
Scaling, Placement, and Routing for Pliable
Virtualized Composed Services

Dissertation

by
Sevil Dräxler, née Mehraghdam

accepted by the
Faculty of Electrical Engineering, Computer Science, and Mathematics
Paderborn University

in partial fulfillment of the requirements for the degree of
Doctor rerum naturalium (Dr. rer. nat.)

Referees:
Prof. Dr. Holger Karl, Paderborn University, Germany
Prof. Dr. Giuseppe Bianchi, University of Roma Tor Vergata, Italy

Submission date: 28.05.2019
Examination date: 22.07.2019

mailto:sevil.draexler@uni-paderborn.de

Abstract

Next-generation networks are currently being shaped by the softwarization of ser-
vice components and the virtualization of resources. New approaches are being
developed to control the compute, storage, and networking resources and to create,
compose, and orchestrate different application components and network functions
for offering services. The resource demands and the topology of virtualized com-
posed services are, however, still fixed and pre-defined using rigid and inaccurate
descriptors, usually created manually in current approaches. This jeopardizes the
correctness of decisions for resource management and service orchestration and
can easily result in over- or under-utilization of resources.

The aim of this dissertation is to address this issue by introducing virtualized
composed services, which have flexible structures and load-adaptive resource de-
mands. In particular, different types of pliable virtualized composed services are
described that consist of components, which (i) can be defined with a partial order
and can be composed in different ways according to the availability of resources
and the load, (ii) have their resource demands specified as a function of load and
can be scaled horizontally and vertically depending on the load, or (iii) are de-
veloped in different deployment versions, each using different sets of virtual and
physical resources, resulting in different characteristics, e.g., in terms of cost and
performance.

For pliable virtualized composed services, scaling, placement, and routing ap-
proaches are presented. These approaches can be used in modern service man-
agement and orchestration frameworks, to adapt the resource allocation and the
topology of services to the requirements of service users, service providers, and
network operators. Simulation-based analyses show the feasibility of defining ser-
vices in a flexible and adaptable way, unveiling a new degree of freedom in service
management and orchestration decisions.

Zusammenfassung

Die Struktur zukünftiger Netze wird insbesondere durch softwarebasierte Dienst-
komponenten und Virtualisierung von Ressourcen bestimmt werden. Aktuell wer-
den neue Ansätze und Verfahren entwickelt, um Verarbeitungs-, Speicher- und
Netzressourcen zu kontrollieren und um damit Dienste anzubieten und Anwen-
dungskomponenten zu erstellen, zusammenzustellen und zu orchestrieren. Dem-
gegenüber steht eine bisher feste, vordefinierte, manuelle und damit ungenaue
Beschreibung von Ressourcenanforderungen und den Topologien von virtualisier-
ten Dienstkomponenten. Dies gefährdet die Korrektheit der Entscheidungen für
Ressourcenverwaltung und Dienstorchestrierung und führt leicht zu einer zu hohen
oder zu geringen Auslastung der Ressourcen.

Um dieses Problem anzugehen, werden in dieser Arbeit virtualisierte zusam-
mengestellte Dienste vorgestellt, die über flexible Strukturen und lastadaptive
Ressourcenanforderungen verfügen. Insbesondere werden verschiedene Arten von
formbaren virtualisierten zusammengestellten Diensten vorgestellt, die (i) mit ei-
ner partiellen Reihenfolge definiert sind und auf unterschiedliche Weise in Ab-
hängigkeit der verfügbaren Ressourcen und der Last zusammengestellt werden
können, (ii) Ressourcenanforderungen als Funktion über die Last spezifizieren
und automatisch lastabhängig horizontal und vertikal skaliert werden können,
oder (iii) so entwickelt sind, dass sie über verschiedene Einsatzimplementierungen
verfügen, die jeweils spezifische virtuelle oder physikalische Ressourcen nutzen und
so unterschiedliche Charakteristiken in Bezug auf Kosten oder Leistungsfähigkeit
bieten.

Ansätze für Skalierung, Platzierung und Lenkung von formbaren virtualisierten
zusammengestellten Diensten werden präsentiert, die in aktuellen Implementie-
rungsmodellen für Dienstverwaltung und Orchestrierung verwendet werden können,
um Ressourcenzuweisungen und Diensttopologien an die Anforderungen der Dienst-
nutzer, Dienstanbieter und Netzbetreiber anzupassen. Simulationsbasierte Ana-
lysen zeigen die Umsetzbarkeit einer flexiblen und anpassbaren Definition von
Diensten und veranschauliche damit einen neuen Freiheitsgrad bei der Ressour-
cenverwaltung und für Orchestrierungsentscheidungen.

In loving memory of my grandfather, Ababa

Acknowledgements

I would like to thank my advisor Prof. Dr. Holger Karl for guiding, encouraging,
and criticizing me throughout the research that has led to this dissertation. I
have always enjoyed our discussions and being challenged by his questions. I am
thankful and fortunate that I had the chance to work with him and learn from
him.

My sincere thanks also go to Dr. Florentin Neumann for introducing me to the
Computer Networks research group in Paderborn University. I have had close
collaborations and interesting discussions with my colleagues from this research
group and the research projects where I was involved, which have contributed to
shaping this dissertation. I am especially grateful to Dr. Zoltán Ádám Mann,
Stefan Schneider, Manuel Peuster, and Haitham Afifi for the joint work and the
fruitful discussions that have enriched my dissertation.

I gratefully acknowledge the funding I have received for my research from the
International Graduate School “Dynamic Intelligent Systems” in Paderborn Uni-
versity, the German Research Foundation (DFG) through the Collaborative Re-
search Center “On-The-Fly Computing” (SFB 901), as well as the SONATA and
5G-PICTURE projects within the European Union’s Research and Innovation
Programme.

I am deeply thankful to Faezeh for leading me to Paderborn and helping me
change my life for the better. The journey leading to this dissertation could not
have started without her.

I would also like to thank Martin for his love, his enthusiasm to hear about my
work, his patience at the times I was frustrated, and the inspiring discussions that
helped me move forward.

I cannot thank Maman, Baba, and Khazar enough for always believing in me,
having my back, and giving me the courage and strength to free myself from
limitations and obstacles. This work would not have been possible without their
support.

Contents

Acronyms 1

1 Introduction 3
1.1 Problems and Opportunities . 6

1.1.1 Inflexible Ordering of Service Components 6
1.1.2 Limited Precision and Flexibility of Descriptors 8
1.1.3 Fixed Structure of Uni-Directional VCSs 9
1.1.4 Bi-Directional VCSs . 10
1.1.5 Multi-Version Service Components 10
1.1.6 Separated Scaling, Placement, Routing Decisions 11

1.2 Methodology . 14
1.3 Contributions . 15
1.4 Structure of the Dissertation . 16

2 State of the Art and Related Work 19
2.1 Modeling Virtualized Composed Services 19

2.1.1 Services with a Pliable Structure 19
2.1.2 Arbitrarily Ordered Components 20
2.1.3 Bi-Directional Services . 20
2.1.4 Heterogeneous Services . 20
2.1.5 Standards and Implementations 21

2.2 Scaling, Placement, and Routing Problems 21
2.2.1 Theoretical Framework . 21
2.2.2 Cloud Computing Context . 22
2.2.3 Network Function Virtualization Context 23

3 Services with Arbitrarily Ordered Components 27
3.1 Challenges . 27
3.2 Service Specification, Graph Generation, and Embedding Models . . . 30

3.2.1 Service Deployment Requests 30
3.2.2 Generating Candidate Service Graphs 35
3.2.3 Service Embedding Optimization Problem 36

3.2.3.1 Constraints . 37
3.2.3.2 Optimization Objective 40

4 Embedding Services with Arbitrarily Ordered Components 43
4.1 Problem Formulation . 43
4.2 Service Graph Selection Heuristic . 46

ix

Contents

4.3 Evaluation of Selection Heuristic . 48
4.3.1 Preferred Combinations not Selected by Heuristic 50
4.3.2 Selected Combinations not in Preferred Combinations 51
4.3.3 Gain in Decision Time . 52

4.4 Service Embedding Heuristic Approach 53
4.5 Evaluation of Service Embedding Heuristic 57
4.6 Conclusion . 62

5 Services with Load-Proportional Structures 65
5.1 Challenges . 65
5.2 Modeling Resource Demands and Performance 70

6 Embedding Uni-Directional Services with Load-Proportional Structures 75
6.1 Model . 76

6.1.1 Substrate network . 76
6.1.2 Service Template . 76
6.1.3 Template Embedding . 78
6.1.4 Overlay . 79

6.2 Problem Formulation . 81
6.3 Problem Complexity . 83
6.4 Optimization Approach . 83

6.4.1 Constraints . 84
6.4.2 Optimization Objective . 86

6.5 Heuristic Approach . 89
6.6 Evaluation . 91

6.6.1 Comparison of Optimization and Heuristic Approaches 92
6.6.2 Scalability . 94
6.6.3 Analysis . 95

6.7 Conclusion . 96

7 Embedding Bi-Directional Services with Load-Proportional Structures 99
7.1 Model . 100

7.1.1 Substrate Network . 100
7.1.2 Service Template . 100
7.1.3 Template Embedding . 103
7.1.4 Overlay . 103

7.2 Problem Formulation . 104
7.3 Problem Complexity . 106
7.4 Optimization Approach . 107

7.4.1 Constraints . 107
7.4.2 Optimization Objective . 111

7.5 Heuristic Approach . 112
7.6 Evaluation . 114

7.6.1 Comparison of Optimization and Heuristic Approaches 115
7.6.2 Scalability . 116

7.7 Conclusion . 119

x

Contents

8 Embedding Heterogeneous Services with Load-Proportional Structures121
8.1 Model . 122

8.1.1 Substrate network . 122
8.1.2 Service Template . 123
8.1.3 Components and Deployment Versions 123
8.1.4 Multi-Structure Templates 127
8.1.5 Template Embedding . 128
8.1.6 Overlay . 128

8.2 Problem Formulation . 129
8.3 Problem Complexity . 131
8.4 Optimization Approach . 131

8.4.1 Constraints . 132
8.4.2 Optimization Objective . 137

8.5 Heuristic Approach . 138
8.6 Evaluation . 140

8.6.1 Comparison of Optimization and Heuristic Approaches 140
8.6.2 Scalability . 143

8.7 Conclusion . 144

9 Results and Future Research Directions 147
9.1 Results and Discussion . 147
9.2 Future Research Directions . 151

Bibliography 153

xi

List of Figures

1.1 Different stakeholders in a service management and orchestration scenario 4
1.2 Example Virtualized Composed Service (VCS) with arbitrarily ordered

components . 7
1.3 Two of the possible chaining options for a set of arbitrarily ordered

service components . 8
1.4 Example uni-directional VCS . 9
1.5 Example bi-directional VCS . 10
1.6 Example service including a DPI in different deployment versions . . . 11
1.7 Conventional service life cycle, from descriptors to running services . 12
1.8 Joint scaling, placement, and routing for pliable VCSs 13
1.9 Symbols used to refer to the SPRING approaches in this dissertation 14

3.1 A simple sequence of service components (adapted from Ref. [90]) . . 32
3.2 A VCS with a branched structure (adapted from Ref. [90]) 33
3.3 A complex VCS with a branched structure (adapted from Ref. [91]) . 34
3.4 A VCS consisting of a full mesh of service components (adapted from

Ref. [92]) . 34
3.5 Two simple paths between start and end points of an example VCS . 41

4.1 Possible steps for finding the best embedding option for a set of ex-
ample VCSs . 45

4.2 Two different candidates for the service graph of an example pliable
VCS, consisting of two components f1 and f2 that can be traversed in
an arbitrary order between the service endpoints 47

4.3 Selected combinations for example VCSs 47
4.4 Sets of combinations chosen by the selection heuristic and combina-

tions that give the best embedding results (preferred combinations)
among all possible combinations of service graphs resulting from pli-
able VCSs . 50

4.5 Evaluation of preferred combinations that are not selected by the heuristic 50
4.6 Evaluation of selected combinations that are not among preferred com-

binations after embedding . 52
4.7 Fraction of selected combinations among all combinations over all em-

bedding runs . 52
4.8 Example service graphs . 54
4.9 Service graphs used for evaluating the service embedding heuristic . . 58
4.10 Evaluation results for the service embedding heuristic approach . . . 60

5.1 Example embedding options for a simple uni-directional template . . 66
5.2 Example embeddings of two bi-directional VCSs 67

xiii

List of Figures

5.3 Example embedding options for a simple heterogeneous template . . 69

5.4 Measurement testbed with the used video streaming VCS (Cache↔ En-
coder) and the simulated users running in three Virtual Machines
(VMs) deployed on three physical compute nodes. 71

5.5 Prediction of required Virtual CPUs (vCPUs) for the encoder based on
bit rate, resolution, and frame rate, shown for bit rate of 5500 Kb/s. 73

5.6 Prediction of required memory for the encoder based on bit rate, res-
olution, and frame rate, shown for bit rate of 5500 Kb/s. 73

5.7 Prediction of CPU utilization of the cache based on resolution and the
number of vCPU cores assigned to the encoder. 74

6.1 An example component and its resource demands and outgoing data
rate defined as functions of the data rates λ1 and λ2 on its two inputs 77

6.2 An example template consisting of a source and four other components 77

6.3 Example instances of the source component S (of the template in Fig-
ure 6.2), located on nodes v1 and v2 of an example substrate network,
injecting flows with data rates λ1 and λ2 into the service 79

6.4 Example overlay resulting from scaling the template in Figure 6.2 . . 81

6.5 Overlay of the template from Figure 6.2 mapped into an example sub-
strate network according to its sources 81

6.6 Example substrate network . 91

6.7 Template embedding example (memory values not shown for better
readability) . 92

6.8 Service template with source component (S), streaming server (SRV),
deep packet inspector (DPI), video optimizer (OPT), and cache (CHE) 92

6.9 Temporal development of the demand and the allocated capacity in a
complex scenario . 93

6.10 Total latency over all created paths for the embedded template . . . 93

6.11 Scalability of the U-SPRING approaches 94

6.12 Impact of different node and link capacities 95

6.13 Relation of U-SPRING to A-SPRING 97

7.1 Resource demands and data rates of an example component 100

7.2 Resource demands and data rates of the example component in Fig-
ure 5.2, adapted to be shared between two templates 106

7.3 Substrate network used for evaluations 115

7.4 Video streaming template used for evaluations 115

7.5 Comparison of the results delivered by optimization and heuristic ap-
proaches with increasing load . 116

7.6 Analysis of the solutions for a large problem instance with a series of
events that change the overall load of the network 118

7.7 Relation of B-SPRING to A-SPRING and U-SPRING 120

8.1 Example substrate network. v1 offers CPU and GPU resources but v2

has only CPU resources. 122

xiv

List of Figures

8.2 Example service template including a source, a server (SRV), a deep
packet inspector (DPI), a video optimizer (OPT), and a cache (CHE). 123

8.3 Example Deep Packet Inspector (DPI) as a VM and as an accelerated
version (ACC). 125

8.4 Example CPU and GPU demands based on incoming data rate 126
8.5 Example multi-structure video streaming service template including

multi-version components. 127
8.6 Example heterogeneous service templates 141
8.7 Results of the first set of experiments with template T1 including a

source and a multi-version DPI . 142
8.8 Results of the second set of experiments with the multi-structure tem-

plate T2 including four sources . 144
8.9 Relation of M-SPRING to A-SPRING, U-SPRING, and B-SPRING . . 145

9.1 Overview of SPRING approaches 150

xv

List of Tables

3.1 A-SPRING Parameters . 37
3.2 A-SPRING Decision variables . 38

5.1 Measurement Parameters . 71

6.1 U-SPRING Substrate Network Parameters 76
6.2 U-SPRING Template Parameters . 78
6.3 U-SPRING Template Embedding and Overlay Parameters 80
6.4 U-SPRING Decision Variables . 88

7.1 B-SPRING Substrate Network Parameters 100
7.2 B-SPRING Template Parameters . 102
7.3 B-SPRING Template Embedding and Overlay Parameters 104
7.4 B-SPRING Decision Variables . 108

8.1 M-SPRING Substrate Network Parameters 123
8.2 M-SPRING Template Parameters . 124
8.3 M-SPRING Template Embedding and Overlay Parameters 129
8.4 M-SPRING Binary Decision Variables 132
8.5 M-SPRING Continuous Decision Variables 133

xvii

List of Algorithms

4.1 Heuristic for embedding a combination of service graphs 55
4.2 Embedding algorithm for a simple chain 55

6.1 Main procedure of the U-SPRING heuristic 90

7.1 Main procedure of the B-SPRING heuristic 114

8.1 Main procedure of the M-SPRING heuristic 138

xix

Acronyms

ADC Application Delivery Controller

BNG Broadband Network Gateway

CDN Content Delivery Network

DPI Deep Packet Inspector

EBNF Extended Backus-Naur Form

ETSI European Telecommunications Standards Institute

FPGA Field-Programmable Gate Array

FW Firewall

GPU Graphics Processing Unit

IDS Intrusion Detection System

IETF Internet Engineering Task Force

LB Load Balancer

LI Lawful Interception

LRP Location-Routing Problem

MANO Management and Orchestration

MILP Mixed-Integer Linear Program

MIP Mixed-Integer Program

MIQCP Mixed-Integer Quadratically Constrained Program

MSE Mean Squared Error

NAT Network Address Translator

NF Network Function

NFV Network Function Virtualization

PGW Packet Data Network Gateway

1

List of Algorithms

PNF Physical Network Function

PR Polynomial Regression

ROID Ratio of Outgoing to Incoming Data Rate

SCND Supply Chain Network Design

SDN Software-Defined Networking

SFC Service Function Chaining

SLA Service-Level Agreement

SVR Support Vector Regression

TiS Time in System

vCPU Virtual CPU

VCS Virtualized Composed Service

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNE Virtual Network Embedding

VNF Virtual Network Function

VNFFG Virtual Network Function Forwarding Graph

VNMP Virtual Network Mapping Problem

WOC Web Optimization Controller

2

1
Introduction

1.1 Problems and Opportunities 6

1.1.1 Inflexible Ordering of Service Components 6

1.1.2 Limited Precision and Flexibility of Descriptors . . . 8

1.1.3 Fixed Structure of Uni-Directional VCSs 9

1.1.4 Bi-Directional VCSs 10

1.1.5 Multi-Version Service Components 10

1.1.6 Separated Scaling, Placement, Routing Decisions . . 11

1.2 Methodology . 14

1.3 Contributions . 15

1.4 Structure of the Dissertation 16

Services like video streaming, on-line gaming, mobile connectivity, etc., con-
sist of various hardware- and software-based components. These components are
hosted on top an of infrastructure managed by a network operator. As shown in
Figure 1.1, the network operator has access to compute, storage, and network-
ing resources (owned by itself or provided by external infrastructure operators)
and is responsible for the management and orchestration of multiple services from
different service providers.

Using the available resources, the hardware- and software-based components
provide Network Functions (NFs) [1] and application-specific capabilities. The
intended functionality of the overall service with the intended performance is
applied to the network flows by routing these flows through the right components,
deployed using the most suitable technology in appropriate locations. Different
components can modify the traversing flows in different ways. For example, a
Deep Packet Inspector (DPI) can split the incoming flows over different branches
according to the type of the inspected packets, each branch receiving a fraction of
the data rate of the incoming flow. Firewalls can drop certain packets, resulting
in flows with a lower data rate than incoming flows. A video optimizer can change

3

1 Introduction

Provides Owns Interaction Service
Flow

Service
Component

Softwarized Infrastructure

Users

Network
Operator

Compute Storage Networking

Physical Infrastructure

Infrastructure
Operator

Service
Provider

Management and Orchestration (MANO) Framework

Deploy

MonitorScale

Resources

Service
Descriptor

Deployed
Service

Figure 1.1: Different stakeholders in a service management and orchestration
scenario

the encoding of the video for upscaling or downscaling, which can result in a higher
or lower data rate compared to the original flow data rate, respectively.

In this dissertation, I refer to a composition of hardware- and software-based
NFs and application-specific components as a Virtualized Composed Service
(VCS) and to the included building blocks of it as service components.

The functionalities of the service components were traditionally provided using
closed, proprietary elements, e.g., middleboxes offering business- or operations-
related functionalities (like load balancing, deep packet inspection, HTTP header
enrichment, etc.), or data bases, video optimizers, etc., deployed locally at the
service provider premises. In such a setup, modifying the way service components
are connected together, changing the placement of functions in the network, and
scaling the service require complex modifications, such as changing the network
topology or installing new equipment in the network.

The variety of services and the requirements of the involved stakeholders (shown
in Figure 1.1), e.g., in terms of service latency, data rate, resilience, reliability,
availability, mobility, and energy efficiency [2] are continuously increasing. To ful-
fill these requirements, next-generation networks need an extremely higher flex-
ibility [3] in how the services can be defined, deployed, managed and modified,
compared to the rigid ways of service management and orchestration in traditional
networks.

Network softwarization [4, 5] promises such a transition, which will allow
services and their components to be designed, developed, and tested efficiently
and their deployment and life-cycle management steps (including on-boarding,
starting, updating, stopping, etc. [6]) to be performed with no or limited human

4

intervention. In softwarized networks, the NFs and the application-specific com-
ponents are provisioned as virtual instances, using different virtualization tech-
nologies, depending on the requirements of the service and the capabilities of the
infrastructure. This is facilitated by concepts like Network Function Virtualiza-
tion (NFV) [7], Software-Defined Networking (SDN) [8], and Service Function
Chaining (SFC) [9]. These key enablers [10] complement the developments in the
areas of cloud [11] and interconnected cloud computing [12] as well as fog [13] and
mobile edge computing [14].

To provide large capacities to host service components, where and when they
are needed, a powerful and comprehensive heterogeneous infrastructure is
needed that can offer compute, storage, and connectivity using different tech-
nologies, distributed over a large-scale network. Such an infrastructure may span
different administrative domains of different network operators, offering different
geographical and technological options for deploying services of different service
providers.

In these large-scale networks, several instances (i.e., concrete instantiations)
of service components are deployed, e.g., to serve the requirements of different
users, possibly residing in different geographical locations. The required number
of instances for service components as well as the type and the number of required
compute, storage, and networking resources depend on the load that the service
is expected to handle. These requirements are typically specified by the service
provider. Similarly, the service provider defines the overall structure of the VCS
and the included service components, depending on the intended functionality of
the service.

In existing approaches, the resource demands of service components are defined
within descriptors [6] and are given, for example, in form of different flavors [6]
for service components, i.e., a pre-defined set of resources like CPU, memory,
and storage that define the size and configuration of a virtual server that can
be launched on a target platform [15]. The exact number of instances required
for each component should also be defined so that the cloud and NFV Manage-
ment and Orchestration (MANO) frameworks can calculate a placement for the
instances and map their inter-connections to the network links.

Typically, the structure of a VCS is modeled as a directed service graph con-
sisting of Virtual Network Functions (VNFs), Physical Network Functions (PNFs),
cloud-based micro-services, or application components as nodes and the data flows
between pairs of service components as edges of the graph. The simplest case for a
VCS is a linear chain of at least one service component connected to an endpoint,
like a front-end server for a group of users. Inserting service components that can
split or merge network flows over different paths makes the structure of a VCS
more complex.

The way the resource demands and the structure of VCSs are modeled and
specified directly affects the way VCSs can be managed and orchestrated, as de-
cisions about the life cycle of VCS are taken based on the provided specifications.
In Section 1.1, I describe some of the problems of existing approaches to model-
ing VCSs and the life-cycle management decisions based on these descriptors. I
also elaborate on the opportunities offered by network softwarization and hetero-

5

1 Introduction

geneous infrastructures and propose solutions that can bring more precision and
flexibility to the life-cycle management of VCSs. In Section 1.2, I describe my
methodology in approaching the mentioned problems. Section 1.3 includes the
list of publications I have (co-)authored as well as the implementation of the work
that has led to this dissertation. In Section 1.4, I describe the structure of the
remainder of the dissertation.

1.1 Problems and Opportunities

I have identified the following problems and opportunities.

1.1.1 Inflexible Ordering of Service Components

In conventional descriptors, the structure of the VCS is always fixed, following the
initial description of its service graph, i.e., the set of required service components
with a fixed number of instances and their inter-connections.

Based on the dependencies among a set of service components [16], typically,
a fixed structure is assumed for services. For instance, if the packets have to go
through a WAN optimizer and an Intrusion Detection System (IDS), the packet
inspection by the IDS should typically be carried out before the WAN optimizer
compresses the contents. In such a case, a special attention to the order of travers-
ing the service components is required.

However, in case the components of a VCS do not have such a dependency,
there can be multiple possibilities for composing the service. Depending on how
each component modifies the data rate of the flows, different composition options
can have different impacts on the traffic in the network links, on application
performance, or on the latency.

As a result of network softwarization, modifying the deployed VCSs is not as
complex as in non-virtualized setups. For example, flexible MANO solutions can
be developed that easily modify the order of traversing service components, e.g., to
switch to a better composition of service components for better resource utilization
or service performance.

One shortcoming of the conventional service descriptors and the existing MANO
solutions is that they assume a total order among service components and, there-
fore, are not able to exploit this additional degree of freedom in composing VCSs.

My first proposal to solve this shortcoming is to under-specify the structure of
VCSs, where possible, rather than defining total orders among all service compo-
nents. I define Pliable1 VCSs with Arbitrarily Ordered Components in
which the order of chaining a subset of components in a VCS can be determined
and modified dynamically, provided that the overall functionality of the service is
not impaired.

Figure 1.2 shows an example pliable VCS. S and E represent the start and
end points of the service, respectively. In this example, network flows need to

1Defined [17] as “Easily bent or shaped”, “Capable of being changed or adjusted to meet
particular or varied needs”.

6

1.1 Problems and Opportunities

A

FW

B

OPT

S E

OPT FW

Figure 1.2: Example VCS with arbitrarily ordered components

be processed by two service components, a video optimizer (OPT) and a firewall
(FW) as part of a video streaming service. The functionality of these service com-
ponents and their effect on the flows is independent from each other. Therefore,
traversing these functions with the order of OPT→FW or FW→OPT gives the
same processing result.

In this example, FW is a function that can block certain access attempts and,
with that, can reduce the data rate of the traversing flows. Given the historical
usage data, the service provider may know that, e.g., 10 % of the incoming flows to
this firewall will be dropped. Using this information, different resource allocation
plans can be made for composing this VCS; the network path taken by the flows
traversing the option FW→OPT can be planned with a lower link capacity than
that of the option OPT→FW. In this way, if deploying the service as OPT→FW
is not possible because of insufficient link capacity, the MANO system can re-
order these functions and try deploying FW→OPT that has lower link capacity
requirements.

Similar examples can be imagined with arbitrarily ordered components that can
influence the branching structure in the VCS. For example, we assume all the flows
of a service need to go through a firewall (FW) and a DPI before being processed
by a service component C. A Load Balancer (LB) is required for distributing the
load over three instances of C. If the MANO system is allowed to arbitrarily chain
the load balancer and the firewall, different deployments of this VCS are possible,
e.g.:

• Distributing the flows over three different branches by the load balancer and
placing an instance of FW and DPI on each branch, as shown in Figure 1.3a.
This option results in a lower data rate on each branch but three instances
of the FW and three instances of the DPI are required.

• All flows traversing a single FW instance and a single DPI before reaching
the load balancer, as shown in Figure 1.3b. This option requires fewer
instances of FW and DPI but the load each instance needs to handle and
the load on each outgoing branch of the load balancer is larger than in the
previous case.

For pliable VCSs with arbitrarily ordered components, the scaling, placement
and routing decisions depends on how the service components are composed. For

7

1 Introduction

FW DPI LB

C

C

C

(a)

LB

FW DPI C

FW DPI C

FW DPI C

(b)

Figure 1.3: Two of the possible chaining options for a set of arbitrarily ordered
service components

these VCSs, first of all, I tackle the problem of finding the best possible ordering
of the service components. Afterwards, I describe a joint placement and routing
problem, which also has a limited scaling functionality integrated in the decision
process (described in Section 3.2.3). Therefore, I refer to it as the joint Scal-
ing, Placement, and RoutING (SPRING) Problem for pliable VCSs with
arbitrarily ordered components, shortly the A-SPRING Problem.

1.1.2 Limited Precision and Flexibility of Descriptors

One requirement for automated service management and orchestration, as re-
quired and targeted in softwarized networks, is the precise specification of the
structure of VCSs by describing the required service components, their resource
demands, their inter-connections, and how they modify the traversing flows.

Usually, service providers rely on the developers of individual service compo-
nents to create dedicated descriptors defining the exact amount of compute, stor-
age, and networking resources required for serving the desired amount of traffic
for each component. The problem with this approach is that developers of indi-
vidual components cannot have a precise view of the exact resource demands of
every service component or the number of instances required for a service com-
ponent to handle the load. The performance and the resource usage of different
service components are influenced by those of other components in the same VCS,
requiring global knowledge of the service for building individual component de-
scriptors. Therefore, the conventional approach to specifying resource demands
can easily result in over-/under-allocation of network resources or violation of
Service-Level Agreements (SLAs) (i.e., agreements between network operator and
service providers or between service providers and users, for example, regarding
the performance, availability, and reliability of the provided service or operation).

I propose describing VCSs using service templates2 instead of fixed descrip-
tors. The templates describe the structure of the VCSs and express their resource
demands relative to the amount of load they should handle, e.g.,

2The concept is inspired by a comparable approach in distributed cloud computing [18]. I
describe the differences of the approaches in Chapter 2.

8

1.1 Problems and Opportunities

SRV

DPI

CHE

OPT

S

Figure 1.4: Example uni-directional VCS

• The required compute capacity (e.g., CPU and memory) is described for
each service component as a function of the input data rate. This can be
used to calculate the network node capacity required to host the service
component.

• The amount of traffic leaving each service component towards other compo-
nents is specified as a function of the data rate that enters the component.
This can be used to calculate the link capacity required to host the traffic
flowing between any two inter-connected instance.

Given additional information about the expected traffic originating from the
sources of the service flows (e.g., the location of users, content servers, etc.),
resource demands can be calculated dynamically. The number and the location
of required instances for each service component can also be determined based on
traffic. This results in the second category of pliable VCSs that I consider in this
dissertation: Pliable VCSs with Load-Proportional Structures3.

The load can be characterized, e.g., as the request rate or the data rate of
the corresponding service flows. As the load may constantly be changing, the
current traffic needs to be monitored to keep the network service in an optimal
state. This reduces the risk of over- or under-estimating the resource demands.
Given reasonable predictions about possible changes in the load and based on the
functions describing the dependency of resource requirements and outgoing data
rates on incoming data rates, it is also possible to plan and predict the required
changes to the deployment and their impact, which is a pre-requisite for effective
optimization of the services and the underlying network.

1.1.3 Fixed Structure of Uni-Directional VCSs

In most of the existing work in the fields of NFV and cloud computing for resource
allocation and service embedding (described in Section 2.2), VCSs are considered
to be uni-directional. They are modeled as pre-defined, connected, acyclic, di-
rected graphs and described using the imprecise and inflexible conventional de-
scriptors, as mentioned in Section 1.1.2.

My third proposal in this dissertation, in-line with existing solutions and to in-
troduce more flexibility and precision beyond that, is to define Uni-Directional

3I use the term load-proportional in this context to express the dependence of the structure
of a VCS to the amount of load it has to handle. In this context, proportionality is not
intended as a mathematical relation that can be defined between two scalars.

9

1 Introduction

FW

SRV

CHE

OPT

S

Figure 1.5: Example bi-directional VCS

Pliable VCSs with Load-Proportional Structures using service templates.
These VCSs are flexibly defined compositions of service components that are
traversed in one forwarding direction (i.e., upstream or downstream) only [16].
Figure 1.4 shows an example service template for a simple uni-directional video
streaming VCS. If the requested content is not available in the cache (CHE), the
content is streamed through a video streaming server (SRV) towards a DPI. The
DPI inspects the request and, accordingly, instructs a video optimizer (OPT) to
prepare the suitable content for the requesting device.

1.1.4 Bi-Directional VCSs

In spite of the practical relevance [16] of bi-directional VCSs, they have not been
the focus of resource allocation and MANO solutions so far, and hence, there are
not many adequate modeling approaches for these services so far. In contrast to
the uni-directional VCSs, bi-directional VCSs consist of service components that
must be traversed in both directions.

The service components required in each forwarding direction can be defined
and specified as two uni-directional VCSs with common components. As certain
service components, e.g., stateful firewalls, may store flow-related state informa-
tion, considering the upstream and downstream traffic independently may result
in state inconsistencies. In such cases, defining bi-directional VCSs can help cre-
ating a fine-grained control on the service flows and the required configurations
for stateful service components.

My fourth proposal is, hence, to model these VCSs as Bi-Directional Pliable
VCSs with Load-Proportional Structures, defined flexibly using service tem-
plates. Figure 1.5 shows an example bi-directional service template that describes
the structure of a video streaming service. This example VCS consists of a stateful
firewall (FW) for the upstream and downstream flows. The content is streamed
using a streaming server (SRV), passes a video optimizer (OPT), and is stored in
a cache (CHE) for future requests.

1.1.5 Multi-Version Service Components

In the context of softwarized, heterogeneous networks, there are several attempts
towards unifying the tools and mechanisms required for the control and orches-
tration of distributed infrastructures providing heterogeneous resources [19, 20].

10

1.1 Problems and Opportunities

A DPI
(VM) B

(a) DPI as a VM

A BAUX
(VM)

DPI
(ACC)

(b) Accelerated DPI with an auxiliary
function

Figure 1.6: Example service including a DPI in different deployment versions

This would allow deploying and modifying VCSs on a variety of multi-technology
network, compute, and storage resources, fast and cost-efficiently.

My fifth proposal in this dissertation is to define Heterogeneous Pliable
VCSs with Load-Proportional Structures, to fully exploit the advantages of
a heterogeneous infrastructure. Using this model, service providers can develop
and offer flexibly defined VCSs with components that are produced in different
versions, i.e., using different software implementations, each made for running on
a different resource type, offering different advantages. For example, a DPI can
be deployed as a Virtual Machine (VM) at a low cost only using general-purpose
hardware. DPI is a network- and compute-intensive network function, so it can
achieve a higher performance using special-purpose hardware support, which of
course is a more expensive option than a VM.

To conform to different needs of the service users (e.g., low cost vs. high perfor-
mance), the service provider can submit both a VM and a hardware-accelerated
version of the DPI to a network operator that offers general-purpose as well as
special-purpose hardware (like Graphics Processing Unit (GPU)). Using appropri-
ate service management and orchestration tools and algorithms, the right version
of the DPI can be deployed in the required locations to serve the users. I refer
to service components that have different deployment options as multi-version
service components.

In a more complex scenario, different versions of such a function may consist
of different number of components. E.g., the hardware-accelerated version of a
DPI might require an additional VM for post-processing its results while the VM
version can perform all of the required operations within the same component. In
this way, as shown in Figure 1.6, the VCSs that include these DPI versions, have
a different structure. I refer to such a VCS as a multi-structure VCS consisting of
multi-version components or a heterogeneous service.

1.1.6 Separated Scaling, Placement, Routing Decisions

Figure 1.7 shows a conventional life-cycle management process using typical cloud
and NFV MANO frameworks. Typically, the VCSs are deployed by allocating the
required resources corresponding to one of the pre-defined flavors in their fixed
descriptors.

11

1 Introduction

Virtualized Composed Services deployed on the
substrate network

M
on

ito
rin

g

Service descriptor

Scaling

Placement

Routing

Service descriptor

Scaling

Placement

Routing
M

onitoring

Figure 1.7: Conventional service life cycle, from descriptors to running services

To react to addition and removal of VCSs, fluctuations in the request load of a
VCSs, or to serve new user in a new location, some of the following adaptations
might be needed:

• Vertical scaling of deployed services by adding or removing instances of
service components

• Horizontal scaling of deployed instances of service components by increasing
or decreasing the resources allocated to them

• Modifying the placement of the service components

• Re-routing the service flows between the service components over different,
more suitable paths

These actions are highly inter-dependent. Given the large number of degrees of
freedom for finding the best adaptation, deciding scaling, placement, and routing
independently can result in sub-optimal decisions for the network and the running
services.

As an example, we can consider a network operator hosting a dynamically
changing set of VCSs from different service providers, where each VCS serves dy-
namically changing user groups that produce dynamically changing data rates.
The trade-offs among the conflicting goals of service providers (e.g., high perfor-
mance, low resource costs, etc.) and network operators (e.g., optimal resource
utilization, high service request acceptance ratio, etc.) can be highly non-trivial,
for example:

• Placing a compute-intensive service component on a node with limited re-
sources near the source of requests minimizes the delay but placing it on a
more powerful node further away in the network minimizes the throughput.

• Allowing a single instance of a data-processing component serve multiple
user groups minimizes the number of required instances and the number of

12

1.1 Problems and Opportunities

SPRING:
Joint Scaling, Placement, and RoutING

M
on

ito
rin

g
Virtualized Composed Services deployed on the

substrate network

Service template Service template

Figure 1.8: Joint scaling, placement, and routing for pliable VCSs

idle resources (like memory) allocated to these instances at low-load situ-
ations but using dedicated instances near the sources reduces the network
load.

Existing algorithms and MANO solutions decide and perform these actions
either completely independently from one another or consider only a subset of
scaling, placement, and routing decisions together (as described in Section 2.2).

My sixth proposal, as shown in Figure 1.8, changes the way the life cycle of
pliable VCSs is handled, by combining scaling, placement, and routing steps into
a joint decision process.

In this approach, depending on the location and data rate of the sources, in a
single-step template embedding process,

• each service template is scaled out into an overlay with the necessary number
of instances for each service component,

• each instance of each required component is mapped to a network node and
is allocated the required amount of resources on that node,

• the inter-connections among the instances are mapped to paths along net-
work links, with the required data rate.

This approach can be used upon initial deployment of a VCS and for adapting
and optimizing the VCSs that are already embedded into the network, e.g., when
the amount of traffic changes or when new user locations need to be supported.
I consider all VCSs that should be mapped into the same substrate network to-
gether. In this way, newly requested and already deployed services are optimized
jointly, allowing a global optimum to be achieved.

In this dissertation, I address the problem of joint Scaling, Placement, and
RoutING (SPRING) for uni-directional VCSs (described in Chapter 6) without
loops in their structure, where only upstream or downstream flows traversing the
service components are considered. I refer to this problem as the U-SPRING
Problem.

I also describe an extended version of this problem that supports bi-directional
VCSs (described in Chapter 7), where both upstream and downstream service

13

1 Introduction

A-SPRING

VCS with arbitrarily
ordered components

(a) A-SPRING

Uni-directional VCS

U-SPRING

(b) U-SPRING

B-SPRING

Bi-directional VCS

(c) B-SPRING

Heterogeneous VCS

M-SPRING

(d) M-SPRING

Figure 1.9: Symbols used to refer to the SPRING approaches in this dissertation

flows are considered, allowing service flows to return to their sources after travers-
ing the required service components. I call this problem the B-SPRING Prob-
lem.

Finally, I describe another variant of the SPRING problem for heterogeneous
pliable VCSs (described in Chapter 8). These VCSs consist of multi-version com-
ponents that have been developed and prepared with different (software) versions.
Each version can be deployed on different hosting platforms, e.g., a VM version of
a certain service component might use CPUs and an accelerated version of it may
require additional special-purpose hardware like GPUs or Field-Programmable
Gate Arrays (FPGAs). I refer to this problem as the M-SPRING Problem.

Figure 1.9 shows an overview of the SPRING approaches and the symbols that
I have used throughout this dissertation as indicators of the type of the pliable
VCS being discussed in each approach, e.g., at the bottom of the pages in the
corresponding chapters.

1.2 Methodology

For each category of pliable VCSs, I have taken the following steps to produce my
contributions:

• I have formulated a SPRING problem as a multi-objective optimization
problem that can be solved using an appropriate optimizer to get optimal
solutions. I have used the Gurobi Optimizer [21] to analyze the optimal
solution to the problem.

• I have presented a heuristic that can solve the SPRING problem in a sub-
optimal but quick manner.

• I have evaluated the results from the optimization and heuristic approaches
using simulation-based analysis, considering different objectives of service
users, service providers, and network operators.

I have designed the evaluation scenarios and the optimization objectives inde-
pendently for each category of pliable VCSs to highlight the exclusive features and
capabilities of the models and approaches in each case. More details regarding
the solutions are described in the corresponding chapters.

14

1.3 Contributions

1.3 Contributions

I have (co-)authored the following publications and manuscripts:

q S. Mehraghdam, M. Keller, and H. Karl. “Specifying and Placing Chains of
Virtual Network Functions”. In: 3rd International Conference on Cloud
Networking (CloudNet). IEEE. Oct. 2014, pp. 7–13. doi: 10 . 1109 /

CloudNet.2014.6968961.

q S. Mehraghdam and H. Karl. “Specification of Complex Structures in Dis-
tributed Service Function Chaining Using a YANG Data Model”. In: CoRR
abs/1503.02442 (2015). arXiv: 1503.02442. url: http://arxiv.org/

abs/1503.02442.

q S. Mehraghdam and H. Karl. “Placement of Services with Flexible Struc-
tures Specified by a YANG Data Model”. In: 2nd IEEE International
Conference on Network Softwarization (NetSoft). IEEE. June 2016. doi:
10.1109/NETSOFT.2016.7502412.

q H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Martrat,
M. S. Siddiqui, S. V. Rossem, W. Tavernier, et al. “DevOps for Network
Function Virtualisation: An Architectural Approach”. In: Transactions
on Emerging Telecommunications Technologies 27.9 (2016), pp. 1206–1215.
doi: 10.1002/ett.3084.

q S. Dräxler, H. Karl, and Z. Á. Mann. “Joint Optimization of Scaling and
Placement of Virtual Network Services”. In: 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. CCGrid ’17. Madrid,
Spain: IEEE Press, May 2017, pp. 365–370. isbn: 978-1-5090-6610-0. doi:
10.1109/CCGRID.2017.25. url: https://doi.org/10.1109/CCGRID.

2017.25.

q S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel, J. Less-
mann, T. Soenen, W. Tavernier, S. Mendel-Brin, and G. Xilouris. “SONATA:
Service Programming and Orchestration for Virtualized Software Networks”.
In: IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE. May 2017, pp. 973–978. doi: 10.1109/ICCW.2017.

7962785.

q M. Peuster, S. Dräxler, H. R. Kouchaksaraei, S. V. Rossem, W. Tavernier,
and H. Karl. “A Flexible Multi-PoP Infrastructure Emulator for Carrier-
Grade MANO Systems”. In: 3rd IEEE International Conference on Network
Softwarization (NetSoft) Demo Track. IEEE. July 2017. doi: 10.1109/

NETSOFT.2017.8004250.

q S. Dräxler and H. Karl. “Specification, Composition, and Placement of
Network Services with Flexible Structures”. In: International Journal of
Network Management 27.2 (2017). doi: 10.1002/nem.1963. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/nem.1963.

15

https://doi.org/10.1109/CloudNet.2014.6968961
https://doi.org/10.1109/CloudNet.2014.6968961
http://arxiv.org/abs/1503.02442
http://arxiv.org/abs/1503.02442
http://arxiv.org/abs/1503.02442
https://doi.org/10.1109/NETSOFT.2016.7502412
https://doi.org/10.1002/ett.3084
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/ICCW.2017.7962785
https://doi.org/10.1109/ICCW.2017.7962785
https://doi.org/10.1109/NETSOFT.2017.8004250
https://doi.org/10.1109/NETSOFT.2017.8004250
https://doi.org/10.1002/nem.1963
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1963
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1963

1 Introduction

q S. Dräxler, M. Peuster, M. Illian, and H. Karl. “Towards Predicting Re-
source Demands and Performance of Distributed Cloud Services”. In: KuVS-
Fachgespräch Fog Computing 2018. Technical Report. Mar. 2018. url:
http://www.infosys.tuwien.ac.at/docs/proceedings.pdf#page=14.

q S. Dräxler, M. Peuster, M. Illian, and H. Karl. “Generating Resource and
Performance Models for Service Function Chains: The Video Streaming
Case”. In: 4th IEEE International Conference on Network Softwarization
(NetSoft). IEEE. June 2018. doi: 10.1109/NETSOFT.2018.8460029.

q S. Dräxler, S. Schneider, and H. Karl. “Scaling and Placing Bidirectional
Services with Stateful Virtual and Physical Network Functions”. In: 4th
IEEE International Conference on Network Softwarization (NetSoft). IEEE.
June 2018. doi: 10.1109/NETSOFT.2018.8459915.

q S. Dräxler, H. Karl, H. R. Kouchaksaraei, A. Machwe, C. Dent-Young, K.
Katsalis, and K. Samdanis. “5G OS: Control and Orchestration of Services
on Multi-Domain Heterogeneous 5G Infrastructures”. In: 2018 European
Conference on Networks and Communications (EuCNC). June 2018. doi:
10.1109/EuCNC.2018.8443210.

q H. R. Kouchaksaraei, S. Dräxler, M. Peuster, and H. Karl. “Programmable
and Flexible Management and Orchestration of Virtualized Network Func-
tions”. In: 2018 European Conference on Networks and Communications
(EuCNC). June 2018. doi: 10.1109/EuCNC.2018.8442528.

q S. Dräxler, H. Karl, and Z. Ádám. “JASPER: Joint Optimization of Scaling,
Placement, and Routing of Virtual Network Services”. In: IEEE Transac-
tions on Network and Service Management 15.3 (Sept. 2018), pp. 946–960.
issn: 1932-4537. doi: 10.1109/TNSM.2018.2846572.

q S. Schneider, S. Dräxler, and H. Karl. “Trade-offs in Dynamic Resource Allo-
cation in Network Function Virtualization”. In: 1st Workshop on Advanced
Control Planes for Software Networks (ACPSN) at IEEE Global Commu-
nications Conference (GLOBECOM). IEEE. Dec. 2018. doi: 10.1109/

GLOCOMW.2018.8644352.

q S. Dräxler and H. Karl. “SPRING: Scaling, Placement, and Routing of Het-
erogeneous Services with Flexible Structures”. In: 5th IEEE International
Conference on Network Softwarization (NetSoft). IEEE. June 2019.

The source code used for the evaluation of the optimization and heuristic ap-
proaches presented in this dissertation is available online [37].

1.4 Structure of the Dissertation

The remainder of this dissertation is structured as follows.

