'L(‘ UNIVERSITAT PADERBORN

Die Universitiit der Informationsgesellschaft

Adapt Cases 4 BPM
Adaptivity Engineering fur

flexible und anpassbare Prozesse

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)
an der Fakultat fir Elektrotechnik, Informatik und Mathematik

der Universitat Paderborn

vorgelegt von

Alexander Teetz

Paderborn, Februar 2019

Zusammenfassung

Diese Dissertation ist im Kontext des NRW Fortschrittskollegs ,Gestaltung von flexi-
blen Arbeitswelten” entstanden, das sich mit der digitalen Transformation von Fer-
tigungssystemen auseinandersetzt. Derartige Systeme und deren Prozesse miissen
zukiinftig durch eine erweiterte Flexibilitdt gestaltet werden, da immer mehr Eigen-
schaften von unterschiedlichen, miteinander vernetzten Ressourcen berticksichtigt
werden sollen.

Aus der Sicht der Doméne des Business Process Management (BPM) orchestrieren
Prozesse wesentliche Teile dieser Systeme, die neben Verhalten der Anwendungslo-
gik insbesondere auch Verhalten der Anpassungslogik enthalten konnen. Erst durch
die Anpassungslogik wird ein hoher Grad an angestrebter Flexibilitdt in Prozessen
ermoglicht. In bisherigen Methoden des BPM ist die getrennte Gestaltung beider
Typen von Verhalten nicht vorgesehen, wodurch eine erhohte Komplexitit in der
Handhabung und Wartung der Prozesse entsteht.

Diese Arbeit stellt einen neuartigen Ansatz fiir die Doméane BPM vor, der auf Metho-
den und Techniken des Adaptivity Engineering basiert, welches zur getrennten Gestal-
tung der beiden Typen von Verhalten eingesetzt werden kann. Hierzu wurden die
Sprache ACML4BPM, zugehorige Entwurfsmuster sowie eine Methode zur Gestal-
tung erarbeitet.

Die Sprache ACML4BPM stellt in der Doméane BPM eine neuartige Sprache zur Ge-
staltung von flexiblen und anpassbaren Prozessen dar. Sie unterstiitzt die getrennte
Gestaltung von Aspekten der Anwendungs- und Anpassungslogik. Ferner wurden
in ihr doménenspezifische Konzepte integriert, wie z.B. Operationen zur Anpassung
oder einen Ansatz zur Reaktion auf Ereignisse. Die Sprache nutzt Konzepte des De-
facto-Standards BPMN2.0 und unterstiitzt hierdurch die Gestaltung durch Nutzer
und Doménenexperten.

Damit die Gestaltung von Flexibilitat weiter unterstiitzt werden kann, wurde sich
mit Typen von Flexibilitit auseinandergesetzt, fiir die insgesamt vier grundlegende
Entwurfsmuster beschrieben worden sind. Hierdurch wurden diverse Erweiterun-
gen der Sprache ACML4BPM beschrieben und ihre Verwendung gezeigt.

Abschliefend wurde eine methodische Integration von zuvor aufgefiihrten Lo-
sungsteilen in einen BPM-Lebenszyklus beschrieben.

Abstract

This PhD thesis was written in the context of the NRW Fortschrittskolleg ,,Gestaltung
von flexiblen Arbeitswelten”, that deals with the digital transformation of manufactu-
ring systems. Such systems and their processes will have to be shaped by enhanced
flexibility in the future, as more and more characteristics of different interconnected
resources have to be taken into account.

From the point of view of the domain of Business Process Management (BPM), proces-
ses orchestrate significant parts of these systems, which, in addition to the behaviour
of the application logic, can include the behaviour of the adaptation logic. Only by
the adaptation logic a high degree of desired flexibility in processes can be achieved.
Previous methods of the BPM do not provide the separate design of both types of
behaviour, resulting in an increased complexity in the handling and maintenance of
the processes.

This work presents a novel approach to the BPM domain, based on methods and
techniques of Adaptivity Engineering, which can be used to separate the design of
these two types of behaviour. For this purpose, the language ACML4BPM, associa-
ted design patterns and a method for designing processes were developed.

The language ACML4BPM is a novel language in the BPM domain for the design of
flexible and adaptable processes. It supports the separate design of aspects of appli-
cation and adaptation logic. Furthermore, domain-specific concepts have been inte-
grated into it, such as operations for adaptations or an approach to respond to events.
The language uses concepts of the de-facto standard BPMN2.0 and thus supports the
design by users and domain experts.

In order to support the design of flexibility, different types of flexibility have been
discussed for which a total of four basic design patterns have been described. They
contain various extensions of the language ACML4BPM and show their use.

Finally, a methodical integration of the previously listed solution parts into a BPM
lifecycle is described.

Danksagung

An dieser Stelle mochte ich mich bei den Menschen bedanken, die mich in den letz-
ten Jahren bei der Bearbeitung dieser Arbeit auf unterschiedlichen Ebenen unter-
stiitzt haben.

An erster Stelle steht dabei mein Doktorvater Herr Prof. Dr. Gregor Engels. Er hat
mir tiber mehrere Jahre ermoglicht, eine breit aufgestellte Forschung zu betreiben
und stellte dabei stets hohe Erwartungen, die mafigeblich die Qualitit dieser Arbeit
bestimmt haben. An zweiter Stelle mochte ich mich bei der Priffungskommission
in Form der Personen Prof. Dr. Britta Wrede, Prof. Dr. Eric Bodden, Jun.-Prof. Dr.
Anthony Anjorin und Dr. Thim Strothmann fiir die aufgewendete Zeit sowie den
inhaltlichen Austausch bedanken.

Wihrend meiner Forschung war ich in unterschiedlichen Projekten eingesetzt. Dabei
bin ich neben dem fachlichen Austausch auch fiir die besondere Gelegenheit, tiber
den eigenen Tellerrand schauen und lernen zu kénnen, dankbar. Aus dem Kontext
des NRW Fortschrittskollegs ist in diesem Bezug insbesondere Sonja Otting zu nen-
nen, mit der ich die Bearbeitung verschiedener interdisziplindren Themen durch-
fiihren durfte. Dartiber hinaus werde ich die gute und spannende gemeinsame Zeit
mit Thomas John und Christoph Weskamp in dem Projekt SMART EM nie vergessen.

Neben Personen aus den unterschiedlichen Projektkontexten sind insbesondere mei-
ne beiden Biironachbarn Dennis Wolters und Stephan Heindorf hervorzuheben, de-
nen ich fiir viele hilfreichen Gesprache und neue Ideen zwischendurch dankbar bin.
Zudem bedanke ich mich aber auch bei Thim Strothmann und Florian Rittmeier fiir
die effiziente Zusammenarbeit und ihr Feedback in Bezug zu Veroffentlichungen
bzw. wesentlichen Teilen dieser Arbeit. Als letzte fachbezogene Person mochte ich
Mirko Rose hervorheben, mit dem ich stets den Umgang auf Augenhche hinsichtlich
verschiedener Themen rund um die Organisation der Dissertation pflegen konnte.

Meine tiefste Dankbarkeit bezieht sich jedoch auf meine Lebenspartnerin Elisabeth
Herick. Ihre Unterstiitzung und ihr Glaube an mich hat mich erst dazu befihigt,
diese Arbeit zu beginnen und am Ende auch abzuschliefien.

— Danke!

Inhaltsverzeichnis

1 Einleitung

1.1 Motivation
1.2 Problemstellung
1.3 Anforderungen
1.4 AufbauderArbeit

I Grundlagen und verwandte Arbeiten

2 Grundlagen

2.1 Modellgetriebene Softwareentwicklung
2.1.1 Metamodellierung. L.
2.1.2 Meta-Object-Facility (MOF)
2.1.3 Model-Driven Architecture (MDA)
2.1.4 Domain-Specific Language Engineering

2.2 Business Process Management

2.2.1 Einfihrung in das Business Process Management

2.2.2 DerBPM-Lebenszyklus
2.2.3 Flexibilitatin Prozessen
2.3 Business Process Modeling
2.3.1 Einfihrung in das Business Process Modeling
2.3.2 Perspektiven in Geschéftsprozessmodellen
2.3.3 UML Aktivitdtsdiagramm
234 BPMN2.0
24 AdaptCases
241 Uberblick,
2.4.2 Konkrete Syntax der Sprache ACML am Beispiel
2.4.3 Abstrakte Syntax der Sprache ACML
2.4.4 Integration in einen Entwicklungsprozess

3 Verwandte Arbeiten

3.1 Flexible und anpassbare Prozesse
3.2 Flexible und anpassbare Prozesse imlloT
3.3 Selbst-adaptive Prozesse

Seite

4

Lésungskonzept

Eine Sprache zur Gestaltung von anpassbaren Prozessen

41 Ubersicht

4.2 AdaptCase Model4BPM
421 AdaptCase4BPM,
4.2.2 Beobachtungsprozess
4.2.3 ANpassSuUNgSProzessS v i it

4.3 Adaptation View Model 4BPM oL
4.3.1 System- und Umgebungskomponenten
4.3.2 Sensor- und Effektorschnittstellen
4.3.3 Operationen
434 Ereignisse

4.4 Zusammenfassung

Entwurfsmuster fiir flexible und anpassbare Prozesse
51 Ubersichto
5.2 Flexibility-by Design
5.2.1 Gestaltungsaspekte von Flexibility-by Design
5.2.2 GestaltungvonChoice,
5.2.3 Gestaltungvon lteration
5.2.4 Gestaltung von Cancellation.
5.25 Zusammenfassung
5.8 Flexibility-by Change
5.3.1 Gestaltungsaspekte von Flexibility-by Change
5.8.2 Migrationsstrategien L oL
5.3.3 Spracherweiterung fur Flexibility-oy Change
5.3.4 Operationen
5.83.5 Zusammenfassung o
5.4 Flexibility-by Deviation
5.4.1 Gestaltungsaspekte von Flexibility-by Deviation
5.42 Operationen
5.4.3 Zusammenfassung e
5.5 Flexibility-by Underspecification
5.5.1 Gestaltungsaspekte von Flexibility-by Underspecification
5.5.2 Spracherweiterung fur Flexibility-by Underspecification
55.3 Operationen
5.5.4 Zusammenfassung
5.6 Zusammenfassung

6 Adaptivity Engineering fiir flexible und anpassbare Prozesse
6.1 Ubersicht liber einen erweiterten BPM-Lebenszyklus
6.2 AdaptCases4BPM
6.2.1 Anforderungsanalyse
6.2.2 High-Level-Gestaltung
6.2.3 Low-Level-Gestaltung
6.24 Ergdnzung
6.3 Zusammenfassung

lll Evaluation, Zusammenfassung und Ausblick

7 Evaluation
7.1 Szenario fir flexible und anpassbare Prozesse
7.1.1 Die Arbeitsumgebung Human-Robot-Team
7.1.2 Fall 1: Workspace Temperature Management
7.1.3 Fall 2: Human Performer Workload Management
7.1.4 Fall 3: Separation of Business and Adaptivity Logic
715 Zusammenfassung Lo
7.2 Kriterien e
7.2.1 Kriterien der Anpassbarkeit o oo oL
7.2.2 Kiriterien fir die Anforderungen an Adapt Cases 4 BPM
7.3 Bewertungseinheit
7.4 Bewertung
7.4.1 Bewertung von Kriterien der Anpassbarkeit
7.4.2 Bewertung von Kriterien an Adapt Cases4BPM
7.5 Glltigkeit

8 Zusammenfassung und Ausblick
8.1 Zusammenfassung
8.2 Ausblick.

Tabellenverzeichnis

Abbildungsverzeichnis

Literaturverzeichnis

197
198
200
201

203
204
206
207

209

211
212
217
220
222
224
227
228
229
232
233
235
235
250
260

263
263
267

271

278

292

Anhang 293

A Operationen des AVM4BPM 293
A.1 Operationen zur Anpassung von Knotenelementen. 297
A11 AddNode 297
A12 RemoveNode 299
A.1.3 ModifyPropertyOfNode, 301
A.1.4 ModifyPositionOfNode 302

A.2 Operationen zur Anpassung von Kantenelementen. 305
A21 AddEdge 305
A22 RemoveEdge L 307
A.2.3 ModifyPropertyOfEdge 308
A.2.4 ModifyPositionOfEdge 309

A.3 Operationen zur Anpassung von Containerelementen 313
A3.1 AddContainer 314
A3.2 RemoveContainer, 315
A.3.3 ModifyPropertyOfContainer 317
A.3.4 ModifyPositionOfContainer 318

A.3.5 ModifyPositionOfNodesInContainer 319

Kapitel

Einleitung

In diesem Kapitel wird zundchst in Abschnitt 1.1 der Kontext der Ar-
beit beschrieben. Anschlieflend wird in Abschnitt 1.2 auf die in dieser Ar-
beit angenommene Problemstellung sowie auf die zugehorigen abgeleite-
ten Forschungsfragen eingegangen. In Abschnitt 1.3 werden Anforderun-
gen fiir mogliche Losungsansitze beschrieben. Das Kapitel schliefit in Ab-
schnitt 1.4 mit einer Ubersicht iiber den strukturellen Aufbau der vorlie-
genden Arbeit.

1.1 Motivation

Diese Dissertation ist im Kontext des NRW Fortschrittskollegs ,Gestaltung
von flexiblen Arbeitswelten” entstanden. Dieses Fortschrittskolleg basiert auf
der Idee, die wissenschaftliche Weiterqualifizierung in Form einer Promo-
tion durch ein inter- und transdisziplindres Umfeld zu unterstiitzen. Als
inhaltlicher Schwerpunkt wurden unterschiedliche Aspekte aus einer di-
gitalisierten Arbeitswelt gesetzt. Fiir diese Arbeit war dieser Aspekt durch
neuartige Gestaltungstechniken fiir flexible Prozesse gegeben. Ein Typ ei-
ner digitalisierten Arbeitswelt mit flexiblen Prozessen ist durch den Be-
griff der Industrie 4.0 gepragt worden und wird nun nachfolgend als wei-
tere Motivation verwendet.

Als eine Schliisselrolle im Kontext von Industrie 4.0 wird ein Paradigmen-
wechsel in der Gestaltung von neuartigen Produktionsumgebungen gese-
hen. Derartige Produktionsumgebungen — auch Smart Factories genannt —
erlauben erstmals, das Konzept der Mass Customization unter konomisch
tragfahigen Bedingungen anzuwenden. Mass Customization beschreibt da-
bei die Moglichkeit zur Produktion von individualisierbaren Produkten
(Losgrofie 1) [Spa+13]. Fiir die Fertigung dieser Produkte ist eine erhoh-
te Flexibilitat der beteiligten Produktionssysteme notwendig, sodass stets

Frage 1: Was sind flexible
Arbeitsprozesse?

Seite 2 Kapitel 1

schnell und bedarfsgerecht auf gednderte Anforderungen reagiert werden

kann.

Dabei stehen Prozessunterstiitzungssysteme im Vordergrund, durch die
die relevanten Fertigungsprozesse IT-gestiitzt ausgefiihrt werden. Als
Voraussetzungen fiir die Funktion dieser Systeme sind die vertikale als
auch horizontale Vernetzung aller in der Wertschopfungskette beteiligten
Prozesse, Entititen und Datenobjekte notwendig. Durch den Austausch
von relevanten Informationen in Echtzeit konnen Anpassungen von Pro-
duktionsumgebungen durchgefiihrt werden, sodass Fertigungsprozesse
zu optimalen Konditionen ablaufen konnen.

Bei derartigen Produktionsumgebungen handelt es sich aber nicht um aus-
schlief3lich technische Systeme, sondern um sozio-technische Systeme. Der
Mensch stellt somit einen nicht zu vernachlédssigenden Faktor dar [Wiel3].
Somit sind bei der Gestaltung solcher Systeme neben technischen Aspek-
ten der Produktionsumgebung auch intra- und interorganisationale ar-
beitswissenschaftliche Umstdande zu beriicksichtigen [Lud+16]. Beispiele
hierfiir sind digitale Beschreibungen von spezifischen Aspekten der Ar-
beitnehmerinnen und Arbeitnehmer oder fiir sie relevante Aspekte der
Produktionsumgebung. Eine Berticksichtigung dieser Aspekte in ihrer Ge-
staltung kann bei der Produktion von individualisierbaren Produkten da-
zu beitragen, Fertigungsprozesse hinsichtlich ihrer Flexibilitat und Effi-
zienz zu verbessern. Dartiber hinaus bildet die Berticksichtigung dieser
Aspekte zum Zeitpunkt der Gestaltung die Basis fiir Anpassungen an der
Produktionsumgebung und an ihren Fertigungsprozessen zum Zeitpunkt
der Ausfiihrung.

Fiir den Betrieb neuartiger Produktionsumgebungen ist somit nicht mehr
nur ein einzelner standardisierter Prozess, sondern vielmehr ein Netzwerk
aus flexiblen Prozessen notwendig. Insbesondere im Rahmen moglicher
Anpassungen der Produktionsumgebungen und ihrer Fertigungsprozes-
se miissen eine Vielzahl an unterschiedlichen zu behandelnden Aspek-
ten aus verschiedenen sowohl technischen als auch soziologischen Berei-
chen berticksichtigt werden. Setzt man als Beispiel ablaufende Prozesse
mit menschlicher Beteiligung in den Fokus der Betrachtung, so ergeben
sich fiir die Gestaltung der benotigten Prozessunterstiitzungssysteme ver-
schiedene allgemeine Fragestellungen, auf die nachfolgend eingegangen
wird.

Industrie 4.0-Anwendungen sind durch eine Vielzahl variierender Fakto-
ren gepragt. So sind die geschiftlichen Abldufe in einer derartigen Anwen-
dung sowohl von intra- als auch interorganisationalen Gegebenheiten ab-

Einleitung Seite 3

hingig. Ein in diesem Bezug viel genanntes Beispiel ist die erhohte Pro-
duktvariabilitat, welche auch besser bekannt ist unter dem Stichwort Los-
grofie 1 [Spa+13; Rus13; Las+14; Kaul5]. Eine gesteigerte Produktvariabili-
tdt hat mafigeblich Einfluss auf die zur Produktion verwendeten Prozesse.
So sind je nach Produktvariante bestimmte Teilprozesse an der Produktion
beteiligt oder eben nicht. Der Gesamtprozess zur Fertigung eines solchen
Produktes muss daher flexibel hinsichtlich der durch den Kunden bestell-
ten Konfiguration eines Produktes sein.

Sind an der Fertigung der Produkte auch Mitarbeiterinnen und Mitarbeiter
beteiligt, z.B. in Form von Montageaufgaben, so spricht man in diesem Teil
des Fertigungsablaufs auch von Arbeitsprozessen. Somit zeichnen sich Ar-
beitsprozesse hinsichtlich ihrer Ausfiihrungsform besonders dadurch aus,
dass der Mensch und nicht etwa eine Maschine oder ein IT-Service aus-
schlieflich als leistungserbringender Teilnehmer beteiligt ist. Insbesondere
unter der Annahme des Vorhandenseins von nicht automatisierbaren Auf-
gaben bleiben Arbeitsprozesse fiir die Leistungserbringung in Unterneh-
men ein wesentlicher Faktor. Gleichwohl es in Arbeitsprozessen Mischfor-
men der Leistungserbringung geben kann, wie z.B. in Form einer Mensch-
Maschine-Kollaboration, ist der Mensch hier stets beteiligt.

Beriicksichtigt man die steigende Produktvariabilitdt in Industrie 4.0-
Anwendungen, so hat diese auch Einfluss auf die beteiligten Arbeitspro-
zesse. Wie bereits zuvor fiir Fertigungsprozesse beschrieben, ist auch fiir
Arbeitsprozesse eine erhohte Flexibilitat notwendig, da Aufgaben fiir un-
terschiedliche Produktvarianten wechseln kénnen. Mitarbeiterinnen und
Mitarbeiter sehen sich daher zukiinftig mit flexiblen Arbeitsprozessen
konfrontiert, in denen ihre Aufgaben hdufiger als zuvor wechseln kon-
nen, da je nach Konfiguration des zu fertigenden Produktes einzelne Mon-
tageschritte gedndert oder hinzugefiigt werden oder gar ganz wegfallen
kénnen.

Hinsichtlich einer ethischen Perspektive auf Arbeitsprozesse, in der z.B.
die Humanisierung der Arbeitswelt oder der demographische Wandel im
Vordergrund stehen [Deu+15; KJP15; WRN14], kann die Betrachtung von
individuellen Eigenschaften der Arbeitnehmenden fiir die Gestaltung von
Arbeitsprozessen relevant sein. So ist es denkbar, dass gewisse Aufgaben
z.B. aufgrund ihrer korperlichen Anforderungen nicht fiir jede Mitarbeite-
rin oder jeden Mitarbeiter zu bewerkstelligen sind. Werden individuelle Ei-
genschaften von Arbeitnehmern in der Gestaltung der Arbeitsprozesse be-
riicksichtigt, kann von menschenzentrierten Arbeitsprozessen gesprochen

werden.

Frage 2: Was sind
menschenzentrierte
Arbeitsprozesse?

Frage 3: Was sind
menschenzentrierte,
anpassbare
Arbeitsprozesse?

Frage 4: Was sind mogliche
Treiber fiir flexible und
menschenzentrierte,
anpassbare
Arbeitsprozesse?

Seite 4 Kapitel 1

In Industrie 4.0-Anwendungen sind die beteiligten Prozesse, Entitdten und
Datenobjekte sowohl vertikal als auch horizontal in Wertschopfungsnetz-
werken miteinander vernetzt. Hierdurch wird das Ziel der schnellen und
bedarfsgerechten Anpassung (analog: Adaption) an sich dndernde Anfor-
derungen verfolgt. Im Rahmen dieser Arbeit wird nachfolgend angenom-
men, dass sich die &ndernden Anforderungen stets durch diskrete Ereig-
nisse einstellen, die sowohl planbar als auch unvorhersehbar sein kénnen.
Ein diskretes Ereignis stellt dabei einen festen Zeitpunkt dar, zu dem eine
Anderung der genannten Anforderungen eintritt. Fiir den Fall des Auf-
tretens eines Ereignisses konnen Regelsatze beschrieben werden, die eine
Analyse von aktuellen Umstidnden und eine Auswahl von zulédssigen An-
passungen innerhalb einer Industrie 4.0-Anwendung vornehmen. Das Ziel
einer solchen Anpassung von beteiligten Prozessen, Entitdten und Daten-
objekten ist die Einhaltung von Anforderungen, die an den Betrieb der In-
dustrie 4.0-Anwendung gesetzt worden sind. Wendet man derartige Re-
gelsdtze zur Ausfithrungszeit auf die beteiligten Prozesse an, handelt es
sich um anpassbare Prozesse oder in dem hier angefiihrten Beispiel insbe-

sondere um menschenzentrierte, anpassbare Arbeitsprozesse.

Als letztes stellt sich die Frage, was die treibenden Krifte fiir die Ge-
staltung von menschenzentrierten, anpassbaren Arbeitsprozessen in In-
dustrie 4.0-Anwendungen sind. Sie kénnen je nach Organisation vielfal-
tig sein und sind mafigeblich durch deren rechtliche als auch betriebliche
Richtlinien motiviert. So ist es vorstellbar, dass zukiinftig die Anpassung
von Arbeitsprozessen auf Basis verdnderter Umstdnde der Mitarbeiterin-
nen und Mitarbeiter zur Ausfithrungszeit arbeitsschutzrechtlich gefordert
wird. Die Einfithrung von flexiblen und anpassbaren Prozessen kénnte da-
mit z.B. zur Steigerung der Arbeitssicherheit beitragen.

Aber auch aus der Perspektive des demographischen Wandels konnen fle-
xible und anpassbare Prozesse einen Mehrwert bieten, indem sie zu ei-
ner Beschiftigung bis in ein hohes Lebensalter beitragen, da zum einen in-
dividuelle Eigenschaften der Mitarbeitenden berticksichtigt werden kon-
nen und zum anderen wertvolles Wissen langer im Unternehmen beste-
hen bleibt [Jes+14].

Neben rechtlichen oder ethischen Treibern sind aber auch wettbewerbli-
che Treiber identifizierbar. So kann die Fahigkeit zur Anpassung von Ar-
beitsprozessen sowie ihrer Umgebung dazu beitragen, die Mitarbeitermo-
tivation und die empfundene Lebensqualitidt am Arbeitsplatz zu steigern.
Mitarbeiterinnen und Mitarbeiter konnten somit in Zukunft motiviert sein,
sich fiir Arbeitgeber zu entscheiden, die ihnen einen besonderen Grad an

Einleitung Seite 5

Menschenzentrierung durch Flexibilitiat und Anpassbarkeit hinsichtlich ih-
rer Arbeitsprozesse und Umgebungen anbieten konnen.

Die im Rahmen der zuvor vorgestellten Fragestellungen genannten Typen
von Prozessen stellen eine mogliche Motivation fiir die Gestaltung von fle-
xiblen und anpassbaren Prozessen dar. Dabei existieren zahlreiche weitere
industrielle Anwendungen, in denen die beteiligten Prozesse nicht an den
Menschen, sondern an spezifische Eigenschaften weiterer Entitdten wie
z.B. Maschinen, IT-Services oder den Prozessen selbst zentriert sind. Die
sich hieraus ergebene Problemstellung wird im nachfolgenden Abschnitt
beschrieben.

1.2 Problemstellung

Fiir flexible und anpassbare Prozesse sind Methoden und Techniken not-
wendig, mit denen sie sich in einem methodischen Rahmen addquat gestal-
ten lassen. Dabei konnen derartige Prozesse aus der Perspektive des Soft-
ware Engineerings auch als eine spezielle Art eines selbst-adaptiven Sys-
tems verstanden werden, da hier ausgehend von Ereignissen innerhalb des
Systems (hier: Prozess) oder seinem Kontext (hier: beteiligte Entititen und
Ressourcen) Analysen und Anpassungen ausgefiihrt werden. Dabei steht
stets der zuverldssige und eigenstdndige Betrieb der Prozesse im Vorder-
grund. Eine zugehorige Ubersicht iiber Prozesse als selbst-adaptives Sys-
tem ist in Abbildung 1-1 gegeben.

\,\,\/ \/ \ Industrie 4.0-Anwendung

Ich bin P durch andere Maschine Anpassungslogik

defekt! bearbeiten lassen E
Anpassung)
L

E\‘

Das Werkzeug ist fiir Rechtshander | | Mir geht es nicht gut, da Flexibler und anpassbarer
—ich bin aber Linkshander! meine Arbeitsbelastung (Arbeits-)Prozess
k zu hoch ist! T T T

Anfordern von > ! ! L
neuem Werkzeug I I I
- npassung Maschine Mensch Produkt
Anderung der |nd|V|dueIIer Ruhe-
Aufgabenzuordnung und Pausenzeiten Anwendungslogik

Im rechten Bereich ist das generelle Funktionsprinzip der Industrie 4.0-
Anwendung dargestellt, welches das Paradigma einer Kontrollschleife

Abbildung 1-1:
Schematische Sicht
auf eine Industrie 4.0-
Anwendung

Seite 6 Kapitel 1

umsetzt [Bru+09]. Dabei kann eine Reihe von unterschiedlichen Entitidten
an dem Prozess beteiligt sein. Beispiele fiir derartige Entitdten sind hier
durch Maschinen, Menschen und Produkte gegeben. Ausgehend von dis-
kreten Ereignissen konnen Analysen angestoffen werden, die je nach Er-
fordernis eine Anpassung an den Prozessen sowie an beteiligten Entitdten
auswdahlt und nachfolgend ausfiihrt.

Im linken Bereich der Abbildung ist ein Beispiel fiir das zuvor beschrie-
bene Funktionsprinzip gegeben. Der flexible und anpassbare Prozess wird
hier als Proc dargestellt. Er erzeugt die Entitdt P, welche das zu fertigen-
de Produkt représentiert. Entlang des Prozesses Proc wird die Maschine X
sowie ein menschlicher Akteur M eingebunden. Sowohl X als auch M sind
in der Lage, bestimmte Ereignisse zu erzeugen, auf die durch eine vordefi-
nierte Mafsnahme reagiert werden soll.

So ist hier dargestellt, dass die Maschine X melden kénnte, dass sie einen
Defekt aufweist. In diesem Fall wird eine Anpassung an den Prozess
durchgefiihrt, die im weiteren Verlauf das Produkt P durch eine andere
Maschine bearbeiten ldsst. Wie in der Motivation bereits eingefiihrt wur-
de, kann aber auch auf Ereignisse ausgehend von menschlichen Akteuren
reagiert werden, um einen bestimmten Grad an Menschenzentrierung zu
erreichen. So wird in dem hier gezeigten Beispiel die Moglichkeit zur Be-
riicksichtigung der Arbeitsbelastung bedacht. Tritt eine durch einen Men-
schen M angezeigte Uberbelastung ein, sollen Mafinahmen zur Anpas-
sung seiner individuellen Ruhe- und Pausenzeiten durchgefiihrt werden.
Ergénzend kann der Mensch M aber auch melden, dass er fiir die Ver-
wendung eines bestimmten Werkzeugs ungeeignet ist, da eine persénliche
Eigenschaft die Verwendung des Werkzeugs erschwert oder unmoglich
macht. Fiir diesen Fall sind zwei mogliche Mafinahmen angedacht, durch
die entweder ein alternatives Werkzeug angefordert wird oder ein Wechsel
der zugeordneten Aufgabe erfolgt.

Fiir die Gestaltung derartiger selbst-adaptiver Systeme stellt das Adaptivity
Engineering (AE) nach [Luc+11; LE13; Lucl3] bereits einen etablierten Rah-
men dar. Luckey stellt in seiner Arbeit neben dem Gesamtansatz Adapt Ca-
ses einen modellbasierten Entwurfsprozess sowie die zugehorige Sprache
Adapt Case Modeling Language (ACML) zur Gestaltung von selbst-adaptiven
Systemen vor.

Das wesentliche Grundprinzip des Adaptivity Engineering ist dabei die
Trennung der Anwendungs- von der Anpassungslogik. Man spricht in
diesem Zusammenhang im Software Engineering auch von Separation-of-
Concerns (S0C) — also die Dekomposition von unterschiedlich zu spezi-

Einleitung Seite 7

fizierenden Aspekten eines Softwaresystems. Hierdurch ist es moglich,
verschiedene Aspekte des Softwaresystems unter einer spezifischen Sicht
und unabhédngig voneinander betrachten zu kénnen [Dij76; Par02]. In
Abbildung 1-1 ist eine exemplarische Trennung der beiden Logiken be-
reits dargestellt worden. So umfasst die Anpassungslogik notwendiges
Verhalten fiir die Analyse als auch fiir auszuwdhlende Mafinahmen in
Form einer Anpassung an Entititen der Anwendungslogik. Der Ansatz
Adapt Cases setzt dieses Grundprinzip durch die getrennte Gestaltung von
Anpassungs- und Anwendungslogik um. Luckey argumentiert in seiner
Arbeit, dass durch das Adaptivity Engineering die getrennte Modellierung
von unterschiedlichen Aspekten, wie der Anpassungs- und Anwendungs-
logik, die Qualitdt der jeweils erarbeiteten Modelle erhoht werden kann.

Die Sprache ACML stellt laut Luckey [Lucl3] in diesem Bezug eine so-
genannte General Purpose Language (GPL) fiir die Gestaltung von selbst-
adaptiven Systemen dar. GPLs zeichnen sich dabei durch eine Vielzahl
an unterschiedlichen Sprachelementen aus, die eine breite Verwendung in
der Gestaltung von Systemen aus unterschiedlichen Anwendungsdoma-
nen ermoglichen. Ein alternatives Beispiel fiir eine GPL stellt die Unified
Modeling Language (UML) [OMG10] dar, die fiir den Bereich der objektori-
entierten Gestaltung von Softwaresystemen eingesetzt werden kann.

Aufgrund der Vielzahl an unterschiedlichen Sprachelementen konnen
GPLs als sehr anspruchsvoll in ihrer Verwendung betrachtet werden
[Voe+13]. Im Kontrast zu GPLs existieren daher auch sogenannte Domain-
Specific Languages (DSLs). DSLs fokussieren dabei die Verwendung in ei-
ner ausgewdhlten Anwendungsdomaéne. Die Sprachelemente in DSLs sind
somit spezifischer auf einen in der Anwendungsdoméne gesetzten Fokus
ausgerichtet.

Die Gestaltung von Flexibilitdt und Anpassbarkeit in Prozessen mit einge-
schlossener Trennung der Anpassungs- und Anwendungslogik kann einen
solchen Fokus darstellen. Dabei existiert jedoch bisher keine Sprache, die
doménenspezifische Konzepte von flexiblen und anpassbaren Prozessen
mit Konzepten des Adaptivity Engineering so in Verbindung setzt, dass die-
ser Fokus eingenommen werden kann. Daher stellt sich in diesem Bezug
die nachfolgende Forschungsfrage:

Wie lassen sich auf Basis von Konzepten des Adaptivity Engineering
flexible und anpassbare Prozesse dominenspezifisch gestalten?

Neben der reinen doménenspezifischen Gestaltung von Flexibilitiat und
Anpassbarkeit kann der methodische Rahmen zur addquaten Gestaltung

Forschungsfrage 1

Forschungsfrage 2

Seite 8 Kapitel 1

weiter unterstiitzt werden. So ist es gingige Praxis, dass im Software En-
gineering sogenannte Entwurfsmuster (engl. Design Patterns) eingesetzt
werden. Entwurfsmuster stellen dabei eine Erfolgsmethode (engl. Best-
Practice) dar, durch die sich stetig wiederholende Probleme bzw. Aspek-
te eines Systems mit vorgefertigten Losungsbausteinen addquat beschrei-
ben lassen.

Im Rahmen der Gestaltung von Softwaresystemen beschreiben Entwurfs-
muster wesentliche Prinzipien, die z.B. einen bestimmten Typ von Verhal-
ten oder der Struktur eines abzubildenden Aspekts betreffen konnen. Ent-
wurfsmuster konnen dabei auch die Rolle von Leitfdden bzw. Handlungs-
empfehlungen einnehmen. Da grundsatzliche Probleme in der Gestaltung
bereits durch ein passendes Entwurfsmuster geltst sein konnen, ist z.B.
durch Wiederverwendung einer Losungsstruktur eine Unterstiitzung von
Entwicklern bzw. Experten einer Doméne bei ihrer Arbeit moglich.

Neben dieser eher konstruktiven Unterstiitzung ist auf Basis einer Samm-
lung von unterschiedlichen Entwurfsmustern auch eine Typisierung von
zu gestaltenden Aspekten moglich. Hierdurch kann bereits existierendes
Wissen wiederverwendet und somit Aufwand in der Gestaltung einge-
spart werden.

Fiir die Gestaltung von flexiblen und anpassbaren Prozessen existieren ver-
schiedene in der Literatur [Sch+08; RW12] bereits vorgestellte Entwurfs-
muster. Sie konnen jeweils als ein Typ von Flexibilitat verstanden werden,
der in Prozessen vorkommen kann. Unterschiedliche Typen von Flexibi-
litat konnen dabei oft durch regelbasierte Verfahren realisiert werden. Je-
doch sind vornehmlich integrierte Verfahren bekannt, in denen z.B. eine
Trennung der Anwendungs- und Anpassungslogik nicht explizit vorge-
sehen ist. Hierdurch kann es zu komplexen, fiir den Menschen untiber-
sichtlichen und schwer wartbaren Prozessmodellen kommen, die im Kon-
text von Industrie 4.0-Anwendungen und ihren flexiblen und anpassbaren
Prozessen problematisch sein konnen. Ferner ist derzeit unbekannt, wie
die Gestaltung dieser Flexibilitatsaspekte durch das Adaptivity Engineering
unterstiitzt werden kann. Fiir diese Arbeit ergibt sich aus diesen Umstan-
den daher die nachfolgende Forschungsfrage:

Was sind Flexibilititsaspekte von Prozessen und wie konnen sie durch
Konzepte eines dominenspezifischen Adaptivity Engineering modell-
basiert in Form von Entwurfsmustern beschrieben werden?

Das Adaptivity Engineering ist fiir die Doméne des Business Process Ma-
nagement (BPM) eine neuartige Betrachtungsweise auf die zu gestalten-
den flexiblen und anpassbaren Prozesse. Daraus resultiert, dass es derzeit

Einleitung Seite 9

noch unklar ist, wie sich eine zu entwickelnde Sprache sowie die zugeho-
rigen Entwurfsmuster in einen methodischen Rahmen der Doméane BPM
integrieren lassen. Die Notwendigkeit einer solchen Integration ldsst sich
hinsichtlich der Verwendbarkeit des Adaptivity Engineering begriinden. So
sollten relevante methodische Aktivititen und Artefakte des Adaptivity En-
gineering in Relation zu tiblichen Verfahrensweisen und Artefakten der Do-
méne BPM gesetzt werden. Erst hierdurch kann verdeutlicht werden, wie
eine zu entwickelnde Sprache und zugehorige Entwurfsmuster anzuwen-
den sind. Die hieraus resultierende Forschungsfrage lautet wie folgt:

Wie lassen sich Konzepte eines dominenspezifischen Adaptivity En-
gineering in einen methodischen Rahmen der Domiine BPM integrie-
ren?

Zuvor wurden Forschungsfragen vorgestellt, die die Ausgangssituation
fiir die vorliegende Arbeit beschreiben. Als Ergdnzung werden in dem
nachfolgenden Abschnitt 1.3 verschiedene Anforderungen an eine zu er-
arbeitende Losung vorgestellt.

1.3 Anforderungen

In diesem Abschnitt werden grundlegende Anforderungen an ein Lo-
sungskonzept vorgestellt. Dabei kann in zwei Arten von Anforderungen
unterschieden werden. Zum einen werden Anforderungen beschrieben,
die bereits fiir den Ansatz Adapt Cases gesetzt worden waren. Dies lasst
sich vornehmlich dadurch begriinden, dass sie sowohl fiir das Adaptivity
Engineering nach Luckey als auch fiir eine doménenspezifische Variante
als notwendig erachtet werden kénnen. Zum anderen kommen aufgrund
des domanenspezifischen Bezugs auch neue Anforderungen hinzu, die fiir
den generelleren Ansatz Adapt Cases nicht bestanden.

In der Sprache ACML [Luc+11] werden die Anwendungs- und An-
passungslogik getrennt voneinander gestaltet. Mit einem in dieser Ar-
beit erstellten Losungskonzept soll es auch weiterhin moglich sein, das
Separation-of-Concerns hinsichtlich dieser beiden Logiken durchzufiihren.

Ein grundlegendes Paradigma fiir die Gestaltung von selbst-adaptiven
Systemen stellt die Kontrollschleife dar [Bru+09]. Das Paradigma wird be-
reits durch den Ansatz Adapt Cases umgesetzt und soll auch in dem zu er-
arbeiteten Ansatz in der Gestaltung von flexiblen und anpassbaren Prozes-

sen eingesetzt werden.

Forschungsfrage 3

Separation-of-Concerns

Kontrollschleife

Ausdrucksfihigkeit

UML-Konsistenz

BPMN2.0-Konsistenz

Musterbasierte
Unterstiitzung in der
Gestaltung von Flexibilitat

Integration in eine
spezifische Methode der
Doméne BPM

Seite 10 Kapitel 1

In der Sprache ACML werden UML Use Case-Diagramme [OMG10] um wei-
tere Elemente erweitert und zur frithen Spezifikation von einzelnen Funk-
tionen eines Systems eingesetzt. Dabei steht bereits dort die Trennung von
Funktionen der Anpassungs- und der Anwendungslogik im Vordergrund.
Durch die Nutzung von UML-spezifischen Gestaltungstechniken wird der
Ansatz Adapt Cases hinsichtlich der Spezifikation von Aspekten der bei-
den Logiken besonders ausdrucksfdhig. Um auch die Gestaltung von fle-
xiblen und anpassbaren Prozessen bereits in einer frithen Phase untersttit-
zen zu konnen, soll auch in einem doménenspezifischen Adaptivity Engi-
neering diese Ausdrucksfahigkeit weitestgehend beibehalten werden.

Die Sprache ACML ist weitestgehend in Anlehnung an einzelne Konzep-
te der Sprache UML [OMG10] definiert worden. Hierdurch entsteht eine
hohe Konsistenz zwischen der reinen Gestaltung durch Diagramme der
UML und den durch ACML zur Verfiigung gestellten Diagrammtypen.
Eine Sprache im Rahmen eines doménenspezifischen Adaptivity Enginee-
ring soll diese Eigenschaft weitestgehend beibehalten.

Eine grofle Herausforderung stellt die Nutzung von doméanenspezifischem
Wissen in der Gestaltung von flexiblen und anpassbaren Prozessen dar.
Eine fachliche Domine, in der sich vornehmlich mit unterschiedlichen
Aspekten von Prozessen auseinandergesetzt wird, ist das Business Process
Management (BPM) [Wes12]. Fiir die Gestaltung von Prozessen im Rah-
men des BPM ist die Sprache BPMN2.0 [OMG11] der aktuelle De-facto-
Standard. Die Sprache BPMN2.0 stellt in diesem Bezug eine Implementie-
rung von spezifischen Konzepten der Doméne des BPM dar. Fiir ein domaé-
nenspezifisches Adaptivity Engineering sollen ausgewahlte Konzepte daher
in enger Anlehnung an die Sprache BPMN2.0 definiert werden. Hierbei
soll eine hohe Konsistenz zwischen der reinen Nutzung von Diagrammen
der Sprache BPMN2.0 und solcher, die durch eine potentielle Lésung zur
Verfiigung gestellt werden, erreicht werden.

Fiir haufig wiederkehrende Typen von Flexibilitdt in Prozessen bietet sich
die Bereitstellung von zugehorigen Entwurfsmustern an. In einem doma-
nenspezifischen Adaptivity Engineering sollen daher Entwurfsmuster be-
schrieben werden, die derartige Typen enthalten. Dabei soll insbesonde-
re das Separation-of-Concerns hinsichtlich der Trennung von Anpassungs-
und Anwendungslogik im Fokus dieser Entwurfsmuster liegen.

Fiir die Verwendung der zu entwickelnden Sprache zur Trennung der
Anwendungs- und Anpassungslogik sowie zugehoriger Entwurfsmuster
ist eine Methode notwendig. Diese Methode sollte relevante Aktivitidten

Einleitung Seite 11

und Artefakte eines doméanenspezifischen Adaptivity Engineering in Relati-
on zu Elementen eines bestehenden methodischen Rahmens der Doméne
BPM setzen.

1.4 Aufbau der Arbeit

Eine Ubersicht iiber die vorliegende Arbeit ist in Abbildung 1-2 dargestellt.
Die Arbeit ist insgesamt in die drei Teile Grundlagen und verwandte Arbei-
ten, Losungskonzept sowie Evaluation, Zusammenfassung und Ausblick struk-
turiert. Auf die Inhalte dieser Teile wird nachfolgend kurz eingegangen.

Einleitung
Kapitel 1
{" Teil I - Grundlagen und | -------- . . { Teil Il - Evaluation,
i verwandte Arbeiten : Teil Il - Losungskonzept | Zusammenfassung und
: Ausblick
Grundlagen | |Eine Sprache zur Gestaltung Evaluation
Kapitel 2 ! | von anpassbaren Prozessen] Kapitel 7
Kapitel 4
Verwandte Arbeiten Zusagn;en{)al_ss:(ung
. i | Entwurfsmuster fir flexible und Ausblic
Kapitel 3 { || und anpassbare Prozesse Kapitel 8
Kapitel 5
Adaptivity Engineering fir
flexible und anpassbare
Prozesse
Kapitel 6

In dem ersten Teil der Arbeit werden sowohl Grundlagen als auch alter-
native Ansitze fiir die Gestaltung von Flexibilitdt in Prozessen vorgestellt.
In Kapitel 2 werden die benétigten Grundlagen beschrieben, welche fiir
die Erarbeitung des Losungsansatzes notwendig waren bzw. unterstiit-
zend fiir das weitere Verstdndnis der Arbeit sein konnen. Darunter fallt zu-
néachst die modellgetriebene Softwareentwicklung (MDSD). Ferner sind domé-
nenspezifische Methoden und Techniken notwendig, wie z.B. das Business
Process Management (BPM) sowie der Bereich der Gestaltung von Prozes-
sen, dem Business Process Modeling (BPMod). Das anschlieffende Kapitel 3
fiihrt alternative Ansitze fur die Gestaltung von flexiblen und anpassba-
ren Prozessen auf. Der Schwerpunkt dieser Auffithrung liegt dabei auf An-
satzen, die vornehmlich in den Domanen BPM sowie BPMod zu verordnen
sind.

Abbildung 1-2:
Inhalte der Arbeit

Seite 12 Kapitel 1

Das in dieser Arbeit erarbeitete Losungskonzept sieht drei wesentliche Lo-
sungsteile vor: Eine doménenspezifische Sprache, die Erarbeitung von re-
levanten Entwurfsmustern zur Gestaltung von flexiblen und anpassbaren
Prozessen und die Beschreibung eines methodischen Vorgehens unter Ver-
wendung der beiden zuvor genannten Losungsteile. Das Losungskonzept
wird im zweiten Teil der Arbeit beschrieben. Dazu wird zunéchst in Kapi-
tel 4 der erste Losungsteil in Form der doménenspezifischen Sprache Adapt
Case Modeling Language 4 BPM (ACML4BPM) vorgestellt. Das Kapitel um-
fasst neben der reinen Beschreibung der Sprache auch die Analyse von Tei-
len der beiden beteiligten Domadnen BPM und BPMod. Anschlielend wird
der zweite Losungsteil in Form von relevanten Entwurfsmustern in Kapi-
tel 5 vorgestellt. Dabei wird fiir jeden betrachteten Aspekt von Flexibili-
tat in Prozessen zunédchst eine umfassende Analyse und anschliefSend die
Beschreibung des zugehorigen Entwurfsmusters vorgenommen. Abschlie-
end wird der dritte Losungsteil in Form der Methode Adapt Cases 4 BPM
in Kapitel 6 beschrieben. Diese Methode stellt ein Vorgehen des Adaptivity
Engineering im Kontext einer spezifischen Entwicklungsmethode der Do-
méne BPM dar. Im Fokus der Methode Adapt Cases 4 BPM liegt die Benen-
nung von notwendigen Aktivititen und Artefakten in Relation zu beste-
henden Vorgehensweisen der Doméane BPM.

Der dritte und letzte Teil dieser Arbeit umfasst die durchgefiihrte Evaluati-
on des vorgestellten Losungsansatzes und stellt anschlieffend eine Zusam-
menfassung sowie einen Ausblick auf mogliche zukiinftige Forschungs-
arbeiten vor. Die durchgefiihrte Evaluation wird in Kapitel 7 beschrieben
und gliedert sich in zwei weitere Teile auf. So wird im Rahmen der Eva-
luation zunéchst ein zusammenhéangendes Beispiel fiir die Gestaltung von
flexiblen und anpassbaren Prozessen unter Einsatz der erarbeiteten Spra-
che sowie ausgewdhlter Entwurfsmuster gegeben. Nachfolgend werden
Eigenschaften der beiden erarbeiteten Losungsteile hinsichtlich verschie-
dener Kriterien analysiert und bewertet. Im Rahmen der Zusammenfas-
sung und des Ausblicks werden die konkreten Inhalte der Losungsteile
in Kapitel 8 zusammengefasst. Die Arbeit schliefit dabei mit einem Aus-
blick auf mogliche zukiinftige Forschungsarbeiten. Dabei wird insbeson-
dere Bezug zur weiteren Verwendung vorgestellter Losungsteile und auf
das Adaptivity Engineering genommen.

Teil |

Grundlagen und verwandte
Arbeiten

Kapitel

Grundlagen

In diesem Kapitel werden verschiedene Grundlagen vorgestellt, die fiir die
Bearbeitung der Arbeit notwendig gewesen sind und fiir das weitere Ver-
standnis behilflich sein konnen. Das Kapitel strukturiert sich dabei in ins-
gesamt drei Abschnitte. Zunachst wird in Abschnitt 2.1 auf grundlegende
Aspekte der modellgetriebenen Softwareentwicklung eingegangen. Der Fokus
liegt hierbei auf der Metamodellierung und auf der Entwicklung von do-
manenspezifischen Sprachen. Anschlieffend wird in Abschnitt 2.2 das Busi-
ness Process Management (BPM) vorgestellt, welches als ein methodischer
Rahmen zur Verwaltung von Prozessen eingesetzt werden kann. Damit im
weiteren Verlauf der Arbeit spezifischer auf die Gestaltung von Prozes-
sen eingegangen werden kann, wird ferner das Business Process Modeling
(BPMod) als Teildisziplin des BPM in Abschnitt 2.3 vorgestellt. Das Kapi-
tel schliefst in Abschnitt 2.4 mit einer Vorstellung des durch [Lucl3] vor-
gestellten Ansatzes Adapt Cases und der zugehorigen Sprache Adapt Case
Modeling Language (ACML), welche beide die Basis fiir das spatere Kon-
zept zur Losung bilden.

2.1 Modellgetriebene Softwareentwicklung

Bei der modellgetriebenen Softwareentwicklung (engl. Model-Driven Engi-
neering (MDE)) handelt es sich um ein spezielles Entwicklungsverfahren,
das insbesondere die Verwendung von Modellen als priméres Artefakt im
Entwicklungsprozess betrachtet [BCW17]. Auf wichtige Grundprinzipien
des MDEs wird nachfolgend detaillierter eingegangen. Darunter befinden
sich die Metamodellierung (siehe Abschnitt 2.1.1), die Meta-Object-Facility
(MOF) (siehe Abschnitt 2.1.2) und die Model-Driven Architecture (MDA)
(siehe Abschnitt 2.1.3). Ferner wird abschliefend in Abschnitt 2.1.4 das
Domain-Specific Language Engineering (DSL Engineering) als methodischer
Rahmen zur Entwicklung von DSLs beschrieben.

Abbildung 2-1:
Beziehungen zwischen
(realweltlichen) Ob-
jekten, Modellen

und Metamodellen

Seite 16 Kapitel 2

2141 Metamodellierung

Bei der Metamodellierung handelt es sich um eine Schliisselaktivitdt des
MDEs. Dabei werden verschiedene Ziele verfolgt, wie z.B. die Spezifikati-
on von Sprachen zur Modellierung und Programmierung, den Austausch
und Speichern von Informationen und die Anreicherung bestehender In-
formationen mit neuen Eigenschaften oder Features [BCW17].

Im Fokus der Metamodellierung steht die Definition von sogenannten Me-
tamodellen (siehe Abbildung 2-1). Ein Metamodell ist eine Menge von Nota-
tionsregeln zur Beschreibung einer Klasse von Modellen. Dabei bilden Me-
tamodelle hierdurch unter anderem die Grundlage fiir die Definition von
Modellierungssprachen. Dies umfasst insbesondere die Spezifikation der
abstrakten Syntax (siehe Abschnitt 2.1.4). Weiterfiihrende Ansidtze haben
sich dabei auch in Teilen mit der Spezifikation der Semantik einer Sprache
befasst [Eng+00; Hau05; Sol13].

Bei einem Modell, welches auf Basis eines Metamodells erstellt worden ist,
spricht man auch von einer Instanz des Metamodells. Es handelt sich hier-
bei um einen Satz der Sprache, die durch das Metamodell beschrieben wird.

Die Sprache, die durch ein Metamodell beschrieben ist, kann entweder
durch direkte Ableitung von Notationsregeln auf Basis eines (realweltlichen)
Objekts ermittelt werden oder durch Ableitung auf Basis einer Menge von
(Beispiel-)Modellen [Voe+13; BCW17]. Bei (realweltlichen) Objekten handelt
es sich um gedachte oder reale Objekte, wie z.B. die Arbeitnehmenden in
einer Organisation oder ein Stiick Programmgquellcode, das modellbasiert
beschrieben werden soll.

Ableitung von Notationsregeln
» Metamodell
A A
beschreibt (Beispiel) Ableitung von Notationsregeln
auf Basis von
Modell
(Instanz von)
i beschreibt
(Realwt?ltllches) Modell
Objekt

21.2 Meta-Object-Facility (MOF)

Bei der Meta-Object-Facility (MOF) [OMG15a] handelt es sich um einen
durch die Object Management Group (OMG) spezifizierten Rahmen fiir die

Grundlagen Seite 17

Metamodellierung. Er wird zur einheitlichen Spezifikation von Metadaten
bzw. Metamodellen eingesetzt und verwendet hierzu vereinfachte Notati-
onsregeln, die durch Konzepte wie z.B. Klassen, Pakete oder Assoziationen
der UML Klassendiagramme ausgedriickt werden konnen.

Prinzipiell werden in der Modellierung unendlich viele Abstraktionsebe-
nen durch MOF unterstiitzt, wobei jedoch mindestens zwei Ebenen vorge-
sehen sind. Klassischerweise wird MOF aber in Form einer Vier-Ebenen-
Architektur verwendet, die im Folgenden nédher beschrieben wird. Hier-
zu sind diese Architekturebenen in Form von M0, M1, M2 und M3 im lin-
ken Bereich von Abbildung 2-2 dargestellt. Im rechten Bereich der Abbil-
dung befinden sich fiir die genannten Architekturebenen zugehorige Bei-
spiele mit jeweiligen Abhéngigkeiten. Nachfolgend wird eine detailliertere
Erlauterung dieser Abstraktionsebenen gegeben.

instance-of .
M3 instance-of
(Meta-Metamodell) MOF

Abbildung 2-2:
Ubersicht iiber die Vier-
Ebenen-Architektur

instance-of instance-of instance-of instance-of
M2 umL ‘ BPMN2.0 ‘ Spezifisches
(Metamodell) UML- BPMN2.0- Metamodell
T Profile T Erweiterung
instance-of instance-of instance-of instance-of
UML-Modell BPMN2.0-Modell Modell auf Basis
M1 2.B. Klassendefinition N e
(Modell) oder ihre 2.B. eines spezifischen
e Prozessdefinition Metamodells
Instanzspezifikation
beschreibt instance-of instance-of instance-of
UML-Modell BPMNZ2.0-Modell Laufzeitinstanz eines
MO Laufzeitinstanzen Laufzeitinstanzen Modells auf Basis
(Realweltliches Objekts) 2.B. Java Code oder z.B. eines spezifischen
Daten Pro. i zen Metamodells

Auf der Ebene M3 befinden sich Meta-Metamodelle (hier: MOF). MOF bil-
det dabei die Basis fiir Definitionen von Metamodellen auf der Ebene M2.
MOF ist rekursiv durch sich selbst definiert. Hierzu wird eine Untermen-
ge von Spracheigenschaften der UML Klassendiagramme verwendet. Wie in
[BCW17] beschrieben, ist eine weitere hohere Abstraktionsebene in die-
ser Architektur nicht notwendig, da weitere Ebenen auch weiterhin das
Sprachkonstrukt der Klasse enthalten wiirden. Eine Implementierung ei-
ner Untermenge von Spracheigenschaften des Rahmenwerks zur Metamo-

Ebene M3

Ebene M2

Ebene M1

Ebene MO

Seite 18 Kapitel 2

dellierung MOF ist gegeben durch das Eclipse Modeling Framework (EMF)
[Ecl], dessen zugehoriges Metamodell auch ECore genannt wird [Eco].

Auf der Ebene M2 befinden sich Metamodelle oder auch Sprachspezifika-
tionen, wie die Unified Modeling Language (UML) [OMG10], die Business
Model and Notation (BPMN2.0) [OMG11], die Adapt Case Modeling Language
(ACML) [Lucl3] oder auch verschiedene Domain-Specific Languages (DSLs).
Spracherweiterung von UML-basierten Sprachen (hier: UML-Profile) und
BPMN?2.0-basierten Sprachen (hier: BPMN2.0-Erweiterungen) befinden
sich ebenfalls auf der Ebene M2. Die auf der Ebene M2 liegenden Metamo-
delle werden dabei genutzt, um Sprachelemente fiir die Modellierung von
Modellen auf der Ebene M1 zur Verfligung zu stellen.

Die Ebene M1 enthilt Modelle, die auf Basis der auf der Ebene M2 befind-
lichen Metamodelle erstellt worden sind. Ein Beispiel ist die Gestaltung
einer Klasse mit enthaltenen Attributen, die durch ein UML Klassendia-
gramm erstellt worden ist. Ein weiteres Beispiel ist durch eine Prozessdefi-
nition gegeben, die durch ein Business Process Diagram (BPD) der Sprache
BPMN?2.0 beschrieben ist.

Die Ebene MO enthélt schliefllich realweltliche Objekte. Diese konnen, wie
in Abbildung 2-3 dargestellt, gegeben sein durch Quellcodes in Form einer
Java-Klasse aber auch in Form von Laufzeitinstanzen.

Ein weiterer relevanter De-facto-Standard der OMG fiir die Metamodellie-
rung ist die Object Constraint Language (OCL) [RG02; OMG14a] mit der die
statische Semantik von UML-Modellen durch Ausdriicke, Invarianten, Vor-
und Nachbedingungen formal beschrieben werden kann.

213 Model-Driven Architecture (MDA)

Die Model-Driven Architecture (MDA) [OMGI14b] ist ein weiterer durch
die OMG sperzifizierter Standard zur Unterstiitzung des MDEs. Kern der
MDA ist dabei ein modellgetriebener Softwareentwicklungsprozess mit
dem Ziel, ausfiihrbaren Code — also die Implementierung in Form einer
Anwendung - zu erhalten. Eine Ubersicht ist in Abbildung 2-3 gegeben
und wird nachfolgend kurz erldutert.

Die MDA lasst sich, wie hier gezeigt wird, in die zwei Phasen des Reguire-
ments Engineering und des System Designs unterteilen. Dabei werden Mo-
delle zur Beschreibung der Anwendungen auf unterschiedlichen Abstrak-
tionsebenen beschrieben. Diese Abstraktionsebenen sind das CIM, PIM
und PSM und werden im Folgenden detaillierter beschrieben.

Grundlagen Seite 19

Requirements System Design
Engineering
Business Platform Platform Implementation
Domain Independent Specific
Requirements System System
Description Description

M2M oder T2M M2M M2T
M
@ Transformation PIM Transformation > PSM Transformation > CODE

Bei dem Computation Independent Model (CIM) handelt es sich um die ab-
strakteste Ebene der Betrachtung einer zu entwickelnden Anwendung
[BCW17]. Im Rahmen des CIM werden das Geschifts- und das Doménen-
modell beschrieben, welche jeweils die Kernkonzepte oder auch das Voka-

bular fiir die Entwicklung der Anwendung definieren. Dies kann z.B. die
Beschreibung von Anforderungen, den Anwendungszweck oder die Kon-
textinformationen der Anwendung betreffen. Dabei stehen hierbei insbe-
sondere solche Beschreibungen im Vordergrund, die unabhéngig von einer
moglichen technischen Realisierung sind.

Auf Basis des CIM kann anschliefSend das Platform Independent Model (PIM)
erstellt werden. Es enthélt sowohl das Verhalten als auch die Struktur der
Anwendung, welche jeweils unabhédngig von einer konkreten technischen
Zielplattform beschrieben werden. Fiir die Modellierung des PIM werden
haufig Sprachen zur Gestaltung eingesetzt. Beispiele fiir derartige Spra-
chen sind UML [OMG10], BPMN2.0 [OMG11] oder doménenspezifische
Sprachen (engl. DSL).

Im Rahmen des Platform Specific Models (PSM) wird das PIM verfeinert.
Man spricht von Verfeinerung, wenn zu einem spateren Zeitpunkt weiter-
gehende Informationen zu einem gestalteten Modell hinzugefiigt werden.
Solche Informationen kénnen z.B. in Bezug zu einer technischen Zielplatt-
form stehen. Auf Basis des PSM kann schlieflich der Programmcode fiir
eine konkrete Zielplattform, wie z.B. Java' oder .net?, generiert werden.

Die Ubergénge von einer Ebene zu einer nachfolgenden Ebene, wie z.B.
vom CIM zum PIM, konnen durch verschiedene Transformationen min-
destens teil- aber vorzugsweise vollautomatisiert realisiert werden. Dabei
konnen auf Basis des Modells einer Abstraktionsebene verschiedene Mo-
delle auf einer nachfolgenden Ebene existent sein. So kann es sinnvoll sein,
dass auf Basis eines PIM mehrere PSM fiir unterschiedliche technische
Zielplattformen erstellt werden. Fiir die in diesem Kontext eingesetzten

lhttps://www.oracle.com/de/java/index.html Letzter Zugriff: 11.12.2018
2https://www.microsoft.com/net Letzter Zugriff: 11.12.2018

Abbildung 2-3:

Ubersicht iiber die Model-
Driven Architecture

(nach [BCW17])

Computation Independent
Model (CIM)

Platform Independent
Model (PIM)

Platform Specific Model
(PSM)

https://www.oracle.com/de/java/index.html
https://www.microsoft.com/net

Abstrakte Syntax (AS)

Konkrete Syntax (KS)

Semantik (S)

Seite 20 Kapitel 2

Transformationen, wie z.B. Model-2-Model (M2M) oder Model-2-Text (M2T),
existieren dabei eine Reihe von verschiedenen Sprachen und Rahmenwer-
ken. Einige Beispiele sind durch ATL3, Xtext* oder XPand® gegeben.

21.4 Domain-Specific Language Engineering

Das Domain-Specific Language Engineering (DSL Engineering) ist eine fachli-
che Disziplin, die sich mit dem methodischen Vorgehen bei der Entwick-
lung von doménenspezifischen Sprachen (engl. DSL) beschiftigt. Der In-
halt dieses Abschnitts beschéftigt sich zundchst mit einigen Grundkonzep-
ten des DSL Engineering und beschreibt anschlieflend einzelne zugehorige
Entwicklungsschritte.

Eine Sprache ist definiert durch ihre Abstrakte Syntax (AS) und ihre Seman-
tik (S). Ist zudem eine textuelle oder sprachliche Reprédsentation erforder-
lich, so wird zudem auch noch die Konkrete Syntax (KS) definiert. Im Fol-
genden wird eine detailliertere Beschreibung dieser Begriffe vorgenom-
men.

Die Abstrakte Syntax (AS) beschreibt die Struktur der Sprache. Dies umfasst
eine Beschreibung, welche Elemente Teil der Sprache sind und wie sie mit-
einander kombiniert werden diirfen. Dabei wird jedoch die Art der textu-
ellen oder graphischen Reprdsentation ausgeblendet. Die AS kann durch
Metamodelle (siehe Abschnitten 2.1.1 und 2.1.2) beschrieben werden.

Bei der Konkreten Syntax (KS) handelt es sich um eine Spezifikation der tex-
tuellen oder graphischen Reprasentation einzelner Elemente der Sprache.
Dabei wird den einzelnen Elementen oder der Kombination aus mehreren
Elementen aus der AS vorzugsweise ein eindeutiges textuelles oder gra-
phisches Symbol zugeordnet. So ist z.B. in UML Klassendiagrammen dem
Element des Typs Class ein rechteckiges graphisches Symbol zugeordnet,
in dessen Mitte der Wert des Attributs Name in textueller Form dargestellt
wird.

Der Begriff der Semantik (S) einer Sprache wird unterschieden. So exis-
tiert sowohl der Begriff der statischen Semantik (StatS) als auch der Begriff
der Ausfiithrungssemantik (AusS). Die StatS einer Sprache beschreibt zusétz-
liche strukturelle Einschrankungen von Elementen und ihrer Kombinati-
on sowie der textuellen oder graphischen Repréasentation. Wohingegen die

Shttp://www.eclipse.org/atl Letzter Zugriff: 11.12.2018
4http://www.eclipse.org/Xtext Letzter Zugriff: 11.12.2018
Shttp://wiki.eclipse.org/XPand Letzter Zugriff: 11.12.2018

http://www.eclipse.org/atl
http://www.eclipse.org/Xtext
http://wiki.eclipse.org/XPand

Grundlagen Seite 21

AusS kontextsensitive Abhdngigkeiten der Elemente und ihrer Kombinati-
on beschreibt. Die AusS ist dabei oftmals implizit in den Regeln zur Trans-
formation, wie z.B. M2T-Transformation, oder durch die Implementierung
der Ausfithrungsumgebung definiert. Alternativ existieren aber auch An-
sdtze [Eng+00; Hau05; Fow10; Sol13], mit denen die AusS formal definiert

werden kann.

Der Begriff Pragmatik (P) — oder alternativ auch Verwendungsweise — be-
schreibt einen Prozess bestehend aus Aktivitdten, die die Nutzung einer
Sprache beschreiben. So kann es in Sprachen spezielle Abhéangigkeiten von
zu erstellenden Artefakten geben. Durch die P konnen solche Abhédngig-
keiten beschrieben und eine empfohlene Reihenfolge einzelner Aktivita-
ten definiert werden. Wird fiir eine Sprache keine P angegeben, so wird
tiblicherweise angenommen, dass die Vorgehensweise durch einen tiber-
geordneten Ansatz tibernommen wird. Dies ist insbesondere bei DSLs der
Fall, die auf Basis eines bestehenden Ansatzes zur Gestaltung erstellt wor-
den sind.

2.1.41 DSL-Typen und Charakterisierung

Im Kontext der modellgetriebenen Softwareentwicklung existieren eine
Reihe von unterschiedlichen Perspektiven auf verschiedene Typen von
Sprachen. Typischerweise wird bei Sprachen zur Gestaltung in die beiden
Typen Domain-Specific Language (DSL) und General-Purpose Language (GPL)
unterschieden. Auf eine Beschreibung und die Unterschiede der beiden
Typen wird nachfolgend detaillierter eingegangen.

Bei einer Domain-Specific Language (DSL) handelt es sich um eine Sprache,
mit der die Konzepte aus einer spezifischen Doméne beschrieben werden
konnen. Man spricht in diesem Kontext auch von einer Anwendungsdo-
méne. Eine DSL kennzeichnet sich daher haufig, jedoch nicht immer, durch
wenige aber dafiir fiir die Domdne spezifische Sprachelemente aus. Hier-
mit konnen z.B. die Anwendung selbst, ihr Kontext in dem sie eingebet-
tet ist oder weitere Metadaten gemeint sein. Durch diesen spezifischen Be-
zug ist in einer DSL typischerweise relevantes Wissen von der betroffenen
Anwendungsdomane kodiert, welches im Rahmen der Gestaltung wieder-
verwendet werden kann.

Im Gegensatz zu einer DSL existieren aber auch Sprachen, die als General-
Purpose Languages (GPL) bezeichnet werden. Eine GPL kennzeichnet sich
durch die Fahigkeit aus, dass sie nicht lediglich fiir eine spezifische Do-
méne anwendbar ist. Stattdessen spricht man hier auch davon, dass sie

Pragmatik (P)

Domain-Specific Language
(DSL)

General-Purpose
Languages (GPL)

Tabelle 2-1:
Gegentiberstellung
von GPLs und DSLs
(nach [Voe+13])

Seite 22 Kapitel 2

fiir einen bestimmten Bereich oder eine Gruppe von Doménen eingesetzt
werden konnen. Ein typisches Beispiel fiir eine GPL ist durch die Sprache
UML [OMG10] gegeben. Sie wird dabei fiir den Bereich der (objektorientier-
ten) Gestaltung von Softwaresystemen eingesetzt.

Die Trennung von Sprachen in die beiden zuvor aufgefiihrten Typen GPL
und DSL ist dabei oftmals nicht klar durchfiihrbar. So kénnte man z.B. be-
haupten, dass es sich bei der Entwicklung von Softwaresystemen ebenfalls
um eine spezifische Domédne handelt. Daraus konnte der logische Schluss
folgen, dass es sich demnach auch bei der UML um eine DSL handelt. Je
nach individueller Perspektive auf die Welt der Sprachen zur Gestaltung
ist dieser Aspekt gerechtfertigt. Dennoch wiirde man aus der Perspekti-
ve der Softwareentwicklung die Sprache UML eher als eine GPL einstu-
fen. Zur besseren Charakterisierung von Sprachen zur Gestaltung kann
der durch [Voe+13] beschriebene Vergleich basierend auf einzelnen Cha-
rakteristiken von GPLs und DSLs verwendet werden. Es handelt sich hier-
bei um einen Versuch, eine methodische Trennung fiir die beiden Typen
GPL und DSL anhand vorgegebener Dimensionen und deren typischen Be-
legungen durchfithren zu kénnen. Ein Auszug dieser Charakteristiken ist
in Tabelle 2-1 dargestellt.

Dimension GPLs DSLs

Domine grof3 und komplex kleiner und spezifischer
definiert

Benutzerdefinierte anspruchsvoll limitiert

Abstraktionen

Lebensspanne Jahre oder Jahrzehnte Monate oder Jahre

Gestaltet durch Experten oder Komitee Doménenexperten

Benutzergemeinschaft grof3, anonym und weit Kklein, zugreifbar und lokal

verbreitet
Evolution langsam, oft standardisiert schnelllebig

2.1.4.2 Die Rolle von Domanenmodellen

Wie bereits im vorherigen Abschnitt beschrieben, stiitzt sich das DSL Engi-
neering auf die Existenz des Konzepts des Dominenmodells. Typischerwei-
se beschreibt ein Domiinenmodell relevante Konzepte und deren Beziehun-
gen untereinander, die fiir das Abbild einer Doméne notwendig sind. Das
in einer Doméne zu verwendende Vokabular kann somit durch ein Domii-
nenmodell bestimmt werden. Dieses Vokabular einer spezifischen Doméne
kann z.B. durch die Konzepte der Klassen, Ereignisse, Transitionen oder Ver-
haltensmuster als typisches Verhalten beschrieben werden.

Grundlagen Seite 23

Ein methodischer Ansatz zur Entwicklung von Domiinenmodellen ist da-
bei durch das Domain-Driven Design (DDD) [Eva03] gegeben. Das wesent-
liche Grundprinzip des DDD ist eine starke Fokussierung auf die Inhal-
te einer einzelnen Doméne, wohingegen der Schwerpunkt ansonsten eher
auf die Realisierung bezogen ist. Die Beziehung zwischen dem MDE und
dem DDD ist zur besseren Ubersicht in Abbildung 2-4 in Anlehnung an
Brambilla et al. [BCW17] dargestellt.

Domain-Driven-Design

Reprasentation-von

Domane Domanenmodell

A

Implementierung-von

System

Model-Driven
Engineering

Das DDD und MDE sind demnach keine kontrdren Ansitze. So verwen-
den beide das Konzept des Domé&nenmodells zur Reprasentation des Wis-
sens einer Domaéne. Stattdessen kann das DDD vielmehr als eine sinnvolle
Erganzung zum MDE verstanden werden ([BCW17]). Es verwendet hierzu
spezifische Methoden und Techniken, die unterstiitzend fiir die Gestaltung
von Domédnenmodellen eingesetzt werden konnen.

2.1.4.3 Spracherweiterungsansitze

Fiir die Entwicklung einer DSL bietet sich neben der Erstellung eines ei-
genen Metamodells insbesondere auch die Wiederverwendung existieren-
der Sprachen an. Wichtige Beispiele fiir derartige Sprachen sind durch die
MOF auf der Meta-Metaebene (M3) und durch die UML auf der Metaebe-
ne (M2) gegeben (siehe Abbildung 2-3). Werden existierende Sprachen er-
weitert, so spricht man in diesem Bezug auch von einer Lightweight Exten-
sion oder einer Heavyweight Extension. Auf Details der beiden genannten
Typen von Erweiterungen von existierenden Sprachen wird nachfolgend
eingegangen.

Abbildung 2-4:
Zusammenhang zwischen
Domain-Driven Design
und Model-Driven Engi-
neering (nach [BCW17])

Lightweight Extension

Heavyweight Extension

Stereotyp

Seite 24 Kapitel 2

Bei einer Lightweight Extension (LExt) handelt es sich um eine Erweiterung
einer existierenden Sprache. Dabei verfeinern die Sprachelemente einer
LExt fur sie relevante Sprachelemente der existierenden Sprache, sodass
ein doménenspezifisches Konzept oder ein Concern (hier: Aspekt) unter-
stiitzt wird. Grundsétzliche Eigenschaft einer LExt ist dabei, dass keine
Elemente der existierenden Sprache hinsichtlich ihrer AS, KS, oder S ver-
dndert werden.

Eine Heavyweight Extension (HExt) ist ebenfalls eine Erweiterung einer
existierenden Sprache. Im Gegensatz zur LExt konnen aber Elemente der
Sprachspezifikation der zu erweiternden Sprache verandert werden. Dies
kann sowohl die AS, die KS als auch die S der zu erweiternden Sprache
betreffen. Hierdurch kénnen beim Einsatz der erweiternden Sprache unter
Umstdnden auch ungewollte Seiteneffekte entstehen. Ein Beispiel hierfiir
ist dadurch gegeben, dass existierende Transformationen moglicherweise
nicht mehr ordnungsgemaf$ funktionieren und angepasst werden miissen.

Die Erstellung von LExt oder HExt kann in verschiedenen Kontexten un-
terschiedlich realisiert werden. So ist z.B. im Kontext der Sprache UML
[OMG10] die Erstellung von UML-Profilen gingig, wohingegen im Kontext
der Sprache BPMN2.0 [OMG11] die Erstellung von Erweiterungen {iiber
einen eigenen Mechanismus durchgefithrt wird.

UML-Profile konnen z.B. durch UML Profil-Diagramme [OMG10] definiert
werden. Sie spezialisieren Elemente der UML durch doméanenspezifische
Konzepte und Symbole mittels der Mechanismen Stereotyp, Tagged Value
oder Constraint. Die einzelnen Mechanismen werden im Folgenden nidher
erldutert.

Ein Stereotyp definiert ein doméanenspezifisches Konzept auf Basis eines
existierenden Elements der Sprache UML. Beispiele fiir derartige Elemente
sind durch die Elemente Class, State oder Component gegeben. Die existie-
renden Elemente der Sprache UML kénnen in diesem Rahmen auch als Me-
taklasse bezeichnet werden. Die Beziehung zwischen einem Stereotyp und
seiner Metaklasse definiert dabei, dass sich der Stereotyp in Anlehnung an
die Metaklasse verwenden ldsst bzw. sich so verhalt. Der Stereotyp spezia-
lisiert folglich die Metaklasse durch Eigenschaften eines doménenspezifi-
schen Konzepts. Ferner konnen durch Bedingungen — welche z.B. durch
die Sprache OCL [OMG14b] spezifiziert werden — weitere Einschrankun-
gen hinsichtlich der erlaubten Verwendung neuer Elemente oder der Se-
mantik spezifiziert werden. Fiir einen Stereotypen kénnen im Rahmen der
Definition der KS auch neue Symbole zugewiesen werden.

Grundlagen Seite 25

UML-Profile beschreiben doménenspezifische Erweiterungen auf Basis von
bestehenden Elementen der Sprache UML. Tagged Values stellen in diesem
Zusammenhang eine Moglichkeit dar, die Attribute eines Modellelements
durch konkrete Werte vorzugeben.

Mittels Constraints kann die erlaubte Verwendung oder die Semantik von
Stereotypen und Metaklassen in einem UML Profildiagramm weiter einge-
schrankt werden.

Im Gegensatz zum Ansatz der Spezialisierung durch UML-Profile wird
im Kontext der Sprache BPMN2.0 ein eigener Erweiterungsansatz ange-
boten. Hier kann tiber sogenannte Extension Points [OMG11] eine Erwei-
terung der bestehenden Spezifikation der Sprache BPMNZ2.0 vorgenom-
men werden. In einer BPMN-Erweiterung, die durch diesen Erweiterungs-
ansatz spezifiziert worden ist, konnen neue Attribute und Elemente in
Form des Elements ExtensionDefinition beschrieben werden. Ein solches
Element kann an ein beliebiges Element vom Typ BaseElement gebunden
werden und erweitert so Konzepte der Sprache BPMN2.0 [OMG11]. Da-
bei ist durch die Sprachspezifikation der Sprache BPMN2.0 [OMG11] kei-
ne einheitliche Vorgehensweise zur methodischen Erstellung einer BPMN-
Erweiterung gegeben. Ebenso fehlt es an einer Erweiterungsmoglichkeit
der graphischen Notation zur Reprédsentation der Struktur einer BPMN-
Erweiterung. Eine Losung bieten [Str+11; SCV11] durch den BPMN+X®
Ansatz an, in dem die Definition eines UML-Profils zur Spezifikation von
BPMN-Erweiterungen eingesetzt wird. Auf eine allgemeine Vorgehens-
weise zur methodischen Erstellung einer DSL wird im nachfolgenden Ab-
schnitt eingegangen.

2144 DSL-Entwicklungsprozess

Die addquate Entwicklung von doménenspezifischen Sprachen stellt einen
wichtigen Beitrag fiir die spatere Qualitdt der Sprache und der auf ihr ge-
stalteten Artefakte dar. Daher sind hier geeignete Entwicklungsprozes-
se anzuwenden, die dies ermoglichen. In der Literatur sind verschiedene
Entwicklungsprozesse existent, mit denen z.B. UML-Profile [Sel07; Lag+07;
Wim09] oder BPMN-Erweiterungen [Str+11; SCV11] erstellt werden kon-
nen. Die zuvor genannten Arbeiten setzen dabei jeweils unterschiedli-
che Schwerpunkte, die sich jedoch allgemein zunéchst auf die Ermittlung
der doménenspezifischen Konzepte und die anschlieflende Definition der

6Werkzeugunterstﬂ’rzung fiir BPMN+X: http://code.google.com/p/bpmnx// Letzter
Zugriff: 12.10.2018

Tagged Value

Constraint

http://code.google.com/p/bpmnx//

Analyse der Doméne

Entwurf der Sprache

Seite 26 Kapitel 2

Sprache beziehen. An dieser Stelle wird der DSL-Entwicklungsprozess nach
Brambilla et al. [BCW17] exemplarisch in Form von wesentlichen Schritten
beschrieben.

Zu Anfang steht die Analyse einer Doméne im Vordergrund, bei der rele-
vante Konzepte identifiziert werden. Die Durchfiihrung der Analyse stellt
dabei besondere Herausforderungen an den Entwicklungsprozess, da irre-
levante von relevanten Konzepten getrennt und fiir die jeweilige Anwen-
dung abstrahiert dokumentiert werden miissen. Damit die Analyse einer
Domine unterstiitzt werden kann, wurde ein Katalog von insgesamt 26
Richtlinien fiir die Entwicklung einer DSL von [Kar+14] vorgeschlagen.
Ein Auszug der wichtigsten Kategorien und zugehorigen Fragestellungen
ist nachfolgend aufgefiihrt.

Zweck Wofiir soll die Sprache eingesetzt werden?
Realisierung Wie soll die Sprache realisiert werden?

Inhalt Was soll Teil der Sprache sein?

Abstrakte Syntax Was ist die (interne) Représentation der Sprache?
Konkrete Syntax Was ist die (externe) Représentation der Sprache?

Als Grundlage fiir die Analyse konnen ausgesuchte Beispiele fiir konkrete
Sétze der zu entwickelnden Sprache verwendet werden. Solche Beispie-
le konnen in Form von z.B. Quellcodes oder zuvor bereits erstellten Mo-
dellen verfiigbar sein [Sta+06]. Ergebnis der Analyse ist die Dokumentati-
on von Wissen iiber die Domine mittels eines initialen Domédnenmodells
(siehe Abschnitt 2.1.4.2). Dabei 16st dieses Domédnenmodell die zuvor ein-
gefiihrten Fragestellungen auf.

Der zweite Schritt sieht den Entwurf der zu entwickelnden Sprache vor.
Dabei wird das im ersten Schritt der Analyse der Doméne dokumentierte
Wissen tiber die Doméne in die spatere AS, KS und S der zu entwerfenden
Sprache tiberfiihrt. Hiermit ist gemeint, dass z.B. die Zuordnung von Kon-
zepten und Beziehungen der Doméne zu Klassen, Attributen und deren
Typen sowie Assoziationen durchgefiihrt wird. Ferner werden Multiplizi-
tdt und weitere Einschrankungen zur Verwendung der Sprache definiert.
Dies kann z.B. durch die Verwendung der Sprache Object-Constraint Lan-
guage (OCL) [OMG14b] durchgefiihrt werden. Neben der zuvor beschrie-
benen Definition der internen Reprisentation (AS) der Sprache kann auch
die externe Représentation (KS) definiert werden.

Grundlagen Seite 27

Als letzten Schritt sieht der Entwicklungsprozess die Validierung der ent-
wickelten Sprache vor. Dies kann hinsichtlich verschiedener Eigenschaf-
ten, wie z.B. der Korrektheit, der Vollstindigkeit, der Einfachheit oder der Kon-
sistenz sinnvoll sein. Eine solche Validierung kann durch Anwendung der
Sprache, also durch das Erstellen von Modellen auf ihrer Basis, durchge-
fiihrt werden. Hier kann gepriift werden, ob sich z.B. ein Attribut einer
Klasse mit einem konkreten Wert erstellen ldsst oder ob sich spezifische
Konzepte in geforderter Relation zueinander stellen lassen. Besonders bie-
tet sich aber an, die im ersten Schritt verwendeten Beispiele mit der entwi-
ckelten Sprache zu modellieren, da es sich hierbei um eine Art Referenz-
modell handelt.

2.2 Business Process Management

Eine der in dieser Arbeit betrachteten Doménen stellt das Business Pro-
cess Management (BPM) dar. Nachfolgend wird zundchst in Abschnitt 2.2.1
eine Einfiihrung in das BPM durch eine Vorstellung grundlegender Begrif-
fe und Konzepte gegeben. Aufbauend werden weitere fiir diese Arbeit re-
levante Aspekte von Prozessen im Kontext des BPM néher beschrieben.
So wird in Abschnitt 2.2.2 zunédchst das Modell des BPM-Lebenszyklus ein-
gefiihrt. Darauf folgt in Abschnitt 2.2.3 eine Vorstellung des Begriffs der
Flexibilitit und Anpassbarkeit in Bezug zu Prozessen.

2.21 Einfiihrung in das Business Process Management

Unter dem Begriff Business Process Management (BPM) wird allgemein ein
systematischer Ansatz verstanden, der sich mit verschiedenen Aspekten
von Geschiftsprozessen (hier: Prozesse) beschiftigt. Zum besseren und de-
taillierten Verstandnis des BPM werden in diesem Abschnitt zunéichst rele-
vante Begriffe eingefiihrt, die am Ende des Abschnitts fiir eine spezifische-
re Definition des BPM verwendet werden.

Ein Modell der Doméne des BPM ist in Abbildung 2-5 zur Darstellung
wichtiger Begriffe und ihrer Relationen gezeigt. Es orientiert sich dabei an
das durch [Gad08] vorgestellte integrierte Konzept fiir das Prozess- und
Workflow-Management. Dabei konnen die dargestellten Begriffe hinsicht-
lich einer strategischen, fachlich-konzeptionellen und operativen Ebene aufge-
teilt werden. Auf eine detaillierte Erlduterung dieser Ebenen und der ge-
zeigten Begriffe wird nachfolgend eingegangen.

Validierung der Sprache

Abbildung 2-5:
Modell der Domdne BPM

Strategische Ebene

Fachlich-konzeptionelle
Ebene

Seite 28 Kapitel 2
2
23
‘-: °§° Ziel Organisatorischer Zweck oder Ziel,
£ 5 2.B. Fertigung eines kundenindividuellen Produkts
Q @
2 T
52
g <
S
wird realisiert durch
@ Geschéftsprozess | Was soll passieren?
§ = Subprozess
o S Reprdsentation davon,
E g was passieren soll besteht aus
o ¥ besteht aus
g5 . — Prozessmodell
os ist definiert durch
N I
5 2 |
x o
£ o technisch realisiert durch ! -
S & ! IT-unterstiitze/
s | . Manuelle
S o . automatisierte ufeab
& | wird zur Laufzeit Aufgabe Aufgabe
: représentiert durch :
! | Keine IT-
| | i
L | Unterstiitzung
| |
| |
| |
=) Workflow- N besteht aus
@ E Prozessmodell
é gp Was aktuell passiert
0 & bindet ein
2=
® 2 L
5 o | Arbeitseinheit | | Anwendung
o
E 3
° S Zugewiesene Aufgaben an Werkzeuge, Anwendungen,
= einen Prozessteilnehmer, ienste zur IT-basierten
2 inen P ilneh Dienste zur IT-basiert

wie z.B. Mitarbeiter oder
Zulieferer

Unterstiitzung einer
Aktivitdt

Die strategische Ebene bezieht sich auf die fiir ein Unternehmen relevan-
ten Geschiftsfelder und auf deren kritische Erfolgsfaktoren (engl. Critical
Success Factors (CSF)). Hierbei werden auf Basis der Unternehmensstrate-
gie — hier dargestellt als Ziel — die zentralen Prozesse identifiziert und ge-
plant. Ein Beispiel fiir ein solches Ziel ist die Fertigung eines kundenin-
dividuellen Produkts, fiir das eine Vielzahl von Prozessen mit Schnittstel-
len zu unterschiedlichen internen und externen Prozessbeteiligten entlang
der Wertschopfungskette vorhanden sein konnen. Hiervon konnen z.B. die
Beschaffungs- und die Planungsprozesse, aber auch Arbeits- und Produk-
tionsprozesse betroffen sein. Das Ziel bildet dabei also die Basis fiir die Er-
stellung von Prozessen, die wiederum dafiir vorgesehen sind, das jeweili-
ge Ziel zur erreichen.

Auf der fachlich-konzeptionellen Ebene werden Prozesse (hier: Geschiiftspro-
zesse) durch Prozessmodelle definiert. Fiir den Begriff Prozessmodell finden
sich in der Literatur synonyme Verwendungen durch den Begriff des
Prozess-Schemas und der Prozessdefinition.

Grundlagen Seite 29

Ein Prozessmodell beschreibt in Anlehnung an die an ihn gestellten An-
forderungen unter anderem die Struktur eines realweltlichen Prozesses
(siehe Abschnitt 2.1.1 und Abschnitt 2.1.2). Hiervon betroffen sind z.B.
der Kontroll- und der Datenfluss, die jeweils fiir den Prozess zu beschrei-
ben sind (siehe Abschnitt 2.3.2). So sind z.B. mogliche Pfade, Regeln fiir
die Auswabhl eines Pfades und auch die benoétigten Aufgaben oder Daten
inbegriffen. Eine Aufgabe in einem Prozessmodell beschreibt eine logische
Handlung, die weiter detailliert werden kann. Die Detaillierung einer Auf-
gabe wird auch hierarchischer Prozess oder Subprozess genannt. Lassen sich
Handlungen nicht weiter detaillieren, spricht man von atomaren Aufgaben,
die in Abbildung 2-5 durch manuelle Aufgaben oder IT-unterstiitzte bzw.
automatisierte Aufgaben dargestellt sind.

Da es sich bei Prozessmodellen lediglich um eine Reprdsentation von des-
sen, was passieren soll, handelt, kann es notwendig sein, im Rahmen von
Verbesserungs- und Optimierungsmafsnahmen das Prozessmodell an den
realweltlichen Prozess neu zu orientieren [AHWO03; Ger13] (siehe auch Ab-
schnitt 2.2.2).

Die operative Ebene beschiftigt sich speziell mit der IT-gestiitzten Ausfiih-
rung von Prozessen. So kann ein Prozessmodell zuvor fiir unterschiedliche
Zwecke erstellt worden sein. Hier wird zwischen der Dokumentation eines
Prozesses und seiner IT-gestiitzten Ausfiihrung unterschieden [FR14].

Sollen Prozesse IT-gestiitzt ausgefiihrt werden, so konnen deren Prozessmio-
delle bzw. Workflow-Prozessmodelle im Ganzen oder in bestimmten Teilen in
Prozessinstanzen {iberfiihrt werden. Man spricht hier auch davon, dass eine
Prozessinstanz ein solches Modell zur Laufzeit reprasentiert und weitere fiir
die Ausfiihrung notwendige Informationen enthilt. Ein einfaches Beispiel
einer derartigen Eigenschaft ist durch den Laufzeitzeiger gegeben, der die
zu einem bestimmten Zeitpunkt aktive Aufgabe identifiziert.

IT-untersttitzte Teile einer Prozessinstanz sind in Form von Aufgabeninstan-
zen gegeben. Eine solche Aufgabeninstanz bildet entweder eine Arbeitsein-
heit, die z.B. durch einen Prozessteilnehmer ausgefiihrt werden kann. Al-
ternativ kann aber auch eine weitere (Software-)Anwendung eingebunden
werden, die die benétigte Funktion fiir die Aufgabe zur Verfiigung stellt.
Eine solche Anwendung kann durch einen IT-Service oder durch Werkzeuge
gegeben sein, die fiir die technische Realisierung notwendig sind. Ferner
kann eine Aufgabeninstanz aber auch Prozessteilnehmer — wie z.B. eine Mit-
arbeiterin bzw. einen Mitarbeiter, eine Fachabteilung oder einen Zuliefe-
rer — einbinden, die jeweils in verschiedenen Rollen agieren kénnen und
ebenfalls Aufgabeninstanzen ausfiihren.

Operative Ebene

Tabelle 2-2:
Gegeniiberstellung
von Geschiiftspro-

zess und Workflow-
Prozess (nach [Gad08])

Seite 30 Kapitel 2

Sowohl das Workflow-Prozessmodell als auch seine zugehorige Prozessin-
stanz werden in der Literatur fiir die operative Ebene oftmals mit dem Begriff
des Workflow-Prozesses vereinheitlicht. Nachfolgend ist in Definition 2.2.1
eine hdufig verwendete Beschreibung eines Workflow-Prozesses in Anleh-
nung an [Coa96] gegeben.

Definition 2.2.1. (Workflow-Prozess)

Ein Workflow-Prozess ist die vollstindige oder teilweise Automatisie-
rung eines Prozesses, durch den Dokumente, Informationen oder Aufga-
ben (engl. Tasks) von einem Prozessbeteiligten zu einem anderen geleitet
werden mit dem Zweck der Handlung und in Abhingigkeit zu prozedura-
len Regeln.

Neben dem Workflow-Prozess wurde ebenso der Begriff des Geschiiftsprozes-
ses fiir die fachlich-konzeptionelle Ebene eingefiihrt. Eine Ubersicht iiber
unterschiedliche Aspekte der beiden zuvor eingefiihrten Begriffe des
Geschiifts- und Workflow-Prozesses wird in Tabelle 2-2 gegeben. Hier werden
diese Begriffe hinsichtlich ihrer wichtigsten Merkmale gegentibergestellt.

Kriterium Geschiftsprozess Workflow-Prozess

Zielsetzung Analyse und Gestaltung von Spezifikation der technischen
Arbeitsabldufen im Sinne gege- Ausfiihrung von Arbeitsab-
bener (strategischer) Ziele laufen

Gestaltungsebene Fachlich-konzeptionelle Ebene Operative Ebene mit Bezug zu
mit Bezug zur Geschifts- unterstiitzender Technologie
strategie

Detaillierungsgrad In einem Zug von einer Mitar- Konkretisierung von Arbeits-

beiterin bzw. einem Mitarbeiter
ausfiihrbare Arbeitsschritte

schritten hinsichtlich Arbeits-
verfahren sowie personeller
und technologischer Ressour-
cen

Sowohl fiir die fachlich-konzeptionelle Ebene als auch fiir die operative Ebe-
ne konnen verschiedene unterstiitzende Werkzeuge eingesetzt werden. So
kann auf der operativen Ebene von Workflow Management Systemen (WfMS)
gesprochen werden. In Definition 2.2.2 ist eine Definition eines solchen
Systems in Anlehnung an [Coa96] gegeben.

Definition 2.2.2. (Workflow Management System)

Ein Workflow Management System (WfMS) ist ein Werkzeug, das die
Ausfithrung von Workflow-Prozessen durch die Verwendung von Softwa-
re definiert, erzeugt und verwaltet.

Grundlagen Seite 31

Die Workflow-Prozesse werden dabei auf einer oder mehreren sogenann-
ten Workflow-Engines (WfE) ausgefiihrt. Eine WfE ist dabei in der Lage,
Workflow-Prozesse zu interpretieren, mit Workflow-Teilnehmern zu inter-
agieren und — wo benétigt — die Einbindung von weiteren IT-Werkzeugen
und Anwendungen durchzufiihren.

In der Literatur [AHWO3] wird das BPM heutzutage als eine Erweiterung
zum Workflow-Management gesehen. Dies ldsst sich dadurch begriinden,
dass es sich nicht nur auf die Phase der Ausfithrung von Workflow-Prozessen,
sondern auch auf weitere Phasen bezieht. In derartigen Phasen kénnen
z.B. die Evaluation und Verbesserung von bestehenden Prozessen fokussiert
werden (siehe Abschnitt 2.2.2). So kann das BPM ebenfalls durch verschie-
dene IT-gestiitzte Technologien und Systeme unterstiitzt werden. Derarti-
ge Systeme werden auch als Business Process Management Systeme (BPMS)
bezeichnet und lassen sich nach [AHWO03], wie in Definition 2.2.3 angege-
ben, definieren.

Definition 2.2.3. (Business Process Management System)

Ein Business Process Management System (BPMS) ist ein generisches
Softwaresystem, welches die Gestaltung, Ausfithrung und insbesondere
die Verwaltung von operationalen Prozessen unterstiitzt.

Das in dieser Arbeit im Fokus stehende BPM kann auf Basis der zuvor
gegebenen Beschreibung wichtiger Begriffe und in enger Anlehnung an
[AHWO3] wie durch Definition 2.2.4 gegeben definiert werden.

Definition 2.2.4. (Business Process Management)

Das Business Process Management (BPM) ist eine Methode zur Unter-
stiitzung von Geschiiftsprozessen (hier: Prozessen). Dabei kommen Metho-
den, Techniken und Software zum Zweck des Designs & Analyse, der Kon-
figuration, der Ausfiihrung, der Evaluation von operationalen Prozessen
unter Beriicksichtigung von Menschen, Organisationen, Anwendungen,
Dokumenten und anderen Informationsquellen zum Einsatz.

Die in Definition 2.2.4 aufgefiihrten Phasen Design & Analyse, Konfigu-
ration, Ausfiihrung und Evaluation zur Verwaltung von Prozessen bilden
dabei einen moglichen Lebenszyklus von Prozessen. Im folgenden Ab-
schnitt wird detailliert auf den sogenannten BPM-Lebenszyklus von Prozes-
sen nach [Wes12] eingegangen, der die zuvor aufgefiihrten Phasen wieder
aufgreift.

Abbildung 2-6:
BPM-Lebenszyklus mit
Differenzierung zum
Workflow Management
(nach Weske [Wes12] bzw.
van der Aalst [AHWO03])

Phase Design & Analyse

Seite 32 Kapitel 2

2.2.2 Der BPM-Lebenszyklus

Modelle fiir Lebenszyklen stellen einen moglichen methodischen Rahmen
zur Unterstiitzung in der Verwaltung von Prozessen dar. Solche Modelle
beschreiben wichtige Phasen und deren Uberginge, enthaltene Aufgaben
und zu erstellende Artefakte. In der Doméne des BPM haben sich je nach
Anwendungsgebiet insgesamt zwei solcher Modelle durchgesetzt [Wes12;
Dum+18]. Aufgrund der inhaltlichen Ndhe zu der im vorherigen Abschnitt
eingefiihrten Definition wird in diesem Abschnitt der BPM-Lebenszyklus
nach [Wes12] bevorzugt.

In Abbildung 2-6 ist hierzu eine eigene Darstellung der relevanten Phasen
Design & Analyse, Konfiguration, Ausfithrung und Evaluation gezeigt. Jede
dieser vier Phasen ist weiter unterteilt in typische Aktivitdten, die basie-
rend auf [Wes12] im Folgenden nédher beschrieben werden.

Identifikation und
(Neu-)Gestaltung

Prozessverbesserung
und -optimierung

[}

Validierung, Simulation
und Verifikation

jJudwaSeue|p sS320.d ssauisng

—
Ausfiihrung Design & Analyse
>
-3
]
; Y
Operation Systemauswahl 5
H
- H
Uberwachung Implementierung 3
g
Wartung | | [‘onhedration [ttt Test und Deployment o
-

In der ersten Phase des BPM-Lebenszyklus werden zundchst in der Gestal-
tung die abzubildenden Abldufe der Prozesse identifiziert und durch ent-
sprechende Prozessmodelle beschrieben. Fiir die Beschreibung von Pro-
zessmodellen konnen unterschiedliche Sprachen eingesetzt werden, auf
die in Abschnitt 2.3 niher eingegangen wird. Neben den Ablaufen inner-
halb eines geschiftlichen Umfeldes spielen aber auch die organisatorischen
und technischen Gegebenheiten bei der Identifikation eine wichtige Rolle.
Daher werden neben den Modellen fiir die Prozesse weitere Modelle er-
stellt, so z.B. Organigramme zur Beschreibung personeller Abhingigkei-
ten oder die organisatorische Einbettung der Prozesse.

Grundlagen Seite 33

Im Anschluss an die Gestaltung werden die erstellten Modelle hinsichtlich
spezifischer Eigenschaften analysiert. Bei dieser Analyse kommen fach-
liche Validierungs- und Verifikationstechniken sowie Simulationen zum
Einsatz. Neben fachlichen Validierungen — wie z.B. durch Experten in
Workshops — stellen Simulationen ein wichtiges methodisches Werkzeug
dar. So konnen durch entsprechende Werkzeuge auch komplexe Prozess-
modelle analysiert werden, bei denen manuelle Verfahren zu aufwendig

wadren.

In der Phase Konfiguration wird die Implementierung der zuvor entwor-
fenen und analysierten Prozessmodelle durchgefiihrt. Dabei bezieht sich
der Begriff der Implementierung nicht zwangsweise auf die Umsetzung in
Form von Software. So konnen die Prozessmodelle auch in Form von
Richtlinien oder als dokumentiertes Beispiel fiir eine Erfolgsmethode
(engl. Best-Practice) eingesetzt werden, die die Mitarbeiterinnen und Mitar-
beiter umsetzen bzw. befolgen sollen. Soll der gestaltete Prozess durch den
Einsatz von IT unterstiitzt werden, bieten sich spezielle Unterstiitzungs-
systeme an, wie z.B. die in Abschnitt 2.2.1 eingefiihrten Workflow-Engines.

Dabei miissen die Prozessmodelle um technische Informationen ergianzt
werden, um ausgefithrt werden zu konnen. Die Implementierung rich-
tet sich dabei mafigeblich an Anforderungen des Unterstiitzungssystems.
Nachdem die Zielumgebung bzw. das Unterstiitzungssystem ausgewéahlt
und die Implementierung durchgefiihrt worden sind, kann der implemen-
tierte Prozess durch etablierte Verfahren aus dem Bereich des Software En-
gineering getestet werden. Ein Ziel kann hierbei die Sicherstellung des kor-
rekt implementierten und erwarteten Verhaltens des Gesamtsystems sein.
Ferner konnen auch Tests hinsichtlich potentieller Laufzeitprobleme — wie
z.B. Performance oder Speicherauslastung — durchgefiihrt werden.

Im Anschluss an die Konfiguration und Implementierung von Prozessen kon-
nen Prozessinstanzen in der Phase der Ausfithrung (engl. Enactment) aus-
gefiihrt werden. Im Fall einer Instanziierung eines Prozesses folgt der Ab-
lauf dem in der Phase Design & Analyse erfassten geschéftlichen Ablauf.
Dabei wird der Zweck verfolgt, ein organisatorisches Ziel zu erfiillen — z.B.
die Fertigung eines kundenindividuellen Produktes. Neben der eigentli-
chen Ausfiihrung einer Prozessinstanz umfasst diese Phase jedoch auch
noch die beiden Aktivititen der Uberwachung und der Wartung. Im Rah-
men der Uberwachung werden aktuelle Statusinformationen von Prozess-
instanzen zur Laufzeit tiberwacht. Das Ziel ist hierbei die Sicherstellung
von Anforderungen an die Prozessinstanzen, die erst zur Laufzeit {iber-
priift werden konnen.

Phase Konfiguration

Phase Ausfiihrung

Phase Evaluation

Seite 34 Kapitel 2

Beispiele im Rahmen von Arbeitsprozessen sind z.B. die Arbeitsgeschwin-
digkeit im Akkordbetrieb oder die Qualitédtssicherung hinsichtlich einer
Montage von (Teil-)Produkten. Neben diesen eher traditionellen Anforde-
rungen konnen aber auch Anforderungen hinsichtlich einer Menschenzen-
trierung von Prozessen gepriift werden. So kann bspw. der korperliche Zu-
stand oder die aktuelle Umgebungsbeschaffenheit in einer derartigen An-
forderung betroffen sein. Fiir die Uberwachung von Anforderungen zur
Laufzeit kénnen Softwarewerkzeuge eingesetzt werden, die die Uberwa-
chung automatisiert durchfiithren und im Fall einer Verletzung einen vor-
definierten Handlungsplan zur Abstellung der Anforderungsverletzung
umsetzen. Durch die Ausfithrung und Uberwachung von Prozessinstan-
zen zur Laufzeit entsteht dartiber hinaus eine Reihe von Daten, die in der
Phase der Evaluation zur Analyse und Verbesserung von existierenden
Prozessen eingesetzt werden kann. Derartige Daten konnen z.B. beschrei-
ben, zu welchen Zeitpunkten die ausgefiihrten Prozessinstanzen, Tasks
oder Aufgaben gestartet und beendet wurden. Ferner konnen aber auch
zusitzliche Informationen enthalten sein, wie etwa die Anwendung eines
Handlungsplans oder sonstige Fehler.

Der BPM-Lebenszyklus nach [Wes12] schliefSt mit der Phase der Evaluation
ab. In dieser Phase wird jedoch zuvor eine Retrospektive auf Basis der in
der Phase Ausfiihrung erhobenen Daten durchgefiihrt. Fiir derartige Ana-
lysen konnen unterschiedliche Methoden eingesetzt werden, wie etwa das
sogenannte Process-Mining [AWMO04; Aal16]. Das Ziel ist es hierbei die kon-
tinuierliche Prozessoptimierung und -verbesserung zu unterstiitzen. Ein
Beispiel im Rahmen von Arbeitsprozessen ist hierfiir z.B. die Analyse von
Teamzuteilungen einzelner Mitarbeiterinnen und Mitarbeiter. So kénnen
Daten in Bezug zu Teamzuteilungen und ermittelter Arbeitsgeschwindig-
keit auf eine vorteilhafte oder ungiinstige Einsatzplanung hinweisen. Die
Evaluation bestehender Prozesse auf Basis von Daten aus der Phase der
Ausfiihrung ist dabei insbesondere fiir Arbeitsprozesse ein wichtiger und
damit essentieller Schritt, um ein gewolltes Mafs an Menschenzentrierung

umzusetzen und zu gewdahrleisten.

