
H = F − 1. Hence, an introduction of a specific microstructure, unlike homog-
enization schemes [60, 20, 38], is not required. Within a small strain framework
[52, 11, 24], we define two additional strain measures: the second-order relative
displacement gradient

e(X, t) = H(X, t)−H(X, t) (8)

and the gradient of the micro displacement gradient being a third-order tensor

G(X, t) = ∇H(X, t), (9)
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respectively, depending on the macro coordinates X rather than micro ones.

0 t

0 t

Figure 1: Kinematics of a micromorphic continuum

2.2 Balance laws and weak formulations

According to [11, 24] within a small strain framework, the following coupled balance
laws for momentum and moment of momentum must be satisfied:

Div(σ + s) = 0, (10a)

Div(S) + s = 0, in B × I. (10b)

Here σ is the (symmetric) Cauchy stress tensor, s the generally nonsymmetric rel-
ative stress tensor and S the third-order hyperstress tensor. Their thermodynamic
counterparts, i.e. the corresponding strain tensors, are the small strain tensor ε in
Eq. (6), the relative strain tensor e in Eq. (8) and the third-order tensor G in Eq.
(9), respectively. Moreover, I = [0, T ] represents the time interval under considera-
tion. Note that body forces, couples and double forces are not considered here. The
following boundary conditions, acting on B = B0 = Bt for small strains, apply:

u = upre(X, t), on ∂Bu × I, (11a)

H = H
pre

(X, t), on ∂BH × I, (11b)

(σ + s) ·N = t(X, t), on ∂Bt × I, (11c)

S ·N = T (X, t), on ∂BT × I. (11d)

Here N is the outward normal vector on the boundary ∂B and t the macro traction
on the Neumann boundary ∂Bt. The micro traction on the boundary ∂BT in Eq.
(11d) is denoted as T . Additionally, the relations ∂Bu ∪ ∂Bt = ∂B, ∂Bu ∩ ∂Bt = ∅,
∂BH ∪ ∂BT = ∂B and ∂BH ∩ ∂BT = ∅ hold. Furthermore, the initial conditions for
the degrees of freedom read

u = u0(X) in B × {0}, (12a)

H = H
0
(X) in B × {0}. (12b)
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Upon introducing test functions δu and δH , the final expressions for the weak
forms of the balance laws (10) are established as
∫

B
(ε[δu] : σ[u] +H [δu] : s[u,H ])dV −

∫

∂Bt
δu · t dA = 0, ∀ δu ∈ Vu, (13a)

∫

B
(G[δH ] :·S[H ]− δH : s[u,H ])dV −

∫

∂BQ
δH : T dA = 0, ∀ δH ∈ VH , (13b)

respectively, at each time point t ∈ I, where Vu and VH are defined as

Vu :=
{
δu = δuiei | δui ∈ H1(B), δu = 0 on ∂Bu

}
, (14)

VH :=
{
δH = δH ijei ⊗ ej | δH ij ∈ H1(B), δH = 0 on ∂BH

}
, (15)

respectively. Here, H1(B) denotes Sobolev spaces in a standard sense, see e.g. [1]
for further mathematical details. A simple combination of the coupled weak forms
(13) renders a compact representation

∫

B

(
ε[δu] : σ[u] + e[δu, δH ] : s[u,H ] +G[δH ] :·S[H ]

)
dV

︸ ︷︷ ︸
:=B(u,H;δu,δH)

=

∫

∂Bt
t · δudA+

∫

∂BQ
δH : T dA

︸ ︷︷ ︸
:=F (δu,δH)

∀ δu ∈ Vu, δH ∈ VH ,
(16)

whose left hand side clearly shows three work conjugate pairs. Finally, upon intro-
ducing the notion of the generalized solution û and its variation δû as

û :=

[
u
H

]
, (17a)

δû :=

[
δu
δH

]
, (17b)

and taking the time integration and the initial conditions (12) as well as Eq. (16)
into account, we obtain a compact residual form as

%u(û, q; δû) =

∫

I

{F (δû)−B(û, q; δû)} dt+
(
û0 − û0, δû0

)
= 0, (18)

for all δû ∈ V := Vu×VH , with û0 := [u0 H
0
]T . Here, û0 represents û at the

initial time t = 0, and the subscript 0 will be used throughout this paper for same
purposes. B is a semilinear form, which, due to the plasticity under consideration,
depends on certain internal variables q introduced in the subsequent section.

Remark 1. The transformation of the weak form (16) into a time-integrated ver-
sion (18) is introduced for ease of deriving a dual problem for a goal-oriented error
estimate in Section 3. In a standard sense, (16), after the discretizations to be
introduced in Section 2.4, forms the global (element) level of a two-level FE imple-
mentation to be solved via certain linearization scheme (here Newton method) at
each time point, where the time-integrated version (18) is not explicitly used.
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Remark 2. The test function spaces defined in (14) and (15) ensure some reg-
ularities, e.g. the Lebesgue integrability of the first derivatives and the boundary
conditions etc. Similar definitions hold for solution spaces taking into account the
corresponding boundary conditions (11a) and (11b), i.e.

Vsu :=
{
u = uiei | ui ∈ H1(B), u = upre on ∂Bu

}
,

Vs
H

:=
{
H = H ijei ⊗ ej | H ij ∈ H1(B), H = H

pre
on ∂BH

}
.

Remark 3. As the test function spaces Vu and VH respectively defined in (14) and
(15) are only related to the spatial domain, its combination V also remains spatial in
Eq. (18). As a result, δû and V have a corresponding time-dependency in Eq. (18),
i.e. δû(t) ∈ V(t) = Vu(t)×VH(t). For brevity, (t) denoting this time-dependency is
omitted.

2.3 A general form of local evolution equations and the time
integration in a weak sense

For generality, we introduce a matrix representation of the evolution equations as

Aq̇ − r(û, q) = 0, (19)

where the vector q contains internal variables, see also [14]. Furthermore, A is a
quadratic matrix, while r is another vector completing the evolution equations. Also
note that we allow q, A and r to have tensorial components for brevity. Eq. (19) is
completed by an initial condition

q = q0(X) on B × {0}, (20)

resulting into an initial value problem. Upon introducing a test function δq ∈ Vq,
taking both the volume and the time integration, and including the initial condition
(20), we obtain a weak residual form of Eq. (19) as

%q(û, q; δq) =

∫

I

∫

B
{δq · (Aq̇ − r(û, q))} dV dt+

(
Aq0 − Aq0, δq0

)
= 0, (21)

becoming

%q(û, q; δq) = (Aq̇, δq)I −
∫

I

R(û, q; δq) dt+
(
Aq0 − Aq0, δq0

)
= 0, (22)

by means of the following definitions

(•, •)I :=

∫

I

∫

B
(•, •) dV dt, (23a)

(•, •) :=

∫

B
(•, •) dV, (23b)

R(û, q; δq) :=

∫

B
δq · r(û, q)dV. (23c)

Note that a definition of the test function space Vq will be given in Section 2.5,
where q will be specified for a prototype model.
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Remark 4. The evolution equation (19) completed by additional constitutive
equations (27) introduced in Section 2.5, along with the discretizations introduced
in Section 2.4, forms the local (material) level of a standard two-level FE implemen-
tation. Its solution does not necessarily rely on any variational form like (21). The
sole purpose of the variational form (21) is the derivation of a goal-oriented error
estimate and the related dual problem as will be shown in Section 3, see also [43]
for a slightly different context.

2.4 Space-time finite elements for the primal problem

For a practical solution of the initial value problem (18) and (22) with the FEM, we
firstly adopt a temporal discretization of dG(0) type denoted by a subscript k:

%u(ûk, qk; δûk) =
N∑

n=1

∫

In

{F (δûk)−B(ûk, qk; δûk)} dt+
(
ûk,0 − û0, δûk,0

)
= 0,

(24a)

%q(ûk, qk; δqk) =
N−1∑

n=0

(
A[qk]n, δq

+
k,n

)
−

N∑

n=1

∫

In

R(ûk, qk; δqk) dt (24b)

+
(
Aq−k,0 − Aq0, δq−k,0

)
= 0,

for all δûk ∈ Vk and δqk ∈ Vqk , where we define

q+k,n := lim
t↓tn

qk(t), (25a)

q−k,n := lim
t↑tn

qk(t), (25b)

[qk]n := q+k,n − q−k,n, (25c)

respectively, and where the total time interval I is subdivided into N subintervals
In := (tn−1, tn], ∆tn = tn − tn−1. By means of a further standard spatial discretiza-
tion denoted by a subscript h, the above equations (24a) and (24b) become

%u(ûkh, qkh; δûkh) =
N∑

n=1

∫

In

{F (δûkh)−B(ûkh, qkh; δûkh)} dt (26a)

+
(
ûkh,0 − û0, δûkh,0

)
= 0,

%q(ûkh, qkh; δqkh) =
N−1∑

n=0

(
A[qkh]n, δq

+
kh,n

)
−

N∑

n=1

∫

In

R(ûkh, qkh; δqkh) dt (26b)

+
(
Aq−kh,0 − Aq0, δq−kh,0

)
= 0,

for all δûkh ∈ Vkh and δqkh ∈ Vqkh, respectively.

Remark 5. The notion of dG(0) is referred to as discontinuous Galerkin method
of zero-order, where piecewise constant functions are used in the temporal discretiza-
tion, see also [62, 71]. In this work, the time integrals are evaluated equivalently to
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the backward Euler integration scheme. It is an implicit integration scheme com-
monly applied in computational mechanics, especially when a stable final state is
expected. Of course, other schemes like Runge-Kutta could also be applied, however,
will not be considered in this work.

