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Zusammenfassung der Dissertation

Robust Motion Estimation for Qualitative
Dynamic Scene Analysis

Des Herrn Mahmoud Ali Ahmed Mohamed

Die Wahrnehmung und Analyse dynamischer Umgebungen ist eine zentrale Herausforderung
im Bereich kognitiver Anwendungen wie Fahrerassistenzsystemen und allen Arten von au-
tonomen Roboteroperationen. Autonome Roboter sind in der Lage, vorgegebene Aufgaben
ohne kontinuierliche Kontrolle durch den Menschen durchzuführen. Voraussetzung dazu
ist unter anderem eine robuste Erkennung und Verfolgung von sich bewegenden Objek-
ten. Speziell mobilen Robotern bereiten bewegte Objekte größere Schwierigkeiten bei der
Lokalisierung und Navigation als stationäre Objekte. Mobile Rettungsroboter beispielsweise
steigern ihre Leistung deutlich durch die Erkennung von sich bewegenden Opfern. Die ro-
buste Erkennung / Verfolgung von sich bewegenden Objekten von einer sich bewegenden
Kamera in einer Umgebung im Freien ist aufgrund dynamischer wechselnder, unordentlicher
Hintergründe, variierender Beleuchtungsbedingungen, teilweiser Okklusion von Objekten
und unterschiedlichen Blickwinkeln der Objekte eine Herausforderung.

Diese Doktorarbeit beschäftigt sich mit einer robusten 2D-Bewegungsschätzung (Optische
Fluss) und die Analyse für dynamische Umgebungen basierend auf Bildsequenzen und um-
fasst die oben genannten Probleme. Zu diesem Zweck wurde ein Verfahren entwickelt, dass
die Coarse-To-Fine Ansatz verbessert einsetzt, um 2D-Bewegungen sowohl von schnellen
als auch von langsamen Objekten mit weniger Rechenleistung zu schätzen. Des Weit-
eren wird in der vorliegenden Arbeit ein neues Optimierungsmodell für die optische Flusss-
chätzung basierend auf der Texturbeschränkung vorgeschlagen. Bei der Texturbeschränkung
wird davon ausgegangen, dass Objekttexturen wie Kanten, Gradienten oder Ausrichtung
merkmale bei Objekten oder Kamerabewegungen konstant bleiben. Das Optimierungsmod-
ell verwendet eine Zielfunktion, um die Unähnlichkeit zwischen der Bildtextur unter Verwen-
dung lokaler Deskriptoren zu minimieren. Das vorgeschlagene Modell ist nicht auf beson-
dere lokale Texturdeskriptoren beschränkt. Darüber hinaus stellen wir die Verwendung der
Monokular Epipolaren Linienbeschränkung vor, um die Genauigkeit des geschätzten optis-
chen Flusses in texturlosen Regionen zu verbessern. Das neue Modell schätzt den op-
tischen Fluss in den meisten Fällen korrekt, wenn die meisten Ansätze nach dem Stand
der Technik, die von der Helligkeitskonstanz eines Pixels abhängen, ausfallen. Außerdem,
schlagen wir einen neuen Ansatz vor, um alle sich bewegenden Objekte zu erkennen und zu
verfolgen. Der neue Algorithmus funktioniert sowohl mit einer statischen als auch mit einer
sich bewegenden Kamera, und die Ergebnisse zeigen die erfolgreiche Erkennung und Ver-
folgung von sich bewegenden Objekten in Innen- und Außenumgebungen. Verschiedene
Experimente und Anwendungen wurden durchgeführt, um die Algorithmen ausführlich zu
testen und auszuwerten. Die Ergebnisse haben gezeigt, dass die vorgeschlagenen Algorith-
men auf der Grundlage der Standard-Testdatensätzen den Stand der Technik übertroffen
haben.



Abstract

Robust Motion Estimation for Qualitative
Dynamic Scene Analysis

Mr. Mahmoud Ali Ahmed Mohamed

Dynamic scene analysis is the primary challenge for various applications such as Advanced
Driver Assistance Systems (ADAS), and in any autonomous robot operation in dynamic
environments. Autonomous robot/vehicle can carry out desired tasks without continuous
human interaction. Distinctly, robust detection, tracking, and recognition of moving objects
as well as an estimation of camera ego-motion in a scene are necessary expendables for
many autonomous tasks. For instance, in mobile robotics, moving objects are possibly more
insecure than stationary objects for safe navigation. In particular, rescue robot systems
could increase their performance enormously if they were capable of interacting with moving
victims. Robust detection/tracking of moving objects from a moving camera in an outdoor
environment is a challenging task due to dynamically changing cluttered backgrounds,large
motion, varying lighting conditions, less texture objects, partial object occlusion, and varying
object viewpoints.

The work presented in this thesis cops with the problem of robust estimation of 2D motion
and tracking of moving objects with the problems mentioned above. Therefore, this work in-
troduce a new approach to improve the accuracy of the 2D motion estimation, which called
optical flow, in case of large motion using the coarse-to-fine technique. The proposed al-
gorithm estimates the optical flow of fast as well as slow objects correctly and with less
processing cost. Moreover, the presented work proposes a novel optimization model for the
optical flow estimation base on the texture constraint. The texture constraint assumes that
object textures such as edges, gradients, or orientation-of-image features remain constant
in case of objects or camera motion. The optimization model uses an objective function to
minimize dissimilarity between image texture using local descriptors. The proposed model
is not limited to any local texture descriptors, for instance, the histogram of oriented gradi-
ent (HOG), the modified local directional pattern (MLDP), the census transform, and other
descriptors are used. Furthermore, we present the usage of the monocular epipolar line
constraint to improve the accuracy of the optical flow in the case of texture-less regions. The
new model estimates the optical flow correctly in most cases when most state-of-the-art ap-
proaches that depend on the brightness constancy of a pixel fail. Besides, we propose a new
approach for detecting and tracking all moving objects. The proposed algorithm works with a
static as well as a moving camera, and the results show the successful detection, estimation,
and tracking of moving objects in indoor and outdoor environments. Several experiments and
applications have been conducted to test and evaluate the algorithms extensively. The re-
sults have shown that the proposed algorithms outperformed the state-of-the-art approaches
based on the standard benchmark datasets.
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1 Introduction

Motion perception is an essential task in our daily life. We humans perceive,

understand and interact with the surrounding environment using the regular

feedback provided by our visual system. We continuously perceive the motion

of the environment and locate our position and those of other objects in the

environment. We know the directions of cars and estimate their velocity in order

to avoid a collision. Even in adverse conditions such as severe weather conditions,

occlusion, illumination change and noise, we can recognize the boundaries and

shapes of moving objects effortlessly.

Due to the importance of motion perception for humans, motion analysis for

vision systems is considered one of the essential topics in the computer/machine

vision field. Anywise, it is a nontrivial problem for computers to understand

motion as humans do. For machines, the motion is ambiguous from only a local

analysis due to the aperture problem. Therefore, a spatial regularization has been

considered, namely neighboring pixels are likely to move together to reduce the

ambiguity. Nevertheless, it is not clear to which extend pixels in a neighborhood

should move together merely from local information.

1.1 Active Vision System

Recently, the development of fully or semi-autonomous robots has attracted the

attention of many researchers. These robots operate independently in structured

and unstructured dynamic environments without continuous human guidance.

Therefore, to achieve such a purpose, a robot should have the ability to analyze,

understand, and interact with these environments. Hence, a robot can use various

sensors to interact with its environment, including video cameras, sonars, radar,
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or thermal cameras. Among all of these sensors, video cameras are more suitable

for long-term remote sensing, least hardware cost, space, and energy, delivering

rich appearance information and most spatial-temporal resolution. Even humans

receive most information through vision. Accordingly, a vision based motion

analysis system is considered to have the highest potential to fill for the need of

dynamic scene analysis over an extensive variety of applications. Subsequently,

mounting an active vision system on a robot provides ongoing inputs of the present

movement conditions which enables them to interact with a quickly changing

dynamic condition.

The use of active vision systems enables mobile robots to analyze camera images

and extract scene information, such as objects, traffic/hazard signs, roads/paths,

scene model reconstruction, and motion. Correspondingly, the extracted infor-

mation can be processed using higher level analysis algorithms, such as scene

understanding which gives the ability to interact with different objects and do

path planning. For these reasons, intelligent robots with such cognitive skills help

to navigate, explore, and interact with other objects in a dynamic environment.

Admittedly, extracting reliable information from a machine vision system is a

challenging task for different reasons. On one side, there are some problems

related to image acquisition process, noise, and camera resolution. On the

other side, there are still many reasons why it is difficult to recognize objects

(vehicles and pedestrians,..., etc) and objects (roads, buildings, trees,..., etc) from

image sequences, for instance, change from the object viewpoint (i.e., rotation,

scale, translation). Furthermore, objects of the same semantic class have various

appearances. Moreover, objects such as humans look entirely different even if

they are seen from the same viewpoint due to the deformability and possess

changing.

Motion estimation is a necessary task in several vision applications such as

depth estimation, object detection and tracking, estimation of camera ego-motion,

localization, and time-to-collision with other objects. Hence, it allows the detection

of moving objects and avoid obstacles. Motion estimation makes it particularly

useful in the context of fully autonomous navigation behavior for robot/vehicle.
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Furthermore, motion patterns can be used in combination with machine learning

approaches to allow the interpretation of human mimics and gestures.

Autonomous navigation of a vehicle through dynamic environments requires a

robust motion analysis system. Henceforth, to achieve a specific goal, the dynamic

models of the environment have to be maintained, and the existing information

has to be updated. Motion estimation provides essential information about the

dynamics of a scene. For instance, it is possible to detect and track moving

objects which allows an autonomous vehicle to do motion planning in a highly

dynamic environment. However, the process of acquiring and correlating images

of visible light does not generally move down the point of estimating physical

motion [SKS+12]. Hence, the apparent motion of the light and the physical

motion in some cases are significantly disparate. Therefore, 2D motion estimation

researches have to defeat several challenges concerning the motion analysis and

the detection of multi-moving objects within the concepts of dynamic scene

analysis.

1.2 Motion Estimation

An image sequence is a result of recording a scene for a given time using a camera.

Assuming that an image frame is represented as I : Ω ⊂ R2 , the intensity value of

an image’s pixel p = (x, y)T at time t can be considered as an intensity function

I(x, y, t). Due to a camera or objects move within the scene, motion estimation

aims at establishing correspondence relations between positions in two consecutive

frames. For every pixel p in a given frame the goal is to find the corresponding

pixel in the next consecutive frame. A 2D motion vector is the projection of a 3D

world motion vector onto the 2D image plane, and it defines the relative speed

and direction of a pixel in the 2D image domain. Hence, an optical flow field is

the relation specified as a 2D displacement vector pointing from each position in

a frame to the corresponding new position in the consecutive frame. It composes

of motion of objects and the camera motion itself (ego-motion of a camera), and

it can be calculated based on changes in intensity values. Unfortunately, objects

motion does not always yield changes in intensity values and change in intensity
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values are not always due to object motion. Accordingly, although the depicted

objects themselves remain stationary; intensity values may be changed due to

other factors such as shadows, illumination changes, camera noise (e. g. bad

illumination conditions), non-rigidity, deformability and reflections (e. g. moving

light source).

1.3 Problem Formal Definition

Assume two consecutive frames I(x, y, t) and I(x+ u, y + v, t+ 1), for each pixel

in frame I(x, y, t) there is a corresponding pixel in the next consecutive frame

I(x + u, y + v, t + 1). Optical flow aims at finding the 2D displacement vector

w = [u, v]T , where u and v are the optical flow components in the x and y direction

respectively. Optical flow between two consecutive frames can be calculated using

phase correlation [SOCM01, FZMB02], block-based matching [LZL94, NM02,

ZM00,KRL10,JP13], discrete optimization [MHG15a,RWHS15b,WRHS13a] and

differential techniques [BWF+03,BBPW04,BM11,ZBW11]. Among all of these

methods, differential techniques are the most successful approaches to calculate

the optical flow [PUZ+07], [BSL+11] due to its accuracy and processing power.

Differential approaches use the brightness constancy assumption (BCA) by as-

suming a constant intensity value of a pixel if objects or a camera moves. This

constraint constructs a residual function called a data term, but this is not suffi-

cient to solve the optical flow unknowns u and v. Another constraint is needed

which assumes a smoothness of the local or the global optical flow (smoothness or

a regularization term). Hence, estimating the motion vector w can be achieved

by optimizing an objective function combines a data and a smoothness term. The

variational optical flow approach is a particularly appealing formulation of differ-

ential models [BM11]. It is based on the total variation (TV) regularization and

the L1 or L2 norm in the data term. This formulation preserves discontinuities

in the flow field and offers increased robustness against occlusions and noise.

Figure 1.1 shows an optical flow example for ”backyard sequence” of Middlebury

dataset [BSL+11]. Here the estimated optical flow is represented using color

mapping scheme from [BSL+11]. In this visualization, the optical flow is visualized
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(a) (b) (c)

Figure 1.1: Middlebury dataset [BSL+11]: (a) A blended overlay image of the
”backyard sequence”, scaling the intensities of two consecutive images
jointly as a single image. (b) Ground truth of optical flow field. (c)
Middlebury optical flow color mapping representation.

using the HSV color space in which each vector [u, v]T is decomposed into polar

coordinates R, θ. The angle θ of each vector is considered as hue value, and

the magnitude is considered to be the value component, while the saturation

component is always equal to the maximum value. In this thesis, we follow the

Middlebury visualization scheme to show the optical flow.

1.4 Challenging of Optical Flow Estimation

Estimating the optical flow using the differential approach based on the minimiza-

tion of an objective function is a challenging task due to several aspects such as

large displacements motion, illumination change, outliers, noise, and processing

time [MG15]. The following paragraphs introduce some of these problems.

1.4.1 Large Displacement Motion

Large displacement motion caused by fast movements of objects or a camera

which is a challenging problem. Hence the optical flow unknowns appear in

the argument of the objective functions; the data-terms are highly non-convex
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functions. Therefore, linearized data terms are used by most variational methods

approximating the image sequence locally by using a linear function in space and

time (i.e., using a Taylor expansion) on the cost of severe problems in cases with

large displacements.

Multi-scale strategies such as [Ana89] and [ASW99] abstain from the linearization

and perform gradient descent on the non-convex functions. Alternatively, a coarse-

to-fine technique [BBPW04] estimates the optical flow at a coarse-levels where the

motion is not large. Later, the coarse optical flow is propagated to the finer levels.

The propagation of optical flow among different levels is normally done using

an interpolation process and causes loss of motion details. Moreover, the bigger

number of levels used for the coarse-to-fine scheme is the higher accuracy results,

but at the cost of high processing power. Thus, the challenge here is to estimate

the 2D motion of large objects without losing object fine detail information and

inappropriate processing time. Figure 1.2 shows a large displacement sequence

provided by KITTI dataset [GLSU13]. The absolute error between the ground

truth and the estimated optical flow is represented by using the KITTI error color

mapping for an error image. The KITTI color mapping scheme grades from a

blue color for small errors through a red color for large errors. As shown in figure

1.2, a variational approach (i.e [BBPW04]) fails to estimate accurate optical flow

in most of the scene. In turn, the proposed algorithm introduced in this thesis

significantly increases the accuracy of the estimated optical flow.

1.4.2 Illumination Change

Illumination changes occur due to changes in the output of the real illumination

source or due to a rotation of 3D surfaces or when the camera adjusts its exposure

settings. Consequently, in these scenarios, the structures of the intensity-value flow

over the image and their brightness change. Hence, finding corresponding point

pairs is difficult. Nevertheless, most of the differential optical flow approaches

use a residual function based on the brightness constraint. Accordingly, once the

illumination changes or objects move to another place with a different illumination

condition (i. e. into the shadow of a tree) this assumption is no longer valid.

Figure 1.3 shows a KITTI [GLSU13] sequence which contains illumination changes



1.4 Challenging of Optical Flow Estimation 7

(a) (b)

(c) (d)

(e) (f)

Figure 1.2: An example of large displacement optical flow from KITTI 2012 dataset
sequence 181. a) and b) show frame 10 and frame 11. c) and d) show
the absolute error image and the histogram of the absolute error image
after applying the coarse-to-fine technique in [BBPW04]. e) and f)
show the error image and the histogram of the absolute error image
after applying the texture constraint proposed in this thesis.
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between frame at time t and frame at time t+ 1. Here, the brightness constraint

fails to reach an optimal solution in the regions which contain different illumination

condition. The error image shows the absolute error after applying the algorithm

[PUZ+07], which uses the brightness constraint in the data-term. Consequently,

the average absolute error has increased dramatically and the percentage of

outliers (points have an absolute error of more than 3 pixels) is grown to reach

more than 70% using the state-of-the-art methods (i.e., [PUZ+07]) (see figure

1.3). Conversely, it is obvious that the accuracy has been significantly increased

after applying the proposed algorithm in this thesis.

1.4.3 Real-Time Performance

Optical flow provides low-level information about a scene, which can be used by

other image processing techniques to do high-level analysis. Unfortunately, the

main shortcoming of the most of the state-of-the-art approaches for estimating

optical flow is the processing time [GLSU13, BSL+11]. Consequently, most

approaches consider the accuracy only and not much effort has invested in order

to improve the performance. Figure 1.4 shows a histogram of processing time

for all KITTI dataset method: in October 2018. As shown in figure 1.4, more

than 87% of these methods need more than one second to estimate optical

flow. Although there are great efforts to increase the performance using the new

technology of the hardware, such as CPU, GPU, and FPGA, also faster optical

algorithms gain great benefits of this technology.

1.5 Contributions of This Work

Figure 1.5 shows the proposed approach which contains two main sub-modules.

The input of the first module is a sequence of images (minimum two frames), and

the output is optical flow. For this purpose, we have developed a new framework

for the estimation of optical flow that uses textures and epipolar constraints in a

multi-level optimization for motion estimation in case of large displacements and

illumination changes. The second module uses the estimated optical flow to detect
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: An example of illumination change from KITTI 2012 dataset sequence
74. a) and b) show frame 10 and frame 11. c) and d) show the absolute
error and the histogram of the absolute error images after applying the
brightness constraint using the [PUZ+07] algorithm. e) and f) show
the absolute error and the histogram of the absolute error images after
applying the texture constraint proposed in this thesis.
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Figure 1.4: Histogram of the processing time of the optical flow methods on the
KITTI 2012 [GLSU13] benchmark, October 2018.

and to track all moving objects in real time. Consequently, several algorithms have

been proposed to build such approach. Moreover, we have tested the proposed

algorithms and the complete approach in various outdoor and indoor environments.

Furthermore, all proposed algorithms have been evaluated using the standard and

well–known widely used datasets such as KITTI [GLSU13], Middlebury [BSL+11],

and MPI [BWSB12]. It can be concluded that the proposed algorithms provided

state-of-the-art results and have higher ranks in all benchmarks. Besides, we have

conducted several experiments and real application to test the proposed algorithms.

The ultimate goal of this work is to use optical flow to analyze dynamic scenes.

For this purpose, we have developed robust optical flow estimation approaches

dealing with different kinds of environments and improved the performance of

large displacement optical flow. Afterward, we propose an approach for detection

and tracking all moving objects in real-time using only optical flow data. The

following paragraphs explain in details each contribution:

• Optical Flow Estimation

In this thesis, we proposed solutions to the challenging problems of optical

flow estimation discussed above.
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Figure 1.5: The flowchart of the proposed dynamic scene analysis approach.

– Multi-scale optical flow optimization

A new method for optimizing the estimation of large displacement

optical flow is proposed. The proposed method estimates the optical

flow using multi-scale processing without losing motion information

for small objects. Primarily, the new algorithm uses the benefit of

points corresponding at each level of the coarse-to-fine optimization to

initialize the optical flow estimation to decrease the dependency on a

large number of levels. On one side, the optimization algorithm uses

the lower number of levels and lower processing time than the original

optimization algorithm. On the other side, it saves the small details of

small and fast objects which are affected by the linearization of the

data term.

– Robust and accurate optical flow estimation

Concerning robust optical flow estimation for environments with dif-

ferent conditions and unlike most of the state-of-the-art optical flow

methods, the proposed algorithms displace the brightness constraint

by a new texture constraint. Alternatively, the texture constraint

assumes that the textures of objects stay constant if the objects or the

camera moves. Hence, we propose a novel descriptor called Modified

Local Directional Pattern (MLDP), and we prove its power. The

MLDP encodes texture of a region using the direction of gradient

vectors in a binary pattern, which is invariant to illumination changes.

Furthermore, we propose to use the Histogram of Oriented Gradient
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(HOG) and the Average Distributed Gradient (DAG), which encode

texture information using the direction and magnitude of the gradient

vectors. Consequently, to use the texture constraint in optical flow

framework, we introduce the necessary formulations to optimize an

energy function based on a residual of two local descriptors. Ultimately,

the proposed optimization framework is not restricted to a specific

type of descriptors, and any other constraint can be easily integrated.

– Monocular epipolar line constraint

We introduce the necessary formulation to augment the epipolar con-

straint for the calculation of optical flow using the total variational

model in a multi-resolution pyramid scheme. Therefore, we minimize

an objective function contains the epipolar constraint with a residual

function based on different types of descriptors (BCA, HOG, Census or

MLDP). For the calculation of epipolar lines, the relevant fundamental

matrices are calculated based on the 7- and 8- point methods. On

the other hand, SIFT and Lucas-Kanade methods are used to ob-

tain matched features between two frames, by which we calculate the

epipolar geometry. Moreover, we evaluate the effect of using different

combinations of the feature matching methods, fundamental matrix

calculation, and descriptors based on the challenging KITTI dataset.

• Real-time multiple object detection and tracking

We developed a real-time detection and tracking of multi-moving objects

using optical flow. This model separates all moving objects from the static

ones and estimates models for object’s motion. Therefore, the proposed op-

tical flow algorithm has been optimized using a parallel processing technique.

For segmenting moving objects, we developed a camera motion stabilization.

Here, we compensate the camera ego-motion and detect moving regions

after applying a motion detection algorithm. Afterward, a dense optical

flow is estimated for those regions only. Later, 2D motion segmentation

based on parallax constraint is applied, and a Kalman filter is modeled to

track each object.
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This PhD thesis makes use of material from papers by the author as the first author

in [MM12c,MM12b,MRM+13,MRM+14,MBM14,MMM15,MMM17], in addition

to papers as the second author such as [MM12c, RMG+13, BMM14, MMM16].

Chapter 3 uses material from references [MM12b] and [MM12c] both are co-

authored with Baerbel Mertsching. Meanwhile, chapter 4 is based on references

[MRM+14, MMM16] and [MRM+13] both are co-authored with H. Rashwan,

B. Mertsching, M. Garcia, and D. Puig. Furthermore, chapter 5 is based on

references [MMM15] and [MMM17] both are co-authored with M. H. Mirabdollah

and B. Mertsching. Finally, chapter 5 is based on reference [MBM14] co-authored

with C. Boeddeker, and B. Mertsching. Some materials from each of these papers

have been incorporated into this introductory chapter and chapter 2.

1.6 Thesis Outline

Chapter 2 delineates on the problem of apparent motion estimation and analyzing

of pixels in image sequences for monocular camera setup. Furthermore, we explain

different techniques for motion estimation. Besides, we presented state-of-the-art

methods for motion segmentation and tracking of multi-moving objects. Finally,

we introduce a framework for evaluation.

Chapter 3 discusses the problem of large displacements optical flow and explains

the coarse-to-fine technique with its advantages and disadvantages. Moreover,

it presents an approach for improving the coarse-to-fine technique to be able

to detect and correctly estimate the 2D motion of fast as well as slow objects.

Subsequently, this chapter introduces comparisons and evaluation results.

Chapter 4 acquaints the proposed approach to replace brightness constraint with

a texture constraint. Accordingly, several texture descriptors such as HOG,

MLDP, and the Census are explained. Primarily, the mathematical model for

the variational optical flow model which includes texture information is discussed.

Eventually, evaluation and experiment results are discussed.

Chapter 5 introduces the integration of the epipolar constraint for the calculation

of optical flow using the proposed optimization algorithm in a multi-resolution
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pyramid scheme. On the one hand, the calculation of epipolar lines based

on the relevant fundamental matrices based on different methods is presented.

On the other hand, different matching schemes between two frames by which

fundamental matrices can be calculated are introduced. Belatedly, the evaluation

of the algorithm and the effect of using different combinations of the feature

matching methods, fundamental matrix calculation and descriptors are evaluated

based on the KITTI dataset.

Chapter 6 addresses a novel approach for detecting and tracking moving objects.

Firstly, it considers a camera motion stabilization algorithm. Secondly, a motion

detection technique to detect the hypotheses of the moving objects is presented.

Afterward, the proposed optical flow algorithm based on texture constraint is

applied only for those moving regions to getting dense optical flow. Ultimately,

the evaluation and experiment results are presented.

