
www.VDI-Mechatroniktagung.de

Fachtagung

 Mechatronik 2017
 Dresden, 09.-10.03.2017

 Mechatronische Produkte
(neue Funktionalitäten, Industrie 4.0, Kosten-
effizienz, Zuverlässigkeit, ...)

 Nutzerfreundlichkeit und Akzeptanz
(Assistenzsysteme, Schnittstellen, Interaktion,
Gesetzgebung, ...)

 Ressourceneffizienz
(Energie, Material, …)

 Systemvernetzung und Systemintegration
(Konzepte, Verfahren, ...)

 Automatisierte Mobilität
(Konzepte, Modelle, Sensorik)

 Smarte Aktoren
(Konzepte, Beispiele, ...)

 Systems Engineering und
Entwicklungsmanagement
(Prozesse, Verfahren, Software, ...)

 Serienfertigung mechatronischer Produkte
(Fallbeispiele, Komponenten, Architektur,
Qualitätsmanagement, ...)

 Innovative Konzepte und digitale
Geschäftsmodelle
(Modelle, Regelung, Optimierung, Eco-Systeme)

Veranstaltungsort:
Heinz Nixdorf MuseumsForum
Fürstenallee 7, 33102 Paderborn

Jan Braun/HNF

Fachtagung

 Mechatronik 2019
 Paderborn, 27.-28.03.2019

Ein Beitrag zur Simulation vernetzter virtueller ECUs
A contribution to the simulation of networked virtual ECUs
Peter Baumann, Robert Bosch GmbH, 71272 Renningen, Deutschland, peter.baumann5@de.bosch.com

Dr. Roland Samlaus, Robert Bosch GmbH, 70442 Stuttgart, Deutschland, roland.samlaus@de.bosch.com

Prof. Lars Mikelsons, Universität Augsburg, 86159 Augsburg, Deutschland, lars.mikelsons@informatik.uni-augsburg.de

Dr. Thomas Kuhn, Fraunhofer IESE, 67663 Kaiserslautern, thomas.kuhn@iese.fraunhofer.de

Jasmin Jahic, Fraunhofer IESE, 67663 Kaiserslautern, jasmin.jahic@iese.fraunhofer.de

Prof. Dieter Schramm, Universität Duisburg-Essen, 47057 Duisburg, schramm@imech.de

Kurzfassung
Mobilität ist auf dem Weg sowohl autonomer als auch vernetzter zu werden. Eine Schlüsseltechnologie dafür ist die
kontinuierliche Entwicklung unter Verwendung von Software-in-the-Loop (SiL)-Simulationen bis hin zur virtuellen Va-
lidierung oder Freigabe von Softwarefunktionen in einem rein virtuellen Setup. Aufgrund der Komplexität autonomer
Fahrfunktionen befindet sich die zu untersuchende Funktion häufig nicht mehr auf einem Steuergerät (ECU), sondern
ist über mehrere Steuergeräte verteilt. Daher wird eine Umgebung benötigt, mit der mehrere virtuelle ECUs (vECUs)
zusammen mit entsprechenden physikalischen Modellen (Fahrdynamik, Antriebsstrang, usw.) simuliert werden kön-
nen. In diesem Beitrag wird eine solche domänenübergreifende Fahrzeugsimulation realisiert. Dies beinhaltet eine Co-
Simulationsumgebung, eine Werkzeugkette für die Generierung von vECUs als Functional Mock-up Units sowie eine
modular aufgebaute Implementierung eines virtuellen Busses. Weiterhin ist eine Möglichkeit zur Handhabung er Rest-
bussimulation realisiert. Die Simulationsumgebung wird in einer Fallstudie getestet bei der ein nahtloser Übergang von
einer Model-in-the-loop zu einer Software-in-the-Loop (SiL) Simulation durchgeführt wird. Dabei ist eine Fahrfunktion
auf zwei vECUs verteilt, die über einen virtuellen Bus miteinander kommunizieren.

Abstract
Mobility is on the way to be autonomous and connected. One key enabler for new technologies of this type is continuous
development using software-in-the-loop (SiL) simulations up to virtual validation or release of software functions in a
pure virtual setup. Due to the complexity of autonomous driving functions, the unit-under-test is often not encapsulated in
one electronic contol unit (ECU), but distributed over multiple ECUs. Thus a simulation framework capable of simulating
numerous connected virtual ECUs (vECUs) together with the corresponding physical models (vehicle dynamics, power-
train, etc.) is required. In this contribution such a cross domain vehicle simulation framework is realized consisting of a
co-simulation environment, a toolchain for the generation of vECUs as Functional Mock-up Units (FMU) and a modular
virtual bus implementation. A propsal to handle the remain bus simulation is also impelemented. This framework is tested
in a case study to show a smooth transition from model-in-the-loop (MiL) to software in-the-loop (SiL) simulation of a
function distributed over two vECUs communicating via a virtual controller area network (CAN) bus.

