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Zusammenfassung

Das Auftreten von Setupzeiten für die Bereitstellung von Maschinen ist eine natür-
liche Annahme bei der Betrachtung von Schedulingproblemen. Derartige Setups
tauchen z.B. als Startzeiten von Maschinen oder für die Rekonfiguration zwischen
der Ausführung von Jobs unterschiedlicher Typen auf. Diese Arbeit beschäftigt sich
mit zwei unterschiedlichen Modellen für Probleme mit Setupzeiten.

Im ersten Modell betrachten wir Jobs, die in verschiedene Klassen unterteilt sind.
Sobald eine Maschine zwischen Jobs unterschiedlicher Klassen wechselt, ist ein Setup
für die Rekonfiguration der Maschine notwendig. Wir betrachten dieses Problem
für parallele Maschinen und die Minimierung des Makespan. Hierfür entwerfen
und analysieren wir Approximationsalgorithmen für identische und heterogene
Maschinen. Darüber hinaus verallgemeinern wir das Problem auf über die Zeit
eintreffende Jobs und die Minimierung der maximalen Antwortzeit. Dabei betrachten
wir Approximationen für den offline Fall auf einer Maschine und untersuchen die
(smoothed) competitiveness eines einfachen online Algorithmus.

Im zweiten Modell befassen wir uns mit der Ausführung von Jobs auf gemieteten
Maschinen und dem Ziel der Mietkostenminimierung. Wir betrachten zwei hete-
rogene Maschinentypen, die für beliebige Zeitspannen gemietet werden können,
bei denen allerdings Setupzeiten mit dem Starten einhergehen. Wir entwickeln
und analysieren einen online Algorithmus für über die Zeit eintreffende Jobs mit
Abarbeitungsfristen.
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Abstract

The occurrence of setup times for the preparation of machines is a natural assumption
when considering scheduling problems. They may occur, for example, as startup
times for machines or for the (re-)configuration of machines between the processing
of jobs of different types. In this thesis, we study two kinds of models for scheduling
problems incorporating such setup times.
The first kind of model considers jobs that are partitioned into several classes.

Whenever a machine switches between the processing of jobs of different classes,
a setup for the reconfiguration of the machine needs to take place. We study
this problem for parallel machines with the objective of minimizing the makespan.
We design and analyze approximation algorithms for the case of identical and
heterogeneous machines. Additionally, we generalize the problem by allowing jobs
to arrive over time and by considering the minimization of the maximum flow time.
We give an approximation algorithm for the offline case of a single machine and
study the (smoothed) competitiveness of a simple online algorithm.

The second model deals with jobs that need to be processed on machines rented
from the cloud and the minimization of the rental cost. We consider the availability
of two heterogeneous types of machines that can be rented for arbitrary durations
but incur a setup time for booting newly rented machines. We develop and analyze
an online algorithm for jobs with deadlines arriving over time.

v





Acknowledgements

During the last years in which this thesis developed, various people were directly or
indirectly involved and part of this period of my life. I would like to say thank you
to all who have encouraged and supported me throughout this time.
I would like to express my appreciation to my supervisor Friedhelm Meyer auf

der Heide for giving me the opportunity to write this thesis and especially, for the
freedom he granted me when searching for and later working on my research topic.

Special thanks go to my co-authors Manuel Malatyali and Sören Riechers. I very
much enjoyed our research sessions in front of the whiteboard discussing scheduling
and streaming problems and I am thankful for all the counterexamples and questions
that triggered thinking up new ideas. Also, I want to thank Klaus Jansen and
Marten Maack from Kiel for their invitation for a cooperation and our joint work.
I also had great pleasure of working with all my current and former colleagues

particularly (but not restricted to) those from the Algorithms & Complexity group.
The good spirit in our office always made me enjoy coming to work and so I am
thankful to my office mates of the last years: Andreas Cord-Landwehr, Sören
Riechers, Johannes Schaefer, Till Knollmann and Jannik Castenow.

I am grateful to my family and to all of my friends. They all gave me encouragement
and motivation to accomplish my personal goals. Finally, I want to thank Svenja
for her moral support, her love and for being my companion.

Alexander Mäcker
Paderborn, August 2019

vii





Contents

1 Introduction 1
1.1 Outline of the Thesis and Results . . . . . . . . . . . . . . . . . . . . 3
1.2 Discussion of the Problems and Approaches . . . . . . . . . . . . . . 6

2 Preliminaries 11
2.1 Approximation and Online Algorithms . . . . . . . . . . . . . . . . . 11
2.2 Basic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Some Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Scheduling on Machines with Setup Times 19
3.1 A General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Scheduling on Identical Machines with Setup Times 27
4.1 Model & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Simple Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 A (3/2 + ε)-Approximation Algorithm . . . . . . . . . . . . . . . . . . 31
4.4 An Online Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Scheduling on Heterogeneous Machines with Setup Times 43
5.1 Model & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Unrelated Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Special Cases of Unrelated Machines . . . . . . . . . . . . . . . . . . 51
5.4 Uniformly Related Machines . . . . . . . . . . . . . . . . . . . . . . . 56

6 Offline Scheduling for Maximum Flow Time on a Machine with Setup
Times 61
6.1 Model & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Basic Properties and Observations . . . . . . . . . . . . . . . . . . . 62
6.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Online Scheduling for Maximum Flow Time on a Machine with Setup
Times 69
7.1 Model, Notation & Notions . . . . . . . . . . . . . . . . . . . . . . . 70

ix



Contents

7.2 A Non-Clairvoyant Online Algorithm . . . . . . . . . . . . . . . . . . 71
7.3 Competitive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Smoothed Competitive Analysis . . . . . . . . . . . . . . . . . . . . . 79

8 Cost-efficient Scheduling on Machines from the Cloud 89
8.1 Model & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4 Simple Lower and Upper Bounds . . . . . . . . . . . . . . . . . . . . 94
8.5 A Batch-Style Competitive Algorithm . . . . . . . . . . . . . . . . . 100

9 Conclusion & Outlook 117
9.1 Scheduling on Machines from the Cloud . . . . . . . . . . . . . . . . 117
9.2 Scheduling with Setup Times . . . . . . . . . . . . . . . . . . . . . . 118
9.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 123

x



C
H
A
P
T
ER 1

Introduction

Scheduling is a fundamental area of combinatorial optimization and operations
research. It deals with the allocation of scarce resources so as to efficiently carry
out work, perform activities or effectively utilize the resources. Scheduling

has its applicability in various scenarios. As examples, take resources in form of
machines in a production system that have to produce goods according to customers’
orders; processors in a computing system that have to perform certain computations;
or workers in the service industry who need to cater to customers’ requests. In all
such scenarios, there is work to be done – in the following called jobs – and resources
– in the following called machines – that carry out this work or, more general, that
are required by the jobs. A schedule is a central concept that defines which jobs are
processed on which machines at which time. Given an objective function assessing
the quality of schedules, it is crucial to optimize over the different options in order
to efficiently make use of the resources and/or to optimize job-related objectives.
As an example illustrating the kind and abstraction level of problems this thesis
is concerned with, take one of the most basic and popular scheduling problems
defined as follows: We are given a set of (identical) machines and a set of jobs, each
completely defined by its length describing how long it takes to finish it. The goal
is to distribute the jobs as evenly as possible among the machines so as to minimize
the length of the schedule, that is, the time at which the latest job is completed
(commonly called makespan).

Starting from this simple scheduling problem, numerous variants tailored to
specific applications by special assumptions on the machines, jobs or objectives a
schedule aims at have appeared in the past. As scheduling research has, with first
works published in the 1950s starting with [Joh54], a long history within operations
research and computer science, there is a vast literature on it. For an introduction
with a presentation of basic concepts, models and algorithms the interested reader
is referred to, for example, [Pin16; Bru07]. One specific thread in the scheduling
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Chapter 1 INTRODUCTION

research literature, which also already exists since the 1960s starting with [GG64], is
concerned with scheduling with setups. This line of research explicitly models setup
times (or, in case setups incur a cost but involve no machine time, setup cost) as
they can naturally occur for the preparation of machines. Even though setup times
are observed to exist in many scenarios and taking them into account can be crucial
for good scheduling solutions, they are not considered in the majority of studied
scheduling models. Various situations where setup times occur are documented in
the literature and we name a few of them here: They can occur in production systems
as changeover, adjusting or cleaning times between the production of different goods
on a machine [AGA99; All+08; All15; Pin05]; as times for making data being
required for the processing of jobs available at a server [AS08]; or as times for the
startup of not yet running machines [MH12]. Although there is a vast literature on
such scheduling problems with setup times, it is, as Allahverdi et al. noticed in their
survey [AGA99] from 1999, “often devoted to the development of heuristics and
their empirical analysis” and “such efforts . . . do not fully exploit the theoretical
developments available for solving scheduling problems without setups”. Therefore,
“research efforts to develop a theoretical basis for scheduling models and worst-case
analysis . . . will be useful from an academic as well as a practical viewpoint.”.

As these observations do not seem to have become less true during the last twenty
years, this thesis aims at contributing to the theoretical research in scheduling with
setup times. To this end, it considers different problems from the perspective of
worst-case analysis in terms of the development and analysis of approximation and
online algorithms. For a first, high-level illustration of these two notions, recall the
exemplary problem (without setups) from above. One perspective on this problem
is to assume that a scheduling algorithm knows all the jobs to be scheduled in
advance and, based on this complete information, needs to compute an assignment
of jobs to machines. Because this problem (as well as the problems we consider in
this thesis) is NP-hard, it is widely conjectured that an optimal solution cannot be
computed efficiently. Due to this matter of fact, one is interested in approximation
algorithms and heuristics. Both kinds of algorithms are efficient but, on the other
hand, possibly do not provide optimal schedules. While approximation algorithms
come with formally proven performance guarantees, this is usually not required
for heuristics. (It is noteworthy that in the literature, efficient but suboptimal
algorithms is the method of choice even in settings that are mainly motivated within
the context of production systems where the size of input instances to solve tends
to be much smaller than in settings motivated by computer systems. For example,
roughly 75% of the papers on scheduling with setup times surveyed in [All15] consider
heuristics compared to 25% considering exact solution methods.) Therefore, in the
domain of approximation algorithms, the main concern is the design of algorithms
whose suboptimality can be mathematically proven to be bounded by some small
factor; that is, given any set of jobs, the schedule computed by the approximation
algorithm is only by a small factor longer than an optimal solution. To achieve this,
one could, for example, sort the jobs by non-increasing length and then assign one
job after the other to the machine which (currently) completes first. This rule called
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Outline of the Thesis and Results 1.1

LPT (Longest Processing Time) was proven to provide schedules having a length of
at most 4/3 times the length of an optimal one [Gra69]. A different perspective on
the problem is to consider competitive online algorithms. Here it is assumed that
the jobs are revealed to the scheduling algorithm one by one and a job needs to
be assigned to a machine before the next one is presented. In this case, the online
algorithm lacks knowledge of the future, which certainly may lead to suboptimal
decisions. Again, to benchmark the performance of an online algorithm and measure
its suboptimality, the online algorithm is compared to an optimal algorithm that
knows all the jobs in advance. While it is no longer possible to use LPT (as we
cannot sort the jobs by their length in the beginning), dispatching the jobs in the
given order and simply assigning the current job to the machine which currently
completes first is known to give schedules with length at most 2 times the length of
an optimal schedule [Gra69]. We provide a brief but more formal introduction to
both of these concepts, which are central in the course of this thesis, in Chapter 2
after starting with a broad overview of the problems considered and results achieved
in this thesis.

1.1 Outline of the Thesis and Results

This thesis considers two kinds of models that reflect several scheduling prob-
lems focusing on the explicit incorporation of setup times into classical scheduling
problems.
In Chapters 4 to 7, we study different but closely related problems based on

a common model in which each job belongs to one of several given classes and a
machine needs to be setup whenever it switches from processing jobs of one class
to a job of another class. We formally define this model and discuss related work
relevant to the problems of Chapters 4 to 7 in Chapter 3. We then start with the
case of minimizing the makespan on identical parallel machines in Chapter 4 and
then consider a generalized variant for non-identical machines in Chapter 5. For
jobs arriving over time, a natural extension of the makespan objective is investigated
in Chapter 6 and Chapter 7. There we are interested in the minimization of the
maximum flow time (also called response time) on a single machine and we develop
and analyze offline and online algorithms.

In Chapter 8, we consider a different setting and the problem of renting machines
from the cloud and scheduling jobs so as to minimize the rental cost. Here, setup
times naturally occur as times for starting (virtual) machines and acquiring resources
from the cloud as soon as the scheduler issues a request for a new machine.
Finally, we conclude in Chapter 9 with some open questions and possible future

work. In what follows, we give a more detailed summary of the considered models
and an explicit presentation of the results achieved in the respective chapters of the
thesis.
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Chapter 1 INTRODUCTION

Scheduling on Identical Machines with Setup Times. In Chapter 4, we consider
the problem in which a set of n jobs that is partitioned into K classes is to be
scheduled on m identical machines. A machine requires a proper setup taking s time
units before processing jobs of a given class. During such a setup, a machine cannot
process jobs. The objective is to minimize the makespan of the resulting schedule.
We design and analyze a simple and a much more involved algorithm, both running
in time polynomial in n,m and K. They compute solutions with an approximation
factor of 2 and one that can be made arbitrarily close to 3/2, respectively. For
constant m, we provide a simple fully polynomial-time approximation scheme. The
results and presentation of this chapter are based on the following publication:

2015 (with M. Malatyali, F. Meyer auf der Heide and S. Riechers). “Non-
preemptive Scheduling on Machines with Setup Times”. In: Proceedings
of the 14th International Symposium on Algorithms and Data Structures
(WADS), cf. [Mäc+15].

Scheduling on Heterogeneous Machines with Setup Times. Chapter 5 general-
izes the problem from Chapter 4 by considering n jobs that need to be scheduled on
m parallel non-identical machines so as to minimize the makespan. The set of jobs
is again partitioned into several classes and a machine requires a setup whenever
it switches from processing jobs of one class to jobs of a different class. Here, the
duration of a setup may depend on the machine as well as the class of the job to be
processed next.
For this problem, we study approximation algorithms for different variants of

non-identical machines. For unrelated machines we obtain a Θ(logn + logm)-
approximation, which we show to be optimal (up to constant factors) unless NP =
RP. This is in stark contrast to the problem when there are no setup times, in
which case a 2-approximation is known. We also identify two special cases that
admit constant factor approximations. For uniformly related machines we provide
simple constant factor approximations as well.1 The results are part of the following
publication:

2019 (with K. Jansen and M. Maack). “Scheduling on (Un-)Related
Machines with Setup Times”. In: Proceedings of the 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
cf. [JMM19].

Minimizing Maximum Flow Time on a Machine with Setup Times. The goal of
Chapters 6 and 7 is to study the basic model from Chapter 3 under a more general
1It is worth mentioning that in the publication [JMM19] on which this chapter is based, we
even present a PTAS for uniformly related machines. However, this part of [JMM19] was
mainly contributed by the two other authors and so is not included here. The remaining results
(particularly, regarding uniform machines and the general case of unrelated machines) including
the core ideas of the solutions and analyses are mainly my contribution to [JMM19], except for
the two special cases in Section 5.3 to which the authors contributed equally.
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Outline of the Thesis and Results 1.1

objective function than makespan, applicable to jobs arriving over time. Precisely,
we consider a setting in which a set of n jobs needs to be processed on a single
machine. Each job has a release time at which it arrives (and before which it cannot
be processed) and belongs to one of K classes. The machine needs to perform a
setup whenever it switches from processing jobs of one class k′ to a job of a different
class k 6= k′. The goal is to minimize the maximum flow time, given by the maximum
amount of time a job stays in the system. In Chapter 6, we provide and analyze
an approximation algorithm for this problem achieving an approximation factor of
7. In Chapter 7, we consider the problem in an online setting where each job is
only known to the scheduler as soon as it arrives and where the processing time of a
job only becomes known upon its completion (non-clairvoyance). We are interested
in the potential of simple “greedy-like” algorithms. We analyze a modification of
the first-in-first-out (FIFO) strategy and show its competitiveness to be Θ(

√
n),

which is optimal for the considered class of algorithms. For K = 2 classes it achieves
a constant competitiveness. Our main insight is obtained by an analysis of the
smoothed competitiveness, one relatively new notion in “beyond worst-case analysis”
[Rou19], which tries to overcome the drawbacks of worst-case performance measures.
If processing times pj are independently perturbed to p̂j = (1 +Xj)pj , we obtain a
competitiveness of O(σ−2 log2 n) when Xj is drawn from a uniform or a (truncated)
normal distribution with standard deviation σ. The result proves that bad instances
are fragile and “practically” one might expect a much better performance than given
by the Ω(

√
n)-bound. The two chapters are based on the following unpublished

manuscript and the following publication, respectively:
2018. “Approximating Maximum Flow Time on a Machine with Setup
Times”. Unpublished Manuscript, cf. [Mäc18].

2017 (with M. Malatyali, F. Meyer auf der Heide and S. Riechers).
“Non-clairvoyant Scheduling to Minimize Max Flow Time on a Machine
with Setup Times”. In: Revised Selected Papers of the 15th Interna-
tional Workshop on Approximation and Online Algorithms (WAOA),
cf. [Mäc+17].

Cost-efficient Scheduling on Machines from the Cloud. Chapter 8 considers a
different setting compared to the previous chapters, which are all based on the
general model introduced in Chapter 3. In Chapter 8, we consider a scheduling
problem where machines need to be rented from the cloud in order to process jobs.
There are two types of machines available which can be rented for machine-type
dependent prices and for arbitrary, not predefined durations. However, a machine-
type dependent setup time is required before a machine is available for processing.
Jobs arrive online over time, have deadlines and machine-type dependent processing
times. The objective is to rent machines and to schedule jobs so as to meet all
deadlines while minimizing the rental cost.

As we observe that in general no algorithm can be competitive for this problem,
we perform a parameterized analysis, a tool in “beyond worst-case analysis” [Rou19],

5



Chapter 1 INTRODUCTION

that gives much more fine-grained insights in the sense of parameterized guarantees.
To this end, we parameterize instances by their (minimum) slack, a parameter which
models the “easiness” of an instance in a natural way: An instance is called to have
a slack of β if, for all jobs, the difference between the job’s release time and the
latest point in time at which it needs to be started to meet its deadline is at least β.
Denoting the largest setup time by s, no finite competitiveness is possible for the
case β < s. However, for β = (1 + ε)s with ε ≥ 0, positive results are possible. Our
main finding is an online algorithm for the case 1/s ≤ ε ≤ 1. Its competitiveness only
depends on ε and the cost ratio of the machine types and is proven to be optimal
up to a factor of O(1/ε2). This chapter is based on the following publication:

2018 (with M. Malatyali, F. Meyer auf der Heide and S. Riechers).
“Cost-Efficient Scheduling on Machines from the Cloud”. In: Journal
of Combinatorial Optimization vol. 36, no. 4. (A preliminary version
has appeared in: Proceedings of the 10th International Conference on
Combinatorial Optimization and Applications (COCOA) [Mäc+16]),
cf. [Mäc+18].

1.2 Discussion of the Problems and Approaches
As mentioned in the introduction, this thesis aims at contributing to theoretical
research, particularly worst-case analyses, in the area of scheduling with setup times.
In the following two sections, we want to illustrate the necessity of such research
and want to give evidence that scheduling with setup times needs investigations
apart from research done on the respective non-setup counterparts. We will outline
in Section 1.2.1 that all problems studied in this thesis clearly show a significant
impact of setup times on the problems themselves. Therefore, solutions that are
specifically tailored to these problems are required. In Section 1.2.2, we will give a
first glimpse at the approaches and techniques used (also compared to those usually
used for the non-setup counterparts).

1.2.1 The Impact of Setup Times

All problems considered in this thesis show one of two characteristics with respect
to the impact of setup times on the difficulty of the problem: Either the problem
is trivial to solve optimally when there are no setup times but non-trivial (even to
approximate) in case there are setup times; or the addition of setups makes the
approximation of the already NP-hard problem even more involved.

On the one hand, the problems in Chapters 6 to 8 are trivial to solve in case there
are no setup times. For minimizing the maximum flow time on a single machine, it is
folklore that a simple FIFO rule is optimal, which can be shown by a simple exchange
argument. However, when we have to take care of setups, such an approach can
become extremely bad as it cannot control or bound the additional number of setups
that have to be performed compared to an optimal solution. (For example, think of
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Discussion of the Problems and Approaches 1.2

an instance where jobs arriving over time alternately belong to two different classes.)
The problem of scheduling jobs on rented machines as considered in Chapter 8 is
also trivial to solve in case there are no setup times. Here it is sufficient to assign
each job to its own machine being of the type where it incurs less cost. This of
course does not work when each machine incurs a setup time (for which we have to
pay) at the beginning. It becomes important to reuse machines that have already
been started for other jobs to reduce the cost due to setup overhead. Also, decisions
on which machines to open should not be based on the cost of individual jobs but
rather be based on the cost jointly incurred by larger sets of jobs.
On the other hand, the problem of minimizing the makespan, as considered in

Chapters 4 and 5, is NP-hard when looking for optimal solutions and not trivial to
approximate in case there are no setups. It gets even more involved when setups
need to be performed. In case of identical machines, we not only have to make sure
that the load is distributed among the machines as equally as possible but we also
have to ensure that we do not perform too many setups. This cannot be taken into
account by existing algorithms and thus renders them inappropriate. (For example,
such an algorithm might assign each job of a given class to a different machine, which
is, except in a few cases, not a good idea as way too many setups are performed.) In
case of unrelated machines, we observe an even stronger separation between models
with and without setup times in Chapter 5. It is proven that one can approximate
the optimal makespan to within a factor of Θ(logn+ logm) and that this is the best
we can expect (under certain complexity theoretical assumptions). This is in stark
contrast to the case without setup times, which can be approximated to within a
factor at most 2 and which cannot be approximated to within a factor less than 3/2
(unless P = NP).

1.2.2 A Glimpse at Used Approaches

The problems considered in Chapters 4 to 7 are closely related in the sense that
all of them are based on the same job model introduced in Chapter 3: Jobs are
classified into disjoint classes that determine when a machine needs to be reconfigured.
Nonetheless, due to their different machine models and/or objective functions, solving
them requires quite different approaches based on various techniques. Chapter 4
extends techniques developed for approximation schemes for scheduling problems
without setup times. For a fixed number of machines moderate extensions of an
existing approach lead to a fully polynomial-time approximation scheme, that is,
a (1 + ε)-approximation algorithm running in time polynomial in the input and
1/ε. However, if m is part of the input, much more involved work needs to be done
for our approach. Classical approximation schemes for scheduling without setup
times are based on enumerating all possible solutions of a simplified instance. The
simplification is usually achieved by rounding processing times to a small number
of different ones and then treating all jobs with the same (rounded) processing
times equally. That is, in a solution one does not have to distinguish different
jobs with the same rounded processing times leading to a sufficiently small search
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Chapter 1 INTRODUCTION

space for an exhaustive enumeration. In our case, however, we need to take into
account class information during the enumeration of solutions. Particularly, we
cannot treat jobs of the same (rounded) processing times equally, as they may
belong to different classes. This observation needs to be addressed to be able to
handle class information in the enumeration process efficiently. Our approach to
this problem is to carefully define a special subset of all possible schedules, which
we show to always contain a good schedule. At the same time, optimizing over
this subset reduces the requirement on storing class information to a minimum so
that an exhaustive enumeration becomes possible. This is achieved by the fact
that for schedules belonging to the defined subset, class information of at most
one class needs to be considered at any time. This allows us to come up with a
(3/2 + ε)-approximation running in time polynomial in n,m and K.

In case of unrelated machines, a good approximation becomes much harder. While
this is the case if we do not have setup times due to a lower bound of 3/2, the situation
gets even worse if there are setup times. In this case it is very hard to decide which
machines to setup for which classes (even if for each job its processing time is either
negligible or prohibitive large so that assigning jobs becomes trivial after the setups
have been scheduled). We show in Chapter 5 that this leads to a relation to the
classical SetCover problem and by that establish an inapproximability bound being
logarithmic in the number of jobs (and which holds unless NP = RP). On the
positive side, we will see that the natural linear programming formulation combined
with an iterative randomized rounding achieves an optimal approximation factor.
Also, some special cases turn out to admit constant factor approximations based on
linear programming and the adaptation of known rounding techniques.
Intuitively, the challenge in the previously discussed problems stems from the

assignment (distribution) of jobs to machines. On the other hand, given such an
assignment, sequencing the jobs on a machine is trivial: For each class of which at
least one job is processed on the machine, we perform exactly one setup and all
jobs of such a class are processed consecutively. The challenging part completely
shifts when considering jobs arriving over time combined with the maximum flow
time objective. In this case, it is a priori not clear how many setups are required
per class and machine. It should be clear that this number is usually larger than
one as, for example, in case two jobs of the same class arrive at points far apart
in time, they usually should not use the same setup in a good solution. Hence, it
becomes much harder to find a good ordering of jobs on a machine and to control
the number of setups one does compared to an optimal solution. To capture these
aspects, we restrict ourselves to the single machine problem. Several insights about
the structure of good solutions, allow us to find a constant factor approximation
for this problem in Chapter 6 based on a hybrid algorithm using greedy steps as
well as exhaustive enumeration parts. In Chapter 7, we then consider the problem
in an online setting with the additional assumption that jobs’ processing times are
not known to the scheduler. While we study a rather simple algorithm for that, the
main technical challenge here is the application of a smoothed competitive analysis,
in which the processing times of adversarial instances are slightly perturbed by
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Discussion of the Problems and Approaches 1.2

random noise. The notion of smoothed competitiveness aims at mitigating the
drawbacks of worst-case analysis and although it can provide interesting bounds
covering results ranging from worst case to average case, it has so far only been
applied in a very few papers. For our problem, the high level idea of such an
analysis is the following. We first identify a way to witness a certain competitiveness
based on the difference in the number of setups an optimal and the online solution
perform for the jobs at the end of the online schedule. To have a large difference
(which is intended from the adversary’s perspective), the adversary has to create
intervals in which a certain amount of workload is released. At this point, the
random noise added to the adversarially chosen processing times becomes profitable.
Intuitively, if the adversary chooses a large amount of workload in such an interval,
perturbing may lead to a high flow time for the optimal solution, giving a small
competitiveness. If the adversary chooses a smaller amount of workload instead, it
will (with high probability) regularly happen that this small amount of workload
is further decreased by the perturbations. In this case, the online algorithm can
regularly catch up with the adversary and a certain threshold on the maximum
flow time will never be violated (with high probability). The question how regularly
this happens, depends on the length of the maximal time period during which the
perturbation does not lead to such small workload. Because this length depends on
the amount of perturbation, we finally obtain a bound parameterized in the variance
of the distribution underlying the perturbation and thus, reflecting a range of a less
to more powerful adversary.

Finally, Chapter 8 also considers, in some, though quite different way, a parame-
terized analysis. Since in general no competitive algorithm can exist for the problem
at hand, we restrict the adversary in terms of how tight the deadlines of released
jobs are allowed to be. We obtain competitive ratios that are parameterized by this
looseness. Technically, our approach is based on an integer linear program that we
use from time to time to compute solutions to subinstances consisting of those jobs
released during the last computation. Thereby the formulation of the integer linear
program as well as how its solutions are used and combined are based on a careful
analysis of structural properties that can be presumed for good solutions.
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Preliminaries

Optimization problems and thus scheduling problems can be considered from
different perspectives with respect to the knowledge an algorithm solving
the problem has. In Section 2.1 we give a brief introduction to the common

notions of online and (offline) approximation algorithms together with the standard
measures to assess their quality. Then in Section 2.2 we briefly sketch two basic
techniques that proved to be useful and are widely used in combinatorial optimization.
We conclude this chapter by a collection of some useful tools from probability theory
in Section 2.3.

2.1 Approximation and Online Algorithms
As already briefly mentioned in the introduction, there are mainly two concepts
for scheduling algorithms: offline and online algorithms. An offline algorithm is
one that is given the whole input instance in advance and based on this it has
to compute a solution to the problem. That is, it computes a solution based on
complete information. In our scheduling setting, this means that an offline scheduling
algorithm knows all the jobs together with all the parameters characterizing them
in advance and then has to come up with a good schedule. This perspective on
a scheduling problem might be reasonable in some settings. For example, think
of a manufacturer who wants to produce certain goods based on a given bulk of
orders. Or the operator of a computing center who has to, given a batch of jobs,
perform a set of computations. In other settings, the assumption of the availability
of complete information is less reasonable. For example, a scheduling algorithm
working in the operating system of a PC does not know in advance which jobs will
pop up over time and will be needed to be scheduled. To capture such settings,
an online algorithm is one that gets the input over time and that has to make
decisions as time proceeds and before it knows the entire input. Therefore, it has

11
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to make decisions based on incomplete information about the future, which may
lead to suboptimal decisions. In the scheduling settings that we consider from an
online perspective in this thesis, this means that jobs are only revealed to the online
scheduling algorithm over time as soon as they arrive according to their release
times. Note that besides this online-over-time model there are also other notions of
online settings in scheduling, for example, when jobs arrive online over a list, that
is, are revealed one by one. For further details, the interested reader is referred to
[Sga96; PST04].
To assess the quality of offline and online algorithms, standard measures have

evolved. We give a brief introduction to these notions in the following.

2.1.1 Approximation Algorithms

Considering the fact that an offline scheduling algorithm knows all information
about an (input) instance in advance and before it has to make any decisions, it is
certainly possible for an offline algorithm to compute optimal solutions. However,
as most offline scheduling problems are NP-hard, they cannot be solved optimally
in an efficient way unless P = NP. Since it is widely believed that P 6= NP, there is
only little hope that computing optimal schedules for such problems is tractable.
Therefore, one is usually interested in approximation algorithms, which, for a given
objective function f mapping each feasible solution to a real value describing its
cost, produce solutions which are only by a certain factor away from being optimal.
This idea is formalized in the following definition1.

Definition 2.1 (Approximation Algorithm). For a given objective function f , a
(deterministic) polynomial time algorithm A is called an α-approximation algorithm
if, on any instance I, A computes a solution σ(I) such that

f(σ(I)) ≤ α · f(Opt(I)),

where Opt(I) denotes an optimal solution to instance I under objective function f .

In case A is a randomized algorithm, we demand E[f(σ(I))] ≤ α · f(Opt(I))
where E denotes the expectation with respect to the random choices of the algorithm.
In both cases, α is also often referred to as the approximation factor or approximation
ratio. An algorithm A that computes, for any fixed ε > 0, a (1 + ε)-approximation
in time polynomial in the input, is called a polynomial-time approximation scheme
(PTAS). If it also runs in time polynomial in 1

ε , it is called a fully polynomial-time
approximation scheme (FPTAS) and if its running time is of the form g(1

ε ) times
some polynomial in the input, where g is an arbitrary function, it is called efficient
polynomial-time approximation scheme (EPTAS). An introduction to approximation
algorithms and useful techniques for their design can be found in [WS11; Vaz01].
1Note that the definition assumes that we are concerned with minimization problems (which all of
our problems actually are). However, one can define approximation algorithms for maximization
problems analogously.
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2.1.2 Competitive Algorithms

Online algorithms lack the knowledge about the future and therefore, they are
usually not able to compute optimal solutions. To be able to assess the quality of an
online algorithm, the notion of competitiveness became the standard way to measure
the degree of suboptimality on a per instance basis. Similar to approximation
algorithms, we have the following definition for minimization problems.

Definition 2.2 (Competitive Online Algorithm). For a given objective function
f , a (deterministic2) online algorithm A is called to be α-competitive if, on any
instance I, A computes a solution σ(I) such that

f(σ(I)) ≤ α · f(Opt(I)),

where Opt(I) denotes an optimal (offline) solution to instance I under objective
function f .

The value α of an α-competitive algorithm is often also referred to as its competitive
factor or competitive ratio.
One often considers online algorithms together with competitive analysis as a

game played between a malicious adversary and the online algorithm: The adversary
dictates the instance with the goal of maximizing the ratio of the cost of the online
algorithm and the cost of an optimal offline solution. Intuitively, the adversary tries
to trick the online algorithm and urge it to decisions that will turn out to be bad
(and particularly, different to those of an optimal offline solution) in the end.

Note that for online algorithms we do not require a polynomial runtime. Therefore,
the competitiveness (only) focuses on the loss in the quality of solutions due to lack
of knowledge of the future. This is in contrast to approximation algorithms, where
the approximation factor captures the intractability of a problem due to restricted
time that can be spent on finding a solution. An introduction to online algorithms
and competitive analysis is given in [BE05] and a brief survey of some classical
results can be found in [Alb03].

Finally, it is worth mentioning that although competitive analysis is the standard
tool for analyzing online algorithms, it is also often criticized to be overly pessimistic.
Single pathological instances can result in bounds that diverge from practical obser-
vations or high lower bounds can make the design of good competitive algorithms
impossible. One approach to overcome this problem by weakening the all powerful
adversary is the concept of smoothed competitiveness. In Chapter 7 we give a brief
introduction to smoothed competitiveness and apply it in the context of an online
scheduling problem with setup times. Another approach, which we use in Chapter 8,
is to perform a parameterized analysis to overcome the problem of the existence of
instances on which no online algorithm can perform well.

2Competitiveness can also be defined for randomized online algorithms. However, in this thesis
we only consider deterministic online algorithms.
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2.2 Basic Techniques

Next, we recall two basic techniques that are helpful and often applied when designing
approximation algorithms.

2.2.1 Dual Approximation Framework

When designing approximation algorithms, it is often helpful to apply the concept of
dual approximations as introduced by Hochbaum and Shmoys in [HS87]. Instead of
coming up with an algorithm that directly optimizes the desired objective function
value, one assumes that a bound T on the optimal objective function value is given.
A dual α-approximation algorithm then computes a schedule with objective function
value at most αT or correctly decides that no schedule with objective function
value T exists at all. Employing this idea, a binary search for a good value T
started on an interval I 3 f(Opt) that contains the optimal objective function value
finally provides an approximation algorithm with approximation factor α (assuming
f(Opt) to be integral). Note that, given such an interval I of length |I| and a
dual approximation algorithm with runtime RT , then leads to an approximation
algorithm with a runtime of O(log(|I|) · RT ). Also observe that this approach
allows us to consider a scheduling problem from a packing perspective: Instead of
computing a schedule with a small objective function value, a dual approximation
algorithm has to pack the jobs so that the guess T on the optimal value is not
violated by the constructed solution. Unless stated otherwise, throughout this thesis
we consistently use T to denote the guess on the optimal objective function value.

2.2.2 Linear Programming

Linear programming is a basic technique that has proven to be quite useful for
the design and analysis of approximation algorithms. Many optimization problems,
amongst others some of the scheduling problems considered in this thesis, can be
exactly formulated as an integer linear program (ILP). Following the presentation
in [WS11], a binary ILP formulates the problem at hand based on a set of (binary)
decision variables constrained by linear inequalities (constraints) together with an
objective function defined by a linear function on the decision variables. Such decision
variables can, for example, be variables determining whether a job is processed on a
certain machine and a constraint can, for example, ensure that not too many jobs
are assigned to any machine. Formally, given n rational values c1, . . . , cn, m rational
values b1, . . . , bm and an m× n matrix (aij) ∈ Qm×n, an ILP with binary variables
can be represented as in Figure 2.1.
We call the value of the objective function achieved by the solution (that is, an

assignment of the variables) that minimizes the objective function the optimal value
of the program. Unfortunately, ILPs cannot be solved in polynomial time unless
P = NP and therefore, formulating a problem as an ILP does not directly help us
in finding a solution when we are restricted to a polynomial runtime. However, if
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minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m,

xj ∈ {0, 1} j = 1, . . . , n.

Figure 2.1: General form of a binary integer linear program.

we replace the constraints xj ∈ {0, 1} by 0 ≤ xj ≤ 1 for all j = 1, . . . , n (that is,
we relax our constraints and do no require variables to be integers), we obtain a
linear relaxation of the problem and the program becomes a linear program (LP).
On the positive side, it is known that LPs can be solved in polynomial time using an
interior points method [Kar84] or the ellipsoid method [GLS81]. On the other hand,
a linear relaxation usually does not capture the original problem. For example, if
a (binary) variable determines whether a job is processed on a certain machine,
in a solution to the linear relaxation the variable can have a fractional value, not
making any definite decision on the assignment of the job. Still, it turned out that
LPs are very useful for the design of approximation algorithms as even a fractional
solution can carry useful information about a problem’s integral solutions. First of
all, the optimal value of a linear relaxation is at most the optimal value of the ILP
from which the relaxation is derived, thereby giving a lower bound for the ILP’s
value. Second, a fractional solution to the LP relaxation of the ILP formulation of
a given problem can be useful for the construction of a (provably good) solution
to the original problem. Popular examples for that is the concept of randomized
rounding where fractional values are used as probabilities (e.g. [RT87; Sri99; MR95])
for rounding fractional values to integral ones, iterative rounding methods [LRS11],
the approach of deterministic rounding of fractional values (e.g. [LST90; Cor+15]),
and approaches where the values of an optimal fractional solution guide a simple
list-scheduling algorithm constructing a feasible solution to the original problem
(e.g. [Hal+97]). In this thesis, we will use ILPs in Chapter 8 and LPs together with
iterative randomized as well as deterministic rounding in Chapter 5.

2.3 Some Probability Theory

In the following, we recall some definitions and results from probability theory. We
assume the reader to be familiar with the basic notions such as random experiments,
probability distributions, random variables and moments of random variables. We
only briefly sketch some further results that we use in some of the chapters of this
thesis. Unless stated otherwise, the presented content can be found in standard
books such as [MU05].
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We start with two bounds that are quite useful and convenient when designing
randomized algorithms. They can, for example, be used to analyze an algorithm’s
failure probability or its expected behavior and are well-known and widely used.