2.5 A prototype model

As shown in [34, 33], there are several possibilities in the literature for generalized
plasticity. For simplicity, we choose in this work a prototype model, which falls into
the category of MP-ETI (incompatible micromorphic plasticity based on total mi-
cro strains). This external-micro-variable approach incorporates the micromorphic
continuum framework including balances of macro and micro momentum, while the
plasticity framework is retained solely at the macro level. Despite of this simplica-
tion, [11] shows that such kind of approach is able to reproduce size effects and to
offer a sufficient regularization power in case of softening.

The constitutive relations of the prototype model read

σ = Cεe = σvol + σdev, (27a)

s = λstr(e)1 + 2µse
s + 2µcse

a, (27b)

S = l2(λm1⊗∇tr(H) + 2µmG). (27c)

Here σvol and σdev represent the volumetric and the deviatoric part of the macro
stress tensor σ, respectively. The elastic macro strain tensor εe is given by εe =
ε − εp, where ε and εp are the total and the plastic strain tensor. The micro
relations (27b) and (27c) are assumed to be linear, see also [11], where es and ea

are the symmetric and the skew-symmetric part of e in Eq. (8), respectively. For
the macro part, we adopt the classical von Mises plasticity with isotropic hardening
specified as

q :=



εp

λ
q


 , (28a)

A :=




1 0 0
0 0 0
0 0 1


 , (28b)

r :=








λ̇n

φ :=
∥∥σdev

∥∥−
√

2
3
Y (q)√

2
3
λ̇


 , plastic (φ = 0, λ̇ > 0)




0

λ̇

0


 , elastic (φ < 0, λ̇ = 0)

(28c)

in the matrix representation (19), see also [71]. In Eq. (28a), q represents the
equivalent plastic strain, while λ is a plastic multiplier satisfying the Karush-Kuhn-
Tucker complementary conditions

λ̇φ = 0, φ ≤ 0, λ̇ ≥ 0, (29)
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where φ is the yield function defined in Eq. (28c). In Eq. (28c), we also define

n =
σdev

‖σdev‖ , (30a)

Y = Y0 +Ri, (30b)

where the isotropic hardening law reads

Ri(q) = Hq + c(1− exp(−bq)) (31)

for our calculations. Consequently, the material parameters of this prototype model
are summarized as

κ = [K G λs µs µcs λm µm l Y0 H b c], (32)

where K and G are the bulk and the shear modulus, respectively, describing isotropic
elasticity.

Remark 6. For the prototype model, we define the test function space Vq for Eq.
(21) as Vq := Vq1×Vq2×Vq3 , where Vq1 :=

{
δεp = δεpijei ⊗ ej | δεpij ∈ H1(B) ∩ L2(B)

}
,

Vq2 := {δλ | δλ ∈ L2(B)}, and Vq3 := {δq | δq ∈ H1(B) ∩ L2(B)}, see also [43].

Remark 7. Compared to more complex models based on nonlinear elastoplastic
micro relations, the above prototype model is much simpler to implement, on the
one hand. On the other hand, it introduces comparably less material parameters,
and therefore is quite attractive for parameter identification.

Remark 8. One may also notice that the Karush-Kuhn-Tucker conditions (29)
are automatically ensured by the definition (28c). An alternative approach for plas-
ticity would be a regularization of a viscoplastic model and then consider the limit
situation, see e.g. [43].

Remark 9. This work is limited to isotropic hardening for simplicity. More com-
plex effects could also be covered by the general matrix form (19). For instance,
kinematic hardening considering the Bauschinger effect can be accounted for by
additional internal variables, i.e. a back stress tensor, see e.g. [47].

3 Goal-oriented adaptivity

3.1 The Lagrange method and the dual problem

In the following, we assume that our ultimate interest of solving the primal problem
given in the equations (18) and (22) is a so-called quantity of interest

Q(û, q) :=

∫

I

Q1(û, q)dt+Q2(ûT , qT ). (33)
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Note that Q could be any differentiable function of user’s interest. We think that
the definition (33) containing, both a time integral part w.r.t. Q1 and another part
Q2 at the final time T , should cover most practical cases. Next, we introduce a
Lagrangian as

L(û, q, ẑ,y) = Q(û, q) + %u(û, q; ẑ) + %q(û, q;y). (34)

Obviously, the stationary problems of (34) w.r.t. the dual variables ẑ and y coincide
with the primal problems (18) and (22), respectively. The stationary problems of
(34) w.r.t. the primal variables û and q render the following dual equations:

%z(û, q, ẑ,y; δû) := DûL(û, q, ẑ,y; δû) (35a)

= −
∫

I

{DûB(û, q; ẑ, δû) + DûR(û, q;y, δû)} dt

+ DûQ(û, q; δû) = 0,

%y(û, q, ẑ,y; δq) := DqL(û, q, ẑ,y; δq) (35b)

= −
∫

I

{DqB(û, q; ẑ, δq) + DqR(û, q;y, δq)} dt

+ Dq (Aq̇,y)I + DqQ(û, q; δq) = 0,

respectively.

Remark 10. As the above dual equations (35a) and (35b) merely consist of tan-
gent forms, the dual problem is linear. Alternatively, the dual problem could be
introduced as a secant form, see e.g. [61, 48, 49].
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3.2 A backwards-in-time version of the dual problem

In analogy to the discretization of the primal problem in Section 2.4, a temporally
discretized version of the dual equations (35a) and (35b) of a dG(0) type reads

%z(ûk, qk, ẑk,yk; δûk) =

−
N∑

n=1

∫

In

{DûB(ûk, qk; ẑk, δûk) + DûR(ûk, qk;yk, δûk)} dt (36a)

+
N∑

n=1

∫

In

DûQ1(ûk, qk; δûk)dt+ DûQ2(û
−
k,N , q

−
k,N ; δû−k,N) = 0,

%y(ûk, qk, ẑk,yk; δqk) =

−
N∑

n=1

∫

In

{DqB(ûk, qk; ẑk, δqk) + DqR(ûk, qk;yk, δqk)} dt (36b)

+
(
δq−k,N , A

Ty−k,N
)
−

N−1∑

n=0

(
δq+k,n, A

T [yk]n
)

−
N−1∑

n=0

(
δq+k,n, A

T [yk]n+1

)

+
N∑

n=1

∫

In

DqQ1(ûk, qk; δqk)dt+ DqQ2(û
−
k,N , q

−
k,N ; δq−k,N) = 0,

respectively, where we take the definition (33) into account. Now, we split the
equations (36a) and (36b) into single time steps as

1. For n = N :

− {DûN
B(ûN , qN ; ẑN , δûN) + DûN

R(ûN , qN ;yN , δûN)}∆tN (37a)

+ DûN
Q1(ûN , qN ; δûN)∆tN + DûN

Q2(ûN , qN ; δûN) = 0,

− {DqNB(ûN , qN ; ẑN , δqN) + DqNR(ûN , qN ;yN , δqN)}∆tN (37b)

+
(
δqN , A

TyN
)

+ DqNQ1(ûN , qN ; δqN)∆tN + DqNQ2(ûN , qN ; δqN) = 0,

2. For n = N − 1, · · · , 1:

− {DûnB(ûn, qn; ẑn, δûn) + DûnR(ûn, qn;yn, δûn)}∆tn (38a)

+ DûnQ1(ûn, qn; δûn)∆tn = 0,

− {DqnB(ûn, qn; ẑn, δqn) + DqnR(ûn, qn;yn, δqn)}∆tn (38b)

+
(
δqn, A

T [y]n
)

−DqnR(ûn+1, qn+1;yn+1, δqn) ∆tn+1 +
(
δqn, A

T [y]n+1

)

+ DqnQ1(ûn, qn; δqn)∆tn = 0,

3. For n = 0:

ẑ0 = 0, (39a)(
δq0, A

T [y]0
)
−Dq0R(û1, q1;y1, δq0) ∆t1 +

(
δq0, A

T [y]1
)

= 0. (39b)
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For our convenience, we have omitted the subscript k in the above equations. Most
importantly, the equations (37)–(39) clearly indicate a backwards-in-time problem,
due to the terms related to the n+1st time step in Eq. (38b), see also [62, 71]. Then,
with an additional spatial discretization denoted by h, we obtain a fully discretized
version of (35a) and (35b) as

%z(ûkh, qkh, ẑkh,ykh; δûkh) =

−
N∑

n=1

∫

In

{DûB(ûkh, qkh; ẑkh, δûkh) + DûR(ûkh, qkh;ykh, δûkh)} dt

+
N∑

n=1

∫

In

DûQ1(ûkh, qkh; δûkh)dt (40a)

+ DûQ2(û
−
kh,N , q

−
kh,N ; δû−kh,N) = 0,

%y(ûkh, qkh, ẑkh,ykh; δqkh) =

−
N∑

n=1

∫

In

{DqB(ûkh, qkh; ẑkh, δqkh) + DqR(ûkh, qkh;ykh, δqkh)} dt

+
(
δq−kh,N , A

Ty−kh,N
)
−

N−1∑

n=0

(
δq+kh,n, A

T [ykh]n
)

(40b)

−
N−1∑

n=0

(
δq+kh,n, A

T [ykh]n+1

)
+

N∑

n=1

∫

In

DqQ1(ûkh, qkh; δqkh)dt

+ DqQ2(û
−
kh,N , q

−
kh,N ; δq−kh,N) = 0.

Remark 11. From a computational point of view, the fully discretized version
of the dual problem (40) shares a common structure with its primal counterpart
(26). Firstly, the computation of Eq. (40a) for the nodal values of ẑkh is quite
similar to a one-step Newton method applied for the primal equation (26a), but
with a transposed tangential stiffness matrix and a different loading term. Secondly,
by means of Eq. (40b), the evolution of the dual variable ykh is calculated at
each integration point. In this manner, the classical FE framework with nodal and
internal (state) variables is also preserved for the dual problem, see e.g. [71] for
further details.