1 Einleitung
Je mehr automatisierte Fahrfunktionen ein Fahrzeug auf-
weist, desto stärker sind die einzelnen Fahrzeugdomä-
nen (Fahrdynamik, Lenkung, Bremssystem, ...) aufgrund
des Wegfalls des Fahrers gekoppelt. Folglich können die
entsprechenden Teilsysteme und zugehörigen Funktionen
nicht mehr unabhängig voneinander entwickelt werden.
Stattdessen müssen Entwickler nicht nur ihre „Heimdomä-
ne“ berücksichtigen, sondern auch alle anderen relevanten
Domänen. Führte eine späte Integration der Teilsysteme
früher nur zu suboptimalen Ergebnissen, ist die frühzeiti-
ge Integration für die Entwicklung zukünftiger Funktionen
unabdingbar, da Testfahrten mit beispielsweise autonomen
Fahrfunktionen aufgrund des Risikos und gesetzlicher Be-
stimmungen sehr schwierig durchzuführen sind. Dies lässt
virtuelle Prototypen weiter an Wichtigkeit gewinnen und

unterstreicht die Rolle der domänenübergreifenden Fahr-
zeugsimulation als essentielles Entwicklungswerkzeug.
In der domänenübergreifenden Fahrzeugsimulation wer-
den die Modelle der beteiligten Fahrzeugdomänen zu ei-
nem domänenübergreifenden Modell integriert. In den ein-
zelnen Fahrzeugdomänen werden meist spezielle Simula-
tionswerkzeuge für den Aufbau der entsprechenden Mo-
delle verwendet, welche dann mit Hilfe der Co-Simulation
gekoppelt werden [4]. Dabei müssen neben den beteilig-
ten Modellen der Physik auch die zugehörigen Software-
Funktionen integriert werden. In frühen Entwicklungspha-
sen werden hier Modelle der Software (model-in-the-loop
(MiL)) verwendet, bei denen viele Effekte wie zum Bei-
spiel Quantisierung oder Kommunikationsverzögerungen
vernachlässigt werden. Sollen diese Effekte in späteren
Entwicklungsphasen berücksichtigt werden, so sind virtu-

13

elle Steuergeräte (vECUs) und virtuelle Busse notwendig
(software-in-the-loop (SiL)).
Automatisierte und vernetzte Fahrfunktionen sind häu-
fig auf mehrere ECUs verteilt. Für MiL-Simulationen,
in denen Quantisierung und Kommunikationsverzögerun-
gen typischerweise vernachlässigt werden, macht dies kei-
nen großen Unterschied. Bei SiL-Simulationen mit de-
nen verteilte Funktionen validiert werden sollen ist dies
nicht der Fall [7]. Hier müssen die vECUs über virtuel-
le Busse mit realitätsnahem Timing-Verhalten miteinander
kommunizieren. Eine entsprechende Simulationsarchitek-
tur ist exemplarisch in Abbildung 1 dargestellt. Hier sind
die Fahrzeugdomänen Fahrdynamik, Bremssystem, Len-
kung und Antriebsstrang mit der Umwelt und Sensoren
in einer Co-Simulationsumgebung miteinander gekoppelt.
Während die Softwarefunktionen für Lenkung und An-
triebsstrang als MiL-Modelle in die Co-Simulation inte-
griert sind, sind der Fahrzeugcomputer für automatisierte
Fahrfunktionen sowie zwei ECUs des Bremssystems vir-
tualisiert und kommunizieren über einen virtuellen Con-
troller Area Network (CAN) Bus miteinander. Verbin-
dungen zwischen der Co-Simulationsumgebung und den
vECUs existieren darüber hinaus für Signale, die nicht über
den Bus ausgetauscht werden.
In diesem Beitrag wird eine Co-Simulationsumgebung vor-
gestellt, welche die dargestellte Architektur realisiert. Die-
se beinhaltet neben physikalischen Modellen zwei vECUs
des Bremssystems sowie eine Restbussimulation.