Theorem 2.3 (Chernoff Bounds). Let X1, X2, . . . , Xn be independent random vari-
ables with 0 ≤ Xi ≤ 1 for all 1 ≤ i ≤ n. Let X = ∑n

i=1Xi and E[X] ≤ µ. Then it
holds for any δ ≥ 1

Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3.

Lemma 2.4 (Union Bound). Let A1, A2, . . . , An be a collection of events. Then it
holds

Pr[A1 ∪A2 ∪ . . . ∪An] ≤
n∑
i=1

Pr[Ai],

or slightly restated

Pr[∃i such that Ai holds] ≤
n∑
i=1

Pr[Ai].

When computing the expectation of a random variable, it is sometimes more
handy to distinguish several cases, that is, to study several conditional expectations.
The following result formalizes this idea.

Lemma 2.5 (Law of Total Expectation). For two random variables X and Y it
holds

E[X] =
∑
y

E[X | Y = y] · Pr[Y = y],

where the sum is over all y in the range of Y .

Also, it is more convenient (and often still sufficient) to upper bound the expecta-
tion based on tail estimates (for example obtained by applying Chernoff bounds)
instead of carrying out an exact computation using the following result.

Lemma 2.6. Let X be a random variable such that Pr[X ≥ α] ≤ p and X ≤ B.
Then we have

E[X] ≤ p ·B + α.

In Chapter 7, we will analyze algorithms under the presence of random noise
perturbing the adversarial instances. There, we will make use of the following two
distributions, which are common in probability theory.

Definition 2.7 (Uniform Distribution). The (continuous) uniform distribution
U(a, b) over an interval [a, b] is described by the probability density function

f(x) =
{ 1
b−a for a ≤ x ≤ b,
0 otherwise.

Its expectation is 1
2(a+ b) and its variance 1

12(b− a)2.
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Definition 2.8 (Normal Distribution). The normal distribution N (µ, σ2) with
expectation µ and standard deviation σ is described by the probability density
function

φµ,σ(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 for −∞ < x <∞.

The (cumulative) distribution function is denoted Φµ,σ(x). For the standard normal
distribution, that is, for µ = 0 and σ = 1, we write Φ(x) instead of Φ0,1(x) and φ(·)
instead of φ0,1(·) analogously.

While the normal distribution is a very common distribution for randomness, for
our purposes it has the drawback that any value in (−∞,∞) occurs with positive
probability. Instead we would like to restrict the distribution to a certain range. One
way to achieve this is to consider truncated normal distributions, which essentially
are obtained by setting values outside the specified range to zero and then rescaling
the values inside the range. The following definition and more about truncated
normal distributions can be found in [Bur14].

Definition 2.9 (Truncated Normal Distribution). Let X ∼ N (µ, σ2) have a normal
distribution. X conditioned on a < X < b has a truncated normal distribution
denoted N(a,b)(µ, σ2) given by the probability density function

φ(x−µ
σ

)
σ(Φ( b−µ

σ
)−Φ(a−µ

σ
))

for a ≤ x ≤ b,

0 otherwise.

The truncated normal distribution has the following moments

E[X | a < X < b] = µ+ σ
φ(α)− φ(β)
Φ(β)− Φ(α)

and
V[X | a < X < b] = σ2

[
1 + αφ(α)− βφ(β)

Φ(β)− Φ(α) −
(
φ(α)− φ(β)
Φ(β)− Φ(α)

)2]

where α := a−µ
σ and β := b−µ

σ .

When working with sums of independent random variables (for example, variables
representing random noise as mentioned above) it is often hard to determine their
exact distribution. One way to still get an estimate on their distribution is to rely on
the central limit theorem. It is a well-known fact that, under certain circumstances,
the cumulative distribution function of a sum of independent random variables can
be approximated by the cumulative distribution function of the standard normal
distribution. This approximation can even be quantified in terms of the error and
the following bound can be found, for example, in [Fel66].

Theorem 2.10 (Berry-Esseen Inequality). Let X1, X2, . . . , Xn be independent ran-
dom variables. Let E[Xi] = 0 for all 1 ≤ i ≤ n and denote E[X2

i ] = σ2
i > 0 and
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E[|Xi|3] = ρi <∞. Let S = X1+X2+...+Xn√
σ2

1+σ2
2+...+σ2

n

, F be the distribution function of S and
δ = supx |F (x)− Φ(x)|. By the central limit theorem we have

Pr[S ≤ x] ≤ Φ(x) + δ.

Also, δ can be bounded as follows

δ ≤ C0

(
n∑
i=1

σ2
i

)−(3/2)

·
n∑
i=1

ρi ≤ C0

(
n∑
i=1

σ2
i

)−(1/2)

· max
1≤i≤n

ρi
σ2
i

and by [She10], C0 can be upper bounded by 0.56.
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Scheduling on Machines with Setup
Times

Setup times are a fundamental aspect to consider when planning the execution
of jobs or the production of goods on (parallel) machines. They frequently
occur in natural settings where a machine, after doing some work of a certain

type, has to be prepared in some way for upcoming jobs of a different type. A
variety of applications and motivations for such models with an explicit modeling of
setup times have been reported in the literature. Consider the following examples
of which we think they suit our setting best:

• Setup times occur in production systems, for example, when machines need
to be reconfigured or cleaned during the manufacturing of different customer
orders [Pot91] or for preparations such as the calibration or change of tools
[AGA99; All+08; All15]. In this context they are often referred to as changeover
times.

• They occur in settings where we have multiple machines but only a single
server/worker that has to be present at a machine to process a job. Moving
the server from one machine to another incurs a setup time [Sah72]. A similar
setting is one where we have multiple queues of requests that are served by
a single server one after the other. The server requires a setup time when
switching between the serving of different queues. For such a setting, though
with objectives different to ours, a whole line of research known under the term
polling systems with applications in, for example, computer communications,
traffic and productions exists [LS90].

• Similarly, further examples are settings in which a server has to answer requests
of different types, depending on the data to be loaded into memory and to be
accessed by the server. Here setups occur due to the transfer of data to the
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memory [DS00]. Similar settings occur when different jobs require different
compilers to be present in memory [BD78], or when programs require the
transfer of files they are dependent on [AS08].

• A further motivation might be reconfigurable computing where, for example,
the use of field-programmable gate arrays (FPGAs) requires the consideration
of non-negligible reconfiguration overhead times [KB15; Res+03] and the
reuse of configurations among different jobs [Res+03]. [Pla+06] mentions
the applicability of scheduling with setup times in the context of networked
systems where resources are multiplexed among different services, for example,
in case of a shared data center or a programmable network processor (also see
[Kok05]).

• Finally, setup times can be used to model less obviously related settings, such
as a scenario where an intersection of two streets is equipped with traffic lights
and where setup times describe the time drivers need for start-up once they
see green light [HR87].

Motivated by the above, we consider a scheduling model that incorporates setups
and naturally generalizes the classical (parallel) machine scheduling problem: We
are given a set of jobs as well as a single or parallel machines and the goal is to find
a schedule that defines for each job when it is processed on which machine so as to
optimize a given objective function. Our generalization assumes the set of jobs to be
partitioned into classes. Whenever the machine switches from processing jobs of one
class to jobs of a different class, a setup needs to take place for the reconfiguration
of the machine. During a setup a machine cannot process any jobs leading to the
necessity of taking into account setups in scheduling decisions.

In the course of Chapters 4 to 7, we study different variants of this general model,
which we introduce more formally in Section 3.1 and for which we review relevant
related work in Section 3.2. (The problem studied in Chapter 8 has a different
motivation and focus and thus, the respective model and work related to it are
discussed separately in the respective chapter.) Our models in Chapters 4 to 7
vary with respect to machine environments and objective functions. We start with
the classical optimization goal of minimizing the makespan on identical machines
in Chapter 4 and generalize this model to heterogeneous machines in Chapter 5.
Afterwards we generalize the makespan objective to maximum flow time and study
the single machine case in its offline as well as online setting in Chapter 6 and
Chapter 7, respectively.

3.1 A General Model

We consider a model in which a set J = {1, 2, . . . , n} of jobs has to be scheduled on
a setM of m ≥ 1 machines. Each job j ∈ J is characterized by a processing time
(or size) pij for each machine i ∈M, which describes the time it takes to process
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job j if assigned to machine i. Additionally, each job j ∈ J belongs to exactly one
class kj ∈ K = {C1, C2, . . . , CK} with J = C1 ∪̇ . . . ∪̇CK and kj = Ck if and only if
j ∈ Ck. Before a job j ∈ Ck can be processed on a machine, this machine has to be
configured properly for processing jobs of class Ck and afterwards jobs of class Ck
can be processed without additional setups until the machine is reconfigured for a
class Ck′ 6= Ck. That is, a setup needs to take place before the first job is processed
on a machine and whenever the machine switches from processing a job j′ to a job
j with kj 6= kj′ . Such a setup for class kj on machine i takes time sikj and while
setting up a machine, it is blocked and cannot process any job. Given a schedule,
we call all jobs sharing the same setup, that is, a maximal set of jobs of a common
class scheduled contiguously and without any intermediate setup, a batch.
In this setting, a schedule has to assign each job j ∈ J to exactly one machine

i ∈M and specify a time interval of length pij during which the job is processed.
Additionally, we require that a machine processes at most one job at a time and that
the schedule fulfills the aforementioned requirements regarding setups. The goal is to
find a feasible schedule that minimizes a certain objective function. In the following,
we consider the objectives of minimizing the makespan (latest completion time of
a job) on parallel machines and minimizing the maximum flow time (difference
between the completion and release time of a job) on a single machine. We defer the
more detailed specifications and formal definitions of the models for jobs, machines
and the objective function to the respective chapters.

3.2 Related Work

In this section, we review relevant work related to the problems considered in
Chapters 4 to 7. Most closely related to Chapter 4 and Chapter 5, we present results
for optimizing the makespan in case there are no setups and take a look at existing
results that explicitly model setup times. With respect to Chapter 6 and Chapter 7
we summarize existing work on scheduling with flow time (and related) objectives
and with respect to analysis techniques we take a look at the notion of smoothed
competitiveness.

3.2.1 Makespan Scheduling without Setups

Our model as described above can be seen as a generalization of classical parallel
machine models without setup times (or, equivalently, where all setup times are 0),
which have been studied quite a lot. We structure our review of literature on such
models based on the kind of machines and depending on whether they are assumed
to be identical or heterogeneous.

Identical Machines. The problem of minimizing the makespan on a set of identical
parallel machines has been considered for quite a while and it has been extensively
studied from the perspective of approximation algorithms. As early as in 1969, in
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[Gra69] Graham proposes a scheduling algorithm nowadays known as list scheduling.
It assigns one job after the other in the order of a given list and always assigns
the current job to the machine that has the least load so far. Graham analyzes
the list scheduling algorithm and shows an approximation factor of 2− 1

m . He also
proves that in case the list of jobs is ordered according to non-decreasing processing
times (then we call the algorithm LPT abbreviating Longest Processing Time), the
resulting schedule provides (4

3 −
1

3m)-approximations. Later, the approximation
ratios were significantly improved and PTASs with runtimes that are linear in the
number n of jobs are known due to Alon et al. [Alo+98] and Hochbaum and Shmoys
[HS87]. The approach in [Alo+98] even works for various objective functions such
as minimizing (maximizing) the maximum (minimum) machine completion time
or the sum of machine completion times. If the number m of machines is constant,
even an FPTAS exists as proven by Horowitz and Sahni in [HS76].

Non-identical Machines. One widely studied model for non-identical machines
is that of uniformly related ones. In this case each machine runs at a fixed speed,
which is the same for all jobs and hence, for any two jobs j, j′ and two machines i, i′,
pij
pi′j

= pij′
pi′j′

. Similar to LPT for identical machines, it is also defined for uniformly
related machines: Here the current job is always assigned to the machine where it
finishes first if appended to the current schedule. Kovács shows in [Kov10] that in
this case LPT schedules provide (1 + 1√

3)-approximations. As for identical machines,
it is also known for a long time due to the work of Hochbaum and Shmoys [HS88]
that a PTAS can solve the problem of uniformly related machines arbitrarily close
to optimal. More recently, in [Jan10] Jansen even shows that the running time can
be further improved by coming up with an EPTAS.

The case of unrelated machines where no restrictions are imposed on the processing
times significantly differs from the uniform case due to an inapproximability result
of 3

2 (unless P = NP) as proven by Lenstra, Shmoys and Tardos in [LST90]. On
the positive side, the same work as well as [ST93] show that there are algorithms
that provide 2-approximations based on rounding fractional solutions to a linear
programming formulation of the problem. Shchepin and Vakhania improved this
and show in [SV05] that the approximation factor can be improved to (2− 1

m). A
purely combinatorial approach with approximation factor 2 is also known due to
Gairing et al. [GMW07]. A special case of unrelated machines is the restricted
assignment problem where each job j has a set Mj of eligible machines on which it
can be processed and has the same size on all of them. While the aforementioned
lower bound of 3

2 from [LST90] applies to the restricted assignment problem as well,
for special cases of the restricted assignment problem stronger results are known.
For example, Ebenlendr et al. [EKS14] show that the same lower bound even holds
for the more restrictive case where |Mj | ≤ 2 for all j, and design a 7

4 -approximation
algorithm for this case. For the general restricted assignment case, Svensson [Sve12]
provides an algorithm for estimating the optimal makespan within a factor of 33

17 .
Jansen and Rohwedder [JR17b] improve this to 11

6 and also give a constructive
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algorithm with quasipolynomial running time and approximation ratio 11
6 + ε in

[JR17a]. Another special case is that of unrelated machines of only a few (constant
number of) types. In this case all machines of the same type are identical but
different types can behave in an unrelated way. For that problem Jansen and Maack
provide an EPTAS in [JM17].

3.2.2 Makespan Scheduling with Setups

Scheduling with an explicit modeling of setup times has a long history, particularly
within the community of operations research. The vast majority of work there
studies hardness results, exact algorithms and heuristics, which are evaluated
through simulations, but without formal performance guarantees. The interested
reader is referred to the exhaustive surveys on these topics by Allahverdi et al.
[AGA99; All+08; All15]. In contrast, literature in the domain of approximation and
online algorithms with proven bounds on the performance is much more scarce. In
[MP93], Monma and Potts consider a model where jobs belong to different classes
and a setup needs to take place whenever a machine switches from processing jobs
of one class to a job of a different class. They consider m identical machines and
(in contrast to this thesis) allow the preemption of jobs. They design two simple
algorithms, one with an approximation factor of at most max{3

2 −
1

4m−4 ,
5
3 −

1
m}

if each class is small (i.e., setup time plus size of all jobs of a class are not larger
than the optimal makespan), and a second one with an approximation factor of at
most 2− 1

bm/2c+1 for the general case. For the case of small classes, Chen presents
an improved algorithm with approximation factor 3

2 in [Che93]. Schuurman and
Woeginger [SW99] consider the special case where each class only consists of a
single job. They design a PTAS for the case of job-independent setup times and a
4
3 -approximation for the case of job-dependent setup times. Jansen et al. improve on
this result by giving an EPTAS in [Jan+19]. The same work [Jan+19] also considers
a similar model where jobs can not only be preempted but be split arbitrarily (thus,
job parts can also be processed simultaneously on different machines). The authors
present an EPTAS for the problem in case all machines are identical. For the case of
unrelated machines, Correa et al. design a (1 + φ)-approximation, where φ ≈ 1.618
is the golden ratio, as well as an inapproximability result of e

e−1 (unless P = NP) in
[Cor+15].

3.2.3 Flow Time Scheduling

For the objective of minimizing the flow time there are some results for the classical
model without setup times. In this case, it is known that FIFO is optimal for
minimizing maximum flow time on a single machine. On m parallel machines FIFO
achieves a competitiveness of 3− 2

m in the preemptive as well as the non-preemptive
case as shown by Mastrolilli in [Mas04]. Further results include algorithms for
unrelated machines with speed augmentation (which is required as otherwise there
is a high lower bound on the achievable competitiveness) given by Anand et al. in
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[Ana+17] and for related machines proposed by Bansal and Cloostermans in [BC16]
and by Im et al. in [Im+17].

Concerning the model with setup times and a single machine, Divakaran and Saks
design and analyze an (online) algorithm in [DS11] having a constant approximation
factor for minimizing the maximum flow time. Also, they show that the offline
problem is NP-hard in case the number K of classes is part of the input. In case
K is a constant, it was known before that the problem can be solved optimally in
polynomial time by a dynamic program proposed by Monma and Potts in [MP89].

There are also some results for objectives other than maximum flow time assuming
job classes and setup times to be present. In [DS08] Divakaran and Saks give a
2-approximation for the weighted completion time objective and an algorithm
achieving a maximum lateness that is at most the maximum lateness of an optimal
solution for a machine running at half the speed. In [CVV16], Correa et al. study
the objective of minimizing the weighted completion time in the setting where jobs
can be split arbitrarily and each part requires a setup before being processed. They
propose constant factor approximations for identical and unrelated machines. The
total completion time objective is also considered in a setting where jobs consist
of multiple operations belonging to different classes. A job is considered to be
finished as soon as all its operations are completed and a setup time is incurred
when switching between classes. For this problem the NP-hardness for a single
machine is known due to Ng et al. [NCY02] as well as an optimal algorithm for a
special case due to Gerodimos et al. [Ger+99]. This special case is rather artificial
and assumes that the jobs can be renamed in a way so that if job ji contains an
operation of class k, also ji+1 contains an operation of class k which is at least as
large as the one of ji.

3.2.4 Smoothed Competitiveness

The notion of smoothed analysis has been introduced by Spielman and Teng in
[ST04] to explain the discrepancy between the superior runtime performance of the
simplex method in practice and its bad worst-case performance. The idea of this
kind of analysis is to randomly perturb the instances dictated by the adversary
and analyze the expected performance with respect to the random perturbations.
A gentle introduction to this topic is given, for example, in [MR11] and a survey
covering some of the numerous results obtained in this area is given in [ST09]. The
concept of smoothed analysis has also been carried over to approximation algorithms
(see, e.g., [ERV14; Bru+14]) and to competitive analysis [Bec+06]. However, the
literature on smoothed approximation ratios and smoothed competitiveness is much
more scarce. Particularly, smoothed competitiveness has, although considered as
an interesting alternative to classical competitiveness (see, e.g., [HV12; Lóp16]),
so far only been applied to two problems. In [Bec+06], Bechetti et al. study the
Multilevel Feedback Algorithm for minimizing total flow time on parallel machines
when preemption is allowed and non-clairvoyance is assumed. They consider a
smoothing model in which integral processing times from the interval [1, 2Q] as
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dictated by an adversary are perturbed by replacing the q least significant bits
by a random number from [1, 2q]. They prove a smoothed competitiveness of
O((2q/σ)3 +(2q/σ)22Q−q), where σ denotes the standard deviation of the underlying
distribution. This, for example, becomes O(2Q−q) for the uniform distribution. This
result significantly improves upon the lower bounds of Ω(2Q) and Ω(n 1

3 ) known
for the classical competitiveness of deterministic algorithms [MPT94]. In [SS05],
Schäfer and Sivadasan apply smoothed competitive analysis to metrical task systems
(a general framework for online problems covering, for example, the paging and
the k-server problem). While any deterministic online algorithm is (on any graph
with n nodes) Ω(n)-competitive, the authors, amongst others, prove a sublinear
smoothed competitiveness on graphs fulfilling certain structural properties. Finally,
Scharbrodt et al. apply a notion similar to smoothed competitiveness in [SSS06].
They consider the problem of minimizing the total completion time on parallel
machines and analyze the Shortest Expected Processing Time First (SEPT) strategy.
While it is Ω(n)-competitive, for processing times drawn from a gamma distribution
they prove an expected competitiveness, defined as the expected ratio of SEPT’s
and Opt’s total completion time, of O(1).
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Scheduling on Identical Machines with
Setup Times

Identical machines define the most basic and well-studied machine environment
for parallel machines. In this setting, all machines are assumed to be completely
alike so that the processing time of a job does not depend on the machine it is

assigned to. In this chapter, we begin our study of scheduling problems with setup
times as described in the general model in the previous chapter for such identical
machines. Our objective is to assign jobs (and the respective setup operations) to
machines so as to minimize the makespan of the resulting schedule, that is, the
completion time of the latest job. Optimizing the makespan is a classical objective
function that aims at finishing a given set of jobs as fast as possible by balancing
the load roughly equally among all available machines. It is particularly interesting
from the perspective of a computing center or the owner of a factory as it leads to
high utilization and low cost.
Surprisingly, although a lot of research has been done on scheduling with setup

times as well as on optimizing the makespan, there were no known results concerning
the considered model by the time our results presented in this chapter were first
published in [Mäc+15]1. As discussed in Chapter 3, related problems have been
considered from a different perspective aiming at heuristics and exact algorithms. In
contrast, we are interested in approximation algorithms and we propose two simple
ones in Section 4.2. The first one is a simple strategy yielding 2-approximate solutions
for an arbitrary number m of machines while the second one is an FPTAS for the
considered problem if m is constant. Section 4.3 presents the main contribution

1However, since this first publication, the problem attracted the attention of some researchers
and in the course of that a PTAS [JL16] and even an EPTAS [Jan+19] as well as a fast
3/2-approximation [DJ19] haven been developed. This interest has also led to some joint work,
on which Chapter 5 is based.
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of this chapter which is an algorithm whose approximation factor can be made
arbitrarily close to 3/2 with a runtime that is polynomial in the input quantities
n,m and K. Finally, in Section 4.4 we very briefly study an online version where
jobs arrive over time and shortly discuss how to turn, employing a known technique,
our offline algorithm into an online strategy with a competitiveness arbitrarily close
to 4.

4.1 Model & Notation

We consider the general model as described in Chapter 3 for the case that all m
parallel machines are identical. That is, each job j ∈ J has a processing time
pj ∈ N≥0 that is the same for all machines so that pij = pj for all i ∈ M. We
also assume that the setup times are identical and hence, it holds sik = s for some
s ∈ N≥0 and for all i ∈M and k ∈ K.
The objective we consider in this chapter is the minimization of the makespan

given by the time at which the last job finishes. In this case a schedule is implicitly
given by a mapping σ : J → M, where σ(j) defines the machine on which job j
is processed. Given σ, one can easily construct an actual schedule by sequencing
all jobs of σ−1(i) on machine i in an arbitrary order as long as all jobs belonging
to the same class are processed consecutively and preceded by a respective setup.
Formally, the makespan is then given by the maximal load maxi∈M Li where
Li = ∑

j∈σ−1(i) pj + |{Ck : Ck ∩ σ−1(i) 6= ∅}| · s. By abuse of notation we use Opt
to denote an optimal schedule as well as its makespan.
For ease of presentation we provide some additional definitions. We refer to the

overall processing time of all jobs of a class Ck as its workload and denote it by
w(Ck) := ∑

j∈Ck pj and we assume that for all k ∈ K it holds that w(Ck) ≤ γOpt
for some constant γ. By abuse of notation, by w(Ck) we sometimes also represent
(an arbitrary sequence of) those jobs belonging to class Ck. We say a job j ∈ Ck
forms an individual class if Ck = {j}. The processing time of the largest job in
a given instance is denoted by pmax := max1≤j≤n(pj). We say a machine is an
exclusive machine (of a class Ck) if it only processes jobs of a single class (class Ck).
For better readability we use M1, . . . ,Mm to denote machines in this chapter.

4.2 Simple Approaches

In this section, we briefly discuss some simple results we have for our scheduling
problem. We start with a simple and fast algorithm and then consider a computa-
tionally more expensive approach that provides an FPTAS for a constant number
m of machines.
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4.2.1 Fast 2-Approximation

Our main approximation algorithm presented in Section 4.3 follows the idea of a
dual approximation algorithm as introduced in Section 2.2 and therefore, requires a
good guess on the optimal makespan to initialize the interval on which we perform
the binary search. We can find a suitable interval containing the optimal makespan
by applying the following algorithm, which provides an interval of length Opt.

Algorithm 1 Description of the simple algorithm.
(1) Create a list of the form w(C1), s, w(C2), s, . . . , s, w(Ck).

(2) Let B := max
(
s+ pmax,

⌈
Ks+

∑n

j=1 pj

m

⌉)
be a simple lower bound on Opt.

(3) Assign the jobs and setups to machines in the order of the list in the following
way:

• If the load assigned to the current machine is smaller than B, the next
job (or setup) of the sequence is assigned to the current machine.

• Otherwise, the algorithm proceeds with the next machine and assigns
the job to it.

(4) Finally, make the resulting schedule feasible by adding missing setups.

Lemma 4.1. Algorithm 1 runs in time O(n logn) and has an approximation factor
of at most 2.

Proof. Note that Step (4) can add at most one setup per machine. Thus, the
makespan of the schedule obtained by Algorithm 1 is at most B + s+ pmax ≤ 2B
and we only need to show that it requires at most m machines.

For the analysis we take a different perspective on the process (however, it will be
clear that the algorithm cannot use more machines than proven next). Note that the
length of the sequence given by Step (1) is exactly (K − 1)s+∑n

j=1 pj < mB. Thus,
if we split it at points `B, ` ∈ N, into blocks of length B, we obtain at most m blocks.
Observe that when Algorithm 1 proceeds with a new machine in the else-branch of
Step (3) and if this new machine is the i-th one, it has already scheduled all jobs
belonging to the first (i − 1) blocks. This proves that m machines are sufficient,
which concludes the proof.

The main shortcoming of Algorithm 1 is the naive packing of jobs, which can
overfill a machine by almost pmax (or, in terms of the proof, the fact that jobs of
size pmax might get split and then in a feasible schedule need to be processed during
the interval [B,B + pmax). In our main algorithm in Section 4.3, we will address
this shortcoming. To this end we will ensure that such situations of overfilling only
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happen with jobs that are not too large so that a machine can be overfilled by at
most ≈ 1/2pmax.

4.2.2 Constant Number of Machines
As a second simple result we now show that the problem is rather easy to solve
if the number m of machines is upper bounded by a constant. For this case we
show how to obtain an FPTAS, i.e., an approximation algorithm that, given any
ε > 0, computes a solution with approximation factor at most 1 + ε and runs in
time polynomial in n,K and 1/ε. First of all, note that it is simple to enumerate all
possible schedules (up to permuting the batches per machine, which does not change
the makespan) as follows: Sort the set of jobs according to classes. Let Si, 0 ≤ i ≤ n,
be the set of all possible (partial) schedules for the first i jobs. Let S0 = ∅ and
j1, . . . , jK , be the indices i at which there is a change from a job of one class to one
of another in the ordered sequence and j1 := 1. To compute Si, if i 6= j1, . . . jK ,
consider each schedule in Si−1. For each possible assignment of job i to a machine
for which a setup took place for i’s class ki put the corresponding schedule into Si
(if the makespan is not larger than T , others can directly be discarded). If i = j` for
some 1 ≤ ` ≤ K, first compute all 2m− 1 possible extensions of schedules in Si−1 by
setups for i’s class ki and then proceed as in the case before. Obviously, choosing a
schedule S ∈ Sn with minimum makespan yields an optimal solution.
To obtain an efficient algorithm from this straightforward enumeration of all

possible schedules, we first define some dominance relation. This relation helps
us to remove schedules during the enumeration process for which there are other
schedules that will be at least as good for the overall instance.

Definition 4.2. After computing Si, a schedule S ∈ Si is dominated by S′ ∈ Si if

• S and S′ have the same load on the first m− 1 machines and the load of S′
on the m-th machine is smaller and

• in case that ki = ki+1, in S and S′ the same machines are set up for i’s class
ki.

Note that by removing, for each combination of load values on the first m − 1
machines, all dominated and all but at most one non-dominated schedule directly
after the computation of Si and before the computation of Si+1, we may reduce the
size of Si without influencing the best obtainable makespan computed at the end in
Sn. However, we cannot ensure that the Si have a small size. Thus, we consider the
following rounding, which is applied before the enumeration: Round up s and the
size pj of each job j to the next integer multiple of εT/(n+K), where ε > 0 defines the
desired precision of the FPTAS. As to any machine we assign at most n jobs and
K setups, the rounding may introduce an additive error of at most ε · T ≤ ε ·Opt.
Additionally, the rounding helps to make sure that each Si is not too large after
removing the respective (dominated) schedules. Due to our dominance definition,
there are at most (n+K)/ε different load values that may occur in schedules in Si.
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Hence, there are at most 2m · ((n+K)/ε)m many schedules in Si that are not removed,
thus proving the following theorem.

Theorem 4.3. If the number m of machines is bounded by a constant, there is an
FPTAS.

4.3 A (3/2 + ε)-Approximation Algorithm
In this section, we present the main algorithm of this chapter. The outline of our
approach is as follows:
(1) We first identify a class of schedules that feature a certain structural property.
We show that if we narrow our search for a solution to schedules belonging to this
class, we still find a good schedule, i.e., one whose makespan is not too far away
from an optimal one.
(2) We then show how to perform a rounding of the involved job sizes and further
transformations and thereby significantly decrease the size of the search space.
(3) Finally, given such a (transformed) instance, it will be easy to optimize over the
restricted class of schedules studied in (1) to obtain an approximate solution to any
given instance.

4.3.1 Block-Schedules
We start by discussing the question how to narrow our study to a class of schedules
that fulfill a certain property and still, be able to find a provably good approximate
solution. Particularly, we focus on block-schedules, which are schedules satisfying a
simple structural property, and which we define as follows.

Definition 4.4. Given an instance I, we call a schedule for I block-schedule if
for all 1 ≤ i ≤ m the following holds: In the (partial) schedule for the machines
M1, . . . ,Mi, there is at most one class of which some but not all jobs are processed
on M1, . . . ,Mi.

Intuitively speaking, in a block-schedule all jobs of a class are executed in a block
in the sense that they are assigned to consecutive machines and are not widely
scattered.
In order to prove our main theorem about block-schedules, we first have to take

care of jobs having a large processing time in terms of the optimal makespan. Let
Li = {j ∈ Ci : 1/2Opt− s < pj < 1/2Opt} be the set of large jobs of class Ci and
Hi = {j ∈ Ci : pj ≥ 1/2Opt} be the set of huge jobs of class Ci. Based on these
definitions we show the following lemma.

Lemma 4.5. With an additive loss of s in the makespan we may assume that

1. Each huge job forms an individual class,

2. There is a schedule with the property that all large jobs of class Ci are processed
on exclusive machines, except (possibly) one large job qi ∈ Li, for each Ci, and
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3. qi = argminj∈Li{pj} is the smallest large job in Ci and the machine it is
processed on has a load of at most Opt.

Proof. We prove the lemma by showing how to establish the three properties by
transformations of the given instance I and an optimal schedule S for I with
makespan Opt. To establish the first property, transform I into I ′ by putting each
job j ∈ Hi into a new individual class, for each class Ci. Because any machine
processing such a huge job j cannot process any other huge or large job due to their
definitions, the transformation increases the makespan of any machine by at most s.
Next, we focus on the second property. In S no machine can process two large

jobs of different classes. Hence, we distinguish the following two cases: A machine
processes one large job or a machine processes at least two large jobs. We start with
the latter case and consider any machine that processes at least two large jobs of
a class Ci. Because these two jobs already require at least 2 d(Opt+1)/2− se+ s ≥
Opt − s + 1 time units including the setup time, no job of another class can be
processed and thus, this machine already is an exclusive machine. On the other
hand, if a machine Mp only processes one large job j ∈ Ci, we can argue as follows.
The machine Mp works on j for at least d(Opt+1)/2e time units (including the setup).
Thus, the remaining jobs and setups processed by Mp can have a size of at most
b(Opt−1)/2c. If there is still another machine processing a single large job of Ci, we
can exchange these jobs and setups with this large job and both involved machines
have a makespan of at most Opt + s. Also, the machine from which the large job
was removed does not contain any huge or large jobs anymore ensuring there is no
machine where this process can happen twice. We can repeat this procedure until
all (but possibly one) large jobs are paired so that the second property holds since
no machine is considered twice.
Finally, to establish the third property, we can argue as follows: If the smallest

large job qi is the only large one on a machine in the schedule S, we can do the
grouping just described without shifting qi to another machine satisfying the desired
bound on the makespan. If qi is already processed on a machine together with
another large job, we may pair the remaining jobs but (possibly) one (which is not
processed together with another large job on a machine). In case there is such a
remaining unpaired job, we finally exchange qi with the unpaired job. The resulting
schedule fulfills the desired properties.

We now put the smallest large job qi of each class Ci into a new individual class.
Based on the previous result, there is still a schedule with makespan at most Opt+s
for the resulting instance.

In the next lemma, we directly deduce that there is a block-schedule with makespan
at most Opt + s if we allow some jobs to be split, i.e., some jobs are cut into two
parts that are treated as individual jobs and processed on different machines. To
this end, fix a schedule S for I fulfilling the properties of Lemma 4.5. By M̃ denote
the exclusive machines according to schedule S and by C̃i the class Ci without those
jobs processed on machines belonging to M̃ .

32



A (3/2 + ε)-Approximation Algorithm 4.3

Lemma 4.6. Given the schedule S fulfilling the properties of Lemma 4.5, there is
a schedule S′ with makespan at most Opt + s with the following properties:

1. A machine is exclusive in S′ if and only if it belongs to M̃ and the partial
schedule of these machines is unchanged.

2. When removing the machines belonging to M̃ and their jobs from S, we can
schedule the remaining jobs on the remaining machines such that

a) The block-property holds and

b) only jobs with size at most 1/2Opt− s are split.

Proof. Remove machines belonging to M̃ and the jobs scheduled on them from
the schedule S obtaining S̃. We now show that there is a schedule S′ with the
desired properties. Similar to [SW99] consider a graph G = (V,E) in which the
nodes correspond to the machines in S̃ and there is an edge between two nodes if
and only if in S̃ the respective machines process jobs of the same class. We argue
for each connected component of G. Let m′ be the number of nodes/machines in
this component. Furthermore, let C ′ = {C ′1, . . . C ′l} be the set of classes processed
on these machines without those formed by single huge or large jobs and H =
{h1, . . . , hr} be the set of jobs processed on these machines that are either huge
jobs or large jobs forming individual classes. Note that r ≤ m′ since all jobs of H
must be processed on different machines in S̃. By an averaging argument we know
Opt + s ≥ 1

m′

(∑l
i=1w(C̃ ′i) +∑r

i=1w(hi) + (l + r +m′ − 1)s
)
and hence,

l∑
i=1

w(C̃ ′i) + (l − 1)s ≤ (m′ − r)Opt +
r∑
i=1

(Opt− w(hi)− s). (4.1)

Consider the sequence w(C̃ ′1), s, w(C̃ ′2), s, . . . , s, w(C̃ ′l) of length
∑l
i=1w(C̃ ′i)+(l−1)s

and split it from the left to the right into blocks of length Opt−w(h1)−s, . . . ,Opt−
w(hr)− s, followed by blocks of length Opt. Note that each block has non-negative
length. By Equation (4.1) we obtain at most m′ blocks and by adding a setup to
each block and the jobs hi plus setup to the first r blocks, we can process each block
on one machine.

Consequently, if we apply these arguments to each connected component and add
the removed exclusive machines again, we have shown that there is a schedule S′
with makespan at most Opt + s satisfying the required properties of the lemma.

Lemma 4.6 proves the existence of a schedule that almost fulfills the properties
of block-schedules, whose existence is the major concern in this section. However,
it remains to show how to handle jobs that are split as we do not allow splitting
or preemption of jobs. Additionally, we need to describe how to place exclusive
machines belonging to M̃ , which are not taken care of by the previous lemma, into
the obtained schedule in order to yield a block-schedule.
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To simplify the description in the following, when we say we place an exclusive
machine Mi before machine Mj , we think of a re-indexing of the machines such that
the ordering of machines other than Mi and Mj stays untouched but now the new
indices of Mi and Mj are consecutive. Also, a job j is started at the machine that
processes (parts of) j and has the smallest index among all those processing j. A
class Ci is processed at the end (beginning) of a machine if there is a job j ∈ Ci
that is processed as the last job (as the first job) on Mj .

Lemma 4.7. A schedule fulfilling the properties of Lemma 4.6 can be transformed
into a block-schedule with makespan at most 3/2OPT .

Proof. Consider an arbitrary class Ci. We distinguish three cases depending on
where the jobs of Ci are placed in the schedule S′ according to the proof of the
previous lemma.

(1) There is a job in C̃i that is split among two machines Mj and Mj+1.

(2) There is no job in C̃i that is split.

(3) C̃i = ∅.

In Case (1) there is a job in C̃i that is split, i.e., one part is processed until the
completion time of Mj and one from time s on by Mj+1. Hence, we can simply
place all machines of Ci between Mj and Mj+1. Since jobs that are split have size
at most 1/2Opt − s, we can process any split job completely on the machine on
which it was started increasing its makespan to at most 3/2Opt. We repeat this
process as long as there are jobs left fulfilling Case (1). Note that for each class Ci,
after having finished Case (1), there is no split job left.
In Case (2), we distinguish two cases. If the jobs in C̃i have an overall size of

at most 1/2Opt (including setup), there either is no exclusive machine of Ci and
hence no violation of the block-property, or we can process the jobs on an exclusive
machine of Ci increasing its makespan to at most 3/2Opt. If the jobs have an overall
size of more than 1/2Opt, we distinguish whether C̃i is processed at the end or
beginning of a machine Mj or not. In the positive case, we can simply place any
exclusive machines of Ci behind or before machine Mj . If C̃i is not processed at
the end or beginning of a machine Mj , there must be a second class C̃i′ that is
processed at the beginning and a third class C̃i′′ that is processed at the end of
machine Mj . Note that consequently the workload of C̃i′ processed on Mj cannot
be larger than 1/2Opt − s. We can perform the following steps on the currently
considered machine Mj :

1. Move all jobs from the class Ci′ that is processed at the beginning of Mj to
machine Mj−1 if Ci′ is also processed at the end of Mj−1. This only increases
the makespan of Mj−1 by at most 1/2Opt− s.

