
Using Just-in-Time Code Generation to Transparently
Accelerate Applications in Heterogeneous Systems

Dissertation

A thesis submitted to the
Faculty of Electrical Engineering, Computer Science

and Mathematics
of

Paderborn University
in partial fulfilment of the requirements for the

degree of Dr. rer. nat.

by
Gavin Vaz

Paderborn, Germany
11th July 2019

Acknowledgements

My PhD journey has been an unforgettable and life-changing experience, which would not
have been made possible without the help and support from so many people. First and
foremost, I would like to thank Prof. Dr. Christian Plessl for being my academic adviser
during my PhD studies. I cannot imagine having a better adviser and I am very grateful
for his guidance, encouragement and support both professionally and personally!

Furthermore, I would like to thank:

• Prof. Dr. Marco Platzner, for his support during my PhD studies and for serving
as a reviewer for my dissertation.

• Prof. Dr. Franz Rammig , Prof. Dr. Anthony Anjorin and Dr. Peter Pfahler for
serving on my oral examination committee.

• All my colleagues from the High-Performance IT Systems Group, the Paderborn
Center for Parallel Computing (PC2) and the Computer Engineering Group with
whom I have had the pleasure to work with. I will definitely miss the entertaining
water cooler banter.

• My office mate Heinrich Riebler for our extensive collaborative research, our “Oper-
ation Tomato” office experiment and key insider tips into the German way of life.

• Dr. Tobias Kenter for his guidance and joint collaboration on several research inter-
ests.

• Achim Lösch for his unmatched technical expertise and indispensable advice.

• Michael Laß, Paolo Gorlani and Linus Witschen for their invaluable feedback.

• The European Union Seventh Framework Programme (FP7) and the Deutsche
Forschungsgemeinschaft (DFG) for funding different phases of my research in the
“SAVE” project and in the Collaborative Research Centre 901 “On-The-Fly Com-
puting” project.

• All my colleagues in the “SAVE” project for their insightful discussions.

iii

Acknowledgements

Finally, I would like to thank my family. This journey would not have been possible
without their support. I am grateful to my parents Ida and Cecil, who have always been
there for me and encouraged me in all my pursuits and inspired me to follow my dreams. A
special thank you to Sunshine Bujok for all her love and support and for always believing
in me. Last but not least, I would like to thank the Biedemann family for treating me as
a part of the family and making me feel at home in Germany.

iv

Abstract

In the high performance computing domain, data parallel workloads are driving architec-
tures toward energy efficient heterogeneous systems. These systems are capable of execut-
ing computationally intensive tasks on accelerators designed to maximize data throughput.
However, integrating different accelerators with diverse architectures and memory hierar-
chies into the same compute node increases the complexity of such systems, making it
difficult to achieve an optimal performance/energy trade-off on heterogeneous systems.
The SAVE Heterogeneous System Architecture (saveHSA) tries to solve this by using a
smart self-adaptive layer to autonomously offload workloads to available resources by tak-
ing into account the varying workloads, application goals, system constraints and resource
availability. However, to benefit from this, application developers need to port their appli-
cations to different architectures, which requires not only application and domain-specific
knowledge, but also the understanding of different accelerator architectures, resulting in
increased design effort and overall costs.

To help simplify the porting process and assist the application developer in generat-
ing parallelized code, current state-of-the-art parallelization techniques use pragma-based
approaches, source-to-source transformations, template libraries, new programming lan-
guages and various semi and fully-automatic parallelization compilers and tools. However,
most of these approaches are not completely automatic and require varying levels of ef-
fort from the application developer, while most of the fully-automated tools are unable
to target multiple heterogeneous accelerators. Among the different parallel programming
models, OpenCL is the most portable one. However, it requires a lot of manual effort by
the application developer to parallelize the application by first generating parallel OpenCL
kernel code and then the corresponding OpenCL host code, which is a time intensive and
error-prone process.

In this thesis, we improve the state-of-the-art by developing a novel automatic and
transparent parallelization approach known as the Runtime and Just-in-Time Compilation
System (RTCS), which is capable of transparently porting sequential programs to differ-
ent heterogeneous multi-accelerator architectures via OpenCL. Using the RTCS allows the
saveHSA to efficiently manage heterogeneous systems by Just-in-Time (JIT) generating
accelerator specific code. The RTCS parallelizes the application by automatically detect-
ing and transforming suitable data-parallel loops into independent OpenCL kernels. The
corresponding OpenCL host code required to setup the OpenCL device, create OpenCL

v

Abstract

buffers, transfer data to the device and launch the OpenCL kernel on the device is also
automatically generated. Additionally, the RTCS applies data transfer optimizations and
is also able to tile OpenCL kernels to improve their performance. Our parallelization
approach is capable of automatically generating accelerated code from sequential appli-
cations, allowing users to automatically and transparently accelerate applications from
diverse domains and target different accelerators without any manual effort. This com-
bination of transparent and flexible support for different target architectures makes the
RTCS unique in the domain of parallelization and offloading tools.

To demonstrate the practicality of the RTCS we evaluate the RTCS for a diverse set
of benchmark applications from a broad set of domains like scientific computing, security
and signal and image processing. We perform a thorough evaluation of performance gains
targeting different accelerator architectures and look at the different overheads associated
with the RTCS. Additionally, the RTCS is also compared against handwritten pragma-
based code. Overall, our results demonstrate the practicality and the effectiveness of our
approach across a broad range of application domains and accelerator architectures.

vi

Zusammenfassung

Datenparallele Workloads im Bereich High Performance Computing begünstigen die Ent-
wicklung von Rechnerarchitekturen in Richtung energieeffizienter heterogener Systeme.
Diese Systeme sind in der Lage, geeignete rechenintensive Aufgaben auf Beschleunigern
auszuführen, um den Datendurchsatz und die Energieeffizienz zu maximieren. Jedoch
erhöht die Integration verschiedener Beschleuniger mit unterschiedlichen Architekturen
und Speicherhierarchien in denselben Rechenknoten die Komplexität eines solchen Sys-
tems. Dies macht es schwierig, den bestmöglichen Kompromiss aus Rechenleistung und
Energiebedarf zu erreichen. Die SAVE Heterogeneous System Architecture (saveHSA)
versucht dies zu lösen, indem sie eine intelligente, selbstadaptive Schicht auf Anwen-
dungsebene anbietet, um rechenintensive Aufgaben autonom auf die verfügbaren Ressour-
cen auszulagern. Dabei werden die Art der Aufgaben, Systembeschränkungen sowie die
Verfügbarkeit der Ressourcen berücksichtigt, um die Ausführung bezüglich vorgegebener
Ziele hin zu optimieren. Um von der saveHSA zu profitieren, müssen Anwendungsentwick-
ler ihre Anwendung jedoch auf die jeweiligen Beschleunigerarchitekturen portieren, was
nicht nur anwendungs- und domänenspezifisches Wissen, sondern auch ein tiefgreifendes
Verständnis der Beschleunigerarchitekturen erfordert und letztendlich in einem erhöhten
Entwicklungsaufwand und einhergehenden höheren Gesamtkosten mündet.

Um den Portierungsprozess von Anwendungen auf heterogene Systeme zu vereinfachen
und den Anwendungsentwickler bei der Generierung von datenparallelem Programmcode
zu unterstützen, werden nach dem aktuellem Stand der Technik verschiedene manuelle,
halb- und vollautomatische Parallelisierungswerkzeuge und Compiler verwendet. Diese rei-
chen von Pragma-basierten Ansätzen über Source-to-Source-Transformationen und Tem-
plate-Bibliotheken bis hin zu neuartigen Programmiersprachen. Viele dieser Ansätze
sind jedoch nicht vollständig automatisiert und erfordern vom Anwendungsentwickler ein
gewisses Maß an Portierungsaufwand. Die meisten der vollautomatischen Ansätze hinge-
gen sind nicht in der Lage, mehrere heterogene Beschleuniger zu erfassen. Unter den
verschiedenen parallelen Programmiermodellen bietet OpenCL das größte Maß an Porta-
bilität. Allerdings erfordert selbst die Entwicklung mit OpenCL einen hohen manuellen
Aufwand vom Anwendungsentwickler, da bei der Parallelisierung einer Anwendung mit
OpenCL neben OpenCL-Kernelcode auch entsprechender OpenCL-Hostcode geschrieben
werden muss. Dieser Prozess ist zeitintensiv und fehleranfällig.

vii

Zusammenfassung

Ziel dieser Arbeit ist es, den Stand der Technik durch die Entwicklung eines neuartigen
automatischen und transparenten Parallelisierungsansatzes, kurz Runtime and Just-in-
Time Compilation System (RTCS), zu verbessern. Das RTCS ist in der Lage, sequen-
zielle Anwendungen transparent zu transformieren, um heterogene Systeme mit mehreren
Beschleunigern mit Hilfe von OpenCL zu unterstützen. Die Verwendung des RTCS er-
möglicht es der saveHSA, heterogene Systeme effizient zu verwalten, indem Just-in-Time
(JIT) beschleunigerspezifischer Anwendungscode erzeugt wird. Das RTCS parallelisiert
die Anwendung, indem es automatisch geeignete datenparallele Schleifen erkennt und in
unabhängige OpenCL-Kernel umwandelt. Der entsprechende OpenCL-Hostcode, der zum
Einrichten des Beschleunigers, zum Erstellen der benötigten OpenCL-Puffer, zum Übertra-
gen der Daten sowie zum Starten des OpenCL-Kernels benötigt wird, wird ebenfalls au-
tomatisch generiert. Darüber hinaus wendet das RTCS Optimierungen bezüglich der Da-
tentransfers an und ist auch in der Lage, OpenCL-Kernel zu kacheln (tiling), um ihre Leis-
tung zu verbessern. Dadurch können Nutzer automatisch und transparent Anwendungen
aus verschiedenen Bereichen beschleunigen lassen und ohne manuellen Portierungsaufwand
verschiedene Beschleuniger verwenden. Diese Kombination aus transparenter und flexibler
Unterstützung verschiedener Zielarchitekturen macht das RTCS einzigartig im Bereich der
Parallelisierungswerkzeuge.

Um die Praktikabilität des RTCS zu demonstrieren, evaluieren wir es anhand einer
Vielzahl von Benchmarks aus einem breiten Sprektrum von Anwendungen, wie wissen-
schaftliche Datenverarbeitung, Kryptographie sowie Signal- und Bildverarbeitung. Wir
führen eine gründliche Bewertung der Leistungssteigerungen auf verschiedenen Beschleu-
nigerarchitekturen durch und betrachten die mit dem RTCS verbundenen, zusätzlichen
Kosten zur Kompilations- und Ausführungszeit. Zusätzlich wird das RTCS auch mit
handgeschriebenem, Pragma-basiertem Programmcode verglichen. Insgesamt zeigen un-
sere Ergebnisse die Praktikabilität und Wirksamkeit unseres Ansatzes in einem breiten
Spektrum von Anwendungsbereichen und Beschleunigerarchitekturen.

viii

Contents

Acknowledgements iii

Abstract v

Zusammenfassung vii

List of Tables xiii

List of Listings xv

List of Figures xviii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of this Thesis . 3
1.3 Thesis Structure . 5

2 Related Work 7
2.1 Accelerator Programming . 7
2.2 Transparent Acceleration and Parallelization 9
2.3 Chapter Conclusion . 11

3 The saveHSA-Orchestrator 13
3.1 The Observe-Decide-Act Loop . 14
3.2 SAVE-Enabled applications . 16
3.3 Chapter Conclusion . 18

4 Background 19
4.1 LLVM Compiler Infrastructure . 19
4.2 OpenCL Framework . 22

4.2.1 Address Space and Memory Hierarchy 23
4.2.2 Components of an OpenCL Application 25

4.3 Chapter Conclusion . 26

ix

Contents

5 Runtime and Just-in-Time Compilation System 27
5.1 Overview of the RTCS . 29

5.2 RTCS Toolflow . 30

5.3 Communication . 34

5.4 Hotspot Data Structure . 35

5.5 Canonicalization . 36

5.6 Application Analysis . 37

5.7 Hotspot Analysis . 39

5.7.1 External Function Filter . 40

5.7.2 Dependence Analysis . 40

5.7.3 OpenCL Data Buffer Analysis and Data Transfer Optimizations . . 42

5.8 Application Preparation and Execution . 43

5.9 Handling the Codegen Request . 45

5.10 Work-Item Parallelizer . 46

5.11 Tiling: Exploiting Local Memory . 48

5.11.1 Convolution . 48

5.11.2 Matrix Multiplication . 54

5.12 Generating and compiling OpenCL Kernel Code 58

5.13 Integrating Accelerated Code into the Host 59

5.13.1 Loading the OpenCL Program . 60

5.13.2 Generating OpenCL Host Code . 60

5.13.3 Registering the new Accelerator Implementation 61

5.14 Chapter Conclusion . 62

6 Evaluation 63
6.1 The Heterogeneous Evaluation Platform . 63

6.2 Benchmark Applications . 64

6.2.1 Dense Matrix Multiplication . 64

6.2.2 Black-Scholes Option Pricing . 65

6.2.3 Finite Impulse Response . 65

6.2.4 Image Sharpening . 66

6.2.5 Heat Transfer Simulation . 66

6.2.6 N-body Simulation . 66

6.2.7 Motion Detection . 66

6.2.8 Ray Tracing . 67

6.2.9 SHA-256 Cryptographic Hash Function 68

6.2.10 Stereo Matching . 68

6.3 Measuring Method . 68

6.4 RTCS Overheads . 69

6.4.1 Application Launch Overheads . 71

6.4.2 OpenCL Code Generation and Integration Overheads 72

6.4.3 OpenCL Kernel Compilation Overheads 74

6.4.4 Application-level OpenCL Overheads 75

x

Contents

6.5 Performance Evaluation . 76
6.5.1 Kernel-level Evaluation . 77
6.5.2 Hotspot-level Evaluation . 78
6.5.3 Performance across all Benchmark Applications 82

6.6 Tiling Performance . 84
6.7 Data Transfer Optimizations . 87
6.8 Chapter Conclusion . 89

7 Conclusion and Outlook 91
7.1 Summary . 91
7.2 Outlook . 92

7.2.1 RTCS Use Cases . 92
7.2.2 Targeting FPGAs . 93
7.2.3 Optimizing OpenCL Performance . 93
7.2.4 Automatic Loop Parallelization . 94

7.3 Chapter Conclusion . 94

Acronyms 95

Author’s Publications 97

Bibliography 99

Appendix A Kernel and Hotspot-level speedups 107

xi

List of Tables

2.1 Parallelization approaches, required developer activity and target architec-
tures. 11

3.1 Monitoring information that can be collected by the Orchestrator. 15
3.2 Various application and system-level goals and constraints supported by the

Orchestrator. 16

4.1 Scope of OpenCL memory w.r.t. the OpenCL execution model. 24

5.1 Built-in LLVM canonicalization and optimization passes used by the RTCS. 37

6.1 The specifications of the different heterogeneous devices. 64
6.2 Benchmark applications and their description. 65

xiii

Listings

5.1 An example of an implementation represented as a lambda expression and
its registration with the Orchestrator. 38

5.2 An example of a hotspot (CPUBaselineFunction) that contains multiple ker-
nels from a SAVE-Enabled application that detects the motion between two
images. 40

5.3 Pseudo C code for a 3× 3 convolution demonstrating loop dependencies. . . 41
5.4 Pseudo OpenCL C code for a transformed parallelized OpenCL C kernel. . 47
5.5 Pseudo OpenCL C code for a tiled convolution kernel (skewed) that uses

local memory. 53
5.6 Pseudo OpenCL C code for a matrix multiplication kernel using global

memory. 54
5.7 Pseudo OpenCL C code for a matrix multiplication kernel using tiling and

local memory. 58

xv

List of Figures

3.1 Overview of the saveHSA and the Orchestrator. 14

3.2 Structure of a SAVE-Enabled application and its interaction with the Or-
chestrator. 17

3.3 Heartbeat loop of a SAVE-Enabled application. 18

4.1 Phases of the LLVM compiler toolchain. 20

4.2 The inheritance diagram for the Execution Engine. 21

4.3 OpenCL platform model. 22

4.4 The relationship between the ND-Range, work-groups, the wavefront and
work-items. 24

4.5 OpenCL memory model showing the data flow between the host (CPU) and
the OpenCL device. 25

5.1 Heartbeat loop of a SAVE-Enabled application with RTCS support. 28

5.2 High level outline of the RTCS Client-Server architecture. 29

5.3 Overview of the RTCS compiler architecture. 31

5.4 The interaction of the Orchestrator, the RTCS and the SAVE-Enabled ap-
plication. 33

5.5 Structure of the custom message format. 35

5.6 A schematic representation of the Hotspot Data Structure. 36

5.7 The structure of a data optimized kernel chain when executed on an accel-
erator. 43

5.8 The heartbeat loop with the inserted accelerator hooks (registration func-
tions). 45

5.9 A basic 3× 3 sharpness convolution filter. 49

5.10 Data reuse between two neighbors for a 3× 3 convolution filter. 50

5.11 Loading the required halo region of a work-group. 50

5.12 Computation of element Cij for C = A×B. 55

5.13 Tiled Matrix Multiplication. 56

6.1 The motion application and its kernels. 67

6.2 Overview of the RTCS overheads. 70

xvii

List of Figures

6.3 The initialization, analysis and application preparation overheads of the
RTCS. 72

6.4 The code generation overheads of the RTCS. 73
6.5 OpenCL compilation overheads for different OpenCL devices. 74
6.6 Loading overhead of the OpenCL binary for different OpenCL devices. . . . 76
6.7 Measurement of the kernel-level and hotspot-level performance. 77
6.8 fir: Kernel and hotspot-level speedup for different input sizes 78
6.9 heat2D: Kernel and hotspot-level speedup for different input sizes 79
6.10 2mm: Kernel and hotspot-level speedup for different input sizes 80
6.11 fir : The slowdown at the hotspot-level when compared to the kernel-level

performance. 81
6.12 Kernel and hotspot-level speedups for all benchmark applications 83
6.13 2mm : Kernel speedup when using tiling and local memory. 85
6.14 enhance : Kernel speedup when using tiling and local memory. 85
6.15 heat2D : Kernel speedup when using tiling and local memory. 86
6.16 motion : Kernel speedup when using tiling and local memory. 86
6.17 Unoptimized and Optimized OpenCL data transfer overheads over different

input sizes for motion. 88

A.1 bsop: Kernel and hotspot-level speedup for different input sizes 108
A.2 enhance: Kernel and hotspot-level speedup for different input sizes 109
A.3 nbody: Kernel and hotspot-level speedup for different input sizes 110
A.4 motion: Kernel and hotspot-level speedup for different input sizes 111
A.5 raytrace: Kernel and hotspot-level speedup for different input sizes 112
A.6 sha256: Kernel and hotspot-level speedup for different input sizes 113
A.7 stereo2D: Kernel and hotspot-level speedup for different input sizes 114

xviii

CHAPTER 1

Introduction

1.1 Motivation

Today’s world has seen an increased demand for computational power. Applications such
as scientific computing, data analytics, voice and gesture recognition, weather forecast-
ing, financial analysis, medical imaging, machine learning and artificial intelligence are
driving this demand. Traditionally, this demand was satisfied by building in-house data
centers, and adding additional CPU nodes as the demand increased. However, building
and operating a data center can be expensive and difficult to manage with aspects like
cooling, power management, reliability, device lifetimes, emissions, security and resource
utilization needing to be taken care of. With many users preferring not to build their
own systems, the shift towards cloud computing [17] has been established, where cloud
computing allows providers to profit from economies of scale by deploying hundreds of
thousands of identical nodes.

Many applications involve a large number of arithmetic operations that can be executed
concurrently. CPUs are computation devices that can handle generic computation tasks,
but are inefficient when compared to dedicated hardware. On the other hand, Graphics
Processing Units (GPUs) and architectures with Many Integrated Cores (MICs) are de-
signed to perform massively parallel computations, offering a considerable advantage in
performance and energy efficiency when compared to CPU-only systems. Such data paral-
lel workloads are driving architectures toward efficient, low power heterogeneous systems
with CPUs, GPUs and MICs physically integrated into a single compute node. Such het-
erogeneous systems are able to improve the overall performance of the system by executing
control-intensive code on a general-purpose host CPU and executing computationally in-
tensive data-parallel kernels on accelerators designed to maximize data throughput.

Many companies (like Amazon EC2, Google Cloud Platform, IBM SoftLayer, Microsoft
Azure, Rackspace, etc.) provide on demand access to scalable, heterogeneous nodes featur-
ing state-of-the-art multi-core CPUs, GPUs or MICs (Intel Xeon PHI). Such systems are

1

Chapter 1.1. Motivation

capable of processing parallel workloads very efficiently, while being more energy efficient
than regular CPU-only clusters. For many concrete workloads, regular CPU systems com-
bined with accelerators can reach higher levels of performance whilst being more energy
efficient [8]. Performance and energy efficiency requirements are the main driving force
behind the popularity of such accelerators in High Performance Compute (HPC) centers,
where applications incorporating several types of algorithms are able to benefit from the
distinct architectures of each accelerator [10].

Integrating different accelerators from different vendors, consisting of different architec-
tures and memory hierarchies into the same compute node, brings its own set of challenges.
In an effort to standardize platform design and in order to unlock the performance and
power efficiency of modern parallel accelerators, the HSA Foundation [39] has developed
the Heterogeneous System Architecture (HSA). The HSA introduces multi-vendor archi-
tecture support allowing heterogeneous execution on different resources like CPUs, GPUs,
DSPs, FPGAs and even on complex systems-on-chip (SoCs), bringing heterogeneous com-
puting to platforms like mobile devices, desktops and high-performance computing (HPC)
systems [40]. However, this increase in heterogeneity also increases the complexity of such
systems.

To be able to achieve optimal performance/energy trade-off on such systems, system
architects need to take into account the application mix, their workload, as well as the
efficiency and utilization of different heterogeneous resources. The SAVE project (Self-
Adaptive Virtualization-aware high-performance/low-Energy heterogeneous system archi-
tectures) [23] tries to address these limitations by extending the HSA and introducing
self-adaptiveness and hardware-assisted virtualization for dynamically changing working
scenarios. This state-of-the-art architecture is known as the saveHSA and allows the sys-
tem to autonomously decide which computing resources are exploited to achieve efficient
execution based on user-defined optimization goals like performance or energy goals [72].
It achieves this by adding a smart self-adaptive layer to the operating system that is re-
sponsible for distributing tasks to different heterogeneous resources (CPUs, GPUs, MICs,
etc.).

This advanced run-time and self-adaptive layer is known as the Orchestrator [13] and
enables the SAVE heterogeneous system to efficiently manage accelerators for diverse ap-
plications with dynamic workloads while at the same time satisfying application level and
overall system level goals. The Orchestrator is capable of dynamically and seamlessly
offloading the workload to available resources by taking into account the changeable work-
loads, application goals, system constraints and resource availability. However, this is only
possible when the corresponding accelerator code is available. This means that application
developers need to port their applications to different accelerators, to fully benefit from
the Orchestrator and the saveHSA. Accelerators in heterogeneous systems are diverse,
with different architectures, programming techniques, tools, compilers and optimizations.
Application developers not only require application and domain-specific knowledge, but
also need to understand the different target accelerators, leading to an increase in the
design effort and costs.

2

Developers might choose to use one of the different standards, pragmas, templates,
extensions, languages or various semi and fully automatic parallelization compilers and
tools that simplify the task of porting sequential applications to parallel accelerators.
However, many of these approaches often support just a single architecture and are only
capable of targeting a subset of the accelerators in heterogeneous systems. Among the
programming models that expose many platform details to the developer, from a functional
perspective, OpenCL [74] is the most portable one, supported by multi and manycore
CPUs, GPUs and recently also by FPGAs [73, 43]. However, OpenCL not only poses the
challenge of extracting hotspots into kernels and optimizing them for the target accelerator
architecture, it also involves writing OpenCL host code to initialize OpenCL devices, create
buffers on the accelerator, transfer the required data to the accelerator and finally launch
the kernel on the accelerator. This is a time consuming and error-prone process. Given
these challenges, there is a considerable gap between the architectural potential of highly
heterogeneous multi-accelerator architectures and their actual adoption and utilization.

1.2 Contributions of this Thesis

The main contribution of this thesis is the development of a novel approach that can auto-
matically parallelize sequential applications and transparently generate accelerated code
targeting different heterogeneous multi-accelerator architectures. Our approach enables
users to automatically and transparently accelerate applications from diverse domains
and offload computation to different accelerators without any manual effort. Our ap-
proach partially builds upon and integrates results from different open-source projects like
LLVM [53] and Axtor [65]. A fork of our approach known as HTrOP has been released as
an open-source project and is publicly available under the MIT license on GitHub [41].

The main contributions of this thesis are:

1. We present a novel Runtime and Just-in-Time Compilation System, known as the
RTCS, which is a user-transparent end-to-end approach and practical realization for
bringing sequential programs to parallel execution on different accelerator targets
via OpenCL.

2. Based on the analysis of loop structures in applications, we identify parallelization
opportunities and present a technique that automatically detects and transforms
suitable data-parallel loops into independent OpenCL-typical work-items that are
executed in parallel (OpenCL kernels).

3. Not only do we generate parallelized OpenCL kernel code, we also automatically
generate the intricate OpenCL host code required to setup the OpenCL device,
create OpenCL buffers, transfer data to the device and launch the OpenCL kernel
on the device.

4. Focusing on improving the performance of the generated OpenCL kernels, we present
an automatic tiling approach that exploits shared memory to improve global memory
efficiency.

3

Chapter 1.2. Contributions of this Thesis

5. We further improve application performance by analyzing the application and ap-
plying data transfer optimizations to reduce the amount of data transferred to and
from the accelerator.

6. Integrating our transparent and automated approach into the self-adaptive saveHSA
allows the saveHSA to efficiently manage heterogeneous systems by using our RTCS
approach to JIT generate accelerator specific code that was previously unavailable.

7. In the domain of parallelization and offloading tools, the RTCS is unique in its
combination of transparency and flexible support for different target architectures.

8. Since we make use of different open-source projects in our approach, we also give
back to the open-source community by releasing a version of our approach as an
open-source project on GitHub.

We also perform a thorough evaluation of performance gains targeting different accel-
erator architectures, with a comparison against handwritten pragma-based code. Overall,
our results demonstrate the feasibility and the effectiveness of our approach by improving
the overall performance for a wide range of application domains and different accelerator
technologies. The saveHSA in turn is able to benefit by improving the system’s perfor-
mance, utilization and energy efficiency. The RTCS can achieve comparable performance
to handwritten OpenACC code, while being fully automated. A particular quality of our
OpenCL-based approach is that it treats additional CPU cores beyond the first one essen-
tially like any discrete accelerator (mCPU), which can greatly facilitate resource allocation
and utilization in a dynamic, heterogeneous HPC context.

The SAVE Project: A large portion of this work was performed as part of the SAVE
project [23]. SAVE stands for “Self-Adaptive Virtualization-aware high-performance/low-
Energy heterogeneous system architectures” and was a collaborative project between lead-
ing partners in the field of academic research and industry under the European Union Sev-
enth Framework Programme (FP7). The consortium consisted of Politecnico di Milano,
Technological Educational Institute of Crete and Paderborn University on the academic
side, while STMicroelectronics, Virtual Open Systems, Maxeler Technologies and ARM
made up the industry part of the consortium.

The aim of the SAVE project was to develop state-of-the-art hardware and software
technologies that are able to efficiently exploit heterogeneous system architectures. Po-
litecnico di Milano and Paderborn University focused on the software aspect, while the
remaining members of the consortium looked at the hardware aspects (e.g. virtualization,
cache coherency, etc.). Politecnico di Milano’s main area of research was the self-adaptive
system (Orchestrator), while we explored different techniques to automatically parallelize
sequential code and transparently offload computation to different types of accelerators in
heterogeneous systems (RTCS).

To this extent, we have presented our collaborative work and published peer-reviewed
results in distinguished conferences and journals. We have also received a best paper

4

award for [Vaz14] with Gavin Vaz being the first author. The author’s publications are
summarized before the main bibliography on page 97.