Neben den eigentlichen Phasen des BPM-Lebenszyklus geht Weske dartiber
hinaus auf verschiedene beteiligte Rollen ein. Da dieser Aspekt auf die spé-
teren Losungsteile keinen wesentlichen Einfluss hat, wird an dieser Stelle
abstrahiert und auf die Literatur verwiesen [Wes12].

Grundlagen Seite 35

2.2.3 Flexibilitat in Prozessen

Die Betrachtung von Flexibilitdt in Prozessen ist ein weit verbreitetes The-
menfeld der Doméne BPM. Dabei existieren in der Literatur verschiede-
ne Taxonomien [Sof05; RSS06; Sch+08; RW12], die je nach Anwendungs-
zweck relevant fiir die Gestaltung von Prozessen sein kénnen. Nachfol-
gend werden Flexibilitdtsaspekte von Prozessen in Anlehnung an [Sch+08]
und [RW12] vorgestellt und an sinnvollen Stellen miteinander verglichen.
In Abbildung 2-7 werden im oberen Bereich Flexibilitdtsaspekte nach
[Sch+08] und im unteren Bereich nach [RW12] gezeigt. Die dargestell-
ten Pfeile weisen dabei auf vergleichbare Eigenschaften der Flexibilitéts-
aspekte hin, auf die nachfolgend in den Beschreibungen der beiden Taxo-
nomien eingegangen wird. Zundchst folgt die Beschreibung der Taxono-
mie nach Schonenberg et. al [Sch+08].

Design l—l H Deviation

[Sch+08]
Flexibility-by

Change _}—‘ ﬂderspecification e
Evolutionary Change Late Modeling

Momentary Change Late Binding

Late Selection
Late Modeling and
Composition

\ |
N !
N
N
car ‘\\ ,”
Ad hoc Composition |}/
Iy
P r’
o
/
/

Iterative Refinement

! Planned
i Unplanned ‘
: Adaptation —}Ll I—l— Looseness

[RW12]
Flexibility

\ \W i Variability =~ r#----~

Structural
Configuration

Behavior-Based
Configuration

Abbildung 2-7:
Flexibilitdtsaspekte im
Vergleich

Flexibility-by Design

Flexibility-by Deviation

Flexibility-by Change

Momentary Change

Evolutionary Change

Seite 36 Kapitel 2

Schonenberg et. al [Sch+08] fithren den Flexibilitdtsaspekt Flexibility-by
Design an. Darunter verstehen die Autoren die Fahigkeit, alternative Aus-
fiihrungspfade im Prozessmodell beschreiben zu kénnen. Auf Basis die-
ser Ausfithrungspfade ist wahrend der Ausfiihrung ein geeigneter Pfad
innerhalb der Prozessinstanz auswéhlbar. Zudem werden dabei verschie-
dene Vorschlége fiir Realisierungen gegeben, wie z.B. Parallelitit, Auswahl,
Schleifen, Verschachtelung, nebenliufige Instanzen und der Abbruch von ein-
zelnen Aufgaben.

Es existieren Sprachen zur Gestaltung von Prozessen, die die zuvor ge-
nannten Realisierungen mindestens in Teilen unterstiitzen. Zwei Beispie-
le sind durch die Sprachen BPMN2.0 [OMG11] und die UML Aktivitiits-
diagramme [OMG15b] gegeben.

Flexibility-by Deviation beschreibt die Fahigkeit einer Prozessinstanz, von
den im Prozessmodell beschriebenen Kontrollflusspfaden abzuweichen.
Dabei werden keine Anderungen am ausgehenden Prozessmodell vorge-
nommen. Derartige Abweichungen kénnen z.B. im Rahmen der Behand-
lungen von Fehlern oder Ausnahmen (engl. Error- and Exception Handling)
sinnvoll sein [Cas+99; AWGO05].

Ein weiterer Flexibilitdtsaspekt beschreibt die Fahigkeit zur Anpassung
von Prozessen. Von einer derartigen Anpassung konnen eine oder al-
le auf einem Prozessmodell basierenden und aktuell ausgefiihrten Pro-
zessinstanzen betroffen sein. Anpassungen konnen — miissen aber nicht
— auch die Anpassung des Prozessmodells einschlieffen. Siehe auch zur
Differenzierung die beiden folgenden Untertypen Momentary Change und
Evolutionary Change.

Der erste Untertyp Momentary Change bezieht sich auf die Anpassung einer
oder mehrerer ausgewéhlter Prozessinstanzen. Es handelt sich folglich um
eine Anpassung, die nach Beendigung der betroffenen Prozessinstanzen
fur zukiinftige Prozessinstanzen nicht mehr relevant ist. Momentary Change
kann dem durch [RW12] vorgestellten Typ Adaptation bzw. Ad-hoc Change
zugeordnet werden.

Sollen von einer Anpassung auch zukiinftige Prozessinstanzen betroffen
sein, so muss die Anpassung auch auf dem Prozessmodell durchgefiihrt
werden. Neue Prozessinstanzen auf Basis des gednderten Prozessmodells
enthalten somit die bereits durchgefiihrten Anpassungen. Bei derartigen
Anpassungen spricht man von Evolutionary Change. Sie lassen sich dem
durch [RW12] vorgestellten Typ Evolution zuordnen.

Grundlagen Seite 37

Der letzte von Schonenberg et. al [Sch+08] beschriebene Flexibilitdtsaspekt
bezieht sich auf die Fahigkeit eine Prozessinstanz auszufiihren, die auf
Basis eines unvollstindigen Prozessmodells instanziiert worden ist. Dies
ist insbesondere dann sinnvoll, wenn erst wiahrend der Ausfithrung al-
le benttigten Informationen tiber notwendige (Teil-)Aufgaben vorhan-
den sind. Prozessmodelle, die hinsichtlich Flexibility-by Underspecification
erstellt worden sind, enthalten daher oft sogenannte Platzhalter. Dabei
werden konkrete Realisierungen fiir derartige Elemente erst wihrend der
Ausfithrung instanziiert. Derartige Realisierungen werden in der kor-
respondierenden Literatur auch Prozessfragmente genannt. Flexibility-by
Underspecification kann ferner in die beiden Typen Late Binding und Late
Modeling unterschieden werden.

Flexibility-by Underspecification ist ein Flexibilitdtsaspekt, der nicht allein
durch ein geeignetes Prozessmodell bzw. die eingesetzte Sprache zur
Gestaltung realisiert werden kann. Komplementdr muss auch die Aus-
filhrungsumgebung eine geeignete Unterstiitzung anbieten. Beispiele fiir
konkrete Konzepte zur Unterstiitzung von Late Binding und Late Modeling
sind z.B. durch [Mur+13; CMT10] gegeben.

Bei Late Binding werden an der Stelle von Platzhaltern vordefinierte Funk-
tionsblocke, wie z.B. in Form von Subprozessen bzw. Prozessfragmenten, ver-
linkt und ausgefiihrt. Late Binding wird in der Literatur alternativ auch Late
Selection genannt [RW12].

Bei Late Modeling werden ebenso wie bei Late Binding an der Stelle von
Platzhaltern Funktionsblécke eingebunden. Im Gegensatz zum Late Bin-
ding sind diese Funktionsblocke beim Late Modeling aber nicht vordefiniert.
Daher miissen sie zundchst gestaltet werden. Diese Funktionsblocke kon-
nen an der unterspezifizierten Position innerhalb der Prozessinstanz ver-
linkt und anschlieffend ausgefiihrt werden. Late Modeling schliefit damit
auch die Einbindung eines Nutzers bzw. Doménenexperten mit ein.

Die vier zuvor beschriebenen Flexibilitdtsaspekte der Taxonomie nach
[Sch+08] beziehen sich teilweise auf das Prozessmodell oder die darauf
gebildeten Prozessinstanzen. Ferner konnen sie zu unterschiedlichen Zeit-
punkten im BPM-Lebenszyklus relevant sein. Komplementér zu den zuvor
dargestellten Flexibilitdtsaspekten von Prozessen wird nachfolgend auf
die Taxonomie nach [RW12] eingegangen. Dabei werden die im unteren
Bereich von Abbildung 2-7 dargestellten vier Flexibilitdtsaspekte Variabili-
ty, Adaptation, Looseness und Evolution aufgefiihrt.

Flexibility-by
Underspecification

Late Binding

Late Modeling

Adaptation

Looseness

Late Selection

Iterative Refinement

Ad-hoc Composition

Seite 38 Kapitel 2

Beim Flexibilitdtsaspekt Adaptation werden in Anlehnung an auftreten-
de Ereignisse Anpassungen von Prozessen vorgenommen. Derartige Er-
eignisse konnen im Kontext von Prozessen z.B. bei technischen oder se-
mantischen Fehlern, Zeitiiberschreitungen oder der Nichtverfiigbarkeit
von Ressourcen auftreten. Der Flexibilitatsaspekt Adaptation wird insbe-
sondere im Kontext von Fehler- und Ausnahmebehandlungen betrachtet
und bietet Konzepte fiir die Behandlung von vorhersehbaren und unvor-
hersehbaren Ereignissen an. Vergleichbar mit Flexibility-by Change wird
ebenso zwischen kurzzeitigen und dauerhaften Anpassungen unterschie-
den. Kurzzeitige Anpassungen beziehen sich dabei auf Prozessinstanzen.
Sie werden auch als Ad-hoc-Anpassungen bezeichnet. Fiir den Flexibili-
tatsaspekt werden eine Reihe von Operationen zur Anpassung [WRRO07;
WRRO08] vorgestellt, welche auch Anpassungsmuster genannt werden.
Sind von einer Anpassung nicht nur Prozessmodelle, sondern auch Pro-
zessinstanzen betroffen, so muss das Unterstiitzungssystem, wie z.B. eine
Workflow-Engine, auch eine entsprechende Funktionalitdt bieten.

Der Flexibilitdtsaspekt Looseness wird insbesondere mit wissensintensiven
Prozessen in Verbindung gesetzt. Hier sind Reihenfolgen von Aktivitdten
hochgradig spezifisch fiir eine konkrete Situation, sodass sie zum Zeit-
punkt der Gestaltung nicht oder nur eingeschréankt gestaltbar sein konnen.
Looseness sieht somit einen gewissen Grad an unterspezifizierten Prozes-
sen vor und ist daher vergleichbar mit Flexibility-by Underspecification. Es
werden die vier Typen Late Selection, Iterative Refinement, Late Modeling and
Composition und Ad-hoc Composition von Looseness unterschieden.

Late Selection ist dabei unmittelbar vergleichbar mit Late Binding. Es sieht
die Verwendung von Platzhaltern vor, die zur Ausfithrungszeit durch Sub-
prozesse bzw. Prozessfragmente ersetzt werden konnen.

Bei Iterative Refinement konnen zur Laufzeit weitere Aktivitdten hinsicht-
lich der Gestaltung von Prozessen ausgefiihrt werden. Bei Late Modeling
and Composition und Ad-hoc Composition handelt es sich um spezielle Typen
von Iterative Refinement. Dabei ist Late Modeling and Composition vergleich-
bar mit dem durch [Sch+08] vorgestellten Flexibilitdtsaspekt Late Modeling.
Es werden aber zusétzlich Aspekte der Komposition von neuen Funktions-
blocken auf Basis existierender und neu zu gestaltender Prozessfragmente
betrachtet.

Bei Ad-hoc Composition werden zur Laufzeit einzelne Prozessfragmente
sowie Bedingungen hinsichtlich ihrer erlaubten Kombinationen erstellt.
Darauf aufbauend kénnen zur Laufzeit Prozessfragmente durch Nutzerin-

nen und Nutzer zusammengestellt werden.

Grundlagen Seite 39

Der BPM-Lebenszyklus sieht eine iterative Weiterentwicklung von Prozes-
sen in Anlehnung an sich d&ndernde Anforderungen oder im Kontext ei-
nes sogenannten kontinuierlichen Verbesserungsprozesses (KVP) vor. Unter
dem Flexibilitdtsaspekt Evolution werden Anpassungen von Prozessmo-
dellen sowie Prozessinstanzen verstanden. Dies ist vergleichbar mit dem
durch [Sch+08] vorgestellten Flexibilitatsaspekt Flexibility-by Change sowie
seinem Untertyp und Evolutionary Change.

Bei dem letzten Flexibilitdtsaspekt Variability wird der Umgang mit ver-
schiedenen Prozessvarianten verstanden. Prozessvarianten teilen sich einen
gemeinsamen Kernprozess, auf dem aufbauend weitere Teile im Rahmen
der Phase Konfiguration hinzugefiigt werden kénnen. Variability kann da-
her als eine spezielle Variante der Typen Late Selection bzw. Late Binding
verstanden werden, die neben den Phasen Design & Analyse und Ausfiih-
rung auch eine Rolle in der Phase Konfiguration spielen kann. So konnen
Prozessvarianten in beiden vorgestellten Ansitzen in Anlehnung an einen
konkreten Kontext bereits in der Phase Konfiguration selektiert werden. Der
daraus resultierende konfigurierte Prozess benétigt in diesem Fall keine
Priifung von Bedingungen zur Laufzeit. Dies kann relevant sein, wenn das
Unterstiitzungssystem keine Anpassung von Prozessen zur Laufzeit un-
terstiitzt. Dabei wird zwischen dem verhaltensbasierten und dem strukturba-
sierten Konfigurationsansatz unterschieden, auf die bspw. in [Tor+12] vertieft
eingegangen wird.

Beim verhaltensbasierten Konfigurationsansatz werden Prozessvarianten und
zugehorige Bedingungen in einem gemeinsamen Prozessmodell beschrie-
ben. Bei der Ausfiihrung einer zugehorigen Prozessinstanz werden die Be-
dingungen in Anlehnung an den bestehenden Kontext gepriift und eine
entsprechende Prozessvariante selektiert und ausgefiihrt. Existierende An-
sédtze, die diesen Ansatz unterstiitzen, sind z.B. durch Configurable Even-
driven Process Chains (C-EPC) [RA07] und C-YAWL [Got+08] gegeben.

Der strukturbasierte Konfigurationsansatz sieht die Trennung der Prozessva-
rianten von den Bedingungen vor. So existiert ein sogenannter Basispro-
zess, welcher an spezifischen Punkten sogenannte Variation Points ent-
hélt. Ein Variation Point kann durch spezifische Operationen zur Anpas-
sung manipuliert werden. Variation Points sind dabei vergleichbar mit den
aus Late Selection bekannten Platzhaltern. Eine Manipulation eines Variati-
on Point fithrt zu der Herleitung einer spezifischen Prozessvariante. Ansat-
ze, die den strukturellen Konfigurationsansatz umsetzen sind durch Pro-
vop [HBR10] und vBPMN [DZK11] gegeben.

Evolution

Variability

Verhaltensbasierter
Konfigurationsansatz

Strukturbasierter
Konfigurationsansatz

Seite 40 Kapitel 2

[Tor+12] argumentieren, dass der strukturbasierte Konfigurationsansatz ins-
besondere bei grofleren Prozessmodellen Vorteile gegentiber dem verhal-
tensbasierten Konfigurationsansatz bietet. So kann durch die Trennung des
Basisprozesses von den Bedingungen (siehe auch SoC) eine reduzierte
Komplexitdt hinsichtlich der Gestaltung dieser Aspekte erreicht werden.
Ferner ist es beim strukturbasierten Konfigurationsansatz nicht notwendig,
dass bereits zur Laufzeit alle Prozessvarianten bekannt sind. Hierdurch
ist insbesondere die Erweiterungsfahigkeit der beteiligten Modelle positiv
betroffen.

Zuvor wurden weitere Flexibilitdtsaspekte von Prozessen vorgestellt. In
Teilen verhalten sich die beiden aufgezeigten Taxonomien komplemen-
tdr zueinander. So nimmt die durch [RW12] vorgestellte Taxonomie bspw.
keinen direkten Bezug auf den Flexibilititsaspekt Flexibility-by Design.
Dafiir fiigen Reichert und Weber den Flexibilitatsaspekt Variability hinzu,
der wiederum in [Sch+08] keine Berticksichtigung findet. Die restlichen
Flexibilitdtsaspekte beinhalten dhnliche Eigenschaften, die sich nur ge-
ringfiigig unterscheiden.

2.3 Business Process Modeling

Die zweite in dieser Arbeit betrachtete Domaéne stellt das Business Pro-
cess Modeling (BPMod) dar. Dabei kann das BPMod als eine untergeord-
nete Disziplin des BPM betrachtet werden. Sie umfasst dabei zahlreiche
Aspekte, die in der Gestaltung von Prozessen relevant sind. Nachfolgend
wird zundchst in Abschnitt 2.3.1 eine Einfithrung in das BPMod mit dem
Fokus auf der Vorstellung von unterschiedlichen Arten von Sprachen zur
Gestaltung von Prozessen gegeben. Ergédnzend wird in Abschnitt 2.3.2
auf unterschiedliche Perspektiven von Prozessen eingegangen. In Ab-
schnitt 2.3.3 und Abschnitt 2.3.4 werden jeweils Beispiele und eine Uber-
sicht der géngigsten Elemente von UML Aktivititsdiagrammen sowie des
De-facto-Standards BPMN2.0 gegeben.

2.3.1 Einfiihrung in das Business Process Modeling

Fiir die Phase Design & Analyse des BPM-Lebenszyklus werden geeignete
Sprachen zur Gestaltung von Prozessen benotigt. So haben sich fiir diese
beiden Bereiche einige bekannte Standards etabliert. Hierzu werden die
Sprache BPEL [OAS07] und seit 2011 auch die Sprache BPMN2.0 [OMG11]
gezahlt. Dabei hat sich iiber die Jahre die Sprache BPMN2.0 als De-facto-
Standard in der Industrie durchgesetzt. Wissenschaftliche Vertreter von

Grundlagen Seite 41

Ansitzen zur Gestaltung von Prozessen sind beispielsweise durch die
Ansitze ADEPT1 und ADEPT2 [RD09], YAWL [ATO05] oder Petri-Netze
[Mur89] gegeben.

Neben den bereits zuvor genannten Ansitzen und Sprachen existiert eine
Vielzahl an weiteren Sprachen, die zur Gestaltung von flexiblen Prozessen
eingesetzt werden kann. Diese Sprachen lassen sich in die drei Kategorien
datenflussorientiert, kontrollflussorientiert und objektorientiert einteilen. Eine
Zusammenfassung von diagrammbasierten Sprachen mit Zuordnung zu
einer der drei zuvor genannten Kategorien ist in Tabelle 2-3 nach [Gad08]

dargestellt.
Orientierung Methode
Objektorientiert ’ Aktivitatsdiagramm (UML) H Activitychart-Diagramm ‘

Statechart-Diagramm H Use Case-Diagramm (UML) ‘

Objektorientierte EPK H Integrationsdiagramm (SOM) ‘

’ Vorgangsereignisschema (SOM) ‘

Kontrollflussorientiert Petri-Netze ’ Folgestruktur- und Folgeplan ‘
’ Aufgabenkettendiagramm (PROMET) H GPM Diagramm ‘

Struktogramme

’ Swimlane-Diagramm H Erweiterte EPK H Picture ‘

’ Business Process Model and Notation (BPMN) ‘

Datenflussorientiert ’ IDEF-Diagramm H Datenflussdiagramm (SSA) ‘

’ Flussdiagramm (SADT) ‘

Eine Sprache fiir die Gestaltung von Prozessen sollte dabei je nach Anfor-
derung in der Lage sein, geschiftliche Abldufe durch grundlegende Kon-
zepte, wie etwa die Benennung von notwendigen Informationen, den ein-
zelnen Tétigkeiten, Ablaufbeziehungen sowie die Zuordnung von Rollen,
zu beschreiben.

2.3.2 Perspektiven in Geschaftsprozessmodellen

Moderne Prozesse berticksichtigen eine Vielzahl unterschiedlicher Aspek-
te. Die addquate Gestaltung dieser Aspekte von Prozessen kann dabei
eine hohe Komplexitit aufweisen. Zur Reduzierung dieser Komplexitét
werden Prozesse hédufig aus verschiedenen Perspektiven beschrieben. Eine
Perspektive kann dazu genutzt werden, um einen einzelnen oder eine
Gruppe von ausgesuchten Aspekten fokussieren zu konnen.

Tabelle 2-3:

Sprachen zur Gestal-
tung von Prozessen (nach
[Gad08])

Funktion

Verhalten

Organisation

Information

Seite 42 Kapitel 2

Der Vorteil bei der Verwendung von unterschiedlichen Perspektiven auf
einen Prozess ist die (teilweise) Trennung der relevanten Aspekte. Das un-
terliegende Konzept ist dabei vergleichbar mit dem in Abschnitt 1.2 einge-
fiihrten Konzept des Separation-of-Concerns (SoC). Durch Perspektiven kon-
nen verschiedene Fragen beantwortet werden, die unterschiedliche Aus-
pragungen haben konnen. Auf eine Auswahl dieser Fragen nach [CKO92]
wird nachfolgend eingegangen.

e Welche Handlung soll stattfinden?

o Wer wird die Handlung ausfiihren?

e Wann und wo wird die Handlung stattfinden?
e Wie und warum soll die Handlung stattfinden?

e Wer ist von der Handlung betroffen?

Durch Curtis [CKO92] werden insgesamt die vier folgenden Klassen von
Perspektiven unterschieden. In der Gesamtheit aller Klassen wird ein Pro-
zess als integriert, vollstindig bzw. konsistent verstanden. Auf Details dieser
Perspektiven wird nachfolgend eingegangen.

Die Perspektive Funktion beschreibt, was in den einzelnen Schritten des
Prozesses getan werden muss. Ferner werden auch Abhingigkeiten zu ver-
schiedenen Informationen, wie z.B. Daten, Artefakten oder Produkten, be-
trachtet.

Die Perspektive Verhalten beschreibt den Kontrollfluss des Prozesses. Sie
bezieht sich damit auf zeitliche und logische Abhingigkeiten zwischen
verschiedenen Elementen des Prozesses.

Durch die Perspektive Organisation wird festgelegt, welcher Aufgabentra-
ger in einem Prozess an welchem Schritt beteiligt ist. Klassischerweise sind
hiervon die drei Typen Mensch, Maschine und Anwendung betroffen. Ferner
konnen auch Gruppen, Kategorien, Rollen oder organisatorische Einhei-
ten sowie ihre Beziehungen als relevante Aspekte des Prozesses darstell-
bar sein.

Die Perspektive Information beschreibt den Datenfluss eines Prozesses. Da-
mit fokussiert sie die Daten und Informationen, die durch Schritte des Pro-
zesses erzeugt oder manipuliert werden. Neben dieser Beschreibung von
Ein- und Ausgaben stehen aber auch die Struktur der Daten und Informa-
tionen sowie ihre Beziehungen im Fokus dieser Perspektive.

Grundlagen Seite 43

In der Literatur [JB96; AJ00; AHWO03; ARD07] werden weitere Perspekti-
ven oder modifizierte Klassen von Perspektiven betrachtet. So unterschei-
den [JB96; AJ00] insgesamt fiinf verschiedene Klassen. Dabei werden die
durch Curtis vorgestellten Perspektiven Funktion und Verhalten in einer
neuen Perspektive Prozess zusammengefasst. Die Ansitze fithren weitere
Perspektiven durch Operation und Integration ein. Die Perspektive Opera-
tion beschreibt elementare Operationen, die von den an einem Prozess be-
teiligten Ressourcen und Anwendungen ausgefiihrt werden. Beispiele fiir
derartige Operationen geben die Autoren durch das Erstellen, Lesen oder
Modifizieren von Daten aus der Perspektive Information an. Die Perspekti-
ve Integration fiihrt die einzelnen Elemente der Perspektive Prozess mit den
Elementen der anderen Perspektiven zusammen. So werden z.B. identifi-
zierte Aufgaben zu Rollen, Gruppen oder organisatorischen Einheiten aus
der Perspektive Organisation referenziert.

Der in [AHWO03] vorgestellte Ansatz unterscheidet die fiinf Perspektiven
Funktion, Prozess, Organisation, Information und Operation. Eine Unterschei-
dung zu den in [CKO92] vorgestellten Perspektiven ist durch die Perspek-
tiven Prozess und Operation moglich. Die Perspektive Prozess kann der Per-
spektive Verhalten zugeordnet werden, da sie einen vergleichbaren Zweck
erfiillt. Analog zu dem in [JB96; AJ00] dargestellten Ansatz werden in der
Perspektive Operation elementare Operationen beschrieben.

Der letzte hier vorgestellte Ansatz [ARDO7] beschreibt zunéchst die vier
Perspektiven Prozess, Daten, Ressource und Task. Dabei lassen sich diese Per-
spektiven hinsichtlich ihrer Bedeutung auf die durch [CKO92] vorgestell-
ten Perspektiven anwenden. So ladsst sich Prozess zu Verhalten, Task zu Funk-
tion, Daten zu Information und Ressource zu Organisation zuordnen. Auf die-
ser Grundlage beschreiben [AHWO03], dass eine Reihe weiterer Perspekti-
ven je nach Anwendungszweck als sinnvoll erachtet werden kann. Sie fiih-
ren daher die sogenannten hoherwertigen Perspektiven Kontext, Ziel, Per-
formance und Produkt bzw. Dienstleistung ein. Im Rahmen der Perspektive
Kontext kann das Umfeld, fiir den der Prozess beschrieben wird, gestaltet
werden. So kann die Ausfithrung einzelner Aufgaben oder die Einbindung
von Ressourcen z.B. von der Jahres- oder Tageszeit abhédngig sein. Die
Perspektiven Ziel, Performance und Produkt bzw. Dienstleistung beschreiben
weitere Aspekte des Prozesses. Die Autoren verweisen darauf, dass diese
drei Perspektiven auch oftmals in klassischen Perspektiven berticksichtigt
werden konnen.

Die in diesem Abschnitt vorgestellten Konzepte fiir Perspektiven bilden
die Basis fiir die in Abschnitt 4.3.3 durchgefiihrte Analyse der Sprache

Weitere Perspektiven
auf Prozesse

Seite 44 Kapitel 2

BPMN?2.0. Dabei muss an dieser Stelle angemerkt werden, dass nicht je-
de der aufgefiihrten Perspektiven auch in einer solchen Sprache enthalten
sein muss. Die durch [CKO92] genannten Perspektiven Funktion und Ver-
halten sind typischerweise aber Bestandteil einer entsprechenden Sprache.
Andere Perspektiven wie Organisation und Information konnen als optional
betrachtet werden.

In den nachfolgenden Abschnitten 2.3.3 und 2.3.4 werden zwei Beispiele
fiir Sprachen zur Gestaltung von Prozessen gegeben. So werden zunéchst
UML Aktivititsdiagramme [OMG15b] vorgestellt, welche die Basis fiir die
Gestaltung von Verhalten im Rahmen des Ansatzes Adapt Cases bilden
(siehe Abschnitt 2.4). AnschlieSend wird die Sprache BPMN2.0 [OMG11]
vorgestellt, welche in der Doméane BPM den De-facto-Standard zur Gestal-
tung von Prozessen bildet und auch in dem in dieser Arbeit vorgestellten
Losungsansatz verwendet wird.

2.3.3 UML Aktivitatsdiagramm

Die Unified Modeling Language (UML) [OMG10] stellt einen industriel-
len Standard dar, der unterschiedlichste Aspekte der objektorientierten Ge-
staltung von modernen Softwaresystemen beinhaltet. Dabei existiert die
Moglichkeit, dass sowohl die Struktur als auch das Verhalten von derarti-
gen Systemen gestaltet werden konnen. Die in dieser Arbeit fokussierten
Prozesse stellen eine Form fiir ein solches Verhalten dar. Hierzu bietet die
UML verschiedene Diagramme zur Gestaltung von Verhalten an, wie z.B.
das Zustandsdiagramm oder das Aktivititsdiagramm.

In Abbildung 2-10 ist eine Ubersicht ausgesuchter Elemente von Aktivi-
tatsdingrammen dargestellt. Nachfolgend wird auf eine detaillierte Beschrei-
bung dieser Elemente sowie auf ein zugehoriges Beispiel eingegangen.

Abbildung 2-8:
Elemente von UML

Aktivitdtsdiagrammen Action

Action, Partition, ObjectNode Decision, Merge, Fork, Join Initial, Final Flow

—< § Initial Node
{ 1 Control Flow
—_—

Decision Node Fork Node
@ Activity Final

3:: | > ® Flow Final DMD

Merge Node Join Node

Partition

ObjectNode

Grundlagen Seite 45

Mit Hilfe eines Aktivititsdiagramms kann ein Ablauf von einzelnen Auf-
gaben in Form einer Sequenz von Aktivitdten (hier: Action) beschrieben
werden. Ein Element des Typs Action kann weiteres Verhalten enthalten,
wodurch die tibergeordnete Aktivitat verfeinert wird. Elemente des Typs
Action konnen durch ein Element des Typs Partition gruppiert werden.
Ein Element des Typs Partition kann z.B. zur Beschreibung von einer or-
ganisationalen Zugehorigkeit oder einer Rolle verwendet werden. Bei der
Austithrung von Aktivitidten konnen Daten benétigt oder erzeugt werden.
Durch ein Element des Typs ObjectNode kénnen derartige Daten beschrie-
ben werden.

Im Rahmen des Kontrollflusses konnen Verzweigungen vorkommen, mit
deren Hilfe konnen konditional-abhingige Sequenzen (Decision) beschrie-
ben werden. Durch weitere Konstrukte der Sprache sind aber auch paralle-
le (Teil-)Sequenzen (Fork) moglich. Ein verzweigter Kontrollfluss kann ent-
weder durch ein Element des Typs MergeNode oder durch ein Element des
Typs JoinNode zusammengefiihrt werden.

Der Start des Verhaltens in einem Aktivititsdiagramm wird durch ein Ele-
ment des Typs InitialNode beschrieben. Es werden insgesamt zwei mogli-
che Beendigungen des Verhaltens unterschieden. Zum einen kann durch
Elemente des Typs ActivityFinal das Verhalten der aktuellen Aktivitat be-
endet werden, wohingegen durch Elemente des Typs FlowFinal lediglich
der jeweilige (Teil-)Pfad des Verhaltens beendet wird.

Um den Kontrollfluss zu beschreiben kann das Flusselement vom Typ Con-
trolFlow verwendet werden. Ein solches Element verbindet jeweils zwei
Elemente miteinander, wie z.B. Aktivititen oder die zuvor eingefiihrten
Kontrollelemente. Um Datenfluss zu beschreiben, kann das Flusselement
vom Typ DataFlow verwendet werden.

Ein Beispiel eines Aktivititsdiagramms ist in Abbildung 2-9 gezeigt. Auf eine
Beschreibung des dargestellten Verhaltens wird nachfolgend eingegangen.

Worker Robot
Integrate electronic
parts into chassis

[}
o
Das dargestellte Verhalten beschreibt einen Montageprozess, dessen Ver-
halten sich auf die beiden Rollen Worker und Robot aufteilt. Durch die Rol-
le Worker wird dabei die eigentliche Montage durchgefiihrt. Die Rolle Ro-

Assemble electronic parts

Assemble mechanic parts

bot tibernimmt anschliefiend Mafinahmen zur Qualitdtssicherung und er-

Abbildung 2-9:
Beispiel eines UML
Aktivitdtsdiagramms

Seite 46 Kapitel 2

stellt einen zugehorigen Bericht. Dabei wird das Verhalten zunéachst durch
die Rolle Worker gestartet. Hier wird der Kontrollfluss in zwei parallele
Pfade aufgeteilt. Hierdurch ist eine parallele Ausfiihrung der dargestellten
Aktivitdten des nachfolgenden Kontrollflusses moglich. Ob diese Aktivita-
ten tatsdchlich parallel oder beliebig versetzt ausgefiihrt werden, ist durch
ein Aktivititsdiagramm nicht beschreibbar. Werden beide Aktivitdten been-
det, werden die einzelnen Pfade wieder zu einem Pfad zusammengefiihrt.
Die letzte Aktivitat wird durch die zweite Rolle Robot ausgefiihrt. Dabei
wird ein neues Datenobjekt mit der Bezeichnung Report erzeugt und das
Gesamtverhalten anschlieflend beendet.

2.3.4 BPMN2.0

In der Gestaltung von Prozessen stellt die Sprache Business Model and Nota-
tion (BPMN) [OMG11] derzeit den De-facto-Standard dar. Die Entwicklung
der Sprache BPMN2.0 wird durch die Object Management Group (OMG)
verwaltet. Durch die Verwendung der Sprache BPMN2.0 wird das Ziel
verfolgt, den Ubergang von der Gestaltung von Prozessen hin zu deren
Ausfiihrung zu verkiirzen bzw. zu vereinfachen. Hierzu enthilt die Spra-
che zahlreiche Sprachelemente fiir die Domédne BPM. Die Gestaltung von
Prozessen kann bereits so umfangreich sein, dass der gestaltete Prozess
oftmals durch ein entsprechendes Prozessunterstiitzungssystem, wie z.B.
eine Workflow-Engine, direkt ausgefiihrt werden kann.

Die Sprache BPMN2.0 verfiigt seit der Version 2.0 iiber insgesamt vier
unterschiedliche Diagrammtypen. Jeder Diagrammtyp fokussiert dabei
einen unterschiedlichen Aspekt in der Gestaltung von Prozessen. Als zen-
traler Diagrammtyp konnen Business Process-Diagramme (BPD) betrachtet
werden. Da an Abldufen hadufig unterschiedliche inter- und intraorgani-
satorische Rollen beteiligt sind, existieren zudem drei weitere Diagramm-
typen zur Beschreibung von Kollaborationen, Konversationen und Cho-
reographien. Der Fokus der weiteren Diagrammtypen liegt auf der Ge-
staltung von Zusammenhangkomponenten zwischen unterschiedlichen
Prozessen oder beteiligten Rollen. So kann hier z.B. stiarker auf den Nach-
richtenfluss zwischen beteiligten Prozessrollen durch ein Kollaborations-
diagramm Bezug genommen werden.

In dieser Arbeit liegt der Fokus auf der Gestaltung von Prozessen unter
Verwendung von BPD. Nachfolgend wird daher zunéchst eine Auswahl
von zugehorigen Elementen sowie ein Beispiel eines Prozesses durch ein
BPD gegeben. Auf eine detaillierte Ubersicht iiber weitere Diagrammtypen
wird an dieser Stelle verzichtet.

Grundlagen Seite 47

Das Business Process Diagram (BPD) stellt einen zentralen Typ von Diagram-
men in der Sprache BPMN2.0 dar. Ein BPD beschreibt dabei den Ablauf ei-
nes Prozesses durch Aktivitdaten bzw. Tasks. Dabei werden in der Beschrei-
bung von Abldufen eines Prozesses zum Teil vergleichbare Konzepte ver-
wendet, wie sie auch in UML Aktivititsdiagrammen vorkommen (sieche Ab-
schnitt 2.3.3). In Abbildung 2-10 werden ausgesuchte Elemente zur Gestal-
tung von Prozessen durch ein BPD gezeigt. Auf ihre Bedeutung wird nach-
folgend detaillierter eingegangen.

Tasks, Subprozesse Pool, Lane, Data Object Gateways Events

Pool Q O Start

Task
Subprocess
LaneA | LaneB

[F]~
& service @ Parallel (AND) @ Intermediate

Task

Eigenschaften von
Aktivitaten: Data '
A User Object Inclusive (OR) End

Task © Loop

~ Ad-hoc @ Exclusive (XOR) Timer

& Manual Il Multi-Instance (Parallel)
Task = Multi-Instance (Sequentiel) @ Complex Message

Das Verhalten eines durch ein BPD gestalteten Prozesses enthélt eine oder

alle

mehrere Aktivitdten. Aktivititen konnen entweder durch Elemente des
Typs Task oder des Typs Subprocess (deutsch: Unterprozess) beschrieben
werden. Dabei handelt es sich bei Tasks um eine atomare und bei Subpro-
cess um eine dekomponierbare Aufgabeneinheit. Ferner sieht die Sprache
BPMN?2.0 zahlreiche Untertypen fiir Tasks vor, fiir die jeweils ein spezieller
Zweck vorgesehen ist. Beispiele hierfiir sind durch die Typen Servicelask,
UserTask und ManualTask gegeben. Der Typ ServiceTask ist dafiir vorgese-
hen, dass ein IT-Dienst die jeweilige Aktivitédt {ibernehmen soll. Dement-
sprechend konnen UserTasks dafiir eingesetzt werden, dass ein menschli-
cher Akteur die Aktivitdt unter Verwendung einer IT-Unterstiitzung aus-
fiihrt. Ein besonderer Typ von Tasks ist durch ManualTask gegeben. Hierbei
wird angenommen, dass die zugehorige Aktivitdt durch einen menschli-
chen Akteur, aber ohne IT-Unterstiitzung, durchgefiihrt wird.

Ein Element des Typs Subprocess kann dabei wiederum weitere Elemen-
te zur Beschreibung von Verhalten enthalten. Das durch ihn beschriebene
Verhalten ist daher dekomponierbar. Ein solches Element kann sowohl auf-
geklappt als auch zusammengeklappt darstellt werden. In Abbildung 2-10
ist ein zusammengeklapptes Element gezeigt, was durch das umrandete
Plussymbol gezeigt wird. Eine zusammengeklappte Darstellung kann z.B.
dann verwendet werden, wenn das enthaltene Verhalten erst spéter gestal-
tet wird. Alternativ kann hierdurch aber auch bereits beschriebenes Ver-

Abbildung 2-10:
Elemente eines Business
Process Diagram

Seite 48 Kapitel 2

halten ausgeblendet werden, sodass die Fokussierung auf weitere Aspekte
des Prozesses unterstiitzt werden kann.

Sowohl Tasks als auch Unterprozesse konnen dariiber hinaus auch mit ei-
ner Reihe von unterschiedlichen Eigenschaften versehen werden. So kann
z.B. flir einen Task spezifiziert werden, dass mehrere seiner Instanzen par-
allel oder sequentiell ausgefiihrt werden sollen. Alternativ kann auch eine
wiederholte Ausfithrung durch die Eigenschaft Loop beschrieben werden.
Die Eigenschaft Ad-hoc hingegen kann z.B. bei Unterprozessen eingesetzt
werden, wenn die enthaltenen Aktivitdten in einer nur geringftigig vorbe-
stimmten Reihenfolge ausgefiihrt werden diirfen.

Durch ein Element des Typs Pool werden Aktivitdten gruppiert, die zu ei-
nem Teilnehmer eines Prozesses gehoren. Kann ein Teilnehmer eines Pro-
zesses weiter aufgeteilt werden, so bietet sich die Verwendung von Ele-
menten des Typs Lane an. Ein Element des Typs Lane ist dabei Teil eines
Pools und enthélt Aktivititen, die zu einem untergeordneten Teilnehmer
bzw. zu einer untergeordneten Rolle gehoren. In Prozessen kénnen eben-
falls die Erzeugung und Verwendung unterschiedlichster Daten notwen-
dig sein. Daten konnen durch Elemente des Typs DataObject im Verlauf
des Prozesses beschrieben werden.

In der Sprache BPMN2.0 kénnen entlang des Kontrollflusses Elemente des
Typs Gateway eingesetzt werden. Hierdurch wird der Verlauf des Kontroll-
flusses zur Ausfiihrungszeit gesteuert, sodass bspw. die Auswahl eines al-
ternativen Pfades oder mehrerer paralleler Pfade ermoglicht wird. Dabei
existieren Gateways fiir XOR-, OR- und AND-Operationen. Als Ergéanzung
dieser géngigen Typen von Gateways konnen aber auch Elemente des Typs
ComplexGateway eingesetzt werden. Durch ein solches Gateway konnen
komplexe Konditionen ausgewertet werden, sodass bspw. eine Auswahl
von mehreren ausgehenden Pfaden ermoglicht wird.

Events sind spezielle Konstrukte einer Sprache, die Ereignisse beschreiben.
In der Sprache BPMN2.0 wird dabei in die drei grundlegenden Typen Star-
tereignis (Start), Zwischenereignis (Intermediate) und Endereignis (End) un-
terschieden. Ferner sind weitere Typen von Ereignissen fiir Spezialfille
verfiigbar. So kénnen z.B. auch zeitgesteuerte Ereignisse (TimerEvent) ein-
gesetzt werden, die sowohl als ein Start- als auch als ein Zwischenereignis
eingesetzt werden konnen. Neben Elementen des Typs TimerEvent ist ein
grundlegender weiterer Typ durch MessageEvent gegeben. Ein solches Ele-
ment stellt einen wesentlichen Teil eines Nachrichtenaustauschs zwischen

Kommunikationspartnern dar.

Grundlagen Seite 49

Die zuvor beschriebenen Elemente kénnen durch verschiedene Elemente
miteinander verbunden werden. Eine Auswahl derartiger Elemente ist in
Abbildung 2-11 dargestellt. Durch ein Element des Typs SequenceFlow wird
die Reihenfolge einzelner Aktivitdten eines Prozesses festgelegt. Hierbei
koénnen z.B. Elemente der Typen Task, Subprocess oder Gateway miteinan-
der verbunden werden. Werden Gateways mit Entscheidungen eingesetzt,
so bietet sich die Moglichkeit der Kennzeichnung, dass es sich bei einem
beteiligten Element des Typs SequenceFlow um die Standardwahl (default)
handelt.

Sequence Flow Pool, Message Flow Data Association

MessageFlow
______ TaSk B Data Data
Producing Consuming

Task Task
: A

Da taAssociation)D DataAssociation

Some Data

SequenceFlow

Default
SequenceFlow

Default
Task

Alternative
Task

Pool A

MessageFlow
Task pr——-—--- =

Pool B

Durch ein Element des Typs MessageFlow wird der Austausch von Nach-
richten (engl. Message) beschrieben. Nachrichten konnen zwischen Akti-
vitdten und Elementen des Typs Pool ausgetauscht werden. Ein Beispiel
fiir den Nachrichtenaustausch ist in Abbildung 2-11 gegeben. Hier ist
ein Nachrichtenaustausch von der Aktivitat Task A zur Aktivitat Task B
dargestellt. Durch den dritten Typ DataAssociation konnen Datenobjekte
mit Aktivitdten verbunden werden. Ein Datenobjekt kann — wie in Abbil-
dung 2-11 dargestellt — z.B. durch eine Aktivitit erzeugt oder von ihr fiir
die weitere Verarbeitung verlangt werden.

Ein Beispiel fiir einen Prozess, der durch ein BPD der Sprache BPMN?2.0 be-
schrieben worden ist, wird in Abbildung 2-12 gezeigt. Das Verhalten ori-
entiert sich dabei an dem gegebenen Beispiel fiir UML Aktivititsdiagramme
(siehe Abbildung 2-9). Ein wesentlicher Unterschied zur Gestaltung mittels
UML Aktivititsdiagrammen ist hier vornehmlich durch die Differenzierung
unterschiedlicher Typen von Aktivitidten erkennbar. So ldsst sich bspw.
ausdriicken, dass bestimmte Tasks IT-gestiitzt oder ohne IT-Unterstiitzung
durchgefiihrt werden sollen. Ferner ldsst sich das Verhalten der beiden
Rollen Worker und Robot durch eine nachrichtenbasierte Kommunikation
entkoppeln. So ist eine Beendigung des (Teil-) Verhaltens der Rolle Worker
moglich, sobald die letzte zugehorige Aktivitat beendet worden ist.

Abbildung 2-11:
Weitere Elemente eines
Business Process Diagram

Abbildung 2-12:
Beispiel eines Busi-
ness Process Diagram

Seite 50 Kapitel 2

Worker Robot

Assemble parts

& Assemble
electronic parts

fgh Assemble
mechanic parts

@Integrate
electronic parts ¢- —| >@

into chassis

Item is
ready for et :

quality check '

] ~

Ferner ist durch den Unterprozess Assemble parts ein Beispiel fiir einen so-
genannten Ad-Hoc-Prozess gegeben. Das in ihm gezeigte Verhalten wird
auch als schwach strukturiert bezeichnet. Hierdurch ist die reale Reihen-
folge der Aktivitaten Assemble electronic parts und Assemble mechanic parts
durch die Rolle Worker frei wéhlbar.

2.4 Adapt Cases

Der Ansatz Adapt Cases und das mit ihm verbundene Adaptivity Enginee-
ring wurde erstmals durch Luckey [Luc+11] eingefiihrt. Dabei wird die Ge-
staltung von Funktionen zur Anpassung von selbst-adaptiven Software-
systemen in einer frithen Phase des Software Development Process (SDP)
bzw. Entwicklungsprozesses verstanden. In Adapt Cases wird dabei ins-
besondere die Trennung der Anpassungs- von der Anwendungslogik fo-
kussiert. Durch die Wiederverwendung von Grundprinzipien des Gestal-
tungsansatzes der UML Use Cases kann deren hohe Ausdrucksfahigkeit
tibernommen werden. Ferner ldsst sich der Ansatz Adapt Cases durch weit
verbreitete Gestaltungstechniken in eine Vielzahl von bestehenden Ent-
wicklungsprozessen integrieren.

Das Adaptivity Engineering nach Luckey enthdlt neben einem konstrukti-
ven Verfahren zur getrennten Gestaltung der Anwendungs- und Anpas-
sungslogik zudem auch eine Methode zur Qualitédtssicherung von relevan-
ten Artefakten. Der Ansatz Quality Assurance For Adaptive Systems (QUAA-
SY) stellt ein Verfahren zur Analyse von verschiedenen Systemeigenschaf-
ten dar und kann in diesem Bezug zur Uberpriifung verschiedener Qua-
litdtsanforderungen eingesetzt werden. Er basiert auf etablierten Techni-
ken aus dem Bereich der Graphtransformationen [Eng+00] und des Model-
Checkings [Ren03; ESW07]. Da der Fokus dieser Arbeit auf der konstruk-
tiven Gestaltung von Prozessen liegt, wird fiir weiterfithrende Informatio-
nen auf die Arbeit von Luckey [Lucl3] verwiesen.

Nachfolgend wird zundchst in Abschnitt 2.4.1 das generelle Prinzip des
Ansatzes Adapt Cases und der zugehorigen Sprache ACML vorgestellt. An-

Grundlagen Seite 51

schlieffend wird in Abschnitt 2.4.3 auf die abstrakte Syntax eingegangen.
In Abschnitt 2.4.2 wird die konkrete Syntax der Sprache ACML anhand ei-
nes Beispiels veranschaulicht. Abschlieffend wird in Abschnitt 2.4.4 eine
exemplarische Integration in einen SDP beschrieben.

241 Uberblick

Die Sprache Adapt Case Modeling Language (ACML) kann zur getrennten
Gestaltung von Aspekten der Anpassungs- und Anwendungslogik ein-
gesetzt werden. Dabei werden Konzepte aus der Gestaltung von selbst-
adaptiven Systemen wiederverwendet. In Abbildung 2-13 ist das Grund-
prinzip des Ansatzes Adapt Cases nach Luckey [Luc+11; LE13] dargestellt.

AdaptCases — — MAPE-K Model
Adapt Case Adaptation View Autonomic Manager
Adaptation Adaptation Analyze| | Plan

Context

uses mapped Monitor Knowledge Execute
©, | S
(€]

Monitor
Managed Element

In dem Ansatz Adapt Cases wird die Referenzarchitektur MAPE-K als Sicht
auf das zu gestaltende Softwaresystem eingesetzt. MAPE-K wurde durch
[KCO03] eingefiihrt und stellt in der Domane der selbst-adaptiven Syste-
me eine der am hdufigsten eingesetzten Modelle zur Beschreibung von
wesentlichen Funktionen und Abldufen in Bezug zur eigenstindigen An-
passung eines Systems dar. Das Prinzip des Modells stellt eine Riickkopp-
lungsschleife (engl. Feedback Loop) dar, entlang der eine Reihe von verschie-
denen Funktionen ausgefiihrt wird.

Das Modell sieht dabei die Uberwachung und bedarfsorientierte Anpas-
sung eines sogenannten Managed Element durch das Konzept des Autono-
mic Managers vor. Fiir die Uberwachung und Anpassung stellt das Mana-
ged Element wohldefinierte Schnittstellen in Form eines Sensors (S) und ei-
nes Effektors (E) zur Verfiigung. Durch diese Schnittstellen werden der le-
sende Zugriff (S) auf Daten und der schreibende Zugriff (E) auf relevante
Teile des Systems und deren Umgebung unterstiitzt.

Der Autonomic Manager enthélt eine Reihe von Funktionen, die zur Erken-
nung, Auswahl und Ausfiihrung von Anpassungen an Teile des Managed
Element notwendig sein konnen. Luckey partitioniert diese Funktionen in

Abbildung 2-13:

Prinzip des Ansatzes
Adapt Cases (nach Luckey
[Luc+11])

Seite 52 Kapitel 2

drei Bereiche, die in Abbildung 2-13 farbig dargestellt sind. Ferner sieht er
fur die Gestaltung die beiden Modelle Adapt Case Model (AVM) und Adap-
tation View Model (ACM) vor. Nachfolgend wird zunédchst auf die Partitio-
nen und anschlieffend auf die beiden Modelle eingegangen.

Die erste Partition gruppiert die beiden Funktionen Monitor und Analyze
des Modells MAPE-K. Luckey nennt diese Partition Monitor. Der Fokus die-
ser Partition bezieht sich auf die Erhebung und Aggregation von Daten un-
ter Verwendung von Operationen der Schnittstelle S. Ferner ist eine wei-
terfiihrende Analyse dieser Daten vorgesehen, deren Ergebnis anzeigt, ob
Anpassungen notwendig sind oder nicht. Falls eine Anpassung notwendig
ist, so werden Funktionen aus der zweiten Partition Adaptation eingesetzt.

Durch die zweite Partition werden die beiden Funktionen Plan und Exe-
cute des Modells MAPE-K gruppiert. Der Fokus dieser Partition liegt auf
der Beschreibung von Verhalten, durch das eine Anpassung am Managed
Element ausgefiihrt werden kann. Luckey sieht hier die Beschreibung von
unterschiedlichen Alternativen fiir eine Anpassung vor. Diese Alternativen
lassen sich in dem Modell MAPE-K der Funktion Plan zuordnen. Ferner
kann eine Alternative spezifische Operationen zur Anpassung des Managed
Element enthalten, die durch die Schnittstelle E angeboten werden.

Die dritte und letzte Partition Adaptation Context beinhaltet das Konzept
Knowledge. Hierbei handelt es sich weniger um eine Funktion. Vielmehr
wird durch die vier zuvor aufgefiihrten Funktionen gemeinsam genutztes
Wissen beschrieben. Dieses Wissen kann im Modell MAPE-K im einfachs-
ten Fall durch gemeinsam genutzte Daten vorhanden sein. Luckey verwen-
det die Partition Adaptation Context neben dem zuvor genannten Fall insbe-
sondere zur Beschreibung der Systemarchitektur in Hinsicht auf anzupas-
sende (Teil-)Komponenten. Im Rahmen des Verhaltens der beiden anderen
Partitionen Monitor und Adaptation wird auf Eigenschaften dieser Kompo-
nenten zuriickgegriffen.

Die Inhalte der Partitionen Monitor und Adaptation werden im Rahmen des
ACM beschrieben. Dabei wird auf zuvor beschriebene Inhalte der Partiti-
on Adaptation Context in Form des AVM zuriickgegriffen. So lassen sich
Anpassungen hinsichtlich relevanter Ausschnitte des betrachteten Systems
und seiner Umgebung fokussiert beschreiben.

In den nachfolgenden Abschnitten 2.4.2 und 2.4.3 werden fiir die Sprache
Adapt Case Modeling Language zunichst die konkrete Syntax anhand eines
Beispiels und anschlieffend die abstrakte Syntax vorgestellt. Die beschrie-
benen Inhalte bilden dabei die Basis fiir die in dieser Arbeit vorgestellten
Sprache ACML4BPM (siehe Kapitel 4).

Grundlagen Seite 53

2.4.2 Konkrete Syntax der Sprache ACML am Beispiel

Die konkrete Syntax der Sprache ACML wird in diesem Abschnitt in An-
lehnung an ein Beispiel beschrieben. Teile des Beispiels basieren dabei auf
den durch Luckey [LE13] beschriebenen Anwendungsfall. Dabei wird die
Steuerung von verschiedenen Modj, in denen ein Server Dienste ausfiihrt,
beschrieben. Dabei soll je nach Auslastung des Servers entweder in einen
effizienten (eco) oder einen performanten (performance) Modus gewechselt
werden konnen. Ferner soll aber auch der manuelle Wechsel in den per-
formanten Modus ermoglicht werden. Analog zum vorherigen Abschnitt
wird fiir das Beispiel zunédchst auf das AVM und anschlieffend auf das
ACM eingegangen.

In Abbildung 2-14 ist ein Beispiel fiir ein AVM dargestellt. Das Beispiel
besteht demnach aus der Systemkomponente Server und der Umgebungs-
komponente HumanMachinelnterface. Die Auslastung des Servers kann
durch die Sensorschnittstelle ServerLoad bereitgestellt werden. Um den
Status des Servers zu dndern, wird die dargestellte Effektorschnittstelle
ServerMode verwendet. Die Notwendigkeit fiir einen manuellen Wechsel
wird durch das dargestellte Signal ManualPerformanceCall angedeutet.

«sensor» «effector» Abb1]dung 2-14:
Serverload ServerMode Konkrete Syntax der Spra-
load : integer modus : enum che ACML am Beispie]
range : 0.. 100 range : {eco, performance} «environment signal» .
step:1 ManualPerformanceCall eines AVM (nach LUCke-y
+ getServerload() : int + setModus(string) : void +id : integer [LEISJ)
"
1 [|
Oy 1 [
1 1 1
£] £]
«system» hmi «enviror]ment»
Server 1| HumanMachinelnterface

Bei der Verwendung von einer gédngigen Gestaltung durch UML Kompo-
nentendiagramme spricht Luckey auch von einer hohen Konsistenz zu beste-
henden Methoden. Dies lasst sich dadurch begriinden, dass der Einstieg
in die Gestaltung von Eigenschaften des Systems und seiner Umgebung
fir Anwender, die UML bereits erfolgreiche einsetzen, eine geringe Hiirde
darstellt. Hierdurch lasst sich die Erstellung des AVM in bereits bestehen-
de Entwicklungskontexte besonders leicht erreichen.

Die Erstellung des ACM sieht die beiden aufeinanderfolgenden Aktivita-
ten der High-Level-Gestaltung und der Low-Level-Gestaltung vor. Eine inte-
grierte Sicht der Ergebnisse dieser Aktivititen ist in Abbildung 2-14 darge-
stellt.

Abbildung 2-15:
Konkrete Syntax der
Sprache ACML am
Beispiel eines ACM
(nach Luckey [LE13])

Seite 54 Kapitel 2

«Adapt Case»
Autonomous
Server Management

«Adapt Case»
Manual Server
Management

High-Level
Adapt Case
Model

Monitoring Activity] Monitoring Activity J

[Server.load < 20 OR «signal»

EfiCh 5 Server.load > 80] - (:) >ManuaIPen‘orrnanceCaII %
Minutes
% 20)

Adaptation Activity J Adaptation Activity J
H(Server‘setModus(performance))%©
Server.setModus(eco)
[Server.load
> 80]
Server.setModus(performance)

Das High-Level ACM ist hier im oberen Bereich gezeigt. Luckey sieht bei

Low-Level
Adapt Case
Model

dieser Erstellung des ACM die Verwendung von erweiterten UML Use
Case-Diagrammen vor. So wird das Konzept des Anwendungsfalls (Adapt
Case) in Anlehnung an UML Use Cases dargestellt. Zwischen Funktionen
der Anwendungslogik (hier: Service A) und Funktionen zur Anpassung
(hier: Adapt Cases) konnen Assoziationen eingesetzt werden. Die Aufschrift
«adapts» einer solchen Assoziation beschreibt, dass ein ausgehender Adapt
Case eine andere Funktion anpasst. Dabei kann das Ziel einer solchen As-
soziation sowohl ein weiterer Adapt Case als auch eine Funktion der An-
wendungslogik in Form eines UML Use Case sein.

Das Low-Level ACM ist im unteren Bereich dargestellt. Es enthalt dabei Ver-
feinerungen der beiden Anpassungsfille in Form von Beobachtungs- und
Anpassungsaktivitdten. Das Verhalten des Autonomous Server Managements
ist dabei so verfeinert worden, dass durch die dargestellte Beobachtungs-
aktivitdt zeitgesteuert alle 5 Minuten die Auslastung des Servers gepriift
wird. Wird eine zu geringe (<20%) oder zu hohe (>80%) Auslastung detek-
tiert, so wird die zugehorige Anpassungsaktivitdt aufgerufen. Hierfiir be-
dient sich Luckey einer sogenannten Call Adaptation Activity, welche durch
einen Kreis mit der Aufschrift A dargestellt wird. Die Anpassungsaktivi-
tat enthdlt dabei Verhalten, welches je nach Auslastung einen Wechsel des
Modus, in dem der Server operiert, hervorruft. Die Beobachtungs- und An-
passungsaktivitidt des Anpassungsfalls Manual Server Management ist im
rechten Bereich dargestellt. Hier wird im Rahmen der Beobachtungsakti-
vitdt das durch die Umgebungskomponente HumanMachinelnterface bereit-

Grundlagen Seite 55

gestellte Signal ManualPerformanceCall als Startsignal eingesetzt. Die zuge-
horige Anpassungsaktivitit passt als Folge den Modus des Servers an.

Es sei an dieser Stelle darauf hingewiesen, dass in dem zuvor beschrie-
benen Verhalten auf Elemente der Sensor- und Effektorschnittstellen aus
dem AVM zuriickgegriffen wird. Dies stellt ein Beispiel fiir die Verwen-
dung von Elementen des AVM im Rahmen der Gestaltung des ACM dar.
Umfangreichere Anwendungen aus der Praxis kénnen so auch eine hohe-
re Anzahl an Elementen im Rahmen des AVM vorsehen, die dann Verwen-
dung in der Gestaltung des Verhaltens durch ein ACM finden. Dabei kon-
nen im Rahmen des ACM auch mehrere Anpassungsaktivitdten im Rah-
men der Gestaltung eines einzelnen Adapt Case vorkommen, die je nach
Situation entsprechend alternatives Verhalten zum Zweck der Anpassung
bereitstellen.

243 Abstrakte Syntax der Sprache ACML

In diesem Abschnitt werden Ausschnitte der abstrakten Syntax der Spra-
che ACML fiir die beiden Modelle ACM und AVM vorgestellt. In Abbil-
dung 2-16 sind wesentliche Konzepte des AVM in Form eines Metamodells
dargestellt. Dabei sind Konzepte der Sprache ACML farblich unterlegt her-
vorgehoben. Nicht hervorgehobene Konzepte stammen aus dem Meta-
modell der UML.

. 1 .
l Component } +/provu(i)ef 2| Interface +ownedAttrlbuotei Property

I SystemComponent I I Adaptationinterface I.H AdaptationProperty I

0..*
Zﬁ Zﬁ {subsets
ownedAttributes}
IEnvironmentComponentl I Sensor II Effector I
+signal| 0..*
Adaptation
I EnvironmentSignal I Context

Durch die Partition Adaptation Context werden wesentliche strukturelle In-
formationen iiber den Kontext der Anpassung (hier: Adaptation Context)
gestaltet. Das von Luckey beschriebene Konzept basiert dabei vornehmlich
auf Konzepten der UML Komponentendiagramme, um die Struktur des Sys-
tems und seiner Umgebung zu beschreiben. Man spricht dabei im Rahmen
der Gestaltung von selbst-adaptiven Systemen von den beiden Konzepten
System und Environment, fiir die jeweils ein neuer Typ von Komponenten
eingefiihrt wird. Dabei konnen Komponenten des Typs EnvironmentCom-
ponent eine Reihe von Signalen (EvironmentSignal) senden, die zur Auslo-
sung einer moglichen Anpassung eingesetzt werden konnen.

Abbildung 2-16:
Auszug aus dem
AVM-Metamodell
(nach Luckey [LE13])

Abbildung 2-17:
Auszug aus dem
ACM-Metamodell
(nach Luckey [LE13])

Seite 56 Kapitel 2

Ein System und seine Umgebung koénnen aus einer beliebigen Anzahl
an Komponenten bestehen, die jeweils zwei Typen von Schnittstellen fiir
den kontrollierten lesenden und schreibenden Zugriff auf Inhalte der zu-
vor eingefiihrten Typen von Komponenten ermoglichen. Im Kontext der
selbst-adaptiven Systeme spricht man dabei vorrangig von Sensor- und Ef-
fektorschnittstellen. Dabei konnen diese Schnittstellen Operationen oder
Eigenschaften (AdaptationProperty) enthalten, die im Rahmen der Gestal-
tung des ACM eingesetzt werden kénnen.

Das Metamodell des ACM ist in Abbildung 2-17 dargestellt. Dabei sind
abermals die Konzepte der Sprache ACML farblich unterlegt hervorgeho-
ben. Nicht hervorgehobene Konzepte stammen aus dem Metamodell der
UML und stellen im Wesentlichen Elemente der UML Aktivititsdiagramme
und UML Use Case-Diagramme dar.

{subsets owngdBehawor) < Behaviored Classifier
+ownedBehavior

+activity [Usecase | [cass |

Behavior

+ownedMonitor

1 AdaptCase
{subsets ownedBehavior} Monitor

+ownedAdaptationAction
¥

Monitoring Activity

Adaptation Activity

{subsets ownedBehavior} Adaptation

Wesentliches Konzept des Ansatzes ist das Konzept des Anpassungsfalls
(hier: AdaptCase). Bei einem Anpassungsfall handelt es sich um einen spe-
zialisierten Typ eines UML Use Case. Erstmals wurde dieses Konzept durch
Luckey [Luc+11] vorgestellt. Die Verwendung des Konzepts des Anpas-
sungsfalls ist fiir die Beschreibung von Funktionen zur Anpassung von
Eigenschaften der System- oder Umgebungskomponenten gedacht. Eine
solche Anpassung ladsst sich hinsichtlich der beiden Partitionen Monitor
und Adaptation weiter unterteilen. So wird durch das Konzept der Beob-
achtungsaktivitat (hier: MonitoringActivity) Verhalten beschrieben, das zur
Aggregation und Analyse von Daten der System- und Umgebungseigen-
schaften eingesetzt wird. Tritt die Notwendigkeit fiir eine Anpassung auf,
so kann das Konzept der Anpassungsaktivitat (hier: AdaptationActivity) ge-
nutzt werden, um entsprechendes Verhalten zu beschreiben. Fiir die Be-
schreibung des Verhaltens der Beobachtungs- als auch der Anpassungs-
aktivitdt wird vorrangig auf existierende Elemente der UML Aktivitits-
diagramme zuriickgegriffen.

Grundlagen Seite 57

244 Integration in einen Entwicklungsprozess

Die Verwendung der Sprache ACML schliefit die Erstellung von verschie-
denen Artefakten auf unterschiedlichen Ebenen entlang eines Software-
entwicklungsprozesses (SDP) mit ein. Dabei steht stets die Trennung von
Aspekten der Anpassungs- von der Anwendungslogik im Vordergrund.
In enger Anlehnung an [LE13] sind in Abbildung 2-18 Teile des Ansatzes
Adapt Cases entlang relevanter Phasen eines SDP gezeigt. Auf den Zusam-
menhang gezeigter Phasen und Artefakte wird nachfolgend eingegangen.

Dabei steht die Spezifikation von Aspekten der Anwendungslogik im Vor-
dergrund, die in Abbildung 2-18 einem beispielhaften Verlauf folgt. So
wird zunédchst die Beschreibung von Anforderungen an das System vor-
genommen. Ublich ist es zudem, dass ein Dominenmodell erstellt wird,
das Kernkonzepte der jeweiligen Anwendungsdomaine beschreibt und in
Relation zueinander setzt. Hierfiir konnen bspw. UML Klassendiagramme
oder Mind-Maps eingesetzt werden.

Requirements Specification Analysis + Design
Adaptation q el Y g
Logic ACML: ACML:
CERES Highl-Level Low-Level
Adaptation View and Adaptation View and
Adapt Cases Adapt Cases
Busi Ul PRegluirerSents., Use Case Diagram, Seq“efl‘C? Di:lagram, Component Diagram,
Logic oo e oman Activity Diagram Ana BT ke State Chart Diagram
Concerns Model Diagram

Aufbauend kénnen erste Funktionen durch UML Use Case-Diagramme und
UML Aktivititsdiagramme beschrieben werden, wobei diese stets die zuvor
beschriebenen Anforderungen adressieren. In einem weiteren Schritt kon-
nen die Funktionen und das Verhalten anschliefSend durch UML Sequenz-
diagramme und UML Analyseklassendiagramme verfeinert werden. Im letz-
ten dargestellten Schritt vor der Implementierung wird die Architektur
durch UML Komponentendiagramme beschrieben. Dabei wird hédufig auch
der Lebenszyklus von wichtigen Objekten durch UML Zustandsiibergangs-
diagramme beschrieben.

Die Gestaltung von Aspekten der Anpassungslogik kann komplementér
zu den letzten drei beschriebenen Schritten erfolgen. Die Basis bildet hier-
bei das AVM. Es enthilt einen Ausschnitt des zuvor beschriebenen Sys-
tems, der ausschliefilich fiir die Anpassungslogik relevante Aspekte be-
schreibt. Wie bereits beschrieben, handelt es sich hierbei z.B. um relevan-
te Komponenten, Sensor- und Effektorschnittstellen oder um mogliche Si-
gnale zur Auslosung eines Anpassungsfalls. Nachfolgend kann mit der
High-Level-Gestaltung von Adapt Cases begonnen werden, die mit beste-

Abbildung 2-18:
Software Deve-
lopment Process

unter Verwendung der
Sprache ACML (nach
Luckey [LE13])

Seite 58 Kapitel 2

henden Use Cases der Anwendungslogik in Relation stehen. Im zweiten
Schritt der Gestaltung von Aspekten der Anpassungslogik kann es not-
wendig sein, das AVM anzupassen. Luckey begriindet dies damit, dass zum
Zeitpunkt des Erstentwurfs des AVM einzelne Funktionen oftmals noch
nicht addquat auf Komponenten verteilt sein konnen. So entsteht erst im
weiteren Verlauf das Wissen, das eine addquatere Gestaltung von System-
und Umgebungskomponenten sowie von einer Verteilung von Funktio-
nen ermoglicht. Auf Basis des Low-Level-AVM kann anschlieflend das zu-
gehorige Low-Level-ACM erstellt werden, in dem die Adapt Cases durch
Beobachtungs- und Anpassungsaktivitdten verfeinert werden kénnen.

Durch die konsequente Nutzung bestehender Gestaltungselemente und
-techniken der UML sind die durch die ACML erstellten Artefakte in ver-
schiedene Phasen und Schritten des SDP stets mit den Artefakten der An-
wendungslogik integrierbar. Hierdurch wird die Verwendung der Spra-
che ACML fiir UML-erfahrende Nutzer vereinfacht und vor allem auch an-
wendbar.

Kapitel

Verwandte Arbeiten

In diesem Kapitel werden unterschiedliche wissenschaftliche Ansitze vor-
gestellt, die als verwandte Arbeiten betrachtet werden konnen. Dabei kann
Flexibilitit in Prozessen durch verschiedene Arten erreicht werden, so-
dass sich auf insgesamt drei Felder bezogen wird. Zunichst werden in
Abschnitt 3.1 ausgesuchte Arbeiten vorgestellt, die Flexibilitit und An-
passbarkeit von Prozessen fiir diverse Zwecke unterstiitzen. Anschlielend
wird in Abschnitt 3.2 auf Ansidtze von flexiblen und anpassbaren Prozes-
sen im Kontext von Industrial Internet-of-Things (IloT) und Industrie 4.0-
Anwendungen eingegangen. Es folgen in Abschnitt 3.3 Arbeiten, in de-
nen Konzepte des Autonomic Computing ebenfalls auf Prozesse angewen-
det werden.

3.1 Flexible und anpassbare Prozesse

Flexibilitat in Prozessen ist in der Doméane BPM ein weitreichend erforsch-
tes Feld. Daher wurden bereits in Abschnitt 2.2 grundlegende Ansétze fiir
flexible und anpassbare Prozesse vorgestellt, da sie als Grundlage fiir die
Ausarbeitung dieser Arbeit angesehen werden. Nachfolgend vorgestellte
Arbeiten haben sich anschlieffend mit konzeptionellen Weiterentwicklun-
gen oder technischen Realisierungen dieser Grundlagen beschiftigt.

Eine Arbeit, die sich sowohl mit Entwurfsmustern als auch deren tech-
nischen Realisierung beschiftigt hat, wurde durch Dohring et. al [DZK11]
vorgestellt. Dabei wird die Sprache BPMN2.0 um adaptive Workflow-
Segmente erweitert, an denen zur Laufzeit vordefinierte Anpassungsmus-
ter (engl. Adaptation Pattern) gebunden werden konnen. In dem Ansatz
werden Regeln in der Form Wenn-Dann-Anders fir die Auswahl eines sol-
chen Anpassungsmusters eingesetzt. Derartige Segmente sind vergleich-
bar mit den fiir den Typ Late Selection eingefiihrten Platzhaltern (siehe

Seite 60 Kapitel 3

Abschnitt 2.2.3). Die Autoren stellen ebenfalls eine prototypische Im-
plementierung vor, die auf der Verwendung der Drools Rule-Engine und
Workflow-Engine' beruht. Die Anwendung des Ansatzes kann insbesonde-
re dann eingesetzt werden, wenn mehrere Varianten eines Prozesses ver-
waltet werden sollten. Alternative Ansitze aus diesem Bereich sind durch
[Ayo+16] oder im spezielleren Bereich fiir die Versionierung von Prozessen
[Sai+15] gegeben.

In der Arbeit von Milanovic et. al [MGO09] wurde die Sprache BPMN2.0 um
diverse Eigenschaften erweitert, sodass ein gesteigerter Grad an Flexibi-
litdt in der Gestaltung ermoglicht wird. Der Ansatz fokussiert dabei die
Gestaltung von Entscheidungen durch Regeln. Als Resultat wird das neue
Metamodell rBPMN vorgestellt, iiber das eine Komposition von Prozessen
(BPMN) und Regeln (RZML) durchgefiihrt wird. Hierzu fithren die Auto-
ren ein erweitertes regelbasiertes Gateway (RuleGateway) ein, das mit ho-
herwertigen Regeln versehen werden kann. Der Ansatz fokussiert damit
vorwiegend den Flexibilitatsaspekt Flexibility-by Design.

Weitere Arbeiten, die insbesondere im Kontext der eingefiihrten Taxono-
mien fiir Flexibilitit in Prozessen entstanden sind, werden im Rahmen der
Evaluation aufgefiihrt und mit Fahigkeiten des eigenen Ansatzes vergli-
chen. Beispiele fiir derartige Arbeiten sind durch ADEPT1 [RRD03], YAWL
[ATO05; Ada+06; Ada+07], FLOWer [AWGO5] oder Declare [PA06; Pes+07]
gegeben.

3.2 Flexible und anpassbare Prozesse im lloT

Existierende Ansdtze unterstiitzen die Gestaltung von flexiblen und an-
passbaren Prozessen bereits auf verschiedenen Ebenen in einem einzelnen
oder zwischen mehreren Unternehmen. Ein verbreitetes Vorgehen stellt
dabei die Erstellung von Erweiterungen einer Sprache dar, wie z.B. der
BPMN?2.0. Hierdurch kénnen neue und relevante Konzepte in der Gestal-
tung derartig berticksichtigt werden, dass die enthaltene Flexibilitat als
umfassender betrachtet werden kann. Einige Beispiele im Kontext von
Industrial Internet-of-Things (1loT) bzw. von Industrie 4.0-Anwendungen
werden nachfolgend erortert.

So stellen Meyer et. al [MRM13; MRH15] einen Ansatz vor, in dem grund-
legende Konzepte des Internet-of-Things auf der Sprachebene zur Gestal-
tung von Prozessen eingefithrt werden. Der Ansatz basiert auf dem be-

Thttp://www.drools.org/ Letzter Zugriff: 11.12.2018

http://www.drools.org/

Verwandte Arbeiten Seite 61

reits durch Sperner et. al [SMM11] eingefiihrten Konzept der entitédtsbasier-
ten Gestaltung von Prozessen. Das Resultat ist eine Erweiterung der Spra-
che BPMN?2.0, durch die Eigenschaften von IoT-Geréten gestaltet werden
konnen. Zur Integration derartiger Gerdte wird in dem Ansatz ein neu-
er Typ von Ressourcen eingefiihrt, der klassische Komponenten, wie z.B.
Sensoren und Aktuatoren auf der Ebene der Prozesse, reprasentiert. Durch
das zugehorige Metamodell kann die Gestaltung von IoT-Gerdten durch-
gefiihrt werden. Als Ergédnzung zur Integration verwenden Meyer et. al on-
tologiebasierte Techniken zur Spezifikation der Semantik von eingesetzten
Ressourcen in den gestalteten Prozessmodellen.

Zukiinftige Prozesse sollen auf Verdnderungen von einer Vielzahl von ver-
netzten Ressourcen eingehen konnen. Hierdurch wird das Ziel verfolgt,
die Prozesse und ihre Ausfiihrung moglichst flexibel gestalten zu kénnen.
Dabei kann diese Art von Flexibilitat nur dann erreicht werden, wenn be-
reits auf der Ebene der Sprache spezifische Eigenschaften auch gestaltet

werden konnen.

Ein weiterer Ansatz, der auf der Metamodellierung beruht und zum
Zweck der Verwaltung von Ressourcen eingesetzt werden kann, ist durch
Bocciarelli et. al [Boc+17] vorgestellt worden. Der durch Bocciarelli et. al
gegebene Ansatz fiihrt ebenfalls einen neuen Typ von Ressourcen in der
Sprache BPMN2.0 ein. Durch diesen Typ sind Eigenschaften der Umge-
bung eines Prozesses mit einer Fokussierung auf Cyber-Physische Systeme
(CPS) und Smart Factories gestaltbar. Beispiele fiir derartige Ressourcen
sind durch menschliche Akteure, der eingesetzten Software oder Hard-
ware gegeben. Die Erweiterung ist Teil eines modellgetriebenen Rahmen-
werks, das neben der Gestaltung ebenso die Analyse von Leistung (engl.
Performance) und von Zuverlédssigkeit (engl. Reliability) von Prozessen und
beteiligten Ressourcen unterstiitzt. Der Ansatz greift auf verschiedene
Vorarbeiten der Autoren zuriick [Boc+14a; Boc+14b; BDP14; Boc+16].

In der vorliegenden Arbeit wurde sich auch mit der Gestaltung unter-
schiedlicher Ausloser (hier: Ereignis) fiir eine Anpassung beschéftigt. Eine
weitere Arbeit, die sich mit der Integration von unterschiedlichen Ereignis-
sen beschiftigt, ist durch Mandal et. al [MHW17] gegeben. Es wird ein Rah-
menwerk vorgestellt, das sich mit einer erweiterten Ereignisverarbeitung
auseinandersetzt. Die Autoren sprechen von sogenannten real-weltlichen
Ereignissen, die in oder im Kontext von Prozessen vorkommen kénnen.
Dabei wurden spezielle Techniken entwickelt, um auf einer technischen
Ebene der Realisierung auf aufkommende Ereignisse addquat reagieren
und erforderliche Mafinahmen verarbeiten zu konnen. So ist eine bidirek-

Seite 62 Kapitel 3

tionale Reaktion bzw. Steuerung moglich. Hierdurch kénnen Prozesse auf
aufkommende Ereignisse aus ihrer Umgebung addquat reagieren oder das
Verhalten von IoT-Geréten steuern.

Zor et. al [ZLS11] stellen eine Erweiterung der Sprache BPMN2.0 vor, wel-
che weitere Konzepte der Domine der industriellen Fertigung abdeckt.
Dabei werden ebenfalls weitere Typen von Ressourcen eingefiihrt, die zur
Gestaltung von z.B. Maschinen, Werkzeugen oder Teilen eines Produk-
tes eingesetzt werden konnen. Hierdurch kénnen Prozesse unter Bertick-
sichtigung von Eigenschaften dieser Ressourcen gestaltet werden. Ferner
werden weitere Konzepte eingefiihrt, wie z.B. spezielle Gateways, mit de-
nen der Materialfluss beschrieben werden kann. Dies ist sinnvoll, wenn die
Transformation von Material in Abhédngigkeit zur Ein- und Ausgabe einer
Aktivitdt beschrieben werden soll. Elemente des Materialflusses konnen
dabei als eine zusatzliche Perspektive von Prozessen verstanden werden,
die bspw. tiber die Moglichkeiten der Perspektive Information hinausgeht
(siehe Abschnitt 2.3.2).

Durch Graja et. al [Gra+16] wird eine weitere Erweiterung der Spra-
che BPMN?2.0 vorgestellt, mit der die Gestaltung von Cyber-physischen
Prozessen adressiert wird. Die Erweiterung BPMN4CPS trennt das in den
Prozessen beschriebene Verhalten hinsichtlich unterschiedlicher Logiken
auf. So wird in Cyber Tasks und Physical Tasks unterschieden. Organisato-
rische Unterschiede konnen durch die Verwendung von verschiedenen
Pools dargestellt werden. Hierdurch kénnen sowohl Cyber-, Physical- und
Controlling-spezifische Prozesse unterschieden werden. Durch diese Tren-
nung unterstiitzt dieser Ansatz ebenso das Separation-of-Concerns (SoC).
Jedoch steht hierbei die Differenzierung in Bezug zu den genannten Kern-
konzepten der Doméne IIoT hinsichtlich der zu gestaltenden Prozesse und
nicht die Trennung der Anpassungs- von der Anwendungslogik im Fokus.

3.3 Selbst-adaptive Prozesse

Neben den zuvor beschriebenen Ansdtzen, in denen vorwiegend eine res-
sourcenzentrierte Perspektive gewahlt worden ist, existieren aber auch An-
sdtze, die sich eher aus der Perspektive von selbst-adaptiven Systemen der
Gestaltung von Prozessen ndhern.

Ein Ansatz, der auf Konzepte aus dem Bereich des Autonomic Computing
[KCO03] zurtickgreift, ist durch [Sei+15; Sei+16; SHS18] vorgestellt worden.
Seiger et. al beschreiben ein Rahmenwerk fiir die Gestaltung und Ausfiih-
rung von Prozessen in intelligenten Cyber-physischen Umgebungen. Da-

Verwandte Arbeiten Seite 63

bei wird im Rahmen von Anpassungen das Paradigma der MAPE-K Kon-
trollschleife eingesetzt. Derartige Anpassungen werden in dem Ansatz da-
bei hinsichtlich der Einbindung von IT-Diensten durchgefiihrt. Eine An-
passung des Kontroll- oder Datenflusses ist nicht vorgesehen. Der Ansatz
verfligt dariiber hinaus tiber Konzepte fiir die weitere Analyse zur Identi-
fikation von Inkonsistenzen zwischen Unterschieden von aufkommenden

und erwarteten Effekten einer ausgefiihrten Anpassung von Prozessen.

Marrella und Mecella [MM17] stellen einen Ansatz zur Verwaltung von ad-
aptiven Cyber-physischen Prozessen vor. Durch diesen Ansatz konnen
Prozesse automatisiert in der Phase Ausfiihrung angepasst werden. Da-
bei werden Techniken aus dem Bereich der kiinstlichen Intelligenz fiir die
konkrete Entscheidungsfindung eingesetzt. Der Ansatz ist in der Lage, Un-
terschiede zwischen dem realweltlichen Ergebnis einer Anpassung und ei-
ner zuvor erwarteten Anpassung zu ermitteln. Hierdurch ist eine Inter-
aktion durch Nutzer oder Domédnenexperten nicht mehr notig. Der An-
satz geht dabei verstiarkt auf den Aspekt der automatisierten und uniiber-
wachten Anpassung ein. Dabei werden konkrete Fahigkeiten zur Anpas-
sung von Prozessen, wie z.B. Kontroll- oder Datenfluss, nicht detailliert be-
schrieben. Der Ansatz wird daher als komplementir betrachtet, da er eine
fortgeschrittene Technik fiir Analyse- und Entscheidungsfindungsfunktio-
nalitédt beschreibt.

Teil Il

Losungskonzept

Kapitel

Eine Sprache zur
Gestaltung von
anpassbaren Prozessen

In diesem Kapitel wird eine Sprache fiir die Gestaltung von anpassbaren
Prozessen vorgestellt. Zunéchst wird das Losungskonzept fiir diese Spra-
che in Abschnitt 4.1 beschrieben. Dies umfasst neben einer Skizze der Lo-
sung auch grundlegende Fragestellungen, die die Basis fiir die weiteren er-
forderlichen Bestandteile der entwickelten Sprache bilden. Das Losungs-
konzept basiert auf dem durch Luckey [Luc+11] vorgestellten Ansatz Adapt
Cases (siehe Abschnitt 2.4). Es sieht insgesamt zwei doménenspezifische
Teilsprachen vor. Diese werden in Bezug zum ACM in Abschnitt 4.2 und
in Bezug zum AVM in Abschnitt 4.3 detailliert vorgestellt. Abschliefiend
wird in Abschnitt 4.4 eine Zusammenfassung sowie eine Diskussion hin-
sichtlich der in Abschnitt 4.1 vorgestellten Fragestellungen gegeben.

4.1 Ubersicht

In diesem Abschnitt wird eine Ubersicht iiber die in dieser Arbeit vor-
gestellte Sprache fiir die Gestaltung von anpassbaren Prozessen gegeben.
Die Sprache wird Adapt Case Modeling Language 4 BPM (ACML4BPM) ge-
nannt. Es handelt sich bei dieser Sprache um eine doménenspezifische Re-
definition der durch Luckey [Luc+11] vorgestellten Sprache ACML (siehe
Abschnitt 2.4). Dabei sieht das Losungskonzept die Integration von ver-
schiedenem doménenspezifischem Wissen vor. Fiir die Erarbeitung dieses
Wissens und die anschlieflende Integration wurde sich an verschiedenen
Fragestellungen orientiert, die sich auf Kernkonzepte der urspriinglichen
Sprache ACML beziehen. Nachfolgend wird eine kurze Ubersicht iiber die-
se Fragestellungen gegeben.

Fragestellung 1

Fragestellung 2

Fragestellung 3

Fragestellung 4

Abbildung 4-1:
Konzept der Sprache
Adapt Case Modeling
Language 4 BPM

Seite 68 Kapitel 4

Was sind relevante System- und Umgebungskomponenten in der Domine BPM?

Wie kann auf Informationen innerhalb dieser System- und Umgebungskomponen-
ten zugegriffen werden?

Wie lassen sich Eigenschaften der System- und Umgebungskomponenten in der
Domiine BPM adiquat anpassen?

Was sind mogliche Ereignisse, die die Notwendigkeit einer Anpassung von
Prozessen andeuten?

Eine schematische Darstellung der zu den Fragestellungen zugehorigen
Losungsteile fiir die Sprache ACML4BPM ist in Abbildung 4-1 gegeben.
Die Sprache ACML4BPM sieht dabei in Anlehnung an die von Luckey
[LE13] vorgestellte Sprache Adapt Case Modeling Language (ACML) die
Konzeptionierung von zwei Teilsprachen zur Beschreibung eines Adapt
Case Model 4 BPM (ACM4BPM) und eines Adaptation View Model 4 BPM
(AVM4BPM) vor. Die beiden Teilsprachen zur Erstellung des ACM4BPM
und des AVM4BPM werden in den nachfolgenden Abschnitten 4.2 und 4.3
detailliert beschrieben.

Monitor Adaptation

«Adapt Case Model»
Adapt Case Model 4 BPM

Monitoring Process

Adaptation Process

Adapt Case 4 BPM

nutzt

«Adaptation View Model»
Adaptation View Model 4 BPM

..

.......................

____________________ a
T -----------------------

---------------------] 1 [e L DL)
| |
L 4
L 4 L 4

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 69

Das AVM4BPM enthilt identifizierte System- und Umgebungskomponen-
ten der Domédne BPM. Jede dieser System- und Umgebungskomponen-
ten kann die beiden Typen von Schnittstellen Sensor Interface und Effec-
tor Interface anbieten. Diese Schnittstellen konnen spezifische Operationen
zum Lesen und zur Anpassung von Eigenschaften der Komponenten un-
terstiitzen. So beschreibt die Schnittstelle Sensor Interface zum einen Er-
eignisse (Event), die fiir mogliche Anpassungen von Prozessen als Aus-
loser vorkommen konnen. Ferner konnen Operationen (Read Operation)
fiir den lesenden Zugriff von Eigenschaften der beiden Typen von Kom-
ponenten beschrieben werden. Die Schnittstelle Effector Interface enthélt
Operationen (Adaptation Operation), die zur Anpassung von Eigenschaf-
ten der System- und Umgebungskomponenten eingesetzt werden konnen.
Die in der Sprache ACML4BPM vorgesehenen doménenspezifischen Ope-
rationen betreffen insbesondere die Anpassung von Eigenschaften der be-
troffenen Prozesse.

Durch die Teilsprache ACM4BPM konnen Anpassungsfille (engl. Adapt
Cases) beschrieben werden. Das zugehorige doménenspezifische Kon-
zept wird Adapt Case 4 BPM (AC4BPM) genannt. Bei der Gestaltung von
Anpassungsfillen werden die zuvor beschriebenen Sprachelemente des
AVM4PBM eingesetzt. So kénnen einem Anpassungsfall die im Rahmen
des AVM4BPM spezifizierten Ereignisse zugeordnet werden. Hierdurch
wird ausgedriickt, dass der Anpassungsfall beim Vorkommen des betref-
fenden Ereignisses angewendet wird. Das Verhalten eines Anpassungs-
falls kann durch spezifischeres Verhalten in Form eines Monitoring Process
und Adaptation Process verfeinert werden.

Die Anwendung eines Anpassungsfalls sieht dabei zundchst den Aufruf
eines Beobachtungsprozesses (Monitoring Process) vor. Durch einen Moni-
toring Process kann das Verhalten zur Beobachtung der System- und Umge-
bungskomponenten beschrieben werden. Dabei werden Bedingungen hin-
sichtlich erforderlicher Eigenschaften der genannten Komponenten ausge-
wertet und, falls notwendig, ein entsprechender Adaptation Process gestar-
tet, welcher eine spezifizierte Anpassung durchfiihrt.

Ein Adaptation Process beschreibt das Verhalten zur Anpassung von Ei-
genschaften der System- und Umgebungskomponenten. Er kann durch
einen Monitoring Process gestartet werden. Dabei werden im Rahmen des
in ihm spezifizierten Verhaltens Operationen zur Anpassung angewendet,
die durch die Effector Interfaces der System- und Umgebungskomponenten
bereitgestellt werden.

Beschreibung der Struktur
des Systems

Beschreibung von Verhalten
des Systems

Abbildung 4-2:
Inhalte des Adapt
Case Model 4 BPM

Seite 70 Kapitel 4

4.2 Adapt Case Model 4 BPM

Durch das Adapt Case Model 4 BPM (ACM4BPM) wird das Verhalten hin-
sichtlich der Fahigkeit zur Anpassung beschrieben. Hierbei liegt der Fo-
kus auf der Beschreibung von Anpassungsfillen, die im Rahmen der Ge-
staltung von anpassbaren Prozessen notwendig sind. In den folgenden Ab-
schnitten werden die wesentlichen Konzepte fiir die Domédne BPM einge-
fihrt.

In Abbildung 4-2 ist eine Ubersicht {iber diese Konzepte dargestellt. Da-
bei wird zundchst in Abschnitt 4.2.1 das Konzept des Anpassungsfalls
(Adapt Case 4 BPM) beschrieben. Nachfolgend werden die Konzepte des
Beobachtungsprozesses (Monitoring Process) (sieche Abschnitt 4.2.2) sowie
des Anpassungsprozesses (Adaptation Prozess) (siehe Abschnitt 4.2.3) vor-

gestellt.
Anpassungsfall
Beobachtungsprozess (Adapt Case 4 BPM) Anpassungsprozess
(Monitoring Process) Abschnitt 4.2.1 (Adaptation Process)
Abschnitt 4.2.2 Abschnitt 4.2.3

4.21 Adapt Case 4 BPM

Ein wesentliches Konzept fiir die Gestaltung von anpassbaren Prozessen
stellt das Konzept des Adapt Case 4 BPM (AC4BPM) dar, das in diesem Ab-
schnitt beschrieben wird. Ein AC4BPM stellt eine Erweiterung des durch
Luckey [Luc+11] vorgestellten Konzepts des Adapt Case dar (siehe auch
Abschnitt 2.4). Die Verwendung dieses Konzepts ermdoglicht eine getrenn-
te Beschreibung der Anwendungs- und Anpassungslogik in einer frithen
Phase der Gestaltung. Mit einem AC4BPM lasst sich die Funktion zur An-
passung von Prozessen fallbasiert und getrennt von der Anwendungslo-
gik beschreiben. Ein AC4BPM stellt in diesem Bezug die konsequente und
doménenspezifische Weiterentwicklung eines Adapt Case fiir die Doméne
BPM und damit fiir die Beschreibung von Anpassungen von Prozessen
und ihrer Umgebung dar.

Eine konzeptionelle Darstellung verschiedener Verwendungsweisen von
AC4BPM mit Bezug zu einer Funktion der Anwendungslogik ist in Abbil-
dung 4-3 dargestellt. So besteht die hier durch ein Use Case-Diagramm be-
schriebene Funktion eines Systems aus einem Use Case und verschiedenen
AC4BPM. Es existieren die beiden Rollen Actor A und Actor B, die spezifi-
sche dargestellte Funktionen ausfiihren.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 71

@ «AdaptCase4BPM»
| -7 [\
«AdaptCase4BPM»
[
1

-
«include»

|

|

System

o

Actor A

«adapts»

|
«AdaptCase4BPM»

«adapts»
-~

A

Actor B

«AdaptCase4BPM»

Ein AC4BPM wird in Anlehnung an UML Use Cases in Form einer Ellip-
se dargestellt. Sind in einer frithen Phase der Gestaltung bereits auslosen-
de Ereignisse fiir die Anpassung an einen Prozess bekannt, so kénnen ver-
schiedene in Abschnitt 4.3.4 eingefiihrte Ereignisse der Doméane BPM mit
einem AC4BPM assoziiert werden. Hierbei wurde sich fiir eine Darstellung
entschieden, bei der mogliche Ereignisse im Rahmen eines Containers in
Form eines Rechtecks als Teil des AC4BPM dargestellt werden. Sind Ereig-
nisse hingegen noch nicht bekannt, wird der Container nicht visualisiert.
Ereignisse konnen im weiteren Verlauf der Gestaltung ergédnzt oder ver-
feinert werden. Ein AC4BPM kann ferner verschiedene Beziehungen zwi-
schen weiteren AC4BPM und Use Cases haben.

Soll unter einer Bedingung, die durch einen Use Case gegebene Funktion
erweitert werden, wird anstelle einer Beziehung mit der Bezeichnung «ex-
tends» eine Beziehung mit der Bezeichnung «adapts» verwendet. Die Dar-
stellung dieser Beziehung unterscheidet sich aufier in der Bezeichnung
nicht zu der sonst gebrauchlichen Darstellung der Beziehung mit der Be-
zeichnung «extends». Ein AC4BPM stellt selbst wieder eine Funktion dar,
die unter bestimmten Bedingungen durch einen weiteren AC4BPM ange-
passt werden kann. Soll ein AC4BPM angepasst werden, so konnen weitere
Beziehungen mit der Bezeichnung «adapts» verwendet werden, um weite-
re AC4BPM zu diesem Zweck miteinander in Verbindung zu setzen. Durch
eine Beziehung mit der Bezeichnung «adapts» lassen sich somit Funktionen
zur Anpassung an anderen Funktionen eines Systems referenzieren. Der
Pfeil der Beziehung zeigt dabei stets auf die anzupassende Funktion.

Durch eine Inheritance-Beziehung konnen Eigenschaften einer Anpassung
an weitere Anpassungen in Form von AC4BPM vererbt werden. Ein erben-

Abbildung 4-3:
Konzeptionelle Darstel-
lung des Konzepts Adapt
Case 4 BPM

«adapts»

inheritance

«include»

Verfeinerung von
Anpassungsfillen und
abstrakte Syntax

Auslosende Ereignisse

Beobachtungsprozess
(Monitoring Process)

Anpassungsprozess
(Adaptation Process)

Seite 72 Kapitel 4

der AC4BPM kann geerbte Eigenschaften tiberschreiben und neue bein-
halten. Die Verwendung einer Beziehung mit der Bezeichnung Inheritance
kann insbesondere dann sinnvoll sein, wenn sich mehrere AC4BPM Eigen-
schaften teilen oder diese verfeinern.

Die Beziehung mit der Bezeichnung «include» kann verwendet werden,
wenn beschrieben werden soll, dass eine Funktion zur Anpassung wei-
tere Funktionen zur Anpassung einschliefst. Dabei wird die Funktion eines
AC4BPM in der Funktion eines anderen AC4BPM eingeschlossen, von dem
ausgehend die Beziehung mit der Bezeichnung «include» dargestellt wird.

Die durch einen AC4BPM gegebene Funktion zur Anpassung kann dar-
tiber hinaus auch verfeinert werden. Hierfiir werden weitere Konzepte be-
notigt. In Abbildung 4-4 wird eine Ubersicht {iber das Metamodell hin-
sichtlich des Konzepts Adapt Case 4 BPM gegeben. Durch das hier als Klas-
se AdaptCase4BPM dargestellte Konzept lassen sich — in Anlehnung an den
durch Luckey [Luc13] vorgestellten Ansatz — Anpassungsfélle fiir anpass-
bare Prozesse beschreiben.

Wie bereits zuvor beschrieben, kann fiir einen AC4BPM eine Reihe von
Ereignissen definiert werden, die fiir die Kennzeichnung einer Auslosung
des Anpassungsfalls verwendet werden. Derartige Ereignisse werden in
der Abbildung unter dem Typ AdaptationRequestEvent vom Typ AdaptCa-
se4BPM referenziert.

Anpassungsfille konnen derartig verfeinert werden, dass zum einen ein
Beobachtungsprozess (MonitoringProcess) und zum anderen eine Reihe von
Anpassungsprozessen (AdaptationProcess) enthalten sein konnen.

Durch einen Beobachtungsprozess konnen Analyse- und Planungsfunk-
tionen beschrieben werden, die fiir eine Anpassung von Prozessen not-
wendig sein konnen. Die fiir einen Anpassungsfall definierten Ereignisse
vom Typ AdaptationRequestEvent dienen als mogliche Startereignisse (Start-
Event) fiir einen Beobachtungsprozess. Wird im Rahmen seiner Funktion fest-
gestellt, dass eine Anpassung notwendig ist, wird ein Ereignis vom Typ
CallAdaptationProcessEvent ausgelost, dass den Beobachtungsprozess beendet
und einen Anpassungsprozess aufruft.

Soll eine Anpassung von Prozessen beschrieben werden, kann das Kon-
zept des Anpassungsprozesses (AdaptationProcess) genutzt werden. Dieser
wird durch die Beendigung eines Beobachtungsprozesses und das Auslo-
sen eines spezifischen Ereignisses aufgerufen. Bei einem Anpassungspro-
zess handelt es sich um eine Abfolge von spezifischen Operationen (Ad-
aptationOperation) zur Anpassung von Prozessen. Beispiele fiir derartige

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 73

Class UseCase
(umt) (umL)
Event AdaptCase
(BPMN2.0) (ACML)
Zr signals {redefil signals} Zr
Adaptation
P * AdaptCase4BPM
RequestEvent
0..% startEvent
FlowElements Callable
—_ Container Element
=
£ (BPMN2.0) (BPMN2.0)
B
<
53 Q éx
£
25
g2
J<<]
g3 Process
£33 (BPMN2.0)
5
ES |
Monitoring
Process
EndEvent
(BPMN2.0) 2
Activity <
(BPMN2.0) e
A & .
< DataObject
K] (BPMN2.0)
CallActivity 53 =
. (BPMN2.0) B o ’_$ 3
: I3
“2 Adaptation adaptationDataObjects 2§ ‘g
8 DataObject 2= 2
£ * S = 3
s &3 0 G
g 5 ER
a 5 E ® &
3 53 £3
e &3 £y
8| o . ® = * ®
Adaptation . i
. callAdaptationOperations
&l ke Adaptation
Adaptation * adaptationProcess Przcess
ProcessEvent 0.1 <

Operationen werden in Abschnitt 4.3.3 im Rahmen der Beschreibung des
AVM4BPM gegeben. Daneben sind weitere Operationen moglich, die im
Rahmen der Beschreibung von System- und Umgebungskomponenten
und deren Schnittstellen beschrieben werden kénnen.

Sowohl der Typ MonitoringProcess als auch der Typ AdaptationProcess erben
vom Typ Process. Hierdurch handelt es sich bei beiden Elementen um Con-
tainerelemente, welche weitere Elemente eines Prozesses in der Sprache
BPMN?2.0 enthalten konnen. Auf konzeptionelle Details der beiden einge-
fiihrten Prozesstypen sowie weitere in Abbildung 4-4 dargestellte Konzep-
te wird in den Abschnitten 4.2.2 und 4.2.3 eingegangen.

Abbildung 4-4:
Ubersicht iiber das Meta-
modell des Konzepts
Adapt Case 4 BPM

Abbildung 4-5:
Konzeptionelle
Darstellung des
Beobachtungsprozesses
(Monitoring Process)

Seite 74 Kapitel 4

4.2.2 Beobachtungsprozess

Durch einen Beobachtungsprozess (MonitoringProcess) kann Verhalten zur
Beobachtung und Analyse von Prozessen und deren Umgebung beschrie-
ben werden. Er verfeinert die durch einen AC4BPM gegebene Funktion.
Dem Ansatz Adapt Cases folgend werden so die Funktionalitdten Monitor
und Analyze der Referenzarchitektur MAPE-K [KCO03] realisiert. Im Rah-
men eines Beobachtungsprozesses wird also auf Ereignisse reagiert, die
unmittelbar durch Prozesse oder durch ihre Umgebung ausgelost wurden,
sodass im Bedarfsfall eine Anpassung durchgefithrt werden kann.

Eine konzeptionelle Darstellung eines Anpassungsfalls mit Fokus auf den
dargestellten Beobachtungsprozess ist in Abbildung 4-5 gezeigt. Fiir eine
Beschreibung der dargestellten zusammengeklappten Anpassungsprozes-
se (Adaptation Process) wird auf Abschnitt 4.2.3 verwiesen.

«AdaptCase4BPM»

fancy-start-event Q

————— AdaptCase4BPM

—«I AdaptationRequestEvent I I MonitoringProcess I
T

FancyDecision/ [fancy-condition-A]
PlanningTask T

| adaptationProcess = ‘AP-A’ |

|

|

|

|

: : : |

: : |

: |

H I

: : B |

|

«BP «BP @p >\ [fancy-condition-B] |
Model Instance Envi CAP)---- |
DataObject» DataObject» DataObject» :
|

|

|

|

|

|

Monitoring Process

\
N

s

|

|

N I / :
’ | adaptationProcess = ‘AP-B* | :

|

|
\ ! s
|

N ’

AdaptationDataObject I CallAdaptationProcessEvent [:J_

Adaptation Process

AdaptationProcess
(collapsed)

Adaptation Process

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 75

Fiir den dargestellten Anpassungsfall ist ein einfaches auslésendes Ereig-
nis (AdaptationRequestEvent) definiert worden, welches auch das Starter-
eignis des Beobachtungsprozesses (MonitoringProcess) darstellt. Ein Beob-
achtungsprozess wird grafisch in Anlehnung an BPMN-spezifische Pools
dargestellt. Das enthaltene Verhalten kann durch das Aufkommen eines
der im Rahmen des Anpassungsfalls definierten auslosenden Ereignis-
se gestartet werden. Der Kontrollfluss eines Beobachtungsprozesses kann
verschiedene Aktivitdten zur Beschreibung von Beobachtungs- und Ana-
lysefunktionen enthalten. Dabei kann auf Informationen, wie hier darge-
stellt in Form von Datenobjekten des Typs AdaptationDataObject, zugegrif-
fen werden. Fiir eine detaillierte Beschreibung fiir den Zugriff auf Informa-
tionen wird auf die Beschreibung von Sensor- und Effektorschnittstellen in
Abschnitt 4.3.2 verwiesen.

Durch die dargestellten Sprachelemente fiir die Verfeinerung eines Anpas-
sungsfalls in Form eines Beobachtungsprozesses ist eine an die Sprache
BPMN?2.0 angelehnte Gestaltung von Beobachtungs- und Analysefunk-
tionen moglich. Fiir weitere Beispiele fiir die Verfeinerung von Anpas-
sungsféllen unter Verwendung von spezifischen Ereignissen sind in Ab-
bildung 4-6 mogliche auslosende Ereignisse durch die Typen TimerEvent,
MessageEvent und Signal dargestellt. Dabei handelt es sich bei den hier
dargestellten Typen von Ereignissen um eine ausgesuchte Auswahl. Es
kann neben den in Abschnitt 4.3.4 eingefiihrten Ereignissen der Sprache
BPMN?2.0 auch weitere Ereignisse geben, die im Rahmen des Adapt Case
View Model 4 BPM angegeben und in der Gestaltung von Anpassungsfal-
len verwendet werden kénnen.

Ein Beobachtungsprozess kann, wie in Abbildung 4-5 dargestellt, auf ver-
schiedene Weise beendet werden. So kénnen auf Basis der Beobachtungs-
und Analysefunktion Entscheidungen hinsichtlich anzuwendender Mafs-
nahmen beschrieben werden. Der dargestellte Kontrollfluss kann, sofern
die Bedingungen fancy-condition-A und fancy-condition-B nicht positiv aus-
gewertet werden, ohne eine Anpassung von Prozessen beendet werden.

Alternativ kann eine der beiden Anpassungen durch Ereignisse des Typs
CallAdaptationProcessEvent aufgerufen und der Beobachtungsprozess be-
endet werden. Derartige Ereignisse werden in Anlehnung an BPMN-
spezifische Endereignisse mit der Beschriftung CAP dargestellt. Ein Beob-
achtungsprozess kann dabei mehrere Ereignisse des Typs CallAdaptation-
ProcessEvent enthalten, sodass z.B. fiir verschiedene kontext- oder prozess-
spezifische Eigenschaften andere Anpassungsprozesse aufgerufen werden
kénnen. Zur Bestimmung, welche Anpassung in Form eines Anpassungs-

Start eines
Beobachtungsprozesses

Alternative Startereignisse

Beendigung eines
Beobachtungsprozesses

Seite 76 Kapitel 4

Abbildung 4-6:
Beispiele fiir auslésende

Ereignisse in einem «AdaptCase4BPM» «AdaptCase4BPM» «AdaptCase4BPM»
Beobachtungsprozess ce o
e-Planning
. . once per
(Monitoring Process) month request

Monitoring Process Monitoring Process Monitoring Process

error-

|
|
|
|
|
|
| signal

Re-Planning
request

once per
month

TimerEvent i» MessageEvent |~

Check
alternative
plans

Monthly
performance
review

[alternative

prozesses aufgerufen werden soll, ist hierbei jedoch das Attribut adapta-
tionProcess mit dem Namen des zu referenzierenden Anpassungsprozesses
zu setzen.

