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1 Abstract
In this work we present the implementation and study of time-multiplexed optical quantum
networks. These incorporate the preparation of single-photon states, their manipulation
in a dynamically reconfigurable circuitry and mode-resolving detection. With such a
system we achieve versatile simulation capabilities for both wave-like as well as particle-like
phenomena.
The input states are generated in a parametric down-conversion (PDC) process engineered
to be compatible with the time-multiplexing fibre network as well as to yield indistinguish-
able and pure photons which are required for quantum interference with high visibility.
Employing fast-switching electro-optic modulators (EOMs), we can dynamically reconfig-
ure the circuitry in terms of the splitting, routing and inhomogeneous losses to which the
photons are subjected. In this way, we can probe the effect of projective measurements
during the evolution.
The detection unit resolves the external (time bins) as well as the internal modes (polari-
sation), allowing for mode-dependent intensity and coincidence measurements.
For describing the photon’s evolution we adopt the formalism of discrete-time quantum
walks.
Examining wave-like behaviour with coherent states, we investigate topologically-protected
edge states as well as the effect of projective measurements.
Probing particle-like effects with single-photon states, we conduct experiments revealing
the interplay between the coherence properties of synthesized modes, the degree of mode
resolution in the detection and the time-multiplexed quantum interference.
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2 Zusammenfassung
In dieser Arbeit präsentieren wir die Implementierung und Untersuchung von zeitge-
multiplexten optischen Quantennetzwerken. Diese beinhalten die Präparierung von
Einzelphotonen-Zuständen, ihre Weiterverarbeitung in einem dynamisch rekonfigurier-
baren Netzwerk und moden-auflösende Detektion. Mit einem solchen System erlangen wir
vielseitige Möglichkeiten im Bereich der Simulation von sowohl teilchenartigen als auch
wellenartigen Phänomenen.
Die Eingangszustände werden in einem parametrischen Fluoreszenzprozess (englisch: para-
metric down-conversion, PDC) erzeugt, der dahingehend optimiert wurde, dass er einerseits
kompatibel mit dem verwendeten Zeitmultiplex-Netzwerk ist und andererseits ununter-
scheidbare und reine Photonen liefert und somit Quanteninterferenz mit hoher Visibilität
erlaubt.
Durch den Einsatz schneller elektro-optischer Modulatoren (EOMs) können wir das Ver-
halten der Photonen hinsichtlich Aufspaltung, Propagation und inhomogener Verluste
dynamisch beeinflussen. Auf diese Weise können wir die Auswirkungen projektiver Mes-
sungen untersuchen.
Mit der Detektionseinheit lassen sich sowohl die externen (Zeitslots) als auch die internen
Moden (Polarisation) auflösen, so dass moden-abhängige Intensitäts- und Koinzidenzmes-
sungen möglich sind.
Die Beschreibung der Zeitentwicklung der Photonen erfolgt über den Formalismus eines
Quantenspaziergangs mit diskreten Zeitschritten.
Im Rahmen der Untersuchung von wellenartigen Phänomenen mit kohärenten Zuständen
implementieren wir sowohl topologisch geschützte Randzustände als auch eine Simulation
projektiver Messungen.
Teilchenartige Phänomene untersuchen wir dagegen mit Einzelphotonen-Zuständen. Hier
zeigt sich im Experiment das Zusammenspiel zwischen den Kohärenzeigenschaften der
Moden, der Moden-Auflösung während der Detektion und der zeitgemultiplexten Quan-
teninterferenz.
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3 Introduction
In the last decades the interest in quantum effects has been intensified by the prospect of
building a quantum computer, i.e. a device that is capable of harnessing the complexity of
quantum systems for computational tasks and simulation of quantum systems [1]. In this
regard, one can harness quantum mechanical processes to achieve computational tasks
such as the famous examples of prime factorization [2] or search algorithms [3]. On the
other hand, they can be used to simulate quantum mechanical systems such as molecules
which are hard to compute classically due to their computational complexity. Possible
implementations and applications of a quantum computer are manifold and giving an
extensive overview would thus go beyond the scope of this thesis.

Figure 3.1: The three major components relevant in studying a quantum network: The
input states, in this instance two photons, are subjected to an evolution (marked by Û for
unitary) and eventually detected.

We can, however, resort to representing such a device as a quantum network, which is
an appropriate way for at least certain instances, e.g. linear optics quantum computing
[4]. Such a network can be split it up into three major components (see Figure 3.1): We
start with an input state, e.g. in the given instance two photons, that occupies a certain
number of modes. Here, the term mode denotes basis states of a Hilbert space in that the
photons could be distinguishable. For example, distinct modes can be different positions
in space or time as well as certain frequencies.
Subsequently, the input state undergoes an evolution (represented by Û in Figure 3.1)
during which it is transformed. A straightforward example of such an evolution would be
directing photons to certain spatial positions via beam splitters.
Eventually, the state is detected. While one might naively assume this to be the most
boring part, the way a quantum mechanical system is measured might have significant

13



14 3 Introduction

consequences on the outcome.
In this work, we will present the implementation of a fully-fledged quantum network com-
prising all three components: input state generation, evolution and detection. Eventually,
we will present an experiment that relies on a high degree of control in all three of these.
For the first time, we implement a time-multiplexed optical network combining approxi-
mative single-photon input states with a dynamically reconfigurable circuit allowing for
implementing a different operation on each of the modes. The results of the experiments
made possible by these features offer valuable insights into the interplay of coherence and
quantum interference.
In order to describe the evolution section, we adopt the framework of quantum walks,
which are considered as a universal computational primitive [5] resp. architecture for
universal quantum computation [6]. Furthermore,they play an important role in quantum
simulation [7].
Considering the input states, we can think of different scenarios: a classical particle
exhibits a rest mass but not a wave function. In contrast, a particle such as an electron
exhibits a rest mass and a wave function. Light presents an interesting case in this regard
as it can show particle-like behaviour in certain instances, but does not possess a rest
mass.
The state’s evolution described in the quantum walk framework shows an interesting
interplay with the input state: Originally, the term "Quantum walk" was coined to describe
the evolution of a massive particle in a wave picture, i.e. with probability amplitudes
according to wave-particle duality [8]. The wave-like description also holds for fields of
light. It, however, depends on the concrete scenario whether the particle-like aspect of
light become relevant. For instance, a quantum walks starting with photons in only a
single mode can be simulated with coherent states which are in quantum optics usually
considered to be classical states. On the other hand, analysing coincidence counts for a
case with single photons in multiple input states clear reveals their particle nature. At
this point we see that detection is indeed a crucial part of a quantum network.
It remains the question why we should complicate matters by examining effects that only
occur for multiple quantum particles. An answer going to back to our initial motivation is
that the aforementioned approaches to quantum computation rely on genuine quantum
states in distinct input modes, i.e. they cannot be conducted with coherent input states.
Looking at a broader picture, we will see that certain quantum walk protocols require
quantum states in multiple input modes, while realising single-input-mode scenarios suffices
for others. In the present work, we will investigate instances of both: In chapter 6 we
present the investigation of various topological phenomena with coherent input states. In
addition, chapter 7 is devoted to the simulation of measurement-induced dynamics with
coherent states via the implementation of absorptive sinks.
In order to make our experimental platform presented in chapter 4 a fully-fledged quantum
network, we enhance the well-established time-multiplexing architecture [9, 10, 11, 12] such
that it becomes compatible with an approximative single-photon source and experimentally
verify the performance: The signature of photons in multiple input modes depends on
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their indistinguishability and purity, both of which can be tested in a Hong-Ou-Mandel
(HOM) interference experiment as described in chapter 5. HOM-interference provides
the foundation for the implementation of a time-multiplexed HOM-dip with an additonal
mode structure which is presented in chapter 8. In this experiment, we exploit the high
degree of control we have for state preparation, state evolution as well as detection to
exert coherent control of quantum interference. Furthermore, we show that the amount of
information retrieved during detection has a crucial impact on the results. Eventually, we
will draw a conclusion and give an outlook in chapter 9.
In the current chapter, we will introduce the fundamentals resorting to the threefold
representation of a quantum network: To start with, we will present parametric down-
conversion as the process with which we generate approximative single-photon states in
section 3.1. The evolution of the state is described in the frameworks of quantum walks
which will be presented in section 3.2. Eventually, the experimental signatures of a single
photon presented in section 3.3 are related to detection schemes that allow to distinguish
single photon from classical states of light.
Furthermore, we will put our work into context by describing the state of the art in section
3.2 and by sketching how to classify experiments in terms of required input states in
section 3.5.

3.1 Fundamentals Part 1: Parametric Down-Conversion
We can generate approximative single-photon states with the help of spontaneous para-
metric down-conversion (SPDC) and more precisely type-II SPDC. A detailed account
on parametric down-conversion (PDC) can be found in the corresponding chapter of the
referenced book [13].
On an abstract level, type-II SPDC is a two-mode squeezing operation described by the
Hamiltoninan ĤSPDC with â�s,i and âs,i denoting the creation and annihilation operators
for the two modes called signal resp. idler:

ĤSPDC = r · (â�sâ
�
i + âsâi) (3.1)

The SPDC state ψSPDC is obtained by applying the corresponding unitary ÛSPDC on the
vacuum. ÛSPDC is defined as the matrix exponential of ĤSPDC:

|ψSPDC〉 = ÛSPDC |0,0〉 = e−iĤSPDC |0,0〉 (3.2)

In SPDC photons are generated by the interaction of incident pump light and a non-linear
medium. This interaction can be thought of as inducing dipols in the material, which
will in turn also irradiate an electro-magnetic field. Creating a significant output from
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these fields requires the contribution from the individual dipoles to interfere constructively.
With ~kp,~ks and ~ki being the wave vectors of pump, signal and idler, perfect constructive
interference needs the phase-mismatch ∆k to be zero, which can also be interpreted as
the result of momentum conservation:

∆k = |~ks + ~ki − ~kp| =
ns · ωs
c

+ ni · ωi
c
− np · ωp

c
(3.3)

Fulfilling the above equation, i.e. the phase-matching condition, can in principle be
achieved by non-collinear propagation of signal and idler (see Figure 3.2, (b)). This
possibility is lost for PDC inside a waveguide confining the propagation of the light. In
this case phase-matching can be accomplished by periodically poling the crystal and thus
adding a quasi-momentum ~kQPM = 2π

Λ (Figure 3.2, (c)) with Λ being the poling period.
Confining the light fields in waveguides allows, on the other hand, to increase the effective
length over which the PDC process takes place in comparison to a non-waveguided, i.e.
bulk, sample where this parameter is related to the Rayleigh length of the pump beam.
The resulting advantages are twofold: On the one hand, a longer effective length increases
the brightness, i.e. the number of generated PDC photons per pump power. On the other
hand, it offers new possibilities in engineering the spectral properties of the PDC process
via the effective length of the sample. This spectral engineering will be treated in detail in
section 5.4, while in the following we will briefly introduce the relevant terms in relation
to the spectral aspects of PDC.

Figure 3.2: (a): Illustration of the SPDC process: Photons from bright pump beam with
frequency ωp decay inside a χ(2)-non-linear medium with a probability on the order of mag-
nitude of 10−7 into a signal and an idler photon at frequencies ωs resp. ωi. (b): Illustration
of the phase-matching condition that requires the wave vectors of the involved photons
to match up. Note that this can in general be achieved by non-collinear propagation. (c):
Illustration of the phase-matching condition for a PDC process inside a periodically-poled
crystal with waveguides: The waveguides force the photons into collinear propagation, how-
ever, the periodical poling leads to a quasi-momentum ~kQPM that can be engineered such
that the wave vectors again match up.

In order to obtain an expression for the spectral properties, we sum up the contributions
of the individual dipols for the whole length L of the crystal. This corresponds to
the integration over a rectangle in space and thus yields a sinc-function depending on
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∆k(λs, λi), the so called phase-matching function Φ(λs, λi):

Φ(λs, λi) ∝ sinc[∆k(λs, λi) · L/2] (3.4)

An additional constraint is imposed on the generated state by energy conservation:

ωp = ωs + ωi (3.5)

This condition is represented in the function α(ωs + ωi) for the pump distribution, which
can also be expressed in terms of the wavelengths λs and λi .
Since both momentum and energy conservation have to be fulfilled by the PDC process,
the correlation of signal wavelength λs and idler wavelength λi is given by the product of
the phase-matching function Φ(λs, λi) and the pump distribution α(λs, λi). We call this
product the joint-spectral amplitude (JSA) f(λs, λi):

f(λs, λi) = Φ(λs, λi)α(λs, λi) (3.6)

The JSA is important in the context of this work as it can be related to the purity of the
photons generated in a PDC process and thus to the HOM-dip visibility (elaborated on in
section 5.4).
Considering its photon-number statistics, a two-mode SPDC state is not an ideal single-
photon state, but exhibits exponential photon-number statistics and can in the photon-
number-basis (Fock-basis) be written in the following way [14]:

|ψPDC〉 =
√

1− |λ|2
∞∑
n=0

λn |n,n〉 (3.7)

Note that n generally denotes the photon number and specifically the corresponding
component of the Fock-state when written in brackets. λ is defined as λ = −eiφ · tanh r
where r and φ are related to the squeezing parameter ξ by the relation ξ = r · eiφ. Since
the relative weight of higher photon-number contributions scales exponentially with n, a
single-photon state is more closely approximated as λ gets smaller.
An experimental setting where photon-number information on the idler is not available
corresponds to the mathematical operation of tracing out the photon number in the idler
subsystem, i.e. summing over the diagonal elements of the subsystem. Such a setting is
usually realised when either the idler is not detected or detected with non-photon-number-
resolving bucket detectors. The operation will turn the density matrix ρher of the PDC
state after the detection of the idler into an incoherent sum of components with different
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photon numbers and thereby reduce its purity:

ρher = Tri {ρ} = (1− |λ|2)
∞∑
ni=0

1x ⊗ 〈n
′
i

∞∑
ni=0

λni
∞∑
ns=0

λns |ni, ns〉 〈ni, ns|n
′
i〉 ⊗ 1

= (1− |λ|2)
∞∑
ni=0

λni
∞∑
ns=0

λns |ns〉 〈ns| = (1− |λ|2)
∞∑
n=0

λ2n |n〉 〈n|
(3.8)

Here, ni and ns denote the components of the Fock-state of the idler resp. the signal.
Since PDC sources constitutes a photon-pair sources, we can identify ni = ns = n.
As the detection of the idler photon heralds the presence of the signal photon, we call the
PDC state after the detection of the idler a heralded PDC state. The incoherent sum in
(3.8) reduces the purity of the state associated to ρher and thus the visibility of quantum
interference between two heralded PDC as will be discussed in section 3.3, where (3.27)
links the purity of the two states involved to the visibility.
The relative weight of higher photon numbers according to (3.8) scales with λn, so that
the higher-order terms vanish for values of λ approaching 0. Consequently, decreasing
λ will increase the purity of interfering states and thereby also increase the visibility.
Identifying |λ| = | tanh(r)| and r = arcsinh(

√
n̄) and noting that tanh as well as arcsinh

are monotonous functions, we find that a small value of λ corresponds to a low mean
photon number n̄.
n̄ is given by the sum over the photon numbers n with their respective probabilities pn
which can be expressed according to (3.8):

n̄ =
∞∑
n=0

n · pn =
∞∑
n=0

n · (1− |λ|2) · |λ|2n (3.9)

We will see in the chapters to come that the mean photon number n̄ is an important
parameter determining both the experimentally observed visibilities of quantum interference
as well as the achievable rates of measurement events.

3.2 Fundamentals Part 2: Quantum Walks
3.2.1 Random Walk vs. Quantum Walk
The term "quantum walk" was first coined in the sense of "quantum random walk" [8].
It is consequently derived from the classical random walk in which a classical particle
undergoes movements in random directions. The Galton board presents a very illustrative
example for such a setting. It is a pyramidal arrangement of pins (see Figure 3.3, (a))
where the particle, or a walker in a more general case, has at each pin a 50 % chance of
going left and a 50 % chance of going right. Consequently, the probability to find the
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walker in a certain bin x for a certain step n is given by a binomial distribution Pn(x)
centered around the bin in the middle (x = 0, see Figure 3.10, (b)):

Pn(x) = 1
2n

(
n

(n+ x)/2

)
(3.10)

Figure 3.3: (a): Example of a possible trajectory of a classical particle on a Galton board
in random walk over six steps. (b): The corresponding probability for each bin as given by
a binomial distribution. (c): Illustration of the evolution in a quantum walk: In contrast
to its classical pendant, here the walker travels along all possible paths simultaneously.
The different components interfere with each other, consequently the resulting probability
distribution as shown in (d) looks qualitatively different from the classical case.

While classical random walks play an important role in explaining phenomena [15] in fields
as diverse as economics [16, 17] or biology [18, 19, 20], this model is insufficient when
considering quantum particles. Here, we also have to account for their wave-aspect [8],
making the wave function |Ψ〉 the key to accessing probability distributions. In the particle
picture this would correspond to the walker taking all paths simultaneously with the
individual pulses interfering with each other (Figure 3.3, (b)). The resulting probability
distribution (Figure 3.3, (d)) thus differs qualitatively from its classical pendant. We will
see in the following how this probability distribution can be derived.
Since the theoretical framework has been described in detail in previous works (e.g.
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[21, 22]), the treatment in the following is limited to the key aspects.

3.2.2 Continuous-time vs. Discrete-time Quantum Walk
Once the description of a system via its wave function has been adopted, the Schrödinger
equation assigns fundamental importance for its time-evolution to the Hamiltonian Ĥ. In
its integral formulation the Schrödinger equation allows for the identification of a unitary
time-evolution operator Û(t,t0):

|Ψ(t)〉 = Û(t,t0) |Ψ(t0)〉 = T exp−
i
~

∫ t
t0
Ĥ(t)dt |Ψ(t0)〉 (3.11)

The time-ordering operator T accounts for possible time dependencies of the Hamiltonian.
For the concrete expression of Û , we distinguish between the two main settings for the
evolution of the wave function: In a continuous-time quantum walk it is described by a
tight-binding Hamiltonian involving couplings constants between modes. In a discrete-time
quantum walk, on the other hand, we assume an evolution over a number n of discrete time
steps, each of them being described by a unitary operator consisting of a coin operation Ĉ
and a subsequent step operation Ŝ:

|Ψ(n+ 1)〉 = Û |Ψ(n)〉 = ŜĈ |Ψ(n)〉 = (ŜĈ)n |Ψ(n = 0)〉 (3.12)

In this work we will concentrate on discrete-time quantum walks as this is the concept
appropriate for the description of our experimental system. An extensive account on the
relation of discrete- and continuous-time quantum walks from view-point of mathematical
physics can be found in [23, 24].
In a discrete-time quantum walk, the step operation Ŝ in the external or position degree
of freedom is conditioned on the internal or coin state of the walker. The Hilbert space H
for the walker’s wave function is thus given as the tensor product of the disjunct position
and coin subspaces Hx and Hc:

H = Hx ⊗Hc (3.13)

Consequently, the walker’s wave function for a quantum walk along a line can be written
in the following way with Ax and Ac being the complex probability amplitudes for the
individual modes in the position resp. coin space:

|Ψ〉 =
∑
x∈Z

∑
c∈{H,V }

AxAc |x〉 ⊗ |c〉 ≡
∑
x∈Z

∑
c∈{H,V }

Ax,c |x〉 ⊗ |c〉 (3.14)
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As illustrated by Figure 3.3, (d), a walk starting at a single position can occupy n + 1
positions after n steps and can thus be expressed in a Hilbert space of dimensionality
n+ 1 . The coin space, on the other hand, comprises in our setting the two basis states
of horizontal polarisation |H〉 = (1, 0)T and vertical polarisation |V 〉 = (0, 1)T. As a
consequence, the overall Hilbert space according to (3.13) is of dimensionality 2 · (n+ 1).
Once the wave function is known, the probability distribution can be calculated as the
square of its absolute.

3.2.3 Coin vs. Step Operation
In order to determine the wave function, we need to known how to describe the operations
governing its evolution.
Operations on the coin degree of freedom can be described with 2×2 unitary matrices
equivalent to the Jones-matrices of the corresponding optical components. In certain
instances these are connected to the Pauli-matrices σx, σy and σz. We start by linking
the rotation Rx(θ) described by the σx matrix with the rotation R̂EOM effected by the
electro-optic modulators (EOM) used in the experiment (elaborated on in section 4.3.2):

Rx(θ) ∝ e−iσx·θ =
∞∑
n=0

(−iσx · θ)n
n! =

∞∑
n=0

(−1)n
[

(iσx · θ)2n+1

(2n+ 1)! + (iσx · θ)2n

(2n)!

]

=
∞∑
n=0

(−1)n
[
iσx

θ2n+1

(2n+ 1)! − σ0
θ2n

(2n)!

]
= iσx · sin(θ)− σ0 · cos(θ)

=
(

cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

)
∝ R̂EOM(θ)

(3.15)

In the above derivation we used the fact that the square of σx is equal to the identity σ0.
The rotation R̂HWP implemented by a half-wave plate (HWP) is defined in the following
way:

R̂HWP(θ) ∝
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)
(3.16)

Assuming position-independent polarisation rotation, the coin operation acting on all
positions of the state |Ψ〉 is obtained as the dyadic product of the coin and the identity
operation in the position subspace:

ĈEOM/HWP = 1x ⊗ R̂EOM/HWP(θ) (3.17)

A position-dependent coin, on the other hand, requires a position-dependent rotation angle
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θx.
The step operator effects a polarisation-dependent shift in the position space and is defined
as follows:

Ŝ =
∑
x

(|x+ 1〉 〈x| ⊗ |H〉 〈H|+ |x− 1〉 〈x| ⊗ |V 〉 〈V |) (3.18)

We see that the polarisation determines in which direction the light is translated in the
step operation.
Having defined the coin operation Ĉ and the step operation Ŝ, we have all the ingredients
necessary to describe the evolution of the walker’s wave function by the combined effect of
these two operators as it is illustrated in Figure 3.4.
The framework laid out above can be used for describe single- as well as multi-particle wave
functions. As laid out in appendix B, a single-particle quantum walk can be simulated
with coherent light, while it is only in a multi-particle quantum walk that coincidence
detection reveals non-classical signatures in the form of photon bunching.

Figure 3.4: Illustration of how the walker is transformed by the one-time application of
the unitary Û for a one-dimensional quantum walk (quantum walk on a line): First, the
coin operation Ĉ turns the internal degree of freedom into a superposition of horizontal
(red) and vertical polarisation (blue). Subsequently, the step operation Ŝ increases the ex-
ternal degree of freedom (position) by one for the horizontal component and decreases it by
one for the vertical component. The combined effect of coin and step operation is described
by the evolution unitary Û . This operator is applied n times to obtain the quantum walk
evolution for n steps.

3.3 Fundamentals Part 3: Experimental Signatures of a Single Photon
A fully-fledged quantum system for simulation and computation requires the possibility to
put individual particles in distinct input modes. For an optical system these are particles
of light, so called photons.
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The wave-particle duality in combination with the fact that photons do not exhibit a
mass poses a serious challenge to the notion of an observer-independent reality. It seems
that firm statements can only be made on how photons behave in a certain experimental
setting. In this sense, we will discuss setups that make a photon reveal itself in its
particle-nature, namely the measurements of second-order correlations in subsection 3.3.1
and Hong-Ou-Mandel (HOM) interference in subsection 3.3.2.
Note that it has suggested to altogether abandon the notion of a photon being either a
particle or wave [25].

3.3.1 Second-order Correlations Measurements

Figure 3.5: (a): Schematic of a Hanbury-Brown Twiss interferometer: The light incident
in one mode is split-up at a probabilistic beam splitter (BS). Detectors in the two output
modes are used to detect coincidence and single count rates. The setup allows for deter-
mining the second-order correlation function g(2)(τ) depending on the delay τ between
the arms (shown in subfigure (b)). (b): g(2)(τ) for states with super-Poissonian statistics
(red curve), Poissonian statistics (black curve) and sub-Poissonian statistics (green curve),
exhibiting bunching, no bunching and antibunching.

The experimental signature of a single photon is that it produces exactly one detection
event. This characteristic can be tested by correlation measurements in a Hanbury Brown-
Twiss interferometer [26, 13] (see Figure 3.5, a), in which we measure correlations between
the two output ports of a beam spitter with light incident in one input port. Here, the
relevant quantity is the second-order coherence g(2). Considering a single spatial mode,
g(2) depending on the delay τ between two photons can be written in the following way
with â� and â being the creation resp. annihilation operators of single photons [13]:

g(2)(τ) = 〈â
�(t)â�(t+ τ)â(t+ τ)â(t)〉

〈â�(t)â(t)〉2 (3.19)
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For τ = 0 the above expression assumes the following form with n̂ = â�â being the
photon-number operator:

g(2)(0) = 〈n̂(t)(n̂(t)− 1)〉
〈n̂(t)〉2 (3.20)

In a Hanbury Brown-Twiss interferometer, we usually measure the probability of coinci-
dences pCoinc in a certain time interval versus the respective probability of single detection
events pS. P (n) denotes the probability of a certain photon number n. For a PDC state
with low mean photon number the assumption P (1)� P (2)� P (n > 2) holds and we
obtain the following relation [13]:

g(2)(0) = 2P (2)
P (1)2 = PCoinc

PS1 · PS2
= nCoinc/nT
nS1/nT · nS2/nT

= nCoinc · nT
nS1 · nS2

(3.21)

In the above equation, we translated the probabilities into the number of the respective
counts nCoinc,nS1 and nS2 as well as the number nT of trigger events in the same time
interval.
Figure 3.5, (b) shows the correlation function g(2)(τ) depending on the delay τ between
the arms in units of the correlation time τC resp. the correlation function g(2)(0) for zero
delay for different types of sources: For a perfect single photon source emitting one photon
at a time and thus exhibiting anti-bunching and sub-poissonian statistics we expect a
g(2)(0)-value of 0. Coherent light obeying poissonian statistics, on the other hand, has
a g(2)(0)-value of 1. Thermal light is characterised by bunching and super-poissonian
statistics and thus shows a g(2)(0) of 2.
Measurements of the g(2)(τ) rep. g(2)(0)-values consequently constitute a well-established
way of verifying whether a light source emits single photons.

3.3.2 HOM-Dip Experiment
Regarding interference, single photons show a distinct behaviour which depends not only
on the single-photon character but also on the indistinguishability of these photons.
The description of multi-photon system via a single bosonic multi-photon wavefunction
assumes the indistinguishability of the individual photons. Since this assumption is not
fulfilled in general, we quantify the indistinguishability I of two photons with density
matrices ρ̂1 and ρ̂2 according to the following formula [13]:

I(ρ̂1,ρ̂2) = 1− ||ρ̂1 − ρ̂2||2 (3.22)

Here, ||ρ1 − ρ2||2 denotes the operational distance between the two density matrices.
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For pure states with ρ̂1 = |ψ1〉 〈ψ1| and ρ̂2 = |ψ2〉 〈ψ2|, I is given by the square of the
scalar product of the two states:

I(ρ̂1,ρ̂2) = | 〈ψ1|ψ2〉 |2 (3.23)

This expression corresponds to the fidelity [27] and allows in principle for a direct calcula-
tion of the indistinguishability.
In practice, however, a possibly unbound number of different degrees of freedom could
affect its value. An empiric access to the visibility is thus desirable.
Since its first experimental demonstration in 1987 [28], Hong-Ou-Mandel(HOM)-interference
has become a well-established workhorse technique for testing the indistinguishability of
quantum states [29, 30, 31, 32].

Figure 3.6: (a): Illustration of an HOM dip experiment: Single photons impinge on a
beam splitter in both of the input modes a and b. Due to the bosonic nature of the two-
photon wavefunction, the terms corresponding to photons in each of the output modes c
and d vanish as long as indistinguishability of the two photons is given, i.e. ĉ� and d̂� do
commute. (b): Illustration of the measured coincidence probabilities for perfectly indistin-
guishable quantum particles (P ) as well as for classical (coherent) light (P ∗). In first case,
the obtained visibility is 1, in the second 0.5.

Figure 3.6, (a) illustrates the principle underlying this experiment: Two photons (one in
each of the input mode a and b) of the state |φ〉 are brought to interference on a 50:50
beam splitter described by the unitary B̂ acting in the following way:

B̂ : ĉ� = 1√
2

(
â� + b̂�

)
d̂� = 1√

2

(
â� − b̂�

)
⇔ â� = 1√

2

(
ĉ� + d̂�

)
b̂� = 1√

2

(
ĉ� − d̂�

) (3.24)

In the above expression the two output modes of the beam splitter are denoted c and d.
With this definition the beam splitter transforms an input state with one photon in mode
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a and one photon in mode b in the following way:

â�b̂� |0,0〉 = 1
2
(
ĉ�ĉ� + d̂�ĉ� − ĉ�d̂� − d̂�d̂�

)
|0,0〉 (3.25)

In case of perfect indistinguishability of the two photons, ĉ� and d̂� commute and the
terms corresponding to the photons exiting in different modes of the beam splitter cancel
out, so that they will both end up in the same output modes. This outcome is a result of
the bosonic character of photons. In contrast, fermions would exit in different ports.
In case the two photons are distinguishable in any degree of freedom, the terms corre-
sponding to a photon in each output mode will no longer cancel out perfectly.
Experimentally, distinguishability between the two photons can be deliberately introduced,
for example by temporally delaying one of the photons in respect to the other by a
certain time τ . When placing detectors in each of the two output modes, we can record
coincidences between them, which are associated to both photons exiting in different
modes. This allows us to obtain the coincidence probability Pτ=0 for zero time delay as
well as Pτ=∞ (see Figure 3.6, (b)). In this context, τ =∞ corresponds to a time delay for
which the temporal overlap of the pulses is negligibly small, i.e. the photon exhibit almost
perfect temporal distinguishably and thus the terms with photons in both output modes
no longer cancel out.
Tuning the temporal overlap will result in a dip in the coincidience probability around
τ = 0, when the two photons overlap. The visibility VHOM of this dip is defined as the
difference between the maximum Pτ=∞ of the coincidence probability and its minimum
Pτ=0, divided by the maximum [13]:

VHOM = Pτ=∞ − Pτ=0
Pτ=∞

(3.26)

This experimentally obtained visibility can be related to the density matrices [33]:

VHOM = Tr {ρ̂1ρ̂2} = 1/2
(
Tr
{
ρ̂1

2
}

+ Tr
{
ρ̂2

2
}
− ||ρ̂1 − ρ̂2||2

)
(3.27)

In the above expression, the last term denotes the operational distance which is equivalent
to the Hilbert-Schmidt distance [34, 35], so that we can rephrase the formula in the
following way:

VHOM = 1/2
(
Tr
{
ρ̂1

2
}

+ Tr
{
ρ̂2

2
}
− Tr

{
(ρ̂1 − ρ̂2)2

})
(3.28)

For pure states with Tr
{
ρ2

1
}

= 1 and Tr
{
ρ2

2
}

= 1, the visibility equals the indistinguisha-
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bility [34, 33]:

VHOM = I(ρ̂1,ρ̂2) = | 〈ψ1|ψ2〉 |2 (3.29)

The temporal delay is not the only parameter introducing distinguishability between two
photons, as all imaginable degrees of freedom can have this effect. Deliberately tuning
one of them (in this case the temporal delay) allows us to obtain a visibility from which
information about indistinguishably in the other degrees of freedom can be inferred.
The different degrees of freedom of a state (such as frequency, photon number, polarisation,
etc.) can be considered as subspaces with the corresponding wavefunction ψi, so that
(3.29) assumes the following form:

VHOM = | 〈ψ1|ψ2〉 |2 =
∏
n

| 〈ψ1,i|ψ2,i〉 |2 (3.30)

Here, the first index denotes the state and the second index the subspace under considera-
tion. The above formula tells us that the overall visibility is obtained by multiplying the
visibilities of the individual subspaces.

3.4 State of the Art
Having briefly laid out the fundamentals for state preparation, evolution and detection,
we will in the following take a look at possible physical implementations of systems that
allow to investigate an evolution according to a quantum walk formalism.

3.4.1 Interest in Quantum Walks
As already mentioned, an important aspect founding the interest in quantum walks is that
they provide a framework allowing to understand the evolution of a state in a quantum
network. Consequently, they can be harnessed to describe systems in which quantum
computation can be implemented [5, 6]. It has been shown that this is also true for the
special case of discrete-time quantum walks [36]. A prominent example of algorithms that
can be implemented with quantum walks are search algorithms [37, 38]. Furthermore,
quantum walks offer considerable possibilities for the simulation of physical systems [7]
as illustrated by various examples such as relativistic wave-packet spreading [39], energy
transfer in photosynthetic systems [40, 41], dephasing-assisted transport [42], molecular
binding [43], Bloch-oscillating spinor atoms [44] or non-linear Dirac equations and solitons
[45].
In addition, quantum walks exhibit symmetries that make them a feasible model system
for experimentally accessing topological phenomena [46, 47, 48].
Photonic quantum walks constitute a possible platform for the implementation of boson
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sampling [49, 50, 51, 52, 53], a promising experimental testbed for the extended Church-
Turing thesis [54]. This application will be elaborated on in section 3.5.1.

3.4.2 Implementations of Quantum Walks
Experimentally, quantum walks can in principle be implemented in any system allowing for
the split of a walker’s probability amplitude and its coherent propagation. We deliberately
speak of a walker here and not of a laser pulse, a photon or a massive particle, as it is only
important at this point that its evolution can be described by the spread of a probability
amplitude.
In continuous-time quantum walks this split is determined by a coupling constant, while
in discrete-time quantum walks it is governed by the coin (internal) degree of freedom.
Consequently, systems exhibiting a fixed coupling constant between modes, e.g. arrays of
coupled waveguides [55, 56, 57, 58], lend themselves to the implementation of photonic
continuous-time quantum walks.
On the other hand, discrete-time quantum walks require operations on the coin degree of
freedom. In an experimental setting, the coin state can be constituted by e.g. the fein
resp. hyperfein levels of an ion [59, 60] or an atom [61, 62] as well as nuclear spins in
molecules [63].
Considering photonic quantum walks, a range of external and internal (for discrete quan-
tum walks) degrees of freedom is available: Choosing the position space as the external
degree of freedom seems straight-forwards, but requires experimental resources increasing
with the step number, making it infeasible for larger numbers of steps. Photonic quantum
walk experiments in the position space have been conducted with laser-written integrated
waveguide arrays [64, 65, 66, 67], beam displacer arrangements [68, 69, 70] or actual beam
splitter cascades [53].
Harnessing, on the other hand, time as the external degree of freedom allows for time-
multiplexing, i.e. using the same physical device for different steps and positions in time,
thereby significantly increasing resource-efficiency. Devices such as detectors and optical
switches impose constrains on the minimal possible time separation between two positions,
usually requiring the implementation of an optical delay e.g. by means of fibres [9, 71, 72].
Such a delay, on the other hand, allows for a dynamic coin operation, i.e. for switching
different coins at different positions [10, 73]. In the referenced instances, polarisation
constitutes the coin degree of freedom, allowing to make use of fast switching Pockels
cells. This capability opens the path to investigating an abundance of phenomena such
as disorder and Anderson localisation [74, 10], percolation [12], state transfer and finite
graphs [73] and split-step quantum walks exhibiting interesting topological phenomena
[75, 76]. The fast switching operation can also be utilised for dynamic in- and outcoupling,
enabling experiments relying on inhomogeneous, i.e. position-dependent, losses such as
the implementation of sinks for the simulation of measurement-induced dynamics [77].
Eventually, the concomitant possibility of deterministically coupling in and out single
photons enables reducing losses to a regime where they are compatible with quantum
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input states.
Polarisation is not the only possible coin (internal) degree of freedom, e.g frequency
(temporal) modes constitute an alternative coin state [78, 79, 80]. A concrete experimental
framework for the implementation of quantum walks with frequency modes, however, still
has to be devised.
Orbital angular momentum, on the other hand, has been shown to be a feasible external
degree of freedom [81, 82, 83, 84].
Furthermore, it has been proposed to implement quantum walks in Bose-Einstein conden-
sates [85, 86].
An overview over experimental implementations of quantum walks can be found in [87].

