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Kurzfassung

Mobilitit ist auf dem Weg sowohl autonomer als auch vernetzter zu werden. Eine Schliisseltechnologie dafiir ist die
kontinuierliche Entwicklung unter Verwendung von Software-in-the-Loop (SiL)-Simulationen bis hin zur virtuellen Va-
lidierung oder Freigabe von Softwarefunktionen in einem rein virtuellen Setup. Aufgrund der Komplexitit autonomer
Fahrfunktionen befindet sich die zu untersuchende Funktion héufig nicht mehr auf einem Steuergerit (ECU), sondern
ist iiber mehrere Steuergerite verteilt. Daher wird eine Umgebung bendotigt, mit der mehrere virtuelle ECUs (VECUs)
zusammen mit entsprechenden physikalischen Modellen (Fahrdynamik, Antriebsstrang, usw.) simuliert werden kon-
nen. In diesem Beitrag wird eine solche domineniibergreifende Fahrzeugsimulation realisiert. Dies beinhaltet eine Co-
Simulationsumgebung, eine Werkzeugkette fiir die Generierung von VECUs als Functional Mock-up Units sowie eine
modular aufgebaute Implementierung eines virtuellen Busses. Weiterhin ist eine Moglichkeit zur Handhabung er Rest-
bussimulation realisiert. Die Simulationsumgebung wird in einer Fallstudie getestet bei der ein nahtloser Ubergang von
einer Model-in-the-loop zu einer Software-in-the-Loop (SiL) Simulation durchgefiihrt wird. Dabei ist eine Fahrfunktion
auf zwei VECUSs verteilt, die tiber einen virtuellen Bus miteinander kommunizieren.

Abstract

Mobility is on the way to be autonomous and connected. One key enabler for new technologies of this type is continuous
development using software-in-the-loop (SiL) simulations up to virtual validation or release of software functions in a
pure virtual setup. Due to the complexity of autonomous driving functions, the unit-under-test is often not encapsulated in
one electronic contol unit (ECU), but distributed over multiple ECUs. Thus a simulation framework capable of simulating
numerous connected virtual ECUs (VECUs) together with the corresponding physical models (vehicle dynamics, power-
train, etc.) is required. In this contribution such a cross domain vehicle simulation framework is realized consisting of a
co-simulation environment, a toolchain for the generation of vVECUs as Functional Mock-up Units (FMU) and a modular
virtual bus implementation. A propsal to handle the remain bus simulation is also impelemented. This framework is tested
in a case study to show a smooth transition from model-in-the-loop (MiL) to software in-the-loop (SiL) simulation of a
function distributed over two vECUs communicating via a virtual controller area network (CAN) bus.

1 Ein]eitung unterstreicht die Rolle der doméneniibergreifenden Fahr-
zeugsimulation als essentielles Entwicklungswerkzeug.
Je mehr automatisierte Fahrfunktionen ein Fahrzeug auf-  [n der doméneniibergreifenden Fahrzeugsimulation wer-
weist, desto stirker sind die einzelnen Fahrzeugdomid-  den die Modelle der beteiligten Fahrzeugdominen zu ei-
nen (Fahrdynamik, Lenkung, Bremssystem, ...) aufgrund  pem doméineniibergreifenden Modell integriert. In den ein-
des Wegfalls des Fahrers gekoppelt. Folglich konnen die  zelnen Fahrzeugdominen werden meist spezielle Simula-
entsprechenden Teilsysteme und zugehdrigen Funktionen  tjonswerkzeuge fiir den Aufbau der entsprechenden Mo-
nicht mehr unabhingig voneinander entwickelt werden.  delle verwendet, welche dann mit Hilfe der Co-Simulation
Stattdessen miissen Entwickler nicht nur ihre ,,Heimdoma- gekoppelt werden [4]. Dabei miissen neben den beteilig-
ne” beriicksichtigen, sondern auch alle anderen relevanten  ten Modellen der Physik auch die zugehdrigen Software-
Dominen. Fiihrte eine spéte Integration der Teilsysteme  Funktionen integriert werden. In friihen Entwicklungspha-
frither nur zu suboptimalen Ergebnissen, ist die frithzeiti-  gen werden hier Modelle der Software (model-in-the-loop
ge Integration fiir die Entwicklung zukiinftiger Funktionen (MiL)) verwendet, bei denen viele Effekte wie zum Bei-
unabdingbar, da Testfahrten mit beispielsweise autonomen spiel Quantisierung oder Kommunikationsverzogerungen
Fahrfunktionen aufgrund des Risikos und gesetzlicher Be- vernachldssigt werden. Sollen diese Effekte in spiteren

