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Abstract

Following the implementation of Basel III and its forthcoming finalization, risk

management has been already paid high attention by firms, financial institutions

and even the Basel Committee on Banking Supervision. The risk measurement

and financial risk models become the crucial prerequisites in risk management.

Firstly, some recently developed financial volatility models are provided in the

dissertation. In order to examine the long-term and short-term market risk, a

time-varying scale function is introduced based on parametric models, such as the

GARCH, the ACD and the MEM models. Then, the market risk is decomposed in-

to a short-term risk by a parametric part and a long-term risk by a semiparametric

trend function. Due to no parametric model assumptions, the set-up semiparamet-

ric models are model free and general in the parametric part. Besides, to reduce

the moments requirement of the considered data, the power transformation is em-

ployed in the general semiparametric models, i.e. some general power transformed

semiparametric models are built up, such as the general Box-Cox SemiGARCH

model, the general Box-Cox SemiACD model and the general Box-Cox SemiMEM

model. The estimation of the scale function is not related to any parametric

specification. Due to the shortcomings of the kernel and the local linear approach-

es, a non-negative constrained local linear estimator of the trend, which is next

proposed to descale a suitable parametric model to the standardized residuals, is

under consideration. Iterative plug-in algorithms are developed to estimate the

bandwidth and the power parameter. For the power parameter estimation, var-

ious criteria, such as the Jarque-Bera test, the maximum likelihood estimation,

the Shapiro-Wilk test and quantile-quantile regression, are employed. Further,

the block bootstrap simulation is carried out to estimate the confidence interval

of the power parameter. The empirical findings are illustrated by applying the

algorithms to real financial market data, e.g. the returns, the trading duration,
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the trading volume and the trading numbers, indicating the good performance of

the general power transformed semiparametric models.

For another, the value at risk and expected shortfall are also predicted by the

general semiparametric models. In the stationary process, we use the conditional

t-distribution as the assumption in both risk measures. Well known models, such

as the GARCH class models, including GARCH, APARCH, EGARCH, etc., based

on the conditional t-distribution, are as parametric extensions. In addition, the

backtesting with the semiparametric approach for both value at risk and expected

shortfall are also discussed. Although the Kupiec POF test and independence

test are carried out, the robustness of the results is challenged. Following Basel

III, the traffic light tests, considering the cumulative probability, are applied. For

expected shortfall, a breach indicator is introduced to obtain a similar traffic light

test of value at risk. Loss functions from different viewers, such as the regulator

and the firms, are also discussed. It is shown that different market participants

prefer using different loss functions to maximize own profits. From the empirical

cases, the semiparametric models are necessary tools in risk management.

Keywords: semiparametric, volatility, value at risk, expected shortfall, risk man-

agement
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Chapter 1

Introduction

Since the global financial crisis, it has been realized that more close attention

should be paid to the significance of quantitative risk management of the financial

market operation. The financial econometrics and quantitative risk management

are definitely related to not only the market economy operation but also the

micro- and macroeconomics performance of the countries all over the world in

every field. Financial risk engineer N. Taleb, the author of the book Black Swan,

strongly warned about the banks’ approaches applied to risk management and

their irresponsibility against potential risk in the modern financial system from

the coming crisis and its negative consequences.

In the financial world, volatility is an important concept in financial economet-

rics and is widely used in investment portfolios, asset pricing, product pricing and

risk management. Currently, the empirical research and analysis on the volatility

of financial prices have become one of the essential problems in modern financial

risk management research. The financial modeling in the research process is the

crucial technique to analyze the volatility and risk decomposition in markets.

Price volatility in financial markets is often considered and measured by clas-

sical variance models. In these models, the assumption has always recognized the

variance as a constant at different time points. However, with the development

of financial science research, it is found that this assumption can not reveal the

real volatility movement in the financial market and a large number of financial

time series such as stock prices, GDP indexes, interest rates and currency ex-

change rates show that the variance is not fixed, but time-varying. The ARCH

(autoregressive conditional heteroskedasticity, Engle, 1982) and GARCH (general-
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ized ARCH, Bollerslev, 1986) are tremendous successes for modeling volatility on

financial markets. In literature, there is a huge number of extensions of the origi-

nal GARCH model. For instance, the asymmetric power ARCH (APARCH, also

called APGARCH, Ding et al., 1993) model, the EGARCH (exponential GARCH,

Nelson, 1991) to discuss the short memory property in the volatility. There are al-

so volatility models to reveal the long-memory property of squared returns, such as

FIGARCH (fractionally integrated GARCH, Baillie et al., 1996), the LMGARCH

(long-memory GARCH, Karanasos et al., 2004, Conrad, 2006 and Conrad and

Karanasos, 2006) and so on. Those extensions are all defined as stationary time

series. In practice, it is found that the unconditional variance of asset returns

in a long period usually change over time. The SemiGARCH (semiparametric

GARCH, Feng, 2004) and the Spline-GARCH (Engle and Rangel, 2008) model

are hence proposed to analyze this nonstationary property of volatility, where a

nonparametric scale function is introduced to parametric volatility models.

The high-frequency financial data is being focused in financial modeling. The

research on ultra high-frequency data, such as the duration, has attracted more

and more scholars. To analyze the ultra high-frequency data, Engle and Russell

(1998) proposed an autoregressive conditional duration (ACD) model, which is

an important tool in the high-frequency financial data analysis. Afterwards a

lot of extensions of the ACD model were proposed. To analysis the long-term

dependencies in the duration series, Jasiak (1998) extended the ACD model to the

fractionally integrated ACD (FIACD) model. A logarithmic version of the ACD

(Log-ACD) model was introduced by Bauwens and Giot (2000). The ACD models

were extended to semiparametric methods. Feng (2013) proposed a SemiACD

model and applied a local linear method to estimate the diurnal pattern. Feng and

Zhou (2015) discussed a Semi-Log-ACD process by introducing the scale function

into the logarithm ACD models. Indeed, it is a special case of the Semi-FI-Log-

ACD model with fractional differencing parameter d = 0.

In the dissertation, the definition, estimation and properties of the semipara-

metric models and the methods of bandwidth selection are discussed with various

data types. In the financial return series, a SemiGARCH model is considered to
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model the volatility in the long run by introducing a time-varying scale function

and after removing the trend, the stationary return series can be analyzed with

any classical GARCH type model. The semiparametric analysis can also be car-

ried out in the research on the non-negative financial variables, such as trading

volume, trading number, average transaction duration and volatility indexes and

the SemiACD or Semi-Log-ACD model is applied as an extension of parametric

duration model to describe the mean movement in decades. Furthermore, the

semiparametric algorithm is available to not only the financial data but also the

macroeconomic data. In practice, the semiparametric modeling with macroeco-

nomic data, such as GDP, inflation rate, interest rate and so on, works also very

well.

The power transformation is a key idea proposed in the dissertation. The

Box-Cox transformation (Box and Cox, 1964) is developed as an efficient pow-

er transform technique, applying the non-linear transformation, especially in the

analysis of the variance. To apply the Box-Cox transformation, the expectation

of the variable possesses a simple structure and the error of the variable is also

consistent. Furthermore, the most important advantage of the Box-Cox is, after

Box-Cox transformation, the distribution of the variable ís closer to the normal

distribution. Manly (1976) proposed an exponential power transformation and

in this exponential transformation, the negative values of the variable are also

considered. Modulus Transformation (John and Draper, 1980), a modified power

transformation, introduced a sign function in the data transform and it is effective

with the symmetric distribution data set, however, the transformation seems to be

invalid when the transformation parameter is zero. Yeo and Johnson (2000) devel-

oped another modification by minimizing the Kullback-Leibler distance between

the normal distribution and the transformed distribution and considered not only

the transformation of the negative values but also the logarithm form with power

zero.

In the analysis of Box-Cox transformation, the focus is the determination of

the power transformation parameter. Box and Cox discussed two approaches,

the Maximum Likelihood method (MLE) and the Bayesian method. MLE is the
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most common method applied in the searching of the power transformation pa-

rameter due to the feasibility in computation and confidence interval calculation.

Besides, the normality (goodness of fit) test can also be applied in the power

transformation parameter selection. Rahman (1999) and Rahman and Pearson

(2008) applied the Shapiro-Wilk test and the Anderson-Darling test to obtain the

transformation, respectively. Asar et al. (2017) summarized the common nor-

mality test, such as Shapiro-Wilk test, Anderson-Darling test, Cramer-von Mises

test, Pearson chi-square test, Kolmogorov-Smirnov test, Jarque-Bera test and a

method of artificial covariate and developed these normality tests in the searching

algorithms to find maximum or minimum statistic values rather than numerical

calculation. Furthermore, graphical methods is also an alternative method in the

power transformation searching, by comparing the histogram of the sample da-

ta and a normal distribution curve, for example, the quantile-quantile regression

(QQr) method.

The dissertation is organized as follows. In Chapter 2, the definition of para-

metric GARCH and ACD model is first introduced. Then, a variety of the common

volatility models and duration models are detailed discussed. In the volatility mod-

els, ARCH, GARCH, APARCH, EGARCH and CGARCH models are selected as

the representative and in the duration models, we discussed ACD and log ACD

models. In the subsection of each model, we described the definitions, statistic

properties and the estimation method. Besides, as extensions of the parametric

models, we investigated the models with time-varying components. The Semi-

GARCH, SemiACD and Semi-Log-ACD models are the parametric modifications

by introducing scale function.

In Chapter 3, a framework for general SemiGARCH models is built by intro-

ducing time-varying trends to present short- and long-term market performance

through daily trading data. The scale function reveals long-term risk components

and the classical parameter GARCH model exhibits short-term market risk. If the

scale function is not considered, the restriction on the parameter GARCH model

no longer exists and generally, the SemiGARCH framework does not require the

assumption of the parameter part, which means that the parameter model is free.
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Also, a power transformation is proposed to reduce the moment requirement of the

GARCH model. The IPI algorithm is executed to estimate the power parameters

to reach a convergence value.

In Chapter 4, as Basel III and its imminent completion, we will use the para-

metric and semiparametric models to examine VaR and ES predictions and back-

testing. An important innovation is the ES traffic light test. In the empirical

study, the ES backtesting test works well and does provide a simple and straight-

forward method for ES backtesting. In addition, some practical cases have been

found to support semiparametric models, which can reasonably reveal market risks

and meet regulatory agencies and enterprises, proving that semiparametric models

are necessary risk management tools and complement the parametric models.

Then, in Chapter 5, the duration models are considered. The aim of the chapter

is to describe the semiparametric models to analyze the non-negative data, such

as mean transaction duration, trading number, trading volume, realized volatility

and volatility indexes. A SemiACD model is proposed to discuss the scale function

in the mean duration. The mean duration considered in this chapter still follows

a multiplicative process, modeling with a time-varying MEM model. In the scale

function estimation, the Box-Cox-transformation is still considered, however, in

the estimation algorithm, not only the selection of bandwidth is considered but

also the constant factor in the asymptotic variance.

A wide class of semiparametric GARCH models is interpreted in Chapter 6

by introducing a scale function into a GARCH-type model for featuring long-

run volatility dynamics caused by changing the macroeconomic environment. The

dynamics volatility can be modeled as an MEM with a varying scale function. Fur-

thermore, the scale function is estimated under weak moment condition by means

of the Box-Cox-transformation of the constrained returns and the scale function

is estimated independent of any GARCH specification. Asymptotic properties of

the proposed nonparametric and parametric estimators are studied in detail and

an iterative plug-in algorithm is developed for selecting the bandwidth and the

parametric estimation of the stationary part is also independent.

A further topic on the non-negative intraday high-frequency data with the
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SemiMEM model is discussed in Chapter 7. At the end of the dissertation, the

summary of the main contributions is concluded. In view of the current work,

the shortcoming of the research is pointed out and design a reasonable research

prospect.



Chapter 2

Parametric and Semiparametric Models

The GARCH model and its extensions are the most popular approaches to model

the conditional heteroskedasticity in financial returns. However, financial returns

possess not only the conditional heteroskedasticity but also time heteroskedastici-

ty, implying the nonstationarity of financial returns in a long period. The feature

requires a new GARCH-type model, modeling both the conditional volatility dy-

namics and the long-run risk. In this chapter, the selected parametric volatility

and duration models are discussed. The properties of these models are also sum-

marized. Besides, semiparametric models with a time-varying trend function are

introduced, decomposing the long-run volatility.

2.1 Introduction

Financial time series models develop rapidly in recent decades, especially the

GARCH-type models. From the ARMA model to the recent GARCH-type model,

the model has experienced a process from linear to nonlinear, from parametric to

nonparametric or semiparametric approach. It is known that volatility clustering

exists in financial time series, and the distribution of random variables appears

the fat tails. Different from the classical models, the Autoregressive Condition-

al Heteroskedasticity (ARCH) model suggests that the conditional variance could

change over time as a function of past errors. In practical applications of the ARCH

model, a relatively long lag in the conditional variance equation is often required,

which might lead to an increase in the complexity of estimating parameters and

decrease the freedom degree. However, the restrict condition is exactly needed in

this model to ensure conditional variance to be non-negative. Therefore, there are

many economists tried to improve ARCH models. Among these researches, the
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generalized ARCH (GARCH) model, which is introduced by Bollerslev (1986), is

the most widely well-known one with a better framework to study time-varying

volatility in financial markets.

2.2 Overview of the volatility models

It is well known, financial markets are often volatile. The volatility is an important

variable to indicate the risk of assets and reflect the uncertainty of asset returns.

To measure the volatility, parametric models, such as (G)ARCH models and their

extensions, are regarded as the most commonly used approaches in investment

analysis and futures pricing. In this section, some of the parametric GARCH

models will be introduced.

2.2.1 The ARCH model

In the study of ARCH models, the conditional mean and conditional variance of

financial returns are introduced. Suppose r1, r2, . . . , rt are the time series random

variables and their conditional variances depend on a great number of information

according to the past periods. The conditional mean does not depend on the past

information,

E(rt|rt−1, . . . , r1)
.
= 0, (2.1)

whereas the conditional variance

ht = var (rt|rt−1, . . . , r1), (2.2)

obviously depends on rt−1, . . . , r1.

According to Engle (1982), the uncorrelated but dependent process Xt, can be

defined as ARCH(p),

rt = ηth
1/2
t , rt|Ft−1 ∼ N(0, ht), (2.3)
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ht = α0 +

p∑
i=1

αir
2
t−i, (2.4)

where ηt is a sequence of i.i.d. random variables with mean 0 and variance 1,
√
ht is the conditional standard deviation, α0 > 0, αi ≥ 0, i = 1, . . . , p and

Ft−1 denotes the past information. Here, ht is the conditional variance, which

depends on p periods information in the past. The conditions α0 > 0 and αi ≥ 0

guarantee a positive conditional variance. Obviously, conditional variance depends

on the squared past observations. ARCH model indicates that rt and rt+k are

not independent. Equation (2.4) describes the independence of rt using a simple

quadratic function of its lagged value.

An ARCH(p) model can also be written as AR (p) model. For an ARCH (p)

with var (Xt) <∞, define a martingale sequence

εt = r2t − ht, (2.5)

εt are uncorrelated i.i.d. random variables with E(εt) = 0 and var (εt) = 1. We

have

r2t = α0 +

p∑
i=1

αir
2
t−i + εt. (2.6)

The Equation (2.6) is an AR(p) model for r2t with innovations εt. Obviously,

it indicates that the ARCH model is related to the AR model.

2.2.2 The GARCH model

Bollerslev (1986) proposed the Generalized Autoregressive conditional Heteroskedas-

ticity (GARCH) model based on the ARCH model. The GARCH model is regres-

sive, as a result of the tool entirely explains the stylized facts observed in financial

markets returns. Different from the ARCH model, the GARCH model can model

the variance of the errors in addition. That is to say, the conditional variances in

the GARCH process depend not only on the squared past observations but also

on conditional variances in the past. Therefore, it is very suitable to analyze and

forecast volatility.
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A GARCH(p,q) model is defined by

rt = ηth
1/2
t , rt|Ft−1 ∼ N(0, ht), (2.7)

ht = α0 +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjht−j, (2.8)

where ηt and ht are as defined before, p > 0, q > 0, α0 > 0 and αi ≥ 0 for

i = 1, . . . , p, βj ≥ 0 for j = 1, . . . , q. The higher p and q are, the smaller αi are.

The same as the ARCH(p) model, Ft denotes the information set of all information

through time t. The conditions α0 > 0, αi ≥ 0 and βj ≥ 0 guarantee the positivity

of the conditional variance.

From the above formula of the GARCH model, we can see the difference be-

tween ARCH models and GARCH models. That is, following the GARCH models,

the conditional variance depends on not only squared past observation in the pre-

vious p periods but also conditional variances in the previous in the past q periods.

If q = 0, the GARCH(p, q) process decreases to the ARCH(p) process.

Let M(B) and N(B) be
p∑
i=1

αiB
p and 1−

q∑
j=1

βjB
q, respectively. As an infinite

lag polynomial can be expressed as the quotient of two finite lag polynomial

Φ(B) =
∞∑
i=1

φiB
i =

M(B)

N(B)
, (2.9)

the GARCH(p, q) model can also be written as an ARCH(∞),

ht =

(
1−

q∑
j=1

βjB
j

)−1(
ω +

p∑
i=1

αir
2
t−i

)

= ω∗ +
∞∑
i=1

φir
2
t−i,

(2.10)

where

φi = αi +
J∑
j=1

βjφi−j, i = 1, . . . , p

and J = min{q, i− 1}, B is the backshift operator, ω∗ = ω/N(1). If N(1) > 0, φi

will decrease for i is greater that m = max{p, q} (Bollerslev, 1986). Obviously, if

ω∗ ≥ 0 and φi ≥ 0, then ht ≥ 0.
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We have the conditional mean E(rt|Ft−1) = 0 and hence E(rt) = 0. Further-

more, it is almost the same as a ARCH(p) model, we have cov (rt|Ft−1, rt+k|Ft+k−1) =

0, for k > 0, hence γ(k) = cov (rt, rt+k) = 0. That is, rt by a GARCH process

are an uncorrelated series but not independent. However, the observations are

not independent, because of the dependence between their variances or squared

values, cov (r2t , r
2
t+k) 6= 0.

The weak stationary of a GARCH(p, q) process requires a necessary and suffi-

cient condition. That is, if and only if the sum of all the coefficients is smaller than

1, i.e. the unconditional variance exists (var (Xt) < ∞). Under this condition,

the unconditional variance of a GARCH(p, q) model can be also calculated as the

constant parameter divided by the difference between the sum of all the coefficient

and 1. It is clear to see that whether var (rt) < ∞ does not depend on α0 but

only
∑p

i=1 αi +
∑q

j=1 βj. However, if a unit GARCH is considered, α0 is not a free

parameter any longer and its value is exactly equal to 1−
∑p

i=1 αi −
∑q

j=1 βj.

Consider the original GARCH model with conditional normal distribution, the

method of conditional maximum likelihood estimation (MLE, Bollerslev, 1986) is

always applied to estimate a GARCH model. It is required the existence of the

fourth moment because ht is the sum of squared returns.

Assume E(r4t ) < ∞. Let θ = (α0, α1, · · · , αp, β1, · · · , βq)′ be the unknown

parameters vector. Using the conditional normality, the conditional Gaussian log-

likelihood

L(θ) =
1

n

n∑
t=1

lt. (2.11)

Taking the logarithm and neglecting the constant term, we obtain the following

log-likelihood function

lt = −1

2
ln[ht(Ft−1; θ)]−

r2t
2ht(Ft−1; θ)

, (2.12)

and the maximum value of L(θ), denoted by θ̂, is the MLE of θ.
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2.2.3 The APARCH model

The asymmetry of the effect of positive and negative returns which we have men-

tioned in the last subsection is regarded as the leverage effect. According to Black

(1976), the leverage effect of the stock market is well-known in finance literature

and higher volatility responses to negative past returns (bad news), while lower

volatility responses to positive past returns (good news) (Nelson, 1991).

The asymmetric power ARCH (APARCH, also called APGARCH) model in-

troduced by Ding et al. (1993) is the formulae of conditional variances different for

positive or negative returns. rt in the APARCH model is similar to the Equation

(2.7) in a GARCH (p, q) process. Then, a general APARCH(p, q) is defined as

h
d/2
t = α0 +

p∑
i=1

αi(|rt−i| − γirt−i)d +

q∑
j=1

βjh
d/2
t−j, (2.13)

where hd/2t is the conditional standard deviation, 0 < d ≤ 2 is a power index of

this model, α0 > 0, αi, βj ≥ 0 are similar to those in a GARCH model and |γi| < 1

are introduced to model possible asymmetric information effect. APARCH models

include several models as special cases, particularly for cases with d = 1 or d = 2.

This point will be detailed introduced in the following chapter.

The APARCH model includes several ARCH models as special cases. If the

values of δ and γi are changed, APARCH model derives into the following models,

the standard GARCH model, the GJR-GARCH model, the TS-GARCH mod-

el(Taylor and Schwert model), the NGARCH model (Nonlinear GARCH model)

and the TGARCH model (threshold GARCH model).

When δ = 2, γi = 0, the APARCH model turns into a GARCH model with the

covariance stationary condition for εt as
∑p

i=1 αi+
∑q

j=1 βj < 1 (Bollerslev, 1986).

When δ = 2, γi 6= 0, the APARCH model can be named as the GJR (Glosten,

Jagannathan and Runkle, 1993) model

ht = ω +

p∑
i=1

αir
2
t−i + γir

2
t−iI(rt−i < 0) +

q∑
j=1

βjht−j, (2.14)
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where I(·) is the indicator function to simulate the asymmetric influence of the

positive and negative shocks on the conditional variance.

When δ = 1, γi = 0, the APARCH model transforms into the TS-GARCH

(Schwert, 1989 and Taylor, 1986) model

h
1/2
t = ω +

p∑
i=1

αi|rt−i|+
q∑
j=1

βjh
1/2
t−j. (2.15)

When δ = 1, γi 6= 0, an asymmetric Taylor-Schwert model is obtained, which

is named as the TGARCH (threshold GARCH, Zakoïan, 1994) model

h
1/2
t = ω +

p∑
i=1

αi|rt−i|+ γi|rt−i|I(rt−i < 0) +

q∑
j=1

βjh
1/2
t−j. (2.16)

2.2.4 The EGARCH model

The exponential GARCH (EGARCH) model introduced by Nelson (1991) is a

popular extension of the GARCH model. The standard GARCH model has some

limitations compared with EGARCH. To guarantee the conditional variance at

each time point to be positive, many restrictions must be added to the parame-

ters. After that, an asymmetric response to shocks can’t be treated with standard

GARCH models. To overcome the drawback, Nelson (1991) claimed a logarith-

mic transformation of the volatility and obviously, the adoption of the ’nature

device’ guaranteed the positivity of the variance without any restrictions on the

parameters.

rt is said to be a family of EGARCH(p, q) models if it satisfies Equation (2.7)

and an equation described as the following expression (Nelson, 1991),

lnht = α0 +

p∑
i=1

αig(rt−i) +

q∑
j=1

βj lnht−j, (2.17)

where

g(rt−i) = ϑrt−j + κ(|rt−i| − E|rt−i|), i = 1, . . . , p,

α0, αi, βi, ϑ and κ are real number coefficients. The model effects, sign effect and
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size effect, can be reflected from the parameters αi and βi, respectively. A very

useful point in an asset pricing is that the sign and the magnitude of rt−i can be

allowed to have separate effects on the volatility by the formulation of g(rt−j).

According to the Theorem 2.1 from Nelson and the definition of the stationary,

when γ and θ do not equal to zero at the same time, the EGARCH process of

order (1,1) is strictly stationary and ergodic if and only if α2
1 <∞ and |β1| < 1.

2.2.5 The component GARCH model

The GARCH model has not distinguished the long-term and short-term compo-

nents. However, it is known that stock prices always fluctuate around an average

value. This phenomenon is called mean-revert. It is also found that the mean-

revert of short-term volatility is more rapid than for the long-term one and the

market volatility must have enough persistence to influence the stock returns in the

long-run (Xu and Taylor, 1994). To explain this different response between short-

term and long-term, Engle and Lee (1999) introduced the component GARCH

model. In this model, the conditional variance is decomposed into a permanen-

t and transitory component. So that the model can be used to investigate the

long-run and short-run movements of volatility affecting securities.

The component GARCH (CGARCH) model is defined by

ht = qt +

p∑
i=1

αi(r
2
t−i − qt−i) +

q∑
j=1

βj(ht−j − qt−j), (2.18)

and

qt = ω + ρqt−1 + ϕ(r2t−1 − ht−1), (2.19)

where qt the permanent component of the conditional variance and (ht−j−qt−j)

is the transitory component of the conditional variance (Engle and Lee, 1999).

The parameters ρ is used to examine the persistence of shock impacts on the

long-run component. If 0 < ρ < 1, the long-run volatility component follows an

AR process and will converge to a constant level defined by ω/(1 − ρ). When



2.3 The ACD model 15

ρ is extremely close to 1, usually between 0.99 and 1, the long-run volatility

component converges to ω very slowly. If 0 < (α1 + β1) < ρ < 1, the impact of

volatility shocks on the long-run volatility component diminishes as well but be

more persistent than that of the short-run component. ϕ shows the sensitivity

of the long-run component to volatility shocks. α expresses the sensitivity of the

short-run component to volatility shocks. When α ≥ ϕ, the immediate impact of

volatility shocks on the long-run component would be smaller than that on the

short-run component.

2.3 The ACD model

Engle and Russel (1998) proposed an autoregressive conditional duration (ACD)

model to analyze the transaction duration. Let t0, t1, . . . , tN with t0 < t1 < . . . <

tN be a sequence of time, where N = N(d) is a random number and ti indicates the

time of the i -th transaction. The transaction durations are defined as xi = ti−ti−1,

for i = 1, 2, . . . , N . Furthermore let ψi be the expectation of the i -th duration

E(xi|xi−1, . . . , x1) = ψi(xi−1, . . . , xi; θ) ≡ ψi. (2.20)

The conditional mean interacts multiplicatively with the error term, so that the

class of ACD models consists of various parameterizations of (2.20),

xi = ψiεi, (2.21)

where εi > 0 are i.i.d. random variable and E(εi) = 1.

Engle and Russell (1998) proposed the ACD(p, q) model and defined the con-

ditional duration by a linear parameter process of ψi as:

ψi = α0 +

p∑
j=1

αjxi−j +

q∑
k=1

βkψi−k, (2.22)

where α0 > 0, αj ≥ 0, βk ≥ 0.

The weak stationarity of an ACD(p, q) process requires to satisfy the following
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necessary and sufficient condition,

p∑
j=1

αj +

q∑
k=1

βk < 1, (2.23)

then, the unconditional mean of the ACD model is summable (E(xi) < ∞) and

under the condition of Eq. (2.23), the unconditional mean of an ACD(p, q) model

is similar as the unconditional variance of the GARCH model.

2.4 The semiparametric GARCH model

The GARCH model has many advantages. The function form is accessible, and

parameters could be easily estimated. If the model assumptions were correct,

the estimation is consistent with reality. However, the drawbacks of parametric

volatility models are more upsetting. Firstly, a preselected parametric model may

not fit unexpected features, due to too restricted or too low dimensional. Sec-

ondly, sometimes the regression function seems to be too complicated or difficult

to be defined. Thirdly, because different sequences will be witnessed when dif-

ferent conditional distributions are selected in the process of prediction by using

parametric models, there will most possibly exist the problem of misclassification,

which may result in a excessively high model bias and loss of efficiency, unless

the assumed function perfectly matches the true error distribution (Di and Gan-

gopadhyay, 2011). An important drawback of the parametric volatility models is

that the unconditional variance is assumed constant. However, it is found that

sometimes the scale change of the time series is not constant significantly (Beran

and Ocker, 2001).

Feng (2004) proposed a semiparametric GARCH (SemiGARCH) model by in-

troducing a smooth scale function into the GARCH model. The squared residuals

in SemiGARCH models can be estimated by an approximate kernel smoother or

the local polynomial smoother. Further after removing the scale function, the

parametric parameters are estimated by the classical parametric models estima-

tion approach.
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The SemiGARCH model combines a smooth scale function with the standard

GARCH model:

rt = µ+ σ(xt)εt, (2.24)

where µ is an unknown constant, xt = t/n, σ(x) > 0 is the nonparametric com-

ponent, a smooth, bounded scale function and {εt} is the parametric component.

The conditional variance of {εt} is assumed to follow a GARCH(p, q) process:

ht = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjht−j, (2.25)

where h1/2t is the conditional standard deviations of the standardized process εt,

ω > 0; α1, . . . , αp ≥ 0 and β1, . . . , βq ≥ 0. To estimate the scale function, E(r8t ) <

∞ is assumed to ensure Eq. (5.2) strictly stationary, which implies in particular

that
∑p

i=1 αi +
∑q

j=1 βj < 1 (Feng, 2004).

The SemiGARCH model provides us a tool to decompose financial risk into

an unconditional component σ(xt), a conditional component h1/2t and the i.i.d.

innovations ηt.

The estimation of the SemiGARCH model can combine the nonparametric

estimation of the local variance v(x) = σ2(x), with parametric estimation of the

unknown parameter vectors θ = (α0;α1, . . . , αp; β1, . . . , βq).

At first, the scale function can be estimated by some nonparametric regression

approaches without any parametric assumptions. In this model the kernel estima-

tion will be used. If the constant mean µ is replaced by a smooth function g, we

can get a nonparametric regression with scale change and dependence

rt = g(xt) + σ(xt)εt, (2.26)

where εt is a zero mean stationary process.

Therefore, Eq. (2.24) can be transformed into a general nonparametric regres-

sion problem. Letting r∗t = rt − µ, Zt = (r∗t )
2 and ξt = ε2t − 1 ≥ −1, which are

zero mean stationary time series errors. Then, the model can be rewritten as
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Zt = v(xt) + v(xt)ξt. (2.27)

Letting µ̂ = r̄ and ẑt = (r̂∗t )
2, in which r̂∗t is then defined by r̂∗t = rt − r̄. The

Nadaraya-Watson kernel regression is defined by

v̂(x) =

n∑
t=1

K(xt−x
b

)ẑt

n∑
t=1

K(xt−x
b

)
=:

n∑
t=1

wtẑt, (2.28)

where wt is the weighting function wt =
K(

xt−x
b

)∑n
t=1K(

xt−x
b

)
, K(u) is a second order

kernel function with compact support [-1,1] and b is the bandwidth, the size of the

weights (Fan, 1993).

Besides, ν(xt) can also be estimated by the local linear regression. The local

linear estimator of ν(xt) at 0 ≤ xt ≤ 1 is obtained by minimizing

Q(x) =
n∑
t=1

{rt − α0 − α1(xt − x)}2K
(
xt − x
b

)
. (2.29)

Obviously, we obtain ν̃(xt) = α̂0. The bias of the local linear estimator is always

of the order O(b2), which is important for application, because the forecasting of

the trend is mainly carried out based on the estimation at the right boundary.