3.4.3 Figures of Merit
The applications of quantum walk system in quantum information processing and sim-
ulation mentioned above point to figures of merit by which to evaluate the various
implementations.
Photonic systems inhibit an inherent disadvantage in comparison to massive particles:
Since photons do not interact with each other, harnessing them for quantum information
processing and computation is usually based on feeding a quantum state into a linear
optical network and the implementation of photonic two-qubit gates has so far only been
achieved in a probabilistic way [4, 88, 89] or for a single photon [90, 91]. Concerning the
implementation of multiparticle gates, massive particles exhibit an inherent advantage
over photons [92], but also require significant effort to isolate the model system from the
environment and thus allow for sufficient coherence times. Photons on the other hand do
not interact with each other without a mediator and are consequently intrinsically immune
to certain environment influences, e.g. blackbody radiation. Photonic implementations of
quantum walks are thus inherently more robust and usually exhibit significant advantages
in terms of resource efficiency. In the following, we will focus our considerations on photonic
systems.
Schemes for universal computation with quantum walks such as [6] require multi-particle
input states. One figure of merit is consequently the number of possible occupied input
modes. It is closely related to the amount of loss in the system as sensitivity towards loss
increases exponentially with the number of particles.
Using quantum walks as a versatile quantum simulator [7] points to the need of high
flexibility in generating different input states and dynamically reconfiguring the circuit.
Similar requirements are valid for boson sampling (see section 3.5.1).
In the following, we take a closer look at the mentioned figures of merit.
Photonic input states can be generated with single atoms [93, 94], parametric down-
conversion (PDC) [95, 27, 29, 32] or quantum dots [96, 97, 53, 52]. Quantum dots can
in principle be deterministic on-demand single-photon sources, actual implementations,
however, exhibit non-ideal, albeit very good values for indistinguishability, purity and
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extraction efficiency [98, 96]. An estimate of the achievable rates for PDC and quantum
dot sources is found in section 4.4.3 . While the photon-number statistics of probabilistic
PDC sources might look less favourable than that of deterministic quantum dot sources, it
can also be made use of, e.g. in schemes for Gaussian boson sampling [99, 100].
The achievable rates of multi-particle experiments will depend exponentially on the genera-
tion probability as well as on the Klyshko-efficiency, i.e. the losses, with the photon number
being in the exponent. While losses also limit achievable step numbers in single-walker
experiments, it is here easier to overcome them by increasing the intensity of the initial
state. Furthermore, the achievable rates for single-walker experiments do not exhibit the ex-
ponential scaling with the photon number. Integrated platforms [55, 56, 65, 66, 58, 57, 67]
face an inherent challenge regarding this aspect, since the walker is subjected to absorption
throughout its evolution, i.e. propagation through the material. On the other hand,
free-space implementations without feedback-loop are restricted in the number of modes
due to their scaling in required components.
Fibre-based feedback-loop architectures [9, 71, 72] make use of the low losses in optical
fibres in order to implement quantum walks with large number of modes.
Another figure of merit is the flexibility in reconfiguring the coin setting and/or the
graph on which the walk takes place. Regarding the coin, this concerns the possibility
of conducting different coin operations at different steps and/or different positions. For
implementations utilising space as the external degree of freedom, free-space or integrated
[101, 67], this can in principle be done in a straight-forward way. However, this may
be connected with considerable effort and resources for large numbers of positions or
configurations. Time-multiplexing is also more resource-efficient in this aspect as in the
ideal case the same device can be used for all positions and configurations.

3.5 From Coherent Quantum Walks to Single Photon Quantum Walks
We previously pointed out that quantum computing and certain applications in quantum
simulation require single particles in multiple input modes, while a coherent states initialised
at a single position suffices for others.
In order to discuss which quantum effects require which type of input states, we refer to
the four axioms of quantum mechanics as formulated by Nielsen and Chuang [102].
The first axiom states that a quantum mechanical system in a pure state is completely
represented by a state vector |Ψ〉, the wave function, in a Hilbert Space H. According to
the second axiom, the evolution of this state is governed by a unitary Û :

|Ψ(t)〉 = Û |Ψ(t0)〉 (3.31)

The third axiom describes the effect of a projective measurement onto a certain mode m
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with the projection operator M̂m:

|Ψm〉 = M̂m |Ψ〉√
〈Ψ | M̂ �

mM̂m |Ψ〉
(3.32)

The fourth axioms refers to composite systems: Assuming subsystems numbered from 1
to n with system number i prepared in the state ψi, we can write the overall state as the
tensor product of the individual states:

φ = ψ1 ⊗ ...⊗ ψn (3.33)

The overall state does not necessarily have to be separable, i.e. we might not be able to
write it as a product of two states. Famous examples of non-separable states are the Bell
states, for instance the state |φ+〉:

|φ+〉 = 1√
2

(|0,0〉+ |1,1〉) (3.34)

Here, the state is written in the computational basis with the basis states |0〉 and |1〉. Due
to its non-separability it is considered an example of an entangled state.
The fact that a system can be described in accordance with a selection of these axioms does
not mean that its evolution cannot simulated with coherent states which are usually treated
as classical states in quantum optics: As shown in appendix A, a coherent state behaves
in the same way as a single photon for a quantum walk only occupying one initial position.
In experiments the simulation of systems obeying the first two axioms with coherent states
is well established (see for example [103, 55, 9, 71, 10, 11, 12, 72, 73, 75, 104, 105, 76]).
As we demonstrate in chapter 7 of this work, coherent states can also be harnessed to
simulate the effects of projective measurements [77].
In spite of evolving according to the first three axioms of quantum mechanics, coherent
states are in the quantum optics community considered to be classical. In order to find
out why this is the case, we take a closer look at the fourth axiom. Note that although
coherence is conventionally regarded as a classical feature, it can nevertheless lead to
non-classical correlations [106] or be regarded as a resource [107].
As already mentioned, the wave function describing a composite system can exhibit a
mathematical property called inseparability, i.e. it cannot be written as a product of the
subsystems, which manifests itself physically by giving rise to non-classical correlations
called entanglement [108]. Originally, this property was considered evidence for the in-
completeness of quantum-mechanical descriptions [109]. However, empirical evidence with
increasing validity strongly suggests that entanglement is indeed an element of physical
reality [110, 111, 112, 113].
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While a single particle can exhibit non-separability in its different degrees of freedom [114],
the non-local quantum correlations described as "spooky action at distance", however,
require multiparticle, non-local entanglement [115]. As a consequence, one may regard
entanglement and non-locality as different resources [116]. Certain effects requiring only
entanglement, but not non-locality can thus be observed in single-particle systems, where
entanglement between the different degrees of freedom is present [117, 118, 11, 82, 119].
This leaves us with the possibility to exhibit non-local entanglement as one of the most
exclusive criteria for a genuine quantum system. Fulfilling this criterion requires the
individual partitions to be separated in a space-like manner, i.e. to be individual particles
in individual modes. Note that non-local entanglement is assumed to be possible also for
a single particle that can be in either one of two spatially separated modes [120].
While wave-like behaviour of something conventionally thought of as a particle, e.g. an
electron, is considered a non-classical "quantum" effect, it is the particle character of
photons that the optics community deems to be a quantum feature. Indeed, proposed
schemes for photonic quantum computing rely on non-local entanglement [4]. A review of
linear optical computing can be found in [121, 122], a review on multiphoton entanglement
and interferometry in [123].

3.5.1 Towards Boson Sampling
The dimensionality of the Hilbert space needed for describing a composite quantum
system according to the fourth axiom points to the different complexity of single- and
multi-particle systems.
Due to the application of the tensor product the dimensionality Ds of the Hilbert space
for a single-particle system is the product of the dimensionalities di of the subsystems, in
this case the individual degrees of freedom:

Ds =
m∏
i=1

di = d1 · ... · dm (3.35)

The number m of degrees of freedom for an experimental system is usually limited to small
values, e.g. 2 when utilising position and polarisation as external and internal degree of
freedom. Increasing this number requires fundamental modifications to the experimental
platform for each degree that is to be added, e.g. a frequency-dependent splitting (internal
degree) or an additional spatial dimension (external degree). Furthermore, there are
fundamental limits for certain degrees of freedom, e.g. the dimensionality of the position
space.
The dimensionality Dm of a multi-particle system, on the other hand, also depends on the
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number n of involved particles:

Dm =
m∏
i=1

n∏
j=1

di,j (3.36)

The second index j for dj,i indicates that now the product incorporates multiplying the
dimensionalities of each of the individual photons. As a consequence, already a relatively
small number of photons leads to a high-dimensional Hilbert space and thus to a high
computational complexity when solving related problems. Note that the particles in this
case have to be in different input modes as for multiple particles in the same input mode
there is no difference to just one particle in this mode [124].
A prominent experimental system that relies on multiple photons in different input
modes and the associated complexity is boson sampling [54]. This model system assumes
sampling from the output of a unitary which governs the evolution of n photons in different
input modes. The output probability distribution is then given by matrix permanent, a
quantity which is hard to compute classically. Boson sampling is therefore an example
for an experiment that presumably cannot be simulated efficiently classically and could
consequently be a possible platform for experimentally refuting the extended Church-
Turing thesis and demonstrating fundamental advantages of quantum systems.
It has been proven that any finite-dimensional discrete unitary can be optically implemented
[125]. More recently, improved designs for such universal multiport interferometers have
been demonstrated [126].
A number of experiments have shown that the principle of boson sampling, i.e. the
implementation of linear-optical network for photons occupying multiple spatially separated
input modes, is in principle possible for photonic systems [56, 64, 127]. Consequently,
boson sampling experiments have been conducted in integrated platforms [49, 50, 128, 67]
with PDC sources, free-space beam splitter arrangements with quantum dot sources [53],
fibre-based spatial multiplexing architectures with quantum dot sources [129] or fibre-
based time-multiplexing setups with quantum dot sources [52]. Note that these are indeed
proof-of-principle experiments in the sense that they lack the requirements for a quantum
advantage in terms of number of photons, number of modes, losses, etc. [130, 131, 132].
It has been proposed to enhance the architecture of preceding time-multiplexing quantum
walk experiments [9, 11] such that they enable the implementation of boson sampling [51].
The current status of the experiment as presented in this thesis exhibits all the features
required for a proof-of-principle boson sampling experiment except for the possibility
of realising an arbitrarily variable beam splitter unitary. Especially, PDC sources as
used in our experiment have been shown to be compatible with boson sampling [133, 99]
and schemes using the characteristics of PDC sources for advantages in boson sampling
implementations have been proposed [99, 100, 134]. Concerning the beam splitter unitary,
we are limited by the three possible switching states of our EOMs. We are, however,
in contact with a manufacturer of EOMs in order to acquire devices exhibiting a high
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flexibility in the range of voltages applied during a certain experimental run. Having such an
apparatus at hand would not only be a big step towards the experimental implementation
of a proof-of-principle boson sampling experiment, but also allow for realising a wide range
of unitaries, enabling a versatile quantum simulator.



4 Experimental Setup
As pointed out previously, a complete quantum network incorporates state preparation,
evolution and detection. This structure will also guide us through the presentation of the
experimental setup in this section.
Ensuring purity and indistinguishability of the generated photons is a complex undertaking
to which we devote an own chapter (chapter 5).
The investigations described in this thesis are conducted with two similar but different
setups. Both incorporate the well-established time-multiplexing feed-back loop which
provides the basis of numerous research works [9, 10, 11, 12, 73]. While all of these
experiments rely on coherent input states, we draw on expertise in PDC source engineering
[31] to merge a time-multiplexing setup based on a loop architecture with a matching
PDC source.
The experiments described in this thesis that investigate topological phenomena are
conducted with a setup operating according to the same principle as in the aforementioned
publications, while the experiments relying on non-classical input states or controlled
losses are measured with a setup that has been significantly extended as described in the
following.
The fibre loop setup has been elaborated on previous works [22], where further helpful
information e.g. on the operation of Pockels cell acting on the polarisation can be
found, which is however not necessary for the understanding of the working principle.
Combining the fibre loop with PDC input states, requires substantial modifications,
especially concerning the synchronisation of 4 electro-optic modulators (EOMs) as well
as adjusting the spacing of the input pulses to the time bins of the network. We will
consequently focus our description on the extensions in comparison to the previous versions.
The basic principle of time multiplexing underlying the setup will be briefly introduced in
section 4.1. Since time multiplexing translates positions into time bins, the two terms can
be used interchangeably in the following.
Figure 4.1 shows an overview of the setup highlighting the three main sections dedicated to
different stages of the experiment: state preparation (red), evolution (blue) and detection
(yellow).
In the following, we will take a closer look at these sections. Here, we will present the
setup in a level of detail we deem necessary for its reproduction, even if certain readers
might feel that it compromises the elegance of presentation.

35
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Figure 4.1: Sketch of the setup implemented for quantum walks with single photons. The
state preparation section is highlighted in red, the evolution section in blue and the detec-
tion section in yellow.

4.1 Time Multiplexing
The basic principle of time multiplexing remains unchanged from what has been reported
in previous works. It is illustrated in Figure 4.2: A polarising beam splitter (PBS 1) carries
out a polarisation-dependent splitting, directing the light either to a long fibre (introducing
the delay τH) or a short fibre (introducing the delay τV ), introducing a relative time-delay
between the two pulses ∆τpos = τH − τV of 104.704 ns, called position spacing.
The two paths are merged again at a beam splitter (BS), so that now the outcome of the
split-operation at PBS 1 can only be inferred from the time-signature of the pulses. At
BS part of the light is directed to the detection and part routed to the feed-back loop,
where it is sent back to PBS 1. Details on how the light is directed at the beam splitter
BS can be found in section 4.3.
A coin operation can be carried out in the feedback arm, allowing for the cascaded appli-
cation of coin and split operation according to (3.12). Note that the coin operation can
either be conducted by a dynamic Pockels cell (EOM 4 in Figure 4.1) or static half- resp.
quarter-wave plates (HWP/QWP).
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Figure 4.2: Illustration of how time-multiplexing is implemented in our setup. (a): In-
cident light undergoes a polarisation-dependent splitting at PBS 1. Horizontal compo-
nents are represented by red pulses, vertical light by blue pulses. (b): In the two arms the
pulses are delayed by τH resp. τV , introducing a delay between them of the position spac-
ing ∆τpos = τH − τV =104.704 ns. The two paths are merged again at a beam splitter
BS, mapping the outcome of the initial split operation into the time-domain. The pulses
are fed back to PBS 1. Before they are split again here, they can undergo a coin operation.
(c): By repeating the splitting and delaying in time, we achieve the cascaded application of
coin and step operation. As a result, the walker’s wavefunction spreads with increasing step
number over an increasing number of positions. This spreads lends itself to the pyramidal
representation which is found below the sketches of the setup and will be used throughout
this work.

Figure 4.3, (a) shows exemplarily the number of measured events per time bin for a
time-multiplexed quantum walk in which a fixed proportion of the light is detected for
each step. The blue shaded regions corresponds to the time bins where part of the walker’s
intensity is expected to arrive. We are looking at steps 3 and 4 in which the wave function
is spreading out over 4 resp. 5 bins or positions. The red (black) bars mark the counts for
horizontal (vertical) polarisation. From the number of counts in a certain time bin we can
infer the relative probability with which the walker is found at a certain position within a
certain step when normalising the number of counts in this step to one. We can represent
the step-wise evolution of the probability distribution in a chessboard diagram as shown
exemplarily in Figure 4.3, (b). Here, the x-axis corresponds to the position index and the
y-axis to the step index with the relative probability being encoded in the colour. The
representation in Figure 4.3, (a) is analogues to the intensity distribution shown in Figure
3.3, (d), while the evolution shown in Figure 4.3, (b) resembles the step-wise propagation
along a pyramidal arrangement depicted in Figure 3.3, (c).



38 4 Experimental Setup

Figure 4.3: (a): Exemplary plot of the number of counts per time bin for step 3 and
4. The blue shaded regions correspond to the time bins where the walker is expected to
arrive, the red (black) bars to the actual number of counts in horizontal resp. vertical
polarisation. (b): Representation of the probability distribution in a chessboard diagram.
The x-axis corresponds to the position within a step and the y-axis to the step index, while
the relative probability is colour coded. Note that the two plots do not refer to experiments
with the same settings.

4.2 State Preparation
In order to conduct a quantum walk with quantum particles (in this case photons) in
multiple input modes, we have to prepare a time-multiplexed input state with PDC
photons in at least two time bins. In our case, the PDC state is generated by pumping
a crystal of periodically-poled Potassium Titanyl Phosphate (ppKTP). We will devote a
whole chapter (chapter 5) to the question of how the purity and indistinguishability of
these photons can be optimised, so that here we focus on the technical aspects of the state
preparation.
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Figure 4.4: Schematic of the section of the setup dedicated to the preparation of the the
initial states. Note that this sketch does not show the actual beam path as several mirrors
have been omitted to achieve a clearer presentation. The EOM’s operation, rotating |V 〉 to
|H〉, and the subsequent routing of the pulses at PBS G1 is crucial for the preparation of
the time-multiplexed input state.

Figure 4.4 shows a schematic of the section of our setup that is implemented to generate
appropriate initial states. In the following subsections we will explain its functioning in
detail.

4.2.1 Time-multiplexed Pump
The pump laser is a Coherent MIRA 900D [135] operated in picosecond (ps) mode such
that it outputs pulses with an autocorrelation length of τac ≈2.2 ps. Since this value is
affected by the setting of the Gires-Tournois interferometer (GTI) used to adjust chromatic
dispersion inside the laser cavity, we check on a regular basis with an autocorrelator that it
is approximately τac and adjust it if necessary. A mirror on a magnetic mount (indicated
as flip mirror in Figure 4.4) is harnessed to direct the light either to an autocorrelator
resp. a spectrometer or to allow the light to proceed further into the setup. Furthermore,
a Faraday isolator is placed behind the laser to prevent light from being reflected back
into the laser cavity and thus disturbing its operation.
The repetition rate frep has a value of 76.402 MHz, which depends on the exact con-
figuration of the cavity and especially changes when re-adapting the system from the
femtosecond (fs) to the ps mode. This operation requires changing one of cavity’s end
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mirrors which significantly affects the cavity length and thus the repetition rate. As
the synchronisation of source and fibre loop relies on frep to be accurate up to ≈ 1 kHz
(see section 5.2), this quantity has to be checked with a spectrum analyser after each
reconfiguration of the cavity. Note that such a reconfiguration is only necessary when the
laser is used for other experiments requiring fs-pulses.
frep corresponds to a spacing of the laser pulses of τrep =13.088 ns. However, when syn-
chronizing the spacing of laser pulses and the spacing of positions in the time-multiplexing
setup, technical limitations on the pulse spacing arise in the evolution and in the detection
stage: During the evolution a position-dependent coin requires different switching states of
the electro-optical modulator (EOM, see section 4.3) in use for two neighbouring positions.
Consequently, the technically feasible minimum spacing of EOM switchings imposes a
lower bound of 50 ns on the spacing of two time-bins of the input state. Furthermore,
being able to detect coincidences between two neighbouring positions requires the position
spacing to be greater than the detector dead time for which we determined a upper bound
of 100 ns. In order to reduce frep and therefore increase τrep, we again make use of an
EOM (EOM 1 in Figure 4.4) with which we are able to pick every n-th pulse by rotating
its polarisation from |V 〉 to |H〉 such it is transmitted at the first polarising beam splitter
(PBS G1), while the unpicked pulses are reflected here and directed to a beam dump.
Picking every 8-th pulses results in a temporal spacing τpulse = 8 · τrep of 104.704 ns. This
value consequently sets the temporal position spacing τpos as well. Section 4.3 will give a
more detailed account on how the exact synchronisation of τpulse and τpos is achieved.
The quality of the picking operation depends on the extinction ratio between picked and
unpicked time-bins. A good value here requires rotating the incident light’s polarisation
from |V 〉 to |H〉 with the highest precision possible when a voltage is applied to the EOM
and on the other hand preserving |V 〉-polarisation precisely when applying no voltage. In
order to achieve this, we place a Glan-Thompson prism acting as a polarisation filter in
front of EOM 1. We then remove the Pockels cell inside EOM and check that we see good
extinction at PBS G1. Having put the cell back in, the extinction is optimised again by
adjusting its orientation.
By placing half-wave plates (HWP) in front of PBS 0, we can control which proportion of
the initial power is directed into the setup at PBS G0 and which part continues along its
previous path to go to other experiments. A second power-control-unit is implemented by
placing a HWP in front of PBS G2, so that we can now control what percentage of the
light inside the setup is actually used to pump the ppKTP crystal.

4.2.2 PDC Crystal
The ppKTP crystals harnessed to generate the PDC state exhibit waveguides with a
width of 2,3 and 4 µm to increase the effective length and thus the brightness of the
source. Another very important feature of the waveguided PDC process is that it allows
to engineer its spectral properties (see section 5.4).
The waveguides are designed to be spatially mono-mode around 1550 nm, consequently the
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quality of the incoupling of the pump into the waveguide should not affect any properties
of the PDC process apart from output power. In practice, however, the incoupling might
determine the degree to which we excite additional processes. In order to minimise spatial
variations in the mode coupled into the waveguide, we thus send the pump light through
a 10 cm long polarisation maintaining fibre and then couple the output from this fibre
into the waveguide. By doing so, we translate variations in the spatial mode coming from
the laser into variations of the power coupled into the chip. These changes in power can
be easily monitored and do not influence the input states for the time-multiplexing setup
in more hidden ways. We employ aspheric lenses with a focal length of 4.5 mm to couple
light into and out of the waveguide. As the PDC process is polarisation-dependent, a
HWP in front of the source is used to adjust the polarisation to maximal brightness.
After the PDC state has been generated in the ppKTP crystal (a detailed account on its
properties is found in chapter 5), it has to be separated from the pump field. To do so,
we use an AR-coated slab of silicon which exhibits a transmission of >97 % around 1550
nm and a Semrock FF01-1538/82-25 filter with a transmission of >96 % from 1550 nm to
1555 nm (summarised under "optical filters" in the sketch). In addition, dense wavelength
division multiplexing (DWDM) filters centered around the wavelength of the PDC photons
and exhibiting a full transmission range of 0.9 nm are inserted into the fibres leading to the
detectors (see section 5.4.3 for the effect of these filters). When using a different waveguide
or ppKTP crystal, another DWDM filter centred around the respective wavelength has to
be chosen.
Again, a fully or partially-reflecting mirror on a magnetic mount can be inserted into the
beam path in front of the sample in order to couple a different (e.g. alignment laser) or an
additional laser (e.g. laser for seeding, see section 8.5) into the ppKTP crystal. Here as
well, polarisation-filtering might be necessary. However, the corresponding components
are omitted in the sketch as the principle is the same as described previously and the
exact arrangement depends on the laser resp. the required accuracy of the polarisation.
Eventually, we employ a telescope consisting of a plano-concave and a plano-convex lens to
maximise the overlap of the output field of the waveguide with the spatial mode of the fibres
used to implement the time-multiplexing feedback loop. By doing so, waveguide-to-fibre
coupling efficiencies of up to 75 % are achieved.

4.3 Evolution
The basic principle of the time-multiplexing feed-back loop remains unchanged from what
has been reported in previous works (see section 4.1).
Two substantial modifications have been for the current implementation (see Figure 4.5)
in regard to previous ones: To start with, the setup is now designed to operate at a
wavelength around 1550 nm, while the previous implementation were constructed for a
wavelength around 800 nm. The latter wavelength has the advantage of being compatible
with the detection by silicon avalanche photodiodes (APDs), which is why it was originally
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built this way. Furthermore, we require a lower voltages at this wavelength to introduce a
certain phase retardation with the EOM, which is why it is used for the measurements of
topological phenomena, which involve a relative phase retardation between two polarisation
components in excess of π/2.

Figure 4.5: Sketch of the setup’s section where the time-multiplexed evolution is con-
ducted. It is precedent by the generation section and succeeded by the detection section, as
it is indicated by the miniaturised versions of the corresponding sketches.

On the other hand, fibres (SMF 28) optimised for the telecom wavelength of 1550 nm
introduce only losses of <0.18 dB/km, while fibres designed for a wavelength around
800 nm exhibit losses of ≈ 3 dB/km , which is prohibitively high for experiments with
quantum input states. As a consequence, a setup operating with PDC input states has to
be designed for a wavelength with very low losses, ideally the telecom wavelength where
losses are minimal. Apart from attenuation in the fibres, on a roundtrip through the setup
the light passes two PBS each introducing losses around 3 % and is subjected to losses of
≈ 10 % at the fibre incouplings. All in all, the roundtrip efficiency ηRT is between 80 %
and 85 % depending on the exact combination of fibres.
The second crucial modification is the implementation of active in- and outcoupling which
is carried out with two additional EOMs (EOM 2 and EOM 3 in Figure 4.5) in combination
with PBS 2. With these EOMs we can deliberately switch the polarisation of the light
in front of PBS 2 such that it is either transmitted or reflected. This operation decides
whether the photons end up in port C or port D of PBS 2, directing them either into the
feedback loop or to the detection unit. This active routing of the light allows us to get rid
of the probabilistic in- and outcouplers that were used previously. With these we could
otherwise only couple a small proportion of the light in and out of the setup or would
have to tolerate high losses in each roundtrip. Without the active directing, losses would
consequently be prohibitively high for the operation with PDC states.
Since the polarisation determines how light is directed at PBS 2, the polarisation rotation
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due to birefrigence to which light travelling through the fibres is subjected might become
problematic: Light that is supposed to stay in the feedback loop might be directed to
the detection unit and vice versa. We use a polarisation compensation unit consisting of
two quarter-wave plates (QWP) and a half-wave plate (HWP) in front of each fibre to
minimise the intensity in the wrong port of PBS 2. This compensation unit allows for
implementing an arbitrary SU(2) polarisation transformation [136]. However, the fibre’s
birefringence is susceptible to temperature changes, so that these might induce additional
and uncontrolled losses.

4.3.1 Dynamic Switchings - Electronics
Further details on the operation of the delay generators and EOMs can be found in [22].
At this point it is important to know that the EOMs are fast enough to apply either no
voltage U = 0 or a voltage of ±U for each of the time bins independent of the voltages
applied to the neighbouring bins. As a result, they allow for the implementation of position-
or time-bin-dependent operations acting on the polarisation. The focus of the following
elaborations is on the extensions in regard to the preceding work, especially concerning
the synchronisation of multiple delay generators and EOMs.
In addition to the pulse picking conducted by EOM 1 and the in- and outcoupling carried
out by EOMs 2 and 3, EOM 4 is able to switch different coins for different positions. As
all of these operations have to be carried out on the same pulses along their propagation
through the setup, exact synchronisation of all four EOMs is crucial.
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Figure 4.6: Illustration of the scheme implemented to synchronise laser pulses, the switch-
ings of four EOMs and the histogram of photon arrival times. The structure of the time
lists is illustrated in the lower left corner: They consist of lines in which the first four en-
tries provide the delays of the individual switches, while the fifth entry gives the inhibit
time determining when the delay generator starts processing a new line.

Figure 4.6 illustrates the scheme used for this purpose: It starts with a master clock signal
provided by a photodiode in the cavity of the pump laser. This detector converts the
optical output of the laser into an electrical signal that exhibits the same repetition rate
frep as the laser pulses. The shape of the signal are individual peaks spaced by 1/frep.
The frequency of the signal is divided from frep =76.4 MHz down to fexp which assumes
values (depending on exact experiment) in the range of several 10 kHZ to several 100
kHZ. This operation is actually carried out by two separate devices, since one of them
does not accept the initial repetition rate, while the other does not provide the necessary
constant offset between the pulses repeated with frep and those repeated with fexp. We
will see later why this criterium has to be fulfilled. As these two devices do not operate in
a fundamentally different way, we represent them by one symbol for the clock divider in
Figure 4.6.
The next step is conducted by delay generators which output the switching signals for
the EOMs at exactly specified times. Each of the EOMs is timed by an individual delay
generator, so that they are controlled by an ensemble of four delay generators that are
connected by a common bus.
The switching times are fed to the delay generators via a timelists. One run through this
list is triggered by the signal fexp, which is thus called trigger. In addition, this signal
also provides the start trigger for the recording of histograms of photon arrival times. The
signal at frep, on the other hand, provides the clock for the delay generator and is thus
dubbed clock signal.
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Having a constant offset between the clock and the trigger signal is indispensable for
having also a constant relative timing between laser pulses and EOM switchings. It can be
explained by the fact that the timings of the laser pulses are translated into the electrical
pulses of the clock signal, while the trigger times the EOM switchings. This requirement
rules out using a clock generated by an additional function generator, as the offset of pulses
in the two signals would not be constant in this case. An external clock is consequently
only suitable for testing the generation of the electrical signals, in which case they do not
have to synchronised with optical pulses generated by the pump laser. Another constraint
regarding an external clock arises from the fact that the delay generators cannot reliably
generate the electronic signals for clock frequencies exceeding 77 MHz. The problem is
this case are errors such as missing electronic pulses in the output switching patterns that
occur rather rarely and might thus be hard to spot when checking the patterns with an
oscilloscope.
Details on how the time lists fed into the delay generators are processed, including common
pitfalls and how to avoid them, can be found in appendix C.

4.3.2 Dynamic Switchings - Pockels Cells
The dynamic, i.e. position-dependent, operations on the walker’s polarisation are con-
ducted by applying a voltage of several kV to a Pockels cell made of Rubidium Titanyl
Phosphate (RTP). Since a detailed account on its operation can be found in other works
[22], we focus on new observations here.
The Pockels cells rotate the walker’s polarisation according to (3.15) with the actual angle
θ depending on the applied voltage. In this way, we are able to implement dynamic
operations such as identity (θ = 0◦), a fair-splitting, Hadamard-like coin (θ = 45◦) or
reflection (θ = 90◦).
The value U of the voltage applied to the Pockels cell is set manually at the power
supply and is consequently fixed for a certain experimental run. The freedom for the coin
operation consists in whether +U , −U or no voltage at all is applied at a certain position.
Consequently, one out of three possible switching states is expected to be assigned to each
position during the walker’s evolution.
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Figure 4.7: (a): Time-resolved counts for two sequences of switchings with spacings of
around 100 ns (position separation) within one sequence and a spacing of around 2.2 µs
(step separation) between the two sequences We clearly observe a degradation of the extinc-
tion from the first sequence to the second. (b): Time-resolved counts for three switching
spaced by around 100 ns. In this case we even see a significant difference in extinction on
the time-scale of the position separation. (c) and (d): Time-bin resolved counts for the
same two sequences (except for one single switching in (c)) after refurbishing the Pockels
cells to achieve better damping of Piezo-acoustic resonances.

In order to check whether a certain operation, in this case the reflection, is implemented
reproducibly for all positions, we send a cw-laser into the setup and record the clicks in
one of the ports of the PBS placed behind EOM 2 and EOM 3 (see Figure 4.5).
It turns out that we cannot expect the same behaviour for each individual switching.
Figures 4.7, (a) and (b) illustrate this problem: For the times when a high voltage is
applied to the crystals, the polarisation of the light should be rotated such that the number
of counts drops to zero for perfect EOM operation and PBS extinction. In the shown
measurements we observe extinctions of around 90%, which is not ideal, but not the main
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problem at this point. More severe is the fact that the extinction is varying significantly
between steps (Figure 4.7, (a)) or even between positions within a step (Figure 4.7, (b)).
We verify with an oscilloscope that the electronic signals as well as the applied voltages
are the same for all of the observed positions. Consequently, the cause of this behaviour
has to be sought elsewhere.
Indeed, correspondence with the manufacturer reveals that the RTP Pockels cells exhibit
Piezo-acoustic resonances to signals with frequencies of several 100 kHz. Since these
resonances affect the spontaneous polarisation of the RTP crystal and thus its effect on the
polarisation, it can be expected that this is the cause of the observed additional modulation
of the extinction. A first test of the plausibility of this assumption is replacing one of the
crystals, which have an aperture of 4 mm, by one with an aperture of 3 mm, as changing
the dimensions of the crystal is also modifying its acoustic resonance frequencies. It turns
out that the crystal with the smaller aperture does not exhibit the particularly problematic
resonance resulting in the poor extinction seen in Figure 4.7, (b). Consequently, the
Pockels cells were shipped back to the manufacturer and refurbished in order to allow for
better damping of undesired resonances. As a result, we observe afterwards a much more
homogeneous switching operation with negligible variations of the extinction (see Figures
4.7, (c) and (d).
Another effect we observe is that a switching sequence can result in a polarisation rotation
for several seconds even after it has been switched off. We dub this phenomenon memory-
effect as it links the effect of Pockels cell to voltages that have been applied previously.
The extend of this effect depends on the duty cycle of the switching pattern as well as on
the value of the voltage. By redesigning the switching patterns such that they exhibit a
lower duty cycle, we can avoid the occurrence of this polarisation rotations with relaxation
times of several seconds. Consequently, we did not carry out a closer examination of
this phenomenon. It is, however, important to keep it in mind when applying switching
patterns with high duty cycles and/or voltages.
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4.4 Detection

Figure 4.8: Schematic of the polarisation-resolved detection unit incorporating two fibre-
coupled superconducting nanowire single-photon detectors (SNSPDs). This section of the
setup is preceded by the evolution section as indicated by the miniaturised sketch.

The detection unit (see Figure 4.8) incorporates a PBS whose two ports lead to fibre-coupled
superconducting nanowire single-photon detectors (SNSPDs), allowing for polarisation-
resolved detection. Furthermore, we determined the dead time of the detectors to be below
the position spacing in the walker’s evolution of 100 ns, thus enabling the reliable read-out
of the walker’s distribution over the time-multiplexed positions.
The working principle of SNSPDs is based on a superconducting meandering wire to which
a certain bias voltage is applied. Photons impinging on the wire lead to the breakdown of
superconductance which results in a measurable voltage spike. Afterwards, the detectors
are quenched to restore the superconducting state. The time required for this process is
responsible for the dead time, while the bias voltage determines the detection efficiency,
but also the amount of dark counts. In case detections events become so frequent that
quenching no longer works sufficiently, the detectors latch and cannot be used until they
are reset.
We characterise the detection efficiency to be between 90% and 97.5% depending on the
exact detector. These values, however, only constitute an estimation since an accurate
calibration measurement is out of the scope of what can be done without specialised
equipment. In the following, we consequently assume an efficiency of 90%. Note that this
number depends on the polarisation of the light impinging on the detectors, so that we use
polarisation controllers consisting of a series of three fibre coils to optimise the detection
efficiency.
At a bias voltage that allows for the aforementioned detection efficiency the dark count
rate is between 500 and 1000 per second. This sounds like a high number at first, but
we know at which times we expect the arrival of photons and thus only consider the
corresponding time bins. Usually we choose time bins with a width of 6 ns which results
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in around 10−5 dark counts per second for one time bin. Furthermore, we except the
dark counts to be uncorrelated so that when detecting n-fold coincidences the probability
that a coincidence is caused by dark counts scales with the dark count rate to the power of n.

4.4.1 Possible Measurement Times
Indeed, the main challenge concerning minimum required count rates is not caused by
dark counts, but from the overall time needed to collect sufficient statistics for a certain
count rate. Constrains on the measurement time mainly arise from drifts of the setup’s
characteristics. Temperature is the most significant cause of such drifts. Section 5.2 treats
the effects of temperature on the temporal delay. Furthermore, the temperature also
affects the polarisation rotation introduced by the fibres, possibly introducing a significant
amount of additional loss. This loss does not necessarily have to be balanced, since the
polarisation rotation in the two fibres does not have to show exactly the same temperature
dependence. As a consequence unbalanced losses cannot only decrease count rates, but also
HOM-dip visibilities (see sections 5.8 and 8.5.4). The problem can be countered by either
an active polarisation control or in a passive way, i.e. conducting the experiment in a way
that temperature changes are limited. Apart from building a temperature stabilisation for
the fibre spools (see section 5.2.2), this means that measurements are confined to times
with minimal temperature changes such as during the night and especially times when no
people are in the lab. Thus, mitigating polarisation rotations is one of the factors limiting
measurement times, others are dealt with in section 5.2.
We also have to bear in mind that the adsorption fridge cooling the detectors has to
regenerate after a time of approximately 30 hours. However, this does not constitute a
hard limit on the measurement times, since measurement runs can be continued after a
regeneration cycle.