Abstrakte Syntax In Anlehnung an den in Abbildung 4-4 gezeigten Ausschnitt des Meta-
modells fiir das Konzept Adapt Case 4 BPM ist ein Beobachtungsprozess
vom Typ MonitoringProcess und erbt von dem Typ Process. Ferner ist er
Teil des Typs AdaptCase4BPM und agiert in der Rolle monitoringProcess,
welche die urspriingliche Rolle der monitoringActivity ersetzt. Durch die-
se BPM-spezifische Redefinition des Konzepts handelt es sich bei dem
Typ MonitoringProcess um eine BPMN-spezifische Prozessdefinition. Die-
se kann neben einer einfachen Spezifikation von Kontroll- und Daten-
fliissen innerhalb des Beobachtungsprozesses auch deren organisatorische
Einbettung in Form von Pools und Lanes enthalten. Hierdurch ist es mog-
lich, auch komplexe Beobachtungs- und Analysefunktionen zu beschrei-
ben, deren einzelne Schritte durch verschiedene Rollen ausgefiihrt werden
konnen. Wurde durch beschriebene Beobachtungs- und Analysefunktio-
nen die Notwendigkeit einer Anpassung von Prozessen oder an ihrer Um-
gebung detektiert, so lassen sich im Rahmen der Gestaltung des Beob-
achtungsprozesses verschiedene Aufrufe von Anpassungsprozessen (Ad-
aptation Process) (siehe Abschnitt 4.2.3) definieren.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 77

423 Anpassungsprozess

Durch einen Anpassungsprozess (AdaptationProcess) kann Verhalten zur
Anpassung von Prozessen und deren Umgebung beschrieben werden. Er
verfeinert die durch einen AC4BPM gegebene Funktion und ergénzt das
Verhalten von Beobachtungsprozessen. Ein Anpassungsprozess kann da-
bei die Funktion Execute der Referenzarchitektur MAPE-K [KCO03] realisie-
ren, in dem die in Abschnitt 4.3.2 beschriebenen Effektorschnittstellen und
deren Operationen zur Anpassung von Eigenschaften der System- und
Umgebungskomponenten verwendet werden.

Eine konzeptionelle Darstellung eines Anpassungsfalls mit Fokus auf die
dargestellten Anpassungsprozesse mit der Bezeichnung AP-A und AP-
B ist in Abbildung 4-7 gezeigt. Sie stellen zueinander jeweils einen al-
ternativen Anpassungsprozess dar. Bei dem zusammengeklappten Beob-
achtungsprozess handelt es sich um den in Abschnitt 4.2.2 beschriebenen

Prozess in einer alternativen Darstellungsweise.

————— AdaptCase4BPM

- { AdaptationRequestEvent | MonitoringProcess

(collapsed)

«AdaptCase4BPM»
T
I

fancy-start-event Q
1
4{ Monitoring Process ‘

= [

«Input
Parameter»

«AdaptationOperation»
N
B «Output
Parameter»

AdaptationOperation

Fancy
Preprocessing

standard-
start-event

«BP
Model ~— |eeennns s PP
DataObject»|

~ 7z
AdaptationDataObject

«BP
Environment|
DataObject»

DataObject»

AP-A

Adaptation Process

Postprocessing

[
[
[
[
[
[
[
[
[
[
[
1
[
|
Task

AdaptationProcess AdaptationProcess

(collapsed)

|

AP-B
Adaptation Process

Abbildung 4-7:
Konzeptionelle
Darstellung des
Anpassungsprozesses
(Adaptation Process)

Seite 78 Kapitel 4

Ein Anpassungsprozess wird grafisch in Anlehnung an Pools der Spra-
che BPMN?2.0 dargestellt. Er beginnt typischerweise mit einem Startereig-
nis der Sprache BPMN?2.0, da er durch einen Beobachtungsprozess explizit
aufgerufen wird. Der Kontrollfluss eines Beobachtungsprozesses kann ver-
schiedene Aktivitdten (AdaptationOperation) zur Beschreibung von Anpas-
sungen von Prozessen enthalten. Fiir diese Operationen konnen verschie-
dene Ein- und Ausgabeparameter notwendig sein, die in Anlehnung an
BPMN-spezifische Ein- und Ausgabeobjekte dargestellt sind. Ferner ist es
moglich, auch weitere Operationen zur Anpassung von durch System- und
Umgebungskomponenten gekapselten Inhalten vorzunehmen, sofern sie
im Rahmen des AVM4BPM gestaltet worden sind. Fiir Beispiele fiir mogli-
che Operationen wird auf Abschnitt 4.3.3 verwiesen.

Daneben konnen aber auch Aktivitdten sinnvoll sein, die die Anpassung
von Prozessen vor- oder nachbereiten. Diese sind in der konzeptionel-
len Darstellung als FancyPreprocessinglask bzw. FancyPostprocessingTask ab-
gebildet. Die Aktivititen des Kontrollflusses des Anpassungsprozesses
konnen ebenfalls Datenobjekte vom Typ AdaptationDataObject verwen-
den, die in Anlehnung an die Operationen der in Abschnitt 4.3 beschrie-
benen System- und Umgebungskomponenten abgeleitet werden konnen.
Der Zugriff auf Daten wird in der Sprache ACML4BPM durch Datenob-
jekte (AdaptationDataObject) repréasentiert, die durch Sensorschnittstellen
angeboten werden (siehe Abschnitt 4.3.2).

In Anlehnung an den durch Abbildung 4-4 gezeigten Ausschnitt des Meta-
modells fiir das Konzept Adapt Case 4 BPM ist ein Anpassungsprozess vom
Typ AdaptationProcess und erbt von dem Typ Process. Ferner ist er Teil des
Typs AdaptCase4BPM und agiert in der Rolle adaptationProcess, welche die
urspriingliche Rolle der adaptationActivity ersetzt. Sind alternative Anpas-
sungsprozesse vorhanden, agieren sie in der Rolle alternatives, welche die
urspriingliche Rolle alternatives ersetzt.

Durch diese BPM-spezifische Redefinition des Konzepts handelt es sich
bei dem Typ AdaptationProcess um eine BPMN-spezifische Prozessdefini-
tion. Diese kann neben einer einfachen Spezifikation von Kontroll- und
Datenfliissen innerhalb des Anpassungsprozesses auch deren organisato-
rische Einbettung in Form von Pools und Lanes enthalten. Hierdurch ist
es moglich auch komplexe Anpassungen von Prozessen zu beschreiben,
deren einzelne Schritte durch verschiedene Rollen vorgenommen werden

konnen.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 79

4.3 Adaptation View Model 4 BPM

Durch das Adaptation View Model 4 BPM (AVM4BPM) werden struktu-
relle Informationen eines Systems beschrieben. Hierbei liegt der Fokus
auf den System- und Umgebungskomponenten und ihren angebotenen
Schnittstellen mit moglichen Ereignissen und Operationen zum Lesen oder
Anpassen von Eigenschaften. In Anlehnung an die Referenzarchitektur
MAPE-K [KCO03] lassen sich Komponenten grundlegend in die Typen Sys-
tem und Umgebung unterscheiden. Neben diesen Komponenten sind aber
auch die von ihnen angebotenen Schnittstellen, die vorhandenen Ereignis-
se sowie die angebotenen Operationen zum Lesen und zur Anpassung
von Eigenschaften von besonderem Interesse. Im zuvor genannten An-
satz werden dabei die beiden grundlegenden Typen Sensor und Effector fiir
Schnittstellen genannt.

In Abbildung 4-8 sind die Inhalte der nachfolgenden Abschnitte in An-
lehnung an die zuvor genannten Elemente dargestellt. So wird zunédchst
in Abschnitt 4.3.1 auf System- und Umgebungskomponenten der Doméne
BPM eingegangen. Nachfolgend werden in Abschnitt 4.3.2 die von diesen
Komponenten angebotenen Sensor- und Effektorschnittstellen vorgestellt.
Abschlieflend werden die von den Schnittstellen angebotenen Operationen
(siehe Abschnitt 4.3.3) und Ereignisse (siehe Abschnitt 4.3.4) beschrieben.

System- und Sensor- und Operationen
Umgebungskomponenten Effektorschnittstellen
Abschnitt 4.3.1 Abschnitt 4.3.2 Abschnitt 4.3.3
Ereignisse
Abschnitt 4.3.4

4.3.1 System- und Umgebungskomponenten

Durch die System- und Umgebungskomponenten kénnen strukturel-
le Informationen iiber das System beschrieben werden. Fiir anpassbare
Prozesse muss hierzu zunédchst analysiert werden, welche Komponenten
sinnvoll sein konnen. Ein mogliches methodisches Vorgehen fiir die Ana-
lyse ist dadurch gegeben, den BPM-Lebenszyklus (siehe Abschnitt 2.2) mit
den im Vordergrund stehenden Artefakten Prozessmodell und Prozessin-
stanz zundchst ndher zu betrachten.

Abbildung 4-8:
Inhalte des Adaptati-
on View Model 4 BPM
(AVM4BPM)

Seite 80 Kapitel 4

Hierzu ist in Abbildung 4-9 der BPM-Lebenszyklus nach Weske [Wes12]
mit den im Fokus stehenden Artefakten und Treibern zur Anpassung von
Prozessen dargestellt. Insgesamt werden in dieser Analyse vier Treiber zur
Anpassung von Prozessen betrachtet. Sie beziehen sich je nach Phase des
Lebenszyklus entweder auf Anpassungen von Prozessmodellen oder auf
Prozessinstanzen. Im Folgenden wird niher auf die vier Treiber Definition,
Verfeinerung, Adaption bzw. Flexibilisierung und Verbesserung eingegangen.

Abbﬂduﬂg 4-9: BPM-Lebenszyklus
BPM-Lebenszyklus mit i

den im Fokus stehen-

den Artefakten und «Phase» | «Phase» «Phase» | «Phase»
mdglichen Treibern zur Design & Analyse "] Konfiguration o Ausfiihrung o Evaluation
Anpassung von Prozessen
i i «Treiber» i
«Treiber» «Treiber» X «Treiber»
N X Adaption bzw.
Definition Verfeinerung S Verbesserung
Flexibilisierung
T
<
\\\ /// \\\ :
N 7 ~
AN // S |
K\ » A |
|
wird zur Laufzeit reprasentiert durch !
«Artefakt» | > «Artefakt» !
Prozesmodell Prozessinstanz :
|
|
|
[} i
b
Treiber zur Anpassung Beziehung —-—--»

Definition In der ersten Phase des BPM-Lebenszyklus Design & Analyse werden Pro-
zessmodelle definiert. Je nach Perspektive kann bei dieser Definition von
Prozessen auch von Anpassung gesprochen werden, da ein initiales bzw.
zunéchst leeres Prozessmodell nach und nach im Rahmen der Gestaltung
der Prozesse mit Sprachelementen angereichert wird. Jede Anreicherung
eines Prozessmodells mit neuen Sprachelementen stellt eine Anpassung
im Bezug zum ausgehenden Prozessmodell dar.

Verfeinerung In der zweiten Phase Konfiguration werden Prozessmodelle fiir die Ausfiih-
rung konfiguriert bzw. verfeinert. Dies kann z.B. durch eine Implementie-
rung oder das Hinzufiigen von plattformspezifischen Informationen ge-
schehen. Ferner kénnen Prozesse in frithen Phasen des BPM-Lebenszyklus
auch hinsichtlich der Flexibilitiat verfeinert werden, wie es z.B. bei der Va-
riabilitdt von Prozessen durchgefiihrt werden kann (siehe Abschnitt 2.2.3).
Betrachtet man diese Zwecke, kann auch hier von Anpassungen auf Basis
existierender Prozessmodelle ausgegangen werden. Aufgrund des Hinzu-

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 81

fligens neuer Informationen bzw. der Selektion bestimmter Teilprozesse
fiir einen konkreten Kontext wird in diesem Bezug auch von einer Verfei-
nerung gesprochen.

Wihrend der Ausfithrung werden Prozessmodelle durch Prozessinstan-
zen reprasentiert. Ferner konnen zur Ausfiihrung Ereignisse aufkommen,
die geplant oder ungeplant eine Anpassung von sowohl Prozessmodellen
als auch Prozessinstanzen notwendig machen kénnen. Im Rahmen dieser
Arbeit sind hier die ausschlaggebenden Treiber durch Adaption bzw. Fle-
xibilisierung von Prozessen dargestellt, die dementsprechend in der dritten
Phase Ausfiihrung vorkommen. Ereignisse konnen hier die Anpassung von
Eigenschaften der Prozessmodelle und -instanzen ausldsen.

Der BPM-Lebenszyklus sieht in der letzten Phase Evaluation die Analyse
und Bewertung bestehender Prozesse zur Verbesserung vor. Dabei kann
z.B. auf die Historie von abgeschlossenen Prozessinstanzen zuriickgegrif-
fen werden, welche zu dem genannten Zweck der Verbesserung analy-
siert werden. Auf Basis der Analyseergebnisse konnen neue Anforderun-
gen zur Verbesserung der Prozesse in der nédchsten Iteration des BPM-
Lebenszyklus zur Verfiigung gestellt werden. Hierdurch ist es moglich, vor-
handene Prozesse kontinuierlich zu verbessern und an neue Umgebungs-
faktoren anzupassen. Eine Verbesserung eines Prozesses zur Laufzeit kann
durch geeignete Mechanismen im Rahmen der Adaption bzw. Flexibilisie-

rung vorgenommen werden.

Entlang der Phasen des BPM-Lebenszyklus und der vorgestellten Treiber
fiir Anpassungen von Prozessen lassen sich zwei Kontexte identifizieren,
welche durch die Anpassung von Prozessmodellen und Prozessinstanzen
gegeben sind. Die Anpassung von Prozessmodellen kann wie beschrieben
in allen genannten Phasen sinnvoll sein. Wobei die Anpassung von Pro-
zessinstanzen vorwiegend in der Phase Ausfiihrung als sinnvoll erachtet
werden kann.

Aufgrund der verschiedenen erlduterten Kontexte, in denen Anpassungen
von Prozessen moglich sind, werden unterschiedliche Komponenten be-
notigt. Hierdurch konnen fiir einen jeweiligen Kontext spezifische Ope-
rationen und Ereignisse angeboten werden. Das in dieser Arbeit vorge-
stellte Konzept sieht dabei insgesamt drei unterschiedliche Komponen-
ten vor. Darunter befinden sich zwei Systemkomponenten und eine Um-
gebungskomponente, deren konkrete Syntax in Abbildung 4-10 gezeigt
ist. Die drei Typen von Komponenten werden in Anlehnung an UML-
Komponenten [OMG10] dargestellt und konnen jeweils tiber ein individu-
elles Symbol unterschieden werden. Dabei tragen die Symbole eine Ab-

Adaption bzw.
Flexibilisierung

Verbesserung

Konkrete Syntax fiir
Komponenten

Seite 82 Kapitel 4

kiirzung ihrer jeweiligen Bezeichnung der Typen. So triagt z.B. das Symbol
fiir den Typ BPModelComponent die Abkiirzung MC. Die in Abbildung 4-10
dargestellten Sensor- und Effektorschnittstellen werden ebenso analog zu
UML-Schnittstellen (Interfaces) [OMG10] dargestellt.

Abbﬂdung 4-10: I BPModelComponent I I BPEnvironmentComponent I I BPExecutionComponent I
Konkrete Syntax : : :
von System- und ! ! |
Umgebungskomponenten = = =
MC —= ENV —/= EC
(AVM4BPM) __ _

«BPModelComponent» «BPExecutionComponent»

ModelComponent

Il

|
|
|
|
«BPEnvironmentComponent» |
EnvironmentComponent : ExecutionComponent
1
|
|
|
1

/ \
/ \

Sensor- und .
Effektorschnittstelle Komponenten-spezifisches Symboﬁ» __________________

Die im linken Bereich dargestellte Systemkomponente vom Typ BPModel-

Component ist fir die Kapselung von Prozessmodellen gedacht. Die zweite
im rechten Bereich dargestellte Systemkomponente BPExecutionComponent
kapselt die zur Laufzeit bestehenden Prozessinstanzen.

Fiir industrielle Umgebungen kann es eine Reihe von unterschiedlichen
Umgebungskomponenten geben, die aktiv oder passiv mit anpassbaren
Prozessen interagieren und diese beeinflussen kénnen. Beispiele fiir der-
artige Umgebungskomponenten sind z.B. Sensoren oder Aktoren in einer
Produktionsumgebung, die Eigenschaften von Ressourcen wahrnehmen,
priifen oder anpassen konnen. Derartige Umgebungskomponenten kon-
nen dabei im Rahmen der Prozessausfithrung bzw. -steuerung in unmit-
telbarem Zusammenhang mit den Prozessen stehen. Zur Kapselung derar-
tiger Umgebungskomponenten werden in der Sprache ACML4BPM Um-
gebungskomponenten vom Typ BPEnvironmentComponent verwendet.

In Abbildung 4-11 ist die abstrakte Syntax der erarbeiteten Typen der
System- und Umgebungskomponenten der Teilsprache AVM4BPM darge-
stellt. Dabei werden bestehende Konzepte des Ansatzes Adapt Cases in der
Farbe Weiff und erarbeitete doménenspezifische Konzepte des Ansatzes
Adapt Cases 4 BPM in der Farbe Grau dargestellt.

BPModelComponent Fiir Anpassungen von Prozessmodellen ist die Komponente BPModel-
Component vorgesehen. Eine derartige Komponente referenziert eine belie-
bige Menge von Prozessmodellen, welche hier als vom Typ Process darge-
stellt werden. Sie dient der Kapselung von Prozessmodellen, welche fiir

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 83

Component Abb1]dung 4-11:
(umy System- und Umge-
A bungskomponenten
(AVM4BPM)
SystemComponent

(ACML)

A
adaptiveProcess
BPModelComponent } d Process
0.1 (BPMN2.0)

*

4{ BPExecutionComponent | adaptiveProcess __| Processinstance
[o.1

(Runtime)
*
T
EnvironmentComponent
(ACML)

L‘ BPEnvironmentComponent l environmentComponent | EnvironmentComponent
p Jo.1 (Other)
*

Bestehendes Konzept | I Hinzugefugtes Konzept

Anpassungen vorgesehen sind, weshalb sie in der Rolle adaptiveProcess
agieren. Der Typ Process stellt ein sogenanntes Containerelement fiir die
Definition von Prozessen in der Sprache BPMN2.0 [OMG11] dar. In ihm
konnen weitere Elemente der Sprache BPMN2.0, wie z.B. Pools, Lanes oder
das Verhalten des Prozesses, enthalten sein.

Durch die zweite Systemkomponente BPExecutionComponent werden die BPExecutionComponent
zur Laufzeit bestehenden Prozessinstanzen gekapselt. Hier ist darauf hin-

zuweisen, dass innerhalb der Spezifikation der Sprache BPMN2.0 keine

Sprachelemente fiir die Beschreibung von Prozessinstanzen vorhanden

sind. Daher ist die Klasse Processlnstance nicht analog zur Klasse Process

mit einem Containerelement der Sprache BPMN2.0 zu referenzieren. Die

Klasse Processlnstance reprasentiert daher lediglich eine Abstraktion einer

konkreten internen Reprdsentation einer Prozessinstanz innerhalb einer

beliebigen Laufzeitumgebung (Runtime) fiir Prozesse.

Im Rahmen der Phase Konfiguration und der Auswahl einer konkreten
Plattform zur Ausfithrung miissen daher gegebenenfalls Eigenschaften
und Funktionalitdten ergénzt bzw. verfeinert werden. Dies betrifft ins-
besondere auch die angebotenen Operationen zur Anpassung (siehe Ab-
schnitt 4.3.3) und Ereignisse (siehe Abschnitt 4.3.4).

In diesem Ansatz wird der Typ BPEnvironmentComponent fiir die Reprd- BPEnvironmentComponent
sentation einer beliebigen Umgebungskomponente (Other) verwendet. Der
Typ BPEnvironmentComponent stellt dabei eine Realisierung der Klasse En-
vironment dar. Aufgrund der Diversitdt an moglichen zu kapselnden In-

Abbildung 4-12:

Konkrete Syntax von
Sensor- und Effektor-
schnittstellen (AVM4BPM)

Seite 84 Kapitel 4

halten wird dieser Typ in dieser Arbeit nicht detaillierter spezifiziert. Hier-
zu lasst sich vornehmlich die Fokussierung von Prozessen als Begriindung
anbringen.

Sowohl die System- als auch die Umgebungskomponenten bieten Schnitt-
stellen der Typen Sensor und Effector an. Hierdurch wird ein kontrollierter
Zugriff auf gekapselte Inhalte ermdglicht. Die Beschreibung dieser Schnitt-
stellen wird in dem nachfolgenden Abschnitt 4.3.2 vorgenommen.

4.3.2 Sensor- und Effektorschnittstellen

In diesem Abschnitt werden Sensor- und Effektorschnittstellen beschrie-
ben, die von den im vorherigen Abschnitt vorgestellten System- und Um-
gebungskomponenten angeboten werden. Insgesamt sind im Rahmen des
AVM4BPM drei Konzepte fiir den kontrollierten Zugriff auf gekapselte
Inhalte vorgesehen. Dabei handelt es sich um Ereignisse zur Auslosung
einer Anpassung (AdaptationRequestEvent), den Zugriff auf Daten (Adap-
tationDataObject) und Operationen zur Anpassung (AdaptationOperation).
Beispiele fiir diese Konzepte hinsichtlich des Typs von Systemkomponen-
ten BPModelComponent sind in Abbildung 4-12 durch ihre konkrete Syntax
gegeben.

Konkrete Syntax im AVM4BPM

«BPModelsensor» | | Sensor Effector | | «BPModelEffector»
SensorName | _____ (ACML) (ACML) EffectorName
|
|
|
Adaptation | Adaptation Adaptation
DataObject : RequestEvent Operation
T | T T
| | | |
| |
! v : :
«BPModelDataObject» «AdaptationRequestEvent» «ProcessModelAdaptationOperation»
SomeData AfterTimeX Adapt-A

Konkrete Syntax im BPD

——

DataObject TimerEvent Activity
(BPMN2.0) (BPMN2.0) (BPMN2.0)

l

I

I

I

I

> !
I

AfterTimeX : Adapt-A
I
\

1
I
I
|
I
I
«BPModel |
I
I

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 85

Gezeigt ist eine konkrete Systemkomponente (ProcessRepository), die zwei
Schnittstellen realisiert: eine Sensorschnittstelle (BPModelSensor) und eine
Effektorschnittstelle (BPModelEffector). Die Sensorschnittstelle bietet da-
bei fiir eine Anpassung notwendige Daten an (AdaptationDataObject). Fer-
ner definiert sie zudem ein Ereignis (AdaptationRequestEvent), das fiir die
Auslosung einer Anpassung genutzt werden kann. Die Effektorschnitt-
stelle bietet eine Operation (AdaptationOperation) zur Anpassung an. Die
konkrete Syntax der Elemente des AVM4BPM folgt dabei einer an die UML
angelehnte Darstellung. Werden die im Rahmen des AVM4BPM gestalte-
ten Elemente im Rahmen des ACM4BPM (siehe Abschnitt 4.2) eingesetzt,
so dndert sich die Darstellung hinsichtlich einer entsprechenden Weise
fiir die Sprache BPMN2.0. Hierfiir sind Beispiele im unteren Bereich von
Abbildung 4-12 gegeben. Fiir weitere Beispiele wird auf die Beschreibung
des ACM4BPM in Abschnitt 4.2 und auf das im Rahmen der Evaluation
gegebene Szenario in Abschnitt 7.1 verwiesen.

Eine Ubersicht iiber des zu den Schnittstellen zugehérigen Metamodells
ist in Abbildung 4-13 gezeigt. Die erarbeiteten Schnittstellen werden dort
als Realisierungen der Typen Sensor und Effector der Sprache ACML darge-
stellt. Nachfolgend wird auf damit zusammenhéngende Konzepte einge-
gangen.

Es bestehen die drei Sensorschnittstellen BPModelSensor, BPExecutionSen-
sor und BPEnvironmentSensor. Ferner werden als Effektorschnittstellen die
Typen BPModelEffector, BPExecutionEffector und BPEnvironmentEffector vor-
gestellt. Durch die Verwendung der genannten Schnittstellen kann ein kon-
trollierter lesender (Sensor) und schreibender Zugriff (Effector) auf Funktio-
nen und Eigenschaften der System- bzw. Umgebungskomponenten reali-
siert werden. Die zuvor genannten Typen von Sensor- und Effektorschnitt-
stellen werden nachfolgend detaillierter beschrieben.

Die dargestellten Sensorschnittstellen stellen spezielle Schnittstellen dar,
mit deren Hilfe auf verschiedene Eigenschaften der jeweiligen Komponen-
ten und der gekapselten Inhalte zugegriffen werden kann. Dabei liegt der
Fokus einer solchen Schnittstelle auf dem lesenden Zugriff von Eigenschaf-
ten, sodass bei ihrer Verwendung keine Anpassung durchgefiihrt wird.
Die Zugehorigkeit einer Sensorschnittstelle ldsst sich in Anlehnung an die
Benennung ihres Typs ableiten, sodass bspw. eine Schnittstelle vom Typ
BPModelSensor einer Komponente vom Typ BPModelComponent zugehorig
ist. Weitere Zuordnungen konnen entsprechend gleichartig vorgenommen
werden.

Typen von Schnittstellen

Sensorschnittstellen

Abbildung 4-13:

Sensor- und Effektor-
schnittstellen fiir an-

passbare Prozesse
(AVM4BPM)

Zugriff auf Daten

Auslésung einer
Anpassung

Seite 86 Kapitel 4
DataObject Event Interface Activity
(BPMN2.0) (BPMN2.0) (UML) (BPMN2.0)

I

AdaptationRequestEvent I

*

sjuane

(ACML

Adaptationinterface

)

i

i

{abstract}

T

operations

{Redefines operations}

{abstract}

I

- Sensor Effector X
I AdaptationDataObject | °Perations ol \cy) (ACML) e operations] AdaptationOperation I
A * x A
— —
BPModel BPModel | BPModel ProcessModel
DataObject Sensor Effector AdaptationOperation
. ¢ | 2 |
operations operations
{Redefines operations} {Redefines operations}
1
BPInstance BPExecution || BPExecution Processlnstance
DataObject Sensor Effector AdaptationOperation
- 9 -
operations operations
{Redefines operations} {Redefines operations}
— —
BPEnvironment BPEnvironment | | L| BPEnvironment Environment
DataObject Sensor Effector AdaptationOperation

operations

{Redefines operations}

Bestehendes Konzept |

| Hinzugefligtes Konzept |

| Hinzugefugtes, aber nicht spezifiziertes Konzept

Im Rahmen der Sprache ACML4BPM wird der lesende Zugriff auf Eigen-
schaften der Komponenten durch Datenobjekte vom Typ AdaptationData-

Object realisiert. Bei diesem Typ handelt es sich um eine spezifische Varian-
te des Typs DataObject aus der Sprache BPMN2.0. Fiir die zuvor beschrie-
benen Sensorschnittstellen werden jeweils spezifische Typen von Datenob-

jekten eingefiihrt. So bietet bspw. die Sensorschnittstelle vom Typ BPMo-

delSensor den lesenden Zugriff auf Eigenschaften durch Datenobjekte vom
Typ BPModelDataObject.

Neben dem lesenden Zugriff auf Eigenschaften bieten Sensorschnittstel-

len aber auch die Moglichkeit zur Spezifikation von Ereignissen, die aus-

gehend von der Komponente eine mogliche Anpassung auslosen konnen.

Diese Ereignisse werden in Abbildung 4-13 durch den Typ AdaptationRe-

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 87

questEvent reprdsentiert, der von dem Typ Event der Sprache BPMN2.0
erbt. Hierdurch ist es moglich verschiedenste Typen von Ereignissen der
Sprache BPMN?2.0 im Rahmen des AVM4BPM zu beschreiben und an-
schliefend im Rahmen des ACM4BPM zu nutzen. Auf Details moglicher
Ereignisse wird in Abschnitt 4.3.4 ndher eingegangen.

Neben Sensorschnittstellen sind aber insbesondere auch Effektorschnitt-
stellen notwendig, mit denen Anpassungen von den Eigenschaften der
Komponenten und somit an den Prozessmodellen und -instanzen, aber
auch an denen in ihrer Umgebung moglich sind. Jede Effektorschnittstelle
kann eine Reihe von verschiedenen Operationen vom Typ AdaptationOpe-
ration zur Anpassung von gekapselten Inhalten anbieten.

In dieser Arbeit liegt der Fokus dabei insbesondere auf den Operationen
zur Anpassung von Prozessen. Entsprechend der zuvor eingefiihrten
Typen von Komponenten existieren in diesem Bezug die beiden Effek-
torschnittstellen BPModelEffector und BPExecutionEffector, die jeweils Ope-
rationen fiir die Anpassung von Prozessmodellen bzw. Prozessinstanzen
anbieten konnen. Die Benennung der Schnittstellen gibt dabei dartiber
Aufschluss, welchem Typ von Komponente sie zugehorig ist.

So bietet bspw. eine Effektorschnittstelle vom Typ BPModelEffector Ope-
rationen fiir die Anpassung von Eigenschaften einer Komponente vom
Typ BPModelComponent an. Zur Anpassung von Prozessinstanzen kann
die Schnittstelle vom Typ BPExecutionEffector und deren Operationen vom
Typ ProcessInstanceAdaptationOperation verwendet werden. Auf die von
diesen beiden Effektorschnittstellen angebotenen Operationen zur An-
passung von Prozessmodellen (ProcessModel AdaptationOperation) und Pro-
zessinstanzen (ProcessInstanceAdaptationOperation) wird in Abschnitt 4.3.3
niher eingegangen. Ebenso bietet die Schnittstelle vom Typ BPEnviron-
mentEffector Operationen zur Anpassung gekapselter Inhalte an; diese lie-
gen jedoch nicht im Fokus dieser Arbeit, weshalb die Schnittstelle an dieser
Stelle nur der Vollstandigkeit halber aufgefiihrt wird.

Die durch die Sensor- und Effektorschnittstellen bereitgestellten Ereignis-
se, Datenobjekte und Operationen sollen in der Teilsprache ACM4BPM zur
Gestaltung von Anpassungsfillen (AC4BPM) eingesetzt werden. Sie bil-
den somit das Bindeglied zwischen den beiden Teilsprachen AVM4BPM
und ACM4BPM. Einzelne Operationen, die durch eine der vorgestellten
Schnittstellen angeboten werden, konnen dabei in der Gestaltung eines
Monitoring Process und eines Adaptation Process verwendet werden (siehe
Abschnitt 4.2).

Effektorschnittstellen

Verwendung von Inhalten
des AVM4BPM im
ACM4BPM

Existierende Ansitze fiir
Operationen

Seite 88 Kapitel 4

4.3.3 Operationen

Fiir die Anpassung von Eigenschaften der durch System- und Umge-
bungskomponenten gekapselten Inhalte sind entsprechende Operationen
notwendig. Derartige Operationen werden durch Effektorschnittstellen
(siehe Abschnitt 4.3.2) zur Verfiigung gestellt. In diesem Abschnitt werden
Operationen fokussiert, die zur Anpassung von Prozessen eingesetzt
werden koénnen. Generell lassen sich derartige Operationen dabei in drei
Typen unterscheiden, die nachfolgend vorgestellt werden.

Add Anpassungsoperationen vom Typ Add fiigen einem Prozess
neue Eigenschaften hinzu. Hinsichtlich der hier betrachte-
ten Prozesse kénnten z.B. Elemente oder Eigenschaften des
Kontroll- oder Datenflusses betroffen sein.

Remove Durch Anpassungsoperationen vom Typ Remove lassen sich
Eigenschaften aus einem Prozess entfernen. Analog zu den
Anpassungsoperationen vom Typ Add konnten auch hier-
von Elemente oder Eigenschaften des Kontroll- und Daten-
flusses betroffen sein.

Modify Anpassungsoperationen vom Typ Modify fiigen weder Ei-
genschaften hinzu noch entfernen sie diese. Stattdessen ist
eine Manipulation bestehender Elemente oder ihrer Eigen-
schaften, z.B. in Form der Anderung des Wertes eines At-
tributs, moglich.

Fiir die in dieser Arbeit betrachtete Domédne BPM existieren bereits eine
Reihe verschiedener Operationen, die zur Anpassung von Prozessen ein-
gesetzt werden konnen. Einige Beispiele sind durch [WRR07, WRRO0S;
Ger13] gegeben. Dabei fokussieren existierende Ansdtze oftmals wenige
ausgesuchte Eigenschaften von Prozessen.

So legen [WRR08; WRRO07] fest, dass die von ihnen beschriebenen Anpas-
sungsoperationen lediglich fiir die Anwendung hinsichtlich des Kontroll-
flusses innerhalb eines Prozesses anwendbar sind. Gerth [Ger13] hingegen
fuhrt eine sogenannte Intermediate Representation ein, welche eine Abstrak-
tion géngiger Prozessbeschreibungen darstellt. Auf Basis dieser Abstrakti-
on fiihrt er eine Reihe elementarer und erweiterter Operationen zur An-
passung ein, die sich aber ebenso auf Eigenschaften und Elemente des
Kontrollflusses konzentriert. Fiir anpassbare Prozesse ist aber nicht nur
der Kontrollfluss zu beriicksichtigen, sondern auch weitere Eigenschaften
und Elemente, wie z.B. aus den Perspektiven Organisation und Information

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 89

(siehe Abschnitt 2.3.2). Daher ist eine Analyse der Doméane BPM hinsicht-
lich moglicher Anpassungen notwendig, bevor Operationen der Sprache
ACML4BPM vorgestellt werden konnen.

Als Grundlage fiir eine Analyse konnen verschiedene Artefakte entlang
des BPM-Lebenszyklus dienen. Alternativ kann aber auch die Methode, al-
so der BPM-Lebenszyklus selbst, Aufschluss tiber mogliche Umsténde ge-
ben, die eine Anpassung erfordern. So stellen, wie bereits zuvor in Abbil-
dung 4-9 beschrieben, unterschiedliche Treiber zur Anpassung von Prozes-
sen entlang des BPM-Lebenszyklus und die von ihnen referenzierten Ar-
tefakte selbst bereits Umstdnde einer moglichen Anpassung dar. Fiir eine
konkretere Analyse der Doméne BPM wird daher an dieser Stelle eine Aus-
wahl einiger weniger Gegenstidnde getroffen. So wurde sich fiir die Refe-
renzimplementierung des Metamodells der Sprache BPMN2.0 im Rahmen
des Projekts BPMN2 Modeler! entschieden.

In Abbildung 4-15 ist das bereits in Abschnitt 2.3.4 eingefiihrte Beispiel ei-
nes Business Process Diagram (BPD) der Sprache BPMN2.0 gezeigt. Es wur-
de um Einfarbungen hinsichtlich der Zugehorigkeit von Elementen zu Per-
spektiven erginzt, die die Basis fiir die weiterfithrende Analyse bilden.

Worker Robot

Assemble parts

[& Assemble

(=) Integrate

[& Assemble electronic parts ¢ | >@ quality

electronic parts mechanic parts

into chassis

check

Item is

ClL- ready for fc0a00000 :
quality check .
Perspektiven
Verhalten Funktion Organisation Information

Eine zugehorige Einfarbung von Elementen kann ebenfalls auf Basis ei-
nes Metamodells durchgefiihrt werden. In Abbildung 4-15 ist dies auf Ba-
sis des Metamodells des Projekts BPMN2 Modeler gezeigt. Die Zugehorig-
keit der einzelnen Elemente zu den von Curtis [CKO92] eingefiihrten Per-
spektiven ist dabei farbig dargestellt. Bei den in der Farbe Weif§ dargestell-
ten Elementen handelt es sich um abstrakte Klassen, die in der Sprache
BPMN?2.0 keine grafische Darstellung besitzen.

Projekt BPMN2 Modeler
https://www.eclipse.org/bpmn2-modeler/
Letzter Zugriff 15.12.2018

Grundlage fiir die Analyse
der Doméane BPM

Abbildung 4-14:

Analyse von Perspektiven
in Prozessen auf Basis
eines BPD der Sprache
BPMN2.0

https://www.eclipse.org/bpmn2-modeler/

Abbildung 4-15:

Analyse von Perspektiven
in Prozessen auf Basis

des Metamodells des Pro-
jekts BPMN 2.0 Modeler

Elemente der Perspektive
Organisation

Elemente der Perspektive
Funktion

Seite 90 Kapitel 4

consists-of I 0.*
Lane Message FlowElement Expression
(Flow)
0.* 1 0..1 |message A 0..1 | condition
consists-of | consists-of
1 0.% 1 1
LE:::OS:t MessageFlow SequenceFlow
0.* 1 1 1 1
consists-of
1 I 1/ target 1| source 1,[,target 1|, source
FlowElements Interaction FlowNode
Container Node
[
Event Gateway
Process Activity type: EventType type: GatewayType
enumeration enumeration
TaskType GatewayType
MANUALTASK Task AND
USERTASK SubProcess DataObject OR
type: TaskType
SERVICETASK XOR
SCRIPTTASK 0.1| data COMPLEX
enumeration
1 EventType
s flI?SRTMEDmTE
Qutput DataAssociation
END
o.*
Perspektiven
Verhalten Funktion Organisation Information

Die Wurzelklasse Process ist dabei der Perspektive Funktion zugehorig und
agiert als Container fiir die hier dargestellte Reprasentation der Doméne
BPM. In Abbildung 4-14 ist diese Einfirbung zur Ubersichtlichkeit nicht
vorgenommen. Es kénnen aus der Perspektive Organisation Elemente vom
Typ Pool und Lane zur Gestaltung der organisatorischen Einbettung wei-
terer Elemente verwendet werden. Dabei kann ein Element vom Typ Pool
weitere Elemente vom Typ Lane enthalten, die wiederum weitere Elemen-
te vom Typ Pool enthalten konnen. Das BPD beschreibt hierzu die beiden
Rollen Worker und Robot.

Neben Elementen der Perspektive Organisation kann ein Element des Typs
Process aber auch aus Elementen anderer Perspektiven bestehen. So sind
weitere Elemente der Perspektive Funktion durch verschiedene Aktivita-
ten, wie z.B. in Form der Typen SubProcess und Task, gegeben. Der hier
gezeigte Ausschnitt der Doméne BPM unterstiitzt verschiedenste Unter-

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 91

typen der genannten Aktivitdten, wovon ein Auszug in Abbildung 4-15
durch die Enumeration TaskType angegeben ist.

Elemente der Perspektive Funktion konnen mit Elementen der Perspekti-
ven Verhalten und Information zu verschiedenen Zwecken verbunden sein.
So koénnen verschiedene Typen von Ereignissen (Event) vorkommen, die
den Beginn (Start), den Abschluss (End) oder beliebige Zwischenereignisse
(Intermediate) darstellen. Fiir Verzweigungen lassen sich unterschiedliche
Typen von Gateways einsetzen. Die hier dargestellte Enumeration Gateway-
Type beschreibt dabei einen Auszug der Doméne BPM in Bezug zu Typen
von Gateways. Aktivitidten der Perspektive Funktion lassen sich mit den
Elementen vom Typ Event und Gateway iiber Kanten vom Typ Sequence-
Flow verbinden. Eine Kante vom Typ SequenceFlow kann dariiber hinaus
auch mit einer Bedingung (Expression) versehen werden, mit der ausge-
driickt werden kann, dass die Kante nur unter Einhaltung dieser Bedin-
gung zu dem referenzierten Element fiihrt. Das in Abbildung 4-14 gezeig-
te BPD enthilt verschiedene Start- und Endereignisse sowie ein Ereignis
vom Typ MessageEvent der Perspektive Verhalten.

Die Perspektive Information ist durch zwei unterschiedliche Bereiche in
dem hier dargestellten Ausschnitt des Metamodells und des BPD darge-
stellt. So kann fiir die Ausfithrung von Aktivitdten die Eingabe von Daten
notwendig sein. Dartiber hinaus ist es aber auch moglich, dass Aktivitdten
Daten erzeugen. Hierfiir sind in dem dargestellten Ausschnitt der Domé-
ne BPM Elemente vom Typ DataObject vorgesehen, die tiber Kanten vom
Typ DataAssociation mit den Aktivitidten verbunden werden kdnnen. Dabei
deutet eine zu einer Aktivitdt zugehorige Kante vom Typ DataAssociation
an, ob es sich bei dem referenzierten Datenelement um eine Eingabe (in-
putAssociation) oder um eine Ausgabe (outputAssociation) handelt. Das in
Abbildung 4-14 gezeigte BPD zeigt das Datenobjekt Report und die zuge-
horige Kante in der Rolle outputAssociation. Neben den zuvor beschriebe-
nen Assoziationen zwischen Daten und Aktivitdten lassen sich aber auch
Nachrichten zwischen Aktivitdten austauschen. Ein hierdurch gegebener
Nachrichtenaustausch kann durch ein Element vom Typ MessageFlow aus-
gedriickt werden. Ein Element vom Typ MessageFlow kann dabei ein Ele-
ment vom Typ Message referenzieren, welches die zu versendende Nach-
richt beschreibt. Das BPD zeigt das zur Perspektive Information zugehorige
Element vom Typ MessageFlow.

Bei den zuvor beschriebenen Elementen aus den verschiedenen Perspekti-
ven von Prozessen handelt es sich um eine geringe Auswahl vorhandener
Sprachelemente, die durch die Reprasentation der Domdne BPM in Form

Elemente der Perspektive
Verhalten

Elemente der Perspektive
Information

Loésungsansatz fiir
Operationen

Abbildung 4-16:
Operationen zur An-
passung von Prozes-
sen in Anlehnung an
eine Zuordnung von

BPMN?2.0-Elementen zu
Perspektiven (AVM4BPM)

Klassifikation von
Elementen

Seite 92 Kapitel 4

der Sprache BPMN2.0 zur Verfiigung gestellt werden. Sie dienen daher le-
diglich als Beispiel moglicher Ansatzpunkte zur Spezifikation von Opera-
tionen fiir die Anpassung von Prozessen. Auf Basis der zuvor durchge-
fiihrten Analyse sind in Abbildung 4-16 Operationen zur Anpassung von
Prozessen dargestellt. Jede hier dargestellte Operation (AdaptationOperati-
on) wird dabei durch eine der durch Curtis [CKO92] vorgestellten Perspek-

tiven angeboten.

AdaptationOperation DataObject enumeration
elementType: ElementType (BPMN2.0) ElementType
Node
Edge
InputParameter I |0utputParameter Mkl

0.* ‘ 0.*

I |
| Add I |Remove| Modify
{abstract}
provides
[|
Perspective ‘ Modify | ‘ Modify |
PropertyOf PositionOf

I [[|

| Function I | Behavior I | Organization I | Information I

il 7 T 7

Beispielhafte Zuordnung von Elementen zu Perspektiven

Il)
|
] | |
§§! |
S E! N I
S 3 : S User | [# service = :
| Task Task |
\ e Y I J
T : DataAssociation \I
5 | SequenceFlow |
=
S : > MessageFlow :
X 3 O——=——=== |
N 7
R 2 —— \
2 . : SubProcess Pool |
‘S | Lane Lane |
=
£S5 :
[SEC ,

In jeder Perspektive sind Elemente enthalten, die sich in drei grundlegen-
de Typen Klassifizieren lassen. So existieren Knotenelemente, Kantenelemen-
te und als spezielle Variante von Knotenelementen auch Containerelemente.
Ein Containerelement kann dabei wiederum weitere Elemente der genann-
ten Typen enthalten. Im unteren Bereich sind einige dieser Elemente in ih-
rer jeweiligen Notation in Anlehnung an die Zuordnung zu einer Perspek-
tive dargestellt.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 93

Fiir die von Curtis [CKO92] vorgestellten Perspektiven lassen sich spezi-
fische Operationen in Anlehnung an die zuvor vorgestellten Basisopera-
tionen Add, Remove und Modify beschreiben. Dabei wurden die beiden zu-
sdtzlichen Untertypen ModifyPropertyOf und ModifyPositionOf fiir den Typ
ModifyOperation hinzugefiigt. Mittels ModifyPropertyOf lassen sich Eigen-
schaften eines Elements, wie etwa der Wert der Eigenschaft Name, modifi-
zieren. Dahingegen dndert die Operation ModifyPositionOf die Position ei-
nes Elementes entlang des Kontroll- oder Datenflusses sowie der organisa-
tionalen Einbettung.

Fiir jeden der genannten Typen von Elementen lassen sich auf dieser Ba-
sis Operationen bestimmen, die in Anlehnung an die Basisoperationen
dann bspw. fiir das Hinzuftigen von Knoten in der Form AddNode oder
das Entfernen von Containerelementen in der Form RemoveContainer be-
nannt werden. Diese Operationen konnen fiir die Anpassungen verschie-
dener Elementtypen von anpassbaren Prozessen, wie z.B. Knoten, Kanten
oder Container, eingesetzt werden.

Eine Ubersicht iiber die resultierende Menge an grundlegenden Opera-
tionen fiir die Anpassung von Prozessen ist in Abbildung 4-17 dargestellt.
Dabei lassen sich auf Basis der zuvor beschriebenen Analyse insgesamt 24
Operationen bestimmen, die verschiedene Artefakte im BPM-Lebenszyklus
betreffen kénnen.

Elementare Operationen

OperationType ElementType Artefact
Sy mmmm—————— == mmmmmmm -~ e ~
) \ [
| Add | I O Node ! v |
: [=] Remove | X ! - Edge | X : " ll\llotdel !
. Fl Instance
! ModifyPropertyOf | ' 3 Container /: ' !
Zusammengesetzte Operationen
OperationType X ElementType Artefact
i et it ~
\ (1
: EI0E ModifyPositionOfNode : [m Model [
I (KR %° ModifyPositionOfEdge | X | bl In:)taice :
! [Ea= ModifyPositionOfContainer : ' |

Resultierend in 24 grundlegenden Operationen
fiir die Anpassung von Prozessen

Die in Abbildung 4-17 gezeigte Ubersicht beschreibt die Komposition ei-
ner Operation aus den Eigenschaften Typ der Operation (OperationType), Typ
des Elements (ElementType) und betreffendes Artefakt (Artifact). Dabei gilt die
Besonderheit, dass fiir die Operationen fiir die Modifizierung der Positi-
on eines Elements (ModifyPositionOf) die Komposition bereits fiir den Typ

Abbildung 4-17:

Menge von Operationen
zur Anpassung von
Prozessen

Abbildung 4-18:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOfNode

Signatur der Operation
ModifyPropertyOfNode

Anwendung der Operation
ModifyPropertyOfNode

Seite 94 Kapitel 4

der Operation und den Typ des Elements aufgrund der Komplexitit des
eingesetzten Symbols komponiert worden ist. Ferner handelt es sich dabei
um zusammengesetzte Operationen, die durch elementare Operationen er-
setzt werden konnten.

Ein Beispiel fiir eine sich ergebene Operation ist in Abbildung 4-18 ge-
zeigt. Es wird sowohl die Signatur als auch die konkrete Syntax der Ope-
ration ModifyPropertyOfNode beschrieben. Eine Operation vom Typ Modify-
PropertyOfNode modifiziert den Wert einer Eigenschaft eines Knotenele-

ments aus einem Prozessmodell.

Parametername Parametertyp
IN: inModel ProcessModel
nodeElement NodeElement
nodeProperty Property
propertyValue Value
ouUT : outModel ProcessModel

m
Modify

e NE®)
: ' PropertyOf

AAAAAAAA 3 Node

in node node property
Model Element Property Value
m

Task ‘Name* ‘Task A”

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffende
Knotenelement (nodeElement), seine zu modifizierende Eigenschaft (node-
Property) und den zugehorigen Wert (propertyValue) gegeben. Ein Bezeich-
ner der zu modifizierenden Eigenschaft wird durch ein String-Literal an-
gegeben. Der Typ der zu d&ndernden Werte ist in der dargestellten Signatur
generisch als Value angegeben, da es verschiedene Typen wie z.B. String,
Integer oder auch komplexe Datentypen geben konnte.

Eine Anwendung der in Abbildung 4-18 spezifizierten Operation ist in Ab-
bildung 4-19 anhand einer schematischen und BPMN-spezifischen Darstel-
lung durch ein BPD gezeigt. Im linken Bereich der Abbildung wird hier-
zu als Ausgang das Prozessmodell m dargestellt. Es besteht aus insgesamt

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 95

drei Knotenelementen N, die in einer Sequenz durch zwei Assoziationen E
miteinander verbunden sind. Im zugehérigen BPD sind ein Startereignis,
gefolgt von einem Task und abschlieffend mit einem Endereignis in einer
Sequenz durch Assoziationen vom Typ SequenceFlow verbunden. Die An-
passung von Prozessmodell m hin zu Prozessmodell m” dndert die Eigen-
schaft ‘Name” des Knotenelements Task, sodass der neue Wert der Eigen-
schaft ‘Name’ "Task A’ ist.

Model m Model m*
C O C O
[N—E] [(NF—E—{N] [N—E] [N EF—{N]
[P:Name | V: Task’ | [Vv: Task A’} P: Name |
ModifyPropertyOfNode

Die resultierende Menge an Operationen enthilt Beispiele fiir Opera-
tionen, mit denen sich unterschiedliche Artefakte von Prozessen, wie z.B.
Prozessmodelle und deren Instanzen, anpassen lassen. Dabei wird an die-
ser Stelle angenommen, dass fiir ein konkretes Projekt spezifische Opera-
tionen im Rahmen des AVM4BPM beschrieben und anschlieffend imple-
mentiert werden miissen. Ein wesentlicher Grund hierfiir sind plattform-
spezifische Gegebenheiten von IT-Unterstiitzungssystemen, deren Bertick-
sichtigung im Rahmen der hier vorliegenden Beschreibung nicht sinnvoll
wadre. Fur weiterfithrende Beschreibungen von Beispielen der einzelnen
Operationen durch ihre Signatur, der konkreten Syntax und operationalen
Semantik wird auf Anhang A verwiesen.

4.3.4 Ereignisse

Neben Komponenten, Schnittstellen und den von ihnen angebotenen Ope-
rationen sind fiir die Anpassung von Prozessen zudem auch spezifische
Ereignisse notwendig. Erst ihr Aufkommen 16st eine mogliche Anpassung
aus, sodass sie auch als Ausloser (engl. Trigger) bezeichnet werden. Im Rah-
men dieser Arbeit werden dabei zwei verschiedene Typen von Ereignissen
unterschieden.

Abbildung 4-19:
Beispielhafte Anwendung
der Operation Modify-
PropertyOfNode

Explizite Ereignisse

Implizite Ereignisse

Seite 96 Kapitel 4

Werden im Rahmen der Gestaltung von Prozessen Ereignisse als Teil des
Kontroll- oder Datenflusses verwendet, so kann hier von expliziten Er-
eignissen ausgegangen werden. So stellen z.B. die Elemente vom Typ
StartEvent bzw. vom Typ EndEvent Ereignisse dar, die den Start bzw. das
Ende eines Prozesses beschreiben. Ferner sind auch weitere Ereignisse
moglich, die im Verlauf des Kontroll- bzw. des Datenflusses explizit fiir
die Auslosung einer Anpassung in der Gestaltung von Prozessen ver-
wendet werden konnen. Weitere Beispiele fiir explizite Ereignisse sind
zahlreich vertreten und werden in Ausziigen in Abschnitt 4.3.4.1 nidher
beschrieben.

Es konnen aber auch weitere Ereignisse auftreten, die nicht im Rahmen der
Gestaltung von Prozessen als Teil des Kontroll- oder Datenflusses verwen-
det werden konnen. Derartige Ereignisse sind oftmals eng gekoppelt an
die operationale Semantik einzelner Elemente von Prozessen. Beispiele fiir
derartige Ereignisse konnen entlang des Lebenszyklus von Aktivititen in
der Sprache BPMN2.0 betrachtet werden. So kann z.B. die Aktivierung ei-
ner Aktivitdt selbst ein Ereignis darstellen, wodurch eine Anpassung von
Prozessen notwendig wird. Derartige Ereignisse werden am Beispiel des
Lebenszyklus von Aktivitdten in Abschnitt 4.3.4.2 beschrieben.

4.3.4.1 Explizite Ereignisse

Explizite Ereignisse stellen ein wichtiges Konzept innerhalb der Sprache
BPMN2.0 dar. Sie konnen explizit in der Gestaltung von Prozessen als
mogliche Ausloser einer Anpassung verwendet werden. Dabei kann wei-
ter zwischen zwei Typen von Ereignissen unterschieden werden. So exis-
tieren zum einen Ereignisse vom Typ ThrowEvent und zum anderen vom
Typ CatchEvent, die entweder ein aufkommendes Ereignis darstellen oder
auf ein solches Ereignis reagieren. Soll eine Anpassung an einem Prozess
ausgefiihrt werden, konnen Ereignisse des Typs ThrowEvent zur Auslo-
sung dessen Anpassung eingesetzt werden. Eine zu dem aufkommenden
Ereignis vom Typ ThrowEvent zugehorige Anpassung muss dabei — bis auf
wenige Ausnahmen - ein zugehoriges Ereignis vom Typ CatchEvent ent-
halten. Ausnahmen bilden Ereignisse vom Typ CatchEvent, die bspw. in
Abhingigkeit zu einer konditionalen Auswertung stehen. Konkrete Bei-
spiele hierfiir sind durch Ereignisse vom Typ TimerEvent oder Conditional-
Event gegeben. Im Folgenden wird auf eine Auswahl durch die Sprache
BPMN?2.0 gegebener Ereignisse und auf ihre Relevanz fiir Anpassungen
von Prozessen eingegangen.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 97

Durch Ereignisse vom Typ TimerEvent ist es moglich, den Aufruf einer An-
passung von Prozessen in Abhédngigkeit zu Zeitraumen, Zeitpunkten oder
Zyklen zu setzen. Der Typ TimerEvent kann somit zur Beschreibung von
Ereignissen verwendet werden, fiir die kein zugehoriges Ereignis vom Typ
ThrowEvent aufgekommen sein muss, da eine Auslosung in Abhangigkeit
zur Auswertung einer zeitbezogenen Bedingung steht.

Durch Nachrichten (engl. Messages) lassen sich Ereignisse beschreiben, die
neben dem reinen Aufkommen eines Ereignisses zudem auch noch Infor-
mationen enthalten. Derartige Informationen konnen z.B. fiir die Priifung
hinsichtlich einer vorzunehmenden Anpassung von Prozessen eingesetzt
werden. Fiir Nachrichten ist es tiblich, dass sie neben den zu sendenden
Informationen lediglich fiir einen bestimmten Empfanger gedacht sind.

Ein weiterer Typ von Ereignissen ist durch Signal gegeben. Fiir Ereignis-
se dieses Typs existieren sowohl Typen des Typs CatchEvent als auch des
Typs ThrowEvent. Sie konnen wie Nachrichten Informationen enthalten,
die fiir die weitere Auswertung im Rahmen einer Anpassung von Prozes-
sen notwendig sein konnen. Dabei unterscheidet sich der Typ Signal von
dem Typ MessageEvent insofern, als dass der Empfanger (CatchEvent) des
Typs Signal nicht explizit gesetzt ist. Hierdurch ist es moglich, dass es meh-
rere Empfanger (CatchEvent) geben kann, die durch ein zugehoriges Throw-
Event vom Typ Signal ausgelost werden konnen.

Die Ausfiihrung von Prozessen kann das Vorkommen von Fehlern expli-
zit durch Ereignisse des Typs ErrorEvent berticksichtigen. Das Aufkom-
men eines solchen Ereignisses kann dabei das Starten einer Anpassung von
Prozessen zum Zweck der Fehlerbehandlung auslosen.

Soll die Ausfithrung eines Prozesses beendet werden, obwohl Token auf
parallelen Ausfithrungspfaden existent sind, lassen sich Ereignisse vom
Typ TerminationEvent einsetzen. Eine solche Beendigung eines Prozesses
kann dabei der Ausloser einer Anpassung von Prozessen sein.

Werden Prozesse ausgefiihrt, kann ein spéterer Abbruch oder eine Riick-
abwicklung abgeschlossener Aktivitidten notwendig sein. Ein Ereignis vom
Typ CompensationEvent kann dabei eingesetzt werden, um eine Anpassung
von Prozessen durch die Durchfiihrung einer vordefinierten Abbruchpro-
zedur, einer Riickabwicklung oder aber der situativen Anpassung solcher

Prozeduren zu starten.

Fiir die zuvor beschriebenen Ereignisse existieren zum Teil zahlreiche Va-
rianten, deren Beschreibung an dieser Stelle nicht sinnvoll wére. Fiir eine
vollstindige Referenz wird daher auf deren Spezifikation [OMG11] ver-

Timer

Message

Signal

Error

Termination

Compensation

Abbildung 4-20:
Lebenszyklus von
Aktivitdten in der Sprache
BPMNZ2.0 in Form eines
UML Zustandsdiagramms

Seite 98 Kapitel 4

wiesen. Beispiele fiir den Einsatz der genannten Typen von Ereignissen
werden dariiber hinaus in Abschnitt 4.2 beschrieben.

4.3.4.2 Implizite Ereignisse

Ein weiterer Typ von Ereignissen ist durch implizite Ereignisse gegeben.
So existieren Elemente in der Sprache BPMN?2.0, fiir die eine Beschreibung
ihres Lebenszyklus gegeben ist. In diesem Bezug stellt der Lebenszyklus
von Aktivitdten ein wichtiges Beispiel dar. Es wird im weiteren Verlauf
des Abschnitts als Referenz verwendet.

Als Einfiihrung ist im oberen Teil von Abbildung 4-20 ein Auszug des Le-
benszyklus fiir Aktivititen der Sprache BPMN2.0 in Form eines UML Zu-
standsdiagramms [OMG10] gezeigt. So werden eine Reihe von verschiede-
nen Zustdnden durchlaufen, bevor der Lebenszyklus endet. Diese Zustén-
de sind durch Ready, Active, Completing und Completed gegeben. Sie stel-
len einen Auszug fiir den erfolgreichen Ablauf des Lebenszyklus ohne Be-
handlung von Fehlern, Abbriichen oder Kompensationen dar. Jeder Uber-
gang von einem Zustand in den ndchsten Zustand wird durch ein spezifi-
sches Ereignis ausgedriickt. So kann der Lebenszyklus begonnen werden,
wenn durch das Ereignis A-Token-Arrives ausgedriickt wird, dass ein To-
ken die Aktivitdt erreicht hat. Auf die Bedeutung der einzelnen Zustdnde
und Ereignisse wird im Folgenden kurz eingegangen.

Lebenszyklus von Aktivitdten

Activitys-work-completed
A-Token-Arrives The-Process-Ends

Data-InputSet-Available Completing
Requirements-Done
Assignments-Completed

Ready Eine Aktivitat befindet sich im Zustand Ready, wenn die be-
notigte Anzahl an Token zur Aktivierung verfiigbar gewe-
sen ist. Ein Wechsel in diesen Zustand wird durch das Er-
eignis A-Token-Arrives ausgelOst.

Active In dem Zustand Active wird die fiir die Aktivitdt ange-
dachte Funktion ausgefiihrt. Ein Wechsel in diesen Zu-
stand wird durch das Ereignis Data-InputSet-Available aus-
gedriickt. Es kommt auf, wenn alle Dateneingaben verfiig-
bar sind.

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 99

Completing Wurde die fiir die Aktivitit angedachte Funktion erfiillt
und die Ausfithrung beendet, wechselt der Lebenszy-
klus in den Zustand Completing. Das zugehorige Ereig-
nis ist Activitys-work-completed. In dem Zustand Completing
werden assoziierte Abhédngigkeiten, wie z.B. gebundene
Behandlung von Ereignissen, aufgelost.

Completed In den Zustand Completed wird gewechselt, sobald gebun-
dene Abhidngigkeiten aufgelost worden sind. Das zugeho-
rige Ereignis ist dabei durch Completing-Requirements-Done-
Assignments-Completed gegeben. Der dargestellte Verlauf
endet, wenn bereitgestellte Token von nachfolgenden Ele-
menten tibernommen worden sind. Das zugehorige Ereig-
nis ist durch The-Process-Ends gegeben.

Die zuvor beschriebenen Zustandsiibergdnge und Ereignisse konnen ge-
nutzt werden, um spezifisches Verhalten der Anpassungslogik aufzuru-
fen. Sollen Nutzer und Domanenexperten durch die Verwendung ihrer ge-
wohnten Sprache in Form von BPMN2.0 unterstiitzt werden, ist eine mog-
liche Losung durch die Transformation von Zustinden und Ereignissen
des UML Zustandsdiagramms (siehe Abbildung 4-20) in explizite Ereignisse
der Sprache BPMN2.0 moglich.

Ein mogliches Ergebnis einer solchen Transformation ist in Abbildung 4-21
in Form eines BPD gezeigt. Das dargestellte BPD besteht aus Ereignissen,
die zu einer der in Abbildung 4-20 entsprechenden Sequenz verbunden
worden sind. Dabei wurden dem dargestellten Kontrollfluss fiir jeden Zu-
stand des UML Zustandsdiagramms und fir die Start- und Endknoten ein
Ereignis vom Typ Signal hinzugefiigt. Bei dem Ereignis handelt es sich
um ein Zwischenereignis (Intermediate) des Typs ThrowEvent (siehe Ab-
schnitt 4.3.4.1). Jedes Ereignis stellt den unmittelbaren Wechsel in den je-
weiligen Zustand bzw. den Start oder das Ende der Aktivitat dar.

Lebenszyklus von Aktivitaten als Folge von Ereignissen

Start End

@ @ @

onReady onActivation onCompleting onCompleted

®

Transformierte Ereignisse

Abbildung 4-21:
Lebenszyklus von
Aktivitéten in der Spra-
che BPMN2.0 als Folge
von Ereignissen in Form
eines BPD

Abstrakte Syntax fiir
transformierte Ereignisse

Abbildung 4-22:
Integration von impliziten
Ereignissen (AVM4BPM)

Seite 100 Kapitel 4

Als Erganzung zu der Transformation von Zustdnden konnen auch die Er-
eignisse des UML Zustandsdiagramms durch explizite Ereignisse der Spra-
che BPMN?2.0 dargestellt werden. In alternativen Transformationen kénn-
ten die zusatzlichen Ereignisse z.B. auch beim Verlassen eines Zustandes
eingefiigt werden. Hierbei ware die Namensgebung der Ereignisse von der
Form on* zu after* anzupassen. Hierdurch wiirde z.B. das Ereignis onReady
nachgefolgt durch das Ereignis afterReady. Problematisch wire dieses Vor-
gehen im Fall des Ereignisses vom Typ EndEvent, da hier der Kontrollfluss
bereits beendet wére.

Fiir den vollstindigen Lebenszyklus von Aktivititen in der Sprache
BPMN2.0 ist ein Konzept zur Integration von impliziten Ereignissen hin-
sichtlich der Zustidnde fiir die Losungsvariante on* in Abbildung 4-22
dargestellt. Der Lebenszyklus (Lifecycle) wird hier als Teil einer Aktivitat
(Activity) dargestellt. Der Lebenszyklus besteht aus einer Reihe von Zu-
standen (LifecycleState), die wiederum einen spezifischen Namen besitzen.
Die durch die im Rahmen der Spezifikation der Sprache BPMN?2.0 einge-
fuhrten Zustinde des Lebenszyklus von Aktivitdten sind hier durch die
Enumeration StateName dargestellt. Zu jedem dieser Zustidnde wird ein
neues Ereignis vom Typ LifecycleEvent eingefiihrt, welches das Wechseln
in den jeweiligen Zustand ankiindigt (pronounces). Die Ereignisse werden
gemdf ihrer Zugehorigkeit zu Zustinden des Lebenszyklus benannt. So
wird z.B. ein Ereignis, das das Betreten des Zustandes Ready signalisiert,
mit dem Bezeichner onReady dargestellt. Die Enumeration EventName be-
schreibt die zugehorigen Ereignisse hinsichtlich des Betretens von Zustan-

den.
Activity Event Sensor
(BPMN2.0) (BPMN2.0) (ACML)

Lifecycle | AdaptationRequestEvent vaem%
JA

(BPMN2.0)
states | * 0..1 | activeState
LifecycleState enumeration enumeration
(BPMN2.0) EventName StateName
name: StateName onReady Ready
onActive Active
state onCompleting Completing
ExtendedLifecycle onCompleted Completed
onTerminating Terminating
pronounces onTerminated Terminated
onFailing Failing
explicitEvents | * explicitEvent onFailed Failed
- onCompensation Compensation
LifecycleEvent onCompensated Compensated
name: EventName onWithdrawn Withdrawn

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 101

Bei den transformierten Ereignissen (LifecycleEvent) handelt es sich fer-
ner um Ereignisse des Typs AdaptationRequestEvent (siehe Abschnitt 4.3.2),
die durch Sensorschnittstellen zur Verfligung gestellt werden koénnen.
Hierdurch kénnen auch implizite Ereignisse in der Gestaltung von an-
passbaren Prozessen berticksichtigt werden, indem sie durch die Sprache
ACML4BPM als Teil dieser Schnittstellen beschrieben werden.

Neben den in Abbildung 4-22 dargestellten Ereignissen konnen weitere
implizite Ereignisse fiir die Auslosung von Anpassungen sinnvoll sein.
Dabei konnen aufgrund der Verwendung von Ereignissen des Typs Signal
mehrere Anpassungen pro aufkommendes Ereignis angestofien werden.
Sollen zeitgleich mehrere Instanzen eines Prozesses aktiv sein, kann daher
eine Unifizierung des Ereignisses notwendig sein. Ferner kann der Lebens-
zyklus weitere Zustandswechsel durchfiihren, obwohl die Ausfiihrung ei-
ner Anpassung noch aktiv ist. Daher kann es erforderlich sein, im An-
schluss an eine Anpassung eine Riickkopplung durchzufiihren.

Eine Losungsvariante unter Verwendung von Riickkopplungen ist in Ab-
bildung 4-23 dargestellt. In dem hier dargestellten BPD ist erneut ein Aus-
zug des Lebenszyklus einer Aktivitat auf Basis des in Abbildung 4-20 vor-
gestellten Ablaufs gezeigt. Dabei wurden jedoch nicht Ereignisse des Typs
Signal verwendet. Um eine Unifizierung und eine Riickkopplung zu ermog-
lichen werden stattdessen Nachrichten (Message) eingesetzt.

Lebenszyklus von Aktivitadten als Folge von Ereignissen

Start onReady onActivation onCompleting onCompleted

onReadyAdaptationDone onActivationAdaptationDone onCompletingAdaptationDone onCompletedAdaptationDone

Durch die Eigenschaft, dass Nachrichten neben zu tibermittelnden Infor-
mationen auch einen speziellen Empfanger enthalten, konnen ungewollte
Seiteneffekte beim Vorhandensein mehrerer Instanzen reduziert werden.
Fiir die Riickkopplung im Fall einer abgeschlossenen Anpassung wurde
pro Zustand ein Ereignis des Typs CatchEvent eingefiigt. Im Rahmen des
Kontrollflusses wird somit stets vor dem Betreten eines Zustandes ein Er-
eignis zur Anpassung ausgelost. Anschlielend wird auf eine Riickkopp-
lung durch ein weiteres Ereignis gewartet, das iiber die Abgeschlossenheit

einer Anpassung informiert.

Transformierte Ereignisse
mit Unifizierung und
Riickkopplung

Abbildung 4-23:
Lebenszyklus von
Aktivititen als Folge von
Ereignissen in Form eines
BPD mit Verwendung von
Riickkopplung

Seite 102 Kapitel 4

Abstrakte Syntax fiir Das Konzept zur Integration von impliziten Ereignissen unter Verwen-
transformierte Ereignisse qng yon Riickkopplung ist in Abbildung 4-24 dargestellt. Wie zuvor be-
reits beschrieben, wurden die beiden Typen ThrowEvent und CatchEvent
fur Nachrichten (Message) verwendet. Ereignisse vom Typ ThrowMessa-
ge werden zur Auslosung einer moglichen Anpassung verwendet. Ferner
werden Ereignisse vom Typ CatchEvent zur Riickkopplung mit einer mog-
lichen Anpassung verwendet. Die Benennung der Ereignisse ist in Anleh-
nung an den jeweiligen Zustand gewahlt worden, in den nach der Riick-
kopplung gewechselt werden soll. Eine Ubersicht gibt hierzu die Enume-
ration FeedbackEventName.

Abbildung 4-24: Activity

Event Sensor
Integration von implizi- (BPMN2.0) (BPMN2.0) (ACML)
ten Ereignissen mit Riick-
kopplung (AVM4BPM)
A events
Lifecycle | AdaptationRequestEvent I*%
(BPMN2.0) A
states | * 0..1 | activeState
LifecycleState enumeration enumeration enumeration
(BPMN2.0) FeedbackEventName EventName StateName
name: StateName onReadyAdaptationDone onReady Ready
onActiveAdaptationDone onActive Active
state onCompletingAdaptationDone onCompleting Completing
ExtendedLifecycle onCompletedAdaptationDone onCompleted Completed
onTerminatingAdaptationDone onTerminating Terminating
pronounces onTerminatedAdaptationDone onTerminated Terminated
onFailingAdaptationDone onFailing Failing
explicitEvents | * explicitEvent onFailedAdaptationDone onFailed Failed
- onCompensationAdaptationDone onCompensation Compensation
LifecycleEvent onCompensatedAdaptationDone onCompensated Compensated
name: EventName onWithdrawnAdaptationDone onWithdrawn Withdrawn
Zr 1
ThrowMessage CatchMessage
name: EventName name: FeedbackEventName

Konkrete Syntax von Fiir implizite Ereignisse wurde keine gesonderte konkrete Syntax in dieser
impliziten Ereignissen aypeit entwickelt. Dies lisst sich dadurch begriinden, dass implizite Ereig-
nisse in explizite Ereignisse der Sprache BPMN2.0 transformiert werden
konnen. In diesem Bezug werden fiir transformierte implizite Ereignisse

die konkrete Syntax von expliziten Ereignissen eingesetzt.

Unidirektionale Fiir die Integration von impliziten Ereignissen in das AVM4BPM der Spra-
Transformation .o ACML4BPM wurde eine methodische Transformation beschrieben. Die
Transformation sieht die Abbildung des Betretens von Zustdnden des Le-
benszyklus von Aktivitdten auf explizite Ereignisse vor. Da es sich um eine
unidirektionale Transformation handelt, kann ein erweiterter Aufwand

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 103

bei der Auswahl einer Plattform, der zugehorigen Konfiguration und Im-
plementierung bestehen. Eine Losung im Rahmen einer Implementierung
kann durch die Verwendung von Event-Handlern durchgefiihrt werden. Da
in dieser Arbeit die frithe Gestaltung von anpassbaren Prozessen fokus-
siert wird, liegt dies an dieser Stelle aufserhalb des fiir diese Arbeit gesetz-
ten Rahmens.

Neben den beiden zuvor beschriebenen Varianten lassen sich auch andere
implizite Ereignisse in der Sprache ACML4BPM berticksichtigen. Ein Bei-
spiel ist hier durch Elemente aus der Perspektive Information gegeben. So
konnen die Initialisierung oder die Loschung von Datenobjekten ebenfalls
durch Ereignisse dargestellt werden, bei deren Aufkommen eine Anpas-
sung von Prozessen notwendig sein kann. Dabei existieren in der Sprache
BPMN?2.0 nicht immer etwaige Lebenszyklen, auf deren Basis eine Erwei-
terung moglich ist. In diesen Fallen muss ein Lebenszyklus entsprechend
gegebener Anforderungen durch Nutzer oder Doménenexperten in enger
Anlehnung an das spater eingesetzte IT-Unterstiitzungssystem entwickelt
werden.

4.4 Zusammenfassung

In den vorherigen Abschnitten wurde die Sprache Adapt Case Modeling Lan-
guage 4 BPM (ACML4BPM) vorgestellt. Sie kann fiir die Gestaltung von
anpassbaren Prozessen und zur Durchfiihrung des Separation-of-Concerns
hinsichtlich der Anwendungs- und Anpassungslogik eingesetzt werden.
Die Sprache basiert auf dem durch Luckey beschriebenen Ansatz Adapt Ca-
ses [Luc+11] (siehe Abschnitt 2.4).

Die entwickelte Sprache gliedert sich dabei in zwei Teilsprachen zur Erstel-
lung des Adapt Case Model 4 BPM (siehe Abschnitt 4.2) und des Adapt Case
View Model 4 BPM (siehe Abschnitt 4.3). Beide Teilsprachen berticksich-
tigen spezifische Konzepte der Domédne BPM. In diesem Abschnitt wird
kurz auf die Vollstandigkeit der Sprache hinsichtlich der in Abschnitt 4.1
gegebenen Fragestellungen eingegangen. Hierzu ist in Tabelle 4-1 eine
Auflistung von zugehorigen Zielen sowie deren Erfiillung dargestellt. Eine
Erldauterung sowie Diskussion werden im Folgenden gegeben.

Allgemein ldsst sich die Frage nach der Vollstindigkeit nur in Abhédngig-
keit zu dem gewdhlten Fixpunkt beantworten. In den vorherigen Abschnit-
ten wurden fiir verschiedene Elemente der Sprache ACML4BPM Fixpunk-
te gewdhlt, die entweder durch Artefakte entlang des BPM-Lebenszyklus
oder aber durch eine existierende Représentation der Domédne BPM in

Sonstige Ergdnzung

Tabelle 4-1:

Ubersicht iiber gesetzte
Ziele und deren Erfiillung
fiir die entwickelte Spra-
che zur Gestaltung von
anpassbaren Prozessen

System und
Umgebungskomponenten
der Domédne BPM

Seite 104 Kapitel 4

Fragestellung Ziel Erfiillung

1 Identifikation von relevanten System- und Umgebungs- v
komponenten in der Doméane BPM

2 Identifikation von Schnittstellen fiir den Zugriff auf In- v
formationen innerhalb dieser System- und Umgebungs-
komponenten

3 Beschreibung von Operationen zur addquaten Anpas- v
sung der Eigenschaften dieser System- und Umgebungs-
komponenten

4 Identifikation moglicher Ereignisse zur Beschreibung der v

Notwendigkeit einer Anpassung von Eigenschaften die-
ser System- und Umgebungskomponenten

Form der Sprache BPMN?2.0 gegeben wurden. Es ist klar, dass durch die
Wahl anderer Fixpunkte als Analysegrundlage, wie z.B. fiir die Repra-
sentation der Domédne BPM die Sprache der UML Aktivititsdiagramme
[OMG15b], BPEL [OAS07] oder neuere Sprachen wie CMMN [OMG16a]
oder DMN [OMG16b], andere Elemente einer Sprache zur Gestaltung von
anpassbaren Prozessen notwendig werden. Die zuvor beschriebenen In-
halte konnen in diesem Bezug als Leitfaden fiir ein mogliches Vorgehen
beim Adaptivity Engineering auf Basis des durch Luckey [Luc+11; LE13] vor-
gestellten Ansatzes Adapt Cases dienen und sollten bei der nachfolgenden
Diskussion berticksichtigt werden.

Aus der Arbeit von Luckey ldsst sich ableiten, dass es zwei grundlegende
Typen von Komponenten geben kann. Dabei handelt es sich zum einen
um Systemkomponenten, auf denen der Fokus der Betrachtung liegt, und
zum anderen um Umgebungskomponenten, mit denen die Systemkompo-
nenten interagieren. Sollen anpassbare Prozesse gestaltet und ausgefiihrt
werden, konnen fiir die Doméne BPM zwei wesentliche Systemkompo-
nenten benannt werden. Es handelt sich hierbei um Systemkomponenten
zur Kapselung von Prozessmodellen und zur Kapselung von Prozessin-
stanzen. Derartige Systemkomponenten konnen mit einer Vielzahl an un-
terschiedlichen Umgebungskomponenten interagieren. Diese konnen ent-
weder durch verschiedene reine Softwaresysteme, wie z.B. Anwendungs-
und Datenbanksysteme, gegeben sein oder weitere (Misch-)Systeme, die
eine Kopplung mit physischen bzw. real-weltlichen Entitédten, wie z.B. Ma-
schinen, bilden. Auf die Frage nach relevanten System- und Umgebungs-
komponenten konnte somit in Abschnitt 4.3.1 durch die Einfiihrung spe-
zifischer Typen von Komponenten eine Antwort gegeben werden. Es sei
hierbei jedoch angemerkt, dass durch eine Verdnderung des gewahlten Fix-
punktes oder fiir die Entwicklung einer konkreten prozessspezifischen An-
wendung die Notwendigkeit fiir die Einfithrung zusatzlicher Typen von

Eine Sprache zur Gestaltung von anpassbaren Prozessen Seite 105

Umgebungskomponenten gegeben ist. Da der Fokus der vorliegenden Ar-
beit jedoch auf der Gestaltung von flexiblen und anpassbaren Prozessen
liegt, wird auf diesen Aspekt nicht weiter eingegangen. Beispiele fiir mog-
liche Umgebungskomponenten werden jedoch im Rahmen der Evaluation
und des dort verwendeten Szenarios gegeben (siehe Abschnitt 7.1).

Gemaf des Ansatzes Adapt Cases sind fiir die Gestaltung von Anpassungs-
regeln die beiden Schnittstellentypen Sensor und Effector notwendig. Sie er-
moglichen zum einen den kontrollierten lesenden Zugriff auf Eigenschaf-
ten der durch die System- und Umgebungskomponenten gekapselten In-
halte und zum anderen die Funktion der Anpassung von Eigenschaften
dieser Inhalte. Hierzu wurden in Abschnitt 4.3.2 in Anlehnung an die iden-
tifizierten System- und Umgebungskomponenten entsprechende Schnitt-
stellen vorgestellt.

Die vorgestellten Typen von Schnittstellen bieten Operationen zur Anpas-
sung von gekapselten Eigenschaften an. Analog zu der durch [Ger13] vor-
gestellten Arbeit wurde sich hier fiir einen Fixpunkt in Form einer Sprache
(hier: BPMN2.0) zur Gestaltung von Prozessen entschieden. Bei der Aus-
wahl des Fixpunktes wurden die durch Curtis [CKO92] eingefiihrten vier
Perspektiven von Prozessen als Analysegrundlage verwendet. Es konnte
gezeigt werden, dass existierende Arbeiten sich lediglich auf einige weni-
ge Perspektiven konzentrieren und damit die Anpassung wesentlicher In-
halte von Prozessen nicht ermoglichen. Daher wurden in Anlehnung an
die Perspektiven Operationen zur Anpassung von Prozessen eingefiihrt,
die eine Anwendung auf die Elemente aller durch Curtis [CKO92] vor-
gestellten Perspektiven bietet. Es wird davon ausgegangen, dass durch
diese Vorgehensweise eine Abdeckung der vier Perspektiven ermoglicht
werden kann. Hierdurch konnen fiir ausgesuchte Elemente addquate An-
passungen an den durch die System- und Umgebungskomponenten ge-
kapselten Inhalte ermoglicht werden.

Im Rahmen des Ansatzes Adapt Cases stellen Ereignisse den wesentlichen
Mechanismus zur Andeutung einer potentiell notwendigen Anpassung
dar. Daher wurden in Anlehnung an die durch die Sprache BPMN2.0 ge-
gebene Reprasentation der Domédne BPM verschiedene Klassen von Ereig-
nissen vorgestellt, die entweder explizit oder implizit die Notwendigkeit
einer Anpassung andeuten konnen. Durch die beiden gegebenen Klassen
von Ereignissen ldsst sich eine Vielzahl an méglichen auslosenden Ereig-
nissen gestalten.

Wie zuvor diskutiert bieten die in diesem Abschnitt vorgestellten Inhalte

einen moglichen Ansatz zur Gestaltung von anpassbaren Prozessen unter

Schnittstellen

Operationen zur
Anpassung

Ereignisse zur Auslésung
einer Anpassung

Seite 106 Kapitel 4

Verwendung des De-facto-Standards BPMN2.0. Dabei ist eine vollstandi-
ge Abdeckung einer Reprdsentation einer Doméne nur bedingt moglich.
Daher wurde versucht, auf verschiedene Perspektiven von Prozessen Be-
zug zu nehmen, sodass das beschriebene Vorgehen als ein Leitfaden fiir
das Adaptivity Engineering in Bezug zu anpassbaren Prozessen betrachtet

werden kann.

Kapitel

Entwurfsmuster fur
flexible und anpassbare
Prozesse

Neben der Anpassung von Prozessen durch entsprechende Operationen
wird in dieser Arbeit zudem auch Flexibilitit betrachtet, die in Prozes-
sen auf weitere Arten umgesetzt werden kann. Fiir diese unterschiedli-
chen Arten von Flexibilitét existieren in der Literatur verschiedene Arbei-
ten, in denen Flexibilitit in Prozessen beschrieben wird. Dieser Abschnitt
befasst sich mit der Vorstellung einiger ausgesuchter Arten von Flexibi-
litat, die nachfolgend auch Entwurfsmuster genannt werden. Dabei liegt
der Fokus insbesondere auf derartigen Entwurfsmustern, die explizit Ent-
scheidungspunkte vorsehen, sodass eine Trennung der Anpassungs- und
Anwendungslogik sinnvoll sein kann. Nachfolgend werden in diesem Be-
zug in Abschnitt 5.1 zunédchst eine Reihe von Forschungsfragen und die
weitere Struktur des Kapitels vorgestellt. Die erarbeiteten Entwurfsmus-
ter werden anschlieffend in den Abschnitten 5.2 bis 5.5 beschrieben. Da-
bei wird jeweils eine spezifische Analyse des Typs an Flexibilitdt durch-
gefiihrt. Darauf aufbauend wird fiir die Gestaltung von flexiblen und an-
passbaren Prozessen unter Verwendung der Sprache ACML4BPM ein Lo-
sungsweg vorgestellt. Das Kapitel schliefst in Abschnitt 5.6 mit einer Zu-
sammenfassung der vorgestellten Entwurfsmuster ab.

5.1 Ubersicht

Unter Verwendung der in Kapitel 4 eingefiihrten Sprache ACML4BPM
wird nachfolgend gezeigt, wie die Trennung von unterschiedlichen Typen
von Verhalten in der Gestaltung von Prozessen vorgenommen werden
kann. Hierbei wird insbesondere auf die Einhaltung der Anforderung des

Fragestellung 1

Fragestellung 2

Fragestellung 3

Fragestellung 4

Seite 108 Kapitel 5

Separation-of-Concerns (SoC) hinsichtlich der Trennung der Anpassungs-
und Anwendungslogik eingegangen. Ferner wird versucht, die nachfol-
genden Forschungsfragen im Rahmen der einzelnen Abschnitte zu beant-
worten.

Was sind Flexibilititsaspekte von Prozessen?

Wie kann die Gestaltung von flexiblen und anpassbaren Prozessen hinsichtlich be-
stehender Flexibilititsaspekte durch die Sprache ACML4BPM in Form von Ent-
wurfsmustern unterstiitzt werden?

Werden fiir diese Unterstiitzung Erweiterungen der Sprachen BPMN2.0 und
ACML4BPM notwendig?

Werden fiir diese Unterstiitzung Erweiterungen von Methoden zur Gestaltung
notwendig?

Als Grundlage fiir einen moglichen Suchraum fiir die Auswahl von ver-
schiedenen Arten von Flexibilitit dienten dabei die Arbeiten von [Sch+08]
und [WRR08; RW12]. Bei den Arbeiten handelt es sich jeweils um zen-
trale Arbeiten hinsichtlich der Flexibilitdt von Prozessen in der wissen-
schaftlichen Doméne BPM. Insbesondere die Arbeit von [Sch+08] stellte
sich als die vielversprechendste Arbeit hinsichtlich verschiedener Arten
von Flexibilitdt heraus, die durch die Sprache ACML4BPM bereits frithzei-
tig in der Gestaltung von flexiblen und anpassbaren Prozessen durch ent-
sprechende Entwurfsmuster unterstiitzt werden konnen. Dabei sind bei-
de Gruppen von Arbeiten hinsichtlich der Arten von Flexibilitdt in Prozes-
sen teilweise deckungsgleich. Die Arbeiten von [WRR08; RW12] sind je-
doch an spezifischen Stellen derartig umfangreich, dass sich stattdessen
fiir eine Definition von Entwurfsmustern auf Basis von [Sch+08] entschie-
den werden musste. In Abbildung 5-1 ist eine Ubersicht iiber die in der vor-
liegenden Arbeit betrachteten Entwurfsmuster fiir flexible Prozesse darge-
stellt.

Im Folgenden wird detaillierter auf die in Abbildung 5-1 abgebildeten
Entwurfsmuster zur Realisierung verschiedener Arten von Flexibilitat in
Prozessen eingegangen. Hier wird zwischen zwei Gruppen von Entwurfs-
mustern unterschieden. So lasst sich Flexibilitdt bereits friih in der Phase
Design & Analyse des BPM-Lebenszyklus von Prozessen in Form des Flexi-
bilitatsaspekts Flexibility-by Design durch eine geeignete Art zu gestalten
umsetzen. Hierauf wird in Abschnitt 5.2 detailliert eingegangen. Anschlie-
end werden Entwurfsmuster der zweiten Gruppe vorgestellt, fiir die zum

einen Spracherweiterungen und zum anderen zusatzliche Operationen zur

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 109

Abbildung 5-1:

Ubersicht iiber Aspekte
von flexiblen und anpass-
baren Prozessen

Flexibilitat

{| «<Flexibility Concern»
Flexibility-by
Design

Abschnitt 5.2

«Flexibility Concern»
Flexibility-by
Change

Abschnitt 5.3

«Flexibility Concern»
Flexibility-by
Deviation

Abschnitt 5.4

«Flexibility Concern»
Flexibility-by
Underspecification

Abschnitt 5.5

Gestaltungsart

Spracherweiterungen sowie Operationen zur Anpassung

Anpassung notwendig sind. Hierzu gehoren zunéchst die Flexibilitats-
aspekte Flexibility-by Change (siehe Abschnitt 5.3) und Flexibility-by Devia-
tion (siehe Abschnitt 5.4). AbschlieSend wird in Abschnitt 5.5 der letzte
Flexibilitatsaspekt Flexibility-by Underspecification vorgestellt, der einige In-
halte der zuvor genannten Flexibilitdtsaspekte wiederverwendet.

5.2 Flexibility-by Design

Im Rahmen von Flexibility-by Design werden bereits verschiedene Ent-
wurfsmuster fiir flexible und anpassbare Prozesse zur Verfiigung gestellt.
Dabei wird sich vornehmlich auf Aspekte von Flexibilitit und Anpass-
barkeit konzentriert, die sich durch ein geeignetes Vorgehen in der Phase
Design & Analyse in Hinsicht auf die Gestaltung von Prozessen in Form von
Prozessmodellen bezieht. Schonenberg et. al [Sch+08] motivieren Flexibility-
by Design durch die Anforderung, verschiedene Alternativen fiir Ausfiih-
rungspfade zu unterstiitzen. Hierdurch kann zur Ausfithrungszeit der
Austithrungspfad ausgewdahlt werden, der fiir den jeweiligen Kontext am
geeignetsten ist. Eine an Schonenberg et. al [Sch+08] angelehnte Definition
des Flexibilitatsaspekts Flexibility-by Design wird in Definition 5.2.1 gege-
ben.

Definition 5.2.1. (Flexibility-by Design)

Flexibility-by Design beschreibt die Fihigkeit zur Integration von alter-
nativen Ausfithrungspfaden innerhalb eines Prozessmodells in der Phase
Design & Analyse des BPM-Lebenszyklus. Dabei wird das Ziel verfolgt,
in der Phase Ausfiihrung, also zur Zeit der Ausfiihrung, einen geeigneten
Ausfithrungspfad wihlen zu konnen.

Abbildung 5-2:
Gestaltungsaspekte fiir
flexible und anpassbare
Prozesse in Hinsicht auf
Flexibility-by Design

Seite 110 Kapitel 5

Flexibility-by Design ldsst sich in unterschiedliche Aspekte der Gestaltung
unterteilen, die bereits friihzeitig in der Phase Design & Analyse des BPM-
Lebenszyklus beriicksichtigt werden konnen. Eine Ubersicht {iber diese
Aspekte ist in Abbildung 5-2 gegeben. Eine fiir diese Arbeit verwendete
Interpretation dieser Aspekte sowie deren Analyse hinsichtlich einer mog-
lichen Verwendung der Sprache ACML4BPM in ihrer Gestaltung wird in
Abschnitt 5.2.1 detaillierter erldutert. In den nachfolgenden Abschnitten
5.2.2 bis 5.2.4 werden Konzepte fiir die Gestaltung einzelner Aspekte unter
Verwendung der Sprache ACML4BPM vorgestellt. Abschliefend wird in
Abschnitt 5.2.5 eine Zusammenfassung sowie eine Diskussion gegeben.

«Flexibility Concern»

Flexibility-by Design «DesignAspect» «DesignAspect»
Choice Iteration
«DesignAspect» «DesignAspect» «DesignAspect» «DesignAspect»
Parallelism Interleaving Multiple Instances Cancellation

5.21 Gestaltungsaspekte von Flexibility-by Design

In diesem Abschnitt werden die sechs Aspekte (siehe Abbildung 5-2)
zur Gestaltung von flexiblen Prozessen in Hinsicht auf den Flexibilitats-
aspekt Flexibility-by Design vorgestellt. Das Ziel soll hierbei die Analyse
hinsichtlich der Erkennung des Potentials zur Trennung von Anpassungs-
und Anwendungslogik sein, sodass die in Kapitel 4 vorgestellte Sprache
ACML4BPM unterstiitzend in der Gestaltung eingesetzt werden kann.
Hierzu werden zunéchst die Aspekte zur Gestaltung in den Abschnitten
5.2.1.1 bis 5.2.1.6 beschrieben und bewertet. In Abschnitt 5.2.1.7 wird mit
einer Zusammenfassung hinsichtlich einer moglichen Verwendung von
der Sprache ACML4BPM abgeschlossen.

5.2.1.1 Choice

Unter dem Aspekt Choice wird die Fahigkeit verstanden, im Rahmen des
Kontrollflusses spezifische Entscheidungspunkte zu beschreiben, durch
deren Auswertung alternative Kontrollflusspfade gewihlt werden kon-
nen. Beispiele fiir konkrete Entscheidungspunkte in der Sprache BPMN2.0
sind durch Knotenelemente der Typen Inclusive Gateway und Exclusive
Gateway (siehe Abschnitt 2.3.4) gegeben.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 111

Abbildung 5-3:

Beispiele fiir den Aspekt
Choice in der Sprache
BPMN2.0

[fancy-condition-a]

[fancy-condition-a]

[fancy-condition-b]

Default Alternative
Task Task A

<
-]

Default
Task

Alternative Alternative
Task A Task B

2

Zur besseren Veranschaulichung des Aspekts Choice werden in Abbil- Beispiele fiir den Aspekt
Choice

dung 5-3 zwei Beispiele gegeben. Im linken Bereich wird hierzu eine ein-
fache Auswahl von zwei Kontrollflusspfaden dargestellt. Dabei wird auf
Basis einer Auswertung der Bedingung fancy-condition-a einer der beiden
dargestellten Kontrollflusspfade gewéhlt. Hierdurch ist es moglich, flexi-
bel eine Auswahl einer Ausfiihrung des Tasks mit der Bezeichnung Default
Task oder Alternative Task zu treffen. Im rechten Bereich ist ein erweitertes
Beispiel fiir den Aspekt Choice dargestellt. So konnen im Rahmen einer
geschachtelten Auswahl, zundchst bestehend aus der Bedingung fancy-
condition-a und anschliefend aus der Bedingung fancy-condition-b, ver-
schiedene Kontrollflusspfade gewdhlt werden.

Flexibilitét ist in den Beispielen in Abbildung 5-3 durch die Auswahl ver- Bewertung fiir den Aspekt
schiedener Kontrollflusspfade gegeben. Dabei werden Anwendungs- und ~ Choice
Anpassungslogik gemeinsam integriert dargestellt. Dies kann z.B. insbe-

sondere im Rahmen von einer grofien Anzahl an Moglichkeiten zur Aus-

wahl oder tieferen Verschachtelungen sowohl die Wartbarkeit als auch das

Verstandnis von in Abhéngigkeit stehender Umstédnde erschweren. Hierzu

wird in Abschnitt 5.2.2 eine alternative Darstellung unter Verwendung der

in Kapitel 4 eingefiihrten Sprache ACML4BPM gegeben.

5.2.1.2 Iteration

Der Aspekt Iteration beschreibt die Fahigkeit, dass ein einzelner Kontroll-
flusspfad wiederholt durchlaufen werden kann. Typischerweise wird hier-
bei an einem Entscheidungspunkt eine Bedingung ausgewertet, dessen Er-
gebnis einen wiederholten Durchlauf eines Kontrollflusses bedingt. Der
Aspekt Iteration kann dabei als spezielle Variante des Aspekts Choice ver-
standen werden, da ebenfalls in Anlehnung an die Auswertung einer Be-
dingung ein Kontrollflusspfad gewidhlt werden kann.

Beispiele fiir den Aspekt
Iteration

Abbildung 5-4:
Beispiele fiir den
Aspekt Iteration in
der Sprache BPMIN2.0

Bewertung fiir den Aspekt
Iteration

Beispiel fiir den Aspekt
Parallelism

Seite 112 Kapitel 5

In Abbildung 5-4 sind hierzu zwei Beispiele fiir den Aspekt Iteration in
der Sprache BPMN2.0 dargestellt. Im linken Bereich ist eine sogenannte
fufigesteuerte und im rechten Bereich eine kopfgesteuerte Iteration dar-
gestellt. Beide Iterationen unterscheiden sich darin, an welcher Stelle im
Kontrollfluss eine Bedingung fiir den Abbruch ausgewertet wird. So ist
im Fall einer fufigesteuerten Iteration, wie hier dargestellt, eine Ausfiih-
rung des Tasks mit der Bezeichnung Continued executed Task stets vor der
Auswertung der Bedingung fancy-condition. Im Fall der kopfgesteuerten
Iteration wird vor dem Betreten einer jeden Iteration gepriift, ob die Be-
dingung fancy-condition noch erfiillt ist. Ist dem nicht so, wird der gesamte
Vorgang abgebrochen und weiter im Kontrollfluss verfahren.

Continued
! Q executed Q !
Task

[fancy-condition]

]

Continued
executed
Task

[fancy-condition]

Flexibilitat ist in dem dargestellten Beispiel des Aspekts Iteration gege-
ben, da jede weitere Iteration die Einbindung eines zusétzlichen Teils im
Kontrollfluss bedingt. Diese Art von Flexibilitét ist somit sehr dhnlich zu
dem Aspekt Choice. Ferner werden Anwendungs- und Anpassungslogik
in dem dargestellten Beispiel nicht voneinander getrennt, wodurch be-
reits bekannte Probleme auftreten konnen (siehe 5.2.2). Wie der Aspekt
Iteration durch die Sprache ACML4BPM gestaltet werden kann, wird in
Abschnitt 5.2.3 beschrieben.

5.2.1.3 Parallelism

Durch den Aspekt Parallelism ist es moglich, mehrere Kontrollflusspfade
zu beschreiben, deren spétere Ausfiihrung parallel stattfinden soll. Hier-
fur werden Teilungs- (engl. Fork) und Vereinigungspunkte (engl. Join) be-
notigt, an denen ein einzelner Kontrollflusspfad geteilt bzw. mehrere Kon-
trollflusspfade vereinigt werden. Ein Beispiel eines Sprachelements aus der
Sprache BPMN2.0 ist durch das Knotenelement des Typs ParallelGateway
gegeben (siehe Abschnitt 2.3.4).

In Abbildung 5-5 ist ein Beispiel des Aspekts Parallelism in der Sprache
BPMN?2.0 gegeben. Dabei sollen ausgehend vom Gateway g1 mehrere Kon-
trollflusspfade parallel ausgefiihrt werden. Sobald die Ausfiihrung auf den
parallelen Kontrollflusspfaden beendet worden ist, werden sie durch das
Gateway g2 wieder zu einem Kontrollflusspfad zusammengefiihrt.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 113

ye

[X

Parallel Parallel
Task 1 Task 2

Parallel
Task n

Der Aspekt Parallelism kann dabei als eine weitere Art von Flexibilitat be-
trachtet werden. So ist im Gegensatz zu den bisher betrachteten Aspekten
Choice und Iteration keine konditionale Auswahl von Kontrollflusspfaden
vorhanden. Eine direkte Trennung der Anwendungs- und Anpassungs-
logik ist somit fiir den Aspekt Parallelism nicht moglich, da keine Bedin-
gung oder Auswahl eingeschlossen ist. Dennoch sind selbstverstandlich
sonstige Anpassungen an den fiir die parallele Ausfithrung angedachten
Kontrollflusspfaden moglich. So ldsst sich jeder parallele Kontrollflusspfad
bspw. hinsichtlich seiner enthaltenen Elemente anpassen. Alternativ lasst
sich aber auch die Anzahl von parallelen Kontrollflusspfaden anpassen.
Hierbei handelt es sich jedoch nicht um eine fiir den Aspekt Parallelism
spezifische Anpassung. Auf eine Beschreibung fiir die Verwendung der
Sprache ACML4BPM wird daher in diesem Bezug nachfolgend verzichtet
(siehe auch Abschnitt 5.2.1.7)

5.2.1.4 Interleaving

Ein weiterer Aspekt ist durch Interleaving gegeben. Interleaving beschreibt
eine Fahigkeit, durch die es ermoglicht wird, die Sequenz einer Ausfiih-
rung einzelner Tasks oder Kontrollflusspfade so zu bestimmen, dass sie in
einer beliebigen Sequenz ausgefiihrt werden. Die Sprache BPMN?2.0 bietet
fiir einmalige und unbestimmte Reihenfolgen der Ausfithrung von Tasks
das Sprachelement des Ad-hoc Subprozesses (siehe Abschnitt 2.3.4) an.

In Abbildung 5-6 sind zwei Beispiele fiir Ad-hoc-Subprozesse dargestellt. Bei
dem Ad-hoc-Subprozess handelt es sich um einen speziellen Typ eines Sub-
prozesses, der sich sowohl ein- (collapsed) als auch ausgeklappt (uncollapsed)
darstellen ldsst. Der eingeklappte Ad-hoc Subprozess wird mit einem ein-
gerahmten Plus-Symbol dargestellt. Das Symbol des Ad-hoc Subprozesses
selbst ist das Tilde-Symbol (~). Im linken Bereich ist ein eingeklappter Ad-

Abbildung 5-5:

Beispiel fiir den Aspekt
Parallelism in der Sprache
BPMN2.0

Bewertung fiir den Aspekt
Parallelism

Beispiele fiir den Aspekt
Interleaving

Abbildung 5-6:
Beispiele fiir den Aspekt
Interleaving in der
Sprache BPMIN2.0

Bewertung fiir den Aspekt
Interleaving

Beispiele fiir den Aspekt
Multiple Instances

Seite 114 Kapitel 5

hoc Subprozess dargestellt. Im rechten Bereich hingegen wird der gleiche
Ad-hoc Subprozess ausgeklappt gezeigt. In dem ausgeklappten Ad-hoc Sub-
prozess sind verschiedene Tasks (Task 1 bis Task n) enthalten, welche in einer
nicht ndher spezifizierten Reihenfolge einmalig ausgefiihrt werden kon-
nen. Wurde der letzte der genannten Tasks ausgefiihrt, terminiert der Ad-
hoc Subprozess.

AN AN
collapsed uncollapsed

Ad-hoc
Sub Process

Flexibilitat ist auch bei dem Aspekt Interleaving losgeldst von einer aus-
wertbaren Bedingung, die eine Trennung von der Anpassungs- und An-
wendungslogik ermoglicht. Ebenso wie zuvor fiir den Aspekt Parallelism
lassen sich aber sonstige Anpassungen durchfiihren. So ist es z.B. denk-
bar, dass die Anzahl der eingebetteten Tasks im Ad-hoc Subprozess durch
Operationen der Typen Add, Remove und Modify angepasst werden kon-
nen (siehe Abschnitt 4.3.3). Auf eine Beschreibung fiir die Verwendung
der Sprache ACML4BPM wird daher auch fiir diesen Aspekt nachfolgend
verzichtet, da sie hinsichtlich der Funktionsweise des Aspekts Interleaving
nicht spezifisch wiére.

5.2.1.5 Multiple Instances

Sollen von einem Task mehrere Instanzen gleichzeitig ausgefiihrt werden,
kann dies durch den Aspekt Multiple Instances umgesetzt werden. Die
Sprache BPMN?2.0 bietet hierzu die Moglichkeit zur entsprechenden Kon-

figuration eines einzelnen Tasks.

In Abbildung 5-7 sind zwei Beispiele fiir die Konfiguration von Tasks in
der Sprache BPMN?2.0 hinsichtlich des Aspekts Multiple Instances gegeben.
So bietet die Sprache BPMN2.0 die Moglichkeit zu spezifizieren, dass von
einem Task mehrere Instanzen ausgefiihrt werden sollen. Dabei kénnen
verschiedene Konfigurationen angegeben werden, durch die die Anzahl
der Instanzen (loopCardinality) und die Art der Ausfiihrung (isSequential)
angegeben werden. Hierbei werden zwei grundsitzliche Arten der Aus-
filhrung unterschieden. Verschiedene Instanzen eines Tasks kénnen einer-
seits sequentiell und andererseits parallel ausgefiihrt werden. Beide Typen

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 115

koénnen unterschieden werden, indem ein Symbol bestehend aus drei hori-
zontalen Strichen die sequentielle und ein Symbol bestehend aus drei ver-
tikalen Strichen die parallele Art der Ausfiihrung kennzeichnet.

isSequential = true AN isSequential = false AN
IoopCardmallty 5 IoopCardlnaIlty 5

Multiple Instances Multiple Instances
Task Task
(sequentla[) (parallel)

111

Flexibilitat ist abermals bei dem Aspekt Multiple Instances losgeltst von ei-

ner auswertbaren Bedingung. Anpassungen im Rahmen des Aspekts Mul-
tiple Instances sind aber dennoch denkbar, sodass z.B. die genannten Eigen-
schaften isSequential und loopCardinality anpassbar sind. So kann durch die
Anderung des Wertes der Eigenschaft loopCardinality die Anzahl der aus-
zuftihrenden Instanzen des Tasks geandert werden. Auch fiir den Aspekt
Multiple Instances wird daher auf die Beschreibung der Verwendung der
Sprache ACML4BPM verzichtet (siehe Abschnitt 5.2.1.7)

5.2.1.6 Cancellation

Der letzte Aspekt von Flexibility-by Design ist durch Cancellation gegeben.
Durch Cancellation wird die Fahigkeit zum Uberspringen bzw. zum Ab-
brechen eines Abschnitts im Kontrollflusspfad beschrieben. Hierzu exis-
tieren zwei Varianten, die betrachtet werden konnen. Zum einen kann
Cancellation als Variante des Aspekts Choice verstanden werden. So kann
hierbei durch die Auswertung einer Bedingung ein Kontrollflusspfad
tibersprungen werden und zum néchsten gemeinsamen Kontrollflussteil-
pfad gewechselt werden. Das Uberspringen eines Teilpfades wird auch als
Skip bezeichnet (siehe auch Abschnitt 5.4). Zum anderen ist es aber auch
denkbar, die Ausfithrung eines Subprozesses bzw. Tasks vorzeitig zu be-
enden. Hierzu bietet die Sprache BPMN2.0 Ereignisse des Typs Boundary-
Event an.