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 looks at the different state-of-the-art programming languages and extensions
that can be used to reduce the complexities of accelerator programming. Different acceler-
ation techniques that try to automatically accelerate legacy applications are also explored.

Chapter 3 describes the saveHSA-Orchestrator in detail and looks at its inner workings.
It also introduces the SAVE-Enabled application and describes its execution.

Chapter 4 gives a brief introduction to the LLVM compiler infrastructure and the
OpenCL framework, both of which are required to understand our approach.

Chapter 5 is devoted to the main contributions of this thesis and presents our Runtime
and Just-in-Time Compilation System approach in detail.

Chapter 6 presents a detailed evaluation of our approach and includes the evaluation of
the overheads as well as the performance. Additionally, our approach is also evaluated
against handwritten pragma-based code.

Chapter 7 summarizes the work presented in this thesis and discusses directions for
future research.

5

CHAPTER 2

Related Work

Modern heterogeneous systems have multiple accelerators attached to the same compute
node that offer different levels of parallelism. Such systems are capable of providing high
performance with low energy consumption. However, legacy applications need to be first
ported to the accelerators in order to take advantage of their performance. The task
of parallelizing and porting legacy code to heterogeneous systems lying squarely on the
shoulders of the application developer. This requires the understanding of the applica-
tion, determining the data and control dependencies and then writing the parallel code
for different accelerators that need to be supported. Differences in the accelerator archi-
tectures, their memory hierarchies and level of parallelism makes this a very challenging
and daunting task.

In this chapter, we first look at how new programming languages or extensions can be
used to make accelerator programming easier. Secondly, we look at different acceleration
techniques that try to automatically accelerate legacy applications.

2.1 Accelerator Programming

In the manual approach, the developer has to identify the appropriate regions of the
application that might benefit from parallel execution on an accelerator. This analysis
could either be performed by visual inspection of the code by an experienced developer or
by using profiling tools to determine application hotspots (or bottlenecks). The identified
hotspots need to be then manually adapted for the particular accelerator or programming
model. This is a time consuming and error-prone process, as each model has its own APIs
and level of abstraction.

Developers can choose to accelerate their applications by using pragma-based language
constructs (when supported) or write accelerator specific code from scratch. Pragma-based
approaches make use of compiler directives to guide the compiler. Pragmas can be ignored
by non-conforming compilers or runtime environments. Thus, when code with pragmas

7

Chapter 2.1. Accelerator Programming

meets the right environment, it is executed with acceleration, otherwise without. APIs
such as OpenMP [21] and OpenACC [34] use pragmas to annotate regions that should be
accelerated. Instead of writing accelerator code from scratch, the developer only needs
to insert pragmas at the right places in the application code and the compiler does the
heavy lifting by taking care of the thread and data management, freeing the developer
from low-level details.

Threading Building Blocks (TBB) [50] on the other hand, supports parallel program-
ming with the help of a C++ template library. TBB makes it easier to write parallelized
applications when compared to other threaded approaches. However, the application de-
veloper needs to completely rewrite application hotspots to be able to take advantage of
TBB. Additionally, at the moment, TBB can only target multi-core processors, making it
unattractive for use in heterogeneous systems.

GPUs are one of the most prominent accelerators being currently used in High Perfor-
mance Computing (HPC). The CUDA [66] programming language was the first program-
ming language to give the developer precise control of the accelerator and direct access
to the GPU’s parallel computational elements. Developers can use CUDA to accelerate
C/C++ or Fortran applications by modifying the application to execute computationally
intensive parts of the application on the GPU. CUDA provides extensions for C/C++ and
Fortran with additional qualifiers and keywords that allow the developer to program the
GPU. It also provides different Application Programming Interfaces (APIs) and compiler
directives to manage and launch kernels on the GPU. CUDA is however a proprietary
programming language created by Nvidia and can only be used to program Nvidia GPUs.

C++ Accelerated Massive Parallelism (C++ AMP) is a programming model which un-
like CUDA works on GPUs from different vendors. C++ AMP is an open specification [19]
and is capable of compiling applications to execute on data-parallel accelerators. It allows
the programmer to express parallelism directly in C++. Since C++ AMP is an open
specification, different compiler toolchains can choose to implement it to support different
accelerators. C++ AMP is published by Microsoft and is a part of their Visual Studio
IDE and is currently only supported on Windows machines [84].

OpenCL [74] provides an open standard interface for parallel computing using task
and data-based parallelism, which can be executed across different heterogeneous devices.
Unlike CUDA, C++ AMP and TBB, OpenCL is not restricted to a specific platform or to a
specific vendor. OpenCL is backed by a large number of hardware vendors like Intel, IBM,
ARM, Xilinx, AMD, Nvidia and Qualcomm to name a few. There exist several conformal
implementations of OpenCL that support multi-core CPUs, GPUs, MICs (Intel Xeon
PHIs [46]), DSPs and more-recently FPGAs [73, 43]. The programming model is similar
to CUDA where the developer needs to explicitly express parallelism. OpenCL specifies
unified APIs to control the device, transfer and handle the data and execute the hotspots
(see Section 4.2). The OpenCL standard abstracts away the different accelerators and
their architectures as OpenCL devices, allowing the developer to target diverse accelerator
architectures with the same OpenCL kernel code. This functional portability, however
does not guarantee performance portability across different accelerator architectures (see
Chapter 6).

8

2.2 Transparent Acceleration and Parallelization

Transparent acceleration aims to parallelize sequential applications by automatically de-
tecting application hotspots and generating corresponding accelerated code. Commercial
compilers like the Intel C++ Compiler are able to automatically translate sequential parts
of an application into equivalent multi-threaded code. The compiler analyses the code to
determine loops that contain parallelism and are good candidates to parallelize. It also
performs dataflow analysis and partitions the application for threaded code generation [44].
The compiler then transforms the parallelizable loops into separate threads that can be ex-
ecuted in parallel. The Intel compiler can target both Intel and non-Intel microprocessors
as well as the Intel Many Integrated Core Architecture. However, automatic parallelization
for GPUs and other heterogeneous resources are presently not available.

The SUIF (Stanford University Intermediate Format) compiler system [1, 57] is capable
of automatically translating sequential dense matrix code into parallel code for large-
scale parallel machines. The compiler first accepts sequential C or FORTRAN code and
translates it into an intermediate representation. The code is then analyzed for parallelism
and data locality after which it is optimized and finally the parallel code is generated.
However, the generated accelerated code can only target shared address space machines
like the Stanford DASH multiprocessor[54] and the Kendall Square Research KSR-1.

Tournavitis et al. [78] developed a semi-automatic approach that uses profiling-based
analysis along with machine-learning to parallelize sequential applications. Dynamic pro-
filing data is used to determine the data and control dependencies of the application.
Based on this analysis, the source code is annotated with OpenMP pragmas for paral-
lel loops. A previously trained machine-learning based prediction mechanism is used to
decide if and how a parallel loop candidate should be parallelized. In this step, if the pre-
dictor determines that the loop will benefit from parallelization, OpenMP work allocation
clauses are added to the code, otherwise the OpenMP annotations are removed. However,
the user is required to approve the loops that were parallelized automatically making it a
semi-automatic approach.

Cetus [22] is a Java based automatic parallelization tool that is capable of performing
source-to-source transformation of C applications. Cetus analyses the application for data
dependencies with Banerjee-Wolfe inequalities [6] and also detects reduction-variables. It
then parallelizes the code by performing array and scalar privatization and induction-
variable substitution. Cetus however only supports multi-core accelerators. Other auto-
parallelizing compilers like ROSE [56], Polaris [12], or auto-parallelization approaches like
[9], or auto-parallelization tools like the ParaWise Expert Assistant [47] and S2P [4] only
target shared memory multi-core processor directly or via OpenMP and are unable to
target the different accelerators of a heterogeneous system.

The PGI [69] compiler is capable of generating a heterogeneous executable by com-
bining different accelerator implementations into a single executable. It also supports
auto-parallelization for Fortran, C and C++ applications. The compiler searches for and
then automatically parallelizes loops that do not contain any cross-iteration data depen-
dencies. It ignores loops with calls to other functions as well as loops with low iteration

9

Chapter 2.2. Transparent Acceleration and Parallelization

counts. However, compiler switches can be used to override most of these restrictions.
Presently, the PGI compiler only supports multi-core processors and Nvidia GPUs.

The Par4All [68] auto-parallelizing and optimizing compiler was a source-to-source com-
piler aimed to merge various open-source developments in order to transform sequential
applications into parallel ones. It accelerated C and Fortran sequential programs by gen-
erating parallelized sources for different hardware platforms like OpenMP, CUDA and
OpenCL. Vendor specific tools and compilers where then used to generate the accelera-
tor specific executable for multi-core systems and other parallel accelerators like GPUs.
Par4All looked like a promising tool that could target heterogenous accelerators, however
the development efforts were frozen after SILKAN withdrew their support in 2012.

PLuTo [15] is an end-to-end framework that is capable of automatically parallelizing
and optimizing sequential applications. Internally PLuTo makes use of the polyhedral
model [32] to reorder the loop execution with improved cache locality or to parallelize
them. First, a polyhedral model is used to perform static dependence analysis. The loop
is then transformed to expose parallelism and improve data locality by performing tiling or
fusing the loops by using affine transformations. Finally, accelerated (annotated) OpenMP
code is generated using CLooG [7]. CLooG stands for Chunky Loop Generator and was
designed to be the back-end of the polyhedral model. Similar to previous tools, it can
only target accelerators that are supported by OpenMP.

Grosser et al. [33] also make use of the polyhedral model in their Polly-ACC compiler.
Polly-ACC is a heterogeneous compiler capable of automatically parallelizing applications.
Like the PGI compiler, it can also generate hybrid executables (CPU + GPU). Hotspots
are identified by detecting Static Control Parts (SCoPs) of an application. A modified
version of the PLuTo scheduler [14] is used to expose parallelism and increase data locality.
PPCG [80] is used to generate a profitable accelerator schedule for GPUs while LLVM’s
NVPTX [79] back-end is used to generate code for Nvidia GPUs. On the other hand,
Kalms et al. [48] are able to generate OpenCL code by using the polyhedral model. Similar
to Polly-ACC, their source-to-source compilation framework also works on SCoPs. The
main focus of their work is the PPCGSourceCodeGeneration module that converts SCoPs into
the PPCG format and then generates OpenCL host and device code via a custom LLVM
Intermediate Representation (LLVM IR) to C code writer. Although their approach is
able to target OpenCL, it cannot generate accelerator optimized OpenCL code and lacks
hybrid execution with the host code being able to only offload to a single accelerator.

Damschen et al. [Dam15] describe a LLVM-based client-server architecture called BAAR
where hotspots are also detected as SCoPs and offloaded at runtime to an Intel Xeon PHI.
In the envisioned architecture, the client machine only consists of a low-power CPU and
the server has the PHI attached to it (loosely coupled). To accelerate a SCoP, the client
issues a remote procedure call (RPC) with the LLVM bitcode and sends the function
arguments via MPI [31] to the server. The server generates code and executes the request.
To utilize the vector processing units and manycore processors of the PHI, the code is
vectorized using Loop and Superword-Level Parallelism (SLP) provided by LLVM [5].
The sequential code is parallelized with OpenMP to generate sufficient computing threads.
However, this approach has a number of drawbacks: using SCoP limits the loops that can

10

be parallelized; targeting OpenMP instead of OpenCL limits this approach to a smaller
number of heterogeneous devices; the server can easily become a bottleneck for multiple
clients and the RPC calls cause additional data transfer overheads which need to be
amortized. In our work, the execution environment is tightly coupled to the accelerators
and the OpenCL kernel code is generated by a centralized service.

2.3 Chapter Conclusion

In this chapter, we looked at the different standards, templates, extensions and languages
that developers can exploit to simplify the task of porting sequential applications to parallel
accelerators. However, most of these approaches are only capable of targeting multi-core
processors, manycore processors or Nvidia GPUs. Additionally, some tools like C++ AMP
only work on specific platforms. OpenCL on the other hand supports diverse accelerators,
making it highly relevant in the HPC context, but also particularly interesting for mobile
devices and embedded platforms [29, 55, 30]. The only caveat of using OpenCL is that one
needs to manually translate the application. This involves writing OpenCL kernel code
for the application hotspots, as well as writing OpenCL host code to transfer data and
launch the kernel on the accelerator. This is a time consuming and error-prone process.
In our approach, we automatically identify application hotspots and generate OpenCL
kernels which are then automatically integrated into the application by generating the
corresponding OpenCL host code.

Table 2.1: Parallelization approaches, required developer activity and target architec-
tures.

OpenMP OpenACC OpenCL others RTCS

parallelization pragmas pragmas kernel +
host code

automatic automatic

multi-core CPU supported supported supported Polly [32]
(OpenMP)

demonstrated

Xeon Phi supported - supported - demonstrated

Nvidia GPU experimental supported supported PollyACC [33]
(NVPTX)

demonstrated

other GPUs experimental - supported - possible

FPGAs research research supported - research

We also looked at various semi and fully-transparent parallelization compilers and tools.
These approaches are capable of targeting specific accelerators, either by direct compila-
tion to parallel architectures or by employing source-to-source transformations to target
languages like OpenMP that support compilation to parallel accelerators. Most of these
approaches either target multi-core processors, manycore processors or Nvidia GPUs and

11

Chapter 2.3. Chapter Conclusion

are not suitable for the heterogeneous system containing other types of accelerators. In
our work, we try to bridge this gap by developing a fully automated and transparent com-
pilation and runtime approach that allows sequential legacy programs to be executed in
parallel on different heterogeneous accelerator targets via OpenCL. Table 2.1 summarizes
and compares the most relevant alternative approaches with the RTCS.

In the next chapter, we will take a look at the Orchestrator in detail and how it uses
application-level as well as system-level goals to select the optimal accelerator for a given
application.

12

CHAPTER 3

The saveHSA-Orchestrator

The SAVE heterogeneous system is able to efficiently manage accelerators for diverse
applications with dynamic workloads. The Orchestrator is an advanced run-time and
self-adaptive operating system layer that is the primary component of the saveHSA. The
Orchestrator is developed by Bolchini et al. [13] and is capable of dynamically and seam-
lessly offloading the workload to available resources by taking into account the changeable
workloads, application goals, system constraints and resource availability. It is responsi-
ble for balancing the different accelerator resources to improve their overall performance,
utilization, dependability, programmability and self-awareness in HPC systems.

The Orchestrator makes use of the Heartbeat framework [38] to dynamically monitor
the performance of the executing applications. Each application sends the Orchestrator
periodic heartbeats via a Heartbeat API. These heartbeats are used by the Orchestrator
to monitor the quality of service (QoS) or performance of the application. The QoS
is represented as the number of heartbeats per second and is known as the heart-rate.
For example, in a video processing application, a heartbeat is issued after processing
each frame, making the heart-rate equivalent to the frames per second. The application
developer can also use the Heartbeat framework to set application level goals. In the case
of the previous video processing example, a minimum and/or maximum number of frames
per second can be set as the application’s goal.

System managers can also set system level constraints for the Orchestrator. The Or-
chestrator monitors the performance of the applications (heartbeats) as well as the status
of the system and its resources. It uses this information to determine the optimal resource
for a given application such that application-level goals as well as system-level constraints
are met and then offloads the computation to the selected resource. These types of feed-
back loops are referred to as Observe-Decide-Act (ODA) loops and are one of the essential
building blocks in self-aware and adaptive systems. An overview of the Orchestrator along
with its interaction with the applications and HPC resources is depicted in Figure 3.1.
The CPU represents a single-core CPU, the mCPU represents a multi-core CPU while the

13

Chapter 3.1. The Observe-Decide-Act Loop

GPGPU represents a General-Purpose GPU. In the next section, we take a closer look at
the Observe-Decide-Act loop.

Monitor Actuator

Observe

Decide

App

M
on

ito
rin

g
AP

I

HPC Resources

GPGPUCPU MIC

ODA Loop

OrchestratorSAVE-Enabled App

ActO
rc

he
st

ra
to

r A
PI

Policies

mCPU

Figure 3.1: Overview of the saveHSA and the Orchestrator.

3.1 The Observe-Decide-Act Loop

The Orchestrator is able to adapt application as well as system behavior of the system by
making use of the ODA loop. As indicated by its name, the Observe-Decide-Act loop is
comprised of the following three phases:

• In the Observe phase, the Orchestrator monitors the different properties of the
applications as well as the different heterogeneous resources of the HPC system. In
Figure 3.1, the slanted lines show us where the Orchestrator monitors the application
and the system, while the blue lines represent the flow of the monitoring data to the
Orchestrator. The precise type of data collected depends on the concrete optimiza-
tion objectives of the ODA loop. Table 3.1 summarizes what data the Orchestrator
can collect during the observe phase of the ODA loop according to Bolchini et al. [13].

Applications can communicate their goals and constraints to the Orchestrator via an
API. They can also register different accelerator implementations with the Orches-
trator. For example, in addition to a CPU implementation, an application developer
might choose to also provide accelerated code targeting a GPU or a MIC. Each ac-
celerator implementation is known as an actuator and allows the Orchestrator to

14

Table 3.1: Monitoring information that can be collected by the Orchestrator [13].

Application Status
Information on performance and
energy consumption monitored for
each application

Throughput
Latency
Deadline
Performance per Watt
Energy consumption

Resource Status
Information on hardware resources
available through the Monitoring
Interface

Power
Energy
Temperature
Utilization
Frequency & Voltage

dynamically modify the behavior of the application at runtime by choosing a differ-
ent accelerator implementation.

Additionally, system managers can also specify system-level goals and constraints for
the Orchestrator. Table 3.2 summarizes the different application and system-level
goals and constraints supported by the Orchestrator according to Bolchini et al. [13].
Depending on the application mix, system managers can also devise different types
of policies to control application as well as the overall system behavior (e.g. an
earliest deadline first policy or a throughput-oriented heuristic).

• The Orchestrator has a global overview of the system and is aware of all the ex-
ecuting applications, their goals, constraints and also the different actuators that
are available. In the Decide phase, the Orchestrator uses this information and ap-
plies policies to the data collected in the observe phase to determine the optimal
resource to dispatch the application to such that application and system-level goals
and constraints are satisfied.

• In the Act phase, the Orchestrator instructs the application to execute on the se-
lected resource by actuating the appropriate actuator and is illustrated by the green
lines in Figure 3.1.

In this section, we saw that in order for the Orchestrator to dynamically modify the
behavior of an application at runtime, the application needs to support the heartbeat
framework as well as provide the Orchestrator with a mechanism to modify its behavior
at runtime. Applications that support this are known as SAVE-Enabled applications and
in the next section, we take a closer look at them.

15

Chapter 3.2. SAVE-Enabled applications

Table 3.2: Various application and system-level goals and constraints supported by the
Orchestrator [13].

Application-level

Constraints
(i.e., setting minimum/maximum
thresholds that should not be
exceeded)

Throughput
Latency
Deadline
Performance per Watt
Energy consumption

Goals
(i.e., metrics to be optimized)

Throughput
Latency
Performance per Watt
Energy consumption

System-level
Constraints

Power
Energy consumption

Goals
Power
Energy consumption

3.2 SAVE-Enabled applications

For an application to benefit from the self-adaptive saveHSA, the application should:

• provide multiple accelerator specific implementations (actuators)

• use the Orchestrator API

• be able to report its progress via heartbeats

Heterogeneous HPC nodes have different accelerators with different computational prop-
erties. These properties can be exploited by the Orchestrator by modifying the behav-
ior of an application/system at runtime. The Orchestrator achieves this by dynamically
offloading the computationally intensive part of the application (hotspots) to the most
suitable resource. However, this is only possible if the application provides and registers
different accelerator specific hotspot implementations (actuators) with the Orchestrator.
Application developers need to create different accelerator specific implementations for the
application hotspot and then register them with the Orchestrator using the Orchestrator
API. This API is also used to set the application-level goals (in terms of throughput,
latency, etc.).

Applications that implement the Orchestrator API are able to benefit from the saveHSA
and are referred to as SAVE-Enabled applications (SEAs). The typical structure of a SEA
and its interaction with the Orchestrator is depicted in Figure 3.2. Initially, the application
is initialized and the application-level goals are set using the Orchestrator API. We can
see that in this example, the application implements a CPU as well as a GPGPU version
of the hotspot, which are then registered with the Orchestrator via the Orchestrator API.

16

- Allocate Memory/Buffers,
- Define Application Goals

Register Implementations
with the Orchestrator

heartbeat loop, for each iteration:

Orchestrator Selects
Implementation

Hotspot is executed on
the selected resource

Heartbeat is incremented: provide
information on appl. performance

initial setup:

Hotspot Implementations
CPU GPGPU

SAVE-Enabled Application

register actuators (CPU, GPGPU)

select CPU or GPGPU

report performance per iteration

Orchestrator

Monitor Actuator

Initialization / pre-processing

save output / post-processing

set application-level goals

Figure 3.2: Structure of a SAVE-Enabled application and its interaction with the Orches-
trator.

The Orchestrator needs to monitor the application in order to determine the QoS/per-
formance of the application. This is represented by the heartbeat loop in Figure 3.2. It is
known as the heartbeat loop because after each loop iteration, the application’s execution
progress is reported to the Orchestrator in the form of a Heartbeat. Additionally, the
Orchestrator also needs to instruct the application to execute on the resource it chose
during the Decide phase. This is done at the beginning of each iteration in the heartbeat
loop, before the hotspot is executed. If an application is not a SEA, it will still be ex-
ecuted on the saveHSA, but it will not profit from the advanced saveHSA features. To
help understand how the Orchestrator interacts with the heartbeat loop, we briefly look
at how a heartbeat loop is executed with the help of an example.

17

Chapter 3.3. Chapter Conclusion

Execution of a Heartbeat Loop The typical execution of a heartbeat loop is depicted
in Figure 3.3. At the beginning of the heartbeat loop, the Orchestrator has the possibility
of switching between the implementations that have been previously been defined by
the application programmer and registered with the Orchestrator. In this example, the
platform supports four resources (CPU, mCPU, GPGPU and MIC), however only two
implementations of the hotspot have been provided (CPU and GPGPU). Allowing the
Orchestrator to adapt the performance/behaviour of the application by selecting either
the CPU or GPGPU at the beginning of each loop iteration. Even though the platform
has a MIC available, the Orchestrator cannot exploit it as the application does not provide
an implementation for the MIC.

resource switch
based on policy

CPU GPGPU

heartbeat loop

mCPU MIC

hotspot actuator

CPU GPGPU

heartbeat loop

mCPU MIC

hotspot actuator

re
so

ur
ce

s

re
so

ur
ce

s

Missing Available Executing

Figure 3.3: Heartbeat loop of a SAVE-Enabled application.

3.3 Chapter Conclusion

In this chapter, we looked at the inner working of the Orchestrator and how it plays an
integral part of the saveHSA. We have seen that the Orchestrator can transform cur-
rent static workload-based systems to systems that are self-aware and capable of running
real-world applications with on-demand computation requirements for dynamic workloads
and different performance requirements. While at the same time balancing the use of ac-
celerator resources to improve performance, utilization, dependability and overall energy
utilization of such systems.

However, the Orchestrator is only able to achieve this if different accelerator specific im-
plementations for the application hotspot are available. This forces application developers
to port their applications to different accelerators in order to benefit from the saveHSA.
Accelerators in heterogeneous systems are diverse, with different architectures requiring
different programming techniques, tools, compilers. Application developers not only re-
quire application and domain-specific knowledge, but also need to understand the different
target accelerators in detail, leading to an increase in the design effort and costs. In the
following chapters we introduce our Runtime and Just-in-Time Compilation System that
attempts to bridge this gap.

18

CHAPTER 4

Background

The Runtime and Just-in-Time Compilation System builds upon the LLVM compiler
infrastructure to perform code analysis, parallelize hotspots, generate accelerate code and
integrate the newly generated code into the already executing application. Additionally,
the RTCS makes use of OpenCL to target multiple accelerators. Hence, in this chapter,
we take a look at the LLVM compiler infrastructure as well as the OpenCL framework.

4.1 LLVM Compiler Infrastructure

The LLVM compiler infrastructure is an open-source project comprising of a “collection of
modular and reusable compiler and toolchain technologies” [60, 53]. The LLVM compiler
employs a three-phase compiler design to compile an application from source code to
binary code. Figure 4.1 shows the different phases of the LLVM compiler.

The front-end is responsible for parsing the source code, diagnosing errors and translat-
ing it into an intermediate representation (LLVM IR). There are many front ends available,
each supporting different high-level programming languages. clang is the most popular
one, and is used for C/C++ programs. llgo, flang and rust are a few of the other front-
ends and support Golang, Fortran and Rust respectively. Similar to traditional compilers,
the LLVM front-end includes lexical analysis, syntactic analysis, semantic analysis and
intermediate code generation phases. The LLVM IR is a low-level programming language
representation that is similar to assembly instructions which allows high-level programs
to be represented in a machine independent form. The LLVM IR is represented in a static
single assignment (SSA) form where all variables need to be defined before they are used
and each variable is assigned exactly once.

19

Chapter 4.1. LLVM Compiler Infrastructure

front-ends

*.c , *.cpp *.go *.f90 , *.f95 *.rs

passes

back-ends

Source
Code

clang llgo flang rust

x86 ARM PowerPC NVPTX

LLVM IR

Analysis Trasformation Utility

LLVM IR

Object
Code

Figure 4.1: Phases of the LLVM compiler toolchain.

One of the main advantages of LLVM over traditional compilers is that the LLVM IR
can be analyzed, optimized and transformed using different LLVM Passes.

• The Analysis Passes analyze the LLVM IR and generate data structures that other
passes can access and use. Generally, analysis passes do not modify the LLVM
IR. Alias analysis, dom tree construction or basic call graph construction are a few
examples of analysis passes.

• Transformation Passes on the other hand, modify the LLVM IR in some way or the
other. These passes are generally used to perform code optimizations. Dead code
elimination, constant propagation or combining of redundant instructions are a few
of the available transformation passes.

• The Utility pass provides some bookkeeping or utilitarian functionality such as a
pass for viewing the CFG of a function, which cannot be classified as analysis or
transformation pass.

20

All the available passes are summarized in the LLVM documentation [62]. Multiple
passes can be run in sequence to optimize the LLVM IR with the help of the LLVM Pass
Manager which optimizes their execution by avoiding re-computation of analysis results as
much as possible and scheduling the passes to run efficiently by pipe-lining them together.
In our approach, we make use of inbuilt LLVM analyses and transformation passes as well
as write our own custom passes to analyze the application and parallelize the hotspots.

The LLVM back-ends use the LLVM IR to generate target specific machine code. LLVM
supports a variety of target instruction sets, including x86, x86-64, ARM, PowerPC or the
Nvidia Parallel Thread Execution (NVPTX) to name a few.

The notable feature of this three-phase compartmentalized LLVM compiler infrastruc-
ture is that it is relatively easy for a compiler developer to add new components to a
particular phase. For example, adding a new code optimization requires the developer
to write a new analysis and/or transformation LLVM pass [83] without being concerned
about the front-end or back-end. Similarly, targeting a new architecture requires little or
no understanding of the front-end or passes modules.

In addition to the traditional compilation work-flow that creates a machine executable
binary for a specific target, the LLVM compiler infrastructure also provides us with an
execution environment similar to the Java VM and is known as the Execution Engine.
It supports an interpretation-based execution model as well as a JIT execution model
(Figure 4.2). The interpreter translates the program one statement at a time while the
Machine Code JIT (MCJIT) execution engine compiles the entire module before executing
any function. It does not support lazy function-level compilation, but has broader platform
support and better tool integration. Latest versions of the LLVM supports the On-Request
Compilation MCJIT (ORC MCJIT) execution engine which is a modular implementation
of the MCJIT’s design philosophy of relying on the MC layer while supporting the lazy
compilation of functions. In our approach, we use LLVM 3.8.0 and make use of a modified
version of the MCJIT that allows us to recompile and link functions at runtime.

llvm::Iterpreter llvm::MCJIT llvm::orc::OrcMCJITReplacement

llvm::ExecutionEngine

Figure 4.2: The inheritance diagram for the Execution Engine [61].

