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Abstract

Following the implementation of Basel III and its forthcoming finalization, risk
management has been already paid high attention by firms, financial institutions
and even the Basel Committee on Banking Supervision. The risk measurement

and financial risk models become the crucial prerequisites in risk management.

Firstly, some recently developed financial volatility models are provided in the
dissertation. In order to examine the long-term and short-term market risk, a
time-varying scale function is introduced based on parametric models, such as the
GARCH, the ACD and the MEM models. Then, the market risk is decomposed in-
to a short-term risk by a parametric part and a long-term risk by a semiparametric
trend function. Due to no parametric model assumptions, the set-up semiparamet-
ric models are model free and general in the parametric part. Besides, to reduce
the moments requirement of the considered data, the power transformation is em-
ployed in the general semiparametric models, i.e. some general power transformed
semiparametric models are built up, such as the general Box-Cox SemiGARCH
model, the general Box-Cox SemiACD model and the general Box-Cox SemiMEM
model. The estimation of the scale function is not related to any parametric
specification. Due to the shortcomings of the kernel and the local linear approach-
es, a non-negative constrained local linear estimator of the trend, which is next
proposed to descale a suitable parametric model to the standardized residuals, is
under consideration. Iterative plug-in algorithms are developed to estimate the
bandwidth and the power parameter. For the power parameter estimation, var-
ious criteria, such as the Jarque-Bera test, the maximum likelihood estimation,
the Shapiro-Wilk test and quantile-quantile regression, are employed. Further,
the block bootstrap simulation is carried out to estimate the confidence interval
of the power parameter. The empirical findings are illustrated by applying the

algorithms to real financial market data, e.g. the returns, the trading duration,



iv

the trading volume and the trading numbers, indicating the good performance of

the general power transformed semiparametric models.

For another, the value at risk and expected shortfall are also predicted by the
general semiparametric models. In the stationary process, we use the conditional
t-distribution as the assumption in both risk measures. Well known models, such
as the GARCH class models, including GARCH, APARCH, EGARCH, etc., based
on the conditional t-distribution, are as parametric extensions. In addition, the
backtesting with the semiparametric approach for both value at risk and expected
shortfall are also discussed. Although the Kupiec POF test and independence
test are carried out, the robustness of the results is challenged. Following Basel
ITI, the traffic light tests, considering the cumulative probability, are applied. For
expected shortfall, a breach indicator is introduced to obtain a similar traffic light
test of value at risk. Loss functions from different viewers, such as the regulator
and the firms, are also discussed. It is shown that different market participants
prefer using different loss functions to maximize own profits. From the empirical

cases, the semiparametric models are necessary tools in risk management.

Keywords: semiparametric, volatility, value at risk, expected shortfall, risk man-

agement
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CHAPTER 1

Introduction

Since the global financial crisis, it has been realized that more close attention
should be paid to the significance of quantitative risk management of the financial
market operation. The financial econometrics and quantitative risk management
are definitely related to not only the market economy operation but also the
micro- and macroeconomics performance of the countries all over the world in
every field. Financial risk engineer N. Taleb, the author of the book Black Swan,
strongly warned about the banks’ approaches applied to risk management and
their irresponsibility against potential risk in the modern financial system from

the coming crisis and its negative consequences.

In the financial world, volatility is an important concept in financial economet-
rics and is widely used in investment portfolios, asset pricing, product pricing and
risk management. Currently, the empirical research and analysis on the volatility
of financial prices have become one of the essential problems in modern financial
risk management research. The financial modeling in the research process is the

crucial technique to analyze the volatility and risk decomposition in markets.

Price volatility in financial markets is often considered and measured by clas-
sical variance models. In these models, the assumption has always recognized the
variance as a constant at different time points. However, with the development
of financial science research, it is found that this assumption can not reveal the
real volatility movement in the financial market and a large number of financial
time series such as stock prices, GDP indexes, interest rates and currency ex-
change rates show that the variance is not fixed, but time-varying. The ARCH
(autoregressive conditional heteroskedasticity, Engle, 1982) and GARCH (general-
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ized ARCH, Bollerslev, 1986) are tremendous successes for modeling volatility on
financial markets. In literature, there is a huge number of extensions of the origi-
nal GARCH model. For instance, the asymmetric power ARCH (APARCH, also
called APGARCH, Ding et al., 1993) model, the EGARCH (exponential GARCH,
Nelson, 1991) to discuss the short memory property in the volatility. There are al-
so volatility models to reveal the long-memory property of squared returns, such as
FIGARCH (fractionally integrated GARCH, Baillie et al., 1996), the LMGARCH
(long-memory GARCH, Karanasos et al., 2004, Conrad, 2006 and Conrad and
Karanasos, 2006) and so on. Those extensions are all defined as stationary time
series. In practice, it is found that the unconditional variance of asset returns
in a long period usually change over time. The SemiGARCH (semiparametric
GARCH, Feng, 2004) and the Spline-GARCH (Engle and Rangel, 2008) model
are hence proposed to analyze this nonstationary property of volatility, where a

nonparametric scale function is introduced to parametric volatility models.

The high-frequency financial data is being focused in financial modeling. The
research on ultra high-frequency data, such as the duration, has attracted more
and more scholars. To analyze the ultra high-frequency data, Engle and Russell
(1998) proposed an autoregressive conditional duration (ACD) model, which is
an important tool in the high-frequency financial data analysis. Afterwards a
lot of extensions of the ACD model were proposed. To analysis the long-term
dependencies in the duration series, Jasiak (1998) extended the ACD model to the
fractionally integrated ACD (FIACD) model. A logarithmic version of the ACD
(Log-ACD) model was introduced by Bauwens and Giot (2000). The ACD models
were extended to semiparametric methods. Feng (2013) proposed a SemiACD
model and applied a local linear method to estimate the diurnal pattern. Feng and
Zhou (2015) discussed a Semi-Log-ACD process by introducing the scale function
into the logarithm ACD models. Indeed, it is a special case of the Semi-FI-Log-
ACD model with fractional differencing parameter d = 0.

In the dissertation, the definition, estimation and properties of the semipara-
metric models and the methods of bandwidth selection are discussed with various

data types. In the financial return series, a SemiGARCH model is considered to



model the volatility in the long run by introducing a time-varying scale function
and after removing the trend, the stationary return series can be analyzed with
any classical GARCH type model. The semiparametric analysis can also be car-
ried out in the research on the non-negative financial variables, such as trading
volume, trading number, average transaction duration and volatility indexes and
the SemiACD or Semi-Log-ACD model is applied as an extension of parametric
duration model to describe the mean movement in decades. Furthermore, the
semiparametric algorithm is available to not only the financial data but also the
macroeconomic data. In practice, the semiparametric modeling with macroeco-
nomic data, such as GDP, inflation rate, interest rate and so on, works also very

well.

The power transformation is a key idea proposed in the dissertation. The
Box-Cox transformation (Box and Cox, 1964) is developed as an efficient pow-
er transform technique, applying the non-linear transformation, especially in the
analysis of the variance. To apply the Box-Cox transformation, the expectation
of the variable possesses a simple structure and the error of the variable is also
consistent. Furthermore, the most important advantage of the Box-Cox is, after
Box-Cox transformation, the distribution of the variable is closer to the normal
distribution. Manly (1976) proposed an exponential power transformation and
in this exponential transformation, the negative values of the variable are also
considered. Modulus Transformation (John and Draper, 1980), a modified power
transformation, introduced a sign function in the data transform and it is effective
with the symmetric distribution data set, however, the transformation seems to be
invalid when the transformation parameter is zero. Yeo and Johnson (2000) devel-
oped another modification by minimizing the Kullback-Leibler distance between
the normal distribution and the transformed distribution and considered not only
the transformation of the negative values but also the logarithm form with power

Zero.

In the analysis of Box-Cox transformation, the focus is the determination of
the power transformation parameter. Box and Cox discussed two approaches,

the Maximum Likelihood method (MLE) and the Bayesian method. MLE is the
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most common method applied in the searching of the power transformation pa-
rameter due to the feasibility in computation and confidence interval calculation.
Besides, the normality (goodness of fit) test can also be applied in the power
transformation parameter selection. Rahman (1999) and Rahman and Pearson
(2008) applied the Shapiro-Wilk test and the Anderson-Darling test to obtain the
transformation, respectively. Asar et al. (2017) summarized the common nor-
mality test, such as Shapiro-Wilk test, Anderson-Darling test, Cramer-von Mises
test, Pearson chi-square test, Kolmogorov-Smirnov test, Jarque-Bera test and a
method of artificial covariate and developed these normality tests in the searching
algorithms to find maximum or minimum statistic values rather than numerical
calculation. Furthermore, graphical methods is also an alternative method in the
power transformation searching, by comparing the histogram of the sample da-

ta and a normal distribution curve, for example, the quantile-quantile regression

(QQr) method.

The dissertation is organized as follows. In Chapter 2, the definition of para-
metric GARCH and ACD model is first introduced. Then, a variety of the common
volatility models and duration models are detailed discussed. In the volatility mod-
els, ARCH, GARCH, APARCH, EGARCH and CGARCH models are selected as
the representative and in the duration models, we discussed ACD and log ACD
models. In the subsection of each model, we described the definitions, statistic
properties and the estimation method. Besides, as extensions of the parametric
models, we investigated the models with time-varying components. The Semi-
GARCH, SemiACD and Semi-Log-ACD models are the parametric modifications

by introducing scale function.

In Chapter 3, a framework for general SemiGARCH models is built by intro-
ducing time-varying trends to present short- and long-term market performance
through daily trading data. The scale function reveals long-term risk components
and the classical parameter GARCH model exhibits short-term market risk. If the
scale function is not considered, the restriction on the parameter GARCH model
no longer exists and generally, the SemiGARCH framework does not require the

assumption of the parameter part, which means that the parameter model is free.



Also, a power transformation is proposed to reduce the moment requirement of the
GARCH model. The IPI algorithm is executed to estimate the power parameters

to reach a convergence value.

In Chapter 4, as Basel III and its imminent completion, we will use the para-
metric and semiparametric models to examine VaR and ES predictions and back-
testing. An important innovation is the ES traffic light test. In the empirical
study, the ES backtesting test works well and does provide a simple and straight-
forward method for ES backtesting. In addition, some practical cases have been
found to support semiparametric models, which can reasonably reveal market risks
and meet regulatory agencies and enterprises, proving that semiparametric models

are necessary risk management tools and complement the parametric models.

Then, in Chapter 5, the duration models are considered. The aim of the chapter
is to describe the semiparametric models to analyze the non-negative data, such
as mean transaction duration, trading number, trading volume, realized volatility
and volatility indexes. A SemiACD model is proposed to discuss the scale function
in the mean duration. The mean duration considered in this chapter still follows
a multiplicative process, modeling with a time-varying MEM model. In the scale
function estimation, the Box-Cox-transformation is still considered, however, in
the estimation algorithm, not only the selection of bandwidth is considered but

also the constant factor in the asymptotic variance.

A wide class of semiparametric GARCH models is interpreted in Chapter 6
by introducing a scale function into a GARCH-type model for featuring long-
run volatility dynamics caused by changing the macroeconomic environment. The
dynamics volatility can be modeled as an MEM with a varying scale function. Fur-
thermore, the scale function is estimated under weak moment condition by means
of the Box-Cox-transformation of the constrained returns and the scale function
is estimated independent of any GARCH specification. Asymptotic properties of
the proposed nonparametric and parametric estimators are studied in detail and
an iterative plug-in algorithm is developed for selecting the bandwidth and the

parametric estimation of the stationary part is also independent.

A further topic on the non-negative intraday high-frequency data with the
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SemiMEM model is discussed in Chapter 7. At the end of the dissertation, the
summary of the main contributions is concluded. In view of the current work,
the shortcoming of the research is pointed out and design a reasonable research

prospect.



CHAPTER 2

Parametric and Semiparametric Models

The GARCH model and its extensions are the most popular approaches to model
the conditional heteroskedasticity in financial returns. However, financial returns
possess not only the conditional heteroskedasticity but also time heteroskedastici-
ty, implying the nonstationarity of financial returns in a long period. The feature
requires a new GARCH-type model, modeling both the conditional volatility dy-
namics and the long-run risk. In this chapter, the selected parametric volatility
and duration models are discussed. The properties of these models are also sum-
marized. Besides, semiparametric models with a time-varying trend function are

introduced, decomposing the long-run volatility.

2.1 Introduction

Financial time series models develop rapidly in recent decades, especially the
GARCH-type models. From the ARMA model to the recent GARCH-type model,
the model has experienced a process from linear to nonlinear, from parametric to
nonparametric or semiparametric approach. It is known that volatility clustering
exists in financial time series, and the distribution of random variables appears
the fat tails. Different from the classical models, the Autoregressive Condition-
al Heteroskedasticity (ARCH) model suggests that the conditional variance could
change over time as a function of past errors. In practical applications of the ARCH
model, a relatively long lag in the conditional variance equation is often required,
which might lead to an increase in the complexity of estimating parameters and
decrease the freedom degree. However, the restrict condition is exactly needed in
this model to ensure conditional variance to be non-negative. Therefore, there are

many economists tried to improve ARCH models. Among these researches, the



8 2. Parametric and Semiparametric Models

generalized ARCH (GARCH) model, which is introduced by Bollerslev (1986), is
the most widely well-known one with a better framework to study time-varying

volatility in financial markets.

2.2 Overview of the volatility models

It is well known, financial markets are often volatile. The volatility is an important
variable to indicate the risk of assets and reflect the uncertainty of asset returns.
To measure the volatility, parametric models, such as (G)ARCH models and their
extensions, are regarded as the most commonly used approaches in investment
analysis and futures pricing. In this section, some of the parametric GARCH

models will be introduced.

2.2.1 The ARCH model

In the study of ARCH models, the conditional mean and conditional variance of
financial returns are introduced. Suppose 1,79, ..., are the time series random
variables and their conditional variances depend on a great number of information
according to the past periods. The conditional mean does not depend on the past

information,

E<7"t’7nt717 . 77’1) =0, (2-1)
whereas the conditional variance
ht = var (rt|7ﬁt717 Ce ,7”1), (22)

obviously depends on r;_1,...,77.

According to Engle (1982), the uncorrelated but dependent process X;, can be
defined as ARCH(p),

Ty = Uth,,}/2> rt‘gft—l ~ N(Oa ht)7 (2-3)
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p
hy = ap + Z airy (2.4)

i=1
where n; is a sequence of i.i.d. random variables with mean 0 and variance 1,
Vh; is the conditional standard deviation, oy > 0, oy > 0, i = 1,...,p and
F,_1 denotes the past information. Here, h; is the conditional variance, which
depends on p periods information in the past. The conditions oy > 0 and a; > 0
guarantee a positive conditional variance. Obviously, conditional variance depends
on the squared past observations. ARCH model indicates that r, and 7,y are
not independent. Equation (2.4) describes the independence of r; using a simple

quadratic function of its lagged value.

An ARCH(p) model can also be written as AR (p) model. For an ARCH (p)

with var (X;) < oo, define a martingale sequence
e =r; — hy, (2.5)

g; are uncorrelated i.i.d. random variables with E(e;) = 0 and var (¢;) = 1. We
have
P
rt=ag+ > it ter (2.6)
i=1
The Equation (2.6) is an AR(p) model for r? with innovations &;. Obviously,
it indicates that the ARCH model is related to the AR model.

2.2.2 The GARCH model

Bollerslev (1986) proposed the Generalized Autoregressive conditional Heteroskedas-
ticity (GARCH) model based on the ARCH model. The GARCH model is regres-
sive, as a result of the tool entirely explains the stylized facts observed in financial
markets returns. Different from the ARCH model, the GARCH model can model
the variance of the errors in addition. That is to say, the conditional variances in
the GARCH process depend not only on the squared past observations but also
on conditional variances in the past. Therefore, it is very suitable to analyze and

forecast volatility.
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A GARCH(p,q) model is defined by

Ty = ﬁthtl/27 7“t|3rt—1 ~ N(O, ht)7 (2-7)
P q

hy = ag + Z airy_; + Z Bihi—j, (2.8)
i=1 j=1

where 7, and h; are as defined before, p > 0,q > 0,9 > 0 and a; > 0 for
t=1,...,p, B; > 0for j =1,...,q. The higher p and ¢ are, the smaller «; are.
The same as the ARCH(p) model, F; denotes the information set of all information
through time ¢. The conditions ag > 0, ; > 0 and ; > 0 guarantee the positivity

of the conditional variance.

From the above formula of the GARCH model, we can see the difference be-
tween ARCH models and GARCH models. That is, following the GARCH models,
the conditional variance depends on not only squared past observation in the pre-
vious p periods but also conditional variances in the previous in the past ¢ periods.

If ¢ = 0, the GARCH(p, ¢) process decreases to the ARCH(p) process.

p q
Let M(B) and N(B) be > ;B and 1 — ) ;B9 respectively. As an infinite
i=1 j=1
lag polynomial can be expressed as the quotient of two finite lag polynomial
M(B)
N

®(B) = ;@BZ = NB) (2.9)

the GARCH(p, q) model can also be written as an ARCH(o0),

q -1 p
ht = (1 — Z 6ij> <W —+ Z Oéz"f’?i>
7=1 i=1

- (2.10)
=1

where ;
¢; = Oéi+25j¢i—j, i=1,...,p
j=1
and J = min{q,7 — 1}, B is the backshift operator, w* = w/N(1). If N(1) > 0, ¢;
will decrease for i is greater that m = max{p, ¢} (Bollerslev, 1986). Obviously, if
w* >0 and ¢; > 0, then h; > 0.
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We have the conditional mean E(r¢|F;—;) = 0 and hence E(r;) = 0. Further-
more, it is almost the same as a ARCH(p) model, we have cov (r|Fy_1, reok|Fron—1) =
0, for £ > 0, hence v(k) = cov (14, 7:4x) = 0. That is, r, by a GARCH process
are an uncorrelated series but not independent. However, the observations are
not independent, because of the dependence between their variances or squared

values, cov (r7,r7,,) # 0.