In Abbildung 5-8 sind die beiden Varianten des Aspekts Cancellation in
zwei Beispielen gezeigt. Im linken Bereich ist hierzu die Variante des
Aspekts Cancellation durch den Aspekt Choice dargestellt. Je nach Ergeb-
nis der Auswertung der Bedingung fancy-condition kann die Ausfithrung
des Teilpfades, auf dem der Task mit der Bezeichnung Skipable Task enthal-
ten ist, {ibersprungen werden. Eine Ubersicht {iber ausgesuchte Beispie-
le fiir Arten des Aspekts Cancellation repréasentiert durch Ereignisse des

Abbildung 5-7:

Beispiele fiir den Aspekt
Multiple Instances in der
Sprache BPMNZ2.0

Bewertung fiir den Aspekt
Multiple Instances

Beispiele fiir den Aspekt
Cancellation

Abbildung 5-8:
Beispiele fiir den Aspekt
Cancellation in der
Sprache BPMIN2.0

Bewertung fiir den Aspekt
Cancellation

Seite 116 Kapitel 5

Typs BoundaryEvent ist im rechten Bereich gegeben. So kann bspw. beim
Aufkommen eines Ereignisses des Typs MessageEvent die weitere Ausfiih-
rung des Subprozesses abgebrochen werden. Fiir eine detaillierte Beschrei-
bung aller dargestellten Ereignisse wird auf die Spezifikation der Sprache
BPMN?2.0 verwiesen [OMG11].

‘ [fancy-condition]
Skipable
Task

Flexibilitdt im Rahmen des Aspekts Cancellation ist dabei derartig gege-

Cancelable BoundaryEvent
Sub-Process (BPMN2.0)

ben, dass die Moglichkeit zum Abbruch des vorgesehenen Kontrollfluss-
pfades besteht. Ferner kénnen auch alternative Kontrollflusspfade gewéahlt
werden. Der Aspekt Cancellation gibt dartiber hinaus die Moglichkeit zur
Behandlung von Ausnahmen — sogenannten Exceptions. So kdnnen bspw.
durch ein Ereignis des Typs TimerEvent Ausnahmebehandlungen definiert
werden, wenn die Ausfithrung eines Tasks oder Subprozesses eine ge-
wisse Zeitdauer tiberschreitet. Fiir die Variante des Aspekts Cancellation,
bei der ein Teilpfad tibersprungen werden kann, ist eine Trennung der
Anpassungs- und Anwendungslogik moglich. So kénnen beteiligte Teil-
pfade und die auszuwertenden Bedingungen getrennt voneinander gestal-
tet werden. Fiir die Varianten des Aspekts Cancellation zum Abbruch ei-
nes Subprozesses oder Tasks ist je nach aufkommendem Ereignis vom Typ
BoundaryEvent zu differenzieren, ob eine Trennung moglich oder sinnvoll
ist.

Werden die verschiedenen Typen von Ereignissen als BoundaryEvent ein-
gesetzt, kann hierdurch der Kontrollfluss derartig geédndert werden, dass
die von dem eingesetzten Ereignis ausgehende Kante des Kontrollflus-
ses schaltet, sodass die zugehorige Aktivitit bzw. der Subprozess vor-
zeitig beendet werden kann. Im Rahmen der Sprache BPMN2.0 werden
fur diesen Zweck verschiedene Typen von Ereignissen unterstiitzt, so
z.B. MessageEvent, TimerEvent, EscalationEvent, ErrorEvent, Compensation-
Event, ConditionalEvent, SignalEvent, MultipleEvent und ParallelEvent. In
Abschnitt 5.2.4 wird fiir eine Auswahl der zuvor genannten Ereignis-
se und unter Verwendung der Sprache ACML4BPM eine Gestaltung des
Aspekts Cancellation beschrieben.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 117

5.2.1.7 Zusammenfassung der Bewertung

Zuvor wurden die durch [Sch+08] gegebenen Aspekte von Flexibility-by
Design zundchst beschrieben. Ferner wurden verschiedene Beispiele zur
Gestaltung der eingefiihrten Aspekte auf Basis der Sprache BPMN2.0 gege-
ben. Hierzu ist in Tabelle 5-1 eine Ubersicht {iber die beschriebenen Aspek-
te sowie eine Einschdtzung hinsichtlich der Moglichkeit einer Trennung
von Anwendungs- und Anpassungslogik (SoC) gegeben.

Aspekt SoC moglich Sonstige Anpassungen moglich
Choice v 4
Iteration 4 v
Parallelism - v
Interleaving - v
Multiple Instances - v
Cancellation v v

Fur die Aspekte Parallelism, Interleaving und Multiple Instances ist eine
spezifische Verwendung der Sprache ACML4BPM zur Trennung der
Anwendungs- von der Anpassungslogik nicht moglich, da diese Aspek-
te typischerweise keine Bedingungen enthalten, die ausgewertet werden
miissen und durch die alternative Kontrollflusspfade bestimmt werden
konnen. Stattdessen beschreiben sie spezielle Arten von Ausfiihrungen,
wie etwa die parallele und die einmalig versetzte Ausfithrung von ver-
schiedenen Tasks oder Subprozessen. Eine Anpassung von Prozessen, die
diese Aspekte umsetzen, ist aber dennoch moglich. So konnen Elemen-
te oder Eigenschaften auf den enthaltenen Kontrollflusspfaden angepasst
werden, sofern dies notwendig ist.

Eine Trennung von Anpassungs- und Anwendungslogik ist insgesamt bei
den drei Aspekten Choice, Iteration und Cancellation moglich. Dies ldsst
sich vornehmlich dadurch begriinden, dass in diesen Aspekten stets min-
destens eine Auswertung einer Bedingung zur Auswahl eines alternati-
ven Kontrollflusspfades vorkommt. Fiir diese Gruppe von Aspekten von
Flexibility-by Design ist die Verwendung der in Kapitel 5 eingefiihrten Spra-
che ACML4BPM moglich. Hierdurch kann eine Trennung der Anpassungs-
und Anwendungslogik ermoglicht werden.

Die Gestaltung dieser Aspekte kann dabei auf zwei unterschiedliche Ar-
ten durchgefiihrt werden. Auf der einen Seite kann die Anpassungs- und
Anwendungslogik durch Beobachtungs- und Anpassungsprozesse umge-
setzt werden. Auf der anderen Seite konnen Beobachtungs- und insbe-

Tabelle 5-1:

Ubersicht tiber die Még-
lichkeit der Trennung von
Anpassungs- und Anwen-
dungslogik in Bezug zu
einzelnen Aspekten von
Flexibility-by Design

Bewertung von Aspekten

Elemente der
Anpassungslogik

Elemente der
Anwendungslogik

Seite 118 Kapitel 5

sondere Anpassungsprozesse aber auch dazu verwendet werden, den Ge-
samtprozess derartig anzupassen, dass eine benétigte Funktion integriert
wird. Bei der letzten Art der Gestaltung handelt es sich jedoch um das Ent-
wurfsmuster Flexibility-by Change, das in Abschnitt 5.3 detailliert beschrie-
ben wird. Daher wird im Folgenden die Umsetzung der beiden Logiken
ohne Anpassungen am Gesamtprozess gezeigt. Stattdessen wird gezeigt,
wie Anpassungs- und Anwendungslogik durch Beobachtungs- und An-
passungsprozesse umgesetzt werden konnen.

Nachfolgend werden fiir diese Aspekte Beispiele unter Verwendung der
in dieser Arbeit entwickelten Sprache gegeben. Die Beispiele konnen an-
schlielend fiir die Gestaltung von flexiblen und anpassbaren Prozessen als
Entwurfsmuster verwendet werden.

5.2.2 Gestaltung von Choice

Die Moglichkeit zur Gestaltung einer Auswahl von verschiedenen Kon-
trollflusspfaden kann bereits friithzeitig in der Phase Design & Analyse
des BPM-Lebenszyklus durch den Aspekt Choice unterstiitzt werden. Bei
der Gestaltung dieses Aspekts kann die in Kapitel 4 vorgestellte Sprache
ACML4BPM eingesetzt werden. Ferner lédsst sich hierbei eine Trennung
von Anpassungs- und Anwendungslogik erreichen. Fiir die Trennung der
beiden Logiken ist es zunédchst notwendig, dass zunédchst jeweils zugeho-
rige Elemente identifiziert werden, sodass in einem nachfolgenden Schritt
eine getrennte Gestaltung unter der Verwendung der Sprache ACML4BPM
ermoglicht werden kann.

In Abbildung 5-9 ist das Ergebnis einer Identifikation von Elementen der
Anpassungs- und Anwendungslogik auf Basis des in Abbildung 5-3 ein-
gefiihrten Beispiels dargestellt. Das Beispiel beschreibt dabei einen Aus-
zug eines im Folgenden genannten Gesamtprozesses. Dabei liegt der Fo-
kus auf einem Ausschnitt, der durch die Punkte s und e gegeben ist.

Elemente des Kontrollflusses der Anpassungslogik sind in der Farbe Griin
hinterlegt dargestellt. Im Fall des in Abbildung 5-3 dargestellten Beispiels
handelt es sich um Entscheidungspunkte, die durch Gateways und durch
die angehédngten Bedingungen abgebildet sind.

Ferner sind die einzelnen Teile des Kontrollflusses, die die Anwendungs-
logik darstellen, in der Farbe Blau hinterlegt dargestellt. Dabei handelt es
sich in dem gezeigten Beispiel um die dargestellten Tasks bzw. Kontroll-
flusspfade, auf denen sie vorkommen.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 119

Abbildung 5-9:
Elemente der
Anpassungs- und An-
wendungslogik

’ [fancy-condition-a]
Default Alternative
Task Task A

<
-]

’ [fancy-condition-a]
‘ [fancy-condition-b]
Default
Task

Alternative Alternative
Task A Task B

2

Eine weitere Fragestellung beschiftigt sich mit der Integration des zwi- Integration in den
Gesamtprozess

schen den Punkten s und e liegenden Verhaltens in den Gesamtprozess.
Wie in Abschnitt 4.2.2 bereits beschrieben, wird ein AC4BPM bzw. ein Be-
obachtungsprozess typischerweise durch ein Ereignis ausgelost. Hierzu
konnen sowohl explizite als auch implizite Ereignisse eingesetzt werden
(siehe Abschnitt 4.3.4). In Abbildung 5-10 werden méogliche Varianten vor-
gestellt, die fiir die Auslosung eines Beobachtungsprozesses und damit fiir
die Integration in den Gesamtprozess eingesetzt werden kénnen. Sie um-
fassen die Verwendung von expliziten und impliziten Ereignissen sowie
die Umsetzung mit und ohne notwendiger Anpassung.

Abbildung 5-10:

Explizite Ereignisse Explizite Ereignisse mit notwendiger Anpassung
Explizite und implizite Er-
evalutate-fancy- evalutate-fancy- evalutate-fancy- evalutate-fancy- : H A
conditions conditions-done conditions conditions-done e{gnlsse zur Auslt?sung
@ a @ Default] eines AC4BPM mit und
Task ohne notwendiger Anpas-
sung
Implizite Ereignisse Implizite Ereignisse mit notwendiger Anpassung

Evaluate- Evaluate-
fancy- H s fancy- Default
. e Task
conditions conditions

So lésst sich ein AC4BPM durch eine in dem Kontrollfluss des Gesamt- Integration ohne
Anpassung durch explizite

prozess vorgesehene Riickkopplung einbinden, die hier durch die beiden Jd5e
Ereignisse

Ereignisse der Typen ThrowEvent und CatchEvent dargestellt sind. Die ge-
nerelle Funktionsweise ldsst sich dabei derartig beschreiben, dass durch
das Ereignis mit der Bezeichnung evaluate-fancy-conditions (ThrowEvent) ein
AC4BPM ausgelost werden kann. Ist die Bearbeitung durch den zugehori-
gen Beobachtungs- oder Anpassungsprozess abgeschlossen, so wird ein
Ereignis mit der Bezeichnung evaluate-fancy-conditions (CatchEvent) ausge-
lost und die Riickkopplung ist abgeschlossen.

Abbildung 5-11:
Beispiel einer Alter-
native fiir den Aspekt
Choice in ACML4BPM

Integration ohne
Anpassung durch implizite
Ereignisse

Seite 120 Kapitel 5

Ein Beispiel fiir einen zugehorigen AC4BPM ist in Abbildung 5-11 be-
schrieben. Zum besseren Verstandnis sind die Elemente der Anpassungs-
und Anwendungslogik abermals in den zuvor eingefiihrten Farben Griin
und Blau hinterlegt. So ist ersichtlich, dass die Anpassungslogik des
Aspekts Choice vollstdndig durch den dargestellten Beobachtungsprozess
gestaltet worden ist. Je nach Ergebnis einer Auswertung der dargestellten
Bedingung wird der dazugehorige Anpassungsprozess aufgerufen, durch
den die jeweils benétigte Funktion gestaltet worden ist.

«AdaptCase4BPM» Alternative Task

MakeAChoice

@

Adaptation Process

Alternative
Task A

D

Default Task

Adaptation Process

Default
Task

evaluate-fancy-
conditions

Monitoring Process

evaluate-fancy-condition
adaptationProcess =
‘Default Task’

[fancy-condition]

evalutate-fancy-
conditions-done

evalutate-fancy-
conditions-done

adaptationProcess =
‘Alternative Task’

CAP

Werden verschachtelte Bedingungen wie im rechten Bereich von Abbil-
dung 5-9 verwendet, so lasst sich diese Anpassungslogik ebenfalls durch
einen Beobachtungsprozess beschreiben. Weitere alternative Funktionen
konnen durch das Hinzufiigen weiterer Anpassungsprozesse mit entspre-
chender Funktionsbeschreibung gestaltet werden.

Ein AC4BPM lasst sich alternativ aber auch durch implizite Ereignisse aus-
16sen. In Abbildung 5-10 ist hierzu im linken unteren Bereich ein Bei-
spiel fiir eine derartige Integration dargestellt. Dabei bietet sich die in Ab-
schnitt 4.3.4.2 vorgestellte Variante von transformierten impliziten Ereig-
nissen an, in denen eine Riickkopplung vorgesehen ist. Die Funktionswei-
se gleicht anschlieffend der durch explizite Ereignisse beschriebenen Inte-
gration.

Ein Beispiel fiir einen zugehorigen AC4BPM ist in Anlehnung an Abbil-
dung 5-12 beschrieben. Zum besseren Verstindnis sind die Elemente der
Anpassungs- und Anwendungslogik abermals in den zuvor eingefiihrten
Farben Griin und Blau hinterlegt. In dem Beobachtungsprozess ist die ver-
schachtelte Anpassungslogik des in Abbildung 5-9 eingefiihrten Beispiels

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 121

gestaltet worden. Dabei muss an dieser Stelle erneut darauf aufmerksam
gemacht werden, dass aufgrund der Riickkopplung fiir die Variante ein
hoherer Aufwand in der weiteren Gestaltung bzw. Implementierung be-
riicksichtigt werden sollte (siehe Abschnitt 4.3.4.2).

Abbildung 5-12:
Beispiel multipler Alter-
nativen fiir den Aspekt

«AdaptCase4BPM »
MakeAnotherChoice

(X} \

evalutate-fancy- O ChOiCE in ACML4BPM
conditions.onReady() Alternative
Task B
— Alternative Adaptation Process
Monitoring Process Task A
evaluate-fancy- Default Adaptation Process
conditions.onReady() Task

Adaptation Process

adaptationProcess =
‘Default Task’

Alternative
Task B

[fancy-condition-a]

adaptationProcess = Default
‘Alternative Task A* Task

Alternative
Task A

evaluate-fancy-
conditions.onReady
AdaptationDone

|

[fancy-condition-b]

adaptationProcess =
‘Alternative Task B’

evaluate-fancy-
conditions.onReady
AdaptationDone

evaluate-fancy-
conditions.onReady
AdaptationDone

Dartiber hinaus ist ebenso eine Integration durch explizite oder implizite Integration durch explizite
und implizite Ereignisse

Ereignisse mit Anpassung moglich. Im rechten oberen bzw. rechten unte- 3
mit Anpassung

ren Bereich von Abbildung 5-10 ist dies gezeigt. Dabei ist die Standard-
funktion (hier: Default Task) Teil des Ausschnittes zwischen den Punkten s
und e. Die zuvor beschriebenen beiden Varianten von Verwendungsweisen
fiir eine mogliche Auslosung eines AC4BPM konnen dabei dazu verwen-
det werden, eine Anpassung am gezeigten Ausschnitt des Kontrollflusses
durchzufiihren. Eine derartige Anpassung kann so z.B. den Task mit der
Bezeichnung Default Task aus dem Kontrollfluss entfernen und einen al-
ternativen Task, wie Alternative Task A oder Alternative Task B, einfiihren.
Durch die in Abbildung 5-10 dargestellten Mechanismen zur Riickkopp-
lung ist dieser Austausch einer Funktionalitdt vor ihrer jeweiligen Akti-
vierung moglich. Auf eine Beschreibung von Beispielen wird verzichtet,
da die Funktionsweise der Integration vornehmlich der zuvor beschriebe-
nen beiden Prinzipien folgt. Eine Abweichung ist lediglich hinsichtlich der
Verwendungsweise des Anpassungsprozesses vorhanden, in dem anstelle
der Ausfiithrung einer Funktion, wie z.B. Default Task, das Entfernen und
Hinzuftigen einer solchen Funktion beschrieben steht.

Abbildung 5-13:
Identifizierung von
Anpassungs- und
Anwendungslogik
zur Unterstiitzung
des Aspekts Iteration

Elemente der
Anpassungslogik

Elemente der
Anwendungslogik

Integration in den
Gesamtprozess

Seite 122 Kapitel 5

5.2.3 Gestaltung von lteration

Durch den Aspekt Iteration kann die Moglichkeit zur Gestaltung eines
iterativ ausgefiihrten Kontrollflusspfades bereits friihzeitig in der Phase
Design & Analyse des BPM-Lebenszyklus unterstiitzt werden. Dabei handelt
es sich um eine spezielle Variante des Aspekts Choice, weshalb im Folgen-
den lediglich auf Besonderheiten des Aspekts Iteration eingegangen wird.
Bei der Gestaltung dieses Aspekts kann ebenfalls die in Kapitel 4 vorge-
stellte Sprache ACML4BPM eingesetzt werden, sodass sich eine Trennung
von Anpassungs- und Anwendungslogik erreichen ldsst. Fiir die Trennung
der beiden Logiken ist es zundchst notwendig, dass jeweils zugehorige Ele-
mente in einem ersten Schritt identifiziert werden, sodass in einem nach-
folgenden Schritt eine getrennte Gestaltung unter Verwendung der Spra-
che ACML4BPM ermoglicht werden kann. Hierzu ist in Abbildung 5-13
das Ergebnis einer Identifikation von Elementen der Anpassungs- und An-
wendungslogik auf Basis des in Abbildung 5-4 eingefiihrten Beispiels dar-
gestellt.

.

Continued
u Q executed Q !

Task

[fancy-condition]
gl')«

Dabei sind wesentliche Elemente des Kontrollflusses, die fiir die Anpas-

Continued
executed
Task

[fancy-condition]

sungslogik vorhanden sind, in der Farbe Griin hinterlegt dargestellt. Im
Fall der in Abbildung 5-4 dargestellten Beispiele handelt es sich um Ent-
scheidungspunkte, die durch die Gateways g1 und g2 bzw. g1’ und g2’ und
die angehédngten Bedingungen abgebildet sind.

Ferner sind die einzelnen Teile des Kontrollflusses, die die Anwendungs-
logik darstellen, in der Farbe Blau hinterlegt dargestellt. Dabei handelt es
sich in den gezeigten Beispielen um den Task mit der Bezeichnung Conti-
nued executed Task.

Wie bereits in Abschnitt 5.2.2 beschrieben, lassen sich fiir eine Umsetzung
der Anpassungs- und Anwendungslogik durch Beobachtungs- und An-
passungsprozesse mehrere Moglichkeiten zur Integration der beiden Logi-
ken in den Gesamtprozess anwenden. Da es sich bei dem Aspekt Iteration
um eine spezielle Variante des Aspekts Choice handelt, wird in Anleh-
nung an eine mogliche Integration in den Gesamtprozess lediglich auf
die Realisierung tiber explizite Ereignisse ohne Anpassung eingegangen.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 123

In Abbildung 5-14 wird hierzu eine Variante fiir die Auslosung eines Be-
obachtungsprozesses auf Basis von expliziten Ereignissen dargestellt, die
im weiteren Beispiel verwendet wird. Bei der dargestellten Integration
in den Gesamtprozess handelt es sich abermals um den bereits in Abbil-
dung 5-10 dargestellten Mechanismus einer Riickkopplung. Auf eine de-
taillierte Beschreibung wird an dieser Stelle verzichtet und stattdessen auf
Abschnitt 5.2.2 verwiesen.

Explizite Ereignisse

enter-iteration exit-iteration

In Abbildung 5-15 ist ein Beispiel eines AC4BPM gezeigt, der durch die Va-
riante der expliziten Ereignisse ausgeldst werden kann und der die Umset-
zung einer kopfgesteuerten Iteration beschreibt. Zum besseren Verstand-
nis sind die Elemente der Anpassungs- und Anwendungslogik abermals
in den zuvor eingefiihrten Farben Griin und Blau hinterlegt. So ist ersicht-
lich, dass die Anpassungslogik des Aspekts Iteration hinsichtlich der kopf-
gesteuerten Iteration vollstindig durch den dargestellten Beobachtungs-
prozess gestaltet worden ist. Je nach Ergebnis einer Auswertung der dar-
gestellten Bedingung wird der dazugehorige Anpassungsprozess aufge-
rufen und somit ein iteratives Ausfiihren der entsprechenden Funktion er-
moglicht. Entgegen des Beispiels fiir den Aspekt Choice wird durch das Be-
enden des Anpassungsprozesses nicht zuriick in den Gesamtprozess ge-
sprungen. Stattdessen wird der zugehorige Beobachtungsprozess erneut
aufgerufen und die Iteration ist je nach Auswertung der Bedingung in der
Lage, fortgesetzt oder beendet zu werden. Ein Abbruch der Iteration 16st
das Ereignis mit der Bezeichnung exit-iteration aus, sodass die Riickkopp-
lung mit dem Gesamtprozess durchgefiihrt wird und die Ausfithrung an
dortiger Stelle fortgesetzt werden kann.

«AdaptCase4BPM » Continued executed Task

MakeAlteration

Adaptation Process

enter-iteration

[fancy-condition]
A = Continued
exit-iteration @

adaptationProcess =
‘Continued executed Task’

enter-iteration @

executed
Task

Monitoring Process

enter-iteration

Abbildung 5-14:
Explizite Ereignisse oh-
ne Anpassung zur Auslo-
sung eines AC4BPM

Kopfgesteuerte Iteration

Abbildung 5-15:

Beispiel einer iterativ
ausgefiihrten Funk-

tion fiir den Aspekt
Iteration in ACML4BPM
(kopfgesteuert)

Fufigesteuerte Iteration

Abbildung 5-16:
Beispiel einer iterativ
ausgefiihrten Funk-

tion fiir den Aspekt
Iteration in ACML4BPM
(fulsgesteuert)

Seite 124 Kapitel 5

Ein Beispiel fiir die in Abbildung 5-13 dargestellte fufigesteuerte Iteration
unter Verwendung von ACML4BPM ist in Abbildung 5-16 gezeigt. Zum
besseren Verstdndnis sind die Elemente der Anpassungs- und Anwen-
dungslogik abermals in den zuvor eingefiihrten Farben Griin und Blau hin-
terlegt. In dem Beobachtungsprozess ist die Anpassungslogik des in Ab-
bildung 5-13 eingefiihrten Beispiels gestaltet worden. Dabei kann der Be-
obachtungsprozess auf zwei Arten aufgerufen werden. Zum einen kann er
extern durch das Ereignis zur Riickkopplung und zum anderen intern tiber
das Ereignis mit der Bezeichnung evaluate-iterations-choice, das bei Beendi-
gung des Anpassungsprozesses ausgelost wird, aufgerufen werden. Hier-
durch wird die Funktionsweise einer fuigesteuertern Iteration untersttitzt,
da die auszufiihrende Funktion zunéchst immer erst ausgefiihrt wird, be-
vor die Bedingung der Iteration ausgewertet wird. Die Beendigung der
Iteration kann nach Ausfiihrung der enthaltenen Funktion durchgefiihrt
werden. Ferner kann auch eine weitere Iteration gestartet werden.

«AdaptCase4BPM» Continued executed Task

MakeAlteration

enter-iteration @

Adaptation Process

]) evaluate-
enter-iteration iterations-choice
[fancy-condition]

Continued

executed
Task

exit-iteration

Monitoring Process

adaptationProcess =
‘Continued executed Task”
evaluate-
iterations-choice

5.2.4 Gestaltung von Cancellation

Der letzte Aspekt Cancellation ermoglicht die Gestaltung von vorbestimm-
ten Behandlungen von Abbriichen eines Tasks bzw. eines Subprozesses.
Wie bereits in Abschnitt 5.2.1.6 beschrieben, existieren dabei zwei unter-
schiedliche Arten. Auf der einen Seite kann der Aspekt Cancellation als spe-
zielle Variante des Aspekts Choice verstanden werden, wenn z.B. die Aus-
fihrung eines Kontrollflusspfades tibersprungen wird. Daher spricht man
in einem solchen Fall anstelle von Cancellation auch von Skip. Auf der an-
deren Seite kann es aber auch sinnvoll sein, einen aktiven Task bzw. Sub-
prozess unter bestimmten Bedingungen abzubrechen. So kann z.B. beim
Auftreten von bestimmten Ereignissen eine weitere Bearbeitung im Rah-
men des Tasks bzw. des Subprozesses nicht mehr sinnvoll sein. Alternativ
kann auch der Fall eines aufgetretenen Fehlers behandelt werden.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 125

Bei der Gestaltung von Prozessen mit Umsetzung des Aspekts Cancellation
kann ebenfalls die in Kapitel 4 vorgestellte Sprache ACML4BPM als Un-
terstiitzung eingesetzt werden. Fiir die Trennung der beiden Logiken ist
es zundchst notwendig, dass die jeweils zugehorigen Elemente zunéchst
identifiziert werden, sodass in einem nachfolgenden Schritt eine getrennte
Gestaltung unter Verwendung der Sprache ACML4BPM erméglicht wird.
Hierzu ist in Abbildung 5-17 das Ergebnis einer Identifikation von Ele-
menten der Anpassungs- und Anwendungslogik auf Basis des in Abbil-
dung 5-8 eingefiihrten Beispiels dargestellt.

‘ [fancy-condition]
Skipable
Task

Dabei sind wesentliche Elemente des Kontrollflusses, die fiir die Anpas-

=X

Cancelable BoundaryEvent
Subprocess (BPMN2.0)

sungslogik vorhanden sind, in der Farbe Griin hinterlegt dargestellt. Im
linken Fall des Aspekts Skip handelt es sich hierbei um die Entscheidungs-
punkte sowie die Bedingung fancy-condition. Wohingegen im rechten dar-
gestellten Fall die Anpassungslogik durch den Empfang von Ereignissen
dargestellt ist. Ferner kann auch das nachgelagerte Verhalten hinzugezahlt
werden, das hier durch den aus den Ereignissen ausgehenden Kontroll-
fluss dargestellt ist.

Ferner sind die einzelnen Teile des Kontrollflusses, die die Anwendungs-
logik darstellen, in der Farbe Blau hinterlegt abgebildet. Dabei handelt es
sich in den gezeigten Beispielen um den Task mit der Bezeichnung Skipable
Task bzw. den Subprozess mit der Bezeichnung Cancelable Subprocess.

Fiir den im linken Bereich dargestellten Aspekt Skip konnen fiir den
Aspekt Choice vorgestellte Inhalte zur Gestaltung genutzt werden (siehe
Abschnitt 5.2.2). Daher wird im Folgenden lediglich auf den im rechten
Bereich dargestellten Subprozess eingegangen. Im oberen Bereich von Ab-
bildung 5-18 ist dazu die Ausgangslage fiir den Abbruch des dargestell-
ten Subprozesses gegeben. Tritt das dargestellte Ereignis Cancel-Subprocess
auf, so terminiert seine Ausfithrung. Da im Rahmen eines Abbruchs Maf3-
nahmen zur Kompensation gewollt sein konnen, wird anschlieffend auf

Abbildung 5-17:
Identifizierung von
Anpassungs- und An-
wendungslogik zur Un-
terstiitzung des Aspekts
Cancellation

Elemente der
Anpassungslogik

Elemente der
Anwendungslogik

Integration in den
Gesamtprozess

Abbildung 5-18:
Explizite Ereignisse
zur Integration der An-
passungslogik eines
Adapt Case 4 BPM

Cancel-by Timer

Seite 126 Kapitel 5

eine Riickkopplung durch das Ereignis Fancy-Stuff-Done gewartet. Fiir die
beiden Punkte zur Erweiterung der dargestellten Kontrollflusspfade ex1
und ex2 sind im unteren Bereich Beispiele fiir die weitere Verfahrenswei-
se gegeben. So ist nach der Riickkopplung bspw. eine Beendigung des
Prozesses moglich. Alternativ kann aber auch auf den Hauptpfad des
Kontrollflusses zurtickgekehrt werden. Die dritte Variante bietet das Fort-
fahren auf einem alternativen Kontrollflusspfad (hier: exI). Die Sprache
ACML4BPM kann fiir den Aspekt Cancellation dazu genutzt werden, um
Funktionen zur Analyse und Anpassungen bzw. Riickkopplungen zu be-
schreiben. Auf zwei Beispiele fiir einen zeitbasierten Abbruch und fiir
einen konditionalen Abbruch wird nachfolgend eingegangen.

Fancy-Stuff- ex1
Done

Cancel-
Subprocess

Cancelable
Subprocess

Zum Abbruch des Fortfahren mit Verhalten auf Fortfahren mit Verhalten auf einem
Gesamtprozesses dem weiteren Kontrollflusspfad alternativen Kontrollflusspfad

ex1 ' ex1 !

]]

Das erste Beispiel beschreibt, wie das Verhalten im Rahmen eines zeitba-
sierten Abbruchs durch einen AC4BPM dargestellt werden kann. Der in
Abbildung 5-19 gezeigte AC4BPM mit der Bezeichnung Cancel-by Timer ist
dabei aufrufbar durch ein implizites Ereignis (onReady) des Subprozesses
Cancelable Subprocess (siehe auch Abschnitt 4.3.4.2). Im Rahmen des dar-
gestellten Beobachtungsprozesses wird die Anpassungslogik gestaltet, die
hier aus einem Kontrollfluss besteht, in dem nach Ablauf eines Zeitinter-
valls after-time-x ein Anpassungsprozess gestartet wird. Der Anpassungs-
prozess enthilt einen Kontrollfluss, dessen Zweck die Synchronisation mit
dem Gesamtprozess ist. So wird der Abbruch des Subprozesses durch das
Ereignis Cancel-Subprocess ausgelost. Ferner konnen weitere Aufgaben, die
bei einem Abbruch durchgefiihrt werden miissen, in den Kontrollfluss des
Anpassungsprozesses integriert werden. Dies ist hier konzeptionell durch
den Task mit der Bezeichnung Do-fancy-Stuff angedeutet.

Ferner ist es moglich, dass die zeitliche Bedingung nicht erfiillt und der
Anpassungsprozess somit nicht aufgerufen worden ist. Damit der Beob-

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 127

achtungsprozess nicht aktiv bleibt, ist die Riickkopplung mit dem Subpro-
zess moglich. So wird bei der Beendigung der Ausfithrung des Subpro-
zesses tiber das implizite Ereignis onTerminated die Ausfiihrung des Beob-
achtungsprozesses abgebrochen.

«AdaptCase4BPM»
Cancel-by Timer

_/

Cancelable
Subprocess.
onReady()

CancelSubprocess

Cancelable
Subprocess.
onReady()

adaptationProcess =
‘CancelSubprocess’

Fancy-Stuff-

Subprocess

Monitoring Process
Adaptation Process

©
O—0

CancelableSubprocess.onTerminated()

Das zweite Beispiel beschreibt einen konditionalen Abbruch durch einen
AC4BPM und ist in Abbildung 5-20 dargestellt. Der dargestellte AC4BPM
mit der Bezeichnung Cancel-by Conditional kann ebenfalls durch das im-
plizite Ereignis onReady des Subprozesses Cancelable Subprocess aufgeru-
fen werden. Der zugehorige Beobachtungsprozess enthilt dabei die An-
passungslogik, in deren Rahmen zunichst eine konzeptionelle Analyse
(Analyze-fancy-Stuff) durchgefiihrt und anschliefSend eine zugehorige Ent-
scheidung (fancy-condition) getroffen wird. Je nach Ergebnis der Auswer-
tung der Bedingung wird entweder erneut eine Analyse durchgefiihrt oder
ein zugehoriger Anpassungsprozess aufgerufen.

Der dargestellte Anpassungsprozess erfiillt dabei den gleichen Zweck wie
er zuvor auch schon fiir den AC4BPM mit der Bezeichnung Cancel-by Ti-
mer beschrieben worden ist. Hier wurde jedoch auf zusitzliche Mafsnah-
men, wie z.B. eine Kompensation, verzichtet. Wenn der Subprozess been-
det wird, so kann der Beobachtungsprozess ebenso durch die Riickkopp-
lung tiber das Ereignis onTerminated beendet werden.

5.2.5 Zusammenfassung

Der durch [Sch+08] eingefiihrte Flexibilitatsaspekt Flexibility-by Design
kann als ein Entwurfsmuster fiir die Gestaltung von flexiblen Prozessen

Abbildung 5-19:
Beispiel fiir den
Aspekt Cancellation in
ACML4BPM
(Cancel-by Timer)

Cancel-by Conditional

Abbildung 5-20:
Beispiel fiir den

Aspekt Cancellation

in ACML4BPM
(Cancel-by Conditional)

Seite 128 Kapitel 5

«AdaptCase4BPM»
Cancel-by Conditional

Cancelable

Subprocess. Q
onReady()

CancelSubprocess

CancelableSubprocess.onTerminated() G !
ancel-

Subprocess

Fancy-Stuff-
Done

Cancelable
Subprocess.

onReady() Analyze-fancy-

Stuff

Adaptation Process

Monitoring Process

[fancy-condition]

adaptationProcess =
‘CancelSubprocess’

bereits friithzeitig in der Phase Design & Analyse betrachtet werden. In
den vorherigen Abschnitten wurde zunédchst eine Analyse der Aspekte
Choice, Iteration, Parallelism, Interleaving, Multiple Instances und Cancellation
durchgefiihrt. Jeder dieser Aspekte stellt dabei einen Teil von Flexibility-by
Design dar. Dabei wurden Teilaspekte identifiziert, bei denen die Gestal-
tung von flexiblen Prozessen derartig unterstiitzt werden kann, dass durch
die in Kapitel 4 eingefiihrte Sprache eine Trennung von Anpassungs-
und Anwendungslogik durchgefiihrt werden kann. Ferner konnte ermit-
telt werden, dass auch sonstige Anpassungen im Rahmen der restlichen
Aspekte moglich sind. Fiir eine detaillierte Beschreibung wurde dabei
auf Abschnitt 5.3 verwiesen. Im Folgenden konnte auf Basis der Aspek-
te Choice, Iteration und Cancellation charakterisierende Beispiele gegeben
werden, die eine Verwendung der in dieser Arbeit entwickelten Sprache
ACML4BPM in der Gestaltung von Prozessen veranschaulichen. Durch
eine konsequente Verwendung der Sprache im Fall von Bedingungen zur
Auswahl von alternativen Kontrollflusspfaden konnte gezeigt werden,
dass die Gestaltung von flexiblen und anpassbaren Prozessen hinsicht-
lich einer Trennung von Anpassungs- und Anwendungslogik unterstiitzt
werden kann. Hierdurch wird ermdglicht, die Sicherstellung der Qualitét
der zu gestaltenden Prozesse hinsichtlich der in Abschnitt 1.3 genannten
Anforderungen zu unterstiitzen.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 129

5.3 Flexibility-by Change

Flexibility-by Change ist ein Flexibilitdtsaspekt, der seine Eignung in ver-
schiedenen Einsatzszenarios findet. So konnen Einzelheiten zu real beno-
tigten Abldufen in Prozessen erst zu einem spéateren Zeitpunkt oder in
einer nachfolgenden Iteration des BPM-Lebenszyklus bekannt sein. Daher
konnen zu diesem Zeitpunkt Anpassungen an bestehenden Prozessen,
hier sowohl Prozessmodell als auch die zugehorigen Prozessinstanzen,
notwendig sein. Ferner konnen sich die Anforderungen an den Prozessen
innerhalb einer Iteration des BPM-Lebenszyklus aber auch dndern, sodass
Anpassungen an diesen Prozessen bereits in der aktuellen Iteration not-
wendig sind. Dieser Umstand ist insbesondere bei langlaufenden Prozes-
sen zu beobachten, bei denen die urspriinglichen Anforderungen auf-
grund der Langldufigkeit schnell tiberholt sein konnen.

Ein zu dem Flexibilitatsaspekt Flexibility-by Change zugehoriges Entwurfs-
muster unterstiitzt Anpassungen von Prozessmodellen und deren Instan-
zen. Anpassungen von Prozessmodellen werden dabei z.B. durch die in
Abschnitt 4.3.3 eingefiihrten Operationen unterstiitzt. Als Ergdnzung wird
im Rahmen von Flexibility-by Change insbesondere auch die Uberfiihrung
von bereits durchgefiihrten Anpassungen von Prozessmodellen auf ein-
zelne oder alle derzeit aktiven zugehorigen Prozessinstanzen betrachtet.
Bei einer solchen Uberfiihrung von Anpassungen wird alternativ auch von
Migration gesprochen. Eine Migration kann dabei unter Verwendung einer
Strategie durchgefiihrt werden, die die Verfahrensweise bei einer Anpas-
sung von Prozessinstanzen beschreibt. Eine an [Sch+08] angelehnte Defi-
nition des Flexibilitatsaspekts Flexibility-by Change wird in Definition 5.3.1
gegeben.

Definition 5.3.1. (Flexibility-by Change)

Flexibility-by Change beschreibt die Fihigkeit zur Anpassung von Pro-
zessmodellen und -instanzen wihrend der Ausfiihrungszeit. Dabei steht
explizit die Moglichkeit zur Durchfiihrung einer Migration von Anpas-
sungen von den betroffenen Prozessen im Vordergrund, die sowohl Pro-
zessmodelle als auch Prozessinstanzen betreffen konnen.

Abbildung 5-21:
Gestaltungsaspekte fiir
flexible und anpassba-

re Prozesse in Hinsicht
auf Flexibility-by Change

Seite 130 Kapitel 5

Fiir die Realisierung von Flexibility-by Change sind dabei neue Operationen
notwendig, die eine Migration von Anpassungen von Prozessmodellen auf
deren Instanzen ermoglichen. Einige Beispiele fiir mogliche Operationen
zur Anpassung von Prozessen wurden bereits in Abschnitt 4.3.3 einge-
fiihrt, sodass an dieser Stelle lediglich auf Operationen fiir die Durchfiih-
rung von Migrationen eingegangen wird.

Eine durch diese Arbeit durchgefiihrte Interpretation dieser Operationen
ist in Abbildung 5-21 dargestellt. Dabei ldsst sich das Entwurfsmuster
Flexibility-by Change in die beiden weiteren Typen Momentary Change
und Evolutionary Change unterteilen, welche zunéchst in Abschnitt 5.3.1
kurz beschrieben werden. Aufbauend werden in Abschnitt 5.3.2 zuge-
horige Strategien fiir Migrationen vorgestellt. Anschlieffend wird in Ab-
schnitt 5.3.3 eine konzeptionelle Erweiterung der Sprache BPMN2.0 be-
schrieben, die Aspekte von Flexibility-by Change berticksichtigt. In Ab-
schnitt 5.3.4 wird eine Reihe von zugehorigen Operationen fiir die Durch-
fiihrung von Migrationen eingefiihrt. Abschliefiend wird in Abschnitt 5.3.5
eine Zusammenfassung hinsichtlich einer moglichen Verwendung von der
Sprache ACML4BPM gegeben.

«Flexibility Concern»
Flexibility-by Change — Momentary Change

«ProcessInstanceAdaptationOperation» X
N
N

~
N

«Flexibility Concern» AN

Flexibility-by Change — Evolutionary Change AN . «include»

I\

PerformProcessChange-by- ___! : | !

BackwardRecovery i | |

| ! !

| ! :

PerformProcessChange-by- ™~ ,' : !

ForwardRecovery : :

|

Lo

| |

PerformProcessChange-by- ™~ | ! :
Proceed

PerformProcessChange-by- ~ !
Transfer

AllowedChangeTimes:
- Entry-Time
- On-the-fly

MigrationStrategies:
- ForwardRecovery
- BackwardRecovery
- Proceed
- Transfer

5.3.1 Gestaltungsaspekte von Flexibility-by Change

Der Flexibilitatsaspekt Flexibility-by Change lasst sich in zwei Typen unter-
scheiden. So wird durch Schonenberg et. al [Sch+08] zwischen der momen-

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 131

tanen Anpassung (Momentary Change) und der evolutiondren Anpassung
(Evolutionary Change) unterschieden. Es konnen zusitzlich unterschiedli-
che Zeitpunkte fiir Anpassungen bestehen, die im Anschluss beschrieben
werden.

Momentane Anpassungen betreffen lediglich Prozessinstanzen (siehe Ab-
schnitt 2.2.3). Der Typ wird Momentary Change genannt, da eine Anpas-
sung nur ausgewdhlte Prozessinstanzen und nicht etwa das zugehorige
Prozessmodell betrifft. Werden lediglich Prozessinstanzen ohne das zuge-
horige Prozessmodell angepasst, kann der Fall eintreten, dass die ange-
passten Prozessinstanzen moglicherweise nicht mehr konform zu ihrem
Prozessmodell sind. Dies kann je nach Auswirkung und Anforderungen
an die Anpassung ein hinzunehmender Umstand sein. Sollte dies jedoch
nicht gewtinscht sein, so bieten sich Anpassungen im Rahmen des Typs
Evolutionary Change an.

Bei einer Anpassung im Rahmen des Typs Evolutionary Change wird in ei-
nem ersten Schritt zunéchst ein Prozessmodell angepasst. In einem zwei-
ten Schritt werden die durchgefiihrten Anpassungen in bestehende Pro-
zessinstanzen migriert. Eine diesem Typ zugehorige Anpassung kann so-
wohl Prozessmodelle als auch die zugehorigen Prozessinstanzen betreffen.
Hierbei sind zum einen bestehende Prozessinstanzen gemeint, deren An-
passung durch eine Migration von Anpassungen auf Basis des zugehori-
gen Prozessmodells durchgefiihrt wird. Zum anderen sind aber insbeson-
dere auch zukiinftige Prozessinstanzen gemeint. Hier kann von impliziten
Anpassungen gesprochen werden, da neue Prozessinstanzen auf Basis des
angepassten Prozessmodells erstellt werden, auf dem die Anpassung be-
reits angewendet worden ist. Somit sind die Anpassungen automatisch in
zukiinftigen Prozessinstanzen enthalten.

Eine Ausfiihrung von Anpassungen im Rahmen der zuvor aufgefiihrten
Typen Momentary Change und Evolutionary Change des Flexibilitdtsaspekts
Flexibility-by Change kann problematisch sein, wenn sie zu beliebigen Zeit-
punkten vorkommen. So kénnten sich z.B. anzupassende Prozesse zum ge-
wahlten Zeitpunkt in einer kritischen Phase der Ausfithrung befinden, so-
dass ihre Anpassung ein ungewollt hohes Risiko fiir den zuverlédssigen Be-
trieb einer Anwendung enthalten konnte. Daher kann es notwendig sein,
dass zur Verfiigung stehende Zeitpunkte, an denen Anpassungen erlaubt
sind, explizit beschrieben werden sollten. Schonenberg et. al [Sch+08] stel-
len hierzu die beiden Typen von Zeitpunkten Entry-Time und On-the-fly
vor. Auf eine Erlduterung dieser Typen von Zeitpunkten wird im Folgen-
den eingegangen.

Typ Momentary Change

Typ Evolutionary Change

Zeitpunkte fiir
Anpassungen

Typ von Zeitpunkten:
Entry-Time

Typ von Zeitpunkten:
On-the-fly

Seite 132 Kapitel 5

Bei dem Typ Entry-Time werden Operationen zur Anpassung nur unmit-
telbar bei Instanziierung eines Prozesses angewendet. Somit sind in die-
sem Fall keine weiteren Anpassungen von der Prozessinstanz wahrend der
Ausfiihrung vorgesehen. Im Fall von Operationen im Rahmen des Typs
Momentary Change wird dabei lediglich eine Prozessinstanz angepasst. Im
alternativen Fall einer Operation im Rahmen des Typs Evolutionary Change
werden Anpassungen von Prozessmodellen angewendet. Somit enthalten
zukiinftig instanziierte Prozesse bereits die durchgefiihrten Anpassungen.
Bereits existierende Prozessinstanzen werden nicht angepasst (siehe z.B.
auch Strategie Proceed Abschnitt 5.3.2.3).

Durch den Typ On-the-fly werden sonstige Zeitpunkte beschrieben, die
wéhrend der Ausfiihrung eines Prozesses vorkommen kénnen. Im Fall
von Operationen im Rahmen des Typs Momentary Change werden An-
passungen von Prozessinstanzen vorgenommen. Derartige Anpassungen
konnen sinnvoll sein, wenn sie lediglich fiir eine oder wenige konkrete
Situationen im Betrieb in Betracht kommen und somit einmaliger Natur
sind. Im Fall einer Operation im Rahmen des Typs Evolutionary Change
werden Anpassungen sowohl an Prozessmodellen als auch an bestehen-
den Prozessinstanzen vorgenommen. Die Unterstiitzung von Zeitpunkten
des Typs On-the-fly kann dabei herausfordernd sein. So kann es z.B. vie-
le Prozessinstanzen geben, die unmittelbar angepasst werden miissen. Da
Prozesse hdufig in Abhédngigkeit zu anderen Prozessen stehen, kann es hier
zu Verzogerungen in der Ausfiihrung kommen. Daher sind geeignete Stra-
tegien fiir Migrationen von Anpassungen von Prozessmodellen notwen-
dig, die geplant und strukturiert mit derartigen Herausforderungen um-
gehen konnen.

Im Rahmen von Anpassungen von Prozessen des Typs Evolutionary Change
konnen unterschiedliche Strategien fiir Migrationen verwendet werden.
Auf eine grundlegende Ubersicht iiber diese Strategien wird im Folgen-
den ndher eingegangen. Sie bilden dabei die Grundlage fiir die spate-
re Definition von den in Abbildung 5-21 dargestellten Operationen zur
Unterstiitzung von Migrationen (siehe Abschnitt 5.3.4). Anpassungen des
Typs Momentary Change konnen durch Operationen angeboten werden, die
durch Effektorschnittstellen einer Systemkomponente des Typs BPExecu-
tionComponent angeboten werden (siehe Abschnitt 4.3.2). Eine Herleitung
von moglichen Operationen wurde dabei bereits in Abschnitt 4.3.3 vorge-
nommen, sodass auf eine weitere Ausfithrung an dieser Stelle verzichtet
werden kann.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 133

5.3.2 Migrationsstrategien

Fiir die Realisierung von Operationen im Rahmen des Typs Evolutionary
Change ist der Einsatz von unterschiedlichen Strategien fiir eine Migra-
tion von Anpassungen moglich. Dabei existieren verschiedene Strategi-
en [RR10; Bar+11; Sch+12], die je nach benotigtem Grad an Konformitét
zwischen Prozessmodell und Prozessinstanz in einem konkreten Anwen-
dungskontext zu wihlen sind. In Anlehnung an Schonenberg et. al [Sch+08]
werden im Folgenden verschiedene Typen von Strategien fiir derartige Mi-
grationen kurz vorgestellt.

In Abbildung 5-22 ist ein grundlegendes Szenario dargestellt, von dem
in den nachfolgenden Beschreibungen ausgegangenen wird. Dabei wird
auf Basis des Prozessmodells PM eine Operation zur Anpassung (Process-
ModelAdaptationOperation) angewendet (siehe auch Abschnitt 4.3.3). Als
Ergebnis der Anwendung dieser Operation wird das Prozessmodell PM’
erzeugt und dargestellt. Ferner ist auf Basis der Prozessmodelle PM und
PM'’ jeweils eine Menge von Prozessinstanzen (PI 1 bis PI n bzw. PI’ 1 bis

PI' m) gezeigt. Die Prozessinstanzen werden als konform (hier: Compliant-
To) zu ihrem jeweiligen Prozessmodell dargestellt. Je nach gewéahlter Stra-
tegie zur Migration von Anpassungen sind zu spezifischen Zeitpunkten
auch Anpassungen von den Prozessinstanzen moglich. Eine Migration
dient dabei der Erhaltung der Beziehung CompliantTo.

I

ProcessModel
AdaptationOperation

PM PM’
-

CompliantTo CompliantTo

1: ‘: Processinstance :

! P ; AdaptationOperation H P

: = = = = = = =¥ = = = >3

i Pln i i Pl'm

Evolutionary Change - Migration

Nachfolgend wird fiir jeden Strategietyp von Migrationen zunéchst eine
generelle Beschreibung gegeben. Anschlieflend folgt jeweils eine Beschrei-
bung des Funktionsprinzips in Anlehnung an das in Abbildung 5-22 dar-
gestellte Szenario.

Szenario fiir Migrationen

Abbildung 5-22:
Szenario fiir Migrationen
im Rahmen des Typs
Evolutionary Change

Abbildung 5-23:
Schematische Darstellung
der Funktionsprinzipien
von Migrationen der
Typen Forward Recovery
und Backward Recovery

Seite 134 Kapitel 5

5.3.2.1 Forward Recovery

Im Rahmen von Migrationen des Typs Forward Recovery werden beste-
hende Prozessinstanzen abgebrochen. Anschlieffend werden keine Anpas-
sungen von Prozessinstanzen durchgefiihrt. Dies bedeutet fiir derartige
Migrationen, dass die angewendeten Anpassungen am Prozessmodell le-
diglich in zukiinftigen Prozessinstanzen enthalten sein werden. Dies ldsst
sich dadurch begriinden, dass zukiinftige Prozessinstanzen auf Basis des
angepassten Prozessmodells erstellt sein werden. Eine weitere Behandlung
im Rahmen dieses Typs von Migrationen, wie z.B. eine Kompensation,
wird nicht unterstiitzt. Es kann somit davon ausgegangen werden, dass
der Erhalt der Beziehung CompliantTo bei dem Typ Forward Recovery einge-
halten wird. Dies lasst sich dadurch begriinden, dass neue Prozessinstan-
zen stets auf Basis des angepassten Prozessmodells erstellt werden und
nicht konforme Prozessinstanzen abgebrochen worden sind.

Im oberen Bereich von Abbildung 5-23 ist hierzu eine schematische Dar-
stellung des Funktionsprinzips von Migrationen des Typs Forward Recovery
dargestellt. So werden die bestehenden Prozessinstanzen (PI 1 bis PI n) auf
Basis des Prozessmodells PM in Schritt 1 (Cancellation) abgebrochen. In Fol-
ge des Abbruchs konnen in Schritt 4 (Create) neue Prozessinstanzen (PI” 1
bis PI’ m) auf Basis des angepassten Prozessmodells PM’ erstellt werden.

Prozessinstanzen auf Basis von PM Zukiinftige Prozessinstanzen auf Basis von PM*
> E PL... S
5 :
2 !
S | I n ' Create
Q
«
o
2
= Z SRR, A
3 |
4]
£ . !
bl Cancellation !
(3 H ‘
3 ' PI...
o 1
g -------------------------- : Pl
' m
o
g 5
=0 S O
©
I

Call Compensation @ Wait for @
(optional) Completion
(optional)

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 135

Die Anzahl an neuen Prozessinstanzen PI” * kann dabei von der Anzahl
zuvor abgebrochener Prozessinstanzen abweichen, sofern dies erforder-
lich ist. Eine Migration des Typs Forward Recovery ist mit diesem Schritt
abgeschlossen. Die neu erstellten Prozessinstanzen PI” * sind dabei in Be-
ziehung zu PM’ als konform zu betrachten (siehe Abbildung 5-22).

5.3.2.2 Backward Recovery

Bei Migrationen des Typs Backward Recovery sind der erste und der letzte
Schritt identisch wie beim Typ Forward Recovery. So werden bestehende
Prozessinstanzen zunéchst abgebrochen und neue Prozessinstanzen auf
Basis eines angepassten Prozessmodells erstellt. Bevor neue Prozessin-
stanzen erstellt werden, konnen weitere optionale Behandlungen, wie z.B.
zum Zweck einer Kompensation, durchgefiihrt werden. Wie fiir den Typ
Forward Recovery ausgefiihrt, bleibt der Erhalt der Beziehung CompliantTo
bei dem Typ Backward Recovery erhalten, da ebenso neue Prozessinstanzen
stets auf Basis des angepassten Prozessmodells erstellt werden.

Eine schematische Darstellung des Funktionsprinzips von Migrationen
des Typs Backward Recovery ist im unteren Bereich von Abbildung 5-23
dargestellt. Hierbei eingeschlossen sind die bei dem Typ Forward Recovery
durchgefiihrten Schritte, in denen zunédchst bestehende Prozessinstanzen
abgebrochen werden (Schritt 1) und am Ende neue Prozessinstanzen er-
stellt werden (Schritt 4).

Zwischen diesen Schritten ist die Ausfithrung von optionalen Schrit-
ten moglich (Call Compensation und Wait for Completion). Der optionale
Schritt 2 ermoglicht, weitere Prozessinstanzen auszufiihren, die hier als
PI compensation 1 bis PI compensation k dargestellt sind. Hierdurch konnen

Mafinahmen zur Kompensation von bereits durchgefiihrten Aktivitdten
fiir die beendeten Prozessinstanzen PI 1 bis PI n angewendet werden. Da-
bei kann die Anzahl an Prozessinstanzen PI compensation * von der Anzahl

an beendeten Prozessinstanzen PI * abweichen. Dies ldsst sich dadurch er-

kldren, dass nicht fiir jede der beendeten Prozessinstanzen PI * eine Mafs-
nahme zur Kompensation moglich oder gar notwendig ist. Eine Prozess-
instanz PIi wird dabei durch die Prozessinstanz PI compensation i kom-

pensiert. Im nachfolgenden optionalen Schritt 3 wird auf Beendigung der
Ausfiihrung der Prozessinstanzen PI compensation * gewartet. In diesem

Bezug konnen zwei Verfahrensweisen sinnvoll sein. Zum einen kann auf
die Beendigung der Ausfiihrung aller Prozessinstanzen PI compensation *

gewartet werden, bevor neue Prozessinstanzen PI” * erstellt werden. Zum
anderen kann eine neue Prozessinstanz PI’ i auch nach Beendigung der
zugehorigen Prozessinstanz zur Kompensation gestartet werden.

Berticksichtigung von
Kompensationen

Seite 136 Kapitel 5

Das Warten auf die Beendigung der Ausfithrung aller Prozessinstanzen
mit dem Zweck der Kompensation bietet sich insbesondere in derartigen
Fillen an, in denen einen hohe Abhingigkeit zu weiteren Prozessen be-
steht, sodass unterschiedliches Verhalten im Betrieb vermieden wird. An-
derenfalls kann Schritt 3 ebenfalls als optional betrachtet werden, wenn das
Warten fiir die Instanziierung von zukiinftigen Prozessinstanzen auf Basis
von PM’ nicht notwendig ist. Eine Migration des Typs Backward Recovery
ist mit Schritt 4 abgeschlossen.

5.3.2.3 Proceed

Soll eine Anpassung nur zukiinftige Prozessinstanzen betreffen, so kon-
nen Migrationen des Typs Proceed verwendet werden. Dabei werden aktu-
ell bestehende Prozessinstanzen nicht wie bei den Typen Forward Recovery
und Backward Recovery abgebrochen. Stattdessen ist es vorgesehen, dass die
Ausfithrung von bestehenden Prozessinstanzen regulédr beendet wird und
neue Prozessinstanzen auf Basis eines angepassten Prozessmodells erstellt
werden. Die Strategie des Typs Proceed sieht somit keine zusétzliche Ver-
fahrensweise fiir bereits erstellte und aktuell ausgefiihrte Prozessinstan-
zen vor. Der Erhalt der Beziehung CompliantTo bei dem Typ Proceed bleibt
somit ebenso erhalten.

In Abbildung 5-24 ist hierzu eine schematische Darstellung des Funkti-
onsprinzips von Migrationen des Typs Proceed dargestellt. So koexistieren
sowohl Prozessinstanzen PI * als auch Prozessinstanzen PI” * zur gleichen
Zeit. Sie sind jeweils auf Basis der Prozessmodelle PM bzw. PM’ erstellt
worden. Dabei konnen die beiden Schritte 1a (Wait for Regular Completion)
und 1b (Create) parallel durchgefiihrt werden.

Abbildung 5-24:

Schematische Darstellung
des Funktionsprinzips Prozessinstanzen auf Basis von PM Prozessinstanzen auf Basis von PM*

Koexistenz von Prozessinstanzen auf Basis von PM und PM*

von Migrationen

des Typs Proceed P P
L el ; =

Proceed
E
=
=]

Wait for Create
Regular Completion

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 137

Schritt 1a sieht die reguldre Beendigung der Ausfithrung von Prozessin-
stanzen PI * auf Basis von Prozessmodell PM vor. In Schritt 1b konnen zeit-
gleich zusitzliche Prozessinstanzen PI” * parallel dazu auf Basis des Pro-
zessmodells PM’ erstellt und ausgefiihrt werden. Eine Migration des Typs
Proceed kann als abgeschlossen betrachtet werden, wenn alle Prozessin-
stanzen PI * beendet worden sind.

5.3.2.4 Transfer

Im Rahmen von Migrationen des Typs Transfer ist es moglich, die Aus-
fiihrung von bestehenden Prozessinstanzen zu unterbrechen und auf Basis
neu erstellter Prozessinstanzen fortzusetzen. Hierzu werden zunichst die
internen Zustidnde einer Prozessinstanz gesichert. Anschlieflend wird die
weitere Ausfiihrung der Prozessinstanz abgebrochen. Ein solcher interner
Zustand kann z.B. durch Informationen zu bisher durchgefiihrten oder ak-
tiven Aktivitdten bzw. Tasks, durch aufgekommene Ereignisse oder durch
die Allokation einer Datenquelle gegeben sein.

Die Fortsetzung der Ausfiihrung auf Basis neu erstellter Prozessinstanzen
bedingt dabei eine vorherige Zuordnung (engl. Mapping) von vorangegan-
genen gesicherten internen Zustinden zu zugehorigen internen Zustin-
den der neuen Prozessinstanzen. Derartige Zuordnungen konnen je nach
Umfang oder Art der durchgefiihrten Anpassung am Prozessmodell nicht
moglich sein, da z.B. eine Aktivitdt im angepassten Prozessmodell nicht
mehr vorhanden ist. In solchen Fallen ist eine Losung dadurch gegeben,
dass z.B. die Ausfiihrung dieser Aktivitat tibersprungen wird (engl. skip)
und in der korrespondierenden Folgeaktivitét fortgesetzt wird. Ferner ist
es aber auch moglich, dass eine allokierte Datenquelle nicht mehr beno-
tigt wird, sodass sie freigegeben werden konnte. Wurden gesicherte inter-
ne Zustdnde auf korrespondierende Zustdnde der neuen Prozessinstanzen
zugeordnet, kann die Ausfithrung fortgesetzt werden und die Migration
des Typs Transfer ist abgeschlossen.

In Abbildung 5-25 ist hierzu eine schematische Darstellung des Funkti-
onsprinzips von Migrationen des Typs Transfer dargestellt. So werden in
Schritt 1 (Store) zundchst fiir die Migration relevante interne Zustdnde der
Prozessinstanzen PI * gesichert. In Schritt 2 (Cancellation) wird die Aus-
fiihrung der Prozessinstanzen PI * abgebrochen. Durch Schritt 3 (Create)
wird die Erstellung neuer Prozessinstanzen PI” * auf Basis des angepassten
Prozessmodells PM’ vorgenommen. Bevor die Fortsetzung einer Ausfiih-

rung durch die Prozessinstanzen PI” * stattfinden kann, miissen zuvor die
in Schritt 1 gesicherten internen Zustidnde auf interne Zustiande der Pro-

Abbildung 5-25:
Schematische Darstellung
des Funktionsprinzips
von Migrationen

des Typs Transfer

Seite 138 Kapitel 5

zessinstanzen PI” *in Schritt 4 (Map) zugeordnet werden. Im Anschluss an
diese Zuordnung ist die Migration des Typs Transfer abgeschlossen. Die
Beziehung CompliantTo bleibt auch beim Typ Transfer erhalten.

i : Store @
E PL.. E (internal state)

Transfer

H

Map 5 PI'm

i i @ (stored internal states

! | to PI’internal states)
|

In Abbildung 5-26 ist ein Beispiel zur besseren Veranschaulichung einer
Zuordnung interner Zustdnde von Prozessinstanzen mit dem Fokus auf
Tasks dargestellt. Dabei wird das durch Abbildung 5-22 eingefiihrte Sze-
nario hinsichtlich des dargestellten Detailgrades verfeinert.

So ist fiir die bereits eingefiihrten Inhalte PM, PM’, PI n und PI’ n jeweils
ein Kontrollfluss mit zwei Tasks dargestellt. In der Darstellung der Pro-

zessinstanzen PI n und PI” n sind aktive Tasks in der Farbe Rot dargestellt.
In der Prozessinstanz PI n ist somit zum Zeitpunkt des Starts einer Migra-
tion vom Typ Transfer der Task mit der Bezeichnung B aktiv. Eine Migra-
tion vom Typ Transfer tiberfiihrt die internen Zustdnde der Prozessinstanz
PIn in die internen Zustinde der Prozessinstanz PI’n in Anlehnung an
eine durchgefiihrte Operation (hier: ProcessModel AdaptationOperation).

Die in dem Beispiel aufgezeigten internen Zustinde beziehen sich dabei
ausschliefilich auf die Zustdnde der Lebenszyklen der Tasks A, B und A’
(siehe auch Abschnitt 4.3.4.2). So konnte ein aktiver Task A als auch ein
aktiver Task B der Prozessinstanz PI n auf einem aktiven Task A" der Pro-
zessinstanz PI’ n zugeordnet werden. Die Durchfithrung einer Migration
des Typs Transfer konnte dabei Bezug auf diese Zuordnung von internen
Zustdnden nehmen. Das zugehorige Resultat ist im unteren Bereich von
Abbildung 5-26 dargestellt. Selbstverstandlich lassen sich ebenfalls alter-
native Zuordnungen in Anlehnung an konkrete Anforderungen erstellen.
Hierdurch konnen Zustinde nicht nur von Tasks, sondern auch von weite-
ren Elementen aus den Perspektiven von Prozessen (siehe Abschnitt 4.3.3)

migriert werden.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 139

|

ProcessModel PM*

AdaptationOperation
>

Evolutionary Change - Migration

Compliant to
Pl'n
Transfer
= = = = = = = » O O
[Map(A, AY)
® RN
g O O
E -
—-— Map(B, A1 _ - —T__
Active Mapping Edge
e,
5.3.3 Spracherweiterung fir Flexibility-by Change

In den vorherigen Abschnitten wurde auf Details des Flexibilitdtsaspekts
Flexibility-by Change eingegangen. Dabei wurde herausgestellt, dass bei der
Anpassung von Prozessen Konzepte benotigt werden, die bisher nicht Teil
der Sprache BPMN2.0 sind und somit nicht in der Gestaltung von flexi-
blen und anpassbaren Prozessen umgesetzt werden kénnen. Ein Beispiel
hierfiir stellt die zuletzt vorgestellte Strategie Transfer dar. Hier werden im
Rahmen des dargestellten Funktionsprinzips Eigenschaften von Prozess-
instanzen in Form von internen Zustdnden gesichert und anschlieSend bei
der Migration in neuen Prozessinstanzen wiederhergestellt.

Es fehlen in der Sprache BPMN2.0 zum einen Sprachelemente, um zwi-
schen den Elementen von Prozessmodellen und Elementen von Prozess-
instanzen unterscheiden zu kénnen. Zum anderen kann aber auch die
Notwendigkeit zur Gestaltung von weiteren Eigenschaften von Prozes-
sen existieren, die lediglich zur Laufzeit bestehen. Um die Gestaltung von
Prozessen in diesem Bezug weiter unterstiitzen zu kénnen, werden im Fol-
genden exemplarische Erweiterungen der Sprache BPMN2.0 vorgestellt,
mit denen die zuvor aufgefiihrte Anforderung erfiillt werden kann. Soll
bereits in der Gestaltung von Prozessen beschrieben werden kénnen, wel-
che internen Zustande von Aktivitdten verfiigbar und anpassbar sind, so
miissen demnach zusétzliche Elemente verfiigbar sein, die eine Représen-

Abbildung 5-26:
Schematische Darstellung
einer Zuordnung von in-
ternen Zustinden zweier
Prozessinstanzen

Notwendigkeit einer
Spracherweiterung

Darstellung von
Prozessinstanzen

Darstellung von
Taskinstanzen

Abbildung 5-27:
Darstellung von Ele-
menten der laufzeitspe-
zifischen Erweiterung
zur Unterstiitzung von
Flexibility-by Change

Semantik

Seite 140 Kapitel 5

tation dieser Laufzeiteigenschaften darstellen. Ein Beispiel zur Beschrei-
bung aktiver Taskinstanzen innerhalb einer Prozessinstanz sowie ihrer in-
ternen Zustdnde ist in Abbildung 5-27 dargestellt.

Durch diese Darstellung sind aktuell aktive Taskinstanzen innerhalb der
Prozessinstanz beschreibbar. Die Darstellung einer Reprédsentation einer
Prozessinstanz PI wird in Anlehnung an Elemente des Typs Pool der Spra-
che BPMN2.0 vorgenommen. In der Prozessinstanz PI wird ein Kontroll-
fluss bestehend aus den drei Taskinstanzen Task A, Task B und Task C ge-
zeigt. Die Liste derzeit aktiver Tasks (activeTasks) ist durch ein Kommen-
tarfeld gegeben. Listenelemente, wie z.B. Task B, werden in geschweiften
Klammern und getrennt durch ein Komma angegeben.

Durch die gezeigte Darstellung kénnen interne Zustdnde von Taskinstan-
zen beschrieben werden. Elemente vom Typ TaskInstanceRepresentation
werden in Anlehnung an Elemente des Typs Task der Sprache BPMN2.0
dargestellt. Jedes dieser Elemente besitzt einen spezifischen Lebenszyklus
(Lifecycle). Dieser enthilt den aktuellen Zustand, der durch das Attribut
activeState beschrieben wird. Ein Element vom Typ Lifecycle wird in An-
lehnung an Klassen der UML dargestellt. Die Zugehorigkeit zu einer Tas-
kinstanz wird in Anlehnung an Assoziationen in Form von Komposition der
UML dargestellt.

——————————— Lifecycle oo

Pl | ! !
Lifecycle Lifecycle Lifecycle

activeState = ‘Closed” activeState = ‘Active’ activeState = ‘Inactive’

Processinstance | ' | Taskinstance | ______!

Representation Representation

Der gezeigte Auszug stellt dabei eine Situation in der Ausfiihrung der Pro-
zessinstanz PI dar, auf die nachfolgend kurz eingegangen wird. Die Aus-
fiihrung der Taskinstanz Task A ist bereits abgeschlossen, sodass das Attri-
but activeState den Wert Closed hat. Derzeit wird Task B ausgefiihrt, weshalb
das Attribut activeState den Wert Active hat. Durch den Wert Inactive wird
ausgedriickt, dass Task C noch nicht ausgefiihrt werden kann, weil hier-
fur noch nicht alle Bedingungen erfiillt sind. Derartige Bedingungen sind

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 141

in diesem Beispiel durch einen Token gegeben, der nach Beendigung von
Task B tiber die dargestellte Assoziation vom Typ SequenceFlow zur Aktivie-
rung von Task C fihrt. Prinzipiell ist es moglich, dass sich innerhalb einer
Prozessinstanz mehrere Lebenszyklen im Zustand Active befinden. In ei-
nem solchen Fall wird angenommen, dass die zugehorigen Instanzen von
Tasks parallel ausgefiihrt werden.

Die zugehorige abstrakte Syntax der zuvor beschriebenen Darstellung von
Prozess- und Taskinstanzen ist in Abbildung 5-28 beschrieben. Dabei ist
ein erweitertes Metamodell des in Abschnitt 4.3.3 vorgestellten Auszugs
der Sprache BPMN2.0 dargestellt. Der Zweck der Erweiterung ist dadurch
gegeben, dass benotigte Eigenschaften in Hinsicht auf die Laufzeit des Pro-
zesses explizit in der Gestaltung von Prozessen beriicksichtigt werden sol-

len.
PM FlowElementsContainer FlowNode enumeration
(BPMN2.0) (BPMN2.0) StateName
I Ready
Active
Completing
Process Activity Completed
(BPMN2.0) (BPMN2.0) Terminating
)) 3 Terminated
A :sSequezItlaI;.Boolean Lifecycle Failing
opCardinality: Integer activeState: StateName Failed
Compensation
1 Compensated
Withdrawn
Inactive
Closed
SubProcess Task
(BPMN2.0) (BPMN2.0)
CompliantTo
Pl ProcesslnstanceRepresentation activeTasks TaskInstance
isChangeAllowedAtEntry-Time: Boolean *"| Representation
oldTaskinstance| 1 1| newTasklnstance
maps| *
Mapping Map

In dem Auszug werden fiir die zuvor genannten Elemente Prozessinstanz
und Taskinstanz neue Typen von Elementen eingefiihrt. Die Instanz eines
Prozesses wird dabei durch den Typ ProcessInstanceRepresentation repra-
sentiert. Ein Element dieses Typs kann weitere Elemente enthalten, wo-
bei sich — wie zuvor bereits erwédhnt — vor allem auf Tasks fokussiert wird.
Daher ist ebenso eine Reprasentation von Instanzen der in einer Prozessin-
stanz vorkommenden Tasks notwendig. Der Typ TaskInstanceRepresentation
stellt diesen Typ dar. Ferner enthilt ein Element dieses Typs zudem ein
Element vom Typ Lifecycle, welches den aktuellen Zustand des Lebenszy-

Abstrakte Syntax

Abbildung 5-28:
Auszug einer Erweite-
rung des Metamodells
der Sprache BPMN2.0
zur Unterstiitzung von
Flexibility-by Change

Erweiterung fiir
erlaubte Zeitpunkte

Erweiterung fiir
Zuordnungen

Seite 142 Kapitel 5

klus des Tasks beschreibt. Hierzu wird das Attribut activeState vom Typ
StateName verwendet. Bei dem Typ StateName handelt es sich um eine
Enumeration mit Literalen aller bereits in Abschnitt 4.3.4 eingefiihrten
Zustdnde des Lebenszyklus von Aktivitdten. Damit die Verwaltung von
aktiven Taskinstanzen vereinfacht werden kann, enthélt der Typ Process-
InstanceRepresentation dariiber hinaus eine Liste mit dem Bezeichner active-
Tasks, die vom Typ TaskInstanceRepresentation ist. Hierdurch kann spezifi-
ziert werden, welche Taskinstanzen innerhalb einer Prozessinstanz aktiv
sind (siehe auch Abbildung 5-27).

Sollen Anpassungen von Prozessinstanzen nur zu einem bestimmten Zeit-
punkt erlaubt sein, so kann dies durch das hier dargestellte Attribut mit
der Bezeichnung isChangeAllowedOnEntry-Time vom Typ Boolean bestimmt
werden. Dabei steht der Wert true fiir erlaubte Anpassungen zu Zeitpunk-
ten des Typs Entry-Time. Alternativ steht ein nicht spezifizierter Wert bzw.
der Wert false fiir Anpassungen zu den Zeitpunkten des Typs On-the-Fly.

Ein weiteres benotigtes Sprachelement fiir Migrationen des Typs Transfer
ist durch das Konzept des Mappings gegeben. Ein Mapping kann wie in
dem in Abbildung 5-26 dargestellten Beispiel als Tupel bestehend aus zwei
Taskinstanzen beschrieben werden. In Abbildung 5-28 ist in diesem Bezug
ebenso eine Erweiterung zur Beschreibung des Konzepts Mapping darge-
stellt. Ein Element des Typs Mapping beschreibt eine Menge von Zuord-
nungen verschiedener interner Zustdnde von Taskinstanzen. Hierzu ent-
hilt dieses Element eine Liste mit dem Bezeichner maps vom Typ Map.
Eine einzelne Zuordnung wird durch ein Element des Typs Map definiert.
So kann eine Zuordnung einer alten Taskinstanz (oldTaskInstance) auf eine
neue Taskinstanz (newTaskInstance) definiert werden.

Die zuvor beschriebene Erweiterung stellt ein Beispiel fiir die Beschrei-
bung von laufzeitspezifischen Eigenschaften in der Gestaltung von fle-
xiblen und anpassbaren Prozessen dar. Sollen weitere Eigenschaften hin-
sichtlich der Laufzeit berticksichtigt werden, sind weitere Erweiterungen
notwendig, die diese enthalten. Im Rahmen der weiteren Beschreibung
der Flexibilitatsaspekte Flexibility-by Deviation (siehe Abschnitt 5.4) und
Flexibility-by Underspecification (siehe Abschnitt 5.5) wird diese Erweite-
rung ebenso verwendet sowie weitere vorgestellt.

5.3.4 Operationen

Damit die Gestaltung von flexiblen und anpassbaren Prozessen hinsicht-
lich des Typs Flexibility-by Evolutionary Change unterstiitzt werden kann,

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 143

sind Operationen notwendig. Derartige Operationen koénnen als Teil des
Verhaltens eines Anpassungsprozesses (siehe Abschnitt 4.2.3) genutzt
werden. Die nachfolgend gezeigten Operationen unterstiitzen dabei die
einzelnen in Abschnitt 5.3.2 vorgestellten Funktionsprinzipien von Stra-
tegien. Eine Ubersicht iiber die resultierende Menge an Operationen zur
Untersttitzung der Gestaltung von Flexibility-by Evolutionary Change ist in
Abbildung 5-29 dargestellt. Dabei lassen sich auf Basis der zuvor beschrie-
benen Strategien insgesamt vier Operationen benennen.

Em P SET
PerformProcessChange- PerformProcessChange-

by-Proceed by-Transfer

PerformProcessChange-
by-ForwardRecovery

PerformProcessChange-
by-BackwardRecovery

TS FR } FTE BR

Das Konzept fiir die in Abbildung 5-29 gezeigten Operationen sieht dabei
vor, zundchst die Anpassung von Prozessmodellen durchzufiihren. An-
schlielend soll der jeweiligen Strategie folgend mit existierenden Prozess-
instanzen bzw. neu zu erstellenden Prozessinstanzen verfahren werden.
Ferner steht die Anwendung der Operationen in Abhéngigkeit zu erlaub-
ten Typen von Zeitpunkten Entry-Time bzw. On-the-fly. Jede der Opera-
tionen priift dabei vor der Durchfiihrung ihrer eigentlichen Funktion, ob
eine Anwendung hinsichtlich der genannten Typen von Zeitpunkten er-
laubt ist. In dem Fall, dass eine Durchfiihrung nicht erlaubt ist, beendet
die Operation ihre Ausfiihrung.

Ein Beispiel fiir eine Verwendung einer Operation ist in Abbildung 5-30 ge-
zeigt. Eine Auslosung des Beobachtungsprozesses ist zu einem bestimm-
ten Ereignis (onRequestedPointinTime) angedacht. Dabei wird der Anpas-
sungsprozess (Perform Migration) aufgerufen, in dem das Verhalten fiir
die Migration des Typs Forward Recovery enthalten ist. Die Parametrisie-
rung der Operation PerformProcessChange-by-ForwardRecovery adressiert
zundchst das betroffene Prozessmodell PM. Nach der Anwendung des
durch einen weiteren Anpassungsprozess (Sample-Adaptation-Process) be-
schriebenen Verhaltens fiir die Anpassung am Prozessmodell PM wird das
gednderte Prozessmodell PM’ erzeugt. Das Verhalten zum Abbruch beste-
hender Prozessinstanzen PI und zur Erstellung neuer Prozessinstanzen
PI' * wird durch die Operation PerformProcessChange-by-ForwardRecovery
gekapselt.

Die zu jeder Operation zugehorige Implementierung muss dabei auch Ei-
genschaften eines konkreten IT-Unterstiitzungssystems, wie z.B. in Form
einer Workflow-Engine berticksichtigen, um aktuelle Prozessinstanzen ab-
brechen und zukiinftige erstellen zu konnen. Eine derartige Berticksichti-

Abbildung 5-29:
Operationen zur Unter-
stiitzung von Flexibility-
by Evolutionary Change

Abbildung 5-30:
Beispiel fiir die Gestal-
tung einer Migration

Abbildung 5-31:
Signatur und konkrete
Syntax der Operation
PerformProcessChange-
by-ForwardRecovery

Seite 144 Kapitel 5

«AdaptCase4BPM»
PerformAMigration

onRequested

PointinTime O

Perform Migration

Adaptation Process

Monitoring Process PM

created
Process |
Instances| pj‘p }

{PI'1,

onRequested
PointinTime
PerformProcessChange-

Sample = 27 by-ForwardRecovery | N
Adaptation adaptation T out PM
Process Process Model

adaptationProcess =
‘Perform Migration”

gung ist kein Fokus in dieser Arbeit, sodass sie nur der Vollstandigkeit hal-
ber genannt ist. Fiir eine Ausfiithrung jeder einzelnen Operation durch ihre
Signatur und der konkreten Syntax wird an dieser Stelle auf die Inhalte in
den nachfolgenden Abschnitten 5.3.4.1 und 5.3.4.4 verwiesen.

5.3.4.1 PerformProcessChange-by-ForwardRecovery

Die Operation PerformProcessChange-by-ForwardRecovery unterstiitzt die
Durchfiihrung von Migrationen des Typs ForwardRecovery. Dabei wird das
zuvor durch Abbildung 5-23 dargestellte und bereits beschriebene Funk-
tionsprinzip umgesetzt. Die Signatur und konkrete Syntax der Operation
PerformProcessChange-by-ForwardRecovery sind in Abbildung 5-31 darge-
stellt.

Parametername Parametertyp
IN : inModel ProcessModel
adaptationProcess AdaptationProcess
OouUT : outModel ProcessModel
createdProcessInstances Set (ProcessInstance)

TID FR

PerformProcessChange-
by-ForwardRecovery

> = 1N

in adaptation l’:/llltd | created
Model Process ode Process
PM Sample PM’ Instances

Adaptation {PI‘1,
Process o
PI'n}

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 145

Die Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie Parameter
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,
wie z.B. AddNode (siehe Anhang A.1.1), konnen auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Die Operation er-
zeugt die beiden Ausgaben eines gednderten Prozessmodells (outModel)
sowie einer Menge neu erstellter Prozessinstanzen (createdProcessInstances).

5.3.4.2 PerformProcessChange-by-BackwardRecovery

Die Operation PerformProcessChange-by-BackwardRecovery unterstiitzt die
Durchfiihrung von Migrationen des Typs BackwardRecovery. Dabei wird
das zuvor durch Abbildung 5-23 dargestellte und bereits beschriebene
Funktionsprinzip umgesetzt. Die Signatur und konkrete Syntax der Ope-
ration PerformProcessChange-by-BackwardRecovery sind in Abbildung 5-32

dargestellt.

Parametername Parametertyp Abbildung 5-32:

IN : inModel ProcessModel Signatur und konkrete
adaptationProcess AdaptationProcess Syntax der Operation

IN-Optional : callCompensations Set (ProcessInstance, ProcessModel, Boolean) 1; erfOUlI:P T ocessChange-

-BackwardRecover

ouUT : outModel ProcessModel 4 Y

createdProcessInstances Set (ProcessInstance)

T3 BR

PerformProcessChange-
by-BackwardRecovery

in call adaptation created
Model Compensations Process Process

PM {PM_Compensation, Sample ‘ Instances
ey Adaptation {PI'1,
PM_compensation n} Process

P}

Die Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie Parameter
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,

Optionale Parameter

Abbildung 5-33:
Signatur und konkrete
Syntax der Operation
PerformProcessChange-
by-Proceed

Seite 146 Kapitel 5

wie z.B. AddNode (siehe Anhang A.1.1), konnen auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Die Operation er-
zeugt die beiden Ausgaben eines gednderten Prozessmodells (outModel)
sowie einer Menge neu erstellter Prozessinstanzen (createdProcessInstances).

Ferner besitzt die Operation einen optionalen Parameter, durch den das
Verhalten der zuvor beschriebenen Schritte 2 (Call Compensation) und 3
(Wait for Completion) spezifiziert werden kann. So kann durch den Parame-
ter callCompensations eine Menge von Tripeln angegeben werden. Ein sol-
ches Tripel besteht aus jeweils einer Prozessinstanz, einem Prozessmodell
sowie einem booleschen Wert. Dabei beschreibt das Prozessmodell das Ver-
halten, welches zur Kompensation der Prozessinstanz instanziiert werden
soll. Typischerweise handelt es sich bei der hier kompensierten Prozess-
instanz um eine der Instanzen, die von der Migration betroffen ist. Der
boolesche Wert gibt dabei mit dem Standardwert true an, ob auf Beendi-
gung der Prozessinstanz zur Kompensation gewartet werden soll. Soll dies
nicht der Fall sein, so kann dies durch den Wert false angegeben werden.

5.3.4.3 PerformProcessChange-by-Proceed

Die Operation PerformProcessChange-by-Proceed unterstiitzt die Durchfiih-
rung von Migrationen des Typs Proceed. Dabei wird das zuvor in Ab-
bildung 5-24 dargestellte und bereits beschriebene Funktionsprinzip um-
gesetzt. Die Signatur und konkrete Syntax der Operation PerformProcess-
Change-by-Proceed sind in Abbildung 5-33 dargestellt.

Parametername Parametertyp

IN : inModel ProcessModel
adaptationProcess AdaptationProcess
mappings Mapping
targetURI URI

ouUT : outModel ProcessModel
createdProcessInstances Set (ProcessInstance)

35 P
PerformProcessChange-
by-Proceed

=N = T

in adaptation out
Model Process Model
PM Sample 2%

Adaptation
Process

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 147

Die Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,
wie z.B. AddNode (siehe Anhang A.1.1), konnen auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Die Operation er-
zeugt die beiden Ausgaben eines gednderten Prozessmodells (outModel)
sowie einer Menge neu erstellter Prozessinstanzen (createdProcessInstances).

5.3.4.4 PerformProcessChange-by-Transfer

Die Operation PerformProcessChange-by-Transfer unterstiitzt die Durchfiih-
rung von Migrationen des Typs Transfer. Dabei wird das zuvor durch Ab-
bildung 5-25 dargestellte und bereits beschriebene Funktionsprinzip um-
gesetzt. Die Signatur und konkrete Syntax der Operation PerformProcess-
Change-by-Transfer sind in Abbildung 5-34 dargestellt.

Parametername Parametertyp

IN : inModel ProcessModel
adaptationProcess AdaptationProcess
mappings Mapping
targetURI URI

OUT : outModel ProcessModel
createdProcessInstances Set (ProcessInstance)

53 T

PerformProcessChange-
by-Transfer

=N AN AN =
in mappings target adaptation created
Model URI Process Process

PM {Map(A,A), Map (B,A)} URI Sample . Instances
Adaptation PIr1,
Process

PI‘n}

Die Operation erwartet als Eingabe ein Prozessmodell (inModel) sowie
einen Anpassungsprozess (adaptationProcess). Dabei wird das im Rah-
men des Anpassungsprozesses beschriebene Verhalten zur Anpassung an
dem Prozessmodell inModel genutzt. Durch die Verwendung eines An-
passungsprozesses anstelle einer einfachen Operation zur Anpassung,
wie z.B. AddNode (siehe Anhang A.1.1), konnen auch komplexere Anpas-
sungen im Rahmen der Migration umgesetzt werden. Durch den Parame-
ter targetURI kann ein Speicherort fiir zu erstellende Mappings angegeben

Parameter

Abbildung 5-34:
Signatur und konkrete
Syntax der Operation
PerformProcessChange-
by-Transfer

Parameter

Seite 148 Kapitel 5

werden. Welches Mapping fiir die Wiederherstellung verwendet werden
soll, kann durch den Parameter mappings spezifiziert werden. Die Opera-
tion erzeugt die beiden Ausgaben eines gednderten Prozessmodells (out-
Model) sowie einer Menge neu erstellter Prozessinstanzen (createdProcess-
Instances).

5.3.5 Zusammenfassung

In diesem Abschnitt wurde der durch [Sch+08] eingefiihrte Flexibilitats-
aspekt Flexibility-by Change durch ein weiteres Entwurfsmuster fiir die
Gestaltung von flexiblen und vor allem anpassbaren Prozessen einge-
fithrt. Dabei wurden zunédchst die beiden Untertypen Momentary Change
und Evolutionary Change vorgestellt. Fiir den Untertyp Evolutionary Change
konnte festgestellt werden, dass bestimmte funktionale Aspekte bereits
durch die in Abschnitt 4.3.3 eingefiihrten Operationen zur Anpassung von
Prozessen beschrieben werden konnten. Dabei fehlte jedoch die Untersttit-
zung von Anpassungen von Prozessmodellen unter Einhaltung der Kon-
formitédt mit den zugehorigen Prozessinstanzen. Als Losungskonzept wur-
den bereits existierende Strategien fiir Migrationen vorgestellt, die fiir die
weitere Gestaltung in Form von Operationen in Anpassungsprozessen be-
schrieben worden sind. Zur Unterstiitzung einer Gestaltung von Prozessen
unter Berticksichtigung von Eigenschaften hinsichtlich der Laufzeit von
Prozess- und Taskinstanzen, die bisher in der Sprache BPMN?2.0 nicht be-
riicksichtigt werden konnten, wurde zudem eine entsprechende Spracher-
weiterung vorgestellt. Durch die Komposition dieser zuvor aufgefiihrten
Inhalte ist es nun moglich, Anpassungen durch Beobachtungs- und An-
passungsprozesse zu gestalten, sodass Prozessmodelle als auch deren In-
stanzen in Abhdngigkeit zu einer gewéhlten Strategie in einer Beziehung
zueinanderstehen, die als konform bezeichnet werden kann.

5.4 Flexibility-by Deviation

Ein weiterer Flexibilitdtsaspekt ist durch Flexibility-by Deviation gegeben.
Diesem Entwurfsmuster liegt nach Schonenberg et. al [Sch+08] die Motivati-
on zugrunde, dass zu einem spezifischen Zeitpunkt wéahrend der Ausfiih-
rung von Prozessen von dem im Prozessmodell festgelegten Kontrollfluss
abgewichen werden kann. Hierdurch erlangt der Prozess die Moglich-
keit, flexibel auf Ereignisse seiner Umgebung derartig zu reagieren, dass
die von dem Prozess erwartete Ausgabe weiterhin realisiert werden kann.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 149

Eine an [Sch+08] angelehnte Definition des Flexibilitatsaspekts Flexibility-
by Deviation wird in Definition 5.4.1 gegeben.

Definition 5.4.1. (Flexibility-by Deviation)

Flexibility-by Deviation beschreibt die Fihigkeit einer Prozessinstanz, zur
Laufzeit von den im Prozessmodell festgelegten Kontrollflusspfaden abzu-
weichen. Dabei werden explizit keine Anderungen an dem Kontrollfluss
durchgefiihrt, sodass lediglich die Sequenz der Ausfithrung von Tasks be-
einflusst wird.

Flexibility-by Deviation ldsst sich nach [Sch+08] fiir imperative Sprachen
durch verschiedene Operationen realisieren. Eine durch diese Arbeit
durchgefiihrte Interpretation dieser Operationen ist in Abbildung 5-35
dargestellt. Auf einzelne Aspekte dieser Operationen wird nachfolgend in
Abschnitt 5.4.1 eingegangen. Darauf basierend werden in Abschnitt 5.4.2
Operationen zur Unterstiitzung des Flexibilitdtsaspekts Flexibility-by De-
viation vorgestellt, sodass die Gestaltung durch die Sprache ACML4BPM
ermoglicht werden kann. Abschlieffend wird in Abschnitt 5.4.3 eine Zu-
sammenfassung des vorliegenden Abschnittes gegeben.

«Flexibility Concern»
Flexibility-by Deviation

«ProcessInstanceAdaptationOperation»
SkipTask

5.41 Gestaltungsaspekte von Flexibility-by Deviation

«ProcessinstanceAdaptationOperation»
UndoTask

«ProcessInstanceAdaptationOperation»
RedoTask

«ProcessInstanceAdaptationOperation»
InvokeTask

«ProcessInstanceAdaptationOperation»
CreateAdditional
InstanceOfTask

In diesem Abschnitt werden einzelne Aspekte des Flexibilitdtsaspekts
Flexibility-by Deviation vorgestellt. Dabei konzentriert sich der Abschnitt
insbesondere auf die Beschreibung von Verfahrensweisen, die durch Scho-
nenberg et. al [Sch+08] beschrieben worden sind. Das Ziel ist die Durchfiih-
rung einer Analyse und Beschreibung der generellen Funktionsprinzipien
entsprechender Operationen. Hierdurch kénnen nachfolgend Operationen
fiir die Verwendung in der Sprache ACML4BPM beschrieben werden, so-
dass eine weitere Unterstiitzung in der Gestaltung von flexiblen und an-
passbaren Prozessen besteht.

Abbildung 5-35:
Gestaltungsaspekte fiir
flexible und anpassbare
Prozesse in Hinsicht auf
Flexibility-by Deviation

UndoTask

RedoTask

SkipTask

InvokeTask

CreateAdditional-
InstanceOfTask

Seite 150 Kapitel 5

Durch die Operation UndoTask kann ein aktiver oder bereits abgeschlosse-
ner Task zu einem beliebigen Zeitpunkt zuriickgesetzt werden. Hierdurch
ist es moglich, den Task zu diesem Zeitpunkt erneut auszufiihren. Ist die
Ausfithrung des betreffenden Tasks zum Zeitpunkt der Anwendung der
Operation UndoTask bereits abgeschlossen, sodass weitere Tasks aktiv oder
ebenfalls abgeschlossen sind, so werden auch diese zuriickgesetzt. Dabei
kann es sinnvoll sein, die im Rahmen eines oder einer Menge von Tasks be-
reits durchgefiihrten Aufgaben zu kompensieren — wobei dies jedoch nicht
immer moglich ist. So kann z.B. durch die Verwendung von Verbrauchs-
material moglicherweise kein Prozess beschrieben werden, der das ein-
gesetzte Material wieder verfiigbar macht. Konkrete Mafinahmen, die im
Rahmen einer Kompensation notwendig sind, kénnen durch einen weite-

ren Prozess beschrieben werden.

Die Operation RedoTask ermoglicht das erneute Ausfiihren eines bereits ab-
geschlossenen Tasks. Im Gegensatz zur Operation UndoTask werden aktive
und abgeschlossene Tasks nicht zurtickgesetzt. Die Anwendung der Ope-
ration RedoTask kann z.B. sinnvoll sein, wenn durch einen Task Daten erho-
ben worden sind, die zu einem spéteren Zeitpunkt in aktualisierter Form
vorliegen. In einem solchen Fall kann durch die Anwendung der Opera-
tion RedoTask der betreffende Task erneut ausgefithrt werden, sodass fiir
spatere Tasks aktualisierte Daten nutzbar sind.

Durch die Operation SkipTask kann die Ausfithrung eines derzeit akti-
ven Tasks iibersprungen werden. Die Anwendung dieser Operation kann
z.B. sinnvoll sein, wenn andere Tasks im Prozess aufgrund von kontext-
spezifischen Umstdnden Vorrang haben oder die weitere Ausfiihrung des
betreffenden Task nicht mehr notwendig ist. Im Rahmen der weiteren Aus-
fithrung des Prozesses kann es moglich sein, den tibersprungenen Task
nicht oder zu einem spiteren Zeitpunkt erneut auszufiihren.

Durch die Anwendung der Operation InvokeIask ldsst sich ein noch nicht
ausgefiihrter und nicht aktiver Task initiieren. Hierdurch wird auch die
Ausfiihrung derzeitig aktiver Tasks auf den Zeitpunkt nach Beendigung
der Ausfiihrung des betreffenden Tasks verschoben. Nach Beendigung des
durch die Operation Invokelask aufgerufenen Tasks werden alle verscho-
benen Tasks weiter ausgefiihrt. Wird der initiierte Task zu einem spéteren
Zeitpunkt erneut aktiviert, so ist sowohl die erneute Ausfiihrung als auch
ein Uberspringen des Tasks moglich.

Durch die Operation CreateAdditionallnstanceOfIask ist es moglich, fur
einen noch nicht aktiven Task zu bestimmen, ob und wie viele seiner In-
stanzen parallel oder sequentiell ausgefiihrt werden sollen. Hierdurch ist

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 151

es vor Ausfiithrung des Tasks moglich, auf kontextspezifische Gegebenhei-
ten addquat einzugehen. So kann durch die Anwendung der Operation fle-
xibel auf z.B. variierendes Arbeitsaufkommen Bezug genommen werden,
indem mehr oder weniger Instanzen eines Tasks durch Mitarbeiterinnen
und Mitarbeiter ausgefiihrt werden.

Die zuvor beschriebenen Operationen lassen sich durch eine Anpassung
an Zustdnden des Lebenszyklus einer Aktivitdt beschreiben. Wie bereits
in Abschnitt 5.3.3 beschrieben, lasst sich dies allerdings mittels der Spra-
che BPMN?2.0 in ihrer jetzigen Form nicht ausdriicken. So existiert z.B. im
Gegensatz zur Sprache UML [OMGI10] keine Moglichkeit zur Beschrei-
bung einer sogenannten Instance Specification, mit der Eigenschaften ei-
ner Instanz innerhalb eines Systems (hier: Prozess) gestaltet werden kon-
nen. In diesem Bezug lésst sich die bereits in Abschnitt 5.3.3 eingefiihrte
Erweiterung des Metamodells der Sprache BPMN?2.0 wiederverwenden.
Sie enthilt bereits exemplarische Aspekte zur Unterstiitzung des Flexibi-
litatsaspekts Flexibility-by Deviation in Bezug zu Instanzen von Prozessen
und Tasks. Aufgrund einer Vielzahl moglicher weiterer Erweiterungen
wird sich hier auf eine Menge wesentlicher Elemente zur Unterstiitzung
des Flexibilitdtsaspekts Flexibility-by Deviation, gegeben durch Prozess-
und Taskinstanzen, fokussiert. Weitere Aspekte, wie z.B. hinsichtlich des
Datenflusses, werden im Rahmen der nachfolgenden Beschreibung nicht
behandelt.

5.4.2 Operationen

Der Flexibilitdtsaspekt Flexibility-by Deviation ldsst sich durch spezifische
Operationen zur Anpassung von Prozessinstanzen umsetzen. Damit der-
artige Anpassungen von Prozessinstanzen auch im Rahmen der Gestal-
tung von Anpassungsprozessen der Sprache ACML4BPM (siehe Kapitel 4)
verwendet werden kénnen, ist die Definition entsprechender Operationen
notwendig. Im Detail werden Operationen fiir Systemkomponenten des
Typs BPExecutionComponent (siehe Abschnitt 4.3.1) bzw. deren Effektor-
schnittstellen vom Typ BPExecutionEffector notwendig. Eine Ubersicht iiber
die resultierende Menge an Operationen zur Unterstiitzung der Gestaltung
von Flexibility-by Deviation ist in Abbildung 5-36 dargestellt. Dabei lassen
sich auf Basis der in Abschnitt 5.4.1 beschriebenen Aspekte insgesamt fiinf
Operationen benennen.

RO
Undo Redo Skip Invoke CreateAdditional

Task Task Task Task InstanceOfTask

Abbildung 5-36:
Operationen zur Unter-
stiitzung von Flexibility-
by Deviation

Seite 152 Kapitel 5

Ein Beispiel fiir eine Verwendung dieser Operationen ist im oberen Teil in
Abbildung 5-37 gezeigt. Dabei wird die Operation UndoTask zum Zurtick-
setzen von Tusk A eingesetzt. Eine Auslosung des Beobachtungsprozesses
ist zu einem bestimmten Ereignis (onRequestedPointinTime) angedacht. Da-
bei wird der Anpassungsprozess (Undo Task A) aufgerufen, in dem die
Operation UndoTask fiir die Anpassung der Prozessinstanz Pl verwendet
wird. Die Parametrisierung der Operation UndoTask adressiert die Prozess-
instanz PI und das in ihr enthaltene Element Task A.

Im unteren Bereich von Abbildung 5-37 wird auf der linken Seite die Aus-
gangssituation und auf der rechten Seite das Resultat der Anwendung ge-
zeigt. In dem Auszug des Modells fiir die Prozessinstanz PI werden die
Taskinstanzen Task A, Task B und Task C dargestellt. In der beschriebenen
Situation wurden Task A und Task B bereits ausgefiihrt, sodass derzeit die
Taskinstanz Task C aktiv ist.

Abbildung 5-37:
Beispielhafte Verwendung
der Operation UndoTask

Verwendung der Operation UndoTask

«AdaptCase4BPM»
UndoTaskA

onRequested O
PointinTime

Undo Task A I

Adaptation Process

Monitoring Process

onRequested
PointinTime

adaptationProcess =
‘Undo Task A’

Anwendung der Operation UndoTask

Pl Pl
Lifecycle Lifecycle

activeState = ‘Closed’ activeState = ‘Inactive’

'
H T’"}“ }_’ e }_’ T?k C}E j_'{ Ta}k AH e H T“{C }_’[

Lifecycle Lifecycle Lifecycle Lifecycle

activeState = ‘Closed’ activeState = ‘Active’ activeState = ‘Ready’ activeState = ‘Inactive’

T T
| |
|
activeTasks = activeTasks =
{Task C} UndoTask {Task A}

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 153

Das Ergebnis einer Anwendung der Operation UndoTask auf die beschrie-
bene Prozessinstanz PI ist im rechten Bereich der Abbildung 5-37 darge-
stellt. So wurden entlang des abgeschlossenen Kontrollflusspfades ausge-
hend von dem urspriinglich aktiven Task C bis zum betreffen Task A alle At-
tribute activeState der Lebenszyklen auf den Wert Inactive gesetzt. Das At-
tribut activeState im Lebenszykluselement des betreffenden Tasks hat den
Wert Ready. Das Attribut activeTasks der Prozessinstanz Pl ist auf Task A ge-
setzt. Durch die beschriebene Anwendung der Operation UndoTask sind al-
le aktiven und bereits ausgefiihrten Taskinstanzen zuriickgesetzt worden.
Das Resultat ist ein zurtickgesetzter Task A. Ferner wurden weitere auf dem
Kontrollflusspfad bereits terminierte Tasks ebenso zurtickgesetzt.

Fiir eine Ausfiihrung jeder einzelnen Operation durch ihre Signatur, der
konkreten Syntax und der Beispiele ihrer Anwendung wird an dieser Stel-
le auf die Inhalte in den nachfolgenden Abschnitten 5.4.2.1 und 5.4.2.5 ver-
wiesen.

5.4.2.1 UndoTask

Die Anwendung einer Operation vom Typ UndoTask setzt den Zustand
des Lebenszyklus eines betreffenden Tasks auf den Wert Ready. Hierdurch
ist es moglich, den betreffenden Task erneut auszufiihren. Dabei werden
riickwirkend die Zustiande der Lebenszyklen von den derzeit ausgefiihr-
ten und abgeschlossenen Tasks auf den Wert Inactive gesetzt. Dies betrifft
alle Tasks, die auf dem Kontrollflusspfad nach dem betreffenden Task vor-
kommen. Ferner wird zwischen zwei Mechanismen unterschieden. Zum
einen kann es sinnvoll sein, zusatzlich einen Prozess zur Riickabwicklung
(engl. Compensation) aufzurufen. Zum anderen kann es jedoch auch sein,
dass dies nicht notwendig oder gar moglich ist. Die Signatur und konkrete
Syntax der Operation UndoTask sind in Abbildung 5-38 angegeben.

Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgefiihrt werden soll. Dabei wird durch die Anwendung der
Operation keine explizite Ausgabe erzeugt — hier durch die Kennzeich-
nung als VOID dargestellt. Ein weiterer Parameter der Operation ist durch
die betreffende Taskinstanz (task) gegeben.

Sollen vor der Zuriicksetzung eines Zustands des Lebenszyklus der Tas-
kinstanz task weitere Mafinahmen ausgefiihrt werden, wie z.B. Kompen-
sationen, ist die Angabe eines weiteren Parameters notwendig. So kann
durch die Angabe des Parameters callCompensation vom Typ Process ein
Prozess angegeben werden, der spezifisches Verhalten fiir den genannten
Zweck enthalten kann.