Chapter 7 sums up the contributions and the achievements of dynamic scene

analysis using optical flow and indicates the direction for future work.
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2.1 Overview

Motion estimation is a fundamental problem in the analysis of dynamic scenes,

with a diversity of applications including video surveillance [CGPP03,TMJP16],

structure from motion [Tom92,Oli01,Nis05,DLH14,TZD16,LBCS18,SWH+18],

object tracking [YJS06,ST08], motion segmentation [CCBK06,YP06], and ad-

vanced driver assistance systems [BWF+03,RMWF10,BHLLR14]. In this chapter,

we establish a comprehensive survey of the common algorithms dealing with mo-

tion estimation and multi-objects tracking. This chapter is organized as follows:

sections 2.2 discusses the motion field, while the problem of motion detection in

case of stationary camera is introduced in section 2.3, whereas various algorithms

such as background subtraction, kernel density, and codebook construction are

briefly introduced. In turn, section 2.4 introduces the motion estimation in case

of non stationary camera and objects. Section 2.5 discusses common algorithms

for motion estimation using various methods such as block matching, phase cor-

relation and differential optical flow approaches. Section 2.6 introduces different

motion constraints and explain a general frame work for optimization. Section

2.7 addresses the differential optical flow estimation, while section 2.8 discusses

the motion boundary problem. Coarse to fine optimization is discussed in section

2.8, while various image texture features are explained in section 2.9. Section

2.10 presents stat-of-the-art methods for motion segmentation and multi object

tracking. The evaluation and accuracy metrics are discussed in section 2.11.
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2.2 Motion Field

The motion field in the 2D image represents the displacements of the projected

3D points from camera- or object movements. For instance, assume a moving

camera capturing two frames at time t = 0 and at time t = 1 of 3D points. Hence,

image displacements can be estimated using the camera projection matrix at the

last position M0 and the camera projection matrix at the current position M1.

For simplicity, assume that the world coordinate frame coincides with the frame

at time t = 0. Therefore, the projection matrix M0 contains only the camera

calibration matrix K: M0 = K[I | 0], where I is the identity matrix. Hence, the

projection matrix M1 is M1 = KR[I | − t], where R is a rotation matrix and t is

a translation vector.

Figure 2.1: Projection of 3D motion vector on an image plane, modified from
[Bla92].

The motion field is the projected motion vector ∅w of a 3D point P between

frame at time t = 0 and frame at time t = 1, and it computes to:

M0P = p0 (2.1)

M1P = p1 (2.2)
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∅w = [∅u,∅v]T = p0 − p1 = [u, v]T , (2.3)

where ∅u and ∅v are the x and y components of the motion vector field for the

point P, while u and v are the x and y displacements in the 2D image plane which

called optical flow components. Ultimately, Eq. (2.3) concludes that establishing

a correspondence between points in the image plane equals to the projection

of the 3D points on the images. Unfortunately, this is not always true due to

various aspects such as aperture problem, illumination changes and occlusion as

explained in section 2.6.3.

Lets assume a 3D point P(X,Y, Z) at time t = 0 rotates in X,Y and Z directions

with a rotation matrix R = [Rγ
zRβ

yRα
x ] and translates in X,Y and Z directions

with a translation vector t = [tx, ty, tz]
T at time t = 1 (see figure 2.1).

The transformation between these two frames can be represented as follow:X1

Y1

Z1

 = R

X0

Y0

Z0

+ t =
[
Rγ
zRβ

yRα
x

]X0

Y0

Z0

+

txty
tz

 (2.4)

X1

Y1

Z1

 =

cosβcosγ sinαsinβcosγ − cosαsinγ cosαsinβcosγ + sinαsinγ

cosβsinγ sinαsinβsinγ + cosαcosγ cosαsinβsinγ − sinαcosγ

−sinβ sinαcosβ cosαcosβ


X0

Y0

Z0


+

txty
tz

 (2.5)

Assume small rotation angels, thus cos(θ) ≈ 1 and sin(θ) ≈ θ, Eq. (2.5) can be

written as: X1

Y1

Z1

 ≈
 1 −γ β

γ 1 −α
−β α 1


X0

Y0

Z0

+

txty
tz

 (2.6)
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Applying for a 3D velocity vector of point P, we get the following system of

equations:X1 −X0

Y1 − Y0

Z1 − Z0

 ≈

 1 −γ β

γ 1 −α
−β α 1

−
1 0 0

0 1 0

0 0 1



X0

Y0

Z0

+

txty
tz

 (2.7)

The 3D velocity vector of a rigid object can be formulated as:VxVy
Vz

 ≈
 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


X0

Y0

Z0

+

txty
tz

 (2.8)

The vector form of Eq. (2.8) can be written as:

V = Ω.P0 + T (2.9)

where Ω is a 3× 3 matrix containing the angular velocity vectors, and T is the

translational velocity vector.

Under orthographic/affine projection, Eq. (2.9) can be written as follow:

u = Vx = tx + ωyZ0 − ωzY0

v = Vy = ty + ωzX0 − ωxZ0

(2.10)

Eq. (2.10) represents an affine motion model which has 6D of freedom. Accord-

ingly, to estimate the 6 parameters of an affine motion model, three correspon-

dences points are sufficient. Nevertheless, for estimating a robust model using

the least square or the RANSAC, more points are required.

Under perspective projection, Eq. (2.9) can be written as follow:

u = f
Vx
Z0
− xVz

Z0
= f(

tx
Z0

+ ωy)− tz
Z0
x− ωzy −

ωx
f
xy +

ωy
f
x2

v = f
Vy
Z0
− y Vz

Z0
= f(

ty
Z0

+ ωx)− tz
Z0
y − ωzx+

ωy
f
xy +

ωx
f
y2

(2.11)

where x = f
X0

Z0
, and y = f

Y0

Z0
.
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The perspective motion model in Eq. (2.11) has nine degree of freedom, and it

requires a minimum four correspondence point to find the motion parameters.

To that end, estimating optical flow leads to estimating an approximation of 3D

motion models using two frames captured from a monocular camera.

2.3 Motion Detection

Motion detection in an image sequence is the process of identifying changes in

positions of pixels relative to their surroundings [CD00], [BBV08]. The changes

in positions result from appearance or disappearance, the motion, or shape

changes of the object. Moreover, reflection and lighting changes afford a change in

brightness or color on stationary objects. Consequently, robust motion detection

approaches should differentiate between real moving regions and false moving

regions which contain disturbances, such as those induced due to camera motion,

lighting variation, sensor noise, or atmospheric absorption [ACPP05]. In the

literature, conventional approaches for detecting motion from a given sequence of

images use background subtraction or optical flow estimation as a base.

2.3.1 Background Subtraction (BS)

Background subtraction techniques contain two main steps: constructing the

background model and then detecting the foreground. The background model

consists of three phases [CBM03]: an initialized model, a represented model, and

an updated model. The better initialization model is, the better background model.

Hence, to avoid the acquisition of an incorrect background of the scene, analyzing

sequences of images with a presence of moving objects should consider various

initialization schemes [CBM03]. Typically, background subtraction algorithms

assume a stationary camera and aim at the detection of foreground objects

using the absolute difference between a frame and a background model of a

scene. Nevertheless, a robust background subtraction algorithm is not a trivial

task [RCH03], [BBV08] due to illumination changes, camera ego-motion or non-

stationary background (e.g. moving leaves, rain, and shadows of moving objects).
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In the literature, background subtraction approaches are divided into three basic

categories: mixture of Gaussians [FR97], kernel density estimation [EHD00] and

codebook construction [KCHD05].

2.3.2 Mixture of Gaussians (MoG)

This approach describes each pixel by its intensity. Afterwards, the probability

of observing a pixel’s intensity I(x, y, t) in a multidimensional state is expressed

utilizing a Gaussian probability density function, which can be expressed in [FR97]

as follows:

pdf(I(x, y, t)) =

k∑
i=1

ωi,tη(I(x, y, t), µi,t, σi,t), (2.12)

where k is the number of Gaussian distributions, ωi,t is a weight for the i Gaussian

at time t with mean µi,t and standard deviation σi,t. η is a Gaussian probability

density function [FR97] described as follows:

η(I(x, y, t), µi,t, σi,t) =
1

(2π)n/2|σ|0.5
e−

1
2

(I(x,y,t)−µ)σ−1(I(x,y,t)−µ). (2.13)

The MoG technique is robust against illumination changes [SCK04]. Unfortunately,

mixture Gaussian model performs badly in presence of dynamic textures such as

moving leaves, rain and moving shadows. Furthermore, it provides non-coherence

foreground objects that contain empty regions [RSPMB16].

2.3.3 Kernel Density Estimator (KDE)

Elgammal et al. [EHD00] proposed the KDE technique to estimate the probability

density function pdf for every pixel using latest frames of a video stream. Typically,

KDE uses a Parzen-window for every pixel and defines 1D kernel. Ultimately, a

classification of foreground and background pixel is applied based on the likelihood

of the current pixel using a predefined threshold for the pdf [SM10]. This approach

can analyze sequences with multi-modal backgrounds, and it is robust to noisy

input. Nevertheless, it suffers from the problem of dynamic textures and outdoor

conditions as reported in [RSPMB16].
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2.3.4 Codebook Construction (CC)

Codebook construction is an adaptive background subtraction technique. In fact

CC models a background from a training sequence [KHDL04], [KCHD05]. Since

change is only due to the brightness, the CC model assumes that the background

pixel intensities are laying along the principal axis of the codeword bounded by

the low and high pixel intensity [KCHD04]. The CC model is not only faster

but also more robust than the MoG model [EHD00] and the KDE model [FR97]

in several background modeling problems. Nevertheless, it suffers from those

mentioned above outdoor environmental issues [RSPMB16].

2.4 Motion Estimation for Moving Camera and Objects

In literature, motion estimation form a moving camera problem is addressed in

three different categories. Firstly, 3D-3D motion estimation by calculating point

correspondences based on sets of 3D points. The shortcomings of this category

are the difficulty to have valid 3D points particularly in a case of an outdoor

environment and the massive cost of data processing. Secondly, 2D-3D motion

estimation determines 3D motion based on finding correspondence between 3D

model and 2D image projections which needs 3D model analysis. Finally, 2D-

2D calculates correspondences between 2D image projections and estimates 3D

motion models from such 2D correspondences. Constructing 2D correspondences

can be accomplished using point, line, curve, texture, or region correspondences.

2.5 Optical Flow

Motion estimation using optical flow is an example of the 2D-2D category. Typi-

cally, it describes the apparent motion projected on an image plane of a camera

as local gray value displacements. Hence, it results from the motion of objects in

a scene, the motion of the observer camera, or illumination changes. Excluding

the illumination changes, a flow field describes the dynamics of a scene and

involves the camera ego-motion and the motion of the object. Nevertheless, it is
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a challenging task to segment two independent motion without pre-knowledge.

Figure 2.1 illustrates the projection of 3D motion vector on an image plane.

Although optical flow calculation has been investigated for a long time, it is still

known as an open problem especially if the flows are due to large motions and for

low textured regions [MG15]. Various methods based on block-based minimization,

phase correlations, discrete optimization, and differential estimation exist. In the

coming sections, we introduce the basic concepts and the main categories of optical

flow methods. For more details, the reader is directed to [BSL+11,FBK15].

2.5.1 Block Matching

The Block Matching algorithm is an example of pixel-accurate optical flow where

a spatial-domain search procedure is applied to find the best match point by

evaluating a pixel matching score based on gray values of a pixel’s neighborhood.

Normally, a specific search strategy is used to match a block around a pixel in the

current frame with blocks of the previous frame using a specific criterion. However,

several criteria can be used such as mean squared error (MSE), minimum absolute

difference (MAD) and sum absolute difference (SAD) . For a certain pixel, the

number of possible flow vectors or displacement vectors is bounded by the image

size and the outliers are less likely. On the one hand, pixel accurate optical flow

algorithms are robust due to the limited solution space. On the other hand, these

approaches can be parallelized using dedicated hardware which yields real-time

performance. Nevertheless, a major drawback of these approaches are accuracy

limitations, i. e. sparse optical flow and pixel accurate displacements.

2.5.2 Phase Correlation

On the contrary to the block matching approaches described above which searches

the blocks using intensity matches, a phase-correlation approach estimates the

motion between two frames from their phases in the frequency domain. In fact, a

translational shift between two frames in a spatial domain is reflected as a phase

change in the spectrum domain. Therefore, the normalized cross-correlation
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NCC between two frames can be applied to find the motion vectors. Accordingly,

it yields a robust estimate of a motion field with much lower entropy.

2.5.3 Differential Optical Flow

The most exciting approach for the calculation of optical flow is the differential

optical flow based on total variational optimization. In fact, a differential optical

flow approach cast different constraints as a single cost function resulting in

well established elegant models which take care of all objectives simultaneously.

For instance, several differential optical flow approaches minimize an objective

function based on the brightness constancy assumption or gradient constancy

assumption as well as a smoothness constraint.

Differential optical flow is an example of sub-pixel accurate optical flow categories.

The basis of a differential optical flow approach is the motion constraint equation

which has to be minimized after applying differentiations of the image in the

spacial and the time domain. Typically, motion constraint assumes a gray value

image sequence has a continuous domain, and intensity variations in the images

are due to the motion of the objects present in the depicted scenes [RPG12].

Therefore, the image gradient can be used to estimate the change of a pixel’s

gray value between two consecutive frames.

2.6 Data Conservation For Differential Optical Flow

The intensity (brightness) captured by a camera sensor at a specific pixel usually

is proportional to the amount of the reflected light from the depicted point in

the environment. The amount of the reflected light depends on the reflectance

property of the surface and the illumination [Sha12]. The following subsections

conclude various data conservation assumptions underlying most optical flow

methods.
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2.6.1 Brightness Constancy Assumption (BCA)

The brightness constraint assumption assumes a constant intensity of a pixel, if

objects or the camera move. Assuming two consecutive gray images I(t) and

I(t+ 1), the goal of motion estimation is to map each pixel p = (x, y)T in image

I(t) to the corresponding pixel p′ = (x+ dx, y + dy)T in the image I(t+ 1) such

that

I(x, y, t) = I(x+ dx, y + dy, t+ dt). (2.14)

Eq. (2.14) is nonlinear in terms of dx and dy. Using the Taylor expansion,

the brightness consistency assumption in Eq. (2.14) can be approximated as

follows:

Ix(x, y)
dx

dt
+ Iy(x, y)

dy

dt
+ It(x, y) +HOT = 0 (2.15)

where Ix(x, y) = ∂I1(x,y)
∂x

, Iy(x, y) = ∂I1(x,y)
∂y

and It(x, y) = I2(x, y) − I1(x, y).

Assuming dt = 1, u = dx
dt

, v = dy
dt

and neglecting the high order terms (HOT ),

Eq. (2.15) can be written as follows:

Ix(x, y)u+ Iy(x, y)v + It(x, y) = 0 (2.16)

For each pixel, Eq. (2.16) yields only one linear equation to solve for two unknowns

u and v which results in an under-determined equation system that yields an

infinite number of solutions. Possible solution are presented in section 2.7. The

brightness constancy assumption fails to find a good match in case of rotation

around the lens axis. Moreover, a shadow of a moving object lying on another

object or the background confuses approaches that use brightness constraint.

2.6.2 Gradient Constancy Assumption (GCA)

It is convincing to evade the problem by considering a constant image gradient

when objects or cameras move [RPG12]. This yields an assumption namely
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gradient constancy assumption between two frames I1(x, y, t) and I2(x+ u, y +

v, t+ dt) which is formed as follows:

∇3I1(x, y)−∇3I2(x+ dx, y + dy) = 0, (2.17)

where ∇3 = ( ∂
∂x
, ∂
∂y
, ∂
∂t

).

Although the gradient constancy is robust with respect to illumination changes,

it is sensitive to noise. In chapter 4, we introduce a new motion constraint called

the texture constancy assumption which uses image gradients to gain robustness

with illumination changes as well as image noise.

2.6.3 Differential Optical Flow Violation

Aperture Problem

As mentioned in section 2.2, the optical flow is not perpetually corresponding

to the motion field due to several reasons such as the aperture problem, sensor

noise, and illumination changes. Typically, the aperture problem arises due to

the ambiguity of one-dimensional motion viewed through an aperture [Wed09].

Thus, the brightness constancy assumption provides only optical flow in the same

direction of the spatial image gradient, and it is not possible to determine optical

flow perpendicular to the image gradient.

As shown in figure 2.2, the background of the stripe is hidden by an occluding

bull’s aperture [Wed09]. Hence, in case that stripes move upwards, the line pattern

shifts in the aperture. Similarly, if the stripes move to the left, the pattern shifts

in the same way. Therefore, we are facing a motion ambiguity which can only be

solved if we know the motion of the boundary of the pattern [Wed09]. Accordingly,

the optical flow does not always represent the motion field, while it represents

the apparent motion of the scene. Ultimately, the estimation of unique optical

flow requires other assumptions and constraints. In the literature, there are two

basic assumptions which can be applied; the global [HG81] and local smoothness

constraint [LK81].
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(a) (b)

Figure 2.2: Aperture problem. (a) Only the orthogonal component of the flow
to ∇2I is computable (green arrow). (b) No information available.
Correspondences may lie everywhere.

Occlusion

Occlusion occurs when a 3D point in the background/foreground seen in one

frame has disappeared in the next frame due to a moving foreground object. As

a result, there exists no corresponding point pair associated with that 3D point

in the two frames. For an algorithm, the occlusions are not known a priori, and it

tries to find matching gray-value structures between frames and may find wrong

matches [Jen08].

2.7 Differential Optical Flow Estimation

The differential optical flow techniques can be divided into three main categories.

• Local methods filter image gradients in a local neighborhood around a

pixel and assume that the velocity field of a small patch of pixels changes

gradually.

• Global methods use a global optimization procedure based on a regulariza-

tion term for estimating flow field.

• Combined local global methods combine the advantages of local and global

methods. Local methods produce robust flow fields in the case of image

noise; however, they fail to obtain a dense optical flow field.
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In contrast, global methods present dense optical flow fields, yet they are more

sensitive to noise. Next, we recall the most outstanding and state-of-the-art

differential approaches for optical flow.

2.7.1 Local Smoothness Based Methods

Lucas/Kanade (LK-OF) [LK81] is the primary approach that uses local methods.

It assumes a uniform optical flow in the local neighborhood of every pixel and

estimates the flow by applying the least squares minimization technique for a

local group of pixels as follows:

∇2Iw = −It, (2.18)

where I is an image, ∇2I is the spatial gradients and It the temporal gradient

. In practice, the weighted version of the least squares equation is often used

to assign a higher weight for the closer pixel to the center pixel and to apply

a Gaussian kernel around it. Since the input gradients are filtered out, these

approaches yield a good noise tolerance [RPG12]. Nevertheless, local smoothness

methods produce no flow fields in homogeneous image regions due to the not

existing gradients. Hence, the estimated optical flow is sparse flow, and it is valid

only for features point that does not have gradients different from zero.

2.7.2 Global Smoothness Based Methods

The method of Horn/Schunk (HS-OF), [HG81] is an instance of the global

smoothness category. It uses two assumptions: The brightness constancy assump-

tion by assuming a constant gray value of objects over time and a homogeneous

regularization which assumes that the resulting flow field is smooth everywhere.

Therefore, it optimizes an objective function by minimizing the spatial variation

of the resulted flow field over the whole image to solve the aperture problem.
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By formulating these two assumptions mathematically, the following objective

function can be formulated:

E =

∫
(It + Ixu+ Iyv)2 + α(||∇u||+ ||∇v||)dΩ. (2.19)

Global smoothness based methods yield dense flow fields even in homogeneous

image regions. However, the main shortcoming of these methods is the boundaries

of the motion segments as they do not allow discontinuities in the optical flow

field and do not handle outliers in the data-term robustly [Wed09].

Many algorithms have been proposed to eliminate the drawbacks of simple HS-

OF [HG81]. For instance, the total variational optical flow algorithm penalizes

the derivative of the optical flow field, yielding an objective function which is

minimizing the summation of the amount of optical flow variation or fluctuation

in the whole image [Wed09]. Eq. 2.19 uses the integral of the L2 norm of the

gradient which is also called the total variation TV norm. In contrast to the

original quadratic L2 -regularity suggested by Horn and Schunck [HG81], the L1

-regularity preserves motion discontinuities better [PUZ+07].

2.7.3 Combined Local Global (CLG) Based Methods

To avoid the drawbacks and achieve the advantages of both local and global

approaches, Bruhn et al. [BWS05] proposed a combination between the local

and global optical flow methods as described in the pervious subsection. This

work has introduced a unifying multi-grid approach to variational optical flow

computation in a real-time and has examined the smoothing effects in local

and global differential methods. The proposed method [BWS05] extracts local

information by applying a Gaussian filter on the pixel’s neighborhood and assumes

global smoothness of the flow field. CLG combines the advantages of both local and

global algorithms. Typically, it is robust against noise and provides an accurate

dense flow field based on multi-grid techniques to speed up the minimizing of the

main optimal procedure with a regularization.

E(w) =

∫
Ω

[
ψ
(
wTJρ (∇3f) w

)
+ λψ (∇w)

]
dΩ (2.20)
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where ψ is a convex function, Jρ is a Gaussian kernel and λ is a weight between

the optical flow constraint and the regularization term.

The shortcoming of this method is the usage of a Gaussian kernel with structure

tensors which is an anisotropic filter and does not preserve discontinuities and

boundaries of the motion of the objects.

2.7.4 Variational Optimization Framework

A variational optical flow algorithm contains typically two terms; a data-term

which contains an optical flow constraint, and a regularization term which penalizes

high variations in the optical flow field to obtain smooth fields.

A common framework for the refinement of the optical flow based on the differential

optical flow methods starts with an evaluation of a data-term. This evaluation can

be performed independently for each pixel. The advantage of such an algorithm is

that it can be accelerated by utilizing multiple processors and parallel computing

power, e. g. graphics processing units (GPUs). However, the disadvantage is

that the pixel itself only contributes locally to the solution. This leads to noisy

flow fields as a result corrupted image data due to sensor noise, low entropy

(information content) in the image data, and illumination changes [Wed09].

Assuming uncorrelated noise with zero mean, a common approach for noise

reduction effect is a subsequent smoothing operation [Wed09]. However, flow

field smoothing leads to bluring discontinuities that exist in the correct flow field,

especially at motion boundaries. Hence, there is a need to employ discontinuity

preserving filters which yields a piecewise-smooth flow field [Wed09].

To solve for the aperture problem, information from a region’s boundary should

be propagated into the interior. Hence, the local smoothing does not wholly solve

the aperture problem, unless the filter mask is chosen large enough. In turn,

global techniques are propagating information across the whole image and they

can be used to solve the aperture problem. The three primary objectives for the

smoothing step are discarding outliers in the flow field due to corrupted image data

(denoising), preserving edges (i. e. do not smooth over edges) and propagating

information into areas of low texture. However, illumination changes are different
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from the above mentioned problems. Therefore, denoising or smoothing [Wed09]

cannot remove them.

2.8 Coarse-To-Fine Optimization

Most of the differential based approaches use the Taylor approximation to lin-

earize the brightness constraint. As a result, the solution is only valid for small

displacement vectors [BGM04]. Larger displacements are solved by embedding

the method into a coarse-to-fine pyramid approach. A Coarse-to-fine strategy

find solutions for low frequency structures at low resolution images and refines

the solution on higher resolution images (see figure 2.3). The maximum track

length of the coarse-to-fine levels depends on image content; large displacements

flow vectors are less likely to be found in images than those within a small pixels

displacement [Wed09].

Figure 2.3: An example of the coarse-to-fine approach using 3 levels applied on
the ”Army” sequence from Middlebury dataset.

2.9 Image Texture

Recently, approaches have been trying to use image features to calculate robustly

optical flow. In the following, we explain some of these image features that can

be used to estimate a robust optical flow field.
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2.9.1 Structure Texture Decomposition via Total Variation (ROF)

The ROF [ROF92] model assumes that images are contaminated by noise. The

decomposing purpose is to remove the noise by separating the image into signal

and noise parts. Certain assumptions are taken such as the piecewise smooth

nature of the image, which enables good approximations of the clean original

image [AGCO05]. The successful primary approaches for image denoising depend

on the minimization of an energy function based on norms of the image gradient by

solving nonlinear partial differential equations (PDE). Therefore, ROF algorithm

preserves the edges of the original image and removes most of the noise by

decomposing an image I into two components Iu and Iv and minimizes the

following objective:

min
(Iu,Iv)/I=Iu+Iv

(∫
| DIu | +λ‖Iv‖2

)
, (2.21)

where
∫
| DIu | is the total variation of Iu. By applying ROF, an algorithm can

gain robustness against illumination changes.

2.9.2 Normalized Cross Correlation (NCC)

A normalized cross-correlation is a conventional approach to feature detection. It

is usually used as a metric to evaluate the similarity between two matched feature

vectors or images. Hence, it is less sensitive to linear changes in the amplitude of

illumination in the two compared images. Furthermore, the NCC is restricted

to the range between −1 and 1. Typically, the NCC is widely used for finding

matches of a reference template T1(x, y) with size m× n in an image I1(x, y) of

size M ×N , and a matching template T2(x+ d1, y + d2) of size m× n in a scene

image I2(x, y).