stimmungen sehr schwierig durchzufiihren sind. Dies ldsst  Entwicklungsphasen beriicksichtigt werden, so sind virtu-
virtuelle Prototypen weiter an Wichtigkeit gewinnen und
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elle Steuergerite (VECUSs) und virtuelle Busse notwendig
(software-in-the-loop (SiL)).

Automatisierte und vernetzte Fahrfunktionen sind hiu-
fig auf mehrere ECUs verteilt. Fiir MiL-Simulationen,
in denen Quantisierung und Kommunikationsverzégerun-
gen typischerweise vernachlissigt werden, macht dies kei-
nen grofen Unterschied. Bei SiL-Simulationen mit de-
nen verteilte Funktionen validiert werden sollen ist dies
nicht der Fall [7]. Hier miissen die vECUs iiber virtuel-
le Busse mit realitdtsnahem Timing-Verhalten miteinander
kommunizieren. Eine entsprechende Simulationsarchitek-
tur ist exemplarisch in Abbildung 1 dargestellt. Hier sind
die Fahrzeugdominen Fahrdynamik, Bremssystem, Len-
kung und Antriebsstrang mit der Umwelt und Sensoren
in einer Co-Simulationsumgebung miteinander gekoppelt.
Wihrend die Softwarefunktionen fiir Lenkung und An-
triebsstrang als MiL-Modelle in die Co-Simulation inte-
griert sind, sind der Fahrzeugcomputer fiir automatisierte
Fahrfunktionen sowie zwei ECUs des Bremssystems vir-
tualisiert und kommunizieren iiber einen virtuellen Con-
troller Area Network (CAN) Bus miteinander. Verbin-
dungen zwischen der Co-Simulationsumgebung und den
vECUs existieren dariiber hinaus fiir Signale, die nicht iiber
den Bus ausgetauscht werden.

In diesem Beitrag wird eine Co-Simulationsumgebung vor-
gestellt, welche die dargestellte Architektur realisiert. Die-
se beinhaltet neben physikalischen Modellen zwei vECUs
des Bremssystems sowie eine Restbussimulation.

Co-Simulation Setup

3o
2z
»

virtual bus

Abbildung 1 Exemplarisches Framework fiir die virtuelle Vali-
dierung mit zwei vVECUs und einer Co-Simulationsumgebung

1.1

Fiir die effiziente Nutzung einer SiL-Umgebung sollte die-
se in die den Entwicklungsprozess begleitende Werkzeug-
kette integriert werden. In [9] wird eine solche Integra-
tion (in den Build-Prozess der Motorsteuerungssoftware)
der SiL-Integrationsplattform Silver (QTronic) gezeigt. In
[5] wird ein Beispiel fiir die Integration auf Basis von
Continuous Integration mit Hilfe der Standards Functional
Mock-up Interface (FMI) [1] und AUTOSAR vorgestellt.

Ein Framework fiir die Emulation der Kommunikation zwi-
schen verschiedenen Fahrzeugen wird in [8] présentiert.
Dieses Framework kann um die Kommunikation innerhalb
eines Fahrzeugs erweitert werden, bietet aber nicht die not-
wendige Methodik zur Orchestrierung der Co-Simulation
der beteiligten physikalischen Dominen sowie die Unter-
stiitzung entsprechender Standards und Bereitstellung not-

Themenbezogene Arbeiten
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wendiger Schnittstellen.