Parameter

Optionale Parameter

Abbildung 5-38:
Signatur und konkrete
Syntax der Ope-
ration UndoTask

Beispiel einer Anwendung
der Operation UndoTask

Abbildung 5-39:
Beispielhafte Anwendung
der Operation UndoTask

Seite 154 Kapitel 5
Parametername Parametertyp
IN: inPl ProcessInstanceRepresentation
task TaskInstanceRepresentation
IN-Optional : callCompensation Process
ouT : - VOID
e) s
Undo
PR Task | F e
SN ENENEERAN >
inPI task inPl task call
Compensation
PI Task A Pl Task A fancy-Compensation

Eine Anwendung der im linken Bereich von Abbildung 5-38 spezifizierten
Operation ist in Abbildung 5-39 dargestellt. Dabei wird eine Darstellung
in der Sprache BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im
linken Bereich der Abbildung wird hierzu als Ausgang ein Auszug einer
Prozessinstanz PI dargestellt. Sie besteht aus den drei Taskinstanzen Task
A, Task B und Task C, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz miteinander verbunden sind. Dabei wurden Task A und Task
B bereits ausgefiihrt, sodass derzeit die Taskinstanz Task C aktiv ist.

Prozessinstanz Pl Prozessinstanz Pl nach UndoTask

A\ g
Pl 1 Pl I

Liecycle Lifecycle activeTasks =
activeState = ‘Inactive’ {Task A}

‘
:’—b{ Ta;k AH Task B H Ta;k C]—DI:

Lifecycle

activeTasks =
{Task C}

activeState = ‘Closed’

’

o] rse A rses | s c]—-|:

¢ f

Lifecycle Lifecycle

Lifecycle

activeState = ‘Closed’ activeState = ‘Active’ activeState = ‘Ready’ activeState = ‘Inactive’

1

Das Ergebnis einer Anwendung der Operation UndoTask auf die beschrie-

UndoTask

bene Prozessinstanz PI ohne eine Parametrisierung zur Kompensation ist
im rechten Bereich der Abbildung 5-39 dargestellt. So wurden entlang
des abgeschlossenen Kontrollflusspfades ausgehend von dem urspriing-
lich aktiven Task C bis zum betreffen Task A alle Attribute activeState der
Lebenszyklen auf den Wert Inactive gesetzt. Task C befindet sich dabei im
Zustand Ready und ist der aktuell aktive Task innerhalb der Prozessinstanz

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 155

PI. Durch die beschriebene Anwendung der Operation UndoTask sind al-
le aktiven und bereits ausgefiihrten Taskinstanzen auf dem Kontrollfluss-
pfad zwischen Task C und Task A zuriickgesetzt worden. Hierdurch ist die
weitere Ausfiihrung ab dem betreffenden Task, hier gegeben durch Task A,
moglich.

Das generelle Funktionsprinzip einer Anwendung der Operation UndoTask
mit der Parametrisierung zur Kompensation wird in Abbildung 5-40 dar-
gestellt. Eine Anwendung der Operation besteht aus insgesamt drei Teil-
schritten. Im Rahmen des ersten Teilschritts ResetTask werden Tasks — wie
zuvor beschrieben — zundchst zurtickgesetzt. Damit die Ausfithrung des
im Beispiel vorhandenen Tasks Task A nach Anwendung der Mafinahme
zur Kompensation fortgesetzt werden kann, wird der Zustand seines Le-
benszyklus jedoch auf den Wert Inactive gesetzt. Damit wird sichergestellt,
dass eine Ausfithrung vorerst unterbrochen ist. Der zweite Teilschritt Call-
Compensation ruft einen Prozess auf, in dem die Maffnahme zur Kompen-
sation beschrieben ist. Nach Beendigung dieses Prozesses wird der dritte
Teilschritt ReturnControl durchgefiihrt, indem der Zustand des Lebenszy-
klus des betreffenden Tasks Task A auf den Wert Ready gesetzt wird. Hier-
durch ist eine weitere Ausfithrung der Prozessinstanz PI moglich.

Prozessinstanz Pl

Pl

Prozessinstanz Pl nach ResetTasks
2 |

coceoad Lifecycle
Task A -
- . activeState = ‘Inactive’

<

activeTasks = {} AN

Reset
Tasks

Call
Compensation

S, . Pl-Compensation

Return

Control Prozessinstanz Pl nach ReturnControl/UndoTask

" |

cocoead Lifecycle
Task A
> - - activeState = ‘Ready’

Y

activeTasks = [N
Task A

UndoTask

Neben der zuvor beschriebenen Méglichkeit zur Realisierung der Ope-
ration UndoTask mit der Parametrisierung zur Kompensation wére auch
eine Abweichung von der durch [Sch+08] beschriebenen Funktionsweise

Abbildung 5-40:
Funktionsprinzip einer
Anwendung der Opera-
tion UndoTask mit Kom-
pensation

Abbildung 5-41:
Signatur und konkrete
Syntax der Ope-
ration RedoTask

Parameter

Seite 156 Kapitel 5

moglich. So konnte auf Basis der in Abschnitt 4.3.3 beschriebenen Opera-
tionen zur Anpassung von Prozessen Mafinahmen zur Kompensation in
Form einzelner Tasks in den bestehenden Kontrollfluss eingefiigt werden.
Das Einfiigen von Tasks zu diesem Zweck kénnte im Kontrollflusspfad vor
dem betreffenden Task durchgefiihrt werden. Hierdurch wire es moglich,
zundchst Tasks zur Kompensation auszufiihren, bevor der Kontrollfluss
automatisch den betreffenden Task A erneut aktiviert. Durch dieses Vorge-
hen wiirde allerdings der Kontrollfluss gedndert werden. Dies ist aus der
Perspektive der Reihenfolge der zu titigenden Aufgaben jedoch dasselbe
Ergebnis mit moglicherweise ungewollten Anpassungen an der Prozessin-
stanz.

5.4.2.2 RedoTask

Die Anwendung einer Operation vom Typ RedoTask ermoglicht die Aus-
fiihrung eines bereits abgeschlossenen Tasks. Die erneute Ausfiihrung be-
zieht sich in der hier beschriebenen Realisierung auf eine Kopie des betref-
fenden Tasks, welche nach Anwendung der Operation zu einem beliebi-
gen zukiinftigen Zeitpunkt durchgefiihrt werden kann. Im Gegensatz zur
Operation UndoTask werden weitere bereits abgeschlossene oder derzeit
ausgefiihrte Tasks nicht zurtickgesetzt und demnach nicht erneut ausge-
fuhrt. Ferner werden ebenso keine Mafinahmen zur Riickabwicklung spe-
zifiziert. Die Signatur und konkrete Syntax der Operation RedoTask sind in
Abbildung 5-41 angegeben.

Parametername Parametertyp
IN : inPl ProcessInstanceRepresentation
task TaskInstanceRepresentation
OUT : - VOID

Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgefiihrt werden soll. Dabei wird durch die Anwendung der
Operation keine explizite Ausgabe erzeugt — hier durch die Kennzeich-
nung als VOID dargestellt. Ein weiterer Parameter der Operation ist durch
die betreffende Taskinstanz (task) gegeben.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 157

Eine Anwendung der in Abbildung 5-41 spezifizierten Operation ist in Beispiel einer Anwendung
Abbildung 5-42 dargestellt. Dabei wird eine Darstellung in der Sprache der Operation RedoTask
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich

der Abbildung wird hierzu als Ausgang ein Auszug einer Prozessinstanz

PI dargestellt. Sie besteht aus den beiden Taskinstanzen Task A und Task

B, die durch Assoziationen vom Typ SequenceFlow zu einer Sequenz mit-

einander verbunden sind. Dabei wurde Task A bereits ausgefiihrt, sodass

derzeit die Taskinstanz Task B aktiv ist.

Prozessinstanz Pl Prozessinstanz Pl nach RedoTask Abbﬂduﬂg 5-42:
o o Beispielhafte Anwendung
Lifecycle Lifecycle Lifecycle der Operation RedoTask
activeState = ‘Active’ activeState = ‘Active’ activeState = ‘Ready”
Copy
Task A|—> Task B of
Task A
Lifecycle activeTasks = Lifecycle activeTasks =
- y . Task B,
activeState = ‘Closed {Task B}] activeState = ‘Closed” (C:psy of Task A}
T
& 5

}

Das Ergebnis einer Anwendung der Operation RedoTask auf die beschrie-

RedoTask

bene Prozessinstanz PI ist im rechten Bereich der Abbildung 5-42 darge-
stellt. In dem BPD ist eine neue Taskinstanz mit der Bezeichnung Copy of
Task A hinzugefiigt worden, die nicht mit dem existierenden Kontrollfluss
verbunden worden ist. Der Lebenszyklus der Taskinstanz befindet sich im
Zustand Ready, sodass die Taskinstanz zu einem beliebigen zukiinftigen
Zeitpunkt ausgefiihrt werden kann.

Durch die beschriebene Anwendung der Operation RedoTask wurde der
bestehende Kontrollfluss nicht explizit gedndert. Dies kann Nachteile ha-
ben, wenn Prozessinstanzen im Rahmen der Verbesserung von Prozessen
analysiert werden. Hier konnen frei integrierte Taskinstanzen womoglich
nachtréglich nicht mehr richtig zugeordnet werden. Eine weitere Moglich-
keit zur Realisierung der Operation RedoTask ohne diesen Effekt ist da-
durch gegeben, dass die Kopie der Taskinstanz Task A in den bestehen-
den Kontrollfluss integriert wird. Diese Variante weicht allerdings von der
durch Schonenberg et al. [Sch+08] gegebenen Definition ab.

Der Vollstandigkeit halber ist in Abbildung 5-43 das Ergebnis dieser Reali-
sierung anhand eines BPD abgebildet. Dabei wurde die Kopie der Taskin-
stanz Task A in den bestehenden Kontrollfluss so integriert, dass die Aus-
fithrung von Copy of Task A parallel zur Ausfithrung der Taskinstanz Task

Abbildung 5-43:
Ergebnis fiir eine alter-
native Realisierung der
Operation RedoTask

Abbildung 5-44:
Signatur und konkrete
Syntax der Ope-
ration SkipTask

Parameter

Seite 158 Kapitel 5

B durchgefiihrt werden kann. Durch fest in den Kontrollfluss integrierte
Taskinstanzen kann das zuvor genannte Problem unter Vernachldssigung
der von Schonenberg et al. [Sch+08] gegeben Definition umgangen werden.

Prozessinstanz Pl nach Anwendung einer alternativen Realisierung von RedoTask

7
Pl

Lifecycle Lifecycle activeTasks =
{Task B,
activeState = ‘Closed’ activeState = ‘Active’ Task A}

— e . . [
|- ask A > Task B > " -
'L_J Lifecycle

activeState = ‘Ready’

Copy
of

Task A

5.4.2.3 SkipTask

Die Anwendung einer Operation vom Typ SkipTask ermoglicht das Uber-
springen einer derzeit ausgefiihrten Taskinstanz. Dabei wird der Zustand
des Lebenszyklus des betreffenden Tasks auf den Wert Closed gesetzt. Die
Operation kann solange auf einen Task angewendet werden, wie sein
Lebenszyklus sich nicht in den Zustdnden Closed oder Inactive befindet.
Die Signatur und konkrete Syntax der Operation SkipTask sind in Abbil-
dung 5-44 angegeben.

Parametername Parametertyp
IN : inPl ProcessInstanceRepresentation
task TaskInstanceRepresentation
ouT : - VOID
e
Skip
P s Task
>N [D
inPI task
Pl Task A

Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgefiihrt werden soll. Dabei wird durch die Anwendung
der Operation keine explizite Ausgabe erzeugt — hier durch die Kenn-
zeichnung als (VOID) dargestellt. Ein weiterer Parameter der Operation
ist durch den betreffenden Task (task) gegeben.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 159

Eine Anwendung der in Abbildung 5-44 spezifizierten Operation ist in
Abbildung 5-45 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. In dem BPD wird
eine Prozessinstanz PI dargestellt. Sie besteht aus den beiden Taskinstan-
zen Task A und Task B, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz miteinander verbunden sind. Dabei ist Task A der derzeit
aktive Task.

Prozessinstanz Pl Prozessinstanz Pl nach SkipTask

Ll Pl
Lifecycle Lifecycle

activeState = ‘Inactive’ activeState = ‘Ready”

Lifecycle activeTasks = Lifecycle activeTasks =
activeState = ‘Active’ {Task A} activestate = ‘Closed’ {Task B}
T

Py A

}

Das Ergebnis einer Anwendung der Operation SkipTask auf die beschrie-

SkipTask

bene Prozessinstanz PI ist im rechten Bereich der Abbildung 5-45 darge-
stellt. So wurde zunéchst die Taskinstanz Task A beendet und die Taskin-
stanz Task B aktiviert. Das Attribut activeTasks des Containerelements C ist
auf den Wert {Task B} gesetzt. Hierdurch wurde die weitere Ausfithrung
von Task A iibersprungen und die Sequenz der Ausfithrung fahrt mit Task
B fort.

5.4.2.4 InvokeTask

Die Anwendung einer Operation vom Typ InvokeTask setzt den Zustand
des Lebenszyklus eines noch nicht ausgefiihrten oder noch nicht aktiven
Tasks auf den Wert Ready, sodass er im Anschluss ausgefiihrt wird. Hier-
durch ist es moglich, die Ausfithrung des betreffenden Task vorzuziehen.
Dabei wird die Ausfithrung derzeit aktiver Tasks unterbrochen und die
Zustdnde ihrer Lebenszyklen auf den Wert Inactive gesetzt. Nach Been-
digung des vorgezogenen Tasks werden die Zustinde der Lebenszyklen
von unterbrochenen Tasks auf den Wert Ready gesetzt. Ausgehende Asso-
ziationen aktivieren keine nachfolgenden Tasks. Dadurch konnen die un-
terbrochenen Tasks erneut ausgefiihrt werden. Wird im weiteren Verlauf
der Ausfithrung des Prozesses der zuvor vorgezogene Task erneut akti-
viert, so ist eine erneute Ausfithrung moglich. Alternativ kann aber auch

Beispiel einer Anwendung
der Operation SkipTask

Abbildung 5-45:
Beispielhafte Anwendung
der Operation SkipTask

Seite 160 Kapitel 5

durch die zuvor beschriebene Operation SkipTask (siehe Abschnitt 5.4.2.3)
die Ausfiihrung tibersprungen werden. Die Signatur und konkrete Syntax
der Operation InvokeTask sind in Abbildung 5-46 angegeben.

Abbildung 5-46: Parametername Parametertyp
Signatur und konkrete IN : inPl ProcessInstanceRepresentation
Syntax der Ope- task TaskInstanceRepresentation
ration InvokeTask OUT : _ VOID

Parameter Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgefithrt werden soll. Dabei wird durch die Anwendung
der Operation keine explizite Ausgabe erzeugt — hier durch die Kenn-
zeichnung als (VOID) dargestellt. Ein weiterer Parameter der Operation
ist durch den betroffenen Task (task) gegeben.

Beispiel einer Anwendung ~ Eine Anwendung der in Abbildung 5-46 spezifizierten Operation ist in
der Operation InvokeTask Aphildung 5-47 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. In dem BPD wird
eine Prozessinstanz PI dargestellt. Sie besteht aus den beiden Taskinstan-
zen Task A und Task B, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz miteinander verbunden sind. Dabei ist Task A der derzeit

aktive Task.
Abblldung 5-47: Prozessinstanz Pl Prozessinstanz Pl nach InvokeTask
Beispielhafte Anwendung [, L— Pl
. - activeTasks = - tiveTasks = L
der Operation InvokeTask Task Ay ok Copy of Lifecycle
Task B activeState = ‘Closed’

EReturnControI Iy

Invoke

Task A

Lifecycle Lifecycle Lifecycle Lifecycle

activeState = ‘Active’ activeState = ‘Inactive’ activeState = ‘Ready”’ activeState = ‘Inactive’

InvokeTask

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 161

Das Ergebnis einer Anwendung der Operation InvokeTask auf die beschrie-
bene Prozessinstanz PI ist im rechten Bereich der Abbildung 5-47 darge-
stellt. Dabei wurde eine Kopie eines vorgezogenen Tasks mit der Bezeich-
nung Copy of Task B eingeftigt. Bei den Assoziationen mit der Beschriftung
Invoke und ReturnControl handelt es sich um implizite Kontrollfliisse, die
hier lediglich zum besseren Verstdndnis dargestellt sind und sonst keine
Darstellungsform haben. Die Ausfithrung der vorgezogenen Taskinstanz
wird hier als bereits abgeschlossen dargestellt. Ferner wurde die Prozessin-
stanz aktiviert, deren Ausfithrung durch das Vorziehen unterbrochen wor-
den ist.

Zum besseren Verstdandnis ist das Funktionsprinzip der Operation SkipTask
in Abbildung 5-48 dargestellt. So teilt sich eine Anwendung der Operation
InvokeTask in die beiden Teilschritte Invoke und ReturnControl auf. Durch
den Teilschritt Invoke wird der Prozessinstanz PI eine Kopie des vorgezo-
genen Tasks hinzugefiigt. Ferner wechseln die Lebenszyklen aller aktiven
Tasks in den Zustand Inactive. Der Lebenszyklus des vorgezogenen Tasks
Copy of Task B befindet sich im Zustand Ready. Demnach ist das Attribut
activeTasks der Prozessinstanz auf den Wert Copy of Task B gesetzt, wodurch
er als nichstes ausgefiihrt werden kann. Nach Beendigung des Tasks mit
der Bezeichnung Copy of Task B wird der zweite Teilschritt ReturnControl
durchgefiihrt. In diesem Rahmen werden alle Lebenszyklen von zuvor ak-
tiv gewesenen Tasks in den Zustand Ready gesetzt. AnschliefSend kann die
vorherige Ausfithrung fortgesetzt werden.

Die zuvor beschriebene Realisierung der Operation InvokeTask arbeitet mit
Hilfe von impliziten Kontrollfliissen zwischen derzeit aktiven Tasks und
dem vorgezogenen Task. Ein impliziter Kontrollfluss beschreibt dabei die
Sequenz einer Ausfithrung von Tasks ohne das explizite Hinzuftigen von
z.B. Assoziationen vom Typ SequenceFlow. Die Kontrolle tiber den implizi-
ten Kontrollfluss liegt hier bei der Operation InvokeTask, die — wie in Abbil-
dung 5-48 dargestellt — bis zur Aktivierung zuvor deaktivierter Tasks ak-
tiv bleibt. Auf diese Weise kann der durch Schonenberg et al. gegebenen Be-
schreibung des Flexibilitatsaspekts Flexibility-by Deviation Rechnung getra-
gen werden, indem der bestehende Kontrollfluss nicht explizit angepasst
wird.

Seite 162 Kapitel 5

Abbildung 5-48:
Funktionsprinzip ei-

Pl
ner Anwendung der activeTasks = j
. Task A
Operation InvokeTask faskA)

Prozessinstanz Pl

Lifecycle Lifecycle

activeState = ‘Active’ activeState = ‘Inactive’

Prozessinstanz Pl nach Invoke

Invoke @ = | activeTasks = DN -
{Copy of Task B} Copy of Lifecycle
Task B activeState = ‘Ready’
x
Invoke
-----> Task A Task B
Lifecycle Lifecycle
activeState = ‘Inactive’ activeState = ‘Inactive’

Return
Control
Prozessinstanz Pl nach ReturnControl/InvokeTask
@
B activeTasks = L) -
{Copy of Task B} Copy of Lifecycle
. -.{ Task B activeState = ‘Closed"
i ReturnControl
oo >
j—@ Task B
InvokeTask Lifecycle Lifecycle
activeState = ‘Ready’ activeState = ‘Inactive’

5.4.2.5 CreateAdditionallnstanceOfTask

Die Anwendung einer Operation vom Typ CreateAdditionallnstanceOfTask
ermoglicht die Anpassung der Attribute isSequential und loopCardinality ei-
ner Taskinstanz vor ihrer Ausfithrung. Durch das Attribut loopCardinality
kann die Anzahl von Taskinstanzen bestimmt werden, die ausgefiihrt
werden sollen. Ferner kann durch das Attribut isSequential bestimmt
werden, ob die Taskinstanzen sequentiell oder aber parallel ausgefiihrt
werden sollen. Die Signatur und konkrete Syntax der Operation Create-
AdditionallnstanceOfTask sind in Abbildung 5-49 angegeben.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 163
Parametername Parametertyp
IN : inPI ProcesslnstanceRepresentation
task TaskInstanceRepresentation
IN-Optional : loopCardinality Integer
isSequential Boolean
OUT : - VOID
...............................
: CreateAdditional
e InstanceOfTask
> > > >
inPl task loop is
Cardinality Sequential
Pl Task B 3 true

Die Operation erwartet als Eingabe eine Prozessinstanz (inPI), auf die die
Anpassung ausgefiihrt werden soll. Dabei wird durch die Anwendung
der Operation keine explizite Ausgabe erzeugt — hier durch die Kenn-
zeichnung als (VOID) dargestellt. Ein weiterer Parameter der Operation
ist durch den betroffenen Task (task) gegeben.

Wie hoch die Anzahl der auszufiihrenden Taskinstanzen sein soll, kann
durch den Parameter loopCardinality vom Typ Integer angegeben werden.
Dabei konnen lediglich positive Werte einschliefllich 0 angegeben werden.
Durch den letzten hier aufgefiihrten Parameter isSequential vom Typ Boo-
lean lasst sich eine sequentielle oder parallele Ausfithrung der Taskinstan-
zen angeben. Der Wert true steht dabei fiir sequentielle und der Wert false
fir eine parallele Ausfithrung.

Prozessnstanz Pl Prozesshstanz Pl nah CreateAddtbnalinstane OfTask

Bl L]
activeTasks = activeTasks = isSequential = true [\
{Task A} {Task A} loopCardinality = 3

\

Lifecycle Lifecycle

Lifecycle Lifecycle

activeState = ‘Active’ activeState = ‘Inactive’ activeState = ‘Active’ activeState = ‘Inactive’

CreateAddtbnallnstaneOfTask

Abbildung 5-49:

Signatur und konkrete
Syntax der Operation
CreateAdditionallnstance-
OfTask

Parameter

Optionale Parameter

Abbildung 5-50:
Beispielhafte Anwendung
der Operation Create-
AdditionallnstanceOfTask

Seite 164 Kapitel 5

Beispiel einer Anwendung
der Operation Create-
AdditionallnstanceOfTask

Eine Anwendung der in Abbildung 5-49 spezifizierten Operation ist in
Abbildung 5-50 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. In dem BPD wird
eine Prozessinstanz PI dargestellt. Sie besteht aus den beiden Taskinstan-
zen Task A und Task B, die durch Assoziationen vom Typ SequenceFlow zu
einer Sequenz verbunden sind. Dabei ist Task A der derzeit aktive Task.

Das Ergebnis einer Anwendung der Operation CreateAdditionallnstance-
OfTusk auf die beschriebene Prozessinstanz PI ist im rechten Bereich der
Abbildung 5-50 dargestellt. So wurden fiir Task B die beiden Attribute
isSequential mit dem Wert true und loopCardinality mit dem Wert 5 ge-
setzt. Der betreffende Task erhilt zudem das aus der Sprache BPMN2.0
stammende Symbol fiir die sequentielle Ausfithrung mehrerer Instanzen
des Tasks (siehe Abschnitt 2.3.4). Die zuvor beschriebene Realisierung der
Operation CreateAdditionallnstanceOfTuask erzeugt bei Aktivierung des an-
gepassten Tasks eine der in Abbildung 5-51 dargestellten Ausfithrungsse-
quenzen von Task B.

Abbildung 5-51:
Darstellung von
Ausfiihrungsse-
quenzen von Task B

PG-Fork

isSequential = false [\
loopCardinality = 3
|

E

isSequential = true [\
loopCardinality = 3

Task B
1]

Lifecycle

Lifecycle

Lifecycle

activeState = ‘Ready’

activeState = ‘Ready’

activeState = ‘Ready”

> Task B

Copy 1
> of

Copy 2

LH

Task B

> of
Task B

Lifecycle

Lifecycle

Lifecycle

activeState = ‘Ready’

activeState = ‘Inactive’

activeState = ‘Inactive’

Im oberen Teil der Abbildung wird eine Ausfithrungssequenz dargestellt,
die eine parallele Ausfithrung des Task B und seiner beiden Kopien be-
schreibt. Dabei sind zum Zeitpunkt der Betrachtung ausgehend von dem
Gateway mit der Bezeichnung PG-Fork alle Tasks aktiviert worden, sodass
sich ihre Lebenszyklen im Zustand Ready befinden. Es ist moglich, dass
sich die Lebenszyklen zu einem Zeitpunkt im weiteren Verlauf der Aus-
fihrung in unterschiedlichen Zustdnden befinden. Eine Synchronisation
wird durch das am Ende der Ausfithrungssequenz befindliche parallele

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 165

Gateway mit der Bezeichnung PG-Join durchgefiihrt. Im unteren Teil der
Abbildung wird eine Ausfiihrungssequenz dargestellt, die eine sequenti-
elle Ausfithrung des Task B und seiner beiden weiteren Kopien beschreibt.
Dabei ist zum Zeitpunkt der Betrachtung der erste Task mit der Bezeich-
nung Task B aktiv. Seine beiden weiteren Kopien sind derzeit inaktiv und
werden im Verlauf der dargestellten Sequenz nacheinander aktiviert.

5.4.3 Zusammenfassung

In den vorherigen Abschnitten wurden auf Basis der durch [Sch+08] gege-
benen Beschreibung von Flexibility-by Deviation verschiedene Operationen
zur Realisierung des Flexibilitdtsaspekts gegeben. Hier wurde die bereits
fir den Flexibilitdtsaspekt Flexibility-by Change eingefiihrte Erweiterung
(siehe Abschnitt 5.3.3) wiederverwendet. Basierend auf dieser Erweite-
rung wurden im Anschluss fiinf Operationen beschrieben, die die Anpas-
sung von Prozess- und Taskinstanzen hinsichtlich des Flexibilitdtsaspekts
Flexibility-by Deviation ermoglichen. Die Operationen lassen sich in der Ge-
staltung von Anpassungen im Rahmen von Beobachtungs- bzw. Anpas-
sungsprozessen einsetzen, sodass sie einen wichtigen Beitrag fiir die Um-
setzung von flexiblen und anpassbaren Prozessen darstellen.

5.5 Flexibility-by Underspecification

Im Rahmen der Flexibilisierung von Prozessen kann es moglich sein, dass
in einer frithen Phase einer Iteration des BPM-Lebenszyklus Anforderungen
hinsichtlich zu realisierender Funktionen in einem Prozess entweder noch
nicht bekannt oder aber hochgradig variabel sein konnen. Eine benétigte
Funktion kann dann entweder nicht beschrieben werden oder ein Prozess
kann viele alternative Kontrollflusspfade enthalten. Hierdurch kénnen die
weitere Entwicklung sowie die Wartung eines Prozesses komplex sein.

In einem solchen Fall bietet sich fiir die Gestaltung von flexiblen und an-
passbaren Prozessen die Verwendung des Flexibilitatsaspekts Flexibility-by
Underspecification an. Bei dem Flexibilitdtsaspekt Flexibility-by Underspeci-
fication wird die Auswahl einer zu erbringenden Funktion auf einen spate-
ren Zeitpunkt im BPM-Lebenszyklus verschoben. So konnte eine Funktion
z.B. erstim Rahmen der Phase Konfiguration oder der Phase Ausfiihrung auf
Basis der dann verfiigbaren Anforderungen gewidhlt werden. Hierdurch
ist der Zeitpunkt fiir die Auswahl einer Funktion entsprechend verscho-
ben worden. Eine an [Sch+08] orientierte Definition des Flexibilitdtsaspekts
Flexibility-by Underspecification wird in Definition 5.5.1 gegeben.

Abbildung 5-52:
Gestaltungsaspekte fiir
flexible und anpass-
bare Prozesse in Hin-
sicht auf Flexibility-

by Underspecification

Seite 166 Kapitel 5

Definition 5.5.1. (Flexibility-by Underspecification)

Flexibility-by Underspecification beschreibt die Fihigkeit zur Ausfiihrung
eines unvollstindigen Prozesses zur Ausfiihrungszeit. Dabei konnen in
Anlehnung an die Auswertungen von Bedingungen an spezifischen Punk-
ten des Kontrollflusses — sogenannten Platzhaltern — noch nicht enthalte-
ne Funktionen beschrieben bzw. gewihlt werden, um dann im weiteren
Verlauf der Ausfiihrung ausgefiihrt zu werden.

Flexibility-by Underspecification ldsst sich nach [Sch+08] in die zwei weite-
ren Typen von Flexibilitiatsaspekten Late Selection und Late Modeling un-
terteilen. Eine Ubersicht iiber die beiden Typen des Flexibilititsaspekts
Flexibility-by Underspecification und ihre spezifischen Operationen sowie Ei-
genschaften ist in Abbildung 5-52 gegeben. Nachfolgend werden in Ab-
schnitt 5.5.1 zundchst die beiden Typen Late Selection und Late Modeling
detaillierter vorgestellt. Dabei wird insbesondere Bezug zu den in Abbil-
dung 5-52 gezeigten Operationen und Eigenschaften genommen. Basie-
rend auf dieser Beschreibung wird in Abschnitt 5.5.2 eine weitere Erweite-
rung der Sprache BPMN?2.0 beschrieben, die spezifische Elemente zur Un-
terstiitzung des Flexibilitdtsaspekts Flexibility-by Underspecification enthalt.
In Abschnitt 5.5.3 werden die Operationen zur Unterstiitzung der Gestal-
tung des Flexibilitdtsaspekts unter Verwendung der Sprache ACML4BPM

der vorgestellten Inhalte gegeben.

«Flexibility Concern»

vorgestellt. Abschliefend wird in Abschnitt 5.5.4 eine Zusammenfassung
Flexibility-by Underspecification — Late Selection

«ProcesInstanceAdaptationOperation» «ProcessInstanceAdaptationOperation»
BindProcessFragment ChooseProcessFragment
A

«ProcesInstanceAdaptationOperation»
StructuralBind
ProcessFragment

RealisationPointinTime:
- PreliminaryRealisation
- OnActivationRealisation

RealisationSpacelnTime:
- StaticRealisation
- DynamicRealisation

«ProceslnstanceAdaptationOperation»
BehavioralBind
ProcessFragment

«Flexibility Concern»
Flexibility-by Underspecification — Late Modeling

«MethodologicalActivity»

- Create
cexeends? _ -~
To-x ProcessFragment
- \
«MethodologicalActivity» C;R
SwitchLCPhase ’
~~ /
~~u] .
«e)‘tendsz -~ «MethodologicalActivity»

~ Compose
ProcessFragment

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 167

5.5.1 Gestaltungsaspekte von Flexibility-by Underspecification

In diesem Abschnitt werden verschiedene Aspekte hinsichtlich der Gestal-
tung des Flexibilitatsaspekts Flexibility-by Underspecification beschrieben.
Im Detail wird hierbei auf den Typ Late Selection und auf den Typ Late
Modeling eingegangen. Abschliefiend wird auf die in Abbildung 5-52 dar-
gestellten Eigenschaften der beiden zuvor genannten Typen Bezug genom-
men.

Fiir die beiden Typen Late Selection und Late Modeling werden die beiden
weiteren Elemente Platzhalter und Prozessfragment im Rahmen des Kon-
trollflusses eines Basisprozesses verwendet. Bei einem Platzhalter handelt
es sich um ein Element, dessen Inhalt vor Ausfiihrung des Prozesses un-
bekannt ist und erst im Lauf der Ausfithrung durch den Inhalt eines zu-
vor gestalteten Prozessfragments vervollstandigt wird. Diese Vervollstan-
digung ist dabei an die Auswertung einer Bedingung gekntipft, durch die
aus einer Menge von verschiedenen Prozessfragmenten gewihlt werden
kann. Ein Prozessfragment kann als ein spezieller Typ eines Prozesses ver-
standen werden, der sowohl ein definiertes Start- als auch ein Endsym-
bol besitzt und eine oder mehrere bestimmte Funktionen unterstiitzt. Da-
bei unterscheidet sich ein Prozessfragment von einem Prozess vornehm-
lich durch seine Verwendungsweise. So wird es an einer spezifischen Stel-
le in einem Prozess eingesetzt und nicht ohne einen {ibergeordneten Pro-
zess verwendet. Ein Prozessfragment ist somit in Hinsicht auf den Flexibi-
litatsaspekt Flexibility-by Underspecification eine mogliche Funktion, die an
der Stelle eines Platzhalters eingesetzt werden kann.

Bei dem Typ Late Selection wird die Auswahl einer benétigten Funktion
auf einen spéteren Zeitpunkt im BPM-Lebenszyklus verschoben. So wird
an einem spezifischen Zeitpunkt im Verlauf eines Prozesses eine Auswer-
tung von Bedingungen vorgenommen, deren Ergebnis die Auswahl einer
Funktion bzw. deren Realisierung in Form eines Prozessfragments ist. Fiir
die Realisierung von Late Selection ist neben den zuvor eingefiihrten Ele-
menten Platzhalter, Prozessfragment und Bedingung zur Auswahl eines
Prozessfragments ein Basisprozess notwendig. Dabei enthélt der Kontroll-
fluss eines Basisprozesses mindestens einen Platzhalter. Ferner werden im
Rahmen einer Bedingung und Auswahl eines Prozessfragments die beiden
Typen von Operationen ChooseProcessFragment und BindProcessFragment
benoétigt, welche nachfolgend beschrieben werden.

Durch eine Operation vom Typ ChooseProcessFragment kann zu einem
spezifischen Zeitpunkt eine Auswahl von benétigten Funktionen getrof-

Elemente zur Gestaltung

Typ Late Selection

ChooseProcessFragment

BindProcessFragment

BehavioralBind-
ProcessFragment

StructuralBind-
ProcessFragment

Seite 168 Kapitel 5

fen werden. Dabei werden Bedingungen ausgewertet, deren Ergebnis die
Auswahl eines oder mehrerer Funktionen in Form von Prozessfragmen-
ten ist. Die durch Operationen des Typs ChooseProcessFragment getroffe-
ne Auswahl kann innerhalb des Flexibilitatsaspekts Late Selection durch
Beobachtungsprozesse gestaltet werden.

Die Vervollstindigung eines Platzhalters durch ein Prozessfragment wird
auch Bindung genannt. Dabei wird im Anschluss an die Auswahl einer
benotigten Funktion (ChooseProcessFragment) eine Bindung durch Ope-
rationen des Typs BindProcessFragment durchgefiihrt. Derartige Opera-
tionen lassen sich im Rahmen der Gestaltung von Anpassungsprozes-
sen zur Integration von benétigten Funktionen einsetzen. Murguzur et. al
[Mur+13] unterscheiden dartiber hinaus verschiedene Funktionsprinzipi-
en von Bindungen. So werden verhaltensbasierte und strukturbasierte Ver-
fahren unterschieden. Diese werden in Abbildung 5-52 durch die beiden
Typen von Operationen Behavioral BindProcessFragment bzw. Structural Bind-
ProcessFragment dargestellt und im Folgenden beschrieben.

Durch Operationen des Typs BehavioralBindProcessFragment werden ver-
haltensbasierte Verfahren zur Bindung von Funktionen umgesetzt. Hier-
bei wird nach der Auswertung einer Bedingung (ChooseProcessFragment)
ein Prozess in der Rolle eines Prozessfragments an der Stelle eines Platz-
halters im Kontrollfluss aufgerufen. Nach Beendigung des aufgerufenen
Prozesses wird die Ausfithrung des Basisprozesses durch den vom Platz-
halter ausgehenden Kontrollfluss fortgesetzt. Parallele Ausfithrungspfade
bleiben wihrend der Ausfithrung des aufgerufenen Prozesses aktiv. Bei
diesem Verfahren wird das durch den gebundenen Prozess beschriebene
Verhalten also nicht an der Stelle eines Platzhalters integriert. Stattdessen
wird an der Stelle des Platzhalters der gebundene Prozess aufgerufen und
auf die Beendigung seiner Ausfiihrung gewartet.

Die strukturbasierte Operation StructuralBindProcessFragment fiigt nach
Auswertung einer Bedingung (ChooseProcessFragment) an der Stelle des
Platzhalters ein Prozessfragment in den Kontrollfluss des Basisprozes-
ses ein. Hierdurch wird der in dem Prozess beschriebene Kontrollfluss so
strukturell angepasst, dass das Prozessfragment an der Stelle des Platzhal-
ters in den bestehenden Kontrollfluss integriert wird. Sofern ein Platzhal-
ter als ein Containerelement umgesetzt worden ist, kann eine alternative
Realisierung der Operation StructuralBindProcessFragment durch die Ein-
bettung des Prozessfragments in den Platzhalter vorgenommen werden
(siehe auch Anhang A.3).

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 169

Fiir den Typ Late Selection existieren bereits Arbeiten, die entweder das ver-
haltensbasierte oder das strukturbasierte Verfahren verwenden. So wur-
den Umsetzungen des strukturbasierten Verfahrens bspw. durch [Ada+06;
DZK11] und des verhaltensbasierten Verfahrens in [Can+08; CDMO09;
Ard+11] vorgestellt. In den genannten Arbeiten wurde jedoch keine Tren-
nung der Anpassungs- von der Anwendungslogik in einer frithen Pha-
se der Gestaltung der beteiligten Prozesse vorgenommen. Daher gilt es
zu untersuchen, inwiefern die Realisierung der Gestaltung des Flexibi-
litatsaspekts Late Selection durch die in dieser Arbeit vorgestellte Spra-
che ACML4BPM untersttitzt werden kann und welche Erweiterungen im
Rahmen der Sprache BPMN2.0 sowie der in Abschnitt 4.3.3 eingefiihrten
Operationen notwendig sind.

Im Rahmen von Operationen des Typs ChooseProcessFragment werden Be-
dingungen ausgewertet. Basierend auf den Ergebnissen dieser Auswer-
tung kann eine mogliche Einbindung von benétigten Funktionen durchge-
fiihrt werden. Dieser Vorgang lasst sich durch das in Abschnitt 4.2.2 vorge-
stellte Konzept des Beobachtungsprozesses beschreiben. Dabei enthilt der
Beobachtungsprozess das Verhalten zur Auswertung von spezifischen Be-
dingungen. Eine Beendigung des Beobachtungsprozesses kann einen An-
passungsprozess aufrufen, in dem das Verhalten zur Bindung von Prozess-
fragmenten beschrieben wird. Das Verhalten zur Bindung von Prozessfrag-
menten kann dabei durch entsprechende Operationen zur Anpassung von
Prozessen (siehe Abschnitt 4.3.3) unterstiitzt werden.

Der Typ Late Modeling kann — wie in Abbildung 5-52 dargestellt — als Er-
gidnzung zu dem Typ Late Selection verstanden werden. So kann es in der
Phase Ausfiihrung der Fall sein, dass benotigte Funktionen noch nicht in
Form von bestehenden Prozessfragmenten vorliegen. Dann kann es sinn-
voll sein, dass die benétigten Funktionen neu gestaltet oder auf Basis be-
stehender Prozessfragmente komponiert werden. Hierbei kdnnen neue
Prozessfragmente entstehen, die durch die Auswertung von Bedingungen
(ChooseProcessFragment) und durch die Anwendung von Operationen zur
Bindung (BindProcessFragment) ausgefiihrt werden konnen. Fiir die Ge-
staltung neuer Prozessfragmente ist zundchst ein weiterer Typ von Ope-
rationen notwendig, der in Abbildung 5-52 in Form von SwitchLCPhase
dargestellt ist und nachfolgend beschrieben wird.

Bei der Operation des Typs SwitchLCPhase handelt es sich um ein methodi-
sches Konstrukt. Es steht symbolisch fiir einen Wechsel aus der Phase Aus-
fiihrung entweder in die Phase Design & Analyse oder in die Phase Konfi-
guration im BPM-Lebenszyklus (siehe Abschnitt 2.2.2). Derartige Vorgehens-

Existierende Verfahren in
Bezug zum SoC

Gestaltung von

Late Selection durch
Beobachtungs- und
Anpassungsprozesse

Typ Late Modeling

SwitchLCPhase

CreateProcessFragment

ComposeProcessFragment

Seite 170 Kapitel 5

weisen zur Anpassung von Entwicklungs- und Lebenszyklen von Softwa-
resystemen wurden bereits in [Faz16] vorgestellt. Durch die Anwendung
einer Operation des Typs SwitchLCPhase soll an dieser Stelle verdeutlicht
werden, dass entweder eine Neugestaltung oder alternativ eine Komposi-
tion von Prozessfragmenten durchgefiihrt werden kann.

Im Rahmen einer Neugestaltung (Create) von Prozessfragmenten wird
hierzu in die Phase Design & Analyse gewechselt, in der neue Prozessfrag-
mente gestaltet werden kénnen. Durch eine Komposition (Compose) wird
hierzu in die Phase Konfiguration gewechselt, in der neue Prozessfragmen-
te auf Basis bestehender Prozessfragmente komponiert werden konnen.
Durch die Anwendung von Operationen des Typs SwitchLCPhase wird
die Ausfiihrung des Basisprozesses unterbrochen. Nach Beendigung einer
Neugestaltung oder Komposition ist es moglich, den Basisprozess weiter
auszufiihren. Werden nachgelagert Operationen der Typen ChooseProcess-
Fragment und BindProcessFragment angewendet, konnen hierbei neu er-
stellte oder komponierte Prozessfragmente beriicksichtigt werden. Ferner
ist fiir die Neugestaltung oder Komposition von Prozessfragmenten im
Rahmen der Anwendung von Operationen des Typs SwitchLCPhase wei-
tere Typen von Operationen notwendig. Zu diesem Zweck werden nach-
folgend die beiden Typen von Operationen CreateProcessFragment und
ComposeProcessFragment eingefiihrt und beschrieben.

Im Rahmen einer Neugestaltung konnen benétigte Funktionen in Form
von Prozessfragmenten beschrieben und umgesetzt werden, sodass sie im
Anschluss zum Zweck der Bindung (BindProcessFragment) zur Verfiigung
stehen. Durch Operationen des Typs CreateProcessFragment werden metho-
dische Aktivitaten zur Neugestaltung von Prozessfragment durch Exper-
ten durchgefiihrt. In [Sch+08] wird hierzu genannt, dass dieser Prozess
der Neugestaltung lediglich durch Experten der Anwendung ausgefiihrt
werden sollte. Dies lédsst sich u.a. dadurch begriinden, dass i.d.R. nur Ex-
perten einer Anwendung in der Lage sind, zu erkennen, dass und vor al-
lem welche weiteren Funktionen in Form von Prozessfragmenten benétigt

werden.

Ein weiterer Typ von Operationen (ComposeProcessFragment) unterstiitzt
die Komposition von benétigten Funktionen auf Basis existierender Pro-
zessfragmente. Eine Komposition von Funktionen stellt in diesem Bezug
einen Vorgang dar, der aus mindestens zwei bestehenden Funktionen eine
weitere neue Funktion erstellt. Dabei wird durch die neue Funktion eine
Ausgabe erzeugt, welche ohne die durchgefiihrte Komposition so nicht
moglich gewesen wiére. Eine einfache Komposition kann z.B. aus der Se-

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 171

quenz einer Ausfiihrung von zwei Funktionen bestehen. Ferner handelt es
sich bei dem Typ von Operationen ComposeProcessFragment um methodi-
sche Aktivititen zur Komposition von Prozessfragmenten, die durch Ex-
perten durchgefiihrt werden. Neue Prozessfragmente, die durch die An-
wendung von Operationen der Typen CreateProcessFragment oder Compose-
ProcessFragment erstellt worden sind, konnen bei nachfolgenden Anwen-
dungen der Operationen vom Typ BindProcessFragment gebunden werden.
Dadurch kénnen zuvor nicht vorhandene Funktionen im Rahmen der Aus-
fithrung des Basisprozesses genutzt werden, wodurch zudem auch auf
spezifische Umstande in einer Umgebung eingegangen werden kann.

5.5.1.1 Eigenschaften von Late Selection und Late Modeling

Fiir eine mogliche Realisierung der zuvor ausgefiihrten Typen des Flexi-
bilitatsaspekts Flexibility-by Underspecification existieren — wie in Abbil-
dung 5-52 gezeigt — weitere Eigenschaften. So kann es zum einen un-
terschiedliche Zeitpunkte (RealisationPointInTime) fiir eine Bindung von
Prozessfragmenten geben. Zum anderen existieren verschiedene Typen
von Zeitdauern (RealisationSpacelnTime), fiir die eine Bindung von Prozess-
fragmenten bestehen soll. Eine fiir die vorliegende Arbeit angepasste In-
terpretation dieser Eigenschaften wird im Folgenden naher beschrieben.

In Tabelle 5-2 ist eine Ubersicht iiber Zeitpunkte einer Bindung in Relation
zu relevanten Phasen und betroffenen Artefakten zusammengefasst. Eine
Bindung von Prozessfragmenten kann zu unterschiedlichen Zeitpunkten
im BPM-Lebenszyklus durchgefiihrt werden. So existieren die beiden Typen
von Zeitpunkten PreliminaryRealisation und OnActivationRealisation, an de-
nen ein ausgewdihltes Prozessfragment gebunden werden kann. Bei beiden
Typen von Zeitpunkten kénnen spezifische Ereignisse auftreten, auf de-
ren Basis eine Auswahl (ChooseProcessFragment) und eine Bindung (Bind-
ProcessFragment) eines geeigneten Prozessfragments getroffen bzw. durch-
gefiihrt werden kann.

Zeitpunkt Phase Konfiguration Phase Ausfiihrung
Preliminiary Prozessmodell Prozessmodell
Realisation Prozessinstanz
OnActivation - Prozessinstanz
Realisation

Tabelle 5-2:

Typen von Zeitpunkten
und betroffene Artefakte
entlang relevanter Phasen
des BPM-Lebenszyklus

PreliminaryRealisation

OnActivationRealisation

Tabelle 5-3:

Typen von Zeitdauern
und betroffene Artefakte
entlang relevanter Phasen
des BPM-Lebenszyklus

StaticRealisation

DynamicRealisation

Seite 172 Kapitel 5

Bei Zeitpunkten des Typs PreliminaryRealisation wird eine Bindung vor der
Aktivierung eines Platzhalters durchgefiihrt. Beispiele fiir konkrete Zeit-
punkte im BPM-Lebenszyklus sind z.B. durch die Phase Konfiguration, in
der Prozesse konfiguriert werden, oder zu ihrer Instanziierung in der Pha-
se Ausfiithrung gegeben. Selbstverstandlich bestehen hier auch Zeitpunkte
wihrend der Ausfithrung eines Prozesses, aber vor Aktivierung eines in
seinem Kontrollfluss enthaltenen Platzhalters.

Der Typ von Zeitpunkten OnActivationRealisation stellt den Zeitpunkt der
Bindung eines Prozessfragments bei Aktivierung des Platzhalters dar. So-
mit wird die Bindung unmittelbar an der Stelle im Kontrollfluss durch-
gefiihrt, die flexibel durch die Auswahl von Prozessfragmenten gestaltet
werden soll. Durch den Typ OnActivationRealisation kann ein besonders ho-
her Grad an Flexibilitdt gewéhrleistet werden, da die Bindung zu dem spét
moglichsten Zeitpunkt durchgefithrt werden kann.

Ferner existiert eine weitere Eigenschaft, durch die der Typ einer Rea-
lisierung hinsichtlich einer Mehrfachanwendung eines Platzhalters bzw.
seiner gebundenen Prozessfragmente beschrieben werden kann. So wird
zwischen den beiden Typen StaticRealisation und DynamicRealisation unter-
schieden, welche zur Ubersicht in Tabelle 5-3 in Relation zu Phasen und
betroffenen Artefakten dargestellt sind.

Zeitdauer Phase Konfiguration Phase Ausfiihrung
Static Prozessmodell Prozessmodell
Realisation Prozessinstanz!
Dynamic Prozessmodell Prozessmodell
Realisation Prozessinstanz

Bei dem Typ StaticRealisation wird ein einmal gebundenes Prozessfragment
auch fiir die weitere Ausfiihrung des Basisprozesses an der Stelle des Platz-
halters gebunden sein. Eine Bindung im Rahmen des Typs StaticRealisation
kann also als permanent betrachtet werden (siehe auch Abschnitt 5.3), da
sie nachtrédglich nicht mehr verdnderbar ist. So konnte z.B. eine Bindung
bereits in der Phase Konfiguration vorgenommen worden sein, die auch auf-
grund aktualisierter Anforderungen in der Phase Ausfiihrung Bestand ha-
ben soll. Eine Mehrfachanwendung eines Platzhalters ist somit nicht vor-
gesehen.

Der Typ DynamicRealisation hingegen ermoglicht, ein Prozessfragment zu-
néchst zu binden und zu einem spéteren Zeitpunkt eine erneute Bindung
eines anderen Prozessfragments vorzunehmen. Dies kann notwendig sein,

1Bindung ist nur moglich, wenn nicht bereits in der Phase Konfiguration getitigt worden ist.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 173

wenn sich an gednderte Bedingungen angepasst werden muss. So kénn-
ten z.B. aktualisierte Bedingungen in einer Umgebung vorherrschen, die
die weitere Ausfithrung der Prozesse behindern oder die erfolgreiche Be-
endigung unmoglich machen. Durch den Typ DynamicRealisation konnen
also dynamische Bindungen durchgefiihrt werden. Im Rahmen des Typs
DynamicRealisation wére so z.B. eine Bindung eines vorldufigen Prozess-
fragments in der Phase Konfiguration moglich. Dieses vorlaufige Prozess-
fragment kann in der Phase Ausfiihrung durch ein anderes Prozessfrag-
ment ersetzt werden. Eine Mehrfachanwendung eines Platzhalters ist so-
mit vorgesehen.

Fiir die beiden Typen Late Selection und Late Modeling des Flexibilitats-
aspekts Flexibility-by Underspecification sind Sprachelemente notwendig,
die sich jedoch mittels der Sprache BPMN?2.0 in ihrer urspriinglichen Form
nicht ausdriicken lassen. Daher ist eine Erweiterung des Metamodells not-
wendig, mit der relevante Aspekte zur Unterstiitzung des Flexibilitats-
aspekts Flexibility-by Underspecification beschrieben werden konnen. Hier-
zu wird im nachfolgenden Abschnitt 5.5.2 zunéchst eine Erweiterung des
Metamodells und anschlieffend in Abschnitt 5.5.3 eine detailliertere Be-
schreibung der zuvor aufgefithrten Operationen zur Unterstiitzung der
Gestaltung des Flexibilitatsaspekts Flexibility-by Underspecification durch
die Sprache ACML4BPM gegeben.

5.5.2 Spracherweiterung fiir Flexibility-by Underspecification

Fiir den Flexibilitatsaspekt Flexibility-by Underspecification sowie fiir die
enthaltenen Typen Late Selection und Late Modeling werden im Rahmen
der Gestaltung von flexiblen und anpassbaren Prozessen weitere Sprach-
elemente benétigt. Da sich die beiden Untertypen Late Selection und Late
Modeling sowohl auf Anpassungen von Prozessmodellen als auch auf de-
ren Instanzen beziehen konnen, werden zur Unterscheidung dieser beiden
Arten von Modell- und Prozesselementen abermals verschiedene Typen
benotigt (siehe auch Abschnitt 5.3 bzw. Abschnitt 5.4). Hierzu wird eine
entsprechende konzeptionelle Spracherweiterung in Anlehnung an den in
Abschnitt 4.3.3 vorgestellten Auszug der Sprache BPMN2.0 vorgestellt.

In Abbildung 5-53 ist die konkrete Syntax der Elemente Placeholder, Process-
Fragment sowie der zugehorigen Start- bzw. Endsymbole ProcessFragment-
StartEvent und ProcessFragmentEndEvent anhand von Ausziigen der beiden
Prozessmodelle m und n beschrieben. Auf Details wird nachfolgend einge-
gangen.

Abbildung 5-53:
Konkrete Syntax fiir
Platzhalter, Prozess-

fragmente sowie Start-
und Endsymbole

Platzhalter

Prozessfragment

Seite 174 Kapitel 5

Prozessmodell m mit Platzhalter Prozessmodell n mit Prozessfragmenten
«ProcessFragment»
Function B
T
|
|
placeholder ProcessFragment Process ProcessFragment
StartEvent Fragment EndEvent

O—DE-N Undefined Task -BO

T
|
|
|
|
| l
@ ! Function A ! @
StartSymbolA EndSymbolA

Im linken Bereich ist ein Auszug des Prozessmodells 1 in Form eines Kon-

«ProcessFragment»
Function A

trollflusses dargestellt. Dieser enthdlt ein Element vom Typ Placeholder mit
der Bezeichnung Undefined Task. Elemente des Typs Placeholder werden in
Anlehnung an Elemente des Typs SubProcess in der Sprache BPMN2.0 dar-
gestellt. Dabei wird zur Kennzeichnung dieses speziellen Typs eines Sub-
prozesses auf ein sonst {ibliches eigenes Symbol, wie z.B. bei Manual Tasks,
Human Tasks oder Service Tasks (siehe Abschnitt 2.3.4), verzichtet. Stattdes-
sen wird der Rahmen des Elements gepunktet dargestellt. Hierdurch soll
verdeutlicht werden, dass es sich um einen Platzhalter handelt, dessen In-
halt zunédchst undefiniert bleibt und zu einem spiteren Zeitpunkt durch
den Inhalt eines Prozessfragments vervollstandigt wird.

Im rechten Bereich wird ein Auszug des Prozessmodells n mit zwei
Prozessfragmenten zur Realisierung der jeweiligen Funktionen mit den
Bezeichnungen Function A und Function B dargestellt. Fiir die Darstellung
eines Prozesses in der Sprache BPMN?2.0 existiert keine explizite grafi-
sche Darstellung. Dies kann als sinnvoll betrachtet werden, da der Prozess
mit den in ihm enthaltenen weiteren Elementen dargestellt wird. In der
hier vorgestellten Losung wird jedoch die Moglichkeit zur Abgrenzung
von reguldren Prozessen und Elementen des Typs ProcessFragment gege-
ben. So wird fiir Prozessfragmente eine Darstellungsweise in Anlehnung
an Elemente vom Typ Pool der Sprache BPMN2.0 gewihlt. Ein Element
des Typs ProcessFragment wird demnach als Pool dargestellt; dabei kann
ein solches Prozessfragment sowohl aufgeklappt als auch zugeklappt dar-
gestellt werden. Ein Beispiel fiir ein zugeklapptes Prozessfragment ist in
Prozessmodell n durch das Element mit der Bezeichnung Function B ge-
geben. Ein aufgeklapptes Prozessfragment ist durch das Element mit der
Bezeichnung Funktion A dargestellt. Beide Darstellungsweisen enthalten
zum Zweck der Kennzeichnung den Namen des Typs in Guillemets ge-
klammert.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 175

Im Rahmen des Prozessfragments mit der Bezeichnung Function A wird
ein Auszug eines Kontrollflusses dargestellt. Jedes Prozessfragment hat ge-
nau ein Startsymbol vom Typ ProcessFragmentStartEvent. Ein solches Start-
symbol wird in Anlehnung an Startereignisse der Sprache BPMN2.0 darge-
stellt. Zur Unterscheidung von Elementen des Typs ProcessFragmentStart-
Event und StartEvent wird hier jedoch die Abkiirzung des Typs PFSE als
Label dargestellt.

Das Ende eines Prozessfragments wird durch ein Endsymbol vom Typ
ProcessFragmentEndEvent gekennzeichnet. Die Darstellung dieses Typs
wird in Anlehnung an Endereignisse der Sprache BPMN2.0 umgesetzt.
Zur Unterscheidung von Elementen des Typs ProcessFragmentEndEvent
und EndEvent wird hier jedoch die Abkiirzung des Typs PFEE als Label
dargestellt.

Fiir die zuvor beschriebenen Elemente sollen zudem auch Reprisenta-
tionen ihrer Instanzen verfligbar sein. Dies betrifft insbesondere Instan-
zen von Platzhaltern und Prozessfragmenten. In Abbildung 5-54 ist die
konkrete Syntax dieser Elemente gezeigt. Dabei werden verschiedene Bei-
spiele anhand der Ausziige der Prozessinstanzen PI, PI2 und PFEI darge-
stellt und nachfolgend beschrieben.

Prozessinstanz Pl mit Instanz eines Platzhalters Instanz eines Prozessfragments PFI
o

Pl ‘ - PFI -

- | Lifecycle —_ Lifecycle l
activeTasks = activeState = ‘Ready’ - —————| === activeState = ‘Ready’ activeTasks =
{Undefined {Function A}
Function}

StartSymbolA EndSymbolA

- -
| |
| |

; . ! |
i ; |
.
I I
i i | |
| |
| |
| |
| |
| |

Placeholderlnstance Lifecycle ProcessFragmentinstance

Representation Representation
|

und integrierter Instanz des

|

|

|

| |

Prozessinstanz PI2 mit Platzhalter | }
|

Prozessfragments PFI |

P12 I

activeTasks =
{Undefined
Function}

activeState = ‘Active’

¢ ;

Lifecycle activeTasks =
activeState = ‘Ready’ {Function A}
Function A

|
|
|
|
|
|
!
|
|
|
|
|
|
.

I
I
I
1
]
I Lifecycle
|
I
I
I
I}

|
|
|
|
|
|
|
|
|
T t
|
|
|
|
|
|
t
!

-0

. StartSymbolA EndSymbolA

Startsymbol

Endsymbol

Abbildung 5-54:
Konkrete Syntax fiir In-
stanzen von Platzhaltern
und Prozessfragmenten

Instanz eines Platzhalters

Instanz eines
Prozessfragments

Instanz eines Platzhalters
mit integrierter Instanz
eines Prozessfragments

Seite 176 Kapitel 5

Die Représentation einer Instanz eines Platzhalters wird in Abbildung 5-54
im Kontext einer Prozessinstanz PI dargestellt. Auf eine Beschreibung der
konkreten Syntax von Prozessinstanzen wird an dieser Stelle verzichtet
und stattdessen auf Abschnitt 5.3.3 verwiesen. Die Prozessinstanz PI ent-
hilt einen Kontrollfluss, in dem ein Platzhalter mit der Bezeichnung Un-
defined Task enthalten ist. Die Reprasentation einer Instanz eines Platzhal-
ters wird in Anlehnung an Tasks der Sprache BPMN2.0 dargestellt. Dabei
wird der Rahmen eines Platzhalters jedoch — wie in Abbildung 5-54 abge-
bildet — gestrichelt gezeichnet.

Bei einer Instanz eines Prozessfragments handelt es sich um einen Unter-
typ einer Instanz eines Prozesses (siehe auch Abbildung 5-55). Die Darstel-
lungsweise wird daher zur Vereinfachung an dieser Stelle tibernommen.
Die in Abbildung 5-54 dargestellte Instanz eines Prozessfragments PFI ent-
hélt einen Kontrollfluss mit spezifischen Start- (PFSE) und Endsymbolen
(PFEE) sowie einer beispielhaften Instanz eines Tasks mit der Bezeichnung
Function A. Aktive Instanzen von Tasks konnen analog zu Prozessinstan-
zen (siehe Abschnitt 5.3.3) iiber das Attribut mit der Bezeichnung active-
Tasks angegeben werden.

Neben der getrennten Darstellung von Instanzen von Platzhaltern und
Prozessfragmenten ist es ebenso moglich, die Instanz eines Prozessfrag-
ments integriert in einer Instanz eines Platzhalters darzustellen. Hierzu
ist im unteren Bereich von Abbildung 5-54 die Prozessinstanz PI2 ange-
geben. Dabei wird die Instanz des Platzhalters mit der Bezeichnung Un-
defined Task mit einer in ihr integrierten Instanz des Prozessfragments PFI
gezeigt. Die Darstellungsweise eines integrierten Prozessfragments be-
schreibt dabei eine Situation, in der zuvor eine strukturbasierte Bindung
(StructuralBindProcessFragment) stattgefunden hat. Eine verhaltensbasierte
Bindung (BehavioralBindProcessFragment) besitzt in diesem Ansatz keine
eigene grafische Darstellung. Bei dieser Darstellungsweise ist anzumer-
ken, dass sowohl fiir die {ibergeordnete Prozessinstanz PI2 als auch fiir
die Instanz eines Prozessfragments PFI jeweils die Attribute mit der Be-
zeichnung activeTusks zur Kenneichung von derzeit aktiven Instanzen von
Platzhaltern und Tasks verwendet werden kann.

Fiir die zuvor beschriebenen Elemente wird nachfolgend die abstrakte
Syntax vorgestellt. In Abbildung 5-55 wird hierzu ein Auszug eines Meta-
modells dargestellt. Dabei werden die fiir die Gestaltung des Flexibilitats-
aspekts Flexibility-by Underspecification benétigten Typen ProcessFragment,
Placeholder, ProcessFragmentInstanceRepresentation und PlaceholderInstance-
Representation eingefiihrt.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 177

FlowElementsContainer enumeration enumeration
(BPMN2.0) BindingType MethodolicalActivity Type
Structural CreateProcessFragment
Behavioral ComposeProcessFragment
enumeration enumeration
Process Event Event Relallliatlo_:_\Space StateName
nTimeType
X BPMN2.0
(BPMN2.0) (BPMN2.0) () SubProcess - Ready
A A type: ‘START type: ‘END’ (BPMN2.0) static : Active
. Dynamic Completing
A Completed
H Terminating
enumeration "
R . Terminated
RealisationPoint Failing
ProcessFragment ProcessFragment InTimeType Ferii]
StartEvent EndEvent PrelinfiERy Eompensa(iodn
OnActivation Drp sz ls
startSymbol | 1 endSymbol | 1 Withdrawn
Inactive
Closed
Placeholder
ProcessFragment
realisationPIT: RealisationPointinTimeType
A realisationSIT: RealisationSpacelnTimeType
0.1 . 1
function omne placeholder
I;rocesslnstapce Task
epresenta?ron (BPMN2.0)

TaskInstance
Representation

Placeholderinstance
Representation

ProcessFragmentinstance
Representation

/PDA.l 1

bind

f

@
2

{redefines {redefines E
function} placeholder} _%’
1 S

®

Lifecycle
activeState: StateName 1

Ein Task, dessen Inhalt zum Zeitpunkt der Gestaltung undefiniert bleibt,
wird hier von dem Typ Placeholder dargestellt. Dabei erbt in der hier vorge-
stellten Losung ein Element vom Typ Placeholder von dem Typ SubProcess.
Hierdurch werden Eigenschaften iibernommen, sodass es sich bei dem
Typ Placeholder um ein Containerelement handelt. Sollen Elemente dieses
Typs angepasst werden, konnen daher auch die in Anhang A.3 beschrie-
benen Operationen zur Anpassung von Containerelementen verwendet
werden. Zeitliche Eigenschaften eines Platzhalters konnen in dem Typ Pla-
ceholder tiber die beiden Attribute beschrieben werden. Mit dem Attribut
realisationPIT kann angegeben werden, welcher Zeitpunkt fiir eine Bin-
dung vorgesehen ist. Wohingegen mit dem Attribut realisationSIT angege-
ben werden kann, fiir welche Zeitdauer eine Bindung gelten soll.

Eine zu bindende Funktion wird durch den Typ ProcessFragment darge-
stellt. Um sowohl struktur- als auch verhaltensbasierte Bindungen unter-
stiitzen zu konnen, wird in dem hier dargestellten Konzept der Typ Process-

Abbildung 5-55:

Auszug einer Erweite-
rung des Metamodells der
BPMN2.0 zur Unterstiit-
zung von Flexibility-by

Underspecification

Placeholder

ProcessFragment

PlaceholderInstance-
Representation

ProcessFragment-
InstanceRepresentation

Seite 178 Kapitel 5

Fragment als von dem Typ Process erbend dargestellt. Auf Details wird
an dieser Stelle verzichtet und stattdessen auf Abschnitt 5.5.3 verwiesen.
Ferner referenziert der Typ Placeholder sowohl auf ein spezifisches Start-
symbol (ProcessFragmentStartEvent) als auch auf ein spezifisches Endsym-
bol (ProcessFragmentEndEvent), die beide jeweils von Start- bzw. Ender-
eignissen (Event) der Sprache BPMN?2.0 erben. Durch die in dieser Ar-
beit beschriebene Losung werden in der Gestaltung von Prozessfragmen-
ten lediglich solche Prozessfragmente unterstiitzt, die jeweils iiber genau
ein Start- und Endsymbol verfiigen. Durch die beschriebene Vererbung
und Einfiihrung spezifischer Start- und Endsymbole auf Basis tiblicher
Typen der Sprache BPMN2.0 kann sowohl eine struktur- als auch eine ver-
haltensbasierte Bindung beschrieben werden (siehe Abschnitt 5.5.3). Die
Assoziation zwischen den beiden Typen Placeholder und ProcessFragment
beschreibt, dass ein Element vom Typ Placeholder ein Element vom Typ
ProcessFragment in der Rolle einer zu realisierenden Funktion bindet.

Fiir die zuvor eingefiihrten Typen ProcessFragment und Placeholder werden
zudem Représentationen ihrer Instanzen benotigt. Hierdurch kénnen so-
wohl Anpassungen von Prozessmodellen als auch deren Instanzen gestal-
ten werden. Nachfolgend wird auf die Reprasentation von Instanzen der
zuvor genannten Elemente eingegangen.

Die Instanz eines Platzhalters wird durch den Typ PlaceholderInstance-
Representation reprasentiert. Ein Element dieses Typs kann weitere Ele-
mente enthalten, wobei sich in Anlehnung an Abschnitt 5.3 auf Tasks in
Form von Elementen des Typs TasklnstanceRepresentation beschrankt wird.
Ferner enthilt ein Element des Typs PlaceholderInstanceRepresentation ein
Element vom Typ Lifecycle, welches den aktuellen Zustand des Lebenszy-
klus des Platzhalters beschreibt. Hierzu wird das Attribut activeState vom
Typ StateName verwendet. Bei dem Typ StateName handelt es sich um eine
Enumeration mit Literalen aller bereits in Abschnitt 4.3.4.2 eingefiihrten
Zustande des Lebenszyklus von Aktivitaten.

Die Instanz eines Prozessfragments wird in der hier vorgestellten Losung
durch den Typ ProcessFragmentInstanceRepresentation reprasentiert. Sie erbt
sowohl alle Eigenschaften vom Typ ProcessFragment als auch vom Typ
ProcessInstanceRepresentation. Durch die zuletzt genannte Vererbung kann
die Verwaltung von aktiven Taskinstanzen in einer Instanz eines Prozess-
fragments vereinfacht werden, da die Liste mit dem Bezeichner activeTasks,
die vom Typ TaskInstanceRepresentation ist, als Eigenschaft vorliegt.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 179

Die Assoziation (binds) zwischen den beiden Typen PlaceholderInstance und
ProcessFragmentInstance beschreibt, dass ein Element vom Typ Placeholder-
Instance ein Element vom Typ ProcessFragmentInstance in der Rolle einer zu
realisierenden Funktion bindet. Dabei werden die beiden Rollen function
und placeholder derartig redefiniert, dass Elemente zur Reprasentation von

Instanzen auch nur solche referenzieren konnen.

Fir die zuvor beschriebenen Elemente der Typen PlaceholderInstance-
Representation und TaskInstanceRepresentation kann durch den jeweiligen
spezifischen Lebenszyklus (Lifecycle) beschrieben werden, in welchen ak-
tuellen Zustand sich das Element befindet. Ein Element vom Typ Lifecycle
wird in Anlehnung an UML-Klassen [OMG10] dargestellt. Die Zugehorig-
keit zu einer Instanz eines Tasks oder Platzhalters wird in Anlehnung an
UML-Assoziationen in Form der Komposition [OMG10] dargestellt.

Ein Beispiel fiir einen spezifischen Lebenszyklus zur Unterstiitzung des
Flexibilitatsaspekts Flexibility-by Underspecification ist in Abbildung 5-56
gezeigt. So wird der in Abschnitt 4.3.4.2 eingefiihrte Lebenszyklus um
einen weiteren Zustand (Binding) erweitert. Der Zustand Binding wird ak-
tiv, wenn ein Token den Platzhalter erreicht. Sobald eine Bindung durchge-
fithrt worden ist, wird der Zustand verlassen und der Lebenszyklus folgt
dem bereits zuvor beschriebenen Ablauf. Damit Ereignisse des Lebens-
zyklus eines Platzhalters zur Auslosung eines AC4BPM genutzt werden
konnen, kann, wie fiir implizite Ereignisse gezeigt worden ist, eine Trans-
formation der Zustinde in Ereignisse durchgefiihrt werden (siehe Ab-
schnitt 4.3.4.2). Als Ergebnis einer solchen Transformation ergibt sich das
neue implizite Ereignis onBindingDone. Das Ereignis wird im weiteren
Verlauf des Abschnitts dazu verwendet, eine Riickkopplung mit dem
Platzhalter im Anschluss an eine durchgefiihrte Bindung zu ermoglichen.
Selbstverstandlich sind je nach Anforderungen auch alternative Lebenszy-
klen denkbar, in denen bspw. weitere Ereignisse fiir eine Riickkopplung
eingesetzt werden konnen.

Lebenszyklus eines Platzhalters

Binding-done Activitys-work-completed
The-Process-Ends

(Binding] (Ready] (Active] Completing
1

A-Token-Arrives

Completed

Data-InputSet-Available Completing
Requirements-Done
Assignments-Completed

Lebenszyklus fiir
Platzhalter

Abbildung 5-56:
Beispielhafte Darstellung
von Elementen der Er-
weiterung in Hinsicht auf
die Unterstiitzung von
Flexibility-by Underspeci-
fication

Parameter

Seite 180 Kapitel 5

5.5.3 Operationen

Fir die Realisierung der beiden Typen Late Selection und Late Modeling
des Flexibilitatsaspekts Flexibility-by Underspecification unter Verwendung
der Sprache ACML4BPM sind neben den im Abschnitt 5.5.2 vorgestellten
Spracherweiterungen auch zugehorige Operationen notwendig. Derartige
Operationen werden in diesem Abschnitt zum Zweck der Verwendung
in der Gestaltung von Beobachtungs- und Anpassungsprozessen auf Ba-
sis der in Abschnitt 5.5.1 eingefiihrten Funktionsprinzipien beschrieben.
In diesem Bezug wird zundchst in Abschnitt 5.5.3.1 eine Operation zur
Bindung von Prozessfragmenten vorgestellt. Nachgelagert wird in Ab-
schnitt 5.5.3.2 ein Beispiel fiir die Gestaltung einer Operation vom Typ
ChooseProcessFragment unter Verwendung eines Beobachtungsprozesses
gegeben. AbschlieSend wird in Abschnitt 5.5.3.3 eine Operation vom Typ
SwitchLCPhase vorgestellt. Fiir jede der zuvor genannten Operationen wird
zudem die operationale Semantik in Anlehnung an ein Beispiel beschrie-
ben.

5.5.3.1 BindProcessFragment

Durch eine Anwendung einer Operation vom Typ BindProcessFragment
lasst sich ein Prozessfragment an der Stelle eines Platzhalters in dem Kon-
trollfluss eines Prozesses binden. Hierdurch ist es moglich, die Entschei-
dung fiir die Verwendung einer konkreten Funktion in eine spatere Phase
des BPM-Lebenszyklus zu verlegen — hier die Phase Ausfiihrung. Ferner wird
dabei zwischen zwei Mechanismen unterschieden. Zum einen kénnen Pro-
zessfragmente strukturbasiert in einen Platzhalter eingefiigt werden. Zum
anderen konnen Prozessfragmente aber auch verhaltensbasiert gebunden
werden. Bei dem verhaltensbasierten Mechanismus ist keine strukturelle
Anpassung wie bei dem strukturbasierten Mechanismus in Form einer In-
tegration der benétigten Funktion im Platzhalter notwendig. Die Signa-
tur und konkrete Syntax der Operation BindProcessFragment sind in Abbil-
dung 5-57 angegeben.

Die Operation BindProcessFragment erwartet als Eingabe eine Instanz ei-
nes Platzhalters (placeholder), an dessen Stelle die Instanz eines Prozess-
fragments gebunden werden soll. Ein weiterer Parameter der Operation ist
durch die betreffende Instanz des zu bindenden Prozessfragments (process-
Fragment) gegeben. Welcher der beiden in Abschnitt 5.5.1 eingefiihrten

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 181

Parametername Parametertyp

IN: placeholder PlaceholderInstanceRepresentation
processFragment ProcessFragmentInstanceRepresentation
bindingType BindingType

OUT : - VOID

Oe0

Bind
ProcessFragment

placeholder process binding
Fragment Type

Undefined Task Function A ‘Structural”

Mechanismen zur Bindung verwendet werden soll, kann durch das At-
tribut bindingType angegeben werden. Giiltige Werte sind durch die in
Abbildung 5-55 dargestellte Enumeration BindingType gegeben. So wird
durch das Literal Structural angegeben, dass eine strukturbasierte Bindung
durchgefiihrt werden soll. Alternativ wird durch das Literal Behavioral an-
gegeben, dass eine verhaltensbasierte Bindung durchgefiihrt wird. Die An-
wendung der Operation erzeugt keine explizite Ausgabe — hier durch die
Kennzeichnung als VOID dargestellt.

Im Folgenden wird auf die operationale Semantik der Anwendung der
Operation BindProcessFragment eingegangen. Zunichst erfolgt eine Be-
schreibung einer Parametrisierung fiir die strukturbasierte Bindung und
anschliefend fiir die verhaltensbasierte Bindung. Dabei wird bei beiden
Funktionsprinzipien zunédchst gepriift, ob eine Anwendung der Operation
hinsichtlich eines gegebenen Zeitpunkts und einer Zeitdauer erlaubt ist.
So kann nach den in Abschnitt 5.5.1.1 eingefiihrten Typen von Zeitpunk-
ten PreliminaryRealisation und OnActivationRealisation die Anwendung der
Operation moglicherweise nicht erlaubt sein. Gleiches gilt fiir eine Situa-
tion, in der eine Bindung nicht erneut durchgefiihrt werden darf (Static-
Realisation). Wurden die zugehorigen Attribute eines Platzhalters entspre-
chend gesetzt, fithrt die Operation keine der im Folgenden beschriebenen
Schritte aus.

Strukturbasierte Bindung von Prozessfragmenten Das Funktionsprin-
zip einer Anwendung der Operation BindProcessFragment mit der Parame-
trisierung fiir eine strukturbasierte Bindung wird in Abbildung 5-58 dar-
gestellt. Eine Anwendung der Operation besteht demnach aus den zwei
Teilschritten IntegrateProcessFragment und ReturnControl.

Abbildung 5-57:
Signatur und konkrete
Syntax der Operation
BindProcessFragment

Seite 182 Kapitel 5

Abbildung 5-58:

Instanz eines Platzhalters PHI

Beispielhafte Anwen- Lifecycle
dung der Operation activestate = ‘Binding’
BindProcessFragment ‘
(Structural) .

E"’ Undefined Task ,,E‘
®

i i Lifecycle
Integrate Instanz eines Platzhalters PHI mit Y
strukturell gebundener Instanz activeState = ‘Binding’
Process eines Prozessfragment PFl
Fragment ‘
ad Y
Lifecycle activeTasks |
activeState = ‘Inactive’ || =

Bind !
Process

Fragment
(Structural)

-e»lb—]
i StartSymbolA EndSymbolA

@

Return Instanz eines Platzhalters PH| Lifecycle

Control mit strukturell gebundenem activeState = ‘Ready”

(onBindingDone) Prozessfragment PFl nach

abgeschlossener Bindung ‘

L2
; Lifecycle activeTasks
activeState = ‘Inactive’ || = {}
i StartSymbolA EndSymbolA

So wird ausgehend von einer Instanz eines Platzhalters, die sich in dem
Zustand Binding ihres Lebenszyklus befindet, der erste Teilschritt Integrate-
ProcessFragment durchgefiihrt. Das Ergebnis des ersten Teilschrittes ist eine
strukturelle Integration einer gewéahlten Instanz eines Prozessfragments
PFI in die Instanz des Platzhalters PHI. Die in dem integrierten Prozess-
fragment enthaltenen Tasks zur Realisierung der gewéhlten Funktion blei-
ben vorerst, wie dargestellt, noch inaktiv.

Der zweite Teilschritt ReturnControl beendet den Vorgang der Bindung. Da-
bei wird in den Zustand Ready des Lebenszyklus der Instanz des Platzhal-
ters PHI gewechselt. Siehe in diesem Bezug auch das in Abbildung 5-56
dargestellte Beispiel eines Lebenszyklus mit Unterstiitzung von Flexibility-
by Underspecification. Nachfolgend ist die Ausfiihrung des in PHI beschrie-
ben Verhaltens moglich. Dabei kénnen die einzelnen in Abschnitt 4.3.4.2
beschriebenen Zustinde des Lebenszyklus des Platzhalters durchlaufen
werden. Bei diesem Vorgang wird das in PHI gebundene Prozessfragment
PFI als Inhalt des Subprozesses vom Typ Placeholder aktiviert und ausge-
fuhrt.

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 183

Verhaltensbasierte Bindung von Prozessfragmenten Fiir die Anwen-
dung der Operation BindProcessFragment mit der Parametrisierung zur ver-
haltensbasierten Bindung wird das generelle Funktionsprinzip in Abbil-
dung 5-59 dargestellt. Eine Anwendung der Operation besteht demnach
aus den drei Teilschritten PassingControl, ExecuteFunction und ReturnCon-
trol.

Instanz eines Platzhalters PHI vor
verhaltensbasierter Bindung

Instanz eines Platzhalters PHI nach
verhaltensbasierter Bindung

Lifecycle Bind Lifecycle

activeState = ‘Binding’ Process activeState = ‘Terminating’

‘ Fragment ‘
(Behavioral)

E]—b Undefined Task —DE] _> E]—h Undefined Task >—>E]
(]
' '
[} Passing Return '
' Control Control 1
0 (toPF1) (onBindingDone) g
[}
(]
(]
' Execute 2
o8 - Function 28 - =
Lifecycle activeTasks Lifecycle activeTasks
activeState = ‘Inactive’ =0 poeee -> activeState = ‘Terminated’ =0
StartSymbolA EndSymbolA StartSymbolA EndSymbolA
-

Aufgerufene Instanz eines Prozessfragments PFl

Bei der verhaltensbasierten Bindung wird ein Prozessfragment nicht wie
bei der strukturbasierten Bindung in den Platzhalter integriert. Stattdes-
sen wird an der Stelle der Instanz eines Platzhalters PHI eine Funktion
in Form einer Instanz eines Prozessfragments PFI als eigenstandiger Pro-
zess aufgerufen und ausgefiihrt. Der Aufruf einer solchen Instanz eines
Prozessfragments PFI ist daher in Abbildung 5-59 als der erste Teilschritt
PassingControl dargestellt.

Die Ausfiihrung des gebundenen Prozessfragments PEI stellt den zwei-
ten Teilschritt ExecuteFunction im Rahmen einer Anwendung der Opera-
tion BindProcessFragment dar. Wahrend dieses Teilschrittes bleibt der Kon-
trollflusspfad des Basisprozesses, von dem die Bindung ausgegangen ist,
inaktiv. Parallele Kontrollflusspfade bleiben jedoch aktiv.

Nachdem die Ausfithrung der Instanz eines Prozessfragments PFI abge-
schlossen ist, wird der dritte und letzte Teilschritt ReturnControl durch-
gefiihrt. So wird die Instanz des ausgehenden Platzhalters in den Zu-
stand Terminating seines Lebenszyklus versetzt. Hierdurch kann seine

Abbildung 5-59:
Beispielhafte Anwen-
dung der Operation Bind-
ProcessFragment
(Behavioral)

Auswahl von
Prozessfragmenten

im Rahmen von
Beobachtungsprozessen

Seite 184 Kapitel 5

Ausfiihrung abgeschlossen werden. Bei einer verhaltensbasierten Bin-
dung werden somit die einzelnen Zustidnde des Lebenszyklus eines Platz-
halters zwischen Binding und Terminating {ibersprungen. Fiir dieses Vor-
gehen wurde sich entschieden, da die eigentliche Ausfiithrung einer be-
notigten Funktion im Gegensatz zu dem strukturbasierten Mechanismus
an einen aufzurufenden Prozess delegiert wird. Die dazwischenliegenden
Zustinde des Lebenszyklus der Instanz eines Platzhalters PHI werden
somit nicht benotigt.

Die Anwendung der Operation BindProcessFragment zur verhaltensbasier-
ten Bindung beinhaltet in ihrer zuvor beschriebenen Form explizit auch
die Ausfithrung der aufgerufenen Instanz eines Prozessfragments. Dies
steht im Kontrast zu der Funktionsweise der Operation im Rahmen einer
strukturbasierten Bindung, da hier die integrierte Instanz eines Prozess-
fragments erst nach Beendigung ausgefiihrt wird. Es wurde sich fiir die
vorliegende Variante entschieden, da die weitere Ausfiithrung des ausge-
henden Kontrollflusses stets nach dem Schritt ReturnControl durchgefiihrt
wird. Dies schliefst den Zeitrahmen der Ausfiihrung einer aufgerufenen In-
stanz eines Prozessfragments im Rahmen der verhaltensbasierten Bindung

ein.

5.5.3.2 ChooseProcessFragment

Im Rahmen von Operationen des Typs ChooseProcessFragment wird eine
Auswahl von zu bindenden Funktionen getroffen. Eine derartige Funk-
tion steht in diesem Zusammenhang in Form eines Prozessfragments zur
Verfiigung. Dabei kann im Rahmen der zuvor genannten Auswahl eine
Auswertung von Bedingungen durchgefiihrt werden, durch die die Flexi-
bilitit eines Prozesses gesteigert werden kann (siehe auch Abschnitt 5.2.2).
Im Rahmen derartiger Auswertungen von Bedingungen kénnen z.B. ver-
schiedene Eigenschaften in Hinsicht auf die Laufzeit einer konkreten Um-
gebung enthalten sein. Es kann sich in diesem Bezug auch um komplexe
Prozesse zur Entscheidung handeln, sodass neben einer reinen Auswer-
tung von Bedingungen auch weitere Analyseschritte notwendig sein kon-

nen.

Anstelle der Definition eines eigenen Sprachelements fiir die Realisierung
der Operation ChooseProcessFragment bietet sich die Verwendung des Be-
obachtungsprozesses (MonitoringProcess) an (siehe Abschnitt 4.2.2). Dies
lasst sich dadurch begriinden, dass durch einen Beobachtungsprozess spe-
zifisches Verhalten sowohl fiir die Analyse als auch fiir darauf basieren-
de Entscheidungen beschrieben werden kann. Anstelle einer Spezifikation

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 185

der Operation ChooseProcessFragment wird im Folgenden ein Beispiel zur
Beschreibung von Bedingungen unter Verwendung eines Beobachtungs-
prozesses gegeben. Diese Beschreibung ist dabei eng an die bereits in Ab-
schnitt 5.2.2 beschriebene Verwendung eines Beobachtungsprozesses zur
Gestaltung des Flexibilitatsaspekts Flexibility-by Design angelehnt.

In Abbildung 5-60 ist ein AC4BPM mit der Bezeichnung ACaseToBindA-
ProcessFragment zum Zweck der Auswahl und Bindung eines Prozessfrag-
ments dargestellt. Der AC4BPM besteht dabei aus einem Beobachtungs-
prozess (Monitoring Process) und zwei Anpassungsprozessen (Adaptati-
on Process). Dabei wird durch den dargestellten Beobachtungsprozess
eine Auswahl von einer der beiden durch einen Anpassungsprozess be-
schriebenen Bindungen eines Prozessfragments beschrieben. Das in den
Beobachtungs- und Anpassungsprozessen dargestellte Verhalten wird im
Folgenden néher beschrieben.

«AdaptCase4BPM»
ACaseToBind
AProcessFragment

sample-start-event Q

BindFunctionA

Adaptation Process

O]
BindProcessFragment

placeholder process binding
Fragment Type

Undefined Task

Monitoring Process

Function A ‘Structural’

sample-start-event

Run
Analysis
[fancy-condition]
adaptationProcess =

‘BindFunctionB’
adaptationProcess =
‘BindFunctionA’

BindFunctionB

«BPEnvironment
DataObject» —
A-fancy-Information

Adaptation Process

O
BindProcessFragment

placeholder process binding
Fragment Type

Undefined Task Function B

‘Structural”

Der dargestellte Beobachtungsprozess (Monitoring Process) enthalt das Ver-
halten zur Analyse und zur Auswahl einer konkreten Bindung eines ge-
eigneten Prozessfragments. Dabei wird der Beobachtungsprozess durch
das Aufkommen des dargestellten Startereignisses mit der Bezeichnung
sample-start-event gestartet. Nachfolgend wird basierend auf Informatio-
nen aus dem Kontext des Prozesses, hier dargestellt durch das Daten-
objekt mit der Bezeichnung A-fancy-Information, eine Analyse durchge-
fuihrt. Fiir eine Beschreibung von Datenobjekten im Rahmen der Sprache

Abbildung 5-60:
Verwendung eines Beob-
achtungsprozesses zur
Gestaltung einer Auswahl
eines Prozessfragments

Beobachtungsprozess fiir
die Auswahl eines
Prozessfragments

Anpassungsprozess zur
Bindung eines
Prozessfragments

Parameter

Seite 186 Kapitel 5

ACML4BPM wird an dieser Stelle auf Abschnitt 4.3.2 verwiesen. Die Ana-
lyse ist hier beispielhaft durch den Task mit der Bezeichnung Run Analy-
sis dargestellt. Basierend auf den Ergebnissen der Analyse wird nachfol-
gend die Bedingung fancy-condition ausgewertet und je nach Ergebnis ent-
weder der Anpassungsprozess mit der Bezeichnung BindFunctionB oder
mit der Bezeichnung BindFunctionA aufgerufen. Die Ausfithrung des Be-
obachtungsprozesses ist mit dem Aufruf eines der beiden genannten An-
passungsprozesse abgeschlossen.

Im rechten Bereich von Abbildung 5-60 werden zwei durch den zuvor be-
schriebenen Beobachtungsprozess aufrufbare Anpassungsprozesse darge-
stellt. Dabei wird im Rahmen des in ihnen enthaltenen Verhaltens die in
Abschnitt 5.5.3.1 eingefiihrte Operation BindProcessFragment zur Bindung
von Prozessfragmenten wiederverwendet. So beschreiben beide Anpas-
sungsprozesse eine strukturbasierte Bindung (Structural) der Prozessfrag-
mente Function A bzw. Function B in den Platzhalter Undefined Task. Eine
Bindung der genannten Prozessfragmente ist mit der Beendigung einer der
beiden Anpassungsprozesse abgeschlossen.

5.5.3.3 SwitchLCPhase

Durch eine Anwendung einer Operation vom Typ SwitchLCPhase wird,
aus einer methodischen Perspektive heraus, von der Phase Ausfiihrung
in eine andere Phase des BPM-Lebenszyklus gewechselt. Hierdurch ist es
moglich, bestimmte methodische Aktivitdten der anderen Phasen auszu-
fihren. In dieser Arbeit werden dabei zwei unterschiedliche methodische
Aktivititen im Rahmen des BPM-Lebenszyklus betrachtet, die geméafs der
in Abschnitt 5.5.1 gegebenen Beschreibung des Flexibilitatsaspekts Late
Modeling typischerweise unterstiitzt werden sollten. Dabei handelt es sich
zum einen um die Neugestaltung und zum anderen um die Komposition
von Prozessfragmenten. So wird bei einem Wechsel in die Phase Design &
Analyse eine Neugestaltung von Prozessfragmenten ermdglicht. Die hier
im Folgenden néher beschriebene Operation vom Typ SwitchLCPhase bie-
tet die Funktionalitdt der beiden zuvor beschriebenen Typen von Ope-
rationen CreateProcessFragment und ComposeProcessFragment. Die Signatur
und konkrete Syntax der Operation SwitchLCPhase sind in Abbildung 5-61
angegeben.

Die Operation SwitchLCPhase erwartet als Eingabe die methodische Akti-
vitdt (methodological Activity), die bei der Anwendung der Operation aus-
gefiihrt werden soll. Die Ausgabe einer Anwendung der Operation ist ein
Prozessmodell (outModel), welches ein neu erstelltes oder komponiertes

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 187

Parametername Parametertyp
IN: methodologicalActivity MethodologicalActivityType
ouT : outModel ProcessModel

oL 0
= oo @ N
methodological [+« ererrrrerereeeeeed Switch [T out
Activity LCPhase Model

‘CreateProcessFragment’ m’

Prozessfragment enthdlt. Giiltige Werte fiir den Parameter methodological-
Activity sind durch die in Abbildung 5-55 dargestellte Enumeration vom
Typ Methodological ActivityType gegeben. So kann durch das Literal Create-
ProcessFragment angegeben werden, dass eine Neugestaltung eines Pro-
zessfragments durchgefiihrt werden soll. Alternativ wird durch das Lite-
ral ComposeProcessFragment angegeben, dass eine Komposition eines neuen
Prozessfragments auf Basis bestehender Prozessfragmente durchgefiihrt
werden soll.

Im Folgenden wird auf die operationale Semantik der Anwendung der
Operation SwitchLCPhase eingegangen. Zunéachst erfolgt eine solche Be-
schreibung fiir eine Parametrisierung fiir die Neugestaltung und anschlie-
fend fiir die Komposition von neuen Prozessfragmenten.

Neugestaltung von Prozessfragmenten Das generelle Funktionsprin-
zip einer Anwendung der Operation SwitchLCPhase mit der Parametrisie-
rung zur Neugestaltung von Prozessfragmenten wird in Abbildung 5-62
dargestellt. Dabei werden im Rahmen der Anwendung der Operation die
beiden Teilschritte SwitchToDaA und SwitchToEnactment durchgefiihrt, die
im Folgenden niher beschrieben werden.

Im Rahmen des ersten Teilschrittes SwitchToDaA wird die Neugestaltung
von Prozessfragmenten durch einen Wechsel von der Phase Ausfiihrung
in die Phase Design & Analyse ermoglicht. Anschlieffend konnen begin-
nend in der Phase Design & Analyse verschiedenste methodische Aktivita-
ten (Methodological Activity) ausgefiihrt werden, die fiir eine Neugestaltung
notwendig sind. Fiir eine Ubersicht iiber typische Aktivititen in dieser
Phase wird auf die Beschreibung des BPM-Lebenszyklus in Abschnitt 2.2.2
verwiesen. Zur besseren Veranschaulichung des Funktionsprinzips ist hier
ein Prozess mit einer exemplarischen Auswahl von methodischen Aktivi-
tiaten dargestellt. So wird hier stellvertretend ein Prozess dargestellt, der
methodische Aktivitdten sowohl aus der Phase Design & Analyse als auch
aus der Phase Konfiguration einschlieit. Auf eine Beschreibung dieser Ak-
tivititen wird nachfolgend Bezug genommen.

Abbildung 5-61:
Signatur und konkrete
Syntax der Operation
SwitchLCPhase

SwitchToDaA

Abbildung 5-62:
Beispielhafte Anwen-
dung der Operation
SwitchLCPhase (Create)

Seite 188 Kapitel 5

Instanz eines Platzhalters PHI vor Instanz eines Platzhalters PHI nach
Wechsel der Lebenszyklusphase Wechsel der Lebenszyklusphase
Lifecycle Switch Lifecycle

activeState = ‘Binding’ Lc activeState = ‘Binding’

' e |

E—b Undefined Task —DE —- E‘-» Undefined Task

Switch Switch
o (1) OF:

DaA Enactment

I------>

‘------

Phase Design & Analyse Phase Konfiguration
. «MethodolicalActivity» «MethodolicalActivity» «MethodolicalActivity»
DoCreatePFA Dolmplementation DoConfiguration
: A : A :

Das Erstellen eines neuen Prozessfragments wird durch den Task DoCreate-
PFA dargestellt. Ein Prozessfragment wird typischerweise im Anschluss
an seine Erstellung in einem Datenspeicher (Process-Repository) zusammen
mit zuvor erstellten Prozessfragmenten (PFA 1, PFA 2, ..., PFA n) abgelegt.
Dabei kann ein solcher Datenspeicher aber auch, wie hier dargestellt, fiir
eine Ablage aller Prozesse einschliefllich der Beobachtungs- (BP) und An-
passungsprozesse (AP) verwendet werden. Auf Basis dieser im Datenspei-
cher abgelegten Prozessmodelle ist eine Ausfithrungsumgebung in der La-
ge, zugehorige Instanzen zu bilden (siehe Abschnitt 2.2).

Sollen neu erstellte Prozessfragmente auch fiir zukiinftige Bindungen zur
Verfligung stehen, so konnen weitere methodische Aktivitdten notwen-
dig sein. Daher wird hier im Rahmen der Phase Konfiguration beispiel-
haft die methodische Aktivitdat Dolmplementation aufgefiithrt. Dolmplemen-
tation umfasst dabei Tatigkeiten hinsichtlich benétigter Implementierun-
gen des Prozessfragments, sodass es in zukiinftigen Bindungen verwen-
det werden kann. Ferner ist fiir die Verwendung im Rahmen einer Bin-
dung auch die Anpassung von Beobachtungs- und Anpassungsprozessen
notwendig. Dies ldsst sich damit begriinden, dass derartige bestehende
Prozesse entsprechend der Verfiigbarkeit des neu erstellten Prozessfrag-
ments erweitert bzw. selbst angepasst werden miissen. Daher ist in Abbil-

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 189

dung 5-62 die weitere methodische Aktivitat DoConfiguration aufgefiihrt,
in der eine Konfiguration von bestehenden Prozessen — hier als Beispiel
ein Anpassungsprozess — vorgenommen werden kann.

Ist der hier dargestellte stellvertretende Prozess zur Neugestaltung eines
Prozessfragments nach der Aktivitdt DoConfiguration abgeschlossen, wird
der zweite Teilschritt SwitchToEnactment durchgefiihrt. Die Anwendung
der Operation SwitchLCPhase ist damit abgeschlossen. Man beachte, dass
hinsichtlich der Instanz PHI keine Anpassung vorgenommen wurde, wie
sie z.B. an ihrem aktuellen Zustand des Lebenszyklus moglich wire. Dies
lasst sich damit begriinden, dass eine Anwendung der Operation Switch-
LCPhase unter der aktuell betrachteten Parametrisierung lediglich ein neu-
es Prozessfragment sowohl erstellt als auch die zugehorige Implementie-
rung und Konfiguration vornimmt. Eine Bindung oder Ausfiithrung des
neu zur Verfligung gestellten Verhaltens kann im Anschluss durchgefiihrt
werden.

Komposition von Prozessfragmenten Das generelle Funktionsprinzip
einer Anwendung der Operation SwitchLCPhase mit der Parametrisierung
zur Komposition von Prozessfragmenten wird in Abbildung 5-64 darge-
stellt. Dabei werden im Rahmen der Anwendung der Operation die beiden
Teilschritte SwitchToConfiguration und SwitchToEnactment durchgefiihrt, die
im Folgenden niher beschrieben werden.

Im Rahmen des ersten Teilschrittes SwitchToConfiguration wird die Kom-
position eines Prozessfragments auf Basis bestehender Prozessfragmente
ermoglicht. Hierzu ist zuvor ein Wechsel von der Phase Ausfiihrung in
die Phase Konfiguration notwendig. Anschlieffend konnen beginnend in
der Phase Konfiguration verschiedenste methodische Aktivitaten (Metho-
dological Activity) ausgefiihrt werden, die fiir eine Komposition notwendig
sind. Fiir eine Ubersicht von typischen Aktivititen in dieser Phase wird
auf die Beschreibung des BPM-Lebenszyklus in Abschnitt 2.2.2 verwiesen.
Zur besseren Veranschaulichung des Funktionsprinzips ist hier ein Prozess
mit einer exemplarischen Auswahl von methodischen Aktivitdten darge-
stellt. Auf eine Beschreibung dieser Aktivititen wird nachfolgend Bezug

genommen.

So wird die Komposition eines neuen Prozessfragments durch den Task
DoComposePFA dargestellt. Als Eingabe dienen dabei bestehende Pro-
zessfragmente (PFA 1 und PFA 2), die bereits im Datenspeicher (Process-
Repository) abgelegt waren. Fiir eine Verwendung des neu komponierten
Prozessfragments kann, wie hier dargestellt, ebenfalls die Ausfithrung

SwitchToEnactment

SwitchToConfiguration

Abbildung 5-63:
Beispielhafte Anwendung
der Operation Switch-
LCPhase (Compose)

SwitchToEnactment

Beispiel fiir eine
Komposition eines
Prozessfragments

Seite 190 Kapitel 5

Instanz eines Platzhalters PHI vor Instanz eines Platzhalters PHI nach
Wechsel der Lebenszyklusphase Wechsel der Lebenszyklusphase
Lifecycle Switch Lifecycle
activeState = ‘Binding” LC activeState = ‘Binding*

Phase
‘ (Compose) ‘

Undefined Task —DE] — E]—» Undefined Task

Switch Switch
To @ To
Configuration Enactment

--------.’

*--------

Phase Konfiguration

«MethodolicalActivity» «MethodolicalActivity»
DoComposePFA DoConfiguration

Stellvertretender Prozess :
beginnend in der : Process-Repository)
=

BPM-Lebenszyklusphase

Configuration

weiterer methodischer Aktivitdten notwendig sein. So wird hier beispiel-
haft, wie zuvor bei der Parametrisierung fiir die Neugestaltung, ebenfalls
die methodische Aktivitdt DoConfiguration mit aufgefiihrt.

Ist der hier dargestellte stellvertretende Prozess zur Komposition eines
Prozessfragments nach der Aktivitdt DoConfiguration abgeschlossen, wird
der zweite Teilschritt SwitchToEnactment durchgefiihrt. Die Anwendung
der Operation SwitchLCPhase ist damit abgeschlossen. Man beachte, dass
auch hier hinsichtlich der Instanz PHI keine Anpassung vorgenommen
wurde. Dies lasst sich damit begriinden, dass eine Anwendung der Opera-
tion SwitchLCPhase unter der aktuell betrachteten Parametrisierung ledig-
lich ein neues Prozessfragment aus bestehenden Prozessfragmenten kom-
poniert und die zugehorige Konfiguration vornimmt. Eine Bindung oder
Ausfithrung des neu zur Verfligung gestellten Verhaltens kann im An-
schluss durchgefiihrt werden.

Eine Komposition eines Prozessfragments auf Basis bestehender Prozess-
fragmente kann auch als eine Form einer Anpassung eines leeren Prozess-
modells verstanden werden. Daher wird nachfolgend ein detailliertes Bei-
spiel fiir eine Komposition unter Verwendung der in Abschnitt 4.3.3 vor-

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 191

gestellten Operationen gegeben (siehe Abbildung 5-64). Das Beispiel zeigt
die Komposition des Prozessfragments Newly composed PFA auf Basis der
beiden Prozessfragmente Function A und Function B. Dabei handelt es sich
um eine einfache Sequenzierung, sodass zundchst das Verhalten des Pro-
zessfragments Function A und anschlieffend das Verhalten des Prozess-
fragments Function B vorkommen soll. Die hier dargestellte Kompositi-
on besteht aus insgesamt vier Schritten, in denen eine Reihe von Opera-
tionen zur Anpassung (siehe Abschnitt 4.3.3) verwendet werden. Die Ope-
rationen sind hier in ihrer textuellen Notation dargestellt. Die vier Schritte
PopulateModel, Connect, ClearUp und AdaptToContext werden nachfolgend
detailliert beschrieben.

Im ersten Schritt PopulateModel werden die Elemente aus den Prozessfrag-
menten Function A und Function B in das Prozessfragment Newly Com-
posed PFA verschoben. Fiir diesen Vorgang werden zwei Anwendungen
der Operation ModifyPositionOfNodesInContainer unter der Parametrisie-
rung des Kopierens verwendet (sieche Anhang A.3.5). Eine Anpassung der
Prozessfragmente Function A und Function B wird im weiteren Verlauf so-
mit nicht vorgenommen. Im zweiten Schritt Connect werden die kopier-
ten Elemente innerhalb des Prozessfragments Newly composed PFA mitein-
ander verbunden, sodass ein zusammenhé&ngender Kontrollfluss entsteht.
Fiir diesen Vorgang wird eine Anwendung der Operation AddEdge ver-
wendet (siehe Anhang A.2.1). Dabei wird so vorgegangen, dass ein neues
Kantenelement (e3) vom Typ SequenceFlow hinzugefiigt wird. Das Kanten-
element e3 wird derartig mit bestehenden Elementen verbunden, dass es
ausgehend vom Knotenelement LastNode hin zum Knotenelement FirstNo-
de verlduft. Durch das Hinzuftigen des Kantenelements e3 werden die bei-
den urspriinglich getrennten Kontrollfliisse miteinander verbunden. Die
bestehenden Start- und Endsymbole mit den Bezeichnungen StartSymbolB
und EndSymbolA sowie ihre ein- bzw. ausgehenden Kantenelemente el
und e2 werden nun nicht mehr benétigt. Daher werden sie im dritten
Schritt ClearUp durch zwei Anwendungen der Operation RemoveNode ent-
fernt (siehe Anhang A.1.2). Hier kann die Funktionsweise der Operation
RemoveNode zur Vermeidung weiterer Anwendungen von Operationen zur
Anpassung genutzt werden, da auch die nicht mehr benétigten ein- und
ausgehenden Kantenelemente el und e2 entfernt werden. Im letzten Schritt
AdaptToContext werden im Bedarfsfall Eigenschaften von Elementen an ih-
ren neuen Kontext angepasst. In dem hier dargestellten Beispiel wird da-
her die Benennung des Start- bzw. des Endsymbols des Prozessfragments
in Anlehnung an seinen Namen hin zu StartSymbolINcPFA bzw. EndSym-
boINcPFA angepasst.

Abbildung 5-64:
Beispiel fiir die
Komposition eines
Prozessfragments

Seite 192

Kapitel 5

«ProcessFragment»
Function A

«ProcessFragment»
Function B

StartSymbolA EndSymbolA

StartSymbolB EndSymbolB

Last Node Element S 4
of Function B \ ,

First Node Element
of Function B

ModifyPositionOfNodesInContainer
(Function A, {}, Newly composed PFA, ‘true‘)

Populate f : Newly composed PFA
Model ModifyPositionOfNodesinContainer
(Function B, {}, Newly composed PFA, ‘true’)
: Newly composed PFA
«ProcessFragment»

Newly composed PFA

St
Node

StartSymbolA

EndSymbolA

First .
2
€ Node

StartSymbolB

EndSymbolB

AddEdge

@ Connect

y

(Newly composed PFA, e3, LastNode, FirstNode)
: Newly composed PFA

«ProcessFragment»

Newly composed PFA

e3

Call
Node

StartSymbolA

EndSymbolA

First !
e2 Node

StartSymbolB

EndSymbolB

Clear
Up

RemoveNode

(Newly composed PFA, EndSymbolA)
: Newly composed PFA

RemoveNode

(Newly composed PFA, StartSymbolB)
: Newly composed PFA

y

«ProcessFragment»

Newly composed PFA

First

el
e3
Node

StartSymbolA

"l Node - @

EndSymbolB

ModifyPropertyOfNode
(Newly composed PFA, StartSymbolA, ‘Name’,
‘StartSymboINcPFA’)

AdaptTo
: Newly composed PFA
Context ModifyPropertyOfNode (Newly composed PFA,
EndSymbolB, ‘Name’, ‘EndSymbolNcPFA’)
: Newly composed PFA
«ProcessFragment»

Newly composed PFA

First

el
Node it

StartSymboINcPFA

Node

EndSymboINcPFA

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 193

Die zuvor beschriebene Komposition zur Erstellung des Prozessfragments
Newly composed PFA stellt nur ein mégliches Beispiel fiir die Komposition
neuer Prozessfragmente auf Basis bestehender Prozessfragmente dar. So
lassen sich nicht nur einfache Sequenzierungen beschreiben; stattdessen
sind auch komplexere Kompositionen moglich, bei denen z.B. auch neue
Elemente hinzugefiigt oder bestehende entfernt werden konnen.