2. Move all other jobs processed before some workload of Ci to one of their
exclusive machines, if they exist.
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3. Shift all the workload w(C̃i) to time 0 on machine Mj and shift other jobs to
a later point in time.

4. Place all exclusive machines of Ci in front of Mj .

In Case (3), there are only exclusive machines. Such machines can simply be
placed behind all other machines.

These steps establish the block-schedule property and no jobs are split anymore.
Also note that each machine gets an additional workload of at most 1/2Opt − s
without requiring additional setups. Thus, the required bound on the makespan
holds, proving the lemma.

Theorem 4.8. Given an instance I with optimal makespan Opt, there is a trans-
formation to I ′ and a block-schedule for I ′ with makespan at most OptBL :=
min{Opt + pmax− 1, 3/2Opt}. It can be turned into a schedule for I with makespan
not larger than OptBL.

Proof. The bound OptBL ≤ 3/2Opt directly follows from Lemma 4.7 and the fact
that there are only transformations performed on instance I by Lemma 4.5. The
second bound (which gives a better result if pmax ≤ 1/2Opt) follows by arguments
quite similar to those used before: If pmax ≤ 1/2Opt holds, we skip the transfor-
mation of Lemma 4.5. Additionally, in the proof of Lemma 4.6 we do not remove
exclusive machines (thus, considering all machines). Note that, since we skipped
the transformation of Lemma 4.5, the set H is empty. Then, it is straightforward to
calculate the second bound of OptBL ≤ Opt + pmax − 1.

4.3.2 Grouping & Rounding

In this section, we show how we can reduce the search space for block-schedules
by rounding the involved processing times to integer multiples of some value de-
pending on the desired precision ε > 0 of the approximation. We assume that the
transformations described in previous sections have already been performed. In
order to be able to ensure that the rounding of processing times cannot increase the
makespan of the resulting schedule too much, we first need to get rid of classes and
jobs that have a very small workload in terms of OptBL and ε. In the following,
we use λ > 0 to represent the desired precision, i.e., λ essentially depends on the
reciprocal of ε. We call every job j with pj ≤ OptBL/λ a tiny job and every class Ci
with w(Ci) ≤ OptBL/λ a tiny class.

Lemma 4.9. Given a block-schedule for an instance I, with an additive loss of at
most 4OptBL/λ in the makespan we may assume that tiny jobs only occur in tiny
classes.

Proof. We prove the lemma by applying the following transformations to each class
Ci: In a first step, we greedily group tiny jobs of class Ci to new jobs with sizes in
the interval [OptBL/λ, 2OptBL/λ). In a second step, combine the (possibly) remaining
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tiny grouped job j ∈ Ci with a size less than OptBL/λ, with an arbitrary other job
j′ ∈ Ci. By this transformation we ensure that tiny jobs only occur in tiny classes
and it remains to show the claimed bound on the makespan.
First of all, focus on the first step of the transformation and assume that we

do not perform the second step. Let S be the given block-schedule for instance
I. Lemma 2.3 in the work of Shachnai and Tamir [ST00] proves (speaking in our
terms) that for the transformed instance there is a schedule S′ with makespan of at
most OptBL+ 2OptBL/λ. The proof also implies that S′ is still a block-schedule: For
each machine Mj it holds that if Mj is configured for class Ci in the new schedule
S′, it has also been configured for Ci in the original block-schedule S. Thus, if S is
a block schedule, so is S′ since we do not have any additional setups in S′.
Now assume that also the second step of the transformation is carried out and

consider the block-schedule S′ we just proved to exist. Distinguish two cases,
depending on where the tiny grouped job j ∈ Ci, which was paired in the second
step, is processed in schedule S′. If j was paired with a job j′ and both j and j′
are assigned to the same machine in S′, the schedule S′ already is feasible for the
transformed instance (possibly after shifting j and j′ such that they are processed
consecutively). If the paired jobs j and j′ are processed on different machines
in schedule S′, there is a schedule whose makespan is by an additive of at most
2OptBL/λ larger than that of S′. To see this, note that in S′ this case can happen
at most twice per machine (for the classes processed at the beginning and end of
the machine). Hence, we can place any paired jobs j and j′ on the same machine
yielding a schedule for the transformed instance with the claimed bound on the
makespan. Finally, note that we can easily turn a schedule fulfilling the claimed
bound on the makespan into a schedule for the original instance I satisfying the
same bound on the makespan.

Next, we take care of tiny classes that still might occur in a given instance. Again,
without losing too much with respect to the optimal makespan we may assume a
simplifying property as shown in the next lemma.

Lemma 4.10. With an additive loss of at most 4OptBL/λ in the makespan we may
assume the following properties:

1. Each tiny class consists of a single job.

2. In case that OptBL/λ > s, it has size OptBL/λ− s.

Proof. At first note that with an additive loss of at most 2OptBL/λ in the makespan,
we may assume that a tiny class is completely scheduled on one machine in a
block-schedule. This is true because of reasons similarly used in the proof of the
previous lemma: For each machine it holds that there are at most two different tiny
classes of which some but not all jobs are processed on this machine. Hence, we
may shift all jobs of such classes to one machine and thereby increase the makespan
by at most 2OptBL/λ.
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Now distinguish two cases depending on whether OptBL/λ > s or not. If this is
the case, determine the length L of the sequence of all tiny classes (including setup
times), round up L to an integer multiple of OptBL/λ, remove all tiny classes from
the instance and instead, introduce λL/OptBL new classes each comprised of a single
job with workload OptBL/λ− s. Observe that, given a block-schedule in which each
tiny class is completely scheduled on one machine, we can simply replace tiny classes
by these new classes, increasing the makespan by an additive of at most OptBL/λ.
Also, this schedule implies a schedule for the instance in which tiny classes have not
been grouped and its makespan is by an additive of at most OptBL/λ larger. This
schedule is simply obtained by again replacing grouped tiny classes by its respective
original classes.

In case that OptBL/λ ≤ s, we simply group all jobs of a tiny class Ci to a new job
j of the same size pj = w(Ci). Due to the fact that we might assume that a tiny
class is completely scheduled on one machine, this proves the lemma.

From now on, we assume that we have already conducted the grouping from the
two previous lemmas and we describe how to round job sizes in order to reduce the
search space for later optimization. The rounding approach is quite common for
makespan scheduling.
Given an instance I, we compute its rounded version I ′ by rounding up the

size of each job to the next integer multiple of OptBL/λ2. We know that there is a
block-schedule with makespan at most OptBL + 8OptBL/λ and we also assume that
the properties from Lemma 4.10 hold.

In case that OptBL/λ > s each job has either a processing time of at least OptBL/λ
or forms a tiny class with workload at least OptBL/λ− s. On the other hand, in case
that OptBL/λ ≤ s and there are tiny classes consisting of a single job, to execute
such a job, we need to perform a setup first which yields a processing time of at
least OptBL/λ as well. Hence, we can have at most λ+ 8 jobs on each machine in
the considered block-schedule, leading to an additive rounding error of at most
(λ+ 8) · OptBL/λ2 in the makespan. Therefore, by choosing λ appropriately, there
is a solution to the rounded instance that approximates OptBL up to any desired
precision ε > 0.

4.3.3 Optimization over Block-Schedules

We are ready to show how to compute a block-schedule for the rounded instance I ′
with makespan at most (1 + ε)OptBL for any ε > 0. The obtained schedule directly
implies a schedule for the original instance I with the same bound on the makespan.

Lemma 4.11. If all job sizes are a multiple of OptBL/λ2 and λ > 0 is a constant,
there is only a constant number ccl of different class-types.

Proof. We can represent any class Ci by a tuple of length λ2 describing how many
jobs of each size l · OptBL/λ2, 1 ≤ l ≤ λ2, occur in class Ci. As each class has a size
of at most γ ·Opt, each entry of the tuple is limited by γλ2 and there is at most a
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constant number ccl := (γλ2)λ2 of different tuples describing the classes of I ′. In
the following we say that all classes represented by the same such tuple are of the
same class-type, proving the lemma.

We can represent the classes that have to be scheduled as a tuple of size ccl where
each entry contains the number of times classes of the respective class-type occur.
Given a block-schedule S, we consider machine configurations that describe which
classes are finished on the first i machines. We denote the sub-schedule induced by
these first i machines by Si.

Lemma 4.12. If all job sizes are a multiple of OptBL/λ2 and λ > 0 is a constant,
the number of machine configurations representing Si for some block-schedule S and
some i > 0 is bounded by a value cconf that is polynomial in m.

Proof. First, note that in a block-schedule S, for every Si, there is at most one class
that is split due to the block-schedule property. Now, to uniquely define a candidate
configuration, we need to store information about the classes that are finished, and
in case a class has been split, the type of this class and which jobs of this class are
finished. We reserve ccl entries for the finished classes, where each entry corresponds
to the number of classes of the certain type that has been fully finished. Each entry
is at most m · (λ+ 8) with similar arguments as in the proof of Lemma 4.11 and
the reasoning concerning the maximum rounding error. For the class that has been
split, we store the type of that class in an extra entry, which gives ccl possible values.
If there is no class that has been split, we leave this entry empty adding another
possible value to the entry. Finally, we store the number of jobs from the split class
that have been finished for each job size as λ2 additional entries, where each entry
does not exceed ccl · λ similar to the structure in Lemma 4.11. Overall, we write
a configuration as a tuple (n1, . . . , nccl , j, u1, . . . , uλ2) and thus there are at most
cconf := (m(λ+ 8))ccl · (ccl + 1) · (cλ)λ2 possible configurations.

We now build a graph where we add a node for each machine configuration. We
draw a directed edge from node u to v if and only if the machine configuration
corresponding to v can be reached from the configuration u by using at most one
additional machine with makespan not larger than (1 +ε)OptBL. That is, assuming
u is a possible sub-schedule induced by the first i machines, we verify whether
v is a possible sub-schedule induced by the first i + 1 machines. We can do so
as we assume that we have guessed Opt correctly and we can hence determine
(1 + ε) OptBL which is the amount of workload we will fit on one machine. In order
to determine the edges of the graph that describes our search space, we prove the
following lemma, where we denote 1B as the indicator variable which is 1 in case
the boolean condition B is satisfied and 0 elsewise. Also, we define mpk to be the
number of jobs of type k in class-type p, where k ∈ {1, . . . , λ2} and p ∈ {1, . . . , ccl}.

Lemma 4.13. If each configuration (~n, j, ~u) = (n1, . . . , nccl , j, u1, . . . , uλ2) is repre-
sented by a node, there is a directed edge from node V = (~n, j, ~u) to Ṽ =

(
~̃n, j̃, ~̃u

)
if
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and only if

1j 6=j̃∨u6=ũs+
λ2∑
k=1

(
(ũk − uk) · k ·

OptBL
λ2

)

+
ccl∑
p=1

(ñp − np)

s+
λ2∑
k=1

mpk · k ·
OptBL
λ2


≤ (1 + ε) ·min

{
Opt + pmax − 1, 3

2Opt
}
. (4.2)

Proof. We prove the statement for the following cases:

1. j 6= j̃:

First, note that the number of classes of type p ∈ {1, . . . , ccl} that have been
completed between node V and node Ṽ , i. e. on the additional machine, is
expressed in the value (ñp − np). Now, in order to finish all jobs from a class
of type p ∈ {1, . . . , ccl}, we need to configure the machine for this class and
afterward, the workload of all jobs contained in that class type needs to be
finished. This leads to an overall processing time of s+∑λ2

k=1mpk · k ·OptBL/λ2

for all jobs of the specific class type. In case the class being finished is j, there
is still the same setup time, but there is less workload to be completed. This
can be described by subtracting the amount of work already finished in node
V , which is ∑λ2

k=1 uk · k ·OptBL/λ2. Additionally, to reach the state represented
by node Ṽ , class j̃ needs to be set up and the workload given by ũ has to be
completed yielding an additional processing time of s+∑λ2

k=1 ũk · k · OptBL/λ2.
Summing all these times up, we get exactly the value on the left-hand side of
Equation (4.2).

2. j = j̃ ∧ ∃i, ui > ũi:

In this case, we indeed have j = j̃, but as we have ui > ũi for some i, there
are more jobs of type i finished in V than in Ṽ . Thus, the class that had been
partly executed at the end of V needs to be completed and the proof of case 1
similarly applies.

3. j = j̃ ∧ ∀i, ui ≤ ũi ∧ u 6= ũ:

Here, the scheduler does not necessarily need to finish the class that had been
partly executed at the end of V . However, the overall necessary workload is
the same whether the work on the current class is only continued and not
finished (cost s for setting up the machine for the class) and a new class is
fully executed (cost s) or whether it is finished (cost s) and a new class of the
same type is initialized (cost s) and not finished. Thus, the proof of case 1
still applies. Note that this also holds if the number of classes of type j that
have been fully finished is the same in V and Ṽ .
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4. j = j̃ ∧ u = ũ:

In this case, we save an overall workload of s in comparison to the other cases.
This is due to the fact that we do not need to perform a setup for class j as
we can restrict ourselves to executing entire classes.

Combining these cases completes the proof.

It is time to show that a schedule using only m machines and finishing all jobs
exists.

Lemma 4.14. We can construct a graph G such that there is a path from the node
representing no job at all (source) to the node representing the entire instance I ′
(target) that has a length of at most m.

Proof. Using Theorem 4.8, there is a block-schedule with makespan at most OptBL.
Due to Lemma 4.9 and Lemma 4.10 together with the additive rounding error and a
suitable value for λ depending on ε, there exists a solution to the rounded instance
I ′ with makespan at most

(1 + ε)OptBL = (1 + ε) min{Opt + pmax − 1, 3/2Opt}.

By construction, the considered graph must contain a path describing this schedule,
proving the lemma. Note that this naturally gives an approximation with factor at
most (1 + ε) (Opt + pmax − 1) which is better in the case of pmax ≤ 1/2 Opt and
which gives a PTAS for unit processing times.

Theorem 4.15. By using breadth-first search on G, we can determine a schedule
for the original instance I with makespan at most

(1 + ε) min
{3

2Opt,Opt + pmax − 1
}
.

It implies an algorithm with exactly this approximation guarantee and runtime
polynomial in n,m and K.

Proof. Obviously, if we use breadth-first search on the graph, where the source
vertex corresponds to the state where no job has been finished and the target
vertex corresponds to the state where all jobs have been finished, this gives a path
p = (v0, v1, . . . , vl) of length at most m. By following this path and considering the
difference between two consecutive nodes pi−1 and pi, we can efficiently determine
the jobs from instance I ′ to be scheduled on machine Mi. The resulting schedule
can be efficiently transformed back into the final schedule for instance I as already
discussed during the description of the transformation we apply to I. Also, since
the number of nodes is essentially the number of configurations, which in turn is
polynomial in m, the search can be carried out efficiently.
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4.4 An Online Variant

While in our original model discussed before we have assumed that all jobs are
available at time 0, also online variants can be of interest. Consider a model in
which a release time rj is associated with each job j and a job is not known to the
scheduler before rj , i.e., jobs arrive in an online fashion. The objective remains the
minimization of the makespan and we assess the quality of an online algorithm using
standard competitive analyses as introduced in Chapter 2: An online algorithm is
c-competitive if, for any instance, the makespan of the schedule computed by the
online algorithm is by a factor of at most c larger than that of an optimal (offline)
solution. It is known that in case there are no setup times, the online LPT rule
achieves a competitiveness of 3/2 [CV97] and that there is a lower bound of ≈ 1.3596
for any deterministic online algorithm [LZ16].
In our case, a very simple lower bound on the competitiveness can be obtained

by exploiting the fact that any online algorithm cannot know the class of a job
arriving later on in advance and hence, cannot perform a suitable setup operation
beforehand. The following lemma shows that this fact results in a lower bound that
can be arbitrarily close to 2.

Lemma 4.16. No online algorithm can be c-competitive for c ≤ 2 − ε and any
ε > 0.

Proof. Consider an instance with (without loss of generality) m = 2 machines and
the following adversary: At time 0 the adversary releases the first job of some class
C1 with processing time p1 = 1. Then, at time s a second job with processing
time p2 = 1 is released belonging to a class for which the online algorithm has not
performed a setup yet. Trivially, the optimal algorithm obtains a schedule with
makespan s+ 1 by performing at time 0 a setup for the first job on one machine
and one for the second job on the second machine, and then processes the two jobs
until time s+ 1. Any online algorithm cannot do better than performing a setup
for the second job at time s and then processing this job. This directly implies a
makespan of at least 2s+ 1. Hence, the competitiveness is at least 2s+1

s+1 , which can
be arbitrary close to 2 for large setup times s.

In [SWW91], Shmoys et al. present a quite general technique to turn an offline
algorithm for a scheduling problem without release times and an approximation
factor of α into a 2α-competitive online algorithm for the respective problems
with release times. Although this factor of 2 does not directly carry over to our
scheduling problem since we also have to take into account setup operations, a slight
modification yields the following result.

Theorem 4.17. If each job is associated with a release time and jobs are revealed
to the scheduler over time at these release times, our algorithm implies a polynomial
time c-competitive online algorithm and c can be made arbitrarily close to 4.
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Proof. Although the proof is pretty much the same as that given in [SWW91], for
the sake of completeness we state it again. Let 0 be the point in time where the first
jobs arrive and call this set of jobs S0. We apply our approximation algorithm and
obtain a schedule for the jobs in S0 and let F0 be its makespan. Next we consider
those jobs arriving between time 0 and F0, call the set of them S1 and compute
a schedule for S1 that begins at time F0 and ends at time F1. Generally, we call
the set of jobs released during the interval (Fi−1, Fi] the set Si+1 where Fi is the
point in time where the schedule for Si finishes. Then we schedule Si+1 using our
approximation algorithm.
Let Fl be the makespan of the entire schedule. We can determine an upper

bound on Fl as follows: First, observe that Fl−1 ≤ Fl−2 + (1 + ε)(Opt + pmax + s)
since the approximation quality of our algorithm makes sure that we need at most
(1 + ε)(Opt +pmax+ s) time to process the jobs in Sl−1. Note that we may need the
additional setup time s because the optimal schedule might have already performed
necessary setups earlier. Second, consider the instance I ′ obtained from I by releasing
the jobs of Sl at time Fl−2. We observe that Fl−Fl−1 ≤ (1+ε)(Opt+pmax+s)−Fl−2
by the approximation quality of our algorithm and the fact that also the optimal
solution cannot schedule jobs of Sl before Fl−2. Putting both inequalities together
we obtain Fl ≤ 2(1 + ε)(Opt + pmax + s) ≤ 4(1 + ε)Opt, proving the theorem.
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Scheduling on Heterogeneous Machines
with Setup Times

Heterogeneous machines are a natural generalization of the machine environ-
ment of identical machines as considered in Chapter 4. The latter is a very
important machine environment to consider as it studies parallel machines

on the theoretically most fundamental level. However, in a real setting available
machines can often not be considered identical. In contrast, a pool of machines
might consist of machines of different generations or with different configurations
and capabilities with respect to available peripheral devices, memory, speed or the
like. Heterogeneity can even be an intentional design decision motivated by the
observation that heterogeneous architectures feature the advantage of machines
which are specialized for the processing of certain types of jobs (see, e.g.,[Gup+12]).

In this chapter, we consequently generalize the model from Chapter 4 to het-
erogeneous machines. We focus on the two classical models for such a machine
environment: unrelated machines as first mentioned in [BJS74] and uniformly re-
lated machines as first considered in [HS76]. In the former case, we allow a job to
have machine-dependent processing times, which can completely arbitrarily vary
on different machines. We study this case in Section 5.2 and we start with a
randomized rounding based algorithm to compute Θ(logn+ logm)-approximations
in Section 5.2.1. We then prove that this bound is (asymptotically) tight (unless
NP = RP) by providing a reduction from the SetCover problem in Section 5.2.2.
We then turn to two special cases in Section 5.3, which both have clear motivations
from manufacturing systems, and we show how a rounding technique from [Cor+15]
can be employed to approximate these cases with a constant factor. In the latter
case, that is, when we have uniformly related machines, each machine runs with a
fixed speed, which, however, is the same for all jobs. In Section 5.4 we conclude
with simple approximations for this case.
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At this point it is also worth mentioning that the considered problem seems to
be a quite important topic to study. It is a natural special case of the following
problem, which is (with, on average, more than one newly published paper per year
since 2010) quite present in the literature on heuristics and exact algorithms as
surveyed in [All15], but seems to lack any theoretical investigations with provable
performance guarantees: Jobs need to be processed on parallel unrelated machines
and each job has a setup time that might depend on the machine as well as the
preceding job. Note that in this chapter we require the setup times to have a certain
regular structure in the sense that it is 0 for a job j if j is preceded by a job of the
same class and otherwise it only depends on j’s class and the machine.

5.1 Model & Notation

We consider the problem as described by the general model in Chapter 3 for the case
of heterogeneous machines. In the most general model, the unrelated machines case,
there are no restrictions on the processing times pij ∈ N≥0. In case of uniformly
related machines, each machine i ∈M has a fixed speed vi and the processing time
pij only depends on the job j and the speed of machine i. Hence, it is given by
pij = pj

vi
for some pj ∈ N≥0. Finally, we also consider the restricted assignment

problem, where each job j ∈ J has a set Mj ⊆M of eligible machines (on which
it can be processed) and the processing time is the same on all of them, that is,
pij = pj for all i ∈Mj and some pj ∈ N≥0, and pij =∞ otherwise.
For each of these variants we assume that the setup times behave similarly to

the jobs. That is, in the unrelated case we have arbitrary setup times sik ∈ N≥0
depending on the machine i and the class k; in the uniform case we have sik = sk

vi
;

and in the restricted assignment case, we have sik ∈ { sk,∞}. This modeling of the
setup times is common in the literature [Bru07] and seems reasonable if we assume
that the different behavior is due to qualitative differences between the machines,
as suggested by the names of the problems.
Similar to Chapter 4, a schedule is implicitly defined by a mapping σ : J →M

and the goal is to minimize (over all possible σ) the makespan maxi∈M Li given by
the maximum load Li := ∑

j∈σ−1(i) pij +∑
k∈{kj :j∈σ−1(i)} sik of the machines. Note

that this definition reflects our view on the problem of scheduling with setup times
as one can think of the load of a machine as the processing it has to do according
to the jobs assigned to it plus the setups it has to perform for classes of which it
does process jobs. This reflects that a machine i processes all jobs belonging to the
same class in a batch and before switching from processing jobs of a class k′ to jobs
of class k it has to perform a setup taking sik time.
For simplicity of notation, for a fixed problem instance and an algorithm A, we

denote the schedule as well as the makespan of the schedule computed by A as A.
In this chapter, we always assume that the number m of machines is part of the
input. Note that for constant m, the FPTAS from Chapter 4 is also applicable in
the setting of (un-)related machines.
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5.2 Unrelated Machines
In this section, we study the problem of scheduling unrelated parallel machines with
setup times. Recall that for the classical model without setup times it is known
[LST90] that it cannot be approximated to within a factor of less than 3

2 (unless
P = NP) and that 2-approximations are possible. This is in stark contrast to our
setting where, as we will see, the existence of classes and setups makes the problem
significantly harder so that not even any constant approximation factor is achievable.
We approach the problem by formulating it as an integer linear program of which
we round its optimal fractional solution by randomized rounding. We will see in
Section 5.2.1 that this gives a tight approximation factor of Θ(logn + logm). In
Section 5.2.2, we turn to inapproximability results and show that under certain
complexity assumptions, this factor is essentially optimal.
Let ` := maxj∈J mini∈M(pij + sikj ) and in the following assume that we have

guessed the optimal makespan correctly as T ∈ [`, n ·`] using the dual approximation
framework as defined in Chapter 2. Consider the integer linear program ILP-UM
as given in Figure 5.1, describing the problem at hand: For each job j, there is an
assignment variable xij ∈ {0, 1} stating whether or not job j is assigned to machine
i and note that if pij > T , we can require xij = 0 in Equation (5.5). Additionally,
for each class k there is one variable yik ∈ {0, 1} indicating whether or not machine
i has a setup for class k. Equation (5.1) ensures that the load, given by processed
jobs and setups, on each machine does not violate the desired target makespan T .
Due to Equation (5.2), each job is completely assigned to one machine, and by
Equation (5.3) it is guaranteed that if a job j of class kj is assigned to machine i,
then a setup for class kj is present on machine i.

5.2.1 Approximation Algorithm
Starting with an optimal solution (x∗, y∗) to the linear relaxation of ILP-UM where
the variables xij , yik can attain any value from [0, 1], we can use the following

∑
j∈J

xijpij +
∑
k∈K

yiksik ≤ T ∀i ∈M (5.1)

∑
i∈M

xij = 1 ∀j ∈ J (5.2)

yikj ≥ xij ∀i ∈M, j ∈ J (5.3)
xij ∈ {0, 1} ∀i ∈M, j ∈ J (5.4)
xij = 0 if pij > T (5.5)
yik ∈ {0, 1} ∀i ∈M, k ∈ K (5.6)

Figure 5.1: ILP-UM for scheduling unrelated machines.
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approach as described in Algorithm 2 to compute an integral solution approximating
an optimal schedule. It essentially rounds variables to integral ones with probabilities
(w.p.) depending on the optimal fractional solution.

Algorithm 2 Description of the randomized rounding based algorithm.

(1) For each i ∈M and k ∈ K, set yik =
{

1, w.p. y∗ik
0, w.p. 1− y∗ik.

We perform a setup for class k on machine i if and only if yik = 1.

(2) For each i ∈M and k ∈ K such that yik = 1, and each job j ∈ J with kj = k,

set xij =
{

1, w.p. x∗ij/y
∗
ik

0, w.p. 1− (x∗ij/y∗ik).
We assign job j to machine i if and only if xij = 1.

(3) Repeat Steps (1) and (2) c logn times.

(4) If there are unassigned jobs left, then schedule each job j ∈ J on machine
argmini∈M{pij + sikj}.

(5) If a job is assigned to multiple machines, remove it from all but one. If a setup
of a class occurs multiple times on a machine, remove all but one.

The following analysis, though for a different problem, already appeared in a
fairly similar way in [KLS10]. However, for the sake of completeness and due to
small adaptations, we restate it in the following.

Lemma 5.1. Step (4) is executed with probability at most 1
nc .

Proof. Consider a fixed job j ∈ J and a fixed iteration h of the loop defined by
Steps (1) to (3), 1 ≤ h ≤ c logn. Let Āhij be the event that job j is not assigned to
machine i after iteration h (and before iteration h+ 1). Let Āhj be the event that
job j is not assigned to any machine after iteration h. We have

Pr[Āhij |Āh−1
j ] = (1− y∗ikj ) + y∗ikj

(
1−

x∗ij
y∗ikj

)
= 1− x∗ij . (5.7)

Taking into account all m machines, we then have

Pr[Āhj |Āh−1
j ]

(5.7)
≤

∏
i∈M

(1− x∗ij)
(5.2)
≤

(
1− 1

m

)m
≤ 1
e
. (5.8)

Hence, for the probability that j is not assigned to any machine after h iterations
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we have

Pr[Āhj ] = Pr[Āhj |Āh−1
j ] · Pr[Āh−1

j ]
= . . . = Pr[Āhj |Āh−1

j ] · Pr[Āh−1
j |Āh−2

j ] · . . . · Pr[Ā1
j ]

(5.8)
≤

(1
e

)h
,

and hence for h = c logn, we obtain the lemma.

In the next lemma we show that the expected load assigned to a machine per
iteration is bounded by O(T ). This together with the previous lemma, then proves
the final result. Compared to [KLS10], there is a slight difference in our proof: If
qij describes the probability that job j is assigned to machine i in an iteration of
the randomized rounding algorithm, then in [KLS10] the authors can (and do) use
the fact that ∑ qijpij ≤ T . This, however, is not true in our case due to different
constraints in the underlying linear program.

Lemma 5.2. Let Li describe the load on machine i after the c logn iterations.
Then, Pr[Li = O(T (logn+ logm)) ∀i ∈M] = 1− 1

nc .

Proof. Let us first consider the load on the machines due to processed jobs. Let Zhij
be a random variable with

Zhij =
{
pij/T, if j is assigned to i in iteration h
0, otherwise.

Let ZJi = ∑c logn
h=1

∑
j∈J Z

h
ij . Then, we have

E[ZJi ] = 1
T

c logn∑
h=1

∑
k∈K

∑
j∈J :kj=k

0 · (1− y∗ik) + y∗ik

 ∑
j:kj=k

x∗ij
y∗ik

pij

 (5.1)
≤ c logn.

Using the essentially same reasoning to analyze the load on the machines due to
setups and denoting ZSi the analog of ZJi , we also have E[ZSi ] ≤ c logn. Because
all Zi are sums of independent random variables with values in [0, 1], we can
now apply standard Chernoff-bounds as discussed in Chapter 2 and obtain for
δ := 3

(
log(n+m)
c logn + 1

)
that Pr[∃i : Li ≥ (1 + δ)Tc logn] ≤ Pr[∃i, x ∈ {S,J } : Zxi ≥

(1 + δ)c logn] ≤ (m+ n) exp(−1
3δc logn) ≤ 1

nc .

Taking the last two lemmas together with the fact that the makespan is always
upper bounded by O(T · n) if T ≥ Opt, we obtain the following theorem.

Theorem 5.3. With high probability and on expectation the randomized rounding
approach provides a solution with makespan O(T (logn+logm)) if there is a schedule
with makespan at most T .
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By choosing the parameter c sufficiently large when applying the algorithm
within the dual approximation framework, we obtain an approximation factor of
O(logn + logm). This holds because we only fail to achieve this bound if in any
iteration of the dual approximation framework with a makespan guess T ≥ Opt,
we do not find a schedule with makespan O(T (logn + logm)). The probability
in any such iteration is at most 1

nc and there are only O(n) iterations. Thus, for
sufficiently large c and by the fact that the makespan is always upper bounded by
O(Opt · n), we obtain a schedule with (expected) makespan O((logn+ logm)Opt).
Also, it is not too hard to see that this bound is actually tight as one can prove an
integrality gap of Ω(logn+ logm) for the linear relaxation of ILP-UM. This can be
shown by using a construction following the ideas for proving the integrality gap for
SetCover (see, e.g., [Vaz01, p. 111-112]).

Lemma 5.4. There exists an instance such that Opt ≥ ρC∗, where C∗ is the
smallest number such that the linear relaxation of ILP-UM is feasible and ρ =
Ω(logn+ logm). The statement even holds for the restricted assignment case.

Proof. Let N = 2κ − 1 for some natural number κ. We create N many jobs
{1, . . . , N} and assume that we have m = N machines. The processing time of
job j on machine i is given by pij = 0 if i · j = 1, where i · j denotes the inner
product when viewing i and j as κ-dimensional vectors over GF [2], and pij =∞
otherwise. Let all such created jobs belong to class k1 and let sik1 = 1 for all i ∈M.
Now, let the instance I to be considered in the upcoming proof consist of m copies
k1, k2, . . . , km of k1.
An optimal (integral) solution needs to process all jobs on machines where they

have processing time 0. Using the claim that it has to setup at least κ many machines
per class, the optimal integral solution has a makespan of at least Opt ≥ κ by a
simple averaging argument. The claim can be explained by basic observations from
linear algebra: Assume κ′ < κ setups are sufficient for a class k. Let i1, . . . , iκ′ be
the indices of machines that have a setup for class k and interpret them as rows of a
κ′× κ matrix A over GF [2]. The rank of the matrix is less than κ and hence, in the
nullspace there is a vector v with Av = 0. Therefore, the job with index v cannot
be processed on a machine where it has processing time 0 as no such machine is
setup for class k.
On the other hand, we claim that the LP has a feasible solution with C∗ = 2.

Consider the following fractional assignment xij = 2
m+1∀i ∈ M, j ∈ J such that

pij = 0 and xij = 0 otherwise, and yik = 2
m+1∀i ∈ M, k ∈ K. First note that

pij = 0 for (m+ 1)/2 machines i so that each job j is completely assigned. Also,
the remaining constraints are satisfied. The makespan of the fractional solution is
given by m setups that are fractionally assigned by 2/(m+ 1) to each machine and
hence, it is less than 2.

Therefore, the integrality gap is Ω(logN) = Ω(logm) = Ω(logn).

Corollary 5.5. There is a polynomial time randomized algorithm with approxima-
tion factor O(logn+logm), which matches the integrality gap of the linear relaxation
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of ILP-UM.

5.2.2 Hardness of Approximation
We now show that the approximation factor of Θ(logn+ logm) is (asymptotically)
optimal unless all problems in NP have polynomial-time Monte Carlo algorithms.
Recall that the complexity class RP (Randomized Polynomial-Time) is defined
as the class of problems L for which there is a randomized algorithm running in
polynomial time and with the following properties (see, e.g., [Gol08]):

• If the input x /∈ L, the algorithm outputs “No” with probability 1.

• If the input x ∈ L, the algorithm outputs “Yes” with probability at least 1
2 .

Therefore, if such an algorithm outputs “Yes”, it provides the correct answer; if it,
however, outputs “No”, it might err.
We show the following result on the hardness of approximating our problem on

unrelated machines.

Theorem 5.6. Scheduling with setup times on unrelated machines cannot be ap-
proximated within a factor of o(logn+ logm) in polynomial time unless NP = RP.
This even holds for the restricted assignment case.

To do so, we reduce from the following formulation of the well-known SetCover
problem: In SetCoverGap we are given a universe U of N := |U| elements and a
collection {S1, S2, . . . , Sm} of m subsets of U . The goal is to decide whether there is
a solution covering U that consists of t subsets or if (at least) αt subsets are needed.
We call an instance with the former property a Yes-instance and with the latter a
No-instance. A result from [AMS06] shows the following lemma.

Lemma 5.7 (Theorem 7 in [AMS06]). There exists a t such that it is NP-hard to
decide SetCoverGap for α = Θ(logN) and logm = O(logN).

The idea of our reduction is to exploit the apparent connection between SetCover
and our unrelated machines variant: Each set is mapped to a machine and each
element is mapped to a job. A machine can process a job if and only if the respective
set contains the respective element. Additionally assuming that all jobs belong
to the same class, by this we see that a Yes-instance requires much less setups
than a No-instance. Unfortunately, this not yet leads to a respectively high and
small makespan. However, by creating a larger number of classes and randomizing
the mapping between sets and machines, we can achieve a (more or less) even
distribution of setups that need to be done and hence, depending on the type of the
SetCoverGap instance, a large or small makespan. We formalize this idea in the
proof of Theorem 5.6.

Proof. Given an instance I for SetCoverGap, we construct an instance I ′ for our
problem with the following properties:
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1. The reduction can be done in polynomial time and I ′ consists of n = Θ(N c)
jobs, for some constant c.

2. If I is a No-instance, then I ′ has a makespan of at least Ω
(
K
m · αt

)
.

3. If I is a Yes-instance, then I ′ has a makespan of at most O
(
K
m · t

)
with

probability at least 1
2 .

Consequently, there is a gap of Ω(α) and by Property 1. and Lemma 5.7, α =
Ω(logn) and α = Ω(logm) and the existence of a polynomial-time algorithm
with approximation factor o(logn + logm) for our problem makes the problem
SetCoverGap solvable by a Monte Carlo algorithm in polynomial time, yielding
the theorem.

We now show how to construct I ′. In instance I ′ there are m unrelated machines
and K = m

t logm classes. All setup times are set to be 1, that is, sik = 1 for all
i ∈M, k ∈ K. The jobs {jk1 , jk2 , . . . , jkN} of class k = 1, 2, . . . ,K are defined by the
N elements in I in the following way: We choose a permutation πk : M → M
at random (and independent from the choices of πk′ for k′ 6= k). Then, for each
element e in the SetCoverGap instance I, we create a job jke in instance I ′ that
has a size pijke = 0 if e ∈ Sπk(i) and pijke =∞ otherwise.

Next, we take a look at the makespan of I ′ if I is a No-instance. In this case, at
least αt sets are needed to cover all elements. However, this implies that for each
class at least that many machines are needed to process all jobs (or otherwise the
makespan is ∞). Therefore, by summing over all K classes, at least K · αt setups
need to be performed. By an averaging argument this leads to the existence of a
machine with a load of at least K

m · αt.
We now turn our attention to the case where I is a Yes-instance and show that

with probability at least 1
2 there is a solution with makespan O(Km · t). To this end,

we setup a machine i for class k (and process all jobs j of class k on machine i that
fulfill pij = 0) if Sπk(i) is part of the solution to I. Therefore, each class is setup on
t of the m machines. For a fixed machine i and a fixed class k, the probability that
i is setup for k is consequently t

m since πk(i) is chosen uniformly at random. Also,
the probability that i is setup for all classes of a fixed subset of r classes is ( tm)r as
the πk are chosen independently. Therefore, the probability that a fixed machine i
is setup for at least r classes is upper bounded by(

K

r

)(
t

m

)r
≤
(
Ket

rm

)r
.

Hence, for the probability that there is some machine which is setup for at least
r := 2Ket/m+ 2 logm = O

(
K
m · t

)
classes is (for m ≥ 2) upper bounded by

m ·
(
Ket

rm

)r
≤ m ·

(1
2

)2 logm
≤ 1
m
≤ 1

2 .
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Therefore, I ′ has a makespan of at most O(Km · t) with probability at least 1
2 .

Also note that log(n) = log(K · N) ≤ log(m logm · N) = O(logN), where the
last equality holds due to the polynomial relation between m and N according to
Lemma 5.7. This concludes the proof.