2 Virtuelle ECUs und Busse

Mit Hilfe von vECUs wird die komplette ECU-Software
in Simulationen integriert. Dafiir miissen hardwareabhin-
gige Softwareteile virtualisiert werden, indem entweder
Hardwaresimulatoren verwendet werden, um den Original-
Code unverindert zu testen, oder hardwarespezifische An-
teile ersetzt werden, um eine Kompilierung auf x86-
Systemen zu ermoglichen. Mit Hardwaresimulationen sind
duberst akkurate Simulationen moglich [3], wobei die Mo-
dellbildung aufwéndig sein kann und die Modelle aufgrund
der hohen Detaillierung iiblicherweise sehr langsam lau-
fen. Fiir eine Simulation auf Fahrzeugebene sind die resul-
tierenden Simulationszeiten oft nicht praktikabel. Das Er-
setzen des hardwarespezifischen Codes ermdglicht im All-
gemeinen eine schnellere Simulation, ist aber weniger ak-
kurat und bildet nicht exakt das Verhalten der Originalsoft-
ware wieder.

2.1 vECU Kategorien

Die AUTOSAR Softwarearchitektur erméglicht die Defini-
tion von Softwareebenen fiir das Testen von ECU Softwa-
re. Je nach Testziel der Simulation kann dadurch der Um-
fang der Software angepasst werden. Wenn beispielsweise
lediglich Funktionen der Applikationssoftware (ASW) be-
trachtet werden sollen, ohne Limitierungen der Hardware
7u testen, geniigt es, lediglich diesen Teil der Software oh-
ne Basissoftware (BSW) etc. zu integrieren. Fiir die ver-
schiedenen Testszenarien lassen sich drei Kategorien defi-
nieren:

1. vECUs die lediglich ASW und Laufzeitumgebung
(RTE) und optional ein Betriebssystem enthalten, um
schnell Tests der ASW durchfiihren zu konnen.

vECUs die ASW, RTE, BSW, Betriebssystem und
einen virtualisierten MCAL (Microcontroller Ab-
straction Layer) fiir x86 Systeme enthalten, um rea-
listischere Test beziiglich Ablaufplanung, einfache
Timinganalysen auf Task-Ebene sowie Busverhalten
ausfiihren zu konnen.

ECU-code (HEX) emulieren. Hierbei wird der Ori-
ginalcode auf Hardwaresimulationsmodellen ausge-
fiihrt. Dies ermoglicht detaillierte Analysen, inklusive
Timing-Verhalten. Die Emulation ist allerdings tibli-
cherweise viel langsamer als Echtzeit und der Auf-
wand zur Erstellung der benétigten Hardwaremodelle
hoch.

2.2 FMU Generator fiir vECUs

Ein in die Software integrierter FMU Generator ermoglicht
die VECUs in Co-Simulationen einzubinden. Fiir den Zu-
griff auf interne Variablen wird eine Schnittstelle entwi-
ckelt, die dem ECU-Code hinzugefiigt werden muss. Da
FMI die Simulation von Bussystemen nicht optimal abbil-
det, werden die Treiber der vVECUs angepasst. Abbildung. 2
zeigt den Ablauf der FMU-Generierung:
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Abbildung 2 Der vVECU FMU Generator
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Virtuelle Busse bilden relevante Eigenschaften von Fahr-
zeugbussen in Simulationsmodelle ab. Sie erméglichen ei-
ne realititsnahe Kommunikation zwischen vECUs. Der
vorgestellte virtuelle Bus realisiert eine modulare Archi-
tektur, bei der jedes Modul ein Teil des Kommunikations-
stacks abdeckt. Dadurch koénnen Module schnell ersetzt
werden, so dass Simulationen mit verschiedenen Detail-
lierungsgraden des virtuellen Busses auf einfache Art und
Weise realisiert werden konnen. Bei der Kopplung der Mo-
dule werden analog zur Co-Simulation die internen Uhren
der einzelnen Module synchronisiert [6]. Abbildung 3 il-
lustriert die Simulationsarchitektur des Busses. Dabei wird
die Verwendung dreier unterschiedlicher Abstraktionsebe-
nen des Busses gezeigt.

Die gezeigte Netzwerkschnittstelle besteht aus der Warte-
schlange und dem Medienzugriffsprotokoll (MAC). Bei-
des existiert mindestens einmal pro gekoppelter vVECU.
Die Warteschlange simuliert das Verhalten der vECU be-
ziiglich wartender, noch nicht gesendeter Nachrichten und
entscheidet beispielsweise ob sich Nachrichten iiberschrei-
ben oder nacheinander iiber den Bus gesendet werden. Die
MAC:s verbinden sich alle mit dem gleichen Kommunika-
tionsmedium (CAN, Ethernet, Flexray, ...).