5.5.4 Zusammenfassung

In diesem Abschnitt wurde das vierte und letzte Entwurfsmuster in An-
lehnung an den Flexibilitdtsaspekt Flexibility-by Underspecification vorge-
stellt. Dabei wurden zunéichst die beiden Untertypen Late Selection und Late
Modeling detailliert vorgestellt. Im weiteren Verlauf des Abschnittes wur-
de eine Spracherweiterung zur Gestaltung von Prozessfragmenten und
zur Unterstiitzung des Flexibilitatsaspekts beschrieben. Bei der Spracher-
weiterung wird auf bereits vorgestellte Konzepte zur Beschreibung von
Task- und Prozessinstanzen zuriickgegriffen (siehe Abschnitt 5.3.3). Un-
ter Verwendung dieser Spracherweiterung konnten anschliefend Opera-
tionen beschrieben werden, die die wesentlichen Funktionsprinzipien von
Late Selection und Late Modeling umsetzen. Der in diesem Abschnitt vor-
gestellte Gesamtansatz bietet hierdurch die Moglichkeit einer erweiterten
Unterstiitzung in der Gestaltung von flexiblen und anpassbaren Prozes-

sen.

5.6 Zusammenfassung

In den vorherigen Abschnitten wurden verschiedene Flexibilitdtsaspekte
aus der Domine BPM vorgestellt. Jeder dieser Flexibilitatsaspekte wurde
dabei zunichst analysiert. In einem weiteren Schritt wurde eine mogliche
Unterstiitzung bei der Gestaltung von flexiblen und anpassbaren Prozes-
sen durch die Sprache ACML4BPM beschrieben. Fiir diese Unterstiitzung
waren je nach Flexibilitdtsaspekt verschiedene Erweiterungen notwendig.
So wurde bspw. eine methodisch neuartige Gestaltung fiir den Flexibili-
tatsaspekt Flexibility-by Design (siehe Abschnitt 5.2) vorgestellt. Fiir weite-
re Aspekte von Flexibilitdt, wie etwa Flexibility-by Change, Flexibility-by De-
viation und Flexibility-by Underspecification, wurden Konzepte zur Gestal-
tung unter Verwendung der Sprache ACML4BPM beschrieben. Als Resul-
tat in Form der Gesamtheit dieser Konzepte stehen Entwurfsmuster fiir
flexible und anpassbare Prozesse zur Verfiigung, die fiir die Entwicklung

Tabelle 5-4:

Ubersicht iiber gesetzte
Ziele und deren Erfiillung
fiir die Musterbasierte Un-
terstiitzung in der Gestal-
tung von flexiblen und
anpassbaren Prozessen

Identifikation von
Flexibilitdtsaspekten

Entwurfsmuster

Seite 194 Kapitel 5

von prozesszentrischen Softwaresystemen als eine Art Best-Practice einge-
setzt werden kénnen. In diesem Abschnitt wird nachfolgend auf die in Ab-
schnitt 5.1 eingefiihrten Fragestellungen eingegangen. Hierzu ist in Tabel-
le 5-4 eine Auflistung von Zielen sowie deren Erfiillung in Anlehnung an
diese Fragestellungen dargestellt.

Fragestellung Ziel Erfiillung

1 Identifikation von relevanten Flexibilititsaspekten in 4
Prozessen der Doméane BPM

2 Erarbeitung von Entwurfsmustern zur Beschreibung von v
Flexibilitatsaspekten unter Verwendung der Sprachen
ACML4BPM und BPMN2.0

3 Beschreibung von Spracherweiterungen zur Untersttit- v
zung bei der Gestaltung von Flexibilitatsaspekten unter
Verwendung der Sprache ACML4BPM

4 Beschreibung von Erweiterungen von Methoden zur Ge- v/
staltung

In der Domidne BPM existieren zahlreiche Arbeiten, die sich mit Flexibi-
litdt von Prozessen beschiftigen. Dabei wurde fiir diese Arbeit initial die
Anforderung gesetzt, nicht lediglich einen einzelnen Flexibilitdtsaspekt zu
unterstiitzen. Stattdessen sollte eine Menge von klassischen Typen von
Flexibilitatsaspekten unterstiitzt werden, sodass die daraus folgende Men-
ge von Entwurfsmustern als Beispiel fiir Best-Practice verwendet werden
kann (siehe Abschnitt 1.3). Hierbei bot sich die Anlehnung an verschiedene
Taxonomien fiir Typen von Flexibilitdt in Prozessen an, wie sie z.B. durch
[Sch+08], [RW12] oder [RSS06] gegeben sind. Aufgrund einer hohen Uber-
einstimmung gegebener Taxonomien wurde sich fiir eine Arbeit [Sch+08]
entschieden, die auf einem vergleichbaren Abstraktionsniveau wie die vor-
liegende Losung beschrieben worden ist.

Die in den vorherigen Abschnitten vorgestellten Entwurfsmuster von
Flexibilitdtsaspekten basieren auf Schonenberg et. al [Sch+08]. So werden in
der vorliegenden Arbeit insgesamt vier Entwurfsmuster vorgestellt, die
hinsichtlich Schonenberg et. al eine abgeschlossene Menge von Flexibilitats-
aspekten darstellen. Durch das zuerst in Abschnitt 5.2 vorgestellte Ent-
wurfsmuster Flexibility-by Design ist die Gestaltung von Prozessen unmit-
telbar selbst betroffen. So wird die Gestaltung der drei Aspekte Choice,
Iteration und Cancellation unter Verwendung der Sprache ACML4BPM
(siehe Kapitel 4) beschrieben. Anschliefend folgt die Vorstellung des
Entwurfsmusters fiir den Flexibilitdtsaspekt Flexibility-by Change in Ab-
schnitt 5.3. Bei diesem Entwurfsmuster wird die Anpassung von Prozes-

Entwurfsmuster fir flexible und anpassbare Prozesse Seite 195

sen hinsichtlich ihrer Modelle und deren Instanzen fokussiert. Dabei wur-
den diverse Strategien fiir die Migration von Anpassungen an Modellen
hin zu deren Instanzen vorgestellt. Das zugehorige Entwurfsmuster ent-
hélt in diesem Bezug eine Reihe von Operationen sowie eine konzeptio-
nelle Erweiterung der Sprache BPMN2.0. Das Entwurfsmuster des Flexi-
bilitatsaspekts Flexibility-by Deviation wird in Abschnitt 5.4 beschrieben. Es
greift auf die konzeptionelle Erweiterung der Sprache BPMN?2.0 fiir das
Entwurfsmuster des Flexibilitatsaspekts Flexibility-by Change zuriick. Fer-
ner werden spezifische Operationen vorgestellt, mit denen typische Ver-
fahrensweisen des Flexibilitdtsaspekts fiir die Abweichung von vordefi-
nierten Kontrollfliissen abgebildet werden konnen. Das letzte Entwurfs-
muster fiir den Flexibilitatsaspekt Flexibility-by Underspecification (siehe
Abschnitt 5.5) stellt eine in der Literatur hdufig vorkommende Art von
Flexibilitdt dar. Die Beschreibung des Entwurfsmusters enthilt neben ei-
ner weiteren konzeptionellen Erweiterung der Sprache BPMN2.0 auch
diverse Operationen zur Unterstiitzung des Flexibilitatsaspekts.

Fir die in diesem Kapitel vorgestellten Entwurfsmuster waren diver-
se Erweiterungen der Sprache ACML4BPM notwendig. Beispiele hierfiir
waren die Entwurfsmuster der Flexibilitatsaspekte Flexibility-by Change,
Flexibility-by Deviation und Flexibility-by Underspecification. Derartige Er-
weiterung sind gegeben durch Sprachelemente zur Beschreibung von
grundlegenden Konzepten eines Flexibilitatsaspekts. Aufbauend konnten
jeweils Operationen eingefiihrt werden, die typische Verfahrensweisen
eines jeden betrachteten Flexibilitdatsaspekt umsetzen.

Fiir die Gestaltung von flexiblen und anpassbaren Prozessen sind geeigne-
te Methoden notwendig, die sich in Teilen auch auf die Verwendung eines
Flexibilitdtsaspekts beziehen. Beispiele hierfiir sind durch Late Modeling
oder durch Flexibility-by Design gegeben. In den vorgestellten Losungen
wird je nach Notwendigkeit auch Bezug auf methodische Besonderhei-
ten bei der Gestaltung von Flexibilititsaspekten genommen. Eine Veror-
tung von grundlegenden methodischen Aktivititen in einer doménenspe-
zifischen Methode wird in einem weiteren Losungsteil (siehe Kapitel 6)
vorgenommen.

Spracherweiterungen

Erweiterung von Methoden

Kapitel

Adaptivity Engineering
fur flexible und
anpassbare Prozesse

Die Gestaltung von flexiblen und anpassbaren Prozessen sollte neben ei-
ner addquaten Sprache (siehe Kapitel 4) sowie zugehorigen Entwurfsmus-
tern (siehe Kapitel 5) auch durch einen geeigneten methodischen Rahmen
unterstiitzt werden. Dieses Kapitel stellt daher eine doméanenspezifische
Erweiterung des Adaptivity Engineering in Form der Methode Adapt Cases
4 BPM vor. Hierdurch soll die angedachte Verwendung von bisher vor-
gestellten Losungsteilen in Form der Sprache ACML4BPM sowie von den
Entwurfsmustern verdeutlicht werden. Eine Ubersicht iiber die nachfol-
genden Inhalte ist in Abbildung 6-1 dargestellt.

Adaptivity Engineering
fiir flexible und anpassbare Prozesse

I |

Ubersicht iiber Adapt Cases 4 BPM Zusammenfassung
einen erweiterten
BPM-Lebenszyklus

Abschnitt 6.1 Abschnitt 6.2 Abschnitt 6.3

Im Folgenden wird auf die in Abbildung 6-1 abgebildeten Inhalte des
Adaptivity Engineering fiir flexible und anpassbare Prozesse eingegangen.
Da im BPM typischerweise Modelle des Lebenszyklus von Prozessen
(siehe auch Abschnitt 2.2.2) eingesetzt werden, wird die Methode Adapt
Cases 4 BPM als eine Erweiterung eines BPM-Lebenszyklus beschrieben.
Eine Ubersicht iiber die Einbettung der Methode Adapt Cases 4 BPM in
diesen BPM-Lebenszyklus wird zunéchst in Abschnitt 6.1 gegeben. Im An-

Abbildung 6-1:

Ubersicht tiber das
Adaptivity Engineering
fiir flexible und anpassba-
re Prozesse

Abbildung 6-2:
Schematische Darstel-
lung des erweiterten
BPM-Lebenszyklus

Seite 198 Kapitel 6

schluss folgt in Abschnitt 6.2 eine detaillierte Beschreibung relevanter Ak-
tivititen und Artefakte sowie deren Relation entlang eines doméanenspezi-
fischen methodischen Rahmens in Form der Methode Adapt Cases 4 BPM.
Das Kapitel schliefit in Abschnitt 6.3 mit einer kritischen Zusammenfas-
sung der in diesem Kapitel vorgestellten Inhalte ab.

6.1 Ubersicht iiber einen erweiterten BPM-Lebenszyklus

In diesem Abschnitt wird die Integration von relevanten Aktivititen und
Artefakten des Adaptivity Engineering fiir flexible und anpassbare Prozesse
in den BPM-Lebenszyklus nach Weske [Wes12] beschrieben. Die Darstellung
eines erweiterten BPM-Lebenszyklus ist in Abbildung 6-2 dargestellt.

Erweiterter BPM-Lebenszyklus

Design & Analyse |A|v

Redefines Identifikation und (Neu-)Gestaltung
Identifikation und (Neu-)Gestaltung

Aspekte Aspekte
der An dungslogik der Anp gslog
Konfiguration
\d «MethodologicalActivity»
Anforderungsanalyse
Anforderungen
Domaéanenmodell
«MethodologicalActivity»
High-Level-Gestaltung
Ausfiihrung igh-
|:| UML Komponentendiagramm Agle

Adaptation View Model 4 BPM

UML Use Case Diagramm Adapt Cases 4 BPM

«MethodologicalActivity»
Low-Level-Gestaltung

Low-Level
Adaptation View Model 4 BPM
Adapt Cases 4 BPM

UML Komponentendiagramm
BPMN2.0 Prozessdiagramm

Im linken Bereich sind die bereits in Abschnitt 2.2.2 vorgestellten Pha-
sen Design & Analyse, Konfiguration, Ausfiihrung sowie Evaluation des BPM-
Lebenszyklus dargestellt. Da durch diese Arbeit die Gestaltung von Prozes-
sen fokussiert worden ist, betrifft die im rechten Bereich dargestellte Er-
weiterung die Phase Design & Analyse. Das Adaptivity Engineering kann
dabei auch fiir weitere Phasen relevant sein, da erstellte Artefakte auch
Einfluss auf weitere methodische Aktivitdten und auf deren tibliche Ar-
tefakte haben konnen. Als Beispiel kann die Fragestellung hinsichtlich ei-

Adaptivity Engineering fur flexible und anpassbare Prozesse Seite 199

ner gemeinsamen Ausfiihrung von Aspekten der Anpassungs- und An-
wendungslogik eingefiihrt werden. So kénnte die Anforderung bestehen,
das Separation-of-Concerns nicht nur in der Gestaltung, sondern auch in der
Ausfithrung durchzufiihren. Aufgrund des gesetzten Fokus auf die Gestal-
tung von Prozessen wurden derartige Fragestellungen hinsichtlich weite-
rer Phasen des BPM-Lebenszyklus nicht behandelt. Sie stellen dabei jedoch
die Basis fiir die zukiinftige Forschung an entsprechenden Losungen (siehe
Abschnitt 8.2) dar. Dennoch wird auf unterschiedliche Zwecke fiir die Ver-
wendung der Sprache ACML4BPM und der zugehorigen Entwurfsmuster
in Form einer Ergdnzung in Abschnitt 6.2.4 ndher eingegangen.

Die dargestellte Erweiterung stellt ein mogliches Beispiel fiir eine metho-
dische Integration notwendiger Aktivitdten und Artefakte des Adaptivity
Engineering dar. So konnen je nach Anforderungen an einen methodi-
schen Rahmen auch Alternativen, wie z.B. der Lebenszyklus nach Dumas
[Dum+18], gewidhlt werden. Dabei ist jedoch jeweils individuell zu priifen,
wie sich spezifische methodische Aktivititen tibertragen lassen. So ist es
z.B. moglich, dass sich die drei dargestellten Aktivitdten auf mehrere Pha-
sen eines anderen Lebenszyklus verteilen. Es wird angenommen, dass eine
Ubertragbarkeit aufgrund generischer Eigenschaften der nachfolgenden
Beschreibung und Darstellung von Abhéngigkeiten jedoch realisierbar ist.

Bei der Integration von relevanten Aktivitdten und deren Artefakten des
Adaptivity Engineering in den BPM-Lebenszyklus wurde sich fiir eine Rede-
finition der Aktivitat Identifikation und (Neu-)Gestaltung entschieden. Die
Integration folgt in weiten Teilen dem durch Luckey [Luc13] beschriebenen
Vorgehen (siehe auch Abschnitt 2.4.4) und wurde an spezifischen Stellen
hinsichtlich tiblicher Artefakte des BPM angepasst. Insgesamt umfasst die-
ses Vorgehen die drei methodischen Aktivitdten Anforderungsanalyse, High-
Level-Gestaltung und Low-Level-Gestaltung.

Im Rahmen jeder Aktivitdt werden Artefakte erzeugt, die in der Gestaltung
von flexiblen und anpassbaren Prozessen benotigt werden. Das Adaptivity
Engineering fokussiert dabei die Trennung von Aspekten der Anpassungs-
logik und Aspekten der Anwendungslogik (Separation-of-Concerns). Die je-
weils zugehorigen Artefakte werden in den Farben Dumnkelgrau hinsicht-
lich der Aspekte der Anwendungslogik und in Hellgrau hinsichtlich der
Aspekte der Anpassungslogik dargestellt.

Nachfolgend wird in Abschnitt 6.2 die Methode Adapt Case 4 BPM in
Form einer Detaillierung der Redefinition der Aktivitat Identifikation und
(Neu-)Gestaltung beschrieben.

Abbildung 6-3:
Detaillierung der Akti-
vitdt Identifikation und
(Neu-)Gestaltung des
Adaptivity Engineering

Seite 200 Kapitel 6

6.2 Adapt Cases 4 BPM

Die Durchfiihrung eines Adaptivity Engineering fiir flexible und anpassba-
re Prozesse ist durch die Methode Adapt Cases 4 BPM moglich. Dabei liegt
der Fokus dieser Methode auf der getrennten Gestaltung von Aspekten der
Anpassungslogik und Aspekten der Anwendungslogik. Hierzu wurde zu-
vor in Abschnitt 6.1 die Integration von spezifischen Aktivitidten und Arte-
fakten eingefiihrt. Nachfolgend wird eine Detaillierung der Aktivitat Iden-
tifikation und (Neu-)Gestaltung in Anlehnung an Abbildung 6-3 beschrieben.

[Verbesserung

l

Ziel-Spezifikation

g g
3 ﬂ S
> =3
3 ¥ ¥
Q Q
P $
s RELAX-Spezifikation Klassendiagramm
) I
'g «RELAX Reg» Entitat
.
< Der Prozess soll angepasst variable: type
< werden, wenn ... VP
Q
o
= =
& 2
2 <
o
S
<)
S Use Case- Komponenten- HL ACM4BPM
= . .
3 Diagramm diagramm
é _I Sicht-auf nutzt AC4BPM1
hy
= ®00
3 HL-AVM4BPM
7
5
B § § passt-an / flexibilisiert §
® < =
S S 3
o o o
3 3 3
g |
S S|l e I
= : I — — Beobachtungsprozess
Sicht-auf nutzt
QL S
: I |
S || Business Process Komponenten- Anpassungsprozess
§ Diagram diagramm HL-AVM4BPM LL-ACM4BPM
q
3
o
~ passt-an / flexibilisiert

Im weiteren Fokus liegen dabei die in Abbildung 6-3 dargestellten Abhén-
gigkeiten zwischen spezifischen Artefakten der Aktivitdten Anforderungs-
analyse, High-Level-Gestaltung und Low-Level-Gestaltung. So wird nachfol-
gend zundchst auf die Anforderungsanalyse in Abschnitt 6.2.1 eingegangen.
Es folgt die Beschreibung der High-Level-Gestaltung in Abschnitt 6.2.2 und
der Low-Level-Gestaltung in Abschnitt 6.2.3. Dabei konnen je nach Anfor-

Adaptivity Engineering fur flexible und anpassbare Prozesse Seite 201

derungen an das methodische Vorgehen und je nach gewéahlten Techniken
zur Gestaltung auch andere Artefakte vorkommen. Die Beschreibungen
sind daher als ein exemplarischer Verlauf zu betrachten.

6.2.1 Anforderungsanalyse

Die erste Aktivitat der Methode Adapt Cases 4 BPM in Form der Anforde-
rungsanalyse wird klassischerweise durch zwei unterschiedliche Treiber
angestofien. Da es sich um einen Lebenszyklus von Prozessen handelt, ist
es moglich, dass es sich um die erste Iteration oder um eine der nachfol-
genden Iterationen handelt. Man spricht hierbei von einer Neugestaltung
oder von einer Verbesserung von Prozessen.

Die Neugestaltung adressiert sowohl existierende — aber bisher nicht durch
das BPM erfasste — als auch zukiinftige Prozesse. So konnen in Organisa-
tionen eine Vielzahl von gelebten oder kulturell belegten Prozessen exis-
tieren, deren systematische Dokumentation oder IT-Unterstiitzung bisher
nicht im Fokus eines praktisch durchgefiihrten BPM lagen. Sollen derartige
Prozesse erstmalig durch das BPM verwaltet werden, handelt es sich um
die erste Iteration ihres Lebenszyklus. Beide Arten von Prozessen werden
folglich neu gestaltet.

Bereits existierende Prozesse unterliegen in Organisationen einer kontinu-
ierlichen Verbesserung, in der der Prozess iterativ verbessert wird. Man
spricht bei diesem Vorgehen auch von einem kontinuierlichen Verbesserungs-
prozess (KVP). Eine Iteration eines Lebenszyklus stellt dabei einen nattirli-
chen Ablauf zur Verbesserung von Prozessen dar. Dabei konnen Verbes-
serungen eines Prozesses durch gednderte organisationale Ziele bewirkt
werden oder auf Analysen auf Basis von Prozesshistorien beruhen. Die
Identifikation von gednderten Zielen oder die durchgefiihrten Analysen,
wie z.B. das Process Mining oder das Conformance Checking [Aal16], konnen
als Teil der Phase Evaluation verstanden werden. Die Artefakte der Pha-
se Evaluation konnen anschlieffend in einem nachfolgenden Durchlauf des
BPM-Lebenszyklus verwendet werden.

In beiden Varianten von Treibern steht das Ziel auf der strategischen Ebene
der Betrachtung im Vordergrund. Ziele konnen dazu verwendet werden,
um in einer frithen Phase der Gestaltung die grundlegende Motivati-
on fiir Prozesse auf einer strategischen Ebene zu beschreiben (siehe Ab-
schnitt 2.2.1). Je nach organisationaler Einbettung koénnen Ziele aus un-
terschiedlichen Arbeitseinheiten stammen. Dabei entsteht hadufig die Her-
ausforderung fiir die Durchfithrung eines Zielabgleichs zwischen unter-

Seite 202 Kapitel 6

schiedlichen Arbeitseinheiten. Hier konnen Konflikte entstehen, die sich
methodisch durch ein geeignetes Business [T-Alignment [GTG15] auflo-
sen lassen. Arbeiten, die sich bspw. mit der zielorientierten Gestaltung
von Prozessen auseinandergesetzt haben und im Rahmen des Business
IT-Alignment eingesetzt werden konnen, wurden durch [DP10; Poe+13;
Nagl5] vorgestellt. Wurden Ziele abgeglichen, konnen sie zudem als
Grundlage fiir die Beschreibung von natiirlichsprachlichen Anforderun-
gen und von Domédnenmodellen eingesetzt werden.

Anforderungen in natiirlicher Sprache werden heutzutage in vielen unter-
schiedlichen Methoden eingesetzt. Dabei birgt der Einsatz von natiirlicher
Sprache oftmals die Gefahr von Fehlinterpretationen oder einer zu um-
fangreichen Grofie der Anforderungsspezifikation. Hier konnen Methoden
und Techniken eingesetzt werden, die die Kontrolle hinsichtlich der einge-
setzten Sprache fokussieren. Eine solche Sprache kann dann auch als kon-
trollierte natiirliche Sprache (engl. CNL) bezeichnet werden. Eine CNL stellt
dabei eine Untermenge der natiirlichen Sprache dar, die sich durch Re-
striktionen und durch die Einfithrung fester Begrifflichkeiten auszeichnet.
Hierdurch kénnen derartige Sprachen auch maschinenlesbar sein, sodass
sie vorteilhaft in der modellgetriebenen Entwicklung im Rahmen einer Au-
tomatisierung eingesetzt werden kénnen.

Beispiele fiir kontrollierte Sprachen sind in der Literatur durch ACE
[FKKO8] oder CPL [Cla+09] gegeben. Dabei ist anzumerken, dass das
Adaptivity Engineering insbesondere solche Funktionen fokussiert, die die
Anpassungsfahigkeit eines Systems betreffen. Fiir die Gestaltung von An-
forderungen derartiger Funktionen sind Elemente einer Sprache notwen-
dig, die eine gewisse Unsicherheit (engl. uncertainty) berticksichtigen.
Eine derartige Sprache wird auch bereits fiir den vorherigen Stand des
Adaptivity Engineering durch Luckey [Lucl3] empfohlen und ist durch RE-
LAX [Whi+09] gegeben.

Eine erste Gestaltung von wesentlichen Konzepten und Eigenschaften von
Prozessen kann durch Doméanenmodelle beschrieben werden. Doménen-
modelle enthalten relevante Konzepte bzw. Begrifflichkeiten sowie Eigen-
schaften und Relationen zueinander. Hierfiir konnen je nach spaterer Wei-
terverwendung unterschiedliche Techniken eingesetzt werden. Beispiele
sind durch geordnete nattiirlichsprachliche Texte in Form von Glossaren
oder durch Diagramme in Form von UML Klassendiagrammen oder Mind-
Maps gegeben. Domédnenmodelle kénnen anschlieffend die Basis fiir die
Ableitung von ersten strukturellen Informationen {iber das System und
seine Umgebung bilden.

Adaptivity Engineering fur flexible und anpassbare Prozesse Seite 203

6.2.2 High-Level-Gestaltung

Auf Basis der zuvor erstellten Anforderungen und Doménenmodelle kann
in dem nachfolgenden Schritt der High-Level-Gestaltung eine frithe Version
sowohl vom Verhalten als auch von der Struktur des Systems und seiner
Umgebung beschrieben werden. Dabei unterscheidet das Adaptivity Engi-
neering klassischerweise zwischen den Beschreibungen von Aspekten der
Anpassungs- und der Anwendungslogik. Ein Beispiel fiir den Schritt der
High-Level-Gestaltung wird in Abschnitt 7.1 im Zuge der Evaluation durch
das beschriebene Szenario gegeben.

Im Rahmen der High-Level-Gestaltung wird das Verhalten der Anwen-
dungslogik eines Systems und seiner Umgebung in Form von UML Use
Cases beschrieben. Jeder gestaltete Use Case stellt dabei eine Funktion
dar, durch die eine (Teil-)Anforderung an das Verhalten erfiillt bzw. ein
(Teil-)Ziel erreicht werden kann. Dementsprechend kann es notwendig
sein, eine Reihe von Funktionen zu gestalten, bei der erst deren Gesamt-
heit eine Anforderung erfiillt.

In der Gestaltung von Funktionen konnen dabei bereits Eigenschaften
berticksichtigt werden, die in einer ersten Strukturierung des Systems
vorkommen. Hierzu koénnen z.B. UML Komponentendiagramme verwen-
det werden. Dabei werden erste Eigenschaften berticksichtigt, die auch be-
reits in der Beschreibung der Doméanenmodelle vorgekommen sind. Durch
Komponenten kann dariiber hinaus auch die Architektur des Systems und
seiner Umgebung beschrieben werden. Oftmals werden dabei schon in
diesem Schritt vorerst einzelne Funktionen auf Komponenten verteilt.

In enger Anlehnung an das bisher beschriebene Verhalten und die Struk-
tur des Systems werden in einem weiteren Schritt auch Aspekte der Anpas-
sungslogik beschrieben. Das Adaptivity Engineering sieht in diesem Schritt
die Gestaltung von zwei aufeinander aufbauenden Artefakten vor. Zum
einen ist das Adaptation View Model 4 BPM (siehe Abschnitt 4.3) und zum
anderen das Adapt Case Model 4 BPM (siehe Abschnitt 4.2) zu gestalten.

Zuerst bietet sich die Gestaltung des Adaptation View Model 4 BPM
(AVM4BPM) an. Das AVM4BPM beschreibt in diesem Schritt eine frii-
he Sicht auf das Gesamtsystem aus der Perspektive der Flexibilisierung
der betroffenen Prozesse. So sollte es bspw. auch bereits Ereignisse be-
schreiben, die fiir die Auslosung des Verhaltens fiir eine mogliche Anpas-
sung verwendet werden konnen. Derartige Ereignisse sind Teil der Gestal-
tung von Sensorschnittstellen einer System- oder Umgebungskomponen-
te (siehe Abschnitt 4.3.2). Die im AVM4BPM beschriebenen Eigenschaften

Aspekte der Anwendung

Aspekte der Anpassung

Aspekte der Anwendung

Seite 204 Kapitel 6

konnen anschliefend in der Gestaltung von Funktionen der Anpassungs-
logik im Rahmen des ACM4BPM genutzt werden (siehe Abbildung 6-3).

Das ACM4BPM enthilt Funktionen zur Anpassung bzw. zur Flexibilisie-
rung. Derartige Funktion werden durch das Konzept des Adapt Case 4 BPM
(AC4BPM) reprasentiert. Ein AC4BPM kann sowohl zeit- als auch ereignis-
basiert ausgeltst werden. Nicht zeitbasierte Ereignisse sollten dabei bereits
durch das AVM4BPM eingefiihrt worden sein.

Bei der zuvor beschriebenen Reihenfolge fiir die Erstellung des AVM4BPM
und des ACM4BPM handelt es sich um eine Empfehlung. Sie kann ver-
nachlédssigt werden, wenn z.B. zunachst losgelost Aspekte der Anpas-
sungslogik beschrieben werden sollen, die sich erst in spateren Schritten
der Verfeinerung auf weitere Eigenschaften des Systems oder seiner Um-
gebung beziehen. Wurden sowohl Aspekte der Anpassungs- als auch der
Anwendungslogik durch UML Use Cases bzw. Adapt Cases 4 BPM beschrie-
ben, kann in die nédchste Aktivitat des Adaptivity Engineering gewechselt
werden.

6.2.3 Low-Level-Gestaltung

Die Aktivitdt der Low-Level-Gestaltung stellt den letzten Schritt im Rahmen
des Adaptivity Engineering fiir flexible und anpassbare Prozesse dar. Dabei
werden die Verfeinerungen des zuvor beschriebenen Verhaltens und der
Struktur des Systems und seiner Umgebung vorgenommen. Dabei wird
abermals zwischen Aspekten der Anwendungs- und Anpassungslogik un-
terschieden. Ein Beispiel fiir den Schritt der Low-Level-Gestaltung wird in
Abschnitt 7.1 im Zuge der Evaluation durch das beschriebene Szenario ge-
geben.

So konnen durch Prozessdiagramme (BPD) der Sprache BPMN2.0 soge-
nannte Basisprozesse (hier: Prozess) beschrieben werden. Ein Basisprozess
stellt einen Prozess dar, der als Basis fiir anzuwendende Anpassungen
oder Mafinahmen zur Flexibilisierung betrachtet wird. Das in ihm ent-
haltene Verhalten verfeinert einen oder eine Reihe von zuvor gestalteten
Funktionen in Form von UML Use Cases. Alternativ kann er aber auch wei-
teres Verhalten enthalten, welches als Erganzung zu zuvor beschriebenen
Funktionen betrachtet werden kann. Basisprozesse konnen dartiber hin-
aus auch mit anderen Basisprozessen interagieren. Fiir die Beschreibung
derartiger Interaktionen bieten sich weitere Diagrammtypen der Sprache
BPMN2.0 an, wie z.B. Kollaborations- oder Konversationsdiagramme. Da
der in dieser Arbeit beschriebene Ansatz die Gestaltung von Prozessen

Adaptivity Engineering fur flexible und anpassbare Prozesse Seite 205

durch BPD fokussiert, werden derartige Interaktionen methodisch nicht
aktiv bertiicksichtigt. Durch die enge Anlehnung an die Sprache BPMN2.0
kann die Verwendung derartiger Diagramme aber als durchfiihrbar be-
trachtet werden.

Die Struktur des Systems und seiner Umgebung wurde bereits in dem letz-
ten Schritt durch UML Komponentendiagramme beschrieben. Da es im Rah-
men des Adaptivity Engineering jedoch vorkommen kann, das Funktionen
unglinstig verteilt oder strukturelle Eigenschaften nicht umfassend genug
gestaltet worden sind, kann es notwendig sein, dass zuvor erstellte UML
Komponentendiagramm anzupassen oder zu verfeinern. Das gednderte bzw.
verfeinerte UML Komponentendiagramm enthilt anschlieffend eine umfas-
sende Beschreibung von Eigenschaften und eine Verteilung von Funktio-
nen auf Komponenten.

Durch die Low-Level-Gestaltung wird die Verfeinerung von Anpassungsfil-
len (AC4BPM) vorgesehen. Ein AC4BPM kann durch Beobachtungs- (Mo-
nitoring Process) und Anpassungsprozesse (Adaptation Process) verfeinert
werden (siehe Abschnitt 4.2.2 bzw. Abschnitt 4.2.3).

Analog zur High-Level-Gestaltung ist auch hier zu empfehlen, zunichst die
Gestaltung des AVM4BPM vorzunehmen. Falls sich Komponenten der An-
wendungslogik durch die jeweilige Verfeinerung bzw. Anpassung gean-
dert haben, bietet sich die Erstellung des AVM4BPM als verfeinerte Sicht
auf eben diese Komponenten an. Neben den bereits in der High-Level-
Gestaltung hinzugefligten Ereignissen sollten Sensor- und Effektorschnitt-
stellen auch tiber Operationen zur Anpassung sowie fiir einen kontrollier-
ten Zugriff auf Daten zur Verfiigung gestellt werden. Dabei profitiert die
Methode Adapt Cases 4 BPM von dem Umstand, dass bereits diverses do-
manenspezifisches Wissen in der Sprache ACML4BPM integriert ist und
an dieser Stelle verwendet werden kann. So ist eine Beschreibung von ele-
mentaren Operationen zur Anpassung von Prozessen nicht in jedem Fall
notwendig, da sie bereits Bestandteil der Sprache sind. Weitere oder spe-
zielle Operationen zur Anpassung von Prozessen oder ihrer Umgebung
konnen selbstverstandlich in Anlehnung an Anforderungen hinzugefiigt

werden.

Die Low-Level-Gestaltung schliefst mit der Gestaltung von Beobachtungs-
und Anpassungsprozessen ab, die Teil des AVM4BPM sind. Diese Prozesse
verfeinern die durch einen Adapt Case 4 BPM gegebene Funktion durch
konkreteres Verhalten. Derartiges Verhalten kann durch reguldre Elemen-
te der Sprache BPMN?2.0, durch bereits in der Sprache ACML4BPM in-
tegriertes doménenspezifisches Wissen oder aber durch neu eingefiihrte

Aspekte der Anwendung

Seite 206 Kapitel 6

Elemente des AVM4BPM gestaltet werden. Dabei kann in jedem dieser
Prozesse umfangreiches Verhalten zur Aggregation von Daten und deren
Analyse (Beobachtungsprozesse) und fiir die Anpassung von Prozessen oder
ihrer Umgebung (Anpassungsprozesse) gestaltet werden. Im Rahmen der
Gestaltung des Verhaltens konnen sowohl Eigenschaften des verfeinerten
AVM4BPM als auch in der Sprache integriertes doménenspezifisches Wis-
sen genutzt werden.

Die Gestaltung von Basis-, Beobachtungs- und Anpassungsprozessen kann
auf unterschiedliche Weisen erfolgen. So ist die zuvor beschriebene Rei-
henfolge nicht zwingend erforderlich. Auch iterative Vorgehensweisen
konnen sich anbieten. Dies ist dadurch zu begriinden, dass je nach Anfor-
derungen hinsichtlich des Separation-of-Concerns der Nutzer oder Domé-
nenexperte entscheiden muss, welche Teile zu einer der jeweiligen Logi-
ken gehoren sollte. So kann eine strikte Trennung des Aspekts Flexibility-by
Design bspw. zu uniibersichtlichen Prozessmodellen fithren. Nutzer und
Domaénenexperten sind daher hinsichtlich ihrer Erfahrung gefragt, in wel-
chem Ausschnitt eines Basisprozesses auf eine strikte Trennung, wie z.B.
in Bezug zur Ubersichtlichkeit, verzichtet werden kann.

6.2.4 Ergénzung

Flexible und anpassbare Prozesse sind, wie an verschiedenen Stellen
der vorliegenden Arbeit bereits beschrieben, nicht alleine durch eine ad-
dquate Gestaltung realisierbar. In Anlehnung an den betrachteten BPM-
Lebenszyklus sind offensichtlich weitere Techniken notwendig, die die Pha-
se Konfiguration, die Phase Ausfiihrung aber auch die Phase Evaluation be-
treffen konnen.

Die Bearbeitung derartiger Techniken lag dabei nicht im Fokus dieser Ar-
beit. Stattdessen lag die Einfiihrung des Adaptivity Engineering in der Do-
méine BPM und insbesondere in Bezug zu Gestaltung von flexiblen und
anpassbaren Prozessen im Vordergrund. Dabei ist anzumerken, dass dabei
stets die Gestaltung der erste Schritt einer derartigen Einfiihrung ist, wel-
che durch diese Arbeit entsprechend gegeben ist. Hier kann durch zukiinf-
tige Forschung (siehe Abschnitt 8.2) auf Konzepte der vorliegenden Arbeit
aufgebaut werden.

Ferner kann an dieser Stelle insbesondere auf ausgesuchte Entwurfsmus-
ter Bezug genommen werden, bei denen Abweichungen vom Fokus auf
die reine Gestaltung von flexiblen und anpassbaren Prozessen existieren.
So wurden in Kapitel 5 verschiedenste Typen von Flexibilitit in Prozessen

Adaptivity Engineering fir flexible und anpassbare Prozesse Seite 207

beschrieben. Dabei werden ebenso grundlegende Eigenschaften anderer
Phasen explizit berticksichtigt.

Ein Beispiel ist durch den Flexibilitatsaspekt Flexibility-by Underspecification
und seinem Untertyp Late Modeling gegeben. In Late Modeling wird, wie in
Abschnitt 5.5.1 bereits beschrieben, zu einem spezifischen Zeitpunkt von
der Phase Ausfithrung in die Phase Design & Analyse gewechselt. Dabei
werden methodische Aktivititen ausgefiihrt, die die Komposition oder Er-
stellung von neuen Funktionen betreffen. Dies stellt auf methodischer Ebe-
ne ebenfalls eine Technik fiir eine praktisch betrachtete Ausfiihrung dar. So
wird hier methodisch die Gestaltung von weiteren Funktionen wéhrend
der Ausfiihrung beschrieben. Fiir eine detaillierte Beschreibung wird auf
Abschnitt 5.5 verwiesen.

Ein weiteres Beispiel ist durch den Flexibilitatsaspekt Flexibility-by Change
und seinem Untertyp Evolutionary Change gegeben. Bei Evolutionary Change
konnen Anpassungen von Prozessmodellen auf deren Instanzen migriert
werden (siehe Abschnitt 5.3). Ein solches Vorgehen kann dabei zum Zweck
der Verbesserung von Prozessen eingesetzt werden. Der Bedarf an Ver-
besserung kann z.B. in der Phase Evaluation ermittelt werden. Bei der an-
schlielenden Gestaltung von Anpassungsprozessen, die sowohl Modelle
als auch deren weiterhin existierende Instanzen betreffen, handelt es sich
um eine methodische Technik, die iiber die Phase Design & Analyse hin-
ausgeht. Die beschriebenen Strategien zur Migration von Anpassungen
und deren Verwendung durch das entsprechende Entwurfsmuster sind
somit auch ein Konzept zur Anwendung in weiteren Phasen des BPM-
Lebenszyklus.

6.3 Zusammenfassung

In diesem Kapitel wurde das Adaptivity Engineering fiir flexible und an-
passbare Prozesse vorgestellt. Dabei wird die Methode Adapt Cases 4 BPM
mit spezifischen Aktivitdten und Artefakten in einen doméanenspezifischen
methodischen Rahmen integriert. Es wurde sich hierbei an dem durch Wes-
ke [Wes12] eingefiihrten BPM-Lebenszyklus orientiert. Ferner wurden auch
Abhingigkeiten von unterschiedlichen Artefakten entlang typischer Akti-
vitdten des Adaptivity Engineering in Form einer spezifischen Anforderungs-
analyse sowie der High-Level-Gestaltung und der Low-Level-Gestaltung gege-
ben. Die Methode orientiert sich dabei mafigeblich an dem durch Luckey
[Lucl3] beschriebenen Vorgehen. An spezifischen Punkten wurden Arte-
fakte der Domdne BPM eingefiihrt und mit existierenden Artefakten in

Seite 208 Kapitel 6

Relation gesetzt. Hierdurch kénnen weitere Losungsteile wie die Spra-
che ACML4BPM (siehe Kapitel 4) sowie die zugehorigen Entwurfsmus-
ter (siehe Kapitel 5) in einem doménenspezifischen methodischen Rahmen
eingesetzt werden.

Teil I

Evaluation,
Zusammenfassung und
Ausblick

In den vorherigen Kapiteln wurden verschiedene Losungsteile fiir ein
domaénenspezifisches Adaptivity Engineering in Form des Ansatzes Adapt
Cases 4 BPM vorgestellt. So wurde die Sprache ACML4BPM, eine Reihe
von verschiedenen Entwurfsmustern unter Verwendung der entwickelten
Sprache und eine zugehorige Methode beschrieben. Die Zielsetzung die-
ses Kapitels ist die Evaluation dieser drei Bestandteile. Fiir einzelne Teile
der durchgefiihrten Evaluation ist eine Ubersicht in Abbildung 7-1 gege-
ben. Die Evaluation ldsst sich insgesamt in die beiden Ziele Plausibilisie-
rung und Vergleich unterteilen. Hinsichtlich dieser Ziele werden einzelne

Kapitel

Evaluation

Teile der Evaluation nachfolgend kurz beschrieben.

Evaluation
Plausibilisierung
Szenario fiir flexible und
anpassbare Prozesse
Abschnitt 7.1
Fall 1 Fall 2 Fall 3
Abschnitt 7.1.2 Abschnitt 7.1.3 Abschnitt 7.1.4
Vergleich
Kriterien Bewertungseinheit Bewertung Gltigkeit
Abschnitt 7.2 Abschnitt 7.3 Abschnitt 7.4 Abschnitt 7.5

Abbildung 7-1:
Ubersicht iiber die
Evaluation

Evaluation zum Zweck
der Plausibilisierung

Evaluation zum Zweck
des Vergleichs

Seite 212 Kapitel 7

Der erste Teil der Evaluation betrifft die Anwendbarkeit der Sprache
ACML4BPM, die vorgestellten Entwurfsmuster und die zugehorige Me-
thode auf Basis praxisnaher Beispiele. Hiermit wird zum einen das Ziel
verfolgt, die zuvor genannte Anwendbarkeit von eingefiihrten Konzep-
ten zu zeigen. Zum anderen soll auf Basis der Beispiele das Verstandnis
von erarbeiteten Inhalten so vertieft werden, dass sie als Leitfaden fiir den
Transfer auf Anwendungen in der Praxis eingesetzt werden kénnen. Da-
bei wird zunédchst in Abschnitt 7.1 ein Szenario vorgestellt, fiir das jeweils
unterschiedliche Anforderungen an die Flexibilitat beteiligter Prozesse ge-
geben sind. Nachfolgend wird in Abschnitt 7.1.2 bis Abschnitt 7.1.4 ver-
anschaulicht, wie diese Anforderungen umgesetzt werden konnen. Dabei
werden sowohl die Sprache ACML4BPM als auch ausgesuchte Entwurfs-
muster eingesetzt. Der Ablauf folgt der Methode Adapt Cases 4 BPM fiir
die Gestaltung von flexiblen und anpassbaren Prozessen.

Der zweite Teil der Evaluation konzentriert sich anschlieffend auf aus-
gesuchte Kriterien zur Bewertung der Sprache ACML4BPM und die zu-
gehorigen Entwurfsmuster. Dabei werden zwei verschiedene Kataloge
von Kriterien fiir die Evaluation verwendet. Hierdurch wird das Ziel der
Durchfiihrung eines Vergleichs mit existierenden Ansitzen verfolgt. In
der Bewertung von beiden Katalogen wird an geeigneter Stelle auf die In-
halte des zuvor eingefiihrten Szenarios zuriickgegriffen. Der zweite Teil
der Evaluation gliedert sich nachfolgend so, dass zunéchst verschiedene
Kriterienkataloge in Abschnitt 7.2 vorgestellt werden. Ergénzend werden
in Abschnitt 7.3 die Bewertungseinheit sowie grundséitzliche Annahmen
fiir die Bewertung zuvor eingefiihrter Kriterien beschrieben. Die Ergeb-
nisse der Evaluation werden in Abschnitt 7.4 veranschaulicht. Das Kapitel
schliefit in Abschnitt 7.5 mit einer kritischen Diskussion hinsichtlich der

Giiltigkeit der vorgestellten Evaluation ab.

7.1 Szenario flr flexible und anpassbare Prozesse

Die in dieser Arbeit beschriebenen Konzepte wurden bisher lediglich in
Form von Beispielen zur generellen Verdeutlichung der schematischen
Funktionsprinzipien erldutert. Daher wird in diesem Abschnitt ein Szena-
rio beschrieben, in dem die Gestaltung von Flexibilitdt in Prozessen an pra-
xisorientierten Beispielen veranschaulicht wird. Hierdurch werden zwei
wesentliche Ziele verfolgt. Zum einen soll ein beispielhafter Ausschnitt fiir
die Verwendung der erarbeiteten Konzepte dargestellt werden, wodurch
ein vereinfachter transdisziplindrer Transfer sowie die Ermoglichung ei-

Evaluation Seite 213

nes tieferen Verstdndnisses der vorgestellten Konzepte adressiert werden.
Zum anderen dient das Szenario aber auch der Argumentation in Bezug
zur Bewertung von Kriterien in weiteren Teilen der Evaluation (siehe Ab-
schnitt 7.2.1 bis Abschnitt 7.2.2). Eine schematische Ubersicht iiber das hier
betrachtete Szenario ist in Abbildung 7-2 dargestellt.

Unassemble Assemble Parts
Parts [

Fall 1:
Workspace Temperature
Management

Worker

Separation of Business and Check

Adaptivity Logic

€
©
()
Fall 2: o |
Human Performer 2 !
Workload Management c(cl: I
|
El. I
28|
o Ready for
Fall 3: = Quality
I
I
.

Jeder der hier aufgefiihrten Falle (engl. Case) handelt im Kontext eines ge-
meinsamen Hauptprozesses. Der hier verwendete Hauptprozess Human-
Robot-Team spielt in einem mittelstdndischen Unternehmen, in dem trotz
zunehmender Automatisierung die Endmontage von Produkten vornehm-
lich manuell durchgefiihrt wird. Dabei handelt es sich um eine Beschrei-
bung von Ablédufen in einem sogenannten Shared-Workspace. Ein Shared-
Workspace ist eine spezielle Arbeitsumgebung, in der sowohl menschliche
als auch technisierte Akteure, wie z.B. ein IT-gestiitztes Assistenzsystem
oder ein Roboter, kollaborativ tétig sind.

Die in der Arbeitsplatzumgebung notwendigen Funktionen innerhalb der
relevanten geschiftlichen Abldufe konnen dabei durch die menschlichen
oder technisierten Akteure exklusiv oder kooperativ durchgefiihrt werden.
Hiervon koénnen z.B. die Assistenz in Arbeitsabldufen, die Aufgabenpla-
nung oder eine damit verbundenen Entscheidungsfindung betroffen sein.
Das Ziel des hier dargestellten Hauptprozesses im Shared-Workspace ist
durch die Montage von Bauteilen eines Produktes und der anschliefSen-
den Qualitdtssicherung gegeben. Die Montage durch die Rolle Worker ist
hier durch den Subprozess Assemble Parts dargestellt. Sobald die Montage
abgeschlossen ist, tibernimmt die Rolle Robot die Qualitédtssicherung (Run
Quality Check). Der Prozess terminiert, wenn die Qualitdt in Ordnung ist.
Im alternativen Fall tibernimmt die Rolle Worker die Aufgabe der Demon-
tage (Unassemble Parts). Die dargestellte Endmontage findet dabei an Ar-
beitsstationen im Rahmen des Shared-Workspace statt.

Abbildung 7-2:
Schematische Ubersicht
iiber das betrachtete Sze-
nario

Fall 1: Workspace
Temperature Management
(WTM)

Fall 2: Human Performer
Workload Management
(HPWM)

Seite 214 Kapitel 7

Wie zu Beginn dieser Arbeit motiviert, steht in dem betrachteten Szena-
rio dabei insbesondere die Flexibilisierung beteiligter Prozesse im Vorder-
grund, sodass neben der eigentlichen Funktion des Gesamtsystems — der
Fertigung — auch bedarfsorientierte Anpassungen von Eigenschaften der
beteiligten Prozesse sowie ihrer Umgebung unterstiitzt werden. Wesentli-
che Teile des Szenarios wurden dabei in verschiedenen Publikationen be-
reits eingefiihrt [Eng+18; ET18; EST18].

Die Relevanz fiir die Praxis der im Folgenden betrachteten Félle des Szena-
rios wurde auf Basis von Gesprdchen mit Experten aus Wissenschaft und
Industrie in verschiedenen Workshops im Rahmen des NRW Fortschritts-
kollegs , Gestaltung von flexiblen Arbeitswelten” identifiziert. Nachfolgend
werden die einzelnen Fille 1 bis 3 zunédchst vorgestellt. Die nachfolgen-
de Beschreibung der Fille kann als der erste Schritt der Methode Adapt Ca-
ses 4 BPM in Form einer Anforderungsanalyse betrachtet werden (siehe Ab-
schnitt 6.2.1). So enthalten die Beschreibungen nattirlichsprachliche Anfor-
derungen, die durch weitere Schritte der Methode in Form der High-Level-
Gestaltung und Low-Level-Gestaltung anschliefend umgesetzt werden.

Im ersten Fall wird zunédchst angenommen, dass aufgrund von rechtlichen
Bestimmungen die Temperatur in Arbeitsumgebungen tiberwacht werden
muss. Kommt eine zu hohe Temperatur auf, sollen geeignete Mafinahmen
zur Entlastung von menschlichen Akteuren durchgefiihrt werden. Fiir den
hier betrachteten Shared-Workspace soll eine Anpassung am Hauptprozess
durchgefiihrt werden, sobald die Temperatur hoher als 24 Grad Celsius
betrdgt. Als anzuwendende Mafinahme in einem solchen Fall wurde ein
Wechsel der aktuell zugewiesenen menschlichen Akteure festgelegt. So
soll die Zuweisung eines menschlichen Akteurs alle 20 Minuten gedndert
werden. Ein zuvor aktiver und anschlieffend ausgetauschter menschlicher
Akteur kann so die Zwischenzeit nutzen, um sich im Pausenraum zu er-
holen.

Im Rahmen des zweiten Falls soll eine weitere Funktion zur Menschenzen-
trierung des Hauptprozesses unterstiitzt werden. So soll die physische Ar-
beitsbelastung eines menschlichen Akteurs auf Basis seiner Herzfrequenz
und seiner zuvor bereits erstellten individuellen Arbeitslastprofile beob-
achtet werden. Tritt die Situation einer Uberlastung auf, so wird der Pro-
zess angepasst, indem ein anderer zur Verfiigung stehender menschlicher
Akteur zugewiesen wird. Neben dieser automatisierten Auslosung einer
Anpassung soll aber auch manuell eine Zuweisung eines ablosenden Ak-
teurs angestofSen werden konnen.

Evaluation Seite 215

In Fall 1 und Fall 2 sind vor allem potentielle Ausloser aus der Umgebung
des Prozesses fiir eine Anpassung angedacht. Dartiber hinaus kann es aber
auch sinnvoll sein, bestehende Prozesse hinsichtlich ihrer bisherigen Um-
setzung von verschiedenen Aspekten von Flexibilitiat zu untersuchen und
ggf.im Rahmen der Verbesserung von Prozessen anzupassen. Eine derarti-
ge Anpassung kann damit als evolutionar hinsichtlich zukiinftiger Instan-
zen des Hauptprozesses betrachtet werden. Der hier betrachtete Haupt-
prozess enthélt dabei eine Schleife, in die gewechselt wird, falls die Qua-
litat des montierten Produktes nicht ausreichend ist. Diese Schleife kann
als Aspekt Iteration von Flexibility-by Design verstanden werden. Auf eine
beispielhafte Gestaltung wurde in Abschnitt 5.2.3 eingegangen. Im dritten
Szenario wird daher eine Umstrukturierung des bestehenden Hauptpro-
zesses beschrieben, indem eine Trennung der Anwendungs- von der An-
passungslogik vorgenommen wird.

Fiir die zuvor beschriebenen Félle 1 und 2 wird ferner angenommen, dass
neben einer Gestaltung, in der ein menschlicher Akteur selbst eine An-
passung anstofien kann, auch insbesondere die automatisierte und regel-
basierte Umsetzung gefordert ist. Hierfiir kann es auch in der Praxis ver-
schiedene Griinde geben. So kann zum einen mit der Art und dem Umfang
der Téatigkeiten, die durch menschliche Akteure auszufiihren sind, eine be-
sonders hohe Konzentration gefordert sein. Hier konnten Uberforderun-
gen der menschlichen Akteure eintreten, wenn bspw. die Uberwachung
der kontextuellen Temperatur des Shared-Workspace zusidtzlich gefordert
werden wiirde. Zum anderen ist es aber auch moglich, dass menschliche
Akteure nur eingeschrianktes Wissen {iber rechtliche Regularien hinsicht-
lich ihrer Arbeitsumgebung verfiigen und somit nicht in der Lage sind
oder nicht die Befugnisse haben, entsprechende Mafinahmen selbststandig

auszufiihren.

Die beiden zuvor genannten Griinde werden zusétzlich bestarkt, wenn
man in Betracht zieht, dass eine Vielzahl von verschiedenen Umgebungs-
faktoren den sicheren und menschenzentrierten Betrieb der Fertigung be-
dingen konnen. Die Beobachtung von sich stetig &ndernden Umgebungs-
faktoren allein auf menschlicher Basis birgt somit die Gefahr der Uberfor-
derung menschlicher Akteure und damit die Gefdhrdung eines sicheren
Betriebs. Eine Automatisierung der Beobachtung von sich &ndernden Um-
gebungsfaktoren sowie der anschliefenden Auswahl von moglichen An-
passungen der beteiligten Prozesse bzw. ihrer Umgebung kann daher in
diesem Bezug als Erleichterung, wenn nicht sogar als einzige Moglichkeit
verstanden werden, einer potentiell hohen Anzahl an moglichen Umge-

Fall 3: Separation of
Business and Adaptivity
Logic (50C)

Auslosung des WITM
und HPWM

Komplexitét des
Hauptprozesses

Seite 216 Kapitel 7

bungsfaktoren, Entscheidungen und nachfolgenden Anpassungen gerecht
zu werden. Dennoch konnen vereinzelte Interaktionen zwischen mensch-
lichen Akteuren mit ihrer Umgebung als sinnvoll erachtet werden. So kon-
nen stets unvorhergesehene Ereignisse — auch Ausnahmen genannt — An-
passungen notwendig machen, die im Rahmen der regelbasierten Auto-
matisierung nicht behandelt werden kénnen. Alternativ lassen sich aber
auch bestimmte Umgebungsfaktoren nur schwer oder nicht durch beste-
hende Techniken erfassen, sodass es oftmals leichter ist, den Menschen als
Entscheidungstréger eintreten zu lassen, um eine Anpassung manuell aus-
zulgsen. Ein Beispiel hierfiir ist im Fall 2 enthalten. Hier konnen menschli-
che Akteure auch manuell eine Zuweisung eines ablosenden Akteurs aus-
losen.

Ein weiterer Hinweis fiir die betrachteten Félle muss in Bezug zur ent-
haltenen Komplexitit gegeben werden. So handelt es sich bei dem vorlie-
genden Hauptprozess um einen auf den ersten Blick simplen Ablauf von
nur wenigen Tasks. Man konnte also zunédchst annehmen, dass der Pro-
zess Human-Robot-Team fiir eine Evaluation eher ungeeignet scheint. Dem
kann auf Basis gesetzter Anforderungen an die erarbeitete Losung jedoch
widersprochen werden.

So beschiftigt sich der vorliegende Ansatz vornehmlich mit der Anforde-
rung des Separation-of-Concerns hinsichtlich der Anpassungs- und Anwen-
dungslogik. Dies bedeutet, dass diese einzelnen Aspekte eines Prozesses
getrennt gestaltet werden. Das Bindeglied bildet hierbei eine Regel, die
ereignisbasiert bzw. zeitgesteuert ausgelost werden kann. Dabei wird zu-
néchst im Rahmen eines Beobachtungsprozesses eine Analyse von Umge-
bungsfaktoren vorgenommen. Anschliefend wird eine Entscheidung fiir
die Auswahl von vordefinierten MafSnahmen getroffen. Derartige Maf3-
nahmen liegen in Form von Anpassungsprozessen vor. Der Ansatz stellt
somit eine Moglichkeit dar, in Anlehnung an das Paradigma MAPE-K
[KCO03], eine Regel in der Form Wenn-Dann bzw. Wenn-Dann-Anders zu
definieren. Dabei wird bereits bei einer Analyse des Ansatzes Adapt Cases
nach Luckey [LE13] deutlich, dass weder Fahigkeiten hinsichtlich der Funk-
tion — wie z.B. fortgeschrittene Analysetechniken zur Beobachtung — noch
konkrete Handlungsempfehlungen fiir durchzufiihrende Mafinahmen im
Fokus stehen. Diese konnen sowohl in dem Ansatz Adapt Cases als auch in
dem Ansatz Adapt Cases 4 BPM in spéteren Phasen der Gestaltung durch
etwaige Verfeinerungen hinzugeftigt werden.

Der Ansatz soll vielmehr die Gestaltung und Analyse von Prozessen da-
hingehend unterstiitzen, dass, wenn eine getrennte Gestaltung der bei-

Evaluation Seite 217

den Logiken gefordert ist, sie fiir die Domédne BPM und fiir dort iibli-
che Konzepte durch den Ansatz Adapt Cases 4 BPM méglich ist. Die Kom-
plexitdt des Hauptprozesses Human-Robot-Team und der zugehorigen Fal-
le des Szenarios kann daher als angemessen betrachtet werden, da veran-
schaulicht wird, wie die Trennung der Anpassungs- und Anwendungslo-
gik durchgefiihrt werden kann. Ferner wird angenommen, dass ein Uber-
trag auf Prozesse aus der Praxis dadurch unterstiitzt werden kann, dass
die in den Abschnitten 7.1.2 bis 7.1.4 gegebenen praxisnahen Beispiele als
Leitfaden verwendet werden konnen. Da die in dieser Arbeit vorgestellten
Konzepte zur Gestaltung von flexiblen und anpassbaren Prozessen vielfél-
tig sind, konnen nur ausgesuchte Elemente der Sprache ACML4BPM sowie
von passenden Entwurfsmustern im Rahmen der Evaluation berticksich-
tigt werden. Sie stehen dabei stellvertretend als Leitfaden fiir den Ubertrag
auf Prozesse aus der Praxis.

Das Vorgehen folgt der in Kapitel 6 beschriebenen Methode Adapt Cases
4 BPM. In Bezug zu den zuvor eingefiihrten Féllen des Szenarios werden
zundchst in Abschnitt 7.1.1 relevante System- und Umgebungskomponen-
ten als Teil eines gemeinsamen AVM4BPM (siehe Abschnitt 4.3) beschrie-
ben. Das AVM4BPM stellt eine Sicht auf das Gesamtsystem aus der Per-
spektive der Anpassungslogik dar. Es wird zun&dchst im Rahmen der High-
Level-Gestaltung erstellt und im Rahmen der Low-Level-Gestaltung verfei-
nert (siehe Abschnitt 6.1). Auf die Verfeinerung des im Rahmen des Sze-
narios beschriebenen AVM4BPM wird jedoch verzichtet, da es sich hierbei
um eine Korrekturmafinahme in einem realen Vorgehen handelt. In den
nachfolgenden Abschnitten 7.1.2 bis 7.1.4 wird auf die jeweiligen Félle des
Szenarios in Form einer spezifischen Gestaltung durch ein ACM4BPM ein-
gegangen (siehe Abschnitt 4.2). Fiir jeden Fall des Szenarios wird dabei
das Resultat von sowohl der High-Level-Gestaltung als auch der Low-Level-
Gestaltung von prozessspezifischen Aspekten dargestellt (siehe Kapitel 6).

7.11 Die Arbeitsumgebung Human-Robot-Team

Damit flexible und anpassbare Prozesse im Rahmen der Methode Adapt
Cases 4 BPM beschrieben werden konnen, ist die Gestaltung von einem
fiir die Arbeitsumgebung Human-Robot-Team zugehorigen AVM4BPM not-
wendig (siehe Abschnitt 4.3). Dabei wurde sich an der Beschreibung der
einzelnen Fille des Szenarios orientiert, die sich jeweils auch als nattirlich-
sprachliche Anforderungen auffassen lassen (siehe Abschnitt 6.2.1). In Ab-
bildung 7-3 ist ein Ausschnitt des fiir die Arbeitsumgebung Human-Robot-
Team gestalteten AVM4BPM dargestellt. Es ldsst sich dabei in die beiden

Plausibilisierung
der Methode
Adapt Cases 4 BPM

Seite 218 Kapitel 7

Teile System und Environment unterteilen, deren Komponenten, Sensoren,
Ereignisse und Daten nachfolgend beschrieben werden.

Abbildung 7-3: {5 ctem \
AVM4BPM fiir die : ProcessRepository % mc | processRepository Workflow-Engine % EC | :

. | *
Arbe1tsumgebung | +getProcessModel(ID) : ProcessModel +getActiveTask(ProcessID) : Task :
! |
Human—Robot-Team l\ * processes/'

I Environment \
| |
|
: Performer % ENV ” |
| |
| |
| |
| = robot |
| Robot Shared-Workspace % ENV | |
| 1 |
: +getNextAvailableHumanPerformer() : performer :
| l
! I
: HumanPerformer % ENV | workers | |
|
| |
|| +name : string 0.3 : :
: +isAvailable : boolean | |
|
| T |
I | I | I
L TTT T T T T | !
I ! A ! I
| |
| \7 v <7 |
| «sensor» «sensor» «sensor» :
| .
I Heartrate HumanMachinelnterface |- — — Temperature I
| |
: heartrate : integer | temperature : integer |
| range : 0.. 230 : range : 10 .. 50 :
| . .
| step: 1 «AdaptationRequestEvent» | step:1 |
. | |
: +getHeartrate() : integer ManualReallocationRequest < — +getTemperature() : integer |
: +getWorkloadProfile() : integer +id : integer :
| |
| |
| |
| |
| |
| |
| |
| «AdaptationDataObject» «AdaptationDataObject» «AdaptationDataObject» :
: WorkloadProfile CurrentHeartrate CurrentTemperature |
|
: +id : integer +id : integer +id : integer |
| | +maxValue : integer +value : integer +value : integer :
|
A /

Beschreibung des Systems In dieser Arbeit stehen Prozesse im Fokus, sodass die zugehorigen System-
komponenten ProcessRepository und WorkflowEngine verwendet werden.
Durch die Systemkomponente ProcessRepository werden alle Modelle von
Prozessen gekapselt. Auf Prozessmodelle kann durch die Methode getPro-
cessModel(ID) unter Angabe eines eindeutigen Identifizierers (ID) zugegrif-
fen werden. Als zweite wesentliche Systemkomponente wird Workflow-
Engine verwendet. Sie steht fiir eine Ausfiihrungsumgebung. In ihr werden
auf Basis der in der Systemkomponente ProcessRepository gekapselten Pro-
zessmodelle benotigte Prozessinstanzen erstellt und ausgefiihrt.

Beschreibung der Die Umgebung des Hauptprozesses wird in Abbildung 7-3 durch die Um-

Umgebung des Systems g alungskomponente Shared-Workspace dargestellt. Ferner existieren ver-

schiedene Komponenten aus der Umgebung des Hauptprozesses, die als

Evaluation Seite 219

Teil des Shared-Workspace betrachtet werden miissen. Diese werden durch
die Komponenten Robot und HumanPerformer dargestellt. Bei diesen bei-
den Komponenten handelt es sich um eine Beschreibung von am Prozess
beteiligten Akteuren (hier: Performer) Die Umgebungskomponente Robot
kapselt Inhalte des in der Montage eingesetzten Roboters. Da keine Anpas-
sungen auf Basis dieser Inhalte durchgefiihrt werden sollen, implementiert
diese Komponente keine Schnittstellen und ist daher nur der Vollstindig-
keit halber dargestellt. Die Umgebungskomponente HumanPerformer steht
stellvertretend fiir einen menschlichen Akteur und kapselt fiir die Anpas-
sung relevante Inhalte. So konnen verschiedene Informationen wie die ak-
tuelle Verfiigbarkeit eines menschlichen Akteurs und sein Name abgeru-
fen werden. Hierfiir stehen die Attribute isAvailable vom Typ boolean bzw.
name vom Typ String zur Verfligung. Insgesamt konnen im Rahmen des
Shared-Workspace bis zu drei menschliche Akteure eingesetzt werden.

Die Umgebungskomponente Shared-Workspace implementiert eine Sensor-
schnittstelle (Temperature), die den Zugriff auf die aktuelle Temperatur der
Arbeitsumgebung sicherstellt. Dabei wird in der Gestaltung der zugehori-
gen Prozesse ein Zugriff auf diese Eigenschaft durch das Element vom Typ
AdaptationDataObject mit der Bezeichnung CurrentTemperature ermoglicht.

Die Komponente HumanPerformer implementiert die beiden Sensorschnitt-
stellen Heartrate und HumanMachinelnterface. Durch den Sensor mit der Be-
zeichnung Heartrate wird der Zugriff auf die aktuelle Herzfrequenz eines
menschlichen Akteurs ermoglicht. In der spateren Gestaltung des zuge-
horigen ACM4BPM kann das Element vom Typ AdaptationDataObject mit
der Bezeichnung CurrentHeartrate verwendet werden, um auf aktuelle Da-
ten zuzugreifen. Ferner ist das personliche Belastungsprofil durch das Da-
tenobjekt mit der Bezeichnung WorkloadProfile zugreifbar. Zur Vereinfa-
chung enthilt das Belastungsprofil an dieser Stelle lediglich ein Attribut
zur Kennzeichnung eines individuellen maximalen Wertes fiir die Herz-
frequenz (maxValue). In einer realen Anwendung lassen sich hier selbstver-
standlich auch komplexere Belastungsprofile beschreiben, deren Verwen-
dung im Rahmen der Evaluation jedoch den Fokus zu sehr verschieben
wiirden. Durch den Sensor mit der Bezeichnung HumanMachinelnterface
wird das Auslosen eines Ereignisses von Typ AdaptationRequestEvent mit
der Bezeichnung ManualReallocationRequest ermoglicht. Dieses Ereignis ist
fiir die Auslosung eines manuellen Wechsels des zugewiesenen menschli-
chen Akteurs bestimmt.

Das zuvor beschriebene AVM4BPM bietet ein mogliches Beispiel fiir die
Gestaltung von relevanten Teilen des betrachteten Systems und seiner Um-

Sensor fiir die Temperatur

Sensoren fiir die
Herzfrequenz und die
manuelle Interaktion

Abbildung 7-4:
AC4BPM fiir das
Workspace Tempe-
rature Management

Seite 220 Kapitel 7

gebung, sodass die Gestaltung von flexiblen und anpassbaren Prozessen
durch das Konzept Adapt Case 4 BPM in Bezug zu den verschiedenen Fil-
le des Szenarios ermoglicht werden kann. In den nachfolgenden Abschnit-
ten 7.1.2 bis 7.1.4 wird die Verwendung dieser Elemente im Rahmen von
Beobachtungs- und Anpassungsprozessen der einzelnen Fille des Szena-
rios gezeigt.

7.1.2 Fall 1: Workspace Temperature Management

In dem ersten Fall soll eine Anpassung an dem Hauptprozess beim Uber-
schreiten einer vordefinierten Temperatur in dem Shared-Workspace durch-
gefiihrt werden. Hierzu ist in Abbildung 7-4 die Gestaltung des zugeho-
rigen AC4BPM Workspace Temperature Management (WTM) dargestellt. Es
wurde sich fiir eine integrierte Darstellung der High-Level-Gestaltung und
der Low-Level-Gestaltung entschieden. Hierdurch soll der Zusammenhang
von Elementen aus unterschiedlichen Aktivitaten der Methode Adapt Ca-
ses 4 BPM verdeutlicht werden. So wird sowohl der AC4BPM des WTM
als auch seine Verfeinerung in Form der zugehorigen Beobachtungs- und
Anpassungsprozesse gezeigt.

o «AC4BPM»
s «adapts»
2 Workspace Temperature -———— Assemble Parts
g Management
Q
Q
< Human
? Each 20 minutes «adapts» Performer
_-é' —————— Unassemble Parts
o0
I
SwitchPerformer|
g
3 Monitoring Process Adaptation Process
©
kA
& @ Each 20 minutes =N = N\
T‘J i e X | node
E Instance : : | Property
g : :
3 b, Pl : : ‘Performer”
S 4’0
=N Pl .

node
Element

[Shared-Workspace.
getTemperature() > 24] Workflow-Engine.
getActiveTask()

5 O px
PrOperty [+rsserssesseessensennenns
Value

adaptationProcess = roredworko] "
‘SwitchPerformer’ aredWorkplace.

getNextAvailableHumanPeformer().name

Evaluation Seite 221

Durch die High-Level-Gestaltung wird hier ein AC4BPM mit der Bezeich-
nung Workspace Temperature Management beschrieben. Das WTM stellt die
Funktion zur Anpassung des Hauptprozesses im Rahmen von Fall 1 dar.
Es wurde sich dafiir entschieden, dass die Funktion WTM zeitbasiert alle
20 Minuten ausgefiihrt werden soll. Es lassen sich auch alternative Inter-
valle je nach Anforderung an die Aktualitdt der Priifung definieren. Da-
bei treten im Fall der Notwendigkeit einer Anpassung mogliche Anpas-
sungen an den Funktionen der Hauptprozesse Assemble Parts bzw. Unas-
semble Parts statt. Die beiden genannten Funktionen werden dabei durch
einen menschlichen Akteur ausgefiihrt, welcher hier dargestellt ist durch
den Akteur Human Performer.

Durch die Low-Level-Gestaltung wird der AC4BPM der Funktion WTM
durch einen Beobachtungs- und Anpassungsprozess verfeinert. Der hier
dargestellte Beobachtungsprozess beschreibt dabei das vorgesehene Ver-
halten fiir die Priifung, ob die zuldssige maximale Temperatur zu einem
Zeitpunkt tiberschritten ist. Féllt die Priifung negativ aus, so terminiert
der Beobachtungsprozess und es wird keine Anpassung am Hauptprozess
ausgefiihrt. Im positiven Fall terminiert der Beobachtungsprozess eben-
falls. Dabei wird jedoch zuvor der dargestellte Anpassungsprozess mit
der Bezeichnung SwitchPerformer aufgerufen. Dieser Beobachtungsprozess
beschreibt das Verhalten zur Anpassung des Hauptprozesses. Hier wird
also ein aktuell zugewiesener menschlicher Akteur durch einen anderen
ersetzt. Dabei wird eine der in Abschnitt 4.3.3 vorgestellten Operationen
zur Anpassung von Prozessen verwendet. So wird die Operation Modify-
PropertyOfNode eingesetzt, um das Attribut Performer des aktuell aktiven
Tasks so zu setzen, dass ein noch nicht zugewiesener menschlicher Ak-
teur zugeordnet wird. Die benétigte Anpassung ist mit dieser Zuweisung
anschlieffend abgeschlossen.

Das zuvor beschriebene Verhalten des WTM setzt die in Abschnitt 7.1 be-
schriebene Funktionalitdt in Form ausgesuchter Losungsbestandteile die-
ser Arbeit um. So wird zeitgesteuert eine Priifung der Temperatur durch-
gefiihrt und im Bedarfsfall ein Wechsel von zugewiesenen menschlichen
Akteuren im Shared-Workspace durchgefiihrt.

Der zuvor beschriebene AC4BPM des WTM sowie seine Verfeinerungen,
hier gegeben durch den Beobachtungs- und Anpassungsprozess, stellen
ein erstes kleines aber praxisnahes Beispiel zum Zweck der Plausibili-
sierung der vorgestellten Losung dar. Selbstverstiandlich konnen weite-
re Eigenschaften des Systems und seiner Umgebung bei einer Anpas-
sung im Rahmen des WTM berticksichtigt werden, sofern sie zuvor dem

High-Level-Gestaltung
des WIM

Low-Level-Gestaltung
des WIM

Ergédnzung

Abbildung 7-5:
AC4BPM fiir das
Human Performer
Workload Management

Seite 222 Kapitel 7

AVM4BPM hinzugefiigt worden sind. Aufgrund einer gesteigerten Uber-
sichtlichkeit wurde sich jedoch dagegen entschieden, derartige Details hier
darzustellen, da sie lediglich eine Wiederholung gleicher grundsétzlicher
Mechanismen darstellen. Fiir weiterfiihrende Beispiele wird auf die nach-
folgenden Félle des Szenarios (siehe Abschnitte 7.1.3 und 7.1.4) verwiesen.

713 Fall 2: Human Performer Workload Management

Der zweite Fall beschiftigt sich mit Eigenschaften eines menschlichen Ak-
teurs, der im Rahmen des Shared-Workspace zu einem Zeitpunkt tétig ist.
Dabei soll ein Wechsel von menschlichen Akteuren durchgefiihrt werden,
sobald eine Uberbelastung des aktuell zugewiesenen menschlichen Ak-
teurs entweder automatisiert erkannt oder manuell angezeigt wird. Hier-
zu ist in Abbildung 7-5 erneut eine integrierte Darstellung gegeben, die
sowohl die High-Level-Gestaltung als auch die Low-Level-Gestaltung des er-
stellten AC4BPM fiir das Human Performer Workload Management (HPWM)

zeigt.
Analyze : «AC4BPM»
«include» «adapts»
Workload — — ——~ Human Performer Workflow)- — === Assemble Parts

» Profile Management

S

=

g Each 30 seconds Human
] «adapts» Performer

o L EE

E Manual

3 Reallocation Q

= Request

20

I

SwitchPerformer I

g

3 Monitoring Process Adaptation Process l
s

3 Each 30

0] seconds

]

H Analyze

b Workload

E profile]

-

«BP

Environment Environment

[95|B) == JaWI04IDJYOUMS]

DataObject» DataObject»
Workload Current
Profile Heartrate

O

Manual
Reallocation
Request

O

adaptationProcess =
‘SwitchPerformer’

Evaluation Seite 223

Durch die High-Level-Gestaltung wird hier ein AC4BPM mit der Bezeich-
nung Human Performer Workspace Management beschrieben. Das HPWM
stellt die Funktion zur Anpassung des Hauptprozesses im Rahmen von
Fall 2 dar. Das HPWM kann dabei sowohl zeitbasiert als auch ereignis-
basiert aufgerufen werden. Der zeitbasierte Aufruf der Funktion HPWM
wird alle 30 Sekunden durchgefiihrt. Analog zum WTM sind auch hier
alternative Intervalle moglich. Ein Aufruf durch das Ereignis mit der Be-
zeichnung ManualReallocationRequest représentiert die manuelle Auslo-
sung einer neuen Zuordnung eines menschlichen Akteurs. So ist in weite-
ren Verfeinerungen des Modells denkbar, dass dieses Ereignis im Rahmen
der Verwendung einer Benutzerschnittstelle, wie z.B. auf einem mobilen
Endgerit, erzeugt und an die Komponente WorkflowEngine weitergereicht
wird.

Im Fall der Notwendigkeit einer Anpassung sollen abermals die Funktio-
nen des Hauptprozesses Assemble Parts und Unassemble Parts angepasst
werden. Die beiden genannten Funktionen werden dabei durch einen
menschlichen Akteur ausgefiihrt, welcher hier dargestellt ist durch den
Akteur Human Performer. Im Vergleich zu Fall 1 wird die weitere Funkti-
on mit der Bezeichnung Analyze Workload Profile in Fall 2 verwendet. Die-
se Funktion wird zur Analyse der aktuellen Belastung eines zugewiese-
nen menschlichen Akteurs verwendet und ist Teil des hier beschriebenen
AC4BPM HPWM. Dabei wird angenommen, dass diese Funktion selbst
durch einen IT-basierten Dienst ausgefiihrt wird. Ein solcher Dienst kann
z.B. im Kontext eines Anwendungsservers existent sein. Auf die Beschrei-
bung eines zugehorigen Akteurs wurde dabei verzichtet, da der Dienst als
auflerhalb der Sicht des Adaptivity Engineering betrachtet werden kann und
derartige Umstande nur fiir Referenzzwecke Teil eines ACM4BPM sind.

Durch die Low-Level-Gestaltung wird der AC4BPM der Funktion HPWM
durch einen Beobachtungs- und Anpassungsprozess verfeinert. Der hier
dargestellte Beobachtungsprozess beschreibt dabei das vorgesehene Ver-
halten fiir die Priifung, ob eine Uberlastung des derzeit aktiven mensch-
lichen Akteurs besteht. Im Fall eines zeitgesteuerten Aufrufs wird durch
den Task mit der Bezeichnung AnalyzeWorkloadProfile die derzeitige Belas-
tung des menschlichen Akteurs tiberpriift. Ein Zugriff auf Eigenschaften
der Komponente mit der Bezeichnung HumanPerformer ist dabei durch die
beiden Datenobjekte mit der Bezeichnung WorkloadProfile und CurrentHe-
artrate dargestellt. Fallt die Priifung negativ aus, so terminiert der Beob-
achtungsprozess und es wird keine Anpassung am Hauptprozess ausge-
fiihrt. Eine im Rahmen des Tasks durchgefiihrte Uberpriifung kénnte im
einfachsten Fall dadurch gegeben sein, dass der aktuelle Wert der Herz-

High-Level-Gestaltung
des HPWM

Low-Level-Gestaltung
des HPWM

Ergdnzung

Seite 224 Kapitel 7

frequenz nicht tiber dem im WorkloadProfile hinterlegten Wert liegen darf.
Wie bereits angedeutet stellt dieser Task im Rahmen der Evaluation ledig-
lich ein einfaches Beispiel dar. Weiterfithrende Analysemethoden lassen
sich durch eine Verfeinerung des Tasks und der eingesetzten Datenobjekte
umsetzen.

Im alternativen Fall eines ereignisbasierten Aufrufs des HPWMs wird
keine Analyse von Umgebungsfaktoren durchgefiithrt. Hier wird ange-
nommen, dass eine manuelle Anzeige einer Uberbelastung durch einen
menschlichen Akteur hinreichend aussagekréftig ist. Daher wird der be-
reits durch das WTM bekannte Anpassungsprozess mit der Bezeichnung
SwitchPerformer direkt aufgerufen. Auf eine Beschreibung dieses Anpas-
sungsprozesses wird an dieser Stelle verzichtet und auf Abschnitt 7.1.2

verwiesen.

Das zuvor beschriebene Verhalten des HPWM setzt die in Abschnitt 7.1
beschriebene Funktionalitdt in Form ausgesuchter Losungsbestandteile
dieser Arbeit um. So ist es moglich, im Bedarfsfall einen Wechsel von
zugewiesenen menschlichen Akteuren im Shared-Workspace auf unter-
schiedliche Arten durchzufiihren. Dabei wird sowohl eine automatisier-
te als auch eine manuelle Variante unterstiitzt. Der zuvor beschriebene
AC4BPM des HPWM sowie seine Verfeinerungen, hier gegeben durch den
Beobachtungs- und Anpassungsprozess, stellen ein weiteres Beispiel zum
Ziel der Plausibilisierung der vorgestellten Losung dar. Auch hier konnen
weitere Eigenschaften des Systems und seiner Umgebung bei einer An-
passung im Rahmen des HPWM berticksichtigt werden, sofern sie zuvor
dem AVM4BPM hinzugefiigt worden sind.

71.4 Fall 3: Separation of Business and Adaptivity Logic

Der letzte im Rahmen der Evaluation betrachtete Fall des Szenarios be-
schiftigt sich mit der Umstrukturierung von bestehenden Prozessen hin-
sichtlich der Trennung von Anpassungs- und Anwendungslogik. Hierzu
soll der in Abbildung 7-2 eingefiihrte Hauptprozess Human-Robot-Team so
umstrukturiert werden, dass die beiden genannten Aspekte unter Verwen-
dung der Sprache ACML4BPM getrennt voneinander gestaltet werden.
Zuvor miissen hierfiir jedoch Elemente der beiden Logiken identifiziert
werden. Hierzu ist in Abbildung 7-6 das Ergebnis einer durchgefiihrten
Analyse gezeigt. Elemente der Anpassungslogik sind in der Farbe Griin
und Elemente der Anwendungslogik in der Farbe Blau hinterlegt darge-
stellt.

Evaluation Seite 225

Anwendungslogik Unassemble Assemble Parts
. Parts
[
<
o
=
1S
©
o 4
'—I T
g
Qo
o I
o< I
< I
o I
Ela|
£|5|
S | Ready for
e : Quality
| Check
I
ol
Anpassungslogik

Der Prozess enthilt dabei nicht nur Funktionen zur Montage und der
Qualitdtssicherung. So ist in Abhdngigkeit zum dargestellten Qualitéts-
bericht (Report) auch eine Funktion zur Demontage vorgesehen, in deren
Anschluss die Montage erneut beginnt. Dies kann als eine spezielle Art
von Flexibility-by Design in Form des Aspekts Iteration verstanden werden
(siehe Abschnitt 5.2.3). Im Rahmen des Aspekts Iteration konnen bestimmte
Funktionen eines Ablaufs iterativ ausgefiihrt werden. Das dargestellte Ver-
halten fiir die Qualitédtssicherung stellt dabei die Bedingung fiir die Durch-
fihrung einer weiteren Iteration dar. Das Verhalten in Form des Tasks Un-
assemble Parts stellt Verhalten zur Riickabwicklung von Verhalten der An-
wendungslogik in Form des Subprozesses Assemble Parts dar.

In bestehenden Prozessen kann Flexibilitdt wie zuvor beschrieben in ver-
schiedenen Formen vorkommen. Soll das Adaptivity Engineering als metho-
discher Rahmen zur Umstrukturierung von Prozessen eingesetzt werden,
so sollten deren Modelle, Instanzen und Prozesshistorien sorgfiltig analy-
siert werden. Hierdurch kann eine Verbesserung der Prozesse aus Sicht des
Adaptivity Engineering in zukiinftigen Iterationen des BPM-Lebenszyklus
unterstiitzt werden. Ein exemplarisches Resultat einer solchen Verbesse-
rung hinsichtlich der zuvor gegebenen Analyse ist in Abbildung 7-7 dar-
gestellt.

Die durch die Umstrukturierung vorgenommene Verbesserung fiihrt da-
bei auf der Ebene der High-Level-Gestaltung sowohl einen neuen AC4BPM
mit der Bezeichnung Check Product Quality ein als auch eine Funktion mit
der Bezeichnung Run Quality Check. Bereits zuvor vorgestellte Funktionen
der Montage sind hier durch die Funktionen Assemble Parts und Unassem-
ble Parts dargestellt. Dabei wird jedoch die Funktion Unassemble Parts nicht
mehr als anzupassende Funktion, sondern als Teilfunktion des AC4BPM

Abbildung 7-6:
Analyse des Haupt-
prozesses

Ergebnis der Analyse

High-Level-Gestaltung SoC

Abbildung 7-7:
AC4BPM fiir das
Separation of Business
and Adaptivity Logic

Seite 226 Kapitel 7

g

3

= Run Quality «include» «AC4BPM» «adapts»

s (nunRuality) fhErET Lo e Assemble Parts

§ Check Check Product Quality

Q

] Human
E % Ready for Q Performer
: lity check «include»

fn Robot qualiyeheck NS L _SZoot s Unassemble Parts

T

o

§ Monitoring Process

] Robot Unassemble

g Assembly

é Ready for quality check Adaptation Process Worker

L“ Worker

g

-

IS
........... Report

Assemble Parts

&Unassemble
Parts

Ready for
quality check

adaptationProcess =
‘UnassembleAssembly’

Anpassungslogik — Anwendungslogik der
Flexibility-by Design: Iteration Endmontage

verwendet. Der AC4BPM beschreibt hierbei, dass im Fall einer unzurei-
chenden Qualitdt des montierten Produkts eine Anpassung an der Mon-
tage durchgefiihrt werden soll. Ob dieser Fall eingetreten ist, kann durch
die Funktion Run Quality Check detektiert werden. Sie wird als ein Teil des
AC4BPM verwendet. Ausfithrender Akteur bleibt dabei Robot.

Als wesentlicher Unterschied ist jedoch zu bemerken, dass diese Funk-
tion nicht mehr als Teil des Hauptprozesses dargestellt wird und somit
bereits eine Trennung von unterschiedlichen Aspekten stattgefunden hat.
Als weiterer Teil des Separation-of-Concerns bleibt die Funktion Unassem-
ble Parts, welche zur Demontage eingesetzt wird. Sie wird ebenfalls als
Teil des AC4BPM verwendet, da hierdurch eine Anpassung am montierten
Produkt vorgenommen werden soll. Sie wird daher im Rahmen des darge-
stellten Anpassungsprozesses eingesetzt. Ausfiithrender Akteur bleibt hier
der menschliche Akteur Human Performer bzw. die Rolle Worker.

Evaluation Seite 227

Das auf der Ebene der Low-Level-Gestaltung beschriebene Verhalten des
AC4BPM beschreibt dabei die Qualitatssicherung durch den Roboter im
Rahmen des Beobachtungsprozesses. Die Demontage wird in dem An-
passungsprozess durch die Rolle Worker tibernommen. Dies ldsst sich fiir
den Fall der Qualitdtssicherung durch den Roboter derartig begriinden,
dass hierdurch Bedingungen zur Auslosung einer Anpassung ausgewertet
werden. Diese Auswertung stellt dabei exakt den fiir das Konzept des Be-
obachtungsprozesses angedachten Zweck dar, der durch die beiden Funk-
tionen Monitor und Analyze aus MAPE-K [KCO03] angedacht ist. Im Fall des
hier dargestellten Anpassungsprozesses kann von einer speziellen Art der
Kompensation gesprochen werden. Die dargestellte Funktion Unassemble
Assembly stellt dabei eine Mafinahme zur Riickabwicklung und somit eine
Anpassung selbst dar.

Neben dem zuvor gezeigten Beispiel fiir die Verbesserung von bestehen-
den Prozessen auf Basis von Flexibility-by Design und dem Aspekt Iteration
lassen sich in der Praxis auch bestehende Prozesse finden, auf die weite-
re in dieser Arbeit aufgefiihrte Entwurfsmuster fiir flexible und anpassba-
re Prozesse anwendbar sind. Fiir diese bestehenden Prozesse kénnen un-
ter Verwendung der Perspektive des Adaptivity Engineering in weiteren Ite-
rationen des BPM-Lebenszyklus Verbesserungen erzielt werden, in dem ge-
nerelle Beschreibungen aus Kapitel 5 als Leitfaden fiir die Gestaltung ver-
wendet werden.

71.5 Zusammenfassung

In dem vorangegangenen Abschnitt wurden Beispiele fiir den Einsatz von
den in dieser Arbeit vorgestellten Losungsansédtzen in Form der Sprache
ACML4BPM, den Entwurfsmustern sowie der zugehorigen Methode Adapt
Cases 4 BPM in Anlehnung an ein Szenario gegeben. Dabei wurden insge-
samt drei Fille beschrieben, fiir die das Ziel der Plausibilisierung von Lo-
sungsteilen angedacht war.

Die beschriebenen Fille des Szenarios stellen einfache aber aussagekraf-
tige Beispiele fiir die Verwendung des vorgestellten Ansatzes auf un-
terschiedlichen Ebenen der Gestaltung von flexiblen und anpassbaren
Prozessen dar. So wurde veranschaulicht, wie auf den Ebenen der High-
Level-Gestaltung und der Low-Level-Gestaltung ausgesuchte Beispiele von

Low-Level-Gestaltung SoC

Ergédnzung

Seite 228 Kapitel 7

Sprachelementen verwendet werden konnen. In der High-Level-Gestaltung
werden von dem System und seiner Umgebung zu realisierende Funktio-
nen in Form von UML Use Cases (Anwendung) und in Form von Adapt
Case 4 BPMs (Anpassung) beschrieben. Dabei wurde gezeigt, wie in Be-
zug zu an der Praxis orientierten Beispielen ein Zusammenhang zwischen
Anpassungs- und Anwendungslogik beschrieben werden kann. In einer
mit der High-Level-Gestaltung integrierten Darstellung wurde zudem die
Verfeinerung von AC4BPM in Form von entsprechenden Beobachtungs-
und Anpassungsprozessen beschrieben. Hierbei wurden neben unter-
schiedlichen Arten der Auslosung von Beobachtungsprozessen auch Ope-
rationen zur Anpassung von Prozessen (siehe Abschnitt 4.3.3) im Rahmen
von Anpassungsprozessen verwendet. Neben der Neugestaltung von Tei-
len der Anpassungslogiken in den Fallen 1 und 2 wurde in Fall 3 zudem
beschrieben, wie auch bestehende Prozesse in Unternehmen so gestaltet
werden konnen, dass Anpassungs- und Anwendungslogik voneinander
getrennt gestaltet werden konnen. Die drei betrachteten Félle des Szena-
rios fokussieren dabei jeweils nicht die tiefer gehenden Analysemethoden
oder -techniken zur Identifikation einer Situation, in der die Notwendig-
keit zur Anpassung besteht, sondern die Trennung der Anpassungs- von
der Anwendungslogik. Dennoch wurde sich fiir Beispiele entschieden, die
so auch in der Praxis vorkommen kénnen.

Das vorgestellte Szenario bildet zudem eine Grundlage fiir die Bewertung
von weiteren Kriterien zur Evaluation (siehe Abschnitt 7.2). Fiir einen kon-
kreten Bezug zwischen dem Szenario und der Bewertung der Evaluations-
kriterien wird an dieser Stelle auf Abschnitt 7.4 verwiesen.

7.2 Kiriterien

In diesem Abschnitt werden insgesamt zwei Kataloge von Kriterien zur
Bewertung von vorgestellten Konzepten eingefiihrt. Der erste Katalog
adressiert einzelne Losungsteile von Adapt Cases 4 BPM in Bezug zu dem
Aspekt der Anpassbarkeit (engl. Adaptivity) auf Basis des durch Anders-
son et. al [And+09] vorgestellten Ansatzes. Andersson et. al fithren dabei
einen Katalog von verschiedenen Eigenschaften zur Bewertung der Mo-
dellierbarkeit von selbst-adaptiven Systemen ein. Dabei wird nachfolgend
auf die Gruppen von Eigenschaften Goals, Change, Mechanisms und Effects
eingegangen.

Hier orientiert sich das Vorgehen zur Bewertung mafigeblich an der durch
Luckey [LE13] bzw. Biser [Bisl1] vorgestellten Evaluation des Ansatzes

Evaluation Seite 229

Adapt Cases. Hierdurch wird ein Vergleich zu dem urspriinglichen An-
satz Adapt Cases ermoglicht. Dies ldsst sich damit begriinden, dass es sich
bei Adapt Cases 4 BPM um eine doménenspezifische Redefinition des zu-
vor genannten Ansatzes handelt. So soll durch die Evaluation festgestellt
werden, wie sich Auspriagungen von einzelnen Spracheigenschaften des
generelleren Ansatzes Adapt Cases in dem hier vorgestellten Ansatz Adapt
Cases 4 BPM darstellen.

Der zweite Katalog basiert auf den in Kapitel 1 beschriebenen Anforde-
rungen an den Ansatz Adapt Cases 4 BPM. Dabei werden fiir die Spra-
che ACML4BPM Kriterien verwendet, die sich anteilig auch in einem Ver-
gleich mit dem Ansatz Adapt Cases verwenden lassen. Fiir Anforderungen
hinsichtlich der Entwurfsmuster fiir flexible Prozesse wird zudem ein Ver-
gleich mit existierenden Arbeiten aus der Doméne BPM beschrieben.

7.21 Kriterien der Anpassbarkeit

In diesem Abschnitt werden Evaluationskriterien fiir den Aspekt der An-
passbarkeit (engl. Adaptivity) vorgestellt. Sie basieren dabei auf den durch
Andersson et al. [And+09] beschriebenen Gruppen von Dimensionen fiir die
Gestaltung von selbst-adaptiven Systemen. Es wurde sich fiir den vorlie-
genden Katalog von Evaluationskriterien entschieden, weil er bereits fiir
die Evaluation von ACML in [Bis11] eingesetzt worden ist. Das Ziel, einen
Vergleich zwischen den beiden Ansatzen Adapt Cases und Adapt Cases 4
BPM geben zu konnen, kann hierdurch unterstiitzt werden. Nachfolgend
werden die Gruppen von Dimensionen Goals, Change, Mechanisms und Ef-
fects fiir die Gestaltung von selbst-adaptiven Systemen vorgestellt. Fiir eine
detaillierte Beschreibung einzelner Dimensionen wird auf [And+09] ver-

wiesen.

Auf Basis der zuvor genannten Gruppen von unterschiedlichen Dimensio-
nen der Gestaltung von selbst-adaptiven Systemen werden in einem spéa-
teren Teil der Arbeit (siehe Abschnitt 7.4.1) Bewertungen hinsichtlich der
Ausdrucksfahigkeit des Ansatzes Adapt Cases 4 BPM vorgenommen. Hier-
fiir wurde bereits in der Arbeit von Biser [Bis11] eine Reihe von verschiede-
nen Fragen ausgearbeitet, die im Rahmen der Evaluation von Adapt Cases
verwendet worden sind. Sie wurden daher als Grundlage fiir eine Rede-
finition von Fragen wiederverwendet, mit der eine Bewertung des vorlie-
genden Ansatzes durchgefiihrt wird. Wie bereits in [Bis11] verfahren wor-
den ist, werden die zuvor referenzierten Dimensionen als Ausgangspunkt

fiir die Evaluation verwendet.

Gruppe Goals

Tabelle 7-1:
Evaluationskriterien fiir
die Gruppe Goals

Gruppe Change

Tabelle 7-2:
Evaluationskriterien fiir
die Gruppe Change

Seite 230 Kapitel 7

Die Gruppe Goals enthélt Dimensionen, mit denen sich Ziele beschreiben
lassen, fiir deren Erfiillung ein selbst-adaptives System einzelne oder eine
Reihe von Anpassungen durchfiihrt. Hiervon kann sowohl das System
selbst aber auch seine Umgebung betroffen sein. Ein Ziel ldsst sich nach
Andersson et al. auch als eine Komposition verschiedener Teilziele beschrei-
ben, fiir die sich jeweils spezifische Anpassungen sowohl sequentiell als
auch parallel zur Erreichung des tibergeordneten Ziels anwenden lassen.
Durch [And+09] werden fiir Ziele die Dimensionen Evolution, Flexibility,
Duration, Multiplicity und Dependency aufgefiihrt. Die abgeleiteten Evalua-
tionskriterien fiir diese Dimensionen werden in Tabelle 7-1 dargestellt.

ID Dimension Frage

EK1 Evolution Kann in der Sprache ACML4BPM ausgedriickt werden, dass die
Ziele eines Systems statisch oder dynamisch sind?

EK2 Flexibility Kann in der Sprache ACML4BPM der Grad an Unbestimmtheit

eines Ziels formuliert werden?

EK3 Goal Duration Kann die Validitit eines Ziels tiber die Lebenszeit des Systems
beschrieben werden?

EK4 Multiplicity =~ Konnen einzelne oder mehrere Ziele beschrieben werden?

EK5 Dependency Ist es moglich, voneinander abhéngige oder unabhéngige Ziele
sowie, falls vorhanden, deren Relation zu beschreiben?

Die Gruppe Change beschreibt Dimensionen in Hinsicht auf die Auslésung
(engl. Trigger) einer Anpassung, die in dem selbst-adaptiven System oder
seiner Umgebung stattfinden soll. Derartige Ausloser konnen durch eine
Verdnderung am System selbst oder in seiner Umgebung gegeben sein
und lassen sich z.B. durch Ereignisse beschreiben. Im Rahmen der Gruppe
Change werden die Dimensionen Source, Type, Frequency und Anticipation
aufgefiihrt. Die abgeleiteten Evaluationskriterien fiir diese Dimensionen
werden in Tabelle 7-2 dargestellt.

ID Dimension Frage

EK6 Source Kann in der Sprache ACML4BPM die ausgehende Quelle fiir
eine Auslosung entlang der beiden Grade extern und intern un-
terschieden werden?

EK7 Change Type Ist es moglich, die Art einer Auslosung hinsichtlich der Typen
funktional, nicht funktional oder technologisch zu beschreiben?

EK8 Frequency Kann die Haufigkeit einer Auslosung beschrieben werden?

EK9 Anticipation ~ Kann die Vorhersage einer Auslésung beschrieben werden?

Evaluation Seite 231

Die dritte Gruppe Mechanisms beschreibt Dimensionen hinsichtlich von
Anpassungen an einem selbst-adaptiven System oder seiner Umgebung
(siehe Tabelle 7-3). Dabei werden derartige Anpassungen auf Basis zuvor
aufgekommener Auslosungen ausgefiihrt. Die durch die Gruppe Mecha-
nisms gegebenen Dimensionen Autonomy, Organization und Triggering cha-
rakterisieren diese Anpassungen.

ID Dimension Frage

EK10 Mechanism Koénnen durch das Konzept Adapt Case 4 BPM Anpassungen
Type in Bezug zu Parametern von Systemkomponenten oder von der
Struktur des Systems beschrieben werden?

EK11 Autonomy Wie autonom sind Anpassungen, die durch das Konzept Adapt
Case 4 BPM beschrieben werden kénnen?

EK12 Organization ~ Kann eine Anpassung durch eine Komponente oder durch meh-
rere Komponenten durchgefiihrt werden?

EK13 Scope Ist es moglich, zu beschreiben, ob eine Anpassung lokale Eigen-
schaften oder das gesamte System betrifft?
EK14 Mechanism Ist es moglich, zu beschreiben wie lange der Vorgang einer An-
Duration passung dauern wird?

EK15 Timeliness Kann durch das Konzept Adapt Case 4 BPM beschrieben, wer-
den, ob eine bestimmte Zeitdauer fiir eine Anpassung garantiert
werden kann?

EK16 Triggering Ist es moglich, Anpassungen zu beschreiben, die durch ein Er-
eignis oder durch eine zeitliche Bedingung ausgelost werden?

In der vierten und letzten Gruppe Effects sind Dimensionen enthalten, die
den Einfluss einer Anpassung auf das selbst-adaptive System oder seine
Umgebung beschreiben. So sind bspw. Charakterisierungen moglich, die
eine Anpassung als kritisch, vorhersehbar, aufwindig oder das System
bzw. seine Umgebung als widerstandsfahig darstellen. Die entsprechen-
den Dimensionen sind Criticality, Predictability, Overhead und Resilience, fiir
die die abgeleiteten Evaluationskriterien in Tabelle 7-4 dargestellt sind.

ID Dimension Frage

EK17 Criticality Kann die Konsequenz einer gescheiterten Anpassung durch das
Konzept Adapt Case 4 BPM beschrieben werden?

EK18 Predictability Ist es moglich, die Vorhersage einer Konsequenz einer durchge-
fithrten Anpassung durch das Konzept Adapt Case 4 BPM zu

beschreiben?

EK19 Overhead Kann eine negative Konsequenz einer Anpassung beschrieben
werden?

EK20 Resilience Kann die Lebensdauer einer vertrauenswiirdigen Diensterbrin-

gung beschrieben werden?

Gruppe Mechanisms

Tabelle 7-3:
Evaluationskriterien ftir
die Gruppe Mechanisms

Gruppe Effects

Tabelle 7-4:
Evaluationskriterien fiir
die Gruppe Effects

Tabelle 7-5:
Evaluationskriterien fiir
die Anforderungen an
Adapt Cases 4 BPM

Seite 232 Kapitel 7

7.2.2 Kriterien fiir die Anforderungen an Adapt Cases 4 BPM

In Tabelle 7-5 werden in Anlehnung an die beschriebenen Anforderungen
an den Ansatz Adapt Cases 4 BPM (siehe Abschnitt 1.3) zugehorige Eva-
luationskriterien dargestellt. Durch die Bewertung werden zwei Ziele ver-
folgt. Zum einen soll ebenso wie zuvor fiir den Aspekt der Anpassbarkeit
(siehe Abschnitt 7.2.1) ein Vergleich zwischen den beiden Sprachen ACML
und ACML4BPM durchgefiihrt werden. Zum anderen sind domé&nenspe-
zifische Anforderungen an den Ansatz Adapt Cases 4 BPM gesetzt worden,
die nicht mit Adapt Cases verglichen werden konnen. Fiir derartige Anfor-
derungen soll ein Vergleich mit Arbeiten aus der Domédne BPM durchge-
fiihrt werden.

ID Dimension Frage
EK21 Separation-of- Ist eine Trennung von Anpassungs- und Anwendungslogik
Concerns durch den Ansatz Adapt Cases 4 BPM moglich?
EK22 Kontrollschleife = Wie gut kénnen Kontrollschleifen durch die Verwendung von
ACML4BPM gestaltet werden?
EK23 Ausdrucks- Wie hoch ist der Grad der Ausdrucksfahigkeit von der Spra-
fahigkeit che ACML4BPM im Vergleich zu der Sprache ACML und
UML Use Cases?
EK24 UML-Konsistenz Wie gut ist die Konsistenz gegeniiber der Sprache UML?
EK25 BPMN2.0- Wie hoch ist die Konsistenz zwischen den beiden Sprachen
Konsistenz ACML4BPM und BPMN2.0?
EK26 Musterbasierte ~ Konnen verschiedene Aspekte von Flexibilitdt durch die erar-
Unterstiitzung beiteten Entwurfsmuster unterstiitzt werden?
EK27 Integration Ist der Ansatz Adapt Cases 4 BPM entlang einer spezifischen

Methode der Doméine BPM einsetzbar?

Ein Vergleich mit der Sprache ACML kann auf Basis der Evaluationskriteri-
en EK21, EK22, EK23 sowie EK24 durchgefiihrt werden. Dies lésst sich da-
durch begriinden, dass sie bereits in der Evaluation des Ansatzes Adapt Ca-
ses verwendet worden sind und einen Teil der Anforderungen umfassen,
die auch fiir den vorliegenden Ansatz gesetzt worden sind. Die zugehori-
ge Bewertung dieser Kriterien kann daher im Rahmen der hier durchge-
fiihrten Evaluation zum Zweck des Vergleichs wiederverwendet werden.