Binary applications in the form of non-annotated LLVM Intermediate Representation
are used as the input to our runtime approach. This not only allows us to target applica-
tions that can be compiled into, or distributed in LLVM Intermediate Representation, but
also legacy applications (machine code) which can be decompiled [3] into LLVM IR. This
enables us to apply our approach in scenarios where the application source code is not
available [36]. In our approach, we leverage the LLVM compiler infrastructure to generate
and integrate accelerator specific code. The application is analyzed and transformed via.

21

Chapter 4.2. OpenCL Framework

custom analysis, optimization and transformation passes. Additionally, the LLVM MCJIT
execution engine is used to JIT compile and integrate the newly generated code into the
already executing application at runtime.

4.2 OpenCL Framework

According to Khronos, OpenCL (Open Computing Language) is an open, royalty-free
standard for cross-platform, parallel programming of diverse accelerators [77]. The goal
of the RTCS is to transparently accelerate sequential applications by offloading compu-
tationally intensive parts of the application to heterogeneous accelerators. The OpenCL
standard abstracts different accelerators and their architectures as OpenCL devices allow-
ing us to target diverse accelerator architectures with the same OpenCL code. Figure 4.3
shows an overview of the heterogeneous OpenCL architecture comprising of the Host and
the connected OpenCL devices. Each OpenCL device consists of a large number of Pro-
cessing Elements which are grouped together into different Compute Units. The number
of processing elements and compute units for a particular device is determined by the
device vendor. All processing elements belonging to a single compute unit execute the
same instruction in lockstep but work on different data.

Global /Constant Memory

Local Memory

Private Memory

Processing
Element

Compute Unit

OpenCL Device 0

Host

Main Memory

Global / Constant Memory

Local Memory

Private Memory

Processing
Element

Compute Unit

OpenCL Device n

Figure 4.3: OpenCL platform model.

22

4.2.1. Address Space and Memory Hierarchy

The host itself does not perform any OpenCL computation, but uses the OpenCL API to
manage the OpenCL devices, transfer the required data from main memory to the device
(and back), and call the required OpenCL kernels with the appropriate parameters. The
kernels can be compiled at run-time making them portable across different accelerators
(OpenCL devices). The kernel is a parallelized OpenCL C function (hotspot) that can be
executed independently and in parallel on an OpenCL device. Each instance of a kernel
execution is known as a work-item which executes the same kernel code but works on
different data. The iteration space of the kernel is represented as a N-Dimensional grid
(ND-Range), and is used to call the kernel from the host.

Figure 4.4 illustrates how a 2-dimensional ND-Range (work items) is divided into mul-
tiple work-groups. This is either done automatically by the OpenCL runtime or can be
manually specified by the application programmer. All work-items belonging to a work-
group execute on the same compute unit which allows the work-items to share (fast) local
memory of the compute unit enabling them to synchronize with one another. However,
depending on the application, such kernels should use synchronization points (barriers)
to guarantee that all the work-items belonging to the same work-group have reached the
synchronization point before executing the next statement.

Internally, OpenCL divides the work-groups by grouping consecutive work-item together
into a wavefront. The size of a wavefront cannot be set by the developer but is hardware
specific and is selected by the device vendor. During execution, each work-group is assigned
to a Compute Unit. The wavefronts are executed sequentially on this compute unit with all
the work-items within a wavefront executing in lockstep on the compute unit. According to
the AMD OpenCL User Guide [2], the best performance is attained when the work-group
size is an integer multiple of the wavefront size.

4.2.1 Address Space and Memory Hierarchy

Knowledge about the OpenCL memory hierarchy plays an important role in designing an
application with good performance. In Figure 4.3, we see that, at the device-level, each
device has its own global and constant memory. This memory is accessible by the host
and also by all the processing elements of the device. Constant memory, is a special type
of global memory (usually smaller) that is used to store read-only data. Depending on the
vendor implementation, constant memory might provide faster access times than global
memory. We also see that each compute unit has its own local memory and is accessible
by all processing elements belonging to that compute unit. It is important to note that
processing elements belonging to one compute unit cannot access local memory of another
compute unit. Local memory is very fast, but is limited in size and is used to efficiently
share data between work-items within the same work-group. Finally, each processing
element has its own private memory (similar to registers) that cannot be accessed by
other processing elements. Table 4.1 summarizes the type of access, the scope and the
lifetime of the different OpenCL memory types within the OpenCL execution model.

Figure 4.5 illustrates the OpenCL memory model and how data flows between the host
and the OpenCL device. Similar to the CPU memory hierarchy, there is a trade-off between

23

Chapter 4.2. OpenCL Framework

Dimension X

Di
m

en
si

on
 Y

Dimension X

Di
m

en
si

on
 Y

Work-Group
ND-Range partitioned into mutiple Work-Groups

A single Work-Item

Work-Items belonging to
the same Work-Group

Work-items belonging to
the same Wavefront
(hardware dependent size)

Figure 4.4: The relationship between the ND-Range, work-groups, the wavefront and
work-items.

Table 4.1: Scope of OpenCL memory w.r.t. the OpenCL execution model.

Memory Access Scope Lifetime

private read/write single work-item work-item

local read/write all work-items in a work-group work-group

constant read-only all work-items + host host allocation

global read/write all work-items + host host allocation

the access time and storage capacity of the different memory levels. Private memory
(register) is the smallest memory with the fastest access time, while global memory has
the highest access time as well as the largest capacity. Economic and physical limitations

24

4.2.2. Components of an OpenCL Application

play a major role in this type of memory hierarchy. To perform computation on the device,
the host first needs to transfer the required data from the host memory to the OpenCL
devices global memory. Once data is available in the global memory, processing elements
(within a compute unit) can directly access global memory and load required data into
their registers (private memory). The time required to access global memory is slow as
compared to local memory. In the case of high data reuse, it is beneficial to first load
a part of the global memory into faster local memory of the compute unit. Processing
elements can then directly load the data from the local memory into their private memory,
avoiding multiple global accesses to the same global memory and resulting in improved
kernel performance. Finally, when the kernel has finished executing, the host needs to
transfer data from the device’s global memory back to the host. It is important to note
that the host can only access the device’s global memory and that if local memory was
modified during the execution of the kernel, it needs to be first explicitly copied to the
device’s global memory.

M
A
I
N

M
E
M
O
R
Y

G
L
O
B
A
L

L
O
C
A
L

P
R
I
V
A
T
E

Increase in access time
and storage capacity

DeviceHost

Figure 4.5: OpenCL memory model showing the data flow between the host (CPU) and
the OpenCL device [2].

4.2.2 Components of an OpenCL Application

At its basis, an OpenCL application consists of the OpenCL kernel(s) and the OpenCL
host code. The host is typically a CPU which controls the connected OpenCL devices.
The OpenCL kernel is a parallelized function that is written using OpenCL C and executes
in parallel on an OpenCL device. Kernel functions are marked with kernel to identify
them and also allows them to be called from the host code. A kernel on its own only
represents the raw computation on a compute device. A kernel can execute on a compute
unit across multiple processing elements in parallel (in lockstep). However, corresponding

25

Chapter 4.3. Chapter Conclusion

OpenCL host code is required to setup the OpenCL device (create the OpenCL device
context), compile the kernel (build the OpenCL program), create buffers on the device
and transfer data to them, call the kernel and finally transfer data back to the host. This
is a time consuming and error-prone process. In our approach, we automatically generate
OpenCL C kernels and integrate them into the application by generating the corresponding
OpenCL host code.

4.3 Chapter Conclusion

In this chapter, we looked at the LLVM compiler infrastructure and at its different front-
ends, passes and back-ends. These different LLVM phases make it easier for a compiler
developer to design and add new compiler components. The LLVM compiler infrastructure
also provides an execution environment which is known as the Execution Engine within
which an application can be executed. It also supports the JIT execution model, which is
used by the RTCS to modify an already running application. LLVM makes use of LLVM
IR which is a machine independent representation of a high-level program and is used as
an input to the RTCS.

We also introduced the OpenCL framework that is used by the RTCS to target diverse
accelerator architectures. The OpenCL standard abstracts away the architectural differ-
ences of different accelerators allowing us to target diverse accelerator architectures with
the same OpenCL code. We introduced the OpenCL platform, memory and execution
models and saw how an OpenCL device was made up of multiple compute units with each
compute unit containing multiple processing elements. The address space and OpenCL
memory hierarchy were also described. Finally, we looked at the additional steps required
to integrate an OpenCL kernel into an application.

In the next chapter, we take an in-depth look into the Runtime and Just-in-Time Com-
pilation System and how it is able to automatically parallelize sequential applications by
generating and integrating OpenCL kernel and host code into an application.

26

CHAPTER 5

Runtime and Just-in-Time Compilation System

In Chapter 3, we saw that the run-time and self-adaptive Orchestrator forms an integral
part of the saveHSA. The Orchestrator can manage heterogeneous accelerators for diverse
applications with dynamic workloads taking into account application goals and system
constraints while at the same time balancing the accelerator resources to improve perfor-
mance, utilization, dependability and overall energy utilization. We also saw that in order
to benefit from the saveHSA, application developers need to supply it with different accel-
erator specific implementations. Heterogeneous systems comprise of different accelerators
with diverse architectures that require different programming techniques, tools and com-
pilers. Making it difficult for application developers to port code to different heterogeneous
accelerators.

In Sections 2.1 and 4.2 we saw that it is possible to target diverse architectures by using
OpenCL. The application developer, however needs to first parallelize that application
by writing OpenCL kernel code for the application hotspots and then write OpenCL
host code that transfers data and launches the kernel on the accelerator. This manual
translation of the application to use OpenCL is a time consuming and error-prone process.
In this chapter, we present a Runtime and Just-in-Time Compilation System (RTCS) that
automatically and transparently transforms suitable data-parallel loops into independent
OpenCL-typical work-items (kernels), generates corresponding OpenCL host code and
then integrates the accelerated code into the application so that it can be used by the
Orchestrator to take advantage of the saveHSA.

To better understand how the RTCS enables the Orchestrator to target missing accel-
erator implementations, we look at Figure 3.3, where a SAVE-Enabled application (SEA)
is executed with the help of the Orchestrator. We see that even though the platform
supports multiple accelerators, the Orchestrator is only able to switch between the two
implementations (here: CPU and GPGPU) that were provided by the application devel-
oper. The RTCS enables the Orchestrator to target more accelerators by transparently

27

Zusammenfassung

generating and integrating missing accelerator implementations into the application, on
demand and in a JIT fashion while the application is running. This allows the Orchestra-
tor to select from a more diverse pool of accelerators allowing for better system utilization,
performance and self-adaptiveness.

RTCS analysis

resource switch
based on policy

RTCS codegen ()

CPU GPGPU

hotspot actuator

heartbeat loop

MICmCPU

CPU GPGPU

heartbeat loop

mCPU MIC

hotspot actuator

CPU GPGPU

hotspot actuator

heartbeat loop

MICmCPU

A

C

B MIC
re

so
ur

ce
s

re
so

ur
ce

s

re
so

ur
ce

s
re

so
ur

ce
s

CPU GPGPU

heartbeat loop

mCPU MIC

hotspot actuator

Missing Available Executing

Figure 5.1: Heartbeat loop of a SAVE-Enabled application with RTCS support.

Figure 5.1 depicts the execution of the same SEA from Figure 3.3 but with RTCS sup-
port available. The RTCS analyses the application and detects the available and missing
accelerator implementations A and offers additional code generation opportunities to the
Orchestrator (mCPU and MIC). Depending on its policies, the Orchestrator instructs the
RTCS to generate code for a specific platform (here: MIC). The RTCS transparently gen-
erates and integrates the requested implementation into the application B and registers
it with the Orchestrator. The Orchestrator is now able to switch to the new accelerator
implementation (here: MIC) in future loop iterations C .

In this example, the accelerated code for the GPGPU was already available. However,
developers do not need to specify any accelerator implementation at all. The RTCS
is capable of generating accelerator code for different heterogeneous accelerators if the
sequential CPU implementation is available. This enables applications that have only
been written for CPUs, to benefit from execution on heterogeneous resources. Not only
does this drastically reduce the development effort required to port applications to diverse
heterogeneous resources, but also does not require the application programmer to have
any accelerator specific knowledge.

28

5.1 Overview of the RTCS

Generating code for different types of accelerators requires different compilers and tools.
However, installing and maintaining the entire compilation tool-flow for all accelerator
types on each heterogeneous node is cumbersome and time consuming. The compilation
times and resources (memory or CPU utilization) required to generate accelerated code
vary drastically and depend on the compilers used, and in some cases cannot be deter-
mined a priori. Additionally, some compilers and tools require paid licenses which are
either limited to specific machines or have restrictions on the number of concurrent users.
Hence, the RTCS is separated into two main components, the RTCS Client and the RTCS
Server. The client runs on the host node, i.e. the machine/node that has the accelerators
attached to it. The RTCS Client provides an environment to execute, observe and analyze
SAVE-Enabled applications that are present in the form of LLVM IR1. It is responsible
for application analysis, communication with the orchestrator, integrating the generated
accelerated code into the application and registering the accelerated code with the Or-
chestrator. While the server is responsible for parallelizing the application and generating
accelerated code for different accelerators.

Heterogeneous Node

Resource /
Accelerator

Orchestrator

RTCS Client

Orch-Enabled App

RTCS Client

Orch-Enabled App

RTCS Client

Orch-Enabled App

RTCS Client
SAVE-Enabled App

RTCS Server

Accelerator
Backend

Accelerator
Backend

Accelerator
Backend

Accelerator
Backend

Accelerator
Back-end

Cache

Figure 5.2: High level outline of the RTCS Client-Server architecture.

Figure 5.2 outlines the RTCS Client-Server architecture at a high level. Each hetero-
geneous node consists of multiple accelerators which can be targeted by the RTCS. Each
SEA is executed in a separate instance of the RTCS Client. The Orchestrator runs as a
separate process on the system and has a global view of all the applications running and
their goals. It is also able to monitor the overall status of the system and attached accel-
erators. The RTCS Server is able to generate accelerated code for different accelerators by
using different accelerator specific back-ends. Additionally, the RTCS Server also employs
a cache to reduce subsequent code generation overheads. The RTCS Server typically serves
multiple clients, and as the number of clients grow, the server might run out of resources
to handle all the requests. This however is a known problem in the web-services domain
and can be addressed by replicating the number of servers and using a load-balancer [16].

1Allows the RTCS to target all applications that can be compiled into, or are distributed in the LLVM
intermediate representation

29

Chapter 5.2. RTCS Toolflow

In the next section, we look at the end-to-end RTCS toolflow and how the different
components of the RTCS and the Orchestrator interact with one another.

5.2 RTCS Toolflow

The RTCS is a user-transparent end-to-end approach capable of transparently acceler-
ating sequential applications by automatically transforming suitable data-parallel loops
into independent OpenCL-typical work-items (OpenCL kernels) as well as generating the
corresponding OpenCL host code. This generated code is integrated into the application
by exploiting the JIT functionality of the LLVM execution engine. The LLVM infrastruc-
ture is used to analyze and modify the application, while the LLVM Execution Engine is
used to execute the application. The Execution Engine supports the recompilation of only
parts of an application (functions) at runtime, which allows the application to be dynam-
ically modified while it is still executing. This plays an important role in our client-side
approach, allowing us to build an environment that is capable of analyzing and updating
the application while it is executing.

Figure 5.3 shows the architecture of the RTCS and the order of the different steps
of the toolflow (labeled with n). The various components of the approach are grouped
into the RTCS Client and the RTCS Server with the Orchestrator being depicted as an
external component. It is important to note that there are two communication channels.
The green lines represent the communication between the currently running application
and the Orchestrator, while the blue lines represent the communication between different
RTCS components as well as the Orchestrator. In this section, we look at the general
overview of the toolflow and how the different components interact with one another.

The RTCS Client is invoked from the console and acts as an execution container for
a SAVE-Enabled application, with each SEA having its own client instance. The client
accepts the application binary of the SEA as platform-independent LLVM bitcode 1

along with its arguments. The bitcode is parsed into an in-memory representation 2 and
canonicalized 3 so that further custom LLVM analysis and transformation passes can
be applied. The LLVM IR is then analyzed to detect the different accelerator implemen-
tations provided by the application along with the Orchestrator interfaces used by the
application 4 . It should be noted that the SEA needs to provide a single-threaded CPU
implementation for the RTCS to be able to generate accelerated code. All the analysis
information is stored in a central Hotspot Data Structure (HDS) that can be accessed
by all the RTCS components. The application hotspots are then analyzed 5 to identify
data-parallel loops and the HDS is updated. At this point, the client knows which accel-
erator implementations have been provided by the application developer and which ones
are missing. To help with the integration of the generated accelerated code at runtime,
the client inserts accelerator hooks into the application for all the missing accelerator
implementations and also adds OpenCL support to the application 6 .

Once the application has been successfully modified, the client commences executing the
application via the LLVM Execution Engine 7 . When the application starts executing,
it communicates its goals and available implementations to the Orchestrator via the 8

30

RTCS Server

LLVM Execution Engine

Work-item
Parallelizer

12

Communication
Handler

10

SAVE-Enabled
Sequential Appl.

1

Appl. Execution

Orchestrator

9

7

RTCS Client

Canonicalization

3

LLVM Axtor

OpenCL
Kernel CodeGen

14
Tiling

Transformation

13

OpenCL
Kernel

Compilation

15
Hotspot
Analysis

5

Application
Preparation

6

Application
Analysis

4

OpenCL
Host Codegen

17

8

LLVM bitcode

18

2

11 16

Figure 5.3: Overview of the RTCS compiler architecture.

communication channel. The application also uses this channel to report its performance
(via heartbeats) to the Orchestrator. Additionally, the Orchestrator also instructs the
application to switch to another accelerator using the same communication channel. The
Orchestrator communicates with the client using the 9 communication channel and is
able to instruct the client to generate code for a specific accelerator. The communication
handler module 10 on the client handles all requests from the Orchestrator as well as the
RTCS Server. On receiving a code generation request from the Orchestrator, the client
forwards the code generation request to the RTCS Server 11 .

The RTCS Server runs as a separate application/process and is responsible for paralleliz-
ing the hotspot and generating accelerator specific code. On start-up it begins listening for
clients that want to connect to it and on a successful connection, it spawns a new thread

31

Chapter 5.2. RTCS Toolflow

that handles all further requests from that client. On receiving a code generation request
for an accelerator 11 , the RTCS Server first checks its cache to see if the code has been
previously generated. By using such a cached approach, the code generation overheads for
subsequent requests can be drastically reduced by skipping 12 - 15 . If the request cannot
be satisfied by the cache, the required accelerator code is JIT generated. Depending on the
target accelerator, the Work-item Parallelizer 12 transforms suitable data-parallel loops
of the hotspot into independent OpenCL-typical work-items that are executed in parallel.
The Tiling Engine 13 then analyses the hotspot for data reuse patterns and attempts
to tile the hotspot for more efficient local memory reuse. The OpenCL Kernel CodeGen
Module 14 uses the LLVM OpenCL back-end Axtor to generate the OpenCL C kernel
code. This OpenCL C kernel code is then compiled into an accelerator specific binary 15 .
This newly generated accelerated code is added to the cache and transferred to the RTCS
Client 16 .

On receiving the accelerated code from the server, the corresponding OpenCL host code
is generated 17 . OpenCL API calls that create buffers on the device, transfer the data to
and from the device, map the kernel arguments and invoke the kernel, are inserted into
the appropriate accelerator hook (previously created in 6). This modified accelerator
hook (function) is JIT compiled and integrated 18 into the running application with
the help of the LLVM Execution Engine. In the next iteration of the heartbeat loop,
the new accelerator implementation is registered with the Orchestrator, which allows the
Orchestrator to offload computation to a previously unavailable accelerator.

Interaction between the Orchestrator and the RTCS: To help understand and visualize
this toolflow, we make use of the example previously illustrated in Figure 5.1. We saw
that the SEA natively only supported the CPU and GPGPU implementations and how
the RTCS enabled the Orchestrator to also target the MIC by transparently generating
and integrating accelerator code for the MIC. Figure 5.4 shows the detailed interaction
between the Orchestrator and the different components of the RTCS Client and the RTCS
Server.

The Orchestrator is an operating system process that is always running in the back-
ground. The RTCS Server runs as a separate process, is initialized and waits for incoming
connections from the client(s). The RTCS Client acts as an execution environment for
SAVE-Enabled applications and all SEAs are launched on the heterogeneous node via the
client. The client loads the LLVM IR 2 and canonicalizes 3 it. It then analyses the ap-
plication, analyses the hotspots and prepares the application by adding accelerator hooks
and OpenCL support to the application (4 - 6). It also registers the application with
the Orchestrator 9 and establishes a connection to the server 11 . The server uses a sep-
arate thread for each client and spawns a new thread to handle the new connection. The
client then compiles the application and starts its execution using the LLVM execution
engine 7 . The application initializes and then registers the available implementations
(here: CPU and GPGPU) with the Orchestrator 8 . The Orchestrator can now select on
which resource the application should execute on.

32

RTCS Server

Initialise and listen
for connections

Handle Client requests

RTCS Client

establish connection

SAVE-Enabled
Sequential Appl.

Appl. Execution
7

Appl. Analysis
4

2

Hotspot Analysis
5

Appl. Preparation
6Integrate OpenCL env.

Add accelerator hooks

HDS

register appl.
Register Appl.

start execution

ack
ack

register available targets
()

register new target
()

codegen req.
() codegen req. ()

Query Cache

LLVM IR req

HDS

Export Hotspots

IR

Parallelize Code
12

Tiling Engine
13

OCL Kernel
Codegen

14

OCL

Appl. Integration
()

OCL

OpenCL Host
Codegen

17

Update
accelerator hooks

CPU

MIC MIC

Monitoring API used to observe performance
and select the appropriate implementation

MIC

MIC

CPU MIC

Found in
Cache

GPGPU

GPGPU

Spawn a new thread

HDS

Canonicalization
3

HDS

9

9

9

8

8

11

11

11

11

11

OCL Kernel
Compilation

15

16

18

Orchestrator

Figure 5.4: The interaction of the Orchestrator, the RTCS and the SAVE-Enabled appli-
cation. For the sake of simplicity, the interaction between the SAVE-Enabled
application and the Orchestrator during are not shown.

33

Chapter 5.3. Communication

At any time during the application’s execution, the Orchestrator can instruct the RTCS
Client to generate code for a specific accelerator 9 (here: MIC). The RTCS in turn
requests the server to generate code for the specific accelerator 11 . If the server cannot find
the requested code in its cache, it asks the client for the corresponding sequential LLVM
IR code of the hotspots. The client exports the required code into a new LLVM module
and sends it to the server. The server then parallelizes the sequential code, performs data
optimizations, generates the OpenCL C kernel code and creates an accelerator specific
binary (12 - 15). The accelerated code along with the modified HDS is transferred to the
client 16 , which generates the corresponding OpenCL host code 17 and integrates the new
implementation into the application using the JIT compilation feature of the execution
engine 18 . The application then registers the new implementation with the Orchestrator,
allowing the Orchestrator to switch to the new accelerator implementation (here: MIC)
in future loop iterations.

The RTCS has been designed to be modular, allowing different components to be re-
placed or updated at a later date with state-of-the-art versions. In the following sections,
we take a detailed look at each of the components and see how they contribute to the
Runtime and Just-in-Time Compilation System. Since most of the components rely on
the communication infrastructure in one way or another, we first take a look at the com-
munication module.

5.3 Communication

The Orchestrator and the SAVE-Enabled application natively communicate with one an-
other using the Orchestrator API which is based on the shared memory communication
model 8 . The application is able to communicate its performance to the Orchestrator
via heartbeats, and depending on its policies, the Orchestrator instructs the application
to offload computation to a specific accelerator.

The RTCS Client and the Orchestrator also need a communication channel so that
the Orchestrator can instruct the RTCS Client to generate accelerator specific code 9 .
Additionally, the RTCS Client and Server also need to communicate with one another
(11 and 16) in order to generate accelerator specific code. The RTCS Server requires the
client to send it the Hotspot Data Structure as well as the corresponding LLVM IR of
the sequential hotspot that is to be accelerated. The Orchestrator and the RTCS Client
always execute on the same physical machine, however the RTCS Server can run on any
node in the network. Hence a message passing communication model is used to handle
communication between the Orchestrator, the RTCS Client and the RTCS Server.

Our communication infrastructure utilizes TCP/IP sockets to communicate and ex-
change data between the Orchestrator, the RTCS Client and the RTCS Server. TCP/IP
is a stream-based transport protocol that guarantees an ordered data stream but does not
preserve message boundaries. This means that if the sender sends two separate messages
“Hello” and “World”, the receiver might get “HelloWorld” as one message or might re-
ceive it in multiple messages. It might first get “He” and then “lloW” followed by “orld”.

34

For TCP the send() and recv() API calls do not have a 1-to-1 correlation between them.
Depending on the length of the sent message and how the message is distributed into
packets, the receiver might need to issue multiple recv() calls until it has the entire mes-
sage. To help simplify this, we developed a library that has a custom message format and
parser that transparently handles message passing. Figure 5.5 shows the custom message
format used to send and receive messages. The message is comprised of a fixed size header
and a variable payload. The header consists of the message type and the payload size.
Internally, the message is sent in two parts. The header is first sent to the receiver so that
it knows the payload size in advance. The library allocates enough memory to receive
the payload from the client. Since the payload message size is known, the library issues
multiple recv() calls until the complete payload message is received. The message payload
might contain the HDS, a codegen request, the sequential LLVM IR code, the accelerated
code or other control and acknowledgement messages. The MessageType in the header is
used to distinguish these different types of messages.

Header

MessageType PayloadSize

Payload

Data

Figure 5.5: Structure of the custom message format.

To transmit the required data from the sender to the receiver, the data structure/object
needs to be first serialized by the sender, transmitted to the receiver and is then de-
serialized by the receiver. To simplify the serialization/de-serialization of objects that
need to be transmitted, Protocol Buffers (ProtoBuf2) are used. Protobuf is an open-
source project developed by Google and is a language-neutral, platform-neutral extensible
mechanism for serializing structured data. To use it, the data-structures that need to be
serialized are defined in a .proto file. The protocol buffer compiler uses this file to generate
corresponding custom serialization APIs/functions that allow one to easily serialize/de-
serialize complex data structures. The custom messaging library along with protocol
buffers form the basis of the communication infrastructure that is used to communicate
between the Orchestrator, the RTCS Client and the RTCS Server.

5.4 Hotspot Data Structure

Another vital component of the RTCS is the Hotspot Data Structure (HDS), with most
of the RTCS components relying on it in one way or another. The HDS stores all the
information obtained during the analysis phase which is later used by different RTCS
components. The HDS also stores the housekeeping data required by the RTCS to generate
accelerated code and integrate it into the application at runtime. For the sake of simplicity
and to help understand the HDS, a schematic representation of the HDS is depicted in
Figure 5.6.

2https://developers.google.com/protocol-buffers/

35

Chapter 5.5. Canonicalization

Read-Only
Read-Write
Write-Only
Unknown

<<enumeration>>
BufferType

CPU
MCPU
GPGPU
MIC

<<enumeration>>
OrchResource

+HotspotFunction: llvm::Function*
+AcceleratorType: OrchResource
+OpenCLDeviceHandle: llvm::AllocaInst*
+RegistrationFunction: llvm::Function*

Implementation
+ArgumentValue: llvm::Value*
+IsPointer: bool
+DataType: llvm::Type*
+DataSize: llvm::Value*
+OpenCLBufferType: BufferType

Argument

+KernelFunction: llvm::Function*
+MaxParallelizationLevel: unsigned int
+GlobalWorkgroupSize: Value* []
+LocalWorkgroupSize: Value* []
+isTiled: bool

Kernel

+ScheduleMonitorHandle: llvm::AllocaInst*
+CpuBaselineFunction: Implementation*
+HeartbeatLoopStart: llvm::BasicBlock*

HotspotDataStructure

1..*

1..*

1..*

Figure 5.6: A schematic representation of the Hotspot Data Structure.

