
Adapt Cases 4 BPM

Adaptivity Engineering für

flexible und anpassbare Prozesse

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

an der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

vorgelegt von

Alexander Teetz

Paderborn, Februar 2019

Zusammenfassung

Diese Dissertation ist im Kontext des NRW Fortschrittskollegs „Gestaltung von flexi-
blen Arbeitswelten“ entstanden, das sich mit der digitalen Transformation von Fer-
tigungssystemen auseinandersetzt. Derartige Systeme und deren Prozesse müssen
zukünftig durch eine erweiterte Flexibilität gestaltet werden, da immer mehr Eigen-
schaften von unterschiedlichen, miteinander vernetzten Ressourcen berücksichtigt
werden sollen.

Aus der Sicht der Domäne des Business Process Management (BPM) orchestrieren
Prozesse wesentliche Teile dieser Systeme, die neben Verhalten der Anwendungslo-
gik insbesondere auch Verhalten der Anpassungslogik enthalten können. Erst durch
die Anpassungslogik wird ein hoher Grad an angestrebter Flexibilität in Prozessen
ermöglicht. In bisherigen Methoden des BPM ist die getrennte Gestaltung beider
Typen von Verhalten nicht vorgesehen, wodurch eine erhöhte Komplexität in der
Handhabung und Wartung der Prozesse entsteht.

Diese Arbeit stellt einen neuartigen Ansatz für die Domäne BPM vor, der auf Metho-
den und Techniken des Adaptivity Engineering basiert, welches zur getrennten Gestal-
tung der beiden Typen von Verhalten eingesetzt werden kann. Hierzu wurden die
Sprache ACML4BPM, zugehörige Entwurfsmuster sowie eine Methode zur Gestal-
tung erarbeitet.

Die Sprache ACML4BPM stellt in der Domäne BPM eine neuartige Sprache zur Ge-
staltung von flexiblen und anpassbaren Prozessen dar. Sie unterstützt die getrennte
Gestaltung von Aspekten der Anwendungs- und Anpassungslogik. Ferner wurden
in ihr domänenspezifische Konzepte integriert, wie z.B. Operationen zur Anpassung
oder einen Ansatz zur Reaktion auf Ereignisse. Die Sprache nutzt Konzepte des De-
facto-Standards BPMN2.0 und unterstützt hierdurch die Gestaltung durch Nutzer
und Domänenexperten.

Damit die Gestaltung von Flexibilität weiter unterstützt werden kann, wurde sich
mit Typen von Flexibilität auseinandergesetzt, für die insgesamt vier grundlegende
Entwurfsmuster beschrieben worden sind. Hierdurch wurden diverse Erweiterun-
gen der Sprache ACML4BPM beschrieben und ihre Verwendung gezeigt.

Abschließend wurde eine methodische Integration von zuvor aufgeführten Lö-
sungsteilen in einen BPM-Lebenszyklus beschrieben.

Abstract

This PhD thesis was written in the context of the NRW Fortschrittskolleg „Gestaltung
von flexiblen Arbeitswelten“, that deals with the digital transformation of manufactu-
ring systems. Such systems and their processes will have to be shaped by enhanced
flexibility in the future, as more and more characteristics of different interconnected
resources have to be taken into account.

From the point of view of the domain of Business Process Management (BPM), proces-
ses orchestrate significant parts of these systems, which, in addition to the behaviour
of the application logic, can include the behaviour of the adaptation logic. Only by
the adaptation logic a high degree of desired flexibility in processes can be achieved.
Previous methods of the BPM do not provide the separate design of both types of
behaviour, resulting in an increased complexity in the handling and maintenance of
the processes.

This work presents a novel approach to the BPM domain, based on methods and
techniques of Adaptivity Engineering, which can be used to separate the design of
these two types of behaviour. For this purpose, the language ACML4BPM, associa-
ted design patterns and a method for designing processes were developed.

The language ACML4BPM is a novel language in the BPM domain for the design of
flexible and adaptable processes. It supports the separate design of aspects of appli-
cation and adaptation logic. Furthermore, domain-specific concepts have been inte-
grated into it, such as operations for adaptations or an approach to respond to events.
The language uses concepts of the de-facto standard BPMN2.0 and thus supports the
design by users and domain experts.

In order to support the design of flexibility, different types of flexibility have been
discussed for which a total of four basic design patterns have been described. They
contain various extensions of the language ACML4BPM and show their use.

Finally, a methodical integration of the previously listed solution parts into a BPM
lifecycle is described.

Danksagung

An dieser Stelle möchte ich mich bei den Menschen bedanken, die mich in den letz-
ten Jahren bei der Bearbeitung dieser Arbeit auf unterschiedlichen Ebenen unter-
stützt haben.

An erster Stelle steht dabei mein Doktorvater Herr Prof. Dr. Gregor Engels. Er hat
mir über mehrere Jahre ermöglicht, eine breit aufgestellte Forschung zu betreiben
und stellte dabei stets hohe Erwartungen, die maßgeblich die Qualität dieser Arbeit
bestimmt haben. An zweiter Stelle möchte ich mich bei der Prüfungskommission
in Form der Personen Prof. Dr. Britta Wrede, Prof. Dr. Eric Bodden, Jun.-Prof. Dr.
Anthony Anjorin und Dr. Thim Strothmann für die aufgewendete Zeit sowie den
inhaltlichen Austausch bedanken.

Während meiner Forschung war ich in unterschiedlichen Projekten eingesetzt. Dabei
bin ich neben dem fachlichen Austausch auch für die besondere Gelegenheit, über
den eigenen Tellerrand schauen und lernen zu können, dankbar. Aus dem Kontext
des NRW Fortschrittskollegs ist in diesem Bezug insbesondere Sonja Ötting zu nen-
nen, mit der ich die Bearbeitung verschiedener interdisziplinären Themen durch-
führen durfte. Darüber hinaus werde ich die gute und spannende gemeinsame Zeit
mit Thomas John und Christoph Weskamp in dem Projekt SMART EM nie vergessen.

Neben Personen aus den unterschiedlichen Projektkontexten sind insbesondere mei-
ne beiden Büronachbarn Dennis Wolters und Stephan Heindorf hervorzuheben, de-
nen ich für viele hilfreichen Gespräche und neue Ideen zwischendurch dankbar bin.
Zudem bedanke ich mich aber auch bei Thim Strothmann und Florian Rittmeier für
die effiziente Zusammenarbeit und ihr Feedback in Bezug zu Veröffentlichungen
bzw. wesentlichen Teilen dieser Arbeit. Als letzte fachbezogene Person möchte ich
Mirko Rose hervorheben, mit dem ich stets den Umgang auf Augenhöhe hinsichtlich
verschiedener Themen rund um die Organisation der Dissertation pflegen konnte.

Meine tiefste Dankbarkeit bezieht sich jedoch auf meine Lebenspartnerin Elisabeth
Herick. Ihre Unterstützung und ihr Glaube an mich hat mich erst dazu befähigt,
diese Arbeit zu beginnen und am Ende auch abzuschließen.

– Danke!

Inhaltsverzeichnis Seite

1 Einleitung 1
1.1 Motivation . 1
1.2 Problemstellung . 5
1.3 Anforderungen . 9
1.4 Aufbau der Arbeit . 11

I Grundlagen und verwandte Arbeiten 13

2 Grundlagen 15
2.1 Modellgetriebene Softwareentwicklung 15

2.1.1 Metamodellierung . 16
2.1.2 Meta-Object-Facility (MOF) . 16
2.1.3 Model-Driven Architecture (MDA) 18
2.1.4 Domain-Specific Language Engineering 20

2.2 Business Process Management . 27
2.2.1 Einführung in das Business Process Management 27
2.2.2 Der BPM-Lebenszyklus . 32
2.2.3 Flexibilität in Prozessen . 35

2.3 Business Process Modeling . 40
2.3.1 Einführung in das Business Process Modeling 40
2.3.2 Perspektiven in Geschäftsprozessmodellen 41
2.3.3 UML Aktivitätsdiagramm . 44
2.3.4 BPMN2.0 . 46

2.4 Adapt Cases . 50
2.4.1 Überblick . 51
2.4.2 Konkrete Syntax der Sprache ACML am Beispiel 53
2.4.3 Abstrakte Syntax der Sprache ACML 55
2.4.4 Integration in einen Entwicklungsprozess 57

3 Verwandte Arbeiten 59
3.1 Flexible und anpassbare Prozesse . 59
3.2 Flexible und anpassbare Prozesse im IIoT 60
3.3 Selbst-adaptive Prozesse . 62

II Lösungskonzept 65

4 Eine Sprache zur Gestaltung von anpassbaren Prozessen 67
4.1 Übersicht . 67
4.2 Adapt Case Model 4 BPM . 70

4.2.1 Adapt Case 4 BPM . 70
4.2.2 Beobachtungsprozess . 74
4.2.3 Anpassungsprozess . 77

4.3 Adaptation View Model 4 BPM . 79
4.3.1 System- und Umgebungskomponenten 79
4.3.2 Sensor- und Effektorschnittstellen 84
4.3.3 Operationen . 88
4.3.4 Ereignisse . 95

4.4 Zusammenfassung . 103

5 Entwurfsmuster für flexible und anpassbare Prozesse 107
5.1 Übersicht . 107
5.2 Flexibility-by Design . 109

5.2.1 Gestaltungsaspekte von Flexibility-by Design 110
5.2.2 Gestaltung von Choice . 118
5.2.3 Gestaltung von Iteration . 122
5.2.4 Gestaltung von Cancellation . 124
5.2.5 Zusammenfassung . 127

5.3 Flexibility-by Change . 129
5.3.1 Gestaltungsaspekte von Flexibility-by Change 130
5.3.2 Migrationsstrategien . 133
5.3.3 Spracherweiterung für Flexibility-by Change 139
5.3.4 Operationen . 142
5.3.5 Zusammenfassung . 148

5.4 Flexibility-by Deviation . 148
5.4.1 Gestaltungsaspekte von Flexibility-by Deviation 149
5.4.2 Operationen . 151
5.4.3 Zusammenfassung . 165

5.5 Flexibility-by Underspecification . 165
5.5.1 Gestaltungsaspekte von Flexibility-by Underspecification 167
5.5.2 Spracherweiterung für Flexibility-by Underspecification 173
5.5.3 Operationen . 180
5.5.4 Zusammenfassung . 193

5.6 Zusammenfassung . 193

6 Adaptivity Engineering für flexible und anpassbare Prozesse 197
6.1 Übersicht über einen erweiterten BPM-Lebenszyklus 198
6.2 Adapt Cases 4 BPM . 200

6.2.1 Anforderungsanalyse . 201
6.2.2 High-Level-Gestaltung . 203
6.2.3 Low-Level-Gestaltung . 204
6.2.4 Ergänzung . 206

6.3 Zusammenfassung . 207

III Evaluation, Zusammenfassung und Ausblick 209

7 Evaluation 211
7.1 Szenario für flexible und anpassbare Prozesse 212

7.1.1 Die Arbeitsumgebung Human-Robot-Team 217
7.1.2 Fall 1: Workspace Temperature Management 220
7.1.3 Fall 2: Human Performer Workload Management 222
7.1.4 Fall 3: Separation of Business and Adaptivity Logic 224
7.1.5 Zusammenfassung . 227

7.2 Kriterien . 228
7.2.1 Kriterien der Anpassbarkeit . 229
7.2.2 Kriterien für die Anforderungen an Adapt Cases 4 BPM 232

7.3 Bewertungseinheit . 233
7.4 Bewertung . 235

7.4.1 Bewertung von Kriterien der Anpassbarkeit 235
7.4.2 Bewertung von Kriterien an Adapt Cases 4 BPM 250

7.5 Gültigkeit . 260

8 Zusammenfassung und Ausblick 263
8.1 Zusammenfassung . 263
8.2 Ausblick . 267

Tabellenverzeichnis 271

Abbildungsverzeichnis 278

Literaturverzeichnis 292

Anhang 293

A Operationen des AVM4BPM 293
A.1 Operationen zur Anpassung von Knotenelementen 297

A.1.1 AddNode . 297
A.1.2 RemoveNode . 299
A.1.3 ModifyPropertyOfNode . 301
A.1.4 ModifyPositionOfNode . 302

A.2 Operationen zur Anpassung von Kantenelementen 305
A.2.1 AddEdge . 305
A.2.2 RemoveEdge . 307
A.2.3 ModifyPropertyOfEdge . 308
A.2.4 ModifyPositionOfEdge . 309

A.3 Operationen zur Anpassung von Containerelementen 313
A.3.1 AddContainer . 314
A.3.2 RemoveContainer . 315
A.3.3 ModifyPropertyOfContainer . 317
A.3.4 ModifyPositionOfContainer . 318
A.3.5 ModifyPositionOfNodesInContainer 319

Einleitung

Kapitel1
In diesem Kapitel wird zunächst in Abschnitt 1.1 der Kontext der Ar-
beit beschrieben. Anschließend wird in Abschnitt 1.2 auf die in dieser Ar-
beit angenommene Problemstellung sowie auf die zugehörigen abgeleite-
ten Forschungsfragen eingegangen. In Abschnitt 1.3 werden Anforderun-
gen für mögliche Lösungsansätze beschrieben. Das Kapitel schließt in Ab-
schnitt 1.4 mit einer Übersicht über den strukturellen Aufbau der vorlie-
genden Arbeit.

1.1 Motivation

Diese Dissertation ist im Kontext des NRW Fortschrittskollegs „Gestaltung
von flexiblen Arbeitswelten“ entstanden. Dieses Fortschrittskolleg basiert auf
der Idee, die wissenschaftliche Weiterqualifizierung in Form einer Promo-
tion durch ein inter- und transdisziplinäres Umfeld zu unterstützen. Als
inhaltlicher Schwerpunkt wurden unterschiedliche Aspekte aus einer di-
gitalisierten Arbeitswelt gesetzt. Für diese Arbeit war dieser Aspekt durch
neuartige Gestaltungstechniken für flexible Prozesse gegeben. Ein Typ ei-
ner digitalisierten Arbeitswelt mit flexiblen Prozessen ist durch den Be-
griff der Industrie 4.0 geprägt worden und wird nun nachfolgend als wei-
tere Motivation verwendet.

Als eine Schlüsselrolle im Kontext von Industrie 4.0 wird ein Paradigmen-
wechsel in der Gestaltung von neuartigen Produktionsumgebungen gese-
hen. Derartige Produktionsumgebungen – auch Smart Factories genannt –
erlauben erstmals, das Konzept der Mass Customization unter ökonomisch
tragfähigen Bedingungen anzuwenden. Mass Customization beschreibt da-
bei die Möglichkeit zur Produktion von individualisierbaren Produkten
(Losgröße 1) [Spa+13]. Für die Fertigung dieser Produkte ist eine erhöh-
te Flexibilität der beteiligten Produktionssysteme notwendig, sodass stets

Seite 2 Kapitel 1

schnell und bedarfsgerecht auf geänderte Anforderungen reagiert werden
kann.

Dabei stehen Prozessunterstützungssysteme im Vordergrund, durch die
die relevanten Fertigungsprozesse IT-gestützt ausgeführt werden. Als
Voraussetzungen für die Funktion dieser Systeme sind die vertikale als
auch horizontale Vernetzung aller in der Wertschöpfungskette beteiligten
Prozesse, Entitäten und Datenobjekte notwendig. Durch den Austausch
von relevanten Informationen in Echtzeit können Anpassungen von Pro-
duktionsumgebungen durchgeführt werden, sodass Fertigungsprozesse
zu optimalen Konditionen ablaufen können.

Bei derartigen Produktionsumgebungen handelt es sich aber nicht um aus-
schließlich technische Systeme, sondern um sozio-technische Systeme. Der
Mensch stellt somit einen nicht zu vernachlässigenden Faktor dar [Wie13].
Somit sind bei der Gestaltung solcher Systeme neben technischen Aspek-
ten der Produktionsumgebung auch intra- und interorganisationale ar-
beitswissenschaftliche Umstände zu berücksichtigen [Lud+16]. Beispiele
hierfür sind digitale Beschreibungen von spezifischen Aspekten der Ar-
beitnehmerinnen und Arbeitnehmer oder für sie relevante Aspekte der
Produktionsumgebung. Eine Berücksichtigung dieser Aspekte in ihrer Ge-
staltung kann bei der Produktion von individualisierbaren Produkten da-
zu beitragen, Fertigungsprozesse hinsichtlich ihrer Flexibilität und Effi-
zienz zu verbessern. Darüber hinaus bildet die Berücksichtigung dieser
Aspekte zum Zeitpunkt der Gestaltung die Basis für Anpassungen an der
Produktionsumgebung und an ihren Fertigungsprozessen zum Zeitpunkt
der Ausführung.

Für den Betrieb neuartiger Produktionsumgebungen ist somit nicht mehr
nur ein einzelner standardisierter Prozess, sondern vielmehr ein Netzwerk
aus flexiblen Prozessen notwendig. Insbesondere im Rahmen möglicher
Anpassungen der Produktionsumgebungen und ihrer Fertigungsprozes-
se müssen eine Vielzahl an unterschiedlichen zu behandelnden Aspek-
ten aus verschiedenen sowohl technischen als auch soziologischen Berei-
chen berücksichtigt werden. Setzt man als Beispiel ablaufende Prozesse
mit menschlicher Beteiligung in den Fokus der Betrachtung, so ergeben
sich für die Gestaltung der benötigten Prozessunterstützungssysteme ver-
schiedene allgemeine Fragestellungen, auf die nachfolgend eingegangen
wird.

Frage 1: Was sind flexible
Arbeitsprozesse?

Industrie 4.0-Anwendungen sind durch eine Vielzahl variierender Fakto-
ren geprägt. So sind die geschäftlichen Abläufe in einer derartigen Anwen-
dung sowohl von intra- als auch interorganisationalen Gegebenheiten ab-

Einleitung Seite 3

hängig. Ein in diesem Bezug viel genanntes Beispiel ist die erhöhte Pro-
duktvariabilität, welche auch besser bekannt ist unter dem Stichwort Los-
größe 1 [Spa+13; Rus13; Las+14; Kau15]. Eine gesteigerte Produktvariabili-
tät hat maßgeblich Einfluss auf die zur Produktion verwendeten Prozesse.
So sind je nach Produktvariante bestimmte Teilprozesse an der Produktion
beteiligt oder eben nicht. Der Gesamtprozess zur Fertigung eines solchen
Produktes muss daher flexibel hinsichtlich der durch den Kunden bestell-
ten Konfiguration eines Produktes sein.

Sind an der Fertigung der Produkte auch Mitarbeiterinnen und Mitarbeiter
beteiligt, z.B. in Form von Montageaufgaben, so spricht man in diesem Teil
des Fertigungsablaufs auch von Arbeitsprozessen. Somit zeichnen sich Ar-
beitsprozesse hinsichtlich ihrer Ausführungsform besonders dadurch aus,
dass der Mensch und nicht etwa eine Maschine oder ein IT-Service aus-
schließlich als leistungserbringender Teilnehmer beteiligt ist. Insbesondere
unter der Annahme des Vorhandenseins von nicht automatisierbaren Auf-
gaben bleiben Arbeitsprozesse für die Leistungserbringung in Unterneh-
men ein wesentlicher Faktor. Gleichwohl es in Arbeitsprozessen Mischfor-
men der Leistungserbringung geben kann, wie z.B. in Form einer Mensch-
Maschine-Kollaboration, ist der Mensch hier stets beteiligt.

Berücksichtigt man die steigende Produktvariabilität in Industrie 4.0-
Anwendungen, so hat diese auch Einfluss auf die beteiligten Arbeitspro-
zesse. Wie bereits zuvor für Fertigungsprozesse beschrieben, ist auch für
Arbeitsprozesse eine erhöhte Flexibilität notwendig, da Aufgaben für un-
terschiedliche Produktvarianten wechseln können. Mitarbeiterinnen und
Mitarbeiter sehen sich daher zukünftig mit flexiblen Arbeitsprozessen
konfrontiert, in denen ihre Aufgaben häufiger als zuvor wechseln kön-
nen, da je nach Konfiguration des zu fertigenden Produktes einzelne Mon-
tageschritte geändert oder hinzugefügt werden oder gar ganz wegfallen
können.

Frage 2: Was sind
menschenzentrierte
Arbeitsprozesse?

Hinsichtlich einer ethischen Perspektive auf Arbeitsprozesse, in der z.B.
die Humanisierung der Arbeitswelt oder der demographische Wandel im
Vordergrund stehen [Deu+15; KJP15; WRN14], kann die Betrachtung von
individuellen Eigenschaften der Arbeitnehmenden für die Gestaltung von
Arbeitsprozessen relevant sein. So ist es denkbar, dass gewisse Aufgaben
z.B. aufgrund ihrer körperlichen Anforderungen nicht für jede Mitarbeite-
rin oder jeden Mitarbeiter zu bewerkstelligen sind. Werden individuelle Ei-
genschaften von Arbeitnehmern in der Gestaltung der Arbeitsprozesse be-
rücksichtigt, kann von menschenzentrierten Arbeitsprozessen gesprochen
werden.

Seite 4 Kapitel 1

Frage 3: Was sind
menschenzentrierte,

anpassbare
Arbeitsprozesse?

In Industrie 4.0-Anwendungen sind die beteiligten Prozesse, Entitäten und
Datenobjekte sowohl vertikal als auch horizontal in Wertschöpfungsnetz-
werken miteinander vernetzt. Hierdurch wird das Ziel der schnellen und
bedarfsgerechten Anpassung (analog: Adaption) an sich ändernde Anfor-
derungen verfolgt. Im Rahmen dieser Arbeit wird nachfolgend angenom-
men, dass sich die ändernden Anforderungen stets durch diskrete Ereig-
nisse einstellen, die sowohl planbar als auch unvorhersehbar sein können.
Ein diskretes Ereignis stellt dabei einen festen Zeitpunkt dar, zu dem eine
Änderung der genannten Anforderungen eintritt. Für den Fall des Auf-
tretens eines Ereignisses können Regelsätze beschrieben werden, die eine
Analyse von aktuellen Umständen und eine Auswahl von zulässigen An-
passungen innerhalb einer Industrie 4.0-Anwendung vornehmen. Das Ziel
einer solchen Anpassung von beteiligten Prozessen, Entitäten und Daten-
objekten ist die Einhaltung von Anforderungen, die an den Betrieb der In-
dustrie 4.0-Anwendung gesetzt worden sind. Wendet man derartige Re-
gelsätze zur Ausführungszeit auf die beteiligten Prozesse an, handelt es
sich um anpassbare Prozesse oder in dem hier angeführten Beispiel insbe-
sondere um menschenzentrierte, anpassbare Arbeitsprozesse.

Frage 4: Was sind mögliche
Treiber für flexible und

menschenzentrierte,
anpassbare

Arbeitsprozesse?

Als letztes stellt sich die Frage, was die treibenden Kräfte für die Ge-
staltung von menschenzentrierten, anpassbaren Arbeitsprozessen in In-
dustrie 4.0-Anwendungen sind. Sie können je nach Organisation vielfäl-
tig sein und sind maßgeblich durch deren rechtliche als auch betriebliche
Richtlinien motiviert. So ist es vorstellbar, dass zukünftig die Anpassung
von Arbeitsprozessen auf Basis veränderter Umstände der Mitarbeiterin-
nen und Mitarbeiter zur Ausführungszeit arbeitsschutzrechtlich gefordert
wird. Die Einführung von flexiblen und anpassbaren Prozessen könnte da-
mit z.B. zur Steigerung der Arbeitssicherheit beitragen.

Aber auch aus der Perspektive des demographischen Wandels können fle-
xible und anpassbare Prozesse einen Mehrwert bieten, indem sie zu ei-
ner Beschäftigung bis in ein hohes Lebensalter beitragen, da zum einen in-
dividuelle Eigenschaften der Mitarbeitenden berücksichtigt werden kön-
nen und zum anderen wertvolles Wissen länger im Unternehmen beste-
hen bleibt [Jes+14].

Neben rechtlichen oder ethischen Treibern sind aber auch wettbewerbli-
che Treiber identifizierbar. So kann die Fähigkeit zur Anpassung von Ar-
beitsprozessen sowie ihrer Umgebung dazu beitragen, die Mitarbeitermo-
tivation und die empfundene Lebensqualität am Arbeitsplatz zu steigern.
Mitarbeiterinnen und Mitarbeiter könnten somit in Zukunft motiviert sein,
sich für Arbeitgeber zu entscheiden, die ihnen einen besonderen Grad an

Einleitung Seite 5

Menschenzentrierung durch Flexibilität und Anpassbarkeit hinsichtlich ih-
rer Arbeitsprozesse und Umgebungen anbieten können.

Die im Rahmen der zuvor vorgestellten Fragestellungen genannten Typen
von Prozessen stellen eine mögliche Motivation für die Gestaltung von fle-
xiblen und anpassbaren Prozessen dar. Dabei existieren zahlreiche weitere
industrielle Anwendungen, in denen die beteiligten Prozesse nicht an den
Menschen, sondern an spezifische Eigenschaften weiterer Entitäten wie
z.B. Maschinen, IT-Services oder den Prozessen selbst zentriert sind. Die
sich hieraus ergebene Problemstellung wird im nachfolgenden Abschnitt
beschrieben.

1.2 Problemstellung

Für flexible und anpassbare Prozesse sind Methoden und Techniken not-
wendig, mit denen sie sich in einem methodischen Rahmen adäquat gestal-
ten lassen. Dabei können derartige Prozesse aus der Perspektive des Soft-
ware Engineerings auch als eine spezielle Art eines selbst-adaptiven Sys-
tems verstanden werden, da hier ausgehend von Ereignissen innerhalb des
Systems (hier: Prozess) oder seinem Kontext (hier: beteiligte Entitäten und
Ressourcen) Analysen und Anpassungen ausgeführt werden. Dabei steht
stets der zuverlässige und eigenständige Betrieb der Prozesse im Vorder-
grund. Eine zugehörige Übersicht über Prozesse als selbst-adaptives Sys-
tem ist in Abbildung 1-1 gegeben.

 Anwendungslogik

 Anpassungslogik

Maschine ProduktMensch

Flexibler und anpassbarer
(Arbeits-)Prozess

fü
h

le
n

e
in

w
irke

n

auswählen

Industrie 4.0-Anwendung

Anpassung
P

M

Proc
X

P durch andere Maschine
bearbeiten lassen

Anfordern von
neuem Werkzeug

Änderung der
Aufgabenzuordnung

M

Analyse

Anpassung
individueller Ruhe-
und Pausenzeiten

Ich bin
defekt!

Das Werkzeug ist für Rechtshänder
– ich bin aber Linkshänder!

Mir geht es nicht gut, da
meine Arbeitsbelastung
zu hoch ist!

Analyse

Abbildung 1-1:
Schematische Sicht
auf eine Industrie 4.0-
Anwendung

Im rechten Bereich ist das generelle Funktionsprinzip der Industrie 4.0-
Anwendung dargestellt, welches das Paradigma einer Kontrollschleife

Seite 6 Kapitel 1

umsetzt [Bru+09]. Dabei kann eine Reihe von unterschiedlichen Entitäten
an dem Prozess beteiligt sein. Beispiele für derartige Entitäten sind hier
durch Maschinen, Menschen und Produkte gegeben. Ausgehend von dis-
kreten Ereignissen können Analysen angestoßen werden, die je nach Er-
fordernis eine Anpassung an den Prozessen sowie an beteiligten Entitäten
auswählt und nachfolgend ausführt.

Im linken Bereich der Abbildung ist ein Beispiel für das zuvor beschrie-
bene Funktionsprinzip gegeben. Der flexible und anpassbare Prozess wird
hier als Proc dargestellt. Er erzeugt die Entität P, welche das zu fertigen-
de Produkt repräsentiert. Entlang des Prozesses Proc wird die Maschine X
sowie ein menschlicher Akteur M eingebunden. Sowohl X als auch M sind
in der Lage, bestimmte Ereignisse zu erzeugen, auf die durch eine vordefi-
nierte Maßnahme reagiert werden soll.

So ist hier dargestellt, dass die Maschine X melden könnte, dass sie einen
Defekt aufweist. In diesem Fall wird eine Anpassung an den Prozess
durchgeführt, die im weiteren Verlauf das Produkt P durch eine andere
Maschine bearbeiten lässt. Wie in der Motivation bereits eingeführt wur-
de, kann aber auch auf Ereignisse ausgehend von menschlichen Akteuren
reagiert werden, um einen bestimmten Grad an Menschenzentrierung zu
erreichen. So wird in dem hier gezeigten Beispiel die Möglichkeit zur Be-
rücksichtigung der Arbeitsbelastung bedacht. Tritt eine durch einen Men-
schen M angezeigte Überbelastung ein, sollen Maßnahmen zur Anpas-
sung seiner individuellen Ruhe- und Pausenzeiten durchgeführt werden.
Ergänzend kann der Mensch M aber auch melden, dass er für die Ver-
wendung eines bestimmten Werkzeugs ungeeignet ist, da eine persönliche
Eigenschaft die Verwendung des Werkzeugs erschwert oder unmöglich
macht. Für diesen Fall sind zwei mögliche Maßnahmen angedacht, durch
die entweder ein alternatives Werkzeug angefordert wird oder ein Wechsel
der zugeordneten Aufgabe erfolgt.

Für die Gestaltung derartiger selbst-adaptiver Systeme stellt das Adaptivity
Engineering (AE) nach [Luc+11; LE13; Luc13] bereits einen etablierten Rah-
men dar. Luckey stellt in seiner Arbeit neben dem Gesamtansatz Adapt Ca-
ses einen modellbasierten Entwurfsprozess sowie die zugehörige Sprache
Adapt Case Modeling Language (ACML) zur Gestaltung von selbst-adaptiven
Systemen vor.

Das wesentliche Grundprinzip des Adaptivity Engineering ist dabei die
Trennung der Anwendungs- von der Anpassungslogik. Man spricht in
diesem Zusammenhang im Software Engineering auch von Separation-of-
Concerns (SoC) – also die Dekomposition von unterschiedlich zu spezi-

Einleitung Seite 7

fizierenden Aspekten eines Softwaresystems. Hierdurch ist es möglich,
verschiedene Aspekte des Softwaresystems unter einer spezifischen Sicht
und unabhängig voneinander betrachten zu können [Dij76; Par02]. In
Abbildung 1-1 ist eine exemplarische Trennung der beiden Logiken be-
reits dargestellt worden. So umfasst die Anpassungslogik notwendiges
Verhalten für die Analyse als auch für auszuwählende Maßnahmen in
Form einer Anpassung an Entitäten der Anwendungslogik. Der Ansatz
Adapt Cases setzt dieses Grundprinzip durch die getrennte Gestaltung von
Anpassungs- und Anwendungslogik um. Luckey argumentiert in seiner
Arbeit, dass durch das Adaptivity Engineering die getrennte Modellierung
von unterschiedlichen Aspekten, wie der Anpassungs- und Anwendungs-
logik, die Qualität der jeweils erarbeiteten Modelle erhöht werden kann.

Die Sprache ACML stellt laut Luckey [Luc13] in diesem Bezug eine so-
genannte General Purpose Language (GPL) für die Gestaltung von selbst-
adaptiven Systemen dar. GPLs zeichnen sich dabei durch eine Vielzahl
an unterschiedlichen Sprachelementen aus, die eine breite Verwendung in
der Gestaltung von Systemen aus unterschiedlichen Anwendungsdomä-
nen ermöglichen. Ein alternatives Beispiel für eine GPL stellt die Unified
Modeling Language (UML) [OMG10] dar, die für den Bereich der objektori-
entierten Gestaltung von Softwaresystemen eingesetzt werden kann.

Aufgrund der Vielzahl an unterschiedlichen Sprachelementen können
GPLs als sehr anspruchsvoll in ihrer Verwendung betrachtet werden
[Voe+13]. Im Kontrast zu GPLs existieren daher auch sogenannte Domain-
Specific Languages (DSLs). DSLs fokussieren dabei die Verwendung in ei-
ner ausgewählten Anwendungsdomäne. Die Sprachelemente in DSLs sind
somit spezifischer auf einen in der Anwendungsdomäne gesetzten Fokus
ausgerichtet.

Die Gestaltung von Flexibilität und Anpassbarkeit in Prozessen mit einge-
schlossener Trennung der Anpassungs- und Anwendungslogik kann einen
solchen Fokus darstellen. Dabei existiert jedoch bisher keine Sprache, die
domänenspezifische Konzepte von flexiblen und anpassbaren Prozessen
mit Konzepten des Adaptivity Engineering so in Verbindung setzt, dass die-
ser Fokus eingenommen werden kann. Daher stellt sich in diesem Bezug
die nachfolgende Forschungsfrage:

Forschungsfrage 1Wie lassen sich auf Basis von Konzepten des Adaptivity Engineering
flexible und anpassbare Prozesse domänenspezifisch gestalten?

Neben der reinen domänenspezifischen Gestaltung von Flexibilität und
Anpassbarkeit kann der methodische Rahmen zur adäquaten Gestaltung

Seite 8 Kapitel 1

weiter unterstützt werden. So ist es gängige Praxis, dass im Software En-
gineering sogenannte Entwurfsmuster (engl. Design Patterns) eingesetzt
werden. Entwurfsmuster stellen dabei eine Erfolgsmethode (engl. Best-
Practice) dar, durch die sich stetig wiederholende Probleme bzw. Aspek-
te eines Systems mit vorgefertigten Lösungsbausteinen adäquat beschrei-
ben lassen.

Im Rahmen der Gestaltung von Softwaresystemen beschreiben Entwurfs-
muster wesentliche Prinzipien, die z.B. einen bestimmten Typ von Verhal-
ten oder der Struktur eines abzubildenden Aspekts betreffen können. Ent-
wurfsmuster können dabei auch die Rolle von Leitfäden bzw. Handlungs-
empfehlungen einnehmen. Da grundsätzliche Probleme in der Gestaltung
bereits durch ein passendes Entwurfsmuster gelöst sein können, ist z.B.
durch Wiederverwendung einer Lösungsstruktur eine Unterstützung von
Entwicklern bzw. Experten einer Domäne bei ihrer Arbeit möglich.

Neben dieser eher konstruktiven Unterstützung ist auf Basis einer Samm-
lung von unterschiedlichen Entwurfsmustern auch eine Typisierung von
zu gestaltenden Aspekten möglich. Hierdurch kann bereits existierendes
Wissen wiederverwendet und somit Aufwand in der Gestaltung einge-
spart werden.

Für die Gestaltung von flexiblen und anpassbaren Prozessen existieren ver-
schiedene in der Literatur [Sch+08; RW12] bereits vorgestellte Entwurfs-
muster. Sie können jeweils als ein Typ von Flexibilität verstanden werden,
der in Prozessen vorkommen kann. Unterschiedliche Typen von Flexibi-
lität können dabei oft durch regelbasierte Verfahren realisiert werden. Je-
doch sind vornehmlich integrierte Verfahren bekannt, in denen z.B. eine
Trennung der Anwendungs- und Anpassungslogik nicht explizit vorge-
sehen ist. Hierdurch kann es zu komplexen, für den Menschen unüber-
sichtlichen und schwer wartbaren Prozessmodellen kommen, die im Kon-
text von Industrie 4.0-Anwendungen und ihren flexiblen und anpassbaren
Prozessen problematisch sein können. Ferner ist derzeit unbekannt, wie
die Gestaltung dieser Flexibilitätsaspekte durch das Adaptivity Engineering
unterstützt werden kann. Für diese Arbeit ergibt sich aus diesen Umstän-
den daher die nachfolgende Forschungsfrage:

Forschungsfrage 2 Was sind Flexibilitätsaspekte von Prozessen und wie können sie durch
Konzepte eines domänenspezifischen Adaptivity Engineering modell-
basiert in Form von Entwurfsmustern beschrieben werden?

Das Adaptivity Engineering ist für die Domäne des Business Process Ma-
nagement (BPM) eine neuartige Betrachtungsweise auf die zu gestalten-
den flexiblen und anpassbaren Prozesse. Daraus resultiert, dass es derzeit

Einleitung Seite 9

noch unklar ist, wie sich eine zu entwickelnde Sprache sowie die zugehö-
rigen Entwurfsmuster in einen methodischen Rahmen der Domäne BPM
integrieren lassen. Die Notwendigkeit einer solchen Integration lässt sich
hinsichtlich der Verwendbarkeit des Adaptivity Engineering begründen. So
sollten relevante methodische Aktivitäten und Artefakte des Adaptivity En-
gineering in Relation zu üblichen Verfahrensweisen und Artefakten der Do-
mäne BPM gesetzt werden. Erst hierdurch kann verdeutlicht werden, wie
eine zu entwickelnde Sprache und zugehörige Entwurfsmuster anzuwen-
den sind. Die hieraus resultierende Forschungsfrage lautet wie folgt:

Forschungsfrage 3Wie lassen sich Konzepte eines domänenspezifischen Adaptivity En-
gineering in einen methodischen Rahmen der Domäne BPM integrie-
ren?

Zuvor wurden Forschungsfragen vorgestellt, die die Ausgangssituation
für die vorliegende Arbeit beschreiben. Als Ergänzung werden in dem
nachfolgenden Abschnitt 1.3 verschiedene Anforderungen an eine zu er-
arbeitende Lösung vorgestellt.

1.3 Anforderungen

In diesem Abschnitt werden grundlegende Anforderungen an ein Lö-
sungskonzept vorgestellt. Dabei kann in zwei Arten von Anforderungen
unterschieden werden. Zum einen werden Anforderungen beschrieben,
die bereits für den Ansatz Adapt Cases gesetzt worden waren. Dies lässt
sich vornehmlich dadurch begründen, dass sie sowohl für das Adaptivity
Engineering nach Luckey als auch für eine domänenspezifische Variante
als notwendig erachtet werden können. Zum anderen kommen aufgrund
des domänenspezifischen Bezugs auch neue Anforderungen hinzu, die für
den generelleren Ansatz Adapt Cases nicht bestanden.

Separation-of-ConcernsIn der Sprache ACML [Luc+11] werden die Anwendungs- und An-
passungslogik getrennt voneinander gestaltet. Mit einem in dieser Ar-
beit erstellten Lösungskonzept soll es auch weiterhin möglich sein, das
Separation-of-Concerns hinsichtlich dieser beiden Logiken durchzuführen.

KontrollschleifeEin grundlegendes Paradigma für die Gestaltung von selbst-adaptiven
Systemen stellt die Kontrollschleife dar [Bru+09]. Das Paradigma wird be-
reits durch den Ansatz Adapt Cases umgesetzt und soll auch in dem zu er-
arbeiteten Ansatz in der Gestaltung von flexiblen und anpassbaren Prozes-
sen eingesetzt werden.

Seite 10 Kapitel 1

Ausdrucksfähigkeit In der Sprache ACML werden UML Use Case-Diagramme [OMG10] um wei-
tere Elemente erweitert und zur frühen Spezifikation von einzelnen Funk-
tionen eines Systems eingesetzt. Dabei steht bereits dort die Trennung von
Funktionen der Anpassungs- und der Anwendungslogik im Vordergrund.
Durch die Nutzung von UML-spezifischen Gestaltungstechniken wird der
Ansatz Adapt Cases hinsichtlich der Spezifikation von Aspekten der bei-
den Logiken besonders ausdrucksfähig. Um auch die Gestaltung von fle-
xiblen und anpassbaren Prozessen bereits in einer frühen Phase unterstüt-
zen zu können, soll auch in einem domänenspezifischen Adaptivity Engi-
neering diese Ausdrucksfähigkeit weitestgehend beibehalten werden.

UML-Konsistenz Die Sprache ACML ist weitestgehend in Anlehnung an einzelne Konzep-
te der Sprache UML [OMG10] definiert worden. Hierdurch entsteht eine
hohe Konsistenz zwischen der reinen Gestaltung durch Diagramme der
UML und den durch ACML zur Verfügung gestellten Diagrammtypen.
Eine Sprache im Rahmen eines domänenspezifischen Adaptivity Enginee-
ring soll diese Eigenschaft weitestgehend beibehalten.

BPMN2.0-Konsistenz Eine große Herausforderung stellt die Nutzung von domänenspezifischem
Wissen in der Gestaltung von flexiblen und anpassbaren Prozessen dar.
Eine fachliche Domäne, in der sich vornehmlich mit unterschiedlichen
Aspekten von Prozessen auseinandergesetzt wird, ist das Business Process
Management (BPM) [Wes12]. Für die Gestaltung von Prozessen im Rah-
men des BPM ist die Sprache BPMN2.0 [OMG11] der aktuelle De-facto-
Standard. Die Sprache BPMN2.0 stellt in diesem Bezug eine Implementie-
rung von spezifischen Konzepten der Domäne des BPM dar. Für ein domä-
nenspezifisches Adaptivity Engineering sollen ausgewählte Konzepte daher
in enger Anlehnung an die Sprache BPMN2.0 definiert werden. Hierbei
soll eine hohe Konsistenz zwischen der reinen Nutzung von Diagrammen
der Sprache BPMN2.0 und solcher, die durch eine potentielle Lösung zur
Verfügung gestellt werden, erreicht werden.

Musterbasierte
Unterstützung in der

Gestaltung von Flexibilität

Für häufig wiederkehrende Typen von Flexibilität in Prozessen bietet sich
die Bereitstellung von zugehörigen Entwurfsmustern an. In einem domä-
nenspezifischen Adaptivity Engineering sollen daher Entwurfsmuster be-
schrieben werden, die derartige Typen enthalten. Dabei soll insbesonde-
re das Separation-of-Concerns hinsichtlich der Trennung von Anpassungs-
und Anwendungslogik im Fokus dieser Entwurfsmuster liegen.

Integration in eine
spezifische Methode der

Domäne BPM

Für die Verwendung der zu entwickelnden Sprache zur Trennung der
Anwendungs- und Anpassungslogik sowie zugehöriger Entwurfsmuster
ist eine Methode notwendig. Diese Methode sollte relevante Aktivitäten

Einleitung Seite 11

und Artefakte eines domänenspezifischen Adaptivity Engineering in Relati-
on zu Elementen eines bestehenden methodischen Rahmens der Domäne
BPM setzen.

1.4 Aufbau der Arbeit

Eine Übersicht über die vorliegende Arbeit ist in Abbildung 1-2 dargestellt.
Die Arbeit ist insgesamt in die drei Teile Grundlagen und verwandte Arbei-
ten, Lösungskonzept sowie Evaluation, Zusammenfassung und Ausblick struk-
turiert. Auf die Inhalte dieser Teile wird nachfolgend kurz eingegangen.

Einleitung

Kapitel 1

Teil I – Grundlagen und
verwandte Arbeiten

Grundlagen

Kapitel 2

Verwandte Arbeiten

Kapitel 3

Teil II – Lösungskonzept

Eine Sprache zur Gestaltung
von anpassbaren Prozessen

Kapitel 4

Entwurfsmuster für flexible
und anpassbare Prozesse

Kapitel 5

Adaptivity Engineering für
flexible und anpassbare

Prozesse

Kapitel 6

Teil III – Evaluation,
Zusammenfassung und

Ausblick

Evaluation

Kapitel 7

Zusammenfassung
und Ausblick

Kapitel 8

Abbildung 1-2:
Inhalte der Arbeit

In dem ersten Teil der Arbeit werden sowohl Grundlagen als auch alter-
native Ansätze für die Gestaltung von Flexibilität in Prozessen vorgestellt.
In Kapitel 2 werden die benötigten Grundlagen beschrieben, welche für
die Erarbeitung des Lösungsansatzes notwendig waren bzw. unterstüt-
zend für das weitere Verständnis der Arbeit sein können. Darunter fällt zu-
nächst die modellgetriebene Softwareentwicklung (MDSD). Ferner sind domä-
nenspezifische Methoden und Techniken notwendig, wie z.B. das Business
Process Management (BPM) sowie der Bereich der Gestaltung von Prozes-
sen, dem Business Process Modeling (BPMod). Das anschließende Kapitel 3
führt alternative Ansätze für die Gestaltung von flexiblen und anpassba-
ren Prozessen auf. Der Schwerpunkt dieser Aufführung liegt dabei auf An-
sätzen, die vornehmlich in den Domänen BPM sowie BPMod zu verordnen
sind.

Seite 12 Kapitel 1

Das in dieser Arbeit erarbeitete Lösungskonzept sieht drei wesentliche Lö-
sungsteile vor: Eine domänenspezifische Sprache, die Erarbeitung von re-
levanten Entwurfsmustern zur Gestaltung von flexiblen und anpassbaren
Prozessen und die Beschreibung eines methodischen Vorgehens unter Ver-
wendung der beiden zuvor genannten Lösungsteile. Das Lösungskonzept
wird im zweiten Teil der Arbeit beschrieben. Dazu wird zunächst in Kapi-
tel 4 der erste Lösungsteil in Form der domänenspezifischen Sprache Adapt
Case Modeling Language 4 BPM (ACML4BPM) vorgestellt. Das Kapitel um-
fasst neben der reinen Beschreibung der Sprache auch die Analyse von Tei-
len der beiden beteiligten Domänen BPM und BPMod. Anschließend wird
der zweite Lösungsteil in Form von relevanten Entwurfsmustern in Kapi-
tel 5 vorgestellt. Dabei wird für jeden betrachteten Aspekt von Flexibili-
tät in Prozessen zunächst eine umfassende Analyse und anschließend die
Beschreibung des zugehörigen Entwurfsmusters vorgenommen. Abschlie-
ßend wird der dritte Lösungsteil in Form der Methode Adapt Cases 4 BPM
in Kapitel 6 beschrieben. Diese Methode stellt ein Vorgehen des Adaptivity
Engineering im Kontext einer spezifischen Entwicklungsmethode der Do-
mäne BPM dar. Im Fokus der Methode Adapt Cases 4 BPM liegt die Benen-
nung von notwendigen Aktivitäten und Artefakten in Relation zu beste-
henden Vorgehensweisen der Domäne BPM.

Der dritte und letzte Teil dieser Arbeit umfasst die durchgeführte Evaluati-
on des vorgestellten Lösungsansatzes und stellt anschließend eine Zusam-
menfassung sowie einen Ausblick auf mögliche zukünftige Forschungs-
arbeiten vor. Die durchgeführte Evaluation wird in Kapitel 7 beschrieben
und gliedert sich in zwei weitere Teile auf. So wird im Rahmen der Eva-
luation zunächst ein zusammenhängendes Beispiel für die Gestaltung von
flexiblen und anpassbaren Prozessen unter Einsatz der erarbeiteten Spra-
che sowie ausgewählter Entwurfsmuster gegeben. Nachfolgend werden
Eigenschaften der beiden erarbeiteten Lösungsteile hinsichtlich verschie-
dener Kriterien analysiert und bewertet. Im Rahmen der Zusammenfas-
sung und des Ausblicks werden die konkreten Inhalte der Lösungsteile
in Kapitel 8 zusammengefasst. Die Arbeit schließt dabei mit einem Aus-
blick auf mögliche zukünftige Forschungsarbeiten. Dabei wird insbeson-
dere Bezug zur weiteren Verwendung vorgestellter Lösungsteile und auf
das Adaptivity Engineering genommen.

Teil I

Grundlagen und verwandte
Arbeiten

Grundlagen

Kapitel2
In diesem Kapitel werden verschiedene Grundlagen vorgestellt, die für die
Bearbeitung der Arbeit notwendig gewesen sind und für das weitere Ver-
ständnis behilflich sein können. Das Kapitel strukturiert sich dabei in ins-
gesamt drei Abschnitte. Zunächst wird in Abschnitt 2.1 auf grundlegende
Aspekte der modellgetriebenen Softwareentwicklung eingegangen. Der Fokus
liegt hierbei auf der Metamodellierung und auf der Entwicklung von do-
mänenspezifischen Sprachen. Anschließend wird in Abschnitt 2.2 das Busi-
ness Process Management (BPM) vorgestellt, welches als ein methodischer
Rahmen zur Verwaltung von Prozessen eingesetzt werden kann. Damit im
weiteren Verlauf der Arbeit spezifischer auf die Gestaltung von Prozes-
sen eingegangen werden kann, wird ferner das Business Process Modeling
(BPMod) als Teildisziplin des BPM in Abschnitt 2.3 vorgestellt. Das Kapi-
tel schließt in Abschnitt 2.4 mit einer Vorstellung des durch [Luc13] vor-
gestellten Ansatzes Adapt Cases und der zugehörigen Sprache Adapt Case
Modeling Language (ACML), welche beide die Basis für das spätere Kon-
zept zur Lösung bilden.

2.1 Modellgetriebene Softwareentwicklung

Bei der modellgetriebenen Softwareentwicklung (engl. Model-Driven Engi-
neering (MDE)) handelt es sich um ein spezielles Entwicklungsverfahren,
das insbesondere die Verwendung von Modellen als primäres Artefakt im
Entwicklungsprozess betrachtet [BCW17]. Auf wichtige Grundprinzipien
des MDEs wird nachfolgend detaillierter eingegangen. Darunter befinden
sich die Metamodellierung (siehe Abschnitt 2.1.1), die Meta-Object-Facility
(MOF) (siehe Abschnitt 2.1.2) und die Model-Driven Architecture (MDA)
(siehe Abschnitt 2.1.3). Ferner wird abschließend in Abschnitt 2.1.4 das
Domain-Specific Language Engineering (DSL Engineering) als methodischer
Rahmen zur Entwicklung von DSLs beschrieben.

Seite 16 Kapitel 2

2.1.1 Metamodellierung

Bei der Metamodellierung handelt es sich um eine Schlüsselaktivität des
MDEs. Dabei werden verschiedene Ziele verfolgt, wie z.B. die Spezifikati-
on von Sprachen zur Modellierung und Programmierung, den Austausch
und Speichern von Informationen und die Anreicherung bestehender In-
formationen mit neuen Eigenschaften oder Features [BCW17].

Im Fokus der Metamodellierung steht die Definition von sogenannten Me-
tamodellen (siehe Abbildung 2-1). Ein Metamodell ist eine Menge von Nota-
tionsregeln zur Beschreibung einer Klasse von Modellen. Dabei bilden Me-
tamodelle hierdurch unter anderem die Grundlage für die Definition von
Modellierungssprachen. Dies umfasst insbesondere die Spezifikation der
abstrakten Syntax (siehe Abschnitt 2.1.4). Weiterführende Ansätze haben
sich dabei auch in Teilen mit der Spezifikation der Semantik einer Sprache
befasst [Eng+00; Hau05; Sol13].

Bei einem Modell, welches auf Basis eines Metamodells erstellt worden ist,
spricht man auch von einer Instanz des Metamodells. Es handelt sich hier-
bei um einen Satz der Sprache, die durch das Metamodell beschrieben wird.

Die Sprache, die durch ein Metamodell beschrieben ist, kann entweder
durch direkte Ableitung von Notationsregeln auf Basis eines (realweltlichen)
Objekts ermittelt werden oder durch Ableitung auf Basis einer Menge von
(Beispiel-)Modellen [Voe+13; BCW17]. Bei (realweltlichen) Objekten handelt
es sich um gedachte oder reale Objekte, wie z.B. die Arbeitnehmenden in
einer Organisation oder ein Stück Programmquellcode, das modellbasiert
beschrieben werden soll.

Abbildung 2-1:
Beziehungen zwischen

(realweltlichen) Ob-
jekten, Modellen

und Metamodellen

Modell
(Realweltliches)

Objekt

Metamodell

auf Basis von
(Instanz von)

(Beispiel)
Modell

Ableitung von Notationsregeln

beschreibt

beschreibt Ableitung von Notationsregeln

2.1.2 Meta-Object-Facility (MOF)

Bei der Meta-Object-Facility (MOF) [OMG15a] handelt es sich um einen
durch die Object Management Group (OMG) spezifizierten Rahmen für die

Grundlagen Seite 17

Metamodellierung. Er wird zur einheitlichen Spezifikation von Metadaten
bzw. Metamodellen eingesetzt und verwendet hierzu vereinfachte Notati-
onsregeln, die durch Konzepte wie z.B. Klassen, Pakete oder Assoziationen
der UML Klassendiagramme ausgedrückt werden können.

Prinzipiell werden in der Modellierung unendlich viele Abstraktionsebe-
nen durch MOF unterstützt, wobei jedoch mindestens zwei Ebenen vorge-
sehen sind. Klassischerweise wird MOF aber in Form einer Vier-Ebenen-
Architektur verwendet, die im Folgenden näher beschrieben wird. Hier-
zu sind diese Architekturebenen in Form von M0, M1, M2 und M3 im lin-
ken Bereich von Abbildung 2-2 dargestellt. Im rechten Bereich der Abbil-
dung befinden sich für die genannten Architekturebenen zugehörige Bei-
spiele mit jeweiligen Abhängigkeiten. Nachfolgend wird eine detailliertere
Erläuterung dieser Abstraktionsebenen gegeben.

M3
(Meta-Metamodell)

M2
(Metamodell)

M1
(Modell)

M0
(Realweltliches Objekts)

instance-of

instance-of

instance-of

beschreibt

MOF

UML BPMN2.0 Spezifisches
Metamodell

instance-of

instance-of

instance-of

instance-of

instance-ofinstance-of instance-of

UML-Modell
z.B. Klassendefinition

oder ihre
Instanzspezifikation

BPMN2.0-Modell
z.B.

Prozessdefinition

Modell auf Basis
eines spezifischen

Metamodells

UML-
Profile

BPMN2.0-
Erweiterung

UML-Modell
Laufzeitinstanzen

z.B. Java Code oder
Daten

BPMN2.0-Modell
Laufzeitinstanzen

z.B.
Prozessinstanzen

instance-of

Laufzeitinstanz eines
Modells auf Basis
eines spezifischen

Metamodells

instance-of

instance-of

Abbildung 2-2:
Übersicht über die Vier-
Ebenen-Architektur

Ebene M3Auf der Ebene M3 befinden sich Meta-Metamodelle (hier: MOF). MOF bil-
det dabei die Basis für Definitionen von Metamodellen auf der Ebene M2.
MOF ist rekursiv durch sich selbst definiert. Hierzu wird eine Untermen-
ge von Spracheigenschaften der UML Klassendiagramme verwendet. Wie in
[BCW17] beschrieben, ist eine weitere höhere Abstraktionsebene in die-
ser Architektur nicht notwendig, da weitere Ebenen auch weiterhin das
Sprachkonstrukt der Klasse enthalten würden. Eine Implementierung ei-
ner Untermenge von Spracheigenschaften des Rahmenwerks zur Metamo-

Seite 18 Kapitel 2

dellierung MOF ist gegeben durch das Eclipse Modeling Framework (EMF)
[Ecl], dessen zugehöriges Metamodell auch ECore genannt wird [Eco].

Ebene M2 Auf der Ebene M2 befinden sich Metamodelle oder auch Sprachspezifika-
tionen, wie die Unified Modeling Language (UML) [OMG10], die Business
Model and Notation (BPMN2.0) [OMG11], die Adapt Case Modeling Language
(ACML) [Luc13] oder auch verschiedene Domain-Specific Languages (DSLs).
Spracherweiterung von UML-basierten Sprachen (hier: UML-Profile) und
BPMN2.0-basierten Sprachen (hier: BPMN2.0-Erweiterungen) befinden
sich ebenfalls auf der Ebene M2. Die auf der Ebene M2 liegenden Metamo-
delle werden dabei genutzt, um Sprachelemente für die Modellierung von
Modellen auf der Ebene M1 zur Verfügung zu stellen.

Ebene M1 Die Ebene M1 enthält Modelle, die auf Basis der auf der Ebene M2 befind-
lichen Metamodelle erstellt worden sind. Ein Beispiel ist die Gestaltung
einer Klasse mit enthaltenen Attributen, die durch ein UML Klassendia-
gramm erstellt worden ist. Ein weiteres Beispiel ist durch eine Prozessdefi-
nition gegeben, die durch ein Business Process Diagram (BPD) der Sprache
BPMN2.0 beschrieben ist.

Ebene M0 Die Ebene M0 enthält schließlich realweltliche Objekte. Diese können, wie
in Abbildung 2-3 dargestellt, gegeben sein durch Quellcodes in Form einer
Java-Klasse aber auch in Form von Laufzeitinstanzen.

Ein weiterer relevanter De-facto-Standard der OMG für die Metamodellie-
rung ist die Object Constraint Language (OCL) [RG02; OMG14a] mit der die
statische Semantik von UML-Modellen durch Ausdrücke, Invarianten, Vor-
und Nachbedingungen formal beschrieben werden kann.

2.1.3 Model-Driven Architecture (MDA)

Die Model-Driven Architecture (MDA) [OMG14b] ist ein weiterer durch
die OMG spezifizierter Standard zur Unterstützung des MDEs. Kern der
MDA ist dabei ein modellgetriebener Softwareentwicklungsprozess mit
dem Ziel, ausführbaren Code – also die Implementierung in Form einer
Anwendung – zu erhalten. Eine Übersicht ist in Abbildung 2-3 gegeben
und wird nachfolgend kurz erläutert.

Die MDA lässt sich, wie hier gezeigt wird, in die zwei Phasen des Require-
ments Engineering und des System Designs unterteilen. Dabei werden Mo-
delle zur Beschreibung der Anwendungen auf unterschiedlichen Abstrak-
tionsebenen beschrieben. Diese Abstraktionsebenen sind das CIM, PIM
und PSM und werden im Folgenden detaillierter beschrieben.

Grundlagen Seite 19

CODEPIM PSM

System Design

CIM

Requirements
Engineering

M2M oder T2M
Transformation

M2M
Transformation

M2T
Transformation

Business
 Domain

Requirements

Platform
Independent

System
Description

Platform
Specific
System

Description

Implementation

Abbildung 2-3:
Übersicht über die Model-
Driven Architecture
(nach [BCW17])

Computation Independent
Model (CIM)

Bei dem Computation Independent Model (CIM) handelt es sich um die ab-
strakteste Ebene der Betrachtung einer zu entwickelnden Anwendung
[BCW17]. Im Rahmen des CIM werden das Geschäfts- und das Domänen-
modell beschrieben, welche jeweils die Kernkonzepte oder auch das Voka-
bular für die Entwicklung der Anwendung definieren. Dies kann z.B. die
Beschreibung von Anforderungen, den Anwendungszweck oder die Kon-
textinformationen der Anwendung betreffen. Dabei stehen hierbei insbe-
sondere solche Beschreibungen im Vordergrund, die unabhängig von einer
möglichen technischen Realisierung sind.

Platform Independent
Model (PIM)

Auf Basis des CIM kann anschließend das Platform Independent Model (PIM)
erstellt werden. Es enthält sowohl das Verhalten als auch die Struktur der
Anwendung, welche jeweils unabhängig von einer konkreten technischen
Zielplattform beschrieben werden. Für die Modellierung des PIM werden
häufig Sprachen zur Gestaltung eingesetzt. Beispiele für derartige Spra-
chen sind UML [OMG10], BPMN2.0 [OMG11] oder domänenspezifische
Sprachen (engl. DSL).

Platform Specific Model
(PSM)

Im Rahmen des Platform Specific Models (PSM) wird das PIM verfeinert.
Man spricht von Verfeinerung, wenn zu einem späteren Zeitpunkt weiter-
gehende Informationen zu einem gestalteten Modell hinzugefügt werden.
Solche Informationen können z.B. in Bezug zu einer technischen Zielplatt-
form stehen. Auf Basis des PSM kann schließlich der Programmcode für
eine konkrete Zielplattform, wie z.B. Java1 oder .net2, generiert werden.

Die Übergänge von einer Ebene zu einer nachfolgenden Ebene, wie z.B.
vom CIM zum PIM, können durch verschiedene Transformationen min-
destens teil- aber vorzugsweise vollautomatisiert realisiert werden. Dabei
können auf Basis des Modells einer Abstraktionsebene verschiedene Mo-
delle auf einer nachfolgenden Ebene existent sein. So kann es sinnvoll sein,
dass auf Basis eines PIM mehrere PSM für unterschiedliche technische
Zielplattformen erstellt werden. Für die in diesem Kontext eingesetzten

1https://www.oracle.com/de/java/index.html Letzter Zugriff: 11.12.2018
2https://www.microsoft.com/net Letzter Zugriff: 11.12.2018

https://www.oracle.com/de/java/index.html
https://www.microsoft.com/net

Seite 20 Kapitel 2

Transformationen, wie z.B. Model-2-Model (M2M) oder Model-2-Text (M2T),
existieren dabei eine Reihe von verschiedenen Sprachen und Rahmenwer-
ken. Einige Beispiele sind durch ATL3, Xtext4 oder XPand5 gegeben.

2.1.4 Domain-Specific Language Engineering

Das Domain-Specific Language Engineering (DSL Engineering) ist eine fachli-
che Disziplin, die sich mit dem methodischen Vorgehen bei der Entwick-
lung von domänenspezifischen Sprachen (engl. DSL) beschäftigt. Der In-
halt dieses Abschnitts beschäftigt sich zunächst mit einigen Grundkonzep-
ten des DSL Engineering und beschreibt anschließend einzelne zugehörige
Entwicklungsschritte.

Eine Sprache ist definiert durch ihre Abstrakte Syntax (AS) und ihre Seman-
tik (S). Ist zudem eine textuelle oder sprachliche Repräsentation erforder-
lich, so wird zudem auch noch die Konkrete Syntax (KS) definiert. Im Fol-
genden wird eine detailliertere Beschreibung dieser Begriffe vorgenom-
men.

Abstrakte Syntax (AS) Die Abstrakte Syntax (AS) beschreibt die Struktur der Sprache. Dies umfasst
eine Beschreibung, welche Elemente Teil der Sprache sind und wie sie mit-
einander kombiniert werden dürfen. Dabei wird jedoch die Art der textu-
ellen oder graphischen Repräsentation ausgeblendet. Die AS kann durch
Metamodelle (siehe Abschnitten 2.1.1 und 2.1.2) beschrieben werden.

Konkrete Syntax (KS) Bei der Konkreten Syntax (KS) handelt es sich um eine Spezifikation der tex-
tuellen oder graphischen Repräsentation einzelner Elemente der Sprache.
Dabei wird den einzelnen Elementen oder der Kombination aus mehreren
Elementen aus der AS vorzugsweise ein eindeutiges textuelles oder gra-
phisches Symbol zugeordnet. So ist z.B. in UML Klassendiagrammen dem
Element des Typs Class ein rechteckiges graphisches Symbol zugeordnet,
in dessen Mitte der Wert des Attributs Name in textueller Form dargestellt
wird.

Semantik (S) Der Begriff der Semantik (S) einer Sprache wird unterschieden. So exis-
tiert sowohl der Begriff der statischen Semantik (StatS) als auch der Begriff
der Ausführungssemantik (AusS). Die StatS einer Sprache beschreibt zusätz-
liche strukturelle Einschränkungen von Elementen und ihrer Kombinati-
on sowie der textuellen oder graphischen Repräsentation. Wohingegen die

3http://www.eclipse.org/atl Letzter Zugriff: 11.12.2018
4http://www.eclipse.org/Xtext Letzter Zugriff: 11.12.2018
5http://wiki.eclipse.org/XPand Letzter Zugriff: 11.12.2018

http://www.eclipse.org/atl
http://www.eclipse.org/Xtext
http://wiki.eclipse.org/XPand

Grundlagen Seite 21

AusS kontextsensitive Abhängigkeiten der Elemente und ihrer Kombinati-
on beschreibt. Die AusS ist dabei oftmals implizit in den Regeln zur Trans-
formation, wie z.B. M2T-Transformation, oder durch die Implementierung
der Ausführungsumgebung definiert. Alternativ existieren aber auch An-
sätze [Eng+00; Hau05; Fow10; Sol13], mit denen die AusS formal definiert
werden kann.

Pragmatik (P)Der Begriff Pragmatik (P) – oder alternativ auch Verwendungsweise – be-
schreibt einen Prozess bestehend aus Aktivitäten, die die Nutzung einer
Sprache beschreiben. So kann es in Sprachen spezielle Abhängigkeiten von
zu erstellenden Artefakten geben. Durch die P können solche Abhängig-
keiten beschrieben und eine empfohlene Reihenfolge einzelner Aktivitä-
ten definiert werden. Wird für eine Sprache keine P angegeben, so wird
üblicherweise angenommen, dass die Vorgehensweise durch einen über-
geordneten Ansatz übernommen wird. Dies ist insbesondere bei DSLs der
Fall, die auf Basis eines bestehenden Ansatzes zur Gestaltung erstellt wor-
den sind.

2.1.4.1 DSL-Typen und Charakterisierung

Im Kontext der modellgetriebenen Softwareentwicklung existieren eine
Reihe von unterschiedlichen Perspektiven auf verschiedene Typen von
Sprachen. Typischerweise wird bei Sprachen zur Gestaltung in die beiden
Typen Domain-Specific Language (DSL) und General-Purpose Language (GPL)
unterschieden. Auf eine Beschreibung und die Unterschiede der beiden
Typen wird nachfolgend detaillierter eingegangen.

Domain-Specific Language
(DSL)

Bei einer Domain-Specific Language (DSL) handelt es sich um eine Sprache,
mit der die Konzepte aus einer spezifischen Domäne beschrieben werden
können. Man spricht in diesem Kontext auch von einer Anwendungsdo-
mäne. Eine DSL kennzeichnet sich daher häufig, jedoch nicht immer, durch
wenige aber dafür für die Domäne spezifische Sprachelemente aus. Hier-
mit können z.B. die Anwendung selbst, ihr Kontext in dem sie eingebet-
tet ist oder weitere Metadaten gemeint sein. Durch diesen spezifischen Be-
zug ist in einer DSL typischerweise relevantes Wissen von der betroffenen
Anwendungsdomäne kodiert, welches im Rahmen der Gestaltung wieder-
verwendet werden kann.

General-Purpose
Languages (GPL)

Im Gegensatz zu einer DSL existieren aber auch Sprachen, die als General-
Purpose Languages (GPL) bezeichnet werden. Eine GPL kennzeichnet sich
durch die Fähigkeit aus, dass sie nicht lediglich für eine spezifische Do-
mäne anwendbar ist. Stattdessen spricht man hier auch davon, dass sie

Seite 22 Kapitel 2

für einen bestimmten Bereich oder eine Gruppe von Domänen eingesetzt
werden können. Ein typisches Beispiel für eine GPL ist durch die Sprache
UML [OMG10] gegeben. Sie wird dabei für den Bereich der (objektorientier-
ten) Gestaltung von Softwaresystemen eingesetzt.

Die Trennung von Sprachen in die beiden zuvor aufgeführten Typen GPL
und DSL ist dabei oftmals nicht klar durchführbar. So könnte man z.B. be-
haupten, dass es sich bei der Entwicklung von Softwaresystemen ebenfalls
um eine spezifische Domäne handelt. Daraus könnte der logische Schluss
folgen, dass es sich demnach auch bei der UML um eine DSL handelt. Je
nach individueller Perspektive auf die Welt der Sprachen zur Gestaltung
ist dieser Aspekt gerechtfertigt. Dennoch würde man aus der Perspekti-
ve der Softwareentwicklung die Sprache UML eher als eine GPL einstu-
fen. Zur besseren Charakterisierung von Sprachen zur Gestaltung kann
der durch [Voe+13] beschriebene Vergleich basierend auf einzelnen Cha-
rakteristiken von GPLs und DSLs verwendet werden. Es handelt sich hier-
bei um einen Versuch, eine methodische Trennung für die beiden Typen
GPL und DSL anhand vorgegebener Dimensionen und deren typischen Be-
legungen durchführen zu können. Ein Auszug dieser Charakteristiken ist
in Tabelle 2-1 dargestellt.

Tabelle 2-1:
Gegenüberstellung

von GPLs und DSLs
(nach [Voe+13])

Dimension GPLs DSLs
Domäne groß und komplex kleiner und spezifischer

definiert

Benutzerdefinierte
Abstraktionen

anspruchsvoll limitiert

Lebensspanne Jahre oder Jahrzehnte Monate oder Jahre

Gestaltet durch Experten oder Komitee Domänenexperten

Benutzergemeinschaft groß, anonym und weit
verbreitet

klein, zugreifbar und lokal

Evolution langsam, oft standardisiert schnelllebig

2.1.4.2 Die Rolle von Domänenmodellen

Wie bereits im vorherigen Abschnitt beschrieben, stützt sich das DSL Engi-
neering auf die Existenz des Konzepts des Domänenmodells. Typischerwei-
se beschreibt ein Domänenmodell relevante Konzepte und deren Beziehun-
gen untereinander, die für das Abbild einer Domäne notwendig sind. Das
in einer Domäne zu verwendende Vokabular kann somit durch ein Domä-
nenmodell bestimmt werden. Dieses Vokabular einer spezifischen Domäne
kann z.B. durch die Konzepte der Klassen, Ereignisse, Transitionen oder Ver-
haltensmuster als typisches Verhalten beschrieben werden.

Grundlagen Seite 23

Ein methodischer Ansatz zur Entwicklung von Domänenmodellen ist da-
bei durch das Domain-Driven Design (DDD) [Eva03] gegeben. Das wesent-
liche Grundprinzip des DDD ist eine starke Fokussierung auf die Inhal-
te einer einzelnen Domäne, wohingegen der Schwerpunkt ansonsten eher
auf die Realisierung bezogen ist. Die Beziehung zwischen dem MDE und
dem DDD ist zur besseren Übersicht in Abbildung 2-4 in Anlehnung an
Brambilla et al. [BCW17] dargestellt.

Domänenmodell

System

Domäne

Domain-Driven-Design

Model-Driven
Engineering

Repräsentation-von

Implementierung-von

Abbildung 2-4:
Zusammenhang zwischen
Domain-Driven Design
und Model-Driven Engi-
neering (nach [BCW17])

Das DDD und MDE sind demnach keine konträren Ansätze. So verwen-
den beide das Konzept des Domänenmodells zur Repräsentation des Wis-
sens einer Domäne. Stattdessen kann das DDD vielmehr als eine sinnvolle
Ergänzung zum MDE verstanden werden ([BCW17]). Es verwendet hierzu
spezifische Methoden und Techniken, die unterstützend für die Gestaltung
von Domänenmodellen eingesetzt werden können.

2.1.4.3 Spracherweiterungsansätze

Für die Entwicklung einer DSL bietet sich neben der Erstellung eines ei-
genen Metamodells insbesondere auch die Wiederverwendung existieren-
der Sprachen an. Wichtige Beispiele für derartige Sprachen sind durch die
MOF auf der Meta-Metaebene (M3) und durch die UML auf der Metaebe-
ne (M2) gegeben (siehe Abbildung 2-3). Werden existierende Sprachen er-
weitert, so spricht man in diesem Bezug auch von einer Lightweight Exten-
sion oder einer Heavyweight Extension. Auf Details der beiden genannten
Typen von Erweiterungen von existierenden Sprachen wird nachfolgend
eingegangen.

Seite 24 Kapitel 2

Lightweight Extension Bei einer Lightweight Extension (LExt) handelt es sich um eine Erweiterung
einer existierenden Sprache. Dabei verfeinern die Sprachelemente einer
LExt für sie relevante Sprachelemente der existierenden Sprache, sodass
ein domänenspezifisches Konzept oder ein Concern (hier: Aspekt) unter-
stützt wird. Grundsätzliche Eigenschaft einer LExt ist dabei, dass keine
Elemente der existierenden Sprache hinsichtlich ihrer AS, KS, oder S ver-
ändert werden.

Heavyweight Extension Eine Heavyweight Extension (HExt) ist ebenfalls eine Erweiterung einer
existierenden Sprache. Im Gegensatz zur LExt können aber Elemente der
Sprachspezifikation der zu erweiternden Sprache verändert werden. Dies
kann sowohl die AS, die KS als auch die S der zu erweiternden Sprache
betreffen. Hierdurch können beim Einsatz der erweiternden Sprache unter
Umständen auch ungewollte Seiteneffekte entstehen. Ein Beispiel hierfür
ist dadurch gegeben, dass existierende Transformationen möglicherweise
nicht mehr ordnungsgemäß funktionieren und angepasst werden müssen.

Die Erstellung von LExt oder HExt kann in verschiedenen Kontexten un-
terschiedlich realisiert werden. So ist z.B. im Kontext der Sprache UML
[OMG10] die Erstellung von UML-Profilen gängig, wohingegen im Kontext
der Sprache BPMN2.0 [OMG11] die Erstellung von Erweiterungen über
einen eigenen Mechanismus durchgeführt wird.

UML-Profile können z.B. durch UML Profil-Diagramme [OMG10] definiert
werden. Sie spezialisieren Elemente der UML durch domänenspezifische
Konzepte und Symbole mittels der Mechanismen Stereotyp, Tagged Value
oder Constraint. Die einzelnen Mechanismen werden im Folgenden näher
erläutert.

Stereotyp Ein Stereotyp definiert ein domänenspezifisches Konzept auf Basis eines
existierenden Elements der Sprache UML. Beispiele für derartige Elemente
sind durch die Elemente Class, State oder Component gegeben. Die existie-
renden Elemente der Sprache UML können in diesem Rahmen auch als Me-
taklasse bezeichnet werden. Die Beziehung zwischen einem Stereotyp und
seiner Metaklasse definiert dabei, dass sich der Stereotyp in Anlehnung an
die Metaklasse verwenden lässt bzw. sich so verhält. Der Stereotyp spezia-
lisiert folglich die Metaklasse durch Eigenschaften eines domänenspezifi-
schen Konzepts. Ferner können durch Bedingungen – welche z.B. durch
die Sprache OCL [OMG14b] spezifiziert werden – weitere Einschränkun-
gen hinsichtlich der erlaubten Verwendung neuer Elemente oder der Se-
mantik spezifiziert werden. Für einen Stereotypen können im Rahmen der
Definition der KS auch neue Symbole zugewiesen werden.

Grundlagen Seite 25

Tagged ValueUML-Profile beschreiben domänenspezifische Erweiterungen auf Basis von
bestehenden Elementen der Sprache UML. Tagged Values stellen in diesem
Zusammenhang eine Möglichkeit dar, die Attribute eines Modellelements
durch konkrete Werte vorzugeben.

ConstraintMittels Constraints kann die erlaubte Verwendung oder die Semantik von
Stereotypen und Metaklassen in einem UML Profildiagramm weiter einge-
schränkt werden.

Im Gegensatz zum Ansatz der Spezialisierung durch UML-Profile wird
im Kontext der Sprache BPMN2.0 ein eigener Erweiterungsansatz ange-
boten. Hier kann über sogenannte Extension Points [OMG11] eine Erwei-
terung der bestehenden Spezifikation der Sprache BPMN2.0 vorgenom-
men werden. In einer BPMN-Erweiterung, die durch diesen Erweiterungs-
ansatz spezifiziert worden ist, können neue Attribute und Elemente in
Form des Elements ExtensionDefinition beschrieben werden. Ein solches
Element kann an ein beliebiges Element vom Typ BaseElement gebunden
werden und erweitert so Konzepte der Sprache BPMN2.0 [OMG11]. Da-
bei ist durch die Sprachspezifikation der Sprache BPMN2.0 [OMG11] kei-
ne einheitliche Vorgehensweise zur methodischen Erstellung einer BPMN-
Erweiterung gegeben. Ebenso fehlt es an einer Erweiterungsmöglichkeit
der graphischen Notation zur Repräsentation der Struktur einer BPMN-
Erweiterung. Eine Lösung bieten [Str+11; SCV11] durch den BPMN+X6

Ansatz an, in dem die Definition eines UML-Profils zur Spezifikation von
BPMN-Erweiterungen eingesetzt wird. Auf eine allgemeine Vorgehens-
weise zur methodischen Erstellung einer DSL wird im nachfolgenden Ab-
schnitt eingegangen.

2.1.4.4 DSL-Entwicklungsprozess

Die adäquate Entwicklung von domänenspezifischen Sprachen stellt einen
wichtigen Beitrag für die spätere Qualität der Sprache und der auf ihr ge-
stalteten Artefakte dar. Daher sind hier geeignete Entwicklungsprozes-
se anzuwenden, die dies ermöglichen. In der Literatur sind verschiedene
Entwicklungsprozesse existent, mit denen z.B. UML-Profile [Sel07; Lag+07;
Wim09] oder BPMN-Erweiterungen [Str+11; SCV11] erstellt werden kön-
nen. Die zuvor genannten Arbeiten setzen dabei jeweils unterschiedli-
che Schwerpunkte, die sich jedoch allgemein zunächst auf die Ermittlung
der domänenspezifischen Konzepte und die anschließende Definition der

6Werkzeugunterstützung für BPMN+X: http://code.google.com/p/bpmnx// Letzter
Zugriff: 12.10.2018

http://code.google.com/p/bpmnx//

Seite 26 Kapitel 2

Sprache beziehen. An dieser Stelle wird der DSL-Entwicklungsprozess nach
Brambilla et al. [BCW17] exemplarisch in Form von wesentlichen Schritten
beschrieben.

Analyse der Domäne Zu Anfang steht die Analyse einer Domäne im Vordergrund, bei der rele-
vante Konzepte identifiziert werden. Die Durchführung der Analyse stellt
dabei besondere Herausforderungen an den Entwicklungsprozess, da irre-
levante von relevanten Konzepten getrennt und für die jeweilige Anwen-
dung abstrahiert dokumentiert werden müssen. Damit die Analyse einer
Domäne unterstützt werden kann, wurde ein Katalog von insgesamt 26
Richtlinien für die Entwicklung einer DSL von [Kar+14] vorgeschlagen.
Ein Auszug der wichtigsten Kategorien und zugehörigen Fragestellungen
ist nachfolgend aufgeführt.

Zweck Wofür soll die Sprache eingesetzt werden?

Realisierung Wie soll die Sprache realisiert werden?

Inhalt Was soll Teil der Sprache sein?

Abstrakte Syntax Was ist die (interne) Repräsentation der Sprache?

Konkrete Syntax Was ist die (externe) Repräsentation der Sprache?

Als Grundlage für die Analyse können ausgesuchte Beispiele für konkrete
Sätze der zu entwickelnden Sprache verwendet werden. Solche Beispie-
le können in Form von z.B. Quellcodes oder zuvor bereits erstellten Mo-
dellen verfügbar sein [Sta+06]. Ergebnis der Analyse ist die Dokumentati-
on von Wissen über die Domäne mittels eines initialen Domänenmodells
(siehe Abschnitt 2.1.4.2). Dabei löst dieses Domänenmodell die zuvor ein-
geführten Fragestellungen auf.

Entwurf der Sprache Der zweite Schritt sieht den Entwurf der zu entwickelnden Sprache vor.
Dabei wird das im ersten Schritt der Analyse der Domäne dokumentierte
Wissen über die Domäne in die spätere AS, KS und S der zu entwerfenden
Sprache überführt. Hiermit ist gemeint, dass z.B. die Zuordnung von Kon-
zepten und Beziehungen der Domäne zu Klassen, Attributen und deren
Typen sowie Assoziationen durchgeführt wird. Ferner werden Multiplizi-
tät und weitere Einschränkungen zur Verwendung der Sprache definiert.
Dies kann z.B. durch die Verwendung der Sprache Object-Constraint Lan-
guage (OCL) [OMG14b] durchgeführt werden. Neben der zuvor beschrie-
benen Definition der internen Repräsentation (AS) der Sprache kann auch
die externe Repräsentation (KS) definiert werden.

Grundlagen Seite 27

Validierung der SpracheAls letzten Schritt sieht der Entwicklungsprozess die Validierung der ent-
wickelten Sprache vor. Dies kann hinsichtlich verschiedener Eigenschaf-
ten, wie z.B. der Korrektheit, der Vollständigkeit, der Einfachheit oder der Kon-
sistenz sinnvoll sein. Eine solche Validierung kann durch Anwendung der
Sprache, also durch das Erstellen von Modellen auf ihrer Basis, durchge-
führt werden. Hier kann geprüft werden, ob sich z.B. ein Attribut einer
Klasse mit einem konkreten Wert erstellen lässt oder ob sich spezifische
Konzepte in geforderter Relation zueinander stellen lassen. Besonders bie-
tet sich aber an, die im ersten Schritt verwendeten Beispiele mit der entwi-
ckelten Sprache zu modellieren, da es sich hierbei um eine Art Referenz-
modell handelt.

2.2 Business Process Management

Eine der in dieser Arbeit betrachteten Domänen stellt das Business Pro-
cess Management (BPM) dar. Nachfolgend wird zunächst in Abschnitt 2.2.1
eine Einführung in das BPM durch eine Vorstellung grundlegender Begrif-
fe und Konzepte gegeben. Aufbauend werden weitere für diese Arbeit re-
levante Aspekte von Prozessen im Kontext des BPM näher beschrieben.
So wird in Abschnitt 2.2.2 zunächst das Modell des BPM-Lebenszyklus ein-
geführt. Darauf folgt in Abschnitt 2.2.3 eine Vorstellung des Begriffs der
Flexibilität und Anpassbarkeit in Bezug zu Prozessen.

2.2.1 Einführung in das Business Process Management

Unter dem Begriff Business Process Management (BPM) wird allgemein ein
systematischer Ansatz verstanden, der sich mit verschiedenen Aspekten
von Geschäftsprozessen (hier: Prozesse) beschäftigt. Zum besseren und de-
taillierten Verständnis des BPM werden in diesem Abschnitt zunächst rele-
vante Begriffe eingeführt, die am Ende des Abschnitts für eine spezifische-
re Definition des BPM verwendet werden.

Ein Modell der Domäne des BPM ist in Abbildung 2-5 zur Darstellung
wichtiger Begriffe und ihrer Relationen gezeigt. Es orientiert sich dabei an
das durch [Gad08] vorgestellte integrierte Konzept für das Prozess- und
Workflow-Management. Dabei können die dargestellten Begriffe hinsicht-
lich einer strategischen, fachlich-konzeptionellen und operativen Ebene aufge-
teilt werden. Auf eine detaillierte Erläuterung dieser Ebenen und der ge-
zeigten Begriffe wird nachfolgend eingegangen.

Seite 28 Kapitel 2

Abbildung 2-5:
Modell der Domäne BPM

Prozessmodell Aufgabe

Manuelle
Aufgabe

Aufgabeninstanz

AnwendungArbeitseinheit

Prozessinstanz

Was soll passieren?

ist definiert durch

besteht aus

Repräsentation davon,
was passieren soll

wird zur Laufzeit
repräsentiert durch

Zugewiesene Aufgaben an
einen Prozessteilnehmer,
wie z.B. Mitarbeiter oder
Zulieferer

Werkzeuge, Anwendungen,
Dienste zur IT-basierten
Unterstützung einer
Aktivität

Was aktuell passiert

bindet ein

besteht aus

Ziel
Organisatorischer Zweck oder Ziel,
z.B. Fertigung eines kundenindividuellen Produkts

wird realisiert durch

Keine IT-
Unterstützung

besteht aus

O
pe

ra
ti

ve
 E

be
n

e
(W

o
rk

fl
o

w
-M

an
ag

em
en

t)
Fa

ch
lic

h
-k

o
n

ze
p

ti
o

n
e

lle
 E

b
e

ne

(P
ro

ze
ss

-M
an

ag
em

en
t) Subprozess

St
ra

te
gi

sc
he

 E
b

en
e

(A
n

fo
rd

er
un

ge
n

)

Workflow-
Prozessmodell

technisch realisiert durch

Geschäftsprozess

IT-unterstütze/
automatisierte

Aufgabe

Strategische Ebene Die strategische Ebene bezieht sich auf die für ein Unternehmen relevan-
ten Geschäftsfelder und auf deren kritische Erfolgsfaktoren (engl. Critical
Success Factors (CSF)). Hierbei werden auf Basis der Unternehmensstrate-
gie – hier dargestellt als Ziel – die zentralen Prozesse identifiziert und ge-
plant. Ein Beispiel für ein solches Ziel ist die Fertigung eines kundenin-
dividuellen Produkts, für das eine Vielzahl von Prozessen mit Schnittstel-
len zu unterschiedlichen internen und externen Prozessbeteiligten entlang
der Wertschöpfungskette vorhanden sein können. Hiervon können z.B. die
Beschaffungs- und die Planungsprozesse, aber auch Arbeits- und Produk-
tionsprozesse betroffen sein. Das Ziel bildet dabei also die Basis für die Er-
stellung von Prozessen, die wiederum dafür vorgesehen sind, das jeweili-
ge Ziel zur erreichen.

Fachlich-konzeptionelle
Ebene

Auf der fachlich-konzeptionellen Ebene werden Prozesse (hier: Geschäftspro-
zesse) durch Prozessmodelle definiert. Für den Begriff Prozessmodell finden
sich in der Literatur synonyme Verwendungen durch den Begriff des
Prozess-Schemas und der Prozessdefinition.

Grundlagen Seite 29

Ein Prozessmodell beschreibt in Anlehnung an die an ihn gestellten An-
forderungen unter anderem die Struktur eines realweltlichen Prozesses
(siehe Abschnitt 2.1.1 und Abschnitt 2.1.2). Hiervon betroffen sind z.B.
der Kontroll- und der Datenfluss, die jeweils für den Prozess zu beschrei-
ben sind (siehe Abschnitt 2.3.2). So sind z.B. mögliche Pfade, Regeln für
die Auswahl eines Pfades und auch die benötigten Aufgaben oder Daten
inbegriffen. Eine Aufgabe in einem Prozessmodell beschreibt eine logische
Handlung, die weiter detailliert werden kann. Die Detaillierung einer Auf-
gabe wird auch hierarchischer Prozess oder Subprozess genannt. Lassen sich
Handlungen nicht weiter detaillieren, spricht man von atomaren Aufgaben,
die in Abbildung 2-5 durch manuelle Aufgaben oder IT-unterstützte bzw.
automatisierte Aufgaben dargestellt sind.

Da es sich bei Prozessmodellen lediglich um eine Repräsentation von des-
sen, was passieren soll, handelt, kann es notwendig sein, im Rahmen von
Verbesserungs- und Optimierungsmaßnahmen das Prozessmodell an den
realweltlichen Prozess neu zu orientieren [AHW03; Ger13] (siehe auch Ab-
schnitt 2.2.2).

Operative EbeneDie operative Ebene beschäftigt sich speziell mit der IT-gestützten Ausfüh-
rung von Prozessen. So kann ein Prozessmodell zuvor für unterschiedliche
Zwecke erstellt worden sein. Hier wird zwischen der Dokumentation eines
Prozesses und seiner IT-gestützten Ausführung unterschieden [FR14].

Sollen Prozesse IT-gestützt ausgeführt werden, so können deren Prozessmo-
delle bzw. Workflow-Prozessmodelle im Ganzen oder in bestimmten Teilen in
Prozessinstanzen überführt werden. Man spricht hier auch davon, dass eine
Prozessinstanz ein solches Modell zur Laufzeit repräsentiert und weitere für
die Ausführung notwendige Informationen enthält. Ein einfaches Beispiel
einer derartigen Eigenschaft ist durch den Laufzeitzeiger gegeben, der die
zu einem bestimmten Zeitpunkt aktive Aufgabe identifiziert.

IT-unterstützte Teile einer Prozessinstanz sind in Form von Aufgabeninstan-
zen gegeben. Eine solche Aufgabeninstanz bildet entweder eine Arbeitsein-
heit, die z.B. durch einen Prozessteilnehmer ausgeführt werden kann. Al-
ternativ kann aber auch eine weitere (Software-)Anwendung eingebunden
werden, die die benötigte Funktion für die Aufgabe zur Verfügung stellt.
Eine solche Anwendung kann durch einen IT-Service oder durch Werkzeuge
gegeben sein, die für die technische Realisierung notwendig sind. Ferner
kann eine Aufgabeninstanz aber auch Prozessteilnehmer – wie z.B. eine Mit-
arbeiterin bzw. einen Mitarbeiter, eine Fachabteilung oder einen Zuliefe-
rer – einbinden, die jeweils in verschiedenen Rollen agieren können und
ebenfalls Aufgabeninstanzen ausführen.

Seite 30 Kapitel 2

Sowohl das Workflow-Prozessmodell als auch seine zugehörige Prozessin-
stanz werden in der Literatur für die operative Ebene oftmals mit dem Begriff
des Workflow-Prozesses vereinheitlicht. Nachfolgend ist in Definition 2.2.1
eine häufig verwendete Beschreibung eines Workflow-Prozesses in Anleh-
nung an [Coa96] gegeben.

Definition 2.2.1. (Workflow-Prozess)

Ein Workflow-Prozess ist die vollständige oder teilweise Automatisie-
rung eines Prozesses, durch den Dokumente, Informationen oder Aufga-
ben (engl. Tasks) von einem Prozessbeteiligten zu einem anderen geleitet
werden mit dem Zweck der Handlung und in Abhängigkeit zu prozedura-
len Regeln.

Neben dem Workflow-Prozess wurde ebenso der Begriff des Geschäftsprozes-
ses für die fachlich-konzeptionelle Ebene eingeführt. Eine Übersicht über
unterschiedliche Aspekte der beiden zuvor eingeführten Begriffe des
Geschäfts- und Workflow-Prozesses wird in Tabelle 2-2 gegeben. Hier werden
diese Begriffe hinsichtlich ihrer wichtigsten Merkmale gegenübergestellt.

Tabelle 2-2:
Gegenüberstellung
von Geschäftspro-

zess und Workflow-
Prozess (nach [Gad08])

Kriterium Geschäftsprozess Workflow-Prozess
Zielsetzung Analyse und Gestaltung von

Arbeitsabläufen im Sinne gege-
bener (strategischer) Ziele

Spezifikation der technischen
Ausführung von Arbeitsab-
läufen

Gestaltungsebene Fachlich-konzeptionelle Ebene
mit Bezug zur Geschäfts-
strategie

Operative Ebene mit Bezug zu
unterstützender Technologie

Detaillierungsgrad In einem Zug von einer Mitar-
beiterin bzw. einem Mitarbeiter
ausführbare Arbeitsschritte

Konkretisierung von Arbeits-
schritten hinsichtlich Arbeits-
verfahren sowie personeller
und technologischer Ressour-
cen

Sowohl für die fachlich-konzeptionelle Ebene als auch für die operative Ebe-
ne können verschiedene unterstützende Werkzeuge eingesetzt werden. So
kann auf der operativen Ebene von Workflow Management Systemen (WfMS)
gesprochen werden. In Definition 2.2.2 ist eine Definition eines solchen
Systems in Anlehnung an [Coa96] gegeben.

Definition 2.2.2. (Workflow Management System)

Ein Workflow Management System (WfMS) ist ein Werkzeug, das die
Ausführung von Workflow-Prozessen durch die Verwendung von Softwa-
re definiert, erzeugt und verwaltet.

Grundlagen Seite 31

Die Workflow-Prozesse werden dabei auf einer oder mehreren sogenann-
ten Workflow-Engines (WfE) ausgeführt. Eine WfE ist dabei in der Lage,
Workflow-Prozesse zu interpretieren, mit Workflow-Teilnehmern zu inter-
agieren und – wo benötigt – die Einbindung von weiteren IT-Werkzeugen
und Anwendungen durchzuführen.

In der Literatur [AHW03] wird das BPM heutzutage als eine Erweiterung
zum Workflow-Management gesehen. Dies lässt sich dadurch begründen,
dass es sich nicht nur auf die Phase der Ausführung von Workflow-Prozessen,
sondern auch auf weitere Phasen bezieht. In derartigen Phasen können
z.B. die Evaluation und Verbesserung von bestehenden Prozessen fokussiert
werden (siehe Abschnitt 2.2.2). So kann das BPM ebenfalls durch verschie-
dene IT-gestützte Technologien und Systeme unterstützt werden. Derarti-
ge Systeme werden auch als Business Process Management Systeme (BPMS)
bezeichnet und lassen sich nach [AHW03], wie in Definition 2.2.3 angege-
ben, definieren.

Definition 2.2.3. (Business Process Management System)

Ein Business Process Management System (BPMS) ist ein generisches
Softwaresystem, welches die Gestaltung, Ausführung und insbesondere
die Verwaltung von operationalen Prozessen unterstützt.

Das in dieser Arbeit im Fokus stehende BPM kann auf Basis der zuvor
gegebenen Beschreibung wichtiger Begriffe und in enger Anlehnung an
[AHW03] wie durch Definition 2.2.4 gegeben definiert werden.

Definition 2.2.4. (Business Process Management)

Das Business Process Management (BPM) ist eine Methode zur Unter-
stützung von Geschäftsprozessen (hier: Prozessen). Dabei kommen Metho-
den, Techniken und Software zum Zweck des Designs & Analyse, der Kon-
figuration, der Ausführung, der Evaluation von operationalen Prozessen
unter Berücksichtigung von Menschen, Organisationen, Anwendungen,
Dokumenten und anderen Informationsquellen zum Einsatz.

Die in Definition 2.2.4 aufgeführten Phasen Design & Analyse, Konfigu-
ration, Ausführung und Evaluation zur Verwaltung von Prozessen bilden
dabei einen möglichen Lebenszyklus von Prozessen. Im folgenden Ab-
schnitt wird detailliert auf den sogenannten BPM-Lebenszyklus von Prozes-
sen nach [Wes12] eingegangen, der die zuvor aufgeführten Phasen wieder
aufgreift.

Seite 32 Kapitel 2

2.2.2 Der BPM-Lebenszyklus

Modelle für Lebenszyklen stellen einen möglichen methodischen Rahmen
zur Unterstützung in der Verwaltung von Prozessen dar. Solche Modelle
beschreiben wichtige Phasen und deren Übergänge, enthaltene Aufgaben
und zu erstellende Artefakte. In der Domäne des BPM haben sich je nach
Anwendungsgebiet insgesamt zwei solcher Modelle durchgesetzt [Wes12;
Dum+18]. Aufgrund der inhaltlichen Nähe zu der im vorherigen Abschnitt
eingeführten Definition wird in diesem Abschnitt der BPM-Lebenszyklus
nach [Wes12] bevorzugt.

In Abbildung 2-6 ist hierzu eine eigene Darstellung der relevanten Phasen
Design & Analyse, Konfiguration, Ausführung und Evaluation gezeigt. Jede
dieser vier Phasen ist weiter unterteilt in typische Aktivitäten, die basie-
rend auf [Wes12] im Folgenden näher beschrieben werden.

Abbildung 2-6:
BPM-Lebenszyklus mit

Differenzierung zum
Workflow Management

(nach Weske [Wes12] bzw.
van der Aalst [AHW03])

Validierung, Simulation
und Verifikation

Identifikation und
(Neu-)Gestaltung

SystemauswahlOperation

Prozessverbesserung
und -optimierung

Process-Mining

Konfiguration

Ausführung

Evaluation

Test und Deployment

Implementierung

Wartung

Überwachung

Design & Analyse

B
u

sine
ss Pro

cess M
anagem

ent

W
o

rkflo
w

 M
an

age
m

en
t

Phase Design & Analyse In der ersten Phase des BPM-Lebenszyklus werden zunächst in der Gestal-
tung die abzubildenden Abläufe der Prozesse identifiziert und durch ent-
sprechende Prozessmodelle beschrieben. Für die Beschreibung von Pro-
zessmodellen können unterschiedliche Sprachen eingesetzt werden, auf
die in Abschnitt 2.3 näher eingegangen wird. Neben den Abläufen inner-
halb eines geschäftlichen Umfeldes spielen aber auch die organisatorischen
und technischen Gegebenheiten bei der Identifikation eine wichtige Rolle.
Daher werden neben den Modellen für die Prozesse weitere Modelle er-
stellt, so z.B. Organigramme zur Beschreibung personeller Abhängigkei-
ten oder die organisatorische Einbettung der Prozesse.

Grundlagen Seite 33

Im Anschluss an die Gestaltung werden die erstellten Modelle hinsichtlich
spezifischer Eigenschaften analysiert. Bei dieser Analyse kommen fach-
liche Validierungs- und Verifikationstechniken sowie Simulationen zum
Einsatz. Neben fachlichen Validierungen – wie z.B. durch Experten in
Workshops – stellen Simulationen ein wichtiges methodisches Werkzeug
dar. So können durch entsprechende Werkzeuge auch komplexe Prozess-
modelle analysiert werden, bei denen manuelle Verfahren zu aufwendig
wären.

Phase KonfigurationIn der Phase Konfiguration wird die Implementierung der zuvor entwor-
fenen und analysierten Prozessmodelle durchgeführt. Dabei bezieht sich
der Begriff der Implementierung nicht zwangsweise auf die Umsetzung in
Form von Software. So können die Prozessmodelle auch in Form von
Richtlinien oder als dokumentiertes Beispiel für eine Erfolgsmethode
(engl. Best-Practice) eingesetzt werden, die die Mitarbeiterinnen und Mitar-
beiter umsetzen bzw. befolgen sollen. Soll der gestaltete Prozess durch den
Einsatz von IT unterstützt werden, bieten sich spezielle Unterstützungs-
systeme an, wie z.B. die in Abschnitt 2.2.1 eingeführten Workflow-Engines.

Dabei müssen die Prozessmodelle um technische Informationen ergänzt
werden, um ausgeführt werden zu können. Die Implementierung rich-
tet sich dabei maßgeblich an Anforderungen des Unterstützungssystems.
Nachdem die Zielumgebung bzw. das Unterstützungssystem ausgewählt
und die Implementierung durchgeführt worden sind, kann der implemen-
tierte Prozess durch etablierte Verfahren aus dem Bereich des Software En-
gineering getestet werden. Ein Ziel kann hierbei die Sicherstellung des kor-
rekt implementierten und erwarteten Verhaltens des Gesamtsystems sein.
Ferner können auch Tests hinsichtlich potentieller Laufzeitprobleme – wie
z.B. Performance oder Speicherauslastung – durchgeführt werden.

Phase AusführungIm Anschluss an die Konfiguration und Implementierung von Prozessen kön-
nen Prozessinstanzen in der Phase der Ausführung (engl. Enactment) aus-
geführt werden. Im Fall einer Instanziierung eines Prozesses folgt der Ab-
lauf dem in der Phase Design & Analyse erfassten geschäftlichen Ablauf.
Dabei wird der Zweck verfolgt, ein organisatorisches Ziel zu erfüllen – z.B.
die Fertigung eines kundenindividuellen Produktes. Neben der eigentli-
chen Ausführung einer Prozessinstanz umfasst diese Phase jedoch auch
noch die beiden Aktivitäten der Überwachung und der Wartung. Im Rah-
men der Überwachung werden aktuelle Statusinformationen von Prozess-
instanzen zur Laufzeit überwacht. Das Ziel ist hierbei die Sicherstellung
von Anforderungen an die Prozessinstanzen, die erst zur Laufzeit über-
prüft werden können.

Seite 34 Kapitel 2

Beispiele im Rahmen von Arbeitsprozessen sind z.B. die Arbeitsgeschwin-
digkeit im Akkordbetrieb oder die Qualitätssicherung hinsichtlich einer
Montage von (Teil-)Produkten. Neben diesen eher traditionellen Anforde-
rungen können aber auch Anforderungen hinsichtlich einer Menschenzen-
trierung von Prozessen geprüft werden. So kann bspw. der körperliche Zu-
stand oder die aktuelle Umgebungsbeschaffenheit in einer derartigen An-
forderung betroffen sein. Für die Überwachung von Anforderungen zur
Laufzeit können Softwarewerkzeuge eingesetzt werden, die die Überwa-
chung automatisiert durchführen und im Fall einer Verletzung einen vor-
definierten Handlungsplan zur Abstellung der Anforderungsverletzung
umsetzen. Durch die Ausführung und Überwachung von Prozessinstan-
zen zur Laufzeit entsteht darüber hinaus eine Reihe von Daten, die in der
Phase der Evaluation zur Analyse und Verbesserung von existierenden
Prozessen eingesetzt werden kann. Derartige Daten können z.B. beschrei-
ben, zu welchen Zeitpunkten die ausgeführten Prozessinstanzen, Tasks
oder Aufgaben gestartet und beendet wurden. Ferner können aber auch
zusätzliche Informationen enthalten sein, wie etwa die Anwendung eines
Handlungsplans oder sonstige Fehler.

Phase Evaluation Der BPM-Lebenszyklus nach [Wes12] schließt mit der Phase der Evaluation
ab. In dieser Phase wird jedoch zuvor eine Retrospektive auf Basis der in
der Phase Ausführung erhobenen Daten durchgeführt. Für derartige Ana-
lysen können unterschiedliche Methoden eingesetzt werden, wie etwa das
sogenannte Process-Mining [AWM04; Aal16]. Das Ziel ist es hierbei die kon-
tinuierliche Prozessoptimierung und -verbesserung zu unterstützen. Ein
Beispiel im Rahmen von Arbeitsprozessen ist hierfür z.B. die Analyse von
Teamzuteilungen einzelner Mitarbeiterinnen und Mitarbeiter. So können
Daten in Bezug zu Teamzuteilungen und ermittelter Arbeitsgeschwindig-
keit auf eine vorteilhafte oder ungünstige Einsatzplanung hinweisen. Die
Evaluation bestehender Prozesse auf Basis von Daten aus der Phase der
Ausführung ist dabei insbesondere für Arbeitsprozesse ein wichtiger und
damit essentieller Schritt, um ein gewolltes Maß an Menschenzentrierung
umzusetzen und zu gewährleisten.