Virtuelle Busse

Network Interface

high-level application

HAL }-

intermediate-level application

HAL }-

low-level application

Medi
Application edium

Application

Abbildung 3  Architektur der Bussimulation

Werden nun Komponenten mit unterschiedlichen Abstrak-
tionsebenen an den gleichen Bus angeschlossen, muss si-
chergestellt werden, dass die Schnittstellen und die Simula-
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tionssemantik dieser Komponenten in Bezug auf die Kom-
munikation gleich sind. Folgende Arten von Komponenten
konnen an einen Bus angeschlossen werden:

1. Funktionale Ebene (High-Level Application), An
den Bus angeschlossene Komponenten, die intern
keinerlei Kommunkationseffekte beriicksichten, z.B.
FMUs, werden als High-Level Application bezeich-
net. Sie iibertragen nur funktionale Daten und kei-
ne Protokollrahmen mit Headerinformationen. Die
Quantisierung der funktionalen Daten muss daher in
dem zusitzlichen Modul En-/Decoder erfolgen. Die-
se Abstraktionsebene wird beispielsweise verwendet,
wenn physikalische Signale aus der Co-Simulation
auf dem Bus verfiigbar sein sollen. Die Kopp-
lungsarchitektur implementiert die Funktionen trans-
mitPDU/receivePDU um die Kopplung von funktio-
nalen Modellen an den simulierten Bus zu ermogli-
chen. Die Funktion transmitPDU(payload:byte[], si-
ze:int, id:String) iibertrigt die Nutzdaten eines funk-
tionalen Modells und fiigt protokollspezifische Hea-
derdaten hinzu. Der Parameter id beschreibt zum Bei-
spiel die CAN-Bus ID oder die MAC Adresse in
Ethernetnetzwerken. Die Funktion receivePDU ent-
fernt Headerdaten und extrahiert die Nutzdaten fiir
den Empfinger.

2. Protokollebene (Intermediate-Level Application)
Komponenten, die an den Bus angeschlossen sind und
Protokollinformationen mit dem simulierten Bus aus-
tauschen, werden Intermediate-Level Application ge-
nannt. Diese enthalten bereits spezifische Headerda-
ten fiir die simulierte Netzwerktechnologie. Anwen-
dungen auf Protokollebene simulieren jedoch nicht
die Ebene der Basissoftware (BWS) und die Treibere-
bene - sie kommunizieren daher mit der Warteschlan-
ge des simulierten Busses und nutzen bestehende Si-
mulationskomponenten um das Warteschlangenver-
halten zu simulieren. Die vorgsetellte Bussimulation
unterstiitzt die Protokollebene durch die add(frame:
byte[]) Funktion, die einen netzwerkspezifischen Rah-
men in die Ausgangswarteschlange einer ECU plat-
z1ert.

3. Treiberebene (Low-Level Application) Komponen-
ten, die an den Bus angeschlossen sind und auch die
Warteschlange selbst implementieren, werden Low-
Level Application genannt. Sie bendtigen daher eine
hardwarenahe Schnittstelle zur Kommunikation mit
dem virtuellen Bus. Die vorgestellte Bussimulation
unterstiitzt dies zum Beispiel mit der getNextMessa-
ge(id:String) Callbackfunktion, die aufgerufen wird,
wenn die Medienzugriffskomponente den nédchsten zu
tibertragenden Rahmen benétigt. Der Parameter gibt
an ob ein bestimmter Protokollrahmen angefragt wird,
dies ist zum Beispiel in zeitsynchronisierten Netzen
mit reservierten Zeitslots der Fall, oder ob die Aus-
wahl des nédchsten Rahmens der Treiberebene obliegt.