The HDS is initially populated by the Application Analysis module which identifies
the orchestrator constructs, the entry to the heartbeat loop and the different hotspot
implementations that are provided by the application developer (see Section 5.6). The
Hotspot Analysis module updates the HDS by adding information about the different
kernels, their maximum parallelization level, the arguments used, the data-type and size
to name a few (see Section 5.7). The HDS not only stores the result of the analyses
performed, but is also used by subsequent phases of the RTCS to store hotspot as well as
kernel specific data.

5.5 Canonicalization

In Section 4.1 we saw that different front-ends can be used to generate LLVM IR from
high level languages. The LLVM IR generated by such front-ends is not standardized
and vary from one front-end to another. Also, developers have different coding styles.
Some might choose to use while loops while others might choose to use for loops instead.
These differences in high level code lead to different structures in the resulting LLVM
IR. Additionally x86 binaries can also be disassembled into LLVM IR [3] resulting in
an intermediate representation that might have an ad hoc structure with more than one
possible representation in LLVM IR.

Before analyzing the application, the RTCS parses the LLVM IR into an in-memory

36

LLVM module 2 and then uses built-in LLVM passes to canonicalize 3 the given LLVM
IR. These transformations canonicalize the LLVM IR structure after which further custom
analysis and transformation passes can be applied. To help with hotspot analysis of the
application, the RTCS also normalizes the loop structure using the LoopSimplify LLVM
pass which transforms natural loops into a simpler form. It guarantees that there is a single
entry point to the loop (pre-header) that is always executed before entering the loop. The
LoopSimplify pass transforms the loop structure, which makes subsequent analyses and
transformations simpler and more effective [59]. To further simplify loop analysis, the
IndVar LLVM pass is applied to transform the induction variables (and computations
derived from them) into simpler forms resulting in a normalized loop structure that is
used for hotspot analysis. Finally, built-in LLVM passes are used to perform lightweight
but aggressive, high-quality code optimizations. Table 5.1 represents the passes used and
gives a brief description of what they do.

Table 5.1: Built-in LLVM canonicalization and optimization passes used by the RTCS.

LLVM Pass Description

PromoteMemoryToRegister Limits the use of memory which increases the effective-
ness of subsequent LLVM passes

LoopSimplify Canonicalizes natural loops which reduces the burden of
writing loop specific passes

LCSSA Keeps the effect of subsequent loop optimizations local
which limits the overhead for maintaining the SSA form

IndVar Normalize the induction variables and highlights the
canonical induction variable

LICM Moves loop invariant code outside the loop

ConstantPropagation Merges duplicate global constants

InstructionCombining Combines redundant instructions together

DeadCodeElimination Eliminates dead code

5.6 Application Analysis

The structure of a typical SAVE-Enabled application was introduced in Figure 3.1. At
the very least, a SEA is required to implement the Orchestrator API and be able to
report its execution progress in the form of heartbeats. It might also provide different
accelerator-specific implementations for the Orchestrator to offload to. Additionally, it
might also set application-level goals and/or constraints. The Heartbeat loop is key to
SEAs, where in each iteration, the Orchestrator has an opportunity to modify the behavior

37

Chapter 5.6. Application Analysis

of the system by switching between different available accelerator implementations. To
analyze the SEA and to extract relevant information from the application, we have written
a custom OrchDetect LLVM analysis pass 4 that the RTCS uses to identify the following
application constructs:

• Scheduler Monitor instance.

• CPU implementation of the hotspot: mandatory and used to generate accelerated
code.

• Call parameters: arguments used during the invocation of the hotspot.

• Other registered implementations: optional accelerator implementations provided
by the application programmer.

• Heartbeat loop: control loop where the Orchestrator can switch between resources
and monitor application performance.

The Orchestrator’s Scheduler Monitor class is responsible for managing all accelerator
registrations. This class exposes the registerImplementation() API, which is the primary
Orchestrator API via which the application registers different accelerator specific hotspot
implementations with the Orchestrator. Different accelerator implementations are pro-
vided by the application developer in the form of lambda expressions [52] which are then
registered with the Orchestrator via the registerImplementation() API call. Listing 5.1
shows an example of how such a lambda function looks like and how it is registered with
the Orchestrator. The lambda expression on line 4 calls the sequential CPU implementa-
tion with a fixed set of parameters. This lambda expression is then registered with the
Orchestrator via the registerImplementation() API call in line 9 and is set as a CPU
implementation type.

1 int main(int argc , char* argv []){

2 ...

3 // lambda expression for the sequential CPU implementation

4 ImplementationType cpuImpl = [&] () -> void {

5 heavyFunc (in_img0 , in_img1 , out_img , rows , cols);

6 };

7 ...

8 // Register the implementation with the Orchestrator

9 schedulerMonitor ->registerImplementation(cpuImpl ,CPUType);

10 ...

11 }

Listing 5.1: An example of an implementation represented as a lambda expression and
its registration with the Orchestrator.

The OrchDetect pass analyses the application to detect the registerImplementation()

API call and in turn, the handle to the instance of the Scheduler Monitor class (sched-
ulerMonitor in Listing 5.1, line 9). This schedulerMonitor handle is saved in the HDS

38

and is later used by the RTCS to call the registerImplementation() API and add missing
accelerator implementations to the application (see Section 5.13).

The OrchDetect pass also analyses the application for the usage of the registerImple-

mentation() API call to determine the different types of hotspot implementations that
the application registers with the Orchestrator. This information is stored as a part of
the HDS. The implementation registered as the CPUType represents the sequential CPU
implementation and is saved as the CPUBaselineFunction (heavyFunc in Listing 5.1). This
CPUBaselineFunction is used later on by the RTCS to generate accelerated code.

After the new accelerated code (function) has been generated by the RTCS, it needs
to be called with the appropriate arguments. The lambda-expression registered as the
CPUType is analyzed and the corresponding calling arguments are saved in the HDS. The
OrchDetect pass also analyses the application to identify the heartbeat loop and saves the
entry to the heartbeat loop into the HDS so that it can be later used to register new
accelerator implementations with the Orchestrator (Section 5.8).

The OrchDetect pass detects the Orchestrator APIs and the sequential CPUBaseline-

Function. However, if they are not detected, the application is not considered to be a
SEA and all further steps are skipped. In this scenario, the RTCS executes the applica-
tion as a plain old sequential application and the application does not benefit from our
approach. However, if the sequential CPUBaselineFunction is found, it is used as the basis
for generating the missing accelerator implementations.

5.7 Hotspot Analysis

One of the challenges of automatic parallelization is to identify the computationally in-
tensive parts of the application and partition the application accordingly. In [Vaz16] we
demonstrate how applications could be partitioned by using a heuristic based code analysis
and profiling method to identify computationally intensive parts of an application. A good
indicator for potential hotspots is loops as they can have very long run-times and show a
monotonic execution behavior. In [Ken14] we demonstrated how an application could be
partitioned by analyzing basic blocks within loops and extracting them to a separate func-
tion. We also looked at a polyhedral model (Polly) based partitioning approach in [Rie19]
where Static Control Parts (SCoPs) were used to automatically identify hotspots in an
application. However, in the case of SAVE-Enabled applications, the Orchestrator can
only switch between different accelerated versions of the CPUBaselineFunction allowing
us to treat the entire CPUBaselineFunction as a hotspot. However, such a hotspot might
internally consist of one or more function calls (referred to as kernels). Listing 5.2 shows
how such a hotspot function for a motion detection application might look like. In this
case, the hotspot has two kernels forming a chain with data produced by one kernel and
consumed by the subsequent kernel(s). The hotspot analysis phase analyses the CPUB-

aselineFunction (hotspot) as well as the comprised kernel(s), and updates the HDS to hold
the analysis information for the hotspot as a whole, as well as the individual kernels.

Custom LLVM analysis passes were developed to analyze the properties of the hotspot
kernels 5 and are explained in detail in the following sections.

39

Chapter 5.7. Hotspot Analysis

1 void heavyFunc (char* in_img0 , char* in_img1 , char* out_img , int rows ,

int cols){

2 char *imgA = (char *) malloc (rows * cols * sizeof (char));

3 char *imgB = (char *) malloc (rows * cols * sizeof (char));

4 char *imgC = (char *) malloc (rows * cols * sizeof (char));

5
6 kernel_gauss (in_img0 , imgA , rows , cols);

7 kernel_rgb2grey (imgA , imgB , rows , cols);

8
9 // Apply same filters on image 1.

10 kernel_gauss (in_img1 , imgA , rows , cols);

11 kernel_rgb2grey (imgA , imgC , rows , cols);

12
13 // Compute motion difference.

14 kernel_motion (imgB , imgC , imgA , rows , cols);

15
16 // Overlay results in input image.

17 kernel_greyedge2rgb(in_img0 , imgA , out_img , rows , cols);

18
19 free(imgA);

20 free(imgB);

21 free(imgC);

22 }

Listing 5.2: An example of a hotspot (CPUBaselineFunction) that contains multiple
kernels from a SAVE-Enabled application that detects the motion between
two images.

5.7.1 External Function Filter

OpenCL accelerators (devices) have limitations regarding what type of code can be ex-
ecuted on them and they do not support system calls, shared library calls and calls to
functions on the host. The ExternalFunctionFilter pass analyses the hotspot kernels for
system calls and library calls. Functions that have external weak/external as their LLVM
linkage type are deemed to be external functions. The ExternalFunctionFilter pass ex-
amines all the call instructions within a kernel, determines the called function and checks
its linkage type. If a call to an external function is found, the entire hotspot is marked
as not viable for acceleration and all further analysis are skipped. OpenCL however, sup-
ports calls to math functions and the ExternalFunctionFilter pass maintains a white-list
containing all the math functions which it treats as exceptions.

5.7.2 Dependence Analysis

The RTCS accelerates sequential code by automatically parallelizing natural loops inside
hotspot kernels. For a loop to be parallelized, it should be able to execute each loop iter-
ation independently and cannot have any cross-iteration data dependencies. This means
that a loop needs to be free of data dependencies between each loop iteration. If this

40

5.7.2. Dependence Analysis

condition is met, the RTCS can guarantee that the loop is safe to execute in parallel and
hence can be parallelized. Listing 5.3 shows an example of a simplified 2D 3 × 3 convo-
lution. The outer two loops (lines 2-3) iterate over the 2D output space, while the inner
two loops (lines 6-7) perform a 3× 3 convolution for each entry.

Looking at the pseudo C code in Listing 5.3, we can see that the input in and output
out are independent of each other. We also see that the outer two loops (lines 2-3) do not
have inter-loop dependencies and can be parallelized. However, in the inner convolution
loops (lines 6-7), the current value of sum depends on the previous value of sum, and hence
the inner loops cannot be parallelized. To determine if there are any loop dependencies,
our custom DependenceAnalysis pass first analyses all the memory accesses. It does this
by looking at all the instructions and checks if the instruction reads (load) from or writes
(store) to memory. It creates a memory access structure by analyzing every memory
instruction and storing the loop that it belongs to, the base array pointer variable and the
corresponding array access index. Using this information, the pass determines the data
read/write dependencies between the different memory accesses and also the inter-loop
data dependencies. The DependenceAnalysis pass is able to determine if the hotspot can be
parallelized and calculates the maximum parallelization loop level. In our example, since
the outer two loops are independent, the maximum parallelization level is 2. Additionally,
the kernel is also analyzed for co-dependence (j loop iterator does not depend on i). If no
independent loops are found, the entire hotspot is marked as not viable for acceleration
and all further analysis are skipped.

1 // Iterate over the 2D output space

2 for (int r = 0; r < rows - 2; r++) { // independent

3 for (int c = 0; c < cols - 2; c++) { // independent

4 // Convolve over the 3X3 filter.

5 int sum = 0;

6 for (int i = 0; i < 3; i++) { // dependent on sum

7 for (int j = 0; j < 3; j++) { // dependent on sum

8 // ...

9 sum += in[r+i][c+j] * MASK[i][j];

10 // ...

11 out[r][c] = sum;

Listing 5.3: Pseudo C code for a 3× 3 convolution demonstrating loop dependencies.

To perform this dependence analysis, it is important that there are no aliases present.
This means that two different data-arrays do not point to the same memory location. For
example, in Listing 5.3, in and out should not point to the same memory address. The
DependenceAnalysis pass itself does not perform any alias analysis, but to guarantee that
no aliases are present, it checks if the base array pointer variables have been defined with
the restrict type qualifier (reflected by the noalias attribute in LLVM IR). If, however,
the restrict keyword was not used and the user knows that no aliases are present, this
check can be disabled via a command line switch when launching the RTCS Client.

41

Chapter 5.7. Hotspot Analysis

5.7.3 OpenCL Data Buffer Analysis and Data Transfer Optimizations

Before an OpenCL kernel can be executed on the accelerator, the appropriate data buffers
need to be created on the OpenCL device. Additionally, the required data needs to be
transferred to the device and after the execution is complete, data needs to be transferred
back to the host. The DataOptimization analysis pass uses the memory access information
created by the DependenceAnalysis pass to determine which data-arrays are used by the
kernels. It then analyses the application to determine where the data-arrays were defined
and determines their data-type and size.

The DataOptimization pass analyses the memory access of the data-arrays within the
kernel to determine if a data-array is read from or written to memory. It classifies every
data array as read-only, read-write or write-only. This is then used to optimize the OpenCL
data buffer creation on the device along with optimized data-transfers to and from the
device. In the 3 × 3 convolution example in Listing 5.3, we can infer that array in and
MASK have read-only memory accesses (line 9). If a data-array is read-only, it is never
transferred back to the host as the data was not modified.

We can also see that array out has a write-only memory accesses (line 11) in Listing 5.3.
Since it is a write-only data-array, one would be tempted to optimize the data transfer
by not transferring the data-array to the accelerator and only transferring the data back
after the computation is finished. However, we cannot guarantee that all the elements of
such a data-array are modified on the accelerator and hence we are not allowed to perform
such a data transfer optimization. In our example, the RTCS transfers the in, out and
MASK arrays to the device. While only the out array is transferred back to the host after
the computation is complete on the device.

If we have multiple kernels in a hotspot, every kernel needs to transfer the required data
to the device, perform the computation and then transfer the data back to the host. This
results in repeated data transfers to the device if a hotspot has multiple kernels that use/re-
use the same overlapping data from one another. Data needs to be transferred back when
kernel calls are interleaved with other (sequential) computations in the hotspot function.
However, if there are no additional computations in the hotspot (like in Listing 5.2),
the data transfer between the host and the device can be optimized. Looking at the
hotspot example in Listing 5.2 we can see that kernel rgb2grey uses the data generated by
kernel gauss, similarly kernel motion uses the data generated by kernel rgb2grey. Instead
of always transferring data to and from the host for every kernel, the DataOptimization

analysis pass performs inter-kernel data analyses to determine what data optimizations
can be applied across multiple kernels. Figure 5.7 depicts the execution of a data optimized
kernel chain on an accelerator. All the required data is first transferred to the device, the
OpenCL kernels are then executed on the device and finally only the modified data is
transferred back to the host.

Looking at Listing 5.2 we can also see that imgA, imgB and imgC are only declared within
the scope of the hotspot. If there are no additional computations within the hotspot, the
DataOptimization analysis pass identifies such data-arrays whose scope are only limited to
the hotspot. In these cases, data buffers are only created on the device and data is never

42

heartbeat loop, for each iteration:

Orchestrator Selects
Implementation

Heartbeat is incremented: provide
information on Appl. performance

Initialization / pre-processing

save output / post-processing

transfer data to accelerator

transfer data to host

execute kernel(s)

hotspot:

Figure 5.7: The structure of a data optimized kernel chain when executed on an acceler-
ator.

transferred to the OpenCL device or transferred back to the host.

This analysis information is stored as a part of the Hotspot Data Structure and is later
used to generate OpenCL host code in Section 5.13. In the next section we take a look at
how the application is prepared and executed via the LLVM execution engine.

5.8 Application Preparation and Execution

The Orchestrator is a self-adaptive operating system layer that enables the saveHSA sys-
tem to efficiently manage heterogeneous accelerators. It does this by dynamically of-
floading workloads to available resources by taking into account the varying workloads,
application goals, system constraints and resource availability. During the lifetime of the
application, the Orchestrator might request the RTCS to generate a missing accelerator
implementation. The RTCS is capable of generating and integrating the accelerated code
into the application (see Section 5.13). However, before the Orchestrator can take ad-
vantage of the new accelerator implementation, the application needs to first register this
new implementation with the Orchestrator. In Section 5.6, we saw that the registration

43

Chapter 5.8. Application Preparation and Execution

is performed by calling the Orchestrator’s registration API with a lambda function and
the accelerator type as parameters. This registration call needs to be inserted into the
application and has to be called with the execution context of the application.

Adding accelerator hooks: In a SEA, the heartbeat loop is where most of the computa-
tion takes place. If code is inserted into this heartbeat loop, it is guaranteed to execute for
every iteration of the heartbeat loop. Hence, whenever a new accelerator implementation
is generated at runtime, it can be registered with the Orchestrator if the registration API
is called from inside this loop. However, altering the control flow of the heartbeat loop at
runtime is not a trivial task and hence the application is modified before it is executed.
The RTCS determines the missing accelerator implementations from the analysis infor-
mation previously stored in the HDS. For each missing implementation, the RTCS creates
a corresponding registration function with the appropriate signature. Calls to the newly
created registration functions are then added to the beginning of the heartbeat loop. The
registration calls are inserted before the Orchestrator API call that selects which accelera-
tor implementation to execute, allowing the Orchestrator to select the new implementation
in the same heartbeat cycle.

Figure 5.8 shows the registration functions that were added for the missing acceleration
implementations. These registration functions are called during every heartbeat iteration.
However, initially these registration functions are empty and don’t do anything useful
when called from within the heartbeat loop. However, at application runtime, after a new
accelerator implementation is generated, the RTCS updates the appropriate registration
function with the corresponding lambda function and a call to the Orchestrator’s regis-
tration API. This updated registration function is then JIT compiled using the LLVM
Execution Engine and the registration function pointer is updated to point to the newly
compiled function. When the updated registration function is now called in the next
heartbeat iteration, the new accelerator implementation is registered with the Orches-
trator. Multiple registrations of the same implementation during subsequent heartbeat
iteration calls are avoided by registering a new implementation only when this updated
registration function is called for the first time (see Section 5.13). By inserting acceler-
ator hooks during the application preparation phase, the RTCS simplifies the process of
registering new implementations with the Orchestrator at application runtime.

Adding OpenCL support: The entire RTCS toolflow relies heavily on OpenCL and hence
the RTCS needs to add OpenCL support to the SEA. We have implemented an OpenCL
wrapper library that adds common OpenCL API headers and creates OpenCL device
handles and command queues for all the OpenCL devices supported by our evaluation
platform (described in Section 6.1). This step is only performed once during the application
lifetime, and the device handles and command queues are reused by the RTCS. The SEA
is executed by the LLVM Execution Engine inside the address space of the RTCS Client.
The RTCS Client is linked against the appropriate OpenCL libraries which allows the
inserted OpenCL API calls to be dynamically resolved.

44

heartbeat loop, for each iteration:

Orchestrator Selects
Implementation

Heartbeat is incremented: provide
information on Appl. performance

Initialization / pre-processing

save output / post-processing

transfer data to accelerator

transfer data to host

execute kernel(s)

hotspot:

register_mCPU (….)

register_PHI (….)

Figure 5.8: The heartbeat loop with the inserted accelerator hooks (registration func-
tions).

Application Execution: Once the preparation phase 6 has been completed and the
application has been modified to support the RTCS toolflow, the application can begin
executing 7 . The RTCS first runs further optimization passes on the LLVM IR and then
initializes the LLVM EngineBuilder with the application module. It then JIT compiles
the module, creates a new RTCS thread and starts executing the main() function through
the LLVM Execution engine on this new thread.

5.9 Handling the Codegen Request

During the lifetime of the application, the Orchestrator monitors the application’s perfor-
mance via the heartbeat infrastructure. Depending on the application-level and system-
level goals and defined policies, the Orchestrator can instruct the RTCS Client to generate

45

Chapter 5.10. Work-Item Parallelizer

code for a missing accelerator implementation 9 . The RTCS Client adds the HDS to this
code generation message and sends it to the RTCS Server 11 . The codegen message con-
sists of the HDS with a list of hotspot kernels identified in Section 5.7 along with the target
accelerator. The RTCS Server uses this information to check if the code was previously
generated and is available in its cache. If found in the cache, the RTCS Server skips the
code generation steps and can immediately send the accelerated code back to the client.
By using a cache and by serving all instances of the RTCS Client, the RTCS Server can
enhance the reuse of already processed requests. If the accelerated code is not found in
the cache, the RTCS Server proceeds with the code generation phase.

To generate corresponding accelerated code, the RTCS Server requires the sequential
LLVM IR code for the hotspot (CPUBaselineFunction) as well as all the called kernel
functions. The RTCS Server sends a message to the RTCS Client requesting for the
LLVM IR of the corresponding hotspot and kernel(s). On receiving this request, the
RTCS Client exports the appropriate LLVM IR by creating a new LLVM IR module and
then creating copies of the hotspot and each kernel (function) into the newly created
module. A verification pass is run on the module to check for any errors after which it
is serialized and send to the RTCS Server.

In this thesis, we present a generalized OpenCL parallelization and code generation
approach that is capable of generating OpenCL C kernel code from sequential code. How-
ever, different accelerator types have different properties and in turn different optimization
methods. Specialized accelerator specific OpenCL code generators can be derived from the
generalized OpenCL code generation approach to take into account these differences and
further optimize the OpenCL kernel code. In the next section we look at how a sequential
kernel is parallelized.

5.10 Work-Item Parallelizer

In a sequential application, work is performed consecutively in each loop iteration, with
the loop iterator specifying which work-item is currently being executed. The work-item
parallelizer 12 exposes parallelism in OpenCL by transforming data parallel loops into
independent work-items that can be executed in parallel by the processing elements. Each
OpenCL work-item executes the same kernel code, but works on different data as specified
by the NDRange. Every work-item has a unique identifier which is used to identify what
index the work-item needs to process. This identifier can be obtained by calling the
get global id() OpenCL API call. The main task of the work-item parallelizer is to
transform the identified sequential loops by replacing the loop iterator with appropriate
calls to the get global id() API.

In Listing 5.3 we saw the pseudocode of a simplified 2D 3×3 convolution. The outer two
loops (lines 2-3) iterate over the 2D output space. While the inner two loops (lines 6-7) per-
form a 3×3 convolution for each entry. During the analysis phase, the DependenceAnalysis

pass (see Section 5.7.2) determines if the kernel can be parallelized and stores the max-
imum parallelization loop level in the HDS. By looking at this information in the HDS,

46

the work-item parallelizer can determine that the outer two loops are parallelizable while
the innermost loops are data dependent. For each parallelizable loop, the work-item par-
allelizer performs the following steps:

1. Determine the loop induction variable.

2. Remove the control flow statements of the loop.

3. Replace the induction variable with a call to the get global id() API call.

4. Store information about the loop iteration space that will be used in the host code
to generate the appropriate work-items.

The induction variable of a loop is the variable that is incremented or decremented for
each loop iteration. In our example in Listing 5.3, r and c are the induction variables of the
outer loops. Since the LLVM bitcode is canonicalized (see Section 5.6), the loop induction
variable is guaranteed to be represented as a PHINode instruction in the loop header. The
PHINode belongs to every loop control flow and is used to select a value depending on the
predecessor of the current basic block. Once the induction variable is found, the work-
item parallelizer looks for the corresponding ICmpInst instruction that checks the loop exit
condition (r < rows −2). The loop-limit is stored in the HDS and is later used by the
RTCS Client to invoke the OpenCL kernel with the appropriate work-items. The compare
and branch instructions associated with the loop control flow are then removed. This
effectively removes the loop structure with all the code previously inside the loop being
executed exactly once. The final step is to replace the induction variable with a call to the
get global id() OpenCL API call. Listing 5.4 shows the transformed pseudo code after
all the steps are completed (loops in line 2-3 are replaced). It is important to note, that
we use pseudo code to help the reader better understand the concepts, however the RTCS
performs these code transformations at the LLVM IR level.

1 // Iterate over the 2D output.

2 int r = get_global_id (0);

3 int c = get_global_id (1);

4 // Convolve over the 3X3 filter.

5 int sum = 0;

6 for (int i = 0; i < 3; i++) {

7 for (int j = 0; j < 3; j++) {

8 // ...

9 sum += in[r+i][c+j] * MASK[i][j];

10 // ...

11 out[r][c] = sum;

Listing 5.4: Pseudo OpenCL C code for a transformed parallelized OpenCL C kernel.

47

Chapter 5.11. Tiling: Exploiting Local Memory

5.11 Tiling: Exploiting Local Memory

In the previous section we looked at how the work-item parallelizer transformed sequen-
tial loops into work-item based OpenCL C kernels. In our evaluation in Chapter 6, we
will see that in most cases, this parallelization results in an increase in performance when
compared to the original sequential application. However, this approach only makes use
of the OpenCL device’s global memory and as we saw in Section 4.2.1, accessing global
memory is expensive. Some OpenCL devices utilize dedicated hardware units to help im-
prove the global memory efficiency by combining consecutive work-item memory accesses
together and issuing burst reads or writes. However, local memory accesses are still an
order of magnitude faster than global memory, the only caveat being its limited size (see
Figure 4.5). For applications with a lot of data reuse, one could further improve the
parallel performance by making use of faster local memory.

Applications like matrix multiplication, stencils and convolutions are prime examples
of applications with considerable data reuse. The RTCS makes use of a template-based
approach to identify data reuse patterns in applications. Presently the RTCS can identify
data reuse patterns for matrix multiplication and convolutions. However, this can be
extended to support more applications in the future. To help understand how data reuse
affects performance and how one can benefit by using local memory instead of global
memory, we first take a look at the convolution filter in the next section.

5.11.1 Convolution

The convolution of two functions has a broad range of applications like image process-
ing, signal filtering, audio processing and artificial intelligence. For example, in image
processing applications, convolutions are used to sharpen the image, remove noise, detect
edges and even blur images. A subset of convolutions known as separable convolutions
are convolutions that can be separated out and represented as simpler convolutions which
results in better performance. However, not all convolutions are separable. In our work,
we develop a generalized tiling approach for convolution filters and hence do not consider
such separable convolutions. 2-dimensional convolution filters form the core of many image
processing algorithms, and can be defined as:

S′(x, y) =
a∑

i=−a

a∑
j=−a

S(x + i, y + j) · k(i + a, j + a) (5.1)

where: S′ is a 2-dimensional output image,
S is a 2-dimensional input image,
k is the m×m square convolution kernel being applied and

a =
m− 1

2
, is the radius of the convolution kernel

48

5.11.1. Convolution

Figure 5.9 shows an example of a 3× 3 image filter. A pointwise scalar product of the
source image and the kernel filter is performed to obtain the result matrix which is then
summed up and stored in the output image. We can see that for each output computed,
m ×m input elements need to be loaded from the global memory and 1 output element
stored to the global memory. This requires a high amount of memory bandwidth to process
the entire image. Since the filter kernel is generally quite small, it can completely fit into
the faster optimized constant global memory (see Section 4.2.1) and we do not consider it
for optimization.

2 45

1

23

2

2

5

3

5

5

4

1

3

25

2

2

3

3

1

2

1

4

3

1

4

4

2

3

34

4

2

4

13

2

2

1

3

1

5

2

2

1

4

5

3

22

4

3

5

1

1

5

1 2

1

5

3

1

1

1

5 2

3

2

3

2

4 3

4

1

5

1

5

5

Filter KernelInput Image Output Image

-1 -1-1

9

-1 -1

-1-1

-1

Pointwise Multiplication

⨊

-3 -1-2

18

-1 -3

-2-1

-3

2

Figure 5.9: A basic 3× 3 sharpness convolution filter.