Neben den eigentlichen Phasen des BPM-Lebenszyklus geht Weske darüber
hinaus auf verschiedene beteiligte Rollen ein. Da dieser Aspekt auf die spä-
teren Lösungsteile keinen wesentlichen Einfluss hat, wird an dieser Stelle
abstrahiert und auf die Literatur verwiesen [Wes12].

Grundlagen Seite 35

2.2.3 Flexibilität in Prozessen

Die Betrachtung von Flexibilität in Prozessen ist ein weit verbreitetes The-
menfeld der Domäne BPM. Dabei existieren in der Literatur verschiede-
ne Taxonomien [Sof05; RSS06; Sch+08; RW12], die je nach Anwendungs-
zweck relevant für die Gestaltung von Prozessen sein können. Nachfol-
gend werden Flexibilitätsaspekte von Prozessen in Anlehnung an [Sch+08]
und [RW12] vorgestellt und an sinnvollen Stellen miteinander verglichen.
In Abbildung 2-7 werden im oberen Bereich Flexibilitätsaspekte nach
[Sch+08] und im unteren Bereich nach [RW12] gezeigt. Die dargestell-
ten Pfeile weisen dabei auf vergleichbare Eigenschaften der Flexibilitäts-
aspekte hin, auf die nachfolgend in den Beschreibungen der beiden Taxo-
nomien eingegangen wird. Zunächst folgt die Beschreibung der Taxono-
mie nach Schonenberg et. al [Sch+08].

[Sch+08]
Flexibility-by

Design Deviation

Momentary Change

Evolutionary Change

Late Binding

Late Modeling

[RW12]
Flexibility

Evolution

Late Selection

Late Modeling and
Composition

Ad hoc Composition

Unplanned

Behavior-Based
Configuration

Structural
Configuration

Planned

UnderspecificationChange

Variability

Adaptation Looseness

Iterative Refinement

Abbildung 2-7:
Flexibilitätsaspekte im
Vergleich

Seite 36 Kapitel 2

Flexibility-by Design Schonenberg et. al [Sch+08] führen den Flexibilitätsaspekt Flexibility-by
Design an. Darunter verstehen die Autoren die Fähigkeit, alternative Aus-
führungspfade im Prozessmodell beschreiben zu können. Auf Basis die-
ser Ausführungspfade ist während der Ausführung ein geeigneter Pfad
innerhalb der Prozessinstanz auswählbar. Zudem werden dabei verschie-
dene Vorschläge für Realisierungen gegeben, wie z.B. Parallelität, Auswahl,
Schleifen, Verschachtelung, nebenläufige Instanzen und der Abbruch von ein-
zelnen Aufgaben.

Es existieren Sprachen zur Gestaltung von Prozessen, die die zuvor ge-
nannten Realisierungen mindestens in Teilen unterstützen. Zwei Beispie-
le sind durch die Sprachen BPMN2.0 [OMG11] und die UML Aktivitäts-
diagramme [OMG15b] gegeben.

Flexibility-by Deviation Flexibility-by Deviation beschreibt die Fähigkeit einer Prozessinstanz, von
den im Prozessmodell beschriebenen Kontrollflusspfaden abzuweichen.
Dabei werden keine Änderungen am ausgehenden Prozessmodell vorge-
nommen. Derartige Abweichungen können z.B. im Rahmen der Behand-
lungen von Fehlern oder Ausnahmen (engl. Error- and Exception Handling)
sinnvoll sein [Cas+99; AWG05].

Flexibility-by Change Ein weiterer Flexibilitätsaspekt beschreibt die Fähigkeit zur Anpassung
von Prozessen. Von einer derartigen Anpassung können eine oder al-
le auf einem Prozessmodell basierenden und aktuell ausgeführten Pro-
zessinstanzen betroffen sein. Anpassungen können – müssen aber nicht
– auch die Anpassung des Prozessmodells einschließen. Siehe auch zur
Differenzierung die beiden folgenden Untertypen Momentary Change und
Evolutionary Change.

Momentary Change Der erste Untertyp Momentary Change bezieht sich auf die Anpassung einer
oder mehrerer ausgewählter Prozessinstanzen. Es handelt sich folglich um
eine Anpassung, die nach Beendigung der betroffenen Prozessinstanzen
für zukünftige Prozessinstanzen nicht mehr relevant ist. Momentary Change
kann dem durch [RW12] vorgestellten Typ Adaptation bzw. Ad-hoc Change
zugeordnet werden.

Evolutionary Change Sollen von einer Anpassung auch zukünftige Prozessinstanzen betroffen
sein, so muss die Anpassung auch auf dem Prozessmodell durchgeführt
werden. Neue Prozessinstanzen auf Basis des geänderten Prozessmodells
enthalten somit die bereits durchgeführten Anpassungen. Bei derartigen
Anpassungen spricht man von Evolutionary Change. Sie lassen sich dem
durch [RW12] vorgestellten Typ Evolution zuordnen.

Grundlagen Seite 37

Flexibility-by
Underspecification

Der letzte von Schonenberg et. al [Sch+08] beschriebene Flexibilitätsaspekt
bezieht sich auf die Fähigkeit eine Prozessinstanz auszuführen, die auf
Basis eines unvollständigen Prozessmodells instanziiert worden ist. Dies
ist insbesondere dann sinnvoll, wenn erst während der Ausführung al-
le benötigten Informationen über notwendige (Teil-)Aufgaben vorhan-
den sind. Prozessmodelle, die hinsichtlich Flexibility-by Underspecification
erstellt worden sind, enthalten daher oft sogenannte Platzhalter. Dabei
werden konkrete Realisierungen für derartige Elemente erst während der
Ausführung instanziiert. Derartige Realisierungen werden in der kor-
respondierenden Literatur auch Prozessfragmente genannt. Flexibility-by
Underspecification kann ferner in die beiden Typen Late Binding und Late
Modeling unterschieden werden.

Flexibility-by Underspecification ist ein Flexibilitätsaspekt, der nicht allein
durch ein geeignetes Prozessmodell bzw. die eingesetzte Sprache zur
Gestaltung realisiert werden kann. Komplementär muss auch die Aus-
führungsumgebung eine geeignete Unterstützung anbieten. Beispiele für
konkrete Konzepte zur Unterstützung von Late Binding und Late Modeling
sind z.B. durch [Mur+13; CMT10] gegeben.

Late BindingBei Late Binding werden an der Stelle von Platzhaltern vordefinierte Funk-
tionsblöcke, wie z.B. in Form von Subprozessen bzw. Prozessfragmenten, ver-
linkt und ausgeführt. Late Binding wird in der Literatur alternativ auch Late
Selection genannt [RW12].

Late ModelingBei Late Modeling werden ebenso wie bei Late Binding an der Stelle von
Platzhaltern Funktionsblöcke eingebunden. Im Gegensatz zum Late Bin-
ding sind diese Funktionsblöcke beim Late Modeling aber nicht vordefiniert.
Daher müssen sie zunächst gestaltet werden. Diese Funktionsblöcke kön-
nen an der unterspezifizierten Position innerhalb der Prozessinstanz ver-
linkt und anschließend ausgeführt werden. Late Modeling schließt damit
auch die Einbindung eines Nutzers bzw. Domänenexperten mit ein.

Die vier zuvor beschriebenen Flexibilitätsaspekte der Taxonomie nach
[Sch+08] beziehen sich teilweise auf das Prozessmodell oder die darauf
gebildeten Prozessinstanzen. Ferner können sie zu unterschiedlichen Zeit-
punkten im BPM-Lebenszyklus relevant sein. Komplementär zu den zuvor
dargestellten Flexibilitätsaspekten von Prozessen wird nachfolgend auf
die Taxonomie nach [RW12] eingegangen. Dabei werden die im unteren
Bereich von Abbildung 2-7 dargestellten vier Flexibilitätsaspekte Variabili-
ty, Adaptation, Looseness und Evolution aufgeführt.

Seite 38 Kapitel 2

Adaptation Beim Flexibilitätsaspekt Adaptation werden in Anlehnung an auftreten-
de Ereignisse Anpassungen von Prozessen vorgenommen. Derartige Er-
eignisse können im Kontext von Prozessen z.B. bei technischen oder se-
mantischen Fehlern, Zeitüberschreitungen oder der Nichtverfügbarkeit
von Ressourcen auftreten. Der Flexibilitätsaspekt Adaptation wird insbe-
sondere im Kontext von Fehler- und Ausnahmebehandlungen betrachtet
und bietet Konzepte für die Behandlung von vorhersehbaren und unvor-
hersehbaren Ereignissen an. Vergleichbar mit Flexibility-by Change wird
ebenso zwischen kurzzeitigen und dauerhaften Anpassungen unterschie-
den. Kurzzeitige Anpassungen beziehen sich dabei auf Prozessinstanzen.
Sie werden auch als Ad-hoc-Anpassungen bezeichnet. Für den Flexibili-
tätsaspekt werden eine Reihe von Operationen zur Anpassung [WRR07;
WRR08] vorgestellt, welche auch Anpassungsmuster genannt werden.
Sind von einer Anpassung nicht nur Prozessmodelle, sondern auch Pro-
zessinstanzen betroffen, so muss das Unterstützungssystem, wie z.B. eine
Workflow-Engine, auch eine entsprechende Funktionalität bieten.

Looseness Der Flexibilitätsaspekt Looseness wird insbesondere mit wissensintensiven
Prozessen in Verbindung gesetzt. Hier sind Reihenfolgen von Aktivitäten
hochgradig spezifisch für eine konkrete Situation, sodass sie zum Zeit-
punkt der Gestaltung nicht oder nur eingeschränkt gestaltbar sein können.
Looseness sieht somit einen gewissen Grad an unterspezifizierten Prozes-
sen vor und ist daher vergleichbar mit Flexibility-by Underspecification. Es
werden die vier Typen Late Selection, Iterative Refinement, Late Modeling and
Composition und Ad-hoc Composition von Looseness unterschieden.

Late Selection Late Selection ist dabei unmittelbar vergleichbar mit Late Binding. Es sieht
die Verwendung von Platzhaltern vor, die zur Ausführungszeit durch Sub-
prozesse bzw. Prozessfragmente ersetzt werden können.

Iterative Refinement Bei Iterative Refinement können zur Laufzeit weitere Aktivitäten hinsicht-
lich der Gestaltung von Prozessen ausgeführt werden. Bei Late Modeling
and Composition und Ad-hoc Composition handelt es sich um spezielle Typen
von Iterative Refinement. Dabei ist Late Modeling and Composition vergleich-
bar mit dem durch [Sch+08] vorgestellten Flexibilitätsaspekt Late Modeling.
Es werden aber zusätzlich Aspekte der Komposition von neuen Funktions-
blöcken auf Basis existierender und neu zu gestaltender Prozessfragmente
betrachtet.

Ad-hoc Composition Bei Ad-hoc Composition werden zur Laufzeit einzelne Prozessfragmente
sowie Bedingungen hinsichtlich ihrer erlaubten Kombinationen erstellt.
Darauf aufbauend können zur Laufzeit Prozessfragmente durch Nutzerin-
nen und Nutzer zusammengestellt werden.

Grundlagen Seite 39

EvolutionDer BPM-Lebenszyklus sieht eine iterative Weiterentwicklung von Prozes-
sen in Anlehnung an sich ändernde Anforderungen oder im Kontext ei-
nes sogenannten kontinuierlichen Verbesserungsprozesses (KVP) vor. Unter
dem Flexibilitätsaspekt Evolution werden Anpassungen von Prozessmo-
dellen sowie Prozessinstanzen verstanden. Dies ist vergleichbar mit dem
durch [Sch+08] vorgestellten Flexibilitätsaspekt Flexibility-by Change sowie
seinem Untertyp und Evolutionary Change.

VariabilityBei dem letzten Flexibilitätsaspekt Variability wird der Umgang mit ver-
schiedenen Prozessvarianten verstanden. Prozessvarianten teilen sich einen
gemeinsamen Kernprozess, auf dem aufbauend weitere Teile im Rahmen
der Phase Konfiguration hinzugefügt werden können. Variability kann da-
her als eine spezielle Variante der Typen Late Selection bzw. Late Binding
verstanden werden, die neben den Phasen Design & Analyse und Ausfüh-
rung auch eine Rolle in der Phase Konfiguration spielen kann. So können
Prozessvarianten in beiden vorgestellten Ansätzen in Anlehnung an einen
konkreten Kontext bereits in der Phase Konfiguration selektiert werden. Der
daraus resultierende konfigurierte Prozess benötigt in diesem Fall keine
Prüfung von Bedingungen zur Laufzeit. Dies kann relevant sein, wenn das
Unterstützungssystem keine Anpassung von Prozessen zur Laufzeit un-
terstützt. Dabei wird zwischen dem verhaltensbasierten und dem strukturba-
sierten Konfigurationsansatz unterschieden, auf die bspw. in [Tor+12] vertieft
eingegangen wird.

Verhaltensbasierter
Konfigurationsansatz

Beim verhaltensbasierten Konfigurationsansatz werden Prozessvarianten und
zugehörige Bedingungen in einem gemeinsamen Prozessmodell beschrie-
ben. Bei der Ausführung einer zugehörigen Prozessinstanz werden die Be-
dingungen in Anlehnung an den bestehenden Kontext geprüft und eine
entsprechende Prozessvariante selektiert und ausgeführt. Existierende An-
sätze, die diesen Ansatz unterstützen, sind z.B. durch Configurable Even-
driven Process Chains (C-EPC) [RA07] und C-YAWL [Got+08] gegeben.

Strukturbasierter
Konfigurationsansatz

Der strukturbasierte Konfigurationsansatz sieht die Trennung der Prozessva-
rianten von den Bedingungen vor. So existiert ein sogenannter Basispro-
zess, welcher an spezifischen Punkten sogenannte Variation Points ent-
hält. Ein Variation Point kann durch spezifische Operationen zur Anpas-
sung manipuliert werden. Variation Points sind dabei vergleichbar mit den
aus Late Selection bekannten Platzhaltern. Eine Manipulation eines Variati-
on Point führt zu der Herleitung einer spezifischen Prozessvariante. Ansät-
ze, die den strukturellen Konfigurationsansatz umsetzen sind durch Pro-
vop [HBR10] und vBPMN [DZK11] gegeben.

Seite 40 Kapitel 2

[Tor+12] argumentieren, dass der strukturbasierte Konfigurationsansatz ins-
besondere bei größeren Prozessmodellen Vorteile gegenüber dem verhal-
tensbasierten Konfigurationsansatz bietet. So kann durch die Trennung des
Basisprozesses von den Bedingungen (siehe auch SoC) eine reduzierte
Komplexität hinsichtlich der Gestaltung dieser Aspekte erreicht werden.
Ferner ist es beim strukturbasierten Konfigurationsansatz nicht notwendig,
dass bereits zur Laufzeit alle Prozessvarianten bekannt sind. Hierdurch
ist insbesondere die Erweiterungsfähigkeit der beteiligten Modelle positiv
betroffen.

Zuvor wurden weitere Flexibilitätsaspekte von Prozessen vorgestellt. In
Teilen verhalten sich die beiden aufgezeigten Taxonomien komplemen-
tär zueinander. So nimmt die durch [RW12] vorgestellte Taxonomie bspw.
keinen direkten Bezug auf den Flexibilitätsaspekt Flexibility-by Design.
Dafür fügen Reichert und Weber den Flexibilitätsaspekt Variability hinzu,
der wiederum in [Sch+08] keine Berücksichtigung findet. Die restlichen
Flexibilitätsaspekte beinhalten ähnliche Eigenschaften, die sich nur ge-
ringfügig unterscheiden.

2.3 Business Process Modeling

Die zweite in dieser Arbeit betrachtete Domäne stellt das Business Pro-
cess Modeling (BPMod) dar. Dabei kann das BPMod als eine untergeord-
nete Disziplin des BPM betrachtet werden. Sie umfasst dabei zahlreiche
Aspekte, die in der Gestaltung von Prozessen relevant sind. Nachfolgend
wird zunächst in Abschnitt 2.3.1 eine Einführung in das BPMod mit dem
Fokus auf der Vorstellung von unterschiedlichen Arten von Sprachen zur
Gestaltung von Prozessen gegeben. Ergänzend wird in Abschnitt 2.3.2
auf unterschiedliche Perspektiven von Prozessen eingegangen. In Ab-
schnitt 2.3.3 und Abschnitt 2.3.4 werden jeweils Beispiele und eine Über-
sicht der gängigsten Elemente von UML Aktivitätsdiagrammen sowie des
De-facto-Standards BPMN2.0 gegeben.

2.3.1 Einführung in das Business Process Modeling

Für die Phase Design & Analyse des BPM-Lebenszyklus werden geeignete
Sprachen zur Gestaltung von Prozessen benötigt. So haben sich für diese
beiden Bereiche einige bekannte Standards etabliert. Hierzu werden die
Sprache BPEL [OAS07] und seit 2011 auch die Sprache BPMN2.0 [OMG11]
gezählt. Dabei hat sich über die Jahre die Sprache BPMN2.0 als De-facto-
Standard in der Industrie durchgesetzt. Wissenschaftliche Vertreter von

Grundlagen Seite 41

Ansätzen zur Gestaltung von Prozessen sind beispielsweise durch die
Ansätze ADEPT1 und ADEPT2 [RD09], YAWL [AT05] oder Petri-Netze
[Mur89] gegeben.

Neben den bereits zuvor genannten Ansätzen und Sprachen existiert eine
Vielzahl an weiteren Sprachen, die zur Gestaltung von flexiblen Prozessen
eingesetzt werden kann. Diese Sprachen lassen sich in die drei Kategorien
datenflussorientiert, kontrollflussorientiert und objektorientiert einteilen. Eine
Zusammenfassung von diagrammbasierten Sprachen mit Zuordnung zu
einer der drei zuvor genannten Kategorien ist in Tabelle 2-3 nach [Gad08]
dargestellt.

Orientierung Methode

Objektorientiert Aktivitätsdiagramm (UML) Activitychart-Diagramm

Statechart-Diagramm Use Case-Diagramm (UML)

Objektorientierte EPK Integrationsdiagramm (SOM)

Vorgangsereignisschema (SOM)

Kontrollflussorientiert Petri-Netze Folgestruktur- und Folgeplan

Aufgabenkettendiagramm (PROMET) GPM Diagramm

Struktogramme

Swimlane-Diagramm Erweiterte EPK Picture

Business Process Model and Notation (BPMN)

Datenflussorientiert IDEF-Diagramm Datenflussdiagramm (SSA)

Flussdiagramm (SADT)

Tabelle 2-3:
Sprachen zur Gestal-
tung von Prozessen (nach
[Gad08])

Eine Sprache für die Gestaltung von Prozessen sollte dabei je nach Anfor-
derung in der Lage sein, geschäftliche Abläufe durch grundlegende Kon-
zepte, wie etwa die Benennung von notwendigen Informationen, den ein-
zelnen Tätigkeiten, Ablaufbeziehungen sowie die Zuordnung von Rollen,
zu beschreiben.

2.3.2 Perspektiven in Geschäftsprozessmodellen

Moderne Prozesse berücksichtigen eine Vielzahl unterschiedlicher Aspek-
te. Die adäquate Gestaltung dieser Aspekte von Prozessen kann dabei
eine hohe Komplexität aufweisen. Zur Reduzierung dieser Komplexität
werden Prozesse häufig aus verschiedenen Perspektiven beschrieben. Eine
Perspektive kann dazu genutzt werden, um einen einzelnen oder eine
Gruppe von ausgesuchten Aspekten fokussieren zu können.

Seite 42 Kapitel 2

Der Vorteil bei der Verwendung von unterschiedlichen Perspektiven auf
einen Prozess ist die (teilweise) Trennung der relevanten Aspekte. Das un-
terliegende Konzept ist dabei vergleichbar mit dem in Abschnitt 1.2 einge-
führten Konzept des Separation-of-Concerns (SoC). Durch Perspektiven kön-
nen verschiedene Fragen beantwortet werden, die unterschiedliche Aus-
prägungen haben können. Auf eine Auswahl dieser Fragen nach [CKO92]
wird nachfolgend eingegangen.

• Welche Handlung soll stattfinden?

• Wer wird die Handlung ausführen?

• Wann und wo wird die Handlung stattfinden?

• Wie und warum soll die Handlung stattfinden?

• Wer ist von der Handlung betroffen?

Durch Curtis [CKO92] werden insgesamt die vier folgenden Klassen von
Perspektiven unterschieden. In der Gesamtheit aller Klassen wird ein Pro-
zess als integriert, vollständig bzw. konsistent verstanden. Auf Details dieser
Perspektiven wird nachfolgend eingegangen.

Funktion Die Perspektive Funktion beschreibt, was in den einzelnen Schritten des
Prozesses getan werden muss. Ferner werden auch Abhängigkeiten zu ver-
schiedenen Informationen, wie z.B. Daten, Artefakten oder Produkten, be-
trachtet.

Verhalten Die Perspektive Verhalten beschreibt den Kontrollfluss des Prozesses. Sie
bezieht sich damit auf zeitliche und logische Abhängigkeiten zwischen
verschiedenen Elementen des Prozesses.

Organisation Durch die Perspektive Organisation wird festgelegt, welcher Aufgabenträ-
ger in einem Prozess an welchem Schritt beteiligt ist. Klassischerweise sind
hiervon die drei Typen Mensch, Maschine und Anwendung betroffen. Ferner
können auch Gruppen, Kategorien, Rollen oder organisatorische Einhei-
ten sowie ihre Beziehungen als relevante Aspekte des Prozesses darstell-
bar sein.

Information Die Perspektive Information beschreibt den Datenfluss eines Prozesses. Da-
mit fokussiert sie die Daten und Informationen, die durch Schritte des Pro-
zesses erzeugt oder manipuliert werden. Neben dieser Beschreibung von
Ein- und Ausgaben stehen aber auch die Struktur der Daten und Informa-
tionen sowie ihre Beziehungen im Fokus dieser Perspektive.

Grundlagen Seite 43

Weitere Perspektiven
auf Prozesse

In der Literatur [JB96; AJ00; AHW03; ARD07] werden weitere Perspekti-
ven oder modifizierte Klassen von Perspektiven betrachtet. So unterschei-
den [JB96; AJ00] insgesamt fünf verschiedene Klassen. Dabei werden die
durch Curtis vorgestellten Perspektiven Funktion und Verhalten in einer
neuen Perspektive Prozess zusammengefasst. Die Ansätze führen weitere
Perspektiven durch Operation und Integration ein. Die Perspektive Opera-
tion beschreibt elementare Operationen, die von den an einem Prozess be-
teiligten Ressourcen und Anwendungen ausgeführt werden. Beispiele für
derartige Operationen geben die Autoren durch das Erstellen, Lesen oder
Modifizieren von Daten aus der Perspektive Information an. Die Perspekti-
ve Integration führt die einzelnen Elemente der Perspektive Prozess mit den
Elementen der anderen Perspektiven zusammen. So werden z.B. identifi-
zierte Aufgaben zu Rollen, Gruppen oder organisatorischen Einheiten aus
der Perspektive Organisation referenziert.

Der in [AHW03] vorgestellte Ansatz unterscheidet die fünf Perspektiven
Funktion, Prozess, Organisation, Information und Operation. Eine Unterschei-
dung zu den in [CKO92] vorgestellten Perspektiven ist durch die Perspek-
tiven Prozess und Operation möglich. Die Perspektive Prozess kann der Per-
spektive Verhalten zugeordnet werden, da sie einen vergleichbaren Zweck
erfüllt. Analog zu dem in [JB96; AJ00] dargestellten Ansatz werden in der
Perspektive Operation elementare Operationen beschrieben.

Der letzte hier vorgestellte Ansatz [ARD07] beschreibt zunächst die vier
Perspektiven Prozess, Daten, Ressource und Task. Dabei lassen sich diese Per-
spektiven hinsichtlich ihrer Bedeutung auf die durch [CKO92] vorgestell-
ten Perspektiven anwenden. So lässt sich Prozess zu Verhalten, Task zu Funk-
tion, Daten zu Information und Ressource zu Organisation zuordnen. Auf die-
ser Grundlage beschreiben [AHW03], dass eine Reihe weiterer Perspekti-
ven je nach Anwendungszweck als sinnvoll erachtet werden kann. Sie füh-
ren daher die sogenannten höherwertigen Perspektiven Kontext, Ziel, Per-
formance und Produkt bzw. Dienstleistung ein. Im Rahmen der Perspektive
Kontext kann das Umfeld, für den der Prozess beschrieben wird, gestaltet
werden. So kann die Ausführung einzelner Aufgaben oder die Einbindung
von Ressourcen z.B. von der Jahres- oder Tageszeit abhängig sein. Die
Perspektiven Ziel, Performance und Produkt bzw. Dienstleistung beschreiben
weitere Aspekte des Prozesses. Die Autoren verweisen darauf, dass diese
drei Perspektiven auch oftmals in klassischen Perspektiven berücksichtigt
werden können.

Die in diesem Abschnitt vorgestellten Konzepte für Perspektiven bilden
die Basis für die in Abschnitt 4.3.3 durchgeführte Analyse der Sprache

Seite 44 Kapitel 2

BPMN2.0. Dabei muss an dieser Stelle angemerkt werden, dass nicht je-
de der aufgeführten Perspektiven auch in einer solchen Sprache enthalten
sein muss. Die durch [CKO92] genannten Perspektiven Funktion und Ver-
halten sind typischerweise aber Bestandteil einer entsprechenden Sprache.
Andere Perspektiven wie Organisation und Information können als optional
betrachtet werden.

In den nachfolgenden Abschnitten 2.3.3 und 2.3.4 werden zwei Beispiele
für Sprachen zur Gestaltung von Prozessen gegeben. So werden zunächst
UML Aktivitätsdiagramme [OMG15b] vorgestellt, welche die Basis für die
Gestaltung von Verhalten im Rahmen des Ansatzes Adapt Cases bilden
(siehe Abschnitt 2.4). Anschließend wird die Sprache BPMN2.0 [OMG11]
vorgestellt, welche in der Domäne BPM den De-facto-Standard zur Gestal-
tung von Prozessen bildet und auch in dem in dieser Arbeit vorgestellten
Lösungsansatz verwendet wird.

2.3.3 UML Aktivitätsdiagramm

Die Unified Modeling Language (UML) [OMG10] stellt einen industriel-
len Standard dar, der unterschiedlichste Aspekte der objektorientierten Ge-
staltung von modernen Softwaresystemen beinhaltet. Dabei existiert die
Möglichkeit, dass sowohl die Struktur als auch das Verhalten von derarti-
gen Systemen gestaltet werden können. Die in dieser Arbeit fokussierten
Prozesse stellen eine Form für ein solches Verhalten dar. Hierzu bietet die
UML verschiedene Diagramme zur Gestaltung von Verhalten an, wie z.B.
das Zustandsdiagramm oder das Aktivitätsdiagramm.

In Abbildung 2-10 ist eine Übersicht ausgesuchter Elemente von Aktivi-
tätsdiagrammen dargestellt. Nachfolgend wird auf eine detaillierte Beschrei-
bung dieser Elemente sowie auf ein zugehöriges Beispiel eingegangen.

Abbildung 2-8:
Elemente von UML

Aktivitätsdiagrammen Action

ObjectNode

Initial Node

Activity Final

Flow Final

Merge Node

Decision Node

Join Node

Fork Node

P
a

rt
it

io
n

Control Flow

Data Flow

Decision, Merge, Fork, Join Initial, FinalAction, Partition, ObjectNode Flow

Grundlagen Seite 45

Mit Hilfe eines Aktivitätsdiagramms kann ein Ablauf von einzelnen Auf-
gaben in Form einer Sequenz von Aktivitäten (hier: Action) beschrieben
werden. Ein Element des Typs Action kann weiteres Verhalten enthalten,
wodurch die übergeordnete Aktivität verfeinert wird. Elemente des Typs
Action können durch ein Element des Typs Partition gruppiert werden.
Ein Element des Typs Partition kann z.B. zur Beschreibung von einer or-
ganisationalen Zugehörigkeit oder einer Rolle verwendet werden. Bei der
Ausführung von Aktivitäten können Daten benötigt oder erzeugt werden.
Durch ein Element des Typs ObjectNode können derartige Daten beschrie-
ben werden.

Im Rahmen des Kontrollflusses können Verzweigungen vorkommen, mit
deren Hilfe können konditional-abhängige Sequenzen (Decision) beschrie-
ben werden. Durch weitere Konstrukte der Sprache sind aber auch paralle-
le (Teil-)Sequenzen (Fork) möglich. Ein verzweigter Kontrollfluss kann ent-
weder durch ein Element des Typs MergeNode oder durch ein Element des
Typs JoinNode zusammengeführt werden.

Der Start des Verhaltens in einem Aktivitätsdiagramm wird durch ein Ele-
ment des Typs InitialNode beschrieben. Es werden insgesamt zwei mögli-
che Beendigungen des Verhaltens unterschieden. Zum einen kann durch
Elemente des Typs ActivityFinal das Verhalten der aktuellen Aktivität be-
endet werden, wohingegen durch Elemente des Typs FlowFinal lediglich
der jeweilige (Teil-)Pfad des Verhaltens beendet wird.

Um den Kontrollfluss zu beschreiben kann das Flusselement vom Typ Con-
trolFlow verwendet werden. Ein solches Element verbindet jeweils zwei
Elemente miteinander, wie z.B. Aktivitäten oder die zuvor eingeführten
Kontrollelemente. Um Datenfluss zu beschreiben, kann das Flusselement
vom Typ DataFlow verwendet werden.

Ein Beispiel eines Aktivitätsdiagramms ist in Abbildung 2-9 gezeigt. Auf eine
Beschreibung des dargestellten Verhaltens wird nachfolgend eingegangen.

Integrate electronic
parts into chassis

Assemble electronic parts

Assemble mechanic parts

Run quality check

Report

Robot Abbildung 2-9:
Beispiel eines UML
Aktivitätsdiagramms

Das dargestellte Verhalten beschreibt einen Montageprozess, dessen Ver-
halten sich auf die beiden Rollen Worker und Robot aufteilt. Durch die Rol-
le Worker wird dabei die eigentliche Montage durchgeführt. Die Rolle Ro-
bot übernimmt anschließend Maßnahmen zur Qualitätssicherung und er-

Seite 46 Kapitel 2

stellt einen zugehörigen Bericht. Dabei wird das Verhalten zunächst durch
die Rolle Worker gestartet. Hier wird der Kontrollfluss in zwei parallele
Pfade aufgeteilt. Hierdurch ist eine parallele Ausführung der dargestellten
Aktivitäten des nachfolgenden Kontrollflusses möglich. Ob diese Aktivitä-
ten tatsächlich parallel oder beliebig versetzt ausgeführt werden, ist durch
ein Aktivitätsdiagramm nicht beschreibbar. Werden beide Aktivitäten been-
det, werden die einzelnen Pfade wieder zu einem Pfad zusammengeführt.
Die letzte Aktivität wird durch die zweite Rolle Robot ausgeführt. Dabei
wird ein neues Datenobjekt mit der Bezeichnung Report erzeugt und das
Gesamtverhalten anschließend beendet.

2.3.4 BPMN2.0

In der Gestaltung von Prozessen stellt die Sprache Business Model and Nota-
tion (BPMN) [OMG11] derzeit den De-facto-Standard dar. Die Entwicklung
der Sprache BPMN2.0 wird durch die Object Management Group (OMG)
verwaltet. Durch die Verwendung der Sprache BPMN2.0 wird das Ziel
verfolgt, den Übergang von der Gestaltung von Prozessen hin zu deren
Ausführung zu verkürzen bzw. zu vereinfachen. Hierzu enthält die Spra-
che zahlreiche Sprachelemente für die Domäne BPM. Die Gestaltung von
Prozessen kann bereits so umfangreich sein, dass der gestaltete Prozess
oftmals durch ein entsprechendes Prozessunterstützungssystem, wie z.B.
eine Workflow-Engine, direkt ausgeführt werden kann.

Die Sprache BPMN2.0 verfügt seit der Version 2.0 über insgesamt vier
unterschiedliche Diagrammtypen. Jeder Diagrammtyp fokussiert dabei
einen unterschiedlichen Aspekt in der Gestaltung von Prozessen. Als zen-
traler Diagrammtyp können Business Process-Diagramme (BPD) betrachtet
werden. Da an Abläufen häufig unterschiedliche inter- und intraorgani-
satorische Rollen beteiligt sind, existieren zudem drei weitere Diagramm-
typen zur Beschreibung von Kollaborationen, Konversationen und Cho-
reographien. Der Fokus der weiteren Diagrammtypen liegt auf der Ge-
staltung von Zusammenhangkomponenten zwischen unterschiedlichen
Prozessen oder beteiligten Rollen. So kann hier z.B. stärker auf den Nach-
richtenfluss zwischen beteiligten Prozessrollen durch ein Kollaborations-
diagramm Bezug genommen werden.

In dieser Arbeit liegt der Fokus auf der Gestaltung von Prozessen unter
Verwendung von BPD. Nachfolgend wird daher zunächst eine Auswahl
von zugehörigen Elementen sowie ein Beispiel eines Prozesses durch ein
BPD gegeben. Auf eine detaillierte Übersicht über weitere Diagrammtypen
wird an dieser Stelle verzichtet.

Grundlagen Seite 47

Das Business Process Diagram (BPD) stellt einen zentralen Typ von Diagram-
men in der Sprache BPMN2.0 dar. Ein BPD beschreibt dabei den Ablauf ei-
nes Prozesses durch Aktivitäten bzw. Tasks. Dabei werden in der Beschrei-
bung von Abläufen eines Prozesses zum Teil vergleichbare Konzepte ver-
wendet, wie sie auch in UML Aktivitätsdiagrammen vorkommen (siehe Ab-
schnitt 2.3.3). In Abbildung 2-10 werden ausgesuchte Elemente zur Gestal-
tung von Prozessen durch ein BPD gezeigt. Auf ihre Bedeutung wird nach-
folgend detaillierter eingegangen.

Data
Object

Pool

Lane A Lane B
Subprocess

Eigenschaften von
Aktivitäten:

Multi-Instance (Sequentiel)

~

Loop

Ad-hoc

Multi-Instance (Parallel)

Gateways EventsTasks, Subprozesse

Manual
Task

User
Task

Task

Service
Task

~

Exclusive (XOR)

Inclusive (OR)

Complex

Parallel (AND)

Start

End

Intermediate

Message

Timer

Pool, Lane, Data Object
Abbildung 2-10:
Elemente eines Business
Process Diagram

Das Verhalten eines durch ein BPD gestalteten Prozesses enthält eine oder
mehrere Aktivitäten. Aktivitäten können entweder durch Elemente des
Typs Task oder des Typs Subprocess (deutsch: Unterprozess) beschrieben
werden. Dabei handelt es sich bei Tasks um eine atomare und bei Subpro-
cess um eine dekomponierbare Aufgabeneinheit. Ferner sieht die Sprache
BPMN2.0 zahlreiche Untertypen für Tasks vor, für die jeweils ein spezieller
Zweck vorgesehen ist. Beispiele hierfür sind durch die Typen ServiceTask,
UserTask und ManualTask gegeben. Der Typ ServiceTask ist dafür vorgese-
hen, dass ein IT-Dienst die jeweilige Aktivität übernehmen soll. Dement-
sprechend können UserTasks dafür eingesetzt werden, dass ein menschli-
cher Akteur die Aktivität unter Verwendung einer IT-Unterstützung aus-
führt. Ein besonderer Typ von Tasks ist durch ManualTask gegeben. Hierbei
wird angenommen, dass die zugehörige Aktivität durch einen menschli-
chen Akteur, aber ohne IT-Unterstützung, durchgeführt wird.

Ein Element des Typs Subprocess kann dabei wiederum weitere Elemen-
te zur Beschreibung von Verhalten enthalten. Das durch ihn beschriebene
Verhalten ist daher dekomponierbar. Ein solches Element kann sowohl auf-
geklappt als auch zusammengeklappt darstellt werden. In Abbildung 2-10
ist ein zusammengeklapptes Element gezeigt, was durch das umrandete
Plussymbol gezeigt wird. Eine zusammengeklappte Darstellung kann z.B.
dann verwendet werden, wenn das enthaltene Verhalten erst später gestal-
tet wird. Alternativ kann hierdurch aber auch bereits beschriebenes Ver-

Seite 48 Kapitel 2

halten ausgeblendet werden, sodass die Fokussierung auf weitere Aspekte
des Prozesses unterstützt werden kann.

Sowohl Tasks als auch Unterprozesse können darüber hinaus auch mit ei-
ner Reihe von unterschiedlichen Eigenschaften versehen werden. So kann
z.B. für einen Task spezifiziert werden, dass mehrere seiner Instanzen par-
allel oder sequentiell ausgeführt werden sollen. Alternativ kann auch eine
wiederholte Ausführung durch die Eigenschaft Loop beschrieben werden.
Die Eigenschaft Ad-hoc hingegen kann z.B. bei Unterprozessen eingesetzt
werden, wenn die enthaltenen Aktivitäten in einer nur geringfügig vorbe-
stimmten Reihenfolge ausgeführt werden dürfen.

Durch ein Element des Typs Pool werden Aktivitäten gruppiert, die zu ei-
nem Teilnehmer eines Prozesses gehören. Kann ein Teilnehmer eines Pro-
zesses weiter aufgeteilt werden, so bietet sich die Verwendung von Ele-
menten des Typs Lane an. Ein Element des Typs Lane ist dabei Teil eines
Pools und enthält Aktivitäten, die zu einem untergeordneten Teilnehmer
bzw. zu einer untergeordneten Rolle gehören. In Prozessen können eben-
falls die Erzeugung und Verwendung unterschiedlichster Daten notwen-
dig sein. Daten können durch Elemente des Typs DataObject im Verlauf
des Prozesses beschrieben werden.

In der Sprache BPMN2.0 können entlang des Kontrollflusses Elemente des
Typs Gateway eingesetzt werden. Hierdurch wird der Verlauf des Kontroll-
flusses zur Ausführungszeit gesteuert, sodass bspw. die Auswahl eines al-
ternativen Pfades oder mehrerer paralleler Pfade ermöglicht wird. Dabei
existieren Gateways für XOR-, OR- und AND-Operationen. Als Ergänzung
dieser gängigen Typen von Gateways können aber auch Elemente des Typs
ComplexGateway eingesetzt werden. Durch ein solches Gateway können
komplexe Konditionen ausgewertet werden, sodass bspw. eine Auswahl
von mehreren ausgehenden Pfaden ermöglicht wird.

Events sind spezielle Konstrukte einer Sprache, die Ereignisse beschreiben.
In der Sprache BPMN2.0 wird dabei in die drei grundlegenden Typen Star-
tereignis (Start), Zwischenereignis (Intermediate) und Endereignis (End) un-
terschieden. Ferner sind weitere Typen von Ereignissen für Spezialfälle
verfügbar. So können z.B. auch zeitgesteuerte Ereignisse (TimerEvent) ein-
gesetzt werden, die sowohl als ein Start- als auch als ein Zwischenereignis
eingesetzt werden können. Neben Elementen des Typs TimerEvent ist ein
grundlegender weiterer Typ durch MessageEvent gegeben. Ein solches Ele-
ment stellt einen wesentlichen Teil eines Nachrichtenaustauschs zwischen
Kommunikationspartnern dar.

Grundlagen Seite 49

Die zuvor beschriebenen Elemente können durch verschiedene Elemente
miteinander verbunden werden. Eine Auswahl derartiger Elemente ist in
Abbildung 2-11 dargestellt. Durch ein Element des Typs SequenceFlow wird
die Reihenfolge einzelner Aktivitäten eines Prozesses festgelegt. Hierbei
können z.B. Elemente der Typen Task, Subprocess oder Gateway miteinan-
der verbunden werden. Werden Gateways mit Entscheidungen eingesetzt,
so bietet sich die Möglichkeit der Kennzeichnung, dass es sich bei einem
beteiligten Element des Typs SequenceFlow um die Standardwahl (default)
handelt.

Pool A
MessageFlow

SequenceFlow

Default
SequenceFlow

DataAssociation

Task A Task B

Default
Task

Alternative
Task

Data
Producing

Task

Data
Consuming

Task

Some DataPool B

DataAssociation

Sequence Flow Data AssociationPool, Message Flow

Task

MessageFlow
Task A Task B

Abbildung 2-11:
Weitere Elemente eines
Business Process Diagram

Durch ein Element des Typs MessageFlow wird der Austausch von Nach-
richten (engl. Message) beschrieben. Nachrichten können zwischen Akti-
vitäten und Elementen des Typs Pool ausgetauscht werden. Ein Beispiel
für den Nachrichtenaustausch ist in Abbildung 2-11 gegeben. Hier ist
ein Nachrichtenaustausch von der Aktivität Task A zur Aktivität Task B
dargestellt. Durch den dritten Typ DataAssociation können Datenobjekte
mit Aktivitäten verbunden werden. Ein Datenobjekt kann – wie in Abbil-
dung 2-11 dargestellt – z.B. durch eine Aktivität erzeugt oder von ihr für
die weitere Verarbeitung verlangt werden.

Ein Beispiel für einen Prozess, der durch ein BPD der Sprache BPMN2.0 be-
schrieben worden ist, wird in Abbildung 2-12 gezeigt. Das Verhalten ori-
entiert sich dabei an dem gegebenen Beispiel für UML Aktivitätsdiagramme
(siehe Abbildung 2-9). Ein wesentlicher Unterschied zur Gestaltung mittels
UML Aktivitätsdiagrammen ist hier vornehmlich durch die Differenzierung
unterschiedlicher Typen von Aktivitäten erkennbar. So lässt sich bspw.
ausdrücken, dass bestimmte Tasks IT-gestützt oder ohne IT-Unterstützung
durchgeführt werden sollen. Ferner lässt sich das Verhalten der beiden
Rollen Worker und Robot durch eine nachrichtenbasierte Kommunikation
entkoppeln. So ist eine Beendigung des (Teil-)Verhaltens der Rolle Worker
möglich, sobald die letzte zugehörige Aktivität beendet worden ist.

Seite 50 Kapitel 2

Abbildung 2-12:
Beispiel eines Busi-

ness Process Diagram
Assemble parts

~

Robot

Assemble
mechanic parts

Assemble
electronic parts

Item is
ready for
quality check

Run

quality
check

Integrate
electronic parts

into chassis

Worker

Report

Ferner ist durch den Unterprozess Assemble parts ein Beispiel für einen so-
genannten Ad-Hoc-Prozess gegeben. Das in ihm gezeigte Verhalten wird
auch als schwach strukturiert bezeichnet. Hierdurch ist die reale Reihen-
folge der Aktivitäten Assemble electronic parts und Assemble mechanic parts
durch die Rolle Worker frei wählbar.

2.4 Adapt Cases

Der Ansatz Adapt Cases und das mit ihm verbundene Adaptivity Enginee-
ring wurde erstmals durch Luckey [Luc+11] eingeführt. Dabei wird die Ge-
staltung von Funktionen zur Anpassung von selbst-adaptiven Software-
systemen in einer frühen Phase des Software Development Process (SDP)
bzw. Entwicklungsprozesses verstanden. In Adapt Cases wird dabei ins-
besondere die Trennung der Anpassungs- von der Anwendungslogik fo-
kussiert. Durch die Wiederverwendung von Grundprinzipien des Gestal-
tungsansatzes der UML Use Cases kann deren hohe Ausdrucksfähigkeit
übernommen werden. Ferner lässt sich der Ansatz Adapt Cases durch weit
verbreitete Gestaltungstechniken in eine Vielzahl von bestehenden Ent-
wicklungsprozessen integrieren.

Das Adaptivity Engineering nach Luckey enthält neben einem konstrukti-
ven Verfahren zur getrennten Gestaltung der Anwendungs- und Anpas-
sungslogik zudem auch eine Methode zur Qualitätssicherung von relevan-
ten Artefakten. Der Ansatz Quality Assurance For Adaptive Systems (QUAA-
SY) stellt ein Verfahren zur Analyse von verschiedenen Systemeigenschaf-
ten dar und kann in diesem Bezug zur Überprüfung verschiedener Qua-
litätsanforderungen eingesetzt werden. Er basiert auf etablierten Techni-
ken aus dem Bereich der Graphtransformationen [Eng+00] und des Model-
Checkings [Ren03; ESW07]. Da der Fokus dieser Arbeit auf der konstruk-
tiven Gestaltung von Prozessen liegt, wird für weiterführende Informatio-
nen auf die Arbeit von Luckey [Luc13] verwiesen.

Nachfolgend wird zunächst in Abschnitt 2.4.1 das generelle Prinzip des
Ansatzes Adapt Cases und der zugehörigen Sprache ACML vorgestellt. An-

Grundlagen Seite 51

schließend wird in Abschnitt 2.4.3 auf die abstrakte Syntax eingegangen.
In Abschnitt 2.4.2 wird die konkrete Syntax der Sprache ACML anhand ei-
nes Beispiels veranschaulicht. Abschließend wird in Abschnitt 2.4.4 eine
exemplarische Integration in einen SDP beschrieben.

2.4.1 Überblick

Die Sprache Adapt Case Modeling Language (ACML) kann zur getrennten
Gestaltung von Aspekten der Anpassungs- und Anwendungslogik ein-
gesetzt werden. Dabei werden Konzepte aus der Gestaltung von selbst-
adaptiven Systemen wiederverwendet. In Abbildung 2-13 ist das Grund-
prinzip des Ansatzes Adapt Cases nach Luckey [Luc+11; LE13] dargestellt.

Adaptation View Adapt Case Autonomic Manager

Analyze

MAPE-K Model

Monitor

Plan

S E

 Managed Element

Execute

Monitor

Adaptation
Context

Adapt Cases

mapped

Adaptation

 Knowledge

 2

 3

 1
 2 3

 1

 uses

Abbildung 2-13:
Prinzip des Ansatzes
Adapt Cases (nach Luckey
[Luc+11])

In dem Ansatz Adapt Cases wird die Referenzarchitektur MAPE-K als Sicht
auf das zu gestaltende Softwaresystem eingesetzt. MAPE-K wurde durch
[KC03] eingeführt und stellt in der Domäne der selbst-adaptiven Syste-
me eine der am häufigsten eingesetzten Modelle zur Beschreibung von
wesentlichen Funktionen und Abläufen in Bezug zur eigenständigen An-
passung eines Systems dar. Das Prinzip des Modells stellt eine Rückkopp-
lungsschleife (engl. Feedback Loop) dar, entlang der eine Reihe von verschie-
denen Funktionen ausgeführt wird.

Das Modell sieht dabei die Überwachung und bedarfsorientierte Anpas-
sung eines sogenannten Managed Element durch das Konzept des Autono-
mic Managers vor. Für die Überwachung und Anpassung stellt das Mana-
ged Element wohldefinierte Schnittstellen in Form eines Sensors (S) und ei-
nes Effektors (E) zur Verfügung. Durch diese Schnittstellen werden der le-
sende Zugriff (S) auf Daten und der schreibende Zugriff (E) auf relevante
Teile des Systems und deren Umgebung unterstützt.

Der Autonomic Manager enthält eine Reihe von Funktionen, die zur Erken-
nung, Auswahl und Ausführung von Anpassungen an Teile des Managed
Element notwendig sein können. Luckey partitioniert diese Funktionen in

Seite 52 Kapitel 2

drei Bereiche, die in Abbildung 2-13 farbig dargestellt sind. Ferner sieht er
für die Gestaltung die beiden Modelle Adapt Case Model (AVM) und Adap-
tation View Model (ACM) vor. Nachfolgend wird zunächst auf die Partitio-
nen und anschließend auf die beiden Modelle eingegangen.

Die erste Partition gruppiert die beiden Funktionen Monitor und Analyze
des Modells MAPE-K. Luckey nennt diese Partition Monitor. Der Fokus die-
ser Partition bezieht sich auf die Erhebung und Aggregation von Daten un-
ter Verwendung von Operationen der Schnittstelle S. Ferner ist eine wei-
terführende Analyse dieser Daten vorgesehen, deren Ergebnis anzeigt, ob
Anpassungen notwendig sind oder nicht. Falls eine Anpassung notwendig
ist, so werden Funktionen aus der zweiten Partition Adaptation eingesetzt.

Durch die zweite Partition werden die beiden Funktionen Plan und Exe-
cute des Modells MAPE-K gruppiert. Der Fokus dieser Partition liegt auf
der Beschreibung von Verhalten, durch das eine Anpassung am Managed
Element ausgeführt werden kann. Luckey sieht hier die Beschreibung von
unterschiedlichen Alternativen für eine Anpassung vor. Diese Alternativen
lassen sich in dem Modell MAPE-K der Funktion Plan zuordnen. Ferner
kann eine Alternative spezifische Operationen zur Anpassung des Managed
Element enthalten, die durch die Schnittstelle E angeboten werden.

Die dritte und letzte Partition Adaptation Context beinhaltet das Konzept
Knowledge. Hierbei handelt es sich weniger um eine Funktion. Vielmehr
wird durch die vier zuvor aufgeführten Funktionen gemeinsam genutztes
Wissen beschrieben. Dieses Wissen kann im Modell MAPE-K im einfachs-
ten Fall durch gemeinsam genutzte Daten vorhanden sein. Luckey verwen-
det die Partition Adaptation Context neben dem zuvor genannten Fall insbe-
sondere zur Beschreibung der Systemarchitektur in Hinsicht auf anzupas-
sende (Teil-)Komponenten. Im Rahmen des Verhaltens der beiden anderen
Partitionen Monitor und Adaptation wird auf Eigenschaften dieser Kompo-
nenten zurückgegriffen.

Die Inhalte der Partitionen Monitor und Adaptation werden im Rahmen des
ACM beschrieben. Dabei wird auf zuvor beschriebene Inhalte der Partiti-
on Adaptation Context in Form des AVM zurückgegriffen. So lassen sich
Anpassungen hinsichtlich relevanter Ausschnitte des betrachteten Systems
und seiner Umgebung fokussiert beschreiben.

In den nachfolgenden Abschnitten 2.4.2 und 2.4.3 werden für die Sprache
Adapt Case Modeling Language zunächst die konkrete Syntax anhand eines
Beispiels und anschließend die abstrakte Syntax vorgestellt. Die beschrie-
benen Inhalte bilden dabei die Basis für die in dieser Arbeit vorgestellten
Sprache ACML4BPM (siehe Kapitel 4).

Grundlagen Seite 53

2.4.2 Konkrete Syntax der Sprache ACML am Beispiel

Die konkrete Syntax der Sprache ACML wird in diesem Abschnitt in An-
lehnung an ein Beispiel beschrieben. Teile des Beispiels basieren dabei auf
den durch Luckey [LE13] beschriebenen Anwendungsfall. Dabei wird die
Steuerung von verschiedenen Modi, in denen ein Server Dienste ausführt,
beschrieben. Dabei soll je nach Auslastung des Servers entweder in einen
effizienten (eco) oder einen performanten (performance) Modus gewechselt
werden können. Ferner soll aber auch der manuelle Wechsel in den per-
formanten Modus ermöglicht werden. Analog zum vorherigen Abschnitt
wird für das Beispiel zunächst auf das AVM und anschließend auf das
ACM eingegangen.

In Abbildung 2-14 ist ein Beispiel für ein AVM dargestellt. Das Beispiel
besteht demnach aus der Systemkomponente Server und der Umgebungs-
komponente HumanMachineInterface. Die Auslastung des Servers kann
durch die Sensorschnittstelle ServerLoad bereitgestellt werden. Um den
Status des Servers zu ändern, wird die dargestellte Effektorschnittstelle
ServerMode verwendet. Die Notwendigkeit für einen manuellen Wechsel
wird durch das dargestellte Signal ManualPerformanceCall angedeutet.

«system»
Server

+ getServerLoad() : int

load : integer
 range : 0 .. 100
 step : 1

«sensor»
ServerLoad

+ setModus(string) : void

modus : enum
 range : {eco, performance}

«effector»
ServerMode

+ id : integer

«environment signal»
ManualPerformanceCall

«environment»
HumanMachineInterface

hmi
1

Abbildung 2-14:
Konkrete Syntax der Spra-
che ACML am Beispiel
eines AVM (nach Luckey
[LE13])

Bei der Verwendung von einer gängigen Gestaltung durch UML Kompo-
nentendiagramme spricht Luckey auch von einer hohen Konsistenz zu beste-
henden Methoden. Dies lässt sich dadurch begründen, dass der Einstieg
in die Gestaltung von Eigenschaften des Systems und seiner Umgebung
für Anwender, die UML bereits erfolgreiche einsetzen, eine geringe Hürde
darstellt. Hierdurch lässt sich die Erstellung des AVM in bereits bestehen-
de Entwicklungskontexte besonders leicht erreichen.

Die Erstellung des ACM sieht die beiden aufeinanderfolgenden Aktivitä-
ten der High-Level-Gestaltung und der Low-Level-Gestaltung vor. Eine inte-
grierte Sicht der Ergebnisse dieser Aktivitäten ist in Abbildung 2-14 darge-
stellt.

Seite 54 Kapitel 2

Abbildung 2-15:
Konkrete Syntax der

Sprache ACML am
Beispiel eines ACM

(nach Luckey [LE13])

«adapt»«adapt»

H
ig

h
-L

ev
el

A

da
p

t
Ca

se

M
o

d
e

l

Lo
w

-L
ev

el

A
da

p
t

Ca
se

M
o

d
e

l

Monitoring Activity

«signal»

ManualPerformanceCall A

Monitoring Activity

Each 5
Minutes

[Server.load < 20 OR
Server.load > 80]

A

Adaptation Activity

[Server.load
> 80]

Server.setModus(performance)

Adaptation Activity

Server.setModus(performance)

«Adapt Case»

Autonomous
Server Management

«Adapt Case»

Manual Server
Management

Service A

Server.setModus(eco)

Das High-Level ACM ist hier im oberen Bereich gezeigt. Luckey sieht bei
dieser Erstellung des ACM die Verwendung von erweiterten UML Use
Case-Diagrammen vor. So wird das Konzept des Anwendungsfalls (Adapt
Case) in Anlehnung an UML Use Cases dargestellt. Zwischen Funktionen
der Anwendungslogik (hier: Service A) und Funktionen zur Anpassung
(hier: Adapt Cases) können Assoziationen eingesetzt werden. Die Aufschrift
«adapts» einer solchen Assoziation beschreibt, dass ein ausgehender Adapt
Case eine andere Funktion anpasst. Dabei kann das Ziel einer solchen As-
soziation sowohl ein weiterer Adapt Case als auch eine Funktion der An-
wendungslogik in Form eines UML Use Case sein.

Das Low-Level ACM ist im unteren Bereich dargestellt. Es enthält dabei Ver-
feinerungen der beiden Anpassungsfälle in Form von Beobachtungs- und
Anpassungsaktivitäten. Das Verhalten des Autonomous Server Managements
ist dabei so verfeinert worden, dass durch die dargestellte Beobachtungs-
aktivität zeitgesteuert alle 5 Minuten die Auslastung des Servers geprüft
wird. Wird eine zu geringe (<20%) oder zu hohe (>80%) Auslastung detek-
tiert, so wird die zugehörige Anpassungsaktivität aufgerufen. Hierfür be-
dient sich Luckey einer sogenannten Call Adaptation Activity, welche durch
einen Kreis mit der Aufschrift A dargestellt wird. Die Anpassungsaktivi-
tät enthält dabei Verhalten, welches je nach Auslastung einen Wechsel des
Modus, in dem der Server operiert, hervorruft. Die Beobachtungs- und An-
passungsaktivität des Anpassungsfalls Manual Server Management ist im
rechten Bereich dargestellt. Hier wird im Rahmen der Beobachtungsakti-
vität das durch die Umgebungskomponente HumanMachineInterface bereit-

Grundlagen Seite 55

gestellte Signal ManualPerformanceCall als Startsignal eingesetzt. Die zuge-
hörige Anpassungsaktivität passt als Folge den Modus des Servers an.

Es sei an dieser Stelle darauf hingewiesen, dass in dem zuvor beschrie-
benen Verhalten auf Elemente der Sensor- und Effektorschnittstellen aus
dem AVM zurückgegriffen wird. Dies stellt ein Beispiel für die Verwen-
dung von Elementen des AVM im Rahmen der Gestaltung des ACM dar.
Umfangreichere Anwendungen aus der Praxis können so auch eine höhe-
re Anzahl an Elementen im Rahmen des AVM vorsehen, die dann Verwen-
dung in der Gestaltung des Verhaltens durch ein ACM finden. Dabei kön-
nen im Rahmen des ACM auch mehrere Anpassungsaktivitäten im Rah-
men der Gestaltung eines einzelnen Adapt Case vorkommen, die je nach
Situation entsprechend alternatives Verhalten zum Zweck der Anpassung
bereitstellen.

2.4.3 Abstrakte Syntax der Sprache ACML

In diesem Abschnitt werden Ausschnitte der abstrakten Syntax der Spra-
che ACML für die beiden Modelle ACM und AVM vorgestellt. In Abbil-
dung 2-16 sind wesentliche Konzepte des AVM in Form eines Metamodells
dargestellt. Dabei sind Konzepte der Sprache ACML farblich unterlegt her-
vorgehoben. Nicht hervorgehobene Konzepte stammen aus dem Meta-
modell der UML.

Adaptation
Context

Component Property

AdaptationInterface

Interface

SystemComponent

EnvironmentSignal

AdaptationProperty

+signal 0..*

+/provided
0..*

+ownedAttributes
0..*

0..*
{subsets
ownedAttributes}

Sensor EffectorEnvironmentComponent

Abbildung 2-16:
Auszug aus dem
AVM-Metamodell
(nach Luckey [LE13])

Durch die Partition Adaptation Context werden wesentliche strukturelle In-
formationen über den Kontext der Anpassung (hier: Adaptation Context)
gestaltet. Das von Luckey beschriebene Konzept basiert dabei vornehmlich
auf Konzepten der UML Komponentendiagramme, um die Struktur des Sys-
tems und seiner Umgebung zu beschreiben. Man spricht dabei im Rahmen
der Gestaltung von selbst-adaptiven Systemen von den beiden Konzepten
System und Environment, für die jeweils ein neuer Typ von Komponenten
eingeführt wird. Dabei können Komponenten des Typs EnvironmentCom-
ponent eine Reihe von Signalen (EvironmentSignal) senden, die zur Auslö-
sung einer möglichen Anpassung eingesetzt werden können.

Seite 56 Kapitel 2

Ein System und seine Umgebung können aus einer beliebigen Anzahl
an Komponenten bestehen, die jeweils zwei Typen von Schnittstellen für
den kontrollierten lesenden und schreibenden Zugriff auf Inhalte der zu-
vor eingeführten Typen von Komponenten ermöglichen. Im Kontext der
selbst-adaptiven Systeme spricht man dabei vorrangig von Sensor- und Ef-
fektorschnittstellen. Dabei können diese Schnittstellen Operationen oder
Eigenschaften (AdaptationProperty) enthalten, die im Rahmen der Gestal-
tung des ACM eingesetzt werden können.

Das Metamodell des ACM ist in Abbildung 2-17 dargestellt. Dabei sind
abermals die Konzepte der Sprache ACML farblich unterlegt hervorgeho-
ben. Nicht hervorgehobene Konzepte stammen aus dem Metamodell der
UML und stellen im Wesentlichen Elemente der UML Aktivitätsdiagramme
und UML Use Case-Diagramme dar.

Abbildung 2-17:
Auszug aus dem

ACM-Metamodell
(nach Luckey [LE13])

Monitor

Adaptation

Activity

Behavior Behaviored Classifier

UseCase Class

Monitoring Activity

Adaptation Activity

+ownedMonitor
1
{subsets ownedBehavior}

+ownedAdaptationAction
*
{subsets ownedBehavior}

{subsets ownedBehavior}
+ownedBehavior

AdaptCase

Action
+activity

+node

Wesentliches Konzept des Ansatzes ist das Konzept des Anpassungsfalls
(hier: AdaptCase). Bei einem Anpassungsfall handelt es sich um einen spe-
zialisierten Typ eines UML Use Case. Erstmals wurde dieses Konzept durch
Luckey [Luc+11] vorgestellt. Die Verwendung des Konzepts des Anpas-
sungsfalls ist für die Beschreibung von Funktionen zur Anpassung von
Eigenschaften der System- oder Umgebungskomponenten gedacht. Eine
solche Anpassung lässt sich hinsichtlich der beiden Partitionen Monitor
und Adaptation weiter unterteilen. So wird durch das Konzept der Beob-
achtungsaktivität (hier: MonitoringActivity) Verhalten beschrieben, das zur
Aggregation und Analyse von Daten der System- und Umgebungseigen-
schaften eingesetzt wird. Tritt die Notwendigkeit für eine Anpassung auf,
so kann das Konzept der Anpassungsaktivität (hier: AdaptationActivity) ge-
nutzt werden, um entsprechendes Verhalten zu beschreiben. Für die Be-
schreibung des Verhaltens der Beobachtungs- als auch der Anpassungs-
aktivität wird vorrangig auf existierende Elemente der UML Aktivitäts-
diagramme zurückgegriffen.

Grundlagen Seite 57

2.4.4 Integration in einen Entwicklungsprozess

Die Verwendung der Sprache ACML schließt die Erstellung von verschie-
denen Artefakten auf unterschiedlichen Ebenen entlang eines Software-
entwicklungsprozesses (SDP) mit ein. Dabei steht stets die Trennung von
Aspekten der Anpassungs- von der Anwendungslogik im Vordergrund.
In enger Anlehnung an [LE13] sind in Abbildung 2-18 Teile des Ansatzes
Adapt Cases entlang relevanter Phasen eines SDP gezeigt. Auf den Zusam-
menhang gezeigter Phasen und Artefakte wird nachfolgend eingegangen.

Dabei steht die Spezifikation von Aspekten der Anwendungslogik im Vor-
dergrund, die in Abbildung 2-18 einem beispielhaften Verlauf folgt. So
wird zunächst die Beschreibung von Anforderungen an das System vor-
genommen. Üblich ist es zudem, dass ein Domänenmodell erstellt wird,
das Kernkonzepte der jeweiligen Anwendungsdomäne beschreibt und in
Relation zueinander setzt. Hierfür können bspw. UML Klassendiagramme
oder Mind-Maps eingesetzt werden.

Requirements Specification Analysis + Design
Adaptation

Logic
Concerns

Business
Logic

Concerns

Requirements,
Problem Domain

Model

Use Case Diagram,
Activity Diagram

Sequence Diagram,
Analysis Class

Diagram

Component Diagram,
State Chart Diagram

ACML:
Highl-Level

Adaptation View and
Adapt Cases

ACML:
Low-Level

Adaptation View and
Adapt Cases

Abbildung 2-18:
Software Deve-
lopment Process
unter Verwendung der
Sprache ACML (nach
Luckey [LE13])

Aufbauend können erste Funktionen durch UML Use Case-Diagramme und
UML Aktivitätsdiagramme beschrieben werden, wobei diese stets die zuvor
beschriebenen Anforderungen adressieren. In einem weiteren Schritt kön-
nen die Funktionen und das Verhalten anschließend durch UML Sequenz-
diagramme und UML Analyseklassendiagramme verfeinert werden. Im letz-
ten dargestellten Schritt vor der Implementierung wird die Architektur
durch UML Komponentendiagramme beschrieben. Dabei wird häufig auch
der Lebenszyklus von wichtigen Objekten durch UML Zustandsübergangs-
diagramme beschrieben.

Die Gestaltung von Aspekten der Anpassungslogik kann komplementär
zu den letzten drei beschriebenen Schritten erfolgen. Die Basis bildet hier-
bei das AVM. Es enthält einen Ausschnitt des zuvor beschriebenen Sys-
tems, der ausschließlich für die Anpassungslogik relevante Aspekte be-
schreibt. Wie bereits beschrieben, handelt es sich hierbei z.B. um relevan-
te Komponenten, Sensor- und Effektorschnittstellen oder um mögliche Si-
gnale zur Auslösung eines Anpassungsfalls. Nachfolgend kann mit der
High-Level-Gestaltung von Adapt Cases begonnen werden, die mit beste-

Seite 58 Kapitel 2

henden Use Cases der Anwendungslogik in Relation stehen. Im zweiten
Schritt der Gestaltung von Aspekten der Anpassungslogik kann es not-
wendig sein, das AVM anzupassen. Luckey begründet dies damit, dass zum
Zeitpunkt des Erstentwurfs des AVM einzelne Funktionen oftmals noch
nicht adäquat auf Komponenten verteilt sein können. So entsteht erst im
weiteren Verlauf das Wissen, das eine adäquatere Gestaltung von System-
und Umgebungskomponenten sowie von einer Verteilung von Funktio-
nen ermöglicht. Auf Basis des Low-Level-AVM kann anschließend das zu-
gehörige Low-Level-ACM erstellt werden, in dem die Adapt Cases durch
Beobachtungs- und Anpassungsaktivitäten verfeinert werden können.

Durch die konsequente Nutzung bestehender Gestaltungselemente und
-techniken der UML sind die durch die ACML erstellten Artefakte in ver-
schiedene Phasen und Schritten des SDP stets mit den Artefakten der An-
wendungslogik integrierbar. Hierdurch wird die Verwendung der Spra-
che ACML für UML-erfahrende Nutzer vereinfacht und vor allem auch an-
wendbar.

Verwandte Arbeiten

Kapitel3
In diesem Kapitel werden unterschiedliche wissenschaftliche Ansätze vor-
gestellt, die als verwandte Arbeiten betrachtet werden können. Dabei kann
Flexibilität in Prozessen durch verschiedene Arten erreicht werden, so-
dass sich auf insgesamt drei Felder bezogen wird. Zunächst werden in
Abschnitt 3.1 ausgesuchte Arbeiten vorgestellt, die Flexibilität und An-
passbarkeit von Prozessen für diverse Zwecke unterstützen. Anschließend
wird in Abschnitt 3.2 auf Ansätze von flexiblen und anpassbaren Prozes-
sen im Kontext von Industrial Internet-of-Things (IIoT) und Industrie 4.0-
Anwendungen eingegangen. Es folgen in Abschnitt 3.3 Arbeiten, in de-
nen Konzepte des Autonomic Computing ebenfalls auf Prozesse angewen-
det werden.

3.1 Flexible und anpassbare Prozesse

Flexibilität in Prozessen ist in der Domäne BPM ein weitreichend erforsch-
tes Feld. Daher wurden bereits in Abschnitt 2.2 grundlegende Ansätze für
flexible und anpassbare Prozesse vorgestellt, da sie als Grundlage für die
Ausarbeitung dieser Arbeit angesehen werden. Nachfolgend vorgestellte
Arbeiten haben sich anschließend mit konzeptionellen Weiterentwicklun-
gen oder technischen Realisierungen dieser Grundlagen beschäftigt.

Eine Arbeit, die sich sowohl mit Entwurfsmustern als auch deren tech-
nischen Realisierung beschäftigt hat, wurde durch Döhring et. al [DZK11]
vorgestellt. Dabei wird die Sprache BPMN2.0 um adaptive Workflow-
Segmente erweitert, an denen zur Laufzeit vordefinierte Anpassungsmus-
ter (engl. Adaptation Pattern) gebunden werden können. In dem Ansatz
werden Regeln in der Form Wenn-Dann-Anders für die Auswahl eines sol-
chen Anpassungsmusters eingesetzt. Derartige Segmente sind vergleich-
bar mit den für den Typ Late Selection eingeführten Platzhaltern (siehe

Seite 60 Kapitel 3

Abschnitt 2.2.3). Die Autoren stellen ebenfalls eine prototypische Im-
plementierung vor, die auf der Verwendung der Drools Rule-Engine und
Workflow-Engine1 beruht. Die Anwendung des Ansatzes kann insbesonde-
re dann eingesetzt werden, wenn mehrere Varianten eines Prozesses ver-
waltet werden sollten. Alternative Ansätze aus diesem Bereich sind durch
[Ayo+16] oder im spezielleren Bereich für die Versionierung von Prozessen
[Sai+15] gegeben.

In der Arbeit von Milanovic et. al [MG09] wurde die Sprache BPMN2.0 um
diverse Eigenschaften erweitert, sodass ein gesteigerter Grad an Flexibi-
lität in der Gestaltung ermöglicht wird. Der Ansatz fokussiert dabei die
Gestaltung von Entscheidungen durch Regeln. Als Resultat wird das neue
Metamodell rBPMN vorgestellt, über das eine Komposition von Prozessen
(BPMN) und Regeln (R2ML) durchgeführt wird. Hierzu führen die Auto-
ren ein erweitertes regelbasiertes Gateway (RuleGateway) ein, das mit hö-
herwertigen Regeln versehen werden kann. Der Ansatz fokussiert damit
vorwiegend den Flexibilitätsaspekt Flexibility-by Design.

Weitere Arbeiten, die insbesondere im Kontext der eingeführten Taxono-
mien für Flexibilität in Prozessen entstanden sind, werden im Rahmen der
Evaluation aufgeführt und mit Fähigkeiten des eigenen Ansatzes vergli-
chen. Beispiele für derartige Arbeiten sind durch ADEPT1 [RRD03], YAWL
[AT05; Ada+06; Ada+07], FLOWer [AWG05] oder Declare [PA06; Pes+07]
gegeben.

3.2 Flexible und anpassbare Prozesse im IIoT

Existierende Ansätze unterstützen die Gestaltung von flexiblen und an-
passbaren Prozessen bereits auf verschiedenen Ebenen in einem einzelnen
oder zwischen mehreren Unternehmen. Ein verbreitetes Vorgehen stellt
dabei die Erstellung von Erweiterungen einer Sprache dar, wie z.B. der
BPMN2.0. Hierdurch können neue und relevante Konzepte in der Gestal-
tung derartig berücksichtigt werden, dass die enthaltene Flexibilität als
umfassender betrachtet werden kann. Einige Beispiele im Kontext von
Industrial Internet-of-Things (IIoT) bzw. von Industrie 4.0-Anwendungen
werden nachfolgend erörtert.

So stellen Meyer et. al [MRM13; MRH15] einen Ansatz vor, in dem grund-
legende Konzepte des Internet-of-Things auf der Sprachebene zur Gestal-
tung von Prozessen eingeführt werden. Der Ansatz basiert auf dem be-

1http://www.drools.org/ Letzter Zugriff: 11.12.2018

http://www.drools.org/

Verwandte Arbeiten Seite 61

reits durch Sperner et. al [SMM11] eingeführten Konzept der entitätsbasier-
ten Gestaltung von Prozessen. Das Resultat ist eine Erweiterung der Spra-
che BPMN2.0, durch die Eigenschaften von IoT-Geräten gestaltet werden
können. Zur Integration derartiger Geräte wird in dem Ansatz ein neu-
er Typ von Ressourcen eingeführt, der klassische Komponenten, wie z.B.
Sensoren und Aktuatoren auf der Ebene der Prozesse, repräsentiert. Durch
das zugehörige Metamodell kann die Gestaltung von IoT-Geräten durch-
geführt werden. Als Ergänzung zur Integration verwenden Meyer et. al on-
tologiebasierte Techniken zur Spezifikation der Semantik von eingesetzten
Ressourcen in den gestalteten Prozessmodellen.

Zukünftige Prozesse sollen auf Veränderungen von einer Vielzahl von ver-
netzten Ressourcen eingehen können. Hierdurch wird das Ziel verfolgt,
die Prozesse und ihre Ausführung möglichst flexibel gestalten zu können.
Dabei kann diese Art von Flexibilität nur dann erreicht werden, wenn be-
reits auf der Ebene der Sprache spezifische Eigenschaften auch gestaltet
werden können.

Ein weiterer Ansatz, der auf der Metamodellierung beruht und zum
Zweck der Verwaltung von Ressourcen eingesetzt werden kann, ist durch
Bocciarelli et. al [Boc+17] vorgestellt worden. Der durch Bocciarelli et. al
gegebene Ansatz führt ebenfalls einen neuen Typ von Ressourcen in der
Sprache BPMN2.0 ein. Durch diesen Typ sind Eigenschaften der Umge-
bung eines Prozesses mit einer Fokussierung auf Cyber-Physische Systeme
(CPS) und Smart Factories gestaltbar. Beispiele für derartige Ressourcen
sind durch menschliche Akteure, der eingesetzten Software oder Hard-
ware gegeben. Die Erweiterung ist Teil eines modellgetriebenen Rahmen-
werks, das neben der Gestaltung ebenso die Analyse von Leistung (engl.
Performance) und von Zuverlässigkeit (engl. Reliability) von Prozessen und
beteiligten Ressourcen unterstützt. Der Ansatz greift auf verschiedene
Vorarbeiten der Autoren zurück [Boc+14a; Boc+14b; BDP14; Boc+16].

In der vorliegenden Arbeit wurde sich auch mit der Gestaltung unter-
schiedlicher Auslöser (hier: Ereignis) für eine Anpassung beschäftigt. Eine
weitere Arbeit, die sich mit der Integration von unterschiedlichen Ereignis-
sen beschäftigt, ist durch Mandal et. al [MHW17] gegeben. Es wird ein Rah-
menwerk vorgestellt, das sich mit einer erweiterten Ereignisverarbeitung
auseinandersetzt. Die Autoren sprechen von sogenannten real-weltlichen
Ereignissen, die in oder im Kontext von Prozessen vorkommen können.
Dabei wurden spezielle Techniken entwickelt, um auf einer technischen
Ebene der Realisierung auf aufkommende Ereignisse adäquat reagieren
und erforderliche Maßnahmen verarbeiten zu können. So ist eine bidirek-

Seite 62 Kapitel 3

tionale Reaktion bzw. Steuerung möglich. Hierdurch können Prozesse auf
aufkommende Ereignisse aus ihrer Umgebung adäquat reagieren oder das
Verhalten von IoT-Geräten steuern.

Zor et. al [ZLS11] stellen eine Erweiterung der Sprache BPMN2.0 vor, wel-
che weitere Konzepte der Domäne der industriellen Fertigung abdeckt.
Dabei werden ebenfalls weitere Typen von Ressourcen eingeführt, die zur
Gestaltung von z.B. Maschinen, Werkzeugen oder Teilen eines Produk-
tes eingesetzt werden können. Hierdurch können Prozesse unter Berück-
sichtigung von Eigenschaften dieser Ressourcen gestaltet werden. Ferner
werden weitere Konzepte eingeführt, wie z.B. spezielle Gateways, mit de-
nen der Materialfluss beschrieben werden kann. Dies ist sinnvoll, wenn die
Transformation von Material in Abhängigkeit zur Ein- und Ausgabe einer
Aktivität beschrieben werden soll. Elemente des Materialflusses können
dabei als eine zusätzliche Perspektive von Prozessen verstanden werden,
die bspw. über die Möglichkeiten der Perspektive Information hinausgeht
(siehe Abschnitt 2.3.2).

Durch Graja et. al [Gra+16] wird eine weitere Erweiterung der Spra-
che BPMN2.0 vorgestellt, mit der die Gestaltung von Cyber-physischen
Prozessen adressiert wird. Die Erweiterung BPMN4CPS trennt das in den
Prozessen beschriebene Verhalten hinsichtlich unterschiedlicher Logiken
auf. So wird in Cyber Tasks und Physical Tasks unterschieden. Organisato-
rische Unterschiede können durch die Verwendung von verschiedenen
Pools dargestellt werden. Hierdurch können sowohl Cyber-, Physical- und
Controlling-spezifische Prozesse unterschieden werden. Durch diese Tren-
nung unterstützt dieser Ansatz ebenso das Separation-of-Concerns (SoC).
Jedoch steht hierbei die Differenzierung in Bezug zu den genannten Kern-
konzepten der Domäne IIoT hinsichtlich der zu gestaltenden Prozesse und
nicht die Trennung der Anpassungs- von der Anwendungslogik im Fokus.

3.3 Selbst-adaptive Prozesse

Neben den zuvor beschriebenen Ansätzen, in denen vorwiegend eine res-
sourcenzentrierte Perspektive gewählt worden ist, existieren aber auch An-
sätze, die sich eher aus der Perspektive von selbst-adaptiven Systemen der
Gestaltung von Prozessen nähern.

Ein Ansatz, der auf Konzepte aus dem Bereich des Autonomic Computing
[KC03] zurückgreift, ist durch [Sei+15; Sei+16; SHS18] vorgestellt worden.
Seiger et. al beschreiben ein Rahmenwerk für die Gestaltung und Ausfüh-
rung von Prozessen in intelligenten Cyber-physischen Umgebungen. Da-

Verwandte Arbeiten Seite 63

bei wird im Rahmen von Anpassungen das Paradigma der MAPE-K Kon-
trollschleife eingesetzt. Derartige Anpassungen werden in dem Ansatz da-
bei hinsichtlich der Einbindung von IT-Diensten durchgeführt. Eine An-
passung des Kontroll- oder Datenflusses ist nicht vorgesehen. Der Ansatz
verfügt darüber hinaus über Konzepte für die weitere Analyse zur Identi-
fikation von Inkonsistenzen zwischen Unterschieden von aufkommenden
und erwarteten Effekten einer ausgeführten Anpassung von Prozessen.

Marrella und Mecella [MM17] stellen einen Ansatz zur Verwaltung von ad-
aptiven Cyber-physischen Prozessen vor. Durch diesen Ansatz können
Prozesse automatisiert in der Phase Ausführung angepasst werden. Da-
bei werden Techniken aus dem Bereich der künstlichen Intelligenz für die
konkrete Entscheidungsfindung eingesetzt. Der Ansatz ist in der Lage, Un-
terschiede zwischen dem realweltlichen Ergebnis einer Anpassung und ei-
ner zuvor erwarteten Anpassung zu ermitteln. Hierdurch ist eine Inter-
aktion durch Nutzer oder Domänenexperten nicht mehr nötig. Der An-
satz geht dabei verstärkt auf den Aspekt der automatisierten und unüber-
wachten Anpassung ein. Dabei werden konkrete Fähigkeiten zur Anpas-
sung von Prozessen, wie z.B. Kontroll- oder Datenfluss, nicht detailliert be-
schrieben. Der Ansatz wird daher als komplementär betrachtet, da er eine
fortgeschrittene Technik für Analyse- und Entscheidungsfindungsfunktio-
nalität beschreibt.

Teil II

Lösungskonzept

Eine Sprache zur
Gestaltung von

anpassbaren Prozessen

Kapitel4
In diesem Kapitel wird eine Sprache für die Gestaltung von anpassbaren
Prozessen vorgestellt. Zunächst wird das Lösungskonzept für diese Spra-
che in Abschnitt 4.1 beschrieben. Dies umfasst neben einer Skizze der Lö-
sung auch grundlegende Fragestellungen, die die Basis für die weiteren er-
forderlichen Bestandteile der entwickelten Sprache bilden. Das Lösungs-
konzept basiert auf dem durch Luckey [Luc+11] vorgestellten Ansatz Adapt
Cases (siehe Abschnitt 2.4). Es sieht insgesamt zwei domänenspezifische
Teilsprachen vor. Diese werden in Bezug zum ACM in Abschnitt 4.2 und
in Bezug zum AVM in Abschnitt 4.3 detailliert vorgestellt. Abschließend
wird in Abschnitt 4.4 eine Zusammenfassung sowie eine Diskussion hin-
sichtlich der in Abschnitt 4.1 vorgestellten Fragestellungen gegeben.

4.1 Übersicht

In diesem Abschnitt wird eine Übersicht über die in dieser Arbeit vor-
gestellte Sprache für die Gestaltung von anpassbaren Prozessen gegeben.
Die Sprache wird Adapt Case Modeling Language 4 BPM (ACML4BPM) ge-
nannt. Es handelt sich bei dieser Sprache um eine domänenspezifische Re-
definition der durch Luckey [Luc+11] vorgestellten Sprache ACML (siehe
Abschnitt 2.4). Dabei sieht das Lösungskonzept die Integration von ver-
schiedenem domänenspezifischem Wissen vor. Für die Erarbeitung dieses
Wissens und die anschließende Integration wurde sich an verschiedenen
Fragestellungen orientiert, die sich auf Kernkonzepte der ursprünglichen
Sprache ACML beziehen. Nachfolgend wird eine kurze Übersicht über die-
se Fragestellungen gegeben.

Seite 68 Kapitel 4

Fragestellung 1 Was sind relevante System- und Umgebungskomponenten in der Domäne BPM?

Fragestellung 2 Wie kann auf Informationen innerhalb dieser System- und Umgebungskomponen-
ten zugegriffen werden?

Fragestellung 3 Wie lassen sich Eigenschaften der System- und Umgebungskomponenten in der
Domäne BPM adäquat anpassen?

Fragestellung 4 Was sind mögliche Ereignisse, die die Notwendigkeit einer Anpassung von
Prozessen andeuten?

Eine schematische Darstellung der zu den Fragestellungen zugehörigen
Lösungsteile für die Sprache ACML4BPM ist in Abbildung 4-1 gegeben.
Die Sprache ACML4BPM sieht dabei in Anlehnung an die von Luckey
[LE13] vorgestellte Sprache Adapt Case Modeling Language (ACML) die
Konzeptionierung von zwei Teilsprachen zur Beschreibung eines Adapt
Case Model 4 BPM (ACM4BPM) und eines Adaptation View Model 4 BPM
(AVM4BPM) vor. Die beiden Teilsprachen zur Erstellung des ACM4BPM
und des AVM4BPM werden in den nachfolgenden Abschnitten 4.2 und 4.3
detailliert beschrieben.

Abbildung 4-1:
Konzept der Sprache

Adapt Case Modeling
Language 4 BPM

Adaptation Context

Monitor Adaptation

«Adapt Case Model»
Adapt Case Model 4 BPM

«Adaptation View Model»
Adaptation View Model 4 BPM

Adaptation Process

Event Adaptation Operation

System Component

Environment Component

Effector Interface

«Adaptation Operation»

«System Component»

«Environment Component»

nutzt

Read Operation

Monitoring Process

«Event»

«System Component»

«Environment Component»

«Read Operation»

Nutzung von Elementen «...»BPM-spezifische Elemente Grundelemente

Adapt Case 4 BPM

«Event»

Sensor Interface

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 69

Beschreibung der Struktur
des Systems

Das AVM4BPM enthält identifizierte System- und Umgebungskomponen-
ten der Domäne BPM. Jede dieser System- und Umgebungskomponen-
ten kann die beiden Typen von Schnittstellen Sensor Interface und Effec-
tor Interface anbieten. Diese Schnittstellen können spezifische Operationen
zum Lesen und zur Anpassung von Eigenschaften der Komponenten un-
terstützen. So beschreibt die Schnittstelle Sensor Interface zum einen Er-
eignisse (Event), die für mögliche Anpassungen von Prozessen als Aus-
löser vorkommen können. Ferner können Operationen (Read Operation)
für den lesenden Zugriff von Eigenschaften der beiden Typen von Kom-
ponenten beschrieben werden. Die Schnittstelle Effector Interface enthält
Operationen (Adaptation Operation), die zur Anpassung von Eigenschaf-
ten der System- und Umgebungskomponenten eingesetzt werden können.
Die in der Sprache ACML4BPM vorgesehenen domänenspezifischen Ope-
rationen betreffen insbesondere die Anpassung von Eigenschaften der be-
troffenen Prozesse.

Beschreibung von Verhalten
des Systems

Durch die Teilsprache ACM4BPM können Anpassungsfälle (engl. Adapt
Cases) beschrieben werden. Das zugehörige domänenspezifische Kon-
zept wird Adapt Case 4 BPM (AC4BPM) genannt. Bei der Gestaltung von
Anpassungsfällen werden die zuvor beschriebenen Sprachelemente des
AVM4PBM eingesetzt. So können einem Anpassungsfall die im Rahmen
des AVM4BPM spezifizierten Ereignisse zugeordnet werden. Hierdurch
wird ausgedrückt, dass der Anpassungsfall beim Vorkommen des betref-
fenden Ereignisses angewendet wird. Das Verhalten eines Anpassungs-
falls kann durch spezifischeres Verhalten in Form eines Monitoring Process
und Adaptation Process verfeinert werden.

Die Anwendung eines Anpassungsfalls sieht dabei zunächst den Aufruf
eines Beobachtungsprozesses (Monitoring Process) vor. Durch einen Moni-
toring Process kann das Verhalten zur Beobachtung der System- und Umge-
bungskomponenten beschrieben werden. Dabei werden Bedingungen hin-
sichtlich erforderlicher Eigenschaften der genannten Komponenten ausge-
wertet und, falls notwendig, ein entsprechender Adaptation Process gestar-
tet, welcher eine spezifizierte Anpassung durchführt.

Ein Adaptation Process beschreibt das Verhalten zur Anpassung von Ei-
genschaften der System- und Umgebungskomponenten. Er kann durch
einen Monitoring Process gestartet werden. Dabei werden im Rahmen des
in ihm spezifizierten Verhaltens Operationen zur Anpassung angewendet,
die durch die Effector Interfaces der System- und Umgebungskomponenten
bereitgestellt werden.

Seite 70 Kapitel 4

4.2 Adapt Case Model 4 BPM

Durch das Adapt Case Model 4 BPM (ACM4BPM) wird das Verhalten hin-
sichtlich der Fähigkeit zur Anpassung beschrieben. Hierbei liegt der Fo-
kus auf der Beschreibung von Anpassungsfällen, die im Rahmen der Ge-
staltung von anpassbaren Prozessen notwendig sind. In den folgenden Ab-
schnitten werden die wesentlichen Konzepte für die Domäne BPM einge-
führt.

In Abbildung 4-2 ist eine Übersicht über diese Konzepte dargestellt. Da-
bei wird zunächst in Abschnitt 4.2.1 das Konzept des Anpassungsfalls
(Adapt Case 4 BPM) beschrieben. Nachfolgend werden die Konzepte des
Beobachtungsprozesses (Monitoring Process) (siehe Abschnitt 4.2.2) sowie
des Anpassungsprozesses (Adaptation Prozess) (siehe Abschnitt 4.2.3) vor-
gestellt.

Abbildung 4-2:
Inhalte des Adapt

Case Model 4 BPM

Beobachtungsprozess
(Monitoring Process)

Abschnitt 4.2.2

Anpassungsfall
(Adapt Case 4 BPM)

Abschnitt 4.2.1

Anpassungsprozess
(Adaptation Process)

Abschnitt 4.2.3

4.2.1 Adapt Case 4 BPM

Ein wesentliches Konzept für die Gestaltung von anpassbaren Prozessen
stellt das Konzept des Adapt Case 4 BPM (AC4BPM) dar, das in diesem Ab-
schnitt beschrieben wird. Ein AC4BPM stellt eine Erweiterung des durch
Luckey [Luc+11] vorgestellten Konzepts des Adapt Case dar (siehe auch
Abschnitt 2.4). Die Verwendung dieses Konzepts ermöglicht eine getrenn-
te Beschreibung der Anwendungs- und Anpassungslogik in einer frühen
Phase der Gestaltung. Mit einem AC4BPM lässt sich die Funktion zur An-
passung von Prozessen fallbasiert und getrennt von der Anwendungslo-
gik beschreiben. Ein AC4BPM stellt in diesem Bezug die konsequente und
domänenspezifische Weiterentwicklung eines Adapt Case für die Domäne
BPM und damit für die Beschreibung von Anpassungen von Prozessen
und ihrer Umgebung dar.

Eine konzeptionelle Darstellung verschiedener Verwendungsweisen von
AC4BPM mit Bezug zu einer Funktion der Anwendungslogik ist in Abbil-
dung 4-3 dargestellt. So besteht die hier durch ein Use Case-Diagramm be-
schriebene Funktion eines Systems aus einem Use Case und verschiedenen
AC4BPM. Es existieren die beiden Rollen Actor A und Actor B, die spezifi-
sche dargestellte Funktionen ausführen.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 71

System

«AdaptCase4BPM»

«AdaptCase4BPM»

«adapts»

«include»

«adapts»
Actor A

Actor B

«AdaptCase4BPM»

«AdaptCase4BPM»

«Use Case»

Abbildung 4-3:
Konzeptionelle Darstel-
lung des Konzepts Adapt
Case 4 BPM

Ein AC4BPM wird in Anlehnung an UML Use Cases in Form einer Ellip-
se dargestellt. Sind in einer frühen Phase der Gestaltung bereits auslösen-
de Ereignisse für die Anpassung an einen Prozess bekannt, so können ver-
schiedene in Abschnitt 4.3.4 eingeführte Ereignisse der Domäne BPM mit
einem AC4BPM assoziiert werden. Hierbei wurde sich für eine Darstellung
entschieden, bei der mögliche Ereignisse im Rahmen eines Containers in
Form eines Rechtecks als Teil des AC4BPM dargestellt werden. Sind Ereig-
nisse hingegen noch nicht bekannt, wird der Container nicht visualisiert.
Ereignisse können im weiteren Verlauf der Gestaltung ergänzt oder ver-
feinert werden. Ein AC4BPM kann ferner verschiedene Beziehungen zwi-
schen weiteren AC4BPM und Use Cases haben.

«adapts»Soll unter einer Bedingung, die durch einen Use Case gegebene Funktion
erweitert werden, wird anstelle einer Beziehung mit der Bezeichnung «ex-
tends» eine Beziehung mit der Bezeichnung «adapts» verwendet. Die Dar-
stellung dieser Beziehung unterscheidet sich außer in der Bezeichnung
nicht zu der sonst gebräuchlichen Darstellung der Beziehung mit der Be-
zeichnung «extends». Ein AC4BPM stellt selbst wieder eine Funktion dar,
die unter bestimmten Bedingungen durch einen weiteren AC4BPM ange-
passt werden kann. Soll ein AC4BPM angepasst werden, so können weitere
Beziehungen mit der Bezeichnung «adapts» verwendet werden, um weite-
re AC4BPM zu diesem Zweck miteinander in Verbindung zu setzen. Durch
eine Beziehung mit der Bezeichnung «adapts» lassen sich somit Funktionen
zur Anpassung an anderen Funktionen eines Systems referenzieren. Der
Pfeil der Beziehung zeigt dabei stets auf die anzupassende Funktion.

inheritanceDurch eine Inheritance-Beziehung können Eigenschaften einer Anpassung
an weitere Anpassungen in Form von AC4BPM vererbt werden. Ein erben-

Seite 72 Kapitel 4

der AC4BPM kann geerbte Eigenschaften überschreiben und neue bein-
halten. Die Verwendung einer Beziehung mit der Bezeichnung Inheritance
kann insbesondere dann sinnvoll sein, wenn sich mehrere AC4BPM Eigen-
schaften teilen oder diese verfeinern.

«include» Die Beziehung mit der Bezeichnung «include» kann verwendet werden,
wenn beschrieben werden soll, dass eine Funktion zur Anpassung wei-
tere Funktionen zur Anpassung einschließt. Dabei wird die Funktion eines
AC4BPM in der Funktion eines anderen AC4BPM eingeschlossen, von dem
ausgehend die Beziehung mit der Bezeichnung «include» dargestellt wird.

Verfeinerung von
Anpassungsfällen und

abstrakte Syntax

Die durch einen AC4BPM gegebene Funktion zur Anpassung kann dar-
über hinaus auch verfeinert werden. Hierfür werden weitere Konzepte be-
nötigt. In Abbildung 4-4 wird eine Übersicht über das Metamodell hin-
sichtlich des Konzepts Adapt Case 4 BPM gegeben. Durch das hier als Klas-
se AdaptCase4BPM dargestellte Konzept lassen sich – in Anlehnung an den
durch Luckey [Luc13] vorgestellten Ansatz – Anpassungsfälle für anpass-
bare Prozesse beschreiben.

Auslösende Ereignisse Wie bereits zuvor beschrieben, kann für einen AC4BPM eine Reihe von
Ereignissen definiert werden, die für die Kennzeichnung einer Auslösung
des Anpassungsfalls verwendet werden. Derartige Ereignisse werden in
der Abbildung unter dem Typ AdaptationRequestEvent vom Typ AdaptCa-
se4BPM referenziert.

Anpassungsfälle können derartig verfeinert werden, dass zum einen ein
Beobachtungsprozess (MonitoringProcess) und zum anderen eine Reihe von
Anpassungsprozessen (AdaptationProcess) enthalten sein können.

Beobachtungsprozess
(Monitoring Process)

Durch einen Beobachtungsprozess können Analyse- und Planungsfunk-
tionen beschrieben werden, die für eine Anpassung von Prozessen not-
wendig sein können. Die für einen Anpassungsfall definierten Ereignisse
vom Typ AdaptationRequestEvent dienen als mögliche Startereignisse (Start-
Event) für einen Beobachtungsprozess. Wird im Rahmen seiner Funktion fest-
gestellt, dass eine Anpassung notwendig ist, wird ein Ereignis vom Typ
CallAdaptationProcessEvent ausgelöst, dass den Beobachtungsprozess beendet
und einen Anpassungsprozess aufruft.

Anpassungsprozess
(Adaptation Process)

Soll eine Anpassung von Prozessen beschrieben werden, kann das Kon-
zept des Anpassungsprozesses (AdaptationProcess) genutzt werden. Dieser
wird durch die Beendigung eines Beobachtungsprozesses und das Auslö-
sen eines spezifischen Ereignisses aufgerufen. Bei einem Anpassungspro-
zess handelt es sich um eine Abfolge von spezifischen Operationen (Ad-
aptationOperation) zur Anpassung von Prozessen. Beispiele für derartige

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 73

Process
(BPMN2.0)

FlowElements
Container
(BPMN2.0)

Monitoring
Process

Adaptation
ProcessadaptationProcess

0..1

AdaptCase4BPM

Event
(BPMN2.0)

AdaptCase
(ACML)

EndEvent
(BPMN2.0)

UseCase
(UML)

Class
(UML)

0..* startEvent
Callable
Element
(BPMN2.0)

Activity
(BPMN2.0)

signals {redefines signals}

*

callAdaptationOperations

*

ad
a

p
ta

ti
o

n
P

ro
ce

ss
e

s
{r

ed
e

fi
n

e
s

ad
a

p
ta

ti
o

n
A

ct
iv

it
y}

* al
te

rn
a

ti
ve

s
{r

ed
e

fi
n

e
s

al
te

rn
a

ti
ve

s}

*

m
o

n
it

o
ri

n
gP

ro
ce

ss

{r
ed

e
fi

n
e

s
M

o
n

it
o

ri
n

gA
ct

iv
it

y
}

1
ca

llA
d

ap
ta

ti
o

nP
ro

ce
ss

Ev
en

ts

0
..
*

DataObject
(BPMN2.0)

Adaptation
DataObject

adaptationDataObjects

*

ad
a

p
ta

ti
o

n
D

a
ta

O
b

je
ct

s

*

Call
Adaptation

ProcessEvent

Adaptation
RequestEvent

CallActivity
(BPMN2.0)

Adaptation
Operation

Abbildung 4-4:
Übersicht über das Meta-
modell des Konzepts
Adapt Case 4 BPM

Operationen werden in Abschnitt 4.3.3 im Rahmen der Beschreibung des
AVM4BPM gegeben. Daneben sind weitere Operationen möglich, die im
Rahmen der Beschreibung von System- und Umgebungskomponenten
und deren Schnittstellen beschrieben werden können.

Sowohl der Typ MonitoringProcess als auch der Typ AdaptationProcess erben
vom Typ Process. Hierdurch handelt es sich bei beiden Elementen um Con-
tainerelemente, welche weitere Elemente eines Prozesses in der Sprache
BPMN2.0 enthalten können. Auf konzeptionelle Details der beiden einge-
führten Prozesstypen sowie weitere in Abbildung 4-4 dargestellte Konzep-
te wird in den Abschnitten 4.2.2 und 4.2.3 eingegangen.

Seite 74 Kapitel 4

4.2.2 Beobachtungsprozess

Durch einen Beobachtungsprozess (MonitoringProcess) kann Verhalten zur
Beobachtung und Analyse von Prozessen und deren Umgebung beschrie-
ben werden. Er verfeinert die durch einen AC4BPM gegebene Funktion.
Dem Ansatz Adapt Cases folgend werden so die Funktionalitäten Monitor
und Analyze der Referenzarchitektur MAPE-K [KC03] realisiert. Im Rah-
men eines Beobachtungsprozesses wird also auf Ereignisse reagiert, die
unmittelbar durch Prozesse oder durch ihre Umgebung ausgelöst wurden,
sodass im Bedarfsfall eine Anpassung durchgeführt werden kann.

Eine konzeptionelle Darstellung eines Anpassungsfalls mit Fokus auf den
dargestellten Beobachtungsprozess ist in Abbildung 4-5 gezeigt. Für eine
Beschreibung der dargestellten zusammengeklappten Anpassungsprozes-
se (Adaptation Process) wird auf Abschnitt 4.2.3 verwiesen.

Abbildung 4-5:
Konzeptionelle

Darstellung des
Beobachtungsprozesses

(Monitoring Process)

«AdaptCase4BPM»

«BP
Instance
DataObject»

«BP
Model
DataObject»

«BP
Environment
DataObject»

fancy-start-event

...

CAP

CAP
[fancy-condition-A]

CallAdaptationProcessEvent

adaptationProcess = ‘AP-B‘

[fancy-condition-B]

M
on

it
or

in
g

P
ro

ce
ss

MonitoringProcessfancy-start-event

Adaptation Process

AP-A

AP-B

Adaptation Process

AdaptationRequestEvent

AdaptationDataObject

adaptationProcess = ‘AP-A‘

AdaptationProcess
(collapsed)

AdaptCase4BPM

FancyDecision/

PlanningTask

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 75

Start eines
Beobachtungsprozesses

Für den dargestellten Anpassungsfall ist ein einfaches auslösendes Ereig-
nis (AdaptationRequestEvent) definiert worden, welches auch das Starter-
eignis des Beobachtungsprozesses (MonitoringProcess) darstellt. Ein Beob-
achtungsprozess wird grafisch in Anlehnung an BPMN-spezifische Pools
dargestellt. Das enthaltene Verhalten kann durch das Aufkommen eines
der im Rahmen des Anpassungsfalls definierten auslösenden Ereignis-
se gestartet werden. Der Kontrollfluss eines Beobachtungsprozesses kann
verschiedene Aktivitäten zur Beschreibung von Beobachtungs- und Ana-
lysefunktionen enthalten. Dabei kann auf Informationen, wie hier darge-
stellt in Form von Datenobjekten des Typs AdaptationDataObject, zugegrif-
fen werden. Für eine detaillierte Beschreibung für den Zugriff auf Informa-
tionen wird auf die Beschreibung von Sensor- und Effektorschnittstellen in
Abschnitt 4.3.2 verwiesen.

Alternative StartereignisseDurch die dargestellten Sprachelemente für die Verfeinerung eines Anpas-
sungsfalls in Form eines Beobachtungsprozesses ist eine an die Sprache
BPMN2.0 angelehnte Gestaltung von Beobachtungs- und Analysefunk-
tionen möglich. Für weitere Beispiele für die Verfeinerung von Anpas-
sungsfällen unter Verwendung von spezifischen Ereignissen sind in Ab-
bildung 4-6 mögliche auslösende Ereignisse durch die Typen TimerEvent,
MessageEvent und Signal dargestellt. Dabei handelt es sich bei den hier
dargestellten Typen von Ereignissen um eine ausgesuchte Auswahl. Es
kann neben den in Abschnitt 4.3.4 eingeführten Ereignissen der Sprache
BPMN2.0 auch weitere Ereignisse geben, die im Rahmen des Adapt Case
View Model 4 BPM angegeben und in der Gestaltung von Anpassungsfäl-
len verwendet werden können.

Beendigung eines
Beobachtungsprozesses

Ein Beobachtungsprozess kann, wie in Abbildung 4-5 dargestellt, auf ver-
schiedene Weise beendet werden. So können auf Basis der Beobachtungs-
und Analysefunktion Entscheidungen hinsichtlich anzuwendender Maß-
nahmen beschrieben werden. Der dargestellte Kontrollfluss kann, sofern
die Bedingungen fancy-condition-A und fancy-condition-B nicht positiv aus-
gewertet werden, ohne eine Anpassung von Prozessen beendet werden.

Alternativ kann eine der beiden Anpassungen durch Ereignisse des Typs
CallAdaptationProcessEvent aufgerufen und der Beobachtungsprozess be-
endet werden. Derartige Ereignisse werden in Anlehnung an BPMN-
spezifische Endereignisse mit der Beschriftung CAP dargestellt. Ein Beob-
achtungsprozess kann dabei mehrere Ereignisse des Typs CallAdaptation-
ProcessEvent enthalten, sodass z.B. für verschiedene kontext- oder prozess-
spezifische Eigenschaften andere Anpassungsprozesse aufgerufen werden
können. Zur Bestimmung, welche Anpassung in Form eines Anpassungs-

Seite 76 Kapitel 4

Abbildung 4-6:
Beispiele für auslösende

Ereignisse in einem
Beobachtungsprozess
(Monitoring Process)

Monthly

performance

review

once per
month

CAP

Check

equipment

error-
signal

CAP

Check

alternative

plans

Re-Planning
request

CAP

[!ok]
[alternative

located][!ok]

Monitoring ProcessMonitoring ProcessMonitoring Process

«AdaptCase4BPM»

«AdaptCase4BPM»

«AdaptCase4BPM»

once per
month

Re-Planning
request

error-
signal

SignalMessageEventTimerEvent

prozesses aufgerufen werden soll, ist hierbei jedoch das Attribut adapta-
tionProcess mit dem Namen des zu referenzierenden Anpassungsprozesses
zu setzen.