Fiir die Simulation des CAN-Bus, welcher in der nachfol-
genden Fallstudie verwendet wird, wird eine ereignisba-



sierte Simulation als Ausfithrmodell (Model of Computa-
tion and Communication (MOCC)) genutzt. Hierbei wer-
den Zeitrdaume in denen keine Ereignisse auftreten iiber-
sprungen. Ereignisse, die in unterschiedlichen Komponen-
ten auftreten, werden global sortiert und in der richti-
gen Reihenfolge ausgefiihrt. Wie oben beschrieben iiber-
nimmt der virtuelle Bus im Falle von Intermediate- und
High-Level Applications selbst die Simulation der Warte-
schlange, die CAN-Nachrichten absteigend anhand ihrer
ID sortiert. Hierbei reprisentieren niedrigere Nachrichten-
IDs eine hohere Prioritidt. Werden mehrere Nachrichten mit
der gleichen ID in die gleiche Warteschlange eingegeben
kann konfiguriert werden, ob die Nachrichten nacheinan-
der einsortiert werden, oder ob sich diese iiberschreiben.
Die Warteschlange entkoppelt die zeitkritische Kommuni-
kation zwischen dem Medienzugriff und der Anwendung.
Werden beispielsweise FMUs genutzt, um Applikationen
zu realisieren, konnen diese aufgrund dieser Entkopplung
langere Schrittweiten ausfithren. Dies fiihrt zu einer ver-
besserten Performanz der Simulation, da die Ausfithrung
der Komponenten seltener synchronisiert werden muss.
Das MAC ist fiir jedes Kommunikationsmedium unter-
schiedlich. Im der nachfolgenden Fallstudie wird ein CAN-
Bus und dementsprechend ein CAN-MAC verwendet. Die-
se Komponente simuliert das Verhalten des CAN-Bus Con-
trollers, der den Medienzugriff und die Synchronisation der
Busteilnehmer auf Bit-Ebene realisiert. Er tiberwacht das
Medium und priift die Warteschlange sobald das Medium
frei wird auf zu iibertragende Nachrichten. Danach betei-
ligt sich jeder CAN-Controller, der eine Nachrichten iiber-
tragen mochte, aktiv an der Arbitrierungssequenz. Das Me-
dium simuliert aus Geschwindigkeitsgriinden nur die ers-
ten beiden Bits einer Ubertragung. Diese sind notwendig
fuir die Synchronisation der CAN-Controller. Die folgende
Arbitrierung wird nicht bitweise durchgefiihrt, sondern fiir
die wartenden Nachrichten anhand ihrer IDs zentral durch
die Mediumskomponente berechnet. Diese informiert die
angeschlossenen CAN-Controller iiber die Nachricht, wel-
che die Arbitrierung gewonnen hat und iibertragen wird,
sowie iiber den erfolgreichen Abschluss der Ubertragung.

3

In dieser Fallstudie wird der Ubergang einer MiL- zu
einer SiL-Simulation mit mehreren VECUs gezeigt, wo-
bei die Funktionalitit in beiden Varianten exakt iiberein-
stimmt. Auf diese Weise konnen unter Wiederverwendung
der MiL-Simulation busbezogene Effekte wie Kommuni-
kationverzogerungen und Quantisierungsfehler untersucht
werden, welches ein notwendiger Schritt fiir die virtuelle
Freigabe von domineniibergreifenden Funktionen ist.

3.1 MiL Fahr-

Simulation vernetzter vECUs

Doméineniibergreifendes
zeugmodell

Die Integration von vVECUs und virtuellem CAN-Bus in ei-
ne MiL-Simulation wird anhand eines domineniibergrei-
fenden Co-Simulationsmodells eines elektrischen Fahr-
zeugs gezeigt, das sich in einem stddtischen Verkehrss-
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zenario bewegt [2]. Diese Simulationsumgebung ermog-
licht Untersuchungen von Rekuperationsstrategien unter
dem Einfluss von Umgebungsparametern wie beispielswei-
se Verkehrsdichte oder Ampelschaltungen. Die Architek-
tur der MiL-Simulation ist in Abbildung 4 mit den blau
umrahmten Késten dargestellt. Da die unterschiedlichen
Komponenten des Fahrzeugs in vier verschiedenen, jeweils
doménenspezifischen Simulationswerkzeugen, modelliert
sind, werden diese zu einer Co-Simulation miteinander
gekoppelt. Dazu wird die Middleware Model CONNECT
von AVL verwendet, die sich zur Simulation mit allen
Teilmodellen verbindet und den Signalaustausch zwischen
diesen koordiniert. Fiir die Simulation der Fahrdynamik
und des Fahrers wird das Simulationswerkzeug CarMaker
(CM) von IPG verwendet. Somit kann das Fahrzeug ei-
ner vorgegebenen Route durch ein stidtischen Verkehrs-
szenario folgen und dabei auf andere Verkehrsteilnehmer
zu achten. Deren Verhalten wird mithilfe des mikrosko-
pischen Verkehrssimulationspakets ,,Simulation of Urban
Mobility” (SUMO) vom DLR basierend auf gemessenen
Verkehrsfliissen dargestellt. Der Antriebsstrang und der
Elektromotor des Fahrzeugs sind als detailliertes, physi-
kalisches Modell in GT-SUITE von Gamma Technologies
dargestellt. Sowohl fiir die Modellierung der Batterie als
auch fiir systemiibergreifende Regelungsfunktionen, wie
beispielsweise des Batteriemanagements, wird Simulink
(SL) von MathWorks verwendet.