For convolution filters, there is a significant amount of data reuse amongst neighboring
elements. Figure 5.10 demonstrates the data reuse amongst two neighbors for a 3 × 3
convolution filter. The highlighted cells show the data overlap between the two neighboring
computations. We can see that only 3 elements differ between the data requirement of the
first and the second computation. Since the access pattern is constant for a given filter size,
we can take advantage of the faster local memory by first copying the data from the global
memory to the local memory of the compute unit and then performing the computation.
However, as the local memory size is limited, the iteration space is partitioned into smaller
tiles that can fit in local memory. This method is known as Tiling and is typically used in
CPUs to help maximize the number of cache hits, thereby reducing the cost to fetch data
from other slower cache levels or from the main memory.

In OpenCL, local memory can only be shared between work-items belonging to the
same work-group and hence the iteration space is partitioned/tiled so that each tile is
mapped to a work-group. Figure 5.11 demonstrates how a 2-dimensional output space
can be partitioned into different tiles. Each tile is processed by a single work-group and
the bold green squares in the figure denote the work-groups (tiles) while the small squares
denote individual work-items.

49

Chapter 5.11. Tiling: Exploiting Local Memory

1

3

2

0

5

4

3 74 620 1 5

Overlapping data

1

3

2

0

5

4

3 74 620 1 5

X X

Figure 5.10: Data reuse between two neighbors for a 3× 3 convolution filter.

Tiled Input Image ND Range work-group

work-item

halo

Figure 5.11: Loading the required halo region of a work-group.

Transferring data to local memory: When using the tiling approach, each work-item
initially loads one element from global memory into local memory. This results in the
entire contents of the tile being loaded into local memory. However, because of the data
access pattern of a convolution filter, the work-group needs additional data (borders) to
perform all its computations. This is shown in Figure 5.11 as the orange elements and
is known as the halo region. The size of this halo region depends on the radius of the
convolution filter. The radius is computed as (filter size − 1)/2. In our example, the
filter size of the 3×3 convolution filter is 3 and the radius is 1. This means that we have
to load a halo region of size 1 around the tile. In our implementation, this radius is used to
determine which work-items are used to load the extra halo elements into local memory.
The approach is described in Algorithm 1. In our example in Figure 5.11, the radius of

50

5.11.1. Convolution

the halo is 1 and hence only the adjacent bordering elements are used. The red arrows
in Figure 5.11 show which additional global memory elements are loaded by a work-item.
We see that a bordering work-item loads one additional element except for the corners
where three items are loaded.

Algorithm 1: Algorithm to load the halo region of a work-group/tile into local
memory for a convolution filter.

r = (filter size - 1)/2;
x = get local id(0);
y = get local id(1);
wgs = WORK GROUP SIZE;
if x <r then

//Load left halo
load local mem(x - r , y);

if x >= wgs - r then
//Load right halo
load local mem(x + r , y);

if y <r then
if x <r then

//Load the top left corner
load local mem(x - r , y - r);

//Load top halo
load local mem(x , y - r);
if x >= wgs - r then

//Load the top right corner
load local mem(x + r , y - r);

if y >= wgs - r then
if x <r then

//Load bottom left corner
load local mem(x - r , y + r);

//Load bottom halo
load local mem(x , y + r);
if x >= wgs - r then

// Load the bottom right corner
load local mem(x + r , y + r);

For the sake of simplicity and to help the reader better understand Algorithm 1, the
global to local memory mapping as well as out-of-bounds checks have been abstracted
away in the load local mem function. Additionally, Figure 5.11 as well as Algorithm 1
only consider a symmetric convolution where the convolution kernel is symmetric across
its mid point. However, convolutions like the one shown in Listing 5.3 are skewed i.e. the

51

Chapter 5.11. Tiling: Exploiting Local Memory

3× 3 convolution loop in lines 6 and 7 do not run from −1 to 1 but instead run from 0 to
2. The same amount of data needs to be loaded as in the symmetric case, however with
a different memory offset. This can be addressed by adding a SKEW FACTOR that offsets the
global data loaded by the load local mem function.

Synchronization In Section 4.2 we saw that a work-group is executed on a compute
unit in the form of wave-fronts. All work-items within a single wave-front are executed
in parallel in lockstep. However, different wave-fronts within a single work-group are
executed sequentially. Since each work-item depends on the neighboring work-items to
load the required data into local memory, it is possible that the neighboring data has not
yet been loaded into local memory when a work-item starts its computation. To avoid
this, a synchronization point in the form of a barrier is used to guarantee that individual
work-items can only proceed with subsequent computations after all work-items in a work-
group have reached the synchronization point and, in our scenario, all the required data
has been transferred to local memory.

The Tiling Pass The RTCS Server uses our custom tiling pass 13 that first analyses the
hotspot kernel for a convolution pattern and then tiles the hotspot kernel by transforming
the LLVM IR. Listing 5.5 shows the pseudo OpenCL C code for the tiled convolution filter
initially parallelized in Listing 5.4. To tile a convolution filter, the tiling pass performs
the following steps:

1. Determine if a convolution is present

2. Identify the filter and its size

3. Create a local buffer based on the work-group size and filter size

4. Insert code to transfer data (along with the halo) from global to local memory

5. Add a synchronization point (barrier) for local memory

6. Replace global variables and iterators with the corresponding local buffers and iter-
ators

The tiling pass first analyses the data access patterns of the hotspot kernel to determine
if a convolution computation is present. It makes use of a pattern matching approach that
looks at the load and store patterns inside loops as well as the corresponding computation
(reduction) to identify a convolution pattern. If a convolution pattern is identified, its filter
size and radius are computed and the tiling pass proceeds with the remaining steps.

Local memory buffers are required to hold the corresponding tiled data from global
memory. During the analysis phase, the tiling pass analyses the data access patterns
and determines which data-arrays require local storage. If we look at the example in
Listing 5.4, we can see that local memory is required for the in data-array. The size of
the local memory that is required to be allocated depends on the filter radius computed

52

5.11.1. Convolution

in the previous step and the size of the local work-group (Listing 5.5, line 9). Since we
map a tile to a work-group, this is the same as the tile size. The local work-group size is
obtained from the HDS and is previously initialized by the RTCS Client. This size can be
manually specified as a command line parameter to the RTCS, otherwise a default size of
16× 16 is used.

Once the local data-array has been created, the code required to load the required
data from global memory to local memory is inserted into the hotspot kernel according to
Algorithm 1 (Listing 5.5, line 11). A synchronization barrier is inserted after this step to
ensure that all the required local memory has been loaded (line 14). All global data-array
accesses inside the convolution loop are replaced by corresponding local data-array accesses
and their indexes are updated to use the local iterator instead of the global iterator (line
21). Finally, the HDS is updated to indicate that the kernel was tiled. This information is
used later by the RTCS Client to invoke the OpenCL kernel with the appropriate global
and local work-group parameters.

1 // Iterate through 2D input.

2 int r = get_global_id (0);

3 int c = get_global_id (1);

4
5 int local_r = get_local_id (0);

6 int local_c = get_local_id (1);

7
8 // Allocate local memory for the tile

9 __local int local_in [(WGS + FILTER_RADIUS *2)*(WGS + FILTER_RADIUS *2)];

10
11 copy_to_local(in , local_in , r, c, local_r , local_c);

12
13 // Guarantee that the complete tile is loaded into local memory

14 barrier(CLK_LOCAL_MEM_FENCE);

15
16 // Convolve over the 3X3 filter.

17 int sum = 0;

18 for (int i = 0; i < 3; i++) {

19 for (int j = 0; j < 3; j++) {

20 // ...

21 sum += local_in[local_r+i][local_c+j] * MASK[i][j];

22 // ...

23 out[r][c] = sum;

Listing 5.5: Pseudo OpenCL C code for a tiled convolution kernel (skewed) that
uses local memory. WGS denotes the work-group size and the value of
FILTER RADIUS is 1 in this case.

To evaluate the theoretical benefits of using tiling, we compare the number of global
memory loads required per tile for the tiled and non-tiled approaches. It is important
to note that we use a “tile” only as a unit of comparison between the tiled and non-
tiled approaches. To compute this, we use square tiles as well as square filters, with a
size of tile size × tile size and filter size × filter size respectively. We first look at
the global memory accesses required per tile when only global memory is used in the

53

Chapter 5.11. Tiling: Exploiting Local Memory

non-tiled approach. Each element in the tile requires filter size× filter size reads from
global memory. This results in tile size2 × filter size2 global loads per tile. By taking
advantage of tiling and using local memory instead of only global memory, the number of
loads from the global memory loads are computed by:

global memory loads = #elements per tile + #halo elements

= tile size2 +

(
tile size +

filter size− 1

2

)
× 4

(5.2)

Compared to the non-tiled approach, we can see that the number of global memory loads
is considerably reduced, allowing the application to benefit from faster local memory. In
the next section, we take a look at the matrix multiplication application and how it can
be tiled.

5.11.2 Matrix Multiplication

Matrix multiplication is widely used in diverse domains like graph theory, statistics, engi-
neering and computer graphics, including image transformation like stretching, squeezing,
rotation, scaling, sheering or reflection. Given that we want to multiply two input matrices
A of size m× n and B of size n× p, each element c of the resulting matrix C (m× p) is
computed by:

cij =
n−1∑
k=0

aik · bkj (5.3)

where: i = 0, ...,m− 1 and
j = 0, ..., p− 1

Figure 5.12 visually depicts how the resulting matrix element is computed from the
two inputs matrices A and B. The element cij in the result matrix C is obtained by
first computing the pairwise multiplication of n elements of the ith row of A and the jth

column of B and then summing up the resulting n elements. Applying our parallelization
approach, the RTCS is able to parallelize the outer two loops. Listing 5.6 shows the pseudo
OpenCL C code that is generated by the RTCS.

1 int i = get_global_id (0);

2 int j = get_global_id (1);

3 int tmp = 0;

4 // Matrix multiplication

5 for (int k = 0; k < n; k++) {

6 tmp += A[i][k] * B[k][j];

7 }

8 C[i][j] = tmp;

Listing 5.6: Pseudo OpenCL C code for a matrix multiplication kernel using global
memory.

54

5.11.2. Matrix Multiplication

1

7

3

0

4

6

5

2

210 4 753 6

4 60 31 2 5 7

1

2

0

3

5

4

6

7

1198 10

A

B

C

X

m

n

n

p

i

j

Figure 5.12: Computation of element Cij for C = A×B.

Looking at Figure 5.12, we can see that in order to compute a value, a complete row
from matrix A and a complete column from matrix B needs to be fetched. This means
that 2×n elements need to be loaded from global memory to calculate a single element in
matrix C, resulting in 2×m× n× p loads from global memory for the complete matrix.
However, we can also see that there is a lot of potential for data reuse. For every row to be
computed in matrix C, the same row from matrix A can be reused (blue area in the figure).
Similarly, for every column to be computed in matrix C, the same column from matrix B
can be reused (light brown area in the figure). To help reduce global memory access and
to take advantage of data reuse, we apply a tiling approach based on the one presented
by Rivera et al. [71]. The matrix is first divided into multiple tiles or sub-matrices (see
Figure 5.13). A partial tile-wise computation is performed and all the partial results are
summed up to calculate the final result. If we partition A into q× r tiles and B into r× s
tiles, the resulting tile in C is computed by:

Cij =

r−1∑
k=0

Aik ×Bkj (5.4)

where: i = 0, ..., q − 1 and
j = 0, ..., s− 1

55

Chapter 5.11. Tiling: Exploiting Local Memory

A

B

C

0

work-group

work-item

1

0

1

0 1

0 1 2

r

q

r

s

Figure 5.13: Tiled Matrix Multiplication.

Figure 5.13 shows how such a tiled approach for the matrix in Figure 5.12 looks like. The
matrices have been partitioned into tiles of 4× 4 elements and each tile in matrix C forms
its own work-group. To compute the tile C01, initially tiles A00 and B01 are loaded into
local memory. The matrix multiplication of A00×B01 is performed and stored locally. Tiles
A01 and B11 are then loaded into local memory and the matrix multiplication is repeated.
The result is then summed up and finally stored in C01. Since all the work-items share the
same local memory, every work-item loads only one element from global memory for every
input matrix (A,B) resulting in fewer memory access to global memory. In this example
we use square tiles each of size tile size×tile size. To compute the resulting tile of matrix
C, the work-group needs to load tile size × n elements from matrix A and n × tile size
elements from matrix B, resulting in 2 × n × tile size loads from global memory. The
total number of global memory loads required to compute matrix C using square tiles is
given by:

global memory loads = 2× n× tile size× m

tile size
× p

tile size
=

2× n×m× p

tile size
(5.5)

When compared to the non-tiled approach, the number of global memory loads is re-
duced by a factor of tile size.

56

5.11.2. Matrix Multiplication

The tiling pass 13 of the RTCS Server analyses the hotspot kernel to detect a ma-
trix multiplication pattern. It does so by using the LLVM LoopInfoPass to examine the
structure of the loops. It also looks at load and store operations as well as the compu-
tations inside the loop in order to identify a matrix multiplication pattern. If a matrix
multiplication pattern is found, the data-arrays involved are identified and the order of
the multiplication is determined (A · B 6= B · A) after which the tiling pass transforms
the main multiplication loop structure. Listing 5.7 shows the tiled pseudo OpenCL C
code based on the code in Listing 5.6. The variables from Figures 5.12 and 5.13 are also
reused to better understand how the matrix multiplication kernel is tiled by performing
the following steps.

1. Add code to compute the number of tiles required. (tiles = n/tile size)

2. Create local sub-matrices to store the input tiles. (local A, local B)

3. Encapsulate the matrix multiplication loop with the tiling loop. (Listing 5.7: line
15)

4. Compute the tiled indices for global memory accesses.

5. Add code to transfer data from global to local memory.

6. Insert a synchronization point (barrier) for local memory.

7. Update the matrix loop to iterate up to tile size instead of n

8. Translate addressing and memory accesses inside the matrix loop from global to
local memory.

9. Insert a barrier to wait for all work-items to finish before proceeding to the next tile.

Presently, the RTCS only supports square tiles with the tile size being obtained from
the HDS, which is previously initialized by the RTCS Client. This size can be manually
specified as a command line parameter to the RTCS, otherwise a default size of 16× 16 is
used. Similar to the tiling approach for convolutions, local data-arrays are created to hold
the tiles required for the input matrices (A and B), and their sizes are set to the tile size
(Listing 5.7, lines 11 and 12).

To compute one tile in the resulting matrix C, one needs to explicitly iterate over
different row-tiles from matrix A as well as the corresponding column-tiles from matrix
B. The tiling pass needs to introduce an additional loop to iterate over these tiles. The
tiling pass inserts a new tiling loop that iterates over the number of (row/column) tiles
(Listing 5.7, line 15) into the hotspot kernel, encapsulating the matrix multiplication loop.
It also introduces new array indices to correctly address the local and global data-arrays.
The local data-arrays are then populated. A synchronization barrier is inserted after this
step to ensure that all the required data has been loaded into local memory (line 23).

57

Chapter 5.12. Generating and compiling OpenCL Kernel Code

1 int i = get_global_id (0);

2 int j = get_global_id (1);

3 int tmp = 0;

4
5 int tiles = n / tile_size;

6
7 int local_i = get_local_id (0);

8 int local_j = get_local_id (1);

9
10 // Allocate local memory for the tiles

11 __local float local_A[tile_size][tile_size];

12 __local float local_B[tile_size][tile_size];

13
14 //The tiling loop

15 for (int tileIter =0; tile <tiles; tile ++) {

16 // Load one tile of A and B into local memory

17 int tiled_i = tile_size*tileIter + local_i;

18 int tiled_j = tile_size*tileIter + local_j;

19 local_A[local_i][local_j] = A[i][tiled_j];

20 local_B[local_i][local_j] = B[tiled_i][j];

21
22 // Guarantee that the complete tile is loaded into local memory

23 barrier(CLK_LOCAL_MEM_FENCE);

24
25 // Matrix multiplication per tile (main MM loop)

26 for (int k=0; k<tile_size; k++) {

27 tmp += local_A[local_i][k] * local_B[k][local_j];

28 }

29
30 //Wait for all work -items to finish before loading the next tile

31 barrier(CLK_LOCAL_MEM_FENCE);

32 }

33 C[i][j] = tmp;

Listing 5.7: Pseudo OpenCL C code for a matrix multiplication kernel using tiling and
local memory.

5.12 Generating and compiling OpenCL Kernel Code

After the hotspot kernels have been parallelized and tiled, the hotspot kernels are trans-
lated from LLVM IR to OpenCL C Kernels 14 . We rely on Axtor [65], an open-source
AST-extractor for LLVM to generate OpenCL C code. Axtor takes LLVM IR as input,
restructures the control flow to suit high-level code generation and then generates OpenCL
C code from it. Axtor can be considered to be a back-end for LLVM, which can translate
LLVM bitcode into OpenCL C code. Unfortunately, the initial efforts were not continued
and the source code has been removed from the LLVM tree due to lack of maintenance.
Magni et al. [63] revived and adapted Axtor to LLVM 3.5 for their thread-coarsening ap-
proach. We used this version as a base and ported it to LLVM 3.8.0. We also extended

58

Axtor to support the generation of address space qualifiers for local and constant variables.
In our approach, the RTCS Server uses the Axtor back-end to generate OpenCL C

kernel code for each hotspot kernel separately. Once all the OpenCL C kernels have
been generated, they are consolidated into a unified *.cl file. The server then uses the
clCreateProgramWithSource() OpenCL API call to compile the OpenCL kernel into a
OpenCL program for the specified OpenCL device. It then uses the clGetProgramInfo()

OpenCL API call to extract the device specific binary from the compiled OpenCL program
and saves it to file 15 . The RTCS Server cache is updated and the OpenCL binary along
with the updated HDS is sent to the RTCS Client. In the next section, we take a closer
look at how the corresponding OpenCL host code is generated by the RTCS Client and
how the accelerated code is integrated into the application.

5.13 Integrating Accelerated Code into the Host

The generated parallel OpenCL kernel code represents only the raw computation on a
compute device. A kernel executes on multiple processing elements in parallel and corre-
sponding OpenCL host code is required to setup the device, load the kernel code, handle
data buffers and enqueue the kernel. In this section, we describe how the RTCS Client
automatically generates the OpenCL host code and integrates it into the application. We
start by looking at the different steps that need to be performed during a typical execution
of an OpenCL application.

1. Select the appropriate platform and device

2. Create a device context and command-queue

3. Loading (or compiling) the OpenCL program and creating kernel handles

4. Create input/output data buffers on the device

5. Transfer data from the host to the device

6. Set the kernel arguments

7. Execute the kernel(s) on the device (enqueue)

8. Transfer data back to the host

An OpenCL platform is a vendor specific implementation of the OpenCL specification
and is used by the host to control different OpenCL devices belonging to it. The OpenCL
runtime is capable of supporting multiple OpenCL platforms, where platforms from differ-
ent vendors can coexist on the same host. As an example, the heterogeneous node used as
our evaluation platform supports the Intel as well as the Nvidia OpenCL platforms. Each
platform contains one or more OpenCL devices (e.g. mCPU, MIC) which perform the
actual computation. The OpenCL runtime uses a context to manage command-queues,
memory, program and kernel objects [49]. A context may have one or more devices, with

59

Chapter 5.13. Integrating Accelerated Code into the Host

each device within a context having its own command-queue. All commands intended for
the device (buffer creation, data transfer, kernel execution, synchronization, etc) are sub-
mitted to the command-queue. By default, all the commands in the command-queue are
executed in-order, allowing it to be used to specify the execution order. In our approach,
the code required to select the appropriate platform/device and create the command queue
(steps 1-2) are previously inserted into the application during the application preparation
phase (see Section 5.8).

5.13.1 Loading the OpenCL Program

On receiving the OpenCL code (binary) from the RTCS Server, the RTCS Client first
saves it locally. To execute the kernel(s) on an OpenCL device, the OpenCL runtime
needs to first load this device specific binary. This step needs to be performed only once
during the application’s lifetime. This is similar to registration function which also needs
to be executed only once within the application. The RTCS exploits this and uses the
appropriate registration function (created during the application preparation phase) to
also load the pre-compiled OpenCL binary by inserting the OpenCL API call that first
loads and then builds the OpenCL program (step 3). Creating OpenCL kernel handles
also need to be performed only once during the application’s lifetime and the RTCS also
inserts code that creates OpenCL kernel handles for each of the hotspot kernels into the
registration function. This registration function is called within the heartbeat loop when
the application is executing and has been previously discussed in Section 5.8.

5.13.2 Generating OpenCL Host Code

OpenCL host code is also required to setup the data buffers, transfer the required data
to the device, enqueue the kernel and transfer the data back to the host. To simplify the
OpenCL host code generation, the RTCS Client first creates a new empty function with
the same signature as the CPUBaselineFunction. All the OpenCL commands to transfer
data and launch the OpenCL kernels are then added to this new function. The main
objective of this new function is to provide a container for steps 5-8 and is known as the
accelerated function.

However, before the data can be transferred, the RTCS needs to allocate data buffers of
the appropriate data type, size and read/write type on the OpenCL device. The data type,
buffer type and size are obtained from the HDS, which were previously populated during
the data analysis phase described in Section 5.7.3. The OpenCL data buffers are created
on the device by calling the clCreateBuffer() API (step 4). The clEnqueueWriteBuffer()

API call is then used to transfer data from host memory to the data buffer on the OpenCL
device (step 5).

The kernel arguments need to be set before the kernel is invoked and this is done by
adding the clSetKernelArg() API call to specify the argument index and the corresponding
data (steps 6). The arguments are either pointers to a device buffer previously created
(in the case of data-arrays) or basic data-types which are obtained from the HDS. Once
the arguments are set, the kernel is enqueued into the command queue by calling the

60

5.13.3. Registering the new Accelerator Implementation

clEnqueueNDRangeKernel() API which is used to specify which kernel to execute along
with the total number of work-items and the work-group size. In addition to the OpenCL
kernel code, the RTCS Client also receives an updated HDS from the RTCS Server. For
every OpenCL kernel, the updated HDS contains information about the work dimension
and the global and local work-group sizes which are used by the RTCS Client to launch
the OpenCL kernel with the appropriate parameters (step 7). The OpenCL kernels are
invoked in the same order as specified in the hotspot.

Data is transferred back to the host by using the clEnqueueReadBuffer() API call (step
8). A clFinish() command is inserted into the device command queue to ensure that all
the data is written to the host before finally cleaning up and releasing the buffers on the
device using the clReleaseMemObject() API call.

As a further optimization, the data transfer steps are skipped if the OpenCL device is
the mCPU. In this case, the host and the OpenCL device share the same (host) memory.
The data buffers on the device are created using the CL MEM USE HOST PTR flag along with
a pointer to the host memory which tells the OpenCL runtime to use host memory.

5.13.3 Registering the new Accelerator Implementation

At this point, the OpenCL host code has been generated and integrated into the appli-
cation, however before the Orchestrator can take advantage of the new accelerator imple-
mentation, it needs to be registered with the Orchestrator. Additionally, the application
also needs to know how to call this new implementation. In a SAVE-Enabled application,
each hotspot implementation is called within a lambda expression. The lambda expression
serves as a container which defines the accelerator specific function to be called as well
as all the required arguments. This lambda expression along with the accelerator type is
then registered with the Orchestrator (see Section 5.6). At runtime, when the Orchestra-
tor selects an implementation that the application should use, the application checks the
accelerator type and executes the corresponding lambda expression.

To register the new accelerator with the Orchestrator, the RTCS needs to first create
a lambda expression that calls the accelerated function described in the previous section.
Internally, a lambda expression is represented as a class and generating such a lambda
expression using the LLVM API is not straightforward. The LLVM C back-end is used
to aid in generating the lambda expression. LLVM provided an inbuilt C back-end until
version 3.1, however it has since been discontinued due to lack of maintenance. Fortunately,
the Intel ispc project [25] is an LLVM based compiler which also needs to transform LLVM
IR to C code in order to use it with the Intel Compilers. They revived and adapted the
LLVM C back-end for internal use and have released it as an open-source project. We
make use of this back-end in our project. Only minor modifications have been made to
resolve dependencies to the rest of the ispc project and integrate it cleanly. The result
of these modifications is an independent software module which provides an interface to
generate a *.c file from LLVM IR code.

The RTCS makes use of this LLVM C back-end to generate the C function signature for
the accelerated function. Using the generated C code, the RTCS constructs a C++ file with

61

Chapter 5.14. Chapter Conclusion

a lambda expression with a call to the accelerated function. The function signature is then
inserted into this lambda template and compiled using clang to obtain the corresponding
lambda expression in LLVM IR for the newly created accelerated function.

In Section 5.8, we saw that accelerator hooks in the form of registration functions were
added to the application to help the RTCS register new accelerator implementations with
the Orchestrator at application runtime. The registerImplementation() Orchestrator API
call, with the lambda expression and accelerator type as arguments is inserted into the
appropriate registration function. The registration function is called for every iteration
of the heartbeat loop and to ensure that the registration function is only executed once,
a global boolean variable is added to the application and initialized to false. The reg-
istration function first checks this variable and only loads the kernels and registers the
implementation if it is set to false. Once the registration function executes, this value
is set to true. Finally, the updated registration function is Just-in-Time compiled using
the LLVM Execution Engine and the registration function pointer is updated to point to
the newly compiled registration function. During the next iteration of the heartbeat loop,
the new accelerated implementation is registered with the Orchestrator. The Orchestrator
now has the possibility to select the new accelerated implementation.

5.14 Chapter Conclusion

In this chapter, we took an in-depth look at the Runtime and Just-in-Time Compilation
System and its different components. We saw how the RTCS supplements the Orchestrator
by JIT generating missing accelerator implementations for SAVE-Enabled applications. To
help streamline accelerator code generation, the RTCS was separated into two main com-
ponents, the RTCS Client and the RTCS Server. A communication module was developed
to allow the Client and Server to efficiently interact with one another and also commu-
nicate with the Orchestrator. We looked at the RTCS toolflow in detail and saw how
the application was loaded into the RTCS, canonicalized and analyzed for Orchestrator
constructs. The different custom LLVM analysis passes like the ExternalFunctionFilter,
DependenceAnalysis and DataOptimization analysis passes used to analyze the hotspot
were presented. We also saw how the application was prepared by adding hooks for miss-
ing accelerator implementations and how the application was executed within the LLVM
execution engine. The different phases of OpenCL code generation were also presented
in detail. We saw how the sequential kernel code was parallelized and how the generated
OpenCL code was tiled using two different tiling strategies. The method to translate
LLVM IR into OpenCL C, as well as the process of compiling OpenCL kernels into device
specific binaries was presented. We finally saw how the OpenCL host code was generated,
integrated into the application and registered with the Orchestrator. In the next chapter,
we present an in-depth evaluation of our approach.

62

CHAPTER 6

Evaluation

In this chapter, we present a detailed evaluation of our approach. We first present the
hardware platform, the benchmark applications and the measuring method. We analyze
the overheads introduced by the RTCS in Section 6.4 as well as evaluate the improvement
in application performance in Section 6.5. To give additional valuable insights on the
impact of the RTCS, we present the results at the kernel as well as the hotspot level.

6.1 The Heterogeneous Evaluation Platform

The evaluation is performed on a multi-accelerator heterogeneous platform built using
off-the-shelf hardware components. The heterogeneous platform runs CentOS 6.8 Linux
with kernel v2.6.32. The heterogeneous node consists of a dual socket Dell PowerEdge
T620 server with two Intel Xeon E5-2609 v2 CPUs as host processors, each with four
physical cores (without simultaneous multithreading) and 32 GiB of main memory. The
platform also features two additional accelerators with distinct architectures to offload
the computation: an Nvidia Tesla K20c GPGPU and an Intel Xeon PHI 31S1P — both
connected via PCI Express. Table 6.1 shows the distinct features of each device. The
CPUs have 8 physical cores and are able to execute 8 threads in parallel at the same time.
The GPGPU has 13 multiprocessors with 192 CUDA Cores per multiprocessor resulting
in 2496 CUDA cores. While the Xeon PHI has 57 cores with four hardware threads per
core.