However, ν̃(xt) obtained above is sometimes negative, especially with a small

sample size or bandwidth. To ensure the non-negativity, the constrained local

linear regression is considered. We propose to use the constrained local estimator

ν̂(xt) = |ν̃(xt)|, which is a.s. positive. In this dissertation, the scale function is

estimated via codes by Feng (2004). After the time-varying trend is removed, the

descaled data is able to be applied in a parametric process.

According to the above assumptions, the estimator εt is now replaced by the

standardized residuals

ε̂t = r̂t/σ̂(xt) = (rt − r̄)/σ̂(xt). (2.30)

Then the estimator of parametric vector θ can be obtained by the standard maxi-
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mum likelihood method, which has been introduced in subsection 2.1.2. A suitable

model can also be selected by using other methods, e.g. the Akaike information

criterion (AIC), the Bayesian information criterion (BIC), etc. In the thesis, the

parametric models are estimated by the fGarch1 and rugarch2 packages in R.

2.5 The semiparametric ACD model

Consider a stochastic process {t0, t1, . . . , tn, . . .} with t0 < t1 < . . . < tn < . . . and

it represents a sequence of time series. xi = ti − ti−1 defines the interval between

the durations and ψi is the expectation of the ith duration. According to the

arrival times, N(t) refers to the counting function.

The duration expectation is defined as,

E[xi|xi−1, . . . , xi−p, ψi−q] = ϑ[xi|xi−1, . . . , xi−p, ψi−1, . . . , ψi−q,Ω] ≡ ψi, (2.31)

in the formula, xi follows the definition in parametric ACD models,

xi = ψiεi, (2.32)

where εi are i.i.d. with unit mean.

Feng (2014) proposed a local linear method to estimate the diurnal pattern in

the SemiACD model. Consider the diurnal pattern of the ACD model (Russell

and Engle, 2002, 2010),

xi = φ(ti)ψiεi, (2.33)

where φ(ti) is the deterministic diurnal pattern and the local mean of xi, ψi is

the conditional expectation of the diurnally durations above or below the average

value of the day.

1fGarch is written by Wuertz et al. in Rmetrics-Autoregressive Conditional Heteroskedastic

Modeling.
2rugarch is developed by Ghalanos and Kley in Univariate GARCH Models.
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Let yi = ψiεi and E(yi) = 1, model (2.33) can be rewritten as

xi = φ(ti) + φ(ti)ξi, (2.34)

where ξi = yi − 1. It is obvious, model (2.34) discusses the estimation of the

scale and mean function φ(ti) to a general nonparametric regression process. If ψi

follow a unit ACD process,

ψi = α0 +

p∑
j=1

αjxi−j +

q∑
k=1

βkψi−k, (2.35)

then, model (2.33) and (2.36) are a semiparametric ACD process and can be

estimated by a semiparametric procedure combining nonparametric estimation of

φ(ti) and parametric estimation of unit the ACD model. In the SemiACD model,

because of the unit mean of yi, the constant parameter α0 is

α0 = 1−
p∑
j=1

αj −
q∑

k=1

βk. (2.36)

Here, the constant in the ACD process cannot be chosen freely.

Due to φ(ti) depending on N , we define φN(ti) = m(ti)/N , then Eq. (2.34)

can be written as

x∗i ≈ m(ti) +m(ti)ξi, (2.37)

The estimation of the scale function φ(ti) in the SemiACD model can apply

the local polynomial method by minimizing the least squares to estimate m(ti).

Let K(u) be a kernel function and b > 0 be the bandwidth. The local linear

estimator of m(ti) is obtained by means of the following locally weighted least

square approach

Q(b) =
N∑
i=1

{x∗i − α0 − α1(ti − t)}2K
(
ti − t
b

)
⇒ min, (2.38)

where m̃(ti) = α̂0 is the local linear estimate and the kernel function K may be

different to that used above. The bias of m̃(ti) is always of the order O(b), which

is important to the forecasting based on the estimation at the right end point.
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2.6 Final remarks

In this dissertation, the considered data is decomposed by the semiparametric

models by removing a scale function. In Chapter 3 and Chapter 4, GARCH models

are applied as the parametric part with normal and t-distribution of innovations,

respectively. Some GARCH model extensions are used in the stationary process,

such as APARCH, EGARCH and CGARCH models. In Chapter 6 and 7, ACD

models are discussed to analyze the nonnegative financial data.





Chapter 3

A class of SemiGARCH models

estimated based on the Box-Cox

transformation1

The chapter proposes a wide class of semiparametric GARCH models by introduc-

ing a scale function into a GARCH class model for featuring long-run volatility

dynamics, which can be thought of as an MEM (multiplicative error model) with

a varying scale function. The focus is to estimate the scale function under suit-

able weak moment conditions through the Box-Cox transformation of the absolute

returns. The estimation of the scale function is independent of any GARCH speci-

fication. To overcome the drawbacks of the kernel and the local linear approaches,

a non-negatively constrained local linear estimator of the scale function, which

is then proposed to fit a suitable parametric GARCH model to the standardized

residuals, is considered. Asymptotic properties of the proposed nonparametric

and parametric estimators are studied in detail and iterative plug-in algorithms

are developed for selecting the bandwidth and transformation parameters, which

are selected by MLE and JB statistic. The algorithms are also carried out indepen-

dently without any parametric specification in the stationary part. Application

shows that the proposals fit well to real data.

1Chapter 3 is based on the working paper: A general class of SemiGARCH models based on

the Box-Cox Transformation (Zhang et al., 2017), CIE, 2017–06.
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3.1 Introduction

Despite the success of the ARCH (autoregressive conditional heteroskedasticity,

Engle, 1982) and GARCH (generalized ARCH, Bollerslev, 1986) models for mod-

eling conditional (short-run) volatility dynamics in stock market returns, their

implications for long-run volatility are restrictive, in the sense that these models

imply a constant unconditional long-run volatility, i.e. it implies that the stock

market returns are stationary. However, in recent years it was realized that this

feature does not seem to be consistent with the time series behavior of volatilities

of stock returns. Different extensions of the standard GARCH model are hence

proposed for capturing the long-run volatility patterns observed in the data. For

instance, Feng (2004) introduced a SemiGARCH (semiparametric GARCH) mod-

el by employing a smooth volatility trend (also called the scale function) into

the standard GARCH model and proposed to estimate it using data-driven ker-

nel regression. Van Bellegem and von Sachs (2004) discussed the forecasting of

financial time series under the time-varying unconditional variance. A general

time-varying ARCH process was introduced by Dahlhaus and Rao (2006). Engle

and Rangel (2008) put forward a Spline-GARCH model with a nonparametric

volatility trend, which is defined as a function of the observation time, i.e. the

location, and exogenous macroeconomic variables and is estimated by an exponen-

tial quadratic spline. Engle et al. (2008) extended this idea to a GARCH-MIDAS

model, which combines the ideas of the Spline-GARCH model and of mixed da-

ta sampling (MIDAS), to investigate detailed macroeconomic sources of long-run

dynamics of stock market volatility. Peitz (2015) developed a spatial semipara-

metric process to analyze high-frequency data in different dimensions. Amado and

Teräsvirta (2017) developed a specification technique for building multiplicative

time-varying GARCH models by decomposing the variance into a conditional and

an unconditional component, which is smooth over time.

In this chapter, a general class of semiparametric GARCH models is intro-

duced, including the SemiGARCH model as a special case. Similar to the Semi-

GARCH model, the total volatility is defined as a product of a scale function and

a conditional volatility component and the effect of exogenous variables is not con-
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sidered. The key difference between the current proposal and the SemiGARCH

model is that here the parametric part is not specified beforehand but to be chosen

after estimating the scale function. Different specifications will lead to different

models. By rewriting the GARCH formulations, it is shown that a semiparamet-

ric GARCH model is asymptotically equivalent to the GARCH model used in the

parametric part with a time-varying scale parameter, while the other parameters

remain constant. This provides us with a deep insight into the current proposal

and indicates possible further extensions of it. To estimate the scale function, we

propose the use of a constrained non-negative local linear regression, to ensure

that the resulting scale function is (at least almost surely) positive. It is shown

that the constrained local linear regression defined in this chapter is asymptoti-

cally equivalent to the common local linear regression. Note that the data-driven

algorithm proposed by Feng (2004) does not apply to the general framework con-

sidered in this chapter because of the Box-Cox power transformation in the scale

function. MLE and Jarque-Bera (JB) statistics are applied in the selection of

the transformation parameter. Hence, the main focus is on the development of a

quick, stable data-driven algorithm for the practical implementation of the general

semiparametric GARCH approach. For this purpose, a fully data-driven iterative

plug-in bandwidth selector algorithm is proposed following Gasser et al. (1991),

Herrmann et al. (1992) and Beran and Feng (2002a, b). The application to

data examples shows that such bandwidth and transformation parameter selec-

tion rules work well. Furthermore, a simple test is introduced to determine, if a

semiparametric GARCH or a parametric GARCH model should be used. This

test shows that the unconditional volatility during a financial crisis is significantly

higher than that in other sub-periods. It seems to be possible to develop a suitable

method for detecting the effect of a financial crisis by means of the proposal in this

chapter. Further, the estimation and selection of a suitable parametric GARCH

model based on the standardized returns are also discussed. Some results in this

chapter can be easily adapted to the Spline-GARCH or GARCH-MIDAS models.

For instance, both of them are GARCH models with a varying scale parameter

determined by the time and other exogenous variables.
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The chapter is organized as follows. The model is introduced in Section 3.2.

Section 3.3 discusses the semiparametric estimation of the proposed model, the

data-driven algorithm and the test method. Data examples in Section 3.4 illustrate

the practical usefulness of the proposal. Final remarks in Section 3.5 conclude the

chapter. Sketched proofs of some results are given in the appendix.

3.2 The SemiGARCH model with Box-Cox trans-

formation

Let yt, t = 0, 1, ..., n, denote the prices of some stock index and rt their (log-)

returns. To model the slowly changing unconditional variance and conditional

heteroskedasticity at the same time, the following semiparametric GARCH class

model (Feng, 2004) for the conditional distribution of rt is introduced:

r∗t = µ(τt) + s(τt)
√
htεt, (3.1)

where τt = t/n is the rescaled time, µ(·) stands for a smooth trend, s(·) > 0 is

a smooth scale function and ht is the conditional variance of the rescaled process

ξt = rt/s(τt) =
√
htεt with the centralized returns rt = r∗t − µ(τt). Due to the

returns are a.s. distinct from the expectation, the demeaned method (e.g. Harvey

et al., 1994) is widely applied to guarantee the centralized returns a.s. positive and

it also ensures the possible logarithmic transformation of the non-negative series

in the following discussion. It is assumed that ξt also has unit variance so that the

model is uniquely defined. This implies that the unconditional mean of ht is 1, i.e.

E(ht) = 1. Although our focus is on the estimation of s2(·) and ht, a nonparametric

trend function is included for modeling possible long-term deterministic changes

in the mean of yt. We will see that the asymptotic properties of ŝ2(·) will not be

affected by the estimation errors in µ̂(·). Model (3.1) defines indeed a sequence

of models. The process rt is nonstationary unless µ(·) and s(·) are both constant.

But rt is locally stationary following Dahlhaus (1997). The trend function µ(·) can

be recognized as a time-varying function µ(τt) or in practice, returns may also have
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no nonparametric trend function. For simplicity, it will not be considered in the

current chapter, because our focus is on the estimation of s(·) and σt. Moreover,

it is well known that under common regularity conditions the effect of the error

in a nonparametric estimator of an unknown trend function on the estimation of

s(τt) is asymptotically negligible. Then Model (3.1), without the trend function,

is reduced to

rt = s(τt)
√
htεt. (3.2)

Model (3.2) is a general SemiMEM (semiparametric multiplicative error model)

defined by introducing a smooth scale function into the MEM proposed by Engle

(2002). Hence, all of the results given in this chapter hold for a model with a

nonparametric trend function provided that the trend function is estimated by

another well-developed data-driven algorithm.

The stationary process ξt can be analyzed using any suitable GARCH class

model and different parametric specifications on ht will lead to different semipara-

metric GARCH class models. If it is assumed that ξt follows a standard GARCH

model, we have

ht = α0 +

q∑
i=1

αiξ
2
t−i +

p∑
j=1

βjht−j, (3.3)

where α1, ..., αq, β1, ..., βp ≥ 0,
∑q

i=1 αi +
∑p

j=1 βj < 1 and α0 = 1 −
∑q

i=1 αi −∑p
j=1 βj. Due to the restriction E(ht) = 1, α0 is no more a free parameter.

Equations (3.2) and (3.3) together define the SemiGARCH model introduced by

Feng (2004). See also Feng and McNeil (2008) for an extension of this model to

high-frequency financial data.

Nonparametric estimation of variance functions is well known in the literature.

Local polynomial estimation of variance functions in nonparametric regression

with independent errors is studied e.g. by Ruppert et al. (1997). Kernel and local

linear estimators of conditional variance in nonlinear time series are proposed by

Feng and Heiler (1998) and Fan and Yao (1998), respectively. A kernel estimator
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has the so-called boundary problem, which will not only affect the bias of the

estimate at a boundary point but also reduce the convergence rate of the MISE

(mean integrated squared error). A modified kernel estimator with second-order

bias at a boundary point is proposed by Hall and Presnell (1999). However, their

proposal does not apply to the endpoints τ = 0 or τ = 1. A local linear estimator

does not share this problem, however, it may be sometimes negative. In this

section, we will hence propose the use of local linear estimators with a simple

non-negative restriction. Moreover, a consistent estimator of s2(τt) as a smoother

of ξ2t with a given bandwidth requires the existence of the fourth moments of

ξt. But the selection of the bandwidth, in this case, requires the existence of the

eighth moments of ξt. This will clearly affect the stability of the estimated scale

function. This drawback hinders the application of such non-parametric variance

estimators to financial data series, because the marginal distribution of a financial

time series may have heavy tails. To solve this problem, we propose to estimate

the scale function from the Box-Cox power transformation |rt|λ with 0 < λ ≤ 2. If

λ ≤ 1 is used, the existence of the fourth moment of ξt is sufficient for developing a

convergent bandwidth selector. If the power transformation parameter is regarded

as λ = 0, the Box-Cox transformation of |rt|λ reduces to a logarithmic form, and

obviously, ξt will follow a logarithmic process. The logarithmic transform can be

applied to some financial variables, such as realized volatility, volatility indexes,

etc., so as to convert multiplicative models to additive models. For simplicity,

0 < λ ≤ 2 is applied to the Box-Cox transformation without the consideration

of logarithmic transformation in the chapter. Note that normally λ = 2 is used.

Now, s2(τt) is estimated first. ŝ(τt) is then obtained by taking the square root of

ŝ2(τt). Our proposal is to estimate the local mean of |rt|λ first and then take the λ-

th root of this local mean as an estimator of the scale function. The relationship

between this estimate and the classical one is as follows. Define cλ = E(|ξt|λ),

which is 1 for λ = 2 following the definition. For λ 6= 2, we have cλ 6= 1 but its

concrete value depends on the distribution of ξt and will change from case to case.

We will see that a nonparametric estimator based on |rt|λ is indeed an estimator

of g(τt, λ) = cλs
λ(τt) and not that of sλ(τt). Hence [ĝ(τt, λ)]1/λ ≈ c

1/λ
λ ŝ(τt) 6= ŝ(τt),

if λ 6= 2. To estimate the scale function from r2t is the most natural method.
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However, note that the difference between [g(τt, λ)]1/λ and s(τt) is just a constant

factor. Hence the use of [g(τt, λ)]1/λ as an alternative scale function is equivalent

to the use of s(τt). Thus, for given λ, Model (3.2) can be rewritten as

rt = sλ(τt)ξλ,t, (3.4)

where sλ(τt) = c
1/λ
λ s(τt) = [g(τt, λ)]1/λ and ξλ,t = c

−1/λ
λ ξt is another stationary

process with E(|ξλ,t|λ) = 1. Obviously, ξλ,t and ξt share the same properties

but with a different scale parameter. Hence the resulting estimator based on

|rt|λ can be used to remove the effect of the slowly changing scale in rt. For

λ = 2 we have s2(τt) = s(τt). Otherwise, sλ(τt) and s(τt) have different scale

parameters. We see sλ(τ) can also be used as the scale function of the proposed

model, which can be estimated consistently from |rt|λ. There are different further

transformations which can be used to estimate an equivalent scale function. The

power transformations (or equivalently the Box-Cox transformations with non-

negative power transformation parameter) are just the simplest examples. Please

refer to Eagleson and Müller (1997) for more general description on this point.

It is clear that model (3.4) is an improved alternative of model (3.2) based

on the Box-Cox transformation. Model (3.3) and Model (3.4) together can be

proposed as the Box-Cox SemiGARCH model, providing a new semiparametric

methodology by introducing a power transformation parameter λ into the scale

function. Similar to the time-varying GARCH models, any kind of GARCH mod-

els can be selected as an extension in the parametric part of generalized Box-Cox

SemiGARCH class models. If λ = 2 and the parametric part is a GARCH pro-

cess, it is the standard SemiGARCH model proposed by Feng (2004). The Semi-

APARCH model (Feng and Sun, 2013) is also another specification, applying the

absolute returns and APARCH model in the parametric part.
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3.3 The semiparametric estimation procedure

The generalized Box-Cox SemiGARCH class models introduced in the last sec-

tion can be estimated using a semiparametric procedure. At first, sλ(τt) can be

estimated by some nonparametric regression approach consistently without any

parametric assumptions on σt and εt. In the section, local polynomial regression

is applied. The slowly changing scale function can be estimated and removed un-

der very weak moment conditions E(ξλt ) < ∞ for any λ > 0 based on suitable

power transformation of the data. A simple constrained local polynomial regres-

sion, which is approximately the same as the standard local polynomial regression,

is proposed to ensure that the resulting scale function is always positive. Then

the conditional variance can be analyzed further using the GARCH class models

based on the standardized returns.

3.3.1 Estimation of s(τt)

Let ζt,λ = |ξλ,t|λ − 1 with E[ζt,λ] = 0. Model (3.4) can be expressed as

|rt|λ = g(τt, λ) + g(τt, λ)ζt,λ, (3.5)

which is a nonparametric regression with heteroskedastic time series errors and

g(τt, λ) is the trend function and the scale function at the same time. Let K(u) be

a kernel function and b > 0 be the bandwidth. A local linear estimator of g(τt, λ)

at 0 ≤ τt ≤ 1 is obtained by minimizing

Q(λ, b) =
n∑
t=1

{
|rt|λ − α0 − α1(τt − τ)

}2
K

(
τt − τ
b

)
. (3.6)

This results in g̃(τt, λ) = α̂0. The advantage of a local linear estimator is that

the bias of it is always of the order O(b2). This is in particular important for

application, because the forecasting of the trend is mainly carried out based on

the estimation at the right end point. A problem is that g̃(τt, λ) obtained above

is sometimes negative, in particular when the sample size is small and a small

bandwidth is used. To ensure the non-negativity, we propose to use the final
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estimator ĝ(τt, λ) = |g̃(τt, λ)|, which is almost surely positive. The use of ĝ(τt, λ)

instead of g̃(τt, λ) is reasonable. Firstly, it can be shown that [ĝ(τt, λ)−g(τt, λ)]2 ≤

[g̃(τt, λ)− g(τt, λ)]2. That is the performance of ĝ(τt, λ) is not worse than that of

g̃(τt, λ) following the MSE (mean squared error). Moreover, negative values of

g̃(τt, λ) are just a limited sample problem, because the probability that |ĝ(τt, λ)−

g̃(τt, λ)| > ∆ for any ∆ > 0 tends to zero in an exponential rate. This is shown in

the following lemma, where Assumptions A1 to A4 are described in the appendix.

Lemma 3.1 Suppose that a bandwidth of the order b = n−λ with 0 < λ < 1 is used

and g̃(τt, λ) is consistent, asymptotically normal with bias B[g̃(τt, λ)] = O(n−η1)

and variance Var [(g̃(τt, λ))] = O(n−η2), where η1, η2 > 0. If the assumptions A1

to A4 hold, then we have

nP [ĝ(τt, λ) 6= g̃(τt, λ)] = nP [g̃(τt, λ) < 0]→ 0, as n→∞. (3.7)

The result of the lemma also holds if n is replaced by nk for any k > 1, e.g.

k = 2. Hence, when n and b are both large, then g̃(τt, λ) < 0 will practically never

happen, if b is large enough. Also, there is no difference between the asymptotic

properties of g̃(τt, λ) and ĝ(τt, λ). Note that rt are uncorrelated. The scale function

ĝ(·) defined above has the same asymptotic properties as those for a nonparametric

regression estimator with independent errors and a non-constant scale function.

For more theoretical discussions on these topics, we refer the reader to Beran

et al. (2015), where the estimation of the scale function in a semiparametric

ACD model for daily average transaction duration is considered. The authors

also obtained detailed asymptotic results of the constrained local linear estimator

in that context. According to the similarity between the ACD and the GARCH

models, asymptotic results of ĝ(τt, λ) can be derived based on their results by

replacing the average durations there with |rt|λ.

The key idea behind our proposal is that although ĝ1/λ(τt, λ) is not a consis-

tent estimator of sλ(τt), it can be directly used to remove the non-stationarity in

returns, because ξ̂λ,t = rt/ĝ
1/λ(τt, λ) is also an approximately stationary process.
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Comparing the general formula (3.5) with the special case with λ = 2, we can

see that, instead of the estimation of the scale function s(τt) in rt, here the scale

function in the process rλ,t is indeed directly estimated, where rλ,t = sign(rt)|rt|λ/2

with r2,t = rt. As far as we know, there is still no study in the literature on the

estimation of the scale function in a SemiGARCH framework based on the pow-

er transformation |rt|λ. The main purpose is to develop a consistent data-driven

estimator of the nonparametric scale function sλ(τt). If higher robustness is of

interest, λ ≤ 1 can be used and the assumptions that E(ξ4t ) < ∞ together with

further regularity conditions is sufficient for developing a convergent bandwidth

selector. This is the same moment condition required for estimating the GARCH

parameters using conditional QMLE (quasi maximum likelihood estimation). In

this section, we will still consider the use of λ ≤ 2 and in Fig. 3.2, we can see

the selected λ are obviously smaller than 1, which means the stricter robustness

requirement can be fulfilled.

Model (3.5) is an extension of Model (4) in Feng (2004), where only the special

case with λ = 2 is considered. Asymptotic properties of ĝ(τt, λ) can hence be

proved analogously. The following summarizes and compares the asymptotic be-

havior of ŝλ(τt) and ĝ(τt, λ), where MSE[ŝλ(τt), b] and MSE[ĝ(τt, λ), b] denote the

mean squared error of the two estimators obtained with the bandwidth b. Assume

now that E(ξ4t ) < ∞, a consistent estimate of sλ(τt) can be obtained as follows.

Note that ξ̂λ,t ≈ c
−1/λ
λ ξ̂t and that E(ξ2t ) = 1. This leads to a consistent estimate

of cλ

ĉλ =

[
1

n

n∑
t=1

ξ̂2λ,t

]−λ/2
(3.8)

and

ĉ
−1/λ
λ =

√√√√ 1

n

n∑
t=1

ξ̂2λ,t. (3.9)

The scale function is obtained as

ŝλ(τt) = ĉ
−1/λ
λ [ĝ(τt, λ)]1/λ, (3.10)

through rescaling the sample variance of the standardized returns to be one. Note

that, so long as ĝ(τt, λ) is consistent, the effect of the error in it on ĉλ is asymptot-
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ically negligible. Hence both of ĉλ and ĉ
−1/λ
λ are still

√
n-consistent. It leads to the

conclusion that the MSE of ŝλ(τt) in this way is approximately c−2/λλ MSE[ĝ(τt, λ)],

which is still of the order O(n−4/5), provided that ĝ(τt, λ) is obtained by a suitable

data-driven algorithm. However, ŝλ(τt) is not an efficient estimate if λ 6= 2 is

used, because the optimal bandwidth for estimating g(τt, λ) is different to that

for estimating sλ(τt). Moreover, we see that to obtain a consistent nonparametric

estimate of sλ(τt), the condition E(ξ4t ) < ∞ is also necessary. To avoid possible

confusion, we propose to estimate g(τt, λ) for some chosen λ and to calculate ξ̂λ,t

at first. Then we can obtain ĉλ and ŝλ(τt) following (3.8) through (3.10). Fi-

nally, we will calculate the standardized returns ξ̂t = rt/ŝλ(τt) again, which are

approximately independent of the choice of λ and will be used for further analysis.

Suppose that E(ξλt ) < ∞ and the Assumptions A1 to A4 stated in the ap-

pendix hold. For any 0 < λ ≤ 2 and 0 ≤ τt ≤ 1, both ŝλ(τt) and ĝ(τt, λ) are

consistent estimators of sλ(τt) and g(τt, λ), respectively. Further, it also holds

that MSE[ŝλ(τt), b] ≈ c
−2/λ
λ MSE[ĝ(τt, λ), b], and ŝλ(τt) and ĝ(τt, λ) have the same

asymptotically optimal bandwidth. The finding of particular interest is that ŝλ(τt)

and ĝ(τt, λ) have the same asymptotically optimal bandwidth. Note that our aim

is to estimate sλ(τt). However, it is straight-forward to select the bandwidth for

ĝ(τt, λ). The bandwidth is just what we need for an optimal estimate of sλ(τt).

So the problem is solved well. There is no need to develop a separate band-

width selection procedure for estimating sλ(τt). Asymptotic properties of ĝ(·) can

be obtained following known results in nonparametric regression with dependent

errors (see e.g. Altman, 1990 and Hart, 1991). In the sequel, some necessary

results are summarized. For a kernel function K, define R(K) =
∫
K2(u)du and

I(K) =
∫
u2K(u)du. Let S|ξ|λ =

∞∑
k=−∞

γ|ξ|λ(k), where γ|ξ|λ(k) = cov (|ξ0|λ, |ξk|λ),

then the following holds.

Theorem 3.1 Under the Assumptions A1 through A5 stated in the appendix, the

following holds,

i) The bias of ĝ(τt, λ) is B[ĝ(τt, λ)] = E[ĝ(τt, λ)]−g(τt, λ) = 1
2
b2[g(τt, λ)]′′I(K)+

o(b2).
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ii) The variance of ĝ(τt, λ) is given by

Var (ĝ(τt, λ)) =
V

nb
+ o

(
1

nb

)
, (3.11)

where V = S|ξ|λ [g(τt, λ)]2R(K).

iii) If a bandwidth b = o(bA) is used, the bias is asymptotically negligible and

√
nb[ĝ(τt, λ)− g(τt, λ)]

D−→ N(0, V ), (3.12)

where V is as defined in (3.11).

In Theorem 3.1, the asymptotic bias and variance of ĝ(τt, λ) are obviously similar

to those in nonparametric regression with some specific GARCH or ACD class

model, because of the similarity in calculating the sum of the autocovariance. The

result of Theorem 3.1 iii) also indicates that ĝ(τt, λ) is asymptotically unbiased

and asymptotically normal with a bandwidth of a smaller order than bA.

Theorem 3.2 Suppose that Assumptions A1 to A4 hold, we have:

i) At any point 0 < τt < 1, the local asymptotically optimal bandwidth, which

minimizes the dominating part of the MSE (mean squared error) of ĝ(τt, d), is

given by

bA(τt) =

(
S|ξ|λ

R(K)

I2(K)

g2(τt, λ)

{[g(τt, λ)]′′}2

)1/5

n−1/5. (3.13)

ii) Let MISE=
1∫
0

{MSE[ĝ(τt, d)]}dτ be the mean integrated squared error. Then

the (global) asymptotically optimal bandwidth minimizing the dominating part of

the MISE is given by

bA =

(
S|ξ|λ

R(K)

I2(K)

∫
g2(τ, λ)dτ∫

{[g(τ, λ)]′′}2dτ

)1/5

n−1/5. (3.14)

Results in Theorem 3.2 are closely related to those for a local linear estimator of

the mean function with heteroskedastic time series errors. Furthermore, note that

the result in the first part of Theorem 3.2 does not hold at a boundary point,

because the kernel constants in the asymptotic variance and asymptotic bias of
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ĝ(τt, λ) at the boundary change from point to point. But this does not affect the

asymptotic MISE so that the global bandwidth can be calculated over τt ∈ [0, 1].

3.3.2 Semiparametric estimation of a given model

The unknown parameters of chosen GARCH class models can be estimated from

ξ̂t by approximate (conditional) QMLE method proposed in the literature. A

suitable model can also be selected using e.g. the BIC.2

Denote the true unknown parameter vector of a chosen GARCH model by θ0.

Let θ̂ be the estimate of θ0 obtained from ξ̂t and θ̃ denotes the standard QMLE

obtained under the assumption that ξt is observable. It is well known that un-

der suitable regularity conditions θ̃ is
√
n-consistent and asymptotically normal.

The additional variance caused by the errors in ξ̂t is asymptotically negligible.

The O(b2) term in Bθ is due to E[ŝλ(τt) − sλ(τt)] and the O[(nb)−1] term due to

Cov [ξ2t , ŝλ(τt)]. If a bandwidth O(n−1/2) < b < O(n−1/4) is used, Bθ is asymptot-

ically negligible. Now θ̂ is also
√
n consistent and asymptotically normal. If the

data-driven algorithm proposed in the next section is used, the bias term Bθ will

be of the order O(n−2/5). We see that in the general SemiGARCH models
√
n-

consistent parametric estimation is no longer possible if the scale function changes

over time. In the special case, when rt follows a stationary GARCH class model, a

bandwidth of the order Op(1) will be selected by the proposed the data-driven al-

gorithm in the next section. Now, the parametric estimation is still
√
n-consistent

but is inefficient. This means that some efficiency will be lost if a generalized

semiparametric GARCH class model is fitted to some stationary GARCH class

process. In the next section, a simple stationary test is proposed based on the

selected bandwidth. If this test is significant, the proposed semiparametric model

will be used. Otherwise, stationary generalized GARCH class models should be

employed.

2In the chapter, for fitting GARCH models, the R packages fGarch and rugarch are applied

and the data-driven algorithm to be proposed in the next section is also carried out in R.
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3.3.3 The bandwidth estimation algorithm

Numerous criteria for selecting the bandwidth in nonparametric regression are

proposed. One bandwidth selection rule which works well in different contexts,

is the iterative plug-in (IPI) idea (Gasser et al., 1991). This approach will also

be used in the current section. Note that the estimation of g(τt, λ) is just the

estimation of the scale function in |rt|λ.