Remark 12. As already highlighted in Section 1, error accumulation consists of
error generation and error transport. As error transport does not occur on the final
state n = N , the equations (37a) and (37b) merely account for error generation. For
the intermediate steps n = N − 1, · · · , 1 where error generation and error transport
simultaneously occur, the equations (38a) and (38b) are slightly different from the
equations (37a) and (37b) for an additional consideration of error transport. Hence,
the additional terms related to the n+ 1st time step in Eq. (38b) can be identified
as those for error transport, and we shall call them transport terms. Similarly, the
transport terms in Eq. (39b) for n = 0 are those related to n = 1.
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Remark 13. The backwards-in-time feature of the dual problem stems from the
accumulative nature of the internal variables q, thus resulting into the dependence
of the current step n on the future step n + 1 in Eq. (38b) for the intermediate
time steps. It enables us to take into account error accumulation over time (error
generation and error transport), however, requires additional memory to store the
primal solutions ûkh and qkh computed over all time steps, see [62, 71] for more
details. Hence, from a computational point of view, a forwards-in-time dual problem
would be very attractive.

3.3 A forwards-in-time version of the dual problem

A forwards-in-time version of the dual problem may be obtained by omitting the
transport terms in the equations (38b) and (39b), and reads

• For n = 0:

ẑ∗0 = 0, (41a)

y∗0 = 0, (41b)

• For n = 1, · · · , N − 1:

− {DûnB(ûn, qn; ẑ∗n, δûn) + DûnR(ûn, qn;y∗n, δûn)}∆tn (42a)

+ DûnQ1(ûn, qn; δûn)∆tn = 0,

− {DqnB(ûn, qn; ẑ∗n, δqn) + DqnR(ûn, qn;y∗n, δqn)}∆tn (42b)

+
(
δqn, A

T [y∗]n
)

+ DqnQ1(ûn, qn; δqn)∆tn = 0.

• For n = N :

− {DûN
B(ûN , qN ; ẑ∗N , δûN) + DûN

R(ûN , qN ;y∗N , δûN)}∆tN (43a)

+ DûN
Q1(ûN , qN ; δûN)∆tN + DûN

Q2(ûN , qN ; δûN) = 0,

− {DqNB(ûN , qN ; ẑ∗N , δqN) + DqNR(ûN , qN ;y∗N , δqN)}∆tN (43b)

+
(
δqN , A

Ty∗N
)

+ DqNQ1(ûN , qN ; δqN)∆tN + DqNQ2(ûN , qN ; δqN) = 0.

As the forwards-in-time dual problem (41)–(43) is essentially an approximation of
the backwards-in-time dual problem (37)–(39) by neglecting the effect of error trans-
port, we have introduced a superscript ∗ for the dual variables ẑ and y to indicate
the forwards-in-time solution.

Remark 14. It should be pointed out that the way towards a forwards-in-time
dual problem is not unique. The omission of the transport terms in the equations
(38b) and (39b) as done above seems to be a most simple way. Alternatively, for a
more effective method, the transport terms could be somehow approximated. How-
ever, this will not be considered in this work.
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3.4 Exact error representations based on duality techniques

In this work, we focus on the spatial discretization error, while the temporal dis-
cretization error caused by the time-stepping scheme in the primal problem (24) is
not considered. For our convenience, the subscript k denoting such a time-stepping
scheme is omitted hereafter. We aim at the discretization error of the quantity of
interest Q as

E(û, q, ûh, qh) = Q(û, q)−Q(ûh, qh). (44)

For a linear quantity of interest Q, it follows E(û, q, ûh, qh) = Q(êu, êq), with the
spatial discretization errors êu := û − ûh and êq := q − qh. Due to the equations
(18), (22), (26a) and (26b), the following identities hold:

Q(û, q) = L(û, q, ẑ,y), (45a)

Q(ûh, qh) = L(ûh, qh, ẑh,yh). (45b)

By means of the abbreviations

ξ̂ := [û, q, ẑ,y], (46a)

ξ̂h := [ûh, qh, ẑh,yh], (46b)

we obtain an exact error representation in a secant form

E(û, q, ûh, qh) = Q(û, q)−Q(ûh, qh) = L(ξ̂)− L(ξ̂h)

=

∫ 1

0

Dξ̂L(ξ̂h + sêξ; êξ)ds,
(47)

with 0 ≤ s ≤ 1 and êξ := ξ̂ − ξ̂h, and where

Dξ̂L(ξ̂; δξ̂) = %u(û, q; δẑ)+%q(û, q; δy)+%z(û, q, ẑ,y; δû)+%y(û, q, ẑ,y; δq). (48)

As shown in [62], an alternative representation of (47) takes the form

E(û, q, ûh, qh) = L(ξ̂)− L(ξ̂h) =
1

2
Dξ̂L(ξ̂h; êξ) +R, (49)

with the remainder term

R =

∫ 1

0

Dξ̂Dξ̂Dξ̂L(ξ̂h + sêξ; êξ, êξ, êξ) · s · (s− 1)ds. (50)

With (48) and the Galerkin orthogonality, the error representation (49) becomes

E(û, q, ûh, qh) =
1

2
(%u(ûh, qh; ẑ) + %q(ûh, qh;y)

+ %z(ûh, qh, ẑh,yh; û) + %y(ûh, qh, ẑh,yh; q)) +R.
(51)

Since the residual %q of Eq. (26b) suggests a set of nonlinear equations to be solved
at each integration point in an uncoupled manner, we obtain

%q(ûh, qh;y) = 0. (52)
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Similarly, the residual %y in Eq. (40b) governs the local evolution of the dual variable
yh in a locally nonoverlapping manner, such that

%y(ûh, qh, ẑh,yh; q) = 0. (53)

Finally, combining the above equations (51), (52) and (53), we have

E(û, q, ûh, qh) =
1

2
(%u(ûh, qh; ẑ) + %z(ûh, qh, ẑh,yh; û)) +R. (54)

3.5 Several computable error estimators

With the exact error representation (54) at hand, we discuss, in the following, several
different possibilities towards a computable error estimate.

• Error estimator 1 (full computation, backwards-in-time): Obviously, the
exact error representation (54) is practically not accessable, since it involves

the exact solution ξ̂ in Eq. (46a), which is generally intractable. Hence, we

replace ξ̂ by an enhanced solution ξ̂h+ on an enhanced FE space of a higher
polynomial order, i.e.

ξ̂ ≈ ξ̂h+ . (55)

For instance, a linear FE space can be enhanced by a quadratic FE space. A
straightforward way called full computation to obtain the enhanced solution
ξ̂h+ is to compute it directly on the enhanced FE space. Although the dual
problem is linear, one has to deal with the nonlinear primal problem on an
enhanced FE space. As a result, a full computation is rather expensive. By
neglecting the remainder term R in (54), we obtain the error estimate Ẽ1 as

E(û, q, ûh, qh) ≈ Ẽ1(ξ̂h+ , ξ̂h)

:=
1

2
(%u(ûh, qh; ẑh+) + %z(ûh, qh, ẑh,yh; ûh+)).

(56)

• Error estimator 2 (patch recovery, backwards-in-time): Slightly different to
error estimator Ẽ1, we introduce a further approximation

ξ̂ ≈ ξ̂h+ ≈ ξ̂h+r (ξ̂h), (57)

where the enhanced solution ξ̂h+ is approximated as ξ̂h+r , i.e. a smoothed

version of the working solution ξ̂h in Eq. (46b) on the enhanced FE space,
see [39, 40] for a patch recovery technique denoted by an additional subscript
r. As shown in [39], the main idea of the recovery technique is to extrapolate

the working solution ξ̂h to an enhanced FE space in such a way that the issue
of Galerkin orthogonality with a direct use of ξ̂h can be avoided. As a merit,
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this approach does not require any nonlinear calculations and is thus quite
efficient. Correspondingly, we have

E(û, q, ûh, qh) ≈ Ẽ2(ξ̂h+r , ξ̂h)

:=
1

2
(%u(ûh, qh; ẑh+r ) + %z(ûh, qh, ẑh,yh; ûh+r )).

(58)

• Error estimator 3 (full computation, forwards-in-time): Slightly different to
error estimator Ẽ1, we replace the backwards-in-time dual problem (37)–(39)
by the forwards-in-time version (41)–(43). As a result, we have

E(û, q, ûh, qh) ≈ Ẽ3(ξ̂∗h+ , ξ̂
∗
h)

:=
1

2
(%u(ûh, qh; ẑ

∗
h+) + %z(ûh, qh, ẑ

∗
h,y

∗
h; ûh+)),

(59)

where we use the superscript ∗ introduced in the equations (41)–(43) to in-
dicate the (approximate) forwards-in-time dual problem. For the enhanced

solution ξ̂∗h+ , full computation is used as described for error estimator Ẽ1.

• Error estimator 4 (patch recovery, forwards-in-time): Slightly different to
error estimator Ẽ2, we replace the backwards-in-time dual problem (37)–(39)
by the forwards-in-time version (41)–(43). Consequently, we obtain

E(û, q, ûh, qh) ≈ Ẽ4(ξ̂∗
h+r
, ξ̂∗h)

:=
1

2
(%u(ûh, qh; ẑ

∗
h+r

) + %z(ûh, qh, ẑ
∗
h,y

∗
h; ûh+r )),

(60)

where we use the superscript ∗ introduced in the equations (41)–(43) to indi-
cate the (approximate) forwards-in-time dual problem. As for error estimator

Ẽ2 in Eq. (57), the subscript r in the enhanced solution ξ̂∗
h+r

indicates the use

of patch recovery [39, 40].