OpenCL Devices: All the heterogeneous devices support OpenCL version 1.2. From now
on we refer to the OpenCL devices corresponding to the Intel Xeon CPUs, Nvidia Tesla
GPGPU and the Intel Xeon PHI as the mCPU, GPGPU and PHI respectively. The OpenCL
runtime reports the number of OpenCL Compute Units as 8, 13 and 224 for the mCPU,
GPGPU and PHI respectively. However, the number of Compute Units is not a clear indicator
of the overall performance capability of the device. Each Compute Unit executes multiple

63

Chapter 6.2. Benchmark Applications

threads (work-items) at the same time. For example, the Compute Units of the GPGPU

can use up to 2496 threads (under optimal conditions: no thread-divergence and maximal
occupancy). Whereas, the Compute Units of the PHI can execute only 224 threads, but
each of them can execute different instructions (i.e. they support the thread-divergence).

In the next section we introduce all the benchmark applications and look at what each
application does.

Table 6.1: The specifications of the different heterogeneous devices.

Compute device Intel Xeon E5-
2609 v2 (×2)

Nvidia Tesla K20c Intel Xeon PHI
31S1P

Core frequency 2500 MHz 758 MHz 1100 MHz

of cores 4 (×2) 13 (multiprocessors) 57

of hardware threads 4 (×2) 2496 (CUDA cores) 228

memory size 32 GiB 5 GiB 8 GiB

cache L1 size 4× 32 KiB3 (×2) 13× 48 KiB4 (max.) 57× 32 KiB3

cache L2 size 4×256 KiB3 (×2) 1.5 MiB 57× 512 KiB3

cache L3 size 10 MiB5 (×2) − −
microarchitecture Ivy Bridge Kepler Knights Corner

manufacturing process 22 nm 28 nm 22 nm

thermal design power 80 (×2) W 225 W 270 W

6.2 Benchmark Applications

We use a diverse set of benchmark applications to evaluate our approach. The applica-
tions are extracted from a broad set of domains (scientific computing, signal and image
processing, security, etc.) Table 6.2 lists all the applications by name and a small descrip-
tion. The benchmark applications are single-threaded CPU applications written in C that
have been adapted to be SAVE-Enabled applications (SEAs) and use heartbeats. In this
section we take a look at these benchmark applications.

6.2.1 Dense Matrix Multiplication

The 2mm application is a 2-dimensional dense matrix application that multiplies two matri-
ces together and is commonly used in scientific and graphics domains. In every heartbeat
iteration, the application multiplies two matrices. Computing an element of the resulting

3 8-way set associative cache.
4A 64 KiB block of memory is split between the L1 cache and shared memory.
520-way set associative shared cache.

64

6.2.2. Black-Scholes Option Pricing

Table 6.2: Benchmark applications and their description.

Application Description

2mm [70] 2D dense matrix multiplications

bsop [85] Black-Scholes option pricing for European options

fir [67] Finite impulse response signal processing

enhance [24] Convolution with a Gaussian function

heat2D [70] heat2D equation solver

nbody [37] N-body particle simulation (kernel)

motion [41] Motion detection (contains six kernels)

raytrace[82] Renders an 2D image

sha256[27] Cryptographic hash function with 256 digest

stereo2D [Vaz14] 2D stereo matching

matrix is not dependent on the computation of any other elements and can be parallelized
by the RTCS. The RTCS can also identify the matrix multiplication pattern and applies
tiling optimizations.

6.2.2 Black-Scholes Option Pricing

The Black-Scholes Option Pricing application is a financial options pricer application
based on the Black-Scholes formula [11], which is a method used to measure the risk of
loss on a portfolio of financial assets. The bsop application is a simplified representation
of the type of processing used by commercial financial risk analysis products. It takes a
time in the future (the horizon time), a set of underlying instruments (e.g. stocks) and
a portfolio as inputs. Using these inputs, bsop computes the financial risk or Value at
risk (VaR) over many thousands of market scenarios. In every heartbeat iteration, the
bsop application computes (or recomputes) VaRs for different horizon times, stocks and
portfolios. Computing the VaR for a given market scenario is independent and can be
parallelized by the RTCS.

6.2.3 Finite Impulse Response

Finite Impulse Response (FIR) is commonly used to filter signals in digital signal pro-
cessing applications. FIR can be used for different kinds of DSP filters, like low-pass,
high-pass, band-pass or band-stop filters. The fir application uses a band-pass filter. In
every heartbeat iteration, the application processes a different signal. The input signal is
represented as an array (x[n]) and every element of the output signal can be computed in
parallel and is parallelized by the RTCS.

65

Chapter 6.2. Benchmark Applications

6.2.4 Image Sharpening

The enhance application is an image processing application that uses a convolution filter
(9× 9) to sharpen the input image. The input image is composed of three channels (red,
green, blue). In every heartbeat iteration, the enhance application processes a different
image. Since every output pixel can be independently computed, the RTCS is able to
parallelize this application. The RTCS also identifies the convolution pattern and applies
tiling optimizations.

6.2.5 Heat Transfer Simulation

The heat2D application performs a simulation of the transfer of heat in a 2-dimensional
material. Every iteration of the heartbeat loop represents a time-step in this simulation.
However, within a time-step, there are no dependencies and all the elements belonging to
the 2-dimensional material plane can be computed in parallel. Internally, the computation
of heat2D is represented as a 5× 5 convolution filter and is tiled by the RTCS.

6.2.6 N-body Simulation

The nbody application performs the N-body simulation of the motion of particles and their
interaction with one another. N-body simulations are widely used in physics, especially
in astrophysics to study how different physical forces (e.g. gravity) affects the motion
of different particles (e.g. planets, stars, etc.) in the universe. Every iteration of the
heartbeat loop represents a time-step in the simulation. In each time-step, every element
(body) calculates its new position based on the collective forces being applied to it by
all other bodies in this simulation. This results in two loops, an outer loop that iterates
over all bodies in the simulation and an inner loop to compute the collective forces being
applied on that body by all other bodies. The position of the body is updated in the outer
loop after the forces have been computed. This results in a dependency between the inner
and the outer loop. The RTCS detects this dependency and only parallelizes the outer
loop.

6.2.7 Motion Detection

The motion application is a collection of image processing kernels that takes two images
as inputs, detects the motion between them and highlights it in the output image. The
application makes use of six different kernels and is depicted in Figure 6.1. Both input
images are first processed using a gauss filter to blur the image. The images are then
converted from the RGB color space to the gray color space (rgb2gray). The results
are fed into the motion detection kernel which detects motion depending on a specific
threshold. After the motion detection kernel is applied, an erosion (morphology) filter
is applied to reduce the noise. A sobel filter then highlights the edges. Finally, the edge
information is combined with the original image in the grayEdge2rgb filter to highlight
the motion in the image. The gauss, erosion and sobel kernels use 9 × 9 convolution

66

6.2.8. Ray Tracing

filters. The RTCS identifies the convolutions and tiles them. In every iteration of the
heartbeat loop, the application detects the motion between two different images.

gauss gauss

rgb2gray rgb2gray

erosion

sobel

image_0 image_1

output_image

motion

grayEdge2rgb

Figure 6.1: The motion application and its kernels.

6.2.8 Ray Tracing

Ray tracing is an image rendering technique commonly used in computer graphics. In
computer graphics, a virtual camera is placed within a virtual environment and the re-
sulting image is rendered from the point of view of this virtual camera. The direction in
which this virtual camera is pointed is known as the viewing direction. The image plane
is a plane that is perpendicular to this viewing direction and represents the image that
the virtual camera will render. To calculate the color of a pixel in the image plane, the
ray tracer constructs a ray that originates at the camera, passes through the center of
the pixel and carries on into the virtual space. It then computes the closest intersection
point between the objects in the scene and the ray. Finally, it determines the color of the
object at the point of intersection and colors the corresponding pixel in the image plane.
The raytrace application processes one ray in every heartbeat loop iteration and uses a
simple implementation that computes the intersection points of a ray with all objects in

67

Chapter 6.3. Measuring Method

the scene. All intersections can be computed in parallel and the kernel is parallelized by
the RTCS.

6.2.9 SHA-256 Cryptographic Hash Function

SHA-256 is a cryptographic hash function with a digest length of 256-bits. The SHA-
256 function takes a “message” and returns a fixed-size hash-value or “message digest”.
The hash function is not reversible and can only be used in one-direction. The sha256

application represents the transform function of such a SHA-256 function. The function
iterates over all the blocks and updates the message digest. All blocks can be processed in
parallel and the kernel is parallelized by the RTCS, with a new message being processed
in every heartbeat iteration.

6.2.10 Stereo Matching

The stereo2D application uses the a2dOuter function from the stereo matching test
suite [Vaz14] that represent characteristic loops based on stereo matching algorithms.
This function represents two loops where the inner loop has dependencies and cannot be
parallelized. The RTCS is only able to parallelize the outer loop. Additionally, the loop
is memory bound with very little computation. This example has been chosen to evaluate
our approach in a scenario where parallelization is not ideal.

In the next section we look at the measuring method used to obtain the evaluation
results.

6.3 Measuring Method

For our evaluation, the execution time is used as a performance metric. To measure the
performance of the application and to obtain fine grained information about the different
phases of a SAVE-Enabled application (SEA), SEAs are instrumented with lightweight
timers. The RTCS is also similarly instrumented to measure its overheads and the time
spent in its different phases. The SEAs are compiled into machine executable code by using
the native clang/LLVM (v.3.8.0) compiler with optimization level -O3. The SEAs only
implement sequential CPU code and serve as the baseline. The SEAs are also compiled
into LLVM IR using the same clang front-end and are used as an input to the RTCS. To
compare our approach against OpenACC, we extended the SEAs by adding pragmas to
loops which instruct the compiler to generate parallelized code. We use the latest version
of the PGI compiler (v.19.4-0) with optimization level -O3 to generate accelerated code
for the supported multi-core CPU and the GPGPU devices. In our evaluation, we refer to
these targets as OpenACC-CPU and OpenACC-GPU for the multi-core CPU and the GPGPU
devices respectively.

Our evaluation platform supports three OpenCL-enabled accelerators: mCPU, GPGPU

and the PHI. We evaluate the performance of the RTCS for each of these platforms.

68

Additionally, we also evaluate the performance of the OpenACC-CPU and OpenACC-GPU.
For this evaluation, the offloading device is selected by the Orchestrator with the help
of a debug parameter in its offloading decision module. In a production environment,
the Orchestrator would base this decision on the application and system-level goals and
policies in order to offload the computation to the best suited accelerator. However, as
we want to evaluate all application variants on all accelerators, the offloading device is
selected with the help of the Orchestrator debug parameter.

As the speedups depend on the input size, we do not select any single arbitrary input
size, but use many different input variants to show the overall behavior including break-
even-points to contrast the areas where offloading is un-/profitable. The 2mm, enhance,
heat2D as well as specific kernels from the motion are automatically tiled by the RTCS.
We executed these applications by running each input data point for a fixed 16 × 16 tile
size. In our approach, the work-group size for the generalized approach is not explicitly
specified by the RTCS, but is automatically selected by the OpenCL runtime. For the
tiling approach, the local work-group size is set to the tiling size.

All measurements are executed 25 times. The caching mechanism of the RTCS Server
that reuses previously generated code, is turned off. To reduce the interference by the
system OS, we use tasksets to pin the single-threaded baseline application to a single
CPU. We also set the CPU governor to performance to prevent effects from dynamic
frequency scaling. Even with these precautions, there were still some outliers. After
the data was acquired, the outliers were automatically removed with the Interquartile
Range (IQR) [51] method (factor 1.5 · IQR). Over all measurement points, the method
marked and removed on average about 3 out of 25 runs. After eliminating the outliers,
the average over all remaining runs was taken. To ensure that the code generated by
the RTCS produces correct results, we use Google Test [28] to verify the outputs of our
approach against the original CPU code. Since accelerators may induce small rounding
errors for floating point computations, we tolerate values within a small threshold.

In this section, we looked at how we measure the benchmark applications, the different
RTCS phases as well as how outliers are automatically removed. In the next section, we
take an in-depth look at the overheads associated with the RTCS.

6.4 RTCS Overheads

In this section, we look at the following types of main overheads that are introduced by
the Runtime and Just-in-Time Compilation System:

• Application launch overheads

• OpenCL code-generation and integration overheads

• OpenCL kernel compilation overheads

• Application-level OpenCL overheads

69

Chapter 6.4. RTCS Overheads

Figure 6.2 shows an overview of the different RTCS components and their overheads.
The application launch overheads are the overheads introduced by the RTCS before it
starts executing the application and are introduced by 2 - 7 . The code-generation over-
heads are introduced by the code-generation and integration modules of the RTCS Client
and Server 11 - 14 and 16 - 18 . Although, the OpenCL kernel compilation 15 can be
considered to be a part of the code generation overheads, it has different characteristics
for different OpenCL devices and to highlight them, we choose to present them sepa-
rately. Overheads are also introduced into the application runtime by integrating the
OpenCL environment into the application. These overheads are evaluated as application-
level OpenCL overheads.

RTCS Server

LLVM Execution Engine

Work-item
Parallelizer

12

SAVE-Enabled
Sequential Appl.

1

Appl. Execution

Orchestrator

9

7

11

RTCS Client

Canonicalization

3

LLVM Axtor

OpenCL
Kernel CodeGen

14
Tiling

Transformation

13

OpenCL
Kernel

Compilation

15
Hotspot
Analysis

5

Application
Preparation

6

Application
Analysis

4

OpenCL
Host Codegen

17

8

LLVM bitcode

18

2

A Application Launch Overheads

B Code Generation Overheads

C OpenCL Compilation Overheads

16

Communication
Handler

10

Figure 6.2: Overview of the RTCS overheads.

70

6.4.1. Application Launch Overheads

In addition to these overheads, the application also encounters the overhead of executing
through the execution engine instead of native execution. The only difference between
executing natively and via the execution engine is that the RTCS needs to preform JIT
compilation. This is a one-time overhead and is considered as a part of the application
launch overheads (Section 6.4.1). However, once JIT compiled, its effect on the actual
performance of the application is negligible.

In the next sections, we will take a detailed look at the different RTCS overheads.

6.4.1 Application Launch Overheads

When a SEA is launched via the RTCS, the RTCS Client loads the application, analyses
it and prepares it for acceleration before it starts executing the application. This over-
head can be considered as the latency of the RTCS, i.e. the duration between the time
the application is launched (via the RTCS) and the time when the application begins
executing on the CPU. This overhead includes the time required for initializing the LLVM
environment 2 , canonicalizing the LLVM IR 3 , application analysis 4 , hotspot analy-
sis 5 , application preparation 6 and JIT compilation of the application via the execution
engine 7 . Some of these overheads are very small and have been grouped together into
the following main categories:

(A1) LLVM initialization: The LLVM environment is setup and the application is
loaded into an in-memory LLVM module 2 .

(A2) Canonicalization: The LLVM IR is canonicalized to standardize it 3 .

(A3) Application and Hotspot Analysis and preparation: Orchestrator specific
handles are detected in the application 4 and hotspots are analyzed for different
kernels, external function calls, dependencies and possible data optimizations 5 .
The application is modified to support the OpenCL environment and accelerator
hooks are added 6 .

(A4) JIT Compilation: The LLVM IR module is JIT compiled and the application
starts executing 7 .

Figure 6.3 represents these overheads for all the benchmark applications. The left axis
of ordinates denotes the time in seconds while the right axis of ordinates denotes the size of
the LLVM IR input file. The different benchmark applications along with the arithmetic
and geometric means are represented on the axis of abscissas. We see that the LLVM
initialization phase (A1) is constant across all applications and is less than half a second.
We can also see that the overhead for application analysis, hotspot analysis and application
preparation (A2) is very small. Most of the overheads are a result of the canonicalization
(A2) and the JIT compilation (A4) phases. On an average, the canonicalization phase
takes around 1 second while the JIT compilation phase requires around 3 seconds. From
the figure, we can see that these phases are directly proportional to application size with
larger applications requiring more time. The reason that JIT compilation dominates

71

Chapter 6.4. RTCS Overheads

the overheads is because MC-JIT is used to JIT compile the application. One of the
limitations of MC-JIT is that it has to compile the entire LLVM IR module before the
execution engine can start executing the application. This overhead can be minimized
by switching to ORC-JIT (available in newer LLVM releases) and using lazy compilation.
These are one-time overheads and are incurred only when the application is launched, but
still need to be considered when launching applications via the RTCS.

2mm bsop fir
enhance

heat2D
nbody

motion
raytrace

sha256
stereo3D

arith. ø
geom. ø

0

1

2

3

4

5

6

7

8

tim
e

in
 se

co
nd

s

0

100

200

300

400

500

600

700

800

 a
pp

lic
at

io
n

siz
e

(L
LV

M
 b

itc
od

e)
 in

 K
iB

(A1) LLVM Initialization
(A2) Canonicalization
(A3) Analysis and Preparation
(A4) MC-JIT Compilation

Figure 6.3: The initialization, analysis and application preparation overheads of the
RTCS.

6.4.2 OpenCL Code Generation and Integration Overheads

The code generation overheads are associated with the OpenCL code generation and in-
tegration steps of the RTCS. They include communication and LLVM IR exporting over-
heads 11 , work-item parallelization 12 , tiling transformations 13 , OpenCL kernel code
generation 14 , transfer of the OpenCL kernel to the RTCS Client 16 as well as OpenCL
host code generation 17 and JIT compiling the registration function and integration of
the new accelerator implementation into the application 18 . The RTCS concurrently gen-
erates accelerated code while the application is executing. The RTCS Client runs on a
different thread (core) as the application, while the RTCS Server runs as a separate ap-
plication that can be executed on a separate node. These overheads do not directly affect
the application execution time, but since they require CPU computation time, they might
indirectly influence the performance of the applications running on an already highly uti-
lized system. The overheads of some of the code generation steps are very small and for
the sake of clarity, we have grouped them into the following categories:

72

6.4.2. OpenCL Code Generation and Integration Overheads

(B1) Export LLVM IR: This includes the communication overheads 11 required to
request the codegen and transfer the HDS between the RTCS Client and Server
along with the time required by the Client to export the hotspot and kernels into
LLVM IR and send it to the Server.

(B2) OpenCL kernel code generation: The time required by the work-item paral-
lelization 12 , tiling transformations 13 and OpenCL kernel code generation 14 .

(B3) OpenCL host code generation: The transfer of the OpenCL kernel to the
Client 16 as well as the time required to generate corresponding OpenCL host
code 17 .

(B4) Application integration: Updating and JIT compiling the registration func-
tion 18 .

2mm bsop fir
enhance

heat2D
nbody

motion
raytrace

sha256
stereo3D

arith. ø
geom. ø

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tim
e

in
 se

co
nd

s

(B1) Export LLVM IR
(B2) OpenCL Kernel CodeGen
(B3) OpenCL Host CodeGen
(B4) Application Integration

Figure 6.4: The code generation overheads of the RTCS.

Figure 6.4 shows the code generation overheads for all benchmark applications. The
axis of ordinates denotes the time in seconds while the different benchmark applications
along with the arithmetic and geometric means are represented on the axis of abscissas.
We see that the overheads are quite similar for all the applications. We see that motion

which has six kernels requires more time to export the hotspot and kernel LLVM IR
(B1). It also takes more time to generate the OpenCL kernel code (B2). Applications like

73

Chapter 6.4. RTCS Overheads

2mm, enhance and heat2D that are tiled, have a marginally higher OpenCL kernel code
generation time (B2) when compared to the rest. The OpenCL host code generation (B3)
takes around 82 milliseconds and is nearly constant across all benchmark applications. The
application integration phase (B4) is responsible for the largest code generation overhead
and on average takes around 645 milliseconds. The application integration phase creates a
new lambda function and inserts code into the registration function and also JIT compiles
this registration function. The major contributor to this application integration overhead
is the clang compilation step required to generate LLVM IR from C++ code. The code
generation overheads across all the applications is quite small (less than 1 second) and
do not directly affect the execution time of the application. By making use of the code
caching mechanism of the Server, overheads introduced by phases (B1) and (B2) can be
reduced.

6.4.3 OpenCL Kernel Compilation Overheads

To execute the OpenCL C kernel code on the device, it needs to be compiled into device
specific binaries 15 . This is performed by the RTCS Server and in this section, we focus
on the overheads associated with the OpenCL kernel compilation for different OpenCL
devices.

2mm bsop fir
enhance

heat2D
nbody

motion
raytrace

sha256
stereo2D

arith. ø
geom. ø

0

1

2

3

4

5

op
en

CL
 c

om
pi

la
tio

n
ov

er
he

ad
 in

 se
co

nd
s

mCPU
GPGPU
PHI

Figure 6.5: OpenCL compilation overheads for different OpenCL devices.

Figure 6.5 shows the OpenCL compilation time in seconds for the application kernels
across the different OpenCL devices of the heterogeneous platform. The axis of ordinates
denotes the OpenCL time required to compile the OpenCL C kernel code in seconds, while

74

6.4.4. Application-level OpenCL Overheads

the different OpenCL devices for each benchmark application are grouped together on the
axis of abscissas. The arithmetic and geometric means of each individual device is also
represented on the axis of abscissas. We can see that in most cases, the compilation time
for the mCPU is the fastest, followed by the GPGPU and then the PHI. All applications have
only one OpenCL kernel except for motion, which has six kernels. Looking at motion in
Figure 6.5, we can see that the compilation of six kernels contributes to a large increase in
the compilation time for the mCPU and PHI devices. Looking at the GPGPU compilation time
across all applications, we see that it is relatively constant when compared to the behavior
of the mCPU and PHI. The OpenCL compilation for the Nvidia platform is more efficient
than the Intel platform and we only see a marginal increase in the GPGPU compilation time
for the more complex motion application.

We can also see that on average, OpenCL compilation for the PHI is more than 3× slower
than the mCPU and the GPGPU. These overheads, however, do not directly contribute to the
overall execution time of the application. Similar to the B1 and B2 overheads presented
in Section 6.4.2, the RTCS Server’s code caching mechanism can be used to reduce these
OpenCL compilation overheads.

6.4.4 Application-level OpenCL Overheads

In Section 5.8 we saw that code to create OpenCL device handles and command queues
for all the missing OpenCL devices was added to the application. Additionally, once a
new accelerated implementation is integrated into the application, the application loads
the OpenCL kernel binary and registers the implementation with the Orchestrator. These
steps are performed within the execution context of the application and directly contribute
to the execution time of the application. In our evaluation, it was found that the overheads
attributed to initializing the OpenCL devices and registering the implementation with the
Orchestrator was negligible. Hence, in this section we focus on the overheads associated
with loading the OpenCL kernel binary into the program.

Figure 6.6 shows the OpenCL binary integration time in seconds for the application
kernels across the different OpenCL devices. The axis of ordinates denotes the OpenCL
binary integration time in seconds while the different OpenCL devices for each benchmark
application are grouped together on the axis of abscissas. The arithmetic and geometric
means of each individual device is also represented on the axis of abscissas. Looking at the
figure, we can see that the amount of time required by each device to load a pre-compiled
OpenCL kernel is nearly constant across all benchmark applications. In most cases, the
mCPU is marginally faster than the GPGPU. However, the time required by the PHI to load an
OpenCL kernel binary is more than 4× slower than the mCPU and GPGPU. Although these
overheads are relatively small and less than 1 second (smaller for the mCPU and GPGPU),
they contribute to the overall execution time of the application and need to be amortized.
They are however one-time overheads and once the OpenCL code for a specific accelerator
has been loaded, the Orchestrator can offload computation to the accelerator multiple
times during the application’s lifetime.

75

Chapter 6.5. Performance Evaluation

2mm bsop fir
enhance

heat2D
nbody

motion
raytrace

sha256
stereo2D

arith. ø
geom. ø

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Op
en

CL
 b

in
ar

y
lo

ad
in

g
ov

er
he

ad
 in

 se
co

nd
s

mCPU
GPGPU
PHI

Figure 6.6: Loading overhead of the OpenCL binary for different OpenCL devices.

In the previous sections, we looked at the different types of direct and indirect RTCS
overheads. In the next section, we evaluate the performance of the RTCS.

6.5 Performance Evaluation

In this section, we present the main outcome of this work, by evaluating the improvement
in application performance as a direct result of the RTCS. To determine this, the sequential
baseline is compared to the OpenCL-enabled parallel implementation. Even though the
focus of this thesis is on the overall method and tool chain, the aim is to improve the
performance of sequential applications. We evaluate the performance at the kernel-level
as well as at the hotspot-level for all benchmark applications. Figure 6.7 shows what is
measured at the kernel-level and hotspot-level. The kernel-level evaluation focuses on
the evaluation of the pure kernel speedups while the hotspot-level evaluation looks at the
performance of the entire hotspot and also includes the data transfer overheads. The
runtime of the entire applications depends on the number of heartbeat iterations which
can be arbitrarily selected to influence the evaluation results. Hence, we do not perform
any application-level performance evaluation, but instead only focus on the kernel and
hotspot-level analysis.

In Figures 6.8, 6.9 and 6.10, we take an in-depth look at the kernel and hotspot-level
speedups and plot the input sizes on the axis of abscissas. We present the fir, heat2D
and 2mm applications that form a representative subset of the benchmark applications.

76

6.5.1. Kernel-level Evaluation

transfer data to accelerator

transfer data to host

execute kernel(s)

hotspot:

Kernel-level Performance

Hotspot-level Performance

Figure 6.7: Measurement of the kernel-level and hotspot-level performance.

The figures for the remaining benchmark applications are made available in the appendix.
The hotspot numbers in the bottom plots (b), include kernel execution and data transfer
overheads. We also compare our approach against a pragma-based OpenACC production
compiler. The heat2d and 2mm applications benefit from the RTCS’s tiling optimizations.

6.5.1 Kernel-level Evaluation

We first evaluate the kernel-level performance where we look at the pure kernel speedup
and compare the baseline kernel against our approach for the different OpenCL accelera-
tors (mCPU, GPGPU and PHI). Looking at the kernel speedup of our approach for all three
benchmarks (Figures 6.8a, 6.9a and 6.10a), it can be seen that for larger input sizes, the
GPGPU performs best and delivers the highest speedup. The PHI outperforms the mCPU, but
is considerably slower than the GPGPU. However, this trend does not hold for smaller input
sizes where the mCPU performs better than the PHI. This behavior can be attributed to
device specific initialization overheads where the initial low-level efforts required to start
executing multiple parallel threads on the device are not completely amortized for smaller
input sizes.

Looking at Figures 6.9a and 6.10a it can be observed that for heat2D and 2mm, this
overhead is so large that we initially see a slowdown on the PHI for smaller input sizes.
However, as the input sizes of heat2D and 2mm increase, these initialization overheads are
amortized and the performance on the PHI improves allowing it to eventually outperform
the mCPU.

In Figures 6.8a and 6.9a, one can see that as the input sizes of fir and heat2D increases,
the kernel speedup begins to plateau. This indicates the saturation point or the maximum
speedup that can be achieved by the given OpenCL kernel and device combination. This
maximum kernel speedup is also indicative of the accelerator type, where the more powerful
GPGPU performs best.

Comparing our approach against a pragma-guided OpenACC approach in Figures 6.8a,
6.9a and 6.10a, we can see that the RTCS kernel speedups are comparable and, in most
cases, better than OpenACC. Looking at the speedup for fir in Figure 6.8a, we can see
that the speedup for the GPGPU and OpenACC-GPU are exactly the same, while in the case
of 2mm (Figure 6.10a) the GPGPU performs slightly better than the OpenACC-GPU. However,

77

Chapter 6.5. Performance Evaluation

fir

218 220 222 224 226

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

218 220 222 224 226

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure 6.8: fir: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

heat2D (Figure 6.9a) benefits from the tiling optimizations performed by the RTCS and
the GPGPU performs substantially better than the OpenACC-GPU.