4.4.2 Achievable Rates
Since arbitrarily long measurements are neither feasible nor desirable, the rates of valid
events should be as high as possible. Experiments with quantum states rely on the
detection of n-photon coincidence events whose rates scale with the detection probabilities
to the power of n. Consequently, achieving the highest possible detection efficiencies is
crucial for the success of such experiments.
The collection efficiency of photons can be determined as ratio of coincidence to singles
events, which is then called the Klyshko-efficiency η. In addition, the mean photon number
n̄ of the probabilistic PDC process and the rate fexp with which new experimental runs
are started influence the rate fn of n-fold coincidences. In case the photons are subjected
to m roundtrips through the setup with efficiencies ηRT before detection and/or are split
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up to nbin time bins, these quantities have to be accounted for as well:

fn = fexp · n̄n · η2·n · ηn·mRT ·
1
nbin

(4.1)

Note that the above equation is valid for heralded n-fold coincidences, for which the herald
is directed immediately to the detection unit, while the n signal photons undergo an
m-step evolution. Consequently the Klyshko-efficiency η affects both signal and idler and
is thus accounted for with a factor of 2 in the exponent. On the other hand, the roundtrip
efficiency ηRT only affects the signal.
In our experimental setup, we measure Klyshko-efficiencies η between 20% and 30%
depending on alignment and detectors used. This value incorporates the detector efficiencies
ηDetect which we assume to be 90%, the transmission ηFibres of the fibres leading to the
detectors, including DWDM-filters and polarisation controllers, of 77% (87% transmission
of filters multiplied with 89% transmission of the rest), the incoupling efficiency ηDetect−coupl
into those fibres of 75% (including two PBSs on the path), the coupling efficiency ηSource−loop
from the source into the loop fibres of 75%, the transmission ηFilter through the pump filters
behind the ppKTP chip of 93% as well as the losses Lchip in the chip, which we estimate
with a transmission measurement to be around 50%. All of the mentioned contributions
add up multiplicatively, so that the overall Klyshko-efficiency η is given by the following
formula:

η = ηDetect · ηFibres · ηDetect−coupl · ηSource−loop · ηFilter · (1− Lchip/2) (4.2)

With the given numbers we estimate η to be around 27%, which is in reasonably good
agreement with measured values of around 25− 30%, telling us that the assumed numbers
are plausible and that there is no unknown major source of losses in our setup. Note,
however, that Klyshko-efficiencies of around 25− 30% are only achieved if alignment and
especially polarisation compensation for the loop fibres are optimal and have not been
degraded due to temperature changes.
Knowing the Klyshko-efficiencies η and roundtrip efficiencies ηRT, we can estimate the
measurement times needed to accumulate sufficient statistics for certain combinations of
mean photon number n̄, number n of photons to be detected and number of roundtrips m
after which the photons are to be detected. Tables 4.1 and 4.2 give estimated necessary
measurement times depending on mean photon number n̄ and roundtrip number m for
Klyshko efficiencies η of 20%, a repetition rate fexp of 40 kHz, roundtrip efficiencies ηRT
of 80% and desired number of 20 photons per bin. The number are determined for count
rates fn according to (4.1), thus assuming that the photons are distributed equally over
nbin = m+ 1 bins. This is usually not the case, but the attained numbers still serve as a
reasonable estimate of measurement times, since the relative intensity per bin enters the
equation as a linear term.
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m 5 6 7 8 9 10 11
n̄

0.02 12.13 22.11 39.47 69.39 120.47 207.5 352.93
0.04 3.03 5.53 9.87 17.35 30.12 51.76 88.23
0.06 1.35 2.46 4.39 7.71 13.39 23.01 39.21
0.08 0.76 1.38 2.47 4.34 7.53 12.94 22.06
0.10 0.49 0.88 1.58 2.78 4.82 8.28 14.12
0.12 0.34 0.61 1.10 1.93 3.35 5.75 9.80
0.14 0.25 0.45 0.81 1.42 2.46 4.23 7.20
0.16 0.19 0.35 0.62 1.08 1.88 3.24 5.51
0.18 0.15 0.27 0.49 0.86 1.49 2.56 4.36

Table 4.1: Estimated Measurement times in hours depending on the roundtrip number
m and the mean photon number n̄ for a two-photon state, Klyshko efficiencies η of 20%, a
repetition rate frep of 40 kHz, roundtrip efficiencies ηRT of 80% and desired number of 20
photons per bin.

m 5 6 7 8 9 10 11
n̄

0.02 46,259.29 105,408.54 - - - - -
0.04 5,782.41 13,176.07 29,410.87 64,623.49 - - -
0.06 1,713.31 3,904.02 8,714.33 19,147.70 41,553.17 89,274.38 -
0.08 722.80 1,647.01 3,676.36 8,077.94 17,530.24 37,662.63 80,247.08
0.10 370.07 843.27 1,882.30 4,135.90 8,975.48 19,283.27 41,086.51
0.12 214.16 488.00 1,089.29 2,393.46 5,194.15 11,159.30 23,776.91
0.14 134.87 307.31 685.97 1,507.25 3,270.95 7,027.43 14,973.22
0.16 90.35 205.88 459.54 1,009.74 2,191.28 4,707.83 10,030.89
0.18 63.46 144.59 322.75 709.17 1,539.01 3,306.46 7,045.01

Table 4.2: Estimated Measurement times in hours depending on the roundtrip number m
and the mean photon number n̄ for a three-photon state, Klyshko efficiencies η of 20%, a
repetition rate fexp of 40 kHz, roundtrip efficiencies ηRT of 80% and desired number of 20
photons per bin. Note that times clearly in excess of 100,000 h are simply denoted by "-"
for readability.

The numerical simulations concerning the influence of the mean photon number on HOM-
dip visibilities in section 5.7 show that ideally n̄ should be around 10−3 as we calculate for
value visibilities close to 1. On the other hand, we predict a visibility of around 0.85 for a
mean photon number of 0.1. We thus have to find a mean photon number for which there
is a good trade-off between HOM-dip visibility and measurement time.
Assuming a value around n̄ = 0.1 as a good compromise, we find that two-photon exper-
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iments should exhibit reasonable measurement times for up to 10 steps (see table 4.1).
Three-photon experiments (see table 4.2), however, seem to require prohibitively long
measurement times unless conducted with high mean photon numbers. The problem here
is that the count rates according to (4.1) incorporate the photon number n as an exponent
for n̄, η and ηRT. Achieving reasonable measurement times for a five-step experiment
would require a Klyshko efficiency of 30% for n̄ = 0.1 and 40% for n̄ = 0.05. Since we
measure satisfactory visibilities for mean photon numbers around 0.1 (see sections 5.9 and
5.10) and the experimentally observed Klyshko efficiencies can get close to 30%, conducting
three-photon experiments with small step numbers is a realistic perspective.
In the above calculations, we assume a repetition rate fexp of 40 kHz which corresponds
to starting a new experiment every 25 µs. This time allows for roughly 10 roundtrips
with a duration of 2.3 µs. In principle, the repetition could be increased by interlacing
multiple experimental runs. In practice, however, the duty cycle of the EOM can possibly
reach a value where the quality of the switchings suffers from a memory effect (see section
4.3.1). On the other hand, interlacing can only increase count rates by a linear factor,
which means that the advantages for experiments involving more than two photons are
limited. As the implementation of interlacing would need to be preceded by a thorough
investigation of possible memory effects, it consequently constitutes an outlook of how to
increase repetitions rates, but is beyond the scope of what is done in this thesis.

4.4.3 Comparison with Quantum Dot Source
How do the achievable rates for the PDC source compare with a quantum dot (QD)
source? We do an estimation assuming a QD with parameters similar to the ones of a state-
of-the-art source [96]: A resonantly excited Purcell-enhanced quantum dot-micropillar
systems exhibits loss corrected collection efficiencies nQD of 0.66 with the raw collection
efficiency ηraw being 0.046 and HOM-dip visibilities VHOM of 0.985 for photons generated
quasi-deterministically at 897.5 nm. For this source we estimate count rates according to
(4.1) with a mean photon number n̄ of 1, i.e. assuming deterministic emission, a collection
efficiency η of 0.05 and a loop efficiency ηRT of 0.45. The significantly lower loop efficiency
of the QD is a consequence of its emission wavelength of 897.5 nm: The fibre losses which
can be neglected for the PDC-source at 1540 nm now become relevant: These are specified
with up to 5 dB/km, amounting to ≈ 2.5 dB additional loss for the used fibres of 480 m
length. We also consider a third hypothetical QD-source at 1550 nm which exhibits a
mean photon number n̄ of 1, a collection efficiency η of 0.05 and a loop efficiency ηLoop
remaining at 0.8. For the PDC we assume a mean photon number n̄ of 0.05.
The resulting estimated measurement times for 20 events in each time-bin (assuming
a homogeneous distribution) are shown in Figure 4.9. The numbers for PDC are in
accordance with Table 4.2: Assuming reasonable measurement times of the order of
magnitude of 101 h, we see that a PDC source should allow for a two-photon experiment
with ca. 10 steps, while a three-photon experiment is hardly feasible with the given
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parameters.
QD sources around 900 nm are only able to outperform PDC at 1550 nm for up to
maximally five steps, as the low loop efficiencies lead to a very unfavourable scaling of
count rates with step number. A hypothetical QD source at 1550 nm, on the other hand,
profits from a high mean photon number as well as from high loop efficiencies, therefore
allowing even for three-photon experiments with reasonable step numbers.
Considering the sources currently available, PDC sources seem in comparison to QD
sources to be the better fit to our setup operating around 1550 nm.

Figure 4.9: Estimated measurement times needed for recording 20 events in each time-bin
depending on the step number for different sources and numbers of photons involved in the
experiment (see legend).

4.4.4 Photon-number Resolution
The SNSPDs constitute binary "click"- or "bucket"-detectors, i.e. any pulse of light im-
pinging on the detectors is registered either as one or no detection event, regardless of the
number of photons in such a pulse. Consequently, the detectors themselves do not allow
for photon-number resolution. As we saw in section 3.1, lacking photon-number resolution
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reduces the purity of heralded PDC states and therefore also the visibility of HOM-dips
between these PDC states.
However, "chopping" [137] up a state and sending it to multiple detection bins allows for
obtaining a certain degree of photon-number resolution. This principle can be illustrated
by a beam-splitter cascade (see Figure 4.10, (a)). With s being the number of stages of
the beam splitter cascade, it will chop the initial state into 2s bins. The corresponding
principle of chopping the initial state can also be implemented via time-multiplexing as
illustrated in Figure 4.10, (b).

Figure 4.10: Illustrating different scenarios for chopping up an input state to achieve
photon-number resolution: The principle is analog to a beam splitter cascade (a). (b) shows
the translation of this principle into the time domain. (c): Schematic of the loopy actually
built for use together with the quantum walk setup. (d) and (e): The principle of a mul-
tiplexing architecture using only one delay line illustrated in the time domain and with a
beam splitter cascade.

For our experimental setup we built a fibre-based time-multiplexing unit (loopy) conducting
a splitting into 4 time bins. In combination with the two detectors available we thus
achieve a split into 8 bins, i.e. 4 time bins and 2 detector bins (Figure 4.10, (c)). Since the
quantum walk evolution is also time-multiplexed (see section 4.3), we have to make sure
that the time delays introduce by the loopy can be distinguished from those introduced in
the evolution section. The active in- and outcoupling allows for analysing only a certain
step at a time. Together with the delays of ∆τStep resp. 2∆τStep introduced in the loopy,
this ensures that the delays introduced by the loopy can be separated from those introduced
in evolution section. Furthermore, this design also avoids possible problems arising from
dead times which might be problematic when interlacing the two types of delays.
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From the fact that the polarisation-resolving detection unit exhibits two detector-bins we
can also conclude that the setup provides a certain degree of photon-number resolution
even without the loopy: When applying a mixing coin in front of the PBS, we have a 50
% chance that a two-photon contribution leads to a coincidence of the two detectors.
The quantum walk setup itself resembles a loopy and can indeed be used as one. In this
context, the loop setup, i.e. either one of the fibres plus the feedback arm, is regarded as
a delay line and the operation at PBS 2 decides after each roundtrip whether the light
travels through this delay again or is routed to the detection unit (see Figure 4.10, (d)). In
contrast to the cascaded architecture shown in Figure 4.10, (b), this design only subjects
one of the two outputs of each splitting operation to additional splits (see Figure 4.10,
(e)). The active in- and outcoupling can be used in this scenario to increase the dynamic
range of the detectors [138].

4.4.5 Conclusion
In the previous sections we have seen how we can prepare a time-multiplexed input state
occupying multiple time bins, implement dynamic and position-dependent coin operations
resp. losses and resolve both polarisation modes as well as time bins during detection. The
combination of approximative single-photon states with position-dependent coin operation
and losses presents to our knowledge a novelty has not been realised before.
Exploiting the features of a input state exhibiting single photons in multiple modes for
quantum interference requires, however, the purity and indistinguishability of these photons.
Consequently, the next chapter will be devoted to the question how these properties can
be ensured in our experimental setup.
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In order to be able to speak of a fully-fledged quantum system (see section 3.5), we have
to show the good approximation of perfectly indistinguishable and pure single particles in
multiple input modes.
Ideally, time-multiplexed single-photon interference experiments would be conducted with
a source that not only emits exactly one photon at a time, but also ensures that two
photons emitted at different times are perfectly indistinguishable. In a real experiment,
however, this ideal can only approached in a more or less good approximation. In principle,
PDC sources can constitute a good approximation of a source of indistinguishable single
photons [95].
In the following, we will discuss to what extent this is achieved in our experiment. Here, we
employ the measurable visibility in a HOM-dip experiment as the standard for quantifying
to what degree we can approximate two perfectly indistinguishable pure single photons
generated at different points in time. This does not only depend on the crystal in which
the PDC process takes place, but also on devices such as the pump laser and the time-
multiplexing loop.
The discussion is structured as follows: Having already introduced HOM-dip experiments
in section 3.3.2, we present in section 5.1 the more specific case of HOM-interference
between photons generated at different points in time as implemented for our work.
Subsequently, we discuss experimental imperfections arising from the temporal delay
(section 5.2) and the temporal shape (section 5.3) of the photons as well as from the
spectral characteristics of the PDC process (section 5.4). Here, we start by relating spectral
features to the phase-matching properties of the sample. We then compare the spectral
characteristics obtained for Lithium-Niobate (subsection 5.4.1) and KTP (subsection 5.4.2).
The two concrete samples investigated for compatibility with our experimental setup are
presented in subsections 5.4.3 and 5.4.6.
Section 5.7 refers to issues related to the photon-number statistics of PDC sources, while
the numerical framework allowing for quantifying their influence on HOM-dip visibilities is
elaborated on in section 5.6 with the results being presented in section 5.7. This framework
can also be used for simulating the effect of balanced as well as imbalanced losses as shown
in section 5.8.
The observed visibilities as the ultimate measure of indistinguishability and purity in the
various degrees of freedom are discussed in sections 5.9 and 5.10.
Eventually, we present a method for characterising the effect of the loop on visibilities, i.e.
excluding influences from the source, by sending coherent states into the setup (section
5.11).

57



58 5 Optimising HOM-Dip Visibility

In the following we will discuss how the influence of the most relevant parameters can
be quantified and controlled. To do so, we will look how the indistinguishability changes
when variations occur in only one degree of freedom while the others are held constant.
Thus, we will analyse what happens to the visibility according to (3.29) for imperfect
overlap of ψ1 and ψ2 in a certain subspace.
From (3.28) we see that not only the indistinguishability but also the purity of the
states plays a crucial role for HOM-dip visibilities. Consequently, our considerations will
also involve the purity of the generated states, focusing on their spectral properties and
photon-number statistics after one mode of the PDC state is traced out.

5.1 HOM-Dip Experiment between Different Time Bins
Usually, a HOM-dip experiment, as introduced in section 3.3.2, is thought of and illustrated
as the interference of modes in the spatial domain. However, it can be implemented in
arbitrary degrees of freedom as long as a beam splitter operation and mode-resolved
detection can be implemented for them, e.g. in the frequency domain [139].
Refering to (3.24) and (3.25), the two input mode a and b can be replaced by horizontally
resp. vertically polarised input modes hi and vi and the two output mode c and d by the
horizontally resp. vertically polarised output modes ho and vo. The effect of a HWP at
45◦, i.e. a so-called Hadamard-coin conducting a fair splitting, on the polarisation can
then be written analogous to (3.24):
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Consequently, (3.25) can be rephrased in terms of polarisation modes as well:
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ĥ�oĥ
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�
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The PBS of the polarisation-resolved detection unit is then used to carry out a measurement
resolving these modes. In case the horizontal and the vertical photon are indistinguishable
in all other degrees of freedom, ĥo and v̂�o commute and the terms in the wave function
leading to coincidences between the two polarisation modes vanish (compare 3.6).
A HOM-dip with polarisation modes also be implemented with the polarisation splitting
B̂QWP conducted by a quarter-wave plate (QWP) at 45◦ which leads to the following
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relations:
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[(1− i)ĥ�i + (1 + i)v̂�i ]
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The above transformations result in the following state:
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Again, the terms leading to coincidences vanish for indistinguishable photons, which shows
the beam splitter operation in polarisation can carried out by a HWP as well as a QWP.
Although the interference takes place between polarisation modes, the photons for which
we want to ensure indistinguishability are initially in two different time-bins spaced by
104.7 ns, which corresponds to the position separation of the time-multiplexed quantum
walk setup. Here, we want to observe HOM-interference for photons belonging to an input
state occupying at least two time-bins.

Figure 5.1: Illustration of how photons from PDC states generated (marked by G) in dif-
ferent time-bins are brought to interference passively (interference at coin Ĉ). Horizontally
and vertically polarised photons travel through fibres of different length so that eventually
two of them overlap in time, while the other two serve as heralds.

Figure 5.1 illustrates the way two photons in different time-bins can be brought to
interference passively: Two type-II PDC states are generated (marked with G) with
a temporal spacing that is the position separation by pumping a KTP crystal at the
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corresponding times (see section 4.2). Since horizontally polarised photons travel through
the longer fibre and vertical light through the shorter fibre, the horizontal photon of
the first pulse and the vertical photon of the second pulse will overlap in time after one
roundtrip through the setup. The other two photons are temporally separated from these
and serve as heralds to improve the signal-to-noise ratio (SNR). Note that this scheme
does not require any EOM switchings.

5.2 Temporal Delay
While the difference in time needed to travel through the two fibres ensures approximate
temporal overlap of photons generated in different time-bins, the fine tuning is done via
a translation stage in one of the arms. This stage is operated with a step motor, so the
delay can be calculated when knowing the number of steps translated and the translation
per step. For the configuration used in our setup the delay is 3.472 · 10−5 ps/step for a
possible translation range of 3 800 000 steps.
Apart from this controlled temporal delay, fluctuations in the environment can introduce
uncontrolled changes in the temporal delay. To what extent these affect the indistinguisha-
bility of two photons depends on both the time scale and the magnitude of theses changes.
Assuming perfect indistinguishability in the other subspaces, the effect on the visibility
can be quantified by analysing (3.29) for the temporal subspace:

VHOM =
∣∣∣∣∫ T ∗1 (t)T2(t)dt

∣∣∣∣2 (5.5)

In this equation, T1 and T2 denote the temporal shape functions of the two photons.
In the experimental setup, uncontrolled changes of the temporal delay are mainly caused
by two effects: fluctuations of the repetition rate of the pump laser and fluctuations of the
time delay introduced by the fibres in which the photons are guided.

5.2.1 Fluctuations introduced by the Pump Laser
Figure 5.2 shows the repetition rate of the pump laser system (Coherent MIRA) over
time. After the warm-up period the repetition does not change by more than 400 Hz
(see Figure 5.2, (b)). This drift corresponds to a change in the pulse spacing of 0.0675
ps. This number adds up to 8 · 0.0675 ps = 0.54 ps when picking two pulses separated
by 8 roundtrips through the laser cavity. As already mentioned in section 4.2.1, this
pulse-picking is necessary to achieve synchronisation of the spacing of the laser pulses with
the position spacing in the fibre network.
Assuming photons with a Gaussian shape and FWHM of 2.7 ps, the above temporal offset
would lead to a visibility of 90% according to (5.5). This value, however, relates to the
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drift in a period of more than 48 hours. To get a more realistic estimate of the effect of
temporal drifts on the visibility, we have to look at the actual time of data acquisition.
Assuming a maximum measurement time of 1000 s for a data point here, already a change
of 100 Hz seems a conservative estimate, resulting in a temporal shift of 0.135 ps and a
visibility of 99%. Consequently, we neglect the effects of a unstable pump laser repetition
rate on the visibility in the following. Note that this assumption is only valid when the
laser system is given enough time to warm up.

Figure 5.2: The repetion rate of the pump laser over time. (a) shows it together with the
temperature for the time following the start-up of the laser system, including the 7 hour
long warm-up period, while (b) shows it for an interval in which the laser has already been
running for more than 24 hours.

5.2.2 Fluctuations introduced by the Fibres
The next effect we have to take into consideration are changes in the time the photons
travel through the fibres. With a thermal expansion coefficient of fused silica of 0.51
µm/(K·m) [140] and a length difference of the two fibres of 20 m, even for a temperature
change of 1 K, we calculate a change in the differential length of the fibres of 10.2 µm,
corresponding to a time shift of 49.67 fs, which is negligibly small as can be seen when
comparing it to the numbers estimated for the effect of the laser repetition rate.
The picture looks different when also taking into account the temperature-related refractive
index change of the fibres. Considering a thermal coefficient of delay (TCD) of 53.9
ps/(km·K) for the fibres in use [141], we still only obtain a differential delay of 1 ps/K
between the two fibres for their length difference of ≈ 20 m. Assuming, on the other
hand, that the two fibres with a length of ≈ 400 m are coupled slightly differently to the
surrounding environment and taking into account their complete length, we end up with a
differential delay of 21.56 ps/(km·K). It is, however, hard to estimate the difference in
temperature for the two fibres.
On the other hand, a measurement of the difference of the arrival times of light travelling
through the two fibres (Figure 5.3, (a)) shows a drift of over 10 ps for the times averaged
over 1000 s (red line) . This drift of the averaged arrival times is superimposed with
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fluctuations of the individual measurements lasting 10 s of around ± 2-3 ps. The fast
fluctuations are most likely a measurement artefact as we do not know of a physical
process that would influence the arrival times on this time scale. Figure 5.3, (b) shows
the temperature measured inside the lab over 80 hours. We see that oscillations of the
temperature occur over hours, explaining the slow drift of the arrival times, but fast
fluctuations of the temperature are not to be assumed. Note that Figures 5.3, (a) and (b)
show disjunct measurement intervals.

Figure 5.3: (a): The differential delay between the two fibres measured over roughly 80
h. The blue line gives the results of each 10 s measurement, while the read line corresponds
to the average of 100 measurement points. The sharp peak towards the end is not a mea-
surement artefact, but indeed the result of heating up one of the fibres with a hair-dryer.
Note that the vertical axis is offset by around 104 ns, which is the difference in the delay
introduced by the two fibres. (b): The temperature in the lab measured over 80 hours (not
the same time interval as in (a)).

In order to verify that the changes in the arrival times are predominantly caused by effects
of the temperature on the refractive index of the fibres, one of the fibres is heated up with
a hair-dryer. The result is the sharp drop in the differential arrival times towards the end
of the measurement time in Figure 5.3, (a).
The magnitude (>15 ps) alone of the arrival time drift makes it very problematic for the
experimental setup, as it is significantly larger than the expected width of the HOM dip
(around 4 ps). Consequently, it is difficult to find this point as it may drift out of the
scanning range during a measurement.
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Figure 5.4: (a): Copper box with meandering copper tubes soldered to it and surrounded
by a insulating layer of styrofoam which is installed to decouple the temperature of the
delay-introducing fibres from the temperature inside the lab. Picture taken during the
building process. The credit for processing the metal parts goes to the mechanical work-
shop at the university. (b): The measured temperature in the lab (red curve) resp. inside
the box (green curve). We see that the magnitude of temperature changes is reduced by
roughly an order of magnitude. Note that the data was taken using a chiller with a preci-
sion of ±0.1◦C . The temperature changes were later reduced by another order of magni-
tude using a chiller with a precision of ±0.01◦C

The solution to this problem is putting the fibres into a temperature-stabilised box (see
Figure 5.4, (a)). We choose a design of a copper box with meandering copper tubes
soldered to it and surrounded by a insulating layer of styrofoam. A thermoelectric chiller
circulates water through the copper tubes whose temperature is controlled with a precision
of ±0.1◦C for the first implementation, which is later upgraded to a chiller with a precision
of ±0.01◦C . This device makes sure that the thermal coupling between cooling water
and box significantly exceeds the thermal coupling between box and laboratory. Thus, the
temperature inside the box is virtually decoupled from the temperature in the lab (see
Figure 5.4, (b)).
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Figure 5.5: (a): The differential delay between the two fibres measured over roughly 50
hours after they have been placed in a temperature-stabilised box. The blue line gives
the results of each 30 s measurement, while the read line corresponds to the average of
30 measurement points. Note that the vertical axis is offset by around 104 ns, which is
the difference in the delay introduced by the two fibres. (b): The temperature in the lab
measured in the same time interval.

Figure 5.5, (a) shows the difference in the arrival times after the fibres have been placed
inside the box. In comparison to Figure 5.3, (b) the magnitude of the drift has been
reduced by almost an order of magnitude. A drift of 1 ps might still be observed over 10
hours, which is significant when considering the effects on the visibility of a HOM-dip
according to (5.5). Relevant, however, is the change within the measurement time of a
data point for a HOM-Dip measurement. Consequently, we look at the average arrival time
within intervals of 900 s (corresponding to averaging over 30 arrival time measurements of
30s) and find a maximum difference of 0.768 ps between two such intervals, related to a
drop in the HOM-visibility to 80 %. The average difference between two intervals of 0.223
ps is, however, related to a visibility of 98 %.
Comparing Figure Figures 5.5, (a) and 5.5, (b), we see that above-the-average changes
of the differential arrival times are still linked to drifts in the lab-temperature. This can
be explained by the fact that the fibres may be decoupled from the rest of the lab, but
other components such as the pump laser and opto-mechanics are not. The effect on the
visibilities seems to be negligible as long as measurements are not taken during intervals
with above-average temperature changes. The temperature can easily be monitored and
these intervals be linked to either people working in the lab and/or the day-night-cycle
(especially in warm weather). Synchronizing measurement times with intervals of little
temperature change seems consequently to be the most feasible way of mitigating the
effects of the temporal delay on HOM-dip visibilities.
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5.3 Temporal Shape - Dispersion
Apart from a temporal delay between the two states, their indistinguishability can also
be affected by a distortion of the temporal shapes, altering the overlap integral in (5.5).
Here, the dispersion in two fibres introducing the temporal delay is the dominant effect.
We assume the temporal pulse shape T (z,t) depending on the distance z travelled through
the fibre to be given by the following expression (normalising formula from [142] properly,
so that the scalar product of the function with itself equals unity):

T (z,t) =
√
τ0

π1/4
√
τ2

0 − i · k2 · z
e
− t2

2(τ2
0−i·k2·z) (5.6)

In the above expression τ0 is related to the temporal duration of the pulse with 2 ·√
2 · ln(2) · τ0 being the FWHM of the pulse’s temporal shape, while k2 is the group

velocity dispersion (GVD) of the fibres. The GVD is linked to the dispersion parameter D
by the following expression [142]:

|k2| = |D|
λ2

2π · c (5.7)

For the SMF 28 fibres used in the experimental setup we assume a value of 18 ps/(nm ·
km) for D [143] and lengths of l1=450 m and l2=471.5 m, resulting in a length difference
of 21.5 m. For a temporal duration of the two pulses of 2.71 ps, corresponding to a FWHM
bandwidth of 1.3 nm for photons generated by a source with a length of 20 mm (see section
5.4.2), we obtain the graph shown in Figure 5.6, (a) for the HOM-dip visibility depending
on the number n of positions that one photon is shifted by the fibre delay in regard to
the other. In order to do so, we calculate the overlap of T (z = n · l1) and T (z = n · l2)
according to (5.5). A photon is shifted one position relative to another when it takes
either the long or the short fibre while the second photon goes through the other fibre.
When two photons interfere after having been translated n positions relative to each other,
this means that they were initially n positions spaced apart. Consequently, (5.5) can also
be interpreted as showing the HOM-dip visibility depending on the initial spacing of two
pulses. For initial spacings of less than 5 positions, we can thus assume the effect of the
dispersion on the visibility to be negligible.
In contrast, a 8 mm ppKTP crystal as it is commonly used in our group exhibits a
significantly more problematic scaling behaviour concerning the initial spacing (see Figure
5.6, (b)). Using a a pump with a FWHM bandwidth of 1 nm, the generated photons
exhibit roughly 3 nm FWHM bandwidth at 1550 nm, corresponding to a duration of 1.2
ps for Gaussian pulses. Consequently, dispersion leads to a severe loss of visibility even for
an initial spacing of less than 5 positions.
These results show why the scalability of network requires a longer source than commonly
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used, even if this creates new challenges, especially concerning the homogeneity of the
poling over the whole sample length.

Figure 5.6: The visibility of a HOM-dip between two photons of which one has to be
translated n positions relative to the other in a time-multiplexing fibre network in order to
interfere it with the other. The photons are translated to different positions in respect to
each other when one photon travels through the longer fibre while the other moves through
the shorter fibre. Here, we assume a temporal duration τ0 of the photons of 2.71 ps in (a),
which corresponds to a 20 mm long crystal, resp. 1.2 ps in (b), corresponding to a 8 mm
long crystal, a dispersion value D of 18 ps/(nm · km) and a length difference of the two
fibres of 21.5 m. Note the different scaling of the y-axis for the two graphs.

5.4 Spectral Characteristics
In section 3.1, we introduced the joint spectral amplitude (JSA) reflecting the spectral
properties of type-II PDC state. In the following, we will elaborate on how these affect
the purities and thus HOM-dip visibilities for heralded PDC states.
As extensive treatments of this topic can be found for example in [144, 145], we will restrict
ourselves to what is necessary in the context of this work.
Focusing on the purity and neglecting a possible distinguishability of the two states
described by the term Tr

{
(ρ̂1 − ρ̂2)2}, i.e. we assume that both states are described by

the same density matrices for a not perfectly pure state, (3.28) simplifies to the following
term:

VHOM = Tr {ρ̂sρ̂i} = 1/2
(
Tr
{
ρ̂s

2
}

+ Tr
{
ρ̂i

2
})

(5.8)

To evaluate this expression, we conduct a singular value decomposition of the JSA f(λs, λi)
and obtain its representation in the Schmidt-mode basis with the eigenvectors ψk(λs) and
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φk(λi) and the eigenvalues ck [146]:

f(λs, λi) =
∑
k

√
ckψk(λs)φk(λi) (5.9)

Usually the Schmidt-modes ψk and φk are represented by Hermite-Gauss-modes.
In the Schmidt-mode basis, (3.28) assumes the following form with K = 1/∑k c

2
k being

the Schmidt-number:

VHOM = 1/2
(
Tr
{
ρ̂s

2
}

+ Tr
{
ρ̂i

2
})

= 1/2
(∑

k

c2
k +

∑
k

c2
k

)
= 1/K (5.10)

It follows that the Schmidt-number K is the crucial quantity when evaluating effects of
the spectral purity on the HOM-dip visibility.
Consequently, the visibility is affected by the purity of the photons as well as by the
distance of their density matrices (see (3.28)). We will illustrate with two examples how
the PDC-process has to be engineered in order to achieve good visibilities.

5.4.1 PDC in LN sample
In the first example, we consider a type-II-PDC-process in a Lithium-Niobate(LN) crystal
with a length L of 10 mm. Figure 5.7, (b) shows the numerically calculated phase-matching
function Φ(λs, λi) of this system. Its width is determined by the length L of the crystal,
while its angle is given by the dispersion properties of the material. The pump distribution
α(λs, λi) in Figure 5.7, (a) corresponds to a pump wavelength of λp=775 nm with a
spectral width ∆λp=0.4 nm. With these parameters we calculate the JSA shown in Figure
5.7, (c) as the product of the phase-matching function and the pump distribution. We
notice that the signal has a wavelength of λs=1539.77 nm and a width of ∆λp=2.56
nm, while the idler exhibits a wavelength of λi=1560.33 nm and a width of ∆λi=3.06
nm. Even if we assumed signal and idler to be perfectly pure, the overlap between their
wave functions is approximately zero, so that a similar value can be assumed for the
HOM-dip visibility according to (3.29). In other words, signal and idler are spectrally
almost perfectly distinguishable due to their different wavelengths and thus we do not
expect to see a HOM-dip between them.
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Figure 5.7: (a): The pump distribution with a central wavelength λp of 775 nm and a
spectral width ∆λp of 0.4 nm. (b): Phase-matching function for a 10 cm long LN crys-
tal. (c): The JSA obtained for the system by multiplying pump distribution and phase-
matching function. Note that signal and idler are non-degenerate. (d): The JSA after
filtering with a top-hat filter with a full transmission range of ∆λf=0.9 nm. All the data
shown is obtained numerically.

It is, however, still instructive to consider the purity of signal and idler. A Schmidt-
decomposition of the JSA for the case shown above yields a Schmidt-number of 2.12, which
would correspond to a HOM-dip visibility of 0.472 according to (5.10), when neglecting
that the visibility is already lost almost completely due to non-degenerate signal and idler
wavelengths.
While degeneracy of signal and idler can be easily achieved by selecting the appropriate
pump wavelength (in this case λp=769.9 nm), increasing the spectral purity is more
involved.
Figure 5.7, (d) shows the JSA after the introduction of a top-hat filter which transmits
around a wavelength of λf=1539.8 nm with a full transmission range of ∆λf=0.9 nm.
Note that in the numerics we assume perfect square filters, for the actual profile of the
filters see section 5.4.4.
Performing a Schmidt-decomposition of the filtered JSA, we obtain a filtered Schmidt-
number Kf=1.14 which is linked to a visibility of 0.88. However, narrowband spectral
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filtering comes at the cost of introducing significant losses, reducing the collection efficiency
η. When conducting experiments with multiple single photons n, these additional losses
quickly become prohibitive as count rates scale with ηn.

5.4.2 PDC in KTP sample
Spectrally engineering the PDC-process is thus favourable to spectral filtering [147, 148].
As already mentioned, the width of the phase-matching function is determined by the
length of the crystal and its angle by the dispersion properties of the used material.
We are able to obtain smaller Schmidt-numbers and thus better visibilities by adapting
the spectral bandwidth of the pump and the phase-matching function.
In sections 5.2 and 5.3 we saw that longer pulse durations increase the resilience of the
indistinguishability towards fluctations in the temporal delay as well as towards dispersion.
Longer pulses in the temporal domain correspond to narrower pulses in the spectral domain
and would thus require longer samples, as can be seen from (3.4).
However, we have to consider for which length it is possible to homogeneously manufacture
a periodically-poled crystal. In our case this means that we are limited to sample lengths of
around 20 mm. For a sample of this length we expect from numerics a Schmidt-number of
1.54, which is already a significant improvement to the 10 mm, but still far from optimal.
Furthermore, we are also limited in the wavelengths of signal and idler as we want them
to be close to the telecom wavelength of 1550 nm where propagation losses in fibres are
minimal and well-developed technology is available. Consequently, we have to look for
materials that exhibit dispersion properties leading to more desirable phase-matching
angles.
In contrast to LN, Potassium Titanyl Phosphate (KTP) exhibits a positive phase-matching
angle around 59◦ near the telecom wavelength [149]. This property allows for the imple-
mentation of a PDC-source with spectrally almost pure signal and idler [150, 31].
Figures 5.8 (a),(b) show numerics for the pump distribution and phase-matching function
assuming a 20 mm long KTP crystal and a pump with a wavelength of λp=769.9 nm and
a spectral width (FWHM) of ∆λp=0.4 nm. The resulting numeric JSA is shown in Figure
5.8 (c) and looks already significantly more symmetric regarding a mirroring at the 45◦
line in the λs, λi-plot, which is indicative of a better HOM-dip visibility [31]. Indeed, a
numerically conducted Schmidt-decomposition yields a Schmidt-number of 1.26 and a
HOM-dip visibility of 0.79 before filtering.
Note that the spectral bandwidth of the laser can only be tuned in a very limited range
around either 0.4 nm (ps-mode) or 1 nm (fs-mode) and can thus not be considered a free
parameter for minimising the Schmidt-number.
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Figure 5.8: (a): The pump distribution with a wavelength λp of 769.9 nm and a spectral
width ∆λp of 0.4 nm. (b): Phase-matching function for a 20 cm long KTP crystal. (c):
The JSA exhibiting degeneracy of signal and idler and a high degree of symmetry when
mirroring along the 45◦ axis. (d): The JSA after filtering with a top-hat filter with a full
transmission range of ∆λf=0.9 nm. All the data shown is obtained numerically.