Remark 15. Since the evaluation of the higher order remainder term R in (50) is
rather demanding, for simplicity it is omitted in the above estimators. As a result,
the above estimators are actually a linearization of the secant representation (47)
by a trapezoidal rule, see also [62, 71].

Remark 16. Since the derivation of the forwards-in-time dual problem (41)–(43)
is based on a rather rough approximation, i.e. neglecting the effect of error transport,
the estimators Ẽ3 and Ẽ4 are not expected to be able to make a good prediction of
the exact error. However, they are a comparably cheaper choice to drive an adaptive
mesh refinement algorithm. Most importantly, they eliminate the need of storage
of the primal solutions over all time steps for the computation of the dual problem.
Their effectiveness for an adaptive algorithm will be reported in Section 4.
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Remark 17. At first glance, it seems that all error estimators presented above do
not depend on the enhanced primal internal variables qh+ and their dual counterparts
yh+ . However, this is not the case for Ẽ1 and Ẽ3, since qh+ and yh+ do have
an impact on the computation of ûh+ and ẑh+ due to the coupling of the primal
equations (26a) and (26b) and the coupling of the dual equations (40a) and (40b) by
definition. Given the fact that the recovery technique delivers a smoothed version
of the working solution on an enhanced FE space, the estimators Ẽ2 and Ẽ4 do not
depend on qh+ and yh+ .

Remark 18. As an alternative approach, the work [49] presents error estimators
in terms of tangent forms rather than residuals.

3.6 Adaptive algorithm

In order to adaptively control the discretization error, we adopt Algorithm 1.

Initialization: set the initial mesh V0
h0 and adaptive refinement step j = 0;

Define a stopping criterion Ẽ ≤ TOL for the adaptive refinement loop, where
TOL is a user-defined threshold value related to the desired accuracy;

while Ẽ > TOL do
Solve the primal problem given by the coupled equations (26a) and (26b)
on the current mesh;

Solve the coupled dual equations (40a) and (40b) via the FEM on the
current mesh;

Approximate the exact solutions using certain recovery technique on an
enhanced FE space, see [39, 40];

Compute the error estimator chosen from i = 1, · · · , 4 for (56), (58), (59)
and (60) (global and local) via

Ẽi(ξ̂h+ , ξ̂h) =

Nel∑

e=1

ηie, (61)

where ηie denotes the element contributions of the error estimator Ẽi and
Nel the number of elements;

Adaptive refinement: a fixed quota, here α = 5%, of the elements with the
largest | ηie | is spatially refined, and update the adaptive refinement step
j → j + 1.

end
Algorithm 1: Adaptive algorithm

Remark 19. In this work, the global error estimators Ẽi are only localized into
their element contributions ηie as indicated in Eq. (61), see e.g. [71] for further
technical details in a similar context. Consequently, this leads to a fixed mesh at
all time steps during one adaptive refinement step. Alternatively, those element
contributions ηie could be further localized into individual time steps, such that
dynamic meshes apply for different time steps, see e.g. [62, 48]. As a drawback, this
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alternative approach requires an additional transfer of all variables ξ̂h in Eq. (46b)
between nonmatching meshes.

4 Numerical examples

In this section, a perforated sheet is investigated as an elastoplastic micromorphic
continuum. As shown in Fig. 2a, we consider a quarter model of the sheet, which
is stretched by a displacement upre = 0.05 mm in 1-direction. The indices 1 and
2 represent the horizontal and the vertical direction, respectively. Despite of the
time independence of the plasticity under consideration, we introduce a pseudo
time axis I = [0, 50s]. We restrict ourselves to a two-dimensional case using the
notations given in Appendix. A plane strain state is assumed, where the third strain
component ε33 implying the strain in the thickness direction is always zero. The
material parameters related to the prototype model in Section 2.5 are summarized
in Tab. 1. The adaptive FEM starts with the initial mesh Vh0 shown in Fig. 2b,
consisting of linear triangular elements. All four error estimators (56), (58), (59)
and (60) will be used to drive the adaptive algorithm in Section 3.6, thus leading
to four different adaptive procedures. For an effectiveness study of those adaptive
procedures, a further comparison with uniform refinements will be done.

u
37.5

R5

1
2
.5

1
2

B0
r B

[mm]

pre

(a) Geometry and boundary conditions (b) Initial mesh

Figure 2: Perforated sheet in micromorphic elastoplasticity

K G λs µs µcs l

[MPa] [MPa] [MPa] [MPa] [MPa] [mm]

175000 80769 175000 80769 80769 0.1

λm µm Y0 H b c

[MPa] [MPa] [MPa] [MPa] [-] [MPa]

175000 80769 312 1551 240 36

Table 1: Summary of material parameters

In the following, we will present three numerical examples of engineering interest,
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considering three different types for the quantity of interest Q

1. global: Q :=

∫

I

∫

B
σijdV dt, (62a)

2. local: Q :=

∫

I

∫

B′
σijdV dt =

∫

I

∫

B
φ(x)σijdV dt, (62b)

3. local: Q :=

∫

B′
σij,TdV, (62c)

respectively, with a regularization function

φ(X) =

{
1, if X ∈ B′,
0, otherwise.

(63)

Here σij represents a certain coefficient of the stress tensor σ. Further, B′ is a local
domain out of the whole domain B, i.e. the green area marked in Fig. 2a, with r = 8
mm, while the subscript T = 50s in Eq. (62c) represents the dependence on the
final time. Clearly, all quantities of interest (62a)–(62c) are concerned with stresses,
which are of engineering interest. Moreover, (62a) represents a global quantity
of interest, while its two different local versions (62b) and (62c) demonstrate the
power of the goal-oriented adaptivity in a more convincing manner. Additionally,
the switch between global and local quantities of interest is beneficial for a profound
understanding of the proposed error estimators as will be shown below.

4.1 Example 1: Global quantity of interest

This example deals with the global quantity of interest defined in Eq. (62a), with
the choice i = j = 1. As Eq. (62a) considers the whole time interval I, both
error generation and error transport take place. The computations are performed
by a dG(0) time discretization with N = 50 equidistant time steps, as described in
the sections 2.4 and 3.2. As already stated in Section 3.4, neglecting the temporal
discretization error, we focus merely on the spatial discretization error.

Following the notations (A.2) and (A.4) and adding a subscript h for FE solu-
tions, the dual displacement ẑh,1 and the dual equivalent plastic strain yh,6 performed
on the intial mesh in Fig. 2b are shown in Figs. 3a–3c and 3d–3f for several dif-
ferent time steps, respectively. They are obtained from the backwards-in-time dual
problem (37)–(39). Most importantly, the dual equivalent plastic strain yh,6 evolves
backwards in time from Fig. 3f to Fig. 3e, where a large accumulation can be
observed. The dual displacements ẑh,1 in Figs. 3a–3c also differ from each other.
For comparison, the counterparts ẑ∗h,1 and y∗h,6 obtained from the forwards-in-time
dual problem (41)–(43) are shown in Figs. 3g–3i and 3j–3l for several different time
steps, respectively. One may clearly observe that the results in Figs 3i and 3l for
the last time step (t = 50s) coincide with those in Figs. 3c and 3f, respectively.
This is because no transport effect has to be considered by the backwards-in-time
dual problem for the last time step n = N , as revealed in the equations (37a) and
(37b). In contrast to yh,6, y

∗
h,6 does not account for error transport (also for other

time steps n 6= N) and decreases to zero for t = 1 s in Fig. 3j. Due to the same
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reason, the distribution of ẑ∗h,1 in Fig. 3h largely differs from that of ẑh,1 in Fig. 3b
for t = 40s. Interestingly, due to the purely elastic stage where no transport effect
takes place, ẑ∗h,1 in Fig. 3g coincides with ẑh,1 in Fig. 3a for t = 1s.

Dual displacement ẑh,1 on the initial mesh (backwards in time)

(a) t = 1s (b) t = 40s (c) t = 50s

Dual equivalent plastic strain yh,6 on the initial mesh (backwards in time)

(d) t = 1s (e) t = 40s (f) t = 50s

Approximate dual displacement ẑ∗h,1 on the initial mesh (forwards in time)

(g) t = 1s (h) t = 40s (i) t = 50s

Approximate dual equivalent plastic strain y∗h,6 on the initial mesh
(forwards in time)

(j) t = 1s (k) t = 40s (l) t = 50s

Figure 3: Example 1: Comparison between the backwards-in-time and the approxi-
mate forwards-in-time dual problem

In Fig. 4, three different versions of the backwards-in-time solution ẑ1 are com-
pared with each other for three different time steps of the initial adaptive step: 1.
the working solution ẑh,1 in Eq. (46b) computed on the current (linear) mesh, 2.
the enhanced solution ẑh+,1 obtained by full computation (55) on a corresponding
quadratic mesh and 3. the enhanced solution ẑh+r ,1 obtained by patch recovery (57)
on a corresponding quadratic mesh. The distributions of ẑh,1 in Figs. 4a–4c are
the same as in Figs. 3a–3c. The enhanced solution ẑh+,1 in Figs. 4d–4f somewhat
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differs from the working one ẑh,1 in Figs. 4a–4c. By comparing Figs. 4g–4i with
Figs. 4a–4c, we may see that, based on the same quadratic mesh as for ẑh+,1, patch
recovery delivers a smoothed version of ẑh,1, i.e. ẑh+r ,1.