The weak stationary of a GARCH(p, q) process requires a necessary and suffi-
cient condition. That is, if and only if the sum of all the coefficients is smaller than
1, i.e. the unconditional variance exists (var (X;) < oo). Under this condition,
the unconditional variance of a GARCH(p, ¢) model can be also calculated as the
constant parameter divided by the difference between the sum of all the coefficient
and 1. It is clear to see that whether var (r;) < oo does not depend on ag but
only Y7 o+ 23:1 B;j. However, if a unit GARCH is considered, oy is not a free

parameter any longer and its value is exactly equal to 1 —>2 a; — Z?Zl B;.

Consider the original GARCH model with conditional normal distribution, the
method of conditional maximum likelihood estimation (MLE, Bollerslev, 1986) is
always applied to estimate a GARCH model. It is required the existence of the

fourth moment because h; is the sum of squared returns.

Assume E(r}) < oo. Let 0 = (ap,ay, -+ ,a,, b1, ,B,) be the unknown

parameters vector. Using the conditional normality, the conditional Gaussian log-

likelihood

L(0) = %anzt. (2.11)

Taking the logarithm and neglecting the constant term, we obtain the following

log-likelihood function
rf

1
o= =gl = g 5y

(2.12)

and the maximum value of L(6), denoted by 6, is the MLE of 6.
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2.2.3 The APARCH model

The asymmetry of the effect of positive and negative returns which we have men-
tioned in the last subsection is regarded as the leverage effect. According to Black
(1976), the leverage effect of the stock market is well-known in finance literature
and higher volatility responses to negative past returns (bad news), while lower

volatility responses to positive past returns (good news) (Nelson, 1991).

The asymmetric power ARCH (APARCH, also called APGARCH) model in-
troduced by Ding et al. (1993) is the formulae of conditional variances different for
positive or negative returns. r; in the APARCH model is similar to the Equation

(2.7) in a GARCH (p, q) process. Then, a general APARCH(p, ¢) is defined as
d & : d
ht/2 = oo+ Z ai(|ri—i| — ’Yﬂ’tﬂ')d + Z 6jht£§'? (2.13)
i=1 j=1

where hf /? is the conditional standard deviation, 0 < d < 2 is a power index of
this model, oy > 0, oy, f; > 0 are similar to those in a GARCH model and |v;| < 1
are introduced to model possible asymmetric information effect. APARCH models
include several models as special cases, particularly for cases with d =1 or d = 2.

This point will be detailed introduced in the following chapter.

The APARCH model includes several ARCH models as special cases. If the
values of ¢ and ~; are changed, APARCH model derives into the following models,
the standard GARCH model, the GJR-GARCH model, the TS-GARCH mod-
el(Taylor and Schwert model), the NGARCH model (Nonlinear GARCH model)
and the TGARCH model (threshold GARCH model).

When § = 2,v; = 0, the APARCH model turns into a GARCH model with the

covariance stationary condition for e; as i a; +>7_, ; < 1 (Bollerslev, 1986).

When § = 2,v; # 0, the APARCH model can be named as the GJR (Glosten,
Jagannathan and Runkle, 1993) model

p q
hi =w + Z air? 4+ yire I(r; < 0) + Z Bihi—;, (2.14)

i=1 Jj=1
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where I(+) is the indicator function to simulate the asymmetric influence of the

positive and negative shocks on the conditional variance.

When 6 = 1,v; = 0, the APARCH model transforms into the TS-GARCH
(Schwert, 1989 and Taylor, 1986) model

p q
h"? :W+Zai|7“t—i| +Zﬁjhgg- (2.15)
i=1 j=1

When ¢ = 1,v; # 0, an asymmetric Taylor-Schwert model is obtained, which
is named as the TGARCH (threshold GARCH, Zakoian, 1994) model

p q
h? =0+ alred] + vlred e < 0)+ Y Bin'. (2.16)

i=1 j=1

2.2.4 The EGARCH model

The exponential GARCH (EGARCH) model introduced by Nelson (1991) is a
popular extension of the GARCH model. The standard GARCH model has some
limitations compared with EGARCH. To guarantee the conditional variance at
each time point to be positive, many restrictions must be added to the parame-
ters. After that, an asymmetric response to shocks can’t be treated with standard
GARCH models. To overcome the drawback, Nelson (1991) claimed a logarith-
mic transformation of the volatility and obviously, the adoption of the 'nature
device’ guaranteed the positivity of the variance without any restrictions on the

parameters.

r¢ is said to be a family of EGARCH(p, ¢) models if it satisfies Equation (2.7)

and an equation described as the following expression (Nelson, 1991),

P q
Inhy = ap + Z a;g(re—i) + Z Bilnh_j, (2.17)
=1

i=1
where

Q(Tt—z‘) = 197“t—j + fi(|7”t—z‘| - E|7"t—z‘|)7i =1,...,p,

o, o, B;, 9 and k are real number coefficients. The model effects, sign effect and
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size effect, can be reflected from the parameters «; and (;, respectively. A very
useful point in an asset pricing is that the sign and the magnitude of r,_; can be

allowed to have separate effects on the volatility by the formulation of g(r;_;).

According to the Theorem 2.1 from Nelson and the definition of the stationary,
when v and 6 do not equal to zero at the same time, the EGARCH process of

order (1,1) is strictly stationary and ergodic if and only if a? < oo and |3| < 1.

2.2.5 The component GARCH model

The GARCH model has not distinguished the long-term and short-term compo-
nents. However, it is known that stock prices always fluctuate around an average
value. This phenomenon is called mean-revert. It is also found that the mean-
revert of short-term volatility is more rapid than for the long-term one and the
market volatility must have enough persistence to influence the stock returns in the
long-run (Xu and Taylor, 1994). To explain this different response between short-
term and long-term, Engle and Lee (1999) introduced the component GARCH
model. In this model, the conditional variance is decomposed into a permanen-
t and transitory component. So that the model can be used to investigate the

long-run and short-run movements of volatility affecting securities.

The component GARCH (CGARCH) model is defined by

p q
hy = q + Z ai(riy = qri) + Z Bi(hi—j — Gi—j); (2.18)
i=1 j=1
and
G =w+ pg—1 + @(rj_y — hi_r), (2.19)

where ¢; the permanent component of the conditional variance and (hy—; —q;—;)

is the transitory component of the conditional variance (Engle and Lee, 1999).

The parameters p is used to examine the persistence of shock impacts on the
long-run component. If 0 < p < 1, the long-run volatility component follows an

AR process and will converge to a constant level defined by w/(1 — p). When
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p is extremely close to 1, usually between 0.99 and 1, the long-run volatility
component converges to w very slowly. If 0 < (ay + 1) < p < 1, the impact of
volatility shocks on the long-run volatility component diminishes as well but be
more persistent than that of the short-run component. ¢ shows the sensitivity
of the long-run component to volatility shocks. « expresses the sensitivity of the
short-run component to volatility shocks. When o > ¢, the immediate impact of
volatility shocks on the long-run component would be smaller than that on the

short-run component.

2.3 The ACD model

Engle and Russel (1998) proposed an autoregressive conditional duration (ACD)
model to analyze the transaction duration. Let tg,t1,...,ty with tp <t; < ... <
tn be a sequence of time, where N = N(d) is a random number and ¢; indicates the
time of the i-th transaction. The transaction durations are defined as xz; = t;—t;_1,

fori=1,2,..., N. Furthermore let ; be the expectation of the i-th duration
E(xi|xz’—17 cee 7$1) = wi<xi—17 <y Ly 9) = ;. (2-20)

The conditional mean interacts multiplicatively with the error term, so that the

class of ACD models consists of various parameterizations of (2.20),
T; = Vi€, (2:21)

where ; > 0 are i.i.d. random variable and E(g;) = 1.

Engle and Russell (1998) proposed the ACD(p, ¢) model and defined the con-

ditional duration by a linear parameter process of 1); as:
p q
vi=oa0+ Y ozt Y Btk (2.22)
j=1 k=1

where o > 0, o; > 0, B > 0.

The weak stationarity of an ACD(p, q) process requires to satisfy the following
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necessary and sufficient condition,

p q
D ai+ Y B<l, (2.23)
j=1 k=1

then, the unconditional mean of the ACD model is summable (E(x;) < oo) and
under the condition of Eq. (2.23), the unconditional mean of an ACD(p, ¢) model

is similar as the unconditional variance of the GARCH model.

2.4 The semiparametric GARCH model

The GARCH model has many advantages. The function form is accessible, and
parameters could be easily estimated. If the model assumptions were correct,
the estimation is consistent with reality. However, the drawbacks of parametric
volatility models are more upsetting. Firstly, a preselected parametric model may
not fit unexpected features, due to too restricted or too low dimensional. Sec-
ondly, sometimes the regression function seems to be too complicated or difficult
to be defined. Thirdly, because different sequences will be witnessed when dif-
ferent conditional distributions are selected in the process of prediction by using
parametric models, there will most possibly exist the problem of misclassification,
which may result in a excessively high model bias and loss of efficiency, unless
the assumed function perfectly matches the true error distribution (Di and Gan-
gopadhyay, 2011). An important drawback of the parametric volatility models is
that the unconditional variance is assumed constant. However, it is found that
sometimes the scale change of the time series is not constant significantly (Beran

and Ocker, 2001).

Feng (2004) proposed a semiparametric GARCH (SemiGARCH) model by in-
troducing a smooth scale function into the GARCH model. The squared residuals
in SemiGARCH models can be estimated by an approximate kernel smoother or
the local polynomial smoother. Further after removing the scale function, the
parametric parameters are estimated by the classical parametric models estima-

tion approach.
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The SemiGARCH model combines a smooth scale function with the standard

GARCH model:

re =+ o(z)ey, (2.24)

where p is an unknown constant, x; = t/n, o(x) > 0 is the nonparametric com-

ponent, a smooth, bounded scale function and {e;} is the parametric component.

The conditional variance of {e;} is assumed to follow a GARCH(p, q) process:
p q
hy =w+ Z Ozﬂ’tz_i + Z Bihi—;, (2.25)
i=1 Jj=1

where ht1 /2 is the conditional standard deviations of the standardized process &,
w>0;a,...,a, >0and By,...,0, > 0. To estimate the scale function, E(r}) <
oo is assumed to ensure Eq. (5.2) strictly stationary, which implies in particular

that > 7 ) a; + > 5, B; < 1 (Feng, 2004).

The SemiGARCH model provides us a tool to decompose financial risk into
an unconditional component o(x;), a conditional component htl/ ? and the ii.d.

innovations 7;.

The estimation of the SemiGARCH model can combine the nonparametric
estimation of the local variance v(z) = o?(x), with parametric estimation of the

unknown parameter vectors 0 = (a; v, ..., Qp; 1, .., By)-

At first, the scale function can be estimated by some nonparametric regression
approaches without any parametric assumptions. In this model the kernel estima-
tion will be used. If the constant mean p is replaced by a smooth function g, we

can get a nonparametric regression with scale change and dependence
re = g(xe) + o(r)er, (2.26)

where ¢, is a zero mean stationary process.
Therefore, Eq. (2.24) can be transformed into a general nonparametric regres-
sion problem. Letting r; = r, — u, Z, = (rf)? and & = €7 — 1 > —1, which are

zero mean stationary time series errors. Then, the model can be rewritten as
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Zy = v(@e) + v(w)&e. (2.27)

Letting i = 7 and 2; = (#7)?, in which 7} is then defined by 7f = r; — 7. The

Nadaraya-Watson kernel regression is defined by

b(z) = =5 =) Wi, (2.28)
Y K(HE) =
t=1
where w; is the weighting function w, = K K(u) is a second order

Yo K(H)?
kernel function with compact support [-1,1] and b is the bandwidth, the size of the

weights (Fan, 1993).

Besides, v(z;) can also be estimated by the local linear regression. The local

linear estimator of v(z;) at 0 < x; < 1 is obtained by minimizing

Q(x) :Zn:{rt—ao—al($t—:v)}2K (”’tb_x) (2.29)

t=1

Obviously, we obtain 7(x;) = &o. The bias of the local linear estimator is always
of the order O(b?), which is important for application, because the forecasting of
the trend is mainly carried out based on the estimation at the right boundary.
However, ©(x;) obtained above is sometimes negative, especially with a small
sample size or bandwidth. To ensure the non-negativity, the constrained local
linear regression is considered. We propose to use the constrained local estimator
v(xy) = |p(xy)|, which is a.s. positive. In this dissertation, the scale function is
estimated via codes by Feng (2004). After the time-varying trend is removed, the

descaled data is able to be applied in a parametric process.

According to the above assumptions, the estimator ¢; is now replaced by the

standardized residuals
ét = ft/é(xt) = (Tt — f)/fr(mt) (230)

Then the estimator of parametric vector 6 can be obtained by the standard maxi-
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mum likelihood method, which has been introduced in subsection 2.1.2. A suitable
model can also be selected by using other methods, e.g. the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), etc. In the thesis, the

parametric models are estimated by the fGarch! and rugarch? packages in R.

2.5 The semiparametric ACD model

Consider a stochastic process {tg,t1,...,tn, ...} With tg <t; <...<t, <...and
it represents a sequence of time series. x; = t; — t;_; defines the interval between
the durations and ; is the expectation of the ith duration. According to the

arrival times, N (t) refers to the counting function.

The duration expectation is defined as,
Elxi|zica, .. T, Yimg) = Owi|@ic, o g, Vi, o i, Q) =4, (2.31)
in the formula, x; follows the definition in parametric ACD models,
T; = Pigi, (2.32)

where ¢; are 1.i.d. with unit mean.

Feng (2014) proposed a local linear method to estimate the diurnal pattern in
the SemiACD model. Consider the diurnal pattern of the ACD model (Russell
and Engle, 2002, 2010),

T = O(t:)Yics, (2.33)

where ¢(t;) is the deterministic diurnal pattern and the local mean of z;, v, is
the conditional expectation of the diurnally durations above or below the average

value of the day.

LfGarch is written by Wuertz et al. in Rmetrics-Autoregressive Conditional Heteroskedastic

Modeling.
2rugarch is developed by Ghalanos and Kley in Univariate GARCH Models.
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Let y; = 1;e; and E(y;) = 1, model (2.33) can be rewritten as

z; = ¢(t:) + o(t:)&, (2.34)

where & = y; — 1. It is obvious, model (2.34) discusses the estimation of the
scale and mean function ¢(t;) to a general nonparametric regression process. If 1)

follow a unit ACD process,
p q
1/}1' = Qg + Z QT4 + Z 5]{[%,]@, (235)
j=1 k=1

then, model (2.33) and (2.36) are a semiparametric ACD process and can be
estimated by a semiparametric procedure combining nonparametric estimation of
¢(t;) and parametric estimation of unit the ACD model. In the SemiACD model,

because of the unit mean of y;, the constant parameter oy is

p q
aw=1->a;=> B (2.36)
j=1 k=1

Here, the constant in the ACD process cannot be chosen freely.

Due to ¢(t;) depending on N, we define ¢n(t;) = m(t;)/N, then Eq. (2.34)

can be written as

x; = m(t;) +m(t)&, (2.37)

The estimation of the scale function ¢(¢;) in the SemiACD model can apply
the local polynomial method by minimizing the least squares to estimate m(t;).
Let K(u) be a kernel function and b > 0 be the bandwidth. The local linear
estimator of m(t;) is obtained by means of the following locally weighted least

square approach

i —1

Qb) = Z {of —ap—an(t; —t)V’ K ( 5 ) = min, (2.38)

where m(t;) = Gp is the local linear estimate and the kernel function K may be
different to that used above. The bias of m(¢;) is always of the order O(b), which

is important to the forecasting based on the estimation at the right end point.
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2.6 Final remarks

In this dissertation, the considered data is decomposed by the semiparametric
models by removing a scale function. In Chapter 3 and Chapter 4, GARCH models
are applied as the parametric part with normal and t-distribution of innovations,
respectively. Some GARCH model extensions are used in the stationary process,

such as APARCH, EGARCH and CGARCH models. In Chapter 6 and 7, ACD

models are discussed to analyze the nonnegative financial data.






CHAPTER 3

A class of SemiGARCH models

estimated based on the Box-Cox

transformation’

The chapter proposes a wide class of semiparametric GARCH models by introduc-
ing a scale function into a GARCH class model for featuring long-run volatility
dynamics, which can be thought of as an MEM (multiplicative error model) with
a varying scale function. The focus is to estimate the scale function under suit-
able weak moment conditions through the Box-Cox transformation of the absolute
returns. The estimation of the scale function is independent of any GARCH speci-
fication. To overcome the drawbacks of the kernel and the local linear approaches,
a non-negatively constrained local linear estimator of the scale function, which
is then proposed to fit a suitable parametric GARCH model to the standardized
residuals, is considered. Asymptotic properties of the proposed nonparametric
and parametric estimators are studied in detail and iterative plug-in algorithms
are developed for selecting the bandwidth and transformation parameters, which
are selected by MLE and JB statistic. The algorithms are also carried out indepen-
dently without any parametric specification in the stationary part. Application

shows that the proposals fit well to real data.

IChapter 3 is based on the working paper: A general class of SemiGARCH models based on
the Box-Cox Transformation (Zhang et al., 2017), CIE, 2017-06.
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3.1 Introduction

Despite the success of the ARCH (autoregressive conditional heteroskedasticity,
Engle, 1982) and GARCH (generalized ARCH, Bollerslev, 1986) models for mod-
eling conditional (short-run) volatility dynamics in stock market returns, their
implications for long-run volatility are restrictive, in the sense that these models
imply a constant unconditional long-run volatility, i.e. it implies that the stock
market returns are stationary. However, in recent years it was realized that this
feature does not seem to be consistent with the time series behavior of volatilities
of stock returns. Different extensions of the standard GARCH model are hence
proposed for capturing the long-run volatility patterns observed in the data. For
instance, Feng (2004) introduced a SemiGARCH (semiparametric GARCH) mod-
el by employing a smooth volatility trend (also called the scale function) into
the standard GARCH model and proposed to estimate it using data-driven ker-
nel regression. Van Bellegem and von Sachs (2004) discussed the forecasting of
financial time series under the time-varying unconditional variance. A general
time-varying ARCH process was introduced by Dahlhaus and Rao (2006). Engle
and Rangel (2008) put forward a Spline-GARCH model with a nonparametric
volatility trend, which is defined as a function of the observation time, i.e. the
location, and exogenous macroeconomic variables and is estimated by an exponen-
tial quadratic spline. Engle et al. (2008) extended this idea to a GARCH-MIDAS
model, which combines the ideas of the Spline-GARCH model and of mixed da-
ta sampling (MIDAS), to investigate detailed macroeconomic sources of long-run
dynamics of stock market volatility. Peitz (2015) developed a spatial semipara-
metric process to analyze high-frequency data in different dimensions. Amado and
Terdsvirta (2017) developed a specification technique for building multiplicative
time-varying GARCH models by decomposing the variance into a conditional and

an unconditional component, which is smooth over time.