The IPI algorithm is developed based on the formula of the asymptotically op-

timal bandwidth for estimating g̃(τt, λ), bA say, which can be obtained by adapting

those known results properly. In the sequel, this formula will be given without

proof. Under regularity assumptions, in particular the assumption that γ|ξ|λ(k)

are absolutely summable, the asymptotically optimal bandwidth minimizing the

dominating part of the MISE is given by

bA =

(
S|ξ|λ

R(K)

I2(K)

∫
[g(τ, λ)]2dτ∫
{[g(τ, λ)]′′}2dτ

)1/5

n−1/5. (3.15)

To select b, S|ξ|λ has to be estimated. And the IPI idea is successfully applied to

select bandwidth in different contexts (see e.g. Herrmann et al., 1992, Brockmann

et al., 1993, Beran and Feng, 2002, and Ghosh and Draghicescu, 2002). An IPI

bandwidth selector is calculated as Eq. (3.15). The IPI procedure is started with

an initial bandwidth b0. In Gasser et al. (1991), Herrmann et al. (1992) and

Brockmann et al. (1993), the starting bandwidth b0 = n−1 is used. Beran and

Feng (2002) proposed to use b0 = n−5/7 so that the starting bandwidth satisfies

b0 → 0 and nb0 → ∞. The bandwidth b0 = 0.5n−1/5 is used by Feng (2004),

which is of the optimal order O(n−1/5). In this section, we proposed to select the

starting bandwidth from a set of given bandwidths using the CV (cross-validation,

Wahba and Wold, 1975) criterion, so that the algorithm is fully data-driven. It

is well known that the choice of the starting bandwidth only has a clear effect on

the required number of iterations but not on the finally selected bandwidth.

In an IPI algorithm, a bandwidth bλ,j for estimating the second derivative

[g(τ, λ)]′′ is calculated from b̂j−1 using some inflation method. The choice of the

inflation method is very important because the rate of convergence of an IPI
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bandwidth selector depends on this choice. The original proposal of Gasser et al.

(1991), applied a multiplicative inflation method (MIM), where bλ,j = b̂j−1 · nα

with α = 1/10. Now, we have bλ,j = O(n−1/10), once convergence is reached. This

ensures that the variance of b̂/bA has the fastest rate of convergence O(n−1/2) but

the bias of b̂ is relatively large, where b̂ denotes the finally selected bandwidth.

An exponential inflation method (EIM), bλ,j = (b̂j−1)
α, was proposed by Beran

and Feng (2002). The authors proposed to use the optimal choice α = 5/7, which

minimizes the MSE of
∫

[g(τ, λ)]′′dτ . Numerical experiments show that sometimes

the MIM method does not work well, because the inflation factor n1/10 depends

strongly on n, and the range of the sample size considered in the current context

is very large. The EIM method with α = 5/7 works well in different contexts and

will be used.

Ghosh and Draghicescu (2002) proposed to estimate some unknown functions

in bandwidth selection for quantile regression with time series errors directly from

the data. Following their idea, it is proposed to estimate the unknown quantity

S|ξ|λ non-parametrically by the sum of the sample autocovariance γ̂|ξ|λ(k) of the

residuals until some lag M , where M satisfies M →∞ and M/n→ 0. Bühlmann

(1996) proposed the optimal window selection of Bartlett window and C2-window

with IPI. Bartlett window is selected as the lag window and in the following

M = [3n1/5] = O(n1/5) will be used, where [·] denotes the integer part. Here, the

ccf is chosen as a constant 3 and the optimal cf selection is neglected. Under

this choice, the effect of the error in Ŝ|ξ|λ on the finally selected bandwidth is

asymptotically negligible. Note that γ̂|ξ|λ(k) tends to zero very fast. Hence, the

finally selected bandwidth will not be changed clearly, if a larger M , e.g. M =

[4n1/5], is used. Also, note that bandwidths b̂j obtained in several iterations at

the beginning are usually inconsistent. It is not good to use those bandwidths to

estimate S|ξ|λ . Following Herrmann et al. (1992), we select the bandwidth first by

ignoring the correlation and scale change. In this stage a simple difference-based

variance estimator ĝ|ξ|λ = 1
2(n−1)

n∑
t=2

(|ξt|λ − |ξt−1|λ)2 will be used. The bandwidth

selected at the end of this stage will be used as a new starting point for selecting

the bandwidth under correlated errors with a smooth scale function. From now
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on Ŝ|ξ|λ will be estimated and adapted in each iteration. The detailed bandwidth

selection algorithm is discussed with the selection of the power transformation

parameter in the next subsection.

3.3.4 The power transformation parameter estimation al-

gorithm

Let b0 denote the starting bandwidth, depending on an initial λ0 value input. In

the application, the starting input values λ0 = 2, 1, 0.5 and 0.1 will be considered.

In the algorithm, λ0 = 1 is applied and the results remain with the other initial λ

values.

The proposed data-driven algorithm is as follows.

1. Obtain µ̂(τt) using an IPI algorithm and let r̂∗t = |rt − µ̂(τt)|.

2. Select b̂0 from b0,i = c0,in
−1/5 with c0,i = 0.05, 0.10, 0.15, 0.20, 0.25 using the

CV criterion and the starting power transformation parameter input λ0 = 1.

Then put j = 1.

3. Select a bandwidth by ignoring the correlation and scale change.

4. In the m-th iteration for m ≥ 1:

4a) Let ∆λ = 0.001 be the interval of λ and λn = n ·∆λ, where 5 ≤ n ≤

1000.

4b) Determine the λ̂m = λn, where λn is the power parameter maximizing

the MLE or minimizing the JB statistic.

4c) Increase m by one and repeat 4b) until λ̂m+1 ≈ λ̂m and let λ̂ = λ̂m.

5. Let J1 be the number of iterations in the last stage. In the j-th iteration

with j > J1:

5a) Estimate ĝ(τt, λ̂) with bj−1. Let ξ̂t = r̂∗t /ĝ(τt, λ̂) and Ŝ|ξ|λ̂ =
∑
|k|<M

γ̂|ξ|λ̂(k).
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5b) Let [ĝ(τt, λ̂)]′′ denote the estimate of [g(τt, λ̂)]′′ obtained by using bλ,j =

b
5/7
j−1.

5c) Improve bj−1 by

bj =

(
Ŝ|ξ|λ̂

R(K)

I2(K)

∫
ĝ2(τ, λ̂)dτ∫

{[ĝ(τ, λ̂)]′′}2dτ

)1/5

n−1/5. (3.16)

5d) Increase j by one and repeatedly carry out 5b) and 5c) until convergence

is reached or until a given maximal number of iterations has been done.

The finally selected power transformation parameter λ̂ and bandwidth b̂A are

obtained in the last iteration of Step 4 and Step 5, respectively. In Step 1, the

scale change is also ignored to save computing time. The condition |bj−bj−1| < 1/n

is used as a convergence criterion of b̂ since such a difference is negligible. The

bandwidth b̂0 used in Step 2 provides an object starting point of the algorithm.

The maximal number of iterations, which indeed does not play any role in a

common case, is 20 in Steps 1 and 3 and 30 in Step 5. The λ̂, in Step 4, is a

stable global power transformation parameter of the Box-Cox transformation. It

means that now the scale function is estimated from the λ-th power of the absolute

returns instead of the squared returns. Note that both the estimated scale function

with the selected power transformation parameter λ and the scale function applied

during the descaled process is ĝ(τt, λ). Obviously, the convert parameter ĉ−1/λλ in

Equation (3.9) can not be neglected.

3.3.5 A simple stationary test

The proposed semiparametric models should be used, only if the underlying pro-

cess is nonstationary in the mean and/or nonstationary in the variance. In the

sequel, a simple method is proposed to test whether the variance of the process is

constant. Similarly, a test of the stationarity in the mean can also be carried out,

if this is of interest.

Assume that the acf (autocorrelation function) of |ξt|λ is absolutely summable

for any 0 < λ ≤ 2. Our null-hypothesis (H0) assumes that the process rt is
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stationary with constant standard deviation s(τ) ≡ s0 and finite fourth moments.

Let ĝ(τt, λ) be the estimator of g(τt, λ) defined above with a bandwidth b such

that b → 0 and nb → ∞ as n → ∞. Under H0 it is clear that g(τt, λ) is also a

constant g0(λ) ≡ cλs
λ
0 . Under H0 and corresponding regularity assumptions, we

have √
nb̂A[ĝ(τt, λ)− g0(λ)]→ N [0, R(K)V|ξ|λ ], (3.17)

where R(K) =
∫
K2(u)du is the kernel constant in the asymptotic variance of

ĝ(τt, λ) and V|ξ|λ = S0
|ξ|λg

2
0(λ), where S0

|ξ|λ is similar to S|ξ|λ in Theorem 3.1 but

defined for the process ξ0t = r∗t /g0(λ). The overall variance g0(λ) can be es-

timated by the sample variance of {r̂∗t }, ĝ0(λ) say. The quantity S0
|ξ|λ can be

estimated from ξ̂0t = r̂∗t /ĝ0(λ) following the idea in the last subsection. Let

ŜDσ = [V̂|ξ|λR(K)/(nb̂A)]1/2 and Zα/2 be the α/2 upper quantile of the standard

normal distribution for given confidence level α. Then ĝ0(λ) ± Zα/2ŜDσ provide

the approximate (1−α)∗100% confident bounds of g0(λ) under the stationary as-

sumption on {r∗t }. If more than α∗100% of the estimates ĝ(τ, λ) are clearly outside

these confidence bounds, it indicates that {r∗t } is nonstationary in the variance

and a semiparametric model should be used. Otherwise, generalized parametric

GARCH models will be preferable.

3.4 Applications

Several major stock market indexes are selected to carry out the algorithm. In the

following empirical research, Standard & Poor’s 500 Index (S&P) and Deutscher

Aktienindex 30 (DAX) from January 1996 to December 2015 are employed as the

sample data to fit the general SemiGARCH models.

3.4.1 The estimation of λ

An IPI algorithm is carried out to calculate the Box-Cox power transformation

parameter λ, calculated also as the power in the scale function of the general

SemiGARCH models. In the algorithm, we set different initial λ inputs, which are
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2, 1, 0.5 and 0.1, respectively. Due to the consideration of the absolute returns,

the initial λ values are always positive. For the discussion on the negative and zero

values, please refer to Feng et al. (2017). In the λ selection, we developed a six-step

IPI algorithm and it is obvious that most of the examples quickly reach the λ̂ after

the second IPI procedure, which is also discovered by Herrmann and Gasser (1994),

Beran and Feng (2002) and Feng (2013). To ensure the positivity of the input

series, the absolute centralized returns should be considered, then the Box-Cox

transformation can be carried out searching the λ̂ in the IPI process. According

to Lemma 2 in Feng (2013), we found also the λ monotonically increasing or

decreasing in probability, depending on the starting input λ.
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Figure 3.1: The IPI process with JB and MLE

As shown in Fig. 3.1, the λ values of both DAX and S&P with the JB as

well as the MLE methods tend to the λ̂ very fast, leading to coincide lines with

different outsets, while the λ̂ seems to be independent with the initial λ inputs.3

3The R packages tseries and MASS are used to select λ with JB and MLE.
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Obviously, the λ̂ for both of the MLE and JB methods can be reached in a few

iteration procedures. There is no significant difference between the λ̂ and the

optimal λ calculated until the second IPI procedure, e.g. the optimal λ in the

second IPI procedure of S&P with JB (starting λ = 0.1) is 0.3 and the obtained

λ̂ after all the iteration procedures is also 0.3. However, the result of λ may also

reach the selected value in the first IPI step, e.g. for DAX with JB, when the

initial λ = 1, the λ values are always 0.335 in the IPI process. Further, we can

conclude, the convergence rate of the λ tending to the fixed λ̂ depends on the initial

inputs. If the starting input λ is far above or below the λ̂, the convergence rate

is dramatically greater than that with a relatively close distance from λ̂, bringing

to the power parameter decreases or increases quickly to the fixed λ̂.

In the MEM model, the conditional variance of the returns is always consid-

ered to follow a squared power transformation, most likely expanding the positive

skewness and affecting the least-square estimation quality. To overcome the draw-

back, a weaker moment power transformation of the absolute returns is considered.

Taylor (1986), Ding et al. (1993) and Granger and Ding (1995) considered the

absolute returns because the autocorrelation of the long-term dependent absolute

financial returns is the maximized, which is recognized as the Taylor effect. Fur-

ther, Ding and Granger (1996) also indicated that a fourth root transformation

is preferred to the absolute returns but for the exchange rate. Noguchi et al.

(2016) developed a quantile-matching technique to determine the power parame-

ter λ by minimizing the distance between the lower and upper percentile from the

sample median with an extensive range of the quantiles and with their criteria, a

cube-root transformation seems to be optimal to model the absolute returns. In

the section, we developed optimal λ searching methodologies by maximizing the

likelihood estimation and minimizing the JB statistic. Please note that, in order

to get rid of the possible influence of the time-varying trend, it is removed in a

standardized process before carrying out the λ searching methodology.
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Figure 3.2: The λ̂ with JB and MLE

In Fig. 3.2, the power parameters appear a U-shape curve. The λ̂ is definitely

where it minimizes the JB statistic or maximizes the MLE with a fixed bandwidth

b̂. The 95% confidence intervals of MLE can be calculated based on the χ2 distri-

bution, displayed as a vertical dashed line in the figure and the λ̂ values are around

one third, which are exactly 0.335, 0.300 and 0.321, 0.290 with JB and MLE of

DAX and S&P, respectively. Obviously, the differences of the λ̂ between the two

methods are tiny. However, the λ̂ values selected by both iterative algorithms are

dramatically distinct from the ordinary ones, 1 (absolute returns) and 2 (squared

returns). The histograms of the transformed examples with selected λ discussed

above are displayed in Fig. 3.3.

In financial markets, a precise scale function with smaller λ is required to reveal

the trend of the returns with various extreme observations, while, the consideration

of smoothness of the scale function leads to the relatively larger λ values. Further,

if smaller λ is applied, the requirement of higher-order moments of the returns does
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not exist, leading to the scale function estimation under a possible weak moment

condition, such as the existence of variance. In addition, at the left boundary,

the JB value decreases at an extremely exponential speed, i.e. the JB statistic

values are significantly increased if the approaching-zero λ values are considered.

Following the definition of the Box-Cox transformation, there is no doubt that

a logarithmic transform has to be considered if the λ is tending to 0. In the

interesting case, the descaled series follows a logarithmic process and the model

is also additive rather than multiplicative, i.e. the additive error model is an

alternative, if a close zero λ is detected. Further, if the robustness is considered,

the squared returns are still the optimal choice, although the normality statistics

and MLE are disappointing.
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Figure 3.3: The histogram of DAX and S&P with JB and MLE
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3.4.2 The selection of the parametric models

In the section, the power transformed absolute returns do not follow the squared

(λ = 2) or the absolute (λ = 1) patterns by manual, but rather that of the λ-th

power, which is selected by means of the iterative λ selection algorithm.
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Figure 3.4: The smoothing results of DAX Index from Jan 1996 to Dec 2015
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Figure 3.5: The smoothing results of S&P Index from Jan 1996 to Dec 2015

The smoothing results are displayed in Fig. 3.4 and Fig. 3.5. The λ̂ values

selected by the both MLE and JB are similar, so for simplicity, the λ̂ via MLE is

used in the parametric models fitting. Also, the stationary test in the variance is

based on the λ̂ by means of MLE. The returns seem to be more stationary after
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removing the scale function, regarded as the long term component. In addition,

clear GARCH cluster effects can still be observed, because the short term compo-

nent displayed in a GARCH class process is barely affected by removing the long

term component. In other words, the financial returns can be divided into the

long and short components, which can be described by the scale function using

Box-Cox transformation and the descaled process using the GARCH class process.

The GARCH, APARCH, EGARCH and CGARCH models of order (1,1), (1,2),

(2,1) and (2,2) are chosen to analyze the conditional heteroskedasticity in the

stationary standardized returns. It is also discovered that there is no significance

with the mean function of the return series and it will not be considered in the

model fitting. The innovations in the models are assumed to follow a normal-

and t-distribution. In Table 3.1, the BIC of models with λ = λ̂, 1, 2 are provided

and it is discovered that the EGARCH(2, 1) models with t-distribution are always

selected because of the minimum BIC values.
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Table 3.1: BIC of the parametric models with λ = λ̂, 1 and 2

Index Model Order
λ = λ̂ λ = 1 λ = 2

Normal t Normal t Normal t

DAX

GARCH

(1,1) 2.7472 2.7323 2.7483 2.7340 2.6981 2.6556

(1,2) 2.7489 2.7340 2.7501 2.7358 2.7032 2.6596

(2,1) 2.7452 2.7291 2.7461 2.7308 2.6960 2.6525

(2,2) 2.7469 2.7308 2.7477 2.7324 2.6977 2.6542

APARCH

(1,1) 2.7220 2.7091 2.7221 2.7098 2.6699 2.6362

(1,2) 2.7236 2.7107 2.7238 2.7114 2.6749 2.6396

(2,1) 2.7229 2.7103 2.7231 2.7109 2.6703 2.6355

(2,2) 2.7246 2.7119 2.7248 2.7126 2.6720 2.6372

EGARCH

(1,1) 2.7214 2.7082 2.7210 2.7087 2.6767 2.6351

(1,2) 2.7229 2.7097 2.7225 2.7101 2.6803 2.6377

(2,1) 2.7158 2.6993 2.7152 2.6998 2.6674 2.6238

(2,2) 2.7168 2.7005 2.7162 2.7010 2.6686 2.6251

CGARCH

(1,1) 2.7500 2.7352 2.7507 2.7368 2.6772 2.6578

(1,2) 2.7516 2.7368 2.7523 2.7384 2.6778 2.6607

(2,1) 2.7480 2.7321 2.7486 2.7336 2.6736 2.6545

(2,2) 2.7497 2.7338 2.7502 2.7353 2.6753 2.6562

S&P

GARCH

(1,1) 2.7243 2.6988 2.7310 2.7060 2.7002 2.6753

(1,2) 2.7259 2.7005 2.7326 2.7076 2.7018 2.6769

(2,1) 2.7207 2.6956 2.7278 2.7030 2.6975 2.6726

(2,2) 2.7208 2.6971 2.7278 2.7044 2.6976 2.6740

APARCH

(1,1) 2.6745 2.6590 2.6797 2.6651 2.6481 2.6339

(1,2) 2.6761 2.6606 2.6813 2.6667 2.6496 2.6355

(2,1) 2.6769 2.6623 2.6824 2.6684 2.6510 2.6368

(2,2) 2.6738 2.6605 2.6796 2.6669 2.6488 2.6362

EGARCH

(1,1) 2.6725 2.6565 2.6776 2.6626 2.6472 2.6325

(1,2) 2.6740 2.6581 2.6791 2.6642 2.6487 2.6341

(2,1) 2.6651 2.6487 2.6708 2.6551 2.6404 2.6248

(2,2) 2.6662 2.6499 2.6720 2.6563 2.6416 2.6261

CGARCH

(1,1) 2.7275 2.7021 2.7341 2.7092 2.7032 2.6782

(1,2) 2.7292 2.7038 2.7358 2.7109 2.7049 2.6798

(2,1) 2.7237 2.6988 2.7308 2.7061 2.6997 2.6750

(2,2) 2.7238 2.7003 2.7308 2.7076 2.7004 2.6758
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From Table 3.2, the shape parameter, also known as the degree of freedom

of the innovation distribution in all cases are significantly greater than 8, which

means that the eighth moment of ξt exists and little heavy tails of the distribution

of the innovations in the six research markets. Meanwhile, the degree of freedom

of S&P is obviously lower than that of DAX, which means that the possibility of

extreme returns in the US market is much higher than that in the German market.

For another, in EGARCH models, γ1 indicates no longer the leverage effect but

the size effect of the past returns on volatility, which is typically a cluster effect.

Besides, the leverage effect is denoted as α1, being always negative to reveal the

aggravation of past negative returns. In the cases of S&P and DAX, it is discovered

that the leverage parameters are obviously determined by the negative sum of α1

and α2. It seems that the leverage effect in EGARCH models is weaker than that

if other parametric models are applied, such as APARCH models.

Table 3.2: Fitting results of the SemiEGARCH(2, 1)-t models with selected λ

Data Stat. µ ω α1 α2 β1 γ1 γ2 shape

DAX

coeff. 0.0378 -0.0083 -0.2189 0.0991 0.9454 -0.0865 0.2515 10.4867

s.e. 0.0122 0.0033 0.0225 0.0233 0.0081 0.0338 0.0344 1.3717

t 3.1076 -2.5237 -9.7398 4.2581 116.3966 -2.5593 7.3100 7.6448

S&P

coeff. 0.0286 -0.0111 -0.2567 0.0858 0.9461 -0.1336 0.2591 9.6926

s.e. 0.0116 0.0034 0.0234 0.0243 0.0068 0.0346 0.0356 1.2381

t 2.4659 -3.3061 -10.9928 3.5363 139.9253 -3.8667 7.2810 7.8288

3.5 Final remarks

We put forward a wide class of SemiGARCH models with Box-Cox transforma-

tion. A data-driven algorithm is also carried out in the transformation parameter

selection, which is a great improvement in the scale function estimation of Semi-

GARCH models. The parameter λ we applied in the scale function estimation

is obtained after several IPI procedures until it converges, also a supplement in
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displaying the behavior of the long-term component in SemiGARCH models. In

the parametric part, general GARCH models can be selected to describe the per-

formance of the returns after removing the long-run trend. GARCH class models

are discussed as the cluster models to show the short-run behaviors in some ma-

jor financial markets of the world. It is found, if more extreme values are in a

market, the transformation parameter λ tends to be smaller, for example, the λ̂

of both DAX and S&P are only about a quarter, indicating the stability in the

two stock markets. It is also proven from the distribution of innovations that the

innovation of DAX follows a εt ∼ t(10.3433) distribution, exhibiting the existence

of the eighth moment and little heavy tails.

The framework of general SemiGARCH models is set up, however, some open

questions still have to be discussed further. e.g. the statistical properties of λ̂

have not been fully explored yet. The optimal selection of the constant value at

the zero point of spectral density in the IPI procedures is also of great interest.



Chapter 4

Value at Risk and Expected

Shortfall under general

Semiparametric GARCH models1

Risk management has been emphasized by financial institutions and the Basel

Committee on Banking Supervision (BCBS). The core issue in risk management

is the measurement of the risks. Value at Risk (VaR) and Expected Shortfall (ES)

are the widely used tools in quantitative risk management. Due to the ineptitude

of VaR on tail risk performances, ES is recommended as the financial risk man-

agement metrics by BCBS. In this section, we generate general SemiGARCH class

models with a time-varying scale function. GARCH class models, based on the

conditional t-distribution, are parametric extensions. Besides, backtesting with

the semiparametric approach is also discussed. Following Basel III, the traffic

light tests are applied in the model validation. Finally, we propose the loss func-

tions with the views from regulators and firms, combing a power transformation

in the model selection and it is shown that semiparametric models are a necessary

option in practical financial risk management.

1Chapter 4 is based on the working paper: Value at Risk and Expected Shortfall under General

Semiparametric GARCH models (Zhang, 2019b), CIE, 2019–06.
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4.1 Introduction

Value at risk is the most popular metrics for financial risk management since the

late 1980s. The BCBS first introduced VaR as the basic tool of risk measure and

capital requirement in the supervisory framework of the BCBS (1996). However,

VaR possesses some theoretical shortcomings. Artzner et al. (1999) pointed out

that VaR is not subadditive and it does not reveal the risk well if extreme loss

tail behaviors happen. He suggested considering the loss under the Expected

shortfall level, which is proved to be sub-additive but not elicitable. Due to a

more sensitive tail loss measure, the regulator recommended a risk metric shift

from a 10-day 99% VaR to 97.5% ES (BCBS, 2012) and the incoming modified

standard will be applied soon.

Backtesting is introduced as a method that applies historical data to predict

the (out-sample) losses from actual realized (in-sample) losses within a fixed time

interval, such as 250 days required by BCBS. Obviously, backtesting helps to

detect the relationship between the expected VaR/ES and estimated losses. The

VaR backtesting standards are explicit, such as the traffic light test (BCBS, 2012,

2016), the Kupiec’s POF (proportion of failures) test (Kupiec, 1995), the TUFF

test (Time until first failure, Kupiec, 1995), the Christoffersen test (1998), the

joint test of coverage and independence (Haas, 2001) and so on. Although ES is

about to be carried out in the very near future, the related backtesting rules are

yet not found by BCBS. Recently, Gneiting (2012) has argued that, due to the

elicitability, the direct backtesting method of ES can not be achieved. Meanwhile,

Christoffersen (2003) has pointed out that, due to the ES conditional elicitability,

it is feasible to evaluate the forecast and allow for tests, but not feasible for

direct comparison and ranking the performance of prediction methods. Acerbi

and Szekely (2014) suggested that the elicitability does not affect the risk model

backtesting but just its comparison, leading to a failure in the evaluation function

and a direct backtesting algorithm is also studied. McNeil et al. (2015) proposed

a one-sample t-test to do the ES backtesting, checking if the mean of the excess

loss is zero. Besides, Costanzino and Curran (2018) put forward a traffic light test

for ES, which is similar to that of VaR proposed by BCBS, introducing breach
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values to determine the colour zones by cumulative probabilities. On the other

hand, to evaluate the risk measure forecast, Lopez (1999), Sarma et al. (2003),

Angelidis and Degiannakis (2007) and Abad et al. (2015) discussed a two-stage

evaluation approach, i.e. first test the violations of the risk models and then rank

the models by the calculated statistics. In the rank process, we have introduced

some loss function, defined from the view of different agents, such as the regulator

and the firms.

In this chapter, we consider risk management in real markets with a semi-

parametric process. A time-varying scale function is introduced to decompose the

long term risk component. After descaled the long term component, we discuss

the VaR and ES with a stationary GARCH class process, which is defined as a

model free class by using any GARCH type model. Besides, in the parametric

process, we imply a power transformation of the returns, reducing the moment

requirement of the GARCH models. Further, a two-stage method is carried out in

the model evaluation, checking firstly the violations of the models by coverage and

independence tests and then ranking the risk models by different loss functions

with different power parameters. Following the requirements of Basel III, in this

chapter, the confidence level for VaR and ES are 99% and 97.5% respectively and

the forecast out-sample range is 250 days. Due to the robustness, the traffic light

tests for both VaR and ES are also posed and in the ES traffic light test, breach

values are applied as statistics to determine the zone’s colour.

The chapter is organized as follows. Section 4.2 proposes the model. The

statistical tests and loss function are the topics of Section 4.3. In Section 4.4,

we discuss empirical implications with the two-stage method. Finally, Section 4.5

concludes.

4.2 VaR and ES with semiparametric processes

VaR and ES can be calculated based on the marginal distribution and the condi-

tional distribution. In this section, we consider the VaR and ES in a semipara-
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metric process, using a localized conditional distribution.

4.2.1 VaR and ES

VaR is the most important risk measurement tool based on the loss distribution

and it is widely used in the financial institutions. In Basel III, VaR is a standard

tool to measure the market risk. Generally, VaR is considered to be the maximum

expected loss of a portfolio over a given time interval with a certain confidence

level. For a given α, V aRα is the up-α-quantile of the loss distribution,

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α}, (4.1)

where α ∈ (0, 1) is the given confidence level and L stands for the loss, defined

as the negative returns Lt = −rt. From Eq. (4.1), VaR at the confidence level

α is given by the smallest number of l to ensure that the probability of the loss

L exceeds l is not greater than 1 − α. Eq. (4.1) is also the non-parametric

approach based on the marginal distribution and in this approach, no distribution

assumption is required. The value of VaR depends strongly on the distribution

and it is a constant for some marginal distribution, which does not depend on t.

Thus, the VaR is a quantile of the loss distribution function.

If the loss L follows a t-distribution t(ν, µ,Σ2), suppose that (L − µ)/Σ is a

standard t-distribution with ν degrees of freedom, VaR can be calculated as:

V aRα = µ+ σt−1ν (α), (4.2)

where tν(·) and t−1ν (·) are the density function and the quantile function of standard

t-distribution, respectively. Please note that σ is not the standard deviation in

the loss distribution, but that multiplicated by a constant related to the degree of

freedom. Besides the loss distribution, the choices of time horizon and confidence

level are also important for VaR calculation. The time horizon depends on the

liquidity of the portfolios and the frequency they are traded. Less liquid means

a longer time horizon and more liquid means a shorter horizon. Generally, VaR
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in a short time horizon is less than the VaR in a long time horizon, due to the

potential unexpected risk in the future.

Although VaR is a widely used risk management tool, it is also criticized by

different views, especially its non-subadditivity. Artzner et al. (1999) showed that

VaR is not a coherent risk measure due to the lack of sub-additivity and the poor

tail risk capture, causing the risk of the merged portfolios is less than the sum of

risk of individual portfolios. ES, on the other hand, is employed to overcome the

shortcomings and the risk measure is changed from the VaR currently in use to a

new metric, the so-called ES (BCBS, 2012).

For the loss L, the ES at the confidence level α ∈ (0, 1) can be defined as:

ESα(L) = E(L|L ≥ V aRα(L))

=
1

1− α

∫ 1

α

V aRγ(L)dγ, (4.3)

where V aRγ(L) is the quantile function of the loss distribution. It is obviously

that the ES can be assumed to be the expected loss given that L exceeds V aRα(L).

Thus, the expected shortfall indicates not only the information about frequency

but also the size of large losses.

Similar to VaR, we consider the loss distribution for ν > 2 and in this chapter

the t-distribution is standard, so the variance of the distribution Σ is obviously 1.

Then, ES with a parametric process can be expressed as (McNeil et. al, 2015),

ESα = µ+ σESα(L), (4.4)

ESα(L) =
gν(t

−1
ν (α))

1− α
ν + (t−1ν (α))2

ν − 1
. (4.5)

Fig. 4.1 is the simulated example of VaR and ES with the t marginal loss

distribution at the 95% confidence level. In general, the area below x axis is

negative and indicates the profit whereas the above part is positive and indicates

the loss. Assume that the loss value at α level is lα, it is obviously to obtain

P (L > lα) = 1− α, so the VaR value is lα and it indicates that the possibility of
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the maximum possible loss exceeding the lα during the considered period is not

greater than α. Besides, it is also found that ES is a VaR integration for level in

(1−α, 1), which is reorganized as the conditional VaR (CVaR). It is obvious that,

under the same confidence level, ES is always higher than VaR, meaning that ES

a more sensitive metric than VaR in risk management.
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Figure 4.1: Plot of 95%-VaR and ES with t-distribution

4.2.2 The semiparametric models

To model the market risk with long and short risk decompositions, a semipara-

metric model with the time-varying scale should be considered. Let rt, t = 1, ..., n,

denote the logarithmic returns from an asset. In the following we propose to an-

alyze rt using a general SemiMEM (semiparametric multiplicative error model)

defined by introducing a smooth scale function into the MEM proposed by Engle

(2002).

rt = s(τt)
√
htεt, (4.6)

where s(τ) > 0 is a time-varying smooth scale function, τt = t/n is the rescaled

time, ht is the conditional variance of the re-scaled process ξt = rt/s(τt) =
√
htεt

and εt ∼ t(n) are standardized margins (zero mean and unit variance) i.i.d. ran-
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dom variables. Generally, there is a nonparametric drift function in the returns

series, however, it is not discussed in the section for simplicity, because the mean

function varies around zero and it does not affect the following model estimation

and the risk measures calculation.