6.5.2 Hotspot-level Evaluation

Although kernel speedups play an important role in determining the performance of our
RTCS code generation approach, we also need to evaluate the overall performance in the
real world, where data needs to be transferred to the accelerator. Figures 6.8b, 6.9b
and 6.10b show the hotspot-level performance improvement for the corresponding fir,

78

6.5.2. Hotspot-level Evaluation

heat2d

28 210 212

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

28 210 212

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure 6.9: heat2D: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

heat2D and 2mm applications over increasing input sizes.

This hotspot-level speedup also includes the data transfer overheads required to transfer
data from the host to the OpenCL device and back as well as the overhead of issuing
commands to create OpenCL buffers on the device, parametrize and enqueue the kernel
and finally free the device buffers. Although the hotspot-level speedups are computed using
all these overheads, we only focus on the data transfer overheads as the other overheads
are negligible.

Looking at Figures 6.8, 6.9 and 6.10 and comparing the kernel-level and hotspot-

79

Chapter 6.5. Performance Evaluation

2mm

27 29 211

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

27 29 211

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure 6.10: 2mm: Kernel and hotspot-level speedup for different input sizes. Plot
(a) shows the kernel-level speedup, while plot (b) shows the hotspot-level
speedup including data transfer overheads.

level speedups for fir, heat2D and 2mm, we can see that in general, the hotspot-level
speedups are lower than the corresponding kernel-level speedups for the GPGPU, PHI and
OpenACC-GPU. This is because of the data transfer overheads that need to be amortized.
In the case of the mCPU and the OpenACC-CPU, the host and the accelerators share the same
(host) memory. In this scenario, the RTCS as well as OpenACC are able to skip the data
transfer steps and achieve identical kernel-level and hotspot-level speedups.

On a closer comparison of the hotspot-level slowdown with respect to the kernel-level
performance, we see that in the case of heat2D (Figure 6.9) the GPGPU is affected the

80

6.5.2. Hotspot-level Evaluation

most but the drop in performance is nearly constant across all input sizes, while there
is no significant slowdown for the PHI and the OpenACC-GPU. Looking at the GPGPU for
the computationally intensive 2mm application (Figure 6.10) we see that we have larger
slowdowns for smaller input sizes, but as the computation time dominates the data trans-
fers for larger input sizes, we do not see a considerable difference between the kernel-level
and hotspot-level performance. On the other hand, the data hungry fir application (Fig-
ure 6.8) requires more time to transfer larger inputs to the accelerator which in turn
needs to be amortized. Looking at the figure, we see that as the input size increases,
the overall performance at the hotspot-level remains relatively constant. This is because,
although the larger input sizes result in more computation, they are offset by the larger
data transfer times that are required to be amortized. Figure 6.11 shows the behaviour of
the hotspot-level performance of the fir application in relation to its kernel-level perfor-
mance for different input sizes. As the application input size increases, we see a decrease
in the relative performance of the GPGPU, the PHI as well as the OpenACC-GPU. These data
transfer overheads are so large, that at the hotspot-level, the mCPU performs better than
the GPGPU and PHI (see Figure 6.8b) even though the GPGPU and PHI outperform it at the
kernel-level.

218 220 222 224 226

0.1

1

10

100

1000

re
la

tiv
e

slo
wd

ow
n

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

Figure 6.11: fir : The slowdown at the hotspot-level when compared to the kernel-level
performance.

Overall, we have seen a drop in performance at the hotspot-level when compared to the
pure kernel-level. This affects the break-even point, i.e. the point where data overheads
can be amortized and offloading to the accelerator starts to get profitable (speedup > 1).
For heat2D and 2mm, in Figures 6.9 and 6.10 we see that the PHI reaches its hotspot-level
break-even point at a slightly higher input size as compared to its kernel-level breaking-
point. Although we see a drop in relative performance at the hotspot-level for the different
kernel/accelerator combinations, we still achieve an overall performance improvement as

81

Chapter 6.5. Performance Evaluation

compared to the baseline, allowing us to profit by offloading computation to heterogeneous
accelerators.

6.5.3 Performance across all Benchmark Applications

In Sections 6.5.1 and 6.5.2 we took an in-depth look at the kernel-level and hotspot-
level speedups for different input parameters. Looking at the application’s performance
over increasing input sizes we saw that the speedup slowly increases and saturates after
reaching a specific input size (see Figure 6.8). These saturation points of the kernel-
device combination are used in Figure 6.12 to summarize the kernel-level and hotspot-level
speedups for all baseline applications. The time complexity of the sequential baseline 2mm

application that multiplies two n × n dense matrices is given by O(n3). This is cubic in
nature and results in extremely long evaluation times for larger input sizes. We were not
able to determine the saturation point for 2mm (Figure 6.10) and use the speedup achieved
for the largest evaluated input size instead.

Looking at the overall performance trend of the RTCS for each application in Fig-
ure 6.12, we see the same trends that were observed in Sections 6.5.1 and 6.5.2, where the
GPGPU performs the best and is followed by the PHI and then the mCPU. We see that compu-
tationally intensive applications like 2mm, nbody and motion are able to effectively amortize
data transfer overheads resulting in similar kernel-level and hotspot-level speedups. We
also see an overall hotspot-level speedup across all devices for all applications with the
exception of stereo2D. The stereo2D application is memory bound with very little com-
putation and although we see kernel speedups, the data transfer overheads are too large
to be amortized, resulting in no hotspot-level speedup for the GPGPU and even results in a
slowdown for the PHI.

Looking at Figure 6.12 and comparing the kernel-level performance of stereo2D for
the GPGPU and the OpenACC-GPU, we see that they are nearly equal. However, at the
hotspot-level, we see a more significant decrease in the GPGPU speedup compared to the
OpenACC-GPU. Looking at bsop, fir, heat2D, raytrace and sha256 we find a similar pat-
tern. On further investigation, we found that the data transfers to/from the GPGPU are
7× faster with OpenACC as compared to OpenCL. This stems from the differences in
how the OpenCL runtime handles data transfers as compared to how the PGI compiler
internally uses CUDA calls to transfer data. In the case of bsop and fir this results in
the mCPU being faster than the GPGPU and PHI for larger input sizes. However, despite this
we still see hotspot-level speedups across all accelerators for 9 out of the 10 benchmark
applications with our approach performing better than OpenACC on average. Across all
applications, we see average hotspot-level speedups of 15×, 150× and 40× for the mCPU,
GPGPU and PHI respectively. This average is however dominated by the speedups from
2mm and nbody. Looking at the geometric mean, we see hotspot-level speedups of 9×,
25× and 10× for the mCPU, GPGPU and PHI respectively, with the mCPU benefiting from no
data transfer overheads. By being capable of generating code targeting different hetero-
geneous accelerators, the RTCS is able to offer a considerable performance improvement
over sequential applications.

82

6.5.3. Performance across all Benchmark Applications

2mm bsop fir
enhance

heat2D
nbody

motion
raytrace

sha256
stereo2D

arith. ø
geom. ø

1

10

100

1000

sp
ee

du
p

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

2mm bsop fir
enhance

heat2D
nbody

motion
raytrace

sha256
stereo2D

arith. ø
geom. ø

1

10

100

1000

sp
ee

du
p

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure 6.12: Kernel and hotspot-level speedups for all benchmark applications: Figure (a)
shows the performance improvement of the kernel, while Figure (b) shows
the performance improvement of the entire hotspot including data transfer
overhead.

83

Chapter 6.6. Tiling Performance

In the previous sections, we evaluated the performance of the RTCS at the kernel-
level as well as the hotspot-level and compared it against a pragma-based OpenACC
production compiler. For this evaluation, the RTCS used its tiling mechanism to improve
the performance of some of the benchmark applications. Additionally, the hotspot-level
evaluation also benefits from the data transfer optimization performed by the RTCS. In
the next sections, we evaluate the performance of our tiling approach as well as the data
transfer optimizations.

6.6 Tiling Performance

In Section 5.11 we saw how the RTCS is able to improve data reuse by tilling the OpenCL
kernels using two different tiling approaches. In this section, we evaluate the improvement
in kernel-level performance as a result of our tiling approach. Out of the 10 benchmark ap-
plications, 2mm, enhance, heat2D and parts of motion are automatically tiled by the RTCS.
motion contains multiple kernels (see Section 6.2) out of which only gauss, erosion and
sobel can be tiled. The 2mm application is tiled using the matrix multiplication approach,
while the remaining kernels are detected as convolutions. As previously mentioned in the
measurement method (Section 6.3), we use a fixed tile size of 16 × 16 in our evaluation.
The performance improvement is represented as a speedup fraction obtained by compar-
ing the kernel execution time of our tiled approach to the kernel execution time of our
generalized approach (that only makes use of global memory). Figures 6.13, 6.14, 6.15
and 6.16 show the tiling speedup over different input sizes for 2mm, enhance, heat2D and
motion respectively.

The RTCS is able to detect a matrix multiplication pattern in the computationally
intensive 2mm application and is able to apply tiling optimizations to the OpenCL kernel.
Looking at Figure 6.13, we can see that for the smallest input size, tiling does not yield any
significant performance improvements with only the PHI showing marginal performance
gains. However, as the input size increases, we see a considerable improvement in the
performance of the GPGPU. In most cases however, we do not see any significant difference
in the performance of the mCPU or PHI except for the largest input size, where we see a 6×
speedup for the mCPU. The speedup achieved by our matrix multiplication tiling approach
for the GPGPU is around 35× for the largest input size and around 14× on average, which
is a considerable improvement over a non-tiled approach.

The enhance application is an image sharpening application and works on images with
three components (RGB) per pixel and uses a 9×9 convolution filter. The RTCS is able to
identify the convolution and apply tiling optimizations to the OpenCL kernel. Looking at
Figure 6.14, one can see that similar to 2mm, tiling does not improve the performance of the
mCPU and PHI. We however see an increase in the performance of the GPGPU as the input
size increases and achieves an average tiling speedup of around 10×. heat2D application
is also based on a convolution filter, but unlike enhance uses only one component and
internally makes use of a smaller 5 × 5 convolution filter. This results in different data
reuse and computation patterns which affect the tiling speedup. Looking at Figure 6.15
we initially see small slowdowns for the mCPU and PHI for smaller input sizes. However,

84

27 28 29 210 211

arith. ø
geom. ø

0

5

10

15

20

25

30

35

til
in

g
sp

ee
du

p

input

mCPU
GPGPU
PHI

Figure 6.13: 2mm : Kernel speedup when using tiling and local memory.

256x256
512x512

1280x768

1024x1024

1664x1024
arith. ø

geom. ø
0

2

4

6

8

10

12

14

til
in

g
sp

ee
du

p

input

mCPU
GPGPU
PHI

Figure 6.14: enhance : Kernel speedup when using tiling and local memory.

85

Chapter 6.6. Tiling Performance

28 29 210 211 212 213

arith. ø
geom. ø

0

2

4

6

8

10

12

14

til
in

g
sp

ee
du

p

input

mCPU
GPGPU
PHI

Figure 6.15: heat2D : Kernel speedup when using tiling and local memory.

256x256
512x512

1280x768

1024x1024

1664x1024
arith. ø

geom. ø
0

2

4

6

8

10

12

14

til
in

g
sp

ee
du

p

input

mCPU
GPGPU
PHI

Figure 6.16: motion : Kernel speedup when using tiling and local memory.

86

as the input size increases, we see an increase in the tiling performance and eventually,
we see a speedup for the mCPU and PHI devices. The GPGPU also exhibits a general trend
of improved tiling performance as the input size increases and achieves an average tiling
speedup of 4×.

The motion application contains six different kernels (see Section 6.2). Out of these
kernels, gauss, erosion and sobel are based on convolution filters and can be tiled by
the RTCS. Similar to enhance, these kernels work on images with three components (RGB)
per pixel and uses a 9× 9 convolution filter. Figure 6.16 shows the overall speedup across
all the kernels (tiles and non-tiled) in motion. Similar to enhance (Figure 6.14), we see
that tiling does not improve the performance of the mCPU and PHI. We also see that the
GPGPU follows a similar trend as enhance, however, with a slightly lower speedup. This
difference can be attributed to additional kernels in motion that are not convolution filters
and cannot benefit from the tiling optimizations of the RTCS.

Looking at the overall tiling results, we see that the amount of data reuse plays a key
factor in the tiling speedups, where matrix multiplication performs substantially better
than convolutions. We also see that as the input size increases, so does the tiling speedup.
In most cases and for smaller input sizes, we do not see any tiling speedups for the mCPU

and PHI. However, we see that our tiling approach is most effective for the GPGPU and
gives us a considerable performance improvement over the generalized approach.

6.7 Data Transfer Optimizations

In the hotspot-level evaluation section (Section 6.5.2), we saw that data transfer overheads
have a major effect on the overall hotspot speedup. In Section 5.7.3 we looked at how
the RTCS performs data transfer optimizations by detecting which OpenCL buffers are
modified by the kernel and only transferring the modified OpenCL buffers back to the
host. In this section we evaluate the effectiveness of this data transfer optimization. To
evaluate the data transfer optimization, we consider the motion application. We only
evaluate the GPGPU and PHI as the RTCS does not transfer data to the mCPU, but uses a
pointer to the host memory instead.

Figure 6.17 shows the OpenCL data transfer overheads for the motion application. The
axis of ordinates denotes the time in milliseconds while the different input sizes along with
the arithmetic and geometric means are represented on the axis of abscissas. The grey
bars represent the amount of time required to transfer the data from the host to the device
while the sky-blue bars represent the time required to transfer data from the device to
the host. Looking at Figure 6.17a, we can see that the data transfer times for the GPGPU

are faster than the PHI for all input sizes. This is because, when compared to the GPGPU,
the PHI takes longer to transfer the same amount of data from the host to the device. We
also see that the amount of time required for the transfers increases with the increase in
input size.

Figure 6.17a shows the data transfer overheads without any RTCS optimizations while
Figure 6.17b shows the same overheads but with RTCS data transfer optimization. Com-
paring the sky-blue bars between Figure 6.17a and 6.17b we can clearly see the benefits of

87

Chapter 6.7. Data Transfer Optimizations

256x256
512x512

1280x768

1024x1024

1664x1024
arith. ø

geom. ø
0

5

10

15

20

25

tim
e

in
 m

illi
se

co
nd

s

input

GP
GP

U
PH

I

(a) Host to accelerator
(b) Accelerator to host
(a) Host to accelerator
(b) Accelerator to host

(a) Unoptimized OpenCL data transfer overheads.

256x256
512x512

1280x768

1024x1024

1664x1024
arith. ø

geom. ø
0

5

10

15

20

25

tim
e

in
 m

illi
se

co
nd

s

input

GP
GP

U
PH

I

(a) Host to accelerator
(b) Accelerator to host
(a) Host to accelerator
(b) Accelerator to host

(b) Optimized OpenCL data transfer overheads.

Figure 6.17: Unoptimized and Optimized OpenCL data transfer overheads over different
input sizes for motion.

our data transfer optimization and that data transfer optimizations considerably reduce
the overall data transfer times. From Figure 6.17b we can also see that since only the
modified buffers are transferred back to the host, the time required to transfer data back
to the host is considerably smaller than the time required to transfer data from the host
to the accelerator.

88

In the motion example, this results in an accelerator to host data transfer saving of
around 80% for the GPGPU and 64% for the PHI. Looking at the complete data transfer
overheads, we gain a saving of around 44% for the GPGPU and 23% for the PHI. Data
transfer overheads affect the overall speedup of the hotspot and need to be amortized by
the accelerator to achieve overall speedups. By reducing these data transfer overheads, we
are able to improve the overall speedup that can be achieved by the application.

6.8 Chapter Conclusion

In this chapter, we evaluated our RTCS approach from different perspectives. Initially,
the heterogeneous node and the different accelerators used in our evaluation platform
were introduced. We also introduced the different OpenCL devices and their properties.
We took a detailed look at the set of benchmark applications that were extracted from
diverse domains. The measuring, data acquisition and the automatic outlier elimination
methods were also described in detail. We then looked at the different types of overheads
introduced by the RTCS. The overheads introduced by the RTCS before it starts executing
the application are known as application launch overheads and represent the duration
between the time the application is launched (via the RTCS) and the time when the
application starts executing on the CPU (also known as latency). On average, we observed
that this overhead was around 4 seconds with the JIT compilation phase responsible for
most of the overhead. Although this is a one-time overhead, incurred only when the
application is launched, it still needs to be considered when executing an application via
the RTCS.

We also looked at the OpenCL code generation and integration overheads that arose
from the OpenCL code generation and integration steps of the RTCS. The compilation
of the lambda expression dominates these overheads. Overall, these overheads are quite
small (less than 1 second) and do not directly contribute to the application runtime. They
can be further reduced by making use of the code caching mechanism of the RTCS Server.
The OpenCL kernel compilation overhead is introduced by compiling the OpenCL C kernel
into device specific binaries. We saw that for hotspots with a large number of kernels, the
Nvidia platform was more efficient than the Intel platform. The OpenCL compilation for
the PHI was more than 3× slower than the mCPU and the GPGPU. These overheads however
do not directly contribute to the overall execution time of the application and can be
reduced by using the code caching mechanism of the RTCS Server. The application-level
OpenCL overheads are dominated by the overheads introduced by loading the OpenCL
kernel binary into the application. For each OpenCL device, these overheads are nearly
constant across all benchmark applications. Although these overheads are relatively small,
they contribute to the overall execution time of the application and need to be amortized.
The overheads introduced by the mCPU and GPGPU are quite similar, while the PHI is more
than 4× slower.

Additionally, we looked at the performance improvement of our approach and evaluated
the performance at the kernel-level as well as at the hotspot-level for a representative set of
the benchmark applications across different input sizes. We also compared our approach

89

Chapter 6.8. Chapter Conclusion

against a pragma-guided OpenACC approach. We saw that the GPGPU performed best
and was followed by the PHI and the mCPU in most cases. Comparing our approach against
a pragma-guided OpenACC approach we observed that the RTCS kernel-level speedups
were comparable to and in most cases better than OpenACC. Looking at all benchmark
applications at the hotspot-level, we observed speedups of 9×, 25× and 10× for the mCPU,
GPGPU and PHI respectively, resulting in a considerable performance improvement over
sequential applications.

We evaluated the tiling performance and concluded that our tiling approach was most
effective for the GPGPU, giving us a considerable performance improvement over the gen-
eralized approach. We finally looked at the advantages of our data transfer optimizations
and saw that we were able to save 44% for the GPGPU and 23% for the PHI in overall data
transfer times.

90

CHAPTER 7

Conclusion and Outlook

In this chapter, we summarize the results of this thesis and discuss about the potential
future research opportunities of our work.

7.1 Summary

In this thesis, we introduced and presented our novel automatic and transparent approach
known as the Runtime and Just-in-Time Compilation System (RTCS), which is capable
of transparently porting sequential programs to different heterogeneous multi-accelerator
architectures via OpenCL. We saw how the RTCS is able to analyze loop structures in an
application and automatically identify parallelization opportunities, transforming suitable
data-parallel loops into independent OpenCL work-items (OpenCL kernels). The RTCS
also automatically generates the intricate OpenCL host code required to setup the OpenCL
device, create OpenCL buffers, transfer data to the device and launch the OpenCL kernel
on the device. We looked at how the RTCS improves the OpenCL kernel performance by
applying tiling to improve global memory efficiency. Additionally, the RTCS also applies
data transfer optimizations to further improve the application performance.

The RTCS supplements the state-of-the-art SAVE Heterogeneous System Architecture
(saveHSA), enabling the saveHSA to offload computation to different heterogeneous ac-
celerators by employing the RTCS to JIT generate missing accelerator specific implemen-
tations. The combination of transparent and flexible code generation support for different
target architectures makes the RTCS unique in the domain of parallelization and offloading
tools.

We demonstrated that the RTCS can improve the application performance — with no
user intervention. To this end, we evaluated the RTCS on a diverse set of benchmark
applications from a broad set of domains like scientific computing, security and signal and
image processing. We evaluated the RTCS overheads from different perspectives, focus-
ing on application launch overheads, OpenCL code generation and integration overheads,

91

Chapter 7.2. Outlook

OpenCL kernel compilation and OpenCL overheads at the application level. Our eval-
uation also shows, that the RTCS can achieve comparable performance to handwritten
pragma-based OpenACC code, while being fully automated. Looking at the performance
of the RTCS across all benchmark applications, we achieve speedups of 9×, 25× and 10×
for the mCPU, GPGPU and PHI respectively, resulting in a considerable performance improve-
ment over sequential applications. Additionally, we evaluated the tiling performance and
saw that our tiling approach was most effective for the GPGPU giving us a 9× average
performance improvement over the generalized approach. We finally evaluated our data
transfer optimizations and saw that we were able to save 44% for the GPGPU and 23% for
the PHI in overall data transfer times to and from the accelerator.

7.2 Outlook

In this section, we first take a look at the potential use cases of the RTCS and how the
RTCS can be used to automatically target FPGAs. We also look at different promising
research directions regarding different OpenCL performance optimizations as well as loop
parallelization techniques that can be applied to improve the RTCS.

7.2.1 RTCS Use Cases

In this thesis, we looked at the saveHSA and demonstrated how the saveHSA benefits
from the RTCS’s JIT code generation capabilities. We also saw how the structure of a
SAVE-Enabled application (SEA) was used to identify hotspots and integrate the gener-
ated accelerator implementation at runtime. However, the RTCS has been designed to
be modular and is not limited to the saveHSA or SEAs. The different RTCS components
can be replaced or updated at a later date with state-of-the-art versions. Additionally,
by modifying a few components of the RTCS, it can be used in different scenarios. For
example, in HTrOP [Rie19], we modified a few components of the RTCS to use a poly-
hedral model (Polly) and target legacy sequential applications instead of SAVE-Enabled
applications.

Another scenario where components of the RTCS can be used, is in an automatic
legacy-to-OpenCL transformation tool. This tool could be used to transparently convert
sequential legacy applications into applications that can execute in parallel on different
accelerators that support OpenCL. In this thesis, we present the RTCS as a Just-in-Time
compilation approach, however, the RTCS could also be used as a compile-time-only ap-
proach. In this approach, the OpenCL transformation tool accepts the legacy application
as input and then automatically detects hotspots, parallelizes them, generates OpenCL
kernel code and corresponding OpenCL host code as well as integrates it into the legacy
application. The output of such an OpenCL transformation tool would be a transformed
OpenCL-enabled application binary along with the corresponding pre-compiled OpenCL
program.

So far, we have only looked at how applications from the HPC domain benefit from the
RTCS. However, the RTCS can also help improve the performance of applications in do-

92

7.2.2. Targeting FPGAs

mains where OpenCL can be used (e.g. embedded systems or mobile devices). Evaluating
the impact of the RTCS across these different domains, as well as investigating different
domain specific optimizations is an interesting area for future research.

7.2.2 Targeting FPGAs

FPGAs are well suited for HPC workloads, with applications from diverse domains like
bioinformatics [64], climate modeling [26], geophysics [58], linear algebra [58] and molecular
dynamics [18] performing substantially better on FPGAs as compared to CPUs, and in
the case of climate modeling and geophysics, perform substantially better than GPGPUs.
However, one major challenge when working with FPGAs is the development process.
FPGAs have been mainly programmed by using hardware description languages (HDL)
like VHDL and Verilog to model the application on the FPGA. This is a time consuming
and tedious process where hardware designers need to have detailed knowledge about the
FPGA’s low-level building blocks (registers, lookup tables, memory, etc.). Lately, however,
this has improved with vendors like Intel and Xilinx releasing tools that allow application
developers to program FPGAs using OpenCL [73, 43], making it easier to program FPGAs.
This allows software programmers familiar with OpenCL to program FPGAs. Although,
this works at a conceptual level, practically, one still needs to have some FPGA knowledge
in order to obtain any reasonable performance from the FPGA. Intel and Xilinx are aware
of this and have released best practice guides [45] and environment optimization guides [43]
to explain the FPGA architecture and provide guidelines that need to be followed to
achieve better performance.

We looked at the Intel best practice guide and determined the optimizations and best
practices that could prove crucial to the performance of OpenCL kernels on FPGAs. Based
on this, we created a prototypical FPGA back-end for the RTCS Server that can target
Intel FPGAs. Our FPGA back-end is able to generate single work-item kernels as well as
ND-Range kernels. It can automatically maximize FPGA usage by iteratively analyzing
the report generated by the aoc tool and updating the OpenCL C kernels. Presently, this
is an active research area and the FPGA back-end is still under development. However,
when combined with an auto-tuning approach, it could prove to be a good framework to
investigate how different variants of the same kernel perform on an FPGA.

7.2.3 Optimizing OpenCL Performance

Determining the optimal work-group size: The performance of an OpenCL kernel de-
pends on the size of the work-group. This depends on a number of factors like the OpenCL
kernel size as well as the accelerator architecture. As shown by Cummins et al. [20], de-
termining an optimal work-group size can lead to better performance. In our approach,
the OpenCL work-group size is not explicitly specified by the RTCS, but is automatically
selected by the OpenCL runtime. State-of-the-art methods apply machine learning-based
auto-tuning and source code transformation techniques to learn the significant features of
the underlying hardware and the kernel implementations. Integrating such methods into
the RTCS is an interesting area to further improve the results.

93

Chapter 7.3. Chapter Conclusion

Performance portability: OpenCL is functionally portable across different accelerator
architectures. It achieves this by abstracting away the different accelerators as OpenCL
devices, allowing the developer to target different accelerators with the same OpenCL code.
However, as seen in our evaluation, this functional portability does not guarantee perfor-
mance portability across different accelerator architectures. Accelerator specific optimiza-
tions are required to improve the OpenCL performance for different devices. Different code
transformation as well as auto-tuning techniques presented in related work [81, 35, 76, 75]
have shown to be promising in generating highly optimized architecture specific code. This
is an interesting research direction to help improve the performance of the RTCS across
different accelerators.

7.2.4 Automatic Loop Parallelization

Auto parallelization of sequential applications is a challenging task. In our work, we
demonstrate that our parallelization approach is able to achieve comparable performance
to handwritten pragma-based OpenACC code. In order to guarantee the correctness of
the parallelization, our approach only considers natural loops without any cross-iteration
data dependencies. However, Bondhugula et al. [15] demonstrate that in many cases, loops
with data dependencies can be transformed to make them parallel. Integrating such loop
transformation techniques into the RTCS would allow the RTCS to target a more diverse
range of applications.

7.3 Chapter Conclusion

In this chapter, we looked at the different and interesting future research directions that
can be taken to build upon and improve upon the RTCS. We also saw that the RTCS can
not only be used in model based approaches like the saveHSA, but can also be adapted to
accelerate general applications (demonstrated by HTrOP). Users are able to automatically
accelerate legacy applications from diverse domains and offload computation to different
accelerators without any additional effort or interaction from the application developer.
Not only does this result in improved application performance, but it also reduces port-
ing effort required by the application developer. This in turn translates into savings in
development time as well as costs, making the RTCS highly relevant in the domain of
parallelization and offloading tools.

94

Acronyms

API Application Programming Interface

AST Abstract Syntax Tree

C++ AMP C++ Accelerated Massive Parallelism

CPU Central Processing Unit

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HDL Hardware Description Language

HDS Hotspot Data Structure

HPC High Performance Computing

HSA Heterogeneous System Architecture

IDE Integrated Development Environment

IQR Interquartile Range

LLVM IR LLVM Intermediate Representation

ispc Intel SPMD Program Compiler

JIT Just-in-Time

MC Machine Code

MCJIT Machine Code Just-In-Time

mCPU Multi-core CPU

95

Acronyms

MIC Many Integrated Cores

NVPTX Nvidia Parallel Thread Execution

ODA Observe-Decide-Act

OpenCL Open Computing Language

ORC MCJIT On-Request Compilation Machine Code Just-In-Time

QoS Quality of Service

RPC Remote Procedure Call

RTCS Runtime and Just-in-Time Compilation System

SAVE SAVE Self-Adaptive Virtualization-aware high-performance/low-Energy heteroge-
neous system architecture

saveHSA SAVE Heterogeneous System Architecture

SCoPs Static Control Parts

SEA SAVE-Enabled application

SLP Superword-Level Parallelism

SoC Systems-on-Chip

SPMD Single Program Multiple Data

SSA Static Single Assignment

SUIF Stanford University Intermediate Format

TBB Threading Building Blocks

VaR Value at Risk

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VM Virtual Machine

96

Author’s Publications

[Rie19] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. Transpar-
ent acceleration for heterogeneous platforms with compilation to opencl. ACM
Trans. Archit. Code Optim., 16(2):14:1–14:26, April 2019. ISSN 1544-3566. doi:
10.1145/3319423.