On the other hand, filtering (see Figure 5.8 d) can further decrease the Schmidt-number
down to 1.03 where the effect of spectral impurities become almost negligible with a
HOM-dip visibility of 0.97. Although the JSA already exhibits a high degree of symmetry
before filtering, the sidelobes of the sinc-function present in the unfiltered JSA are removed
by the filters and the spectral purity is thereby further increased.
Last but not least, adjusting the pump wavelength results in almost perfect degeneracy
of the signal at λs=1539.79 nm and the idler at λi=1539.78 nm. Also the values for
the spectral width (FWHM) of ∆λs= 1.253 nm and ∆λi= 1.383 nm do not degrade the
spectral overlap of signal and idler significantly.
As we can see from (3.6), the JSA does not only depend on the phase-matching function
Φ(λs, λi), but also on the the pump distribution α(λs, λi). In appendix E we discuss the
effect of a quadratic spectral phase on the pump light (so called chirp) and conclude its
effect should be negligible.
For our experiment we have bought two periodically-poled KTP crystals for which we will
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discuss in the following to what extend they fit to the assumptions made in the numerics.

5.4.3 PDC in Sample 2
All of the above discussions concern numerically simulated PDC-processes where the dis-
persion properties of the materials involved are taken from Sellmeier’s equations that are
fitted to empirical data. In addition, the simulation implicitly assumes homogeneous poling
over the whole length of the sample. In practice, however, it turns out that homogeneous
poling is difficult to achieve for poling length exceeding 20 mm.
The sample used for the experiment is a periodically-poled KTP crystals with a length
of 25 mm. The concrete specimen discussed in this section is BCT 1402 B25 produced
by ADVR. In order to determine the effective length of the poled region in the sample,
we conduct a measurement of the second-harmonic-generation(SHG)-signal. SHG can be
considered the inverse process to PDC where instead of one pump photon decaying to a
signal and an idler photon, two pump photons are combined to one signal photon.

Figure 5.9: The SHG-spectrum measured for waveguide 3.3. The sidepeaks are more
pronounced than would be expected for the sidelobes of a sinc-function, which is indicative
of inhomogeneous poling. From the width of the central peak we can estimate an effective
poling length of around 16 nm.

Figure 5.9 shows the SHG-spectrum measured for waveguide 3.3. From the width of the
central peak of around 4.5 nm (FWHM) we can estimate an effective poling length of
around 16 mm, which less than the expected 25 mm. We run the numerical simulations
with the same parameters as in section 5.4.2 except for a poled length of 16 mm instead
of 20 mm, the expected unfiltered HOM-dip visibility changes from 0.79 to 0.74 and the
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expected filtered visibility from 0.97 to 0.95.
These considerations do, however, just account for the consequences of the effective poling
length on the phase-matching bandwidth. The shape of the SHG-spectrum in Figure
5.9 indicates that this is probably not the full picture as it exhibit sidepeaks that are
significantly more pronounced than would be expected for the sidelobes of a sinc-function.
This phenomenon is probably linked to inhomogeneities in the poling period. It might
be assumed that the extent to which it influences HOM-dip visibilites depends on how
well these sidepeaks can be filtered out, but the current numerical framework does not
quantify the effects of these inhomogeneities.
The actual joint-spectral-intensities (JSI) are mesasured for several waveguides on the
sample with a fibre spectrometer [151]. Note that so far we have considered the joint-
spectral-amplitudes, but since our way of measuring does not resolve phases, we are now
limited to intensities.
A fibre spectrometer consists of spools of dispersive fibres that introduce temporal delays
between different spectral components. We now record coincidences between signal and
idler in a temporally resolved way. After calibration, a certain arrival time can be linked
to a certain wavelength. Plotting the relative intensities of coincidence clicks depending
on the signal and idler wavelengths λs and λi, we obtain plots (see Figure 5.10) for the
measured JSIs similar to those for numerically calculated JSAs (Figure 5.7 and 5.8). Note
that the absolute values for the wavelengths in Figure 5.10 are not necessarily accurate, as
the fibre spectrometer has not been calibrated especially for the presented measurements.
However, the SHG-measurement (see Figure 5.9) constitutes the more reliable source of
the absolute values in this case, which are further corroborated by being in accordance
with the specified center wavelength of the DWDM filter in use.

Figure 5.10: JSIs measured with a fibre spectrometer for waveguides 3.2 (a) and 3.3 (b).
Note that the y-axis is inverted in respect to Figure 5.8.

The detectors used in measuring the JSIs exhibit a timing jitter of 300 ps, result in a
broadening (FWHM) of 600 ps. Combining this number with an estimated delay intro-
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duced by the fibre spools of 0.9 ns/nm, we obtain a spectral resolution of 0.67 nm.
Although the resolution of the obtained JSIs is limited, we can clearly discern a main
peak and sidelobes with less intensity. In waveguide 3.2, the sidelobes seem to be asym-
metric which is indicative of an inhomogeneous poling. Furthermore, the central peak in
waveguide 3.3 does not seem to be clearly pronounced, but to have a second peak with
less intensity beside it. This feature is as well a signature of inhomogeneous poling. By
inserting dense wavelength division multiplexing(DWDM) filters with full transmission
ranges of either 0.45 nm or 0.9 nm, we expect to get rid of the sidelobes as well as of the
sidepeak in waveguide 3.3.
Another advantage of inserting these narrowband filters can be illustrated with Figure
5.11. Figure 5.11, (a) shows the marginal distributions for waveguide 3.3 before inserting
DWDM filters for signal and idler that are obtained when tracing out either idler (resp.
signal) for a certain signal (resp. idler) wavelength. The sharp drop in relative intensity at
the sides is linked to a broadband filter placed in the beam path. In addition, we observe
the presence of side peaks and a slight offset in wavelengths of the central peaks. At this
point, it is important that the fibre spectrometer used has not been exactly calibrated, so
the corresponding measurements are not a reliable way of verifying spectral overlap of
signal and idler. Furthermore, the need to have a reliable measure for this overlap arises
from the fact that it is depending on the frequency of the pump light, which might change
depending on environment influences and the alignment of the pump laser.

5.4.4 Spectral Distinguishability
The DWDM filters placed in both signal and idler arm have a two-fold advantage: Apart
from getting rid of sidepeaks, they also define a narrow wavelength range in which the
two photons have to be. Consequently, the idea is to adjust the pump wavelength for
ideal spectral indistinguishability of signal and idler by adjusting for maximum intensity
transmitted through two filters with the same profile. In order to estimate how accurately
filters ensure spectral overlap of signal and idler, we calculate the relative intensity passing
through a filter as well as the overlap of the transmitted pulses. We assume filters with a
central wavelength λc of 1539.8 nm that have full transmission in ranges of ∆λf/2 = 0.45
nm, 0.9 nm and 1.9 nm, while the transmission F (λ) at the edges of this range decreases
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according to Gaussian profiles with a FWHM of ∆λf/8:

F (λ) =


c · 1√

2πσe
−

(λc−∆λf/4)2

2σ2 for λ < λc −∆λf/4
1 for λc −∆λf/4 ≥ λ ≤ λc +∆λf/4

c · 1√
2πσe

−
(λc+∆λf/4)2

2σ2 for λ > λc +∆λf/4

With σ = ∆λf/8
2
√

2 ln(2)

(5.11)

The constant c makes sure that F (λ±∆λf/4) is 1, i.e. the filters have ideal transmission
in this region and is given by 1/F (±∆λf/4). For ∆λf/2 = 0.45 nm and ∆λf/2 = 0.9 nm
the resulting transmission profiles provide good approximations of the data measured for
DWDM filters with a specified channel spacing of ∆λf , while a DWDM filter with ∆λf/2
= 1.9 nm is not commercially available. The black curve in Figures 5.11, (b), (c) and (d)
show the value of F (λ) depending on the wavelength.
The green curves G(λ1) in Figures 5.11, (b),(c) and (d) show the intensity transmitted
through the filters depending on the central wavelength λ1 of a pulse:

G(λ1) =
∫
|F (λ)P (λ, λ1, ∆λ)|2dλ (5.12)

In the above equation, P (λ, λ1, ∆λ) describes the assumed Gaussian profile of the generated
PDC photons. Here, λ1 refers to the the central wavelength and ∆λ to the spectral width
(FWHM). We assume values of λ1 = 1539.8 nm and ∆λ = 1.3 nm (see section 5.4.2).
The red curves show the visibility Vis(λ1) according to (3.29) that is obtained when
overlapping the pulse with a second pulse that is shifted in the opposite direction in regard
to the central wavelength of the filter. Here, we write the wavelength λ1 of the first pulse
as λ1 = λc + δλ and the wavelength λ2 of the second pulse as λ2 = λc − δλ, which follows
from energy conservation for small variations δλ around λc = 2λp. Refering to (3.29) we
calculate the visibility as the overlap of Gaussian profiles in the spectral domain:

Vis(λ1) = |1/G(λ1)
∫
F (λ)P (λ, λc + δλ,∆λ)F (λ)P (λ, λc − δλ,∆λ)dλ|2 (5.13)

The factor 1/G(λ1) renormalises the part that passes through the filter to one, since
the symmetric losses do not affect the visibility as long as dark counts can be neglected
(see section 5.8). Strictly speaking, this factor should be 1/(

√
G(λ1) ·

√
G(λ2)), but the

symmetry of both filters and pulse shapes allows us to use the simplified version.
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Figure 5.11: (a): The marginal distributions for signal and idler from waveguide 3.3 mea-
sured with a fibre spectrometer. (b),(c) and (d): The black curves show the transmission
profile for filters with full-transmission bands ∆λf/2 of 0.45 nm, 0.9 nm and 1.9 nm and a
central wavelength of 1539.8 nm. Assuming pulses with a Gaussian shape in spectrum and
a FWHM of 1.3 nm, we calculate the relative intensity passing through the filter depending
on the central wavelength of the pulse (green curve) as well as the overlap (red curve) with
a second pulse that is shifted in the opposite direction in regard to the central wavelength
of the filter. The magenta curve in (c) corresponds to the measured transmission profile of
a DWDM filter in use.

Comparing the transmitted intensity and the overlap for the three different filter widths,
we see that the broadest filter (shown in (d)) allows all of the intensity to be transmitted,
but on the other hand the intensity profile also exhibits a rather broad range where it
remains close to one. This effect defies to a certain degree the purpose of ensuring spectral
indistinguishability of signal and idler with the filter: there are wavelengths for which the
visibility (red curve) has already dropped significantly, while the change in transmission is
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so small that it might not be discernible in an experimental setting. When using the filter
with the narrowest transmission curve (b), the transmitted intensity and the visibility show
a very similar slope, which makes adjusting for optimal indistinguishability by looking at
transmitted intensities relatively easy. However, the caveat here is that only around half
of the intensity is transmitted through the filters, which adds a problematic amount of
additional losses. The best compromise between accuracy and losses seems to be the filter
with ∆λf/2 = 0.9 nm (c), which exhibits a transmission of more than 80% and where the
relation of the slopes of transmission and overlap should still allow for adjusting for more
than 90% visibility.
At this point it has to be mentioned that the DWDM filters commercially available are
highly standardised products for telecommunications applications. Consequently, we can
expect the transmission profile of any two filters with the same specifications to be the
same within the measurement accuracy (which has been verified in the context of this
work). On the other hand, we are limited in our choice of filter characteristics to what
is available on the market. Thus, only the filters with ∆λf/2 = 0.9 nm and ∆λf/2 =
0.45 nm are an option, out of which we choose filters with ∆λf/2 = 0.9 nm and a central
wavelength of 1539.8 nm for further use. The measured transmission profile for such a
filter is given by the magenta curve in Figure 5.11, c. For the considerations following
in this thesis, we will use values for the transmission efficiency of 80% and 90% for the
spectral indistinguishability.

5.4.5 Spectral Purity
Having dealt with the indistinguishability assuming photons in a single Hermite-Gauss
mode, another quantity relevant for the visibility are the spectral purities of signal and
idler. Here, the numerics for the filtered PDC in KTP give us a Schmidt-number of
K = 1.03 which is indicative of almost perfect purity. In order to experimentally verify this
assumption, we conduct measurements of the unheralded g2(0)-value. For an otherwise
ideal PDC process, the g2(0)-value is related to the Schmidt-number and thus the purity
in the following way [152]:

g2(0) = 1 + 1/K (5.14)

As described in section 3.3.1, g2(0) can be measured with a Hanbury Brown-Twiss inter-
ferometer. Measuring the respective coincidence and single counts as well as the number
of trigger events in the same time interval, we determine g2(0) according to (3.21).
The green and orange markers in Figure 5.12 show the experimentally determined values
of g2(0) for the two modes of the PDC state generated in waveguide 3.3 depending on
the mean photon number n̄ of a photon pair. The green markers corresponds to the
experimentally measured values for the reflective port of the PBS separating the two
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modes of the PDC state, the orange markers to the transmissive port. Where we would
ideally expected a flat line at a value of almost 2, we observe a decrease of the value for
higher generation probabilities and a drop significantly below 2.
How can this be explained? The high values at low mean photon numbers n̄ can be linked
to a Type-0 PDC process, which is also called single-mode squeezed vacuum (SMSV). In
such a process, both signal and idler have the same polarisation. Consequently, we have no
longer photons from one but from two modes impinging on the probabilistic beam splitter
of the Hanbury Brown-Twiss interferometer. This increases the coincidence probability
and therefore also the g2 value.
The deviation from the assumed asymptotic value of 2 on the other hand is modelled by
incoherently adding Poissonian noise to the PDC state. In the experiment, Poissonian
noise is e.g. originating from imperfect suppression of the pump.

Figure 5.12: Estimated g2(0) values for SDPC-states depending on the mean photon
number n̄. The green markers corresponds to the experimentally measured values for the
reflective port of the PBS separating the two modes of the PDC state, the orange markers
to the transmissive port. The blue line represents the numerical values for a state incorpo-
rating Poissonian noise (α =

√
0.25 · n̄) and SMSV (r∗ = arcsinh(

√
1.5 · 10−4 · n̄)).

In order to numerically reproduce the measured values, we assume parameters of α =√
0.25 · n̄ for the Poissonian noise and r∗ =

√
1.5 · 10−4 · n̄ for the SMSV. The correspond-

ing numerical values are given by the blue line Figure 5.12. A more detailed account on
how Poissonian noise and SMSV are modelled can be found in section 5.6.
The influence of these processes on the measured g2(0) values severely impairs their
informative values concerning the Schmidt number. Consequently, we will assume in the
following a HOM-dip visibility related to the spectral purity of 0.95, which corresponds to
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the numerically predicted value (see section 5.4.3). This hypothesis will be put to a test
against measured HOM-dip visibilities in section 5.9.

5.4.6 PDC in Sample 2
A second ppKTP sample (BCT 1703 A30) is obtained at a latter stage of setting up the
experiment. The specifications are similar to the sample used previously (BCT 1402 B25),
again aiming for decorrelated type II PDC from roughly 775 nm to around 1550 nm. This
time, however, the vendor specifies a poled length of ≥ 22 mm instead of 25 mm for the
previous sample.
Furthermore, in contrast to the previous specimen, it is delivered without coatings on the
endfaces, which are in this case applied in-house. Consequently, the reflectivites of the
endfaces are initially high enough (ca. 7-8 %) to allow for measuring losses inside the
waveguides using a Fabry-Perot method [153]. Here, we measure values of around 1-1.2
dB/cm with a few waveguides exhibiting significantly higher losses.
In order to evaluate the suitability of the spectral properties for our purposes, we conduct
SHG measurements. It turns out that only around one third of the waveguides exhibits a
measurable SHG signal in the range from 1530 -1570 nm. Out of these waveguides only
one (WG 1.1) exhibits a spectrum that resembles a decent approximation of the expected
sinc-shape (see Figure 5.13, (a)), others, for example WG 3.1 (see Figure 5.13, (b))), are
more asymmetric and do not show the expected shape of the side lobes. As a result of
these measurements, we decide to conduct further experiments with WG 1.1 and obtain
the corresponding DWDM-filters.

Figure 5.13: Wavelength-dependent SHG intensity in WG 1.1 (Subfigure (a)) resp. WG
3.1 (subfigure (b)). The spectrum of WG 1.1 resembles much more a sinc-function then the
spectrum of WG 3.1 which is asymmetric and exhibits peaks where they are not expected.
Here, the focus of our analysis is on the shape of the spectrum and not on the absolute
intensities, so that these are not necessarily comparable.

In the first measurements conducted with DWDM filters exhibiting a central wavelength
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of 1550.12 nm and a bandwidth ∆λf/2 of 0.9 nm, it is not possible to simultaneous obtain
Klyshko-efficiencies η and HOM-dip visibilities in a remotely acceptable range.
Measuring the wavelength-dependent transmission in the signal and the idler arm as well
as the number of coincidences, we observe that the counts in the two arms peak at different
wavelength, which is indicative of operating the source in a non-degenerate regime. Indeed,
measuring again the SHG-signal of the sample as it is built-in into the assigned place of the
setup (see section 4.2) indicates that the degeneracy point is to be expected at 1547nm.
This discrepancy between the two measured SHG-signals shows that the validity of SHG
measurements is better validated, e.g. by comparing the wavelengths set at the pump
laser with those specified for a DWDM-filter, in case the result is supposed to be reliable.

5.5 Photon-Number Statistics
In section 3.1 we have seen that the PDC sources used in our experimental setup are not
ideal single photon sources, but two mode squeezers with exponential photon number
statistics. Doing experiments with one of the mode while not conducting photon-number-
resolving measurements on the other will consequently lead to a reduction of the state’s
purity and thus of HOM-dip visibilities.
The photon-number characteristics also affect g(2)-measurements: Conducting a measure-
ment on one mode (signal) of the PDC state while not heralding on the other (idler)
corresponds to tracing out the idler mode and results in super-poissonian photon number
statistics. As a consequence, a g(2)-measurement of an unheralded mode of a PDC state
yields the same value as for thermal light, i.e. 2.
Furthermore, the unheralded g(2)-value is affected by the frequency spectrum of the PDC
process (see subsection 5.4.3).
Using bucket detectors also distorts the mean photon number n̄detected detected in our
experiment in relation to the real mean photon number n̄. Our detectors record only one
click even if more than one photon is present. However, the probability of detecting at
least one of multiple photons is higher than the probability of detecting one photon, which
is accounted for by a factor of 1−(1−η)n

1−η in the expression for the detected mean photon
number n̄detected:

n̄detected =
∞∑
n=0

1− (1− η)n
1− η · (1− λ2) · λ2n (5.15)

The division by the factor 1 − η is due to the fact that we are considering the mean
photon number at the source and are thus normalising out the Klyshko-efficiencies η.
Exactly because a measurement of η is distorted by multi-photon contributions, its value
is determined for low mean photon numbers where their effect is still negligible.
Figures 5.16, (a) and (b) illustrate the photon-number distribution for two PDC states
after tracing out one of the modes with mean photon numbers n̄ of 0.1 resp. 0.5. Apart
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from the fact that the vacuum component dominates in both cases, it can be observed
that the weight of the multi-photon contributions is significantly increased for n̄ = 0.5 in
comparison with n̄ = 0.1.
Figure 5.16, (c) shows the detected mean photon number n̄detected depending on the real
mean photon number n̄ for different Klyshko-efficiencies η ranging from 0.1 (green curve)
to 0.5 (red curve) in intervals of 0.1. For reference, the black curves represents an ideal
detector giving the real mean photon number. Here, we see that the detected mean photon
number n̄detected corresponds almost exactly to the real mean photon number n̄ for values
up to around 0.1. For Klyshko-efficiencies η of around 0.3 (yellow curve) the measured
numbers remain very close to the real numbers up to values of n̄ of around 0.2. It is only
for high mean photon numbers and especially high Klyshko-efficiencies that significant
deviations of measured and real mean photon numbers occur.

Figure 5.14: (a): The probabilities of the different photon-number components for a
PDC state with a mean photon-number n̄ of 0.1 after tracing out one mode. (b): The
corresponding probabilities for a mean photon-number of 0.5. (c): The detected photon-
number n̄detected vs. the real photon-number n̄ for Klyshko-efficiencies η ranging from 0.1
(green curve) to 0.5 (red curve) in intervals of 0.1. The black curve corresponds to an ideal
detector measuring exactly n̄.

5.6 Numerical Simulations in Framework QuTip
In order to quantify the impact of the mean photon number, simulations are implemented
in the computational framework QuTip [154]. It contains a library with the definition of a
number of states and operators that we complement with further definitions from textbooks
(unless stated otherwise [155]). Apart from allowing to quantify the impact of the photon
number, the numerically implemented framework will also be utilised for estimating the
influence of noise in the form of single-mode squeezed vacuum and Poissonian noise. In
addition, balanced as well as imbalanced losses can be simulated.
We start by defining the Hamiltoninan ĤSPDC and the respective unitary ÛSPDC according
to (3.1) resp. (3.2) (see section 3.1) for a two-mode squeezed SPDC-state.
In section 5.4.5 we saw that there is evidence that the generated states are affected by
Poissonian noise as well as by single-mode squeezed vacuum (SMSV). Consequently, we
want to simulate their influence on the HOM-dip visibilities. Poissonian noise has the same
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photon-number statistics as a coherent state |α〉, described by applying the displacement
operator D̂(α) depending on the parameter α related to the noise strength to the vacuum:

|α〉 = D̂(α) |0〉 = eαâ
�−α∗â |0〉 (5.16)

Single-mode squeezed vacuum (SMSV) is similar to the two-mode squeezed state according
to (3.2), except for the fact that this operation only occurs in a single mode:

|ψSMSV〉 = ÛSMSV |0〉 = e−i(r
∗·(â� 2−â2)) |0〉 (5.17)

We introduce a second squeezing parameter r∗ here to allow the squeezing strength for
the SMSV-state to be different from the one for the SPDC-state.
Having defined the input states, we now define the operations which act upon them. The
unitary ÛBS(θ) acts as a beam splitter transformation between the two modes 1 and 2
with a splitting ration tunable by θ:

ÛBS(θ) = e−i(i·â1â
�
2−i·â

�
1â2)θ (5.18)

With this general definition of a beam splitter, we define the swap operation Ûswap =
ÛBS(θ = π/2) as a beam splitter transformation with a θ of π/2 and the Hadamard
operation ÛHad = ÛBS(θ = π/4) as a balanced beam splitter transformation for which θ is
π/4. Setting θ to 0 results in a completely transmissive beam splitter ÛTrans = ÛBS(θ = 0)
with no mixing.
Eventually, the final state is detected with non-photon-number-resolving bucket detectors
which have the following operators for either measuring no click (Ê(no click)) or measuring
a click-event (Ê(click)):

Ê(no click) = D(0)
∞∑
m=0

(1− η)m |m〉 〈m| (5.19)

Ê(click) =
∞∑
m=0

[1−D(0)(1− η)m] |m〉 〈m| (5.20)

In the above formulas, D(0) denotes the probability of having no dark counts, which is the
complement of the probability D(1) of having a dark count, η is the detection efficiency of
the detectors and m the number of photons that do not lead to a click.
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Figure 5.15: Schematic of the model implemented to simulate the HOM-dip visibilities:
One photon of each of the two PDC states serves as a herald. The other photon first un-
dergoes a beam splitter operation ÛBS(θ1/2) with which either distinguishability or losses
can be simulated depending on whether the second output mode is detected. The two PDC
signal photons are interfered in a Hadamard operation ÛHad. Eventually, fourfold detection
events between two herald and two signal/ancilla modes are counted. Whether the ancilla
mode is considered for fourfolds as well depends on whether they are meant to simulate
distinguishability (in this case they are accounted for) or losses (in this case they are not
accounted for). When simulating distinguishability, the ancilla mode is interfered with
vacuum in a Hadamard operation ÛHad

The HOM-dip is analysed for heralded PDC-states whose signal photons are brought to
interference at a 50:50 beam splitter (equivalent to a Hadamard transformation ÛHad).
Figure 5.15 illustrates the scheme implemented for calculating HOM-dip visibilities. The
two beam splitter transformations Û(θ1/2)BS taking place before the interference can be
used to simulate either losses or distinguishability. In the first case, θ1 is set to 0 (i.e. the
upper photon stays in its original mode and does not interfere with the second one), while
θ2 is used to tune the distinguishability between the two PDC states and shifts part of
the lower photon into an ancilla mode. This ancilla mode is sent to one input mode of a
Hadamard beam splitter and vacuum to the other, which simulates the fact that photons
in the ancilla mode can no longer interfere with photons from the other input state, but
multi-photon contributions might still be split-up in the Hadamard operation.
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The ancillary modes are a virtual construct to implemented to simulate distinguishabil-
ity. In a real experiment, however, our click detectors will count distinguishable and
indistinguishable photons alike, which means that we have to simulate the detection of
the ancillary modes in the same bins as the modes from which they have been taken.
Consequently, ancillary modes and the original modes are combined in QuTip again before
the detection is simulated, however, only after the operation ÛHad leading to interference
has been conducted.
In order to obtain a reference for complete distinguishability of the two input states, θ2
is set to π/2, so that a swap operation Ûswap is conducted, making the two input states
perfectly distinguishable. The visibility is then obtained by comparing the number of
four-fold coincidences in the distinguishable case to the number of four-fold coincidences for
indistinguishable photons. Since no interference takes place in the first case, it corresponds
to Pτ=∞, while the second case represents Pτ=0. Consequently, the visibility can be
determined analogous to (3.26) by dividing the difference between the minimum number
of fourfolds and the maximum number of fourfolds by the maximum.
Simulating losses corresponds to setting either one or both of the angles θ1 and θ2 to a
non-zero value depending on whether balanced or unbalanced losses are to be accounted
for. The difference to distinguishability simulations is that now we do not assume detection
of the components transferred to ancilla modes, but trace these modes out.

5.7 Mean Photon Number
Having implemented this numerical framework, we can now study the influence of the
mean photon number n̄ on the HOM-dip visibility.
In order to do so, the squeezing parameter according to (3.1) for the simulated SPDC-state
is set to r = arcsinh(

√
n̄) and the numerically assumed Klyshko-efficiency to 0.2. The

orange line in Figure 5.16 shows the HOM-dip visibility depending on the mean photon
number for a PDC-state that is neither subjected to Poissonian noise nor to single-mode
squeezed vacuum (SMSV). In contrast, the red line in Figure 5.16 represents an input
state that is influenced by both noise processes. Here, we assume a value of α =

√
0.25 · n̄

for the Poissonian noise (see (5.16)) and r∗ = arcsinh(
√

1.5 · 10−4 · n̄) for the SMSV (see
(5.17)). These values are fitted to yield a good approximation of the measured results for
the power-dependent g(2) (see section 5.4.5).
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Figure 5.16: Estimated HOM-dip visibility for SDPC-states depending on the mean pho-
ton number n̄. The orange line corresponds to a state for which we assume no additional
noise processes, while the state represented by the red line is subjected to Poissonian noise
and SMSV. For both curves we assume "click"-detectors. The blue (with added noise) and
the green (no added noise) line are obtained assuming two-mode detectors offering some
degree of photon-number resolution. The parameters assumed are α =

√
0.25 · n̄ for the

Poissonian noise and r∗ = arcsinh(
√

1.5 · 10−4 · n̄) for the SMSV. In both cases we assume a
Klyshko-efficiency of 0.2

Figure 5.16 clearly shows the significant influence of the mean photon number n̄ on the
HOM-dip visibility. It is even magnified when assuming parameters leading to realistic
g(2) values (blue and red curves in Figure 5.16).
The effect of n̄ on the visibilities originates in the fact that we are using "click"- or
bucket-detectors that do not offer photon-number resolution. Consequently, heralding on
one mode of the PDC state corresponds to tracing out over the non-zero photon-number
components, which reduces the purity of the state. This problem can be mitigated to
some extent by splitting the herald up to two modes and post-selecting on those fourfold
coincidences for which there are no coincidences between the two modes of one herald. In
the following we will refer to such a detection scheme as two-mode detectors.
We model this experimental device numerically by implementing a two-mode detector
for the heralds that allows for filtering out higher order photon-number contributions
with a probability of (1/2)m−1 where m is the number of photons arriving at the detector.
We adapt expression (5.20) by assuming that the detection probability for higher photon
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numbers is reduced accordingly:

Ê(click) =
1∑

m=0
[1−D(0)(1− η)m] |m〉 〈m|+

∞∑
m=2

[1−D(0)(1− η

2m−1 )m] |m〉 〈m| (5.21)

The data obtained when modelling two-mode detectors is represented by the blue (added
noise) and the green (no added noise) curve in Figure 5.16. It can be observed that even
this limited degree of photon-number resolution leads to a significant increase of visibilities.

5.8 Losses
The HOM-dip visibility of an ideal single-photon source in an ideal noise-free system is
loss-independent, as losses cannot lead to spurious coincidences in these conditions. The
situation becomes different when considering SPDC-input-states and realistic amounts of
noise. Thus, we will discuss in the following the effect of the input states and balanced as
well as unbalanced losses.
To model the effect of losses, both input states are subjected to a beam splitter operation
before they interfere (see section 5.7). The input modes of this operations are the respective
states and vacuum, the output modes are the ones that are brought to interference plus
two ancillary modes that are traced out.
In this framework, balanced loss corresponds to setting the beam splitter angles θ1 and θ2
to the same value θ = arccos(

√
1− L) with L being the loss parameter assumed for the

intensities.
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Figure 5.17: (a): The visibility depending on the loss parameter L for balanced losses
with different beam splitter transformations ÛBS(β) in the interference (β=π/5 (red), π/4.5
(green), π/4 (blue), π/3.5 (black) and π/3 (yellow). (b): The visibility depending on losses
in just one input mode (θ1 = arccos(

√
1− L), θ2=0). The colour coding for the different

beam splitting ratios is the same as in subfigure (a). For both figures we assume a mean
photon number n̄ of 0.1 and a Klyshko-efficiency of 0.2. Furthermore, Poissonian noise
with α =

√
0.25 · n̄, SMSV with r∗ arcsinh(=

√
1.5 · 10−4 · n̄) is added to the PDC state

(corresponding to the blue and red curve in Figure 5.16). Note the different scaling of the
y-axis for (a) and (b).

Figure 5.17, (a) shows the visibility depending on the loss parameter for balanced losses
with different beam splitter transformations ÛBS(β) in the interference. Comparing the
curves for different beam splitter transformations ÛBS(β) in the interference, we see that
a 50:50 beam splitter (β = π/4, blue curve) allows for the best visibilities. Furthermore,
the plots show that balanced losses actually increase visibilities as long as dark counts
can be neglected. This is not surprising when considering that attenuating a heralded
PDC state decreases the relative weight of contributions from higher photon numbers. It
is only when losses bring the PDC counts close to the dark count level that visibilities
drop rapidly, which happens for L > 0.8.
The plots of the visibilities for losses only in one input mode (θ1 = arccos(

√
1− L), θ2=0)

show a different picture (see Figure 5.17, (b)): Depending on whether the unbalanced
losses are offsetting or increasing an imbalance in the beam splitting ratio, losses in one
arm of up to L ≈ 0.1 lead to either a slight increase (β = π/3, yellow curve and β = π/3.5,
black curve) or a decrease of the visibility (β = π/4, blue curve; β = π/4.5, green curve
and β = π/5, red curve). Losses in one arm of L > 0.1 result in a significantly decreasing
visibility with increasing losses well before dark counts become dominant.
Note that all of the numerical simulations have been conducted assuming "click"- or
bucket-detectors without any photon-number resolution.
How do these findings relate to experimental parameters? This question is particularly
interesting as effects of unbalanced losses accumulating with an increasing number of
round trips through a fibre network might lead to visibilities that are decreasing with the
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number of round trips. For the given implementation of the fibre network, we measure
additional relative losses of up to Lexp = 0.08 for the worst configuration in comparison to
the best one. Note that these values give the differential losses for different paths through
the setup and do not account for imbalanced losses related to an inhomogeneous switching
operation of the EOM for different time bins. Concerning a time-multiplexed input state
where the two input modes are initially spaced m positions apart from each other, the
resulting total differential losses 1− Lexp,total = (1− Lexp)m scale exponentially with m.
Still, we expect an initial spacing of m = 8, which corresponds to differential losses of
around 0.5, to be possible without the visibility dropping by more than an absolute value
of 0.05. Again these numbers do not account for a possible effect of the EOM switchings.

5.9 Measured Visibilities - Results and Conclusion for Sample 1
We saw that visibilities are sensitive to a range of parameters which can affect purity or
indistinguishability. In the following we will estimate their combined effect.
According to (3.30), the different degrees of distinguishability introduced in the individual
subspaces add up multiplicatively. We have identified sources of distinguishability in the
temporal (estimated visibility: Vistemp = 0.98) and in the spectral subspace (estimated vis-
ibility: Visspectral = 0.95). Regarding the temporal domain we have looked at fluctuations
of the delay as well as broadening due to dispersion (estimated visibility: Visdisp = 0.99).
In the spectral domain we assume at this point that both states exhibit only a single
Hermite-Gauss-mode that are, however, at a slightly different central wavelength.
These consideration still involve pure states. On the other hand, we saw that multi-
modedness in the Schmidt- as well as the Fock-basis introduces mixedness which also
decreases visibilities. For the Schmidt-modes, we assume a numerically expected reduction
of the HOM-dip visibilities to VisSchmidt = 0.90. The purity in the Fock-basis, on the other
hand, depends significantly on the mean photon number as a free parameter (see section
5.6.)
Multiplying the visibilities for temporal and the spectral domain we end up with a re-
duction of the overall visibility to Vis = 0.83, still assuming perfect purity in the Fock
space:

Vis = Vistemp ·Visspectral ·Visdisp ·VisSchmidt = 0.98 · 0.95 · 0.99 · 0.90 = 0.83 (5.22)

In the following, we will probe this domain experimentally by measuring HOM-dip
visibilities for different mean photon numbers n̄. Bearing in mind that there is a difference
between the detected mean photon number n̄detected and real mean photon number n̄ (see
section 5.7) for higher pump powers, we retrieve the real values from the measured ones for
n̄detected > 0.1, while we assume that the error is negligible for smaller photon numbers.
In order to measure HOM-dips between photons generated in different time bins (see
section 5.1), we introduce distinguishability between the interfering modes by varying the
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delay for one of the interferometer arms via a retroreflector on a translation stage. We
then record the number of fourfold coincidences (two heralds and two interfering photons)
depending on this delay. Figure 5.18, (a) shows exemplarily the HOM-dip measured for
a mean photon-number n̄ of 0.03 in sample BCT 1402 B25. We fit an inverse Gaussian
profiles to the data from which we obtain the number of counts for the baseline Cb, the
amplitude of the dip Ca and its FWHM. The visibilities Vis are obtained by dividing the
amplitude by the number of baseline counts, i.e. Vis = Ca/Cb, which is in accordance
with (3.26).

Figure 5.18: (a): HOM-dip measured for a mean photon number n̄ of 0.03. The red dots
give the number of counts for different delays. Their error bars are determined as Pois-
sonian errors. The green line represents a least square fit for the number of counts. Its
error (mean square deviation) is indicated by the green shaded region. (b): The visibilities
depending on the mean photon number n̄. The black dots correspond to a numerical simu-
lation taking into account effects in the Fock space, but ignoring the other subspaces. Here,
we assume Poissonian noise with α =

√
0.25 · n̄, SMSV with r∗ = arcsinh(

√
1.5 · 10−4 · n̄)

and a Klyshko-efficiency of 0.2 (see section 5.6). The blue dots stand for the experimentally
obtained values with the error bars on the visibility calculated by propagating the errors
for the baseline and amplitude and the error bars on the mean photon number given by the
range of n̄ within a measurement interval which largely depends on the fluctuations of the
lab temperature during this time. The red dots represent numerical values corrected by a
factor of 0.83 as an estimate for the reduction of visibility originating from other subspaces.
The magenta dots show the numerical values with a correction factor of 0.75 reflecting the
Schmidt-number extracted from the g(2)-measurements.