The stationary process ξt can be analyzed using any suitable GARCH-type

model. The parametric model has no affection to the trend estimation, so the

semiparametric model is indeed a parametric-free model. In this section, we will

consider modeling σt by the parametric approaches, such as the GARCH, the

APARCH and the EGARCH models.

Besides, we consider the estimation of the time-varying scale change based

on the power transformation rλt for λ ∈ [0, 1] here. Then, the power transform

SemiGARCH models are expressed as

sgn(rt) · |rt| = sλ(τt)rt,λ, (4.7)

where sgn(rt) is the sign of the returns, sλ(τt) is the power transformed scale

function and rt,λ is stationary with E(rλt,λ) = 1. Obviously, the stationary process

rt,λ is the product of the returns and a power transformed constant as rt,λ =

C
−1/λ
λ rt. However, the original scale function can not be directly estimated and an

equivalent scale function has to be applied in the trend estimation. The equivalent

scale function s̃(τt) reads as

s̃(τt) = sλ(τt) = C
1/λ
λ · s(τt), (4.8)

The value of Cλ is determined by λ and the marginal distribution of rt. Because

E(rt) = 1, we know that for the original series without transformation, C1 ≡ 1,

meaning that the first order m(·) is always the scale function of the commonly

proposed estimator based on rt. Considering the λ0-th moments of the process and

λ0 ∈ (0, 1], suppose that E(rλ0t ) = 1 and E(ξλ0t ) = 1, we can conclude that mλ0(τt)

is the scale function of rλ0t , indicating that for the power transformed series, the

constant Cλ0 ≡ 1. If the power λ = 0, the SemiGARCH model is transformed to

an additive model with a logarithmic form. The details on the power transform,
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please refer to Zhang (2019a).

We apply the local linear method to estimate the scale function estimator

ŝλ(τt) = |s̃λ(τt)|. s̃λ(τt) = â0(x) is a local linear estimate obtained by minimizing

Q(a0, a1) =
T∑
t=1

{
rλt − a0(τ)− a1(τ)(τt − τ)

}2
K

(
τt − τ
b

)
, (4.9)

where K is a symmetric kernel function. Feng (2019) propose a kernel regression

method to prediction the risk measure. Besides, the simulation methods (Acerbi

and Szekely, 2014) can also be considered here.

The semiparametric models can be also applied to the risk measurement of VaR

and ES. A descaled process should be considered first by removing the estimated

trend in the in-sample data. The out-sample conditional variances are calculated

through the fitted unit GARCH models based on the in-sample descaled returns

data. Suppose that the loss follows a t-distribution, for k = 1, . . . , K, VaR and

ES in a semiparametric process of the out-sample data should be considered as

V aRt+k
α = µ(τt+k) + σ(τt0)h

1/2
t+kt

−1
ν (α) (4.10)

and

ESt+kα = µ(τt+k) + σ(τt0)h
1/2
t+kESα(L), (4.11)

where µ(·) is the local mean, σ(·) is the local variance and ESα(L) is the quantile

in (4.5). Obviously, the quantiles are depending on the innovations distribution.

The local variance σ(·) is almost the same for t within a small period and is deter-

mined by observations within a time period around the observation point, which

changes slowly over time and stands for middle term effect. In the out-sample

risk prediction, we treat the local variance as a constant and it is approximately

defined by the last local variance in in-sample series at t = t0 as σ(·) = σ(τt0).

The conditional standard deviation in the out-sample should be h1/2t+k, estimated

by unit GARCH models with descaled returns of the in-sample. For simplicity,

the time-varying local drift function can also be treated as zero.
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4.3 The Backtesting of VaR and ES

Backtesting is a necessary model validation method to check the model perfor-

mance on the risk prediction with historical data. The model is accepted only if it

can satisfy some statistical tests and predict robustly. In this section, a two-stage

(Sarma et al., 2003) evaluation procedure is carried out. In the first stage, some

tests, such as coverage test (Kupiec’s POF test, Kupiec, 1995), independence test

(Christoffersen, 1998), joint test (mixed Kupiec test, Haas, 2001) and traffic light

test (BCBS, 2006, 2012, 2016) are put forward to test the statistical accuracy.

Next, for the selected surviving models in the second, we rank their performance

with the loss function (Lopez, 1998, Sarma et al., 2003, Caporin, 2008, Abad et

al., 2015), such as the regulator loss function (RLF) and the firm loss function

(FLF), respectively.

4.3.1 The backtesting of VAR

Different methodologies can be applied in the backtesting of VaR, such coverage

tests, distribution tests and independence tests. In this section, we discuss the

coverage test (the Kupiec’s POF test), the independence test (Christoffersen’s

independence test) and a joint test, considering the coverage and independence

together.

4.3.1.1 The Kupiec’s POF test

The Kupiec POF (POF) test is based on the failure rate provided by Kupiec

(1995). The aim of this test is to test the frequency of VaR exceeding over a given

time interval. The null hypothesis of the POF test is

H0 : p =
x

n
; H1 : p 6= x

n
, (4.12)
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where x is the number of violation. The log-likelihood statistic LRUC is in the

form as

LRPOF = −2 ln

[
(1− p)n−xpx

(1− x
n
)n−x(x

n
)n1

]
. (4.13)

Under the null hypothesis, LRPOF asymptotically follows χ2-distribution as LRPOF ∼

χ2(1). However, there are two drawbacks to the POF test. As mentioned by Ku-

piec (1995), the test is not robust with relatively short out-sample interval, such

as 250 days required by BCBS. For another, the test only considers the failure

rate but neglects the time between failures.

4.3.1.2 The independence test

Christoffersen’s independence test (Ind) (1998), which is the first test for inde-

pendence of violations, is a likelihood ratio test that looks for aberrant frequent

consecutive violations, i.e. this test examines if the probability of violations of the

risk measures depends on the previous observation. He estimates the one-step-

ahead transition probabilities Pr(It+1|It) with a first-order Markov process,

Π1 =

 π00 π01

π10 π11

 , (4.14)

where πij = Pr(It+1|It). Let nij is the number of the observations with value i

followed by j, then Matrix (4.14) can be estimated as

Π̂1 =

 n00

n00+n01

n01

n00+n01

n10

n00+n01

n11

n00+n01

 . (4.15)

The null hypothesis of the independence test is

H0 : π0 = π1; H1 : π0 6= π1, (4.16)

and the test statistic for independence of violations is defined as

LRInd = −2 ln

[
(1− π)n00+n10(π)n01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

]
∼ χ2(1). (4.17)
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4.3.1.3 The joint test

The joint test (Mixed Kupiec test, Mix, Haas, 2001) combines the Kupiec’s POF

test and the Christoffersen’s independence test, examining the coverage and inde-

pendence together. As pointed out by Christoffersen (1998), if the first observation

is conditioned on in the independence test, i.e. ignore the first observation, the

statistics of the joint tests are exactly equal to the sum of those of the coverage

test and the independence test. If the first observation is considered, then the

approximate sign should be used.

LRMix = LRPOF + LRInd ∼ χ2(2). (4.18)

4.3.2 The backtesting of ES

The ES backtesting is now of great interest. Gneiting (2012) discussed that the ES

is not available for backtesting due to the elicitability problem, which is proved not

affected indeed. McNeil et al. (2015), Acerbi and Szekely (2014) and Costanzino

and Curran (2018) provided different ES backtesting methods. In this section, the

violation-based test and the traffic light test are mainly discussed.

4.3.2.1 The violation-based test

In McNeil et al. (2015), an indirect ES backtesting method is contributed with

the consideration of the VaR violations. They consider ES can be expressed as

the sum of VaR and an excess loss process as

ESα = V aRα + (ESα − V aRα), (4.19)

where ESα−V aRα is the excess loss. So, the ES backtesting can be separated into

two individual components backtesting, one for the VaR component, the other for

the excess loss component. The VaR backtesting methods discussed above are

still feasible to the backtesting of the VaR component in Eq. (4.19). The null



62 4. VaR and ES under general Semiparametric GARCH models

hypothesis is that the excess loss, when VaR is violated, is i.i.d. and has an

expectation zero, while, the excess loss has a mean greater than zero, leading

to an underestimation of the conditional shortfall, as an alternative hypothesis.

Please note that the test applied here is a one-sided t-test.

Suppose that the VaR component has passed the backtesting, the excess loss

component can be tested by

Kt =

(
Lt − EStα
EStα

)
I{Lt>V aRtα}. (4.20)

For simplicity, we ignore the expectation of the loss. Obviously, if there is no

exceed VaR violation, the violation residual is definitely zero.

4.3.2.2 The traffic light test

In Basel III, the VaR backtesting must be based on a VaR measure calibrated at a

99th percentile confidence level and a prediction interval based on a sample of 250

observations. The BCBS provided a methodology for backtesting proprietary VaR

measures and in this methodology, based on the number of violations in the out-

sample data, VaR is categorized as one of three colored zones: green, amber and

red. For all sample sizes, the amber zone lower boundary is from the cumulative

probability equals or exceeds 95% and the red zone starts at the point where the

cumulative probability equals or exceeds 99.99%. Following the instructions, the

boundaries of the backtesting zone at 99% and 97.5% confidence levels are as

follow.

If a model validation falls into the green zone, there is little worried about

the concerned model’s accuracy in this range. From Table 4.1, we see that in the

amber zone, the models produce more exceptions, indicating that there is a higher

probability for inaccurate models than for accurate models. Obviously, the model

inaccurate grows by the increasing of the exception number.

Although the VaR traffic light coverage test is clearly illustrated by BCBS, a

similar ES test is not yet discussed. Costanzino and Curran (2018) proposed an

ES traffic light backtesting approach, which is analogous to the VaR traffic light
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Table 4.1: Traffic light backtesting boundaries at 99% and 97.5% confidence levels

Zone
No. of violations

Cumulative prob.
99% 97.50%

Green [0, 4] [0, 10] < 95%

Amber [5, 9] [11, 16] < 99.99%

Red 10 or more 16 or more ≥ 99.99%

backtesting approach proposed by BCBS, however, the probability information on

the random loss cumulative distribution cannot be neglected.

The ES traffic light test introduces a new breach indicator, calculating the

severity of the breach when the losses go beyond the related VaR confidence level.

Different from the discrete exception numbers in the VaR traffic light test, the

breach value in the ES traffic light backtesting is continuous.

Following the ES definition in Eq. (4.3), the ES generalized breach indicator

ωE for α ∈ (0, 1) is defined as

ω
(i)
E (α) =

1

1− α

∫ 1

α

I{Li≥V aRi(p)}dp

=

(
1− 1− FL(Li)

1− α

)
I{Li≥V aRi(α)}

= δ(i)(α) · ω(i)
V (α), (4.21)

where FL(Li) is the cumulative distribution of the random loss L and ω
(i)
V (α) is

the breach indicator of VaR defined as

ω
(i)
V (α) = I{Li≥V aRi(α)}

=


1, ifLi ≥ V aRi(α),

0, ifLi < V aRi(α).

(4.22)
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Compare the VaR and ES breach indicators, we can find that the ES breach

indicator ω(i)
E (α) is indeed the VaR breach indicator ω(i)

V aR(α) multiplicated by an

extra factor δ(i)(α) and the factor is not continuous, leading to the ES breach

value is discrete. From the formula, if the loss L tends to VaR, leading to the

cumulative distribution tends to α, then δ(i)(α) → 1. So, ω(i)
E (α) is close to zero.

On the other hand, if L → +∞, the cumulative distribution FL(Li) = 1 and

δ(i)(α) = 0, so that the ES breach indicator ω(i)
E (α) = 1. Here, we understand that

if no VaR violation happens, the ES breach indicator is of course zero, while, if

the violation is extremely large, the ES breach indicator will reach its maximum

value 1. However, for the VaR breach indicator, no matter how large the violation

is, the breach value is always 1, meaning that VaR is not as good as ES to reveal

the extreme performance in the tail.

Then, the total ES breaches values for N transaction days is expressed as

ωNE (α) =
N∑
i=1

1

1− α

∫ 1

α

I{Li≥V aRi(p)}dp

=
N∑
i=1

(
1− 1− FL(Li)

1− α

)
I{Li≥V aRi(α)}

=
N∑
i=1

δ(i)(α) · ω(i)
V (α). (4.23)

The boundary of ES traffic light test is fixed as

sup
x∈R+

0

{P (ωNE (α) ≤ x) < q}. (4.24)

If q < 0.95, then x is the minimum green zone upper limit of the ES traffic light

test. Similarly, the boundaries for the amber and red zone is taken into account

with 0.95 ≤ q < 0.9999 and q > 0.9999, respectively.

The table below (Costanzino and Curran, 2018) is the ES traffic light test zone

boundaries with α = 2.5% and N = 250. It is showed in the table that the breach

values of the 97.5% ES traffic light test seem to be more sensitive than those of

VaR under the same confidence level, which are quite close to the VaR boundaries

with α = 1%. It means that, in practice, the application of ES traffic light test
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may be a strict and robust backtesting method than the others.

Table 4.2: The ES traffic light test boundaries under 97.5% confidence level

Zone Breach value Cumulative prob.

Green

0 0.18%

1.3929 10%

2.1131 25%

3.0276 50%

4.052 75%

5.0622 90%

5.7049 95%

Amber

6.9844 99%

8.5285 99.90%

9.8833 99.99%

Red 9.8833 more > 99.99%

4.4 The loss function

In the first stage backtesting, only the structure of the violation is detected, ig-

noring the amount of each exceedance. So, in the second stage, we are going to

apply the loss function to analyze and rank the accurate of the risk prediction with

different models and describe how well the models reveal the market risk by some

numerical scores. In literature, two categories of the loss function are discussed,

the RLF and the FLF. Lopez (1999) first proposed a general form loss function

and in his RLF function, the loss, exceeding the VaR estimation, contributes to

a more aggressive penalization. However, the difference between the loss and the

estimated VaR is normally not so dramatic and it seems to exist an extreme mag-

nitude gap (the constant one and the square of the difference as mentioned above).

Then, the value one will be the dominant part in the RLF, meaning that it may
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overstate some loss by minor exceedance. Sarma et al. (2003) defined a similar

RLF with no constant factor left and the Sarma’s RLF considers the exceedance

contribution based on its real magnitude. Further, an FLF is also discussed in

their paper and it is found that the FLF is exactly the same as the RLF when

the loss exceeds the estimated risk measure, however, the opportunity cost of the

reserved capital should be included, if no violation happens. Obviously, the cost

here is the interest of the reserved capital held by the firms. Further, Feng (2019)

proposed an FLF, considering the scenario that the minor violation happens. If

the positive loss is no larger than the estimated risk measure, it should not be

treated as the reserved capital. In this chapter, the RLF (Loss1) and FLF (Loss2)

by Sarma et al. and the FLF (Loss3) by Feng et al. are applied in the empirical

analysis. The loss functions for VaR and ES share the same formula but just the

different risk measures. Let VaR be an example and the loss Lt = −rt, then the

Loss1 RLF is as

Loss1 =


(Lt−V aRt)

2, if Lt > V aRt,

0, if Lt ≤ V aRt.

(4.25)

The Loss 2 FLF reads as

Loss2 =


(Lt − V aRt)

2, if Lt > V aRt,

β(V aRt − Lt), if Lt ≤ V aRt,

(4.26)

where β is the daily interest rate.

Finally, the Loss3 FLF is as below

Loss3 =


(Lt − V aRt)

2, if Lt > V aRt,

β(V aRt − Lt), if 0 < Lt ≤ V aRt,

βV aRt, if Lt ≤ 0.

(4.27)

Actually, the loss function represents the different view of market agents to

backtesting. The regulator is willing to see the firms’ capital for the trading book-
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ing is linked to some risk measure, which is managed to be estimated, satisfying

the regulatory requirements. For firms, the goal is to estimate and control the risk

measures at a possible low level under the conditions that the backtesting results

can be accepted by the regulator. Further, both sides are not concerned about

the prediction accuracy, however, for the purpose of internal risk management, it

would be an advantage for firms in seeking model improvement. The distinct views

bring the different loss function criterion. The RLF, standing for the regulatory,

always leads to an overestimated risk measure, making sure that the market risk is

under control. While, for the firms, an underestimate-trend FLF is preferred, so as

to avoid unnecessary large risk reserve capital and its opportunity cost. Therefore,

to meet the requirements of both agents, the risk models selected should generally

possess suitable exceedance number in backtesting, e.g. around the boundaries

between the green and the amber zones.

4.5 The empirical study

In this section, some practical examples are discussed with the provided algorithm.

We apply the DAX 30 index (DAX), the FTSE 100 index (FTSE), the Euro

STOXX 50 index (EST), the Russell 2000 index (RUT), the S&P BSE SENSEX

index (BSN) and the Brent Crude Oil Futures (BRO). The BSN is collected,

ranging from July 1997 to September 2018 and the rest are from January 1988 to

September 2018. For the models, we check the parametric (CS-), semiparametric

with different selected power transformation parameters (LL1-, LL2- and LL3-)

and log-transformed (LC-) models with the specific stationary process, such as

GARCH (-OG), APARCH (-AP) and EGARCH (-EG).

In Table 4.3, the VaR backtesting results are listed. All the parametric models

can pass the unconditional coverage test and the mixed test smoothly (p-value

greater than 5%), however, for some semiparametric models, the p-values of the

coverage and mixed are relatively lower, even some of the model cannot pass

the tests, such as the LCAP and LCEG for FTSE, which the p-values are only

1.87%, far below the required 5%. If the models are able to pass the test, the
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semiparametric models seem to perform better than the parametric models in

the second stage of the backtesting. Obviously, for all the selected cases and

the models (in bold in both tables below), displaying the smallest loss function

values, are semiparametric models. Besides, we have to still pay attention to the

peaks over threshold (POT, also applied by Peitz, 2015), showed in the figures for

each example. Generally, the statistical test required a large sample size, in the

backtesting however we do a backtesting based on only 250 days, which seems to

be insufficient to support the statistical robustness. In this case, the test results

by the BCBS traffic light test should be considered in advantage. If a model is

capable to pass the backtesting, it should satisfy that the POT values are in the

green zone of the traffic light test and all the statistical tests should be passed.

In the results table, we can understand that if a model can pass the traffic light

test, then it passes also the statistical tests, but not vice versa. Further, from the

view of different agents, the parametric models should be a regulator-prefer type.

With parametric models, the estimated risk tends to be overestimated, leading

to the minor POT value but the relatively larger loss function. The regulator

is willing to accept the parametric models as the tools, however negative to the

firms. In our study, the semiparametric models seem to be a trade-off result and

satisfy the interest of both sides. For the regulator, the semiparametric models are

able to pass all the related tests, meet the regulatory requirements and supervise

the market risk, meanwhile, the estimated risk measures are not too large to

be accepted by firms, so as to avoid the unnecessary cost of the risk capital.

Specifically, firms are the modeler but regulators are the supervisor, meaning that

the semiparametric models are sure to be practical and benefit of the firms.
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Table 4.3: Coverage, independence tests and loss function values of 99% VaR

Model p-POF P-mix VPOT Loss1 Loss2 Loss3 λ

DAX

CS

OG 0.2806 0.5564 1 0.0046 5.5739 4.8148 -

AP 0.2806 0.5564 1 0.0114 5.8350 5.0760 -

EG 0.2806 0.5564 1 0.0760 5.8293 5.0703 -

LL1

OG 0.7530 0.9364 2 0.0198 - - 0.79

AP 0.7466 0.9453 1 0.0417 - - 0.56

EG 0.7466 0.9453 1 0.0927 - - 0.47

LL2

OG 0.7530 0.9175 3 - 5.2686 - 0.05

AP 0.7466 0.9339 2 - 5.3671 - 0.05

EG 0.7466 0.9339 2 - 5.3952 - 0.05

LL3

OG 0.7530 0.9175 3 - - 4.5096 0.05

AP 0.7466 0.9339 2 - - 4.6081 0.05

EG 0.7466 0.9339 2 - - 4.6362 0.05

LC

OG 0.7530 0.9175 3 0.0824 5.2005 4.4415 0.00

AP 0.3767 0.6443 4 0.1067 5.2698 4.5108 0.00

EG 0.7530 0.9175 3 0.1438 5.2821 4.5231 0.00

FTSE

CS

OG 0.7530 0.9175 3 0.6102 5.0837 4.4607 -

AP 0.7530 0.9175 3 0.1703 4.7139 4.0909 -

EG 0.3767 0.6338 4 0.3004 4.7196 4.0966 -

LL1

OG 0.3767 0.6338 4 0.7508 - - 0.06

AP 0.1597 0.3359 5 0.3152 - - 0.06

EG 0.0583 0.1437 6 0.4299 - - 0.06

LL2

OG 0.3767 0.6338 4 - 4.9806 - 0.06

AP 0.1597 0.3359 5 - 4.5705 - 0.05

EG 0.0583 0.1437 6 - 4.5952 - 0.06

LL3

OG 0.3767 0.6338 4 - - 4.3577 0.06

AP 0.1597 0.3359 5 - - 3.9475 0.05

EG 0.0583 0.1437 6 - - 3.9723 0.06

LC

OG 0.0583 0.1437 6 1.0184 5.0075 4.3845 0.00

AP 0.0187 0.0513 7 0.6090 4.5731 3.9501 0.00

EG 0.0187 0.0513 7 0.7397 4.6137 3.9907 0.00
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Table 4.3 to be continued

Model p-POF P-mix VPOT Loss1 Loss2 Loss3 λ

EST

CS

OG 0.7466 0.9339 2 0.0837 5.0064 4.3405 -

AP 0.2806 0.5564 1 0.0071 5.1902 4.5243 -

EG 0.2806 0.5564 1 0.0037 5.1059 4.4399 -

LL1

OG 0.7466 0.9339 2 0.0668 - - 1.00

AP 0.2806 0.5564 1 0.0045 - - 1.00

EG 0.2806 0.5564 1 0.0013 - - 1.00

LL2

OG 0.7466 0.9339 2 - 4.9336 - 0.93

AP 0.2806 0.5564 1 - 5.0205 - 0.93

EG 0.2806 0.5564 1 - 4.9796 - 0.93

LL3

OG 0.7466 0.9339 2 - - 4.2677 0.93

AP 0.2806 0.5564 1 - - 4.3545 0.93

EG 0.2806 0.5564 1 - - 4.3136 0.93

LC

OG 0.7466 0.9339 2 0.1105 4.8997 4.2337 0.00

AP 0.2806 0.5564 1 0.0337 4.9679 4.3020 0.00

EG 0.2806 0.5564 1 0.0220 4.9288 4.2629 0.00

RUT

CS

OG 0.3767 0.0868 4 2.0614 7.3645 6.5774 -

AP 0.3767 0.0868 4 1.5761 6.7511 5.9640 -

EG 0.3767 0.0868 4 1.7798 6.9343 6.1472 -

LL1

OG 0.1597 0.0477 4 1.6865 - - 0.18

AP 0.1597 0.0477 4 1.2207 - - 0.21

EG 0.1597 0.0769 5 1.2819 - - 0.24

LL2

OG 0.1597 0.0477 4 - 7.0337 - 0.21

AP 0.1597 0.0477 4 - 6.3817 - 0.25

EG 0.1597 0.0769 5 - 6.4244 - 0.25

LL3

OG 0.1597 0.0477 4 - - 6.2466 0.21

AP 0.1597 0.0477 4 - - 5.5946 0.25

EG 0.1597 0.0769 5 - - 5.6374 0.25

LC

OG 0.3767 0.0868 4 1.5856 7.0082 6.2211 0.00

AP 0.3767 0.0868 4 1.1205 6.3620 5.5749 0.00

EG 0.3767 0.0868 4 1.1871 6.4060 5.6189 0.00
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Table 4.3 to be continued

Model p-POF P-mix VPOT Loss1 Loss2 Loss3 λ

BSN

CS

OG 0.2806 0.5564 1 0.4544 5.3788 4.7029 -

AP 0.2806 0.5564 1 0.4899 5.5983 4.9225 -

EG 0.2806 0.5564 1 0.6632 5.6264 4.9505 -

LL1

OG 0.7466 0.9339 2 0.9348 - - 0.05

AP 0.7466 0.9339 2 1.1237 - - 0.05

EG 0.7466 0.9339 2 1.0621 - - 0.05

LL2

OG 0.7466 0.9339 2 - 5.1356 - 0.25

AP 0.7466 0.9339 2 - 5.2781 - 0.85

EG 0.7466 0.9339 2 - 5.2755 - 0.85

LL3

OG 0.7466 0.9339 2 - - 4.4597 0.25

AP 0.7466 0.9339 2 - - 4.6023 0.85

EG 0.7466 0.9339 2 - - 4.5997 0.85

LC

OG 0.7466 0.9339 2 1.3396 5.1648 4.4890 0.00

AP 0.3767 0.6338 4 1.7979 5.3967 4.7209 0.00

EG 0.3767 0.6338 4 1.6566 5.2584 4.5826 0.00

BRO

CS

OG 0.2806 0.5564 1 8.8457 19.1354 17.5963 -

AP 0.2806 0.5564 1 8.1441 18.3043 16.7651 -

EG 0.2806 0.5564 1 8.0478 18.2725 16.7333 -

LL1

OG 0.2806 0.5564 1 6.3465 - - 0.10

AP 0.2806 0.5564 1 6.3642 - - 0.10

EG 0.2806 0.5564 1 6.5822 - - 0.10

LL2

OG 0.2806 0.5564 1 - 17.9651 - 0.09

AP 0.2806 0.5564 1 - 17.5176 - 0.07

EG 0.2806 0.5564 1 - 17.5155 - 0.07

LL3

OG 0.2806 0.5564 1 - - 16.4259 0.09

AP 0.2806 0.5564 1 - - 15.9785 0.07

EG 0.2806 0.5564 1 - - 15.9764 0.07

LC

OG 0.7466 0.9339 2 10.3922 20.1867 18.6476 0.00

AP 0.7466 0.9339 2 9.7506 19.4522 17.9131 0.00

EG 0.7466 0.9339 2 9.4725 19.2278 17.6887 0.00
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The results of the ES backtesting tests are found in Table 4.4. For ES, not only

the 97.5% ES backtesting is required, but also the VaR backtesting at the same

significant level. Similarly, the unconditional coverage test, the mixed test, the

excess loss t test are carried out. In most cases, the parametric model performance

still satisfies the regulator. The relatively higher risk measure estimation brings

stricter risk control in the market. However, please note that in the examples of

EST, RUT and BRO, the POT of VaR (VPOT) and the POT of ES (EPOT)

increase dramatically, therefore leading to some test failures, such as the CSEG of

RUT. From the table, it is also indicated that the beach value increases following

by the increase of the VPOT and the VaR traffic light test at 97.5% level seems

to be too relax to guarantee the model staying in the green zone. In the VaR

97.5% traffic light test the green zone range is [0, 10], however, if the VPOT value

is around 10, the model is still simply able to pass the ES traffic light test, which

indeed requires a reduce of the VaR backtesting green zone at this level, such as

the cases of LCEG of BRO with VPOT value 10 and breach value 4.0003 and

LL1OG of DAX with also VPOT 10 and breach value only 3.9375.