In this chapter, a general class of semiparametric GARCH models is intro-
duced, including the SemiGARCH model as a special case. Similar to the Semi-
GARCH model, the total volatility is defined as a product of a scale function and

a conditional volatility component and the effect of exogenous variables is not con-
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sidered. The key difference between the current proposal and the SemiGARCH
model is that here the parametric part is not specified beforehand but to be chosen
after estimating the scale function. Different specifications will lead to different
models. By rewriting the GARCH formulations, it is shown that a semiparamet-
ric GARCH model is asymptotically equivalent to the GARCH model used in the
parametric part with a time-varying scale parameter, while the other parameters
remain constant. This provides us with a deep insight into the current proposal
and indicates possible further extensions of it. To estimate the scale function, we
propose the use of a constrained non-negative local linear regression, to ensure
that the resulting scale function is (at least almost surely) positive. It is shown
that the constrained local linear regression defined in this chapter is asymptoti-
cally equivalent to the common local linear regression. Note that the data-driven
algorithm proposed by Feng (2004) does not apply to the general framework con-
sidered in this chapter because of the Box-Cox power transformation in the scale
function. MLE and Jarque-Bera (JB) statistics are applied in the selection of
the transformation parameter. Hence, the main focus is on the development of a
quick, stable data-driven algorithm for the practical implementation of the general
semiparametric GARCH approach. For this purpose, a fully data-driven iterative
plug-in bandwidth selector algorithm is proposed following Gasser et al. (1991),
Herrmann et al. (1992) and Beran and Feng (2002a, b). The application to
data examples shows that such bandwidth and transformation parameter selec-
tion rules work well. Furthermore, a simple test is introduced to determine, if a
semiparametric GARCH or a parametric GARCH model should be used. This
test shows that the unconditional volatility during a financial crisis is significantly
higher than that in other sub-periods. It seems to be possible to develop a suitable
method for detecting the effect of a financial crisis by means of the proposal in this
chapter. Further, the estimation and selection of a suitable parametric GARCH
model based on the standardized returns are also discussed. Some results in this
chapter can be easily adapted to the Spline-GARCH or GARCH-MIDAS models.
For instance, both of them are GARCH models with a varying scale parameter

determined by the time and other exogenous variables.
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The chapter is organized as follows. The model is introduced in Section 3.2.
Section 3.3 discusses the semiparametric estimation of the proposed model, the
data-driven algorithm and the test method. Data examples in Section 3.4 illustrate
the practical usefulness of the proposal. Final remarks in Section 3.5 conclude the

chapter. Sketched proofs of some results are given in the appendix.

3.2 The SemiGARCH model with Box-Cox trans-

formation

Let v, t = 0,1,...,n, denote the prices of some stock index and r; their (log-)
returns. To model the slowly changing unconditional variance and conditional
heteroskedasticity at the same time, the following semiparametric GARCH class

model (Feng, 2004) for the conditional distribution of r; is introduced:

ri = () + s(7)V/ huee, (3.1)

where 7, = t/n is the rescaled time, u(-) stands for a smooth trend, s(-) > 0 is
a smooth scale function and h; is the conditional variance of the rescaled process
& = ri/s(my) = Ve with the centralized returns r; = 77 — u(7;). Due to the
returns are a.s. distinct from the expectation, the demeaned method (e.g. Harvey
et al., 1994) is widely applied to guarantee the centralized returns a.s. positive and
it also ensures the possible logarithmic transformation of the non-negative series
in the following discussion. It is assumed that &; also has unit variance so that the
model is uniquely defined. This implies that the unconditional mean of h; is 1, i.e.
E(h;) = 1. Although our focus is on the estimation of s*(-) and h;, a nonparametric
trend function is included for modeling possible long-term deterministic changes
in the mean of y;. We will see that the asymptotic properties of §2(-) will not be
affected by the estimation errors in fi(-). Model (3.1) defines indeed a sequence
of models. The process r; is nonstationary unless p(-) and s(-) are both constant.
But r, is locally stationary following Dahlhaus (1997). The trend function u(-) can

be recognized as a time-varying function u(7;) or in practice, returns may also have
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no nonparametric trend function. For simplicity, it will not be considered in the
current chapter, because our focus is on the estimation of s(-) and ;. Moreover,
it is well known that under common regularity conditions the effect of the error
in a nonparametric estimator of an unknown trend function on the estimation of
s(m) is asymptotically negligible. Then Model (3.1), without the trend function,

is reduced to

re = (1) e, (3.2)

Model (3.2) is a general SemiMEM (semiparametric multiplicative error model)
defined by introducing a smooth scale function into the MEM proposed by Engle
(2002). Hence, all of the results given in this chapter hold for a model with a
nonparametric trend function provided that the trend function is estimated by

another well-developed data-driven algorithm.

The stationary process & can be analyzed using any suitable GARCH class
model and different parametric specifications on h; will lead to different semipara-
metric GARCH class models. If it is assumed that & follows a standard GARCH

model, we have

q p
he = oo + Z iy + Z Bihi—;, (3.3)
i=1 Jj=1

where ay, ..., aq,B1, ., 8 > 0, 300 i + 30 By < land ag = 1371 oy —

;’:1 p;. Due to the restriction E(h;) = 1, o is no more a free parameter.
Equations (3.2) and (3.3) together define the SemiGARCH model introduced by
Feng (2004). See also Feng and McNeil (2008) for an extension of this model to
high-frequency financial data.

Nonparametric estimation of variance functions is well known in the literature.
Local polynomial estimation of variance functions in nonparametric regression
with independent errors is studied e.g. by Ruppert et al. (1997). Kernel and local
linear estimators of conditional variance in nonlinear time series are proposed by

Feng and Heiler (1998) and Fan and Yao (1998), respectively. A kernel estimator
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has the so-called boundary problem, which will not only affect the bias of the
estimate at a boundary point but also reduce the convergence rate of the MISE
(mean integrated squared error). A modified kernel estimator with second-order
bias at a boundary point is proposed by Hall and Presnell (1999). However, their
proposal does not apply to the endpoints 7 = 0 or 7 = 1. A local linear estimator
does not share this problem, however, it may be sometimes negative. In this
section, we will hence propose the use of local linear estimators with a simple
non-negative restriction. Moreover, a consistent estimator of s%(7;) as a smoother
of & with a given bandwidth requires the existence of the fourth moments of
&. But the selection of the bandwidth, in this case, requires the existence of the
eighth moments of &. This will clearly affect the stability of the estimated scale
function. This drawback hinders the application of such non-parametric variance
estimators to financial data series, because the marginal distribution of a financial
time series may have heavy tails. To solve this problem, we propose to estimate
the scale function from the Box-Cox power transformation |r;|* with 0 < A < 2. If
A < 1is used, the existence of the fourth moment of &; is sufficient for developing a
convergent bandwidth selector. If the power transformation parameter is regarded
as A = 0, the Box-Cox transformation of |r;|* reduces to a logarithmic form, and
obviously, & will follow a logarithmic process. The logarithmic transform can be
applied to some financial variables, such as realized volatility, volatility indexes,
etc., so as to convert multiplicative models to additive models. For simplicity,
0 < A < 2 is applied to the Box-Cox transformation without the consideration
of logarithmic transformation in the chapter. Note that normally A = 2 is used.
Now, s%(7;) is estimated first. $(7;) is then obtained by taking the square root of
§%(7;). Our proposal is to estimate the local mean of |r|* first and then take the \-
th root of this local mean as an estimator of the scale function. The relationship
between this estimate and the classical one is as follows. Define ¢y = E(|&]*),
which is 1 for A = 2 following the definition. For A # 2, we have ¢\ # 1 but its
concrete value depends on the distribution of & and will change from case to case.
We will see that a nonparametric estimator based on |r;|* is indeed an estimator
of g(73, ) = cxs™(7) and not that of s*(r). Hence [§(7y, \)]Y> & ¢/ 3(7) # 8(7),

if A\ # 2. To estimate the scale function from r? is the most natural method.
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However, note that the difference between [g(, \)]'/* and s(7;) is just a constant
factor. Hence the use of [g(7, A\)]'/* as an alternative scale function is equivalent

to the use of s(7). Thus, for given A, Model (3.2) can be rewritten as

Ty = SA(Tt)fA,ta (3-4)

where s)(13) = Ci/AS(Tt) = [g(7:, \)]Y* and &, = C;I/A& is another stationary
process with E(|¢,,]*) = 1. Obviously, &y, and & share the same properties
but with a different scale parameter. Hence the resulting estimator based on
[r¢|* can be used to remove the effect of the slowly changing scale in r;. For
A = 2 we have so(13) = s(1;). Otherwise, s)(7;) and s(7;) have different scale
parameters. We see s)(7) can also be used as the scale function of the proposed
model, which can be estimated consistently from |r;|*. There are different further
transformations which can be used to estimate an equivalent scale function. The
power transformations (or equivalently the Box-Cox transformations with non-
negative power transformation parameter) are just the simplest examples. Please

refer to Eagleson and Miiller (1997) for more general description on this point.

It is clear that model (3.4) is an improved alternative of model (3.2) based
on the Box-Cox transformation. Model (3.3) and Model (3.4) together can be
proposed as the Box-Cox SemiGARCH model, providing a new semiparametric
methodology by introducing a power transformation parameter \ into the scale
function. Similar to the time-varying GARCH models, any kind of GARCH mod-
els can be selected as an extension in the parametric part of generalized Box-Cox
SemiGARCH class models. If A = 2 and the parametric part is a GARCH pro-
cess, it is the standard SemiGARCH model proposed by Feng (2004). The Semi-
APARCH model (Feng and Sun, 2013) is also another specification, applying the
absolute returns and APARCH model in the parametric part.



30 3. SemiGARCH models based on Box-Cox transformation

3.3 The semiparametric estimation procedure

The generalized Box-Cox SemiGARCH class models introduced in the last sec-
tion can be estimated using a semiparametric procedure. At first, s)(7;) can be
estimated by some nonparametric regression approach consistently without any
parametric assumptions on o; and ;. In the section, local polynomial regression
is applied. The slowly changing scale function can be estimated and removed un-
der very weak moment conditions F(£) < oo for any A > 0 based on suitable
power transformation of the data. A simple constrained local polynomial regres-
sion, which is approximately the same as the standard local polynomial regression,
is proposed to ensure that the resulting scale function is always positive. Then
the conditional variance can be analyzed further using the GARCH class models

based on the standardized returns.

3.3.1 Estimation of s(7;)

Let 0 = [€x4]* — 1 with E[¢;,] = 0. Model (3.4) can be expressed as

|7’t|/\ = g(1e, A) + 9(7, A) e (3.5)

which is a nonparametric regression with heteroskedastic time series errors and
g(1¢, A) is the trend function and the scale function at the same time. Let K (u) be
a kernel function and b > 0 be the bandwidth. A local linear estimator of g(7;, A)

at 0 < 7; <1 is obtained by minimizing

Q(\,b) :Z{’rt‘A_@O_Oél(Tt—T)}QK (Tt;T) : (3.6)

This results in §(7, A) = &o. The advantage of a local linear estimator is that
the bias of it is always of the order O(b?). This is in particular important for
application, because the forecasting of the trend is mainly carried out based on
the estimation at the right end point. A problem is that g(7, \) obtained above
is sometimes negative, in particular when the sample size is small and a small

bandwidth is used. To ensure the non-negativity, we propose to use the final
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estimator (7, A\) = |g(7, A)|, which is almost surely positive. The use of (7, \)
instead of (7, \) is reasonable. Firstly, it can be shown that [§(7;, A) —g(7:, A)]? <
[G(7¢, \) — g(7, A)]?. That is the performance of §(7:, \) is not worse than that of
g(m, \) following the MSE (mean squared error). Moreover, negative values of
g(1, A) are just a limited sample problem, because the probability that |§(7, A) —
g(1i, A)| > A for any A > 0 tends to zero in an exponential rate. This is shown in

the following lemma, where Assumptions Al to A4 are described in the appendix.

Lemma 3.1 Suppose that a bandwidth of the order b = n= with 0 < X\ < 1 is used
and G(1¢, \) is consistent, asymptotically normal with bias B[g(1, \)] = O(n™™)
and variance Var[(g(m, N))] = O(n™"), where n1,nm9 > 0. If the assumptions Al
to A4 hold, then we have

nP[g(1i, ) # g(1i, \)] = nP[g(1, \) < 0] = 0, as n — oo. (3.7)

The result of the lemma also holds if n is replaced by n* for any k > 1, e.g.
k = 2. Hence, when n and b are both large, then g(7;, A) < 0 will practically never
happen, if b is large enough. Also, there is no difference between the asymptotic
properties of g(7;, A) and §(7;, A). Note that r; are uncorrelated. The scale function
g(+) defined above has the same asymptotic properties as those for a nonparametric
regression estimator with independent errors and a non-constant scale function.
For more theoretical discussions on these topics, we refer the reader to Beran
et al. (2015), where the estimation of the scale function in a semiparametric
ACD model for daily average transaction duration is considered. The authors
also obtained detailed asymptotic results of the constrained local linear estimator
in that context. According to the similarity between the ACD and the GARCH
models, asymptotic results of §(7;, A\) can be derived based on their results by

replacing the average durations there with |r|*.

The key idea behind our proposal is that although §'/*(7;, \) is not a consis-
tent estimator of s)(7;), it can be directly used to remove the non-stationarity in

returns, because f At =Tt/ Y2 (7, \) is also an approximately stationary process.
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Comparing the general formula (3.5) with the special case with A = 2, we can
see that, instead of the estimation of the scale function s(7;) in ry, here the scale
function in the process r, is indeed directly estimated, where r; = sign(r;) |7 |2
with ro; = r;. As far as we know, there is still no study in the literature on the
estimation of the scale function in a SemiGARCH framework based on the pow-
er transformation |r;|*. The main purpose is to develop a consistent data-driven
estimator of the nonparametric scale function s,(7;). If higher robustness is of
interest, A < 1 can be used and the assumptions that F(£}) < oo together with
further regularity conditions is sufficient for developing a convergent bandwidth
selector. This is the same moment condition required for estimating the GARCH
parameters using conditional QMLE (quasi maximum likelihood estimation). In
this section, we will still consider the use of A < 2 and in Fig. 3.2, we can see

the selected A\ are obviously smaller than 1, which means the stricter robustness

requirement can be fulfilled.

Model (3.5) is an extension of Model (4) in Feng (2004), where only the special
case with A = 2 is considered. Asymptotic properties of §(7;, \) can hence be
proved analogously. The following summarizes and compares the asymptotic be-
havior of §,(7¢) and g(7, \), where MSE[$,(7), b] and MSE|[g(7, ), b] denote the
mean squared error of the two estimators obtained with the bandwidth b. Assume
now that E(£}) < oo, a consistent estimate of sy(7;) can be obtained as follows.

Note that &, ~ 0;1/ A¢, and that E(£2) = 1. This leads to a consistent estimate

of Cx
Lo /2
o= - &, (3.8)
L
and
o = (3.9)
The scale function is obtained as
sx(r) = & Palr, VI, (3.10)

through rescaling the sample variance of the standardized returns to be one. Note

that, so long as (7, A) is consistent, the effect of the error in it on ¢, is asymptot-
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ically negligible. Hence both of ¢, and é;l/ A are still \/n-consistent. It leads to the
conclusion that the MSE of §,(7;) in this way is approximately C;WAMSE[Q(TI‘/, A,
which is still of the order O(n~%/%), provided that §(7;, A) is obtained by a suitable
data-driven algorithm. However, $,(7;) is not an efficient estimate if A\ # 2 is
used, because the optimal bandwidth for estimating g(7;, \) is different to that
for estimating s, (7). Moreover, we see that to obtain a consistent nonparametric
estimate of s,(7;), the condition F(£}) < oo is also necessary. To avoid possible
confusion, we propose to estimate g(7;, A) for some chosen A and to calculate f At
at first. Then we can obtain ¢, and $,(7) following (3.8) through (3.10). Fi-
nally, we will calculate the standardized returns ét = r;/8\(1y) again, which are

approximately independent of the choice of A and will be used for further analysis.

Suppose that F(£}) < co and the Assumptions Al to A4 stated in the ap-
pendix hold. For any 0 < A < 2 and 0 < 7 < 1, both §,(r) and §(7, \) are
consistent estimators of s,(7;) and g(1;, A), respectively. Further, it also holds
that MSE[$,(7), b] ~ c;Q/AMSE[g(rt, A),b], and $\(7) and g(7%, A) have the same
asymptotically optimal bandwidth. The finding of particular interest is that $,(7;)
and ¢(7;, A) have the same asymptotically optimal bandwidth. Note that our aim
is to estimate s,(7;). However, it is straight-forward to select the bandwidth for
G(1i, A). The bandwidth is just what we need for an optimal estimate of s, (7).
So the problem is solved well. There is no need to develop a separate band-
width selection procedure for estimating s(7;). Asymptotic properties of g(-) can
be obtained following known results in nonparametric regression with dependent
errors (see e.g. Altman, 1990 and Hart, 1991). In the sequel, some necessary
results are summarized. For a kernel function K, define R(K) = [ K*(u)du and
[(K) = [w?K(u)du. Let Sgn = > i (k). where v (k) = cov (|6, &),
then the following holds. e

Theorem 3.1 Under the Assumptions Al through A5 stated in the appendiz, the
following holds,

Z) The bias Ofg(Th )\) is B[Q(Tta A)] = E[g(ﬂh A)]_g(,rt) )\) = %b2 [g(Tta A)]//I(K)—'—
o(b?).
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it) The variance of §(ti, \) is given by

Var(§(7, \)) = Kb +o (nlb) (3.11)

where V= Sieplg(m, NP R(K).

i11) If a bandwidth b = o(ba) is used, the bias is asymptotically negligible and
Viblg(ri, N) = 97, V)] = N(0,V), (3.12)
where V' is as defined in (3.11).