Weitere aufgefiihrte Evaluationskriterien sind fiir die Bewertung von Er-
fillungsgraden der Anforderungen an den in dieser Arbeit vorgestellten
Ansatz Adapt Cases 4 BPM vorgesehen. Basierend auf den vorgestellten
Evaluationskriterien soll im Rahmen einer Selbstevaluation eine Bewer-
tung von Erfiillungsgraden durchgefiihrt und offene Punkte identifiziert

werden.

Evaluation Seite 233

7.3 Bewertungseinheit

Fiir die Bewertung von Kriterien zur Evaluation der einzelnen Losungs-
teile wird in diesem Abschnitt ein Skalenniveau eingefiihrt. Zum besseren
Vergleich der beiden Sprachen ACML und ACML4BPM wurde sich fiir eine
Ordinalskala entschieden. Dabei wird mafigeblich die gleiche Auspragung
verwendet, wie sie bereits in [Bis11] fiir die Evaluation der Sprache ACML
eingefiihrt wurde.

Zur Ubersicht ist die verwendete Ordinalskala in Tabelle 7-6 gezeigt. Sie
besteht aus insgesamt sechs geordneten Kategorien, welche durch natiir-
lichsprachliche und numerische Werte identifizierbar sind. Sie reicht vom
niedrigsten Wert 0 (nicht gesetzt) bis hin zum hochsten Wert 10 (exzellent).
Die Semantik der einzelnen Kategorien ist ebenso in Anlehnung an [Bis11]
iibernommen worden und in Tabelle 7-6 entsprechend dargestellt.

Eine Ergidnzung zu der durch Biser verwendeten Kategorien ist jedoch
durch den Spezialfall des Wertes 0 (nicht gesetzt) gegeben. So bestanden be-
stimmte Anforderungen an den Ansatz Adapt Cases zum Zeitpunkt seines
Entwurfs nicht, sodass ein Vergleich mit bestehenden Werten im weiteren
Verlauf nicht moglich ist. Auf eine nachtragliche Bewertung in Anlehnung
an entsprechende Anforderungen wurde in dieser Arbeit verzichtet. Dabei
wird an geeigneter Stelle auf entsprechende Anforderungen aufmerksam

gemacht.
Deskriptiv Numerisch Semantik
nicht gesetzt 0 Anforderung wurde fiir den Ansatz nicht gesetzt.
nicht akzeptabel 2 Anforderung kann in keiner Hinsicht erfiillt werden.
moderat 4 Anforderung kénnte mit groflem zusétzlichen Aufwand
realisiert werden.
akzeptabel 6 Anforderung kann nicht erfiillt werden, ist jedoch durch
geringe Aufwénde zukiinftig realisierbar.
gut 8 Anforderung kann mit Abweichung erfiillt werden.
exzellent 10 Anforderung kann vollstandig erfiillt werden.

Durch die vorgestellte Bewertungseinheit ist es moglich, den aktuellen
Stand der beiden Ansdtze Adapt Cases und Adapt Cases 4 BPM sowie ih-
rer zugehorigen Sprachen gegeniiberzustellen. Fiir die grafische Darstel-
lung von Ergebnissen der Evaluation werden im Rahmen der Bewertung
von Kriterien Netzdiagramme verwendet (siehe Abschnitt 7.4). Dies lasst
sich damit begriinden, dass sie bereits in der Evaluation von Adapt Cases
eingesetzt worden sind und so Vergleich erméglicht wird.

Tabelle 7-6:
Bewertungseinheit
fiir Kriterien

Seite 234 Kapitel 7

Ein Beispiel fiir ein solches Netzdiagramm ist in Abbildung 7-8 dargestellt.
Insgesamt ist hier die Bewertung von vier verschiedenen Dimensionen ge-
zeigt. Das dargestellte Raster gibt gemdfs der in Tabelle 7-6 gezeigten Be-
wertungseinheit die Bewertung in Zweierschritten fiir eine Dimension an.
Dabei werden Bewertungen fiir den Ansatz Adapt Cases 4 BPM in der Farbe
Blau und fiir den Ansatz Adapt Cases in der Farbe Rot dargestellt.

Abbildung 7-8: Dimension B
Netzdiagramm zur
grafischen Darstel-
lung von Ergebnissen

Dimension C

<> Dimension A

Dimension D

B ACML4BPM
B ACML

Die hier exemplarisch gezeigte Bewertung beschreibt eine {iberdeckende
Bewertung fiir die beiden Ansétze hinsichtlich der Dimension B. In den
weiteren Dimensionen werden exemplarisch Eigenschaften des Ansatzes
ACML insgesamt als besser bewertet dargestellt.

Evaluation Seite 235

7.4 Bewertung

In diesem Abschnitt werden Bewertungen vorgestellt, die auf Basis der
zuvor in Abschnitt 7.2 vorgestellten Kataloge von Kriterien vorgenommen
worden sind. Die Bewertungen von Kriterien des Aspekts der Anpassbar-
keit (engl. Adaptivity) werden in Abschnitt 7.4.1 vorgestellt. Die Kriterien
beruhen dabei auf den durch Andersson et. al [And+09] eingefiihrten Ka-
talog von Eigenschaften zur Bewertung von Fahigkeiten zur Modellie-
rung unterschiedlicher Eigenschaften von selbst-adaptiven Systemen. Da-
bei wird auf die bereits eingefiihrten Gruppen dieser Eigenschaften in den
zugehorigen Abschnitten 7.4.1.1 bis 7.4.1.4 Bezug genommen.

Anschlieflend werden Bewertungen fiir die Anforderungen an den Ansatz
Adapt Cases 4 BPM in Abschnitt 7.4.2 vorgestellt. Da sich eine Bewertung
von unterstiitzten Aspekten von flexiblen und anpassbaren Prozessen mit
Adapt Cases nicht sinnvoll in einem Vergleich kombinieren ldsst, wird die-
ser Abschnitt weiter unterteilt. So wird in Abschnitt 7.4.2.1 zunéchst all-
gemein auf die Bewertung fiir die vorgestellten Anforderungen eingegan-
gen. Dabei wird an sinnvollen Stellen ein Vergleich zum Ansatz Adapt Ca-
ses vorgenommen. Ergédnzend wird in Abschnitt 7.4.2.2 dediziert auf eine
Ubersicht, eine Bewertung und einen Vergleich von unterstiitzten Aspek-
ten von flexiblen und anpassbaren Prozessen eingegangen.

7.41 Bewertung von Kriterien der Anpassbarkeit

In diesem Abschnitt werden fiir den Aspekt der Anpassbarkeit Bewertun-
gen vorgestellt. Dabei werden Ergebnisse sowohl tabellarisch als auch gra-
fisch durch Netzdiagramme dargestellt. Zugehorige Daten der Evaluati-
on fiir die Sprache ACML wurden aus der Arbeit von [Bis11] iibernom-
men. Bei den verwendeten Daten der Sprache ACML4BPM handelt es sich
um eine selbstkritische Selbsteinschidtzung, die auf Erfahrungen aus der
Erstellung von Beispielen in Bezug zu dem Szenario beruhen (siehe Ab-
schnitt 7.1). Fiir die durch [And+09] eingefiihrten Dimensionen zur Ge-
staltung von selbst-adaptiven Systemen werden zunéchst die Ergebnisse
der Evaluation der Sprache ACML4BPM vorgestellt und diskutiert. Im An-
schluss folgt ein Vergleich mit den Ergebnissen fiir die Sprache ACML.

Tabelle 7-7:
Bewertungen fiir die
Gruppe Goals

Seite 236 Kapitel 7

7.4.1.1 Bewertungen fiir die Gruppe Goals

Die Gestaltung von Zielen wird durch den Einsatz von ACML4BPM nicht
unterstiitzt. Ziele konnen fiir die zu gestaltenden flexiblen und anpassba-
ren Prozesse jedoch als eine Art von Anforderungen verstanden werden,
fur deren Erreichung Funktionen beschrieben werden miissen. So kann ein
Prozess, Subprozess oder Task eine solche Funktion zur Erreichung eines
Ziels darstellen, die in verschiedene Teilfunktionen bzw. Teilziele zerlegt
werden kann. Nachfolgend sind die Bewertungen von Dimensionen der
Gruppe Goals in Tabelle 7-7 dargestellt. Auf Details und eine zugehorige
Diskussion fiir die Bewertungen von Dimensionen der Gruppe Goals wird
nachfolgend individuell eingegangen.

ID Dimension ACML4BPM ACML
EK1 Evolution akzeptabel akzeptabel
EK2 Flexibility gut gut
EK3 Goal Duration akzeptabel moderat
EK4 Multiplicity gut gut
EK5 Dependency gut gut

EK1 In ACML4BPM sind keine Sprachelemente zur Gestaltung von Zielen
enthalten. Daher kénnen nur implizit statische Ziele durch die Gestaltung
von Prozessen bzw. Subprozessen sowie von Teilzielen durch verschiede-
ne Tasks beschrieben werden. Prozesse, Subprozesse und Tasks stellen hier
Funktionen dar, die zur Erreichung eines organisatorischen Ziels notwen-
dig sind. Wird ein AC4BPM als Beschreibung von Anpassungen von be-
stehenden Funktionen verwendet, so werden bspw. Funktionen verandert,
die der Erreichung des urspriinglichen Ziels unter gednderten Umstdnden

dienen.

Ein Beispiel fiir die Anpassung eines Prozesses zur weiteren Erreichung
seines Ziels ist in Abschnitt 7.1.4 gegeben. Betrachtet man hier als Ziel
des Hauptprozesses die Montage eines Produktes unter Einhaltung gewis-
ser Qualitdtsanforderungen, so konnen einzelne Funktionen bzw. Tasks als
Mafinahmen zur Erreichung von Teilzielen betrachtet werden. Die in dem
Hauptprozess enthaltene Iteration stellt dabei sicher, dass ein montiertes
Produkt im Fall unzureichender Qualitiat demontiert und anschliefsend er-
neut montiert wird. Das Ziel des Hauptprozesses ist somit statisch. Eine
Anpassung von bestehenden Funktionen fiihrt jedoch dazu, dass das je-
weilige Teilziel auch als dynamisch betrachtet werden kann.

Die Dimension Evolution wird daher als akzeptabel realisiert bewertet.

Evaluation Seite 237

EK2 Bei der Unbestimmtheit handelt es sich um eine Eigenschaft eines
Ziels. Da ACML4BPM keine Sprachelemente zur Beschreibung von Zielen
zur Verfiigung stellt, ist die Gestaltung von deren Eigenschaften auch nicht
moglich. Jedoch ist es moglich, Funktionen, die zur Realisierung von Teil-
zielen gestaltet werden, bei Bedarf so anzupassen, dass iibergeordnete Zie-
le und Teilziele auch weiterhin erfiillt werden konnen. Der hierdurch ent-
stehende Grad an Flexibilitdt ermoglicht es, auf der Ebene der Gestaltung
von Prozessen — insbesondere unter Verwendung der in Kapitel 5 vorge-
stellten Entwurfsmuster — die Unbestimmtheit eines Ziels umzusetzen.

Ein Beispiel fiir eine derartige Umsetzung ist in Fall 2 des Szenarios be-
schrieben (siehe Abschnitt 7.1.3). Hier ist Flexibilitdt durch unterschied-
liche Auslosungen des HPWM gegeben. Dabei wird der Aspekt Choice
von Flexibility-by Design eingesetzt (siehe Abschnitt 5.2.2). Ferner ist Unbe-
stimmtheit auch im Rahmen des Anpassungsprozesses vorgesehen. So ist
nicht beschrieben, in welcher Reihenfolge ein nicht zugewiesener mensch-
licher Akteur zugewiesen wird. Beide Umstidnde stellen jeweils einen ge-
wissen Grad an Unbestimmtheit dar, auch wenn er selbst nicht durch ein
explizites Sprachelement gestaltet worden ist.

Die Dimension Flexibility wird daher als gut realisiert bewertet.

EK3 Da die Gestaltung von Zielen in ACML4BPM nicht explizit moglich
ist, kann die Eigenschaft der Validitét eines Ziels iiber die Lebenszeit des
Systems nicht beschrieben werden. Es ist jedoch moglich, auf gednderte
Eigenschaften der Umgebung zu reagieren. Hierfiir wurden eine Reihe
von unterschiedlichen Entwurfsmustern vorgestellt, sodass bspw. unge-
wollte Funktionen, die fiir die Realisierung von (Teil-)Zielen eines Prozes-
ses verwendet werden, aus dem Prozess entfernt werden konnen. Dieses
Entfernen kann im Rahmen von Flexibility-by Change entweder temporar
oder permanent durchgefiihrt werden (siehe Abschnitt 5.3). Ferner kon-
nen auch bedingte Aufrufe von Funktionen durchgefiihrt werden, wie es
z.B. im Rahmen von Flexibility-by Design und dem Aspekt Choice beschrie-
ben worden ist (sieche Abschnitt 5.2.2). Die in den Entwurfsmustern vor-
gesehenen Anpassungen bzw. Aufrufe stellen dabei auch eine Aktion in
Hinsicht auf die Eigenschaft der Validitat von (Teil-)Zielen dar.

Durch Fall 3 des Szenarios ist hierzu ein Beispiel gegeben (siehe Ab-
schnitt 7.1.4). So wird eine Funktion zur Demontage eines Produktes nur
dann aufgerufen, wenn die Qualitdt des montierten Produktes nicht aus-
reichend ist. Dadurch wird eine neue Funktion zur Realisierung eines zu-
vor nicht vorhandenen Teilziels verwendet. Im Fall eines bedingten Auf-

Grafische Darstellung
und Diskussion

Seite 238 Kapitel 7

rufs dieser Funktion verdndert sich folglich auch die Validitit des zugeho-
rigen Ziels.

Die Dimension Goal Duration wird als akzeptabel realisiert bewertet.

EK4 Einzelne oder mehrere Ziele konnen durch ACML4BPM nicht expli-
zit gestaltet werden. Stattdessen konnen aber mehrere AC4BPM beschrie-
ben werden, die fiir die Erreichung gleicher oder unterschiedlicher Ziele
verwendet werden. Derartige AC4BPM konnen auch mit weiteren Funk-
tionen des Systems in Relation stehen (siehe EK5 Dependency).

Sofern Funktionen als Mafsnahmen zur Erreichung von (Teil-)Zielen be-
trachtet werden, sind entlang der drei Félle des Szenarios verschiedene
Beispiele auf der Ebene der High-Level-Gestaltung gegeben. So ist es z.B.
moglich, dass eine Funktion durch eine weitere Funktion angepasst wird
(siehe Abschnitt 7.1.2). Funktionen konnen aber auch andere Funktionen
enthalten (siehe Abschnitt 7.1.3). Je nach Anforderungen konnen dabei be-
liebig viele Funktionen beschrieben werden, die fiir die Erreichung eines
oder mehrerer Ziele notwendig sind.

Die Dimension Multiplicity wird daher als gut realisiert bewertet.

EK5 Durch ACML4BPM ist es moglich, verschiedene Funktionen zur
Realisierung von Zielen in eine gegenseitige Abhdngigkeit zu stellen.
So konnen durch die Verwendung verschiedener Ereignisse oder durch
den Aufruf weiterer Funktionen derartige Abhédngigkeiten implizit darge-
stellt werden. Eine explizite Darstellung ist auf der Ebene der High-Level-
Gestaltung durch verschiedene Assoziationen wie «include», «adapts» oder
«extends» moglich.

Durch Fall 2 des Szenarios ist hierfiir ein Beispiel gegeben (siehe Ab-
schnitt 7.1.3). So wird die Funktion Analyze Workload Profile im Rahmen
des Beobachtungsprozesses des AC4BPM HPWM eingesetzt. Hierdurch ist
eine Art der Abhingigkeit beider Funktionen beschrieben, die auf der Ebe-
ne der High-Level-Gestaltung durch die Assoziation «include» beschrieben
werden kann.

Die Dimension Dependency wird daher als gut realisiert bewertet.

Ergénzend zu der vorherigen textuellen Beschreibung der Bewertungen
von Dimensionen der Gruppe Goals ist zur besseren Ubersicht zudem eine
grafische Darstellung in Abbildung 7-9 gegeben. Werden die Bewertun-
gen miteinander verglichen, so fillt eine hohe Uberdeckung auf. Dies wird
damit begriindet, dass die zugrunde liegenden Konzepte in der Sprache

Evaluation Seite 239

ACML im Rahmen des Entwurfs der Sprache ACML4BPM redefiniert wor-
den sind. Dabei wurden wesentliche Konzepte tibernommen, sodass in der
Bewertung der Dimensionen der Gruppe Goals die vorliegende Uberde-
ckung sogar zu erwarten war.

Evolution
Flexibility Dependency
B ACML4BPM
B ACML
Goal Duration Multiplicity

Eine Ausnahme bildet jedoch das Kriterium EK3 in Form der Dimensi-
on Goal Duration. Dies lasst sich damit begriinden, dass in der vorliegen-
den Arbeit verschiedenste Entwurfsmuster fiir Aspekte von Flexibilitét in
der Doméne BPM vorgestellt wurden (siehe Kapitel 5). Hierdurch entste-
hen erweiterte Fahigkeiten des Ansatzes Adapt Cases 4 BPM, sodass das
Kriterium EK3 besser bewertet werden kann. Anhand des fiir die Bewer-
tung von EK3 gegebenen Beispiels wird eine dieser Fahigkeiten deutlich.
So kann durch einen AC4BPM implizit die Validitit eines Ziels tiber die
Lebenszeit des Systems beschrieben werden, indem temporéar oder evolu-
tiondr Anpassungen von Prozessen, wie z.B. in Form eines Hinzufiigens
oder Entfernens einer Funktion, beschrieben werden.

7.41.2 Bewertungen fiir die Gruppe Change

Die Gruppe Change enthdlt Dimensionen in Hinsicht auf mogliche Aus-
losungen fiir eine Anpassung am System oder an seiner Umgebung. Da-
bei kdnnen Ausldosungen sowohl von dem System selbst als auch in sei-
ner Umgebung vorkommen. In der Sprache ACML4BPM koénnen Aus-
loser durch Ereignisse im Rahmen des Adaptation View Model 4 BPM

Abbildung 7-9:
Netzdiagramm fiir die
Gruppe Goals

Tabelle 7-8:
Bewertungen fiir die
Gruppe Change

Seite 240 Kapitel 7

(AVM4BPM) beschrieben werden (siehe Abschnitt 4.3.4). Derartige Er-
eignisse sind Teil der Beschreibung von Schnittstellen, die durch System-
und Umgebungskomponenten angeboten werden. Nachfolgend sind die
Bewertungen von Dimensionen der Gruppe Change in Tabelle 7-8 dar-
gestellt. Auf Details und eine zugehorige Diskussion fiir die dargestell-
ten Bewertungen von Dimensionen der Gruppe Change wird nachfolgend
individuell eingegangen.

ID Dimension ACML4BPM ACML
K6 Source exzellent exzellent
EK7 Change Type exzellent exzellent
EK8 Frequency akzeptabel akzeptabel
EK9 Anticipation akzeptabel moderat

EK6 Ereignisse werden als Teil einer Sensorschnittstelle beschrieben, die
durch System- oder Umgebungskomponenten angeboten wird. Die in Sen-
sorschnittstellen von Systemkomponenten beschriebenen Ereignisse las-
sen sich als intern bezeichnen, wohingegen Ereignisse aus Sensorschnitt-
stellen von Umgebungskomponenten als extern zu betrachten sind.

In dem in Abschnitt 7.1.1 vorgestellten AVM4BPM des Szenarios ist eine
derartige Quelle durch die Umgebungskomponente HumanPerformer ge-
geben. Sie bietet die Sensorschnittstelle HumanMachinelnterface an, in der
das Ereignis vom Typ AdaptationRequestEvent mit der Bezeichnung Manual-
ReallocationRequest beschrieben ist. Da es sich hier um eine Umgebungs-
komponente handelt, ist dieses Ereignis als extern zu bezeichnen.

Die Dimension Source wird daher als exzellent realisiert bewertet.

EK7 In der Sprache ACML4BPM kann ein breites Spektrum von potenti-
ellen Auslosungen berticksichtigt werden.

In dem in Abschnitt 7.1.3 gegebenen Fall 2 des Szenarios sind unterschied-
liche Typen von Ausldsern gegeben. So ist sowohl eine zeitgesteuerte als
auch eine manuelle Auslosung einer Anpassung des Hauptprozesses mog-
lich. Beide Auslosungen konnen sowohl als funktional als auch als nicht
funktional betrachtet werden. So sind sie zum einen auslosend fiir die
Durchfiihrung einer Anpassung und zum anderen dienen sie dem Zweck
der Menschenzentrierung innerhalb des Shared-Workspace.

Die Dimension Change Type wird als exzellent realisiert bewertet.

Evaluation Seite 241

EK8 Durch das Konzept AC4BPM ist es nicht moglich, die Haufigkeit des
Auftretens einer Auslosung zu beschreiben. Durch zeitbasierte Ereignis-
se kann aber ein Intervall oder ein bestimmter Zeitpunkt der Ausfithrung
des Verhaltens eines Beobachtungs- und Anpassungsprozesses beschrie-
ben werden.

Ein Beispiel fiir ein derartiges Ereignis wird in Fall 1 des Szenarios gege-
ben (siehe Abschnitt 7.1.2). Hier wird ein Ereignis vom Typ TimerEvent da-
zu verwendet, dass der zugehorige Beobachtungsprozess alle 20 Minuten
ausgefiihrt werden soll.

Durch diese nur geringe Einschrankung wird die Dimension Frequency als
akzeptabel realisiert eingeschétzt.

EK9 Eine Vorhersage des Auftretens von Auslésern einer Anpassung
kann durch ein eigenes Element in der Sprache ACML4BPM nicht dar-
gestellt werden. Durch Andersson et al. [And+09] werden die genannten
Typen von Vorhersagen foreseen, foreseeable und unforeseen betrachtet. Fiir
diese Typen ist jedoch in Beobachtungs- und Anpassungsprozessen die
Gestaltung von spezialisierten Funktionen in Hinsicht auf die Analyse der
bisherigen Historie der Ausfiihrung moglich. Auch wenn kein explizites
Sprachelement vorhanden ist, so konnen derartige Funktionen dennoch
in der Gestaltung Berticksichtigung finden. Neben den zuvor genannten
Typen zédhlen Andersson et al. aber auch die Behandlung von Fehlern zu
den Eigenschaften der Dimension Anticipation. Eine solche Behandlung
sollte stets in einer Gestaltung von flexiblen Prozessen mitberticksichtigt
werden. Sie stellt neben vielen anderen Griinden fiir die Durchfiihrung
einer Anpassung einen wichtigen Beitrag zur Gewéhrleistung der ord-
nungsgemadfien Funktion des Gesamtsystems dar.

Die Behandlung von auftretenden Fehlern kann durch Beobachtungs-
und Anpassungsprozesse gestaltet werden. Hierzu konnen entsprechen-
de Mafsnahmen bereits in der Neugestaltung oder in nachfolgenden Ite-
rationen des BPM-Lebenszyklus hinzugefiigt werden. Dabei bietet sich die
Verwendung des Flexibilitatsaspekts Flexibility-by Underspecification und
seiner Untertypen Late Selection bzw. Late Modeling (siehe Abschnitt 5.5.1)
besonders an. So lassen sich im Bedarfsfall Funktionen dynamisch auch
zur Laufzeit gestalten und binden, sodass adédquat auf einen aufgekomme-
nen Fehler reagiert werden kann. Die Verwendung dieser Entwurfsmus-
ter stellt selbst eine implizite Vorhersage fiir auftretende Ereignisse dar,
die jeweils als foreseen oder foreseeable betrachtet werden konnen. Dies ldsst
sich dadurch begriinden, dass unter Einsatz dieser Entwurfsmuster bereits

Grafische Darstellung
und Diskussion

Abbildung 7-10:
Netzdiagramm fiir
die Gruppe Change

Seite 242 Kapitel 7

zum Zeitpunkt der Gestaltung Situationen berticksichtigt werden konnen,
die eine dynamische Bindung von Prozessfragmenten (Late Selection) er-
moglichen oder aber das Aufkommen von undefinierten Situationen (Late
Modeling) berticksichtigen.

Die Dimension Anticipation wird daher als akzeptabel realisiert bewer-
tet.

Eine grafische Darstellung der zuvor beschriebenen Ergebnisse fiir die
Gruppe Change ist in Abbildung 7-10 gegeben. Wie zuvor bereits fiir die
Gruppe Goals beschrieben, besteht auch hier eine hohe Uberdeckung in
den Bewertungen. Es existiert in beiden Sprachen kein dediziertes Sprach-
element zur Beschreibung der Vorhersage des Auftretens einer Auslosung.
Dabei konnen sowohl im Rahmen der Monitoring Activity (ACML) als auch
im Rahmen des Beobachtungsprozesses (ACML4BPM) erweiterte Funktio-
nalitdten beschrieben werden, die eine derartige Vorhersage, wie z.B. auf
Basis einer Historie der Ausfithrung, ermoglichen.

Source
T f
Cf;i;e Anticipation
B ACML4BPM
B ACML
Frequency

Eine Unterscheidung lasst sich hier lediglich fiir die Dimension Anticipati-
on erkennen. Dies ldsst sich dadurch erkliaren, dass im Kontext der Metho-
de Adapt Cases 4 BPM auch Entwurfsmuster fiir unterschiedlichste Aspek-

Evaluation Seite 243

te von Flexibilitdt vorgestellt worden sind. So kann, wie zuvor beschrie-
ben, z.B. durch die Verwendung der Entwurfsmuster Late Selection oder
Late Modeling eine implizite Vorhersage des Auftretens einer Auslosung
beschrieben werden. Die Entwurfsmuster stellen daher in Bezug zur Di-
mension Anticipation einen Mehrwert dar, sodass die Bewertung entspre-
chend besser ausfallen kann.

7.4.1.3 Bewertungen fiir die Gruppe Mechanisms

Die Dimensionen der Gruppe Mechanisms betreffen — basierend auf auf-
kommenden Auslosern der Dimension Change — durchzufiihrende Anpas-
sungen an Eigenschaften eines Systems bzw. seiner Umgebung. Unter der
Verwendung der Sprache ACML4BPM werden in diesem Bezug typischer-
weise zundchst Entscheidungen im Rahmen von Beobachtungsprozessen
getroffen. Als Folge einer Entscheidung kénnen Anpassungsprozesse auf-
gerufen werden, in denen Operationen zur Anpassung von Prozessen und
deren Umgebung ausgefiihrt werden konnen. Nachfolgend sind die Be-
wertungen von Dimensionen der Gruppe Mechanisms in Tabelle 7-9 dar-
gestellt. Auf Details und eine zugehorige Diskussion fiir die dargestellten
Bewertungen von Dimensionen der Gruppe Mechanisms wird nachfolgend
individuell eingegangen.

ID Dimension ACML4BPM ACML
EK10 Mechanism Type gut gut

EK11 Autonomy gut moderat
EK12 Organization gut gut

EK13 Scope nicht akzeptabel nicht akzeptabel
EK14 Mechanism Duration nicht akzeptabel nicht akzeptabel
EK15 Timeliness moderat nicht akzeptabel
EK16 Triggering exzellent exzellent

EK10 In ACML4BPM ist keine Anpassung der Struktur des Systems oder
seiner Umgebung moglich, sofern hiermit eine Anpassung der System-
und Umgebungsarchitektur gemeint ist. Unter derartigen Anpassungen
kann das Hinzuftigen, Entfernen oder Modifizieren von System- oder Um-
gebungskomponenten verstanden werden, die im Rahmen des Adaptation
View Model 4 BPM (AVM4BPM) beschrieben worden sind.

Stattdessen konnen jedoch verschiedenste Eigenschaften (hier: Parameter),
die durch System- und Umgebungskomponenten gekapselte Inhalte dar-
stellen, wie z.B. Prozesse, durch entsprechende Operationen angepasst

Tabelle 7-9:
Bewertungen fiir die
Gruppe Mechanisms

Seite 244 Kapitel 7

werden. In ACML4BPM werden dabei insgesamt drei Typen von Kompo-
nenten unterschieden, fiir die eine Reihe von Operationen zur Anpassung
in Abschnitt 4.3.3 vorgestellt worden sind. Dabei wurden wesentliche an-
passbare Elemente in Bezug zu Perspektiven von Prozessen nach Curtis
et. al [CKO92] identifiziert und eine Menge von zugehorigen Operationen
vorgestellt. Die Menge enthélt Operationen, mit denen Anpassungen an
der organisatorischen Struktur, dem Kontroll- und dem Datenfluss ermog-
licht werden konnen. Im Vergleich zu bereits existierenden Arbeiten, wie
z.B. [Sch+08; WRRO0S8; Ger13], sind so erweiterte Fahigkeiten zur Anpas-
sung von Elementen unterschiedlicher Perspektiven vorhanden.

Daher kann hier von einer Realisierung der Dimension Mechanisms Type
gesprochen werden, die als gut angesehen wird.

EK11 ACML4BPM unterstiitzt verschiedene Grade von Autonomie in
Hinsicht auf anzuwendende Anpassungen. So kann durch einen AC4BPM
spezifisches Verhalten beschrieben werden, in dessen Rahmen im Beob-
achtungsprozess zunéchst eine Analyse erfolgt und anschlieflend eine Ent-
scheidung fiir die Auswahl einer benétigten Anpassung getroffen wird.
Nachfolgend kann ein Anpassungsprozess konkrete Anpassungen durch
eine Reihe von Operationen durchfiihren. Die hierdurch beschriebene An-
passung benotigt dabei nicht zwangsldufig eine Einbindung von weiteren
Ressourcen, wie z.B. einen menschlichen Akteur.

Dies kann — wie fiir Fall 2 des Szenarios erortert wurde — jedoch sinnvoll
sein und z.B. durch die Verwendung des Entwurfsmusters Late Modeling
umgesetzt werden. Durch die Verwendung von ACML4BPM und der vor-
gestellten Entwurfsmuster wird somit ein breites Spektrum unterschiedli-
cher Grade von Autonomie unterstiitzt. Je nach Anforderung an das Sys-
tem kann die Verwendung eines Entwurfsmusters einen kleineren oder ho-

heren Grad an Autonomie bedeuten.

Da aber sowohl Beobachtungs- als auch Anpassungsprozesse zuvor ma-
nuell gestaltet werden miissen, wird die Realisierung der Dimension Au-
tonomy nicht als exzellent, sondern als gut erfiillt betrachtet.

EK12 In ACML4BPM koénnen Anpassungen sowohl an gekapselten In-
halten einer einzelnen Komponente (zentral) als auch an mehreren Kom-
ponenten (dezentral) durchgefiihrt werden. So konnen in einem Anpas-
sungsprozess Operationen zur Anpassung verschiedenster Komponenten
verwendet werden. Der Anpassungsprozess orchestriert dabei die jeweili-
ge Fahigkeit zur Anpassung durch die verwendeten Operationen der be-
teiligten Komponenten.

Evaluation Seite 245

Verschiedene Beispiele fiir eine einfache Orchestrierung von Anpassungen
sind in Fall 1 und Fall 2 des Szenarios gegeben. Hier enthilt der verwen-
dete Anpassungsprozess eine Operation zur Anpassung der Eigenschaft
Performer eines Tasks. Die Fahigkeit der Anpassung ist demnach durch die
Modifikation dieser Eigenschaft gegeben.

Dabei ist die Herkunft einer Operation zur Anpassung nicht alleine auf
Komponenten zur Kapselung von Prozessen und deren Instanzen be-
schriankt. Wie in Abschnitt 4.3.2 bereits beschrieben, konnen z.B. auch
die Effektorschnittstellen von Umgebungskomponenten dedizierte Ope-
rationen zur Anpassung ihrer gekapselten Inhalte anbieten. Der in einem
Anpassungsprozess enthaltene Kontrollfluss kann dabei aus Operationen
verschiedener Komponenten bestehen, die im Rahmen des AVM4BPM
beschrieben worden sind. Somit konnen durch einen AC4BPM komplexe
und verteilte Anpassungen am System und seiner Umgebung beschrieben
werden.

Die Erfiillung der Realisierung der Dimension Organization kann damit als
gut angegeben werden.

EK13 Die Sprache ACML4BPM enthilt keine Sprachelemente zur Gestal-
tung einer zentralisierten oder globalen Rekonfiguration in Hinsicht auf
das Gesamtsystem.

Somit ist die Bewertung der Dimension Scope als nicht akzeptabel
vorgenommen worden.

EK14 Durch die Sprache ACML4BPM kann die Zeitdauer einer Anpas-
sung nicht beschrieben werden.

Somit ist die Bewertung der Realisierung fiir die Dimension Mechanisms
Duration nicht akzeptabel.

EK15 Die Reihenfolge von Anpassungen durch verschiedene Instanzen
eines Anpassungsprozesses kann in ACML4BPM nicht bestimmt werden.
Lediglich die Reihenfolge von Instanzen eines Beobachtungsprozesses und
der durch ihn aufgerufenen Anpassungsprozesse ist vorgegeben.

Dennoch kénnen im Rahmen des Verhaltens eines Anpassungsprozesses
verschiedene Ereignisse eingesetzt werden, die weitere Anpassungsfil-
le aufrufen. Hierdurch konnte z.B. der Umstand gegeben sein, dass bei
der weiteren Ausfithrung des ausgehenden Anpassungsprozesses auf eine
Synchronisation mit den durch ihn aufgerufenen weiteren Anpassungs-
prozessen gewartet wird. Fiir derartige Fille kann garantiert werden, dass
aufgerufene Anpassungen im fehlerfreien Betrieb zuerst beendet werden.

Grafische Darstellung
und Diskussion

Abbildung 7-11:
Netzdiagramm fiir die
Gruppe Mechanisms

Seite 246 Kapitel 7

Die Bewertung der Realisierung der Dimension Timeliness wird aufgrund
der beschriebenen Moglichkeit zur Beschreibung von Reihenfolgen als
moderat bewertet.

EK16 In ACML4BPM ist es moglich, auf verschiedenste Typen von Ereig-
nissen zu reagieren. So werden neben expliziten Ereignissen auch implizite
Ereignisse untersttitzt (sieche Abschnitt 4.3.4.1 bzw. Abschnitt 4.3.4.2).

In dem Szenario werden dabei verschiedene Untertypen von expliziten Er-
eignissen verwendet. Neben zeitgesteuerten Ereignissen (Fall 1 und Fall 2)
wird in Fall 3 auch ein Endereignis zur Auslosung verwendet.

Die Bewertung der Dimension Triggering kann daher als exzellent vor-

genommen werden.

Eine grafische Darstellung der zuvor beschriebenen Bewertungen fiir die
Gruppe Mechanisms ist in Abbildung 7-11 gegeben. Im Gegensatz zu den
zuvor beschriebenen Gruppen des Aspekts der Anpassbarkeit unterschei-
den sich die Bewertungen in gleich mehreren Dimensionen. Auf eine Er-
lauterung dieser Unterschiede mit dem Zweck des Vergleichs wird nach-
folgend eingegangen.

Mechanism
Type

Autnomy % Triggering

—T
Organization Timeliness
B ACML4BPM

B ACML

Mechanism
Scope .
Duration

Evaluation Seite 247

Hinsichtlich der Dimension Mechanism Type ldsst ich eine Abweichung
der Ergebnisse damit begriinden, dass der Fokus der Methode Adapt Ca-
ses 4 BPM auf der Gestaltung von flexiblen und anpassbaren Prozessen
liegt. Der Ansatz Adapt Cases hingegen stellt einen generelleren Ansatz des
Adaptivity Engineering dar, der insbesondere doméanenspezifische Aspek-
te der Doméne BPM aufler Acht ldsst. So wurden in diesem Zusammen-
hang relevante System- und Umgebungskomponenten im Rahmen einer
umfassenden Analyse identifiziert. Darauf basierend stehen entsprechen-
de Sprachelemente in Form spezifischer Systemkomponenten in der Ge-
staltung von flexiblen und anpassbaren Prozessen zur Verfiigung. Ferner
konnten fiir diese Systemkomponenten Schnittstellen und Operationen
zur Anpassung vorgestellt werden, die auf Basis von Perspektiven in
Prozessen ein breites Spektrum an Anpassbarkeit untersttitzen.

Im Gegensatz zu ACML unterstiitzt ACML4BPM verschiedene Grade an
Autonomie des resultierenden Systems. Hier konnte durch die Arbeit an
verschiedenen Aspekten von Flexibilitit von Prozessen sowie der Ein-
fihrung entsprechender Entwurfsmuster ein Mehrwert gegentiber ACML
dargestellt werden. Dies lasst sich dadurch begriinden, dass verschiede-
ne Operationen zur Anpassung oder auch die Einbindung von Mitarbei-
tern oder anderen Nutzern des Systems entweder in der Sprache integriert
oder durch die Entwurfsmuster bereits vorgesehen sind. Daher unterschei-
den sich die Bewertungen in Hinsicht auf die Dimension Autonomy.

Die letzte Unterscheidung in der Bewertung ist fiir die Dimension Timeli-
ness gegeben. Dabei konnte zuvor argumentiert werden, dass eine gewisse
Art an Erfiillung des Evaluationskriteriums in ACML4BPM sehr wohl vor-
handen ist, auch wenn es sich hierbei um einen Spezialfall handelt. In den
Ergebnissen auf Basis von [Bis11] wird dieser Spezialfall nicht beschrieben.
Dabei ist jedoch vorstellbar, dass dieser auch im Rahmen von ACML um-
setzbar wére. Die Realisierung der Dimension mit der Bewertung nicht
akzeptabel wird aufgrund des Vorhandenseins des genannten Spezial-
falls als nicht tibertragbar auf ACML4BPM angesehen.

Ein Vergleich weiterer Ergebnisse mit gleicher Bewertung fiir die Gruppe
Mechanisms lasst sich dadurch herleiten, dass zugehorige Konzepte der bei-
den Sprachen vergleichbar beschrieben worden sind. Zwei Beispiele sind
hier durch die Dimensionen Triggering und Organization gegeben. Dabei
konnen in beiden Sprachen unterschiedliche Arten von Auslosern, wie
z.B. zeitbezogene Ereignisse, zum Aufruf eines Adapt Case bzw. eines Adapt
Case 4 BPM genutzt werden. Ferner lassen sich Anpassungen an dem Sys-
tem oder seiner Umgebung auch derartig gestalten, dass sie an verteil-

Tabelle 7-10:
Bewertungen fiir die
Gruppe Effects

Seite 248 Kapitel 7

ten Stellen vorkommen. Die Evaluationskriterien Scope und Mechanisms
Duration kénnen dabei durch keine der beiden Sprachen moderat erfiillt
werden.

7.41.4 Bewertungen fiir die Gruppe Effects

Durch die Gruppe Effects werden verschiedene Dimensionen aufgefiihrt,
die sich mafsgeblich auf Eigenschaften einer Anpassung in Hinsicht auf
die Auswirkung fiir das Gesamtsystem beziehen. Dabei ist zu bemerken,
dass die Gestaltung oder Fahigkeit zur Analyse von Auswirkungen aufSer-
halb des Fokus von Adapt Cases oder Adapt Cases 4 BPM liegt. Nachfolgend
sind die Bewertungen der Dimensionen der Gruppe Effects in Tabelle 7-10
dargestellt. Auf Details und eine zugehorige Diskussion fiir die dargestell-
ten Bewertungen von Dimensionen der Gruppe Effects wird nachfolgend
individuell eingegangen.

ID Dimension ACML4BPM ACML
EK17 Criticality gut nicht akzeptabel
EK18 Predictability akzeptabel moderat
EK19 Overhead moderat nicht akzeptabel
EK20 Resilience akzeptabel nicht akzeptabel

EK17 Ein eigenes Sprachelement zur Kennzeichnung einer gescheiterten
Anpassung ist in der Sprache ACML4BPM nicht notwendig, da die in der
Sprache BPMN?2.0 enthaltenen Ereignisse vom Typ BoundaryEvent verwen-
det werden konnen. Ein solches Ereignis kann im Fall einer gescheiterten
Anpassung zur Auslésung von weiterem Verhalten genutzt werden, durch
das geeignete Mafinahmen umgesetzt werden. Eine Veranschaulichung
der Verwendung von Ereignissen des Typs BoundaryEvent wurde bereits
fur Flexibility-by Design und den Aspekt Cancellation in Abschnitt 5.2.1.6
gegeben.

Ein Beispiel fiir derartige Mafinahmen ist durch Verhalten gegeben, das
zum Zweck einer Kompensation bisher durchgefiihrter Anpassungen aus-
gefiihrt wird. Alternativ kann durch ein solches Ereignis und durch die
Verwendung des Entwurfsmusters Late Modeling bspw. auch ein menschli-
cher Akteur eingebunden werden. Als Folge dieser Einbindung lassen sich
durch diesen Akteur addquate Mafinahmen in Form von Prozessfragmen-
ten gestalten und anschlieffend binden. Hierdurch wére es moglich, durch
benutzerspezifische Prozessfragmente, auf das Scheitern einer Anpassung

reagieren zu kénnen. Die beiden zuvor genannten Beispiele zeigen zwei

Evaluation Seite 249

mogliche Arten, die Konsequenz einer gescheiterten Anpassung entweder
explizit (Kompensation) oder implizit (Late Modeling) zu beschreiben.

Die Dimension Criticality wird daher als gut realisiert bewertet.

EK18 Fiir die Vorhersage einer Konsequenz einer gescheiterten Anpas-
sung ist geeignetes Wissen notwendig, welches im Rahmen des AVM4BPM
gestaltet werden kann. Wird dieses Wissen nicht spezifiziert, lassen sich
zugehorige Funktionen zur Vorhersage nicht umsetzen. Auch wenn somit
kein dediziertes Sprachelement zur Vorhersage einer Konsequenz in der
Sprache ACML4BPM vorhanden ist, so ist durch die weiterfithrende Ge-
staltung von Funktionen zur Analyse des genannten Wissens eine Vorher-
sage dennoch moglich.

Die Dimension Predictability wird daher als akzeptabel erfiillt bewertet.

EK19 Der Aufwand einer Anpassung und die daraus resultierenden Kon-
sequenzen konnen durch die Sprache ACML4BPM nicht gestaltet werden.
Negative Konsequenzen konnen z.B. dadurch gegeben sein, dass zeit-
lich spéter angestofiene Anpassungen durchfiihrt worden sind, bevor frii-
her begonnene Anpassungen beendet werden. Stehen diese Anpassungen
in einem Abhidngigkeitsverhiltnis, sind sowohl Inkonsistenzen zwischen
Prozessmodellen und deren Instanzen als auch unbestimmte System- und
Umgebungszustande moglich.

Eine mogliche Losung konnte sich mit der Vergabe von Prioritdten und ei-
nem geeigneten Schedulingverfahren beschiftigen. Dabei lassen sich ein-
fache Prioritdten im Rahmen eines einzelnen AC4BPM durch eine ent-
sprechende Gestaltung von Verzweigungen (siehe Abschnitt 5.2.2), also in
Form von Flexibility-by Design und dem Aspekt Choice, implizit umsetzen.

Damit ist die Dimension Overhead mit moderat realisiert zu bewerten.

EK20 Durch ACML4BPM ist nicht gestaltbar, ob nach der Durchfithrung
einer Anpassung das System bzw. seine Umgebung weiter in der Lage ist,
die benotige Funktionalitit zu erbringen.

Damit ist die Dimension Resilience mit nicht akzeptabel realisiert zu
bewerten.

Eine grafische Darstellung der zuvor beschriebenen Bewertungen fiir die
Gruppe Effects ist in Abbildung 7-12 gegeben. Generell ldsst sich hier able-
sen, dass sich der Erfiillungsgrad von Evaluationskriterien dieser Dimen-
sion im Durchschnitt als moderat bis nicht akzeptabel darstellt. Das

Grafische Darstellung
und Diskussion

Seite 250 Kapitel 7

lasst sich dadurch begriinden, dass der Fokus in beiden Ansitzen nicht
auf der Abschétzung oder Gestaltung von moglichen Konsequenzen einer
durchzufiihrenden Anpassung liegt.

Abbildung 7-12: Criticality
Netzdiagramm fiir
die Gruppe Effects
Predictability Resilience
B ACML4BPM
B ACML
Overhead

Die Bewertung unterscheidet sich unmafsgeblich in drei der vier auf-
gefiihrten Dimensionen. Dies ladsst sich aus zwei unterschiedlichen Per-
spektiven begriinden. Zum einen ist es moglich, dass die Bewertung von
ACML4BPM an diesen Stellen optimistischer ausfallt, als sie es fiir ACML
war. Wobei hier jeweils in den einzelnen Beschreibungen entsprechend ar-
gumentiert worden ist. Zum anderen lésst sich fiir die Dimension Critica-
lity die Verwendung von den in der Sprache BPMN2.0 bestehenden Ele-
menten und den erarbeiteten Entwurfsmustern beschreiben, welche so fiir
den Ansatz Adapt Cases nicht vorhanden sind. Der dadurch entstehende
Mehrwert stellt damit die Basis fiir eine hohere Bewertung dar.

7.4.2 Bewertung von Kriterien an Adapt Cases 4 BPM

In diesem Abschnitt werden Bewertungen fiir die in Abschnitt 7.2.2 be-
schriebenen Kriterien vorgestellt. Diese Bewertungen werden in zwei
Gruppen vorgenommen, auf die nachfolgend kurz eingegangen wird. So
werden zundchst vergleichbare Bewertungen der Evaluation von ACML

Evaluation Seite 251

und ACML4BPM in Abschnitt 7.4.2.1 vorgestellt. Hiervon betroffen sind
die Evaluationskriterien EK21, EK22, EK23 sowie EK24. Zugehorige Daten
der Evaluation fiir die Sprache ACML wurden aus der Arbeit von [Bis11]
ubernommen.

Die Evaluationskriterien EK25, EK26 und EK27 sind fiir ACML nicht sinn-
voll in einem Vergleich anwendbar. Fiir EK26 wird ein Vergleich mit alter-
nativen existierenden Arbeiten der Doméne BPM in Abschnitt 7.4.2.2 vor-
genommen. Zugehorige Daten der Evaluation fiir das Evaluationskriteri-
um EK26 wurden aus der Arbeit von [Sch+08] iibernommen. Auf einen
Vergleich zwischen EK25 und EK27 wird verzichtet. Die Ergebnisse aus
beiden Gruppen werden jeweils sowohl tabellarisch als auch zum Teil gra-
fisch durch Netzdiagramme dargestellt.

7.4.2.1 Bewertungen fiir die Anforderungen an Adapt Case 4 BPM

Nachfolgend sind Bewertungen fiir die Anforderungen an den Ansatz
Adapt Cases 4 BPM in Tabelle 7-11 dargestellt. Auf Details und eine zu-
gehorige Diskussion fiir die dargestellten Bewertungen wird nachfolgend
individuell eingegangen.

ID Dimension ACML4BPM ACML
EK21 Separation-of-Concerns gut exzellent
EK22 Kontrollschleife exzellent exzellent
EK23 Ausdrucksfihigkeit exzellent exzellent
EK24 UML-Konsistenz exzellent exzellent
EK25 BPMN2.0-Konsistenz exzellent nicht gesetzt
EK26 Musterbasierte Unterstiitzung exzellent nicht gesetzt
EK27 Integration exzellent nicht gesetzt

EK21 Eine wesentliche Anforderung war es, die Trennung von An-
passungs- und Anwendungslogik in der Gestaltung von flexiblen und
anpassbaren Prozessen unterstiitzen zu konnen. Hierzu wurden in Kapi-
tel 4 die Sprache ACML4BPM und in Kapitel 5 eine Reihe von Entwurfs-
mustern vorgestellt. Dabei wurden grundlegende Funktionsweisen von
Konzepten und schematische Beispiele fiir die Trennung der genannten
Logiken gegeben. Im Rahmen der in diesem Kapitel betrachteten Félle des
Szenarios wurden zusitzlich praxisnahe Beispiele beschrieben, in denen
eine getrennte Gestaltung dieser Logiken vorgenommen wurde.

Eine Trennung der beiden Logiken kann somit unterstiitzt werden. Fiir
konkrete Beispiele fiir die Trennung von Anpassungs- und Anwendungs-
logiken wird an dieser Stelle auf die Falle des Szenarios in Abschnitt 7.1

Tabelle 7-11:
Bewertungen fiir die
Anforderungen an
Adapt Cases 4 BPM

Seite 252 Kapitel 7

verwiesen. Dabei ist anzumerken, dass sowohl in dem Szenario als auch
in den Entwurfsmustern verschiedene Félle existieren, bei denen speziel-
le Sprachelemente verwendet werden miissen, um die Anpassungslogik
mit der Anwendungslogik zu verbinden. Hierfiir werden bspw. im Rah-
men des Szenarios verschiedene Ereignisse verwendet. Eine vollkommene
Trennung der beiden Logiken ist daher nicht erreicht worden, weil es auch
weiterhin verbindende Elemente gibt.

Als Konsequenz fillt die Bewertung fiir die Dimension Separation-of-
Concerns lediglich als gut aus.

EK22 Durch die enge Anlehnung an grundlegende Konzepte des Ansat-
zes Adapt Cases konnte auch in Adapt Cases 4 BPM eine Unterstiitzung des
Musters der Kontrollschleife MAPE-K [KC03] in der Gestaltung von flexi-
blen und anpassbaren Prozessen umgesetzt werden. So werden grundle-
gende Konzepte des Musters in Form der Funktionen Analysis und Execu-
tion (siehe Kapitel 1) durch den Beobachtungs- bzw. Anpassungsprozess
umgesetzt.

Hierzu enthailt Fall 2 des Szenarios ein besonders geeignetes Beispiel. So
kann im Rahmen des Beobachtungsprozesses auf Basis verschiedener Aus-
16ser aus dem Kontext des Systems (hier: Prozess) so reagiert werden, dass
addquate Anpassungen (hier: Zuweisung) durchgefithrt werden. Dabei
werden auch erweiterte Analysefunktionen unterstiitzt, die in regelmafsi-
gen Abstidnden die Notwendigkeit einer Anpassung priifen.

Die Dimension Kontrollschleife kann damit als exzellent erfiillt bewertet
werden.

EK23 Der in dieser Arbeit vorgestellte Ansatz Adapt Cases 4 BPM stellt
eine doméanenspezifische Redefinition des Ansatzes Adapt Cases dar. So
wird in beiden Ansdtzen das Verhalten fallbasiert beschrieben. Durch die-
ses Verhalten werden Anpassungen von Eigenschaften des betrachteten
Systems und seiner Umgebung vorgenommen. Beide Ansétze sind dabei
fur die Anwendung in einer frithen Phase in der Gestaltung (hier: Design &
Analyse) vorgesehen. Werden benétigte Funktionen der Anwendungslogik
durch UML Use Cases beschrieben, so konnen Funktionen der Anpassungs-
logik durch das Konzept des Adapt Case 4 BPM beschrieben werden. Da-
bei kann — wie fiir EK5 Dependency beschrieben — ein AC4BPM mit anderen
Funktionen der Anwendungs- und Anpassungslogik in Relation stehen.

Ein Beispiel fiir die gemeinsame Verwendung von UML Use Cases und dem
Konzept des Adapt Case 4 BPM wurde in den drei vorgestellten Féllen des

Evaluation Seite 253

Szenarios im Rahmen der High-Level-Gestaltung von Funktionen des be-
trachteten Systems und seiner Umgebung gegeben (siehe Abschnitt 7.1).
Dabei wurde gezeigt, dass neben der fiir das Adaptivity Engineering klassi-
schen Assoziation «adapts» auch weitere Assoziationen sinnvoll sein kon-
nen (siehe Abschnitt 7.1.3 bzw. Abschnitt 7.1.4).

Die Dimension Ausdrucksfithigkeit kann fiir den Ansatz Adapt Cases 4 BPM
daher als exzellent bewertet werden.

EK24 In der Sprache ACML4BPM wurden verschiedene Elemente auf Ba-
sis bestehender Konzepte der beiden Sprachen ACML und UML redefi-
niert. Hierdurch wurde eine hohe Konsistenz hinsichtlich der Verwendung
von ACML4BPM bei der Gestaltung von flexiblen und anpassbaren Prozes-
sen gegeniiber der Sprache ACML bzw. UML erreicht.

Da es sich bei Adapt Case 4 BPM um eine doméanenspezifische Redefinition
handelt, werden an notwendigen Stellen Elemente der Sprache BPMN2.0
verwendet. Hierfiir existieren verschiedene Beispiele, wie die beiden Ver-
feinerungen eines AC4BPM in Form von Beobachtungs- und Anpassungs-
prozessen oder die zur Auslosung verwendeten Ereignisse.

Bei den zuvor genannten Abweichungen handelt es sich um notwendige
Einschrankungen in der Konsistenz, sodass als Konsequenz die Dimension
UML-Konsistenz dennoch als exzellent erfiillt bewertet wird.

EK25 Die Sprache BPMN2.0 stellt den De-facto-Standard zur Beschrei-
bung von Prozessen in der Doméne BPM dar. Aus diesem Grund wur-
den bestehende Konzepte des Ansatzes Adapt Cases so redefiniert, dass
spezifische Konzepte der Sprache BPMN2.0 verwendet worden sind. So
lasst sich im Rahmen der Low-Level-Gestaltung die durch einen AC4BPM
beschriebene Funktion mit Hilfe von Beobachtungs- und Anpassungspro-
zessen verfeinern. Die Beschreibung von dem in diesen Prozessen enthal-
tenen Verhalten kann somit durch die Verwendung tiblicher BPMN2.0 Ele-
mente durchgefiihrt werden. Ferner konnen auch neu eingefiihrte Elemen-
te der Sprache ACML4BPM, wie z.B. verschiedene Operationen oder Ereig-
nisse, in diesen Prozessen verwendet werden. Sie wurden dabei auf Basis
bestehender Elemente der Sprache BPMN?2.0 definiert. Hierdurch entsteht
die Moglichkeit, mit Konzepten des Adaptivity Engineering und in enger
Anlehnung an die Sprache BPMN2.0 entsprechend Prozesse zu gestalten.

Die beiden zuvor ausgefiihrten Eigenschaften lassen daher den Schluss zu,
dass eine hohe Konsistenz zu der Sprache BPMN2.0 erwartet werden kann.
Das Szenario (siehe Abschnitt 7.1) sowie die Beispiele entlang Kapitel 4
und Kapitel 5 dokumentieren den bestehenden Grad an Konsistenz.

Seite 254 Kapitel 7

Als Konsequenz wird die Dimension BPMN2.0-Konsistenz als exzellent
erfiillt bewertet.

EK26 Im Rahmen dieser Arbeit wurde eine Reihe von verschiedenen
Aspekten von flexiblen und anpassbaren Prozessen nach [Sch+08] vorge-
stellt. Basierend auf dieser Arbeit wurden Entwurfsmuster beschrieben
(siehe Kapitel 5). Diese Entwurfsmuster umfassen neben verschiedenen
notwendigen Spracherweiterungen der Sprache BPMN?2.0 auch spezifi-
sche Operationen fiir Anpassungen. Ferner wird die Verwendungsweise
der vorgestellten Entwurfsmuster beschrieben, sodass ein Mehrwert fiir
die Gestaltung von flexiblen und anpassbaren Prozessen entsteht.

Die Bewertung des Kriteriums EK26 wird an dieser Stelle vorweggenom-
men und mit exzellent angeben. Eine Ubersicht iiber unterstiitzte Ent-
wurfsmuster, die detaillierte Bewertung sowie ein Vergleich mit existieren-
den Arbeiten aus der Doméne BPM werden im Anschluss an die Diskussi-
on gegeben.

EK27 Sowohl die vorgestellte Sprache ACML4BPM als auch die Entwurfs-
muster benétigen fiir ihre Verwendung einen methodischen Rahmen. Hier-
zu wurde die Methode Adapt Cases 4 BPM vorgestellt, die wesentliche Ak-
tivitditen und Artefakte eines doménenspezifischen Adaptivity Engineering
beschreibt. Dabei wurde sich an einem in der Domédne BPM verbreiteten
methodischen Rahmen in Form des BPM-Lebenszyklus nach Weske [Wes12]

orientiert.

Eine beispielhafte Anwendung der Methode Adapt Cases 4 BPM wurde in
Teilen im Rahmen des Szenarios gezeigt (siehe Abschnitt 7.1). Dabei wur-
den die drei Aktivititen Anforderungsanalyse, High-Level-Gestaltung und
Low-Level-Gestaltung sowie ihre Artefakte und Abhdngigkeiten an Beispie-
len beschrieben. Eine weiterfithrende Verwendung der Methode, wie z.B.
in einem realen Projekt, wurde nicht durchgefiihrt. Daher muss eine Be-
wertung der Methode auf Basis praxisnaher Kriterien an die zukiinftige
Forschung am vorgestellten doménenspezifischen Adaptivity Engineering
delegiert werden.

Es wird davon ausgegangen, dass durch die in Kapitel 6 gegebene Be-
schreibung der Methode Adapt Cases 4 BPM sowie durch das Szenario
und seine drei Félle die Integration in eine Methode der Domane BPM
plausibilisiert werden konnte. Die Dimension Integration wird daher mit
exzellent bewertet.

Evaluation Seite 255

Die Bewertungen in Hinsicht auf die Anforderungen an den Ansatz Adapt
Cases 4 BPM lassen sich wie in Abbildung 7-13 gezeigt grafisch darstellen.
Generell ldsst sich erkennen, dass die Bewertungen von hier betrachteten
Dimensionen als exzellent eingestuft werden kdnnen. Das lasst sich da-
durch begriinden, dass sich bei der Erstellung des Konzepts fiir den An-
satz Adapt Cases 4 BPM eng an dem bestehenden Ansatz Adapt Cases orien-
tiert wurde. Die Ergebnisse der untersuchten Dimensionen sind daher bis
auf die Ausnahme Separation-of-Concerns als Deckungsgleich zu bezeich-
nen. Eine Erkldrung fiir die Abweichung bei der Bewertung der Dimen-
sion Separation-of-Concerns wird nachfolgend in Form einer Abschédtzung

durchgefiihrt.
Ausdrucksfahigkeit
UML- SoC
Konsistenz
BPM,NZ'O- Kontrollschleife
Konsistenz
Bl ACML4BPM
B ACML
/ \
Musterbasierte .
B Integration
Unterstiitzung

In der Bewertung der Dimension Separation-of-Concerns wurde sich gegen
die Vergabe der Bewertung exzellent entschlossen, da in einigen Fallen sehr
wohl Elemente der verschiedenen Logiken gemeinsam vorkommen. So
wurden bereits in Abschnitt 5.2 unterschiedliche Arten der Integration des
durch einen AC4BPM beschriebenen Verhaltens vorgestellt. Diese Arten
weisen nicht immer eine klare Trennung beteiligter Logiken auf, sodass
es sich hier um eine geringe Einschriankung des vorliegenden Ansatzes

Grafische Darstellung
und Diskussion

Abbildung 7-13:
Netzdiagramm fiir
die Anforderungen an
Adapt Cases 4 BPM

Seite 256 Kapitel 7

Adapt Cases 4 BPM in Bezug zur Dimension Separation-of-Concerns handelt.
Ferner kann davon ausgegangen werden, dass diese gemeinsame Verwen-
dung von Elementen der beiden Logiken auch im Ansatz Adapt Cases be-
reits prasent war. Dies wurde jedoch im Rahmen der Bewertung der be-
treffenden Kriterien offensichtlich als weniger relevant fiir das Endergeb-
nis eingeschitzt. Eine Abweichung in den Evaluationen der beiden An-
sdtze Adapt Cases und Adapt Cases 4 BPM in Hinsicht auf die Dimension
Separation-of-Concerns ist daher vermutlich der jeweiligen subjektiven Be-

wertung zuzuordnen.

Die Bewertungen der beiden Dimensionen BPMN?2.0-Konsistenz und Mus-
terbasierte Unterstiitzung sind als exzellent eingestuft. Dabei wird an die-
ser Stelle auf einen Vergleich mit dem Ansatz Adapt Cases verzichtet, da es
sich um spezifische Anforderungen fiir den vorliegenden Ansatz Adapt Ca-
ses 4 BPM handelt. Die Bewertungen fiir den Ansatz Adapt Cases sind daher
als nicht gesetzt dargestellt und konnen hier vernachldssigt werden.
Nachfolgend werden in Abschnitt 7.4.2.2 eine Ubersicht, eine Bewertung
sowie ein Vergleich zwischen alternativen Ansétzen in Bezug zur Dimen-
sion Musterbasierte Unterstiitzung gegeben.

7.4.2.2 Vergleich mit existierenden Anséitzen hinsichtlich der Di-
mension Musterbasierte Unterstiitzung

Bei der Beschreibung von verschiedenen Entwurfsmustern wurde die
Sprache ACML4BPM verwendet (siehe Kapitel 5). In diesem Abschnitt
sollen eine Ubersicht, eine Bewertung sowie ein Vergleich alternativer
Ansitze zur Gestaltung von flexiblen und anpassbaren Prozessen gege-
ben werden. Hierdurch soll die in dem vorherigen Abschnitt beschrie-
bene Argumentation zur Bewertung der Dimension EK26 mit dem Wert
exzellent begriindet werden.

Die nachfolgende Bewertung basiert dabei zum einen auf Daten, die be-
reits durch die von [Sch+08] durchgefiihrte Evaluation erstellt worden
sind. Zum anderen werden Daten hinsichtlich der Bewertung vorgestell-
ter Entwurfsmuster unter Verwendung der Sprache ACML4BPM hinzu-
gefiigt. Diese Daten sind durch eine selbstkritische Bewertung des Ansat-
zes entstanden. Dadurch kann der Vergleich zwischen verschiedenen Fra-
meworks zur Gestaltung von flexiblen und anpassbaren Prozessen unter-
stiitzt werden.

Bei diesen Frameworks handelt es sich vornehmlich um ADEPT1 [RRDO03],
YAWL [AT05; Ada+06; Ada+07], FLOWer [AWGO05] und Declare [PA06;

Evaluation Seite 257

Pes+07]. Neben diesen vorrangig wissenschaftlich gepragten Frameworks
existiert selbstverstdndlich eine Reihe von freien oder kommerziellen Fra-
meworks, die entweder kostenpflichtig oder oft mit reduziertem Funkti-
onsumfang verfligbar sind. Beispiele hierfiir sind durch Camunda Tool Sui-
tel, Signavio Business Transformation Suite?, jBPM> oder Bonita Toolsuite* ge-
geben. Die genannten freien und kommerziellen Frameworks untersttit-
zen die Verwendung von in der Sprache BPMN2.0 spezifizierten Prozess-
modellen. Fiir eine umfangreichere Ubersicht iiber verfiigbare freie und
kostenpflichtige Frameworks sowie iiber ihre Kompatibilitdt zur Sprache
BPMN2.0 kann auf verschiedene Arbeiten verwiesen werden [ES11; GW13;
Kurlé]. Es wurde sich gegen eine Aufnahme derartiger Frameworks im
Rahmen des hier vorliegenden Vergleichs entschieden, da sie ausgesuchte
Aspekte der Spezifikation der Sprache BPMN2.0 teilweise unterschiedlich
umsetzen und ein solcher Vergleich fiir diese Arbeit nicht im Fokus liegt.

Flexibility-by Design Die Bewertung von Adapt Cases 4 BPM in Bezug
zum Aspekt Flexibility-by Design ist in Tabelle 7-12 dargestellt. Nachfolgend
wird auf die Auspragung sowie auf einen Vergleich zu den genannten al-
ternativen Ansétzen eingegangen.

Flexibility-by ADEPT1 YAWL FLOWer Declare Adapt Cases4

Design BPM
Parallelism 4 4 4 v 4
Choice 4 4 v v 4
Iteration 4 4 4 4 v
Interleaving X 4 4 4 v
Multiple Instances X v 4 4 v
Cancellation X v X v v

Der Flexibilitatsaspekt Flexibility-by Design und seine weiteren Aspekte
zur Gestaltung lassen sich bereits durch die Sprache BPMN2.0 umsetzen.
Hierfiir wurden bereits je Gestaltungsaspekt diverse Beispiele beschrieben
(siehe Abschnitt 5.2.1). Die Sprache ACML4BPM wurde auf Basis von Ele-
menten der Sprache BPMN?2.0 definiert, sodass in Beobachtungs- und An-
passungsprozessen verschiedene Aspekte, wie z.B. Choice oder Iteration,
enthalten sein konnen. Ferner ldsst sich durch die Verwendung der Spra-
che ACML4BPM bei der Gestaltung von Aspekten von Flexibility-by Design
auch eine Trennung der Anpassungs- und Anwendungslogik durchfiih-
ren (siehe EK21). Davon sind die Gestaltungsaspekte Choice, Iteration und

Ihttps://camunda.org/ Letzter Zugriff: 01.09.2018
’https://www.signavio.com/ Letzter Zugriff: 01.09.2018
Shttps://www. jbpm.org/ Letzter Zugriff: 01.09.2018
4https://www.bonitasoft.com/ Letzter Zugriff: 01.09.2018

Tabelle 7-12:
Bewertungen in Hinsicht
auf Flexibility-by Design

https://camunda.org/
https://www.signavio.com/
https://www.jbpm.org/
https://www.bonitasoft.com/

Tabelle 7-13:
Bewertungen in Hinsicht
auf Flexibility-by Change

Seite 258 Kapitel 7

Cancellation unmittelbar betroffen. Im Vergleich zu alternativen Ansitzen,
wie z.B. ADEPT1 oder FLOWer, kann der Ansatz Adapt Cases 4 BPM somit
einen Vorteil bieten, da die aufgefithrten Gestaltungsaspekte zum einen
durch BPMN2.0 bereits abgedeckt sind und zum anderen eine Trennung
der beiden Logiken erméglicht wird.

Flexibility-by Change Die Bewertung von Adapt Cases 4 BPM in Bezug
zum Aspekt Flexibility-by Change ist in Tabelle 7-13 dargestellt. Nachfol-
gend wird auf die Auspragung sowie einen Vergleich zu den genannten

alternativen Ansitzen eingegangen.

Flexibility-by ADEPT1 YAWL FLOWer Declare Adapt Cases4
Change BPM
Momentary Change v X X v v
Evolutionary Change X v X 4 v

Strategien zur Migration
Forward Recovery X v X X 4
Backward Recovery X v X X 4
Proceed X X X 4 4
Transfer X v X 4 v
Zeitpunkt der Anwendung
Entry Time v X X 4 v
On-the-Fly v v X v v

Im Rahmen des vorgestellten Entwurfsmusters fiir den Flexibilitatsaspekt
Flexibility-by Change wurde neben einer Spracherweiterung der Sprache
BPMN?2.0 zur Unterscheidung von Elementen aus Prozessmodellen und
deren Instanzen auch eine Reihe von Operationen vorgestellt, mit de-
nen Migrationen von Anpassungen von Prozessen durchgefiihrt werden
konnen (siehe Abschnitt 5.3). Die vorgestellten Inhalte decken dabei so-
wohl die aufgefiihrten Typen von Anpassungen Momentary Change und
Evolutionary Change sowie die Zeitpunkte der Anwendung einer Anpas-
sung Entry Time und On-the-Fly als auch die aufgefiihrten Strategien zur
Migration ab. Dabei wurde fiir jede Migrationsstrategie eine Operation
vorgestellt, die unter entsprechender Parametrisierung das jeweilige Funk-
tionsprinzip einer Strategie umsetzt. Hierdurch konnen die in Tabelle 7-13
dargestellten Aspekte von Flexibility-by Change jeweils als erfiillt betrachtet

werden.

Im Vergleich zu anderen aufgefiithrten Ansatzen unterstiitzt Adapt Cases 4
BPM ebenso wie Declare beide Typen von Anpassungen. Ferner werden
im Rahmen von Anpassungen des Typs Evolutionary Change jede der vier
aufgefithrten Migrationsstrategien von Adapt Cases 4 BPM unterstiitzt. Die

Evaluation Seite 259

beiden Ansatze YAWL und Declare unterstiitzen hierbei lediglich eine Teil-
menge dieser Strategien.

Flexibility-by Deviation Die Bewertung von Adapt Cases 4 BPM in Bezug
zum Aspekt Flexibility-by Deviation ist in Tabelle 7-14 dargestellt. Nachfol-
gend wird auf die Ausprdagung sowie auf einen Vergleich zu den genann-
ten alternativen Ansitzen eingegangen.

Flexibility-by ADEPT1 YAWL FLOWer Declare Adapt Cases4
Deviation BPM

Operationen in
imperativen Sprachen

Redo X X v X v
Undo X X v X v
Skip X X v X v
Create additional X X /X X v
Instances
Invoke Task X X v X v
Operationen in
deklarativen Sprachen
Violation of X X X 4 X

Constraints

Hier bietet der Ansatz Adapt Cases 4 BPM die Moglichkeit der Untersttit-
zung bei der Gestaltung von flexiblen und anpassbaren Prozessen in der
Form, dass eine Reihe von spezifischen Operationen zur Verfiigung steht.
Diese Operationen lassen sich so einsetzen, dass verschiedene Abwei-
chungen vom im Prozessmodell vorgesehenen Kontrollfluss ermoglicht
werden, ohne diesen explizit anzupassen. Dabei sind diese Operationen
jedoch in dieser Weise nur in imperativen Sprachen méglich. Im Rahmen
der in dieser Arbeit vorgenommen Definition der Sprache ACML4BPM
werden keine deklarativen Sprachen und entsprechenden Operationen
zur Abweichung unterstiitzt. Im Vergleich zu den Ansiatzen FLOWer und
Declare féllt auf, dass jeweils entweder Operationen fiir imperative oder
aber deklarative Sprachen unterstiitzt werden. Dies lasst sich damit be-
griinden, dass das Konzept der zugrundeliegenden Basissprache entspre-
chend imperativ oder deklarativ ist. Eine Untersttitzung von Operationen
fiir die beiden Typen von Sprachen scheint daher nur dann sinnvoll, wenn
die Basissprache sowohl imperative als auch deklarative Beschreibungen
von Prozessen explizit vorsieht. Dies ist bei BPMN2.0 jedoch nicht der Fall,
sodass dieser Missstand als vernachlassigbar angesehen wird.

Tabelle 7-14:
Bewertungen in Hinsicht
auf Flexibility-by Deviati-
on

Tabelle 7-15:
Bewertungen in Hinsicht
auf Flexibility-by
Underspecification

Seite 260 Kapitel 7

Flexibility-by Underspecification Die Bewertung von Adapt Cases 4 BPM
in Bezug zum vierten und letzten Aspekt Flexibility-by Underspecification ist
in Tabelle 7-15 dargestellt. Nachfolgend wird auf die Auspragung sowie
auf einen Vergleich zu den genannten alternativen Ansétzen eingegangen.

Flexibility-by ADEPT1 YAWL FLOWer Declare Adapt Cases4
Underspecification BPM

Late Binding X v X X v

Late Modeling X v X X 4
Zeitpunkt der Anwendung

Preliminary X X X X v/

On Activation X v X X 4
Mehrfachanwendung

Static X X X X 4

Dynamic X v X X v/

Der Ansatz Adapt Cases 4 BPM unterstiitzt die Gestaltung der beiden Typen
Late Selection und Late Modeling durch die Verwendung von verschiedenen
Operationen. Dabei konnen diese Operationen so parametrisiert werden,
dass sowohl beide Typen von Zeitpunkten als auch die Mehrfachanwen-
dung ermoglicht werden kann.

YAWL unterstiitzt ebenso die beiden genannten Typen des Flexibilitdts-
aspekts Flexibility-by Underspecification. Ferner konnen dort mehrfach Bin-
dungen bei Aktivierung eines Platzhalters durchgefiihrt werden. Der An-
satz Adapt Cases 4 BPM bietet hier jedoch vielfaltigere Einsatzmoglichkei-
ten, da insgesamt mehr Eigenschaften unterstiitzt werden konnen.

7.5 Giiltigkeit

Die Evaluation des in dieser Arbeit vorgestellten Ansatzes Adapt Cases 4
BPM basiert auf insgesamt zwei vorgestellten Kriterienkatalogen sowie auf
einem an der Praxis orientierten Szenario. Dabei wurden neben den bereits
durch [Bis11] vorgestellten Kriterien auch weitere Kriterien zur Evaluati-
on in Bezug zur Gestaltung von flexiblen und anpassbaren Prozessen hin-
zugefiigt. Selbstverstdndlich kénnen durch die zuvor genannten Kriterien
und durch das Szenario nur bestimmte Teile des Ansatzes unter einer sinn-
vollen Verwendung existierender Ressourcen evaluiert werden. Derartige
Ressourcen sind bspw. gegeben durch die finanzielle Unterstiitzung sowie
durch die Verfiigbarkeit von industriellen Partnern, mit denen der Ansatz
z.B. auch in der Praxis hitte evaluiert werden kénnen.

Evaluation Seite 261

Nichtsdestotrotz profitierte die Qualitdt dieser Arbeit durch die Einbettung
in das NRW Fortschrittskolleg , Gestaltung von flexiblen Arbeitswelten”. Hier
konnten in verschiedenen Expertengesprdchen und wissenschaftlichen
sowie industriellen Workshops einzelne Teile der vorliegenden Arbeit re-
gelmafiig vorgelegt und diskutiert werden. Durch das breite Spektrum an
unterschiedlichen Experten aus Wissenschaft und Praxis konnte die Plau-
sibilisierung unterschiedlichster Aspekte bereits vor und wihrend der
Ausarbeitung vorgenommen werden. Als ein Beispiel kann hier insbeson-
dere das Szenario sowie verschiedenste Aspekte von Flexibilitidt und de-
ren Entwurfsmustern genannt werden, die auf Basis diverser Gesprache
verfeinert werden konnten. Der vorliegende Arbeitsstand unter der gege-
benen Qualitdt wére ohne derartige Gespréache, welche ebenso eine Art
der Evaluation darstellen, nicht moglich gewesen.

Die Bewertung von vorgestellten Kriterien stellen eine selbstkritische und
damit subjektive Bewertung dar. Unter Verwendung von Experten der
Doméne BPM wire es ebenso moglich gewesen, eine empirische Unter-
suchung hinsichtlich der Anwendbarkeit der Sprache oder der Benutzer-
freundlichkeit (engl. Usability) durchzufiihren. Der Ansatz hétte hierdurch
in Hinsicht auf die Evaluation von grundlegenden Konzepten, die bereits
Teil des Ansatzes Adapt Cases gewesen sind, einen Mehrwert bieten kon-

nen.

Ein weiterer Punkt, der aus Sicht einer kritischen Betrachtung der vorge-
stellten Bewertungen Beriicksichtigung finden sollte, ist dadurch gegeben,
dass vergleichbare Kriterien eingesetzt wurden, wie sie auch schon fiir den
Ansatz Adapt Cases verwendet worden sind. Dies ldsst sich damit begriin-
den, dass beide Ansétze verglichen werden sollten. Wéren alternative Vor-
gehensweisen fiir die Bewertungen verwendet worden, hétte auch der An-
satz Adapt Cases neu bewertet werden miissen.

Bei dem gegebenen Vergleich von vorgestellten Entwurfsmustern mit al-
ternativen Arbeiten lag der Fokus lediglich auf der Gestaltung von flexi-
blen und anpassbaren Prozessen. Dabei werden durch die aufgefiihrten
alternativen Ansadtze oftmals auch wissenschaftliche Prototypen zur Aus-
fihrung auf Basis gestalteter Prozesse angeboten. Ein derartiger Prototyp
ist fiir Adapt Cases 4 BPM so nicht vorhanden und lag auch nicht im Fokus
der Arbeit. Durch die Definition der Sprachelemente in enger Anlehnung
an existierenden Elementen der Sprache BPMN2.0 wird an dieser Stelle da-
von ausgegangen, dass Erganzungen, die eine Ausfiihrung der gestalteten
Prozesse ermoglichen, durch geringe Anpassungen von entsprechenden
Softwarelosungen ermoglicht werden konnen.

Riickkopplung mit
Experten aus Wissenschaft
und Industrie

Art der Bewertung

Referenzpunkte zur
Bewertung

Kapitel

Zusammenfassung und
Ausblick

In der vorliegenden Arbeit wurden verschiedene Konzepte prasentiert,
die fiir die Gestaltung von flexiblen und anpassbaren Prozessen einge-
setzt werden konnen. In diesem Kapitel werden diese Konzepte zunéchst
in Abschnitt 8.1 kurz zusammengefasst. Ferner wird auf den geleiste-
ten wissenschaftlichen Beitrag in Anlehnung an existierenden Ansitzen
des Adaptivity Engineering eingegangen und Bezug zu anfangs vorge-
stellten Forschungsfragen genommen (siehe Kapitel 1). Ausgesuchte wei-
terfithrende Fragestellungen fiir zukiinftige Forschungsthemen fiir das
Adaptivity Engineering mit einem speziellen Bezug zur Gestaltung von fle-
xiblen und anpassbaren Prozessen werden in Form eines Ausblicks in
Abschnitt 8.2 vorgestellt.

8.1 Zusammenfassung

In dieser Arbeit wurde sich mit der Gestaltung von flexiblen und anpass-
baren Prozessen in der Domédne BPM auseinandergesetzt. Die vorgestell-
ten Losungsteile umfassen eine fiir diese Doméne neuartige Sprache (Adapt
Case Modeling Language 4 BPM), Entwurfsmuster zur Gestaltung von flexi-
blen und anpassbaren Prozessen sowie eine zugehorige Methodik (Adapt
Cases 4 BPM). Diese drei Losungsteile stellen den durch diese Arbeit ge-
leisteten wissenschaftlichen Beitrag dar. In Abbildung 8-1 ist eine Uber-
sicht dieses Beitrags gezeigt, auf dessen Details nachfolgend eingegangen
wird.

Adapt Case Modeling Language 4 BPM

In dieser Arbeit wurde eine neuartige doméanenspezifische Sprache zur Ge-
staltung von flexiblen und anpassbaren Prozessen vorgestellt. Die Sprache

Beantwortung von
Forschungsfrage 1

Abbildung 8-1:
Ubersicht iiber den
wissenschaftlichen Beitrag

Seite 264 Kapitel 8

Adaptivity Engineering — Adapt Cases
(allgemein)

Adapt Case
Modeling Language

Adaptivity Engineering — Adapt Cases 4 BPM
(doméanenspezifisch)

Adapt Fase e BPM-spezifische Komponenten,
Modeling Language 4 BPM Schnittstellen, Operationen und

redefiniert <: Ereignisse

e Verwendung von verbreiteten
UML- und BPMN2.0-Konzepten

T
' 1

erweitert beschreibt die) Integriertes
erweitert domdnenspezifisches Wissen

Verwendung von

Entwurfsmuster fir . .
. Unterstiitzung von verschiedenen
flexible und anpassbare Prozesse I
Typen von Flexibilitdt:
wendet an Konzeptionelle e Flexibility-by Design,
BPMN2.0-Erweiterungen Flexibility-by Change,

L]
o Flexibility-by Deviation und
L]

Aspektspezifische Operationen | Flexibility-by Underspecification

Adapt Case Modeling Language 4 BPM (ACML4BPM) stellt dabei eine Re-
definition der Sprache Adapt Case Modeling Language (ACML) dar, welche
durch [Luc+11] erstmals vorgestellt worden ist. Hierdurch kénnen grund-
legende Konzepte des Autonomic Computing in Form der Referenzarchitek-
tur MAPE-K [KC03] wiederverwendet werden.

Die Sprache ACML4BPM kann in einer frithen Phase der Gestaltung zur
Beschreibung einzelner Funktionen eines Systems verwendet werden.
Hierbei liegt die Trennung der Anpassungs- von der Anwendungslogik
im Fokus. Eine Trennung beider Logiken kann die Qualitdt der Gestaltung
steigern, da beteiligte Akteure detaillierte Aspekte von einer der beiden
Logiken fokussieren konnen.

Grundsitzlich wird bei der Verwendung der Sprache in die High-Level-
Gestaltung und die Low-Level-Gestaltung unterschieden. Im Rahmen der
High-Level-Gestaltung werden in Anlehnung an UML Use Case-Diagramme
einzelne Funktionen eines Systems beschrieben. Dabei kénnen Funktio-
nen der Anpassungslogik von Funktionen der Anwendungslogik separiert
werden. Eine Unterscheidung von Funktionen beider Logiken wird damit
bereits frithzeitig unterstiitzt. Die Low-Level-Gestaltung hingegen verfeinert

Zusammenfassung und Ausblick Seite 265

das im Rahmen der High-Level-Gestaltung spezifizierte Verhalten der An-
passungslogik. Dabei werden in ACML4BPM Sprachelemente der Sprache
BPMN?2.0 verwendet, welche den De-facto-Standard zur Gestaltung von
Prozessen darstellt. Hierdurch kann eine dedizierte doméanenspezifische
Gestaltung von Prozessen unterstiitzt werden, die so durch die urspriing-
liche Sprache ACML nicht moglich gewesen ist.

Als wissenschaftlichen Beitrag ist neben der Moglichkeit einer dedizier-
ten Gestaltung unter Verwendung von Konzepten der Doméane BPM auch
weiteres doménenspezifisches Wissen in die Sprache ACML4BPM inte-
griert worden. Dabei kennzeichnen sich doménenspezifische Sprachen ins-
besondere durch die Kapselung spezifischer Konzepte einer ausgewahlten
Doméne aus, wodurch u.a. die Qualitédt in der Gestaltung erhoht werden
kann. Beispiele fiir derartiges Wissen sind durch spezifische Komponen-
ten, Operationen zur Anpassung sowie durch unterschiedliche Ereignis-
se zur Auslosung von Anpassungen gegeben. Dabei konnte insbesondere
dadurch ein Mehrwert generiert werden, dass im Gegensatz zu existieren-
den Ansitzen verschiedene Elemente aus allen vier durch Curtis [CKO92]
eingefiihrten Perspektiven von Prozessen angepasst werden kénnen. Die
Sprache ACML4BPM unterstiitzt daher die BPM-spezifische und qualitativ
hochwertige Gestaltung von flexiblen und anpassbaren Prozessen.

Entwurfsmuster fiir flexible und anpassbare Prozesse

Damit die Gestaltung von flexiblen und anpassbaren Prozessen weiter un-
terstiitzt werden kann, wurden unterschiedliche Facetten von Flexibilitit
in Prozessen analysiert und zugehorige Entwurfsmuster vorgestellt. Die
Entwurfsmuster basieren dabei auf einem Katalog etablierter Flexibilitats-
aspekte von Prozessen in der Doméne BPM (siehe [Sch+08]).

So wurden im Rahmen der Entwurfsmuster notwendige konzeptionelle
Erweiterungen der Sprache BPMN2.0 und aspektspezifische Operationen
zur Anpassung vorgestellt. Die Funktionsprinzipien der Operationen wur-
den an schematischen Beispielen verdeutlicht. Die Gesamtheit aller Ent-
wurfsmuster stellt Akteuren ein breites Spektrum an Moglichkeiten zur
Verfiigung, um die Gestaltung von flexiblen und anpassbaren Prozessen
unter Verwendung der Sprache ACML4BPM vornehmen zu kdnnen.

Wie bereits an verschiedenen Stellen der Evaluation beschrieben (siehe Ka-
pitel 7), stellen die Entwurfsmuster einen Mehrwert gegentiber der Spra-
che ACML dar, da eine erweiterte Verwendung der Sprache ermoglicht
wird. Auch wenn die Erweiterungen der Sprache BPMN2.0 sowie aspekt-
spezifischer Operationen nicht Teil der Basissprache (hier: ACML4BPM)

Beantwortung von
Forschungsfrage 2

Beantwortung von
Forschungsfrage 3

Seite 266 Kapitel 8

sind, lassen sie sich als Erweiterung von ACML4BPM verstehen und ein-

setzen.

Als weiterer wissenschaftlicher Beitrag ist aber auch die Gesamtheit der
Entwurfsmuster zu betrachten. So wurden fiir die durch [Sch+08] beschrie-
benen Flexibilitatsaspekte Entwurfsmuster unter Verwendung der Sprache
ACML4BPM beschrieben. Dies stellt einen Mehrwert dar, da sich bisher
existierende Arbeiten lediglich auf die Umsetzung einzelner Flexibilitéts-
aspekte ohne Trennung der Anwendungs- von der Anpassungslogik un-
ter Verwendung der Sprache BPMN2.0 beziehen. Beispiele fiir derartige
Arbeiten sind durch [CMT10; Mur+13] gegeben, in denen die Flexibilitats-
aspekte Late Binding bzw. Late Selection behandelt werden. Die in dieser Ar-
beit einheitlich beschriebenen Entwurfsmuster konnen somit auch als Leit-
faden fiir die Gestaltung von flexiblen und anpassbaren Prozessen verstan-
den werden. Hierdurch konnen verschiedene an der Gestaltung beteiligte
Akteure die Gesamtheit der Entwurfsmuster als Ausgangslage zur Aus-
wabhl eines geeigneten Typs von Flexibilitdt in Prozessen nutzen.

Adaptivity Engineering — Adapt Cases 4 BPM

Der durch Luckey [Lucl3] vorgestellte Ansatz Adapt Cases ermoglicht die
Gestaltung von selbst-adaptiven Systemen mit Fokus auf der Trennung
der Anpassungs- und Anwendungslogik. Die Methode Adapt Cases 4 BPM
greift diese grundlegende Idee fiir die methodische Gestaltung von flexi-
blen und anpassbaren Prozessen wieder auf. Dabei werden unter Verwen-
dung von Konzepten der Domédne BPM verschiedene Redefinitionen, Er-
weiterungen und Anwendungen urspriinglicher Konzepte des Ansatzes
Adapt Cases vorgenommen. Dabei kann die Methode Adapt Cases 4 BPM
ebenso wie Adapt Cases in einer frithen Phase in der Gestaltung eingesetzt

werden.

Der daraus resultierende wissenschaftliche Beitrag kann aus verschie-
denen Perspektiven betrachtet werden. So stellt der Ansatz Adapt Ca-
ses 4 BPM ein Beispiel fiir die Anwendung bereits existierender Kon-
zepte des Adaptivity Engineering auf eine spezifische Anwendungsdoma-
ne (hier: BPM) dar. Dabei war es notwendig, dass fiir die Anwendungs-
domine BPM neue Elemente hinzugefiigt oder existierende Elemente in
Anlehnung an neue spezifische Konzepte aus der Doméne redefiniert
werden mussten. Hierdurch entstanden neue Eigenschaften in der Spra-
che ACML4BPM, durch die die Ausdrucksfahigkeit gegentiber der Sprache
ACML gesteigert werden konnte. Ein weiterer Mehrwert, der durch den
Ansatz Adapt Cases 4 BPM gegeniiber dem Ansatz Adapt Cases entsteht,

Zusammenfassung und Ausblick Seite 267

ist eine erweiterte Fahigkeit zur Gestaltung von flexiblen und anpassba-
ren Prozessen. Die Verwendung von Elementen der Sprache BPMN2.0 an-
stelle von UML Aktivititsdiagrammen stellt in diesem Bezug einen fiir die
Domine BPM spezifischeren Weg der Gestaltung dar. Hierdurch kénnen
verschiedene Akteure in die Lage versetzt werden, auf Basis des De-facto-
Standards BPMN2.0 Prozesse geeigneter gestalten zu konnen.

Zuletzt bilden die Entwurfsmuster mit ihren erarbeiteten konzeptionellen
Erweiterungen der Sprache BPMN2.0 und ihren Operationen zur Anpas-
sung einen Mehrwert. So waren bspw. derartige Entwurfsmuster fiir den
Ansatz Adapt Cases nicht existent. Die vorgenommene Integration von do-
ménenspezifischem Wissen durch unterschiedliche Flexibilitdtsaspekte er-
moglicht somit eine erweiterte methodische Fahigkeit des erarbeiteten An-
satzes Adapt Cases 4 BPM.

8.2 Ausblick

In dieser Arbeit konnten drei wichtige Losungsteile fiir die Gestaltung von
flexiblen und anpassbaren Prozessen erarbeitet werden. Im Rahmen der
Bearbeitung sind dabei weitere Fragestellungen entstanden. Durch eine
Beantwortung dieser Fragestellungen kann das Adaptivity Engineering so-
wohl im generellen als auch im spezifischen Kontext einer Doméne wei-
terentwickelt werden. Nachfolgend wird auf wichtige Eckpunkte dieser
Fragestellungen eingegangen.

Evaluation im industriellen Kontext

Ausgesuchte Inhalte der vorliegenden Arbeit wurden auf Basis eines pra-
xisnahen Szenarios plausibilisiert. Zusitzlich wurden verschiedene Ka-
taloge von Kriterien verwendet, mit denen Eigenschaften der Sprache
ACML4BPM im Rahmen einer selbststindig durchgefiihrten Bewertung
untersucht worden sind. Eine sinnvolle Ergdnzung stellt eine zusétzli-
che Evaluation im industriellen Kontext dar. So konnten weitere Kriterien
fiir Eigenschaften der Sprache untersucht, bewertet und gegebenenfalls
Bedarf fiir Erweiterungen identifiziert werden.

Eine mogliche Kategorie dieser Eigenschaften ist durch die Benutzer-
freundlichkeit (engl. Usability) gegeben. So stellt sich die Frage, ob vorge-
stellte Elemente der Sprache ACML4BPM durch verschiedene in der Ge-
staltung beteiligte Akteure addquat verstanden werden kénnen. Diese Art
von Verstdndnis der vorgestellten Sprache ist insbesondere dann wichtig,

Seite 268 Kapitel 8

wenn verschiedene Akteure parallel oder sequentiell die Gestaltung von
Prozessen auf Basis von mit ACML4BPM erstellten Modellen vornehmen.
Daher ist zu priifen, ob ein gewisser Grad an Benutzerfreundlichkeit bei
der Verwendung des vorgestellten Ansatzes besteht. Beispiele fiir beste-
hende Ansitze zur Evaluation von Eigenschaften der Benutzerfreundlich-
keiten sind durch Moody und Hillegersberg [MH08; Moo09] gegeben.

Ein weiterer Aspekt, der durch eine Evaluation im industriellen Kontext
untersucht werden konnte, ist durch spezifische Anforderungen aus der
Praxis gegeben. So konnen aus einem konkreten industriellen Kontext wei-
tere Anforderungen an eine Sprache und an die zugehorige Entwurfsme-
thodik gesetzt werden. Fiir den Gesamtansatz Adapt Cases 4 BPM stellt sich
in diesem Bezug die Fragestellung, ob beschriebene Konzepte derartige
Anforderungen bereits erfiillen oder ob weitere Konzepte in den Ansatz
integriert werden miissen.

Werkzeugunterstiitzung

Weitere Arbeiten in Bezug zu dem Ansatz Adapt Cases 4 BPM konnen
hinsichtlich der Bereitstellung einer Werkzeugunterstiitzung durchgefiihrt
werden. Dabei konnen die Aspekte der Phase Gestaltung sowie der Phase
Ausfithrung und der Phase Evaluation besonders hervorgehoben werden.

In dieser Arbeit wurden verschiedene Konzepte vorgestellt, mit denen fle-
xible und anpassbare Prozesse gestaltet werden kénnen. Dabei wurde auf
die Entwicklung eines Softwarewerkzeugs zur Gestaltung bewusst ver-
zichtet. Ein solches Softwarewerkzeug ist z.B. durch einen grafischen Edi-
tor gegeben, welcher die Akzeptanz und Anwendbarkeit des vorgestellten
Ansatzes, insbesondere auch in Bezug zu der zuvor genannten Evaluation
im industriellen Kontext, erhohen kann.

Der zweite Aspekt hinsichtlich der Phase Ausfiihrung und der Phase Eva-
Iuation geht tiber das fiir diese Arbeit gesetzte Ziel der Gestaltung von flexi-
blen und anpassbaren Prozessen hinaus und beschéftigt sich vornehmlich
mit weiterfiihrenden Phasen des BPM-Lebenszyklus. So stellen sich bspw.
fur die Phase Ausfiihrung und die Phase Evaluation die Frage, wie beschrie-
bene Konzepte hier tibertragen werden koénnen.

Fiir die Phase Ausfiihrung gilt dabei zu untersuchen, ob und welche Vor-
teile eine Trennung der Anpassungs- und Anwendungslogik ermoglichen
oder aber weiterhin sinnvoll erscheinen ldsst. So ist es vorstellbar, dass fiir
spezifische Anwendungen unterschiedliche Anforderungen fiir die Aus-
fiihrung der beteiligten Logiken bestehen konnen. Als Beispiel ldsst sich

Zusammenfassung und Ausblick Seite 269

eine Anforderung beschreiben, in deren Realisierung beide Logiken auch
in der Phase Ausfiihrung getrennt ausgefiihrt werden sollen. Im Gegensatz
zu dieser Anforderung steht die Integration beider Logiken, wie z.B. die
Ausfithrung im Rahmen einer gemeinsamen Workflow-Engine. Dabei las-
sen sich auch weitere Anforderungen beschreiben, fiir die weitere Uberle-
gungen notwendig sind.

In der Phase Evaluation stehen hdufig auch statistische Daten tiber akti-
ve und bereits beendete Prozesse zur Verfiigung. Dieser Umstand kann
auf Basis neuartiger Methoden aus dem Bereich des Machine Learning
[WFH11] so eingesetzt werden, dass Verbesserungen von Prozessen auch
(teil-)automatisiert werden konnen. Dabei konnen Verbesserungen von be-
stehenden Prozessen bereits durch die Verwendung des Entwurfsmusters
Flexibility-by Change unterstiitzt werden. Eine sinnvolle Erweiterung um
fortgeschrittene Analysetechniken, die z.B. im Rahmen des Machine Lear-
ning existent sind, kann insbesondere auch im Umfeld der Automatisie-
rung von Prozessen einen grofien Mehrwert bieten.

Gestaltung von *-zentrierten Prozessen

Diese Forschungsarbeit wurde durch verschiedene Fragestellungen aus
dem Kontext des NRW Fortschrittskollegs ,Gestaltung von flexiblen Arbeits-
welten” eingeleitet. Sie betreffen zum einen die Flexibilisierung von Prozes-
sen, auf die in dieser Arbeit explizit eingegangen worden ist. Zum ande-
ren stehen sie aber auch in Bezug zum Konzept der Menschenzentrierung.
Eine derartige Zentrierung kann als eine Art von Perspektive verstanden
werden, in der Eigenschaften von den im Fokus stehenden Entitdten be-
riicksichtigt werden sollen. Hierbei konnen unterschiedliche Aktivitdten
entlang der Phasen des BPM-Lebenszyklus betroffen sein. So kann z.B. all-
gemein von einer *-zentrierten Gestaltung oder Ausfithrung von Prozessen
gesprochen werden, wenn der Fokus auf Entitdten wie Menschen, Maschi-
nen oder IT-Dienste gesetzt wird.

Fiir das in dieser Arbeit vorgestellte domé&nenspezifische Adaptivity En-
gineering ergeben sich hieraus potentiell neue Moglichkeiten durch eine
*-zentrierte Gestaltung von Prozessen. So konnte aus der Perspektive eines
Prozesses fiir jede dieser Entititen eine Komponente in seiner Umgebung
zur Verfiigung stehen, die wesentliche Konzepte zur *-zentrierung enthilt.
Durch zugehorige Sensor- und Effektorschnittstellen lassen sich kontrol-
lierte lesende Zugriffe auf Eigenschaften bzw. auch Anpassungen ermog-
lichen. Dabei ergeben sich jedoch offene Fragestellungen hinsichtlich eines
eingesetzten Ansatzes zur Gestaltung dieser Eigenschaften der Entitdten

Seite 270 Kapitel 8

Mensch, Maschine und IT-Dienst. Eine Moglichkeit wire eine sprachba-
sierte Losung anzustreben, die insbesondere verschiedenes doménenspe-
zifisches Wissen in einer gemeinsamen Sprache zur Gestaltung von Umge-
bungskomponenten integriert. Hierdurch wire ein erweitertes Adaptivity
Engineering in der Lage, Konzepte dediziert im Kontext von Prozessen zu
berticksichtigen, um eine *-zentrierung zu erreichen.

Tabellenverzeichnis

2-1 Gegenulberstellung von GPLs und DSLs (nach [Voe+13])

2-2 Gegenlberstellung von Geschéftsprozess und Workflow-Prozess (nach
[GadO8])

2-3 Sprachen zur Gestaltung von Prozessen (nach [Gad08])

4-1 Ubersicht liber gesetzte Ziele und deren Erfilllung fiir die entwickelte
Sprache zur Gestaltung von anpassbaren Prozessen

5-1 Ubersicht liber die Mdglichkeit der Trennung von Anpassungs- und An-
wendungslogik in Bezug zu einzelnen Aspekten von Flexibility-by Design
5-2 Typen von Zeitpunkten und betroffene Artefakte entlang relevanter Pha-
sendes BPM-Lebenszyklus
5-3 Typen von Zeitdauern und betroffene Artefakte entlang relevanter Pha-
sendes BPM-Lebenszyklus Lo oo oL
5-4 Ubersicht liber gesetzte Ziele und deren Erfiillung fiir die Musterba-
sierte Unterstiitzung in der Gestaltung von flexiblen und anpassbaren
Prozessen e

7-1 Evaluationskriterien fiir die Gruppe Goals
7-2 Evaluationskriterien fiir die Gruppe Change
7-3 Evaluationskriterien fiir die Gruppe Mechanisms
7-4 Evaluationskriterien fir die Gruppe Effects
7-5 Evaluationskriterien fiir die Anforderungen an Adapt Cases 4 BPM
7-6 Bewertungseinheit fir Kriterien o o oL
7-7 Bewertungen fir die Gruppe Goals
7-8 Bewertungen fir die Gruppe Change
7-9 Bewertungen flr die Gruppe Mechanisms
7-10 Bewertungen flir die Gruppe Effects
7-11 Bewertungen flr die Anforderungen an Adapt Cases4BPM
7-12 Bewertungen in Hinsicht auf Flexibility-by Design
7-13 Bewertungen in Hinsicht auf Flexibility-by Change
7-14 Bewertungen in Hinsicht auf Flexibility-by Deviation
7-15 Bewertungen in Hinsicht auf Flexibility-by Underspecification

Abbildungsverzeichnis

1-1
1-2

2-1

2-2
2-3

2-5
2-6

2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14

2-15

2-16

2-17
2-18

4-1

4-3
4-4

Schematische Sicht auf eine Industrie 4.0-Anwendung 5
Inhalte der Arbeit L 11
Beziehungen zwischen (realweltlichen) Objekten, Modellen und Meta-

modellen 16
Ubersicht (iber die Vier-Ebenen-Architektur 17
Ubersicht Giber die Model-Driven Architecture (nach [BCW17]) 19
Zusammenhang zwischen Domain-Driven Design und Model-Driven

Engineering (nach [BCW17]) 23
Modell der Domane BPM 28
BPM-Lebenszyklus mit Differenzierung zum Workflow Management

(nach Weske [Wes12] bzw. van der Aalst [AHWO03]) 32
Flexibilitdtsaspekte im Vergleich 35
Elemente von UML Aktivitdtsdiagrammen 44
Beispiel eines UML Aktivitdtsdiagramms 45
Elemente eines Business Process Diagram 47
Weitere Elemente eines Business Process Diagram 49
Beispiel eines Business Process Diagram 50
Prinzip des Ansatzes Adapt Cases (nach Luckey [Luc+11]) 51
Konkrete Syntax der Sprache ACML am Beispiel eines AVM (nach

Luckey [LE13]) o 53
Konkrete Syntax der Sprache ACML am Beispiel eines ACM (nach

Luckey [LE13]) 54
Auszug aus dem AVM-Metamodell (nach Luckey [LE13]) 55
Auszug aus dem ACM-Metamodell (nach Luckey [LE13]) 56
Software Development Process unter Verwendung der Sprache ACML

(nach Luckey [LE13]) o o 57
Konzept der Sprache Adapt Case Modeling Language 4 BPM 68
Inhalte des Adapt Case Model4BPM 70
Konzeptionelle Darstellung des Konzepts Adapt Case 4 BPM 71

Ubersicht iiber das Metamodell des Konzepts Adapt Case 4 BPM 73

Seite 274

Abbildungsverzeichnis

4-5

4-6

4-7

4-8
4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22
4-23

4-24
5-1
5-2

5-3
5-4

5-6
5-7

Konzeptionelle Darstellung des Beobachtungsprozesses (Monitoring

Process)

Beispiele fir auslésende Ereignisse in einem Beobachtungsprozess

(Monitoring Process)

Konzeptionelle Darstellung des Anpassungsprozesses

(Adaptation Process)
Inhalte des Adaptation View Model 4 BPM (AVM4BPM)

BPM-Lebenszyklus mit den im Fokus stehenden Artefakten und mégli-

chen Treibern zur Anpassung von Prozessen

Konkrete Syntax von System- und Umgebungskomponenten

(AVM4BPM)
System- und Umgebungskomponenten (AVM4BPM)
Konkrete Syntax von Sensor- und Effektorschnittstellen (AVM4BPM)

Sensor- und Effektorschnittstellen fiir anpassbare Prozesse

(AVMABPM) . . o o oo

Analyse von Perspektiven in Prozessen auf Basis eines BPD der Spra-

che BPMN2.0 e

Analyse von Perspektiven in Prozessen auf Basis des Metamodells des

Projekts BPMN 2.0 Modeler

Operationen zur Anpassung von Prozessen in Anlehnung an eine

Zuordnung von BPMN2.0-Elementen zu Perspektiven (AVM4BPM)
Menge von Operationen zur Anpassung von Prozessen
Signatur und konkrete Syntax der Operation ModifyPropertyOfNode
Beispielhafte Anwendung der Operation ModifyPropertyOfNode

Lebenszyklus von Aktivitdten in der Sprache BPMN2.0 in Form eines

UML Zustandsdiagramms

Lebenszyklus von Aktivitaten in der Sprache BPMN2.0 als Folge von

Ereignissenin FormeinesBPD oL
Integration von impliziten Ereignissen (AVM4BPM)

Lebenszyklus von Aktivitdten als Folge von Ereignissen in Form eines

BPD mit Verwendung von Rickkopplung

Integration von impliziten Ereignissen mit Rickkopplung (AVM4BPM)

Ubersicht (iber Aspekte von flexiblen und anpassbaren Prozessen

Gestaltungsaspekte flr flexible und anpassbare Prozesse in Hinsicht

auf Flexibility-by Design
Beispiele fiir den Aspekt Choice in der Sprache BPMN2.0
Beispiele fir den Aspekt lteration in der Sprache BPMN2.0
Beispiel fir den Aspekt Parallelism in der Sprache BPMN2.0
Beispiele fiir den Aspekt Interleaving in der Sprache BPMN2.0
Beispiele fiir den Aspekt Multiple Instances in der Sprache BPMN2.0 . . .