C(x, y, d) =
1

n

∑
x,y∈N

(T1(x, y)− T̄1)(T2(x+ d1, y + d2)− T̄2)

σT1σT2

, (2.22)

where n is the number of pixels, T̄1 and T̄2 are the averages of T1(x, y) and

T1(x, y), and σT1 and σT2 are the norms of T1(x, y) and T1(x, y), respectively.
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2.9.3 Census Transform (CT)

Recently, variational optical flow methods used local image descriptors such as

the census transform to achieve robustness against illumination changes [Ste04a,

MRR+11]. The census transform is a texture descriptor which initially has been

used for face detection. It is a form of non-parametric local transform based on

the relative ordering of local intensity values, and not on the intensity values

themselves. Census transform maps the intensity values of the pixels within a

block to a bit string. The center pixel’s intensity value is replaced by a string

composed of a set of boolean comparisons. For each comparison the bit is shifted

to the left, forming an 8 bit string for a census window of size 3× 3 and a 24 bit

string for a census window of size 5× 5, based on the following equation:

ξ(p, pi,j) =

{
1 I(p)− I(pi,j) >= ε

0 otherwise.

}
, (2.23)

where I(p) = I(x, y) and I(pi,j) = I(x+ i, y+ j) and ε is a threshold to deal with

noise.

Census transform reduces effects of global illumination changes and the variations

caused by camera gain and bias. Moreover, it is robust to outliers points which

are located near depth discontinuities and encodes the local spatial structure.

However, the census transform is sensitive to non-monotonic illumination changes.

Furthermore, it fails to solve the affine motion problem (i.e., rotatory motion).

Besides, it cannot handle the problem of blocks with saturated center pixels,

which means all neighbors are greater or smaller than the value of the center

pixel [MRM+13].

The modified census transform [FE04] is a modified version of the census transform,

and it represents pixels which have an intensity value higher than the mean or

the median pixel intensity value within a particular block. It forms a 9 bits string

for a census window of size 3 × 3 and a 25 bits string for a census window of

size 5× 5. The modified census is used to distinguish between the darkness and

brightness regions that the original census transform fails to detect it.
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Stein et al. [Ste04a] introduced a ternary signature inspired from the census

transform. The ternary census transform maps a local neighborhood surrounding

a pixel p to a ternary string representing a set of neighbors pixels. A ternary

census signature ξ(I(p), I(pi,j)) is defined as:

ξ(p, pi,j) =


0 I(p)− I(pi,j) > ε

1 |I(p)− I(pi,j)| ≤ ε
2 I(pi,j)− I(p) > ε

 (2.24)

For all census variants, the choice of an optimal threshold is always a challenging

problem, and it is an experimental issue based on the application.

2.9.4 Histogram of Oriented Gradients (HOG)

The HOG descriptor proposed in [DT05] uses the dominant edge orientations

to construct a robust local descriptor. It is calculated after applying a gradient

operator d
dx

and d
dy

, within a local window (N ×N ) using a centered derivative

mask (i.e. [−1, 0, 1]). Afterwards, the magnitude and orientation of the resulting

gradient vector at every pixel are computed. The range of orientations angle

between [0 . . . 2π] is divided into some bins n. At each pixel, we count the number

of angles associated with each bin in a local window and calculate the probability

distribution of the angles. Regularly, the histogram is normalized eventually using

the following norm: L2, L1 or L2 − sqrt [DT05]. Figure 2.4 shows an example of

HOG descriptor.

2.9.5 Distributed Average Gradient (DAG)

DAG [MMM16] is a modified version of HOG, which calculates the averages of

gradients in four surrounding windows about each pixel. It is a short descriptor

with the length of 8 bins which is shown in figure 2.5. DAG uses an overlapping

window in which their size can be changed, but the number of windows always

remains four. This make DAG robust against abrupt changes of the gradients



34 2 Related Literature

Figure 2.4: An example of a 3× 3 HOG descriptor vs. a 3× 3 census descriptor
(from [RMG+13] with permission from Springer).

at the borders of the object. The average gradient vi for each sub-window

wi : i = 1, 2, 3, 4 is calculated as follows:

vi = [vi,x vi,y]T =
1

N

∑
(x,y)∈wi

v(x, y) (2.25)

where N = (S/2 + 1)2. By concatenation of the four vectors, a descriptor vector

as following is formed:

d = [v1,x, v1,y, v2,x, v2,y, v3,x, v3,y, v4,x, v4,y]T (2.26)

A normal vector in the direction of the average of gradients in a neighborhood

of each point is taken into account: g = [gx gy]T , to obtain a rotation invariant

DAG. Hence, the orthogonal vector to g, which is called k is used to build a

local coordinate system based on g and k. The four windows about a point are

considered to be using four sets of vectors.

{g1 = −g, k1 = k}, {g2 = g, k2 = g}, {g3 = −g, k3 = −g}, g4 = g, k4 = −g}
(2.27)

To address pixels in surrounding windows, the following equation is used:

p = [x y]T = hgi + wki (2.28)
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Figure 2.5: DAG descriptor. Each arrow indicates the average of gradients vector
in a square window (from [MMM16] with permission from Springer).

where i is the index of a window, h = 0, .., S
2

+ 1 and w = 0, ..., S
2

+ 1. After the

calculation of the averages of gradients in the four windows, it is necessary to

project the averages on the axis of the rotated coordinate system (g and k).

2.9.6 Local Directional Pattern (LDP)

The LDP operator proposed by [JKC10] describes a gray-scale textures. It encodes

the directional information of edges in a window, instead of the intensity values.

Hence, the LDP descriptor represents the local primitives such as different types

of curves, corners, and junctions. The LDP descriptor is computed based on the

responses of edges (ER) in all directions at each pixel after applying the compass

Kirsch masks or Gaussian mask centered on the current pixel center [JKC10].

Corners, feature points or edges cause high response values in some directions.

Therefore, the LDP descriptor uses the k (k = 3) most predominant directions to

construct a binary string. These top k directional bit responses are set to 1, and

the other directions are set to 0, resulting in an 8-bit binary string. Unlike the

census transform, the LDP can cope with image blocks with a saturated center
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pixel. In turn, the census transform fails to distinguish between different textures

containing dark and light regions.

A modification of the LDP descriptor is called Local Directional Number Pattern

(LDNP) [RRCC13] which is a 6-bit binary string. Unlike the LDP mentioned above,

LDNP is more robust to noise since it encodes the direction in a number instead

of bit strings to describe the information of the neighborhood. Consequently,

LDNP computes the edge responses of the neighborhood using a modified version

of a compass mask based on a Gaussian filter.

Relying only on the k most prominent directions LDP is a proper feature descriptor

for some applications such as face detection [RRCC13]. However, LDP yields

structural information loss in a neighborhood in case of optical flow estimation.

Moreover, LDP features depend on edge responses while the directions of edges are

missing. Besides, LDP and its modified versions consider all different directions in

the same manner. Further, the location of the maximum and minimum responses

are not sufficient to describe a neighborhood that can be efficiently used to

estimate a dense optical flow [MRM+14]. Ultimately, LDP and its modified

versions are not suitable descriptors to be used for the calculation of optical flow.

In chapter 4, we proposed a new version of LDP which is robust and well suited

for optical flow estimation.

2.10 Tracking of Multiple moving Objects

A variety of methods have been proposed to track multiple moving objects with

stationary cameras based on background modeling [MBM14]. For instance, Zhu

et al. [DZ12] presented a real-time approach for short-term tracking of multiple

objects. This approach detects moving objects in stationary scenes after applying

a motion detection approach. For a moving camera, an adaptive background

algorithm is used to manage illumination variations, a dynamic background, and

the camera ego-motion. However, this algorithm fails in complex scenes and when

the camera moves fast. In turn, Stalder et al. [SGG09] proposed an algorithm to

track a single object after constructing a model consisting of low-level features

and searching for its new location in each frame.
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Enzweiler et al. [EG11] proposed a multilevel mixture-of-experts approach. This

approach aims at improving the pedestrian classification by combining information

from multiple features and cues. On the contrary, Talukder et al. [TM04] combined

dense optical flow and stereo which yields an estimation of the background motion

and objects motion. Moreover, Henriques et al. [HCB11] proposed a graph-based

structure that allows the computation of the solution to be in polynomial time.

It encodes multiple-match events as standard one-to-one matches. Furthermore,

Wojek et al. [WWR+13a] proposed a probabilistic 3D scene model that integrates

a geometric 3D reasoning with multi-class object detection/tracking, and scene

labeling.

Most approaches for real-time object-tracking from a moving camera used sparse

features or assumed flat scene structures [ST94], [ML11]. Sparse optical flow is

valid only at few feature points (i.e. corners). However, it is hard to infer an

object’s shape and its boundaries from a set of sparse feature points [MBM14].

In turn, dense optical flow reveals important information about objects by dis-

tributing all pixels through a regularization [BM11], [SBK10] and [RMG+13].

Although dense optical flow is a substantial input for motion segmentation and

flow-based object tracking, the high computational load that affects the real-time

performance, is a big hindrance, especially for high-resolution images. Peter et

al. [ST06] proposed an algorithm that produces a set of spatially dense and tempo-

rally smooth trajectories by combining feature points tracking and dense optical

flow fields. Additionally, Rubinstein et al. [RLF12] suggested an algorithm to use

an initial estimate for a global solution based on long-range motion trajectories

by leverage local trajectories.

2.11 Metrics for Accuracy and Performance

To estimate the accuracy of the computed optical flow, we compare the estimated

optical flow to some provided ground truth data. For this purpose, we apply the

standard Middlebury [BSL+11] and KITTI [GLSU13] evaluation metrics. In this

section, we shade the light on the standard evaluation benchmarks used for the

evaluation of optical flow in this these.



38 2 Related Literature

2.11.1 Angular Error AE

The angular error AE is the angle in 3D space between the estimated optical flow

(u, v) and the corresponding ground truth vector (uGT , vGT ):

AE = cos−1

(
1 + u · uGT + v · vGT√

1 + u2 + v2 ·
√

1 + u2
GT + v2

GT

)
. (2.29)

As the error for the whole image is relevant instead of calculating it only for

a single pixel, the average angular error AAE for the optical flow of the entire

image is computed as:

AAE =
1

N
·
N∑
i=0

AEi , (2.30)

where N is the number of pixels per image.

2.11.2 End-point Error EE

The End-point Error EE expresses the absolute error between two vectors. Hence,

it considers the lengths of the optical flow vectors. The EE is formulated as:

EE =
√

(u− uGT )2 + (v − vGT )2. (2.31)

The average point error AEE is computed as:

AEE =
1

N
·
N∑
i=0

EEi , (2.32)

where N is the total number of pixels in an image.

2.11.3 Percentage of Outliers AEEout

The KITTI benchmark [GLSU13] introduced an additional metric based on the

EE, to consider the individual optical flow values of each pixel. The percentage of

outliers (also called bad pixels) returns the relative amount of pixels in percentage
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which have an EE greater than a given threshold. Consequently, with a proper

threshold, this metric gives an impression about the percentage of outliers, which

have a significantly worse EE than the AEE:

AEEout =
100

N
·
N∑
i=0

[EEi > threshold] . (2.33)

The AEE and AAE is not always sufficient to evaluate the algorithm; therefore

the histogram of errors and the error image [GLSU13] are used to evaluate the

optical flow algorithms.

2.11.4 Interpolation Error IE

The interpolation error IE is defined as the root-mean-square (RMS) difference be-

tween the ground-truth image and the estimated interpolated image [BSL+11].

IE =

 1

N

∑
(x,y)

(I(x, y)− IGT (x, y))2

 1
2

(2.34)

where N is the number of pixels. For color images, the L2 norm of the vector

of RGB color differences can be used. A second measure of the interpolation

performance called a gradient-normalized RMS error can also be computed.

2.11.5 Normalized Interpolation Error NIE

The normalized interpolation error [BSL+11] NIE between an interpolated image

I(x, y) and a ground-truth image IGT (x, y) is given by:

NIE =

 1

N

∑
(x,y)

(I(x, y)− IGT (x, y))2

‖∇IGT (x, y)‖2 + 1

 1
2

(2.35)

For color images, the L2 norm of the vector of RGB color differences is used and

compute the gradient of each color channel separately.
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2.11.6 Performance Metrics

A reasonable performance metric for a program, performed on a non-real-time

operating system, is the average wall-clock execution time. It is the real elapsed

time between the start and the end of the program. As a non-real-time operating

system may execute a non-deterministic amount of other tasks in between and

additionally the status of the CPU caches is non-deterministic, the average value

over several measurements has to be taken.

An alternative metric is to measure the CPU time, which only counts the time

where the CPU is executing instructions of this program. As this neglects the times

of any interrupts by the operating system, the CPU time is typically significantly

lower than the wall-clock time. Although this metric might be useful to measure

the average CPU utilization of a program, it is not sufficient to determine, how

many FPS the program can process on a system. Moreover, it is impossible to

guarantee a specific amount of FPS on a non-real-time operating system. Only a

real-time operating system allows the specification of hard deadlines and ensures

that they are met under all circumstances.
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The variational optical flow approach belong to the state-of-the-art family of

approaches for the optical flow estimation. This approach optimizes an objective

function after applying the Euler-Lagrange to a linear partial differential equation

containing a data and smoothness terms. Afterward, the problem is simplified by

solving a sequence of large and structured linear systems of equations. Most of the

optical flow algorithms including the variational algorithm assume small motion

between two consecutive frames and use the Taylor expansion in the linearization

step by neglecting the high order terms. Consequently, a coarse-to-fine scheme

is used to deal with large motion resulting in the loss of motion information for

image details and small objects. In this chapter, we demonstrate the feasibility

of this problem and introduce a solution for recovering small motion details and

using a lower number of levels for the coarse-to-fine optimization to achieve better

accuracy in less execution time.

The organization of this chapter is as follows: section 3.1 introduces the large

displacement optical flow problem, while section 3.2 presents some of related

work. Section 3.3 explains the proposed optical flow model and represents the

image details recovering module by using descriptor matching. The experimental

results with synthetic and real sequences, including a comparison with classical

and state-of-the-art methods are shown in section 3.4. Finally, conclusions and

future works are given in section 3.5.

3.1 Large Displacements Optical Flow Problem

The use of the first order Taylor expansion approximation Eq. (2.15) in the

optical flow estimation restricts the capability to estimate fast movements of
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objects or the camera. Therefore, if the motion between two consecutive frames

is notable (i.e. more than one pixel), the high order terms in Eq.(2.15) will have a

significant influence on the estimated optical flow. Consequently, the estimation

of optical flow using a differential optical flow approach fails, when the camera

or objects move fast. Hence, a coarse-to-fine scheme [BBPW04] is proposed to

overcome such a problem of the cost of losing small details in the interpolation

process between different levels where initial values are propagated from a coarse

optical flow level to a finer one. Furthermore, the number of levels required for

the coarse-to-fine technique is an essential factor influencing the accuracy and

the performance of the algorithm. Accordingly, the more significant number of

levels is the more accurate results, but high processing power.

As described in chapter 2, the most widely known methods of differential optical

flow estimation were developed by K.P. Horn and B.G. Schunck [HG81] as well

as B. D. Lucas and T. Kanade [LK81]. The Lukas-Kanade method is a local

operation assuming that small groups of pixels are moving together and having the

same optical flow. In turn, the Horn-Schunck method uses a global optimization

using a variational approach to the optical flow estimation. The Horn-Schunck

method minimizes the following energy error function:

E =
∑
Ω

[
(I1 (x, y)− I2 (x+ u, y + v))2 + λ

(
|∇u|2 + |∇v|2

)]
(3.1)

where E is an energy error function that has to be minimized and (u, v) are

the displacement values in the x and y direction, respectively. I1(x, y) is the

frame at time t while I2(x, y) is the consecutive frames at time t + 1. ∇ =

(∂/∂x, ∂/∂y)T is first order derivative which called gradient vector as well while λ

is a regularization parameter. Ω is the 2D image domain. An optimal solution

of Eq. (3.1) is calculated using the Euler-Lagrange optimization and the least

square minimization within an iterative scheme [HG81].

Alternatively, [Cha04] proposed to use the L1 total variation minimization [Cha04]

which is formulated as:

ETV−L1 =
∑
Ω

[λ|I1 (x, y)− I2 (x+ u, y + v) |+ (||∇u||+ ||∇v||)] (3.2)
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Here, the data and the smoothness terms represent the isotropic total variation.

Eq. (3.2) is decomposed into three parts [Cha04] as follows:

ETV−1 =
∑
Ω

[
λ|I1 (x, y)− I2 (x+ u, y + v) |+ 1

2θ
(u− û)2 +

1

2θ
(v − v̂)2

]
(3.3)

ETV−u =
∑
Ω

[
1

2θ
(u− û)2 + ‖∇u‖

]
(3.4)

ETV−v =
∑
Ω

[
1

2θ
(v − v̂)2 + ‖∇v‖

]
(3.5)

To solve the three equations above, [Cha04] proposed a numerical scheme. The

original solution was developed to solve an image denoising problem and is

subjected to an optimization of a convex function. Most of the optical flow

approaches approximate [(I1(x, y)−I2(x+u, y+v)] by using the Taylor expansion

as in Eq.(3.6) and ignoring all terms of order higher than two .

I1(x, y)− I2(x+ u, y + v) = u
∂I1
∂x

+ v
∂I1
∂y

+ It(x, y) +HOT (3.6)

Where It(x, y) = I1(x, y) − I2(x, y) and HOT is the terms higher than two.

Ignoring the high order terms yields the following linear equation:

I1(x, y)− I2(x+ u, y + v) = It + Ixu+ Iyv (3.7)

where Ix = ∂I1
∂x

and Iy = ∂I1
∂y

are the image derivatives in the x and y direction.

As a result, the solution of the data-term Eq. (3.7) is only valid for small

displacement motion (i.e., one pixel). In turn, high-order Taylor expansion terms

can be used to deal with larger displacements resulting in a highly complex system

which is difficult to be optimized. A coarse-to-fine scheme [BBPW04] solves the

optical flow of different resolutions in a pyramid style and propagates the flow

among different levels of the pyramid through an interpolation process. The

pyramid is constructed using a pyramid factor which define the number of levels.

The interpolation of the optical flow across different levels of the pyramid causes

the loss of motion details such as small objects and the motion of image texture.

Accordingly, large pyramid factor can be chosen to overcome this problem by

increasing the number of levels, ending with high processing cost. Figure 3.1
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shows the effect of increasing the level numbers on the end-point errors figure

3.1a, the percentage of outliers figure 3.1b and the processing time (in second)

figure 3.1c after applying the approach [BBPW04]. The larger number of levels is

the lower average errors, but high execution cost is required.

(a) End-point error against number of levels

(b) Percentage of outliers against number of levels

(c) Processing time against number of levels

Figure 3.1: The effect of the number of levels on the accuracy and processing
time after applying the variation optical flow approach [BBPW04]. (a)
End-point error. (b) Percentage of outliers. (c) Processing time in
second.
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3.2 Related Work

Since the work of Horn and Schanck [HG81], research has concentrated on

relieving the drawbacks of this method. Therefore, a series of improvements were

proposed over the years. To handle large displacements, Bruhn et al. [BWS05]

proposed a variation approach named CLG which combines local and global

optical flow methods. However, the CLG approach produces wrong optical flow

at motion boundaries as well as the motion of small image texture. Liu et

al. [LYT11] proposed the usage of SIFT to estimate a dense optical flow field

and used a discrete optimization algorithm. However, to introduce the regularity

constraint, [LYT11] considers all the possible matches for the SIFT correspondents

which requires heavy calculation cost. Moreover, Drulea et al. [DN11] proposed

a parallel numerical scheme using the CLG [BWS05] and integrated the total

variation L1 norm. Furthermore, this approach replaced the Gaussian filter in

the data-term with a bilateral filter and a diffusion mask to limit the propagation

of the optical flow among the adjacent pixels.

An optimization approach in [XJM12] is used to reduce the dependency of the flow

on their initial values which are propagated from the coarser to the finer in order

to recover motion details in each scale. This approach refines the flow initialization

at each level by integrating matching of SIFT [BSGF10] features at the cost of

heavy processing time for the fusion steps. In turn, Brox et al. [BM11] proposed

a solution to estimate large motions with small structures by integrating matched

correspondences in a variational approach. They showed that an integration of a

descriptor matching term in the variational approach allows handling better large

displacements flow [WRHS13a]. This approach combines the ability to estimate

arbitrarily large displacement which can be achieved using region-based descriptor

matching with the strengths of variational optical flow methods.

Leordeanu et al. [LZS13] proposed an alternative approach to the coarse-to-

fine scheme. This approach uses a total variation approach and refines the

flow using a sparse matching with locally affine constraint for dense matching.

Weinzaepfel et al. [WRHS13a] integrated a variational approach with a matching

algorithm for optical flow estimation and proposed a descriptor matching algorithm



46 3 Proposed Multi-Resolution Optimization

resulting in large displacements. The matching algorithm expands upon a multi-

scale architecture with six levels, interleaving convolutions, and max-pooling.

Consequently, the integration of dense flow into an energy minimization framework

for optical flow estimation allows to retrieving correspondences and smoothing

effect on descriptors matches.

[XT13] propose a non-iterative multi-resolution motion estimation strategy

which involve block-based comparisons in each band of a Laplacian pyramid and

combined the matching scores across resolutions. However, block-based matching

results in high processing time and outliers. In turn, [WRHS13b] proposed a

descriptor matching algorithm to the large displacement optical flow problem.

The authors claim that the proposed approach allows to boost performance on fast

motions as it builds upon a multi-stage architecture with a deep neural network

with 6 layers. In their new work the authors [RWHS15a] introduced a matching

algorithm using a deep multi layer convolution architecture. However the accuracy

of the deep-learning based optical flow estimation algorithms is highly depending

on the training data. Hence, there are not too much label training data that

can be used for optical flow estimation, the accuracy is declined. Furthermore,

[RWHS15b] proposed an approach for optical flow estimation dealing with large

displacements with occlusions. The authors integrated dense matching using edge-

preserving interpolation from a sparse set of matches with a variational energy

minimization. [BYJ14a] proposed a fast randomized edge-preserving algorithm

which approximate the nearest neighbor field. However, all the method mentioned

above are facing the problem of providing accurate as well as fast processing

at the same time. In the result section we show details comparisons with these

methods.

3.3 The Proposed Approach

The CLG based models [BWS05,DN11] model used the squared L2 norm which

results in many drawbacks such as high sensitivity to noise and over-propagation.

Furthermore, They does not preserve motion boundaries where it applied an

anisotropic filter on the image gradient which blurs the motion boundaries.
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Despite, the major drawback of relying on matching descriptors such as [XJM12,

LYT11,BM11,LZS13,WRHS13a] to handle massive displacement optical flow is

that local descriptors are not reliable at the locations of non-rigid objects. Besides,

feature matching has low precision and can produce false or ambiguous matches.

Moreover, integrating a matching component in the variational approach affect

the formulation of the energy function as it could break down the performance at

small displacement locations.

The coarse-to-fine scheme aims at finding a coarse level on which the motion

is small (i.e., one pixel) and estimates the optical flow at that level. Hence, on

the higher levels the results are more accurate. In fact, at the coarsest level, the

motion is small, usually close to one pixel. For optimizing the energy function

which is in a differential equation format, an initial solution is required. Therefore,

in the original coarse-to-fine scheme [BBPW04], the initial solution for the coarser

level customarily is considered to be equal to zero, while the interpolated optical

flow at the previous coarse level is used as an initial solution for the next fine

level. The proposed solution in this thesis is finding an appropriate initial solution

at fine levels can save the cost of estimating the flow at coarse levels; hence the

number of required levels can be decreased and a better accuracy achieved. In

Figure (3.2) we introduces the proposed algorithm which uses a new method for

doing initialization of the solution of the objective function without use of the

coarse levels.

The proposed method utilizes the advantages of points matching to obtain

an initial solution at the fine levels of the coarse-to-fine optimization scheme.

Afterwards, an energy function is minimized using the proposed initial solution.

As a result, the effect of the interpolation step in the coarse-to-fine model is

significantly degraded, and the overall accuracy of large and small displacements

is improved. Moreover, small image details are preserved, and the performance of

the estimated optical flow is significantly increased since the number of levels for

the coarse-to-fine scheme is reduced.

The proposed algorithm combines the total variational approach using the CLG

with an image details recovering module based on point matching. Accordingly,

the missing image details during the interpolation between different scales of the

coarse-to-fine levels can be recovered.
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Figure 3.2: The proposed coarse-to-fine approach. The coarse levels are replaced
with the results from the initialization step.