16

http://www.infosys.tuwien.ac.at/docs/proceedings.pdf#page=14
https://doi.org/10.1109/NETSOFT.2018.8460029
https://doi.org/10.1109/NETSOFT.2018.8459915
https://doi.org/10.1109/EuCNC.2018.8443210
https://doi.org/10.1109/EuCNC.2018.8442528
https://doi.org/10.1109/TNSM.2018.2846572
https://doi.org/10.1109/GLOCOMW.2018.8644352
https://doi.org/10.1109/GLOCOMW.2018.8644352

1.4 Structure of the Dissertation

Chapter 2: State of the Art and Related Work In this chapter, I describe
the state of the art in modeling VCSs in softwarized networks. I also give an
overview of the theoretical background and related work regarding the placement,
scaling, and routing problems for VCSs. For this, I focus on the (distributed)
cloud computing and NFV areas.

Chapter 3: Services with Arbitrarily Ordered Components In this chapter, I
describe the challenges of modeling and orchestrating pliable VCSs with arbitrarily
ordered components. As a background for the contributions in the next chapter, I
describe the model and optimization approach from my previous research on the
A-SPRING problem.

Chapter 4: Embedding Services with Arbitrarily Ordered Components This
chapter includes the formal problem description for service graph selection and
service graph embedding for pliable VCSs with arbitrarily ordered components.

Chapter 5: Services with Load-Proportional Structures In this chapter, I de-
scribe the challenges of modeling and handling pliable VCSs with load-proportional
structures, including uni-directional, bi-directional, and heterogeneous VCSs. I
also present the results of some experiments showing the feasibility of modeling
resource demands of service components as a function of the load they need to
handle. Such functions are used in the SPRING approaches presented in the rest
of the dissertation.

Chapter 6: Embedding Uni-Directional Services with Load-Proportional Struc-
tures This chapter includes the uni-directional pliable VCS model as well as the
problem description, optimization and heuristic approaches to the U-SPRING
problem. It also includes the evaluation results of the proposed approaches.

Chapter 7: Embedding Bi-Directional Services with Load-Proportional Struc-
tures In this chapter, I present the bi-directional pliable VCS model and the
problem description, optimization and heuristic approaches to the B-SPRING
problem, as well as the evaluation results of the proposed approaches.

Chapter 8: Embedding Heterogeneous Services with Load-Proportional Struc-
tures In this chapter, I describe the model for heterogeneous pliable VCS with
multi-version service components and the problem description, optimization and
heuristic approaches to the M-SPRING problem. I also present the evaluation
results of the proposed approaches.

Chapter 9: Results and Future Research Directions In the final chapter, I
describe how the models and approaches presented in this dissertation contribute
to tackling the shortcomings of existing approaches and making use of the oppor-
tunities offered by network softwarization, which are described in Section 1.1. I
also discuss the practical applicability of the approaches and the requirements to

17

1 Introduction

enable adoption of the solutions beyond experimental scenarios. Finally, I give an
overview of possible future research directions.

Chapter 3 and 4 are based on work I have partly done together with M. Keller
and H. Karl [38, 22, 23, 24, 29]. Chapters 5–7 are based on work I have partly done
together with M. Peuster, M. Illian, Z. Á. Mann, S. Schneider, and H. Karl [26,
31, 32, 34, 30, 39, 40]. Chapter 8 is based on the work I have partly done together
with H. Karl [36]. These chapters partially include figures and verbatim copies of
the text from the corresponding publications. To ease the flow of reading, such
copies from my own publications are not explicitly marked as such, yet all sources
are mentioned in each chapter. Parts of these publications, in which I did not
have a significant contribution are not included in this dissertation.

18

2
State of the Art and Related Work

2.1 Modeling Virtualized Composed Services 19

2.1.1 Services with a Pliable Structure 19

2.1.2 Arbitrarily Ordered Components 20

2.1.3 Bi-Directional Services 20

2.1.4 Heterogeneous Services 20

2.1.5 Standards and Implementations 21

2.2 Scaling, Placement, and Routing Problems 21

2.2.1 Theoretical Framework 21

2.2.2 Cloud Computing Context 22

2.2.3 Network Function Virtualization Context 23

In this chapter, I first describe the state of the art in modeling approaches for
Virtualized Composed Services (VCSs) and their components. Afterwards, I posi-
tion the scaling, placement, and routing approaches described in this dissertation
against related work and existing studies.

2.1 Modeling Virtualized Composed Services

In this section, I give an overview of how VCSs and service components are mod-
eled and described in the context of cloud computing and Network Function Vir-
tualization (NFV), focusing on different aspect.

2.1.1 Services with a Pliable Structure

The majority of related studies assumes a fixed and pre-defined structure for
VCSs. For example, in the cloud computing context, Sun et al.[41] have published
a survey of service description languages, all assuming a fixed structure. There
are, however, a limited number of studies that foresee a pliable structure for VCSs.

19

2 State of the Art and Related Work

Keller et al.[18] have proposed a template-based description of service struc-
tures, defining the structure of distributed cloud applications using generic tem-
plates that can be modified and adapted during and after deployment. The service
templates described in this dissertation are more powerful than that model; e.g.,
the service templates in Chapter 6 express the resource demands and outgoing
data rates of service components as functions of their input data rates and in
Chapter 7, they allow describing bi-directional VCSs, in which (possibly differ-
ent) service components are traversed by upstream and downstream service flows.

2.1.2 Arbitrarily Ordered Components

Related to the A-SPRING model, Beck and Botero [42] use a model of pliable
VCSs with arbitrarily ordered components. While their model of these VCSs is
similar to those of the A-SPRING problem, they tackle the problem of deciding
the order of service components and placing them in the substrate network in one
step (unlike the two-step approach to the A-SPRING problem in this dissertation).

2.1.3 Bi-Directional Services

Schneider et al. [43] present a model for describing and analyzing VCSs using
Queuing Petri Nets. The model is designed for unambiguous specification of
the structure of VCSs and the behavior of service components (Virtual Network
Functions (VNFs) in their model). The model supports bi-directional structures
with loops, can express processing delays of service components, as well as the
relationship of outgoing data rate to incoming data rate at each service component.
This relationship is considered in several other placement approaches for VCSs and
service components, e.g., by Ma et al. [44, 45], Gao et al. [46], and Addis et al. [47].
The pliable VCSs with arbitrarily ordered components cannot be specified using
the model of Schneider et al. but for the remaining SPRING approaches described
in this dissertation, this model can be used for building accurate service templates.

2.1.4 Heterogeneous Services

Moens and De Turck [48] use a model of VCSs that consist of different VNFs,
some of them requiring dedicated physical hardware and some of them deploy-
able using virtual resources. They differentiate between Virtual Machine (VM)
requests, which can only be served using physical resources, on the one hand and
service requests, which can be fulfilled using dedicated hardware as well as shared
virtual resources, on the other hand. The M-SPRING model is more flexible than
that model, in the sense that the type of resources that can be allocated to the
service components is only limited by the template that describes it. Razzaghi
Kouchaksaraei et al. [49] consider VCSs that consist of a combination of VNFs
and cloud-based micro-services. None of these models consider different deploy-
ment options (versions) for service components, as it is done in the M-SPRING
approaches presented in this dissertation.

20

2.2 Scaling, Placement, and Routing Problems

2.1.5 Standards and Implementations

The model used for specifying the connections and relationships among service
components in most of the existing NFV Management and Orchestration (MANO)
solutions is based on and similar to the Network Service Descriptor and the
Virtual Network Function Forwarding Graph (VNFFG) description defined by
the European Telecommunications Standards Institute (ETSI) NFV Industrial
Specification Group [6], for example, in SONATA [50], UNIFY [51], T-NOVA [52],
and OSM [53] projects. The models for the structure of pliable VCSs presented in
this dissertation are compatible with the ETSI descriptors and can be implemented
as an extension of them.

Moens and Volckaert [54] have published a survey of different modeling strate-
gies for VCSs. They analyze the trade-off between flexibility and management
complexity for service modeling approaches. The pliable VCS models described
in this dissertation bring along new complexities and require management and or-
chestration mechanisms that can make use of the new degrees of freedom offered
by the ability to change the structure of VCSs.

2.2 Scaling, Placement, and Routing Problems

The SPRING problem is a joint, single-step optimization of scaling, placement,
and routing for pliable VCSs. In general, the SPRING approaches presented in
this dissertation can be applied in different contexts, e.g., (distributed) cloud com-
puting and NFV. In this section, after an analysis of related approaches from a
theoretical point of view, I give an overview of related work in the cloud computing
and NFV areas. The major difference among the existing work in these two fields
is usually the abstraction level considered for the substrate network and the re-
sulting assumptions for the model. In particular, in the cloud computing context,
embedding is typically done on top of physical machines in data centers, while
in the NFV context, the embedding is done on top of geographically distributed
points of presence.

2.2.1 Theoretical Framework

The VCS placement and routing sub-problems of the SPRING problem have sim-
ilarities to the Supply Chain Network Design (SCND) [55] (NP-hard) problem.
SCND is a variant of the facility location problem and aims to open a chain
of facilities of different types such that the demand is satisfied and the facility or
transportation costs are minimized. This corresponds to finding the optimal place-
ment of service components of a VCS in a substrate network. Location-Routing
Problem (LRP) [56, 57] is another related problem that aims at the placement of
components while reducing the costs in nodes, edges or paths. In this problem,
each path has one start point and one end point. The SPRING problem needs
to create several paths between different pairs of service components and connect
these paths to compose the VCS. In this case, the routing problem turns into a
multi-commodity flow problem [58] with inter-commodity dependencies.

21

2 State of the Art and Related Work

Without considering the scaling aspect of the SPRING problem, it is also related
to the Virtual Network Embedding (VNE) problem. The VNE problem is a
variant of the multi-commodity flow problem. These problems allocate virtual
network nodes and connect them together through links with constraints while
trying to minimize costs. This corresponds to finding the optimal location for
the components of a VCS and connecting them through optimal paths in the
SPRING problem. The VNE problems treat the nodes of the virtual networks
(corresponding to the service components in this dissertation) independently. In
the B-SPRING problem, flows from different tenants can share and reuse service
components.

In contrast to static VNE solutions that consider the initial mapping process
only, in the U-SPRING, B-SPRING, and M-SPRING problem, I also deal with
optimizing and modifying already embedded templates. Some VNE solutions, for
example, Houidi et al. [59], can modify the mapping in reaction to node or link
failures. The modifications in their work, however, are limited to recalculating
the location for the embedded virtual network, i.e., migrating some of the nodes
and changing the corresponding paths among them. In addition to these modi-
fications, the SPRING approaches presented in this dissertation can also modify
the structure of the graph to be embedded (i.e., the VCS) by adding or remov-
ing instances of components and their inter-connections, changing the order of
the components (A-SPRING), or replacing a component with other components
(M-SPRING), if necessary.

In VNE, virtual networks have a fixed size and structure. Therefore, the num-
ber of required virtual nodes and their inter-connections have to be determined in
separate steps. The SPRING approaches perform scaling, placement, and routing
in a single step. In this way, they take the characteristics of the substrate net-
work and the service flows into account leading to better solutions. The SPRING
approaches also consider the changing data rates of the service flows, resource re-
quirements depending on the load, and latencies between instances. These aspects
are usually not considered in VNE approaches.

Among recent VNE studies, some consider a heterogeneous substrate network,
as in the M-SPRING problem. For example, Li et al. [60] propose a joint resource
allocation and VNE solution in 5G core networks. They enable efficient physical
resource sharing by optimizing the resource demands before embedding. The
nodes of the virtual networks in their approach (the service components in my
models), however, have a pre-defined number of instances and a fixed deployment
version. Baumgartner et al. [61] consider the VNE problem in the mobile core
network, optimizing the structure of the the virtual core network service chain.
The flexibility of the service structure in their solution is limited to the way a
fixed number of VNFs are grouped and distributed.

2.2.2 Cloud Computing Context

Resource allocation is an important problem in the field of (distributed) cloud
computing [62]. The problem is typically formulated as resource allocation for
individual components. Scaling and placing instances of VMs on top of physical

22

2.2 Scaling, Placement, and Routing Problems

machines while adhering to capacity constraints are the usual problems tackled
in this context [63, 64]. The communication among different virtual machines,
however, is usually left out or considered only in a limited sense [65]. Even the
approaches that consider the communication among virtual machines [66, 67, 68,
69] do not include routing decisions, whereas the SPRING problem also includes
routing.

Relevant to the placement sub-problem of the SPRING problem, Bellavista et
al. [70] focus on the technical issues of deploying flexible cloud infrastructure,
including network-aware placement of multiple virtual machines in virtual data
centers. Wang et al. [71] study the dynamic scaling and placement problem for
network services in cloud data centers, aiming at reducing costs. These papers
also do not address routing.

Keller et al. [18] consider an approach similar to the SPRING problem in the
context of distributed cloud computing. The terminology used in this dissertation
is partly based on their work but there are important differences in the assump-
tions and the models. In contrast to their model, where the number of users
determines the number of required instances, the deciding factor in SPRING ap-
proaches is the data rate originating from different sources. Data rate can be
represented, for example, as requests or bits per second and is a more observable
parameter in practical applications and gives a more fine-grained control over the
embedding process. Moreover, the SPRING approaches do not enforce strict scal-
ing restrictions for components as done in their work. For example, their method
needs as input the exact number of instances of a back-end server that is required
behind a front-end server. Also, the optimization objective in their model is lim-
ited to minimizing the total number of instances for embedded templates. The
SPRING approaches are multi-objective optimization problems where different
metrics like processing capacity of network nodes, data rate on network links, and
latency of VCSs are considered.

Cappanera et al. [72] consider the placement and routing sub-problems of the
SPRING problem in a distributed cloud environment with a focus on business-
related objectives. They formulate the problem with the objective of maximizing
the request acceptance rate (desired by service providers), while considering the
requirements of the service users, e.g., service priorities and quality-of-service
objectives, as well the information disclosure limitations of network operators. The
requirements of different stakeholders in a service management and orchestration
scenario are (directly and indirectly) reflected in the objectives described for the
optimization problems in this dissertation.

2.2.3 Network Function Virtualization Context

The SPRING problem is also relevant in the field of NFV. In the NFV context,
the forwarding graphs of network services composed of multiple VNFs are mapped
into the network. Herrera and Botero [73] have published an analysis of existing
solutions for placing network services as part of a survey on resource allocation
in NFV. The SPRING approaches cover the service chain composition and em-
bedding stages that are identified for NFV resource allocation in this survey. The

23

2 State of the Art and Related Work

dynamic scaling, placement, and routing approaches presented in this dissertation
can address the “Chain Re-Composition and Resilience to Failure” challenge de-
scribed in the survey. For example, switching to another deployment version of
a running heterogeneous pliable VCS can prevent insufficient service performance
and failures.

Kuo et al. [74] consider the joint placement and routing problem, focusing on
maximizing the number of admitted network service embedding requests. Luizelli
et al. [75] propose efficient and cost-effective placement and chaining approaches.
Ahvar et al. [76] propose a solution to the placement and routing problem, with the
assumption that the VNFs can be reused among different flows. Their objective
is to find the optimal number of VNFs for all requests and to minimize the costs.
Other approaches that consider re-using service components are proposed by Bari
et al. [77] and Savi et al.[78]. The B-SPRING approaches also allow re-using
service components among different VCSs, if allowed and requested by the provider
of the VCS. In the B-SPRING approaches, the components can also be jointly
used by the upstream and downstream flows of bi-directional VCSs. None of the
mentioned solutions consider bi-directional VCSs.

Kebbache et al. [79] aim at solving the placement and routing sub-problems
of the SPRING problem in an efficient way that can scale with the size of the
underlying infrastructure and the embedded services. They measure the efficiency
of their algorithms with respect to run time, request acceptance rate, and costs.
Another attempt to solve this problem in an efficient and scalable way has been
made by Luizelli et al. [80], focusing on minimizing resource allocation. Nguyen
et al. [81] formulate the joint placement and routing problem as a Mixed-Integer
Linear Program (MILP) and propose heuristics for solving it. Gao et al. [46] also
solve the VNF placement and routing optimization problem. As in the M-SPRING
model, they consider the forwarding latency of the VNFs (Time in System (TiS)
in my model). None of these proposed solutions consider the scaling problem.
Compared to all these approaches, I consider more comprehensive optimization
objectives in the SPRING problem formulations, e.g., trying to minimize the delay
for embedded VCSs, the number of added or removed instances of the service
components, node and link resource consumption, as well as the over-subscription
of resources.

Beck and Botero [42] provide a heuristic for embedding services with arbitrar-
ily ordered components, based on the optimization model assumptions of the
A-SPRING problem. They solve the problems of finding the best composition
for VNFs in VCS and finding the best placement for the service in one step. In
contrast to the two-step approach I describe in this dissertation, this combined
approach is limited to a specific optimization objective. Similar to the two-step
approach, their solution cannot guarantee the optimality of the selected composi-
tion, either.

Sahhaf et al.[82] discuss the placement and routing sub-problems, taking in-
ternal decomposition possibilities for VNFs into account. In their model, some
VNFs can be replaced with a set of multiple inter-connected VNFs that have the
same external interfaces as the original VNF. This is related to the M-SPRING
approaches, where different service components can be deployed in different ver-

24

2.2 Scaling, Placement, and Routing Problems

sions, possibly consisting of different number of elements. Their approach does
not include the scaling step of the M-SPRING problem. Moreover, unlike the M-
SPRING approach, they solve the problem in two phases, a service decomposition
selection step and a mapping step for the selected decomposition. Similar to the
M-SPRING approaches, Mehta and Elmroth [83] study the trade-off between cost
and performance in mobile edge clouds within heterogeneous 5G networks. None
of the mentioned solutions consider the ability of instantiating different versions
of the same service component.

Many of the existing approaches allow fixing the location of start and end points
of services. In addition to this feature, in the B-SPRING model, instances of any
intermediate service component can be fixed as well, e.g., to model legacy Physical
Network Functions (PNFs). The placement model from Moens and DeTurck [48]
supports hybrid networks, which partly consist of dedicated physical hardware.
This model is related to the B-SPRING model that supports combinations of
virtualized and legacy components in VCSs but it does not offer the flexibility of
the SPRING approaches, as it is a placement-only solution.

Most of the existing models consider scaling [84, 85] and placement [74, 86, 42]
separately and only produce initial embeddings without taking previous ones into
account when load changes. Only few models consider scaling or modification of
existing embeddings. Ghaznavi et al. [87] focus on optimizing existing embed-
dings while minimizing the overhead of modifications, which is also considered in
the SPRING approaches. Mijumbi et al. [88] also consider online modifications
of existing embeddings. However, they assume that VNF instances are already
placed in the network and the requests for these VNFs are then mapped to the
instances.

While there are similar aspects among the mentioned studies and the SPRING
approaches, no existing approach combines the following steps: (i) scaling, i.e.,
deciding the right number of instances and allocating the right amount of resources
to each of them, (ii) placement, i.e., deciding the location of each instance, (iii)
routing, i.e., deciding the optimal paths among instances, which is the core of the
SPRING problem. Moreover, in contrast to many of the existing solutions, the
SPRING approaches can be used for finding the initial embedding of a template,
as well as for adjusting existing embeddings.

25

3
Services with Arbitrarily Ordered
Components

3.1 Challenges . 27

3.2 Service Specification, Graph Generation, and Em-
bedding Models . 30

3.2.1 Service Deployment Requests 30

3.2.2 Generating Candidate Service Graphs 35

3.2.3 Service Embedding Optimization Problem 36

In Section 3.1 I describe in detail the notion of pliable Virtualized Composed
Services (VCSs) that include arbitrarily ordered components and the challenges
of modeling these VCSs as well as mapping them to the underlying network. In
Section 3.2, I describe the groundwork that builds the basis of my contributions in
this part of the dissertation. This chapter partially includes figures and verbatim
copies of the text from my papers [22, 23, 24, 29].

3.1 Challenges

For delivering a service, different virtual or physical Network Functions (NFs) and
application-specific components need to be deployed in the network and the cor-
responding flows need to be routed through them. As described in Section 1.1.1,
there might be different possibilities for the flows to traverse a set of service com-
ponents, which result in different service graphs for a VCS, all of them delivering
the same functionality.

I model the influence of each service component on the structure of the VCS
by categorizing the components based on their expected impact on the network
flows into two different types as follows:

1. Non-splitting components that forward incoming flows without splitting them,
with a data rate that can be equal to, more than, or less than their data

27

3 Services with Arbitrarily Ordered Components

rate when entering the component (e.g., as a result of changing the data
encoding by the component),

2. Splitting components that distribute incoming flows over different branches
with equal or different data rates (e.g., for load balancing or as a result of
traffic classification).

In both categories, the expected Ratio of Outgoing to Incoming Data Rate
(ROID) is assigned to each branch leaving a service component. Based on this
categorization, changing the order of traversing two arbitrarily ordered compo-
nents in a service can result in the following cases:

• If both components are non-splitting and have a similar ROID, then chaining
them together in either of the ordering options results in the same data rate
on the path between them and in the same number of instances for the
components and, therefore, in the same resource demands in total.

• If both components are non-splitting but have different expected ROIDs,
then chaining them in different orders results in different data rates on the
path between them and, therefore, different total resource demands. The
number of instances required for each component is the same in both order-
ing options.

• If at least one of the components is a splitting component, then based on
the ROID of each component, chaining them in different orders can result in
different data rates on the paths between them, different number of required
instances, different number of paths that should be created to connect the
instances, and different total resource demands. For example, if the splitting
component is a load balancer and the non-splitting component is a firewall,
placing the firewall before the load balancer means one instance of each
component is needed. But placing the load balancer first could mean having
one firewall instance on each of the outgoing branches from the load balancer.

I consider these options as a new degree of freedom in service composition and
propose a way to profit from this; namely, defining pliable VCSs with arbitrarily
ordered components, such that the order of traversing a subset of service compo-
nents in a VCS can be determined and modified dynamically, in case the intended
functionality of the service is not impaired. I have addressed two challenges in
this regard.

The first challenge is to formalize a request for composing a pliable VCS out
of different components while considering the possible dependencies among them.
Specifying the flexibility in the service structure cannot be done using traditional
graph representations in an efficient way. As a part of my master’s thesis [38],
also published as a conference paper [22], I have proposed a context-free grammar
for specifying the structure of pliable VCSs. In subsequent publications [23, 24,
29], after my master’s thesis, I have enhanced and extended the grammar and
designed a YANG [89] model for defining, modifying, and reusing complex and

28 ○ � ○

3.1 Challenges

flexible chaining structures for VCSs. I give a brief overview of the model and its
use cases in Section 3.2.1.

Upon receiving such a request, the network operator has the freedom to compose
the VCS in the best possible way to fit the requirements of the VCS and the
network. It is also used by the Management and Orchestration (MANO) system
of the network operator to calculate the best embedding for the VCS, according
to the current state of network and the requirements of existing VCSs.

The second challenge is, hence, to find the best location for the service compo-
nents (i.e., placement) and creating the paths among them (i.e., routing), consid-
ering the requirements of individual requests as well as the overall requirements
of all network applications and the running VCSs.

If the structure of the VCS is fully specified as a set of totally ordered service
components, the only decision that needs to be taken in the placement step is map-
ping the service components to network nodes and creating required paths among
them. If necessary, previous mappings can also be modified to accommodate new
services.

However, when VCSs have a pliable structure, the placement and routing de-
cisions depends on which service graph is used for each VCS. n different service
components that are specified with an arbitrary order can be chained together in
n! ways. Therefore, the graph generation, placement, and routing calculations for
a set of pliable service deployment requests can quickly result in combinatorial
explosion.

To improve the practical applicability of defining, managing, and orchestrating
several pliable VCSs in an environment, the solution space needs to be limited.
This, however, is not an straightforward task, because we have to deal with differ-
ent metrics for two different decisions, namely, composing the service components
together in a specific order and calculating the embedding into the network for a
set of VCSs.
Measurable metrics for comparing different candidate service graphs for dif-

ferent VCSs before calculating the embedding are limited to the information avail-
able in the service descriptors, e.g., the resource demands for individual service
components. These metrics are not the same as the metrics of interest that
can only be measured after the services are mapped to the network, e.g., the end-
to-end latency of an entire VCS or resource utilization in a network that hosts
several VCSs.

In Section 4.2, I describe a selection heuristic that uses the limited information
available before the embedding for selecting a representative subset of possible
options that can potentially result in a close-to-optimal state for the network after
the actual embedding. The output of the selection heuristic is a combination of
different service graphs, given as input to the placement, scaling, and routing step,
where the service graphs need to be mapped to the network.

For evaluating the selection heuristic in Section 4.3, I have used a joint place-
ment, scaling, and routing optimization problem that I had developed as a part
of my master’s thesis [22]. For completeness and to provide the required back-
ground, I include an overview of a Mixed-Integer Quadratically Constrained Pro-
gram (MIQCP) formulation of this problem in Section 3.2.

○ � ○ 29

3 Services with Arbitrarily Ordered Components

In Section 4.4, I describe a heuristic that finds close-to-optimal solutions for the
joint Scaling, Placement, and RoutING (SPRING) problem with respect
to the relevant metrics in large-scale distributed networks, e.g., the remaining link
capacity in the network after the mapping. I consider variants of the SPRING
problem in other chapters, with different capabilities. To differentiate among
these problems, I refer to the SPRING problem in the context of pliable VCSs
with arbitrarily ordered components as the A-SPRING Problem. I show the
evaluation results of the heuristic in Section 4.5.

3.2 Service Specification, Graph Generation, and
Embedding Models

In this section, I briefly describe the model and assumptions regarding the underly-
ing network and the deployment requests for pliable VCSs with arbitrarily ordered
components. Afterwards, I explain how the deployment requests are processed and
briefly describe the joint placement, scaling, and routing optimization problem for
these services. These descriptions are based on my previous research [22] and serve
as a background for my main contributions regarding pliable VCSs with arbitrarily
ordered components, described in Chapter 4.

3.2.1 Service Deployment Requests

I model the substrate network, where VCSs are submitted and deployed, as a
connected, directed graph G = (V,E). I assume some of the network nodes
are switch nodes, with typical routing and switching capabilities. Every switch
node has a special-purpose compute capacity cs(v) ≥ 0, ∀v ∈ V that can be
used for running service components, e.g., using Field-Programmable Gate Arrays
(FPGAs) in the switch. The remaining nodes are distributed sites with general-
purpose computational capacity cd(v) ≥ 0, ∀v ∈ V . I consider each of these sites
as a large computational unit, called a data center node, without looking into their
internal topology. In this model, I assume that for switch nodes, cd is zero and
for data center nodes, cs is zero. I consider the more general case, where every
network node may offer special- and general-purpose resources in Chapter 8.

The network links are directed edges in the graph, with data rate d(v, v′) and
latency l(v, v′) for every edge (v, v′) ∈ E.

I assume the following information about the offered network functions and
application components (i.e., the service components) in the network is available
and maintained by the network operator as a catalog:

• Set F of available service components. The service components might be
offered by the network operator or submitted to the operator’s network for
deployment by a specific service provider.

• Computational resource demands p(f), ∀f ∈ F , of an instance of the service
component f per each request, specified as ps(f) for special-purpose compute

30 ○ � ○

3.2 Service Specification, Graph Generation, and Embedding Models

resources and as pd(f) for general-purpose compute resources. p(f) can
easily be extended to describe demands for multiple different resource types
like memory, storage, etc. For simplicity, I only consider the general- and
special-purpose computational resources. Some service components can be
placed either on a switch or on a data center node, e.g., a load balancer
(pd > 0 and ps > 0), and some can be placed only on a data center node,
e.g., a Virtual Machine (VM) hosting a video optimization functionality
(pd > 0 and ps = 0).

• The maximum number of instances of each service component that can be
deployed ninst(f), e.g., determined by the number of licenses that the net-
work operator or the service provider owns for the corresponding software.

• The maximum number of VCSs that can use an instance of a component si-
multaneously nreq(f). For example, an anti-virus function can be configured
once and used for every VCS that needs this functionality (i.e., the number
of requests it can handle is only limited by hardware specifications) but a
firewall might need specific configurations for each VCS and one instance of
it cannot be shared and reused among different VCSs (i.e., nreq = 1).

The network operator receives deployment requests for different partially or-
dered sets of service components. These requests specify which of the service
components in the network (set F) should be applied in which order to the ser-
vice flows between fixed start and end points. A deployment request contains the
following information:

• Set U of individual requests for using instances of available service compo-
nents.

• Composition request, denoted as c, for specifying the desired order of func-
tions. Later in this section, I describe in detail how the composition requests
can be expressed.

• For each branch leaving a requested service component, the percentage of
incoming data rate it produces given as an ordered set r(u), ∀u ∈ U for each
service component. For example, for a Deep Packet Inspector (DPI) that
is expected to send 20 % of the incoming packets towards a video optimizer
and 80 % towards a firewall, this set is given as {0.2, 0.8}.

• Set A of fixed start or end points for the service flows, e.g., an application
component deployed in a data center node or a router that connects the
operator’s network to external networks. These points are paired together
to represent directed flows, as I describe in the next points.

• Locations of start or end points of flows in the network loc(a) ∈ V , ∀a ∈ A.

• Set Apairs ⊆ A × A of pairs of start and end points belonging to differ-
ent VCSs. Each tuple (a1, a2) ∈ Apairs represents a directed flow from the
starting point a1 of a service to its end point a2.

○ � ○ 31

3 Services with Arbitrarily Ordered Components

BNG NATCPN Internet

Figure 3.1: A simple sequence of service components (adapted from Ref. [90])

• Initial data rate din entering each VCS.

• Maximum tolerable latency between the start and end points lreq(a, a′),
∀(a, a′) ∈ Apairs.

Within each instance of a service component, I assume an M/D/1 queuing model
(in Kendall notation). The maximum tolerable latency between every pair of start
and end points of a VCS excludes the actual service time (request processing time)
within the service components, as those are deterministic values (according to the
M/D/1 model) that can easily be included in the final end-to-end delay. To
simplify the model, I do not consider the waiting times for service flows within
service components in the A-SPRING approaches.

For formalizing the composition requests, I have defined a context-free lan-
guage [23]. The corresponding context-free grammar in Extended Backus-Naur
Form (EBNF) is as follows.

〈start〉 ::= service {〈composition〉(,〈composition〉)∗}
〈composition〉 ::= 〈components〉 | 〈bestbind〉 | 〈allbinds〉 | 〈splt〉 | 〈comp〉
〈bestbind〉 ::= best-binding {〈components〉}
〈allbinds〉 ::= all-bindings {〈components〉}
〈splt〉 ::= split {〈comp〉(,〈bestbind〉)?(;〈branch〉)+}
〈branch〉 ::= 〈composition〉(,〈composition〉)∗(.〈num〉)? | pass
〈components〉 ::= 〈comp〉(,〈components〉)∗
〈comp〉 ::= 〈nf〉 | 〈endpoint〉
〈num〉 ::= 〈nonzero〉 〈digit〉∗
〈nonzero〉 ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈digit〉 ::= 0 | 〈nonzero〉
〈nf〉 ::= f1 |f2 | · · · |f|F |
〈endpoint〉 ::= p1 |p2 | · · · |p|P |

The terminals of the grammar are given in bold font. 〈nf〉 and 〈endpoint〉
correspond to the set of available NFs (representing service components like virtual
network functions, cloud-based micro-services, etc.) and the set of locations in the
network where the service flows start or end.

This grammar can be used to specify a set of totally ordered service components
to be chained together in the given order (simple sequence) and a set of partially
ordered service components to be chained together in the most efficient order
according to the optimization objectives in the network.

A simple example of a totally ordered VCS in fixed broadband networks consists
of a Broadband Network Gateway (BNG) and a Network Address Translator
(NAT) as endpoints of service flows between the Customer Premises Network

32 ○ � ○

3.2 Service Specification, Graph Generation, and Embedding Models

BNG
HTTP

Filter
NATCPN Internet

Figure 3.2: A VCS with a branched structure (adapted from Ref. [90])

(CPN) and the public Internet. Assuming that all network flows need to traverse
these two functions, Figure 3.1 shows the structure of this VCS. Using a simple
sequence from my model, the abstract description of the structure of this VCS is
the following:

service{BNG, NAT}

In case the order of traversing the service components does not affect the func-
tionality of the service, the structure can be described using a best-binding
composition instead of a simple sequence of service components. For example:

service{best-binding{BNG, NAT}}

A complex branched structure for splitting the flows over different branches can
also be expressed. For this, the split composition can be used, which consists of:

• a service component that can classify and split the flows over different
branches, specified as the first 〈comp〉 in the split composition,

• an optional best-binding composition to be traversed before the flows reach
the branches,

• branches that can consist of a single service component or endpoint, a com-
position of multiple service components, or an empty branch (pass) that can
be used for skipping a part of the service structure. In case the branches
are identical, they need to be specified only once together with the number
of required replications (e.g., for load-balancing).

In the previous example, we can further assume that HTTP traffic is detected
and sent through an HTTP filter function and non-HTTP traffic is routed directly
between the BNG and the NAT. The corresponding graph for this VCS is shown
in Figure 3.2. The structure of this VCS can be expressed as follows using the
split composition type comprising a branch type pass to skip the HTTP filter
function for some flows:

service{split{BNG; HTTP-Filter; pass}, NAT}

The first component in the split composition (BNG) is the splitter function.
The HTTP Filter and the pass keyword each correspond to one outgoing branch.

As a more complex example, we can consider a scenario in a mobile broadband
network, shown in Figure 3.3. This is a VCS between the Internet and a Packet
Data Network Gateway (PGW) where the user equipments are connected via the

○ � ○ 33

3 Services with Arbitrarily Ordered Components

PGW FW

User

Side
Internet

DPI

TCP

Opt.

Video

Opt.

Header

Enr.
LI

Figure 3.3: A complex VCS with a branched structure (adapted from Ref. [91])

Endpoint EndpointAppFWADCEdgeFWWOC MON

Figure 3.4: A VCS consisting of a full mesh of service components (adapted from
Ref. [92])

access network. Firewall (FW) and DPI are applied to all flows and later on
the flows are divided over three branches. TCP flows need to traverse a TCP
optimizer function, flows belonging to a certain video streaming VCS go through
a Lawful Interception (LI) and a video optimizer function, and other flows need
to go through a header enrichment function. This structure can be expressed as
follows, using a split composition:

service{
PGW, FW,

split{DPI; Header-Enr; LI, Video-Opt; TCP-Opt}
}

A set of service components can also be specified to be chained together in a
way that all possible permutations of them are traversable (all-bindings), i.e., a
full mesh of paths has to be built among the service components.

For this, we can consider an example scenario from a data-center network, shown
in Figure 3.4. Different flows need to traverse different subsets and different
permutations of the set of service components, including a Web Optimization
Controller (WOC), a firewall responsible for external threats (EdgeFW), a network
and application monitoring function (MON), an Application Delivery Controller
(ADC), and an application-specific firewall (AppFW). This complex structure can
be compactly described using an all-bindings composition:

service{all-bindings{WOC, EdgeFW, MON, ADC, AppFW}}

34 ○ � ○

3.2 Service Specification, Graph Generation, and Embedding Models

Existence of partially ordered sets of service components in a VCS structure
turns the deployment request for the VCS into a flexible request that can be
translated into the best possible service graph depending on requirements of the
VCS and available resources in the network. Every such deployment request
should be processed into a connected, directed graph, i.e., a service graph with a
fixed structure, before it can be deployed.

The required service components as well as the start and end points of the
service flows are the nodes of this graph (U∪A). The start and end points are
mapped to fixed locations in the substrate network. The location of the service
components has be to determined. Each one of the directed links in the set of
edges in the service graph (Upairs) represents the order of traversing the functions.
Every link in the graph has to be mapped to a path (consisting of at least one
edge or an internal connection in a network node) in the substrate network graph.

In the rest of this section, I describe a two-step process for deploying a set of
VCSs based on the corresponding composition requests: (i) processing the set
of requests and building service graphs (Section 3.2.2), (ii) finding the optimal
embedding for the service graphs into the network based on optimization goals
(Section 3.2.3).

3.2.2 Generating Candidate Service Graphs

In this section, I assume a network operator needs to find the best embedding for
several VCSs based on multiple deployment requests. The first step is to generate
the possible service graphs for every deployment request.

In this step, for each deployment request, the composition request (c) needs to
be parsed and processed. The parts of the composition request that consist of a
single service component and the start and end point of flows can be stored as a
node of the service graph. For the parts where a number of service components can
be ordered arbitrarily, every possible permutation of the set of service components
should be computed and considered as a candidate for being included in the final
service graph. Moreover, for every match of a split composition (described in
Section 3.2.1) with identical branches, the components on the branches should be
replicated for the requested number of times and stored as a part of the graph.

Using the specified orders and depending on the component types that build
the composition request, at the end of the parsing process, different components
are stored as parts of the service graph with total orders among them.

Considering the different permutations for different arbitrarily ordered compo-
nents, at least one service graph is built out of each composition request. Using
the rest of the information in the deployment request and the information avail-
able about the service components in the network (as described in Section 3.2.1),
the service graphs are annotated with the compute resource demands and the data
rate and latency requirements.

Each of the graphs that can be created from a request can have different char-
acteristics when embedded, e.g., in terms of the average data rate among service
components and the number of instances required for the service components.

○ � ○ 35

3 Services with Arbitrarily Ordered Components

Revisiting a previous example, we can see that the Load Balancer (LB) shown
in Figure 1.3 (page 8) splits the incoming flows into three different branches to
balance the traffic over three instances of component C. I assume, for this example,
the ROID in all service components is 1, except the LB that forwards 1/3 of
its incoming data rate over each outgoing branch. Placing this load balancer
earlier in the directed graph, as in Figure 1.3a, reduces the data rate of the links
on each branch after it. But it also means that up to three instances of all
subsequent service components will be required on the paths towards C. Each of
these instances has can be deployed with less compute resources than the instances
in Figure 1.3b, which needs to handle higher data rates.

For every such VCS that includes n ∈ N≥0 service components with an arbi-
trary order among them, n! permutations need to be computed as a candidate.
For a VCS that contains subsets of arbitrarily ordered service components, the
number of different ways for composing the VCS is the product of the number
of permutations for each of the included subsets. For example, if a composition
request contains one best-binding composition with 3 different components and
one split composition in which 4 components can be placed with an arbitrary
order, a total of 3! · 4! = 144 combinations of these components is possible. That
means, for finding the best service graph and deployment of this pliable VCS,
the embedding would have to be calculated 144 times, if we needed to compare
all possible service graphs so that the option that fits the requirements could be
chosen.

As the number of combinations increases very quickly in the number of deploy-
ment requests and the number of service components in each request, trying every
possible combination becomes impractical. I address this problem in Section 4.2.

3.2.3 Service Embedding Optimization Problem

Among the candidate service graphs that have been generated for a pliable VCS,
the one that is selected for deployment needs to be embedded into the substrate
network. The input to the service embedding problem is the capacities of the
network nodes and links, the resource demands of the required service components,
and the service graphs of the VCSs, as defined in Section 3.2.1. In this section, I
describe an optimization approach for service embedding, in which it is decided:

• which service components should be instantiated on which network nodes
(placement),

• which request for using a service component should be mapped to which
instance of the corresponding component

• and how the traffic should be routed among the service components to deliver
each requested service (routing).

As some components can be shared among different VCSs, there might be fewer
instances of the shared components needed than initially described in each service
deployment request. For example, if three services request to use one instance

36 ○ � ○

3.2 Service Specification, Graph Generation, and Embedding Models

Table 3.1: A-SPRING Parameters

Domain Parameter Description

∀v ∈ V cd(v) General-purpose compute capacity in v
cs(v) Special-purpose compute capacity in v

∀(v, v′) ∈ E d(v, v′) Link capacity on (v, v′)
l(v, v′) Latency of (v, v′)

∀f ∈ F

ninst(f) Number of allowed instances for f
nreq(f) Number of requests f can handle
pd(f) General-purpose resource demand of f
ps(f) Special-purpose resource demand of f

∀u ∈ U t(u) Requested service component

∀(u, u′) ∈ Upairs dreq(u, u′) Expected data rate of (u, u′)

∀a ∈ A loc(a) Network node where a is placed

∀(a, a′) ∈ Apairs
paths(a, a′) All possible paths between a and a′

lreq(a, a′) Maximum latency between a and a′

of a DPI Virtual Network Function (VNF), the total number of requested DPI
instances is three; however, I have formulated the optimization problem in a way
that it can map the requests to less than three instances of DPI, e.g., if the node
capacities allow forwarding more traffic to an instance. In this way, the mapping
process also offers scaling capabilities, in addition to placement and routing.

This service embedding process solves the A-SPRING problem (defined in
Section 3.1). I have formulated this optimization problem in a previous work [22]
as a MIQCP. Table 3.1 shows an overview of the input parameters to the MIQCP.

The decision variables are described in Table 3.2. “remdr” and “lat” are con-
tinuous variables and all other ones are binary indicator variables. I show an
overview of the constraints of the optimization problem in Section 3.2.3.1 and
the objective functions in Section 3.2.3.2. Further details about the optimization
problem can be found in the corresponding publication [22].

3.2.3.1 Constraints

I show the constraints of the optimization problem in three parts:

1. Placing the service components in the network nodes and mapping the re-
quests for using instances of the required components to these nodes;

2. creating paths between the service components;

○ � ○ 37

3 Services with Arbitrarily Ordered Components

Table 3.2: A-SPRING Decision variables

Domain Variable Description

∀u ∈ U,
∀v ∈ V

mu,v 1 iff u mapped to v, otherwise 0
msu,v 1 iff u mapped to a switch function on v, other-

wise 0
mdu,v 1 iff u mapped to a data center function on v,

otherwise 0

∀f ∈ F,
∀v ∈ V if,v 1 iff an instance of f mapped to v, otherwise 0

∀(v, v′) ∈ E,
∀x, y ∈ V,
∀(u, u′) ∈ Upairs

ev,v′,x,y,u,u′
1 iff (v, v′) belongs to the path between x and y,
where u and u′ are mapped to, otherwise 0

∀v ∈ V usedv 1 iff at least one service component usage request
is mapped to v, otherwise 0

∀(v, v′) ∈ E remdrv,v′ Remaining data rate on (v, v′)

∀(u, u′)∈Upairs latu,u′ Latency of the path between u and u′

3. collecting metric values.

Placement and path creation constraints are clearly separated, facilitating the
extension of the model in either part without influencing the other part. Necessary
ties between these parts are also carefully defined, for example, using the decision
variable e, to build a consistent and uniform model for placing service components
and chaining them together optimally.

Service Components Placement Constraints

∀u ∈ U :
∑
v∈V

mu,v = 1 (3.1)

∀a ∈ A : ma,loc(a) = 1 (3.2)

∀f ∈ F, ∀v ∈ V :
∑

u∈Ut(u)=f

mu,v ≤M · if,v (3.3)

∀f ∈ F, ∀v ∈ V : if,v ≤
∑

u∈U,t(u)=f

mu,v (3.4)

∀u ∈ U,∀v ∈ V : msu,v+mdu,v = 1 (3.5)

38 ○ � ○

3.2 Service Specification, Graph Generation, and Embedding Models

∀u ∈ U,∀v ∈ V, ps(t(u)) = 0, pd(t(u)) 6= 0 : msu,v = 0 (3.6)

∀u ∈ U,∀v ∈ V, ps(t(u)) = 0, pd(t(u)) 6= 0 : mdu,v = 1 (3.7)

(3.8)

∀v ∈ V :
∑
u∈U

mu,v ·mdu,v · pd(t(u)) ≤ cd(v) (3.9)

∀v ∈ V :
∑
u∈U

mu,v ·msu,v · ps(t(u)) ≤ cs(v) (3.10)

∀f ∈ F :
∑
v∈V

if,v ≤ ninst(f) (3.11)

∀v ∈ V, ∀f ∈ F :
∑

u∈U,t(u)=f

mu,v ≤ nreq(f) (3.12)

Start and end points of the flows are fixed in the network, so ∀a ∈ A, ma,loc(a)

are not decision variables but pre-set constants.

M ∈ N is a number larger than the sum on the left side of the inequality in
Constraint 3.3 (a so-called “big M” constraint).

Path Creation Constraints

∀(v, v′) ∈ E,∀x, y ∈ V, ∀(u, u′) ∈ Upairs : ev,v′,x,y,u,u′ ≤ mu,x ·mu′,y (3.13)

∀(u, u′) ∈ Upairs :
∑

(x,v)∈E,y∈V

ex,v,x,y,u,u′ ·mu,x ·mu′,y = 1 (3.14)

∀(u, u′) ∈ Upairs :
∑

(x,v)∈E,y∈V

ex,v,x,y,u,u′ · (1−mu,x ·mu′,y) = 0 (3.15)

∀(u, u′) ∈ Upairs :
∑

(v,y)∈E,x∈V

ev,y,x,y,u,u′ ·mu,x ·mu′,y = 1 (3.16)

∀(u, u′) ∈ Upairs :
∑

(v,y)∈E,x∈V

ev,y,x,y,u,u′ · (1−mu,x ·mu′,y) = 0 (3.17)

∀(u, u′) ∈ Upairs,∀w, x, y ∈ V :
∑

v∈V,v 6=y,
(v,w)∈E

ev,w,x,y,u,u′ =
∑

v′∈V,w 6=x,
(w,v′)∈E

ew,v′,x,y,u,u′ (3.18)

∀(u, u′) ∈ Upairs,∀v, x, y ∈ V, x 6= y : ev,v,x,y,u,u′ = 0 (3.19)

∀(u, u′) ∈ Upairs,∀x, y ∈ V, ∀(v, v′), (v′, v) ∈ E, v 6= v′ :

ev,v′,x,y,u,u′+ev′,v,x,y,u,u′ ≤ 1 (3.20)

○ � ○ 39

3 Services with Arbitrarily Ordered Components

∀(v, v′) ∈ E :
∑

(u,u′)∈Upairs,∀x,y∈V

ev,v′,x,y,u,u′ · dreq(u, u′) ≤ d(v, v′) (3.21)

∀(a, a′) ∈ Apairs :
∑

(v,v′)∈E,x,y∈V,
(u,u′)∈paths(a,a′)

ev,v′,x,y,u,u′ · l(v, v′) ≤ lreq(a, a′) (3.22)

∀(v, v′) ∈ E,∀x, y ∈ V, ∀(u, u′) ∈ Upairs :

ev,v′,x,y,u,u′ ≤ mu,x ·mu′,y (3.23)

Metrics Calculation Constraints

∀v ∈ V :
∑
f∈F

if,v ≤M′ · usedv (3.24)

∀v ∈ V : usedv ≤
∑
f∈F

if,v (3.25)

∀(v, v′) ∈ E : remdrv,v′ = d(v, v′)−
∑

(u,u′)∈Upairs,
∀x,y∈V

ev,v′,x,y,u,u′ · dreq(u, u′) (3.26)

∀(u, u′) ∈ Upairs : latu,u′ =
∑

x,y∈V,(v,v′)∈E

ev,v′,x,y,u,u′ · l(v, v′) (3.27)

M′ ∈ N is a number larger than the sum on the left side of the inequality in
Constr. 3.24.