Finally, the power transformation and the semiparametric models are also nec-

essary to estimate the risk measure and rank the loss function. It is found that the

minimum loss function value always happens when the power parameter λ ∈ [0, 1),

e.g. 4.4963 with LCOG of BSN, 15.5369 with LL3EG of BRO (λ = 0.07), etc.,

which suggesting a consideration on the model class selection with multiplicative

models or additive models. Further, it is interesting, the minimum loss values

are all obtained with semiparametric models and the loss function values of the

semiparametric models seem to be smaller than that of parametric models in most

cases. In the study, we have examined the risk measures prediction and backtest-

ing with the parametric models and the semiparametric models. Some positive

cases are found and prove that the semiparametric models are able to character-

ize the market risk and provide the necessary regulatory information to both the

regulators and firms. It is concluded that the semiparametric models are defi-

nitely well-performed risk management tools and treated as a supplement of the

parametric models.
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Table 4.4: Coverage, independence tests, breach and loss function values of 97.5% ES

Model p-POF P-mix VPOT EPOT Breach t-test Loss1 Loss2 Loss3 λ

DAX

CS

OG 0.2904 0.3155 9 1 3.1225 0.9994 0.0000 5.7104 4.9514 -

AP 0.6068 0.8072 5 1 2.0462 0.9677 0.0054 5.9663 5.2073 -

EG 0.7577 0.8019 7 1 2.1775 0.9607 0.0606 5.9519 5.1928 -

LL1

OG 0.1584 0.0094 10 1 3.9375 0.9986 0.0053 - - 0.93

AP 0.2904 0.4535 8 1 3.1786 0.9668 0.0301 - - 0.56

EG 0.2904 0.0137 9 1 3.3195 0.9653 0.0760 - - 0.47

LL2

OG 0.1584 0.0094 10 3 4.6304 0.9920 - 5.3691 - 0.05

AP 0.2904 0.0137 9 1 3.5898 0.9694 - 5.4787 - 0.05

EG 0.2904 0.0137 9 1 3.7232 0.9422 - 5.5059 - 0.05

LL3

OG 0.1584 0.0094 10 3 4.6304 0.9920 - - 4.6101 0.05

AP 0.2904 0.0137 9 1 3.5898 0.9694 - - 4.7196 0.05

EG 0.2904 0.0137 9 1 3.7232 0.9422 - - 4.7469 0.05

LC

OG 0.0161 0.0181 13 3 5.2456 0.9975 0.0396 5.2872 4.5282 0.00

AP 0.2904 0.3155 9 3 4.1412 0.8616 0.0806 5.3644 4.6054 0.00

EG 0.2904 0.3155 9 2 4.3050 0.8184 0.1204 5.3814 4.6224 0.00

FTSE

CS

OG 0.4898 0.3950 8 3 4.1544 0.5839 0.5394 5.1018 4.4788 -

AP 0.7577 0.7787 7 3 3.9854 0.6452 0.1181 4.7519 4.1290 -

EG 0.4898 0.6041 8 3 4.5022 0.4956 0.2430 4.7352 4.1123 -

LL1

OG 0.1584 0.0097 9 4 5.1385 0.4017 0.6604 - - 0.06

AP 0.2904 0.4081 9 4 5.0830 0.5100 0.2420 - - 0.06

EG 0.2904 0.4081 9 6 5.4977 0.2674 0.3587 - - 0.06

LL2

OG 0.1584 0.0101 10 4 5.1921 0.5339 - 4.9734 - 0.05

AP 0.2904 0.4081 9 5 5.3097 0.3934 - 4.5799 - 0.07

EG 0.2904 0.4081 9 6 5.5368 0.2514 - 4.5901 - 0.05

LL3

OG 0.1584 0.0101 10 4 5.1921 0.5339 - - 4.3504 0.05

AP 0.2904 0.4081 9 5 5.3097 0.3934 - - 3.9570 0.07

EG 0.2904 0.4081 9 6 5.5368 0.2514 - - 3.9672 0.05

LC

OG 0.0798 0.1706 11 6 6.6618 0.2357 0.9000 4.9675 4.3445 0.00

AP 0.0798 0.1296 11 7 6.6091 0.2356 0.5029 4.5447 3.9217 0.00

EG 0.0372 0.0622 12 7 6.9838 0.2250 0.6439 4.5785 3.9555 0.00
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Table 4.4 to be continued

Model p-POF P-mix VPOT EPOT Breach t-test Loss1 Loss2 Loss3 λ

EST

CS

OG 0.0798 0.1359 11 2 4.1351 0.9987 0.0450 5.1151 4.4491 -

AP 0.4898 0.6248 8 1 2.8359 0.9994 0.0011 5.3241 4.6582 -

EG 0.2904 0.4239 9 1 3.1623 0.9994 0.0001 5.2416 4.5756 -

LL1

OG 0.2904 0.3927 10 1 3.2805 0.9988 0.0213 - - 1.00

AP 0.4898 0.6248 8 1 2.5699 0.9997 0.0002 - - 1.00

EG 0.4898 0.6248 8 0 2.8332 0.9996 0.0000 - - 1.00

LL2

OG 0.2904 0.3605 11 2 4.3630 0.9967 - 5.0340 - 0.93

AP 0.4898 0.6248 8 1 3.4716 0.9963 - 5.1424 - 0.93

EG 0.4898 0.5840 9 1 3.6344 0.9988 - 5.1052 - 0.93

LL3

OG 0.2904 0.3605 11 2 4.3630 0.9967 - - 4.3680 0.93

- AP 0.4898 0.6248 8 1 3.4716 0.9963 - - 4.4765 0.93

EG 0.4898 0.5840 9 1 3.6344 0.9988 - - 4.4393 0.93

LC

OG 0.0798 0.1359 11 2 4.5054 0.9942 0.0634 4.9940 4.3281 0.00

AP 0.4898 0.6248 8 1 3.6521 0.9929 0.0186 5.0850 4.4190 0.00

EG 0.1584 0.2540 10 1 3.8275 0.9990 0.0099 5.0496 4.3837 0.00

RUT

CS

OG 0.1584 0.2599 10 4 5.1923 0.4714 1.8581 7.2858 6.4987 -

AP 0.0798 0.1706 11 4 5.2040 0.6728 1.4131 6.6994 5.9123 -

EG 0.0372 0.0990 12 4 5.6299 0.6944 1.5884 6.8640 6.0769 -

LL1

OG 0.2904 0.0350 8 4 4.1838 0.4386 1.4887 - - 0.18

AP 0.2904 0.0350 8 4 4.1217 0.5260 1.0616 - - 0.18

EG 0.0372 0.0572 8 4 4.1881 0.5027 1.1204 - - 0.21

LL2

OG 0.2904 0.0350 8 4 4.1895 0.4376 - 6.9618 - 0.22

AP 0.2904 0.0350 8 4 4.1621 0.5142 - 6.3356 - 0.27

EG 0.0372 0.0113 9 4 4.2829 0.6138 - 6.3762 - 0.42

LL3

OG 0.2904 0.0350 8 4 4.1895 0.4376 - - 6.1747 0.22

- AP 0.2904 0.0350 8 4 4.1621 0.5142 - - 5.5485 0.27

EG 0.0372 0.0113 9 4 4.2829 0.6138 - - 5.5891 0.42

LC

OG 0.7577 0.0329 7 4 4.0124 0.3559 1.3987 6.9482 6.1611 0.00

AP 0.9268 0.2965 6 4 3.9306 0.2477 0.9742 6.3298 5.5427 0.00

EG 0.7577 0.3790 7 4 3.9695 0.4181 1.0368 6.3708 5.5837 0.00
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Table 4.4 to be continued

Model p-POF P-mix VPOT EPOT Breach t-test Loss1 Loss2 Loss3 λ

BSN

CS

OG 0.0460 0.1344 2 1 1.1984 0.3830 0.3936 5.4491 4.7733 -

AP 0.0460 0.1344 2 1 1.2390 0.3660 0.4318 5.6668 4.9909 -

EG 0.0460 0.1344 2 1 1.5182 0.2787 0.5995 5.6860 5.0102 -

LL1

OG 0.3343 0.0108 4 2 2.3270 0.4213 0.8582 - - 0.05

AP 0.9268 0.8587 6 2 2.7894 0.4022 1.0503 - - 0.05

EG 0.6068 0.7907 5 2 2.5662 0.3358 0.9868 - - 0.05

LL2

OG 0.3343 0.0108 4 2 2.3968 0.4063 - 5.1643 - 0.25

AP 0.9268 0.8587 6 2 2.8742 0.3796 - 5.2984 - 0.85

EG 0.6068 0.7907 5 2 2.6744 0.3133 - 5.2967 - 0.92

LL3

OG 0.3343 0.0108 4 2 2.3968 0.4063 - - 4.4884 0.25

AP 0.9268 0.8587 6 2 2.8742 0.4022 - - 4.6226 0.85

EG 0.6068 0.7907 5 2 2.6744 0.3133 - - 4.6209 0.92

LC

OG 0.7577 0.4266 7 2 3.8484 0.3918 1.2535 5.1722 4.4963 0.00

AP 0.4898 0.4347 8 4 4.8706 0.2217 1.7069 5.3839 4.7080 0.00

EG 0.7577 0.4266 7 4 4.6645 0.2006 1.5669 5.2478 4.5720 0.00

BRO

CS

OG 0.4898 0.6041 8 1 3.3241 0.6622 8.0018 18.6323 17.0931 -

AP 0.4898 0.6041 8 1 3.2744 0.7093 7.2966 17.7998 16.2606 -

EG 0.4898 0.6041 8 1 3.2126 0.7206 7.2059 17.7743 16.2351 -

LL1

OG 0.1461 0.3352 3 1 1.3104 0.4517 5.5662 - - 0.10

AP 0.9268 0.8587 6 1 1.6908 0.7633 5.5667 - - 0.09

EG 0.9268 0.8587 6 1 2.0530 0.7203 5.7719 - - 0.10

LL2

OG 0.1461 0.3352 3 1 1.3120 0.4514 - 17.5684 - 0.09

AP 0.9268 0.8587 6 1 1.7022 0.7622 - 17.0956 - 0.07

EG 0.9268 0.8587 6 1 2.0594 0.7194 - 17.0761 - 0.07

LL3

OG 0.1461 0.3352 3 1 1.3120 0.4514 - - 16.0292 0.09

AP 0.9268 0.8587 6 1 1.7022 0.7622 - - 15.5564 0.07

EG 0.9268 0.8587 6 1 2.0594 0.7194 - - 15.5369 0.07

LC

OG 0.4898 0.6041 8 1 4.0137 0.4967 9.5255 19.6396 18.1004 0.00

AP 0.1584 0.2434 10 2 4.1432 0.7198 8.8662 18.8904 17.3513 0.00

EG 0.1584 0.2434 10 1 4.0003 0.7487 8.5918 18.6755 17.1364 0.00



76 4. VaR and ES under general Semiparametric GARCH models

The VPOT and EPOT of DAX are plotted in Fig. 4.2 and please find the other

plots in Appendix B. In the figures, VaR is estimated at the 95% confidence lever

and ES is at 97.5%. The out-sample size, required by Basel III, is about one year

(250 transaction days). Besides, even though the VPOT (blue point) and EPOT

(green point) values are very small, the coverage test fails also by CSOG, CSAP

and CSEG of BSN with a p-value only 4.6%, comparing the perfect performance

with the semiparametric models. On the other hand, a violation indicator breach

values for ES is introduced for the ES backtesting. Unlike those of VaR, a series

of discrete numbers, the ES breach value is continuous, lying around half of the

VPOT values. Following Costanzino and Curran’s ES traffic light test (2018),

we can see that the boundary between the green and amber zones is only 5.7049,

almost half of the VaR breach indicator 10 at 97.5% level in theory, however close

to the boundary at 99% level, which is 4. In other words, the ES breach value

indicates a more sensitive risk measure than that of VaR at the same confidence

level.

In the studied cases, we found that the ES breach indicator is also a strict test

rule. Even passing all the other tests, the ES breach values still possibly locate

in the amber zone, e.g. the breach values of the three LC models of FTSE are

beyond the green zone limitation, while the t-test still indicates the models should

be accepted with a reasonable statistic over 5%. Besides, the t-test seems to be

not capable to reveal the quality of the risk measure estimation, especially when

the risk measures are underestimated. In the LCOG case of DAX, the VPOT is

as high as 13 and the breach value is 5.2456, almost reaching its green zone upper

limitation, comparing the high t-test value as 0.9975. From the above cases, we can

conclude that the t-test is not robust due to the limited observations in backtesting

and the traffic light test, combing with the POF test and independence test, is

reliable to both VaR and ES backtesting.
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Figure 4.2: DAX POT of VaR and ES with parametric models
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4.6 Final remarks

In Basel III and its coming finalization, ES is required to be a basic risk manage-

ment tool, however, the backtesting of ES is not as clear as that of VaR. In the

study, we have examined the risk measures prediction and backtesting with the

parametric models and the semiparametric models. Besides, a simple traffic light

test of ES is also discussed by introducing breach values. Some positive cases are

found and prove that the semiparametric models are able to characterize the mar-

ket risk and provide the necessary regulatory information to both the regulators

and firms. It is concluded that the semiparametric models are definitely well-

performed risk management tools and treated as a supplement of the parametric

models.



Chapter 5

Modeling high-frequency returns at

fixed trading time points using a

general SemiGARCH model

The use of the GARCH model is widely observed in the empirical literature. How-

ever, this model may cause misclassification and assumes that the unconditional

variance of the time series is constant. The recently proposed semiparametric

GARCH model, which composes of the conditional heteroskedasticity and scale

functions, can improve the GARCH model. In this section, the definitions, the

features and the estimation of the GARCH model, the SemiGARCH model and

their extensions are investigated. Based on the SemiGARCH model the SemiE-

GARCH and the SemiCGARCH models (Peitz, 2015) are introduced in this work.

In the empirical example the SemiAPARCH, the SemiEGARCH and the SemiC-

GARCH models are applied to the returns of Allianz and BMW at fixed trading

time points. It is found that the semiparametric models have a more correct the-

oretical basis. They can model the conditional heteroskedasticity and the scale

change at the same time. Furthermore, the semiparametric models work well with

the returns at fixed trading time points.

5.1 Introduction

Trading off risks against returns appears to be essential and vital for making a

financial decision. Hence the econometric analysis of risk (volatility) becomes
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an important part in forecasting market tendency and supporting making finan-

cial decisions, such as portfolio diversification, risk management and derivative

pricing. In the last 20 years volatility was a research hot-spot in the financial

industry. Volatility is regarded as a parameter for evaluating the risk of assets

return. Generally, the stronger the volatility is, the higher the risk is.

In the classical financial models, the variance of the time series is always as-

sumed as constant. However, it is found that the volatilities of financial time

series have always the features of clustering and fat tails (Mandelbrot, 1963 and

Fama, 1965). These features are not consistent with the assumption of constant,

so the classical econometric methods cannot analyze the financial time series effi-

ciently in practice. To overcome this problem, several economists have carried out

studies on researching and developing frameworks for evaluating volatility. Since

Engle introduced the autoregressive conditional heteroskedasticity (ARCH) model

(Engle, 1982), the extensions of the ARCH model appeared and spread rapidly.

Among the carried out researches, the Generalized ARCH (GARCH) model and

its derivatives are most widely used (Bollerslev, 1986).

According to many studies (Gourieroux and Monfort, 1992 and Eubank, 1993),

in parametric volatility models, the preselected model might be too restricted

or too low-dimensional, which may not fit unexpected features and cause the

misspecification. However, in nonparametric models, the parameters of the model

cannot be estimated and the model cannot be explained due to a lack of specific

functions. Instead of parametric volatility models or nonparametric models, the

recently proposed semiparametric volatility model will be introduced in detail in

this section, which introduces a smooth scale function into the standard GARCH

model. This model does not need a prespecified function and is less sensitive to

model misspecification. At the same time, the model can be also explained (Di

and Gangopadhyay, 2011).

The definition, estimation, some properties of the semiparametric model and

the methods of bandwidth selection are discussed. Furthermore, based on the

study of the semiparametric GARCH model and the semiparametric asymmet-

ric power ARCH model, which are introduced by Feng (2004) and Feng and Sun
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(2013), the semiparametric exponential GARCH and component GARCH models

are originally defined. Then the discussed semiparametric models, i.e. the Semi-

APARCH, the SemiEGARCH and the SemiCGARCH models, are applied to the

returns of BMW and Allianz from January 2006 to September 2014. Different

from other algorithms, to get the more exact analyzing results the fixed trading

time points are used here.

The scope of this chapter is as follows. In section 5.2, the parametric volatil-

ity models are introduced. The semiparametric volatility models are described

in section 5.3. Section 5.4 reports the application of the semiparametric volatil-

ity models to the returns of BMW and Allianz and the empirical results on the

volatility of the selected data sets. Finally, this chapter is concluded in section

5.5.

5.2 The semiparametric volatility model

The SemiGARCH model is a general framework if the nonstationary trend is

removed. In this section, the APARCH, EGARCH and CGARCH models are

considered as the parametric part to analyze stationary processes.

5.2.1 The SemiGARCH model

The SemiGARCH model combines a smooth scale function with the standard

GARCH model:

Yt = µ+ s(τt)εt, (5.1)

where µ is an unknown constant, τt = t/n, s(·) > 0 is the nonparametric compo-

nent, a smooth, bounded scale function and {εt} is a parametric component. The

conditional variance of {εt} is assumed to follow a GARCH(p, q) process:
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ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjht−j, (5.2)

where h1/2t is the conditional standard deviations of the standardized process

εt, ω > 0, α1, . . . , αp ≥ 0 and β1, . . . , βq ≥ 0. To estimate the scale function,

E(ε8t ) < ∞ is assumed to ensure model 5.2 strictly stationary, which implies in

particular that
∑p

i=1 αi +
∑q

j=1 βj < 1 (Feng, 2004).

The SemiGARCH model provides us a tool to decompose financial risk into

an unconditional component s(τt), a conditional component h1/2t and the i.i.d.

innovations ηt.

The estimation of the SemiGARCH model can combine the nonparametric

estimation of the local variance ν(τt) = σ2(τt), with parametric estimation of the

unknown parameter vectors θ = (α0, α1, . . . , αp; β1, . . . , βq).

At first, the scale function can be estimated by some nonparametric regres-

sion approaches without any parametric assumptions. In this model, the kernel

estimation will be used. If the constant mean µ is replaced by a smooth function

µ(τt), we can get a nonparametric regression with a time-varying mean as

Yt = µ(τt) + s(τt)εt, (5.3)

where εt is a zero mean stationary process.

Eq. (5.1) can be transformed into a general nonparametric regression problem.

Letting rt = Yt− µ, Zt = r2t and ξt = ε2t − 1, which are zero mean stationary time

series errors. Then Model 5.1 can be rewritten as

Zt = g(τt) + g(τt)ξt. (5.4)

Letting µ̂ = ȳ and ẑt = r̂2t , in which r̂t is then defined by r̂t = yt − ȳ. A

Nadaraya-Watson kernel regression is
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v̂(τ) =

n∑
t=1

K( τt−τ
b

)ẑt

n∑
t=1

K( τt−τ
b

)
=:

n∑
t=1

wtẑt, (5.5)

where wt is the weighting function wt =
K(

τt−τ
b

)∑n
t=1K(

τt−τ
b

)
, K(u) is a second order

kernel function with a compact support [-1,1] and b is the bandwidth, the size of

the weights (Fan, 1993).

According to the above assumptions, the estimator εt is now replaced by the

standardized residuals

ε̂t = r̂t/ŝ(τt) = (yt − ȳ)/ŝ(τt). (5.6)

Then the estimator of parametric vector θ can be obtained by the standard

maximum likelihood method, which has been introduced in Chapter 2. A suitable

model can also be selected by using other methods, e.g. the Akaike information

criterion (AIC), the Bayesian information criterion (BIC), etc. (Feng, 2004).

To calculate the asymptotic optimal bandwidth, the assumptions in the ap-

pendix should be followed. Define R(K) =
∫
K2(u)du and I(K) =

∫
u2K(u)du.

The asymptotic bias B of ĝ(τ) is

B[ĝ(τ)] = E[ĝ(τ)− g(τ)] =
I(K)g′′(τ)

2
b2 + o(b2). (5.7)

The asymptotic variance of ĝ(τ) can be expressed as

V [ĝ(τ)] = var(ĝ(τ)) =
2πcfg

2(τ)R(K)

nb
+ o

(
1

nb

)
. (5.8)

where cf is a constant factor in the asymptotic variance. From Eq. (5.7) and

(5.8) we can see that the bias and the variance are asymptotically dominated by

b2 and (nb)−1, respectively. Then, the mean integrated squared error (MISE) can

be calculated by

MISE(ĝ) =
b4I2(K)

4

∫
[g′′(τ)]2dτ+

2πcfR(K)

nb

∫
g2(τ)dτ+max

{
o(b4), o

(
1

nb

)}
.

(5.9)
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By minimizing the dominant part of the MISE, the asymptotically optimal band-

width of ĝ is

bA =

(
2πcf

R(K)

I2(K)

∫
g2(τ)dτ∫

[g′′(τ)]2dτ

)1/5

n−1/5. (5.10)

Applying the estimator ĝ requires the specification of kernels and bandwidth.

Optimal kernels have been obtained analytically. The selection of bandwidth be-

comes the most important problem when applying nonparametric regression esti-

mators such as kernel estimators. The regression works well, only if the bandwidth

is suitable. Because the kernel estimation uses the points around x0 to estimate

the scale function, a kernel regression is usually biased. The larger the bandwidth,

the larger the square bias because further points from x0 are used, but the smaller

the variance because more observations are used for estimation. The bandwidth

should be optimized to balance the variance and bias. The optimal bandwidth is

the one, which can minimize the mean squared error (MSE) or the mean integrat-

ed squared error (MISE) (Gasser, 1991). Various methodologies can be applied to

select the optimal bandwidth, such as the Cross-Validation (CV), the Generalized

CV (GCV) and the iterative plug-in (IPI) methods.

5.2.2 The extensions of SemiGARCH model

Let rt = Yt − µ, t = 1, . . . , n be the returns from an asset. The SemiAPARCH

model is defined as follows

rt = s(τt)εt. (5.11)

The conditional variance of the rescaled process ht follows a parametric A-

PARCH process

h
δ/2
t = ω +

p∑
i=1

αi(|εt−i| − γiεt−i)δ +

q∑
j=1

βjh
δ/2
t−j, (5.12)

where ω > 0, δ ≥ 0, αi ≥ 0, i = 1, . . . , p, −1 < γi < 1, i = 1, . . . , p, βj ≥ 0,

j = 1, . . . , q, γ is the leverage parameter and δ is the parameter for the power

term.
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The reason to use the SemiAPARCH model rather than the APARCH is that,

if the scale function changes over time, the parametric component cannot be es-

timated consistently from the data, when the nonstationary scale function is not

estimated. However, after estimating the nonstationary scale function an approx-

imate stationary process for further analysis can be obtained. When the process

follows a parametric model, the semiparametric framework still works but with

some loss of efficiency (Feng and Sun, 2013).

From the discussion of kernel regression in Section 5.2.1 we can see that, in

order to get an exact estimation, the sample volume should be large enough.

However, the bias is of the order b2. Therefore, the estimation at the boundary

has a large bias, which may result in a larger selected bandwidth. This is the

so-called boundary problem. In this case, a constrained local linear regression is

applied. The scale function g(τt) is estimated from the absolute returns, instead

of the squared returns, so as to reduce the moment condition requirement. The

estimation of the scale function with absolute returns requires just the existence

of the fourth order moment of εt. For details, please refer to Chapter 6.

The local linear estimator ĝ(τt) = â0 at 0 ≤ x ≤ 1 can be obtained by mini-

mizing

Q =
n∑
t=1

[|rt| − a0 − a1(τt − τ)]2K(
τt − τ
b

). (5.13)

The optimal bandwidth for estimating g(τ) is different from the one for estimat-

ing g2(τ), due to a constant factor. In this method a fully data-driven algorithm

is carried out by adapting an iterative plug-in idea with a starting bandwidth

selected by the CV method. If the sample size is limit and a relatively small band-

width is used, the local linear estimator may be estimated as a negative value.

To ensure the non-negativity, the estimator ĝ(τ) is assumed to take its absolute

value as ĝ(τ) = |ĝ(τ)|. Then the estimation of εt can defined as ε̂t = rt/ĝ(τt). The

unknown parameters of a chosen APARCH model can be estimated by an approx-

imate conditional maximum likelihood estimation. AIC or BIC can be applied to

select a suitable parametric model (Feng and Sun, 2013).
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Besides, in the semiparametric EGARCH process, the conditional variance

follows

lnht = α0 +

p∑
i=1

αif(εt−i) +

q∑
j=1

βj lnht−j, (5.14)

where

f(εt−i) = ϑεt−j + κ(|εt−i| − E|εt−i|), i = 1, . . . , p,

α0, αi, βi, ϑ and κ are as defined in Chapter 2.

Similarly, for SemiCGARCH model, the conditional variance ht is assumed to

follow the CGARCH model, which is introduced by Engle and Lee (1999),

ht = qt +

p∑
i=1

αi(ε
2
t−i − qt−i) +

q∑
j=1

βj(ht−j − qt−j), (5.15)

and

qt = ω + ρqt−1 + ϕ(ε2t−1 − ht−1), (5.16)

where qt is the permanent component of the conditional variance and (ht−j −

qt−j) is the transitory component of the conditional variance. Obviously, the

semiparametric model discussed in this chapter is general and model free, i.e. the

stationary conditional variance can be fitted to any GARCH type model.

5.3 The empirical study

In this section, the semiparametric models are applied to ten high-frequency fi-

nancial data sets, which are the returns of BMW and Allianz at five given fixed

trading time points from January 2006 to September 2014, respectively. Usually,

in literature, the daily observations are applied, which are composed of the av-

erage value or the close price of a trading day. If daily data is considered, the

analysis is not accurate enough and the characteristics of the returns at different

time points in transaction days cannot be revealed. Therefore, the observations at

five specific fixed time points, which are 09:30, 11:00, 12:30, 14:00 and 15:30, are

selected. In each data set, the interval of the observations are 24 hours so as to

keep the data in a daily frame. Due to the overnight effect, the open price is not
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chosen, avoiding that the open price may be obviously unusual from that at the

other time points. Besides, the market information release time is able to affect

the open price. Furthermore, due to the time differences, abroad information may

also cause an abnormal fluctuation in the open price (Tsai et al., 2012). So, in

order to avoid the possible risk, stockholders are willing to change their equity or

stock holding at the closing time, leading to an abnormal fluctuation in the close

price. Therefore, the close price is also excluded.

In the empirical examples, the characters of the semiparametric volatility mod-

els, the comparison between the semiparametric volatility models and the para-

metric volatility models, the daily volatility of returns at the different trading

times and the financial crisis influence will be discussed. The estimation of the

trend function and the parametric model fitting are carried out in R.

Firstly, the scale function is estimated. The applied method to estimate the

semiparametric trend is as discussed above. Here, the bandwidth is automatically

selected. An initial bandwidth is given according to CV. An IPI process is car-

ried out until the bandwidth is stable. The standardized returns are calculated

by means of removing the estimated scale function and fitted to the parametric

APARCH, EGARCH and CGARCH models with the orders (1,1), (1,2), (2,1)

and (2,2). In the parametric models, the innovations are assumed to follow a

t-distribution. In Table 5.1, we can see that the models with t-distribution have

smaller BIC values than the ones with a normal distribution.

5.3.1 The empirical result of Allianz

In this subsection, the proposed algorithm is applied to the returns of Allianz

at five given trading time points. The long-term risk of these five data sets is

analyzed through the estimated scale function. The short-term risk is estimated

by using the APARCH, EGARCH and CGARCH models with the selected orders.

From Fig. 5.1 to Fig. 5.5, the observations, the returns series, the estimated

scale functions with d = 1 (solid line) and d = 2 (dashed line) and the standardized

returns, calculated by means of the estimated scale function are plotted.
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Table 5.1: BIC of selected models with normal and t-distribution of ALV

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

norm std norm std norm std

T = 09:30 2.7459 2.7117 2.7473 2.7108 2.7689 2.7283

T = 11:00 2.7816 2.7542 2.7815 2.7528 2.7996 2.7671

T = 12:30 2.7828 2.7543 2.7826 2.7524 2.8041 2.7690

T = 14:00 2.7738 2.7424 2.7713 2.7396 2.8001 2.7592

T = 15:30 2.7921 2.7558 2.7923 2.7545 2.8084 2.7715

According to the plots in each figure, we can find two dramatic volatility

changes in the series, indicating the global financial crisis and the Euro debt

crisis, which happened in August 2011. The global financial crisis in 2008 caused

serious negative influences on the economy in many European countries. In order

to save the banks and the other financial institutions, the sovereign debt increased

sharply and exceeded the solvency in several countries. Following, the Euro debt

crisis started from the Greece debt crisis in 2010 and then nearly the whole of

Europe was involved until September 2011. The high peaks of scale function show

that Allianz has extremely high long-term risk during the financial crisis. From

these figures, it also can be seen that the volatility at 09:30 is strongest in all the

given trading time points because of the overnight effect.

From the plots we can see that, corresponding to the volatility of returns, there

are two sub-periods in the scale function with high peaks during the two financial

crises. Also, it is shown than the first peak is higher than the second one, indicating

that Allianz had higher risk during the global financial crisis than that in the Euro

debt crisis. Further, except for the periods of the two financial crises, the scale

functions stay at a relatively low level, usually within the confidence intervals,

suggesting a stable development of the financial market in the considered periods.

However, the stock prices between the two financial crises stay at a relatively low

level. We can conclude that the negative influence of the global financial crisis is



5.3 The empirical study 89

continuous and it takes a time to restore investors’ confidence and willingness to

the financial market.

Comparing the scale functions at the given trading time points, estimated

with d = 1 and d = 2 respectively, we can see that they are almost approaching in

the stable periods. The differences often happen at the boundary and during the

financial crisis. For example, the estimated scale functions at 12:30 and 14:00 with

d = 1 are below the ones with d = 2 at the outbreak of the two financial crises

and are clearly up at the beginning of the crises. Furthermore, the estimated scale

functions at 09:30, 11:00 and 15:30 display more differences between with d = 1

and d = 2. The scale function with d = 1 at 09:30 is clearly over the one with

d = 2 at the beginning of the global financial crisis. Then, the increasing speed

of the scale function with d = 1 becomes gradually slow. In the worst several

months of the financial crisis, the scale function with d = 1 stays below the one

with d = 2. In the Euro debt crisis, the scale function with d = 1 is also up to the

one with d = 2 at the beginning and then the two lines tend to be overlapped.
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Figure 5.1: The smoothing results of ALV at 09:30
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Figure 5.2: The smoothing results of ALV at 11:00
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Figure 5.3: The smoothing results of ALV at 12:30
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Figure 5.4: The smoothing results of ALV at 14:00
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Figure 5.5: The smoothing results of ALV at 15:30
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At 11:00 and 15:30, the differences between the scale functions with d = 1 and

d = 2 are more obvious. The scale function with d = 1 is higher than the one with

d = 2 at the beginning of each financial crisis. When the scale functions reach

to the highest level, the scale function with d = 1 stays at a significantly lower

level than the one with d = 2. Then it becomes higher than d = 2 again as the

decline of the financial crisis. Consequently, the scale function with d = 1 can

make the data relatively stable, especially during the financial crisis. According

to figures, the standardized return series are quite stable. However, because the

nonparametric and parametric components are almost orthogonal to each other,

the series still clearly exhibit the influence of market changes that are not affected

by estimating or removing the nonparametric component.

Table 5.2: Selected bandwidths at fixed time points of ALV

T 09:30 11:00 12:30 14:00 15:30

d = 1 0.0985 0.0933 0.0912 0.0921 0.1018

d = 2 0.1069 0.1046 0.0931 0.1070 0.0878

In Table 5.2, the bandwidths are selected by using the scale function with

d = 1 and d = 2. The selected bandwidths with d = 1 are generally smaller than

that for d = 2 and smaller bandwidths describe changes in data more accurately.

Besides, if the scale function with d = 1 is applied, the returns are estimated in

the absolute form and it only requires the existence of the fourth moment, which

is much weaker than the eighth moment requirement with d = 2.

The fitted APARCH, EGARCH and CGARCH models with the student-t dis-

tribution can be obtained based on the standardized returns. The best order in

all cases is the order (1,1) by comparing the BIC in Table 5.3. Therefore, we

only discuss the APARCH(1,1), EGARCH(1,1) and CGARCH(1,1) models in this

work. If the best model is selected only by the BIC, the EGARCH models are

the best model in all five cases and the CGARCH models are the worst. However,

different models can be used in different economic situations, i.e. the APARCH

and EGARCH models can show the leverage effect, while the CGARCH models
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exhibit the persistence of the shocks in the long-term and the short-term.