In Theorem 3.1, the asymptotic bias and variance of §(7;, A) are obviously similar
to those in nonparametric regression with some specific GARCH or ACD class
model, because of the similarity in calculating the sum of the autocovariance. The
result of Theorem 3.1 #ii) also indicates that g(7, \) is asymptotically unbiased

and asymptotically normal with a bandwidth of a smaller order than by.

Theorem 3.2 Suppose that Assumptions A1 to A4 hold, we have:
i) At any point 0 < 17, < 1, the local asymptotically optimal bandwidth, which
minimizes the dominating part of the MSE (mean squared error) of g(m,d), is

given by

) 1/5
R(K) ¢*(m,\) ) v (3.13)

ba(m) = (S'f'* T2(K) (lg(re NP2

1
ii) Let MISE=[{MSE[§(7, d)] }dr be the mean integrated squared error. Then
0
the (global) asymptotically optimal bandwidth minimizing the dominating part of
the MISE is given by

R(K) [g(rNdr \'"
b (Sﬁ'* <K>f{[g<m>m2dr) ' (3.14)

Results in Theorem 3.2 are closely related to those for a local linear estimator of
the mean function with heteroskedastic time series errors. Furthermore, note that
the result in the first part of Theorem 3.2 does not hold at a boundary point,

because the kernel constants in the asymptotic variance and asymptotic bias of
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g(1:, A) at the boundary change from point to point. But this does not affect the
asymptotic MISE so that the global bandwidth can be calculated over 7, € [0, 1].

3.3.2 Semiparametric estimation of a given model

The unknown parameters of chosen GARCH class models can be estimated from
ét by approximate (conditional) QMLE method proposed in the literature. A

suitable model can also be selected using e.g. the BIC.?

Denote the true unknown parameter vector of a chosen GARCH model by 6.
Let 6 be the estimate of 6, obtained from ét and 0 denotes the standard QMLE
obtained under the assumption that & is observable. It is well known that un-
der suitable regularity conditions 6 is \/n-consistent and asymptotically normal.
The additional variance caused by the errors in & is asymptotically negligible.
The O(b?) term in By is due to E[5x(7;) — sx(7:)] and the O[(nb)~!] term due to
Cov [£2,3,(7¢)]. If a bandwidth O(n~/2) < b < O(n~*) is used, By is asymptot-
ically negligible. Now 6 is also v/n consistent and asymptotically normal. If the
data-driven algorithm proposed in the next section is used, the bias term By will
be of the order O(n=%/°). We see that in the general SemiGARCH models /n-
consistent parametric estimation is no longer possible if the scale function changes
over time. In the special case, when 7; follows a stationary GARCH class model, a
bandwidth of the order O,(1) will be selected by the proposed the data-driven al-
gorithm in the next section. Now, the parametric estimation is still \/n-consistent
but is inefficient. This means that some efficiency will be lost if a generalized
semiparametric GARCH class model is fitted to some stationary GARCH class
process. In the next section, a simple stationary test is proposed based on the
selected bandwidth. If this test is significant, the proposed semiparametric model
will be used. Otherwise, stationary generalized GARCH class models should be
employed.

2In the chapter, for fitting GARCH models, the R packages fGarch and rugarch are applied

and the data-driven algorithm to be proposed in the next section is also carried out in R.
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3.3.3 The bandwidth estimation algorithm

Numerous criteria for selecting the bandwidth in nonparametric regression are
proposed. One bandwidth selection rule which works well in different contexts,
is the iterative plug-in (IPI) idea (Gasser et al., 1991). This approach will also
be used in the current section. Note that the estimation of g(7, A) is just the

estimation of the scale function in |r|*.

The IPI algorithm is developed based on the formula of the asymptotically op-
timal bandwidth for estimating g(7;, A), ba say, which can be obtained by adapting
those known results properly. In the sequel, this formula will be given without
proof. Under regularity assumptions, in particular the assumption that (k)
are absolutely summable, the asymptotically optimal bandwidth minimizing the

dominating part of the MISE is given by

(g BE) [l NPdr N
b= (S < 2(%) T{la(r, A)]"}zdf) ‘ (3.15)

To select b, Si¢x has to be estimated. And the IPTidea is successfully applied to
select bandwidth in different contexts (see e.g. Herrmann et al., 1992, Brockmann
et al., 1993, Beran and Feng, 2002, and Ghosh and Draghicescu, 2002). An IPI
bandwidth selector is calculated as Eq. (3.15). The IPI procedure is started with
an initial bandwidth by. In Gasser et al. (1991), Herrmann et al. (1992) and
Brockmann et al. (1993), the starting bandwidth by = n~' is used. Beran and
Feng (2002) proposed to use by = n~>/7 so that the starting bandwidth satisfies
bo — 0 and nby — oo. The bandwidth by = 0.5n"'/° is used by Feng (2004),
which is of the optimal order O(n~'/%). In this section, we proposed to select the
starting bandwidth from a set of given bandwidths using the CV (cross-validation,
Wahba and Wold, 1975) criterion, so that the algorithm is fully data-driven. It
is well known that the choice of the starting bandwidth only has a clear effect on

the required number of iterations but not on the finally selected bandwidth.

In an IPI algorithm, a bandwidth b, ; for estimating the second derivative
[g(7,\)]" is calculated from l;j_l using some inflation method. The choice of the

inflation method is very important because the rate of convergence of an IPI
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bandwidth selector depends on this choice. The original proposal of Gasser et al.
(1991), applied a multiplicative inflation method (MIM), where by ; = Aj_l - ne
with a = 1/10. Now, we have by ; = O(n~'/1%), once convergence is reached. This
ensures that the variance of b/b, has the fastest rate of convergence O(n~'/2) but
the bias of b is relatively large, where b denotes the finally selected bandwidth.
An exponential inflation method (EIM), by; = (I;j,l)a, was proposed by Beran
and Feng (2002). The authors proposed to use the optimal choice v = 5/7, which
minimizes the MSE of [[g(7, A)]”dr. Numerical experiments show that sometimes
the MIM method does not work well, because the inflation factor n'/1° depends
strongly on n, and the range of the sample size considered in the current context

is very large. The EIM method with o = 5/7 works well in different contexts and

will be used.

Ghosh and Draghicescu (2002) proposed to estimate some unknown functions
in bandwidth selection for quantile regression with time series errors directly from
the data. Following their idea, it is proposed to estimate the unknown quantity
Sj¢» non-parametrically by the sum of the sample autocovariance ¢ »(k) of the
residuals until some lag M, where M satisfies M — oo and M/n — 0. Biithlmann
(1996) proposed the optimal window selection of Bartlett window and C*-window
with IPI. Bartlett window is selected as the lag window and in the following
M = [3n'/5] = O(n'/®) will be used, where [-] denotes the integer part. Here, the
ccy is chosen as a constant 3 and the optimal c; selection is neglected. Under
this choice, the effect of the error in §|£|A on the finally selected bandwidth is
asymptotically negligible. Note that 4 x(k) tends to zero very fast. Hence, the
finally selected bandwidth will not be changed clearly, if a larger M, e.g. M =
[4n'/5], is used. Also, note that bandwidths b; obtained in several iterations at
the beginning are usually inconsistent. It is not good to use those bandwidths to
estimate Sy x. Following Herrmann et al. (1992), we select the bandwidth first by
ignoring the correlation and scale change. In this stage a simple difference-based

n

variance estimator g = ﬁ STE = [&-11)? will be used. The bandwidth
t=2
selected at the end of this stage will be used as a new starting point for selecting

the bandwidth under correlated errors with a smooth scale function. From now
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on 5" ¢ will be estimated and adapted in each iteration. The detailed bandwidth
selection algorithm is discussed with the selection of the power transformation

parameter in the next subsection.

3.3.4 The power transformation parameter estimation al-
gorithm

Let by denote the starting bandwidth, depending on an initial Ay value input. In

the application, the starting input values \g = 2,1,0.5 and 0.1 will be considered.

In the algorithm, A\g = 1 is applied and the results remain with the other initial A

values.

The proposed data-driven algorithm is as follows.

1. Obtain fi(7;) using an IPI algorithm and let 7} = |ry — fi(7)].

2. Select lA)o from by,; = covinfl/‘r’ with ¢p,; = 0.05,0.10,0.15, 0.20, 0.25 using the
CV criterion and the starting power transformation parameter input Ao = 1.

Then put j = 1.
3. Select a bandwidth by ignoring the correlation and scale change.
4. In the m-th iteration for m > 1:

4a) Let AX = 0.001 be the interval of A and A, = n - A\, where 5 < n <
1000.

4b) Determine the A = An, Where ), is the power parameter maximizing

the MLE or minimizing the JB statistic.

4c) Increase m by one and repeat 4b) until ;\m+1 ~ )\, and let A = \,,.

5. Let J; be the number of iterations in the last stage. In the j-th iteration
Wlthj > Jli

5a) Estimate §(7, A) with b; 1. Let & = 77 /3(e, A) and S = 37 Apepa (k).
|k|<M
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5b) Let [§(1, A)]” denote the estimate of [g(7;, A)]” obtained by using by ; =

5/7
b/

5¢) Improve b;_; by

1/5
e R(K) [ §*(r,Ndr Lo1/5
b] <S|§A]2(K) f{[ (7—, )]"}2d7'> ) (3'16)

5d) Increase j by one and repeatedly carry out 5b) and 5¢) until convergence

is reached or until a given maximal number of iterations has been done.

The finally selected power transformation parameter A and bandwidth by are
obtained in the last iteration of Step 4 and Step 5, respectively. In Step 1, the
scale change is also ignored to save computing time. The condition |b;—b;_1| < 1/n
is used as a convergence criterion of b since such a difference is negligible. The
bandwidth by used in Step 2 provides an object starting point of the algorithm.
The maximal number of iterations, which indeed does not play any role in a
common case, is 20 in Steps 1 and 3 and 30 in Step 5. The 5\, in Step 4, is a
stable global power transformation parameter of the Box-Cox transformation. It
means that now the scale function is estimated from the A\-th power of the absolute
returns instead of the squared returns. Note that both the estimated scale function
with the selected power transformation parameter A and the scale function applied
during the descaled process is g(7, A). Obviously, the convert parameter é;l/  in

Equation (3.9) can not be neglected.

3.3.5 A simple stationary test

The proposed semiparametric models should be used, only if the underlying pro-
cess is nonstationary in the mean and/or nonstationary in the variance. In the
sequel, a simple method is proposed to test whether the variance of the process is
constant. Similarly, a test of the stationarity in the mean can also be carried out,
if this is of interest.

|/\

Assume that the acf (autocorrelation function) of |&;|* is absolutely summable

for any 0 < A < 2. Our null-hypothesis (Hy) assumes that the process r; is
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stationary with constant standard deviation s(7) = so and finite fourth moments.
Let g(7;, A) be the estimator of g(7;, A) defined above with a bandwidth b such
that b — 0 and nb — oo as n — oo. Under Hj it is clear that g(7, A) is also a
constant go(\) = cysy. Under Hy and corresponding regularity assumptions, we

have
Vrbalg(m A) — go(N)] = N[0, RUE)WVep, (3.17)

where R(K) = [ K?(u)du is the kernel constant in the asymptotic variance of
g(1, ) and Vigp = S&ng()\), where Sﬁg\* is similar to Sjgx in Theorem 3.1 but

defined for the process &Y = r7/go(\). The overall variance go(\) can be es-

0
€l

estimated from £ = 7/go()\) following the idea in the last subsection. Let

SD, = [Viep R(K)/(nba)]"/? and Z, be the /2 upper quantile of the standard

timated by the sample variance of {7/}, go(A) say. The quantity S}, can be

normal distribution for given confidence level a. Then go(\) £ Z, /QS/[\)U provide
the approximate (1 — )% 100% confident bounds of go(\) under the stationary as-
sumption on {r; }. If more than ax100% of the estimates (7, A) are clearly outside
these confidence bounds, it indicates that {7/} is nonstationary in the variance
and a semiparametric model should be used. Otherwise, generalized parametric

GARCH models will be preferable.

3.4 Applications

Several major stock market indexes are selected to carry out the algorithm. In the
following empirical research, Standard & Poor’s 500 Index (S&P) and Deutscher
Aktienindex 30 (DAX) from January 1996 to December 2015 are employed as the
sample data to fit the general SemiGARCH models.

3.4.1 The estimation of A\

An IPI algorithm is carried out to calculate the Box-Cox power transformation
parameter A, calculated also as the power in the scale function of the general

SemiGARCH models. In the algorithm, we set different initial A inputs, which are
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2,1, 0.5 and 0.1, respectively. Due to the consideration of the absolute returns,
the initial A values are always positive. For the discussion on the negative and zero
values, please refer to Feng et al. (2017). In the A selection, we developed a six-step
IPI algorithm and it is obvious that most of the examples quickly reach the )\ after
the second IPI procedure, which is also discovered by Herrmann and Gasser (1994),
Beran and Feng (2002) and Feng (2013). To ensure the positivity of the input
series, the absolute centralized returns should be considered, then the Box-Cox
transformation can be carried out searching the A in the IPI process. According
to Lemma 2 in Feng (2013), we found also the A monotonically increasing or

decreasing in probability, depending on the starting input \.

IPI of DAX with JB IPI of S&P with JB
2.0 2.04
1.5+ 1.5+
<1.0- <1.0-
0.5+ ‘ 0.5+
0 2 4 6 0 2 4 6
Iteration Iteration
IPI of DAX with MLE IPI of S&P with MLE
2.0 2.04
1.5+ 1.5+
<1.0- <1.0-
0.5+ 0.5+
0 2 4 6 0 2 4 6
Iteration Iteration

Figure 3.1: The IPI process with JB and MLE

As shown in Fig. 3.1, the A values of both DAX and S&P with the JB as
well as the MLE methods tend to the A very fast, leading to coincide lines with

different outsets, while the \ seems to be independent with the initial A inputs.?

3The R packages tseries and MASS are used to select A with JB and MLE.
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Obviously, the A for both of the MLE and JB methods can be reached in a few
iteration procedures. There is no significant difference between the A and the
optimal A calculated until the second IPI procedure, e.g. the optimal X\ in the
second IPI procedure of S&P with JB (starting A = 0.1) is 0.3 and the obtained
X after all the iteration procedures is also 0.3. However, the result of A may also
reach the selected value in the first IPI step, e.g. for DAX with JB, when the
initial A = 1, the A\ values are always 0.335 in the IPI process. Further, we can
conclude, the convergence rate of the A tending to the fixed A depends on the initial
inputs. If the starting input A is far above or below the 5\, the convergence rate
is dramatically greater than that with a relatively close distance from \, bringing

to the power parameter decreases or increases quickly to the fixed A

In the MEM model, the conditional variance of the returns is always consid-
ered to follow a squared power transformation, most likely expanding the positive
skewness and affecting the least-square estimation quality. To overcome the draw-
back, a weaker moment power transformation of the absolute returns is considered.
Taylor (1986), Ding et al. (1993) and Granger and Ding (1995) considered the
absolute returns because the autocorrelation of the long-term dependent absolute
financial returns is the maximized, which is recognized as the Taylor effect. Fur-
ther, Ding and Granger (1996) also indicated that a fourth root transformation
is preferred to the absolute returns but for the exchange rate. Noguchi et al.
(2016) developed a quantile-matching technique to determine the power parame-
ter A by minimizing the distance between the lower and upper percentile from the
sample median with an extensive range of the quantiles and with their criteria, a
cube-root transformation seems to be optimal to model the absolute returns. In
the section, we developed optimal A\ searching methodologies by maximizing the
likelihood estimation and minimizing the JB statistic. Please note that, in order
to get rid of the possible influence of the time-varying trend, it is removed in a

standardized process before carrying out the A\ searching methodology.
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Figure 3.2: The A with JB and MLE

In Fig. 3.2, the power parameters appear a U-shape curve. The ) is definitely
where it minimizes the JB statistic or maximizes the MLE with a fixed bandwidth
b. The 95% confidence intervals of MLE can be calculated based on the x? distri-
bution, displayed as a vertical dashed line in the figure and the A values are around
one third, which are exactly 0.335, 0.300 and 0.321, 0.290 with JB and MLE of
DAX and S&P, respectively. Obviously, the differences of the A between the two
methods are tiny. However, the ) values selected by both iterative algorithms are
dramatically distinct from the ordinary ones, 1 (absolute returns) and 2 (squared
returns). The histograms of the transformed examples with selected A\ discussed

above are displayed in Fig. 3.3.

In financial markets, a precise scale function with smaller X is required to reveal
the trend of the returns with various extreme observations, while, the consideration
of smoothness of the scale function leads to the relatively larger A\ values. Further,

if smaller A is applied, the requirement of higher-order moments of the returns does
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not exist, leading to the scale function estimation under a possible weak moment
condition, such as the existence of variance. In addition, at the left boundary,
the JB value decreases at an extremely exponential speed, i.e. the JB statistic
values are significantly increased if the approaching-zero A values are considered.
Following the definition of the Box-Cox transformation, there is no doubt that
a logarithmic transform has to be considered if the A is tending to 0. In the
interesting case, the descaled series follows a logarithmic process and the model
is also additive rather than multiplicative, i.e. the additive error model is an
alternative, if a close zero A is detected. Further, if the robustness is considered,
the squared returns are still the optimal choice, although the normality statistics

and MLE are disappointing.
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Figure 3.3: The histogram of DAX and S&P with JB and MLE
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3.4.2 The selection of the parametric models

In the section, the power transformed absolute returns do not follow the squared
(A = 2) or the absolute (A = 1) patterns by manual, but rather that of the A-th

power, which is selected by means of the iterative \ selection algorithm.

(a) Closing price of the DAX Index from Jan 1996 to Dec 2015
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Figure 3.4: The smoothing results of DAX Index from Jan 1996 to Dec 2015



46 3. SemiGARCH models based on Box-Cox transformation

(a) Closing price of the S&P Index from Jan 1996 to Dec 2015
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Figure 3.5: The smoothing results of S&P Index from Jan 1996 to Dec 2015

The smoothing results are displayed in Fig. 3.4 and Fig. 3.5. The X\ values
selected by the both MLE and JB are similar, so for simplicity, the A via MLE is
used in the parametric models fitting. Also, the stationary test in the variance is

based on the A by means of MLE. The returns seem to be more stationary after
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removing the scale function, regarded as the long term component. In addition,
clear GARCH cluster effects can still be observed, because the short term compo-
nent displayed in a GARCH class process is barely affected by removing the long
term component. In other words, the financial returns can be divided into the
long and short components, which can be described by the scale function using

Box-Cox transformation and the descaled process using the GARCH class process.