Dual displacement ẑh,1 on the initial (linear) mesh

(a) t = 1s (b) t = 40s (c) t = 50s

Dual displacement ẑh+,1 on the enhanced (quadratic) initial mesh by full
computation

(d) t = 1s (e) t = 40s (f) t = 50s

Dual displacement ẑh+r ,1 on the enhanced (quadratic) initial mesh by patch recovery

(g) t = 1s (h) t = 40s (i) t = 50s

Figure 4: Example 1: Comparison between three different dual solutions

Fig. 5 shows the adaptively refined meshes driven by the four error estimators
(56), (58), (59) and (60). Clearly, different error estimators Ẽi lead to (more or
less) different refinement patterns. Moreover, the two estimators Ẽ2 and Ẽ4 based
on patch recovery (57) commonly lead to a shear-band like pattern at the end of
the refinements, see Figs. 5f and 5l, which is not the case for Ẽ1 and Ẽ3. At this
point, it is still difficult to judge which pattern is more effective for the adaptive
refinements, since it heavily depends on what quantity of interestQ is chosen. Hence,
for an effectiveness study, a comparison w.r.t. error reduction will be shown below.
Furthermore, it is interesting to see the local error distributions of | ηie | in Eq.
(61), which result into the locally refined meshes in Fig. 5. These are depicted in
Fig. 6 for localization of different error estimators Ẽi, respectively. We observe that
all four local indicators | ηie | are balanced and strongly reduced in the course of
adaptive refinements. By a comparison between Figs. 6a–6c and Figs. 6d–6f or a
comparison between Figs. 6g–6i and Figs. 6j–6l, we see that patch recovery (57)
tends to deliver a higher value of | ηie | than full computation (55). By a comparison
between Figs. 6a–6c and Figs. 6g–6i or a comparison between Figs. 6d–6f and Figs.
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6j–6l, the forwards-in-time dual problem (41)–(43) appears to deliver a much lower
value for | ηie | than the backwards-in-time dual problem (37)–(39).

Adaptive refinements driven by error estimator Ẽ1

(a) j = 1 (b) j = 7 (c) j = 14

Adaptive refinements driven by error estimator Ẽ2

(d) j = 1 (e) j = 7 (f) j = 14

Adaptive refinements driven by error estimator Ẽ3

(g) j = 1 (h) j = 7 (i) j = 14

Adaptive refinements driven by error estimator Ẽ4

(j) j = 1 (k) j = 7 (l) j = 14

Figure 5: Example 1: Adaptively refined meshes

For an effectiveness study, we introduce an accurate estimate of the exact global
error Ei,j in Eq. (44), called the actual error Êi,j, as

Ei,j = Q−Qi,j
h ≈ Qref −Qi,j

h =: Êi,j, i = 1, · · · , 4, j = 0, 1, · · · , Ns. (64)

Here Qi,j
h represents the quantity of interest computed on the current (j-th) mesh,

where the superscript i corresponds to error estimators Ẽi and Ns denotes the num-
ber of adaptive refinement steps. Furthermore, Qref represents a reference solution,
which is independent of i and j. It is obtained by using a mesh that is refined uni-
formly once from the last adaptive mesh (here by Ẽ1 shown in Fig. 5c). Additionally,
we introduce a normalized actual error

Êi,j
norm :=

∣∣∣∣∣
Êi,j

Qref

∣∣∣∣∣ , (65)
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and a normalized error estimator

Ẽi,j
norm :=

∣∣∣∣∣
Ẽi,j

Qref

∣∣∣∣∣ , (66)

respectively. Fig. 7 gives a comparison between four different adaptive procedures
based on different error estimators (56), (58), (59) and (60) and a uniform refinement
procedure. As the uniform refinement procedure renders a new sequence of refined
meshes, the equations (64) and (65) become in this case

Euni,j′ = Q−Quni,j′

h ≈ Qref −Quni,j′

h =: Êuni,j′ , (67)

Êuni,j′
norm :=

∣∣∣∣∣
Êuni,j′

Qref

∣∣∣∣∣ , (68)

respectively, where the superscript j′ = 0, 1, · · · , Nu
s denotes uniform refinement

steps with an initial step j′ = 0. For our convenience, the superscripts j and j′ for
refinement steps will be omitted hereafter. Fig. 7a shows Q for these procedures
versus the number of DoFs. In Fig. 7b, the normalized actual errors Êi

norm and
Êuni
norm are plotted. All four adaptive procedures perform very well in view of an error

reduction, and converge always much faster than uniform refinements. Although Ẽ3

and Ẽ4 are not expected to give a good prediction in Remark 16, the adaptive
procedure based on Ẽ4 performs as well as those based on Ẽ1 and Ẽ2, while the
adaptive procedure based on Ẽ3 shows a clear advantage.

Furthermore, in Fig. 8, we study the prediction qualities of different estimators
Ẽi by a comparison with corresponding actual errors Êi. For comparability, both
normalized quantities Êi

norm in Eq. (65) and Ẽi
norm in Eq. (66) are depicted, where

error estimators based on a backwards-in-time and a forwards-in-time dual problem
are separated for clarity. From Fig. 8a we can see that both Ẽ1 and Ẽ2 overes-
timate the values of the actual errors Ê1 and Ê2, respectively, however, are able
to reproduce the decreasing trends of the actual errors. With increasing adaptive
refinements, Ẽ1 and Ẽ2 both become more accurate. This is reasonable, because the
enhanced solutions are also getting closer to the exact ones with increasing adap-
tive refinements. Moreover, Ẽ1 performs better than Ẽ2 as expected, because more
accurate enhanced solutions (by full computation) are used for Ẽ1. In addition,
92.9% of estimates made by Ẽ1 (13 out of 14 adaptive steps) correctly predict the
sign of the actual error Ê1, while the correctness ratio of Ẽ2 is 100%. From Fig.
8b we observe that both Ẽ3 and Ẽ4 render values of the order of the actual errors
Ê3 and Ê4, respectively, however, fail to reproduce the decreasing trends of the
actual errors. Additionally, only 14.3% of estimates made by Ẽ3 (2 out of 14 adap-
tive steps) correctly predict the sign of the actual error Ê3, while the correctness
ratio of Ẽ4 is 100%. In summary, for a reliable prediction of the actual error, the
backwards-in-time dual problem (37)–(39) is required.
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Localization of error estimator | η1e |

(a) j = 1 (b) j = 7 (c) j = 14

Localization of error estimator | η2e |

(d) j = 1 (e) j = 7 (f) j = 14

Localization of error estimator | η3e |

(g) j = 1 (h) j = 7 (i) j = 14

Localization of error estimator | η4e |

(j) j = 1 (k) j = 7 (l) j = 14

Figure 6: Example 1: Local error indicators | ηie |

Finally, we study the accumulative characters of the four error estimators (56),
(58), (59) and (60). As they contain residuals with time integrals, they are prac-
tically evaluated by a sum over time steps as indicated in the equations (18) and
(35a). Fig. 9 shows how this is done in a forwards-in-time manner for different error
estimators Ẽi for the final adaptive step Ns = 14, where the sign is also considered.
For Ẽ1, the accumulation effect becomes more obvious for the later time steps where
the dissipation effect (plasticity) takes place, whereas the accumulation effect of Ẽ3

is much weaker than for Ẽ1. This is quite reasonable, because the backwards-in-time
error estimator Ẽ1 accounts for the additional effect of error transport, which largely
contributes to the total error accumulation. As may be observed from Ẽ2 and Ẽ4,
patch recovery (57) leads to much larger values than full computation (55).
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Figure 7: Example 1: Comparison between different refinement procedures
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Figure 8: Example 1: Comparison between the estimated error Ẽi and the actual
error Êi for different adaptive refinements
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Figure 9: Example 1: Error accumulation over time for different error estimators Ẽi

on the final adaptive step Ns = 14
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4.2 Example 2: Spatially local quantity of interest

This example deals with the local quantity of interest defined in Eq. (62b), with
the choice i = j = 1. As Eq. (62b) considers the whole time interval I, both error
generation and error transport take place. The computations are performed by a
dG(0) time discretization with N = 50 equidistant time steps, as described in the
sections 2.4 and 3.2. As already stated in Section 3.4, neglecting the temporal dis-
cretization error, we focus merely on the spatial discretization error. This example
differs from Example 1 in Section 4.1 only by the fact that the quantity of interest
(62b) involves the volume integral in a local sense on B′, resulting into totally dif-
ferent dual solutions as shown in Fig. 10. Compared to Figs. 3a–3f, both the dual
displacement ẑh,1 and the dual equivalent plastic strain yh,6 for the backwards-in-
time dual problem (37)–(39) on the intial mesh in Fig. 2b evolve in a different way
as shown in Figs. 10a–10f. As the quantity of interest Q is now switched to a local
domain B′, the active area of yh,6 also becomes somewhat smaller in Figs. 10d–10f.
Furthermore, the counterparts ẑ∗h,1 and y∗h,6 obtained from the forwards-in-time dual
problem (41)–(43) are shown in Figs. 10g–10i and Figs. 10j–10l for several different
time steps, respectively. When compared with Figs. 3a–3f for the backwards-in-time
dual problem (37)–(39), similar effects already discussed in Example 1 can be seen.
Most importantly, the evolution of y∗h,6 shown in Figs. 10j–10l clearly illustrates that
the forwards-in-time dual problem (41)–(43) does not account for error transport.
Indeed, when viewed backwards in time, y∗h,6 decreases to zero in Fig. 10j for t = 1s.