Table 5.3: BIC of all selected models of ALV

T 09:30 11:00 12:30 14:00 15:30

APARCH-t(1,1) 2.7117 2.7542 2.7543 2.7424 2.7558

APARCH-t(1,2) 2.7151 2.7577 2.7577 2.7458 2.7593

APARCH-t(2,1) 2.7183 2.7611 2.7606 2.7493 2.7622

APARCH-t(2,2) 2.7218 2.7645 2.7641 2.7524 2.7656

EGARCH-t(1,1) 2.7108 2.7528 2.7524 2.7396 2.7545

EGARCH-t(1,2) 2.7142 2.7562 2.7558 2.7430 2.7580

EGARCH-t(2,1) 2.7176 2.7597 2.7579 2.7458 2.7609

EGARCH-t(2,2) 2.7204 2.7631 2.7614 2.7492 2.7646

CGARCH-t(1,1) 2.7283 2.7671 2.7690 2.7592 2.7715

CGARCH-t(1,2) 2.7309 2.7706 2.7725 2.7627 2.7750

CGARCH-t(2,1) 2.7317 2.7706 2.7721 2.7625 2.7742

CGARCH-t(2,2) 2.7342 2.7740 2.7756 2.7660 2.7777

From Table 5.4 to 5.8 display the estimated coefficients for Allianz at the five

given trading time points, respectively. From the value of shapes, we can see that

the APARCH model usually has the largest degree of freedom of the distribution

in each case, while the CGARCH model has the smallest. At 09:30, 11:00 and

14:00 the degrees of freedom are all between 6 and 7,5 and in all models at 12:30

and in the EGARCH and CGARCH models at 15:30 the degrees of freedom are

almost equal to 8. It means that the distributions in these trading time points

are nearly heavy-tailed and the eighth moment of εt does not exist, but the fourth

moment. In the APARCH model at 15:30 the degree of freedom is 8.13. Now the

distribution is also nearly heavy-tailed but the eighth moment of εt exists. The

possibility of an extreme return at 09:30, 11:00 and 14:00 is higher than that at

12:30 and 15:30. From the above discussion, the eighth moment in most cases

does not exist. This also expresses that the selection of the scale function with

d = 1 is better.
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Table 5.4: Estimated coefficients of the selected models of ALV at 09:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0308 0.0182 0.0235 0.0181 0.0462 0.0180

ω 0.0721 0.0172 -0.0085 0.0060 0.0047 0.0006

α1 0.0656 0.0309 -0.1215 0.0208 0.1018 0.0191

β1 0.8411 0.0288 0.9281 0.0167 0.8351 0.0300

γ1 0.7207 0.3454 0.1729 0.0304 - -

δ 1.8156 0.3597 - - - -

η11 - - - - 0.9956 0.0000

η21 - - - - 0.0000 0.0000

shape 6.5064 0.8851 6.3915 0.8530 6.0607 0.7792

Table 5.5: Estimated coefficients of the selected models of ALV at 11:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0279 0.0189 0.0282 0.0191 0.0442 0.0187

ω 0.0868 0.0219 -0.0068 0.0059 0.0054 0.0006

α1 0.0717 0.0226 -0.1202 0.0215 0.0915 0.0188

β1 0.8336 0.0341 0.9160 0.0210 0.8412 0.0347

γ1 0.6554 0.2800 0.1427 0.0304 - -

δ 1.6610 0.3892 - - - -

η11 - - - - 0.9949 0.0000

η21 - - - - 0.0000 0.0000

shape 7.3037 1.1341 7.1364 1.0881 6.9448 1.0259
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Table 5.6: Estimated coefficients of the selected models of ALV at 12:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0242 0.0190 0.0201 0.0190 0.0438 0.0188

ω 0.0858 0.0204 -0.0068 0.0057 0.0034 0.0003

α1 0.0724 0.0215 -0.1192 0.0208 0.0921 0.0181

β1 0.8398 0.0311 0.9174 0.0200 0.8330 0.0324

γ1 0.7439 0.2797 0.1439 0.0307 - -

δ 1.4690 0.2978 - - - -

η11 - - - - 0.9967 0.0000

η21 - - - - 0.0000 0.0000

shape 7.9157 1.2338 7.7971 1.1984 7.2398 1.0469

Table 5.7: Estimated coefficients of the selected models of ALV at 14:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0237 0.0187 0.0231 0.0180 0.0428 0.0186

ω 0.0957 0.0204 -0.0094 0.0067 0.0038 0.0004

α1 0.0884 0.0199 -0.1339 0.0220 0.1000 0.0191

β1 0.8292 0.0291 0.9039 0.0210 0.8207 0.0327

γ1 0.8207 0.2096 0.1647 0.0324 - -

δ 1.1473 0.2595 - - - -

η11 - - - - 0.9963 0.0000

η21 - - - - 0.0000 0.0000

shape 7.4317 1.0993 7.4128 1.0943 6.8385 0.9355
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Table 5.8: Estimated coefficients of the Selected models at of ALV 15:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0119 0.0190 0.0085 0.0189 0.0295 0.0190

ω 0.0703 0.0189 -0.0052 0.0052 0.0041 0.0004

α1 0.0636 0.0221 -0.1108 0.0197 0.0830 0.0173

β1 0.8570 0.0309 0.9281 0.0192 0.8462 0.0333

γ1 0.6649 0.2724 0.1378 0.0317 - -

δ 1.7361 0.4075 - - - -

η11 - - - - 0.9960 0.0000

η21 - - - - 0.0000 0.0000

shape 8.1277 1.2303 7.9807 1.1877 7.6925 1.1261

In the APARCH models, the leverage parameters γ for the five given trading

time points are 0.72, 0.83, 0.74, 0.82 and 0.66, respectively. This means that the

leverage effect of Allianz is always strong and the contribution of a negative return

is more than the contribution of a positive return. In the EGARCH models, α

is the sign effect and γ is the size effect. According to the tables, the estimated

α is smaller than −0.1 in all cases. So, we can say that this model is also able

to expresses the leverage effect. From the estimated coefficients of the CGARCH

model, all the ρ values are larger than 0.99, and ϕ are equal to 0, leading to a

smaller immediate impact of shocks on the long-run component than that on the

short-run component. Because the ρ value is close to one, the shock cannot only

cause the change of short-term volatility but also keep this abnormal volatility in

the long term. The value of (α+β) is between 0.9 and 1, and 0 < (α+β) < ρ < 1.

It indicates that volatility can reflect the shock immediately and the persistence

is long. The impact of volatility on the short-run component will diminish as well

but will be more persistent on the long-run component.



5.3 The empirical study 97

From Fig. 5.6 to 5.10, all of the APARCH, EGARCH and CGARCH models’

volatility can express the financial crisis. However, when there is positive news, the

APARCH and EGARCH models have lower volatility than the CGARCH model,

like the marked areas by square.

In the circle marked areas, there is higher volatility for negative news and

obviously, the negative news causes a larger change than positive one. For another,

the fitted volatility of CGARCH is extremely high due to the missing earlier

returns, required in the first several points estimation. Generally, the first several

estimated points are not considered in the discussion. Although the extreme points

appear in the volatility, they are ignored without any influence in the following

fitted volatility.

Figure 5.6: The volatility series of different models of ALV at 09:30
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Figure 5.7: The volatility series of different models of ALV at 11:00

Figure 5.8: The volatility series of different models of ALV at 12:30
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Figure 5.9: The volatility series of different models of ALV at 14:00

Figure 5.10: The volatility series of different models of ALV at 15:30
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5.3.2 The empirical result of BMW

In this section, the semiparametric volatility models are applied to the stock price

of BMW at five given trading time points, i.e. 09:30, 11:00, 12:30, 14:00 and 15:30

from January 2006 to September 2014. Similar to the analysis of Allianz, the

semiparametric volatility models are also used to discuss the risk and the leverage

effect by the estimated scale function and the conditional heteroskedasticity.

The observations, the log-returns, the estimated scale functions with d = 1

and d = 2 and the standardized returns are displayed from Fig. 5.11 to 5.15.

In the figures, the returns change dramatically in two sub-periods, which corre-

sponding to the global financial crisis and the Euro debt crisis. Although the

volatility change between the two financial crisis is relatively stable, it fluctuates

still stronger than before and after the financial crisis, showing the relatively high-

er risk. Besides, the volatilities at 09:30 and 11:00 are stronger than that at 12:30,

14:00 and 15:30, possibly due to the overnight effect. The volatility near close

time is weaker than that at open time, but stronger than that at the other trans-

action time. Correspondingly, it is found that the estimated scale functions have

two peaks. Furthermore, the scale functions stay at an extremely high level (out

of the confidence interval) in the global financial crisis and a relatively high level

(within the confidence interval) in the Euro debt crisis. Obviously, BMW has a

higher risk in the global financial crisis.

The estimated scale functions at each given time is calculated with d = 1 and

d = 2. In this case, at the boundary there is no significant difference between the

scale functions with d = 1 and d = 2 at 09:30, 11:00, 12:30 and 14:00. However,

the scale function with d = 2 at 15:30 is below that with d = 1 after the year

2014. In the two financial crises, the two lines show up clear differences. From the

beginning of the global financial crisis, the estimated scale function with d = 2

is up to the one with d = 1 at the five given trading time points. At 12:30 and

14:00, the level of the scale functions with d = 1 are higher than the others, so

the difference between the two estimated scale functions is limited at 12:30 and

14:00. Only the scale functions at 09:30 tend to gradually overlap after the drop
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Figure 5.11: The smoothing results of BMW at 09:30
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Figure 5.12: The smoothing results of BMW at 11:00
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Figure 5.13: The smoothing results of BMW at 12:30
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Figure 5.14: The smoothing results of BMW at 14:00
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Figure 5.15: The smoothing results of BMW at 15:30

off the peak, However, the rest have still intersections. In the Euro debt crisis, the

scale function with d = 1 at 09:30 is below the one with d = 2 and then overlaps.

At 12:30, 14:00 and 15:30 the overlap of the two lines remains in short. Then,

the scale function with d = 2 is below the one with d = 1, however above at the

beginning of the second financial crisis.

Table 5.9: Selected bandwidths at fixed time points of BMW

T 09:30 11:00 12:30 14:00 15:30

d = 1 0.1047 0.1043 0.1047 0.1050 0.1054

d = 2 0.1020 0.1061 0.1075 0.1071 0.1067

Comparing the selected bandwidth with d = 1 and d = 2 in Table 5.9, smaller

bandwidth is always obtained with d = 1. Therefore, the standardized returns are

estimated by the scale function with power one. The fitted APARCH, EGARCH

and CGARCH models of orders (1,1), (1,2), (2,1) and (2,2) are fitted to the stan-

dardized returns. The BIC values are listed in Table 5.10. In this example, the

best order of all cases is also order (1,1).
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Table 5.10: BIC of all selected models of BMW

T 09:30 11:00 12:30 14:00 15:30

APARCH-t(1,1) 2.7862 2.7904 2.7923 2.8003 2.7906

APARCH-t(1,2) 2.7897 2.7933 2.7958 2.8039 2.7941

APARCH-t(2,1) 2.7931 2.7973 2.7993 2.8073 2.7964

APARCH-t(2,2) 2.7965 2.8002 2.8016 2.8108 2.7996

EGARCH-t(1,1) 2.7842 2.7881 2.7905 2.7988 2.7892

EGARCH-t(1,2) 2.7878 2.7909 2.7941 2.8024 2.7927

EGARCH-t(2,1) 2.7912 2.7938 2.7969 2.8058 2.7933

EGARCH-t(2,2) 2.7945 2.7968 2.7995 2.8049 2.7968

CGARCH-t(1,1) 2.7959 2.7976 2.8004 2.8055 2.8026

CGARCH-t(1,2) 2.7995 2.8000 2.8037 2.8092 2.8064

CGARCH-t(2,1) 2.7996 2.8013 2.8041 2.8092 2.8041

CGARCH-t(2,2) 2.8027 2.8035 2.8071 2.8119 2.8076

In the following tables, the shape values at 09:30, 11:00, 12:30 and 14:00 are

between 5 and 8. The distribution is nearly heavy tails and the eighth moment

of the models does not exist but the fourth moment exists. At 15:30 the shape

values of the APARCH, EGARCH and CGARCH models are all larger than 8,

meaning that the distribution is also nearly heavy tails and the eighth moment

exists. Also, it is found in the tables that the estimated leverage parameters γ

of the APARCH(1,1) model at 09:30, 11:00, 12:30 and 15:30 are 0.72, 0.8, 0.81

and 0.797, indicating a strong leverage effect, while at 14:00, the value of γ is just

0.37, showing that the leverage effect is weak. The estimated sign effect α of the

EGARCH(1,1) model at these five trading time points are -0.072, -0.069, -0.062,

-0.056 and -0.09, which are all smaller than 0. The leverage effect exists in the

EGARCH model and it reach its peak at 15:30 and its low at 14:00.

In the CGARCH(1,1) model the estimated α are larger than 0.99 and ϕ are

equal to 0 at the trading time points. The sum of α and β are around 0.9 but
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Table 5.11: Estimated coefficients of the selected models of BMW at 09:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0260 0.0191 0.0261 0.0185 0.0370 0.0193

ω 0.0597 0.0185 -0.0012 0.0046 0.0070 0.0005

α1 0.0471 0.0152 -0.0726 0.0230 0.0602 0.0199

β1 0.9009 0.0253 0.9392 0.0555 0.8522 0.0654

γ1 0.7239 0.3196 0.0941 0.0539 - -

δ 1.2406 0.3924 - - - -

η11 - - - - 0.9932 0.0000

η21 - - - - 0.0000 0.0000

shape 6.5687 0.9092 6.5137 0.9122 6.3533 0.8636

Table 5.12: Estimated coefficients of the selected models of BMW at 11:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0278 0.0194 0.0281 0.0193 0.0372 0.0193

ω 0.0752 0.0269 -0.0006 0.0045 0.0060 0.0004

α1 0.0426 0.0168 -0.0692 0.0183 0.0632 0.0187

β1 0.8898 0.0354 0.9276 0.0260 0.7930 0.0713

γ1 0.8004 0.4057 0.0843 0.0292 - -

δ 1.1979 0.3336 - - - -

η11 - - - - 0.9942 0.0000

η21 - - - - 0.0000 0.0000

shape 6.0425 0.7978 5.9940 0.7878 6.0006 0.7820
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Table 5.13: Estimated coefficients of the selected models of BMW at 12:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0363 0.0158 0.0340 0.0194 0.0386 0.0195

ω 0.0661 0.0219 -0.0018 0.0045 0.0050 0.0003

α1 0.0453 0.0137 -0.0617 0.0175 0.0644 0.0186

β1 0.9019 0.0302 0.9276 0.0254 0.8041 0.0671

γ1 0.8082 0.2651 0.0956 0.0291 - -

δ 0.7496 0.3598 - - - -

η11 - - - - 0.9951 0.0000

η21 - - - - 0.0000 0.0000

shape 6.7253 0.9246 6.6818 0.9171 6.6061 0.8890

Table 5.14: Estimated coefficients of the selected models of BMW at 14:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0317 0.0198 0.0317 0.0191 0.0386 0.0196

ω 0.0945 0.0340 -0.0021 0.0050 0.0028 0.0002

α1 0.0502 0.0181 -0.0557 0.0179 0.0633 0.0170

β1 0.8547 0.0445 0.9140 0.0287 0.8192 0.0598

γ1 0.3677 0.2215 0.1083 0.0293 - -

δ 1.7718 0.7278 - - - -

η11 - - - - 0.9973 0.0000

η21 - - - - 0.0000 0.0000

shape 7.6362 1.1848 7.6910 1.2046 7.4619 1.1223
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Table 5.15: Estimated coefficients of the selected models of BMW at 15:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

µ 0.0203 0.0197 0.0172 0.0197 0.0337 0.0196

ω 0.1006 0.0276 -0.0034 0.0056 0.0008 0.0000

α1 0.0493 0.0217 -0.0898 0.0199 0.0644 0.0157

β1 0.8462 0.0362 0.9018 0.0259 0.8229 0.0472

γ1 0.7967 0.4200 0.1152 0.0275 - -

δ 1.5174 0.4334 - - - -

η11 - - - - 0.9992 0.0000

η21 - - - - 0.0000 0.0000

shape 8.6502 1.4846 8.6297 1.4785 8.0625 1.2700

smaller than 0.99. The correlation of these parameters is obvious 0 < (α + β) <

ρ < 1 . Therefore, volatility can reflect the shock immediately. The volatility

impact on the short-run component diminish soon but last long on the long-run

component.

In the figures, if there is positive news, the APARCH and EGARCH models

have lower volatility than the CGARCH model as the marked area by square and

have higher volatility for negative news as the marked area by circle. Moreover,

the negative news causes a larger change than positive news. However, at 14:00

the APARCH model expresses a weak leverage effect. From Fig. 5.19, the leverage

effect also cannot be detected by comparing with the EGARCH and CGARCH

models. For the CGARCH models, the first few estimations can also be neglected.
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Figure 5.16: The volatility series of different models of BMW at 09:30

Figure 5.17: The volatility series of different models of BMW at 11:00
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Figure 5.18: The volatility series of different models of BMW at 12:30

Figure 5.19: The volatility series of different models of BMW at 14:00
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Figure 5.20: The volatility series of different models of BMW at 15:30

5.4 Final remarks

In this chapter, the semiparametric volatility models are applied to the high-

frequency returns at fixed trading time points by introducing a smooth scale func-

tion into the standard GARCH model. Therefore, the conditional heteroskedas-

ticity and scale change in a financial time series can be modeled at the same time.

In the empirical research, the semiparametric model works well with the data at

fixed trading time points. It can express the trend of the returns and the leverage

effect at the different trading time points. The SemiAPARCH and SemiEGARCH

model show up the leverage effect and in the SemiAPARCH model, the leverage

effect is obvious. In the SemiCGARCH model, the immediate shock impact on

the short-run component is detected and the persistence in the long-run is also

strong.



Chapter 6

A Box-Cox semiparametric

multiplicative error model1

A general class of SemiMEM (semiparametric multiplicative error) models is pro-

posed by introducing a scale function into a MEM (multiplicative error) class mod-

el to analyze the non-negative observations. The estimation of the scale function

is not limited by any parametric models specification and the moments condition

is also reduced via the Box-Cox transformation. For the purpose, an equivalen-

t scale function is applied in a local linear approach and converted to the scale

function under weak moment conditions. The equivalent scale function estimation

and the bandwidth, the constant factor in the asymptotic variance and the power

transformation parameters estimation are proposed based on the iterative plug-in

(IPI) algorithms. In the power transformation estimation, the maximum likeli-

hood estimation (MLE), the normality test and the quantile-quantile regression

(QQr) are employed and simulation algorithms for the confidence interval of esti-

mated power transformation parameter are also developed by the block bootstrap

method. The algorithms fit the selected real data well.

6.1 Introduction

The MEM model was built up by Engle (2002) to model the common non-negative

financial data in practice, such as the mean duration (MD), the absolute returns

1Chapter 6 is based on the working paper: A Box-Cox semiparametric multiplicative error

model (Zhang, 2019a), CIE, 2019–05.
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(AR), the trading volume (VO) and the trading number (TR). The MEM models

were first developed as autoregressive conditional duration (ACD, Engle and Rus-

sell, 1998) model for featuring the stochastic process of the time between events.

Manganelli (2005) applied the MEM model to the non-negative expected trading

volume series and proposed the autoregressive conditional volume (ACV) model.

Besides, the MEM framework was extended to a more general functional form

by Box-Cox transformation. The Box-Cox ACD model (Dufour and Engle, 2000;

Hautsch, 2002; Fernandes and Grammig, 2006) were proposed as a flexible model

to analyze the process of the conditional mean to recent durations based on Box-

Cox transformation. If the Box-Cox parameter reduces to zero, the duration can

be modeled by the Log-ACD model (Bauwens and Giot, 2000) or the EACD mod-

el (Karanasos, 2008) and the log-data follows an ARMA process. Recently, the

MEM model is also applied widely. Taylor and Xu (2017) proposed a log-vMEM

model, discussing the cross-dependent error terms and the non-negative condition-

al mean without any restriction. The multiplicative error model with volatility

jumps (MEM-J, Caporin et al., 2017) was developed to investigate the probability

and density of the extreme values in the daily volatility. The MEM model is al-

so feasible under the semiparametric framework, such as the SemiGARCH model

(Feng, 2004), the Spline-GARCH model (Engle and Rangel, 2008), the general

Box-Cox SemiGARCH model (Zhang et al., 2017), etc.

In this chapter, a general class of semiparametric MEM model, applying a

time-varying scale function with the Box-Cox transformation into the MEM mod-

el to analyze the non-negative financial time series, is developed. Nonparametric

estimation of the scale function is studied in detail. It is shown that the scale

function can be estimated using nonparametric regression based on the Box-Cox

transformation of the data and it is closely related to its equivalent scale function,

which is obtained in the local linear regression. Note that the difference between

the scale function and the equivalent scale function is only a constant parameter,

depending on the power transformation of the data under a weak moment condi-

tion, while, the parametric model can be also estimated under the weak moment

condition after removing the long term trend component. An iterative plug-in
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(IPI, Gasser et al. 1991) algorithm is developed for the bandwidth, the power

parameter and the lag-window estimator cf selection. Following Beran and Feng

(2002), the initial bandwidth is selected by exponential inflation method (EIM) as

b0 = T−5/7 instead of that with the power minus one of the sample size (Gasser et

al., 1991) to minimize the rate of mean square error (MSE). In the cf estimation,

the spectral density at the origin is of great interest and the data-driven algorithm

(Bühlmann, 1996; Feng and Gries, 2017; Feng et al., 2019) are employed according

to the Bartlett-window, leading to an optimal cf choice rather than manual input.

Meanwhile, the power transformation parameter is also estimated in the data-

driven algorithm with various criteria, such as the maximum likelihood estimation

(MLE, Box and Cox, 1964), the normality test (Jarque-Bera test, JB; Shapiro-

Wilk test, SW) and the quantile-quantile regression (QQr). A block bootstrap

method is put forward to the power transformation parameter confidence interval

(CI) estimation without sample distribution assumptions due to its dependence.

The simulation results show that the absolute values of the power parameter are

far smaller than one, satisfying the requirement of the weak moments conditions

in real financial markets and the properties of the power parameter depend on the

considered sample classes, e.g. for trading volume, the power parameter is about

zero, indicating a possible logarithmic data transformation. Finally, the selection

of the above parameters are implemented in the same IPI procedure and all the

parameters can achieve a convergence value in a few IPI steps. The applications

to the non-negative data samples show that the algorithm is feasible.

The chapter is organized as follows. In Section 6.2, the model is interpreted.

Section 6.3 proposes the semiparametric estimation and the properties of the es-

timators. The data-driven algorithms are raise in Section 6.4. Data examples in

Section 6.5 show the proposal works well in real financial markets. Section 6.6

concludes the chapter. The proof of some results is provided in the appendix.
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6.2 The model

A general SemiMEM is proposed to analyze the nonnegative financial data. To

reduce the moment condition, the Box-Cox transformation is also introduced.

6.2.1 The SemiMEM model

Let x1, ..., xn, denote the observed non-negative observations. The MEM model

was introduced by Engle (2002) for modeling positive time series. The MEM class

is a wide class of models including the ARCH and GARCH family as a special case.

Numerous parameterizations for the expected variables are proposed and studied

in the literature. In this section, the MEM will be generalized to a semiparametric

class by introducing a smooth mean function into the parametric MEM model

so that slowly changing dynamics caused by the economic environment can be

modeled. This leads to the conditional distribution defined by

Xt = m(τt)ψtηt, (6.1)

where τt = t/n is the rescaled time, m(·) > 0 is a smooth trend, which is the

localized unconditional mean function or the scale function in Xt, ψt ≥ 0 denote

the conditional mean, ηt ≥ 0 are i.i.d. innovations with unit mean and

xt = ψtηt (6.2)

is the descaled stationary process. Throughout this chapter, the notation of the

condition, i.e. the past information set, Ft−1 will be omitted for simplicity. The

use of re-scaled time τt ∈ [0, 1] is a standard technique in nonparametric regres-

sion with time series errors. Due to E(xt|Ft−1) = ψtE(ηt|Ft−1) = ψt, it is obvious

that ψt is the conditional mean. To ensure that model (6.1) is uniquely defined,

it is assumed that E(ψt) = 1. However, it is not necessary and the quantities

E(ηt) and E(ψt) may also be determined by the situation under consideration

or by the estimation procedure used. This model will be called a varying scale

MEM model (VSMEM), which is also indeed the SemiMEM model (Feng (2014),
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Feng and Zhou(2015)). Equation (6.1) defines indeed a sequence of models. The

process {Xt} is nonstationary unless m(·) is constant. But it can be shown that

the SemiMEM model is locally stationary following Dahlhaus (1997). Our pur-

pose is to develop consistent data-driven estimators of m(·) under certain moment

condition E(Xk
t ) < ∞, where k > 0 is a real number, e.g. k = 2. Then an

approximation of the descaled stationary process xt can be achieved which can

be further studied following some known proposals in the literature. We will see

that the use of some suitable power transformation Xλ
t works well, where with

|λ| ≤ k/4 is an exponent. Note that Xλ
t belongs to the SemiMEM class.

A closely related class of models is the general semiparametric GARCH frame-

work proposed by Feng (2004). The definition of such a model in the second order

sense is given by

rt = s(τt)
√
htεt, (6.3)

where s2(·) > 0 is the variance of rt, ht is the conditional variance and εt are

i.i.d. N(0, 1) innovations. The descaled stationary process ξt =
√
htεt stands

for an ARCH type model. It is assumed that E(ht) = 1 to ensure that the

model is well defined. Here s2(·) is the scale function in r2t and s(·) is the scale

function in rt. Due to the assumptions E(ε2t ) = 1 and E(ht) = 1, we have

E(r2t ) = s2(τt). But s(τt) is not the mean of |rt|. We will see that the difference

between s(τt) and E(|rt|) is a constant factor depending on the distribution of

ξt. Model (6.3) will be called a varying scale GARCH model (VSGARCH, also

SemiGARCH). A nonparametric trend in the mean or a parametric regression

for the mean based on some exogenous variables can also be included in (6.3).

Assume again that E(rkt ) < ∞ with e.g. k = 4. The scale function s(·), up to

a constant factor, can be estimated consistently from |rt|λ by some data-driven

nonparametric regression algorithm, provided 0 < λ ≤ k/4 is used. Again, |rt|λ

also belongs to the SemiMEM class.

We see, m(·) in (6.1) and s(·) in (6.3) can be estimated in the same way. And

the conditional mean ψt in (6.1) can also be modeled following the idea of ARCH

and GARCH models for the conditional variance ht in (6.3) (Engle, 2002). But

the SemiGARCH and SemiMEM classes do not coincide with each other. On



116 6. Semiparametric MEM with Power Transformation

the one hand, the signs of the observations of a SemiGARCH process may play

an important role theoretically and in practice. Hence an original SemiGARCH

process is not a member of the SemiMEM class. On the other hand, if the original

process is non-negative, e.g. a duration process, it is of course not a member of

the SemiGARCH class.

The descaled xt in (6.2) process can be modeled following any suitable pa-

rameterization. Different parameterizations will lead to different semiparametric

models. For instance, if Xt is a duration process, ψt can then be modeled by the

well known ACD model introduced by Engle and Russell (1998) with

ψt = α0 +

p∑
i=1

αixt−i +

q∑
j=1

βjψt−j, (6.4)

where p and q are the orders, α0 > 0, α1, ..., αp, β1, ..., βq ≥ 0 are unknown param-

eters such that
∑p

i=1 αi +
∑q

j=1 βj < 1. Equations (6.1) and (6.4) together define

a semiparametric varying scale ACD model (VSACD, also SemiACD).

The overall mean in the SemiACD model can be thought of as a weighted

sum of the unconditional local mean m(τt), the last q conditional means and the

last p observations, which reflect long run, middle term and short term dynamics

in the mean of Xt. Their weights are 1 −
∑
αi −

∑
βj; β1, ..., βq; and α1, ..., αp,

respectively. Due to the restriction of the conditional mean, the scale parameter,

α0, is no more a free parameter, because it holds α0 = 1 −
∑
αi −

∑
βj. That

is α0 in the conditional mean of the rescaled process is itself the weight for the

unconditional local mean. The difference between the ACD and the SemiACD is

just that the unconditional mean in the former is a constant but it is a smooth

nonparametric function in the latter. Moreover, let m∗t = m(τt)ψt, we have

m∗t = α0(τt) +

p∑
i=1

αiXt−i +

q∑
j=1

βjm
∗
t−j +O(n−1), (6.5)

where α0(τt) = α0m(τt) is a time-varying parameter. We see, the SemiACD model

is approximately an ACD model with a time-varying scale parameter.

In the remaining part of the chapter, only the estimation of m(·) in (6.1)
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and the estimation of the unknown parameters in (6.4) based on the descaled

data will be discussed in detail and the estimation of s(·) in (6.3) and of the

unknown parametric parameters can be done following the same procedure. The

scale function m(·) will be first estimated without using any further parametric

assumption. It allows further parameter estimation under different, not only the

ACD, specifications.

6.2.2 The Box-Cox SemiMEM model

The discussion of the scale function m(·) and the conditional mean ψt in the

SemiMEM model are always considered. In the section, we study the estimation

of the slow scale change based on the Box-Cox power transformation xλt for some

|λ| < 1. Here a nonparametric estimator of the scale function in xt will be esti-

mated first. Then the back-transformed estimator will be used. We will see that

the resulting estimator is usually not a consistent estimator of m(·) but of some

equivalent scale function.

In this section, any function of the form m̃(τt) = C · m(τt) with C > 0 will

be called an equivalent scale function. Because x̃t = Xt/m̃(τt), then x̃t = C−1xt

is a stationary process having the same properties as xt but with a different scale

parameter. Hence the resulting estimator based on xt can be used to remove the

effect of the slowly changing scale in Xt. There are different further transforma-

tions, which can be used for estimating an equivalent scale function. The power

transformations (or equivalently the Box-Cox transformations with |λ| < 1) are

just the most simple examples. For a more general description on this point, we

refer the reader to Eagleson and Müller (1997).

We see, the development of a consistent data-driven estimator is always possible

based some power transformation. If it is assumed that E(Xt) <∞, the maximal

allowed λ is 1/4. For conducting maximum likelihood estimators of the unknown

parameters, the condition E(X2
t ) < ∞ was indicated by Lee and Hansen (1994)

and Engle and Russell (1998). Now, |λ| ≤ 1/2 can be used. Assume that E(Xk
t ) <

∞. Let δ = min(k/4, 1) for some |λ| ≤ δ. We have the Box-Cox SemiMEM model
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as

Xt = mλ(τt)xt,λ, (6.6)

where xt,λ is stationary with E(xλt,λ) = 1. If xt,λ satisfies a specific parameter-

ization, e.g. an ACD process, model (6.6) becomes a Box-Cox SemiACD (or a

Box-Cox VSACD) process. Obviously, the stationary process xt,λ = c
−1/λ
λ xt and

the equivalent scale function m̃(τt) = mλ(τt) = C
1/λ
λ · m(τt). The value of Cλ

is determined by λ and the marginal distribution of xt. Under the assumption

E(xt) = 1 as used in (6.2) we have C1 ≡ 1. This shows again why commonly pro-

posed estimators ofm(·) are based on xt. However, model (6.1) can also be defined

according to the λ0-th moments of the process for some |λ0| ≤ k/4. That is, we

can assume that E(xλ0t ) = 1 and E(ψλ0t ) = 1. This implies that E(Xλ0
t ) =: mλ0(τt)

is the scale function in Xλ0
t . Under this definition we have Cλ0 ≡ 1. The Box-Cox

SemiACD model in the section has a close relation with the parametric Box-Cox

ACD model, i.e. if the power parameter is nonzero, a varying scale Box-Cox ACD

is considered and if the power parameter is zero, then the model reduces to a

logarithmic form.

6.3 The model estimation and properties

The Box-Cox SemiMEM models can be estimated using a semiparametric proce-

dure. The scale function can be estimated and removed under very weak moment

condition based on suitable power transformation of the data. The conditional

variance can be analyzed using any parametric model.

6.3.1 Estimation of mλ(τt)

In Efromovich (1999), the scale function can be estimated by a general nonpara-

metric regression process. Following the proposal, Equation (6.6) can be written

as a nonparametric regression model

Xλ
t = gλ(τt) + gλ(τt)ζt,λ, (6.7)
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where gλ(τt) = cλm
λ(τt) = [mλ(τt)]

λ and ζt,λ = xλt,λ − 1 with E(ζt,λ) = 0 and

var (ζt,λ) = 1. Hence gλ(·) can be estimated for instance by kernel (Feng and

Heiler 1998 and Feng, 2004) or local liner regression (Fan and Yao, 1998).