Abbildung 1 Exemplarisches Framework für die virtuelle Vali-
dierung mit zwei vECUs und einer Co-Simulationsumgebung

1.1 Themenbezogene Arbeiten
Für die effiziente Nutzung einer SiL-Umgebung sollte die-
se in die den Entwicklungsprozess begleitende Werkzeug-
kette integriert werden. In [9] wird eine solche Integra-
tion (in den Build-Prozess der Motorsteuerungssoftware)
der SiL-Integrationsplattform Silver (QTronic) gezeigt. In
[5] wird ein Beispiel für die Integration auf Basis von
Continuous Integration mit Hilfe der Standards Functional
Mock-up Interface (FMI) [1] und AUTOSAR vorgestellt.
Ein Framework für die Emulation der Kommunikation zwi-
schen verschiedenen Fahrzeugen wird in [8] präsentiert.
Dieses Framework kann um die Kommunikation innerhalb
eines Fahrzeugs erweitert werden, bietet aber nicht die not-
wendige Methodik zur Orchestrierung der Co-Simulation
der beteiligten physikalischen Domänen sowie die Unter-
stützung entsprechender Standards und Bereitstellung not-

wendiger Schnittstellen.

2 Virtuelle ECUs und Busse
Mit Hilfe von vECUs wird die komplette ECU-Software
in Simulationen integriert. Dafür müssen hardwareabhän-
gige Softwareteile virtualisiert werden, indem entweder
Hardwaresimulatoren verwendet werden, um den Original-
Code unverändert zu testen, oder hardwarespezifische An-
teile ersetzt werden, um eine Kompilierung auf x86-
Systemen zu ermöglichen. Mit Hardwaresimulationen sind
äußerst akkurate Simulationen möglich [3], wobei die Mo-
dellbildung aufwändig sein kann und die Modelle aufgrund
der hohen Detaillierung üblicherweise sehr langsam lau-
fen. Für eine Simulation auf Fahrzeugebene sind die resul-
tierenden Simulationszeiten oft nicht praktikabel. Das Er-
setzen des hardwarespezifischen Codes ermöglicht im All-
gemeinen eine schnellere Simulation, ist aber weniger ak-
kurat und bildet nicht exakt das Verhalten der Originalsoft-
ware wieder.

2.1 vECU Kategorien
Die AUTOSAR Softwarearchitektur ermöglicht die Defini-
tion von Softwareebenen für das Testen von ECU Softwa-
re. Je nach Testziel der Simulation kann dadurch der Um-
fang der Software angepasst werden. Wenn beispielsweise
lediglich Funktionen der Applikationssoftware (ASW) be-
trachtet werden sollen, ohne Limitierungen der Hardware
zu testen, genügt es, lediglich diesen Teil der Software oh-
ne Basissoftware (BSW) etc. zu integrieren. Für die ver-
schiedenen Testszenarien lassen sich drei Kategorien defi-
nieren:

1. vECUs die lediglich ASW und Laufzeitumgebung
(RTE) und optional ein Betriebssystem enthalten, um
schnell Tests der ASW durchführen zu können.

2. vECUs die ASW, RTE, BSW, Betriebssystem und
einen virtualisierten MCAL (Microcontroller Ab-
straction Layer) für x86 Systeme enthalten, um rea-
listischere Test bezüglich Ablaufplanung, einfache
Timinganalysen auf Task-Ebene sowie Busverhalten
ausführen zu können.

3. ECU-code (HEX) emulieren. Hierbei wird der Ori-
ginalcode auf Hardwaresimulationsmodellen ausge-
führt. Dies ermöglicht detaillierte Analysen, inklusive
Timing-Verhalten. Die Emulation ist allerdings übli-
cherweise viel langsamer als Echtzeit und der Auf-
wand zur Erstellung der benötigten Hardwaremodelle
hoch.

2.2 FMU Generator für vECUs
Ein in die Software integrierter FMU Generator ermöglicht
die vECUs in Co-Simulationen einzubinden. Für den Zu-
griff auf interne Variablen wird eine Schnittstelle entwi-
ckelt, die dem ECU-Code hinzugefügt werden muss. Da
FMI die Simulation von Bussystemen nicht optimal abbil-
det, werden die Treiber der vECUs angepasst. Abbildung. 2
zeigt den Ablauf der FMU-Generierung:

14

Abbildung 2 Der vECU FMU Generator

2.3 Virtuelle Busse
Virtuelle Busse bilden relevante Eigenschaften von Fahr-
zeugbussen in Simulationsmodelle ab. Sie ermöglichen ei-
ne realitätsnahe Kommunikation zwischen vECUs. Der
vorgestellte virtuelle Bus realisiert eine modulare Archi-
tektur, bei der jedes Modul ein Teil des Kommunikations-
stacks abdeckt. Dadurch können Module schnell ersetzt
werden, so dass Simulationen mit verschiedenen Detail-
lierungsgraden des virtuellen Busses auf einfache Art und
Weise realisiert werden können. Bei der Kopplung der Mo-
dule werden analog zur Co-Simulation die internen Uhren
der einzelnen Module synchronisiert [6]. Abbildung 3 il-
lustriert die Simulationsarchitektur des Busses. Dabei wird
die Verwendung dreier unterschiedlicher Abstraktionsebe-
nen des Busses gezeigt.
Die gezeigte Netzwerkschnittstelle besteht aus der Warte-
schlange und dem Medienzugriffsprotokoll (MAC). Bei-
des existiert mindestens einmal pro gekoppelter vECU.
Die Warteschlange simuliert das Verhalten der vECU be-
züglich wartender, noch nicht gesendeter Nachrichten und
entscheidet beispielsweise ob sich Nachrichten überschrei-
ben oder nacheinander über den Bus gesendet werden. Die
MACs verbinden sich alle mit dem gleichen Kommunika-
tionsmedium (CAN, Ethernet, Flexray, ...).

Abbildung 3 Architektur der Bussimulation

Werden nun Komponenten mit unterschiedlichen Abstrak-
tionsebenen an den gleichen Bus angeschlossen, muss si-
chergestellt werden, dass die Schnittstellen und die Simula-

tionssemantik dieser Komponenten in Bezug auf die Kom-
munikation gleich sind. Folgende Arten von Komponenten
können an einen Bus angeschlossen werden:

1. Funktionale Ebene (High-Level Application), An
den Bus angeschlossene Komponenten, die intern
keinerlei Kommunkationseffekte berücksichten, z.B.
FMUs, werden als High-Level Application bezeich-
net. Sie übertragen nur funktionale Daten und kei-
ne Protokollrahmen mit Headerinformationen. Die
Quantisierung der funktionalen Daten muss daher in
dem zusätzlichen Modul En-/Decoder erfolgen. Die-
se Abstraktionsebene wird beispielsweise verwendet,
wenn physikalische Signale aus der Co-Simulation
auf dem Bus verfügbar sein sollen. Die Kopp-
lungsarchitektur implementiert die Funktionen trans-
mitPDU/receivePDU um die Kopplung von funktio-
nalen Modellen an den simulierten Bus zu ermögli-
chen. Die Funktion transmitPDU(payload:byte[], si-
ze:int, id:String) überträgt die Nutzdaten eines funk-
tionalen Modells und fügt protokollspezifische Hea-
derdaten hinzu. Der Parameter id beschreibt zum Bei-
spiel die CAN-Bus ID oder die MAC Adresse in
Ethernetnetzwerken. Die Funktion receivePDU ent-
fernt Headerdaten und extrahiert die Nutzdaten für
den Empfänger.

2. Protokollebene (Intermediate-Level Application)
Komponenten, die an den Bus angeschlossen sind und
Protokollinformationen mit dem simulierten Bus aus-
tauschen, werden Intermediate-Level Application ge-
nannt. Diese enthalten bereits spezifische Headerda-
ten für die simulierte Netzwerktechnologie. Anwen-
dungen auf Protokollebene simulieren jedoch nicht
die Ebene der Basissoftware (BWS) und die Treibere-
bene - sie kommunizieren daher mit der Warteschlan-
ge des simulierten Busses und nutzen bestehende Si-
mulationskomponenten um das Warteschlangenver-
halten zu simulieren. Die vorgsetellte Bussimulation
unterstützt die Protokollebene durch die add(frame:
byte[]) Funktion, die einen netzwerkspezifischen Rah-
men in die Ausgangswarteschlange einer ECU plat-
ziert.

3. Treiberebene (Low-Level Application) Komponen-
ten, die an den Bus angeschlossen sind und auch die
Warteschlange selbst implementieren, werden Low-
Level Application genannt. Sie benötigen daher eine
hardwarenahe Schnittstelle zur Kommunikation mit
dem virtuellen Bus. Die vorgestellte Bussimulation
unterstützt dies zum Beispiel mit der getNextMessa-
ge(id:String) Callbackfunktion, die aufgerufen wird,
wenn die Medienzugriffskomponente den nächsten zu
übertragenden Rahmen benötigt. Der Parameter gibt
an ob ein bestimmter Protokollrahmen angefragt wird,
dies ist zum Beispiel in zeitsynchronisierten Netzen
mit reservierten Zeitslots der Fall, oder ob die Aus-
wahl des nächsten Rahmens der Treiberebene obliegt.