The errorbars of each data point in the plot are calculated as the square root of the
number of counts under the assumption of a Poissonian error. With the visibility Vis
given by Ca/Cb, its error ∆Vis is evaluated with Gaussian error propagation according to
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the following expression:

∆Vis =

( 1
Cb
∆Ca

)2
+
(

1
C2

b
Ca∆Cb

)2
1/2

(5.23)

The errors ∆Ca and ∆Cb of the amplitude and of the baseline are computed as the mean
square deviation of the fit from the data points. In Figure 5.18, (a) this quantity is depicted
as the green shaded region around the fit function given by the green line.
For the sample BCT 1402 B25, we experimentally measure HOM-dip visibilities for mean
photon-numbers n̄ ranging from 0.03 to 0.242 (see blue symbols in Figure 5.18, (b)). In
addition to the error of the visibility the data points exhibit error bars reflecting the range
of n̄ recorded within a measurement interval. This uncertainty originates from changes in
the power coupled into the sample during the corresponding time span.
We compare the experimentally determined values with numerical ones calculated un-
der different assumptions: The black dots are computed via QuTip (see section 5.6)
for a PDC state combined with Poissonian noise (α =

√
0.25 · n̄) and SMSV (r∗ =

arcsinh(
√

1.5 · 10−4 · n̄)). Consequently, it reflects effects on the visibility originating from
the Fock space, but ignores other subspaces.
These are taken into account by multiplying the visibility with the estimated correction
factor of 0.83 explained earlier in this section (indicated by red dots). Assuming the
measured g(2) values to correctly reflect the Schmidt-number of the PDC process, we
obtain a correction factor of 0.75 only reflecting the Schmidt-basis and ignoring all other
effects (e.g. temporal delay or spectral distinguishability). The values for this correction
factor are given by the magenta dots. Since they are significantly below the measured
data, we have strong evidence that the measured g(2) values do not allow to derive the
Schmidt-number. Conducting an estimation with the correction factor of 0.83, on the
other hand, leads to values that agree with the experiment for most of the data points
when taking the error bars into account. The observed and the numerically determined
visibilities seems to show a different scaling behaviour with increasing photon-numbers,
suggesting that effects so far unaccounted for play a role here. It is, however, possible to
explain the observed visibilities in the regions of n̄ where experiments utilising the fibre
network are likely to be conducted (see chapter 8). Note that multiplying the numerically
obtained values with a correction factor is not an exact method, but only an approximation,
as (3.30) has been derived assuming pure states. However, our SPDC states are no longer
perfectly pure after heralding due to multi-modedness in the Fock- and Schmidt-basis.
The comparison with experimental data shows that our approximation still seems to a
good estimate. An exact computation of the visibilities involving all relevant degree of
freedom is not possible in our numerical framework, as the dimensionality of the required
Hilbert space is beyond what the software can handle.
The temporal width of the HOM-dip also allows us to estimate the spectral width of the
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PDC photons: The inverse Gaussian profile fitted to the dip shown in Figure 5.16, (a)
exhibits a FWHM width of 4.2 ps, which yields a temporal duration of 2.97 ps (FWHM)
after deconvolution for the individual photons. Assuming for them a TBWP of 0.44,
corresponding to Gaussian pulses, we obtain for their spectral bandwidth (FWHM) a value
of 1.17 nm. This number compares to numeric values of 1.253 nm (signal) resp. 1.383 nm
(idler) for a 20 mm long sample, on the one hand, and, on the other hand, to a value of ≈
1 nm for the full transmission window of the DWDM filters in use. Since we expect the
filters to define the bandwidth relevant for the HOM-interference, this is not a surprising
result, but it shows at least that the HOM-dip is not significantly broadened by changes
of the temporal delay during the measurement time.

5.10 Conclusion and Results for Sample 2
HOM-dip visibilities are probed experimentally for sample BCT 1703 A30 as well. Here,
we use two different types of filters: The first one is a freespace filter with a central
wavelength of 1550 nm and a FWHM bandwidth of 2 nm that can be angle-tuned to
lower wavelengths. The second configuration involves fibre-coupled DWDM filters whose
transmission profile is very similar to the filters presented in section 5.4.4 in terms of shape
and full transmission range (∆λf/2 = 0.9 nm), but are now centered around 1546.1 nm
resp. 1546.9 nm.
The freespace filters exhibit a broader spectral bandwidth and also a higher transmission
(almost unity) at the center wavelength. Consequently, we observe in this case higher
Klyshko-efficiencies of around 35 %. The HOM-dip visibilities obtained in this case are
given by the blue markers in Figure 5.19, (a).
The experimental visibilities are again compared with numerical values: The black markers
correspond to the results of the numerical simulations accounting for the effects of mean
photon-number n̄ and noise. They are implemented as described in section 5.6 and analogue
to those for sample BCT 1402 B25 (see section 5.9). In contrast to the previous section,
we assume an increased amount of Poissonian noise with α =

√
0.5 · n̄ to account for even

lower measured g(2)-values. The red and the magenta markers give numerical visibilities
corrected for additional effects as described in section 5.9 with the purity in the spectral
domain estimated to allow for 0.95 (red markers) resp. 0.75 (magenta markers). In both
cases (2 nm freespace filter shwon in Figure 5.19, (a) and DWDM filter shown in Figure
5.19, (b)) the data represented by the red dots seems to be a better estimate, even though
there is a increased discrepancy to the measured data for higher mean photon-numbers,
again hinting that effects so far not included play a role here.
The application of DWDM filters reduces Klyshko-efficiencies down to 26-28 %, but on
the other hand improves visibilities considerably in the relevant region (grey-shaded areas)
of mean photon-numbers n̄ around 0.1 (see Figure 5.19, (b)).



5.10 Conclusion and Results for Sample 2 91

Figure 5.19: The visibility depending on the mean photon-number n̄ for source BCT 1703
A30 with a 2 nm freespace filter (a) resp. DWDM filters (b). The blue markers correspond
to the measured values, while the black markers show the numerical data only consider-
ing the Fock space. The red markers correspond to a correction assuming a purity in the
spectral domain of 0.95, resulting in an overall correction factor of 0.88 when incorporating
additional effects, as quantified in the previous section. A presumed spectral purity of 0.75
leads to the values represented by the magenta markers, even when ignoring all other possi-
ble effects. The grey-shaded area marks the region of mean photon numbers most relevant
for experiments.

g(2)-measurements again turn out to be inconclusive as we measure values between 1.48
and 1.51 for the configuration with the 2 nm freespace filter resp. 1.65 and 1.75 for
the configuration with the DWDM filters. If these measurements were accurate the
spectral purities would be around 0.5 for the freespace filter and 0.75 for the DWDM
filter. Neglecting all other effects possibly reducing visibilities, a purity of 0.75 would lead
to the values represented by the magenta markers in Figures 5.19, (a) and (b), which
are significantly below the experimentally measured values. A spectral purity of 0.95 as
estimated according to the numerical simulation of the PDC process (see section 5.4.2 ), on
the other hand, results in the data represented by the red dots and seems to give a more
reasonable estimation of the measured visibilities. It is worth to mention that the purity of
the filtered process only decreases from 0.97 to 0.95 when assuming a sample length of 16
mm instead of 25 mm, which shows that it is resilient to at least this type of imperfections
in sample fabrication. Again, we have to note that the numerical approximation shows
larger deviations from the measured data for higher mean photon numbers.
Also the joint intensity distribution for the arrival times of signal and idler measured for
waveguide 1.1 in the sample under investigation (see Figure 5.20) can give some hints on
the spectral purity of the PDC process. It looks like a reasonable good approximation of a
decorrelated process exhibiting a circular intensity distribution, although the FWHM of
the marginal distributions of signal and idler have a ratio of 1.23.
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Figure 5.20: Joint intensity distribution for the arrival times of signal and idler measured
for waveguide 1.1 in the sample under investigation

The Gaussian profile fitted to the dip exhibits a FWHM of 4.75 ps, corresponding to a
temporal duration of the individual pulses of 3.35 ps, which can be linked to spectral
bandwidth of 1.05 nm. This value is similar to the bandwidth of 1.17 nm measured for
BCT 1402 B25 and is mainly determined by the transmission profile of the DWDM filters.
With the 2 nm freespace filter, on the other hand, we observe FWHM values for the dips of
around 3.8 ps, corresponding to a temporal duration of the pulses of 2.7 ps. From this we
can deduce a spectral bandwidth (FWHM) of 1.31 nm, which is in good agreement with
the numerically expected values for the PDC process. In addition, this result provides
evidence for the validity of the values assumed in section 5.4.4 for estimating the spectral
transmission profile of the filters.
Furthermore, we conduct measurements allowing to assess the effect of dispersion on
visibilities. From numerical calculations, we expect it to be negligible (see section 5.3).
This assumption is verified experimentally by measuring a visibility of 0.56 ± 0.059 for
an initial spacing of the photons of one position and a visibility of 0.55 ± 0.052 for an
initial spacing of two positions. Both measurements are conducted with the same mean
photon-number n̄ of 0.19 ± 0.005.

5.11 Testing Loop with seeded PDC
The factors influencing HOM-dip visibility that have been discussed originate from charac-
teristics of the interferometer loop that is used to make the input states interfere (sections
5.2 and 5.3) as well as from characteristics of the source (see sections 5.4, 5.4.1, 5.4.2, 5.4.3
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and E). In order to be able to investigate influences of the loop independently from effects
originating from the source, we make use of difference frequency generation (DFG).
By sending an additional seed field into the crystal, DFG between the pump and the
seed frequency dominates over the SPDC which is seeded by the vacuum. The output of
the DFG process will be pulsed coherent light that can be used to probe to HOM-dip
visibilities [156].
In such a setting, we will effectively measure the interference of phase-randomised coher-
ent states, so that the possible visibilities are limited to 50 %. However, these will be
less sensitive to the mean photon-number than those obtained with PDC input states.
The numerical simulations represented in Figure 5.21 show that for coherent states the
visibilities are virtually insensitive to the mean photon-number as long as dark counts
and detector saturation (present in the case with Klyshko-efficiency 1) can be neglected.
In addition, using a cw-laser ("Nettest Tunics") as the seed allows for a DFG field that
exhibits virtually only one Schmidt-mode for its spectral decomposition. Consequently,
investigating HOM-dip visibilities with coherent states generated by DFG rules out effects
related to photon-number and spectrum. We will make extensive use of this possibility in
section 8.5.

Figure 5.21: The visibility of the HOM-dip between phase-randomised coherent states
depending on the mean photon number for a Klyshko-efficiency of 0.2 (a) resp. 1 (b). The
different curves correspond to different values L of the parameter quantifying imbalanced
losses with the intensity in one mode being 1− L when the intensity in the other mode is 1:
Red corresponds to L = 0, blue to L = 0.125, green to L = 0.25, yellow to L = 0.375 and
black to L = 0.5. For very low mean photon number visibilities are affected by noise counts.

A brief description of how to implement a setup allowing for the investigation of visibilities
with seeded PDC can be found in appendix F.





6 Experiments with Coherent States Part 1:
Investigating Topological Phenomena

After all describing the effort undertaken to make multiple single photons sent into the
network pure and indistinguishable, it is worth to remember that the evolution of single
photons starting at just one initial position can be simulated with coherent states (see
appendix A for more details). While such a setting does neither allow for observing HOM-
interference between photons nor suffices for the approaches to quantum computation
mentioned in chapter 3, quantum walks starting at a single position still allow for the
investigation of the non-classical propagation and interference behaviour of the walker
according to the first two axioms of quantum mechanics (see section 3.5). In the following,
we will present the investigation of topological phenomena as an example of the simulation
capabilities of quantum walks with coherent states. Here, it’s the symmetry properties of
the evolution unitary Û that give rise to phenomena such as distinct topological phases or
topologically protected edge states.

6.1 Introduction
The discovery of the quantum Hall effect [157] was accompanied by great excitement, as it
turned out that the Hall conductivity in a 2-dimensional electron gas at low temperatures
and the presence of a strong magnetic field is quantized to integer multiples of e2h . Most
remarkably, the conductivity is independent of the density of mobile electrons. The quan-
tum Hall effect is considered to be a consequence of Gauge invariance [158]. Furthermore,
the phenomenon can be explained with the help of the Chern number [159, 160], sheding
light on its topological aspects.
More recently, the quantum spin Hall effect allowed for the experimental realisation of
topological insulators in HgTe quantum wells (not to be confused with H.G. Wells) [161].
The quantum spin Hall phase relevant here is associated with a Z2 invariant [162], which
is analogous to the Chern number classification of quantum Hall effect.
In addition, it is assumed that topological phenomena can be harnessed for quantum
computing [163].
All this sparks the interest in the search of feasible model systems. Current approaches
include ensembles of ultracold bosonic atoms [164, 165, 166, 167] allowing for measuring
the Chern number as well as photonic model systems [168, 169, 170, 171] in which e.g.
topologically protected bound states can be observed. Other possible ways include solid-
state systems [172, 173], superconducting circuits [174], mechanical oscillators [175] and
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microwave networks [176, 177, 178].
In photonic systems, topological phenomena can be accessed by implementing a split-step
quantum walk on a 1D optical lattice [46, 47, 75].
Here, we present the implementation of three different schemes that allow for accessing
the topological properties of split-step quantum walks.
The first one is based on the measurement of scattered reflection amplitudes and also
enables the observation of localised edge states [179, 75].
In the second scheme we realise a bulk-boundary setting with decoupling which makes
not only edge states accessible but also the eigenvalues associated to the walk operator
[180, 48, 76].
As a third scheme we implement a supersymmetric single-step quantum walk in which we
observe a topological midgap state with anomalous polarisation [105]. Here, in contrast
to the other two experiments, we do not rely on a split-step quantum walk for accessing
topological phenomena.

Figure 6.1: Schematic of the setup used for the investigation of topological phenomena:
As the new setup it is based on time-multiplexing by splitting light to two fibres of different
length and feeding the output of this operation back to the input. In contrast to the new
setup, light is coupled in and out probabilistically. Furthermore, the coin operation is car-
ried out by a Soleil-Babinet compensator (SBC) which gives us more freedom in setting the
coin angle in comparison to a single HWP or QWP. Figure from [76].

These experiments are implemented with the conventional architecture of the time-
multiplexing quantum walk setup [73] (see Figure 6.1), i.e. a setup operated with coherent
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input states and without deterministic in- and outcoupling. In contrast to the new setup,
it is designed for wavelengths around 800 nm, which is less favourable in terms of losses
than 1550 nm, but on the other hand allows for switching greater angles with the EOMs.
This is a necessary condition for the experiments described in the following, since they
require EOM angles of up to 3/4π. For the experiment measuring the eigenvalues, we
upgraded the fibre couplings, thus improving coupling efficiencies from ≈ 38% to ≈ 50%
and consequently increasing significantly the number of possible steps. The supersymmetric
single-step quantum walk experiment, conducted subsequently, also benefits from these
improvements.

6.2 Split-step Quantum Walk and Topological Invariants
The first two experiments presented in the following are based on a split-step protocol
[169] with an evolution unitary of the following form:

Û = ŜH
+ · Ĉ(θ2) · ŜV

− · Ĉ(θ1) (6.1)

Here, the walker undergoes the coin operation Ĉ(θ1) corresponding to a polarisation
rotation by the angle θ1, which is followed by the conditional shift operation ŜV

− acting on
the walker’s vertical polarisation components. Subsequently, the polarisation is rotated
by the angle θ2 in the coin operation Ĉ(θ2) and the walker’s horizontal polarisation
components are translated in the conditional shift operation ŜH

+. The conditional shift
operators are defined in the following way:

ŜH
+ =

∑
x

|x+ 2, H〉〈x,H|+ |x, V 〉〈x, V |

ŜV
− =

∑
x

|x,H〉〈x,H|+ |x− 2, V 〉〈x, V |
(6.2)

Lengthy but straightforward calculations lead to the following equivalence (see appendix
G):

Û = ŜH
+ · Ĉ(θ2) · ŜV

− · Ĉ(θ1) = Ŝ · Ĉ(θ2) · Ŝ · Ĉ(θ1) (6.3)
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With Ŝ being defined as follows:

Ŝ =
∑
x

|x+ 1, H〉〈x,H|+ |x− 1, V 〉〈x, V | (6.4)

Expression (6.3) is important, as it shows that the step operation conducted by our
experimental setup according to (6.2) is compatible with the common definition of the
split-step unitary according to (6.1).
A quantum walk in the split-step protocol belongs to the symmetry class BDI [181] and
consequently exhibits particle-hole, time-reversal as well as chiral symmetry, which are
defined in the following way with γ, η and τ being the respective symmetry operators [76]:

chiral symmetry: γÛγ� = U � with γ unitary
particle-hole symmetry: ηÛη� = U with η anti-unitary

time-reversal symmetry: τÛτ � = U � with τ anti-unitary
(6.5)

Furthermore, translational symmetry results in a band structure, as can be seen by
determining the effective Hamiltonian Heff with eigenvalues ε that is associated to the
walk unitary Û [181]:

Û ≡ ie−iHeff (6.6)

The quantum walk exhibits relevant quasienergy gaps at ε = 0 and ε = π in which
topologically protected states may be present [182].

6.3 Scattering Approach
In the following, we outline a method of experimentally accessing topology in one-
dimensional quantum walks using a scattering approach according to [179]. The results of
these experiments are published in [75].
According to [179] the corresponding topological invariants are given by simple function,
e.g. trace, determinant or Pfaffian, of the reflection blocks of the scattering matrix at
these quasienergies. The concrete correspondence between the reflection elements and the
topological invariant is determined by the symmetry class of a particular setting. The
example studied here belongs to the BDI symmetry class with the symmetries defined above
[181]. Consequently, the eigenvalues of the reflection blocks are ±1 and the topological
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invariants are given by the traces of the reflection matrices r(ε) for ε = 0 and ε = π:

(Q0, Qπ) = 1/2[Tr r(0), T r r(π)] (6.7)

The reflection blocks of the scattering matrix for a one-dimensional quantum walk are also
one-dimensional, consequently the above expression simplifies to equating the topological
invariants with scalar reflection amplitudes r(0) and r(π):

(Q0, Qπ) = 1/2[r(0), r(π)] (6.8)

Figure 6.2: The value of the invariant Q(0) × Q(π) depending on the coin angles θ1 and
θ2 for the case of an application of a split-step protocol in the scattering region. The pa-
rameters of the experimentally realised systems are given by the coloured markers and lines
(explained in section 6.5). Figure from [75].

Figure 6.2 illustrates that the tuple (Q0, Qπ) constitutes a topological invariant. It shows
the value of this number depending on the coin angles θ1 and θ2. We see that (Q0, Qπ) is
robust to variations of the two coin angles as long as these stay within a certain topological
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sector.

6.4 Experimental Implementation of the Scattering Approach
In order to see how we can experimentally access (Q0, Qπ), we take a closer look at the
lead-sample scattering system (see Figure 6.3).

Figure 6.3: (a): Illustration of the graph configuration in the scattering setting: The left
region of the graph constitutes the lead where the applied coin is the identity operation
(Id = Ĉ(0◦)). The lead is also the region in which we conduct the phase-sensitive measure-
ments. The scattering takes place in the right region (sample) where Ĉ(θ1) and Ĉ(θ2) are
applied in an alternating way. This setting is used for the scans along the topological phase
diagram shown in Figure 6.2. (b): Setting used for testing the robustness of the topologi-
cal invariant. Here, one of the coins in the sample is the identity, while the other is either
Ĉ(θA) with probability p or Ĉ(θB) with probability p− 1. (c): Setting in which we interface
two samples: In the left sample we apply Ĉ(θL) or the identity. In the right sample the
non-identity coin is either Ĉ(θA) or Ĉ(θB) with corresponding probabilities p and p − 1.
Figure from [75].

The sample is the region on the right where we apply either Ĉ(θ1) or Ĉ(θ2). The exact
values of θ1 and θ2 as well as the sequence of their application depends on the concrete
setting that is to be investigated. From here the light is scattered into the lead on the left
where the identity operation is applied on all positions.
In order to obtain (Q0, Qπ), we have to determine rj which is the reflection amplitude at
position -1, i.e. at the border between lead and sample, after the j-times application of
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the unitary Û on a state in horizontal polarisation initially localised at position 0:

rj = 〈−1, V | Û j |0, H〉 (6.9)

With rj the energy-dependent reflection matrix element can be written as the discrete
Fourier transform of the reflection amplitudes:

r(ε) =
j→∞∑
j=1

eijεrj (6.10)

For the eigenenergies ε = 0 and ε = π present in our system this corresponds to either the
sum or the alternating sum of the individual reflection amplitudes rj .

Figure 6.4: Illustration of the scheme implemented for measuring rj including phase. The
detector symbols in dashed lines indicate the positions where we measure the intensities,
while the detector symbols drawn in solid lines mark the measurements for the read-out
of the phases. The blue and yellow diamonds represent the application of the two different
coins for the split-step scheme. Figure from [75].

Figure 6.4 shows the scheme implemented for determining rj . The quantum walk evolves
in the sample on the right side. From there intensity is scattered into the lead on the left.



102 6 Experiments with Coherent States Part 1: Investigating Topological Phenomena

Here, we find the rj corresponding to different steps j on different positions of the read-out
step, where we measure their intensities. Since the rj constitute amplitudes, we also need
to extract their phases. We extract the phase of r1 by interfering it with a reference that
is split-off with by the application of Ĉext before the start of the split-step quantum walk.
The phase of the subsequent rj are then read-out by interfering one component of rj with
a component of rj−1. This interference takes place in the step following the measurement
of the intensities and requires a mixing coin, which is in this case a QWP at 45◦.

6.5 Results for the Scattering Approach
6.5.1 Topological Phase Transitions
In a first experiment we want to verify that we can indeed access the topological invariants
(Q0, Qπ) as theoretically expected (see Figure 6.2). Consequently, we scan the values of
θ1 and θ2 along the green line and along the turquoise line in Figure 6.2. These lines are
given by the fact that in our experimental implementation one of the angles needs to have
twice the value of the other: One angle (e.g. θ1) is set statically with a Soleil-Babinet
Compensator (SBC). An EOM then dynamically switches to either the identity in the
lead by reversing the static polarisation rotation (i.e. rotating by −θ1) or to θ2 = 2θ1 by
applying a certain voltage with either a positive or a negative sign. The corresponding
sequence of coins is shown in Figure 6.3 (a).

Figure 6.5: (a): The experimentally obtained and the simulated values of the topological
invariant Q0 (red circles resp. solid line) as well as the theoretical values for an infinite
number of steps (dashed red line). The respective quantities for Qπ are marked in blue.
The displayed data corresponds to a scan along the green line in Figure 6.2. The error bars
are obtained via Monte-Carlo scans. (b): The topological invariants Q0 and Qπ for a scan
along the turquoise line in Figure 6.2. Figure from [75].

The results of this scan are shown in Figures 6.5 (a) and (b): The experimentally obtained
and the simulated values of Q0 for five steps, i.e. 10 roundtrips, are marked by the red
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circles resp. the solid line, the expected theoretical values for an infinite number of steps
by the dashed line. The corresponding quantities for Qπ are marked in blue. We observe
that both experiment and numerics clearly exhibit the expected transition from -1/2 to
+ 1/2 resp. 1/2 to - 1/2 for scans along the green line (Figure 6.5 (a)) and along the
turquoise line (Figure 6.5 (b)). Due to the finite size effects, i.e. the limited number of
steps, however, it is not as sharp as it would be for a system with an infinite number of
steps.
The error bars for this as well as for the other figures are obtained via Monte-Carlo scans
for which we assume inaccuracies of 3% for the coupling efficiencies and of 1% for the SBC
and EOM angle. We produce a 1000 samples with parameters randomly chosen within
these ranges and take the resulting standard deviations for the error bars.

6.5.2 Robustness against Disorder
We expect topological invariants to be robust against disorder which leaves the system in
the same topological sector. In order to experimentally observe this feature, we look at
two different cases: In case one we pick two coins with angles θA = 1.68π and θB = 1.36π
that correspond to the blue and the red square in Figure 6.2. In case two, the the two
coins with θA = 0.63π and θB = 1.26π are represented by the blue and the red triangle.
In case one the two coins belong to the same topological sector, while they are in different
topological sectors in the second case. The arrangement of the coins is shown in Figure
6.3 (b). As the three possible switching states of the EOM are needed for implementing
the identity as well as Ĉ(θA) and Ĉ(θB), the second coin in the sample region is chosen to
be the identity as well. This choice of coins still allows to have them in either one or two
topological sectors.
In our experimental setting, we apply Ĉ(θB) with a probability p and Ĉ(θA) with the
probability 1− p. We scan p in 8 discrete steps ranging from 0 to 1 with p = 0,1 corre-
sponding to minimum disorder and p = 0.5 to maximum disorder. For each of the 8 data
points we produce 50 samples in which we choose randomly according to the respective
probabilities at each side whether we apply θA or θB.
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Figure 6.6: The average reflection matrix element 1/2〈r(0)〉 over the probability p with
which Ĉ(θB) is applied. The yellow markers correspond to case two where Ĉ(θA) and
Ĉ(θB) belong to different topological sectors (triangles in Figure 6.2), while black markers
refer to case one in which the two coins are located in the same topological sector (squares
in Figure 6.2). The error bars on the experimental data are given by the standard devia-
tion over the 50 measured patterns. The range of the standard deviation of the numerical
simulations is indicated by the grey shaded region. Figure from [75].

We measure the average reflection matrix element 1/2〈r(0)〉 for both cases (see Figure 6.6):
Case two exhibits a clear transition from -1/2 to + 1/2 as p increases. Furthermore, we
observe significant fluctuations between the 50 individual samples for a certain probability
value as indicated by the error bars on the yellow markers, which are obtained as the
standard deviation of the individual values. For case one, on the other hand, we measure
very similar values of 1/2〈r(0)〉 for all values of p and also the fluctuations between the
individual samples (indicated by black error bars) are more than an order of magnitude
smaller. We consequently see that case one exhibits the expected robustness against
disorder, while it is not observed for case two.

6.5.3 Emergence of Edge States
Eventually, we experimentally study the emergence of edge states which are theoretically
predicted to appear at the boundary of two topologically different bulks due to bulk-
boundary correspondence [183]. The sequence of applied coins is depicted in Figure 6.3, (c):
On the left side of the graph we no longer implement the lead, but another sample (sample
L) in which the identity on even sites and Ĉ(θL) on uneven sites with θL = 3/2θ = 0.52π
(green diamond in Figure 6.2) are applied in alternation. On the right side of the graph
the identity on even sites is alternated with either Ĉ(θA) or Ĉ(θB) on uneven sites with
θA = θ = 1.68π and θB = 2θ mod 2π = 1.36π (blue and red square in Figure 6.2). Note
that the identity in this scheme is only applied on even sites that would only be occupied
in steps with even numbers. These steps do not need to be actually carried out, but can
be accounted for implicitly, allowing to implement twice the number of steps in split-step
quantum walk for a given number of round trips. As a consequence of this and the
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omission of the read-out procedure at the end, we are no longer limited to 5 steps as for
the measurement of the reflection matrices, but can now investigate 13 steps.
Again, we scan the probability p and thus the strength of the disorder by measuring 50
randomly generated patterns for each value of p. In addition, we look at a reference system
where the coins in the two halves of the graph are Ĉ(θA) and Ĉ(θB) and consequently are
in the same topological sector.
We expect the edge states to be localised at the boundary and thus quantify the degree of
localisation with the probability PLoc to find the walker on the six innermost positions, i.e.
in the interval [-3,3]:

PLoc =
3∑

i=−3
Pi (6.11)

The degree of localisation at the boundary after 13 steps is shown in Figure 6.7, (a): We
observe values of PLoc of at least ≈ 0.8 for all values of p. Even when considering the
error bars, the localisation is significantly stronger than in the reference system. The
error bars are obtained as the standard deviation over the 50 individual patterns for the
disordered systems and by Monte-Carlo scans for the configurations without disorder, i.e.
those with p = 0 and p = 1 and the reference system. Furthermore, the localisation is
robust to disorder as the ordered instances (p = 0,1) exhibit localisation values that do
not significantly differ from the most disordered case (p = 0.5). The similar degrees of
localisation for p = 0 and p = 0.5 resp. the large difference to the reference system are
also reflected by the intensity plots (Figures 6.7 (b)-(d): While the wavefunction remains
localised at the boundary in (b) and (c), it clearly spreads out in (d). The fact that the
localisation is also present in the ordered configurations rules out that it is caused by
Anderson localisation [74].
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Figure 6.7: (a): The degree of localisation at the boundary PLoc after 13 steps of the
walker for different values of p. The value for the reference system is marked by the green
shaded region. The error bars for the disordered systems are given as the standard devia-
tion over the 50 individual patterns, while they are obtained using Monte-Carlo scans for
the reference system and the ordered instances. (b),(c) and (d): The step-wise evolution of
the walker’s distribution of intensity over positions. The corresponding configurations are
marked in subfigure (a). Figure from [75].

6.6 Measuring Eigenvalues of Edge States
The previously described scattering approach allows for accessing topological invariants via
reflection matrices. Furthermore, we can observe edge states localised at bulk-boundaries.
However, the eigenvalues associated with the walk operator remain outside of the reach of
this method. In case of disorder, only determining the explicit eigenvalues of a localised
state allows for distinguishing whether this localisation is due to Anderson localisation
[74] or topological protection [184], [185].
In order to extend the range of experimentally accessible topological properties to these
eigenvalues, we implement a split-step quantum walk with decoupling that allows for
measuring eigenvalues via a phase reference method. The results of the experiments
described in the following are published in [76].
We restrict our treatment of the theoretical aspects of this experiment to a necessary
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minimum, since more detailed accounts can be found in the corresponding publications by
our theory partners [180, 186, 48].
In contrast to the scheme presented previously, the topological invariants with which
we classify different configurations of the walk are no longer reflection amplitudes, but
symmetry indices (see Figure 6.9, (a)).

6.6.1 Decoupling
The important difference to the bulk-boundary setting implemented previously for observing
edge states (see section 6.5.3, illustrated in Figure 6.3) is the decoupling: By switching
a reflection coin we split the graph in two halves with negligible transition amplitude
between them. In such a setting exponentially localised eigenstates are predicted at the
interface for non-trivial topological phases by bulk-boundary correspondence [180, 48].
In the region to right of the decoupling we can describe the split-step quantum walk with
chiral, particle-hole and time-reversal symmetry as in section 6.2.

x = −3 −2 −1 0 1 2 3 4

. . . 0 0 π/2 π/4 0 π/4 0 π/4 . . .A:

. . . 0 0 −π/2 3π/4 0 3π/4 0 3π/4 . . .B:

Figure 6.8: Schematic picture of the coin angle set-up for the walk (6.3) in our two set-
tings. The coin angles at x = −1 decouple the walk between x = −1 and x = 0. Figure
modified from [76].

In order to observe the emergence of edge states corresponding to different eigenvalues,
we consider two settings for the values of the coin. In both of them, the quantum walks
exhibit a non-trivial symmetry index and are decoupled between the positions -1 and 0
(see Figure 6.8):

Setting A:

θ2 = π/4 and θ1(x) =
{
π/2 x = −1
0 else

(6.12)

Setting B:

θ2 = 3π/4 and θ1(x) =
{
−π/2 x = −1
0 else

(6.13)

The decoupling coin θ1(x) is defined such that it decouples the walk on the even sub-lattice.
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Since we are only interested in the edge states of the decoupled walk located in the right
half, we do not need to specify the left half chain, leaving it available for the routing of a
phase-reference.
The symmetry indices for both settings are in the (non-trivial) -1 sector (see Figure 6.9,
(a)), consequently we expect the emergence of edge states, as . It depends on the specific
decoupling in the two settings whether the eigenfunctions correspond to eigenvalue +1 or
-1. In our case, setting A is associated with the eigenvalue -1 and setting B with eigenvalue
+1.

Figure 6.9: (a): Parameter plane for the split-step walk (6.3) with regions of constant
symmetry index (left). The crosses mark the parameters for our two settings (A/B).
(b): Intensity distribution |ψ(x)|2 of the corresponding eigenfunction (right). The distribu-
tion is the same for both settings. Figure from [76].

The eigenfunctions ϕR(2x) of Û (see (6.3)) located in the right half are given by the
following expression with the normalisation factor c =

(
(1 +

√
2)(1− sin(θ2)

)− 1
2 (see also

Figure 6.9, (b)):

ϕR(2x) =


0 x < 0

c(1−
√

2)x
(
i cos(θ2)

1− sin(θ2)

)
x ≥ 0,

(6.14)

6.6.2 Eigenstate Distillation
The exponentially localised edge states according to (6.14) cannot be excited directly with
an input state restricted to one position, but only be approximated. In order to do so, we
start with an input state at position 0 (see Figure 6.10) that exhibits some overlap with
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the localised eigenstate. As the walker’s wave function evolves with an increasing number
of steps, the components that do not overlap with the eigenstate propagate away from the
boundary, so that the edge state is approximated with increasing quality on the positions
near the boundary. Consequently, we focus our investigation to the three inner positions
and renormalise the intensity here to 1. The quality of the approximation is quantified via
the similarity which can attain values between 0 (no overlap of intensities) and 1 (perfect
overlap of intensities):

d =
∣∣∣∣∣∑
x

√
P

(theo)
H,x · P (exp)

H,x +
∑
x

√
P

(theo)
V,x · P (exp)

V,x

∣∣∣∣∣ (6.15)

In the above expression, we sum up the square roots of the products of the theoretically
expected probabilities P (theo) and the experimentally obtained probabilities P (exp) for
positions x ranging from 0 to 3 and both polarisations H and V .



110 6 Experiments with Coherent States Part 1: Investigating Topological Phenomena

6.6.3 Phase-Reference Method

Figure 6.10: Illustration of the implementation of the phase-reference method: An initial
coin operation Ĉ splits the light into two components, one of which will constitute the
phase-reference, the other one the walker. The walker undergoes the split-step walk with
decoupling, while the reference is routed via transmission (T̂ ) and reflection operations
(R̂). Eventually, the reference is brought to interference with a certain mode of the walker
having evolved according to the split-step protocol. Figure from [76].

The implementation of the decoupling scheme frees the left side of the graph for routing of
a phase-reference that can be harnessed to obtain the phase of the individual position and
polarisation modes of the walker. The phase-reference method is illustrated in Figure 6.10:
We use an external coin to split the initial pulse into one component that is the walker
and one that constitutes the phase-reference.
The walker undergoes the split-step quantum on the right half chain where one step
corresponds to two round trips, one in which we apply the walk coin and one in which
the identity as well as the reflective coin realising the decoupling is applied. Note that
the steps with uneven positions cannot be conducted implicitly, as we need to decouple
the walk between positions 0 and -1 by switching a reflective coin. After either 6, 7 or 8
steps of the quantum walk evolution, we no longer apply the quantum walk unitary, but
separate a certain mode from the others and direct it such that it will interfere with the
phase-reference.
This phase-reference is routed on the left half-chain. The routing is carried out by a
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sequence of transmissions and one reflection that ensures that the reference stays separated
from the right half-chain and losses as little intensity as possible.
The read-out component and the reference are interfered at a mixing coin (in this case
the balanced Hadamard coin ĈHad)).This operation is described by the following equation
with Iw and Ir denoting the intensities of the walker resp. the reference and αw resp. αr
their phases:

|Φ〉 = ĈHad

(
eiαw
√
Iw

eiαr
√
Ir

)
= 1√

2

(
1 1
1 −1

)(
eiαw
√
Iw

eiαr
√
Ir

)
(6.16)

Polarisation-resolved detection consequently yields the following intensities IH and IV for
the horizontal and the vertical mode:

IH = 1
2(Iw + Ir − 2

√
Iw ·

√
Ir sin(αr − αw)))

IV = 1
2(Iw + Ir + 2

√
Iw ·

√
Ir sin(αr − αw)))

(6.17)

With theses quantities we can determine the phase difference between the reference and a
certain component of the walker:

M := sin(αr − αw) = IV − IH
2
√
Iw ·
√
Ir

(6.18)

The M-parameter given by the above expression is not an injective function, but still
allows for the clear distinction of cases with eigenvalue 1 and those with eigenvalue -1.
In our experiment, we monitor the step-wise evolution of the M-parameter for a certain
component. Here, we expect from step to step a change of the walker’s phase by ∆αw = π
for setting A with eigenvalue -1 and by ∆αw = 0 or integer multiples of 2π for setting B
with eigenvalue +1. On the other hand, the phase αr of the reference is assumed to be
constant with changing step numbers, so that the step-wise evolution of the M-parameter
is expected to reveal the eigenvalue of the walk unitary.
The read-out is conducted in steps 6 to 8 for the two polarisation modes at each of the three
positions on the right closest to the boundary. Also considering that we are investigating
two different settings, we end up with 36 data sets that have to be taken.