The GARCH, APARCH, EGARCH and CGARCH models of order (1,1), (1,2),
(2,1) and (2,2) are chosen to analyze the conditional heteroskedasticity in the
stationary standardized returns. It is also discovered that there is no significance
with the mean function of the return series and it will not be considered in the
model fitting. The innovations in the models are assumed to follow a normal-
and t-distribution. In Table 3.1, the BIC of models with A = 5\, 1,2 are provided
and it is discovered that the EGARCH(2, 1) models with t-distribution are always

selected because of the minimum BIC values.
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Table 3.1: BIC of the parametric models with A = A, 1 and 2

A=A\ A=1 A=2
Index Model Order
Normal t Normal t Normal t
(1,1) 2.7472  2.7323  2.7483 2.7340 2.6981 2.6556
(1,2) 2.7489 2.7340 2.7501 2.7358 2.7032 2.6596
GARCH
(2,1) 2.7452  2.7291 2.7461 2.7308 2.6960 2.6525
(2,2) 2.7469  2.7308  2.7477 2.7324 2.6977 2.6542
(1,1) 27220 2.7091 2.7221 2.7098 2.6699 2.6362
(1,2) 2.7236  2.7107 2.7238 2.7114 2.6749 2.6396
APARCH
(2,1) 2.7229 2.7103 2.7231 2.7109 2.6703 2.6355
(2,2) 2.7246  2.7119 2.7248 2.7126 2.6720 2.6372
DAX
(1,1) 2.7214 2.7082 2.7210 2.7087 2.6767 2.6351
(1,2) 2.7229 2.7097 2.7225 2.7101 2.6803 2.6377
EGARCH
(2,1) 2.7158 2.6993 2.7152 2.6998 2.6674 2.6238
(2,2) 2.7168 2.7005 2.7162 2.7010 2.6686 2.6251
(1,1) 2.7500 2.7352 2.7507 2.7368 2.6772 2.6578
(1,2) 2.7516  2.7368 2.7523 2.7384 2.6778  2.6607
CGARCH
(2,1) 2.7480 2.7321 2.7486 2.7336 2.6736  2.6545
(2,2) 2.7497 2.7338 2.7502 2.7353 2.6753  2.6562
(1,1) 2.7243 2.6988 2.7310 2.7060 2.7002 2.6753
(1,2) 2.7259 2.7005 2.7326 2.7076 2.7018 2.6769
GARCH
(2,1) 2.7207 2.6956 2.7278 2.7030 2.6975 2.6726
(2,2) 2.7208 2.6971 2.7278 2.7044 2.6976 2.6740
(1,1) 2.6745 2.6590 2.6797 2.6651 2.6481 2.6339
(1,2) 2.6761 2.6606 2.6813 2.6667 2.6496  2.6355
APARCH
(2,1) 2.6769 2.6623 2.6824 2.6684 2.6510 2.6368
(2,2) 2.6738 2.6605 2.6796 2.6669 2.6488 2.6362
S&P
(1,1) 2.6725 2.6565 2.6776 2.6626 2.6472 2.6325
(1,2) 2.6740 2.6581 2.6791 2.6642 2.6487 2.6341
EGARCH
(2,1) 2.6651 2.6487 2.6708 2.6551 2.6404 2.6248
(2,2) 2.6662 2.6499 2.6720 2.6563 2.6416 2.6261
(1,1) 27275 2.7021 2.7341 2.7092 2.7032 2.6782
(1,2) 2.7292 2.7038 2.7358 2.7109 2.7049 2.6798
CGARCH
(2,1) 2.7237 2.6988 2.7308 2.7061 2.6997 2.6750
(2,2) 2.7238 2.7003 2.7308 2.7076  2.7004 2.6758
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From Table 3.2, the shape parameter, also known as the degree of freedom
of the innovation distribution in all cases are significantly greater than 8, which
means that the eighth moment of &; exists and little heavy tails of the distribution
of the innovations in the six research markets. Meanwhile, the degree of freedom
of S&P is obviously lower than that of DAX, which means that the possibility of
extreme returns in the US market is much higher than that in the German market.
For another, in EGARCH models, 7, indicates no longer the leverage effect but
the size effect of the past returns on volatility, which is typically a cluster effect.
Besides, the leverage effect is denoted as a;, being always negative to reveal the
aggravation of past negative returns. In the cases of S&P and DAX, it is discovered
that the leverage parameters are obviously determined by the negative sum of oy
and ap. It seems that the leverage effect in EGARCH models is weaker than that

if other parametric models are applied, such as APARCH models.

Table 3.2: Fitting results of the SemiEGARCH(2, 1)-t models with selected A

Data  Stat. w w Qaq Qa9 051 Y1 Y2 shape

coeff. 0.0378 -0.0083 -0.2189 0.0991  0.9454  -0.0865 0.2515 10.4867
DAX se. 0.0122 0.0033 0.0225  0.0233  0.0081 0.0338 0.0344 1.3717
t 3.1076  -2.5237 -9.7398  4.2581 116.3966 -2.5593 7.3100 = 7.6448

coeff. 0.0286 -0.0111 -0.2567 0.0858  0.9461 -0.1336 0.2591  9.6926
S&P  se.  0.0116 0.0034  0.0234 0.0243  0.0068 0.0346 0.0356 1.2381
t 2.4659 -3.3061 -10.9928 3.5363 139.9253 -3.8667 7.2810  7.8288

3.5 Final remarks

We put forward a wide class of SemiGARCH models with Box-Cox transforma-
tion. A data-driven algorithm is also carried out in the transformation parameter
selection, which is a great improvement in the scale function estimation of Semi-
GARCH models. The parameter A we applied in the scale function estimation

is obtained after several IPI procedures until it converges, also a supplement in
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displaying the behavior of the long-term component in SemiGARCH models. In
the parametric part, general GARCH models can be selected to describe the per-
formance of the returns after removing the long-run trend. GARCH class models
are discussed as the cluster models to show the short-run behaviors in some ma-
jor financial markets of the world. It is found, if more extreme values are in a
market, the transformation parameter A tends to be smaller, for example, the A
of both DAX and S&P are only about a quarter, indicating the stability in the
two stock markets. It is also proven from the distribution of innovations that the
innovation of DAX follows a ¢; ~ #(10.3433) distribution, exhibiting the existence

of the eighth moment and little heavy tails.

The framework of general SemiGARCH models is set up, however, some open
questions still have to be discussed further. e.g. the statistical properties of A
have not been fully explored yet. The optimal selection of the constant value at

the zero point of spectral density in the IPI procedures is also of great interest.



CHAPTER 4

Value at Risk and Expected
Shortfall under general

Semiparametric GARCH models!

Risk management has been emphasized by financial institutions and the Basel
Committee on Banking Supervision (BCBS). The core issue in risk management
is the measurement of the risks. Value at Risk (VaR) and Expected Shortfall (ES)
are the widely used tools in quantitative risk management. Due to the ineptitude
of VaR on tail risk performances, ES is recommended as the financial risk man-
agement metrics by BCBS. In this section, we generate general SemiGARCH class
models with a time-varying scale function. GARCH class models, based on the
conditional t-distribution, are parametric extensions. Besides, backtesting with
the semiparametric approach is also discussed. Following Basel III, the traffic
light tests are applied in the model validation. Finally, we propose the loss func-
tions with the views from regulators and firms, combing a power transformation
in the model selection and it is shown that semiparametric models are a necessary

option in practical financial risk management.

IChapter 4 is based on the working paper: Value at Risk and Expected Shortfall under General
Semiparametric GARCH models (Zhang, 2019b), CIE, 2019-06.
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4.1 Introduction

Value at risk is the most popular metrics for financial risk management since the
late 1980s. The BCBS first introduced VaR as the basic tool of risk measure and
capital requirement in the supervisory framework of the BCBS (1996). However,
VaR possesses some theoretical shortcomings. Artzner et al. (1999) pointed out
that VaR is not subadditive and it does not reveal the risk well if extreme loss
tail behaviors happen. He suggested considering the loss under the Expected
shortfall level, which is proved to be sub-additive but not elicitable. Due to a
more sensitive tail loss measure, the regulator recommended a risk metric shift
from a 10-day 99% VaR to 97.5% ES (BCBS, 2012) and the incoming modified

standard will be applied soon.

Backtesting is introduced as a method that applies historical data to predict
the (out-sample) losses from actual realized (in-sample) losses within a fixed time
interval, such as 250 days required by BCBS. Obviously, backtesting helps to
detect the relationship between the expected VaR/ES and estimated losses. The
VaR backtesting standards are explicit, such as the traffic light test (BCBS, 2012,
2016), the Kupiec’s POF (proportion of failures) test (Kupiec, 1995), the TUFF
test (Time until first failure, Kupiec, 1995), the Christoffersen test (1998), the
joint test of coverage and independence (Haas, 2001) and so on. Although ES is
about to be carried out in the very near future, the related backtesting rules are
yet not found by BCBS. Recently, Gneiting (2012) has argued that, due to the
elicitability, the direct backtesting method of ES can not be achieved. Meanwhile,
Christoffersen (2003) has pointed out that, due to the ES conditional elicitability,
it is feasible to evaluate the forecast and allow for tests, but not feasible for
direct comparison and ranking the performance of prediction methods. Acerbi
and Szekely (2014) suggested that the elicitability does not affect the risk model
backtesting but just its comparison, leading to a failure in the evaluation function
and a direct backtesting algorithm is also studied. McNeil et al. (2015) proposed
a one-sample t-test to do the ES backtesting, checking if the mean of the excess
loss is zero. Besides, Costanzino and Curran (2018) put forward a traffic light test

for ES, which is similar to that of VaR proposed by BCBS, introducing breach
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values to determine the colour zones by cumulative probabilities. On the other
hand, to evaluate the risk measure forecast, Lopez (1999), Sarma et al. (2003),
Angelidis and Degiannakis (2007) and Abad et al. (2015) discussed a two-stage
evaluation approach, i.e. first test the violations of the risk models and then rank
the models by the calculated statistics. In the rank process, we have introduced
some loss function, defined from the view of different agents, such as the regulator

and the firms.

In this chapter, we consider risk management in real markets with a semi-
parametric process. A time-varying scale function is introduced to decompose the
long term risk component. After descaled the long term component, we discuss
the VaR and ES with a stationary GARCH class process, which is defined as a
model free class by using any GARCH type model. Besides, in the parametric
process, we imply a power transformation of the returns, reducing the moment
requirement of the GARCH models. Further, a two-stage method is carried out in
the model evaluation, checking firstly the violations of the models by coverage and
independence tests and then ranking the risk models by different loss functions
with different power parameters. Following the requirements of Basel III, in this
chapter, the confidence level for VaR and ES are 99% and 97.5% respectively and
the forecast out-sample range is 250 days. Due to the robustness, the traffic light
tests for both VaR and ES are also posed and in the ES traffic light test, breach

values are applied as statistics to determine the zone’s colour.

The chapter is organized as follows. Section 4.2 proposes the model. The
statistical tests and loss function are the topics of Section 4.3. In Section 4.4,
we discuss empirical implications with the two-stage method. Finally, Section 4.5

concludes.

4.2 VaR and ES with semiparametric processes

VaR and ES can be calculated based on the marginal distribution and the condi-

tional distribution. In this section, we consider the VaR and ES in a semipara-



54 4. VaR and ES under general Semiparametric GARCH models

metric process, using a localized conditional distribution.

4.2.1 VaR and ES

VaR is the most important risk measurement tool based on the loss distribution
and it is widely used in the financial institutions. In Basel III, VaR is a standard
tool to measure the market risk. Generally, VaR is considered to be the maximum
expected loss of a portfolio over a given time interval with a certain confidence

level. For a given «, VaR,, is the up-a-quantile of the loss distribution,

VaR, =inf{lle R: P(L>1) <1-—a}, (4.1)

where o € (0, 1) is the given confidence level and L stands for the loss, defined
as the negative returns L; = —r;. From Eq. (4.1), VaR at the confidence level
« is given by the smallest number of [ to ensure that the probability of the loss
L exceeds [ is not greater than 1 — a. Eq. (4.1) is also the non-parametric
approach based on the marginal distribution and in this approach, no distribution
assumption is required. The value of VaR depends strongly on the distribution
and it is a constant for some marginal distribution, which does not depend on t.

Thus, the VaR is a quantile of the loss distribution function.

If the loss L follows a t-distribution #(v, i, 3?), suppose that (L — pu)/% is a

standard t-distribution with v degrees of freedom, VaR can be calculated as:

VaR, = p + ot (), (4.2)

where t,,(-) and ¢, (+) are the density function and the quantile function of standard
t-distribution, respectively. Please note that o is not the standard deviation in
the loss distribution, but that multiplicated by a constant related to the degree of
freedom. Besides the loss distribution, the choices of time horizon and confidence
level are also important for VaR calculation. The time horizon depends on the
liquidity of the portfolios and the frequency they are traded. Less liquid means

a longer time horizon and more liquid means a shorter horizon. Generally, VaR
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in a short time horizon is less than the VaR in a long time horizon, due to the

potential unexpected risk in the future.

Although VaR is a widely used risk management tool, it is also criticized by
different views, especially its non-subadditivity. Artzner et al. (1999) showed that
VaR is not a coherent risk measure due to the lack of sub-additivity and the poor
tail risk capture, causing the risk of the merged portfolios is less than the sum of
risk of individual portfolios. ES, on the other hand, is employed to overcome the
shortcomings and the risk measure is changed from the VaR currently in use to a

new metric, the so-called ES (BCBS, 2012).

For the loss L, the ES at the confidence level a € (0,1) can be defined as:

ES.(L) = E(L|L > VaR.(L))

_ ! /1 VaR,(L)dy, (4.3)

Cl-a

where VaR,(L) is the quantile function of the loss distribution. It is obviously
that the ES can be assumed to be the expected loss given that L exceeds VaR,(L).
Thus, the expected shortfall indicates not only the information about frequency

but also the size of large losses.

Similar to VaR, we consider the loss distribution for » > 2 and in this chapter
the t-distribution is standard, so the variance of the distribution ¥ is obviously 1.

Then, ES with a parametric process can be expressed as (McNeil et. al, 2015),

ES, =p+0ES,(L), (4.4)

B, (L) = S (@) v+ (6, 1(0)"

11—« v—1

(4.5)

Fig. 4.1 is the simulated example of VaR and ES with the t marginal loss
distribution at the 95% confidence level. In general, the area below x axis is
negative and indicates the profit whereas the above part is positive and indicates
the loss. Assume that the loss value at « level is [,, it is obviously to obtain

P(L >1,) =1— «, so the VaR value is [, and it indicates that the possibility of
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the maximum possible loss exceeding the [, during the considered period is not
greater than «. Besides, it is also found that ES is a VaR integration for level in
(1 —a, 1), which is reorganized as the conditional VaR (CVaR). It is obvious that,
under the same confidence level, ES is always higher than VaR, meaning that ES

a more sensitive metric than VaR in risk management.

Plot of 95%-VaR and ES with t-distribution

Quantile

T T T T T \
0.0 02 04 0.6 0.8 10

Probability

Figure 4.1: Plot of 95%-VaR and ES with ¢-distribution

4.2.2 The semiparametric models

To model the market risk with long and short risk decompositions, a semipara-
metric model with the time-varying scale should be considered. Let r;, t =1, ...,n,
denote the logarithmic returns from an asset. In the following we propose to an-
alyze r; using a general SemiMEM (semiparametric multiplicative error model)
defined by introducing a smooth scale function into the MEM proposed by Engle
(2002).

re = (1) Iuer, (4.6)
where s(7) > 0 is a time-varying smooth scale function, 7, = t/n is the rescaled

time, h; is the conditional variance of the re-scaled process & = r./s(1) = Ve

and g; ~ t(n) are standardized margins (zero mean and unit variance) i.i.d. ran-
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dom variables. Generally, there is a nonparametric drift function in the returns
series, however, it is not discussed in the section for simplicity, because the mean
function varies around zero and it does not affect the following model estimation

and the risk measures calculation.

The stationary process & can be analyzed using any suitable GARCH-type
model. The parametric model has no affection to the trend estimation, so the
semiparametric model is indeed a parametric-free model. In this section, we will
consider modeling o; by the parametric approaches, such as the GARCH, the
APARCH and the EGARCH models.

Besides, we consider the estimation of the time-varying scale change based
on the power transformation 7 for A € [0,1] here. Then, the power transform

SemiGARCH models are expressed as

sgn(re) - [re| = sx(m)ren, (4.7)

where sgn(r;) is the sign of the returns, s)(7;) is the power transformed scale
function and 7 ) is stationary with £ (rg\ y) = 1. Obviously, the stationary process
rix is the product of the returns and a power transformed constant as r,, =
Cy Y o However, the original scale function can not be directly estimated and an
equivalent scale function has to be applied in the trend estimation. The equivalent

scale function §(7;) reads as
5(m) = sa(n) = O s(m), (4.8)

The value of C)) is determined by A and the marginal distribution of r;. Because
E(r;) = 1, we know that for the original series without transformation, C} = 1,
meaning that the first order m(-) is always the scale function of the commonly
proposed estimator based on r;. Considering the A\p-th moments of the process and
Ao € (0, 1], suppose that E(r7°) = 1 and E(£°) = 1, we can conclude that my,(7;)
is the scale function of rt’\o, indicating that for the power transformed series, the
constant C, = 1. If the power A = 0, the SemiGARCH model is transformed to

an additive model with a logarithmic form. The details on the power transform,
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please refer to Zhang (2019a).

We apply the local linear method to estimate the scale function estimator

$x(1) = |Sx(1e)]. Sx(1¢) = a@p(x) is a local linear estimate obtained by minimizing

Qag,ar) = > {7 —ao(r) —ar(r)(m — 1)} K (” - T) : (4.9)

where K is a symmetric kernel function. Feng (2019) propose a kernel regression
method to prediction the risk measure. Besides, the simulation methods (Acerbi

and Szekely, 2014) can also be considered here.