Since by definition the observations xt are non-negative, kernel estimates of

gλ(τt) based on non-negative kernels are always positive. However, at boundary

points (i.e. τt < b or τt > 1 − b), the rate of convergence of kernel estimators is

lower than in the interior unless boundary kernels are used. Alternatively, one may

use local linear estimates which have the same rate of convergence for all τt ∈ [0, 1].

However, boundary kernels or local linear regression lead to estimates that may be

negative at boundary points. We therefore propose to use the estimator ĝλ(τt) =

|g̃λ(τt)| where g̃λ(τt) = â0(x) is a local linear estimate obtained by minimizing

Q(a0, a1) =
T∑
t=1

{
Xλ
t − a0(τ)− a1(τ)(τt − τ)

}2
K

(
τt − τ
b

)
(6.8)

with K being a symmetric non-negative kernel function and 0 < b < 1
2
the band-

width. Using ĝλ(τt) instead of g̃λ(τt) can be justified as follows. First, note

that ĝλ(τt) = g̃λ(τt), if g̃λ(τt) ≥ 0. If g̃λ(τt) < 0, we have |g̃λ(τt) − gλ(τt)| =

gλ(τt) + |g̃λ(τt)| and |ĝλ(τt)− gλ(τt)| = ||g̃λ(τt)| − gλ(τt)| < gλ(τt) + |g̃λ(τt)|. Hence

E[(ĝλ(τt)− gλ(τt))2] ≤ E[(g̃λ(τt)− gλ(τt))2]. That is the MSE of ĝλ(τt) is no larger

than that of g̃λ(τt). Moreover, the possibility of negative values is a finite sam-

ple problem and can only occur at boundary points, because in the interior the

weights of a local linear estimate are exactly equal to the kernel weights and are

hence non-negative. Finally, even at a boundary point, ĝλ(τt) and g̃λ(τt) coincide

with asymptotic probability one, as shown in Zhang et al. (2017).

Let that m̂λ(·) be a consistent estimator of mλ(·), we can obtain x̂∗t,λ =

xt,λ/[m̂λ(τt)]
1/λ is an approximation of the stationary process x∗t,λ. Define Zt,λ =

Xλ
t , then ẑ∗t,λ = Zt,λ/m̂λ(τt) is its approximate estimation of xt,λ with Box-Cox

transformation. A suitable parametric model can be fitted to either x̂∗t,λ or ẑ∗t,λ.

Assume that the moments condition E(Xk
t ) < ∞ and E(xkt ) = 1 hold, for

k 6= 0. The scale function m(τt) in the Box-Cox SemiMEM model is estimated by

its equivalent scale gλ(τt) as m̂(τt) = Ĉ
−1/λ
λ · ĝλ(τt), where Ĉ−1/λλ = [ 1

n

n∑
t=1

x̂kt,λ]
1/k.
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Zhang et al. (2017) discussed the estimation under a Box-Cox SemiGARCH frame-

work and the constant parameter of the equivalent scale function is regarded re-

lated to the mean of the stationary second order stationary process. Following

the definition of Box-Cox SemiMEM model, for λ 6= 0, we can conclude that the

scale function is estimated by its equivalent scale function as m̂λ(τt) = c
1/λ
λ m̂(τt).

Then,

Xt = mλ(τt) · xt,λ

= c
1/λ
λ ·m(τt) · xt,λ

= m(τt) · xt, (6.9)

it is obvious that xt,λ = c
−1/λ
λ xt. Under the assumptions of Proposition, if E(xkt ) =

1 and k 6= 0 hold, the power k-th expectation of the transformed non-negative

variable is

E(xkt,λ) = E[(c
−1/λ
λ · xt)k]

= c
−k/λ
λ · E(xkt )

= c
−k/λ
λ . (6.10)

Also, the constant for the equivalent scale function is

c
−1/λ
λ = [E(xkt,λ)]

1/k. (6.11)

Obviously, if the stationary process follows a GARCH process and a second

order transformation, the constant of the equivalent scale function is

c
−1/λ
λ =

√
E(x̂2t,λ)

=

√√√√ 1

n

n∑
t=1

x̂2t,λ, (6.12)



6.3 The model estimation and properties 121

and for the ACD model, under the assumption E(xt) = 1, the constant reads as

c
−1/λ
λ = E(x̂t,λ)

=
1

n

n∑
t=1

x̂t,λ, (6.13)

which is indeed the mean of the stationary process.

6.3.2 Properties of ĝλ(τt)

The asymptotic properties of ĝλ(τt) are similar to those of a local linear estimator

of the mean function in the presence of heteroskedastic time series errors and are

closely related to known results on nonparametric regression with dependent errors

(see e.g. Altman, 1990, Hart, 1991 and Beran and Feng, 2002). The results given

in this section do not depend on any parametric specification of xt,λ.

Note that a local linear estimator at point x generates an equivalent kernel

Kτ (u) which is the same as K(u) for b ≤ τt ≤ 1−b and equal to a boundary kernel

at boundary points. To reduce the variance, we will use a varying bandwidth bτ

at boundary points, such that the length of the window is always 2b. For kernel

functions K and Kτ , define R(K) =
∫
K2(u)du, I(K) =

∫
u2K(u)du, R(K) =∫

K2(u)du and I(K) =
∫
u2K(u)du. Furthermore, let γ(k) = cov(xt,λ, xt+k,λ).

Assume that γ(k) are absolutely summable and cf denotes the value of the spectral

density of xt,λ at the origin λ = 0. Under the assumptions A1 through A5 stated

in the appendix the following holds, as n→∞, b→ 0 and nb→∞:

The bias and variance of ĝλ(τt) are

B[ĝλ(τt)] = E(ĝλ(τt))− gλ(τt) =
1

2
b2τg
′′
λ(τt)I(Kτ ) + o(b2τ ), (6.14)

and

var(ĝλ(τt)) =
2πcfg

2
λ(τt)R(K)

nbτ
+ o

(
1

nbτ

)
=

Vτ
nbτ

+ o

(
1

nbτ

)
, (6.15)

where Vτ = 2πcfg
2
λ(τt)R(K)/(nbτ ).
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Based on the bias and variance of the estimated equivalent scale function, the

mean integrated squared error of ĝλ, MISE(ĝλ)=
1∫
0

{ĝλ(τ)− gλ(τ)}2dτ , is

MISE(ĝλ) = b4
∫

[g′′λ(τ)]2dτI2(K)

4
+

2πcf
∫
g2λ(τ)dτR(K)

nb
+ max

{
o(b4), o

(
1

nb

)}
.

(6.16)

Then, the asymptotically optimal bandwidth, which minimizes the dominating

part of the MISE is given by

bA =

(
2πcf

R(K)

I2(K)

∫
g2λ(τ)dτ∫

[g′′λ(τ)]2dτ

)1/5

T−1/5 =

(
2πcf

R(K)

I2(K)

I(g2λ)

I[(g′′λ)2]

)1/5

T−1/5,

(6.17)

where I(g2λ) =
∫
g2λ(τ)dτ and I([g′′λ]2) =

∫
[g′′λ(τ)]2dτ .

Further, if a bandwidth b = o(bA) is used, the bias is asymptotically negligible

and

√
nb[ĝλ − gλ]

D−→ N(0, V ), (6.18)

where V is as V = 2πcfg
2
λR(K)/(nb).

Note that both the kernel K(u) and the bandwidth bτ in the bias and variance

of ĝ(τt) depend on τt. But the effect of boundary points on the MISE of ĝλ is

asymptotically negligible. Thus, the asymptotically optimal global bandwidth

can be calculated using the MISE over the whole interval τt ∈ [0, 1]. Eq. (6.17)

provides the basis for developing a plug-in bandwidth selector. The difference

between the formula of the optimal bandwidth bA here, compared to nonparametric

regression with i.i.d. errors is that the two unknown constants cf and I(gλ) are

different. Here, the factor cf measures the effect of the stationary time series errors

on bA. The constant I(gλ) is determined by the (deterministic) heteroskedasticity

characterized by the scale function in (6.7). The result of Eq. (6.18) shows that ĝλ

is asymptotically unbiased and asymptotically normal if a bandwidth of a smaller

order than bA is used.
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6.4 The data-driven algorithms

In this section, data-driven estimation algorithms of the bandwidth and the cf

selection are developed. Besides, a bootstrap method is proposed to simulate the

confidence interval of the power parameter.

6.4.1 The bandwidth selection

In this section, we develop a data-adaptive bandwidth selector for the SemiACD

model following the iterative plug-in method (IPI, see Gasser et al. 1991). For

simplicity, global bandwidth selection will be considered. The plug-in bandwidth

selector is based on an iteration algorithm where estimates of cf , I(g2λ) and I([g′′λ]2)

are plugged into (6.17). The key point here is the estimation of I([g′′λ]2), because

the estimation of cf and I(g2λ) are relatively easy. The IPI method has been

extended successfully to nonparametric regression with time series errors (see e.g.

Herrmann et al. 1992, Brockmann et al. 1993, Beran and Feng 2002 and Ghosh

and Draghicescu 2002). We will, therefore, use this approach here.

Let bj−1 denote the bandwidth in the (j − 1)th iteration. The IPI algorithm

estimates I([g′′λ]2) in the jth iteration by Îj([g′′λ]2) = n−1
n∑
t=1

[ĝ′′λj(τt)]
2, where ĝ′′λj(τt)

is estimated using a bandwidth b2j obtained from bj−1 by a so-called inflation

method. The word ‘inflation’ comes from the fact that b2j is much larger than that

the bandwidth for estimating m itself. Once the estimate Îj([g′′λ]2) is calculated,

it is inserted into (6.17) to calculate bj in the jth iteration. This procedure is

repeated until the selected bandwidth converges.

Two choices have to be made to define the algorithm. One needs to fix an

initial bandwidth b0, and a concrete inflation method has to be specified. Gasser

et al. (1991) propose to set b0 = n−1. However, this bandwidth cannot be used

for estimating I(m) in the first iteration. Beran and Feng (2002) therefore suggest

b0 = n−5/7 which is a very small bandwidth but satisfies the assumptions in The-

orem 6.1. As it turns out, the final bandwidth is not sensitive to the choice of b0.

However, the number of required iterations depends heavily on b0. A data-driven
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possibility that reduces the number of iterations is b0 = b̂CV where b̂CV is the

bandwidth selected by the cross-validation criterion (Wahba and Wold 1975).

With respect to the inflation method, the so-called exponential inflation method

proposed (EIM) in Beran and Feng (2002) with b2j = (bj−1)
α (where 0 < α < 1)

is well suited in the current context. We propose to choose α = 5/7 which means

that the rate of the MSE of Î([g′′λ]2) is minimized. Note that, in comparison, the

original multiplicative inflation method (MIM) of Gasser et al. (1991) defined by

b2j = bj−1n
1/10 does not work well in the current context. The main reason is that

the rate of convergence of the estimated bandwidth is O(n−1/5) which is clearly

lower than the rate of convergence O(n−2/7) achieved by the EIM method (see the

theorem below). An additional problem with the MIM is that for large sample

sizes T the inflation factor is too strong which often leads to poor final bandwidth.

In each iteration, I(g2λ) can be estimated from ĝλ which is based on the previous

bandwidth bj−1. Since b̂CV is already a consistent estimator of bA, using b0 = b̂CV

is likely to provide a good initial estimate of I(g2λ).

The asymptotic performance of the selected b̂A by the IPI algorithms in the

following subsection is given by the following theorem. For this purpose, the

following assumptions are required.

A1. The scale function gλ(τt) is strictly positive, bounded, and at least twice

continuously differentiable on [0, 1].

A2. The kernel K(u) is a symmetric density with compact support [-1, 1].

A3. {xt} is a stationary ACD process defined by (6.2).

Theorem 6.1 Under Assumptions A1 to A3 and the additional assumption that

E(x4t ) <∞, we have

b̂A = bA[1 +Op(n
−2/7) +O(n−1/3)]. (6.19)

A sketched proof of Theorem 6.1 is given in the appendix. The Op(n
−2/7)

term in (6.19) is caused by the error in Î([g′′λ]2) and whereas the O(n−1/3) term is

due to the error in ĉf . If the parametric specification in (6.2) and (6.4) is used,
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then the (relative) effect of the error in ĉf will be of the order O(n−2/5) (see e.g.

Feng, 2004), which is smaller than O(n−1/3). However, the O(n−1/3) term is still

asymptotically negligible compared to Op(n
−2/7). Hence the asymptotic properties

and in particular the rate of convergence of b̂A are determined by those of Î([g′′λ]2).

Note in particular that, although the bandwidth selection problem under model

(6.7) is more complex, the rate of convergence of the selected bandwidth is the

same as for the DPI (direct plug-in) bandwidth selector proposed by Ruppert et al.

(1997) in the context of nonparametric regression with i.i.d. errors. Furthermore,

bA is not well defined, if gλ(τt) ≡ g0, because I([g′′λ]2) = 0. Nevertheless, the

SemiACD model and the proposed algorithm are still applicable in this case. For

instance, if yt follows an MEM model, it can be shown that bj converges to a

nonzero constant as j → ∞. Besides, it can be shown that θ̂ (obtained from x̂t)

has the same asymptotic properties as θ̃ (obtained from the MEM observations xt),

because b̂ >> Op(n
−1/2). Moreover, suppose that no maximal number of iterations

is fixed. Then (nbj)
−1 is asymptotically of the order n−1 though bj < 1. Therefore

ĝλ(τt) is
√
n-consistent, with some loss in efficiency compared to a parametric

estimator.

6.4.2 The cf estimation

The remaining unknown quantity cf can be estimated using any nonparametric

estimator of the spectral density. The spectral density of xt,λ is

f(λ) =
1

2π

∞∑
k=−∞

γj(k)eikλ,−π ≤ λ ≤ π. (6.20)

If λ = 0, we can obtain that cf = f(0). In the following, we will use the lag-window

estimator with the Bartlett-window (see e.g. Priestley, 1981)

ĉjf =
1

2π

K∑
k=−K

wkγ̂j(k) (6.21)

to estimate the cf . In the formula, γ̂j(k) denotes the sample autocovariance at lag

k calculated from the residuals in the (j− 1)th iteration, wk = 1− k/(K + 1) and
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K << T is the bandwidth of the lag-window, included in ĉf .

The optimal choice of K is of the order O(n1/3). To focus on the main results,

we do not address the issue of data-driven algorithms for selecting K. In the

applications we will use K = [cfn
1/3] with cf selected in the same IPI algorithm.

The proposed IPI data-driven algorithm, including the bandwidth selection with

power transformation and the cf estimation, reads as follows:

1. Select b0 using the CV criterion ignoring correlations and changes in the

scale. Set j = 1.

2. Select bandwidth correlations and changes in the scale, using J1 IPI-iterations.

3. In the j-th iteration for j ≥ J1 carry out the following calculations:

a) Estimate ĝλ(τt) with bj−1 and let x̂t,λ = Xt/[ĝλ(τt)]
1/λ.

b) Estimate ĉf with the Bartlett-lag-window estimator.

i) Set the starting Bartlett-window as M0 = [n/2], where [·] is the

integer part.

ii) Global estimation. Following Bühlmann (1996), estimate the inte-

gration of the first derivative
∫
f (1)(λ)dλ with the Bartlett-window

width K ′j = Kj−1/n
2/21. Insert the estimates into the optimal glob-

al window width equation (Bühlmann, 1996, Eq. 5), then calculate

Kj. Increase j by one and repeat the above procedures until the

selected K converges or reach the maximal 20 iterations. Denote

the selected optimal global window width as KGl.

iii) Local estimation. Calculate
∫
f (1)(λ)dλ with the optimal local win-

dow width KLo = KGl/n
2/21 and insert the estimates into optimal

local window width equation (Bühlmann, 1996) with λ = 0

Kopt = n−1/3(

∫ π
−π(f(λ)2)dλ

3
∫ π
−π f

(1)(λ)2dλ
)1/3. (6.22)

The finally selected Bartlett-window width is denoted as K̂ = Kopt.
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c) Denote by Î(gλ) the estimate of I(gλ) obtained using bj−1 and by Î(g′′λ)

the estimate of I(g′′λ) based on bandwidth b2j = b
5/7
j−1. Consider the

power transformation parameter in the range [−1, 1] and let the power

transformation parameter increase interval be 0.01. In the k-th iteration

with k > 1, estimate the trend ĝλk(τt) using λ̂k−1. Remove the trend

and obtain the optimal transformation parameter λk by the MLE, JB,

SW and QQr criteria. Increase k by one and repeat the previous steps

until reach the convergence or the maximal number of iterations.

d) Improve bj−1 by

bj =

(
2πĉf

R(K)

I2(K)

Î(gλ)

Î(g′′λ)

)1/5

n−1/5. (6.23)

e) Increase j by one and repeatedly carry out a) to c) until convergence

or a given maximal number of iterations has been reached.

The finally selected bandwidth b̂A is obtained in the last iteration of Step 3. In

the IPI procedures of the bandwidth, cf and the power parameter estimation, we

find that if the selected statistics converge, the values usually are not affected by

the initial inputs. Hence, the proposed IPI algorithm can be carried out without

starting restrictions. In the section for simplicity, the Bartlett-window is applied in

the cf selection algorithm. Besides, Bühlmann (1996) also discussed a C2-window

for the optimal window width. Finally, Feng and Gries (2017) introduced that the

estimation quality of cf can be improved if the optimal bandwidth for calculating

the xt,λ is considered and vice versa.

6.4.3 The confidence interval simulation of λ

In the previous section, we obtain the stationary time series x1,λ, . . . , xt,λ by re-

moving the time-varying scale function. For estimating the power transformation

parameter λ, we propose to construct an estimator λ̂ based on the descaled time

series via the MLE, JB, SW and QQr criteria. The confidence interval of λ at

a given confidence level with MLE has been well discussed. However, the confi-
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dence intervals depending on the other criteria, are unknown in practice and often

very complicated. Bootstrap methods provide a general solution for estimating

the confidence interval of λ without the consideration of the time series model

assumptions.

The bootstrap was published by Efron (1979) for i.i.d. random variables as

a simulation method using the resampling technique to estimate the variables

distributions and the statistic inference, such as the bias, the variance, the confi-

dence intervals, the reject probability in a hypothesis test, etc. The advantage of

the bootstrap method is that the simulation algorithm requires no distribution or

parametric assumption of the under analysis data set or process. The bootstrap

provides information about the whole sampling distribution and performs com-

putational efficient rather than the other resampling technique– jackknife (Tukey,

1958), recognized as the "leave-one-out" method.

For the time series, however, the dependent and correlated data are not suit-

able to directly apply the bootstrap algorithm. As discussed by Künsch (1989),

Hall (1992), Liu and Singh (1992) and Politis and Romano (1993), for the de-

pendent time series data, the block bootstrap method is the potential solution

to estimate the unknown distribution by dividing the data into several blocks,

to hold the original time series dependence structure within blocks. Because the

asymptotic properties of the estimator may be affected by the block selection, i.e.

the dependence of the resampling time series is always regarding to the randomly

selected blocks. Thus, a modification bootstrap– moving block bootstrap (MBB)

was proposed by selecting the optimal block length, also recognized as the over-

lapping block bootstrap, which preserves the data structure of the original series

in each formed block. In the MBB, the length of the block is

l = no/Nbl, (6.24)

where no is the length of the original time series and Nbl is the number of the

resampling blocks and according to the MBB, the independence of the l subsam-

pling is for sure. If dependent data is considered, then an unnecessary requirement
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is

l→∞ and N−1bl l→ 0 as Nbl →∞. (6.25)

Obviously, the selection of the block length is the most concerned problem in the

block bootstrap (Efron and Tibshirani, 1993). As indicated by Bühlmann and

Künsch (1999) and Bühlmann (2002), they proposed the bootstrap variance is

equivalent to a lag weight estimator of the spectral density of the bootstrapped

variable’s influence function (IF, Hampel et al., 1986) at the interesting origin and

the block length is obvious obtained as inverse of the bandwidth. Furthermore,

they also developed a data-driven algorithm, suggesting a two-step procedure se-

lecting the optimal block length in the blockwise bootstrap and in this algorithm,

the IF is estimated first, then optimal block length is obtained as the estimated

value of the lag weight spectral density with certain lag window (e.g. Bartlett

window) at frequency zero. Following the algorithm, the optimal block length is

approximate to the cubic root of the sample size. Politis and White (2004) dis-

cussed a data-based block length selection algorithm and found that the optimal

block length order for the stationary bootstrap is also one third.

Besides, we still consider a model-based bootstrap method (such as autore-

gressive bootstrap (ARB), Efron, 1979), by removing the nonstationary trend and

building up the i.i.d. error terms under the MEM model assumption. Due to the

model-based bootstrap depending on not only the parameters in models but also

the identified structure with the original data. Obviously, the model-based resam-

pling is greatly affected by both the model and its structure and the asymptotic

properties of original data can not be correctly revealed if the model misspecifi-

cation occurs, leading to the inconsistent between the built-up i.i.d data and the

original ones. In the section, the MBB methodology works very well in practice,

however, the model-based idea seems not.

There are several procedures to calculate the confidence intervals of the re-

sampling data sets, such as the percentile method, the bootstrap-t method, the

bias-corrected (BC) method, the bias-corrected and accelerated (BCa) method,

the approximate bootstrap confidence (ABC) method and calibration. For sim-

plicity, we consider only the ordinary percentile method in the chapter.
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In the percentile approach, we consider the α/2 and (1 − α)/2 percentiles of

the bootstrap distribution of λ̂. Let the number of the bootstrap replications of λ̂

be NB. Then, the order statistic of λ

λ̂∗1 ≤ · · · ≤ λ̂∗kL ≤ · · · ≤ λ̂∗kU ≤ · · · ≤ λ̂∗NB , (6.26)

and the bootstrap confidence interval (BCI) at the 100(1− α)% is

λ ∈ [λ̂∗kL , λ̂
∗
kU

], (6.27)

where kL = [α
2
(NB + 1)] and kU = [(NB + 1)− kL]

The percentile method gets rid of the assumption limitation of the bootstrap

variable in theory, however, if the resampling replication number is too small, the

simulation may not perform well, requiring the percentiles corrections, new resam-

pling histogram assumptions, bias-correction factors and acceleration parameters.

6.5 The empirical examples

The selection of the λ̂ is an important issue regarding to the model selection in

the risk management. In the section, we apply the proposal to the non-negative

transaction data (MD, AR, VO and TR) of Siemens (SIE) and Deutsche Bank

(DBK) from 2000 to 2013. The MD, VO and TR data are organized as equidistant

daily data from the intraday high-frequency transaction records, meanwhile, the

AR data is calculated as the absolute returns of the daily stock close price.

From Fig. 6.1 to Fig. 6.8, the histograms of the selected λ̂ with the MLE, JB,

SW and QQr are displayed respectively. Because the sample sizes of the considered

data sets are about 3500, we apply the length of 16 (the approximate cubic root of

the size of the observation) as the optimal block length in the bootstrap procedures.
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Figure 6.1: Simulated λ confidence interval of the SIE mean duration
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Figure 6.2: Simulated λ confidence interval of the SIE absolute returns
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Figure 6.3: Simulated λ confidence interval of the SIE trading volume
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Figure 6.4: Simulated λ confidence interval of the SIE trading numbers
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Figure 6.5: Simulated λ confidence interval of the DBK mean duration
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Figure 6.6: Simulated λ confidence interval of the DBK absolute returns
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Figure 6.7: Simulated λ confidence interval of the DBK trading volume
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Figure 6.8: Simulated λ confidence interval of the DBK trading numbers
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In the figures, we find that the λ̂ of MD is very close to 0 in all cases and the

confidence interval also covers the origin. In Table 6.1, the CIs of SIE’s MD are

[−0.05, 0.25] with the MLE, [−0.08, 0.23] with the SW, [−0.15, 0.22] with the JB

and [−0.07, 0.25] with the QQr and he CIs of DBK’s MD are [−0.06, 0.20] with

the MLE, [−0.07, 0.18] with the SW, [−0.10, 0.13] with the JB and [−0.06, 0.19]

with the QQr. Due to the small value λ̂ and its CI, it seems that a logarithmic

transformation is suitable in the power transformation process. In Fig. 6.9 and

6.10, it is obvious that after the Box-Cox power transformation with λ̂, both

the histogram and the Q-Q plot of SIE and DBK perform better than before.

Therefore, in the semiparametric analysis, a Semi-Log-MEM process is preferred

in this case.

Similar to the MD, the VO series also possesses an almost zero λ̂ and a through-

origin CI, which also indicates a log-transform consideration. However, the AR set

performs a little different. The λ̂ with all methods are definitely positive and the

values are between 0.32 and 0.36. Like the returns in the SemiGARCH model with

Box-Cox transformation (Zhang et al., 2017), a third-root power transformation

based on a SemiMEM process seems to be applicable to the AR series. Besides, the

results of the TR series are between the above two circumstances. The simulated

results of SIE are close to the AR-type, however, those of DBK are in the form of

the MD-VO-type. Thus, for the TR series, both the SemiMEM process and the

Semi-Log-MEM process are the possible power transformation models, depending

on the exact λ̂ selection.
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Figure 6.9: The histogram and Q-Q plot of DBK
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Figure 6.10: The histogram and Q-Q plot of SIE

To describe the simulation quality of the λ̂’s CI, we have to bring the length

(L) and shape (∆) statistics into consideration. The two statistics are defined as

L = λ̂∗kU − λ̂
∗
kL
, (6.28)

and

∆ = (λ̂∗kU − λ̂)/(λ̂∗kL − λ̂). (6.29)
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Table 6.2: The length and shape of simulated CI

MLE SW JB QQr

L ∆ L ∆ L ∆ L ∆

SIE

MD 0.30 1.14 0.31 1.07 0.37 1.47 0.32 1.00

AR 0.07 0.97 0.09 1.14 0.13 1.32 0.09 1.02

VO 0.33 0.65 0.34 0.55 0.35 0.46 0.35 0.75

TR 0.41 0.52 0.41 0.52 0.42 0.40 0.43 0.65

DBK

MD 0.26 1.00 0.25 1.08 0.23 1.30 0.25 1.08

AR 0.04 1.09 0.05 1.29 0.06 1.07 0.05 1.07

VO 0.20 0.92 0.21 0.91 0.23 0.92 0.21 1.10

TR 0.27 0.91 0.27 0.93 0.28 0.56 0.27 0.93

In the chapter, we employ the percentile CI, which is a first-order accurate proce-

dure. If the coverage probabilities are identical, the two statistics can be applied to

detect the CI quality. Therefore, we evaluate the simulation quality of CI through

the L and ∆.

In Table 6.2, we can see that in most case, the lengths of the CI with MLE,

SW and QQr are always more accurate than those with JB, e.g. the CI length of

MD with the MLE, SW and QQr are 0.3, 0.31 and 0.32, however, the CI length of

JB reach even 0.37. For another, from the performance of the shape, the shapes

of the MLE and QQr are closer to one than the other two’s, which means that

the λ̂ lies closer to the center of the CI, so that the CIs selected by the MLE and

QQr are more asymmetric. In general, the CIs with the MLE and QQr perform

well in practice, while the CI with JB seems to be not as good as the other ones.

In addition, the CI with SW is not so stable, especially in the shape performance,

e.g. the VO shape of SIE is only 0.55 and the AR shape of DBK is as high as

1.29. So, in the latter descale process, we are going to apply the λ̂ by MLE (tiny

difference from λ̂ with QQr ) as the considered power.
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Note that the CIs discussed in this section only refer to the first-order accurate

percentile CI. For the purpose of the CI modification, the second-order accurate

methods can be introduced, such as the bootstrap-t and the BCa methods (Efron,

2003). In addition to the discussed data, we have also tried the realized volatility

(RV), however the λ̂ of RV is always negative, due to the extreme values. Hence,

the RV is no longer considered here.
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Figure 6.11: Estimation results of SIE from Jan 2000 to Dec 2013
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Finally, in Fig. 6.11 and Fig. 6.12, the original and descaled data are displayed

at the left side, while the estimation of the scale function and the equivalent scale

function are at the right side.
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Figure 6.12: Estimation results of DBK from Jan 2000 to Dec 2013

Comparing the data, we can see obviously that the descaled data are more

stationary than the original ones, bringing the smaller volatility after removing
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the trend function from the nonstationary process. Further, we have to pay at-

tention to the change of the scale function. During the global financial crisis, the

transaction risk reaches its peak, combining with the high transaction volume and

numbers and low transaction duration. Therefore, we can see that the MD is at its

minimum value, however, the AR, VO and TR all reach the peak values. Besides,

the data are selected from DAX 30, where the German ’neuer Markt’2 (2002-2003)

can also be observed by reaching the changing points in the sub-period.

6.6 Final remarks

We discussed a general SemiMEM model with Box-Cox power transformation to

analyze the non-negative data, such as MD, AR, VO and TR by selecting the

power parameter with the MLE, SW, JB and QQr criteria. In the IPI procedures,

we found that, for the MD and VO, the Semi-Log-MEM model is optimal, due to

the approaching zero λ̂, while for the AR, the λ̂ is significantly positive, leading

to a SemiMEM process. Both the Semi-Log-MEM and SemiMEM are suitable for

the TR, depending on the λ̂ selection in cases. Furthermore, we have discovered

the simulated CI of λ̂ without model or distribution assumption by introducing

the block bootstrap method for dependent variables. The simulation CI quality

is also considered. With the accurate coverage probabilities, we introduced the

length and shape parameters to detect the simulated CI quality with the four

mentioned criteria and it is found that the CI qualities with the MLE and QQr

methods are better. Besides, IPI algorithms are also developed, referring to the cf

selection. The cf is selected using the algorithm in Bühlmann (1996), estimating

a Bartlett-window estimator and the optimal window width is proved to be an

O(T−1/3) term. Hence, in the chapter, we selected the cubic root of the sample

size as the optimal block length for simplicity.

Finally, some contributions will be possibly carried out in the future. First, the

long memory parameter can be introduced into the framework. The long mem-

2Listed companies of Nemax 50 declined sharply in share prices within three years since the

dotcom crash in 2000.
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ory models, such as the Semi-FI-MEM and Semi-FI-Log-MEM models, can be

discussed with the suitable power transformation under weak moment conditions,

developing the algorithm of the synchronous selection of the differencing param-

eter d and the power parameter λ. Then, the power transformation technique

can be updated. In the chapter, we applied the Box-Cox transformation and with

this method, the transformation is only close to the normal distribution, lead-

ing to the application of the other distribution, such as sin-arcsin distribution,

sinh-normal distribution, Birnbaum-Saunders distribution, and so on. Further,

the intraday high-frequency financial data can be introduced. Set up the spatial

general SemiMEM models by modeling the high-frequency data in the daily and

intraday dimension.