3.3.1 Image Details Recovering Module

Extracting and recovering image details requires a descriptor that provides

a rich texture density in areas with complex structural information. There-

fore, this module needs a robust descriptor. For that purpose, many descrip-

tors can be used such as SIFT [Low04], SURF [BTVG06], BRIEF [CLSF10],

ORB [RRKB11], BRISK [LCS11], LIOP [WFW11], MRRID [FWH12], cen-

sus [ZW94] and MCT [FE04]. However, the proposed optical flow method in

this chapter is not restricted to a specific descriptor. The evaluation of these

descriptors is out of the scope of this thesis, and the reader is directed to read

an evaluation of these descriptors in [MM12a]. For instance, the modified census

transform MCT [FE04] (explained in section 2.10.3) has been selected as an

example in this work due to its simplicity, its robustness concerning outliers, its

allowance of a large extent of displacement vector lengths and its computational

efficiency.
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Features Matching

The purpose of the image details recovering module is to obtain a set of promising

point to point correspondence hypotheses. These correspondences are accom-

plished by calculating a descriptor (i.e., the modified census transform operator

MCT) on the two images and extract a signature vector for each feature in each

image. Each vector has a fixed length and contains information about all the

neighbor pixels. Hence, the matching can be performed using a basic indexing

scheme. Consequently, the occurrence frequency c for each signature vector is

calculated, and only the vectors which have c < cmax are considered, to reduce

the limits of the search area. In the proposed approach, we use a small value

for the occurrence frequency which yields complexity of O(c ∗ n) where n is the

number of pixels to get only robust features. We followed the algorithm in [Ste04a]

for calculating the correspondences between two images. Figure 3.3 show the

result after applying the matching algorithm on the ”Army” sequence from the

Midellburry dataset.

Figure 3.3: Feature points correspondences between two consecutive frames applied
on the ”Army” sequence from the Midellburry dataset. Here we
used the modified census transform MCT as an example to calculate
matching correspondences between feature points.
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3.3.2 Optical Flow Model

The proposed algorithm was named TV-L1-MCT. It was published in [MM12b]

and used in several methods published in [MRM+14], [MRM+13], [MMM15],

[MMM16], and [MMM17]. In this section, we summarized briefly the proposed

approach. It uses the CLG model in [DN11] to gain its robustenes against large

displacement. Hence the CLG model is sensitive to outliers, we replaced the L2

with the L1 total variational. Moreover, we did not use the bilateral filter and

the diffusion filter which proposed by [DN11] due their high processing time. The

new objective function can be written as follows:

E =
∑
Ω

[
ψ
(
wTJρ (∇3f)w

)
+ λ1 (ψ (∇u) + ψ (∇v)) + λ2

(
(u− û)2 + (v − v̂)2)]

(3.8)

where ψ(x2) =
√
x2 + ε2 with ε = 0.001. w = (û, v̂, 1)T is the optical flow vector

with the dual variational auxiliary variables û and v̂. f is a convolved version of

I(x, y) with a Gaussian Kσ(x, y) of standard deviation σ. ∇3f = (fx, fy, ft)
T . Jρ

is Gaussian Kρ(x, y) with a standard deviation ρ and Jρ(∇3f) = Kρ∗(∇3f∇3f
T ).

The term λ2((u− û)2 + (v − v̂)2) is the dual variational model used to enforce

(û, v̂) and (u, v) to be equal. λ1 and λ2 are regularization parameters.

To solve the function in Eq. (3.8), we followed the solution suggested in [Cha04]

by doing decompose of the function into three parts:

EM =
∑
Ω

[
ψ
(
wTJp (∇f)w

)
+ λ2

(
(u− û)2 + (v − v̂)2)] (3.9)

Eu =
∑
Ω

[
λ2 (u− û)2 + λ1ψ (∇u)

]
(3.10)

Ev =
∑
Ω

[
λ2 (v − v̂)2 + λ1ψ (∇v)

]
(3.11)

To solve Eq. (3.9), assume u and v are constants and have initial values. Therefore,

EM has only two unknowns û, v̂. The solution for û, v̂ does not depend on the
spatial derivative of û and v̂, hence the solution can be calculated pointwise by

using the least square minimization Ax = B.

A =

[
2λθ +

∑
I2
x

∑
IxIy∑

IxIy 2λθ +
∑
I2
y

]
. (3.12)
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and

B =

[ (
2λθ +

∑
I2
x

)
û+

∑
Ix
∑
Iy v̂ −

∑
Ix
∑
It(

2λθ +
∑
I2
y

)
v̂ +

∑
Ix
∑
Iyû−

∑
Iy
∑
It

]
. (3.13)

Similarly, equations Eu and Ev have two unknowns u and v, while the variables

û, v̂ are known and constants from above. The numerical scheme in [DN11] can

be used to optimize Eu and Ev and solve for the unknowns. The Euler-Lagrange

equation for Eu is:

(u− û)− λdiv
[

(∇u)

ψ(∇u)

]
= 0 (3.14)

If Pu = ∇u/ψ(∇u), then the Eq. (3.14) can be written as:

u = λdiv(Pu) + û, (3.15)

The above equation can be solved iteratively using the fixed-point iteration scheme

as illustrated in [DN11].

Pn+1
u =

Pnu + τ∇(div(Pnu ) + û
λ

)

1 + τ ||∇(div(Pnu ) + û
λ

)||
, (3.16)

where τ is a time step, experimentally (τ ≤ 1
8
). The same scheme can be applied

to optimize the function Pv.

As mention above the CLG model fails to calculate correct optical flow at the

motion boundaries because the objective function Eq. (3.8) is an isotropic function

which propagates the flow in all directions regardless of local properties which

causes motion blur on the boundaries. Therefore, in order to reduce the effect

of the propagation, a weighted median filter can be applied as recommended

in [BCM05,GO09]. However, in the proposed model [MM12b], applying a median

filter can eliminate not in all cases the recovered image details. Hence, to handle

this problem, the algorithm in [SRB10] is combined with the spatial-temporal

image segmentation approach introduced in [RPG11] to calculate the weighted

function based on the image texture as follows:

ûi,j = min
∑

ωi,j,i′ ,j′ |ûi,j − ui′ ,j′ | (3.17)

where (i
′
, j
′
) ∈ Ni,j ∪ {i, j} which Ni,j is the N ×N local window, and ω ∈ [0, 1].

The approach in [RPG11] segments the image into three different regions (texture
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moving, homogeneous moving and static regions) based on the spatial and the

temporal image derivatives.

I(x, y, t) ∈


Texture−Moving SNR 6 τ, | cos(δ)| ' 1, | cos(β)| ' 0

Homogenous−Moving SNR > τ, || cos(δ) ' 1

Stationary Otherwise

(3.18)

where SNR is the signal-to-noise ratio of the gradient’s magnitude and δ is the

angle between the spatiotemporal image gradient (Ix, Iy, It)
T and a unit vector

(0, 0, 1)T . In the case that the image gradient is minimal, | cos(β)| is set to one.

To illustrate the proposed algorithm: if two feature points belong to the same

type of region (homogeneous or textured), but the states are different, i.e., one is

a moving region and the other is a static region, formerly ω = 0. Likewise, if a

feature point belongs to a textured region while a neighboring point belongs to a

homogeneous region, the propagation does not affect that pixel and thus ω = 0,

otherwise ω = 1.

The proposed algorithm works as follows: at each pyramid level of a coarse-to-fine

scheme, the solution of the Eq. (3.15), and Eq. (3.16) are calculated iteratively.

Afterward, the initial values of u and v are propagated from each coarser level

into the finer one. The matching correspondences algorithm provides a set of

hypothesis points. These points used to refine the propagated values from the

coarser level and provide an initial solution for the optical flow at the fine levels.

A weighted median filter is applied every level to reduce the outliers.

Figure 3.4 shows the optical flow results applied on the ”Army” sequence

of Middlebury dataset. We have used a coarse-to-fine scheme with pyramid

factor equal to 0.5 to estimated the optical flow. It can be seen that using the

initialization scheme the fine details of the motion are significantly improve (see

figure 3.4e and 3.4f).

Until that point, we have two initial sources of matching: (a) matching corre-

spondences which neglect regularity and (b) propagated values from the coarser

level which neglect image details. The proposed algorithm combines both sources

of information to estimate the optical flow at each level. In case that there is

no matching correspondence, only the propagated value from the coarser level
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Optical flow results applied on the ”Army” sequence from Middlebury
dataset. (a) and (b) show frame10 and frame11 from ”Army” se-
quence. (c) The estimated optical flow using the original coarse-to-fine
with a pyramid factor equal to 0.5 (6 levels). (d) The estimated optical
flow after applying the proposed coarse-to-fine algorithm using only 3
levels. (e) Part of the optical flow using the original coarse-to-fine. (f)
Part of the optical flow using the proposed algorithm.
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is considered. Otherwise, a fusing function is used to verify the motion vector

values based on the analyzing of the neighborhood pixels. This decision is done

via comparing the mean value of the vector lengths d̄p of the propagated (N ×N)

window values and the vector length dc of the matching correspondences. Hence,

dc is assumed to be an outlier in case that the difference between dc and d̄p is

more significant than a threshold and then only the propagated value is consid-

ered. In turn, if the propagated value is similar to the neighbor pixels, while its

location is not homogeneous, then its probably, the motion information has been

lost in the interpolation process. In such case, we consider only the matching

correspondences. The initial values for the first optical level are set to the values

of matching correspondences because the initial values of the propagated optical

flow are set to zero.

The overall approach of the optical flow estimation is illustrated in figure 3.5. For

simplicity, we used a coarse-to-fine scheme with only 3 levels. At each level we

calculate the matching between 200 feature points and integrate them with the

dense optical flow. It can be seen that the quality of optical flow is improved

from one level to the next.

Figure 3.5: The flowchart of the proposed coarse-to-fine approach. At each level,
the point correspondence has been used to provide an initial solution
to solve the objective function at each pixel.
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3.4 Evaluation and Experimental Results

To evaluate the proposed approach, we have used Middlebury optical flow bench-

mark [BSL+11] which contains two different datasets for the evaluation of optical

flow. The first dataset called ”training”and it contains eight sequences with known

ground-truth. The second dataset called ”test”, and it contains twelve testing

sequences without known ground-truth. In the following section, we introduce

the evaluation of the proposed algorithm based on the two given datasets and

present comparisons with stat-of-the-art methods.

3.4.1 Middlebury Training Dataset

We have evaluated the proposed approach on the training database from Mid-

dlebury using the average end-point error (AEE) and the average angular

error(AAE). The results are shown in table 3.1. We compared the proposed

method with the baseline method [DN11] which uses the CLG model with L2

norm. Based on the same training data, we have chosen the parameters for the

algorithms which give the best accuracy in most cases, see [MM12b] for more

detail. As shown in table 3.1, the proposed method significantly outperform

the baseline method in all cases, especially in the sequences which have large

displacement such as Urban2 and Urban3.

Table 3.1: The average angular error AAE and the end-point error AEE of the
proposed approach applied on the training dataset from Middlebury
benchmark compared with the baseline method CLG-TV [DN11].

Error Venus Dimetrod Hydrangea Rubber Grove2 Grove3 Urban2 Urban3

CLG-TV AAE 7.060 3.951 2.271 3.332 2.844 7.756 3.407 13.302
[DN11] AEE 0.500 0.195 0.187 0.103 0.217 0.894 0.551 1.501

The proposed approach AAE 3.320 2.013 1.834 2.472 1.440 5.492 2.071 2.997
AEE 0.238 0.103 0.156 0.078 0.099 0.509 0.223 0.407
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3.4.2 Middlebury Test Dataset

We have used the on-line evaluation service provided by Middlebury to evaluated

the proposed algorithm on the test dataset which does not have known ground

truth. At the time of submission, the proposed approach has been ranked on as

12th position for angular error and 12th for the end-point error out of 120 method.

The proposed algorithm out-performed most of the approaches dealing with large

displacements optical flow such as [XT13], [DHW13], [WRHS13b] , [RWHS15b],

[ADB14], [RWHS15a], [BYJ14a], and [LYMD13]. Table 3.2 shows a comparison

among the proposed method and the mentioned methods. It can be seen that

the proposed algorithm outperformed these method in most of the sequences and

provided the best rank. In the following sections we provide details comparisons

of the proposed approach with these methods based on motion discontinuities,

interpolation/normalized interpolation errors, and percentage of outliers.

Table 3.2: Middlebury on-line comparison of the AEE among the proposed method
and the state-of-the art algorithms which are dealing with large dis-
placement optical flow.

AEE all Rank Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

2bit-BM-tele [XT13] 101.7 0.21 0.39 0.60 0.38 1.01 1.39 0.31 1.11

DeepFlow [WRHS13b] 65.3 0.12 0.28 0.44 0.26 0.81 0.38 0.11 0.93

EpicFlow [RWHS15b] 59.1 0.12 0.25 0.39 0.19 0.89 0.53 0.10 0.67

DeepFlow2 [RWHS15a] 55.6 0.10 0.25 0.40 0.21 0.80 0.36 0.11 0.82

EPPM w/o HM [BYJ14a] 42.9 0.11 0.19 0.29 0.17 0.63 0.60 0.19 0.45

The proposed approach 36.21 0.081 0.242 0.322 0.141 0.722 0.544 0.111 0.542

Motion Discontinuities

The idea of the proposed algorithm is to provide a solution for the problem of the

large displacement as well as small displacement optical flow. Therefore, in this

experiment, we test the accuracy of the motion details and motion boundaries.

Table 3.3 shows a comparison between the proposed method and the state-of-

the-art methods mentioned above. As shown in table 3.3, the proposed method

provides the minimum AEE error at motion boundaries for most of the sequences

among all state-of-the-art methods. figure 3.6 shows qualitative results of some
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sequences of Middlebury dataset. As can be seen, the optical flow errors at the

boundaries and the image textures are significantly reduced.

Table 3.3: The average endpoint error of the discontinuities AEE disc on Middle-
bury evaluation.

AEE disc Rank Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

2bit-BM-tele [XT13] 101.7 0.42 1.04 1.30 1.49 1.41 1.68 0.23 2.09

DeepFlow [WRHS13b] 65.3 0.31 0.82 1.00 1.34 1.21 1.55 0.11 1.82

EpicFlow [RWHS15b] 59.1 0.36 0.85 1.00 1.01 1.31 1.31 0.11 1.43

DeepFlow2 [RWHS15a] 55.6 0.29 0.79 0.96 1.08 1.18 1.45 0.11 1.68

EPPM w/o HM [BYJ14a] 42.9 0.30 0.67 0.71 0.78 0.93 1.35 0.15 0.94

The proposed algorithm 36.21 0.231 0.772 0.762 0.691 1.032 1.101 0.122 1.042

Figure 3.6 shows the quality of the motion boundary using the proposed algorithm

applied on Middlebury dataset. It can be seen from the error images (see figure

3.6 col.4) that the proposed method succeeded to estimate correct motion at the

boundaries.

Figure 3.6: Motion boundaries. Col.1: sequences Army, Mequon, and Schefflera.
Col.2: the estimated optical flow. Col.3: boundaries. Col.4: error.

Interpolation and Normalized Interpolation Error

In this experiment, we calculate the interpolation and the normalized interpolation

errors.
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Table 3.4: The interpolation error IE of some of the state-of-the-art methods on
Middlebury benchmark.

IE Rank Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

DeepFlow2 [RWHS15a] 55.6 3.29 3.79 4.96 5.08 11.18 6.45 8.11 7.68

DeepFlow [WRHS13b] 65.3 3.31 3.82 5.00 5.34 11.21 6.55 8.11 7.82

2bit-BM-tele [XT13] 96.10 3.31 4.53 6.23 5.94 11.30 7.72 12.2 7.76

EPPM w/o HM [BYJ14a] 76.50 3.35 3.85 7.03 6.15 10.60 7.00 8.85 8.42

EpicFlow [RWHS15b] 61.30 3.17 3.79 4.28 6.37 11.20 6.23 8.11 8.76

The proposed algorithm 50.601 3.171 3.874 4.482 5.373 11.606 6.081 8.071 7.681

Table 3.5: The normalized interpolation error NE of some of the state-of-the-art
methods on Middlebury benchmark.

NE Rank Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

DeepFlow2 [RWHS15a] 55.6 0.29 0.79 0.96 1.08 1.18 1.45 0.11 1.68

DeepFlow [WRHS13b] 65.3 0.31 0.82 1.00 1.34 1.21 1.55 0.11 1.82

2bit-BM-tele [XT13] 101.5 0.70 0.87 2.82 1.13 1.16 1.59 1.90 0.82

EpicFlow [RWHS15b] 62.8 0.62 0.70 1.06 1.09 1.18 1.10 1.00 1.04

EPPM w/o HM [BYJ14a] 51.7 0.60 0.67 2.36 1.01 1.00 1.14 1.18 0.87

The proposed algorithm 38.801 0.624 0.714 1.213 0.951 1.196 1.707 0.711 0.821

Figure 3.7 shows the interpolation IE and the normalized interpolation NE error

of optical flow estimation using the proposed method applied on Middlebury

dataset. It can be seen from the error images that the proposed method succeeded

to estimate correct motion at the boundaries. However, the error images still

contain errors at some points due to the limitation of the brightness constraint. A

solution to replace the brightness constraint will be introduce in the next chapter.

Figure 3.7: The IE and NE. Col.1: sequences Urban, Basketball, and Dumptruck.
Col.2: the estimated optical flow. Col.3: IE. Col.4: NE.
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Percentage of the Outliers

In this experiment, we evaluate the robustness of the proposed approach concern-

ing the outliers. Therefore, we measure the percentage of points which have EE

more than 0.5, 1 and 2 pixels for each sequence in the Middlebury dataset. Table

3.6 shows a comparison with the baseline method [DN11]. As shown in table 3.6,

the percentage of outliers is decreased significantly, and the proposed method

outperforms the baseline method in the most sequence of the Middlebury dataset.

Table 3.6: The percentage of outliers for the proposed algorithm and the CLG-TV
method [DN11] on the Middlebury dataset.

Outliers %EE > ε Pixels Rank Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

ε > 0.5 Proposed algorithm 33.8 2.09% 9.67% 7.11% 2.94% 28.40% 16.00% 1.27% 10.80%

ε > 0.5 CLG-TV [DN11] 57.2 2.80% 14.00% 12.70% 8.13% 32.00% 14.10% 6.45% 19.00%

ε > 1.0 Proposed algorithm 37.1 0.90% 3.73% 4.61% 2.16% 17.60% 11.00% 0.36% 9.73%

ε > 1.0 CLG-TV [DN11] 52.60 1.01% 4.16% 7.52% 3.33% 20.90% 8.94% 1.27% 11.10%

ε > 2.0 Proposed algorithm 33.20 0.22% 1.64% 2.86% 1.14% 10.60% 8.81% 0.08% 5.93%

ε > 2.0 CLG-TV [DN11] 50.30 0.31% 2.10% 5.33% 1.71% 19.90% 5.20% 0.20% 7.85%

Performance Evaluation

Figure (3.8) show the effect of the number of levels on the average end-point error

and the percentage of outliers. As shown in figure (3.8), the more significant

number of levels is the better accurate results and more considerable processing

power as well. Applying the proposed approach to initialize the optical flow

increases the accuracy and reduces the processing power. Hence, using only ten

levels with initialization produces accuracy which is obtained, if we use 40 levels

without initialization. It can be seen that if use only one level with initialization

the percentage of outliers are decreased 10% and the AEE is decreased 10.
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(a)

(b)

(c)

Figure 3.8: The effect of the number of levels on the errors after applying the
refinement (blue) and without refinement (red) applied on all sequences
of the KITTI dataset. (a) Percentage of outliers. (b) AEE. (c)
Processing time in Second.
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3.4.3 Large Displacements Optical Flow Dataset

We have evaluated the proposed approach on real and large-scale displacement

sequences using the available data sets at Karlsruhe university1 and Freiburg

university2. figure 3.9 shows some results of our approach compared with the

results after applying the original CLG-TV algorithm. Unfortunately, no ground

truth for these data set is available. Therefore, we a compared the optical flow

visually. It is clear from figure 3.9 that the proposed approach provide smooth

flow and the motion boundaries are more precise than the baseline method.

3.4.4 Real Application

In this section, a real scenario is used to prove the robustness of the proposed

algorithm. The proposed optical flow approach is used to obtain accurate optical

flow that can be used by a robot to detect, localize and grasp moving objects. The

optical flow algorithm is tested using real image sequences from the Lemgo model

factory [MM12c]. Some images from the first image sequence are shown in figures

3.10 (a), (b) and (c). In this sequence, the camera is in a horizontal position on

the top of moving objects. As shown in figure 3.10 (d), (e) and (f) the algorithm

correctly estimated the motion of the object. The object moved from right to left,

which is represented by the blue color in the color representation. The second

sequence is shown in figure 3.10 (g), (h) and (i). In this sequence, the camera is

portable and facing many moving objects in the scene. The objects were moving

from left to right, The proposed algorithm succeeded to detect and estimate

the motion of the objects, the motion is display by the red color based on the

visualization scheme. The global color which appears in this sequence represents

the global motion due to the camera motion which is also called ego-motion.

Figure 3.11 Shows another example of a fast moving object from left to right.

The proposed algorithm correctly estimated the optical flow.

1http : //i21www.ira.uka.de/image sequences/
2http : //lmb.informatik.unifreiburg.de/resources/datasets/sequences.en
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Figure 3.9: Optical flow results of the proposed approach compared with the
original CLG-TV, the first row shows frames at time t from Ettlinger-
Tor, MIT, tennis, and marple2 sequences, and the second row shows
the frames at (t+ 1). while the third row shows the estimated optical
flow produced by using the original CLG-TV and the fourth row is
our estimated optical flow.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.10: Results of optical flow estimation applied on a real application. Odd
rows show the images while the even rows show the optical flow
between each image and the next image in this sequences.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.11: Results of optical flow estimation applied on a sequence of images of
a fast moving object. The optical flow here is shown using arrows
pointed at the direction of the motion.
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3.5 Summary

In this chapter, we introduced a method for improving the estimation of optical

flow in case of fast motion. Therefore, we combined the L1 total variational

and CLG optical flow approach integrating image details recovering module

in a coarse-to-fine scheme. A local descriptor is used to calculate matching

correspondences of feature points. Correspondingly, the proposed approach uses

the matching correspondences output to build initial solutions for solving the

variational minimization equation during the coarse-to-fine scheme. Besides,

the possible matching correspondences are limited by considering only robust

matching to improve the overall computational time. Equally, the matching

correspondences have been used, are combined with a weighted median filter

to recover the lost image information and preserve image details during the

interpolation process to improve both large and small displacements motion. The

proposed method has been tested on Middlebury benchmark, large displacement

optical flow dataset, in addition to a real application. Admittedly, the new

method gives competitive results in both the end-point and the average angular

errors. It has been shown that the proposed algorithm decresed the processing

time about 30% as well as increased the accuracy with about 40%. The proposed

method has been successfully used in a real application.
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4 Proposed Robust Optical Flow Estimation

In chapter 3, we considered the problem of large displacement optical flow, and

we proposed an approach to improve the accuracy and performance of the coarse-

to-fine scheme. The proposed method used the brightness constraint as a data

conversation in a sequence of consecutive images and optimized an objective

function based on the TV-L1 approach. In fact, in an environment with constant

brightness, the optical flow can be accurately estimated using the brightness

constancy assumption (BCA) or using a high order constancy such as Gradient.

Conversely, once the illumination changes or objects move to another place

with a different illumination condition (e. g. into the shadow of a tree), these

assumptions are no longer valid.

In this chapter, we illustrate the feasibility of robust optical flow estimation in

case of illumination change by introducing a local texture constraint which is more

robust against illumination changes than others assumptions. Hence, we formulate

an optimization model for integrating the image texture as a constraint to describe

edges, gradients, or orientation of image features. Accordingly, we optimize an

energy function that maximizes the similarity between images features. Moreover,

several image texture descriptors have been integrated such as the histogram of

oriented gradients (HOG),the modified local directional pattern (MLDP) or the

local binary pattern (LBP) (census signature) and other descriptors.

The organization of the chapter is as follows: section 4.1 focuses on the illu-

mination change problem and presents some of the state-of-the-art methods.

Section 4.2 deals with the extraction of image texture and presents a new robust

descriptor for describing image features. Moreover, it describes the texture con-

stancy assumption and explains the optimization of an energy function based on

the texture constraint using different kinds of texture descriptors. Section 4.3
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contributes a solution to the integration of color information using different color

spaces to increase the accuracy of the estimated optical flow. The evaluation and

experiment results including comparisons with the state-of-the-art methods are

given in section 4.4. Finally, section 4.5 highlights the conclusions.

4.1 Related Work

Most optical flow methods, such as [BBPW04,SRB10,XJM12,ZBW11,RPG12,

MM12b, RGP13], have focused on estimating accurate flow fields under ideal

conditions [BSL+11,GLSU13] rather than improving the robustness in realistic

scenes under various conditions [MRM+14]. Furthermore, most variational optical

flow approaches concerning the accuracy are mainly dependent on the brightness

constancy assumption (BCA) or high-order constancy assumptions, such as gradi-

ent constancy assumption (GCA) [BBPW04,ZBW11,RPG12,RGP13]. However,

the brightness of a pixel on an object may significantly change, if the object moves

to another location with a different illumination condition in the scene. Moreover,

the image gradient is sensitive to noise. In this manner, those assumptions become

strongly limited in the case of illumination changes [MRM+14].