Für die Simulation des CAN-Bus, welcher in der nachfol-
genden Fallstudie verwendet wird, wird eine ereignisba-

15

sierte Simulation als Ausführmodell (Model of Computa-
tion and Communication (MOCC)) genutzt. Hierbei wer-
den Zeiträume in denen keine Ereignisse auftreten über-
sprungen. Ereignisse, die in unterschiedlichen Komponen-
ten auftreten, werden global sortiert und in der richti-
gen Reihenfolge ausgeführt. Wie oben beschrieben über-
nimmt der virtuelle Bus im Falle von Intermediate- und
High-Level Applications selbst die Simulation der Warte-
schlange, die CAN-Nachrichten absteigend anhand ihrer
ID sortiert. Hierbei repräsentieren niedrigere Nachrichten-
IDs eine höhere Priorität. Werden mehrere Nachrichten mit
der gleichen ID in die gleiche Warteschlange eingegeben
kann konfiguriert werden, ob die Nachrichten nacheinan-
der einsortiert werden, oder ob sich diese überschreiben.
Die Warteschlange entkoppelt die zeitkritische Kommuni-
kation zwischen dem Medienzugriff und der Anwendung.
Werden beispielsweise FMUs genutzt, um Applikationen
zu realisieren, können diese aufgrund dieser Entkopplung
längere Schrittweiten ausführen. Dies führt zu einer ver-
besserten Performanz der Simulation, da die Ausführung
der Komponenten seltener synchronisiert werden muss.
Das MAC ist für jedes Kommunikationsmedium unter-
schiedlich. Im der nachfolgenden Fallstudie wird ein CAN-
Bus und dementsprechend ein CAN-MAC verwendet. Die-
se Komponente simuliert das Verhalten des CAN-Bus Con-
trollers, der den Medienzugriff und die Synchronisation der
Busteilnehmer auf Bit-Ebene realisiert. Er überwacht das
Medium und prüft die Warteschlange sobald das Medium
frei wird auf zu übertragende Nachrichten. Danach betei-
ligt sich jeder CAN-Controller, der eine Nachrichten über-
tragen möchte, aktiv an der Arbitrierungssequenz. Das Me-
dium simuliert aus Geschwindigkeitsgründen nur die ers-
ten beiden Bits einer Übertragung. Diese sind notwendig
für die Synchronisation der CAN-Controller. Die folgende
Arbitrierung wird nicht bitweise durchgeführt, sondern für
die wartenden Nachrichten anhand ihrer IDs zentral durch
die Mediumskomponente berechnet. Diese informiert die
angeschlossenen CAN-Controller über die Nachricht, wel-
che die Arbitrierung gewonnen hat und übertragen wird,
sowie über den erfolgreichen Abschluss der Übertragung.

3 Simulation vernetzter vECUs
In dieser Fallstudie wird der Übergang einer MiL- zu
einer SiL-Simulation mit mehreren vECUs gezeigt, wo-
bei die Funktionalität in beiden Varianten exakt überein-
stimmt. Auf diese Weise können unter Wiederverwendung
der MiL-Simulation busbezogene Effekte wie Kommuni-
kationverzögerungen und Quantisierungsfehler untersucht
werden, welches ein notwendiger Schritt für die virtuelle
Freigabe von domänenübergreifenden Funktionen ist.

3.1 Domänenübergreifendes MiL Fahr-
zeugmodell

Die Integration von vECUs und virtuellem CAN-Bus in ei-
ne MiL-Simulation wird anhand eines domänenübergrei-
fenden Co-Simulationsmodells eines elektrischen Fahr-
zeugs gezeigt, das sich in einem städtischen Verkehrss-

zenario bewegt [2]. Diese Simulationsumgebung ermög-
licht Untersuchungen von Rekuperationsstrategien unter
dem Einfluss von Umgebungsparametern wie beispielswei-
se Verkehrsdichte oder Ampelschaltungen. Die Architek-
tur der MiL-Simulation ist in Abbildung 4 mit den blau
umrahmten Kästen dargestellt. Da die unterschiedlichen
Komponenten des Fahrzeugs in vier verschiedenen, jeweils
domänenspezifischen Simulationswerkzeugen, modelliert
sind, werden diese zu einer Co-Simulation miteinander
gekoppelt. Dazu wird die Middleware Model.CONNECT
von AVL verwendet, die sich zur Simulation mit allen
Teilmodellen verbindet und den Signalaustausch zwischen
diesen koordiniert. Für die Simulation der Fahrdynamik
und des Fahrers wird das Simulationswerkzeug CarMaker
(CM) von IPG verwendet. Somit kann das Fahrzeug ei-
ner vorgegebenen Route durch ein städtischen Verkehrs-
szenario folgen und dabei auf andere Verkehrsteilnehmer
zu achten. Deren Verhalten wird mithilfe des mikrosko-
pischen Verkehrssimulationspakets „Simulation of Urban
Mobility“ (SUMO) vom DLR basierend auf gemessenen
Verkehrsflüssen dargestellt. Der Antriebsstrang und der
Elektromotor des Fahrzeugs sind als detailliertes, physi-
kalisches Modell in GT-SUITE von Gamma Technologies
dargestellt. Sowohl für die Modellierung der Batterie als
auch für systemübergreifende Regelungsfunktionen, wie
beispielsweise des Batteriemanagements, wird Simulink
(SL) von MathWorks verwendet.