6.6.4 Evolution of the Wave Function
Figures 6.11 (a) and (b) show the measured intensities of the walker for an evolution in a
scheme similar to the one sketched in Figure 6.10: The split-step QW takes place over
6 steps (12 round trips) on the right side of the graph, while the reference is routed on
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the left side of the graph. Afterwards, a certain mode of the walker’s wave function (in
this example the vertical mode (a) resp. the horizontal mode at positions 0 (b), marked
by a green arrow) is brought to interference with the reference (marked by a grey arrow).
This read-out is shown in more detail in Figures 6.11 (c) and (d), where we can see how
both are directed to the position where a mixing coin (marked in yellow) is applied. The
intensity in the two modes marked by the detector symbols is recorded to extract the
M-parameter according to (6.18).
In addition, Figures 6.11, (a) and (b) also serve to illustrate the distillation of the localised
eigenstates, as we can observe how the components not overlapping with the eigenstate
are propagating away from the boundary, while those that do overlap stay.

Figure 6.11: (a) and (b): The walker’s intensity distribution for an split-step QW evo-
lution over 6 steps (12 round trips) and subsequent read-out of the vertical (a) resp. the
horizontal mode (b) at position 0. Subfigures (c) (vertical polarisation) and (d) (horizon-
tal polarisation) show the read-out in more detail: The position marked in red is routed
(marked by green arrow) to the position marked in yellow where it interferes with the ref-
erence (marked by white arrow). The position of the interference is such that it allows
for separating the read-out mode from the others and for having the read-out in the same
step for both polarisations. In addition, reflection operations can be used for preventing
that light from other positions reaches the modes where the outcome of the interference is
detected. Figure from [76].

Figure 6.12 shows the probability distribution in step 8 (i.e. round trip 17) of the split-step
QW. The phase-reference is represented by the large horizontal bar at position -2, the
eigenstate is expected at positions 0-4, which are the three occupied positions closest to



6.6 Measuring Eigenvalues of Edge States 113

the boundary. The intensity at positions around 10 are the modes not overlapping with
the eigenstate which are propagating away from the boundary.

Figure 6.12: (a): Probability distribution in step 8 (round trip 17) of the split-step QW.
Orange resp. light blue bars represent the measured intensities in horizontal resp. verti-
cal polarisation, while the numerically obtained values correspond to dark blue resp. red
bars. (b): The similarities in respect to the ideal eigenstate for steps 6-8: The values for
the numerically calculated states are given by the blue symbols, the values for experimen-
tally obtained intensities by the green (eigenvalue +1) resp. red markers (eigenvalue -1).
Note that all markers correspond to integer step numbers, although they might be slightly
shifted on the horizontal axis for better readability. The error bars for the similarity are
determined in Monte-Carlo scans assuming uncertainties of the coupling efficiency of 2%
and an error of the coin angle of 2◦. Figure from [76].

The overlap of the measured intensities with those of the theoretically expected eigenstate
is quantified according to (6.15). The blue symbols Figure 6.12 (b) show the evolution
of the similarities from step 6 to 8 for a numerically computed state accounting for the
finite step number, but no other experimental imperfections. Note that these similarities
are the same for both eigenvalues. The green (resp. red) symbols on the other hand
correspond to the measured intensities for the case with eigenvalue +1 resp. for the case
with eigenvalue -1. These similarities are lower than those for the numerically values, which
indicates that they are affected by experimental imperfections in addition to the limited
step numbers. Note that the similarities are slightly worse for the eigenvalue -1 case, as it
requires higher voltages of the EOM, thereby increasing experimental imperfections due
to acoustic resonances (see section 4.3.2). With values of at least ≈ 90% they, however,
still reflect a good experimental approximation of the ideal eigenstates. The error of the
experimental values are obtained in Monte-Carlo simulation where we generate a 1000
different random settings assuming an error of the coupling efficiency of 2% and an error
of the coin angle of 2◦. The same applies for the error bars on the rest of the data shown
in this section. The errors resulting from the Pockels cell’s operation are, on the other
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hand, hard to quantify in an error model as they affect individual switchings in a way that
is hard to predict.

6.6.5 Experimental Eigenvalues
Having verified a good experimental approximation of the ideal eigenfunctions, we investi-
gate the eigenvalues by monitoring the step-wise evolution of the M-parameter.
Figures 6.13 (a) and (b) show the evolution of the M-parameter at position 0 for hori-
zontally (a) as well as vertically polarised light (b) from step 6 to step 8. In setting A
(orange symbols) the M-parameter clearly exhibits a sign flip in its step-wise evolution,
while it remains around -1 in setting B (blue symbols).

Figure 6.13: Evolution of the M-parameter from step 6 to step 8 for both horizontal light
(a) and vertical light (b) at position 0. The orange markers correspond to setting A, where
a sign flip is clearly visible, while it is absent for setting B (blue markers). The error bars
are obtained in Monte-Carlo scans with the same parameters as for Figure 6.12. Figure
from [76].

The same qualitative behaviour is observed for position 1 (see Figure 6.14). However,
the limits of this method become visible for vertical polarisation in step 8, where the
exponential amplitude scaling does not leave sufficient intensity for a reliable read-out.
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Figure 6.14: Evolution of the M-parameter at position 1, the other parameters are the
same as in Figure 6.13. Note that the read-out for vertical polarisation in step 8 is no
longer possible due to low intensities. Figure from [76].

In conclusion, we have achieved in our experimental system a good approximation of the
theoretically expected eigenstate. By accessing the eigenvalues of the walk operator, we
extend the range of experimentally accessible signatures of topological properties.

6.7 Supersymmetric Polarisation Anomaly
Eventually, we explore a system where we again alternately apply two different coins, but
analyse it as a single-step quantum walk system. This time the analysis focuses on the
k-space representation. Here, we find that chiral symmetry together with a unitary version
of supersymmetry gives rise to anomalously polarised midgap states. The results have
been published in [105], for which the theoretical background has provided by our theory
collaborator.

6.7.1 Midgap States with Anomalous Polarisation
The midgap states can be observed when interfacing two topologically distinct systems.
Figure 6.15, (a) shows the sequence of coins applied for such a configuration. The red
and blue boxes mark unit cells. Here, the order of polarisation rotation angles θ1 and
θ2 is exchanged for each cell in regard to the neighbouring one. The polarisation of the
localised midgap states trapped by the interface is illustrated in Figure 6.15, (b).
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Figure 6.15: (a): Coin sequence applied for interfacing two topologically distinct systems.
The positions of polarisation rotation angles θ1 and θ2 are exchanged for neighbouring cells.
(b): The polarisation of the localised midgap states for each position. (c): The quasi-energy
band structure for λ(k) = e−iε(k) which exhibits four symmetric band. The shown values
correspond to θ1 = 1 and θ2 = 0.2. The experimentally realised midgap states are at λ = ±i
(marked by red dots). Figure modified from [105].

The periodic system consisting of the two-site unit cells is analysed with Floquet-Bloch
theory [46, 47], yielding the following eigenvalue equation for the walker’s wavefunction
ψ(k) with the quasienergy bands λ(k) = e−iε(k):

u(k)ψ(k) = λ(k)ψ(k) (6.19)

Here, u(k) denotes the walk operator in k-space:

u(k) =
(

0 σxf−kσxĈ(θ2)
fkĈ(θ1) 0

)
(6.20)

In the above equation σx stands for the Pauli matrix and the matrix fk is defined as
follows:

f(k) =
(

1 0
0 eik

)
(6.21)

Four symmetric bands λ1(k) = λ∗2(k) = −λ3(k) = −λ∗4(k) can be deduced from the
eigenvalue equation (see Figure 6.15, (c)). We find gaps between the bands at λ = ±1
and λ = ±i. The experimentally realised midgap states with circular polarisation are at
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λ = ±i (marked by red dot). In order to derive their origin, we conduct a basis change to
the symmetric basis:

|H ′〉 = cos(ϕ/2) |H〉+ i sin(ϕ/2) |V 〉
|V ′〉 = cos(ϕ/2) |V 〉+ i sin(ϕ/2) |H〉

(6.22)

In this basis, the walk operator from (6.20) obtains the following form:

u
′(k) =

(
0 Ĉ(ϕ1/2)σxf−kσxĈ(ϕ2/2)

Ĉ(ϕ2/2)fkĈ(ϕ1/2) 0

)
(6.23)

We find two symmetries for u′(k), namely u′�(k) = σyu
′(k)σy and u′(k) = −Σzu

′(k)Σz
with σy being the Pauli matrix operating on the polarization degrees of freedom and Σz
the Pauli matrix acting on two positions in the unit cell.
Consequently, we find the following relation connecting the eigenvalues λ and σy:

0 = ψ�(σyu
′ − u′�σy)ψ = (λ− λ−1)ψ�σyψ (6.24)

Unless λ = ±1, the condition requires the expectation values 〈σy〉 to be 0 which means
that the circular parts of the states average out over a unit cell in the H’/V’ basis.
In addition, σy and Σz are related to λ according to the following condition:

0 = ψ�(Σzσyu
′ + u

′�Σzσy)ψ = (λ+ λ−1)ψ�Σzσyψ (6.25)

From the above expression we can derive the condition 〈Σzσy〉 = 0 unless λ = ±i
which signifies that the circular parts of the states do not average out over a unit cell.
Consequently, only states with vanishing circular components, i.e. linearly polarised states,
can fulfil (6.24) and (6.25) simultaneously, unless λ = ±1,±i. This condition distinguishes
anomalously polarised midgap states with λ = ±1,±i which we experimentally access for
λ = ±i as described in the following.
Note that the symmetry properties exhibited by the unitary u(k) are analogous to those
of a supersymmetric Hamiltonian which is why we speak of a supersymmetric polarisation
anomaly in this chapter.

6.7.2 Experimental Investigation of Midgap States
We experimentally realise both the bulk and the interface configuration. In the bulk config-
uration coins with rotation angles θ1 = 1.29π and θ2 = 0.17π are applied alternately in the
same sequence on the whole graph. In contrast, the interface configuration incorporates a
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change in the order of the coins between sites x = 0 and x = 1. The walker is expected to
exhibit different degrees of trapping at this interface depending on its initial polarisation.
Figures 6.16 (a)-(d) show chessboard diagrams of the walker’s intensity distribution for
the interface configuration ((a) and (b)) as well as the bulk configuration ((c) and (d)).
Furthermore, horizontal input polarisation (|H〉) is investigated with results shown in
Figures 6.16, (a) and (c), while the results for the input polarisation ĈQWP(137◦) |H〉 are
given in Figures 6.16, (b) and (d). Already here we can see that the trapping depends on
both the graph configuration and the initial polarisation.
This dependency is investigated in a more systematic way as shown in Figure 6.16, (e):
Depending on the polarisation rotation angle α for the initial state we obtain varying
probabilities of finding the walker at position 0. The orange resp. green markers give the
experimental values after 13 steps for the interface resp. the bulk configuration, while the
solid resp. dashed lines give numerically calculated values for 13 resp. 100 steps. We see
that the interface configuration exhibits a significantly higher degree of trapping indepen-
dent of the initial polarisation. For the interface configuration the trapping is highest for
linear input polarisation and lowest for circular polarised light, while for the bulk configu-
ration the intensity at position 0 peaks for an input polarisation given by ĈQWP(45◦) |H〉
and shows little dependency on α for values greater than 100◦. Note that the relatively
high probability to find the walker at position 0 for α = 45◦ seems to be a result of the rel-
atively small measured step number, as it is expected to be significantly lower for 100 steps.
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Figure 6.16: (a)-(d): Chessboard diagrams for the walker’s evolution for both the inter-
face configuration ((a) and (b)) as well as the bulk configuration ((c) and (d)). (a) and (c)
correspond to horizontal (|H〉) input polarisation, (b) and (d) to ĈQWP(137◦) |H〉. The
impact of the initial polarisation on the trapping, i.e. the intensity at position 0 after 13
steps, is shown in (e): The orange markers (experimental data) resp. curves (numerical
data) correspond to the interface configuration, the green markers and curves to the bulk
configuration. The solid lines give the numerical values for 13 steps, the dashed lines for
100 steps. Figure from [105].
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The polarisation dependence of the excitability of the midgap state results from the
system’s symmetry properties. In contrast to the input states, symmetry constrains imply
horizontal polarisation for the bulk states and circular polarisation alternating from site
to site (see Figure 6.15, b) for the interface states [105]. We perform a state tomogra-
phy after the walker’s evolution over 17 steps in order to measure its full polarisation
state for the interface configuration. This is done by conducting measurements in the
horizontal-vertical, diagonal-anti-diagonal and right- and left-handed circular basis, thus
allowing for determining the Stokes parameters Si and the corresponding density matrices
ρ = 1/2∑3

i=0 Siσi. The measured density matrices are shown in Figure 6.17. Note that
these are presented in the symmetric basis as defined by (6.22).

Figure 6.17: The density matrices for the trapped midgap state at position x = 0 after
an evolution over 17 steps in the interface configuration. The experimental results for the
real and imaginary part are shown in (a) and (b), the numerical predictions in (c) and
(d). The H’H’ and the V’V’ component for the real part exhibit almost equal amplitudes,
while the V’H’ and the H’V’ component for the imaginary part exhibit a phase shift of
π/2. Consequently, the observed density matrices are indicative of right-handed circular
polarisation. The shown data corresponds to horizontal input polarisation. Figure from
[105].

The measured as well as the numerically obtained density matrices show that the
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trapped midgap states for horizontal input polarisation exhibit right-handed circular
polarisation with the experimental polarisation state being (0.70± 0.03) |H ′〉+ (0.71±
0.02)e(0.47±0.02)iπ |V ′〉 and the numerically state given by 0.72 |H ′〉+0.69e0.50iπ |V ′〉. These
result agree with the expected right-handed circular polarisation 1/

√
2(|H ′〉+ i |V ′〉) on

even sites and thus verify the anomalous expectation values.

6.8 Conclusion: Accessibility of Topological Properties
We have seen that the presence of chiral, particle-hole as well as time-reversal symmetry
in split-step quantum walks leads to the emergence of topological invariants. It depends
on the concrete experimental setting how these invariants manifest themselves.
The scattering approach translates them into measurable reflection amplitudes and a
bulk-boundary setting interfacing two samples with different topological properties leads to
the emergence of localised edge states which are robust against disorder. The presence of
these states in the absence of disorder is strong evidence that they are indeed a topological
phenomenon and not the result of Anderson localisation.
The decoupling approach and the phase-reference method extend the range of accessible
properties to the eigenvalues of edge states, providing even stronger evidence for their
topological origin.
The third scheme demonstrates that a split-step quantum walk is not necessarily required
for the emergence of topologically protected states. Here, chiral symmetry in combination
with an unitary version of supersymmetry leads to the emergence of midgape states with
anomalous polarisation.
So far our experiments have been conducted with coherent input states. Investigating the
effect of topological properties on networks of multiple quantum particles, i.e. multiple
single photons in our case, is a very interesting outlook, as it has been suggested that
noise-robust quantum information processing can achieved via topological protection
[187, 188, 189, 163].





7 Experiments with Coherent States Part 2:
Investigating Measurement-induced Effects

In chapter 3.5 we discussed to what extent a quantum mechanical evolution according to
the four axioms [102] can be simulated with classical, i.e. coherent states. Here, we show
that the implications of the third axiom, i.e. projective measurements can be simulated
with coherent states as well.
In order to do so, we investigate the difference of the recurrence as our figure of merit in
two different measurement schemes.
On the experimental side, we harness the possibility of deterministic outcoupling with
EOMs 2 and 3 to implement inhomogeneous losses, dubbed sinks.
The results have been published in [77].

7.1 Recurrence
7.1.1 Reset and Continual Scheme
The term recurrence corresponds to the return of a dynamical system to its initial state or
very close to it. First studies of this property were conducted for classical random walks
[190]. Referring to the author of this work, the probability of the walker to return to the
origin in the limit of an infinite number of steps is also called Polya-number. Later studies
were extended to quantum walks [191, 192].
The recurrence probability as a function of the step number can be defined in two different
ways: Either depending on the probabilities that the walker has returned to the origin
at all in a certain step or depending on the probabilities that the walker has returned
for the first time in a certain step. In the first case, it is possible to measure the return
probability for a certain step and then start a new experimental run, i.e. we reset the
walker to its initial conditions and let it evolve again. Consequently, this definition of the
return probability belongs to what we call the reset scheme.
The second case, on the other hand, requires having a certain knowledge of the walker’s
position for all steps prior to the one for which the return probability is to be determined.
In an experimental setting this involves measuring whether the walker is at the origin
and continuing the experiment afterwards. Thus this definition of the return probability
corresponds to what we dub the continual scheme.
In the reset scheme, the return probability Pr(T ) after T steps is determined in independent
trials in each of the preceding steps t. A trial in a certain step t yields the probability
p(0,t) to find the walker at position 0 in this particular step. Since these are independent,

123
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the probability that we do not find the walker at the origin in any of the steps is given by
the product

T∏
t=1

(1− p(0,t)). The return probability Pr(T ) for the reset scheme is then the
probability of the complementary event and given by the following formula:

Pr(T ) = 1−
T∏
t=1

(1− p(0,t)) (7.1)

In the continual scheme, on the other hand, the probabilities q(t) of a first time return in
step t are mutually exclusive. Consequently, the return probability Pc(T ) for the continual
scheme after T steps is given by the sum over the probabilities of all previous steps:

Pc(T ) =
T∑
t=1

q(0,t), (7.2)

For an unbiased classical random walk on a line or in a plane both Pr(T ) and Pc(T ) reach
1 for infinite step numbers T , i.e. both schemes are recurrent.
However, reset and continual scheme lead to qualitatively different results when considering
a quantum walk described by a wavefunction |ψ(t)〉 and a unitary [191, 192].

7.1.2 Walker’s Evolution with Projective Measurements
In the reset scheme the evolution of the wavefunction |ψ(t)r〉 is obtained by the t-times
application of the unitary Û :

|ψ(t)r〉 = Û t|ψ(0)〉 (7.3)

The probability p(0,t) to find the walker at the origin is then given by the following
expression, which assumes an unperturbed evolution over t steps:

p(0,t)r = |〈0|ψ(t)r〉|2. (7.4)

In the continual regime we have to account for the fact that here the recurrence probabilities
for a certain step t involve knowledge of the walker’s state in previous steps. More precisely,
only photons that have reached the origin for the first time are accounted for. This
corresponds to projecting the walker’s state to the complement of the position-0-subspace,
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which is mathematically described by the projection operator M̂0
⊥:

M̂0
⊥ = 1̂− |0〉〈0| (7.5)

In case the photon has not been detected in any of the t− 1 previous steps, the state of
the walker in step t is given by the wavefunction |ψ(t)c〉:

|ψc(t)〉 = 1
√
st−1

Û (M̂0
⊥
Û)t−1|ψ(0)〉 (7.6)

The term √st−1 in the above expression denotes the survival probability until step t, i.e.
the probability that the walker has not reached the origin until this step:

st−1 =
∥∥∥(M̂0

⊥
Û)t−1|ψ(0)〉

∥∥∥2
. (7.7)

The expression for the recurrence probability p(0,t)c in the continual scheme is analogous
to (7.4), i.e. p(0,t)c = |〈0|ψ(t)c〉|2. The first return probability q(t) needed to determine
Pc(T ) is obtained by multiplying p(0,t)c with the survival probability st−1:

q(0,t) =
∣∣∣〈0|Û (M̂0

⊥
Û)t−1|ψ(0)〉

∣∣∣2 = st−1 pc(0,t). (7.8)

The multiplication with the survival probability is due to the fact that proper normalisation
of the wavefunction after a projection requires dividing by the survival probability but the
"non-survival"-events are not counted in the first return probability q(t). Consequently, we
have to reverse the normalisation again by multiplying with the survival probability.
As already mentioned, we expect qualitatively different results for the Polya-number in
the reset scheme Pr = limT→∞ Pr(T ) and the Polya-number in the continual scheme
Pc = limT→∞ Pc(T ): The former one attains a value of 1 and thus reflects a recurrent
regime, while the latter one is assumed to be 2/π and is thus indicative of a transient
regime [192].

7.2 Experimental Implementation
Since we want to show that an evolution according to the third axiom can be obtained
with coherent states, the walker in this experiment is an attenuated laser pulse.
In order to experimentally investigate the different recurrence probabilities for the two
schemes, we have to implement a projection according to (7.5). We achieve this by making
use of the active in- and outcoupling with EOMs 2 and 3 which allow to send the light at
individual positions either to the detection unit or back into the feedback-loop. Figure
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7.1 illustrates the evolution in the two cases with a beam splitter cascade: In the reset
scheme (a) the walker evolves in an unperturbed way until the final detection, while it
is projected to the complement of the position-0-subspace in intermediate steps of the
continual scheme.

Figure 7.1: Illustration of the implementation of both the reset scheme (a) and the con-
tinual scheme (b). In the reset scheme we measure the probability to find the walker at
the origin after an unperturbed evolution. In contrast, the continual scheme contains pro-
jections M̂0

⊥ to the complement of the position-0-subspace in intermediate steps. This is
achieved by implementing losses for position 0, dubbed sinks, which are indicated by the
black dots. Figure from [77].

In the experiment, these projections are implemented by switching the light at position
zero out of the setup for all steps preceding the one in which q(0,t) is measured. For
brevity’s sake we call these operations sinks in the following. Their implementation is
made possible by the switching speed of the EOM which allows to address individual
positions of the walk. Note that due to imperfect extinction of the EOM switchings and
PBS 2 not all of the light is switched out of the setup and we account for this residual
transmission of the sinks in the numerics and error bars.
Figures 7.2 (a) and (b) show the measured intensity distribution in step 30 for the two
regimes. The effect of the sinks is clearly visible as missing intensity around the origin in
Subfigure (b). It is also prominently manifested in the chessboard diagrams of the evolution
over 36 steps (Figures (c) and (d), where the region around the middle is significantly
darker in the right Figure.
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Figure 7.2: (a) and (b): Bar chart representation of the intensity distribution in step 30
for both the reset (right) and the continual regime (left). Orange (red) bars correspond to
the experimental (numerical) values for horizontal polarisation and light (dark) blue bars to
the experimental (numerical) values for vertical light. (c) and (d): Chessboard diagram of
the evolution over 36 steps for the reset (right) and the continual regime (left). Figure from
[77].

From the measured intensity distributions we extract the step-wise evolution of the
recurrence probabilities Pr(T ) and Pc(T ) according to (7.1) resp. (7.2). The results are
shown in Figure 7.3. The quantitative and qualitative difference between the two regimes
is clearly visible: The recurrence probability in the reset scheme (red dots resp. orange
line for the numerical values) keeps increasing monotonously for all of the measured steps
and is predicted to reach 1 in the asymptotic limit. In contrast, the continual scheme
results in a recurrence probability (blue dots resp. green line for the numerical values)
that quickly attains a value close to 2/π and remains constant within the experimental
error for all subsequent steps. As the quantitative difference between the two schemes
is clearly larger than the error bars, the transition between them induced by projective
measurements is experimentally verified.
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Figure 7.3: The evolution of the recurrence probability over 36 steps for both the reset
(red dots for measured values and orange line for numerical prediction) and the continual
scheme (blue dots for measured values and green line for numerical prediction). The error
bars are obtained by numerically simulating deviations from the best fit of ±1 for coupling
efficiencies, ±0.15% for the coin angle and possible residual sink transmission of 1%. Figure
from [77].

In conclusion, these results show that an evolution according to the third axiom of quantum
mechanics (projective measurements) can be simulated with coherent, i.e. classical, states.
As an outlook, the absorptive sinks could be used to simulate the annihilation of an
electron and a positron following Hardy’s experiment devised to test local hidden variable
models [193]. Other possible application could lie in the investigation of interaction-free
measurements [194].



8 Time-multiplexed HOM-Dip
In section 3.3.2 we saw that HOM-interference crucially depends on the purity of the input
states. In an experimental setting purity is lost when the state’s multi-mode structure
cannot be resolved during detection and is consequently traced out. A prominent example
of a degree of freedom where undesired multi-modedness can occur are the frequency modes
of a PDC state. In this regard, a possible solution consists in ensuring single-modedness,
e.g. via source engineering [147, 148]. An opposite approach would be to guarantee purity
by conducting mode-resolving measurements. As this would require detectors that are able
to distinguish different modes, such an approach is challenging in terms of implementation.
Considering time-frequency modes in the Schmidt-basis, a possible device is a quantum
pulse gate [195, 196]. Another approach suggested consists in quantum beat interference
[197].
On the other hand, multi-modedness cannot only be considered a source of undesired
reduction of purity, but also provides a higher-dimensional basis for information encoding.
Consequently, it seems desirable to deliberately synthesize and read-out the mode structure
of quantum states.
Even though photons are thought of as indivisible particles, they can nevertheless be
delocalised over multiple modes in a certain degree of freedom, e.g. positions or time bins.
In the following we introduce a scheme in which we deliberately split photons up into
multiple time bins and then make them interfere [198]. We can think of the resulting
experiment as a time-multiplexed beam splitter (illustrated in Figure 8.1): It interferes
the two subsystems A and B, each constituted by one of the interfering photons.
By splitting these photons up in time, we imprint an additional mode structure on them.
As indicated by the flipped envelop for subsystem A, the eventual interference is sensitive
to the phase between the time bins, so that we can speak of the coherent control of
quantum interference. The term coherent control (see [199] for a review) is commonly used
for tailoring the outcome of chemical reactions by controlling the interference of competing
reaction path ways. In this sense, we can think of our experimental results as being the
consequence of the interference of multiple paths leading to the same detection event.

129
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Figure 8.1: Illustration of a time-multiplexed beam splitter: Two photons constituting the
subsystems A and B are split-up in time and brought to interference at multiple positions
(modes or bins) in time. The flipped envelop for subsystem A indicates that the coherence
between the individual time bins plays role. Coincidence detection can be conducted in
either a mode-resolving or a mode-bucket scheme. In the first case only coincidences at a
certain position are counted, while in the latter scenario coincidences spread across the two
time bins are accounted for as well. The colour coding is consistent with the convention
used throughout this work, i.e. red corresponds to horizontal light and blue to vertical light,
as photons from subsystem A impinge with horizontal polarisation on the PBS where the
final interference takes place, while those from subsystem B exhibit vertical polarisation.

The outcome of the interference is read-out in a coincidence measurement. Here, coin-
cidences can either be detected in a mode-resolving detection scheme, where they are
only registered when they happen between modes associated to the same time bin or in
a mode-bucket detection scheme, where they are also counted when they occur between
modes belonging to different time bins. We will refer to coincidences in a mode-bin
resolving detection scheme also as coincidences under strict conditions and to coincidences
in a mode-bucket detection scheme as coincidences under loose conditions. In the mode-
or time-bucket detection scheme, we loose all information on which photon paths have
contributed to a certain coincidence event, which is analogue to the different possible
paths that can lead to a certain state in a chemical reaction.
In the following, we will see how shaping the mode structure of the subsystems leads to
qualitatively different outcomes of HOM-interference experiments (see section 8.1). In
addition, we investigate visibilities when the two subsystems are temporally shifted relative
to each other in section 8.2.
Section 8.3 is devoted to studying the case in which each photon is split up into three time
bins.
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Subsequently, we discuss the numerical modelling of the time-multiplexed HOM-dip exper-
iment in section 8.4.
Section 8.5 is then devoted to investigating with coherent states how the time-multiplexing
network affects visibilities.
Splitting up photons into multiple time bins can under certain conditions increase the
detrimental effect of higher photon-number components, which is analysed in section 8.6.
An experimental investigation of imperfections is discussed in section 8.7.
Eventually, we draw a conclusion in section 8.8.

8.1 Probing Parity
One of the most striking differences between time-bin resolved and time-bucket detection
becomes apparent when examining interference depending on the parity of the subsystems,
which reflects the relative phase between the time bins. This is illustrated in Figure 8.1,
where subsystem B exhibits a relative phase of zero between the bins (indicated by the
two blue envelops having the same sign), while there is a relative phase of π between the
two time bins in subsystem A (indicated by the flipped red envelop). Consequently, the
envelop of B does not change when inverting the signs of the time bins, i.e. the system is
of even parity. On the other hand,the envelop of A changes its sign under inversion, i.e.
the system is of odd parity.
In our experiment we can prepare these states by sending two photons with either orthog-
onal or parallel polarisation into the time-multiplexing network. Referring to Figure 8.1,
the two subsystems A and B are represented by a photon in horizontal and a photon in
vertical polarisation. By applying a HWP operation ĈHWP according to (3.16) for the
final interference, the two polarisation modes interfere in the same way as two spatial
modes at a probabilistic beam splitter (see section 5.1).
The protocol implemented for the state preparation is illustrated in Figure 8.2: We generate
two photon pairs (operation marked by G) out of which one photon acts as a herald and
the other is sent into the network. Here, the photons are split up by coin operations ĈQWP
conducted by quarter-wave plates at 45◦. Subsequently, the EOM switches reflection
(denoted by R̂) resp. transmission operations (marked by T̂ ) in order to direct the four
resulting modes such that they interfere again. Depending on the polarisation of the
photons sent into the network, we obtain different interfering states.
Figure 8.2 also serves to illustrate how the two detection schemes can be realised ex-
perimentally: For time-bin resolving detection only coincidences between horizontal and
vertical light at a certain position are counted, while for time-bucket detectors coincidences
between a horizontal and a vertical mode are registered also when these modes belong to
different positions.
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Figure 8.2: Illustration of the protocols for the preparation of the interfering states. (a):
By sending two photons with orthogonal polarisation into the setup, we prepare an inter-
fering state which exhibits the same parity in the two subsystems. (b): Photons initially
having the same polarisation result in a state with two subsystems of different parity. In
both cases the photons are split up by the operation ĈQWP, routed by the operations R̂
and T̂ implemented with the EOM and finally brought to interference by the coin ĈHWP.
Red resp. blue arrows mark the propagation of photons from subsystem A resp. subsystem
B, while red (blue) detector symbols correspond to the detection of horizontal (vertical)
light. Time-bin resolving detection counts coincidences between a horizontal and a verti-
cal mode at the same position, while time-bucket detection also accounts for coincidences
that occur between a horizontal and a vertical mode of different positions. Regarding the
creation operators â� for subsystem A resp. b̂� for subsystem B, the first index denotes the
time bin and the second one the polarisation.

When selecting the signal, i.e. the horizontal polarisation mode, of one photon-pair and
the idler, i.e. the vertical polarisation mode, of the other, we obtain the following state
state |E〉 before the final interference (see Figure 8.2, (a)):

|E〉 = 1√
4

(
−â�−1,H b̂

�
−1,V − â

�
1,H b̂

�
1,V + â�−1,H b̂

�
1,V + â�1,H b̂

�
−1,V

)
|0〉A ⊗ |0〉B (8.1)

Note that here we assume an ideal single-photon state and neglect higher photon-number
contributions, whose influence is investigated numerically in section 8.6. Considering
subsystems A and B separately, this state can be written in the following way:

|E〉 = −1√
2

(
â�−1,H − â

�
1,H

)
|0〉A ⊗

1√
2

(
b̂�−1,V − b̂

�
1,V

)
|0〉B (8.2)
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Note that the two subsystems A and B are assumed to be indistinguishable at the bottom
of the HOM-dip. The above nomenclature is thus only appropriate when the experimental
system is configured such that the delay makes the two subsystems distinguishable.
On the other hand, sending two signal photons, i.e. horizontally polarised photons, into
the setup results in the state |O〉 before interference (see Figure 8.2, b):

|O〉 = 1√
4

(
iâ�−1,H b̂

�
−1,V − iâ

�
1,H b̂

�
1,V + iâ�−1,H b̂

�
1,V − iâ

�
1,H b̂

�
−1,V

)
|0〉A ⊗ |0〉B (8.3)

Again, we can write the state in a way that allows to discern the two subsystems:

|O〉 = 1√
2

(
−â�−1,H + â�1,H

)
|0〉A ⊗

−i√
2

(
b̂�−1,V + b̂�1,V

)
|0〉B (8.4)

Comparing the parity of the individual subsystems for the two cases as given by expressions
(8.2) and (8.4), we notice that in the first case, i.e. for photons input with orthogonal
polarisation, both subsystem exhibit an odd parity, while in the second case, i.e. for
photons with parallel polarisation, subsystem A exhibits odd parity, while subsystem B is
of even parity. Here, the term parity refers to the behaviour of the state when the signs
of the indices of the time bins are flipped: For even parity the state remains unchanged,
while its sign is inverted for odd parity.
In appendix B, we compare the coincidence probabilities for |E〉 and |O〉 after the ap-
plication of the interference coin ĈHWP for either perfect distinguishability or perfect
indistinguishability of the two subsystems. From these considerations we can deduce the
corresponding HOM-dip visibilities. We find that |E〉 exhibits full visibility in both detec-
tion schemes, while |O〉 gives full visibility only for time-bin resolving (tbr) detection. For
a time-bucket (tb) detection scheme, on the other hand, we do not expect any HOM-dip.
Consequently, we find that a time-bin resolving detection scheme is insensitive to the
parity of the subsystems. In contrast, a time-bucket detection scheme leads to full visibility
in case both subsystems have the same parity and no visibility in case the two subsystems
have different parities.
This behaviour is reminiscent of the interference properties of orthogonal sets of modes, e.g.
Schmidt-modes. Indeed for |O〉, even when assuming indistinguishability of subsystems A
and B, the scalar product, i.e. the overlap, of their states |X〉 in position space is 0:

| 〈XO,A|XO,B〉 | = |
1
2(−〈x = −1|+ 〈x = 1|) · (−i |x = −1〉 − i |x = 1〉)| = 0 (8.5)

As the position state |X〉 does not only reflect the time bins the photons are in, but also
the phases between them, terms can cancel each other out. This is analogue to the overlap
integral of orthogonal Hermite-Gaussian modes where negative and positive contributions
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cancel each other out as well.
On the other hand, we obtain an overlap of 1 and thus full visibility for |E〉:

| 〈XE,A|XE,B〉 | = |
1
2(−〈x = −1|+ 〈x = 1|) · (|x = −1〉 − |x = 1〉)| = 1 (8.6)

Bearing these consideration in mind, we turn our attention to the experimental results.
Figure 8.3 shows the experimentally obtained HOM-dips for the states |E〉 and |O〉 for
both detection schemes. The error analysis is conducted in an analogue way to the scheme
explained in section 5.9.

Figure 8.3: (a): Coincidence counts depending on the relative delay between the two
interferometer arms for the state |E〉. Red markers correspond to time-bin resolving detec-
tion, green markers to time-bucket detection. Since time-bucket detection comprises the
combinations accounted for by time-bin resolving detection plus additional ones, we see
twice the number of counts here. (b): Coincidence counts as in the left figure, but for the
state |O〉. Note that for |E〉 the photons are initially spaced two positions apart, for |O〉
only one position apart (see Figure 8.2). |E〉 is thus subjected to two times the delay intro-
duced by the stage, |O〉 only to one time the delay. Consequently, the dip for the latter case
exhibits twice the width of the other one. (c): The difference of the counts in the two detec-
tion schemes. Here, we find a peak that offsets the dip in the time-bin resolving detection
scheme. The dots with error bars for Poissonian errors correspond to the measured counts.
The line gives the values of the Gaussian fit function for which the error (shaded region) is
computed as the mean square deviation of the fit from the data points.

In each measurement run we pick three additional pairs at positions which ensure that
these pairs do not interfere with the measurement of the time-multiplexed HOM-dip.
Signal and idler of two of these pairs are brought to interference passively (illustrated
in Figure 5.1 in section 5.1), i.e. without directing them with any EOM-switchings, and
thus provide a reference for the expected visibilities of a heralded HOM-dip. The third
pair is simply split up and used to extract Klyshko-efficiencies as the ratio of coincidences
and singles for a case in which the coincidences are not subjected to HOM-interference.
These efficiencies are then used to normalise the fourfold coincidences recorded for the
HOM-dips.
As expected, the state |E〉 leads within experimental errors to the same visibilities for both
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detection schemes (0.669 ± 0.072 for time-bin resolving detection and 0.737 ± 0.069 for
time-bucket detection, see Figure 8.3, (a)). This reflects the fact that the overlap according
to (8.6) is insensitive to the detection scheme. The visibilities for the time-multiplexed
HOM-dip compare with a value of 0.749 ± 0.03 for the reference. All three visibilities are
measured for a mean photon number n̄ = 0.1± 0.016.
In contrast, the time-bin resolving detection scheme leads for |O〉 to a visibility of 0.659
± 0.054, while we cannot extract a dip from the data recorded for the time-bucket
detection scheme (see Figure 8.3, (b)). Looking at the difference of the counts in the two
detection schemes, we indeed find a peak that offsets the dip in the time-bin resolving
detection scheme (see Figure 8.3, (c)). This phenomenon is counter-intuitive is so far as
the photons in this case pass the interference coin in different time bins and thus never
physically encounter each other. The visibility of the reference is 0.726 ± 0.017 for |O〉
and n̄ = 0.115± 0.012.
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8.2 Probing Relative Translation

Figure 8.4: (a): Illustration of how two input photons (marked in red resp. blue colour)
in different time bins and polarisation are interfered at a time-multiplexed beam splitter
(indicated by multiple time bins for the input and output ports). For the output state
coincidences (indicated by "&"-symbol) can be detected in either a time-bin resolved way
or for the sum over all time-bins, which can be called time-bucket detection. In case of
time-bucket detection, visibilities are influenced by the parities of the interfering states.
In our setting, the subsystem marked in red is always of odd parity, while the subsystem
marked in blue can exhibit either even or odd parity. (b): Illustration of how the time-bins
belonging to each of the photons are shifted in relation to each other depending on the
value of τ .