Abstrakte Syntax In Anlehnung an den in Abbildung 4-4 gezeigten Ausschnitt des Meta-
modells für das Konzept Adapt Case 4 BPM ist ein Beobachtungsprozess
vom Typ MonitoringProcess und erbt von dem Typ Process. Ferner ist er
Teil des Typs AdaptCase4BPM und agiert in der Rolle monitoringProcess,
welche die ursprüngliche Rolle der monitoringActivity ersetzt. Durch die-
se BPM-spezifische Redefinition des Konzepts handelt es sich bei dem
Typ MonitoringProcess um eine BPMN-spezifische Prozessdefinition. Die-
se kann neben einer einfachen Spezifikation von Kontroll- und Daten-
flüssen innerhalb des Beobachtungsprozesses auch deren organisatorische
Einbettung in Form von Pools und Lanes enthalten. Hierdurch ist es mög-
lich, auch komplexe Beobachtungs- und Analysefunktionen zu beschrei-
ben, deren einzelne Schritte durch verschiedene Rollen ausgeführt werden
können. Wurde durch beschriebene Beobachtungs- und Analysefunktio-
nen die Notwendigkeit einer Anpassung von Prozessen oder an ihrer Um-
gebung detektiert, so lassen sich im Rahmen der Gestaltung des Beob-
achtungsprozesses verschiedene Aufrufe von Anpassungsprozessen (Ad-
aptation Process) (siehe Abschnitt 4.2.3) definieren.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 77

4.2.3 Anpassungsprozess

Durch einen Anpassungsprozess (AdaptationProcess) kann Verhalten zur
Anpassung von Prozessen und deren Umgebung beschrieben werden. Er
verfeinert die durch einen AC4BPM gegebene Funktion und ergänzt das
Verhalten von Beobachtungsprozessen. Ein Anpassungsprozess kann da-
bei die Funktion Execute der Referenzarchitektur MAPE-K [KC03] realisie-
ren, in dem die in Abschnitt 4.3.2 beschriebenen Effektorschnittstellen und
deren Operationen zur Anpassung von Eigenschaften der System- und
Umgebungskomponenten verwendet werden.

Eine konzeptionelle Darstellung eines Anpassungsfalls mit Fokus auf die
dargestellten Anpassungsprozesse mit der Bezeichnung AP-A und AP-
B ist in Abbildung 4-7 gezeigt. Sie stellen zueinander jeweils einen al-
ternativen Anpassungsprozess dar. Bei dem zusammengeklappten Beob-
achtungsprozess handelt es sich um den in Abschnitt 4.2.2 beschriebenen
Prozess in einer alternativen Darstellungsweise.

«BP
Environment
DataObject»

Fancy
Preprocessing

Task

Fancy
Postprocessing

Task

«Output

Parameter»

...

...

A
d

ap
ta

ti
on

 P
ro

ce
ss

AdaptationDataObject

AdaptationOperation

«AdaptationOperation»

standard-
start-event

«BP
Model
DataObject»

AP-A

Adaptation Process
AP-B

AdaptationProcess
(collapsed)

MonitoringProcess
(collapsed)

«AdaptCase4BPM»

fancy-start-event AdaptationRequestEvent

AdaptCase4BPM

«BP
Instance
DataObject»

«Input

Parameter»

Monitoring Process

AdaptationProcess

Abbildung 4-7:
Konzeptionelle
Darstellung des
Anpassungsprozesses
(Adaptation Process)

Seite 78 Kapitel 4

Ein Anpassungsprozess wird grafisch in Anlehnung an Pools der Spra-
che BPMN2.0 dargestellt. Er beginnt typischerweise mit einem Startereig-
nis der Sprache BPMN2.0, da er durch einen Beobachtungsprozess explizit
aufgerufen wird. Der Kontrollfluss eines Beobachtungsprozesses kann ver-
schiedene Aktivitäten (AdaptationOperation) zur Beschreibung von Anpas-
sungen von Prozessen enthalten. Für diese Operationen können verschie-
dene Ein- und Ausgabeparameter notwendig sein, die in Anlehnung an
BPMN-spezifische Ein- und Ausgabeobjekte dargestellt sind. Ferner ist es
möglich, auch weitere Operationen zur Anpassung von durch System- und
Umgebungskomponenten gekapselten Inhalten vorzunehmen, sofern sie
im Rahmen des AVM4BPM gestaltet worden sind. Für Beispiele für mögli-
che Operationen wird auf Abschnitt 4.3.3 verwiesen.

Daneben können aber auch Aktivitäten sinnvoll sein, die die Anpassung
von Prozessen vor- oder nachbereiten. Diese sind in der konzeptionel-
len Darstellung als FancyPreprocessingTask bzw. FancyPostprocessingTask ab-
gebildet. Die Aktivitäten des Kontrollflusses des Anpassungsprozesses
können ebenfalls Datenobjekte vom Typ AdaptationDataObject verwen-
den, die in Anlehnung an die Operationen der in Abschnitt 4.3 beschrie-
benen System- und Umgebungskomponenten abgeleitet werden können.
Der Zugriff auf Daten wird in der Sprache ACML4BPM durch Datenob-
jekte (AdaptationDataObject) repräsentiert, die durch Sensorschnittstellen
angeboten werden (siehe Abschnitt 4.3.2).

In Anlehnung an den durch Abbildung 4-4 gezeigten Ausschnitt des Meta-
modells für das Konzept Adapt Case 4 BPM ist ein Anpassungsprozess vom
Typ AdaptationProcess und erbt von dem Typ Process. Ferner ist er Teil des
Typs AdaptCase4BPM und agiert in der Rolle adaptationProcess, welche die
ursprüngliche Rolle der adaptationActivity ersetzt. Sind alternative Anpas-
sungsprozesse vorhanden, agieren sie in der Rolle alternatives, welche die
ursprüngliche Rolle alternatives ersetzt.

Durch diese BPM-spezifische Redefinition des Konzepts handelt es sich
bei dem Typ AdaptationProcess um eine BPMN-spezifische Prozessdefini-
tion. Diese kann neben einer einfachen Spezifikation von Kontroll- und
Datenflüssen innerhalb des Anpassungsprozesses auch deren organisato-
rische Einbettung in Form von Pools und Lanes enthalten. Hierdurch ist
es möglich auch komplexe Anpassungen von Prozessen zu beschreiben,
deren einzelne Schritte durch verschiedene Rollen vorgenommen werden
können.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 79

4.3 Adaptation View Model 4 BPM

Durch das Adaptation View Model 4 BPM (AVM4BPM) werden struktu-
relle Informationen eines Systems beschrieben. Hierbei liegt der Fokus
auf den System- und Umgebungskomponenten und ihren angebotenen
Schnittstellen mit möglichen Ereignissen und Operationen zum Lesen oder
Anpassen von Eigenschaften. In Anlehnung an die Referenzarchitektur
MAPE-K [KC03] lassen sich Komponenten grundlegend in die Typen Sys-
tem und Umgebung unterscheiden. Neben diesen Komponenten sind aber
auch die von ihnen angebotenen Schnittstellen, die vorhandenen Ereignis-
se sowie die angebotenen Operationen zum Lesen und zur Anpassung
von Eigenschaften von besonderem Interesse. Im zuvor genannten An-
satz werden dabei die beiden grundlegenden Typen Sensor und Effector für
Schnittstellen genannt.

In Abbildung 4-8 sind die Inhalte der nachfolgenden Abschnitte in An-
lehnung an die zuvor genannten Elemente dargestellt. So wird zunächst
in Abschnitt 4.3.1 auf System- und Umgebungskomponenten der Domäne
BPM eingegangen. Nachfolgend werden in Abschnitt 4.3.2 die von diesen
Komponenten angebotenen Sensor- und Effektorschnittstellen vorgestellt.
Abschließend werden die von den Schnittstellen angebotenen Operationen
(siehe Abschnitt 4.3.3) und Ereignisse (siehe Abschnitt 4.3.4) beschrieben.

System- und
Umgebungskomponenten

Abschnitt 4.3.1

Sensor- und
Effektorschnittstellen

Abschnitt 4.3.2

Operationen

Abschnitt 4.3.3

Ereignisse

Abschnitt 4.3.4

Abbildung 4-8:
Inhalte des Adaptati-
on View Model 4 BPM
(AVM4BPM)

4.3.1 System- und Umgebungskomponenten

Durch die System- und Umgebungskomponenten können strukturel-
le Informationen über das System beschrieben werden. Für anpassbare
Prozesse muss hierzu zunächst analysiert werden, welche Komponenten
sinnvoll sein können. Ein mögliches methodisches Vorgehen für die Ana-
lyse ist dadurch gegeben, den BPM-Lebenszyklus (siehe Abschnitt 2.2) mit
den im Vordergrund stehenden Artefakten Prozessmodell und Prozessin-
stanz zunächst näher zu betrachten.

Seite 80 Kapitel 4

Hierzu ist in Abbildung 4-9 der BPM-Lebenszyklus nach Weske [Wes12]
mit den im Fokus stehenden Artefakten und Treibern zur Anpassung von
Prozessen dargestellt. Insgesamt werden in dieser Analyse vier Treiber zur
Anpassung von Prozessen betrachtet. Sie beziehen sich je nach Phase des
Lebenszyklus entweder auf Anpassungen von Prozessmodellen oder auf
Prozessinstanzen. Im Folgenden wird näher auf die vier Treiber Definition,
Verfeinerung, Adaption bzw. Flexibilisierung und Verbesserung eingegangen.

Abbildung 4-9:
BPM-Lebenszyklus mit

den im Fokus stehen-
den Artefakten und

möglichen Treibern zur
Anpassung von Prozessen

BPM-Lebenszyklus

Treiber zur Anpassung Beziehung

«Treiber»

Verbesserung
«Treiber»

Definition

«Treiber»

Adaption bzw.
Flexibilisierung

«Treiber»

Verfeinerung

«Artefakt»

Prozessinstanz
«Artefakt»

Prozesmodell

wird zur Laufzeit repräsentiert durch

«Phase»

Konfiguration
«Phase»

Evaluation
«Phase»

Design & Analyse
«Phase»

Ausführung

Definition In der ersten Phase des BPM-Lebenszyklus Design & Analyse werden Pro-
zessmodelle definiert. Je nach Perspektive kann bei dieser Definition von
Prozessen auch von Anpassung gesprochen werden, da ein initiales bzw.
zunächst leeres Prozessmodell nach und nach im Rahmen der Gestaltung
der Prozesse mit Sprachelementen angereichert wird. Jede Anreicherung
eines Prozessmodells mit neuen Sprachelementen stellt eine Anpassung
im Bezug zum ausgehenden Prozessmodell dar.

Verfeinerung In der zweiten Phase Konfiguration werden Prozessmodelle für die Ausfüh-
rung konfiguriert bzw. verfeinert. Dies kann z.B. durch eine Implementie-
rung oder das Hinzufügen von plattformspezifischen Informationen ge-
schehen. Ferner können Prozesse in frühen Phasen des BPM-Lebenszyklus
auch hinsichtlich der Flexibilität verfeinert werden, wie es z.B. bei der Va-
riabilität von Prozessen durchgeführt werden kann (siehe Abschnitt 2.2.3).
Betrachtet man diese Zwecke, kann auch hier von Anpassungen auf Basis
existierender Prozessmodelle ausgegangen werden. Aufgrund des Hinzu-

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 81

fügens neuer Informationen bzw. der Selektion bestimmter Teilprozesse
für einen konkreten Kontext wird in diesem Bezug auch von einer Verfei-
nerung gesprochen.

Adaption bzw.
Flexibilisierung

Während der Ausführung werden Prozessmodelle durch Prozessinstan-
zen repräsentiert. Ferner können zur Ausführung Ereignisse aufkommen,
die geplant oder ungeplant eine Anpassung von sowohl Prozessmodellen
als auch Prozessinstanzen notwendig machen können. Im Rahmen dieser
Arbeit sind hier die ausschlaggebenden Treiber durch Adaption bzw. Fle-
xibilisierung von Prozessen dargestellt, die dementsprechend in der dritten
Phase Ausführung vorkommen. Ereignisse können hier die Anpassung von
Eigenschaften der Prozessmodelle und -instanzen auslösen.

VerbesserungDer BPM-Lebenszyklus sieht in der letzten Phase Evaluation die Analyse
und Bewertung bestehender Prozesse zur Verbesserung vor. Dabei kann
z.B. auf die Historie von abgeschlossenen Prozessinstanzen zurückgegrif-
fen werden, welche zu dem genannten Zweck der Verbesserung analy-
siert werden. Auf Basis der Analyseergebnisse können neue Anforderun-
gen zur Verbesserung der Prozesse in der nächsten Iteration des BPM-
Lebenszyklus zur Verfügung gestellt werden. Hierdurch ist es möglich, vor-
handene Prozesse kontinuierlich zu verbessern und an neue Umgebungs-
faktoren anzupassen. Eine Verbesserung eines Prozesses zur Laufzeit kann
durch geeignete Mechanismen im Rahmen der Adaption bzw. Flexibilisie-
rung vorgenommen werden.

Entlang der Phasen des BPM-Lebenszyklus und der vorgestellten Treiber
für Anpassungen von Prozessen lassen sich zwei Kontexte identifizieren,
welche durch die Anpassung von Prozessmodellen und Prozessinstanzen
gegeben sind. Die Anpassung von Prozessmodellen kann wie beschrieben
in allen genannten Phasen sinnvoll sein. Wobei die Anpassung von Pro-
zessinstanzen vorwiegend in der Phase Ausführung als sinnvoll erachtet
werden kann.

Konkrete Syntax für
Komponenten

Aufgrund der verschiedenen erläuterten Kontexte, in denen Anpassungen
von Prozessen möglich sind, werden unterschiedliche Komponenten be-
nötigt. Hierdurch können für einen jeweiligen Kontext spezifische Ope-
rationen und Ereignisse angeboten werden. Das in dieser Arbeit vorge-
stellte Konzept sieht dabei insgesamt drei unterschiedliche Komponen-
ten vor. Darunter befinden sich zwei Systemkomponenten und eine Um-
gebungskomponente, deren konkrete Syntax in Abbildung 4-10 gezeigt
ist. Die drei Typen von Komponenten werden in Anlehnung an UML-
Komponenten [OMG10] dargestellt und können jeweils über ein individu-
elles Symbol unterschieden werden. Dabei tragen die Symbole eine Ab-

Seite 82 Kapitel 4

kürzung ihrer jeweiligen Bezeichnung der Typen. So trägt z.B. das Symbol
für den Typ BPModelComponent die Abkürzung MC. Die in Abbildung 4-10
dargestellten Sensor- und Effektorschnittstellen werden ebenso analog zu
UML-Schnittstellen (Interfaces) [OMG10] dargestellt.

Abbildung 4-10:
Konkrete Syntax
von System- und

Umgebungskomponenten
(AVM4BPM)

«BPEnvironmentComponent»

EnvironmentComponent

ECENV

«BPModelComponent»

ModelComponent
«BPExecutionComponent»

ExecutionComponent

BPModelComponent BPExecutionComponentBPEnvironmentComponent

Sensor- und
Effektorschnittstelle

MC

Komponenten-spezifisches Symbol

Die im linken Bereich dargestellte Systemkomponente vom Typ BPModel-
Component ist für die Kapselung von Prozessmodellen gedacht. Die zweite
im rechten Bereich dargestellte Systemkomponente BPExecutionComponent
kapselt die zur Laufzeit bestehenden Prozessinstanzen.

Für industrielle Umgebungen kann es eine Reihe von unterschiedlichen
Umgebungskomponenten geben, die aktiv oder passiv mit anpassbaren
Prozessen interagieren und diese beeinflussen können. Beispiele für der-
artige Umgebungskomponenten sind z.B. Sensoren oder Aktoren in einer
Produktionsumgebung, die Eigenschaften von Ressourcen wahrnehmen,
prüfen oder anpassen können. Derartige Umgebungskomponenten kön-
nen dabei im Rahmen der Prozessausführung bzw. -steuerung in unmit-
telbarem Zusammenhang mit den Prozessen stehen. Zur Kapselung derar-
tiger Umgebungskomponenten werden in der Sprache ACML4BPM Um-
gebungskomponenten vom Typ BPEnvironmentComponent verwendet.

In Abbildung 4-11 ist die abstrakte Syntax der erarbeiteten Typen der
System- und Umgebungskomponenten der Teilsprache AVM4BPM darge-
stellt. Dabei werden bestehende Konzepte des Ansatzes Adapt Cases in der
Farbe Weiß und erarbeitete domänenspezifische Konzepte des Ansatzes
Adapt Cases 4 BPM in der Farbe Grau dargestellt.

BPModelComponent Für Anpassungen von Prozessmodellen ist die Komponente BPModel-
Component vorgesehen. Eine derartige Komponente referenziert eine belie-
bige Menge von Prozessmodellen, welche hier als vom Typ Process darge-
stellt werden. Sie dient der Kapselung von Prozessmodellen, welche für

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 83

Component
(UML)

SystemComponent
(ACML)

BPModelComponent

BPExecutionComponent

EnvironmentComponent
(ACML)

BPEnvironmentComponent

EnvironmentComponent
(Other)

adaptiveProcess

*
0..1

adaptiveProcess

*
0..1

environmentComponent

*
0..1

Hinzugefügtes KonzeptBestehendes Konzept

Process
(BPMN2.0)

ProcessInstance
(Runtime)

Abbildung 4-11:
System- und Umge-
bungskomponenten
(AVM4BPM)

Anpassungen vorgesehen sind, weshalb sie in der Rolle adaptiveProcess
agieren. Der Typ Process stellt ein sogenanntes Containerelement für die
Definition von Prozessen in der Sprache BPMN2.0 [OMG11] dar. In ihm
können weitere Elemente der Sprache BPMN2.0, wie z.B. Pools, Lanes oder
das Verhalten des Prozesses, enthalten sein.

BPExecutionComponentDurch die zweite Systemkomponente BPExecutionComponent werden die
zur Laufzeit bestehenden Prozessinstanzen gekapselt. Hier ist darauf hin-
zuweisen, dass innerhalb der Spezifikation der Sprache BPMN2.0 keine
Sprachelemente für die Beschreibung von Prozessinstanzen vorhanden
sind. Daher ist die Klasse ProcessInstance nicht analog zur Klasse Process
mit einem Containerelement der Sprache BPMN2.0 zu referenzieren. Die
Klasse ProcessInstance repräsentiert daher lediglich eine Abstraktion einer
konkreten internen Repräsentation einer Prozessinstanz innerhalb einer
beliebigen Laufzeitumgebung (Runtime) für Prozesse.

Im Rahmen der Phase Konfiguration und der Auswahl einer konkreten
Plattform zur Ausführung müssen daher gegebenenfalls Eigenschaften
und Funktionalitäten ergänzt bzw. verfeinert werden. Dies betrifft ins-
besondere auch die angebotenen Operationen zur Anpassung (siehe Ab-
schnitt 4.3.3) und Ereignisse (siehe Abschnitt 4.3.4).

BPEnvironmentComponentIn diesem Ansatz wird der Typ BPEnvironmentComponent für die Reprä-
sentation einer beliebigen Umgebungskomponente (Other) verwendet. Der
Typ BPEnvironmentComponent stellt dabei eine Realisierung der Klasse En-
vironment dar. Aufgrund der Diversität an möglichen zu kapselnden In-

Seite 84 Kapitel 4

halten wird dieser Typ in dieser Arbeit nicht detaillierter spezifiziert. Hier-
zu lässt sich vornehmlich die Fokussierung von Prozessen als Begründung
anbringen.

Sowohl die System- als auch die Umgebungskomponenten bieten Schnitt-
stellen der Typen Sensor und Effector an. Hierdurch wird ein kontrollierter
Zugriff auf gekapselte Inhalte ermöglicht. Die Beschreibung dieser Schnitt-
stellen wird in dem nachfolgenden Abschnitt 4.3.2 vorgenommen.

4.3.2 Sensor- und Effektorschnittstellen

In diesem Abschnitt werden Sensor- und Effektorschnittstellen beschrie-
ben, die von den im vorherigen Abschnitt vorgestellten System- und Um-
gebungskomponenten angeboten werden. Insgesamt sind im Rahmen des
AVM4BPM drei Konzepte für den kontrollierten Zugriff auf gekapselte
Inhalte vorgesehen. Dabei handelt es sich um Ereignisse zur Auslösung
einer Anpassung (AdaptationRequestEvent), den Zugriff auf Daten (Adap-
tationDataObject) und Operationen zur Anpassung (AdaptationOperation).
Beispiele für diese Konzepte hinsichtlich des Typs von Systemkomponen-
ten BPModelComponent sind in Abbildung 4-12 durch ihre konkrete Syntax
gegeben.

Abbildung 4-12:
Konkrete Syntax von
Sensor- und Effektor-

schnittstellen (AVM4BPM)

TimerEvent
(BPMN2.0)

DataObject
(BPMN2.0)

Activity
(BPMN2.0)

Adapt-A

«BPModel
Data
Object»

Adaptation
RequestEvent

«BPModelSensor»

SensorName
«BPModelEffector»

EffectorName
Sensor
(ACML)

Adaptation
Operation

Effector
(ACML)

Adaptation
DataObject

ProcessRepository MC

«BPModelDataObject»

SomeData

«AdaptationRequestEvent»

AfterTimeX

«ProcessModelAdaptationOperation»

Adapt-A

Konkrete Syntax im BPD

AfterTimeX

Konkrete Syntax im AVM4BPM

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 85

Gezeigt ist eine konkrete Systemkomponente (ProcessRepository), die zwei
Schnittstellen realisiert: eine Sensorschnittstelle (BPModelSensor) und eine
Effektorschnittstelle (BPModelEffector). Die Sensorschnittstelle bietet da-
bei für eine Anpassung notwendige Daten an (AdaptationDataObject). Fer-
ner definiert sie zudem ein Ereignis (AdaptationRequestEvent), das für die
Auslösung einer Anpassung genutzt werden kann. Die Effektorschnitt-
stelle bietet eine Operation (AdaptationOperation) zur Anpassung an. Die
konkrete Syntax der Elemente des AVM4BPM folgt dabei einer an die UML
angelehnte Darstellung. Werden die im Rahmen des AVM4BPM gestalte-
ten Elemente im Rahmen des ACM4BPM (siehe Abschnitt 4.2) eingesetzt,
so ändert sich die Darstellung hinsichtlich einer entsprechenden Weise
für die Sprache BPMN2.0. Hierfür sind Beispiele im unteren Bereich von
Abbildung 4-12 gegeben. Für weitere Beispiele wird auf die Beschreibung
des ACM4BPM in Abschnitt 4.2 und auf das im Rahmen der Evaluation
gegebene Szenario in Abschnitt 7.1 verwiesen.

Eine Übersicht über des zu den Schnittstellen zugehörigen Metamodells
ist in Abbildung 4-13 gezeigt. Die erarbeiteten Schnittstellen werden dort
als Realisierungen der Typen Sensor und Effector der Sprache ACML darge-
stellt. Nachfolgend wird auf damit zusammenhängende Konzepte einge-
gangen.

Typen von SchnittstellenEs bestehen die drei Sensorschnittstellen BPModelSensor, BPExecutionSen-
sor und BPEnvironmentSensor. Ferner werden als Effektorschnittstellen die
Typen BPModelEffector, BPExecutionEffector und BPEnvironmentEffector vor-
gestellt. Durch die Verwendung der genannten Schnittstellen kann ein kon-
trollierter lesender (Sensor) und schreibender Zugriff (Effector) auf Funktio-
nen und Eigenschaften der System- bzw. Umgebungskomponenten reali-
siert werden. Die zuvor genannten Typen von Sensor- und Effektorschnitt-
stellen werden nachfolgend detaillierter beschrieben.

SensorschnittstellenDie dargestellten Sensorschnittstellen stellen spezielle Schnittstellen dar,
mit deren Hilfe auf verschiedene Eigenschaften der jeweiligen Komponen-
ten und der gekapselten Inhalte zugegriffen werden kann. Dabei liegt der
Fokus einer solchen Schnittstelle auf dem lesenden Zugriff von Eigenschaf-
ten, sodass bei ihrer Verwendung keine Anpassung durchgeführt wird.
Die Zugehörigkeit einer Sensorschnittstelle lässt sich in Anlehnung an die
Benennung ihres Typs ableiten, sodass bspw. eine Schnittstelle vom Typ
BPModelSensor einer Komponente vom Typ BPModelComponent zugehörig
ist. Weitere Zuordnungen können entsprechend gleichartig vorgenommen
werden.

Seite 86 Kapitel 4

Abbildung 4-13:
Sensor- und Effektor-
schnittstellen für an-

passbare Prozesse
(AVM4BPM)

DataObject
(BPMN2.0)

BPModel
Sensor

BPExecution
Sensor

BPEnvironment
Sensor

AdaptationInterface
(ACML)

Interface
(UML)

BPEnvironment
Effector

ProcessModel
AdaptationOperation

BPModel
Effector

ProcessInstance
AdaptationOperation

BPExecution
Effector

AdaptationOperation

Activity
(BPMN2.0)

BPModel
DataObject

BPInstance
DataObject

BPEnvironment
DataObject

{abstract}

Environment
AdaptationOperation

{abstract}

 *

operations
{Redefines operations}

operations

*

operations

*

AdaptationRequestEvent

 *
 operations
 {Redefines operations}

e
ven

ts

*

Event
(BPMN2.0)

Hinzugefügtes KonzeptBestehendes Konzept Hinzugefügtes, aber nicht spezifiziertes Konzept

AdaptationDataObject

 *
 operations
 {Redefines operations}

 *
 operations
 {Redefines operations}

*
operations

{Redefines operations}

*
operations

{Redefines operations}

Sensor
(ACML)

Effector
(ACML)

Zugriff auf Daten Im Rahmen der Sprache ACML4BPM wird der lesende Zugriff auf Eigen-
schaften der Komponenten durch Datenobjekte vom Typ AdaptationData-
Object realisiert. Bei diesem Typ handelt es sich um eine spezifische Varian-
te des Typs DataObject aus der Sprache BPMN2.0. Für die zuvor beschrie-
benen Sensorschnittstellen werden jeweils spezifische Typen von Datenob-
jekten eingeführt. So bietet bspw. die Sensorschnittstelle vom Typ BPMo-
delSensor den lesenden Zugriff auf Eigenschaften durch Datenobjekte vom
Typ BPModelDataObject.

Auslösung einer
Anpassung

Neben dem lesenden Zugriff auf Eigenschaften bieten Sensorschnittstel-
len aber auch die Möglichkeit zur Spezifikation von Ereignissen, die aus-
gehend von der Komponente eine mögliche Anpassung auslösen können.
Diese Ereignisse werden in Abbildung 4-13 durch den Typ AdaptationRe-

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 87

questEvent repräsentiert, der von dem Typ Event der Sprache BPMN2.0
erbt. Hierdurch ist es möglich verschiedenste Typen von Ereignissen der
Sprache BPMN2.0 im Rahmen des AVM4BPM zu beschreiben und an-
schließend im Rahmen des ACM4BPM zu nutzen. Auf Details möglicher
Ereignisse wird in Abschnitt 4.3.4 näher eingegangen.

EffektorschnittstellenNeben Sensorschnittstellen sind aber insbesondere auch Effektorschnitt-
stellen notwendig, mit denen Anpassungen von den Eigenschaften der
Komponenten und somit an den Prozessmodellen und -instanzen, aber
auch an denen in ihrer Umgebung möglich sind. Jede Effektorschnittstelle
kann eine Reihe von verschiedenen Operationen vom Typ AdaptationOpe-
ration zur Anpassung von gekapselten Inhalten anbieten.

In dieser Arbeit liegt der Fokus dabei insbesondere auf den Operationen
zur Anpassung von Prozessen. Entsprechend der zuvor eingeführten
Typen von Komponenten existieren in diesem Bezug die beiden Effek-
torschnittstellen BPModelEffector und BPExecutionEffector, die jeweils Ope-
rationen für die Anpassung von Prozessmodellen bzw. Prozessinstanzen
anbieten können. Die Benennung der Schnittstellen gibt dabei darüber
Aufschluss, welchem Typ von Komponente sie zugehörig ist.

So bietet bspw. eine Effektorschnittstelle vom Typ BPModelEffector Ope-
rationen für die Anpassung von Eigenschaften einer Komponente vom
Typ BPModelComponent an. Zur Anpassung von Prozessinstanzen kann
die Schnittstelle vom Typ BPExecutionEffector und deren Operationen vom
Typ ProcessInstanceAdaptationOperation verwendet werden. Auf die von
diesen beiden Effektorschnittstellen angebotenen Operationen zur An-
passung von Prozessmodellen (ProcessModelAdaptationOperation) und Pro-
zessinstanzen (ProcessInstanceAdaptationOperation) wird in Abschnitt 4.3.3
näher eingegangen. Ebenso bietet die Schnittstelle vom Typ BPEnviron-
mentEffector Operationen zur Anpassung gekapselter Inhalte an; diese lie-
gen jedoch nicht im Fokus dieser Arbeit, weshalb die Schnittstelle an dieser
Stelle nur der Vollständigkeit halber aufgeführt wird.

Verwendung von Inhalten
des AVM4BPM im
ACM4BPM

Die durch die Sensor- und Effektorschnittstellen bereitgestellten Ereignis-
se, Datenobjekte und Operationen sollen in der Teilsprache ACM4BPM zur
Gestaltung von Anpassungsfällen (AC4BPM) eingesetzt werden. Sie bil-
den somit das Bindeglied zwischen den beiden Teilsprachen AVM4BPM
und ACM4BPM. Einzelne Operationen, die durch eine der vorgestellten
Schnittstellen angeboten werden, können dabei in der Gestaltung eines
Monitoring Process und eines Adaptation Process verwendet werden (siehe
Abschnitt 4.2).

Seite 88 Kapitel 4

4.3.3 Operationen

Für die Anpassung von Eigenschaften der durch System- und Umge-
bungskomponenten gekapselten Inhalte sind entsprechende Operationen
notwendig. Derartige Operationen werden durch Effektorschnittstellen
(siehe Abschnitt 4.3.2) zur Verfügung gestellt. In diesem Abschnitt werden
Operationen fokussiert, die zur Anpassung von Prozessen eingesetzt
werden können. Generell lassen sich derartige Operationen dabei in drei
Typen unterscheiden, die nachfolgend vorgestellt werden.

Add Anpassungsoperationen vom Typ Add fügen einem Prozess
neue Eigenschaften hinzu. Hinsichtlich der hier betrachte-
ten Prozesse könnten z.B. Elemente oder Eigenschaften des
Kontroll- oder Datenflusses betroffen sein.

Remove Durch Anpassungsoperationen vom Typ Remove lassen sich
Eigenschaften aus einem Prozess entfernen. Analog zu den
Anpassungsoperationen vom Typ Add könnten auch hier-
von Elemente oder Eigenschaften des Kontroll- und Daten-
flusses betroffen sein.

Modify Anpassungsoperationen vom Typ Modify fügen weder Ei-
genschaften hinzu noch entfernen sie diese. Stattdessen ist
eine Manipulation bestehender Elemente oder ihrer Eigen-
schaften, z.B. in Form der Änderung des Wertes eines At-
tributs, möglich.

Für die in dieser Arbeit betrachtete Domäne BPM existieren bereits eine
Reihe verschiedener Operationen, die zur Anpassung von Prozessen ein-
gesetzt werden können. Einige Beispiele sind durch [WRR07; WRR08;
Ger13] gegeben. Dabei fokussieren existierende Ansätze oftmals wenige
ausgesuchte Eigenschaften von Prozessen.

Existierende Ansätze für
Operationen

So legen [WRR08; WRR07] fest, dass die von ihnen beschriebenen Anpas-
sungsoperationen lediglich für die Anwendung hinsichtlich des Kontroll-
flusses innerhalb eines Prozesses anwendbar sind. Gerth [Ger13] hingegen
führt eine sogenannte Intermediate Representation ein, welche eine Abstrak-
tion gängiger Prozessbeschreibungen darstellt. Auf Basis dieser Abstrakti-
on führt er eine Reihe elementarer und erweiterter Operationen zur An-
passung ein, die sich aber ebenso auf Eigenschaften und Elemente des
Kontrollflusses konzentriert. Für anpassbare Prozesse ist aber nicht nur
der Kontrollfluss zu berücksichtigen, sondern auch weitere Eigenschaften
und Elemente, wie z.B. aus den Perspektiven Organisation und Information

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 89

(siehe Abschnitt 2.3.2). Daher ist eine Analyse der Domäne BPM hinsicht-
lich möglicher Anpassungen notwendig, bevor Operationen der Sprache
ACML4BPM vorgestellt werden können.

Grundlage für die Analyse
der Domäne BPM

Als Grundlage für eine Analyse können verschiedene Artefakte entlang
des BPM-Lebenszyklus dienen. Alternativ kann aber auch die Methode, al-
so der BPM-Lebenszyklus selbst, Aufschluss über mögliche Umstände ge-
ben, die eine Anpassung erfordern. So stellen, wie bereits zuvor in Abbil-
dung 4-9 beschrieben, unterschiedliche Treiber zur Anpassung von Prozes-
sen entlang des BPM-Lebenszyklus und die von ihnen referenzierten Ar-
tefakte selbst bereits Umstände einer möglichen Anpassung dar. Für eine
konkretere Analyse der Domäne BPM wird daher an dieser Stelle eine Aus-
wahl einiger weniger Gegenstände getroffen. So wurde sich für die Refe-
renzimplementierung des Metamodells der Sprache BPMN2.0 im Rahmen
des Projekts BPMN2 Modeler1 entschieden.

In Abbildung 4-15 ist das bereits in Abschnitt 2.3.4 eingeführte Beispiel ei-
nes Business Process Diagram (BPD) der Sprache BPMN2.0 gezeigt. Es wur-
de um Einfärbungen hinsichtlich der Zugehörigkeit von Elementen zu Per-
spektiven ergänzt, die die Basis für die weiterführende Analyse bilden.

Robot

Item is
ready for
quality check

Integrate
electronic parts

into chassis

Worker

Report

Assemble parts

~

Assemble
mechanic parts

Assemble
electronic parts

Run

quality
check

Funktion InformationVerhalten Organisation

Perspektiven

Abbildung 4-14:
Analyse von Perspektiven
in Prozessen auf Basis
eines BPD der Sprache
BPMN2.0

Eine zugehörige Einfärbung von Elementen kann ebenfalls auf Basis ei-
nes Metamodells durchgeführt werden. In Abbildung 4-15 ist dies auf Ba-
sis des Metamodells des Projekts BPMN2 Modeler gezeigt. Die Zugehörig-
keit der einzelnen Elemente zu den von Curtis [CKO92] eingeführten Per-
spektiven ist dabei farbig dargestellt. Bei den in der Farbe Weiß dargestell-
ten Elementen handelt es sich um abstrakte Klassen, die in der Sprache
BPMN2.0 keine grafische Darstellung besitzen.

1Projekt BPMN2 Modeler
https://www.eclipse.org/bpmn2-modeler/
Letzter Zugriff 15.12.2018

https://www.eclipse.org/bpmn2-modeler/

Seite 90 Kapitel 4

Abbildung 4-15:
Analyse von Perspektiven

in Prozessen auf Basis
des Metamodells des Pro-

jekts BPMN 2.0 Modeler

type: GatewayType

Gateway
ActivityProcess

FlowElement
(Flow)

FlowNode
FlowElements

Container

Interaction
Node

Message

Expression

START
INTERMEDIATE
END

enumeration
EventType

MANUALTASK
USERTASK
SERVICETASK
SCRIPTTASK

enumeration
TaskType

AND
OR
XOR
COMPLEX

enumeration
GatewayType

0..*

 consists-of

1

1

 consists-of

0..*

0..1 condition

 1

0..1 message

 1

1

1 target

1

1 source

1

1 target

1

1 source

consists-of 0..*

0..1 data

 1

inputAssociation,
outputAssociation

0..*

0..*
 consists-of

1

SequenceFlow

type: TaskType

Task
SubProcess

LaneSet
(Pool)

MessageFlow

type: EventType

Event

DataObject

Lane

DataAssociation

Funktion InformationVerhalten Organisation

Perspektiven

Elemente der Perspektive
Organisation

Die Wurzelklasse Process ist dabei der Perspektive Funktion zugehörig und
agiert als Container für die hier dargestellte Repräsentation der Domäne
BPM. In Abbildung 4-14 ist diese Einfärbung zur Übersichtlichkeit nicht
vorgenommen. Es können aus der Perspektive Organisation Elemente vom
Typ Pool und Lane zur Gestaltung der organisatorischen Einbettung wei-
terer Elemente verwendet werden. Dabei kann ein Element vom Typ Pool
weitere Elemente vom Typ Lane enthalten, die wiederum weitere Elemen-
te vom Typ Pool enthalten können. Das BPD beschreibt hierzu die beiden
Rollen Worker und Robot.

Elemente der Perspektive
Funktion

Neben Elementen der Perspektive Organisation kann ein Element des Typs
Process aber auch aus Elementen anderer Perspektiven bestehen. So sind
weitere Elemente der Perspektive Funktion durch verschiedene Aktivitä-
ten, wie z.B. in Form der Typen SubProcess und Task, gegeben. Der hier
gezeigte Ausschnitt der Domäne BPM unterstützt verschiedenste Unter-

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 91

typen der genannten Aktivitäten, wovon ein Auszug in Abbildung 4-15
durch die Enumeration TaskType angegeben ist.

Elemente der Perspektive
Verhalten

Elemente der Perspektive Funktion können mit Elementen der Perspekti-
ven Verhalten und Information zu verschiedenen Zwecken verbunden sein.
So können verschiedene Typen von Ereignissen (Event) vorkommen, die
den Beginn (Start), den Abschluss (End) oder beliebige Zwischenereignisse
(Intermediate) darstellen. Für Verzweigungen lassen sich unterschiedliche
Typen von Gateways einsetzen. Die hier dargestellte Enumeration Gateway-
Type beschreibt dabei einen Auszug der Domäne BPM in Bezug zu Typen
von Gateways. Aktivitäten der Perspektive Funktion lassen sich mit den
Elementen vom Typ Event und Gateway über Kanten vom Typ Sequence-
Flow verbinden. Eine Kante vom Typ SequenceFlow kann darüber hinaus
auch mit einer Bedingung (Expression) versehen werden, mit der ausge-
drückt werden kann, dass die Kante nur unter Einhaltung dieser Bedin-
gung zu dem referenzierten Element führt. Das in Abbildung 4-14 gezeig-
te BPD enthält verschiedene Start- und Endereignisse sowie ein Ereignis
vom Typ MessageEvent der Perspektive Verhalten.

Elemente der Perspektive
Information

Die Perspektive Information ist durch zwei unterschiedliche Bereiche in
dem hier dargestellten Ausschnitt des Metamodells und des BPD darge-
stellt. So kann für die Ausführung von Aktivitäten die Eingabe von Daten
notwendig sein. Darüber hinaus ist es aber auch möglich, dass Aktivitäten
Daten erzeugen. Hierfür sind in dem dargestellten Ausschnitt der Domä-
ne BPM Elemente vom Typ DataObject vorgesehen, die über Kanten vom
Typ DataAssociation mit den Aktivitäten verbunden werden können. Dabei
deutet eine zu einer Aktivität zugehörige Kante vom Typ DataAssociation
an, ob es sich bei dem referenzierten Datenelement um eine Eingabe (in-
putAssociation) oder um eine Ausgabe (outputAssociation) handelt. Das in
Abbildung 4-14 gezeigte BPD zeigt das Datenobjekt Report und die zuge-
hörige Kante in der Rolle outputAssociation. Neben den zuvor beschriebe-
nen Assoziationen zwischen Daten und Aktivitäten lassen sich aber auch
Nachrichten zwischen Aktivitäten austauschen. Ein hierdurch gegebener
Nachrichtenaustausch kann durch ein Element vom Typ MessageFlow aus-
gedrückt werden. Ein Element vom Typ MessageFlow kann dabei ein Ele-
ment vom Typ Message referenzieren, welches die zu versendende Nach-
richt beschreibt. Das BPD zeigt das zur Perspektive Information zugehörige
Element vom Typ MessageFlow.

Lösungsansatz für
Operationen

Bei den zuvor beschriebenen Elementen aus den verschiedenen Perspekti-
ven von Prozessen handelt es sich um eine geringe Auswahl vorhandener
Sprachelemente, die durch die Repräsentation der Domäne BPM in Form

Seite 92 Kapitel 4

der Sprache BPMN2.0 zur Verfügung gestellt werden. Sie dienen daher le-
diglich als Beispiel möglicher Ansatzpunkte zur Spezifikation von Opera-
tionen für die Anpassung von Prozessen. Auf Basis der zuvor durchge-
führten Analyse sind in Abbildung 4-16 Operationen zur Anpassung von
Prozessen dargestellt. Jede hier dargestellte Operation (AdaptationOperati-
on) wird dabei durch eine der durch Curtis [CKO92] vorgestellten Perspek-
tiven angeboten.

Abbildung 4-16:
Operationen zur An-
passung von Prozes-
sen in Anlehnung an
eine Zuordnung von

BPMN2.0-Elementen zu
Perspektiven (AVM4BPM)

Manual
Task

Organization InformationFunction Behavior

SequenceFlow

Pool

Lane Lane

DataAssociation

User
Task

Script
Task

Service
Task

SubProcess

provides

Perspective

Add Remove Modify
{abstract}

Node
Edge
Container

enumeration
ElementType

Modify
PropertyOf

Modify
PositionOf

MessageFlow

DataObject

(BPMN2.0)

K
n

o
te

n
-

el
em

en
te

K
a

n
te

n
-

el
em

en
te

Co
nt

ai
n

er
-

el
em

en
te

Beispielhafte Zuordnung von Elementen zu Perspektiven

0..*

elementType: ElementType

AdaptationOperation

0..*

OutputParameterInputParameter

Klassifikation von
Elementen

In jeder Perspektive sind Elemente enthalten, die sich in drei grundlegen-
de Typen klassifizieren lassen. So existieren Knotenelemente, Kantenelemen-
te und als spezielle Variante von Knotenelementen auch Containerelemente.
Ein Containerelement kann dabei wiederum weitere Elemente der genann-
ten Typen enthalten. Im unteren Bereich sind einige dieser Elemente in ih-
rer jeweiligen Notation in Anlehnung an die Zuordnung zu einer Perspek-
tive dargestellt.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 93

Für die von Curtis [CKO92] vorgestellten Perspektiven lassen sich spezi-
fische Operationen in Anlehnung an die zuvor vorgestellten Basisopera-
tionen Add, Remove und Modify beschreiben. Dabei wurden die beiden zu-
sätzlichen Untertypen ModifyPropertyOf und ModifyPositionOf für den Typ
ModifyOperation hinzugefügt. Mittels ModifyPropertyOf lassen sich Eigen-
schaften eines Elements, wie etwa der Wert der Eigenschaft Name, modifi-
zieren. Dahingegen ändert die Operation ModifyPositionOf die Position ei-
nes Elementes entlang des Kontroll- oder Datenflusses sowie der organisa-
tionalen Einbettung.

Für jeden der genannten Typen von Elementen lassen sich auf dieser Ba-
sis Operationen bestimmen, die in Anlehnung an die Basisoperationen
dann bspw. für das Hinzufügen von Knoten in der Form AddNode oder
das Entfernen von Containerelementen in der Form RemoveContainer be-
nannt werden. Diese Operationen können für die Anpassungen verschie-
dener Elementtypen von anpassbaren Prozessen, wie z.B. Knoten, Kanten
oder Container, eingesetzt werden.

Eine Übersicht über die resultierende Menge an grundlegenden Opera-
tionen für die Anpassung von Prozessen ist in Abbildung 4-17 dargestellt.
Dabei lassen sich auf Basis der zuvor beschriebenen Analyse insgesamt 24
Operationen bestimmen, die verschiedene Artefakte im BPM-Lebenszyklus
betreffen können.

Node
Edge

Container

Add

Remove X

 ModifyPropertyOf

ModifyPositionOfNode

OperationType ElementType

X Model
Instance

Artefact

m

PI

 ModifyPositionOfEdge

ModifyPositionOfContainer

OperationType X ElementType

Resultierend in 24 grundlegenden Operationen
für die Anpassung von Prozessen

Elementare Operationen

Zusammengesetzte Operationen

X Model
Instance

Artefact

m

PI

Abbildung 4-17:
Menge von Operationen
zur Anpassung von
Prozessen

Die in Abbildung 4-17 gezeigte Übersicht beschreibt die Komposition ei-
ner Operation aus den Eigenschaften Typ der Operation (OperationType), Typ
des Elements (ElementType) und betreffendes Artefakt (Artifact). Dabei gilt die
Besonderheit, dass für die Operationen für die Modifizierung der Positi-
on eines Elements (ModifyPositionOf) die Komposition bereits für den Typ

Seite 94 Kapitel 4

der Operation und den Typ des Elements aufgrund der Komplexität des
eingesetzten Symbols komponiert worden ist. Ferner handelt es sich dabei
um zusammengesetzte Operationen, die durch elementare Operationen er-
setzt werden könnten.

Ein Beispiel für eine sich ergebene Operation ist in Abbildung 4-18 ge-
zeigt. Es wird sowohl die Signatur als auch die konkrete Syntax der Ope-
ration ModifyPropertyOfNode beschrieben. Eine Operation vom Typ Modify-
PropertyOfNode modifiziert den Wert einer Eigenschaft eines Knotenele-
ments aus einem Prozessmodell.

Abbildung 4-18:
Signatur und konkrete
Syntax der Operation

ModifyPropertyOfNode

Parametername Parametertyp
IN : inModel ProcessModel

nodeElement NodeElement
nodeProperty Property
propertyValue Value

OUT : outModel ProcessModel

Modify
PropertyOf

Node

‘Name‘ ‘Task A‘Task

node
Element

m

in
Model

node
Property

property
Value

m‘

out
Model

m

Signatur der Operation
ModifyPropertyOfNode

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffende
Knotenelement (nodeElement), seine zu modifizierende Eigenschaft (node-
Property) und den zugehörigen Wert (propertyValue) gegeben. Ein Bezeich-
ner der zu modifizierenden Eigenschaft wird durch ein String-Literal an-
gegeben. Der Typ der zu ändernden Werte ist in der dargestellten Signatur
generisch als Value angegeben, da es verschiedene Typen wie z.B. String,
Integer oder auch komplexe Datentypen geben könnte.

Anwendung der Operation
ModifyPropertyOfNode

Eine Anwendung der in Abbildung 4-18 spezifizierten Operation ist in Ab-
bildung 4-19 anhand einer schematischen und BPMN-spezifischen Darstel-
lung durch ein BPD gezeigt. Im linken Bereich der Abbildung wird hier-
zu als Ausgang das Prozessmodell m dargestellt. Es besteht aus insgesamt

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 95

drei Knotenelementen N, die in einer Sequenz durch zwei Assoziationen E
miteinander verbunden sind. Im zugehörigen BPD sind ein Startereignis,
gefolgt von einem Task und abschließend mit einem Endereignis in einer
Sequenz durch Assoziationen vom Typ SequenceFlow verbunden. Die An-
passung von Prozessmodell m hin zu Prozessmodell m’ ändert die Eigen-
schaft ’Name’ des Knotenelements Task, sodass der neue Wert der Eigen-
schaft ’Name’ ’Task A’ ist.

Model m Model m‘

N N NE E

Task

N N NE E

Task A

ModifyPropertyOfNode

P: Name V: ‘Task‘ P: NameV: ‘Task A‘

Abbildung 4-19:
Beispielhafte Anwendung
der Operation Modify-
PropertyOfNode

Die resultierende Menge an Operationen enthält Beispiele für Opera-
tionen, mit denen sich unterschiedliche Artefakte von Prozessen, wie z.B.
Prozessmodelle und deren Instanzen, anpassen lassen. Dabei wird an die-
ser Stelle angenommen, dass für ein konkretes Projekt spezifische Opera-
tionen im Rahmen des AVM4BPM beschrieben und anschließend imple-
mentiert werden müssen. Ein wesentlicher Grund hierfür sind plattform-
spezifische Gegebenheiten von IT-Unterstützungssystemen, deren Berück-
sichtigung im Rahmen der hier vorliegenden Beschreibung nicht sinnvoll
wäre. Für weiterführende Beschreibungen von Beispielen der einzelnen
Operationen durch ihre Signatur, der konkreten Syntax und operationalen
Semantik wird auf Anhang A verwiesen.

4.3.4 Ereignisse

Neben Komponenten, Schnittstellen und den von ihnen angebotenen Ope-
rationen sind für die Anpassung von Prozessen zudem auch spezifische
Ereignisse notwendig. Erst ihr Aufkommen löst eine mögliche Anpassung
aus, sodass sie auch als Auslöser (engl. Trigger) bezeichnet werden. Im Rah-
men dieser Arbeit werden dabei zwei verschiedene Typen von Ereignissen
unterschieden.

Seite 96 Kapitel 4

Explizite Ereignisse Werden im Rahmen der Gestaltung von Prozessen Ereignisse als Teil des
Kontroll- oder Datenflusses verwendet, so kann hier von expliziten Er-
eignissen ausgegangen werden. So stellen z.B. die Elemente vom Typ
StartEvent bzw. vom Typ EndEvent Ereignisse dar, die den Start bzw. das
Ende eines Prozesses beschreiben. Ferner sind auch weitere Ereignisse
möglich, die im Verlauf des Kontroll- bzw. des Datenflusses explizit für
die Auslösung einer Anpassung in der Gestaltung von Prozessen ver-
wendet werden können. Weitere Beispiele für explizite Ereignisse sind
zahlreich vertreten und werden in Auszügen in Abschnitt 4.3.4.1 näher
beschrieben.

Implizite Ereignisse Es können aber auch weitere Ereignisse auftreten, die nicht im Rahmen der
Gestaltung von Prozessen als Teil des Kontroll- oder Datenflusses verwen-
det werden können. Derartige Ereignisse sind oftmals eng gekoppelt an
die operationale Semantik einzelner Elemente von Prozessen. Beispiele für
derartige Ereignisse können entlang des Lebenszyklus von Aktivitäten in
der Sprache BPMN2.0 betrachtet werden. So kann z.B. die Aktivierung ei-
ner Aktivität selbst ein Ereignis darstellen, wodurch eine Anpassung von
Prozessen notwendig wird. Derartige Ereignisse werden am Beispiel des
Lebenszyklus von Aktivitäten in Abschnitt 4.3.4.2 beschrieben.

4.3.4.1 Explizite Ereignisse

Explizite Ereignisse stellen ein wichtiges Konzept innerhalb der Sprache
BPMN2.0 dar. Sie können explizit in der Gestaltung von Prozessen als
mögliche Auslöser einer Anpassung verwendet werden. Dabei kann wei-
ter zwischen zwei Typen von Ereignissen unterschieden werden. So exis-
tieren zum einen Ereignisse vom Typ ThrowEvent und zum anderen vom
Typ CatchEvent, die entweder ein aufkommendes Ereignis darstellen oder
auf ein solches Ereignis reagieren. Soll eine Anpassung an einem Prozess
ausgeführt werden, können Ereignisse des Typs ThrowEvent zur Auslö-
sung dessen Anpassung eingesetzt werden. Eine zu dem aufkommenden
Ereignis vom Typ ThrowEvent zugehörige Anpassung muss dabei – bis auf
wenige Ausnahmen – ein zugehöriges Ereignis vom Typ CatchEvent ent-
halten. Ausnahmen bilden Ereignisse vom Typ CatchEvent, die bspw. in
Abhängigkeit zu einer konditionalen Auswertung stehen. Konkrete Bei-
spiele hierfür sind durch Ereignisse vom Typ TimerEvent oder Conditional-
Event gegeben. Im Folgenden wird auf eine Auswahl durch die Sprache
BPMN2.0 gegebener Ereignisse und auf ihre Relevanz für Anpassungen
von Prozessen eingegangen.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 97

TimerDurch Ereignisse vom Typ TimerEvent ist es möglich, den Aufruf einer An-
passung von Prozessen in Abhängigkeit zu Zeiträumen, Zeitpunkten oder
Zyklen zu setzen. Der Typ TimerEvent kann somit zur Beschreibung von
Ereignissen verwendet werden, für die kein zugehöriges Ereignis vom Typ
ThrowEvent aufgekommen sein muss, da eine Auslösung in Abhängigkeit
zur Auswertung einer zeitbezogenen Bedingung steht.

MessageDurch Nachrichten (engl. Messages) lassen sich Ereignisse beschreiben, die
neben dem reinen Aufkommen eines Ereignisses zudem auch noch Infor-
mationen enthalten. Derartige Informationen können z.B. für die Prüfung
hinsichtlich einer vorzunehmenden Anpassung von Prozessen eingesetzt
werden. Für Nachrichten ist es üblich, dass sie neben den zu sendenden
Informationen lediglich für einen bestimmten Empfänger gedacht sind.

SignalEin weiterer Typ von Ereignissen ist durch Signal gegeben. Für Ereignis-
se dieses Typs existieren sowohl Typen des Typs CatchEvent als auch des
Typs ThrowEvent. Sie können wie Nachrichten Informationen enthalten,
die für die weitere Auswertung im Rahmen einer Anpassung von Prozes-
sen notwendig sein können. Dabei unterscheidet sich der Typ Signal von
dem Typ MessageEvent insofern, als dass der Empfänger (CatchEvent) des
Typs Signal nicht explizit gesetzt ist. Hierdurch ist es möglich, dass es meh-
rere Empfänger (CatchEvent) geben kann, die durch ein zugehöriges Throw-
Event vom Typ Signal ausgelöst werden können.

ErrorDie Ausführung von Prozessen kann das Vorkommen von Fehlern expli-
zit durch Ereignisse des Typs ErrorEvent berücksichtigen. Das Aufkom-
men eines solchen Ereignisses kann dabei das Starten einer Anpassung von
Prozessen zum Zweck der Fehlerbehandlung auslösen.

TerminationSoll die Ausführung eines Prozesses beendet werden, obwohl Token auf
parallelen Ausführungspfaden existent sind, lassen sich Ereignisse vom
Typ TerminationEvent einsetzen. Eine solche Beendigung eines Prozesses
kann dabei der Auslöser einer Anpassung von Prozessen sein.

CompensationWerden Prozesse ausgeführt, kann ein späterer Abbruch oder eine Rück-
abwicklung abgeschlossener Aktivitäten notwendig sein. Ein Ereignis vom
Typ CompensationEvent kann dabei eingesetzt werden, um eine Anpassung
von Prozessen durch die Durchführung einer vordefinierten Abbruchpro-
zedur, einer Rückabwicklung oder aber der situativen Anpassung solcher
Prozeduren zu starten.

Für die zuvor beschriebenen Ereignisse existieren zum Teil zahlreiche Va-
rianten, deren Beschreibung an dieser Stelle nicht sinnvoll wäre. Für eine
vollständige Referenz wird daher auf deren Spezifikation [OMG11] ver-

Seite 98 Kapitel 4

wiesen. Beispiele für den Einsatz der genannten Typen von Ereignissen
werden darüber hinaus in Abschnitt 4.2 beschrieben.

4.3.4.2 Implizite Ereignisse

Ein weiterer Typ von Ereignissen ist durch implizite Ereignisse gegeben.
So existieren Elemente in der Sprache BPMN2.0, für die eine Beschreibung
ihres Lebenszyklus gegeben ist. In diesem Bezug stellt der Lebenszyklus
von Aktivitäten ein wichtiges Beispiel dar. Es wird im weiteren Verlauf
des Abschnitts als Referenz verwendet.

Als Einführung ist im oberen Teil von Abbildung 4-20 ein Auszug des Le-
benszyklus für Aktivitäten der Sprache BPMN2.0 in Form eines UML Zu-
standsdiagramms [OMG10] gezeigt. So werden eine Reihe von verschiede-
nen Zuständen durchlaufen, bevor der Lebenszyklus endet. Diese Zustän-
de sind durch Ready, Active, Completing und Completed gegeben. Sie stel-
len einen Auszug für den erfolgreichen Ablauf des Lebenszyklus ohne Be-
handlung von Fehlern, Abbrüchen oder Kompensationen dar. Jeder Über-
gang von einem Zustand in den nächsten Zustand wird durch ein spezifi-
sches Ereignis ausgedrückt. So kann der Lebenszyklus begonnen werden,
wenn durch das Ereignis A-Token-Arrives ausgedrückt wird, dass ein To-
ken die Aktivität erreicht hat. Auf die Bedeutung der einzelnen Zustände
und Ereignisse wird im Folgenden kurz eingegangen.

Abbildung 4-20:
Lebenszyklus von

Aktivitäten in der Sprache
BPMN2.0 in Form eines

UML Zustandsdiagramms

Lebenszyklus von Aktivitäten

Ready Active Completing Completed

A-Token-Arrives

Data-InputSet-Available

Activitys-work-completed

Completing
Requirements-Done

Assignments-Completed

The-Process-Ends

Ready Eine Aktivität befindet sich im Zustand Ready, wenn die be-
nötigte Anzahl an Token zur Aktivierung verfügbar gewe-
sen ist. Ein Wechsel in diesen Zustand wird durch das Er-
eignis A-Token-Arrives ausgelöst.

Active In dem Zustand Active wird die für die Aktivität ange-
dachte Funktion ausgeführt. Ein Wechsel in diesen Zu-
stand wird durch das Ereignis Data-InputSet-Available aus-
gedrückt. Es kommt auf, wenn alle Dateneingaben verfüg-
bar sind.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 99

Completing Wurde die für die Aktivität angedachte Funktion erfüllt
und die Ausführung beendet, wechselt der Lebenszy-
klus in den Zustand Completing. Das zugehörige Ereig-
nis ist Activitys-work-completed. In dem Zustand Completing
werden assoziierte Abhängigkeiten, wie z.B. gebundene
Behandlung von Ereignissen, aufgelöst.

Completed In den Zustand Completed wird gewechselt, sobald gebun-
dene Abhängigkeiten aufgelöst worden sind. Das zugehö-
rige Ereignis ist dabei durch Completing-Requirements-Done-
Assignments-Completed gegeben. Der dargestellte Verlauf
endet, wenn bereitgestellte Token von nachfolgenden Ele-
menten übernommen worden sind. Das zugehörige Ereig-
nis ist durch The-Process-Ends gegeben.

Die zuvor beschriebenen Zustandsübergänge und Ereignisse können ge-
nutzt werden, um spezifisches Verhalten der Anpassungslogik aufzuru-
fen. Sollen Nutzer und Domänenexperten durch die Verwendung ihrer ge-
wohnten Sprache in Form von BPMN2.0 unterstützt werden, ist eine mög-
liche Lösung durch die Transformation von Zuständen und Ereignissen
des UML Zustandsdiagramms (siehe Abbildung 4-20) in explizite Ereignisse
der Sprache BPMN2.0 möglich.

Transformierte EreignisseEin mögliches Ergebnis einer solchen Transformation ist in Abbildung 4-21
in Form eines BPD gezeigt. Das dargestellte BPD besteht aus Ereignissen,
die zu einer der in Abbildung 4-20 entsprechenden Sequenz verbunden
worden sind. Dabei wurden dem dargestellten Kontrollfluss für jeden Zu-
stand des UML Zustandsdiagramms und für die Start- und Endknoten ein
Ereignis vom Typ Signal hinzugefügt. Bei dem Ereignis handelt es sich
um ein Zwischenereignis (Intermediate) des Typs ThrowEvent (siehe Ab-
schnitt 4.3.4.1). Jedes Ereignis stellt den unmittelbaren Wechsel in den je-
weiligen Zustand bzw. den Start oder das Ende der Aktivität dar.

Lebenszyklus von Aktivitäten als Folge von Ereignissen

 onActivation onCompleting onCompleted

End

onReady

Start

Abbildung 4-21:
Lebenszyklus von
Aktivitäten in der Spra-
che BPMN2.0 als Folge
von Ereignissen in Form
eines BPD

Seite 100 Kapitel 4

Als Ergänzung zu der Transformation von Zuständen können auch die Er-
eignisse des UML Zustandsdiagramms durch explizite Ereignisse der Spra-
che BPMN2.0 dargestellt werden. In alternativen Transformationen könn-
ten die zusätzlichen Ereignisse z.B. auch beim Verlassen eines Zustandes
eingefügt werden. Hierbei wäre die Namensgebung der Ereignisse von der
Form on* zu after* anzupassen. Hierdurch würde z.B. das Ereignis onReady
nachgefolgt durch das Ereignis afterReady. Problematisch wäre dieses Vor-
gehen im Fall des Ereignisses vom Typ EndEvent, da hier der Kontrollfluss
bereits beendet wäre.

Abstrakte Syntax für
transformierte Ereignisse

Für den vollständigen Lebenszyklus von Aktivitäten in der Sprache
BPMN2.0 ist ein Konzept zur Integration von impliziten Ereignissen hin-
sichtlich der Zustände für die Lösungsvariante on* in Abbildung 4-22
dargestellt. Der Lebenszyklus (Lifecycle) wird hier als Teil einer Aktivität
(Activity) dargestellt. Der Lebenszyklus besteht aus einer Reihe von Zu-
ständen (LifecycleState), die wiederum einen spezifischen Namen besitzen.
Die durch die im Rahmen der Spezifikation der Sprache BPMN2.0 einge-
führten Zustände des Lebenszyklus von Aktivitäten sind hier durch die
Enumeration StateName dargestellt. Zu jedem dieser Zustände wird ein
neues Ereignis vom Typ LifecycleEvent eingeführt, welches das Wechseln
in den jeweiligen Zustand ankündigt (pronounces). Die Ereignisse werden
gemäß ihrer Zugehörigkeit zu Zuständen des Lebenszyklus benannt. So
wird z.B. ein Ereignis, das das Betreten des Zustandes Ready signalisiert,
mit dem Bezeichner onReady dargestellt. Die Enumeration EventName be-
schreibt die zugehörigen Ereignisse hinsichtlich des Betretens von Zustän-
den.

Abbildung 4-22:
Integration von impliziten

Ereignissen (AVM4BPM)

Activity
(BPMN2.0)

explicitEvents *

name: StateName

LifecycleState
(BPMN2.0)

0..1 activeState

state

 pronounces

 explicitEvent

ExtendedLifecycle

states *

name: EventName

LifecycleEvent

Sensor
(ACML)

AdaptationRequestEvent
events
*

Event
(BPMN2.0)

Lifecycle
(BPMN2.0)

Ready
Active
Completing
Completed
Terminating
Terminated
Failing
Failed
Compensation
Compensated
Withdrawn

enumeration
StateName

onReady
onActive
onCompleting
onCompleted
onTerminating
onTerminated
onFailing
onFailed
onCompensation
onCompensated
onWithdrawn

enumeration
EventName

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 101

Bei den transformierten Ereignissen (LifecycleEvent) handelt es sich fer-
ner um Ereignisse des Typs AdaptationRequestEvent (siehe Abschnitt 4.3.2),
die durch Sensorschnittstellen zur Verfügung gestellt werden können.
Hierdurch können auch implizite Ereignisse in der Gestaltung von an-
passbaren Prozessen berücksichtigt werden, indem sie durch die Sprache
ACML4BPM als Teil dieser Schnittstellen beschrieben werden.

Neben den in Abbildung 4-22 dargestellten Ereignissen können weitere
implizite Ereignisse für die Auslösung von Anpassungen sinnvoll sein.
Dabei können aufgrund der Verwendung von Ereignissen des Typs Signal
mehrere Anpassungen pro aufkommendes Ereignis angestoßen werden.
Sollen zeitgleich mehrere Instanzen eines Prozesses aktiv sein, kann daher
eine Unifizierung des Ereignisses notwendig sein. Ferner kann der Lebens-
zyklus weitere Zustandswechsel durchführen, obwohl die Ausführung ei-
ner Anpassung noch aktiv ist. Daher kann es erforderlich sein, im An-
schluss an eine Anpassung eine Rückkopplung durchzuführen.

Transformierte Ereignisse
mit Unifizierung und
Rückkopplung

Eine Lösungsvariante unter Verwendung von Rückkopplungen ist in Ab-
bildung 4-23 dargestellt. In dem hier dargestellten BPD ist erneut ein Aus-
zug des Lebenszyklus einer Aktivität auf Basis des in Abbildung 4-20 vor-
gestellten Ablaufs gezeigt. Dabei wurden jedoch nicht Ereignisse des Typs
Signal verwendet. Um eine Unifizierung und eine Rückkopplung zu ermög-
lichen werden stattdessen Nachrichten (Message) eingesetzt.

Lebenszyklus von Aktivitäten als Folge von Ereignissen

onActivation onCompleting onCompletedonReady

onReadyAdaptationDone onActivationAdaptationDone onCompletingAdaptationDone onCompletedAdaptationDone

End

Start

Abbildung 4-23:
Lebenszyklus von
Aktivitäten als Folge von
Ereignissen in Form eines
BPD mit Verwendung von
Rückkopplung

Durch die Eigenschaft, dass Nachrichten neben zu übermittelnden Infor-
mationen auch einen speziellen Empfänger enthalten, können ungewollte
Seiteneffekte beim Vorhandensein mehrerer Instanzen reduziert werden.
Für die Rückkopplung im Fall einer abgeschlossenen Anpassung wurde
pro Zustand ein Ereignis des Typs CatchEvent eingefügt. Im Rahmen des
Kontrollflusses wird somit stets vor dem Betreten eines Zustandes ein Er-
eignis zur Anpassung ausgelöst. Anschließend wird auf eine Rückkopp-
lung durch ein weiteres Ereignis gewartet, das über die Abgeschlossenheit
einer Anpassung informiert.

Seite 102 Kapitel 4

Abstrakte Syntax für
transformierte Ereignisse

Das Konzept zur Integration von impliziten Ereignissen unter Verwen-
dung von Rückkopplung ist in Abbildung 4-24 dargestellt. Wie zuvor be-
reits beschrieben, wurden die beiden Typen ThrowEvent und CatchEvent
für Nachrichten (Message) verwendet. Ereignisse vom Typ ThrowMessa-
ge werden zur Auslösung einer möglichen Anpassung verwendet. Ferner
werden Ereignisse vom Typ CatchEvent zur Rückkopplung mit einer mög-
lichen Anpassung verwendet. Die Benennung der Ereignisse ist in Anleh-
nung an den jeweiligen Zustand gewählt worden, in den nach der Rück-
kopplung gewechselt werden soll. Eine Übersicht gibt hierzu die Enume-
ration FeedbackEventName.

Abbildung 4-24:
Integration von implizi-

ten Ereignissen mit Rück-
kopplung (AVM4BPM)

Activity
(BPMN2.0)

explicitEvents *

name: StateName

LifecycleState
(BPMN2.0)

0..1 activeState

state

 pronounces

 explicitEvent

ExtendedLifecycle

states *

name: EventName

LifecycleEvent

Sensor
(ACML)

AdaptationRequestEvent
events
*

Event
(BPMN2.0)

Lifecycle
(BPMN2.0)

name: FeedbackEventName

CatchMessage

onReadyAdaptationDone
onActiveAdaptationDone
onCompletingAdaptationDone
onCompletedAdaptationDone
onTerminatingAdaptationDone
onTerminatedAdaptationDone
onFailingAdaptationDone
onFailedAdaptationDone
onCompensationAdaptationDone
onCompensatedAdaptationDone
onWithdrawnAdaptationDone

enumeration
FeedbackEventName

Ready
Active
Completing
Completed
Terminating
Terminated
Failing
Failed
Compensation
Compensated
Withdrawn

enumeration
StateName

onReady
onActive
onCompleting
onCompleted
onTerminating
onTerminated
onFailing
onFailed
onCompensation
onCompensated
onWithdrawn

enumeration
EventName

name: EventName

ThrowMessage

Konkrete Syntax von
impliziten Ereignissen

Für implizite Ereignisse wurde keine gesonderte konkrete Syntax in dieser
Arbeit entwickelt. Dies lässt sich dadurch begründen, dass implizite Ereig-
nisse in explizite Ereignisse der Sprache BPMN2.0 transformiert werden
können. In diesem Bezug werden für transformierte implizite Ereignisse
die konkrete Syntax von expliziten Ereignissen eingesetzt.

Unidirektionale
Transformation

Für die Integration von impliziten Ereignissen in das AVM4BPM der Spra-
che ACML4BPM wurde eine methodische Transformation beschrieben. Die
Transformation sieht die Abbildung des Betretens von Zuständen des Le-
benszyklus von Aktivitäten auf explizite Ereignisse vor. Da es sich um eine
unidirektionale Transformation handelt, kann ein erweiterter Aufwand

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 103

bei der Auswahl einer Plattform, der zugehörigen Konfiguration und Im-
plementierung bestehen. Eine Lösung im Rahmen einer Implementierung
kann durch die Verwendung von Event-Handlern durchgeführt werden. Da
in dieser Arbeit die frühe Gestaltung von anpassbaren Prozessen fokus-
siert wird, liegt dies an dieser Stelle außerhalb des für diese Arbeit gesetz-
ten Rahmens.

Sonstige ErgänzungNeben den beiden zuvor beschriebenen Varianten lassen sich auch andere
implizite Ereignisse in der Sprache ACML4BPM berücksichtigen. Ein Bei-
spiel ist hier durch Elemente aus der Perspektive Information gegeben. So
können die Initialisierung oder die Löschung von Datenobjekten ebenfalls
durch Ereignisse dargestellt werden, bei deren Aufkommen eine Anpas-
sung von Prozessen notwendig sein kann. Dabei existieren in der Sprache
BPMN2.0 nicht immer etwaige Lebenszyklen, auf deren Basis eine Erwei-
terung möglich ist. In diesen Fällen muss ein Lebenszyklus entsprechend
gegebener Anforderungen durch Nutzer oder Domänenexperten in enger
Anlehnung an das später eingesetzte IT-Unterstützungssystem entwickelt
werden.

4.4 Zusammenfassung

In den vorherigen Abschnitten wurde die Sprache Adapt Case Modeling Lan-
guage 4 BPM (ACML4BPM) vorgestellt. Sie kann für die Gestaltung von
anpassbaren Prozessen und zur Durchführung des Separation-of-Concerns
hinsichtlich der Anwendungs- und Anpassungslogik eingesetzt werden.
Die Sprache basiert auf dem durch Luckey beschriebenen Ansatz Adapt Ca-
ses [Luc+11] (siehe Abschnitt 2.4).

Die entwickelte Sprache gliedert sich dabei in zwei Teilsprachen zur Erstel-
lung des Adapt Case Model 4 BPM (siehe Abschnitt 4.2) und des Adapt Case
View Model 4 BPM (siehe Abschnitt 4.3). Beide Teilsprachen berücksich-
tigen spezifische Konzepte der Domäne BPM. In diesem Abschnitt wird
kurz auf die Vollständigkeit der Sprache hinsichtlich der in Abschnitt 4.1
gegebenen Fragestellungen eingegangen. Hierzu ist in Tabelle 4-1 eine
Auflistung von zugehörigen Zielen sowie deren Erfüllung dargestellt. Eine
Erläuterung sowie Diskussion werden im Folgenden gegeben.

Allgemein lässt sich die Frage nach der Vollständigkeit nur in Abhängig-
keit zu dem gewählten Fixpunkt beantworten. In den vorherigen Abschnit-
ten wurden für verschiedene Elemente der Sprache ACML4BPM Fixpunk-
te gewählt, die entweder durch Artefakte entlang des BPM-Lebenszyklus
oder aber durch eine existierende Repräsentation der Domäne BPM in

Seite 104 Kapitel 4

Tabelle 4-1:
Übersicht über gesetzte

Ziele und deren Erfüllung
für die entwickelte Spra-

che zur Gestaltung von
anpassbaren Prozessen

Fragestellung Ziel Erfüllung

1 Identifikation von relevanten System- und Umgebungs-
komponenten in der Domäne BPM

3

2 Identifikation von Schnittstellen für den Zugriff auf In-
formationen innerhalb dieser System- und Umgebungs-
komponenten

3

3 Beschreibung von Operationen zur adäquaten Anpas-
sung der Eigenschaften dieser System- und Umgebungs-
komponenten

3

4 Identifikation möglicher Ereignisse zur Beschreibung der
Notwendigkeit einer Anpassung von Eigenschaften die-
ser System- und Umgebungskomponenten

3

Form der Sprache BPMN2.0 gegeben wurden. Es ist klar, dass durch die
Wahl anderer Fixpunkte als Analysegrundlage, wie z.B. für die Reprä-
sentation der Domäne BPM die Sprache der UML Aktivitätsdiagramme
[OMG15b], BPEL [OAS07] oder neuere Sprachen wie CMMN [OMG16a]
oder DMN [OMG16b], andere Elemente einer Sprache zur Gestaltung von
anpassbaren Prozessen notwendig werden. Die zuvor beschriebenen In-
halte können in diesem Bezug als Leitfaden für ein mögliches Vorgehen
beim Adaptivity Engineering auf Basis des durch Luckey [Luc+11; LE13] vor-
gestellten Ansatzes Adapt Cases dienen und sollten bei der nachfolgenden
Diskussion berücksichtigt werden.

System und
Umgebungskomponenten

der Domäne BPM

Aus der Arbeit von Luckey lässt sich ableiten, dass es zwei grundlegende
Typen von Komponenten geben kann. Dabei handelt es sich zum einen
um Systemkomponenten, auf denen der Fokus der Betrachtung liegt, und
zum anderen um Umgebungskomponenten, mit denen die Systemkompo-
nenten interagieren. Sollen anpassbare Prozesse gestaltet und ausgeführt
werden, können für die Domäne BPM zwei wesentliche Systemkompo-
nenten benannt werden. Es handelt sich hierbei um Systemkomponenten
zur Kapselung von Prozessmodellen und zur Kapselung von Prozessin-
stanzen. Derartige Systemkomponenten können mit einer Vielzahl an un-
terschiedlichen Umgebungskomponenten interagieren. Diese können ent-
weder durch verschiedene reine Softwaresysteme, wie z.B. Anwendungs-
und Datenbanksysteme, gegeben sein oder weitere (Misch-)Systeme, die
eine Kopplung mit physischen bzw. real-weltlichen Entitäten, wie z.B. Ma-
schinen, bilden. Auf die Frage nach relevanten System- und Umgebungs-
komponenten konnte somit in Abschnitt 4.3.1 durch die Einführung spe-
zifischer Typen von Komponenten eine Antwort gegeben werden. Es sei
hierbei jedoch angemerkt, dass durch eine Veränderung des gewählten Fix-
punktes oder für die Entwicklung einer konkreten prozessspezifischen An-
wendung die Notwendigkeit für die Einführung zusätzlicher Typen von

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 105

Umgebungskomponenten gegeben ist. Da der Fokus der vorliegenden Ar-
beit jedoch auf der Gestaltung von flexiblen und anpassbaren Prozessen
liegt, wird auf diesen Aspekt nicht weiter eingegangen. Beispiele für mög-
liche Umgebungskomponenten werden jedoch im Rahmen der Evaluation
und des dort verwendeten Szenarios gegeben (siehe Abschnitt 7.1).

SchnittstellenGemäß des Ansatzes Adapt Cases sind für die Gestaltung von Anpassungs-
regeln die beiden Schnittstellentypen Sensor und Effector notwendig. Sie er-
möglichen zum einen den kontrollierten lesenden Zugriff auf Eigenschaf-
ten der durch die System- und Umgebungskomponenten gekapselten In-
halte und zum anderen die Funktion der Anpassung von Eigenschaften
dieser Inhalte. Hierzu wurden in Abschnitt 4.3.2 in Anlehnung an die iden-
tifizierten System- und Umgebungskomponenten entsprechende Schnitt-
stellen vorgestellt.

Operationen zur
Anpassung

Die vorgestellten Typen von Schnittstellen bieten Operationen zur Anpas-
sung von gekapselten Eigenschaften an. Analog zu der durch [Ger13] vor-
gestellten Arbeit wurde sich hier für einen Fixpunkt in Form einer Sprache
(hier: BPMN2.0) zur Gestaltung von Prozessen entschieden. Bei der Aus-
wahl des Fixpunktes wurden die durch Curtis [CKO92] eingeführten vier
Perspektiven von Prozessen als Analysegrundlage verwendet. Es konnte
gezeigt werden, dass existierende Arbeiten sich lediglich auf einige weni-
ge Perspektiven konzentrieren und damit die Anpassung wesentlicher In-
halte von Prozessen nicht ermöglichen. Daher wurden in Anlehnung an
die Perspektiven Operationen zur Anpassung von Prozessen eingeführt,
die eine Anwendung auf die Elemente aller durch Curtis [CKO92] vor-
gestellten Perspektiven bietet. Es wird davon ausgegangen, dass durch
diese Vorgehensweise eine Abdeckung der vier Perspektiven ermöglicht
werden kann. Hierdurch können für ausgesuchte Elemente adäquate An-
passungen an den durch die System- und Umgebungskomponenten ge-
kapselten Inhalte ermöglicht werden.

Ereignisse zur Auslösung
einer Anpassung

Im Rahmen des Ansatzes Adapt Cases stellen Ereignisse den wesentlichen
Mechanismus zur Andeutung einer potentiell notwendigen Anpassung
dar. Daher wurden in Anlehnung an die durch die Sprache BPMN2.0 ge-
gebene Repräsentation der Domäne BPM verschiedene Klassen von Ereig-
nissen vorgestellt, die entweder explizit oder implizit die Notwendigkeit
einer Anpassung andeuten können. Durch die beiden gegebenen Klassen
von Ereignissen lässt sich eine Vielzahl an möglichen auslösenden Ereig-
nissen gestalten.

Wie zuvor diskutiert bieten die in diesem Abschnitt vorgestellten Inhalte
einen möglichen Ansatz zur Gestaltung von anpassbaren Prozessen unter

Seite 106 Kapitel 4

Verwendung des De-facto-Standards BPMN2.0. Dabei ist eine vollständi-
ge Abdeckung einer Repräsentation einer Domäne nur bedingt möglich.
Daher wurde versucht, auf verschiedene Perspektiven von Prozessen Be-
zug zu nehmen, sodass das beschriebene Vorgehen als ein Leitfaden für
das Adaptivity Engineering in Bezug zu anpassbaren Prozessen betrachtet
werden kann.

Entwurfsmuster für
flexible und anpassbare

Prozesse

Kapitel5
Neben der Anpassung von Prozessen durch entsprechende Operationen
wird in dieser Arbeit zudem auch Flexibilität betrachtet, die in Prozes-
sen auf weitere Arten umgesetzt werden kann. Für diese unterschiedli-
chen Arten von Flexibilität existieren in der Literatur verschiedene Arbei-
ten, in denen Flexibilität in Prozessen beschrieben wird. Dieser Abschnitt
befasst sich mit der Vorstellung einiger ausgesuchter Arten von Flexibi-
lität, die nachfolgend auch Entwurfsmuster genannt werden. Dabei liegt
der Fokus insbesondere auf derartigen Entwurfsmustern, die explizit Ent-
scheidungspunkte vorsehen, sodass eine Trennung der Anpassungs- und
Anwendungslogik sinnvoll sein kann. Nachfolgend werden in diesem Be-
zug in Abschnitt 5.1 zunächst eine Reihe von Forschungsfragen und die
weitere Struktur des Kapitels vorgestellt. Die erarbeiteten Entwurfsmus-
ter werden anschließend in den Abschnitten 5.2 bis 5.5 beschrieben. Da-
bei wird jeweils eine spezifische Analyse des Typs an Flexibilität durch-
geführt. Darauf aufbauend wird für die Gestaltung von flexiblen und an-
passbaren Prozessen unter Verwendung der Sprache ACML4BPM ein Lö-
sungsweg vorgestellt. Das Kapitel schließt in Abschnitt 5.6 mit einer Zu-
sammenfassung der vorgestellten Entwurfsmuster ab.

5.1 Übersicht

Unter Verwendung der in Kapitel 4 eingeführten Sprache ACML4BPM
wird nachfolgend gezeigt, wie die Trennung von unterschiedlichen Typen
von Verhalten in der Gestaltung von Prozessen vorgenommen werden
kann. Hierbei wird insbesondere auf die Einhaltung der Anforderung des

Seite 108 Kapitel 5

Separation-of-Concerns (SoC) hinsichtlich der Trennung der Anpassungs-
und Anwendungslogik eingegangen. Ferner wird versucht, die nachfol-
genden Forschungsfragen im Rahmen der einzelnen Abschnitte zu beant-
worten.

Fragestellung 1 Was sind Flexibilitätsaspekte von Prozessen?

Fragestellung 2 Wie kann die Gestaltung von flexiblen und anpassbaren Prozessen hinsichtlich be-
stehender Flexibilitätsaspekte durch die Sprache ACML4BPM in Form von Ent-
wurfsmustern unterstützt werden?

Fragestellung 3 Werden für diese Unterstützung Erweiterungen der Sprachen BPMN2.0 und
ACML4BPM notwendig?

Fragestellung 4 Werden für diese Unterstützung Erweiterungen von Methoden zur Gestaltung
notwendig?

Als Grundlage für einen möglichen Suchraum für die Auswahl von ver-
schiedenen Arten von Flexibilität dienten dabei die Arbeiten von [Sch+08]
und [WRR08; RW12]. Bei den Arbeiten handelt es sich jeweils um zen-
trale Arbeiten hinsichtlich der Flexibilität von Prozessen in der wissen-
schaftlichen Domäne BPM. Insbesondere die Arbeit von [Sch+08] stellte
sich als die vielversprechendste Arbeit hinsichtlich verschiedener Arten
von Flexibilität heraus, die durch die Sprache ACML4BPM bereits frühzei-
tig in der Gestaltung von flexiblen und anpassbaren Prozessen durch ent-
sprechende Entwurfsmuster unterstützt werden können. Dabei sind bei-
de Gruppen von Arbeiten hinsichtlich der Arten von Flexibilität in Prozes-
sen teilweise deckungsgleich. Die Arbeiten von [WRR08; RW12] sind je-
doch an spezifischen Stellen derartig umfangreich, dass sich stattdessen
für eine Definition von Entwurfsmustern auf Basis von [Sch+08] entschie-
den werden musste. In Abbildung 5-1 ist eine Übersicht über die in der vor-
liegenden Arbeit betrachteten Entwurfsmuster für flexible Prozesse darge-
stellt.

Im Folgenden wird detaillierter auf die in Abbildung 5-1 abgebildeten
Entwurfsmuster zur Realisierung verschiedener Arten von Flexibilität in
Prozessen eingegangen. Hier wird zwischen zwei Gruppen von Entwurfs-
mustern unterschieden. So lässt sich Flexibilität bereits früh in der Phase
Design & Analyse des BPM-Lebenszyklus von Prozessen in Form des Flexi-
bilitätsaspekts Flexibility-by Design durch eine geeignete Art zu gestalten
umsetzen. Hierauf wird in Abschnitt 5.2 detailliert eingegangen. Anschlie-
ßend werden Entwurfsmuster der zweiten Gruppe vorgestellt, für die zum
einen Spracherweiterungen und zum anderen zusätzliche Operationen zur

Entwurfsmuster für flexible und anpassbare Prozesse Seite 109

Flexibilität

«Flexibility Concern»
Flexibility-by

Design

Abschnitt 5.2

Gestaltungsart

«Flexibility Concern»
Flexibility-by

Change

Abschnitt 5.3

«Flexibility Concern»
Flexibility-by

Deviation

Abschnitt 5.4

«Flexibility Concern»
Flexibility-by

Underspecification

Abschnitt 5.5

Spracherweiterungen sowie Operationen zur Anpassung

Abbildung 5-1:
Übersicht über Aspekte
von flexiblen und anpass-
baren Prozessen

Anpassung notwendig sind. Hierzu gehören zunächst die Flexibilitäts-
aspekte Flexibility-by Change (siehe Abschnitt 5.3) und Flexibility-by Devia-
tion (siehe Abschnitt 5.4). Abschließend wird in Abschnitt 5.5 der letzte
Flexibilitätsaspekt Flexibility-by Underspecification vorgestellt, der einige In-
halte der zuvor genannten Flexibilitätsaspekte wiederverwendet.

5.2 Flexibility-by Design

Im Rahmen von Flexibility-by Design werden bereits verschiedene Ent-
wurfsmuster für flexible und anpassbare Prozesse zur Verfügung gestellt.
Dabei wird sich vornehmlich auf Aspekte von Flexibilität und Anpass-
barkeit konzentriert, die sich durch ein geeignetes Vorgehen in der Phase
Design & Analyse in Hinsicht auf die Gestaltung von Prozessen in Form von
Prozessmodellen bezieht. Schonenberg et. al [Sch+08] motivieren Flexibility-
by Design durch die Anforderung, verschiedene Alternativen für Ausfüh-
rungspfade zu unterstützen. Hierdurch kann zur Ausführungszeit der
Ausführungspfad ausgewählt werden, der für den jeweiligen Kontext am
geeignetsten ist. Eine an Schonenberg et. al [Sch+08] angelehnte Definition
des Flexibilitätsaspekts Flexibility-by Design wird in Definition 5.2.1 gege-
ben.

Definition 5.2.1. (Flexibility-by Design)

Flexibility-by Design beschreibt die Fähigkeit zur Integration von alter-
nativen Ausführungspfaden innerhalb eines Prozessmodells in der Phase
Design & Analyse des BPM-Lebenszyklus. Dabei wird das Ziel verfolgt,
in der Phase Ausführung, also zur Zeit der Ausführung, einen geeigneten
Ausführungspfad wählen zu können.

Seite 110 Kapitel 5

Flexibility-by Design lässt sich in unterschiedliche Aspekte der Gestaltung
unterteilen, die bereits frühzeitig in der Phase Design & Analyse des BPM-
Lebenszyklus berücksichtigt werden können. Eine Übersicht über diese
Aspekte ist in Abbildung 5-2 gegeben. Eine für diese Arbeit verwendete
Interpretation dieser Aspekte sowie deren Analyse hinsichtlich einer mög-
lichen Verwendung der Sprache ACML4BPM in ihrer Gestaltung wird in
Abschnitt 5.2.1 detaillierter erläutert. In den nachfolgenden Abschnitten
5.2.2 bis 5.2.4 werden Konzepte für die Gestaltung einzelner Aspekte unter
Verwendung der Sprache ACML4BPM vorgestellt. Abschließend wird in
Abschnitt 5.2.5 eine Zusammenfassung sowie eine Diskussion gegeben.

Abbildung 5-2:
Gestaltungsaspekte für
flexible und anpassbare
Prozesse in Hinsicht auf

Flexibility-by Design

«DesignAspect»

Choice

«DesignAspect»

Iteration

«DesignAspect»

Parallelism

«DesignAspect»

Interleaving

«DesignAspect»

Multiple Instances

«DesignAspect»

Cancellation

«Flexibility Concern»

Flexibility-by Design

5.2.1 Gestaltungsaspekte von Flexibility-by Design

In diesem Abschnitt werden die sechs Aspekte (siehe Abbildung 5-2)
zur Gestaltung von flexiblen Prozessen in Hinsicht auf den Flexibilitäts-
aspekt Flexibility-by Design vorgestellt. Das Ziel soll hierbei die Analyse
hinsichtlich der Erkennung des Potentials zur Trennung von Anpassungs-
und Anwendungslogik sein, sodass die in Kapitel 4 vorgestellte Sprache
ACML4BPM unterstützend in der Gestaltung eingesetzt werden kann.
Hierzu werden zunächst die Aspekte zur Gestaltung in den Abschnitten
5.2.1.1 bis 5.2.1.6 beschrieben und bewertet. In Abschnitt 5.2.1.7 wird mit
einer Zusammenfassung hinsichtlich einer möglichen Verwendung von
der Sprache ACML4BPM abgeschlossen.

5.2.1.1 Choice

Unter dem Aspekt Choice wird die Fähigkeit verstanden, im Rahmen des
Kontrollflusses spezifische Entscheidungspunkte zu beschreiben, durch
deren Auswertung alternative Kontrollflusspfade gewählt werden kön-
nen. Beispiele für konkrete Entscheidungspunkte in der Sprache BPMN2.0
sind durch Knotenelemente der Typen Inclusive Gateway und Exclusive
Gateway (siehe Abschnitt 2.3.4) gegeben.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 111

...

[fancy-condition-a]

[fancy-condition-b]

Alternative
Task B

......

...

...

[fancy-condition-a]

......

...

Alternative
Task A

Default
Task

Default
Task

Alternative
Task A

...

Abbildung 5-3:
Beispiele für den Aspekt
Choice in der Sprache
BPMN2.0

Beispiele für den Aspekt
Choice

Zur besseren Veranschaulichung des Aspekts Choice werden in Abbil-
dung 5-3 zwei Beispiele gegeben. Im linken Bereich wird hierzu eine ein-
fache Auswahl von zwei Kontrollflusspfaden dargestellt. Dabei wird auf
Basis einer Auswertung der Bedingung fancy-condition-a einer der beiden
dargestellten Kontrollflusspfade gewählt. Hierdurch ist es möglich, flexi-
bel eine Auswahl einer Ausführung des Tasks mit der Bezeichnung Default
Task oder Alternative Task zu treffen. Im rechten Bereich ist ein erweitertes
Beispiel für den Aspekt Choice dargestellt. So können im Rahmen einer
geschachtelten Auswahl, zunächst bestehend aus der Bedingung fancy-
condition-a und anschließend aus der Bedingung fancy-condition-b, ver-
schiedene Kontrollflusspfade gewählt werden.

Bewertung für den Aspekt
Choice

Flexibilität ist in den Beispielen in Abbildung 5-3 durch die Auswahl ver-
schiedener Kontrollflusspfade gegeben. Dabei werden Anwendungs- und
Anpassungslogik gemeinsam integriert dargestellt. Dies kann z.B. insbe-
sondere im Rahmen von einer großen Anzahl an Möglichkeiten zur Aus-
wahl oder tieferen Verschachtelungen sowohl die Wartbarkeit als auch das
Verständnis von in Abhängigkeit stehender Umstände erschweren. Hierzu
wird in Abschnitt 5.2.2 eine alternative Darstellung unter Verwendung der
in Kapitel 4 eingeführten Sprache ACML4BPM gegeben.

5.2.1.2 Iteration

Der Aspekt Iteration beschreibt die Fähigkeit, dass ein einzelner Kontroll-
flusspfad wiederholt durchlaufen werden kann. Typischerweise wird hier-
bei an einem Entscheidungspunkt eine Bedingung ausgewertet, dessen Er-
gebnis einen wiederholten Durchlauf eines Kontrollflusses bedingt. Der
Aspekt Iteration kann dabei als spezielle Variante des Aspekts Choice ver-
standen werden, da ebenfalls in Anlehnung an die Auswertung einer Be-
dingung ein Kontrollflusspfad gewählt werden kann.

Seite 112 Kapitel 5

Beispiele für den Aspekt
Iteration

In Abbildung 5-4 sind hierzu zwei Beispiele für den Aspekt Iteration in
der Sprache BPMN2.0 dargestellt. Im linken Bereich ist eine sogenannte
fußgesteuerte und im rechten Bereich eine kopfgesteuerte Iteration dar-
gestellt. Beide Iterationen unterscheiden sich darin, an welcher Stelle im
Kontrollfluss eine Bedingung für den Abbruch ausgewertet wird. So ist
im Fall einer fußgesteuerten Iteration, wie hier dargestellt, eine Ausfüh-
rung des Tasks mit der Bezeichnung Continued executed Task stets vor der
Auswertung der Bedingung fancy-condition. Im Fall der kopfgesteuerten
Iteration wird vor dem Betreten einer jeden Iteration geprüft, ob die Be-
dingung fancy-condition noch erfüllt ist. Ist dem nicht so, wird der gesamte
Vorgang abgebrochen und weiter im Kontrollfluss verfahren.

Abbildung 5-4:
Beispiele für den

Aspekt Iteration in
der Sprache BPMN2.0

g2

[fancy-condition]

g1

Continued
executed

Task

...

...

[fancy-condition]
g2

Continued
executed

Task

g1

Bewertung für den Aspekt
Iteration

Flexibilität ist in dem dargestellten Beispiel des Aspekts Iteration gege-
ben, da jede weitere Iteration die Einbindung eines zusätzlichen Teils im
Kontrollfluss bedingt. Diese Art von Flexibilität ist somit sehr ähnlich zu
dem Aspekt Choice. Ferner werden Anwendungs- und Anpassungslogik
in dem dargestellten Beispiel nicht voneinander getrennt, wodurch be-
reits bekannte Probleme auftreten können (siehe 5.2.2). Wie der Aspekt
Iteration durch die Sprache ACML4BPM gestaltet werden kann, wird in
Abschnitt 5.2.3 beschrieben.

5.2.1.3 Parallelism

Durch den Aspekt Parallelism ist es möglich, mehrere Kontrollflusspfade
zu beschreiben, deren spätere Ausführung parallel stattfinden soll. Hier-
für werden Teilungs- (engl. Fork) und Vereinigungspunkte (engl. Join) be-
nötigt, an denen ein einzelner Kontrollflusspfad geteilt bzw. mehrere Kon-
trollflusspfade vereinigt werden. Ein Beispiel eines Sprachelements aus der
Sprache BPMN2.0 ist durch das Knotenelement des Typs ParallelGateway
gegeben (siehe Abschnitt 2.3.4).

Beispiel für den Aspekt
Parallelism

In Abbildung 5-5 ist ein Beispiel des Aspekts Parallelism in der Sprache
BPMN2.0 gegeben. Dabei sollen ausgehend vom Gateway g1 mehrere Kon-
trollflusspfade parallel ausgeführt werden. Sobald die Ausführung auf den
parallelen Kontrollflusspfaden beendet worden ist, werden sie durch das
Gateway g2 wieder zu einem Kontrollflusspfad zusammengeführt.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 113

Parallel
Task 1

Parallel
Task 2

Parallel
Task n

...

...

...

...

g1

g2

Abbildung 5-5:
Beispiel für den Aspekt
Parallelism in der Sprache
BPMN2.0

Bewertung für den Aspekt
Parallelism

Der Aspekt Parallelism kann dabei als eine weitere Art von Flexibilität be-
trachtet werden. So ist im Gegensatz zu den bisher betrachteten Aspekten
Choice und Iteration keine konditionale Auswahl von Kontrollflusspfaden
vorhanden. Eine direkte Trennung der Anwendungs- und Anpassungs-
logik ist somit für den Aspekt Parallelism nicht möglich, da keine Bedin-
gung oder Auswahl eingeschlossen ist. Dennoch sind selbstverständlich
sonstige Anpassungen an den für die parallele Ausführung angedachten
Kontrollflusspfaden möglich. So lässt sich jeder parallele Kontrollflusspfad
bspw. hinsichtlich seiner enthaltenen Elemente anpassen. Alternativ lässt
sich aber auch die Anzahl von parallelen Kontrollflusspfaden anpassen.
Hierbei handelt es sich jedoch nicht um eine für den Aspekt Parallelism
spezifische Anpassung. Auf eine Beschreibung für die Verwendung der
Sprache ACML4BPM wird daher in diesem Bezug nachfolgend verzichtet
(siehe auch Abschnitt 5.2.1.7)

5.2.1.4 Interleaving

Ein weiterer Aspekt ist durch Interleaving gegeben. Interleaving beschreibt
eine Fähigkeit, durch die es ermöglicht wird, die Sequenz einer Ausfüh-
rung einzelner Tasks oder Kontrollflusspfade so zu bestimmen, dass sie in
einer beliebigen Sequenz ausgeführt werden. Die Sprache BPMN2.0 bietet
für einmalige und unbestimmte Reihenfolgen der Ausführung von Tasks
das Sprachelement des Ad-hoc Subprozesses (siehe Abschnitt 2.3.4) an.

Beispiele für den Aspekt
Interleaving

In Abbildung 5-6 sind zwei Beispiele für Ad-hoc-Subprozesse dargestellt. Bei
dem Ad-hoc-Subprozess handelt es sich um einen speziellen Typ eines Sub-
prozesses, der sich sowohl ein- (collapsed) als auch ausgeklappt (uncollapsed)
darstellen lässt. Der eingeklappte Ad-hoc Subprozess wird mit einem ein-
gerahmten Plus-Symbol dargestellt. Das Symbol des Ad-hoc Subprozesses
selbst ist das Tilde-Symbol (~). Im linken Bereich ist ein eingeklappter Ad-

Seite 114 Kapitel 5

hoc Subprozess dargestellt. Im rechten Bereich hingegen wird der gleiche
Ad-hoc Subprozess ausgeklappt gezeigt. In dem ausgeklappten Ad-hoc Sub-
prozess sind verschiedene Tasks (Task 1 bis Task n) enthalten, welche in einer
nicht näher spezifizierten Reihenfolge einmalig ausgeführt werden kön-
nen. Wurde der letzte der genannten Tasks ausgeführt, terminiert der Ad-
hoc Subprozess.

Abbildung 5-6:
Beispiele für den Aspekt

Interleaving in der
Sprache BPMN2.0

... ...Task 1 Task n...

~

Task 2

Ad-hoc
Sub Process

~

... ...

uncollapsedcollapsed

Bewertung für den Aspekt
Interleaving

Flexibilität ist auch bei dem Aspekt Interleaving losgelöst von einer aus-
wertbaren Bedingung, die eine Trennung von der Anpassungs- und An-
wendungslogik ermöglicht. Ebenso wie zuvor für den Aspekt Parallelism
lassen sich aber sonstige Anpassungen durchführen. So ist es z.B. denk-
bar, dass die Anzahl der eingebetteten Tasks im Ad-hoc Subprozess durch
Operationen der Typen Add, Remove und Modify angepasst werden kön-
nen (siehe Abschnitt 4.3.3). Auf eine Beschreibung für die Verwendung
der Sprache ACML4BPM wird daher auch für diesen Aspekt nachfolgend
verzichtet, da sie hinsichtlich der Funktionsweise des Aspekts Interleaving
nicht spezifisch wäre.

5.2.1.5 Multiple Instances

Sollen von einem Task mehrere Instanzen gleichzeitig ausgeführt werden,
kann dies durch den Aspekt Multiple Instances umgesetzt werden. Die
Sprache BPMN2.0 bietet hierzu die Möglichkeit zur entsprechenden Kon-
figuration eines einzelnen Tasks.

Beispiele für den Aspekt
Multiple Instances

In Abbildung 5-7 sind zwei Beispiele für die Konfiguration von Tasks in
der Sprache BPMN2.0 hinsichtlich des Aspekts Multiple Instances gegeben.
So bietet die Sprache BPMN2.0 die Möglichkeit zu spezifizieren, dass von
einem Task mehrere Instanzen ausgeführt werden sollen. Dabei können
verschiedene Konfigurationen angegeben werden, durch die die Anzahl
der Instanzen (loopCardinality) und die Art der Ausführung (isSequential)
angegeben werden. Hierbei werden zwei grundsätzliche Arten der Aus-
führung unterschieden. Verschiedene Instanzen eines Tasks können einer-
seits sequentiell und andererseits parallel ausgeführt werden. Beide Typen

Entwurfsmuster für flexible und anpassbare Prozesse Seite 115

können unterschieden werden, indem ein Symbol bestehend aus drei hori-
zontalen Strichen die sequentielle und ein Symbol bestehend aus drei ver-
tikalen Strichen die parallele Art der Ausführung kennzeichnet.

... ...

isSequential = true
loopCardinality = 5

Multiple Instances
Task

(sequential)

... ...

Multiple Instances
Task

(parallel)

isSequential = false
loopCardinality = 5

Abbildung 5-7:
Beispiele für den Aspekt
Multiple Instances in der
Sprache BPMN2.0

Bewertung für den Aspekt
Multiple Instances

Flexibilität ist abermals bei dem Aspekt Multiple Instances losgelöst von ei-
ner auswertbaren Bedingung. Anpassungen im Rahmen des Aspekts Mul-
tiple Instances sind aber dennoch denkbar, sodass z.B. die genannten Eigen-
schaften isSequential und loopCardinality anpassbar sind. So kann durch die
Änderung des Wertes der Eigenschaft loopCardinality die Anzahl der aus-
zuführenden Instanzen des Tasks geändert werden. Auch für den Aspekt
Multiple Instances wird daher auf die Beschreibung der Verwendung der
Sprache ACML4BPM verzichtet (siehe Abschnitt 5.2.1.7)

5.2.1.6 Cancellation

Der letzte Aspekt von Flexibility-by Design ist durch Cancellation gegeben.
Durch Cancellation wird die Fähigkeit zum Überspringen bzw. zum Ab-
brechen eines Abschnitts im Kontrollflusspfad beschrieben. Hierzu exis-
tieren zwei Varianten, die betrachtet werden können. Zum einen kann
Cancellation als Variante des Aspekts Choice verstanden werden. So kann
hierbei durch die Auswertung einer Bedingung ein Kontrollflusspfad
übersprungen werden und zum nächsten gemeinsamen Kontrollflussteil-
pfad gewechselt werden. Das Überspringen eines Teilpfades wird auch als
Skip bezeichnet (siehe auch Abschnitt 5.4). Zum anderen ist es aber auch
denkbar, die Ausführung eines Subprozesses bzw. Tasks vorzeitig zu be-
enden. Hierzu bietet die Sprache BPMN2.0 Ereignisse des Typs Boundary-
Event an.