The semiparametric models can be also applied to the risk measurement of VaR
and ES. A descaled process should be considered first by removing the estimated
trend in the in-sample data. The out-sample conditional variances are calculated
through the fitted unit GARCH models based on the in-sample descaled returns
data. Suppose that the loss follows a t-distribution, for £ = 1,..., K, VaR and

ES in a semiparametric process of the out-sample data should be considered as

VaRSH = p(rign) + o(mig)hy 3t (@) (4.10)
and
ESE = w(riix) + 0 (7 b L ESa (L), (4.11)

where () is the local mean, o(-) is the local variance and ES, (L) is the quantile
n (4.5). Obviously, the quantiles are depending on the innovations distribution.
The local variance o(+) is almost the same for ¢ within a small period and is deter-
mined by observations within a time period around the observation point, which
changes slowly over time and stands for middle term effect. In the out-sample
risk prediction, we treat the local variance as a constant and it is approximately
defined by the last local variance in in-sample series at t = ¢y as o(-) = o(7,).
The conditional standard deviation in the out-sample should be hiﬁ,, estimated

by unit GARCH models with descaled returns of the in-sample. For simplicity,

the time-varying local drift function can also be treated as zero.
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4.3 The Backtesting of VaR and ES

Backtesting is a necessary model validation method to check the model perfor-
mance on the risk prediction with historical data. The model is accepted only if it
can satisfy some statistical tests and predict robustly. In this section, a two-stage
(Sarma et al., 2003) evaluation procedure is carried out. In the first stage, some
tests, such as coverage test (Kupiec’s POF test, Kupiec, 1995), independence test
(Christoffersen, 1998), joint test (mixed Kupiec test, Haas, 2001) and traffic light
test (BCBS, 2006, 2012, 2016) are put forward to test the statistical accuracy.
Next, for the selected surviving models in the second, we rank their performance
with the loss function (Lopez, 1998, Sarma et al., 2003, Caporin, 2008, Abad et
al., 2015), such as the regulator loss function (RLF) and the firm loss function
(FLF), respectively.

4.3.1 The backtesting of VAR

Different methodologies can be applied in the backtesting of VaR, such coverage
tests, distribution tests and independence tests. In this section, we discuss the
coverage test (the Kupiec’'s POF test), the independence test (Christoffersen’s
independence test) and a joint test, considering the coverage and independence

together.

4.3.1.1 The Kupiec’s POF test

The Kupiec POF (POF) test is based on the failure rate provided by Kupiec
(1995). The aim of this test is to test the frequency of VaR exceeding over a given
time interval. The null hypothesis of the POF test is

T T
Hozp:E; lep#g, (4.12)
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where x is the number of violation. The log-likelihood statistic LRy is in the

form as

LRpor = —21n { (1(1__%53;:;;1} . (4.13)

Under the null hypothesis, LRpor asymptotically follows y2-distribution as LRpop ~
x*(1). However, there are two drawbacks to the POF test. As mentioned by Ku-
piec (1995), the test is not robust with relatively short out-sample interval, such
as 250 days required by BCBS. For another, the test only considers the failure

rate but neglects the time between failures.

4.3.1.2 The independence test

Christoffersen’s independence test (Ind) (1998), which is the first test for inde-
pendence of violations, is a likelihood ratio test that looks for aberrant frequent
consecutive violations, i.e. this test examines if the probability of violations of the
risk measures depends on the previous observation. He estimates the one-step-

ahead transition probabilities Pr(l;1|l;) with a first-order Markov process,

oo 7o1

Hl = y (414)

T0 711

where 7;; = Pr(li41|I¢). Let ny;; is the number of the observations with value i

followed by j, then Matrix (4.14) can be estimated as

100 no1

ﬁl _ noo+no1  Moo+no1 ) (415)

n10 ni1
noo+no1  moo+no1

The null hypothesis of the independence test is
Hy:my=m; Hy:my#m, (4.16)

and the test statistic for independence of violations is defined as

(1 _ ,ﬂ—)noo-i-nlo (ﬂ—)noﬁ-ml

LRp,g=—21
Ind n (1 _ 7_[_0)”0071_6101(1 o ﬂl)nloﬂ?ll

~ x2(1). (4.17)
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4.3.1.3 The joint test

The joint test (Mixed Kupiec test, Mix, Haas, 2001) combines the Kupiec’s POF
test and the Christoffersen’s independence test, examining the coverage and inde-
pendence together. As pointed out by Christoffersen (1998), if the first observation
is conditioned on in the independence test, i.e. ignore the first observation, the
statistics of the joint tests are exactly equal to the sum of those of the coverage
test and the independence test. If the first observation is considered, then the

approximate sign should be used.

LRMW = LRPOF + LRInd ~ X2(2> (418)

4.3.2 The backtesting of ES

The ES backtesting is now of great interest. Gneiting (2012) discussed that the ES
is not available for backtesting due to the elicitability problem, which is proved not
affected indeed. McNeil et al. (2015), Acerbi and Szekely (2014) and Costanzino
and Curran (2018) provided different ES backtesting methods. In this section, the

violation-based test and the traffic light test are mainly discussed.

4.3.2.1 The violation-based test

In McNeil et al. (2015), an indirect ES backtesting method is contributed with
the consideration of the VaR violations. They consider ES can be expressed as

the sum of VaR and an excess loss process as
ES, =VaR,+ (ES, —VaR,), (4.19)

where S, —VaR, is the excess loss. So, the ES backtesting can be separated into
two individual components backtesting, one for the VaR component, the other for
the excess loss component. The VaR backtesting methods discussed above are

still feasible to the backtesting of the VaR component in Eq. (4.19). The null
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hypothesis is that the excess loss, when VaR is violated, is i.i.d. and has an
expectation zero, while, the excess loss has a mean greater than zero, leading
to an underestimation of the conditional shortfall, as an alternative hypothesis.

Please note that the test applied here is a one-sided t-test.

Suppose that the VaR component has passed the backtesting, the excess loss
component can be tested by

L, — ES!
Kt = (tE’T) I{Lt>V(le}' (420)

For simplicity, we ignore the expectation of the loss. Obviously, if there is no

exceed VaR violation, the violation residual is definitely zero.

4.3.2.2 The traffic light test

In Basel III, the VaR backtesting must be based on a VaR measure calibrated at a
99th percentile confidence level and a prediction interval based on a sample of 250
observations. The BCBS provided a methodology for backtesting proprietary VaR
measures and in this methodology, based on the number of violations in the out-
sample data, VaR is categorized as one of three colored zones: green, amber and
red. For all sample sizes, the amber zone lower boundary is from the cumulative
probability equals or exceeds 95% and the red zone starts at the point where the
cumulative probability equals or exceeds 99.99%. Following the instructions, the
boundaries of the backtesting zone at 99% and 97.5% confidence levels are as

follow.

If a model validation falls into the green zone, there is little worried about
the concerned model’s accuracy in this range. From Table 4.1, we see that in the
amber zone, the models produce more exceptions, indicating that there is a higher
probability for inaccurate models than for accurate models. Obviously, the model

inaccurate grows by the increasing of the exception number.

Although the VaR traffic light coverage test is clearly illustrated by BCBS, a
similar ES test is not yet discussed. Costanzino and Curran (2018) proposed an

ES traffic light backtesting approach, which is analogous to the VaR traffic light
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Table 4.1: Traffic light backtesting boundaries at 99% and 97.5% confidence levels

No. of violations

Zone Cumulative prob.
99% 97.50%
Green |0, 4] [0, 10] < 95%
Amber 5, 9] [11, 16] < 99.99%
Red 10 or more 16 or more > 99.99%

backtesting approach proposed by BCBS, however, the probability information on

the random loss cumulative distribution cannot be neglected.

The ES traffic light test introduces a new breach indicator, calculating the
severity of the breach when the losses go beyond the related VaR confidence level.
Different from the discrete exception numbers in the VaR traffic light test, the

breach value in the ES traffic light backtesting is continuous.

Following the ES definition in Eq. (4.3), the ES generalized breach indicator

wp for a € (0,1) is defined as

7 1 1
Wi (@) = 7= | Twovarndp
«

_ (1 11— Fy(L)

L >vaR(a
- ){Lz>v Ri(e)}

= 60(a) - wi(a), (4.21)

where Fp(L;) is the cumulative distribution of the random loss L and wg)(a) is

the breach indicator of VaR defined as

w\(/i) (Oé) = H{Li >VaR;(a)}

1, ifL; > VaR;(«),
_ (4.22)
O, lfLZ < VCLRZ(CY>
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Compare the VaR and ES breach indicators, we can find that the ES breach
indicator wg) (o) is indeed the VaR breach indicator w% r(@) multiplicated by an
extra factor §)(a) and the factor is not continuous, leading to the ES breach
value is discrete. From the formula, if the loss L tends to VaR, leading to the
cumulative distribution tends to a, then 6®(a) — 1. So, wg)(a) is close to zero.
On the other hand, if L — +oo, the cumulative distribution Fp(L;) = 1 and
§@(a) = 0, so that the ES breach indicator wg)(a) = 1. Here, we understand that
if no VaR violation happens, the ES breach indicator is of course zero, while, if
the violation is extremely large, the ES breach indicator will reach its maximum
value 1. However, for the VaR breach indicator, no matter how large the violation

is, the breach value is always 1, meaning that VaR is not as good as ES to reveal

the extreme performance in the tail.

Then, the total ES breaches values for NV transaction days is expressed as

N 1
1
wi(a) = E / L1, >var:(p)ydp

N
1— Fr(L;
=) (1 - #) Lir>vari(a)y

11—«

—~ i §D(a) - wi(a). (4.23)

The boundary of ES traffic light test is fixed as

sup {P(wh (a) < z) < ¢}. (4.24)
xeR(T
If ¢ < 0.95, then z is the minimum green zone upper limit of the ES traffic light
test. Similarly, the boundaries for the amber and red zone is taken into account

with 0.95 < ¢ < 0.9999 and ¢ > 0.9999, respectively.

The table below (Costanzino and Curran, 2018) is the ES traffic light test zone
boundaries with a = 2.5% and N = 250. It is showed in the table that the breach
values of the 97.5% ES traffic light test seem to be more sensitive than those of
VaR under the same confidence level, which are quite close to the VaR boundaries

with @ = 1%. It means that, in practice, the application of ES traffic light test
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may be a strict and robust backtesting method than the others.

Table 4.2: The ES traffic light test boundaries under 97.5% confidence level

Zone  Breach value Cumulative prob.

0 0.18%
1.3929 10%
2.1131 25%
Green 3.0276 50%
4.052 75%
5.0622 90%
5.7049 95%
6.9844 99%
Amber 8.5285 99.90%
9.8833 99.99%
Red  9.8833 more > 99.99%

4.4 The loss function

In the first stage backtesting, only the structure of the violation is detected, ig-
noring the amount of each exceedance. So, in the second stage, we are going to
apply the loss function to analyze and rank the accurate of the risk prediction with
different models and describe how well the models reveal the market risk by some
numerical scores. In literature, two categories of the loss function are discussed,
the RLF and the FLF. Lopez (1999) first proposed a general form loss function
and in his RLF function, the loss, exceeding the VaR estimation, contributes to
a more aggressive penalization. However, the difference between the loss and the
estimated VaR is normally not so dramatic and it seems to exist an extreme mag-
nitude gap (the constant one and the square of the difference as mentioned above).

Then, the value one will be the dominant part in the RLF, meaning that it may
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overstate some loss by minor exceedance. Sarma et al. (2003) defined a similar
RLF with no constant factor left and the Sarma’s RLF considers the exceedance
contribution based on its real magnitude. Further, an FLF is also discussed in
their paper and it is found that the FLF is exactly the same as the RLF when
the loss exceeds the estimated risk measure, however, the opportunity cost of the
reserved capital should be included, if no violation happens. Obviously, the cost
here is the interest of the reserved capital held by the firms. Further, Feng (2019)
proposed an FLF, considering the scenario that the minor violation happens. If
the positive loss is no larger than the estimated risk measure, it should not be
treated as the reserved capital. In this chapter, the RLF (Lossl) and FLF (Loss2)
by Sarma et al. and the FLF (Loss3) by Feng et al. are applied in the empirical
analysis. The loss functions for VaR and ES share the same formula but just the
different risk measures. Let VaR be an example and the loss L; = —ry, then the
Lossl RLF is as

(Li—VaR,)?  if L; > VaR,,
Lossl = (4.25)

0, if Lt S VCLRt.

The Loss 2 FLF reads as

(Lt — VaRt)Q, if Lt > VaRt,
Loss2 = (4.26)

B(V@Rt — Lt), if Lt S VGRt,

where [ is the daily interest rate.

Finally, the Loss3 FLF is as below

(

(Lt - VCLRt)27 if Lt > VCLRt,

Loss3 =< B(VaR, — L), if0<L,<VaR,, (4.27)

| BV ak, if L, <0.

Actually, the loss function represents the different view of market agents to

backtesting. The regulator is willing to see the firms’ capital for the trading book-
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ing is linked to some risk measure, which is managed to be estimated, satisfying
the regulatory requirements. For firms, the goal is to estimate and control the risk
measures at a possible low level under the conditions that the backtesting results
can be accepted by the regulator. Further, both sides are not concerned about
the prediction accuracy, however, for the purpose of internal risk management, it
would be an advantage for firms in seeking model improvement. The distinct views
bring the different loss function criterion. The RLF, standing for the regulatory,
always leads to an overestimated risk measure, making sure that the market risk is
under control. While, for the firms, an underestimate-trend FLF is preferred, so as
to avoid unnecessary large risk reserve capital and its opportunity cost. Therefore,
to meet the requirements of both agents, the risk models selected should generally
possess suitable exceedance number in backtesting, e.g. around the boundaries

between the green and the amber zones.

4.5 The empirical study

In this section, some practical examples are discussed with the provided algorithm.
We apply the DAX 30 index (DAX), the FTSE 100 index (FTSE), the Euro
STOXX 50 index (EST), the Russell 2000 index (RUT), the S&P BSE SENSEX
index (BSN) and the Brent Crude Oil Futures (BRO). The BSN is collected,
ranging from July 1997 to September 2018 and the rest are from January 1988 to
September 2018. For the models, we check the parametric (CS-), semiparametric
with different selected power transformation parameters (LL1-, LL2- and LL3-)
and log-transformed (LC-) models with the specific stationary process, such as

GARCH (-OG), APARCH (-AP) and EGARCH (-EG).

In Table 4.3, the VaR backtesting results are listed. All the parametric models
can pass the unconditional coverage test and the mixed test smoothly (p-value
greater than 5%), however, for some semiparametric models, the p-values of the
coverage and mixed are relatively lower, even some of the model cannot pass
the tests, such as the LCAP and LCEG for FTSE, which the p-values are only
1.87%, far below the required 5%. If the models are able to pass the test, the
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semiparametric models seem to perform better than the parametric models in
the second stage of the backtesting. Obviously, for all the selected cases and
the models (in bold in both tables below), displaying the smallest loss function
values, are semiparametric models. Besides, we have to still pay attention to the
peaks over threshold (POT, also applied by Peitz, 2015), showed in the figures for
each example. Generally, the statistical test required a large sample size, in the
backtesting however we do a backtesting based on only 250 days, which seems to
be insufficient to support the statistical robustness. In this case, the test results
by the BCBS traffic light test should be considered in advantage. If a model is
capable to pass the backtesting, it should satisfy that the POT values are in the
green zone of the traffic light test and all the statistical tests should be passed.

In the results table, we can understand that if a model can pass the traffic light
test, then it passes also the statistical tests, but not vice versa. Further, from the
view of different agents, the parametric models should be a regulator-prefer type.
With parametric models, the estimated risk tends to be overestimated, leading
to the minor POT value but the relatively larger loss function. The regulator
is willing to accept the parametric models as the tools, however negative to the
firms. In our study, the semiparametric models seem to be a trade-off result and
satisfy the interest of both sides. For the regulator, the semiparametric models are
able to pass all the related tests, meet the regulatory requirements and supervise
the market risk, meanwhile, the estimated risk measures are not too large to
be accepted by firms, so as to avoid the unnecessary cost of the risk capital.
Specifically, firms are the modeler but regulators are the supervisor, meaning that

the semiparametric models are sure to be practical and benefit of the firms.