3.2.3.2 Optimization Objective

Different objectives can be targeted for this optimization problem and each of them
can result in a different mapping of the service graphs into the network graph.
I define three objective functions and describe the behavior of the embedding
process using each objective.

Maximizing the Remaining Data Rate on Network Links

maximize
∑

(v,v′)∈E,v 6=v′

remdrv,v′ (3.28)

As highly utilized links can result in congestion in the network, solutions that
leave more capacity on the links are desirable. This objective aims at leaving
more data rate on the links. By maximizing the sum of remaining capacity over
all links, it forces the algorithm to prefer self-loops (i.e., links between two service
components that are placed on one network node), over than other links. There
self-loops do not consume any inter-node networking capacity and are realized as
intra-node connectivity. In this way, network traffic on the links is avoided by
preferentially placing service components on the same node.

40 ○ � ○

3.2 Service Specification, Graph Generation, and Embedding Models

f4

a1

f1 a2

f3

f2

Figure 3.5: Two simple paths between start and end points of an example VCS

Minimizing the Number of Used Nodes in the Network

minimize
∑
v∈V

usedv (3.29)

This objective function can result in an energy-efficient solution by allowing
more unused nodes to be switched off. It might, however, concentrate the service
components on a small subset of nodes, causing congestion in the network.

Minimizing the Latency of the Created Paths

minimize
∑

(a,a′)∈lreq

(∑
P∈paths(a,a′)

(∑
(u,u′)∈P

latu,u′

))
(3.30)

In complex VCSs with branches in the structure, there are multiple simple paths
between the start and end points. A simple path connects the starting point of
a service to one end point of it via a sequence of network links and does not
include any branches in its structure. For example, there are two simple paths
between the start point (a1) and end point (a2) of the example VCS shown in
Figure 3.5. The upper simple path consists of the links shown with red, solid lines
and connects the start and end points via the service components f1 and f2. The
lower simple path in this figure, consists of the links shown with blue, dotted lines
and includes a self-loop on a node that represents the intra-node connectivity of
the service components f3 and f4.

As each path consists of different sequences of network links, they can have
different latencies. This objective function minimizes the mean latency of all
simple paths created for all deployment requests.

○ � ○ 41

4
Embedding Services with Arbitrarily
Ordered Components

4.1 Problem Formulation 43

4.2 Service Graph Selection Heuristic 46

4.3 Evaluation of Selection Heuristic 48

4.3.1 Preferred Combinations not Selected by Heuristic . . 50

4.3.2 Selected Combinations not in Preferred Combinations 51

4.3.3 Gain in Decision Time 52

4.4 Service Embedding Heuristic Approach 53

4.5 Evaluation of Service Embedding Heuristic 57

4.6 Conclusion . 62

In Chapter 3, I have described how deployment requests for pliable Virtualized
Composed Services (VCSs) that include arbitrarily ordered components are ex-
pressed and processed. I have also defined the A-SPRING problem for scaling,
placing, and routing these services.

In Section 4.1, I give an overview of the problem of processing and fulfilling
the deployment requests for a set of pliable VCSs that include arbitrarily ordered
components. In Section 4.2, I describe a heuristic for generating and combining
the service graphs of such VCSs and show the results of evaluating this approach
in Section 4.3. In Section 4.4 I present a heuristic for solving the A-SPRING
problem and evaluate it in Section 4.5. I conclude this chapter in Section 4.6.
This chapter partially includes figures and verbatim copies of the text from my
papers [22, 23, 24, 29].

4.1 Problem Formulation

In this chapter, I assume multiple VCS deployment requests are submitted by
different service providers to a network operator and need to be processed to-

43

4 Embedding Services with Arbitrarily Ordered Components

gether to find the optimal embedding, considering the requirements of the new
and the existing VCSs. The information included in a deployment request, used for
placement, scaling, and routing of the VCSs, follows the service descriptor defini-
tion from European Telecommunications Standards Institute (ETSI) for Network
Function Virtualization (NFV) Management and Orchestration (MANO) [6], e.g,
the way the components included in the VCS and their resource demands should
be described. The structure of the VCSs and dependencies among the service com-
ponents, however, go beyond the ETSI descriptors and are specified in a flexible
way, as described in Section 3.2.1.

I assume the input data rate to a VCS is variable and can change during the
lifetime of the VCS. I also assume the resource demands of each service component
are defined as a function of the data rate it needs to handle, increasing linearly
with the incoming data rate to that component.

In the rest of this chapter, I refer to the process of creating service graph(s) out
of a service deployment request (defined in Section 3.2.2) as the graph generation
process. The combination process, in turn, refers to combining different service
graphs from different VCSs into a single input to the embedding process, which I
describe in this section.

Figure 4.1 shows a possible set of actions required for finding the best embed-
ding for three example VCSs. In this figure, VCSs X and Z each include two
components that can be traversed in an arbitrary order. Therefore, in step 1©,
the graph generation process builds two different service graph candidates for each
of them (denoted as X1, X2 and Z1, Z2, respectively). The deployment request for
VCS Y specifies a total order, resulting in one single service graph.

To consider all possible service graphs in the service embedding process, the
created service graphs go through step 2©, where the combination process creates
all possible combinations of different service graphs and passes them to the service
embedding process. For the small example in Figure 4.1, the embedding process in
step 3© needs to run four times, once for each possible combination of the service
graphs. The embedding that provides the best values for the metrics of interest
can be chosen in step 4© for actual deployment1.

Performing these steps for a large set of pliable VCSs, can quickly result in a
very large number of possible combinations of the service graphs. In this case, for
solving the composition and embedding problem, one end of the spectrum is to
explore the whole set of possible combinations of service graphs. In spite of the
benefits resulting from defining pliable VCSs, running a (computationally expen-
sive) service embedding process for every possible combination is not a practical
solution.

Alternatively, the set of all steps shown in Figure 4.1 can be modeled as one
large optimization problem that needs to be solved only once. Considering the
complexity of the VCS embedding optimization problem for one single VCS, solv-
ing such a complicated optimization problem will not be possible in acceptable

1As the state of the underlying network and the deployed services change, the selected combi-
nations might not be desirable anymore. In this case, another combination can be selected
as a means of scaling and adapting the deployed VCSs

44 ○ � ○

4.1 Problem Formulation

Graph Combination

Embedding

Embedding 1

Best Embedding Option

Graph Gen.

Service X

Graph Gen.

Service Y

Graph Gen.

Service Z

Embedding

Embedding 4

Analysis of Embedding Results

X1 X2 Y1 Z1 Z2

X1 Y1 Z1 X2 Y1 Z2

...

...

...

N
etw

o
rk

 T
o

p
o

lo
g

y
 &

 R
eso

u
rce

 D
a
taE

x
is

ti
n

g
 S

er
v

ic
e

D
ep

lo
y

m
en

t
D

at
a

1

2

3

4

Figure 4.1: Possible steps for finding the best embedding option for a set of ex-
ample VCSs

time-scale, either.
The other end of the spectrum is to define a “default” way of generating the

service graphs, irrespective of different functionalities and requirements of VCSs.
For example, a rule can be defined in step 1© to sort the service components in
ascending order of the Ratio of Outgoing to Incoming Data Rate (ROID) [22], if
they are specified with an arbitrary order. In this way, we have exactly one service
graph for each deployment request; in Figure 4.1, this corresponds to filtering
out X1 or X2 (and Z1 or Z2). Using the example rule, the resulting graph has
the smallest value for the average required link capacity. The embedding process
needs to run only once for the single combination of all of these pre-filtered service
graphs.

The drawback of choosing one single combination in this way is that it elimi-
nates the variety of optimization options offered by different ways of generating
service graphs for the pliable VCSs. For example, there might be candidate ser-
vice graphs that optimize metrics like the number of required instances for service
components, required compute resources for satisfying all deployment requests,
number of utilized network nodes, etc. But they are simply discarded using such
a single-solution heuristic. This solution would only be acceptable if the best
possible service graph could be determined already in step 2© in Figure 4.1. In
practice, the information available about the possible combinations in this step
does not directly correspond to the metrics of interest after embedding, which can

○ � ○ 45

4 Embedding Services with Arbitrarily Ordered Components

only be measured and analyzed in step 4©.

What we can ideally achieve using the information available before the em-
bedding process is to relate them to the structure and requirements of VCSs by
concentrating on multiple metrics. Using a multi-solution heuristic, we can select
a representative subset of possible combinations for VCSs. Then, we can use the
reduced set as the set of input options for the embedding process. This reduces
the decision time, by reducing the number of times the embedding process needs
to be performed, compared to exploring the whole set of options. Moreover, re-
gardless of the optimization objectives used for calculating the embedding, there
is a good chance of finding close-to-optimal solutions, as in the input set, we have
representatives for all possible options.

I describe such a selection heuristic in Section 4.2; it provides a generic method
for selecting a subset of possible combinations of the requests as input for the
embedding process. The metrics used for filtering the combinations should be se-
lected based on the objectives in each scenario. In Section 4.3, I have evaluated the
heuristic using metrics and objectives that are targeted towards congestion control
over nodes and links in the network, as one of possible optimization objectives.
The solution can easily be generalized to other metrics and objectives.

Once the combination and selection processes are completed, the actual em-
bedding can be calculated, e.g., using the MIQCP formulation described in Sec-
tion 3.2.3 for optimally embedding the selected combinations of the service graphs,
with the intended optimization objective.

This MIQCP formulation consists of a rather complex model to ensure a real-
istic decision. Therefore, even if the output of the selection heuristic is one single
combination, finding the optimal embedding on large-scale networks can take sev-
eral hours for large request sets with complex structures. To address this issue,
in addition to the selection heuristic and to further enhance the decision time, I
present a service embedding heuristic in Section 4.4.

4.2 Service Graph Selection Heuristic

For this heuristic, first of all, every possible combination of different service graphs
need to be calculated. Although the number of combinations can be large, com-
puting them without performing the actual embedding is not an expensive task.

For choosing a representative subset of the combinations, meaningful metrics
need to be extracted out of the information available about the combinations before
the embedding. I have used the following metrics for evaluating and comparing
different combinations of VCSs.

• Sum of data rates over all virtual links in all service graphs in each combi-
nation of service graphs

• Sum of resource demands (e.g., an abstract value representing the amount
of required compute, memory, and storage resources) over all components
in all service graphs in each combination

46 ○ � ○

4.2 Service Graph Selection Heuristic

a1

a2

a3f1

f2
f2

a4f2
(a) Service graph candidate 1

𝑎" 𝑓$ 𝑓"

𝑎$

𝑎%

𝑎&
(b) Service graph candidate 2

Figure 4.2: Two different candidates for the service graph of an example pliable
VCS, consisting of two components f1 and f2 that can be traversed in
an arbitrary order between the service endpoints

Total Data Rate Total
Comp. R

eq.

To
ta

l N
um

. o
f I

ns
ta

nc
es

(a) Combinations of S0 and S1

Total Data Rate Total
Comp. R

eq.

To
ta

l N
um

. o
f I

ns
ta

nc
es

(b) Combinations of S2, S3, and S4

Figure 4.3: Selected combinations for example VCSs

• Total number of required instances of all service components over all service
graphs in each combination

This can, of course, be modified to any other metric aggregating the information
available in service deployment requests that can represent the different options
for the structure and requirements of the VCSs.

The combinations with the best possible trade-offs among the chosen metrics
can then be identified by taking the Pareto-optimal combinations regarding these
metrics. In a scenario where different metrics need to be optimized, Pareto-optimal
solutions are the solutions that cannot improve one metric without worsening at
least one other metric. The selected combinations by our multi-solution heuristic
are the combinations in this Pareto set.

To demonstrate how the Pareto sets could look like, I have used two different sets
of example service deployment requests consisting of five VCSs, S0–S4. Each VCS
consists of two or three service components (Virtual Network Functions (VNFs),
in this example) specified with an arbitrary order.

The service components need to be traversed between given start and end points.
In each VCS, one component can split incoming flows over three different branches.
I have set the input data rates of the VCSs and the ROIDs of service components

○ � ○ 47

4 Embedding Services with Arbitrarily Ordered Components

randomly. Resource demands of each component increase linearly with the data
rate that enters the component. I have also set the resource demand for a unit of
data rate randomly, for each service component.
S0 and S1 have a similar structure, with different input data rates and different

ROID for each included component. Their structure is shown in Figure 4.2. Each
of them results in two different service graphs and, therefore, they can be combined
into four different inputs for the embedding process (in step 2© of Figure 4.1).

These combinations (numbered from 0 to 3) result in different resource demands
and different values for the metrics of interest, as shown in Figure 4.3a. For sim-
plicity and visibility, I assume the compute resource requirement of components
in these plots represent the overall resource demands. The Pareto-optimal com-
binations (1 and 3) are marked with a star. Combination 1 consists of the service
graph candidate 2 for S0 and service graph candidate 1 for S1, while combination
3 consists of the service graphs candidate 2 for both S0 and S1.

Similarly, as shown in Figure 4.3b, there are 24 possible combinations for ser-
vice graphs that can be built for S2–S4, out of which 3 combinations belong to the
Pareto set and are selected by the heuristic. The structure of S3and S4 also corre-
sponds to the structure shown in Figure 4.2 but S2 consists of 3 components (one
splitting components and two non-splitting components) that can be traversed in
an arbitrary order, resulting in 6 different chaining options.

Taking the selected combinations instead of the complete set of combinations
creates inputs for the embedding process with the best possible trade-offs among
the metrics available before the actual embedding. In Section 4.3, I evaluate
the quality of the selected combinations by comparing the embedding results for
these combinations to the set of optimal embedding solutions with respect to the
objectives I have selected for controlling the congestion in network nodes and
links.

4.3 Evaluation of Selection Heuristic

To evaluate how good the selected combinations can represent the set of all pos-
sible combinations, I have embedded different sets of example VCSs in a total of
450 runs. The graph generation and embedding process follows the steps shown
in Figure 4.1. An implementation of this heuristic is available online [37].

Each embedding run consists of computing the optimal embedding for a set
of deployment requests for pliable VCSs. During each run, I have embedded
all possible combinations of the service graphs generated out of the deployment
requests. This, of course, includes the combinations selected by the selection
heuristic. In this way, the quality of the solutions achieved using the selection
heuristic can be positioned among all possible solutions.

I have chosen the structure of the example VCSs based on an Internet Engi-
neering Task Force (IETF) Service Function Chaining (SFC) draft on general use
cases for SFC [93]. I have used 9 different sets, each including 1–3 pliable VCSs
deployment requests. Each VCS includes 2–3 arbitrarily ordered components. In
order to have interesting distinctions among different candidate service graphs

48 ○ � ○

4.3 Evaluation of Selection Heuristic

of a VCS, each VCS includes at least one component that splits the flows over
different branches (splitting component as defined in Chapter 3).

The sum of the input data rates for the requests in a set is the same for all
embedding runs and is distributed uniformly, randomly over the requests in the
set. The endpoints of the requested VCSs are pinned to randomly selected nodes
in the network in each run. The underlying network has 12 nodes and 42 directed
edges (including self-loops) and is based on the abilene network from SNDlib
[94] problem instances. Among available network instances in this library, I have
selected a small one to be able to apply the optimization approach in a reasonable
time. Similarly, I have chosen the size and complexity of the deployment requests
in a way that running the optimization approach for all possible combinations of
the resulting service graphs is feasible in a reasonable time.

I have used a slightly modified version of the optimization problem described
in Section 3.2.3 for embedding the request sets in the network.

Assuming the substrate network graph G = (V,E), I have used the following
additional constraints in the optimization problem:

∀v∈V : NodeUtilv ≤ MaxNodeUtil

∀(v, v′)∈E, v 6=v′ : LinkUtil(v,v′) ≤ MaxLinkUtil

where NodeUtilv and LinkUtil(v,v′) are continuous variables with values between
0 and 1 that show the utilization of node v and link (v, v′), respectively. With
similar definitions, MaxNodeUtil and MaxLinkUtil serve as upper bounds for node
and link utilization, which I minimize using the objective function, as an attempt
to minimize the node and link congestion in the network. I have used the equally-
weighted sum of MaxNodeUtil and MaxLinkUtil as one possible option for the
objective function, assuming optimizing the utilization of nodes and links are
equally important:

minimize (0.5 ·MaxNodeUtil + 0.5 ·MaxLinkUtil).

Out of the results of each embedding run, for each combination of a set of
service graphs, I have calculated the maximum link utilization and maximum
node utilization in the network.

For each set of requests, the preferred combinations are the combinations corre-
sponding to the results that belong to the Pareto set regarding these two metrics
after the actual embedding. This should not be confused with the selected com-
binations that were chosen by the selection heuristic (described in Section 4.2)
before performing the embedding.

To evaluate the quality of selected combinations, we need to quantify the dif-
ferences and the relations between the set of selected combinations and the set of
preferred combinations. For this, in the following sections, I present two views:

• In Section 4.3.1, I evaluate the preferred combinations that were not selected
by the heuristic in each embedding run (Figure 4.4a)

○ � ○ 49

4 Embedding Services with Arbitrarily Ordered Components

2

Preferred

Combinations

5

Selected

Combinations

All Combinations

(a)

All Combinations

5

Selected

Combinations

2

Preferred

Combinations

(b)

Figure 4.4: Sets of combinations chosen by the selection heuristic and combina-
tions that give the best embedding results (preferred combinations)
among all possible combinations of service graphs resulting from pli-
able VCSs

��� ��� ��� ��� ��� ���
)UDFWLRQ�RI�3UHIHUUHG�&RPEV��QRW�6HOHFWHG

�

��

���

���

���

1
XP
EH
U�
RI
�3
OD
FH
P
HQ
W�
5
XQ
V

Fraction of preferred combinations not selected

N
um

be
ro

fe
m

be
dd

in
g

ru
ns

(a)

��� ��� ��� ��� ��� ���
'LVWDQFH�RI�D�3UHIHUUHG�&RPE��WR�&ORVHVW�6HOHFWHG�&RPE�

�

���

���

���

���

���

���

���
1
XP
EH
U�
RI
�&
RP
EL
QD
WL
RQ
V

Distance of a preferred comb. to closest selected comb.

N
um

be
ro

fc
om

bi
na

tio
ns

(b)

Figure 4.5: Evaluation of preferred combinations that are not selected by the
heuristic

• In Section 4.3.2, I evaluate the selected combinations by the heuristic that
do not belong to the set of preferred combinations in an embedding run
(Figure 4.4b)

In Section 4.3.3, I describe the gain in decision time that using the selection
heuristic can provide.

4.3.1 Preferred Combinations not Selected by Heuristic

Figure 4.5a shows the histogram of the fraction of the preferred combinations in
embedding results that were not selected by the heuristic.

For each embedding run, I have calculated the false negative rate as

FN =
|P \ S|
|P |

,

50 ○ � ○

4.3 Evaluation of Selection Heuristic

where P is the set of preferred combinations in that run and S is the set of
selected combinations by the heuristic. |X| denotes the cardinality of set X and
\ denotes the set difference. P \ S, the set of preferred combinations that are
not selected, is shown in Figure 4.4a. In terms of classification theory, FN is the
false negative rate, if we consider the selection heuristic as a classifier to detect
preferred combinations.

The values show that in many embedding runs, none of the preferred combi-
nations are included in the combination set chosen by the heuristic. This result
is not necessarily a negative outcome, depending on how well the selected com-
binations can represent the preferred but not selected combinations. I have done
further experiments to further investigate this.

To evaluate the importance of the combinations that were missed by the heuris-
tic, I have calculated the max-norm distance of each preferred combination to the
closest selected combination. In a vector space, the max-norm distance of two
vectors, also known as the chessboard distance, is their greatest difference along
any dimension. This can give a meaningful comparison of the quality of two
combinations in this case; the max-norm distance of two combinations reflects the
difference in the resulting maximum link utilizations or the difference in maximum
node utilizations (depending on which one is more significant) when these com-
binations are embedded into the network. The largest possible distance between
two combinations according to this metric is 1.

Figure 4.5b shows the resulting histogram. For the majority of preferred com-
binations, there is at least one selected combination with a distance close to 0.
For the remaining combinations, the distance is negligible. The largest recorded
distance has a value of around 0.54 and has been recorded for 2 combinations out
of around 1100 preferred combinations over all embedding runs.

From this, I conclude that in spite of the large number of preferred combinations
that are not included in the set of combinations selected by the heuristic, the
variety of possible service graphs and resulting resource demands in the set of all
possible combinations is indeed captured by the heuristic results.

4.3.2 Selected Combinations not in Preferred Combinations

For the second part of the evaluation, Figure 4.6a shows the histogram of the
fraction of selected combinations that do not belong to the preferred combinations
over different embedding runs.

For each service embedding run, I have calculated the false discovery rate as

FD =
|S \ P |
|S|

.

Figure 4.4b illustrates S \ P , as the set of selected combinations that were not
among the preferred ones.

In more than 150 service embedding runs, all of the combinations selected by
the heuristic belong to the preferred combination set. In close to 200 runs none of
the selected combinations are in the preferred combination set. Figure 4.6b shows
that for the majority of the selected combinations, the max-norm distance to the

○ � ○ 51

4 Embedding Services with Arbitrarily Ordered Components

��� ��� ��� ��� ��� ���
)UDFWLRQ�RI�6HOHFWHG�&RPEV��QRW�LQ�3UHIHUUHG�&RPEV�

�

��

���

���

���
1
XP
EH
U�
RI
�3
OD
FH
P
HQ
W�
5
XQ
V

Fraction of selected combs. not in preferred combs

N
um

be
ro

fe
m

be
dd

in
g

ru
ns

(a)

��� ��� ��� ��� ��� ���
'LVWDQFH�RI�D�6HOHFWHG�&RPE��WR�&ORVHVW�3UHIHUUHG�&RPE�

�

���

���

���

���

���

���

1
XP
EH
U�
RI
�&
RP
EL
QD
WL
RQ
V

Distance of a selected comb. to closest preferred comb.

N
um

be
ro

fc
om

bi
na

tio
ns

(b)

Figure 4.6: Evaluation of selected combinations that are not among preferred com-
binations after embedding

��� ��� ��� ��� ��� ���
)UDFWLRQ�RI�6HOHFWHG�&RPEV��LQ�$OO�&RPEV�

�

��

���

���

���

���

1
XP
EH
U�
RI
�3
OD
FH
P
HQ
W�
5
XQ
V

Fraction of selected combs. in all combs.

N
um

be
ro

fe
m

be
dd

in
g

ru
ns

Figure 4.7: Fraction of selected combinations among all combinations over all em-
bedding runs

closest preferred combination is close to 0 and negligible. The largest distance has
a value of around 0.66, which is recorded for one combination out of around 970
selected combinations over all embedding runs.

From these observations, I conclude that the combinations selected by the
heuristic can closely represent the preferred results in these embedding runs.

4.3.3 Gain in Decision Time

Figure 4.7 shows the ratio of the combinations selected by the heuristic to the total
number of combinations over all embedding runs. As illustrated in Figure 4.1, the
required time to reach a final embedding decision depends on the number of times
the embedding process needs to be repeated. This, in turn, is determined by the
number of selected combinations.

Using the selection heuristic described in Section 4.2, the embedding needs to
be calculated less than half as often as the case where no heuristic is applied.

52 ○ � ○

4.4 Service Embedding Heuristic Approach

However, most of the service deployment requests were small requests, resulting
in cases similar to the Pareto set shown in Figure 4.3a. Comparing this case to
Figure 4.3b shows that the larger the number of VCSs is, the larger the number of
possible combinations is, and the ratio of selected combinations to all combinations
tends to decrease.

Therefore, I conclude that for large sets of pliable VCSs including arbitrarily
ordered components, the multi-solution selection heuristic can select combinations
of service graphs that can result in optimal or close-to-optimal solutions after em-
bedding, in significantly less time compared to the option of exploring all possible
combinations.

4.4 Service Embedding Heuristic Approach

In this section, I describe a heuristic that can very quickly find a close-to-optimal
solution for the service embedding problem as described in Section 3.2.3.

While the objective function in an optimization approach can be replaced to
optimize the values for different metrics as necessary, for a heuristic, the objective
should be a part of the algorithm design. My model is based on the assump-
tion that the substrate network is a geographically distributed network, e.g., a
large-scale telecommunications operator’s network, with multiple data and com-
pute centers connected to each other. In these networks, applications like video
streaming and file sharing are increasingly taking up link capacities and need low-
latency paths. Moreover, in such scenarios, it is important to place the VCSs in
a way that enough capacity is left on the network links to satisfy larger number
of subsequent requests as well as requests with large data rates.

Considering these requirements, I have designed a heuristic that embeds a set
of VCSs in a way that the traffic between the endpoints of a VCS is routed
through the shortest path whose bottleneck link has just enough capacity for the
requirements of the VCS (smallest-fit first). The bottleneck link on a path is
the link with the smallest capacity along this path. Among different paths with
equal lengths that can carry the required data rate, the algorithm selects the path
with the smallest bottleneck so as to leave the paths with a higher capacity for
serving other, possibly larger requests. Similarly, among different paths with equal
bottleneck capacities, it prefers the path with the least number of hops. A path
is accepted for embedding only if the nodes along this path have enough capacity
to host all of the components of the VCSs and the latency of the path matches
the end-to-end latency requirements of the VCSs.

For calculating the paths, I have used one of the variations of the bottleneck
shortest paths problems, an algorithm to solve the single-source shortest paths for
all flows problem (SSSP-AF) by Shinn and Takaoka [95]. In this problem, it is
assumed that a set of flows with different data rates are given as a set W and the
network links have limited capacities. For every flow with a data rate w ∈ W ,
the goal is to find the shortest paths (with respect to the number of hops) from a
source node to all other nodes in the network such that the paths can carry flows
with data rates of up to w. The output of this algorithm is a set of tuples (d, w)

○ � ○ 53

4 Embedding Services with Arbitrarily Ordered Components

𝑎"
𝑎#

𝑎$
𝑓"

𝑓#

𝑓$
(a) Two different end points: a2 and a3

𝑎" 𝑎#𝑓"
𝑓#

𝑓%
𝑓&

(b) Two simple chains between its start and
end points: a1→f1→f2→f4→a2 and
a1→f1→f3→f4→a2

Figure 4.8: Example service graphs

for each destination node, where d is the number of hops in the shortest path
that can carry flows with data rates up to w. This algorithm has a complexity
of O(mn), where m is the number of links and n is the number of nodes in the
substrate network graph [95].

The input and the basic assumptions of the heuristic for service embedding
are identical to those of the optimization approach (Section 3.2). Some of the
important assumptions are as follows.

For the heuristic design, I assume that the service deployment requests include
an (exact or estimated) upper bound for the input data rates at the starting points
of the VCSs and the input data rates to all subsequent components in the VCSs
can be calculated based on given expected ROID for each component. Moreover,
I assume the start and end point locations of service flows are given. They can
be, for example, one of the network nodes where the requests for a group of end
users in a specific geographical location enter the network or the back-end server
of the application that is already placed and used by other instances of the VCS,
or a physical network function with a fixed location that needs to be used along
with other service components.

To parse the deployment requests and to build service graphs out of service
composition requests, the requests go through a pre-processing step (step 2© in
Figure 4.1). In this step, the exact resource demands of the components (which
are given per unit data rate in my model) are also calculated using the input
data rate to the VCS. The service embedding heuristic can replace the service
embedding optimization approach in step 3© of this figure.

An overview of the steps of this heuristic solution is shown in Algorithm 4.1.
The input to this algorithm is a combination of service graphs that need to be
mapped to the network, e.g., one of the selected combinations given by the selec-
tion heuristic in Section 4.2.

The combination of service graphs is a (disconnected) directed graph annotated
with data rates of the logical links between pairs of service components, resource
demands of the service components (e.g., given as tuples of compute, memory,
and storage requirements), the end-to-end latency that can be tolerated by each
VCS, and the location of the start and end points of VCSs in the network. The
substrate network graph is also given, annotated with the capacity and the latency
of network links, and the capacity of nodes (e.g., in terms of available compute,
memory, and storage resources).

Service graphs might have more than one end point, as shown in Figure 4.8a,

54 ○ � ○

4.4 Service Embedding Heuristic Approach

Algorithm 4.1 Heuristic for embedding a combination of service graphs

1: C ← a combination of annotated service graphs
2: G← annotated substrate network graph
3: function EmbedCombination(C, G)
4: A← sorted list of pairs of start and end points of services
5: for (as, ae) ∈ A do
6: chainsas,ae ← sorted list of simple chains between as and ae

7: for (as, ae) ∈ A do
8: for c ∈ chainsas,ae do // Every chain c is a subgraph of C
9: EmbedChain(c, G)

10: if embedding successful then
11: if latency of created path ≤ latency bound from as to ae then
12: embedding for c is valid

Algorithm 4.2 Embedding algorithm for a simple chain

1: function EmbedChain(c, G)
2: R← c // Remaining pairs of components from the chain to be placed
3: D ← data rate between each component pair
4: for (f1, f2) ∈ c do
5: ps ← location of f1 // Current location
6: if f2 is not already embedded then
7: if demands of f2 can be satisfied by available resources on ps then
8: embed f2 on ps and update G
9: else

10: d← max∀(x,y)∈R(D(x, y)) // Largest data rate over all pairs
11: pe ← location of first embedded component in c after f2

12: P ← GetPath(ps, pe, d, G) // Ordered set of nodes in the path
13: while there are unexplored nodes on P do
14: v ← next node on P
15: if requirements of f2 ≤ available resources on v then
16: embed f2 on v and update G
17: break // Embedding of f2 done, stop iterating over P

18: if there are no more nodes to explore on P then
19: return c cannot be embedded
20: R← R \ (f1, f2) // Remove (f1, f2) from pairs to be placed

21: return embedding results and updated G

and different branches between one pair of start and end points, as shown in
Figure 4.8b. For such VCSs, the algorithm finds and stores every simple chain
of components between every pair of start and end points in the service graph.
A simple chain is a subgraph of the service graph with a linear structure, which
starts at the start point of the VCS and ends at one of the end points of the
VCS, without loops and branches. Each of the simple chains in a service graph
might have different requirements, e.g., different data rate over their edges, so the

○ � ○ 55

4 Embedding Services with Arbitrarily Ordered Components

embedding of them needs to be prioritized and regulated.
In line 4 of Algorithm 4.1, pairs of start and end points (as, ae) of different VCSs

are sorted in decreasing order according to the sum of data rates over all virtual
links between them and stored in A. Similarly, if there are multiple simple chains
between one start and end point, in lines 5 and 6, the simple chains are sorted in
decreasing order according to the sum of data rates over all virtual links among
them and stored as a list called chainsas,ae for every (as, ae) in A. This ordering
ensures that the chains with higher data rates are placed first and have a higher
chance of being mapped to shorter paths.

Every simple chain is an ordered list of pairs of service components (f1, f2)
(including the start and end points), such that f1 and f2 are nodes of the combined
graph C, (f1, f2) is a virtual link in graph C, and by following the pairs in a chain
in the given order we can get from the starting point of that chain to the end
point of the chain after traversing all of the service components in that chain.

The embedding starts with the heaviest pair of start and end points, i.e., the
pair that has the largest sum of data rates over its virtual links. If there are
multiple simple chains between them, the algorithm starts with the heaviest one.
In line 9, the EmbedChain function is called, which calculates the embedding
for the input chain c on the substrate network graph G. This function is shown
in Algorithm 4.2.

If the embedding is successful, the results are returned together with the up-
dated network graph G (e.g., with less capacity on its nodes and links after ac-
commodating the embedded chain). If the latency requirements of the embedded
chain are met, the embedding is accepted as valid. For simplicity, this algorithm
does not include any backtracking steps in case the embedding is unsuccessful or
invalid. Implementing the backtracking using different path options provided by
the SSSP-AF algorithm [95] is straightforward.

The EmbedChain function in Algorithm 4.2 iterates over the pairs of service
components (f1, f2) (i.e., virtual links in the chain) and embeds them one by
one. As the start point of the chain is also a part of the chain, while iterating
over these pairs, in the simplest cases, f1 is already mapped to a location in the
network and the algorithm needs to find the location for f2. For this, in line 7 and
8, similar to the behavior of the optimization approach, the algorithm first checks
the feasibility of embedding f2 onto the same node where f1 was embedded. If
that is not possible, in line 12, it calculates the shortest path towards the end
point that has enough capacity for the largest data rate over the remaining parts
of the chain to be embedded, based on the SSSP-AF algorithm.

As an input for path calculation using the SSSP-AF algorithm, in line 10, the
algorithm finds the largest data rate over the pairs of components that still need
to be embedded.

SSSP-AF calculates the paths from a given node towards all other nodes in
the network, out of which the algorithm only needs the paths towards one specific
end point. Function GetPath processes the output from SSSP-AF to extract the
path P towards this end point as an ordered list of the network links belonging
to this path.

The end point pe used by GetPath for calculating P is equal to the location

56 ○ � ○

4.5 Evaluation of Service Embedding Heuristic

of ae (end point of the chain) if the current chain has no overlaps with another
chain that has already been placed in the network. Figure 4.8b shows an example
of such an overlap. I assume the simple chain a1→f1→f2→f4→a2 is the heavier
chain and needs to be embedded before the other chain between a1 and a2. For
embedding the first chain, for all component pairs in it, pe is set to the location
of a2 and GetPath is called to find the shortest path between the current node
and the location of the end point of the chain. However, while embedding the
second chain a1→f1→f3→f4→a2, the component f4 has already been embedded,
so in line 11, pe is set to the location of f4 and GetPath will be called to find the
shortest path towards that node. Moreover, to avoid calculating the embedding
more than once for components like f1 and f4 that appear on multiple chains of
a VCS, in line 6 the algorithm checks if the component has already been mapped
to a node.

Once a component is embedded into the network, for embedding the next com-
ponent in the chain, the algorithm does not rely on the previously calculated
shortest path towards the end; instead, it re-calculates the path for every new
(f1, f2) to be embedded. In this way, it can make use of the opportunity that once
the virtual link with the largest data rate on the chain has been mapped to the
network, the subsequent components can be placed along a path that might be
even shorter than the one initially calculated.

In the Section 4.5, I evaluate the performance and run time of this heuristic.

4.5 Evaluation of Service Embedding Heuristic

As described in Section 4.4, I have designed the service embedding heuristic in a
way that the VCSs are embedded into network nodes along short paths with ac-
ceptable latencies and just enough link capacity. I evaluate the solutions produced
by this heuristic against the optimal embedding results obtained using the opti-
mization approach described in Section 3.2.3. My implementation of this heuristic
is available online [37].

For pliable VCSs, I have used the service embedding heuristic for embedding
the combinations selected by the selection heuristic (Section 4.2): among different
options for generating service graphs for VCSs that include arbitrarily ordered
components, some are selected and passed one by one to the embedding step
as a fixed and explicitly defined graph. Therefore, the VCSs I have used for
evaluating the service embedding heuristic are service graphs with totally ordered
components.

I have used 5 different sets of example service deployment requests that include
simple chains as well as more complex branched structures. As in the evaluation
of the selection heuristic, the structure of the example VCSs is based on the IETF
SFC draft on general use cases for SFC [93]. I have selected the sets of VCSs as
follows, in increasing complexity, based on the time required by the optimization
approach to find a solution for them:

• Set 1 includes 4 simple chains each having a structure as shown in Fig-
ure 4.9a.

○ � ○ 57

4 Embedding Services with Arbitrarily Ordered Components

𝑎" 𝑎#𝑓" 𝑓#

(a)

𝑎"

𝑎#

𝑓" 𝑓#

𝑎%
𝑎&
𝑎'
𝑎(

(b)

𝑎" 𝑎#𝑓#
𝑓%
𝑓&

𝑓"

(c)

𝑎" 𝑎#𝑓"

𝑓#

𝑓%

𝑓&

𝑓' 𝑓(

(d)

Figure 4.9: Service graphs used for evaluating the service embedding heuristic

• Set 2 includes 3 VCSs, one having a structure as shown in Figure 4.9b and
two having a structure as shown in Figure 4.9c.

• Set 3 includes 8 simple chains each with a structure as shown in Figure 4.9a,
making this set similar to Set 1 in structure.

• Set 4 includes 7 VCSs in total, four simple chains like Set 1 and three VCSs
like in Set 2.

• Set 5 includes 3 VCSs with a structure as shown in Figure 4.9d.

These sets include VCSs with different structures, i.e., simple chains of com-
ponents, VCSs with converging branches, and VCSs with independent, diverging
branches. The components used in the VCSs can split incoming flows over different
outgoing branches, increase or decrease data rates of incoming flows, or forward
them without modifying the data rate. The combination of these cases represents
what a typical embedding algorithm would need to deal with, highlighting various
aspects of the heuristic approach, e.g., making sure the flows converge towards
the required components after being distributed over different branches, with the
right flows reaching the right endpoints, etc.

For each of these sets, I have performed 300 embedding runs. Each run uses
a new random seed for setting up the input. In each run, I have calculated the
embedding once using the heuristic and once using the optimization approach.

Similar to the evaluation setup in Section 4.3, I have used the abilene network
from SNDlib [94] as the substrate network.

58 ○ � ○

4.5 Evaluation of Service Embedding Heuristic

I have mapped the start and end points of the service graphs to random nodes
in the network in each run. For one set, the sum of input data rates for the VCSs
is always the same for all runs, with each VCS getting a new, randomly assigned
share of the total data rate as input in each run. In different runs, different
amounts of data rate need to be routed among different network nodes. I have
used this approach to create enough variation in the amount and sources of the
traffic in the network, while keeping the total input load in a fixed level to reduce
cases where the mapping is infeasible and no insight is provided for comparing
the optimization approach to the heuristic approach.

I have chosen the following objective function for the optimization approach:

maximize
∑

(v,v′)∈E,v 6=v′

remcapv,v′

where E is the set of links in the substrate network and remcapv,v′(∀(v, v′) ∈ E)
shows the remaining capacity on every link (v, v′) after the embedding. The
value of remcapv,v′ is calculated by subtracting the data rate of every flow that
passes (v, v′) from the capacity of the link. I exclude the internal links of network
nodes (self-loops in the network graph) from the objective function and maximize
remcapv,v′ only for those links (v, v′) ∈ E where v 6= v′. In this way, I force
the embedding to prefer these internal links over other links. This results in
consecutive components in a VCS to be mapped to the same network node as
long as there is enough capacity on the current node to host the next component
(also taking other constraints of the optimization approach into account).

The embedding that is computed using this objective function has the maximum
possible value for mean remaining capacity over all network links, excluding the
self-loops. Therefore, as a first step to compare the results of the heuristic to the
optimal results, in Figure 4.10a I show a comparison between the mean remaining
capacity over all network links for each of the VCS sets based on the results of all
embedding runs.

The results of the heuristic, with respect to the metric that is optimized by the
optimization approach, are very similar and in some cases almost identical to the
optimal results. The largest difference between the results of the heuristic and
the optimization approach is around 5 % and belongs to the results of Set 1. The
plots (Figure 4.10a–4.10e) include confidence intervals at 95 % of confidence level.

To highlight the differences better, I ignore the unused network links and in
Figure 4.10b, I show a comparison between the mean remaining capacity only
over those links that were used for mapping the VCSs in each run.

The largest difference between the results is around 22 % and can be seen in the
results of Set 1. The optimization approach can handle the embedding of this set
much better than the heuristic, partly due to the type of the components used in
the VCSs in this set. These VCSs consist of simple chains of components and one
of the components in each chain has a ROID larger than 1. That means, the input
data rate to the components increases through an intermediate component in the
chains. The optimization approach obviously tries to map the two components
with such a large data rate between them into one node. By mapping the link

○ � ○ 59

4 Embedding Services with Arbitrarily Ordered Components

Requests

M
ea

n
re

m
. c

ap
. o

ve
ra

ll
lin

ks

(a)

Requests

M
ea

n
re

m
. c

ap
. o

ve
ru

se
d

lin
ks

(b)

Requests

M
in

. r
em

. c
ap

. o
ve

ru
se

d
lin

ks

(c)

Requests

M
in

. r
em

. c
ap

. o
ve

ru
se

d
no

de
s

(d)

Requests

Ru
nn

in
g

tim
e

(m
s)

(e)

Requests

Su
cc
es
sr
at
io

(f)

Figure 4.10: Evaluation results for the service embedding heuristic approach

between them to an internal link in the node (a self-loop), this part of the flow
does not consume capacity on inter-node links. The heuristic, in contrast, cannot
foresee this increase in the data rate and simply embeds the components into
nodes with enough capacity along the shortest path that can carry the maximum
data rate over the chain.

The same effect can be observed in other sets as well. However, the difference
between the results is influenced by other parameters, as well. For example, the
VCSs in Set 3 have the same structure as those in Set 1 (simple chain) and include
some components that increase the data rate. The difference of results in this case

60 ○ � ○

4.5 Evaluation of Service Embedding Heuristic

is smaller than the difference for Set 1, because the number of VCSs in Set 3 is
twice as much as the number of VCSs in Set 1 ; that is, the input data rate to
each VCS is smaller in Set 3 and hence, the data rate of the flow after leaving the
component that increases the data rate is smaller and has a smaller effect than it
has in the case of Set 1.

The difference of the heuristic results to optimal results is also affected by the
fact that the VCSs with complex structures are broken into simple chains and
the chains are mapped to the network one by one using the heuristic. This is
reflected, for instance, in the embedding results for Set 2 and Set 5, which consist
of VCSs with branches in their structure. In such VCSs, the location of the service
components that appear in more than one simple chain in the service structure
(e.g., f1 in Figure 4.9d, which is a part of all 3 simple chains between a1 and a2)
is determined only based on the first chain that is embedded. The optimization
approach, in contrast, considers the whole VCS at the same time and can find
better a better mapping.

I also evaluate the minimum link capacity that remains in the network after
the embedding, over the links that are used for the VCSs. The heuristic always
selects the path with the smallest bottleneck value among all the paths that have
enough capacity for the data rate of the VCS that is being embedded. As shown in
Figure 4.10c, compared to the results of the optimization approach, this behavior
does not cause much higher chances of congesting the network links. The largest
difference is around 52 % and again belongs to Set 1 as described before. However,
for VCSs with a more complex structure, like in Set 2 and Set 5, the heuristic
approach can get as close as 90 % to the behavior of the optimization approach
regarding this metric.

Although none of the embedding approaches explicitly attempts to optimize
the usage of resources on network nodes, in Figure 4.10d I show the remaining
capacity on the most congested network node after the embedding. There is no
significant difference between the behavior of the heuristic and the optimization
approach in this regard.

The difference in the run times of the two approaches is shown in Figure 4.10e,
on a logarithmic scale. Set 5 is the most complex input for the optimization
approach among my test sets. Finding a solution for this set requires around 31
minutes on average in my test environment, using the Gurobi Optimizer [21] on a
machine with Intel X6560 CPUs running at 2.67 GHz. On the same machine, the
heuristic can find a solution in around 69 milliseconds.

As described in Section 4.4, no backtracking step is included in the heuristic
that would, for example, try another path in case a chain cannot be placed along
the first suitable path found by the SSSP-AF algorithm. Therefore, I show a
comparison of the success ratio between the algorithms in Figure 4.10f. I consider
a run as successful if an embedding can be calculated for the complete set of
requested VCSs in that run.

A failure ratio of around 35 % can be observed for Set 2. Resource demands of
the components increase with the incoming data rate. As the input data rates and
start and end locations are assigned randomly in each run, the resource demands
of the components can differ greatly over different runs. Therefore, in some cases,

○ � ○ 61

4 Embedding Services with Arbitrarily Ordered Components

the embedding is simply not feasible because the network does not have enough
resources to host the VCS. Because of the branched structure and ROID of
individual service components in Set 2, this effect is stronger for this input set.
Even the optimization approach cannot find a solution for all of the runs using
this set. The results can be improved, for example, by trying the second-best
path when the embedding of a chain fails. For other sets, the success ratio is
acceptable. As described in Section 3.2.1, I assume every data center node in
this model likely has enough capacity for hosting a reasonable number of service
components. Therefore, as long as there is a path in the network that has enough
capacity to route the required traffic between the start and end point of a chain,
the heuristic will find this path and place the components on the nodes along this
path.

4.6 Conclusion

In this chapter, I have described a heuristic for selecting a representative subset of
candidate service graphs and combining the service graphs from different pliable
VCSs that include arbitrarily ordered service components. The output is a set
of Pareto-optimal points with respect to different metrics that represent possible
variations in the structure and resource demands of the pliable VCSs.

I have shown the evaluation results for the selected service graph combinations
using a joint placement, scaling, and routing optimization (A-SPRING) approach,
configured for congestion control in network nodes and links. The results show
that the selected combinations well represent the variety of options in the Pareto
set of all possible service graph generation and combination options. For large
sets of pliable VCSs that include arbitrarily ordered components, the selection
heuristic can reduce the decision time by eliminating at least half of the possible
embedding options.

The evaluation results for this approach show the feasibility of defining pliable
VCSs with arbitrarily ordered components, circumventing the extensive compu-
tational overhead for calculating the optimal scaling, placement, and routing for
all possible candidate service graph that may result from these pliable VCSs.

Depending on the optimization objectives for a group of pliable VCSs and the
network where they will be deployed, the selection heuristic may produce more
than one suitable combination for the service graphs of all pliable VCSs. These
combinations can be used in different ways. For example, one can try embedding
all selected combinations and pick the best option for actual deployment. Another
interesting possibility would be to change the structure of services for adapting
the deployments to the network state. For example, by categorizing the selected
combinations according to specific metrics of interest and using different combina-
tions over time. One can do the initial deployment using a combination with the
lowest compute resource requirements and switch to the one with the lowest link
capacity requirement if a high link utilization is detected. If the current deploy-
ment of a service is facing performance issues due to link capacity problems, a new
composition of the service components with a more appropriate link utilization

62 ○ � ○

4.6 Conclusion

may be selected and deployed for serving the resilience objectives of VCSs and
the underlying network.

I have also presented and evaluated a heuristic for finding quick and close-to-
optimal solutions to the service embedding optimization problem. This algorithm
can be used for embedding pliable or fully defined VCSs. The evaluation results
shows a maximum of 5 % deviation of the heuristic results from optimal results,
designed with the objective of maximizing the mean remaining data rate on net-
work links.