3.2 Ubergang von MiL zu SiL

Der Ubergang von MiL zu SiL wird anhand zweier stark
gekoppelter Fahrzeugfunktionen, der Rekuperationskon-
trolle und der Funktion fiir die Ansteuerung der Reibbrem-
sen durchgefiihrt. Anderen Regelfunktionen, wie beispiels-
weise die Antriebsstrangregelung, bleiben Teil des entspre-
chenden Simulink-Modells, da es zwischen ihnen und den
beiden ausgewihlten Funktionen keine direkten Abhéngig-
keiten gibt. Im Allgemeinen obliegt es dem Ingenieur zu
entscheiden welche ECUs virtualisiert werden miissen und
fiir welche MiL-Modelle ausreichend sind. Es handelt sich
dabei um ein Kompromiss aus Genauigkeit und Komplexi-
tit der Co-Simulation.

Fiir jede der beiden ausgewéhlten Funktionen wird eine
vECU der Kategorie 2, wie in Kapitel 2 beschrieben, als
FMU generiert. Bei der BSW, der RTE und dem Betriebs-
system handelt es sich dabei um Seriencode echter ECUs.
Die ASW beinhaltet genau dieselbe Funktonalitit wie die
des entsprechenden Mil-Modells, welche vereinfacht ist
und daher nicht Seriencode entspricht. Trotzdem kann der
Ubergang von MiL zu SiL damit gezeigt werden, da die
Komplexitit der ASW keinen Einfluss auf die vorgestellte
Werkzeugkette hat. Das Einbinden einer Seriencode ASW
ist Teil aktueller Arbeiten.

Die beiden VECUs sind iiber den in Abschnitt 2.3 vor-
gestellten virtuellen CAN-Bus verbunden, wodurch ein
Datenaustausch unter Beriicksichtigung busbezogener Ef-
fekte ermoglicht wird. Zusitzlich zu den VECUs ist das
Restbussimulations- und Analysewerkzeug CANoe von
Vector an den virtuellen CAN-Bus unter Verwendung des
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Abbildung 4 Architektur der vorgestellten Simulationsumgebung. Komponenten der MiL-Simulation sind blau umrahmt. Durch den
Ubergang zur SiL-Simulation kommen die Komponenten hinzu, welche an den virtuellen Bus angeschlossen sind.

CANoe ,,Fast Data eXchange“ Protokolls angeschlossen.
CAN Nachrichten kénnen dadurch in CANoe erstellt und
iber den virtuellen CAN-Bus an die VECUSs gesendet wer-
den. Aufgrund der vereinfachten ASW wird zur Zeit ledig-
lich ein Parameter einer vECU aus CANoe vorgegeben. So-
bald VECUs mit Serien-ASW verwendet werden, wird die
Restbussimulation mittels CANoe allerdings unerlésslich
sein, da sich die Anzahl an ausgetauschten Signalen erho-
hen wird und Abhingigkeiten zu nicht modellierten ECU-
Funktionen entstehen werden. Die endgiiltige Architektur
der domineniibergreifenden Co-Simulationsumgebung zu-
sammen mit VECUs, virtuellem Bus und Restbussimulati-
on ist in Abbildung 4 gezeigt.
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3.3.1 Fahraufgabe