In the literature, many techniques have proposed different optical flow models that

are robust toward illumination changes. For instance, [KMK05] proposed a robust

energy function that takes into account multiplicative and additive illumination

factors as well as optical flow unknowns. However, this integration affects the

accuracy of the optical flow estimation negatively. Moreover, the optimization

of such complex energy function becomes troublesome as it deals with motion

estimation and illumination variations concurrently. In turn, [MBW07] proposed

an algorithm appropriate only for color images with brightness variations by using

photometric invariants of the dichromatic reflection model.

Recently, local image descriptors have been introduced to estimate the optical flow.

E.g., Stein et al. [Ste04a] used the census transform and produced a sparse optical

flow estimation model. Moreover, [MRR+11] proposed an illumination-invariant

objective function that uses a total duality variation with the L1 norm (TV-L1)

after utilizing the Hamming distance between two descriptors using the census

transform. In turn, Ranftl et al. [RGPB12] proposed a variational model for stereo
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images that integrates an objective function applying the census transform and a

smoothing term using the total generalized variation (TGV) proposed in [BKP10].

Accordingly, to avoid thresholding for the census transform, Vogel et al. [VRS13]

proposed a data-term that uses the sum of the centralized absolute differences

CSAD. Hence, to avoid the artifacts produced by the TV-L1, the proposed data

term [VRS13] uses the total generalized variation regularizer. Nevertheless, the

census transform is sensitive to non-monotonic illumination variation and random

noise. Furthermore, census transform cannot distinguish between dark and bright

regions in a neighborhood, and it discards essential information casting from

neighbors. Consequently, Oliver et al. [DHW13] proposed a data-term using the

complete rank transform and used the TV-L1 optical flow model. The complete

rank transform is a modified version of the census transform, and it encodes the

intensity rank of every pixel in a neighborhood. In addition, Ali et al. [ADB14]

proposed a method to consider the structure information of the image to esti-

mate the optical flow. To summarise, Vogel et al. [VRS13] evaluated several

data costs such as the census transform, ternary census transform, normalized

cross-correlation, and mutual information.

Discrete optimization has been successfully used to estimate optical flow that

works robustly in case of illumination changes as well as large displacement motion.

For instance, Liu et al. [LYT11] proposed the SIFT flow, which estimates a dense

correspondence field between two frames using the SIFT descriptor [Low04] and

a belief propagation approach. The SIFT flow calculates a matching of features

and yields a pixel accurate optical flow. In turn, Brox et al. [BM11] proposed a

continuous variational energy function which integrates discrete pixel matching

using a HOG/SIFT-like descriptor with a data-term using the brightness and

the gradient constancy assumptions. In addition, József [MCF10] proposed an

approach that uses the normalized cross-correlation. The resulted data term leads

to increasing the robustness against multiplicative illumination changes.

To tackle the problems of poorly textured regions, occlusions, and small-scale

image structure, [WPB10] incorporated a low-level image segmentation based

on a non-local total variation regularization in a unified variational framework.

Furthermore, Werlberger et al. [WPB10] proposed a truncated normalized cross-

correlation that is robust against illumination changes. Moreover, Drulea et

al. [DN13] proposed a method based on the zero-mean normalized cross-correlation
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transform. Color information can be used to improve the accuracy of optical

flow estimation. For instance, Zimmer et al. [ZBW11] presented a data-term

that is robust against outliers and varying illumination conditions based on the

HSV color space and a normalization constraint. This model uses a gradient

constancy assumption and integrates an isotropic smoothness term that works

complementary to the data-term. In turn, Sun et al. [SRB10] proposed a weighted

non-local term that uses a color similarity together with an occlusion state of

pixels and integrates flow estimates over large spatial neighborhoods.

Multi-constraints such as the image gradient constancy and the brightness con-

stancy has been integrated into a single objective function. For instance, the

algorithm [RGP13] uses a discontinuity-preserving filtering stage based on a stick

tensor voting which is robust against noise and illumination changes. However, the

gradient constancy assumption does not work correctly with massive illumination

changes.

The contribution of this chapter is developing an optimization framework based

on a texture constraint, which has provided to be robust in the context of illumina-

tion changes and large displacements. Hence, we illustrate an adapted variational

optical flow model which integrates several types of texture descriptors (i.e., HOG,

LDP, Census,..., and so forth.). Accordingly, the proposed algorithm integrates

other constraints such as color and epipolar constraints. To our knowledge, this

is the first attempt to integrate a residual function based on the texture features

directly in the differential optical flow model. Moreover, we propose the use of a

novel descriptor namely the modified local directional pattern MLDP [MRM+14]

which outperforms other local descriptors in the calculation of the optical flow.

4.2 Texture Constancy Assumption

A texture constraint assumes that the connection between neighborhood pixels

(e. g. edges, gradients, curves,..., and so forth) stays constant if an object or

the camera moves, while the brightness might vary. As mentioned in chapter

2, there exist several local descriptors that can be utilized to describe a texture

such as SIFT, SURF, Census, LDP, HOG, DAG, and other descriptors. On

the one hand, extended descriptors of the feature matching methods such as
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SIFT and SURF are solutions to achieving high correct matching rates. However,

in the case of dense matching based on differential techniques, the use of such

extended descriptors increase the high computation cost. Considerably, compact

versions of the descriptors such as Census and its modified versions, LDP and

its modified versions, DAG and HOG mostly with a lengths of one byte have

been used for dense optical flow calculations. In this chapter, we propose a new

compact descriptor called the MLDP. The extracted features are then utilized in

a data-term to formulate a new texture constancy assumption.

4.2.1 Modified Local Directional Pattern (MLDP)

As mentioned in chapter 2, the local direction pattern does not encode the

direction of edges. Therefore, it is not a reliable choice for optical flow estimation.

Therefore, we present here a new modification for the LDP descriptor called,

Modified Local Directional Pattern, which has been published in [MRM+14]. The

proposed MLDP, which depends on the edge responses and their signs (directions),

but does not encode the edge magnitude, yields a very robust descriptor against

illumination changes. In this chapter, a brief explanation of this descriptor

is given. For more details, the reader is directed to the articles [MRM+14]

and [MRM+13]. Likewise LDP, MLDP encodes eight edge responses relating to

eight mask operations. However, the resulting descriptor is in the form of 8-bit

string encoding the directions of edges by setting 1 to the corresponding bits of

the positive edge responses and 0 to the negative responses. The MLDP response

is written as:

s =

{
1 ER > 0

0 otherwise.
(4.1)

where s is a bit in the MLDP string S and ER is the edge response at the

current pixel. The descriptor is robust to illumination changes as it depends

on the edge responses instead of the difference between intensity values (i.e.,

census transform). To calculate the edge response ER, we used a compass mask

proposed in [JKC10] which yields a noise-robust descriptor. Every pixel intensity

is replaced by an 8-bit string (see figure 4.1). After applying MLDP to a gray
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Figure 4.1: Different versions of local descriptors such as LDP, LDNP, MLDP
and the census transform for two examples (from [MRM+14] with
permission from IEEE).

image, the result is an 8 bit binary image with eight channels, with each channel

representing a response of a directional mask operation. For determining the

direction responses at a multi-scale, the Kirsch masks [JKC10] are applied for

computing the eight edge responses for each pixel at each scale. Alternatively,

the shifted derivative of the Gaussian filter G
′
σ can be utilized to calculate the

edge responses. Here, no convolution with the Gaussian filter Gσ is needed, since

it is already applied at every scale level in the pyramid scheme during rescaling

as described in [BBPW04].
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4.2.2 Optical Flow Model for the Texture Constraint

In the literature, the usage of a texture descriptor to estimate optical flow is

usually done by applying a discrete optimization scheme or by using a matching

procedure. Conversely, in this chapter, an explanation of how to develop an

objective function that uses the similarity of texture descriptors for the estimation

of optical flow [MRM+14]. Consequently, the new formulation makes it easy to

use several types of local descriptors and at the same time to use several kinds of

smoothness constraints which was not feasible before. In the following paragraphs,

an explanation of how to construct an objective function based on the TV-L1

model in Eq. (3.3) is given. However, the proposed method is not restricted to

any residual function.

For two consecutive frames I(x, y, t) and frame I(x+ u, y+ v, t+1), the proposed

objective function for estimating the optical flow w = [u, v]T at a point p = [x, y]T

is divided into three different parts. Hence, it is formulated as follows:

min
u,v

E(u, v) =
∑
Ω

(λEdata + γEsmooth + Edual) , (4.2)

where

Edata = ρ(x, y, u, v) (4.3)

Esmooth =‖ ∇u ‖ + ‖ ∇v ‖ (4.4)

Edual =
1

2θ

(
(u− û)2 + (v − v̂)2) (4.5)

where ρ is a residual function between two images features, u and v are the

horizontal and vertical optical flow components, and λ, γ, and θ are weights of

the data, the smoothness, and the dual terms. The energy function Eq. (4.2) can

be solved iteratively after dividing it into two parts using the quadratic coupling

term Edual.
Ed = λEdata + Edual (4.6)

Es = γEsmooth + Edual (4.7)

Typically, in the case of the brightness constraint, the residual function is

ρ = (I1(x, y) − I2(x + u, y + v)) and the optimization model Eq. (4.2) leads



74 4 Proposed Robust Optical Flow Estimation

to the original dual TV-L1 which was proposed by [PUZ+07]. In the following

sections, we explain how to adapt this model to include a texture constraint.

The first part of Eq. (4.2) Edata = ρ(x, y, u, v) is called the data-term and

it is used together with the coupling term to estimate u and v as follows:

min
u,v

Ed(u, v) =
∑
Ω

(
λρ(x, y,u,v)2 +

1

2θ

(
(u− û)2 + (v − v̂)2)) (4.8)

where û and v̂ are the auxiliary optical flow variables and θ is a threshold. To

illustrate the algorithm, assume S1(x, y) and S2(x + u, y + v) are two strings

represented two descriptors extracted from the two images I1(x, y) and I2(x +

u, y + v), respectively. Thus, the residual function ρ is rewritten as:

ρ(x, y, u, v) = S2(x+ u, y + v)− S1(x, y), (4.9)

Eq. (4.9) is a nonlinear with respect to u and v. For simplicity, lets assume

w = [u, v]T and ŵ = [û, v̂]T . Thus, a linearization of S2(x+u, y+v) or S2(x, y,w)

around the starting value of w is used as presented in [MRM+14]. Hence, a first

order Taylor expansion realizes this task as follows:

S2(x, y,w) ≈ S2(x, y) +∇TS2(x, y, ŵ)(w − ŵ). (4.10)

The derivative ∇TS(x, y, ŵ) =
[
∂S
∂x

= Sx,
∂S
∂y

= Sy
]T

is computed by applying a

derivative mask (i.e. Sobel) to the eight channels image in the x and y directions.

Therefore, the residual ρ function leads to:

ρ(x, y,w) ≈ ρ̃(x, y,w)

= S2(x, y)− S1(x, y) +∇TS2(x, y, ŵ)(w − ŵ). (4.11)
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Assuming constant values of û and v̂, the intention is to minimize the objective

function Eq. (4.11) with respect to u and v. Therefore, the partial derivatives

with respect to u and v are calculated as follows:

∂

∂u

(
λρ̃(x, y,w)2 +

1

2θ
(u− û)2

)
= 0,

∂

∂v

(
λρ̃(x, y,w)2 +

1

2θ
(v − v̂)2

)
= 0. (4.12)

The above equations are expressed in vector form as:

2λ
(
St +∇S2 (x, y, ŵ)T (w − ŵ)

)
∇S2(x, y, ŵ)+

1

θ
(w − ŵ) = 0, (4.13)

where St = S2(x, y)− S1(x, y). Eq. (4.13) is linear with respect to u and v and

is written as:

Aw = B. (4.14)

Eq. (4.14) is solved using the least square minimization as follows:

w = A−1B. (4.15)

The data-term of the texture constancy in the case of non-binary descriptors

such as HOG and DAG includes a residual of two texture features extracted from

the input images. The residual function sums up all the variations among eight

channels and reflects the similarity between the two strings. On the contrary, for

binary descriptors, such as LDP, Census transform, and MLDP, the data-term

involves the hamming distance between the 8-bit channel descriptors extracted

through a local descriptor. Accordingly, at every pixel, the Hamming distance

is computed by counting the number of differences between the two descriptors.
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Generally, the residual function ρ between two N -channel descriptors can be

described as:

ρ(x, y, u, v)2 =

N∑
i=1

ρi(x, y, u, v)2

=

N∑
i=1

(S2,i(x+ u, y + v)− S1,i(x, y))2 , (4.16)

In practice, the summation over all ρ2
i measures the residual between two descrip-

tors. Therefore, the final data-term is formulated as:

min
u,v

EId(w) =
∑
Ω

(
λ

N∑
i=1

ρ(x, y,w)2 +
1

2θ
(w − ŵ)2

)
, (4.17)

The matrices A and B of the linear system described in Eq. (4.15) are written

as:

A =

[
2λθ +

∑
S2
x

∑
Sx Sy∑

Sx Sy 2λθ +
∑

S2
y

]
. (4.18)

and

B =

[ (
2λθ +

∑
S2
x

)
û+

∑
Sx
∑

Sy v̂ −
∑

Sx
∑

St(
2λθ +

∑
S2
y

)
v̂ +

∑
Sx
∑

Syû−
∑

Sy
∑

St

]
. (4.19)

The smoothness term of Eq. (4.2) contains the regularization term:

min
w
Es(ŵ) =

∑
Ω

(
1

2θ
(w − ŵ)2+ ‖ ∇ŵ ‖

)
, (4.20)

The smoothness term Eq. (4.20) represents an isotropic total variation [PUZ+07].

Correspondingly, Eq. (4.20) is decomposed into two parts, and it can be rewritten

as:

Eû =
∑
Ω

[
1

2θ
(u− û)2+ ‖ ∇û ‖

]
, (4.21)

Ev̂ =
∑
Ω

[
1

2θ
(v − v̂)2+ ‖ ∇v̂ ‖

]
. (4.22)
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Assuming constant values of u and v after solving the data-term Eq. (4.15), the

aim is to minimize the differential equations Eû and Ev̂ for the two unknowns, û

and v̂. Therefore, the Euler-Lagrange equation is applied as follows:

− div
[
∇u
‖ ∇u ‖

]
+

1

θ
(u− û) = 0 (4.23)

Let Pu = ∇u
‖∇u‖ . Thus:

u = λdiv(Pu) + û, (4.24)

By using Eq. (4.23) and Eq. (4.24), Pu can be solved iteratively using the

following formula:

Ph+1
u =

Phu + τ∇(div(Phu ) + û
θ

)

1 + τ ‖ ∇(div(Phu ) + û
θ

) ‖
, (4.25)

where h is the iteration number, and τ is a time step experimentally set to τ ≤ 1
8
.

Pv is solved in the same way.

Ph+1
v =

Phv + τ∇(div(Phv ) + v̂
θ
)

1 + τ ‖ ∇(div(Phv ) + v̂
θ
) ‖
, (4.26)

Eq. (4.21) and Eq. (4.22) are solved using a fixed-point iteration scheme

(see [MRM+14] for more details). The overall performance of the optimization

framework using the new version of the coarse-to-fine scheme is presented in

chapter 3. It allows the estimation of the optical flow for large displacements

and improve the accuracy. Hence, at each pyramid level, a texture descriptor is

calculated, and scaled images are warped based on the estimated optical flow at

each scale.

The motion discontinuity is usually problematic due to occlusion and over-

smoothing. Moreover, the use of the isotropic TV L1 in the regularization

term causes an accuracy loss at motion boundaries as well as small image details.

To handle this problem, the resulting flow field at each pyramid level requires

a de-noising stage to preserve edges and small details. Afterward, the objects

boundaries are detected using an edge detection algorithm (i.e. Canny edge

detection) and morphological image processing algorithms are used to dilate a
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N ×N mask. At each pixel p = (x, y) in a local region, a Nx,y weighted median

filter [SRB10] is applied:

Ew =
∑
x,y

∑
(x́,ý)∈Nx,y

$p,ṕ(|ux,y − ux́,ý|+ |vx,y − vx́,ý|). (4.27)

where (x́, ý) are the x and y positions of a pixel ṕ in a neighborhood of pixel p in

a Nx,y. $p,ṕ is a weighting function that takes into account the occlusion state

of pixels O(p) [ST08], color similarity and spatial distance. Thus $p,ṕ is written

as:

$p,ṕ ∝ exp
(
− (p− ṕ)2

2σ2
s

− (I(p)− I (ṕ))2

2σ2
r

)
O (ṕ)

O(p)
, (4.28)

where I(p) and I(ṕ) are the intensity values of points p and ṕ, respectively, and

σs and σr are standard deviations.

4.3 Color Texture

In the previous sections, only gray images were used to calculate the optical

flow. Therefore, in this section, we discuss how to integrate other constraints

such as color constancy to get more accurate and robust results. Although many

color spaces such as RGB, HSV, and CIE− LAB can be used, we restrict this

work to color spaces which are robust against illumination changes. Thus, HSV

and CIE− LAB are used to represent the color information and produce a color

texture descriptor. HSV color space separates the intensity (V channel) and

the color (S and H channels). Normally, illumination changes alter the intensity

channel and do not influence the chromaticity channels. Therefore, we apply a

texture descriptor to the intensity channel only and concatenate the values in the

color channels to that descriptor. E.g., in the case of HSV, the texture descriptor

is applied to describe only the V channel while the color channels are integrated

using S and H channels. In turn, for the CIE-LAB color space, A and B channels

are used to integrate the color while texture descriptor is applied only to the L

channel.
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4.4 Experiments and Evaluation

The proposed optical flow model was tested on synthetic and real images using

several texture descriptors. Furthermore, several training datasets with various

challenging problems were used to evaluate the performance. Moreover, for

making a fair comparison with the state-of-the-art methods, we conducted on-line

evaluations of the most challenging optical flow datasets such as KITTI 2012,

MPI, and Middlebury. Our results were publicly available [BSL+11, GLSU13].

Besides, we performed a thorough analysis of each step to evaluate the strengths

and the weaknesses of the proposed approach.

4.4.1 Synthetic Illumination Changes

The proposed variational optical flow model was tested with different feature de-

scriptors after applying a synthetic illumination change to the sequence GROVE2

from the Middlebury dataset which comes with freely available ground-truth

data [BSL+11]. The proposed illumination change model aimed at changing a

multiplication factor m, addition factor a, and gamma correction γ. The illimi-

nation model assumes that m > 0, a > 0, and γ > 0. We applied the synthetic

illumination model to one frame of the two consecutive frames. The model is

represented as:

Io = χ

[
255

(
mIi + a

255

)γ]
, (4.29)

where Ii is the input and Io the output image. The function χ is used to quantize

the resulting value to an 8-bit unsigned integer format [MRM+14]. Figure 4.2

shows a qualitative comparison of the average end-point error (AEE) and the

average angular error (AAE) between the flow fields obtained with LDP, LDNP,

and MLDP, in addition to both the census transform and gradient constancy.

Furthermore, the effects of different values of m, a and γ have individually been

assessed. The LDNP and gradient constancy are robust against small changes of

m and γ, while they are affected significantly by big variations (see figure 4.2). In

turn, LDP, MLDP and the census transform increase the robustness against both

small and large changes of m and γ. However, MLDP yields the smallest AEE

and AAE for changing values of m, a and γ. In addition, the AEE and AAE

with gradient constancy have increased with big values (a > 20) of a. In turn,
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LDNP yields the worst values for both AEE and AAE among the tested data due

to its depending on a decimal number of encoding the position of the maximum

and minimum edge responses of a neighborhood [MRM+14]. In summary, the

proposed approach using the MLDP descriptor surpassed all other approaches.

4.4.2 KITTI 2012 Datasets

For quantitative evaluation, the proposed model was tested on the public KITTI

2012 datasets [GLSU13, MHG15b, MHG18]. The datasets provide challenging

scenarios for the evaluation of optical flow algorithms. It contains on the one side

dataset called training which has public available ground truth and on the other

side there are test sequences images for which ground truth data is not publicly

available. The images have a resolution of 1240× 376 pixels. The displacements

of pixels are generally large, and in some scenarios they are exceeding 250

pixels. The images contain fewer textured regions and strongly varying lighting

conditions. Furthermore, the images exhibit many non-Lambertian surfaces such

as translucent windows, specular glass, and metal surfaces. Moreover, the images

manifest large regions on the image boundaries that move out of the field of view

between frames, and they are occluded due to the high speed of the forward

motion, such that no correspondence can be established [VSR13].

KITTI 2012 On-line Comparison with the State-of-the-art

We evaluated the results of the proposed model with the HOG and MLDP

descriptor (MLDP-OF and TVL1-HOG) with the on-line KITTI vision benchmark.

The proposed methods were ranked in the seventh and eighth positions respectively

against 60 state-of-the-art optical flow algorithms [GLSU13] with an average of

7.91 and 8.67% incorrect pixels (percentage of pixels with the endpoint error

(EE) above 3 pixels). Table 4.1 shows a comparison with the top rank methods

and the proposed algorithm using HOG and MLDP. Furthermore, the proposed

approach using HOG descriptor was ranked at the first positions of the differential

optical flow methods while the proposed approach using MLDP was ranked as
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(a) AEE versus γ (b) AAE versus γ

(c) AEE versus m (d) AAE versus m

(e) AEE versus a (f) AAE versus a

Figure 4.2: The effect of synthetic illumination changes on the estimated optical
flow using various descriptors.
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Table 4.1: The evaluation of the top state-of-the-art methods for optical flow
estimation on the the KITTI 2012 benchmark.

Rank Method Outliers (%) AEE
1 PR-Sf+E [VSR13] 4.08 % 0.9 px
2 PCBP-Flow [YMU13b] 4.08 % 0.9 px
3 MotionSLIC [YMU13b] 4.36 % 1.0 px
4 PR-Sceneflow [VSR13] 4.48 % 1.3 px
5 TGV2ADCSIFT [BZDB13] 6.55 % 1.6 px
6 Data-Flow [VRS13] 8.22 % 2.3 px
7 Proposed method + HOG 7.91 % 2.0 px
8 Proposed method + MLDP 8.67 % 2.5 px
12 fSGM [HK12] 11.03 % 3.2 px
13 TGV2CENSUS [WPB10] 11.14 % 2.9 px
14 C+NL-fast [SRB14b] 12.42 % 3.2 px

25 DB-TV-L1 [PUZ+07] 30.75 % 7.8 px

the second positions. Conversely, the original TV-L1 method [PUZ+07] had

30.75% and the method based on the census transform and the total generalized

variation (TGV) [WPB10] had 11.03%, in addition [SRB10] had 24.64%, while

the complete rank transform (CRTflow) [DHW13] had 9.43% average incorrect

pixels. Nevertheless, most of the top six methods used stereo images to calculate

the optical flow, while the proposed method used only monocular images. The

KITTI 2012 [MHGow] on-line evaluation table 4.1 sorts all methods according to

the percentage of non-occluded bad pixels (outliers) using the end-point error and

a threshold. For each method, the following parameters are calculated: Out-Noc

is the percentage of outliers in non-occluded areas. Out-All is the percentage of

outliers in total. Avg-Noc is the end-point error in non-occluded areas. Avg-All is

the end-point error in total. To reduce the amount of data, in table 4.1, we named

the Out-Noc as Outliers (%) and the Avg-Noc as the AEE. For details comparison

with all criteria and all methods, the reader is directed to visit the KITTI on-line

website [GLSU13]. On the KITTI benchmark, the proposed method using HOG

is named as TVL1-HOG [RMG+13], while the proposed method with MLDP is

named as MLDP-OF [MRM+14].

We evaluated the proposed approach based on the MLDP and HOG descriptors.
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Table 4.2: The percentage of outliers using different thresholds for the estimated
optical flow model using MLDP and HOG on the KITTI 2012 bench-
mark.

MLDP HOG
2 px 11.10 % 12.06 %
3 px 08.67 % 07.91 %
4 px 07.55 % 06.20 %
5 px 06.84 % 05.26 %

Table 1.2 shows a comparison between MLDP and HOG using different thresholds

for the outliers. It can be seen that MLDP provide lower percentage of outliers

than HOG in the case of small threshold values.

We compared the proposed algorithm using HOG and MLDP with the state-

of-the-art methods which provide solutions for the illumination change problem.

The results are shown in table 4.3. As shown in table 4.3 the proposed method

using HOG and MLDP outperformed many of the state-of-the-art methods.

Table 4.3: KITTI 2012 on-line evaluation among the proposed approach using
HOG/MLDP and some of the state-of-the-art methods dealing with
illumination change problem.