Beispiele für den Aspekt
Cancellation

In Abbildung 5-8 sind die beiden Varianten des Aspekts Cancellation in
zwei Beispielen gezeigt. Im linken Bereich ist hierzu die Variante des
Aspekts Cancellation durch den Aspekt Choice dargestellt. Je nach Ergeb-
nis der Auswertung der Bedingung fancy-condition kann die Ausführung
des Teilpfades, auf dem der Task mit der Bezeichnung Skipable Task enthal-
ten ist, übersprungen werden. Eine Übersicht über ausgesuchte Beispie-
le für Arten des Aspekts Cancellation repräsentiert durch Ereignisse des

Seite 116 Kapitel 5

Typs BoundaryEvent ist im rechten Bereich gegeben. So kann bspw. beim
Aufkommen eines Ereignisses des Typs MessageEvent die weitere Ausfüh-
rung des Subprozesses abgebrochen werden. Für eine detaillierte Beschrei-
bung aller dargestellten Ereignisse wird auf die Spezifikation der Sprache
BPMN2.0 verwiesen [OMG11].

Abbildung 5-8:
Beispiele für den Aspekt

Cancellation in der
Sprache BPMN2.0

...

...

...

 Cancelable
 Sub-Process

... ...
BoundaryEvent

(BPMN2.0)

[fancy-condition]

Skipable
Task

...

...

Bewertung für den Aspekt
Cancellation

Flexibilität im Rahmen des Aspekts Cancellation ist dabei derartig gege-
ben, dass die Möglichkeit zum Abbruch des vorgesehenen Kontrollfluss-
pfades besteht. Ferner können auch alternative Kontrollflusspfade gewählt
werden. Der Aspekt Cancellation gibt darüber hinaus die Möglichkeit zur
Behandlung von Ausnahmen – sogenannten Exceptions. So können bspw.
durch ein Ereignis des Typs TimerEvent Ausnahmebehandlungen definiert
werden, wenn die Ausführung eines Tasks oder Subprozesses eine ge-
wisse Zeitdauer überschreitet. Für die Variante des Aspekts Cancellation,
bei der ein Teilpfad übersprungen werden kann, ist eine Trennung der
Anpassungs- und Anwendungslogik möglich. So können beteiligte Teil-
pfade und die auszuwertenden Bedingungen getrennt voneinander gestal-
tet werden. Für die Varianten des Aspekts Cancellation zum Abbruch ei-
nes Subprozesses oder Tasks ist je nach aufkommendem Ereignis vom Typ
BoundaryEvent zu differenzieren, ob eine Trennung möglich oder sinnvoll
ist.

Werden die verschiedenen Typen von Ereignissen als BoundaryEvent ein-
gesetzt, kann hierdurch der Kontrollfluss derartig geändert werden, dass
die von dem eingesetzten Ereignis ausgehende Kante des Kontrollflus-
ses schaltet, sodass die zugehörige Aktivität bzw. der Subprozess vor-
zeitig beendet werden kann. Im Rahmen der Sprache BPMN2.0 werden
für diesen Zweck verschiedene Typen von Ereignissen unterstützt, so
z.B. MessageEvent, TimerEvent, EscalationEvent, ErrorEvent, Compensation-
Event, ConditionalEvent, SignalEvent, MultipleEvent und ParallelEvent. In
Abschnitt 5.2.4 wird für eine Auswahl der zuvor genannten Ereignis-
se und unter Verwendung der Sprache ACML4BPM eine Gestaltung des
Aspekts Cancellation beschrieben.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 117

5.2.1.7 Zusammenfassung der Bewertung

Zuvor wurden die durch [Sch+08] gegebenen Aspekte von Flexibility-by
Design zunächst beschrieben. Ferner wurden verschiedene Beispiele zur
Gestaltung der eingeführten Aspekte auf Basis der Sprache BPMN2.0 gege-
ben. Hierzu ist in Tabelle 5-1 eine Übersicht über die beschriebenen Aspek-
te sowie eine Einschätzung hinsichtlich der Möglichkeit einer Trennung
von Anwendungs- und Anpassungslogik (SoC) gegeben.

Aspekt SoC möglich Sonstige Anpassungen möglich

Choice 3 3

Iteration 3 3

Parallelism – 3

Interleaving – 3

Multiple Instances – 3

Cancellation 3 3

Tabelle 5-1:
Übersicht über die Mög-
lichkeit der Trennung von
Anpassungs- und Anwen-
dungslogik in Bezug zu
einzelnen Aspekten von
Flexibility-by Design

Bewertung von AspektenFür die Aspekte Parallelism, Interleaving und Multiple Instances ist eine
spezifische Verwendung der Sprache ACML4BPM zur Trennung der
Anwendungs- von der Anpassungslogik nicht möglich, da diese Aspek-
te typischerweise keine Bedingungen enthalten, die ausgewertet werden
müssen und durch die alternative Kontrollflusspfade bestimmt werden
können. Stattdessen beschreiben sie spezielle Arten von Ausführungen,
wie etwa die parallele und die einmalig versetzte Ausführung von ver-
schiedenen Tasks oder Subprozessen. Eine Anpassung von Prozessen, die
diese Aspekte umsetzen, ist aber dennoch möglich. So können Elemen-
te oder Eigenschaften auf den enthaltenen Kontrollflusspfaden angepasst
werden, sofern dies notwendig ist.

Eine Trennung von Anpassungs- und Anwendungslogik ist insgesamt bei
den drei Aspekten Choice, Iteration und Cancellation möglich. Dies lässt
sich vornehmlich dadurch begründen, dass in diesen Aspekten stets min-
destens eine Auswertung einer Bedingung zur Auswahl eines alternati-
ven Kontrollflusspfades vorkommt. Für diese Gruppe von Aspekten von
Flexibility-by Design ist die Verwendung der in Kapitel 5 eingeführten Spra-
che ACML4BPM möglich. Hierdurch kann eine Trennung der Anpassungs-
und Anwendungslogik ermöglicht werden.

Die Gestaltung dieser Aspekte kann dabei auf zwei unterschiedliche Ar-
ten durchgeführt werden. Auf der einen Seite kann die Anpassungs- und
Anwendungslogik durch Beobachtungs- und Anpassungsprozesse umge-
setzt werden. Auf der anderen Seite können Beobachtungs- und insbe-

Seite 118 Kapitel 5

sondere Anpassungsprozesse aber auch dazu verwendet werden, den Ge-
samtprozess derartig anzupassen, dass eine benötigte Funktion integriert
wird. Bei der letzten Art der Gestaltung handelt es sich jedoch um das Ent-
wurfsmuster Flexibility-by Change, das in Abschnitt 5.3 detailliert beschrie-
ben wird. Daher wird im Folgenden die Umsetzung der beiden Logiken
ohne Anpassungen am Gesamtprozess gezeigt. Stattdessen wird gezeigt,
wie Anpassungs- und Anwendungslogik durch Beobachtungs- und An-
passungsprozesse umgesetzt werden können.

Nachfolgend werden für diese Aspekte Beispiele unter Verwendung der
in dieser Arbeit entwickelten Sprache gegeben. Die Beispiele können an-
schließend für die Gestaltung von flexiblen und anpassbaren Prozessen als
Entwurfsmuster verwendet werden.

5.2.2 Gestaltung von Choice

Die Möglichkeit zur Gestaltung einer Auswahl von verschiedenen Kon-
trollflusspfaden kann bereits frühzeitig in der Phase Design & Analyse
des BPM-Lebenszyklus durch den Aspekt Choice unterstützt werden. Bei
der Gestaltung dieses Aspekts kann die in Kapitel 4 vorgestellte Sprache
ACML4BPM eingesetzt werden. Ferner lässt sich hierbei eine Trennung
von Anpassungs- und Anwendungslogik erreichen. Für die Trennung der
beiden Logiken ist es zunächst notwendig, dass zunächst jeweils zugehö-
rige Elemente identifiziert werden, sodass in einem nachfolgenden Schritt
eine getrennte Gestaltung unter der Verwendung der Sprache ACML4BPM
ermöglicht werden kann.

In Abbildung 5-9 ist das Ergebnis einer Identifikation von Elementen der
Anpassungs- und Anwendungslogik auf Basis des in Abbildung 5-3 ein-
geführten Beispiels dargestellt. Das Beispiel beschreibt dabei einen Aus-
zug eines im Folgenden genannten Gesamtprozesses. Dabei liegt der Fo-
kus auf einem Ausschnitt, der durch die Punkte s und e gegeben ist.

Elemente der
Anpassungslogik

Elemente des Kontrollflusses der Anpassungslogik sind in der Farbe Grün
hinterlegt dargestellt. Im Fall des in Abbildung 5-3 dargestellten Beispiels
handelt es sich um Entscheidungspunkte, die durch Gateways und durch
die angehängten Bedingungen abgebildet sind.

Elemente der
Anwendungslogik

Ferner sind die einzelnen Teile des Kontrollflusses, die die Anwendungs-
logik darstellen, in der Farbe Blau hinterlegt dargestellt. Dabei handelt es
sich in dem gezeigten Beispiel um die dargestellten Tasks bzw. Kontroll-
flusspfade, auf denen sie vorkommen.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 119

...

s

[fancy-condition-a]

[fancy-condition-b]

Alternative
Task B

......

e

s

[fancy-condition-a]

......

e

Alternative
Task A

Default
Task

Default
Task

Alternative
Task A

Abbildung 5-9:
Elemente der
Anpassungs- und An-
wendungslogik

Integration in den
Gesamtprozess

Eine weitere Fragestellung beschäftigt sich mit der Integration des zwi-
schen den Punkten s und e liegenden Verhaltens in den Gesamtprozess.
Wie in Abschnitt 4.2.2 bereits beschrieben, wird ein AC4BPM bzw. ein Be-
obachtungsprozess typischerweise durch ein Ereignis ausgelöst. Hierzu
können sowohl explizite als auch implizite Ereignisse eingesetzt werden
(siehe Abschnitt 4.3.4). In Abbildung 5-10 werden mögliche Varianten vor-
gestellt, die für die Auslösung eines Beobachtungsprozesses und damit für
die Integration in den Gesamtprozess eingesetzt werden können. Sie um-
fassen die Verwendung von expliziten und impliziten Ereignissen sowie
die Umsetzung mit und ohne notwendiger Anpassung.

Implizite Ereignisse mit notwendiger Anpassung

Explizite Ereignisse mit notwendiger AnpassungExplizite Ereignisse

s e

s e
Default

Task

evalutate-fancy-
conditions

evalutate-fancy-
conditions-done

s e

evalutate-fancy-
conditions

evalutate-fancy-
conditions-done

Implizite Ereignisse

Evaluate-
fancy-

conditions
s

Default
Task

e

Evaluate-
fancy-

conditions

Abbildung 5-10:
Explizite und implizite Er-
eignisse zur Auslösung
eines AC4BPM mit und
ohne notwendiger Anpas-
sung

Integration ohne
Anpassung durch explizite
Ereignisse

So lässt sich ein AC4BPM durch eine in dem Kontrollfluss des Gesamt-
prozess vorgesehene Rückkopplung einbinden, die hier durch die beiden
Ereignisse der Typen ThrowEvent und CatchEvent dargestellt sind. Die ge-
nerelle Funktionsweise lässt sich dabei derartig beschreiben, dass durch
das Ereignis mit der Bezeichnung evaluate-fancy-conditions (ThrowEvent) ein
AC4BPM ausgelöst werden kann. Ist die Bearbeitung durch den zugehöri-
gen Beobachtungs- oder Anpassungsprozess abgeschlossen, so wird ein
Ereignis mit der Bezeichnung evaluate-fancy-conditions (CatchEvent) ausge-
löst und die Rückkopplung ist abgeschlossen.

Seite 120 Kapitel 5

Ein Beispiel für einen zugehörigen AC4BPM ist in Abbildung 5-11 be-
schrieben. Zum besseren Verständnis sind die Elemente der Anpassungs-
und Anwendungslogik abermals in den zuvor eingeführten Farben Grün
und Blau hinterlegt. So ist ersichtlich, dass die Anpassungslogik des
Aspekts Choice vollständig durch den dargestellten Beobachtungsprozess
gestaltet worden ist. Je nach Ergebnis einer Auswertung der dargestellten
Bedingung wird der dazugehörige Anpassungsprozess aufgerufen, durch
den die jeweils benötigte Funktion gestaltet worden ist.

Abbildung 5-11:
Beispiel einer Alter-

native für den Aspekt
Choice in ACML4BPM

«AdaptCase4BPM»

MakeAChoice

Monitoring Process

evaluate-fancy-
conditions

CAP

adaptationProcess =
‘Alternative Task‘

[fancy-condition]

evaluate-fancy-condition

CAP

Adaptation Process

Default
Task

...

evalutate-fancy-
conditions-done

Adaptation Process

Alternative
Task A

...

evalutate-fancy-
conditions-done

Default Task

Alternative Task

adaptationProcess =
‘Default Task‘

Werden verschachtelte Bedingungen wie im rechten Bereich von Abbil-
dung 5-9 verwendet, so lässt sich diese Anpassungslogik ebenfalls durch
einen Beobachtungsprozess beschreiben. Weitere alternative Funktionen
können durch das Hinzufügen weiterer Anpassungsprozesse mit entspre-
chender Funktionsbeschreibung gestaltet werden.

Integration ohne
Anpassung durch implizite

Ereignisse

Ein AC4BPM lässt sich alternativ aber auch durch implizite Ereignisse aus-
lösen. In Abbildung 5-10 ist hierzu im linken unteren Bereich ein Bei-
spiel für eine derartige Integration dargestellt. Dabei bietet sich die in Ab-
schnitt 4.3.4.2 vorgestellte Variante von transformierten impliziten Ereig-
nissen an, in denen eine Rückkopplung vorgesehen ist. Die Funktionswei-
se gleicht anschließend der durch explizite Ereignisse beschriebenen Inte-
gration.

Ein Beispiel für einen zugehörigen AC4BPM ist in Anlehnung an Abbil-
dung 5-12 beschrieben. Zum besseren Verständnis sind die Elemente der
Anpassungs- und Anwendungslogik abermals in den zuvor eingeführten
Farben Grün und Blau hinterlegt. In dem Beobachtungsprozess ist die ver-
schachtelte Anpassungslogik des in Abbildung 5-9 eingeführten Beispiels

Entwurfsmuster für flexible und anpassbare Prozesse Seite 121

gestaltet worden. Dabei muss an dieser Stelle erneut darauf aufmerksam
gemacht werden, dass aufgrund der Rückkopplung für die Variante ein
höherer Aufwand in der weiteren Gestaltung bzw. Implementierung be-
rücksichtigt werden sollte (siehe Abschnitt 4.3.4.2).

«AdaptCase4BPM»

MakeAnotherChoice

CAP

adaptationProcess =
‘Alternative Task A‘

[fancy-condition-a]

evalutate-fancy-
conditions.onReady()

[fancy-condition-b]

Monitoring Process

CAP

CAP

evaluate-fancy-
conditions.onReady()

Adaptation Process

Default
Task

...

evaluate-fancy-
conditions.onReady

AdaptationDone

Adaptation Process

Alternative
Task A

...

Adaptation Process

Alternative
Task B

...

adaptationProcess =
‘Default Task‘

adaptationProcess =
‘Alternative Task B‘

Default
 Task

Alternative
Task A

Alternative
Task B

evaluate-fancy-
conditions.onReady

AdaptationDone

evaluate-fancy-
conditions.onReady

AdaptationDone

Abbildung 5-12:
Beispiel multipler Alter-
nativen für den Aspekt
Choice in ACML4BPM

Integration durch explizite
und implizite Ereignisse
mit Anpassung

Darüber hinaus ist ebenso eine Integration durch explizite oder implizite
Ereignisse mit Anpassung möglich. Im rechten oberen bzw. rechten unte-
ren Bereich von Abbildung 5-10 ist dies gezeigt. Dabei ist die Standard-
funktion (hier: Default Task) Teil des Ausschnittes zwischen den Punkten s
und e. Die zuvor beschriebenen beiden Varianten von Verwendungsweisen
für eine mögliche Auslösung eines AC4BPM können dabei dazu verwen-
det werden, eine Anpassung am gezeigten Ausschnitt des Kontrollflusses
durchzuführen. Eine derartige Anpassung kann so z.B. den Task mit der
Bezeichnung Default Task aus dem Kontrollfluss entfernen und einen al-
ternativen Task, wie Alternative Task A oder Alternative Task B, einführen.
Durch die in Abbildung 5-10 dargestellten Mechanismen zur Rückkopp-
lung ist dieser Austausch einer Funktionalität vor ihrer jeweiligen Akti-
vierung möglich. Auf eine Beschreibung von Beispielen wird verzichtet,
da die Funktionsweise der Integration vornehmlich der zuvor beschriebe-
nen beiden Prinzipien folgt. Eine Abweichung ist lediglich hinsichtlich der
Verwendungsweise des Anpassungsprozesses vorhanden, in dem anstelle
der Ausführung einer Funktion, wie z.B. Default Task, das Entfernen und
Hinzufügen einer solchen Funktion beschrieben steht.

Seite 122 Kapitel 5

5.2.3 Gestaltung von Iteration

Durch den Aspekt Iteration kann die Möglichkeit zur Gestaltung eines
iterativ ausgeführten Kontrollflusspfades bereits frühzeitig in der Phase
Design & Analyse des BPM-Lebenszyklus unterstützt werden. Dabei handelt
es sich um eine spezielle Variante des Aspekts Choice, weshalb im Folgen-
den lediglich auf Besonderheiten des Aspekts Iteration eingegangen wird.
Bei der Gestaltung dieses Aspekts kann ebenfalls die in Kapitel 4 vorge-
stellte Sprache ACML4BPM eingesetzt werden, sodass sich eine Trennung
von Anpassungs- und Anwendungslogik erreichen lässt. Für die Trennung
der beiden Logiken ist es zunächst notwendig, dass jeweils zugehörige Ele-
mente in einem ersten Schritt identifiziert werden, sodass in einem nach-
folgenden Schritt eine getrennte Gestaltung unter Verwendung der Spra-
che ACML4BPM ermöglicht werden kann. Hierzu ist in Abbildung 5-13
das Ergebnis einer Identifikation von Elementen der Anpassungs- und An-
wendungslogik auf Basis des in Abbildung 5-4 eingeführten Beispiels dar-
gestellt.

Abbildung 5-13:
Identifizierung von

Anpassungs- und
Anwendungslogik
zur Unterstützung

des Aspekts Iteration

......

[fancy-condition]

g1

Continued
executed

Task

...

...

[fancy-condition]
g2'

Continued
executed

Task

g1'

g2

Elemente der
Anpassungslogik

Dabei sind wesentliche Elemente des Kontrollflusses, die für die Anpas-
sungslogik vorhanden sind, in der Farbe Grün hinterlegt dargestellt. Im
Fall der in Abbildung 5-4 dargestellten Beispiele handelt es sich um Ent-
scheidungspunkte, die durch die Gateways g1 und g2 bzw. g1’ und g2’ und
die angehängten Bedingungen abgebildet sind.

Elemente der
Anwendungslogik

Ferner sind die einzelnen Teile des Kontrollflusses, die die Anwendungs-
logik darstellen, in der Farbe Blau hinterlegt dargestellt. Dabei handelt es
sich in den gezeigten Beispielen um den Task mit der Bezeichnung Conti-
nued executed Task.

Integration in den
Gesamtprozess

Wie bereits in Abschnitt 5.2.2 beschrieben, lassen sich für eine Umsetzung
der Anpassungs- und Anwendungslogik durch Beobachtungs- und An-
passungsprozesse mehrere Möglichkeiten zur Integration der beiden Logi-
ken in den Gesamtprozess anwenden. Da es sich bei dem Aspekt Iteration
um eine spezielle Variante des Aspekts Choice handelt, wird in Anleh-
nung an eine mögliche Integration in den Gesamtprozess lediglich auf
die Realisierung über explizite Ereignisse ohne Anpassung eingegangen.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 123

In Abbildung 5-14 wird hierzu eine Variante für die Auslösung eines Be-
obachtungsprozesses auf Basis von expliziten Ereignissen dargestellt, die
im weiteren Beispiel verwendet wird. Bei der dargestellten Integration
in den Gesamtprozess handelt es sich abermals um den bereits in Abbil-
dung 5-10 dargestellten Mechanismus einer Rückkopplung. Auf eine de-
taillierte Beschreibung wird an dieser Stelle verzichtet und stattdessen auf
Abschnitt 5.2.2 verwiesen.

Explizite Ereignisse

g1 g2

enter-iteration exit-iteration

Abbildung 5-14:
Explizite Ereignisse oh-
ne Anpassung zur Auslö-
sung eines AC4BPM

Kopfgesteuerte IterationIn Abbildung 5-15 ist ein Beispiel eines AC4BPM gezeigt, der durch die Va-
riante der expliziten Ereignisse ausgelöst werden kann und der die Umset-
zung einer kopfgesteuerten Iteration beschreibt. Zum besseren Verständ-
nis sind die Elemente der Anpassungs- und Anwendungslogik abermals
in den zuvor eingeführten Farben Grün und Blau hinterlegt. So ist ersicht-
lich, dass die Anpassungslogik des Aspekts Iteration hinsichtlich der kopf-
gesteuerten Iteration vollständig durch den dargestellten Beobachtungs-
prozess gestaltet worden ist. Je nach Ergebnis einer Auswertung der dar-
gestellten Bedingung wird der dazugehörige Anpassungsprozess aufge-
rufen und somit ein iteratives Ausführen der entsprechenden Funktion er-
möglicht. Entgegen des Beispiels für den Aspekt Choice wird durch das Be-
enden des Anpassungsprozesses nicht zurück in den Gesamtprozess ge-
sprungen. Stattdessen wird der zugehörige Beobachtungsprozess erneut
aufgerufen und die Iteration ist je nach Auswertung der Bedingung in der
Lage, fortgesetzt oder beendet zu werden. Ein Abbruch der Iteration löst
das Ereignis mit der Bezeichnung exit-iteration aus, sodass die Rückkopp-
lung mit dem Gesamtprozess durchgeführt wird und die Ausführung an
dortiger Stelle fortgesetzt werden kann.

«AdaptCase4BPM»

MakeAIteration

enter-iteration

Adaptation Process

Continued
executed

Task

enter-iteration

M
o

n
it

o
ri

n
g

P
ro

ce
ss

adaptationProcess =
‘Continued executed Task‘

[fancy-condition]

enter-iteration

CAPexit-iteration

Continued executed Task

Abbildung 5-15:
Beispiel einer iterativ
ausgeführten Funk-
tion für den Aspekt
Iteration in ACML4BPM
(kopfgesteuert)

Seite 124 Kapitel 5

Fußgesteuerte Iteration Ein Beispiel für die in Abbildung 5-13 dargestellte fußgesteuerte Iteration
unter Verwendung von ACML4BPM ist in Abbildung 5-16 gezeigt. Zum
besseren Verständnis sind die Elemente der Anpassungs- und Anwen-
dungslogik abermals in den zuvor eingeführten Farben Grün und Blau hin-
terlegt. In dem Beobachtungsprozess ist die Anpassungslogik des in Ab-
bildung 5-13 eingeführten Beispiels gestaltet worden. Dabei kann der Be-
obachtungsprozess auf zwei Arten aufgerufen werden. Zum einen kann er
extern durch das Ereignis zur Rückkopplung und zum anderen intern über
das Ereignis mit der Bezeichnung evaluate-iterations-choice, das bei Beendi-
gung des Anpassungsprozesses ausgelöst wird, aufgerufen werden. Hier-
durch wird die Funktionsweise einer fußgesteuertern Iteration unterstützt,
da die auszuführende Funktion zunächst immer erst ausgeführt wird, be-
vor die Bedingung der Iteration ausgewertet wird. Die Beendigung der
Iteration kann nach Ausführung der enthaltenen Funktion durchgeführt
werden. Ferner kann auch eine weitere Iteration gestartet werden.

Abbildung 5-16:
Beispiel einer iterativ

ausgeführten Funk-
tion für den Aspekt

Iteration in ACML4BPM
(fußgesteuert)

«AdaptCase4BPM»

MakeAIteration

enter-iteration

Adaptation Process

Continued
executed

Task

evaluate-
iterations-choice

M
o

n
it

o
ri

n
g

P
ro

ce
ss

adaptationProcess =
‘Continued executed Task‘

[fancy-condition]

enter-iteration

CAP exit-iteration

evaluate-
iterations-choice

Continued executed Task

5.2.4 Gestaltung von Cancellation

Der letzte Aspekt Cancellation ermöglicht die Gestaltung von vorbestimm-
ten Behandlungen von Abbrüchen eines Tasks bzw. eines Subprozesses.
Wie bereits in Abschnitt 5.2.1.6 beschrieben, existieren dabei zwei unter-
schiedliche Arten. Auf der einen Seite kann der Aspekt Cancellation als spe-
zielle Variante des Aspekts Choice verstanden werden, wenn z.B. die Aus-
führung eines Kontrollflusspfades übersprungen wird. Daher spricht man
in einem solchen Fall anstelle von Cancellation auch von Skip. Auf der an-
deren Seite kann es aber auch sinnvoll sein, einen aktiven Task bzw. Sub-
prozess unter bestimmten Bedingungen abzubrechen. So kann z.B. beim
Auftreten von bestimmten Ereignissen eine weitere Bearbeitung im Rah-
men des Tasks bzw. des Subprozesses nicht mehr sinnvoll sein. Alternativ
kann auch der Fall eines aufgetretenen Fehlers behandelt werden.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 125

Bei der Gestaltung von Prozessen mit Umsetzung des Aspekts Cancellation
kann ebenfalls die in Kapitel 4 vorgestellte Sprache ACML4BPM als Un-
terstützung eingesetzt werden. Für die Trennung der beiden Logiken ist
es zunächst notwendig, dass die jeweils zugehörigen Elemente zunächst
identifiziert werden, sodass in einem nachfolgenden Schritt eine getrennte
Gestaltung unter Verwendung der Sprache ACML4BPM ermöglicht wird.
Hierzu ist in Abbildung 5-17 das Ergebnis einer Identifikation von Ele-
menten der Anpassungs- und Anwendungslogik auf Basis des in Abbil-
dung 5-8 eingeführten Beispiels dargestellt.

...

...

...

 Cancelable
 Subprocess

... ...
BoundaryEvent

(BPMN2.0)

[fancy-condition]

Skipable
Task

...

...

Abbildung 5-17:
Identifizierung von
Anpassungs- und An-
wendungslogik zur Un-
terstützung des Aspekts
Cancellation

Elemente der
Anpassungslogik

Dabei sind wesentliche Elemente des Kontrollflusses, die für die Anpas-
sungslogik vorhanden sind, in der Farbe Grün hinterlegt dargestellt. Im
linken Fall des Aspekts Skip handelt es sich hierbei um die Entscheidungs-
punkte sowie die Bedingung fancy-condition. Wohingegen im rechten dar-
gestellten Fall die Anpassungslogik durch den Empfang von Ereignissen
dargestellt ist. Ferner kann auch das nachgelagerte Verhalten hinzugezählt
werden, das hier durch den aus den Ereignissen ausgehenden Kontroll-
fluss dargestellt ist.

Elemente der
Anwendungslogik

Ferner sind die einzelnen Teile des Kontrollflusses, die die Anwendungs-
logik darstellen, in der Farbe Blau hinterlegt abgebildet. Dabei handelt es
sich in den gezeigten Beispielen um den Task mit der Bezeichnung Skipable
Task bzw. den Subprozess mit der Bezeichnung Cancelable Subprocess.

Integration in den
Gesamtprozess

Für den im linken Bereich dargestellten Aspekt Skip können für den
Aspekt Choice vorgestellte Inhalte zur Gestaltung genutzt werden (siehe
Abschnitt 5.2.2). Daher wird im Folgenden lediglich auf den im rechten
Bereich dargestellten Subprozess eingegangen. Im oberen Bereich von Ab-
bildung 5-18 ist dazu die Ausgangslage für den Abbruch des dargestell-
ten Subprozesses gegeben. Tritt das dargestellte Ereignis Cancel-Subprocess
auf, so terminiert seine Ausführung. Da im Rahmen eines Abbruchs Maß-
nahmen zur Kompensation gewollt sein können, wird anschließend auf

Seite 126 Kapitel 5

eine Rückkopplung durch das Ereignis Fancy-Stuff-Done gewartet. Für die
beiden Punkte zur Erweiterung der dargestellten Kontrollflusspfade ex1
und ex2 sind im unteren Bereich Beispiele für die weitere Verfahrenswei-
se gegeben. So ist nach der Rückkopplung bspw. eine Beendigung des
Prozesses möglich. Alternativ kann aber auch auf den Hauptpfad des
Kontrollflusses zurückgekehrt werden. Die dritte Variante bietet das Fort-
fahren auf einem alternativen Kontrollflusspfad (hier: ex1). Die Sprache
ACML4BPM kann für den Aspekt Cancellation dazu genutzt werden, um
Funktionen zur Analyse und Anpassungen bzw. Rückkopplungen zu be-
schreiben. Auf zwei Beispiele für einen zeitbasierten Abbruch und für
einen konditionalen Abbruch wird nachfolgend eingegangen.

Abbildung 5-18:
Explizite Ereignisse

zur Integration der An-
passungslogik eines

Adapt Case 4 BPM
Cancelable
Subprocess

ex2...

ex1

Cancel-
Subprocess

Fancy-Stuff-
Done

...

Zum Abbruch des
Gesamtprozesses

ex2

ex1

...ex2

Fortfahren mit Verhalten auf
dem weiteren Kontrollflusspfad

ex1

...ex2

ex1

Fortfahren mit Verhalten auf einem
alternativen Kontrollflusspfad

...

Cancel-by Timer Das erste Beispiel beschreibt, wie das Verhalten im Rahmen eines zeitba-
sierten Abbruchs durch einen AC4BPM dargestellt werden kann. Der in
Abbildung 5-19 gezeigte AC4BPM mit der Bezeichnung Cancel-by Timer ist
dabei aufrufbar durch ein implizites Ereignis (onReady) des Subprozesses
Cancelable Subprocess (siehe auch Abschnitt 4.3.4.2). Im Rahmen des dar-
gestellten Beobachtungsprozesses wird die Anpassungslogik gestaltet, die
hier aus einem Kontrollfluss besteht, in dem nach Ablauf eines Zeitinter-
valls after-time-x ein Anpassungsprozess gestartet wird. Der Anpassungs-
prozess enthält einen Kontrollfluss, dessen Zweck die Synchronisation mit
dem Gesamtprozess ist. So wird der Abbruch des Subprozesses durch das
Ereignis Cancel-Subprocess ausgelöst. Ferner können weitere Aufgaben, die
bei einem Abbruch durchgeführt werden müssen, in den Kontrollfluss des
Anpassungsprozesses integriert werden. Dies ist hier konzeptionell durch
den Task mit der Bezeichnung Do-fancy-Stuff angedeutet.

Ferner ist es möglich, dass die zeitliche Bedingung nicht erfüllt und der
Anpassungsprozess somit nicht aufgerufen worden ist. Damit der Beob-

Entwurfsmuster für flexible und anpassbare Prozesse Seite 127

achtungsprozess nicht aktiv bleibt, ist die Rückkopplung mit dem Subpro-
zess möglich. So wird bei der Beendigung der Ausführung des Subpro-
zesses über das implizite Ereignis onTerminated die Ausführung des Beob-
achtungsprozesses abgebrochen.

«AdaptCase4BPM»

Cancel-by Timer

Cancelable
Subprocess.
onReady()

M
on

it
or

in
g

P
ro

ce
ss

adaptationProcess =
‘CancelSubprocess‘

Cancelable
Subprocess.
onReady()

CAP

after-time-x

CancelSubprocess

CancelableSubprocess.onTerminated()

A
d

ap
ta

ti
o

n
 P

ro
ce

ss

Cancel-
Subprocess

Do-fancy-Stuff

Fancy-Stuff-
Done

...

Abbildung 5-19:
Beispiel für den
Aspekt Cancellation in
ACML4BPM
(Cancel-by Timer)

Cancel-by ConditionalDas zweite Beispiel beschreibt einen konditionalen Abbruch durch einen
AC4BPM und ist in Abbildung 5-20 dargestellt. Der dargestellte AC4BPM
mit der Bezeichnung Cancel-by Conditional kann ebenfalls durch das im-
plizite Ereignis onReady des Subprozesses Cancelable Subprocess aufgeru-
fen werden. Der zugehörige Beobachtungsprozess enthält dabei die An-
passungslogik, in deren Rahmen zunächst eine konzeptionelle Analyse
(Analyze-fancy-Stuff) durchgeführt und anschließend eine zugehörige Ent-
scheidung (fancy-condition) getroffen wird. Je nach Ergebnis der Auswer-
tung der Bedingung wird entweder erneut eine Analyse durchgeführt oder
ein zugehöriger Anpassungsprozess aufgerufen.

Der dargestellte Anpassungsprozess erfüllt dabei den gleichen Zweck wie
er zuvor auch schon für den AC4BPM mit der Bezeichnung Cancel-by Ti-
mer beschrieben worden ist. Hier wurde jedoch auf zusätzliche Maßnah-
men, wie z.B. eine Kompensation, verzichtet. Wenn der Subprozess been-
det wird, so kann der Beobachtungsprozess ebenso durch die Rückkopp-
lung über das Ereignis onTerminated beendet werden.

5.2.5 Zusammenfassung

Der durch [Sch+08] eingeführte Flexibilitätsaspekt Flexibility-by Design
kann als ein Entwurfsmuster für die Gestaltung von flexiblen Prozessen

Seite 128 Kapitel 5

Abbildung 5-20:
Beispiel für den

Aspekt Cancellation
in ACML4BPM

(Cancel-by Conditional)

M
on

it
or

in
g

Pr
oc

es
s

«AdaptCase4BPM»

Cancel-by Conditional

Cancelable
Subprocess.
onReady()

A
d

ap
ta

ti
o

n
 P

ro
ce

ss

Cancel-
Subprocess

Fancy-Stuff-
Done

CancelSubprocess

CancelableSubprocess.onTerminated()

[fancy-condition]

CAP
adaptationProcess =
‘CancelSubprocess‘

Analyze-fancy-
Stuff

Cancelable
Subprocess.
onReady()

bereits frühzeitig in der Phase Design & Analyse betrachtet werden. In
den vorherigen Abschnitten wurde zunächst eine Analyse der Aspekte
Choice, Iteration, Parallelism, Interleaving, Multiple Instances und Cancellation
durchgeführt. Jeder dieser Aspekte stellt dabei einen Teil von Flexibility-by
Design dar. Dabei wurden Teilaspekte identifiziert, bei denen die Gestal-
tung von flexiblen Prozessen derartig unterstützt werden kann, dass durch
die in Kapitel 4 eingeführte Sprache eine Trennung von Anpassungs-
und Anwendungslogik durchgeführt werden kann. Ferner konnte ermit-
telt werden, dass auch sonstige Anpassungen im Rahmen der restlichen
Aspekte möglich sind. Für eine detaillierte Beschreibung wurde dabei
auf Abschnitt 5.3 verwiesen. Im Folgenden konnte auf Basis der Aspek-
te Choice, Iteration und Cancellation charakterisierende Beispiele gegeben
werden, die eine Verwendung der in dieser Arbeit entwickelten Sprache
ACML4BPM in der Gestaltung von Prozessen veranschaulichen. Durch
eine konsequente Verwendung der Sprache im Fall von Bedingungen zur
Auswahl von alternativen Kontrollflusspfaden konnte gezeigt werden,
dass die Gestaltung von flexiblen und anpassbaren Prozessen hinsicht-
lich einer Trennung von Anpassungs- und Anwendungslogik unterstützt
werden kann. Hierdurch wird ermöglicht, die Sicherstellung der Qualität
der zu gestaltenden Prozesse hinsichtlich der in Abschnitt 1.3 genannten
Anforderungen zu unterstützen.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 129

5.3 Flexibility-by Change

Flexibility-by Change ist ein Flexibilitätsaspekt, der seine Eignung in ver-
schiedenen Einsatzszenarios findet. So können Einzelheiten zu real benö-
tigten Abläufen in Prozessen erst zu einem späteren Zeitpunkt oder in
einer nachfolgenden Iteration des BPM-Lebenszyklus bekannt sein. Daher
können zu diesem Zeitpunkt Anpassungen an bestehenden Prozessen,
hier sowohl Prozessmodell als auch die zugehörigen Prozessinstanzen,
notwendig sein. Ferner können sich die Anforderungen an den Prozessen
innerhalb einer Iteration des BPM-Lebenszyklus aber auch ändern, sodass
Anpassungen an diesen Prozessen bereits in der aktuellen Iteration not-
wendig sind. Dieser Umstand ist insbesondere bei langlaufenden Prozes-
sen zu beobachten, bei denen die ursprünglichen Anforderungen auf-
grund der Langläufigkeit schnell überholt sein können.

Ein zu dem Flexibilitätsaspekt Flexibility-by Change zugehöriges Entwurfs-
muster unterstützt Anpassungen von Prozessmodellen und deren Instan-
zen. Anpassungen von Prozessmodellen werden dabei z.B. durch die in
Abschnitt 4.3.3 eingeführten Operationen unterstützt. Als Ergänzung wird
im Rahmen von Flexibility-by Change insbesondere auch die Überführung
von bereits durchgeführten Anpassungen von Prozessmodellen auf ein-
zelne oder alle derzeit aktiven zugehörigen Prozessinstanzen betrachtet.
Bei einer solchen Überführung von Anpassungen wird alternativ auch von
Migration gesprochen. Eine Migration kann dabei unter Verwendung einer
Strategie durchgeführt werden, die die Verfahrensweise bei einer Anpas-
sung von Prozessinstanzen beschreibt. Eine an [Sch+08] angelehnte Defi-
nition des Flexibilitätsaspekts Flexibility-by Change wird in Definition 5.3.1
gegeben.

Definition 5.3.1. (Flexibility-by Change)

Flexibility-by Change beschreibt die Fähigkeit zur Anpassung von Pro-
zessmodellen und -instanzen während der Ausführungszeit. Dabei steht
explizit die Möglichkeit zur Durchführung einer Migration von Anpas-
sungen von den betroffenen Prozessen im Vordergrund, die sowohl Pro-
zessmodelle als auch Prozessinstanzen betreffen können.

Seite 130 Kapitel 5

Für die Realisierung von Flexibility-by Change sind dabei neue Operationen
notwendig, die eine Migration von Anpassungen von Prozessmodellen auf
deren Instanzen ermöglichen. Einige Beispiele für mögliche Operationen
zur Anpassung von Prozessen wurden bereits in Abschnitt 4.3.3 einge-
führt, sodass an dieser Stelle lediglich auf Operationen für die Durchfüh-
rung von Migrationen eingegangen wird.

Eine durch diese Arbeit durchgeführte Interpretation dieser Operationen
ist in Abbildung 5-21 dargestellt. Dabei lässt sich das Entwurfsmuster
Flexibility-by Change in die beiden weiteren Typen Momentary Change
und Evolutionary Change unterteilen, welche zunächst in Abschnitt 5.3.1
kurz beschrieben werden. Aufbauend werden in Abschnitt 5.3.2 zuge-
hörige Strategien für Migrationen vorgestellt. Anschließend wird in Ab-
schnitt 5.3.3 eine konzeptionelle Erweiterung der Sprache BPMN2.0 be-
schrieben, die Aspekte von Flexibility-by Change berücksichtigt. In Ab-
schnitt 5.3.4 wird eine Reihe von zugehörigen Operationen für die Durch-
führung von Migrationen eingeführt. Abschließend wird in Abschnitt 5.3.5
eine Zusammenfassung hinsichtlich einer möglichen Verwendung von der
Sprache ACML4BPM gegeben.

Abbildung 5-21:
Gestaltungsaspekte für
flexible und anpassba-
re Prozesse in Hinsicht

auf Flexibility-by Change

PerformProcessChange-by-
ForwardRecovery

PerformProcessChange-by-
BackwardRecovery

PerformProcessChange-by-
Proceed

«ProcessModelAdaptationOperation»

«ProcessInstanceAdaptationOperation»

«Flexibility Concern»

Flexibility-by Change – Evolutionary Change

AllowedChangeTimes:
 - Entry-Time
 - On-the-fly

MigrationStrategies:
 - ForwardRecovery
 - BackwardRecovery
 - Proceed
 - Transfer

«Flexibility Concern»

Flexibility-by Change – Momentary Change

«ProcessMigrationOperation»

«include»

«include»

PerformProcessChange-by-
Transfer

5.3.1 Gestaltungsaspekte von Flexibility-by Change

Der Flexibilitätsaspekt Flexibility-by Change lässt sich in zwei Typen unter-
scheiden. So wird durch Schonenberg et. al [Sch+08] zwischen der momen-

Entwurfsmuster für flexible und anpassbare Prozesse Seite 131

tanen Anpassung (Momentary Change) und der evolutionären Anpassung
(Evolutionary Change) unterschieden. Es können zusätzlich unterschiedli-
che Zeitpunkte für Anpassungen bestehen, die im Anschluss beschrieben
werden.

Typ Momentary ChangeMomentane Anpassungen betreffen lediglich Prozessinstanzen (siehe Ab-
schnitt 2.2.3). Der Typ wird Momentary Change genannt, da eine Anpas-
sung nur ausgewählte Prozessinstanzen und nicht etwa das zugehörige
Prozessmodell betrifft. Werden lediglich Prozessinstanzen ohne das zuge-
hörige Prozessmodell angepasst, kann der Fall eintreten, dass die ange-
passten Prozessinstanzen möglicherweise nicht mehr konform zu ihrem
Prozessmodell sind. Dies kann je nach Auswirkung und Anforderungen
an die Anpassung ein hinzunehmender Umstand sein. Sollte dies jedoch
nicht gewünscht sein, so bieten sich Anpassungen im Rahmen des Typs
Evolutionary Change an.

Typ Evolutionary ChangeBei einer Anpassung im Rahmen des Typs Evolutionary Change wird in ei-
nem ersten Schritt zunächst ein Prozessmodell angepasst. In einem zwei-
ten Schritt werden die durchgeführten Anpassungen in bestehende Pro-
zessinstanzen migriert. Eine diesem Typ zugehörige Anpassung kann so-
wohl Prozessmodelle als auch die zugehörigen Prozessinstanzen betreffen.
Hierbei sind zum einen bestehende Prozessinstanzen gemeint, deren An-
passung durch eine Migration von Anpassungen auf Basis des zugehöri-
gen Prozessmodells durchgeführt wird. Zum anderen sind aber insbeson-
dere auch zukünftige Prozessinstanzen gemeint. Hier kann von impliziten
Anpassungen gesprochen werden, da neue Prozessinstanzen auf Basis des
angepassten Prozessmodells erstellt werden, auf dem die Anpassung be-
reits angewendet worden ist. Somit sind die Anpassungen automatisch in
zukünftigen Prozessinstanzen enthalten.

Zeitpunkte für
Anpassungen

Eine Ausführung von Anpassungen im Rahmen der zuvor aufgeführten
Typen Momentary Change und Evolutionary Change des Flexibilitätsaspekts
Flexibility-by Change kann problematisch sein, wenn sie zu beliebigen Zeit-
punkten vorkommen. So könnten sich z.B. anzupassende Prozesse zum ge-
wählten Zeitpunkt in einer kritischen Phase der Ausführung befinden, so-
dass ihre Anpassung ein ungewollt hohes Risiko für den zuverlässigen Be-
trieb einer Anwendung enthalten könnte. Daher kann es notwendig sein,
dass zur Verfügung stehende Zeitpunkte, an denen Anpassungen erlaubt
sind, explizit beschrieben werden sollten. Schonenberg et. al [Sch+08] stel-
len hierzu die beiden Typen von Zeitpunkten Entry-Time und On-the-fly
vor. Auf eine Erläuterung dieser Typen von Zeitpunkten wird im Folgen-
den eingegangen.

Seite 132 Kapitel 5

Typ von Zeitpunkten:
Entry-Time

Bei dem Typ Entry-Time werden Operationen zur Anpassung nur unmit-
telbar bei Instanziierung eines Prozesses angewendet. Somit sind in die-
sem Fall keine weiteren Anpassungen von der Prozessinstanz während der
Ausführung vorgesehen. Im Fall von Operationen im Rahmen des Typs
Momentary Change wird dabei lediglich eine Prozessinstanz angepasst. Im
alternativen Fall einer Operation im Rahmen des Typs Evolutionary Change
werden Anpassungen von Prozessmodellen angewendet. Somit enthalten
zukünftig instanziierte Prozesse bereits die durchgeführten Anpassungen.
Bereits existierende Prozessinstanzen werden nicht angepasst (siehe z.B.
auch Strategie Proceed Abschnitt 5.3.2.3).

Typ von Zeitpunkten:
On-the-fly

Durch den Typ On-the-fly werden sonstige Zeitpunkte beschrieben, die
während der Ausführung eines Prozesses vorkommen können. Im Fall
von Operationen im Rahmen des Typs Momentary Change werden An-
passungen von Prozessinstanzen vorgenommen. Derartige Anpassungen
können sinnvoll sein, wenn sie lediglich für eine oder wenige konkrete
Situationen im Betrieb in Betracht kommen und somit einmaliger Natur
sind. Im Fall einer Operation im Rahmen des Typs Evolutionary Change
werden Anpassungen sowohl an Prozessmodellen als auch an bestehen-
den Prozessinstanzen vorgenommen. Die Unterstützung von Zeitpunkten
des Typs On-the-fly kann dabei herausfordernd sein. So kann es z.B. vie-
le Prozessinstanzen geben, die unmittelbar angepasst werden müssen. Da
Prozesse häufig in Abhängigkeit zu anderen Prozessen stehen, kann es hier
zu Verzögerungen in der Ausführung kommen. Daher sind geeignete Stra-
tegien für Migrationen von Anpassungen von Prozessmodellen notwen-
dig, die geplant und strukturiert mit derartigen Herausforderungen um-
gehen können.

Im Rahmen von Anpassungen von Prozessen des Typs Evolutionary Change
können unterschiedliche Strategien für Migrationen verwendet werden.
Auf eine grundlegende Übersicht über diese Strategien wird im Folgen-
den näher eingegangen. Sie bilden dabei die Grundlage für die späte-
re Definition von den in Abbildung 5-21 dargestellten Operationen zur
Unterstützung von Migrationen (siehe Abschnitt 5.3.4). Anpassungen des
Typs Momentary Change können durch Operationen angeboten werden, die
durch Effektorschnittstellen einer Systemkomponente des Typs BPExecu-
tionComponent angeboten werden (siehe Abschnitt 4.3.2). Eine Herleitung
von möglichen Operationen wurde dabei bereits in Abschnitt 4.3.3 vorge-
nommen, sodass auf eine weitere Ausführung an dieser Stelle verzichtet
werden kann.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 133

5.3.2 Migrationsstrategien

Für die Realisierung von Operationen im Rahmen des Typs Evolutionary
Change ist der Einsatz von unterschiedlichen Strategien für eine Migra-
tion von Anpassungen möglich. Dabei existieren verschiedene Strategi-
en [RR10; Bar+11; Sch+12], die je nach benötigtem Grad an Konformität
zwischen Prozessmodell und Prozessinstanz in einem konkreten Anwen-
dungskontext zu wählen sind. In Anlehnung an Schonenberg et. al [Sch+08]
werden im Folgenden verschiedene Typen von Strategien für derartige Mi-
grationen kurz vorgestellt.

Szenario für MigrationenIn Abbildung 5-22 ist ein grundlegendes Szenario dargestellt, von dem
in den nachfolgenden Beschreibungen ausgegangenen wird. Dabei wird
auf Basis des Prozessmodells PM eine Operation zur Anpassung (Process-
ModelAdaptationOperation) angewendet (siehe auch Abschnitt 4.3.3). Als
Ergebnis der Anwendung dieser Operation wird das Prozessmodell PM’
erzeugt und dargestellt. Ferner ist auf Basis der Prozessmodelle PM und
PM’ jeweils eine Menge von Prozessinstanzen (PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1 bis PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n bzw. PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1 bis
PI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ m) gezeigt. Die Prozessinstanzen werden als konform (hier: Compliant-
To) zu ihrem jeweiligen Prozessmodell dargestellt. Je nach gewählter Stra-
tegie zur Migration von Anpassungen sind zu spezifischen Zeitpunkten
auch Anpassungen von den Prozessinstanzen möglich. Eine Migration
dient dabei der Erhaltung der Beziehung CompliantTo.

ProcessModel
AdaptationOperation

PM

CompliantToCompliantTo

ProcessInstance
AdaptationOperation

Ev
o

lu
ti

o
n

ar
y

C
h

an
ge

 -
 M

ig
ra

ti
o

n PM‘

PI 1

PI...

PI n

PI‘ 1

PI‘...

PI‘ m

Abbildung 5-22:
Szenario für Migrationen
im Rahmen des Typs
Evolutionary Change

Nachfolgend wird für jeden Strategietyp von Migrationen zunächst eine
generelle Beschreibung gegeben. Anschließend folgt jeweils eine Beschrei-
bung des Funktionsprinzips in Anlehnung an das in Abbildung 5-22 dar-
gestellte Szenario.

Seite 134 Kapitel 5

5.3.2.1 Forward Recovery

Im Rahmen von Migrationen des Typs Forward Recovery werden beste-
hende Prozessinstanzen abgebrochen. Anschließend werden keine Anpas-
sungen von Prozessinstanzen durchgeführt. Dies bedeutet für derartige
Migrationen, dass die angewendeten Anpassungen am Prozessmodell le-
diglich in zukünftigen Prozessinstanzen enthalten sein werden. Dies lässt
sich dadurch begründen, dass zukünftige Prozessinstanzen auf Basis des
angepassten Prozessmodells erstellt sein werden. Eine weitere Behandlung
im Rahmen dieses Typs von Migrationen, wie z.B. eine Kompensation,
wird nicht unterstützt. Es kann somit davon ausgegangen werden, dass
der Erhalt der Beziehung CompliantTo bei dem Typ Forward Recovery einge-
halten wird. Dies lässt sich dadurch begründen, dass neue Prozessinstan-
zen stets auf Basis des angepassten Prozessmodells erstellt werden und
nicht konforme Prozessinstanzen abgebrochen worden sind.

Im oberen Bereich von Abbildung 5-23 ist hierzu eine schematische Dar-
stellung des Funktionsprinzips von Migrationen des Typs Forward Recovery
dargestellt. So werden die bestehenden Prozessinstanzen (PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1 bis PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n) auf
Basis des Prozessmodells PM in Schritt 1 (Cancellation) abgebrochen. In Fol-
ge des Abbruchs können in Schritt 4 (Create) neue Prozessinstanzen (PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1PI’ 1
bis PI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ mPI’ m) auf Basis des angepassten Prozessmodells PM’ erstellt werden.

Abbildung 5-23:
Schematische Darstellung

der Funktionsprinzipien
von Migrationen der

Typen Forward Recovery
und Backward Recovery

3*

PI 1

PI...

PI n

PI compensation 1

PI compensation
...

PI compensation k

Cancellation 1

Call Compensation
(optional)

2*
Wait for
Completion
(optional)

Create4

PI‘ 1

PI‘...

PI‘ m

Fo
rw

ar
d

 R
e

co
ve

ry

B
ac

kw
ar

d
R

ec
ov

er
y

Prozessinstanzen auf Basis von PM Zukünftige Prozessinstanzen auf Basis von PM‘

Entwurfsmuster für flexible und anpassbare Prozesse Seite 135

Die Anzahl an neuen Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * kann dabei von der Anzahl
zuvor abgebrochener Prozessinstanzen abweichen, sofern dies erforder-
lich ist. Eine Migration des Typs Forward Recovery ist mit diesem Schritt
abgeschlossen. Die neu erstellten Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * sind dabei in Be-
ziehung zu PM’ als konform zu betrachten (siehe Abbildung 5-22).

5.3.2.2 Backward Recovery

Bei Migrationen des Typs Backward Recovery sind der erste und der letzte
Schritt identisch wie beim Typ Forward Recovery. So werden bestehende
Prozessinstanzen zunächst abgebrochen und neue Prozessinstanzen auf
Basis eines angepassten Prozessmodells erstellt. Bevor neue Prozessin-
stanzen erstellt werden, können weitere optionale Behandlungen, wie z.B.
zum Zweck einer Kompensation, durchgeführt werden. Wie für den Typ
Forward Recovery ausgeführt, bleibt der Erhalt der Beziehung CompliantTo
bei dem Typ Backward Recovery erhalten, da ebenso neue Prozessinstanzen
stets auf Basis des angepassten Prozessmodells erstellt werden.

Eine schematische Darstellung des Funktionsprinzips von Migrationen
des Typs Backward Recovery ist im unteren Bereich von Abbildung 5-23
dargestellt. Hierbei eingeschlossen sind die bei dem Typ Forward Recovery
durchgeführten Schritte, in denen zunächst bestehende Prozessinstanzen
abgebrochen werden (Schritt 1) und am Ende neue Prozessinstanzen er-
stellt werden (Schritt 4).

Berücksichtigung von
Kompensationen

Zwischen diesen Schritten ist die Ausführung von optionalen Schrit-
ten möglich (Call Compensation und Wait for Completion). Der optionale
Schritt 2 ermöglicht, weitere Prozessinstanzen auszuführen, die hier als
PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1PI compensation 1 bis PI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation kPI compensation k dargestellt sind. Hierdurch können
Maßnahmen zur Kompensation von bereits durchgeführten Aktivitäten
für die beendeten Prozessinstanzen PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1PI 1 bis PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n angewendet werden. Da-
bei kann die Anzahl an Prozessinstanzen PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation * von der Anzahl
an beendeten Prozessinstanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * abweichen. Dies lässt sich dadurch er-
klären, dass nicht für jede der beendeten Prozessinstanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * eine Maß-
nahme zur Kompensation möglich oder gar notwendig ist. Eine Prozess-
instanz PI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI iPI i wird dabei durch die Prozessinstanz PI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation iPI compensation i kom-
pensiert. Im nachfolgenden optionalen Schritt 3 wird auf Beendigung der
Ausführung der Prozessinstanzen PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation * gewartet. In diesem
Bezug können zwei Verfahrensweisen sinnvoll sein. Zum einen kann auf
die Beendigung der Ausführung aller Prozessinstanzen PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *PI compensation *
gewartet werden, bevor neue Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * erstellt werden. Zum
anderen kann eine neue Prozessinstanz PI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ iPI’ i auch nach Beendigung der
zugehörigen Prozessinstanz zur Kompensation gestartet werden.

Seite 136 Kapitel 5

Das Warten auf die Beendigung der Ausführung aller Prozessinstanzen
mit dem Zweck der Kompensation bietet sich insbesondere in derartigen
Fällen an, in denen einen hohe Abhängigkeit zu weiteren Prozessen be-
steht, sodass unterschiedliches Verhalten im Betrieb vermieden wird. An-
derenfalls kann Schritt 3 ebenfalls als optional betrachtet werden, wenn das
Warten für die Instanziierung von zukünftigen Prozessinstanzen auf Basis
von PM’ nicht notwendig ist. Eine Migration des Typs Backward Recovery
ist mit Schritt 4 abgeschlossen.

5.3.2.3 Proceed

Soll eine Anpassung nur zukünftige Prozessinstanzen betreffen, so kön-
nen Migrationen des Typs Proceed verwendet werden. Dabei werden aktu-
ell bestehende Prozessinstanzen nicht wie bei den Typen Forward Recovery
und Backward Recovery abgebrochen. Stattdessen ist es vorgesehen, dass die
Ausführung von bestehenden Prozessinstanzen regulär beendet wird und
neue Prozessinstanzen auf Basis eines angepassten Prozessmodells erstellt
werden. Die Strategie des Typs Proceed sieht somit keine zusätzliche Ver-
fahrensweise für bereits erstellte und aktuell ausgeführte Prozessinstan-
zen vor. Der Erhalt der Beziehung CompliantTo bei dem Typ Proceed bleibt
somit ebenso erhalten.

In Abbildung 5-24 ist hierzu eine schematische Darstellung des Funkti-
onsprinzips von Migrationen des Typs Proceed dargestellt. So koexistieren
sowohl Prozessinstanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * als auch Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * zur gleichen
Zeit. Sie sind jeweils auf Basis der Prozessmodelle PM bzw. PM’ erstellt
worden. Dabei können die beiden Schritte 1a (Wait for Regular Completion)
und 1b (Create) parallel durchgeführt werden.

Abbildung 5-24:
Schematische Darstellung

des Funktionsprinzips
von Migrationen
des Typs Proceed PI 1

PI...

PI n

Wait for
Regular Completion

Create
1a 1b

PI‘ 1

PI‘...

PI‘ m

Prozessinstanzen auf Basis von PM Prozessinstanzen auf Basis von PM‘

Koexistenz von Prozessinstanzen auf Basis von PM und PM‘

P
ro

ce
ed

Entwurfsmuster für flexible und anpassbare Prozesse Seite 137

Schritt 1a sieht die reguläre Beendigung der Ausführung von Prozessin-
stanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * auf Basis von Prozessmodell PM vor. In Schritt 1b können zeit-
gleich zusätzliche Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * parallel dazu auf Basis des Pro-
zessmodells PM’ erstellt und ausgeführt werden. Eine Migration des Typs
Proceed kann als abgeschlossen betrachtet werden, wenn alle Prozessin-
stanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * beendet worden sind.

5.3.2.4 Transfer

Im Rahmen von Migrationen des Typs Transfer ist es möglich, die Aus-
führung von bestehenden Prozessinstanzen zu unterbrechen und auf Basis
neu erstellter Prozessinstanzen fortzusetzen. Hierzu werden zunächst die
internen Zustände einer Prozessinstanz gesichert. Anschließend wird die
weitere Ausführung der Prozessinstanz abgebrochen. Ein solcher interner
Zustand kann z.B. durch Informationen zu bisher durchgeführten oder ak-
tiven Aktivitäten bzw. Tasks, durch aufgekommene Ereignisse oder durch
die Allokation einer Datenquelle gegeben sein.

Die Fortsetzung der Ausführung auf Basis neu erstellter Prozessinstanzen
bedingt dabei eine vorherige Zuordnung (engl. Mapping) von vorangegan-
genen gesicherten internen Zuständen zu zugehörigen internen Zustän-
den der neuen Prozessinstanzen. Derartige Zuordnungen können je nach
Umfang oder Art der durchgeführten Anpassung am Prozessmodell nicht
möglich sein, da z.B. eine Aktivität im angepassten Prozessmodell nicht
mehr vorhanden ist. In solchen Fällen ist eine Lösung dadurch gegeben,
dass z.B. die Ausführung dieser Aktivität übersprungen wird (engl. skip)
und in der korrespondierenden Folgeaktivität fortgesetzt wird. Ferner ist
es aber auch möglich, dass eine allokierte Datenquelle nicht mehr benö-
tigt wird, sodass sie freigegeben werden könnte. Wurden gesicherte inter-
ne Zustände auf korrespondierende Zustände der neuen Prozessinstanzen
zugeordnet, kann die Ausführung fortgesetzt werden und die Migration
des Typs Transfer ist abgeschlossen.

In Abbildung 5-25 ist hierzu eine schematische Darstellung des Funkti-
onsprinzips von Migrationen des Typs Transfer dargestellt. So werden in
Schritt 1 (Store) zunächst für die Migration relevante interne Zustände der
Prozessinstanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * gesichert. In Schritt 2 (Cancellation) wird die Aus-
führung der Prozessinstanzen PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI *PI * abgebrochen. Durch Schritt 3 (Create)
wird die Erstellung neuer Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * auf Basis des angepassten
Prozessmodells PM’ vorgenommen. Bevor die Fortsetzung einer Ausfüh-
rung durch die Prozessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * stattfinden kann, müssen zuvor die
in Schritt 1 gesicherten internen Zustände auf interne Zustände der Pro-

Seite 138 Kapitel 5

zessinstanzen PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * in Schritt 4 (Map) zugeordnet werden. Im Anschluss an
diese Zuordnung ist die Migration des Typs Transfer abgeschlossen. Die
Beziehung CompliantTo bleibt auch beim Typ Transfer erhalten.

Abbildung 5-25:
Schematische Darstellung

des Funktionsprinzips
von Migrationen

des Typs Transfer

Cancellation 2

Create3

PI‘ 1

PI‘...

PI‘ m

Store
(internal state)

Data Store

Map
(stored internal states

to PI‘ internal states)

1

4

Tr
an

sf
e

r

PI 1

PI...

PI n

In Abbildung 5-26 ist ein Beispiel zur besseren Veranschaulichung einer
Zuordnung interner Zustände von Prozessinstanzen mit dem Fokus auf
Tasks dargestellt. Dabei wird das durch Abbildung 5-22 eingeführte Sze-
nario hinsichtlich des dargestellten Detailgrades verfeinert.

So ist für die bereits eingeführten Inhalte PM, PM’, PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n und PI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ n jeweils
ein Kontrollfluss mit zwei Tasks dargestellt. In der Darstellung der Pro-
zessinstanzen PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n und PI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ n sind aktive Tasks in der Farbe Rot dargestellt.
In der Prozessinstanz PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n ist somit zum Zeitpunkt des Starts einer Migra-
tion vom Typ Transfer der Task mit der Bezeichnung B aktiv. Eine Migra-
tion vom Typ Transfer überführt die internen Zustände der Prozessinstanz
PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n in die internen Zustände der Prozessinstanz PI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ n in Anlehnung an
eine durchgeführte Operation (hier: ProcessModelAdaptationOperation).

Die in dem Beispiel aufgezeigten internen Zustände beziehen sich dabei
ausschließlich auf die Zustände der Lebenszyklen der Tasks A, B und A’
(siehe auch Abschnitt 4.3.4.2). So könnte ein aktiver Task A als auch ein
aktiver Task B der Prozessinstanz PI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI nPI n auf einem aktiven Task A’ der Pro-
zessinstanz PI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ nPI’ n zugeordnet werden. Die Durchführung einer Migration
des Typs Transfer könnte dabei Bezug auf diese Zuordnung von internen
Zuständen nehmen. Das zugehörige Resultat ist im unteren Bereich von
Abbildung 5-26 dargestellt. Selbstverständlich lassen sich ebenfalls alter-
native Zuordnungen in Anlehnung an konkrete Anforderungen erstellen.
Hierdurch können Zustände nicht nur von Tasks, sondern auch von weite-
ren Elementen aus den Perspektiven von Prozessen (siehe Abschnitt 4.3.3)
migriert werden.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 139

PI‘ *

Active

activity

PM‘ProcessModel
AdaptationOperation

PM

PI n PI‘ n

A‘ C

A

B

Transfer

Compliant toCompliant to

A

B

A‘ C

A

B

A‘ C

PI *

Mapping Edge

Ev
o

lu
ti

o
na

ry
 C

h
an

ge
 -

 M
ig

ra
ti

o
n

M
ap

p
in

g

Map(A, A‘)

Map(B, A‘)

Abbildung 5-26:
Schematische Darstellung
einer Zuordnung von in-
ternen Zuständen zweier
Prozessinstanzen

5.3.3 Spracherweiterung für Flexibility-by Change

In den vorherigen Abschnitten wurde auf Details des Flexibilitätsaspekts
Flexibility-by Change eingegangen. Dabei wurde herausgestellt, dass bei der
Anpassung von Prozessen Konzepte benötigt werden, die bisher nicht Teil
der Sprache BPMN2.0 sind und somit nicht in der Gestaltung von flexi-
blen und anpassbaren Prozessen umgesetzt werden können. Ein Beispiel
hierfür stellt die zuletzt vorgestellte Strategie Transfer dar. Hier werden im
Rahmen des dargestellten Funktionsprinzips Eigenschaften von Prozess-
instanzen in Form von internen Zuständen gesichert und anschließend bei
der Migration in neuen Prozessinstanzen wiederhergestellt.

Notwendigkeit einer
Spracherweiterung

Es fehlen in der Sprache BPMN2.0 zum einen Sprachelemente, um zwi-
schen den Elementen von Prozessmodellen und Elementen von Prozess-
instanzen unterscheiden zu können. Zum anderen kann aber auch die
Notwendigkeit zur Gestaltung von weiteren Eigenschaften von Prozes-
sen existieren, die lediglich zur Laufzeit bestehen. Um die Gestaltung von
Prozessen in diesem Bezug weiter unterstützen zu können, werden im Fol-
genden exemplarische Erweiterungen der Sprache BPMN2.0 vorgestellt,
mit denen die zuvor aufgeführte Anforderung erfüllt werden kann. Soll
bereits in der Gestaltung von Prozessen beschrieben werden können, wel-
che internen Zustände von Aktivitäten verfügbar und anpassbar sind, so
müssen demnach zusätzliche Elemente verfügbar sein, die eine Repräsen-

Seite 140 Kapitel 5

tation dieser Laufzeiteigenschaften darstellen. Ein Beispiel zur Beschrei-
bung aktiver Taskinstanzen innerhalb einer Prozessinstanz sowie ihrer in-
ternen Zustände ist in Abbildung 5-27 dargestellt.

Darstellung von
Prozessinstanzen

Durch diese Darstellung sind aktuell aktive Taskinstanzen innerhalb der
Prozessinstanz beschreibbar. Die Darstellung einer Repräsentation einer
Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI wird in Anlehnung an Elemente des Typs Pool der Spra-
che BPMN2.0 vorgenommen. In der Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI wird ein Kontroll-
fluss bestehend aus den drei Taskinstanzen Task A, Task B und Task C ge-
zeigt. Die Liste derzeit aktiver Tasks (activeTasks) ist durch ein Kommen-
tarfeld gegeben. Listenelemente, wie z.B. Task B, werden in geschweiften
Klammern und getrennt durch ein Komma angegeben.

Darstellung von
Taskinstanzen

Durch die gezeigte Darstellung können interne Zustände von Taskinstan-
zen beschrieben werden. Elemente vom Typ TaskInstanceRepresentation
werden in Anlehnung an Elemente des Typs Task der Sprache BPMN2.0
dargestellt. Jedes dieser Elemente besitzt einen spezifischen Lebenszyklus
(Lifecycle). Dieser enthält den aktuellen Zustand, der durch das Attribut
activeState beschrieben wird. Ein Element vom Typ Lifecycle wird in An-
lehnung an Klassen der UML dargestellt. Die Zugehörigkeit zu einer Tas-
kinstanz wird in Anlehnung an Assoziationen in Form von Komposition der
UML dargestellt.

Abbildung 5-27:
Darstellung von Ele-

menten der laufzeitspe-
zifischen Erweiterung

zur Unterstützung von
Flexibility-by Change

activeTasks = {Task B}

PI

Task A... ...Task B

activeState = ‘Closed‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Lifecycle

TaskInstance
Representation

ProcessInstance
Representation

Task C

activeState = ‘Active‘

Lifecycle

Semantik Der gezeigte Auszug stellt dabei eine Situation in der Ausführung der Pro-
zessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dar, auf die nachfolgend kurz eingegangen wird. Die Aus-
führung der Taskinstanz Task A ist bereits abgeschlossen, sodass das Attri-
but activeState den Wert Closed hat. Derzeit wird Task B ausgeführt, weshalb
das Attribut activeState den Wert Active hat. Durch den Wert Inactive wird
ausgedrückt, dass Task C noch nicht ausgeführt werden kann, weil hier-
für noch nicht alle Bedingungen erfüllt sind. Derartige Bedingungen sind

Entwurfsmuster für flexible und anpassbare Prozesse Seite 141

in diesem Beispiel durch einen Token gegeben, der nach Beendigung von
Task B über die dargestellte Assoziation vom Typ SequenceFlow zur Aktivie-
rung von Task C führt. Prinzipiell ist es möglich, dass sich innerhalb einer
Prozessinstanz mehrere Lebenszyklen im Zustand Active befinden. In ei-
nem solchen Fall wird angenommen, dass die zugehörigen Instanzen von
Tasks parallel ausgeführt werden.

Abstrakte SyntaxDie zugehörige abstrakte Syntax der zuvor beschriebenen Darstellung von
Prozess- und Taskinstanzen ist in Abbildung 5-28 beschrieben. Dabei ist
ein erweitertes Metamodell des in Abschnitt 4.3.3 vorgestellten Auszugs
der Sprache BPMN2.0 dargestellt. Der Zweck der Erweiterung ist dadurch
gegeben, dass benötigte Eigenschaften in Hinsicht auf die Laufzeit des Pro-
zesses explizit in der Gestaltung von Prozessen berücksichtigt werden sol-
len.

PM

PI

FlowNode
(BPMN2.0)

activeState: StateName

Lifecycle

1

Task
(BPMN2.0)

TaskInstance
Representation

activeTasks
 *

Map

oldTaskInstance 1 1 newTaskInstance

maps *

1

CompliantTo

FlowElementsContainer
(BPMN2.0)

Process
(BPMN2.0)

isSequential: Boolean
loopCardinality: Integer

Activity
(BPMN2.0)

SubProcess
(BPMN2.0)

Mapping

Ready
Active
Completing
Completed
Terminating
Terminated
Failing
Failed
Compensation
Compensated
Withdrawn
Inactive
Closed

enumeration
StateName

isChangeAllowedAtEntry-Time: Boolean

ProcessInstanceRepresentation

Abbildung 5-28:
Auszug einer Erweite-
rung des Metamodells
der Sprache BPMN2.0
zur Unterstützung von
Flexibility-by Change

In dem Auszug werden für die zuvor genannten Elemente Prozessinstanz
und Taskinstanz neue Typen von Elementen eingeführt. Die Instanz eines
Prozesses wird dabei durch den Typ ProcessInstanceRepresentation reprä-
sentiert. Ein Element dieses Typs kann weitere Elemente enthalten, wo-
bei sich – wie zuvor bereits erwähnt – vor allem auf Tasks fokussiert wird.
Daher ist ebenso eine Repräsentation von Instanzen der in einer Prozessin-
stanz vorkommenden Tasks notwendig. Der Typ TaskInstanceRepresentation
stellt diesen Typ dar. Ferner enthält ein Element dieses Typs zudem ein
Element vom Typ Lifecycle, welches den aktuellen Zustand des Lebenszy-

Seite 142 Kapitel 5

klus des Tasks beschreibt. Hierzu wird das Attribut activeState vom Typ
StateName verwendet. Bei dem Typ StateName handelt es sich um eine
Enumeration mit Literalen aller bereits in Abschnitt 4.3.4 eingeführten
Zustände des Lebenszyklus von Aktivitäten. Damit die Verwaltung von
aktiven Taskinstanzen vereinfacht werden kann, enthält der Typ Process-
InstanceRepresentation darüber hinaus eine Liste mit dem Bezeichner active-
Tasks, die vom Typ TaskInstanceRepresentation ist. Hierdurch kann spezifi-
ziert werden, welche Taskinstanzen innerhalb einer Prozessinstanz aktiv
sind (siehe auch Abbildung 5-27).

Erweiterung für
erlaubte Zeitpunkte

Sollen Anpassungen von Prozessinstanzen nur zu einem bestimmten Zeit-
punkt erlaubt sein, so kann dies durch das hier dargestellte Attribut mit
der Bezeichnung isChangeAllowedOnEntry-Time vom Typ Boolean bestimmt
werden. Dabei steht der Wert true für erlaubte Anpassungen zu Zeitpunk-
ten des Typs Entry-Time. Alternativ steht ein nicht spezifizierter Wert bzw.
der Wert false für Anpassungen zu den Zeitpunkten des Typs On-the-Fly.

Erweiterung für
Zuordnungen

Ein weiteres benötigtes Sprachelement für Migrationen des Typs Transfer
ist durch das Konzept des Mappings gegeben. Ein Mapping kann wie in
dem in Abbildung 5-26 dargestellten Beispiel als Tupel bestehend aus zwei
Taskinstanzen beschrieben werden. In Abbildung 5-28 ist in diesem Bezug
ebenso eine Erweiterung zur Beschreibung des Konzepts Mapping darge-
stellt. Ein Element des Typs Mapping beschreibt eine Menge von Zuord-
nungen verschiedener interner Zustände von Taskinstanzen. Hierzu ent-
hält dieses Element eine Liste mit dem Bezeichner maps vom Typ Map.
Eine einzelne Zuordnung wird durch ein Element des Typs Map definiert.
So kann eine Zuordnung einer alten Taskinstanz (oldTaskInstance) auf eine
neue Taskinstanz (newTaskInstance) definiert werden.

Die zuvor beschriebene Erweiterung stellt ein Beispiel für die Beschrei-
bung von laufzeitspezifischen Eigenschaften in der Gestaltung von fle-
xiblen und anpassbaren Prozessen dar. Sollen weitere Eigenschaften hin-
sichtlich der Laufzeit berücksichtigt werden, sind weitere Erweiterungen
notwendig, die diese enthalten. Im Rahmen der weiteren Beschreibung
der Flexibilitätsaspekte Flexibility-by Deviation (siehe Abschnitt 5.4) und
Flexibility-by Underspecification (siehe Abschnitt 5.5) wird diese Erweite-
rung ebenso verwendet sowie weitere vorgestellt.

5.3.4 Operationen

Damit die Gestaltung von flexiblen und anpassbaren Prozessen hinsicht-
lich des Typs Flexibility-by Evolutionary Change unterstützt werden kann,

Entwurfsmuster für flexible und anpassbare Prozesse Seite 143

sind Operationen notwendig. Derartige Operationen können als Teil des
Verhaltens eines Anpassungsprozesses (siehe Abschnitt 4.2.3) genutzt
werden. Die nachfolgend gezeigten Operationen unterstützen dabei die
einzelnen in Abschnitt 5.3.2 vorgestellten Funktionsprinzipien von Stra-
tegien. Eine Übersicht über die resultierende Menge an Operationen zur
Unterstützung der Gestaltung von Flexibility-by Evolutionary Change ist in
Abbildung 5-29 dargestellt. Dabei lassen sich auf Basis der zuvor beschrie-
benen Strategien insgesamt vier Operationen benennen.

PerformProcessChange-
by-BackwardRecovery

BR

PerformProcessChange-

by-Proceed

P

PerformProcessChange-

by-Transfer

T

PerformProcessChange-
by-ForwardRecovery

FR Abbildung 5-29:
Operationen zur Unter-
stützung von Flexibility-
by Evolutionary Change

Das Konzept für die in Abbildung 5-29 gezeigten Operationen sieht dabei
vor, zunächst die Anpassung von Prozessmodellen durchzuführen. An-
schließend soll der jeweiligen Strategie folgend mit existierenden Prozess-
instanzen bzw. neu zu erstellenden Prozessinstanzen verfahren werden.
Ferner steht die Anwendung der Operationen in Abhängigkeit zu erlaub-
ten Typen von Zeitpunkten Entry-Time bzw. On-the-fly. Jede der Opera-
tionen prüft dabei vor der Durchführung ihrer eigentlichen Funktion, ob
eine Anwendung hinsichtlich der genannten Typen von Zeitpunkten er-
laubt ist. In dem Fall, dass eine Durchführung nicht erlaubt ist, beendet
die Operation ihre Ausführung.

Ein Beispiel für eine Verwendung einer Operation ist in Abbildung 5-30 ge-
zeigt. Eine Auslösung des Beobachtungsprozesses ist zu einem bestimm-
ten Ereignis (onRequestedPointinTime) angedacht. Dabei wird der Anpas-
sungsprozess (Perform Migration) aufgerufen, in dem das Verhalten für
die Migration des Typs Forward Recovery enthalten ist. Die Parametrisie-
rung der Operation PerformProcessChange-by-ForwardRecovery adressiert
zunächst das betroffene Prozessmodell PM. Nach der Anwendung des
durch einen weiteren Anpassungsprozess (Sample-Adaptation-Process) be-
schriebenen Verhaltens für die Anpassung am Prozessmodell PM wird das
geänderte Prozessmodell PM’ erzeugt. Das Verhalten zum Abbruch beste-
hender Prozessinstanzen PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI und zur Erstellung neuer Prozessinstanzen
PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ *PI’ * wird durch die Operation PerformProcessChange-by-ForwardRecovery
gekapselt.

Die zu jeder Operation zugehörige Implementierung muss dabei auch Ei-
genschaften eines konkreten IT-Unterstützungssystems, wie z.B. in Form
einer Workflow-Engine berücksichtigen, um aktuelle Prozessinstanzen ab-
brechen und zukünftige erstellen zu können. Eine derartige Berücksichti-

Seite 144 Kapitel 5

Abbildung 5-30:
Beispiel für die Gestal-

tung einer Migration

«AdaptCase4BPM»

PerformAMigration

onRequested
PointinTime

Monitoring Process

Perform Migration

adaptationProcess =
‘Perform Migration‘

CAP ...

onRequested
PointinTime

{PI‘ 1,
…,
PI‘ n }

Sample
Adaptation
Process

created
Process
Instances

adaptation
Process

PerformProcessChange-
by-ForwardRecovery

FR

PM
 in
Model

PM‘out
Model

Adaptation Process

gung ist kein Fokus in dieser Arbeit, sodass sie nur der Vollständigkeit hal-
ber genannt ist. Für eine Ausführung jeder einzelnen Operation durch ihre
Signatur und der konkreten Syntax wird an dieser Stelle auf die Inhalte in
den nachfolgenden Abschnitten 5.3.4.1 und 5.3.4.4 verwiesen.

5.3.4.1 PerformProcessChange-by-ForwardRecovery

Die Operation PerformProcessChange-by-ForwardRecovery unterstützt die
Durchführung von Migrationen des Typs ForwardRecovery. Dabei wird das
zuvor durch Abbildung 5-23 dargestellte und bereits beschriebene Funk-
tionsprinzip umgesetzt. Die Signatur und konkrete Syntax der Operation
PerformProcessChange-by-ForwardRecovery sind in Abbildung 5-31 darge-
stellt.

Abbildung 5-31:
Signatur und konkrete
Syntax der Operation

PerformProcessChange-
by-ForwardRecovery

Parametername Parametertyp
IN : inModel ProcessModel

adaptationProcess AdaptationProcess

OUT : outModel ProcessModel
createdProcessInstances Set〈ProcessInstance〉

{PI‘ 1,
…,
PI‘ n }

Sample
Adaptation
Process

created
Process
Instances

adaptation
Process

PerformProcessChange-
by-ForwardRecovery

FR

PM

 in
Model

PM‘

out
Model

Entwurfsmuster für flexible und anpassbare Prozesse Seite 145

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,
wie z.B. AddNode (siehe Anhang A.1.1), können auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Die Operation er-
zeugt die beiden Ausgaben eines geänderten Prozessmodells (outModel)
sowie einer Menge neu erstellter Prozessinstanzen (createdProcessInstances).

5.3.4.2 PerformProcessChange-by-BackwardRecovery

Die Operation PerformProcessChange-by-BackwardRecovery unterstützt die
Durchführung von Migrationen des Typs BackwardRecovery. Dabei wird
das zuvor durch Abbildung 5-23 dargestellte und bereits beschriebene
Funktionsprinzip umgesetzt. Die Signatur und konkrete Syntax der Ope-
ration PerformProcessChange-by-BackwardRecovery sind in Abbildung 5-32
dargestellt.

Parametername Parametertyp
IN : inModel ProcessModel

adaptationProcess AdaptationProcess

IN-Optional : callCompensations Set〈ProcessInstance, ProcessModel, Boolean〉

OUT : outModel ProcessModel
createdProcessInstances Set〈ProcessInstance〉

PM PM‘

{PI‘ 1,
…,
PI‘ n }

PerformProcessChange-
by-BackwardRecovery

Sample
Adaptation
Process

BR

 out
Model

in
Model

call
Compensations

{PM_Compensation,
…,
PM_compensation n}

created
Process
Instances

 adaptation
Process

Abbildung 5-32:
Signatur und konkrete
Syntax der Operation
PerformProcessChange-
by-BackwardRecovery

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,

Seite 146 Kapitel 5

wie z.B. AddNode (siehe Anhang A.1.1), können auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Die Operation er-
zeugt die beiden Ausgaben eines geänderten Prozessmodells (outModel)
sowie einer Menge neu erstellter Prozessinstanzen (createdProcessInstances).

Optionale Parameter Ferner besitzt die Operation einen optionalen Parameter, durch den das
Verhalten der zuvor beschriebenen Schritte 2 (Call Compensation) und 3
(Wait for Completion) spezifiziert werden kann. So kann durch den Parame-
ter callCompensations eine Menge von Tripeln angegeben werden. Ein sol-
ches Tripel besteht aus jeweils einer Prozessinstanz, einem Prozessmodell
sowie einem booleschen Wert. Dabei beschreibt das Prozessmodell das Ver-
halten, welches zur Kompensation der Prozessinstanz instanziiert werden
soll. Typischerweise handelt es sich bei der hier kompensierten Prozess-
instanz um eine der Instanzen, die von der Migration betroffen ist. Der
boolesche Wert gibt dabei mit dem Standardwert true an, ob auf Beendi-
gung der Prozessinstanz zur Kompensation gewartet werden soll. Soll dies
nicht der Fall sein, so kann dies durch den Wert false angegeben werden.

5.3.4.3 PerformProcessChange-by-Proceed

Die Operation PerformProcessChange-by-Proceed unterstützt die Durchfüh-
rung von Migrationen des Typs Proceed. Dabei wird das zuvor in Ab-
bildung 5-24 dargestellte und bereits beschriebene Funktionsprinzip um-
gesetzt. Die Signatur und konkrete Syntax der Operation PerformProcess-
Change-by-Proceed sind in Abbildung 5-33 dargestellt.

Abbildung 5-33:
Signatur und konkrete
Syntax der Operation

PerformProcessChange-
by-Proceed

Parametername Parametertyp
IN : inModel ProcessModel

adaptationProcess AdaptationProcess
mappings Mapping
targetURI URI

OUT : outModel ProcessModel
createdProcessInstances Set〈ProcessInstance〉

PerformProcessChange-

by-Proceed

P

PM

 in
Model

Sample
Adaptation
Process

adaptation
Process

{PI‘ 1,
…,
PI‘ n }

created
Process
InstancesPM‘

out
Model

Entwurfsmuster für flexible und anpassbare Prozesse Seite 147

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,
wie z.B. AddNode (siehe Anhang A.1.1), können auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Die Operation er-
zeugt die beiden Ausgaben eines geänderten Prozessmodells (outModel)
sowie einer Menge neu erstellter Prozessinstanzen (createdProcessInstances).

5.3.4.4 PerformProcessChange-by-Transfer

Die Operation PerformProcessChange-by-Transfer unterstützt die Durchfüh-
rung von Migrationen des Typs Transfer. Dabei wird das zuvor durch Ab-
bildung 5-25 dargestellte und bereits beschriebene Funktionsprinzip um-
gesetzt. Die Signatur und konkrete Syntax der Operation PerformProcess-
Change-by-Transfer sind in Abbildung 5-34 dargestellt.

Parametername Parametertyp
IN : inModel ProcessModel

adaptationProcess AdaptationProcess
mappings Mapping
targetURI URI

OUT : outModel ProcessModel
createdProcessInstances Set〈ProcessInstance〉

PerformProcessChange-
by-Transfer

{Map(A,A‘), Map (B,A‘)}

T

URIPM

 in
Model

PM‘

out
Model

{PI‘ 1,
…,
PI‘ n }

created
Process
Instances

mappings

target
URI

Sample
Adaptation
Process

adaptation
Process

Abbildung 5-34:
Signatur und konkrete
Syntax der Operation
PerformProcessChange-
by-Transfer

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,
wie z.B. AddNode (siehe Anhang A.1.1), können auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Durch den Parame-
ter targetURI kann ein Speicherort für zu erstellende Mappings angegeben

Seite 148 Kapitel 5

werden. Welches Mapping für die Wiederherstellung verwendet werden
soll, kann durch den Parameter mappings spezifiziert werden. Die Opera-
tion erzeugt die beiden Ausgaben eines geänderten Prozessmodells (out-
Model) sowie einer Menge neu erstellter Prozessinstanzen (createdProcess-
Instances).

5.3.5 Zusammenfassung

In diesem Abschnitt wurde der durch [Sch+08] eingeführte Flexibilitäts-
aspekt Flexibility-by Change durch ein weiteres Entwurfsmuster für die
Gestaltung von flexiblen und vor allem anpassbaren Prozessen einge-
führt. Dabei wurden zunächst die beiden Untertypen Momentary Change
und Evolutionary Change vorgestellt. Für den Untertyp Evolutionary Change
konnte festgestellt werden, dass bestimmte funktionale Aspekte bereits
durch die in Abschnitt 4.3.3 eingeführten Operationen zur Anpassung von
Prozessen beschrieben werden konnten. Dabei fehlte jedoch die Unterstüt-
zung von Anpassungen von Prozessmodellen unter Einhaltung der Kon-
formität mit den zugehörigen Prozessinstanzen. Als Lösungskonzept wur-
den bereits existierende Strategien für Migrationen vorgestellt, die für die
weitere Gestaltung in Form von Operationen in Anpassungsprozessen be-
schrieben worden sind. Zur Unterstützung einer Gestaltung von Prozessen
unter Berücksichtigung von Eigenschaften hinsichtlich der Laufzeit von
Prozess- und Taskinstanzen, die bisher in der Sprache BPMN2.0 nicht be-
rücksichtigt werden konnten, wurde zudem eine entsprechende Spracher-
weiterung vorgestellt. Durch die Komposition dieser zuvor aufgeführten
Inhalte ist es nun möglich, Anpassungen durch Beobachtungs- und An-
passungsprozesse zu gestalten, sodass Prozessmodelle als auch deren In-
stanzen in Abhängigkeit zu einer gewählten Strategie in einer Beziehung
zueinanderstehen, die als konform bezeichnet werden kann.

5.4 Flexibility-by Deviation

Ein weiterer Flexibilitätsaspekt ist durch Flexibility-by Deviation gegeben.
Diesem Entwurfsmuster liegt nach Schonenberg et. al [Sch+08] die Motivati-
on zugrunde, dass zu einem spezifischen Zeitpunkt während der Ausfüh-
rung von Prozessen von dem im Prozessmodell festgelegten Kontrollfluss
abgewichen werden kann. Hierdurch erlangt der Prozess die Möglich-
keit, flexibel auf Ereignisse seiner Umgebung derartig zu reagieren, dass
die von dem Prozess erwartete Ausgabe weiterhin realisiert werden kann.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 149

Eine an [Sch+08] angelehnte Definition des Flexibilitätsaspekts Flexibility-
by Deviation wird in Definition 5.4.1 gegeben.

Definition 5.4.1. (Flexibility-by Deviation)

Flexibility-by Deviation beschreibt die Fähigkeit einer Prozessinstanz, zur
Laufzeit von den im Prozessmodell festgelegten Kontrollflusspfaden abzu-
weichen. Dabei werden explizit keine Änderungen an dem Kontrollfluss
durchgeführt, sodass lediglich die Sequenz der Ausführung von Tasks be-
einflusst wird.

Flexibility-by Deviation lässt sich nach [Sch+08] für imperative Sprachen
durch verschiedene Operationen realisieren. Eine durch diese Arbeit
durchgeführte Interpretation dieser Operationen ist in Abbildung 5-35
dargestellt. Auf einzelne Aspekte dieser Operationen wird nachfolgend in
Abschnitt 5.4.1 eingegangen. Darauf basierend werden in Abschnitt 5.4.2
Operationen zur Unterstützung des Flexibilitätsaspekts Flexibility-by De-
viation vorgestellt, sodass die Gestaltung durch die Sprache ACML4BPM
ermöglicht werden kann. Abschließend wird in Abschnitt 5.4.3 eine Zu-
sammenfassung des vorliegenden Abschnittes gegeben.

«ProcessInstanceAdaptationOperation»

UndoTask

«ProcessInstanceAdaptationOperation»

SkipTask

«ProcessInstanceAdaptationOperation»

InvokeTask

«ProcessInstanceAdaptationOperation»

RedoTask

«Flexibility Concern»

Flexibility-by Deviation

«ProcessInstanceAdaptationOperation»

CreateAdditional
InstanceOfTask

 Abbildung 5-35:
Gestaltungsaspekte für
flexible und anpassbare
Prozesse in Hinsicht auf
Flexibility-by Deviation

5.4.1 Gestaltungsaspekte von Flexibility-by Deviation

In diesem Abschnitt werden einzelne Aspekte des Flexibilitätsaspekts
Flexibility-by Deviation vorgestellt. Dabei konzentriert sich der Abschnitt
insbesondere auf die Beschreibung von Verfahrensweisen, die durch Scho-
nenberg et. al [Sch+08] beschrieben worden sind. Das Ziel ist die Durchfüh-
rung einer Analyse und Beschreibung der generellen Funktionsprinzipien
entsprechender Operationen. Hierdurch können nachfolgend Operationen
für die Verwendung in der Sprache ACML4BPM beschrieben werden, so-
dass eine weitere Unterstützung in der Gestaltung von flexiblen und an-
passbaren Prozessen besteht.

Seite 150 Kapitel 5

UndoTask Durch die Operation UndoTask kann ein aktiver oder bereits abgeschlosse-
ner Task zu einem beliebigen Zeitpunkt zurückgesetzt werden. Hierdurch
ist es möglich, den Task zu diesem Zeitpunkt erneut auszuführen. Ist die
Ausführung des betreffenden Tasks zum Zeitpunkt der Anwendung der
Operation UndoTask bereits abgeschlossen, sodass weitere Tasks aktiv oder
ebenfalls abgeschlossen sind, so werden auch diese zurückgesetzt. Dabei
kann es sinnvoll sein, die im Rahmen eines oder einer Menge von Tasks be-
reits durchgeführten Aufgaben zu kompensieren – wobei dies jedoch nicht
immer möglich ist. So kann z.B. durch die Verwendung von Verbrauchs-
material möglicherweise kein Prozess beschrieben werden, der das ein-
gesetzte Material wieder verfügbar macht. Konkrete Maßnahmen, die im
Rahmen einer Kompensation notwendig sind, können durch einen weite-
ren Prozess beschrieben werden.

RedoTask Die Operation RedoTask ermöglicht das erneute Ausführen eines bereits ab-
geschlossenen Tasks. Im Gegensatz zur Operation UndoTask werden aktive
und abgeschlossene Tasks nicht zurückgesetzt. Die Anwendung der Ope-
ration RedoTask kann z.B. sinnvoll sein, wenn durch einen Task Daten erho-
ben worden sind, die zu einem späteren Zeitpunkt in aktualisierter Form
vorliegen. In einem solchen Fall kann durch die Anwendung der Opera-
tion RedoTask der betreffende Task erneut ausgeführt werden, sodass für
spätere Tasks aktualisierte Daten nutzbar sind.

SkipTask Durch die Operation SkipTask kann die Ausführung eines derzeit akti-
ven Tasks übersprungen werden. Die Anwendung dieser Operation kann
z.B. sinnvoll sein, wenn andere Tasks im Prozess aufgrund von kontext-
spezifischen Umständen Vorrang haben oder die weitere Ausführung des
betreffenden Task nicht mehr notwendig ist. Im Rahmen der weiteren Aus-
führung des Prozesses kann es möglich sein, den übersprungenen Task
nicht oder zu einem späteren Zeitpunkt erneut auszuführen.

InvokeTask Durch die Anwendung der Operation InvokeTask lässt sich ein noch nicht
ausgeführter und nicht aktiver Task initiieren. Hierdurch wird auch die
Ausführung derzeitig aktiver Tasks auf den Zeitpunkt nach Beendigung
der Ausführung des betreffenden Tasks verschoben. Nach Beendigung des
durch die Operation InvokeTask aufgerufenen Tasks werden alle verscho-
benen Tasks weiter ausgeführt. Wird der initiierte Task zu einem späteren
Zeitpunkt erneut aktiviert, so ist sowohl die erneute Ausführung als auch
ein Überspringen des Tasks möglich.

CreateAdditional-
InstanceOfTask

Durch die Operation CreateAdditionalInstanceOfTask ist es möglich, für
einen noch nicht aktiven Task zu bestimmen, ob und wie viele seiner In-
stanzen parallel oder sequentiell ausgeführt werden sollen. Hierdurch ist

Entwurfsmuster für flexible und anpassbare Prozesse Seite 151

es vor Ausführung des Tasks möglich, auf kontextspezifische Gegebenhei-
ten adäquat einzugehen. So kann durch die Anwendung der Operation fle-
xibel auf z.B. variierendes Arbeitsaufkommen Bezug genommen werden,
indem mehr oder weniger Instanzen eines Tasks durch Mitarbeiterinnen
und Mitarbeiter ausgeführt werden.

Die zuvor beschriebenen Operationen lassen sich durch eine Anpassung
an Zuständen des Lebenszyklus einer Aktivität beschreiben. Wie bereits
in Abschnitt 5.3.3 beschrieben, lässt sich dies allerdings mittels der Spra-
che BPMN2.0 in ihrer jetzigen Form nicht ausdrücken. So existiert z.B. im
Gegensatz zur Sprache UML [OMG10] keine Möglichkeit zur Beschrei-
bung einer sogenannten Instance Specification, mit der Eigenschaften ei-
ner Instanz innerhalb eines Systems (hier: Prozess) gestaltet werden kön-
nen. In diesem Bezug lässt sich die bereits in Abschnitt 5.3.3 eingeführte
Erweiterung des Metamodells der Sprache BPMN2.0 wiederverwenden.
Sie enthält bereits exemplarische Aspekte zur Unterstützung des Flexibi-
litätsaspekts Flexibility-by Deviation in Bezug zu Instanzen von Prozessen
und Tasks. Aufgrund einer Vielzahl möglicher weiterer Erweiterungen
wird sich hier auf eine Menge wesentlicher Elemente zur Unterstützung
des Flexibilitätsaspekts Flexibility-by Deviation, gegeben durch Prozess-
und Taskinstanzen, fokussiert. Weitere Aspekte, wie z.B. hinsichtlich des
Datenflusses, werden im Rahmen der nachfolgenden Beschreibung nicht
behandelt.

5.4.2 Operationen

Der Flexibilitätsaspekt Flexibility-by Deviation lässt sich durch spezifische
Operationen zur Anpassung von Prozessinstanzen umsetzen. Damit der-
artige Anpassungen von Prozessinstanzen auch im Rahmen der Gestal-
tung von Anpassungsprozessen der Sprache ACML4BPM (siehe Kapitel 4)
verwendet werden können, ist die Definition entsprechender Operationen
notwendig. Im Detail werden Operationen für Systemkomponenten des
Typs BPExecutionComponent (siehe Abschnitt 4.3.1) bzw. deren Effektor-
schnittstellen vom Typ BPExecutionEffector notwendig. Eine Übersicht über
die resultierende Menge an Operationen zur Unterstützung der Gestaltung
von Flexibility-by Deviation ist in Abbildung 5-36 dargestellt. Dabei lassen
sich auf Basis der in Abschnitt 5.4.1 beschriebenen Aspekte insgesamt fünf
Operationen benennen.

Redo
Task

R

Invoke
Task

IT

CreateAdditional
InstanceOfTask

CI

Skip
Task

S

Undo
Task

U Abbildung 5-36:
Operationen zur Unter-
stützung von Flexibility-
by Deviation

Seite 152 Kapitel 5

Ein Beispiel für eine Verwendung dieser Operationen ist im oberen Teil in
Abbildung 5-37 gezeigt. Dabei wird die Operation UndoTask zum Zurück-
setzen von Task A eingesetzt. Eine Auslösung des Beobachtungsprozesses
ist zu einem bestimmten Ereignis (onRequestedPointinTime) angedacht. Da-
bei wird der Anpassungsprozess (Undo Task A) aufgerufen, in dem die
Operation UndoTask für die Anpassung der Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI verwendet
wird. Die Parametrisierung der Operation UndoTask adressiert die Prozess-
instanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI und das in ihr enthaltene Element Task A.

Im unteren Bereich von Abbildung 5-37 wird auf der linken Seite die Aus-
gangssituation und auf der rechten Seite das Resultat der Anwendung ge-
zeigt. In dem Auszug des Modells für die Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI werden die
Taskinstanzen Task A, Task B und Task C dargestellt. In der beschriebenen
Situation wurden Task A und Task B bereits ausgeführt, sodass derzeit die
Taskinstanz Task C aktiv ist.

Abbildung 5-37:
Beispielhafte Verwendung

der Operation UndoTask

Undo
Task

«AdaptCase4BPM»

UndoTaskA

onRequested
PointinTime

Adaptation Process

Monitoring Process

Undo Task A

adaptationProcess =
‘Undo Task A‘

CAP ...

onRequested
PointinTime

U

 inPI

PI Task A

UndoTask

PIPI

Task A... ...Task B Task C

activeState = ‘Closed‘

Lifecycle

activeState = ‘Closed‘

Lifecycle

activeState = ‘Active‘

Lifecycle

Task A... ...Task B Task C

activeTasks =
{Task C}

activeTasks =
{Task A}

activeState = ‘Ready‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Verwendung der Operation UndoTask

Anwendung der Operation UndoTask

task

Entwurfsmuster für flexible und anpassbare Prozesse Seite 153

Das Ergebnis einer Anwendung der Operation UndoTask auf die beschrie-
bene Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ist im rechten Bereich der Abbildung 5-37 darge-
stellt. So wurden entlang des abgeschlossenen Kontrollflusspfades ausge-
hend von dem ursprünglich aktiven Task C bis zum betreffen Task A alle At-
tribute activeState der Lebenszyklen auf den Wert Inactive gesetzt. Das At-
tribut activeState im Lebenszykluselement des betreffenden Tasks hat den
Wert Ready. Das Attribut activeTasks der Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ist auf Task A ge-
setzt. Durch die beschriebene Anwendung der Operation UndoTask sind al-
le aktiven und bereits ausgeführten Taskinstanzen zurückgesetzt worden.
Das Resultat ist ein zurückgesetzter Task A. Ferner wurden weitere auf dem
Kontrollflusspfad bereits terminierte Tasks ebenso zurückgesetzt.

Für eine Ausführung jeder einzelnen Operation durch ihre Signatur, der
konkreten Syntax und der Beispiele ihrer Anwendung wird an dieser Stel-
le auf die Inhalte in den nachfolgenden Abschnitten 5.4.2.1 und 5.4.2.5 ver-
wiesen.

5.4.2.1 UndoTask

Die Anwendung einer Operation vom Typ UndoTask setzt den Zustand
des Lebenszyklus eines betreffenden Tasks auf den Wert Ready. Hierdurch
ist es möglich, den betreffenden Task erneut auszuführen. Dabei werden
rückwirkend die Zustände der Lebenszyklen von den derzeit ausgeführ-
ten und abgeschlossenen Tasks auf den Wert Inactive gesetzt. Dies betrifft
alle Tasks, die auf dem Kontrollflusspfad nach dem betreffenden Task vor-
kommen. Ferner wird zwischen zwei Mechanismen unterschieden. Zum
einen kann es sinnvoll sein, zusätzlich einen Prozess zur Rückabwicklung
(engl. Compensation) aufzurufen. Zum anderen kann es jedoch auch sein,
dass dies nicht notwendig oder gar möglich ist. Die Signatur und konkrete
Syntax der Operation UndoTask sind in Abbildung 5-38 angegeben.

ParameterDie Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgeführt werden soll. Dabei wird durch die Anwendung der
Operation keine explizite Ausgabe erzeugt – hier durch die Kennzeich-
nung als VOID dargestellt. Ein weiterer Parameter der Operation ist durch
die betreffende Taskinstanz (task) gegeben.

Optionale ParameterSollen vor der Zurücksetzung eines Zustands des Lebenszyklus der Tas-
kinstanz task weitere Maßnahmen ausgeführt werden, wie z.B. Kompen-
sationen, ist die Angabe eines weiteren Parameters notwendig. So kann
durch die Angabe des Parameters callCompensation vom Typ Process ein
Prozess angegeben werden, der spezifisches Verhalten für den genannten
Zweck enthalten kann.