5.3 Special Cases of Unrelated Machines
In this section, we identify and approximate two special cases of unrelated machines,
for which constant factor approximations are possible. Both cases require classes to
have certain structural properties that make the reduction and hence, the inapprox-
imability from Section 5.2.2 invalid: Either we consider the restricted assignment
case with the additional assumption that the set of eligible machines is the same for
all jobs of each class, or we assume that, on each machine, all jobs of a given class
have the same processing times. These two cases are considered in Section 5.3.1 and
Section 5.3.2, respectively.

5.3.1 Restricted Assignment with Class-uniform Restrictions
Although even the restricted assignment variant of our scheduling problem cannot
be approximated with a factor of o(logn) as shown in Theorem 5.6, we will now
see that the following special case admits a much better approximation factor.
Let the restricted assignment problem with class-uniform restrictions be defined
as the restricted assignment problem with the additional constraint that for all
j, j′ ∈ J with kj = kj′ it holds Mj = Mj′ . That is, all jobs of a class k have
the same set of eligible machines and by abuse of notation call this set Mk. This
case might have applications in, for example, a setting in which machines can be
equipped with different tools; jobs of the same class require the same set of tools
at the processing machine, the change of tools at a machine requires a setup and
there are machine eligibility restrictions. An application with these characteristics
(and, however, additionally sequence-dependent setups, release times and a different
objective function) is described in [GM12] for the production of gears.
Note that we can add the following valid constraints given by Equations (5.9)

to (5.11) to ILP-UM:∑
j:kj=k

xijpij + yiksik ≤ yikT ∀i ∈M, k ∈ K (5.9)

xij = 0 ∀i ∈M, j ∈ J : pij + sikj > T (5.10)
yik = 0 ∀i ∈M, k ∈ K : sik > T (5.11)

Equation (5.9) holds because a job of a class k can only by processed on a machine
i if this machine is setup for class k. Additionally, Equations (5.10) and (5.11)
avoid the assignment of jobs to machines where the setup or the job’s processing
time is too large. Let ILP-RA denote the program given by Equations (5.1) to (5.3)
and (5.9) to (5.11). Unfortunately, we do not know how to round a solution to the
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∑
k∈K

x̄ik(p̄ik + αiksik) ≤ T ∀i ∈M (5.12)
∑
i∈M

x̄ik = 1 ∀k ∈ K (5.13)

x̄ik ≥ 0 ∀i ∈M, k ∈ K (5.14)
x̄ik = 0 ∀i ∈M, k ∈ K : sik > T (5.15)

Figure 5.2: Description of LP-RelaxedRA.

linear relaxation of ILP-RA to a good approximation for our problem. However,
instead we formulate a different, relaxed linear program LP-RelaxedRA as described
in Figure 5.2, which we will utilize for our approximation algorithm. This linear
program takes a different view in the sense that it does not operate on the level
of jobs but instead it has a variable x̄ik for each class-machine-pair determining
the fraction of (the workload of) class k processed on machine i. Therefore, for
i ∈ Mk let p̄ik := p̄k where p̄k := ∑

j:kj=k pij and for i 6∈ Mk let p̄ik = ∞. Also,
let αik := max

{
1, p̄ik

T−sik

}
. If x is a feasible solution to ILP-RA, then x̄ with

x̄ik := ∑
j:kj=k xij

pij
p̄ik

is a feasible solution to LP-RelaxedRA as the next lemma
proves.

Lemma 5.8. Let x be a feasible solution to ILP-RA. Then x̄ is a feasible solution
to LP-RelaxedRA.

Proof. First, note that Equation (5.15) directly follows from Equations (5.10)
and (5.11). Equation (5.13) is satisfied as we have

∑
i∈M

x̄ik =
∑
i∈M

∑
j:kj=k

xij
pij
p̄ik

=
∑
i∈Mk

1
p̄ik

∑
j:kj=k

xijpij

= 1
p̄k

∑
j:kj=k

pj
∑
i∈Mk

xij = 1,

where the first equality follows by definition of x̄ik, the second because x̄ik = 0 if
i /∈Mk and the last one because ∑i∈Mk

xij = 1 by Equation (5.2).
To see why Equation (5.12) holds, first observe that for x we have

∑
j∈J

xijpij +
∑
k∈K

max
{

max
j:kj=k

xij ,

∑
j:kj=k xijpij

T − sik

}
sik ≤ T ∀i ∈M (5.16)
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due to Equations (5.1), (5.3), and (5.9). Then we have∑
k∈K

x̄ik(p̄ik + αiksik) =
∑
k∈K

∑
j:kj=k

xij
pij
p̄ik

∑
j:kj=k

pij +
∑
k∈K

∑
j:kj=k

xij
pij
p̄ik

αiksik

=
∑
j∈J

xijpij +
∑
k∈K

αik
p̄ik

∑
j:kj=k

xijpijsik ≤ T,

where the first and second equality follow from definition of x̄ik and p̄ik respectively,
and the last inequality holds due to Equation (5.16).

LP-RelaxedRA is identical to the LP given in [Cor+15]. There it is shown that
an extreme solution to the LP can be rounded to a solution with makespan at most
2T that is feasible for the problem where jobs can be split arbitrarily but each part
requires a (job-dependent) setup. Interestingly, even though in our model setups
are associated with classes and even more crucial, we do not allow jobs to be split,
the (essentially) same approach they use provides an approximation factor of 2 for
our problem, too. The high-level idea how to obtain a 2-approximation based on
an optimal (extreme) solution for LP-RelaxedRA is as follows: It is known that
due to the structure of LP-RelaxedRA, the (bipartite) graph on the node set given
by the classes and machines and edges between pairs of nodes whose variable is
nonzero in the LP’s solution is a pseudo-forest. We can exploit this fact to modify
the solution such that it has a makespan of at most 2T and the following properties:
Each machine processes at most one class partly (but not completely) and, for each
class k, from the set of machines processing parts of k at most one machine has
a load larger than T . This allows us to greedily assign the actual jobs according
to the (modified) fractional solution to the machines and thereby increasing the
load per machine (with load at most T ) by at most one setup plus one job of the
same class and hence, by at most T . The details are given next and for the sake of
completeness, we restate the rounding procedure together with its properties from
[Cor+15]: Given an extreme solution x̄∗ to LP-RelaxedRA, all variables x̄ik with
x̄∗ik ∈ {0, 1} will remain unchanged, are excluded from our further considerations and
class k is processed on machine i if x̄∗ik = 1. Let G = (V,E) be the bipartite graph on
node set V = K\{k : ∃i with x̄∗ik = 1}∪M and edge set E = {{i, k} : 0 < x̄∗ik < 1}.
G forms a graph in which each connected component is a pseudotree, which was
already exploited in [LST90] for scheduling unrelated machines without setup times.
For the sake of rounding, we now construct a subset Ẽ ⊆ E of edges as follows (it
is a slight simplification of the construction in [Cor+15], which, however, leads to
the same result in Proposition 5.9): For each connected component, let j be an
arbitrary class node if the component does not contain a cycle. Otherwise, remove
an arbitrary cycle edge {i, j} where, again, j is a class node. Now root the (resulting)
tree in j and direct all edges away from the root. The set of edges leaving class
nodes forms the set Ẽ.

The following observation is a direct consequence of the construction.
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Proposition 5.9. By the construction described above, we have the following two
properties for a schedule induced by x̄:

1. Each machine i processes at most one class k with {i, k} ∈ Ẽ and 0 < xik < 1,
and

2. for each class k there is at most one machine i such that {i, k} /∈ Ẽ and
x̄∗ik > 0.

For each class k we choose an arbitrary machine i+k such that {i+k , k} ∈ Ẽ. If
there is a machine i−k such that x̄∗

i−
k
k
> 0 but {i−k , k} /∈ Ẽ, we move all workload of

k processed on i−k from i−k to i+k and add a (full) setup for k to machine i+k . By this
and Proposition 5.9 we then have the property that each machine processes at most
one class fractionally. Let M(k) be the set of machines that process (parts of) class
k. Next, we prove the following lemma.

Lemma 5.10. For any k ∈ K, all machines in M(k) \ {i+k } have a load of at most
T . The load of i+k is upper bounded by 2T .

Proof. Consider a class k. Note that i+k 6= i+k′ for all k′ 6= k by Proposition 5.9.
Hence, the first statement of the lemma holds. The second statement follows by
an observation already made in [Cor+15]: By the constraints of LP-RelaxedRA,
αi−

k
kx̄
∗
i−
k
k
≤ 1 and by definition of αi−

k
k, we have T ≥ p̄i−

k
k/αi−

k
k + si−

k
k. Taken

together, x̄∗
i−
k
k
p̄i−
k
k + si−

k
k ≤ T and because we consider restricted assignment with

class-uniform restrictions, we also have x̄∗
i−
k
k
p̄i+
k
k + si+

k
k ≤ T , proving the lemma.

Finally, we need to explain how to obtain the final feasible schedule with makespan
at most 2T . Obtaining a feasible schedule from the solution so far, requires adding
a (full) setup for class k on all machines i ∈ M(k) \ {i+k } as well as showing how
to actually assign the jobs of k to the machines i ∈M(k). We say that a time slot
of size x is reserved for class k on a machine i if x̄∗ikp̄ik = x. For any fixed class k,
sort the machines in M(k) so that machine i+k comes last in this ordering. Starting
with the first machine in the ordering, take the jobs of k and greedily fill them into
the reserved time slots by assigning the current job to the current machine if the
reserved time slot is not yet full. As soon as a machine is full, proceed with the
next machine. It is not hard to see that by this procedure the load of each machine
i ∈ M(k) \ {i+k } is increased by an additive of at most sik + maxj:kj=k pij , which
is upper bounded by T due to Equation (5.15) and the fact that also an optimal
solution has to process a setup and the largest job of class k on some machine. The
last machine i+k keeps its load of at most 2T . Therefore, we have proven the desired
result.

Theorem 5.11. The restricted assignment problem with class-uniform restrictions
admits a 2-approximation.
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5.3.2 Unrelated Machines with Class-uniform Processing Times

A second special case that allows constant factor approximations is the one of
unrelated machines in which all jobs of a given class have the same processing times
on any machine. That is, for all i ∈M and j, j′ ∈ J it holds kj = kj′ ⇒ pij = pij′ .
This special case of unrelated machines might have applications prevalently in

production systems. One example is mentioned in [Kim+02]: In the production
of semiconductor wafers, machines for dicing operations are non-identical due to
varying ages and manufacturers. The machines can produce different types of wafers
and each machine has its own processing times depending on the characteristics
of the machine and the wafer type while each item of a given type has identical
processing times. Also, machines need to be adjusted whenever different types of
wafers are diced leading to setup times, which, however, do not occur between items
of the same type.
We solve this problem similarly to the restricted assignment problem with class-

uniform restrictions in the previous section. To do so, we modify the approach as
follows: First of all, we replace Equation (5.15) in LP-RelaxedRA by

x̄ik = 0 ∀i ∈M, k ∈ K : sik + pij > T for some j with kj = k. (5.17)

Note that this is a valid constraint since all jobs of a class k have the same size on
machine i and if a job together with its class’ setup does not fit to a machine, no
workload of class k will be assigned to i at all. Then we construct the set Ẽ with
the properties of Proposition 5.9 as before. Now, for each class k ∈ K let i−k be the
machine such that x̄∗

i−
k
k
> 0 but {i−k , k} /∈ Ẽ (if it exists). Let i+k,ι, ι = 1, . . . , ιk be

the machines such that x̄∗
i+
k,ι
k
> 0 and {i+k,ι, k} ∈ Ẽ. In case x̄∗

i−
k
k
> 1

2 , process the

entire class k on machine i−k . Otherwise, distribute the amount of k processed on
i−k proportionally to the machines i+k,ι so that x̄∗

i−
k
k
is set to 0 and x̄∗

i+
k,ι
k
is at most

doubled. After these steps, the load on each machine is at most 2T . Finally, it
remains to add at most one setup to each machine and, as before, to greedily fill
the reserved slots by the actual jobs. This increases the load on each machine by
an additive of at most T due to Equation (5.17) and hence, we have constructed
a 3-approximation. Together with a straightforward adaptation of the reduction
given in [Cor+15], we have the following result.

Theorem 5.12. The unrelated machines case with class-uniform processing times
admits a 3-approximation. It cannot be approximated to within a factor less than 2
unless P = NP .

Proof. Consider the following variant of the SetCover problem called Max k-
Cover: Given a universe of n elements and a collection {S1, S2, . . . , Sm} of m subsets
of it. The goal is to choose k sets so as to maximize the number of covered elements.
It is known that for the variant where all sets have cardinality n

k it is NP-hard to
decide whether all elements can be covered with k disjoint sets or if no k sets can
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cover more than a (1 − 1
e )-fraction of all elements. Given an instance I for Max

k-Cover, we construct an instance I ′ for our scheduling problem as follows: For each
set Si, we create a class Ci consisting of nk jobs. We have m− k universal machines
on which all classes have a setup time of 1 and all jobs have a size of 0. Additionally,
we create one machine Mi for each element ei in instance I: If ei ∈ Sκ, class κ has
a setup time 0 on machine Mi and all its jobs have processing time 1. Otherwise,
the setup time and all processing times of class κ are ∞.

Now assume that I is a Yes-instance. Consider the classes corresponding to the k
(disjoint) sets covering the universe. We can schedule all their jobs on the respective
element-machines such that each machine gets exactly one job with processing time
1 and respective setup of size 0. The remaining m− k classes can be processed on
the m − k universal machines, assigning a complete class to each of them. Since
the setup time is 1 and the jobs’ processing times are 0, we have a schedule with
makespan 1.
Next, let I be a No-instance. Note that each universal machine can have a

setup of at most one class or otherwise the makespan is directly at least 2. Then,
at most m − k classes can be processed on universal machines. The remaining k
classes need to be assigned to element-machines. However, for any k classes, their
accumulated processing time of n needs to be processed on at most (1− 1

e )n element
machines. Averaging leads to the fact that there is a machine with a load of at least
de/(e− 1)e = 2.

5.4 Uniformly Related Machines
We conclude this chapter by briefly considering the case of uniformly related machines.
As already mentioned in the introduction, the paper this chapter is based on provides
a PTAS for this problem. Here, we focus on approaches that are undeniably inferior
with respect to the approximation factor but that might be more practical as they
are much simpler or faster.
We start with a simple and very general way that shows how to use existing

approaches for scheduling uniformly related machines without setup times to solve our
problem with setup times. For a given instance I, let Jks = {j ∈ J : kj = k, pj < sk}
be the set of jobs of class k being smaller than the setup time of k. Consider
the modified instance I ′ in which all jobs of J \ (⋃Ki=1 J

k
s ) are given as in I and

all jobs of Jks are replaced by d∑j∈Jks pj/ske many (placeholder) jobs of class k,
each with a size of sk. Then apply a standard algorithm for scheduling uniformly
related machines, ignoring any classes and not scheduling any setups to obtain an
(infeasible) schedule for I ′; and finally obtain a feasible schedule for the original
instance I by adding all required setups to the computed schedule and replacing the
placeholder by the actual jobs. This can be done by replacing a placeholder job of
class k by choosing any unscheduled jobs from Jks until their summed up size first
exceeds the size of the placeholder job or there are no unscheduled jobs left. We
have the following lemma.
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Lemma 5.13. Let A be an algorithm with approximation factor α for scheduling
uniformly related machines without setup times. Applying A in the framework
described above, yields a 3α-approximation for scheduling uniformly related machines
with setup times.

Proof. Consider an optimal schedule σ for I and let Si be the set of classes for which
there is a setup on machine i. Then, there is also a schedule for instance I ′ with load
at most Opt +∑

k∈Si sik on machine i by scheduling d∑j∈σ−1(i)∩Jks pij/sike many
placeholders of class k on machine i. Also, when not scheduling any setups, this
load is decreased to at most Opt. Hence, there is a schedule for I ′ with makespan
at most Opt when no setups are scheduled. Therefore, using A and ignoring classes
and not scheduling setups, we find a schedule with makespan at most αOpt. It
remains to insert setups and to replace the placeholder by the actual jobs to obtain
a feasible solution for I. Let Ci be the set of classes of which jobs are scheduled on
machine i in the schedule obtained by A. Replacing the placeholder by actual jobs
can increase the makespan by at most ∑k∈Ci sik and adding the required setups
can increase it by the same amount. Recall that the schedule computed by A has
a makespan of at most αOpt and there is at least one job of size at least sik on
machine i for each k ∈ Ci. Therefore,

∑
k∈Ci sik ≤ αOpt and the lemma follows.

Note that the best bound Lemma 5.13 implies is a (3 + ε)-approximation, which
we obtain by using a PTAS such as [Alo+98]. When aiming at simple and very fast
solutions, one could use the LPT-rule as algorithm A in Lemma 5.13 leading to an
approximation factor of 3(1 + 1√

3) ≈ 4.74 [Kov10]. As LPT just sorts all jobs of I ′
by non-increasing size and adds one after the other to the machine where it finishes
first, this approach has a very efficient runtime of O(n logn).
Next, we show how to come up with a very efficient algorithm, described in

Algorithm 3, that improves on the best bound that can be achieved by using
Lemma 5.13 in case we have class-independent setup times, that is, sk = s for all
k ∈ K.
Theorem 5.14. Algorithm 3 is a 3-approximation algorithm.

Proof. Let {M1,M2, . . . ,M`} be those bins containing jobs of Js. Let j1, j2, . . . , jq
be the jobs packed intoMi (in this order). We first analyze the load ofMi, 1 ≤ i < `.
We can upper bound the load of Mi by Li ≤

∑q−1
j=1(pjjvi + s

vi
) + pjq

vi
+ s
vi
. By definition

of Js and the fact that we overpack each bin by at most one job, we then also have∑q−1
j=1(pjjvi + s

vi
) ≤ 2T . Finally, pjqvi + s

vi
≤ T since Opt cannot pack more jobs into

the bins M1, . . . ,M`−1 and because we have packed jobs in non-increasing order of
their size. Thus, for 1 ≤ i < `, we have Li ≤ 3T .
Next, consider the load of M`. In case no jobs of J \ J` are packed into M`,

L` ≤ 3T . Otherwise, let j be the last job packed into M`. Then, the load is upper
bounded by L` ≤ 2T + s

v`
. We defer the bounding of s

v`
by T to the end and first

proceed with the bins Mi for i > `.
Note that the amount of jobs and setups our algorithm packs in Step (3) cannot

be larger than what Opt has to pack into bins Mi with i > `. Hence, if m′ is the
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Algorithm 3 Description of NextFit algorithm for uniformly related machines with
class-independent setup times.
(1) Let J` = {j ∈ J : pj ≥ s} and consider Mi as a bin of size T · vi.

(2) Pack all jobs of J` by filling bin by bin in order of non-increasing size.
• Sort jobs in J` in non-increasing order of their sizes pj .
• Add jobs in sorted order to bins in a next-fit manner by adding current

job to current bin as long as it is not full. Otherwise proceed with the
next bin.

(3) Pack all remaining jobs and one setup per involved class.
• Sort jobs in J \J` according to classes and add a setup between consecutive

jobs of different classes.
• Add items (jobs, setups) to bins in a next-fit manner (starting with last

bin of the previous step).

(4) Add missing setups where necessary.

last bin used by our algorithm, then s
vm′
≤ T . Therefore, for ` < i < m we have

Li ≤ T + s
vi

+ pjq , as we overpack by at most one job and have to add at most one
additional setup in Step (4). Thus, we have Li ≤ T + s

vi
+ pjq ≤ T + 2 s

vi
≤ 3T . Also,

L` ≤ 2T + s
v`
≤ 3T , which concludes our proof.

Finally, we want to briefly discuss how to use the approach from the previous
section to achieve a rather simple 4-approximation algorithm, improving on the
bound given by LPT and Lemma 5.13 and reducing the technical complexity of
using a PTAS in Lemma 5.13. We sketch the following result.

Theorem 5.15. Using LP-RelaxedRA as described in Figure 5.2 together with
Proposition 5.9, we can obtain a 4-approximation algorithm.

Proof (Sketch). Let Js := {j ∈ J : pj < skj} and J` := J \ JA. For each job j ∈ J`
create a new class kj with setup time skj = pj and one job jk with processing time
0. Call the set of newly created classes K′. We solve this modified instance by
using LP-RelaxedRA from Section 5.3 and then construct the set Ẽ as before with
the properties of Proposition 5.9. Now, for each class k ∈ K \ K′ let i−k be the
machine such that x̄∗

i−
k
k
> 0 but {i−k , k} /∈ Ẽ (if it exists). Let i+k,ι, ι = 1, . . . , ιk be

the machines such that x̄∗
i+
k,ι
k
> 0 and {i+k,ι, k} ∈ Ẽ. In case x̄∗

i−
k
k
> 1

2 , process the

entire class k on machine i−k . Otherwise, distribute the amount of k processed on
i−k proportionally to the machines i+k,ι so that x̄∗

i−
k
k
is set to 0 and x̄∗

i+
k,ι
k
is at most

doubled. Also, replace each setup for a class kj ∈ K′ that is completely assigned
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to a machine, i.e., for which xikj = 1 for kj ∈ K′ and some i ∈ M, by the actual
job j and its setup (and recall that skj ≥ pj). Then, it is easy to verify that each
machine has a load of at most 2T . To finally obtain a feasible schedule, it remains
to add at most one setup to each machine and, as before in Section 5.3, to greedily
fill the reserved slots by the actual jobs. This increases the load on each machine
by at most one setup and at most one job and hence, by an additive of at most
2T . (Note that both are upper bounded by T due to the respective constraints of
LP-RelaxedRA and in case of a job j from J` due to the preliminary step of setting
the setup time of the newly created class to the size of j.) This concludes the proof
for a 4-approximation.
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Offline Scheduling for Maximum Flow
Time on a Machine with Setup Times

Makespan is a popular objective function and quite reasonable from the
perspective of the entity processing the jobs, for example, a computing
center, particularly if all jobs arrive in a bundle. However, if jobs only

become ready for processing over time or if one wants to better measure the
experience of users issuing the jobs, the question of how a good schedule looks like
requires other objective functions. From this perspective it is rather desired that
each individual job is finished as early as possible after it is available for processing.
Therefore, a natural objective in such a scenario is the minimization of the maximum
flow time as introduced in [BCM98]. It is defined as the maximum time a job spends
in the system. That is, the time between the arrival of a job and its completion.
Note that maximum flow time is a natural generalization of the makespan objective
since if all jobs are released at the same time, the maximum flow time boils down to
the makespan objective. It describes the quality of service as, for example, perceived
by users and aims at schedules being responsive to each job. This is in contrast to
the total flow time objective, which leads to a good average performance but also to
potentially unfair solutions as individual jobs may suffer starvation.
In this chapter, we study the general problem from Chapter 3 for the maximum

flow time objective on a single machine. We consider it as an offline problem and
since the problem is known to be NP-hard [DS11], we are interested in approximation
algorithms. It is known [MP89] that the problem can be solved optimally in time
O(K2 · n2K) and the online algorithm in [DS11] can be applied offline and achieves
an approximation factor of 11 in time O(n2). We improve on this factor by coming
up with a new approximation algorithm in Section 6.3, after defining the model and
necessary notation in Section 6.1 and deriving some simple insights about optimal
solutions in Section 6.2.
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6.1 Model & Notation
We consider the problem described by the general model in Chapter 3 for the case
where the set J of n jobs needs to be processed by a single machine. In this case,
each job j ∈ J has one processing time pj ∈ N≥0 and a release time rj ∈ N≥0
before which it cannot be processed. Similarly, with each class k ∈ K one setup
time sk ∈ N≥0 is associated and, as usual, whenever the machine switches from
processing a job of class k′ to a job of a class k 6= k′, a setup of length sk needs
to take place first. The goal is to compute a non-preemptive schedule, in which
each job runs to completion without interruption once it is started, that minimizes
the maximum flow time F := maxj∈J Fj where Fj is the amount of time job j
spends in the system. That is, a job j arriving at rj , started in a schedule at tj
and completing its processing at cj := tj + pj has a flow time Fj := cj − rj . Note
that different from the makespan objective, a schedule in this setting will usually
have several setups for a class and may have idle time (for example when the next
job to be processed not yet arrived). A schedule is implicitly given by a starting
time tj for each j ∈ J . As the machine can process at most one job at a time, we
require that [tj , tj + pj) ∩ [tj′ , tj′ + pj′) = ∅ for all j, j′ ∈ J and j 6= j′. Also, due
to the requirement on performing setups when switching between different classes,
we demand that tj ≥ tj′ + pj′ + skj if kj 6= kj′ , tj ≥ tj′ and no job j′′ exists with
tj′′ ∈ (tj′ + pj′ , tj ]. In the following, we use F ∗(I) to denote the maximum flow time
of an optimal solution Opt(I) and usually omit I if it is clear from the context.1

6.2 Basic Properties and Observations
For our approach, we partition the time into intervals of length F ∗ and based thereon
the set of jobs into sets Ji := {j ∈ J : (i − 1)F ∗ ≤ rj < iF ∗} of jobs released in
the i-th interval, for all i ∈ N. Recall that a batch is a maximal set of jobs of a
common class scheduled contiguously and sharing the same setup. We distinguish
different kinds of batches depending on the sets Ji of which jobs are processed in a
batch. We call a batch an i-single batch if it only processes jobs from Ji. We call
a batch an i-pair batch if it only processes jobs from Ji and Ji+1. We call a batch
an i-triple batch if it only processes jobs from Ji, Ji+2 and possibly Ji+1. We call a
batch an (i, i′)-critical batch if it processes jobs from Ji and from Ji′ for i′ ≥ i+ 3
and no jobs from any Ji′′ for i′′ > i′. We use the shorter notation i-critical batch if
we do not need to refer to the value of i′. The term critical is due to the fact that
we will build non-critical batches greedily while for critical batches we will need an
exhaustive enumeration. We also use the notation i-* batch where ∗ is a wildcard
for single, pair, triple and critical. By definition we have the following observation.

Observation 6.1. A job j ∈ Ji can be processed in an i-single batch, (i− 1)-pair
or i-pair batch, (i − 2)-triple, (i − 1)-triple or i-triple batch, or an (i′, i′′)-critical
1As in [DS11], we assume that the optimal flow time is at least F ∗ ≥ maxk∈K sk. This is not
stated explicitly but assumed implicitly in [DS11] (cf. proof of Property 6.)
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batch if i′ ≤ i ≤ i′′. These are the only possibilities for j ∈ Ji.
We start with two propositions about triple and critical batches in optimal

solutions.
Proposition 6.2. In an optimal schedule the sum of the number of i-triple and
i-critical batches is at most 1 for each i.

Proof. Recall that an i-triple batch as well as an i-critical batch contains jobs from
Ji and Ji′ for i′ ≥ i+ 2. Therefore, in an optimal schedule such a batch needs to
be started before (i+ 1)F ∗ since otherwise the job from Ji would have a flow time
larger than F ∗. Also, it cannot be finished before (i+ 1)F ∗ since it contains a job
from Ji′ . Hence, the respective batch needs to be processed at time (i+ 1)F ∗ and
thus, there can be at most one such batch.

The next observation is based on the fact that jobs which do not belong to a
(critical) batch but which are released during its processing can only be processed
before or after it. Intuitively, as critical batches are very long, this implies that no
such jobs are released at all except for the border cases where the respective jobs
can be processed before and after the critical batch, respectively.
Proposition 6.3. Consider an optimal schedule with an (i, i′)-critical batch. All
jobs of Ji+1 (Ji′−1) that are not processed in this critical batch are processed before
(after) the critical batch. There are no jobs in Ji+2∪ . . .∪Ji′−2 that are not processed
in this critical batch if i′ ≥ i+ 4.
Proof. Note that the i-critical batch needs to be started before (i+ 1)F ∗ and cannot
be finished before (i+ 2)F ∗. Hence, all jobs of Ji+1 not being part of the critical
batch are processed before it as they cannot be processed after it. Similarly, all
jobs of Ji′−1 not being part of the critical batch need to be processed after it since
i′ − 1 ≥ i+ 2 and hence they are released after the critical batch is already started.
Finally, suppose to the contrary that for some i∗ with i+ 2 ≤ i∗ ≤ i′ − 2 there is a
job in Ji∗ not being part of the critical batch. This job cannot be started before the
critical batch so it needs to be started afterwards. However, then it would finish
later than (i′ − 1)F ∗ ≥ (i∗ + 1)F ∗, which contradicts that the maximum flow time
is F ∗.

6.3 Approximation Algorithm
In this section, we design and analyze our approximation algorithm. To this end,
in Section 6.3.1, we develop and formally define a certain class of schedules that
are only by a constant factor worse than optimal schedules and have certain nice
structural properties. These properties help us to come up with an approximation
algorithm in Section 6.3.2. In the following we assume that F ∗ is known to the
algorithm, which is justified by the fact that it can easily be applied within the
binary search of the dual approximation framework as introduced in Chapter 2 on
the interval [maxj pj ,maxj rj +∑K

k=1 sk +∑n
j=1 pj ] 3 F ∗.

63



Chapter 6 OFFLINE SCHEDULING FOR MAXIMUM FLOW TIME

6.3.1 EarlyBatch-Schedules

In the following, we use the term relaxed schedule to denote a schedule that is feasible
except for the fact that jobs might be started before their release times. Note that
a relaxed schedule with maximum flow time F in which no job is started more than
∆ before its release time, can easily be transformed into a feasible schedule with
maximum flow time at most F + ∆ by delaying the starting times of all jobs by ∆.
Next, we are going to define the structure of certain good and nicely structured
schedules. Because this structure goes hand in hand with the algorithm that we will
later develop in Section 6.3.2 for the actual computation of such schedules, we first
describe our strategy in a nutshell: We proceed in iterations such that in iteration i,
we build i-single and i-pair batches and either i-triple or one i-critical batch. The
(i+ 1)-* batches of the next iteration are then simply appended to the schedule so
far. The pair and triple batches are built greedily in the sense that if Ji ∩ Ck 6= ∅,
those jobs Ji+1 ∩ Ck and Ji+2 ∩ Ck are processed in the same batch as Ji. This
aims at minimizing the number of setups we need to perform while, on the other
hand, it might require jobs to be started too early (compared to their release times).
In contrast, critical batches are not built greedily but instead we will guess the
right ones (or rather their classes) as we will see later on. We formalize these ideas
concerning the structure of schedules we will consider as follows.

Definition 6.4 (EarlyBatch-Schedule). A relaxed schedule is called an EarlyBatch-
Schedule if all jobs of Ji ∩ Ck are processed in the same batch, for all i and k, and
the following holds inductively for any i = 1, 2, . . .:
If there is no i-critical batch, then

1. For any k, if Ji ∩Ck 6= ∅ and Ji+2 ∩Ck 6= ∅ and the jobs of Ji are not already
scheduled, (Ji ∪ Ji+1 ∪ Ji+2) ∩ Ck form an i-triple batch.

2. For any k, if Ji ∩Ck 6= ∅ and Ji+1 ∩Ck 6= ∅ and the jobs of Ji are not already
scheduled or part of an i-triple batch, (Ji ∪ Ji+1) ∩ Ck form an i-pair batch.

3. All remaining jobs of Ji are processed in i-single batches.

4. All i-* batches are processed before any (i + 1)-* batch. i-* batches are
processed in an arbitrary fixed order starting with the i-* batch with largest
setup time.

If there is an i-critical batch (of a class k), then

1. For any k′ 6= k, if Ji ∩ Ck′ 6= ∅ and Ji+1 ∩ Ck′ 6= ∅ and the jobs of Ji are not
already scheduled, (Ji ∪ Ji+1) ∩ Ck′ form an i-pair batch.

2. All jobs of Ji+1 not already processed, are processed in (i+ 1)-single batches.

3. The i-critical batch contains all jobs of class k of Ji ∪ . . .∪ Ji′ , where i′ > i+ 2
is the first index such that Ji′−1 contains jobs of a class k′ 6= k.
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4. All remaining jobs of Ji are processed in i-single batches.

5. The batches are processed in an arbitrary order as long as the i-critical batch
is processed last (also after the (i+ 1)-single batches) and of the remaining
i-* batches the one with largest setup time is processed first. All (i′ − 1)-*
batches are processed after the i-critical batch.

Note that once the classes of all critical batches are fixed, the respective EarlyBatch-
Schedule is uniquely determined and can be computed by greedily building single,
pair and triple batches according to Definition 6.4. This even holds if one only
knows the i′-critical batches for i′ ≤ i when building the i-* batches.

Lemma 6.5. There is an EarlyBatch-Schedule with the following properties for
each i: All jobs in i-single, i-pair and i-triple batches are finished by (i+ 3)F ∗ and
are not started before (i − 1)F ∗. All jobs of i-critical batches belonging to Ji′ are
started not before (i′ − 1)F ∗ and are finished not after (i′ + 1)F ∗. Hence, there is
an EarlyBatch-Schedule with flow time at most 7F ∗.

Proof. We show how we can iteratively construct a schedule with the desired
properties. Starting with an optimal solution, we do so by an induction on the
modification steps using the following induction hypothesis: Before iteration i+ 1,
the schedule Si constructed so far can be decomposed into S1

i , S2
i and S3

i such that
each is a feasible relaxed schedule for its respective set of jobs (and consequently,
no batch can belong to more than one subschedule) and its concatenation S1

i , S2
i

and S3
i (in this ordering) equals the original schedule Si. Furthermore,

1. S1
i fulfills the properties of an EarlyBatch-Schedule and the desired bounds as

given in the lemma for all i′ ≤ i.

2. In S2
i all jobs of Ji′ are not started earlier than (i′ − 1)F ∗ and not finished

after (i+ 3)F ∗.

3. In S3
i all jobs of Ji′ are not started before (i′ − 1)F ∗ and not finished after

(i′ + 1)F ∗.

Before the first iteration, we choose S1
0 = S2

0 = ∅ and S3
0 as an optimal solution

so that the desired properties hold. Without loss of generality, we assume that
the optimal solution fulfills the property that all jobs of a class are processed in
non-decreasing order with respect to their release times. (Note that in the following
we will skip some iterations as due to Definition 6.4 there are essentially no jobs to
consider in iterations i+ 1, . . . , i′ − 2 if there is an (i, i′)-critical batch.)
Now we suppose the induction hypothesis holds up to i− 1 and we show it for

i. Our starting point is the decomposition of the schedule into S1
i−1, S2

i−1 and
S3
i−1 from the induction hypothesis. The idea now is to find an interval [t1, t2]

in which we reorder the jobs so that afterward we can easily define S1
i , S2

i and
S3
i using the induction hypothesis together with the newly ordered jobs. For an

illustration refer to Figure 6.1. Let S be S2
i−1 if it is not empty and otherwise
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S equals S3
i−1. Let t′1 be the starting time of the first job jfirst in S. Let t1 be

the starting time of the setup directly before jfirst. Note that if jfirst ∈ Ji′ for
i′ ≥ i + 1 then t1 ≥ t′1 − skjfirst ≥ iF ∗ − F ∗ ≥ (i − 1)F ∗ since skjfirst ≤ F ∗ and
by induction hypothesis. Otherwise, t1 ≥ t′1 − smax ≥ (i − 1)F ∗ − smax, where
smax = maxk:Ji∩Ck∩S 6=∅ sk, since t′1 ≥ (i− 1)F ∗ as S only contains jobs from Ji′′ for
i′′ ≥ i. Let t2 be the finishing time of the last job jlast that is supposed to belong to
S1
i (according to Definition 6.4), which we are going to construct. We make a case

distinction depending on whether we do or do not have an i-critical batch. (Note
that this can depend on the optimal solution we started with as well as on previous
iterations.)
(Case: No i-critical batch.) First, we consider the case that there is no i-

critical batch. Note that t2 ≤ (i + 3)F ∗ by induction hypothesis and because
jlast ∈ Ji ∪ Ji+1 ∪ Ji+2. Within interval [t1, t2] we reorder the jobs so that the
desired properties hold. To this end, we might need to move jobs to other batches
(particularly, to establish the desired properties for S1

i ) and need to reorder batches.
However, note that we do not need to do more setups than before so that we can
establish the desired properties and still all jobs are started and finished within
the interval [t1, t2]. S1

i−1 extended by the new i-* batches forms S1
i and the desired

properties hold. S3
i is defined as follows. Let t′ denote the starting time of the first

job of S3
i−1. If max{t2, t′} = t2, S3

i is given as the subschedule of S3
i−1 starting at t2

extended by the setup directly preceding the first job. Otherwise, S3
i equals S3

i−1.
The jobs in between S1

i and S3
i form S2

i . We can ensure that no job in S2
i from a

set Ji′ is started before (i′ − 1)F ∗ as this holds before and we do not need to start
any such job earlier. The upper bound on the finishing times directly follows from
the upper bound on t2 or by induction hypothesis (with respect to S2

i−1 if t′ > t2),
which concludes this case.

(Case: i-critical batch.) Next, consider the case that there is an i-critical batch.
We build the desired i-single, i-pair and (i+ 1)-single batches and can guarantee
the desired bounds on starting and finishing times for these jobs as in the previous
case. Note that we do not do additional setups compared to S2

i−1 ∪ S3
i−1 due to

Proposition 6.3. Next, if Ji∗ for i∗ ≥ (i+ 1)F ∗ is the first set containing jobs that
are not in the i-critical batch, note that the critical batch cannot contain jobs of
Ji∗+2 due to Proposition 6.3. Note that the i-critical batch belongs to S3

i−1 so that
its jobs satisfy the bounds on starting and finishing times as desired in the lemma.
However, it might be necessary to extend it (by jobs from the respective class and
belonging to sets up to Ji∗+1 to satisfy the definition of EarlyBatch schedules). Note
that t2 ≤ (i∗ + 2)F ∗ and hence, we get the upper bound on the finishing times
as desired. Extending the i-critical batch by the respective jobs and noting that
we can skip the next iterations until i∗, we obtain S1

i∗−1. S3
i∗−1 is the subschedule

of S3
i−1 starting at t2 extended by the directly preceding setup. In between S1

i∗−1
and S3

i∗−1 we have S2
i∗−1. Note that it can only contain jobs from Ji′ for i′ ≥ i∗ by

definition of i∗. They are finished by t2 ≤ (i∗ + 2)F ∗ and hence, the desired bounds
hold, which concludes the proof.
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Figure 6.1: Illustration of the induction step from i−1 to i. Rectangles represent jobs,
gears represent setups and colors (characters {A,B,C,D}, respectively)
represent classes of jobs and setups.