3.2 Übergang von MiL zu SiL

Der Übergang von MiL zu SiL wird anhand zweier stark
gekoppelter Fahrzeugfunktionen, der Rekuperationskon-
trolle und der Funktion für die Ansteuerung der Reibbrem-
sen durchgeführt. Anderen Regelfunktionen, wie beispiels-
weise die Antriebsstrangregelung, bleiben Teil des entspre-
chenden Simulink-Modells, da es zwischen ihnen und den
beiden ausgewählten Funktionen keine direkten Abhängig-
keiten gibt. Im Allgemeinen obliegt es dem Ingenieur zu
entscheiden welche ECUs virtualisiert werden müssen und
für welche MiL-Modelle ausreichend sind. Es handelt sich
dabei um ein Kompromiss aus Genauigkeit und Komplexi-
tät der Co-Simulation.
Für jede der beiden ausgewählten Funktionen wird eine
vECU der Kategorie 2, wie in Kapitel 2 beschrieben, als
FMU generiert. Bei der BSW, der RTE und dem Betriebs-
system handelt es sich dabei um Seriencode echter ECUs.
Die ASW beinhaltet genau dieselbe Funktonalität wie die
des entsprechenden Mil-Modells, welche vereinfacht ist
und daher nicht Seriencode entspricht. Trotzdem kann der
Übergang von MiL zu SiL damit gezeigt werden, da die
Komplexität der ASW keinen Einfluss auf die vorgestellte
Werkzeugkette hat. Das Einbinden einer Seriencode ASW
ist Teil aktueller Arbeiten.
Die beiden vECUs sind über den in Abschnitt 2.3 vor-
gestellten virtuellen CAN-Bus verbunden, wodurch ein
Datenaustausch unter Berücksichtigung busbezogener Ef-
fekte ermöglicht wird. Zusätzlich zu den vECUs ist das
Restbussimulations- und Analysewerkzeug CANoe von
Vector an den virtuellen CAN-Bus unter Verwendung des

16

Abbildung 4 Architektur der vorgestellten Simulationsumgebung. Komponenten der MiL-Simulation sind blau umrahmt. Durch den
Übergang zur SiL-Simulation kommen die Komponenten hinzu, welche an den virtuellen Bus angeschlossen sind.

CANoe „Fast Data eXchange“ Protokolls angeschlossen.
CAN Nachrichten können dadurch in CANoe erstellt und
über den virtuellen CAN-Bus an die vECUs gesendet wer-
den. Aufgrund der vereinfachten ASW wird zur Zeit ledig-
lich ein Parameter einer vECU aus CANoe vorgegeben. So-
bald vECUs mit Serien-ASW verwendet werden, wird die
Restbussimulation mittels CANoe allerdings unerlässlich
sein, da sich die Anzahl an ausgetauschten Signalen erhö-
hen wird und Abhängigkeiten zu nicht modellierten ECU-
Funktionen entstehen werden. Die endgültige Architektur
der domänenübergreifenden Co-Simulationsumgebung zu-
sammen mit vECUs, virtuellem Bus und Restbussimulati-
on ist in Abbildung 4 gezeigt.

3.3 Diskussion der Simulationsergebnisse

3.3.1 Fahraufgabe

Bei der untersuchten Fahraufgabe handelt es sich um einen
Linksabbiegevorgang an einer Ampelkreuzung unter Be-
rücksichtigung des Gegenverkehrs. Das elektrische Fahr-
zeug nähert sich der Ampel mit einer Geschwindigkeit von
60 km/h, bremst aufgrund eines roten Ampelsignals in
den Stillstand und wartet in einer Schlange von anderen
Verkehrsteilnehmern auf ein grünes Ampelsignal. Wäh-
rend des Bremsvorgangs berechnet die Rekuperationskon-
trolle, dass eine reine Rekuperation nicht ausreichend ist,
um das Fahrzeug rechtzeitig in den Stillstand zu bringen
und beauftragt daher einen Eingriff der Reibbremsen mit
einem berechneten Bremsmoment. Dieses Bremsmoment
wird von der zweiten untersuchten Funktion auf die vier
Reibbremsen verteilt. Sobald das grüne Ampelsignal er-
scheint, biegt das Fahrzeug unter Berücksichtigung des Ge-
genverkehrs links ab.