Chapter 7

Further topics

7.1 Introduction

Financial markets have grown rapidly within the last decades and the correspond-

ing financial instruments have become difficult to handle. Issues of particular

importance are highly volatile markets that increase the level of risks for invest-

ment decisions. The need for risk indicators has led to a rapid growth in research

on the price volatility, the trading volume and the trading duration, which are the

non-negative variables in financial markets. Most of the studies have regarded the

above non-negative variables as crucial risk factors in the financial market. There-

fore, the variables are related to uncertainty, since it is crucial in risk management,

portfolio and investment decisions. As a result, the variables are approximated by

using statistical computing methods to carry out perceptible values, such as the

daily changes and intraday changes.

The most common approaches to calculate the discussed non-negative variables

is characterized in parametric, such as the GARCH model and its extensions and

nonparametric models. The restrictiveness of the GARCH models and their cor-

responding weaknesses led to a simpler and more flexible nonparametric approach

to consider the risk in the market. Besides, the bias increases with the sampling

frequency. The literature has investigated, which level of intervals is optimal and

moreover, which sampling scheme is superior. Generally, the calendar time sam-

pling, the business time sampling and the tick time sampling are discussed. In

this chapter, a new sampling method proposed by Feng, the so-called k-method,

is introduced, where each k-th observation is selected in terms of the data densi-
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ty and obviously, the first and last values of the selected observations are fixed.

Moreover, a general class of semiparametric MEM models is suggested with the

semiparametric ACD model as a special case. A Box-Cox transformation is ap-

plied in the general semiparametric MEM process. The purpose of the chapter is

to analyze the high-frequency non-negative variables with a Box-Cox semipara-

metric MEM model. A data-driven iterative plug-in algorithm introduced is used

to carry out the estimation of the scale function and the bandwidth and power

parameter λ selection. The selection of the power parameter λ is achieved by the

MLE and Jarque-Bera (JB) statistics. Furthermore, the selection and estimation

of appropriate parametric models are also given. The parametric models are a

general MEM class, which makes the semiparametric process as parametric model

free.

The chapter is organized as follows. Section 7.2 discusses the sampling scheme

methods of the ultra high-frequency financial data. In Section 7.3, the SemiMEM

model is interpreted and the data-driven algorithms are also provided. The empir-

ical analysis of different trading days is given in section 7.4. Finally, the chapter

ends with a brief conclusion.

7.2 The sampling schemes

In this section, the sampling schemes of high-frequency data are introduced and a

new k-method is also proposed as the sampling schemes in the following empirical

part.

7.2.1 The CTS, TTS and BTS

One major problem, which commonly arises in high-frequency data analysis, is

that not all available transactions can be implemented at one time. The number of

daily-recorded data can be overwhelmingly high, which makes the handling of the

data very difficult, i.e. a sub-grid approach is obligatory. Consequently, the first

step to select the sub-grid is to choose the sampling scheme and the second step is
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to select the target average sampling frequency (Dong and Tse, 2014). According

to Oomen (2006), the time sampling schemes were primarily differentiated as

regulators of data capturing. The calendar time sampling (CTS) scheme selects the

data or transactions on equidistant calendar time, for instance every 10 minutes.

Following the transaction time sampling (TTS) scheme, the data in event times

are without predefined and it is not equidistant. Obviously, in the TTS, each

individual transaction is recorded and the most frequently available information is

provided. Another sampling scheme is the tick-time sampling (TickTS), similar to

the TTS but all zero returns are removed. Moreover, transactions are commonly

chosen based on regularly spaced numbers of ticks, e.g. every 5 or 10 ticks to

develop the observed price process. Besides, Dacorogna et al. (1993) proposed the

business time sampling (BTS) to analyze the diurnal and weekly seasonality in

the volatility. Practically, the CTS and TTS schemes are more widely used than

the BTS.

7.2.2 The k-method

In this section, we discuss a new sampling method, called the k-method. The idea

is to take every k-th observation of any given time series, obtaining a new series

with M intervals and M + 1 observations. M is the desired number of intervals

in the analysis and usually the same for all transaction days and its value varies,

depending only on the analysis. For the non-negative financial data set, starting

from the first observation, every k-th observation will be selected in terms of the

data density. Obviously, k can be determined by

k = bN
M
c, (7.1)

where N denotes the number of the non-negative observations per day and n0 =

1, n1, . . . , n(M−1), nM = N should be chosen on the equal terms if possible. As al-

ready noted, the first value n0 = 1 and the last value nM = N are fixed. According

to the analysis of the non-negative variables in this chapter, M is defined equal to

510 so as to make sure that the interval of the selected series is 510 and the new
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data set contains 511 observations, including the first and last observations from

the original series. Subsequently, every k-th observation will be chosen from the

first observation to the end of the series.

The k-method is similar to the BTS, however not exactly the same. Following

the BTS, the size of the selected data set from each observed transaction day

may be different, which therefore leads to the incomparability among transaction

days. The k-method, however, allows the comparison between various selected

transaction days, since all selected data sets contain the same M +1 observations.

Consequently, in this chapter, the k-method is carried out as the sampling scheme

method.

7.3 The SemiMEM models to high-frequency data

In the MEM approach, the non-negative data can be specified as

Xt = m(τt)ψtηt, (7.2)

where τt = t/n denotes the rescaled time and m(·) > 0 defines a smooth trend,

which presents either the localized unconditional mean function or the scale func-

tion in Xt. Moreover, the conditional mean is here given by ψt ≥ 0 and ηt ≥ 0 are

i.i.d. innovations with a unit mean,

xt = ψtηt, (7.3)

signifies the descaled stationary process. A common technique in nonparametric

regression with time series errors is the application of a rescaled time, written as

τt ∈ [0, 1]. Since E(xt|Ft−1) = ψt, it becomes evident that ψt is the conditional

mean. In order to guarantee a unique definition of model (7.2), it is required that

E(ψt) = 1. As a result, this model is called a SemiMEM model. The equation of

model (7.2) certainly illustrates a sequence of models. In the case, if m(·) is not

constant, the process {Xt} is nonstationary.

Besides, it is also studied the estimation of the slowly scale change that bases



7.3 The SemiMEM models to the high-frequency data 149

on the Box-Cox power transformation xλt for any −1 < λ < 1. The the SemiMEM

model with power transformation is defined as

Xt = mλ(τt)xt,λ, (7.4)

where xt,λ is noted as a stationary process with E(xλt,λ) = 1. The Equation (7.4)

can be rewritten with nonparametric regression as

Xt = gλ(τt) + gλ(τt)ζt,λ, (7.5)

where mλ(τt) = c
1/λ
λ m(τt) = [gλ(τt)]

1/λ and ζt,λ is defined as ζt,λ = xλt,λ − 1 with

zero mean and unit variance. As indicated by Zhang et al. (2017) and Zhang

(2019a), it is suggested to use the estimator ĝλ(τt) = |g̃λ(τt)|, where g̃λ(τt) = â0(x)

is a local linear estimate obtained by minimizing the following equation

Q(a0, a1) =
T∑
t=1

{xt − a0(τ)− a1(τ)(τt − τ)}2K
(
τt − τ
b

)
, (7.6)

where K is defined as a symmetric non-negative kernel function and 0 < b < 1/2

is the bandwidth.

The λ̂ selection algorithm in Zhang et al. (2017) will be carried out in the

chapter. A starting bandwidth b0 and power parameter λ0 is essential to be

defined. For λ0, different values will be considered in empirical research. In this

chapter, λ0 will be set equal to the values, 1, -1, 0,5 and -0,5. The final values

of λ̂ and b̂A are obtained in a six-step iteration process. Finally, it is found that

the final selected estimated value is independent of the initial inputs. Different

methods can be used to specify λ, such as the MLE, the normality (JB and SW)

test and the quantile-quantile regression (QQr). In the following, the MLE, JB,

SW statistics and the QQr will be applied in the empirical work of the λ selection.



150 7. Further topics

7.4 The empirical analysis

In this section, the analysis of the high-frequency realized volatility (RV), trading

volume (VO) and trading duration (TR) with Box-Cox SemiMEM models will be

carried out. In the semiparametric process, the power transformation parameter

is selected with the MLE, JB, SW and QQr criteria. Besides, parametric ACD

models with the Burr (BACD), the exponential (EACD), the Weibull (WACD)

and the Gamma (GACD) distributions are considered. In the empirical study, all

sample days are considered, however, only one day is selected to analyze.

7.4.1 The data

The data, Allianz (ALV), Siemens (SIE), BMW and Deutsche Bank (DBK) from

DAX 30 are discussed. Each data covers four weeks from 12.09.2011 to 07.10.2011,

including 20 trading days per company, to analyze the daily pattern in high-

frequency financial data. The source of data is the database Thomson Reuters.

The table below gives an data overview.

Table 7.1: The UHF observations

Company
Obs. period

Average obs. Total obs.
Start End

Allianz 09 Sep, 2011 07 Oct, 2011 15559 311187

BMW 09 Sep, 2011 07 Oct, 2011 15394 307888

Deutsche Bank 09 Sep, 2011 07 Oct, 2011 25630 512600

Siemens 09 Sep, 2011 07 Oct, 2011 16560 331215

The above data sets are applied to the designed algorithm. In the first step,

the data is sampled by the k-method. The selected data has 511 observations each

day, due to the fixed open and close time points of the financial market (from 9:00

to 17:30). The non-negative financial data sets are applied to an IPI algorithm
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to obtain suitable power transformation parameters λ with MLE, JB, SW and

QQr. The λ̂ values will also be estimated in the algorithm. Parametric models

will be fitted to the descaled standardized non-negative data. For simplicity, only

the empirical results of ALV are discussed.

7.4.2 The analysis of the intraday trading volume

In the analysis of TR, we consider the data of Allianz on September 27, 2011, as an

example. In Fig. 7.1, it shows the final selected power parameter values with the

IPI processes by JB, MLE, SW and QQr, respectively. Obviously, all λ values are

identical from the second IPI procedure and the identical λ is the selected conver-

gence power parameter, which is used as the power of the Box-Cox transformation.

However, as displayed in Table 7.2, we get unlike but very close λ with different cri-

teria, for example, in this case, the stable λ of ALV are −0.64,−0.68,−0.68,−0.73

of JB, MLE, SW and QQr, respectively. Besides, the λ value is irrelevant with

the initial inputs for each criteria, defined as −1,−0.5, 0, 0.5, 1, reaching the same

stable value. It is also proved in Fig. 7.1. The horizontal axis is defined as the

six IPI steps and the vertical axis is the initial starting λ values. It displays the

IPI processes of Allianz with the four criteria and obviously, the λ reaches its

convergence no matter how large the initial inputs are. After the 6-step process,

the power parameter λ will be finally selected. As shown in the figure, it is not

important which inputs from [−1, 1] are set, because the finally selected λ is al-

ways obtained the same value. It is also apparent that the data set will reach

its convergence values after the second IPI procedure, in particular in the λ se-

lection with MLE, which is common, however only a few need a third step, for

instance, the λ selected via JB. Figure 7.1 also shows the average trading volume

after the Box-Cox transformation with MLE. Obviously, from the histogram, it

is possible to obtain a transformed distribution that approximates to normal, if

optimal selected λ is applied. The scale function is also displayed in Fig. 7.1. In

the plots, it is found that the scale functions the example has a U-curve pattern.

The fitted parametric model and semiparametric ACD models are listed in Table

7.3. Semiparametric models perform better than parametric models form BIC and
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MSE. The semiparametric models obtain smaller BIC values with the same data

and especially, the MSE values are much smaller than those of parametric models.
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7.4.3 The analysis of the intraday trading duration

In the following the Allianz SE data will be analyzed in detail for the given first

trading day, which is on September 12, 2011. In Fig. 7.3, the six steps IPI pro-

cedures for the lambda selection with JB, MLE, SW and QQr, respectively. The

initial lambda values as before defined as 1, 0.5, 0, -0.5 and -1. When λ = 0, a

logarithmic transformation should be considered. The optimal power transforma-

tion parameter λ of the Box-Cox transformation is found in the figures when the

curve reaches their convergence values. In this case, the selected λ as showed in

Table 7.4, are 0.51, 0.54, 0.54, 0.56 for the above criteria. Besides, it is known that

the duration series, which is the time between trades, is shorter on average at the

beginning and at the end of the trading day, while about at noon durations reach

their highest values. Meaning that the trading is active at the open and close

time and reduced during midday. Here, in this figure, the diurnal pattern can be

obviously identified. The scale function has lower values also at the beginning and

the end of the day. With increasing observation values the scale function rises and

likewise, the trend decreases with the reduction of durations. Thus the estimated

trend displays the inverse U-shape that is expected for intraday durations. Fur-

ther, the fitted results of the ACD models with different distributions are in Table

7.5. It is found that the mean and variance existence condition of ACD models,

which are α+β < 1 and β2 + 2αβ+ 2α2 < 1, are satisfied by most models. Mean-

while, from the BIC and MSE values, it also supports that the semiparametric

models perform better than the parametric models. Finally, as a difference be-

tween the companies, it can be outlined that the data sets give some information

about the firms’ performance on the stock market, hence also about the size of

the companies. The highest trading activity and shortest average durations are

recognized for large scale firms. The high market capitalization shows that high

market shares and high investments are made, which approves the assumption on

the firm scale.
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7.4.4 The analysis of the intraday realized volatility

Take the transaction day on September 26th, 2011 of Allianz as an example. The

smoothing results are given in below Fig. 7.5. In the figure, it displays the average

realized volatility of the Allianz. The x-axis defines the time of the selected trading

day, whereas the y-axis shows the value of the realized volatility. It is interesting

that the given time series possesses a very high value at the very beginning of the

trading day. It is, however, a typical pattern for the RV, which starts very high,

reduces slightly during the day, and increases again at the end of the trading day.

The typical pattern of the RV is also known as the ‘volatility-smile‘ and is in a U-

curve shape. Therefore, Fig. 7.5 shows a common RV process, with very high value

at around 9:00 when the market begins and reduces quickly to almost zero right

after. During the day, the RV is constant with some peaks, such as at around 9:25,

9:50, 13:45 and 15:00. At 16:00, when is very close to the end of the trading day,

the RV increases again. The figure reveals well the time-varying characteristics

of the volatility. Besides, the figure displays the average RV together with scale

function, which fits perfectly with the course of the time series. The transformed

realized volatilities with MLE is also given. The level of the RV values has fallen

dramatically, however, the average RV values seem to be more stable. Due to

the changing values of the RV, a volatility cluster-effect can be recognized and

the scale function fits perfectly with the transformed RV. Furthermore, the figure

displays the standardized realized volatility after removing the trend in red. Here,

the RV looks very similar to the daily average RV, only with smaller values, but

the outliers are exactly the same. The values of the RV range from 1 to 8, but are

almost constant at around 0.7. The standardized RV also seems to be stationary

with clear clusters, except for some outliers.

An IPI algorithm is carried out in the selection of the power transformation

parameter λ. The estimated λ is then used as the Box-Cox power transformation

parameter in the scale function of the SemiMEM model. According to Zhang

et al. (2017), a fixed λ is crucial in the financial market. In Fig. 7.5, the IPI

processes with JB, MLE, SW and QQr are displayed. In the selection, different

initial λ values, such as -1, -0.5, 0, 0.5, and 1 are set and moreover, a six-step IPI
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process is applied. The used data set of Allianz on September 26th, 2011 converges

to its final λ value with MLE after the 3rd IPI procedure and the rest methods

are after the 2nd procedure to reach the convergence. The selected λ values of

MLE starting from different initial inputs reach the same final stable value, hence

λ = 0.159. The convergence value is also found through the other three methods

and the convergence value is very close to that selected by MLE. The discussed

data set is then transformed by the Box-Cox transformation. With the selected

λ, the power transformed RV is very close to the normal distribution from the

histogram plot and Q-Q plot.

The scale function of RV on all transaction days are displayed. It is shown that

the U-curve still exists for the RV data. The results of IPI procedures are shown

in Table 7.6, which indicate that the stable power parameter λ reaches quickly in

the very first few procedures. The fitting results with different ACD (1, 1) models

are listed in Table 7.7. In the table, we can see all the fitted models are stationary

with the sum of all the coefficients are smaller than one, e.g. the sum of the

WACD model of SIE is 0.26 + 0.48 = 0.74 < 1, the sum of the SemiEACD model

0.28 + 0.29 = 0.57 < 1 is also smaller than one. Further, it is also discovered

that, in most cases, the semiparametric ACD models have much smaller BIC and

MSE values than the parametric models, which has proved the advantage of the

semiparametric process. For example, the BIC and MSE of the two models are

3167.72, 74.58 and 867.25, 0.62, respectively.
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7.5 Final remarks

In this section, we introduce first a new data process scheme k-method to make

sure the high-frequency non-negative financial data of different firms shares the

same length as 511 per day. Then, the selected data sets are applied under the

Box-Cox SemiMEM framework with ACD models following different distribution-

s. Furthermore, by implementing a data-driven algorithm in the transformation

parameter selection, a great improvement in the scale function estimation of Semi-

ACD models becomes evident. The power parameter λ, which is applied in the

scale function estimation, is obtained after the six steps IPI searching process via

JB, MLE, SW and QQr criteria, so as to make the considered data set are close to

the normal distribution, combing with the reduction to the moment requirements.

In the IPI procedure, the selected λ tends to a convergence value and it is treated

as the power in the Box-Cox SemiMEM models. Further, some daily patterns of

the scale function are also discovered, such as the U-curve of VO and RV, the in-

verse U-curve of TR. From the fitting results, we conclude that the semiparametric

models have smaller BIC and MSE values than the parametric ones, proving the

good performance of the Box-Cox SemiMEM models in practice.



Chapter 8

Concluding remarks

Following the Basel III and its forthcoming finalization, it is nowadays concerned

to analyze and predict the individual and market financial performance, so as to

reduce the chances of the unnecessary loss, increase the value of firms and mini-

mize the risk in competitive markets. The dissertation provides a comprehensive

overview of the financial time series theory, revealing the hidden laws from the

market data and supporting the decision making under the Basel framework. In

the study, we have found that the semiparametric models perform well in practice

and can be used as a supplement of parametric models in risk management.

In Chapter 3, the framework of general SemiGARCH models is set up by intro-

ducing a time-varying trend to present the short-term and long-term market per-

formance by daily transaction data. The scale function reveals the long-term risk

component, while the classical parametric GARCH models express the short-term

market risk. After removing the scale function, the restriction on the parametric

GARCH models do not exist anymore and the general SemiGARCH framework

requires no assumption on the parametric part, implying parametric model free.

Besides, a power transformation is put forward to reduce the moments require-

ment of the GARCH models. An IPI algorithm is carried out to estimate the

power parameter, reaching a convergence value.

Following Basel III and its coming finalization, we examine the VaR and ES

prediction and backtesting with the parametric models and the semiparametric

models in Chapter 4. The important innovation is that a traffic light test of ES

is carried out by introducing breach indicators. In the empirical research, the ES

backtesting works well and it indeed provides a simple and direct method for the
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ES backtesting evaluation. Besides, some practical cases are found to support the

semiparametric models and they can reveal the market risk reasonably, satisfying

both the regulators and firms, which proves that the semiparametric models are

necessary risk management tools as a supplement of the parametric models.

The general Box-Cox SemiGARCH framework is applied to the high-frequency

data of BMW and Allianz in Chapter 5. The data selected in this Chapter is

the high-frequency data happens at the same fixed time point on each considered

transaction day. Some GARCH models extensions are applied with a time-varying

trend, setting up such as the SemiAPARCH model, the SemiEGARCH model and

the SemiCGARCH model. In the empirical part, it is found that the selected fixed

time point data share similar performance as the daily data.

A general Box-Cox SemiMEM model is provided to analyze the non-negative

data, such as MD, AR, VO and TR in Chapter 6. The general SemiMEM models

nest the general SemiGARCH models if the squared returns are considered. In

the IPI process, we found that different types of data have different features of the

power parameter. Furthermore, a simulated confidence interval of the estimated

power parameter is calculated via the block bootstrap method without any model

or distribution assumption. Then, IPI algorithms of the correlation factor selection

are also developed. The general SemiMEM framework greatly expands the scope

to some non-negative financial data.

Finally, some open questions and further research topics are still under con-

sideration. First, the long memory parameter can be introduced into the general

SemiGARCH and the general SemiMEM framework to build up the long mem-

ory models, such as the Semi-FI-MEM and Semi-FI-Log-MEM models. Then,

the power transformation technique should be improved, due to the restriction of

Box-Cox transformation on obtaining a complete normal distribution. Instead, the

other distribution, such as sin-arcsin, sinh-normal and Birnbaum-Saunders distri-

butions should be considered. Further, spatial models (like in Peitz, 2015) can be

considered under the general semiparametric framework. Finally, new methodolo-

gies of VaR and ES backtesting should be put forward, such as simulating new

test statistics by the Monte Carlo simulation.
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Appendices

Appendix A: Proofs of the Results

Proof of Lemma 3.1

Let Zn = nη2/2{g̃(τt, λ) − B[g̃(τt, λ) − g(τt, λ)}/σ̃. Under the assumptions of

Lemma 3.1, Zn is asymptotically standard normal. We have

P (g̃(τt, λ) < 0) ≤ P [|g̃(τt, λ)− g(τt, λ)| > g(τt, λ)]

= P{|g̃(τt, λ)−B[g̃(τt, λ)]− g(τt, λ) +B[g̃(τt, λ)]| > g(τt, λ)}

≤ P{|g̃(τt, λ)−B[g̃(τt, λ)]− g(τt, λ)| > m(x)− |B[g̃(τt, λ)|}

≤ P{|g̃(τt, λ)−B[g̃(τt, λ)]− g(τt, λ)| > g(τt, λ)/2}

if n is large enough. Furthermore, we have

P{|g̃(τt, λ)−B[g̃(τt, λ)]− g(τt, λ)| > g(τt, λ)/2} = P{|Zn| > nη2/2g(τt, λ)/(2σ̃)}.

Defining zon = nη2/2g(τt, λ)/(2σ̃), we have n = Lg(z
o
n)2/η2 , where Lg = [2σ̃/g(τt, λ)]2/η2 .

Furthermore let Z ∼ N(0, 1). Then

nP{|Zn| > zon} ≈ nP{|n| > zon}

= 2Lg(z
o
n)2/η2

∫ ∞
z=zon

e−
z2

2 dz

= 2Lg

∫ ∞
z=zon

(zon)2/η2e−
z2

2 dz → 0,

as n→∞, because all moments of Z are finite. Lemma 3.1 is proved. �

To prove the results of Theorem 3.1, the following assumptions are required.

A1. The scale function g(τt, λ) is strictly positive, bounded, and at least twice
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continuously differentiable on [0, 1].

A2. The kernel K(u) is a symmetric density with compact support [-1, 1].

A3. The bandwidth b satisfies b→ 0 and nb→∞ as n→∞.

A4. {ζt} is a stationary process with unit mean and absolutely summable

autocovariance.

A5. The stationary process {ζt} can be represented as ζt = 1 +
∞∑
i=0

λiνt−i,

where {νt} is a sequence of uncorrelated zero-mean innovations with finite variance,
∞∑
i=0

λi 6= 0 and
∞∑
i=0

|λi| <∞.

Assumptions A1 to A3 are the regular nonparametric regression conditions. A4

is the requirement of the GARCH model. A5 is a sufficient regularity condition

which ensures that the sample means of ζt and ξt are both asymptotically normal.

Proof of Theorem 3.1

Following Lemma 3.1, we can conclude that B[ĝ(τt, λ)] = B[g̃(τt, λ)]+op(n
−1/2)

and Var [ĝ(τt, λ)] = Var [g̃(τt, λ)] + op(n
−1). The proof will hence simply be given

for the unrestricted local linear estimator g̃(τt, λ).

i) Bias: Since g̃(τt, λ) is a linear smoother, the bias B[g̃(τt, λ)] = E[g̃(τt, λ)]−

g(τt, λ) is the same as in the nonparametric regression with i.i.d. errors. This is

the formula given i).

ii) Variance: The local linear estimator g̃(τt, λ) is a linear estimator g̃(τt, λ) =
T∑
i=1

wxi yi. It is well known that the weights wxi are asymptotically equivalent to

those defined by the equivalent kernel, i.e.

wτi =
Kτt

(
τi−τ
bτ

)
∑n

i=1Kτ

(
τi−τ
bτ

) [1 + o(1)] =
1

nbτ
Kτ

(
τi − τ
bτ

)
[1 + o(1)]

for |τi − τ | ≤ b and zero otherwise.

Note that the autocovariances of ξt and ζt are the same. Furthermore, let K be

an integer such that K → ∞ and K/nbτ → 0, as n → ∞. For instance, we may

choose K = [
√
nbτ ] where [τ ] denotes the integer part of τ . Defining bK = K/n
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we have bK/bτ → 0 as n→∞. The variance of g̃(τt, λ) is given by

Var [g̃(τt, λ)] =
∑

|τi−τ |≤bτ

∑
|τj−τ |≤bτ

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

=
∑

|τi−τ |≤(bτ−bK)

∑
|τj−τ |≤bτ

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

+
∑

|τi−τ |>(bτ−bK)

∑
|τj−τ |≤bτ

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj] (1)

=: V1 + V2,

where V1 indicates the contribution of the observations in the middle part of the

window and V2 the contribution in the boundary of the window. The definition of

K and bK ensures that V2 = o(V1), i.e. Var [g̃(τt, λ)] ≈ V1. Note that the condition

|τi − τ | ≤ bτ − bK ensures that τi, τj with |i− j| ≤ K are all within the window.

This will simplify the analysis in the next part. Denote by V1i the ith sum over

τj in V1 for given τi . Then

V1i =
∑

|τj−τ |≤bτ

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

=
∑
|i−j|≤K

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

+
∑
|i−j|>K

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

=: V C
1i + V T

1i , (2)

where V C
1i denotes the contribution of the covariances in the central part with lags

|k| ≤ K, whereas V T
1i is the contribution of the covariances in the tail part. For

the first term in (2) we have

V C
1i =

∑
|i−j|≤K

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

=
1

(nbτ )2
K2
τ

(
τi − τ
bτ

)
[1 + o(1)]g2(τi, λ)[1 +O(bK)]

∑
|k|≤K

γ(k)

≈ 2πcf
(nbτ )2

K2
τ

(
τi − τ
bτ

)
g2(τi, λ). (3)
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The second term in (2) is asymptotically negligible, because

V T
1i =

∑
|i−j|>K

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

≤
∑
|i−j|>K

|wτi wτjCov [g(τi, λ)ξi, g(τj, λ)ξj]|

≤ Ci
(nbτ )2

[1 + o(1)]
∑
|k|>K

|γ(k)|

= o

(
1

(nbτ )2

)
, (4)

where

Ci = sup
|i−j|>K

∣∣∣∣Kτ

(
τi − τ
bτ

)
Kτ

(
τj − τ
bτ

)
g(τi, λ)g(τj, λ)

∣∣∣∣ .
This leads to

Var [g̃(τt, λ)] =

 ∑
|τi−τ |≤(bτ−bK)

∑
|τj−τ |≤bτ

wτi w
τ
jCov [g(τi, λ)ξi, g(τj, λ)ξj]

 [1 + o(1)]

=

 ∑
|τi−τ |≤(bτ−bK)

∑
|i−j|≥K

V C
1i

 [1 + o(1)]

=
2πcfg

2(τi, λ)

(nbτ )

 ∑
|τi−τ |≤(bτ−bK)

1

(nbτ )
K2
τ

(
τi − τ
bτ

) [1 + o(1)]

=
2πcfg

2(τi, λ)R(Kτ )

(nbτ )
[1 + o(1)] (5)

as given in Theorem 3.1 ii).

iii) Here a more general result
√
nb[g̃(τt, λ)−B[g̃(τt, λ)]−g(τt, λ)]

D−→ N(0, V )

can be proved, with V defined in (3.11). This leads to
√
nb[g̃(τt, λ)− g(τt, λ)]

D−→

N(0, V ), when bτ = o(bA), because
√
nbB[g̃(τt, λ)] → 0. Define δ = g̃(τt, λ) −

B[g̃(τt, λ)]− g(τt, λ)]. Note that

δ(τt) =
n∑
t=1

wτt [g(τt, λ)ξt]

=
n∑
t=1

wτ∗t ξt, (6)

where wτ∗t = wτt g(τt, λ). It is easy to check that the regularity conditions (4.2)
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and (4.3) in Beran and Feng (2002) are jointly fulfilled by wτ∗t and λt. Hence,

following Theorem 1 in Beran and Feng (2002), δ(τt) is asymptotically normal, if

the sample mean of ξt is. The latter is guaranteed by A1 and A5. Hence, Theorem

3.1 follows. �

Proof of Theorem 3.2

i) The formula for the MSE of g̃(τt, λ) is the sum of the square bias and the vari-

ance. The bias and variance follow i) and ii) in Theorem 3.1.

ii) The MISE can be calculated on the whole support [0, 1], because the contri-

bution of the estimated values in the boundary area is asymptotically negligible.

3

Proof of Theorem 6.1

Define bA = CAn
−1/5, where CA is the constant in bA. We have b̂ = ĈAn

−1/5 and

(b̂− bA)/bA = C−1A (ĈA − CA). (7)

Taylor expansion leads to

ĈA − CA
.
= Op(Î(g2λ)− I(g2λ)) +Op(Î((g′′λ)2)− I((g′′λ)2)) +O(ĉf − cf ). (8)

It is well known that

Î((g′′λ)2)− I((g′′λ)2)
.
= Op(n

−2/7). (9)

Following the results in chapter 6.2 of Priestley (1981), the error in the lag-window

estimator of cf using the Bartlett-window and a bandwidth K = O(n1/3) is

ĉf − cf = Op(n
−1/3). (10)

Moreover, the first term Op(Î(g2λ)− I(g2λ)) is neglectable (see Feng, 2004). 3
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Appendix B: POT plots of VaR and ES
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Figure A.1: DAX POT of VaR and ES with semiparametric models
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Figure A.2: DAX POT of VaR and ES with log-models
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Figure A.3: FTSE POT of VaR and ES with parametric models
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Figure A.4: FTSE POT of VaR and ES with semiparametric models
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Figure A.5: FTSE POT of VaR and ES with log-models
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Figure A.6: EST POT of VaR and ES with parametric models
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Figure A.7: EST POT of VaR and ES with semiparametric models
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Figure A.8: EST POT of VaR and ES with log-models
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Figure A.9: RUT POT of VaR and ES with parametric models
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Figure A.10: RUT POT of VaR and ES with semiparametric models
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Figure A.11: RUT POT of VaR and ES with log-models
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Figure A.12: BSN POT of VaR and ES with parametric models
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Figure A.13: BSN POT of VaR and ES with semiparametric models
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Figure A.14: BSN POT of VaR and ES with log-models
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Figure A.15: BRO POT of VaR and ES with parametric models
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Figure A.16: BRO POT of VaR and ES with semiparametric models
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Figure A.17: BRO POT of VaR and ES with log-models
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