This fast embedding approach provides more opportunities as a result of defin-
ing pliable VCSs with arbitrarily ordered components. It reduces the computation
time for calculating a close-to-optimal embedding for every combination of differ-
ent candidate service graphs for a group of pliable VCSs. In this way, if necessary,
all possible combinations of different service graph candidates can be evaluated
before the actual deployment. The results can be stored and used for better
scaling and adaptation decisions, e.g., by switching to a more suitable ordering of
service components for a group of already deployed pliable VCSs, to accommodate
additional services or to react to changes in the load.

Like every other adaptation mechanism, changing the order of traversing service
components in a pliable VCS may require additional re-configuration of deployed
instances, re-routing service flows, or state migration to ensure an uninterrupted
service delivery. I further discuss the practical applicability of the presented ap-
proaches in Chapter 9.

○ � ○ 63

5
Services with Load-Proportional
Structures

5.1 Challenges . 65

5.2 Modeling Resource Demands and Performance . . . 70

In Chapter 3, I have introduced the pliable Virtualized Composed Services
(VCSs) with arbitrarily ordered components and addressed the embedding prob-
lem for these VCSs, the A-SPRING problem, in Chapter 4.

In Section 5.1, I describe the challenges that I tackle in the following three
chapters, regarding pliable VCSs with load-proportional structures. An important
requirement for describing these VCSs using service templates and the following
template embedding process is a formal way of describing the resource demands
of VCSs based on the load they need to handle. To show the feasibility of such a
description, in Section 5.2, I present the results of some experiments and example
description and formalization methods that can be used in service templates for
pliable VCSs with load-proportional structures. This chapter partially includes
figures and verbatim copies of the text from my papers [26, 31, 32, 34, 30].

5.1 Challenges

In Chapter 3, I have described pliable VCSs including a set of components that
can be traversed in an arbitrary order. Instead of using the conventional descrip-
tors, these pliable VCSs can be described using a more flexible specification model
(Section 3.2.1). Such a flexibility in the service structure is useful and practical
only if the resulting service functionality remains intact after changing the order
of traversing the components. The specification and embedding approaches de-
scribed for pliable VCSs in Chapter 3 and 4 are not sufficiently comprehensive and
generic to address the limited precision and flexibility of conventional descriptors
and service life-cycle management approaches for all kinds of VCSs.

Therefore, I extend the notion of pliable VCSs by focusing on VCS with load-
proportional structures. I assume the case that is more commonly considered in

65

5 Services with Load-Proportional Structures

S FW SRV
(a) Example uni-

directional template

0 1

3 2

S1
FW1

SRV1

S2

(b) Embedding option 1

0 1

3 2

FW1

SRV1

FW2

SRV2

S1

S2

(c) Embedding option 2

Figure 5.1: Example embedding options for a simple uni-directional template

related studies, where the order of traversing the service components is pre-defined
and fixed. Instead, the number of instances required for each service component
and the resource demands of each instance depend on the data rate that each
component should process. This, in turn, is influenced by the data rate and the
distribution of the sources of service flows in the substrate network.

As described in Section 1.1, these VCSs can be uni-directional, e.g., consider-
ing only the forwarding direction from service components towards the users, or
bi-directional, e.g., considering the incoming requests from users and the flows
sending back the requested content to the users.

Figure 5.1a shows a simple uni-directional VCS, which consists of a firewall
(FW) that should be applied to the requests initiating from sources (S) towards
a virtual server (SRV).

This simple template can be embedded into the example substrate network
shown in Figure 5.1 in multiple ways. Two possible embedding options (among
many) are illustrated in this figure. For finding the best embedding, different
trade-offs should be considered. For example:

• Option 1 shown in Figure 5.1b results in a lower number of instances com-
pared to option 2 in Figure 5.1c, possibly resulting in lower resource con-
sumption in idle times.

• Option 2 results in lower latency for the users represented by sources S1 and
S2 than option 1.

• Option 1 requires high resource capacity on node 1 of the substrate network
to handle the data rate of the flows initiating from both sources. Each
instance of the FW and SRV components in option 2 have a lower resource
demand than the corresponding instances in option 1.

• Option 1 consumes link capacity for the node 0–node 1 connection as well

66 ○ ¸ ○ / ○ T ○ / ○ ¸ �

5.1 Challenges

SA SRVFW
(a) Template of CDN A

SB FW SRV

PCT
(b) Tempalte of CDN B

0 1

3 2FW1

SRV

PCT

SA1

SB1

SRV

(c) Initial embedding

0 1

3 2

SA1

SB1

SA2
FW2

SRV

PCT

SRVFW1

(d) Embedding adjusted to new source

Figure 5.2: Example embeddings of two bi-directional VCSs

as the node 2–node 1 connection, while the virtual links required for the
embedding option 2 can be realized within node 0 and node 2.

I consider these challenges for embedding uni-directional pliable VCSs in Chap-
ter 6.

Figure 5.2a and Figure 5.2b show the structure of two example bi-directional
VCSs that model Content Delivery Network (CDN) services A and B, respectively.
Figure 5.2c shows an example embedding of these two VCSs. Each VCS has its
own user group, represented by sources SA

1 and SB
1 . In VCS A, user requests

go through a stateful firewall (FW) towards a content distribution server (SRV),
deployed as a Physical Network Function (PNF) in node 1; the requested content
returns to the users through the same firewall. VCS B is a virtualized version of
this CDN and, additionally, requires the service flows to go through a parental
control function (PCT) before returning to the users through the firewall. In this
example, all of the flows require the same functionality and configuration from
the firewall. Therefore, the requests can be mapped to the same instance of the
stateful firewall to reduce resource costs. This requires sufficient resources at the
node where the firewall is deployed to handle all of the requests.

If the provider of VCS A needs to expand its coverage to additional users in a
different geographical location (Figure 5.2d), a new instance of the firewall might
need to be instantiated in a suitable location. The embedding of both VCSs
needs to be re-calculated (taking the existing deployments into account) to find
the optimal number of instances required for the service components and their
optimal location (where optimal can be defined per-scenario).

I tackle the problem of joint scaling, placement, and routing for bi-directional
pliable VCSs in Chapter 7. In addition to the challenges described earlier in
this section for embedding uni-directional VCSs, I also deal with the following

○ ¸ ○ / ○ T ○ / ○ ¸ � 67

5 Services with Load-Proportional Structures

challenges for bi-directional VCSs:

• Correctly routing different flows initiating from different locations in the
network through instances of the required service components (as defined in
the service template) back to their source location.

• Using the same instance of a stateful service component in upstream and
downstream forwarding directions for each flow, to ensure state consistency
and correct processing results. E.g., in Figure 5.2d, the content distribution
server must forward the flows originating from sources SA

1 and SA
2 to the

instance of the stateful firewall that has already seen the corresponding
upstream flow.

• Incorporating service components with fixed locations and pre-defined re-
source demands in the template embedding approach (this challenge is not
specific to bi-directional VCSs and can be incorporated in uni-directional
VCS models, as well).

In Section 1.1, I have described another category of pliable VCSs with load-
proportional structures, namely, the heterogeneous VCSs that consist of multi-
version components. In Chapter 8, I model these VCSs as a variant of uni-
directional pliable VCSs. In Chapter 8, I present solutions for the joint scaling,
placement, and routing problem for heterogeneous pliable VCSs.

In addition to the trade-offs that should be considered for embedding ordinary
uni-directional VCSs (as described earlier in this section), different deployment
versions bring along additional challenges and trade-offs that I consider in my
model and solution approaches for this problem.

Figure 5.3a shows the structure of an example heterogeneous VCS. In this VCS,
videos are streamed from different servers (S) located in different nodes of the net-
work towards pre-defined locations of different user groups (U). A Codec (CDC)
function decodes and encodes the video streams, e.g., to adjust them to different
end devices. This service component can be deployed as a Virtual Machine (VM)
version (shown with a solid background) that uses CPUs for its processing or
as a GPU-accelerated version (ACC) (shown with a patterned background) that
consumes CPUs and (more expensive) GPUs for processing requests faster. In
Figure 5.3b, I assume the VM version is the more efficient option for handling
low data rates from the server, based on the cost model that is in place for using
the resources. If the source data rate increases, the VM version would, however,
require a larger amount of CPU allocation to be able to function with the ex-
pected performance. With even higher data rates, the VM version cannot operate
efficiently anymore. The amount of load that each instance can handle is also
limited by the capacity of the hosting node and the corresponding links in the
network.

An example adaptation of this embedding is shown in Figure 5.3c. The chal-
lenge is to ensure the optimal number of instances of the CDC are deployed in the
optimal locations (e.g., with respect to the latency and data rate of the created
paths) using the best deployment version, considering the trade-offs between per-
formance and cost. In this example, the initial VM version of the CDC is replaced

68 ○ ¸ ○ / ○ T ○ / ○ ¸ �

5.1 Challenges

S
CDC(VM)

U
CDC(ACC)

(a) Example heterogeneous tem-
plate

0 1

3 2

S1
CDC1

U1

U2S2

(b) Initial embedding

0 1

3 2

CDC1

U1

U2CDC2

S1

S2

(c) Embedding adjusted to increased
data rate of the sources

Figure 5.3: Example embedding options for a simple heterogeneous template

by a GPU-accelerated version that processes most of the video streams from both
sources. To avoid using too many of the costly resources for handling all of the
video streams, it might even make sense to create an additional instance of the
CDC. In this example, a smaller portion of the video streams are handled by a
local VM-based version of the CDC in node 3 and the rest are forwarded to the
more powerful remote instance.

In all of the mentioned approaches, the resource demands of each service com-
ponent in the pliable VCSs are defined as a function of their incoming data rate in
the templates. This deterministic relationship between the load and the resource
demands can be determined using automatic service profiling methods or based
on historical usage data. In Section 5.2, I show the feasibility of formalizing these
relationships and show example methods for describing them.

Similar to the A-SPRING model, for pliable VCSs with load-proportional com-
ponents, I assume an M/D/1 queuing model within each instance of a service
component. In the U-SPRING and B-SPRING approaches, for simplicity, I do
not consider the waiting times within service components. In these approaches,
the deterministic service times can be added to the path delays to get the end-to-
end latency for service flows. In the M-SPRING approaches, I assume the total
time in system depends on the input data rate, as the waiting time increases when
the input data rate increases. The actual service time for each instance, however,
does not depend on the load.

○ ¸ ○ / ○ T ○ / ○ ¸ � 69

5 Services with Load-Proportional Structures

5.2 Modeling Resource Demands and Performance

Together with M. Peuster and M. Illian, we have designed and conducted a set of
experiments [30, 31] to understand the behavior of service components in differ-
ent load situations and how the amount of allocated resources can influence the
performance of a VCS. The data from these experiment is available online [96].
Some parts of this section are based on an initial version of these experiments
done in the course of the bachelor’s thesis of M. Illian [39], which are included
here for completeness, marked with the corresponding references.

Existing descriptors for service components and how they are used by cloud and
Network Function Virtualization (NFV) Management and Orchestration (MANO)
systems have two serious shortcomings that we have highlighted using our exper-
iments:

1. Resource demands of a service component depend on the load and the
targeted performance. Therefore, defining a fixed and constant set of re-
sources to be allocated to each service component can result in over-/under-
estimating the required resources and lead to sub-optimal states for both the
service and the underlying network. Moreover, predicting the relationships
between the resource demands of service components (e.g., CPU, memory)
and the targeted values of performance metrics of interest for each VCS
(e.g., frame rate, video resolution) is cumbersome to do for a developer.

2. The resource demands and the performance of a component in a VCS de-
pend on the allocated resources and the performance of other components
in the VCS. Therefore, any attempt to model the resource demands of a
component that is chained together with other components needs to con-
sider the dependencies to other components as well as the dependencies to
the load at each point in time.

We have set up a testbed to characterize such relationships in a video streaming
scenario, which is a common application deployed on geographically distributed
networks. In this section, I present some results from analyzing the data from
these experiments. More details about the experiments and the results can be
found in the corresponding publications [30, 31, 39].

We have performed a large set of performance measurements using a real-world
VCS to collect the initial data needed to build and train realistic performance
models. We have used a video streaming VCS consisting of a video encoder
Virtual Network Function (VNF) (FFserver [97] and FFmpeg [98]) and a cache
VNF (Squid 3.5.12 [99]) configured and built with default settings and installed
on Ubuntu 16.04 VMs. To simulate the users that access the video streams, we
have used the HTTP client GNU Wget [100] deployed in an additional VM. We
have measured both individually deployed service components as well as a fully
deployed VCS.

Figure 5.4 shows our measurement setup, which is an OpenStack Ocata [101]
testbed running on four physical machines with Intel(R) Core(TM) i5-4690 CPU
running at 3.50 GHz with 16 GB memory. We have configured three of these

70 ○ ¸ ○ / ○ T ○ / ○ ¸ �

5.2 Modeling Resource Demands and Performance

Testbed

Physical Node 2Physical Node 1 Physical Node 3

User
(wget)

Cache
(Squid)

Encoder
(FFmpeg)

Figure 5.4: Measurement testbed with the used video streaming
VCS (Cache ↔ Encoder) and the simulated users running in
three VMs deployed on three physical compute nodes.

Table 5.1: Measurement Parameters

Parameter Values

#vCPUs encoder 1 to 4
#vCPUs cache 1
Codecs H.264, H.265
Videos bunny [103], doc1 [104], doc2 [105], game [106], noise [107]
Resolutions 426x240, 640x360, 854x480, 1280x720, 1920x1080
Frame rates 24, 30, 40, 50, 60
Target bit rates 1000 Kb/s to 22000 Kb/s

machines as compute nodes so that each service component and the simulated
user VM can be executed on its own physical machine, to eliminate noisy neighbor
effects [102] from our measurements. All machines are interconnected with two
1 GigE links, one for control and one for the data plane.

In our experiments [30, 31, 39], the simulated users access a video stream de-
livered by the cache VNF and encoded by the encoder VNF on-the-fly. For each
new experiment, the cache was restarted so that all streaming content had to be
fetched from the encoder instead of using the cached streaming data. We collected
the CPU and memory utilization of each of the used VNFs, transmission statistics
(like data rates) between encoder and cache as well as between cache and users.
We also recorded application-level metrics, like encoded frames per second. For
each run, we configured the encoder VNF to compress a 60-second video, given in
a resolution of 1920x1080, to a target resolution between 426x240 and 1920x1080,
using target bit rates between 1000 Kb/s and 22000 Kb/s, frame rates between 24
and 60, and using either the H.264 or H.265 encoding standard. The used encoder
requires a pre-set value for the trade-off between video quality and encoding time,
which we set to medium for videos with low bit rates and good visual quality. Ta-
ble 5.1 summarizes the full list of used parameters for the executed measurements.
We have conducted a total of 18500 experiments with these configurations.

I show examples of the prediction models we have developed based on these
experiments in the rest of this section.

We used models based on Support Vector Regression (SVR) and Polynomial

○ ¸ ○ / ○ T ○ / ○ ¸ � 71

5 Services with Load-Proportional Structures

Regression (PR) for predicting the minimum number of Virtual CPUs (vCPUs)
for the encoder to reach the desired performance. The training data we have
used for creating the SVR-based model consists of the test runs where the actual
frame rate was never below the targeted frame rate, using the minimum number
of vCPUs among all such observations. For this purpose, we have discarded the
experiments where the frame rate was below the target as a result of the selected
configuration. We have set the parameters of the model by testing different values
and evaluating them based on the resulting Mean Squared Error (MSE) and the
visual representation of the models.

Figure 5.5a shows a plot for predicting the number of vCPUs based on bit rate,
resolution, and frame rate. To be able to visualize this 4-dimensional relationship,
we have fixed the bit rate to 5500 Kb/s in this plot. All plots shown in the rest
of this section are generated based on the data from experiments with the H.264
encoding standard.

For the PR-based approach, we have tested polynomials of degrees 0 to 10.
While degree 7 gave the lowest MSE, the plots suggest a highly over-fitted model
using this degree. Figure 5.5b shows the PR model (for bit rate 5500 Kb/s) us-
ing the following 1st-degree polynomial [39], which resulted in the best trade-off
between the MSE value and the over-fitting that was visible in the graphical repre-
sentations. c(b, r, f) represents the number of vCPUs, given bit rate b, resolution
r, and frame rate f . All coefficients in this and all following functions have been
rounded to 2 decimal points. b is given as Kb/s, r as height of the video in pixels
assuming a 16:9 aspect ratio, and f as frames/s. Moreover, we have divided the
values of these parameters by powers of 10 in our experiments, such that all values
are between 0 and 1, to avoid computational errors we were observing in our SVR
models using the actual values. Black dots represent the measured data points.

c(b, r, f) = 3.29 · r + 1.77 · f + 1.10 · b− 0.96

Comparing the MSE and different plots of the SVR and PR models, the SVR-
based approach gives better predictions for the minimum number of required
vCPUs.

We have also developed additional SVR and PR models to predict the mini-
mum number of required vCPUs c based on the target bit rate b, resolution r, or
frame rate f , individually. The following equations [39] show the corresponding
polynomials:

c(b) = 15.12 · b5 − 50.31 · b4 + 62.12 · b3 − 35.20 · b2

+ 9.58 · b+ 0.10

c(f) = −0.017 · f 2 + 0.93 · f + 1.70

c(r) = −111.57 · r2 + 35.55 · r + 0.73

Similar to the prediction models for the number of required vCPUs, we have
developed SVR and PR models for predicting the maximum amount of memory
used for reaching a target performance level in a given configuration among all
videos.

72 ○ ¸ ○ / ○ T ○ / ○ ¸ �

5.2 Modeling Resource Demands and Performance

(a) SVR approach [39] (b) PR approach [39]

Figure 5.5: Prediction of required vCPUs for the encoder based on bit rate, reso-
lution, and frame rate, shown for bit rate of 5500 Kb/s.

(a) SVR approach [39] (b) PR approach [39]

Figure 5.6: Prediction of required memory for the encoder based on bit rate, res-
olution, and frame rate, shown for bit rate of 5500 Kb/s.

As training data for the SVR-based prediction model, we have taken the memory
used in test runs where the minimum number of vCPUs are used and no violation
of the target values for bit rate, resolution, and frame rate has occurred.

Figure 5.6a shows the SVR-based model, for bit rate of 5500 Kb/s, with model
parameters that resulted in the lowest MSE. Figure 5.6b shows the PR-based
model using a 1st-degree polynomial [39], which resulted in the best trade-off
between the MSE and the over-fitting detectable in different plots. In the corre-
sponding function, m(b, r, f) represents the maximum required memory (in MB)
to achieve a given bit rate b, resolution r, and frame rate f .

m(b, r, f) = 472.54 · r + 196.77 · f + 18.38 · b− 130.51

To capture the inter-dependencies among the VNFs in our VCS, we have also
developed models to predict the CPU utilization of the cache VNF based on the
resolution and the number of vCPUs that are allocated to the encoder VNF.

○ ¸ ○ / ○ T ○ / ○ ¸ � 73

5 Services with Load-Proportional Structures

Encoder vCPUs 1
2

3
4

Resolution (height)
2403604807201080

CP
U

Ut
iliz

at
io

n
(%

)

10

20

30

40

(a) SVR approach [31]

Encoder vCPUs 1
2

3
4

Resolution (height)
2403604807201080

CP
U

Ut
iliz

at
io

n
(%

)

10

20

30

40

(b) PR approach [31]

Figure 5.7: Prediction of CPU utilization of the cache based on resolution and the
number of vCPU cores assigned to the encoder.

Figure 5.7a shows the SVR model and Figure 5.7a shows the PR-based model
using a 3rd-degree polynomial. It can be observed that the CPU utilization of the
cache is clearly influenced by the allocated CPU to the encoder.

These experimental results show the feasibility of characterizing the resource
demands and performance metric values of service components, which is a re-
quirement for the placement, scaling, and routing approach I propose in this
dissertation for pliable VCSs.

These results clearly show that service components have to be profiled in the
target VCS setup, in which they are planned to be executed. Only in this way, the
resource utilization and performance dependencies among the service components
can be captured and used for accurate prediction and resource planning models.
In Chapter 9, I briefly describe the existing approaches to service profiling and
their practical applicability.

Our analysis shows that these relationships are non-trivial even for simple func-
tions, reinforcing the need for experimental data for benchmarking and further
analysis. Our regression models required manual parameter tuning and checks
based on MSE and visual representation of the results. For an automated pro-
cess, more flexible approaches are required. These approaches are out of the scope
of this dissertation. For specifying the resource demands of the pliable VCSs based
on the input data rate, I assume there are existing profiling mechanisms that can
provide the required performance and resource consumption models.

74 ○ ¸ ○ / ○ T ○ / ○ ¸ �

6
Embedding Uni-Directional Services
with Load-Proportional Structures

6.1 Model . 76

6.1.1 Substrate network 76

6.1.2 Service Template 76

6.1.3 Template Embedding 78

6.1.4 Overlay . 79

6.2 Problem Formulation 81

6.3 Problem Complexity 83

6.4 Optimization Approach 83

6.4.1 Constraints . 84

6.4.2 Optimization Objective 86

6.5 Heuristic Approach . 89

6.6 Evaluation . 91

6.6.1 Comparison of Optimization and Heuristic Approaches 92

6.6.2 Scalability . 94

6.6.3 Analysis . 95

6.7 Conclusion . 96

In this chapter, I tackle the joint scaling, placement, routing problem for uni-
directional pliable Virtualized Composed Services (VCSs) (U-SPRING). I describe
the model and assumptions in Section 6.1. I present the problem formulation
in Section 6.2 and the problem complexity in Section 6.3. In Section 6.4 and
Section 6.5, I present the optimization and heuristic approaches to this problem,
respectively, which I have developed in a joint work with Z. Á. Mann. I present
the evaluation results of the approaches in Section 6.6. I conclude this chapter
in Section 6.7. This chapter partially includes figures and verbatim copies of the
text from my papers [26, 34].

75

6 Embedding Uni-Directional Services with Load-Proportional Structures

Table 6.1: U-SPRING Substrate Network Parameters

Symbol Definition

Gsub = (V, L) Substrate network graph.
v ∈ V , l ∈ L Substrate network nodes, links.
capcpu(v), capmem(v) CPU, memory capacity of v.
cap(l), d(l) Capacity, delay of l.

6.1 Model

This model consists of three different graphs for representing (i) the abstract struc-
ture of the pliable VCS, (ii) a concrete and deployable instantiation of the VCS,
and (iii) the substrate network. I use different terms and notations to distinguish
these graphs, described in the rest of this section. While the substrate network
model is similar to the A-SPRING model (described in Section 3.2.1), there are
differences between the A-SPRING model and the U-SPRING model in how the
abstract structure of a pliable VCS and the corresponding deployable service graph
are described. For example, in the U-SPRING model, the maximum number of
instances for each service component or the maximum number of deployed VCSs
that can reuse and share an instance are not specified.

6.1.1 Substrate network

I model the substrate network as a connected, directed graph Gsub = (V, L). Each
network node v ∈ V has a limited CPU capacity capcpu(v) ≥ 0 and a limited
memory capmem(v) ≥ 0. This can be easily extended to other types of resources,
e.g., disk space, special-purpose compute capacity, etc. Moreover, I assume that
every node has routing capabilities and can forward traffic to its neighboring nodes.
CPU and memory capacities of the nodes can be 0, e.g., to represent conventional
switches with no compute capabilities.

Each network link l ∈ L supports a maximum data rate of cap(l) and has a
given delay of d(l).

For each node v, I assume that the internal communications (e.g., the commu-
nication inside a data center) can be realized at unlimited data rate and negligible
delay.

On top of such a substrate network, operated by a network operator, different
services belonging to different service providers can be deployed and run.

Table 6.1 summarizes the network-related parameters used in the U-SPRING
problem formulation.

6.1.2 Service Template

The substrate network has to host a set T of pliable VCSs. I define the structure
of each VCS T ∈ T using a service template, which is a connected, directed,

76 ○ ¸ ○

6.1 Model

𝜆1
𝜆2

2∙𝜆1fcpu": 3∙𝜆1+𝜆2+1
fmem": 𝜆1+2∙𝜆2+5 0.5∙𝜆2

Figure 6.1: An example component and its resource demands and outgoing data
rate defined as functions of the data rates λ1 and λ2 on its two inputs

A
B

D

C
S

Figure 6.2: An example template consisting of a source and four other components

acyclic graph GT = (CT , AT). I refer to the nodes and edges of the template as
components and arcs, respectively.

Each component c ∈ CT in the template represents a Virtual Network Function
(VNF), cloud service component, etc. A component c has a given number of
inputs n in

c and outputs nout
c , representing the number of ingoing and outgoing

connection points, respectively. The outgoing data rate of a component depends
on the data rate on all its inputs. This is calculated using a given function

foutc(Λ) : Rn in
c
≥0 → Rnout

c
≥0 . Λ is the vector holding the data rates of all inputs.

This function can be obtained, e.g., by referring to historical usage data or by
testing and profiling the component.

Similarly, the CPU and memory demands of each component c can be calculated

using pre-defined functions fcpuc(Λ) : Rn in
c
≥0 → R≥0 and fmemc(Λ) : Rn in

c
≥0 → R≥0,

respectively.

Figure 6.1 shows examples for the functions that define the resource demands
and output data rates of an example component.

Each arc a ∈ AT of the template connects an output of a component to an
input of another component, representing the connectivity among them. Arcs
may be described using additional details regarding the maximum tolerable de-
lay or the underlying networking technology. They impose additional constraints
on the links that can be used for realizing the connection between the two end-
points of it, i.e., the components srca , dsta . Adding these details to the model is
straightforward but for simplicity, I do not consider these aspects in this model.

Figure 6.2 shows an example template.

Source components are special components in the template. They have no
inputs, a single output with unspecified data rate, and zero resource consumption.
In the example of Figure 6.2, S is a source component whereas the others are
normal processing components.

Table 6.2 shows a summary of the parameters related to the service templates.

○ ¸ ○ 77

6 Embedding Uni-Directional Services with Load-Proportional Structures

Table 6.2: U-SPRING Template Parameters

Symbol Definition

GT=(CT , AT) Template graph.
c∈CT , a∈AT Components and arcs of template T .
n in
c , nout

c Number of inputs, outputs of c.
fcpuc(Λ), fmemc(Λ) CPU, memory demands of component c based on Λ, the

vector of data rates on inputs of c.
foutc(Λ) Data rates on outputs of component c, calculated based

on Λ, the vector of data rates on inputs of c.
srca , dsta Component where arc a begins, ends.

6.1.3 Template Embedding

A template specifies the types of components and the connections among them
as well as their resource demands depending on the load. A specific, deployable
instantiation of a VCS can be derived by embedding the template in the sub-
strate network. The template embedding process for uni-directional VCSs involves
deciding:

• how many instances of each component (horizontal scaling),

• with how many resources (vertical scaling),

• need to be instantiated in which locations (placement),

• and how the traffic should be routed among them (routing).

The outcome of the template embedding process1 is an overlay mapped to the
substrate network, described in Section 6.1.4. In each template embedding pro-
cess, multiple templates can be embedded. This process can be used for the initial
embedding of templates as well as for updating existing embeddings.

To be able to create the required number of instances for each component, I
assume either that the components are stateless or that a state management sys-
tem is in place to handle state redistribution upon adding or removing instances.
In this way, requests can be freely routed to any instance of a component. Alter-
natively, additional details can be added to the model, for example, to make sure
that the flows belonging to a certain session are routed to the right instance of
stateful components that have stored the corresponding state information.

For template embedding, a number of inputs are required. In addition to the
templates to be embedded (including the description of their components and
arcs), each template T must be accompanied by a set ST of at least one source
instance. Source instances are given as tuples (c, v, λ) ∈ ST . c ∈ CT refers to
the source component of template T and is used to differentiate between source

1Typically, a graph/virtual network/service embedding process maps a pre-defined overlay to
a given substrate network. The template embedding process defined here, however, also
includes the scaling decisions that shape the final structure of the overlay

78 ○ ¸ ○

6.1 Model

S1

S2

,𝜆1v1, S, λ1
, 𝜆1v2, S, λ2

Figure 6.3: Example instances of the source component S (of the template in Fig-
ure 6.2), located on nodes v1 and v2 of an example substrate network,
injecting flows with data rates λ1 and λ2 into the service

instances of different templates. v ∈ V specifies the location in the substrate
network where the flow initiates. λ shows the data rate of the flow. Figure 6.3
shows two example sources for the template of Figure 6.2, located on different
nodes of the substrate network.

Another optional input is the set of previously existing instances of a template’s
components. This input is required if the template embedding is used for opti-
mizing and updating an existing embedding. If a template is being embedded for
the first time for a tenant or if the new service request is not going to reuse an
already deployed shared instance of a service component, no previous embedding
is required. Previous embeddings of the components of template T are given as
a set PT of tuples (c, v). Such a tuple specifies that an instance of component
c ∈ CT exists on node v ∈ V .

Table 6.3 includes an overview of symbols and parameters related to the tem-
plate embedding process for the U-SPRING problem.

6.1.4 Overlay

The template embedding process (Section 6.1.3) maps the abstract description
of the service (service template) to a concrete deployable graph, i.e., the overlay,
embedded into the substrate network. Each overlay is a connected, directed graph,
GOL(T) = (IOL(T), EOL(T)). It consists of instances and edges.

Each overlay has exactly one template. One template can be embedded several
times, e.g., each with different identifiers, belonging to different service providers.

For each instance i ∈ IOL(T) in the overlay of template T , there exists a compo-
nent c ∈ CT that contains its specification, i.e., inputs, outputs, resource consump-
tion characteristics. Instances are mapped to network nodes and have resources
allocated to them. For each component, there can be multiple instances. I make
the simplifying assumption that two instances of the same component cannot be
mapped to the same node. The rationale behind this assumption is that in this
case it would be more efficient to replace the two instances by a single instance

○ ¸ ○ 79

6 Embedding Uni-Directional Services with Load-Proportional Structures

Table 6.3: U-SPRING Template Embedding and Overlay Parameters

Symbol Definition

(c, v, λ) ∈ ST Data rate λ of source component c from tem-
plate T at node v.

(c, v) ∈ PT An existing instance of component c with de-
ployment version ver previously embedded at
node v.

T All templates to be embedded.
C =

⋃
T∈T CT All components from templates in T .

CSRC ⊂ C All source components.
A =

⋃
T∈T AT All arcs of templates in T .

S =
⋃

T∈T ST All sources of templates in T .
GOL(T) = (IOL(T), EOL(T)) Overlay graph corresponding to template T .
i ∈ IOL(T), e ∈ EOL(T) Instances, edges of overlay.
M C

T (i) The corresponding component of instance i.
M V

T (i) The node where instance i is mapped to.
M A

T (e) The corresponding arc of edge e.

and thus save the idle resource consumption of one instance. This is mostly a
technicality to simplify the formulation of the optimization problem described in
Section 6.4. If one template is embedded multiple times, e.g., each for a different
service provider, specified with different identifiers in each template, there are no
limitations for embedding multiple instances of the same component into the same
node as they are considered different instances in this model.

For each edge e ∈ EOL(T) in the overlay of template T , there exists an arc
a ∈ AT that specifies its endpoints. Each edge e is mapped to a path in the
substrate network. This path is a set of network links that starts at the network
node to which srca is mapped and connects it to the node to which dsta is mapped.
Paths must not include loops. I assume the service flows are splittable, i.e., can be
routed over multiple paths between the corresponding endpoints in the substrate
network.

Figure 6.4 shows an example overlay corresponding to the template in Fig-
ure 6.2.

The name of the instances in the figure follows the convention that the first letter
identifies the corresponding component in the template, e.g., A1 is an instance of
component A. An overlay might include multiple instances of a specific component,
e.g., B1, B2, and B3 all are instances of component B.

An output of an instance can be connected to the input of multiple instances
of the same component, like the output of A1 is connected to the inputs of B1
and B2. In a case like that, B1 and B2 share the data rate calculated for the
connection between components A and B. Similarly, outputs of multiple instances
in the overlay can be connected to the input of the same instance, like the input
of C1 is connected to the output of B1, B2, and B3. In this case, the input data

80 ○ ¸ ○

6.2 Problem Formulation

A1

B1

D1

C1

A2

B3

D2

B2
S1

S2

Figure 6.4: Example overlay resulting from scaling the template in Figure 6.2

D1

C1

D2

B3

S1

B1

A1

S2

A2

B2

Figure 6.5: Overlay of the template from Figure 6.2 mapped into an example
substrate network according to its sources

rate for C1 is the sum of the output data rates of B1, B2, and B3.
Figure 6.5 shows a possible mapping of the overlay of Figure 6.4 to an example

substrate network, based on the pre-defined locations of S1 and S2 in the network.
It is possible to map two communicating instances to the same node, like A2 and
D2 in the example. In this case, the edge between them can be realized inside the
node, without using any links. The flow between A2 and B3 is an example of a
split flow that is routed over two different paths in the substrate network.

Figure 6.5 shows only a single overlay mapped to the substrate network for
the sake of clarity. In general, U-SPRING deals with creating several overlays
corresponding to different pliable VCSs into a substrate network.

6.2 Problem Formulation

The U-SPRING problem decides the scaling, placement, and routing for newly
requested VCSs as well as already deployed ones. The inputs and outputs of the
U-SPRING problem can be summarized as follows:

○ ¸ ○ 81

6 Embedding Uni-Directional Services with Load-Proportional Structures

• Inputs:

– Substrate network

– A template for each VCS

– Location and data rate of the sources for each VCS

– Location of previously embedded components (optional, can be empty)

• Outputs:

– For the newly requested VCSs: overlay and its mapping onto the sub-
strate network

– For the already deployed VCSs: modified overlay and its modified map-
ping onto the substrate network

A solution to the U-SPRING problem is a system configuration for the network
of an operator, which consists of the overlays of the VCSs from different service
providers and their mapping on the substrate network2. Scaling is performed
while creating the overlay from the template, while placement and routing are
performed when the instances and edges of the overlay are mapped onto the
substrate network. These steps are integrated and are performed jointly in the
U-SPRING approaches that I present in this chapter.

Ideally, every system configuration must respect all capacity constraints: for
each node v, the total resource demands of the instances mapped to v must be
within its capacity, concerning both CPU and memory. For each link l, the sum
of the flow data rates going through l must be within its maximum data rate. It
is, however, possible that some of those constraints are violated in a given system
configuration: for example, a system configuration without any violations may
become invalid because the data rate of a source has increased, as a result of a
temporary peak in resource needs or a failure in the substrate network. Moreover,
over-subscribing resources is a common practice, e.g., in the cloud computing con-
text. I allow the violation of the node and link capacity constraints in this problem
formulation to give an additional degree of freedom to the solution approaches,
which, for example, could reduce the chance of a new service deployment request
being rejected because of a temporary peak in the load of an existing service. It
is straightforward to put a hard limit or to forbid over-subscribing the resources,
if necessary for a specific scenario.

Given a current system configuration σ, the primary objective is to find a new
system configuration σ′, in which the number of constraint violations is minimal
(ideally, zero). For this, I assume that violating the node (CPU, memory) and
link capacity constraints are equally undesirable.

2A similar definition can also be used to formalize the A-SPRING problem and its objectives.
However, as I only repeat the initial A-SPRING model definition from my previous research
in Section 3.2 for completeness and without major modifications, it does not include such
a definition. In the next chapters, I define the corresponding system configurations for the
B-SPRING and M-SPRING approaches.

82 ○ ¸ ○

6.3 Problem Complexity

There are a number of further, secondary objectives, which can be used as
tie-breaker to choose from system configurations that have the same number of
constraint violations. For this, I define the following metrics of interest:

• Total delay of all edges across all overlays

• Number of instance addition/removal operations required to transition from
σ to σ′

• Maximum amounts of capacity constraint violations, for each resource type
(CPU, memory, link capacity)

• Total resource consumption of all instances across all overlays, for each re-
source type (CPU, memory, link capacity)

Higher values for these metrics result in higher costs for the system or in lower
satisfaction of service providers and their users. Therefore, the objective is to
minimize these values by selecting a new system configuration σ′ from the set
of system configurations with minimal number of constraint violations that is
Pareto-optimal with respect to these secondary metrics.

The creation of the overlay from the template and its mapping onto the sub-
strate network are defined for each VCS separately. The overlays, however, share
the same substrate network. The objectives defined in this section apply to the
whole network including all VCSs, aiming for a global optimum and potentially
resulting in trade-offs among the requirements of different VCSs.

6.3 Problem Complexity

In joint work with Z. Á. Mann and H. Karl [34], we have shown that for an instance
of the U-SPRING problem as defined in Section 6.2, deciding whether a solution
with no violations exists is NP-complete in the strong sense. This means that the
problem remains NP-complete even if the numbers appearing in it are constrained
between polynomial bounds. Because of the complexity of the problem, we can
neither expect a polynomial (or even pseudo-polynomial) algorithm for solving
the problem exactly nor a fully polynomial-time approximation scheme, under
standard assumptions of complexity theory.

6.4 Optimization Approach

In this section, I describe a Mixed-Integer Program (MIP) formulation of the U-
SPRING problem. Table 6.1, 6.2, and 6.3 show an overview the input parameters
to the MIP.

All of the problem constraints (described in Section 6.4.1) are linear equations
and linear inequalities. The objective function (described in Section 6.4.2) is also
linear. Therefore, if the functions fcpuc, fmemc, and foutc are linear for all c ∈ C,
then we obtain a Mixed-Integer Linear Program (MILP), which can be solved by

○ ¸ ○ 83

6 Embedding Uni-Directional Services with Load-Proportional Structures

appropriate solvers. For non-linear functions, a piecewise linear approximation
may make it possible to use MILP solvers to find good (although not necessarily
optimal) solutions.

Table 6.4 shows an overview of the decision variables used in the MIP.

In the problem formulation, M, M1, and M2 denote sufficiently large con-
stants, used in the so-called big-M constraints. (W)k denotes the k-th component
of a vector W . 0 denotes a zero vector of appropriate length.

The information about existing instances from previous embeddings of the VCSs
should also be taken into account during the decision process. For this, we have
defined x∗c,v as a constant given as part of the problem input:

∀(c, v) ∈ PT : x∗c,v = 1

∀c ∈ C,∀v ∈ V, if (c, v) /∈ PT : x∗c,v = 0

6.4.1 Constraints

In this section, I describe the constraints of the MIP that enforce the required
properties of the template embedding process.

Together, the constraints ensure that for every service template, at least one
instance of every component is mapped optimally to a network node that has
enough capacity. Additionally, the flows starting from the source components of
each template are mapped optimally to paths over network links with enough
capacity. The flows traverse instances of all relevant components as defined in the
template. I describe the optimization objective that drives the mapping decisions
based on these constraints in Section 6.4.2.

Mapping Consistency Rules

∀(c, v, λ) ∈ S : xc,v = 1 (6.1)

∀(c, v, λ) ∈ S : outc,v = λ (6.2)

∀c ∈ C,∀v ∈ V, k ∈ [1, n in
c] : (inc,v)k ≤M · xc,v (6.3)

∀c ∈ C,∀v ∈ V, k ∈ [1, nout
c] : (outc,v)k ≤M · xc,v (6.4)

∀c ∈ C,∀v ∈ V : xc,v − x∗c,v ≤ δc,v (6.5)

∀c ∈ C,∀v ∈ V : x∗c,v − xc,v ≤ δc,v (6.6)

Constraints 6.1 and 6.2 enforce that the placement and the output data rate
of source component instances are in line with the tuples specified in S, respec-
tively. Constraint 6.3 guarantees the consistency between the variables inc,v and
xc,v: if inc,v indicated a positive data rate on an input of instance c, then xc,v must
be 1, i.e., only an instance mapped to a node can process incoming flows. Con-
straint 6.4 is analogous for the outgoing flows, represented by the outc,v variables.
Constraints 6.5 and 6.6 together ensure that δc,v = 1 if and only if xc,v 6= x∗c,v.

84 ○ ¸ ○

6.4 Optimization Approach

Flow and Data Rate Rules

∀c ∈ C, c not a source component,∀v ∈ V :

outc,v = foutc(inc,v)− (1− xc,v) · foutc(0) (6.7)

∀c ∈ C,∀v ∈ V, k ∈ [1, n in
c] :

(inc,v)k =
∑

a ends in input k of c,v′∈V

ya,v′,v (6.8)

∀c ∈ C,∀v ∈ V, k ∈ [1, nout
c] :

(outc,v)k =
∑

a starts in output k of c,v′∈V

ya,v,v′ (6.9)

∀a ∈ A, ∀v, v1, v2 ∈ V :∑
vv′∈L

za,v1,v2,vv′ −
∑
v′v∈L

za,v1,v2,v′v =

=


0 if v 6= v1 and v 6= v2

ya,v1,v2 if v = v1 and v1 6= v2

0 if v = v1 = v2

(6.10)

∀a ∈ A,∀v, v′ ∈ V, ∀l ∈ L : za,v,v′,l ≤M · ζa,v,v′,l (6.11)

Constraint 6.7 computes the data rate on the outputs of an instance based on
the data rates on its inputs and the foutc function of the corresponding component.
The constraint is formulated in such a way that for xc,v = 1, outc,v = foutc(inc,v),
whereas for xc,v = 0 (in which case also inc,v = 0 because of Constraint 6.3, also
outc,v = 0 so that there is no contradiction with Constraint 6.4. Constraint 6.8
computes the data rate on the inputs of an instance as the sum of the data rates
on the links ending in that input. Similarly, Constraint 6.9 ensures that the data
rate on the outputs of an instance is distributed over the links starting in that
output. Constraint 6.10 is the flow conservation rule, also ensuring the right data
rate of each flow, thus relating the za,v,v′,l variables (flow data rate on individual
links) and the ya,v,v′ variables (flow data rates). Constraint 6.11 sets the ζa,v,v′,l
variables (based on the za,v,v′,l variables), so that they can be used in the objective
function (Section 6.4.2).

Calculation of Resource Consumption

∀c ∈ C, ∀v ∈ V : cpuc,v = fcpuc(inc,v)− (1− xc,v) · fcpuc(0) (6.12)

∀c ∈ C,∀v ∈ V : memc,v = fmemc(inc,v)− (1− xc,v) · fmemc(0) (6.13)

Constraints 6.12 and 6.13 calculate the CPU and memory demands of each
instance based on the fcpuc and fmemc functions of the corresponding component.
The logic here is analogous to that of Constraint 6.7.

○ ¸ ○ 85

6 Embedding Uni-Directional Services with Load-Proportional Structures

Capacity Constraints

∀v ∈ V :
∑
c∈C

cpuc,v ≤ capcpu(v) +M · ωv,cpu (6.14)

∀v ∈ V :
∑
c∈C

cpuc,v− capcpu(v) ≤ ψcpu (6.15)

∀v ∈ V :
∑
c∈C

memc,v ≤ capmem(v) +M · ωv,mem (6.16)

∀v ∈ V :
∑
c∈C

memc,v− capmem(v) ≤ ψmem (6.17)

∀l ∈ L :
∑

a∈A;v,v′∈V

za,v,v′,l ≤ cap(l) +M · ωl (6.18)

∀l ∈ L :
∑

a∈A;v,v′∈V

za,v,v′,l − cap(l) ≤ ψdr (6.19)

The aim of these constraints is to set the ω and ψ variables (based on the
already defined cpu, mem and z variables), which are used in the objective function
(Section 6.4.2). Constraint 6.14 ensures that ωv,cpu is 1 if the CPU capacity of
node v is over-subscribed, while Constraint 6.15 ensures that ψcpu is at least as
high as the amount of CPU over-subscription of any node (the appearance of ψcpu

in the objective function guarantees that it is exactly the maximum amount of
CPU over-subscription and not higher than that). Constraints 6.16 and 6.17 do
the same for memory over-subscription and Constraints 6.18 and 6.19 do the same
for the over-subscription of link capacity.

To show the interplay of the constraint, assume that the embedding shown in
Figure 6.5 needs to be optimized. Constraints 6.1 and 6.2 ensure that instances of
the source component, i.e., S1 and S2, are embedded and their output data rates
are set correctly. Constraint 6.9 ensures that these data rates are then handed out
as flows that can only end up in instances of A. These flows are mapped to network
links and instances of A are assigned input data rates using Constraints 6.10
and 6.8, respectively. Constraint 6.3 marks the instances A1 and A2 as embedded,
and Constraint 6.7 sets their output data rates using the respective foutc function.
In a similar way, the rest of the components are instantiated and embedded in the
network.

Constraints 6.5 and 6.6 ensure that the δc,v variables are set correctly. Con-
straints 6.12 and 6.13 compute the resource consumption of each instance based
on the input data rates and the corresponding fcpuc and fmemc functions. Con-
straints 6.14–6.19 make sure that the over-subscription of node and link capacities
are captured correctly, and collect the maximum value of over-subscription for each
resource type. This maximum value is used in the objective function described in
Section 6.4.2, which drives the decisions based on the constraints.

6.4.2 Optimization Objective

We have formalized the optimization objective based on the goals defined in Sec-
tion 6.2 as follows:

86 ○ ¸ ○

6.4 Optimization Approach

minimize M1 ·
(∑

v∈V

(ωv,cpu + ωv,mem) +
∑
l∈L

ωl

)
+

+M2 ·
(∑

a∈A
v,v′∈V
l∈L

(d(l) · ζa,v,v′,l) +
∑
c∈C
v∈V

δc,v

)
+

+ ψcpu + ψmem + ψdr +
∑
c∈C
v∈V

(cpuc,v + memc,v) +
∑
a∈A

v,v′∈V
l∈L

za,v,v′,l (6.20)

By assigning sufficiently large values to M1 and M2, we can achieve the fol-
lowing goals with the given priorities:

1. The number of capacity constraint violations over all nodes and links is
minimized.

2. Template arcs are mapped to network paths in a way that their total latency
is minimized. Moreover, the number of instances that need to be added or
removed is minimized.

3. The maximum value for capacity constraint violations over all nodes and
links is minimized. Also, overlay instances and the edges among them are
created in a way that their resource consumption is minimized.

This mixed-integer program can be used for initial embedding of service tem-
plates as well as for optimizing existing embeddings. For the initial embedding of
newly requested network services, the term

∑
c∈C,v∈V δc,v could be removed from

the objective function. Using this term, embeddings with fewer instances will
be preferred, even if having more instances, for example, close to different user
locations would improve the value of another metric like total delay.