3.3.2 Vergleich MiL und SiL

Damit die Unterschiede zwischen der MiL und der SiL-
Simulation sichtbar werden, wurde die Fahraufgabe mit
beiden Modellen absolviert. In Abbildung 5 sind zwei Si-
gnalverläufe der beiden Simulationen zum Zeitpunkt des
Bremsens vor der Ampelkreuzung gegeneinander aufge-
tragen. Im oberen Teil ist die Fahrzeuggeschwindigkeit
v dargestellt. Da die Fahraufgabe in beiden Fällen exakt
gleich ist und die Fahrzeuggeschwindigkeit vom Fahrdy-
namikmodell und nicht von den vECUs berechnet wird,

sind in der Abbildung keine Unterschiede zwischen MiL-
und SiL-Simulation zu erkennen. Bei der Betrachtung des
Verlaufs der erforderlichen Bremskraft des vorderen rech-
ten Rads trqFL, die direkt von einer der beiden gekoppel-
ten vECUs berechnet wird, werden dagegen kleine Abwei-
chungen sichtbar. Diese sind auf busbezogene Effekte wie
Kommunikationsverzögerungen und Quantisierungsfehler
zurückzuführen, da die Funktionalität der vECUs in der
SiL-Simulation exakt mit denen der ursprünglichen Funk-
tionen in der MiL-Simulation übereinstimmt und der Ein-
satz eines virtuellen CAN-Bus zur Kopplung der vECUs in
der SiL-Simulation der einzige Unterschied zwischen den
Modellen ist.

Abbildung 5 Vergleich von Simulationsergebnissen in der
MiL- und SiL-Simulation

Kommunikationsverzögerungen Es muss zwischen
zwei Arten von Verzögerungen unterschieden werden.
Zum einen treten bei einer Co-Simulation ungewollte,
künstliche Verzögerungen abhängig der Architektur und
der Ausführungsreihenfolge der Teilmodelle auf und zum
anderen werden in der SiL-Simulation reale Kommunika-
tionsverzögerungen eines CAN-Bus simuliert.
In der MiL-Simulation der vorgestellten Fallstudie sind
die beiden untersuchten Funktionen in zwei verschiedenen
Simulink-Modellen implementiert, die parallel ausgeführt
werden. Dabei ergibt beim Datenaustausch zwischen

17

den Funktionen eine Verzögerung von einem Makrozeit-
schritt h.
In der SiL-Simulation sind die untersuchten Funktionen
in vECUs integriert, die ihr eigenes Zeitmanagement
besitzen. Das Auslesen des Busses, Durchführen von Be-
rechnungen und Schreiben von CAN-Nachrichten findet
periodisch alle h Sekunden statt. Dies ist die kleinstmögli-
che Zeitverzögerung, die bei der Kommunikation zwischen
den vECUs auftritt, da diese parallel ausgeführt und über
Model.CONNECT miteinander synchronisiert werden.
Zusätzlich muss die Kommunikationsverzögerung des
CAN-Busses berücksichtigt werden. In einem CAN-Bus
hängt die Kommunikationsverzögerung von der Bitrate des
Busses sowie der Buslast ab, die wiederum mit der Anzahl
der über den Bus übertragenen Nachrichten zunimmt [10].
In der vorgestellten SiL-Simulation werden nur zwei
Nachrichten über den Bus übertragen (eine zwischen den
vECUs und eine für die Restbussimulation via CANoe).
Die unter diesen Voraussetzungen berechnete maximale
Kommunikationsverzögerung des Busses ist deutlich
geringer als die Ausführungsschrittweite der vECUs,
wodurch der Bus hier im Vergleich zur MiL-Simulation
keine zusätzliche Verzögerung in das System einbringen
sollte. Da auch bei der Synchronisation der Simulationszeit
des Busses und der vECUs über Model.CONNECT nicht
garantiert werden kann, dass alle CAN-Nachrichten die
vECUs während eines Zeitschrittes erreichen, können in
der SiL-Simulation, z.B. durch hohe Systemauslastung,
weitere Verzögerungen entstehen. Dies könnte verhindert
werden, wenn ein neuer Simulationsschritt der vECUs erst
beginnen darf, nachdem der Bus alle CAN-Nachrichten
für diesen Simulationsschritt versendet hat. Dies ist Teil
aktueller Arbeiten.