Seite 154 Kapitel 5

Abbildung 5-38:
Signatur und konkrete

Syntax der Ope-
ration UndoTask

Parametername Parametertyp
IN : inPI ProcessInstanceRepresentation

task TaskInstanceRepresentation

IN-Optional : callCompensation Process

OUT : – VOID

Undo
Task

Undo
Task

fancy-Compensation

inPI

PI

task

Task A

inPI

PI

task

Task A

call
Compensation

U U

Beispiel einer Anwendung
der Operation UndoTask

Eine Anwendung der im linken Bereich von Abbildung 5-38 spezifizierten
Operation ist in Abbildung 5-39 dargestellt. Dabei wird eine Darstellung
in der Sprache BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im
linken Bereich der Abbildung wird hierzu als Ausgang ein Auszug einer
Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dargestellt. Sie besteht aus den drei Taskinstanzen Task
A, Task B und Task C, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz miteinander verbunden sind. Dabei wurden Task A und Task
B bereits ausgeführt, sodass derzeit die Taskinstanz Task C aktiv ist.

Abbildung 5-39:
Beispielhafte Anwendung

der Operation UndoTask
PIPI

Task A... ...Task B Task C

activeState = ‘Closed‘

Lifecycle

activeState = ‘Closed‘

Lifecycle

activeState = ‘Active‘

Lifecycle

Task A... ...Task B Task C

activeState = ‘Ready‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

UndoTask

Prozessinstanz PI Prozessinstanz PI nach UndoTask

activeTasks =
{Task C}

activeTasks =
{Task A}

Das Ergebnis einer Anwendung der Operation UndoTask auf die beschrie-
bene Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ohne eine Parametrisierung zur Kompensation ist
im rechten Bereich der Abbildung 5-39 dargestellt. So wurden entlang
des abgeschlossenen Kontrollflusspfades ausgehend von dem ursprüng-
lich aktiven Task C bis zum betreffen Task A alle Attribute activeState der
Lebenszyklen auf den Wert Inactive gesetzt. Task C befindet sich dabei im
Zustand Ready und ist der aktuell aktive Task innerhalb der Prozessinstanz

Entwurfsmuster für flexible und anpassbare Prozesse Seite 155

PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI. Durch die beschriebene Anwendung der Operation UndoTask sind al-
le aktiven und bereits ausgeführten Taskinstanzen auf dem Kontrollfluss-
pfad zwischen Task C und Task A zurückgesetzt worden. Hierdurch ist die
weitere Ausführung ab dem betreffenden Task, hier gegeben durch Task A,
möglich.

Das generelle Funktionsprinzip einer Anwendung der Operation UndoTask
mit der Parametrisierung zur Kompensation wird in Abbildung 5-40 dar-
gestellt. Eine Anwendung der Operation besteht aus insgesamt drei Teil-
schritten. Im Rahmen des ersten Teilschritts ResetTask werden Tasks – wie
zuvor beschrieben – zunächst zurückgesetzt. Damit die Ausführung des
im Beispiel vorhandenen Tasks Task A nach Anwendung der Maßnahme
zur Kompensation fortgesetzt werden kann, wird der Zustand seines Le-
benszyklus jedoch auf den Wert Inactive gesetzt. Damit wird sichergestellt,
dass eine Ausführung vorerst unterbrochen ist. Der zweite Teilschritt Call-
Compensation ruft einen Prozess auf, in dem die Maßnahme zur Kompen-
sation beschrieben ist. Nach Beendigung dieses Prozesses wird der dritte
Teilschritt ReturnControl durchgeführt, indem der Zustand des Lebenszy-
klus des betreffenden Tasks Task A auf den Wert Ready gesetzt wird. Hier-
durch ist eine weitere Ausführung der Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI möglich.

PI

Prozessinstanz PI nach ResetTasks

Prozessinstanz PI

UndoTask

PI-Compensation

Call
Compensation

2

Return
Control

3

Task A... ...
activeState = ‘Inactive‘

Lifecycle

PI

Prozessinstanz PI nach ReturnControl/UndoTask

Task A... ...
activeState = ‘Ready‘

Lifecycle

Reset
Tasks

1

PI

activeTasks = {}

activeTasks =
{Task A}

Abbildung 5-40:
Funktionsprinzip einer
Anwendung der Opera-
tion UndoTask mit Kom-
pensation

Neben der zuvor beschriebenen Möglichkeit zur Realisierung der Ope-
ration UndoTask mit der Parametrisierung zur Kompensation wäre auch
eine Abweichung von der durch [Sch+08] beschriebenen Funktionsweise

Seite 156 Kapitel 5

möglich. So könnte auf Basis der in Abschnitt 4.3.3 beschriebenen Opera-
tionen zur Anpassung von Prozessen Maßnahmen zur Kompensation in
Form einzelner Tasks in den bestehenden Kontrollfluss eingefügt werden.
Das Einfügen von Tasks zu diesem Zweck könnte im Kontrollflusspfad vor
dem betreffenden Task durchgeführt werden. Hierdurch wäre es möglich,
zunächst Tasks zur Kompensation auszuführen, bevor der Kontrollfluss
automatisch den betreffenden Task A erneut aktiviert. Durch dieses Vorge-
hen würde allerdings der Kontrollfluss geändert werden. Dies ist aus der
Perspektive der Reihenfolge der zu tätigenden Aufgaben jedoch dasselbe
Ergebnis mit möglicherweise ungewollten Anpassungen an der Prozessin-
stanz.

5.4.2.2 RedoTask

Die Anwendung einer Operation vom Typ RedoTask ermöglicht die Aus-
führung eines bereits abgeschlossenen Tasks. Die erneute Ausführung be-
zieht sich in der hier beschriebenen Realisierung auf eine Kopie des betref-
fenden Tasks, welche nach Anwendung der Operation zu einem beliebi-
gen zukünftigen Zeitpunkt durchgeführt werden kann. Im Gegensatz zur
Operation UndoTask werden weitere bereits abgeschlossene oder derzeit
ausgeführte Tasks nicht zurückgesetzt und demnach nicht erneut ausge-
führt. Ferner werden ebenso keine Maßnahmen zur Rückabwicklung spe-
zifiziert. Die Signatur und konkrete Syntax der Operation RedoTask sind in
Abbildung 5-41 angegeben.

Abbildung 5-41:
Signatur und konkrete

Syntax der Ope-
ration RedoTask

Parametername Parametertyp
IN : inPI ProcessInstanceRepresentation

task TaskInstanceRepresentation

OUT : – VOID

Redo
Task

inPI

PI

task

Task A

 R

Parameter Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgeführt werden soll. Dabei wird durch die Anwendung der
Operation keine explizite Ausgabe erzeugt – hier durch die Kennzeich-
nung als VOID dargestellt. Ein weiterer Parameter der Operation ist durch
die betreffende Taskinstanz (task) gegeben.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 157

Beispiel einer Anwendung
der Operation RedoTask

Eine Anwendung der in Abbildung 5-41 spezifizierten Operation ist in
Abbildung 5-42 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang ein Auszug einer Prozessinstanz
PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dargestellt. Sie besteht aus den beiden Taskinstanzen Task A und Task
B, die durch Assoziationen vom Typ SequenceFlow zu einer Sequenz mit-
einander verbunden sind. Dabei wurde Task A bereits ausgeführt, sodass
derzeit die Taskinstanz Task B aktiv ist.

PI

Task A... ...Task B

activeState = ‘Closed‘

Lifecycle

activeState = ‘Active‘

Lifecycle

Prozessinstanz PI

activeTasks =
{Task B}

RedoTask

PI

Task A... ...Task B

activeState = ‘Closed‘

Lifecycle

activeState = ‘Active‘

Lifecycle

activeState = ‘Ready‘

Lifecycle

Prozessinstanz PI nach RedoTask

Copy

of

Task A

activeTasks =
{Task B,
Copy of Task A}

Abbildung 5-42:
Beispielhafte Anwendung
der Operation RedoTask

Das Ergebnis einer Anwendung der Operation RedoTask auf die beschrie-
bene Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ist im rechten Bereich der Abbildung 5-42 darge-
stellt. In dem BPD ist eine neue Taskinstanz mit der Bezeichnung Copy of
Task A hinzugefügt worden, die nicht mit dem existierenden Kontrollfluss
verbunden worden ist. Der Lebenszyklus der Taskinstanz befindet sich im
Zustand Ready, sodass die Taskinstanz zu einem beliebigen zukünftigen
Zeitpunkt ausgeführt werden kann.

Durch die beschriebene Anwendung der Operation RedoTask wurde der
bestehende Kontrollfluss nicht explizit geändert. Dies kann Nachteile ha-
ben, wenn Prozessinstanzen im Rahmen der Verbesserung von Prozessen
analysiert werden. Hier können frei integrierte Taskinstanzen womöglich
nachträglich nicht mehr richtig zugeordnet werden. Eine weitere Möglich-
keit zur Realisierung der Operation RedoTask ohne diesen Effekt ist da-
durch gegeben, dass die Kopie der Taskinstanz Task A in den bestehen-
den Kontrollfluss integriert wird. Diese Variante weicht allerdings von der
durch Schonenberg et al. [Sch+08] gegebenen Definition ab.

Der Vollständigkeit halber ist in Abbildung 5-43 das Ergebnis dieser Reali-
sierung anhand eines BPD abgebildet. Dabei wurde die Kopie der Taskin-
stanz Task A in den bestehenden Kontrollfluss so integriert, dass die Aus-
führung von Copy of Task A parallel zur Ausführung der Taskinstanz Task

Seite 158 Kapitel 5

B durchgeführt werden kann. Durch fest in den Kontrollfluss integrierte
Taskinstanzen kann das zuvor genannte Problem unter Vernachlässigung
der von Schonenberg et al. [Sch+08] gegeben Definition umgangen werden.

Abbildung 5-43:
Ergebnis für eine alter-
native Realisierung der

Operation RedoTask

PI

Task A... ...Task B

activeState = ‘Closed‘

Lifecycle

activeState = ‘Active‘

Lifecycle

Prozessinstanz PI nach Anwendung einer alternativen Realisierung von RedoTask

activeTasks =
{Task B,
Task A}

activeState = ‘Ready‘

Lifecycle

Copy

of

Task A

5.4.2.3 SkipTask

Die Anwendung einer Operation vom Typ SkipTask ermöglicht das Über-
springen einer derzeit ausgeführten Taskinstanz. Dabei wird der Zustand
des Lebenszyklus des betreffenden Tasks auf den Wert Closed gesetzt. Die
Operation kann solange auf einen Task angewendet werden, wie sein
Lebenszyklus sich nicht in den Zuständen Closed oder Inactive befindet.
Die Signatur und konkrete Syntax der Operation SkipTask sind in Abbil-
dung 5-44 angegeben.

Abbildung 5-44:
Signatur und konkrete

Syntax der Ope-
ration SkipTask

Parametername Parametertyp
IN : inPI ProcessInstanceRepresentation

task TaskInstanceRepresentation

OUT : – VOID

Skip
Task

s

inPI

PI

task

Task A

Parameter Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgeführt werden soll. Dabei wird durch die Anwendung
der Operation keine explizite Ausgabe erzeugt – hier durch die Kenn-
zeichnung als (VOID) dargestellt. Ein weiterer Parameter der Operation
ist durch den betreffenden Task (task) gegeben.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 159

Beispiel einer Anwendung
der Operation SkipTask

Eine Anwendung der in Abbildung 5-44 spezifizierten Operation ist in
Abbildung 5-45 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. In dem BPD wird
eine Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dargestellt. Sie besteht aus den beiden Taskinstan-
zen Task A und Task B, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz miteinander verbunden sind. Dabei ist Task A der derzeit
aktive Task.

PI

Task A... ...Task B

activeState = ‘Closed‘

Lifecycle

activeState = ‘Ready‘

Lifecycle

Prozessinstanz PI nach SkipTask

PI

Task A... ...Task B

activeState = ‘Active‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI

activeTasks =
{Task A}

activeTasks =
{Task B}

SkipTask

Abbildung 5-45:
Beispielhafte Anwendung
der Operation SkipTask

Das Ergebnis einer Anwendung der Operation SkipTask auf die beschrie-
bene Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ist im rechten Bereich der Abbildung 5-45 darge-
stellt. So wurde zunächst die Taskinstanz Task A beendet und die Taskin-
stanz Task B aktiviert. Das Attribut activeTasks des Containerelements C ist
auf den Wert {Task B} gesetzt. Hierdurch wurde die weitere Ausführung
von Task A übersprungen und die Sequenz der Ausführung fährt mit Task
B fort.

5.4.2.4 InvokeTask

Die Anwendung einer Operation vom Typ InvokeTask setzt den Zustand
des Lebenszyklus eines noch nicht ausgeführten oder noch nicht aktiven
Tasks auf den Wert Ready, sodass er im Anschluss ausgeführt wird. Hier-
durch ist es möglich, die Ausführung des betreffenden Task vorzuziehen.
Dabei wird die Ausführung derzeit aktiver Tasks unterbrochen und die
Zustände ihrer Lebenszyklen auf den Wert Inactive gesetzt. Nach Been-
digung des vorgezogenen Tasks werden die Zustände der Lebenszyklen
von unterbrochenen Tasks auf den Wert Ready gesetzt. Ausgehende Asso-
ziationen aktivieren keine nachfolgenden Tasks. Dadurch können die un-
terbrochenen Tasks erneut ausgeführt werden. Wird im weiteren Verlauf
der Ausführung des Prozesses der zuvor vorgezogene Task erneut akti-
viert, so ist eine erneute Ausführung möglich. Alternativ kann aber auch

Seite 160 Kapitel 5

durch die zuvor beschriebene Operation SkipTask (siehe Abschnitt 5.4.2.3)
die Ausführung übersprungen werden. Die Signatur und konkrete Syntax
der Operation InvokeTask sind in Abbildung 5-46 angegeben.

Abbildung 5-46:
Signatur und konkrete

Syntax der Ope-
ration InvokeTask

Parametername Parametertyp
IN : inPI ProcessInstanceRepresentation

task TaskInstanceRepresentation

OUT : – VOID

Invoke
Task

inPI

PI

task

Task A

IT

Parameter Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgeführt werden soll. Dabei wird durch die Anwendung
der Operation keine explizite Ausgabe erzeugt – hier durch die Kenn-
zeichnung als (VOID) dargestellt. Ein weiterer Parameter der Operation
ist durch den betroffenen Task (task) gegeben.

Beispiel einer Anwendung
der Operation InvokeTask

Eine Anwendung der in Abbildung 5-46 spezifizierten Operation ist in
Abbildung 5-47 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. In dem BPD wird
eine Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dargestellt. Sie besteht aus den beiden Taskinstan-
zen Task A und Task B, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz miteinander verbunden sind. Dabei ist Task A der derzeit
aktive Task.

Abbildung 5-47:
Beispielhafte Anwendung
der Operation InvokeTask

PI

Task A... ...Task B

activeState = ‘Active‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI

activeTasks =
{Task A}

PI

... ...Task B

activeState = ‘Ready‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI nach InvokeTask

activeTasks =
{Task A} Copy of

Task B activeState = ‘Closed‘

Lifecycle

Invoke

ReturnControl

InvokeTask

Task A

Entwurfsmuster für flexible und anpassbare Prozesse Seite 161

Das Ergebnis einer Anwendung der Operation InvokeTask auf die beschrie-
bene Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ist im rechten Bereich der Abbildung 5-47 darge-
stellt. Dabei wurde eine Kopie eines vorgezogenen Tasks mit der Bezeich-
nung Copy of Task B eingefügt. Bei den Assoziationen mit der Beschriftung
Invoke und ReturnControl handelt es sich um implizite Kontrollflüsse, die
hier lediglich zum besseren Verständnis dargestellt sind und sonst keine
Darstellungsform haben. Die Ausführung der vorgezogenen Taskinstanz
wird hier als bereits abgeschlossen dargestellt. Ferner wurde die Prozessin-
stanz aktiviert, deren Ausführung durch das Vorziehen unterbrochen wor-
den ist.

Zum besseren Verständnis ist das Funktionsprinzip der Operation SkipTask
in Abbildung 5-48 dargestellt. So teilt sich eine Anwendung der Operation
InvokeTask in die beiden Teilschritte Invoke und ReturnControl auf. Durch
den Teilschritt Invoke wird der Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI eine Kopie des vorgezo-
genen Tasks hinzugefügt. Ferner wechseln die Lebenszyklen aller aktiven
Tasks in den Zustand Inactive. Der Lebenszyklus des vorgezogenen Tasks
Copy of Task B befindet sich im Zustand Ready. Demnach ist das Attribut
activeTasks der Prozessinstanz auf den Wert Copy of Task B gesetzt, wodurch
er als nächstes ausgeführt werden kann. Nach Beendigung des Tasks mit
der Bezeichnung Copy of Task B wird der zweite Teilschritt ReturnControl
durchgeführt. In diesem Rahmen werden alle Lebenszyklen von zuvor ak-
tiv gewesenen Tasks in den Zustand Ready gesetzt. Anschließend kann die
vorherige Ausführung fortgesetzt werden.

Die zuvor beschriebene Realisierung der Operation InvokeTask arbeitet mit
Hilfe von impliziten Kontrollflüssen zwischen derzeit aktiven Tasks und
dem vorgezogenen Task. Ein impliziter Kontrollfluss beschreibt dabei die
Sequenz einer Ausführung von Tasks ohne das explizite Hinzufügen von
z.B. Assoziationen vom Typ SequenceFlow. Die Kontrolle über den implizi-
ten Kontrollfluss liegt hier bei der Operation InvokeTask, die – wie in Abbil-
dung 5-48 dargestellt – bis zur Aktivierung zuvor deaktivierter Tasks ak-
tiv bleibt. Auf diese Weise kann der durch Schonenberg et al. gegebenen Be-
schreibung des Flexibilitätsaspekts Flexibility-by Deviation Rechnung getra-
gen werden, indem der bestehende Kontrollfluss nicht explizit angepasst
wird.

Seite 162 Kapitel 5

Abbildung 5-48:
Funktionsprinzip ei-
ner Anwendung der

Operation InvokeTask

InvokeTask

Return
Control 2

Invoke 1

PI

Task A... ...Task B

activeState = ‘Active‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI

activeTasks =
{Task A}

PI

Task A... ...Task B

activeState = ‘Inactive‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI nach Invoke

activeTasks =
{Copy of Task B} Copy of

Task B activeState = ‘Ready‘

Lifecycle

Invoke

PI

... ...Task B

activeState = ‘Ready‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI nach ReturnControl/InvokeTask

Copy of

Task B activeState = ‘Closed‘

Lifecycle

ReturnControl

Task A

activeTasks =
{Copy of Task B}

5.4.2.5 CreateAdditionalInstanceOfTask

Die Anwendung einer Operation vom Typ CreateAdditionalInstanceOfTask
ermöglicht die Anpassung der Attribute isSequential und loopCardinality ei-
ner Taskinstanz vor ihrer Ausführung. Durch das Attribut loopCardinality
kann die Anzahl von Taskinstanzen bestimmt werden, die ausgeführt
werden sollen. Ferner kann durch das Attribut isSequential bestimmt
werden, ob die Taskinstanzen sequentiell oder aber parallel ausgeführt
werden sollen. Die Signatur und konkrete Syntax der Operation Create-
AdditionalInstanceOfTask sind in Abbildung 5-49 angegeben.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 163

Parametername Parametertyp
IN : inPI ProcessInstanceRepresentation

task TaskInstanceRepresentation

IN-Optional : loopCardinality Integer
isSequential Boolean

OUT : – VOID

CreateAdditional
InstanceOfTask

true3

inPI

PI

task

Task B

loop
Cardinality

is
Sequential

CI

Abbildung 5-49:
Signatur und konkrete
Syntax der Operation
CreateAdditionalInstance-
OfTask

ParameterDie Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgeführt werden soll. Dabei wird durch die Anwendung
der Operation keine explizite Ausgabe erzeugt – hier durch die Kenn-
zeichnung als (VOID) dargestellt. Ein weiterer Parameter der Operation
ist durch den betroffenen Task (task) gegeben.

Optionale ParameterWie hoch die Anzahl der auszuführenden Taskinstanzen sein soll, kann
durch den Parameter loopCardinality vom Typ Integer angegeben werden.
Dabei können lediglich positive Werte einschließlich 0 angegeben werden.
Durch den letzten hier aufgeführten Parameter isSequential vom Typ Boo-
lean lässt sich eine sequentielle oder parallele Ausführung der Taskinstan-
zen angeben. Der Wert true steht dabei für sequentielle und der Wert false
für eine parallele Ausführung.

CreateAdditionalInstanceOfTask

PI

Task A... ...Task B

activeState = ‘Active‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI

activeTasks =
{Task A}

PI

Task A... ...Task B

activeState = ‘Active‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

Prozessinstanz PI nach CreateAdditionalInstanceOfTask

activeTasks =
{Task A}

isSequential = true
loopCardinality = 3

Abbildung 5-50:
Beispielhafte Anwendung
der Operation Create-
AdditionalInstanceOfTask

Seite 164 Kapitel 5

Beispiel einer Anwendung
der Operation Create-

AdditionalInstanceOfTask

Eine Anwendung der in Abbildung 5-49 spezifizierten Operation ist in
Abbildung 5-50 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. In dem BPD wird
eine Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dargestellt. Sie besteht aus den beiden Taskinstan-
zen Task A und Task B, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz verbunden sind. Dabei ist Task A der derzeit aktive Task.

Das Ergebnis einer Anwendung der Operation CreateAdditionalInstance-
OfTask auf die beschriebene Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ist im rechten Bereich der
Abbildung 5-50 dargestellt. So wurden für Task B die beiden Attribute
isSequential mit dem Wert true und loopCardinality mit dem Wert 5 ge-
setzt. Der betreffende Task erhält zudem das aus der Sprache BPMN2.0
stammende Symbol für die sequentielle Ausführung mehrerer Instanzen
des Tasks (siehe Abschnitt 2.3.4). Die zuvor beschriebene Realisierung der
Operation CreateAdditionalInstanceOfTask erzeugt bei Aktivierung des an-
gepassten Tasks eine der in Abbildung 5-51 dargestellten Ausführungsse-
quenzen von Task B.

Abbildung 5-51:
Darstellung von
Ausführungsse-

quenzen von Task B

Task B

isSequential = true
loopCardinality = 3

Task B

isSequential = false
loopCardinality = 3

Copy 1
of

Task B

Copy 2
of

Task B
Task B

activeState = ‘Ready‘

Lifecycle

activeState = ‘Ready‘

Lifecycle

activeState = ‘Ready‘

Lifecycle

activeState = ‘Ready‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

activeState = ‘Inactive‘

Lifecycle

...

...

......

PG-Fork

PG-Join

Task B
Copy 1

of
Task B

Copy 2
of

Task B

Im oberen Teil der Abbildung wird eine Ausführungssequenz dargestellt,
die eine parallele Ausführung des Task B und seiner beiden Kopien be-
schreibt. Dabei sind zum Zeitpunkt der Betrachtung ausgehend von dem
Gateway mit der Bezeichnung PG-Fork alle Tasks aktiviert worden, sodass
sich ihre Lebenszyklen im Zustand Ready befinden. Es ist möglich, dass
sich die Lebenszyklen zu einem Zeitpunkt im weiteren Verlauf der Aus-
führung in unterschiedlichen Zuständen befinden. Eine Synchronisation
wird durch das am Ende der Ausführungssequenz befindliche parallele

Entwurfsmuster für flexible und anpassbare Prozesse Seite 165

Gateway mit der Bezeichnung PG-Join durchgeführt. Im unteren Teil der
Abbildung wird eine Ausführungssequenz dargestellt, die eine sequenti-
elle Ausführung des Task B und seiner beiden weiteren Kopien beschreibt.
Dabei ist zum Zeitpunkt der Betrachtung der erste Task mit der Bezeich-
nung Task B aktiv. Seine beiden weiteren Kopien sind derzeit inaktiv und
werden im Verlauf der dargestellten Sequenz nacheinander aktiviert.

5.4.3 Zusammenfassung

In den vorherigen Abschnitten wurden auf Basis der durch [Sch+08] gege-
benen Beschreibung von Flexibility-by Deviation verschiedene Operationen
zur Realisierung des Flexibilitätsaspekts gegeben. Hier wurde die bereits
für den Flexibilitätsaspekt Flexibility-by Change eingeführte Erweiterung
(siehe Abschnitt 5.3.3) wiederverwendet. Basierend auf dieser Erweite-
rung wurden im Anschluss fünf Operationen beschrieben, die die Anpas-
sung von Prozess- und Taskinstanzen hinsichtlich des Flexibilitätsaspekts
Flexibility-by Deviation ermöglichen. Die Operationen lassen sich in der Ge-
staltung von Anpassungen im Rahmen von Beobachtungs- bzw. Anpas-
sungsprozessen einsetzen, sodass sie einen wichtigen Beitrag für die Um-
setzung von flexiblen und anpassbaren Prozessen darstellen.

5.5 Flexibility-by Underspecification

Im Rahmen der Flexibilisierung von Prozessen kann es möglich sein, dass
in einer frühen Phase einer Iteration des BPM-Lebenszyklus Anforderungen
hinsichtlich zu realisierender Funktionen in einem Prozess entweder noch
nicht bekannt oder aber hochgradig variabel sein können. Eine benötigte
Funktion kann dann entweder nicht beschrieben werden oder ein Prozess
kann viele alternative Kontrollflusspfade enthalten. Hierdurch können die
weitere Entwicklung sowie die Wartung eines Prozesses komplex sein.

In einem solchen Fall bietet sich für die Gestaltung von flexiblen und an-
passbaren Prozessen die Verwendung des Flexibilitätsaspekts Flexibility-by
Underspecification an. Bei dem Flexibilitätsaspekt Flexibility-by Underspeci-
fication wird die Auswahl einer zu erbringenden Funktion auf einen späte-
ren Zeitpunkt im BPM-Lebenszyklus verschoben. So könnte eine Funktion
z.B. erst im Rahmen der Phase Konfiguration oder der Phase Ausführung auf
Basis der dann verfügbaren Anforderungen gewählt werden. Hierdurch
ist der Zeitpunkt für die Auswahl einer Funktion entsprechend verscho-
ben worden. Eine an [Sch+08] orientierte Definition des Flexibilitätsaspekts
Flexibility-by Underspecification wird in Definition 5.5.1 gegeben.

Seite 166 Kapitel 5

Definition 5.5.1. (Flexibility-by Underspecification)

Flexibility-by Underspecification beschreibt die Fähigkeit zur Ausführung
eines unvollständigen Prozesses zur Ausführungszeit. Dabei können in
Anlehnung an die Auswertungen von Bedingungen an spezifischen Punk-
ten des Kontrollflusses – sogenannten Platzhaltern – noch nicht enthalte-
ne Funktionen beschrieben bzw. gewählt werden, um dann im weiteren
Verlauf der Ausführung ausgeführt zu werden.

Flexibility-by Underspecification lässt sich nach [Sch+08] in die zwei weite-
ren Typen von Flexibilitätsaspekten Late Selection und Late Modeling un-
terteilen. Eine Übersicht über die beiden Typen des Flexibilitätsaspekts
Flexibility-by Underspecification und ihre spezifischen Operationen sowie Ei-
genschaften ist in Abbildung 5-52 gegeben. Nachfolgend werden in Ab-
schnitt 5.5.1 zunächst die beiden Typen Late Selection und Late Modeling
detaillierter vorgestellt. Dabei wird insbesondere Bezug zu den in Abbil-
dung 5-52 gezeigten Operationen und Eigenschaften genommen. Basie-
rend auf dieser Beschreibung wird in Abschnitt 5.5.2 eine weitere Erweite-
rung der Sprache BPMN2.0 beschrieben, die spezifische Elemente zur Un-
terstützung des Flexibilitätsaspekts Flexibility-by Underspecification enthält.
In Abschnitt 5.5.3 werden die Operationen zur Unterstützung der Gestal-
tung des Flexibilitätsaspekts unter Verwendung der Sprache ACML4BPM
vorgestellt. Abschließend wird in Abschnitt 5.5.4 eine Zusammenfassung
der vorgestellten Inhalte gegeben.

Abbildung 5-52:
Gestaltungsaspekte für

flexible und anpass-
bare Prozesse in Hin-

sicht auf Flexibility-
by Underspecification

«Flexibility Concern»

Flexibility-by Underspecification – Late Modeling

«Flexibility Concern»

Flexibility-by Underspecification – Late Selection

«MethodologicalActivity»

SwitchLCPhase

«ProcesInstanceAdaptationOperation»

BindProcessFragment

«ProcesInstanceAdaptationOperation»

StructuralBind
ProcessFragment

«ProcesInstanceAdaptationOperation»

BehavioralBind
ProcessFragment

«MethodologicalActivity»

Create
ProcessFragment

«MethodologicalActivity»

Compose
ProcessFragment

«ProcessInstanceAdaptationOperation»

ChooseProcessFragment

OR

RealisationPointInTime:
 - PreliminaryRealisation
 - OnActivationRealisation

RealisationSpaceInTime:
 - StaticRealisation
 - DynamicRealisation

Entwurfsmuster für flexible und anpassbare Prozesse Seite 167

5.5.1 Gestaltungsaspekte von Flexibility-by Underspecification

In diesem Abschnitt werden verschiedene Aspekte hinsichtlich der Gestal-
tung des Flexibilitätsaspekts Flexibility-by Underspecification beschrieben.
Im Detail wird hierbei auf den Typ Late Selection und auf den Typ Late
Modeling eingegangen. Abschließend wird auf die in Abbildung 5-52 dar-
gestellten Eigenschaften der beiden zuvor genannten Typen Bezug genom-
men.

Elemente zur GestaltungFür die beiden Typen Late Selection und Late Modeling werden die beiden
weiteren Elemente Platzhalter und Prozessfragment im Rahmen des Kon-
trollflusses eines Basisprozesses verwendet. Bei einem Platzhalter handelt
es sich um ein Element, dessen Inhalt vor Ausführung des Prozesses un-
bekannt ist und erst im Lauf der Ausführung durch den Inhalt eines zu-
vor gestalteten Prozessfragments vervollständigt wird. Diese Vervollstän-
digung ist dabei an die Auswertung einer Bedingung geknüpft, durch die
aus einer Menge von verschiedenen Prozessfragmenten gewählt werden
kann. Ein Prozessfragment kann als ein spezieller Typ eines Prozesses ver-
standen werden, der sowohl ein definiertes Start- als auch ein Endsym-
bol besitzt und eine oder mehrere bestimmte Funktionen unterstützt. Da-
bei unterscheidet sich ein Prozessfragment von einem Prozess vornehm-
lich durch seine Verwendungsweise. So wird es an einer spezifischen Stel-
le in einem Prozess eingesetzt und nicht ohne einen übergeordneten Pro-
zess verwendet. Ein Prozessfragment ist somit in Hinsicht auf den Flexibi-
litätsaspekt Flexibility-by Underspecification eine mögliche Funktion, die an
der Stelle eines Platzhalters eingesetzt werden kann.

Typ Late SelectionBei dem Typ Late Selection wird die Auswahl einer benötigten Funktion
auf einen späteren Zeitpunkt im BPM-Lebenszyklus verschoben. So wird
an einem spezifischen Zeitpunkt im Verlauf eines Prozesses eine Auswer-
tung von Bedingungen vorgenommen, deren Ergebnis die Auswahl einer
Funktion bzw. deren Realisierung in Form eines Prozessfragments ist. Für
die Realisierung von Late Selection ist neben den zuvor eingeführten Ele-
menten Platzhalter, Prozessfragment und Bedingung zur Auswahl eines
Prozessfragments ein Basisprozess notwendig. Dabei enthält der Kontroll-
fluss eines Basisprozesses mindestens einen Platzhalter. Ferner werden im
Rahmen einer Bedingung und Auswahl eines Prozessfragments die beiden
Typen von Operationen ChooseProcessFragment und BindProcessFragment
benötigt, welche nachfolgend beschrieben werden.

ChooseProcessFragmentDurch eine Operation vom Typ ChooseProcessFragment kann zu einem
spezifischen Zeitpunkt eine Auswahl von benötigten Funktionen getrof-

Seite 168 Kapitel 5

fen werden. Dabei werden Bedingungen ausgewertet, deren Ergebnis die
Auswahl eines oder mehrerer Funktionen in Form von Prozessfragmen-
ten ist. Die durch Operationen des Typs ChooseProcessFragment getroffe-
ne Auswahl kann innerhalb des Flexibilitätsaspekts Late Selection durch
Beobachtungsprozesse gestaltet werden.

BindProcessFragment Die Vervollständigung eines Platzhalters durch ein Prozessfragment wird
auch Bindung genannt. Dabei wird im Anschluss an die Auswahl einer
benötigten Funktion (ChooseProcessFragment) eine Bindung durch Ope-
rationen des Typs BindProcessFragment durchgeführt. Derartige Opera-
tionen lassen sich im Rahmen der Gestaltung von Anpassungsprozes-
sen zur Integration von benötigten Funktionen einsetzen. Murguzur et. al
[Mur+13] unterscheiden darüber hinaus verschiedene Funktionsprinzipi-
en von Bindungen. So werden verhaltensbasierte und strukturbasierte Ver-
fahren unterschieden. Diese werden in Abbildung 5-52 durch die beiden
Typen von Operationen BehavioralBindProcessFragment bzw. StructuralBind-
ProcessFragment dargestellt und im Folgenden beschrieben.

BehavioralBind-
ProcessFragment

Durch Operationen des Typs BehavioralBindProcessFragment werden ver-
haltensbasierte Verfahren zur Bindung von Funktionen umgesetzt. Hier-
bei wird nach der Auswertung einer Bedingung (ChooseProcessFragment)
ein Prozess in der Rolle eines Prozessfragments an der Stelle eines Platz-
halters im Kontrollfluss aufgerufen. Nach Beendigung des aufgerufenen
Prozesses wird die Ausführung des Basisprozesses durch den vom Platz-
halter ausgehenden Kontrollfluss fortgesetzt. Parallele Ausführungspfade
bleiben während der Ausführung des aufgerufenen Prozesses aktiv. Bei
diesem Verfahren wird das durch den gebundenen Prozess beschriebene
Verhalten also nicht an der Stelle eines Platzhalters integriert. Stattdessen
wird an der Stelle des Platzhalters der gebundene Prozess aufgerufen und
auf die Beendigung seiner Ausführung gewartet.

StructuralBind-
ProcessFragment

Die strukturbasierte Operation StructuralBindProcessFragment fügt nach
Auswertung einer Bedingung (ChooseProcessFragment) an der Stelle des
Platzhalters ein Prozessfragment in den Kontrollfluss des Basisprozes-
ses ein. Hierdurch wird der in dem Prozess beschriebene Kontrollfluss so
strukturell angepasst, dass das Prozessfragment an der Stelle des Platzhal-
ters in den bestehenden Kontrollfluss integriert wird. Sofern ein Platzhal-
ter als ein Containerelement umgesetzt worden ist, kann eine alternative
Realisierung der Operation StructuralBindProcessFragment durch die Ein-
bettung des Prozessfragments in den Platzhalter vorgenommen werden
(siehe auch Anhang A.3).

Entwurfsmuster für flexible und anpassbare Prozesse Seite 169

Existierende Verfahren in
Bezug zum SoC

Für den Typ Late Selection existieren bereits Arbeiten, die entweder das ver-
haltensbasierte oder das strukturbasierte Verfahren verwenden. So wur-
den Umsetzungen des strukturbasierten Verfahrens bspw. durch [Ada+06;
DZK11] und des verhaltensbasierten Verfahrens in [Can+08; CDM09;
Ard+11] vorgestellt. In den genannten Arbeiten wurde jedoch keine Tren-
nung der Anpassungs- von der Anwendungslogik in einer frühen Pha-
se der Gestaltung der beteiligten Prozesse vorgenommen. Daher gilt es
zu untersuchen, inwiefern die Realisierung der Gestaltung des Flexibi-
litätsaspekts Late Selection durch die in dieser Arbeit vorgestellte Spra-
che ACML4BPM unterstützt werden kann und welche Erweiterungen im
Rahmen der Sprache BPMN2.0 sowie der in Abschnitt 4.3.3 eingeführten
Operationen notwendig sind.

Gestaltung von
Late Selection durch
Beobachtungs- und
Anpassungsprozesse

Im Rahmen von Operationen des Typs ChooseProcessFragment werden Be-
dingungen ausgewertet. Basierend auf den Ergebnissen dieser Auswer-
tung kann eine mögliche Einbindung von benötigten Funktionen durchge-
führt werden. Dieser Vorgang lässt sich durch das in Abschnitt 4.2.2 vorge-
stellte Konzept des Beobachtungsprozesses beschreiben. Dabei enthält der
Beobachtungsprozess das Verhalten zur Auswertung von spezifischen Be-
dingungen. Eine Beendigung des Beobachtungsprozesses kann einen An-
passungsprozess aufrufen, in dem das Verhalten zur Bindung von Prozess-
fragmenten beschrieben wird. Das Verhalten zur Bindung von Prozessfrag-
menten kann dabei durch entsprechende Operationen zur Anpassung von
Prozessen (siehe Abschnitt 4.3.3) unterstützt werden.

Typ Late ModelingDer Typ Late Modeling kann – wie in Abbildung 5-52 dargestellt – als Er-
gänzung zu dem Typ Late Selection verstanden werden. So kann es in der
Phase Ausführung der Fall sein, dass benötigte Funktionen noch nicht in
Form von bestehenden Prozessfragmenten vorliegen. Dann kann es sinn-
voll sein, dass die benötigten Funktionen neu gestaltet oder auf Basis be-
stehender Prozessfragmente komponiert werden. Hierbei können neue
Prozessfragmente entstehen, die durch die Auswertung von Bedingungen
(ChooseProcessFragment) und durch die Anwendung von Operationen zur
Bindung (BindProcessFragment) ausgeführt werden können. Für die Ge-
staltung neuer Prozessfragmente ist zunächst ein weiterer Typ von Ope-
rationen notwendig, der in Abbildung 5-52 in Form von SwitchLCPhase
dargestellt ist und nachfolgend beschrieben wird.

SwitchLCPhaseBei der Operation des Typs SwitchLCPhase handelt es sich um ein methodi-
sches Konstrukt. Es steht symbolisch für einen Wechsel aus der Phase Aus-
führung entweder in die Phase Design & Analyse oder in die Phase Konfi-
guration im BPM-Lebenszyklus (siehe Abschnitt 2.2.2). Derartige Vorgehens-

Seite 170 Kapitel 5

weisen zur Anpassung von Entwicklungs- und Lebenszyklen von Softwa-
resystemen wurden bereits in [Faz16] vorgestellt. Durch die Anwendung
einer Operation des Typs SwitchLCPhase soll an dieser Stelle verdeutlicht
werden, dass entweder eine Neugestaltung oder alternativ eine Komposi-
tion von Prozessfragmenten durchgeführt werden kann.

Im Rahmen einer Neugestaltung (Create) von Prozessfragmenten wird
hierzu in die Phase Design & Analyse gewechselt, in der neue Prozessfrag-
mente gestaltet werden können. Durch eine Komposition (Compose) wird
hierzu in die Phase Konfiguration gewechselt, in der neue Prozessfragmen-
te auf Basis bestehender Prozessfragmente komponiert werden können.
Durch die Anwendung von Operationen des Typs SwitchLCPhase wird
die Ausführung des Basisprozesses unterbrochen. Nach Beendigung einer
Neugestaltung oder Komposition ist es möglich, den Basisprozess weiter
auszuführen. Werden nachgelagert Operationen der Typen ChooseProcess-
Fragment und BindProcessFragment angewendet, können hierbei neu er-
stellte oder komponierte Prozessfragmente berücksichtigt werden. Ferner
ist für die Neugestaltung oder Komposition von Prozessfragmenten im
Rahmen der Anwendung von Operationen des Typs SwitchLCPhase wei-
tere Typen von Operationen notwendig. Zu diesem Zweck werden nach-
folgend die beiden Typen von Operationen CreateProcessFragment und
ComposeProcessFragment eingeführt und beschrieben.

CreateProcessFragment Im Rahmen einer Neugestaltung können benötigte Funktionen in Form
von Prozessfragmenten beschrieben und umgesetzt werden, sodass sie im
Anschluss zum Zweck der Bindung (BindProcessFragment) zur Verfügung
stehen. Durch Operationen des Typs CreateProcessFragment werden metho-
dische Aktivitäten zur Neugestaltung von Prozessfragment durch Exper-
ten durchgeführt. In [Sch+08] wird hierzu genannt, dass dieser Prozess
der Neugestaltung lediglich durch Experten der Anwendung ausgeführt
werden sollte. Dies lässt sich u.a. dadurch begründen, dass i.d.R. nur Ex-
perten einer Anwendung in der Lage sind, zu erkennen, dass und vor al-
lem welche weiteren Funktionen in Form von Prozessfragmenten benötigt
werden.

ComposeProcessFragment Ein weiterer Typ von Operationen (ComposeProcessFragment) unterstützt
die Komposition von benötigten Funktionen auf Basis existierender Pro-
zessfragmente. Eine Komposition von Funktionen stellt in diesem Bezug
einen Vorgang dar, der aus mindestens zwei bestehenden Funktionen eine
weitere neue Funktion erstellt. Dabei wird durch die neue Funktion eine
Ausgabe erzeugt, welche ohne die durchgeführte Komposition so nicht
möglich gewesen wäre. Eine einfache Komposition kann z.B. aus der Se-

Entwurfsmuster für flexible und anpassbare Prozesse Seite 171

quenz einer Ausführung von zwei Funktionen bestehen. Ferner handelt es
sich bei dem Typ von Operationen ComposeProcessFragment um methodi-
sche Aktivitäten zur Komposition von Prozessfragmenten, die durch Ex-
perten durchgeführt werden. Neue Prozessfragmente, die durch die An-
wendung von Operationen der Typen CreateProcessFragment oder Compose-
ProcessFragment erstellt worden sind, können bei nachfolgenden Anwen-
dungen der Operationen vom Typ BindProcessFragment gebunden werden.
Dadurch können zuvor nicht vorhandene Funktionen im Rahmen der Aus-
führung des Basisprozesses genutzt werden, wodurch zudem auch auf
spezifische Umstände in einer Umgebung eingegangen werden kann.

5.5.1.1 Eigenschaften von Late Selection und Late Modeling

Für eine mögliche Realisierung der zuvor ausgeführten Typen des Flexi-
bilitätsaspekts Flexibility-by Underspecification existieren – wie in Abbil-
dung 5-52 gezeigt – weitere Eigenschaften. So kann es zum einen un-
terschiedliche Zeitpunkte (RealisationPointInTime) für eine Bindung von
Prozessfragmenten geben. Zum anderen existieren verschiedene Typen
von Zeitdauern (RealisationSpaceInTime), für die eine Bindung von Prozess-
fragmenten bestehen soll. Eine für die vorliegende Arbeit angepasste In-
terpretation dieser Eigenschaften wird im Folgenden näher beschrieben.

In Tabelle 5-2 ist eine Übersicht über Zeitpunkte einer Bindung in Relation
zu relevanten Phasen und betroffenen Artefakten zusammengefasst. Eine
Bindung von Prozessfragmenten kann zu unterschiedlichen Zeitpunkten
im BPM-Lebenszyklus durchgeführt werden. So existieren die beiden Typen
von Zeitpunkten PreliminaryRealisation und OnActivationRealisation, an de-
nen ein ausgewähltes Prozessfragment gebunden werden kann. Bei beiden
Typen von Zeitpunkten können spezifische Ereignisse auftreten, auf de-
ren Basis eine Auswahl (ChooseProcessFragment) und eine Bindung (Bind-
ProcessFragment) eines geeigneten Prozessfragments getroffen bzw. durch-
geführt werden kann.

Zeitpunkt Phase Konfiguration Phase Ausführung
Preliminiary
Realisation

Prozessmodell Prozessmodell
Prozessinstanz

OnActivation
Realisation

– Prozessinstanz

Tabelle 5-2:
Typen von Zeitpunkten
und betroffene Artefakte
entlang relevanter Phasen
des BPM-Lebenszyklus

Seite 172 Kapitel 5

PreliminaryRealisation Bei Zeitpunkten des Typs PreliminaryRealisation wird eine Bindung vor der
Aktivierung eines Platzhalters durchgeführt. Beispiele für konkrete Zeit-
punkte im BPM-Lebenszyklus sind z.B. durch die Phase Konfiguration, in
der Prozesse konfiguriert werden, oder zu ihrer Instanziierung in der Pha-
se Ausführung gegeben. Selbstverständlich bestehen hier auch Zeitpunkte
während der Ausführung eines Prozesses, aber vor Aktivierung eines in
seinem Kontrollfluss enthaltenen Platzhalters.

OnActivationRealisation Der Typ von Zeitpunkten OnActivationRealisation stellt den Zeitpunkt der
Bindung eines Prozessfragments bei Aktivierung des Platzhalters dar. So-
mit wird die Bindung unmittelbar an der Stelle im Kontrollfluss durch-
geführt, die flexibel durch die Auswahl von Prozessfragmenten gestaltet
werden soll. Durch den Typ OnActivationRealisation kann ein besonders ho-
her Grad an Flexibilität gewährleistet werden, da die Bindung zu dem spät
möglichsten Zeitpunkt durchgeführt werden kann.

Ferner existiert eine weitere Eigenschaft, durch die der Typ einer Rea-
lisierung hinsichtlich einer Mehrfachanwendung eines Platzhalters bzw.
seiner gebundenen Prozessfragmente beschrieben werden kann. So wird
zwischen den beiden Typen StaticRealisation und DynamicRealisation unter-
schieden, welche zur Übersicht in Tabelle 5-3 in Relation zu Phasen und
betroffenen Artefakten dargestellt sind.

Tabelle 5-3:
Typen von Zeitdauern

und betroffene Artefakte
entlang relevanter Phasen

des BPM-Lebenszyklus

Zeitdauer Phase Konfiguration Phase Ausführung
Static
Realisation

Prozessmodell Prozessmodell
Prozessinstanz1

Dynamic
Realisation

Prozessmodell Prozessmodell
Prozessinstanz

StaticRealisation Bei dem Typ StaticRealisation wird ein einmal gebundenes Prozessfragment
auch für die weitere Ausführung des Basisprozesses an der Stelle des Platz-
halters gebunden sein. Eine Bindung im Rahmen des Typs StaticRealisation
kann also als permanent betrachtet werden (siehe auch Abschnitt 5.3), da
sie nachträglich nicht mehr veränderbar ist. So könnte z.B. eine Bindung
bereits in der Phase Konfiguration vorgenommen worden sein, die auch auf-
grund aktualisierter Anforderungen in der Phase Ausführung Bestand ha-
ben soll. Eine Mehrfachanwendung eines Platzhalters ist somit nicht vor-
gesehen.

DynamicRealisation Der Typ DynamicRealisation hingegen ermöglicht, ein Prozessfragment zu-
nächst zu binden und zu einem späteren Zeitpunkt eine erneute Bindung
eines anderen Prozessfragments vorzunehmen. Dies kann notwendig sein,

1Bindung ist nur möglich, wenn nicht bereits in der Phase Konfiguration getätigt worden ist.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 173

wenn sich an geänderte Bedingungen angepasst werden muss. So könn-
ten z.B. aktualisierte Bedingungen in einer Umgebung vorherrschen, die
die weitere Ausführung der Prozesse behindern oder die erfolgreiche Be-
endigung unmöglich machen. Durch den Typ DynamicRealisation können
also dynamische Bindungen durchgeführt werden. Im Rahmen des Typs
DynamicRealisation wäre so z.B. eine Bindung eines vorläufigen Prozess-
fragments in der Phase Konfiguration möglich. Dieses vorläufige Prozess-
fragment kann in der Phase Ausführung durch ein anderes Prozessfrag-
ment ersetzt werden. Eine Mehrfachanwendung eines Platzhalters ist so-
mit vorgesehen.

Für die beiden Typen Late Selection und Late Modeling des Flexibilitäts-
aspekts Flexibility-by Underspecification sind Sprachelemente notwendig,
die sich jedoch mittels der Sprache BPMN2.0 in ihrer ursprünglichen Form
nicht ausdrücken lassen. Daher ist eine Erweiterung des Metamodells not-
wendig, mit der relevante Aspekte zur Unterstützung des Flexibilitäts-
aspekts Flexibility-by Underspecification beschrieben werden können. Hier-
zu wird im nachfolgenden Abschnitt 5.5.2 zunächst eine Erweiterung des
Metamodells und anschließend in Abschnitt 5.5.3 eine detailliertere Be-
schreibung der zuvor aufgeführten Operationen zur Unterstützung der
Gestaltung des Flexibilitätsaspekts Flexibility-by Underspecification durch
die Sprache ACML4BPM gegeben.

5.5.2 Spracherweiterung für Flexibility-by Underspecification

Für den Flexibilitätsaspekt Flexibility-by Underspecification sowie für die
enthaltenen Typen Late Selection und Late Modeling werden im Rahmen
der Gestaltung von flexiblen und anpassbaren Prozessen weitere Sprach-
elemente benötigt. Da sich die beiden Untertypen Late Selection und Late
Modeling sowohl auf Anpassungen von Prozessmodellen als auch auf de-
ren Instanzen beziehen können, werden zur Unterscheidung dieser beiden
Arten von Modell- und Prozesselementen abermals verschiedene Typen
benötigt (siehe auch Abschnitt 5.3 bzw. Abschnitt 5.4). Hierzu wird eine
entsprechende konzeptionelle Spracherweiterung in Anlehnung an den in
Abschnitt 4.3.3 vorgestellten Auszug der Sprache BPMN2.0 vorgestellt.

In Abbildung 5-53 ist die konkrete Syntax der Elemente Placeholder, Process-
Fragment sowie der zugehörigen Start- bzw. Endsymbole ProcessFragment-
StartEvent und ProcessFragmentEndEvent anhand von Auszügen der beiden
Prozessmodelle m und n beschrieben. Auf Details wird nachfolgend einge-
gangen.

Seite 174 Kapitel 5

Abbildung 5-53:
Konkrete Syntax für
Platzhalter, Prozess-

fragmente sowie Start-
und Endsymbole

Placeholder
Process

Fragment

StartSymbolA

Function A...PFSE

«
P

ro
ce

ss
Fr

ag
m

e
n

t»

Fu
n

ct
io

n
 A

Undefined Task... ...

EndSymbolA

Prozessmodell m mit Platzhalter Prozessmodell n mit Prozessfragmenten

«ProcessFragment»

Function B

ProcessFragment
StartEvent

ProcessFragment
EndEvent

PFEE...

Platzhalter Im linken Bereich ist ein Auszug des Prozessmodells m in Form eines Kon-
trollflusses dargestellt. Dieser enthält ein Element vom Typ Placeholder mit
der Bezeichnung Undefined Task. Elemente des Typs Placeholder werden in
Anlehnung an Elemente des Typs SubProcess in der Sprache BPMN2.0 dar-
gestellt. Dabei wird zur Kennzeichnung dieses speziellen Typs eines Sub-
prozesses auf ein sonst übliches eigenes Symbol, wie z.B. bei Manual Tasks,
Human Tasks oder Service Tasks (siehe Abschnitt 2.3.4), verzichtet. Stattdes-
sen wird der Rahmen des Elements gepunktet dargestellt. Hierdurch soll
verdeutlicht werden, dass es sich um einen Platzhalter handelt, dessen In-
halt zunächst undefiniert bleibt und zu einem späteren Zeitpunkt durch
den Inhalt eines Prozessfragments vervollständigt wird.

Prozessfragment Im rechten Bereich wird ein Auszug des Prozessmodells n mit zwei
Prozessfragmenten zur Realisierung der jeweiligen Funktionen mit den
Bezeichnungen Function A und Function B dargestellt. Für die Darstellung
eines Prozesses in der Sprache BPMN2.0 existiert keine explizite grafi-
sche Darstellung. Dies kann als sinnvoll betrachtet werden, da der Prozess
mit den in ihm enthaltenen weiteren Elementen dargestellt wird. In der
hier vorgestellten Lösung wird jedoch die Möglichkeit zur Abgrenzung
von regulären Prozessen und Elementen des Typs ProcessFragment gege-
ben. So wird für Prozessfragmente eine Darstellungsweise in Anlehnung
an Elemente vom Typ Pool der Sprache BPMN2.0 gewählt. Ein Element
des Typs ProcessFragment wird demnach als Pool dargestellt; dabei kann
ein solches Prozessfragment sowohl aufgeklappt als auch zugeklappt dar-
gestellt werden. Ein Beispiel für ein zugeklapptes Prozessfragment ist in
Prozessmodell n durch das Element mit der Bezeichnung Function B ge-
geben. Ein aufgeklapptes Prozessfragment ist durch das Element mit der
Bezeichnung Funktion A dargestellt. Beide Darstellungsweisen enthalten
zum Zweck der Kennzeichnung den Namen des Typs in Guillemets ge-
klammert.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 175

StartsymbolIm Rahmen des Prozessfragments mit der Bezeichnung Function A wird
ein Auszug eines Kontrollflusses dargestellt. Jedes Prozessfragment hat ge-
nau ein Startsymbol vom Typ ProcessFragmentStartEvent. Ein solches Start-
symbol wird in Anlehnung an Startereignisse der Sprache BPMN2.0 darge-
stellt. Zur Unterscheidung von Elementen des Typs ProcessFragmentStart-
Event und StartEvent wird hier jedoch die Abkürzung des Typs PFSE als
Label dargestellt.

EndsymbolDas Ende eines Prozessfragments wird durch ein Endsymbol vom Typ
ProcessFragmentEndEvent gekennzeichnet. Die Darstellung dieses Typs
wird in Anlehnung an Endereignisse der Sprache BPMN2.0 umgesetzt.
Zur Unterscheidung von Elementen des Typs ProcessFragmentEndEvent
und EndEvent wird hier jedoch die Abkürzung des Typs PFEE als Label
dargestellt.

Für die zuvor beschriebenen Elemente sollen zudem auch Repräsenta-
tionen ihrer Instanzen verfügbar sein. Dies betrifft insbesondere Instan-
zen von Platzhaltern und Prozessfragmenten. In Abbildung 5-54 ist die
konkrete Syntax dieser Elemente gezeigt. Dabei werden verschiedene Bei-
spiele anhand der Auszüge der Prozessinstanzen PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI, PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2 und PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI darge-
stellt und nachfolgend beschrieben.

PI PFI

StartSymbolA

PFEEUndefined Task... ...

EndSymbolA

activeState = ‘Ready‘

Lifecycle

activeState = ‘Ready‘

Lifecycle

Lifecycle

PFSE

PI2

......

Prozessinstanz PI2 mit Platzhalter
und integrierter Instanz des
Prozessfragments PFI

StartSymbolA

PFEE

EndSymbolA

PFSE

activeState = ‘Active‘

Lifecycle

Prozessinstanz PI mit Instanz eines Platzhalters Instanz eines Prozessfragments PFI

activeState = ‘Ready‘

Lifecycle

ProcessFragmentInstance
Representation

PlaceholderInstance
Representation

activeTasks =
{Function A}

activeTasks =
{Undefined
Function}

activeTasks =
{Undefined
Function}

activeTasks =
{Function A}

... Function A ...

Function A... ...

Abbildung 5-54:
Konkrete Syntax für In-
stanzen von Platzhaltern
und Prozessfragmenten

Seite 176 Kapitel 5

Instanz eines Platzhalters Die Repräsentation einer Instanz eines Platzhalters wird in Abbildung 5-54
im Kontext einer Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI dargestellt. Auf eine Beschreibung der
konkreten Syntax von Prozessinstanzen wird an dieser Stelle verzichtet
und stattdessen auf Abschnitt 5.3.3 verwiesen. Die Prozessinstanz PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI ent-
hält einen Kontrollfluss, in dem ein Platzhalter mit der Bezeichnung Un-
defined Task enthalten ist. Die Repräsentation einer Instanz eines Platzhal-
ters wird in Anlehnung an Tasks der Sprache BPMN2.0 dargestellt. Dabei
wird der Rahmen eines Platzhalters jedoch – wie in Abbildung 5-54 abge-
bildet – gestrichelt gezeichnet.

Instanz eines
Prozessfragments

Bei einer Instanz eines Prozessfragments handelt es sich um einen Unter-
typ einer Instanz eines Prozesses (siehe auch Abbildung 5-55). Die Darstel-
lungsweise wird daher zur Vereinfachung an dieser Stelle übernommen.
Die in Abbildung 5-54 dargestellte Instanz eines Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI ent-
hält einen Kontrollfluss mit spezifischen Start- (PFSE) und Endsymbolen
(PFEE) sowie einer beispielhaften Instanz eines Tasks mit der Bezeichnung
Function A. Aktive Instanzen von Tasks können analog zu Prozessinstan-
zen (siehe Abschnitt 5.3.3) über das Attribut mit der Bezeichnung active-
Tasks angegeben werden.

Instanz eines Platzhalters
mit integrierter Instanz
eines Prozessfragments

Neben der getrennten Darstellung von Instanzen von Platzhaltern und
Prozessfragmenten ist es ebenso möglich, die Instanz eines Prozessfrag-
ments integriert in einer Instanz eines Platzhalters darzustellen. Hierzu
ist im unteren Bereich von Abbildung 5-54 die Prozessinstanz PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2 ange-
geben. Dabei wird die Instanz des Platzhalters mit der Bezeichnung Un-
defined Task mit einer in ihr integrierten Instanz des Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI
gezeigt. Die Darstellungsweise eines integrierten Prozessfragments be-
schreibt dabei eine Situation, in der zuvor eine strukturbasierte Bindung
(StructuralBindProcessFragment) stattgefunden hat. Eine verhaltensbasierte
Bindung (BehavioralBindProcessFragment) besitzt in diesem Ansatz keine
eigene grafische Darstellung. Bei dieser Darstellungsweise ist anzumer-
ken, dass sowohl für die übergeordnete Prozessinstanz PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2PI2 als auch für
die Instanz eines Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI jeweils die Attribute mit der Be-
zeichnung activeTasks zur Kenneichung von derzeit aktiven Instanzen von
Platzhaltern und Tasks verwendet werden kann.

Für die zuvor beschriebenen Elemente wird nachfolgend die abstrakte
Syntax vorgestellt. In Abbildung 5-55 wird hierzu ein Auszug eines Meta-
modells dargestellt. Dabei werden die für die Gestaltung des Flexibilitäts-
aspekts Flexibility-by Underspecification benötigten Typen ProcessFragment,
Placeholder, ProcessFragmentInstanceRepresentation und PlaceholderInstance-
Representation eingeführt.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 177

FlowElementsContainer
(BPMN2.0)

SubProcess
(BPMN2.0)

binds

PlaceholderInstance
Representation

activeState: StateName

Lifecycle

 binds

ProcessInstance
Representation

0..1
{redefines
function}

type: ‘START‘

Event
(BPMN2.0)

type: ‘END‘

Event
(BPMN2.0)

ProcessFragment
EndEvent

1
{redefines

placeholder}

endSymbol 1startSymbol 1

Task
(BPMN2.0)

TaskInstance
Representation

ac
ti

ve
T

as
ks
*

1

 1

0..1
function

1
placeholder

CreateProcessFragment
ComposeProcessFragment

enumeration
MethodolicalActivityType

Structural
Behavioral

enumeration
BindingType

Process
(BPMN2.0) Ready

Active
Completing
Completed
Terminating
Terminated
Failing
Failed
Compensation
Compensated
Withdrawn
Inactive
Closed

enumeration
StateName

ProcessFragmentInstance
Representation

Preliminary
OnActivation

enumeration
RealisationPoint

InTimeType

Static
Dynamic

enumeration
RealisationSpace

InTimeType

ProcessFragment

ProcessFragment
StartEvent

realisationPIT: RealisationPointInTimeType
realisationSIT: RealisationSpaceInTimeType

Placeholder

Abbildung 5-55:
Auszug einer Erweite-
rung des Metamodells der
BPMN2.0 zur Unterstüt-
zung von Flexibility-by
Underspecification

PlaceholderEin Task, dessen Inhalt zum Zeitpunkt der Gestaltung undefiniert bleibt,
wird hier von dem Typ Placeholder dargestellt. Dabei erbt in der hier vorge-
stellten Lösung ein Element vom Typ Placeholder von dem Typ SubProcess.
Hierdurch werden Eigenschaften übernommen, sodass es sich bei dem
Typ Placeholder um ein Containerelement handelt. Sollen Elemente dieses
Typs angepasst werden, können daher auch die in Anhang A.3 beschrie-
benen Operationen zur Anpassung von Containerelementen verwendet
werden. Zeitliche Eigenschaften eines Platzhalters können in dem Typ Pla-
ceholder über die beiden Attribute beschrieben werden. Mit dem Attribut
realisationPIT kann angegeben werden, welcher Zeitpunkt für eine Bin-
dung vorgesehen ist. Wohingegen mit dem Attribut realisationSIT angege-
ben werden kann, für welche Zeitdauer eine Bindung gelten soll.

ProcessFragmentEine zu bindende Funktion wird durch den Typ ProcessFragment darge-
stellt. Um sowohl struktur- als auch verhaltensbasierte Bindungen unter-
stützen zu können, wird in dem hier dargestellten Konzept der Typ Process-

Seite 178 Kapitel 5

Fragment als von dem Typ Process erbend dargestellt. Auf Details wird
an dieser Stelle verzichtet und stattdessen auf Abschnitt 5.5.3 verwiesen.
Ferner referenziert der Typ Placeholder sowohl auf ein spezifisches Start-
symbol (ProcessFragmentStartEvent) als auch auf ein spezifisches Endsym-
bol (ProcessFragmentEndEvent), die beide jeweils von Start- bzw. Ender-
eignissen (Event) der Sprache BPMN2.0 erben. Durch die in dieser Ar-
beit beschriebene Lösung werden in der Gestaltung von Prozessfragmen-
ten lediglich solche Prozessfragmente unterstützt, die jeweils über genau
ein Start- und Endsymbol verfügen. Durch die beschriebene Vererbung
und Einführung spezifischer Start- und Endsymbole auf Basis üblicher
Typen der Sprache BPMN2.0 kann sowohl eine struktur- als auch eine ver-
haltensbasierte Bindung beschrieben werden (siehe Abschnitt 5.5.3). Die
Assoziation zwischen den beiden Typen Placeholder und ProcessFragment
beschreibt, dass ein Element vom Typ Placeholder ein Element vom Typ
ProcessFragment in der Rolle einer zu realisierenden Funktion bindet.

Für die zuvor eingeführten Typen ProcessFragment und Placeholder werden
zudem Repräsentationen ihrer Instanzen benötigt. Hierdurch können so-
wohl Anpassungen von Prozessmodellen als auch deren Instanzen gestal-
ten werden. Nachfolgend wird auf die Repräsentation von Instanzen der
zuvor genannten Elemente eingegangen.

PlaceholderInstance-
Representation

Die Instanz eines Platzhalters wird durch den Typ PlaceholderInstance-
Representation repräsentiert. Ein Element dieses Typs kann weitere Ele-
mente enthalten, wobei sich in Anlehnung an Abschnitt 5.3 auf Tasks in
Form von Elementen des Typs TaskInstanceRepresentation beschränkt wird.
Ferner enthält ein Element des Typs PlaceholderInstanceRepresentation ein
Element vom Typ Lifecycle, welches den aktuellen Zustand des Lebenszy-
klus des Platzhalters beschreibt. Hierzu wird das Attribut activeState vom
Typ StateName verwendet. Bei dem Typ StateName handelt es sich um eine
Enumeration mit Literalen aller bereits in Abschnitt 4.3.4.2 eingeführten
Zustände des Lebenszyklus von Aktivitäten.

ProcessFragment-
InstanceRepresentation

Die Instanz eines Prozessfragments wird in der hier vorgestellten Lösung
durch den Typ ProcessFragmentInstanceRepresentation repräsentiert. Sie erbt
sowohl alle Eigenschaften vom Typ ProcessFragment als auch vom Typ
ProcessInstanceRepresentation. Durch die zuletzt genannte Vererbung kann
die Verwaltung von aktiven Taskinstanzen in einer Instanz eines Prozess-
fragments vereinfacht werden, da die Liste mit dem Bezeichner activeTasks,
die vom Typ TaskInstanceRepresentation ist, als Eigenschaft vorliegt.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 179

Die Assoziation (binds) zwischen den beiden Typen PlaceholderInstance und
ProcessFragmentInstance beschreibt, dass ein Element vom Typ Placeholder-
Instance ein Element vom Typ ProcessFragmentInstance in der Rolle einer zu
realisierenden Funktion bindet. Dabei werden die beiden Rollen function
und placeholder derartig redefiniert, dass Elemente zur Repräsentation von
Instanzen auch nur solche referenzieren können.

Lebenszyklus für
Platzhalter

Für die zuvor beschriebenen Elemente der Typen PlaceholderInstance-
Representation und TaskInstanceRepresentation kann durch den jeweiligen
spezifischen Lebenszyklus (Lifecycle) beschrieben werden, in welchen ak-
tuellen Zustand sich das Element befindet. Ein Element vom Typ Lifecycle
wird in Anlehnung an UML-Klassen [OMG10] dargestellt. Die Zugehörig-
keit zu einer Instanz eines Tasks oder Platzhalters wird in Anlehnung an
UML-Assoziationen in Form der Komposition [OMG10] dargestellt.

Ein Beispiel für einen spezifischen Lebenszyklus zur Unterstützung des
Flexibilitätsaspekts Flexibility-by Underspecification ist in Abbildung 5-56
gezeigt. So wird der in Abschnitt 4.3.4.2 eingeführte Lebenszyklus um
einen weiteren Zustand (Binding) erweitert. Der Zustand Binding wird ak-
tiv, wenn ein Token den Platzhalter erreicht. Sobald eine Bindung durchge-
führt worden ist, wird der Zustand verlassen und der Lebenszyklus folgt
dem bereits zuvor beschriebenen Ablauf. Damit Ereignisse des Lebens-
zyklus eines Platzhalters zur Auslösung eines AC4BPM genutzt werden
können, kann, wie für implizite Ereignisse gezeigt worden ist, eine Trans-
formation der Zustände in Ereignisse durchgeführt werden (siehe Ab-
schnitt 4.3.4.2). Als Ergebnis einer solchen Transformation ergibt sich das
neue implizite Ereignis onBindingDone. Das Ereignis wird im weiteren
Verlauf des Abschnitts dazu verwendet, eine Rückkopplung mit dem
Platzhalter im Anschluss an eine durchgeführte Bindung zu ermöglichen.
Selbstverständlich sind je nach Anforderungen auch alternative Lebenszy-
klen denkbar, in denen bspw. weitere Ereignisse für eine Rückkopplung
eingesetzt werden können.

Lebenszyklus eines Platzhalters

Ready Active Completing Completed

A-Token-Arrives
Data-InputSet-Available

Activitys-work-completed

Completing
Requirements-Done

Assignments-Completed

The-Process-Ends

Binding

Binding-done

Abbildung 5-56:
Beispielhafte Darstellung
von Elementen der Er-
weiterung in Hinsicht auf
die Unterstützung von
Flexibility-by Underspeci-
fication

Seite 180 Kapitel 5

5.5.3 Operationen

Für die Realisierung der beiden Typen Late Selection und Late Modeling
des Flexibilitätsaspekts Flexibility-by Underspecification unter Verwendung
der Sprache ACML4BPM sind neben den im Abschnitt 5.5.2 vorgestellten
Spracherweiterungen auch zugehörige Operationen notwendig. Derartige
Operationen werden in diesem Abschnitt zum Zweck der Verwendung
in der Gestaltung von Beobachtungs- und Anpassungsprozessen auf Ba-
sis der in Abschnitt 5.5.1 eingeführten Funktionsprinzipien beschrieben.
In diesem Bezug wird zunächst in Abschnitt 5.5.3.1 eine Operation zur
Bindung von Prozessfragmenten vorgestellt. Nachgelagert wird in Ab-
schnitt 5.5.3.2 ein Beispiel für die Gestaltung einer Operation vom Typ
ChooseProcessFragment unter Verwendung eines Beobachtungsprozesses
gegeben. Abschließend wird in Abschnitt 5.5.3.3 eine Operation vom Typ
SwitchLCPhase vorgestellt. Für jede der zuvor genannten Operationen wird
zudem die operationale Semantik in Anlehnung an ein Beispiel beschrie-
ben.

5.5.3.1 BindProcessFragment

Durch eine Anwendung einer Operation vom Typ BindProcessFragment
lässt sich ein Prozessfragment an der Stelle eines Platzhalters in dem Kon-
trollfluss eines Prozesses binden. Hierdurch ist es möglich, die Entschei-
dung für die Verwendung einer konkreten Funktion in eine spätere Phase
des BPM-Lebenszyklus zu verlegen – hier die Phase Ausführung. Ferner wird
dabei zwischen zwei Mechanismen unterschieden. Zum einen können Pro-
zessfragmente strukturbasiert in einen Platzhalter eingefügt werden. Zum
anderen können Prozessfragmente aber auch verhaltensbasiert gebunden
werden. Bei dem verhaltensbasierten Mechanismus ist keine strukturelle
Anpassung wie bei dem strukturbasierten Mechanismus in Form einer In-
tegration der benötigten Funktion im Platzhalter notwendig. Die Signa-
tur und konkrete Syntax der Operation BindProcessFragment sind in Abbil-
dung 5-57 angegeben.

Parameter Die Operation BindProcessFragment erwartet als Eingabe eine Instanz ei-
nes Platzhalters (placeholder), an dessen Stelle die Instanz eines Prozess-
fragments gebunden werden soll. Ein weiterer Parameter der Operation ist
durch die betreffende Instanz des zu bindenden Prozessfragments (process-
Fragment) gegeben. Welcher der beiden in Abschnitt 5.5.1 eingeführten

Entwurfsmuster für flexible und anpassbare Prozesse Seite 181

Parametername Parametertyp
IN : placeholder PlaceholderInstanceRepresentation

processFragment ProcessFragmentInstanceRepresentation
bindingType BindingType

OUT : – VOID

 Bind
ProcessFragment

Undefined Task Function A ‘Structural‘

 placeholder process
Fragment

binding
Type

Abbildung 5-57:
Signatur und konkrete
Syntax der Operation
BindProcessFragment

Mechanismen zur Bindung verwendet werden soll, kann durch das At-
tribut bindingType angegeben werden. Gültige Werte sind durch die in
Abbildung 5-55 dargestellte Enumeration BindingType gegeben. So wird
durch das Literal Structural angegeben, dass eine strukturbasierte Bindung
durchgeführt werden soll. Alternativ wird durch das Literal Behavioral an-
gegeben, dass eine verhaltensbasierte Bindung durchgeführt wird. Die An-
wendung der Operation erzeugt keine explizite Ausgabe – hier durch die
Kennzeichnung als VOID dargestellt.

Im Folgenden wird auf die operationale Semantik der Anwendung der
Operation BindProcessFragment eingegangen. Zunächst erfolgt eine Be-
schreibung einer Parametrisierung für die strukturbasierte Bindung und
anschließend für die verhaltensbasierte Bindung. Dabei wird bei beiden
Funktionsprinzipien zunächst geprüft, ob eine Anwendung der Operation
hinsichtlich eines gegebenen Zeitpunkts und einer Zeitdauer erlaubt ist.
So kann nach den in Abschnitt 5.5.1.1 eingeführten Typen von Zeitpunk-
ten PreliminaryRealisation und OnActivationRealisation die Anwendung der
Operation möglicherweise nicht erlaubt sein. Gleiches gilt für eine Situa-
tion, in der eine Bindung nicht erneut durchgeführt werden darf (Static-
Realisation). Wurden die zugehörigen Attribute eines Platzhalters entspre-
chend gesetzt, führt die Operation keine der im Folgenden beschriebenen
Schritte aus.

Strukturbasierte Bindung von Prozessfragmenten Das Funktionsprin-
zip einer Anwendung der Operation BindProcessFragment mit der Parame-
trisierung für eine strukturbasierte Bindung wird in Abbildung 5-58 dar-
gestellt. Eine Anwendung der Operation besteht demnach aus den zwei
Teilschritten IntegrateProcessFragment und ReturnControl.

Seite 182 Kapitel 5

Abbildung 5-58:
Beispielhafte Anwen-

dung der Operation
BindProcessFragment

(Structural)

Instanz eines Platzhalters PHI

Bind
Process
Fragment
(Structural)

... ...

activeState = ‘Binding‘

Lifecycle

......
StartSymbolA

... ... PFEE

EndSymbolA

activeState = ‘Inactive‘

Lifecycle

PFSE

activeTasks
= {}

activeState = ‘Binding‘

Lifecycle
1

Integrate
Process
Fragment

2

Return
Control
(onBindingDone)

Undefined Task

Instanz eines Platzhalters PHI
mit strukturell gebundenem
Prozessfragment PFI nach
abgeschlossener Bindung

Instanz eines Platzhalters PHI mit
strukturell gebundener Instanz
eines Prozessfragment PFI

...
StartSymbolA

Function A... PFEE

EndSymbolA

activeState = ‘Inactive‘

Lifecycle

PFSE

activeTasks
= {}

activeState = ‘Ready‘

Lifecycle

...

...

Function A

So wird ausgehend von einer Instanz eines Platzhalters, die sich in dem
Zustand Binding ihres Lebenszyklus befindet, der erste Teilschritt Integrate-
ProcessFragment durchgeführt. Das Ergebnis des ersten Teilschrittes ist eine
strukturelle Integration einer gewählten Instanz eines Prozessfragments
PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI in die Instanz des Platzhalters PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI. Die in dem integrierten Prozess-
fragment enthaltenen Tasks zur Realisierung der gewählten Funktion blei-
ben vorerst, wie dargestellt, noch inaktiv.

Der zweite Teilschritt ReturnControl beendet den Vorgang der Bindung. Da-
bei wird in den Zustand Ready des Lebenszyklus der Instanz des Platzhal-
ters PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI gewechselt. Siehe in diesem Bezug auch das in Abbildung 5-56
dargestellte Beispiel eines Lebenszyklus mit Unterstützung von Flexibility-
by Underspecification. Nachfolgend ist die Ausführung des in PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI beschrie-
ben Verhaltens möglich. Dabei können die einzelnen in Abschnitt 4.3.4.2
beschriebenen Zustände des Lebenszyklus des Platzhalters durchlaufen
werden. Bei diesem Vorgang wird das in PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI gebundene Prozessfragment
PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI als Inhalt des Subprozesses vom Typ Placeholder aktiviert und ausge-
führt.

Entwurfsmuster für flexible und anpassbare Prozesse Seite 183

Verhaltensbasierte Bindung von Prozessfragmenten Für die Anwen-
dung der Operation BindProcessFragment mit der Parametrisierung zur ver-
haltensbasierten Bindung wird das generelle Funktionsprinzip in Abbil-
dung 5-59 dargestellt. Eine Anwendung der Operation besteht demnach
aus den drei Teilschritten PassingControl, ExecuteFunction und ReturnCon-
trol.

Instanz eines Platzhalters PHI vor
verhaltensbasierter Bindung

Bind
Process

Fragment
(Behavioral)

... ...

activeState = ‘Binding‘

Lifecycle

1 3
Return
Control
(onBindingDone)

Undefined Task

activeState = ‘Terminating‘

Lifecycle

Undefined Task

2

Execute
FunctionPFI

StartSymbolA

Function A... PFEE

EndSymbolA

activeState = ‘Inactive‘

Lifecycle

PFSE

activeTasks
= {}

PFI

StartSymbolA

Function A... PFEE

EndSymbolA

PFSE

activeTasks
= {}activeState = ‘Terminated‘

Lifecycle

Aufgerufene Instanz eines Prozessfragments PFI

Instanz eines Platzhalters PHI nach
verhaltensbasierter Bindung

... ...

Passing
Control

(toPFI)

Abbildung 5-59:
Beispielhafte Anwen-
dung der Operation Bind-
ProcessFragment
(Behavioral)

Bei der verhaltensbasierten Bindung wird ein Prozessfragment nicht wie
bei der strukturbasierten Bindung in den Platzhalter integriert. Stattdes-
sen wird an der Stelle der Instanz eines Platzhalters PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI eine Funktion
in Form einer Instanz eines Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI als eigenständiger Pro-
zess aufgerufen und ausgeführt. Der Aufruf einer solchen Instanz eines
Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI ist daher in Abbildung 5-59 als der erste Teilschritt
PassingControl dargestellt.

Die Ausführung des gebundenen Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI stellt den zwei-
ten Teilschritt ExecuteFunction im Rahmen einer Anwendung der Opera-
tion BindProcessFragment dar. Während dieses Teilschrittes bleibt der Kon-
trollflusspfad des Basisprozesses, von dem die Bindung ausgegangen ist,
inaktiv. Parallele Kontrollflusspfade bleiben jedoch aktiv.

Nachdem die Ausführung der Instanz eines Prozessfragments PFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFIPFI abge-
schlossen ist, wird der dritte und letzte Teilschritt ReturnControl durch-
geführt. So wird die Instanz des ausgehenden Platzhalters in den Zu-
stand Terminating seines Lebenszyklus versetzt. Hierdurch kann seine

Seite 184 Kapitel 5

Ausführung abgeschlossen werden. Bei einer verhaltensbasierten Bin-
dung werden somit die einzelnen Zustände des Lebenszyklus eines Platz-
halters zwischen Binding und Terminating übersprungen. Für dieses Vor-
gehen wurde sich entschieden, da die eigentliche Ausführung einer be-
nötigten Funktion im Gegensatz zu dem strukturbasierten Mechanismus
an einen aufzurufenden Prozess delegiert wird. Die dazwischenliegenden
Zustände des Lebenszyklus der Instanz eines Platzhalters PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI werden
somit nicht benötigt.

Die Anwendung der Operation BindProcessFragment zur verhaltensbasier-
ten Bindung beinhaltet in ihrer zuvor beschriebenen Form explizit auch
die Ausführung der aufgerufenen Instanz eines Prozessfragments. Dies
steht im Kontrast zu der Funktionsweise der Operation im Rahmen einer
strukturbasierten Bindung, da hier die integrierte Instanz eines Prozess-
fragments erst nach Beendigung ausgeführt wird. Es wurde sich für die
vorliegende Variante entschieden, da die weitere Ausführung des ausge-
henden Kontrollflusses stets nach dem Schritt ReturnControl durchgeführt
wird. Dies schließt den Zeitrahmen der Ausführung einer aufgerufenen In-
stanz eines Prozessfragments im Rahmen der verhaltensbasierten Bindung
ein.

5.5.3.2 ChooseProcessFragment

Im Rahmen von Operationen des Typs ChooseProcessFragment wird eine
Auswahl von zu bindenden Funktionen getroffen. Eine derartige Funk-
tion steht in diesem Zusammenhang in Form eines Prozessfragments zur
Verfügung. Dabei kann im Rahmen der zuvor genannten Auswahl eine
Auswertung von Bedingungen durchgeführt werden, durch die die Flexi-
bilität eines Prozesses gesteigert werden kann (siehe auch Abschnitt 5.2.2).
Im Rahmen derartiger Auswertungen von Bedingungen können z.B. ver-
schiedene Eigenschaften in Hinsicht auf die Laufzeit einer konkreten Um-
gebung enthalten sein. Es kann sich in diesem Bezug auch um komplexe
Prozesse zur Entscheidung handeln, sodass neben einer reinen Auswer-
tung von Bedingungen auch weitere Analyseschritte notwendig sein kön-
nen.

Auswahl von
Prozessfragmenten

im Rahmen von
Beobachtungsprozessen

Anstelle der Definition eines eigenen Sprachelements für die Realisierung
der Operation ChooseProcessFragment bietet sich die Verwendung des Be-
obachtungsprozesses (MonitoringProcess) an (siehe Abschnitt 4.2.2). Dies
lässt sich dadurch begründen, dass durch einen Beobachtungsprozess spe-
zifisches Verhalten sowohl für die Analyse als auch für darauf basieren-
de Entscheidungen beschrieben werden kann. Anstelle einer Spezifikation

Entwurfsmuster für flexible und anpassbare Prozesse Seite 185

der Operation ChooseProcessFragment wird im Folgenden ein Beispiel zur
Beschreibung von Bedingungen unter Verwendung eines Beobachtungs-
prozesses gegeben. Diese Beschreibung ist dabei eng an die bereits in Ab-
schnitt 5.2.2 beschriebene Verwendung eines Beobachtungsprozesses zur
Gestaltung des Flexibilitätsaspekts Flexibility-by Design angelehnt.

In Abbildung 5-60 ist ein AC4BPM mit der Bezeichnung ACaseToBindA-
ProcessFragment zum Zweck der Auswahl und Bindung eines Prozessfrag-
ments dargestellt. Der AC4BPM besteht dabei aus einem Beobachtungs-
prozess (Monitoring Process) und zwei Anpassungsprozessen (Adaptati-
on Process). Dabei wird durch den dargestellten Beobachtungsprozess
eine Auswahl von einer der beiden durch einen Anpassungsprozess be-
schriebenen Bindungen eines Prozessfragments beschrieben. Das in den
Beobachtungs- und Anpassungsprozessen dargestellte Verhalten wird im
Folgenden näher beschrieben.

«AdaptCase4BPM»

ACaseToBind
AProcessFragment

Monitoring Process

sample-start-event

CAP
[fancy-condition]

sample-start-event

«BPEnvironment
DataObject»
A-fancy-Information

adaptationProcess =
‘BindFunctionB‘

adaptationProcess =
‘BindFunctionA‘

CAP

Run
Analysis

BindFunctionB

BindFunctionA

Adaptation Process

 placeholder binding
Type

 process
Fragment

Undefined Task Function B ‘Structural‘

BindProcessFragment

Adaptation Process

 placeholder binding
Type

 process
Fragment

Undefined Task Function A ‘Structural‘

BindProcessFragment

Abbildung 5-60:
Verwendung eines Beob-
achtungsprozesses zur
Gestaltung einer Auswahl
eines Prozessfragments

Beobachtungsprozess für
die Auswahl eines
Prozessfragments

Der dargestellte Beobachtungsprozess (Monitoring Process) enthält das Ver-
halten zur Analyse und zur Auswahl einer konkreten Bindung eines ge-
eigneten Prozessfragments. Dabei wird der Beobachtungsprozess durch
das Aufkommen des dargestellten Startereignisses mit der Bezeichnung
sample-start-event gestartet. Nachfolgend wird basierend auf Informatio-
nen aus dem Kontext des Prozesses, hier dargestellt durch das Daten-
objekt mit der Bezeichnung A-fancy-Information, eine Analyse durchge-
führt. Für eine Beschreibung von Datenobjekten im Rahmen der Sprache

Seite 186 Kapitel 5

ACML4BPM wird an dieser Stelle auf Abschnitt 4.3.2 verwiesen. Die Ana-
lyse ist hier beispielhaft durch den Task mit der Bezeichnung Run Analy-
sis dargestellt. Basierend auf den Ergebnissen der Analyse wird nachfol-
gend die Bedingung fancy-condition ausgewertet und je nach Ergebnis ent-
weder der Anpassungsprozess mit der Bezeichnung BindFunctionB oder
mit der Bezeichnung BindFunctionA aufgerufen. Die Ausführung des Be-
obachtungsprozesses ist mit dem Aufruf eines der beiden genannten An-
passungsprozesse abgeschlossen.

Anpassungsprozess zur
Bindung eines

Prozessfragments

Im rechten Bereich von Abbildung 5-60 werden zwei durch den zuvor be-
schriebenen Beobachtungsprozess aufrufbare Anpassungsprozesse darge-
stellt. Dabei wird im Rahmen des in ihnen enthaltenen Verhaltens die in
Abschnitt 5.5.3.1 eingeführte Operation BindProcessFragment zur Bindung
von Prozessfragmenten wiederverwendet. So beschreiben beide Anpas-
sungsprozesse eine strukturbasierte Bindung (Structural) der Prozessfrag-
mente Function A bzw. Function B in den Platzhalter Undefined Task. Eine
Bindung der genannten Prozessfragmente ist mit der Beendigung einer der
beiden Anpassungsprozesse abgeschlossen.

5.5.3.3 SwitchLCPhase

Durch eine Anwendung einer Operation vom Typ SwitchLCPhase wird,
aus einer methodischen Perspektive heraus, von der Phase Ausführung
in eine andere Phase des BPM-Lebenszyklus gewechselt. Hierdurch ist es
möglich, bestimmte methodische Aktivitäten der anderen Phasen auszu-
führen. In dieser Arbeit werden dabei zwei unterschiedliche methodische
Aktivitäten im Rahmen des BPM-Lebenszyklus betrachtet, die gemäß der
in Abschnitt 5.5.1 gegebenen Beschreibung des Flexibilitätsaspekts Late
Modeling typischerweise unterstützt werden sollten. Dabei handelt es sich
zum einen um die Neugestaltung und zum anderen um die Komposition
von Prozessfragmenten. So wird bei einem Wechsel in die Phase Design &
Analyse eine Neugestaltung von Prozessfragmenten ermöglicht. Die hier
im Folgenden näher beschriebene Operation vom Typ SwitchLCPhase bie-
tet die Funktionalität der beiden zuvor beschriebenen Typen von Ope-
rationen CreateProcessFragment und ComposeProcessFragment. Die Signatur
und konkrete Syntax der Operation SwitchLCPhase sind in Abbildung 5-61
angegeben.

Parameter Die Operation SwitchLCPhase erwartet als Eingabe die methodische Akti-
vität (methodologicalActivity), die bei der Anwendung der Operation aus-
geführt werden soll. Die Ausgabe einer Anwendung der Operation ist ein
Prozessmodell (outModel), welches ein neu erstelltes oder komponiertes

Entwurfsmuster für flexible und anpassbare Prozesse Seite 187

Parametername Parametertyp
IN : methodologicalActivity MethodologicalActivityType

OUT : outModel ProcessModel

‘CreateProcessFragment‘ m‘

Switch
LCPhase

out
Model

methodological
Activity

Abbildung 5-61:
Signatur und konkrete
Syntax der Operation
SwitchLCPhase

Prozessfragment enthält. Gültige Werte für den Parameter methodological-
Activity sind durch die in Abbildung 5-55 dargestellte Enumeration vom
Typ MethodologicalActivityType gegeben. So kann durch das Literal Create-
ProcessFragment angegeben werden, dass eine Neugestaltung eines Pro-
zessfragments durchgeführt werden soll. Alternativ wird durch das Lite-
ral ComposeProcessFragment angegeben, dass eine Komposition eines neuen
Prozessfragments auf Basis bestehender Prozessfragmente durchgeführt
werden soll.

Im Folgenden wird auf die operationale Semantik der Anwendung der
Operation SwitchLCPhase eingegangen. Zunächst erfolgt eine solche Be-
schreibung für eine Parametrisierung für die Neugestaltung und anschlie-
ßend für die Komposition von neuen Prozessfragmenten.

Neugestaltung von Prozessfragmenten Das generelle Funktionsprin-
zip einer Anwendung der Operation SwitchLCPhase mit der Parametrisie-
rung zur Neugestaltung von Prozessfragmenten wird in Abbildung 5-62
dargestellt. Dabei werden im Rahmen der Anwendung der Operation die
beiden Teilschritte SwitchToDaA und SwitchToEnactment durchgeführt, die
im Folgenden näher beschrieben werden.

SwitchToDaAIm Rahmen des ersten Teilschrittes SwitchToDaA wird die Neugestaltung
von Prozessfragmenten durch einen Wechsel von der Phase Ausführung
in die Phase Design & Analyse ermöglicht. Anschließend können begin-
nend in der Phase Design & Analyse verschiedenste methodische Aktivitä-
ten (MethodologicalActivity) ausgeführt werden, die für eine Neugestaltung
notwendig sind. Für eine Übersicht über typische Aktivitäten in dieser
Phase wird auf die Beschreibung des BPM-Lebenszyklus in Abschnitt 2.2.2
verwiesen. Zur besseren Veranschaulichung des Funktionsprinzips ist hier
ein Prozess mit einer exemplarischen Auswahl von methodischen Aktivi-
täten dargestellt. So wird hier stellvertretend ein Prozess dargestellt, der
methodische Aktivitäten sowohl aus der Phase Design & Analyse als auch
aus der Phase Konfiguration einschließt. Auf eine Beschreibung dieser Ak-
tivitäten wird nachfolgend Bezug genommen.

Seite 188 Kapitel 5

Abbildung 5-62:
Beispielhafte Anwen-

dung der Operation
SwitchLCPhase (Create)

Phase Design & Analyse

Instanz eines Platzhalters PHI vor
Wechsel der Lebenszyklusphase

Switch
LC

Phase
(Create)

... ...

activeState = ‘Binding‘

Lifecycle

1 2

Undefined Task

activeState = ‘Binding‘

Lifecycle

Undefined Task

Instanz eines Platzhalters PHI nach
Wechsel der Lebenszyklusphase

Switch
To

DaA

Switch
To
Enactment

Phase Konfiguration

PFA n

Process-Repository

Newly created PFA

...

PFA 2

PFA 1

BP

AP

«MethodolicalActivity»

DoImplementation
«MethodolicalActivity»

DoConfiguration
«MethodolicalActivity»

DoCreatePFA

Das Erstellen eines neuen Prozessfragments wird durch den Task DoCreate-
PFA dargestellt. Ein Prozessfragment wird typischerweise im Anschluss
an seine Erstellung in einem Datenspeicher (Process-Repository) zusammen
mit zuvor erstellten Prozessfragmenten (PFA 1, PFA 2, ..., PFA n) abgelegt.
Dabei kann ein solcher Datenspeicher aber auch, wie hier dargestellt, für
eine Ablage aller Prozesse einschließlich der Beobachtungs- (BP) und An-
passungsprozesse (AP) verwendet werden. Auf Basis dieser im Datenspei-
cher abgelegten Prozessmodelle ist eine Ausführungsumgebung in der La-
ge, zugehörige Instanzen zu bilden (siehe Abschnitt 2.2).

Sollen neu erstellte Prozessfragmente auch für zukünftige Bindungen zur
Verfügung stehen, so können weitere methodische Aktivitäten notwen-
dig sein. Daher wird hier im Rahmen der Phase Konfiguration beispiel-
haft die methodische Aktivität DoImplementation aufgeführt. DoImplemen-
tation umfasst dabei Tätigkeiten hinsichtlich benötigter Implementierun-
gen des Prozessfragments, sodass es in zukünftigen Bindungen verwen-
det werden kann. Ferner ist für die Verwendung im Rahmen einer Bin-
dung auch die Anpassung von Beobachtungs- und Anpassungsprozessen
notwendig. Dies lässt sich damit begründen, dass derartige bestehende
Prozesse entsprechend der Verfügbarkeit des neu erstellten Prozessfrag-
ments erweitert bzw. selbst angepasst werden müssen. Daher ist in Abbil-

Entwurfsmuster für flexible und anpassbare Prozesse Seite 189

dung 5-62 die weitere methodische Aktivität DoConfiguration aufgeführt,
in der eine Konfiguration von bestehenden Prozessen – hier als Beispiel
ein Anpassungsprozess – vorgenommen werden kann.

SwitchToEnactmentIst der hier dargestellte stellvertretende Prozess zur Neugestaltung eines
Prozessfragments nach der Aktivität DoConfiguration abgeschlossen, wird
der zweite Teilschritt SwitchToEnactment durchgeführt. Die Anwendung
der Operation SwitchLCPhase ist damit abgeschlossen. Man beachte, dass
hinsichtlich der Instanz PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI keine Anpassung vorgenommen wurde, wie
sie z.B. an ihrem aktuellen Zustand des Lebenszyklus möglich wäre. Dies
lässt sich damit begründen, dass eine Anwendung der Operation Switch-
LCPhase unter der aktuell betrachteten Parametrisierung lediglich ein neu-
es Prozessfragment sowohl erstellt als auch die zugehörige Implementie-
rung und Konfiguration vornimmt. Eine Bindung oder Ausführung des
neu zur Verfügung gestellten Verhaltens kann im Anschluss durchgeführt
werden.

Komposition von Prozessfragmenten Das generelle Funktionsprinzip
einer Anwendung der Operation SwitchLCPhase mit der Parametrisierung
zur Komposition von Prozessfragmenten wird in Abbildung 5-64 darge-
stellt. Dabei werden im Rahmen der Anwendung der Operation die beiden
Teilschritte SwitchToConfiguration und SwitchToEnactment durchgeführt, die
im Folgenden näher beschrieben werden.

SwitchToConfigurationIm Rahmen des ersten Teilschrittes SwitchToConfiguration wird die Kom-
position eines Prozessfragments auf Basis bestehender Prozessfragmente
ermöglicht. Hierzu ist zuvor ein Wechsel von der Phase Ausführung in
die Phase Konfiguration notwendig. Anschließend können beginnend in
der Phase Konfiguration verschiedenste methodische Aktivitäten (Metho-
dologicalActivity) ausgeführt werden, die für eine Komposition notwendig
sind. Für eine Übersicht von typischen Aktivitäten in dieser Phase wird
auf die Beschreibung des BPM-Lebenszyklus in Abschnitt 2.2.2 verwiesen.
Zur besseren Veranschaulichung des Funktionsprinzips ist hier ein Prozess
mit einer exemplarischen Auswahl von methodischen Aktivitäten darge-
stellt. Auf eine Beschreibung dieser Aktivitäten wird nachfolgend Bezug
genommen.

So wird die Komposition eines neuen Prozessfragments durch den Task
DoComposePFA dargestellt. Als Eingabe dienen dabei bestehende Pro-
zessfragmente (PFA 1 und PFA 2), die bereits im Datenspeicher (Process-
Repository) abgelegt waren. Für eine Verwendung des neu komponierten
Prozessfragments kann, wie hier dargestellt, ebenfalls die Ausführung

Seite 190 Kapitel 5

Abbildung 5-63:
Beispielhafte Anwendung

der Operation Switch-
LCPhase (Compose)

Instanz eines Platzhalters PHI vor
Wechsel der Lebenszyklusphase

Switch
LC

Phase
(Compose)

... ...

activeState = ‘Binding‘

Lifecycle

1 2

Undefined Task

activeState = ‘Binding‘

Lifecycle

Undefined Task

Instanz eines Platzhalters PHI nach
Wechsel der Lebenszyklusphase

Switch
To

Configuration

Switch
To
Enactment

Stellvertretender Prozess
beginnend in der
BPM-Lebenszyklusphase
Configuration

Phase Konfiguration

PFA n

Process-Repository

Newly composed PFA

...

PFA 2

PFA 1

BP

AP

«MethodolicalActivity»

DoComposePFA
«MethodolicalActivity»

DoConfiguration

weiterer methodischer Aktivitäten notwendig sein. So wird hier beispiel-
haft, wie zuvor bei der Parametrisierung für die Neugestaltung, ebenfalls
die methodische Aktivität DoConfiguration mit aufgeführt.

SwitchToEnactment Ist der hier dargestellte stellvertretende Prozess zur Komposition eines
Prozessfragments nach der Aktivität DoConfiguration abgeschlossen, wird
der zweite Teilschritt SwitchToEnactment durchgeführt. Die Anwendung
der Operation SwitchLCPhase ist damit abgeschlossen. Man beachte, dass
auch hier hinsichtlich der Instanz PHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHIPHI keine Anpassung vorgenommen
wurde. Dies lässt sich damit begründen, dass eine Anwendung der Opera-
tion SwitchLCPhase unter der aktuell betrachteten Parametrisierung ledig-
lich ein neues Prozessfragment aus bestehenden Prozessfragmenten kom-
poniert und die zugehörige Konfiguration vornimmt. Eine Bindung oder
Ausführung des neu zur Verfügung gestellten Verhaltens kann im An-
schluss durchgeführt werden.

Beispiel für eine
Komposition eines
Prozessfragments

Eine Komposition eines Prozessfragments auf Basis bestehender Prozess-
fragmente kann auch als eine Form einer Anpassung eines leeren Prozess-
modells verstanden werden. Daher wird nachfolgend ein detailliertes Bei-
spiel für eine Komposition unter Verwendung der in Abschnitt 4.3.3 vor-

Entwurfsmuster für flexible und anpassbare Prozesse Seite 191

gestellten Operationen gegeben (siehe Abbildung 5-64). Das Beispiel zeigt
die Komposition des Prozessfragments Newly composed PFA auf Basis der
beiden Prozessfragmente Function A und Function B. Dabei handelt es sich
um eine einfache Sequenzierung, sodass zunächst das Verhalten des Pro-
zessfragments Function A und anschließend das Verhalten des Prozess-
fragments Function B vorkommen soll. Die hier dargestellte Kompositi-
on besteht aus insgesamt vier Schritten, in denen eine Reihe von Opera-
tionen zur Anpassung (siehe Abschnitt 4.3.3) verwendet werden. Die Ope-
rationen sind hier in ihrer textuellen Notation dargestellt. Die vier Schritte
PopulateModel, Connect, ClearUp und AdaptToContext werden nachfolgend
detailliert beschrieben.

Im ersten Schritt PopulateModel werden die Elemente aus den Prozessfrag-
menten Function A und Function B in das Prozessfragment Newly Com-
posed PFA verschoben. Für diesen Vorgang werden zwei Anwendungen
der Operation ModifyPositionOfNodesInContainer unter der Parametrisie-
rung des Kopierens verwendet (siehe Anhang A.3.5). Eine Anpassung der
Prozessfragmente Function A und Function B wird im weiteren Verlauf so-
mit nicht vorgenommen. Im zweiten Schritt Connect werden die kopier-
ten Elemente innerhalb des Prozessfragments Newly composed PFA mitein-
ander verbunden, sodass ein zusammenhängender Kontrollfluss entsteht.
Für diesen Vorgang wird eine Anwendung der Operation AddEdge ver-
wendet (siehe Anhang A.2.1). Dabei wird so vorgegangen, dass ein neues
Kantenelement (e3) vom Typ SequenceFlow hinzugefügt wird. Das Kanten-
element e3 wird derartig mit bestehenden Elementen verbunden, dass es
ausgehend vom Knotenelement LastNode hin zum Knotenelement FirstNo-
de verläuft. Durch das Hinzufügen des Kantenelements e3 werden die bei-
den ursprünglich getrennten Kontrollflüsse miteinander verbunden. Die
bestehenden Start- und Endsymbole mit den Bezeichnungen StartSymbolB
und EndSymbolA sowie ihre ein- bzw. ausgehenden Kantenelemente e1
und e2 werden nun nicht mehr benötigt. Daher werden sie im dritten
Schritt ClearUp durch zwei Anwendungen der Operation RemoveNode ent-
fernt (siehe Anhang A.1.2). Hier kann die Funktionsweise der Operation
RemoveNode zur Vermeidung weiterer Anwendungen von Operationen zur
Anpassung genutzt werden, da auch die nicht mehr benötigten ein- und
ausgehenden Kantenelemente e1 und e2 entfernt werden. Im letzten Schritt
AdaptToContext werden im Bedarfsfall Eigenschaften von Elementen an ih-
ren neuen Kontext angepasst. In dem hier dargestellten Beispiel wird da-
her die Benennung des Start- bzw. des Endsymbols des Prozessfragments
in Anlehnung an seinen Namen hin zu StartSymbolNcPFA bzw. EndSym-
bolNcPFA angepasst.

Seite 192 Kapitel 5

Abbildung 5-64:
Beispiel für die

Komposition eines
Prozessfragments

StartSymbolA

... e1PFSE

EndSymbolA

«ProcessFragment»

Function B

e2

StartSymbolB

...PFSE

EndSymbolB

Last
Node

First
Node

First Node Element
of Function B

Last Node Element
of Function B

«ProcessFragment»

Function A

«ProcessFragment»

Newly composed PFA

1
Populate
Model

2 Connect

3 Clear
Up

PFEE PFEE

StartSymbolA

... e1PFSE

EndSymbolA

Last
Node

PFEE e2

StartSymbolB

...PFSE

EndSymbolB

First
Node

PFEE

«ProcessFragment»

Newly composed PFA

StartSymbolA

... e1PFSE

EndSymbolA

Last
Node

PFEE e2

StartSymbolB

...PFSE

EndSymbolB

First
Node

PFEE

e3

«ProcessFragment»

Newly composed PFA

StartSymbolA

...PFSE ...

EndSymbolB

First
Node

PFEEe3
Last

Node

4
AdaptTo
Context

«ProcessFragment»

Newly composed PFA

...PFSE ...
First
Node

PFEEe3
Last

Node

StartSymbolNcPFA EndSymbolNcPFA

ModifyPositionOfNodesInContainer
(Function A, {}, Newly composed PFA, ‘true‘)
: Newly composed PFA
ModifyPositionOfNodesInContainer
(Function B, {}, Newly composed PFA, ‘true‘)
: Newly composed PFA

AddEdge
(Newly composed PFA, e3, LastNode, FirstNode)
: Newly composed PFA

RemoveNode
(Newly composed PFA, EndSymbolA)
: Newly composed PFA
RemoveNode
(Newly composed PFA, StartSymbolB)
: Newly composed PFA

ModifyPropertyOfNode
(Newly composed PFA, StartSymbolA, ‘Name‘,
‘StartSymbolNcPFA‘)
: Newly composed PFA
ModifyPropertyOfNode(Newly composed PFA,
EndSymbolB, ‘Name‘, ‘EndSymbolNcPFA‘)
: Newly composed PFA

Entwurfsmuster für flexible und anpassbare Prozesse Seite 193

Die zuvor beschriebene Komposition zur Erstellung des Prozessfragments
Newly composed PFA stellt nur ein mögliches Beispiel für die Komposition
neuer Prozessfragmente auf Basis bestehender Prozessfragmente dar. So
lassen sich nicht nur einfache Sequenzierungen beschreiben; stattdessen
sind auch komplexere Kompositionen möglich, bei denen z.B. auch neue
Elemente hinzugefügt oder bestehende entfernt werden können.