86

89

90

92

93

94

95

98

99
100

101

.102

109

110
111
112
113
114

115

Abbildungsverzeichnis

Seite 275

5-8
5-9
5-10
5-11
5-12
5-13

5-14
5-15

5-16

5-17

5-19

5-20

5-21

5-22
5-23

5-24

5-25

5-26

5-27

5-28

5-29

5-30
5-31

Beispiele fiir den Aspekt Cancellation in der Sprache BPMN2.0
Elemente der Anpassungs- und Anwendungslogik

Explizite und implizite Ereignisse zur Auslésung eines AC4BPM mit und

ohne notwendiger Anpassung oo
Beispiel einer Alternative fir den Aspekt Choice in ACML4BPM
Beispiel multipler Alternativen fiir den Aspekt Choice in ACML4BPM

Identifizierung von Anpassungs- und Anwendungslogik zur Unterst(t-

zung des Aspekts lterationo
Explizite Ereignisse ohne Anpassung zur Auslésung eines AC4BPM . . .

Beispiel einer iterativ ausgefuhrten Funktion fir den Aspekt Iteration in

ACML4BPM (kopfgesteuert)

Beispiel einer iterativ ausgefihrten Funktion fir den Aspekt Iteration in

ACML4BPM (fuBgesteuert)

Identifizierung von Anpassungs- und Anwendungslogik zur Unterstit-

zung des Aspekis Cancellation,

Explizite Ereignisse zur Integration der Anpassungslogik eines Adapt

Case 4 BPM e

Beispiel fur den Aspekt Cancellation in ACML4BPM

(Cancel-by Timer)

Beispiel fir den Aspekt Cancellation in ACML4BPM

(Cancel-by Conditional)

Gestaltungsaspekte fir flexible und anpassbare Prozesse in Hinsicht

auf Flexibility-by Change
Szenario fir Migrationen im Rahmen des Typs Evolutionary Change . . .

Schematische Darstellung der Funktionsprinzipien von Migrationen der

Typen Forward Recovery und Backward Recovery

Schematische Darstellung des Funktionsprinzips von Migrationen des

Typs Proceed

Schematische Darstellung des Funktionsprinzips von Migrationen des

Typs Transfer

Schematische Darstellung einer Zuordnung von internen Zusténden

zweier Prozessinstanzen

Darstellung von Elementen der laufzeitspezifischen Erweiterung zur Un-

terstlitzung von Flexibility-by Change

Auszug einer Erweiterung des Metamodells der Sprache BPMN2.0 zur

Unterstitzung von Flexibility-by Change
Operationen zur Unterstiitzung von Flexibility-by Evolutionary Change . . .
Beispiel fir die Gestaltung einer Migration

Signatur und konkrete Syntax der Operation PerformProcessChange-

by-ForwardRecovery

122

.123

123

124

125

126

127

128

130

.133

134

136

138

139

140

Seite 276 Abbildungsverzeichnis

5-32 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-BackwardRecovery

5-33 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-Proceed

5-34 Signatur und konkrete Syntax der Operation PerformProcessChange-
by-Transfer

5-35 Gestaltungsaspekte flr flexible und anpassbare Prozesse in Hinsicht
auf Flexibility-by Deviation

5-36 Operationen zur Unterstltzung von Flexibility-by Deviation
5-37 Beispielhafte Verwendung der Operation UndoTask
5-38 Signatur und konkrete Syntax der Operation UndoTask
5-39 Beispielhafte Anwendung der Operation UndoTask

5-40 Funktionsprinzip einer Anwendung der Operation UndoTask mit Kom-
pensation

5-41 Signatur und konkrete Syntax der Operation RedoTask
5-42 Beispielhafte Anwendung der Operation RedoTask
5-43 Ergebnis fir eine alternative Realisierung der Operation RedoTask
5-44 Signatur und konkrete Syntax der Operation SkipTask
5-45 Beispielhafte Anwendung der Operation SkipTask
5-46 Signatur und konkrete Syntax der Operation InvokeTask
5-47 Beispielhafte Anwendung der Operation InvokeTask
5-48 Funktionsprinzip einer Anwendung der Operation InvokeTask

5-49 Signatur und konkrete Syntax der Operation CreateAdditionallnstance-
OfTask e

5-50 Beispielhafte Anwendung der Operation CreateAdditionallnstanceOfTask .
5-51 Darstellung von AusfihrungssequenzenvonTaskB
5-52 Gestaltungsaspekte flr flexible und anpassbare Prozesse in Hinsicht
auf Flexibility-by Underspecification
5-53 Konkrete Syntax fiir Platzhalter, Prozessfragmente sowie Start- und
Endsymbole
5-54 Konkrete Syntax fir Instanzen von Platzhaltern und Prozessfragmenten . .
5-55 Auszug einer Erweiterung des Metamodells der BPMN2.0 zur Unter-
stltzung von Flexibility-by Underspecification.
5-56 Beispielhafte Darstellung von Elementen der Erweiterung in Hinsicht
auf die Unterstitzung von Flexibility-by Underspecification
5-57 Signatur und konkrete Syntax der Operation BindProcessFragment
5-58 Beispielhafte Anwendung der Operation BindProcessFragment
(Structural)
5-59 Beispielhafte Anwendung der Operation BindProcessFragment
(Behavioral)

Abbildungsverzeichnis

Seite 277

5-60

5-61
5-62
5-63
5-64

6-1

6-2
6-3

7-1
7-2

7-4
7-5

7-7
7-8

7-10
7-11
7-12
7-13

8-1

A-1

A-3
A-4

A-6
A-7

A-9

A-10
A-11
A-12
A-13

Verwendung eines Beobachtungsprozesses zur Gestaltung einer Aus-

wahl eines Prozessfragments o L.
Signatur und konkrete Syntax der Operation SwitchLCPhase
Beispielhafte Anwendung der Operation SwitchLCPhase (Create)
Beispielhafte Anwendung der Operation SwitchLCPhase (Compose)
Beispiel fir die Komposition eines Prozessfragments

Ubersicht tiber das Adaptivity Engineering fiir flexible und anpassbare
Prozesse
Schematische Darstellung des erweiterten BPM-Lebenszyklus
Detaillierung der Aktivitat Identifikation und (Neu-)Gestaltung des
Adaptivity Engineering

Ubersicht iiber die Evaluation
Schematische Ubersicht Giber das betrachtete Szenario
AVM4BPM fir die Arbeitsumgebung Human-Robot-Team
AC4BPM fur das Workspace Temperature Management
AC4BPM fir das Human Performer Workload Management
Analyse des Hauptprozesses
ACA4BPM fir das Separation of Business and Adaptivity Logic
Netzdiagramm zur grafischen Darstellung von Ergebnissen
Netzdiagramm fir die Gruppe Goals
Netzdiagramm fir die Gruppe Change
Netzdiagramm fir die Gruppe Mechanisms
Netzdiagramm fir die Gruppe Effects
Netzdiagramm fir die Anforderungen an Adapt Cases 4 BPM

Ubersicht Uber den wissenschaftlichen Beitrag

Darstellung von Operationen sowie von Ein- und Ausgabeparametern . . .
Ubersicht Giber die Operationen fiir Knotenelemente
Signatur und konkrete Syntax der Operation AddNode
Beispielhafte Anwendungen der Operation AddNode
Signatur und konkrete Syntax der Operation RemoveNode
Beispielhafte Anwendungen der Operation RemoveNode
Signatur und konkrete Syntax der Operation ModifyPropertyOfNode
Beispielhafte Anwendung der Operation ModifyPropertyOfNode
Signatur und konkrete Syntax der Operation ModifyPositionOfNode . . .
Beispielhafte Anwendung der Operation ModifyPositionOfNode
Ubersicht Giber die Operationen fiir Kantenelemente
Signatur und konkrete Syntax der Operation AddEdge
Beispielhafte Anwendungen der Operation AddEdge

197
198

200

211
213
218
220
222
225
226
234
239
242
246
250
255

264

Seite 278 Abbildungsverzeichnis

A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29

A-30

Signatur und konkrete Syntax der Operation RemoveEdge 307
Beispielhafte Anwendung der Operation RemoveEdge 308
Signatur und konkrete Syntax der Operation ModifyPropertyOfEdge309
Beispielhafte Anwendung der Operation ModifyPropertyOfEdge 309
Signatur und konkrete Syntax der Operation ModifyPositionOfEdge 310
Beispielhafte Anwendung der Operation ModifyPositionOfEdge 310
Ubersicht (iber die Operationen fiir Containerelemente 313
Signatur und konkrete Syntax der Operation AddContainer. 314
Beispielhafte Anwendungen der Operation AddContainer 315
Signatur und konkrete Syntax der Operation RemoveContainer 316
Beispielhafte Anwendungen der Operation RemoveContainer 316
Signatur und konkrete Syntax der Operation ModifyPropertyOfContainer .317
Beispielhafte Anwendung der Operation ModifyPropertyOfContainer318
Signatur und konkrete Syntax der Operation ModifyPositionOfContainer .318
Beispielhafte Anwendung der Operation ModifyPositionOfContainer319
Signatur und konkrete Syntax der Operation ModifyPositionOfNodesIn-

Container e 320
Beispielhafte Anwendung der Operation ModifyPositionOfNodeslIn-

Container 321

Literaturverzeichnis

[Aall6]

[Ada+06]

[Ada+07]

[AHWO03]

[AJOO]

[And+09]

Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016 (siehe S. 34, 201).

Michael Adams, Arthur H. M. ter Hofstede, David Edmond und Wil
M. P. van der Aalst. ,Worklets: A Service-Oriented Implementation of
Dynamic Flexibility in Workflows”. In: On the Move to Meaningful Inter-
net Systems 2006: CooplS, DOA, GADA, and ODBASE, OTM Confederated
International Conferences, CooplS, DOA, GADA, and ODBASE 2006, Mont-
pellier, France, October 29 - November 3, 2006. Proceedings, Part I. Hrsg. von
Robert Meersman und Zahir Tari. Bd. 4275. Lecture Notes in Computer
Science. Springer, 2006, S. 291-308 (siehe S. 60, 169, 256).

Michael Adams, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst
und David Edmond. , Dynamic, Extensible and Context-Aware Excep-
tion Handling for Workflows”. In: On the Move to Meaningful Internet
Systems 2007: CooplS, DOA, ODBASE, GADA, and IS, OTM Confedera-
ted International Conferences CooplS, DOA, ODBASE, GADA, and 1S 2007,
Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I. Hrsg. von
Robert Meersman und Zahir Tari. Bd. 4803. Lecture Notes in Computer
Science. Springer, 2007, S. 95-112 (siehe S. 60, 256).

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede und Mathias Weske.
,Business Process Management: A Survey”. In: Business Process Manage-
ment, International Conference, BPM 2003, Eindhoven, The Netherlands, June
26-27, 2003, Proceedings. Hrsg. von Wil M. P. van der Aalst, Arthur H. M.
ter Hofstede und Mathias Weske. Bd. 2678. Lecture Notes in Computer
Science. Springer, 2003, S. 1-12 (siehe S. 29, 31, 32, 43).

Wil M. P. van der Aalst und Stefan Jablonski. ,,Dealing with workflow
change: identification of issues and solutions”. In: Computer systems
science and engineering 15.5 (2000), S. 267-276 (siehe S. 43).

Jesper Andersson, Rogério de Lemos, Sam Malek und Danny Weyns.
,+Modeling Dimensions of Self-Adaptive Software Systems”. In: Software
Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. Hrsg.
von Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi
und Jeff Magee. Bd. 5525. Lecture Notes in Computer Science. Springer,
2009, S. 2747 (siehe S. 228-230, 235, 241).

Seite 280

Literaturverzeichnis

[Ard+11]

[ARDO7]

[AT05]

[AWGO05]

[AWMO4]

[Ayo+16]

[Bar+11]

[BCW17]

[BDP14]

[Bis11]

Danilo Ardagna, Luciano Baresi, Sara Comai, Marco Comuzzi und Bar-
bara Pernici. ,, A Service-Based Framework for Flexible Business Proces-
ses”. In: IEEE Software 28.2 (2011), S. 61-67 (siehe S. 169).

Wil M. P. van der Aalst, Michael Rosemann und Marlon Dumas.
,Deadline-based escalation in process-aware information systems”. In:
Decision Support Systems 43.2 (2007), S. 492-511 (siehe S. 43).

Wil M. P. van der Aalst und Arthur H. M. Ter Hofstede. , YAWL: yet
another workflow language”. In: Information systems 30.4 (2005), S. 245
275 (siehe S. 41, 60, 256).

Wil M. P. van der Aalst, Mathias Weske und Dolf Griinbauer. ,,Case
handling: a new paradigm for business process support”. In: Data &
Knowledge Engineering 53.2 (2005), S. 129-162 (siehe S. 36, 60, 256).

Wil M. P. van der Aalst, Ton Weijters und Laura Maruster. ,, Workflow
Mining: Discovering Process Models from Event Logs”. In: IEEE Tran-
sactions on Knowledge & Data Engineering 16.9 (2004), S. 1128-1142 (siehe
S. 34).

Clara Ayora, Victoria Torres, Jose Luis de la Vara und Vicente Pelechano.
,»Variability management in process families through change patterns”.
In: Information & Software Technology 74 (2016), S. 86104 (siehe S. 60).

Angineh Barkhordarian, Frederik Demuth, Kristof Hamann, Minh Ho-
ang, Sonja Weichler und Sonja Zaplata. ,Migratability of BPMN 2.0 Pro-
cess Instances”. In: Service-Oriented Computing - ICSOC 2011 Workshops
- ICSOC 2011, International Workshops WESOA, NFPSLAM-SOC, and Sa-
tellite Events, Paphos, Cyprus, December 5-8, 2011. Revised Selected Papers.
Hrsg. von George Pallis, Mohamed Jmaiel, Anis Charfi, Sven Graupner,
Yiicel Karabulut, Sam Guinea, Florian Rosenberg, Quan Z. Sheng, Cesare
Pautasso und Sonia Ben Mokhtar. Bd. 7221. Lecture Notes in Computer
Science. Springer, 2011, S. 66-75 (siehe S. 133).

Marco Brambilla, Jordi Cabot und Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice, Second Edition. Synthesis Lectures on Softwa-
re Engineering. Morgan & Claypool Publishers, 2017 (siehe S. 15-17, 19,
23, 26).

Paolo Bocciarelli, Andrea D’Ambrogio und Emiliano Paglia. ,,A Langua-
ge for Enabling Model-Driven Analysis of Business Processes”. In: MO-
DELSWARD 2014 - Proceedings of the 2nd International Conference on Model-
Driven Engineering and Software Development, Lisbon, Portugal, 7 - 9 Janua-
ry, 2014. Hrsg. von Luis Ferreira Pires, Slimane Hammoudi, Joaquim Fi-
lipe und Rui César das Neves. SciTePress, 2014, S. 325-332 (siehe S. 61).

Adnan Biser. ,,Evaluation of Adapt Cases”. Masterarbeit. Universitit Pa-
derborn, 2011 (siehe S. 228, 229, 233, 235, 247, 251, 260).

Literaturverzeichnis Seite 281

[Boc+14a]

[Boc+14b]

[Boc+16]

[Boc+17]

[Bru+09]

[Can+08]

[Cas+99]

[CDMO09]

Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, Emiliano Paglia
und Daniele Gianni. , A Transformation Approach to Enact the Design-
Time Simulation of BPMN Models”. In: 2014 IEEE 23rd International WE-
TICE Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014. Hrsg. von
Sumitra Reddy. IEEE Computer Society, 2014, S. 199-204 (siehe S. 61).

Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, Emiliano Paglia
und Daniele Gianni. , Empowering business process simulation through
automated model transformations”. In: 2014 Spring Simulation Multicon-
ference, SpringSim '14, Tampa, FL, USA, April 13-16, 2014, Proceedings of the
Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S
Symposium. ACM, 2014, S. 39 (siehe S. 61).

Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio und Emiliano
Paglia. ,A BPMN Extension to Enable the Explicit Modeling of Task
Resources.” In: CIISE. 2016, S. 40-47 (siehe S. 61).

Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio und Emiliano
Paglia. ,A BPMN extension for modeling Cyber-Physical-Production-
Systems in the context of Industry 4.0”. In: 14th IEEE International Confe-
rence on Networking, Sensing and Control, ICNSC 2017, Calabria, Italy, May
16-18, 2017. Hrsg. von Giancarlo Fortino, MengChu Zhou, Zofia Luks-
z0, Athanasios V. Vasilakos, Francesco Basile, Carlos E. Palau, Antonio
Liotta, Maria Pia Fanti, Antonio Guerrieri und Andrea Vinci. IEEE, 2017,
S. 599-604 (siehe S. 61).

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger
Giese, Holger M. Kienle, Marin Litoiu, Hausi A. Miiller, Mauro Pezzé
und Mary Shaw. , Engineering Self-Adaptive Systems through Feedback
Loops”. In: Software Engineering for Self-Adaptive Systems [outcome of a
Dagstuhl Seminar]. Hrsg. von Betty H. C. Cheng, Rogério de Lemos, Hol-
ger Giese, Paola Inverardi und Jeff Magee. Bd. 5525. Lecture Notes in
Computer Science. Springer, 2009, S. 48-70 (siehe S. 6, 9).

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito und Maria
Luisa Villani. ,A framework for QoS-aware binding and re-binding of
composite web services”. In: Journal of Systems and Software 81.10 (2008),
S. 1754-1769 (siehe S. 169).

Fabio Casati, Stefano Ceri, Stefano Paraboschi und Giuseppe Pozzi.
,Specification and Implementation of Exceptions in Workflow Mana-
gement Systems”. In: ACM Transactions on Database Systems 24.3 (1999),
S. 405451 (siehe S. 36).

Anis Charfi, Tom Dinkelaker und Mira Mezini. , A Plug-in Architecture
for Self-Adaptive Web Service Compositions”. In: IEEE International Con-
ference on Web Services, ICWS 2009, Los Angeles, CA, USA, 6-10 July 2009.
IEEE Computer Society, 2009, S. 35-42 (siehe S. 169).

Seite 282

Literaturverzeichnis

[CKO92]

[Cla+09]

[CMT10]

[Coa96]

[Deu+15]

[Dij76]

[DP10]

[Dum+18]

[DZK11]

[Ecl]
[Eco]

Bill Curtis, Marc L. Kellner und Jim Over. ,Process Modeling”. In: Com-
munications of the ACM 35.9 (Sep. 1992), S. 75-90 (siehe S. 42-44, 89, 92,
93, 105, 244, 265).

Peter Clark, William R. Murray, Philip Harrison und John A. Thomp-
son. ,Naturalness vs. Predictability: A Key Debate in Controlled Lan-
guages”. In: Controlled Natural Language, Workshop on Controlled Natural
Language, CNL 2009, Marettimo Island, Italy, June 8-10, 2009. Revised Pa-
pers. Hrsg. von Norbert E. Fuchs. Bd. 5972. Lecture Notes in Computer
Science. Springer, 2009, S. 65-81 (siehe S. 202).

Pierre Chatel, Jacques Malenfant und Isis Truck. ,QoS-based Late-
Binding of Service Invocations in Adaptive Business Processes”. In: IEEE
International Conference on Web Services, ICWS 2010, Miami, Florida, USA,
July 5-10, 2010. IEEE Computer Society, 2010, S. 227-234 (siehe S. 37, 266).

Workflow Management Coalition. Workflow Management Coalition termi-
nology and glossary. Techn. Ber. WFEMC-TC-1011. Workflow Management
Coalition, 1996 (siehe S. 30).

Jochen Deuse, Kirsten Weisner, André Hengstebeck und Felix Busch.
,Gestaltung von Produktionssystemen im Kontext von Industrie 4.0”.
In: Zukunft der Arbeit in Industrie 4.0. Springer, 2015, S. 99-109 (siehe S. 3).

Edsger Wybe Dijkstra. A discipline of programming. Bd. 1. prentice-hall
Englewood Cliffs, 1976 (siehe S. 7).

Ken Decreus und Geert Poels. ,,A Goal-Oriented Requirements Enginee-
ring Method for Business Processes”. In: Information Systems Evolution -
CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected Extended
Papers. Hrsg. von Pnina Soffer und Erik Proper. Bd. 72. Lecture Notes in
Business Information Processing. Springer, 2010, S. 29-43 (siehe S. 202).

Marlon Dumas, Marcello La Rosa, Jan Mendling und Hajo A. Reijers.
Fundamentals of Business Process Management, Second Edition. Springer,
2018 (siehe S. 32, 199).

Markus Dohring, Birgit Zimmermann und Lars Karg. ,Flexible Work-
flows at Design- and Runtime Using BPMN2 Adaptation Patterns”. In:
Business Information Systems - 14th International Conference, BIS 2011, Poz-
nan, Poland, June 15-17, 2011. Proceedings. Hrsg. von Witold Abramowicz.
Bd. 87. Lecture Notes in Business Information Processing. Springer, 2011,
S. 25-36 (siehe S. 39, 59, 169).

Eclipse Foundation. Eclipse Modeling Framework (siehe S. 18).
Ecore. Ecore Metamodell (siehe S. 18).

Literaturverzeichnis Seite 283

[Eng+00]

[Eng+18]

[ES11]

[EST18]

[ESWO07]

[ET18]

[Eva03]

[Faz16]

[FKKO8]

Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel und Stefan Sau-
er. ,Dynamic Meta Modeling: A Graphical Approach to the Operational
Semantics of Behavioral Diagrams in UML”. In: «UML» 2000 - The Uni-
fied Modeling Language, Advancing the Standard, Third International Confe-
rence, York, UK, October 2-6, 2000, Proceedings. Hrsg. von Andy Evans, Stu-
art Kent und Bran Selic. Bd. 1939. Lecture Notes in Computer Science.
Springer, 2000, S. 323-337 (siehe S. 16, 21, 50).

Gregor Engels, Giinter W. Maier, Sonja K. Otting, Eckhard Steffen und
Alexander Teetz. ,Gerechtigkeit in flexiblen Arbeits- und Management-
prozessen”. In: Zukunft der Arbeit — Eine praxisnahe Betrachtung. Springer,
1. Jan. 2018 (siehe S. 214).

Florian Evequoz und Christoph Sterren. Waiting for the miracle: Compa-
rative analysis of twelve business process management systems regarding the
support of BPMN 2.00 palette and export. Techn. Ber. Tech. rep., Universi-
ty of Applied Sciences Western Switzerland Google Scholar, 2011 (siehe
S. 257).

Gregor Engels, Thim Strothmann und Alexander Teetz. ,Adapt Cases
4 BPM - A Modeling Framework for Process Flexibility in IIoT”. In:
22nd IEEE International Enterprise Distributed Object Computing Workshop,
EDOC Workshops 2018, Stockholm, Sweden, October 16-19, 2018. IEEE Com-
puter Society, 2018, S. 59-68 (siehe S. 214).

Gregor Engels, Christian Soltenborn und Heike Wehrheim. ,, Analysis of
UML Activities Using Dynamic Meta Modeling”. In: Formal Methods for
Open Object-Based Distributed Systems, 9th IFIP WG 6.1 International Con-
ference, FMOODS 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings. Hrsg.
von Marcello M. Bonsangue und Einar Broch Johnsen. Bd. 4468. Lecture
Notes in Computer Science. Springer, 2007, S. 76-90 (siehe S. 50).

Gregor Engels und Alexander Teetz. ,Flexible Arbeitsprozesse”. In:
Handbuch Gestaltung digitaler und vernetzter Arbeitswelten. Springer, 1. Jan.
2018 (siehe S. 214).

Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Pearson Education, 2003 (siehe S. 23).

Masud Fazal-Baqaie. ,Project-specific software engineering methods:
composition, enactment, and quality assurance”. Dissertation. Universi-
tat Paderborn, 2016 (siehe S. 170).

Norbert E. Fuchs, Kaarel Kaljurand und Tobias Kuhn. ,, Attempto Con-
trolled English for Knowledge Representation”. In: Reasoning Web, 4th In-
ternational Summer School 2008, Venice, Italy, September 7-11, 2008, Tutorial
Lectures. Hrsg. von Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski,
Massimo Marchiori, Axel Polleres und Sebastian Schaffert. Bd. 5224. Lec-
ture Notes in Computer Science. Springer, 2008, S. 104-124 (siehe S. 202).

Seite 284

Literaturverzeichnis

[Fow10]

[FR14]

[Gad08]

[Gerl3]

[Got+08]

[Gra+16]

[GTG15]

[GW13]

[Hau05]

[HBR10]

[JB96]

Martin Fowler. Domain Specific Languages. 1st. Addison-Wesley Professio-
nal, 2010 (siehe S. 21).

Jakob Freund und Bernd Riicker. Praxishandbuch BPMN 2.0. Carl Hanser
Verlag GmbH Co KG, 2014 (siehe S. 29).

Andreas Gadatsch. Grundkurs Geschiftsprozess-Management: Methoden
und Werkzeuge fiir die IT-Praxis: Eine Einfiihrung fiir Studenten und Prakti-
ker. Springer-Verlag, 2008 (siehe S. 27, 30, 41).

Christian Gerth. Business Process Models. Change Management. Bd. 7849.
Lecture Notes in Computer Science. Springer, 2013 (siehe S. 29, 88, 105,
244).

Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers
und Marcello La Rosa. ,Configurable Workflow Models”. In: Internatio-
nal Journal of Cooperative Information Systems 17.2 (2008), S. 177-221 (siehe
S. 39).

Imen Graja, Slim Kallel, Nawal Guermouche und Ahmed Hadj Kacem.
,BPMN4CPS: A BPMN Extension for Modeling Cyber-Physical Sys-
tems”. In: 25th IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises, WETICE 2016, Paris, France, June
13-15, 2016. Hrsg. von Sumitra Reddy und Walid Gaaloul. IEEE Compu-
ter Society, 2016, S. 152-157 (siehe S. 62).

Jennifer E. Gerow, Jason Bennett Thatcher und Varun Grover. ,,Six types
of IT-business strategic alignment: an investigation of the constructs and
their measurement”. In: EJIS 24.5 (2015), S. 465-491 (siehe S. 202).

Matthias Geiger und Guido Wirtz. ,,BPMN 2.0 Serialization - Standard
Compliance Issues and Evaluation of Modeling Tools”. In: Enterprise Mo-
delling and Information Systems Architectures: Proceedings of the 5th Interna-
tional Workshop on Enterprise Modelling and Information Systems Architec-
tures, EMISA 2013, St. Gallen, Switzerland, September 5-6, 2013. Hrsg. von
Reinhard Jung und Manfred Reichert. Bd. 222. LNI. GI, 2013, S. 177-190
(siehe S. 257).

Jan Hendrik Hausmann. ,Dynamic META modeling: a semantics des-
cription technique for visual modeling languages”. Dissertation. Univer-
sitat Paderborn, 2005 (siehe S. 16, 21).

Alena Hallerbach, Thomas Bauer und Manfred Reichert. ,,Configuration
and management of process variants”. In: Handbook on Business Process
Management. Springer, 2010, S. 237-255 (siehe S. 39).

Stefan Jablonski und Christoph Bussler. Workflow management - modeling
concepts, architecture and implementation. International Thomson, 1996
(siehe S. 43).

Literaturverzeichnis Seite 285

[Jes+14]

[Kar+14]

[Kaul5]

[KCO03]

[KJP15]

[Kurl6]

[Lag+07]

[Las+14]

[LE13]

[Luc+11]

Sabina Jeschke, René Vossen, Ingo Leisten, Florian Welter, Stella Fleischer
und Thomas Thiele. ,Industrie 4.0 als Treiber der demografischen Chan-
cen”. In: Automation, Communication and Cybernetics in Science and Engi-
neering 2013/2014. Springer, 2014, S. 75-85 (siehe S. 4).

Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler und Steven Volkel. ,,Design Guidelines for Domain Specific
Languages”. In: CoRR abs/1409.2378 (2014). arXiv: 1409 . 2378 (siehe
S. 26).

Timothy Kaufmann. Geschiftsmodelle in Industrie 4.0 und dem Internet der
Dinge: Der Weg vom Anspruch in die Wirklichkeit. Springer-Verlag, 2015
(siehe S. 3).

Jeffrey O. Kephart und David M. Chess. , The Vision of Autonomic Com-
puting”. In: IEEE Computer 36.1 (2003), S. 41-50 (siehe S. 51, 62, 74,77, 79,
216,227,252, 264).

Martin Krzywdzinski, Ulrich Jiirgens und Sabine Pfeiffer. , Die vierte Re-
volution Wandel der Produktionsarbeit im Digitalisierungszeitalter”. In:
WZB Mitteilungen 149 (2015), S. 6-9 (siehe S. 3).

Matthias Kurz. ,BPMN Model Interchange: The Quest for Interoperabi-
lity”. In: Proceedings of the 8th International Conference on Subject-oriented
Business Process Management, S-BPM ONE 2016, Erlangen, Germany, April
7-8,2016. Hrsg. von Jorge L. Sanz. ACM, 2016, 6:1-6:10 (siehe S. 257).

Francois Lagarde, Hudscar Espinoza, Frangois Terrier und Sébastien
Gérard. , Improving uml profile design practices by leveraging concep-
tual domain models”. In: 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Ge-
orgia, USA. Hrsg. von R. E. Kurt Stirewalt, Alexander Egyed und Bernd
Fischer. ACM, 2007, S. 445-448 (siehe S. 25).

Heiner Lasi, Privatdozent Dr Peter Fettke, Hans-Georg Kemper, Dipl-
Inf Thomas Feld und Dipl-Hdl Michael Hoffmann. ,Industrie 4.0”. In:
Wirtschaftsinformatik 56.4 (2014), S. 261-264 (siehe S. 3).

Markus Luckey und Gregor Engels. ,High-quality specification of self-
adaptive software systems”. In: Proceedings of the 8th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SE-
AMS 2013, San Francisco, CA, USA, May 20-21, 2013. Hrsg. von Marin
Litoiu und John Mylopoulos. IEEE Computer Society, 2013, S. 143-152
(siehe S. 6, 51, 53-57, 68, 104, 216, 228).

Markus Luckey, Benjamin Nagel, Christian Gerth und Gregor Engels.
,Adapt cases: extending use cases for adaptive systems”. In: 2011 ICSE
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2011, Waikiki, Honolulu , HI, USA, May 23-24, 2011. Hrsg. von

https://arxiv.org/abs/1409.2378

Seite 286

Literaturverzeichnis

[Luc13]

[Lud+16]

[MG09]

[MHO8]

[MHW17]

[MM17]

[Moo09]

[MRH15]

Holger Giese und Betty H. C. Cheng. ACM, 2011, S. 30-39 (siehe S. 6, 9,
50, 51, 56, 67,70, 103, 104, 264).

Markus Luckey. , Adaptivity engineering: modeling and quality ass-
urance for self-adptive software systems”. Dissertation. Universitdt Pa-
derborn, 2013 (siehe S. 6, 7, 15, 18, 50, 72, 199, 202, 207, 266).

Thomas Ludwig, Christoph Kotthaus, Martin Stein, Hartwig Durt, Con-
stanze Kurz, Julian Wenz, Thorsten Doublet, Maximilian Becker, Volk-
mar Pipek und Volker Wulf. ,Arbeiten im Mittelstand 4.0-KMU im
Spannungsfeld des digitalen Wandels”. In: HMD Praxis der Wirtschafts-
informatik 53.1 (Jan. 2016), S. 71-86 (siehe S. 2).

Milan Milanovic und Dragan Gasevic. ,, Towards a Language for Rule-
Enhanced Business Process Modeling”. In: Proceedings of the 13th IEEE In-
ternational Enterprise Distributed Object Computing Conference, EDOC 2009,
1-4 September 2009, Auckland, New Zealand. IEEE Computer Society, 2009,
S. 64-73 (siehe S. 60).

Daniel Moody und Jos van Hillegersberg. ,,Evaluating the visual syntax
of UML: An analysis of the cognitive effectiveness of the UML family of
diagrams”. In: International Conference on Software Language Engineering.
Springer. 2008, S. 16-34 (siehe S. 268).

Sankalita Mandal, Marcin Hewelt und Mathias Weske. ,,A Framework
for Integrating Real-World Events and Business Processes in an IoT En-
vironment”. In: On the Move to Meaningful Internet Systems. OTM 2017
Conferences - Confederated International Conferences: CooplS, C&TC, and
ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part I.
Hrsg. von Hervé Panetto, Christophe Debruyne, Walid Gaaloul, Mike
P. Papazoglou, Adrian Paschke, Claudio Agostino Ardagna und Ro-
bert Meersman. Bd. 10573. Lecture Notes in Computer Science. Springer,
2017, S. 194-212 (siehe S. 61).

Andrea Marrella und Massimo Mecella. , Cognitive Business Process
Management for Adaptive Cyber-Physical Processes”. In: Business Pro-
cess Management Workshops - BPM 2017 International Workshops, Barcelo-
na, Spain, September 10-11, 2017, Revised Papers. Hrsg. von Ernest Teniente
und Matthias Weidlich. Bd. 308. Lecture Notes in Business Information
Processing. Springer, 2017, S. 429-439 (siehe S. 63).

Daniel L. Moody. , The “Physics” of Notations: Toward a Scientific Ba-
sis for Constructing Visual Notations in Software Engineering”. In: IEEE
Transactions on Software Engineering 35.6 (2009), S. 756-779 (siehe S. 268).

Sonja Meyer, Andreas Ruppen und Lorenz M. Hilty. , The Things of
the Internet of Things in BPMN". In: Advanced Information Systems En-
gineering Workshops - CAiSE 2015 International Workshops, Stockholm, Swe-

Literaturverzeichnis Seite 287

[MRM13]

[Mur+13]

[Mur89]

[Nagl5]

[OAS07]

[OMG10]

[OMG11]

[OMG14a]

[OMG14b]

[OMG15a]

den, June 8-9, 2015, Proceedings. Hrsg. von Anne Persson und Janis Stir-
na. Bd. 215. Lecture Notes in Business Information Processing. Springer,
2015, S. 285-297 (siehe S. 60).

Sonja Meyer, Andreas Ruppen und Carsten Magerkurth. ,Internet of
Things-Aware Process Modeling: Integrating IoT Devices as Business
Process Resources”. In: Advanced Information Systems Engineering - 25th
International Conference, CAiSE 2013, Valencia, Spain, June 17-21, 2013. Pro-
ceedings. Hrsg. von Camille Salinesi, Moira C. Norrie und Oscar Pastor.
Bd. 7908. Lecture Notes in Computer Science. Springer, 2013, S. 84-98
(siehe S. 60).

Aitor Murguzur, Goiuria Sagardui, Karmele Intxausti und Salvador Tru-
jillo. ,Process Variability through Automated Late Selection of Frag-
ments”. In: Advanced Information Systems Engineering Workshops - CAiSE
2013 International Workshops, Valencia, Spain, June 17-21, 2013. Proceedings.
Hrsg. von Xavier Franch und Pnina Soffer. Bd. 148. Lecture Notes in
Business Information Processing. Springer, 2013, S. 371-385 (siehe S. 37,
168, 266).

Tadao Murata. ,Petri nets: Properties, analysis and applications”. In: Pro-
ceedings of the IEEE 77.4 (1989), S. 541-580 (siehe S. 41).

Benjamin Nagel. , Goal-oriented business process engineering”. Disser-
tation. Universitat Paderborn, 2015 (siehe S. 202).

OASIS. Web Services Business Process Execution Language (WS-BPEL).
Techn. Ber. Version 2.0. Web Services Business Process Execution Lan-

guage (WS-BPEL). Organization for the Advancement of Structured In-
formation Standards (OASIS), 2007 (siehe S. 40, 104).

OMG. Unified Modeling Language TM (OMG UML): Superstructure. Techn.
Ber. February. Unified Modeling Language TM (OMG UML): Superstruc-
ture. Object Management Group, 2010 (siehe S. 7, 10, 18, 19, 22, 24, 44, 81,
82,98, 151, 179).

OMG. Business Process Model and Notation (BPMN). Techn. Ber. Version
2.0. Business Process Model and Notation (BPMN). Object Management
Group, 2011 (siehe S. 10, 18, 19, 24, 25, 36, 40, 44, 46, 83, 97, 116).

OMG. Model Driven Architecture (MDA): MDA Guide. Techn. Ber. Versi-
on 2.0. Model Driven Architecture (MDA): MDA Guide. Object Manage-
ment Group, 2014 (siehe S. 18).

OMG. Object Contraint Language. Techn. Ber. Version 2.0. Object Contraint
Language. Object Management Group, 2014 (siehe S. 18, 24, 26).

OMG. Meta Object Facility (MOF). Techn. Ber. Version 2.5. Meta Object
Facility (MOF). Object Management Group, 2015 (siehe S. 16).

Seite 288

Literaturverzeichnis

[OMG15b]

[OMG16a]

[OMG16b]

[PA06]

[Par02]

[Pes+07]

[Poe+13]

[RAO7]

[RD09]

[Ren03]

OMG. Unified Modeling Language (UML): Activity Diagrams. Techn. Ber.
Object Management Group, 2015 (siehe S. 36, 44, 104).

OMG. Case Model Management and Notation. Techn. Ber. Object Manage-
ment Group, 2016 (siehe S. 104).

OMG. Decision Model and Notation. Techn. Ber. Object Management
Group, 2016 (siehe S. 104).

Maja Pesic und Wil M. P. van der Aalst. ,,A Declarative Approach for
Flexible Business Processes Management”. In: Business Process Mana-
gement Workshops, BPM 2006 International Workshops, BPD, BPI, ENEI,
GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006, Procee-
dings. Hrsg. von Johann Eder und Schahram Dustdar. Bd. 4103. Lecture
Notes in Computer Science. Springer, 2006, S. 169-180 (siehe S. 60, 256).

David Lorge Parnas. ,On the Criteria To Be Used in Decomposing Sys-
tems into Modules (Reprint)”. In: Software Pioneers. Hrsg. von Manfred
Broy und Ernst Denert. Springer Berlin Heidelberg, 2002, S. 411427
(siehe S. 7).

Maja Pesic, M. H. Schonenberg, Natalia Sidorova und Wil M. P. van der
Aalst. ,Constraint-Based Workflow Models: Change Made Easy”. In: On
the Move to Meaningful Internet Systems 2007: CooplS, DOA, ODBASE, GA-
DA, and IS, OTM Confederated International Conferences CooplS, DOA, OD-
BASE, GADA, and IS 2007, Vilamoura, Portugal, November 25-30, 2007, Pro-
ceedings, Part I. Hrsg. von Robert Meersman und Zahir Tari. Bd. 4803.
Lecture Notes in Computer Science. Springer, 2007, S. 77-94 (siehe S. 60,
257).

Geert Poels, Ken Decreus, Ben Roelens und Monique Snoeck. , Investiga-
ting Goal-Oriented Requirements Engineering for Business Processes”.
In: Journal of Database Management 24.2 (2013), S. 35-71 (siehe S. 202).

Michael Rosemann und Wil M. P. van der Aalst. ,,A configurable refe-
rence modelling language”. In: Information Systems 32.1 (2007), S. 1-23
(siehe S. 39).

Manfred Reichert und Peter Dadam. , Enabling Adaptive Process-aware
Information Systems with ADEPT2.” In: Handbook of Research on Business
Process Modeling (Jan. 2009) (siehe S. 41).

Arend Rensink. ,The GROOVE Simulator: A Tool for State Space Gene-
ration”. In: Applications of Graph Transformations with Industrial Relevance,
Second International Workshop, AGTIVE 2003, Charlottesville, VA, USA, Sep-
tember 27 - October 1, 2003, Revised Selected and Invited Papers. Hrsg. von
John L. Pfaltz, Manfred Nagl und Boris Bohlen. Bd. 3062. Lecture Notes
in Computer Science. Springer, 2003, S. 479485 (siehe S. 50).

Literaturverzeichnis Seite 289

[RGO2]

[RR10]

[RRDO3]

[RSS06]

[Rus13]

[RW12]

[Sai+15]

[Sch+08]

[Sch+12]

Mark Richters und Martin Gogolla. ,OCL: Syntax, Semantics, and
Tools”. In: Object Modeling with the OCL, The Rationale behind the Ob-
ject Constraint Language. Hrsg. von Tony Clark und Jos Warmer. Bd. 2263.
Lecture Notes in Computer Science. Springer, 2002, S. 42-68 (siehe S. 18).

Stefanie Rinderle-Ma und Manfred Reichert. ,Advanced Migration Stra-
tegies for Adaptive Process Management Systems”. In: 12th IEEE Con-
ference on Commerce and Enterprise Computing, CEC 2010, Shanghai, Chi-
na, November 10-12, 2010. Hrsg. von Kuo-Ming Chao, Christian Huemer,
Birgit Hofreiter, Yinsheng Li und Nazaraf Shah. IEEE Computer Society,
2010, S. 56-63 (siehe S. 133).

Manfred Reichert, Stefanie Rinderle und Peter Dadam. ,, Adept workflow
management system”. In: International Conference on Business Process Ma-
nagement. Springer. 2003, S. 370-379 (siehe S. 60, 256).

Gil Regev, Pnina Soffer und Rainer Schmidt. , Taxonomy of Flexibility in
Business Processes”. In: Proceedings of the CAISE*06 Workshop on Business
Process Modelling, Development, and Support BPMDS "06, Luxemburg, June
5-9,2006. Hrsg. von Gil Regev, Pnina Soffer und Rainer Schmidt. Bd. 236.
CEUR Workshop Proceedings. CEUR-WS.org, 2006 (siehe S. 35, 194).

Siegfried Russwurm. ,Software: Die Zukunft der Industrie”. In: Industrie
4.0. Springer, 2013, S. 21-36 (siehe S. 3).

Manfred Reichert und Barbara Weber. Enabling Flexibility in Process-
Aware Information Systems - Challenges, Methods, Technologies. Springer,
2012 (siehe S. 8, 35-37, 40, 108, 194).

Imen Ben Said, Mohamed Amine Chaibane, Rafik Bouaziz und Eric An-
donoff. , Flexibility of collaborative processes using versions and adapta-
tion patterns”. In: 9th IEEE International Conference on Research Challenges
in Information Science, RCIS 2015, Athens, Greece, May 13-15, 2015. IEEE,
2015, S. 400411 (siehe S. 60).

Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar und
Wil M. P. van der Aalst. ,Process Flexibility: A Survey of Contempora-
ry Approaches”. In: Advances in Enterprise Engineering I, 4th Internatio-
nal Workshop CIAO! and 4th International Workshop EOMAS, held at CAiSE
2008, Montpellier, France, June 16-17, 2008. Proceedings. Hrsg. von Jan L. G.
Dietz, Antonia Albani und Joseph Barjis. Bd. 10. Lecture Notes in Busi-
ness Information Processing. Springer, 2008, S. 16-30 (siehe S. 8, 3540,
108, 109, 117, 127, 129-131, 133, 148, 149, 155, 157, 158, 165, 166, 170, 194,
244,251, 254, 256, 265, 266).

Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavi-
des, Goetz Botterweck, Animesh Pathak, Salvador Trujillo und Karina
Villela. ,Software diversity: state of the art and perspectives”. In: STTT
14.5 (2012), S. 477-495 (siehe S. 133).

Seite 290

Literaturverzeichnis

[SCV11]

[Sei+15]

[Sei+16]

[Sel07]

[SHS18]

[SMM11]

[Sof05]

[Sol13]

[Spa+13]

[Sta+06]

Luis Jestis Ramoén Stroppi, Omar Chiotti und Pablo David Villarreal. , Ex-
tending BPMN 2.0: Method and Tool Support”. In: Business Process Model
and Notation. Hrsg. von Remco Dijkman, Jorg Hofstetter und Jana Koeh-
ler. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, S. 59-73 (siehe
S. 25).

Ronny Seiger, Christine Keller, Florian Niebling und Thomas Schlegel.
~Modelling complex and flexible processes for smart cyber-physical en-
vironments”. In: J. Comput. Science 10 (2015), S. 137-148 (siehe S. 62).

Ronny Seiger, Steffen Huber, Peter Heisig und Uwe Assmann. ,Enab-
ling Self-adaptive Workflows for Cyber-physical Systems”. In: Enterprise,
Business-Process and Information Systems Modeling - 17th International Con-
ference, BPMDS 2016, 21st International Conference, EMMSAD 2016, Held
at CAiSE 2016, Ljubljana, Slovenia, June 13-14, 2016, Proceedings. Hrsg. von
Rainer Schmidt, Wided Guédria, Ilia Bider und Sérgio Guerreiro. Bd. 248.
Lecture Notes in Business Information Processing. Springer, 2016, S. 3—
17 (siehe S. 62).

Bran Selic. ,A Systematic Approach to Domain-Specific Language
Design Using UML". In: Tenth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2007), 7-9 May 2007,
Santorini Island, Greece. IEEE Computer Society, 2007, S. 2-9 (siehe S. 25).

Ronny Seiger, Steffen Huber und Thomas Schlegel. , Toward an execu-
tion system for self-healing workflows in cyber-physical systems”. In:
Software and System Modeling 17.2 (2018), S. 551-572 (siehe S. 62).

Klaus Sperner, Sonja Meyer und Carsten Magerkurth. ,Introducing
Entity-Based Concepts to Business Process Modeling”. In: Business Pro-
cess Model and Notation - Third International Workshop, BPMN 2011, Lu-
cerne, Switzerland, November 21-22, 2011. Proceedings. Hrsg. von Remco
M. Dijkman, Jorg Hofstetter und Jana Koehler. Bd. 95. Lecture Notes in
Business Information Processing. Springer, 2011, S. 166-171 (siehe S. 61).

Pnina Soffer. ,On the notion of flexibility in business processes”. In: Pro-
ceedings of the CAISE. Bd. 5. 2005, S. 35-42 (siehe S. 35).

Christian Soltenborn. ,,Quality assurance with dynamic meta modeling”.
Dissertation. Universitdt Paderborn, 2013 (siehe S. 16, 21).

Dieter Spath, Oliver Ganschar, Stefan Gerlach, Moritz Himmerle, Tobias
Krause und Sebastian Schlund. Produktionsarbeit der Zukunft — Industrie
4.0. Fraunhofer Verlag Stuttgart, 2013 (siehe S. 1, 3).

Thomas Stahl, Markus Volter, Jorn Bettin, Arno Haase und Simon Hel-
sen. Model-driven software development - technology, engineering, manage-
ment. Pitman, 2006 (siehe S. 26).

Literaturverzeichnis Seite 291

[Str+11]

[Tor+12]

[Voe+13]

[Wes12]

[WFH11]

[Whi+09]

[Wiel3]

[Wim09]

[WRN14]

[WRRO07]

Luis Jestis Ramén a Stroppi, Luis, Omar Chiotti und Pablo Villarreal. , A
BPMN 2.0 Extension to Define the Resource Perspective of Business Pro-
cess Models”. In: IV Congreso Iberoamericano en Software Engineering (Nov.
2011) (siehe S. 25).

Victoria Torres, Stefan Zugal, Barbara Weber, Manfred Reichert, Clara
Ayora und Vicente Pelechano. , A qualitative comparison of approaches
supporting business process variability”. In: International Conference on
Business Process Management. Springer. 2012, S. 560-572 (siehe S. 39, 40).

Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart CL Kats, Eelco Visser und Guido Wachsmuth.
DSL engineering: Designing, implementing and using domain-specific langua-
ges. dslbook. org, 2013 (siehe S. 7, 16, 22).

Mathias Weske. Business Process Management - Concepts, Languages, Archi-
tectures, 2nd Edition. Springer, 2012 (siehe S. 10, 31, 32, 34, 80, 198, 207,
254).

Ian H. Witten, Eibe Frank und Mark A. Hall. Data mining: practical machi-
ne learning tools and techniques. 3rd Edition. Morgan Kaufmann, Elsevier,
2011 (siehe S. 269).

Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng und Jean-
Michel Bruel. ,RELAX: Incorporating Uncertainty into the Specification
of Self-Adaptive Systems”. In: RE 2009, 17th IEEE International Require-
ments Engineering Conference, Atlanta, Georgia, USA, August 31 - September
4, 2009. IEEE Computer Society, 2009, S. 79-88 (siehe S. 202).

Wieland, Matthias. ,Methoden zur Modellierung und Ausfiihrung kon-
textbezogener Workflows in Produktionsumgebungen”. Dissertation.
Universitdt Stuttgart, 2013 (siehe S. 2).

Manuel Wimmer. ,, A semi-automatic approach for bridging DSMLs with
UML". In: International Journal of Web Information Systems 5 @InProcee-
dingsStroppi.etal2011, author = Stroppi, Luis Jestis Ramén and Chiot-
ti, Omar and Villarreal, Pablo David, title = Extending BPMN 2.0: me-
thod and tool support, booktitle = International Workshop on Business
Process Modeling Notation, year = 2011, pages = 59-73, organization =
Springer.3 (2009), S. 372404 (siehe S. 25).

Hans-Peter Wiendahl, Jiirgen Reichardt und Peter Nyhuis. Handbuch Fa-
brikplanung: Konzept, Gestaltung und Umsetzung wandlungsfihiger Produk-
tionsstitten. Carl Hanser Verlag GmbH Co KG, 2014 (siehe S. 3).

Barbara Weber, Stefanie Rinderle und Manfred Reichert. ,,Change Pat-
terns and Change Support Features in Process-Aware Information Sys-
tems”. In: Advanced Information Systems Engineering, 19th International
Conference, CAIiSE 2007, Trondheim, Norway, June 11-15, 2007, Procee-

Seite 292

Literaturverzeichnis

[WRRO8]

[ZLS11]

dings. Hrsg. von John Krogstie, Andreas L. Opdahl und Guttorm Sindre.
Bd. 4495. Lecture Notes in Computer Science. Springer, 2007, S. 574-588
(siehe S. 38, 88).

Barbara Weber, Manfred Reichert und Stefanie Rinderle-Ma. ,Change
patterns and change support features - Enhancing flexibility in process-
aware information systems”. In: Data & Knowledge Engineering 66.3
(2008), S. 438466 (siehe S. 38, 88, 108, 244).

Sema Zor, F Leymann und D Schumm. ,, A proposal of BPMN extensions
for the manufacturing domain”. In: Proceedings of 44th CIRP international
conference on manufacturing systems. Citeseer. 2011 (siehe S. 62).

Anhang

Operationen des
AVM4BPM

In diesem Abschnitt werden Operationen vorgestellt, die als Teil der in
Abschnitt 4.3 beschriebenen Teilsprache fiir die Gestaltung eines Adaptati-
on View Model 4 BPM (AVM4BPM) verstanden werden konnen. Sie stellen
Beispiele fiir mogliche Operationen dar, die im Rahmen der Gestaltung
von Anpassungsprozessen eingesetzt werden konnen. Hierzu werden zu-
nidchst gemeinsame Eigenschaften dieser Operationen vorgestellt. An-
schlieflend wird jeweils die Signatur, die konkrete Syntax als auch die An-
wendung einer Operation im Rahmen eines Beispiels gezeigt. In Abbil-
dung A-1 wird die Darstellungsweise von Operationen sowie von Ein-
und Ausgabeparametern anhand eines konzeptionellen Beispiels gezeigt.

«AdaptCase4BPM»
Perform-Operation

-------------------- AdaptationProcess
onRequested

PointinTime O Operation to Perform ‘

Adaptation Process

PM [=» PM"
i inModel outModel
: x

Monitoring Process InputParameter OutputParameter

onRequested
PointinTime

Symbol

Operation to Perform

'
'
i
I

AdaptationOperation

adaptationProcess =
‘Operation to Perform’

H
i
'
i

H
i
'
i

MonitoringProcess AdaptationProcess

Abbildung A-1:
Darstellung von Opera-
tionen sowie von Ein- und
Ausgabeparametern

Konkrete Syntax von
Operationen

Konkrete Syntax von Ein-
und Ausgabeparametern

Textuelle Schreibweise

Seite 294 Anhang A

Die grafische Darstellung von Operationen wird durch eine an die Spra-
che BPMN?2.0 angelehnte Darstellung von Tasks gewéhlt. In dieser Arbeit
vorgestellte Operation verfligen tiber ein eindeutiges Symbol. Das Symbol
einer Operation wird im linken oberen Bereich der Operation dargestellt.

Die Parameter einer Operation werden in Anlehnung an Datenelemente
der Sprache BPMN2.0 grafisch dargestellt. Dabei wird jeweils die Darstel-
lung von Input-Datenelementen fiir Eingabeparameter und die Darstel-
lung von Output-Datenelementen fiir Ausgabeparameter verwendet. Soll
die Angabe von Werten durchgefiihrt werden, so kénnen diese in textuel-
ler Form eingefiigt werden. Die in diesem Ansatz enthaltenen Operationen
konnen Parameter verlangen, die in Form von Ein- und Ausgabeparameter
vorliegen. Zudem kénnen auch optionale Eingabeparameter vorkommen,
die je Operation beschrieben werden.

Fir die Operationen ist auch eine textuelle Schreibweise vorgesehen. Ein
Beispiel fiir die textuelle Schreibweise der Operation ModifyPropertyOfNode
ist nachfolgend gegeben. Parameter werden in der Reihenfolge aufgefiihrt,
in der sie in der Signatur vorkommen (siehe 4-18). Eine Unterscheidung
zwischen Operationen fiir Prozessmodelle und deren Instanzen ist in der
textuellen Schreibweise nicht vorgesehen.

ModifyPropertyOfNode (m, Task, 'Name’, "Task A’) : m’

In dieser Arbeit stellen die Operationen einen konzeptionellen Gegenstand
dar. So sind sie dafiir angedacht, prinzipielle Vorgehensweisen fiir Anpas-
sungen von Prozessen in der frithen Gestaltung von Anpassungsprozessen
einsetzen zu konnen. Soll auf Basis von Beobachtungs- und Anpassungs-
prozessen die weitere Gestaltung von Prozessen durchgefiihrt werden, so
sind je nach einzusetzender IT-Unterstiitzung spezifische Verfeinerungen
und Implementierungen der vorgestellten Operationen notwendig.

Ein Beispiel bilden hier insbesondere Operationen, die fiir die Anpassung
von Prozessinstanzen eingesetzt werden. Fiir eine in der Praxis nutzbare
Menge von Operationen miissen hierbei plattformspezifische Eigenschaf-
ten einer IT-Unterstiitzung in Form einer Workflow-Engine berticksichtigt
werden. Existierende Workflow-Engines haben dabei oftmals verschiede-
ne Représentationen von Prozessinstanzen, die die reale Umsetzung von
Operationen erschweren konnen.

Operationen des AVM4BPM Seite 295

Die Auswahl einer derartigen Plattform findet dabei im Rahmen der Pha-
se Konfiguration statt. Ebenso wird in dieser Phase die Aufgabe der Im-
plementierung tibernommen. Der in dieser Arbeit vorgestellte Ansatz be-
zieht sich dabei aber auf die frithe Gestaltung im Rahmen der Phase Design
& Analyse. Die Auswabhl einer Plattform sowie die zugehorige Implemen-
tierung von Operationen steht fiir den in dieser Arbeit gesetzten Schwer-
punkt nicht im Fokus und wird daher auch nicht angeboten.

Fiir die Beschreibung von Operationen wurde sich dafiir entschieden, le-
diglich ihre generelle Funktionsweise zu beschreiben. Auf eine Beriicksich-
tigung von spezifischen Eigenschaften von Prozessmodellen und deren In-
stanzen wird im Rahmen der integrierten Operationen des AVM4BPM da-
her verzichtet. Die in Kapitel 5 vorgestellten Entwurfsmuster fiir die Ge-
staltung von flexiblen und anpassbaren Prozessen greifen den Aspekt der-
artiger Eigenschaften aber in ausgesuchten Teilen wieder auf und zeigen
wie sie auch zu einem frithen Zeitpunkt in der Phase Design & Analyse be-
riicksichtigt werden kénnen.

Auf die Darstellung aller 24 Operationen des AVM4BPM fiir die Anpas-
sung von Prozessmodellen und deren Instanzen wird nachfolgend ver-
zichtet. Stattdessen wird auf das generelle Funktionsprinzip von Opera-
tionen Bezug genommen, das fiir beide betroffenen Artefakte angewen-
det werden kann. Daraus ergeben sich insgesamt 12 Operationen fiir Kno-
tenelemente (sieche Anhang A.1), Kantenelemente (siehe Anhang A.2) und
Containerelemente (siehe Anhang A.3). Zusétzlich wird in Anhang A.3 das
Funktionsprinzip der Operation ModifyPositionOfNodesInContainer vorge-
stellt, welche fiir den Flexibilitatsaspekt Flexibility-by Underspecification be-
notigt wird.

Die nachfolgende Beschreibung der Signatur, der konkreten Syntax und
Beispiele fiir die Anwendung von Operationen bezieht sich dabei auf Pro-
zessmodelle. Konzeptionell dndern sich fiir Operationen an den Prozess-
instanzen die Ein- und Ausgabeparameter sowie das spezifische Symbol.

Operationen des AVM4BPM Seite 297

A.1 Operationen zur Anpassung von Knotenelementen

Die Perspektiven Funktion, Verhalten und Informationen enthalten Knoten-
elemente. Fiir die Anpassung derartiger Elemente werden in diesem Ab-
schnitt Operationen vorgestellt. Hierzu gibt Abbildung A-2 einige Beispie-
le fiir Elemente aus der Sprache BPMN?2.0 in Bezug zur zugehorigen Per-
spektive.

AdaptationOperation DataObject enumeration
elementType: ElementType (BPMN2.0) ElementType
Node
InputParameter | l OutputParameter
0.* ‘0..*
I I []
Add Remove i@l M,°,d ity
Node Nedt PropertyOf PositionOf
Node Node
provides
Perspective
I I I]

l Function | l Behavior | l Organization | l Information |

7 7 7

Beispielhafte Zuordnung von Elementen zu Perspektiven

Knoten-
elemente

Mit den dargestellten Operationen ist die Gestaltung von Anpassungen
von Prozessmodellen moglich. Im Rahmen der Definition der Operationen
werden zundchst die Signatur und anschlieffend die konkrete Syntax in
grafischer Notation exemplarisch dargestellt. Ferner wird fiir jede Ope-
ration ein Beispiel einer moglichen Anwendung der eingefiihrten Opera-
tionen auf Basis von Prozessmodellen gezeigt.

A.1.1 AddNode

Eine Operation vom Typ AddNode fiigt ein neues Knotenelement in einen
Prozess ein. Dabei werden zwei verschiedene Mechanismen unterschie-
den. Zum einen kann das hinzugefiigte Knotenelement lediglich der Men-
ge der vorhandenen Elemente im Prozess hinzufiigt werden. Zum anderen

Abbildung A-2:

Ubersicht iiber die Opera-
tionen fiir Knotenelemen-
te

Abbildung A-3:
Signatur und konkrete
Syntax der Ope-
ration AddNode

Parameter

Optionale Parameter

Seite 298 Anhang A

kann es aber auch sinnvoll sein, das Knotenelement mit anderen Elemen-
ten in Beziehung zu setzen. So konnte ein hinzugefiigtes Knotenelement
mit dem bereits vorhandenen Kontrollfluss verbunden werden. Ein sol-
ches Knotenelement kann z.B. durch einen der vorhandenen Untertypen
von Aktivitidten oder Gateways gegeben sein. Die Signatur der Operation
AddNode und die konkrete Syntax sind in Abbildung A-3 angegeben.

Parametername Parametertyp
IN : inModel ProcessModel
nodeElement NodeElement
IN-Optional : sourceNodeElements Set(NodeElement, AssociationType)
targetNodeElements Set(NodeElement, AssociationType)
OUT : outModel ProcessModel
m e
JR— FHOm N R o HOm N
: Add | out H JRRSTRRRRS. > Add [out
Node Model R Node Model
> NS I >N B[S =N
in node in node source target
Model Element Model Element Node Node
m Task m Task Elements Elelv ents
{{StartNode, {{fEndNode,

SequenceFlow}} SequenceFlow}}

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist
ein in Anlehnung an die ausgefiihrte Operation gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das hinzuzufii-
gende Knotenelement (nodeElement) gegeben.

Soll das Knotenelement mit bestehenden Elementen verbunden werden,
so ist die Angabe weiterer Parameter notwendig. So konnen durch die An-
gabe der Mengen sourceNodeElements und targetNodeElements Quell- bzw.
Zielknotenelemente (NodeElement) sowie der Typ der einzusetzenden As-
soziation (AssociationType) angegeben werden. Insgesamt existieren die
drei Typen fiir Assoziationen SequenceFlow, DataAssociation und Message-
Flow. Die Menge sourceNodeElements enthélt alle Knotenelemente, von de-
nen ausgehend eine Assoziation mit dem einzufiigenden Knotenelement
verbunden werden soll. Ferner werden ausgehend vom dem einzufiigen-
den Knotenelement Assoziationen zu allen Knotenelementen der Men-
ge targetNodeElements hinzugefiigt. Hierdurch ist es bspw. moglich, einen
Task oder ein Gateway in einen bestehenden Kontrollfluss zu integrieren.

Operationen des AVM4BPM Seite 299

Eine Anwendung der in Abbildung A-3 spezifizierten Operationen ist in
Abbildung A-4 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
Das BPD zeigt ein Start- und ein Endereignis, die durch eine Assoziation
vom Typ SequenceFlow verbunden sind.

Model m Model m*

: : AddNode : :

StartNode EndNode StartNode EndNode

I Model m*

StartNode EndNode

AddNode

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im obe-
ren Beispiel dargestellt. In dem BPD wurde ein Task hinzugefiigt und nicht
mit dem existierenden Kontrollfluss verbunden.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. In dem BPD ist ein Kontrollfluss entstanden, in
dem ausgehend vom Startereignis der eingefiigte Task folgt und schlief3-
lich mit dem Endereignis endet.

A.1.2 RemoveNode

Eine Operation vom Typ RemoveNode entfernt ein vorhandenes Knoten-
element sowie alle mit ihm in Verbindung stehenden ein- und ausgehen-
den Kantenelemente aus einem Prozess. Dabei wird ebenso wie bei der
Operation AddNode zwischen zwei unterschiedlichen Mechanismen un-
terschieden. Zum einen kann das zu entfernende Knotenelement aus der
Menge der vorhandenen Elemente des Prozesses entfernt werden, ohne
dass vorhandene Elemente wieder miteinander verbunden werden. Zum
anderen kann es aber auch sinnvoll sein, verbleibende Knotenelemente
miteinander zu verbinden. So kdnnten diese z.B. zu einem durchgingi-
gen Kontrollfluss verbunden werden. Die Signatur und konkrete Syntax
der Operation RemoveNode sind in Abbildung A-5 angegeben.

Beispiel einer Anwendung
der Operation AddNode

Abbildung A-4:
Beispielhafte Anwen-
dungen der Operation
AddNode

Abbildung A-5:
Signatur und konkrete
Syntax der Opera-
tion RemoveNode

Parameter

Optionale Parameter

Beispiel einer Anwendung
der Operation
RemoveNode

Seite 300 Anhang A

Parametername Parametertyp
IN : inModel ProcessModel
nodeElement NodeElement
IN-Optional : associateElements Set(NodeElement, AssociationType,
NodeElement)
OUT : outModel ProcessModel
m’ m’
[RTTSTPTRI EOm N\ PPN RPPRPRRRRD EOm DN
: Remove |> out : [P Remove [out
Node Model Node Model
>IN [I >N DI [D
in node in node associate
Model Element Model Element Elements
m Task m Task {{StartNode, SequenceFlow, EndNode}}

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist
ein in Anlehnung an die ausgefiihrte Operation gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu entfer-
nende Knotenelement (nodeElement) gegeben.

Sollen verbleibende Elemente in einem Prozessmodell durch die Anwen-
dung der Operation verbunden werden, so ist die Angabe weiterer Pa-
rameter notwendig. So konnen durch die Angabe der Menge associate-
Elements Tripel angegeben werden. Ein Tripel beschreibt dabei, von wel-
chem Knotenelement (NodeElement) ausgehend mit welchem Kantenele-
ment (AssociationType) ein weiteres Knotenelement (NodeElement) verbun-
den werden soll. Insgesamt existieren die drei Typen fiir Assoziationen Se-
quenceFlow, DataAssociation und MessageFlow. Hierdurch ist es z.B. mog-
lich, einen durch die Anwendung der Operation RemoveNode unterbroche-
nen Kontrollfluss wieder zu vervollstindigen.

Eine Anwendung der beiden in Abbildung A-5 spezifizierten Operationen
ist in Abbildung A-6 dargestellt. Dabei wird eine Darstellung in der Spra-
che BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Be-
reich der Abbildung wird hierzu als Ausgang das Prozessmodell m dar-
gestellt. Das BPD enthilt ein Startereignis, gefolgt von einem Task und
abschlieflend mit einem Endereignis. Die genannten Knotenelemente sind
durch Assoziationen vom Typ SequenceFlow verbunden.

Operationen des AVM4BPM Seite 301

Model m Model m*
RemoveNode
. Task . — O
StartNode EndNode StartNode EndNode
Model m“
I RemoveNode O =O
StartNode EndNode

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im obe-
ren Beispiel dargestellt. In dem zugehéorigen BPD wurden der Task und sei-
ne ein- und ausgehenden Assoziationen vom Typ SequenceFlow entfernt.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. In dem BPD ist aus dem bestehenden Kontroll-
fluss der Task entfernt worden. Die verbleibenden Start- und Endereignis-
se wurden durch eine neu eingefiigte Assoziation vom Typ SequenceFlow
miteinander verbunden.

A1.3 ModifyPropertyOfNode

Eine Operation vom Typ ModifyPropertyOfNode modifiziert den Wert ei-
ner Eigenschaft eines Knotenelements in einem Prozess. Die Signatur
und konkrete Syntax der Operation ModifyPropertyOfNode sind in Abbil-
dung A-7 angegeben.

Parametername Parametertyp
IN : inModel ProcessModel
nodeElement NodeElement
nodeProperty Property
propertyValue Value
ouUT : outModel ProcessModel

®HO

m Modify

PropertyOf
Node

SN BN S >

in node node property
Model Element Property Value

m Task ‘Name’ ‘Task A*

Abbildung A-6:
Beispielhafte Anwen-
dungen der Operation
RemoveNode

Abbildung A-7:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOfNode

Parameter

Beispiel einer Anwendung
der Operation
ModifyPropertyOfNode

Abbildung A-8:
Beispielhafte Anwen-
dung der Operation
ModifyPropertyOfNode

Parameter

Seite 302 Anhang A

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffende
Knotenelement (nodeElement), seine zu modifizierende Eigenschaft (node-
Property) und den zugehorigen Wert (propertyValue) gegeben. Ein Bezeich-
ner der zu modifizierenden Eigenschaft wird durch ein String-Literal an-
gegeben. Der Typ der zu dndernden Werte ist in der dargestellten Signatur
generisch als Value angegeben, da es verschiedene Typen wie z.B. String,
Integer oder auch komplexe Datentypen geben konnte.

Eine Anwendung der in Abbildung A-7 spezifizierten Operation ist in
Abbildung A-8 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind ein Startereignis, gefolgt von einem Task und abschlie-
Bend mit einem Endereignis in einer Sequenz durch Assoziationen vom
Typ SequenceFlow verbunden.

Model m Model m*

O—{=}—0 O—{=}—C

ModifyPropertyOfNode

Die Anpassung von Prozessmodell m hin zu Prozessmodell m” dndert die
Eigenschaft Name des Tasks, sodass der neue Wert dieser Eigenschaft Task
Aist.

A1.4 ModifyPositionOfNode

Eine Operation vom Typ ModifyPositionOfNode modifiziert die Positi-
on eines Knotenelements in einem Prozess innerhalb eines bestehenden
Kontroll- oder Datenflusses. Die Signatur und konkrete Syntax der Opera-
tion ModifyPositionOfNode sind in Abbildung A-9 angegeben.

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell

Operationen des AVM4BPM Seite 303

Parametername Parametertyp
IN : inModel ProcessModel
nodeElement NodeElement
sourceNodeElements Set(NodeElement, AssociationType)
targetNodeElements Set(NodeElement, AssociationType)
ouUT : outModel ProcessModel

%
L mMod ify
PositionOf

in node source target
Model Element Node Node

m Task A Elements Elements
{{Task B, {{fEndNode,
SequenceFlow}} SequenceFlow}}

(outModel). Ein weiterer Parameter der Operation ist durch das zu ver-
schiebende Knotenelement (nodeElement) gegeben. Die neue Position des
Knotenelements kann durch die Angabe der Parameter sourceNodeElements
und targetNodeElements angegeben werden. Dabei wird das Knotenelement
zwischen den Knotenelementen (NodeElement) der zuvor genannten Men-
gen mit den angegebenen Typen von Assoziationen (AssociationType) ein-
gefiigt. Zuvor bestehende ein- und ausgehende Kantenelemente werden
dabei entfernt.

Eine Anwendung der in Abbildung A-3 spezifizierten Operation ist in
Abbildung A-10 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist ein Startereignis, gefolgt von den Tasks Task A und Task B
sowie abschlieffend mit einem Endereignis durch Assoziationen vom Typ
SequenceFlow zu einer Sequenz verbunden.

Model m Model m’
Q—{ Task A H Task B m Q—{ Task B H Task A m
StartNode EndNode StartNode EndNode

I $

ModifyPositionOfNode

Die Anpassung von Prozessmodell m hin zu Prozessmodell m” dndert die
Position von Task A, sodass er nach Task B in der Sequenz vorkommt. Hier-

Abbildung A-9:
Signatur und konkrete
Syntax der Operation
ModifyPositionOfNode

Beispiel einer Anwendung
der Operation
ModifyPositionOfNode

Abbildung A-10:
Beispielhafte Anwen-
dung der Operation
ModifyPositionOfNode

Seite 304 Anhang A

fiir wurden zusitzlich die in der Ausgabe m” dargestellten ein- und ausge-
henden Assoziationen von Task A vom Typ SequenceFlow hinzugeftigt.

Die Ausgabe m’ kann alternativ auch aus einer Kombination der Opera-
tionen RemoveNode und AddNode erreicht werden. Hierbei wird Task A zu-
nichst entfernt und anschliefflend dem Prozessmodell m’ neu hinzugefiigt.

Operationen des AVM4BPM Seite 305

A.2 Operationen zur Anpassung von Kantenelementen

In den Perspektiven Verhalten und Informationen konnen Kantenelemente
vorkommen. Hierzu zeigt Abbildung A-11 eine Ubersicht iiber die durch
die Operationen betrachteten Elemente aus der Doméane BPM.

AdaptationOperation DataObject enumeration
elementType: ElementType (BPMN2.0) ElementType
Edge
InputParameter | l OutputParameter
0.* ‘0..*
I I []
Add Remove el M‘o-dnfy
Edge Edge PropertyOf PositionOf
Edge Edge
provides
Perspective
I I I]
l Function | l Behavior | l Organization | l Information |

7 7

Beispielhafte Zuordnung von Elementen zu Perspektiven

Kanten
elemente

Mit den dargestellten Operationen ist die Gestaltung von Anpassungen
von Prozessmodellen moglich. Im Rahmen der Definition der Operationen
werden zundchst die Signatur und anschlieffend die konkrete Syntax in
grafischer Notation exemplarisch dargestellt. Ferner wird fiir jede Ope-
ration ein Beispiel einer moglichen Anwendung der eingefiihrten Opera-
tionen auf Basis von Prozessmodellen gezeigt.

A.2.1 AddEdge

Eine Operation vom Typ AddEdge fiigt ein neues Kantenelement in einen
Prozess ein. Dabei werden zwei verschiedene Mechanismen unterschie-
den. Zum einen kann das hinzugefiigte Kantenelement lediglich der Men-
ge der vorhandenen Elemente im Prozess hinzufiigt werden. Zum ande-
ren kann es aber auch sinnvoll sein, das Kantenelement mit anderen Ele-

menten in Beziehung zu setzen. So konnte ein hinzugefiigtes Kantenele-

Abbildung A-11:
Ubersicht iiber die Opera-
tionen fiir Kantenelemen-
te

Abbildung A-12:
Signatur und konkrete
Syntax der Ope-
ration AddEdge

Parameter

Optionale Parameter

Beispiel einer Anwendung
der Operation AddEdge

Seite 306 Anhang A

ment des Typs SequenceFlow den bereits vorhandenen Kontrollfluss ergan-
zen, indem es z.B. Tasks oder Gateways miteinander verbindet. Die Signa-
tur und konkrete Syntax der Operation AddEdge sind in Abbildung A-12
angegeben.

Parametername Parametertyp
IN : inModel ProcessModel
edgeElement EdgeElement
IN-Optional : sourceNodeElement NodeElement
targetNodeElement NodeElement
OUT : outModel ProcessModel
m e
) EH->m N A N
Add [out : JETTTTSoe ...> out
RIS Edge Model Model
> D [>N B[= D\
in edge in edge source target
Model Element Model Element Node Node
Element Element
m edge m edge

g1 g2

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das hinzuzufii-
gende Kantenelement (edgeElement) gegeben.

Soll das Kantenelement mit bestehenden Elementen verbunden werden, so
ist die Angabe weiterer Parameter notwendig. Durch die Angabe der Para-
meter sourceNodeElement und targetNodeElement vom Typ NodeElement kon-
nen jeweils ein Quell- und ein Zielknotenelement benannt werden. Dabei
beschreibt der Parameter sourceNodeElement das Knotenelement, von dem
ausgehend das eingefiigte Kantenelement mit verbunden wird. Der Para-
meter targetNodeElement gibt dabei das Knotenelement an, welches als Ziel
des Kantenelements gesetzt werden soll. Die Operation AddEdge kann ein-
gesetzt werden, um Kantenelemente der Typen SequenceFlow, DataAssocia-
tion und MessageFlow einzuftigen.

Eine Anwendung der in Abbildung A-12 spezifizierten Operation ist in
Abbildung A-13 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang ein Auszug aus einem Prozess-
modell m dargestellt. In dem BPD sind die beiden Gateways g1 und g2
sowie ein Task in einer Sequenz dargestellt.

Operationen des AVM4BPM Seite 307

Model m Model m*

—edge—>

AddEd;
{160 e 5

Model m“

AddEdge

edge

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im obe-

ren Beispiel dargestellt. In dem BPD wurde eine Assoziation vom Typ Se-
quenceFlow mit dem Namen ‘edge” hinzugeftigt und nicht in den existieren-
den Kontrollfluss integriert.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. In dem BPD ist ein Kontrollfluss entstanden, in
dem ausgehend vom Gateway g1 ein alternativer Kontrollfluss entstanden
ist, mit dem es moglich ist, die Ausfithrung des Tasks zu tiberspringen,
indem direkt zum Gateway g2 gewechselt werden kann.

A.2.2 RemoveEdge

Eine Operation vom Typ RemoveEdge entfernt ein vorhandenes Kantenele-
ment aus einem Prozess. So kénnen Assoziationen der Typen Sequence-
Flow, DataAssociation und MessageFlow entfernt werden. Die Signatur und
konkrete Syntax der Operation RemoveNode sind in Abbildung A-14 ange-

geben.
Parametername Parametertyp
IN : inModel ProcessModel
edgeElement EdgeElement
OouUT : outModel ProcessModel
R E->m 5 N
Remove |3 :I:Jotdel
; Edge
> I [D

in edge
Model Element

m edge

Abbildung A-13:
Beispielhafte Anwen-
dungen der Operation
AddEdge

Abbildung A-14:
Signatur und konkrete
Syntax der Operation
RemoveEdge

Parameter

Beispiel einer Anwendung
der Operation RemoveEdge

Abbildung A-15:
Beispielhafte An-
wendung der Ope-
ration RemoveEdge

Parameter

Seite 308 Anhang A

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu entfer-
nende Kantenelement (edgeElement) gegeben.

Eine Anwendung der in Abbildung A-14 spezifizierten Operation ist in
Abbildung A-15 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang der Auszug eines Prozessmodells
m dargestellt. In dem BPD sind zwei Gateways sowie ein Task als eine Se-
quenz dargestellt. Ausgehend vom Gateway g1 ist es moglich, die Ausfiih-
rung des Tasks mit einem alternativen Pfad zu tiiberspringen.

Model m Model m*

B s et
}

RemoveEdge

Die Anpassung im Auszug des Prozessmodells m hin zu Prozessmodell m’
entfernt den alternativen Pfad. In dem BPD wurde somit die Assoziation
vom Typ SequenceFlow mit der Bezeichnung edge entfernt.

A.2.3 ModifyPropertyOfEdge

Eine Operation vom Typ ModifyPropertyOfEdge modifiziert den Wert einer
Eigenschaft eines Kantenelements aus einem Prozess. Die Signatur und
konkrete Syntax der Operation ModifyPropertyOfEdge sind in Abbildung A-
16 angegeben.

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffende
Kantenelement (edgeElement), seine zu modifizierende Eigenschaft (edge-
Property) und den zugehorigen Wert (propertyValue) gegeben. Ein Bezeich-
ner der zu modifizierenden Eigenschaft wird durch ein String-Literal an-
gegeben. Der Typ der zu d&ndernden Werte ist in der dargestellten Signatur
generisch als Value angegeben, da es verschiedene Typen wie z.B. String,
Integer oder auch komplexe Datentypen geben konnte.

Operationen des AVM4BPM Seite 309

Parametername Parametertyp
IN : inModel ProcessModel
edgeElement EdgeElement
edgeProperty Property
propertyValue Value
ouUT : outModel ProcessModel

-

m
.................................. Modify
PropertyOf

Edge

in edge edge property
Model Element property Value

m edge ‘Name* ‘alternativeEdge”

Eine Anwendung der in Abbildung A-16 spezifizierten Operation ist in
Abbildung A-17 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind zwei Gateways und ein Task als Sequenz dargestellt. Fer-
ner existiert ausgehend vom Gateway g1 und endend mit Gateway g2 ein
alternativer Pfad, dessen Assoziation vom Typ SequenceFlow ist und den
Namen ‘edge’ tréagt.

Model m Model m‘

ModifyPropertyOfEdge

Die Anwendung der Operation édndert die Eigenschaft Name des Kanten-
elements mit der Bezeichnung edge, sodass der neue Wert dieser Eigen-
schaft “alternativeEdge’ ist.

A2.4 ModifyPositionOfEdge

Eine Operation vom Typ ModifyPositionOfEdge modifiziert die Position ei-
nes Kantenelements aus einem Prozess. Eine Position eines Kantenele-
ments wird dabei aus den aus- und dem eingehenden Knotenelement ge-
bildet. Die Signatur und konkrete Syntax der Operation ModifyPositionOf-
Edge sind in Abbildung A-18 angegeben.

Abbildung A-16:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOfEdge

Beispiel einer Anwendung
der Operation
ModifyPropertyOfEdge

Abbildung A-17:
Beispielhafte Anwendung
der Operation Modify-
PropertyOfEdge

Abbildung A-18:
Signatur und konkrete
Syntax der Operation
ModifyPositionOfEdge

Parameter

Beispiel einer Anwendung
der Operation
ModifyPositionOfEdge

Abbildung A-19:
Beispielhafte Anwen-
dung der Operation
ModifyPositionOfEdge

Seite 310 Anhang A

Parametername Parametertyp
IN : inModel ProcessModel
edgeElement EdgeElement
sourceNodeElement NodeElement
targetNodeElement NodeElement
oUT : outModel ProcessModel

[k]oX_go m

Modify
PositionOf
oo Edge

= N =y N =S N =N

in edge source target
Model Element Node Node
El t
m alternativeEdge Element emen
92 g3

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu ver-
schiebende Kantenelement (edgeElement) gegeben. Die neue Position des
Kantenelements kann durch die Angabe der Parameter sourceNodeElement
und targetNodeElement angegeben werden. Dabei wird das Kantenelement
ausgehend vom Knotenelement sourceNodeElement und endend mit dem
Knotenelement targetNodeElement verbunden.

Eine Anwendung der in Abbildung A-18 spezifizierten Operation ist in
Abbildung A-19 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist eine Sequenz von drei Gateways (g1, g2, £3) dargestellt. Die
Gateways sind mit Assoziationen vom Typ SequenceFlow verbunden. Aus-
gehend vom Gateway g1 existiert ein alternativer Pfad mit der Bezeich-
nung edge, der zum zweiten Gateway g2 fiihrt.

Model m Model m*

[>T

I 4

ModifyPositionOfEdge

Operationen des AVM4BPM Seite 311

Die Anwendung der Operation dndert die Position der Assoziation mit
der Bezeichnung ‘edge’, sodass der alternative Pfad ausgehend vom zwei-
ten Gateway g2 zum dritten Gateway g3 verlduft. Die Ausgabe m’ kann
alternativ auch aus einer Kombination der Operationen RemoveEdge und
AddEdge erreicht werden. Hierbei wird die Assoziation zundchst entfernt
und anschlieffend dem Prozessmodell m” entsprechend neu hinzugefiigt.

Operationen des AVM4BPM Seite 313

A.3 Operationen zur Anpassung von Containerelemen-
ten

Die Perspektiven Funktion und Organisation enthalten verschiedene Bei-
spiele fiir Containerelemente. Bei Containerelementen handelt es ich um
Elemente, die weitere Elemente enthalten konnen. Beispiele hierfiir sind
durch die drei Typen SubProcess und Pool bzw. Lane gegeben. In Abbil-
dung A-20 ist eine Ubersicht iiber diese Elemente in Anordnung zu ihrer
jeweiligen Perspektive gezeigt.

AdaptationOperation DataObject enumeration
elementType: ElementType (BPMN2.0) ElementType
% Z% Container
| InputParameter I |OutputParameter
0.* |0..*
[[I [|
i i Modif
Add Remove podify M_O,d'fy - v
i i PropertyOf PositionOf PositionOf
Container Container X !
Container Container Nodesln
Container
provides
Perspective
[[[|
| Function I | Behavior I | Organization I | Information

il 1T

Beispielhafte Zuordnung von Elementen zu Perspektiven

Container-
elemente

Fiir die gezeigten Elemente sind im Gegensatz zu den zuvor beschriebenen
Operationen unterschiedliche Verfahrensweisen notwendig. So lasst sich
bspw. ein Kontrollfluss tiber mehrere Lanes innerhalb eines Pools gestal-
ten. Ein Kontrollfluss darf jedoch nicht tiber einen Subprozess verlaufen.
Im Rahmen von Operationen fiir die betroffenen Perspektiven Organisati-
on und Funktion sollten Elemente unterschiedlich behandelt werden. Die
beschriebenen Beispiele fokussieren die Funktionsprinzipien fiir Elemen-
te der Perspektive Organisation. Eine Anwendung auf Subprozesse kann
zu Fehlern fiihren, die durch Operationen fiir Knoten- und Kantenelemen-
te korrigiert werden kénnen. Aufgrund des beispielhaften Charakters der

Abbildung A-20:
Ubersicht iiber die Ope-
rationen fiir Containerele-
mente

Abbildung A-21:
Signatur und konkrete
Syntax der Opera-
tion AddContainer

Parameter

Optionale Parameter

Beispiel einer Anwendung
der Operation
AddContainer

Seite 314 Anhang A

Operationen wurde sich im Rahmen der Beschreibung dafiir entschieden,
spezifische Korrekturen fiir die Operationen nicht mitanzugeben.

A.3.1 AddContainer

Eine Operation vom Typ AddContainer fligt ein neues Containerelement in
einen Prozess ein. Dabei werden zwei verschiedene Mechanismen unter-
schieden. Zum einen kann das hinzuzufiigende Containerelement ledig-
lich der Menge der vorhandenen Elemente in dem Prozess hinzugefiigt
werden. Zum anderen kann es aber auch sinnvoll sein, existierende Kno-
tenelemente in dem Prozess dem Containerelement zuzuordnen. So konn-
te ein hinzugefiigtes Containerelement bereits existierende Elemente nach
Anwendung der Operation enthalten. Die Signatur und konkrete Syntax
der Operation AddContainer sind in Abbildung A-21 angegeben.

Parametername Parametertyp
IN : inModel ProcessModel
containerElement ContainerElement
IN-Optional : nodeElements Set (NodeElement)
OoUT : outModel ProcessModel
m
[RTT HOm N) HOm
")
Container oce Container
o> N2 K => => =
in container in container’ node
Model Element Model Element Elements
m Participant m Participant {s, E, Task}

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das hinzuzufii-
gende Containerelement (containerElement) gegeben.

Soll das Containerelement bereits bestehende Elemente enthalten, so ist
die Angabe weiterer Parameter notwendig. Es konnen durch die Angabe
der Menge nodeElements vom Typ NodeElement die Knotenelemente refe-

renziert werden, die im Containerelement enthalten sein sollen.

Eine Anwendung der beiden in Abbildung A-21 spezifizierten Opera-
tionen ist in Abbildung A-22 dargestellt. Dabei wird eine Darstellung in
der Sprache BPMN2.0 durch einen Auszug aus einem BPD gezeigt. In dem

Operationen des AVM4BPM Seite 315

BPD sind ein Start- und ein Endereignis mit einem dazwischenliegen-
den Task dargestellt, welche durch Assoziationen vom Typ SequenceFlow
verbunden sind.

Process Model m Process Model m*

AddContainer
° Task G ﬁ e Task e

Process Model m*

ee

Die Anpassung des Prozessmodells /1 hin zu Prozessmodell m” ist im obe-

| AddContainer

Participant

ren Beispiel dargestellt. In dem BPD wurde die Lane mit der Bezeichnung
Participant hinzugefiigt. Dabei enthélt diese Lane keine der zuvor existie-

renden Elemente.

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. Die in der Anpassungsoperation spezifizierten
Elemente mit den Bezeichnungen S, Task und E wurden in der hinzuge-
fugten Lane eingebettet.

A.3.2 RemoveContainer

Eine Operation vom Typ RemoveContainer entfernt ein vorhandenes Con-
tainerelement aus einem Prozess. Es werden zwei Mechanismen zur Ent-
fernung angeboten. So konnen die in dem Containerelement enthaltenen
Elemente entweder ebenfalls entfernt oder erhalten bleiben. Das Erhalten
von Elementen kann sinnvoll sein, wenn das in einem Containerelement
enthaltene Verhalten bestehen bleiben soll. Die Signatur und konkrete
Syntax der Operation RemoveContainer sind in Abbildung A-23 angegeben.

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu entfer-
nende Containerelement (containerElement) gegeben. Sind in einem Contai-
nerelement enthaltene Elemente vorhanden, so kann durch den Parameter
preserveElements vom Typ Boolean angegeben werden, ob diese Elemente

Abbildung A-22:
Beispielhafte Anwen-
dungen der Operation
AddContainer

Parameter

Abbildung A-23:
Signatur und konkrete
Syntax der Opera-
tion RemoveContainer

Beispiel einer Anwendung
der Operation
RemoveContainer

Abbildung A-24:
Beispielhafte Anwen-
dungen der Opera-
tion RemoveContainer

Seite 316 Anhang A

Parametername Parametertyp

IN : inModel ProcessModel
containerElement ContainerElement
preserveElements Boolean

OUT : outModel ProcessModel

e Eom

Remove

Remove

Container Container

SN[=3 SN[=

in container preserve in container| preserve
Model Element Contents Model Element Contents
m Participant true m Participant false

erhalten werden sollen. Dabei steht der Wert true fiir das Erhalten und der
Wert false fiir ein Verwerfen bestehender Elemente im Containerelement.

Eine Anwendung der in Abbildung A-23 spezifizierten Operation ist in
Abbildung A-24 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind ein Startereignis, gefolgt von einem Task und abschlie-
Bend mit einem Endereignis durch Assoziationen vom Typ SequenceFlow
verbunden. Die genannten Elemente sind eingebettet in einer Lane mit der
Bezeichnung Participant.

Model m Model m‘

RemoveContainer
. Task ‘ > Q > Task

Participant

Model m*
RemoveContainer

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im obe-
ren Beispiel dargestellt. In dem BPD wurde die Lane mit der Bezeichnung
Participant entfernt. Die zuvor in der Lane enthaltene Sequenz bestehend
aus einem Startereignis, einem Task sowie einem Endereignis blieb erhal-
ten und ist in diesem Prozessmodell keiner organisatorischen Rolle mehr
zugeordnet.

Operationen des AVM4BPM Seite 317

Die Anpassung des Prozessmodells m hin zu Prozessmodell m” ist im un-
teren Beispiel dargestellt. Das Resultat ist ein leeres Prozessmodell — hier
dargestellt als schwarz-umrandetes Unendlichkeitszeichen.

A.3.3 ModifyPropertyOfContainer

Eine Operation vom Typ ModifyPropertyOfContainer modifiziert den Wert
einer Eigenschaft eines Containerelements aus einem Prozess. Die Signa-
tur und konkrete Syntax der Operation ModifyPropertyOfContainer sind in
Abbildung A-25 angegeben.

Parametername Parametertyp

IN : inModel ProcessModel
containerElement ContainerElement
containerProperty Property
propertyValue Value

ouT : outModel ProcessModel

OO 3 i

m

Modify
PropertyOf
Container

in container container container
Model Element Property Value
m

Participant ‘Name* ‘Participant 1°

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Weitere Parameter der Operation sind durch das betreffen-
de Containerelement (containerElement), seine zu modifizierende Eigen-
schaft (containerProperty) und den zugehorigen Wert (propertyValue) gege-
ben. Ein Bezeichner der zu modifizierenden Eigenschaft wird durch ein
String-Literal angegeben. Der Typ der zu &ndernden Werte ist in der darge-
stellten Signatur generisch als Value angegeben, da es verschiedene Typen
wie z.B. String, Integer oder auch komplexe Datentypen geben kann.

Eine Anwendung der in Abbildung A-25 spezifizierten Operation ist in
Abbildung A-26 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist eine Sequenz bestehend aus einem Startereignis, gefolgt

Abbildung A-25:
Signatur und konkrete
Syntax der Operation
ModifyPropertyOf-
Container

Parameter

Beispiel einer Anwendung
der Operation Modify-
PropertyOfContainer

Abbildung A-26:
Beispielhafte Anwendung
der Operation Modify-
PropertyOfContainer

Abbildung A-27:
Signatur und konkrete
Syntax der Operation
ModifyPositionOf-
Container

Seite 318 Anhang A

von einem Task und abschliefiend mit einem Endereignis gezeigt. Die ge-
nannten Elemente sind durch Assoziationen vom Typ SequenceFlow ver-
bunden.

2
o
a
o
3

Model m*

Participant

Participant 1

I }

ModifyPropertyOfContainer

Die Anwendung der Operation dndert die Eigenschaft Name der Lane, so-
dass der neue Wert Participant 1 ist.

A3.4 ModifyPositionOfContainer

Eine Operation vom Typ ModifyPositionOfContainer modifiziert die Positi-
on eines Containerelements in einem Prozess. Im Fall von Containerele-
menten der Perspektive Organisation handelt es sich bei der Position des
betroffenen Elements um die jeweilige Einbettung in andere Containerele-
mente der gleichen Perspektive oder auf oberste Ebene im Prozess. Die Si-
gnatur und konkrete Syntax der Operation ModifyPositionOfContainer sind
in Abbildung A-27 angegeben.

Parametername Parametertyp
IN : inModel ProcessModel
containerElement ContainerElement
targetContainerElement ContainerElement
OUT : outModel ProcessModel

e Rem
: Modify
PositionOf
Container

in container target
Model Element Container|

- Element
m Participant 2

Group B

Operationen des AVM4BPM Seite 319

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Ein weiterer Parameter der Operation ist durch das zu ver-
schiebende Containerelement (containerElement) gegeben. Die neue Posi-
tion des Containerelements kann durch die Angabe der Parameter farget-
ContainerElement angegeben werden. Dabei wird das Containerelement in
das durch diesen Parameter angegebene Containerelement verschoben.
Wird mit dem Parameter kein existierendes Containerelement des Prozess-
modells angegeben, so wird das zu verschiebende Containerelement auf
oberster Hierarchieebene verschoben.

Eine Anwendung der in Abbildung A-27 spezifizierten Operation ist in
Abbildung A-28 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD sind die beiden Pools Group A und Group B gezeigt. In dem
Pool mit der Bezeichnung Group A sind die beiden Lanes Participant 1 und
Participant 2 enthalten.

Model m Model m*

[Group B |
[Participant 2|

[Group A] [Group B [Group A
| Participant 1 [Participant 2 | | Participant 1

I $

ModifyPositionOfContainer

In dem BPD ist die Lane mit der Bezeichnung Participant 2 nicht mehr Teil
vom Pool Group A, sondern Teil von Pool Group B. Die Ausgabe m’ kann
alternativ auch aus einer Kombination der Operationen RemoveContainer
und AddContainer erreicht werden. Hierbei wird die Lane mit der Bezeich-
nung Participant 1 zundchst entfernt und anschliefend dem Pool Group B
neu hinzugefiigt.

A.3.5 ModifyPositionOfNodesInContainer

Eine Operation vom Typ ModifyPositionOfNodesInContainer dndert die Po-
sition von Knotenelementen, sodass diese aus einem Containerelement in
ein anderes Containerelement in einem Prozess verschoben werden kon-
nen. Dabei handelt es sich bei dieser Operation um eine Abweichung ge-

Parameter

Beispiel einer Anwendung
der Operation
ModifyPositionOfContainer

Abbildung A-28:
Beispielhafte Anwendung
der Operation Modify-
PositionOfContainer

Abbildung A-29:
Signatur und konkrete
Syntax der Opera-
tion ModifyPosition-
OfNodesInContainer

Parameter

Optionale Parameter

Seite 320 Anhang A

geniiber den zuvor angewandten Mustern von Operationen zur Anpas-
sung von Prozessen, da es sich um eine Operation in Bezug zu Knoten-
elementen handelt, sie aber im Abschnitt fiir Containerelemente beschrie-
ben wird. Dies ldsst sich dadurch begriinden, dass fiir ein besseres Ver-
stdndnis fiir die Operation ModifyPositionOfNodesInContainer zunichst die
zuvor beschriebenen Operationen fiir Containerelemente eingefiihrt wur-
den. Die Signatur und konkrete Syntax der Operation ModifyPositionOf-
NodesInContainer sind in Abbildung A-29 angegeben.

Parametername Parametertyp

IN : inModel ProcessModel
nodeElements Set (NodeElement)
targetContainerElement ContainerElement

IN-Optional : copyElements Boolean

ouT : outModel ProcessModel

in node target
Model Elements Container|

m {Task B, EE} Element

Participant 2

Die Operation erwartet als Eingabe ein Prozessmodell (inModel), auf das
die Anpassung ausgefiihrt werden soll. Die Ausgabe der Operation ist in
Anlehnung an die ausgefiihrte Operation ein gedndertes Prozessmodell
(outModel). Durch den Parameter nodeElements kann eine Menge vom Typ
NodeElement angegeben werden, die die zu verschiebenden Knotenele-
mente enthilt. Wird eine leere Menge angegeben, so werden alle Elemente
verschoben. Die neue Position der Knotenelemente kann durch die Angabe
des Parameters targetContainerElement vom Typ ContainerElement angege-
ben werden. Dabei werden die durch den Parameter nodeElements angege-
benen Knotenelemente in das durch den Parameter targetContainerElement
angegebene Containerelement verschoben.

Sollen Elemente in einem Containerelement erhalten bleiben und stattdes-
sen eine Kopie eingefiigt werden, so ist die Angabe eines weiteren Para-
meters notwendig. Dieser Parameter ist durch copyElements vom Typ Boo-
lean gegeben. Das Kopieren von Element kann durch Angabe dieses Para-
meters mit dem Wert true durchgefiihrt werden.

Operationen des AVM4BPM Seite 321

Eine Anwendung der in Abbildung A-29 spezifizierten Operation ist in
Abbildung A-30 dargestellt. Dabei wird eine Darstellung in der Sprache
BPMN?2.0 durch einen Auszug aus einem BPD gezeigt. Im linken Bereich
der Abbildung wird hierzu als Ausgang das Prozessmodell m dargestellt.
In dem BPD ist eine Sequenz beginnend mit einem Startereignis, gefolgt
von Task A sowie Task B und endend mit einem Endereignis dargestellt.
Die genannten Elemente sind durch Assoziationen vom Typ SequenceFlow
miteinander verbunden. Die beschriebene Sequenz ist eingebettet in einer
Lane mit der Bezeichnung Participant 1. Sowohl die Lane mit der Bezeich-
nung Participant 1 als auch eine zweite Lane mit der Bezeichnung Partici-
pant 2 sind eingebettet in einem Pool mit der Bezeichnung Group A.

Process Model m Process Model m*
- -
= =
g g
2 Task A Task B 2 . Task A
B £
<l c o
ol ola
=3 =3
Ol Ol
(G (G
[= [=
3 3 T
G G ask B
2 bl
£ £
© ©
o o

I)

ModifyPositionOfNodesInContainer

Die Anwendung der Operation dndert die Position von Task B und des
Endereignisses EE. Sie werden in der Lane mit der Bezeichnung Partici-
pant 2 eingebettet. Der bestehende Kontrollfluss verlduft anschlieffend tiber
beiden dargestellten Lanes. Die Ausgabe m” kann alternativ auch aus einer
Kombination der Operationen RemoveNode und AddNode erreicht werden.
Hierbei wird Task B zundchst entfernt und anschliefend dem Prozess-
modell m” neu hinzugeftigt.

Beispiel einer Anwendung
der Operation Modify-
PositionOfNodesIn-
Container

Abbildung A-30:
Beispielhafte Anwendung
der Operation Modify-
PositionOfNodesIn-
Container

	1 Einleitung
	1.1 Motivation
	1.2 Problemstellung
	1.3 Anforderungen
	1.4 Aufbau der Arbeit

	I Grundlagen und verwandte Arbeiten
	2 Grundlagen
	2.1 Modellgetriebene Softwareentwicklung
	2.1.1 Metamodellierung
	2.1.2 Meta-Object-Facility (MOF)
	2.1.3 Model-Driven Architecture (MDA)
	2.1.4 Domain-Specific Language Engineering

	2.2 Business Process Management
	2.2.1 Einführung in das Business Process Management
	2.2.2 Der BPM-Lebenszyklus
	2.2.3 Flexibilität in Prozessen

	2.3 Business Process Modeling
	2.3.1 Einführung in das Business Process Modeling
	2.3.2 Perspektiven in Geschäftsprozessmodellen
	2.3.3 UML Aktivitätsdiagramm
	2.3.4 BPMN2.0

	2.4 Adapt Cases
	2.4.1 Überblick
	2.4.2 Konkrete Syntax der Sprache ACML am Beispiel
	2.4.3 Abstrakte Syntax der Sprache ACML
	2.4.4 Integration in einen Entwicklungsprozess

	3 Verwandte Arbeiten
	3.1 Flexible und anpassbare Prozesse
	3.2 Flexible und anpassbare Prozesse im IIoT
	3.3 Selbst-adaptive Prozesse

	II Lösungskonzept
	4 Eine Sprache zur Gestaltung von anpassbaren Prozessen
	4.1 Übersicht
	4.2 Adapt Case Model 4 BPM
	4.2.1 Adapt Case 4 BPM
	4.2.2 Beobachtungsprozess
	4.2.3 Anpassungsprozess

	4.3 Adaptation View Model 4 BPM
	4.3.1 System- und Umgebungskomponenten
	4.3.2 Sensor- und Effektorschnittstellen
	4.3.3 Operationen
	4.3.4 Ereignisse

	4.4 Zusammenfassung

	5 Entwurfsmuster für flexible und anpassbare Prozesse
	5.1 Übersicht
	5.2 Flexibility-by Design
	5.2.1 Gestaltungsaspekte von Flexibility-by Design
	5.2.2 Gestaltung von Choice
	5.2.3 Gestaltung von Iteration
	5.2.4 Gestaltung von Cancellation
	5.2.5 Zusammenfassung

	5.3 Flexibility-by Change
	5.3.1 Gestaltungsaspekte von Flexibility-by Change
	5.3.2 Migrationsstrategien
	5.3.3 Spracherweiterung für Flexibility-by Change
	5.3.4 Operationen
	5.3.5 Zusammenfassung

	5.4 Flexibility-by Deviation
	5.4.1 Gestaltungsaspekte von Flexibility-by Deviation
	5.4.2 Operationen
	5.4.3 Zusammenfassung

	5.5 Flexibility-by Underspecification
	5.5.1 Gestaltungsaspekte von Flexibility-by Underspecification
	5.5.2 Spracherweiterung für Flexibility-by Underspecification
	5.5.3 Operationen
	5.5.4 Zusammenfassung

	5.6 Zusammenfassung

	6 Adaptivity Engineering für flexible und anpassbare Prozesse
	6.1 Übersicht über einen erweiterten BPM-Lebenszyklus
	6.2 Adapt Cases 4 BPM
	6.2.1 Anforderungsanalyse
	6.2.2 High-Level-Gestaltung
	6.2.3 Low-Level-Gestaltung
	6.2.4 Ergänzung

	6.3 Zusammenfassung

	III Evaluation, Zusammenfassung und Ausblick
	7 Evaluation
	7.1 Szenario für flexible und anpassbare Prozesse
	7.1.1 Die Arbeitsumgebung Human-Robot-Team
	7.1.2 Fall 1: Workspace Temperature Management
	7.1.3 Fall 2: Human Performer Workload Management
	7.1.4 Fall 3: Separation of Business and Adaptivity Logic
	7.1.5 Zusammenfassung

	7.2 Kriterien
	7.2.1 Kriterien der Anpassbarkeit
	7.2.2 Kriterien für die Anforderungen an Adapt Cases 4 BPM

	7.3 Bewertungseinheit
	7.4 Bewertung
	7.4.1 Bewertung von Kriterien der Anpassbarkeit
	7.4.2 Bewertung von Kriterien an Adapt Cases 4 BPM

	7.5 Gültigkeit

	8 Zusammenfassung und Ausblick
	8.1 Zusammenfassung
	8.2 Ausblick

	Tabellenverzeichnis
	Abbildungsverzeichnis
	Literaturverzeichnis
	Anhang
	A Operationen des AVM4BPM
	A.1 Operationen zur Anpassung von Knotenelementen
	A.1.1 AddNode
	A.1.2 RemoveNode
	A.1.3 ModifyPropertyOfNode
	A.1.4 ModifyPositionOfNode

	A.2 Operationen zur Anpassung von Kantenelementen
	A.2.1 AddEdge
	A.2.2 RemoveEdge
	A.2.3 ModifyPropertyOfEdge
	A.2.4 ModifyPositionOfEdge

	A.3 Operationen zur Anpassung von Containerelementen
	A.3.1 AddContainer
	A.3.2 RemoveContainer
	A.3.3 ModifyPropertyOfContainer
	A.3.4 ModifyPositionOfContainer
	A.3.5 ModifyPositionOfNodesInContainer