In addition to the parity, visibilities depend upon the relative translation of the time bins.
We introduce the parameter τ which quantifies how much the time-bins belonging to one
of the photons are shifted in respect to those of the other photon (see Figure 8.4, (b)).
When splitting a photon into two time-bins, τ = 0 corresponds to complete overlap of the
time-bins of the two photons, τ = ±1 to an overlap of 2 out of 4 bins and τ = 2 to no
overlap.
This scheme can be thought of as a discretised version of conventional HOM-dip experi-
ments [28, 200, 201, 202]. In order to understand how the mode structure in time affects
the interference, we describe the experiment as a series of beam splitters in time that each
interferes two input modes. In our experimental setting, these two modes are horizontal
and vertical polarisation which are brought to interference by a HWP in front of the
detection unit.
For the interference of a signal and an idler photon, i.e. one photon initially in horizontal
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polarisation and one initially in vertical polarisation, we saw that the two subsystems
of the interfering states are expected to exhibit the same parity. As a consequence, the
visibilities for time-bin resolving and time-bucket detection are assumed to be the same in
case their time-bins completely overlap, i.e. τ = 0. On the other hand, shifts between the
bins of the two pulses by τ = ±1 are expected to yield full visibility in case the time-bins
are resolved, but significantly reduced visibilities in case the time-bins are not resolved.
For no overlap, i.e. τ = 2, a dip is not predicted in any detection scheme. Note that in the
following we will examine the effect of varying τ for the state |E〉 alone as a difference to
the state |O〉 is only expected in case two time-bins overlap, i.e. τ = 0, which has already
been investigate in the previous section.
Figure 8.5 provides a schematic of the pulse routing for the four different cases τ = 0,
τ = −1, τ = +1 and τ = 2.
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Figure 8.5: Schematic of the switchings for the cases τ = 0 (a), τ = −1 (b), τ = +1 (c)
and τ = 2 (d). Red resp. blue arrows mark the propagation of photons from subsystem
A resp. subsystem B, while red (blue) detector symbols correspond to the detection of
horizontal (vertical) light. In each of the cases, two photons are split up into modes 1-4,
which are then overlapped again to varying degrees before the final interference takes place.
Time-bin resolving detection counts coincidences between a horizontal and a vertical mode
for the same time bin, while time-bucket detection also accounts for coincidences that occur
between a horizontal and a vertical mode for different time bins.

We see that implementing different values of τ involves different numbers of steps, e.g.
just one step for τ = 2 but 4 steps for τ = −1, resulting in varying count rates for the
same mean photon number n̄. Due to limitations in the measurement time (see section
4.4.1), the value of n̄ that still allows to obtain sufficient click statistics is thus different for
the individual cases, resulting in varying visibilities of the reference HOM-dip. In order
to achieve comparability between measurement conducted with different mean photon
numbers, we consequently calculate visibilities relative to the reference, i.e. the ratio of a
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certain visibility and the visibility of the reference.
As will be elaborated on in section 8.7, the detrimental influence of higher photon-number
contributions on visibilities becomes more severe for cases with partial overlap, i.e. τ = −1
and τ = +1, where spurious coincidences can also be detected for time bins where ideally
only a single photon is expected to arrive. This effect can be counteracted by only consid-
ering coincidences for the time bin where two photons are supposed to interfere, in this
case time bin 0. Consequently, we consider in following for the cases τ = −1 and τ = +1
the visibilities determined for time bin 0 as these are less susceptible to spurious higher
photon-number contributions.

Figure 8.6: Relative visibilities depending on τ calculated as the ratio of the visibilities
for a time-multiplexed HOM-dip and the visibility of the reference HOM-dip. Red markers
correspond to a time-bin resolving detection scheme and green markers to a time-bucket
detection scheme. The grey markers indicate the numerically expected relative visibilites of
1 for full overlap and/or a time-bin resolving detection scheme, 0.25 for partial overlap and
time-bucket detection and 0 for no overlap. Error bars are determined according to (5.23).

Figure 8.6 shows the relative visibilities for time-bin resolving (green markers) as well as
time-bucket detection scheme (red markers).
We observe that time-bin resolving detection preserves visibilities when translating the
two subsystems relative to each other so that they only partially overlap, while visibilities
drop significantly for time-bucket detection. In case there is no overlap at all, i.e. τ = 2,
none of the detection schemes is able to detect a HOM-dip. The grey markers give the
numerically expected visibilities which yield a value of 1 for a time-bin resolving detection
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or τ = 0, 0.25 for a time-bucket detection scheme and τ = ±1 as well as 0 for τ = 2.
In section 8.4 we will take a closer look at how the numerical values for the visibilities are
determined.

8.3 Higher Numbers of Time Bins
The time-multiplexed HOM-dip experiment exhibits scalability in the number of synthesized
modes. In the following, we will demonstrate a proof-of-principle experiment for this
scalability by splitting each of the two photons up into three modes and interfering them
afterwards.
While we are limited to either full or no overlap when changing the phase between two
time bins, a higher dimensional mode structure in time also allows for partial overlap.
Furthermore, we can pick different subsets of two out of the three modes that then again
show either full or no overlap.
The experimental results are shown along with numerically obtained values in Figure 8.7.
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Figure 8.7: Relative visibilities for three bin scenarios with different relative phases and
time bins taken into consideration (marked in red). The dashed grey lines gives the theoret-
ically expected visibilities for either full, partial or no overlap.

With a relative phase of zero between all three bins (scenario 1) we observe a relative
visibility close to 1 even when tracing out over the time bins in a time-bucket detection
scheme. In scenarios 2-5 the relative phases are such that the contributions of two out of
the three time bins cancel each other out, so that we expect a relative visibilities of 1/9 (see
(8.8)) when accounting for all three time bins in a time-bucket detection scheme (scenario
4). In contrast to a system with two time bins we do now, however, have the possibility to
pick two out of three time bins for the time-bucket detection. In scenario 3, both of them
exhibit a phase of π between the two subsystems and thus add up constructively, yielding
full visibility. On the other hand, in scenario 5 the two subsystems have a relative phase
of zero for one of the time bins and a relative phase of π for the other, such that they add
up destructively and we see no visibility in either experiment or numerics. Mode-resolving
detection (scenario 2), i.e. analysing each of the three time bins separately, yields as
expected full visibility.
In this regard, the scalability of our architecture allows to increase the number of time
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bins in a straightforward way while retaining full control over phases and polarisation.

Figure 8.8: (a): Switching pattern to implement the two subsystems with parallel bins
i.e. a relative phase of 0 between all of them. (b): Switching pattern to implement the two
subsystems with partially orthogonal bins i.e. some exhibit a relative phase of π between
them.

Figure 8.8 shows the switching patterns implemented for splitting the subsystem up into
three bins. Each of the photons is subjected three times to the coin operation ĈQWP(45◦)
which is spreading it out over 4 time bins. Three of these are brought to interference,
while the fourth ones are not recorded. Routing these bins to a position where they both
interfere would require a significant number of additional steps.
Realising the pattern shown in Figure 8.8, (a) results in the following interfering state in
which all bins exhibit a relative phase of 0:

|P 〉 = 1√
3

(
â�−1,H + â�1,H + â�3,H

)
|0〉A ⊗

1√
3

(
b̂�−1,V + b̂�1,V + b̂�3,V

)
|0〉B (8.7)

In contrast, the pattern depicted in Figure 8.8, (b) implements a state that also exhibits
relative phases of π between individual bins:

|O〉 = 1√
3

(
−â�−1,H − â

�
1,H + â�3,H

)
|0〉A ⊗

1√
3

(
b̂�−1,V − b̂

�
1,V − b̂

�
3,V

)
|0〉B (8.8)
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Comparing the overlaps of the states|X〉 in position space, we find | 〈XP,A|XP,B〉 | = 1 and
| 〈XO,A|XO,B〉 | = 1/9.

8.4 Simulating Time-multiplexed HOM-Dip with QuTip
In order to get estimates for the influence of possible experimental imperfections such as
higher photon-number contributions, losses or dark counts, we implement a numerical
simulation of the system in QuTip. Figure 8.9 shows a schematic of the operations
implemented in QuTip to simulate the time-multiplexed HOM-dip.

Figure 8.9: Schematic of the operations implemented in QuTip in order to simulate the
DHOM measurement for the τ = 0 case. The simulations are conducted for either PDC or
coherent states as the input. Note that we use ancillary modes to mimic distinguishability
that are omitted in this sketch for clarity. The same applies to the herald modes.

We start with two input states that are either PDC or coherent states. As will be elaborated
on in section 8.5, the latter states can be used to investigate effects of the loop on visibilities
independent of source characteristics such as the mean photon number.
The input states undergo the beam splitter operation ÛQWP(θQWP = π/4), implementing
the required splitting of the photons. Subsequently two of the four output modes are
swapped such that they can interfere with an output mode of the other input state. This
swapping is conducted by the unitary ÛQWP(θQWP + θEOM) which leads to a perfect
transfer for θEOM = π/4 and no swap for θEOM = −π/4. The actual interference then
takes place with the operation ÛHWP(θHWP = π/4).
The final detection counts coincidences between the two modes marked in blue and red for
either the two top or the two bottom modes under time-bin resolved (tbr) coincidence
conditions or for all four modes under time-bucket (tb) coincidence conditions. Visibilities
are then evaluated by introducing distinguishability in a way similar to the scheme described
in section 5.6. Since our system now has a higher number of modes, we have to implement
two ancillary modes for each of the two mode pairs can produce strict coincidences.
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For the coin and EOM operations we are assuming unitaries of the following form:

ÛQWP(θ) = e−iθ(ââ
�+â�â) (8.9)

For the QWP inside the feedback loop we set θ to π/4. The coin outside the loop is fixed
to a phase of π/4 and modelled by a slightly different unitary, since it is not a QWP but a
HWP:

ÛHWP(π/4) = eπ/4·(−i)·(iââ
�−iâ�â) (8.10)

As we have seen in section 5.1, we could as well implement this coin with a QWP. Due to
availability, however, we use a HWP and thus account for it in the numerics to rule out
unforeseen consequences.

8.5 Time-multiplexed HOM-Dip with Coherent Light
In order to examine effects on the visibilities originating from the light’s propagation a
through time-multiplexing network independent from source properties such as spectral
characteristics and mean photon number, we investigate time-multiplexed HOM-dips for
coherent input states (compare with 5.11).

8.5.1 Mean Photon Number
First, we verify numerically that coherent input states allow in good approximation for
measuring visibilities independent of the mean photon number n̄. Herefore, we consider
the τ = 0 case (shown in Figure 8.10,a) under strict coincidence conditions. Even for
a mean photon number of 1, visibilities of above 0.49 are predicted for low values of
imbalanced loss, while the mean photon number in the experimental runs with coherent
states is around 0.3. Consequently, we assume that visibilities measured with coherent
states are not affected by the mean photon number. Note that in order to handle the
computational complexity of the numerical simulation, the implemented Fock space is
limited to 5 dimensions for the numerical runs involving coherent states.
The high resilience of visibilities towards the increasing the mean photon number is
reminiscent of the result presented in section 5.11.
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Figure 8.10: (a): Numerically simulated visibilities depending on the mean photon num-
ber for coherent input states in the τ = 0 case for different values of loss on one input mode.
(b): Numerically simulated visibilities depending on the beam splitter angle of the EOM
operation in radiant for different values of loss on one input mode. Squares represent coin-
cidences under strict conditions, circles coincidences under loose conditions. For coherent
input states these are close to zero.

8.5.2 EOM Beam Splitter Angle
Experimental imperfections that can possibly affect the visibility of time-multiplexed
HOM-dips include inaccurate settings of the static (HWPs and QWPs) as well as of the
dynamic coins (EOM-switchings), imbalanced losses and phases acquired by parts of the
state during evolution.
Ideally, a perfect swap operation between a mode of the upper input state and a mode
of the lower input is conducted in the second stage of the scheme (section B in Figure
8.9). Concerning the physical implementation in the setup, this corresponds to offsetting
the coin operation of the QWP exactly with the switching operation of the EOM. In the
numerical implementation, however, a perfect swap operation requires the sum of the beam
splitter angle of the QWP operation and the beam splitter angle of the EOM switching to
be π/2. Assuming the QWP angle to be π/4, we simulate the effect of deviations of the
EOM switching from its ideal angle which is π/4 as well.
Figure 8.10, (b) shows the resulting visibilities over the EOM beam splitter angle for
different amounts of imbalanced loss (see the next subsection for how imbalanced losses are
implemented). We see that the slope of the visibility around the maximum is low enough
to allow for small experimental imperfections in the EOM switching without drastic effects
on the visibility. In addition, we see that visibilities under loose conditions are close to
zero for coherent input states.
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8.5.3 QWP Beam Splitter Angle
Concerning the static QWP, we consider a deviation of its angle from the ideal value of
π/4. Figure 8.11, (a) shows the numerically calculated HOM-dip visibility depending on
the EOM angle in radiant for different angles for the static QWP. We see that an imperfect
angle setting of the QWP shifts the EOM beam splitter angle for which we expect optimal
visibility. Furthermore, the plot shows that we do not expect small deviations of the QWP
angle from π/4 to have a significant impact on the visibility.

Figure 8.11: (a): Numerically calculated HOM-dip visibility depending on the EOM
angle in radiant for different angles (also in radiant) of the static QWP. Again, visibilities
under loose coincidence conditions are very low. The grey dashed line marks an EOM angle
corresponding to π/4. (b): Expected visibility for a coherent input state depending on the
balancedness parameter B.

8.5.4 Imbalanced Losses
When evaluating imbalanced losses, we have to consider that there are four different input
ports for the two final time-multiplexed beam splitter operations UHWP(θHWP) (section C
in Figure 8.9). In the case in which one of the initial input states is subjected to higher
losses than the other (section A in Figure 8.9), for example due to an inhomogeneous
picking operation by the EOM for different positions (see section 4.3.2), two out of the
four modes eventually interfering in section C will have less intensity than the other two.
In the experiment, these imbalances could as well originate from imbalanced losses for
different paths. The origin of the different intensities is, however, not important, it only
matters that there is an interference of unequal inputs.
The case under investigation, i.e. imbalanced inputs at both interference positions, should
exhibit a higher susceptibility to imbalanced losses than other possible cases, e.g. when only
one out of four input modes of the final interference is subjected to losses. We investigate
the most imbalanced case numerically by implementing a tunable beam splitter operation
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to an ancillary mode that is then traced out for one mode of the initial input state in
section A. All of the graphs shown for imbalanced losses in Figure 8.10 are computed in
this way.
If we numerically simulate, on the other hand, imbalanced losses introduced after the
interference, i.e. in the detection, we do not observe any degradation of the visibility
depending on the amount of loss.
In addition, the imbalanced losses can be modelled as an imbalance of the beam splitter
at which the photons finally interfere [198]. Here, a beam splitter unitary ÛBS of the
following form is assumed:

ÛBS =
(

u v
−v∗ u∗

)
(8.11)

The balancedness parameter B is then defined as B = |u|2 − |v|2, which leads to the
following expression for the visibility in the strict case [198]:

Vis = Visref ·
1−B2

1 +B2 (8.12)

Here, Visref denotes the visibility assuming a value of B = 0 for an ideal 50:50 beam
splitter, which is Visref = 0.5 for coherent input states. Figure 8.11, (b) shows the expected
visibility for such a state as a function of the balancedness parameter B. We see that
the effects on the visibility are rather small for a balancedness parameter of up to 0.5.
Furthermore, the results are in qualitative agreement with the numerical simulations
implemented in QuTip (see Figure 8.10, (b)).

8.6 Effects of Partial Overlap
Having numerically investigated potential effects on the visibilities arising from imperfec-
tions of the time-multiplexing network, we now turn our attention to how splitting up
photons into multiple time bins might enhance experimental imperfections originating
from the source.
For the discussions in section 8.1 we assumed ideal single-photon sources. The heralded
PDC states used in our experiment, however, exhibit exponential photon-number statistics.
Assuming an ideal source the visibility for a time-multiplexed HOM-dip experiment with
τ = ±1 is not expected to differ from a HOM-dip experiment without additional splitting
up of the photons (see section 5.9) when considering a time-bin resolving detection scheme.
In this case, only coincidences between the two polarisation modes for a certain time bin
are counted and for a perfect single photon source these cannot occur unless two modes
overlap at this certain time bin, in which case they also perform a HOM-dip.
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This assumption, however, only holds for perfect single photon sources as otherwise higher
photon-number contributions can lead to coincidences between two polarisation modes
also for time bins where in the ideal case only one photon is expected to arrive.
Again, we investigate this effect numerically with QuTip. Here, we consider two heralded
PDC states which are split into four modes by a Hadamard-like coin. In a time-multiplexed
HOM-dip experiment with τ = ±1, two out of these four modes will overlap and inter-
fere at another Hadamard-like coin, while the other two will simply be split-up by this
coin. The results for time-bin resolved detection are given by the red markers in Figure 8.12.

Figure 8.12: (a): Numerically expected visibilities depending on the mean photon number
n̄ for the τ = ±1 case: The red curve corresponds to time-bin resolving detection. From
the red to the yellow curve the phase on one of the input photons is gradually increased
from 0◦/360◦ · 2π to 40◦/360◦ · 2π. On the other hand, the purple curve gives visibilities
for time-bucket detection. Again, the phase on one of the input photons is gradually in-
creased from 0◦/360◦ · 2π (purple curve) to 40◦/360◦ · 2π (turquoise curve). The black curve
represents a reference HOM-dip without additional splitting of the photons. We assume
contributions from Poissonian noise (α =

√
0.25 · n̄) and single-mode squeezed vacuum

(r∗ =
√

1.5 · 10−4 · n̄) as well as a Klyshko-efficiency η of 0.3. (b): Experimentally obtained
HOM-dip visibilities depending on the Poti setting for the EOM. Scanning the EOM volt-
age corresponds to varying the EOM angle in the numerics. The error bars are determined
according to (5.23) as explained in section 5.9. The rather low absolute values are due to
the fact that they were recorded during the optimisation process and e.g. before fixing the
problems with Piezo-acoustic resonances in the Pockels cells (see section 4.3.2).

They are compared with the results of a reference experiment in which two heralded PDC
states are interfered without splitting them up beforehands (see black markers in Figure
8.12). The parameters assumed for Poissonian noise (α =

√
0.25 · n̄) and single-mode

squeezed vacuum (r∗ =
√

1.5 · 10−4 · n̄) are the same as in section 5.6.
The comparison between the two cases shows clearly that we expect a significant degrada-
tion of visibilities as soon as higher photon number contributions are no longer negligible,
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e.g. an absolute reduction by around 13 % for a mean photon number n̄ = 0.1. Just
considering effect originating from the photon number distribution, this degradation should
be the same for the τ = +1 and τ = −1 case.
In addition, we numerically calculate HOM-dip visibilities for time-bucket detection, which
are given by the purple curve in Figure 8.12. We observe a value of ≈ 0.25 for low mean
photon numbers n̄. This what one would expect from the combinatorial argument that
the two photons end up in the same time bin and thus interfere there with a 25 % chance
when subjected to a 50:50 splitting.
We also investigate the effect of a phase on one of the input photons. To this purpose,
we assume a phase that is increased in increments of 10◦/360◦ · 2π from 0◦/360◦ · 2π
to 40◦/360◦ · 2π. A phase of 40◦/360◦ · 2π corresponds to the yellow (time-bin resolved
detection) resp. the turquoise curve (time-bucket detection). It turns out that at least the
numerics predict a slightly advantageous effect of a phase between input photons on the
visibilities. In an experiment, this phase originates mainly from the relative phase of the
pump pulses and is thus hard to control. Consequently, the most relevant aspect of this
numerical finding is that at least we do not expect a significantly detrimental effect of a
phase between the input photons.

8.7 Experimental Investigation of Imperfections
Since the effect of the mean photon-number on a time-multiplexed HOM-dip-experiment
with coherent input states should be negligible, we expect to obtain a visibility of roughly 0.5.
Indeed, passively routing coherent states from two different time-bins to an interference
position with a scheme as described in section 5.1 yields a visibility of 0.46 ± 0.01.
However, when splitting up the pulses and then merging them again as mandated for a
time-multiplexed HOM-dip (see sections 8.1 and 8.2), we observe drops in the visibility to
values as low as 0.35 ± 0.03 even for the τ = 0 case.
A big difference between passive routing and the time-multiplexed HOM-dip scheme is
the fact that the latter involves switchings of the EOMs for both the coin and active in-
and outcoupling. Insufficient quality of these switchings could lead to unequal intensity
for the path brought to interference. This effect can either be quantified via imbalanced
losses implemented in the numerical simulations with QuTip (see section 5.8) or via the
balancedness parameter as described in section 8.5.4. Both methods yield similar results
and predict that imbalanced losses greater than 50% are required to explain a drop in
visibility of 0.1 as observed in the experiment, i.e. one of the input ports of the interference
beam splitter has only half the intensity of the other. Such imbalances can indeed occur
when the Pockels cells exhibit unwanted acoustic resonances (see section 4.3.1). After
fixing the problem, however, we no longer observe imbalanced losses of this extent.
Another parameter that changes between these two cases is the initial spacing of the
pulses, which is two positions for a time-multiplexed HOM-dip with the state |E〉 and one
position for the state |O〉 or in case of passive interference. Consequently, the reduction
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in visibility could in principle be caused by dispersion in the fibres delaying the pulses.
However, our experimental findings confirm the numerical prediction found in section
5.3, as passive routing of pulses spaced either 1 or 2 positions apart leads to the same
visibilities, when considering the experimental error: By measuring passive interference
between two coherent inputs spaced one and two initial positions apart, we verify that the
effect of dispersion is negligible as we measure a visibility of 0.45± 0.03 for a spacing of
one position and 0.46± 0.03 for two positions.
In order to investigate whether visibilities are reduced by an improper setting of the
voltage applied to the EOM, we scan the voltage applied to the EOM switching between
coin, transmission and reflection operation for voltages ranging from 3.8 to 6.5 on the
control dial where 0 corresponds to an applied voltage of 0 kV and 10 to 2.2 kV. (see
Figure 8.12, (b)). These settings correspond to EOM angles between approximately 0.6
and 1.0 in radiant, so that the negligible variation in visibilities observed experimentally
might be caused by the fact that all of the EOM angles form part of the plateau predicted
by the numerics (see Figure 8.11). It can be concluded that tuning the voltage applied to
the EOM does not allow to significantly increase visibilities.
Detuning the angle of the static coin in the loop by ±2◦ results in both cases in a drop of
the experimental visibility of roughly around 0.02. This change of visibility is within the
experimental error bars and indeed the numerics do not predict a significant influence of
the static coin in the plateau region.
In conclusion, we have thus verified that experimentally obtained visibilities are resilient
towards imbalanced losses (after damping resonances), inaccuracies the initial spacing as
well slightly inaccurate dynamic resp. static coin operations.

8.8 Conclusion for Time-multiplexed HOM-dip
The concept of time-multiplexed HOM-dips harnesses the capability of our time-multiplexing
network to spread photons over multiple time bins in order to synthesize an additional
mode structure for these photons. Time-multiplexed coincidence detection then allows for
either resolving or tracing out this new degree of freedom. When tracing out the time
bins, the HOM-interference becomes sensitive to the phase relation of these bins. By
dynamically reconfiguring the network, we can easily engineer the relative translation of
the time bins as well as their relative phases and thus exert coherent control over quantum
interference.
In an experiment, we probe the interplay between characteristics of the state, i.e. phases
and translation, and the detection scheme. When detecting coincidences in a mode-resolved
way, phases relative to other modes as well as a translation do not affect visibilities. In this
case they are only degraded by the degrees of freedom that our detection cannot resolve,
e.g. Schmidt-modes or photon number.
In contrast to the aforementioned degrees of freedom, we can decide whether the modes
synthesized in time are resolved in a measurement. When deliberately tracing them out,
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we experimentally observe the significance of phase and translation: Concerning the phase,
we can either measure full or no visibility when spreading each photon over two bins.
When scaling the spread up to three bins per photon, we observe also partial visibility
as well as a dependency on the concrete selection of bins considered. The translation,
quantified by the parameter τ , can be tuned in discrete step from full overlap over partial
overlap to no overlap.
The time-multiplexed HOM-dip experiment serves as a benchmark for the performance
of both the PDC source preparing the quantum states as well as the time-multiplexing
network with which they are manipulated. Preparing the time-multiplexed states with a
dynamically reconfigurable fibre network introduces additional experimental challenges
in comparison to passive routing of the pulses: When not counteracted, Piezo-acoustic
resonances in the Pockels cells can bring imbalanced losses to a regime where they signifi-
cantly degrade visibilities. In addition, the detrimental effect of higher photon-number
contributions is increased in case the interfering states only partially overlap. On the other
hand, we find that visibilities show a sufficient resilience towards inaccuracies of static
and dynamic coins, initial spacing of the photons as well as imbalanced losses to assume
that these parameters do not significantly affect the results.
At the time of the writing of this thesis, the results are being prepared for publication.





9 Conclusion and Outlook
The aim of our work was the implementation of a network comprising single-photon input
states, a reconfigurable unitary evolution and the complete read-out of external as well as
internal modes. On the other hand, we saw that a wide range of effects can be investigated
by measuring the results of the coherent propagation of laser light. We thus first look at
these experiments in section 9.1 before we turn our attention in 9.2 to experiments that
indeed require quantum states of light (e.g. squeezed states).

9.1 Experiments with Coherent Quantum Walks
Considering the unitary governing the state’s evolution, certain quantum walk protocols
exhibit symmetries that give rise to topological phenomena (see sections 6.1 and 6.2). In
the context of this thesis we have presented three different approaches:
In the first one we measure scattered amplitudes that are directly linked to topological in-
variants, namely reflection matrix elements. The high degree of reconfigurability regarding
the coin angle in the setup allowed for scans across the topological phase diagram as well
as for probing the effect of disorder on both reflection matrix elements and edge states
emerging at topological boundaries (see sections 6.3, 6.4 and 6.5).
While there is good reason to assume that the localised states observed in the scheme
referred to above are indeed topologically protected edge states, formally showing this
would require the measurement of the eigenvalues corresponding to these eigenstates. The
decoupled split-step quantum walk with a phase-reference as presented in section 6.6 allows
for experimentally accessing the eigenvalues of the walk operator by probing its effect in
relation to a reference.
Eventually, we investigate midgap states characterised by their anomalous polarisation
(see section 6.7).
The implementation of deterministic in- and outcoupling allows to extend the simulation
capabilities of the setup to projective measurements. In an experiment relying on this
ability, we observe a measurement-induced change in the recurrence probability of the
walker (see chapter 7).
The possibility to implement projective measurements via sinks offers an intriguing outlook
for future experiments: Regarding quantum coherence as a signature of the non-classicality
of a Markovian statistics [203], the sinks enable an experimental scheme in which we
quantify non-classicality as function of the evolution’s ability to generate and detect
coherences (CGD).
In the experiment, the CGD depends on the coin angle while the non-classicality is quan-
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tified via the Kolmogorov distance [204] between an unperturbed evolution over a certain
number n of steps and an evolution with a decohering measurement at an intermediate
step number n/2. This decohering measurement can be mimicked in our setup via the
sinks with which we outcouple all but one remaining mode in step n/2. We successively
collect data with all possible modes in step n/2 being the remaining mode in one distinct
run. By summing up the data of the individual runs afterwards, we obtain the same
statistics as for an evolution over n steps that has been decohered in step n/2.
The corresponding data has already been collected and at the time of the writing of this
thesis the paper is being prepared together with our theory partners.
This example illustrates how the sinks could be harnessed to examine open system dynam-
ics, which are relevant e.g. for the study of biological systems [41]. The high degree of
reconfigurability in our setup allows us to easily implement disordered patterns of sinks
that would likely be required for such extensions of the simulating capabilities.
Complementing position-dependent losses via sinks with position-dependent gain could be
a way to implement a system exhibiting parity-time symmetry [205, 206].

9.2 Experiments with Quantum States
While the experiments mentioned above are usually described by the evolution of a wave-
function governed by a unitary, i.e. according to the axioms of quantum mechanics, they
could equally well be understood as the spread of the amplitude of an electric field, i.e. by
referring to a classical picture. In an experimental setting this means that coherent light
and single photons lead to the same results. The reason is the equivalence of the evolution
of single photons and the evolution of coherent light for an initial state occupying only
one position (see appendix A).
One the other hand, we saw that a optical network with universal capabilities in quantum
computation and simulation requires single-photon input states. So where are the limi-
tations of coherent states? Only when considering quantum walks with several walkers
starting at multiple positions the differences between the two types of states become
apparent in a coincidence resolving detection scheme. It is consequently via Hong-Ou-
Mandel-interference that the quantum properties of states are experimentally revealed.
A crucial challenge in setting up the experimental platform thus consists in ensuring the
indistinguishability resp. the purity of the input modes. The three degrees of freedom
requiring most of our attention are found in the temporal domain (sections 5.2 and 5.3),
the frequency space (section 5.4) and the photon-number statistics (section 5.7).
Concerning the temporal characteristics, the most important measures consist in using
a ps source to limit dispersion and minimising fluctuations in the temporal delay via
temperature stabilisation.
In order to achieve purity in the spectral domain, we harness an engineered source for
which a spectral decomposition yields a Schmidt-number close to one.
Eventually, we investigate the effect of higher photon-number contributions numerically
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as well as experimentally. We limit their detrimental effects by implementing two-mode
detection and pumping as weakly as possible.
As a consequence, we experimentally observe HOM-dip visibilities of around 80 % in case
of passive routing, which is in accordance with numerical results.
We synthesize an additional mode structure for the PDC states by spreading their in-
terference over multiple time bins in a time-multiplexed HOM-dip experiment. In such
a scheme we can engineer the phase relation as well as the relative translation of these
modes. The sensitivity to aforementioned parameters depends on whether coincidence
detection is implemented such that it resolves the mode structure in a time-bin resolving
detection scheme or such that the modes are traced out in a time-bucket detection scheme.
We consequently obtain a high degree of control in synthesizing and reading-out the mode
structure of single photons, offering an intriguing insight into the interplay of coherence
and quantum interference.
We have shown a proof-of-principle experiment for the scalability of the network by ex-
tending the splitting of the photons to three time bins. Here, we find multiple ways of
combining the bins leading to qualitatively different results.
Time-multiplexed HOM-interference also serves as a benchmark for the effects of active
routing via EOM switchings on visibilities, showing that the active network does not lead
to a significant degradation in this aspect.
As already mentioned, manipulating a time-multiplexed input state in a fibre network
provides a possible platform for the implementation of boson sampling [51], especially
Gaussian boson sampling [99, 100]. The state-of-the-art efficiencies do, however, not allow
for more than proof-of-principle experiments.
In the previous section we have discussed possible applications of sinks together with
classical input states. In combination with single photons we could implement experiments
realising fundamental tests of quantumness such as the Hardy experiment [193, 207],
interaction-free measurements [194] or tests of the Leggett-Garg inequality [208].
In principle, the setup exhibits the necessary ingredients for the implementation of a
controlled-not gate [209, 88] and thus for linear optics quantum computing [4].
Having a reconfigurable network interfering quantum states available, an interesting
prospect consists in studying the behaviour of quantum particles on a dynamical graph, e.g.
a percolation graph [210]. Here, a concrete idea is using percolation as an entanglement
witness [211].
In summary, we have implemented a system in which highly pure and indistinguishable
photons can be fed into multiple space-like separated modes of a reconfigurable and scalable
network and be detected resolving the mode structure in their internal as well as external
degree of freedom.
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A Appendix: Equivalence of Coherent Light and
Single Photons for a Single Initial Position

Parts of this appendix can be found in [22]. It is based on the work found in [21].
The objective of our experimental work is the investigation of the evolution of the wave
function of a photonic walker, i.e. a single photon. In the following we will show that by
investigating coherent pulses of indistinguishable photons in the same state |Ψ〉, we will
be able to observe the same evolution as for single photons.

We start by defining the creation operator â�i which creates a photon in the i-th mode of
the vacuum state |0〉:

â�i |0〉 = |01, 02, ..., 1i, 0i+1, ..., 0n×2〉 (A.1)

Here, we consider again a space H = Hx ⊗Hc with the dimension n× 2.

The evolution of a single photon can be described with the evolution operator Ûn for the
n-th step and the creation operator â�0 of the initial state:

Ûnâ
�
0|0〉 =

∑
i

Ai(n)â�i |0〉 (A.2)

Ai(n) denotes the probability amplitude of the i-th mode in step n. Accordingly, the
probability P (m,n) to measure the walker in mode m in the n-th step, is given by the
following expression:

P (m,n) = |〈1m|
∑
i

Ai(n)â�i |0〉|2 = |〈1m|
∑
i

Ai(n)|1i〉|2 = |Am(n)|2 (A.3)

In order to simulate the evolution of a single photon with coherent light, the presence
of one photon must not influence the evolution of another. Thus, we take a look at the
evolution of the wave function for p photons which is given by the following term:

1√
p! (Ûnâ

�
0)p|0〉 = 1√

p! (
∑
i

Ai(n)â�i )p|0〉 (A.4)
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To see whether the probability distribution for the outcome of the experiment is altered
by additional photons, we determine the probability P (m,n) of a measurement event in
the m-th mode of step n for the simplest case of p = 2. Both photons are initially in the
same mode, but we consider that the other photon (indexed i′) might be in m as well as
in any other mode in the n-th step.

P (m,n) = |
∑
j 6=m
〈1m, 1j |

1√
2

(
∑
i

Ai(n)â�i )(
∑
i′

Ai′ (n)â�
i′

)|0〉|2

+ |〈2m|
1√
2

(
∑
i

Ai(n)â�i )(
∑
i′

Ai′ (n)â�
i′

)|0〉|2

=
∑
j 6=m
|Aj(n)|2|Am(n)|2 + |Am(n)|4

= |Am(n)|2
∑
j

|Aj(n)|2 = |Am(n)|2

(A.5)

With the term above we see that the probability for a measurement event in mode m
is unaffected by the presence of another photon. Knowing that an additional photon
does not have an effect, the statement can be extended to arbitrarily large number of
indistinguishable photons that are initially in the same mode of |Ψ〉.