As done for Example 1, all four error estimators (56), (58), (59) and (60) are
individually used to drive the adaptive algorithm in Section 3.6. Fig. 11 shows four
different sequences of adaptively refined meshes driven by these error estimators.
Obviously, different error estimators Ẽi lead to different refinement patterns. How-
ever, they do show a common feature that the refinements are mainly located in the
local domain B′, such that the shape of B′ becomes recognizable at the end of the
refinements, especially for the error estimators Ẽ1 and Ẽ3 based on full computation
(55). Unlike the results of Example 1 (e.g. Figs 5f and 5l), a shear-band like pattern
is not observed in Fig. 11. This confirms again that the refinement pattern heavily
depends on the choice of the quantity of interest Q. In Fig. 12, the corresponding
local error distributions of | ηie | in Eq. (61) are depicted for localization of different
error estimators Ẽi, respectively. We observe that all four local indicators | ηie | are
balanced and strongly reduced in the course of adaptive refinements. When we do
a similar comparison between the results in Fig. 12 as for Example 1, the following
statements of Example 1 are also supported here: 1. patch recovery (57) tends to
deliver a higher value of | ηie | than full computation (55) and 2. the forwards-in-
time dual problem (41)–(43) appears to deliver a much lower value of | ηie | than the
backwards-in-time dual problem (37)–(39).

For an effectiveness study, a comparison between four different adaptive proce-
dures based on different error estimators (56), (58), (59) and (60) and a uniform
refinement procedure is given in Fig. 13. Fig. 13a shows Q for these procedures
versus the number of DoFs, while Fig. 13b depicts the normalized actual errors
Êi
norm in Eq. (65) and Êuni

norm in Eq. (68). While all four adaptive procedures per-
form a much faster convergence rate than the uniform refinement procedure, their
progress is not as smooth as that of Example 1 in Fig. 7b. This is due to the fact
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that the local domain B′ is not exactly reproduced by the FE discretizations and
the reproduction quality changes in the course of the adaptive refinements.

Furthermore, in Fig. 14, we study the prediction qualities of different estimators
Ẽi by a comparison with corresponding actual errors Êi. For comparability, both
normalized quantities Êi

norm in Eq. (65) and Ẽi
norm in Eq. (66) are depicted, where

error estimators based on a backwards-in-time and a forwards-in-time dual problem
are separated for clarity. From Fig. 14a we see that both Ẽ1 and Ẽ2 overestimate the
values of the actual errors Ê1 and Ê2, respectively, however, are able to reproduce
the decreasing trends of the actual errors. With increasing adaptive refinements,
Ẽ1 and Ẽ2 both become more accurate. Moreover, Ẽ1 performs better than Ẽ2.
In addition, 92.9% of estimates made by Ẽ1 (13 out of 14 adaptive steps) correctly
predict the sign of the actual error Ê1, while the correctness ratio of Ẽ2 remains the
same (92.9%). From Fig. 14b we observe that both Ẽ3 and Ẽ4 render values of the
order of the actual errors Ê3 and Ê4, respectively, however, fail to reproduce the
decreasing trends of the actual errors. Additionally, only 35.7% of estimates made
by Ẽ3 (5 out of 14 adaptive steps) correctly predict the sign of the actual error Ê3,
while the correctness ratio of Ẽ4 is 100%. It is thus evident that the backwards-in-
time dual problem (37)–(39) provides a more reliable estimate of actual errors than
the forwards-in-time dual problem (41)–(43).

Finally, we study the accumulative characters of the four error estimators (56),
(58), (59) and (60). As done for Example 1, Fig. 15 shows the accumulation of
different error estimators Ẽi over time in a forwards-in-time manner for the final
adaptive step Ns = 14. For Ẽ1, the accumulation effect becomes more obvious for
the later time steps where the dissipation effect (plasticity) takes place, whereas the
accumulation effect of Ẽ3 is much weaker than that of Ẽ1. This is quite reasonable,
because the backwards-in-time error estimator Ẽ1 accounts for the additional effect
of error transport, which largely contributes to the total error accumulation. As
may be observed from Ẽ2 and Ẽ4, patch recovery (57) leads to much larger values
than full computation (55). These are actually the same observations as obtained
for Example 1. As the quantity of interest Q involves the local domain B′ rather
than the whole domain B, the absolute values of Ẽi are comparably small.
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Dual displacement ẑh,1 on the initial mesh (backwards in time)

(a) t = 1s (b) t = 40s (c) t = 50s

Dual equivalent plastic strain yh,6 on the initial mesh (backwards in time)

(d) t = 1s (e) t = 40s (f) t = 50s

Approximate dual displacement ẑ∗h,1 on the initial mesh (forwards in time)

(g) t = 1s (h) t = 40s (i) t = 50s

Approximate dual equivalent plastic strain y∗h,6 on the initial mesh
(forwards in time)

(j) t = 1s (k) t = 40s (l) t = 50s

Figure 10: Example 2: Comparison between the backwards-in-time and the approx-
imate forwards-in-time dual problem
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Adaptive refinements driven by error estimator Ẽ1

(a) j = 1 (b) j = 7 (c) j = 14

Adaptive refinements driven by error estimator Ẽ2

(d) j = 1 (e) j = 7 (f) j = 14

Adaptive refinements driven by error estimator Ẽ3

(g) j = 1 (h) j = 7 (i) j = 14

Adaptive refinements driven by error estimator Ẽ4

(j) j = 1 (k) j = 7 (l) j = 14

Figure 11: Example 2: Adaptively refined meshes
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Localization of error estimator | η1e |

(a) j = 1 (b) j = 7 (c) j = 14

Localization of error estimator | η2e |

(d) j = 1 (e) j = 7 (f) j = 14

Localization of error estimator | η3e |

(g) j = 1 (h) j = 7 (i) j = 14

Localization of error estimator | η4e |

(j) j = 1 (k) j = 7 (l) j = 14

Figure 12: Example 2: Local error indicators | ηie |
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Figure 13: Example 2: Comparison between different refinement procedures
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(b) Forwards-in-time error estimators Ẽ3 and Ẽ4

Figure 14: Example 2: Comparison between the estimated error Ẽi and the actual
error Êi for different adaptive refinements
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Figure 15: Example 2: Error accumulation over time for different error estimators
Ẽi on the final adaptive step Ns = 14
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4.3 Example 3: Spatially and temporally local quantity of
interest

This example deals with the local quantity of interest defined in Eq. (62c), with
the choice i = j = 1, where the only difference from Example 2 in Section 4.2 is
the switch from a time interval to the final time. This enables us to study (nearly)
pure error transport, because error generation only occurs at the final time. The
computations are performed by a dG(0) time discretization with N = 50 equidistant
time steps, as described in the sections 2.4 and 3.2. As already stated in Section
3.4, neglecting the temporal discretization error, we focus merely on the spatial
discretization error. As done for the previous examples 1 and 2, different dual
solutions computed on the initial mesh are shown in Fig. 16. Compared to Figs.
10a–10f, both the dual displacement ẑh,1 and the dual equivalent plastic strain yh,6
for the backwards-in-time dual problem (37)–(39) evolve in a different manner as
shown in Figs. 16a–16f. The zero-field of ẑh,1 at t = 1s is resulted from the fact
that Q in Eq. (62c) does not involve that time point and the transport terms vanish
due to the purely elastic stage. The same results as shown in Figs. 10c and 10f are
obtained here in Figs. 16c and 16f for t = 50s, respectively, since both quantities
of interest (62b) and (62c) consider the final state. The further evolution of yh,6
in Figs. 16d and 16e slightly differs from that of Example 2 in Figs. 10d and
10e, because, unlike Example 2, the Q-related term in the backwards-in-time dual
problem (37)–(39) vanishes for time steps n < N for this example. Furthermore, the
counterparts ẑ∗h,1 and y∗h,6 obtained from the forwards-in-time dual problem (41)–
(43) are also shown in Figs. 16g–16i and Figs. 16j–16l for several different time
steps, respectively. Most strikingly, ẑ∗h,1 and y∗h,6 both become zero for t = 1s and
t = 40s, since Q in Eq. (62.3) does not involve those time points and the transport
terms are neglected in the forwards-in-time dual problem (41)–(43).

As done for the previous examples 1 and 2, all four error estimators (56), (58),
(59) and (60) are individually used to drive the adaptive algorithm in Section 3.6.
Fig. 17 shows four different sequences of adaptively refined meshes driven by these
error estimators. Not surprisingly, different error estimators Ẽi lead to different
refinement patterns. Here, the error estimators Ẽ1 and Ẽ3 show a common feature
that the refinements are mainly located in the local domain B′, such that the shape
of B′ becomes recognizable at the end of the refinements. Similarly to the results
of Example 1 in Figs 5f and 5l, a shear-band like pattern is formed by Ẽ2 and Ẽ4

as clearly depicted in Figs. 17f and 17l. This confirms again that the refinement
pattern heavily depends on the choice of the quantity of interest Q. In Fig. 18,
the corresponding local error distributions of | ηie | in Eq. (61) are depicted for
localization of different error estimators Ẽi, respectively. We observe that all four
local indicators | ηie | are balanced and strongly reduced in the course of adaptive
refinements. When we do a similar comparison between the results in Fig. 12 as for
Example 1, the following statements of Example 1 are supported again: 1. patch
recovery (57) tends to deliver a higher value of | ηie | than full computation (55)
(except for Figs. 18a and 18d) and 2. the forwards-in-time dual problem (41)–(43)
appears to deliver a much lower value of | ηie | than the backwards-in-time dual
problem (37)–(39).
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For an effectiveness study, a comparison between four different adaptive proce-
dures based on four different error estimators (56), (58), (59) and (60) and a uniform
refinement procedure is given in Fig. 19. Fig. 19a shows Q for different procedures
versus the number of DoFs, while Fig. 19b depicts the normalized actual errors
Êi
norm in Eq. (65) and Êuni

norm in Eq. (68). The effectiveness of all four adaptive
procedures is clearly observed, despite of its nonsmooth course due to the same rea-
sons stated in Section 4.2. Additionally, the error estimators Ẽ3 and Ẽ4 perform
surprisingly well, although they are based on an approximate dual problem, i.e. the
forwards-in-time dual problem (41)–(43).