5.5.4 Zusammenfassung

In diesem Abschnitt wurde das vierte und letzte Entwurfsmuster in An-
lehnung an den Flexibilitätsaspekt Flexibility-by Underspecification vorge-
stellt. Dabei wurden zunächst die beiden Untertypen Late Selection und Late
Modeling detailliert vorgestellt. Im weiteren Verlauf des Abschnittes wur-
de eine Spracherweiterung zur Gestaltung von Prozessfragmenten und
zur Unterstützung des Flexibilitätsaspekts beschrieben. Bei der Spracher-
weiterung wird auf bereits vorgestellte Konzepte zur Beschreibung von
Task- und Prozessinstanzen zurückgegriffen (siehe Abschnitt 5.3.3). Un-
ter Verwendung dieser Spracherweiterung konnten anschließend Opera-
tionen beschrieben werden, die die wesentlichen Funktionsprinzipien von
Late Selection und Late Modeling umsetzen. Der in diesem Abschnitt vor-
gestellte Gesamtansatz bietet hierdurch die Möglichkeit einer erweiterten
Unterstützung in der Gestaltung von flexiblen und anpassbaren Prozes-
sen.

5.6 Zusammenfassung

In den vorherigen Abschnitten wurden verschiedene Flexibilitätsaspekte
aus der Domäne BPM vorgestellt. Jeder dieser Flexibilitätsaspekte wurde
dabei zunächst analysiert. In einem weiteren Schritt wurde eine mögliche
Unterstützung bei der Gestaltung von flexiblen und anpassbaren Prozes-
sen durch die Sprache ACML4BPM beschrieben. Für diese Unterstützung
waren je nach Flexibilitätsaspekt verschiedene Erweiterungen notwendig.
So wurde bspw. eine methodisch neuartige Gestaltung für den Flexibili-
tätsaspekt Flexibility-by Design (siehe Abschnitt 5.2) vorgestellt. Für weite-
re Aspekte von Flexibilität, wie etwa Flexibility-by Change, Flexibility-by De-
viation und Flexibility-by Underspecification, wurden Konzepte zur Gestal-
tung unter Verwendung der Sprache ACML4BPM beschrieben. Als Resul-
tat in Form der Gesamtheit dieser Konzepte stehen Entwurfsmuster für
flexible und anpassbare Prozesse zur Verfügung, die für die Entwicklung

Seite 194 Kapitel 5

von prozesszentrischen Softwaresystemen als eine Art Best-Practice einge-
setzt werden können. In diesem Abschnitt wird nachfolgend auf die in Ab-
schnitt 5.1 eingeführten Fragestellungen eingegangen. Hierzu ist in Tabel-
le 5-4 eine Auflistung von Zielen sowie deren Erfüllung in Anlehnung an
diese Fragestellungen dargestellt.

Tabelle 5-4:
Übersicht über gesetzte

Ziele und deren Erfüllung
für die Musterbasierte Un-
terstützung in der Gestal-

tung von flexiblen und
anpassbaren Prozessen

Fragestellung Ziel Erfüllung

1 Identifikation von relevanten Flexibilitätsaspekten in
Prozessen der Domäne BPM

3

2 Erarbeitung von Entwurfsmustern zur Beschreibung von
Flexibilitätsaspekten unter Verwendung der Sprachen
ACML4BPM und BPMN2.0

3

3 Beschreibung von Spracherweiterungen zur Unterstüt-
zung bei der Gestaltung von Flexibilitätsaspekten unter
Verwendung der Sprache ACML4BPM

3

4 Beschreibung von Erweiterungen von Methoden zur Ge-
staltung

3

Identifikation von
Flexibilitätsaspekten

In der Domäne BPM existieren zahlreiche Arbeiten, die sich mit Flexibi-
lität von Prozessen beschäftigen. Dabei wurde für diese Arbeit initial die
Anforderung gesetzt, nicht lediglich einen einzelnen Flexibilitätsaspekt zu
unterstützen. Stattdessen sollte eine Menge von klassischen Typen von
Flexibilitätsaspekten unterstützt werden, sodass die daraus folgende Men-
ge von Entwurfsmustern als Beispiel für Best-Practice verwendet werden
kann (siehe Abschnitt 1.3). Hierbei bot sich die Anlehnung an verschiedene
Taxonomien für Typen von Flexibilität in Prozessen an, wie sie z.B. durch
[Sch+08], [RW12] oder [RSS06] gegeben sind. Aufgrund einer hohen Über-
einstimmung gegebener Taxonomien wurde sich für eine Arbeit [Sch+08]
entschieden, die auf einem vergleichbaren Abstraktionsniveau wie die vor-
liegende Lösung beschrieben worden ist.

Entwurfsmuster Die in den vorherigen Abschnitten vorgestellten Entwurfsmuster von
Flexibilitätsaspekten basieren auf Schonenberg et. al [Sch+08]. So werden in
der vorliegenden Arbeit insgesamt vier Entwurfsmuster vorgestellt, die
hinsichtlich Schonenberg et. al eine abgeschlossene Menge von Flexibilitäts-
aspekten darstellen. Durch das zuerst in Abschnitt 5.2 vorgestellte Ent-
wurfsmuster Flexibility-by Design ist die Gestaltung von Prozessen unmit-
telbar selbst betroffen. So wird die Gestaltung der drei Aspekte Choice,
Iteration und Cancellation unter Verwendung der Sprache ACML4BPM
(siehe Kapitel 4) beschrieben. Anschließend folgt die Vorstellung des
Entwurfsmusters für den Flexibilitätsaspekt Flexibility-by Change in Ab-
schnitt 5.3. Bei diesem Entwurfsmuster wird die Anpassung von Prozes-

Entwurfsmuster für flexible und anpassbare Prozesse Seite 195

sen hinsichtlich ihrer Modelle und deren Instanzen fokussiert. Dabei wur-
den diverse Strategien für die Migration von Anpassungen an Modellen
hin zu deren Instanzen vorgestellt. Das zugehörige Entwurfsmuster ent-
hält in diesem Bezug eine Reihe von Operationen sowie eine konzeptio-
nelle Erweiterung der Sprache BPMN2.0. Das Entwurfsmuster des Flexi-
bilitätsaspekts Flexibility-by Deviation wird in Abschnitt 5.4 beschrieben. Es
greift auf die konzeptionelle Erweiterung der Sprache BPMN2.0 für das
Entwurfsmuster des Flexibilitätsaspekts Flexibility-by Change zurück. Fer-
ner werden spezifische Operationen vorgestellt, mit denen typische Ver-
fahrensweisen des Flexibilitätsaspekts für die Abweichung von vordefi-
nierten Kontrollflüssen abgebildet werden können. Das letzte Entwurfs-
muster für den Flexibilitätsaspekt Flexibility-by Underspecification (siehe
Abschnitt 5.5) stellt eine in der Literatur häufig vorkommende Art von
Flexibilität dar. Die Beschreibung des Entwurfsmusters enthält neben ei-
ner weiteren konzeptionellen Erweiterung der Sprache BPMN2.0 auch
diverse Operationen zur Unterstützung des Flexibilitätsaspekts.

SpracherweiterungenFür die in diesem Kapitel vorgestellten Entwurfsmuster waren diver-
se Erweiterungen der Sprache ACML4BPM notwendig. Beispiele hierfür
waren die Entwurfsmuster der Flexibilitätsaspekte Flexibility-by Change,
Flexibility-by Deviation und Flexibility-by Underspecification. Derartige Er-
weiterung sind gegeben durch Sprachelemente zur Beschreibung von
grundlegenden Konzepten eines Flexibilitätsaspekts. Aufbauend konnten
jeweils Operationen eingeführt werden, die typische Verfahrensweisen
eines jeden betrachteten Flexibilitätsaspekt umsetzen.

Erweiterung von MethodenFür die Gestaltung von flexiblen und anpassbaren Prozessen sind geeigne-
te Methoden notwendig, die sich in Teilen auch auf die Verwendung eines
Flexibilitätsaspekts beziehen. Beispiele hierfür sind durch Late Modeling
oder durch Flexibility-by Design gegeben. In den vorgestellten Lösungen
wird je nach Notwendigkeit auch Bezug auf methodische Besonderhei-
ten bei der Gestaltung von Flexibilitätsaspekten genommen. Eine Veror-
tung von grundlegenden methodischen Aktivitäten in einer domänenspe-
zifischen Methode wird in einem weiteren Lösungsteil (siehe Kapitel 6)
vorgenommen.

Adaptivity Engineering
für flexible und

anpassbare Prozesse

Kapitel6
Die Gestaltung von flexiblen und anpassbaren Prozessen sollte neben ei-
ner adäquaten Sprache (siehe Kapitel 4) sowie zugehörigen Entwurfsmus-
tern (siehe Kapitel 5) auch durch einen geeigneten methodischen Rahmen
unterstützt werden. Dieses Kapitel stellt daher eine domänenspezifische
Erweiterung des Adaptivity Engineering in Form der Methode Adapt Cases
4 BPM vor. Hierdurch soll die angedachte Verwendung von bisher vor-
gestellten Lösungsteilen in Form der Sprache ACML4BPM sowie von den
Entwurfsmustern verdeutlicht werden. Eine Übersicht über die nachfol-
genden Inhalte ist in Abbildung 6-1 dargestellt.

Adaptivity Engineering
für flexible und anpassbare Prozesse

Übersicht über
einen erweiterten

BPM-Lebenszyklus

Abschnitt 6.1

Adapt Cases 4 BPM

Abschnitt 6.2

Zusammenfassung

Abschnitt 6.3

Abbildung 6-1:
Übersicht über das
Adaptivity Engineering
für flexible und anpassba-
re Prozesse

Im Folgenden wird auf die in Abbildung 6-1 abgebildeten Inhalte des
Adaptivity Engineering für flexible und anpassbare Prozesse eingegangen.
Da im BPM typischerweise Modelle des Lebenszyklus von Prozessen
(siehe auch Abschnitt 2.2.2) eingesetzt werden, wird die Methode Adapt
Cases 4 BPM als eine Erweiterung eines BPM-Lebenszyklus beschrieben.
Eine Übersicht über die Einbettung der Methode Adapt Cases 4 BPM in
diesen BPM-Lebenszyklus wird zunächst in Abschnitt 6.1 gegeben. Im An-

Seite 198 Kapitel 6

schluss folgt in Abschnitt 6.2 eine detaillierte Beschreibung relevanter Ak-
tivitäten und Artefakte sowie deren Relation entlang eines domänenspezi-
fischen methodischen Rahmens in Form der Methode Adapt Cases 4 BPM.
Das Kapitel schließt in Abschnitt 6.3 mit einer kritischen Zusammenfas-
sung der in diesem Kapitel vorgestellten Inhalte ab.

6.1 Übersicht über einen erweiterten BPM-Lebenszyklus

In diesem Abschnitt wird die Integration von relevanten Aktivitäten und
Artefakten des Adaptivity Engineering für flexible und anpassbare Prozesse
in den BPM-Lebenszyklus nach Weske [Wes12] beschrieben. Die Darstellung
eines erweiterten BPM-Lebenszyklus ist in Abbildung 6-2 dargestellt.

Abbildung 6-2:
Schematische Darstel-

lung des erweiterten
BPM-Lebenszyklus

Erweiterter BPM-Lebenszyklus

Identifikation und (Neu-)Gestaltung

Aspekte
der Anpassungslogik

Aspekte
 der Anwendungslogik

Konfiguration

Evaluation

Design & Analyse

Ausführung

Redefines Identifikation und (Neu-)Gestaltung

«MethodologicalActivity»

High-Level-Gestaltung

«MethodologicalActivity»

Low-Level-Gestaltung

«MethodologicalActivity»

Anforderungsanalyse

Anforderungen
Domänenmodell

High-Level
Adaptation View Model 4 BPM

Adapt Cases 4 BPM

Im linken Bereich sind die bereits in Abschnitt 2.2.2 vorgestellten Pha-
sen Design & Analyse, Konfiguration, Ausführung sowie Evaluation des BPM-
Lebenszyklus dargestellt. Da durch diese Arbeit die Gestaltung von Prozes-
sen fokussiert worden ist, betrifft die im rechten Bereich dargestellte Er-
weiterung die Phase Design & Analyse. Das Adaptivity Engineering kann
dabei auch für weitere Phasen relevant sein, da erstellte Artefakte auch
Einfluss auf weitere methodische Aktivitäten und auf deren übliche Ar-
tefakte haben können. Als Beispiel kann die Fragestellung hinsichtlich ei-

Adaptivity Engineering für flexible und anpassbare Prozesse Seite 199

ner gemeinsamen Ausführung von Aspekten der Anpassungs- und An-
wendungslogik eingeführt werden. So könnte die Anforderung bestehen,
das Separation-of-Concerns nicht nur in der Gestaltung, sondern auch in der
Ausführung durchzuführen. Aufgrund des gesetzten Fokus auf die Gestal-
tung von Prozessen wurden derartige Fragestellungen hinsichtlich weite-
rer Phasen des BPM-Lebenszyklus nicht behandelt. Sie stellen dabei jedoch
die Basis für die zukünftige Forschung an entsprechenden Lösungen (siehe
Abschnitt 8.2) dar. Dennoch wird auf unterschiedliche Zwecke für die Ver-
wendung der Sprache ACML4BPM und der zugehörigen Entwurfsmuster
in Form einer Ergänzung in Abschnitt 6.2.4 näher eingegangen.

Die dargestellte Erweiterung stellt ein mögliches Beispiel für eine metho-
dische Integration notwendiger Aktivitäten und Artefakte des Adaptivity
Engineering dar. So können je nach Anforderungen an einen methodi-
schen Rahmen auch Alternativen, wie z.B. der Lebenszyklus nach Dumas
[Dum+18], gewählt werden. Dabei ist jedoch jeweils individuell zu prüfen,
wie sich spezifische methodische Aktivitäten übertragen lassen. So ist es
z.B. möglich, dass sich die drei dargestellten Aktivitäten auf mehrere Pha-
sen eines anderen Lebenszyklus verteilen. Es wird angenommen, dass eine
Übertragbarkeit aufgrund generischer Eigenschaften der nachfolgenden
Beschreibung und Darstellung von Abhängigkeiten jedoch realisierbar ist.

Bei der Integration von relevanten Aktivitäten und deren Artefakten des
Adaptivity Engineering in den BPM-Lebenszyklus wurde sich für eine Rede-
finition der Aktivität Identifikation und (Neu-)Gestaltung entschieden. Die
Integration folgt in weiten Teilen dem durch Luckey [Luc13] beschriebenen
Vorgehen (siehe auch Abschnitt 2.4.4) und wurde an spezifischen Stellen
hinsichtlich üblicher Artefakte des BPM angepasst. Insgesamt umfasst die-
ses Vorgehen die drei methodischen Aktivitäten Anforderungsanalyse, High-
Level-Gestaltung und Low-Level-Gestaltung.

Im Rahmen jeder Aktivität werden Artefakte erzeugt, die in der Gestaltung
von flexiblen und anpassbaren Prozessen benötigt werden. Das Adaptivity
Engineering fokussiert dabei die Trennung von Aspekten der Anpassungs-
logik und Aspekten der Anwendungslogik (Separation-of-Concerns). Die je-
weils zugehörigen Artefakte werden in den Farben Dunkelgrau hinsicht-
lich der Aspekte der Anwendungslogik und in Hellgrau hinsichtlich der
Aspekte der Anpassungslogik dargestellt.

Nachfolgend wird in Abschnitt 6.2 die Methode Adapt Case 4 BPM in
Form einer Detaillierung der Redefinition der Aktivität Identifikation und
(Neu-)Gestaltung beschrieben.

Seite 200 Kapitel 6

6.2 Adapt Cases 4 BPM

Die Durchführung eines Adaptivity Engineering für flexible und anpassba-
re Prozesse ist durch die Methode Adapt Cases 4 BPM möglich. Dabei liegt
der Fokus dieser Methode auf der getrennten Gestaltung von Aspekten der
Anpassungslogik und Aspekten der Anwendungslogik. Hierzu wurde zu-
vor in Abschnitt 6.1 die Integration von spezifischen Aktivitäten und Arte-
fakten eingeführt. Nachfolgend wird eine Detaillierung der Aktivität Iden-
tifikation und (Neu-)Gestaltung in Anlehnung an Abbildung 6-3 beschrieben.

Abbildung 6-3:
Detaillierung der Akti-
vität Identifikation und

(Neu-)Gestaltung des
Adaptivity Engineering

H
ig

h
-L

ev
el

-G
es

ta
lt

un
g

A
nf

o
rd

er
u

ng
sa

n
al

ys
e

Lo
w

-L
ev

el
-G

es
ta

lt
un

g

HL-ACM4BPM

 AC4BPM1

nutzt

LL-ACM4BPM

Beobachtungsprozess

Anpassungsprozess

nutzt

Komponenten-
diagramm

Komponente

HL-AVM4BPM

 MC‘ EC‘

 ENV‘
Sicht-auf

HL-AVM4BPM

 MC EC

 ENV
Sicht-auf

Komponenten-
diagramm

Business Process
Diagram

Prozess

a
b

g
eleitet-vo

n

verfein
e

rt

verfein
e

rt

verfein
e

rt

passt-an / flexibilisiert

Ziel-Spezifikation

GoalGoalGoalZiel

b
ezieh

t-sich
-a

u
f

b
ezieh

t-sich
-a

u
f

Klassendiagramm

variable: type

Entität

variable: type

Entität

variable: type

Entität

variable: type

Entität

passt-an / flexibilisiert

Neugestaltung

Verbesserung

RELAX-Spezifikation

Der Prozess soll angepasst
werden, wenn ...

Der Prozess soll angepasst
werden, wenn ...

Der Prozess soll angepasst
werden, wenn ...

«RELAX Req»

Use Case-
Diagramm

 UC1 Komponente

rea
lisie

rt

Im weiteren Fokus liegen dabei die in Abbildung 6-3 dargestellten Abhän-
gigkeiten zwischen spezifischen Artefakten der Aktivitäten Anforderungs-
analyse, High-Level-Gestaltung und Low-Level-Gestaltung. So wird nachfol-
gend zunächst auf die Anforderungsanalyse in Abschnitt 6.2.1 eingegangen.
Es folgt die Beschreibung der High-Level-Gestaltung in Abschnitt 6.2.2 und
der Low-Level-Gestaltung in Abschnitt 6.2.3. Dabei können je nach Anfor-

Adaptivity Engineering für flexible und anpassbare Prozesse Seite 201

derungen an das methodische Vorgehen und je nach gewählten Techniken
zur Gestaltung auch andere Artefakte vorkommen. Die Beschreibungen
sind daher als ein exemplarischer Verlauf zu betrachten.

6.2.1 Anforderungsanalyse

Die erste Aktivität der Methode Adapt Cases 4 BPM in Form der Anforde-
rungsanalyse wird klassischerweise durch zwei unterschiedliche Treiber
angestoßen. Da es sich um einen Lebenszyklus von Prozessen handelt, ist
es möglich, dass es sich um die erste Iteration oder um eine der nachfol-
genden Iterationen handelt. Man spricht hierbei von einer Neugestaltung
oder von einer Verbesserung von Prozessen.

Die Neugestaltung adressiert sowohl existierende – aber bisher nicht durch
das BPM erfasste – als auch zukünftige Prozesse. So können in Organisa-
tionen eine Vielzahl von gelebten oder kulturell belegten Prozessen exis-
tieren, deren systematische Dokumentation oder IT-Unterstützung bisher
nicht im Fokus eines praktisch durchgeführten BPM lagen. Sollen derartige
Prozesse erstmalig durch das BPM verwaltet werden, handelt es sich um
die erste Iteration ihres Lebenszyklus. Beide Arten von Prozessen werden
folglich neu gestaltet.

Bereits existierende Prozesse unterliegen in Organisationen einer kontinu-
ierlichen Verbesserung, in der der Prozess iterativ verbessert wird. Man
spricht bei diesem Vorgehen auch von einem kontinuierlichen Verbesserungs-
prozess (KVP). Eine Iteration eines Lebenszyklus stellt dabei einen natürli-
chen Ablauf zur Verbesserung von Prozessen dar. Dabei können Verbes-
serungen eines Prozesses durch geänderte organisationale Ziele bewirkt
werden oder auf Analysen auf Basis von Prozesshistorien beruhen. Die
Identifikation von geänderten Zielen oder die durchgeführten Analysen,
wie z.B. das Process Mining oder das Conformance Checking [Aal16], können
als Teil der Phase Evaluation verstanden werden. Die Artefakte der Pha-
se Evaluation können anschließend in einem nachfolgenden Durchlauf des
BPM-Lebenszyklus verwendet werden.

In beiden Varianten von Treibern steht das Ziel auf der strategischen Ebene
der Betrachtung im Vordergrund. Ziele können dazu verwendet werden,
um in einer frühen Phase der Gestaltung die grundlegende Motivati-
on für Prozesse auf einer strategischen Ebene zu beschreiben (siehe Ab-
schnitt 2.2.1). Je nach organisationaler Einbettung können Ziele aus un-
terschiedlichen Arbeitseinheiten stammen. Dabei entsteht häufig die Her-
ausforderung für die Durchführung eines Zielabgleichs zwischen unter-

Seite 202 Kapitel 6

schiedlichen Arbeitseinheiten. Hier können Konflikte entstehen, die sich
methodisch durch ein geeignetes Business IT-Alignment [GTG15] auflö-
sen lassen. Arbeiten, die sich bspw. mit der zielorientierten Gestaltung
von Prozessen auseinandergesetzt haben und im Rahmen des Business
IT-Alignment eingesetzt werden können, wurden durch [DP10; Poe+13;
Nag15] vorgestellt. Wurden Ziele abgeglichen, können sie zudem als
Grundlage für die Beschreibung von natürlichsprachlichen Anforderun-
gen und von Domänenmodellen eingesetzt werden.

Anforderungen in natürlicher Sprache werden heutzutage in vielen unter-
schiedlichen Methoden eingesetzt. Dabei birgt der Einsatz von natürlicher
Sprache oftmals die Gefahr von Fehlinterpretationen oder einer zu um-
fangreichen Größe der Anforderungsspezifikation. Hier können Methoden
und Techniken eingesetzt werden, die die Kontrolle hinsichtlich der einge-
setzten Sprache fokussieren. Eine solche Sprache kann dann auch als kon-
trollierte natürliche Sprache (engl. CNL) bezeichnet werden. Eine CNL stellt
dabei eine Untermenge der natürlichen Sprache dar, die sich durch Re-
striktionen und durch die Einführung fester Begrifflichkeiten auszeichnet.
Hierdurch können derartige Sprachen auch maschinenlesbar sein, sodass
sie vorteilhaft in der modellgetriebenen Entwicklung im Rahmen einer Au-
tomatisierung eingesetzt werden können.

Beispiele für kontrollierte Sprachen sind in der Literatur durch ACE
[FKK08] oder CPL [Cla+09] gegeben. Dabei ist anzumerken, dass das
Adaptivity Engineering insbesondere solche Funktionen fokussiert, die die
Anpassungsfähigkeit eines Systems betreffen. Für die Gestaltung von An-
forderungen derartiger Funktionen sind Elemente einer Sprache notwen-
dig, die eine gewisse Unsicherheit (engl. uncertainty) berücksichtigen.
Eine derartige Sprache wird auch bereits für den vorherigen Stand des
Adaptivity Engineering durch Luckey [Luc13] empfohlen und ist durch RE-
LAX [Whi+09] gegeben.

Eine erste Gestaltung von wesentlichen Konzepten und Eigenschaften von
Prozessen kann durch Domänenmodelle beschrieben werden. Domänen-
modelle enthalten relevante Konzepte bzw. Begrifflichkeiten sowie Eigen-
schaften und Relationen zueinander. Hierfür können je nach späterer Wei-
terverwendung unterschiedliche Techniken eingesetzt werden. Beispiele
sind durch geordnete natürlichsprachliche Texte in Form von Glossaren
oder durch Diagramme in Form von UML Klassendiagrammen oder Mind-
Maps gegeben. Domänenmodelle können anschließend die Basis für die
Ableitung von ersten strukturellen Informationen über das System und
seine Umgebung bilden.

Adaptivity Engineering für flexible und anpassbare Prozesse Seite 203

6.2.2 High-Level-Gestaltung

Auf Basis der zuvor erstellten Anforderungen und Domänenmodelle kann
in dem nachfolgenden Schritt der High-Level-Gestaltung eine frühe Version
sowohl vom Verhalten als auch von der Struktur des Systems und seiner
Umgebung beschrieben werden. Dabei unterscheidet das Adaptivity Engi-
neering klassischerweise zwischen den Beschreibungen von Aspekten der
Anpassungs- und der Anwendungslogik. Ein Beispiel für den Schritt der
High-Level-Gestaltung wird in Abschnitt 7.1 im Zuge der Evaluation durch
das beschriebene Szenario gegeben.

Aspekte der AnwendungIm Rahmen der High-Level-Gestaltung wird das Verhalten der Anwen-
dungslogik eines Systems und seiner Umgebung in Form von UML Use
Cases beschrieben. Jeder gestaltete Use Case stellt dabei eine Funktion
dar, durch die eine (Teil-)Anforderung an das Verhalten erfüllt bzw. ein
(Teil-)Ziel erreicht werden kann. Dementsprechend kann es notwendig
sein, eine Reihe von Funktionen zu gestalten, bei der erst deren Gesamt-
heit eine Anforderung erfüllt.

In der Gestaltung von Funktionen können dabei bereits Eigenschaften
berücksichtigt werden, die in einer ersten Strukturierung des Systems
vorkommen. Hierzu können z.B. UML Komponentendiagramme verwen-
det werden. Dabei werden erste Eigenschaften berücksichtigt, die auch be-
reits in der Beschreibung der Domänenmodelle vorgekommen sind. Durch
Komponenten kann darüber hinaus auch die Architektur des Systems und
seiner Umgebung beschrieben werden. Oftmals werden dabei schon in
diesem Schritt vorerst einzelne Funktionen auf Komponenten verteilt.

Aspekte der AnpassungIn enger Anlehnung an das bisher beschriebene Verhalten und die Struk-
tur des Systems werden in einem weiteren Schritt auch Aspekte der Anpas-
sungslogik beschrieben. Das Adaptivity Engineering sieht in diesem Schritt
die Gestaltung von zwei aufeinander aufbauenden Artefakten vor. Zum
einen ist das Adaptation View Model 4 BPM (siehe Abschnitt 4.3) und zum
anderen das Adapt Case Model 4 BPM (siehe Abschnitt 4.2) zu gestalten.

Zuerst bietet sich die Gestaltung des Adaptation View Model 4 BPM
(AVM4BPM) an. Das AVM4BPM beschreibt in diesem Schritt eine frü-
he Sicht auf das Gesamtsystem aus der Perspektive der Flexibilisierung
der betroffenen Prozesse. So sollte es bspw. auch bereits Ereignisse be-
schreiben, die für die Auslösung des Verhaltens für eine mögliche Anpas-
sung verwendet werden können. Derartige Ereignisse sind Teil der Gestal-
tung von Sensorschnittstellen einer System- oder Umgebungskomponen-
te (siehe Abschnitt 4.3.2). Die im AVM4BPM beschriebenen Eigenschaften

Seite 204 Kapitel 6

können anschließend in der Gestaltung von Funktionen der Anpassungs-
logik im Rahmen des ACM4BPM genutzt werden (siehe Abbildung 6-3).

Das ACM4BPM enthält Funktionen zur Anpassung bzw. zur Flexibilisie-
rung. Derartige Funktion werden durch das Konzept des Adapt Case 4 BPM
(AC4BPM) repräsentiert. Ein AC4BPM kann sowohl zeit- als auch ereignis-
basiert ausgelöst werden. Nicht zeitbasierte Ereignisse sollten dabei bereits
durch das AVM4BPM eingeführt worden sein.

Bei der zuvor beschriebenen Reihenfolge für die Erstellung des AVM4BPM
und des ACM4BPM handelt es sich um eine Empfehlung. Sie kann ver-
nachlässigt werden, wenn z.B. zunächst losgelöst Aspekte der Anpas-
sungslogik beschrieben werden sollen, die sich erst in späteren Schritten
der Verfeinerung auf weitere Eigenschaften des Systems oder seiner Um-
gebung beziehen. Wurden sowohl Aspekte der Anpassungs- als auch der
Anwendungslogik durch UML Use Cases bzw. Adapt Cases 4 BPM beschrie-
ben, kann in die nächste Aktivität des Adaptivity Engineering gewechselt
werden.

6.2.3 Low-Level-Gestaltung

Die Aktivität der Low-Level-Gestaltung stellt den letzten Schritt im Rahmen
des Adaptivity Engineering für flexible und anpassbare Prozesse dar. Dabei
werden die Verfeinerungen des zuvor beschriebenen Verhaltens und der
Struktur des Systems und seiner Umgebung vorgenommen. Dabei wird
abermals zwischen Aspekten der Anwendungs- und Anpassungslogik un-
terschieden. Ein Beispiel für den Schritt der Low-Level-Gestaltung wird in
Abschnitt 7.1 im Zuge der Evaluation durch das beschriebene Szenario ge-
geben.

Aspekte der Anwendung So können durch Prozessdiagramme (BPD) der Sprache BPMN2.0 soge-
nannte Basisprozesse (hier: Prozess) beschrieben werden. Ein Basisprozess
stellt einen Prozess dar, der als Basis für anzuwendende Anpassungen
oder Maßnahmen zur Flexibilisierung betrachtet wird. Das in ihm ent-
haltene Verhalten verfeinert einen oder eine Reihe von zuvor gestalteten
Funktionen in Form von UML Use Cases. Alternativ kann er aber auch wei-
teres Verhalten enthalten, welches als Ergänzung zu zuvor beschriebenen
Funktionen betrachtet werden kann. Basisprozesse können darüber hin-
aus auch mit anderen Basisprozessen interagieren. Für die Beschreibung
derartiger Interaktionen bieten sich weitere Diagrammtypen der Sprache
BPMN2.0 an, wie z.B. Kollaborations- oder Konversationsdiagramme. Da
der in dieser Arbeit beschriebene Ansatz die Gestaltung von Prozessen

Adaptivity Engineering für flexible und anpassbare Prozesse Seite 205

durch BPD fokussiert, werden derartige Interaktionen methodisch nicht
aktiv berücksichtigt. Durch die enge Anlehnung an die Sprache BPMN2.0
kann die Verwendung derartiger Diagramme aber als durchführbar be-
trachtet werden.

Die Struktur des Systems und seiner Umgebung wurde bereits in dem letz-
ten Schritt durch UML Komponentendiagramme beschrieben. Da es im Rah-
men des Adaptivity Engineering jedoch vorkommen kann, das Funktionen
ungünstig verteilt oder strukturelle Eigenschaften nicht umfassend genug
gestaltet worden sind, kann es notwendig sein, dass zuvor erstellte UML
Komponentendiagramm anzupassen oder zu verfeinern. Das geänderte bzw.
verfeinerte UML Komponentendiagramm enthält anschließend eine umfas-
sende Beschreibung von Eigenschaften und eine Verteilung von Funktio-
nen auf Komponenten.

Aspekte der AnwendungDurch die Low-Level-Gestaltung wird die Verfeinerung von Anpassungsfäl-
len (AC4BPM) vorgesehen. Ein AC4BPM kann durch Beobachtungs- (Mo-
nitoring Process) und Anpassungsprozesse (Adaptation Process) verfeinert
werden (siehe Abschnitt 4.2.2 bzw. Abschnitt 4.2.3).

Analog zur High-Level-Gestaltung ist auch hier zu empfehlen, zunächst die
Gestaltung des AVM4BPM vorzunehmen. Falls sich Komponenten der An-
wendungslogik durch die jeweilige Verfeinerung bzw. Anpassung geän-
dert haben, bietet sich die Erstellung des AVM4BPM als verfeinerte Sicht
auf eben diese Komponenten an. Neben den bereits in der High-Level-
Gestaltung hinzugefügten Ereignissen sollten Sensor- und Effektorschnitt-
stellen auch über Operationen zur Anpassung sowie für einen kontrollier-
ten Zugriff auf Daten zur Verfügung gestellt werden. Dabei profitiert die
Methode Adapt Cases 4 BPM von dem Umstand, dass bereits diverses do-
mänenspezifisches Wissen in der Sprache ACML4BPM integriert ist und
an dieser Stelle verwendet werden kann. So ist eine Beschreibung von ele-
mentaren Operationen zur Anpassung von Prozessen nicht in jedem Fall
notwendig, da sie bereits Bestandteil der Sprache sind. Weitere oder spe-
zielle Operationen zur Anpassung von Prozessen oder ihrer Umgebung
können selbstverständlich in Anlehnung an Anforderungen hinzugefügt
werden.

Die Low-Level-Gestaltung schließt mit der Gestaltung von Beobachtungs-
und Anpassungsprozessen ab, die Teil des AVM4BPM sind. Diese Prozesse
verfeinern die durch einen Adapt Case 4 BPM gegebene Funktion durch
konkreteres Verhalten. Derartiges Verhalten kann durch reguläre Elemen-
te der Sprache BPMN2.0, durch bereits in der Sprache ACML4BPM in-
tegriertes domänenspezifisches Wissen oder aber durch neu eingeführte

Seite 206 Kapitel 6

Elemente des AVM4BPM gestaltet werden. Dabei kann in jedem dieser
Prozesse umfangreiches Verhalten zur Aggregation von Daten und deren
Analyse (Beobachtungsprozesse) und für die Anpassung von Prozessen oder
ihrer Umgebung (Anpassungsprozesse) gestaltet werden. Im Rahmen der
Gestaltung des Verhaltens können sowohl Eigenschaften des verfeinerten
AVM4BPM als auch in der Sprache integriertes domänenspezifisches Wis-
sen genutzt werden.

Die Gestaltung von Basis-, Beobachtungs- und Anpassungsprozessen kann
auf unterschiedliche Weisen erfolgen. So ist die zuvor beschriebene Rei-
henfolge nicht zwingend erforderlich. Auch iterative Vorgehensweisen
können sich anbieten. Dies ist dadurch zu begründen, dass je nach Anfor-
derungen hinsichtlich des Separation-of-Concerns der Nutzer oder Domä-
nenexperte entscheiden muss, welche Teile zu einer der jeweiligen Logi-
ken gehören sollte. So kann eine strikte Trennung des Aspekts Flexibility-by
Design bspw. zu unübersichtlichen Prozessmodellen führen. Nutzer und
Domänenexperten sind daher hinsichtlich ihrer Erfahrung gefragt, in wel-
chem Ausschnitt eines Basisprozesses auf eine strikte Trennung, wie z.B.
in Bezug zur Übersichtlichkeit, verzichtet werden kann.

6.2.4 Ergänzung

Flexible und anpassbare Prozesse sind, wie an verschiedenen Stellen
der vorliegenden Arbeit bereits beschrieben, nicht alleine durch eine ad-
äquate Gestaltung realisierbar. In Anlehnung an den betrachteten BPM-
Lebenszyklus sind offensichtlich weitere Techniken notwendig, die die Pha-
se Konfiguration, die Phase Ausführung aber auch die Phase Evaluation be-
treffen können.

Die Bearbeitung derartiger Techniken lag dabei nicht im Fokus dieser Ar-
beit. Stattdessen lag die Einführung des Adaptivity Engineering in der Do-
mäne BPM und insbesondere in Bezug zu Gestaltung von flexiblen und
anpassbaren Prozessen im Vordergrund. Dabei ist anzumerken, dass dabei
stets die Gestaltung der erste Schritt einer derartigen Einführung ist, wel-
che durch diese Arbeit entsprechend gegeben ist. Hier kann durch zukünf-
tige Forschung (siehe Abschnitt 8.2) auf Konzepte der vorliegenden Arbeit
aufgebaut werden.

Ferner kann an dieser Stelle insbesondere auf ausgesuchte Entwurfsmus-
ter Bezug genommen werden, bei denen Abweichungen vom Fokus auf
die reine Gestaltung von flexiblen und anpassbaren Prozessen existieren.
So wurden in Kapitel 5 verschiedenste Typen von Flexibilität in Prozessen

Adaptivity Engineering für flexible und anpassbare Prozesse Seite 207

beschrieben. Dabei werden ebenso grundlegende Eigenschaften anderer
Phasen explizit berücksichtigt.

Ein Beispiel ist durch den Flexibilitätsaspekt Flexibility-by Underspecification
und seinem Untertyp Late Modeling gegeben. In Late Modeling wird, wie in
Abschnitt 5.5.1 bereits beschrieben, zu einem spezifischen Zeitpunkt von
der Phase Ausführung in die Phase Design & Analyse gewechselt. Dabei
werden methodische Aktivitäten ausgeführt, die die Komposition oder Er-
stellung von neuen Funktionen betreffen. Dies stellt auf methodischer Ebe-
ne ebenfalls eine Technik für eine praktisch betrachtete Ausführung dar. So
wird hier methodisch die Gestaltung von weiteren Funktionen während
der Ausführung beschrieben. Für eine detaillierte Beschreibung wird auf
Abschnitt 5.5 verwiesen.

Ein weiteres Beispiel ist durch den Flexibilitätsaspekt Flexibility-by Change
und seinem Untertyp Evolutionary Change gegeben. Bei Evolutionary Change
können Anpassungen von Prozessmodellen auf deren Instanzen migriert
werden (siehe Abschnitt 5.3). Ein solches Vorgehen kann dabei zum Zweck
der Verbesserung von Prozessen eingesetzt werden. Der Bedarf an Ver-
besserung kann z.B. in der Phase Evaluation ermittelt werden. Bei der an-
schließenden Gestaltung von Anpassungsprozessen, die sowohl Modelle
als auch deren weiterhin existierende Instanzen betreffen, handelt es sich
um eine methodische Technik, die über die Phase Design & Analyse hin-
ausgeht. Die beschriebenen Strategien zur Migration von Anpassungen
und deren Verwendung durch das entsprechende Entwurfsmuster sind
somit auch ein Konzept zur Anwendung in weiteren Phasen des BPM-
Lebenszyklus.

6.3 Zusammenfassung

In diesem Kapitel wurde das Adaptivity Engineering für flexible und an-
passbare Prozesse vorgestellt. Dabei wird die Methode Adapt Cases 4 BPM
mit spezifischen Aktivitäten und Artefakten in einen domänenspezifischen
methodischen Rahmen integriert. Es wurde sich hierbei an dem durch Wes-
ke [Wes12] eingeführten BPM-Lebenszyklus orientiert. Ferner wurden auch
Abhängigkeiten von unterschiedlichen Artefakten entlang typischer Akti-
vitäten des Adaptivity Engineering in Form einer spezifischen Anforderungs-
analyse sowie der High-Level-Gestaltung und der Low-Level-Gestaltung gege-
ben. Die Methode orientiert sich dabei maßgeblich an dem durch Luckey
[Luc13] beschriebenen Vorgehen. An spezifischen Punkten wurden Arte-
fakte der Domäne BPM eingeführt und mit existierenden Artefakten in

Seite 208 Kapitel 6

Relation gesetzt. Hierdurch können weitere Lösungsteile wie die Spra-
che ACML4BPM (siehe Kapitel 4) sowie die zugehörigen Entwurfsmus-
ter (siehe Kapitel 5) in einem domänenspezifischen methodischen Rahmen
eingesetzt werden.

Teil III

Evaluation,
Zusammenfassung und

Ausblick

Evaluation

Kapitel7
In den vorherigen Kapiteln wurden verschiedene Lösungsteile für ein
domänenspezifisches Adaptivity Engineering in Form des Ansatzes Adapt
Cases 4 BPM vorgestellt. So wurde die Sprache ACML4BPM, eine Reihe
von verschiedenen Entwurfsmustern unter Verwendung der entwickelten
Sprache und eine zugehörige Methode beschrieben. Die Zielsetzung die-
ses Kapitels ist die Evaluation dieser drei Bestandteile. Für einzelne Teile
der durchgeführten Evaluation ist eine Übersicht in Abbildung 7-1 gege-
ben. Die Evaluation lässt sich insgesamt in die beiden Ziele Plausibilisie-
rung und Vergleich unterteilen. Hinsichtlich dieser Ziele werden einzelne
Teile der Evaluation nachfolgend kurz beschrieben.

Evaluation

Plausibilisierung

Szenario für flexible und
anpassbare Prozesse

Abschnitt 7.1

Fall 1

Abschnitt 7.1.2

Fall 2

Abschnitt 7.1.3

Fall 3

Abschnitt 7.1.4

Vergleich

Kriterien

Abschnitt 7.2

Bewertungseinheit

Abschnitt 7.3

Bewertung

Abschnitt 7.4

Gültigkeit

Abschnitt 7.5

Abbildung 7-1:
Übersicht über die
Evaluation

Seite 212 Kapitel 7

Evaluation zum Zweck
der Plausibilisierung

Der erste Teil der Evaluation betrifft die Anwendbarkeit der Sprache
ACML4BPM, die vorgestellten Entwurfsmuster und die zugehörige Me-
thode auf Basis praxisnaher Beispiele. Hiermit wird zum einen das Ziel
verfolgt, die zuvor genannte Anwendbarkeit von eingeführten Konzep-
ten zu zeigen. Zum anderen soll auf Basis der Beispiele das Verständnis
von erarbeiteten Inhalten so vertieft werden, dass sie als Leitfaden für den
Transfer auf Anwendungen in der Praxis eingesetzt werden können. Da-
bei wird zunächst in Abschnitt 7.1 ein Szenario vorgestellt, für das jeweils
unterschiedliche Anforderungen an die Flexibilität beteiligter Prozesse ge-
geben sind. Nachfolgend wird in Abschnitt 7.1.2 bis Abschnitt 7.1.4 ver-
anschaulicht, wie diese Anforderungen umgesetzt werden können. Dabei
werden sowohl die Sprache ACML4BPM als auch ausgesuchte Entwurfs-
muster eingesetzt. Der Ablauf folgt der Methode Adapt Cases 4 BPM für
die Gestaltung von flexiblen und anpassbaren Prozessen.

Evaluation zum Zweck
des Vergleichs

Der zweite Teil der Evaluation konzentriert sich anschließend auf aus-
gesuchte Kriterien zur Bewertung der Sprache ACML4BPM und die zu-
gehörigen Entwurfsmuster. Dabei werden zwei verschiedene Kataloge
von Kriterien für die Evaluation verwendet. Hierdurch wird das Ziel der
Durchführung eines Vergleichs mit existierenden Ansätzen verfolgt. In
der Bewertung von beiden Katalogen wird an geeigneter Stelle auf die In-
halte des zuvor eingeführten Szenarios zurückgegriffen. Der zweite Teil
der Evaluation gliedert sich nachfolgend so, dass zunächst verschiedene
Kriterienkataloge in Abschnitt 7.2 vorgestellt werden. Ergänzend werden
in Abschnitt 7.3 die Bewertungseinheit sowie grundsätzliche Annahmen
für die Bewertung zuvor eingeführter Kriterien beschrieben. Die Ergeb-
nisse der Evaluation werden in Abschnitt 7.4 veranschaulicht. Das Kapitel
schließt in Abschnitt 7.5 mit einer kritischen Diskussion hinsichtlich der
Gültigkeit der vorgestellten Evaluation ab.

7.1 Szenario für flexible und anpassbare Prozesse

Die in dieser Arbeit beschriebenen Konzepte wurden bisher lediglich in
Form von Beispielen zur generellen Verdeutlichung der schematischen
Funktionsprinzipien erläutert. Daher wird in diesem Abschnitt ein Szena-
rio beschrieben, in dem die Gestaltung von Flexibilität in Prozessen an pra-
xisorientierten Beispielen veranschaulicht wird. Hierdurch werden zwei
wesentliche Ziele verfolgt. Zum einen soll ein beispielhafter Ausschnitt für
die Verwendung der erarbeiteten Konzepte dargestellt werden, wodurch
ein vereinfachter transdisziplinärer Transfer sowie die Ermöglichung ei-

Evaluation Seite 213

nes tieferen Verständnisses der vorgestellten Konzepte adressiert werden.
Zum anderen dient das Szenario aber auch der Argumentation in Bezug
zur Bewertung von Kriterien in weiteren Teilen der Evaluation (siehe Ab-
schnitt 7.2.1 bis Abschnitt 7.2.2). Eine schematische Übersicht über das hier
betrachtete Szenario ist in Abbildung 7-2 dargestellt.

W
o

rk
er

R
o

b
o

t

Ready for
Quality
Check

ok

not ok

ok?

Fall 3:
Separation of Business and

Adaptivity Logic

H
um

an
-R

ob
ot

-T
ea

m

Assemble PartsUnassemble
Parts

Report

Fall 2:
Human Performer

Workload Management

Fall 1:
Workspace Temperature

Management

Run
Quality

Check

Abbildung 7-2:
Schematische Übersicht
über das betrachtete Sze-
nario

Jeder der hier aufgeführten Fälle (engl. Case) handelt im Kontext eines ge-
meinsamen Hauptprozesses. Der hier verwendete Hauptprozess Human-
Robot-Team spielt in einem mittelständischen Unternehmen, in dem trotz
zunehmender Automatisierung die Endmontage von Produkten vornehm-
lich manuell durchgeführt wird. Dabei handelt es sich um eine Beschrei-
bung von Abläufen in einem sogenannten Shared-Workspace. Ein Shared-
Workspace ist eine spezielle Arbeitsumgebung, in der sowohl menschliche
als auch technisierte Akteure, wie z.B. ein IT-gestütztes Assistenzsystem
oder ein Roboter, kollaborativ tätig sind.

Die in der Arbeitsplatzumgebung notwendigen Funktionen innerhalb der
relevanten geschäftlichen Abläufe können dabei durch die menschlichen
oder technisierten Akteure exklusiv oder kooperativ durchgeführt werden.
Hiervon können z.B. die Assistenz in Arbeitsabläufen, die Aufgabenpla-
nung oder eine damit verbundenen Entscheidungsfindung betroffen sein.
Das Ziel des hier dargestellten Hauptprozesses im Shared-Workspace ist
durch die Montage von Bauteilen eines Produktes und der anschließen-
den Qualitätssicherung gegeben. Die Montage durch die Rolle Worker ist
hier durch den Subprozess Assemble Parts dargestellt. Sobald die Montage
abgeschlossen ist, übernimmt die Rolle Robot die Qualitätssicherung (Run
Quality Check). Der Prozess terminiert, wenn die Qualität in Ordnung ist.
Im alternativen Fall übernimmt die Rolle Worker die Aufgabe der Demon-
tage (Unassemble Parts). Die dargestellte Endmontage findet dabei an Ar-
beitsstationen im Rahmen des Shared-Workspace statt.

Seite 214 Kapitel 7

Wie zu Beginn dieser Arbeit motiviert, steht in dem betrachteten Szena-
rio dabei insbesondere die Flexibilisierung beteiligter Prozesse im Vorder-
grund, sodass neben der eigentlichen Funktion des Gesamtsystems – der
Fertigung – auch bedarfsorientierte Anpassungen von Eigenschaften der
beteiligten Prozesse sowie ihrer Umgebung unterstützt werden. Wesentli-
che Teile des Szenarios wurden dabei in verschiedenen Publikationen be-
reits eingeführt [Eng+18; ET18; EST18].

Die Relevanz für die Praxis der im Folgenden betrachteten Fälle des Szena-
rios wurde auf Basis von Gesprächen mit Experten aus Wissenschaft und
Industrie in verschiedenen Workshops im Rahmen des NRW Fortschritts-
kollegs „Gestaltung von flexiblen Arbeitswelten“ identifiziert. Nachfolgend
werden die einzelnen Fälle 1 bis 3 zunächst vorgestellt. Die nachfolgen-
de Beschreibung der Fälle kann als der erste Schritt der Methode Adapt Ca-
ses 4 BPM in Form einer Anforderungsanalyse betrachtet werden (siehe Ab-
schnitt 6.2.1). So enthalten die Beschreibungen natürlichsprachliche Anfor-
derungen, die durch weitere Schritte der Methode in Form der High-Level-
Gestaltung und Low-Level-Gestaltung anschließend umgesetzt werden.

Fall 1: Workspace
Temperature Management

(WTM)

Im ersten Fall wird zunächst angenommen, dass aufgrund von rechtlichen
Bestimmungen die Temperatur in Arbeitsumgebungen überwacht werden
muss. Kommt eine zu hohe Temperatur auf, sollen geeignete Maßnahmen
zur Entlastung von menschlichen Akteuren durchgeführt werden. Für den
hier betrachteten Shared-Workspace soll eine Anpassung am Hauptprozess
durchgeführt werden, sobald die Temperatur höher als 24 Grad Celsius
beträgt. Als anzuwendende Maßnahme in einem solchen Fall wurde ein
Wechsel der aktuell zugewiesenen menschlichen Akteure festgelegt. So
soll die Zuweisung eines menschlichen Akteurs alle 20 Minuten geändert
werden. Ein zuvor aktiver und anschließend ausgetauschter menschlicher
Akteur kann so die Zwischenzeit nutzen, um sich im Pausenraum zu er-
holen.

Fall 2: Human Performer
Workload Management

(HPWM)

Im Rahmen des zweiten Falls soll eine weitere Funktion zur Menschenzen-
trierung des Hauptprozesses unterstützt werden. So soll die physische Ar-
beitsbelastung eines menschlichen Akteurs auf Basis seiner Herzfrequenz
und seiner zuvor bereits erstellten individuellen Arbeitslastprofile beob-
achtet werden. Tritt die Situation einer Überlastung auf, so wird der Pro-
zess angepasst, indem ein anderer zur Verfügung stehender menschlicher
Akteur zugewiesen wird. Neben dieser automatisierten Auslösung einer
Anpassung soll aber auch manuell eine Zuweisung eines ablösenden Ak-
teurs angestoßen werden können.

Evaluation Seite 215

Fall 3: Separation of
Business and Adaptivity
Logic (SoC)

In Fall 1 und Fall 2 sind vor allem potentielle Auslöser aus der Umgebung
des Prozesses für eine Anpassung angedacht. Darüber hinaus kann es aber
auch sinnvoll sein, bestehende Prozesse hinsichtlich ihrer bisherigen Um-
setzung von verschiedenen Aspekten von Flexibilität zu untersuchen und
ggf. im Rahmen der Verbesserung von Prozessen anzupassen. Eine derarti-
ge Anpassung kann damit als evolutionär hinsichtlich zukünftiger Instan-
zen des Hauptprozesses betrachtet werden. Der hier betrachtete Haupt-
prozess enthält dabei eine Schleife, in die gewechselt wird, falls die Qua-
lität des montierten Produktes nicht ausreichend ist. Diese Schleife kann
als Aspekt Iteration von Flexibility-by Design verstanden werden. Auf eine
beispielhafte Gestaltung wurde in Abschnitt 5.2.3 eingegangen. Im dritten
Szenario wird daher eine Umstrukturierung des bestehenden Hauptpro-
zesses beschrieben, indem eine Trennung der Anwendungs- von der An-
passungslogik vorgenommen wird.

Auslösung des WTM
und HPWM

Für die zuvor beschriebenen Fälle 1 und 2 wird ferner angenommen, dass
neben einer Gestaltung, in der ein menschlicher Akteur selbst eine An-
passung anstoßen kann, auch insbesondere die automatisierte und regel-
basierte Umsetzung gefordert ist. Hierfür kann es auch in der Praxis ver-
schiedene Gründe geben. So kann zum einen mit der Art und dem Umfang
der Tätigkeiten, die durch menschliche Akteure auszuführen sind, eine be-
sonders hohe Konzentration gefordert sein. Hier könnten Überforderun-
gen der menschlichen Akteure eintreten, wenn bspw. die Überwachung
der kontextuellen Temperatur des Shared-Workspace zusätzlich gefordert
werden würde. Zum anderen ist es aber auch möglich, dass menschliche
Akteure nur eingeschränktes Wissen über rechtliche Regularien hinsicht-
lich ihrer Arbeitsumgebung verfügen und somit nicht in der Lage sind
oder nicht die Befugnisse haben, entsprechende Maßnahmen selbstständig
auszuführen.

Die beiden zuvor genannten Gründe werden zusätzlich bestärkt, wenn
man in Betracht zieht, dass eine Vielzahl von verschiedenen Umgebungs-
faktoren den sicheren und menschenzentrierten Betrieb der Fertigung be-
dingen können. Die Beobachtung von sich stetig ändernden Umgebungs-
faktoren allein auf menschlicher Basis birgt somit die Gefahr der Überfor-
derung menschlicher Akteure und damit die Gefährdung eines sicheren
Betriebs. Eine Automatisierung der Beobachtung von sich ändernden Um-
gebungsfaktoren sowie der anschließenden Auswahl von möglichen An-
passungen der beteiligten Prozesse bzw. ihrer Umgebung kann daher in
diesem Bezug als Erleichterung, wenn nicht sogar als einzige Möglichkeit
verstanden werden, einer potentiell hohen Anzahl an möglichen Umge-

Seite 216 Kapitel 7

bungsfaktoren, Entscheidungen und nachfolgenden Anpassungen gerecht
zu werden. Dennoch können vereinzelte Interaktionen zwischen mensch-
lichen Akteuren mit ihrer Umgebung als sinnvoll erachtet werden. So kön-
nen stets unvorhergesehene Ereignisse – auch Ausnahmen genannt – An-
passungen notwendig machen, die im Rahmen der regelbasierten Auto-
matisierung nicht behandelt werden können. Alternativ lassen sich aber
auch bestimmte Umgebungsfaktoren nur schwer oder nicht durch beste-
hende Techniken erfassen, sodass es oftmals leichter ist, den Menschen als
Entscheidungsträger eintreten zu lassen, um eine Anpassung manuell aus-
zulösen. Ein Beispiel hierfür ist im Fall 2 enthalten. Hier können menschli-
che Akteure auch manuell eine Zuweisung eines ablösenden Akteurs aus-
lösen.

Komplexität des
Hauptprozesses

Ein weiterer Hinweis für die betrachteten Fälle muss in Bezug zur ent-
haltenen Komplexität gegeben werden. So handelt es sich bei dem vorlie-
genden Hauptprozess um einen auf den ersten Blick simplen Ablauf von
nur wenigen Tasks. Man könnte also zunächst annehmen, dass der Pro-
zess Human-Robot-Team für eine Evaluation eher ungeeignet scheint. Dem
kann auf Basis gesetzter Anforderungen an die erarbeitete Lösung jedoch
widersprochen werden.

So beschäftigt sich der vorliegende Ansatz vornehmlich mit der Anforde-
rung des Separation-of-Concerns hinsichtlich der Anpassungs- und Anwen-
dungslogik. Dies bedeutet, dass diese einzelnen Aspekte eines Prozesses
getrennt gestaltet werden. Das Bindeglied bildet hierbei eine Regel, die
ereignisbasiert bzw. zeitgesteuert ausgelöst werden kann. Dabei wird zu-
nächst im Rahmen eines Beobachtungsprozesses eine Analyse von Umge-
bungsfaktoren vorgenommen. Anschließend wird eine Entscheidung für
die Auswahl von vordefinierten Maßnahmen getroffen. Derartige Maß-
nahmen liegen in Form von Anpassungsprozessen vor. Der Ansatz stellt
somit eine Möglichkeit dar, in Anlehnung an das Paradigma MAPE-K
[KC03], eine Regel in der Form Wenn-Dann bzw. Wenn-Dann-Anders zu
definieren. Dabei wird bereits bei einer Analyse des Ansatzes Adapt Cases
nach Luckey [LE13] deutlich, dass weder Fähigkeiten hinsichtlich der Funk-
tion – wie z.B. fortgeschrittene Analysetechniken zur Beobachtung – noch
konkrete Handlungsempfehlungen für durchzuführende Maßnahmen im
Fokus stehen. Diese können sowohl in dem Ansatz Adapt Cases als auch in
dem Ansatz Adapt Cases 4 BPM in späteren Phasen der Gestaltung durch
etwaige Verfeinerungen hinzugefügt werden.

Der Ansatz soll vielmehr die Gestaltung und Analyse von Prozessen da-
hingehend unterstützen, dass, wenn eine getrennte Gestaltung der bei-

Evaluation Seite 217

den Logiken gefordert ist, sie für die Domäne BPM und für dort übli-
che Konzepte durch den Ansatz Adapt Cases 4 BPM möglich ist. Die Kom-
plexität des Hauptprozesses Human-Robot-Team und der zugehörigen Fäl-
le des Szenarios kann daher als angemessen betrachtet werden, da veran-
schaulicht wird, wie die Trennung der Anpassungs- und Anwendungslo-
gik durchgeführt werden kann. Ferner wird angenommen, dass ein Über-
trag auf Prozesse aus der Praxis dadurch unterstützt werden kann, dass
die in den Abschnitten 7.1.2 bis 7.1.4 gegebenen praxisnahen Beispiele als
Leitfaden verwendet werden können. Da die in dieser Arbeit vorgestellten
Konzepte zur Gestaltung von flexiblen und anpassbaren Prozessen vielfäl-
tig sind, können nur ausgesuchte Elemente der Sprache ACML4BPM sowie
von passenden Entwurfsmustern im Rahmen der Evaluation berücksich-
tigt werden. Sie stehen dabei stellvertretend als Leitfaden für den Übertrag
auf Prozesse aus der Praxis.

Plausibilisierung
der Methode
Adapt Cases 4 BPM

Das Vorgehen folgt der in Kapitel 6 beschriebenen Methode Adapt Cases
4 BPM. In Bezug zu den zuvor eingeführten Fällen des Szenarios werden
zunächst in Abschnitt 7.1.1 relevante System- und Umgebungskomponen-
ten als Teil eines gemeinsamen AVM4BPM (siehe Abschnitt 4.3) beschrie-
ben. Das AVM4BPM stellt eine Sicht auf das Gesamtsystem aus der Per-
spektive der Anpassungslogik dar. Es wird zunächst im Rahmen der High-
Level-Gestaltung erstellt und im Rahmen der Low-Level-Gestaltung verfei-
nert (siehe Abschnitt 6.1). Auf die Verfeinerung des im Rahmen des Sze-
narios beschriebenen AVM4BPM wird jedoch verzichtet, da es sich hierbei
um eine Korrekturmaßnahme in einem realen Vorgehen handelt. In den
nachfolgenden Abschnitten 7.1.2 bis 7.1.4 wird auf die jeweiligen Fälle des
Szenarios in Form einer spezifischen Gestaltung durch ein ACM4BPM ein-
gegangen (siehe Abschnitt 4.2). Für jeden Fall des Szenarios wird dabei
das Resultat von sowohl der High-Level-Gestaltung als auch der Low-Level-
Gestaltung von prozessspezifischen Aspekten dargestellt (siehe Kapitel 6).

7.1.1 Die Arbeitsumgebung Human-Robot-Team

Damit flexible und anpassbare Prozesse im Rahmen der Methode Adapt
Cases 4 BPM beschrieben werden können, ist die Gestaltung von einem
für die Arbeitsumgebung Human-Robot-Team zugehörigen AVM4BPM not-
wendig (siehe Abschnitt 4.3). Dabei wurde sich an der Beschreibung der
einzelnen Fälle des Szenarios orientiert, die sich jeweils auch als natürlich-
sprachliche Anforderungen auffassen lassen (siehe Abschnitt 6.2.1). In Ab-
bildung 7-3 ist ein Ausschnitt des für die Arbeitsumgebung Human-Robot-
Team gestalteten AVM4BPM dargestellt. Es lässt sich dabei in die beiden

Seite 218 Kapitel 7

Teile System und Environment unterteilen, deren Komponenten, Sensoren,
Ereignisse und Daten nachfolgend beschrieben werden.

Abbildung 7-3:
AVM4BPM für die
Arbeitsumgebung

Human-Robot-Team

Performer ENV

workers

0 .. 3

 Environment

 System

+getTemperature() : integer

temperature : integer
 range : 10 .. 50
 step : 1

«sensor»

Temperature

processRepository

*

robot

1

* processes

+id : integer

«AdaptationRequestEvent»

ManualReallocationRequest

+id : integer
+maxValue : integer

«AdaptationDataObject»

WorkloadProfile

+id : integer
+value : integer

«AdaptationDataObject»

CurrentHeartrate

+getHeartrate() : integer
+getWorkloadProfile() : integer

heartrate : integer
 range : 0 .. 230
 step : 1

«sensor»

Heartrate
«sensor»

HumanMachineInterface

+id : integer
+value : integer

«AdaptationDataObject»

CurrentTemperature

+getActiveTask(ProcessID) : Task

Workflow-Engine EC

Robot ENV

+getNextAvailableHumanPerformer() : performer

Shared-Workspace ENV

+getProcessModel(ID) : ProcessModel

ProcessRepository MC

+name : string
+isAvailable : boolean

HumanPerformer ENV

Beschreibung des Systems In dieser Arbeit stehen Prozesse im Fokus, sodass die zugehörigen System-
komponenten ProcessRepository und WorkflowEngine verwendet werden.
Durch die Systemkomponente ProcessRepository werden alle Modelle von
Prozessen gekapselt. Auf Prozessmodelle kann durch die Methode getPro-
cessModel(ID) unter Angabe eines eindeutigen Identifizierers (ID) zugegrif-
fen werden. Als zweite wesentliche Systemkomponente wird Workflow-
Engine verwendet. Sie steht für eine Ausführungsumgebung. In ihr werden
auf Basis der in der Systemkomponente ProcessRepository gekapselten Pro-
zessmodelle benötigte Prozessinstanzen erstellt und ausgeführt.

Beschreibung der
Umgebung des Systems

Die Umgebung des Hauptprozesses wird in Abbildung 7-3 durch die Um-
gebungskomponente Shared-Workspace dargestellt. Ferner existieren ver-
schiedene Komponenten aus der Umgebung des Hauptprozesses, die als

Evaluation Seite 219

Teil des Shared-Workspace betrachtet werden müssen. Diese werden durch
die Komponenten Robot und HumanPerformer dargestellt. Bei diesen bei-
den Komponenten handelt es sich um eine Beschreibung von am Prozess
beteiligten Akteuren (hier: Performer) Die Umgebungskomponente Robot
kapselt Inhalte des in der Montage eingesetzten Roboters. Da keine Anpas-
sungen auf Basis dieser Inhalte durchgeführt werden sollen, implementiert
diese Komponente keine Schnittstellen und ist daher nur der Vollständig-
keit halber dargestellt. Die Umgebungskomponente HumanPerformer steht
stellvertretend für einen menschlichen Akteur und kapselt für die Anpas-
sung relevante Inhalte. So können verschiedene Informationen wie die ak-
tuelle Verfügbarkeit eines menschlichen Akteurs und sein Name abgeru-
fen werden. Hierfür stehen die Attribute isAvailable vom Typ boolean bzw.
name vom Typ String zur Verfügung. Insgesamt können im Rahmen des
Shared-Workspace bis zu drei menschliche Akteure eingesetzt werden.

Sensor für die TemperaturDie Umgebungskomponente Shared-Workspace implementiert eine Sensor-
schnittstelle (Temperature), die den Zugriff auf die aktuelle Temperatur der
Arbeitsumgebung sicherstellt. Dabei wird in der Gestaltung der zugehöri-
gen Prozesse ein Zugriff auf diese Eigenschaft durch das Element vom Typ
AdaptationDataObject mit der Bezeichnung CurrentTemperature ermöglicht.

Sensoren für die
Herzfrequenz und die
manuelle Interaktion

Die Komponente HumanPerformer implementiert die beiden Sensorschnitt-
stellen Heartrate und HumanMachineInterface. Durch den Sensor mit der Be-
zeichnung Heartrate wird der Zugriff auf die aktuelle Herzfrequenz eines
menschlichen Akteurs ermöglicht. In der späteren Gestaltung des zuge-
hörigen ACM4BPM kann das Element vom Typ AdaptationDataObject mit
der Bezeichnung CurrentHeartrate verwendet werden, um auf aktuelle Da-
ten zuzugreifen. Ferner ist das persönliche Belastungsprofil durch das Da-
tenobjekt mit der Bezeichnung WorkloadProfile zugreifbar. Zur Vereinfa-
chung enthält das Belastungsprofil an dieser Stelle lediglich ein Attribut
zur Kennzeichnung eines individuellen maximalen Wertes für die Herz-
frequenz (maxValue). In einer realen Anwendung lassen sich hier selbstver-
ständlich auch komplexere Belastungsprofile beschreiben, deren Verwen-
dung im Rahmen der Evaluation jedoch den Fokus zu sehr verschieben
würden. Durch den Sensor mit der Bezeichnung HumanMachineInterface
wird das Auslösen eines Ereignisses von Typ AdaptationRequestEvent mit
der Bezeichnung ManualReallocationRequest ermöglicht. Dieses Ereignis ist
für die Auslösung eines manuellen Wechsels des zugewiesenen menschli-
chen Akteurs bestimmt.

Das zuvor beschriebene AVM4BPM bietet ein mögliches Beispiel für die
Gestaltung von relevanten Teilen des betrachteten Systems und seiner Um-

Seite 220 Kapitel 7

gebung, sodass die Gestaltung von flexiblen und anpassbaren Prozessen
durch das Konzept Adapt Case 4 BPM in Bezug zu den verschiedenen Fäl-
le des Szenarios ermöglicht werden kann. In den nachfolgenden Abschnit-
ten 7.1.2 bis 7.1.4 wird die Verwendung dieser Elemente im Rahmen von
Beobachtungs- und Anpassungsprozessen der einzelnen Fälle des Szena-
rios gezeigt.

7.1.2 Fall 1: Workspace Temperature Management

In dem ersten Fall soll eine Anpassung an dem Hauptprozess beim Über-
schreiten einer vordefinierten Temperatur in dem Shared-Workspace durch-
geführt werden. Hierzu ist in Abbildung 7-4 die Gestaltung des zugehö-
rigen AC4BPM Workspace Temperature Management (WTM) dargestellt. Es
wurde sich für eine integrierte Darstellung der High-Level-Gestaltung und
der Low-Level-Gestaltung entschieden. Hierdurch soll der Zusammenhang
von Elementen aus unterschiedlichen Aktivitäten der Methode Adapt Ca-
ses 4 BPM verdeutlicht werden. So wird sowohl der AC4BPM des WTM
als auch seine Verfeinerung in Form der zugehörigen Beobachtungs- und
Anpassungsprozesse gezeigt.

Abbildung 7-4:
AC4BPM für das

Workspace Tempe-
rature Management

Monitoring Process

«AC4BPM»

Workspace Temperature
Management

Each 20 minutes

Unassemble Parts

Human
Performer

«adapts»

Adaptation Process

«adapts»

SwitchPerformer

PI

Modify

PropertyOf
Node

PI

Workflow-Engine.
getActiveTask()

‘Performer‘

SharedWorkplace.
getNextAvailableHumanPeformer().name

PI

H
ig

h
-L

ev
el

-G
es

ta
lt

un
g

Lo
w

-L
ev

el
-G

es
ta

lt
un

g

Each 20 minutes

CAP

adaptationProcess =
‘SwitchPerformer‘

[Shared-Workspace.
getTemperature() > 24]

node
Property

node
Element

property
Value

out
Instance

in
Instance

Assemble Parts

Evaluation Seite 221

High-Level-Gestaltung
des WTM

Durch die High-Level-Gestaltung wird hier ein AC4BPM mit der Bezeich-
nung Workspace Temperature Management beschrieben. Das WTM stellt die
Funktion zur Anpassung des Hauptprozesses im Rahmen von Fall 1 dar.
Es wurde sich dafür entschieden, dass die Funktion WTM zeitbasiert alle
20 Minuten ausgeführt werden soll. Es lassen sich auch alternative Inter-
valle je nach Anforderung an die Aktualität der Prüfung definieren. Da-
bei treten im Fall der Notwendigkeit einer Anpassung mögliche Anpas-
sungen an den Funktionen der Hauptprozesse Assemble Parts bzw. Unas-
semble Parts statt. Die beiden genannten Funktionen werden dabei durch
einen menschlichen Akteur ausgeführt, welcher hier dargestellt ist durch
den Akteur Human Performer.

Low-Level-Gestaltung
des WTM

Durch die Low-Level-Gestaltung wird der AC4BPM der Funktion WTM
durch einen Beobachtungs- und Anpassungsprozess verfeinert. Der hier
dargestellte Beobachtungsprozess beschreibt dabei das vorgesehene Ver-
halten für die Prüfung, ob die zulässige maximale Temperatur zu einem
Zeitpunkt überschritten ist. Fällt die Prüfung negativ aus, so terminiert
der Beobachtungsprozess und es wird keine Anpassung am Hauptprozess
ausgeführt. Im positiven Fall terminiert der Beobachtungsprozess eben-
falls. Dabei wird jedoch zuvor der dargestellte Anpassungsprozess mit
der Bezeichnung SwitchPerformer aufgerufen. Dieser Beobachtungsprozess
beschreibt das Verhalten zur Anpassung des Hauptprozesses. Hier wird
also ein aktuell zugewiesener menschlicher Akteur durch einen anderen
ersetzt. Dabei wird eine der in Abschnitt 4.3.3 vorgestellten Operationen
zur Anpassung von Prozessen verwendet. So wird die Operation Modify-
PropertyOfNode eingesetzt, um das Attribut Performer des aktuell aktiven
Tasks so zu setzen, dass ein noch nicht zugewiesener menschlicher Ak-
teur zugeordnet wird. Die benötigte Anpassung ist mit dieser Zuweisung
anschließend abgeschlossen.

ErgänzungDas zuvor beschriebene Verhalten des WTM setzt die in Abschnitt 7.1 be-
schriebene Funktionalität in Form ausgesuchter Lösungsbestandteile die-
ser Arbeit um. So wird zeitgesteuert eine Prüfung der Temperatur durch-
geführt und im Bedarfsfall ein Wechsel von zugewiesenen menschlichen
Akteuren im Shared-Workspace durchgeführt.

Der zuvor beschriebene AC4BPM des WTM sowie seine Verfeinerungen,
hier gegeben durch den Beobachtungs- und Anpassungsprozess, stellen
ein erstes kleines aber praxisnahes Beispiel zum Zweck der Plausibili-
sierung der vorgestellten Lösung dar. Selbstverständlich können weite-
re Eigenschaften des Systems und seiner Umgebung bei einer Anpas-
sung im Rahmen des WTM berücksichtigt werden, sofern sie zuvor dem

Seite 222 Kapitel 7

AVM4BPM hinzugefügt worden sind. Aufgrund einer gesteigerten Über-
sichtlichkeit wurde sich jedoch dagegen entschieden, derartige Details hier
darzustellen, da sie lediglich eine Wiederholung gleicher grundsätzlicher
Mechanismen darstellen. Für weiterführende Beispiele wird auf die nach-
folgenden Fälle des Szenarios (siehe Abschnitte 7.1.3 und 7.1.4) verwiesen.

7.1.3 Fall 2: Human Performer Workload Management

Der zweite Fall beschäftigt sich mit Eigenschaften eines menschlichen Ak-
teurs, der im Rahmen des Shared-Workspace zu einem Zeitpunkt tätig ist.
Dabei soll ein Wechsel von menschlichen Akteuren durchgeführt werden,
sobald eine Überbelastung des aktuell zugewiesenen menschlichen Ak-
teurs entweder automatisiert erkannt oder manuell angezeigt wird. Hier-
zu ist in Abbildung 7-5 erneut eine integrierte Darstellung gegeben, die
sowohl die High-Level-Gestaltung als auch die Low-Level-Gestaltung des er-
stellten AC4BPM für das Human Performer Workload Management (HPWM)
zeigt.

Abbildung 7-5:
AC4BPM für das

Human Performer
Workload Management Each 30 seconds

SwitchPerformer

H
ig

h
-L

e
ve

l-
G

es
ta

lt
un

g
Lo

w
-L

e
ve

l-
G

es
ta

lt
un

g

Manual
Reallocation
Request

Adaptation Process

CAP

Each 30
seconds

adaptationProcess =
‘SwitchPerformer‘

Manual
Reallocation

Request

Current
Heartrate

Workload
Profile

[sw
itch

P
erfo

rm
e

r =
= false]

Unassemble Parts

Human
Performer

«adapts»

«adapts»

Analyze
Workload

Profile

«include»

«AC4BPM»

Human Performer Workflow
Management

Analyze
Workload

Profile

Assemble Parts

Monitoring Process

«BP
Environment
DataObject»

«BP
Environment
DataObject»

Evaluation Seite 223

High-Level-Gestaltung
des HPWM

Durch die High-Level-Gestaltung wird hier ein AC4BPM mit der Bezeich-
nung Human Performer Workspace Management beschrieben. Das HPWM
stellt die Funktion zur Anpassung des Hauptprozesses im Rahmen von
Fall 2 dar. Das HPWM kann dabei sowohl zeitbasiert als auch ereignis-
basiert aufgerufen werden. Der zeitbasierte Aufruf der Funktion HPWM
wird alle 30 Sekunden durchgeführt. Analog zum WTM sind auch hier
alternative Intervalle möglich. Ein Aufruf durch das Ereignis mit der Be-
zeichnung ManualReallocationRequest repräsentiert die manuelle Auslö-
sung einer neuen Zuordnung eines menschlichen Akteurs. So ist in weite-
ren Verfeinerungen des Modells denkbar, dass dieses Ereignis im Rahmen
der Verwendung einer Benutzerschnittstelle, wie z.B. auf einem mobilen
Endgerät, erzeugt und an die Komponente WorkflowEngine weitergereicht
wird.

Im Fall der Notwendigkeit einer Anpassung sollen abermals die Funktio-
nen des Hauptprozesses Assemble Parts und Unassemble Parts angepasst
werden. Die beiden genannten Funktionen werden dabei durch einen
menschlichen Akteur ausgeführt, welcher hier dargestellt ist durch den
Akteur Human Performer. Im Vergleich zu Fall 1 wird die weitere Funkti-
on mit der Bezeichnung Analyze Workload Profile in Fall 2 verwendet. Die-
se Funktion wird zur Analyse der aktuellen Belastung eines zugewiese-
nen menschlichen Akteurs verwendet und ist Teil des hier beschriebenen
AC4BPM HPWM. Dabei wird angenommen, dass diese Funktion selbst
durch einen IT-basierten Dienst ausgeführt wird. Ein solcher Dienst kann
z.B. im Kontext eines Anwendungsservers existent sein. Auf die Beschrei-
bung eines zugehörigen Akteurs wurde dabei verzichtet, da der Dienst als
außerhalb der Sicht des Adaptivity Engineering betrachtet werden kann und
derartige Umstände nur für Referenzzwecke Teil eines ACM4BPM sind.

Low-Level-Gestaltung
des HPWM

Durch die Low-Level-Gestaltung wird der AC4BPM der Funktion HPWM
durch einen Beobachtungs- und Anpassungsprozess verfeinert. Der hier
dargestellte Beobachtungsprozess beschreibt dabei das vorgesehene Ver-
halten für die Prüfung, ob eine Überlastung des derzeit aktiven mensch-
lichen Akteurs besteht. Im Fall eines zeitgesteuerten Aufrufs wird durch
den Task mit der Bezeichnung AnalyzeWorkloadProfile die derzeitige Belas-
tung des menschlichen Akteurs überprüft. Ein Zugriff auf Eigenschaften
der Komponente mit der Bezeichnung HumanPerformer ist dabei durch die
beiden Datenobjekte mit der Bezeichnung WorkloadProfile und CurrentHe-
artrate dargestellt. Fällt die Prüfung negativ aus, so terminiert der Beob-
achtungsprozess und es wird keine Anpassung am Hauptprozess ausge-
führt. Eine im Rahmen des Tasks durchgeführte Überprüfung könnte im
einfachsten Fall dadurch gegeben sein, dass der aktuelle Wert der Herz-

Seite 224 Kapitel 7

frequenz nicht über dem im WorkloadProfile hinterlegten Wert liegen darf.
Wie bereits angedeutet stellt dieser Task im Rahmen der Evaluation ledig-
lich ein einfaches Beispiel dar. Weiterführende Analysemethoden lassen
sich durch eine Verfeinerung des Tasks und der eingesetzten Datenobjekte
umsetzen.

Im alternativen Fall eines ereignisbasierten Aufrufs des HPWMs wird
keine Analyse von Umgebungsfaktoren durchgeführt. Hier wird ange-
nommen, dass eine manuelle Anzeige einer Überbelastung durch einen
menschlichen Akteur hinreichend aussagekräftig ist. Daher wird der be-
reits durch das WTM bekannte Anpassungsprozess mit der Bezeichnung
SwitchPerformer direkt aufgerufen. Auf eine Beschreibung dieses Anpas-
sungsprozesses wird an dieser Stelle verzichtet und auf Abschnitt 7.1.2
verwiesen.

Ergänzung Das zuvor beschriebene Verhalten des HPWM setzt die in Abschnitt 7.1
beschriebene Funktionalität in Form ausgesuchter Lösungsbestandteile
dieser Arbeit um. So ist es möglich, im Bedarfsfall einen Wechsel von
zugewiesenen menschlichen Akteuren im Shared-Workspace auf unter-
schiedliche Arten durchzuführen. Dabei wird sowohl eine automatisier-
te als auch eine manuelle Variante unterstützt. Der zuvor beschriebene
AC4BPM des HPWM sowie seine Verfeinerungen, hier gegeben durch den
Beobachtungs- und Anpassungsprozess, stellen ein weiteres Beispiel zum
Ziel der Plausibilisierung der vorgestellten Lösung dar. Auch hier können
weitere Eigenschaften des Systems und seiner Umgebung bei einer An-
passung im Rahmen des HPWM berücksichtigt werden, sofern sie zuvor
dem AVM4BPM hinzugefügt worden sind.

7.1.4 Fall 3: Separation of Business and Adaptivity Logic

Der letzte im Rahmen der Evaluation betrachtete Fall des Szenarios be-
schäftigt sich mit der Umstrukturierung von bestehenden Prozessen hin-
sichtlich der Trennung von Anpassungs- und Anwendungslogik. Hierzu
soll der in Abbildung 7-2 eingeführte Hauptprozess Human-Robot-Team so
umstrukturiert werden, dass die beiden genannten Aspekte unter Verwen-
dung der Sprache ACML4BPM getrennt voneinander gestaltet werden.
Zuvor müssen hierfür jedoch Elemente der beiden Logiken identifiziert
werden. Hierzu ist in Abbildung 7-6 das Ergebnis einer durchgeführten
Analyse gezeigt. Elemente der Anpassungslogik sind in der Farbe Grün
und Elemente der Anwendungslogik in der Farbe Blau hinterlegt darge-
stellt.

Evaluation Seite 225

W
o

rk
er

R
ob

ot
Ready for
Quality
Check

ok

not ok

ok?Run
Quality

Check

H
u

m
a

n
-R

o
b

o
t-

T
e

am

Report

Assemble Parts

Unassemble
Parts

Anwendungslogik

Anpassungslogik

Abbildung 7-6:
Analyse des Haupt-
prozesses

Ergebnis der AnalyseDer Prozess enthält dabei nicht nur Funktionen zur Montage und der
Qualitätssicherung. So ist in Abhängigkeit zum dargestellten Qualitäts-
bericht (Report) auch eine Funktion zur Demontage vorgesehen, in deren
Anschluss die Montage erneut beginnt. Dies kann als eine spezielle Art
von Flexibility-by Design in Form des Aspekts Iteration verstanden werden
(siehe Abschnitt 5.2.3). Im Rahmen des Aspekts Iteration können bestimmte
Funktionen eines Ablaufs iterativ ausgeführt werden. Das dargestellte Ver-
halten für die Qualitätssicherung stellt dabei die Bedingung für die Durch-
führung einer weiteren Iteration dar. Das Verhalten in Form des Tasks Un-
assemble Parts stellt Verhalten zur Rückabwicklung von Verhalten der An-
wendungslogik in Form des Subprozesses Assemble Parts dar.

In bestehenden Prozessen kann Flexibilität wie zuvor beschrieben in ver-
schiedenen Formen vorkommen. Soll das Adaptivity Engineering als metho-
discher Rahmen zur Umstrukturierung von Prozessen eingesetzt werden,
so sollten deren Modelle, Instanzen und Prozesshistorien sorgfältig analy-
siert werden. Hierdurch kann eine Verbesserung der Prozesse aus Sicht des
Adaptivity Engineering in zukünftigen Iterationen des BPM-Lebenszyklus
unterstützt werden. Ein exemplarisches Resultat einer solchen Verbesse-
rung hinsichtlich der zuvor gegebenen Analyse ist in Abbildung 7-7 dar-
gestellt.

High-Level-Gestaltung SoCDie durch die Umstrukturierung vorgenommene Verbesserung führt da-
bei auf der Ebene der High-Level-Gestaltung sowohl einen neuen AC4BPM
mit der Bezeichnung Check Product Quality ein als auch eine Funktion mit
der Bezeichnung Run Quality Check. Bereits zuvor vorgestellte Funktionen
der Montage sind hier durch die Funktionen Assemble Parts und Unassem-
ble Parts dargestellt. Dabei wird jedoch die Funktion Unassemble Parts nicht
mehr als anzupassende Funktion, sondern als Teilfunktion des AC4BPM

Seite 226 Kapitel 7

Abbildung 7-7:
AC4BPM für das

Separation of Business
and Adaptivity Logic

Robot

[!ok]

adaptationProcess =
‘UnassembleAssembly‘

Worker

Ready for
quality check

Ready for quality check

Anwendungslogik der
Endmontage

Worker

Anpassungslogik –
Flexibility-by Design: Iteration

Unassemble

Assembly

H
ig

h
-L

e
ve

l-
G

es
ta

lt
u

n
g

Lo
w

-L
ev

el
-G

es
ta

lt
u

n
g

Human
Performer

Assemble Parts
«adapts»

Adaptation Process

Unassemble Parts

«include»

Robot

«include»

Monitoring Process

«AC4BPM»
Check Product Quality

Ready for
quality check

Run Quality
Check

Report

Run
Quality

Check

CAP

Unassemble
Parts

Assemble Parts

verwendet. Der AC4BPM beschreibt hierbei, dass im Fall einer unzurei-
chenden Qualität des montierten Produkts eine Anpassung an der Mon-
tage durchgeführt werden soll. Ob dieser Fall eingetreten ist, kann durch
die Funktion Run Quality Check detektiert werden. Sie wird als ein Teil des
AC4BPM verwendet. Ausführender Akteur bleibt dabei Robot.

Als wesentlicher Unterschied ist jedoch zu bemerken, dass diese Funk-
tion nicht mehr als Teil des Hauptprozesses dargestellt wird und somit
bereits eine Trennung von unterschiedlichen Aspekten stattgefunden hat.
Als weiterer Teil des Separation-of-Concerns bleibt die Funktion Unassem-
ble Parts, welche zur Demontage eingesetzt wird. Sie wird ebenfalls als
Teil des AC4BPM verwendet, da hierdurch eine Anpassung am montierten
Produkt vorgenommen werden soll. Sie wird daher im Rahmen des darge-
stellten Anpassungsprozesses eingesetzt. Ausführender Akteur bleibt hier
der menschliche Akteur Human Performer bzw. die Rolle Worker.

Evaluation Seite 227

Low-Level-Gestaltung SoCDas auf der Ebene der Low-Level-Gestaltung beschriebene Verhalten des
AC4BPM beschreibt dabei die Qualitätssicherung durch den Roboter im
Rahmen des Beobachtungsprozesses. Die Demontage wird in dem An-
passungsprozess durch die Rolle Worker übernommen. Dies lässt sich für
den Fall der Qualitätssicherung durch den Roboter derartig begründen,
dass hierdurch Bedingungen zur Auslösung einer Anpassung ausgewertet
werden. Diese Auswertung stellt dabei exakt den für das Konzept des Be-
obachtungsprozesses angedachten Zweck dar, der durch die beiden Funk-
tionen Monitor und Analyze aus MAPE-K [KC03] angedacht ist. Im Fall des
hier dargestellten Anpassungsprozesses kann von einer speziellen Art der
Kompensation gesprochen werden. Die dargestellte Funktion Unassemble
Assembly stellt dabei eine Maßnahme zur Rückabwicklung und somit eine
Anpassung selbst dar.

ErgänzungNeben dem zuvor gezeigten Beispiel für die Verbesserung von bestehen-
den Prozessen auf Basis von Flexibility-by Design und dem Aspekt Iteration
lassen sich in der Praxis auch bestehende Prozesse finden, auf die weite-
re in dieser Arbeit aufgeführte Entwurfsmuster für flexible und anpassba-
re Prozesse anwendbar sind. Für diese bestehenden Prozesse können un-
ter Verwendung der Perspektive des Adaptivity Engineering in weiteren Ite-
rationen des BPM-Lebenszyklus Verbesserungen erzielt werden, in dem ge-
nerelle Beschreibungen aus Kapitel 5 als Leitfaden für die Gestaltung ver-
wendet werden.

7.1.5 Zusammenfassung

In dem vorangegangenen Abschnitt wurden Beispiele für den Einsatz von
den in dieser Arbeit vorgestellten Lösungsansätzen in Form der Sprache
ACML4BPM, den Entwurfsmustern sowie der zugehörigen Methode Adapt
Cases 4 BPM in Anlehnung an ein Szenario gegeben. Dabei wurden insge-
samt drei Fälle beschrieben, für die das Ziel der Plausibilisierung von Lö-
sungsteilen angedacht war.

Die beschriebenen Fälle des Szenarios stellen einfache aber aussagekräf-
tige Beispiele für die Verwendung des vorgestellten Ansatzes auf un-
terschiedlichen Ebenen der Gestaltung von flexiblen und anpassbaren
Prozessen dar. So wurde veranschaulicht, wie auf den Ebenen der High-
Level-Gestaltung und der Low-Level-Gestaltung ausgesuchte Beispiele von

Seite 228 Kapitel 7

Sprachelementen verwendet werden können. In der High-Level-Gestaltung
werden von dem System und seiner Umgebung zu realisierende Funktio-
nen in Form von UML Use Cases (Anwendung) und in Form von Adapt
Case 4 BPMs (Anpassung) beschrieben. Dabei wurde gezeigt, wie in Be-
zug zu an der Praxis orientierten Beispielen ein Zusammenhang zwischen
Anpassungs- und Anwendungslogik beschrieben werden kann. In einer
mit der High-Level-Gestaltung integrierten Darstellung wurde zudem die
Verfeinerung von AC4BPM in Form von entsprechenden Beobachtungs-
und Anpassungsprozessen beschrieben. Hierbei wurden neben unter-
schiedlichen Arten der Auslösung von Beobachtungsprozessen auch Ope-
rationen zur Anpassung von Prozessen (siehe Abschnitt 4.3.3) im Rahmen
von Anpassungsprozessen verwendet. Neben der Neugestaltung von Tei-
len der Anpassungslogiken in den Fällen 1 und 2 wurde in Fall 3 zudem
beschrieben, wie auch bestehende Prozesse in Unternehmen so gestaltet
werden können, dass Anpassungs- und Anwendungslogik voneinander
getrennt gestaltet werden können. Die drei betrachteten Fälle des Szena-
rios fokussieren dabei jeweils nicht die tiefer gehenden Analysemethoden
oder -techniken zur Identifikation einer Situation, in der die Notwendig-
keit zur Anpassung besteht, sondern die Trennung der Anpassungs- von
der Anwendungslogik. Dennoch wurde sich für Beispiele entschieden, die
so auch in der Praxis vorkommen können.

Das vorgestellte Szenario bildet zudem eine Grundlage für die Bewertung
von weiteren Kriterien zur Evaluation (siehe Abschnitt 7.2). Für einen kon-
kreten Bezug zwischen dem Szenario und der Bewertung der Evaluations-
kriterien wird an dieser Stelle auf Abschnitt 7.4 verwiesen.

7.2 Kriterien

In diesem Abschnitt werden insgesamt zwei Kataloge von Kriterien zur
Bewertung von vorgestellten Konzepten eingeführt. Der erste Katalog
adressiert einzelne Lösungsteile von Adapt Cases 4 BPM in Bezug zu dem
Aspekt der Anpassbarkeit (engl. Adaptivity) auf Basis des durch Anders-
son et. al [And+09] vorgestellten Ansatzes. Andersson et. al führen dabei
einen Katalog von verschiedenen Eigenschaften zur Bewertung der Mo-
dellierbarkeit von selbst-adaptiven Systemen ein. Dabei wird nachfolgend
auf die Gruppen von Eigenschaften Goals, Change, Mechanisms und Effects
eingegangen.

Hier orientiert sich das Vorgehen zur Bewertung maßgeblich an der durch
Luckey [LE13] bzw. Biser [Bis11] vorgestellten Evaluation des Ansatzes

Evaluation Seite 229

Adapt Cases. Hierdurch wird ein Vergleich zu dem ursprünglichen An-
satz Adapt Cases ermöglicht. Dies lässt sich damit begründen, dass es sich
bei Adapt Cases 4 BPM um eine domänenspezifische Redefinition des zu-
vor genannten Ansatzes handelt. So soll durch die Evaluation festgestellt
werden, wie sich Ausprägungen von einzelnen Spracheigenschaften des
generelleren Ansatzes Adapt Cases in dem hier vorgestellten Ansatz Adapt
Cases 4 BPM darstellen.

Der zweite Katalog basiert auf den in Kapitel 1 beschriebenen Anforde-
rungen an den Ansatz Adapt Cases 4 BPM. Dabei werden für die Spra-
che ACML4BPM Kriterien verwendet, die sich anteilig auch in einem Ver-
gleich mit dem Ansatz Adapt Cases verwenden lassen. Für Anforderungen
hinsichtlich der Entwurfsmuster für flexible Prozesse wird zudem ein Ver-
gleich mit existierenden Arbeiten aus der Domäne BPM beschrieben.

7.2.1 Kriterien der Anpassbarkeit

In diesem Abschnitt werden Evaluationskriterien für den Aspekt der An-
passbarkeit (engl. Adaptivity) vorgestellt. Sie basieren dabei auf den durch
Andersson et al. [And+09] beschriebenen Gruppen von Dimensionen für die
Gestaltung von selbst-adaptiven Systemen. Es wurde sich für den vorlie-
genden Katalog von Evaluationskriterien entschieden, weil er bereits für
die Evaluation von ACML in [Bis11] eingesetzt worden ist. Das Ziel, einen
Vergleich zwischen den beiden Ansätzen Adapt Cases und Adapt Cases 4
BPM geben zu können, kann hierdurch unterstützt werden. Nachfolgend
werden die Gruppen von Dimensionen Goals, Change, Mechanisms und Ef-
fects für die Gestaltung von selbst-adaptiven Systemen vorgestellt. Für eine
detaillierte Beschreibung einzelner Dimensionen wird auf [And+09] ver-
wiesen.

Auf Basis der zuvor genannten Gruppen von unterschiedlichen Dimensio-
nen der Gestaltung von selbst-adaptiven Systemen werden in einem spä-
teren Teil der Arbeit (siehe Abschnitt 7.4.1) Bewertungen hinsichtlich der
Ausdrucksfähigkeit des Ansatzes Adapt Cases 4 BPM vorgenommen. Hier-
für wurde bereits in der Arbeit von Biser [Bis11] eine Reihe von verschiede-
nen Fragen ausgearbeitet, die im Rahmen der Evaluation von Adapt Cases
verwendet worden sind. Sie wurden daher als Grundlage für eine Rede-
finition von Fragen wiederverwendet, mit der eine Bewertung des vorlie-
genden Ansatzes durchgeführt wird. Wie bereits in [Bis11] verfahren wor-
den ist, werden die zuvor referenzierten Dimensionen als Ausgangspunkt
für die Evaluation verwendet.

Seite 230 Kapitel 7

Gruppe Goals Die Gruppe Goals enthält Dimensionen, mit denen sich Ziele beschreiben
lassen, für deren Erfüllung ein selbst-adaptives System einzelne oder eine
Reihe von Anpassungen durchführt. Hiervon kann sowohl das System
selbst aber auch seine Umgebung betroffen sein. Ein Ziel lässt sich nach
Andersson et al. auch als eine Komposition verschiedener Teilziele beschrei-
ben, für die sich jeweils spezifische Anpassungen sowohl sequentiell als
auch parallel zur Erreichung des übergeordneten Ziels anwenden lassen.
Durch [And+09] werden für Ziele die Dimensionen Evolution, Flexibility,
Duration, Multiplicity und Dependency aufgeführt. Die abgeleiteten Evalua-
tionskriterien für diese Dimensionen werden in Tabelle 7-1 dargestellt.

Tabelle 7-1:
Evaluationskriterien für

die Gruppe Goals

ID Dimension Frage

EK1 Evolution Kann in der Sprache ACML4BPM ausgedrückt werden, dass die
Ziele eines Systems statisch oder dynamisch sind?

EK2 Flexibility Kann in der Sprache ACML4BPM der Grad an Unbestimmtheit
eines Ziels formuliert werden?

EK3 Goal Duration Kann die Validität eines Ziels über die Lebenszeit des Systems
beschrieben werden?

EK4 Multiplicity Können einzelne oder mehrere Ziele beschrieben werden?

EK5 Dependency Ist es möglich, voneinander abhängige oder unabhängige Ziele
sowie, falls vorhanden, deren Relation zu beschreiben?

Gruppe Change Die Gruppe Change beschreibt Dimensionen in Hinsicht auf die Auslösung
(engl. Trigger) einer Anpassung, die in dem selbst-adaptiven System oder
seiner Umgebung stattfinden soll. Derartige Auslöser können durch eine
Veränderung am System selbst oder in seiner Umgebung gegeben sein
und lassen sich z.B. durch Ereignisse beschreiben. Im Rahmen der Gruppe
Change werden die Dimensionen Source, Type, Frequency und Anticipation
aufgeführt. Die abgeleiteten Evaluationskriterien für diese Dimensionen
werden in Tabelle 7-2 dargestellt.

Tabelle 7-2:
Evaluationskriterien für

die Gruppe Change

ID Dimension Frage

EK6 Source Kann in der Sprache ACML4BPM die ausgehende Quelle für
eine Auslösung entlang der beiden Grade extern und intern un-
terschieden werden?

EK7 Change Type Ist es möglich, die Art einer Auslösung hinsichtlich der Typen
funktional, nicht funktional oder technologisch zu beschreiben?

EK8 Frequency Kann die Häufigkeit einer Auslösung beschrieben werden?

EK9 Anticipation Kann die Vorhersage einer Auslösung beschrieben werden?

Evaluation Seite 231

Gruppe MechanismsDie dritte Gruppe Mechanisms beschreibt Dimensionen hinsichtlich von
Anpassungen an einem selbst-adaptiven System oder seiner Umgebung
(siehe Tabelle 7-3). Dabei werden derartige Anpassungen auf Basis zuvor
aufgekommener Auslösungen ausgeführt. Die durch die Gruppe Mecha-
nisms gegebenen Dimensionen Autonomy, Organization und Triggering cha-
rakterisieren diese Anpassungen.

ID Dimension Frage

EK10 Mechanism
Type

Können durch das Konzept Adapt Case 4 BPM Anpassungen
in Bezug zu Parametern von Systemkomponenten oder von der
Struktur des Systems beschrieben werden?

EK11 Autonomy Wie autonom sind Anpassungen, die durch das Konzept Adapt
Case 4 BPM beschrieben werden können?

EK12 Organization Kann eine Anpassung durch eine Komponente oder durch meh-
rere Komponenten durchgeführt werden?

EK13 Scope Ist es möglich, zu beschreiben, ob eine Anpassung lokale Eigen-
schaften oder das gesamte System betrifft?

EK14 Mechanism
Duration

Ist es möglich, zu beschreiben wie lange der Vorgang einer An-
passung dauern wird?

EK15 Timeliness Kann durch das Konzept Adapt Case 4 BPM beschrieben, wer-
den, ob eine bestimmte Zeitdauer für eine Anpassung garantiert
werden kann?

EK16 Triggering Ist es möglich, Anpassungen zu beschreiben, die durch ein Er-
eignis oder durch eine zeitliche Bedingung ausgelöst werden?

Tabelle 7-3:
Evaluationskriterien für
die Gruppe Mechanisms

Gruppe EffectsIn der vierten und letzten Gruppe Effects sind Dimensionen enthalten, die
den Einfluss einer Anpassung auf das selbst-adaptive System oder seine
Umgebung beschreiben. So sind bspw. Charakterisierungen möglich, die
eine Anpassung als kritisch, vorhersehbar, aufwändig oder das System
bzw. seine Umgebung als widerstandsfähig darstellen. Die entsprechen-
den Dimensionen sind Criticality, Predictability, Overhead und Resilience, für
die die abgeleiteten Evaluationskriterien in Tabelle 7-4 dargestellt sind.

ID Dimension Frage

EK17 Criticality Kann die Konsequenz einer gescheiterten Anpassung durch das
Konzept Adapt Case 4 BPM beschrieben werden?

EK18 Predictability Ist es möglich, die Vorhersage einer Konsequenz einer durchge-
führten Anpassung durch das Konzept Adapt Case 4 BPM zu
beschreiben?

EK19 Overhead Kann eine negative Konsequenz einer Anpassung beschrieben
werden?

EK20 Resilience Kann die Lebensdauer einer vertrauenswürdigen Diensterbrin-
gung beschrieben werden?

Tabelle 7-4:
Evaluationskriterien für
die Gruppe Effects

Seite 232 Kapitel 7

7.2.2 Kriterien für die Anforderungen an Adapt Cases 4 BPM

In Tabelle 7-5 werden in Anlehnung an die beschriebenen Anforderungen
an den Ansatz Adapt Cases 4 BPM (siehe Abschnitt 1.3) zugehörige Eva-
luationskriterien dargestellt. Durch die Bewertung werden zwei Ziele ver-
folgt. Zum einen soll ebenso wie zuvor für den Aspekt der Anpassbarkeit
(siehe Abschnitt 7.2.1) ein Vergleich zwischen den beiden Sprachen ACML
und ACML4BPM durchgeführt werden. Zum anderen sind domänenspe-
zifische Anforderungen an den Ansatz Adapt Cases 4 BPM gesetzt worden,
die nicht mit Adapt Cases verglichen werden können. Für derartige Anfor-
derungen soll ein Vergleich mit Arbeiten aus der Domäne BPM durchge-
führt werden.

Tabelle 7-5:
Evaluationskriterien für

die Anforderungen an
Adapt Cases 4 BPM

ID Dimension Frage

EK21 Separation-of-
Concerns

Ist eine Trennung von Anpassungs- und Anwendungslogik
durch den Ansatz Adapt Cases 4 BPM möglich?

EK22 Kontrollschleife Wie gut können Kontrollschleifen durch die Verwendung von
ACML4BPM gestaltet werden?

EK23 Ausdrucks-
fähigkeit

Wie hoch ist der Grad der Ausdrucksfähigkeit von der Spra-
che ACML4BPM im Vergleich zu der Sprache ACML und
UML Use Cases?

EK24 UML-Konsistenz Wie gut ist die Konsistenz gegenüber der Sprache UML?

EK25 BPMN2.0-
Konsistenz

Wie hoch ist die Konsistenz zwischen den beiden Sprachen
ACML4BPM und BPMN2.0?

EK26 Musterbasierte
Unterstützung

Können verschiedene Aspekte von Flexibilität durch die erar-
beiteten Entwurfsmuster unterstützt werden?

EK27 Integration Ist der Ansatz Adapt Cases 4 BPM entlang einer spezifischen
Methode der Domäne BPM einsetzbar?

Ein Vergleich mit der Sprache ACML kann auf Basis der Evaluationskriteri-
en EK21, EK22, EK23 sowie EK24 durchgeführt werden. Dies lässt sich da-
durch begründen, dass sie bereits in der Evaluation des Ansatzes Adapt Ca-
ses verwendet worden sind und einen Teil der Anforderungen umfassen,
die auch für den vorliegenden Ansatz gesetzt worden sind. Die zugehöri-
ge Bewertung dieser Kriterien kann daher im Rahmen der hier durchge-
führten Evaluation zum Zweck des Vergleichs wiederverwendet werden.

Weitere aufgeführte Evaluationskriterien sind für die Bewertung von Er-
füllungsgraden der Anforderungen an den in dieser Arbeit vorgestellten
Ansatz Adapt Cases 4 BPM vorgesehen. Basierend auf den vorgestellten
Evaluationskriterien soll im Rahmen einer Selbstevaluation eine Bewer-
tung von Erfüllungsgraden durchgeführt und offene Punkte identifiziert
werden.