4.5 The empirical study

69

Table 4.3: Coverage, independence tests and loss function values of 99% VaR

Model p-POF  P-mix VPOT  Lossl Loss2 Loss3 A
OG 0.2806 0.5564 1 0.0046  5.5739 4.8148 -

CS AP 0.2806 0.5564 1 0.0114  5.8350 5.0760 -
EG 0.2806 0.5564 1 0.0760  5.8293 5.0703 -

OG 0.7530 0.9364 2 0.0198 - - 0.79
LL1 AP 0.7466 0.9453 1 0.0417 - - 0.56
EG 0.7466 0.9453 1 0.0927 - - 0.47
DAX OG 0.7530 0.9175 3 - 5.2686 - 0.05
LL2 AP 0.7466 0.9339 2 - 5.3671 - 0.05
EG 0.7466 0.9339 2 - 5.3952 - 0.05

OG 0.7530 0.9175 3 - - 4.5096  0.05
LL3 AP 0.7466 0.9339 2 - - 4.6081  0.05
EG 0.7466 0.9339 2 - - 4.6362  0.05

OG 0.7530 0.9175 0.0824  5.2005  4.4415 0.00

LC AP 0.3767 0.6443 4 0.1067  5.2698 4.5108  0.00
EG 0.7530 0.9175 3 0.1438  5.2821 4.5231  0.00

OG 0.7530 0.9175 3 0.6102  5.0837 4.4607 -

CS AP 0.7530 0.9175 3 0.1703  4.7139 4.0909 -
EG 0.3767 0.6338 4 0.3004  4.7196 4.0966 -

OG 0.3767 0.6338 4 0.7508 - - 0.06
LL1 AP 0.1597 0.3359 5 0.3152 - - 0.06
EG 0.0583 0.1437 6 0.4299 - - 0.06
FTSE OG 0.3767 0.6338 4 - 4.9806 - 0.06
LL2 AP 0.1597 0.3359 5 - 4.5705 - 0.05
EG 0.0583 0.1437 6 - 4.5952 - 0.06

OG 0.3767 0.6338 4 - - 4.3577  0.06
LL3 AP 0.1597 0.3359 5 - - 3.9475 0.05
EG 0.0583 0.1437 6 - - 3.9723  0.06

OG 0.0583 0.1437 6 1.0184  5.0075 4.3845  0.00

LC AP 0.0187 0.0513 7 0.6090  4.5731 3.9501  0.00
EG 0.0187 0.0513 7 0.7397  4.6137 3.9907  0.00
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Table 4.3 to be continued

Model p-POF  P-mix VPOT  Lossl Loss2 Loss3 A
OG 0.7466 0.9339 2 0.0837  5.0064  4.3405 -

CS AP 0.2806 0.5564 1 0.0071  5.1902 4.5243 -
EG 0.2806 0.5564 1 0.0037  5.1059 4.4399 -

OG 0.7466 0.9339 2 0.0668 - - 1.00
LL1 AP 0.2806 0.5564 1 0.0045 - - 1.00
EG 0.2806 0.5564 1 0.0013 - - 1.00
EST OG 0.7466 0.9339 2 - 4.9336 - 0.93
LL2 AP 0.2806 0.5564 1 - 5.0205 - 0.93
EG 0.2806 0.5564 1 - 4.9796 - 0.93

OG 0.7466 0.9339 2 - - 4.2677  0.93
LL3 AP 0.2806 0.5564 1 - - 4.3545  0.93
EG 0.2806 0.5564 1 - - 4.3136  0.93

OG 0.7466 0.9339 2 0.1105  4.8997  4.2337 0.00

LC AP 0.2806 0.5564 1 0.0337  4.9679 4.3020  0.00
EG 0.2806 0.5564 1 0.0220  4.9288 4.2629  0.00

OG 0.3767 0.0868 4 2.0614  7.3645 6.5774 -

CS AP 0.3767 0.0868 4 1.5761  6.7511 5.9640 -
EG 0.3767 0.0868 4 1.7798  6.9343 6.1472 -

OG 0.1597 0.0477 4 1.6865 - - 0.18
LL1 AP 0.1597 0.0477 4 1.2207 - - 0.21
EG 0.1597 0.0769 5 1.2819 - - 0.24
RUT OG 0.1597 0.0477 4 - 7.0337 - 0.21
LL2 AP 0.1597 0.0477 4 - 6.3817 - 0.25
EG 0.1597 0.0769 5 - 6.4244 - 0.25

OG 0.1597 0.0477 - - 6.2466  0.21
LL3 AP 0.1597 0.0477 4 - - 5.5946  0.25
EG 0.1597 0.0769 5 - - 5.6374  0.25

OG 0.3767 0.0868 4 1.5856  7.0082 6.2211  0.00

LC AP 0.3767 0.0868 4 1.1205  6.3620  5.5749 0.00
EG 0.3767 0.0868 4 1.1871  6.4060 5.6189  0.00
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Table 4.3 to be continued

Model p-POF  P-mix VPOT  Lossl Loss2 Loss3 A
OG 0.2806 0.5564 1 0.4544  5.3788 4.7029 -

CS AP 0.2806 0.5564 1 0.4899  5.5983 4.9225 -
EG 0.2806 0.5564 1 0.6632  5.6264  4.9505 -

OG 0.7466 0.9339 2 0.9348 - - 0.05
LL1 AP 0.7466 0.9339 2 1.1237 - - 0.05
EG 0.7466 0.9339 2 1.0621 - - 0.05
BSN OG 0.7466 0.9339 2 - 5.1356 - 0.25
LL2 AP 0.7466 0.9339 2 - 5.2781 - 0.85
EG 0.7466 0.9339 2 - 5.2755 - 0.85

OG 0.7466 0.9339 2 - - 4.4597 0.25
LL3 AP 0.7466 0.9339 2 - - 4.6023  0.85
EG 0.7466 0.9339 2 - - 4.5997  0.85

OG 0.7466 0.9339 1.3396  5.1648 4.4890  0.00

LC AP 0.3767 0.6338 1.7979  5.3967 4.7209  0.00
EG 0.3767 0.6338 4 1.6566  5.2584 4.5826  0.00

OG 0.2806 0.5564 1 8.8457 19.1354  17.5963 -

CS AP 0.2806 0.5564 1 8.1441 18.3043 16.7651 -
EG 0.2806 0.5564 1 8.0478  18.2725 16.7333 -

OG 0.2806 0.5564 1 6.3465 - - 0.10

LL1 AP 0.2806 0.5564 1 6.3642 - - 0.10
EG 0.2806 0.5564 1 6.5822 - - 0.10

2 .5564 1 - 17.9651 - :

BRO OG 0.2806 0.556 7.965 0.09
LL2 AP 0.2806 0.5564 1 - 17.5176 - 0.07
EG 0.2806 0.5564 1 - 17.5155 - 0.07

OG 0.2806 0.5564 1 - - 16.4259  0.09
LL3 AP 0.2806 0.5564 1 - - 15.9785  0.07
EG 0.2806 0.5564 1 - - 15.9764 0.07

OG 0.7466 0.9339 2 10.3922  20.1867 18.6476  0.00

LC AP 0.7466 0.9339 2 9.7506  19.4522 17.9131 0.00
EG 0.7466 0.9339 2 9.4725 19.2278 17.6887 0.00
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The results of the ES backtesting tests are found in Table 4.4. For ES, not only
the 97.5% ES backtesting is required, but also the VaR backtesting at the same
significant level. Similarly, the unconditional coverage test, the mixed test, the
excess loss t test are carried out. In most cases, the parametric model performance
still satisfies the regulator. The relatively higher risk measure estimation brings
stricter risk control in the market. However, please note that in the examples of
EST, RUT and BRO, the POT of VaR (VPOT) and the POT of ES (EPOT)
increase dramatically, therefore leading to some test failures, such as the CSEG of
RUT. From the table, it is also indicated that the beach value increases following
by the increase of the VPOT and the VaR traffic light test at 97.5% level seems
to be too relax to guarantee the model staying in the green zone. In the VaR
97.5% traffic light test the green zone range is [0, 10], however, if the VPOT value
is around 10, the model is still simply able to pass the ES traffic light test, which
indeed requires a reduce of the VaR backtesting green zone at this level, such as
the cases of LCEG of BRO with VPOT value 10 and breach value 4.0003 and
LL10G of DAX with also VPOT 10 and breach value only 3.9375.

Finally, the power transformation and the semiparametric models are also nec-
essary to estimate the risk measure and rank the loss function. It is found that the
minimum loss function value always happens when the power parameter A € [0, 1),
e.g. 4.4963 with LCOG of BSN, 15.5369 with LL3EG of BRO (A = 0.07), etc.,
which suggesting a consideration on the model class selection with multiplicative
models or additive models. Further, it is interesting, the minimum loss values
are all obtained with semiparametric models and the loss function values of the
semiparametric models seem to be smaller than that of parametric models in most
cases. In the study, we have examined the risk measures prediction and backtest-
ing with the parametric models and the semiparametric models. Some positive
cases are found and prove that the semiparametric models are able to character-
ize the market risk and provide the necessary regulatory information to both the
regulators and firms. It is concluded that the semiparametric models are defi-
nitely well-performed risk management tools and treated as a supplement of the

parametric models.
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Table 4.4: Coverage, independence tests, breach and loss function values of 97.5% ES

Model p-POF P-mix VPOT EPOT Breach t-test Lossl Loss2 Loss3 A

OG 0.2904 0.3155 9 1 3.1225 0.9994 0.0000 5.7104 4.9514 -

CS AP 0.6068 0.8072 5 1 2.0462 0.9677 0.0054 5.9663 5.2073 -

EG 0.7577 0.8019 7 1 21775 0.9607 0.0606 5.9519 5.1928 -
OG 0.1584 0.0094 10 1 3.9375 0.9986 0.0053 - - 0.93
LL1 AP 0.2904 0.4535 8 1 3.1786 0.9668 0.0301 - - 0.56
EG 0.2904 0.0137 9 1 3.3195 0.9653 0.0760 - - 0.47
DAX OG 0.1584 0.0094 10 3 4.6304 0.9920 - 5.3691 - 0.05
LL2 AP 0.2904 0.0137 9 1 3.5898 0.9694 - 5.4787 - 0.05
EG 0.2904 0.0137 9 1 3.7232 0.9422 - 5.5059 - 0.05
OG 0.1584 0.0094 10 3 4.6304 0.9920 - - 4.6101 0.05
LL3 AP 0.2904 0.0137 9 1 3.5898 0.9694 - - 4.7196 0.05
EG 0.2904 0.0137 9 1 3.7232 09422 - - 4.7469 0.05
OG 0.0161 0.0181 13 3 5.2456 0.9975 0.0396 5.2872 4.5282 0.00
LC AP 0.2904 0.3155 9 3 4.1412 0.8616 0.0806 5.3644 4.6054 0.00
EG 0.2904 0.3155 9 2 4.3050 0.8184 0.1204 5.3814 4.6224 0.00

OG 0.4898 0.3950 8 3 4.1544 0.5839 0.5394 5.1018 4.4788 -

CS AP 0.7577 0.7787 7 3 3.9854 0.6452 0.1181 4.7519 4.1290 -

EG 0.4898 0.6041 8 3 4.5022 0.4956 0.2430 4.7352 4.1123 -
OG 0.1584 0.0097 9 4 5.1385 0.4017 0.6604 - - 0.06
LL1 AP 0.2904 0.4081 9 4 5.0830 0.5100 0.2420 - - 0.06
EG 0.2904 0.4081 9 6  5.4977 0.2674 0.3587 - - 0.06
FTSE OG 0.1584 0.0101 10 4 5.1921 0.5339 - 4.9734 - 0.05
LL2 AP 0.2904 0.4081 9 5 53097 0.3934 - 4.5799 - 0.07
EG 0.2904 0.4081 9 6  5.5368 0.2514 - 4.5901 - 0.05
OG 0.1584 0.0101 10 4 5.1921 0.5339 - - 4.3504 0.05
LL3 AP 0.2904 0.4081 9 5 53097 0.3934 - - 3.9570 0.07
EG 0.2904 0.4081 9 6  5.5368 0.2514 - - 3.9672 0.05

OG 0.0798 0.1706 11 6  6.6618 0.2357 0.9000 4.9675 4.3445 0.00
LC AP 0.0798 0.1296 11 7 6.6091 0.2356 0.5029 4.5447 3.9217 0.00
EG 0.0372 0.0622 12 7 6.9838 0.2250 0.6439 4.5785 3.9555 0.00
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Table 4.4 to be continued

Model p-POF P-mix VPOT EPOT Breach t-test Lossl Loss2 Loss3 A
OG 0.0798 0.1359 11 2 4.1351 0.9987 0.0450 5.1151 4.4491 -
CS AP 0.4898 0.6248 8 1 2.8359 0.9994 0.0011 5.3241 4.6582 -
EG 0.2904 0.4239 9 1 3.1623 0.9994 0.0001 5.2416 4.5756 -
OG 0.2904 0.3927 10 1 3.2805 0.9988 0.0213 - - 1.00
LL1 AP 0.4898 0.6248 8 1 25699 0.9997 0.0002 - - 1.00
EG 0.4898 0.6248 8 0  2.8332 0.9996 0.0000 - - 1.00
EST OG 0.2904 0.3605 11 2 4.3630 0.9967 - 5.0340 - 0.93
LL2 AP 0.4898 0.6248 8 1 34716 0.9963 - 5.1424 - 0.93
EG 0.4898 0.5840 9 1 3.6344 0.9988 - 5.1052 - 0.93
OG 0.2904 0.3605 11 2 4.3630 0.9967 - - 4.3680 0.93
LE3 AP 0.4898 0.6248 8 1 34716 0.9963 - - 4.4765 0.93
EG 0.4898 0.5840 9 1 3.6344 0.9988 - - 4.4393 0.93
OG 0.0798 0.1359 11 2 4.5054 0.9942 0.0634 4.9940 4.3281 0.00
LC AP 0.4898 0.6248 8 1 3.6521 0.9929 0.0186 5.0850 4.4190 0.00
EG 0.1584 0.2540 10 1 3.8275 0.9990 0.0099 5.0496 4.3837 0.00
OG 0.1584 0.2599 10 4 5.1923 0.4714 1.8581 7.2858 6.4987 -
CS AP 0.0798 0.1706 11 4 5.2040 0.6728 1.4131 6.6994 5.9123 -
EG 0.0372 0.0990 12 4 5.6299 0.6944 1.5884 6.8640 6.0769 -
OG 0.2904 0.0350 8 4 4.1838 0.4386 1.4887 - - 0.18
LL1 AP 0.2904 0.0350 8 4 4.1217 0.5260 1.0616 - - 0.18
EG 0.0372 0.0572 8 4 4.1881 0.5027 1.1204 - - 0.21
RUT OG 0.2904 0.0350 8 4 41895 0.4376 - 6.9618 - 0.22
LL2 AP 0.2904 0.0350 8 4 41621 0.5142 - 6.3356 - 0.27
EG 0.0372 0.0113 9 4 4.2829 0.6138 - 6.3762 - 0.42
OG 0.2904 0.0350 8 4 4.1895 0.4376 - - 6.1747 0.22
LE3 AP 0.2904 0.0350 8 4 4.1621 0.5142 - - 5.5485 0.27
EG 0.0372 0.0113 9 4 4.2829 0.6138 - - 5.5891 0.42
OG 0.7577 0.0329 7 4 4.0124 0.3559 1.3987 6.9482 6.1611 0.00
LC AP 0.9268 0.2965 6 4 3.9306 0.2477 0.9742 6.3298 5.5427 0.00
EG 0.7577 0.3790 7 4 3.9695 0.4181 1.0368 6.3708 5.5837 0.00
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Table 4.4 to be continued

Model p-POF P-mix VPOT EPOT Breach t-test Lossl Loss2 Loss3 A
OG 0.0460 0.1344 2 1 1.1984 0.3830 0.3936 5.4491 4.7733 -
CS AP 0.0460 0.1344 2 1 1.2390 0.3660 0.4318 5.6668 4.9909 -
EG 0.0460 0.1344 2 1 1.5182 0.2787 0.5995 5.6860 5.0102 -
OG 0.3343 0.0108 4 2 23270 0.4213 0.8582 - - 0.05
LL1 AP 0.9268 0.8587 6 2 27894 0.4022 1.0503 - - 0.05
EG 0.6068 0.7907 5 2 2.5662 0.3358 0.9868 - - 0.05
BSN OG 0.3343 0.0108 4 2 23968 0.4063 - 5.1643 - 0.25
LL2 AP 0.9268 0.8587 6 2 28742 0.3796 - 5.2984 - 0.85
EG 0.6068 0.7907 5 2 26744 0.3133 - 5.2967 - 0.92
OG 0.3343 0.0108 4 2 23968 0.4063 - - 4.4884 0.25
LL3 AP 0.9268 0.8587 6 2 2.8742 0.4022 - - 4.6226 0.85
EG 0.6068 0.7907 5 2 26744 0.3133 - - 4.6209 0.92
OG 0.7577 0.4266 7 2 3.8484 0.3918 1.2535 5.1722 4.4963 0.00
LC AP 0.4898 0.4347 8 4 4.8706 0.2217 1.7069 5.3839 4.7080 0.00
EG 0.7577 0.4266 7 4 4.6645 0.2006 1.5669 5.2478 4.5720 0.00
OG 0.4898 0.6041 8 1 3.3241 0.6622 8.0018 18.6323 17.0931 -
CS AP 0.4898 0.6041 8 1 3.2744 0.7093 7.2966 17.7998 16.2606 -
EG 0.4898 0.6041 8 1 3.2126 0.7206 7.2059 17.7743 16.2351 -
OG 0.1461 0.3352 3 1 1.3104 0.4517 5.5662 - - 0.10
LL1 AP 0.9268 0.8587 6 1 1.6908 0.7633 5.5667 - - 0.09
EG 0.9268 0.8587 6 1 2.0530 0.7203 5.7719 - - 0.10
BRO OG 0.1461 0.3352 3 1 1.3120 0.4514 -  17.5684 - 0.09
LL2 AP 0.9268 0.8587 6 1 1.7022 0.7622 -  17.0956 - 0.07
EG 0.9268 0.8587 6 1 20594 0.7194 - 17.0761 - 0.07
OG 0.1461 0.3352 3 1 1.3120 0.4514 - - 16.0292 0.09
LL3 AP 0.9268 0.8587 6 1 1.7022 0.7622 - - 15.5564 0.07
EG 0.9268 0.8587 6 1 20594 0.7194 - - 15.5369 0.07
OG 0.4898 0.6041 8 1 4.0137 0.4967 9.5255 19.6396 18.1004 0.00
LC AP 0.1584 0.2434 10 2 4.1432 0.7198 8.8662 18.8904 17.3513 0.00
EG 0.1584 0.2434 10 1 4.0003 0.7487 8.5918 18.6755 17.1364 0.00
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The VPOT and EPOT of DAX are plotted in Fig. 4.2 and please find the other
plots in Appendix B. In the figures, VaR is estimated at the 95% confidence lever
and ES is at 97.5%. The out-sample size, required by Basel III, is about one year
(250 transaction days). Besides, even though the VPOT (blue point) and EPOT
(green point) values are very small, the coverage test fails also by CSOG, CSAP
and CSEG of BSN with a p-value only 4.6%, comparing the perfect performance
with the semiparametric models. On the other hand, a violation indicator breach
values for ES is introduced for the ES backtesting. Unlike those of VaR, a series
of discrete numbers, the ES breach value is continuous, lying around half of the
VPOT values. Following Costanzino and Curran’s ES traffic light test (2018),
we can see that the boundary between the green and amber zones is only 5.7049,
almost half of the VaR breach indicator 10 at 97.5% level in theory, however close
to the boundary at 99% level, which is 4. In other words, the ES breach value
indicates a more sensitive risk measure than that of VaR at the same confidence

level.