In the next step, we examine the evolution of coherent states. In the photon number
representation these can be derived from the vacuum state in the following way with α
being the eigenvalue of the creation operator:

|α〉 = e−|α|
2/2 · eαâ

�
i |0〉 = e−|α|

2/2
∞∑
p=0

αp
â�pi
p! |0〉 (A.6)

Again, all photons are created in the same mode. A quantum walk with a coherent state
is described by altering the term above by including the evolution operator Ûn analogue
to equation (A.2) which describes the evolution of a single photon.

e−|α|
2/2 · eαÛ(n)â�0 |0〉 = e−|α|

2/2 · eα
∑

i
Aiâ

�
i |0〉 = e−|α|

2/2
∞∑
p=0

αp

p! (
∑
i

Ai(n)â�i )p|0〉 (A.7)

The term is of the same form as equation (A.4) which allows us to determine the probability
of a measurement event independent of the presence of another photon. Consequently, we
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can determine P (m,n) analogue to equation A.5:

Pα(m,n) = |〈1m|e−|α|
2/2 · α

∑
i

Ai(n)â�i |0〉|2 = e−|α|
2 · |α|2|Am(n)|2 (A.8)

Thus, the probability distribution of measurement events depending on the mode m and
the step n is in a coherent pulse in principle independent of the other photons, if all
photons are in the same initial state |Ψ〉. The difference to a quantum walk conducted with
single photons is merely a pre-factor depending on α, which affects the overall probability
of a measurement events, but not their distribution over the modes. The relation found
here is of great significance for our experimental work as it shows that quantum walks of
single photons can be simulated with coherent light. Consequently, the experiment does
not require a single photon source, saving a lot of time and resources when setting it up.
The results obtained for a single occupied input position do not mean that there is never
a difference between a quantum walk conducted with coherent light and a quantum walk
with single photons. When considering coincidences in a quantum walk initialised at more
than one position, qualitative differences between coherent states and single photons arise.
The coincidence probability PCoinc,s(m,m

′) between modes m and m′ for two photons a
and b initialised at different positions is given by the following expression:

PCoinc,s(m,m
′) = | 〈1m,1m′ |

∑
i

Aiâ
�
i

∑
j

Bj b̂
�
j |0,0〉 |2

= | 〈1m, 1m′ |AmBm′ â
�
mâ

�

m′
+Am′Bmâ

�

m′
â�m |0,0〉 |2

= |Am′Bm +AmBm′ |
2

(A.9)

In contrast, a coherent state exhibits the following coincidence probability PCoinc,c(m,m
′):

PCoinc,c(m,m
′) = e−2|α|2 |α|4

2 |AmBm
′ +Am′Bm + 1

2AmAm
′ + 1

2BmBm
′ |2 (A.10)

We see that the coincidence probability for a coherent state is significantly altered due to
the fact that here coincidences can originate from the same source.
In conclusion, the difference between coherent, i.e. classical, states and single photons, i.e.
quantum states, is found in the coincidence probabilities, which are related to second-order
coherences.





B Appendix: Parity of Interfering State

B.1 Interfering State with Even Parity
In the following we will show how the parity of the interfering state affects the visibilities
of HOM-dips in either a time-bin resolving or a time-bucket detection scheme. For this
purpose we consider ideal single photon states. In order to account for realistic parameters
concerning the photon-number statistics of the source, we resort to numerical simulations
in QuTip. Note that we always refer to the parity of the interfering state after it has
been transformed in the network and not to the parity of the state initially sent into the
network.
In our experimental setting we obtain an interfering state |E〉 with even parity by sending
a horizontally and a vertically polarised photon that are spaced two positions apart into
the setup (see Figure 8.2, (a)). The coin operation ĈQWP applied during the evolution
is conducted by a quarter-wave plate (QWP), while the final interference coin ĈHWP is
implemented with a half-wave plate (HWP). The routing of the photons is carried out
with the reflection operation R̂:

ĈQWP = 1√
2

(
cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

)
ĈHWP = 1√

2

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)

R̂ =
(

0 −i
−i 0

) (B.1)

The state |E〉 before the application of the final interference coin can consequently be
written in the following way:

|E〉 = 1√
4

(
−â�−1,H b̂

�
−1,V − â

�
1,H b̂

�
1,V + â�−1,H b̂

�
1,V + â�1,H b̂

�
−1,V

)
|0〉A ⊗ |0〉B

= −1√
2

(
â�−1,H − â

�
1,H

)
|0〉A ⊗

1√
2

(
b̂�−1,V − b̂

�
1,V

)
|0〉B

(B.2)

In our notation the two subsystems A and B refer to the two input photons. The first
creation operator in each term of the sum acts on subsystem A, the second on subsystem
B. Since we are assuming an ideal single photon source, all of the two photon terms in
the expression above have to originate from contributions of both input photons.
The application of the final interference coin ĈHWP transforms the state in the following
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way:

1x ⊗ ĈHWP |E〉

= 1√
16

[(â�−1,H + â�−1,V ) · (b̂�−1,H − b̂
�
−1,V )

+ (â�1,H + â�1,V ) · (−b̂�1,H + b̂�1,V ) + (−â�−1,H − â
�
−1,V ) · (−b̂�1,H + b̂�1,V )

+ (â�1,H + â�1,V ) · (b̂�−1,H − b̂
�
−1,V )] |0〉A ⊗ |0〉B

= 1√
16

[(â�−1,H b̂
�
−1,H − â

�
−1,H b̂

�
−1,V + â�−1,V b̂

�
−1,H − â

�
−1,V b̂

�
−1,V − â

�
1,H b̂

�
1,H

+ â�1,H b̂
�
1,V − â

�
1,V b̂

�
1,H − â

�
1,V b̂

�
1,V + â�−1,H b̂

�
1,H + â�−1,V b̂

�
1,H − â

�
−1,H b̂

�
1,V

− â�−1,V b̂
�
1,V + â�1,H b̂

�
−1,H + â�1,V b̂

�
−1,H − â

�
1,H b̂

�
−1,V − â

�
1,V b̂

�
−1,V )] |0〉A ⊗ |0〉B

(B.3)

As can be seen upon closer inspection, the state exhibits even parity, i.e. the signs of the
positions can flipped without changing the overall state.
The above expression contains 16 individual terms, but only a certain number of them
is relevant when detecting coincidences in either a time-bin resolving or a time-bucket
detection scheme. In a time-bin resolving scheme we only record coincidences between the
two polarisation modes of a certain position. Consequently, the relevant (renormalised)
state |E〉tbr in this scenario is the following:

|E〉tbr = 1√
4

[
−â�−1,H b̂

�
−1,V + â�−1,V b̂

�
−1,H + â�1,H b̂

�
1,V − â

�
1,V b̂

�
1,H

]
|0〉A ⊗ |0〉B (B.4)

In case the photons in A and B are perfectly indistinguishable all of these terms cancel
each other out, which results in a HOM-dip which full visibility for this detection scheme.
In a time-bucket detection scheme, we also consider coincidences between two polarisation
that belong to different positions and end up with the following additional terms |E〉diff,tb:

|E〉diff,tb = 1√
8

[−â�−1,H b̂
�
−1,V + â�−1,V b̂

�
−1,H + â�1,H b̂

�
1,V − â

�
1,V b̂

�
1,H

+ â�−1,V b̂
�
1,H − â

�
−1,H b̂

�
1,V + â�1,V b̂

�
−1,H − â

�
1,H b̂

�
−1,V ] |0〉A ⊗ |0〉B

(B.5)

Again, all of these coincidence terms cancel out in case the two photons are indistinguish-
able. It can be concluded that also a time-bucket detection scheme leads to HOM-dips
with full visibilities for an interfering state with even parity.
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B.2 Interfering State with Odd Parity
In a next step we analyse interfering states with odd parity which can be prepared by
sending two photons with the same input polarisation (in this case horizontal polarisation)
into the setup (see Figure 8.2, (b)). In this scenario we obtain the following state |O〉
before the final interference coin:

|O〉 = 1√
4

(
iâ�−1,H b̂

�
−1,V − iâ

�
1,H b̂

�
1,V + iâ�−1,H b̂

�
1,V − iâ

�
1,H b̂

�
−1,V

)
|0〉A ⊗ |0〉B

= 1√
2

(
−â�−1,H + â�1,H

)
|0〉A ⊗

−i√
2

(
b̂�−1,V + b̂�1,V

)
|0〉B

(B.6)

The application of the final interference coin ĈHWP transforms it into the following
expression |O〉aftercoin:

|O〉aftercoin = 1x ⊗ ĈHWP |O〉

= 1√
16

(−â�−1,H − â
�
−1,V ) · (−ib̂�−1,H + ib̂�−1,V )

+ (â�1,H + â�1,V ) · (−ib̂�1,H + ib̂�1,V ) + (−â�−1,H − â
�
−1,V ) · (−ib̂�1,H + ib̂�1,V )

+ (â�1,H + â�1,V ) · (−ib̂�−1,H + ib̂�−1,V ) |0〉A ⊗ |0〉B

= 1√
16

(iâ�−1,H b̂
�
−1,H − iâ

�
−1,H b̂

�
−1,V + iâ�−1,V b̂

�
−1,H − iâ

�
−1,V b̂

�
−1,V − iâ

�
1,H b̂

�
1,H

+ iâ�1,H b̂
�
1,V − iâ

�
1,V b̂

�
1,H + iâ�1,V b̂

�
1,V + iâ�−1,H b̂

�
1,H + iâ�−1,V b̂

�
1,H − iâ

�
−1,H b̂

�
1,V

− iâ�−1,V b̂
�
1,V − iâ

�
1,H b̂

�
−1,H − iâ

�
1,V b̂

�
−1,H + iâ�1,H b̂

�
−1,V + iâ�1,V b̂

�
−1,V ) |0〉A ⊗ |0〉B

(B.7)

Again, we can identify the terms |O〉tbr that lead to coincidences in a time-bin resolving
detection scheme:

|O〉tbr = 1√
4

(
−iâ�−1,H b̂

�
−1,V + iâ�−1,V b̂

�
−1,H + iâ�1,H b̂

�
1,V − iâ

�
1,V b̂

�
1,H

)
|0〉A ⊗ |0〉B (B.8)

All of these terms cancel each other out in case of perfect indistinguishability, so that we
could observe a HOM-dip with full visibility.
In a time-bucket detection scheme the state |O〉tb incorporates additional terms in respect
to |O〉tbr, which we denote |O〉diff . They are given by the following expression:

|O〉diff = 1√
4

(
+iâ�−1,V b̂

�
1,H + iâ�1,H b̂

�
−1,V − iâ

�
−1,H b̂

�
1,V − iâ

�
1,V b̂

�
−1,H

)
|0〉A ⊗ |0〉B (B.9)
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In contrast to the other expressions for coincidences seen so far, the individual terms do not
cancel each other out in case of indistinguishability, but actually interfere constructively.
We see how this affects the ratio of coincidence counts to overall counts, when also writing
down the bunching terms |O〉diff,b:

|O〉diff + |O〉diff,b = 1√
8

[+iâ�−1,V b̂
�
1,H + iâ�1,H b̂

�
−1,V − iâ

�
−1,H b̂

�
1,V − iâ

�
1,V b̂

�
−1,H

+iâ�−1,H b̂
�
1,H − iâ

�
1,H b̂

�
−1,H − iâ

�
−1,V b̂

�
1,V + iâ�1,V b̂

�
−1,V ] |0〉A ⊗ |0〉B

(B.10)

In case of indistinguishability the bunching terms |O〉diff,b all cancel each other out, while
the coincidence terms survive. We consequently end up with a coincidence probability
that is increased by a factor of 2 for indistinguishable photons in respect to distinguishable
photons. In the experiment we thus expect to observe not a dip, but a peak. Since |O〉tbr
and |O〉diff,tb contribute with the same weight to the overall state in the time-bucket
detection scheme this peak is thus expected to offsets the dip present for the time-bin
resolving detection. We end up with coincidence terms |O〉coin,distin for distinguishable
case resp. |O〉coin,indistin for the indistinguishable case that both lead to a coincidence
probability of 50 %:

|O〉coin,distin = 1√
16

[iâ�−1,V b̂
�
−1,H − iâ

�
−1,H b̂

�
−1,V − iâ

�
1,V b̂

�
1,H − iâ

�
1,H b̂

�
1,V

− iâ�1,V b̂
�
−1,H + iâ�1,H b̂

�
−1,V + iâ�−1,V b̂

�
1,H − iâ

�
−1,H b̂

�
1,V ] |0〉A ⊗ |0〉B

(B.11)

|O〉coin,indistin = 1√
16

[2iâ�1,H â
�
−1,V − 2iâ�1,V â

�
−1,H ] |0〉A ⊗ |0〉B (B.12)



C Appendix: Processing Time Lists
The time lists consist of lines with five entries, of which four define the delays for the four
output signals, while the fifth one determines the time after which the delay generator
starts processing a new line. The signal causing this jump to a new line is called inhibit
and is put on the bus connecting the delay generators. This inhibit is consequently the
same for all delay generators. As we found out that spacings between two inhibit signals
of more than 4.6 µs might compromise the reliable operation of the delay generators, we
limit the maximum distance of two inhibit signals to this value.
Once the delay generator has completed one run through the timelist, a reset signal has to
be sent so that the timelist is processed again from the beginning when the next trigger
signal arrives. The time at which a reset signal is sent relative to a trigger signal is provided
by the reset parameter. In addition, we have to specify a so called "burst" parameter
specifying the number of lines in the timelist. Making sure that the reset process works
reliably requires a careful tweaking of the relevant parameters: To start with, the length of
the last inhibit period in the timelist needs to have minimum length of 2 µs in which the
reset signal has to be centered. Furthermore, we need to repeat the last line of the timelist
once, which is done by setting the burst parameter to a value exceeding the number of
lines in the timelist by one. As the inhibit is the same for all delay generators, they also
have to share a common value of the reset and of the burst parameter.
The delays as well as the inhibits are timed by a clock signal. As the delay generators
calculate the timings of the inhibit as multiples of the clock period, avoiding deviations of
the actual output times from the desired one requires setting the values of the inhibit to
multiples of the clock period. The delays, on the other hand, are determined as multiples
of the clock period plus an additional delay independent of the clock period, so that they
can be set to almost arbitrary values with a precision of 0.1 ns. Constraints on the delays,
however, still arise from the fact that there has to be a minimal time difference of at
least one clock period to the previous inhibit and also a distance of around 50 ns to the
subsequent inhibit.
All delay generators are timed with the same master clock, inhibit, reset and burst
parameter. Still, our experiments rely on the possibility to switch different positions
with different EOMs. We can fulfil this requirement by having all four EOMs conduct
operations at the same positions. However, we still have the freedom to vary the exact
timings of switchings at a certain position. If we send to one EOM signals for engaging two
switches at the same time (see [22]), we conduct a so called "empty" switching in which
ideally no effective voltage in applied to the EOM crystal at all. In practice, however, the
two switches might exhibit a slightly different response, so that the crystal is subjected to
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an effective voltage for a short time. To avoid even a small influence on the photons of the
quantum walk during this interval, empty switchings are offset by 5 ns in regard to the
positions where we would expect pulses of the quantum walk.
This way of composing timelists for the different EOMs relies on having a common notation
assigning positions for all four EOMs. In our framework, the pulses picked by EOM 1 (see
Figure 4.1) constitute the reference point. These pulses then travel through the either
the short or the long fibre which we account for by either lowering or increasing their
position index by one. EOMs 2 and 3 are placed behind these fibres, so that addressing a
certain position with them corresponds to switching shortly after the photons have left
the fibre. When addressing the same positions with EOM 4, we have to account for the
time it takes photons to travel from EOMs 2 and 3 to EOM 4 which is placed in the
feedback arm. Furthermore, we have to consider the offset resulting from the fact that
EOM 1 is placed outside the loop. Consequently, a certain position is offset by up to 13.5
ns between different EOMs. In order to avoid that these offsets lead to a violation of the
constrains regarding the spacing of delays and inhibits, we compensate these offsets by
inserting additional cables with a length of up to 2.7 m.



D Appendix: Software in Use
There is an extensive library of software used to numerically predict the outcome of
experiments, control EOM switchings and analyse recorded data. It is the product of
joint effort in our group with the contributions from Fabian Elster, Sonja Barkhofen
(numerics and analysis of quantum walks), Johannes Tiedau (earlier versions of coincidence
detection), Evan Meyer-Scott (simulations in QuTip) and Vahid Ansari as well as Benjamin
Brecht (numerics of source properties) deserving particular mention.

D.1 Accessing EOMs
The code for operating four EOMs in parallel can found on the IQO network folder
in the subfolder ".../QW_Data/Code/Controlling_fourEOMs_and_Stage". The script
"stage_EOM_control.py" is able to operate delay stage as well as four synchronised EOMs
and to record data with the AIT TDC. In order to so, it accesses several other scripts and
files. Figure D.1 shows how these are related.
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Figure D.1: Map of how "stage_EOM_control.py" uses other scripts and files to achieve
simultaneous control of EOM and delay stage while also being able to record data with the
AIT TDC.

We can see in Figure D.1 how calibration files ("*.cal") and dlls are employed in accessing
the EOM or more precisely the delay generator card controlling the EOMs. In addition,
time lists play a crucial role in the EOM’s operation. They consist of a number of rows
proportional to the step number and five columns, out of which the first four columns
determine the switching times in microseconds relative to the starting time of a certain
row for the four switches "A_on", "B_on", "A_off" and "B_off" (in this order). The fifth
column gives the value of the "inhibit" which is the time (again in microseconds) that
the delay generator remains in a certain row. Consequently, an actual switching time
relative to the start of the time list is calculated as the entry for a certain switch in a
certain row plus the sum of the inhibits in the preceding rows. Note that the time list are
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read starting from the bottom. Trial-and-error has lead to the conclusion that a reliable
operation requires the last inhibit to have a length of at least 2 microseconds which the
actual (empty) switching times being at the beginning of the inhibit period.

D.2 Generating Time Lists for the EOMs
The switching times of the EOM are given by the step and positions spacings in the actual
experiment, i.e. the fibre length. The code to generate time lists depending on these param-
eters is found in the folder "...QW_Data/Code/Generating_EOM_time_lists". The script
"timing_calculation_no_log.py" calculates the required switching times. Note that while
this file managed to shake off the shackles of logging, it relies on "save_settings_tofile_no_-
log.py" (found in the same folder) for proper operation. "EOM_switchings_new_experi-
ment.py" eventually casts the switching times into files that can either be read by the soft-
ware controlling the delay generator ("*_out.fpm"-files) or humans ("*_human_readable.txt"-
files). The former are written in five-column-format described above such that obtaining
times relative to the start time of the list requires adding up entries, while the latter
gives the switching times directly. At which positions the EOMs switch is determined
by pulse-list-files ("*_pulses_*.txt") which assigns either empty switchings (two switches
firing at the same time, so that effectively no voltage is applied to the crystal, marked by
’e’ in list), "transmissions" (two switches firing with a delay so a voltage is applied during
this time, marked by ’t’) or "reflections" (the same as "transmission" but with inverted
order of switches, so that the voltage is applied in the opposite direction). The names
are derived from the fact that when the EOM switches a transmissive coin for a certain
voltage, it will switch a reflective coin when the inverse voltage is applied.
When operating multiple EOMs with multiple delay generator cards connected via a
common bus, they can all be controlled by different time lists. Constrains arise, however,
due to the fact that a common inhibit is sent to all cards via the bus. Consequently,
a stable operation requires all cards to switch at the same positions and the freedom
regarding each individual card is limited to the type of switchings. Since, however, an
empty switching is equivalent to not switching, these constrains do not severely impair
the flexibility of switching different patterns. The creation of time lists for the individual
EOMs is conducted by reading in different pulse lists discerned by an identifier for the
EOM in the name of the pulse list, e.g. "*_pulses_EOM1.txt". This identifier is then
transferred into the name of the created time list, so that it can be used to automatically
assign the proper list to each of the delay generators resp. EOMs.

D.3 Data Analysis - Analysing histograms from bin-files
In order to decide how the recorded data can be analysed, we first have to determine
with which device it is to be recorded. So far, we have used three different time taggers
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(time-to-digital converters: TDC): a qutools quTau (called quTau in the following), an
AIT TTM 8000 (called AIT in the following) and a Swabian Instruments Time Tagger 20
(called Swabian in the following). The software for data analysis is found in the folder
"...QW_Data/Code/Numerics_and_Data_analysis".
The quTau and the AIT TDC output bin-files which entries give a time-stamp relative
to the start of the data run as well as the corresponding channel in which the click resp.
trigger event has been recorded. Since we repeat experimental runs with ffrep, we want,
however, histograms giving the accumulated number of clicks in time-bins relative to the
trigger events. The script "bin2histo_new_exp.py" carries out this task by conducting
array operations: It converts the bin-files into arrays with absolute arrival times (i.e.
relative to the start of the data run) for each of the channels, including the trigger channel.
Then we successively shift the index of the array for the trigger events by a number ranging
from 1 up to the maximum number of counts between two trigger events. After each shift
the values in the array for the trigger channel are subtracted from values in the other
arrays, yielding arrays with arrival times relative to the trigger for each of the channels
with click events. The built-in histogram function of numpy can then be used to obtain
arrival time histograms for each of the channels, which are saved into a txt-file.
The resulting txt-files containing the histograms can be analysed using the script "Data-
Analysis_no_log.py". Note that adapted versions of this program exist, e.g. for the analysis
of topologically protected edge states ("...QW_Data/Measuring_Eigenvalues/Scripts/
DataAnalysis_eigen- values_pub_settings.py"). By translating the arrival times into step
and position numbers and normalising for the number of counts in a certain step, we are
able to determine the probabilities of the individual positions within a step. In order to
compare these values with numerical predictions, the script "theory_1D_dtqw_no_log.py"
is employed, implementing matrix transformations on the state vectors. With the help of
this software we are able to account for a wide range of experimental imperfections related to
e.g. coupling efficiencies, coin angles, detection efficiencies, etc. "DataAnalysis_no_log.py"
can plot bar charts for the comparison of numerical and experimental probabilities within a
certain step and quantify either the distance or the similarity between the two sets of data.
Furthermore, this script is able to conduct Monte-Carlo-Scans. These scans determine
errors for numerical data by trying all combinations of either positive or negative deviations
of a fixed amount from the expected value of a certain parameter. Other versions of the
data analysis code such as "DataAnalysis_eigenvalues_pub_settings.py" carry out actual
Monte-Carlo simulations by generating a number (e.g. 1000) of random parameter sets
within a given uncertainty range and recording the maximum deviation from a reference
set of parameters. The mentioned version of the software is also able to optimise the set of
assumed parameters such the distance between numerical and experimental data becomes
minimal. This feature is helpful in determining unknown experimental parameters, e.g.
the exact value of a certain coupling. Note that the file "save_settings_tofile_no_log.py"
is also required for the data analysis.
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D.4 Data Analysis - Live analysis of Coincidences
The Swabian Instruments TDC comes with a handy API ("...QW_Data/Swabian_Scripts/
Swabian Instruments/Time Tagger/API) that allows i.a. for the live detection of coinci-
dences between channels. This feature makes the TDC the weapon of choice for multi-
photon experiments. Several scripts ("...QW_Data/Code/Live_coincidence_detection/
get_4_fold*.py) exemplify how this can be done: We create virtual channels having
multiple functions. To start with, they can be delayed versions of actual channels. An-
other possibility are coincidence channels which contain only coincidences between two
or more specified channels within a certain time interval. The combination of delayed
and coincidence virtual channels allows to implement time gating by delaying the trig-
ger channel such that it gates counts within a certain time window. A new virtual
channel with the coincidences between the delayed trigger and the original channel will
then constitute a gated channel that can again be used for operations in regard to
additional channels, e.g. the detection of three- or four-fold coincidences. Please see
the manual of the TDC ("...QW_Data/Swabian_Scripts/Swabian Instruments/Time
Tagger/Time Tagger User Manual.pdf") for further possibilities of the API. Achiev-
ing time gating by delaying virtual channels requires finding the proper delays. To
this purpose, the brower-based GUI ("...QW_Data/Swabian_Scripts/Swabian Instru-
ments/Time Tagger/TimeTaggerServer/TimeTaggerServer.exe") can be used for displaying
histograms and extracting timings. It should also be possible to implement histograms
via the API, but it has not been tested yet. Furthermore, live measurements of Klyshko-
efficiencies, generation probabilities and g(2)-values can be conducted with the help of
virtual channels (see "...QW_Data/Code/Live_coincidence_detection/g2_181213.py" and
"*/klyshko_gated_181212.py" for examples).

D.5 Numerical Simulations in QuTip
In order to simulate the outcome of multi-photon interference experiments, we use the
Python toolbox QuTip [154]. An account on the physical aspects of the modelled systems
can be found in 5.6.
The corresponding software can be found in the folder "...QW_Data/Code/Numerics_in_QuTip"
with the subfolder "*/iqoQUTIP" containing libraries that define operators, components,
etc.





E Appendix: The Pump
As we can see from (3.6), the JSA does not only depend on the phase-matching function
Φ(λs, λi), but also on the the pump distribution α(λs, λi).
So far, we have assumed that the pump for PDC process has an ideal Gaussian profile,
while a sekanshyperbolicus shape in time and frequency is a more realistic assumption [135].
Furthermore, the pump pulses are not necessarily Fourier-limited but might exhibit a chirp,
i.e. an additional phase that depends quadratically on the frequency. In the framework
used here [212], the strength of a chirp is quantified by the phase-amplitude-coupling
factor α, which relates phase κ and pulse intensity P (t) in the following way:

dκ(t)
dt

= α

2
1
P

dP

dt
(E.1)

With this parameter, the chirp-dependent normalised pulse shape in frequency can be
written in the following way:

|E(ω)|2
|E(0)|2 = sech[π/2(ωτ + α)] · sech[π/2(ωτ − α)]

sech2[π/2 · α]
(E.2)

The time parameter 1.763τ = ∆t in the above equation is related to the FWHM temporal
width ∆t of the pulse.
The time-bandwidth product (TBP) for the FWHM widths in time ∆t, frequency ∆f and
wavelength ∆λ depend on each other in the following way:

∆t ·∆f = ∆t
c

λ2∆λ = 2
π2 arcosh(

√
(2)) · arcosh[cosh(π · α+ 2)] (E.3)

In the above expression, terms can be rephrased as arcosh(x) = ln(x +
√
x2 − 1) and

cosh = 1/2(ex + e−x). Assuming a unchirped pulse, i.e. α = 0, we obtain a value of 0.315
for the time-bandwidth product.
When running the pump laser in the ps-mode, we measure both ∆tac,ps =2.25 ps with
an autocorrelator and ∆λexp,ps =0.4 nm with a spectrometer. The measured temporal
duration ∆tac,ps has to be multiplied with a deconvolution factor of 0.65 in order to obtain
the actual temporal duration ∆texp,ps =2.25 ps·0.65 =1.4625 ps. These values yield a TBP
of 0.3 which is close to the value of 0.315 obtained according to (E.3) for an unchirped
pulse. This tells us that the pump pulses can be considered to be unchirped when operating
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the pump laser in the ps-mode.
Running the numerical simulation of the PDC process with the same parameters as in
section 5.4.3, i.e. for a 16 mm long KTP-sample, the numerically obtained visibilities differ
only to a negligible extent from the ones calculated for a Gaussian pump: For the unfiltered
HOM-dip visibility we determine a value of 0.72 (compared to 0.74 for a Gaussian pump)
and for the filtered case a value of 0.95 (compared to 0.95 for a Gaussian pump).
While we do not assume a chirp for the pump pulses when the pump laser in the ps-mode,
we get a different picture when running in the pump laser in fs-mode and using a 4f-line
to filter down the pump to an appropriate spectral width. In this case, we measure
∆tac,fs =4.8 ps, corresponding to ∆texp,ps =4.8 ps·0.65 = 3.12 ps and ∆λexp,fs =0.3 nm,
resulting in TBP of 0.47 (comparing to a value of 0.3 for the ps-mode).
It is not clear whether this increase is caused entirely by a chirp or by change in the
pulse form caused by the 4f-line. Assuming that the TBP can be explained by a chirp,
this number would correspond to an α of 0.7. At least in numerical simulations this
amount of chirp increases the unfiltered visibility to 0.74 and the filtered one to 0.96, as
the broadening of the pulse due to chirping leads to a more symmetric JSI. Since the
experiment is conducted in the ps-mode where no chirp seems to be present, we skip a
more accurate treatment of chirps.



F Appendix: Implementing Seeded PDC
In the following, we will briefly describe how to implement seeded PDC input states in
order to investigate effects of the loop on the observed visibilities.
Energy conservation yields the following relation between pump wavelength λp, the seed
wavelength λseed and the DFG wavelength λDFG:

1
λDFG

= 1
λp
− 1
λseed

(F.1)

The pump wavelength λp is set to 770.3 nm and the seed wavelength λseed to 1542 nm,
which results in a calculated DFG wavelength λDFG of 1539.2 nm. Note that the values
for λp and λseed are those measured with a spectrometer resp. set at the laser controller.
They are adjusted by optimising the counts transmitted through DWDM filters centered
around 1539.8 nm, which is slightly different from the calculated value for λDFG. Since
the DWDM filters exhibit a high accuracy of their center wavelength, it is likely that there
is some inaccuracy in the wavelength set for the pump and the seed laser.
In order to measure the DFG signal, we need to separate it not only from the pump light
but also from the seed field. As λp is far away from λDFG, the pump can blocked with a
combination of a silicon plate and a bandpass filter (Semrock 1538/82 nm) transmitting
for (1540 ± 40) nm. The small difference between λseed and λDFG makes filtering more
delicate for the seed. We concatenate two DWDM filter centered around 1539.8 nm, one
with a full transmission window ∆λf/2 of 0.45 nm and one with 0.9 nm, in each of the
two fibres leading to the detectors. In addition, two 1550/3 nm bandpass filters with
FWHM bandwith of 8.8 nm are inserted, one angle-tuned to a center wavelength of 1539.8
nm after the KTP chip and another tuned to a center wavelength of 1542 nm in front
of the KTP chip. The latter one is transmissive for the seed and serves to filter out
amplified stimulated emission (ASE) originating from the seed laser that might otherwise
be transmitted through the other filters.
The spectral filtering is complemented by filtering in the polarisation: Seed and DFG field
are in orthogonal polarisations and can thus be separated by PBSs of which we use three
in a row to optimise the discrimination between the two fields.
While the seed is provided by a cw-Laser ("Tunics") the pump pulses are picked by an
EOM out of the pulse train put out by the MIRA laser system, so that the synchronisation
between source and loop works in the same way as for the PDC input.
With the described scheme we are able to investigate achievable visibilities virtually
independent from spectral characteristics and mean photon number.
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G Appendix: Equivalence of Split-step Definitions
Here, we show that the theoretical concept of a split-step-QW can be implemented with
our setup in a straight-forward way. We make use of this fact for the experiments requiring
the implementation of a split-step protocol [75, 76].
In the theoretical framework of a split-step-QW, we assume that a unitary U with
the following sequence of operations (to be defined later in the text) is applied on the
wavefunction (see e.g. [46]):

U = SH↑ ·R2 · SV↓ ·R1 (G.1)

Here, as in the following, we omit the head symbols on the operators. SH↑ denotes the
partial shift operation displacing only the horizontal component and SV↓ the partial shift
of the vertical component:

SH↑ =
∑
x

(|x+ 2, H〉〈x,H|+ |x, V 〉〈x, V |) =
∑
x

(
|x+ 2〉〈x|

(
1 0
0 0

)
+ |x〉〈x|

(
0 0
0 1

))

SV↓ =
∑
x

(|x,H〉〈x,H|+ |x− 2, V 〉〈x, V |) =
∑
x

(
|x〉〈x|

(
1 0
0 0

)
+ |x− 2〉〈x|

(
0 0
0 1

))
(G.2)

We interpret the shift conducted by these two operators as a shift by two positions in
order to obtain compatibility with the shift operation as carried out in our experiment.
We show that the sequence described by G can be experimentally simulated with the shift
operation S. We do so by verifying the following relation:

SH↑ ·R2 · SV↓ ·R1 = S ·R2 · S ·R1 (G.3)
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S is defined as follows:

S =
(∑

x

|x+ 1, H〉〈x,H|+ |x− 1, V 〉〈x, V |
)

=
∑
x

(
|x+ 1〉〈x|

(
1 0
0 0

)
+ |x− 1〉〈x|

(
0 0
0 1

)) (G.4)

We first calculate explicitly the left side of equation G.3:

2SH↑ ·R2 · SV↓ ·R1 =
∑
y

(|y + 2〉〈y|
(

1 0
0 0

)
+ |y〉〈y|

(
0 0
0 1

)
) ·
(

cos(θ2) sin(θ2)
sin(θ2) − cos(θ2)

)

·
∑
x

(|x〉〈x|
(

1 0
0 0

)
+ |x− 2〉〈x|

(
0 0
0 1

)
) ·
(

cos(θ1) sin(θ1)
sin(θ1) − cos(θ1)

)

=
∑
y

∑
x

(
cos(θ2)|y + 2〉〈y| sin(θ2)|y + 2〉〈y|

sin(θ2)|y〉〈y| − cos(θ2)|y〉〈y|

)

·
(

cos(θ1)|x〉〈x| sin(θ1)|x〉〈x|
sin(θ1)|x− 2〉〈y| − cos(θ1)|x− 2〉〈x|

)

=
(
a c
b d

)
·
(
a∗ c∗

b∗ d∗

)
=
∑
y

∑
x

(
aa∗ + cb∗ ac∗ + cd∗

ba∗ + db∗ bc∗ + dd∗

)
(G.5)

We now determine the four entries of the matrix:

aa∗ + cb∗ = cos(θ2) cos(θ1)|y + 2〉〈y|x〉〈x|+ sin(θ2) sin(θ1)|y + 2〉〈y|x− 2〉〈x|
= cos(θ2) cos(θ1)|x+ 2〉〈x|+ sin(θ2) sin(θ1)|x〉〈x|

ba∗ + db∗ = sin(θ2) cos(θ1)|y〉〈y|x〉〈x| − cos(θ2) sin(θ1)|y〉〈y|x− 2〉〈x|
= sin(θ2) cos(θ1)|x〉〈x| − cos(θ2) sin(θ1)|x− 2〉〈x|

ac∗ + cd∗ = cos(θ2) sin(θ1)|y + 2〉〈y|x〉〈x| − sin(θ2) cos(θ1)|y + 2〉〈y|x− 2〉〈x|
= cos(θ2) sin(θ1)|x+ 2〉〈x| − sin(θ2) cos(θ1)|x〉〈x|

bc∗ + dd∗ = sin(θ2) sin(θ1)|y〉〈y|x〉〈x|+ cos(θ2) cos(θ1)|y〉〈y|x− 2〉〈x|
= sin(θ2) sin(θ1)|x〉〈x|+ cos(θ2) cos(θ1)|x− 2〉〈x|

(G.6)
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Similarily, we determine the right side of equation G.3

2S ·R2 · S ·R1 =
∑
y

∑
x

(
|y + 1〉〈y|

(
1 0
0 0

)
+ |y − 1〉〈y|

(
0 0
0 1

))
·
(

cos(θ2) sin(θ2)
sin(θ2) − cos(θ2)

)

·
(
|x+ 1〉〈x|

(
1 0
0 0

)
+ |x− 1〉〈x|

(
0 0
0 1

))
·
(

cos(θ1) sin(θ1)
sin(θ1) − cos(θ1)

)

=
∑
y

∑
x

(
cos(θ2)|y + 1〉〈y| sin(θ2)|y + 1〉〈y|
sin(θ2)|y − 1〉〈y| − cos(θ2)|y − 1〉〈y|

)

·
(

cos(θ1)|x+ 1〉〈x| sin(θ1)|x+ 1〉〈x|
sin(θ1)|x− 1〉〈y| − cos(θ1)|x− 1〉〈x|

)

=
∑
y

∑
x

(
ee∗ + gf∗ eg∗ + gh∗

fe∗ + hf∗ fg∗ + hh∗

)
(G.7)

The entries of the matrix are determined in the following way:

ee∗ + gf∗ = cos(θ2) cos(θ1)|x+ 1〉〈x|y + 1〉〈y|+ sin(θ2) sin(θ1)|x+ 1〉〈x|y − 1〉〈y|
= cos(θ2) cos(θ1)|y + 2〉〈y|+ sin(θ2) sin(θ1)|y〉〈y|

fe∗ + hf∗ = sin(θ2) cos(θ1)|x− 1〉〈x|y + 1〉〈y| − cos(θ2) sin(θ1)|x− 1〉〈x|y − 1〉〈y|
= sin(θ2) cos(θ1)|y〉〈y| − cos(θ2) sin(θ1)|y − 2〉〈y|

eg∗ + gh∗ = cos(θ2) sin(θ1)|x+ 1〉〈x|y + 1〉〈y| − sin(θ2) cos(θ1)|x+ 1〉〈x|y − 1〉〈y|
= cos(θ2) sin(θ1)|y + 2〉〈y| − sin(θ2) cos(θ1)|y〉〈y|

fg∗ + hh∗ = sin(θ2) sin(θ1)|x− 1〉〈x|y + 1〉〈y|+ cos(θ2) cos(θ1)|x− 1〉〈x|y − 1〉〈y|
= sin(θ2) sin(θ1)|y〉〈y|+ cos(θ2) cos(θ1)|y − 2〉〈y|

(G.8)

As G.6 and G.8 yield the same expressions, we have shown that we are able to implement
the split-step protocol with our setup. The only point in the derivations that is not
complete straight-forward is interpreting a shift in the split-step protocol as a shift by two
positions in our setup.
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