6.3.2 Constructing EarlyBatch-Schedules
Given Definition 6.4 and Lemma 6.5, it would be easy to compute a schedule with
flow time at most 7F ∗ if we knew the i-critical batches for all i. Unfortunately, this
is not the case though and consequently, our strategy will be to guess each i-critical
batch. Let Si−1 denote a schedule fulfilling the properties of Definition 6.4 for all
i′ ≤ i− 1 and suppose we know the class of the i-critical batch. Then we can easily
compute subschedule Si by building the i-single batches, i-pair batches and (in case
there is no i-critical batch) the i-triple batches greedily according to the structure of
EarlyBatch-Schedules of Definition 6.4. Now we can enumerate all possible solutions
satisfying the aforementioned properties: Given set Si−1 of all possible schedules
Si−1, we build the set Si of all possible schedules Si by extending each schedule in
Si−1 by the respective batches for each possible choice for the class of the i-critical
batch. Note that there are K + 1 choices, namely K classes and the possibility to
not have an i-critical batch. Unfortunately, this does not yet give a polynomial time
algorithm.
However, we observe that in ech Si there might be schedules that we can safely

remove before computing Si+1 and thereby we will see that we can make the
algorithm run in polynomial time. Of course, whenever we construct an infeasible
schedule, i.e., a schedule that does not fulfill the properties of Lemma 6.5, we will
remove it. Additionally, we consider the following concept of domination.

Definition 6.6. Let S, S̄ in Si be two schedules having i-critical batches of the
same class. If S is shorter than S̄, we say S dominates S̄.

Due to our definition of EarlyBatch-schedules (particularly the fact that jobs are
“pulled” to early batches and in case of an i-critical batch the fact that (i+1)-batches
are pulled in front of the critical batch), we can show that a dominating and its
respective dominated schedule include the exact same set of jobs. Based on that,
the next lemma follows.
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Lemma 6.7. If Si dominates S̄i and S̄i can be extended to a schedule with the
properties of Lemma 6.5, then Si can be as well.

Proof. We only need to show that Si and S̄i contain the exact same set of jobs.
This directly implies the lemma. Note that all jobs from Ji∗ for i∗ ≤ i are contained
in both schedules which directly follows from the construction. All jobs from Ji+1
are part of both schedules as we built the respective (i+ 1)-single batches because
we do have an i-critical batch according to Definition 6.6. Furthermore, no job of
Ji+2 that is not in the i-critical batch is part of the schedules as no i-triple batches
are built and such jobs cannot belong to any other already built batches. If the last
job of the i-critical batch belongs to Ji′ , both schedules do not contain any jobs
from Ji∗ not being in the i-critical batch for i∗ ≥ i′ − 1. Furthermore, according
to Definition 6.4, there are no jobs in Ji+2 ∪ . . . ∪ Ji′−2 that are not part of the
i-critical batch.

Due to the previous lemma, we only need to keep one not dominated schedule
for each possible choice for the class of the i-critical batch in Si. Schedules that do
not have an i-critical batch are all kept (except those which we can directly exclude
because they do not satisfy Lemma 6.5). Therefore, we have |Si| ≤ k + |Si′ |, where
i′ < i is the largest index such that Ji′ 6= ∅. Note that we can easily determine the
at most n values for which Ji 6= ∅ in advance so that we can skip the respective
iterations when calculating the sets Si. Hence, |Si| ≤ nk, for all relevant values of i,
and we therefore designed an algorithm with the properties summarized in the final
theorem.

Theorem 6.8. There is an approximation algorithm with approximation factor 7
and a running time polynomial in n and K.
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Online Scheduling for Maximum Flow
Time on a Machine with Setup Times

Maximum flow time, as already studied in Chapter 6, is a natural objective
function for considering the resulting scheduling problem in an online
setting. Recall that in this case, the jobs arrive over time at their respective

release times and they are not known to a scheduler in advance. Additionally, in
the strong non-clairvoyant variant of the online notion as introduced in [MPT94],
the processing time of a job only becomes known upon completion instead of being
available to a scheduler upon the arrival of a job. Such an assumption is reasonable,
for example, in settings in which user interaction is present or processing times may
depend on further inputs not known upon the arrival of a job.
In this chapter, we study the potential of conceptually simple (“greedy-like”),

non-clairvoyant online algorithms in terms of their (smoothed) competitiveness. The
formal definitions of the notions “greedy-like” and smoothed competitiveness are
given in Section 7.1 together with a description of the formal model. In Section 7.2
we analyze the competitiveness of “greedy-like” algorithms and show matching upper
and lower bounds of Θ(

√
n), where the bound is achieved by a simple modification

of the First In First Out (FIFO) strategy. Interestingly, the competitiveness linearly
improves with an increasing optimal flow time (assuming n, the setup time and the
largest processing time are fixed) and thus, is much better in case the optimal flow
time is large. Also, in case of only two classes the competitiveness improves to a
constant. Our main result is an analysis of the smoothed competitiveness of this
algorithm in Section 7.4, which is shown to be O(σ−2 log2 n) where σ denotes the
standard deviation of the underlying smoothing distribution. It shows worst-case
instances to be fragile against random noise and that, except on some pathological
instances, the algorithm achieves a much better performance than suggested by
the worst-case bound on the competitiveness. The bound even holds with high
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probability when noise is present and thus, one can expect that a bad performance
is rather unlikely to occur in practice.

7.1 Model, Notation & Notions
We consider the general problem from Chapter 3 instantiated as in Chapter 6. That
is, n jobs, partitioned into K classes, are to be scheduled on a single machine. Each
job j has a processing time pj ∈ R≥1, a release time rj ∈ R≥0 and a parameter kj
defining the class it belongs to.1 The machine can process at most one job at a
time. Whenever it switches from processing jobs of one class to a different one and
before the first job is processed, a setup taking a constant time s ∈ R≥0 needs to
take place during which the machine cannot be used for processing. The goal is
to compute a non-preemptive schedule that minimizes the maximum flow time F ,
where (recalling from Chapter 6) F := max1≤j≤n Fj and Fj := cj − rj .

Recall that a batch is a sequence of jobs, all of a common class k, that are processed
in a contiguous interval without any intermediate setup. For a batch B, we use τ(B)
to denote the common class of B’s jobs and w(B) := ∑

j∈B pj to denote its workload.
We refer to setup times and idle times as overhead and overhead is associated to a
job j if it directly precedes j in the schedule. For an interval I = [a, b] we also use
l(I) := a and r(I) := b and w(I) := ∑

j:rj∈I pj to denote the workload released in
interval I.

Non-Clairvoyant Greedy-like Online Algorithms We consider our problem in an
online setting where jobs arrive over time at their release times and are not known
to the scheduler in advance. Upon arrival the scheduler gets to know a job together
with its class but does not learn about its processing time, which is only known upon
its completion (non-clairvoyance) [MPT94]. We are interested in the potential of
conceptually simple algorithms. Although such algorithms might not lead to the best
achievable performance, they often have strong points such as being very fast, working
quite well on realistic data or being easy to implement and modify as discussed in
[BPS17]. A prime example of conceptually simple scheduling algorithms are priority
algorithms that, intuitively speaking, assign each job a single parameter (called
its priority) and then base each scheduling decision solely on the jobs’ priorities
as described in [Gup+12]. EarliestDeadlineFirst, ShortestProcessingTimeFirst,
HighestDensityFirst or FIFO are just a few of numerous well-known and used such
algorithms. Priority algorithms have been formally defined to describe the concept
of greedy-like (or myopic) algorithms for classical combinatorial offline problems
by Borodin et al. in [BNR03]. We adopt this concept and for our online problem
1Note that allowing processing times to be real-valued is more general than the assumption of
having integral processing times in Chapter 6. Here we use this model so that the small random
perturbations that we will perform do not lead to instances not adhering to our model. The
results of Chapter 6 also carry over to real-valued processing times except that we lose an ε in
the approximation factor due to imprecision when guessing the optimal flow time within the
dual approximation framework.
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we define greedy-like algorithms to work as follows: When a job completes (and
when the first job arrives), the algorithm determines a total ordering of all possible
jobs without looking at the actual instance. It then chooses (among already arrived
yet unscheduled jobs) the next job to be scheduled by looking at the instance and
selecting the job coming first according to this ordering.

Quality Measure To analyze the quality of online algorithms, we facilitate com-
petitive analysis as described in Chapter 2. Recall that it compares solutions of
the online algorithm to solutions of an optimal offline algorithm which knows the
complete instance in advance. Precisely, an algorithm Alg is called c-competitive if,
on any instance I, F (I) ≤ c · F ∗(I), where F (I) and F ∗(I) denote the flow time of
Alg and an optimal (clairvoyant) offline solution on instance I, respectively.

Although competitive analysis is the standard measure for analyzing online
algorithms, it is often criticized to be overly pessimistic. That is, a single or
a few pathological and very rarely occurring instances can significantly degrade
the quality with respect to this measure. To overcome this, various alternative
measures have been proposed in the past (see, e.g., [HV12; Lóp16; KP00]). One
approach introduced in [Bec+06] is smoothed competitiveness. Here the idea is to
slightly perturb instances dictated by an adversary by some random noise and then
analyze the expected competitiveness, where expectation is taken with respect to the
random perturbation. Formally, if input instance I is smoothed according to some
smoothing (probability) distribution f and if we use N(I) to denote the instances
that can be obtained by adding noise according to f to instance I, the smoothed
competitiveness csmooth is defined as csmooth := supI EÎ f←N(I)

[
F (Î)
F ∗(Î)

]
. Note that

the smoothed competitiveness considers the expectation of the ratio and therefore
still compares offline and online solutions on a per-instance basis. Compared to the
option of considering the ratio of expectations, this has, for example, the advantage
that by using Markov’s inequality one can derive bounds on the distribution of the
competitive ratio. (Actually, we even get a stronger result and show that our bound
on the ratio not only holds on expectation but even with high probability.) For a
further discussion on the differences between these definitions also see [SSS06].
We will smooth instances by randomly perturbing processing times. We assume

the adversary to be oblivious with respect to perturbations. That is, the adversary
constructs the instance based on the knowledge of the algorithm and f (so that I is
defined at the beginning and is not a random variable).

7.2 A Non-Clairvoyant Online Algorithm
In this section, we present a simple greedy-like algorithm and analyze its compet-
itiveness. When designing an algorithm for the considered problem, two aspects
should be taken into account: First, it should try to keep the number of setups
small by processing jobs of the same class together in one batch. However, second,
this batching should not be too strict as otherwise other jobs might be delayed too
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much. Therefore, the idea of the algorithm Balance, as presented in Algorithm 4,
is to find a tradeoff between preferring jobs with early release times and jobs that
are of the class the machine is currently configured for. This is achieved by the
following idea: Whenever the machine is about to idle at some time t, Balance
checks whether there is a job j available that is of the same class kj as the machine
is currently configured for, denoted by active(t). If this is the case and if there is no
job j′ with a “much smaller” release time than j, job j is assigned to the machine.
The decision whether a release time is “much smaller” is taken based on a parameter
λ, called balance parameter. This balance parameter is grown over time based on
the maximum flow time encountered so far and, at any time, is of the form αq, for
some q ∈ N which is increased over time and some constant α determined later.2
Note that Balance is a greedy-like algorithm by using the adjusted release times
for determining the ordering of jobs.

Algorithm 4 Description of the algorithm Balance.
(1) Let λ = α. B for some constant α

(2) If the machine idles at time t,
process available job with smallest adjusted release time r̄j(t)

r̄j(t) :=
{
rj if kj = active(t)
rj + λ else

after doing a setup if necessary.
To break a tie, prefer job j with kj = active(t).

(3) As soon as a job j completes with Fj ≥ αλ, set λ := αλ.

7.2.1 Basic Properties of Balance

The following two properties follow from the definition of Balance and relate the
release times and flow times of consecutive jobs, respectively. For a job j, let λ(j)
denote the value of λ when j was scheduled.

Proposition 7.1. Consider two jobs j1 and j2. If kj1 = kj2 , both jobs are processed
according to FIFO. Otherwise, if j2 is processed after j1 in a schedule of Balance,
rj2 ≥ rj1 − λ(j1).

Proof. The first statement directly follows from the definition of the algorithm.
Consider the statement for two jobs j1 and j2 with kj1 6= kj2 . Let t be the point in
2A variant of this algorithm with a fixed λ and hence without Step (3) has been previously
mentioned in [DS11] as an algorithm with Ω(n)-competitiveness for the clairvoyant variant of
our problem.
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time at which j1 is assigned to the machine. If active(t) 6= kj1 and active(t) 6= kj2 ,
it follows rj2 ≥ rj1 . If active(t) = kj1 , then because j1 is preferred over j2, we
have rj1 = r̄j1(t) ≤ r̄j2(t) = rj2 + λ(j1). Finally, if active(t) = kj2 we know by the
fact that j1 is preferred that rj1 + λ(j1) = r̄j1(t) < r̄j2(t) = rj2 , which proves the
proposition.

Proposition 7.2. Consider two jobs j1 and j2. If j1 is processed before j2 and no
job is processed in between, then Fj2 ≤ Fj1 + pj2 + s+ λ(j1).

Proof. First note that Balance does not idle deliberately. Hence, if there is idle
time between the processing of job j1 and j2, then tj2 ≤ rj2 + s holds. Thus, we
have Fj2 ≤ s+ pj2 proving the claim.
If there is no idle time, by definition j1 is finished by time rj1 + Fj1 . Since j2 is

processed directly afterward, it is finished not later than rj1 + Fj1 + s + pj2 . By
Proposition 7.1 this is upper bounded by rj2 + λ(j1) + Fj1 + s+ pj2 , which proves
the desired bound.

7.3 Competitive Analysis
To analyze the competitiveness of Balance, we carefully define specific subschedules
of a given schedule S of Balance, which we will use throughout our analysis of
the (smoothed) competitiveness. Given αq ≥ F ∗, q ∈ N, let Sαq be the subschedule
of S that starts with the first job j with λ(j) = αq and ends with the last job j′
with λ(j′) = αq. That is, Sαq is the maximal subschedule of jobs scheduled with αq
as balance parameter. For a fixed δ < α, let Sδαq be the suffix of Sαq such that the
first job in Sδαq is the last one in Sαq with the following properties: (1) It has a flow
time of at most (α− δ)αq, and (2) it starts a batch. (We will prove in Lemma 7.3
that Sδαq always exists.) Without loss of generality, let j1, . . . , jm be the jobs in Sδαq
such that they are sorted by their starting times, t1 < t2 < . . . < tm. Let B1, . . . , B`
be the batches in Sδαq . The main idea of Lemma 7.3 is to show that, in case a
flow time of F > αq+1 is ever reached, the interval [rj1 , rjm ] is in a sense dense:
Workload plus setup times in Sδαq is at least by δαq larger than the length of this
interval. Intuitively, this holds as otherwise the difference in the flow times Fj1 and
Fjm could not be as high as δαq, which, however, needs to hold by the definition of
Sδαq . Additionally, the flow time of all jobs is shown to be lower bounded by 3αq.
Roughly speaking, this holds due to the following observation: If a fixed job has
a flow time below 3αq, then the job starting the next batch can, on the one hand,
not have a much smaller release time (by definition of the algorithm). On the other
hand, it will therefore not be started much later, leading to the fact that the flow
time cannot be too much larger than 3αq (and in particular, is below (α− δ)αq for
sufficiently small δ, which contradicts the definition of Sδαq).

Lemma 7.3. Let αq ≥ F ∗ and δ ≤ α−10. Then Sδαq always exists and all jobs in Sδαq
have a flow time of at least 3αq. Also, if F > αq+1, it holds

∑`
i=1w(Bi)+rj1−rjm ≥

δαq − (`− 1)s.
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Proof. We first prove that a job with the two properties starting off Sδαq exists.
Let j̃1, . . . be the jobs in Sαq . Consider the last job j̃0 processed directly before
j̃1. By applying Proposition 7.2 twice, we have Fj̃1 ≤ Fj̃0 + pj̃1 + s + αq−1 ≤
αq + pj̃0 + s+αq−1 + pj̃1 + s+αq−1 < 6αq. Among jobs in Sαq that have a different
class than j̃1, consider the job j̃i with the lowest starting time. We show that it
is a candidate for starting Sδαq , implying that Sδαq exists. Property (2) directly
follows by construction. For the flow time of j̃i, we know that only jobs of the same
class as j̃1 are scheduled between j̃1 and j̃i. This implies that jobs j̃2, . . . , j̃i−1 are
released in the interval [rj̃1 , rj̃i +αq]. The interval can contain a workload of at most
rj̃i +αq− rj̃1 +F ∗ (see also Proposition 7.5), hence the flow time of job j̃i is at most
Fj1 = Fj̃i ≤ (rj̃1 +Fj̃1 +(rj̃i +αq−rj̃1 +F ∗)+s+pji)−rj̃i ≤ 9αq+pj̃i = 9αq+pj1 ≤
(α− δ)αq. Property (1) and the existence of Sδαq follow. Since tj1 = cj1 − pj1 and
Fj1 = cj1 − rj1 , we also have tj1 ≤ rj1 + 9αq ≤ rj1 + (α− δ)αq (*).
We now show that during Sδαq , the machine does not idle and each job in Sδαq

has a flow time of at least 3αq. Assume this is not the case. Denote by t the
last time in Sδαq where either an idle period ends or a job with a flow time of
less than 3αq completes. We denote the jobs scheduled after t by ĵ1, . . . and the
first job of the first batch started at or after t by ĵi. Similar to above, all jobs
ĵ1, . . . , ĵi are released in the interval [t − 3αq, rĵi + αq]. The overall workload of
these jobs is at most rĵi + 4αq − t+ F ∗ ≤ rĵi + 5αq − t. Job ĵi is thus finished by
t+ (rĵi + 5αq − t) + s ≤ rĵi + 6αq. This is a contradiction to Fĵi > (α− δ)αq, which
is supposed to hold by construction of Sδαq .
Finally, since there are no idle times and by (*), for the last job jm of Sδαq we

have Fjm ≤ rj1 + (α− δ)αq +∑`
i=1w(Bi) + (`− 1)s− rjm . By the assumption that

F > αq+1 and the definition of jm to be the first job with flow time at least αq+1,
we obtain the desired result.

We will also make use of Corollary 7.4, which follows from the proof of Lemma 7.3.

Corollary 7.4. The statement of Lemma 7.3 also holds if Sδαq is replaced by Sδαq(j)
for any job j ∈ Sδαq with Fj ≤ (α− δ)αq, where Sδαq(j) is the suffix of Sδαq starting
with job j.

Next we give simple lower bounds for the optimal flow time F ∗. Besides the direct
lower bound F ∗ ≥ max{s, pmax}, where pmax := max1≤j≤n pj , we can also prove the
bound given in Proposition 7.5. For a given interval I, let overheadOpt(I) be the
overhead in Opt between the jobs j1 and j2 released in I and being processed first and
last in Opt, respectively. Precisely, j1 := argminj:rj∈Itj and j2 := argmaxj:rj∈Itj
for tj being the starting time of job j in Opt.

Proposition 7.5. As lower bounds for F ∗ we have F ∗ ≥ max{s, pmax} as well as
F ∗ ≥ maxI{w(I) + overheadOpt(I)− |I|}.

Proof. We have F ∗ ≥ cj2−rj2 . On the other hand, cj2 ≥ rj1 +overheadOpt(I)+w(I).
Thus, F ∗ ≥ overheadOpt(I) +w(I) + l(I)− r(I) = w(I) + overheadOpt(I)− |I|.
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Combining Lemma 7.3 and Proposition 7.5, we easily obtain that the com-
petitiveness can essentially be bounded by the difference in the number of se-
tups Opt and Balance perform on those jobs which are part of Sδαq . Let
I(Sδαq) be the (smallest) interval in which all jobs belonging to Sδαq are released,
I(Sδαq) := [minj{rj : j ∈ Sδαq},maxj{rj : j ∈ Sδαq}]. We have the following bound.

Lemma 7.6. Let αq+1 ≤ F < αq+2 and 3 ≤ δ ≤ α − 10 and αq ≥ F ∗. It holds
F ≤ α2(δ − 2)−1(F ∗ + overheadBalance(Sδαq)− overheadOpt(I(Sδαq))).

Proof. Suppose to the contrary that αq > (δ − 2)−1(F ∗ + overheadBalance(Sδαq)−
overheadOpt(I(Sδαq))). By Proposition 7.1 we have I(Sδαq) ⊆ [rj1 −αq, rjm +αq] and
using Proposition 7.5 we obtain a contradiction as

F ∗ ≥ w(I(Sδαq)) + overheadOpt(I(Sδαq)) + rj1 − rjm − 2αq

≥
∑̀
i=1

w(Bi) + overheadOpt(I(Sδαq)) + rj1 − rjm − 2αq

(Lemma 7.3)
≥ δαq − (`− 1)s+ overheadOpt(I(Sδαq))− 2αq > F ∗,

where the last inequality follows from our assumption.

Throughout the rest of the chapter, we assume that δ = 3 and α = 13 fulfilling
the properties of Lemmas 7.3 and 7.6. Our goal now is to bound the competitiveness
by upper bounding the difference of the overhead of Opt and Balance in Sδαq for
some αq = Ω(√n · s · pmax). In Lemma 7.8 we will see that to obtain a difference of
i · s, a workload of Ω(i · αq) is required. Using this, we can then upper bound the
competitiveness based on the overall workload of O(n · pmax) available in a given
instance in Theorem 7.9. Before we can prove Lemma 7.8 we need the following
insight. Given Sδαq for some q ∈ N0 such that αq ≥ F ∗. Let jk,i be the first job of
the i-th batch of some fixed class k in Sδαq . We show that the release times of jobs
jk,i and jk,i+1 differ by at least αq. Intuitively, this holds due to the definition of
the balance parameter and the fact that in Sδαq all jobs starting a batch have a flow
time of at least 3αq. If jk,i and jk,i+1 had release times differing by less than αq,
this would then lead to these jobs being processed in the same batch.

Lemma 7.7. Given Sδαq , it holds rjk,i > rjk,i−1 + αq, for all i ≥ 2 and all k.

Proof. Consider a fixed job jk,i and suppose to the contrary that rjk,i ≤ rjk,i−1 + αq

holds. As each job in Sδαq that is the first of a batch (except the very first such job)
has a flow time of at least 3αq, job jk,i−1 is not started before rjk,i (otherwise it
would be finished not later than rjk,i−1 +αq +pjk,i ≤ rjk,i−1 +αq +F ∗ ≤ rjk,i−1 + 2αq
with flow time smaller 3αq). Also, because jk,i−1 is the first job of a batch, all jobs
j processed later fulfill rj ≥ rjk,i−1 . But then at the time t at which the (i− 1)-th
batch is finished, r̄jk,i(t) ≤ rjk,i−1 + αq ≤ rj + αq = r̄j(t) and hence, jk,i would be
preferred over all such jobs j and thus would belong to the same batch as jk,i−1.
This contradicts the definition of jk,i, proving the lemma.
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In the next lemma we essentially show that jobs together forming a single batch in
Opt can be processed in at most two batches in the schedule of Balance and that
a situation where this actually happens requires certain conditions to be fulfilled.

Lemma 7.8. Let B be a batch in Opt. If all jobs from B are part of Sδαq , an
overhead of at most 2s is associated to them in the schedule of Balance.

Also, if the overhead associated to B in Opt is smaller than 2s and in the schedule
of Balance it is 2s, it needs to hold

1. w(B) ≥ αq − F ∗ − s =: w̄ and

2. there is an interval of length αq such that jobs of size at least w̄ that belong to
B are released in it.

Proof. Assume to the contrary that Balance processes the jobs of B in three
batches with j1, j2, j3 ∈ B being the jobs starting the first, the second and the third
batch, respectively. Then there need to be two jobs i1 and i2 that are processed
between the first and second, and second and third such batch, respectively. Since
j2 is preferred over i2 and by Lemma 7.7, we have ri2 ≥ rj2 ≥ rj1 + αq. Also, since
i2 is preferred over j3 and by Lemma 7.3, we have ri2 + αq ≤ rj3 . Hence, Opt can
neither process i2 before nor after B (since then either j1 or i2 would have a flow
time larger than F ∗), which is a contradiction to the fact that B is a batch in Opt.
If Balance processes the jobs of B in two batches, let j1, j2 ∈ B be the jobs

starting the first batch and the second batch, respectively. We start with the case
that w(B) < w̄ and show a contradiction. We know that rj2 > rj1 + αq. Consider
an optimal schedule. As j1 cannot be started after rj1 + F ∗ and because Opt
processes j1 and j2 in the same batch B, the processing of B needs to cover the
interval [rj1 + F ∗, rj2 ] ⊇ [rj1 + F ∗, rj1 + αq]. As w(B) < αq − F ∗ − s this implies an
additional overhead of at least s associated to B, contradicting our assumption.

Therefore, assume that w(B) ≥ w̄ but there is no interval of length αq with jobs
of B of size at least w̄. We know that j1 needs to be started not later than rj1 +F ∗.
Also, the workload of jobs of B released until rj1 + αq is below w̄. Hence, there
needs to be a job in B released not before rj1 +αq. This implies that the processing
of B needs to cover the entire interval [rj1 + F ∗, rj1 + αq]. However, this implies an
additional overhead associated to B of at least s, contradicting our assumption.

We are now ready to bound the competitiveness of Balance. Intuitively, it is
based on the fact that, as soon as Balance’s flow time is sufficiently large, the
balance parameter is large as well. Then, Balance will not perform too many
setups compared to the optimal solution as it will batch jobs that are released
far apart from each other and which the optimal solution cannot batch. On the
other hand, if Balance actually does more setups than an optimal solution, this
requires a certain number of jobs according to the previous lemma. Therefore, with
Lemma 7.6 we can bound the competitiveness based on the number of jobs available.

Theorem 7.9. Balance is O(
√
n)-competitive. Additionally, it holds F = O(F ∗+√

npmaxs).
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Proof. If F ≤ √n · s · pmax holds, we are done as F ∗ ≥ √s · pmax by Proposition 7.5.
Hence, consider the case where F >

√
n · s · pmax and assume αq+1 ≤ F < αq+2.

Also we can assume F ∗ ≤ F
α3 < αq−1 as otherwise we have a constant competitiveness.

Consider Sδαq . We call a batch B of Opt short if w(B) < w̄ and long otherwise.
According to Lemma 7.8, we know that the overhead associated to jobs belonging
to short batches is not larger in a schedule of Balance than in Opt. On the other
hand, overhead associated to jobs belonging to long batches can be at most by s
larger in Balance than in Opt. However, as a long batch requires a workload
of w̄ = αq − F ∗ − s ≥ αq − 2F ∗ ≥ αq − 2αq−1 ≥

√
n·s·pmax

2α2 , there can be at most
O(
√
n ·
√

pmax
s ) many long batches as n jobs can have a workload of at most n ·pmax.

Hence, by Lemma 7.6 we obtain the desired result.

Note that by the previous theorem, the competitiveness is bounded by a function
that is linearly decreasing in F ∗ and increasing in √n · s · pmax.
For the case K = 2 we can even strengthen the statement of Lemma 7.7. Given

Sδαq , let job ji be the first job of the i-th batch in Sδαq and note that kji = kji+2 as
the batches form an alternating sequence of the two classes. We have the following
lemma.

Lemma 7.10. Given Sδαq , if K = 2 then it holds rji > rji−1 + αq, for all i ≥ 3.

Proof. Consider a fixed job ji with i ≥ 3 and suppose to the contrary that rji ≤
rji−1 + αq holds. By definition of Sδαq , job ji−1 is not started before rji and all jobs
processed later have a release time not smaller than rji−1 . Hence, by the definition of
Balance, ji would belong to the same batch as ji−2, which is a contradiction.

Based on this fact, we can show that Opt can essentially not process any jobs
that belong to different batches in Sδαq in one batch. Hence, Opt performs roughly
the same number of setups as Balance does and we have the following theorem by
Lemma 7.6.

Theorem 7.11. If K = 2, then Balance is O(1)-competitive.

Proof. Assume F > 2F ∗ as otherwise we are done. Consider Sδαq such that αq <
F ≤ αq+1. By Lemma 7.10, we know that rji+1 > rji + 2F ∗ for all i ∈ [2, `]. Now
suppose to the contrary that the optimal solution processes two jobs ji and ji+2 in
the same batch. As ji cannot be completed later than rji + F ∗ and job ji+2 is not
released before rji+2 , this batch needs to cover the interval [rji +F ∗, rji+2 ]. However,
job ji+1 needs to be started during the interval [rji+1 , rji+1 + F ∗] ⊆ [rji + F ∗, rji+2 ],
which is a contradiction.

Hence, the optimal solution cannot process any two jobs ji and ji+2, for all i ≥ 2,
in the same batch. By Lemma 7.6 we obtain a competitiveness of O(1).

To conclude this section, we show that the bound of O(
√
n) from Theorem 7.9 for

the competitiveness of Balance is tight and that a lower bound of Ω(
√
n) holds for

any greedy-like algorithm as defined in Section 7.1. This also implies that the Ω(
√
n)
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bound holds for Balance independent of how λ is chosen or increased (and even if
done at random). The construction in the proof of Theorem 7.12 is a generalization
of a worst-case instance given in [DS11].

Theorem 7.12. Any greedy-like algorithm is Ω(
√
n)-competitive.

Proof. The adversary will be defined such that the optimum flow time is O(1) while
a fixed greedy-like algorithm A has a flow time of Ω(

√
n). We define the adversary

by specifying the instance in phases. Let the setup time be s = 1.

• During the i-th phase,
√
n unit size jobs of two classes ki1 6= ki2 that did not

occur in any previous phase are released in
√
n consecutive (discrete) time

steps.

• The first job of phase i is released at time (i−1)(
√
n+2). (Hence,

√
n jobs are

released in
√
n time steps, then two time steps no job is released. Afterward

this pattern is repeated.)

• The first job released in phase i is of class ki1 and the second one of class ki2 .
If A prefers the job of class ki1 , let all remaining jobs of phase i be of class ki1 .
If A prefers the job of class ki2 , let all remaining jobs of phase i be of class ki2 .

We analyze the flow time of Opt and algorithm A. For each phase, the optimal
solution can first process the job belonging to the class of which only one job is
released and afterward all remaining jobs released during the phase. Hence, Opt
can always start the setup for phase i before or at time (i − 1)(

√
n + 3) and has

processed all jobs of phase i− 1 at that point in time, because it executes
√
n unit

size jobs and needs two setups per phase. This gives a maximum flow time of at
most 5 (tight if A prefers the job of class ki1 ; then Opt prioritizes the job of class
ki2 and the first job of class ki1 remains in the system for 5 time step due to 3
time steps until the job of class ki2 is finished and two additional time steps for the
execution of the job itself).

For A we first make two observations. (1) We can assume that for some phase i,
A neither processes the job released first nor the job released second after the job
released last as otherwise A = Ω(

√
n) holds. (2) We can assume that A processes

all jobs of phase i before any job of phase i + 1 because no two jobs of different
phases can be processed in the same batch and hence, processing a job of phase i
later than a job of phase i+ 1 cannot be advantageous. By these two observations,
the algorithm A has to do three setups for each phase by the construction of the
instance. Thus, it finishes the last job of phase i not before i(

√
n + 3). As the

adversary can construct
√
n phases, the last job is finished at

√
n(
√
n+ 3) and it is

released not later than (
√
n− 1)(

√
n+ 2) +

√
n =
√
n(
√
n+ 2)− 2. Hence, the flow

time of A is at least
√
n(
√
n+ 3)− (

√
n(
√
n+ 2)− 2) =

√
n+ 2 = Ω(

√
n).
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7.4 Smoothed Competitive Analysis

In this section, we analyze the smoothed competitiveness of Balance. We consider
the following multiplicative smoothing model from [Bec+06]. Let pj be the processing
time of a job j as specified by the adversary in instance I. Then the perturbed
instance Î is defined as I but with processing times p̂j defined by p̂j = (1 +Xj)pj
where Xj is chosen at random according to the smoothing distribution. For 0 < ε < 1
being a fixed parameter describing the strength of perturbation, we consider two
smoothing distributions. In case of a uniform smoothing distribution, Xj is chosen
uniformly at random from the interval [−ε, ε]. More formally, Xj ∼ U(−ε, ε) where
U(a, b) denotes the continuous uniform distribution as formally defined in Chapter 2.
Hence, for p̂j we have p̂j ∈ [(1 − ε)pj , (1 + ε)pj ]. In case of a normal smoothing
distribution, Xj is chosen from a normal distribution with expectation 0, standard
deviation σ = ε√

2.64 and truncated at −1 and 1. More formally, Xj ∼ N(−1,1)(0, σ2)
where N(a,b)(µ, σ2) denotes the truncated normal distribution as defined in Chapter 2.

Our goal is to prove a smoothed competitiveness of O(ε−2s log2 n). We analyze
the competitiveness by conditioning it on the flow time of Opt and its relation to
the flow time of Balance. Let EqOpt be the event that F ∗ ∈ [αq, αq+1) and EqBalance
be the event that F > c1α

q+1ε−2s log2 n (for a constant value of c1 determined by
the analysis). Also, denote by Ēqx the respective complementary events. Then for a
fixed instance I we obtain

EÎ←N(I)

[
F (Î)
F ∗(Î)

]
=
∑
q∈N

E
[
F (Î)
F ∗(Î)

| EqOpt ∧ Ē
q
Balance

]
· Pr[EqOpt ∧ Ē

q
Balance]

+
dlogα ne∑
q=blogα sc

E
[
F (Î)
F ∗(Î)

| EqOpt ∧ E
q
Balance

]
· Pr[EqOpt ∧ E

q
Balance]

+
∑

q>dlogα ne
E
[
F (Î)
F ∗(Î)

| EqOpt ∧ E
q
Balance

]
· Pr[EqOpt ∧ E

q
Balance] .

Note that the first sum is by definition directly bounded by O(ε−2s log2 n) and the
third one by O(

√
s) according to Theorem 7.9. Thus, we only have to analyze the

second sum. We show that we can complement the upper bound on the ratio, which
can be as high as Θ(

√
n) by Theorems 7.9 and 7.12, by Pr[EqOpt ∧ E

q
Balance] ≤ 1

n .
From now on we consider an arbitrary but fixed q ≥ blogα sc, and in the following
we analyze Pr[EqOpt ∧ E

q
Balance]. Let Γ := αi−1 such that i is the largest integer with

αi ≤ c1ε
−2αq+1s log2 n. Thus we have Γ ≥ c1α

q−1ε−2s log2 n.
On a high level, the idea of our proof is as follows: We first define a careful

partitioning of the time horizon into consecutive intervals (Section 7.4.1). Depending
on the amount of workload released in each such interval and an estimation of the
amount of setups required for the respective jobs (Section 7.4.2), we then classify
each of them to either be dense or sparse (Section 7.4.3). We distinguish two cases
depending on the number of dense intervals in I. If this number is sufficiently large,
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F ∗ is, with high probability (w.h.p.), not much smaller than F (Lemma 7.16). This
holds as w.h.p. the perturbation increases the workload in a dense interval so that
even these jobs cannot be scheduled with a low flow time by Opt. In case the
number of dense intervals is small, the analysis is more involved. Intuitively, we can
show that w.h.p. there is only a logarithmic number of intervals between any two
consecutive sparse intervals in which the perturbation decreases the workload to a
quite small amount. Between such sparse intervals the flow time cannot increase too
much (even in the worst case) and during a sparse interval Balance can catch up
with the optimum: If taking a look at the flow time of the job completing at time t
and continuing this consideration over time, we obtain a sawtooth pattern always
staying below a not too large bound for the flow time of Balance (Lemma 7.17).

7.4.1 Partitioning of Instance I
We define a partitioning of the instance I, on which our analysis of the smoothed
competitiveness will be based on. We partition the time interval [rmin, rmax], where
rmin and rmax are the smallest and largest release time, as follows: Let a candidate
interval C be an interval such that |C| = Γ and such that for some k it holds∑

j:rj∈C,kj=k pj ≥
Γ
4 . Intuitively, a candidate interval C is an interval on which, in

Î, Balance possibly has to perform more setups than Opt does (which, if all jobs
released in the interval belong to SδΓ and under the assumption that EqOpt ∧E

q
Balance

holds, according to Lemma 7.8 requires a workload of at least Γ
2 in Î and hence, at

least Γ
4 in I). Let C1 be the first candidate interval C. For i > 1 let Ci be the first

candidate interval C that does not overlap with Ci−1.
Now we consider groups of µ :=

⌈
ε2Γ

c2s2 log2 n

⌉
many consecutive candidate intervals

Ci, for some constant c2 determined by the further analysis. Precisely, these groups
are defined as I1 = [rmin, r(Cµ)], I2 = (r(Cµ), r(C2µ)] and so on. In the rest of this
chapter we consistently use Ii to denote these intervals. Let ⋃i Ii = [rmin, rmax]
by (possibly) extending the last Ii so that its right endpoint is rmax. Although it
worsens constants involved in the competitiveness, we use µ ≤ 2ε2Γ

c2s2 log2 n
for c1 ≥ αc2

for the sake of simplicity.