Method Outliers (%) AEE (pixel)
FlowFields [BTS15] 5.77 % 1.4 px
NLTGV-SC [RBP14a] 5.93 % 1.6 px

BTF-ILLUM [DSV+14] 6.52 % 1.5 px
Proposed method + HOG 7.91 % 2.0 px
Proposed method + MLDP 8.67 % 2.4 px
CRTflow [DHW13] 9.43 % 2.7 px
C++ [SRB14a] 10.04 % 2.6 px
ROF-NND [ADGB16] 10.44 % 2.5 px
DSPyNet [SW18] 10.64 % 2.4 px
AggregFlow [FBK16] 12.23 % 3.1 px
CPNFlow [YS18] 13.01 % 2.0 px
Grts-Flow-V2 [ZLS17] 15.63 % 3.2 px
UnsupFlownet [JHD16] 34.85 % 4.6 px
FSDEF [GM17] 36.85 % 8.8 px

FlowNetS+ft [DFI+15] 37.05 % 5.0 px
RLOF(IM-GM) [SGS16] 37.49 % 8.2 px
DIS-FAST [KTDVG16] 38.58 % 7.8 px
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Robust Optical Flow for Challenging Sequences

GCPR 2013 [BW13] organized a special session for robust optical flow evaluation

to encourage research on robust optical flow with a focus on challenging real-world

scenes. Therefore, the conference’s committee prepared challenging sequences

from KITTI 2012 training dataset that include common difficulties including

illumination changes, large displacements, low-textured areas, reflections, and

specularities [BWml]. In order to test the robustness of the proposed method,

I have participated in this special session with the results of these sequences

obtained using the proposed algorithm using HOG descriptor and it outperformed

all the state-of-the-art and other competitors (i.e. [WPB10], [SRB10], [ZBW11],

and [VRS13]). Moreover, the same image sequences have been used to evaluate

the proposed method using MLDP, census transform and gradient constancy

(GC) and we compared the results to the state-of-the-art methods [ZBW11],

[SRB10], [BW05], [HG81] [WPB10]. The results obtained by [VRS13] are not

public available, however this method used a discrete optimization method based

on the census transform to estimate the optical flow. Tables 4.4 and 4.5, show

comparisons between the proposed method and state-of-the-art methods based

on the percentage of outliers. Among the evaluated approaches, the optical

flow model based on MLDP yielded the most accurate flow fields concerning the

state-of-the-art methods for real images that include both illumination changes,

reflections, large displacements, and other difficulties.

4.4.3 MPI Dataset

The proposed algorithm can be used for video processing application. Therefore,

we tested the proposed algorithm on the MPI-sintel datasets [BWSBts] (”clean”

and ”final” datasets) which has long sequences, large motions, specular reflections,

motion blur, defocus blur, and atmospheric effects. The ”clean” and the ”final”

datasets are good test data to illustrate the effect of the proposed approach in a

video sequence. We evaluated the proposed method using the MLDP descriptor

(MLDP-OF) [MRM+14], with the MPI-Sintel benchmark. MPI-Sintel benchmark
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Table 4.4: The percentage of outliers of the proposed methods and state-of-the-art
methods using four challenging illumination changes sequences [BW13]
from the KITTI 2012 datasets.

Method Seq 44 Seq 11 Seq 15 Seq 74

MLDP 20.42% 29.67% 23.85% 56.01%

Gradient constancy 29.25% 35.72% 26.41% 59.20%

OFH 2011 [ZBW11] 23.22% 37.26% 32.20% 62.90%

Census (5 × 5) 35.23% 33.93% 29.04% 57.57%

Census (3 × 3) 29.55% 37.54% 33.74% 57.43%

SRB 2010 [SRB10] 26.58% 40.61% 32.85% 62.94%

SRBF 2010 [SRB10] 31.83% 40.34% 35.13% 64.89%

BW 2005 [BW05] 32.44% 33.95% 47.70% 71.44%

HS 1981 [HG81] 42.96% 38.84% 58.08% 82.14%

WPB 2010 [WPB10] 49.09% 49.99% 67.28% 88.67%

Table 4.5: The percentage of outliers of the proposed methods and state-of-the-art
methods using four challenging sequences large displacement [BW13]
from the KITTI 2012 datasets.

Method Seq 147 Seq 117 Seq 144 Seq 181

MLDP 11.79% 18.67% 41.05% 58.25%

OFH 2011 [ZBW11] 15.04% 16.26% 42.04% 63.86%

Gradient constancy 12.28% 17.70% 44.51% 67.63%

SRB 2010 [SRB10] 14.59% 24.71% 50.67% 67.11%

SRBF 2010 [SRB10] 14.79% 24.41% 50.66% 68.41%

BW 2005 [BW05] 16.98% 28.80% 46.98% 69.04%

Census (5 × 5) 13.98% 27.33% 47.68% 73.85%

Census (3 × 3) 14.76% 28.80% 48.97% 73.63%

HS 1981 [HG81] 24.84% 43.24% 51.89% 74.11%

WPB 2010 [WPB10] 32.72% 46.80% 52.25% 76.00%
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Figure 4.3: Row 1: Sequence 44 of the KITTI 2012 datasets. Optical flow field,
error image and error histogram with: Row: 2 Brightness constancy,
Row 3: 3× 3 census transform, Row 4: 5× 5 census transform, Row
5: MLDP. ( (from [MRM+14] with permission from IEEE))
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Table 4.6: MPI On-line evaluation. AEE of the top ranked methods.

Method AEE

DiscreteFlow [MHG15a] 6.07 px
EpicFlow [RWHS15b] 6.28 px

SPM-BP [LMB+15] 7.32 px
PH-Flow [YL15b] 7.42 px

TV-L1-MLDP [MRM+14] 8.28 px
Classic+NLP [SRB14b] 8.29 px
EPPM [BYJ14b] 8.38 px
NLTGV-SC [RBP14b] 8.74 px
HCOF+mult [KT15a] 8.80 px
Channel-Flow [SLSLMB14] 8.83 px
LDOF [BM11] 9.11 px
DF [MSP16] 9.19 px
ROF-NND [ADGB16] 9.29 px

uses the average end-point error AEE and not the percentage of outliers to sort the

different methods. The proposed method has been ranked in the 8th position out

of 62 methods regarding the ”final” sets. Table 4.6 shows a comparison between

the proposed approach and the state-of-the-art methods. The proposed model

provides satisfactory flow fields and copes with illumination changes, motion blur

and defocus blur, especially in the ”final” dataset. In another experiment, we

compared the estimated optical flow fields with MLDP, the census transform,

as well as the gradient and brightness constancy on some of the MPI challenges

sequence [MRM+14]. Figure 4.4 shows the estimated flow fields for the proposed

model with brightness constancy, gradient constancy, the census transform and

MLDP on two different sequences. It can be seen that TV-L1 model based on

the classical brightness constraint is not able to produce consistent flow fields.

Despite, the model based on MLDP can detect the correct motion, especially

with the final-sets suffering from motion blur. As shown in figure 4.4, the flow

fields estimated with MLDP are more accurate than the other flow fields based on

the other constancy assumptions. Besides, they contain more motion details and

preserve flow discontinuities, as well as the contours of objects, are significantly

more precise than other data terms mentioned above. ”final”.
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Figure 4.4: Row 1: Sequences form MPI-sintel datasets. Row 2: optical flow
ground truths. Row 3: Optical flow fields using the brightness con-
stancy. Row 4: Optical flow fields of using the gradient constancy.
Row 5: Optical flow fields using a (3× 3) census transform. Row 6:
Optical flow fields using a (5x5) census transform. Row 7: Optical
flow fields using MLDP. (from [MRM+14] with permission from IEEE)



4.4 Experiments and Evaluation 89

4.4.4 Middelebury Dataset

As mentioned in chapter 3, The Middlebury [BSL+al] dataset contains eight

training images with known ground-truth, in addition to twelve testing images

without known ground-truth [BSL+11]. It is used to evaluate the performance

of the proposed algorithm based on different constancy assumptions. Table 4.7

shows a qualitative comparison of the results for the average end-point error

(AEE) based on brightness constraint (BC), census (3 × 3 and 5 × 5), MLDP,

and gradient constancy constraint compared to the methods proposed in [VRS13]

and [RMG+13]. The proposed algorithm based on MLDP outperforms all different

methods and yields the minimum AEE.

Table 4.7: AEE in pixels for the proposed method using the MLDP compared
with some of the state-of-the-art methods on the Middelbury training
dataset

Method Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus
BC 0.21 0.14 0.64 0.19 0.11 0.35 0.69 0.29
census (7 × 7) [VRS13] 0.24 0.21 0.66 0.19 0.14 0.39 0.56 0.36
CSAD (7 × 7) [VRS13] 0.18 0.23 0.61 0.18 0.12 0.36 0.63 0.32

HOG (3 × 3) [RMG+13] 0.18 0.23 0.68 0.22 0.17 0.35 0.44 0.33

HOG (5 × 5) [RMG+13] 0.14 0.15 0.49 0.18 0.10 0.26 0.40 0.26
census (3 × 3) 0.28 0.16 0.54 0.18 0.11 0.25 0.44 0.25
census (5 × 5) 0.21 0.14 0.52 0.17 0.10 0.25 0.43 0.25
MLDP-OF 0.14 0.14 0.50 0.17 0.09 0.24 0.40 0.24

Figure 4.5 shows qualitative results of some examples from the Middlebury dataset.

The proposed algorithm based on MLDP yields precise flow fields and preserves

edges and motion boundaries [MRM+14].

According to the Middlebury benchmark, the proposed method MLDP-OF

[MRM+14], had an average rank of 30.3 concerning the average end-point error

(AEE). On the contrary, the other much-advanced methods, such as the com-

plementary optical flow [ZBW11, ZBW+09] and the optical flow based on the

complete rank transform [DHW13] had 30.9, 39.5 and 44.8, respectively.

Table 4.8 shows a comparison with selected state-of-the-art methods on the

Middlebury dataset.
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Figure 4.5: (Row 1) Sequences: Grove2, Rubberwhale, Venus, Dimetrodon, and
Urbahn2 from Middlebury dataset. (Row 2) Corresponding ground-
truths. (Row 3) Corresponding flow fields using MLDP.

Table 4.8: Middlebury on-line evaluation. The AEE in pixels of some of the
state-of-the-art methods.

Method Army Mequon Schefflera Wooden Grove Urban Yosemite Tedy

NN-field [CJL+13] 0.08 0.17 0.19 0.09 0.41 0.52 0.13 0.43
Layers++ [SSB10] 0.08 0.19 0.20 0.48 0.48 0.47 0.15 0.46
PH-Flow [YL15a] 0.08 0.21 0.23 0.56 0.56 0.30 0.15 0.44
TV-L1-MCT [MM12b] 0.08 0.24 0.32 0.14 0.72 0.54 0.11 0.54

MLDP-OF [MRM+14] 0.09 0.19 0.24 0.16 0.74 0.46 0.12 0.78
EpicFlow [RWHS15b] 0.12 0.25 0.39 0.19 0.89 0.53 0.10 0.67
CRTflow [DHW13] 0.11 0.24 0.50 0.23 0.86 0.60 0.12 0.19
LDOF [BM11] 0.12 0.32 0.43 0.45 1.01 1.10 0.12 0.94
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4.4.5 Evaluation of Color Texture

In this experiment, we tested the effect of integrating color information. Therefore,

we did not use a weighted median filter. Table 4.9 and table 4.10 show the effect

of integrating color information on the AEE and the outliers (AEE out) with

the HSV and the CIE-Lab color spaces.

Table 4.9: The AEE using gray, HSV and CIE-Lab color space.

Algorithm Gray HSV CIA-Lab
HOG 2.53 px 2.48 px 2.52 px
MLDP 2.67 px 2.64 px 2.67 px
Census 2.95 px 2.84 px 2.95 px

Table 4.10: The percentage of outliers using gray, HSV and CIE-Lab color space.

Algorithm Gray HSV CIE-Lab
HOG 10.31 % 10.31 % 10.28 %
MLDP 11.02 % 10.93% 11.01 %
Census 12.09 % 11.90 % 12.09 %

The HSV color space produced better optical flow than the CIE-Lab color space.

Although there is only a little improvement in the average results, some individual

sequences have a more significant difference.
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4.4.6 Evaluation of the Execution Time

In this section, we evaluate the execution time of the proposed algorithm on differ-

ent platforms, using different pyramid factors. Table 4.11 shows the specifications

of the computers that have been used to evaluate the proposed algorithm.

Table 4.11: The specifications of the test platform that has been used to test the
proposed algorithm.

CPU Intel Core i7 5820k @ 12 x 4.1 GHz
RAM 16 GB DDR4-2400 @ Quad Channel 2400 MHz
GPU Nvidia Geforce GTX 970 4GB @ 1177 MHz
OS Windows 7 64-bit

The execution times for the algorithm can be seen in the table 4.12.

Table 4.12: Run time of the proposed algorithm using difference descriptors

Descriptor Pyr.Fac. CPU [s] GPU [s]
HOG 0.5 2.362 0.647
HOG 0.9 8.913 3.300
MLDP 0.5 1.940 0.658
MLDP 0.9 7.178 3.332
Census 0.5 1.924 0.644
Census 0.9 7.116 3.313

The extension to the HSV color space including the descriptors with Hue and

saturation slightly increases the execution time (see table 4.13):

Table 4.13: Run time of the proposed algorithm with color information using
difference descriptors

Algorithm Pyr.Fac. CPU [s] GPU [s]
HOG 0.5 2.563 0.736
HOG 0.9 9.476 3.547
MLDP 0.5 2.097 0.739
MLDP 0.9 7.701 3.622
Census 0.5 2.088 0.730
Census 0.9 7.666 3.540
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Figure 1.6a shows the execution time of the proposed algorithm on a CPU and a

GPU using different pyramid factor. It can be seen from that figure, that BC has

the lowest processing time, in the second place come the MLDP and Census, while

the HOG descriptor has the highest processing time. The number of levels in

the coarse-to-fine scheme affect the processing time. Therefore, we evaluated the

processing time of the proposed algorithm with different descriptor with different

number of levels (see figure 4.6b).

(a) (b)

Figure 4.6: Processing time of the proposed approach using deferent descriptors.

The optical flow estimation algorithm used the TV-L1 approach that minimize

an objective function. The objective function is a kind of partial deferential

equation. We used the fixed point iteration scheme together with the image

wrapping algorithm to minimize that function. Figure 4.7a shows the effect of

the number of iteration while figure 4.7b shows the effect of the number of warps

on the average endpoint error. It can bee seen that the error decreased and reach

the steady state after 5 iteration and 5 warps. The runtime is also affects by the

resolution of the images. Hence, figures 4.7c and 4.7d show the effect of resolution

of images on the processing time as well as the average endpoint AEE. It can

be seen that the resolution increase the processing time exponentially, while the

error is decreasing.
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Figure 4.7: Analysis of different parameters on the average end-point error and
the processing time.

(a)

(b)

(c)

(d)
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4.5 Summary

In this chapter, we present the texture constancy assumption for a variational

optical flow model. Image texture has been extracted using several texture

descriptors (i.e., HOG, LDP, Census transform, ..., and so forth). Besides, we

integrated a residual function based on the texture constraint directly in the

duality of the TV-L1 optical flow model with a weighted non-local module. We

proposed to use a new texture descriptor called MLDP. The MLDP descriptor is

robust against noise and illumination variations. Its features are derived from eight

edge responses generated with a compass mask. The proposed algorithm has been

evaluated with different datasets such as KITTI 2012, MPI-Sintel, and Middlebury

benchmarks. Ultimately, the proposed method provided correct flow fields and

increased the robustness against illumination changes and large displacements.

In the next chapter, we discuss the cases in which the texture constraint fails,

especially in case of texture-less regions while texture and brightness constraints

fail to find a solution because of the singularity of the system of equations.
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5 Proposed Monocular Epipolar Line Constraint

In chapter 4, we developed an optimization scheme for optical flow estimation

based on an objective function, which minimizes a residual function between

two local descriptors. This new formulation allows the integration of different

types of texture descriptors (i.e., HOG, MLDP, Census, ..., and so forth) with

different types of residual functions without having to change the optimization

scheme. In chapter 5, we extend this concept and show how other constraints

can be integrated. Therefore, we investigate the usage of the monocular epipolar

geometry constraint for the calculation of optical flow. To our knowledge, this

is the first effort to impose the epipolar geometry constraint directly in the

differential optical flow estimation.

This chapter is organized as follows: an introduction is presented in section 5.1.

The integration of the epipolar constraint in the proposed TV-L1 for texture

descriptor formulation is discussed in section 5.2. Section 5.3 describe the optical

flow model, while section 5.4 introduces an iterative method for the update of

the fundamental matrix. The evaluations of the proposed method are conducted

in section 5.5. Finally, section 5.6 concludes this chapter.

5.1 Introduction

For homogeneous and therefore less textured regions, the data term Eq. (4.18)

can be singular, i.e., all equations are dependent. Nevertheless, if the optical

flow between two images is caused by camera motion for the most parts and

the objects are mostly stationary, the epipolar constraint can be applied to

add one more constraint to estimate the optical flow even for low textured

images [MMM15]. To calculate the epipolar geometry between two frames, the
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fundamental matrix which describes the camera motion between two frames

can be estimated. Consequently, for each pixel in one frame, the location of

the correspondent point in the next consecutive frame is constrained over an

epipolar line. Typically, fundamental matrices are estimated after calculating

point correspondences and applying the 8-point or the 7-point methods [HZ03].

The epipolar geometry of a stereo camera has been widely used for the estimation

of optical flow [TSS17]. On the contrary, only few methods have applied the

monocular epipolar geometry for the optical flow estimation. In [YMU13b], the

correspondent points are found by searching over epipolar lines and using a

semi-global block matching technique. The method has three main shortcomings.

First, the estimation of the fundamental matrix is not always accurate especially

for small baselines, and relatively large rotations. Second, the camera calibration

information is used to speed up the epipolar search based on a semi-global block

matching method. Third, the applied approximation of the rotation matrix is

valid only for small rotations. In [VBW08], the joint estimation of the fundamental

matrix and the optical flow estimation are formulated as a total variation with

L2 norm (TV-L2) problem. Such a formulation is severely ill-conditioned and

diverges in most of the cases if no initial guesses of the fundamental matrices

are available. The reason is that the fundamental matrix estimation is sensitive

even to a minor amount of measurement noise. Additionally, the formulation of

the method is not presented for the multi-resolution pyramid analysis. Moreover,

in [YMU13a] the authors estimated the optical flow along the epipolar lines

of the ego-motion by adapting slanted-plane stereo models to the problem of

monocular epipolar flow estimation. Furthermore, the authors represented the

problem as one of inference in a hybrid Markov Random Field (MRF) and applied

a flow-aware segmentation algorithm based on superpixels. In turn, [MMM15]

used the epipolar constraint for the estimation of sparse optical flows and did

not apply a smoothness constraint. In [RVCK16], an approach to dense depth

estimation from a single monocular camera was proposed. The authors proposed

an algorithm that segments the optical flow field into a set of motion models,

each with its epipolar geometry.

The presented work in this chapter does not use any segmentation such as

[YMU13a] and [RVCK16]. We apply the epipolar constraint directly in the

context of a global-local optimization process. Moreover, we give appropriate
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weight to the epipolar constraint profit from both brightness/texture information

and epipolar constraint to tackle with the inaccuracy of fundamental matrices.

Additionally, we formulate the usage of the epipolar line constraint for the

calculation of optical flow in a pyramid context to deal with large optical flows.

The effect of different parameters is investigated and optimal parameters to

reach the best performance is exhibited. We study the effect of the update of

the fundamental matrix, and we show under which conditions the update can

improve optical flow estimations. The performance of the proposed formulation

is examined by applying different types of descriptors and different methods

to estimate fundamental matrices. Ultimately, the challenging KITTI dataset

evaluates the method.

5.2 Epipolar Constraint

Assume two matching points, q = (x, y) and p = (x′, y′) in two consecutive frames

captured at two different camera positions, the following equation holds:

qTFp = 0 (5.1)

where p = [x y 1]T and q = [x′ y′ 1]T , F is a 3× 3 fundamental matrix, which is

singular and can be determined using the 8-point or the 7-point method [HZ03].

The epipolar line constraint is formulated as follows: if the dominant motion is

induced only by camera motion, the location of a point in image I2 corresponding

to a point in image I1 is constrained by a line equation. In this regard, Eq. (5.1)

can be rewritten as follows:

ax′i + by′i + c = 0 (5.2)

where [a b c]T = 1
η
Fq. η is a normalization factor such that a2 + b2 = 1. By

substituting x′i = xi + ui and y′i = yi + vi in Eq. (5.2), an equation in terms of u

and v is obtained:

au+ bv = −ax− by − c (5.3)
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The above formulation is valid for the case that the optical flow is calculated on

the original image resolution. For the calculation of large displacement optical

flow, the approach proposed in chapter 3 can be applied. Therefore, the image is

sub-sampled iteratively several times, and then the flow is calculated from the

coarsest to the finest level. Given the fundamental matrix for the original image,

the epipolar line equations at each level have to be determined. In this regard we

formulate the co-planarity constraint as follows:

[αx′ αy′ α]F[αx αy α]T = 0 (5.4)

where α = sl. We can verify that for two correspondence points on level l such

as [xl, yl]
T , [x′l, y

′
l]
T , they can be associated to a point in the original image as

follows:

[xl, yl]
T = α[x, y]T

[x′l, y
′
l]
T = α[x′, y′]T (5.5)

Therefore we have:

[x′l y
′
l α] F [xl yl α]T = 0 (5.6)

Consequently, we obtain a new line equation for each point at level l as follows:

alx
′
l + bly

′
l + cl = 0 (5.7)

As a result, the line equation containing ul and vl will be as follows:

alul + blvl + alxl + blyl + cl (5.8)

Let assume that

d = al · xl + bl · yl + cl, (5.9)

we can write Eq. (5.8) as follows:

alul + blvl + d (5.10)
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5.3 Optical Flow Model

Generally, local optical flow methods such as [LK81] assume a smooth optical

flow field in a small neighborhood of a pixel and minimize the sum of quadratic

deviations. Such a neighborhood consists of N = n× n pixels, and the brightness

constraint is evaluated using all pixels [MMM15]. The brightness constraint is

usually not fulfilled for all pixels as the assumption of equal flow vectors within

the window is violated. More equations concerning u and v can be obtained

after assuming smooth optical flow in a neighborhood. The singularities occur

in homogeneous regions or at the edges. Typically, the system of equations is

formed using (n× n) equations, and it is usually solved using the least squared

minimization technique as mentioned in the previous chapters. Consequently,

assigning a different weight for the equations yields different solutions. Given

a set of neighbor pixels such as {(xi, yi)|i = 0...n}, the system of equations is

formulated as:
w1 0 ... 0

0 w2 0
... ...

. . . 0

0 wN




Ix(x1, y1) Iy(x1, y1)

Ix(x2, y2) Iy(x2, y2)
...

Ix(xN , yN ) Iy(xN , yN )


[
u

v

]
= (5.11)


w1 0 ... 0

0 w2 0
... ...

. . . 0

0 wN




It(x1, y1)

It(x2, y2)
...

It(xN , yN )

 (5.12)

where (x0, y0) is the center point for which the optical flow is currently calculated

and (w1, w2, ..., wN ) are the weights of each equation.

The resulting flow vector is sub-pixel accurate. However, due to the use of the first

order Taylor approximation, this algorithm is valid only for small displacement

optical flow. To estimate the optical flow in cases of larger displacements, this

approach has to embedded into a pyramid approach, by finding the optical flow

at low-frequency structures at low-resolution scales of an image and refining the

flow on the higher resolution levels as discussed in chapter 3.
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We come up with a regularized cost function including the epipolar constraint as

follows:

min
u,v

E(u, v) =
∑
Ω

(λEdata + γEepip + ηEsmooth + Edual) , (5.13)

where

Edata = ρ(x, y, u, v)2 (5.14)

Eepip =‖ alu+ blv + d ‖ (5.15)

Esmooth = (‖ ∇u ‖ + ‖ ∇v ‖) (5.16)

Edual =
1

2θ
(u− û)2 (5.17)

where λ, η and γ are weights of the data-term, the smoothness term, and the

epipolar constraint. In section 4.2.2, we showed how to optimize an objective

function based on the residual between two texture descriptors. Here, we optimize

the cost function in Eq. (5.13) including epipolar constraint using a combination

of local and global costs (see chapter 4 for details) as follows:

min
u,v

Ed(u, v) = λρ(x, y, u, v)2 + γ(alu+ blv + d)2 +
1

2θ
(u− û)2, (5.18)

min
û,v̂

Es(û, v̂) = η (‖ ∇û ‖ + ‖ ∇v̂ ‖) +
1

2θ
(u− û)2, (5.19)

The residual function ρ(x, y, u, v) in Eq. (5.18) is the same as in section (4.2.2).