○ ¸ ○ 87

6 Embedding Uni-Directional Services with Load-Proportional Structures

Table 6.4: U-SPRING Decision Variables

Name Domain Definition

xc,v {0, 1} 1 iff an instance of component c ∈ C is mapped to node v ∈ V
ya,v,v′ R≥0 If a∈AT is an arc from an output of c ∈ CT to an input of

c′ ∈ CT , an instance of c is mapped to v ∈ V , and an instance
of c′ is mapped to v′ ∈ V , then ya,v,v′ is the data rate of the
corresponding flow from v to v′; otherwise it is 0

za,v,v′,l R≥0 If a ∈ AT is an arc from an output of c ∈ CT to an input of
c′ ∈ CT , an instance of c is mapped to v ∈ V , and an instance
of c′ is mapped to v′ ∈ V , then za,v,v′,l is the data rate of the
corresponding flow from v to v′ that goes through link l ∈ L;
otherwise it is 0

inc,v Rn in
c
≥0 Vector of data rates on the inputs of the instance of compo-

nent c ∈ CT on node v ∈ V , or an all-zero vector if no such
instance is mapped to v

outc,v Rnout
c
≥0 Vector of data rates on the outputs of the instance of compo-

nent c ∈ CT on node v ∈ V , or an all-zero vector if no such
instance is mapped to v

cpuc,v R≥0 CPU requirement of the instance of component c ∈ CT on
node v ∈ V , or zero if no such instance is mapped to v

memc,v R≥0 Memory requirement of the instance of component c ∈ CT on
node v ∈ V , or zero if no such instance is mapped to v

ωv,cpu {0, 1} 1 iff the CPU demands of the instances mapped to node v ∈ V
exceed the CPU capacity of the node

ωv,mem {0, 1} 1 iff the memory demands of the instances mapped to to node
v ∈ V exceeded the memory capacity of the node

ωl {0, 1} 1 iff the data rate of the flows mapped to link l ∈ L exceeded
the maximum data rate of the link

ψcpu R≥0 Maximum CPU over-subscription over all nodes
ψmem R≥0 Maximum memory over-subscription over all nodes
ψdr R≥0 Maximum capacity over-subscription over all links
ζa,v,v′,l {0, 1} 1 iff za,v,v′,l > 0
δc,v {0, 1} 1 iff xc,v 6= x∗c,v

88 ○ ¸ ○

6.5 Heuristic Approach

6.5 Heuristic Approach

In this section, I present a heuristic, which is not guaranteed to find an optimal
solution but is much faster than the optimization approach. The heuristic can
construct new embeddings from existing ones by means of a series of small local
changes. The embedding of new templates is done in a similar way, creating
component instances one by one. While doing so, we ensure that (i) sources are
created in the pre-defined locations, (ii) the data rate produced by each instance
is forwarded to the instances according to the template, and (iii) the capacity
constraints of the nodes and the links are respected as much as possible. We
do this by iterating through the instances of each overlay once in a topological
order, possibly creating new instances if necessary; for example, when a new data
source appears or the output data rate of a source increases. A topological order
of vertices in a directed acyclic graph G = (V,E) is a linear order where every
vertex v ∈ V is traversed before vertex v′ ∈ V if there is an edge (v, v′) ∈ E.
When traversing the instances of the overlay in a topological order it is ensured
that all incoming edges of an instance i have an updated, correct data rate as all
other instances with an edge towards i have already been processed. In each step,
the algorithm aims to keep the resource consumption small, e.g., by only creating
new instances if necessary, deleting unneeded instances, or preferring short paths.

Table 6.1, 6.2, and 6.3 summarize the required inputs for the heuristic approach.
The main workflow of the heuristic approach is shown in Algorithm 6.1. It

starts by checking that each template has a corresponding overlay and each overlay
corresponds to a template (lines 2–6). If a new VCS has been requested or an
existing VCS has been stopped since the last embedding, the corresponding overlay
is created or removed at this point.

Afterwards, the mapping of the sources and source components is checked and
updated as follows (lines 7–12). If a new source has been added for the template,
an instance of the corresponding source component is created; if the data rate
of a source has changed, the output data rate of the corresponding source in-
stance is updated; if a source has disappeared, the corresponding source instance
is removed.

To propagate the changes from the sources to the rest of the instances, the
heuristic iterates over all instances and ensures that the new output data rates,
which are determined by the new input data rates, are passed on correctly over
the corresponding outputs (lines 13–24).

If the outgoing data rate corresponding to an arc a from an output k of instance
i needs to be decreased (line 22), the algorithm tries to reduce the data rate of the
edges with the lowest data rate first. In this way, some edges might be removed.
If no more edges exist that can be removed for reaching the required lower data
rate, the data rate of all of the remaining edges from output k of i that belong to
arc a is decreased by a factor of its current data rate until the required data rate
is reached. If an edge e has a current data rate of λ and the remaining data rate
to be decreased (after removing some edges) is ∆λ, its data rate is decreased by
(λ−∆λ)/λ. In this way, we limit the number of required changes to be propagated
to the rest of the overlay instances, as far as possible.

○ ¸ ○ 89

6 Embedding Uni-Directional Services with Load-Proportional Structures

Algorithm 6.1 Main procedure of the U-SPRING heuristic

1: // Remove old overlays with no templates
2: if ∃GOL(T) with T 6∈ T then
3: remove GOL(T)

4: for all T ∈ T do
5: if @GOL(T) then
6: create empty overlay GOL(T)

7: for all (c, v, λ) ∈ ST do
8: if @i ∈ IOL(T) with M C

T (i) = c and M V
T (i) = v then

9: create i ∈ IOL(T) with M C
T (i) = c and M V

T (i) = v

10: set output data rate of i to λ

11: if ∃i ∈ IOL(T), M C
T (i) ∈ CSRC, @(M C

T (i),M V
T (i), λ) ∈ ST for any λ then

12: remove i
13: for all i ∈ IOL(T) in topological order do
14: if data rates on inputs of i are 0 then
15: remove i and go to next iteration

16: compute output data rates of i
17: for all output k of i do
18: λ: sum of the data rates leaving output k
19: λ′: new data rate on output k
20: if λ′ < λ then
21: E : set of edges leaving output k
22: decrease the data rate over E by λ− λ′
23: else if λ′ > λ then
24: increase the data rate leaving output k by λ′ − λ

For increasing the data rate that leaves the current instance i (line 24), the
algorithm first checks if new instances need to be created to be consistent with
the template. This is needed in case the corresponding component of i has an
arc to a component c′ but there are no existing instances of c′ in the template.
For this, all nodes of the substrate network are considered for hosting the new
instance. The candidate node that can host the instance with the highest possible
data rate is selected. The data rate that can be forwarded to an instance is limited
by the CPU and memory capacity of the hosting node. If there are multiple such
nodes, the one that can be reached using a path with a lower delay from the node
where instance i is located is preferred. For finding the paths, we have used a
modified best-first-search [108], which runs in linear time. During the search, the
nodes to be visited are stored in a priority queue, where priority is defined as
described, based on the capacity of the node that determines the possible data
rate, as well as the delay of the possible path towards it.

If there are existing instances of c′, before creating additional instances to ac-
commodate the increased data rate, the algorithm first tries to increase the data
rate along the existing edges up to the required level. If this is not sufficient
to achieve the necessary increase, it creates further instances and edges towards

90 ○ ¸ ○

6.6 Evaluation

1
2
3

4 5
67
89

0

Figure 6.6: Example substrate network

them.
As the instances of each overlay are processed sequentially, the results created

by the heuristic are not optimal. Possible optimization steps can be employed after
the main procedure of the algorithm, to improve the initial solution. This can be
done, for example, by comparing the results of applying some of the following
changes and switching to a better embedding if possible:

• Replicating an instance i on another node and distributing the incoming
data rates to i over both of them,

• Merging two instances of a component c,

• Re-locating an instance i in the network,

• Changing the path taken by an edge e.

6.6 Evaluation

In this section, I show our evaluation results of the optimization and heuristic
approaches to the U-SPRING problem. Both approaches were implemented as
C++ programs. The implementation of the approaches is available online [37].
For solving the MILP, we have used the Gurobi Optimizer [21] 7.0.1. The service
templates used in these evaluations are inspired by the examples from Internet
Engineering Task Force (IETF) Service Function Chaining (SFC) Use Cases [93].

First, I illustrate the optimization approach on a small substrate network with
10 nodes and 20 arcs (shown in Figure 6.6) in which the CPU and memory capac-
ity of each node is set to 100 units. In this network, a VCS consisting of a source
(S), a firewall (FW), a deep packet inspection (DPI) component, an anti-virus
(AV) component, and a parental control (PC) component is embedded. Initially,
there is a single source in node 1 with a moderate data rate. Using the optimiza-
tion approach, all components of the VCS are mapped to node 1, as shown in
Figure 6.7a.

If the data rate of the source increases, the resource demand of the processing
components of the VCS increases so that they do not fit onto node 1 anymore.
Given the previous embedding as an input to the optimization approach, it scales
the VCS by duplicating the DPI, AV, and PC components and places the newly
created instances on a nearby node, namely node 3, as shown in Figure 6.7b.

Later on, a second source emerges for the same VCS on node 9. The algorithm
creates new instances of the components on node 9 to process the traffic of the new

○ ¸ ○ 91

6 Embedding Uni-Directional Services with Load-Proportional Structures

Node 1

Capacity: 100

Used: 80

S

0

FW

17

DPI

37

AV

9

PC

17

8

8

44

(a) Initial em-
bedding

Node 1

Capacity: 100

Used: 100

S

0

FW

31

DPI

40.43

AV

9.86

PC

18.71

15

8.86

4.434.43

Node 3

Capacity: 100

Used: 50

DPI

29.57

AV

7.14

PC

13.29

3.073.07

6.14

(b) After increasing source
data rate

Node 1

Capacity: 100

Used: 100

S

0

FW

31

DPI

40.43

AV

9.86

PC

18.71

15

8.86

4.434.43

Node 3

Capacity: 100

Used: 84

DPI

49

AV

12

PC

23

5.505.50

6.14

Node 9

Capacity: 100

Used: 100

S

0

FW

29

DPI

41.57

AV

10.14

PC

19.29

14

9.14

4.574.57

4.86

(c) After adding a second source

Figure 6.7: Template embedding example (memory values not shown for better
readability)

SRV
DPI

CHE

OPT
S

Figure 6.8: Service template with source component (S), streaming server (SRV),
deep packet inspector (DPI), video optimizer (OPT), and cache (CHE)

source locally, as far as possible. The excess traffic from the new FW instance that
cannot be processed locally due to capacity constraints is routed to the existing
DPI, AV, and PC instances on node 3 because node 3 still has sufficient free
capacity. The new embedding is shown in Figure 6.7c.

This small example shows the trade-offs that the template embedding process
needs to consider. In the rest of this section, I show that the U-SPRING ap-
proaches are also capable of handling much more complex scenarios. For larger
substrate networks, we have used the benchmarks for the Virtual Network Map-
ping Problem (VNMP) [109] from Inführ and Raidl [110].

6.6.1 Comparison of Optimization and Heuristic Approaches

In this section, we have used a substrate network with 20 nodes and 44 links
(substrate graph eu 20 0 prob [109]), in which multiple VCSs are deployed. Each
service is a virtual Content Delivery Network (CDN) for video streaming, con-
sisting of a streaming server, a DPI, a video optimizer, and a cache. The service
template is shown in Figure 6.8. The number of concurrently active VCSs varies
from 0 to 4 and the number of sources from 0 to 20.

Figure 6.9 shows how the total data rate of the sources (as a metric representing
the demand) and the total CPU size of the created instances (as a metric rep-

92 ○ ¸ ○

6.6 Evaluation

0

400

800

1200

1600

0

2000

4000

6000

8000

10000

1 7 13 19 25 31 37 43 49 55 61 67

To
ta

l u
se

d
C

PU
 s

iz
e

To
ta

l l
oa

d

Event number
Data rate of sources CPU size (heuristic) CPU size (MIP)

Figure 6.9: Temporal development of the demand and the allocated capacity in a
complex scenario

0

2000

4000

6000

8000

10000

0

1000

2000

3000

4000

1 7 13 19 25 31 37 43 49 55 61 67

To
ta

l l
oa

d

To
ta

l l
at

en
cy

Event number
Latency (heuristic) Latency (MIP) Data rate of sources

Figure 6.10: Total latency over all created paths for the embedded template

resenting the allocated processing capacity) change through re-optimization after
each event. An event is the emergence or ceasing of a VCS, the emergence or
ceasing of a source, or changes in the data rate of a source. The resource alloca-
tion using both the heuristic and the optimization approaches follows the demand
very closely, meaning that the algorithms are successful in scaling the templates
in both directions to quickly react to the increase and decrease in the total data
rate.

Regarding total data rate and total latency of the overlay edges, the optimiza-
tion approach performs better than the heuristic. For example, Figure 6.10 shows
the total latency over all paths created for the template in this scenario. The
reason for this difference is that in the optimization approach, the optimal loca-
tion for all required instances can be determined at the same time. This results
in shorter distances between the source and the instances. The heuristic, on the
other hand, creates instances one by one, resulting in larger data rates over larger
distances in the substrate network. In the high-load area between event 20 and
50, some problem instances are too complex to be solved within the 60 seconds
time limit that we had set for the optimizer. This results in solutions with zero
latency, as no paths are created.

In this scenario, to handle the peak demand, a total of 127 instances are created

○ ¸ ○ 93

6 Embedding Uni-Directional Services with Load-Proportional Structures

0

15000

30000

45000

60000

75000

0 20 40 60 80 100

R
un

 ti
m

e
[m

s]

Source data rate
10 Nodes, 20 Links 20 Nodes, 44 Links

(a) Run time of the MILP algorithm

0%

20%

40%

60%

80%

0 20 40 60 80 100

O
pt

im
al

ity
 g

ap

Source data rate
10 Nodes, 20 Links 20 Nodes, 44 Links

(b) Optimality gap of the MILP algorithm

0

4

8

12

16

20

10 20 30 50 100 200 500 1000

M
ed

ia
n
 r

u
n

 t
im

e
[m

s]

Number of network nodes

(c) Run time of the heuristic

Figure 6.11: Scalability of the U-SPRING approaches

using the optimization approach, while the heuristic creates 261 instances.

6.6.2 Scalability

Since the U-SPRING problem is NP-hard, the scalability of the optimization
approach is limited. In order to illustrate the quality of the solutions found in
acceptable time, we have done additional experiments. We have increased the
source data rate of the VCS from the previous experiment (Section 6.6.1), leading
to an increasing number of required instances. We have also increased the size of
the substrate network. In each case, we have run the optimization approach with
a time limit of 60 seconds. With this time limit, the MILP formulation is used as
a heuristic to solve the problem in a limited time. The solver tries to embed the
templates for 60 seconds and after that, it stops with the best solution and the
best lower bound that the solver had found until that time. The measurements
were performed on a machine with Intel Core i5-4210U CPU running at 1.70 GHz
and 8 GB RAM.

Figure 6.11a shows the run time of the optimization approach for different data
rates and substrate network sizes and Figure 6.11b shows the corresponding gap
between the found solution and the lower bound (optimality gap). For a small

94 ○ ¸ ○

6.6 Evaluation

0

2000

4000

6000

8000

10000

High, High High, Low Low, High Low, Low

To
ta

l d
at

a
ra

te

Network capacity (node capacity, link capacity)
200 Nodes, 472 Links 500 Nodes, 1288 Links 1000 Nodes, 2530 Links

(a) Total used link capacity

0
1
2
3
4
5
6

High, High High, Low Low, High Low, Low

ov

er
-s

ub
sc

rib
ed

no

de
s

Network capacity (node capacity, link capacity)
200 Nodes, 472 Links 500 Nodes, 1288 Links 1000 Nodes, 2530 Links

(b) Number of over-subscribed nodes

Figure 6.12: Impact of different node and link capacities

network with 10 nodes and 20 arcs (shown in Figure 6.6), the algorithm computes
optimal results for the lower half of source data rate values. For larger source data
rates, the optimality gap is still acceptable (around 20 %). However, for a bigger
substrate network with 20 nodes and 44 arcs (substrate graph eu 20 0 prob [109]),
the solver quickly reaches the time limit with much smaller source data rate and
also the optimality gap is much bigger. For even bigger substrate networks, the
performance of the algorithm further deteriorates, up to the point where it cannot
be run anymore because of memory problems. The large sensitivity to the size of
the substrate network is because the number of variables of the MILP is cubic in
the size of the substrate network.

As shown in Figure 6.11c, the run time of the heuristic approach remains very
low even for the largest substrate networks: for 1000 nodes and 2530 arcs (sub-
strate graph eu 1000 0 prob [109]), the run time is still below 20 milliseconds,
which makes it practical for real-world problem sizes as well.

6.6.3 Analysis

To gain further insight into the inter-dependencies between the input and out-
put parameters of the U-SPRING problem, we have experimented with different
problem sizes and different levels of resource availability. For this, we have used
the video streaming template shown in Figure 6.8 with a single source injecting
a total data rate of 1000 data units per time unit into the network, from a node
selected uniformly at random. We have used three substrate networks from the

○ ¸ ○ 95

6 Embedding Uni-Directional Services with Load-Proportional Structures

VNMP instances, with

1. 200 nodes and 472 links (substrate graph eu 200 0 prob [109])

2. 500 nodes and 1288 links (substrate graph eu 500 0 prob [109])

3. 1000 nodes and 2530 links (substrate graph eu 1000 0 prob [109])

We have created low-capacity and high-capacity configurations as follows.

• CPU and memory capacities of each node selected independently and uni-
formly at random from the range [1,5] for low capacity and [10,50] for high
capacity

• Capacity of each link selected independently and uniformly at random from
the range [50,100] for low capacity and [500,1000] for high capacity

These ranges are based on the amount of resources required to embed the tem-
plate with exactly one instance per component, as an estimation of the required
resources for handling the input data rate.

We have run the heuristic 100 times on each setup (low/high node capacity
and low/high link capacity) and each substrate network. Figure 6.12 shows some
aggregated results, with confidence intervals at 95 % confidence level.

As shown in Figure 6.12a, the algorithm adapts the amount of used link capacity
to the amount of available link capacity. On all three networks, in both setups
with low link capacity, the links are carrying considerably less data rate than
in the setups with high link capacity. This figure also shows that the algorithm
uses more link capacity for embedding the same template as the network gets
larger, increasing the total available link capacity in the network. With low link
capacity, the algorithm concentrates the instances in as few nodes as possible;
therefore, most of the traffic remains inside nodes instead of traveling across the
network. Obviously, this can result in over-loaded nodes if the node capacities are
not enough.

Figure 6.12b shows the number of network nodes with over-subscribed CPU
capacities. In the setups with high node capacity, no CPU over-subscription is
noticed. With low node capacity and low link capacity, the instances are concen-
trated in fewer nodes resulting in more node over-subscription. With low node
capacity, even with high link capacity, over-subscription cannot be avoided in these
experiments but fewer nodes are affected as the data rates could be distributed
more freely across the network.

6.7 Conclusion

In this chapter, I have described the U-SPRING problem, the joint, single-step
scaling, placement, and routing problem for uni-directional pliable VCSs. De-
pending on the amount of data rate these VCSs need to handle, different numbers
of instances are required for each service component, in different locations with
appropriate amount of CPU and memory allocation.

96 ○ ¸ ○

6.7 Conclusion

A-SPRING

VCS with arbitrarily
ordered components

SPRING

Uni-directional VCS

U-SPRING

Figure 6.13: Relation of U-SPRING to A-SPRING

I have presented the problem as an MILP that can be used with an appropriate
solver to find optimal solutions to the U-SPRING problem. As the problem is
NP-hard, the optimization approach is not applicable for large problem instances,
e.g., when a large number of templates should be embedded in the network, when
the data rate injected into the sources is large, or when the substrate network has
a large number of nodes and links.

I have also presented a heuristic that can find close-to-optimal solutions to the
problem in a considerably shorter time than the optimization approach.

Using simulation-based evaluations, I have shown that the allocated node ca-
pacity closely follows the increasing and decreasing load, using both approaches.
The heuristic cannot consider the requirements of the upcoming steps while de-
ciding the scaling, placement, and routing for each individual instance. This is
reflected in the values of the link-related metrics like the total latency and to-
tal used link capacity, which are much higher in the solutions delivered by the
heuristic, compared to the optimal results.

These approaches show the feasibility of defining pliable VCSs. Such a flexible
definition, paired with an accurate resource demand profile for the VCS, is a pow-
erful tool for service providers as well as network operators in a typical service
management and orchestration scenario. The service providers can define VCSs
without the need for the (usually inaccurate) estimation of the exact number of
required instances and the exact resource demands for each instance. Network
operators also gain additional degrees of freedom in optimizing the overall state
of the resources and the running services. For example, they can (re-)adjust the
structure of all or some of the pliable services to influence the values of their
performance metrics of interest, e.g., balancing the resource allocation among dif-
ferent services while keeping the agreed performance levels, changing the number
of instances for a certain service component as a means of re-routing the traffic
away from a congested link, etc.

As shown in Figure 6.13, the core functionality provided by the A-SPRING
and U-SPRING approaches is the joint scaling, placement, and routing for pliable
VCSs. These models and problem definitions, however, have fundamental differ-

○ ¸ ○ 97

6 Embedding Uni-Directional Services with Load-Proportional Structures

ences. The A-SPRING approaches have a limited support for vertical scaling (only
downscaling is possible) and horizontal scaling (only a simple linear relationship
is assumed between resource consumption and load). The U-SPRING approaches
have full-fledged horizontal and vertical up- and down-scaling capabilities but
cannot handle pliable VCSs with arbitrarily ordered instances.

98 ○ ¸ ○

7
Embedding Bi-Directional Services
with Load-Proportional Structures

7.1 Model . 100

7.1.1 Substrate Network 100

7.1.2 Service Template 100

7.1.3 Template Embedding 103

7.1.4 Overlay . 103

7.2 Problem Formulation 104

7.3 Problem Complexity 106

7.4 Optimization Approach 107

7.4.1 Constraints . 107

7.4.2 Optimization Objective 111

7.5 Heuristic Approach . 112

7.6 Evaluation . 114

7.6.1 Comparison of Optimization and Heuristic Approaches 115

7.6.2 Scalability . 116

7.7 Conclusion . 119

In this chapter, I propose solutions to the joint scaling, placement, routing
problem for bi-directional pliable Virtualized Composed Services (VCSs) (the B-
SPRING problem). I define the model and assumptions used for the B-SPRING
problem in Section 7.1. I summarize the problem formulation in Section 7.2 and
describe its complexity in Section 7.3. In Section 7.4 and Section 7.5, I present
the optimization and heuristic approaches to this problem, respectively, which
I have developed together with S. Schneider and H. Karl. An initial version
of these approaches were developed in the course of the master’s thesis of S.
Schneider [40]. However, we have made significant modifications to the model and

99

7 Embedding Bi-Directional Services with Load-Proportional Structures

Table 7.1: B-SPRING Substrate Network Parameters

Symbol Definition

Gsub = (V, L) Substrate network graph.
v ∈ V , l ∈ L Substrate network nodes, links.
capcpu(v), capmem(v) CPU, memory capacity of v.
cap(l), d(l) Capacity, delay of l.

𝜆"
up

𝜆"dn

fout&
up = 0.5 + 𝜆"

up

fout&dn = 𝜆"dn
fcpu& = 3 + 𝜆"

up + 𝜆"dn

fmem& = 𝜆"dn + 5

Figure 7.1: Resource demands and data rates of an example component

solution approaches, afterwards. I show the evaluation results for the approaches
in Section 7.6. Section 7.7 includes the conclusion from the chapter. This chapter
partially includes figures and verbatim copies of the text from my paper [32].

7.1 Model

I describe each network service by a service template. Based on the data rate
resulting from different flows in multiple source locations, each service template
is scaled to create an overlay. Overlays include all required instances per service
component as well as their location in the substrate network, their required re-
sources, and their ingoing and outgoing data rates. In this section, I describe the
model for each of these entities. Parts of these definitions, e.g., basic definition
of templates and components, are similar to the U-SPRING model described in
Chapter 6, therefore, I only focus on the new aspects here.

7.1.1 Substrate Network

The substrate network for the B-SPRING model is a connected, directed graph
similar to the model described in Section 6.1.1. Table 7.1 shows a summary of the
network-related parameters used in this chapter.

7.1.2 Service Template

A service template is a connected, directed graph GT = (CT , AT) that describes
the structure of a bi-directional pliable VCS. Figure 5.2a and 5.2b show example
templates for bi-directional services. I define the service templates for the B-
SPRING problem similar to those of the U-SPRING problem (Section 6.1.2),
with the following differences to model the bi-directional service flows.

Each component c ∈ CT has a given number of upstream and downstream
inputs nup

in (c) ≤ 0 and ndn
in (c) ≤ 0 as well as a given number of upstream and

100 ○ T ○

7.1 Model

downstream outputs nup
out(c) ≤ 0 and ndn

out(c) ≤ 0, representing the ingoing and
outgoing connection points. Uni-directional VCSs can be modeled if connection
points are created only in one direction and the number of connection points in
the opposite direction is set to zero.

By explicitly distinguishing upstream and downstream inputs and outputs, the
bi-directional service template can be modeled as a graph that is acyclic in each
direction. In this way, the amount of load that needs to be forwarded over each
output can be calculated based the load on the corresponding input in the right
direction.

The resource consumption for each component c depends on the data rates at
the upstream and downstream inputs and is defined by the pre-defined functions

fcpuc(Λ) : Rnup
in (c) +ndn

in (c)

≥0 → R≥0 and fmemc(Λ) : Rnup
in (c) +ndn

in (c)

≥0 → R≥0, represent-
ing the required amount of CPU and memory, respectively. Λ is the vector of
input data rates on upstream and downstream inputs of the component.

Similarly, the upstream and downstream outgoing data rates of a component
c are relative to the incoming data rates (in the respective direction) and are

specified by the pre-defined functions foutup
c (Λ) : Rnup

in (c) +ndn
in (c)

≥0 → Rnup
out(c)
≥0 and

foutdn
c (Λ) : Rnup

in (c) +ndn
in (c)

≥0 → Rndn
out(c)
≥0 , respectively. If there are multiple outputs in

one direction, the traversing flows can be split across these outputs as defined by
these functions.

Figure 7.1 shows example functions for a component that receives an expected
data rate of λup

1 and λdn
1 on its upstream and downstream inputs. The functions

define the resource demands and the outgoing data rates of the component using
the ingoing data rates.

To correctly define bi-directional VCSs and distinguish upstream and down-
stream traffic of the flows in the model, I associate the following different roles
with the components in the templates.

Each template has a mandatory single source component (SRC, for short), e.g.,
SA and SB in Figures 5.2a,5.2b. Source components have zero resource demands,
no upstream inputs, and a single output with unspecified data rate. They may
have downstream inputs, e.g., for receiving results back.

I refer to components with only upstream inputs and only downstream outputs,
e.g., the SRV components in Figure 5.2a,5.2b) as END components. Each bi-
directional template has at least one END component.

I refer to components that are neither SRC nor END as intermediate com-
ponents (INT, for short). These components send out the flows received at an
upstream (or downstream) input through at least one upstream (or downstream)
output, with a data rate that may be lower than, higher than, or equal to its
incoming data rate.

Assigning the roles SRC, INT, and END simplifies the notations and the prob-
lem formulation in Section 7.4. The components can be marked automatically, if
the upstream and downstream inputs and outputs are distinguished. This can be
defined as part of the service template for each component by the service provider
or the developer, who is familiar with the expected functionality of the service
components.

○ T ○ 101

7 Embedding Bi-Directional Services with Load-Proportional Structures

Table 7.2: B-SPRING Template Parameters

Symbol Definition

GT = (CT , AT) Template graph.
c ∈ CT , a ∈ AT Components and arcs of template T .
nup

in (c), ndn
in (c) Number of upstream and downstream inputs of c.

nup
out(c), ndn

out(c) Number of upstream and downstream outputs of c.
fcpuc(Λ), fmemc(Λ) CPU, memory demands of component c based on Λ,

the vector of data rates on upstream and downstream
inputs of c.

foutup
c (Λ), foutdn

c (Λ) Data rates on upstream, downstream outputs of compo-
nent c, calculated based on Λ, the vector of data rates
on upstream and downstream inputs of c.

srca , dsta Component where arc a begins, ends.
dmax
a Maximum delay for a.

Additionally, components can be specified as stateful, indicating that their in-
stances maintain some internal state for each traversing flow. If both upstream
and downstream traffic of a flow traverse an instance of a stateful component,
they have to traverse exactly the same instance in both directions. This is not
required for upstream and downstream traffic of a flow traversing the same state-
less component; in that case, the traffic may be routed over different instances.
When traversing a component, each flow is handled by exactly one instance of that
component. In this way, no state inconsistency can occur for flows that traverse a
stateful component only in one direction. For load balancing, different flows may
be assigned to different instances of a component. In the U-SPRING model, the
whole traffic initiating from a source of the template is considered as one flow. In
the B-SPRING model, different flows with a different data rate can initiate from
a source location, as I describe in Section 7.1.3.

Fixed components are also special components that are pinned to a certain
location in the substrate network, e.g., to model the end points (sinks) of service
flows or legacy Physical Network Functions (PNFs). They cannot be re-located
or scaled. I also assume their resource demands are zero, as they are pre-defined
and fixed and are not calculated by the SPRING solution.

A directed arc a ∈ AT connects exactly one output of a component to exactly
one input of another component in the service template. To simplify the formu-
lation of the optimization problem, I annotate each arc either as a upstream or a
downstream arc. Upstream (or downstream) arcs can only connect upstream (or
downstream) outputs to upstream (or downstream) inputs. Each arc a is addi-
tionally annotated with a delay bound dmax

a , specifying the maximum delay that
can be tolerated between the corresponding components.

Table 7.2 shows a summary of the parameters related to the service templates.

102 ○ T ○

7.1 Model

7.1.3 Template Embedding

The template embedding process for bi-directional VCSs involves deciding:

• how many instances of each component (horizontal scaling),

• with how many resources (vertical scaling),

• need to be instantiated in which locations (placement),

• and how the upstream and downstream traffic should be routed among them
(routing).

Considering both upstream and downstream traffic in the last point differen-
tiates the template embedding process for bi-directional VCSs from that of uni-
directional VCSs (Section 6.1.3).

The outcome of the template embedding process is an overlay, which I describe
in Section 7.1.4. The required inputs for this process are similar to the U-SPRING
template embedding model, described in Section 6.1.3.

I define the source instances in a slightly different way from the U-SPRING
model. Each instance of a source component (e.g., representing different popula-
tions of users in different geographic locations) has a fixed location and a given
outgoing data rate for each flow starting at this source. For every source location
v ∈ V , I assume that a set of flows together with their data rates (f, rf) ∈ FT,v is
given. ST = {FT,v|v a source location of T} collects this information (which typi-
cally changes over time). This fine-grained control over individual flows is required
to ensure different flows can traverse the right stateful instances in upstream and
downstream paths and return to the right source locations.

In addition to the inputs required for the template embedding model in the
U-SPRING problem, a template T might also include fixed components. In this
case, they should also be given as a part of the input. Fixed components are given
as a set XT of tuples (c, v). c ∈ CT shows the fixed component and v ∈ V is the
network node where it is located.

Table 7.3 includes an overview of the parameters related to the template em-
bedding process for the B-SPRING problem.

7.1.4 Overlay

Based on the sources of each template as well as the capacities of the substrate
network, an overlay GOL(T) = (IOL(T), EOL(T)) for each service template T is
created. I define the overlays in the B-SPRING model similar to those of the
U-SPRING model, described in Section 6.1.4.

Figure 5.2 shows example overlays of the templates shown in Figure 5.2a and 5.2b
embedded in the substrate network. After the services have been scaled in Fig-
ure 5.2d, there are two instances of the source component SA and one instance of
SB. Accordingly, the FW component is instantiated twice.

Table 7.3 includes an overview of the overlay-related parameters for the B-
SPRING problem.

○ T ○ 103

7 Embedding Bi-Directional Services with Load-Proportional Structures

Table 7.3: B-SPRING Template Embedding and Overlay Parameters

Symbol Definition

(c, FT,v) ∈ ST Source c of template T with its flows at node
v

(f, rf) ∈ FT,v Flow f with data rate rf
(c, v) ∈ PT An existing instance of component c previ-

ously embedded at node v.
(c, v) ∈ XT An instance of component c from template T

fixed to node v.
T All templates to be embedded.
C =

⋃
T∈T CT All components from templates in T .

CSRC, CINT, CEND ⊂ C All SRC, INT, END components
CFIX, CSTF⊂C All fixed, stateful components
A =

⋃
T∈T AT All arcs of templates in T .

Aup, Adn ⊂ A All upstream, downstream arcs
S =

⋃
T∈T ST All sources of templates in T .

X =
⋃

T∈T XT All fixed instances of templates in T .
GOL(T) = (IOL(T), EOL(T)) Overlay graph corresponding to template T .
F All flows from all sources of all templates
i ∈ IOL(T), e ∈ EOL(T) Instances, edges of overlay.
M C

T (i) The corresponding component of instance i.
M V

T (i) The node where instance i is mapped to.
M A

T (e) The corresponding arc of edge e.

7.2 Problem Formulation

B-SPRING is the problem of finding the optimal embedding for a set of bi-
directional pliable VCSs in the substrate network. For service template embed-
ding, the following inputs are required:

• Substrate network

• A set of bi-directional service templates, possibly with stateful components,
possibly sharing some components

• For each template, a set of flows and sources

• A set of instances pinned to fixed locations (optional, can be empty)

• A previous embedding of the service templates (optional, can be empty)

The template embedding process can be applied either for the initial embedding
of VCSs into an empty network or for adjusting an existing embedding.

I consider a valid system configuration similar to the definition provided for the
U-SPRING problem in Section 6.2. The B-SPRING problem has the additional

104 ○ T ○

7.2 Problem Formulation

constraint that the total delay of the paths created for an arc cannot exceed the
maximum tolerable delay defined for the arc.

I define the following metrics of interest:

• The maximum amount of over-subscription for node and link resources

• The number of instances that should be added or removed

• The total resource consumption of all overlays

• The total delay over all created paths for the overlays

The values of these metrics should be minimized to give valid solutions that are
desirable for the service providers and the network providers.

This model is flexible with respect to priorities for the optimization objectives.
For example, over-subscription of resources could be forbidden or allowed; over-
subscription avoids rejecting requests and improves utilization but jeopardizes ser-
vice performance objectives. During the embedding process, one of the objectives
is to minimize the maximum over-subscription over all node and link resources.
Alternatively, strict limits for the amount of over-subscription can be set.

If multiple service templates include the same component c (e.g., specified using
the same identifier), instances of c can be reused in the overlays of these service
templates (if this is undesirable, one can easily create a copy of c with another
identifier). In this case, the traffic belonging to each network service has to be
separated to ensure the correct forwarding of the corresponding flows. For this,
each shared component c should be adapted to create the required inputs and
outputs by each service template for the shared component. The specific outputs
created for each template should be annotated with the foutup

c and foutdn
c defined

in that template. In this model, the number and order of inputs and outputs
for the shared components must be the same in all templates that share the
component. With this assumption, the fcpuc, fmemc functions can be adjusted
automatically. For this, each variable in the function representing a specific input
should be replaced with the sum of variables for all equivalent inputs from all
templates. The constant values of the combined functions remain unchanged after
adaptation. Each overlay can use its dedicated inputs and outputs on the instances
of the shared components. Figure 7.2 shows how the CPU, memory, and data rate
functions of the example component from Figure 5.2c are adapted to allow two
service templates to share this component. Reusing the component results in a
lower idle resource consumption than the case where separate components are
used for each template.

○ T ○ 105

7 Embedding Bi-Directional Services with Load-Proportional Structures

𝜆"
up

𝜆#dn

0.5 ' 𝜆"
up

𝜆"dn
fcpu = 3 ' 𝜆"

up + 𝜆#
up + (𝜆"dn + 𝜆#dn)

fmem = (𝜆"dn + 𝜆#dn) + 5

𝜆#
up

𝜆#dn
𝜆"dn

0.5 ' 𝜆#
up

Figure 7.2: Resource demands and data rates of the example component in Fig-
ure 5.2, adapted to be shared between two templates

7.3 Problem Complexity

Using polynomial-time reduction, I show that for an instance of the B-SPRING
problem, it is an NP-complete problem to decide if a solution exists where the
over-subscription of (node and link) resources is zero. Based on the given load
and resource capacities, it is possible to check in time polynomial in the size of
the problem input whether an embedding of a set of templates results in any over-
subscription. The size of the solution is also polynomial in the size of the input,
so the problem is in NP.

The B-SPRING problem is an extension of the U-SPRING problem, which has
been proven to be NP-complete [34]. I show a reduction of U-SPRING to B-
SPRING, proving its NP-hardness. Given an instance of U-SPRING, I construct
an instance of B-SPRING as follows.

As U-SPRING only considers uni-directional service templates, for every com-
ponent in the U-SPRING model, I consider the inputs/outputs as upstream in-
puts/outputs. Similarly, I consider every template arc as an upstream arc. U-
SPRING does not include any delay bound for arcs, so for every arc I set the
maximum delay to infinity. In U-SPRING, every instance of a source component
c at node v with data rate r is specified as (c, v, r). There is no stateful compo-
nent model in U-SPRING, so the flows from sources can be distributed freely over
different instances of each component.

To create a corresponding scaling and load balancing behavior in B-SPRING,
I transform every such source instance of every template T into a source instance
with M flows, FT,v = {(f1, r/M), (f2, r/M), · · · , (fM , r/M)}. To get a limited
number of digits after the decimal point, I assume all input parameters are rational
numbers and M is a sufficiently large number to create data rate values with the
desired precision. E.g., if an implementation of U-SPRING supports values with
2 digits after the decimal point for data rates of overlay edges, I translate each
source instance with data rate r into r/0.01 flows starting from this source, each
flow having a data rate of 0.01.

Using the remaining input parameters directly as provided for U-SPRING, this
is now a complete instance of the B-SPRING problem. If there is a solution for
a U-SPRING problem instance with no violation of capacity constraints, then
the corresponding B-SPRING problem instance also has a solution without over-
subscription of the substrate network resources. Similarly, combining the data
rates of different flows from each source instance into a joint data rate, a solution
with no over-subscription found for B-SPRING is also a solution with no violations

106 ○ T ○

7.4 Optimization Approach

for U-SPRING.

The reduction can be performed in time polynomial in the size of the input, so
B-SPRING is an NP-hard problem. Together with the fact that it is in NP, it
follows that this problem is an NP-complete problem.

7.4 Optimization Approach

In this section, I present an Mixed-Integer Program (MIP) formulation for B-
SPRING, which is an extension of the MIP formulation of the U-SPRING problem
(Section 6.4). Table 7.1, 7.2, and 7.3 show an overview of the input parameters
to this problem.

All constraints are linear. The problem is a Mixed-Integer Linear Program
(MILP) if the functions fcpuc, fmemc, foutup

c , and foutdn
c are linear for each com-

ponent c.

Given the inputs described in Section 7.2, the following MIP formulation can
be used to find optimal solutions to the B-SPRING problem.

The decision variables are presented in Table 7.4. In the rest of this chapter,
M represents a constant that is sufficiently large, used in the so-called Big-M
formulations. (W)k shows the k-th component of a vector W . 0 is a zero vector
of appropriate length. The constant values x∗c,v defined as follows are also a part
of the problem input, showing previous embeddings of service components:

∀(c, v) ∈ PT : x∗c,v = 1

∀c ∈ C,∀v ∈ V, if (c, v) /∈ PT : x∗c,v = 0

7.4.1 Constraints

In this section, I describe the constraints for the B-SPRING optimization ap-
proach.

Mapping Consistency Rules

∀v ∈ V, ∀c ∈ CSRC : xc,v =

{
1 if ∃(c, FT,v) ∈ S
0 else

(7.1)

∀v ∈ V, ∀c ∈ Cfixed : xc,v =

{
1 if ∃(c, v) ∈ X
0 else

(7.2)

Sources and fixed components are assigned to their pre-defined locations using
Constraint 7.1 and Constraint 7.2, respectively. For each source instance, the data
rate of the flows starting at that source are assigned to the corresponding outputs,
using Constraint 7.3.

○ T ○ 107

7 Embedding Bi-Directional Services with Load-Proportional Structures

Table 7.4: B-SPRING Decision Variables

Variable Definition

xc,v 1 iff an instance of component c is mapped to node v
δc,v 1 iff xc,v 6= x∗c,v, i.e., an instance of component c is added

or removed at node v
cpuc,v, memc,v CPU, memory demands of the instance of component c

at node v, or 0 if no such instance exists
tup
c,v,f , tdn

c,v,f 1 iff upstream, downstream traffic of a flow f traverses
an instance of component c at node v

inup
c,v,f , indn

c,v,f Vector of data rates at inputs of the instance of compo-
nent c at node v, corresponding to flow f , or an all-zero
vector

outup
c,v,f , outdn

c,v,f Vector of data rates at outputs of the instance of compo-
nent c at node v, corresponding to flow f , or an all-zero
vector

ea,v,v′,f 1 iff for an arc a, an overlay edge between nodes v and v′

corresponding to flow f is created
za,v,v′,l Data rate on link l corresponding to an arc a that con-

nects an instance of component c at node v to an instance
of component c′ at node v′, or 0

ζa,v,v′,l 1 iff za,v,v′,l > 0
ψcpu, ψmem, ψdr Maximum CPU, memory, link capacity over-subscription

∀v ∈ V, ∀f ∈ F ,∀c ∈ CSRC,∀T ∈ T :

outup
c,v,f =

{
rf if (c, FT,v) ∈ ST , ∃(f, rf) ∈ FT,v

0 else
(7.3)

When going from one solution to another, the added and removed instances on
each node are tracked (Constraint 7.4). If an instance of a component is created
on a node, the right number of upstream (Constraint 7.5,7.7) and downstream
(Constraint 7.6,7.8) inputs and outputs should be created on that instance.

∀c ∈ C,∀v ∈ V : δc,v =

{
xc,v if x∗c,v = 0

1− xc,v if x∗c,v = 1
(7.4)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, nup
in (c)] : (inup

c,v,f)k ≤M · xc,v (7.5)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, ndn
in (c)] : (indn

c,v,f)k ≤M · xc,v (7.6)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, nup
out(c)] : (outup

c,v,f)k ≤M · xc,v (7.7)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, ndn
out(c)] : (outdn

c,v,f)k ≤M · xc,v (7.8)

108 ○ T ○

7.4 Optimization Approach

Flow and Data Rate Rules

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

if c ∈ CINT : outup
c,v,f = funcup

c (inup
c,v,f)− (1− xc,v) · funcup

c (0) (7.9)

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

if c ∈ CINT : outdn
c,v,f = funcdn

c (indn
c,v,f)− (1− xc,v) · funcdn

c (0) (7.10)

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

if c ∈ CEND : outdn
c,v,f = funcdn

c (inup
c,v,f)− (1− xc,v) · funcdn

c (0) (7.11)

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

M · tup
c,v,f ≥

∑
k∈[1,nup

in (c)]

(inup
c,v,f)k+

∑
k∈[1,nup

out(c)]

(outup
c,v,f)k (7.12)

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

tup
c,v,f ≤M ·

∑
k∈[1,nup

in (c)]

(inup
c,v,f)k +

∑
k∈[1,nup

out(c)]

(outup
c,v,f)k (7.13)

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

M · tdn
c,v,f ≥

∑
k∈[1,ndn

in (c)]

(indn
c,v,f)k +

∑
k∈[1,ndn

out(c)]

(outdn
c,v,f)k (7.14)

∀c ∈ C,∀v ∈ V, ∀f ∈ F :

tdn
c,v,f ≤M ·

∑
k∈[1,ndn

in (c)]

(indn
c,v,f)k +

∑
k∈[1,ndn

out(c)]

(outdn
c,v,f)k (7.15)

∀c ∈ C,∀v ∈ V, ∀f ∈ F : if c ∈ Cstate : tup
c,v,f = tdn

c,v,f (7.16)

The data rate of upstream and downstream traffic of flows entering an instance
of a component determines the data rate of the upstream and downstream traffic
that leaves that instance (Constraint 7.9,7.10). As instances of END components
(Section 7.1.2) can only have upstream inputs and downstream outputs, they are
treated by a special rule (Constraint 7.11). Constraint 7.12–7.15 keep track of
the instances of components that upstream or downstream traffic of each flow
traverse. This is required to make sure that each flow traverses exactly the same
instance of a stateful component in both directions, ensured by Constraint 7.16.

A single flow cannot be split over multiple instances of a component (Sec-
tion 7.1.2). For this, if a flow traverses an instance at node v, it is allowed to

○ T ○ 109

7 Embedding Bi-Directional Services with Load-Proportional Structures

enter and exit this instance using exactly one edge per corresponding arc (Con-
straint 7.18, 7.20). Instances of END components again need an special treat-
ment (Constraint 7.17). For each edge created this way, the data rate is also
calculated on the corresponding input/output of its source/destination instances
(Constraint 7.19, 7.21).

∀a ∈ A,∀v ∈ V, ∀f ∈ F : if src(a) ∈ CEND :
∑
v′∈V

ea,v,v′,f = tup
c,v,f (7.17)

∀a ∈ A,∀v ∈ V, ∀f ∈ F ,
if src(a) ∈ CEND, if a ∈ Aup from output k of src(a) to input k′ of dst(a) :∑

v′∈V

ea,v,v′,f = tup
c,v,f (7.18)

∀a ∈ A,∀v ∈ V, ∀f ∈ F ,
if src(a) ∈ CEND, if a ∈ Aup from output k of src(a) to input k′ of dst(a) :∑

v′∈V

(outup
src(a),v′,f)k · ea,v′,v,f = (inup

dst(a),v,f)k′ (7.19)

∀a ∈ A,∀v ∈ V, ∀f ∈ F ,
if src(a) ∈ CEND, if a ∈ Adn from output k of src(a) to input k′ of dst(a) :∑

v′∈V

ea,v,v′,f = tdn
c,v,f (7.20)

∀a ∈ A,∀v ∈ V, ∀f ∈ F ,
if src(a) ∈ CEND, if a ∈ Adn from output k of src(a) to input k′ of dst(a) :∑

v′∈V

(outdn
src(a),v′,f)k · ea,v′,v,f = (indn

dst(a),v,f)k′ (7.21)

The data rates of individual flows over created edges are mapped to links in
the substrate network; Constraint 7.22–7.25 ensure flow conservation over the
path(s) that the flows take. During path creation, the total delay of the links
corresponding to an edge cannot exceed the maximum delay specified for its arc
(Constraint 7.26). Constraint 7.27 prevents an overlay edge being mapped to a
path with a loop.