[Rie18] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. Automated
code acceleration targeting heterogeneous opencl devices. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’18, pages 417–418. ACM, New York, NY, USA, 2018. ISBN
978-1-4503-4982-6. doi:10.1145/3178487.3178534.

[Vaz16] Gavin Vaz, Heinrich Riebler, Tobias Kenter, and Christian Plessl. Potential
and methods for embedding dynamic offloading decisions into application code.
Comput. Electr. Eng., 55(C):91–111, October 2016. ISSN 0045-7906. doi:
10.1016/j.compeleceng.2016.04.021.

[Rie16] Heinrich Riebler, Gavin Vaz, Christian Plessl, Ettore M. G. Trainiti, Gianluca C.
Durelli, Emanuele Del Sozzo, Marco D. Santambrogio, and Cristiana Bolchini.
Using just-in-time code generation for transparent resource management in het-
erogeneous systems. In 2016 IEEE 2nd International Forum on Research and
Technologies for Society and Industry Leveraging a better tomorrow (RTSI),
pages 1–5. Sep. 2016. doi:10.1109/RTSI.2016.7740545.

[Dam15] Marvin Damschen, Heinrich Riebler, Gavin Vaz, and Christian Plessl. Trans-
parent offloading of computational hotspots from binary code to Xeon Phi. In
Proc. Design, Automation and Test in Europe Conf. (DATE), pages 1078–1083.
EDA Consortium, March 2015.

[Vaz14] Gavin Vaz, Heinrich Riebler, Tobias Kenter, and Christian Plessl. Deferring
accelerator offloading decisions to application runtime. In Proc. Int. Conf. on
ReConFigurable Computing and FPGAs (ReConFig). IEEE Computer Society,
December 2014. Received best paper award.

[Dur14] Gianluca Durelli, Marcello Pogliani, Antonio Miele, Christian Plessl, Heinrich
Riebler, Gavin Vaz, Marco D. Santambrogio, and Cristiana Bolchini. Runtime

97

Author’s Publications

resource management in heterogeneous system architectures: The save approach.
In 2014 IEEE International Symposium on Parallel and Distributed Processing
with Applications, pages 142–149. Aug 2014. ISSN 2158-9178. doi:10.1109/
ISPA.2014.27.

[Ken14] Tobias Kenter, Gavin Vaz, and Christian Plessl. Partitioning and vectorizing
binary applications for a reconfigurable vector computer. In Reconfigurable Com-
puting: Architectures, Tools, and Applications, pages 144–155. Springer Interna-
tional Publishing, Cham, 2014. ISBN 978-3-319-05960-0.

[Ram13] Franz Rammig, Katharina Stahl, and Gavin Vaz. A framework for enhanc-
ing dependability in self-x systems by artificial immune systems. In 16th IEEE
International Symposium on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC 2013), pages 1–10. June 2013. ISSN 1555-0885.
doi:10.1109/ISORC.2013.6913240.

98

Bibliography

[1] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Chau wen Tseng.
An Overview of the SUIF Compiler for Scalable Parallel Machines. In In Proceedings
of the Seventh SIAM Conference on Parallel Processing for Scientific Computing,
pages 662–667. 1993.

[2] AMD APP SDK: OpenCL User Guide. URL: http: // developer .amd .com/
wordpress/ media/ 2013/ 12/ AMD OpenCL Programming User Guide2 .pdf . [On-
line; accessed 26-Febuary-2019].

[3] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen,
Nathan Giles, and Rajeev Barua. A Compiler-level Intermediate Representation
Based Binary Analysis and Rewriting System. In Proc. ACM European Conference
on Computer Systems (EuroSys), EuroSys ’13, pages 295–308. ACM, 2013. ISBN
978-1-4503-1994-2. doi:10.1145/2465351.2465380.

[4] Aditi Athavale, Priti Ranadive, M. N. Babu, Prasad Pawar, Sudhakar Sah, Vinay
Vaidya, and Chaitanya Rajguru. Automatic Sequential to Parallel Code Conversion.
GSTF Journal on Computing (JoC), 1(4), 2018. ISSN 2010-2283.

[5] Auto-Vectorization in LLVM. URL: https: // llvm .org/ docs/ Vectorizers .html .
[Online; accessed 04-July-2019].

[6] Utpal Banerjee. An introduction to a formal theory of dependence analysis. The
Journal of Supercomputing, 2(2):133–149, Oct 1988. ISSN 1573-0484. doi:10.1007/
BF00128174.

[7] Cédric Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think.
In PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16. Juan-les-Pins, France, September 2004.

[8] B. Betkaoui, D. B. Thomas, and W. Luk. Comparing performance and en-
ergy efficiency of FPGAs and GPUs for high productivity computing. In Int.
Conf. on Field-Programmable Technology (ICFPT), pages 94–101. Dec 2010. doi:
10.1109/FPT.2010.5681761.

99

http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf
https://llvm.org/docs/Vectorizers.html

Bibliography

[9] Aart Bik, Milind Girkar, Paul Grey, and X. Tian. Efficient Exploitation of Parallelism
on Pentium III and Pentium 4 Processor-Based Systems, 2001.

[10] Alecio Pedro Delazari Binotto, Dionisio Doering, Thorsten Stetzelberger, Patrick
McVittie, Sergio Zimmermann, and Carlos Eduardo Pereira. A CPU, GPU, FPGA
system for X-ray image processing using high-speed scientific cameras. In Computer
Architecture and High Performance Computing (SBAC-PAD), 2013 25th Interna-
tional Symposium on, pages 113–119. IEEE, 2013.

[11] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
The journal of political economy, pages 637–654, 1973.

[12] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, and T. Lawrence.
Parallel programming with Polaris. Computer, 29(12):78–82, Dec 1996. ISSN 0018-
9162. doi:10.1109/2.546612.

[13] C. Bolchini, G. C. Durelli, A. Miele, G. Pallotta, and M. D. Santambrogio. An
orchestrated approach to efficiently manage resources in heterogeneous system archi-
tectures. In 2015 33rd IEEE International Conference on Computer Design (ICCD),
pages 200–207. Oct 2015. doi:10.1109/ICCD.2015.7357104.

[14] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic Transformations for Communication-
Minimized Parallelization and Locality Optimization in the Polyhedral Model. In
Int. Conf. on Compiler Construction (ETAPS CC). April 2008.

[15] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A Prac-
tical Automatic Polyhedral Parallelizer and Locality Optimizer. SIGPLAN Not.,
43(6):101–113, June 2008. ISSN 0362-1340. doi:10.1145/1379022.1375595.

[16] H. Bryhni, E. Klovning, and O. Kure. A comparison of load balancing techniques
for scalable Web servers. IEEE Network, 14(4):58–64, July 2000. ISSN 0890-8044.
doi:10.1109/65.855480.

[17] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging IT platforms: Vision, hype, and real-
ity for delivering computing as the 5th utility. Future Generation Computer Sys-
tems, 25(6):599 – 616, 2009. ISSN 0167-739X. doi:http://dx.doi.org/10.1016/
j.future.2008.12.001.

[18] Matt Chiu and Martin C. Herbordt. Molecular Dynamics Simulations on High-
Performance Reconfigurable Computing Systems. ACM Trans. Reconfigurable
Technol. Syst., 3(4):23:1–23:37, November 2010. ISSN 1936-7406. doi:10.1145/
1862648.1862653.

[19] C++ AMP : Language and Programming Model. [Online; accessed 02-May-2019].

100

Bibliography

[20] Chris Cummins, Pavlos Petoumenos, Michel Steuwer, and Hugh Leather. Autotuning
OpenCL workgroup size for stencil patterns. arXiv preprint arXiv:1511.02490, 2015.

[21] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard API
for Shared-Memory Programming. IEEE Computational Science and Engineering,
5(1):46–55, 1998.

[22] C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, and S. Midkiff. Cetus: A Source-to-
Source Compiler Infrastructure for Multicores. Computer, 42(12):36–42, Dec 2009.
ISSN 0018-9162. doi:10.1109/MC.2009.385.

[23] G. Durelli, M. Coppola, K. Djafarian, G. Kornaros, A. Miele, M. Paolino, Oliver Pell,
Christian Plessl, M. D. Santambrogio, and C. Bolchini. SAVE: Towards Efficient Re-
source Management in Heterogeneous System Architectures. In Diana Goehringer,
Marco Domenico Santambrogio, João M. P. Cardoso, and Koen Bertels, editors,
Reconfigurable Computing: Architectures, Tools, and Applications, pages 337–344.
Springer International Publishing, Cham, 2014. ISBN 978-3-319-05960-0.

[24] Gianluca C. Durelli and Marco D. Santambrogio. Autonomic Thread Scaling Library
for QoS Management. SIGBED Rev., 13(1):41–47, March 2016. ISSN 1551-3688.
doi:10.1145/2907972.2907978.

[25] Fast ISPC Texture Compressor. URL: https: // software .intel .com/ en-us/
articles/ fast-ispc-texture-compressor . [Online; accessed 02-April-2019].

[26] Lin Gan, Haohuan Fu, Wayne Luk, Chao Yang, Wei Xue, Xiaomeng Huang, Youhui
Zhang, and Guangwen Yang. Solving the Global Atmospheric Equations Through
Heterogeneous Reconfigurable Platforms. ACM Trans. Reconfigurable Technol. Syst.,
8(2):11:1–11:16, March 2015. ISSN 1936-7406. doi:10.1145/2629581.

[27] Oliver Gay. C++ SHA256 Function. URL: http: // www .zedwood .com/ article/
cpp-sha256-function . [Online; accessed 04-July-2019].

[28] Google Test. URL: https: // github .com/ google/ googletest . [Online; accessed
04-July-2019].

[29] Ivan Grasso, Petar Radojkovic, Nikola Rajovic, Isaac Gelado, and Alex Ramirez.
Energy Efficient HPC on Embedded SoCs: Optimization Techniques for Mali GPU.
In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International,
pages 123–132. IEEE, 2014.

[30] Johan Gronqvist and Anton Lokhmotov. Optimising OpenCL kernels for the ARM
Mali-T600 GPUs. GPU Pro 5: Advanced Rendering Techniques, page 327, 2014.

[31] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A High-
Performance, Portable Implementation of the MPI Message Passing Interface Stan-
dard. Parallel computing, 22(6):789–828, 1996.

101

https://software.intel.com/en-us/articles/fast-ispc-texture-compressor
https://software.intel.com/en-us/articles/fast-ispc-texture-compressor
http://www.zedwood.com/article/cpp-sha256-function
http://www.zedwood.com/article/cpp-sha256-function
https://github.com/google/googletest

Bibliography

[32] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly-Performing Poly-
hedral Optimizations on a Low-Level Intermediate Representation. Parallel Process-
ing Letters, 22(04):1250010, 2012.

[33] Tobias Grosser and Torsten Hoefler. Polly-ACC Transparent Compilation to Hetero-
geneous Hardware. In Proc. Int. Conf. on Supercomputing, page 1. ACM, 2016.

[34] OpenACC Working Group et al. The OpenACC Application Programming Inter-
face. URL: https: // www .openacc .org/ sites/ default/ files/ inline-files/
OpenACC .2 .7 .pdf , 2011. [Online; accessed 04-July-2019].

[35] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R.
Gaster, and Bixia Zheng. Twin Peaks: A Software Platform for Heterogeneous Com-
puting on General-purpose and Graphics Processors. In Proceedings of the 19th In-
ternational Conference on Parallel Architectures and Compilation Techniques, PACT
’10, pages 205–216. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0178-7. doi:
10.1145/1854273.1854302.

[36] Markus Happe, Friedhelm Meyer auf der Heide, Peter Kling, Marco Platzner, and
Christian Plessl. On-The-Fly Computing: A Novel Paradigm for Individualized IT
Services. In Proc. Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS). IEEE Computer Society, June 2013.

[37] Mark Harris. Mini-Nbody: A Simple N-body Code. URL: https: // github .com/
harrism/ mini-nbody , 2014. [Online; accessed 04-July-2019].

[38] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and
Anant Agarwal. Application Heartbeats: A Generic Interface for Specifying Pro-
gram Performance and Goals in Autonomous Computing Environments. In Pro-
ceedings of the 7th International Conference on Autonomic Computing, ICAC ’10,
pages 79–88. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0074-2. doi:
10.1145/1809049.1809065.

[39] HSA Foundation. URL: http: // www .hsafoundation .com/ . [Online; accessed 24-
May-2019].

[40] Heterogeneous Systems Architecture Foundation Launches HSA 1.1 Specification
with Multi-Vendor Architecture Support. URL: http: // www .hsafoundation .com/
heterogeneous-systems-architecture-foundation-launches-hsa-1-1-

specification-multi-vendor-architecture-support/ . [Online; accessed
24-May-2019].

[41] HTrOP Repository. URL: https: // pc2 .uni-paderborn .de/ research/
publications/ open-source-projects/ automated-code-acceleration-with-

compilation-to-opencl/ . [Online; accessed 25-May-2019].

102

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://github.com/harrism/mini-nbody
https://github.com/harrism/mini-nbody
http://www.hsafoundation.com/
http://www.hsafoundation.com/heterogeneous-systems-architecture-foundation-launches-hsa-1-1-specification-multi-vendor-architecture-support/
http://www.hsafoundation.com/heterogeneous-systems-architecture-foundation-launches-hsa-1-1-specification-multi-vendor-architecture-support/
http://www.hsafoundation.com/heterogeneous-systems-architecture-foundation-launches-hsa-1-1-specification-multi-vendor-architecture-support/
https://pc2.uni-paderborn.de/research/publications/open-source-projects/automated-code-acceleration-with-compilation-to-opencl/
https://pc2.uni-paderborn.de/research/publications/open-source-projects/automated-code-acceleration-with-compilation-to-opencl/
https://pc2.uni-paderborn.de/research/publications/open-source-projects/automated-code-acceleration-with-compilation-to-opencl/

Bibliography

[42] Xilinx Inc. SDAccel Environment Optimization Guide. URL: https:

// www .xilinx .com/ support/ documentation/ sw manuals/ xilinx2016 4/

ug1207-sdaccel-optimization-guide .pdf . [Online; accessed 21-June-2019].

[43] Xilinx Inc. SDAccel Programmers Guide. URL: https: // www .xilinx .com/
support/ documentation/ sw manuals/ xilinx2019 1/ ug1277-sdaccel-

programmers-guide .pdf , 2019. [Online; accessed 04-July-2019].

[44] Intel C++ Compiler 19.0 Developer Guide and Reference. URL:
https: // software .intel .com/ en-us/ cpp-compiler-developer-guide-and-
reference-automatic-parallelization . [Online; accessed 22-May-2019].

[45] Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide. URL:
https: // www .intel .com/ content/ www/ us/ en/ programmable/ documentation/
mwh1391807516407 .html . [Online; accessed 21-June-2019].

[46] Intel Xeon Phi Coprocessor. URL: https: // software .intel .com/ en-us/
articles/ opencl-design-and-programming-guide-for-the-intel-xeon-phi-

coprocessor . [Online; accessed 04-July-2019].

[47] Stephen Johnson, Emyr Evans, Haoqiang Jin, and Constantinos Ierotheou. The
ParaWise Expert Assistant – Widening Accessibility to Efficient and Scalable Tool
Generated OpenMP Code. In Barbara M. Chapman, editor, Shared Memory Par-
allel Programming with Open MP, pages 67–82. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005. ISBN 978-3-540-31832-3.

[48] Lester Kalms, Tim Hebbeler, and Diana Göhringer. Automatic OpenCL Code Gener-
ation from LLVM-IR using Polyhedral Optimization. In Proc. Workshop on Parallel
Programming and RunTime Management Techniques for Manycore Architectures and
Design Tools and Architectures for Multicore Embedded Computing Platforms, pages
45–50. ACM, 2018.

[49] Khronos OpenCL Registry. URL: https: // www .khronos .org/ registry/ OpenCL .
[Online; accessed 11-March-2019].

[50] W. Kim and M. Voss. Multicore Desktop Programming with Intel Threading
Building Blocks. IEEE Software, 28(1):23–31, Jan 2011. ISSN 0740-7459. doi:
10.1109/MS.2011.12.

[51] Stephen Kokoska and Daniel Zwillinger. CRC Standard Probability and Statistics
Tables and Formulae. CRC Press, 1999.

[52] Lambda expressions. URL: https: // en .cppreference .com/ w/ cpp/ language/
lambda . [Online; accessed 15-January-2019].

[53] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proc. Int. Symp. Code Generation and Op-
timization, pages 75–86. 2004.

103

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1277-sdaccel-programmers-guide.pdf
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-automatic-parallelization
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-automatic-parallelization
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://www.khronos.org/registry/OpenCL
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda

Bibliography

[54] D. Lenoski, J. Laudon, K. Gharachorloo, W. . Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. Computer, 25(3):63–
79, March 1992. ISSN 0018-9162. doi:10.1109/2.121510.

[55] Jyrki Leskela, Jarmo Nikula, and Mika Salmela. OpenCL embedded profile prototype
in mobile device. In Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop
on, pages 279–284. IEEE, 2009.

[56] Chunhua Liao, Daniel J. Quinlan, Jeremiah J. Willcock, and Thomas Panas. Extend-
ing Automatic Parallelization to Optimize High-Level Abstractions for Multicore.
In Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors,
Evolving OpenMP in an Age of Extreme Parallelism, pages 28–41. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-02303-3.

[57] Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Jr., Anwar Ghuloum, and Monica S.
Lam. SUIF Explorer: An Interactive and Interprocedural Parallelizer. In Proceedings
of the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’99, pages 37–48. ACM, New York, NY, USA, 1999. ISBN
1-58113-100-3. doi:10.1145/301104.301108.

[58] O. Lindtjorn, R. Clapp, O. Pell, H. Fu, M. Flynn, and O. Mencer. Beyond Traditional
Microprocessors for Geoscience High-Performance Computing Applications. IEEE
Micro, 31(2):41–49, March 2011. ISSN 0272-1732. doi:10.1109/MM.2011.17.

[59] LLVM Analysis and Transform Passes. URL: https: // llvm .org/ docs/
Passes .html . [Online; accessed 04-July-2019].

[60] The LLVM Compiler Infrastructure Project. URL: https: // llvm .org/ . [Online;
accessed 04-July-2019].

[61] LLVM Execution Engine. URL: http: // llvm .org/ doxygen/
classllvm 1 1ExecutionEngine .html . [Online; accessed 11-March-2019].

[62] LLVM’s Analysis and Transform Passes. URL: https: // llvm .org/ docs/
Passes .html . [Online; accessed 18-October-2018].

[63] Alberto Magni, Christophe Dubach, and Michael O’Boyle. Automatic Optimization
of Thread-coarsening for Graphics Processors. In Proc. Int. Conf. on Parallel Archi-
tectures and Compilation (PACT), PACT ’14, pages 455–466. ACM, New York, NY,
USA, 2014. ISBN 978-1-4503-2809-8. doi:10.1145/2628071.2628087.

[64] Atabak Mahram and Martin C. Herbordt. NCBI BLASTP on High-Performance
Reconfigurable Computing Systems. ACM Trans. Reconfigurable Technol. Syst.,
7(4):33:1–33:20, January 2015. ISSN 1936-7406. doi:10.1145/2629691.

[65] Simon Moll. Decompilation of LLVM IR. Master’s thesis, Saarland University, 2011.

104

https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://llvm.org/
http://llvm.org/doxygen/classllvm_1_1ExecutionEngine.html
http://llvm.org/doxygen/classllvm_1_1ExecutionEngine.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html

Bibliography

[66] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel
Programming with CUDA. Queue, 6(2):40–53, 2008.

[67] Sebastian Nilsson. FIR Filter Arduino Library. URL: https: // github .com/
sebnil/ FIR-filter-Arduino-Library , 2017. [Online; accessed 04-July-2019].

[68] Par4All. URL: http: // par4all .github .io/ . [Online; accessed 23-May-2019].

[69] PGI Compilers & Tools. URL: https: // www .pgroup .com/ index .htm . [Online; ac-
cessed 22-May-2019].

[70] Louis-Noël Pouchet. Polybench: The Polyhedral Benchmark Suite. URL: http:

// web .cs .ucla .edu/ ~ pouchet/ software/ polybench/ , 2018. [Online; accessed 04-
July-2019].

[71] Gabriel Rivera and Chau-Wen Tseng. A Comparison of Compiler Tiling Algorithms.
In Stefan Jähnichen, editor, Compiler Construction, pages 168–182. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-49051-7.

[72] Save’s Goals. URL: http: // www .fp7-save .eu/ project .htm . [Online; accessed 02-
April-2019].

[73] Deshanand Singh. Implementing FPGA Design with the OpenCL Standard. Altera
whitepaper, 2011.

[74] John E Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Computing in science & engineer-
ing, 12(3):66–73, 2010.

[75] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Murphy,
Ziang Hu, and Wen-mei W. Hwu. Efficient Compilation of Fine-grained SPMD-
threaded Programs for Multicore CPUs. In Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’10, pages
111–119. ACM, New York, NY, USA, 2010. ISBN 978-1-60558-635-9. doi:10.1145/
1772954.1772971.

[76] John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu. MCUDA: An Efficient
Implementation of CUDA Kernels for Multi-core CPUs. In José Nelson Amaral,
editor, Languages and Compilers for Parallel Computing, pages 16–30. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-89740-8.

[77] The open standard for parallel programming of heterogeneous systems. URL: https:
// www .khronos .org/ opencl/ . [Online; accessed 28-May-2019].

[78] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. Towards
a Holistic Approach to Auto-parallelization: Integrating Profile-driven Parallelism
Detection and Machine-learning Based Mapping. SIGPLAN Not., 44(6):177–187,
June 2009. ISSN 0362-1340. doi:10.1145/1543135.1542496.

105

https://github.com/sebnil/FIR-filter-Arduino-Library
https://github.com/sebnil/FIR-filter-Arduino-Library
http://par4all.github.io/
https://www.pgroup.com/index.htm
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://www.fp7-save.eu/project.htm
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

Bibliography

[79] User Guide for NVPTX Back-end. URL: https: // llvm .org/ docs/
NVPTXUsage .html . [Online; accessed 04-July-2019].

[80] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian
Tenllado, and Francky Catthoor. Polyhedral parallel code generation for CUDA.
ACM Transactions on Architecture and Code Optimization (TACO), 9(4):54, 2013.

[81] Mei Wen, Da-fei Huang, Chang-qing Xun, and Dong Chen. Improving performance
portability for GPU-specific OpenCL kernels on multi-core/many-core CPUs by
analysis-based transformations. Frontiers of Information Technology & Electronic En-
gineering, 16(11):899–916, Nov 2015. ISSN 2095-9230. doi:10.1631/FITEE.1500032.

[82] Trent Willis. Advanced Ray-Tracer. URL: https: // github .com/ trentmwillis/
ray-tracer , 2014. [Online; accessed 04-July-2019].

[83] Writing an LLVM Pass. URL: http: // llvm .org/ docs/ WritingAnLLVMPass .html .
[Online; accessed 18-October-2018].

[84] Erik Wynters. Fast and Easy Parallel Processing on GPUs Using C++ AMP. J.
Comput. Sci. Coll., 31(6):27–33, June 2016. ISSN 1937-4771.

[85] OpenCL NVIDIA Developer Zone. NVIDIA OpenCL SDK Code Samples. URL:
https: // developer .nvidia .com/ opencl , 2018. [Online; accessed 04-July-2019].

106

https://llvm.org/docs/NVPTXUsage.html
https://llvm.org/docs/NVPTXUsage.html
https://github.com/trentmwillis/ray-tracer
https://github.com/trentmwillis/ray-tracer
http://llvm.org/docs/WritingAnLLVMPass.html
https://developer.nvidia.com/opencl

APPENDIX A

Kernel and Hotspot-level speedups

This appendix includes all kernel-level and hotspot-level speedups that have not been
presented in the performance evaluation section (Section 6.5) of the thesis.

107

Acronyms

bsop

217 219 221 223 225

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

217 219 221 223 225

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.1: bsop: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

108

enhance

256x256
512x512

1280x768

1024x1024

1664x1024

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

256x256
512x512

1280x768

1024x1024

1664x1024

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.2: enhance: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

109

Acronyms

nbody

29 211 213
215 217

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

29 211 213
215 217

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.3: nbody: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

110

motion

256x256
512x512

1280x768

1024x1024

1664x1024

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

256x256
512x512

1280x768

1024x1024

1664x1024

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.4: motion: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

111

Acronyms

raytrace

218 220 222 224

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

218 220 222 224

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.5: raytrace: Kernel and hotspot-level speedup for different input sizes. Plot
(a) shows the kernel-level speedup, while plot (b) shows the hotspot-level
speedup including data transfer overheads.

112

sha256

218 220 222

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

218 220 222

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.6: sha256: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

113

Acronyms

stereo2D

28 210 212

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(a) Kernel.

28 210 212

0.1

1

10

100

1000

sp
ee

du
p

input

mCPU
GPGPU
PHI

OpenACC-CPU
OpenACC-GPU

(b) Hotspot including data transfer.

Figure A.7: stereo2D: Kernel and hotspot-level speedup for different input sizes. Plot (a)
shows the kernel-level speedup, while plot (b) shows the hotspot-level speedup
including data transfer overheads.

114

	Acknowledgements
	Abstract
	Zusammenfassung
	List of Tables
	List of Listings
	List of Figures
	Introduction
	Motivation
	Contributions of this Thesis
	Thesis Structure

	Related Work
	Accelerator Programming
	Transparent Acceleration and Parallelization
	Chapter Conclusion

	The saveHSA-Orchestrator
	The Observe-Decide-Act Loop
	SAVE-Enabled applications
	Chapter Conclusion

	Background
	LLVM Compiler Infrastructure
	OpenCL Framework
	Address Space and Memory Hierarchy
	Components of an OpenCL Application

	Chapter Conclusion

	Runtime and Just-in-Time Compilation System
	Overview of the RTCS
	RTCS Toolflow
	Communication
	Hotspot Data Structure
	Canonicalization
	Application Analysis
	Hotspot Analysis
	External Function Filter
	Dependence Analysis
	OpenCL Data Buffer Analysis and Data Transfer Optimizations

	Application Preparation and Execution
	Handling the Codegen Request
	Work-Item Parallelizer
	Tiling: Exploiting Local Memory
	Convolution
	Matrix Multiplication

	Generating and compiling OpenCL Kernel Code
	Integrating Accelerated Code into the Host
	Loading the OpenCL Program
	Generating OpenCL Host Code
	Registering the new Accelerator Implementation

	Chapter Conclusion

	Evaluation
	The Heterogeneous Evaluation Platform
	Benchmark Applications
	Dense Matrix Multiplication
	Black-Scholes Option Pricing
	Finite Impulse Response
	Image Sharpening
	Heat Transfer Simulation
	N-body Simulation
	Motion Detection
	Ray Tracing
	SHA-256 Cryptographic Hash Function
	Stereo Matching

	Measuring Method
	RTCS Overheads
	Application Launch Overheads
	OpenCL Code Generation and Integration Overheads
	OpenCL Kernel Compilation Overheads
	Application-level OpenCL Overheads

	Performance Evaluation
	Kernel-level Evaluation
	Hotspot-level Evaluation
	Performance across all Benchmark Applications

	Tiling Performance
	Data Transfer Optimizations
	Chapter Conclusion

	Conclusion and Outlook
	Summary
	Outlook
	RTCS Use Cases
	Targeting FPGAs
	Optimizing OpenCL Performance
	Automatic Loop Parallelization

	Chapter Conclusion

	Acronyms
	Author's Publications
	Bibliography
	Appendix Kernel and Hotspot-level speedups