Evaluation Seite 233

7.3 Bewertungseinheit

Für die Bewertung von Kriterien zur Evaluation der einzelnen Lösungs-
teile wird in diesem Abschnitt ein Skalenniveau eingeführt. Zum besseren
Vergleich der beiden Sprachen ACML und ACML4BPM wurde sich für eine
Ordinalskala entschieden. Dabei wird maßgeblich die gleiche Ausprägung
verwendet, wie sie bereits in [Bis11] für die Evaluation der Sprache ACML
eingeführt wurde.

Zur Übersicht ist die verwendete Ordinalskala in Tabelle 7-6 gezeigt. Sie
besteht aus insgesamt sechs geordneten Kategorien, welche durch natür-
lichsprachliche und numerische Werte identifizierbar sind. Sie reicht vom
niedrigsten Wert 0 (nicht gesetzt) bis hin zum höchsten Wert 10 (exzellent).
Die Semantik der einzelnen Kategorien ist ebenso in Anlehnung an [Bis11]
übernommen worden und in Tabelle 7-6 entsprechend dargestellt.

Eine Ergänzung zu der durch Biser verwendeten Kategorien ist jedoch
durch den Spezialfall des Wertes 0 (nicht gesetzt) gegeben. So bestanden be-
stimmte Anforderungen an den Ansatz Adapt Cases zum Zeitpunkt seines
Entwurfs nicht, sodass ein Vergleich mit bestehenden Werten im weiteren
Verlauf nicht möglich ist. Auf eine nachträgliche Bewertung in Anlehnung
an entsprechende Anforderungen wurde in dieser Arbeit verzichtet. Dabei
wird an geeigneter Stelle auf entsprechende Anforderungen aufmerksam
gemacht.

Deskriptiv Numerisch Semantik

nicht gesetzt 0 Anforderung wurde für den Ansatz nicht gesetzt.

nicht akzeptabel 2 Anforderung kann in keiner Hinsicht erfüllt werden.

moderat 4 Anforderung könnte mit großem zusätzlichen Aufwand
realisiert werden.

akzeptabel 6 Anforderung kann nicht erfüllt werden, ist jedoch durch
geringe Aufwände zukünftig realisierbar.

gut 8 Anforderung kann mit Abweichung erfüllt werden.

exzellent 10 Anforderung kann vollständig erfüllt werden.

Tabelle 7-6:
Bewertungseinheit
für Kriterien

Durch die vorgestellte Bewertungseinheit ist es möglich, den aktuellen
Stand der beiden Ansätze Adapt Cases und Adapt Cases 4 BPM sowie ih-
rer zugehörigen Sprachen gegenüberzustellen. Für die grafische Darstel-
lung von Ergebnissen der Evaluation werden im Rahmen der Bewertung
von Kriterien Netzdiagramme verwendet (siehe Abschnitt 7.4). Dies lässt
sich damit begründen, dass sie bereits in der Evaluation von Adapt Cases
eingesetzt worden sind und so Vergleich ermöglicht wird.

Seite 234 Kapitel 7

Ein Beispiel für ein solches Netzdiagramm ist in Abbildung 7-8 dargestellt.
Insgesamt ist hier die Bewertung von vier verschiedenen Dimensionen ge-
zeigt. Das dargestellte Raster gibt gemäß der in Tabelle 7-6 gezeigten Be-
wertungseinheit die Bewertung in Zweierschritten für eine Dimension an.
Dabei werden Bewertungen für den Ansatz Adapt Cases 4 BPM in der Farbe
Blau und für den Ansatz Adapt Cases in der Farbe Rot dargestellt.

Abbildung 7-8:
Netzdiagramm zur
grafischen Darstel-

lung von Ergebnissen

Dimension A

Dimension B

Dimension C

Dimension D

ACML4BPM
ACML

Die hier exemplarisch gezeigte Bewertung beschreibt eine überdeckende
Bewertung für die beiden Ansätze hinsichtlich der Dimension B. In den
weiteren Dimensionen werden exemplarisch Eigenschaften des Ansatzes
ACML insgesamt als besser bewertet dargestellt.

Evaluation Seite 235

7.4 Bewertung

In diesem Abschnitt werden Bewertungen vorgestellt, die auf Basis der
zuvor in Abschnitt 7.2 vorgestellten Kataloge von Kriterien vorgenommen
worden sind. Die Bewertungen von Kriterien des Aspekts der Anpassbar-
keit (engl. Adaptivity) werden in Abschnitt 7.4.1 vorgestellt. Die Kriterien
beruhen dabei auf den durch Andersson et. al [And+09] eingeführten Ka-
talog von Eigenschaften zur Bewertung von Fähigkeiten zur Modellie-
rung unterschiedlicher Eigenschaften von selbst-adaptiven Systemen. Da-
bei wird auf die bereits eingeführten Gruppen dieser Eigenschaften in den
zugehörigen Abschnitten 7.4.1.1 bis 7.4.1.4 Bezug genommen.

Anschließend werden Bewertungen für die Anforderungen an den Ansatz
Adapt Cases 4 BPM in Abschnitt 7.4.2 vorgestellt. Da sich eine Bewertung
von unterstützten Aspekten von flexiblen und anpassbaren Prozessen mit
Adapt Cases nicht sinnvoll in einem Vergleich kombinieren lässt, wird die-
ser Abschnitt weiter unterteilt. So wird in Abschnitt 7.4.2.1 zunächst all-
gemein auf die Bewertung für die vorgestellten Anforderungen eingegan-
gen. Dabei wird an sinnvollen Stellen ein Vergleich zum Ansatz Adapt Ca-
ses vorgenommen. Ergänzend wird in Abschnitt 7.4.2.2 dediziert auf eine
Übersicht, eine Bewertung und einen Vergleich von unterstützten Aspek-
ten von flexiblen und anpassbaren Prozessen eingegangen.

7.4.1 Bewertung von Kriterien der Anpassbarkeit

In diesem Abschnitt werden für den Aspekt der Anpassbarkeit Bewertun-
gen vorgestellt. Dabei werden Ergebnisse sowohl tabellarisch als auch gra-
fisch durch Netzdiagramme dargestellt. Zugehörige Daten der Evaluati-
on für die Sprache ACML wurden aus der Arbeit von [Bis11] übernom-
men. Bei den verwendeten Daten der Sprache ACML4BPM handelt es sich
um eine selbstkritische Selbsteinschätzung, die auf Erfahrungen aus der
Erstellung von Beispielen in Bezug zu dem Szenario beruhen (siehe Ab-
schnitt 7.1). Für die durch [And+09] eingeführten Dimensionen zur Ge-
staltung von selbst-adaptiven Systemen werden zunächst die Ergebnisse
der Evaluation der Sprache ACML4BPM vorgestellt und diskutiert. Im An-
schluss folgt ein Vergleich mit den Ergebnissen für die Sprache ACML.

Seite 236 Kapitel 7

7.4.1.1 Bewertungen für die Gruppe Goals

Die Gestaltung von Zielen wird durch den Einsatz von ACML4BPM nicht
unterstützt. Ziele können für die zu gestaltenden flexiblen und anpassba-
ren Prozesse jedoch als eine Art von Anforderungen verstanden werden,
für deren Erreichung Funktionen beschrieben werden müssen. So kann ein
Prozess, Subprozess oder Task eine solche Funktion zur Erreichung eines
Ziels darstellen, die in verschiedene Teilfunktionen bzw. Teilziele zerlegt
werden kann. Nachfolgend sind die Bewertungen von Dimensionen der
Gruppe Goals in Tabelle 7-7 dargestellt. Auf Details und eine zugehörige
Diskussion für die Bewertungen von Dimensionen der Gruppe Goals wird
nachfolgend individuell eingegangen.

Tabelle 7-7:
Bewertungen für die

Gruppe Goals

ID Dimension ACML4BPM ACML

EK1 Evolution akzeptabel akzeptabel
EK2 Flexibility gut gut
EK3 Goal Duration akzeptabel moderat
EK4 Multiplicity gut gut
EK5 Dependency gut gut

EK1 In ACML4BPM sind keine Sprachelemente zur Gestaltung von Zielen
enthalten. Daher können nur implizit statische Ziele durch die Gestaltung
von Prozessen bzw. Subprozessen sowie von Teilzielen durch verschiede-
ne Tasks beschrieben werden. Prozesse, Subprozesse und Tasks stellen hier
Funktionen dar, die zur Erreichung eines organisatorischen Ziels notwen-
dig sind. Wird ein AC4BPM als Beschreibung von Anpassungen von be-
stehenden Funktionen verwendet, so werden bspw. Funktionen verändert,
die der Erreichung des ursprünglichen Ziels unter geänderten Umständen
dienen.

Ein Beispiel für die Anpassung eines Prozesses zur weiteren Erreichung
seines Ziels ist in Abschnitt 7.1.4 gegeben. Betrachtet man hier als Ziel
des Hauptprozesses die Montage eines Produktes unter Einhaltung gewis-
ser Qualitätsanforderungen, so können einzelne Funktionen bzw. Tasks als
Maßnahmen zur Erreichung von Teilzielen betrachtet werden. Die in dem
Hauptprozess enthaltene Iteration stellt dabei sicher, dass ein montiertes
Produkt im Fall unzureichender Qualität demontiert und anschließend er-
neut montiert wird. Das Ziel des Hauptprozesses ist somit statisch. Eine
Anpassung von bestehenden Funktionen führt jedoch dazu, dass das je-
weilige Teilziel auch als dynamisch betrachtet werden kann.

Die Dimension Evolution wird daher als akzeptabel realisiert bewertet.

Evaluation Seite 237

EK2 Bei der Unbestimmtheit handelt es sich um eine Eigenschaft eines
Ziels. Da ACML4BPM keine Sprachelemente zur Beschreibung von Zielen
zur Verfügung stellt, ist die Gestaltung von deren Eigenschaften auch nicht
möglich. Jedoch ist es möglich, Funktionen, die zur Realisierung von Teil-
zielen gestaltet werden, bei Bedarf so anzupassen, dass übergeordnete Zie-
le und Teilziele auch weiterhin erfüllt werden können. Der hierdurch ent-
stehende Grad an Flexibilität ermöglicht es, auf der Ebene der Gestaltung
von Prozessen – insbesondere unter Verwendung der in Kapitel 5 vorge-
stellten Entwurfsmuster – die Unbestimmtheit eines Ziels umzusetzen.

Ein Beispiel für eine derartige Umsetzung ist in Fall 2 des Szenarios be-
schrieben (siehe Abschnitt 7.1.3). Hier ist Flexibilität durch unterschied-
liche Auslösungen des HPWM gegeben. Dabei wird der Aspekt Choice
von Flexibility-by Design eingesetzt (siehe Abschnitt 5.2.2). Ferner ist Unbe-
stimmtheit auch im Rahmen des Anpassungsprozesses vorgesehen. So ist
nicht beschrieben, in welcher Reihenfolge ein nicht zugewiesener mensch-
licher Akteur zugewiesen wird. Beide Umstände stellen jeweils einen ge-
wissen Grad an Unbestimmtheit dar, auch wenn er selbst nicht durch ein
explizites Sprachelement gestaltet worden ist.

Die Dimension Flexibility wird daher als gut realisiert bewertet.

EK3 Da die Gestaltung von Zielen in ACML4BPM nicht explizit möglich
ist, kann die Eigenschaft der Validität eines Ziels über die Lebenszeit des
Systems nicht beschrieben werden. Es ist jedoch möglich, auf geänderte
Eigenschaften der Umgebung zu reagieren. Hierfür wurden eine Reihe
von unterschiedlichen Entwurfsmustern vorgestellt, sodass bspw. unge-
wollte Funktionen, die für die Realisierung von (Teil-)Zielen eines Prozes-
ses verwendet werden, aus dem Prozess entfernt werden können. Dieses
Entfernen kann im Rahmen von Flexibility-by Change entweder temporär
oder permanent durchgeführt werden (siehe Abschnitt 5.3). Ferner kön-
nen auch bedingte Aufrufe von Funktionen durchgeführt werden, wie es
z.B. im Rahmen von Flexibility-by Design und dem Aspekt Choice beschrie-
ben worden ist (siehe Abschnitt 5.2.2). Die in den Entwurfsmustern vor-
gesehenen Anpassungen bzw. Aufrufe stellen dabei auch eine Aktion in
Hinsicht auf die Eigenschaft der Validität von (Teil-)Zielen dar.

Durch Fall 3 des Szenarios ist hierzu ein Beispiel gegeben (siehe Ab-
schnitt 7.1.4). So wird eine Funktion zur Demontage eines Produktes nur
dann aufgerufen, wenn die Qualität des montierten Produktes nicht aus-
reichend ist. Dadurch wird eine neue Funktion zur Realisierung eines zu-
vor nicht vorhandenen Teilziels verwendet. Im Fall eines bedingten Auf-

Seite 238 Kapitel 7

rufs dieser Funktion verändert sich folglich auch die Validität des zugehö-
rigen Ziels.

Die Dimension Goal Duration wird als akzeptabel realisiert bewertet.

EK4 Einzelne oder mehrere Ziele können durch ACML4BPM nicht expli-
zit gestaltet werden. Stattdessen können aber mehrere AC4BPM beschrie-
ben werden, die für die Erreichung gleicher oder unterschiedlicher Ziele
verwendet werden. Derartige AC4BPM können auch mit weiteren Funk-
tionen des Systems in Relation stehen (siehe EK5 Dependency).

Sofern Funktionen als Maßnahmen zur Erreichung von (Teil-)Zielen be-
trachtet werden, sind entlang der drei Fälle des Szenarios verschiedene
Beispiele auf der Ebene der High-Level-Gestaltung gegeben. So ist es z.B.
möglich, dass eine Funktion durch eine weitere Funktion angepasst wird
(siehe Abschnitt 7.1.2). Funktionen können aber auch andere Funktionen
enthalten (siehe Abschnitt 7.1.3). Je nach Anforderungen können dabei be-
liebig viele Funktionen beschrieben werden, die für die Erreichung eines
oder mehrerer Ziele notwendig sind.

Die Dimension Multiplicity wird daher als gut realisiert bewertet.

EK5 Durch ACML4BPM ist es möglich, verschiedene Funktionen zur
Realisierung von Zielen in eine gegenseitige Abhängigkeit zu stellen.
So können durch die Verwendung verschiedener Ereignisse oder durch
den Aufruf weiterer Funktionen derartige Abhängigkeiten implizit darge-
stellt werden. Eine explizite Darstellung ist auf der Ebene der High-Level-
Gestaltung durch verschiedene Assoziationen wie «include», «adapts» oder
«extends» möglich.

Durch Fall 2 des Szenarios ist hierfür ein Beispiel gegeben (siehe Ab-
schnitt 7.1.3). So wird die Funktion Analyze Workload Profile im Rahmen
des Beobachtungsprozesses des AC4BPM HPWM eingesetzt. Hierdurch ist
eine Art der Abhängigkeit beider Funktionen beschrieben, die auf der Ebe-
ne der High-Level-Gestaltung durch die Assoziation «include» beschrieben
werden kann.

Die Dimension Dependency wird daher als gut realisiert bewertet.

Grafische Darstellung
und Diskussion

Ergänzend zu der vorherigen textuellen Beschreibung der Bewertungen
von Dimensionen der Gruppe Goals ist zur besseren Übersicht zudem eine
grafische Darstellung in Abbildung 7-9 gegeben. Werden die Bewertun-
gen miteinander verglichen, so fällt eine hohe Überdeckung auf. Dies wird
damit begründet, dass die zugrunde liegenden Konzepte in der Sprache

Evaluation Seite 239

ACML im Rahmen des Entwurfs der Sprache ACML4BPM redefiniert wor-
den sind. Dabei wurden wesentliche Konzepte übernommen, sodass in der
Bewertung der Dimensionen der Gruppe Goals die vorliegende Überde-
ckung sogar zu erwarten war.

Dependency

Evolution

Flexibility

Goal Duration Multiplicity

ACML4BPM
ACML

Abbildung 7-9:
Netzdiagramm für die
Gruppe Goals

Eine Ausnahme bildet jedoch das Kriterium EK3 in Form der Dimensi-
on Goal Duration. Dies lässt sich damit begründen, dass in der vorliegen-
den Arbeit verschiedenste Entwurfsmuster für Aspekte von Flexibilität in
der Domäne BPM vorgestellt wurden (siehe Kapitel 5). Hierdurch entste-
hen erweiterte Fähigkeiten des Ansatzes Adapt Cases 4 BPM, sodass das
Kriterium EK3 besser bewertet werden kann. Anhand des für die Bewer-
tung von EK3 gegebenen Beispiels wird eine dieser Fähigkeiten deutlich.
So kann durch einen AC4BPM implizit die Validität eines Ziels über die
Lebenszeit des Systems beschrieben werden, indem temporär oder evolu-
tionär Anpassungen von Prozessen, wie z.B. in Form eines Hinzufügens
oder Entfernens einer Funktion, beschrieben werden.

7.4.1.2 Bewertungen für die Gruppe Change

Die Gruppe Change enthält Dimensionen in Hinsicht auf mögliche Aus-
lösungen für eine Anpassung am System oder an seiner Umgebung. Da-
bei können Auslösungen sowohl von dem System selbst als auch in sei-
ner Umgebung vorkommen. In der Sprache ACML4BPM können Aus-
löser durch Ereignisse im Rahmen des Adaptation View Model 4 BPM

Seite 240 Kapitel 7

(AVM4BPM) beschrieben werden (siehe Abschnitt 4.3.4). Derartige Er-
eignisse sind Teil der Beschreibung von Schnittstellen, die durch System-
und Umgebungskomponenten angeboten werden. Nachfolgend sind die
Bewertungen von Dimensionen der Gruppe Change in Tabelle 7-8 dar-
gestellt. Auf Details und eine zugehörige Diskussion für die dargestell-
ten Bewertungen von Dimensionen der Gruppe Change wird nachfolgend
individuell eingegangen.

Tabelle 7-8:
Bewertungen für die

Gruppe Change

ID Dimension ACML4BPM ACML

EK6 Source exzellent exzellent
EK7 Change Type exzellent exzellent
EK8 Frequency akzeptabel akzeptabel
EK9 Anticipation akzeptabel moderat

EK6 Ereignisse werden als Teil einer Sensorschnittstelle beschrieben, die
durch System- oder Umgebungskomponenten angeboten wird. Die in Sen-
sorschnittstellen von Systemkomponenten beschriebenen Ereignisse las-
sen sich als intern bezeichnen, wohingegen Ereignisse aus Sensorschnitt-
stellen von Umgebungskomponenten als extern zu betrachten sind.

In dem in Abschnitt 7.1.1 vorgestellten AVM4BPM des Szenarios ist eine
derartige Quelle durch die Umgebungskomponente HumanPerformer ge-
geben. Sie bietet die Sensorschnittstelle HumanMachineInterface an, in der
das Ereignis vom Typ AdaptationRequestEvent mit der Bezeichnung Manual-
ReallocationRequest beschrieben ist. Da es sich hier um eine Umgebungs-
komponente handelt, ist dieses Ereignis als extern zu bezeichnen.

Die Dimension Source wird daher als exzellent realisiert bewertet.

EK7 In der Sprache ACML4BPM kann ein breites Spektrum von potenti-
ellen Auslösungen berücksichtigt werden.

In dem in Abschnitt 7.1.3 gegebenen Fall 2 des Szenarios sind unterschied-
liche Typen von Auslösern gegeben. So ist sowohl eine zeitgesteuerte als
auch eine manuelle Auslösung einer Anpassung des Hauptprozesses mög-
lich. Beide Auslösungen können sowohl als funktional als auch als nicht
funktional betrachtet werden. So sind sie zum einen auslösend für die
Durchführung einer Anpassung und zum anderen dienen sie dem Zweck
der Menschenzentrierung innerhalb des Shared-Workspace.

Die Dimension Change Type wird als exzellent realisiert bewertet.

Evaluation Seite 241

EK8 Durch das Konzept AC4BPM ist es nicht möglich, die Häufigkeit des
Auftretens einer Auslösung zu beschreiben. Durch zeitbasierte Ereignis-
se kann aber ein Intervall oder ein bestimmter Zeitpunkt der Ausführung
des Verhaltens eines Beobachtungs- und Anpassungsprozesses beschrie-
ben werden.

Ein Beispiel für ein derartiges Ereignis wird in Fall 1 des Szenarios gege-
ben (siehe Abschnitt 7.1.2). Hier wird ein Ereignis vom Typ TimerEvent da-
zu verwendet, dass der zugehörige Beobachtungsprozess alle 20 Minuten
ausgeführt werden soll.

Durch diese nur geringe Einschränkung wird die Dimension Frequency als
akzeptabel realisiert eingeschätzt.

EK9 Eine Vorhersage des Auftretens von Auslösern einer Anpassung
kann durch ein eigenes Element in der Sprache ACML4BPM nicht dar-
gestellt werden. Durch Andersson et al. [And+09] werden die genannten
Typen von Vorhersagen foreseen, foreseeable und unforeseen betrachtet. Für
diese Typen ist jedoch in Beobachtungs- und Anpassungsprozessen die
Gestaltung von spezialisierten Funktionen in Hinsicht auf die Analyse der
bisherigen Historie der Ausführung möglich. Auch wenn kein explizites
Sprachelement vorhanden ist, so können derartige Funktionen dennoch
in der Gestaltung Berücksichtigung finden. Neben den zuvor genannten
Typen zählen Andersson et al. aber auch die Behandlung von Fehlern zu
den Eigenschaften der Dimension Anticipation. Eine solche Behandlung
sollte stets in einer Gestaltung von flexiblen Prozessen mitberücksichtigt
werden. Sie stellt neben vielen anderen Gründen für die Durchführung
einer Anpassung einen wichtigen Beitrag zur Gewährleistung der ord-
nungsgemäßen Funktion des Gesamtsystems dar.

Die Behandlung von auftretenden Fehlern kann durch Beobachtungs-
und Anpassungsprozesse gestaltet werden. Hierzu können entsprechen-
de Maßnahmen bereits in der Neugestaltung oder in nachfolgenden Ite-
rationen des BPM-Lebenszyklus hinzugefügt werden. Dabei bietet sich die
Verwendung des Flexibilitätsaspekts Flexibility-by Underspecification und
seiner Untertypen Late Selection bzw. Late Modeling (siehe Abschnitt 5.5.1)
besonders an. So lassen sich im Bedarfsfall Funktionen dynamisch auch
zur Laufzeit gestalten und binden, sodass adäquat auf einen aufgekomme-
nen Fehler reagiert werden kann. Die Verwendung dieser Entwurfsmus-
ter stellt selbst eine implizite Vorhersage für auftretende Ereignisse dar,
die jeweils als foreseen oder foreseeable betrachtet werden können. Dies lässt
sich dadurch begründen, dass unter Einsatz dieser Entwurfsmuster bereits

Seite 242 Kapitel 7

zum Zeitpunkt der Gestaltung Situationen berücksichtigt werden können,
die eine dynamische Bindung von Prozessfragmenten (Late Selection) er-
möglichen oder aber das Aufkommen von undefinierten Situationen (Late
Modeling) berücksichtigen.

Die Dimension Anticipation wird daher als akzeptabel realisiert bewer-
tet.

Grafische Darstellung
und Diskussion

Eine grafische Darstellung der zuvor beschriebenen Ergebnisse für die
Gruppe Change ist in Abbildung 7-10 gegeben. Wie zuvor bereits für die
Gruppe Goals beschrieben, besteht auch hier eine hohe Überdeckung in
den Bewertungen. Es existiert in beiden Sprachen kein dediziertes Sprach-
element zur Beschreibung der Vorhersage des Auftretens einer Auslösung.
Dabei können sowohl im Rahmen der Monitoring Activity (ACML) als auch
im Rahmen des Beobachtungsprozesses (ACML4BPM) erweiterte Funktio-
nalitäten beschrieben werden, die eine derartige Vorhersage, wie z.B. auf
Basis einer Historie der Ausführung, ermöglichen.

Abbildung 7-10:
Netzdiagramm für

die Gruppe Change

Anticipation

Source

Type of
Change

Frequency

ACML4BPM
ACML

Eine Unterscheidung lässt sich hier lediglich für die Dimension Anticipati-
on erkennen. Dies lässt sich dadurch erklären, dass im Kontext der Metho-
de Adapt Cases 4 BPM auch Entwurfsmuster für unterschiedlichste Aspek-

Evaluation Seite 243

te von Flexibilität vorgestellt worden sind. So kann, wie zuvor beschrie-
ben, z.B. durch die Verwendung der Entwurfsmuster Late Selection oder
Late Modeling eine implizite Vorhersage des Auftretens einer Auslösung
beschrieben werden. Die Entwurfsmuster stellen daher in Bezug zur Di-
mension Anticipation einen Mehrwert dar, sodass die Bewertung entspre-
chend besser ausfallen kann.

7.4.1.3 Bewertungen für die Gruppe Mechanisms

Die Dimensionen der Gruppe Mechanisms betreffen – basierend auf auf-
kommenden Auslösern der Dimension Change – durchzuführende Anpas-
sungen an Eigenschaften eines Systems bzw. seiner Umgebung. Unter der
Verwendung der Sprache ACML4BPM werden in diesem Bezug typischer-
weise zunächst Entscheidungen im Rahmen von Beobachtungsprozessen
getroffen. Als Folge einer Entscheidung können Anpassungsprozesse auf-
gerufen werden, in denen Operationen zur Anpassung von Prozessen und
deren Umgebung ausgeführt werden können. Nachfolgend sind die Be-
wertungen von Dimensionen der Gruppe Mechanisms in Tabelle 7-9 dar-
gestellt. Auf Details und eine zugehörige Diskussion für die dargestellten
Bewertungen von Dimensionen der Gruppe Mechanisms wird nachfolgend
individuell eingegangen.

ID Dimension ACML4BPM ACML

EK10 Mechanism Type gut gut
EK11 Autonomy gut moderat
EK12 Organization gut gut
EK13 Scope nicht akzeptabel nicht akzeptabel
EK14 Mechanism Duration nicht akzeptabel nicht akzeptabel
EK15 Timeliness moderat nicht akzeptabel
EK16 Triggering exzellent exzellent

Tabelle 7-9:
Bewertungen für die
Gruppe Mechanisms

EK10 In ACML4BPM ist keine Anpassung der Struktur des Systems oder
seiner Umgebung möglich, sofern hiermit eine Anpassung der System-
und Umgebungsarchitektur gemeint ist. Unter derartigen Anpassungen
kann das Hinzufügen, Entfernen oder Modifizieren von System- oder Um-
gebungskomponenten verstanden werden, die im Rahmen des Adaptation
View Model 4 BPM (AVM4BPM) beschrieben worden sind.

Stattdessen können jedoch verschiedenste Eigenschaften (hier: Parameter),
die durch System- und Umgebungskomponenten gekapselte Inhalte dar-
stellen, wie z.B. Prozesse, durch entsprechende Operationen angepasst

Seite 244 Kapitel 7

werden. In ACML4BPM werden dabei insgesamt drei Typen von Kompo-
nenten unterschieden, für die eine Reihe von Operationen zur Anpassung
in Abschnitt 4.3.3 vorgestellt worden sind. Dabei wurden wesentliche an-
passbare Elemente in Bezug zu Perspektiven von Prozessen nach Curtis
et. al [CKO92] identifiziert und eine Menge von zugehörigen Operationen
vorgestellt. Die Menge enthält Operationen, mit denen Anpassungen an
der organisatorischen Struktur, dem Kontroll- und dem Datenfluss ermög-
licht werden können. Im Vergleich zu bereits existierenden Arbeiten, wie
z.B. [Sch+08; WRR08; Ger13], sind so erweiterte Fähigkeiten zur Anpas-
sung von Elementen unterschiedlicher Perspektiven vorhanden.

Daher kann hier von einer Realisierung der Dimension Mechanisms Type
gesprochen werden, die als gut angesehen wird.

EK11 ACML4BPM unterstützt verschiedene Grade von Autonomie in
Hinsicht auf anzuwendende Anpassungen. So kann durch einen AC4BPM
spezifisches Verhalten beschrieben werden, in dessen Rahmen im Beob-
achtungsprozess zunächst eine Analyse erfolgt und anschließend eine Ent-
scheidung für die Auswahl einer benötigten Anpassung getroffen wird.
Nachfolgend kann ein Anpassungsprozess konkrete Anpassungen durch
eine Reihe von Operationen durchführen. Die hierdurch beschriebene An-
passung benötigt dabei nicht zwangsläufig eine Einbindung von weiteren
Ressourcen, wie z.B. einen menschlichen Akteur.

Dies kann – wie für Fall 2 des Szenarios erörtert wurde – jedoch sinnvoll
sein und z.B. durch die Verwendung des Entwurfsmusters Late Modeling
umgesetzt werden. Durch die Verwendung von ACML4BPM und der vor-
gestellten Entwurfsmuster wird somit ein breites Spektrum unterschiedli-
cher Grade von Autonomie unterstützt. Je nach Anforderung an das Sys-
tem kann die Verwendung eines Entwurfsmusters einen kleineren oder hö-
heren Grad an Autonomie bedeuten.

Da aber sowohl Beobachtungs- als auch Anpassungsprozesse zuvor ma-
nuell gestaltet werden müssen, wird die Realisierung der Dimension Au-
tonomy nicht als exzellent, sondern als gut erfüllt betrachtet.

EK12 In ACML4BPM können Anpassungen sowohl an gekapselten In-
halten einer einzelnen Komponente (zentral) als auch an mehreren Kom-
ponenten (dezentral) durchgeführt werden. So können in einem Anpas-
sungsprozess Operationen zur Anpassung verschiedenster Komponenten
verwendet werden. Der Anpassungsprozess orchestriert dabei die jeweili-
ge Fähigkeit zur Anpassung durch die verwendeten Operationen der be-
teiligten Komponenten.

Evaluation Seite 245

Verschiedene Beispiele für eine einfache Orchestrierung von Anpassungen
sind in Fall 1 und Fall 2 des Szenarios gegeben. Hier enthält der verwen-
dete Anpassungsprozess eine Operation zur Anpassung der Eigenschaft
Performer eines Tasks. Die Fähigkeit der Anpassung ist demnach durch die
Modifikation dieser Eigenschaft gegeben.

Dabei ist die Herkunft einer Operation zur Anpassung nicht alleine auf
Komponenten zur Kapselung von Prozessen und deren Instanzen be-
schränkt. Wie in Abschnitt 4.3.2 bereits beschrieben, können z.B. auch
die Effektorschnittstellen von Umgebungskomponenten dedizierte Ope-
rationen zur Anpassung ihrer gekapselten Inhalte anbieten. Der in einem
Anpassungsprozess enthaltene Kontrollfluss kann dabei aus Operationen
verschiedener Komponenten bestehen, die im Rahmen des AVM4BPM
beschrieben worden sind. Somit können durch einen AC4BPM komplexe
und verteilte Anpassungen am System und seiner Umgebung beschrieben
werden.

Die Erfüllung der Realisierung der Dimension Organization kann damit als
gut angegeben werden.

EK13 Die Sprache ACML4BPM enthält keine Sprachelemente zur Gestal-
tung einer zentralisierten oder globalen Rekonfiguration in Hinsicht auf
das Gesamtsystem.

Somit ist die Bewertung der Dimension Scope als nicht akzeptabel

vorgenommen worden.

EK14 Durch die Sprache ACML4BPM kann die Zeitdauer einer Anpas-
sung nicht beschrieben werden.

Somit ist die Bewertung der Realisierung für die Dimension Mechanisms
Duration nicht akzeptabel.

EK15 Die Reihenfolge von Anpassungen durch verschiedene Instanzen
eines Anpassungsprozesses kann in ACML4BPM nicht bestimmt werden.
Lediglich die Reihenfolge von Instanzen eines Beobachtungsprozesses und
der durch ihn aufgerufenen Anpassungsprozesse ist vorgegeben.

Dennoch können im Rahmen des Verhaltens eines Anpassungsprozesses
verschiedene Ereignisse eingesetzt werden, die weitere Anpassungsfäl-
le aufrufen. Hierdurch könnte z.B. der Umstand gegeben sein, dass bei
der weiteren Ausführung des ausgehenden Anpassungsprozesses auf eine
Synchronisation mit den durch ihn aufgerufenen weiteren Anpassungs-
prozessen gewartet wird. Für derartige Fälle kann garantiert werden, dass
aufgerufene Anpassungen im fehlerfreien Betrieb zuerst beendet werden.

Seite 246 Kapitel 7

Die Bewertung der Realisierung der Dimension Timeliness wird aufgrund
der beschriebenen Möglichkeit zur Beschreibung von Reihenfolgen als
moderat bewertet.

EK16 In ACML4BPM ist es möglich, auf verschiedenste Typen von Ereig-
nissen zu reagieren. So werden neben expliziten Ereignissen auch implizite
Ereignisse unterstützt (siehe Abschnitt 4.3.4.1 bzw. Abschnitt 4.3.4.2).

In dem Szenario werden dabei verschiedene Untertypen von expliziten Er-
eignissen verwendet. Neben zeitgesteuerten Ereignissen (Fall 1 und Fall 2)
wird in Fall 3 auch ein Endereignis zur Auslösung verwendet.

Die Bewertung der Dimension Triggering kann daher als exzellent vor-
genommen werden.

Grafische Darstellung
und Diskussion

Eine grafische Darstellung der zuvor beschriebenen Bewertungen für die
Gruppe Mechanisms ist in Abbildung 7-11 gegeben. Im Gegensatz zu den
zuvor beschriebenen Gruppen des Aspekts der Anpassbarkeit unterschei-
den sich die Bewertungen in gleich mehreren Dimensionen. Auf eine Er-
läuterung dieser Unterschiede mit dem Zweck des Vergleichs wird nach-
folgend eingegangen.

Abbildung 7-11:
Netzdiagramm für die

Gruppe Mechanisms

Timeliness

Triggering

Mechanism
Type

Autnomy

Organization

Scope Mechanism
Duration

ACML4BPM
ACML

Evaluation Seite 247

Hinsichtlich der Dimension Mechanism Type lässt ich eine Abweichung
der Ergebnisse damit begründen, dass der Fokus der Methode Adapt Ca-
ses 4 BPM auf der Gestaltung von flexiblen und anpassbaren Prozessen
liegt. Der Ansatz Adapt Cases hingegen stellt einen generelleren Ansatz des
Adaptivity Engineering dar, der insbesondere domänenspezifische Aspek-
te der Domäne BPM außer Acht lässt. So wurden in diesem Zusammen-
hang relevante System- und Umgebungskomponenten im Rahmen einer
umfassenden Analyse identifiziert. Darauf basierend stehen entsprechen-
de Sprachelemente in Form spezifischer Systemkomponenten in der Ge-
staltung von flexiblen und anpassbaren Prozessen zur Verfügung. Ferner
konnten für diese Systemkomponenten Schnittstellen und Operationen
zur Anpassung vorgestellt werden, die auf Basis von Perspektiven in
Prozessen ein breites Spektrum an Anpassbarkeit unterstützen.

Im Gegensatz zu ACML unterstützt ACML4BPM verschiedene Grade an
Autonomie des resultierenden Systems. Hier konnte durch die Arbeit an
verschiedenen Aspekten von Flexibilität von Prozessen sowie der Ein-
führung entsprechender Entwurfsmuster ein Mehrwert gegenüber ACML
dargestellt werden. Dies lässt sich dadurch begründen, dass verschiede-
ne Operationen zur Anpassung oder auch die Einbindung von Mitarbei-
tern oder anderen Nutzern des Systems entweder in der Sprache integriert
oder durch die Entwurfsmuster bereits vorgesehen sind. Daher unterschei-
den sich die Bewertungen in Hinsicht auf die Dimension Autonomy.

Die letzte Unterscheidung in der Bewertung ist für die Dimension Timeli-
ness gegeben. Dabei konnte zuvor argumentiert werden, dass eine gewisse
Art an Erfüllung des Evaluationskriteriums in ACML4BPM sehr wohl vor-
handen ist, auch wenn es sich hierbei um einen Spezialfall handelt. In den
Ergebnissen auf Basis von [Bis11] wird dieser Spezialfall nicht beschrieben.
Dabei ist jedoch vorstellbar, dass dieser auch im Rahmen von ACML um-
setzbar wäre. Die Realisierung der Dimension mit der Bewertung nicht

akzeptabel wird aufgrund des Vorhandenseins des genannten Spezial-
falls als nicht übertragbar auf ACML4BPM angesehen.

Ein Vergleich weiterer Ergebnisse mit gleicher Bewertung für die Gruppe
Mechanisms lässt sich dadurch herleiten, dass zugehörige Konzepte der bei-
den Sprachen vergleichbar beschrieben worden sind. Zwei Beispiele sind
hier durch die Dimensionen Triggering und Organization gegeben. Dabei
können in beiden Sprachen unterschiedliche Arten von Auslösern, wie
z.B. zeitbezogene Ereignisse, zum Aufruf eines Adapt Case bzw. eines Adapt
Case 4 BPM genutzt werden. Ferner lassen sich Anpassungen an dem Sys-
tem oder seiner Umgebung auch derartig gestalten, dass sie an verteil-

Seite 248 Kapitel 7

ten Stellen vorkommen. Die Evaluationskriterien Scope und Mechanisms
Duration können dabei durch keine der beiden Sprachen moderat erfüllt
werden.

7.4.1.4 Bewertungen für die Gruppe Effects

Durch die Gruppe Effects werden verschiedene Dimensionen aufgeführt,
die sich maßgeblich auf Eigenschaften einer Anpassung in Hinsicht auf
die Auswirkung für das Gesamtsystem beziehen. Dabei ist zu bemerken,
dass die Gestaltung oder Fähigkeit zur Analyse von Auswirkungen außer-
halb des Fokus von Adapt Cases oder Adapt Cases 4 BPM liegt. Nachfolgend
sind die Bewertungen der Dimensionen der Gruppe Effects in Tabelle 7-10
dargestellt. Auf Details und eine zugehörige Diskussion für die dargestell-
ten Bewertungen von Dimensionen der Gruppe Effects wird nachfolgend
individuell eingegangen.

Tabelle 7-10:
Bewertungen für die

Gruppe Effects

ID Dimension ACML4BPM ACML

EK17 Criticality gut nicht akzeptabel
EK18 Predictability akzeptabel moderat
EK19 Overhead moderat nicht akzeptabel
EK20 Resilience akzeptabel nicht akzeptabel

EK17 Ein eigenes Sprachelement zur Kennzeichnung einer gescheiterten
Anpassung ist in der Sprache ACML4BPM nicht notwendig, da die in der
Sprache BPMN2.0 enthaltenen Ereignisse vom Typ BoundaryEvent verwen-
det werden können. Ein solches Ereignis kann im Fall einer gescheiterten
Anpassung zur Auslösung von weiterem Verhalten genutzt werden, durch
das geeignete Maßnahmen umgesetzt werden. Eine Veranschaulichung
der Verwendung von Ereignissen des Typs BoundaryEvent wurde bereits
für Flexibility-by Design und den Aspekt Cancellation in Abschnitt 5.2.1.6
gegeben.

Ein Beispiel für derartige Maßnahmen ist durch Verhalten gegeben, das
zum Zweck einer Kompensation bisher durchgeführter Anpassungen aus-
geführt wird. Alternativ kann durch ein solches Ereignis und durch die
Verwendung des Entwurfsmusters Late Modeling bspw. auch ein menschli-
cher Akteur eingebunden werden. Als Folge dieser Einbindung lassen sich
durch diesen Akteur adäquate Maßnahmen in Form von Prozessfragmen-
ten gestalten und anschließend binden. Hierdurch wäre es möglich, durch
benutzerspezifische Prozessfragmente, auf das Scheitern einer Anpassung
reagieren zu können. Die beiden zuvor genannten Beispiele zeigen zwei

Evaluation Seite 249

mögliche Arten, die Konsequenz einer gescheiterten Anpassung entweder
explizit (Kompensation) oder implizit (Late Modeling) zu beschreiben.

Die Dimension Criticality wird daher als gut realisiert bewertet.

EK18 Für die Vorhersage einer Konsequenz einer gescheiterten Anpas-
sung ist geeignetes Wissen notwendig, welches im Rahmen des AVM4BPM
gestaltet werden kann. Wird dieses Wissen nicht spezifiziert, lassen sich
zugehörige Funktionen zur Vorhersage nicht umsetzen. Auch wenn somit
kein dediziertes Sprachelement zur Vorhersage einer Konsequenz in der
Sprache ACML4BPM vorhanden ist, so ist durch die weiterführende Ge-
staltung von Funktionen zur Analyse des genannten Wissens eine Vorher-
sage dennoch möglich.

Die Dimension Predictability wird daher als akzeptabel erfüllt bewertet.

EK19 Der Aufwand einer Anpassung und die daraus resultierenden Kon-
sequenzen können durch die Sprache ACML4BPM nicht gestaltet werden.
Negative Konsequenzen können z.B. dadurch gegeben sein, dass zeit-
lich später angestoßene Anpassungen durchführt worden sind, bevor frü-
her begonnene Anpassungen beendet werden. Stehen diese Anpassungen
in einem Abhängigkeitsverhältnis, sind sowohl Inkonsistenzen zwischen
Prozessmodellen und deren Instanzen als auch unbestimmte System- und
Umgebungszustände möglich.

Eine mögliche Lösung könnte sich mit der Vergabe von Prioritäten und ei-
nem geeigneten Schedulingverfahren beschäftigen. Dabei lassen sich ein-
fache Prioritäten im Rahmen eines einzelnen AC4BPM durch eine ent-
sprechende Gestaltung von Verzweigungen (siehe Abschnitt 5.2.2), also in
Form von Flexibility-by Design und dem Aspekt Choice, implizit umsetzen.

Damit ist die Dimension Overhead mit moderat realisiert zu bewerten.

EK20 Durch ACML4BPM ist nicht gestaltbar, ob nach der Durchführung
einer Anpassung das System bzw. seine Umgebung weiter in der Lage ist,
die benötige Funktionalität zu erbringen.

Damit ist die Dimension Resilience mit nicht akzeptabel realisiert zu
bewerten.

Grafische Darstellung
und Diskussion

Eine grafische Darstellung der zuvor beschriebenen Bewertungen für die
Gruppe Effects ist in Abbildung 7-12 gegeben. Generell lässt sich hier able-
sen, dass sich der Erfüllungsgrad von Evaluationskriterien dieser Dimen-
sion im Durchschnitt als moderat bis nicht akzeptabel darstellt. Das

Seite 250 Kapitel 7

lässt sich dadurch begründen, dass der Fokus in beiden Ansätzen nicht
auf der Abschätzung oder Gestaltung von möglichen Konsequenzen einer
durchzuführenden Anpassung liegt.

Abbildung 7-12:
Netzdiagramm für
die Gruppe Effects

Resilience

Criticality

Predictability

Overhead

ACML4BPM
ACML

Die Bewertung unterscheidet sich unmaßgeblich in drei der vier auf-
geführten Dimensionen. Dies lässt sich aus zwei unterschiedlichen Per-
spektiven begründen. Zum einen ist es möglich, dass die Bewertung von
ACML4BPM an diesen Stellen optimistischer ausfällt, als sie es für ACML
war. Wobei hier jeweils in den einzelnen Beschreibungen entsprechend ar-
gumentiert worden ist. Zum anderen lässt sich für die Dimension Critica-
lity die Verwendung von den in der Sprache BPMN2.0 bestehenden Ele-
menten und den erarbeiteten Entwurfsmustern beschreiben, welche so für
den Ansatz Adapt Cases nicht vorhanden sind. Der dadurch entstehende
Mehrwert stellt damit die Basis für eine höhere Bewertung dar.

7.4.2 Bewertung von Kriterien an Adapt Cases 4 BPM

In diesem Abschnitt werden Bewertungen für die in Abschnitt 7.2.2 be-
schriebenen Kriterien vorgestellt. Diese Bewertungen werden in zwei
Gruppen vorgenommen, auf die nachfolgend kurz eingegangen wird. So
werden zunächst vergleichbare Bewertungen der Evaluation von ACML

Evaluation Seite 251

und ACML4BPM in Abschnitt 7.4.2.1 vorgestellt. Hiervon betroffen sind
die Evaluationskriterien EK21, EK22, EK23 sowie EK24. Zugehörige Daten
der Evaluation für die Sprache ACML wurden aus der Arbeit von [Bis11]
übernommen.

Die Evaluationskriterien EK25, EK26 und EK27 sind für ACML nicht sinn-
voll in einem Vergleich anwendbar. Für EK26 wird ein Vergleich mit alter-
nativen existierenden Arbeiten der Domäne BPM in Abschnitt 7.4.2.2 vor-
genommen. Zugehörige Daten der Evaluation für das Evaluationskriteri-
um EK26 wurden aus der Arbeit von [Sch+08] übernommen. Auf einen
Vergleich zwischen EK25 und EK27 wird verzichtet. Die Ergebnisse aus
beiden Gruppen werden jeweils sowohl tabellarisch als auch zum Teil gra-
fisch durch Netzdiagramme dargestellt.

7.4.2.1 Bewertungen für die Anforderungen an Adapt Case 4 BPM

Nachfolgend sind Bewertungen für die Anforderungen an den Ansatz
Adapt Cases 4 BPM in Tabelle 7-11 dargestellt. Auf Details und eine zu-
gehörige Diskussion für die dargestellten Bewertungen wird nachfolgend
individuell eingegangen.

ID Dimension ACML4BPM ACML

EK21 Separation-of-Concerns gut exzellent
EK22 Kontrollschleife exzellent exzellent
EK23 Ausdrucksfähigkeit exzellent exzellent
EK24 UML-Konsistenz exzellent exzellent
EK25 BPMN2.0-Konsistenz exzellent nicht gesetzt
EK26 Musterbasierte Unterstützung exzellent nicht gesetzt
EK27 Integration exzellent nicht gesetzt

Tabelle 7-11:
Bewertungen für die
Anforderungen an
Adapt Cases 4 BPM

EK21 Eine wesentliche Anforderung war es, die Trennung von An-
passungs- und Anwendungslogik in der Gestaltung von flexiblen und
anpassbaren Prozessen unterstützen zu können. Hierzu wurden in Kapi-
tel 4 die Sprache ACML4BPM und in Kapitel 5 eine Reihe von Entwurfs-
mustern vorgestellt. Dabei wurden grundlegende Funktionsweisen von
Konzepten und schematische Beispiele für die Trennung der genannten
Logiken gegeben. Im Rahmen der in diesem Kapitel betrachteten Fälle des
Szenarios wurden zusätzlich praxisnahe Beispiele beschrieben, in denen
eine getrennte Gestaltung dieser Logiken vorgenommen wurde.

Eine Trennung der beiden Logiken kann somit unterstützt werden. Für
konkrete Beispiele für die Trennung von Anpassungs- und Anwendungs-
logiken wird an dieser Stelle auf die Fälle des Szenarios in Abschnitt 7.1

Seite 252 Kapitel 7

verwiesen. Dabei ist anzumerken, dass sowohl in dem Szenario als auch
in den Entwurfsmustern verschiedene Fälle existieren, bei denen speziel-
le Sprachelemente verwendet werden müssen, um die Anpassungslogik
mit der Anwendungslogik zu verbinden. Hierfür werden bspw. im Rah-
men des Szenarios verschiedene Ereignisse verwendet. Eine vollkommene
Trennung der beiden Logiken ist daher nicht erreicht worden, weil es auch
weiterhin verbindende Elemente gibt.

Als Konsequenz fällt die Bewertung für die Dimension Separation-of-
Concerns lediglich als gut aus.

EK22 Durch die enge Anlehnung an grundlegende Konzepte des Ansat-
zes Adapt Cases konnte auch in Adapt Cases 4 BPM eine Unterstützung des
Musters der Kontrollschleife MAPE-K [KC03] in der Gestaltung von flexi-
blen und anpassbaren Prozessen umgesetzt werden. So werden grundle-
gende Konzepte des Musters in Form der Funktionen Analysis und Execu-
tion (siehe Kapitel 1) durch den Beobachtungs- bzw. Anpassungsprozess
umgesetzt.

Hierzu enthält Fall 2 des Szenarios ein besonders geeignetes Beispiel. So
kann im Rahmen des Beobachtungsprozesses auf Basis verschiedener Aus-
löser aus dem Kontext des Systems (hier: Prozess) so reagiert werden, dass
adäquate Anpassungen (hier: Zuweisung) durchgeführt werden. Dabei
werden auch erweiterte Analysefunktionen unterstützt, die in regelmäßi-
gen Abständen die Notwendigkeit einer Anpassung prüfen.

Die Dimension Kontrollschleife kann damit als exzellent erfüllt bewertet
werden.

EK23 Der in dieser Arbeit vorgestellte Ansatz Adapt Cases 4 BPM stellt
eine domänenspezifische Redefinition des Ansatzes Adapt Cases dar. So
wird in beiden Ansätzen das Verhalten fallbasiert beschrieben. Durch die-
ses Verhalten werden Anpassungen von Eigenschaften des betrachteten
Systems und seiner Umgebung vorgenommen. Beide Ansätze sind dabei
für die Anwendung in einer frühen Phase in der Gestaltung (hier: Design &
Analyse) vorgesehen. Werden benötigte Funktionen der Anwendungslogik
durch UML Use Cases beschrieben, so können Funktionen der Anpassungs-
logik durch das Konzept des Adapt Case 4 BPM beschrieben werden. Da-
bei kann – wie für EK5 Dependency beschrieben – ein AC4BPM mit anderen
Funktionen der Anwendungs- und Anpassungslogik in Relation stehen.

Ein Beispiel für die gemeinsame Verwendung von UML Use Cases und dem
Konzept des Adapt Case 4 BPM wurde in den drei vorgestellten Fällen des

Evaluation Seite 253

Szenarios im Rahmen der High-Level-Gestaltung von Funktionen des be-
trachteten Systems und seiner Umgebung gegeben (siehe Abschnitt 7.1).
Dabei wurde gezeigt, dass neben der für das Adaptivity Engineering klassi-
schen Assoziation «adapts» auch weitere Assoziationen sinnvoll sein kön-
nen (siehe Abschnitt 7.1.3 bzw. Abschnitt 7.1.4).

Die Dimension Ausdrucksfähigkeit kann für den Ansatz Adapt Cases 4 BPM
daher als exzellent bewertet werden.

EK24 In der Sprache ACML4BPM wurden verschiedene Elemente auf Ba-
sis bestehender Konzepte der beiden Sprachen ACML und UML redefi-
niert. Hierdurch wurde eine hohe Konsistenz hinsichtlich der Verwendung
von ACML4BPM bei der Gestaltung von flexiblen und anpassbaren Prozes-
sen gegenüber der Sprache ACML bzw. UML erreicht.

Da es sich bei Adapt Case 4 BPM um eine domänenspezifische Redefinition
handelt, werden an notwendigen Stellen Elemente der Sprache BPMN2.0
verwendet. Hierfür existieren verschiedene Beispiele, wie die beiden Ver-
feinerungen eines AC4BPM in Form von Beobachtungs- und Anpassungs-
prozessen oder die zur Auslösung verwendeten Ereignisse.

Bei den zuvor genannten Abweichungen handelt es sich um notwendige
Einschränkungen in der Konsistenz, sodass als Konsequenz die Dimension
UML-Konsistenz dennoch als exzellent erfüllt bewertet wird.

EK25 Die Sprache BPMN2.0 stellt den De-facto-Standard zur Beschrei-
bung von Prozessen in der Domäne BPM dar. Aus diesem Grund wur-
den bestehende Konzepte des Ansatzes Adapt Cases so redefiniert, dass
spezifische Konzepte der Sprache BPMN2.0 verwendet worden sind. So
lässt sich im Rahmen der Low-Level-Gestaltung die durch einen AC4BPM
beschriebene Funktion mit Hilfe von Beobachtungs- und Anpassungspro-
zessen verfeinern. Die Beschreibung von dem in diesen Prozessen enthal-
tenen Verhalten kann somit durch die Verwendung üblicher BPMN2.0 Ele-
mente durchgeführt werden. Ferner können auch neu eingeführte Elemen-
te der Sprache ACML4BPM, wie z.B. verschiedene Operationen oder Ereig-
nisse, in diesen Prozessen verwendet werden. Sie wurden dabei auf Basis
bestehender Elemente der Sprache BPMN2.0 definiert. Hierdurch entsteht
die Möglichkeit, mit Konzepten des Adaptivity Engineering und in enger
Anlehnung an die Sprache BPMN2.0 entsprechend Prozesse zu gestalten.

Die beiden zuvor ausgeführten Eigenschaften lassen daher den Schluss zu,
dass eine hohe Konsistenz zu der Sprache BPMN2.0 erwartet werden kann.
Das Szenario (siehe Abschnitt 7.1) sowie die Beispiele entlang Kapitel 4
und Kapitel 5 dokumentieren den bestehenden Grad an Konsistenz.

Seite 254 Kapitel 7

Als Konsequenz wird die Dimension BPMN2.0-Konsistenz als exzellent
erfüllt bewertet.

EK26 Im Rahmen dieser Arbeit wurde eine Reihe von verschiedenen
Aspekten von flexiblen und anpassbaren Prozessen nach [Sch+08] vorge-
stellt. Basierend auf dieser Arbeit wurden Entwurfsmuster beschrieben
(siehe Kapitel 5). Diese Entwurfsmuster umfassen neben verschiedenen
notwendigen Spracherweiterungen der Sprache BPMN2.0 auch spezifi-
sche Operationen für Anpassungen. Ferner wird die Verwendungsweise
der vorgestellten Entwurfsmuster beschrieben, sodass ein Mehrwert für
die Gestaltung von flexiblen und anpassbaren Prozessen entsteht.

Die Bewertung des Kriteriums EK26 wird an dieser Stelle vorweggenom-
men und mit exzellent angeben. Eine Übersicht über unterstützte Ent-
wurfsmuster, die detaillierte Bewertung sowie ein Vergleich mit existieren-
den Arbeiten aus der Domäne BPM werden im Anschluss an die Diskussi-
on gegeben.

EK27 Sowohl die vorgestellte Sprache ACML4BPM als auch die Entwurfs-
muster benötigen für ihre Verwendung einen methodischen Rahmen. Hier-
zu wurde die Methode Adapt Cases 4 BPM vorgestellt, die wesentliche Ak-
tivitäten und Artefakte eines domänenspezifischen Adaptivity Engineering
beschreibt. Dabei wurde sich an einem in der Domäne BPM verbreiteten
methodischen Rahmen in Form des BPM-Lebenszyklus nach Weske [Wes12]
orientiert.

Eine beispielhafte Anwendung der Methode Adapt Cases 4 BPM wurde in
Teilen im Rahmen des Szenarios gezeigt (siehe Abschnitt 7.1). Dabei wur-
den die drei Aktivitäten Anforderungsanalyse, High-Level-Gestaltung und
Low-Level-Gestaltung sowie ihre Artefakte und Abhängigkeiten an Beispie-
len beschrieben. Eine weiterführende Verwendung der Methode, wie z.B.
in einem realen Projekt, wurde nicht durchgeführt. Daher muss eine Be-
wertung der Methode auf Basis praxisnaher Kriterien an die zukünftige
Forschung am vorgestellten domänenspezifischen Adaptivity Engineering
delegiert werden.

Es wird davon ausgegangen, dass durch die in Kapitel 6 gegebene Be-
schreibung der Methode Adapt Cases 4 BPM sowie durch das Szenario
und seine drei Fälle die Integration in eine Methode der Domäne BPM
plausibilisiert werden konnte. Die Dimension Integration wird daher mit
exzellent bewertet.

Evaluation Seite 255

Grafische Darstellung
und Diskussion

Die Bewertungen in Hinsicht auf die Anforderungen an den Ansatz Adapt
Cases 4 BPM lassen sich wie in Abbildung 7-13 gezeigt grafisch darstellen.
Generell lässt sich erkennen, dass die Bewertungen von hier betrachteten
Dimensionen als exzellent eingestuft werden können. Das lässt sich da-
durch begründen, dass sich bei der Erstellung des Konzepts für den An-
satz Adapt Cases 4 BPM eng an dem bestehenden Ansatz Adapt Cases orien-
tiert wurde. Die Ergebnisse der untersuchten Dimensionen sind daher bis
auf die Ausnahme Separation-of-Concerns als Deckungsgleich zu bezeich-
nen. Eine Erklärung für die Abweichung bei der Bewertung der Dimen-
sion Separation-of-Concerns wird nachfolgend in Form einer Abschätzung
durchgeführt.

Kontrollschleife

SoC

Ausdrucksfähigkeit

UML-
Konsistenz

BPMN2.0-
Konsistenz

Musterbasierte
Unterstützung

Integration

ACML4BPM
ACML

Abbildung 7-13:
Netzdiagramm für
die Anforderungen an
Adapt Cases 4 BPM

In der Bewertung der Dimension Separation-of-Concerns wurde sich gegen
die Vergabe der Bewertung exzellent entschlossen, da in einigen Fällen sehr
wohl Elemente der verschiedenen Logiken gemeinsam vorkommen. So
wurden bereits in Abschnitt 5.2 unterschiedliche Arten der Integration des
durch einen AC4BPM beschriebenen Verhaltens vorgestellt. Diese Arten
weisen nicht immer eine klare Trennung beteiligter Logiken auf, sodass
es sich hier um eine geringe Einschränkung des vorliegenden Ansatzes

Seite 256 Kapitel 7

Adapt Cases 4 BPM in Bezug zur Dimension Separation-of-Concerns handelt.
Ferner kann davon ausgegangen werden, dass diese gemeinsame Verwen-
dung von Elementen der beiden Logiken auch im Ansatz Adapt Cases be-
reits präsent war. Dies wurde jedoch im Rahmen der Bewertung der be-
treffenden Kriterien offensichtlich als weniger relevant für das Endergeb-
nis eingeschätzt. Eine Abweichung in den Evaluationen der beiden An-
sätze Adapt Cases und Adapt Cases 4 BPM in Hinsicht auf die Dimension
Separation-of-Concerns ist daher vermutlich der jeweiligen subjektiven Be-
wertung zuzuordnen.

Die Bewertungen der beiden Dimensionen BPMN2.0-Konsistenz und Mus-
terbasierte Unterstützung sind als exzellent eingestuft. Dabei wird an die-
ser Stelle auf einen Vergleich mit dem Ansatz Adapt Cases verzichtet, da es
sich um spezifische Anforderungen für den vorliegenden Ansatz Adapt Ca-
ses 4 BPM handelt. Die Bewertungen für den Ansatz Adapt Cases sind daher
als nicht gesetzt dargestellt und können hier vernachlässigt werden.
Nachfolgend werden in Abschnitt 7.4.2.2 eine Übersicht, eine Bewertung
sowie ein Vergleich zwischen alternativen Ansätzen in Bezug zur Dimen-
sion Musterbasierte Unterstützung gegeben.

7.4.2.2 Vergleich mit existierenden Ansätzen hinsichtlich der Di-
mension Musterbasierte Unterstützung

Bei der Beschreibung von verschiedenen Entwurfsmustern wurde die
Sprache ACML4BPM verwendet (siehe Kapitel 5). In diesem Abschnitt
sollen eine Übersicht, eine Bewertung sowie ein Vergleich alternativer
Ansätze zur Gestaltung von flexiblen und anpassbaren Prozessen gege-
ben werden. Hierdurch soll die in dem vorherigen Abschnitt beschrie-
bene Argumentation zur Bewertung der Dimension EK26 mit dem Wert
exzellent begründet werden.

Die nachfolgende Bewertung basiert dabei zum einen auf Daten, die be-
reits durch die von [Sch+08] durchgeführte Evaluation erstellt worden
sind. Zum anderen werden Daten hinsichtlich der Bewertung vorgestell-
ter Entwurfsmuster unter Verwendung der Sprache ACML4BPM hinzu-
gefügt. Diese Daten sind durch eine selbstkritische Bewertung des Ansat-
zes entstanden. Dadurch kann der Vergleich zwischen verschiedenen Fra-
meworks zur Gestaltung von flexiblen und anpassbaren Prozessen unter-
stützt werden.

Bei diesen Frameworks handelt es sich vornehmlich um ADEPT1 [RRD03],
YAWL [AT05; Ada+06; Ada+07], FLOWer [AWG05] und Declare [PA06;

Evaluation Seite 257

Pes+07]. Neben diesen vorrangig wissenschaftlich geprägten Frameworks
existiert selbstverständlich eine Reihe von freien oder kommerziellen Fra-
meworks, die entweder kostenpflichtig oder oft mit reduziertem Funkti-
onsumfang verfügbar sind. Beispiele hierfür sind durch Camunda Tool Sui-
te1, Signavio Business Transformation Suite2, jBPM3 oder Bonita Toolsuite4 ge-
geben. Die genannten freien und kommerziellen Frameworks unterstüt-
zen die Verwendung von in der Sprache BPMN2.0 spezifizierten Prozess-
modellen. Für eine umfangreichere Übersicht über verfügbare freie und
kostenpflichtige Frameworks sowie über ihre Kompatibilität zur Sprache
BPMN2.0 kann auf verschiedene Arbeiten verwiesen werden [ES11; GW13;
Kur16]. Es wurde sich gegen eine Aufnahme derartiger Frameworks im
Rahmen des hier vorliegenden Vergleichs entschieden, da sie ausgesuchte
Aspekte der Spezifikation der Sprache BPMN2.0 teilweise unterschiedlich
umsetzen und ein solcher Vergleich für diese Arbeit nicht im Fokus liegt.

Flexibility-by Design Die Bewertung von Adapt Cases 4 BPM in Bezug
zum Aspekt Flexibility-by Design ist in Tabelle 7-12 dargestellt. Nachfolgend
wird auf die Ausprägung sowie auf einen Vergleich zu den genannten al-
ternativen Ansätzen eingegangen.

Flexibility-by
Design

ADEPT1 YAWL FLOWer Declare Adapt Cases 4
BPM

Parallelism 3 3 3 3 3
Choice 3 3 3 3 3
Iteration 3 3 3 3 3
Interleaving 7 3 3 3 3
Multiple Instances 7 3 3 3 3
Cancellation 7 3 7 3 3

Tabelle 7-12:
Bewertungen in Hinsicht
auf Flexibility-by Design

Der Flexibilitätsaspekt Flexibility-by Design und seine weiteren Aspekte
zur Gestaltung lassen sich bereits durch die Sprache BPMN2.0 umsetzen.
Hierfür wurden bereits je Gestaltungsaspekt diverse Beispiele beschrieben
(siehe Abschnitt 5.2.1). Die Sprache ACML4BPM wurde auf Basis von Ele-
menten der Sprache BPMN2.0 definiert, sodass in Beobachtungs- und An-
passungsprozessen verschiedene Aspekte, wie z.B. Choice oder Iteration,
enthalten sein können. Ferner lässt sich durch die Verwendung der Spra-
che ACML4BPM bei der Gestaltung von Aspekten von Flexibility-by Design
auch eine Trennung der Anpassungs- und Anwendungslogik durchfüh-
ren (siehe EK21). Davon sind die Gestaltungsaspekte Choice, Iteration und

1https://camunda.org/ Letzter Zugriff: 01.09.2018
2https://www.signavio.com/ Letzter Zugriff: 01.09.2018
3https://www.jbpm.org/ Letzter Zugriff: 01.09.2018
4https://www.bonitasoft.com/ Letzter Zugriff: 01.09.2018

https://camunda.org/
https://www.signavio.com/
https://www.jbpm.org/
https://www.bonitasoft.com/

Seite 258 Kapitel 7

Cancellation unmittelbar betroffen. Im Vergleich zu alternativen Ansätzen,
wie z.B. ADEPT1 oder FLOWer, kann der Ansatz Adapt Cases 4 BPM somit
einen Vorteil bieten, da die aufgeführten Gestaltungsaspekte zum einen
durch BPMN2.0 bereits abgedeckt sind und zum anderen eine Trennung
der beiden Logiken ermöglicht wird.

Flexibility-by Change Die Bewertung von Adapt Cases 4 BPM in Bezug
zum Aspekt Flexibility-by Change ist in Tabelle 7-13 dargestellt. Nachfol-
gend wird auf die Ausprägung sowie einen Vergleich zu den genannten
alternativen Ansätzen eingegangen.

Tabelle 7-13:
Bewertungen in Hinsicht
auf Flexibility-by Change

Flexibility-by
Change

ADEPT1 YAWL FLOWer Declare Adapt Cases 4
BPM

Momentary Change 3 7 7 3 3
Evolutionary Change 7 3 7 3 3

Strategien zur Migration

Forward Recovery 7 3 7 7 3
Backward Recovery 7 3 7 7 3
Proceed 7 7 7 3 3
Transfer 7 3 7 3 3

Zeitpunkt der Anwendung

Entry Time 3 7 7 3 3
On-the-Fly 3 3 7 3 3

Im Rahmen des vorgestellten Entwurfsmusters für den Flexibilitätsaspekt
Flexibility-by Change wurde neben einer Spracherweiterung der Sprache
BPMN2.0 zur Unterscheidung von Elementen aus Prozessmodellen und
deren Instanzen auch eine Reihe von Operationen vorgestellt, mit de-
nen Migrationen von Anpassungen von Prozessen durchgeführt werden
können (siehe Abschnitt 5.3). Die vorgestellten Inhalte decken dabei so-
wohl die aufgeführten Typen von Anpassungen Momentary Change und
Evolutionary Change sowie die Zeitpunkte der Anwendung einer Anpas-
sung Entry Time und On-the-Fly als auch die aufgeführten Strategien zur
Migration ab. Dabei wurde für jede Migrationsstrategie eine Operation
vorgestellt, die unter entsprechender Parametrisierung das jeweilige Funk-
tionsprinzip einer Strategie umsetzt. Hierdurch können die in Tabelle 7-13
dargestellten Aspekte von Flexibility-by Change jeweils als erfüllt betrachtet
werden.

Im Vergleich zu anderen aufgeführten Ansätzen unterstützt Adapt Cases 4
BPM ebenso wie Declare beide Typen von Anpassungen. Ferner werden
im Rahmen von Anpassungen des Typs Evolutionary Change jede der vier
aufgeführten Migrationsstrategien von Adapt Cases 4 BPM unterstützt. Die

Evaluation Seite 259

beiden Ansätze YAWL und Declare unterstützen hierbei lediglich eine Teil-
menge dieser Strategien.

Flexibility-by Deviation Die Bewertung von Adapt Cases 4 BPM in Bezug
zum Aspekt Flexibility-by Deviation ist in Tabelle 7-14 dargestellt. Nachfol-
gend wird auf die Ausprägung sowie auf einen Vergleich zu den genann-
ten alternativen Ansätzen eingegangen.

Flexibility-by
Deviation

ADEPT1 YAWL FLOWer Declare Adapt Cases 4
BPM

Operationen in
imperativen Sprachen

Redo 7 7 3 7 3
Undo 7 7 3 7 3
Skip 7 7 3 7 3
Create additional

Instances
7 7 3/7 7 3

Invoke Task 7 7 3 7 3

Operationen in
deklarativen Sprachen

Violation of
Constraints

7 7 7 3 7

Tabelle 7-14:
Bewertungen in Hinsicht
auf Flexibility-by Deviati-
on

Hier bietet der Ansatz Adapt Cases 4 BPM die Möglichkeit der Unterstüt-
zung bei der Gestaltung von flexiblen und anpassbaren Prozessen in der
Form, dass eine Reihe von spezifischen Operationen zur Verfügung steht.
Diese Operationen lassen sich so einsetzen, dass verschiedene Abwei-
chungen vom im Prozessmodell vorgesehenen Kontrollfluss ermöglicht
werden, ohne diesen explizit anzupassen. Dabei sind diese Operationen
jedoch in dieser Weise nur in imperativen Sprachen möglich. Im Rahmen
der in dieser Arbeit vorgenommen Definition der Sprache ACML4BPM
werden keine deklarativen Sprachen und entsprechenden Operationen
zur Abweichung unterstützt. Im Vergleich zu den Ansätzen FLOWer und
Declare fällt auf, dass jeweils entweder Operationen für imperative oder
aber deklarative Sprachen unterstützt werden. Dies lässt sich damit be-
gründen, dass das Konzept der zugrundeliegenden Basissprache entspre-
chend imperativ oder deklarativ ist. Eine Unterstützung von Operationen
für die beiden Typen von Sprachen scheint daher nur dann sinnvoll, wenn
die Basissprache sowohl imperative als auch deklarative Beschreibungen
von Prozessen explizit vorsieht. Dies ist bei BPMN2.0 jedoch nicht der Fall,
sodass dieser Missstand als vernachlässigbar angesehen wird.

Seite 260 Kapitel 7

Flexibility-by Underspecification Die Bewertung von Adapt Cases 4 BPM
in Bezug zum vierten und letzten Aspekt Flexibility-by Underspecification ist
in Tabelle 7-15 dargestellt. Nachfolgend wird auf die Ausprägung sowie
auf einen Vergleich zu den genannten alternativen Ansätzen eingegangen.

Tabelle 7-15:
Bewertungen in Hinsicht

auf Flexibility-by
Underspecification

Flexibility-by
Underspecification

ADEPT1 YAWL FLOWer Declare Adapt Cases 4
BPM

Late Binding 7 3 7 7 3
Late Modeling 7 3 7 7 3

Zeitpunkt der Anwendung

Preliminary 7 7 7 7 3
On Activation 7 3 7 7 3

Mehrfachanwendung

Static 7 7 7 7 3
Dynamic 7 3 7 7 3

Der Ansatz Adapt Cases 4 BPM unterstützt die Gestaltung der beiden Typen
Late Selection und Late Modeling durch die Verwendung von verschiedenen
Operationen. Dabei können diese Operationen so parametrisiert werden,
dass sowohl beide Typen von Zeitpunkten als auch die Mehrfachanwen-
dung ermöglicht werden kann.

YAWL unterstützt ebenso die beiden genannten Typen des Flexibilitäts-
aspekts Flexibility-by Underspecification. Ferner können dort mehrfach Bin-
dungen bei Aktivierung eines Platzhalters durchgeführt werden. Der An-
satz Adapt Cases 4 BPM bietet hier jedoch vielfältigere Einsatzmöglichkei-
ten, da insgesamt mehr Eigenschaften unterstützt werden können.

7.5 Gültigkeit

Die Evaluation des in dieser Arbeit vorgestellten Ansatzes Adapt Cases 4
BPM basiert auf insgesamt zwei vorgestellten Kriterienkatalogen sowie auf
einem an der Praxis orientierten Szenario. Dabei wurden neben den bereits
durch [Bis11] vorgestellten Kriterien auch weitere Kriterien zur Evaluati-
on in Bezug zur Gestaltung von flexiblen und anpassbaren Prozessen hin-
zugefügt. Selbstverständlich können durch die zuvor genannten Kriterien
und durch das Szenario nur bestimmte Teile des Ansatzes unter einer sinn-
vollen Verwendung existierender Ressourcen evaluiert werden. Derartige
Ressourcen sind bspw. gegeben durch die finanzielle Unterstützung sowie
durch die Verfügbarkeit von industriellen Partnern, mit denen der Ansatz
z.B. auch in der Praxis hätte evaluiert werden können.

Evaluation Seite 261

Rückkopplung mit
Experten aus Wissenschaft
und Industrie

Nichtsdestotrotz profitierte die Qualität dieser Arbeit durch die Einbettung
in das NRW Fortschrittskolleg „Gestaltung von flexiblen Arbeitswelten“. Hier
konnten in verschiedenen Expertengesprächen und wissenschaftlichen
sowie industriellen Workshops einzelne Teile der vorliegenden Arbeit re-
gelmäßig vorgelegt und diskutiert werden. Durch das breite Spektrum an
unterschiedlichen Experten aus Wissenschaft und Praxis konnte die Plau-
sibilisierung unterschiedlichster Aspekte bereits vor und während der
Ausarbeitung vorgenommen werden. Als ein Beispiel kann hier insbeson-
dere das Szenario sowie verschiedenste Aspekte von Flexibilität und de-
ren Entwurfsmustern genannt werden, die auf Basis diverser Gespräche
verfeinert werden konnten. Der vorliegende Arbeitsstand unter der gege-
benen Qualität wäre ohne derartige Gespräche, welche ebenso eine Art
der Evaluation darstellen, nicht möglich gewesen.

Art der BewertungDie Bewertung von vorgestellten Kriterien stellen eine selbstkritische und
damit subjektive Bewertung dar. Unter Verwendung von Experten der
Domäne BPM wäre es ebenso möglich gewesen, eine empirische Unter-
suchung hinsichtlich der Anwendbarkeit der Sprache oder der Benutzer-
freundlichkeit (engl. Usability) durchzuführen. Der Ansatz hätte hierdurch
in Hinsicht auf die Evaluation von grundlegenden Konzepten, die bereits
Teil des Ansatzes Adapt Cases gewesen sind, einen Mehrwert bieten kön-
nen.

Referenzpunkte zur
Bewertung

Ein weiterer Punkt, der aus Sicht einer kritischen Betrachtung der vorge-
stellten Bewertungen Berücksichtigung finden sollte, ist dadurch gegeben,
dass vergleichbare Kriterien eingesetzt wurden, wie sie auch schon für den
Ansatz Adapt Cases verwendet worden sind. Dies lässt sich damit begrün-
den, dass beide Ansätze verglichen werden sollten. Wären alternative Vor-
gehensweisen für die Bewertungen verwendet worden, hätte auch der An-
satz Adapt Cases neu bewertet werden müssen.

Bei dem gegebenen Vergleich von vorgestellten Entwurfsmustern mit al-
ternativen Arbeiten lag der Fokus lediglich auf der Gestaltung von flexi-
blen und anpassbaren Prozessen. Dabei werden durch die aufgeführten
alternativen Ansätze oftmals auch wissenschaftliche Prototypen zur Aus-
führung auf Basis gestalteter Prozesse angeboten. Ein derartiger Prototyp
ist für Adapt Cases 4 BPM so nicht vorhanden und lag auch nicht im Fokus
der Arbeit. Durch die Definition der Sprachelemente in enger Anlehnung
an existierenden Elementen der Sprache BPMN2.0 wird an dieser Stelle da-
von ausgegangen, dass Ergänzungen, die eine Ausführung der gestalteten
Prozesse ermöglichen, durch geringe Anpassungen von entsprechenden
Softwarelösungen ermöglicht werden können.

Zusammenfassung und
Ausblick

Kapitel8
In der vorliegenden Arbeit wurden verschiedene Konzepte präsentiert,
die für die Gestaltung von flexiblen und anpassbaren Prozessen einge-
setzt werden können. In diesem Kapitel werden diese Konzepte zunächst
in Abschnitt 8.1 kurz zusammengefasst. Ferner wird auf den geleiste-
ten wissenschaftlichen Beitrag in Anlehnung an existierenden Ansätzen
des Adaptivity Engineering eingegangen und Bezug zu anfangs vorge-
stellten Forschungsfragen genommen (siehe Kapitel 1). Ausgesuchte wei-
terführende Fragestellungen für zukünftige Forschungsthemen für das
Adaptivity Engineering mit einem speziellen Bezug zur Gestaltung von fle-
xiblen und anpassbaren Prozessen werden in Form eines Ausblicks in
Abschnitt 8.2 vorgestellt.

8.1 Zusammenfassung

In dieser Arbeit wurde sich mit der Gestaltung von flexiblen und anpass-
baren Prozessen in der Domäne BPM auseinandergesetzt. Die vorgestell-
ten Lösungsteile umfassen eine für diese Domäne neuartige Sprache (Adapt
Case Modeling Language 4 BPM), Entwurfsmuster zur Gestaltung von flexi-
blen und anpassbaren Prozessen sowie eine zugehörige Methodik (Adapt
Cases 4 BPM). Diese drei Lösungsteile stellen den durch diese Arbeit ge-
leisteten wissenschaftlichen Beitrag dar. In Abbildung 8-1 ist eine Über-
sicht dieses Beitrags gezeigt, auf dessen Details nachfolgend eingegangen
wird.

Adapt Case Modeling Language 4 BPM

Beantwortung von
Forschungsfrage 1

In dieser Arbeit wurde eine neuartige domänenspezifische Sprache zur Ge-
staltung von flexiblen und anpassbaren Prozessen vorgestellt. Die Sprache

Seite 264 Kapitel 8

Abbildung 8-1:
Übersicht über den

wissenschaftlichen Beitrag

Adaptivity Engineering – Adapt Cases
(allgemein)

redefiniert

Adapt Case
Modeling Language

erweitert

wendet an

Adaptivity Engineering – Adapt Cases 4 BPM
(domänenspezifisch)

beschreibt die
Verwendung von

Adapt Case
Modeling Language 4 BPM

Integriertes
domänenspezifisches Wissen

 BPM-spezifische Komponenten,
Schnittstellen, Operationen und
Ereignisse

 Verwendung von verbreiteten
UML- und BPMN2.0-Konzepten

Unterstützung von verschiedenen
Typen von Flexibilität:
 Flexibility-by Design,
 Flexibility-by Change,
 Flexibility-by Deviation und
 Flexibility-by Underspecification

erweitert

Entwurfsmuster für
flexible und anpassbare Prozesse

Konzeptionelle
BPMN2.0-Erweiterungen

Aspektspezifische Operationen

Adapt Case Modeling Language 4 BPM (ACML4BPM) stellt dabei eine Re-
definition der Sprache Adapt Case Modeling Language (ACML) dar, welche
durch [Luc+11] erstmals vorgestellt worden ist. Hierdurch können grund-
legende Konzepte des Autonomic Computing in Form der Referenzarchitek-
tur MAPE-K [KC03] wiederverwendet werden.

Die Sprache ACML4BPM kann in einer frühen Phase der Gestaltung zur
Beschreibung einzelner Funktionen eines Systems verwendet werden.
Hierbei liegt die Trennung der Anpassungs- von der Anwendungslogik
im Fokus. Eine Trennung beider Logiken kann die Qualität der Gestaltung
steigern, da beteiligte Akteure detaillierte Aspekte von einer der beiden
Logiken fokussieren können.

Grundsätzlich wird bei der Verwendung der Sprache in die High-Level-
Gestaltung und die Low-Level-Gestaltung unterschieden. Im Rahmen der
High-Level-Gestaltung werden in Anlehnung an UML Use Case-Diagramme
einzelne Funktionen eines Systems beschrieben. Dabei können Funktio-
nen der Anpassungslogik von Funktionen der Anwendungslogik separiert
werden. Eine Unterscheidung von Funktionen beider Logiken wird damit
bereits frühzeitig unterstützt. Die Low-Level-Gestaltung hingegen verfeinert

Zusammenfassung und Ausblick Seite 265

das im Rahmen der High-Level-Gestaltung spezifizierte Verhalten der An-
passungslogik. Dabei werden in ACML4BPM Sprachelemente der Sprache
BPMN2.0 verwendet, welche den De-facto-Standard zur Gestaltung von
Prozessen darstellt. Hierdurch kann eine dedizierte domänenspezifische
Gestaltung von Prozessen unterstützt werden, die so durch die ursprüng-
liche Sprache ACML nicht möglich gewesen ist.

Als wissenschaftlichen Beitrag ist neben der Möglichkeit einer dedizier-
ten Gestaltung unter Verwendung von Konzepten der Domäne BPM auch
weiteres domänenspezifisches Wissen in die Sprache ACML4BPM inte-
griert worden. Dabei kennzeichnen sich domänenspezifische Sprachen ins-
besondere durch die Kapselung spezifischer Konzepte einer ausgewählten
Domäne aus, wodurch u.a. die Qualität in der Gestaltung erhöht werden
kann. Beispiele für derartiges Wissen sind durch spezifische Komponen-
ten, Operationen zur Anpassung sowie durch unterschiedliche Ereignis-
se zur Auslösung von Anpassungen gegeben. Dabei konnte insbesondere
dadurch ein Mehrwert generiert werden, dass im Gegensatz zu existieren-
den Ansätzen verschiedene Elemente aus allen vier durch Curtis [CKO92]
eingeführten Perspektiven von Prozessen angepasst werden können. Die
Sprache ACML4BPM unterstützt daher die BPM-spezifische und qualitativ
hochwertige Gestaltung von flexiblen und anpassbaren Prozessen.

Entwurfsmuster für flexible und anpassbare Prozesse

Beantwortung von
Forschungsfrage 2

Damit die Gestaltung von flexiblen und anpassbaren Prozessen weiter un-
terstützt werden kann, wurden unterschiedliche Facetten von Flexibilität
in Prozessen analysiert und zugehörige Entwurfsmuster vorgestellt. Die
Entwurfsmuster basieren dabei auf einem Katalog etablierter Flexibilitäts-
aspekte von Prozessen in der Domäne BPM (siehe [Sch+08]).

So wurden im Rahmen der Entwurfsmuster notwendige konzeptionelle
Erweiterungen der Sprache BPMN2.0 und aspektspezifische Operationen
zur Anpassung vorgestellt. Die Funktionsprinzipien der Operationen wur-
den an schematischen Beispielen verdeutlicht. Die Gesamtheit aller Ent-
wurfsmuster stellt Akteuren ein breites Spektrum an Möglichkeiten zur
Verfügung, um die Gestaltung von flexiblen und anpassbaren Prozessen
unter Verwendung der Sprache ACML4BPM vornehmen zu können.

Wie bereits an verschiedenen Stellen der Evaluation beschrieben (siehe Ka-
pitel 7), stellen die Entwurfsmuster einen Mehrwert gegenüber der Spra-
che ACML dar, da eine erweiterte Verwendung der Sprache ermöglicht
wird. Auch wenn die Erweiterungen der Sprache BPMN2.0 sowie aspekt-
spezifischer Operationen nicht Teil der Basissprache (hier: ACML4BPM)

Seite 266 Kapitel 8

sind, lassen sie sich als Erweiterung von ACML4BPM verstehen und ein-
setzen.

Als weiterer wissenschaftlicher Beitrag ist aber auch die Gesamtheit der
Entwurfsmuster zu betrachten. So wurden für die durch [Sch+08] beschrie-
benen Flexibilitätsaspekte Entwurfsmuster unter Verwendung der Sprache
ACML4BPM beschrieben. Dies stellt einen Mehrwert dar, da sich bisher
existierende Arbeiten lediglich auf die Umsetzung einzelner Flexibilitäts-
aspekte ohne Trennung der Anwendungs- von der Anpassungslogik un-
ter Verwendung der Sprache BPMN2.0 beziehen. Beispiele für derartige
Arbeiten sind durch [CMT10; Mur+13] gegeben, in denen die Flexibilitäts-
aspekte Late Binding bzw. Late Selection behandelt werden. Die in dieser Ar-
beit einheitlich beschriebenen Entwurfsmuster können somit auch als Leit-
faden für die Gestaltung von flexiblen und anpassbaren Prozessen verstan-
den werden. Hierdurch können verschiedene an der Gestaltung beteiligte
Akteure die Gesamtheit der Entwurfsmuster als Ausgangslage zur Aus-
wahl eines geeigneten Typs von Flexibilität in Prozessen nutzen.

Adaptivity Engineering – Adapt Cases 4 BPM

Beantwortung von
Forschungsfrage 3

Der durch Luckey [Luc13] vorgestellte Ansatz Adapt Cases ermöglicht die
Gestaltung von selbst-adaptiven Systemen mit Fokus auf der Trennung
der Anpassungs- und Anwendungslogik. Die Methode Adapt Cases 4 BPM
greift diese grundlegende Idee für die methodische Gestaltung von flexi-
blen und anpassbaren Prozessen wieder auf. Dabei werden unter Verwen-
dung von Konzepten der Domäne BPM verschiedene Redefinitionen, Er-
weiterungen und Anwendungen ursprünglicher Konzepte des Ansatzes
Adapt Cases vorgenommen. Dabei kann die Methode Adapt Cases 4 BPM
ebenso wie Adapt Cases in einer frühen Phase in der Gestaltung eingesetzt
werden.

Der daraus resultierende wissenschaftliche Beitrag kann aus verschie-
denen Perspektiven betrachtet werden. So stellt der Ansatz Adapt Ca-
ses 4 BPM ein Beispiel für die Anwendung bereits existierender Kon-
zepte des Adaptivity Engineering auf eine spezifische Anwendungsdomä-
ne (hier: BPM) dar. Dabei war es notwendig, dass für die Anwendungs-
domäne BPM neue Elemente hinzugefügt oder existierende Elemente in
Anlehnung an neue spezifische Konzepte aus der Domäne redefiniert
werden mussten. Hierdurch entstanden neue Eigenschaften in der Spra-
che ACML4BPM, durch die die Ausdrucksfähigkeit gegenüber der Sprache
ACML gesteigert werden konnte. Ein weiterer Mehrwert, der durch den
Ansatz Adapt Cases 4 BPM gegenüber dem Ansatz Adapt Cases entsteht,

Zusammenfassung und Ausblick Seite 267

ist eine erweiterte Fähigkeit zur Gestaltung von flexiblen und anpassba-
ren Prozessen. Die Verwendung von Elementen der Sprache BPMN2.0 an-
stelle von UML Aktivitätsdiagrammen stellt in diesem Bezug einen für die
Domäne BPM spezifischeren Weg der Gestaltung dar. Hierdurch können
verschiedene Akteure in die Lage versetzt werden, auf Basis des De-facto-
Standards BPMN2.0 Prozesse geeigneter gestalten zu können.

Zuletzt bilden die Entwurfsmuster mit ihren erarbeiteten konzeptionellen
Erweiterungen der Sprache BPMN2.0 und ihren Operationen zur Anpas-
sung einen Mehrwert. So waren bspw. derartige Entwurfsmuster für den
Ansatz Adapt Cases nicht existent. Die vorgenommene Integration von do-
mänenspezifischem Wissen durch unterschiedliche Flexibilitätsaspekte er-
möglicht somit eine erweiterte methodische Fähigkeit des erarbeiteten An-
satzes Adapt Cases 4 BPM.

8.2 Ausblick

In dieser Arbeit konnten drei wichtige Lösungsteile für die Gestaltung von
flexiblen und anpassbaren Prozessen erarbeitet werden. Im Rahmen der
Bearbeitung sind dabei weitere Fragestellungen entstanden. Durch eine
Beantwortung dieser Fragestellungen kann das Adaptivity Engineering so-
wohl im generellen als auch im spezifischen Kontext einer Domäne wei-
terentwickelt werden. Nachfolgend wird auf wichtige Eckpunkte dieser
Fragestellungen eingegangen.

Evaluation im industriellen Kontext

Ausgesuchte Inhalte der vorliegenden Arbeit wurden auf Basis eines pra-
xisnahen Szenarios plausibilisiert. Zusätzlich wurden verschiedene Ka-
taloge von Kriterien verwendet, mit denen Eigenschaften der Sprache
ACML4BPM im Rahmen einer selbstständig durchgeführten Bewertung
untersucht worden sind. Eine sinnvolle Ergänzung stellt eine zusätzli-
che Evaluation im industriellen Kontext dar. So könnten weitere Kriterien
für Eigenschaften der Sprache untersucht, bewertet und gegebenenfalls
Bedarf für Erweiterungen identifiziert werden.

Eine mögliche Kategorie dieser Eigenschaften ist durch die Benutzer-
freundlichkeit (engl. Usability) gegeben. So stellt sich die Frage, ob vorge-
stellte Elemente der Sprache ACML4BPM durch verschiedene in der Ge-
staltung beteiligte Akteure adäquat verstanden werden können. Diese Art
von Verständnis der vorgestellten Sprache ist insbesondere dann wichtig,

Seite 268 Kapitel 8

wenn verschiedene Akteure parallel oder sequentiell die Gestaltung von
Prozessen auf Basis von mit ACML4BPM erstellten Modellen vornehmen.
Daher ist zu prüfen, ob ein gewisser Grad an Benutzerfreundlichkeit bei
der Verwendung des vorgestellten Ansatzes besteht. Beispiele für beste-
hende Ansätze zur Evaluation von Eigenschaften der Benutzerfreundlich-
keiten sind durch Moody und Hillegersberg [MH08; Moo09] gegeben.

Ein weiterer Aspekt, der durch eine Evaluation im industriellen Kontext
untersucht werden könnte, ist durch spezifische Anforderungen aus der
Praxis gegeben. So können aus einem konkreten industriellen Kontext wei-
tere Anforderungen an eine Sprache und an die zugehörige Entwurfsme-
thodik gesetzt werden. Für den Gesamtansatz Adapt Cases 4 BPM stellt sich
in diesem Bezug die Fragestellung, ob beschriebene Konzepte derartige
Anforderungen bereits erfüllen oder ob weitere Konzepte in den Ansatz
integriert werden müssen.

Werkzeugunterstützung

Weitere Arbeiten in Bezug zu dem Ansatz Adapt Cases 4 BPM können
hinsichtlich der Bereitstellung einer Werkzeugunterstützung durchgeführt
werden. Dabei können die Aspekte der Phase Gestaltung sowie der Phase
Ausführung und der Phase Evaluation besonders hervorgehoben werden.

In dieser Arbeit wurden verschiedene Konzepte vorgestellt, mit denen fle-
xible und anpassbare Prozesse gestaltet werden können. Dabei wurde auf
die Entwicklung eines Softwarewerkzeugs zur Gestaltung bewusst ver-
zichtet. Ein solches Softwarewerkzeug ist z.B. durch einen grafischen Edi-
tor gegeben, welcher die Akzeptanz und Anwendbarkeit des vorgestellten
Ansatzes, insbesondere auch in Bezug zu der zuvor genannten Evaluation
im industriellen Kontext, erhöhen kann.

Der zweite Aspekt hinsichtlich der Phase Ausführung und der Phase Eva-
luation geht über das für diese Arbeit gesetzte Ziel der Gestaltung von flexi-
blen und anpassbaren Prozessen hinaus und beschäftigt sich vornehmlich
mit weiterführenden Phasen des BPM-Lebenszyklus. So stellen sich bspw.
für die Phase Ausführung und die Phase Evaluation die Frage, wie beschrie-
bene Konzepte hier übertragen werden können.

Für die Phase Ausführung gilt dabei zu untersuchen, ob und welche Vor-
teile eine Trennung der Anpassungs- und Anwendungslogik ermöglichen
oder aber weiterhin sinnvoll erscheinen lässt. So ist es vorstellbar, dass für
spezifische Anwendungen unterschiedliche Anforderungen für die Aus-
führung der beteiligten Logiken bestehen können. Als Beispiel lässt sich

Zusammenfassung und Ausblick Seite 269

eine Anforderung beschreiben, in deren Realisierung beide Logiken auch
in der Phase Ausführung getrennt ausgeführt werden sollen. Im Gegensatz
zu dieser Anforderung steht die Integration beider Logiken, wie z.B. die
Ausführung im Rahmen einer gemeinsamen Workflow-Engine. Dabei las-
sen sich auch weitere Anforderungen beschreiben, für die weitere Überle-
gungen notwendig sind.

In der Phase Evaluation stehen häufig auch statistische Daten über akti-
ve und bereits beendete Prozesse zur Verfügung. Dieser Umstand kann
auf Basis neuartiger Methoden aus dem Bereich des Machine Learning
[WFH11] so eingesetzt werden, dass Verbesserungen von Prozessen auch
(teil-)automatisiert werden können. Dabei können Verbesserungen von be-
stehenden Prozessen bereits durch die Verwendung des Entwurfsmusters
Flexibility-by Change unterstützt werden. Eine sinnvolle Erweiterung um
fortgeschrittene Analysetechniken, die z.B. im Rahmen des Machine Lear-
ning existent sind, kann insbesondere auch im Umfeld der Automatisie-
rung von Prozessen einen großen Mehrwert bieten.

Gestaltung von *-zentrierten Prozessen

Diese Forschungsarbeit wurde durch verschiedene Fragestellungen aus
dem Kontext des NRW Fortschrittskollegs „Gestaltung von flexiblen Arbeits-
welten“ eingeleitet. Sie betreffen zum einen die Flexibilisierung von Prozes-
sen, auf die in dieser Arbeit explizit eingegangen worden ist. Zum ande-
ren stehen sie aber auch in Bezug zum Konzept der Menschenzentrierung.
Eine derartige Zentrierung kann als eine Art von Perspektive verstanden
werden, in der Eigenschaften von den im Fokus stehenden Entitäten be-
rücksichtigt werden sollen. Hierbei können unterschiedliche Aktivitäten
entlang der Phasen des BPM-Lebenszyklus betroffen sein. So kann z.B. all-
gemein von einer *-zentrierten Gestaltung oder Ausführung von Prozessen
gesprochen werden, wenn der Fokus auf Entitäten wie Menschen, Maschi-
nen oder IT-Dienste gesetzt wird.

Für das in dieser Arbeit vorgestellte domänenspezifische Adaptivity En-
gineering ergeben sich hieraus potentiell neue Möglichkeiten durch eine
*-zentrierte Gestaltung von Prozessen. So könnte aus der Perspektive eines
Prozesses für jede dieser Entitäten eine Komponente in seiner Umgebung
zur Verfügung stehen, die wesentliche Konzepte zur *-zentrierung enthält.
Durch zugehörige Sensor- und Effektorschnittstellen lassen sich kontrol-
lierte lesende Zugriffe auf Eigenschaften bzw. auch Anpassungen ermög-
lichen. Dabei ergeben sich jedoch offene Fragestellungen hinsichtlich eines
eingesetzten Ansatzes zur Gestaltung dieser Eigenschaften der Entitäten

Seite 270 Kapitel 8

Mensch, Maschine und IT-Dienst. Eine Möglichkeit wäre eine sprachba-
sierte Lösung anzustreben, die insbesondere verschiedenes domänenspe-
zifisches Wissen in einer gemeinsamen Sprache zur Gestaltung von Umge-
bungskomponenten integriert. Hierdurch wäre ein erweitertes Adaptivity
Engineering in der Lage, Konzepte dediziert im Kontext von Prozessen zu
berücksichtigen, um eine *-zentrierung zu erreichen.