∀a ∈ A, a starts at output k of src(a),∀v, v1, v2 ∈ V :∑
vv′∈L

za,v1,v2,vv′ −
∑
v′v∈L

za,v1,v2,v′v =
0 if v 6= v1, v 6= v2

0 if v = v1 = v2∑
f∈F ea,v1,v2,f · (outup

src(a),v1,f
)k if v = v1, v1 6= v2, a ∈ Aup∑

f∈F ea,v1,v2,f · (outdn
src(a),v1,f

)k if v = v1, v1 6= v2, a ∈ Adn

(7.22)

110 ○ T ○

7.4 Optimization Approach

∀a ∈ A, ∀v1, v2 ∈ V, ∀l ∈ L : za,v1,v2,l ≤M · ζa,v1,v2,l (7.23)

∀a ∈ A, ∀v1, v2 ∈ V, ∀l ∈ L : ζa,v1,v2,l ≤M · za,v1,v2,l (7.24)

∀a ∈ A, ∀v1, v2 ∈ V, ∀l ∈ L : ζa,v1,v2,l ≤
∑
f∈F

ea,v1,v2,f (7.25)

∀a ∈ A, ∀v1, v2 ∈ V :
∑
l∈L

ζa,v1,v2,l · d(l) ≤ dmax(a) (7.26)

∀a ∈ A,∀v1, v2 ∈ V, ∀v′v′′ ∈ L, if v′′v′ ∈ L : ζa,v1,v2,v′v′′ + ζa,v1,v2,v′′v′ ≤ 1 (7.27)

Calculation of Resource Consumption

∀c ∈ C,∀v ∈ V :

cpuc,v = funccpu
c (
∑
f∈F

inup+dn
c,v,f)− (1− xc,v) · funccpu

c (0) (7.28)

∀c ∈ C,∀v ∈ V :

memc,v = funcmem
c (

∑
f∈F

inup+dn
c,v,f)− (1− xc,v) · funcmem

c (0) (7.29)

The combined data rate of the flows on upstream and downstream inputs of
each created instance determines the resource demands of that instance (Con-
straint 7.28, 7.29).

Constraint 7.30–7.32 keep track of the maximum over-subscription of node and
link resources to be able to minimize or bound it as required.

∀c ∈ C, ∀v ∈ V :
∑
c∈C

cpuc,v − capcpu(v) ≤ ψcpu (7.30)

∀c ∈ C, ∀v ∈ V :
∑
c∈C

memc,v − capmem(v) ≤ ψmem (7.31)

∀l ∈ L :
∑

a∈A,v,v′∈V

za,v,v′,l − capdr(l) ≤ ψdr (7.32)

7.4.2 Optimization Objective

Based on the problem formulation in Section 7.2, we have defined the following
objective functions for the MIP:

• obj1: Minimize the maximum node and link resource over-subscription

min. ψcpu + ψmem + ψdr

• obj2: Minimize the number of added and removed instances

min.
∑

j∈C,v∈V

δj,v

○ T ○ 111

7 Embedding Bi-Directional Services with Load-Proportional Structures

• obj3: Minimize the total node and link resource consumption

min.
∑

j∈C,v∈V

(cpuj,v + memj,v) +
∑

a∈A,v,v′∈V,l∈L

za,v,v′,l

• obj4: Minimize the total delay

min.
∑

a∈A,v,v′∈V,l∈L

d(l) · ζa,v,v′,l

In practice, jointly optimizing all four objectives is necessary to serve the re-
quirements of service providers and network operators. Therefore, we have defined
the following lexicographical combination of the four objectives:

minimize w1 · obj1 + w2 · obj2 + w3 · obj3 + w4 · obj4

For each objective to have a clear priority, the weights w1, . . . , w4 should be
selected such that the ranges of values each of the objective functions can assume
do not overlap with others. The actual weights depend on the use case.

7.5 Heuristic Approach

The resource demands of VCSs and the available capacity on the substrate net-
work nodes and links change frequently, requiring quick reactions. While the
optimization approach can be used with appropriate solvers to find optimal em-
beddings for the templates, it is too slow to be used for large problem instances.
In this section, I give an overview of the heuristic approach, developed as part
of my joint work with S. Schneider and H. Karl [32], which finds good solutions
for the B-SPRING problem quickly, either from scratch or adapting an existing
solution. S. Schneider had a major role in the implementation of this algorithm.
I use this algorithm together with the optimization approach for analyzing the
B-SPRING problem in Section 7.6.

Table 7.1, 7.2, and 7.3 summarize the required inputs to this problem.
The heuristic approach consists of initialization, sequential embedding, and

iterative improvement steps, which I briefly describe in this section.
During the initialization step, the heuristic computes the shortest paths between

all pairs of nodes in the substrate network, using an implementation of the Floyd-
Warshall algorithm that favors paths with low delay and high capacity.

Afterwards, the algorithm creates an initial solution using the embedding pro-
cedure shown in Algorithm 7.1. The main workflow of the embedding procedure is
similar to the U-SPRING heuristic approach (Algorithm 6.1) but we have modified
it substantially to support bi-directional service flows, stateful and fixed compo-
nents, and to allow instances of a component to be shared among different VCSs,
if requested.

As flows are mapped to these precomputed paths, the load on the links in-
creases, possibly resulting in over-subscription. Iterative improvements then aim

112 ○ T ○

7.5 Heuristic Approach

at reducing or avoiding over-subscription. While the embedding procedure en-
sures correct embeddings and tries to optimize the embedding for the objectives
defined in Section 7.2, its sequential nature can also lead to sub-optimal results.
For example, when embedding bi-directional templates with stateful components,
flows in the downstream direction return to the same stateful instances they tra-
versed in the upstream direction. When data rate is propagated over the instances
one by one, such cases cannot be anticipated when mapping the stateful instance
in the upstream direction. The additional resource demand imposed later at the
downstream direction can therefore lead to over-subscription.

Therefore, in the improvement step, the overlay of each template is modified
iteratively based on tabu search [111] by picking a random instance that is neither
source nor fixed and declaring it as tabu. The overlay is then re-created using the
embedding procedure again but disallowing to place the tabu instance at the same
location as before. This leads to a different distribution of instances and the load,
possibly decreasing or avoiding over-subscription.

○ T ○ 113

7 Embedding Bi-Directional Services with Load-Proportional Structures

Algorithm 7.1 Main procedure of the B-SPRING heuristic

1: // Remove old overlays with no templates
2: if ∃GOL(T) with T 6∈ T then
3: remove GOL(T)

4: remove all fixed instances of all templates
5: for all T ∈ T do
6: // Add/remove/update source instances and flows
7: if @GOL(T) then
8: create empty overlay GOL(T)

9: for all (c, FT,v) ∈ ST do
10: if @i ∈ IOL(T) with M C

T (i) = c and M V
T (i) = v then

11: create i ∈ IOL(T) with M C
T (i) = c and M V

T (i) = v

12: assign/update the data rate of flow (f, rf) on i

13: if ∃i ∈ IOL(T), M C
T (i) ∈ CSRC, @(f, λ) ∈ FT,MV

T (i) for any λ then
14: remove i
15: // Add fixed instances
16: for all (c, v) ∈ XT do
17: if @i ∈ IOL(T) with M C

T (i) = c and M V
T (i) = v then

18: create i ∈ IOL(T) with M C
T (i) = c and M V

T (i) = v

19: set current direction to upstream
20: // Process instances in topological order according to template
21: for all i ∈ IOL(T) in topological order do
22: if i has no input data rate, M C

T (i) /∈ CFIX and M C
T (i) /∈ CSRC then

23: remove i and continue with the next instance
24: if M C

T (i) ∈ CEND then
25: set current direction to downstream
26: compute output data rates of i
27: for all output k of i in current direction do
28: get arc a and flows leaving k
29: if a /∈ AT then
30: continue with next output

31: update mapping of flows to edges

7.6 Evaluation

In this section, I show the evaluation results of the optimization approach, com-
pared to the heuristic approach. As the heuristic approach achieves close-to-
optimal results in a significantly shorter time than the optimization approach, we
used the heuristic for further analyzing the B-SPRING problem in larger scenarios.

We have used Python implementations of the optimization and the heuristic
approach and Gurobi Optimizer [21]7.0.2 as a solver for the MILP. The imple-
mentation of the approaches is available online [37]. All simulations have been
performed on machines with Intel Xeon E5-2695 v3 CPUs running at 2.30 GHz
and using GNU Parallel [112] to automatically assign jobs to available cores.

114 ○ T ○

7.6 Evaluation

1 2

3

4

5

0

Figure 7.3: Substrate network used for evaluations

S CHE SRV

VOPT

Figure 7.4: Video streaming template used for evaluations

Due to the long run time of the optimization approach, for comparing the
performance of both approaches, we have used a small network consisting of 6
nodes and 14 directed links with uniform capacities. Figure 7.3 shows the topology
of the network, which is a subset of the Abilene network from the SNDlib test
instances [94]. Additionally, we have evaluated the heuristic using much larger
networks with hundreds of nodes. We have calculated the link delay d(l) for each
link l based on the distances between the geographical locations of the nodes.

Based on common Network Function Virtualization (NFV) use cases [113], we
have chosen an example video streaming VCS as the bi-directional template to be
embedded. Figure 7.4) shows this template. In this VCS, the users (represented
by the source component S) request videos. The requests go through a cache
(CHE) and are forwarded to the server (SRV) if they are not found in the cache.
Before streaming videos from the server, they are transcoded by a video optimizer
(VOPT), which reduces their data rate by 50 % [114].

Using the substrate network and the video streaming template, we have created
different problem instances with 1 to 6 flows leaving sources at randomly varying
locations in the network. We have used the optimization and heuristic approaches
to create initial embeddings on an empty network, minimizing the lexicographical
combination of the four objectives defined in Section 7.4.2: Minimizing (1) the
maximum link and node resource over-subscription (obj1) to avoid violations of
Service-Level Agreement (SLA) or even infeasible embeddings, (2) the overhead
of adding or removing instances (obj2), (3) the total resource consumption (obj3),
and (4) the total delay (obj4).

7.6.1 Comparison of Optimization and Heuristic Approaches

Considering obj1, both approaches can completely avoid memory over-subscription
for 1 to 3 flows by distributing the load over different instances and nodes. For
problem instances with more flows, the available memory no longer suffices and
is over-subscribed relative to the number of flows (Figure 7.5a). While being in
the same order of magnitude, the heuristic creates embeddings with significantly

○ T ○ 115

7 Embedding Bi-Directional Services with Load-Proportional Structures

1 2 3 4 5 6

0
1

2
3

4

Number of flows

M
ax

 m
em

. o
v

er
-s

ub
sc

ri
pt

io
n

MIP
Heuristic

(a) Maximum memory over-subscription
over all nodes

1 2 3 4 5 6

0
5

10
1
5

2
0

Number of flows

N
um

be
r

o
f

ad
de

d
in

st
an

ce
s

MIP
Heuristic

(b) Total number of added instances for all
service components

1 2 3 4 5 6

0
1
0

20
3
0

40

Number of flows

T
ot

al
 d

at
a

ra
te

 o
ve

r
li

nk
s

MIP
Heuristic

(c) Total data rate over all network links

1 2 3 4 5 6

0
5
0

10
0

1
50

20
0

Number of flows

T
o

ta
l

de
la

y

MIP
Heuristic

(d) Total delay

Figure 7.5: Comparison of the results delivered by optimization and heuristic ap-
proaches with increasing load

higher maximum memory over-subscription compared to the optimal results (up
to 67 % higher average). The results are similar for CPU resources. In these
experiments, the link capacities are never over-subscribed.

These observations are similar for the other three objectives: The heuristic
can closely approximate the results of the optimization approach with just small
deviations in the values of important metrics, as shown in Figure 7.5.

An exception occurs for problem instances with 6 flows; the heuristic approach
cannot find solutions with as few instances as the optimization approach (against
obj2). However, with these additional instances, the paths created between the
pairs of instances are shorter, with a lower data rate and smaller delay (in line with
obj3 and obj4) than the results of the optimization approach. For the optimization
approach, these objectives have a lower priority than obj1 and obj2.

7.6.2 Scalability

Where the optimization approach needs minutes to hours to solve the problem
instances, the heuristic finds solutions in milliseconds to seconds. For example,
the worst-case run times for problem instances described in Section 7.6.1 with 4
flows were 137.1 hours with the optimization approach and 6.7 seconds with the

116 ○ T ○

7.6 Evaluation

heuristic approach (not the same problem instance). Using this advantage of the
heuristic approach, we have further evaluated the performance of our approaches
by solving additional problem instances using the heuristic.

We have used the largest substrate network in the SNDlib test instances [94],
consisting of 161 nodes and 664 directed links (Brain network), with 10 sources and
30 flows. The simulations start with an empty network, embedding the template
shown in Figure 7.4 and adapting the embeddings based on the increasing and
decreasing load in the form of 60 events. For these problems, the heuristic found
embeddings in 42.31 s on average.

Figure 7.6a shows the total allocated CPUs over these events, based on the total
load from all flows at all source locations. Resource allocation clearly adapts to the
load; with increasing load, more CPUs are allocated to the service components
and when the load decreases, the allocated resources are decreased. A similar
trend can be observed for the total used link capacity in Figure 7.6c.

Figure 7.6b shows an important consequence of the choice of priorities for the
four objectives in these simulations. The second-highest priority (after minimizing
resource over-subscription) was minimizing the number of added and removed
instances to limit of the costs and overheads associated with starting and stopping
these instances. Minimizing the delay has the lowest priority among the objectives,
as both approaches ensure that the delay remains within the maximum tolerable
delay bound for each arc, as defined in the templates. Looking at the total delay
for the embedded template, it can be observed that after the peak load around
event 40, although the load decreases, the delay does not decrease. Adhering to
the priority of minimizing the number of added/removed instances, the existing
instances (possibly placed farther from the sources) are still used with a lower data
rate forwarded to them, rather than removing or migrating them. This shows that
reducing the delay in an already deployed service is difficult using these priorities
and could be seen as an argument to increase the priority of obj4 in a practical
setting. This can be done, for example, when the situation is stable and instances
can be added or removed without risk.

○ T ○ 117

7 Embedding Bi-Directional Services with Load-Proportional Structures

0 10 20 30 40 50 60
0

1
0

0
2

0
0

3
0

0
40

0

Event

T
ot

al
 l

oa
d

0
5
00

1
00

0
1
50

0

T
ot

al
 a

ll
oc

at
ed

 C
P

U

CPU
Load

(a) Changes to the allocated CPU based on the
changes in load

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Event

T
ot

al
 l

oa
d

10
20

3
0

4
0

5
0

T
ot

al
 d

el
ay

Delay
Load

(b) Changes to the delay based on the changes in
load

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Event

T
ot

al
 l

oa
d

0
50

0
10

00
20

00

T
ot

al
 d

at
a

ra
te

Data rate
Load

(c) Changes to the used link capacity based on the
changes in load

Figure 7.6: Analysis of the solutions for a large problem instance with a series of
events that change the overall load of the network

118 ○ T ○

7.7 Conclusion

7.7 Conclusion

In this chapter, I have described the B-SPRING problem for joint scaling, place-
ment, and routing pliable VCSs with bi-directional service flows. I have presented
optimization and heuristic approaches to the problem that take into account up-
stream and downstream flows returning to their sources as well as stateful service
components. Both approaches can reuse service components across different VCSs,
if requested. They can also handle VCSs that consist of fixed components, like
legacy PNFs that might still be needed while network softwarization is developing.

The presented MILP can be used for finding optimal embeddings in small sub-
strate networks. For larger networks, the heuristic approach can find close-to-
optimal solutions within seconds. In practice, this short execution time allows
quick adaptation of the embeddings to ongoing load fluctuations in the network.

Simulation-based evaluations have shown that the quality of the solutions pro-
vided by the heuristic approach is close to the optimal results. Depending on the
priorities of the service provider or the network operator, the solutions can be ad-
justed to deliver the required results, e.g., by using different objective functions in
the MILP. I have presented the results of a configuration where over-subscription
of node and link capacities is minimized. I have shown that the amount of allo-
cated resources adapts to the load and the number of added or removed instances
are kept as low as possible to avoid unnecessary costs in a frequently changing
load setup.

Using the B-SPRING model, the desired structure of bi-directional services can
be defined as service templates in form of directed, acyclic graphs (in each of the
upstream and downstream directions) and embedded into the substrate network
with the required amount of resources. The B-SPRING approaches support the
vertical and horizontal scaling of service components, even if they are stateful and
ensure the correct routing and processing of flows in upstream and downstream
directions.

As shown in Figure 7.7, the B-SPRING problem is an extension of the U-
SPRING problem (Chapter 6). A-SPRING (Chapter 3) and B-SPRING ap-
proaches allow service components to be shared among different VCSs. All three
problems deal with the joint optimization of scaling, placement, and routing for
VCSs.

The U-SPRING and B-SPRING problems are similar in the sense that the struc-
ture of the pliable VCSs are described using service templates in both cases and
the service templates are embedded into the substrate network according to the
location of sources and the load originating from them for each service. However,
the U-SPRING and B-SPRING approaches differ in the following aspects.

In U-SPRING approaches, the service components required for upstream and
downstream flows need to be embedded separately, requiring separate capacity
planning. Using these approaches, to ensure that a certain stateful component is
traversed by the same flows in both directions, the VCSs might need to be divided
into smaller parts with fixed endpoints. For example, the service in Figure 5.2b
should be broken into three sub-templates SB→Fwl→vSrv, vSrv→ParCtrl→Fwl,
and Fwl→SB. These sub-templates should then be embedded sequentially in sepa-

○ T ○ 119

7 Embedding Bi-Directional Services with Load-Proportional Structures

B-SPRING

Bi-directional VCS

A-SPRING

VCS with arbitrarily
ordered components Shared

components

SPRING

Uni-directional VCS

U-SPRING

Figure 7.7: Relation of B-SPRING to A-SPRING and U-SPRING

rate steps, requiring to solve the problem multiple times with additional complex-
ities compared to the B-SPRING approaches that embed bi-directional pliable
VCSs in a single step. One important complexity is that in each step of such
a sequential process, the requirements of the next steps cannot be considered,
possibly resulting in more resource consumption, higher delay, and even capacity
violations.

Moreover, B-SPRING approaches allow reusing instances of service components
across multiple VCSs, if so required and desired. For this, the shared service
components can be included (with the same unique identifier) in all of the service
templates that need it. For embedding the VCSs, the shared service components
across different templates are detected and handled as requested, e.g., by adapting
the inputs and outputs. While the formulation of the U-SPRING approaches does
not prevent this, this capability has not been integrated in the solutions presented
in Chapter 6. As the B-SPRING approaches can also support uni-directional
services, they can be used instead of the U-SPRING approaches if the component
sharing capability is required for uni-directional VCSs.

Finally, unlike the U-SPRING approaches, the B-SPRING solution approaches
can handle VCSs that are composed of virtual service components as well as PNFs
with fixed locations and resources.

120 ○ T ○

8
Embedding Heterogeneous Services
with Load-Proportional Structures

8.1 Model . 122

8.1.1 Substrate network 122

8.1.2 Service Template 123

8.1.3 Components and Deployment Versions 123

8.1.4 Multi-Structure Templates 127

8.1.5 Template Embedding 128

8.1.6 Overlay . 128

8.2 Problem Formulation 129

8.3 Problem Complexity 131

8.4 Optimization Approach 131

8.4.1 Constraints . 132

8.4.2 Optimization Objective 137

8.5 Heuristic Approach . 138

8.6 Evaluation . 140

8.6.1 Comparison of Optimization and Heuristic Approaches 140

8.6.2 Scalability . 143

8.7 Conclusion . 144

In this chapter, I propose solutions to the problem of jointly scaling, placing,
and routing heterogeneous pliable Virtualized Composed Services (VCSs) (the M-
SPRING problem). In Section 8.1, I describe the model and assumptions used
in the problem formulation and solution approaches. Section 8.2 and Section 8.3
include a summary of the problem formulation and description of the problem
complexity, respectively. Afterwards, I present the optimization and heuristic

121

8 Embedding Heterogeneous Services with Load-Proportional Structures

,"#

capcpu(v1) =50

capgpu(v1) =10

costcpu(v1) =0.5

costgpu(v1) =2
<latexit sha1_base64="t8acYZHi5I05EFPUjb8IbgKWSiA=">AAACb3icbVHLSsNAFJ3EV42vWhcuKjJYlHZTkmLRjVB047KCfUATwmQ6bYdOHsxMCiVk6we68x/c+AdO2ixM64WBwznn3rlzxosYFdI0vzR9Z3dv/6B0aBwdn5yelc8rfRHGHJMeDlnIhx4ShNGA9CSVjAwjTpDvMTLw5i+ZPlgQLmgYvMtlRBwfTQM6oRhJRbnlD9tHcsb9BKPITXAUp2l94VoN+ATvYNuEtm0UHNOiwyo6QiG3hpjN9rZnY0zLLdfMprkquA2sHNRAXl23/GmPQxz7JJCYISFGlhlJJ0FcUsxIatixIBHCczQlIwUD5BPhJKu8UnirmDGchFydQMIV+7cjQb4QS99Tzmxrsall5H/aKJaTRyehQRRLEuD1RZOYQRnCLHw4ppxgyZYKIMyp2hXiGeIIS/VFhgrB2nzyNui3mpbCb/e1znMeRwlUwQ2oAws8gA54BV3QAxh8axWtql1pP/qlfq3DtVXX8p4LUCi98QtuO7dZ</latexit><latexit sha1_base64="t8acYZHi5I05EFPUjb8IbgKWSiA=">AAACb3icbVHLSsNAFJ3EV42vWhcuKjJYlHZTkmLRjVB047KCfUATwmQ6bYdOHsxMCiVk6we68x/c+AdO2ixM64WBwznn3rlzxosYFdI0vzR9Z3dv/6B0aBwdn5yelc8rfRHGHJMeDlnIhx4ShNGA9CSVjAwjTpDvMTLw5i+ZPlgQLmgYvMtlRBwfTQM6oRhJRbnlD9tHcsb9BKPITXAUp2l94VoN+ATvYNuEtm0UHNOiwyo6QiG3hpjN9rZnY0zLLdfMprkquA2sHNRAXl23/GmPQxz7JJCYISFGlhlJJ0FcUsxIatixIBHCczQlIwUD5BPhJKu8UnirmDGchFydQMIV+7cjQb4QS99Tzmxrsall5H/aKJaTRyehQRRLEuD1RZOYQRnCLHw4ppxgyZYKIMyp2hXiGeIIS/VFhgrB2nzyNui3mpbCb/e1znMeRwlUwQ2oAws8gA54BV3QAxh8axWtql1pP/qlfq3DtVXX8p4LUCi98QtuO7dZ</latexit><latexit sha1_base64="t8acYZHi5I05EFPUjb8IbgKWSiA=">AAACb3icbVHLSsNAFJ3EV42vWhcuKjJYlHZTkmLRjVB047KCfUATwmQ6bYdOHsxMCiVk6we68x/c+AdO2ixM64WBwznn3rlzxosYFdI0vzR9Z3dv/6B0aBwdn5yelc8rfRHGHJMeDlnIhx4ShNGA9CSVjAwjTpDvMTLw5i+ZPlgQLmgYvMtlRBwfTQM6oRhJRbnlD9tHcsb9BKPITXAUp2l94VoN+ATvYNuEtm0UHNOiwyo6QiG3hpjN9rZnY0zLLdfMprkquA2sHNRAXl23/GmPQxz7JJCYISFGlhlJJ0FcUsxIatixIBHCczQlIwUD5BPhJKu8UnirmDGchFydQMIV+7cjQb4QS99Tzmxrsall5H/aKJaTRyehQRRLEuD1RZOYQRnCLHw4ppxgyZYKIMyp2hXiGeIIS/VFhgrB2nzyNui3mpbCb/e1znMeRwlUwQ2oAws8gA54BV3QAxh8axWtql1pP/qlfq3DtVXX8p4LUCi98QtuO7dZ</latexit><latexit sha1_base64="t8acYZHi5I05EFPUjb8IbgKWSiA=">AAACb3icbVHLSsNAFJ3EV42vWhcuKjJYlHZTkmLRjVB047KCfUATwmQ6bYdOHsxMCiVk6we68x/c+AdO2ixM64WBwznn3rlzxosYFdI0vzR9Z3dv/6B0aBwdn5yelc8rfRHGHJMeDlnIhx4ShNGA9CSVjAwjTpDvMTLw5i+ZPlgQLmgYvMtlRBwfTQM6oRhJRbnlD9tHcsb9BKPITXAUp2l94VoN+ATvYNuEtm0UHNOiwyo6QiG3hpjN9rZnY0zLLdfMprkquA2sHNRAXl23/GmPQxz7JJCYISFGlhlJJ0FcUsxIatixIBHCczQlIwUD5BPhJKu8UnirmDGchFydQMIV+7cjQb4QS99Tzmxrsall5H/aKJaTRyehQRRLEuD1RZOYQRnCLHw4ppxgyZYKIMyp2hXiGeIIS/VFhgrB2nzyNui3mpbCb/e1znMeRwlUwQ2oAws8gA54BV3QAxh8axWtql1pP/qlfq3DtVXX8p4LUCi98QtuO7dZ</latexit>

,"#

capcpu(v2) =70

capgpu(v2) =0

costcpu(v2) =0.5

costgpu(v2) =1
<latexit sha1_base64="ztZSBfrFgoOVQxnS3fmT5l++eME=">AAACc3icbVHLSsNAFJ3EV62vquDGhYNV0YUlEaVuhKIblxVsKzQlTKaTdnAyCTM3hRD6A36eO//CjXunbRa29cLA4ZxzH3NvkAiuwXG+LHtldW19o7RZ3tre2d2r7B+0dZwqylo0FrF6C4hmgkvWAg6CvSWKkSgQrBO8P030zogpzWP5ClnCehEZSB5ySsBQfuXDiwgMVZRTkvg5TdLx+HLk31zhB3yB6w72vPKcYzDvmDfEGpZqOLW7Zc9CFY/LEDK/UnVqzjTwMnALUEVFNP3Kp9ePaRoxCVQQrbuuk0AvJwo4FWxc9lLNEkLfyYB1DZQkYrqXT3c2xueG6eMwVuZJwFP2b0ZOIq2zKDDOyeh6UZuQ/2ndFML7Xs5lkgKTdNYoTAWGGE8OgPtcMQoiM4BQxc2smA6JIhTMmcpmCe7il5dB+6bmGvxyW208FusooWN0ii6Ri+qogZ5RE7UQRd/WkXViYevHPrZP7bOZ1baKnEM0F/b1Lw5yuao=</latexit><latexit sha1_base64="ztZSBfrFgoOVQxnS3fmT5l++eME=">AAACc3icbVHLSsNAFJ3EV62vquDGhYNV0YUlEaVuhKIblxVsKzQlTKaTdnAyCTM3hRD6A36eO//CjXunbRa29cLA4ZxzH3NvkAiuwXG+LHtldW19o7RZ3tre2d2r7B+0dZwqylo0FrF6C4hmgkvWAg6CvSWKkSgQrBO8P030zogpzWP5ClnCehEZSB5ySsBQfuXDiwgMVZRTkvg5TdLx+HLk31zhB3yB6w72vPKcYzDvmDfEGpZqOLW7Zc9CFY/LEDK/UnVqzjTwMnALUEVFNP3Kp9ePaRoxCVQQrbuuk0AvJwo4FWxc9lLNEkLfyYB1DZQkYrqXT3c2xueG6eMwVuZJwFP2b0ZOIq2zKDDOyeh6UZuQ/2ndFML7Xs5lkgKTdNYoTAWGGE8OgPtcMQoiM4BQxc2smA6JIhTMmcpmCe7il5dB+6bmGvxyW208FusooWN0ii6Ri+qogZ5RE7UQRd/WkXViYevHPrZP7bOZ1baKnEM0F/b1Lw5yuao=</latexit><latexit sha1_base64="ztZSBfrFgoOVQxnS3fmT5l++eME=">AAACc3icbVHLSsNAFJ3EV62vquDGhYNV0YUlEaVuhKIblxVsKzQlTKaTdnAyCTM3hRD6A36eO//CjXunbRa29cLA4ZxzH3NvkAiuwXG+LHtldW19o7RZ3tre2d2r7B+0dZwqylo0FrF6C4hmgkvWAg6CvSWKkSgQrBO8P030zogpzWP5ClnCehEZSB5ySsBQfuXDiwgMVZRTkvg5TdLx+HLk31zhB3yB6w72vPKcYzDvmDfEGpZqOLW7Zc9CFY/LEDK/UnVqzjTwMnALUEVFNP3Kp9ePaRoxCVQQrbuuk0AvJwo4FWxc9lLNEkLfyYB1DZQkYrqXT3c2xueG6eMwVuZJwFP2b0ZOIq2zKDDOyeh6UZuQ/2ndFML7Xs5lkgKTdNYoTAWGGE8OgPtcMQoiM4BQxc2smA6JIhTMmcpmCe7il5dB+6bmGvxyW208FusooWN0ii6Ri+qogZ5RE7UQRd/WkXViYevHPrZP7bOZ1baKnEM0F/b1Lw5yuao=</latexit><latexit sha1_base64="ztZSBfrFgoOVQxnS3fmT5l++eME=">AAACc3icbVHLSsNAFJ3EV62vquDGhYNV0YUlEaVuhKIblxVsKzQlTKaTdnAyCTM3hRD6A36eO//CjXunbRa29cLA4ZxzH3NvkAiuwXG+LHtldW19o7RZ3tre2d2r7B+0dZwqylo0FrF6C4hmgkvWAg6CvSWKkSgQrBO8P030zogpzWP5ClnCehEZSB5ySsBQfuXDiwgMVZRTkvg5TdLx+HLk31zhB3yB6w72vPKcYzDvmDfEGpZqOLW7Zc9CFY/LEDK/UnVqzjTwMnALUEVFNP3Kp9ePaRoxCVQQrbuuk0AvJwo4FWxc9lLNEkLfyYB1DZQkYrqXT3c2xueG6eMwVuZJwFP2b0ZOIq2zKDDOyeh6UZuQ/2ndFML7Xs5lkgKTdNYoTAWGGE8OgPtcMQoiM4BQxc2smA6JIhTMmcpmCe7il5dB+6bmGvxyW208FusooWN0ii6Ri+qogZ5RE7UQRd/WkXViYevHPrZP7bOZ1baKnEM0F/b1Lw5yuao=</latexit>

Figure 8.1: Example substrate network. v1 offers CPU and GPU resources but v2

has only CPU resources.

approaches to the M-SPRING problem in Section 8.4 and Section 8.5, respectively.
In Section 8.6, I evaluate the presented approaches. Section 8.7 concludes this
chapter. This chapter partially includes figures and verbatim copies of the text
from my paper [36].

8.1 Model

In this section, I describe the assumptions and the model and, based on them,
formalize the M-SPRING problem.

8.1.1 Substrate network

The substrate network is a connected, directed graph, Gsub = (V, L), similar to
the substrate network model of the U-SPRING (Section 6.1.1) and B-SPRING
(Section 7.1.1) problems, with differences in the network nodes.

Each network node v ∈ V has a limited capacity of general-purpose processing
resources capcpu(v) ≥ 0 and special-purpose processing (e.g., Graphics Processing
Unit (GPU)) resources capgpu(v) ≥ 0. This can be extended to express demands
for other types of resources, e.g., memory, FPGAs, etc. These resources are avail-
able at a pre-defined cost on each node. I denote the cost of using a unit of CPU
and GPU resources for one time unit on node v by costcpu(v) and costgpu(v), re-
spectively. If a certain resource type is not available on a node, I assume the cost
of using it is infinitely large.

Figure 8.1 shows an example substrate network, including example resource
capacities and costs for two nodes.

Table 8.1 summarizes the network-related parameters used in the rest of this
chapter.

122 ○ ¸ �

8.1 Model

Table 8.1: M-SPRING Substrate Network Parameters

Symbol Definition

Gsub = (V, L) Substrate network graph.
v ∈ V , l ∈ L Substrate network nodes, links.
capcpu(v), capgpu(v) CPU, GPU capacity of v.
costcpu(v), costgpu(v) Cost of a CPU, GPU unit on node v.
cap(l), d(l) Capacity, delay of l.

SRV

DPI

CHE

OPT

S

Figure 8.2: Example service template including a source, a server (SRV), a deep
packet inspector (DPI), a video optimizer (OPT), and a cache (CHE).

8.1.2 Service Template

Service deployment requests are given as templates that describe the general struc-
ture of a service. Each service template is a connected, directed, acyclic graph
GT = (CT , AT), e.g., as shown in Figure 8.2. Each component c ∈ CT in the
template represents a Virtual Network Function (VNF), cloud service component,
etc., possibly with different deployment versions. I describe the details of com-
ponents and deployment versions in Section 8.1.3. Similar to the U-SPRING and
B-SPRING models, each arc a ∈ AT of the template represents the connectivity
among two components.

Table 8.2 shows a summary of the parameters related to the templates.

8.1.3 Components and Deployment Versions

Each component c ∈ CT has a given number of inputs n in
c and outputs nout

c ,
representing the number of ingoing and outgoing connection points, respectively.
The outgoing data rate of a component depends on the data rate on all its inputs.

This is calculated using a given function foutc(Λ) : Rn in
c
≥0 → Rnout

c
≥0 , where Λ is the

vector of data rates on all inputs of the component.

Each component may optionally be deployable using different resource types,
e.g., as a Virtual Machine (VM) version that can only use CPUs or an accelerated
version that needs special-purpose processing resources (in this model, GPU) in
addition to CPUs. Each such deployment version of a component requires a
specific software version, which is made available by the service provider. Each
component description must include at least one deployment version. I refer to the
components with more than one deployment version as multi-version components.

Each deployment version may consume different types and different number of
resources and can result in a different cost and a different Time in System (TiS)

○ ¸ � 123

8 Embedding Heterogeneous Services with Load-Proportional Structures

Table 8.2: M-SPRING Template Parameters

Symbol Definition

GT = (CT , AT) Template graph.
c ∈ CT , a ∈ AT Components and arcs of template T .
n in
c , nout

c Number of inputs, outputs of c.
VER Set of supported deployment versions for components:

virtual machine, container, or GPU-accelerated version.
LEV Set of load levels at components: low, medium, high,

and infinite load.
lblev

c (ver), ublev
c (ver) Lower and upper bounds for data rates that are con-

sidered as a certain load level lev ∈ LEV for each
component c for the corresponding deployment version
ver ∈ VER.

fptc(ver, λ) Time in system of requests using version ver ∈ VER of
component c, when the sum of incoming data rates on
all its inputs equals λ.

fcpulev
c (ver,Λ),

fgpulev
c (ver,Λ)

CPU, GPU demands of component c at a certain load
level lev ∈ LEV, for a certain deployment version ver ∈
VER, calculated based on Λ, the vector of data rates on
inputs of c.

cconlev
c (ver),

gconlev
c (ver)

Idle CPU, GPU resource consumption of the deploy-
ment version ver ∈ VER of component c at load level
lev ∈ LEV (the constant term of the corresponding
polynomial functions fcpulev

c (ver,Λ)), fgpulev
c (ver,Λ).

foutc(Λ) Data rates on outputs of component c, calculated based
on Λ, the vector of data rates on inputs of c.

srca , dsta Component where arc a begins, ends.
dmax
a Maximum delay for a.

for the requests. I assume a resource cost model based on the usage duration
of a unit of a resource in the substrate network. I describe the specification of
required resource units in the rest of this section. Different versions of a component
might be appropriate in different scenarios, involving a trade-off between TiS and
resource costs. Available deployment versions for a component are expressed as
the set VER, for example including: a VM version (VM) or a container version
(CON) that only need CPUs as processing units, and an accelerated version (ACC)
that needs CPUs and GPUs. To simplify the notations in the rest of this chapter,
I include only these versions in the problem formulation but other deployment
versions requiring other types of resources can easily be added to the model.

In practice, deploying each such version for a component requires invoking a
specific Virtualized Infrastructure Manager (VIM), e.g., an OpenStack [115] in-
stance for VMs or a Kubernetes [116] instance for containers. So, a clear pointer
to the instance type in the template makes further processing steps easier.

124 ○ ¸ �

8.1 Model

DPI
(VM/ACC)

VM ACC

Figure 8.3: Example DPI as a VM and as an accelerated version (ACC).

Each deployment version ver ∈ VER of component c is accompanied by a
function fptc(ver, λ) that shows the maximum expected TiS given a total input
data rate of λ. This description is, of course, only meaningful if accompanied
by the specification of the attributes of the processing unit that has been used to
profile the component. For simplicity, I leave out these details from the component
description model. Different deployment versions can be defined for different
processing unit architectures, resulting in different TiS values for a given load.

Figure 8.3 shows the Deep Packet Inspector (DPI) component from the example
template of Figure 8.2, defined with two different deployment versions: a VM
version and an accelerated version. For this DPI, if the input data rate is λ1, the
outgoing data rate from its only output is expected to be at most 0.9 · λ1, for
example because the service provider expects 10 % of video streaming requests to
be unauthorized. The TiS using the VM version is at most 2.5 times more than
the case where the accelerated version is used to process the same amount of load.

As shown in Section 5.2, the processing resource demands of components can
have complex, non-linear relationships with the input load. To overcome com-
putational difficulties in the problem formulation (e.g., in the Mixed-Integer Pro-
gram (MIP) described in Section 8.4), I assume the CPU and GPU demands are
given as piecewise linear functions that approximate non-linear dependencies of
the resource demands on the load. Figure 8.4a shows how such a piecewise linear
function could represent the CPU demands of an example component based on
its incoming data rate.

In case a resource type like GPU cannot be shared among different processes,
piecewise constant functions can be used, representing the stepwise increase of the
number of required resource units by increasing load, e.g., as shown in Figure 8.4b.
The piecewise linear functions fcpuc(ver,Λ), fgpuc(ver,Λ) specify the CPU and
GPU demands of the deployment version ver of component c. The demand is
calculated based on the vector Λ of ingoing data rates on inputs of the component.

I define the condition for selecting the right linear function to calculate the
resource demand based on the total load that should be handled, i.e., the sum of
data rates on all inputs of the component. For example, the function shown in
Figure 8.4b can be expressed as in Equation 8.1, where λ =

∑
i∈n in

c
(Λ)i is the sum

of data rates on all inputs of the accelerated deployment version of component c
and (Λ)i is the i-th element of vector Λ.

○ ¸ � 125

8 Embedding Heterogeneous Services with Load-Proportional Structures

Data Rate

N
um

b
er

 o
f

re
q

u
ir

ed
 C

P
U

s

0 20 40 60 80 100 120

0
4

8
12

(a)

Data Rate

N
u

m
b

er
 o

f
re

q
ui

re
d

 G
P

U
s

0 40 80 120 160 200 240

2
4

6

(b)

Figure 8.4: Example CPU and GPU demands based on incoming data rate

fgpuc(ACC,Λ) =


2 if λ ∈ (0, 80]

4 if λ ∈ (80, 160]

6 if λ ∈ (160, 240]

∞ else

(8.1)

For simplifying the notations, I assume the resource demands of all components
are defined for the same number of load levels, i.e., the same number of non-
overlapping intervals defining the domain of the function. I express this with a set
LEV, consisting of four possible load levels, i.e., low (LOW), medium (MED), and
high (HIG) that can be handled by a specific deployment version of a component
and infinite load (INF) above those. As the actual data rate that is received at
each input of a component is known only after the template embedding process,
an explicit modeling of the sum of these input data rates in this way is necessary.
This model, however, can be adapted to any arbitrary number of load levels.
Infinite load is any amount of total data rate that cannot be handled efficiently
by the corresponding deployment version using any reasonable (as defined by the
service provider) amount of resources in a reasonable amount of time.

I use the notations lblev
c (ver), ublev

c (ver) to show the lower and upper bounds of
a load level lev for the deployment version ver of a component c. For example,
considering an accelerated version of c, if the sum of input data rates to c is be-
tween lbMED

c (ACC) and ubMED
c (ACC), its CPU and GPU demands are calculated

by the linear functions fcpulev
c (ACC,Λ), fgpulev

c (ACC,Λ). The values of the lower
and upper bounds are given as part of the service template, e.g., generated using
service profiling methods.

The resource demand functions are described in the template. Figure 8.3 shows
example functions for CPU and GPU demands of the VM and ACC versions of
the DPI function, at medium load level.

Source components are special components that represent the starting point of
the flows in the service, e.g., end users or content distribution servers. Source
components have zero resource demands (and, therefore, no cost), no input, ex-
actly one outgoing connection to another component with unspecified data rate,
and impose no additional TiS. S is the source component of the template in Fig-
ure 8.2. Each template has exactly one source component. Several instances of

126 ○ ¸ �

8.1 Model

SRV
(VM)

DPI
(VM/ACC)

CHE
(VM)

ING OPT
(CON)

OPT-1
(ACC)

OPT-2
(VM)

S

Figure 8.5: Example multi-structure video streaming service template including
multi-version components.

each source component can be mapped to different nodes of the network where
flows are initiated, e.g., to model different locations where users of a service are
located.

Fixed components are also special components at a given location in the sub-
strate network. Their resource demands are not considered for embedding the
templates, as they are pre-defined and fixed.

Table 8.2 shows an overview of the parameters and the related symbols to the
components and deployment versions.

8.1.4 Multi-Structure Templates

By specifying multiple deployment versions for components of a template, services
can be deployed with the best version of each component considering the trade-offs
between the TiS for the requests and the resource costs.

In a more complex scenario, a certain functionality might even be realized in
different variations that consist of more than one component. For example, the
video optimizer (OPT) functionality in Figure 8.5 can either be deployed as one
single container or as a chain of one accelerated component and one VM that need
to work together. Selecting one version or another of such a service component not
only affects the resource demands of the component and the TiS for the requests
but may also influence the structure of the whole VCS. I refer to such templates
as multi-structure templates.

To support this, I introduce special ingress components in the model. These
components have at least two outputs, among which only one output can be active.
Any component of the template (except the source component) can be marked
as an ingress component. For this, the component must be equipped with a load
balancing or classification functionality. If no such component is available in the
VCS, additional placeholder components with zero resource demands, zero cost,
and zero additional TiS can be defined and added to the template. This might be
needed, e.g., if version selection is required directly at the beginning of the tem-
plate or for keeping the rest of the components (e.g., the DPI in Figure 8.5) in the
template unaware of this optional branching. The placeholder ingress components
will not be a part of the actual deployment of the service.

Multi-structure templates may include multi-version components, modeling het-
erogeneous services. For example, the video streaming template in Figure 8.5 in-
cludes a multi-version DPI and can take multiple structures depending on which
version of the video optimizer (OPT) is selected.

○ ¸ � 127

8 Embedding Heterogeneous Services with Load-Proportional Structures

8.1.5 Template Embedding

The template embedding process for the M-SPRING problem involves deciding:

• how many instances (horizontal scaling),

• of which components (structure selection)

• using which deployment version of each component for each instance of it
(version selection),

• with how many resources (vertical scaling),

• need to be instantiated in which locations (placement),

• and how the traffic should be routed among them (routing).

The outcome is an overlay, described in Section 8.1.6.
The required inputs for this process are similar to the U-SPRING template

embedding model, described in Section 6.1.3.
In addition to the description of source instances, if a template T includes fixed

components, they should also be given as a part of the input. Fixed components
are described as a set XT of tuples (c, v). c ∈ CT shows the fixed component and
v ∈ V is the network node where it is located. Fixed components influence the
embedding process of the template, e.g., because the template contains non-fixed
components that can only be placed at locations with a given maximum delay to
the fixed component.

Previous embeddings of components of template T are defined with a small
difference to the U-SPRING model; they are given as a set PT of tuples (c, v, ver).
Such a tuple specifies that an instance of component c ∈ CT exists on node v ∈ V
with the deployment version ver.

Table 8.3 gives an overview of symbols and parameters related to the template
embedding.

8.1.6 Overlay

The overlay model for the M-SPRING problem is similar to the overlays of the
U-SPRING problem, described in Section 6.1.4. One difference is related to the
fact that for each component, there can be multiple instances (in all SPRING
approaches). In M-SPRING approaches, if there are several deployment versions
of a component, each instance of it can have a different version, if required. For
simplicity, I assume only one instance of each component can be mapped to one
network node, which also means two different deployment versions of one com-
ponent cannot be mapped to one network node. The M-SPRING optimization
problem can, of course, be formulated differently to allow multiple instances of
a component on one node. As in the U-SPRING problem, if one template is
embedded multiple times, e.g., each for a different service provider, there are no
limitations for embedding multiple instances of the same component from different
service deployment requests into the same node.

128 ○ ¸ �

8.2 Problem Formulation

Table 8.3: M-SPRING Template Embedding and Overlay Parameters

Symbol Definition

(c, v, λ) ∈ ST Data rate λ of source component c from tem-
plate T at node v.

(c, v) ∈ XT An instance of c fixed to node v.
(c, v, ver) ∈ PT An existing instance of component c with de-

ployment version ver previously embedded at
node v.

T All templates to be embedded.
C =

⋃
T∈T CT All components from templates in T .

CFIX, CSRC, CING ⊂ C All fixed, source, ingress components.
CN ⊂ C All normal processing components that are

not fixed, source, or ingress.
A =

⋃
T∈T AT All arcs of templates in T .

S =
⋃

T∈T ST All sources of templates in T .
X =

⋃
T∈T XT All fixed components of templates in T .

GOL(T) = (IOL(T), EOL(T)) Overlay graph corresponding to template T .
i ∈ IOL(T), e ∈ EOL(T) Instances, edges of overlay.
M C

T (i) The corresponding component of instance i.
M V

T (i) The node where instance i is mapped to.
M A

T (e) The corresponding arc of edge e.

As described in Section 8.1.4, multi-structure templates might include optional
branches in their structure that may not be embedded. Therefore, there may not
necessarily be an edge in the overlay for each arc of the corresponding template.
The maximum allowed latency for each edge is defined for its corresponding arc.

Table 8.3 shows the overlay-related parameters and additional related symbols.

8.2 Problem Formulation

As defined in Section 8.1.5, this problem involves version and structure selection,
placement, scaling, and routing decisions. The inputs and outputs of the problem
can be summarized as follows.

• Inputs:

– Substrate network

– A template for each VCS

– Location and data rate of the sources for each VCS

– Location and deployed version of previously embedded components (op-
tional, can be empty)

– Location of fixed components (optional, can be empty)

○ ¸ � 129

8 Embedding Heterogeneous Services with Load-Proportional Structures

• Outputs:

– For newly requested VCSs: An overlay mapped to the substrate net-
work

– For already deployed VCSs: Modified overlay and its modified mapping
to the substrate network

I define a valid system configuration similar to the U-SPRING model defined
in Section 6.2, with the additional constraint that the total delay of the paths
created for an arc cannot exceed the maximum tolerable delay defined for the arc.