7.4.2 Estimation of Setups in Ii

Before we can now classify intervals Ii to be dense or sparse, we need an estimate
Ns(I) on the number of setups Opt and Balance perform on jobs released in a
given interval I. We want Ns(I) to be a value uniquely determined by the instance I
and hence, in particular not to be a random variable. This is essential for our analysis
and avoids the computation of any conditional probabilities and the analysis of
events not being stochastically independent (for example, the amount of work to be
done in a certain interval is influenced by dependent events concerning the workload
in the perturbed instance and the required number of setups). For the definition of
Ns(I) consider the construction by SetupEstimate(I) in Algorithm 5. For a fixed
interval I, it essentially mimics Balance in SδΓ in the sense that Lemma 7.13 holds
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Algorithm 5 Description of SetupEstimate(I).
Construct a sequence (j1, j2, . . . , jm) of all jobs released in I as follows:

(1) For i = 1, 2, . . . ,m set ji to be job j /∈ (j1, . . . ji−1) with smallest r̄j , where

r̄j :=
{
rj if kj = kji−1

rj + Γ else.

To break a tie, prefer job j with kj = kji−1 .

(2) Let Ns(I) be the number of values i such that kji 6= kji−1 .

completely analogous to Lemma 7.8. Also, note that the construction is indeed
invariant to job sizes and hence to perturbations. It should not be understood as
an actual algorithm for computing a schedule, however, for ease of presentation we
refer to the sequence constructed as if it was a schedule. Particularly, we say that it
processes two jobs ji and ji′ with kji = kji′ in different batches if there is an i′′ such
that i < i′′ < i′ with kji′′ 6= kji .

For two jobs j1 and j2 of a common class k which start two batches in SetupEs-
timate(I), rj2 ≥ rj1 + Γ holds. Hence, by the exact same line of arguments as in
the proof of Lemma 7.8 we have the following lemma.

Lemma 7.13. Assume EqOpt ∧ E
q
Balance holds. Let B be a batch in Opt. Let I be

such that rj ∈ I for all j ∈ B. An overhead of at most 2s is associated to B in
SetupEstimate(I).
Also, if the overhead associated to B in Opt is smaller than 2s and in the schedule

of SetupEstimate(I) it is 2s, w(B) ≥ Γ− F ∗ − s =: w̄ needs to hold and there
needs to be an interval of length Γ such that jobs of size at least w̄ that belong to B
are released in this interval.

In the next two lemmas we show that Ns(Ii) is indeed a good estimation of the
number of setups Opt and Balance have to perform, respectively. Lemma 7.14
essentially follows by Lemma 7.13 together with the definition of Ii to consist of
µ many candidate intervals. To prove Lemma 7.15 we exploit the fact that all
jobs in SδΓ have a flow time of at least 3Γ by Lemma 7.3 so that Balance and
SetupEstimate essentially behave in the same way.

Lemma 7.14. Assume EqOpt ∧ E
q
Balance holds and consider Ii for a fixed i. For the

overhead of Opt it holds overheadOpt(Ii) ≥ (Ns(Ii)− 6µ)s.

Proof. Recall that by Lemma 7.13 Opt may have less overhead if it processes
some jobs in one batch that are processed in two batches by SetupEstimate(I).
However, a necessary condition for this is a workload of jobs of one class with size at
least Γ

4 (in the unperturbed instance I) and released in an interval of length Γ. Let
C̃1, . . . , C̃µ be the candidates in Ii. Associate all jobs released in [l(C̃1), l(C̃1) + 2Γ]
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to candidate C̃1 and inductively associate all jobs released in [l(C̃j), l(C̃j) + 2Γ] not
associated to a candidate C̃j′ for j′ < j to C̃j . Note that by this construction, a
workload of at most 3Γ (in the perturbed instance Î) can be associated to each
candidate C̃j as otherwise F ∗ > Γ contradicting EqOpt. Hence, taking the workload
associated to C̃1, . . . , C̃µ, the necessary conditions of Lemma 7.13 can be fulfilled
at most 6µ times and they cannot be fulfilled for any workload not associated to a
candidate interval C̃j . Hence, we have overheadOpt(Ii) ≥ (Ns(Ii)− 6µ)s, proving
the lemma.

Lemma 7.15. Consider an interval Ii and suppose that all jobs from Ii belong to
SδΓ. Then it holds overheadBalance(Ii) ≤ Ns(Ii)s, where overheadBalance(Ii) denotes
the overhead of Balance associated to jobs j with rj ∈ Ii.

Proof. Consider the subschedule S′ of Balance starting with the first job from Ii to
which overhead is associated and ending with the last one from Ii to which overhead is
associated. Let Z and Z ′ be the sequences of jobs as induced by SetupEstimate(Ii)
and S′, respectively. We remove all jobs not released during Ii from Z ′ and all
jobs which are not part of S′ from Z. Compare both resulting sequences Z and
Z ′ and note that they consist of the exact same sets of jobs. If both are identical,
the lemma holds because no overhead contributing to overheadBalance(Ii) can be
associated to a job removed from Z ′.
Hence, consider the case that Z and Z ′ differ and let j and j′ be the jobs in Z

and Z ′, respectively, at which both sequences differ the first time. Then, in Z job j
is preferred over job j′ and in Z ′ job j′ is preferred over job j. This can only be
the case when j′ is scheduled by Balance at a time t such that rj > t. Because
in Z job j is preferred over j′, it needs to hold rj ≤ rj′ + Γ. But at the time t at
which j′ is scheduled it needs to hold t ≥ rj′ + 3Γ − s − pj′ as otherwise its flow
time is smaller than 3Γ which contradicts the assumption that it belongs to SδΓ by
Lemma 7.3. Hence, we obtain a contradiction as we have rj > t and rj ≤ t and
thus, Z and Z ′ are identical.

7.4.3 Good and Bad Events

We are now ready to define good and bad events, which are outcomes of the
perturbation of the job sizes that help the algorithm to achieve a small and help the
adversary to achieve a high competitiveness, respectively. Let wI(Ii) := ∑

j:rj∈Ii pj
and wÎ(Ii) := ∑

j:rj∈Ii p̂j denote the workload released in the interval Ii in instance
I and Î, respectively. We distinguish two kinds of intervals Ii and associate a
good and a bad event to each of them. We call an interval Ii to be dense if
wI(Ii) + Ns(Ii)s ≥ |Ii| and associate an event Dgood

i or Dbad
i to Ii depending on

whether wÎ(Ii) ≥ wI(Ii) + ε2Γ
18√c2s logn holds or not. Symmetrically, we call an

interval Ii to be sparse if wI(Ii) + Ns(Ii)s < |Ii| and associate an event Sgoodi or
Sbadi to Ii depending on whether wÎ(Ii) ≤ wI(Ii)−

ε2Γ
18√c2s logn holds or not.
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We next show two lemmas which upper bound Pr[EqOpt∧E
q
Balance] by the probabil-

ity of occurrences of good events. As we will see in Theorem 7.19 this is sufficient as
we can prove the respective good events to happen with sufficiently large probability.

Lemma 7.16. Pr[EqOpt ∧ E
q
Balance] ≤ Pr[no event Dgood

i happens].

Proof. We show that if an event Dgood
i happens, then EqOpt does not hold. Consider

a dense interval Ii and assume an event Dgood
i occurs. Then we have by definition

of dense intervals and the definition of event Dgood
i that wI(Ii) + Ns(Ii)s ≥ |Ii|

and wÎ(Ii) ≥ wI(Ii) + ε2Γ
18√c2s logn . Taken together, wÎ(Ii) + Ns(Ii)s ≥ |Ii| +

ε2Γ
18√c2s logn . On the other hand, together with Lemma 7.14 we then have wÎ(Ii) +
overheadOpt(Ii) ≥ |Ii|+ ε2Γ

18√c2s logn − 6s · µ. By Proposition 7.5 we have

F ∗ ≥ wÎ(Ii) + overheadOpt(Ii)− |Ii| ≥
ε2Γ

18√c2s logn − 6s
(

2ε2Γ
c2s2 log2 n

)

≥ ε2Γ
18√c2s logn

(
1− 12 · 18
√
c2 logn

)
≥ c1α

q−1 logn
18√c2

(
1− 12 · 18
√
c2 logn

)
> αq+1

for sufficiently large c1 > c2 and n. Then EqOpt does not hold.

In Theorem 7.19 we will see that the number ND of dense intervals in I can be
bounded by ND < 7 logn as otherwise the probability for event EqOpt to hold is only
1
n .
Thus, we consider the case ND < 7 logn. Consider the sequence of events

associated to sparse intervals. A run of events Sbadi is a maximal subsequence such
that no event Sgoodi happens within this subsequence.

Lemma 7.17. If ND < 7 logn, Pr[EqOpt∧E
q
Balance] ≤ Pr[∃ run of Sbad

i of length ≥
14 logn].

Proof. We assume that all runs of events Sbadi are shorter than 14 logn and EqOpt ∧
EqBalance holds and show a contradiction. From EqBalance we can deduce by Lemma 7.3
that SδΓ exists. Since we will use the following reasoning iteratively, let S = SδΓ.
Using the terminology from Lemma 7.3, let j1, j2, . . . , jm be the jobs in S and,
as before, ` be the number of batches in S. By Lemma 7.3 it needs to hold∑`
i=1wÎ(Bi) + rj1 − rjm ≥ 3Γ− (`− 1)s. Let Iι+1 be the first interval Ii such that

l(Iι+1) ≥ rj1 . Let κ be chosen such that κ is the smallest integer where in Iι+κ an
event Sgoodι+κ occurs if κ exists and otherwise set κ such that Iι+κ ends with rmax.
Note that it holds κ < 21 logn because of the assumption ND < 7 logn and the
length of the longest run. Let Iι = [min1≤i≤m rji , l(Iι+1)). We claim that all jobs
belonging to ⋃κi=0 Iι+i need to have a flow time below αΓ. Assume this is not the
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case. We have a contradiction as

F ∗ ≥ wÎ(I(S)) + overheadOpt(I(S))− |I(S)|

≥
∑̀
i=1

wÎ(Bi) + overheadOpt(I(S)) + rj1 − rjm − 2Γ

≥
∑̀
i=1

wÎ(Bi) + rj1 − rjm − 2Γ + overheadBalance(I(S))− 21 logn · 12sε2Γ
c2s2 log2 n

≥ Γ− 252 lognsε2Γ
c2s2 log2 n

≥ ε2Γ
( 1
ε2 −

252
c2s logn

)
≥ 1

2ε
2c1ε

−2αq−1s log2 n > αq+1

where we used Proposition 7.5 in the first inequality, the fact that |I(S)| ≤ (rjm −
rj1) + 2Γ in the second, Lemmas 7.14 and 7.15 in the third, Lemma 7.3 in the
fourth and in the remaining inequalities suitable values for c1 > c2 and the fact
that Γ ≥ c1ε

−2αq−1s log2 n. Observe that in case r(Iι+κ) = rmax, we are done as
EqBalance cannot hold.

Otherwise, consider the situation directly before the first job j̃ with rj̃ > r(Iι+κ)
is started. Denote the subschedule of S up to (not including) job j̃ by S̃. Let
overheadBalance(I) be the overhead in S associated to jobs released in the interval
I. Let overheadBalance(I, S̃) and overheadBalance(I,¬S̃) be the overhead of jobs
released in interval I and which are part and not part of S̃, respectively. Let wÎ(I, S̃)
and wÎ(I,¬S̃) be the workload of jobs released in interval I and which are part and
not part of S̃, respectively. For brevity let L = wÎ([0, rj1), S̃)− wÎ([rj1 , rj̃),¬S̃) +
overheadBalance([0, rj1), S̃)−overheadBalance([rj1 , rj̃),¬S̃). We can then bound the
workload and setups in S̃ by

wÎ(S̃) + overheadBalance(S̃)
≤wÎ([rj1 , l(Iι+κ))) + wÎ(Iι+κ) + wÎ([0, rj1), S̃)− wÎ([rj1 , rj̃),¬S̃)

+ overheadBalance([rj1 , l(Iι+κ))) + overheadBalance(Iι+κ)
+ overheadBalance([0, rj1), S̃)− overheadBalance([rj1 , rj̃),¬S̃)

≤l(Iι+κ)− rj1 + F ∗ + 21 logn12s · ε2Γ
c2s2 log2 n

+ |Iι+κ| −
ε2Γ

18√c2s logn + L

=r(Iι+κ)− rj1 + F ∗ + ε2Γ
s logn18√c2

(
252 · 18
√
c2
− 1

)
+ L

≤r(Iι+κ)− rj1 + F ∗ + c1α
q−1 logn

18√c2

(
252 · 18
√
c2
− 1

)
+ L < r(Iι+κ)− rj1 − 2F ∗ + L,

where we used Proposition 7.5 together with Lemma 7.14 and the fact that to Iι+κ
an event Sgoodι+κ is associated in the second inequality, the lower bound on Γ in the
third inequality and suitable values for c1 and c2 in the last inequality. Then, job j̃ is
started before rj1 +Fj1 +r(Iι+κ)−rj1−2F ∗+L+s and finished by r(Iι+κ)+Fj1 +L
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with flow time Fj̃ ≤ Fj1 + L. For S = SδΓ we have L ≤ −wÎ([rj1 , rj̃),¬S̃) −
overheadBalance([rj1 , rj̃),¬S̃) as no jobs with smaller release time than rj1 can be
part of S. Thus, Fj̃ < (α− δ)Γ− wÎ([rj1 , rj̃),¬S̃)− overheadBalance([rj1 , rj̃),¬S̃).
Now, applying the same arguments with S = SδΓ(j̃) and using Corollary 7.4 instead
of Lemma 7.3, we claim that we find a further job with flow time at most (α− δ)Γ
(and all jobs processed before have flow time below αΓ). Iterating this process we
will eventually reach the end of the instance without finding a job with flow time
at least αΓ, contradicting that EqBalance holds. Formally, it remains to prove that
the claim Fj̃ ≤ (α− δ)Γ also holds for later iterations. We introduce the following
notations. Denote by j0

1 and j̃0 the jobs j1 and j̃ from the first iteration as before,
respectively. For the following iterations, we use the notation ji1 and j̃i for the
respective jobs of the i-th iteration. Note that ji1 = j̃i−1 and we will thus only use
j0
1 , but j̃i at all other places. Similarly, we denote S̃i as the symbol S̃ from the i-th
iteration. We define wÎ(I,

∧ν
i=0 ¬S̃) as the natural extension of the prior definition

to be the workload of jobs released in interval I and which are not part of any of the
subschedules S̃0, . . . , S̃ν . For overheadBalance(I,∧νi=0 ¬S̃), the extension is defined
similarly. We now prove the following claim inductively:

Fj̃ν ≤ (α− δ)Γ− wÎ

(
[rj0

1
, rj̃ν ),

ν∧
i=0
¬S̃i

)
− overheadBalance

(
[rj0

1
, rj̃ν ),

ν∧
i=0
¬S̃i

)
.

For ease of notation, we introduce the combined expression of com(I,X) :=
wÎ(I,X) + overheadBalance(I,X). As we have already seen the induction base,
assume the claim is true for ν − 1. By using

com
(

[rj0
1
, rj̃ν−1),

ν−1∧
i=0
¬S̃i

)
= com

(
[rj0

1
, rj̃ν−1),

ν∧
i=0
¬S̃i

)

+ com
(

[rj0
1
, rj̃ν−1),

ν−1∧
i=0
¬S̃i ∧ S̃i

)

and com
(
[rj0

1
, rj̃ν−1),∧νi=0 ¬S̃i ∧ S̃i

)
= com

(
[rj0

1
, rj̃ν−1), S̃i

)
, we estimate

Fj̃ν ≤ Fj̃ν−1 + L

≤ (α− δ)Γ− com
(

[rj0
1
, rj̃ν−1),

ν−1∧
i=0
¬S̃i

)
+ com([0, rj̃ν−1), S̃ν)− com([rj̃ν−1 , rj̃ν ),¬S̃ν)
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= (α− δ)Γ− com
(

[rj0
1
, rj̃ν−1),

ν∧
i=0
¬S̃i

)
− com

(
[rj0

1
, rj̃ν−1), S̃ν

)
+ com([0, rj0

1
), S̃ν)︸ ︷︷ ︸

=0

+com([rj0
1
, rj̃ν−1), S̃ν)− com([rj̃ν−1 , rj̃ν ),¬S̃ν)

≤ (α− δ)Γ− com
(

[rj0
1
, rj̃ν−1),

ν∧
i=0
¬S̃i

)
− com([rj̃ν−1 , rj̃ν ),

ν∧
i=0
¬S̃i)

= (α− δ)Γ− com
(

[rj0
1
, rj̃ν ),

ν∧
i=0
¬S̃i

)
.

The claim follows. Also, as com
(
[rj0

1
, rj̃ν ),∧νi=0 ¬S̃i

)
is always non-negative, the

claim implies Fj̃ν ≤ (α− δ)Γ.

To finally bound the probability of good events to happen, we need the following
lemma.

Lemma 7.18. Let J be a set of jobs and assume that processing times are perturbed
according to a uniform or normal smoothing distribution. With probability at
least 1

10 , wÎ(J) ≥ wI(J) + ε
5(bwI(J)c/3)0.5. Also, with probability at least 1

10 ,
wÎ(J) ≤ wI(J)− ε

5(bwI(J)c/3)0.5.

Proof. We first show the lemma for the case of a uniform smoothing distribution
and then continue with the case of a normal distribution.
Uniform Smoothing Distribution. We can describe the perturbed workload as

wÎ(J) = wI(J) +X where X is the random variable given by X = ∑
j∈J Xj where

Xj ∼ U(−εpj , εpj). Let w = bwI(J)c. We distinguish two cases depending on
whether there exists a job j′ ∈ J with pj′ ≥ 2

5ε
√
w√
3 . In the positive case, we have

Pr[Xj′ ≥ 1
5ε(w/3)0.5] ≥ 1

4 and Pr[∑j∈J\{j′}Xj ≥ 0] ≥ 1
2 . Hence, in this case the

lemma holds. Consider the case in which for all j ∈ J it holds pj < 2
5ε
√
w√
3 . We then

have E(Xj) = 0 and V(Xj) = σ2
j = 1

3(εpj)2 ≥ 1
3ε

2, for all j. Also E[|Xj |3] = 1
4(εpj)3.

We now bound the probability we are interested in by a normal approximation. Let
S = X1+...+X|J|√

σ2
1+...+σ2

|J|

, F be the distribution of S and δ = supx |F (x) − Φ(x)|, where

Φ(x) is the distribution function of the standard normal distribution. By the central
limit theorem as described in Chapter 2 we have

Pr
[
X1 + . . .+X|J | ≤

ε

5 (bwI(J)c/3)0.5
]
≤ Pr

[
X1 + . . .+X|J | ≤

1
5
(∑

σ2
i

)0.5
]

≤Φ
(1

5

)
+ δ ≤ 0.57926 + δ.

Also, we can bound δ using standard Berry-Esseen bounds as described in Chapter 2
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by

δ ≤ 0.56
(∑

σ2
i

)− 1
2 ·max E[|Xi|3]

σ2
i

≤ 1
ε
√
w/3

· 3
4ε

2
5

√
w/3 < 3

10 .

Together with the symmetry of the uniform distribution, we obtain the lemma for
uniform perturbations.
Normal Smoothing Distribution. Recall that ε2 = 2.64σ2. We can describe

the perturbed workload as wÎ(J) = wI(J) + X where X is a random variable
given by X = ∑

j∈J Xj and Xj ∼ N(−pj ,pj)(0, (σpj)2). We have E[Xj ] = 0 and
V[Xj ] = (σpj)2(1− 2/σφ(2/σ)

2Φ(2/σ)−1) ≥ (σpj)2(1− 0.11
0.95) ≥ 0.88(σpj)2. Also we have

E[|Xj |3] = 1
√

2πσ(Φ(pjσ )− Φ(−pjσ ))

∫ pj

−pj
|x|3 exp(−0.5(x

σ
)2) dx

≤ 1√
2πσ0.68

4σ4 ≤ 2.35σ3.

By the central limit theorem we have

Pr
[
X1 + . . .+X|J | ≤

ε

5 (bwI(J)c/3)0.5
]

= Pr
[
X1 + . . .+X|J | ≤

1
5
(
0.88σ2bwI(J)c

)0.5
]

≤Pr
[
X1 + . . .+X|J | ≤

1
5
(∑

V[Xi]
)0.5

]
≤ Φ

(1
5

)
+ δ ≤ 0.57926 + δ.

Again, we can bound δ using standard Berry-Esseen bounds by

δ ≤ 0.56
(∑

V[Xi]
)− 1

2 ·max E[|Xi|3]
σ2
i

≤ 0.597 1√
|J |σ

· 2.6705σ ≤ 1.5942885/
√
|J | < 3

10 ,

if |J | ≥ 29. Note that we can assume |J | ≥ 29 as we only apply the bound in
Theorem 7.19 and thus under the assumption that wI(J) ≥ µΓ

4 ≥ µ
c1ε−2 log2 ns

4α2 F ∗ =
Ω(log2 n)F ∗, which requires at least Ω(log2 n) many jobs. Together with the sym-
metry of the normal distribution, we obtain the lemma.

Theorem 7.19. The smoothed competitiveness of Balance is O(σ−2 log2 n) when
processing times pj are perturbed independently at random to p̂j = (1 +Xj)pj where
Xj ∼ U(−ε, ε) or Xj ∼ N(−1,1)(0, σ2).

Proof. Recall that it only remains to prove Pr[EqOpt ∧ E
q
Balance] ≤ 1

n . First con-
sider the case ND ≥ 7 logn. For a fixed i we have Pr[Dgood

i ] ≥ 1
10 because

of the following reasoning. According to Lemma 7.18, it holds Pr[wÎ(Ii) ≥
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wI(Ii)+ ε
5(bwI(Ii)c/3)0.5] ≥ 1

10 . By definition of Ii we can bound ε
5(bwI(Ii)c/3)0.5 ≥

ε
5(µΓ

12 )0.5 ≥ ε2 Γ
18√c2s logn which implies Pr[Dgood

i ] ≥ 1
10 . Because ND ≥ 7 logn, the

probability that no event Dgood
i occurs is then upper bounded by (1− 1

10)7 logn ≤ 1
n

and so is Pr[EqOpt ∧ E
q
Balance] according to Lemma 7.16.

For the case ND < 7 logn the same line of arguments gives Pr[Sgoodi ] ≥ 1
10 for

each sparse interval Ii. Hence, the probability for a run of events Sbadi of length at
least 14 logn is at most 1

n and so is Pr[EqOpt ∧ E
q
Balance] by Lemma 7.17.
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Cost-efficient Scheduling on Machines
from the Cloud

Cloud computing provides a modern concept for provisioning computing
power, usually in the form of virtual machines (VMs), that offers users
potential benefits but also poses algorithmic challenges to be addressed.

On the positive side, main advantages for users of moving their business to the
cloud are manifold: Possessing huge computing infrastructures as well as asset and
maintenance costs associated with it are no longer required and hence, costs and
risks of large investments are significantly reduced. Instead, users are only charged
to the extent they actually use computing power and it can be scaled up and down
depending on current demands. In practice, two ways of renting machines from the
cloud are typically available: on-demand-instances without long-term commitment,
and reserved instances. In the former case, machines can be rented for any (not
prespecified) duration and the charging is by the hour (Amazon EC2 [Ama19]),
minute or even by the second (Google Cloud [Goo19]); whereas in the latter case,
specific (long-term) leases of various lengths are available. We focus on the former
case and note that the latter might better be captured within the leasing framework
introduced in [Mey05].
Despite the potential benefits, the cloud also bears new challenges in terms of

renting and utilizing resources in a (cost-)efficient way. Typically, the cloud offers
diverse VM types differing in the provided resources and further characteristics. One
might think of different machine types and each machine either being a high-CPU
instance, which especially suits the requirements for computation-intensive jobs, or
a high-memory instance for I/O-intensive jobs. Another example is the distinction
of CPU and GPU instances. Certain computations can be accelerated by the use
of GPUs and in [LK11], for instance, it is observed that, for certain workloads,
one can significantly improve performance when not only using classical CPU but

89



Chapter 8 COST-EFFICIENT SCHEDULING ON MACHINES FROM THE CLOUD

additionally GPU instances. Hence, the performance of a job can strongly depend
on the VM type on which it is executed and one should account for this in order to
be cost-efficient while guaranteeing a good performance. Performance in turn can
be expressed in terms of user-defined due dates or deadlines implicitly given by a
desired quality of service level.
Also, despite the fact that computing power can be scaled according to current

demands, one needs to take into account that this scaling is not instantaneous and
it initially could take some time for a VM to be ready for processing workload. A
recent study [MH12] shows such setup times to typically be in the range of several
minutes for common cloud providers and hence, to be non-ignorable for the overall
performance [MLH10; PLM18].
We formally introduce the model we consider in this chapter in Section 8.1 and

give an overview of related work and our results in Sections 8.2 and 8.3, respectively.
We then highlight the main challenges for online algorithms by giving general lower
bounds and upper bounds for naive approaches in Section 8.4. Our main algorithm
is designed and analyzed in Section 8.5 and it is based on three major steps: In
Section 8.5.1, we show how we can, by losing only a constant factor compared to an
optimal solution, structure schedules with respect to rental intervals and sets of jobs
processed together on a common machine. We then define a variant of the problem
of finding such structured schedules and show how to solve it offline in Section 8.5.2.
This “offline helper” is then used as one important ingredient in the design of our
online algorithm in Section 8.5.3.

8.1 Model & Notation

The problem CloudScheduling is extracted from the preceding observations and
features the three key properties mentioned before: Firstly, setup times for the
startup of machines; secondly, (two) heterogeneous machine types1 and the option
for the scheduling algorithm to choose between these types; thirdly, the presence
of deadlines to formulate requirements on the finishing time of jobs. We formally
specify the problem by defining the machine environment, job characteristics and
the objective function in the following.

Machine Environment There are two types τ ∈ {A,B} of machines, which can
be rented in order to process workload: A machine M of type τ can be opened at
any time aM and, after a setup taking some non-negligible sτ ∈ R>0 time units was
performed, can be closed at any time bM with bM ≥ aM + sτ , for aM , bM ∈ R≥0.
Note that bM does not need to be known beforehand and particularly not at aM
when the machine is opened. A machine can process workload during the interval
[aM + sτ , bM ] and it can process at most one job at a time. The rental cost incurred
1In general, considering two types of machines is often a natural and important special case of
fully heterogeneous machines. It has been considered theoretically in different settings, for
example, in [NHL82; DE92; CYZ13; CMV17; AZM18].
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by a machine M is determined by the duration for which it is open and is formally
given by cτ · (bM − aM ), for some cτ ∈ R>0. Note that a machine cannot process
any workload nor can be closed during the setup. However, one is still charged
for the duration of the setup. We refer to the cost cτ · sτ incurred by a machine
during its setup as setup cost and to the cost cτ · (bM −aM − sτ ) incurred during the
remaining time it is open as processing cost. Without loss of generality, we assume
that sB ≥ sA and normalize cA so that cA = 1. Then, the cost ratio c is given by
c := cB

cA
= cB. Practical observations show that c is usually in the range of 1 to a

few hundred [MH12; Ama19]. We also use τ+ and τ− to refer to the more expensive
and cheaper machine type, respectively. That is, τ+ = B if c ≥ 1 and τ+ = A
otherwise, and τ− ∈ {A,B} with τ− 6= τ+. We use c(τx) = cτx for x ∈ {+,−}.

Job Characteristics The workload of an instance is represented by a set J of
n jobs, where each job j is characterized by a release time rj ∈ R≥0, a deadline
dj ∈ R>0, and sizes pj,τ ∈ R>0 for all τ ∈ {A,B}, describing the processing time
of job j when assigned to a machine of type τ . Observe that therefore machines
of the same type are considered to be identical while those of different types are
unrelated (also cf. Chapter 5). Throughout this chapter, we assume by using a
suitable time scale that pj,τ ≥ 1 for all j ∈ J and all τ ∈ {A,B}. The jobs arrive
online over time at their release times at which the scheduler gets to know the jobs
together with their deadlines and sizes. Each job needs to be completely processed
by one machine before its respective deadline, i.e., to any job j we have to assign a
processing interval Ij of length pj,τ that is contained in j’s time window [rj , dj ] ⊇ Ij
on a machine M of type τ that is open during the entire interval Ij ⊆ [aM + sτ , bM ].
A machine M of type τ is called exclusive machine for a job j if it only processes j
and bM − aM = sτ + pj,τ . We define the slack of a job j as the amount by which j
is shiftable in its window: σj,τ := dj − rj − pj,τ for τ ∈ {A,B}.

Objective Function The objective of CloudScheduling is to rent machines and
compute a schedule that minimizes the rental cost given by ∑M cτ(M) · (bM − aM ),
where τ(M) denotes the type of machine M .

We analyze the quality of our algorithms in terms of their competitiveness and
assume that problem instances are parameterized by their minimum slack. An
instance is said to have a minimum slack of β if maxτ{σj,τ} ≥ β, for all j ∈ J .
Then, for a given β, an algorithm is called ρ-competitive if, on any instance with
minimum slack β, the rental cost is at most by a factor ρ larger than the cost of an
optimal offline algorithm. Note that this is a natural parameterized analog of the
general definition of competitiveness as given in Chapter 2.
In the following, we denote an optimal schedule as well as the cost it incurs

by Opt. Throughout this chapter (in all upper and lower bounds), we assume
that Opt is not too small and in particular, Opt = Ω(c(τ+) · rmax) holds, where
rmax := maxj∈J rj . (Similar assumptions are made in the literature [Aza+13], where
it is argued (for identically priced machines) that the case where Opt = o(rmax)
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is of minor interest as workload and costs are very small.) This bound is true, for
example, if the optimal solution has to maintain at least one open machine (of the
more expensive machine type) during (a constant fraction of) the considered time
horizon. This assumption seems to be reasonable for large-scale systems where, at
any time, the decision to make is rather concerned with dozens of machines than
whether a single machine is rented at all. For example, consider a setting in which
our scheduler is not part of a single end-user enterprise but where we assume a
virtual cloud model [MH11]. In this model there are three roles involved: Cloud
providers who own the computing infrastructure, cloud vendors who rent resources
from the providers and end-users/clients who request resources from and are served
by a cloud vendor. If we assume our scheduling algorithms to be located at the
site of a cloud vendor, requests of a huge amount of clients with different needs will
be concentrated at the cloud vendor who in turn is concerned with renting a large
amount of resources.

8.2 Related Work

Cloud scheduling has attracted the interest of theoretical researchers during the last
years. Azar et al. [Aza+13] consider a scheduling problem where jobs arrive online
over time and need to be processed by identical machines rented from the cloud.
While machines are paid for the exact time they are used, a fixed setup time s is
required before the respective machine is available for processing (and hence, the
charging model is identical to ours). In this setting, Azar et al. consider a bicriterial
optimization problem where the rental cost is to be minimized while guaranteeing a
reasonable maximum delay. An online algorithm that is (1 + ε,O(1/ε))-competitive
regarding the cost and the maximum delay, respectively, is provided. Precisely,
the delay of a job j is defined by the difference between its finishing time and
rj + pj . They propose an online algorithm that, given a budget of (1 + ε) times
the minimum possible cost to schedule all jobs (without any assumption on the
maximum delay), finds a solution with a maximum delay of O(s/ε). A different
model for cloud scheduling was considered by Saha [Sah13]. She considers jobs that
arrive over time and need to be finished before their respective deadlines. To process
jobs, identical machines are available and need to be rented from the cloud. The
goal is to minimize the rental cost where a machine that is rented for t time units
incurs cost of dt/De for some fixed D. The problem is considered as an offline as
well as an online problem and algorithms that guarantee solutions incurring costs
of O(α)Opt (where α is the approximation factor of the algorithm for machine
minimization in use, see below) and O(log(pmaxpmin

))Opt, respectively, are designed.
A different, but closely related problem is that of machine minimization. In this

problem, n jobs with release times and deadlines are considered and the objective
is to finish each job before its deadline while minimizing the number of machines
used. Note that in this model a machine stays open for an unlimited duration
once it is opened and one is only interested in the sole number of opened machines.
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This problem has been studied in online and offline settings for the general and
different special cases. The first result is due to [RT87] where an offline algorithm
with approximation factor of O(logn/ log logn) is given. This was later improved to
O(
√

logn/ log logn) by Chuzhoy et al. [Chu+04]. Better bounds have been achieved
for special cases; if all jobs have a common release date or equal processing times,
constant approximation factors are achieved [YZ09]. In the online case, a lower
bound of Ω(n+ log(pmaxpmin

)) and an algorithm matching this bound is given in [Sah13].
For jobs of equal size, an optimal e-competitive algorithm is presented in [Dev+14],
where e denotes the Euler constant. This problem of machine minimization has also
been considered from the perspective of heterogeneity. In [NHL82], Nakajima et
al. assume that there are cheap, slow machines and expensive, fast machines and
that each job’s time window has a length equal to the processing time on the slow
machine. They give NP-hardness results for the case that the processing times on
the fast machines are arbitrary. They also provide polynomial algorithms when the
processing times on fast machines are all 1 and additionally, either all release times
are equal or each job has a fixed starting time at its (arbitrary) release time.

A further area of research that studies rental/leasing problems from an algorithmic
perspective and which recently gained attention is that of resource leasing. Its focus
is on infrastructure problems and while classically these problems are modeled
such that resources are bought and then available all the time, in their leasing
counterparts resources are assumed to be rented only for certain durations. In
contrast to our model, in the leasing framework resources can not be rented for
arbitrary durations. Instead, there is a given number K of different leases with
individual costs and durations for which a resource can be leased. Also, an online
algorithm has to decide on the duration for which a resource is leased already at
the beginning of the leasing time. The model was introduced by Meyerson [Mey05]
and problems like FacilityLeasing or SetCoverLeasing have been studied in
[AG07; NW13; KMP12; AMM14; Li+15] afterward.
A last problem worthmentioning here is scheduling with calibrations [Ben+13;

FS15; Che+19]. Although it does not consider the aspect of minimizing resources
and the number of machines is fixed, it is closely related to machine minimization
and shares aspects with our model. There are given a set of m (identical) machines
and a set of jobs with release times, deadlines and sizes. After a machine is calibrated
at a time t, it is able to process workload in the interval [t, t+ T ], for some fixed T ,
and the goal is to minimize the number of calibrations. For sufficiently large m, the
problem is similar to a problem we need to solve in Section 8.5.2.

8.3 Our Results

We study algorithms for CloudScheduling where jobs need to be scheduled on
machines rented from the cloud such that the rental costs are minimized subject
to quality of service constraints. Particularly, compared to existing work on cloud
scheduling and machine minimization, the problem introduces the possibility for a
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scheduler to choose between different machine types being heterogeneous in terms
of prices and processing capabilities. It also captures the fact that due to times for
preparing machines and acquiring resources, available computing power does not
scale instantaneously.

Our results show the competitiveness to heavily depend on the minimum slack β
guaranteed by all jobs. Therefore, we perform a parameterized analysis and study
the competitiveness depending on β. While no finite competitiveness is possible for
β < sB, a naive rule achieves a competitiveness of Θ((c+ 1/c)sB) for β = (1 + ε)sB,
0 ≤ ε < 1/sB, which is in general optimal.
As our main result, for 1/sB ≤ ε ≤ 1, we present an algorithm with a competi-

tiveness of O(c/ε + 1/ε3) and O(1/cε2 + 1/ε3) for c ≥ 1 and c < 1, respectively. These
bounds are complemented by lower bounds for online algorithms which are Ω(c/ε)
and Ω(1/cε), respectively.

8.4 Simple Lower and Upper Bounds

In this section, we give some simple lower bounds on the achievable competitiveness
for CloudScheduling and take a look at the quality of an extremely naive
algorithm. The lower bounds are designed such that they all fulfill our assumption
Opt = Ω(c(τ+) · rmax). We begin our study by showing that setup times are hard
to cope with for any online algorithm when the minimum slack is below the setup
time sB. This is the case because an online algorithm needs to hold machines ready
at any time for arriving jobs with small deadlines.

Proposition 8.1. If β < sB, no online algorithm has a finite competitiveness.

Proof. We first prove that an online algorithm must have an open machine at any
time. Assume to the contrary that there is a time t ≥ sB at which the algorithm has
no open machine. Then, the adversary releases one job j with rj = t, dj = rj+pj,B+β
and an arbitrary size pj,B ≥ c(τ+)t and pj,A > pj,B + β. To finish this job without
violating its deadline, it needs to be started not after t+ β on a machine of type B.
However, this is not possible since there is no open machine at time t and the setup
of a type B machine needs time sB > β.
Hence, any online algorithm has to rent a machine of type B all the time to

be able to guarantee feasibility of its schedule. This clearly yields an unbounded
competitiveness. More formally, in this case the adversary can release only one job
with r1 = 0, p1,τ+ = 1, p1,τ− > sτ+ + 1 + β, d1 = sτ+ + 1 + β. An optimal offline
algorithm can schedule this job on a machine of type τ+ with cost c(τ+)·(sτ+ +1). On
the other hand, the online algorithm has an open machine during the whole interval
[0, t′], for any t′. This implies cost of at least c(τ−)t′ and hence an unbounded
competitiveness as it grows in t′ and thus, without bound.