Quantisierungsfehler In jeder CAN-Nachricht können
bis zu 64 Bit an Daten übertragen werden, welches ge-
nau einer Gleitkommazahl mit doppelter Genauigkeit ent-
spricht. Um die Buslast eines CAN-Netzwerks gering zu
halten, werden daher Signale in der Regel so quantisiert,
dass sie möglichst wenig Daten verbrauchen und somit
mehrere Signale in derselben CAN-Nachricht übertragen
werden können. Für die Bremsmomentanforderung, die in
der vorgestellten SiL-Simulation über den virtuellen CAN-
Bus übertragen wird, werden 16 Bit Daten einer CAN-
Nachricht verwendet. Dies ermöglicht unter Berücksichti-
gung des zulässigen Wertebereichs eine Genauigkeit des
Signals von ca. 0,2 Nm. Dadurch wird verglichen mit der
MiL-Simulation, bei der die Bremsmomentanforderug als
deutlich genauere Gleitkommazahl zwischen den Funk-
tionen ausgetauscht wird, ein kontinuierlicher Quantisie-
rungsfehler induziert, der zu den angesprochenen Abwei-
chungen in Abbildung 5 führt.

4 Zusammenfassung und Ausblick
In diesem Beitrag wird eine Simulationsumgebung vorge-
stellt, die einen nahtlosen Übergang von der MiL- zur SiL-
Simulation einschließlich einer Bussimulation sowie einer
Restbussimulation ermöglicht. Die Integration der vECUs

erfolgt dabei über den offenen Standard FMI. Der Ansatz
wurde mit vECUs mit Serienbasissoftware, aber verein-
fachter Anwendungssoftware validiert.
In einem nächsten Schritt wird dieser Ansatz in einem in-
dustriellen Projekt getestet. Da dabei Serienapplikatons-
software verwendet wird, wird sich die Buslast aufgrund
der zusätzlichen Kopplungssignale erhöhen, wodurch mit
größeren Unterschieden in den Simulationsergebnissen
zwischen MiL und SiL zu rechnen ist.
Des Weiteren ergibt sich die Fragestellung wie sich die Co-
Simulationsverzögerungen zwischen den Teilsystemen und
die Kommunikationsverzögerungen im virtuellen Bus har-
monisieren lassen. Es ist dabei zu beachten, das erstere un-
gewollte Effekte sind, die sich abhängig von Hyperpara-
metern wie die Kopplungsschrittweite und Ausführungs-
reihenfolge der Teilsysteme beeinflussen lassen. Letztere
hingegen bewusst modelliert sind, da sie reale Effekte ab-
bilden, die für die virtuelle Freigabe von Fahrfunktionen
berücksichtigt werden müssen.

5 Literatur
[1] Torsten Blochwitz et al. Functional mockup interface

2.0: The standard for tool independent exchange of
simulation models. In Proceedings of the 9th Inter-
national MODELICA Conference; Munich; Germa-
ny, 2012.

[2] Marcus Boumans et al. Consistent application of
systems engineering and simulation for cross-domain
function integration. 19. Stuttgarter Symposium, Ro-
bert Bosch GmbH, 2019.

[3] Ròbert Lajos Bücs et al. Virtual hardware-in-the-loop
co-simulation for multi-domain automotive systems
via the functional mock-up interface. In Languages,
Design Methods, and Tools for Electronic System De-
sign. Springer, 2016.

[4] Cláudio Gomes et al. Co-simulation: A survey. ACM
Computing Surveys (CSUR), 2018.

[5] Henrik Kaijser et al. Towards simulation-based veri-
fication for continuous integration and delivery.

[6] Thomas Kuhr et al. Feral - framework for simulator
coupling on requirements and architecture level. In
11th IEEE/ACMInternational Conference on Formal
Methods and Models for Codesign, 2013.

[7] Lars Mikelsons and Roland Samlaus. Towards virtu-
al validation of ecu software using fmi. In Procee-
dings of the 12th International Modelica Conference,
Prague, Czech Republic, 2017.

[8] Manuel Schiller and Alois Knoll. Emulating vehi-
cular ad hoc networks for evaluation and testing of
automotive embedded systems. In SimuTools, 2015.

[9] Dirk Von Wissel et al. Full virtualization of renault’s
engine management software and application to sys-
tem development. arXiv preprint, 2018.

[10] Werner Zimmermann and Ralf Schmidgall. Bussys-
teme in der Fahrzeugtechnik. Springer, 2006.

18