For the M-SPRING problem, I define the following metrics of interest:

• The total number of processing resources allocated to all instances on all
nodes

• The total TiS for all overlays

• The total link capacity consumption in the network

• The total number of instances that are added, removed, re-located, or switched
to another deployment version

The desired solution to this problem minimizes the values of these metrics. In
practice, considering all four metrics is necessary for jointly serving the require-
ments of service providers and network operators. Service providers need their
services to perform quickly and they want their costs to be as low as possible,
matching the performance the service achieves. For each component, at least one
instance is created, with the suitable deployment version selected based on the
trade-off between the resource cost and the maximum expected TiS that would
be required for processing the service requests with the specified set of resources.
The objectives of the service providers can be partly achieved by minimizing the
required number of processing resources and the TiS imposed by the selected
deployment versions for service components.

Network operators require remaining capacity after each embedding to be able
to accept additional service deployment requests. Minimizing the total number of
the required processing resources contributes to minimizing the amount of used
network node resources. Minimizing the total link capacity consumption results
in favoring solutions that place components of a service as close as possible to
each other (ideally, on the same network node, using zero link capacity). This
also results in a lower total latency for the service.

Minimizing the number of instances that are added, removed, or modified (i.e.,
by changing the deployment version of a component on the node it was previously
embedded) reduces the management and state handling overheads and contributes
to keeping the running services as stable as possible.

Over-subscription of node and link capacities is not allowed in this problem, as
the version and structure selection behavior of the M-SPRING solutions can be
influenced if there are no hard capacity limits. For example, instead of switching
to a more expensive deployment version to be able to keep the TiS for service

130 ○ ¸ �

8.3 Problem Complexity

requests in an acceptable level, the algorithm might choose to over-subscribe the
previously used resources to avoid changes. This is not desirable, as it does not
allow observing the actual power of defining heterogeneous pliable VCSs.

8.3 Problem Complexity

Using polynomial-time reduction, I show that for an instance of the M-SPRING
problem deciding whether a solution with no violation of capacity constraints
exists is an NP-complete problem. It is possible in time polynomial in the size
of inputs of the problem to check whether the embedding is valid. The output
of the problem has also a polynomial relation to the size of the problem inputs.
Therefore, the problem is in NP.

This problem is an extension to the U-SPRING problem, which is proven to be
NP-Complete [34]. Given an instance of U-SPRING, I construct an instance of
the current problem as follows.

I assume every component in every template to be embedded has exactly one
deployment version that only consumes CPUs, e.g., a VM version and has zero
memory demand. I also assume the templates have only one possible structure. I
set the TiS for the service requests using all components to zero and the maximum
tolerable delay for each arc to infinity, as the U-SPRING problem formulation does
not include arc delays. For a similar reason, I assume the templates do not include
any fixed components. I can complete the inputs to the M-SPRING problem using
the rest of the input provided for an instance of the U-SPRING. A solution without
violation of capacity constraints for the U-SPRING problem is then also a valid
solution for the current problem and vice versa.

The reduction can be performed in polynomial time in the size of the problem
input. Therefore, the M-SPRING problem is NP-hard. From that, I can conclude
that the problem is NP-complete.

8.4 Optimization Approach

In this section, I formalize the SPRING problem for heterogeneous services as an
MIP. All constraints and objective functions in this formulation are linear or can
be linearized. As the link and node resource demands are also specified using
piecewise linear functions, we are dealing with a Mixed-Integer Linear Program
(MILP).

Tables 8.4 and 8.5 show an overview of the binary and continuous decision vari-
ables in the MILP, respectively. Input parameters of this problem are summarized
in Tables 8.1, 8.2, and 8.3.

I define the parameters m∗c,v,ver to capture previous embeddings of components.
For every component c that was previously embedded into node v with version
ver, represented by a tuple (c, v, ver) ∈ PT (Section 8.1.5), I set m∗c,v,ver to 1. For
all other components, nodes, and versions, I set it to 0. M represents a constant
that is sufficiently large, used in the so-called Big-M formulations. I represent the

○ ¸ � 131

8 Embedding Heterogeneous Services with Load-Proportional Structures

Table 8.4: M-SPRING Binary Decision Variables

Variable Definition

xc,v 1 iff an instance of c is mapped to v.
mc,v,ver 1 iff an instance of c is mapped to v with version ver.
δc,v 1 iff mc,v,ver 6= m∗c,v,ver, i.e., an instance of c is added, removed,

or switched to another version at v.
l cpu
c,v ,ver,lev,

lgpu
c,v ,lev

Helper variable for calculating the CPU, GPU demand, which
indicates whether the sum of data rates on the inputs of c on
v is larger than or equal to the lower bound that defines the
load level lev for version ver.

ucpu
c,v ,ver,lev,

ugpu
c,v ,lev

Helper variable for calculating the CPU, GPU demand, which
indicates whether the sum of data rates on the inputs of c on
v is smaller than or equal to the lower bound that defines the
load level lev for version ver.

bcpu
c,v ,ver,lev,

bgpu
c,v ,lev

Helper variable for calculating the CPU, GPU demand, which
indicates whether the sum of data rates on the inputs of c on
v is in the range that defines the load level lev for version ver.

rc,v,k 1 iff output k of the instance of ingress component c at v is
activated.

ua,v,v′,l 1 iff the link is used for the path created for arc a with source
and destination on v and v′.

k-th element of a vector W by (W)k. 0 is a zero vector of appropriate length.

8.4.1 Constraints

In this section, I describe the constraints for the M-SPRING optimization ap-
proach.

Mapping Consistency Rules

∀c ∈ CSRC,∀v ∈ V : xc,v =

{
1 ∃(v, c, µ) ∈ S
0 else

(8.2)

∀v ∈ V, ∀c ∈ CFIX : xc,v =

{
1 if ∃(c, v) ∈ X
0 else

(8.3)

∀c ∈ CSRC,∀v ∈ V : outc,v =

{
µ ∃(v, c, µ) ∈ S
0 else

(8.4)

I assign fixed components and sources to their pre-defined locations (Con-
straint 8.2, 8.3). The data rate of each source is assigned to its output (Con-
straint 8.4).

I track the added/removed/modified instances (Constraint 8.5). If an instance is
created, the right number of inputs (Constraint 8.6) and outputs (Constraint 8.7)

132 ○ ¸ �

8.4 Optimization Approach

Table 8.5: M-SPRING Continuous Decision Variables

Variable Definition

cpuc,v, gpuc,v CPU, GPU demand of the instance of c if mapped to v.
timec,v TiS for an instance of c if mapped to v.
pc,v,ver Potential CPU demand of c at v for version ver.
gc,v Potential GPU demand of c at v, defined for its GPU-

accelerated instances.
tc,v,ver Potential TiS for c at v using version ver.
sc,v Total CPU and GPU resource cost of c on v per time unit.
inc,v Vector of length n in

c of data rates at inputs of the instance of
c at v, or an all-zero vector

outc,v Vector of length nout
c of data rates at outputs of the instance

of c at v, or an all-zero vector
oc,v Vector of length nout

c of potential data rates at outputs of the
instance of ingress component c at v

drea,v,v′ Data rate of the edge corresponding to an arc a that connects
an instance of c at v to an instance of c′ at v′.

drla,v,v′,l Data rate on link l corresponding to an arc a that connects
an instance of c at v to an instance of c′ at v′.

are created for it. At most one instance of each component can be mapped to a
node (Constraint 8.8, 8.9).

∀c ∈ CN ,∀v ∈ V : δc,v =

{
mc,v,ver if m∗c,v,ver = 0

1−mc,v,ver if m∗c,v,ver = 1
(8.5)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, n in
c] : (inc,v)k ≤M · xc,v (8.6)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, nout
c] : (outc,v)k ≤M · xc,v (8.7)

∀c ∈ CN ,∀v ∈ V :
∑

ver∈VER

mc,v,ver ≤ 1 (8.8)

∀c ∈ CN ,∀v ∈ V : 0 ≤ |VER | · xc,v −
∑

ver∈VER

mc,v,ver ≤ |VER | − 1 (8.9)

Flow and Data Rate Rules

∀c ∈ CN \ CING,∀v ∈ V : outc,v = foutc(inc,v)− (1− xc,v) · foutc(0) (8.10)

∀c ∈ CING,∀v ∈ V : oc,v = foutc(inc,v)− (1− xc,v) · foutc(0) (8.11)

∀c ∈ CING,∀v ∈ V : outc,v = rc,v,k · oc,v (8.12)

∀c ∈ CING,∀v ∈ V :
∑

k∈[1,nout
c]

rc,v,k = 1 (8.13)

The data rate entering an instance determines its outgoing data rate (Con-
straint 8.10). The data rates are set only if the instance is mapped to a certain

○ ¸ � 133

8 Embedding Heterogeneous Services with Load-Proportional Structures

node. I assume all deployment versions for an instance use the same function for
calculating the outgoing data rate. This realizes the assumption that all functions
for data rate, CPU, and GPU demands of a component are specifically created for
that component (e.g., using a profiling system), based on target performance met-
rics, including throughput. These functions can be used to calculate the amount
of resources required for each instance to perform at the specified performance
level under the current input data rate. For ingress components, only one of the
outputs can have a data rate (Constraint 8.11–8.13).

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, n in
c] :

(inc,v)k =
∑

a∈A ends in input k of srca (a),
v′∈V

drea,v′,v (8.14)

∀c ∈ C,∀v ∈ V, ∀k ∈ [1, nout
c] :

(outc,v)k =
∑

a∈A starts at output k of srca (a),
v′∈V

drea,v,v′ (8.15)

I assign a data rate to each input of the instances on each node, which is
calculated as the sum of data rates of the overlay edges that end in that input
(Constraint 8.14). Similarly, I assign a data rate to the outputs of the instances
(Constraint 8.15).

∀a ∈ A,∀v, v1, v2 ∈ V :

∑
vv′∈L

drla,v1,v2,vv′ −
∑
v′v∈L

drla,v1,v2,v′v =


0 if v 6=v1, v 6=v2

0 if v=v1=v2

drea,v1,v2 if v=v1, v1 6=v2, a∈A
(8.16)

∀a ∈ A,∀v1, v2 ∈ V, ∀l ∈ L : drla,v1,v2,l ≤M · ua,v1,v2,l (8.17)

∀a ∈ A,∀v1, v2 ∈ V, ∀l ∈ L : ua,v1,v2,l ≤ drla,v1,v2,l (8.18)

∀a ∈ A,∀v1, v2 ∈ V :
∑
l∈L

ua,v1,v2,l · d(l) ≤ dmax
a (8.19)

The data rates of the edges are mapped to network links, ensuring flow con-
servation over the path(s) (Constraint 8.16). The total delay of the used network
links must not exceed the maximum delay (Constraint 8.17–8.19).

Calculation of Resource Consumption

∀c ∈ C \ CSRC,∀v ∈ V, ∀ ver ∈ VER,∀ lev ∈ LEV :

ublev
c (ver)−

∑
k∈[1,n in

c]

(inc,v)k ≤M · ucpu
c,v ,ver,lev (8.20)

134 ○ ¸ �

8.4 Optimization Approach

∀c ∈ C \ CSRC, ∀v ∈ V, ∀ ver ∈ VER,∀ lev ∈ LEV :∑
k∈[1,n in

c]

(inc,v)k − lblev
c (ver) ≤M · l cpu

c,v ,ver,lev (8.21)

∀c ∈ C \ CSRC, ∀v ∈ V, ∀ ver ∈ VER :∑
lev∈LEV

(l cpu
c,v ,ver,lev + ucpu

c,v ,ver,lev) = |LEV |+ 1 (8.22)

∀c ∈ C \ CSRC, ∀v ∈ V, ∀ ver ∈ VER,∀ lev ∈ LEV :

0 ≤ l cpu
c,v ,ver,lev + ucpu

c,v ,ver,lev−2 · bcpu
c,v ,ver,lev ≤ 1 (8.23)

∀c ∈ C \ CSRC,∀v ∈ V, ∀ ver ∈ VER,∀ lev ∈ LEV :

pc,v,ver +M · (1− bcpu
c,v ,ver,lev) ≥

fcpulev
c (ver, inc,v)− (1−mc,v,ver) · cconlev

c (ver) (8.24)

The data rate on inputs of each instance is used for calculating its minimum
resource demands. For selecting the right piece of the piecewise linear function,
I determine the load level for every potential deployment version. For this, I
compare the sum of all input data rates of the instance to the pre-defined upper
and lower bounds for each load level (Constraint 8.20, 8.21). Exactly one load
level is indicated as the right one (Constraint 8.22, 8.23). Based on the load
level, I calculate the potential minimum CPU demand of each potential version
(Constraint 8.24).

I repeat the same process to determine the potential minimum GPU resource
demands (Constraint 8.25–8.29). To reduce the number of decision variables,
I calculate the resource demands only for the resource types that are actually
specified in the templates. For example, in the case of a VM deployment version,
I set the actual GPU resource demand of it to 0, without creating the intermediate
variables holding the potential GPU demands of it.

∀c ∈ CN , ∀v ∈ V, ∀ lev ∈ LEV :

ublev
c (ACC)−

∑
k∈[1,n in

c]

(inc,v)k ≤M · ugpu
c,v ,lev

(8.25)

∀c ∈ CN , ∀v ∈ V, ∀ lev ∈ LEV : ∑
k∈[1,n in

c]

(inc,v)k − lblev
c (ACC) ≤M · lgpu

c,v ,lev (8.26)

○ ¸ � 135

8 Embedding Heterogeneous Services with Load-Proportional Structures

∀c ∈ CN ,∀v ∈ V : ∑
lev∈LEV

(lgpu
c,v ,lev + ugpu

c,v ,lev) = |LEV |+ 1 (8.27)

∀c ∈ CN ,∀v ∈ V, ∀ lev ∈ LEV :

0 ≤ lgpu
c,v ,lev + ugpu

c,v ,lev−2 · bgpu
c,v ,lev ≤ 1 (8.28)

∀c ∈ CN ,∀v ∈ V, ∀ lev ∈ LEV :

gc,v +M · (1− bgpu
c,v ,lev) ≥

fgpulev
c (ver, inc,v)− (1−mc,v,ACC) · gconlev

c (ver) (8.29)

∀c ∈ C \ CSRC,∀v ∈ V, ∀ lev ∈ LEV :

gc,v +M · (1− bgpu
c,v ,lev) ≥

fgpulev
c (ACC, inc,v)− (1−mc,v,ACC) · gconlev

c (8.30)

Among the potential versions, only one version may be mapped to a potential
location. The resource demands of the optimal versions of components (according
to the objectives) are assigned as their final resource demands on the optimal
nodes (Constraint 8.31, 8.32). Link and node resource consumption must not be
larger than the capacity (Constraint 8.33–8.35).

∀c ∈ CN ,∀v ∈ V : cpuc,v =
∑

ver∈VER

pc,v,ver ·mc,v,ver (8.31)

∀c ∈ CN ,∀v ∈ V : gpuc,v = gc,v ·mc,v,ACC (8.32)

∀c ∈ C,∀v ∈ V :
∑
c∈C

cpuc,v ≤ capcpu(v) (8.33)

∀c ∈ C,∀v ∈ V :
∑
c∈C

gpuc,v ≤ capgpu(v) (8.34)

∀l ∈ L :
∑

a∈A,v,v′∈V

drla,v,v′,l ≤ cap(l) (8.35)

The potential maximum TiS for each instance of each component is calculated
using the given functions if a version is mapped to a node (Constraint 8.36,8.37).
The actual maximum TiS imposed by each component is decided based on the
selected version at the target node (Constraint 8.38).

∀c ∈ CN ,∀v ∈ V, ∀ ver ∈ VER :

tc,v,ver = fptc(ver,
∑

k∈[1,n in
c]

(inc,v)k)

− (1−mc,v,ver) · fptc(ver,
∑

k∈[1,n in
c]

(inc,v)k) (8.36)

136 ○ ¸ �

8.4 Optimization Approach

∀c ∈ CN ,∀v ∈ V, ∀ ver ∈ VER : tc,v,ver ≤M ·mc,v,ver (8.37)

∀c ∈ CN ,∀v ∈ V : timec,v =
∑

ver∈VER

tc,v,ver (8.38)

I calculate the total CPU and GPU resource cost of every embedded instance
on their target nodes per time unit (Constraint 8.39). By multiplying this value
and the TiS of service flows at each component, the total resource usage cost of
each component on each node can be calculated.

∀c ∈ CN , ∀v ∈ V : sc,v = cpuc,v · costcpu(v) + gpuc,v · costgpu(v) (8.39)

8.4.2 Optimization Objective

Based on the problem formulation in Section 8.2, I define the following objective
functions for the MILP:

• obj1: Minimize the total compute resource cost

min.
∑

c∈C,v∈V

sc,v

• obj2: Minimize the total TiS for service requests

min.
∑

c∈C,v∈V

timec,v

• obj3: Minimize network resource consumption

min.
∑

a∈A,v,v′∈V,l∈L

drla,v,v′,l

• obj4: Minimize the number of added, removed, modified instances

min.
∑

c∈C,v∈V

δc,v

To combine the benefits of using these objective functions, I define their lexico-
graphical combination as follows:

min. w1 · obj1 + w2 · obj2 + w3 · obj3 + w4 · obj4

For the objectives to have a clear priority, the weights w1, . . . , w4 should be
selected such that the range of the values that different objective functions can
take do not overlap. The desired priority among these objectives depends on the
use case.

○ ¸ � 137

8 Embedding Heterogeneous Services with Load-Proportional Structures

Algorithm 8.1 Main procedure of the M-SPRING heuristic

1: // Remove old overlays with no templates
2: if ∃GOL(T) with T 6∈ T then
3: remove GOL(T)

4: remove all fixed instances of all templates
5: for all T ∈ T do
6: // Add/remove/update source instances and data rates
7: if @GOL(T) then
8: create empty overlay GOL(T)

9: for all (c, v, λ) ∈ ST do
10: if @i ∈ IOL with M C

T (i) = c and M V
T (i) = v then

11: create instance i ∈ IOL with M C
T (i) = c and M V

T (i) = v

12: set/update output data rate of i

13: if ∃i ∈ IOL(T), M C
T (i) ∈ CSRC, @(c, v, λ) ∈ ST for any λ then

14: remove i
15: // Add fixed instances
16: for all (c, v) ∈ XT do
17: if @i ∈ IOL(T) with M C

T (i) = c and M V
T (i) = v then

18: create i ∈ IOL(T) with M C
T (i) = c and M V

T (i) = v

19: // Process instances in topological order according to template
20: for all i ∈ IOL in topological order do
21: if i has no input data rate, M C

T (i) /∈ CFIX and M C
T (i) /∈ CSRC then

22: remove i and go to next iteration

23: compute output data rates of i
24: for all output k of i do
25: set/update output data rate of i

8.5 Heuristic Approach

In Section 8.4, I describe the MILP formulation of the M-SPRING problem that
can be used with an appropriate solver to find the optimal solution for small prob-
lem instances. In this section, I present a heuristic that quickly finds solutions and
can be used for larger scenarios. This algorithm can be used for initial embedding
of templates in a substrate network as well as for adapting existing embeddings.

Algorithm 8.1 shows an overview of the main procedure, which is similar to those
of the U-SPRING (Algorithm 6.1) and B-SPRING (Algorithm 7.1) heuristics. I
describe the important steps specific to the M-SPRING heuristic in the rest of
this section.

The algorithm first processes the templates that were previously embedded
but need to be removed (lines 2–3). It also removes all fixed instances from all
existing overlays, to insert them correctly later on, if still needed. Afterwards,
it goes through the templates to be added or modified (line 5). The templates
can be sorted beforehand, e.g., according to the total input data rate from their
sources.

138 ○ ¸ �

8.5 Heuristic Approach

For new templates, the algorithm creates an empty overlay (lines 7–8). It then
processes the source and fixed instances for the template (lines 9–18).

Setting the output data rate of an instance i results in creating/updating out-
going edges from the output(s) of i as well as the inputs of the instances where
these edge are destined. For this, the algorithm must decide how many instances
of which versions of the subsequent component need to be created on which nodes.
I describe this with an example.

For the example template shown in Figure 8.5 (page 127), after assigning the
output data rate of instances of S, the algorithm needs to create at least one
instance of SRV, which will receive the traffic from S. For every deployment version
of SRV (in this example, SRV has only a VM deployment version), it looks for
potential nodes. As one of objectives (described in Section 8.2) is to minimize the
number of added/removed instances, the algorithm takes a greedy decision; it tries
to create an instance of SRV with the maximum possible input data rate. If the
total outgoing data rate of S is higher than the upper bound of the load level HIG
for SRV, it creates an instance of SRV and sets its input data rate to this highest
possible value. For the remaining data rate from S, it creates additional instances
of SRV in the same way, until there is no more traffic left to be forwarded to a
SRV instance.

At the same time, it selects the candidate nodes that can host the created
instances. These nodes must have enough capacity and there must be a path to
them from the node where S is located. The links over the path must have enough
capacity and the total delay of the path must not be larger than the maximum
tolerable delay defined in the service template. Locations with an existing instance
of SRV from a previous embedding are also considered. Among the candidate
nodes the algorithm can now select the best option, considering the resulting TiS
of the deployment version at that load level and the resource usage cost on that
node.

It then iterates over the instances of the overlay in a topological order (Line 20).
That is, each instance i is processed only after all instances that have an edge to
i (as specified in the template) have already been processed. The first instances
that are processed are the instances after the source instance that are created
while setting the output of the source instance in line 18 (instances of SRV in the
previous example).

Next, it computes and propagates the data rates from outputs of the current
instance towards other components (lines 23–25). In the previous example, this
is the data rate towards DPI and CHE. If the data rate needs to be increased
(i.e., if there are no previous embeddings of DPI or CHE, or if the previous data
rate was less than the computed data rate at this step), it proceeds in the same
way as described for outputs of the source instance. If the data rate needs to be
decreased, a similar process is required to select the most suitable instances of
the subsequent components that should get a lower data rate. To limit the range
of required modifications, the algorithm selects an outgoing edge that has the
smallest data rate larger than or equal to the data rate that should be decreased.

If the current instance is an instance of an ingress component, the algorithm
first calculates the most suitable embedding for all of its outgoing branches. This

○ ¸ � 139

8 Embedding Heterogeneous Services with Load-Proportional Structures

is done sequentially for different branches. Then, comparing the total cost of
each branch (calculated as the total resource usage cost during the total TiS), the
cheapest branch is added to the overlay and the other branches are discarded.

8.6 Evaluation

The solution approach to the M-SPRING problem has a similar nature to those of
the U-SPRING and B-SPRING problems. They all receive an abstract template
(with different requirements and specifications in each problem) and embed the
template into the substrate network, by scaling, placing, and selecting paths for
the components and arcs in a single step. I have evaluated the U-SPRING and
B-SPRING approaches from different aspects; e.g., I have shown that the amount
of resources allocated to services follows the variations of load very closely (Sec-
tion 6.6). I have also analyzed the scalability of the solutions as well as the be-
havior of the heuristic approach in large substrate networks (Section 7.6). Those
results, without considering the technicalities of heterogeneous services, also apply
to the approaches presented in this chapter. Therefore, in this section, I focus on
evaluating the new aspects of the joint scaling, placement and routing problem
that are specific to heterogeneous services.

For evaluating the optimization and heuristic approaches, I have used a Python
implementation of both of them. The implementation of the approaches is avail-
able online [37]. For solving the MILP, I have used the Gurobi Optimizer [21] 8.0.1.
I have used the benchmarks from Inführ and Raidl [110] for the Virtual Network
Mapping Problem (VNMP) [109] to build the topology of the substrate networks.

I present the results of two different experiments to compare how the heuris-
tic solves the problem compared to the optimization approach and to show the
scalability of the heuristic approach.

8.6.1 Comparison of Optimization and Heuristic Approaches

For the first set of experiments, to achieve results in a reasonable time with the
optimization approach, I have used a simple template T1 with the structure shown
in Figure 8.6a. It consists of a source component and a DPI in different versions.
I have set the resource demands and the resulting TiS based on the findings of
Araújo et al. [117]. They have analyzed DPI VNFs with and without using GPU
acceleration. Following their results, I assume an ACC version performs 20 times
faster than the VM version. As I only focus on compute resource demand for
simplicity, I assume other resources like memory, buffer, or disk space can be
adjusted as needed similar to the compute resources.

I have used the smallest substrate network from VNMP benchmarks with 20
nodes and 44 links (substrate graph eu 20 0 prob [109]), with uniform capacities
and resource costs over the network. I have set the GPU capacity of each node
to 5 times less than its CPU capacity and the GPU usage cost per time unit on
the same node to 50 times more than the CPU usage cost. These ratios roughly
follow the Amazon EC2 On-Demand Pricing model [118]. Concrete information

140 ○ ¸ �

8.6 Evaluation

S DPI
(VM)

DPI
(ACC)/

(a) Service template T1

ING DPI
(VM)

DPI
(ACC)

S

AUX
(VM)

(b) Service template T2

Figure 8.6: Example heterogeneous service templates

about resource unit prices cannot be extracted from these models, as the pricing
model is based on pre-defined instances with a certain group of resources reserved
for them.

Figure 8.7 shows the results of the first set of experiments. In these experiments,
I have increased the data rate flowing from the only source instance of the template
from 1 to 70. I have captured the values of different metrics for the following cases:

1. Heuristic approach, considering both versions of DPI

2. Optimization approach, considering both versions of DPI

3. Optimization approach, considering only the VM version of DPI

4. Optimization approach, considering only the ACC version of DPI

To see the behavior of the algorithms in different load situations, I have embed-
ded the template with different source data rates without considering the previous
embedding. The results of the optimization approach have been calculated to op-
timality without a time limit for the solver.

As shown in Figure 8.7a, the heuristic approach starts selecting accelerated
versions of the DPI early on. This is because of its greedy decision process that
tries to push as much of the input data rate as possible to the first instance it
creates at each step. As the instances are created one by one without considering
the whole template, the required instances in the next steps cannot be considered.
For this reason, the heuristic creates embeddings that are even more expensive
than the ACC-only experiments with the optimization approach, as Figure 8.7b
illustrates. In exchange, as shown in Figure 8.7c, the created overlays result in a
very low TiS, making the heuristic approach favorable for time-sensitive VCSs.

The optimization approach creates more balanced results, favoring low-cost
solutions for a larger range of input data rates. The cost of the solutions found
by the optimization approach that can use both versions of the DPI lie between
those of the VM-only and ACC-only experiments. Above the source data rate of 35
units, this approach starts creating more ACC versions of the DPI (in addition to
VM versions) as the load increases, which consume GPUs, as shown in Figure 8.7d.
This results in the gradual increase in the cost that can be observed in Figure 8.7b
and the decrease in the TiS that is shown in Figure 8.7c. There is only a minor
increase in the total number of CPUs, as shown in Figure 8.7e.

○ ¸ � 141

8 Embedding Heterogeneous Services with Load-Proportional Structures

0 10 20 30 40 50 60 70

0
2

4
6

8

Total Source Data Rate

N
u
m

be
r

o
f

A
C

C
 I

n
st

an
ce

s
o
f

D
P

I
Heuristic: Heterogeneous
MIP: Heterogeneous
MIP: VM-only
MIP: ACC-only

0 10 20 30 40 50 60 70

(a)

0 10 20 30 40 50 60 70

0
10

0
20

0
30

0
4

00
50

0

Total Source Data Rate

T
o
ta

l
P

ro
ce

ss
in

g
 R

es
o
ur

ce
 C

o
st Heuristic: Heterogeneous

MIP: Heterogeneous
MIP: VM-only
MIP: ACC-only

0 10 20 30 40 50 60 70

(b)

0 10 20 30 40 50 60 70

0
1

00
20

0
30

0
40

0

Total Source Data Rate

T
ot

al
 T

im
e

in
 S

y
st

em
 (

T
iS

) Heuristic: Heterogeneous
MIP: Heterogeneous
MIP: VM-only
MIP: ACC-only

0 10 20 30 40 50 60 70

(c)

0 10 20 30 40 50 60 70

0
2

4
6

8
10

12

Total Source Data Rate

T
ot

al
 N

um
b
er

 o
f

G
P

U
s

Heuristic: Heterogeneous
MIP: Heterogeneous
MIP: VM-only
MIP: ACC-ony

0 10 20 30 40 50 60 70

(d)

0 10 20 30 40 50 60 70

0
10

20
3

0
4

0
5

0
6

0

Total Source Data Rate

T
ot

al
 N

um
be

r
of

 C
P

U
s

Heuristic: Heterogeneous
MIP: Heterogeneous
MIP: VM-only
MIP: ACC-only

0 10 20 30 40 50 60 70

(e)

0 10 20 30 40 50 60 70

0
2

0
4

0
6

0
8

0
10

0
1

2
0

Total Source Data Rate

T
ot

al
 D

at
a

R
at

e

Heuristic: Heterogeneous
MIP: Heterogeneous
MIP: VM-only
MIP: ACC-ony

0 10 20 30 40 50 60 70

(f)

Figure 8.7: Results of the first set of experiments with template T1 including a
source and a multi-version DPI

In Figure 8.7c, above the source data rate of 35 units, the total TiS has an
overall decreasing trend but increases in small intervals (e.g., between input data
rate values 35 and 39). This can be explained in combination with Figures 8.7a
and 8.7d. They show the number of ACC instances and the number of used GPUs
in the embedding, respectively. In small intervals, the number of allocated GPUs
remains constant. By increasing the load, the TiS increases, up to a point that

142 ○ ¸ �

8.6 Evaluation

the embedding with this set of resources is not optimal anymore. In this case,
additional ACC instances are added (e.g., at input data rate 40), with additional
GPUs allocated to them, which create a sudden decrease in the TiS and the
corresponding increase in the resource cost that can be observed in Figure 8.7b.

Figure 8.7f shows the changes in the total data rate flowing over the network
nodes as the total source data rate increases. All approaches show a similarly
increasing trend. As the heuristic approach uses more ACC instances in total, it
is able to handle the source data rates using the created instances in larger intervals
without the need for additional instances which could be located farther than the
source. Non-increasing data rate over the network links in spite of the increasing
source data rate means parts of the traffic does not flow through the links; instead,
it remains inside one network node, e.g., when two instances connected with an
edge in the overlay are mapped to the same node. Similarly, a decrease in the
total data rate over network links (e.g., when data rate increases from 34 to 35
using the optimization approach) can occur if a flow that was previously mapped
to a path over the network links is now realized as an internal connection in one
of the nodes.

8.6.2 Scalability

In the second set of experiments, I show the heuristic results on larger substrate
networks. I have used a multi-structure template T2, shown in Figure 8.6b. In this
template, the first option for deploying a DPI is a VM and the second option is an
ACC version accompanied by an auxiliary VM. A placeholder ingress component
with zero resource consumption and zero TiS for requests is used for separating
the two options. I have used Network 1 with 20 nodes and 44 links (substrate
graph eu 20 0 prob [109]), Network 2 with 50 nodes and 124 links (substrate graph
eu 50 0 prob [109]), and Network 3 with 100 nodes and 230 links (substrate graph
eu 100 0 prob [109]). I have used uniform capacities for the network nodes and
links, with the capacity and cost of CPU and GPU resources set as described for
the previous experiment. I have set the node and link capacities of Network 2–4
to 2.5, 5, and 10 times more than those of Network 1, respectively. The templates
have 4 source locations from 4 distant nodes in each substrate network, each
with data rates increasing from 1 to 25. The number of required VM and ACC
deployment versions of the DPI is shown in Figure 8.8.

Because of the larger distances in larger networks and delay constraints of tem-
plate arcs, in Network 3 and 4, each source location requires dedicated instances
of the template components to be created close to it. Therefore, in these networks,
the number of required instances is higher than in the smaller networks, even for
very low data rate. The instances can be shared among the sources in Network 1
and 2, resulting in a lower number of instances in total. The results for Network 3
and 4 are overlapping.

In all substrate networks, with lower source data rates, the first deployment
option of the DPI (VM) is selected. As load increases, more and more of the
second option of the DPI (ACC with an auxiliary VM) are created.

For the largest instances in these experiments, the heuristic finds a solution in

○ ¸ � 143

8 Embedding Heterogeneous Services with Load-Proportional Structures

0 20 40 60 80 100

0
1

2
3

4
5

Total Source Data Rate

N
u
m

be
r

o
f

V
M

 i
ns

ta
n
ce

s
of

 D
P

I

Network 1
Network 2
Network 3
Network 4

0 10 20 30 40 50 60 70 80 90 100

(a)

0 20 40 60 80 100

0
2

4
6

8
1

0

Total Source Data Rate

N
u
m

be
r

o
f

A
C

C
 I

n
st

an
ce

s
o
f

D
P

I

Network 1
Network 2
Network 3
Network 4

0 10 20 30 40 50 60 70 80 90 100

(b)

Figure 8.8: Results of the second set of experiments with the multi-structure tem-
plate T2 including four sources

less than 5 seconds. The optimization approach requires several minutes for the
smallest instance and, as expected, cannot find solutions to large instances in a
reasonable time.

Similar to the B-SPRING heuristic, I have implemented the path calculation
in the M-SPRING heuristic based on the Floyd-Warshall algorithm, which is cu-
bic in the number of nodes in the substrate network. For a network with 200
nodes (substrate graph eu 200 0 prob [109]), the heuristic requires 4 seconds for
calculating the shortest paths. The run time of the heuristic also increases with
the increasing number of sources, as the embedding process is repeated for every
source. For example, for template T1 (Figure 8.6a), the heuristic requires 4 mil-
liseconds after the calculation of shortest paths to embed the template with one
source with data rate 1 on this network with 200 nodes and 472 links. With
100 sources, each with data rate 1, the heuristic runs for 45 seconds, and with
the highest number of possible source locations (200 on this network), each with
data rate 1, the run time is 140 seconds. For larger networks among the VNMP
instances, the path calculation was not completed even after several minutes. For
such scenarios, a more time-efficient path calculation method is required.

8.7 Conclusion

In this chapter, I have shown the feasibility of defining heterogeneous pliable
VCSs, including components with different deployment options. I have developed
optimization and heuristic approaches for joint scaling, placement, routing, and
version selection decisions for these VCSs.

Based on the evaluation results, in low-load situations, it is more cost-efficient
to use general-purpose deployment versions, while for high-load situations, the
hardware-accelerated versions of service components can be used for achieving
a low TiS. Using these approaches, different resource types in heterogeneous
infrastructures can be used efficiently to get suitable resource costs and TiS.

144 ○ ¸ �

8.7 Conclusion

B-SPRING

Bi-directional VCS

A-SPRING

VCS with arbitrarily
ordered components Shared

components

Fixed
components

SPRING

Uni-directional VCS

U-SPRING

Heterogeneous VCS

M-SPRING

General- &
Special-Purpose

Compute Resources

Figure 8.9: Relation of M-SPRING to A-SPRING, U-SPRING, and B-SPRING

As shown in Figure 8.9, the major difference of the templates used in the M-
SPRING approaches to those of U-SPRING (Chapter 6) and B-SPRING (Chap-
ter 7) approaches lies in the definition of multi-version service components and
multi-structure VCSs, which results in different cost and performance options for
VCSs. The minimum resource demands and the maximum expected TiS for ser-
vice requests at each component (for each possible deployment version of it) are
defined as functions of the input data rate in the service template. The actual
TiS and resource demands of the instances are then determined while embedding
the template into the network.

U-SPRING and B-SPRING approaches are based on the simplifying assumption
that the resource demands of service components are defined as linear functions of
their input data rates. With this assumption, the problems can be formulated as a
MILP and solved using conventional solvers for optimization problems. To model
more complex dependencies on the input data rate, in the M-SPRING model, I
assume these functions are given as piecewise linear functions. The M-SPRING
model is an extension of the U-SPRING model and includes all its core features.

In the M-SPRING model, I assume the heterogeneous pliable VCSs are uni-
directional VCSs, as in the U-SPRING problem. The approaches can be extended
to support bi-directional templates as well. Similar to the B-SPRING approaches,
the M-SPRING approaches support service components fixed to a certain location,
e.g., to model the endpoints of a VCS or legacy Physical Network Functions
(PNFs).

The A-SPRING model (Section 3.2.1) also provides a limited support for special-
purposes compute resources in addition to the general-purpose ones. However,
that model does not include the resulting differences by using different versions

○ ¸ � 145

8 Embedding Heterogeneous Services with Load-Proportional Structures

for service components, in terms of cost or performance and, therefore, is not
suitable for correctly capturing the requirements of scaling, placing, and routing
of pliable VCSs with multi-version service components.

146 ○ ¸ �

9
Results and Future Research
Directions

9.1 Results and Discussion 147

9.2 Future Research Directions 151

In this chapter, first, I discuss the results of my contributions in the dissertation.
I also analyze the practical applicability of my proposals based on the state of the
art in service management and orchestration in the context of network softwariza-
tion. In Section 9.2, I identify future research directions to fill in the remaining
gaps.

9.1 Results and Discussion

In the rest of this section, I describe how my proposed approaches can solve the
six shortcomings of existing approaches that I have described in Section 1.1.

Flexible Composition and Orchestration of VCSs To address the shortcom-
ings described in Section 1.1.1, I have extended the models from my previous
research [38] to a more powerful model for describing pliable Virtualized Com-
posed Services (VCSs) with arbitrarily ordered components. Instead of an inflex-
ible total order among service components, this model allows to define a partial
order among them. This enables composing VCSs using the order among service
components that best fits the requirements of the service.

I have described a heuristic for selecting the appropriate service graphs for
pliable VCS with arbitrarily ordered components. The selected service graphs are
the input to the joint scaling, placement, and routing problem (A-SPRING) that I
have formulated for pliable VCSs with arbitrarily ordered components. I have also
presented a heuristic that provides quick and close-to-optimal solutions to the A-
SPRING problem for mapping the selected combinations to the substrate network.
The evaluation results for these approaches show the feasibility of defining a pliable
structure for complex VCSs bypassing a combinatorial explosion.

147

9 Results and Future Research Directions

Changing the order of service components is an additional degree of freedom,
besides changing the placement of service components or starting new instances
of service components to meet the service-level objectives. Changing the compo-
sition of a pliable VCS might result in changing the placement and routing for the
service. It might also change the number of required instances for service compo-
nents. This, in turn, might require synchronizing and migrating the state among
instances (of stateful service components), flow handover, etc. These operations
are also required for dynamic (re-)placement, scaling, and (re-)routing solutions
for service components that work without changing the composition. Therefore,
in a cloud and Network Function Virtualization (NFV) Management and Orches-
tration (MANO) system that is capable of dynamic service life-cycle management,
changing the composition of service components does not impose any additional
basic operations. The only additional requirement is the pre-processing of service
deployment requests to decide the composition.

Resource Demands as a Function of Load To solve the issues described in
Section 1.1.2, I have presented abstract service templates for defining the struc-
ture and resource demands of pliable VCSs. These templates include the required
service components and their intended inter-connectivity. The resource demands
of each service component are defined as a function of the data rate on its in-
puts. This allows a much more realistic modeling of the resource needs of service
components than the constant resource needs assumed by the existing approaches
in this context. In this way, the actual resource demands can be calculated and
adapted according to the load, reducing the risk of under- or over-estimating the
required resources.

For this approach to work accurately, a powerful and accurate profiling system
needs to be in place, which can be used to formalize the relationships among the
load, the target performance, and the required compute, storage, and networking
resources for individual service components as well as the intended composition
of them as a VCS, for example in the form of the functions used in the SPRING
approaches.

I have shown the feasibility of defining resource demands as a function of the
load using very simple examples by testing a limited set of possible configurations
for the allocated resources to a VCS. Extracting such functions for realistic appli-
cations requires comprehensive profiling and benchmarking tools, methodologies,
and large data sets. DevOps approaches that converge the development and oper-
ation steps of VCSs and their components are being introduced into the network
softwarization context [25]. Using these approaches, automated testing [119] and
profiling steps [120, 121, 122, 123] can be included into the design and develop-
ment workflows of VCSs. The resulting models can be enhanced and comple-
mented, e.g., with the help of public data sets [124] or by monitoring the VCSs in
production environments, resulting in precise and realistic resource demand and
performance models.

148

9.1 Results and Discussion

Load-Proportional Structure for Uni-Directional VCSs Using flexible service
templates, I have defined pliable VCSs with load-proportional structures to ad-
dress the shortcomings described in Section 1.1.3. Instead of limiting the number
of required instances for service components, with this model, the structure of the
VCS can be dynamically adapted to the load. One category of such VCSs that
I have identified consists of uni-directional pliable VCSs with load-proportional
structures. This is an enhanced model for a typical VCS, which is described as a
fixed, directed acyclic service graph in existing studies on resource allocation and
service mapping. A uni-directional VCS consists of a set of service components
that should be traversed in a single forwarding direction, i.e., by the upstream or
the downstream flows. This model reduces the risk of inaccurate resource demand
estimations and, combined with an appropriate template embedding solution, al-
lows adapting the structure of the VCS (i.e., the number of required instances for
each service component), e.g., according to the location and request rate of its
users.

Load-Proportional Structure for Bi-Directional VCSs As mentioned in Sec-
tion 1.1.4, bi-directional VCSs have not been modeled and investigated sufficiently
in the existing scaling, placement, or routing approaches. To fill in this gap, I have
presented an extension to the uni-directional pliable VCS model that expresses
bi-directional pliable VCSs. This is a comprehensive, flexible, and realistic model
for VCSs that consist of the components required by upstream and downstream
flows, where each flow returns to the source where it initiated. Using this model,
stateful service components can be marked as such, which can be used by an ap-
propriate life-cycle management solution to ensure the exact same instance of a
stateful component is used for both upstream and downstream flows.

Load-Proportional Structure for Heterogeneous VCSs I have presented an-
other category of pliable VCSs with load-proportional structures that consist of
heterogeneous, multi-version components. This model exploits the opportunities
offered by network softwarization and the solutions that integrate and unify large-
scale multi-technology infrastructures. Using this model, different deployment
versions can be specified for a single service component, each requiring a different
number of different resource types (e.g., general-purpose or special-purpose com-
pute resources). In this way, a service component can have a different cost and
performance depending on the selected version. Different versions implementing a
certain functionality may require different number of components. In this way, the
structure of the VCS may also differ, according to the selected deployment version
for the included service components. In this model, I assume uni-directional VCSs
but the approaches can easily be extended to support bi-directional VCSs.

Jointly Deciding Scaling, Placement, Routing, and Deployment Versions I
have presented approaches for the SPRING problem that can scale, place, and
create paths for multiple pliable VCSs on a common substrate network. Un-
like existing approaches to service embedding that only consider a subset of the

149

9 Results and Future Research Directions

B-SPRING

Bi-directional VCS

A-SPRING

VCS with arbitrarily
ordered components Shared

components

Fixed
components

SPRING

Uni-directional VCS

U-SPRING

Heterogeneous VCS

M-SPRING

General- &
Special-Purpose

Compute Resources

Figure 9.1: Overview of SPRING approaches

SPRING problem, these approaches consist of a joint, single-step decision process.
Figure 9.1 shows an overview of these approaches and their interrelation.

Empiric tests have shown that the SPRING approaches find a balance among
conflicting requirements of different VCSs, goals of different service providers, and
overall objectives of a network operator that hosts the VCSs on its infrastructure.
They ensure that the allocated capacity quickly follows changes in the demand.

Overall, the evaluations give evidence to the feasibility of the joint, single-step
scaling, placement and routing approach for pliable VCSs defined using flexible
service templates. Using these approaches, service developers and providers can
specify VCSs at a high level of abstraction without needlessly limiting the struc-
ture and the risk of over-/under-estimating the required resources. At the same
time, network operators can re-optimize the system configuration (i.e., the state of
embedded services and the utilization of different resources in the network) after
changes, ensuring the resilience of the running VCSs and meeting the service-level
objectives, using a minimal set of modifications. Depending on the priorities of
the service providers or network operators, the solutions can be adjusted to de-
liver the required results, e.g., by changing the optimization objective functions in
the Mixed-Integer Linear Program (MILP) formulations or adapting the decision
processes of the heuristics.

Integrating the scaling, placement, and routing steps into a single-step deci-
sion process requires cloud and NFV MANO frameworks that can support this.
The leading open-source NFV MANO systems like OSM [53] and SONATA [50]
have a modular design that allows customized workflows and innovative life-cycle
management approaches. For example, the service platform of SONATA [27] has
a customizable service life-cycle management plug-in. A network operator that

150

9.2 Future Research Directions

uses this MANO system for its VCS can easily modify the order of life-cycle man-
agement operations (i.e., instantiation, placement, scaling, chaining, termination,
etc.) if needed and customize how each of these operations are performed. Us-
ing service-specific management programs supported in SONATA, it is possible
to specify when and how the scaling, placement, and routing operations are per-
formed for each network service, making the practical application of the SPRING
approaches possible.

The 5G Operating System (5G OS) [19], proposed within the 5G-PICTURE
project [125], is an example of ongoing efforts [126] for integrating Software-
Defined Networking (SDN), NFV, and network slicing [127] concepts and provid-
ing tools and well-defined interfaces among service components, SDN controllers,
and NFV MANO systems for managing VCSs on top of heterogeneous infras-
tructures. These tools enable applying approaches like M-SPRING on top of a
heterogeneous infrastructure.

9.2 Future Research Directions

Promising future research directions include further algorithmic enhancements to
the presented solutions and development of new algorithms. For example, the
heuristic approach to the B-SPRING problem embeds bi-directional services very
quickly, compared to the optimization approach. Tens of seconds are, however,
required for solving medium-sized problem instances because of the complexity
of the problem and the used path calculation method within the heuristic. De-
pending on the frequency of changes that happen in the system configuration and
the expected reaction time to these changes, heuristics might be required that are
faster, even if the gap towards optimal embeddings might get larger in that case.

As an extension of the presented models, the option of specifying an arbitrary
order among (a subset of) service components can be integrated into the abstract
service templates used for pliable VCSs with load-proportional structures. In this
way, service templates are created that can model all four categories of pliable
VCSs introduced in this dissertation. Using such templates, the service graph
generation and selection decision can also be combined with the scaling, place-
ment, and routing decisions to be taken based on the templates, as an extension
to the template embedding solutions.

Another possible research direction is to investigate the effects of different queu-
ing models at the inputs of service components, other than the M/D/1 model that
I have assumed in this dissertation, and to further analyze the proposed solutions
using real-world data on the performance and resource demand behaviors in real-
world services. The SPRING approaches can also be extended to consider the
results of predictions and information about the future state of load while plan-
ning resource allocation. E.g., using predictions about patterns of changes in load
for different VCSs, special treatment of temporary services that are designed for
extremely high load (like a video streaming service from a large sports event), etc.