Furthermore, in Fig. 20, we study the prediction qualities of different estimators
Ẽi by a comparison with corresponding actual errors Êi. For comparability, both
normalized quantities Êi

norm in Eq. (65) and Ẽi
norm in Eq. (66) are depicted, where

error estimators based on a backwards-in-time and a forwards-in-time dual problem
are separated for clarity. From Fig. 20a we see that both Ẽ1 and Ẽ2 overestimate the
values of the actual errors Ê1 and Ê2, respectively, however, are able to reproduce
the decreasing trends of the actual errors. With increasing adaptive refinements,
Ẽ1 and Ẽ2 both become more accurate. Moreover, Ẽ1 performs better than Ẽ2.
In addition, 92.9% of estimates made by Ẽ1 (13 out of 14 adaptive steps) correctly
predict the sign of the actual error Ê1, while the correctness ratio of Ẽ2 remains the
same (92.9%). From Fig. 20b we observe that both Ẽ3 and Ẽ4 render values of the
order of the actual errors Ê3 and Ê4, respectively, however, fail to reproduce the
decreasing trends of the actual errors. Additionally, only 14.3% of estimates made
by Ẽ3 (2 out of 14 adaptive steps) correctly predict the sign of the actual error Ê3,
while the correctness ratio of Ẽ4 is 100%. As shown by the previous examples 1 and
2, it is evident that the backwards-in-time dual problem (37)–(39) provides a more
reliable estimate of actual errors than the forwards-in-time dual problem (41)–(43).

Finally, we study the accumulative characters of the four error estimators (56),
(58), (59) and (60). Fig. 21 shows the accumulation of different error estimators Ẽi

over time in a forwards-in-time manner for the final adaptive step Ns = 14. The
results in Fig. 21 support the same statements made for the previous examples 1
and 2. Most interestingly, there is no accumulation at all before the final time step
n = N for Ẽ3 and Ẽ4 based on the forwards-in-time dual problem (41)–(43), since
error transport is not accounted for. In contrast to that, the error accumulation
begins much earlier for Ẽ1 and Ẽ2 based on the backwards-in-time dual problem
(37)–(39), while error transport due to plasticity occurs.
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Dual displacement ẑh,1 on the initial mesh (backwards in time)

(a) t = 1s (b) t = 40s (c) t = 50s

Dual equivalent plastic strain yh,6 on the initial mesh (backwards in time)

(d) t = 1s (e) t = 40s (f) t = 50s

Approximate dual displacement ẑ∗h,1 on the initial mesh (forwards in time)

(g) t = 1s (h) t = 40s (i) t = 50s

Approximate dual equivalent plastic strain y∗h,6 on the initial mesh
(forwards in time)

(j) t = 1s (k) t = 40s (l) t = 50s

Figure 16: Example 3: Comparison between the backwards-in-time and the approx-
imate forwards-in-time dual problem
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Adaptive refinements driven by error estimator Ẽ1

(a) j = 1 (b) j = 7 (c) j = 14

Adaptive refinements driven by error estimator Ẽ2

(d) j = 1 (e) j = 7 (f) j = 14

Adaptive refinements driven by error estimator Ẽ3

(g) j = 1 (h) j = 7 (i) j = 14

Adaptive refinements driven by error estimator Ẽ4

(j) j = 1 (k) j = 7 (l) j = 14

Figure 17: Example 3: Adaptively refined meshes
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Localization of error estimator | η1e |

(a) j = 1 (b) j = 7 (c) j = 14

Localization of error estimator | η2e |

(d) j = 1 (e) j = 7 (f) j = 14

Localization of error estimator | η3e |

(g) j = 1 (h) j = 7 (i) j = 14

Localization of error estimator | η4e |

(j) j = 1 (k) j = 7 (l) j = 14

Figure 18: Example 3: Local error indicators | ηie |
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Figure 19: Example 3: Comparison between different refinement procedures
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(a) Backwards-in-time error estimators Ẽ1 and Ẽ2
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(b) Forwards-in-time error estimators Ẽ3 and Ẽ4

Figure 20: Example 3: Comparison between the estimated error Ẽi and the actual
error Êi for different adaptive refinements
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Figure 21: Example 3: Error accumulation over time for different error estimators
Ẽi on the final adaptive step Ns = 14

214



5 Conclusion and outlook

In this work, we have considered a class of micromorphic plasticity problems as
a double multifield formulation, interpreting the whole framework as differential-
algebraic equations. The first multifield formulation stems from the nature of mi-
cromorphic continua, where we introduce the notion of generalized solution for an
abstract setting. The second multifield formulation accounts for local evolution of
internal variables, where we adopted a general matrix representation. On this basis,
weak forms in a time integration sense have been established for both formulations,
respectively. The proposed formulation is less standard in the literature, as it does
not alter the practical FE implementation in fact. However, it has been shown to
be beneficial to derive a dual problem required for a goal-oriented error estimate.
In order to account for the time-dependent character of the underlying problem, a
backwards-in-time dual problem has been obtained from the Lagrange method. By
means of duality techniques, exact error representations have been derived. Finally,
we have proposed four computable error estimators based on a linearization of an
exact secant error representation and studied them by several numerical examples
w.r.t. a prototype model. These are summarized as follows:

• Error estimator Ẽ1 (full computation, backwards-in-time) is a most expen-
sive version based on a backwards-in-time dual problem accounting for both
error generation and error transport, where the enhanced solutions are ob-
tained by full computation requiring nonlinear computations on an enhanced
FE space. Numerical examples show that this estimator is reliable to drive
an adaptive algorithm, while it is also able to mimic the trends of the actual
error.

• Error estimator Ẽ2 (patch recovery, backwards-in-time) is a computationally
cheaper variant of error estimator Ẽ1, where the full computation is replaced
by the patch recovery technique [39, 40] for enhanced solutions. The patch
recovery technique avoids the need of nonlinear calculations, and therefore
is computationally efficient. Numerical examples show that this estimator is
effective to drive an adaptive algorithm, while it is also able to reproduce the
trends of the actual error. However, the quantity of the prediction is slightly
worse than that of error estimator Ẽ1.

• Error estimator Ẽ3 (full computation, forwards-in-time) is also a variant of
error estimator Ẽ1, where the backwards-in-time dual problem is approximated
as a forwards-in-time one by neglecting error transport. As a merit, this
reduces much storage requirement for the computation of the dual problem.
However, the forwards-in-time dual problem is not designed to account for
error transport. Numerical examples show that this estimator performs quite
well to drive an adaptive algorithm, whereas its prediction of the actual error
is less reliable than error estimators Ẽ1 and Ẽ2.

• Error estimator Ẽ4 (patch recovery, forwards-in-time) is a variant of error
estimator Ẽ3, where the full computation is replaced by the patch recovery
technique [39, 40] for enhanced solutions. Obviously, it is the cheapest choice.
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Numerical examples show that this estimator performs quite well to drive an
adaptive algorithm, whereas its prediction of the actual error is less reliable
than error estimators Ẽ1 and Ẽ2.

As an important advantage, these error estimators are quite simple to implement,
since the dual problem preserves a similar structure as the primal one such that
many terms and structures of the primal problem can be reused, see also [71].

For an accuracy improvement of the error estimate, a further study on a secant
formulation of dual problems is worth mentioning, see e.g. [48] for a time-dependent
phase-field problem. Since the way towards a forwards-in-time dual problem is not
unique, more effective methods should be developed in future. As this work is merely
concerned with the spatial discretization errors, the coupling to time step adaptivity
towards a full error analysis would be of our interest as well. Future works will also
be directed to the field of parameter identification.
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Appendix. Some notations for a two-dimensional

implementation

In the following, we declare some notations used in Section 4. In a two-dimensional
case, the primal solution û in Eq. (17a) practically reduces to a (6× 1)-vector as

û = [u1 u2 H11 H22 H12 H21]
T . (A.1)

By a one-to-one correspondence to Eq. (A.1), we define a (6× 1)-vector as

ẑ = [ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ6]
T , (A.2)

for the dual solution ẑ in Eq. (35). Consequently, we shall call ẑ1 and ẑ2 dual
displacements, while ẑ3, ẑ4, ẑ5 and ẑ6 are called dual micro deformations. In a
similar way, the practical counterparts for the primal internal variables q in Eq.
(28a) and the dual internal variables y in Eq. (35) are defined as

q = [εp11 ε
p
22 ε

p
33 ε

p
12 λ q]

T , (A.3)

y = [y1 y2 y3 y4 y5 y6]
T , (A.4)

respectively. As a result, y1, y2, y3 and y4 are dual plastic strains, while y5 and y6
are dual plastic multiplier and dual equivalent plastic strain, respectively.
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4 Summary

This thesis consists of the following two main parts, which commonly contribute to
the mechanics of heterogeneous materials.

1. The papers A, B and C dealt with first order homogenization problems assuming
a scale separation. Their topics covered all the four classes of homogenization
methods introduced in Section 1.3.