Due to this impossibility result, we restrict ourselves to cases where the minimum
slack is β = (1 + ε)sB for some ε ≥ 0. It will turn out in Lemma 8.4 that for very
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Figure 8.1: Illustration of the construction in the proof of Lemma 8.2 for the case
sA = sB. From top to bottom it shows (relevant parts of) the instance,
an optimal schedule and the schedule of an online algorithm. In the
instance, each pair of rectangles defines a job j with the blue (dark)
rectangle representing pj,τ+ and the yellow (bright) one pj,τ− . A blue-
white (dark) rectangle labeled with an asterisk represents the setup of
a machine of type τ+. A yellow-white (bright) rectangle labeled with
an asterisk represents the setup of a machine of type τ−. The online
algorithm cannot place a yellow (bright) rectangle after a setup started
at t since the job would be finished slightly after d.

small values of ε, 0 ≤ ε < 1/sB, there is a high lower bound on the competitiveness,
which depends on sB, and essentially, we cannot do better than processing each job
on its own, exclusive machine. However, for larger values of ε, the situation clearly
improves as shown in Lemma 8.2 and leaves room for designing non-trivial online
algorithms.
The idea of the proof of Lemma 8.2 is as follows: The adversary releases a

whole bunch of jobs as soon as the online algorithm has no machine available. The
processing times and deadlines are chosen in such a way that the online algorithm
can only process these jobs on machines of the unfavorable type as setting up
machines of the other type takes too long. In contrast, an optimal offline algorithm
can open machines of the desirable type in advance and can thereby be prepared
upon arrival of the jobs.

Lemma 8.2. If β = (1 + ε)sB, there is a lower bound on the competitiveness of
Ω
(
c(τ+)
c(τ−)

(
1 + sA

(1+ε)sB+max{εsB ,1}−sA

))
.

Proof. Let sB and sA be arbitrary. At t = 0 the adversary starts the instance by
releasing the first job with p1,A = p1,B = 1 and d1 = sB + 1 + β. Afterward, no job
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is released until a time t ≥ max{1, sB} at which the online algorithm does not have
any open machine. Note that t must exist as otherwise the online algorithm cannot
admit bounded competitiveness (also cf. Proposition 8.1). Let n0 := c(τ+) · t · k,
where k := (1+ε)sB+max{εsB ,1}

εsB+max{εsB ,1}+max{0,s
τ+−sτ−}+δ

for some sufficiently small δ > 0. At
time t, the adversary releases dn0e ≤ 2n0 many identical jobs each with processing
times pτ+ = max{εsB, 1} and pτ− = εsB + max{εsB, 1}+ max{0, sτ+ − sτ−}+ δ and
deadline d = t+ pτ+ + β. For an illustration see Figure 8.1.
We first bound the cost of the online algorithm. Note that if processed on a

machine of type τ−, any of the jobs released at time t needs to be started not
later than d − pτ− = t + pτ+ + (1 + ε)sB − pτ− = t + max{εsB, 1} + (1 + ε)sB −
(εsB + max{εsB, 1}+ max{0, sτ+ − sτ−}+ δ) < t+ sτ− . Since at time t no machine
is available, no job can be processed on a machine of type τ− as the job could
only be started after a setup at t+ sτ− . On a machine of type τ+ opened at time
t the online algorithm can process jobs during the interval [t + sτ+ , d]. Thus, on
each such machine at most

⌊ (1+ε)sB+max{εsB ,1}−sτ+
max{εsB ,1}

⌋
many can be processed. Hence,

the online algorithm has to rent Ω
(

n0·max{εsB ,1}
(1+ε)sB+max{εsB ,1}−sτ+

)
machines of type τ+,

each at least open for a duration of max{sτ+ , sB − sτ+} and hence, incurring cost of
Ω
((

n0·max{εsB ,1}
(1+ε)sB+max{εsB ,1}−sτ+

)
· c(τ+)sB

)
.

Now we take a look at the cost of an optimal offline algorithm. The job released at
time 0 can be scheduled with cost c(τ−)(sτ− + 1). On a machine of type τ− opened
at time t − sτ− it can process jobs released at time t during the interval [t, d] =
[t, t+(1+ε)sB+max{εsB, 1}] and thus, bkc ≥ max{1, 1

2k}many. Hence, it can process
all dn0e = dc(τ+)tke jobs released at time t on O(c(τ+)t) machines each open during
the interval [t− sτ− , t+ (1 + ε)sB + max{εsB, 1}]. The overall cost is then bounded
by O(c(τ+)t · c(τ−)((1 + ε)sB + max{εsB, 1}+ sτ−)) = O(c(τ+)t · c(τ−)sB). Taken
together, this yields a competitiveness of Ω

(
c(τ+)
c(τ−)

(
1 + sA

(1+ε)sB+max{εsB ,1}−sA

))
.

Corollary 8.3. Depending on the power of the adversary, for 1/sB ≤ ε ≤ 1, the
lower bound from Lemma 8.2 can be bounded by

1. Ω
(
c(τ+)
c(τ−)

)
if the adversary is restricted and cannot choose sA and sB, and

2. Ω
(
c(τ+)
c(τ−)ε

)
otherwise.

While the construction in Lemma 8.2 exploits a situation in which the online
algorithm has to use machines of the unfavorable type, the next lower bound is
based on the following idea: A bunch of jobs that can only be processed on machines
of type B are released at a time t ≥ sB at which the online algorithm has no open
machine of type B. The online algorithm can consequently only process jobs after
time t + sB while an optimal solution can also process jobs during the interval
[t, t+ sB] and therefore, needs significantly less machines.
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Lemma 8.4. If β = (1 + ε)sB, 0 ≤ ε < 1/sB, there is a lower bound on the
competitiveness of Ω(sB).

Proof. Let sA and sB be arbitrary with sB ≥ 1 (since otherwise the lower bound
is meaningless anyway). At t = 0 the adversary starts the instance by releasing
the first job with p1,A = p1,B = 1 and d1 = sB + 1 + β. Afterward, the adversary
does not release any job until time t ≥ sB at which the online algorithm does
not have any open machine. At time t, the adversary releases dc(τ+)te identical
jobs with processing times pB = 1 and pA > sB + pB + 1 and deadline d =
t+ pB + β. First we can observe that the online algorithm cannot process any job
on a machine of type A because (even without setup) the job cannot be finished
before t + sB + pB + 1 > t + sB + pB + εsB = d. A machine of type B opened
at time t can only process jobs during the interval [t+ sB, d] and hence, only one
job. Therefore, the cost of the online algorithm is Ω(c(τ+)tc(sB + 1)). An optimal
offline algorithm can schedule all jobs released at time t using only O(c(τ+)t/sB)
machines, each processing Θ(sB) jobs by opening the respective machines at t− sB
and processing jobs in the interval [t, d] = [t, t+ pB + β]. The job released at time
0 can be scheduled with cost c(τ−)(sτ− + 1). Hence, the competitiveness is lower
bounded by Ω

(
c(τ+)tc(sB+1)
c(τ+)tc/sB ·sB

)
= Ω(sB).

Corollary 8.5. Depending on the power of the adversary, for 0 ≤ ε < 1/sB, the
lower bound from Lemmas 8.2 and 8.4 can be bounded by

1. Ω
(
c(τ+)
c(τ−) + sB

)
if the adversary is restricted and cannot choose sA, sB, and

2. Ω
(
c(τ+)
c(τ−)sB

)
otherwise.

Throughout this chapter, when referring to lower bounds (or optimality) the
bounds given for an unrestricted adversary are meant.

8.4.1 Simple Approaches

As a first step of studying algorithms in our model we discuss some natural ap-
proaches. One of the doubtlessly most naive rules simply decides on the machine
type to process a job based on the cost the job incurs on this type. Define the
algorithm A1 such that it assigns each job to its own, exclusive machine and chooses
this machine to be of type A if sA + pj,A ≤ c(sB + pj,B) and σj,A ≥ sA, or if σj,B < sB.
Otherwise, it chooses the machine to be of type B. Then, we have the following
bound on the competitiveness of A1.

Proposition 8.6. A1 is O
(
c(τ+)
c(τ−)

sA
(1+ε)sB+1−sB + sB

)
and Ω(sB)-competitive.

For 0 ≤ ε < 1/sB, it has an optimal competitiveness of Θ
(
c(τ+)
c(τ−)sB

)
.

For 1/sB ≤ ε ≤ 1, it has a suboptimal competitiveness of O
(
c(τ+)
c(τ−)ε

)
+ Θ(sB).
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Proof. For τ, τ ′ ∈ {A,B}, let Jτ,τ ′ ⊆ J be the set of jobs assigned to machines of
type τ by A1 and to machines of type τ ′ by Opt. As a trivial lower bound for Opt
we have Opt ≥

∑
j∈JA,A∪JB,A pj,A + c(∑j∈JA,B∪JB,B pj,B). Also we know that if a

job j is assigned to the more cost-efficient machine type τ by A1, we have for τ ′ 6= τ

cτ (sτ + pj,τ) ≤ cτ ′(sτ ′ + pj,τ ′). (8.1)

If a job j is not assigned to its more cost-efficient machine type τ it holds

pj,τ ≥ pj,τ ′ + β − sτ . (8.2)

This directly follows from the fact that σj,τ < sτ and hence, σj,τ ′ ≥ β. Then, we
can bound the competitiveness as follows∑

j∈JA,A(pj,A + sA)∑
j∈JA,A pj,A

+
c(∑j∈JB,B (pj,B + sB))

c(∑j∈JB,B pj,B)

+
∑
j∈JA,B (pj,A + sA)
c(∑j∈JA,B pj,B) +

c(∑j∈JB,A(pj,B + sB))∑
j∈JB,A pj,A

.

We can bound the first fraction as
∑

j∈JA,A
(pj,A+sA)∑

j∈JA,A
pj,A

≤
∑

j∈JA,A
pj,A∑

j∈JA,A
pj,A

+ |JA,A|sA|JA,A| = O(sA),

where we used pj,A ≥ 1. By an analogous statement the second fraction is upper
bounded by O(sB). For the third fraction let J1

A,B ⊆ JA,B be the jobs which are
assigned to machines of type A as they are more cost-efficient on these machines
and let J2

A,B = JA,B \ J1
A,B. Then we can bound∑

j∈J1
A,B

(pj,A + sA)
c(∑j∈JA,B pj,B) +

∑
j∈J2

A,B
(pj,A + sA)

c(∑j∈JA,B pj,B)

≤
c
∑
j∈J1

A,B
(pj,B + sB)

c(∑j∈JA,B pj,B) +
∑
j∈J2

A,B
(pj,A + sA)

c(∑j∈JA,B (pj,A + (1 + ε)sB − sB))

≤1 +
c
∑
j∈J1

A,B
sB

c|J1
A,B|

+ 1
c

+
∑
j∈J2

A,B
sA

c|J2
A,B|(1 + (1 + ε)sB − sB)

=O
(
sB + 1

c
+ sA
c(1 + (1 + ε)sB − sB)

)
,

where we used Equation (8.1) and Equation (8.2) in the first inequality and pj,A ≥ 1
in the second.
Using analogous arguments, the last fraction can then be upper bounded by

O
(
sA + c+ csA

(1+(1+ε)sB−sA)

)
, proving the claimed upper bound.

The sB in the bound on the competitiveness can easily be seen to be necessary.
Consider an instance where all jobs need to be processed on machines of type B
with sizes pj,B = 1 ∀j ∈ J and let them arrive such that all can be assigned to
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Algorithm 6 Description of the class GreedyFit.
(1) At each time t at which jobs Jt = {j ∈ J : rj = t} arrive, Alg processes them

in any order j1, j2, . . . and one by one.
(1.1) If ji cannot reasonably be processed on any open machine, Alg opens

some machine.
(1.2) Alg assigns ji to some open machine.

(2) Alg may close a machine as soon as it is about to idle.

one machine. Then the above term
c(
∑

j∈JB,B
(pj,B+sB))

c(sB+
∑

j∈JB,B
pj,B) is lower bounded by 1

2sB for

n ≥ sB.

While this trivial rule is optimal for 0 ≤ ε < 1/sB, for larger values of ε the
dependence of the competitiveness on the setup time is undesired as it can be quite
high and in particular, it is sensitive to the time scale (and recall that we chose a
time scale such that the smallest processing time of any job is at least 1). Therefore,
the rest of this chapter is devoted to finding an algorithm with a competitiveness
being independent of sB and narrowing the gap to the lower bound for 1/sB ≤ ε ≤ 1.
One shortcoming of A1 is the fact that jobs are never processed together on a

common machine. A simple idea to fix this and to batch jobs might be to extend A1
by an AnyFit rule as known from bin packing problems (see, e.g., [Sga14]). Such
an algorithm dispatches the jobs one by one and only opens a new machine if the
job to be assigned cannot be processed on any already open machine. Then, the
job is assigned to some machine it fits into. It turns out that the competitiveness
of this approach still depends on the setup time sB, which we show by proving a
slightly more general statement. Consider the class GreedyFit consisting of all
deterministic algorithms Alg fitting into the framework as given in Algorithm 6.
The terms some, any and may above should be understood as to be defined by the
concrete algorithm. A job is said to be reasonably processable on a machine M if it
does not violate any deadline and the processing cost it incurs does not exceed the
cost for setting up and processing the job on a new machine.
Unfortunately, one can still easily get such an algorithm to open a machine on

which all upcoming jobs are processed although opening a machine of the other
type would be more reasonable.

Proposition 8.7. If 1/sB ≤ ε ≤ 1, any GreedyFit algorithm has a competitiveness
of Ω

(
c(τ+)
c(τ−)

(
1 + sA

(1+ε)sB+εsB−sA

)
+ sB

)
.

Proof. First, the lower bound from Lemma 8.2 directly implies the first summand in
the competitiveness of GreedyFit. Thus, we focus on the second summand sB and
assume sB ≥ 1 (as otherwise this part of the lower bound is meaningless anyway).
Fix an arbitrary algorithm Alg belonging to GreedyFit and arbitrary sB, sA and
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c ≥ 1. At time t = 0 release a job j0 with dj0 = sB + dsBedcsBe and pj0,A = dcsBe.
Since the considered algorithm is deterministic and only pj0,B is not yet fixed, we
can now determine and distinguish the following two cases: a) ∃x ≥ 1 such that if
pj0,B = x, Alg opens a machine of type A, and the alternative case b) such an x
does not exist.

We start with case a) and set pj0,B = x. At each time ti = i, for i = 1, 2, . . . , dsBe−
1, a job j with pj,A = dcsBe, pj,B = 1 and dj = sB+dsBedcsBe is released. By definition
of case a) Alg opens a machine of type A at time 0 and then schedules all jobs
on it finishing the last one at time sA + dsBedcsBe ≤ dj . Note that Alg does not
open a machine of type B as it is assumed to belong to the class GreedyFit and
at any time ti, opening a machine of type B and processing the respective job j on
it incurs cost of c(sB + 1) while processing it on the open machine of type A incurs
cost of dcsBe ≤ csB + 1. Therefore, the overall cost of Alg on the given instance is
sA + dcsBedsBe.
In case b), Alg opens a machine of type B for processing job j0. We set

pj0,B = dsBedcsBe so that Alg finishes the job by sB + dsBedcsBe ≤ dj0 . Therefore,
the cost of Alg is c(sB + dsBedcsBe).

Opt can always schedule job j0 on a machine of type A finishing it not later than
sA + dcsBe ≤ dj0 and the remaining jobs on one machine of type B finishing the
last one at sB + dsB − 1e ≤ dj . The cost incurred by Opt is at most sA + dcsBe+
csB + c(dsBe − 1) ≤ 4dcsBe. In both cases, this gives a lower bound of Ω(sB) on the
competitiveness of Alg, which concludes the proof.

8.5 A Batch-Style Competitive Algorithm

Due to the discussed observations, it seems that decisions on the type of a machine
to open as well as finding a good assignment of jobs requires more information
than given by a single job. Therefore, the general strategy of our algorithm is to
collect jobs over some specified period of time and then decide on which machines
to rent and how to schedule based on the entire bunch of collected jobs. Thereby
it is crucial to specify this period carefully so that jobs do not wait too long
before being scheduled but still sufficiently long to base renting decisions on enough
jobs. The rough outline of our approach is as follows: In a first step, we prove
some structural properties that we can assume (by losing a constant factor) the
optimal solution to have (Section 8.5.1). These properties are quite helpful as they
restrict the possibilities an algorithm has to take into account when searching for
a solution. Based on these structural insights, we formulate an (offline) variant
of CloudScheduling that we can solve by providing an Integer Linear Program
(ILP) (Section 8.5.2). We then use solutions computed based on an enhanced variant
of this ILP and computed at regular points in time on subsets of already arrived
jobs to define our online algorithm (Section 8.5.3).
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Figure 8.2: Illustration of Property 2. Solid rectangles have the same meaning
as in Figure 8.1, dashed rectangles represent idle time added in the
construction and i ∈ N. The left block of blue (dark) jobs equals T1, the
right one equals T6.

8.5.1 Structuring Schedules
We first show a fundamental and main lemma that provides a way of suitably
batching the processing of jobs and structuring the rental intervals. We define
intervals of the form [isτ , (i+ 1)sτ ), for i ∈ N0 and τ ∈ {A,B}, as the i-th τ -interval.
Intuitively, we can partition the considered instance into subinstances each consisting
only of jobs released during one B-interval and the times during which machines
are open are aligned with these τ -intervals.

Lemma 8.8. By losing a constant factor, we may assume that Opt fulfills the
following properties:

1. Each job j that is processed on a machine of type τ and fulfills pj,τ ≥ sτ is
assigned to an exclusive machine,

2. each remaining machine M of type τ is open for exactly five τ -intervals, i.e.,
[aM , bM ) = [isτ , (i+ 5)sτ ) for some i ∈ N0, and

3. if it is opened at aM = (i− 1)sτ , the beginning of the (i− 1)-th τ -interval, it
only processes jobs released during the i-th τ -interval.

Proof. We prove the lemma by describing how to modify Opt to establish the three
properties while increasing its cost only by a constant factor. Consider a fixed type
τ ∈ {A,B} and let Jτ ⊆ J be the set of jobs processed on machines of type τ in
Opt. Let JM be the set of jobs processed by a machine M .
Property 1. Any job j ∈ Jτ with pj,τ ≥ sτ is moved to a new exclusive machine

of type τ if not yet scheduled on an exclusive machine in Opt. This increases the
cost due to an additional setup and the resulting idle time by sτ + pj,τ ≤ 2pj,τ .
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Applying this modification to all jobs j with pj,τ ≥ sτ therefore increases the cost
of Opt by a factor of at most three and establishes the desired property. From now
on, we will assume for simplicity that all jobs j scheduled on a machine of type τ
fulfill pj,τ < sτ .
Property 2. Next, we establish the property that each remaining machine is open

for exactly four τ -intervals; when establishing the third property, this is extended to
five intervals as claimed in the lemma. For an illustration see Figure 8.2. Consider a
fixed machine M . Partition the time during which M is open into intervals of length
sτ by defining Ik := [aM +ksτ , aM + (k+ 1)sτ ) for k ∈ {1, . . . , d bM−aMsτ

− 1e}. Let tj
be the starting time of job j ∈ JM and let Tk := {j ∈ JM : tj ∈ Ik} partition the jobs
of JM with respect to the interval during which they are started. We replace machine
M by d bM−aMsτ

− 1e machines M1,M2, . . . such that Mi processes the jobs from Ti
keeping the jobs’ starting times as given by Opt and setting aMi

:= minj∈Ti tj − sτ
and bMi

:= maxj∈Ti(tj + pj,τ). Observe that the cost originally incurred by M is
cτ (bM −aM ) while those incurred by the replacing machines M1,M2, . . . are at most
cτ (bM −aM ) + cτ (d bM−aMsτ

− 1e)sτ ≤ 2cτ (bM −aM ) where the additional term stems
from the additional setups. Since it holds that pj,τ < sτ for all j ∈ JM , we conclude
that bMi − aMi ≤ 3sτ for all Mi. For each Mi, we can now simply decrease aMi and
increase bMi such that Mi is open for exactly four τ -intervals. This maintains the
feasibility and increases the cost incurred by each machine Mi from at least cτsτ
to at most 4cτsτ . Applying these modifications to all machines M , establishes the
claimed property while increasing the overall cost by a factor of at most eight.
Property 3. It remains to prove the third property. Again consider a fixed

machine M . Let Ni,M := {j ∈ JM : rj ∈ [isτ , (i+ 1)sτ )}, i ∈ N0, be the (sub-)set
of jobs released during the i-th τ -interval and processed by M . Furthermore, let
#(M) := |{i : Ni,M 6= ∅}| be the number of τ -intervals from which M processes
jobs. If #(M) ≤ 3, we replace M by #(M) machines Mi each processing only
jobs from Ni,M . To define the schedule for Mi, let Ni,M = {ji1 , ji2 , . . .} such that
ti1 < ti2 < . . . holds. We reset the starting times of the jobs in Ni,M by setting
ti1 := ri1 and tik := max{rik , tik−1 + pik−1,τ}, for k > 1, and set aMi

:= (i − 1)sτ
and bMi

:= aMi + 5sτ . This gives a feasible schedule for Ni,M since no starting time
is increased and according to Property 2 we have ∑j∈Ni,M pj,τ ≤ 3sτ and hence,
maxj∈Ni,M rj +∑

j∈Ni,M pj,τ < (i+ 4)sτ = bMi . Also, the replacing machines fulfill
the three properties and the cost is increased by a factor less than four.
For the complementary case where #(M) > 3, we argue as follows. For an

illustration see Figure 8.3. Observe that due to the already established Property 2.,
M is open for exactly four τ -intervals and hence, Ni,M = ∅ for all i ≥ aM

sτ
+ 4. Note

that aM
sτ
∈ N0 due to Property 2. Also, for each i ∈ {aMsτ −1, aMsτ ,

aM
sτ

+2, aMsτ +3}, we
can move the jobs from Ni,M to new machines by an argument analogous to the one
given for the case #(M) ≤ 3 above. Hence, we have established the property thatM
only processes jobs j ∈ ⋃aM/sτ−2

i=0 Ni,M ∪NaM/sτ+1,M and applying the modification
to all machines M from the setM of machines fulfilling #(M) > 3, increases the
cost by a constant factor.
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Figure 8.3: Illustration of Property 3. The interval annotated with i represents the
interval [aM + isτ , aM + (i+ 1)sτ ). Numbers within rectangles denote
the interval during which the respective job is released so that all jobs
labeled with j belong to Ni,M with i = aM

sτ
+ j. A machine cannot

process any job with a label ≥ 4. By losing a constant factor, we can
assume that it only processes jobs labeled with 1 or some value ≤ −2.
Since jobs with a label ≤ −2 have a deadline not left to the interval 1,
they can easily be rescheduled (in intervals annotated with −1 and 0)
such that finally each machine only processes jobs directly released in
the interval after its setup (with label 1).

In order to finally establish the third property, our last step proves how we
can reassign all those jobs j which are processed on a machine M ∈ M with
j ∈

⋃aM/sτ−2
i=0 Ni,M . Note that jobs belonging to NaM/sτ+1,M for some M ∈

M can remain on machine M as this does not violate Property 3. Let J ′ =⋃
M∈M

⋃aM/sτ−2
i=0 Ni,M be the set containing these jobs and partition them according

to their release times by defining Ni := (⋃M∈MNi,M )∩J ′. Note that for any j ∈ Ni

processed on a machine M it holds dj ≥ aM + sτ ≥ (i + 3)sτ , for all i ∈ N0. Let
wi := ∑

j∈Ni pj,τ . We can assign all jobs from Ni to new machines fulfilling the
three properties as follows: We open dwisτ e new machines at time (i− 1)sτ and keep
them open for exactly five τ -intervals. Due to the fact that for all jobs j ∈ Ni it
holds rj ≤ (i + 1)sτ and dj ≥ (i + 3)sτ , we can accommodate a workload of at
least sτ in the interval [(i+ 1)sτ , (i+ 3)sτ ] on each machine by assigning jobs from
Ni to it in any order. By these modifications the cost increase due to cases where
wi ≥ sτ is given by an additive of at most cτ

∑
i:wi≥sτ d

wi
sτ
e5sτ , which is O(Opt)

since Opt ≥ cτ
∑
i:wi≥sτ wi. The overall increase in the cost due to the cases where

0 < wi < sτ is given by an additive of cτ
∑

0≤i≤b rmax
sτ
c:0<wi<sτ 5sτ . In case the sum

is larger than 0, it is upper bounded by cτ (5rmax + 5sτ ) = O(Opt) due to our
assumption Opt = Ω(cτ · rmax) and since Opt = Ω(cτsτ ) as it rents at least one
machine of type τ .

Here we want to note that the last step of the proof of Lemma 8.8 is the only place
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where we use our assumption that Opt = Ω(c · rmax). Without this assumption,
the cost of a schedule with the properties of Lemma 8.8 could (only) be bounded by
O((1 + c·rmax

Opt )Opt) instead of O(Opt). Also note that in a schedule of Lemma 8.8,
machines of type τ processing jobs released in the interval [0, sτ ) are opened at
t = −sτ . Although this is not actually possible, it simplifies the presentation and is
fine for our purposes: Throughout this chapter, the way we use the result makes
sure that in the actual schedules that we finally compute such situations will not
occur.
By Lemma 8.8, we can partition any instance into subinstances such that the

i-th subinstance consists of those jobs released during the interval [isB, (i + 1)sB)
and solve them separately. In the rest of this chapter, we assume for simplicity
and without loss of generality that the entire instance only consists of jobs released
during the interval [0, sB).

Furthermore, we can deduce two additional statements from Lemma 8.8 as given
in Lemmas 8.9 and 8.10. To this end, we divide the jobs into three sets according
to their sizes. Let

J1 := {j ∈ J : pj,A ≥ sA ∧ pj,B ≥ sB},
J2 := {j ∈ J : pj,A < sA ∧ pj,B < sB},
J3 := J \ (J1 ∪ J2).

That is, J1 contains those jobs for which the processing cost dominates the setup
cost on both machine types. The set J2 contains those jobs for which the processing
cost does not dominate the setup cost on either of the two machine types and J3
all remaining jobs. We also define J3 = J3,1 ∪ J3,2 = {j ∈ J3 : pj,A ≥ sA ∧ pj,B <
sB} ∪ {j ∈ J3 : pj,A < sA ∧ pj,B ≥ sB}. Based on these definitions and by Lemma 8.8
we directly obtain the following two lemmas.

Lemma 8.9. For an optimal schedule for jobs from J2, we may assume each
machine of type τ ∈ {A,B} to be open for exactly five τ -intervals. If a job j ∈ J2
is processed on a machine of type τ and rj ∈ [isτ , (i+ 1)sτ ), i ∈ N0, its processing
interval is completely contained in the interval [isτ , (i+ 4)sτ ].

Lemma 8.10. For an optimal schedule for jobs from J3,1, we may assume each
machine of type B to be open for exactly five B-intervals. If a job j ∈ J3,1 is
processed on a machine of type A, it is processed on an exclusive machine and if j
is processed on a machine of type B and rj ∈ [isB, (i+ 1)sB), i ∈ N0, its processing
interval is completely contained in the interval [isB, (i+ 4)sB].

Analogous statements hold for jobs from J3,2.

8.5.2 Tentative Subschedules

We now use the results from the previous section to describe and solve the following
relaxed offline variant, denoted OfflineCloudScheduling, of our problem: All

104



A Batch-Style Competitive Algorithm 8.5

min 5sA
∑
i

zi + 5csB · zB+
∑

x(I,j):I∈IA(j)
j∈J1∪J3,1

x(I, j)pj,A + c
∑

x(I,j):I∈IB(j)
j∈J1∪J3,2

x(I, j)pj,B

s.t.
∑

j∈J2∪J3,2:
rj∈[(i−1)sA,isA)

∑
I∈IA(j):t∈I

x(I, j) ≤ zi ∀t ∈ Li, i ∈ {1, . . . , sB/sA} (8.3)

∑
j∈J2∪J3,1

∑
I∈IB(j):t∈I

x(I, j) ≤ zB ∀t ∈ LB (8.4)

∑
I∈IA(j)∪IB(j)

x(I, j) = 1 ∀j ∈ J (8.5)

x(I, j) ∈ {0, 1} ∀j ∈ J, I ∈ IA(j) ∪ IB(j) (8.6)

Figure 8.4: Integer Linear Program for OfflineCloudScheduling.

jobs are known in advance and setups do not take any time but still incur the
respective cost as before.

By Lemma 8.9 and Lemma 8.10, we can formulate OfflineCloudScheduling
(which is NP-hard by the NP-hardness of classical BinPacking) as an ILP as given
in Figure 8.4. We use Iτ (j) to denote the set of all possible processing intervals
of job j on a machine of type τ ∈ {A,B}. Intuitively, IA(j) ∪ IB(j) describes all
possible ways how job j can be scheduled. Note that IA(j) and IB(j) are built under
the assumptions from Lemmas 8.8 to 8.10. For each I ∈ IA(j)∪IB(j), the indicator
variable x(I, j) states if job j is processed in interval I. We use LB to denote all
left endpoints of intervals in ⋃j∈J2∪J3,1 IB(j) and Li to denote all left endpoints
of intervals in ⋃j∈J2∪J3,2:rj∈[(i−1)sA,isA) IA(j). Additionally, we use a variable zB to
denote the number of (non-exclusive) machines of type B that we rent. The variable
zi describes the number of machines of type A that we rent and that process jobs
released during the (i − 1)-th A-interval. For simplicity we assume that sB is an
integer multiple of sA.
We are now asked to minimize the cost for machines of type B plus those for

machines of type A, taking into account that each machine of type τ is either
open for a duration of exactly 5sτ time units (first two summands of the objective
function) or is an exclusive machine (last two summands). The constraints given by
Equation (8.3) and Equation (8.4) ensure that, at any point in time, the number
of jobs processed on (non-exclusive) machines does not exceed the number of open
machines. Additionally, constraints given by Equation (8.5) and Equation (8.6)
ensure that each job is completely processed by exactly one machine in a contiguous
interval.
Observe that in general this ILP has an infinite number of variables since each
Iτ (j) contains all possible processing intervals of j on a machine of type τ . Yet,
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as we prove in Lemma 8.11, there is an efficient way (adapted from [Chu+04]) to
reduce the number of variables that need to be considered to O(|J |2) such that
afterward a solution only being by a constant factor larger than the optimal one
of the original formulation exists. Note that we can then solve the resulting ILP
optimally (though it may take non-polynomial time) yielding O(1)-approximate
solutions to the original formulation.

Lemma 8.11. By losing a constant factor, we can assume that |
⋃
j∈J(IA(j) ∪

IB(j))| = O(|J |2) holds.

Proof. The following proof is an extension of one from [Chu+04], which studies a
related issue for the problem of machine minimization.
We show how to reduce the number |⋃j∈J(IA(j) ∪ IB(j)| of job intervals to

O(|J |2). Note that due to Lemmas 8.8 to 8.10, it holds∣∣∣∣∣∣
⋃

τ∈{A,B}

⋃
j∈J1

Iτ (j)

∣∣∣∣∣∣ = O(|J |),

∣∣∣∣∣∣
⋃

j∈J3,1

IA(j)

∣∣∣∣∣∣ = O(|J |),

∣∣∣∣∣∣
⋃

j∈J3,2

IB(j)

∣∣∣∣∣∣ = O(|J |).

For the sake of simplicity, we only argue that |⋃j∈J2(IA(j) ∪ IB(j))| = O(|J |2)
in the following. The reasoning for the remaining sets J3,1 and J3,2 is analogous
but even simpler as it is a more restricted case than the one for J2 due to the
aforementioned bounds on the number of job intervals on one of the two machine
types.

We now describe the construction and afterward prove the claimed bound on the
possible loss. Recall Lemmas 8.8 and 8.9. Let M0 be a machine of type B such that
it is open until 4sB (which corresponds to machines represented by zB in Figure 8.4)
and for each i ∈ {1, . . . , sBsA } let Mi be a machine of type A which can process jobs
during the interval [(i− 1)sA, (i+ 3)sA) (which corresponds to machines represented
by zi in Figure 8.4). We first construct sets Di ⊆ J2, i ∈ {0, 1, . . . , sBsA }, such that
all jobs from Di can be scheduled on machine Mi. To do so, perform the following
steps for each machine Mi separately: Consider the set J2 of all jobs. At each time
machine Mi gets idle, we greedily assign the job that will finish earliest among all
jobs that are not yet scheduled on Mi and that can still meet their deadlines. Let Pi
be the set which contains all right endpoints of processing intervals of jobs scheduled
on Mi together with all release times and deadlines of the remaining jobs. Note that
|Pi| = O(|J |), for all i ∈ {0, 1, . . . , sBsA }. Now we reduce the number of job intervals
of any job j as follows. Each left endpoint of a job interval in IB(j) is rounded
down to its nearest point in P0 and each right endpoint is rounded up to its nearest
point in P0. Similarly, each left endpoint of a job interval in IA(j) is rounded down
and each right endpoint is rounded up to its nearest point in its corresponding Pi.
By this construction, the number of different job intervals becomes O(|J |2).

Next we prove the bound on the cost of the modified instance. Consider an optimal
solution S for the original instance. If a job j ∈ D0 is scheduled on a machine
of type A in S, remove it from D0 and similarly, if a job j ∈ Di, i ∈ {1, . . . , sBsA },
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is scheduled on a machine of type B in S, remove it from Di. Also, for each job
j ∈ Di, remove this job from S. Now, all processing intervals of jobs j ∈ S must
contain at least one point from the respective set Pi by construction as otherwise j
would belong to Di. Thus, after performing the modifications of the release times
and deadlines, the jobs j ∈ S can always be scheduled by twice the number of type
A and type B machines used in S. By definition, the remaining jobs in the sets
Di can be assigned to one machine for each set. Note that due to the removal of
jobs from D0, this set is empty if the original solution S had no machine of type B.
Similarly, for any fixed i ∈ {1, 2, . . . , sBsA }, Di is empty if the original solution S had
no machine of type A processing jobs released during the interval [(i − 1)sA, isA).
Hence, there is a schedule for the modified instance with at most three times the
cost of the original schedule.

In the following we will use solutions to OfflineCloudScheduling in our online
algorithm. To this end, we will compute ILP solutions at regular points in time for
the set of jobs arrived after the last computation and before the current time t. As
these solutions do not include setup times and resulting schedules may require a
job to be started at some time between its release time and time t (at which we
only compute the schedule), they cannot directly be realized as computed and the
online algorithm has to care for the feasibility when defining the actual schedule.
Therefore, to emphasize its character of not being final, we call a schedule computed
as a solution to OfflineCloudScheduling a tentative schedule.

8.5.3 The BatchedDispatch Algorithm

In this section, we describe and analyze our online algorithm. It is essentially based
on several observations concerning how to restrict tentative schedules so that they
can be transformed into feasible solutions afterward. We first show Lemma 8.12,
which relates the cost of an optimal schedule to the cost of one where (1) jobs are
finished at least sB time units before their deadline and (2) no jobs released during
different intervals [i∆, (i + 1)∆) share a machine, where ∆ := 1

2εsB. Intuitively,
(1) gives us the chance to delay jobs by sB for performing setups without violating
the original deadlines. By (2) we can schedule jobs from different such intervals
independently from each other achieving the cost bound as given in the lemma.
Throughout the following description we assume that ε is known to the algorithm in
advance. However, afterward we show how this assumption can easily be dropped.
For simplicity we define d̃j := dj − sB and σ̃j,τ := d̃j − rj − pj,τ , for all τ ∈ {A,B}
and all j ∈ J . We then have the following property.

Property 1. For all j ∈ J it holds max{σ̃j,A, σ̃j,B} ≥ 2∆ and d̃j > rj + 2∆.

Proof. We have max{σ̃j,A, σ̃j,B} = max{σj,A, σj,B}−sB ≥ (1+ε)sB−sB = εsB = 2∆
for all j ∈ J . It also implies d̃j > rj + 2∆ for all j ∈ J .
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Lemma 8.12. There is a schedule that (1) meets all deadlines d̃j, (2) in which no
machine processes any two jobs j, j′ with rj ∈ [i∆, (i+ 1)∆) and rj′ ∈ [i′∆, (i′+ 1)∆)
with i 6= i′ and i, i′ ∈ N0 and (3) which has cost O (c(τ+)/c(τ−)ε + 1/ε2) Opt.

Furthermore, the jobs from j ∈ J̄ := {j : ∃τ ∈ {A,B} such that σ̃j,τ < 0} can be
scheduled with cost O (c(τ+)/c(τ−)ε + 1/ε2) Opt and each job j ∈ J̄ with σ̃j,τ < 0 is
processed on a machine of type τ ′ 6= τ . The jobs from j ∈ J \ J̄ can be scheduled
with cost O(1/ε2)Opt.

Proof. We show how to modify an optimal schedule such that the desired properties
and bounds on the cost hold.
First, let Eτ ⊆ J̄ be the set of jobs j ∈ J̄ that are processed on a machine of

type τ in Opt. By increasing the cost by a factor of O
(
c(τ+)
c(τ−)ε

)
we can assume, for

all τ ∈ {A,B}, that each job j ∈ Eτ is processed on an exclusive machine of type
τ ′ 6= τ . This is true since σj,τ ′ ≥ β implying pj,τ ≥ pj,τ ′ + εsB. Hence, processing
j on an exclusive machine of type τ ′ incurs cost of c(τ ′)(sτ ′ + pj,τ ′) while it incurs
cost of at least c(τ)pj,τ in Opt, proving the claimed factor. Consequently, all jobs
from EA ∪ EB = J̄ fulfill the desired properties.

Therefore, consider the remaining set of jobs J \ J̄ . We first establish Property (2)
for these jobs. By Lemmas 8.9 and 8.10 each machine is open for a duration of exactly
5sτ and hence, can process jobs from O(1

ε ) many different intervals [i∆, (i+ 1)∆).
Hence, by assuming that each machine only processes jobs released during a common
interval [i∆, (i+ 1)∆), i ∈ N0, the costs are increased by a factor of O(1/ε), proving
Property (2).