Using the dual TV-L1 algorithm, Eq. (5.18) can be optimized by solving for (u, v)

by doing:

∂

∂u

(
λρ̃(x, y, u, v)2 + γ(alu+ blv + d)2 +

1

2θ
(u− û)2

)
= 0,

∂

∂v

(
λρ̃(x, y, u, v)2 + γ(alu+ blv + d)2 +

1

2θ
(v − v̂)2

)
= 0. (5.20)

The equations can be written in vector forms as:

2λ
(
St +∇S′ (x, y, û, v̂)T ([u, v]T − [û, v̂]T )

)
∇S′(x, y, û, v̂)+

2γ(alu+ blv + d)Al +
1

θ
([u, v]T − [û, v̂]T ) = 0, (5.21)
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where:

Al =

[
al 0

0 bl

]
(5.22)

Eq. (5.21) is linear with respect to u and v. It is solved as a linear system
Aw = B, where w = [u, v]T . Similar to section 4.2.2, Eq. (5.21) is written in

matrix form. Subsequently, the A and B matrices of the linear system described

in Eq. (5.21) are written as:

A =

[
1

2λθ
+
∑
S′2x + 2 · γ · (al)2

∑
S′xS

′
y + 2 · γ · al · bl∑

S′xS
′
y + 2 · γ · al · bl 1

2λθ
+
∑
S′2y + 2 · γ · (bl)2

]
. (5.23)

and

B =

[ (
1

2λθ
+
∑
S′2x
)
û+

∑
S′x
∑
S′y v̂ −

∑
S′x
∑
St + 2 · γ · al(al · x+ bl · y + d)(

1
2λθ

+
∑
S′2y
)
v̂ +

∑
S′x
∑
S′yû−

∑
S′y
∑
St + 2 · γ · bl(al · x+ bl · y + d)

]
.

(5.24)

We are using the same smoothness term as explained in chapter 4 (see section

4.2.2).

5.4 Enhancement of Fundamental Matrix

Theoretically, it sounds plausible that fundamental matrix can also be enhanced

based on the obtained accurate optical flows at each level. To this end, we discuss

briefly, how the fundamental matrix can be iteratively improved at each iteration.

In the experimental result section, we evaluate how it affects the results practically.

In [LDFP93], different methods to enhance iteratively fundamental matrices are

discussed. One of the best methods is based on the epipolar distances between

each point and its correspondent epipolar line. Given N matched point as (xi, yi)

and (x′i, y
′
i), i = 1, ..., N , the following error function should be minimized:

ξ =

N∑
i=1

(aix
′
i + biy

′
i + ci)

2

a2
i + b2i

+
(a′ixi + b′iyi + c′i)

2

a′2i + b′2i
(5.25)
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where [ai bi ci]
T = F [xi, yi, s

l]T and [a′i b
′
i c
′
i]
T = FT [x′i, y

′
i, s

l]T . Hence the

fundamental matrix is a singular matrix, it can be formulated as follows:

F =

 f1 f2 f3

f4 f5 f6

αf1 + f4 αf2 + f5 αf3 + f6

 (5.26)

As a result, the above matrix is written in a vector form as follows:

f = [f1, f2, f3, f4, f5, f6, α]T (5.27)

Eq. (5.25) can be written as multi objective error functions to form a non linear

equation system containing N equations. The equation system is solved iteratively

in a regularized form using e.g. the Marquardt-Levenberg method.

5.5 Experimental Results

Some concerns for optical flow estimation are the selection of features, finding

corresponding points and the estimation of the fundamental matrix. Hence,

we used and compared two different feature matching methods: SIFT [Low04]

and the pyramid Lucas-Kanade optical flow [LK81]. For the estimation of the

fundamental matrix, we evaluate the usage of the 7-point and the 8-point methods

by applying the RANSAC algorithm. The 8-point method uses nine matched

points while the 7-point method uses eight points.

5.5.1 Epipolar Line Constraint for Sparse Optical Flow

In this experiment, we evaluate the effect of using the epipolar constraint on the

data-term based on the training images from the KITTI 2012 dataset. Therefore,

we calculate the average end-point error (AEE) and the average angular error

(AAE) of the estimated optical flow using two different data-terms. The first

data-term [LK81] uses only the brightness constraint in a local window of size

(N ×N), while the second data-term integrates the epipolar and the brightness

constraints in a local window of size (N ×N). In this experiment, we did not
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apply any smoothness regularization. Table 5.1 shows the average errors using

various window sizes of the local Gaussian mask with different data terms and

different methods for estimating the fundamental matrix. The result demonstrates

significant improvement for the epipolar line constraint with lower average errors

for the dataset. The best performance is achieved using the fundamental matrix

based on the LK and the 7-point method. The reason lies in the fact that

SIFT works based on blob features which are not precise enough to yield a good

fundamental matrix. The 7-point method also performs better than the 8-point

method because it requires fewer feature points, that make it more robust against

outliers. In figure 5.1, the effect of increasing the size of the surrounding window is

shown. It can be seen, that the brightness constraint has an inferior performance

at small window sizes, whereas using the epipolar constraint yielded good results

even for the small windows.

Table 5.1: AEE and AAE of the estimated optical flow for the 194 training
sequences from KITTI dataset.

Method
AEE AAE

(3× 3) (7× 7) (15× 15) (3× 3) (7× 7) (15× 15)

Using Epipolar
Line
Constraint

LK 7 pts 17.74 px 10.01 px 7.83 px 9.93◦ 7.93◦ 7.29◦

LK 8 pts 19.11 px 11.55 px 9.33 px 13.42◦ 11.24◦ 10.47◦

SIFT 7 pts 17.87 px 10.25 px 8.19 px 10.35◦ 8.12◦ 7.92◦

SIFT 8 pts 18.65 px 11.15 px 9.01 px 12.43◦ 10.51◦ 9.84◦

Without Epipolar Line Constraint 127.85 px 29.69 px 14.56 px 36.88◦ 17.23◦ 11.07◦

Figure 5.2 shows comparisons of the AEE and the AAE for each image of the

training sequences. It can be seen from figure 5.2 significant improvements of

the accuracy for the epipolar line with brightness constraints in most of the

sequences. Figure 5.3a shows that the integration of the epipolar line constraint

with the brightness constraint fixes the large deviation between the estimated

optical flow and the ground truth using only the brightness constraint, see figure

5.3b. However, in scenarios such as sequence 150 (see figure 5.4), the average

errors based on the epipolar constraint are more substantial than those for the

brightness constraint. In fact, the reason for this error is that, the camera in

this scenario performed side translations and relatively high rotations which
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(a)

Figure 5.1: The effect of window size on the average AEE for KITTI training
dataset.

strongly leads to a wrongly estimated fundamental matrix, even in case of a small

computational error [MMM15].

5.5.2 Epipolar Line Constraint for Dense Optical Flow

Based on the KITTI training dataset and the overall formulation presented in

section 5.3, we wanted to investigate how the epipolar constraint works if it

is applied along with different data terms and fundamental matrix estimation

methods. Therefore, in this regard, we used different data terms, feature matching

techniques, and fundamental matrix estimation methods, as follows:

• Data term: BC, MLDP, HOG, Census.

• Feature tracking methods: SIFT [Low04], Lucas-Kanade sparse optical

flow [LK81].

• Fundamental matrix calculation methods: 8-point, 7-point.

It is interesting to observe how the combination of the three categories mentioned

above affects the performance of the optical flow estimation. Moreover, an optimal

weight for the epipolar constraint should be found. In figure 5.5 an average of
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(a)

(b)

Figure 5.2: The average error for each sequence of the 194 sequences of the KITTI
training dataset. (a) AEE. (b) AAE.

of the end-point errors AEE of more than three pixels which we called it as

%Outliers can be seen. Figure 5.5a depicts the results based on the 7-point

method for fundamental matrix estimation while figure 5.5b is based on the 8-

point method. It can be seen, increasing the epipolar weight γ from zero reduces

the errors regardless of the type of data term, feature tracker or fundamental

matrix estimation method.

Looking at both figures, unexpectedly, we can notice that the LK feature tracker

outperforms SIFT noticeably in all cases, despite the common belief about the

high accuracy of SIFT. Practically, the corner features in outdoor scenes are
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(a)

(b)

(c)

Figure 5.3: Comparison between ground truth (red) and estimated optical flow
(green) for sequence 24 of the KITTI training dataset for some feature
points. (a) Using epipolar constraint based on 7-points method. (b)
Using brightness constrain. (c) Estimated epipolar lines.

extracted and localized much better using LK than blob features using SIFT.

Additionally, unlike SIFT, the LK does not rely on the repetition of features.

In SIFT, blob features from both images are extracted and then based on their

descriptors the matched points are found. This problem increases the ratio of

mismatches especially in the case of occluded points and affects the quality of the

fundamental matrix significantly. In turn, the LK tracks corner features from one

frame using the sparse optical flow technique. As a result, repeatability is not an

issue for the LK tracker. Concerning the weight of the epipolar constraint, we

can see that the minimum errors are obtained for the weight γ = 1.5. Apparently,

for smaller γ, the data term plays a more critical role in the determination of
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(a)

(b)

(c)

Figure 5.4: Comparison between ground truth (red) and estimated optical flow
(green) for sequence 150 of the KITTI training dataset for some feature
points. (a) Using epipolar constraint based on 7-points method. (b)
Using brightness constrain. (c) Estimated epipolar lines.

flow which can result in significant errors at homogeneous regions. Moreover,

the inaccuracy of the estimated fundamental matrix degrades the results for

increasing values of γ.

The average of the end-point error (AEE), the average of the angular errors (AAE)

and the percentage of outliers are presented in table 5.2. It can be observed

that the LK tracker combined with the 7-point method for the estimation of

fundamental matrix gives the best results for all variations of data term. The

best combination is HOG descriptor, LK tracker, and 7-point method. The the

data term using HOG outperformed other data terms. The reason that 7-point
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(a)

(b)

Figure 5.5: The average error for each sequence of the 194 sequences of the KITTI
training dataset. (a) Percentage of outliers using 7-points algorithm.
(b) Percentage of outliers using 8-points algorithm.

method outperforms the 8-point method stems from two facts. First, the 7-point

method needs one point less than the 8-point method which makes it more robust

against outliers. Second, rank deficiency of the fundamental matrix is directly

taken into account during the fundamental matrix calculation process. Whereas,

in the 8-point method the rank deficiency is enforced later indirectly.
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Table 5.2: The effect of usage the epipolar line constraint. The average end-point
error and average angular error estimated using 7-point and 8 points
fundamental matrix with Lucas Kanade and SIFT.

LK SIFT

AEE (px) AAE (◦) Outliers (%) AEE (px) AAE (◦) Outliers (%)

7-pts 02.45 px 02.72◦ 11.80 % 02.53 px 02.76◦ 12.23 %
BC

8-pts 02.50 px 02.73◦ 11.94 % 02.62 px 02.90◦ 12.53 %

7-pts 01.52 px 01.72◦ 06.68% 01.65 px 01.84◦ 06.99 %
HOG

8-pts 01.56 px 01.74◦ 06.74 % 01.65 px 01.84◦ 06.99 %

7-pts 01.69 px 01.73◦ 06.68 % 01.71 px 01.88◦ 08.01 %
MLDP

8-pts 01.74 px 01.76◦ 07.89 % 01.75 px 01.93◦ 08.20 %

7-pts 01.95 px 01.87◦ 09.80 % 02.06 px 02.03◦ 09.85 %
Census

8-pts 02.06 px 01.93◦ 09.89 % 02.20 px 02.17◦ 09.93 %

5.5.3 Fundamental Matrix Re-estimation

We conduct the enhancement of the fundamental matrix starting at different

levels of corse-to-fine pyramids. In this regard, we used the combination consisting

of the 7-point method, the LK feature trackers and the HOG descriptor, which

provided the minimum errors. Figure 5.6 presents the errors concerning the

starting level of enhancement. It can be seen that the update of the fundamental

matrix results in a good improvement, only if algorithm is applied in fine levels

with high-resolution. Nevertheless, if the matrix is updated at the coarsest level,

the errors noticeably increased. One critical issue is an incorrect initial guess of

the fundamental matrix at coarse levels causes a divergent, and therefore, the

error increases accumulatively. The reason is the estimation of the fundamental

is usually sensitive to measurement noise more than two pixels for the 7-point

method which results in large errors in the estimation of the fundamental matrix.

5.5.4 Challenging Sequences

In this experiment, we measure the effect of applying the epipolar constraint

with a weight of γ = 1.5. We chose challenging sequences from KITTI training

dataset which have fewer texture regions, repeated patterns, strongly varying

lighting conditions, and many non-Lambertian surfaces. Tables 5.3 and 5.4 show a

comparison between the estimated optical flow based on the HOG descriptor and
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Figure 5.6: The percentage of average endpoint error more than 3 pixels and the
average endpoint error based on the updating fundamental matrix
starting at different levels.

the BCA. The epipolar line constraint succeeds to get a better optical flow and

the AEE and the percentage of outliers are significantly reduced. Some images of

these sequences are shown in figures 5.7 and 5.8.

Table 5.3: The effect of the usage of the epipolar line constraint on the AEE in
pixels (px) applied on challenging sequences of KITTI dataset. γ = 0
means no epipolar was used, while γ = 1.5 is of the epipolar constraint
in the data term.

γ 10 19 39 70 71 84 114 178

0.0 18.50 08.03 16.80 15.65 15.26 09.27 15.58 10.48
BC

1.5 04.62 04.98 12.34 03.64 00.60 00.73 02.72 02.76

0.0 01.75 01.14 02.84 01.38 00.50 01.12 00.98 01.53
HOG

1.5 01.21 01.07 01.45 01.27 00.48 00.92 00.96 01.32

5.5.5 KITTI Evaluation

The proposed method was evaluated using the KITTI 2012 flow dataset. For

testing the effect of the epipolar line constraint on the accuracy of the optical

flow estimation, we did not use the weighted median filter explained in chapter 3

and 4. Meanwhile, we tested the proposed method using HOG descriptor and

without using the epipolar line constraint and we got the results shown in tables
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Table 5.4: The effect of the usage of the epipolar line constraint on the outliers
(%) applied on challenging sequences of KITTI dataset.

γ 25 54 74 101 113 135 163 181

0.0 38.87 15.87 84.31 57.78 12.37 55.45 14.02 54.95
BC

1.5 37.81 15.86 74.94 48.74 09.67 48.05 11.80 55.70

0.0 30.57 23.33 50.77 19.42 22.97 14.58 19.31 41.71
HOG

1.5 13.01 14.79 42.40 11.41 16.20 07.80 12.18 31.49

5.6. It can be seen from table 5.5 that the percentage of outliers is significantly

decreased when we used the epipolar constraint. Table 5.6 shows comparisons

with recently published methods.

Table 5.5: KITTI 2012 evaluation (percentages of outliers) of the epipolar texture
constraint using the HOG with epipolar constraint γ = 1.5 and without
the use of the epipolar constraint γ = 0.0.

γ = 1.5 γ = 0.0
2 px 09.51 % 13.41 %
3 px 06.95 % 10.87 %
4 px 05.79 % 09.58 %
5 px 05.06 % 08.71 %

Table 5.6: The percentages of outliers and the AEE of some of the state-of-the
art methods on the KITTI 2012 dataset.

Method Outliers (%) AEE (px)
GC-BM-Bino [KL12] 18.83 % 5.0 px
TF+OFM [KT15b] 10.22 % 2.0 px

MLDP-OF [MRM+14] 8.67 % 2.4 px

TVL1-HOG [RMG+13] 7.91 % 2.0 px
EpicFlow [RWHS15b] 7.88 % 1.5 px
MEC-Flow (Proposed method) 6.95 % 1.8 px
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Optical flow estimation. (a) and (b) are frame 000025 10 and frame
000025 11 of sequence 25 of KITTI training dataset. (c) and (e)
estimated optical flow and AEE error map without epipolar constraint,
while (d) and (f) are with epipolar line constraint.

5.6 Conclusion

In this chapter, we explained how to integrate other constraints in the proposed

variational optical flow model which is proposed in chapter 4. Therefore, we

derived the necessary formulation of the epipolar line constraint for an uncalibrated

camera. We proposed a new constraint based on the epipolar geometry along with

different data-terms, different feature tracking, and fundamental matrix estimation

methods. The optimal combination of different sub-algorithms and the optimal

weight were found based on the KITTI 2012 training dataset. Furthermore, we

evaluated the results for the test sequences on the KITTI 2012 portal. Moreover,

we investigated the iterative enhancement of the fundamental matrix. The
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Optical flow estimation. (a) and (b) are frame 000054 10 and frame
000054 11 of sequence 25 of KITTI training dataset. (c) and (e)
estimated optical flow and AEE error map without epipolar constraint,
while (d) and (f) are with epipolar line constraint.

integration of the epipolar line constraint in the differential optical flow framework

decrease the average end-point error to 36.06% and it reach 50% in many cases.

Next chapter, we introduce a new method to analyze the motion by detecting

and tracking multi moving objects.
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6 Proposed Real-time Multi-Objects Tracking

6.1 Introduction

Motion analysis is a crucial problem and a challenging task for a mobile robot

to perform tasks in a dynamic environment. On the one hand, the sensor data

comprises two independent blended motions which are the camera ego-motion

and the motions of moving objects [JS10]. Usually, the ego-motion of the camera

is compensated, and the remaining motions are considered as the motion due

to moving objects. On the other hand, sensor data is contaminated by various

types of noise such as inadequate lighting conditions, camera distortion, and

changing the shape of objects. An optimal camera ego-motion compensation task

is a hard task, and it is usually scarcely realizable. Therefore, it is considered

as another source of noise as it supplements another type of uncertainty to the

system [JS10].

This chapter is organized as follows: Section 6.2 presents the main concepts and

background of the multi-object tracking problem. The state-of-the-art and the

related work are also discussed. In section 6.3, we acquaint with the proposed

algorithm and introduce the multi object tracking approach. Section 6.4 shades

the light on the motion detection algorithm, while the tracking of moving objects

is introduced in section 6.5. A solution for occlusion handling is given in section

6.6. Furthermore, section 6.7 describes the camera motion stabilization algorithm.

In section 6.8 the experimental results and the evaluation are reviewed. Finally,

some concluding remarks are highlighted in 6.9.
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6.2 Related Work

Recently, assortments of techniques have been proposed to track moving objects

from stationary cameras based on the background modeling or the background

subtraction. Zhu et al. [DZ12] proposed a real-time approach for short-term

tracking of multiple objects. This approach uses a motion detection algorithm

to segment moving objects from a stationary camera. The authors propose to

use an adaptive background update algorithm that handles illumination changes

and slow camera motion. However, this algorithm fails for complex scenes and

fast camera motions. Furthermore, a variety of research efforts was dedicated to

tracking a single object by keeping a model of low-level features and searching

for its new location in each frame (see [SGG09]).

Enzweiler et al. [EG11] proposed a multilevel mixture-of-experts approach with

the objective to improve the classification of pedestrian. This approach combines

information from multiple features and cues. In turn, Talukder et al. [TM04] used

a stereo camera and combined dense disparity with a dense optical flow to estimate

the background motion and to detect moving objects. Moreover, Henriques et

al. [HCB11] introduced a graph structure that encodes multiple-match events as

standard one-to-one matches. As a result, it allows the computation of the solution

in real time. Furthermore, Wojek et al. [WWR+13a] proposed a probabilistic

3D scene model. This model integrates a geometric 3D reasoning together with

multi-class object detection, an object tracking, and a scene labeling.

In case of moving camera, most of the real-time object tracking approaches

use sparse features or assume flat scene structures [ST94], [ML11]. On the one

hand, sparse optical flow process few feature points, such as corners or key-

points. However, sparse features are not sufficient to infer valuable information

of an object, such as shape. On the other hand, dense optical flow diffuses all

pixels through a regularization [BM11], [SBK10] and reveals information about

objects. Although dense optical flow is a reliable source of information for motion

segmentation, object detection, and flow-based tracking, its high computational

cost affects the real-time performance, especially for high-resolution cameras.

One solution is to combine sparse feature and dense optical flow to track moving
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objects. Therefore, Peter et al. [ST06] proposed an algorithm that integrates

feature points tracking with dense optical flow fields to a set of spatially dense

and temporally smooth trajectories. Furthermore, Rubinstein et al. [RLF12]

proposed an algorithm to estimate long-range motion trajectories and used them

as an initial estimate for a global solution.

Several approaches for estimating dense optical flow concerned with estimating

accurate and robust flow fields under various conditions such as [MRM+14]

and [RMG+13]. However, such approaches neglected the processing time, and

they are not suitable for real-time applications. Nevertheless, some works have

been introduced to decrease the processing time, but most of them are based

on the internal structure of the algorithm itself and are not applicable to other

techniques. That techniques tried to use the parallel processing nature of the

algorithms and used GPUs or other hardware to do the computation in parallel.

In this chapter, we introduce a real-time approach that works with a stationary as

well as a moving camera to detect and track moving objects in a dynamic scene.

The proposed algorithm uses sparse and dense optical flow as input to detect

moving objects. It uses sparse optical flow to identify moving regions and dense

optical flow to detect and track moving objects. Afterwards, we applied a planar

parallax motion constraint which assumes that independently moving objects

undergo pure translation. The Kalman filter is used to track the orientation of

the moving objects based on the dense optical flow.

6.3 The Proposed Approach

For an optical flow-based application to work real-time, it should calculate the

optical flow and do other processing such as segmentation, interpretation or other

high-level analysis within a few milliseconds. Unfortunately, most of the optical

flow algorithms require more time to estimate the dense flow only, even if the

GPU hardware was used. Thus, a need for a new technique for calculating the

optical flow is a must.
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The proposed solution is to calculate the dense optical flow only if it is necessary.

The solution is to detect and divide the motion into moving and static segments

and calculate the optical flow only for each moving segment in parallel. For

instance, for stationary camera applications, it is more critical to calculate the

optical flow for the regions with moving objects than for the whole scene. Typically,

for a moving camera in a dynamic scene, if the ego-motion is known using an

inertial sensor or other visual techniques, the optical flow algorithm should not

be applied to the background. Using this strategy the results show a significant

reduction of the processing time for the overall system.

Thus, in this chapter, we propose a new algorithm for tracking multiple moving

objects from a moving camera based on optical flow with real-time performance.

The proposed algorithm uses a mixed-sparse-dense flow field to gain the benefits

of the reliability, accuracy and real-time performance. We suppose rigid objects

and assume a single segment can represent an object in a scene. The proposed

algorithm contains two main stages. The first stage is to initialize and detect

moving areas hypotheses. Therefore, to achieve this task, the camera motion is

stabilized based on the homography matrix to reduce the effect of the arbitrary

motions introduced by camera pans and jitters. Afterwards, we segment the

motion to the foreground (moving objects) and the background by dividing the

image into isolated moving regions using a blob detection technique. In the second

stage, a dense optical flow algorithm is applied in parallel only to each moving

region from the two frames using multi-threading processing. Correspondingly,

we segmented moving objects in each region based on the parallax constraint

and the iterative region growing algorithm. Moreover, a tracker using a Kalman

filter for each object is calculated based on the motion orientation of its pixels.

Besides, information on objects such as motion models, center points, and shapes

are updated at each frame to track objects.

In addition, for each object, the color histogram is calculated to be used, if an

object is occluded or if the object stops moving. In turn, short-term memory has

been used to store the extracted information about all moving objects. Figure

6.1 shows the overall algorithm.
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Figure 6.1: The proposed architecture for multi-objects tracking.

6.4 Motion Detection

The task of the motion detection module is to segment moving regions in an

image and initialize objects to be tracked. In the proposed algorithm, we use

two different methods. The first method uses the background subtraction (BS)

after calculating the absolute difference between the frames at times t and t− 1.

Afterward, we apply a blob detection algorithm to the resulting image to segment

moving areas. Later, we create a rectangle around each blob, and we store that

region in a list of moving regions. This method offers not only a rapid detection

of new objects entering the scene, but also it needs only little processing time.

Conversely, in the case of a moving camera, it is sensitive to the error of the

camera motion stabilization.

The second motion detection method is based on the sparse optical flow between

the current frame t and the previous frame t − 1. The algorithm starts with

calculating feature points in the frame at t − 1 using a method called good

features to track [ST94]. Afterward, the algorithm [LK81] is applied on these

features to calculate sparse flow. In addition, a merging procedure based on the

magnitude of the optical flow vectors in each segment is used locally to merge

the moving neighborhood pixels. A predefined window is centered at each pixel,
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and the overlapping windows are merged to obtain a larger window. The merging

procedure can be formulated as:

Ωi =

P⋃
j=1

Wj , (6.1)

where Ωi denotes a moving region, Wj denotes a centered window, and P denotes

the number of overlapping windows. Experimental results show that the sparse

optical flow method is more robust than background subtraction in different

challenging environments such as severe weather conditions and sudden brightness

changes. Furthermore, it is more robust to noise and camera motion errors.

However, one drawback of the sparse optical flow method is the detection of new

objects entering the scene occurs only after the detection of some feature points

on that objects. Figure 6.2 shows the results after applying the sparse optical

flow method to detect moving regions.