Additionally, the approaches can be optimized to produce reasonable embed-
dings within a pre-defined time limit. The time limit can be adapted to the

151

9 Results and Future Research Directions

frequency of changes in the substrate network and the running services, as well
as the overhead of the actual deployment of the results produced by the SPRING
approaches.

The substrate network model in the SPRING approaches can be modified to
consider different domains of administration with different organizations (e.g.,
hierarchical or peer-to-peer), where, e.g., different parts of a VCS needs to be
embedded separately based on local policies and custom SPRING approaches

While NFV, SDN, and Service Function Chaining (SFC) concepts are devel-
oping rapidly, there are still many compatibility issues in the existing solutions
for each of these fields. For practical applicability of the presented models and
approaches in large-scale, heterogeneous networks, there is a need for flexible and
customizable cloud and NFV MANO systems that have a reliable integration
with different SDN solutions designed for different networking technologies. To-
gether, these solutions can provide a dynamic SFC solution, allowing easy and
fast modifications to deployed VCSs. By resolving these issues, the true power
of network softwarization can be unleashed. The additional flexibility offered by
pliable VCSs can turn the service specification, management, and orchestration
approaches presented in this dissertation into a viable and crucial part of next-
generation networks.

152

Bibliography

[1] ETSI NFV ISG. GS NFV 003 V1.1.1 Network Function Virtualisation
(NFV); Terminology for Main Concepts in NFV. Group Specification. Oct.
2013.

[2] 5G-PICTURE Project. Deliverable 2.1: 5G and Vertical services, use cases
and requirements. url: https://www.5g-picture-project.eu/download/
5g-picture_d21.pdf (visited on 01/03/2019).

[3] T. Shimizu, A. Nakao, and K. Satoh. “Network Softwarization View of 5G
Networks”. In: 5G Networks: Fundamental Requirements, Enabling Tech-
nologies, and Operations Management. John Wiley & Sons, Ltd, 2018.
Chap. 13, pp. 499–518. isbn: 9781119333142. doi: 10.1002/9781119333142.
ch13. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781119333142.ch13. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781119333142.ch13.

[4] A. Galis, S. Clayman, L. Mamatas, J. Rubio Loyola, A. Manzalini, S. Kuk-
linski, J. Serrat, and T. Zahariadis. “Softwarization of Future Networks
and Services. Programmable Enabled Networks as Next Generation Soft-
ware Defined Networks”. In: 2013 IEEE SDN for Future Networks and
Services (SDN4FNS). Nov. 2013. doi: 10.1109/SDN4FNS.2013.6702557.

[5] F. De Turck, J.-M. Kang, H. Choo, M.-S. Kim, B.-Y. Choi, R. Badonnel,
and J. W.-K. Hong. “Softwarization of Networks, Clouds, and Internet of
Things”. In: International Journal of Network Management 27.2 (2017),
e1967. doi: 10.1002/nem.1967. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/nem.1967. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/nem.1967.

[6] ETSI NFV ISG. GS NFV-MAN 001 V1.1.1 Network Function Virtuali-
sation (NFV); Management and Orchestration. Group Specification. Dec.
2014.

[7] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang. “A Comprehensive Survey
of Network Function Virtualization”. In: Computer Networks 133 (2018),
pp. 212–262. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.
2018.01.021. url: http://www.sciencedirect.com/science/article/
pii/S1389128618300306.

[8] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. “Software-Defined Networking: A Comprehensive Sur-
vey”. In: Proceedings of the IEEE 103.1 (Jan. 2015), pp. 14–76.

153

https://www.5g-picture-project.eu/download/5g-picture_d21.pdf
https://www.5g-picture-project.eu/download/5g-picture_d21.pdf
https://doi.org/10.1002/9781119333142.ch13
https://doi.org/10.1002/9781119333142.ch13
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119333142.ch13
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119333142.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch13
https://doi.org/10.1109/SDN4FNS.2013.6702557
https://doi.org/10.1002/nem.1967
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.1967
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.1967
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1967
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1967
https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.021
https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.021
http://www.sciencedirect.com/science/article/pii/S1389128618300306
http://www.sciencedirect.com/science/article/pii/S1389128618300306

Bibliography

[9] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and B.
Mukherjee. “On Service-Chaining Strategies Using Virtual Network Func-
tions in Operator Networks”. In: Computer Networks 133 (2018), pp. 1–16.
issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2018.01.
028. url: http://www.sciencedirect.com/science/article/pii/

S1389128618300379.

[10] T. Taleb. “Guest Editorial First Edition of Series On Network Softwariza-
tion and Enablers”. In: IEEE Journal on Selected Areas in Communications
36.3 (Mar. 2018), pp. 381–383. issn: 0733-8716. doi: 10.1109/JSAC.2018.
2827538.

[11] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud Computing: State-of-the-Art
and Research Challenges”. In: Journal of Internet Services and Applica-
tions 1.1 (May 2010), pp. 7–18. issn: 1869-0238. doi: 10.1007/s13174-
010-0007-6. url: https://doi.org/10.1007/s13174-010-0007-6.

[12] A. N. Toosi, R. N. Calheiros, and R. Buyya. “Interconnected Cloud Com-
puting Environments: Challenges, Taxonomy, and Survey”. In: ACM Com-
puting Surveys 47.1 (July 2014), 7:1–7:47. issn: 0360-0300. doi: 10.1145/
2593512. url: http://doi.acm.org/10.1145/2593512.

[13] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y.
Xiang, and R. Ranjan. “Fog Computing: Survey of Trends, Architectures,
Requirements, and Research Directions”. In: IEEE Access 6 (Aug. 2018),
pp. 47980–48009. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2866491.

[14] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. “Mobile Edge Com-
puting: A Survey”. In: IEEE Internet of Things Journal 5.1 (Feb. 2018),
pp. 450–465. issn: 2327-4662. doi: 10.1109/JIOT.2017.2750180.

[15] OpenStack Flavors. url: https://docs.openstack.org/nova/latest/
user/flavors.html (visited on 05/23/2019).

[16] T. Nadeau and Q. Quinn. Problem Statement for Service Function Chain-
ing. Internet Request for Comments RFC 7498. IETF, 2015, pp. 1–13.

[17] The American Heritage Dictionary of the English Language, Fifth Edition.
Houghton Mifflin Harcourt Publishing Company, 2019. url: https://

ahdictionary.com/word/search.html?q=pliable (visited on 01/02/2019).

[18] M. Keller, C. Robbert, and H. Karl. “Template Embedding: Using Ap-
plication Architecture to Allocate Resources in Distributed Clouds”. In:
IEEE/ACM 7th International Conference on Utility and Cloud Computing
(UCC). 2014. doi: 10.1109/UCC.2014.49.

[19] S. Dräxler, H. Karl, H. R. Kouchaksaraei, A. Machwe, C. Dent-Young, K.
Katsalis, and K. Samdanis. “5G OS: Control and Orchestration of Services
on Multi-Domain Heterogeneous 5G Infrastructures”. In: 2018 European
Conference on Networks and Communications (EuCNC). June 2018. doi:
10.1109/EuCNC.2018.8443210.

154

https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.028
https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.028
http://www.sciencedirect.com/science/article/pii/S1389128618300379
http://www.sciencedirect.com/science/article/pii/S1389128618300379
https://doi.org/10.1109/JSAC.2018.2827538
https://doi.org/10.1109/JSAC.2018.2827538
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1145/2593512
https://doi.org/10.1145/2593512
http://doi.acm.org/10.1145/2593512
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1109/JIOT.2017.2750180
https://docs.openstack.org/nova/latest/user/flavors.html
https://docs.openstack.org/nova/latest/user/flavors.html
https://ahdictionary.com/word/search.html?q=pliable
https://ahdictionary.com/word/search.html?q=pliable
https://doi.org/10.1109/UCC.2014.49
https://doi.org/10.1109/EuCNC.2018.8443210

Bibliography

[20] G. Bianchi, E. Biton, N. Blefari-Melazzi, I. Borges, L. Chiaraviglio, P. de
la Cruz Ramos, P. Eardley, F. Fontes, M. J. McGrath, L. Natarianni, D.
Niculescu, C. Parada, M. Popovici, V. Riccobene, S. Salsano, B. Sayadi, J.
Thomson, C. Tselios, and G. Tsolis. “Superfluidity: A Flexible Functional
Architecture for 5G Networks”. In: Transactions on Emerging Telecommu-
nications Technologies 27.9 (2016), pp. 1178–1186. doi: 10.1002/ett.
3082. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.
3082.

[21] Gurobi Optimizer. url: http://www.gurobi.com/products/gurobi-
optimizer (visited on 05/23/2019).

[22] S. Mehraghdam, M. Keller, and H. Karl. “Specifying and Placing Chains
of Virtual Network Functions”. In: 3rd International Conference on Cloud
Networking (CloudNet). IEEE. Oct. 2014, pp. 7–13. doi: 10.1109/CloudNet.
2014.6968961.

[23] S. Mehraghdam and H. Karl. “Specification of Complex Structures in Dis-
tributed Service Function Chaining Using a YANG Data Model”. In: CoRR
abs/1503.02442 (2015). arXiv: 1503.02442. url: http://arxiv.org/abs/
1503.02442.

[24] S. Mehraghdam and H. Karl. “Placement of Services with Flexible Struc-
tures Specified by a YANG Data Model”. In: 2nd IEEE International
Conference on Network Softwarization (NetSoft). IEEE. June 2016. doi:
10.1109/NETSOFT.2016.7502412.

[25] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Martrat,
M. S. Siddiqui, S. V. Rossem, W. Tavernier, et al. “DevOps for Network
Function Virtualisation: An Architectural Approach”. In: Transactions on
Emerging Telecommunications Technologies 27.9 (2016), pp. 1206–1215.
doi: 10.1002/ett.3084.

[26] S. Dräxler, H. Karl, and Z. Á. Mann. “Joint Optimization of Scaling and
Placement of Virtual Network Services”. In: 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. CCGrid ’17. Madrid,
Spain: IEEE Press, May 2017, pp. 365–370. isbn: 978-1-5090-6610-0. doi:
10.1109/CCGRID.2017.25. url: https://doi.org/10.1109/CCGRID.
2017.25.

[27] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel, J. Less-
mann, T. Soenen, W. Tavernier, S. Mendel-Brin, and G. Xilouris. “SONATA:
Service Programming and Orchestration for Virtualized Software Networks”.
In: IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE. May 2017, pp. 973–978. doi: 10.1109/ICCW.2017.
7962785.

[28] M. Peuster, S. Dräxler, H. R. Kouchaksaraei, S. V. Rossem, W. Tav-
ernier, and H. Karl. “A Flexible Multi-PoP Infrastructure Emulator for
Carrier-Grade MANO Systems”. In: 3rd IEEE International Conference

155

https://doi.org/10.1002/ett.3082
https://doi.org/10.1002/ett.3082
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3082
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3082
http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer
https://doi.org/10.1109/CloudNet.2014.6968961
https://doi.org/10.1109/CloudNet.2014.6968961
http://arxiv.org/abs/1503.02442
http://arxiv.org/abs/1503.02442
http://arxiv.org/abs/1503.02442
https://doi.org/10.1109/NETSOFT.2016.7502412
https://doi.org/10.1002/ett.3084
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/ICCW.2017.7962785
https://doi.org/10.1109/ICCW.2017.7962785

Bibliography

on Network Softwarization (NetSoft) Demo Track. IEEE. July 2017. doi:
10.1109/NETSOFT.2017.8004250.

[29] S. Dräxler and H. Karl. “Specification, Composition, and Placement of
Network Services with Flexible Structures”. In: International Journal of
Network Management 27.2 (2017). doi: 10.1002/nem.1963. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nem.1963.

[30] S. Dräxler, M. Peuster, M. Illian, and H. Karl. “Towards Predicting Re-
source Demands and Performance of Distributed Cloud Services”. In: KuVS-
Fachgespräch Fog Computing 2018. Technical Report. Mar. 2018. url:
http://www.infosys.tuwien.ac.at/docs/proceedings.pdf#page=14.

[31] S. Dräxler, M. Peuster, M. Illian, and H. Karl. “Generating Resource and
Performance Models for Service Function Chains: The Video Streaming
Case”. In: 4th IEEE International Conference on Network Softwarization
(NetSoft). IEEE. June 2018. doi: 10.1109/NETSOFT.2018.8460029.

[32] S. Dräxler, S. Schneider, and H. Karl. “Scaling and Placing Bidirectional
Services with Stateful Virtual and Physical Network Functions”. In: 4th
IEEE International Conference on Network Softwarization (NetSoft). IEEE.
June 2018. doi: 10.1109/NETSOFT.2018.8459915.

[33] H. R. Kouchaksaraei, S. Dräxler, M. Peuster, and H. Karl. “Programmable
and Flexible Management and Orchestration of Virtualized Network Func-
tions”. In: 2018 European Conference on Networks and Communications
(EuCNC). June 2018. doi: 10.1109/EuCNC.2018.8442528.

[34] S. Dräxler, H. Karl, and Z. Ádám. “JASPER: Joint Optimization of Scal-
ing, Placement, and Routing of Virtual Network Services”. In: IEEE Trans-
actions on Network and Service Management 15.3 (Sept. 2018), pp. 946–
960. issn: 1932-4537. doi: 10.1109/TNSM.2018.2846572.

[35] S. Schneider, S. Dräxler, and H. Karl. “Trade-offs in Dynamic Resource
Allocation in Network Function Virtualization”. In: 1st Workshop on Ad-
vanced Control Planes for Software Networks (ACPSN) at IEEE Global
Communications Conference (GLOBECOM). IEEE. Dec. 2018. doi: 10.
1109/GLOCOMW.2018.8644352.

[36] S. Dräxler and H. Karl. “SPRING: Scaling, Placement, and Routing of Het-
erogeneous Services with Flexible Structures”. In: 5th IEEE International
Conference on Network Softwarization (NetSoft). IEEE. June 2019.

[37] Source Code of the SPRING Approaches. url: https://github.com/CN-
UPB/SPRING (visited on 05/14/2019).

[38] S. Mehraghdam. “Adaptive Placement of Programmable Virtual Network
Function Chains”. Master’s Thesis. Paderborn University, 2014.

[39] M. Illian. “Prediction of Resource Requirements and Performance of Vir-
tualised Network Functions in a Video Streaming Context”. Bachelor’s
Thesis. Paderborn University, 2017.

156

https://doi.org/10.1109/NETSOFT.2017.8004250
https://doi.org/10.1002/nem.1963
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1963
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1963
http://www.infosys.tuwien.ac.at/docs/proceedings.pdf#page=14
https://doi.org/10.1109/NETSOFT.2018.8460029
https://doi.org/10.1109/NETSOFT.2018.8459915
https://doi.org/10.1109/EuCNC.2018.8442528
https://doi.org/10.1109/TNSM.2018.2846572
https://doi.org/10.1109/GLOCOMW.2018.8644352
https://doi.org/10.1109/GLOCOMW.2018.8644352
https://github.com/CN-UPB/SPRING
https://github.com/CN-UPB/SPRING

Bibliography

[40] S. Schneider. “Specifying, Scaling, Placing, and Reusing Bidirectional For-
warding Graphs of Virtual Network Functions”. Master’s Thesis. Pader-
born University, 2017.

[41] L. Sun, H. Dong, and J. Ashraf. “Survey of Service Description Languages
and Their Issues in Cloud Computing”. In: IEEE 8th International Con-
ference on Semantics, Knowledge and Grids (SKG). 2012. doi: 10.1109/
SKG.2012.49.

[42] M. T. Beck and J. F. Botero. “Scalable and Coordinated Allocation of Ser-
vice Function Chains”. In: Computer Communications 102 (2017), pp. 78–
88. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.2016.
09.010.

[43] S. Schneider, A. Sharam, H. Karl, and H. Wehrheim. “Specifying and Ana-
lyzing Virtual Network Services Using Queuing Petri Nets”. In: IFIP/IEEE
International Symposium on Integrated Network Management (IM). 2019.

[44] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou. “Traffic Aware
Placement of Interdependent NFV Middleboxes”. In: IEEE INFOCOM
2017 - IEEE Conference on Computer Communications. IEEE. 2017. doi:
10.1109/INFOCOM.2017.8056993.

[45] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou. “SDN-Based Traffic
Aware Placement of NFV Middleboxes”. In: IEEE Transactions on Net-
work and Service Management 14.3 (2017), pp. 528–542. doi: 10.1109/
TNSM.2017.2729506.

[46] M. Gao, B. Addis, M. Bouet, and S. Secci. “Optimal Orchestration of
Virtual Network Functions”. In: Computer Networks 142 (2018), pp. 108–
127. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2018.
06.006. url: http://www.sciencedirect.com/science/article/pii/
S1389128618303578.

[47] B. Addis, D. Belabed, M. Bouet, and S. Secci. “Virtual Network Functions
Placement and Routing Optimization”. In: 4th International Conference
on Cloud Networking (CloudNet). IEEE. 2015. doi: 10.1109/CloudNet.
2015.7335301.

[48] H. Moens and F. De Turck. “VNF-P: A Model for Efficient Placement of
Virtualized Network Functions”. In: IEEE 10th Conference on Network and
Service Management (CNSM). 2014. doi: 10.1109/CNSM.2014.7014205.

[49] H. R. Kouchaksaraei, T. Dierich, and H. Karl. “Pishahang: Joint Orches-
tration of Network Function Chains and Distributed Cloud Applications”.
In: 4th IEEE Conference on Network Softwarization and Workshops (Net-
Soft). IEEE, June 2018. doi: 10.1109/NETSOFT.2018.8460134.

[50] SONATA Project. url: http://sonata-nfv.eu (visited on 12/22/2018).

[51] UNIFY Project. url: www.fp7-unify.eu (visited on 12/22/2018).

[52] T-NOVA Project. url: http://www.t-nova.eu (visited on 12/22/2018).

157

https://doi.org/10.1109/SKG.2012.49
https://doi.org/10.1109/SKG.2012.49
https://doi.org/https://doi.org/10.1016/j.comcom.2016.09.010
https://doi.org/https://doi.org/10.1016/j.comcom.2016.09.010
https://doi.org/10.1109/INFOCOM.2017.8056993
https://doi.org/10.1109/TNSM.2017.2729506
https://doi.org/10.1109/TNSM.2017.2729506
https://doi.org/https://doi.org/10.1016/j.comnet.2018.06.006
https://doi.org/https://doi.org/10.1016/j.comnet.2018.06.006
http://www.sciencedirect.com/science/article/pii/S1389128618303578
http://www.sciencedirect.com/science/article/pii/S1389128618303578
https://doi.org/10.1109/CloudNet.2015.7335301
https://doi.org/10.1109/CloudNet.2015.7335301
https://doi.org/10.1109/CNSM.2014.7014205
https://doi.org/10.1109/NETSOFT.2018.8460134
http://sonata-nfv.eu
www.fp7-unify.eu
http://www.t-nova.eu

Bibliography

[53] OSM Project. url: https://osm.etsi.org (visited on 12/22/2018).

[54] H. Moens and B. Volckaert. “Comparing Topology and Stream Based
Strategies for Modeling Service Function Chains”. In: IEEE 2nd Confer-
ence on Network Softwarization (NetSoft). 2016. doi: 10.1109/NETSOFT.
2016.7502418.

[55] M. Melo, S. Nickel, and F. Saldanha-da-Gama. “Facility Location and Sup-
ply Chain Management—A Review”. In: European Journal of Operational
Research 196 (2 July 2009), pp. 401–412. doi: 10.1016/j.ejor.2008.05.
007.

[56] G. Nagy and S. Salhi. “Location-Routing: Issues, Models and Methods”.
In: European Journal of Operational Research 177.2 (Mar. 2007), pp. 649–
672. issn: 03772217. doi: 10.1016/j.ejor.2006.04.004. url: http:
//linkinghub.elsevier.com/retrieve/pii/S0377221706002670.

[57] C. Prodhon and C. Prins. “A Survey of Recent Research on Location-
Routing Problems”. In: European Journal of Operational Research (Jan.
2014).

[58] B. Awerbuch and T. Leighton. “Improved Approximation Algorithms for
the Multi-Commodity Flow Problem and Local Competitive Routing in
Dynamic Networks”. In: 26th ACM Symposium on Theory Of Computing
(STOC). Vol. 94. 1994, pp. 487–496.

[59] I. Houidi, W. Louati, and D. Zeghlache. “Exact Multi-Objective Virtual
Network Embedding in Cloud Environments”. In: The Computer Journal
58.3 (2015), pp. 403–415. doi: 10.1093/comjnl/bxu154.

[60] J. Li, N. Zhang, Q. Ye, W. Shi, W. Zhuang, and X. Shen. “Joint Resource
Allocation and Online Virtual Network Embedding for 5G Networks”. In:
IEEE Global Communications Conference (GLOBECOM). Dec. 2017. doi:
10.1109/GLOCOM.2017.8254072.

[61] A. Baumgartner, V. S. Reddy, and T. Bauschert. “Mobile Core Network
Virtualization: A Model for Combined Virtual Core Network Function
Placement and Topology Optimization”. In: 1st IEEE Conference on Net-
work Softwarization (NetSoft). IEEE. 2015. doi: 10.1109/NETSOFT.2015.
7116162.

[62] P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E. Goncalves,
D. Sadok, J. Kelner, B. Melander, and J. Mangs. “Resource Allocation for
Distributed Cloud: Concepts and Research Challenges”. In: IEEE Network
25.4 (July 2011), pp. 42–46. issn: 0890-8044. doi: 10.1109/MNET.2011.
5958007.

[63] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. “A Review of Auto-
Scaling Techniques for Elastic Applications in Cloud Environments”. In:
Journal of Grid Computing 12.4 (2014), pp. 559–592. doi: https://doi.
org/10.1007/s10723-014-9314-7.

158

https://osm.etsi.org
https://doi.org/10.1109/NETSOFT.2016.7502418
https://doi.org/10.1109/NETSOFT.2016.7502418
https://doi.org/10.1016/j.ejor.2008.05.007
https://doi.org/10.1016/j.ejor.2008.05.007
https://doi.org/10.1016/j.ejor.2006.04.004
http://linkinghub.elsevier.com/retrieve/pii/S0377221706002670
http://linkinghub.elsevier.com/retrieve/pii/S0377221706002670
https://doi.org/10.1093/comjnl/bxu154
https://doi.org/10.1109/GLOCOM.2017.8254072
https://doi.org/10.1109/NETSOFT.2015.7116162
https://doi.org/10.1109/NETSOFT.2015.7116162
https://doi.org/10.1109/MNET.2011.5958007
https://doi.org/10.1109/MNET.2011.5958007
https://doi.org/https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/https://doi.org/10.1007/s10723-014-9314-7

Bibliography

[64] Z. Á. Mann. “Interplay of Virtual Machine Selection and Virtual Machine
Placement”. In: Proceedings of the 5th European Conference on Service-
Oriented and Cloud Computing. 2016, pp. 137–151. doi: https://doi.
org/10.1007/978-3-319-44482-6_9.

[65] Z. Á. Mann. “Allocation of Virtual Machines in Cloud Data Centers—
A Survey of Problem Models and Optimization Algorithms”. In: ACM
Computing Surveys 48.1 (2015), 11:1–11:34. doi: 10.1145/2797211.

[66] D. M. Divakaran and M. Gurusamy. “Towards Flexible Guarantees in
Clouds: Adaptive Bandwidth Allocation and Pricing”. In: IEEE Trans-
actions on Parallel and Distributed Systems 26.6 (2015), pp. 1754–1764.
doi: 10.1109/TPDS.2014.2325044.

[67] E. Ahvar, S. Ahvar, N. Crespi, J. Garcia-Alfaro, and Z. Á. Mann. “NACER:
a Network-Aware Cost-Efficient Resource Allocation Method for Processing-
Intensive Tasks in Distributed Clouds”. In: 14th IEEE International Sym-
posium on Network Computing and Applications. 2015, pp. 90–97. doi:
10.1109/NCA.2015.37.

[68] M. Alicherry and T. Lakshman. “Optimizing Data Access Latencies in
Cloud Systems by Intelligent Virtual Machine Placement”. In: IEEE IN-
FOCOM. 2013, pp. 647–655. doi: 10.1109/INFCOM.2013.6566850.

[69] E. Ahvar, S. Ahvar, Z. Á. Mann, N. Crespi, J. Garcia-Alfaro, and R. Glitho.
“CACEV: a Cost and Carbon Emission-Efficient Virtual Machine Place-
ment Method for Green Distributed Clouds”. In: IEEE 13th International
Conference on Services Computing. 2016, pp. 275–282. doi: 10.1109/SCC.
2016.43.

[70] P. Bellavista, F. Callegati, W. Cerroni, C. Contoli, A. Corradi, L. Fos-
chini, A. Pernafini, and G. Santandrea. “Virtual Network Function Embed-
ding in Real Cloud Environments”. In: Computer Networks 93 (Dec. 2015),
pp. 506–517. issn: 13891286. doi: 10.1016/j.comnet.2015.09.034.

[71] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau. “Online VNF Scaling
in Datacenters”. In: IEEE International Conference on Cloud Computing,
CLOUD. IEEE, June 2017, pp. 140–147. isbn: 9781509026197. doi: 10.
1109/CLOUD.2016.26. eprint: 1604.01136.

[72] P. Cappanera, F. Paganelli, and F. Paradiso. “VNF Placement for Service
Chaining in a Distributed Cloud Environment with Multiple Stakeholders”.
In: Computer Communications 133 (2019), pp. 24–40. issn: 0140-3664.
doi: https://doi.org/10.1016/j.comcom.2018.10.008. url: http:
//www.sciencedirect.com/science/article/pii/S0140366418303104.

[73] J. G. Herrera and J. F. Botero. “Resource Allocation in NFV: A Compre-
hensive Survey”. In: IEEE Transactions on Network and Service Manage-
ment 13.3 (2016), pp. 518–532. doi: 10.1109/TNSM.2016.2598420.

159

https://doi.org/https://doi.org/10.1007/978-3-319-44482-6_9
https://doi.org/https://doi.org/10.1007/978-3-319-44482-6_9
https://doi.org/10.1145/2797211
https://doi.org/10.1109/TPDS.2014.2325044
https://doi.org/10.1109/NCA.2015.37
https://doi.org/10.1109/INFCOM.2013.6566850
https://doi.org/10.1109/SCC.2016.43
https://doi.org/10.1109/SCC.2016.43
https://doi.org/10.1016/j.comnet.2015.09.034
https://doi.org/10.1109/CLOUD.2016.26
https://doi.org/10.1109/CLOUD.2016.26
1604.01136
https://doi.org/https://doi.org/10.1016/j.comcom.2018.10.008
http://www.sciencedirect.com/science/article/pii/S0140366418303104
http://www.sciencedirect.com/science/article/pii/S0140366418303104
https://doi.org/10.1109/TNSM.2016.2598420

Bibliography

[74] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai. “Deploying Chains
of Virtual Network Functions: On the Relation between Link and Server
Usage”. In: IEEE/ACM Transactions on Networking (TON) 26.4 (2018),
pp. 1562–1576. doi: 10.1109/TNET.2018.2842798.

[75] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary. “Piecing Together the NFV Provisioning Puzzle: Efficient Placement
and Chaining of Virtual Network Functions”. In: IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE, 2015. doi:
10.1109/INM.2015.7140281.

[76] S. Ahvar, H. P. Phyu, and R. Glitho. “CCVP: Cost-efficient Centrality-
based VNF Placement and Chaining Algorithm for Network Service Provi-
sioning”. In: IEEE NetSoft. IEEE, July 2017, pp. 1–9. isbn: 9781509060085.
doi: 10.1109/NETSOFT.2017.8004104.

[77] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte.
“Orchestrating Virtualized Network Functions”. In: IEEE Transactions on
Network and Service Management 13.4 (2016), pp. 725–739. doi: 10.1109/
TNSM.2016.2569020.

[78] M. Savi, M. Tornatore, and G. Verticale. “Impact of Processing Costs on
Service Chain Placement in Network Functions Virtualization”. In: IEEE
1st Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). 2015. doi: 10.1109/NFV-SDN.2015.7387426.

[79] S. Khebbache, M. Hadji, and D. Zeghlache. “Virtualized Network Func-
tions Chaining and Routing Algorithms”. In: Computer Networks 114 (Feb.
2017), pp. 95–110. issn: 13891286. doi: 10.1016/j.comnet.2017.01.008.

[80] M. C. Luizelli, W. L. da Costa Cordeiro, L. S. Buriol, and L. P. Gaspary. “A
Fix-and-Optimize Approach for Efficient and Large Scale Virtual Network
Function Placement and Chaining”. In: Computer Communications 102
(Apr. 2017), pp. 67–77. issn: 01403664. doi: 10.1016/j.comcom.2016.
11.002.

[81] T.-M. Nguyen, M. Minoux, and S. Fdida. “Optimizing Resource Utiliza-
tion in NFV Dynamic Systems: New Exact and Heuristic Approaches”. In:
Computer Networks (2018). issn: 1389-1286. doi: https://doi.org/10.
1016/j.comnet.2018.11.009. url: http://www.sciencedirect.com/
science/article/pii/S1389128618302287.

[82] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet. “Network Service
Chaining with Efficient Network Function Mapping Based on Service De-
compositions”. In: IEEE 1st Conference on Network Softwarization (Net-
Soft). Apr. 2015. doi: 10.1109/NETSOFT.2015.7116126.

[83] A. Mehta and E. Elmroth. “Distributed Cost-Optimized Placement for
Latency-Critical Applications in Heterogeneous Environments”. In: IEEE
International Conference on Autonomic Computing (ICAC). IEEE, Sept.
2018. doi: 10.1109/ICAC.2018.00022.

160

https://doi.org/10.1109/TNET.2018.2842798
https://doi.org/10.1109/INM.2015.7140281
https://doi.org/10.1109/NETSOFT.2017.8004104
https://doi.org/10.1109/TNSM.2016.2569020
https://doi.org/10.1109/TNSM.2016.2569020
https://doi.org/10.1109/NFV-SDN.2015.7387426
https://doi.org/10.1016/j.comnet.2017.01.008
https://doi.org/10.1016/j.comcom.2016.11.002
https://doi.org/10.1016/j.comcom.2016.11.002
https://doi.org/https://doi.org/10.1016/j.comnet.2018.11.009
https://doi.org/https://doi.org/10.1016/j.comnet.2018.11.009
http://www.sciencedirect.com/science/article/pii/S1389128618302287
http://www.sciencedirect.com/science/article/pii/S1389128618302287
https://doi.org/10.1109/NETSOFT.2015.7116126
https://doi.org/10.1109/ICAC.2018.00022

Bibliography

[84] P. Chuprikov, S. Nikolenko, and K. Kogan. “On Demand Elastic Capac-
ity Planning for Service Auto-Scaling”. In: IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communica-
tions. 2016. doi: 10.1109/INFOCOM.2016.7524616.

[85] C. Fuerst, S. Schmid, L. Suresh, and P. Costa. “Kraken: Online and Elas-
tic Resource Reservations for Multi-Tenant Datacenters”. In: IEEE INFO-
COM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. 2016. doi: 10.1109/INFOCOM.2016.7524466.

[86] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan.
“Optimal Virtual Network Function Placement in Multi-Cloud Service
Function Chaining Architecture”. In: Computer Communications 102 (2017),
pp. 1–16. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.
2017.02.011.

[87] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba.
“Elastic Virtual Network Function Placement”. In: IEEE 4th Interna-
tional Conference on Cloud Networking (CloudNet). 2015. doi: 10.1109/
CloudNet.2015.7335318.

[88] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and S.
Davy. “Design and Evaluation of Algorithms for Mapping and Schedul-
ing of Virtual Network Functions”. In: IEEE 1st Conference on Network
Softwarization (NetSoft). 2015. doi: 10.1109/NETSOFT.2015.7116120.

[89] M. Bjorklund. YANG—A Data Modeling Language for the Network Con-
figuration Protocol (NETCONF). RFC 6020 (Standards Track). Internet
Engineering Task Force, Oct. 2010.

[90] Broadband Forum Liaison on Flexible Service Chaining to IETF Service
Function Chaining Working Group. 2014. url: https://datatracker.
ietf . org / documents / LIAISON / liaison - 2014 - 02 - 13 - broadband -

forum-sfc-broadband-forum-work-on-flexible-service-chaining-

sd-326-attachment-1.pdf.

[91] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro. Service
Function Chaining Use Cases in Mobile Networks. Internet-Draft draft-
ietf-sfc-use-case-mobility-03. IETF Secretariat, Jan. 2018.

[92] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma. Service Func-
tion Chaining Use Cases in Data Centers. Internet-Draft draft-ietf-sfc-dc-
use-cases-02. IETF Secretariat, Jan. 2017.

[93] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Q. Fu, Q. Sun, C.
Pham, C. Huang, J. Zhu, and P. He. Service Function Chaining (SFC)
General Use Cases. Internet-Draft draft-liu-sfc-use-cases-08. IETF Secre-
tariat, Sept. 2014.

[94] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. “SNDlib 1.0 –
Survivable Network Design Library”. In: ENOG INOC. 2007.

161

https://doi.org/10.1109/INFOCOM.2016.7524616
https://doi.org/10.1109/INFOCOM.2016.7524466
https://doi.org/https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1109/CloudNet.2015.7335318
https://doi.org/10.1109/CloudNet.2015.7335318
https://doi.org/10.1109/NETSOFT.2015.7116120
https://datatracker.ietf.org/documents/LIAISON/liaison-2014-02-13-broadband-forum-sfc-broadband-forum-work-on-flexible-service-chaining-sd-326-attachment-1.pdf
https://datatracker.ietf.org/documents/LIAISON/liaison-2014-02-13-broadband-forum-sfc-broadband-forum-work-on-flexible-service-chaining-sd-326-attachment-1.pdf
https://datatracker.ietf.org/documents/LIAISON/liaison-2014-02-13-broadband-forum-sfc-broadband-forum-work-on-flexible-service-chaining-sd-326-attachment-1.pdf
https://datatracker.ietf.org/documents/LIAISON/liaison-2014-02-13-broadband-forum-sfc-broadband-forum-work-on-flexible-service-chaining-sd-326-attachment-1.pdf

Bibliography

[95] T.-W. Shinn and T. Takaoka. “Variations on the Bottleneck Paths Prob-
lem”. In: Theoretical Computer Science 575 (2015). Special Issue on Al-
gorithms and Computation, pp. 10–16. issn: 0304-3975. doi: 10.1016/j.
tcs.2014.10.049.

[96] Data from Resource Demand Modeling Experiments. url: https://uni-
paderborn . sciebo . de / index . php / s / G9q2hmUNg4n8LEg (visited on
05/14/2019).

[97] ffserver. url: https://trac.ffmpeg.org/wiki/ffserver (visited on
05/23/2019).

[98] FFmpeg. url: https://ffmpeg.org (visited on 05/23/2019).

[99] Squid. url: http://www.squid-cache.org (visited on 05/23/2019).

[100] GNU Wget. url: https://www.gnu.org/software/wget (visited on
05/23/2019).

[101] OpenStack Ocata. url: https : / / releases . openstack . org / ocata /

index.html (visited on 05/23/2019).

[102] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam. “Cuanta: Quan-
tifying Effects of Shared On-Chip Resource Interference for Consolidated
Virtual Machines”. In: 2nd ACM Symposium on Cloud Computing. ACM.
2011. doi: 10.1145/2038916.2038938.

[103] Big Buck Bunny. url: https://peach.blender.org/download/ (visited
on 12/23/2018).

[104] TPB AFK: The Pirate Bay Away from Keyboard. url: http://www.imdb.
com/title/tt2608732/ (visited on 12/23/2018).

[105] The Art of Playing. url: http://www.imdb.com/title/tt3996164/

(visited on 12/23/2018).

[106] Best Plays of: The International 5 Movie DOTA 2 Compilation highlights.
url: https://www.youtube.com/watch?v=ERTIWNfx93w (visited on
12/23/2018).

[107] TV static noise HD 1080p. url: https://www.youtube.com/watch?v=
DH0BQtwEAsMw (visited on 12/23/2018).

[108] R. E. Korf. “Linear-Space Best-First Search”. In: Artificial Intelligence
62.1 (1993), pp. 41–78. doi: https://doi.org/10.1016/0004-3702(93)
90045-D.

[109] Virtual Network Mapping Problem (VNMP) Benchmark Set. url: https:
//www.ac.tuwien.ac.at/files/resources/instances/vnmp (visited on
01/02/2019).

[110] J. Inführ and G. R. Raidl. “Solving the Virtual Network Mapping Prob-
lem with Construction Heuristics, Local Search and Variable Neighborhood
Descent”. In: Proceedings of the 13th European Conference on Evolution-
ary Computation in Combinatorial Optimization. 2013, pp. 250–261. doi:
https://doi.org/10.1007/978-3-642-37198-1_22.

162

https://doi.org/10.1016/j.tcs.2014.10.049
https://doi.org/10.1016/j.tcs.2014.10.049
https://uni-paderborn.sciebo.de/index.php/s/G9q2hmUNg4n8LEg
https://uni-paderborn.sciebo.de/index.php/s/G9q2hmUNg4n8LEg
https://trac.ffmpeg.org/wiki/ffserver
https://ffmpeg.org
http://www.squid-cache.org
https://www.gnu.org/software/wget
https://releases.openstack.org/ocata/index.html
https://releases.openstack.org/ocata/index.html
https://doi.org/10.1145/2038916.2038938
https://peach.blender.org/download/
http://www.imdb.com/title/tt2608732/
http://www.imdb.com/title/tt2608732/
http://www.imdb.com/title/tt3996164/
https://www.youtube.com/watch?v=ERTIWNfx93w
https://www.youtube.com/watch?v=DH0BQtwEAsMw
https://www.youtube.com/watch?v=DH0BQtwEAsMw
https://doi.org/https://doi.org/10.1016/0004-3702(93)90045-D
https://doi.org/https://doi.org/10.1016/0004-3702(93)90045-D
https://www.ac.tuwien.ac.at/files/resources/instances/vnmp
https://www.ac.tuwien.ac.at/files/resources/instances/vnmp
https://doi.org/https://doi.org/10.1007/978-3-642-37198-1_22

Bibliography

[111] F. Glover. “Tabu search—Part I”. In: ORSA Journal on computing 1.3
(1989), pp. 190–206. doi: https://doi.org/10.1287/ijoc.1.3.190.

[112] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In: The
USENIX Magazine 36.1 (2011), pp. 42–47.

[113] ETSI NFV ISG. Network Functions Virtualisation (NFV): Use Cases.
Group Specification ETSI GS NFV 001 V1.1.1. 2013.

[114] Tellabs. Mobile Video Optimization Concept and Benefits. White Paper.
2011. url: http://s3.amazonaws.com/zanran_storage/www.tellabs.
com/ContentPages/2438991029.pdf (visited on 01/02/2019).

[115] OpenStack. url: https://www.openstack.org/ (visited on 05/23/2019).

[116] Kubernetes. url: https://kubernetes.io (visited on 05/23/2019).

[117] I. M. Araújo, C. Natalino, Á. L. Santana, and D. L. Cardoso. “Accelerat-
ing VNF-based Deep Packet Inspection with the use of GPUs”. In: 20th
International Conference on Transparent Optical Networks (ICTON). July
2018. doi: 10.1109/ICTON.2018.8473638.

[118] Amazon EC2 On-Demand Pricing. url: https://aws.amazon.com/ec2/
pricing/on-demand/ (visited on 01/02/2019).

[119] S. Van Rossem, M. Peuster, L. Conceicao, H. Razzaghi Kouchaksaraei, W.
Tavernier, D. Colle, M. Pickavet, and P. Demeester. “A Network Service
Development Kit Supporting the End-to-End Lifecycle of NFV-based Tele-
com Services”. In: IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). 2017. doi: 10.1109/NFV-
SDN.2017.8169859.

[120] R. V. Rosa, C. E. Rothenberg, and R. Szabo. “VBaaS: VNF Benchmark-as-
a-Service”. In: Fourth European Workshop on Software Defined Networks.
IEEE, Sept. 2015. doi: 10.1109/EWSDN.2015.65.

[121] L. Cao, P. Sharma, S. Fahmy, and V. Saxena. “NFV-VITAL: A Frame-
work for Characterizing the Performance of Virtual Network Functions”.
In: IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN). Nov. 2015. doi: 10.1109/NFV-SDN.2015.
7387412.

[122] M. Peuster and H. Karl. “Understand Your Chains: Towards Performance
Profile-based Network Service Management”. In: Proceedings of the Fifth
European Workshop on Software Defined Networks. IEEE. 2016.

[123] M. Peuster and H. Karl. “Profile Your Chains, Not Functions: Automated
Network Service Profiling in DevOps Environments”. In: IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-
SDN). Nov. 2017. doi: 10.1109/EWSDN.2016.9.

[124] M. Peuster, S. Schneider, and H. Karl. “The Softwarised Network Data
Zoo”. In: arXiv preprint arXiv:1905.04962 (May 2019). url: https://
arxiv.org/abs/1905.04962.

163

https://doi.org/https://doi.org/10.1287/ijoc.1.3.190
http://s3.amazonaws.com/zanran_storage/www.tellabs.com/ContentPages/2438991029.pdf
http://s3.amazonaws.com/zanran_storage/www.tellabs.com/ContentPages/2438991029.pdf
https://www.openstack.org/
https://kubernetes.io
https://doi.org/10.1109/ICTON.2018.8473638
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://doi.org/10.1109/NFV-SDN.2017.8169859
https://doi.org/10.1109/NFV-SDN.2017.8169859
https://doi.org/10.1109/EWSDN.2015.65
https://doi.org/10.1109/NFV-SDN.2015.7387412
https://doi.org/10.1109/NFV-SDN.2015.7387412
https://doi.org/10.1109/EWSDN.2016.9
https://arxiv.org/abs/1905.04962
https://arxiv.org/abs/1905.04962

Bibliography

[125] 5G-PICTURE Project. url: https://www.5g- picture- project.eu

(visited on 01/03/2019).

[126] 5G-PICTURE Project. Deliverable 5.1: Relationships between Orchestra-
tors, Controllers, slicing systems. url: https : / / www . 5g - picture -

project.eu/publication_deliverables.html (visited on 01/03/2019).

[127] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck. “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions”. In: IEEE Communications Surveys & Tutorials 20.3
(thirdquarter 2018), pp. 2429–2453. issn: 1553-877X. doi: 10.1109/COMST.
2018.2815638.

164

https://www.5g-picture-project.eu
https://www.5g-picture-project.eu/publication_deliverables.html
https://www.5g-picture-project.eu/publication_deliverables.html
https://doi.org/10.1109/COMST.2018.2815638
https://doi.org/10.1109/COMST.2018.2815638

	Acronyms
	1 Introduction
	1.1 Problems and Opportunities
	1.1.1 Inflexible Ordering of Service Components
	1.1.2 Limited Precision and Flexibility of Descriptors
	1.1.3 Fixed Structure of Uni-Directional VCSs
	1.1.4 Bi-Directional VCSs
	1.1.5 Multi-Version Service Components
	1.1.6 Separated Scaling, Placement, Routing Decisions

	1.2 Methodology
	1.3 Contributions
	1.4 Structure of the Dissertation

	2 State of the Art and Related Work
	2.1 Modeling Virtualized Composed Services
	2.1.1 Services with a Pliable Structure
	2.1.2 Arbitrarily Ordered Components
	2.1.3 Bi-Directional Services
	2.1.4 Heterogeneous Services
	2.1.5 Standards and Implementations

	2.2 Scaling, Placement, and Routing Problems
	2.2.1 Theoretical Framework
	2.2.2 Cloud Computing Context
	2.2.3 Network Function Virtualization Context

	3 Services with Arbitrarily Ordered Components
	3.1 Challenges
	3.2 Service Specification, Graph Generation, and Embedding Models
	3.2.1 Service Deployment Requests
	3.2.2 Generating Candidate Service Graphs
	3.2.3 Service Embedding Optimization Problem
	3.2.3.1 Constraints
	3.2.3.2 Optimization Objective

	4 Embedding Services with Arbitrarily Ordered Components
	4.1 Problem Formulation
	4.2 Service Graph Selection Heuristic
	4.3 Evaluation of Selection Heuristic
	4.3.1 Preferred Combinations not Selected by Heuristic
	4.3.2 Selected Combinations not in Preferred Combinations
	4.3.3 Gain in Decision Time

	4.4 Service Embedding Heuristic Approach
	4.5 Evaluation of Service Embedding Heuristic
	4.6 Conclusion

	5 Services with Load-Proportional Structures
	5.1 Challenges
	5.2 Modeling Resource Demands and Performance

	6 Embedding Uni-Directional Services with Load-Proportional Structures
	6.1 Model
	6.1.1 Substrate network
	6.1.2 Service Template
	6.1.3 Template Embedding
	6.1.4 Overlay

	6.2 Problem Formulation
	6.3 Problem Complexity
	6.4 Optimization Approach
	6.4.1 Constraints
	6.4.2 Optimization Objective

	6.5 Heuristic Approach
	6.6 Evaluation
	6.6.1 Comparison of Optimization and Heuristic Approaches
	6.6.2 Scalability
	6.6.3 Analysis

	6.7 Conclusion

	7 Embedding Bi-Directional Services with Load-Proportional Structures
	7.1 Model
	7.1.1 Substrate Network
	7.1.2 Service Template
	7.1.3 Template Embedding
	7.1.4 Overlay

	7.2 Problem Formulation
	7.3 Problem Complexity
	7.4 Optimization Approach
	7.4.1 Constraints
	7.4.2 Optimization Objective

	7.5 Heuristic Approach
	7.6 Evaluation
	7.6.1 Comparison of Optimization and Heuristic Approaches
	7.6.2 Scalability

	7.7 Conclusion

	8 Embedding Heterogeneous Services with Load-Proportional Structures
	8.1 Model
	8.1.1 Substrate network
	8.1.2 Service Template
	8.1.3 Components and Deployment Versions
	8.1.4 Multi-Structure Templates
	8.1.5 Template Embedding
	8.1.6 Overlay

	8.2 Problem Formulation
	8.3 Problem Complexity
	8.4 Optimization Approach
	8.4.1 Constraints
	8.4.2 Optimization Objective

	8.5 Heuristic Approach
	8.6 Evaluation
	8.6.1 Comparison of Optimization and Heuristic Approaches
	8.6.2 Scalability

	8.7 Conclusion

	9 Results and Future Research Directions
	9.1 Results and Discussion
	9.2 Future Research Directions

	Bibliography