Tabellenverzeichnis

2-1 Gegenüberstellung von GPLs und DSLs (nach [Voe+13]) 22
2-2 Gegenüberstellung von Geschäftsprozess und Workflow-Prozess (nach

[Gad08]) . 30
2-3 Sprachen zur Gestaltung von Prozessen (nach [Gad08]) 41

4-1 Übersicht über gesetzte Ziele und deren Erfüllung für die entwickelte
Sprache zur Gestaltung von anpassbaren Prozessen 104

5-1 Übersicht über die Möglichkeit der Trennung von Anpassungs- und An-
wendungslogik in Bezug zu einzelnen Aspekten von Flexibility-by Design . 117

5-2 Typen von Zeitpunkten und betroffene Artefakte entlang relevanter Pha-
sen des BPM-Lebenszyklus . 171

5-3 Typen von Zeitdauern und betroffene Artefakte entlang relevanter Pha-
sen des BPM-Lebenszyklus . 172

5-4 Übersicht über gesetzte Ziele und deren Erfüllung für die Musterba-
sierte Unterstützung in der Gestaltung von flexiblen und anpassbaren
Prozessen . 194

7-1 Evaluationskriterien für die Gruppe Goals . 230
7-2 Evaluationskriterien für die Gruppe Change 230
7-3 Evaluationskriterien für die Gruppe Mechanisms 231
7-4 Evaluationskriterien für die Gruppe Effects 231
7-5 Evaluationskriterien für die Anforderungen an Adapt Cases 4 BPM 232
7-6 Bewertungseinheit für Kriterien . 233
7-7 Bewertungen für die Gruppe Goals . 236
7-8 Bewertungen für die Gruppe Change . 240
7-9 Bewertungen für die Gruppe Mechanisms 243
7-10 Bewertungen für die Gruppe Effects . 248
7-11 Bewertungen für die Anforderungen an Adapt Cases 4 BPM 251
7-12 Bewertungen in Hinsicht auf Flexibility-by Design 257
7-13 Bewertungen in Hinsicht auf Flexibility-by Change 258
7-14 Bewertungen in Hinsicht auf Flexibility-by Deviation 259
7-15 Bewertungen in Hinsicht auf Flexibility-by Underspecification 260

Abbildungsverzeichnis

1-1 Schematische Sicht auf eine Industrie 4.0-Anwendung 5

1-2 Inhalte der Arbeit . 11

2-1 Beziehungen zwischen (realweltlichen) Objekten, Modellen und Meta-
modellen . 16

2-2 Übersicht über die Vier-Ebenen-Architektur 17

2-3 Übersicht über die Model-Driven Architecture (nach [BCW17]) 19

2-4 Zusammenhang zwischen Domain-Driven Design und Model-Driven
Engineering (nach [BCW17]) . 23

2-5 Modell der Domäne BPM . 28

2-6 BPM-Lebenszyklus mit Differenzierung zum Workflow Management
(nach Weske [Wes12] bzw. van der Aalst [AHW03]) 32

2-7 Flexibilitätsaspekte im Vergleich . 35

2-8 Elemente von UML Aktivitätsdiagrammen . 44

2-9 Beispiel eines UML Aktivitätsdiagramms . 45

2-10 Elemente eines Business Process Diagram 47

2-11 Weitere Elemente eines Business Process Diagram 49

2-12 Beispiel eines Business Process Diagram 50

2-13 Prinzip des Ansatzes Adapt Cases (nach Luckey [Luc+11]) 51

2-14 Konkrete Syntax der Sprache ACML am Beispiel eines AVM (nach
Luckey [LE13]) . 53

2-15 Konkrete Syntax der Sprache ACML am Beispiel eines ACM (nach
Luckey [LE13]) . 54

2-16 Auszug aus dem AVM-Metamodell (nach Luckey [LE13]) 55

2-17 Auszug aus dem ACM-Metamodell (nach Luckey [LE13]) 56

2-18 Software Development Process unter Verwendung der Sprache ACML
(nach Luckey [LE13]) . 57

4-1 Konzept der Sprache Adapt Case Modeling Language 4 BPM 68

4-2 Inhalte des Adapt Case Model 4 BPM . 70

4-3 Konzeptionelle Darstellung des Konzepts Adapt Case 4 BPM 71

4-4 Übersicht über das Metamodell des Konzepts Adapt Case 4 BPM 73

Seite 274 Abbildungsverzeichnis

4-5 Konzeptionelle Darstellung des Beobachtungsprozesses (Monitoring
Process) . 74

4-6 Beispiele für auslösende Ereignisse in einem Beobachtungsprozess
(Monitoring Process) . 76

4-7 Konzeptionelle Darstellung des Anpassungsprozesses
(Adaptation Process) . 77

4-8 Inhalte des Adaptation View Model 4 BPM (AVM4BPM) 79

4-9 BPM-Lebenszyklus mit den im Fokus stehenden Artefakten und mögli-
chen Treibern zur Anpassung von Prozessen 80

4-10 Konkrete Syntax von System- und Umgebungskomponenten
(AVM4BPM) . 82

4-11 System- und Umgebungskomponenten (AVM4BPM) 83

4-12 Konkrete Syntax von Sensor- und Effektorschnittstellen (AVM4BPM) 84

4-13 Sensor- und Effektorschnittstellen für anpassbare Prozesse
(AVM4BPM) . 86

4-14 Analyse von Perspektiven in Prozessen auf Basis eines BPD der Spra-
che BPMN2.0 . 89

4-15 Analyse von Perspektiven in Prozessen auf Basis des Metamodells des
Projekts BPMN 2.0 Modeler . 90

4-16 Operationen zur Anpassung von Prozessen in Anlehnung an eine
Zuordnung von BPMN2.0-Elementen zu Perspektiven (AVM4BPM) 92

4-17 Menge von Operationen zur Anpassung von Prozessen 93

4-18 Signatur und konkrete Syntax der Operation ModifyPropertyOfNode 94

4-19 Beispielhafte Anwendung der Operation ModifyPropertyOfNode 95

4-20 Lebenszyklus von Aktivitäten in der Sprache BPMN2.0 in Form eines
UML Zustandsdiagramms . 98

4-21 Lebenszyklus von Aktivitäten in der Sprache BPMN2.0 als Folge von
Ereignissen in Form eines BPD . 99

4-22 Integration von impliziten Ereignissen (AVM4BPM) 100

4-23 Lebenszyklus von Aktivitäten als Folge von Ereignissen in Form eines
BPD mit Verwendung von Rückkopplung . 101

4-24 Integration von impliziten Ereignissen mit Rückkopplung (AVM4BPM) . . . 102

5-1 Übersicht über Aspekte von flexiblen und anpassbaren Prozessen 109

5-2 Gestaltungsaspekte für flexible und anpassbare Prozesse in Hinsicht
auf Flexibility-by Design . 110

5-3 Beispiele für den Aspekt Choice in der Sprache BPMN2.0 111

5-4 Beispiele für den Aspekt Iteration in der Sprache BPMN2.0 112

5-5 Beispiel für den Aspekt Parallelism in der Sprache BPMN2.0 113

5-6 Beispiele für den Aspekt Interleaving in der Sprache BPMN2.0 114

5-7 Beispiele für den Aspekt Multiple Instances in der Sprache BPMN2.0 115

Abbildungsverzeichnis Seite 275

5-8 Beispiele für den Aspekt Cancellation in der Sprache BPMN2.0 116

5-9 Elemente der Anpassungs- und Anwendungslogik 119

5-10 Explizite und implizite Ereignisse zur Auslösung eines AC4BPM mit und
ohne notwendiger Anpassung . 119

5-11 Beispiel einer Alternative für den Aspekt Choice in ACML4BPM 120

5-12 Beispiel multipler Alternativen für den Aspekt Choice in ACML4BPM 121

5-13 Identifizierung von Anpassungs- und Anwendungslogik zur Unterstüt-
zung des Aspekts Iteration . 122

5-14 Explizite Ereignisse ohne Anpassung zur Auslösung eines AC4BPM 123

5-15 Beispiel einer iterativ ausgeführten Funktion für den Aspekt Iteration in
ACML4BPM (kopfgesteuert) . 123

5-16 Beispiel einer iterativ ausgeführten Funktion für den Aspekt Iteration in
ACML4BPM (fußgesteuert) . 124

5-17 Identifizierung von Anpassungs- und Anwendungslogik zur Unterstüt-
zung des Aspekts Cancellation . 125

5-18 Explizite Ereignisse zur Integration der Anpassungslogik eines Adapt
Case 4 BPM . 126

5-19 Beispiel für den Aspekt Cancellation in ACML4BPM
(Cancel-by Timer) . 127

5-20 Beispiel für den Aspekt Cancellation in ACML4BPM
(Cancel-by Conditional) . 128

5-21 Gestaltungsaspekte für flexible und anpassbare Prozesse in Hinsicht
auf Flexibility-by Change . 130

5-22 Szenario für Migrationen im Rahmen des Typs Evolutionary Change 133

5-23 Schematische Darstellung der Funktionsprinzipien von Migrationen der
Typen Forward Recovery und Backward Recovery 134

5-24 Schematische Darstellung des Funktionsprinzips von Migrationen des
Typs Proceed . 136

5-25 Schematische Darstellung des Funktionsprinzips von Migrationen des
Typs Transfer . 138

5-26 Schematische Darstellung einer Zuordnung von internen Zuständen
zweier Prozessinstanzen . 139

5-27 Darstellung von Elementen der laufzeitspezifischen Erweiterung zur Un-
terstützung von Flexibility-by Change . 140

5-28 Auszug einer Erweiterung des Metamodells der Sprache BPMN2.0 zur
Unterstützung von Flexibility-by Change . 141

5-29 Operationen zur Unterstützung von Flexibility-by Evolutionary Change . . . 143

5-30 Beispiel für die Gestaltung einer Migration 144

5-31 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-ForwardRecovery . 144

Seite 276 Abbildungsverzeichnis

5-32 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-BackwardRecovery . 145

5-33 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-Proceed . 146

5-34 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-Transfer . 147

5-35 Gestaltungsaspekte für flexible und anpassbare Prozesse in Hinsicht
auf Flexibility-by Deviation . 149

5-36 Operationen zur Unterstützung von Flexibility-by Deviation 151

5-37 Beispielhafte Verwendung der Operation UndoTask 152

5-38 Signatur und konkrete Syntax der Operation UndoTask 154

5-39 Beispielhafte Anwendung der Operation UndoTask 154

5-40 Funktionsprinzip einer Anwendung der Operation UndoTask mit Kom-
pensation . 155

5-41 Signatur und konkrete Syntax der Operation RedoTask 156

5-42 Beispielhafte Anwendung der Operation RedoTask 157

5-43 Ergebnis für eine alternative Realisierung der Operation RedoTask 158

5-44 Signatur und konkrete Syntax der Operation SkipTask 158

5-45 Beispielhafte Anwendung der Operation SkipTask 159

5-46 Signatur und konkrete Syntax der Operation InvokeTask 160

5-47 Beispielhafte Anwendung der Operation InvokeTask 160

5-48 Funktionsprinzip einer Anwendung der Operation InvokeTask 162

5-49 Signatur und konkrete Syntax der Operation CreateAdditionalInstance-
OfTask . 163

5-50 Beispielhafte Anwendung der Operation CreateAdditionalInstanceOfTask . 163

5-51 Darstellung von Ausführungssequenzen von Task B 164

5-52 Gestaltungsaspekte für flexible und anpassbare Prozesse in Hinsicht
auf Flexibility-by Underspecification . 166

5-53 Konkrete Syntax für Platzhalter, Prozessfragmente sowie Start- und
Endsymbole . 174

5-54 Konkrete Syntax für Instanzen von Platzhaltern und Prozessfragmenten . . 175

5-55 Auszug einer Erweiterung des Metamodells der BPMN2.0 zur Unter-
stützung von Flexibility-by Underspecification 177

5-56 Beispielhafte Darstellung von Elementen der Erweiterung in Hinsicht
auf die Unterstützung von Flexibility-by Underspecification 179

5-57 Signatur und konkrete Syntax der Operation BindProcessFragment 181

5-58 Beispielhafte Anwendung der Operation BindProcessFragment
(Structural) . 182

5-59 Beispielhafte Anwendung der Operation BindProcessFragment
(Behavioral) . 183

Abbildungsverzeichnis Seite 277

5-60 Verwendung eines Beobachtungsprozesses zur Gestaltung einer Aus-
wahl eines Prozessfragments . 185

5-61 Signatur und konkrete Syntax der Operation SwitchLCPhase 187

5-62 Beispielhafte Anwendung der Operation SwitchLCPhase (Create) 188

5-63 Beispielhafte Anwendung der Operation SwitchLCPhase (Compose) 190

5-64 Beispiel für die Komposition eines Prozessfragments 192

6-1 Übersicht über das Adaptivity Engineering für flexible und anpassbare
Prozesse . 197

6-2 Schematische Darstellung des erweiterten BPM-Lebenszyklus 198

6-3 Detaillierung der Aktivität Identifikation und (Neu-)Gestaltung des
Adaptivity Engineering . 200

7-1 Übersicht über die Evaluation . 211

7-2 Schematische Übersicht über das betrachtete Szenario 213

7-3 AVM4BPM für die Arbeitsumgebung Human-Robot-Team 218

7-4 AC4BPM für das Workspace Temperature Management 220

7-5 AC4BPM für das Human Performer Workload Management 222

7-6 Analyse des Hauptprozesses . 225

7-7 AC4BPM für das Separation of Business and Adaptivity Logic 226

7-8 Netzdiagramm zur grafischen Darstellung von Ergebnissen 234

7-9 Netzdiagramm für die Gruppe Goals . 239

7-10 Netzdiagramm für die Gruppe Change . 242

7-11 Netzdiagramm für die Gruppe Mechanisms 246

7-12 Netzdiagramm für die Gruppe Effects . 250

7-13 Netzdiagramm für die Anforderungen an Adapt Cases 4 BPM 255

8-1 Übersicht über den wissenschaftlichen Beitrag 264

A-1 Darstellung von Operationen sowie von Ein- und Ausgabeparametern . . . 293

A-2 Übersicht über die Operationen für Knotenelemente 297

A-3 Signatur und konkrete Syntax der Operation AddNode 298

A-4 Beispielhafte Anwendungen der Operation AddNode 299

A-5 Signatur und konkrete Syntax der Operation RemoveNode 300

A-6 Beispielhafte Anwendungen der Operation RemoveNode 301

A-7 Signatur und konkrete Syntax der Operation ModifyPropertyOfNode 301

A-8 Beispielhafte Anwendung der Operation ModifyPropertyOfNode 302

A-9 Signatur und konkrete Syntax der Operation ModifyPositionOfNode 303

A-10 Beispielhafte Anwendung der Operation ModifyPositionOfNode 303

A-11 Übersicht über die Operationen für Kantenelemente 305

A-12 Signatur und konkrete Syntax der Operation AddEdge 306

A-13 Beispielhafte Anwendungen der Operation AddEdge 307

Seite 278 Abbildungsverzeichnis

A-14 Signatur und konkrete Syntax der Operation RemoveEdge 307

A-15 Beispielhafte Anwendung der Operation RemoveEdge 308

A-16 Signatur und konkrete Syntax der Operation ModifyPropertyOfEdge 309

A-17 Beispielhafte Anwendung der Operation ModifyPropertyOfEdge 309

A-18 Signatur und konkrete Syntax der Operation ModifyPositionOfEdge 310

A-19 Beispielhafte Anwendung der Operation ModifyPositionOfEdge 310

A-20 Übersicht über die Operationen für Containerelemente 313

A-21 Signatur und konkrete Syntax der Operation AddContainer 314

A-22 Beispielhafte Anwendungen der Operation AddContainer 315

A-23 Signatur und konkrete Syntax der Operation RemoveContainer 316

A-24 Beispielhafte Anwendungen der Operation RemoveContainer 316

A-25 Signatur und konkrete Syntax der Operation ModifyPropertyOfContainer . 317

A-26 Beispielhafte Anwendung der Operation ModifyPropertyOfContainer 318

A-27 Signatur und konkrete Syntax der Operation ModifyPositionOfContainer . 318

A-28 Beispielhafte Anwendung der Operation ModifyPositionOfContainer 319

A-29 Signatur und konkrete Syntax der Operation ModifyPositionOfNodesIn-
Container . 320

A-30 Beispielhafte Anwendung der Operation ModifyPositionOfNodesIn-
Container . 321

Literaturverzeichnis

[Aal16] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016 (siehe S. 34, 201).

[Ada+06] Michael Adams, Arthur H. M. ter Hofstede, David Edmond und Wil
M. P. van der Aalst. „Worklets: A Service-Oriented Implementation of
Dynamic Flexibility in Workflows“. In: On the Move to Meaningful Inter-
net Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM Confederated
International Conferences, CoopIS, DOA, GADA, and ODBASE 2006, Mont-
pellier, France, October 29 - November 3, 2006. Proceedings, Part I. Hrsg. von
Robert Meersman und Zahir Tari. Bd. 4275. Lecture Notes in Computer
Science. Springer, 2006, S. 291–308 (siehe S. 60, 169, 256).

[Ada+07] Michael Adams, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst
und David Edmond. „Dynamic, Extensible and Context-Aware Excep-
tion Handling for Workflows“. In: On the Move to Meaningful Internet
Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confedera-
ted International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007,
Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I. Hrsg. von
Robert Meersman und Zahir Tari. Bd. 4803. Lecture Notes in Computer
Science. Springer, 2007, S. 95–112 (siehe S. 60, 256).

[AHW03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede und Mathias Weske.
„Business Process Management: A Survey“. In: Business Process Manage-
ment, International Conference, BPM 2003, Eindhoven, The Netherlands, June
26-27, 2003, Proceedings. Hrsg. von Wil M. P. van der Aalst, Arthur H. M.
ter Hofstede und Mathias Weske. Bd. 2678. Lecture Notes in Computer
Science. Springer, 2003, S. 1–12 (siehe S. 29, 31, 32, 43).

[AJ00] Wil M. P. van der Aalst und Stefan Jablonski. „Dealing with workflow
change: identification of issues and solutions“. In: Computer systems
science and engineering 15.5 (2000), S. 267–276 (siehe S. 43).

[And+09] Jesper Andersson, Rogério de Lemos, Sam Malek und Danny Weyns.
„Modeling Dimensions of Self-Adaptive Software Systems“. In: Software
Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. Hrsg.
von Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi
und Jeff Magee. Bd. 5525. Lecture Notes in Computer Science. Springer,
2009, S. 27–47 (siehe S. 228–230, 235, 241).

Seite 280 Literaturverzeichnis

[Ard+11] Danilo Ardagna, Luciano Baresi, Sara Comai, Marco Comuzzi und Bar-
bara Pernici. „A Service-Based Framework for Flexible Business Proces-
ses“. In: IEEE Software 28.2 (2011), S. 61–67 (siehe S. 169).

[ARD07] Wil M. P. van der Aalst, Michael Rosemann und Marlon Dumas.
„Deadline-based escalation in process-aware information systems“. In:
Decision Support Systems 43.2 (2007), S. 492–511 (siehe S. 43).

[AT05] Wil M. P. van der Aalst und Arthur H. M. Ter Hofstede. „YAWL: yet
another workflow language“. In: Information systems 30.4 (2005), S. 245–
275 (siehe S. 41, 60, 256).

[AWG05] Wil M. P. van der Aalst, Mathias Weske und Dolf Grünbauer. „Case
handling: a new paradigm for business process support“. In: Data &
Knowledge Engineering 53.2 (2005), S. 129–162 (siehe S. 36, 60, 256).

[AWM04] Wil M. P. van der Aalst, Ton Weijters und Laura Maruster. „Workflow
Mining: Discovering Process Models from Event Logs“. In: IEEE Tran-
sactions on Knowledge & Data Engineering 16.9 (2004), S. 1128–1142 (siehe
S. 34).

[Ayo+16] Clara Ayora, Victoria Torres, Jose Luis de la Vara und Vicente Pelechano.
„Variability management in process families through change patterns“.
In: Information & Software Technology 74 (2016), S. 86–104 (siehe S. 60).

[Bar+11] Angineh Barkhordarian, Frederik Demuth, Kristof Hamann, Minh Ho-
ang, Sonja Weichler und Sonja Zaplata. „Migratability of BPMN 2.0 Pro-
cess Instances“. In: Service-Oriented Computing - ICSOC 2011 Workshops
- ICSOC 2011, International Workshops WESOA, NFPSLAM-SOC, and Sa-
tellite Events, Paphos, Cyprus, December 5-8, 2011. Revised Selected Papers.
Hrsg. von George Pallis, Mohamed Jmaiel, Anis Charfi, Sven Graupner,
Yücel Karabulut, Sam Guinea, Florian Rosenberg, Quan Z. Sheng, Cesare
Pautasso und Sonia Ben Mokhtar. Bd. 7221. Lecture Notes in Computer
Science. Springer, 2011, S. 66–75 (siehe S. 133).

[BCW17] Marco Brambilla, Jordi Cabot und Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice, Second Edition. Synthesis Lectures on Softwa-
re Engineering. Morgan & Claypool Publishers, 2017 (siehe S. 15–17, 19,
23, 26).

[BDP14] Paolo Bocciarelli, Andrea D’Ambrogio und Emiliano Paglia. „A Langua-
ge for Enabling Model-Driven Analysis of Business Processes“. In: MO-
DELSWARD 2014 - Proceedings of the 2nd International Conference on Model-
Driven Engineering and Software Development, Lisbon, Portugal, 7 - 9 Janua-
ry, 2014. Hrsg. von Luis Ferreira Pires, Slimane Hammoudi, Joaquim Fi-
lipe und Rui César das Neves. SciTePress, 2014, S. 325–332 (siehe S. 61).

[Bis11] Adnan Biser. „Evaluation of Adapt Cases“. Masterarbeit. Universität Pa-
derborn, 2011 (siehe S. 228, 229, 233, 235, 247, 251, 260).

Literaturverzeichnis Seite 281

[Boc+14a] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, Emiliano Paglia
und Daniele Gianni. „A Transformation Approach to Enact the Design-
Time Simulation of BPMN Models“. In: 2014 IEEE 23rd International WE-
TICE Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014. Hrsg. von
Sumitra Reddy. IEEE Computer Society, 2014, S. 199–204 (siehe S. 61).

[Boc+14b] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, Emiliano Paglia
und Daniele Gianni. „Empowering business process simulation through
automated model transformations“. In: 2014 Spring Simulation Multicon-
ference, SpringSim ’14, Tampa, FL, USA, April 13-16, 2014, Proceedings of the
Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S
Symposium. ACM, 2014, S. 39 (siehe S. 61).

[Boc+16] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio und Emiliano
Paglia. „A BPMN Extension to Enable the Explicit Modeling of Task
Resources.“ In: CIISE. 2016, S. 40–47 (siehe S. 61).

[Boc+17] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio und Emiliano
Paglia. „A BPMN extension for modeling Cyber-Physical-Production-
Systems in the context of Industry 4.0“. In: 14th IEEE International Confe-
rence on Networking, Sensing and Control, ICNSC 2017, Calabria, Italy, May
16-18, 2017. Hrsg. von Giancarlo Fortino, MengChu Zhou, Zofia Luks-
zo, Athanasios V. Vasilakos, Francesco Basile, Carlos E. Palau, Antonio
Liotta, Maria Pia Fanti, Antonio Guerrieri und Andrea Vinci. IEEE, 2017,
S. 599–604 (siehe S. 61).

[Bru+09] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger
Giese, Holger M. Kienle, Marin Litoiu, Hausi A. Müller, Mauro Pezzè
und Mary Shaw. „Engineering Self-Adaptive Systems through Feedback
Loops“. In: Software Engineering for Self-Adaptive Systems [outcome of a
Dagstuhl Seminar]. Hrsg. von Betty H. C. Cheng, Rogério de Lemos, Hol-
ger Giese, Paola Inverardi und Jeff Magee. Bd. 5525. Lecture Notes in
Computer Science. Springer, 2009, S. 48–70 (siehe S. 6, 9).

[Can+08] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito und Maria
Luisa Villani. „A framework for QoS-aware binding and re-binding of
composite web services“. In: Journal of Systems and Software 81.10 (2008),
S. 1754–1769 (siehe S. 169).

[Cas+99] Fabio Casati, Stefano Ceri, Stefano Paraboschi und Giuseppe Pozzi.
„Specification and Implementation of Exceptions in Workflow Mana-
gement Systems“. In: ACM Transactions on Database Systems 24.3 (1999),
S. 405–451 (siehe S. 36).

[CDM09] Anis Charfi, Tom Dinkelaker und Mira Mezini. „A Plug-in Architecture
for Self-Adaptive Web Service Compositions“. In: IEEE International Con-
ference on Web Services, ICWS 2009, Los Angeles, CA, USA, 6-10 July 2009.
IEEE Computer Society, 2009, S. 35–42 (siehe S. 169).

Seite 282 Literaturverzeichnis

[CKO92] Bill Curtis, Marc I. Kellner und Jim Over. „Process Modeling“. In: Com-
munications of the ACM 35.9 (Sep. 1992), S. 75–90 (siehe S. 42–44, 89, 92,
93, 105, 244, 265).

[Cla+09] Peter Clark, William R. Murray, Philip Harrison und John A. Thomp-
son. „Naturalness vs. Predictability: A Key Debate in Controlled Lan-
guages“. In: Controlled Natural Language, Workshop on Controlled Natural
Language, CNL 2009, Marettimo Island, Italy, June 8-10, 2009. Revised Pa-
pers. Hrsg. von Norbert E. Fuchs. Bd. 5972. Lecture Notes in Computer
Science. Springer, 2009, S. 65–81 (siehe S. 202).

[CMT10] Pierre Châtel, Jacques Malenfant und Isis Truck. „QoS-based Late-
Binding of Service Invocations in Adaptive Business Processes“. In: IEEE
International Conference on Web Services, ICWS 2010, Miami, Florida, USA,
July 5-10, 2010. IEEE Computer Society, 2010, S. 227–234 (siehe S. 37, 266).

[Coa96] Workflow Management Coalition. Workflow Management Coalition termi-
nology and glossary. Techn. Ber. WFMC-TC-1011. Workflow Management
Coalition, 1996 (siehe S. 30).

[Deu+15] Jochen Deuse, Kirsten Weisner, André Hengstebeck und Felix Busch.
„Gestaltung von Produktionssystemen im Kontext von Industrie 4.0“.
In: Zukunft der Arbeit in Industrie 4.0. Springer, 2015, S. 99–109 (siehe S. 3).

[Dij76] Edsger Wybe Dijkstra. A discipline of programming. Bd. 1. prentice-hall
Englewood Cliffs, 1976 (siehe S. 7).

[DP10] Ken Decreus und Geert Poels. „A Goal-Oriented Requirements Enginee-
ring Method for Business Processes“. In: Information Systems Evolution -
CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected Extended
Papers. Hrsg. von Pnina Soffer und Erik Proper. Bd. 72. Lecture Notes in
Business Information Processing. Springer, 2010, S. 29–43 (siehe S. 202).

[Dum+18] Marlon Dumas, Marcello La Rosa, Jan Mendling und Hajo A. Reijers.
Fundamentals of Business Process Management, Second Edition. Springer,
2018 (siehe S. 32, 199).

[DZK11] Markus Döhring, Birgit Zimmermann und Lars Karg. „Flexible Work-
flows at Design- and Runtime Using BPMN2 Adaptation Patterns“. In:
Business Information Systems - 14th International Conference, BIS 2011, Poz-
nan, Poland, June 15-17, 2011. Proceedings. Hrsg. von Witold Abramowicz.
Bd. 87. Lecture Notes in Business Information Processing. Springer, 2011,
S. 25–36 (siehe S. 39, 59, 169).

[Ecl] Eclipse Foundation. Eclipse Modeling Framework (siehe S. 18).

[Eco] Ecore. Ecore Metamodell (siehe S. 18).

Literaturverzeichnis Seite 283

[Eng+00] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel und Stefan Sau-
er. „Dynamic Meta Modeling: A Graphical Approach to the Operational
Semantics of Behavioral Diagrams in UML“. In: «UML» 2000 - The Uni-
fied Modeling Language, Advancing the Standard, Third International Confe-
rence, York, UK, October 2-6, 2000, Proceedings. Hrsg. von Andy Evans, Stu-
art Kent und Bran Selic. Bd. 1939. Lecture Notes in Computer Science.
Springer, 2000, S. 323–337 (siehe S. 16, 21, 50).

[Eng+18] Gregor Engels, Günter W. Maier, Sonja K. Ötting, Eckhard Steffen und
Alexander Teetz. „Gerechtigkeit in flexiblen Arbeits- und Management-
prozessen“. In: Zukunft der Arbeit – Eine praxisnahe Betrachtung. Springer,
1. Jan. 2018 (siehe S. 214).

[ES11] Florian Evequoz und Christoph Sterren. Waiting for the miracle: Compa-
rative analysis of twelve business process management systems regarding the
support of BPMN 2.00 palette and export. Techn. Ber. Tech. rep., Universi-
ty of Applied Sciences Western Switzerland Google Scholar, 2011 (siehe
S. 257).

[EST18] Gregor Engels, Thim Strothmann und Alexander Teetz. „Adapt Cases
4 BPM - A Modeling Framework for Process Flexibility in IIoT“. In:
22nd IEEE International Enterprise Distributed Object Computing Workshop,
EDOC Workshops 2018, Stockholm, Sweden, October 16-19, 2018. IEEE Com-
puter Society, 2018, S. 59–68 (siehe S. 214).

[ESW07] Gregor Engels, Christian Soltenborn und Heike Wehrheim. „Analysis of
UML Activities Using Dynamic Meta Modeling“. In: Formal Methods for
Open Object-Based Distributed Systems, 9th IFIP WG 6.1 International Con-
ference, FMOODS 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings. Hrsg.
von Marcello M. Bonsangue und Einar Broch Johnsen. Bd. 4468. Lecture
Notes in Computer Science. Springer, 2007, S. 76–90 (siehe S. 50).

[ET18] Gregor Engels und Alexander Teetz. „Flexible Arbeitsprozesse“. In:
Handbuch Gestaltung digitaler und vernetzter Arbeitswelten. Springer, 1. Jan.
2018 (siehe S. 214).

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Pearson Education, 2003 (siehe S. 23).

[Faz16] Masud Fazal-Baqaie. „Project-specific software engineering methods:
composition, enactment, and quality assurance“. Dissertation. Universi-
tät Paderborn, 2016 (siehe S. 170).

[FKK08] Norbert E. Fuchs, Kaarel Kaljurand und Tobias Kuhn. „Attempto Con-
trolled English for Knowledge Representation“. In: Reasoning Web, 4th In-
ternational Summer School 2008, Venice, Italy, September 7-11, 2008, Tutorial
Lectures. Hrsg. von Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski,
Massimo Marchiori, Axel Polleres und Sebastian Schaffert. Bd. 5224. Lec-
ture Notes in Computer Science. Springer, 2008, S. 104–124 (siehe S. 202).

Seite 284 Literaturverzeichnis

[Fow10] Martin Fowler. Domain Specific Languages. 1st. Addison-Wesley Professio-
nal, 2010 (siehe S. 21).

[FR14] Jakob Freund und Bernd Rücker. Praxishandbuch BPMN 2.0. Carl Hanser
Verlag GmbH Co KG, 2014 (siehe S. 29).

[Gad08] Andreas Gadatsch. Grundkurs Geschäftsprozess-Management: Methoden
und Werkzeuge für die IT-Praxis: Eine Einführung für Studenten und Prakti-
ker. Springer-Verlag, 2008 (siehe S. 27, 30, 41).

[Ger13] Christian Gerth. Business Process Models. Change Management. Bd. 7849.
Lecture Notes in Computer Science. Springer, 2013 (siehe S. 29, 88, 105,
244).

[Got+08] Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers
und Marcello La Rosa. „Configurable Workflow Models“. In: Internatio-
nal Journal of Cooperative Information Systems 17.2 (2008), S. 177–221 (siehe
S. 39).

[Gra+16] Imen Graja, Slim Kallel, Nawal Guermouche und Ahmed Hadj Kacem.
„BPMN4CPS: A BPMN Extension for Modeling Cyber-Physical Sys-
tems“. In: 25th IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises, WETICE 2016, Paris, France, June
13-15, 2016. Hrsg. von Sumitra Reddy und Walid Gaaloul. IEEE Compu-
ter Society, 2016, S. 152–157 (siehe S. 62).

[GTG15] Jennifer E. Gerow, Jason Bennett Thatcher und Varun Grover. „Six types
of IT-business strategic alignment: an investigation of the constructs and
their measurement“. In: EJIS 24.5 (2015), S. 465–491 (siehe S. 202).

[GW13] Matthias Geiger und Guido Wirtz. „BPMN 2.0 Serialization - Standard
Compliance Issues and Evaluation of Modeling Tools“. In: Enterprise Mo-
delling and Information Systems Architectures: Proceedings of the 5th Interna-
tional Workshop on Enterprise Modelling and Information Systems Architec-
tures, EMISA 2013, St. Gallen, Switzerland, September 5-6, 2013. Hrsg. von
Reinhard Jung und Manfred Reichert. Bd. 222. LNI. GI, 2013, S. 177–190
(siehe S. 257).

[Hau05] Jan Hendrik Hausmann. „Dynamic META modeling: a semantics des-
cription technique for visual modeling languages“. Dissertation. Univer-
sität Paderborn, 2005 (siehe S. 16, 21).

[HBR10] Alena Hallerbach, Thomas Bauer und Manfred Reichert. „Configuration
and management of process variants“. In: Handbook on Business Process
Management. Springer, 2010, S. 237–255 (siehe S. 39).

[JB96] Stefan Jablonski und Christoph Bussler. Workflow management - modeling
concepts, architecture and implementation. International Thomson, 1996
(siehe S. 43).

Literaturverzeichnis Seite 285

[Jes+14] Sabina Jeschke, René Vossen, Ingo Leisten, Florian Welter, Stella Fleischer
und Thomas Thiele. „Industrie 4.0 als Treiber der demografischen Chan-
cen“. In: Automation, Communication and Cybernetics in Science and Engi-
neering 2013/2014. Springer, 2014, S. 75–85 (siehe S. 4).

[Kar+14] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler und Steven Völkel. „Design Guidelines for Domain Specific
Languages“. In: CoRR abs/1409.2378 (2014). arXiv: 1409.2378 (siehe
S. 26).

[Kau15] Timothy Kaufmann. Geschäftsmodelle in Industrie 4.0 und dem Internet der
Dinge: Der Weg vom Anspruch in die Wirklichkeit. Springer-Verlag, 2015
(siehe S. 3).

[KC03] Jeffrey O. Kephart und David M. Chess. „The Vision of Autonomic Com-
puting“. In: IEEE Computer 36.1 (2003), S. 41–50 (siehe S. 51, 62, 74, 77, 79,
216, 227, 252, 264).

[KJP15] Martin Krzywdzinski, Ulrich Jürgens und Sabine Pfeiffer. „Die vierte Re-
volution Wandel der Produktionsarbeit im Digitalisierungszeitalter“. In:
WZB Mitteilungen 149 (2015), S. 6–9 (siehe S. 3).

[Kur16] Matthias Kurz. „BPMN Model Interchange: The Quest for Interoperabi-
lity“. In: Proceedings of the 8th International Conference on Subject-oriented
Business Process Management, S-BPM ONE 2016, Erlangen, Germany, April
7-8, 2016. Hrsg. von Jorge L. Sanz. ACM, 2016, 6:1–6:10 (siehe S. 257).

[Lag+07] François Lagarde, Huáscar Espinoza, François Terrier und Sébastien
Gérard. „Improving uml profile design practices by leveraging concep-
tual domain models“. In: 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Ge-
orgia, USA. Hrsg. von R. E. Kurt Stirewalt, Alexander Egyed und Bernd
Fischer. ACM, 2007, S. 445–448 (siehe S. 25).

[Las+14] Heiner Lasi, Privatdozent Dr Peter Fettke, Hans-Georg Kemper, Dipl-
Inf Thomas Feld und Dipl-Hdl Michael Hoffmann. „Industrie 4.0“. In:
Wirtschaftsinformatik 56.4 (2014), S. 261–264 (siehe S. 3).

[LE13] Markus Luckey und Gregor Engels. „High-quality specification of self-
adaptive software systems“. In: Proceedings of the 8th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SE-
AMS 2013, San Francisco, CA, USA, May 20-21, 2013. Hrsg. von Marin
Litoiu und John Mylopoulos. IEEE Computer Society, 2013, S. 143–152
(siehe S. 6, 51, 53–57, 68, 104, 216, 228).

[Luc+11] Markus Luckey, Benjamin Nagel, Christian Gerth und Gregor Engels.
„Adapt cases: extending use cases for adaptive systems“. In: 2011 ICSE
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2011, Waikiki, Honolulu , HI, USA, May 23-24, 2011. Hrsg. von

https://arxiv.org/abs/1409.2378

Seite 286 Literaturverzeichnis

Holger Giese und Betty H. C. Cheng. ACM, 2011, S. 30–39 (siehe S. 6, 9,
50, 51, 56, 67, 70, 103, 104, 264).

[Luc13] Markus Luckey. „Adaptivity engineering: modeling and quality ass-
urance for self-adptive software systems“. Dissertation. Universität Pa-
derborn, 2013 (siehe S. 6, 7, 15, 18, 50, 72, 199, 202, 207, 266).

[Lud+16] Thomas Ludwig, Christoph Kotthaus, Martin Stein, Hartwig Durt, Con-
stanze Kurz, Julian Wenz, Thorsten Doublet, Maximilian Becker, Volk-
mar Pipek und Volker Wulf. „Arbeiten im Mittelstand 4.0–KMU im
Spannungsfeld des digitalen Wandels“. In: HMD Praxis der Wirtschafts-
informatik 53.1 (Jan. 2016), S. 71–86 (siehe S. 2).

[MG09] Milan Milanovic und Dragan Gasevic. „Towards a Language for Rule-
Enhanced Business Process Modeling“. In: Proceedings of the 13th IEEE In-
ternational Enterprise Distributed Object Computing Conference, EDOC 2009,
1-4 September 2009, Auckland, New Zealand. IEEE Computer Society, 2009,
S. 64–73 (siehe S. 60).

[MH08] Daniel Moody und Jos van Hillegersberg. „Evaluating the visual syntax
of UML: An analysis of the cognitive effectiveness of the UML family of
diagrams“. In: International Conference on Software Language Engineering.
Springer. 2008, S. 16–34 (siehe S. 268).

[MHW17] Sankalita Mandal, Marcin Hewelt und Mathias Weske. „A Framework
for Integrating Real-World Events and Business Processes in an IoT En-
vironment“. In: On the Move to Meaningful Internet Systems. OTM 2017
Conferences - Confederated International Conferences: CoopIS, C&TC, and
ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part I.
Hrsg. von Hervé Panetto, Christophe Debruyne, Walid Gaaloul, Mike
P. Papazoglou, Adrian Paschke, Claudio Agostino Ardagna und Ro-
bert Meersman. Bd. 10573. Lecture Notes in Computer Science. Springer,
2017, S. 194–212 (siehe S. 61).

[MM17] Andrea Marrella und Massimo Mecella. „Cognitive Business Process
Management for Adaptive Cyber-Physical Processes“. In: Business Pro-
cess Management Workshops - BPM 2017 International Workshops, Barcelo-
na, Spain, September 10-11, 2017, Revised Papers. Hrsg. von Ernest Teniente
und Matthias Weidlich. Bd. 308. Lecture Notes in Business Information
Processing. Springer, 2017, S. 429–439 (siehe S. 63).

[Moo09] Daniel L. Moody. „The “Physics” of Notations: Toward a Scientific Ba-
sis for Constructing Visual Notations in Software Engineering“. In: IEEE
Transactions on Software Engineering 35.6 (2009), S. 756–779 (siehe S. 268).

[MRH15] Sonja Meyer, Andreas Ruppen und Lorenz M. Hilty. „The Things of
the Internet of Things in BPMN“. In: Advanced Information Systems En-
gineering Workshops - CAiSE 2015 International Workshops, Stockholm, Swe-

Literaturverzeichnis Seite 287

den, June 8-9, 2015, Proceedings. Hrsg. von Anne Persson und Janis Stir-
na. Bd. 215. Lecture Notes in Business Information Processing. Springer,
2015, S. 285–297 (siehe S. 60).

[MRM13] Sonja Meyer, Andreas Ruppen und Carsten Magerkurth. „Internet of
Things-Aware Process Modeling: Integrating IoT Devices as Business
Process Resources“. In: Advanced Information Systems Engineering - 25th
International Conference, CAiSE 2013, Valencia, Spain, June 17-21, 2013. Pro-
ceedings. Hrsg. von Camille Salinesi, Moira C. Norrie und Oscar Pastor.
Bd. 7908. Lecture Notes in Computer Science. Springer, 2013, S. 84–98
(siehe S. 60).

[Mur+13] Aitor Murguzur, Goiuria Sagardui, Karmele Intxausti und Salvador Tru-
jillo. „Process Variability through Automated Late Selection of Frag-
ments“. In: Advanced Information Systems Engineering Workshops - CAiSE
2013 International Workshops, Valencia, Spain, June 17-21, 2013. Proceedings.
Hrsg. von Xavier Franch und Pnina Soffer. Bd. 148. Lecture Notes in
Business Information Processing. Springer, 2013, S. 371–385 (siehe S. 37,
168, 266).

[Mur89] Tadao Murata. „Petri nets: Properties, analysis and applications“. In: Pro-
ceedings of the IEEE 77.4 (1989), S. 541–580 (siehe S. 41).

[Nag15] Benjamin Nagel. „Goal-oriented business process engineering“. Disser-
tation. Universität Paderborn, 2015 (siehe S. 202).

[OAS07] OASIS. Web Services Business Process Execution Language (WS-BPEL).
Techn. Ber. Version 2.0. Web Services Business Process Execution Lan-
guage (WS-BPEL). Organization for the Advancement of Structured In-
formation Standards (OASIS), 2007 (siehe S. 40, 104).

[OMG10] OMG. Unified Modeling Language TM (OMG UML): Superstructure. Techn.
Ber. February. Unified Modeling Language TM (OMG UML): Superstruc-
ture. Object Management Group, 2010 (siehe S. 7, 10, 18, 19, 22, 24, 44, 81,
82, 98, 151, 179).

[OMG11] OMG. Business Process Model and Notation (BPMN). Techn. Ber. Version
2.0. Business Process Model and Notation (BPMN). Object Management
Group, 2011 (siehe S. 10, 18, 19, 24, 25, 36, 40, 44, 46, 83, 97, 116).

[OMG14a] OMG. Model Driven Architecture (MDA): MDA Guide. Techn. Ber. Versi-
on 2.0. Model Driven Architecture (MDA): MDA Guide. Object Manage-
ment Group, 2014 (siehe S. 18).

[OMG14b] OMG. Object Contraint Language. Techn. Ber. Version 2.0. Object Contraint
Language. Object Management Group, 2014 (siehe S. 18, 24, 26).

[OMG15a] OMG. Meta Object Facility (MOF). Techn. Ber. Version 2.5. Meta Object
Facility (MOF). Object Management Group, 2015 (siehe S. 16).

Seite 288 Literaturverzeichnis

[OMG15b] OMG. Unified Modeling Language (UML): Activity Diagrams. Techn. Ber.
Object Management Group, 2015 (siehe S. 36, 44, 104).

[OMG16a] OMG. Case Model Management and Notation. Techn. Ber. Object Manage-
ment Group, 2016 (siehe S. 104).

[OMG16b] OMG. Decision Model and Notation. Techn. Ber. Object Management
Group, 2016 (siehe S. 104).

[PA06] Maja Pesic und Wil M. P. van der Aalst. „A Declarative Approach for
Flexible Business Processes Management“. In: Business Process Mana-
gement Workshops, BPM 2006 International Workshops, BPD, BPI, ENEI,
GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006, Procee-
dings. Hrsg. von Johann Eder und Schahram Dustdar. Bd. 4103. Lecture
Notes in Computer Science. Springer, 2006, S. 169–180 (siehe S. 60, 256).

[Par02] David Lorge Parnas. „On the Criteria To Be Used in Decomposing Sys-
tems into Modules (Reprint)“. In: Software Pioneers. Hrsg. von Manfred
Broy und Ernst Denert. Springer Berlin Heidelberg, 2002, S. 411–427
(siehe S. 7).

[Pes+07] Maja Pesic, M. H. Schonenberg, Natalia Sidorova und Wil M. P. van der
Aalst. „Constraint-Based Workflow Models: Change Made Easy“. In: On
the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GA-
DA, and IS, OTM Confederated International Conferences CoopIS, DOA, OD-
BASE, GADA, and IS 2007, Vilamoura, Portugal, November 25-30, 2007, Pro-
ceedings, Part I. Hrsg. von Robert Meersman und Zahir Tari. Bd. 4803.
Lecture Notes in Computer Science. Springer, 2007, S. 77–94 (siehe S. 60,
257).

[Poe+13] Geert Poels, Ken Decreus, Ben Roelens und Monique Snoeck. „Investiga-
ting Goal-Oriented Requirements Engineering for Business Processes“.
In: Journal of Database Management 24.2 (2013), S. 35–71 (siehe S. 202).

[RA07] Michael Rosemann und Wil M. P. van der Aalst. „A configurable refe-
rence modelling language“. In: Information Systems 32.1 (2007), S. 1–23
(siehe S. 39).

[RD09] Manfred Reichert und Peter Dadam. „Enabling Adaptive Process-aware
Information Systems with ADEPT2.“ In: Handbook of Research on Business
Process Modeling (Jan. 2009) (siehe S. 41).

[Ren03] Arend Rensink. „The GROOVE Simulator: A Tool for State Space Gene-
ration“. In: Applications of Graph Transformations with Industrial Relevance,
Second International Workshop, AGTIVE 2003, Charlottesville, VA, USA, Sep-
tember 27 - October 1, 2003, Revised Selected and Invited Papers. Hrsg. von
John L. Pfaltz, Manfred Nagl und Boris Böhlen. Bd. 3062. Lecture Notes
in Computer Science. Springer, 2003, S. 479–485 (siehe S. 50).

Literaturverzeichnis Seite 289

[RG02] Mark Richters und Martin Gogolla. „OCL: Syntax, Semantics, and
Tools“. In: Object Modeling with the OCL, The Rationale behind the Ob-
ject Constraint Language. Hrsg. von Tony Clark und Jos Warmer. Bd. 2263.
Lecture Notes in Computer Science. Springer, 2002, S. 42–68 (siehe S. 18).

[RR10] Stefanie Rinderle-Ma und Manfred Reichert. „Advanced Migration Stra-
tegies for Adaptive Process Management Systems“. In: 12th IEEE Con-
ference on Commerce and Enterprise Computing, CEC 2010, Shanghai, Chi-
na, November 10-12, 2010. Hrsg. von Kuo-Ming Chao, Christian Huemer,
Birgit Hofreiter, Yinsheng Li und Nazaraf Shah. IEEE Computer Society,
2010, S. 56–63 (siehe S. 133).

[RRD03] Manfred Reichert, Stefanie Rinderle und Peter Dadam. „Adept workflow
management system“. In: International Conference on Business Process Ma-
nagement. Springer. 2003, S. 370–379 (siehe S. 60, 256).

[RSS06] Gil Regev, Pnina Soffer und Rainer Schmidt. „Taxonomy of Flexibility in
Business Processes“. In: Proceedings of the CAISE*06 Workshop on Business
Process Modelling, Development, and Support BPMDS ’06, Luxemburg, June
5-9, 2006. Hrsg. von Gil Regev, Pnina Soffer und Rainer Schmidt. Bd. 236.
CEUR Workshop Proceedings. CEUR-WS.org, 2006 (siehe S. 35, 194).

[Rus13] Siegfried Russwurm. „Software: Die Zukunft der Industrie“. In: Industrie
4.0. Springer, 2013, S. 21–36 (siehe S. 3).

[RW12] Manfred Reichert und Barbara Weber. Enabling Flexibility in Process-
Aware Information Systems - Challenges, Methods, Technologies. Springer,
2012 (siehe S. 8, 35–37, 40, 108, 194).

[Sai+15] Imen Ben Said, Mohamed Amine Chaâbane, Rafik Bouaziz und Eric An-
donoff. „Flexibility of collaborative processes using versions and adapta-
tion patterns“. In: 9th IEEE International Conference on Research Challenges
in Information Science, RCIS 2015, Athens, Greece, May 13-15, 2015. IEEE,
2015, S. 400–411 (siehe S. 60).

[Sch+08] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar und
Wil M. P. van der Aalst. „Process Flexibility: A Survey of Contempora-
ry Approaches“. In: Advances in Enterprise Engineering I, 4th Internatio-
nal Workshop CIAO! and 4th International Workshop EOMAS, held at CAiSE
2008, Montpellier, France, June 16-17, 2008. Proceedings. Hrsg. von Jan L. G.
Dietz, Antonia Albani und Joseph Barjis. Bd. 10. Lecture Notes in Busi-
ness Information Processing. Springer, 2008, S. 16–30 (siehe S. 8, 35–40,
108, 109, 117, 127, 129–131, 133, 148, 149, 155, 157, 158, 165, 166, 170, 194,
244, 251, 254, 256, 265, 266).

[Sch+12] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavi-
des, Goetz Botterweck, Animesh Pathak, Salvador Trujillo und Karina
Villela. „Software diversity: state of the art and perspectives“. In: STTT
14.5 (2012), S. 477–495 (siehe S. 133).

Seite 290 Literaturverzeichnis

[SCV11] Luis Jesús Ramón Stroppi, Omar Chiotti und Pablo David Villarreal. „Ex-
tending BPMN 2.0: Method and Tool Support“. In: Business Process Model
and Notation. Hrsg. von Remco Dijkman, Jörg Hofstetter und Jana Koeh-
ler. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, S. 59–73 (siehe
S. 25).

[Sei+15] Ronny Seiger, Christine Keller, Florian Niebling und Thomas Schlegel.
„Modelling complex and flexible processes for smart cyber-physical en-
vironments“. In: J. Comput. Science 10 (2015), S. 137–148 (siehe S. 62).

[Sei+16] Ronny Seiger, Steffen Huber, Peter Heisig und Uwe Assmann. „Enab-
ling Self-adaptive Workflows for Cyber-physical Systems“. In: Enterprise,
Business-Process and Information Systems Modeling - 17th International Con-
ference, BPMDS 2016, 21st International Conference, EMMSAD 2016, Held
at CAiSE 2016, Ljubljana, Slovenia, June 13-14, 2016, Proceedings. Hrsg. von
Rainer Schmidt, Wided Guédria, Ilia Bider und Sérgio Guerreiro. Bd. 248.
Lecture Notes in Business Information Processing. Springer, 2016, S. 3–
17 (siehe S. 62).

[Sel07] Bran Selic. „A Systematic Approach to Domain-Specific Language
Design Using UML“. In: Tenth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2007), 7-9 May 2007,
Santorini Island, Greece. IEEE Computer Society, 2007, S. 2–9 (siehe S. 25).

[SHS18] Ronny Seiger, Steffen Huber und Thomas Schlegel. „Toward an execu-
tion system for self-healing workflows in cyber-physical systems“. In:
Software and System Modeling 17.2 (2018), S. 551–572 (siehe S. 62).

[SMM11] Klaus Sperner, Sonja Meyer und Carsten Magerkurth. „Introducing
Entity-Based Concepts to Business Process Modeling“. In: Business Pro-
cess Model and Notation - Third International Workshop, BPMN 2011, Lu-
cerne, Switzerland, November 21-22, 2011. Proceedings. Hrsg. von Remco
M. Dijkman, Jörg Hofstetter und Jana Koehler. Bd. 95. Lecture Notes in
Business Information Processing. Springer, 2011, S. 166–171 (siehe S. 61).

[Sof05] Pnina Soffer. „On the notion of flexibility in business processes“. In: Pro-
ceedings of the CAiSE. Bd. 5. 2005, S. 35–42 (siehe S. 35).

[Sol13] Christian Soltenborn. „Quality assurance with dynamic meta modeling“.
Dissertation. Universität Paderborn, 2013 (siehe S. 16, 21).

[Spa+13] Dieter Spath, Oliver Ganschar, Stefan Gerlach, Moritz Hämmerle, Tobias
Krause und Sebastian Schlund. Produktionsarbeit der Zukunft – Industrie
4.0. Fraunhofer Verlag Stuttgart, 2013 (siehe S. 1, 3).

[Sta+06] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase und Simon Hel-
sen. Model-driven software development - technology, engineering, manage-
ment. Pitman, 2006 (siehe S. 26).

Literaturverzeichnis Seite 291

[Str+11] Luis Jesús Ramón a Stroppi, Luis, Omar Chiotti und Pablo Villarreal. „A
BPMN 2.0 Extension to Define the Resource Perspective of Business Pro-
cess Models“. In: IV Congreso Iberoamericano en Software Engineering (Nov.
2011) (siehe S. 25).

[Tor+12] Victoria Torres, Stefan Zugal, Barbara Weber, Manfred Reichert, Clara
Ayora und Vicente Pelechano. „A qualitative comparison of approaches
supporting business process variability“. In: International Conference on
Business Process Management. Springer. 2012, S. 560–572 (siehe S. 39, 40).

[Voe+13] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart CL Kats, Eelco Visser und Guido Wachsmuth.
DSL engineering: Designing, implementing and using domain-specific langua-
ges. dslbook. org, 2013 (siehe S. 7, 16, 22).

[Wes12] Mathias Weske. Business Process Management - Concepts, Languages, Archi-
tectures, 2nd Edition. Springer, 2012 (siehe S. 10, 31, 32, 34, 80, 198, 207,
254).

[WFH11] Ian H. Witten, Eibe Frank und Mark A. Hall. Data mining: practical machi-
ne learning tools and techniques. 3rd Edition. Morgan Kaufmann, Elsevier,
2011 (siehe S. 269).

[Whi+09] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng und Jean-
Michel Bruel. „RELAX: Incorporating Uncertainty into the Specification
of Self-Adaptive Systems“. In: RE 2009, 17th IEEE International Require-
ments Engineering Conference, Atlanta, Georgia, USA, August 31 - September
4, 2009. IEEE Computer Society, 2009, S. 79–88 (siehe S. 202).

[Wie13] Wieland, Matthias. „Methoden zur Modellierung und Ausführung kon-
textbezogener Workflows in Produktionsumgebungen“. Dissertation.
Universität Stuttgart, 2013 (siehe S. 2).

[Wim09] Manuel Wimmer. „A semi-automatic approach for bridging DSMLs with
UML“. In: International Journal of Web Information Systems 5 @InProcee-
dingsStroppi.etal2011, author = Stroppi, Luis Jesús Ramón and Chiot-
ti, Omar and Villarreal, Pablo David, title = Extending BPMN 2.0: me-
thod and tool support, booktitle = International Workshop on Business
Process Modeling Notation, year = 2011, pages = 59–73, organization =
Springer.3 (2009), S. 372–404 (siehe S. 25).

[WRN14] Hans-Peter Wiendahl, Jürgen Reichardt und Peter Nyhuis. Handbuch Fa-
brikplanung: Konzept, Gestaltung und Umsetzung wandlungsfähiger Produk-
tionsstätten. Carl Hanser Verlag GmbH Co KG, 2014 (siehe S. 3).

[WRR07] Barbara Weber, Stefanie Rinderle und Manfred Reichert. „Change Pat-
terns and Change Support Features in Process-Aware Information Sys-
tems“. In: Advanced Information Systems Engineering, 19th International
Conference, CAiSE 2007, Trondheim, Norway, June 11-15, 2007, Procee-

Seite 292 Literaturverzeichnis

dings. Hrsg. von John Krogstie, Andreas L. Opdahl und Guttorm Sindre.
Bd. 4495. Lecture Notes in Computer Science. Springer, 2007, S. 574–588
(siehe S. 38, 88).

[WRR08] Barbara Weber, Manfred Reichert und Stefanie Rinderle-Ma. „Change
patterns and change support features - Enhancing flexibility in process-
aware information systems“. In: Data & Knowledge Engineering 66.3
(2008), S. 438–466 (siehe S. 38, 88, 108, 244).

[ZLS11] Sema Zor, F Leymann und D Schumm. „A proposal of BPMN extensions
for the manufacturing domain“. In: Proceedings of 44th CIRP international
conference on manufacturing systems. Citeseer. 2011 (siehe S. 62).

Operationen des
AVM4BPM

AnhangA
In diesem Abschnitt werden Operationen vorgestellt, die als Teil der in
Abschnitt 4.3 beschriebenen Teilsprache für die Gestaltung eines Adaptati-
on View Model 4 BPM (AVM4BPM) verstanden werden können. Sie stellen
Beispiele für mögliche Operationen dar, die im Rahmen der Gestaltung
von Anpassungsprozessen eingesetzt werden können. Hierzu werden zu-
nächst gemeinsame Eigenschaften dieser Operationen vorgestellt. An-
schließend wird jeweils die Signatur, die konkrete Syntax als auch die An-
wendung einer Operation im Rahmen eines Beispiels gezeigt. In Abbil-
dung A-1 wird die Darstellungsweise von Operationen sowie von Ein-
und Ausgabeparametern anhand eines konzeptionellen Beispiels gezeigt.

PM
inModel

«AdaptCase4BPM»

Perform-Operation

onRequested
PointinTime

Monitoring Process

Operation to Perform

Operation to Perform

adaptationProcess =
‘Operation to Perform‘

CAP ...

onRequested
PointinTime

Unique
Symbol

AdaptationOperation

InputParameter OutputParameter

PM‘

outModel

Adaptation Process

AdaptationProcessMonitoringProcess

AdaptationProcess

Abbildung A-1:
Darstellung von Opera-
tionen sowie von Ein- und
Ausgabeparametern

Seite 294 Anhang A

Konkrete Syntax von
Operationen

Die grafische Darstellung von Operationen wird durch eine an die Spra-
che BPMN2.0 angelehnte Darstellung von Tasks gewählt. In dieser Arbeit
vorgestellte Operation verfügen über ein eindeutiges Symbol. Das Symbol
einer Operation wird im linken oberen Bereich der Operation dargestellt.

Konkrete Syntax von Ein-
und Ausgabeparametern

Die Parameter einer Operation werden in Anlehnung an Datenelemente
der Sprache BPMN2.0 grafisch dargestellt. Dabei wird jeweils die Darstel-
lung von Input-Datenelementen für Eingabeparameter und die Darstel-
lung von Output-Datenelementen für Ausgabeparameter verwendet. Soll
die Angabe von Werten durchgeführt werden, so können diese in textuel-
ler Form eingefügt werden. Die in diesem Ansatz enthaltenen Operationen
können Parameter verlangen, die in Form von Ein- und Ausgabeparameter
vorliegen. Zudem können auch optionale Eingabeparameter vorkommen,
die je Operation beschrieben werden.

Textuelle Schreibweise Für die Operationen ist auch eine textuelle Schreibweise vorgesehen. Ein
Beispiel für die textuelle Schreibweise der Operation ModifyPropertyOfNode
ist nachfolgend gegeben. Parameter werden in der Reihenfolge aufgeführt,
in der sie in der Signatur vorkommen (siehe 4-18). Eine Unterscheidung
zwischen Operationen für Prozessmodelle und deren Instanzen ist in der
textuellen Schreibweise nicht vorgesehen.

ModifyPropertyOfNode (m, Task, ’Name’, ’Task A’) : m‘

In dieser Arbeit stellen die Operationen einen konzeptionellen Gegenstand
dar. So sind sie dafür angedacht, prinzipielle Vorgehensweisen für Anpas-
sungen von Prozessen in der frühen Gestaltung von Anpassungsprozessen
einsetzen zu können. Soll auf Basis von Beobachtungs- und Anpassungs-
prozessen die weitere Gestaltung von Prozessen durchgeführt werden, so
sind je nach einzusetzender IT-Unterstützung spezifische Verfeinerungen
und Implementierungen der vorgestellten Operationen notwendig.

Ein Beispiel bilden hier insbesondere Operationen, die für die Anpassung
von Prozessinstanzen eingesetzt werden. Für eine in der Praxis nutzbare
Menge von Operationen müssen hierbei plattformspezifische Eigenschaf-
ten einer IT-Unterstützung in Form einer Workflow-Engine berücksichtigt
werden. Existierende Workflow-Engines haben dabei oftmals verschiede-
ne Repräsentationen von Prozessinstanzen, die die reale Umsetzung von
Operationen erschweren können.

Operationen des AVM4BPM Seite 295

Die Auswahl einer derartigen Plattform findet dabei im Rahmen der Pha-
se Konfiguration statt. Ebenso wird in dieser Phase die Aufgabe der Im-
plementierung übernommen. Der in dieser Arbeit vorgestellte Ansatz be-
zieht sich dabei aber auf die frühe Gestaltung im Rahmen der Phase Design
& Analyse. Die Auswahl einer Plattform sowie die zugehörige Implemen-
tierung von Operationen steht für den in dieser Arbeit gesetzten Schwer-
punkt nicht im Fokus und wird daher auch nicht angeboten.

Für die Beschreibung von Operationen wurde sich dafür entschieden, le-
diglich ihre generelle Funktionsweise zu beschreiben. Auf eine Berücksich-
tigung von spezifischen Eigenschaften von Prozessmodellen und deren In-
stanzen wird im Rahmen der integrierten Operationen des AVM4BPM da-
her verzichtet. Die in Kapitel 5 vorgestellten Entwurfsmuster für die Ge-
staltung von flexiblen und anpassbaren Prozessen greifen den Aspekt der-
artiger Eigenschaften aber in ausgesuchten Teilen wieder auf und zeigen
wie sie auch zu einem frühen Zeitpunkt in der Phase Design & Analyse be-
rücksichtigt werden können.

Auf die Darstellung aller 24 Operationen des AVM4BPM für die Anpas-
sung von Prozessmodellen und deren Instanzen wird nachfolgend ver-
zichtet. Stattdessen wird auf das generelle Funktionsprinzip von Opera-
tionen Bezug genommen, das für beide betroffenen Artefakte angewen-
det werden kann. Daraus ergeben sich insgesamt 12 Operationen für Kno-
tenelemente (siehe Anhang A.1), Kantenelemente (siehe Anhang A.2) und
Containerelemente (siehe Anhang A.3). Zusätzlich wird in Anhang A.3 das
Funktionsprinzip der Operation ModifyPositionOfNodesInContainer vorge-
stellt, welche für den Flexibilitätsaspekt Flexibility-by Underspecification be-
nötigt wird.

Die nachfolgende Beschreibung der Signatur, der konkreten Syntax und
Beispiele für die Anwendung von Operationen bezieht sich dabei auf Pro-
zessmodelle. Konzeptionell ändern sich für Operationen an den Prozess-
instanzen die Ein- und Ausgabeparameter sowie das spezifische Symbol.

Operationen des AVM4BPM Seite 297

A.1 Operationen zur Anpassung von Knotenelementen

Die Perspektiven Funktion, Verhalten und Informationen enthalten Knoten-
elemente. Für die Anpassung derartiger Elemente werden in diesem Ab-
schnitt Operationen vorgestellt. Hierzu gibt Abbildung A-2 einige Beispie-
le für Elemente aus der Sprache BPMN2.0 in Bezug zur zugehörigen Per-
spektive.

Manual
Task

Organization InformationFunction Behavior

User
Task

Script
Task

Service
Task

provides

Perspective

Node

enumeration
ElementType

DataObject

(BPMN2.0)

K
n

o
te

n
-

el
em

en
te

Beispielhafte Zuordnung von Elementen zu Perspektiven

0..*

elementType: ElementType

AdaptationOperation

0..*

OutputParameterInputParameter

Remove
Node

Modify
PropertyOf

Node

Modify
PositionOf

Node

Add
Node

Abbildung A-2:
Übersicht über die Opera-
tionen für Knotenelemen-
te

Mit den dargestellten Operationen ist die Gestaltung von Anpassungen
von Prozessmodellen möglich. Im Rahmen der Definition der Operationen
werden zunächst die Signatur und anschließend die konkrete Syntax in
grafischer Notation exemplarisch dargestellt. Ferner wird für jede Ope-
ration ein Beispiel einer möglichen Anwendung der eingeführten Opera-
tionen auf Basis von Prozessmodellen gezeigt.

A.1.1 AddNode

Eine Operation vom Typ AddNode fügt ein neues Knotenelement in einen
Prozess ein. Dabei werden zwei verschiedene Mechanismen unterschie-
den. Zum einen kann das hinzugefügte Knotenelement lediglich der Men-
ge der vorhandenen Elemente im Prozess hinzufügt werden. Zum anderen

Seite 298 Anhang A

kann es aber auch sinnvoll sein, das Knotenelement mit anderen Elemen-
ten in Beziehung zu setzen. So könnte ein hinzugefügtes Knotenelement
mit dem bereits vorhandenen Kontrollfluss verbunden werden. Ein sol-
ches Knotenelement kann z.B. durch einen der vorhandenen Untertypen
von Aktivitäten oder Gateways gegeben sein. Die Signatur der Operation
AddNode und die konkrete Syntax sind in Abbildung A-3 angegeben.

Abbildung A-3:
Signatur und konkrete

Syntax der Ope-
ration AddNode

Parametername Parametertyp
IN : inModel ProcessModel

nodeElement NodeElement

IN-Optional : sourceNodeElements Set〈NodeElement, AssociationType〉
targetNodeElements Set〈NodeElement, AssociationType〉

OUT : outModel ProcessModel

m‘‘

Add
Node

Task
{{EndNode,
SequenceFlow}}

{{StartNode,
SequenceFlow}}

out
Model

node
Element

source
Node
Elements

target
Node
Elements

m

in
Model

m‘

Add

Node

out
Model

in
Model

node
Element

Taskm

m m

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist
ein in Anlehnung an die ausgeführte Operation geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das hinzuzufü-
gende Knotenelement (nodeElement) gegeben.

Optionale Parameter Soll das Knotenelement mit bestehenden Elementen verbunden werden,
so ist die Angabe weiterer Parameter notwendig. So können durch die An-
gabe der Mengen sourceNodeElements und targetNodeElements Quell- bzw.
Zielknotenelemente (NodeElement) sowie der Typ der einzusetzenden As-
soziation (AssociationType) angegeben werden. Insgesamt existieren die
drei Typen für Assoziationen SequenceFlow, DataAssociation und Message-
Flow. Die Menge sourceNodeElements enthält alle Knotenelemente, von de-
nen ausgehend eine Assoziation mit dem einzufügenden Knotenelement
verbunden werden soll. Ferner werden ausgehend vom dem einzufügen-
den Knotenelement Assoziationen zu allen Knotenelementen der Men-
ge targetNodeElements hinzugefügt. Hierdurch ist es bspw. möglich, einen
Task oder ein Gateway in einen bestehenden Kontrollfluss zu integrieren.

Operationen des AVM4BPM Seite 299

Beispiel einer Anwendung
der Operation AddNode

Eine Anwendung der in Abbildung A-3 spezifizierten Operationen ist in
Abbildung A-4 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
Das BPD zeigt ein Start- und ein Endereignis, die durch eine Assoziation
vom Typ SequenceFlow verbunden sind.

Task

Model m‘

Task

Model m

Model m‘‘

AddNode

AddNode

StartNode EndNode StartNode EndNode

StartNode EndNode

Abbildung A-4:
Beispielhafte Anwen-
dungen der Operation
AddNode

Die Anpassung des Prozessmodells m hin zu Prozessmodell m’ ist im obe-
ren Beispiel dargestellt. In dem BPD wurde ein Task hinzugefügt und nicht
mit dem existierenden Kontrollfluss verbunden.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. In dem BPD ist ein Kontrollfluss entstanden, in
dem ausgehend vom Startereignis der eingefügte Task folgt und schließ-
lich mit dem Endereignis endet.

A.1.2 RemoveNode

Eine Operation vom Typ RemoveNode entfernt ein vorhandenes Knoten-
element sowie alle mit ihm in Verbindung stehenden ein- und ausgehen-
den Kantenelemente aus einem Prozess. Dabei wird ebenso wie bei der
Operation AddNode zwischen zwei unterschiedlichen Mechanismen un-
terschieden. Zum einen kann das zu entfernende Knotenelement aus der
Menge der vorhandenen Elemente des Prozesses entfernt werden, ohne
dass vorhandene Elemente wieder miteinander verbunden werden. Zum
anderen kann es aber auch sinnvoll sein, verbleibende Knotenelemente
miteinander zu verbinden. So könnten diese z.B. zu einem durchgängi-
gen Kontrollfluss verbunden werden. Die Signatur und konkrete Syntax
der Operation RemoveNode sind in Abbildung A-5 angegeben.

Seite 300 Anhang A

Abbildung A-5:
Signatur und konkrete

Syntax der Opera-
tion RemoveNode

Parametername Parametertyp
IN : inModel ProcessModel

nodeElement NodeElement

IN-Optional : associateElements Set〈NodeElement, AssociationType,
NodeElement〉

OUT : outModel ProcessModel

Remove

Node

 Remove
Node

{{StartNode, SequenceFlow, EndNode}}Task

node
Element

associate
Elements

m

in
Model

in
Model

node
Element

Taskm

m‘‘

out
Model

m‘

out
Model

m m

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist
ein in Anlehnung an die ausgeführte Operation geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu entfer-
nende Knotenelement (nodeElement) gegeben.

Optionale Parameter Sollen verbleibende Elemente in einem Prozessmodell durch die Anwen-
dung der Operation verbunden werden, so ist die Angabe weiterer Pa-
rameter notwendig. So können durch die Angabe der Menge associate-
Elements Tripel angegeben werden. Ein Tripel beschreibt dabei, von wel-
chem Knotenelement (NodeElement) ausgehend mit welchem Kantenele-
ment (AssociationType) ein weiteres Knotenelement (NodeElement) verbun-
den werden soll. Insgesamt existieren die drei Typen für Assoziationen Se-
quenceFlow, DataAssociation und MessageFlow. Hierdurch ist es z.B. mög-
lich, einen durch die Anwendung der Operation RemoveNode unterbroche-
nen Kontrollfluss wieder zu vervollständigen.

Beispiel einer Anwendung
der Operation
RemoveNode

Eine Anwendung der beiden in Abbildung A-5 spezifizierten Operationen
ist in Abbildung A-6 dargestellt. Dabei wird eine Darstellung in der Spra-
che BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Be-
reich der Abbildung wird hierzu als Ausgang das Prozessmodell m dar-
gestellt. Das BPD enthält ein Startereignis, gefolgt von einem Task und
abschließend mit einem Endereignis. Die genannten Knotenelemente sind
durch Assoziationen vom Typ SequenceFlow verbunden.

Operationen des AVM4BPM Seite 301

Model m Model m‘

Task

Model m‘‘

RemoveNode

RemoveNode

StartNode EndNode

StartNode EndNode

StartNode EndNode

Abbildung A-6:
Beispielhafte Anwen-
dungen der Operation
RemoveNode

Die Anpassung des Prozessmodells m hin zu Prozessmodell m’ ist im obe-
ren Beispiel dargestellt. In dem zugehörigen BPD wurden der Task und sei-
ne ein- und ausgehenden Assoziationen vom Typ SequenceFlow entfernt.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. In dem BPD ist aus dem bestehenden Kontroll-
fluss der Task entfernt worden. Die verbleibenden Start- und Endereignis-
se wurden durch eine neu eingefügte Assoziation vom Typ SequenceFlow
miteinander verbunden.

A.1.3 ModifyPropertyOfNode

Eine Operation vom Typ ModifyPropertyOfNode modifiziert den Wert ei-
ner Eigenschaft eines Knotenelements in einem Prozess. Die Signatur
und konkrete Syntax der Operation ModifyPropertyOfNode sind in Abbil-
dung A-7 angegeben.

Parametername Parametertyp
IN : inModel ProcessModel

nodeElement NodeElement
nodeProperty Property
propertyValue Value

OUT : outModel ProcessModel

Modify
PropertyOf

Node

‘Name‘ ‘Task A‘Task

node
Element

m

in
Model

node
Property

property
Value

m‘

out
Model

m

Abbildung A-7:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOfNode

Seite 302 Anhang A

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffende
Knotenelement (nodeElement), seine zu modifizierende Eigenschaft (node-
Property) und den zugehörigen Wert (propertyValue) gegeben. Ein Bezeich-
ner der zu modifizierenden Eigenschaft wird durch ein String-Literal an-
gegeben. Der Typ der zu ändernden Werte ist in der dargestellten Signatur
generisch als Value angegeben, da es verschiedene Typen wie z.B. String,
Integer oder auch komplexe Datentypen geben könnte.

Beispiel einer Anwendung
der Operation

ModifyPropertyOfNode

Eine Anwendung der in Abbildung A-7 spezifizierten Operation ist in
Abbildung A-8 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind ein Startereignis, gefolgt von einem Task und abschlie-
ßend mit einem Endereignis in einer Sequenz durch Assoziationen vom
Typ SequenceFlow verbunden.

Abbildung A-8:
Beispielhafte Anwen-

dung der Operation
ModifyPropertyOfNode

Model m Model m‘

Task Task A

ModifyPropertyOfNode

Die Anpassung von Prozessmodell m hin zu Prozessmodell m’ ändert die
Eigenschaft Name des Tasks, sodass der neue Wert dieser Eigenschaft Task
A ist.

A.1.4 ModifyPositionOfNode

Eine Operation vom Typ ModifyPositionOfNode modifiziert die Positi-
on eines Knotenelements in einem Prozess innerhalb eines bestehenden
Kontroll- oder Datenflusses. Die Signatur und konkrete Syntax der Opera-
tion ModifyPositionOfNode sind in Abbildung A-9 angegeben.

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell

Operationen des AVM4BPM Seite 303

Parametername Parametertyp
IN : inModel ProcessModel

nodeElement NodeElement
sourceNodeElements Set〈NodeElement, AssociationType〉
targetNodeElements Set〈NodeElement, AssociationType〉

OUT : outModel ProcessModel

Task A

 Modify

PositionOf
Node

{{EndNode,
 SequenceFlow}}

node
Element

source
Node
Elements

target
Node
Elements

m

in
Model

{{Task B,
 SequenceFlow}}

m‘

out
Model

m

Abbildung A-9:
Signatur und konkrete
Syntax der Operation
ModifyPositionOfNode

(outModel). Ein weiterer Parameter der Operation ist durch das zu ver-
schiebende Knotenelement (nodeElement) gegeben. Die neue Position des
Knotenelements kann durch die Angabe der Parameter sourceNodeElements
und targetNodeElements angegeben werden. Dabei wird das Knotenelement
zwischen den Knotenelementen (NodeElement) der zuvor genannten Men-
gen mit den angegebenen Typen von Assoziationen (AssociationType) ein-
gefügt. Zuvor bestehende ein- und ausgehende Kantenelemente werden
dabei entfernt.

Beispiel einer Anwendung
der Operation
ModifyPositionOfNode

Eine Anwendung der in Abbildung A-3 spezifizierten Operation ist in
Abbildung A-10 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist ein Startereignis, gefolgt von den Tasks Task A und Task B
sowie abschließend mit einem Endereignis durch Assoziationen vom Typ
SequenceFlow zu einer Sequenz verbunden.

Model m Model m‘

Task A Task B Task B Task A

ModifyPositionOfNode

StartNode EndNode StartNode EndNode

Abbildung A-10:
Beispielhafte Anwen-
dung der Operation
ModifyPositionOfNode

Die Anpassung von Prozessmodell m hin zu Prozessmodell m’ ändert die
Position von Task A, sodass er nach Task B in der Sequenz vorkommt. Hier-

Seite 304 Anhang A

für wurden zusätzlich die in der Ausgabe m’ dargestellten ein- und ausge-
henden Assoziationen von Task A vom Typ SequenceFlow hinzugefügt.

Die Ausgabe m’ kann alternativ auch aus einer Kombination der Opera-
tionen RemoveNode und AddNode erreicht werden. Hierbei wird Task A zu-
nächst entfernt und anschließend dem Prozessmodell m’ neu hinzugefügt.

Operationen des AVM4BPM Seite 305

A.2 Operationen zur Anpassung von Kantenelementen

In den Perspektiven Verhalten und Informationen können Kantenelemente
vorkommen. Hierzu zeigt Abbildung A-11 eine Übersicht über die durch
die Operationen betrachteten Elemente aus der Domäne BPM.

Organization InformationFunction Behavior

provides

Perspective

Edge

enumeration
ElementType

DataObject

(BPMN2.0)

Beispielhafte Zuordnung von Elementen zu Perspektiven

0..*

elementType: ElementType

AdaptationOperation

0..*

OutputParameterInputParameter

Remove
Edge

Modify
PropertyOf

Edge

Modify
PositionOf

Edge

Add
Edge

SequenceFlow
DataAssociation

MessageFlow

K
a

n
te

n
-

el
em

en
te

Abbildung A-11:
Übersicht über die Opera-
tionen für Kantenelemen-
te

Mit den dargestellten Operationen ist die Gestaltung von Anpassungen
von Prozessmodellen möglich. Im Rahmen der Definition der Operationen
werden zunächst die Signatur und anschließend die konkrete Syntax in
grafischer Notation exemplarisch dargestellt. Ferner wird für jede Ope-
ration ein Beispiel einer möglichen Anwendung der eingeführten Opera-
tionen auf Basis von Prozessmodellen gezeigt.

A.2.1 AddEdge

Eine Operation vom Typ AddEdge fügt ein neues Kantenelement in einen
Prozess ein. Dabei werden zwei verschiedene Mechanismen unterschie-
den. Zum einen kann das hinzugefügte Kantenelement lediglich der Men-
ge der vorhandenen Elemente im Prozess hinzufügt werden. Zum ande-
ren kann es aber auch sinnvoll sein, das Kantenelement mit anderen Ele-
menten in Beziehung zu setzen. So könnte ein hinzugefügtes Kantenele-

Seite 306 Anhang A

ment des Typs SequenceFlow den bereits vorhandenen Kontrollfluss ergän-
zen, indem es z.B. Tasks oder Gateways miteinander verbindet. Die Signa-
tur und konkrete Syntax der Operation AddEdge sind in Abbildung A-12
angegeben.

Abbildung A-12:
Signatur und konkrete

Syntax der Ope-
ration AddEdge

Parametername Parametertyp
IN : inModel ProcessModel

edgeElement EdgeElement

IN-Optional : sourceNodeElement NodeElement
targetNodeElement NodeElement

OUT : outModel ProcessModel

Add
Edge

g2g1

edge
Element

source
Node
Element

target
Node
Element

m

in
Model

edge

 Add
Edge

in
Model

edge
Element

edgem

m‘‘

out
Model

m‘

out
Model

m m

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das hinzuzufü-
gende Kantenelement (edgeElement) gegeben.

Optionale Parameter Soll das Kantenelement mit bestehenden Elementen verbunden werden, so
ist die Angabe weiterer Parameter notwendig. Durch die Angabe der Para-
meter sourceNodeElement und targetNodeElement vom Typ NodeElement kön-
nen jeweils ein Quell- und ein Zielknotenelement benannt werden. Dabei
beschreibt der Parameter sourceNodeElement das Knotenelement, von dem
ausgehend das eingefügte Kantenelement mit verbunden wird. Der Para-
meter targetNodeElement gibt dabei das Knotenelement an, welches als Ziel
des Kantenelements gesetzt werden soll. Die Operation AddEdge kann ein-
gesetzt werden, um Kantenelemente der Typen SequenceFlow, DataAssocia-
tion und MessageFlow einzufügen.

Beispiel einer Anwendung
der Operation AddEdge

Eine Anwendung der in Abbildung A-12 spezifizierten Operation ist in
Abbildung A-13 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang ein Auszug aus einem Prozess-
modell m dargestellt. In dem BPD sind die beiden Gateways g1 und g2
sowie ein Task in einer Sequenz dargestellt.

Operationen des AVM4BPM Seite 307

Model m‘

edge

Model m

Model m‘‘

Taskg1 g2 ...
AddEdge

AddEdge

... Taskg1 g2

Taskg1 g2

edge

Abbildung A-13:
Beispielhafte Anwen-
dungen der Operation
AddEdge

Die Anpassung des Prozessmodells m hin zu Prozessmodell m’ ist im obe-
ren Beispiel dargestellt. In dem BPD wurde eine Assoziation vom Typ Se-
quenceFlow mit dem Namen ’edge’ hinzugefügt und nicht in den existieren-
den Kontrollfluss integriert.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. In dem BPD ist ein Kontrollfluss entstanden, in
dem ausgehend vom Gateway g1 ein alternativer Kontrollfluss entstanden
ist, mit dem es möglich ist, die Ausführung des Tasks zu überspringen,
indem direkt zum Gateway g2 gewechselt werden kann.

A.2.2 RemoveEdge

Eine Operation vom Typ RemoveEdge entfernt ein vorhandenes Kantenele-
ment aus einem Prozess. So können Assoziationen der Typen Sequence-
Flow, DataAssociation und MessageFlow entfernt werden. Die Signatur und
konkrete Syntax der Operation RemoveNode sind in Abbildung A-14 ange-
geben.

Parametername Parametertyp
IN : inModel ProcessModel

edgeElement EdgeElement

OUT : outModel ProcessModel

Remove
Edge

edge

m‘

out
Model

in
Model

edge
Element

m

m

Abbildung A-14:
Signatur und konkrete
Syntax der Operation
RemoveEdge

Seite 308 Anhang A

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu entfer-
nende Kantenelement (edgeElement) gegeben.

Beispiel einer Anwendung
der Operation RemoveEdge

Eine Anwendung der in Abbildung A-14 spezifizierten Operation ist in
Abbildung A-15 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang der Auszug eines Prozessmodells
m dargestellt. In dem BPD sind zwei Gateways sowie ein Task als eine Se-
quenz dargestellt. Ausgehend vom Gateway g1 ist es möglich, die Ausfüh-
rung des Tasks mit einem alternativen Pfad zu überspringen.

Abbildung A-15:
Beispielhafte An-

wendung der Ope-
ration RemoveEdge

Model m Model m‘

Taskg1 g2Taskg1 g2

edge

RemoveEdge

Die Anpassung im Auszug des Prozessmodells m hin zu Prozessmodell m’
entfernt den alternativen Pfad. In dem BPD wurde somit die Assoziation
vom Typ SequenceFlow mit der Bezeichnung edge entfernt.

A.2.3 ModifyPropertyOfEdge

Eine Operation vom Typ ModifyPropertyOfEdge modifiziert den Wert einer
Eigenschaft eines Kantenelements aus einem Prozess. Die Signatur und
konkrete Syntax der Operation ModifyPropertyOfEdge sind in Abbildung A-
16 angegeben.

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffende
Kantenelement (edgeElement), seine zu modifizierende Eigenschaft (edge-
Property) und den zugehörigen Wert (propertyValue) gegeben. Ein Bezeich-
ner der zu modifizierenden Eigenschaft wird durch ein String-Literal an-
gegeben. Der Typ der zu ändernden Werte ist in der dargestellten Signatur
generisch als Value angegeben, da es verschiedene Typen wie z.B. String,
Integer oder auch komplexe Datentypen geben könnte.

Operationen des AVM4BPM Seite 309

Parametername Parametertyp
IN : inModel ProcessModel

edgeElement EdgeElement
edgeProperty Property
propertyValue Value

OUT : outModel ProcessModel

 Modify
PropertyOf

Edge

‘alternativeEdge‘‘Name‘

edge
Element

m

in
Model

edge

edge
property

property
Value

m‘

out
Model

m

Abbildung A-16:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOfEdge

Beispiel einer Anwendung
der Operation
ModifyPropertyOfEdge

Eine Anwendung der in Abbildung A-16 spezifizierten Operation ist in
Abbildung A-17 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind zwei Gateways und ein Task als Sequenz dargestellt. Fer-
ner existiert ausgehend vom Gateway g1 und endend mit Gateway g2 ein
alternativer Pfad, dessen Assoziation vom Typ SequenceFlow ist und den
Namen ’edge’ trägt.

Taskg1 g2

edge

Taskg1 g2

alternativeEdge

Model m Model m‘

ModifyPropertyOfEdge

Abbildung A-17:
Beispielhafte Anwendung
der Operation Modify-
PropertyOfEdge

Die Anwendung der Operation ändert die Eigenschaft Name des Kanten-
elements mit der Bezeichnung edge, sodass der neue Wert dieser Eigen-
schaft ’alternativeEdge’ ist.

A.2.4 ModifyPositionOfEdge

Eine Operation vom Typ ModifyPositionOfEdge modifiziert die Position ei-
nes Kantenelements aus einem Prozess. Eine Position eines Kantenele-
ments wird dabei aus den aus- und dem eingehenden Knotenelement ge-
bildet. Die Signatur und konkrete Syntax der Operation ModifyPositionOf-
Edge sind in Abbildung A-18 angegeben.

Seite 310 Anhang A

Abbildung A-18:
Signatur und konkrete
Syntax der Operation

ModifyPositionOfEdge

Parametername Parametertyp
IN : inModel ProcessModel

edgeElement EdgeElement
sourceNodeElement NodeElement
targetNodeElement NodeElement

OUT : outModel ProcessModel

 Modify
PositionOf

Edge

g3g2

edge
Element

m

in
Model

alternativeEdge

source
Node
Element

target
Node
Element

m‘

out
Model

m

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu ver-
schiebende Kantenelement (edgeElement) gegeben. Die neue Position des
Kantenelements kann durch die Angabe der Parameter sourceNodeElement
und targetNodeElement angegeben werden. Dabei wird das Kantenelement
ausgehend vom Knotenelement sourceNodeElement und endend mit dem
Knotenelement targetNodeElement verbunden.

Beispiel einer Anwendung
der Operation

ModifyPositionOfEdge

Eine Anwendung der in Abbildung A-18 spezifizierten Operation ist in
Abbildung A-19 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist eine Sequenz von drei Gateways (g1, g2, g3) dargestellt. Die
Gateways sind mit Assoziationen vom Typ SequenceFlow verbunden. Aus-
gehend vom Gateway g1 existiert ein alternativer Pfad mit der Bezeich-
nung edge, der zum zweiten Gateway g2 führt.

Abbildung A-19:
Beispielhafte Anwen-

dung der Operation
ModifyPositionOfEdge

Model m Model m‘

g1 g2...

edge

g3 ... g1 g2...

edge

g3 ...

ModifyPositionOfEdge

Operationen des AVM4BPM Seite 311

Die Anwendung der Operation ändert die Position der Assoziation mit
der Bezeichnung ’edge’, sodass der alternative Pfad ausgehend vom zwei-
ten Gateway g2 zum dritten Gateway g3 verläuft. Die Ausgabe m’ kann
alternativ auch aus einer Kombination der Operationen RemoveEdge und
AddEdge erreicht werden. Hierbei wird die Assoziation zunächst entfernt
und anschließend dem Prozessmodell m” entsprechend neu hinzugefügt.

Operationen des AVM4BPM Seite 313

A.3 Operationen zur Anpassung von Containerelemen-
ten

Die Perspektiven Funktion und Organisation enthalten verschiedene Bei-
spiele für Containerelemente. Bei Containerelementen handelt es ich um
Elemente, die weitere Elemente enthalten können. Beispiele hierfür sind
durch die drei Typen SubProcess und Pool bzw. Lane gegeben. In Abbil-
dung A-20 ist eine Übersicht über diese Elemente in Anordnung zu ihrer
jeweiligen Perspektive gezeigt.

Organization InformationFunction Behavior

provides

Perspective

Container

enumeration
ElementType

DataObject

(BPMN2.0)

Beispielhafte Zuordnung von Elementen zu Perspektiven

0..*

elementType: ElementType

AdaptationOperation

0..*

OutputParameterInputParameter

Remove
Container

Modify
PropertyOf
Container

Modify
PositionOf
Container

Add
Container

Pool

Lane Lane
SubProcess

Co
nt

ai
n

er
-

el
em

en
te

Modify
PositionOf
NodesIn

Container

Abbildung A-20:
Übersicht über die Ope-
rationen für Containerele-
mente

Für die gezeigten Elemente sind im Gegensatz zu den zuvor beschriebenen
Operationen unterschiedliche Verfahrensweisen notwendig. So lässt sich
bspw. ein Kontrollfluss über mehrere Lanes innerhalb eines Pools gestal-
ten. Ein Kontrollfluss darf jedoch nicht über einen Subprozess verlaufen.
Im Rahmen von Operationen für die betroffenen Perspektiven Organisati-
on und Funktion sollten Elemente unterschiedlich behandelt werden. Die
beschriebenen Beispiele fokussieren die Funktionsprinzipien für Elemen-
te der Perspektive Organisation. Eine Anwendung auf Subprozesse kann
zu Fehlern führen, die durch Operationen für Knoten- und Kantenelemen-
te korrigiert werden können. Aufgrund des beispielhaften Charakters der

Seite 314 Anhang A

Operationen wurde sich im Rahmen der Beschreibung dafür entschieden,
spezifische Korrekturen für die Operationen nicht mitanzugeben.

A.3.1 AddContainer

Eine Operation vom Typ AddContainer fügt ein neues Containerelement in
einen Prozess ein. Dabei werden zwei verschiedene Mechanismen unter-
schieden. Zum einen kann das hinzuzufügende Containerelement ledig-
lich der Menge der vorhandenen Elemente in dem Prozess hinzugefügt
werden. Zum anderen kann es aber auch sinnvoll sein, existierende Kno-
tenelemente in dem Prozess dem Containerelement zuzuordnen. So könn-
te ein hinzugefügtes Containerelement bereits existierende Elemente nach
Anwendung der Operation enthalten. Die Signatur und konkrete Syntax
der Operation AddContainer sind in Abbildung A-21 angegeben.

Abbildung A-21:
Signatur und konkrete

Syntax der Opera-
tion AddContainer

Parametername Parametertyp
IN : inModel ProcessModel

containerElement ContainerElement

IN-Optional : nodeElements Set〈NodeElement〉

OUT : outModel ProcessModel

 Add
Container

Participant

Add
Container

{S, E, Task}

m‘

out
Model

m‘‘

out
Model

in
Model

m

container
Element

m

in
Model

container
Element

Participant

node
Elements

m m

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das hinzuzufü-
gende Containerelement (containerElement) gegeben.

Optionale Parameter Soll das Containerelement bereits bestehende Elemente enthalten, so ist
die Angabe weiterer Parameter notwendig. Es können durch die Angabe
der Menge nodeElements vom Typ NodeElement die Knotenelemente refe-
renziert werden, die im Containerelement enthalten sein sollen.

Beispiel einer Anwendung
der Operation
AddContainer

Eine Anwendung der beiden in Abbildung A-21 spezifizierten Opera-
tionen ist in Abbildung A-22 dargestellt. Dabei wird eine Darstellung in
der Sprache BPMN2.0 durch einen Auszug aus einem BPD gezeigt. In dem

Operationen des AVM4BPM Seite 315

BPD sind ein Start- und ein Endereignis mit einem dazwischenliegen-
den Task dargestellt, welche durch Assoziationen vom Typ SequenceFlow
verbunden sind.

Process Model m‘Process Model m

Participiant

P
a

rt
ic

ip
a

n
t

TaskS E

TaskS E

TaskS E

AddContainer

AddContainer

Process Model m‘‘

Abbildung A-22:
Beispielhafte Anwen-
dungen der Operation
AddContainer

Die Anpassung des Prozessmodells m hin zu Prozessmodell m’ ist im obe-
ren Beispiel dargestellt. In dem BPD wurde die Lane mit der Bezeichnung
Participant hinzugefügt. Dabei enthält diese Lane keine der zuvor existie-
renden Elemente.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. Die in der Anpassungsoperation spezifizierten
Elemente mit den Bezeichnungen S, Task und E wurden in der hinzuge-
fügten Lane eingebettet.

A.3.2 RemoveContainer

Eine Operation vom Typ RemoveContainer entfernt ein vorhandenes Con-
tainerelement aus einem Prozess. Es werden zwei Mechanismen zur Ent-
fernung angeboten. So können die in dem Containerelement enthaltenen
Elemente entweder ebenfalls entfernt oder erhalten bleiben. Das Erhalten
von Elementen kann sinnvoll sein, wenn das in einem Containerelement
enthaltene Verhalten bestehen bleiben soll. Die Signatur und konkrete
Syntax der Operation RemoveContainer sind in Abbildung A-23 angegeben.

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu entfer-
nende Containerelement (containerElement) gegeben. Sind in einem Contai-
nerelement enthaltene Elemente vorhanden, so kann durch den Parameter
preserveElements vom Typ Boolean angegeben werden, ob diese Elemente

Seite 316 Anhang A

Abbildung A-23:
Signatur und konkrete

Syntax der Opera-
tion RemoveContainer

Parametername Parametertyp
IN : inModel ProcessModel

containerElement ContainerElement
preserveElements Boolean

OUT : outModel ProcessModel

Remove

Container

true

Remove
Container

m‘

out
Model

m‘‘

out
Model

m

in
Model

container
Element

Participant

preserve
Contents

falsem

in
Model

container
Element

Participant

preserve
Contents

m m

erhalten werden sollen. Dabei steht der Wert true für das Erhalten und der
Wert false für ein Verwerfen bestehender Elemente im Containerelement.

Beispiel einer Anwendung
der Operation

RemoveContainer

Eine Anwendung der in Abbildung A-23 spezifizierten Operation ist in
Abbildung A-24 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind ein Startereignis, gefolgt von einem Task und abschlie-
ßend mit einem Endereignis durch Assoziationen vom Typ SequenceFlow
verbunden. Die genannten Elemente sind eingebettet in einer Lane mit der
Bezeichnung Participant.

Abbildung A-24:
Beispielhafte Anwen-

dungen der Opera-
tion RemoveContainer

Model m

P
a

rt
ic

ip
an

t
 Task

Model m‘

Task

∞

Model m‘‘

RemoveContainer

RemoveContainer

Die Anpassung des Prozessmodells m hin zu Prozessmodell m’ ist im obe-
ren Beispiel dargestellt. In dem BPD wurde die Lane mit der Bezeichnung
Participant entfernt. Die zuvor in der Lane enthaltene Sequenz bestehend
aus einem Startereignis, einem Task sowie einem Endereignis blieb erhal-
ten und ist in diesem Prozessmodell keiner organisatorischen Rolle mehr
zugeordnet.

Operationen des AVM4BPM Seite 317

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. Das Resultat ist ein leeres Prozessmodell – hier
dargestellt als schwarz-umrandetes Unendlichkeitszeichen.

A.3.3 ModifyPropertyOfContainer

Eine Operation vom Typ ModifyPropertyOfContainer modifiziert den Wert
einer Eigenschaft eines Containerelements aus einem Prozess. Die Signa-
tur und konkrete Syntax der Operation ModifyPropertyOfContainer sind in
Abbildung A-25 angegeben.

Parametername Parametertyp
IN : inModel ProcessModel

containerElement ContainerElement
containerProperty Property
propertyValue Value

OUT : outModel ProcessModel

Modify

PropertyOf
Container

‘Name‘

‘Participant 1‘m

in
Model

container
Element

Participant

container
Property

container
Value

m‘

out
Model

m

Abbildung A-25:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOf-
Container

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffen-
de Containerelement (containerElement), seine zu modifizierende Eigen-
schaft (containerProperty) und den zugehörigen Wert (propertyValue) gege-
ben. Ein Bezeichner der zu modifizierenden Eigenschaft wird durch ein
String-Literal angegeben. Der Typ der zu ändernden Werte ist in der darge-
stellten Signatur generisch als Value angegeben, da es verschiedene Typen
wie z.B. String, Integer oder auch komplexe Datentypen geben kann.

Beispiel einer Anwendung
der Operation Modify-
PropertyOfContainer

Eine Anwendung der in Abbildung A-25 spezifizierten Operation ist in
Abbildung A-26 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist eine Sequenz bestehend aus einem Startereignis, gefolgt

Seite 318 Anhang A

von einem Task und abschließend mit einem Endereignis gezeigt. Die ge-
nannten Elemente sind durch Assoziationen vom Typ SequenceFlow ver-
bunden.

Abbildung A-26:
Beispielhafte Anwendung

der Operation Modify-
PropertyOfContainer

Model m Model m‘

P
ar

ti
ci

p
a

n
t

 Task

P
a

rt
ic

ip
a

n
t

1
 Task

ModifyPropertyOfContainer

Die Anwendung der Operation ändert die Eigenschaft Name der Lane, so-
dass der neue Wert Participant 1 ist.

A.3.4 ModifyPositionOfContainer

Eine Operation vom Typ ModifyPositionOfContainer modifiziert die Positi-
on eines Containerelements in einem Prozess. Im Fall von Containerele-
menten der Perspektive Organisation handelt es sich bei der Position des
betroffenen Elements um die jeweilige Einbettung in andere Containerele-
mente der gleichen Perspektive oder auf oberste Ebene im Prozess. Die Si-
gnatur und konkrete Syntax der Operation ModifyPositionOfContainer sind
in Abbildung A-27 angegeben.

Abbildung A-27:
Signatur und konkrete
Syntax der Operation

ModifyPositionOf-
Container

Parametername Parametertyp
IN : inModel ProcessModel

containerElement ContainerElement
targetContainerElement ContainerElement

OUT : outModel ProcessModel

Modify

PositionOf
Container

Group B

m

in
Model

container
Element

Participant 2

m‘

out
Model

target
Container
Element

m

Operationen des AVM4BPM Seite 319

ParameterDie Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu ver-
schiebende Containerelement (containerElement) gegeben. Die neue Posi-
tion des Containerelements kann durch die Angabe der Parameter target-
ContainerElement angegeben werden. Dabei wird das Containerelement in
das durch diesen Parameter angegebene Containerelement verschoben.
Wird mit dem Parameter kein existierendes Containerelement des Prozess-
modells angegeben, so wird das zu verschiebende Containerelement auf
oberster Hierarchieebene verschoben.

Beispiel einer Anwendung
der Operation
ModifyPositionOfContainer

Eine Anwendung der in Abbildung A-27 spezifizierten Operation ist in
Abbildung A-28 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind die beiden Pools Group A und Group B gezeigt. In dem
Pool mit der Bezeichnung Group A sind die beiden Lanes Participant 1 und
Participant 2 enthalten.

Model m

Participant 1
Group A

Participant 1 Participant 2
Group A Group B

Model m‘

ModifyPositionOfContainer

Participant 2
Group B

Abbildung A-28:
Beispielhafte Anwendung
der Operation Modify-
PositionOfContainer

In dem BPD ist die Lane mit der Bezeichnung Participant 2 nicht mehr Teil
vom Pool Group A, sondern Teil von Pool Group B. Die Ausgabe m’ kann
alternativ auch aus einer Kombination der Operationen RemoveContainer
und AddContainer erreicht werden. Hierbei wird die Lane mit der Bezeich-
nung Participant 1 zunächst entfernt und anschließend dem Pool Group B
neu hinzugefügt.

A.3.5 ModifyPositionOfNodesInContainer

Eine Operation vom Typ ModifyPositionOfNodesInContainer ändert die Po-
sition von Knotenelementen, sodass diese aus einem Containerelement in
ein anderes Containerelement in einem Prozess verschoben werden kön-
nen. Dabei handelt es sich bei dieser Operation um eine Abweichung ge-

Seite 320 Anhang A

genüber den zuvor angewandten Mustern von Operationen zur Anpas-
sung von Prozessen, da es sich um eine Operation in Bezug zu Knoten-
elementen handelt, sie aber im Abschnitt für Containerelemente beschrie-
ben wird. Dies lässt sich dadurch begründen, dass für ein besseres Ver-
ständnis für die Operation ModifyPositionOfNodesInContainer zunächst die
zuvor beschriebenen Operationen für Containerelemente eingeführt wur-
den. Die Signatur und konkrete Syntax der Operation ModifyPositionOf-
NodesInContainer sind in Abbildung A-29 angegeben.

Abbildung A-29:
Signatur und konkrete

Syntax der Opera-
tion ModifyPosition-
OfNodesInContainer

Parametername Parametertyp
IN : inModel ProcessModel

nodeElements Set〈NodeElement〉
targetContainerElement ContainerElement

IN-Optional : copyElements Boolean

OUT : outModel ProcessModel

Modify

PositionOfNodes
InContainer

Participant 2

m

in
Model

node
Elements

{Task B, EE}

m‘

out
Model

target
Container
Element

m

Parameter Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgeführt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgeführte Operation ein geändertes Prozessmodell
(outModel). Durch den Parameter nodeElements kann eine Menge vom Typ
NodeElement angegeben werden, die die zu verschiebenden Knotenele-
mente enthält. Wird eine leere Menge angegeben, so werden alle Elemente
verschoben. Die neue Position der Knotenelemente kann durch die Angabe
des Parameters targetContainerElement vom Typ ContainerElement angege-
ben werden. Dabei werden die durch den Parameter nodeElements angege-
benen Knotenelemente in das durch den Parameter targetContainerElement
angegebene Containerelement verschoben.

Optionale Parameter Sollen Elemente in einem Containerelement erhalten bleiben und stattdes-
sen eine Kopie eingefügt werden, so ist die Angabe eines weiteren Para-
meters notwendig. Dieser Parameter ist durch copyElements vom Typ Boo-
lean gegeben. Das Kopieren von Element kann durch Angabe dieses Para-
meters mit dem Wert true durchgeführt werden.

Operationen des AVM4BPM Seite 321

Beispiel einer Anwendung
der Operation Modify-
PositionOfNodesIn-
Container

Eine Anwendung der in Abbildung A-29 spezifizierten Operation ist in
Abbildung A-30 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist eine Sequenz beginnend mit einem Startereignis, gefolgt
von Task A sowie Task B und endend mit einem Endereignis dargestellt.
Die genannten Elemente sind durch Assoziationen vom Typ SequenceFlow
miteinander verbunden. Die beschriebene Sequenz ist eingebettet in einer
Lane mit der Bezeichnung Participant 1. Sowohl die Lane mit der Bezeich-
nung Participant 1 als auch eine zweite Lane mit der Bezeichnung Partici-
pant 2 sind eingebettet in einem Pool mit der Bezeichnung Group A.

Process Model m Process Model m‘

P
ar

ti
ci

p
an

t
1

Pa
rt

ic
ip

an
t

2
G

ro
u

p
 A

Task A EE

P
ar

ti
ci

p
an

t
1

Pa
rt

ic
ip

an
t

2
G

ro
u

p
 A

Task A

EE

ModifyPositionOfNodesInContainer

Task B

Task B

Abbildung A-30:
Beispielhafte Anwendung
der Operation Modify-
PositionOfNodesIn-
Container

Die Anwendung der Operation ändert die Position von Task B und des
Endereignisses EE. Sie werden in der Lane mit der Bezeichnung Partici-
pant 2 eingebettet. Der bestehende Kontrollfluss verläuft anschließend über
beiden dargestellten Lanes. Die Ausgabe m’ kann alternativ auch aus einer
Kombination der Operationen RemoveNode und AddNode erreicht werden.
Hierbei wird Task B zunächst entfernt und anschließend dem Prozess-
modell m” neu hinzugefügt.

	1 Einleitung
	1.1 Motivation
	1.2 Problemstellung
	1.3 Anforderungen
	1.4 Aufbau der Arbeit

	I Grundlagen und verwandte Arbeiten
	2 Grundlagen
	2.1 Modellgetriebene Softwareentwicklung
	2.1.1 Metamodellierung
	2.1.2 Meta-Object-Facility (MOF)
	2.1.3 Model-Driven Architecture (MDA)
	2.1.4 Domain-Specific Language Engineering

	2.2 Business Process Management
	2.2.1 Einführung in das Business Process Management
	2.2.2 Der BPM-Lebenszyklus
	2.2.3 Flexibilität in Prozessen

	2.3 Business Process Modeling
	2.3.1 Einführung in das Business Process Modeling
	2.3.2 Perspektiven in Geschäftsprozessmodellen
	2.3.3 UML Aktivitätsdiagramm
	2.3.4 BPMN2.0

	2.4 Adapt Cases
	2.4.1 Überblick
	2.4.2 Konkrete Syntax der Sprache ACML am Beispiel
	2.4.3 Abstrakte Syntax der Sprache ACML
	2.4.4 Integration in einen Entwicklungsprozess

	3 Verwandte Arbeiten
	3.1 Flexible und anpassbare Prozesse
	3.2 Flexible und anpassbare Prozesse im IIoT
	3.3 Selbst-adaptive Prozesse

	II Lösungskonzept
	4 Eine Sprache zur Gestaltung von anpassbaren Prozessen
	4.1 Übersicht
	4.2 Adapt Case Model 4 BPM
	4.2.1 Adapt Case 4 BPM
	4.2.2 Beobachtungsprozess
	4.2.3 Anpassungsprozess

	4.3 Adaptation View Model 4 BPM
	4.3.1 System- und Umgebungskomponenten
	4.3.2 Sensor- und Effektorschnittstellen
	4.3.3 Operationen
	4.3.4 Ereignisse

	4.4 Zusammenfassung

	5 Entwurfsmuster für flexible und anpassbare Prozesse
	5.1 Übersicht
	5.2 Flexibility-by Design
	5.2.1 Gestaltungsaspekte von Flexibility-by Design
	5.2.2 Gestaltung von Choice
	5.2.3 Gestaltung von Iteration
	5.2.4 Gestaltung von Cancellation
	5.2.5 Zusammenfassung

	5.3 Flexibility-by Change
	5.3.1 Gestaltungsaspekte von Flexibility-by Change
	5.3.2 Migrationsstrategien
	5.3.3 Spracherweiterung für Flexibility-by Change
	5.3.4 Operationen
	5.3.5 Zusammenfassung

	5.4 Flexibility-by Deviation
	5.4.1 Gestaltungsaspekte von Flexibility-by Deviation
	5.4.2 Operationen
	5.4.3 Zusammenfassung

	5.5 Flexibility-by Underspecification
	5.5.1 Gestaltungsaspekte von Flexibility-by Underspecification
	5.5.2 Spracherweiterung für Flexibility-by Underspecification
	5.5.3 Operationen
	5.5.4 Zusammenfassung

	5.6 Zusammenfassung

	6 Adaptivity Engineering für flexible und anpassbare Prozesse
	6.1 Übersicht über einen erweiterten BPM-Lebenszyklus
	6.2 Adapt Cases 4 BPM
	6.2.1 Anforderungsanalyse
	6.2.2 High-Level-Gestaltung
	6.2.3 Low-Level-Gestaltung
	6.2.4 Ergänzung

	6.3 Zusammenfassung

	III Evaluation, Zusammenfassung und Ausblick
	7 Evaluation
	7.1 Szenario für flexible und anpassbare Prozesse
	7.1.1 Die Arbeitsumgebung Human-Robot-Team
	7.1.2 Fall 1: Workspace Temperature Management
	7.1.3 Fall 2: Human Performer Workload Management
	7.1.4 Fall 3: Separation of Business and Adaptivity Logic
	7.1.5 Zusammenfassung

	7.2 Kriterien
	7.2.1 Kriterien der Anpassbarkeit
	7.2.2 Kriterien für die Anforderungen an Adapt Cases 4 BPM

	7.3 Bewertungseinheit
	7.4 Bewertung
	7.4.1 Bewertung von Kriterien der Anpassbarkeit
	7.4.2 Bewertung von Kriterien an Adapt Cases 4 BPM

	7.5 Gültigkeit

	8 Zusammenfassung und Ausblick
	8.1 Zusammenfassung
	8.2 Ausblick

	Tabellenverzeichnis
	Abbildungsverzeichnis
	Literaturverzeichnis
	Anhang
	A Operationen des AVM4BPM
	A.1 Operationen zur Anpassung von Knotenelementen
	A.1.1 AddNode
	A.1.2 RemoveNode
	A.1.3 ModifyPropertyOfNode
	A.1.4 ModifyPositionOfNode

	A.2 Operationen zur Anpassung von Kantenelementen
	A.2.1 AddEdge
	A.2.2 RemoveEdge
	A.2.3 ModifyPropertyOfEdge
	A.2.4 ModifyPositionOfEdge

	A.3 Operationen zur Anpassung von Containerelementen
	A.3.1 AddContainer
	A.3.2 RemoveContainer
	A.3.3 ModifyPropertyOfContainer
	A.3.4 ModifyPositionOfContainer
	A.3.5 ModifyPositionOfNodesInContainer