6.5 Motion Estimation and Multi-Object Tracking

This module extracts accurate information about objects. Thus, for each mov-

ing region, a bounding box is located in the two images, and a dense optical

flow algorithm is applied. The calculation of the dense optical flow is done in

parallel for all moving regions by using multi-thread processing. We used the

optical flow model Eq.(4.8) by minimizing the following objective function E(u, v),

min
u,v

E(u, v) =
N∑
i=0

∑
Ω̂i

(
λ ρ(x, y, u, v)2+ ‖ ∇u ‖ + ‖ ∇v ‖

)
(6.2)

where N is a number of moving regions. As discussed in chapter 4, ρ is a residual

function between two texture descriptors. In turn, u and v are the horizontal

and vertical optical flow components, and λ is the weight of the data term.

‖ ∇u ‖ + ‖ ∇v ‖ is the smoothness constraint which yields the smoothness

term which also called the total variation. The objective function in Eq.(6.2)
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is solved iteratively after dividing it into two parts using a quadratic coupling

term [MBM14]. The data-term is written as:

min
u,v

Ed(w) =

N∑
i=0

∑
Ω̂i

(
λ ρ(x, y,w)2 +

1

2θ
(w − ŵ)2

)
(6.3)

where w = [u, v]T and ŵ = [û, v̂]T is the auxiliary optical flow vector and θ is a

threshold. Similarly, the regularization term is written as:

min
û,v̂

Es(ŵ) =

N∑
i=0

∑
Ω̂i

(
1

2θ
(w − ŵ)2+ ‖ ∇û ‖ + ‖ ∇v̂ ‖

)
(6.4)

We applied the same procedure explained in chapter 4 to solve for Eq. (6.3)

and Eq. (6.4). The resulted optical flow is assumed as a hypothetical region

holding one or more moving object. Therefore, we applied a motion segmentation

algorithm on the estimated optical flow.

We used the parallax constraint by assuming that all optical flow vectors on an

object have similar directions. The proposed algorithm is implemented using

an iterative region growing scheme. It works as follows: the starting point is

at the center of the bounding box. We assign a label and search for similar

pixels in the neighborhood of that point, which move in a similar direction as the

current pixel. If one pixel is found, the same label will be assigned to it, and the

area of the region is increased in the direction of the optical flow vector at that

point. This step is repeated until it reaches the motion border of the object. For

the unprocessed pixels, we select a random pixel and start a new segmentation

procedure. Besides, the small segments are merged into larger segments, if they

lie inside larger segments or if they overlap other segments. Therefore, in the

case of non-rigid objects (e. g. people), the moving parts (e. g. hands and legs)

are merged to the body segment to create more prominent segments include all

parts. However, we have not used these segments to update the objects tracker

in the next step. Later, we consider each segment as a moving object. The center

(xc, yc) of each object is calculated, and a tracker for each object is created. For

object tracking, we use the object center point (xc, yc) and vector T = (uc, vc)
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which represent the average direction of the optical flow vectors of all pixels inside

a segment.

T =

∑P
i=0 wi

P
, (6.5)

In the proposed algorithm, we assume that the object’s motion between two

consecutive frames are not too large; thus it is likely that the position is only

slightly changed in the new frame. Therefore, we use the current position of

an object and extend its holding region in all directions based on the estimated

magnitude of vector ||T ||. Afterward, we estimate the optical flow using the

regions from the two frames. Meanwhile, the tracker T is updated using the new

location which is calculated from the estimated optical flow. Figure 6.2 shows an

example of the proposed motion estimation and tracking. A Kalman filter is used

to predict and update the object tracker to deal with noisy measurements.

(a) (b) (c) (d) (e)

Figure 6.2: Results of multi-objects tracking stages: (a) Resulting moving regions
after using the motion detection technique, (b) detected region in the
frame t1, (c) detected region in the frame t2, (d) estimated dense
optical flow for each detected moving object and (e) tracking windows
for each object.

6.6 Occlusion Handling

For dealing with occlusion of objects, we created an object model based on its

motion, location, and appearance using the histogram of the HSV color space for

each object at each frame. Let’s assume that X is objects list and each object Xi
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in the list has the following information: the center point ci = (x, y), appearance

model Ti, motion modelMi, object shape ςi and state Si. For all moving objects

which are still in the scene, the state Si is set to tracked, while for objects which

are occluded, stop moving or leave the scene, the state Si is set to drift.

Si =

{
tracked if the object still moving

drift if the object stop moving or leave the scene
(6.6)

For all new objects entering the scene, we do object matching with the objects

which have state drift tracked only. The matching is based on the maximum

cross-correlation of the template. The nearest object concerning the center point

will be considered. The object matching is done only for new objects entering the

scene and only if there is some drift track still in the memory as the drift tracked

is removed after a predefined period.

6.7 Camera Motion Stabilization

In the proposed algorithm, we assume a planar stationary background of the

scene, or the background can be approximated by dominant single or multiple

planes, or an orthographic camera model. Typically, these assumptions can

limit the applicability of the proposed algorithm in the field of robot navigation.

However, the goal here is to prove the concept of the detection and the tracking

of moving objects and not to precisely compensate the ego-motion. Therefore

we developed an efficient stabilization algorithm based on the sparse optical flow

and the homography matrix. The proposed algorithm uses only some sparse

optical flow points to estimate a perspective camera motion model. However, the

proposed algorithm is not limited to a specific type of camera motion stabilization

approach.

The homography matrix describes the perspective transformation between a

source and a destination planes. Therefore, we used the homography matrix

to estimate the perspective transformation and stabilize the camera motion.

Therefore, to calculate the homography matrix, a minimum of four feature points

are required on the source frame and the corresponding points on the destination
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frame. Among these four points, three of them must be non collinear.

For the detection of feature points, methods such as SIFT, SURF, or ORB

detector can be used. However, in this work, we choose a simple and an efficient

method referred as ”good features to track” [ST94] to extract feature points. For

estimating the optical flow of the feature points, we used the sparse optical flow

algorithm [LK81] implemented in a coarse-to-fine scheme [MMM15]. The feature

points in the source frame and the corresponding points in the destination frame

are refined, and the outliers are removed. We use a forward-backward validation

method to find the component of a flow vector u and v by optimizing the texture

constraint twice as follows:

S1(x, y)− S2(x+ u, y + v) = 0 (6.7)

S2(x, y)− S1(x+ u, y + v) = 0 (6.8)

We considered only points which have the same absolute value of u, v in both

equations, while other points are considered as outliers. Given a list of points pi

in the source frame and correspondences point pj in the destination frame, the

homography matrix is calculated by the following equation:

pi = H pj (6.9)xiyi
wi

 =

h11 h12 h13

h21 h22 h23

h31 h32 1


xjyj
wj

 (6.10)

The points are represented in homogeneous coordinates. Hence, a 2D point in

the image plane (x, y, w) donates as (x/w, y/w) in the Cartesian coordinates.

Minimum four points correspondence are sufficient to calculate H, as each point

provide two equations.

For optimizing the homography matrix, we used the RANSAC [FB81] to find the

best homography model. RANSAC tries many different random subsets consists

of four corresponding point pairs. We used the least-square method to minimize
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the back projection error ri to find the homography matrix and calculate the

inliers and the outliers as follows:

ri = ||pi − Hpj || (6.11)

As a result, the resulted homography matrix has the minimum number of outliers.

Conversely, the homography matrix is further refined to reduce the re-projection

error after using only the inliers points. Therefore, we calculate the standard

deviation of the inlier distance. We used those points which have smaller distance

than a threshold to re-estimate the homography matrix based on the Levenberg-

Marquardt method. Finally, the destination image is warped toward the source

image after applying a perspective warp.

Figure 6.3 shows the result after applying an absolute difference between the

source image and the warped destination image. It is evident that the image

warping step reduces the effect of the camera motion and the moving objects

are highlighted. However, it is well known, that the homography is a limited

method for motion compensation and in the case of global camera motion; it is

only valid for a planar scene, or an orthographic camera [DRSS12]. In the case

of a non-planar scene or a perspective camera, the homography is valid only for

rotational camera motion. If the camera undergoes translational motion while

observing a non-planar scene, the homography is not valid. Therefore, under these

circumstances, the homography is valid only for some areas inside the images.

As a result, the areas for which the homography is not valid appear as falsely

detected moving objects.

6.8 Experimental Results

The algorithm is implemented using C++ and the OpenCV library. We performed

the computation on a PC with an Intel(R) Xeon(R) 2.67 GHz CPU (4 cores) and

a GeForce GTX 580 graphics card. The arguments in the following section are

based on the author’s work [MBM14].
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Results of the camera motion stabilization and tracking applied on
the V id I person crossing sequence. Images 6.3a and 6.3b are two
consecutive frames. Images 6.3c shows the absolute difference between
image 6.3a and image 6.3b without applying the camera stabilization
algorithm. 6.3d shows the absolute difference after applying the camera
motion stabilization algorithm. 6.3e shows the estimated optical flow.
6.3e shows the tracking results.

6.8.1 Multi-Objects Tracking Accuracy

For the quantitative evaluation, the standard CLEAR MOT metrics [SBB+06]

has been used to assess the performance of the proposed algorithm [MBM14].

Hence, the Multi-Object Tracking Accuracy (MOTA) takes into account false

positives, identity switches (when the tracker exchange between objects) and

missed targets. It combines them into a single value and does a normalization to

the range from 0% to 100%. Accordingly, a match between a tracker output and

the ground truth is defined as > 50% intersection-over-union of their bounding

boxes. Consequently, the Multiple Object Tracking Precision (MOTP) merely is
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the average distance between ground truth and estimated targets as a measure

of localization accuracy. The closely related MODP equates the overlap over

all frames. The related Multi-Object Detection Accuracy (MODA) only checks

for missed targets and false positives. However, it does not penalize trajectories

switching from one target to another.

6.8.2 Datasets

We evaluated the accuracy and the performance of the proposed algorithm based

on three challenging datasets: Town Center [BR11], PETS 2001 [BFF09], and the

first view of the S2.L1 sequence from the PETS 2009/2010 benchmark [BFF09].

All of the three datasets are publicly available, and they have ground truth. The

images of the Town Center dataset have a resolution of 1920×1080 at 25 fps, they

are captured using a stationary camera. The PETS 2001 and PETS 2009/2010

datasets consist of images with a resolution of 768 × 576 at seven frames per

second captured by a static camera. We compared the proposed algorithm with

some of the state-of-the-art methods [BFF09], [BRL+11], and [ASR12] using

the PETS 2009/2010 benchmark [BFF09] using the ground truth from [Milml].

Figure 6.4 shows qualitative results of the proposed algorithm applied on different

datasets. It can be seen that the proposed algorithm succeeded to detect and

track moving objects. Table 6.1 compares the results of the proposed algorithm

Figure 6.4: Results of the multi-objects tracking based on optical flow. Row(1)
PETS 2001 training. Row(2) PETS 2001 test.
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with some of the state-of-the-art methods. As can be seen, the proposed algorithm

provide competitive results to the state-of-the-art methods. It achieves higher

percentages of The MOTA and MODA.

Table 6.1: Comparison of the proposed method to two state-of-the-art method
on PETES's09 S2.L1 [BFF09]. The results of [BFF09], [BRL+11],
and [ASR12] were extracted from Tabel 2 in [ASR12].

2D performance MOTA MOTP MODA MODP
Berclaz et al. [BFF09] 82% 56% 85% 57%

Breitenstein et al. [BRL+11] 75% 60% 89% 60%
Andriyenko et al. [ASR12] 89.3% 56.4% 90.8% 57.3%
Proposed approach 84% 55% 85% 56%

6.8.3 Objects Tracking with a Mobile Robot

We tested the algorithm on mobile robots using two scenarios. In the first scenario,

we used the GETLab mobile robot (GETbot) which is a typical four-wheeled

robot. In this scenario, the GETbot navigated in a rescue robotic arena of the

GETLab and was mounted with a camera which has a resolution of (320× 240)

at 25 fps. Here motion is represented as a signal of life. Therefore, the GETbot

searched for surviving victims who are trying to get the attention of the robot by

waving their hand (see the first row of Figure 6.5). As can be seen, the algorithm

detect the waving hands successfully. In turn, in the second scenario, we used

the dataset V id I person crossing sequence, which is publicly available with

OpenCV library for a teleoperated robot moving in a dynamic environment in

front of several people crossing the way in the front of the robot. To evaluate the

algorithm using these two scenarios and due to the lack of the complete ground

truth for all moving objects, the objects were marked by creating bounding boxes

around moving objects and have been used as a ground truth. The evaluation of

the algorithm was done by computing the MOTA, MOTP, MODA, and MODP

using the intersection between the ground truth objects and the detected objects

by the algorithm. Table 6.2 shows the results of the algorithm. As can be seen,

the proposed method has high scores for the MOTA and the MODA in both
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Figure 6.5: Results of the multi-objects tracking based on optical flow. Row(1)
GETbot search victims sequence. Row(2) V id Ipersoncrossing se-
quence.

scenarios. However, the MOTP and MODP have low score due to the error of

the camera motion stabilization.

Table 6.2: Accuracy of the object tracking algorithm applied to the victim detec-
tion and the V id Ipersoncrossing scenarios.

2D performance MOTA MOTP MODA MODP
Moving robot 83 % 57 % 87 % 50 %
Search victim 89 % 60 % 90 % 60 %

6.8.4 Real-Time Performance

To test the real-time performance, we used several datasets with different resolu-

tion and objects. We tested the execution time of estimating the optical flow only

by applying the algorithm to the whole image with CPU and GPU [MRM+14].

Furthermore, we calculated the optical flow using the moving regions technique

proposed in this work with a single CPU and GPU. Moreover, we tested the

algorithm using multi-threads in a CPU and GPU. The results are shown in

figure 6.6. The evaluation results show a significant decrease in the processing

time when processing moving objects. Although the performance depends on the
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number and size of the moving objects, as shown in the moving robot sequence,

the overall processing time significantly decreases and is always lower than the

processing time for the whole image. For the Town Center sequence, using the

moving objects techniques with a single CPU, the processing time is about 11

times faster than the processing time for the whole image, while with the GPU it

is three times faster. Using multi-threading processing is 30 times (CPU) and

four times (GPU) faster than the processing time for the whole image using CPU

and GPU, respectively. Furthermore, the proposed algorithm gives the possibility

to process more significant objects on GPU and smaller objects on the CPU,

which gives the best performance.

(a) (b)

(c) (d)

Figure 6.6: The processing time of the dense optical flow [MRM+14] estimation
using different techniques applied to the first 120 frames of: (a) Town-
Center [BR11]. (b) V id Ipersoncrossing. (c) PETS 2001 training.
(d) PETS 2001 test.

We test the processing time for each step in the proposed algorithm. As shown in

table 6.3, the motion estimation and tracking consume the most significant part

of the processing time. However, the processing of moving regions is carried out

using multi-threading processing. Thus the overall processing time is equal to

the processing time of the most significant region in the scene if there are enough
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threads for all objects. However, the camera stabilization step is controlled, and

it is deactivated in the case of static camera datasets.

Table 6.3: The average processing time per frame in (ms) of different modules of
the proposed algorithm using CPU/GPU multi-Threading.

Camera
motion

stabilization

Motion
detection

Motion
estimation &

tracking

Motion
segmentation

Processing
time

TownCenter
(1920 × 1080)

- 11.051 94.424 0.174
95.360

(10.49 fps)

PETS 2001 Test
(768 × 576)

- 2.439 6.575 0.061
6.922

(144.5 fps)

Moving Robot
(320 × 240)

12.149 1.094 4.570 0.012
16.825

(59.4 fps)

PETS 2001 Training
(768 × 576)

- 2.446 5.611 0.151
6.068

(164.8 fps)

6.8.5 Outdoor Scenarios

To test the performance of the proposed algorithm in outdoor scenarios, we

conducted a test for the detection and tracking of construction workers and equip-

ment. Indeed, detection and tracking of workers and equipment by autonomous

vehicles is a crucial prerequisite for any onboard safety system aiming at prevent-

ing vehicle-pedestrian collisions. In this work, we test the proposed algorithm for

detecting and tracking construction workers and equipment based on optical flow

with real-time performance. As a result, all moving objects are detected, and a

tracker for each object is created. The experimental results demonstrate that the

proposed algorithm works appropriately and that there is a significant reduction

in the overall processing time for detecting and tracking multiple moving objects

in a scene. Figure 6.7 show the results of applying the camera stabilization

algorithm on a sequence of images. The camera motion in these sequence was

slowly and therefore, the calculation of the homography matrix was accurate

enough to detect the moving objects. Figure 6.8 shows qualitative results of the

proposed algorithm applied on in different outdoor scenarios contraction sites

in the city of Paderborn in Germany. The author used a hand-held camera to

capture videos with a resolution of (640× 480). It can be seen that the proposed

algorithm detects and tracks all moving workers and equipment.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Results of the camera motion stabilization. (a) frame at time t. (b)
frame at time t+ 1. (c) the absolute difference between frames (a) and
(b) without applying the camera motion stabilization algorithm. (d)
the absolute difference after applying the camera motion stabilization
algorithm. (e) the estimated optical flow. (f) the tracking results.

6.9 Summary

In this chapter, we developed an algorithm using optical flow for doing real-

time multi-object tracking. To optimize the processing time, we maintain the

estimation of dense optical flow only for image regions where (moving) objects

are present and not for the background or static objects. Thus, we used sparse

optical flow at spatial feature locations to detect moving objects and subsequently

used region growing to form objects hypotheses. Furthermore, the objects are

represented by bounding boxes, and the tracking is performed based on dense

optical flow computed within the bounding box. Further processing steps include

camera motion stabilization and motion segmentation steps. Moreover, we

tested the proposed algorithm with different scenarios using various datasets
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and real applications. The experimental results demonstrate the efficiency of

the proposed algorithm. The experiments showed a significant reduction in the

overall processing time for detecting and tracking multiple moving objects in a

dynamic scene. We have shown that the proposed algorithm can be used as a

base for a high-level analysis for a dynamic scene such as searching victims or

navigation in dynamic environments.
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Figure 6.8: Results of the multi-objects tracking based on optical flow applied to
different scenarios of construction sites.



7 Summary and Outlook

This chapter summarizes the contributions and achievements to dynamic scene

analysis using optical flow and indicates the direction for future work.

7.1 Summary

The central topic of this thesis was developing an active vision system that can

detect and track all moving objects in a dynamic scene in real-time. For this

purpose, the optical flow was used as the primary source of information. In

particular, we concentrated on the critical challenges of accurate, robust and fast

optical flow estimation. The first milestone was to improve the estimation of

large displacement optical flow. Hence, we proposed to update the multi-scale

processing scheme through a coarse-to-fine technique to save the small details of

objects which are small and fast and therefore affected by the linearization of the

data term without needs to high processing power. The proposed algorithm uses

points correspondences between feature points at each level, and the estimated

optical flow is refined using these points. Afterward, the optical flow estimated

at each coarse optical flow level is propagated to the finer level.

Illumination and appearance changes in particular are significant problems, since

they contradict the traditional brightness constancy assumption that many meth-

ods used. Therefore, the second milestone of this work was to develop an optical

flow algorithm that is robust against illumination changes and texture-less regions.

Hence, we proposed an robust algorithm based on a texture constraint using

local descriptors. To apply the texture constraint in the optimization of the total

variational optical flow, it was essential to develop an update of the TV-L1 objec-

tive function in order to use a multi-channel descriptor. To represent textures
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of an image, we proposed a novel descriptor called modified local directional

pattern (MLDP), which encodes the direction of gradients in the form of a binary

descriptor. Moreover, we used the histogram of the oriented gradient, which

encodes the direction and magnitude of the gradient. Furthermore, we investigate

the usage of the monocular epipolar geometry constraint for the calculation of

optical flow in the case of texture-less regions.

The third milestone of this work was the development of an algorithm which

uses the estimated optical flow to detect and track moving objects in real-time.

All moving objects have to be separated from the static ones. Their movement

direction and their speed have to be estimated, and a tracker for each object

has to be computed for every object. Therefore, we optimized the proposed

optical flow algorithm for texture constraint using parallel processing techniques

on a CPU and GPU. For segmenting moving objects, we proposed to do camera

motion stabilization to compensate the camera ego-motion. Hence, the motion

detection can be applied as a post-processing step to detect moving regions. The

calculation of the dense optical flow is done to those regions only. Afterward, a

2D motion segmentation based on parallax constraint is applied, and a Kalman

filter is used to track each object.

The proposed algorithms works with a static as well as a moving camera, and the

results show the successful analysis of dynamic scene. The algorithms work robust

to detect, estimate, and track moving objects in indoor and outdoor environments.

Several experiments and applications have been conducted to test and evaluate

the proposed algorithms extensively. The results have shown that the proposed

algorithms in this thesis outperformed the state-of-the-art approaches based on

the standard benchmark datasets. Table 7.1 presents comparisons among different

approaches for multi-object tracking based on various criteria. We used criteria

such as motion of the camera, detection and tracking, real-time performance, and

post knowledge about the environment. It can be seen from table 7.1 that the

proposed algorithm successfully fulfill most of the criteria. However, it does not

have the ability to classify and recognize objects which can be integrated in the

future work.
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Table 7.1: Comparison among dynamic scene analysis approaches

Pedestrian
Classification
[EG11]

Tracking-by-
Detection
et al., [BRL+09]

Traffic Scenes

[WWR+13b]

Video Analysis

[OMB14]

Proposed
Method
[MBM14]

Moving camera
√ √ √ √ √

Moving objects detection & tracking X X
√ √ √

Real-time performance
√

X X X
√

No traning data X X X
√ √

No Perior Knowlege about the scene X X X
√ √

Active vision system
√ √

X X
√

Object classification
√ √ √

X X
Handle robustness X

√ √ √ √

7.2 Applications

Although robot navigation motivates us to assist autonomous driving, the pro-

posed algorithms were successfully used for various other applications to test the

robustness and the reliability. The following list shows topics, tasks, and projects

that used the results of the proposed algorithms to achieve their tasks:

• Semantic motion segmentation [Dau19].

• Gesture-based control system for a robot arm [Lu19].

• Detection and tracking of the stork bird in Paderborn.

• Motion detection tasks in the RoboCup Rescue German Open 2013, 2014,

2015, 2017, 2018 and RoboCup Rescue Championship 2016 competitions.

• Moving object detection for a non-stationary camera [Ngu18] and [Bri18].

• Optical flow estimation using image segmentation and texture constraint

[Rai17].

• Classification of moving objects [Dod16].

• Semantic annotation of object representations [Lan15] and [Rol16].

• Implementation and evaluation of variational optical flow Based on texture

constraints [Vog15].

• Detection and tracking of construction workers and equipment [BMM14].
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• Human action recognition using optical flow and Hidden Markov Model

(HMM) [Moh14].

• Application of optical flow In automation, grasping of moving objects.

[MM12c].

7.3 Outlook

In this thesis, robust algorithms based on local texture descriptors for the estima-

tion of optical flow were proposed. After completion of the work presented here,

many new directions have become visible that need to be investigated further

for reaching an ultimate model of dynamic scene analysis. The dissertation

concludes with indications of such directions. One ad-hoc possibility to achieve

robust optical flow estimation is to use image segment instead of local descriptors;

however, modifications w.r.t optimization algorithm would be necessary. In the

context of multi-objects tracking, extending the applicability of the proposed

algorithm to be used in real rescue robots moving in a 3D environment might

be an interesting topic (see, e.g., [GKN+18] and [MTM18] for an overview).

Moreover, an interesting topic is to develop an multi-object tracking that cope

with varying appearance, limited side view, deformed object shapes, inner-class

variation, unknown motion, occlusion, and other influences on the objects.

Another interesting topic could be the usage of deep neural networks to estimate

the motion and track multi-objects. In this regard, the texture constraint can

be used to construct an objective function to be used in unsupervised manner.

Most existing deep learning based methods for object detection and tracking

assume that the models are trained off-line in advance, which requires the entire

training dataset to be available before the training and application. After training

a model, its parameters do not change. Therefore, updating the models on-line

is a challenging problem [YCREB19, GAS+19, SPLH17]. In turn, traditional

on-line learning methods often optimize predictive models over a stream of data

instances sequentially [KMM12,XZH19]. Most existing on-line learning algorithms

are designed to learn shallow models (e.g., linear or kernel methods) with an

on-line convex optimization, which cannot learn complex nonlinear functions in
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complicated application scenarios. Hence, another interesting topic is to consider

this challenge and to develop new connections between traditional algorithms for

object detection/recognition and tracking with recent advances in deep-learning

based techniques.

A collision avoidance framework for the robots moving through a dynamic en-

vironment can be developed. An RGB camera can be used as the primary

sensing modality. Recently, new approaches using a single RGB camera show

reliable results for pose estimation of human [CSWS17, MSS+17] as well as

objects [ZSI19, WXZ+19]. Robots are required to deal with dynamic scenes

containing moving objects with unexpected behaviors. To achieve this goal,

analyzing and understanding of the dynamic environment surrounding a robot is

essential.
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