Diskussion der Simulationsergebnisse

Bei der untersuchten Fahraufgabe handelt es sich um einen
Linksabbiegevorgang an einer Ampelkreuzung unter Be-
riicksichtigung des Gegenverkehrs. Das elektrische Fahr-
zeug nihert sich der Ampel mit einer Geschwindigkeit von
60 km/h, bremst aufgrund eines roten Ampelsignals in
den Stillstand und wartet in einer Schlange von anderen
Verkehrsteilnehmern auf ein griines Ampelsignal. Wih-
rend des Bremsvorgangs berechnet die Rekuperationskon-
trolle, dass eine reine Rekuperation nicht ausreichend ist,
um das Fahrzeug rechtzeitig in den Stillstand zu bringen
und beauftragt daher einen Eingriff der Reibbremsen mit
einem berechneten Bremsmoment. Dieses Bremsmoment
wird von der zweiten untersuchten Funktion auf die vier
Reibbremsen verteilt. Sobald das griine Ampelsignal er-
scheint, biegt das Fahrzeug unter Beriicksichtigung des Ge-
genverkehrs links ab.

3.3.2 Vergleich MiL und SiLL

Damit die Unterschiede zwischen der MiL und der SiL-
Simulation sichtbar werden, wurde die Fahraufgabe mit
beiden Modellen absolviert. In Abbildung 5 sind zwei Si-
gnalverldufe der beiden Simulationen zum Zeitpunkt des
Bremsens vor der Ampelkreuzung gegeneinander aufge-
tragen. Im oberen Teil ist die Fahrzeuggeschwindigkeit
v dargestellt. Da die Fahraufgabe in beiden Féllen exakt
gleich ist und die Fahrzeuggeschwindigkeit vom Fahrdy-
namikmodell und nicht von den vVECUs berechnet wird,

sind in der Abbildung keine Unterschiede zwischen MiL-
und SiL-Simulation zu erkennen. Bei der Betrachtung des
Verlaufs der erforderlichen Bremskraft des vorderen rech-
ten Rads trgry, die direkt von einer der beiden gekoppel-
ten VECUs berechnet wird, werden dagegen kleine Abwei-
chungen sichtbar. Diese sind auf busbezogene Effekte wie
Kommunikationsverzégerungen und Quantisierungsfehler
zuriickzufiihren, da die Funktionalitit der vECUs in der
SiL-Simulation exakt mit denen der urspriinglichen Funk-
tionen in der MiL-Simulation {ibereinstimmt und der Ein-
satz eines virtuellen CAN-Bus zur Kopplung der vECUs in
der SiL-Simulation der einzige Unterschied zwischen den
Modellen ist.

60 T T T T

MiL
- = = SiL

0.5 1

05 1
t[s]

Abbildung 5 Vergleich von Simulationsergebnissen in der
MiL- und SiL-Simulation
Kommunikationsverzogerungen Es muss zwischen

zwei Arten von Verzdgerungen unterschieden werden.
Zum einen treten bei einer Co-Simulation ungewollte,
kiinstliche Verzogerungen abhingig der Architektur und
der Ausfiihrungsreihenfolge der Teilmodelle auf und zum
anderen werden in der SiL-Simulation reale Kommunika-
tionsverzogerungen eines CAN-Bus simuliert.

In der MiL-Simulation der vorgestellten Fallstudie sind
die beiden untersuchten Funktionen in zwei verschiedenen
Simulink-Modellen implementiert, die parallel ausgefiihrt
werden. Dabei ergibt beim Datenaustausch zwischen

17



den Funktionen eine Verzogerung von einem Makrozeit-
schritt h.