To establish Property (1), consider any machine M i processing only jobs released
in the interval [i∆, (i + 1)∆). Let JM i

k be the set of jobs finished in the interval
[k∆, (k + 1)∆) on machine M i, k ∈ N0. Note that JM i

k 6= ∅ for at most O(1/ε)
different k’s, which again follows from Lemmas 8.9 and 8.10. Therefore, by losing
an additional factor of O(1/ε) we can replace M i by machines M i

k such that M i
k

processes exactly those jobs from JM
i

k that are started and finished in [k∆, (k+1)∆).
It remains to show how we can decrease the starting times of all jobs on any fixed
machine M i

k so that all deadlines d̃j are met. Let k1, k2, . . . be the jobs processed
on machine M i

k such that for the starting times tj it holds tk1 < tk2 < . . . We now
distinguish three cases depending on when the jobs on M i

k are finished compared to
their release times. In case k∆ ≥ sB + (i+ 1)∆, let d = tk1 − (i+ 1)∆ and reset the
starting time tj of job j on M i

k to tj = tj − d. Observe that tj ≥ (i+ 1)∆ ≥ rj for
all j ∈ {k1, k2, . . .} and each job j is finished by tj − d+ pj ≤ dj − d ≤ dj − sB ≤ d̃j .

In case (i+1)∆ ≤ k∆ < sB+(i+1)∆, all jobs k1, k2, . . . can be processed one after
another starting with k1 at (i+ 1)∆. Then no job is started before its release time
and since the workload of all of them is not larger than ∆, each job j ∈ {k1, k2, . . .}
is finished by (i+ 1)∆ + ∆ ≤ rj + 2∆ ≤ d̃j , where we used Property 1 in the last
inequality.
In case k∆ < (i + 1)∆, it follows k∆ ≤ i∆. Then, all jobs j ∈ {k1, k2, . . .} are

finished by (k+ 1)∆ ≤ i∆ + ∆ ≤ rj + ∆ ≤ d̃j . Hence, we have established a schedule
as desired by the lemma.
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We are now ready to describe our final algorithm. The formal description is given
in Algorithm 7. The algorithm relies on ∆ and its relation to the (modified) slack
σ̃j,τ of jobs and uses the following partition of J into the sets:

J ′1 = {j : σ̃j,B ≥ 2∆ ∧ (σ̃j,A ≥ 2∆ ∨ pj,A ≤ ∆)},
J ′2 = {j : σ̃j,B ≥ 2∆ ∧ (σ̃j,A < 2∆ ∧ pj,A > ∆)},
J ′3 = {j : σ̃j,B < 2∆ ∧ σ̃j,A ≥ 2∆}.

Note that {j : σ̃j,B < 2∆ ∧ σ̃j,A < 2∆} = ∅ by Property 1 and hence, that the three
sets actually form a partition of the set of jobs J . Before proving the correctness
and bounds on the cost, we shortly describe the high level ideas of our algorithm
skipping technical details, which should become clear during the descriptions for
the individual job sets and the analysis. The algorithm proceeds in phases, where
each phase is devoted to scheduling jobs released during an interval of length ∆.
At the end of a given phase, we compute tentative schedules for each set of jobs
which arrived in this phase using the modified deadlines d̃j so that the schedules
can be delayed and extended by the necessary setup times without violating any
original deadline (cf. Step (2.2)). In order to be able to guarantee that the tentative
schedules can be turned into feasible solutions, we have to define several additional
restrictions on starting times and machines to use (cf. Step (2.1)). These restrictions
are carefully designed depending on the characteristics of jobs concerning their
slacks. This approach ensures that we can turn solutions into feasible schedules
while guaranteeing that costs are not increased too much. We also precautionarily
open machines (and possibly close them without using them) for jobs that are
required to be started early and hence, for which we cannot extend the tentative
schedule by the necessary setups (cf. Step (1.2)). The feasibility is crucial since
tentative schedules are not only delayed due to the added setups but also because
of computing the schedules only at the end of a phase where jobs may have already
been available for ∆ time units.

Note that by Lemma 8.12, the overall costs of all tentative schedules, if each was
computed without the additional restrictions of Step (2.1), would be bounded by
O((c(τ+)/c(τ−)ε + 1/ε2)Opt). Hence, it is sufficient to show that the schedules for a
single phase are feasible and the costs are increased not too much by posing the
additional restrictions on the tentative schedules. Lemmas 8.14 to 8.16 prove that
both properties hold for all three sets of jobs. As used in these proofs, we first show
that jobs having a sufficiently large slack on the machine they are processed on, can
be assumed not to be started too early after they are released: Intuitively, if jobs
that have a slack of at least 2∆ and are released in the interval [(i− 1)∆, i∆) are
processed on a machine before i∆, the large slack allows us to shift them together
to a later point in time on a new machine.

Lemma 8.13. Consider a fixed τ ∈ {A,B} and a set J ′ of jobs such that rj ∈
[(i− 1)∆, i∆) for all j ∈ J ′. With constant loss we can assume that in a schedule
fulfilling Lemma 8.12 all jobs j ∈ J ′ fulfilling σ̃j, τ ≥ 2∆ ∨ pj, τ ≤ ∆ are not started
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Algorithm 7 Description of the algorithm BatchedDispatch(ε).
Let C = (sB ≥ sA + ∆ ∧ sA

c > ∆).
In phase i ∈ N process all jobs j with rj ∈ [(i− 1)∆, i∆):

(1) Upon arrival of a job j at time t
(1.1) Classify j to belong to the set J ′1, J ′2 or J ′3.

If C holds, also define J ′2,1 := J ′2 and J ′2,2 := ∅.
Otherwise, J ′2,1 := {j ∈ J ′2 : cpj,B > sA} and J ′2,2 := J ′2 \ J ′2,1.

(1.2) If C does not hold, open a machine of type A at t for each j ∈ J ′2,1.

(2) At time i∆
(2.1) Compute tentative schedules for the job sets using the modified deadlines

d̃j and these additional restrictions:
• Starting times of jobs from J ′1, J

′
2,2 and J ′3 are at least i∆,

• starting times of jobs from J ′2,1 on machines of type B are at least
i∆ and

• jobs from J ′2,2 (J ′3) only use machines of type B (type A).
(2.2) Realize the tentative schedules by increasing the starting times of jobs

from
• J ′1 by sτ on machines of type τ ,
• J ′2,1 by sB on machines of type B and by sA + ∆ or sA depending on

whether C holds or not on machines of type A,
• J ′2,2 by sB and
• J ′3 by sA,

and doing the respective setups at time i∆. Use machines from Step (1.2)
for J ′2,1 if necessary and otherwise close them after finishing the setups.

before i∆ if processed on a machine of type τ .

Proof. Consider a schedule S fulfilling Lemma 8.12. Consider an arbitrary machine
M of type τ in S and let JM = {j1, j2, . . .} denote the jobs processed on M such
that for their starting times tj1 < tj2 < . . . holds. By losing a factor of two we can
assume that JM only processes jobs j that fulfill σ̃j,τ ≥ 2∆ ∨ pj,τ ≤ ∆. Let k ∈ N
be chosen such that tjk + pjk,τ < i∆ and tjk+1 + pjk+1,τ ≥ i∆, that is, jk is the
last job finished on M before i∆. Now, we can leave all jobs j ∈ {jk+2, jk+3, . . .}
unaffected (i.e., still start them at the respective tj) and we can process jk+1 on
an exclusive machine started at time tjk+1 = i∆ > rjk+1 . This is feasible since jk+1
is finished at time i∆ + pjk+1,τ ≤ d̃jk+1 , where, in case σ̃jk+1,τ ≥ 2∆ holds, the last
inequality follows from σ̃jk+1,τ = d̃jk+1 − rjk+1 − pjk+1,τ ≥ 2∆ and rjk+1 ≥ (i− 1)∆.
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Otherwise, it follows because pjk+1,τ ≤ ∆ and d̃jk+1 ≥ 2∆ + rjk+1 ≥ (i + 1)∆ by
Property 1 and rjk+1 ≥ (i− 1)∆. All remaining jobs j ∈ {j1, . . . , jk} can be moved
to a new machine M ′ of type τ using new starting times t′j with t′j = tj + ∆. Each
job j ∈ {j1, . . . , jk} is then finished at time t′j + pj,τ = tj + pj,τ + ∆ ≤ d̃j . The
last inequality holds since d̃j ≥ 2∆ + rj ≥ (i+ 1)∆ ≥ tj + pj,τ + ∆, where we used
Property 1, rj ≥ (i− 1)∆ and in the last inequality the definition of k and the fact
that j ∈ {j1, . . . , jk}.

Hence, we obtain a feasible schedule in which no job j ∈ JM is started before i∆
and the cost at most triples since the two additional machines need not run longer
than M . Applying the argument to all machines M concludes the proof.

We now take a brief look at how jobs from J ′1 are scheduled and afterward formally
prove the cost bound and feasibility in Lemma 8.14. For jobs scheduled in the i-th
phase (i.e., released in the interval [(i− 1)∆, i∆)), BatchedDispatch(ε) computes
a tentative schedule at time i∆ using deadlines d̃j and with the additional restriction
that no job is started before i∆. It then shifts the starting times of all jobs (as
given by the tentative schedule) on machines of type τ by sτ in order to be able to
perform the respective setups before the jobs are processed. Roughly speaking, this
leads to a feasible schedule since any job is delayed by at most sB so that no deadline
dj = d̃j + sB is violated. The costs are not increased compared to the bound given
in Lemma 8.12 due to Lemma 8.13.

Lemma 8.14. For jobs from J ′1, BatchedDispatch(ε) produces a feasible schedule
with rental cost O(c(τ+)/c(τ−)ε + 1/ε2)Opt.

Proof. Let SBD be the schedule produced by BatchedDispatch(ε) for J ′1 and
let SNR and SR be the schedule given by the union of the tentative schedules for
J ′1 if computed without and with the restrictions (of Step (2.1)), respectively. We
first prove the bound on the cost of SBD and afterwards its feasibility. As the
cost of SBD are not larger than the cost of SR and by Lemma 8.12 SNR has cost
O(c(τ+)/c(τ−)ε + 1/ε2)Opt, we only have to bound how much SR and SNR differ.
Recall that we restrict the starting times of jobs from J ′1 scheduled during the i-th
phase to be at least i∆. As by definition all jobs from J ′1 fulfill the requirements of
Lemma 8.13, this restriction only increases the cost by a constant factor. Hence,
the cost of SR and SNR differ by a constant factor so that SR and thus also SBD
satisfy the claimed bound.
It remains to reason about the feasibility of SBD. Fix an arbitrary phase i and

define Ni := {j ∈ J ′1 : rj ∈ [(i− 1)∆, i∆)} to be the set of jobs released during the
i-th phase. Let SRi be the tentative schedule for Ni and let tRj denote the starting
time of job j ∈ Ni in SRi . First of all, the tentative schedule SRi provides a solution
with tRj ≥ i∆ and tRj + pj,τ ≤ d̃j for all j ∈ Ni processed on a machine of type
τ . Since the starting times are then increased in SBD to tj = tRj + sτ , each job j
processed on a machine of type τ is not started before i∆ + sτ and is finished by
tj + pj,τ ≤ tRj + sτ + pj,τ ≤ d̃j + sτ ≤ dj . Therefore, by starting the setups at i∆ and
applying the argument to all phases, SBD is a feasible solution.
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Scheduling jobs from J ′2 is slightly more involved. The very rough idea for jobs
from J ′2,1 is as follows: At the end of the i-th phase at time i∆ BatchedDispatch(ε)
computes a tentative schedule for jobs released during this phase. The starting
times on machines of type B are restricted to be at least i∆, which (exactly as
in the previous lemma) allows us to easily setup machines of type B in time by
delaying the starting times by sB while increasing the cost only by some constant
factor. The starting times on machines of type A in the tentative schedule need not
be restricted because of the following insight: In case C holds, sA is sufficiently small
compared to sB and the starting times of the tentative schedule can be increased
(by sA + ∆) so that no job is started before i∆, the setups can be performed before
the new starting times and no deadline dj = d̃j + sB is violated. In case C does not
hold, a machine is opened precautionarily for each job upon its arrival. This ensures
that the job can be started sufficiently early after computing the tentative schedule
while not being too expensive (as the setup of a machine of type A has lower cost
than processing a job from J ′2,1 on a machine of type B).

The idea for jobs from J ′2,2 is as follows: At the end of the i-th phase a tentative
schedule is computed in which all jobs are processed on machines of type B. On the
one hand, by this restriction it is (as in the previous descriptions) easy to guarantee
feasibility. On the other hand, restricting ourselves to machines of type B cannot
increase the cost too much because for all jobs it holds that processing it on a
machine of type B incurs less cost than a setup of a machine of type A (by definition
of J ′2,2) and due to one of the following observations, which show the setup cost
to be not too high: On a machine of type A only a small constant number of jobs
can be processed per machine (since pj,A ≥ ∆ and σ̃j,A < 2∆) while on a machine
of type B sufficiently many jobs can be processed in case sA

c ≤ ∆ (since together
with the definition of J ′2,2 we have pj,B ≤ ∆). Otherwise, c < sA

∆ and sB < sA + ∆
(since C does not hold if J ′2,2 6= ∅) and hence, machines of type B are not much
more expensive and also the setup does not take much longer, so that in both cases
the restriction to machines of type B does not increase the cost too much.

Lemma 8.15. For jobs from J ′2, BatchedDispatch(ε) produces a feasible schedule
with rental cost O(c(τ+)/c(τ−)ε + 1/ε3)Opt.

Proof. First of all, note that restricting the starting times of jobs from J ′2 released in
the i-th phase to be at least i∆ if processed on a machine of type B, only increases
the cost (compared to the schedule without this restriction) by a constant factor
according to Lemma 8.13. By Lemma 8.12 we then would have a cost bound of
O(c(τ+)/c(τ−)ε + 1/ε2)Opt for the schedule of BatchedDispatch(ε) for jobs from
J ′2,1 as well as from J ′2,2 if only this restriction was posed. Also, by the same line of
arguments as in the previous lemma, the resulting schedule is feasible with respect
to machines of type B. Hence, in the following we only have to analyze the influence
of the further restrictions on the cost and prove the feasibility of the schedule with
respect to machines of type A. We argue about J ′2,1 and J ′2,2 separately.
Scheduling jobs from J ′2,1. Fix an arbitrary phase i and let Ni := {j ∈ J ′2,1 :

rj ∈ [(i − 1)∆, i∆)}. Let SRi be the tentative schedule for Ni and let tRj denote
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the starting time of job j ∈ Ni in SRi . Let SBDi be the schedule produced by
BatchedDispatch for Ni and tBDj be the starting time of job j in SBDi . Let SR
and SBD be the union of the schedules SRi and SBDi , respectively. Let NA

i ⊆ Ni be
the set of jobs processed on machines of type A in SRi . We distinguish two cases
depending on whether C holds.
In case C holds, the cost bound of O(c(τ+)/c(τ−)ε + 1/ε2)Opt from Lemma 8.12

holds for SBD as we do not have any restrictions besides on the starting times on
machines of type B as already discussed at the beginning of the proof. Concerning
the feasibility we can argue as follows. Consider any job j ∈ NA

i for some i. For
the starting time of job j we have tBDj = tRj + ∆ + sA ≥ i∆ + sA. Hence, we are
able to realize the respective schedule for jobs from NA

i by starting the respective
setup processes at time i∆. Also, all deadlines are met since ∆ + sA ≤ sB by the
fact that C holds and thus, job j is finished by tBDj + pj,A ≤ tRj + ∆ + sA + pj,A ≤
d̃j + ∆ + sA ≤ d̃j + sB ≤ dj . Hence, SBD is also feasible with respect to machines of
type A.
In case C does not hold, recall that at each arrival of a job j ∈ J ′2,1, we open

a new machine of type A at time rj . This ensures that a machine is definitely
available for the respective job j ∈ NA

i at time rj + sA ≤ tBDj . Also, j is finished
by rj + pj,A + sA ≤ d̃j + sA ≤ dj . Therefore, we obtain a feasible schedule and
it only remains to prove the bound on the cost. Note that the additional setup
cost in SBDi compared to SRi is upper bounded by |J ′2,1| · sA, which we can upper
bound as follows. If a job j ∈ J ′2,1 is processed on a machine of type B in SRi it
incurs cost of cpj,B ≥ sA by definition of J ′2,1. On the other hand, SRi can process at
most three jobs on a machine of type A (since σ̃j,A = d̃j − rj − pj,A < 2∆ implying
d̃j < 2∆ + pj,A + rj and because pj,A > ∆ by the definition of J ′2). Taken together,
this shows that the additional setup cost of |J ′2,1| · sA is upper bounded by three
times the cost of SRi . Therefore, BatchedDispatch(ε) produces a feasible schedule
for jobs from J ′2,1 and the cost bound for SR as discussed at the beginning of the
proof holds for SBD as well. This concludes the proof for jobs from J ′2,1.
Scheduling jobs from J ′2,2. Let Ni := {j ∈ J ′2,2 : rj ∈ [(i− 1)∆, i∆)} and let SNRi

be the tentative schedule for Ni if computed without the restriction of only using
machines of type B. Let SBDi be the schedule produced by BatchedDispatch(ε)
for jobs from Ni. Let SNR and SBD be the union of the schedules SNRi and SBDi ,
respectively. We have to analyze the influence of the restriction of only using
machines of type B. To do so, we show the claim that shifting any jobs processed
on machines of type A in SNRi (call them NA

i ) only increases the cost by O(1/ε).
Note that this is sufficient to prove the bound in the lemma as NA

i ∩ {j : ∃τ ∈
{A,B} σ̃j,τ < 0} = ∅ and thus according to Lemma 8.12, all jobs from ⋃

iN
A
i can be

scheduled with cost O(1/ε2)Opt. Observe that NA
i ∩ {j : ∃τ ∈ {A,B} σ̃j,τ < 0} = ∅

holds since we have σ̃j,B ≥ 2∆ for all jobs j ∈ J ′2 and thus, j can only be in
NA
i ∩ {j : ∃τ ∈ {A,B} σ̃j,τ < 0} if σ̃j,A < 0. However, in this case by the statement

for jobs from J̄ in Lemma 8.12 we can assume that j /∈ NA
i .

First, we show the claim if sAc ≤ ∆ holds. On the one hand, any machine of type A
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in SNRi can process at most three jobs j with j ∈ NA
i (since σ̃j,A = d̃j−rj−pj,A < 2∆

implying d̃j < 2∆ + pj,A + rj and since pj,A > ∆ by the definition of J ′2), leading to
(setup) cost of Ω(|NA

i |sA). On the other hand, we can schedule all jobs from NA
i

on O
(
|NA
i |sA
∆c

)
machines of type B each open for O(sB) time units and thus, with

cost of O
(
|NA
i |sA
∆c csB

)
. To see why this is true, observe that for all jobs j ∈ NA

i it

holds [rj , d̃j ] ⊇ [i∆, (i+ 1)∆) =: Ii since rj ≤ i∆ and σ̃j,B ≥ 2∆. Because all jobs
j ∈ NA

i fulfill pj,B ≤ sA
c by definition of J ′2,2, we can accommodate b c∆sA c ≥ 1 many

jobs from NA
i in Ii. Hence, by only using machines of type B we lose a factor of

O( csB∆c ) = O(1/ε), proving the claim.
Finally, it needs to be proven that the claim also holds for the case sA

c > ∆.
Recall that J ′2,2 6= ∅ only if C does not hold and hence, that this case also implies
sB < sA + ∆. Let M1, . . . ,Mm denote the machines of type A used by SNRi and let
κ1, . . . , κm be the durations for which they are open. Since pj,B ≤ pj,A for all j ∈ J ′2,2
by definition of J ′2, we can replace each machine M ∈ {M1, . . . ,Mm} by a machine
M ′ of type B using the same schedule on M ′ as on M . We increase the cost by a
factor of at most

∑m

i=1 c(sB+κi)∑m

i=1(sA+κi)
≤ csB

sA
+ c ≤ c(∆+sA)

sA
+ c ≤ c∆

sA
+ 2c = O( sA∆ ) = O(1/ε),

where the second last bound holds due to sA
c > ∆. This proves the claim and

concludes the proof.

Lemma 8.16. For jobs from J ′3, BatchedDispatch(ε) produces a feasible schedule
with rental cost O(c(τ+)/c(τ−)ε + 1/ε3)Opt if τ+ = B and O(c(τ+)/c(τ−)ε2 + 1/ε3)Opt
otherwise.

Proof. If c ≥ 1 (i.e., τ+ = B) then all jobs from J ′3 can be assumed to be scheduled
on machines of type A without any loss in the cost since machines of type B are
at least as expensive as machines of type A and all jobs from J ′3 are smaller on
machines of type A. Hence by Lemma 8.13 we obtain a bound on the cost as given
in Lemma 8.12.
Consider the case c < 1. Recall that we schedule all jobs on machines of

type A. By the same line of arguments as given in the previous lemma for jobs
from J ′2,2 and switching the roles of machines of type A and type B, we get the
desired bound (as in the case sA

c > ∆ of Lemma 8.15, we lose a factor of at most∑m

i=1(sA+κi)∑m

i=1 c(sB+κi)
= O

(
1
c

)
= O

(
c(τ+)
c(τ−)

)
compared to the schedule with cost O

(
1
ε2

)
from

Lemma 8.12).

Taking Lemmas 8.14 to 8.16 together, we obtain the following theorem.

Theorem 8.17. Let β = (1 + ε)sB, 1/sB ≤ ε ≤ 1. For c ≥ 1 BatchedDispatch(ε)
is O(c/ε + 1/ε3)-competitive. For c < 1 BatchedDispatch(ε) is O(1/cε2 + 1/ε3)-
competitive.

In a parameterized analysis one usually does not want the algorithm to depend on
the knowledge of the value of the parameter but only wants to refer to the parameter
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Algorithm 8 Description of the algorithm BatchedDispatch.
Let ε̂ = 1/2.

(1) Start a new instance BatchedDispatch(ε̂) handling arriving jobs
until the arrival of a job j with ε̂ > maxτ σj,τ =: σ. Then,

• reset ε̂ = min{ε̂/2, σ} and
• go back to Step 1.

in the analysis and resulting performance bound. Therefore, we do not want to
assume the minimum slack β to be known in advance and we show how one can
easily get rid of this assumption. The formal description is given in Algorithm 8.
Essentially, the algorithm maintains a guess on ε and whenever this guess turns out
to be too large, it is halved. This approach does not substantially increase the cost
compared to the case where ε is known in advance as proven in the next theorem.

Theorem 8.18. BatchedDispatch achieves the same bounds as given in Theo-
rem 8.17 for BatchedDispatch(ε) .

Proof. Denote the parameters ε̂ used in the calls of BatchedDispatch(ε̂) by
ε̂1, ε̂2, . . . , ε̂k (in this order). Let ε be the actual value describing the slack of the
considered instance. We have 2k−1ε̂k ≤ ε̂k−1/2 ≤ . . . 2ε̂2 ≤ ε̂1 = 1/2. Also we have
that ε̂k ≥ ε/2. Hence, ε̂i ≥ 2k−i−1ε. By Theorem 8.17 BatchedDispatch(ε̂i) has
cost O

((
c
ε̂i

+ 1
ε̂3
i

)
Opt

)
for the case c ≥ 1. Hence, the overall costs of Batched-

Dispatch for this case are upper bounded by

O(Opt) ·
k∑
i=1

(
c

ε̂i
+ 1
ε̂3
i

)
= O(Opt)

(
c

ε

k∑
i=1

1
2k−i−1 + 1

ε3

k∑
i=1

1
23(k−i−1)

)

= O(Opt)
(4c
ε

+ 10
ε3

)
.

The case c < 1 follows analogously.

We want to conclude this chapter by noting that neither in our algorithm design
nor in our analysis we tried to optimize any constants involved in the achieved
competitiveness. Also, computed solutions will, in general, rent a very high number
of machines and for quite short periods of time, which is rather inefficient. In actual
implementations one would, of course, add improvements such as keeping a machine
open if it is clear that it can, instead of being closed, be reused for the schedule of a
later phase.
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Conclusion & Outlook

Scheduling with setup times is a large research area considering models with
many natural applications. However, as discussed in the introduction of this
thesis, Allahverdi et al. highlighted in their survey [AGA99] that especially

theoretical results based on worst-case analysis are very scarce in this domain. In
the light of this observation, the goal of this thesis was to contribute to the research
area on scheduling with setup times from the perspective of approximation and
competitive online algorithms. In the course of this work, we have considered two
different questions. On the one hand, the question how we can reasonably schedule
jobs of different classes when a switch from processing jobs of one class to jobs of
a different class requires reconfigurations with non-negligible setup times. On the
other hand, we considered the allocation of and scheduling on machines rented from
the cloud when a (virtual) machine incurs a non-ignorable starting time before being
ready for processing. In the following, we discuss some open questions that directly
result from our findings as well as some possible future research directions.

9.1 Scheduling on Machines from the Cloud
In Chapter 8, we considered the problem in which jobs, which arrive over time,
are to be scheduled on machines that need to be rented from the cloud. The goal
is to minimize the rental cost while meeting all jobs’ deadlines. We were able to
achieve O(c/ε + 1/ε3)-competitive and O(1/cε2 + 1/ε3)-competitive solutions for c ≥ 1
and c < 1, respectively, when the smallest slack is at least (1 + ε)sB.

Embedded in the research context, these results can be seen to complement and
extend a variant of the problem of scheduling in the cloud [Aza+13] as discussed
in Section 8.2. Recall that in this work, the authors study a problem addressing
the minimization of cost and maximum delay in a model where identical machines
with setup times of length s need to be rented from the cloud. Precisely, they define
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the delay of a job j as the difference between its finishing time and rj + pj . They
designed an online algorithm that, given a budget of (1 + ε) times the minimum
cost to schedule all jobs (without any assumption on the maximum delay), finds a
solution with a maximum delay of O(s/ε). It seems to be a natural question to study
the problem when the roles of costs and delay are interchanged in the sense that
the maximum delay becomes the restriction (instead of the optimization goal) and
the cost becomes the optimization goal (instead of the restriction). Observe that in
this case, the delay and the slack of a job essentially describe the same aspect: The
maximum amount of time by which the processing of a job might be delayed after
its release. Hence, if the maximum delay should be bounded by d, we can set the
maximum slack of each job j to d (by defining dj = rj + minτ{pj,τ}+ d). For only
one type of machines, our algorithm then achieves a solution with maximum delay of
(1 + ε)s and costs O(1/ε2Opt), giving a solution for the problem of [Aza+13] when
the maximum delay is considered as a restriction and the cost as an optimization goal.
In the same sense, one could extend this to two types of machines, in which case our
algorithm provides solutions with cost O((c/ε + 1/ε3)Opt) and O((1/cε2 + 1/ε3)Opt)
for c ≥ 1 and c < 1, respectively.

In the light of these considerations, our results are in line with other research (e.g.
[Aza+13; Sah13]) and in this regard it is a first step toward models for scheduling
machines from the cloud addressing the heterogeneity of machines. Although the
considered setting with κ = 2 types of machines seems to be restrictive, it turned out
to be challenging and there is still a gap between our lower and upper bound. For
future work, however, it would be interesting to study more general models for κ > 2
types of machines. As our approach is partly based on manually designed decisions
concerning which type of machine to use for jobs with certain characteristics (see
Section 8.5.3), algorithms for κ > 2 probably require new techniques. On the one
hand, while it might be possible to design decision rules for deciding which type of
machine to use for certain jobs, an increasing number of types might let the number
of decision rules grow even more rapidly. On the other hand, it is not clear how
to automate such decisions. Indeed it is possible to extend the linear program to
a larger number of machine types, but this will only work for jobs having a large
slack on all types (as it was the case for the job set J ′1 in Section 8.5.3). For other
jobs it would be necessary to restrict the machine types that might process a job in
advance since otherwise it cannot be guaranteed that tentative schedules can be
turned into an actual feasible one.

9.2 Scheduling with Setup Times

For the model introduced in Chapter 3 and then considered in Chapters 4 to 7, we
have shown several positive results in terms of small constant factor approximations
concerning the makespan for the classical case of identical, uniformly related and
special cases of unrelated machines. For the general case of unrelated machines
we have shown matching upper and lower bounds, which are logarithmic in the
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number n of jobs and number m of machines. For minimizing the maximum flow
time on a single machine, we have shown a constant factor approximation and
have analyzed a very simple and intuitive online algorithm, which turned out to be
Θ(
√
n)-competitive. In a smoothed competitive analysis, we have shown that this

competitiveness improves to be polylogarithmic in n for uniform and gaussian noise.
In the following we name and discuss some questions that result from our findings

and that might be interesting for future work.

Makespan on Heterogeneous Machines. Our results show a clear separation
between the classical two models for heterogeneous machines: While the case of
uniformly related machines can be approximated well, our matching upper and lower
bounds for unrelated machines are unsatisfactorily high. Therefore, it might be
interesting to seek for positive results for relevant special cases of unrelated machines,
that is, cases lying in between the two aforementioned models for heterogeneity.
The negative results are, unarguable, due to the mere generality of the considered
model and the resulting relation to the SetCover problem. However, there might be
practically interesting special cases where much better approximation factors can be
achieved. One reasonable direction could be to consider unrelated machines of few
types. Here, all machines of a given type are identical, while machines of different
types are unrelated (similar to the cloud setting considered in Chapter 8). Such
settings are, for example, motivated by heterogeneous systems comprising of a few
different processing units such as CPUs, GPUs and FPGAs. In case without setup
times, this case is already much easier as there is an EPTAS known if the number of
types is constant [JM17] (compared to the 3/2 lower bound for the general problem
[LST90]).
A second case that might admit constant factor approximations are problems

with processing set restrictions [LL08; LL16], a special case of unrelated machines.
Note that the case of identical machines with processing set restrictions is equivalent
to the restricted assignment problem. Here, it is known for the classical variant
(without setup times) that certain structural properties concerning the set of eligible
machines of jobs can lead to much better results than those possible for the general
case. As an example take the case where the set of eligible machines is hierarchical,
that is, there is an ordering of machines such that any Mj is a suffix of it. Such a
model might have practical motivations, for example, in settings where restrictions
result from lack of memory or equipment with specific components. Compared to
the impossibility result of 3/2 for the general restricted assignment problem, [EL11]
designs a PTAS for the case of hierarchical restrictions. It is not too hard to see that
the case of hierarchical restrictions also allows better approximation factors for our
problem of restricted assignment with setup times. Compared to the o(logn+logm)
impossibility result for the general restricted assignment problem with setup times,
first approaches already show that constant factor approximations are possible for
hierarchical restrictions using an approach similar to Section 5.4.
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Minimizing Maximum Flow Time. When it comes to minimizing the maximum
flow time on a single machine, the exact approximability of the problem is still open.
While we improved the approximation factor to a smaller constant, an impossibility
result is only known in terms of the NP-hardness for computing optimal solutions
[DS11]. Therefore, the question of better approximations or stronger lower bounds
arises.

Concerning the (non-clairvoyant) online variant, the capabilities of online algo-
rithms, which are not restricted to be greedy-like as in Chapter 7, need to be further
investigated. It is not clear whether or not a constant competitiveness is possible.
Our lower bound only holds for greedy-like algorithms and does not carry over to
generally unrestricted online algorithms. A potential non-constant lower bound
construction would have to respect two aspects: First, the non-clairvoyance of an
online algorithm would have to be exploited explicitly (which our construction does
not make use of at all) as for clairvoyant approaches a constant competitiveness
is achievable [DS11]. Second, as a potential lower bound would also have to hold
for our algorithm, the optimal flow time would have to be in o(

√
n) and the dif-

ference in the number of setups our online algorithm performs compared to the
optimal solution has to be in ω(1). Taken together, an adversary would have to
exploit the non-clairvoyance to let an online algorithm perform unnecessary setups.
While it is not clear how this could be achieved, we do not know how to handle
the non-clairvoyance algorithmically to get positive results either. One important
ingredient that is used in [DS11] to obtain a constant competitive algorithm for the
clairvoyant case is, roughly speaking, based on the fact that one can collect jobs of
the same class until their workload reaches a threshold that justifies a new setup for
the respective class. Such an approach is no longer possible in the non-clairvoyant
case.

It would be very interesting for future work to further investigate if it is possible
to improve our smoothed analysis. Although we were not able to show such a result,
it is possible that the actual smoothed competitiveness is independent of n. Though,
proving such a result would probably require a different approach; the logn term
in our result seems to be inherent to our analysis as it relies on the length of the
longest run of bad events, each occurring with constant probability. On the other
hand, it is also evident that our Ω(

√
n) lower bound for greedy-like algorithms is

robust against very small amounts of random noise. For noise from an interval [a, b]
with a, b ∈ O( 1√

n
), a small adaptation of the construction in Theorem 7.12 proves

this fact: Increasing the setup time of each class from 1 to 2 and having 5 instead
of 2 time steps without a job release at the end of each phase. By this, an optimal
solution will remain to have a constant flow time as no phases interfere (even if
all job sizes are increased due to the random noise); the online solution will still
increase the flow time in each phase as (even if all job sizes are decreased due to the
random noise) the workload processed by the online algorithm is by at least 1 larger
than the length of the phase. Similarly, one should be able to obtain analogous
results for gaussian noise. A rough back-of-the-envelope calculation already shows
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that for σ ≤ 1√
n logn we obtain, with constant probability, the same situation as

described above where all Xj ∈ [a, b] with a, b ∈ O( 1√
n

) (which follows from the
fact that Φ−1(1 − 1

n) ≈
√

2 logn and if Xj ∼ N (0, σ2) then Xj ∈ [−σz, σz] with
probability p for z = Φ−1(p+1

2 ) [Das08]).
An extension to parallel machines could be another next step. However, compared

to the case where we do not have setup times and where the FIFO strategy was
carried over to parallel machines [Mas04], setups make the problem more challenging
in two ways: We not only have to take a look at the increase in the number of setups
an online or approximation algorithm performs compared to an optimal solution
due to the exact way how jobs are batched per machine; we also need to take into
account the influence of the distribution of jobs among several machines. Intuitively,
decreasing the number of machines used for a class also decreases the number of
setups but, on the other hand, it decreases the potential of parallelizing jobs of a
class. While this was already the case for the makespan objective, it becomes even
more challenging here because a class will usually have several (instead of at most
one) setups per machine. It is not obvious and seems to be non-trivial how to tackle
this aspect of the parallel machines case, that is, how to keep the number of setups
small and how to bound this.

9.3 Future Directions
On a more general level, that is, not directly linked to our particular results, we will
discuss three future directions.

Smoothed Competitive Analysis. An interesting research direction seems to be
the application of the notion of smoothed competitiveness as one approach in the
realm of beyond worst-case analysis [Rou19]. Although this kind of analysis looks
quite demanding, it can provide meaningful bounds carrying much more information
about the performance of an algorithm than a usual competitive analysis. Also,
an interplay of algorithm design and smoothed competitive analysis might have a
special charm as it might lead to practically good and, at the same time, simpler
and more intuitive algorithms compared to algorithms tailored to the worst case.

On the other hand, one should also be aware that smoothed competitive analysis
is not a universal tool that is simply applicable to any problem to mitigate worst
cases and to get considerably improved bounds. The question of whether random
noise can lead to a benefit highly depends on the studied problem. For example, we
have seen some positive result for smoothed competitiveness in Chapter 7. However,
in the course of the development of this thesis, we also encountered problems where
worst cases are more robust against random noise and small perturbations as in
Chapter 7 seem to have no significant impact on the achievable competitiveness. One
such problem is a variant of the problem from Chapter 7 in which the objective is
the minimization of the average flow time. This problem has, even in the clairvoyant
case without setups, a lower bound of Ω(n) for deterministic and Ω(

√
n) [SV02]
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for randomized online algorithms, which seem to be robust against small random
perturbations. A similar observation seems to hold true for the lower bound for the
problem of machine minimization [Sah13], which we mentioned in the discussion of
related work in Section 8.2.

Sequence-Dependent Setups. With respect to the modeling of scheduling with
setup times, it might be appealing to consider generalizations in terms of sequence-
dependent setup times [Bru07]. In this case, setup times (related to individual jobs,
or related to classes) might not only depend on what is executed next on a machine
but on what was executed before as well. Such models have natural applications
as reported in [AGA99; All+08; All15]. For example, setup times might represent
the cleaning of a machine, which can depend on the sequence of operations. For
instance, when cleaning a printing machine between the usage of different colors
(white after red requires more cleaning time than black after white); or setup times
might represent the change of tools where the question of which tools are to be
removed or added depends on past and future. However, like in the case of sequence-
independent setups, sequence-dependencies have been considered in the literature
but hardly from the perspective of worst-case analysis. The challenge of having
sequence-dependent setup times lies in the following observation, which indicates
that minimizing the makespan becomes much harder even on a single machine.
Recall that in the model considered in this thesis, minimizing the makespan on
a single machine is trivial as there is exactly one batch per class and batches are
ordered arbitrarily. In contrast, handling sequence-dependencies implies solving a
travelling salesperson problem (even if all jobs have size 0 and under the assumption
that we introduce a dummy class for which a final setup has to be performed).

Composed Jobs. Finally, another interesting direction could be the study of models
that consider composed jobs. Motivated by, for example, the SFB 901 [Hap+13], or
in general micro-service based architectures, one could consider settings where a job
consists of several operations. Then the completion time of a job is determined by the
completion time of its latest operation and a natural objective is the minimization
of the average completion time of jobs. Also, setup times might be associated with
classes of operations. Such a model has also been motivated in further possible
domains [LLP05] but is still barely understood. First steps included studying the
complexity of the problem and the NP-hardness of the single machine case [NCY02]
as well as the polynomial solvability of a special case [Ger+99] are known. Intuitively
and compared to the makespan objective, this problem is no longer trivial even on
a single machine mainly because the order in which classes are processed influences
the total completion time. We initiated research on approximation algorithms for
this problem and considered the case of a single machine in [MMP19]. Based on
solving a simplified variant and transforming solutions back to the original problem,
we were able to design (1 +

√
2)- and 2(1 +

√
2)-approximation algorithms for a

constant and non-constant number of classes, respectively.
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