• The general coupled adaptive strategy developed in Paper A for linear
elastic heterogeneous materials inherits the common idea from the litera-
ture, where model adaptivity and adaptive FEM are applied in a coupled
manner for balancing model and discretization error on the macroscale.
For an error control with respect to a user-defined quantity of interest,
the general concept of goal-oriented adaptivity has been adopted. Specific
error estimators based on duality techniques have been derived for both
model and discretization errors, where an important role is played by en-
hanced solutions, which replace the unknown exact solutions. To compute
the enhanced solutions in an efficient way, a novel patch recovery technique
has additionally been developed and compared to other existing techniques.
The most important and challenging part was to formulate hierarchical
models for model adaptivity, whose hierarchical structures are not as
apparent as those of the finite elements. As a result, an investigation of
different homogenization methods has been done. In Paper A, a variational
homogenization method for higher order bounds of effective properties
was used to provide a model hierarchy in a theoretically consistent manner.
Indeed, a clear hierarchical model struture is obtained by a truncation of
the underlying Neumann series. In Paper B, our attention is distracted to
mean-field and computational (full-field) homogenization methods, which
are combined to establish a model hierarchy. Several mean-field methods
have been examined, such that two hierarchical models are established
using a priori knowledge for an initial stage of the model hierarchy. It
is expected that, for a relatively large region of the structure, the two
models within the frame of mean-field methods suffice for both purposes
of modeling and error estimate. For regions of largest importance to the
quantity of interest determined by an error estimate, a computational
(full-field) method is adopted, where a unit cell problem is solved via
the FEM under an appropriate micro boundary condition. The use of
the FEM enables an additional consideration of the unit cell size, where
hierarchical unit cells are established. For a further accuracy improvement,
the unit cell size is hierarchically enlarged. For the materials under study,
a periodic boundary condition was chosen prior to the adaptive procedure
for a fast convergence rate. In summary, the papers A and B presented
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two different adaptive approaches including three important classes of
homogenization methods, i.e. mean-field, computational and variational
methods, for model adaptivity in linear elasticity, where a model reduction
is not necessary. The effectiveness of the proposed adaptive procedures
has been shown by several numerical examples.

• Paper C considered a physically nonlinear homogenization problem in-
cluding softening effects, for which a model order reduction method shows
a clear advantage. The NTFA was chosen due to its closed-form evolution
equations for the reduced variables, which guarantee a computational
efficiency. However, these evolution equations have to be tailored for
the micro problem under study, and therefore require an extension for
softening effects. It was found that the NTFA becomes less accurate
than that reported in the literature [99, 123, 101, 45, 81] for plasticity
problems (pure hardening without softening). This seems to be a common
issue for model reduction of a damage analysis, see e.g. [34] in a slightly
different context. Since the NTFA, in its original form, possesses an even
model structure, we referred to it as the even NTFA. For an accuracy
improvement, two new methods have additionally been developed. In
the uneven NTFA, additional correction parameters are introduced, thus
resulting into an uneven model structure. The numerical example in [67]
shows a satisfactory correction even by using one single correction param-
eter set for a structural analysis. One could also think of a partitioning
scheme to introduce different parameter sets for different loading cases,
if required. In the adaptive NTFA, the concept of adaptive modeling is
adopted, where an effective empirical indicator is used to determine the
need for a replacement by the FE2 method for an accuracy improvement.

2. The papers D and E handled micromorphic continua, which are of crucial
importance to model size effects and localization phenomena. They are comple-
mentary to the first order homogenization schemes considered in the papers A,
B and C. For simplicity, conventional micromorphic continua have been consid-
ered on a phenomenological basis in contrast to higher order homogenization
schemes.

• Paper D dealt with linear micromorphic continua, where a primal and an
adjoint consistency analysis have been performed to theoretically ensure
an optimal convergence order. By introducing the notion of generalized
solution, the abstract settng preserves a classical format, which was shown
to be very convenient for deriving a goal-oriented error estimate. This error
estimate, along with certain localization techniques, has been successfully
used to drive an adaptive mesh refinement algorithm, where a novel patch
recovery technique was used to efficiently approximate the exact solutions.

• Paper E extended the topic of Paper D to micromorphic elastoplasticity.
A double multifield formulation of such problem has been proposed,
where weak forms in a time integration sense were established for both the
equilibrium and the evolution equations. This formulation has been shown
to be beneficial for deriving a goal-oriented error estimate. One difficulty
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arises due to the time-dependent feature of the primal problem, such that
discretization errors accumulate over time. For a complete consideration
of error accumulation, one has to deal with both error generation and error
transport. To this end, a backwards-in-time dual problem has been derived
from a Lagrange method. We have additionally shown that a simplified
forwards-in-time dual problem can be easily obtained by neglecting error
transport. Compared to the backwards-in-time version, this forwards-in-
time version significantly reduces the memory requirement for a numerical
implementation. Based on both dual problems, four error estimators have
been proposed and studied with respect to the effectiveness for driving an
adaptive mesh refinement algorithm, where the patch recovery technique
developed in the papers A and D was additionally considered. As a merit,
the patch recovery eliminates the need for any nonlinear calculations and
is thus quite efficient.

While the papers A, B, D and E aim at different targets in the mechanics of
heterogeneous materials, the main novelty is the development of adaptive methods
within the common framework of goal-oriented adaptivity. The novelties of Paper C
are the extension of the NTFA to consider softening effects and the two related new
methods. The proposed adaptive NTFA, in its current form, relies on an empirical
basis.
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5 Outlook

Although this thesis covers a wide spectrum of adaptive methods in the mechanics
of heterogeneous materials, much more effort remains to be paid for future research
as follows.

Concerning model adaptivity for homogenization of heterogeneous materials, Paper
A adopts a singular approximation for evaluating higher order bounds of effective
properties. For a higher level of accuracy, one should resort to certain numerical
methods [105, 70]. While model adaptivity has been addressed for linear homogeniza-
tion problems in the papers A and B, model adaptivity for nonlinear homogenization
problems like plasticity problems appears to be a widely open area. Paper C was
apparently such an attempt on an early stage. The proposed empirical indicator
enables an on-the-fly model switch, however, does not give information about the
model error. In future, the concept of goal-oriented adaptivity should be extended
to such problems in order to make the multiscale simulation efficient and reliable.
Indeed, reduced order homogenization schemes like the NTFA are very attractive
in view of a numerical efficiency, however, their prediction quality strongly relies
on the quality of the a priori chosen reduced basis functions. For a reliable simula-
tion, the model error resulted from such schemes should be controlled. Apparently,
this is a quite challenging task due to the nonlinearities and the time-dependent
characteristics involved.

Moreover, although the adaptive methods in the papers A and B are designed for
mechanical problems, they are transferable to other kinds of physical problems like
heat transfer etc.

In the context of micromorphic continua, the application of goal-oriented adaptivity
in the papers D and E for the direct problem showed first successes. Since Paper E
was merely concerned with the spatial discretization error of micromorphic plasticity
problems, the temporal discretization error resulted from a certain time-stepping
scheme should be addressed in future for a full error analysis. Additionally, Paper E
initialized a way towards a forwards-in-time dual problem, which is quite attractive
for a numerical implementation. Since the way towards a forwards-in-time dual
problem is not unique, more effective methods should be developed considering
error transport to a certain extent. Furthermore, our recent work [69] shows that
the parameter identification of such problems, often viewed as an inverse problem,
is another challenging task for both numerical and experimental aspects. Recent
international studies [64, 13] tend to seek for a link between micromorphic continua
and homogenization methods, such that a clear physical interpretation can be
attached to the morphic variables. This might facilitate the parameter identification
of micromorphic models in future.

Furthermore, the small strain theories assumed throughout this thesis do not hinder
the illustration of the underlying general concepts. An extension to finite strains
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would be straightforward. From a computational point of view, the numerical results
presented in the papers A–E were generated by specific codes developed in MATLAB
[97] by the author. Two-dimensional problems were handled to investigate and
illustrate the effectiveness of the developed methodologies for academic purposes. For
a real-world structural analysis, these codes need to be extended to three-dimensional
cases. It also makes sense to couple them to a commercial FE software like Abaqus
via appropriate interfaces.
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[5] I. Babuška and T. Strouboulis. “Can we trust the computational analysis of
engineering problems?” In: Mathematical Modeling and Numerical Simulation
in Continuum Mechanics. Springer, Berlin, Heidelberg, 2002, pp. 169–183.

[6] I. Babuska, J. Whiteman, and T. Strouboulis. Finite Elements: An Intro-
duction to the Methods and Error Estimation. Oxford University Press, New
York, 2011. isbn: 978-0-19-850670-6.
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[124] M. Rüter. “Error-controlled Adaptive Finite Element Methods in Large Strain
Hyperelasticity and Fracture Mechanics”. PhD thesis. Hannover: University
of Hannover, May 2003. isbn: 3-935732-08-2.

237

https://doi.org/10.1016/S0045-7825(97)00086-8
https://doi.org/10.1016/S0045-7825(97)00086-8
https://doi.org/10.1016/S0020-7683(01)00087-7
https://doi.org/10.1016/S0020-7683(01)00087-7
https://doi.org/10.1016/S0045-7825(98)00343-0
https://doi.org/10.1016/S0045-7825(98)00343-0


[125] E. Sanchez-Palencia. “General introduction to asymptotic methods”. In: Ho-
mogenization techniques for composite media. Springer, Berlin, 1987, pp. 121–
136.

[126] M. Schmich and B. Vexler. “Adaptivity with dynamic meshes for space-time
finite element discretizations of parabolic equations”. SIAM J. Sci. Comput.
30.1 (2008), pp. 369–393.

[127] J. C. Simo and T. J. R. Hughes. Computational inelasticity. Vol. 7. Springer
Science & Business Media, New York, 2006.

[128] E. Stein, ed. Error-controlled Adaptive Finite Elements in Solid Mechanics.
Chichester: Wiley, Chichester, 2003. isbn: 0-471-49650-2.
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