In der SiL-Simulation sind die untersuchten Funktionen
in vECUs integriert, die ihr eigenes Zeitmanagement
besitzen. Das Auslesen des Busses, Durchfiihren von Be-
rechnungen und Schreiben von CAN-Nachrichten findet
periodisch alle # Sekunden statt. Dies ist die kleinstmogli-
che Zeitverzogerung, die bei der Kommunikation zwischen
den vECUs auftritt, da diese parallel ausgefiihrt und tiber
Model. CONNECT miteinander synchronisiert werden.
Zusitzlich muss die Kommunikationsverzogerung des
CAN-Busses beriicksichtigt werden. In einem CAN-Bus
hingt die Kommunikationsverzogerung von der Bitrate des
Busses sowie der Buslast ab, die wiederum mit der Anzahl
der iiber den Bus tibertragenen Nachrichten zunimmt [10].
In der vorgestellten SiL-Simulation werden nur zwei
Nachrichten iiber den Bus iibertragen (eine zwischen den
vECUs und eine fiir die Restbussimulation via CANoe).
Die unter diesen Voraussetzungen berechnete maximale
Kommunikationsverzogerung des Busses ist deutlich
geringer als die Ausfithrungsschrittweite der VECUs,
wodurch der Bus hier im Vergleich zur MiL-Simulation
keine zusitzliche Verzogerung in das System einbringen
sollte. Da auch bei der Synchronisation der Simulationszeit
des Busses und der vECUs iiber Model. CONNECT nicht
garantiert werden kann, dass alle CAN-Nachrichten die
vECUs wihrend eines Zeitschrittes erreichen, konnen in
der SiL-Simulation, z.B. durch hohe Systemauslastung,
weitere Verzogerungen entstehen. Dies konnte verhindert
werden, wenn ein neuer Simulationsschritt der vECUS erst
beginnen darf, nachdem der Bus alle CAN-Nachrichten
fiir diesen Simulationsschritt versendet hat. Dies ist Teil
aktueller Arbeiten.

Quantisierungsfehler In jeder CAN-Nachricht kénnen
bis zu 64 Bit an Daten iibertragen werden, welches ge-
nau einer Gleitkommazahl mit doppelter Genauigkeit ent-
spricht. Um die Buslast eines CAN-Netzwerks gering zu
halten, werden daher Signale in der Regel so quantisiert,
dass sie moglichst wenig Daten verbrauchen und somit
mehrere Signale in derselben CAN-Nachricht iibertragen
werden konnen. Fiir die Bremsmomentanforderung, die in
der vorgestellten SiL-Simulation iiber den virtuellen CAN-
Bus iibertragen wird, werden 16 Bit Daten einer CAN-
Nachricht verwendet. Dies ermoglicht unter Beriicksichti-
gung des zulidssigen Wertebereichs eine Genauigkeit des
Signals von ca. 0,2 Nm. Dadurch wird verglichen mit der
MiL-Simulation, bei der die Bremsmomentanforderug als
deutlich genauere Gleitkommazahl zwischen den Funk-
tionen ausgetauscht wird, ein kontinuierlicher Quantisie-
rungsfehler induziert, der zu den angesprochenen Abwei-
chungen in Abbildung 5 fiihrt.

4

In diesem Beitrag wird eine Simulationsumgebung vorge-
stellt, die einen nahtlosen Ubergang von der MiL- zur SiL-
Simulation einschlieflich einer Bussimulation sowie einer
Restbussimulation ermoglicht. Die Integration der vECUs

Zusammenfassung und Ausblick

(10]
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erfolgt dabei iiber den offenen Standard FMI. Der Ansatz
wurde mit vECUs mit Serienbasissoftware, aber verein-
fachter Anwendungssoftware validiert.

In einem néchsten Schritt wird dieser Ansatz in einem in-
dustriellen Projekt getestet. Da dabei Serienapplikatons-
software verwendet wird, wird sich die Buslast aufgrund
der zusitzlichen Kopplungssignale erhdhen, wodurch mit
groBBeren Unterschieden in den Simulationsergebnissen
zwischen MiL und SiL zu rechnen ist.

Des Weiteren ergibt sich die Fragestellung wie sich die Co-
Simulationsverzogerungen zwischen den Teilsystemen und
die Kommunikationsverzogerungen im virtuellen Bus har-
monisieren lassen. Es ist dabei zu beachten, das erstere un-
gewollte Effekte sind, die sich abhidngig von Hyperpara-
metern wie die Kopplungsschrittweite und Ausfithrungs-
reihenfolge der Teilsysteme beeinflussen lassen. Letztere
hingegen bewusst modelliert sind, da sie reale Effekte ab-
bilden, die fiir die virtuelle Freigabe von Fahrfunktionen
beriicksichtigt werden miissen.

5
(1]
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