In the studied cases, we found that the ES breach indicator is also a strict test
rule. Even passing all the other tests, the ES breach values still possibly locate
in the amber zone, e.g. the breach values of the three LC models of FTSE are
beyond the green zone limitation, while the t-test still indicates the models should
be accepted with a reasonable statistic over 5%. Besides, the t-test seems to be
not capable to reveal the quality of the risk measure estimation, especially when
the risk measures are underestimated. In the LCOG case of DAX, the VPOT is
as high as 13 and the breach value is 5.2456, almost reaching its green zone upper
limitation, comparing the high t-test value as 0.9975. From the above cases, we can
conclude that the t-test is not robust due to the limited observations in backtesting
and the traffic light test, combing with the POF test and independence test, is
reliable to both VaR and ES backtesting.
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Figure 4.2: DAX POT of VaR and ES with parametric models
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4.6 Final remarks

In Basel III and its coming finalization, ES is required to be a basic risk manage-
ment tool, however, the backtesting of ES is not as clear as that of VaR. In the
study, we have examined the risk measures prediction and backtesting with the
parametric models and the semiparametric models. Besides, a simple traffic light
test of ES is also discussed by introducing breach values. Some positive cases are
found and prove that the semiparametric models are able to characterize the mar-
ket risk and provide the necessary regulatory information to both the regulators
and firms. It is concluded that the semiparametric models are definitely well-
performed risk management tools and treated as a supplement of the parametric

models.



CHAPTER 5

Modeling high-frequency returns at

fixed trading time points using a

general SemiGARCH model

The use of the GARCH model is widely observed in the empirical literature. How-
ever, this model may cause misclassification and assumes that the unconditional
variance of the time series is constant. The recently proposed semiparametric
GARCH model, which composes of the conditional heteroskedasticity and scale
functions, can improve the GARCH model. In this section, the definitions, the
features and the estimation of the GARCH model, the SemiGARCH model and
their extensions are investigated. Based on the SemiGARCH model the SemikE-
GARCH and the SemiCGARCH models (Peitz, 2015) are introduced in this work.
In the empirical example the SemiAPARCH, the SemiEGARCH and the SemiC-
GARCH models are applied to the returns of Allianz and BMW at fixed trading
time points. It is found that the semiparametric models have a more correct the-
oretical basis. They can model the conditional heteroskedasticity and the scale
change at the same time. Furthermore, the semiparametric models work well with

the returns at fixed trading time points.

5.1 Introduction

Trading off risks against returns appears to be essential and vital for making a

financial decision. Hence the econometric analysis of risk (volatility) becomes
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an important part in forecasting market tendency and supporting making finan-
cial decisions, such as portfolio diversification, risk management and derivative
pricing. In the last 20 years volatility was a research hot-spot in the financial
industry. Volatility is regarded as a parameter for evaluating the risk of assets

return. Generally, the stronger the volatility is, the higher the risk is.

In the classical financial models, the variance of the time series is always as-
sumed as constant. However, it is found that the volatilities of financial time
series have always the features of clustering and fat tails (Mandelbrot, 1963 and
Fama, 1965). These features are not consistent with the assumption of constant,
so the classical econometric methods cannot analyze the financial time series effi-
ciently in practice. To overcome this problem, several economists have carried out
studies on researching and developing frameworks for evaluating volatility. Since
Engle introduced the autoregressive conditional heteroskedasticity (ARCH) model
(Engle, 1982), the extensions of the ARCH model appeared and spread rapidly.
Among the carried out researches, the Generalized ARCH (GARCH) model and

its derivatives are most widely used (Bollerslev, 1986).

According to many studies (Gourieroux and Monfort, 1992 and Eubank, 1993),
in parametric volatility models, the preselected model might be too restricted
or too low-dimensional, which may not fit unexpected features and cause the
misspecification. However, in nonparametric models, the parameters of the model
cannot be estimated and the model cannot be explained due to a lack of specific
functions. Instead of parametric volatility models or nonparametric models, the
recently proposed semiparametric volatility model will be introduced in detail in
this section, which introduces a smooth scale function into the standard GARCH
model. This model does not need a prespecified function and is less sensitive to
model misspecification. At the same time, the model can be also explained (Di

and Gangopadhyay, 2011).

The definition, estimation, some properties of the semiparametric model and
the methods of bandwidth selection are discussed. Furthermore, based on the
study of the semiparametric GARCH model and the semiparametric asymmet-

ric power ARCH model, which are introduced by Feng (2004) and Feng and Sun
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(2013), the semiparametric exponential GARCH and component GARCH models
are originally defined. Then the discussed semiparametric models, i.e. the Semi-
APARCH, the SemiEGARCH and the SemiCGARCH models, are applied to the
returns of BMW and Allianz from January 2006 to September 2014. Different
from other algorithms, to get the more exact analyzing results the fixed trading

time points are used here.

The scope of this chapter is as follows. In section 5.2, the parametric volatil-
ity models are introduced. The semiparametric volatility models are described
in section 5.3. Section 5.4 reports the application of the semiparametric volatil-
ity models to the returns of BMW and Allianz and the empirical results on the
volatility of the selected data sets. Finally, this chapter is concluded in section

5.5.

5.2 The semiparametric volatility model

The SemiGARCH model is a general framework if the nonstationary trend is
removed. In this section, the APARCH, EGARCH and CGARCH models are

considered as the parametric part to analyze stationary processes.

5.2.1 The SemiGARCH model

The SemiGARCH model combines a smooth scale function with the standard

GARCH model:

Y, = p+ s(m)ee, (5.1)

where p is an unknown constant, 7, = t/n, s(-) > 0 is the nonparametric compo-
nent, a smooth, bounded scale function and {e;} is a parametric component. The

conditional variance of {¢;} is assumed to follow a GARCH(p, q) process:
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p q
ht = W "‘ Z Oéigf_i + Z tht—ja (52)
i=1 Jj=1

where hi/ ? is the conditional standard deviations of the standardized process
e, w > 0, ag,...,a, > 0 and fB,...,8;, > 0. To estimate the scale function,
E(e?¥) < oo is assumed to ensure model 5.2 strictly stationary, which implies in

particular that > 7, a; + > 7, ; < 1 (Feng, 2004).

The SemiGARCH model provides us a tool to decompose financial risk into
an unconditional component s(7;), a conditional component hz/ * and the iid.

innovations 7.

The estimation of the SemiGARCH model can combine the nonparametric
estimation of the local variance v(7;) = 0%(73), with parametric estimation of the

unknown parameter vectors 0 = (o, 1, ..., Qp; 1, .., By)-

At first, the scale function can be estimated by some nonparametric regres-
sion approaches without any parametric assumptions. In this model, the kernel
estimation will be used. If the constant mean u is replaced by a smooth function

w(T;), we can get a nonparametric regression with a time-varying mean as

Vi = p(me) + s(mi)er, (5.3)

where ¢, is a zero mean stationary process.

Eq. (5.1) can be transformed into a general nonparametric regression problem.
Letting r; = Y; — u, Z; = r? and & = €2 — 1, which are zero mean stationary time

series errors. Then Model 5.1 can be rewritten as

Zy = g(m) + g(7)&e- (5.4)

Letting i = g and 2, = 72, in which 7; is then defined by 7, = y, — 5. A

Nadaraya-Watson kernel regression is
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r)= = Wi, (5.5)
> K () =
=1
where w; is the weighting function w, = %, K(u) is a second order
=1 K7~

kernel function with a compact support [-1,1] and b is the bandwidth, the size of
the weights (Fan, 1993).

According to the above assumptions, the estimator ¢; is now replaced by the

standardized residuals

gt =11/5(1) = (yr — 9)/8(1). (5.6)

Then the estimator of parametric vector 6 can be obtained by the standard
maximum likelihood method, which has been introduced in Chapter 2. A suitable
model can also be selected by using other methods, e.g. the Akaike information

criterion (AIC), the Bayesian information criterion (BIC), etc. (Feng, 2004).

To calculate the asymptotic optimal bandwidth, the assumptions in the ap-
pendix should be followed. Define R(K) = [ K*(u)du and I(K) = [w*K (u)du.
The asymptotic bias B of (1) is

B3()] = Ela(r) - o)) = " 4 o), (5.7
The asymptotic variance of §(7) can be expressed as
VIg(r)] = var(a(r)) = TR 4o (). 5.9

where ¢y is a constant factor in the asymptotic variance. From Eq. (5.7) and
(5.8) we can see that the bias and the variance are asymptotically dominated by

b* and (nb)~!, respectively. Then, the mean integrated squared error (MISE) can

}9.

(5.9)

be calculated by

MISE(§) = @ /[g”(T)]ZdT—I—%cfn—]i(K) /92(7)d7—|—max {0(64)70 (%)
)
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By minimizing the dominant part of the MISE, the asymptotically optimal band-
width of ¢ is

TC fg2 5n_1/5
b (2 f12< )f[g”( >]2d7> ' (5-10)

Applying the estimator g requires the specification of kernels and bandwidth.
Optimal kernels have been obtained analytically. The selection of bandwidth be-
comes the most important problem when applying nonparametric regression esti-
mators such as kernel estimators. The regression works well, only if the bandwidth
is suitable. Because the kernel estimation uses the points around z( to estimate
the scale function, a kernel regression is usually biased. The larger the bandwidth,
the larger the square bias because further points from xzy are used, but the smaller
the variance because more observations are used for estimation. The bandwidth
should be optimized to balance the variance and bias. The optimal bandwidth is
the one, which can minimize the mean squared error (MSE) or the mean integrat-
ed squared error (MISE) (Gasser, 1991). Various methodologies can be applied to
select the optimal bandwidth, such as the Cross-Validation (CV), the Generalized
CV (GCV) and the iterative plug-in (IPI) methods.

5.2.2 The extensions of SemiGARCH model

Let r, = Y, — u,t = 1,...,n be the returns from an asset. The SemiAPARCH

model is defined as follows

Ty = s(7¢)eq (5.11)

The conditional variance of the rescaled process h; follows a parametric A-

PARCH process

D q
hf/2 =w+ Z ai(ler—il —viei)’ + Z thff§> (5.12)
i=1 Jj=1

where w > 0,6 >0, s > 0,2 =1,...,p, -1 <y, <1, ¢=1,...,p, B >0,
j =1,...,q, v is the leverage parameter and 0 is the parameter for the power

term.
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The reason to use the SemiAPARCH model rather than the APARCH is that,
if the scale function changes over time, the parametric component cannot be es-
timated consistently from the data, when the nonstationary scale function is not
estimated. However, after estimating the nonstationary scale function an approx-
imate stationary process for further analysis can be obtained. When the process
follows a parametric model, the semiparametric framework still works but with

some loss of efficiency (Feng and Sun, 2013).

From the discussion of kernel regression in Section 5.2.1 we can see that, in
order to get an exact estimation, the sample volume should be large enough.
However, the bias is of the order b?. Therefore, the estimation at the boundary
has a large bias, which may result in a larger selected bandwidth. This is the
so-called boundary problem. In this case, a constrained local linear regression is
applied. The scale function g(7;) is estimated from the absolute returns, instead
of the squared returns, so as to reduce the moment condition requirement. The
estimation of the scale function with absolute returns requires just the existence

of the fourth order moment of ¢;. For details, please refer to Chapter 6.

The local linear estimator g(7;) = Go at 0 < x < 1 can be obtained by mini-

mizing

n

Q= Z[|Tt| —ag — ai (1 — 7) 2K

t=1

Tt — T

b)'

(5.13)

The optimal bandwidth for estimating ¢(7) is different from the one for estimat-
ing ¢*(7), due to a constant factor. In this method a fully data-driven algorithm
is carried out by adapting an iterative plug-in idea with a starting bandwidth
selected by the CV method. If the sample size is limit and a relatively small band-
width is used, the local linear estimator may be estimated as a negative value.
To ensure the non-negativity, the estimator g(7) is assumed to take its absolute
value as §(7) = |g(7)|. Then the estimation of €; can defined as &, = r/g(7). The
unknown parameters of a chosen APARCH model can be estimated by an approx-
imate conditional maximum likelihood estimation. AIC or BIC can be applied to

select a suitable parametric model (Feng and Sun, 2013).
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Besides, in the semiparametric EGARCH process, the conditional variance

follows

p q
Inhy = 0o+ Y oif(eri) + > Binhej, (5.14)
=1

j=1
where

fler-i) = Ve + K(lei| — Eleil),i=1,....p,
o, @, B;, ¥ and k are as defined in Chapter 2.

Similarly, for SemiCGARCH model, the conditional variance h; is assumed to

follow the CGARCH model, which is introduced by Engle and Lee (1999),

p q
hy =g+ Z ai(el ;= qii) + Z Bihi—j — a—j), (5.15)
i=1 =1
and
G = w+ pg-1 + @(ef) — i), (5.16)

where ¢; is the permanent component of the conditional variance and (h;_; —
¢i—;) is the transitory component of the conditional variance. Obviously, the
semiparametric model discussed in this chapter is general and model free, i.e. the

stationary conditional variance can be fitted to any GARCH type model.

5.3 The empirical study

In this section, the semiparametric models are applied to ten high-frequency fi-
nancial data sets, which are the returns of BMW and Allianz at five given fixed
trading time points from January 2006 to September 2014, respectively. Usually,
in literature, the daily observations are applied, which are composed of the av-
erage value or the close price of a trading day. If daily data is considered, the
analysis is not accurate enough and the characteristics of the returns at different
time points in transaction days cannot be revealed. Therefore, the observations at
five specific fixed time points, which are 09:30, 11:00, 12:30, 14:00 and 15:30, are
selected. In each data set, the interval of the observations are 24 hours so as to

keep the data in a daily frame. Due to the overnight effect, the open price is not
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chosen, avoiding that the open price may be obviously unusual from that at the
other time points. Besides, the market information release time is able to affect
the open price. Furthermore, due to the time differences, abroad information may
also cause an abnormal fluctuation in the open price (Tsai et al., 2012). So, in
order to avoid the possible risk, stockholders are willing to change their equity or
stock holding at the closing time, leading to an abnormal fluctuation in the close

price. Therefore, the close price is also excluded.

In the empirical examples, the characters of the semiparametric volatility mod-
els, the comparison between the semiparametric volatility models and the para-
metric volatility models, the daily volatility of returns at the different trading
times and the financial crisis influence will be discussed. The estimation of the

trend function and the parametric model fitting are carried out in R.

Firstly, the scale function is estimated. The applied method to estimate the
semiparametric trend is as discussed above. Here, the bandwidth is automatically
selected. An initial bandwidth is given according to CV. An IPI process is car-
ried out until the bandwidth is stable. The standardized returns are calculated
by means of removing the estimated scale function and fitted to the parametric
APARCH, EGARCH and CGARCH models with the orders (1,1), (1,2), (2,1)
and (2,2). In the parametric models, the innovations are assumed to follow a
t-distribution. In Table 5.1, we can see that the models with t-distribution have

smaller BIC values than the ones with a normal distribution.

5.3.1 The empirical result of Allianz

In this subsection, the proposed algorithm is applied to the returns of Allianz
at five given trading time points. The long-term risk of these five data sets is
analyzed through the estimated scale function. The short-term risk is estimated

by using the APARCH, EGARCH and CGARCH models with the selected orders.

From Fig. 5.1 to Fig. 5.5, the observations, the returns series, the estimated
scale functions with d = 1 (solid line) and d = 2 (dashed line) and the standardized

returns, calculated by means of the estimated scale function are plotted.
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Table 5.1: BIC of selected models with normal and t-distribution of ALV

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

norm std norm std norm std

T =09:30 2.7459 2.7117 2.7473 2.7108 2.7689 2.7283
T =11:00 2.7816 2.7542 2.7815 2.7528 2.7996 2.7671
T =12:30 2.7828 2.7543 2.7826 2.7524 2.8041 2.7690
T =14:00 2.7738 2.7424 27713 2.7396 2.8001 2.7592
T =15:30 2.7921 2.7558 2.7923 2.7545 28084 2.7715

According to the plots in each figure, we can find two dramatic volatility
changes in the series, indicating the global financial crisis and the Euro debt
crisis, which happened in August 2011. The global financial crisis in 2008 caused
serious negative influences on the economy in many European countries. In order
to save the banks and the other financial institutions, the sovereign debt increased
sharply and exceeded the solvency in several countries. Following, the Euro debt
crisis started from the Greece debt crisis in 2010 and then nearly the whole of
Europe was involved until September 2011. The high peaks of scale function show
that Allianz has extremely high long-term risk during the financial crisis. From
these figures, it also can be seen that the volatility at 09:30 is strongest in all the

given trading time points because of the overnight effect.

From the plots we can see that, corresponding to the volatility of returns, there
are two sub-periods in the scale function with high peaks during the two financial
crises. Also, it is shown than the first peak is higher than the second one, indicating
that Allianz had higher risk during the global financial crisis than that in the Euro
debt crisis. Further, except for the periods of the two financial crises, the scale
functions stay at a relatively low level, usually within the confidence intervals,
suggesting a stable development of the financial market in the considered periods.
However, the stock prices between the two financial crises stay at a relatively low

level. We can conclude that the negative influence of the global financial crisis is
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continuous and it takes a time to restore investors’ confidence and willingness to

the financial market.

Comparing the scale functions at the given trading time points, estimated
with d = 1 and d = 2 respectively, we can see that they are almost approaching in
the stable periods. The differences often happen at the boundary and during the
financial crisis. For example, the estimated scale functions at 12:30 and 14:00 with
d = 1 are below the ones with d = 2 at the outbreak of the two financial crises
and are clearly up at the beginning of the crises. Furthermore, the estimated scale
functions at 09:30, 11:00 and 15:30 display more differences between with d = 1
and d = 2. The scale function with d = 1 at 09:30 is clearly over the one with
d = 2 at the beginning of the global financial crisis. Then, the increasing speed
of the scale function with d = 1 becomes gradually slow. In the worst several
months of the financial crisis, the scale function with d = 1 stays below the one
with d = 2. In the Euro debt crisis, the scale function with d = 1 is also up to the
one with d = 2 at the beginning and then the two lines tend to be overlapped.

ALV price, returns, scale function and standadized returns at 9:30 from Jan 2006 to Sep 2014
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Figure 5.1: The smoothing results of ALV at 09:30
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At 11:00 and 15:30, the differences between the scale functions with d = 1 and
d = 2 are more obvious. The scale function with d = 1 is higher than the one with
d = 2 at the beginning of each financial crisis. When the scale functions reach
to the highest level, the scale function with d = 1 stays at a significantly lower
level than the one with d = 2. Then it becomes higher than d = 2 again as the
decline of the financial crisis. Consequently, the scale function with d = 1 can
make the data relatively stable, especially during the financial crisis. According
to figures, the standardized return series are quite stable. However, because the
nonparametric and parametric components are almost orthogonal to each other,
the series still clearly exhibit the influence of market changes that are not affected

by estimating or removing the nonparametric component.

Table 5.2: Selected bandwidths at fixed time points of ALV

T 09:30  11:00 12:30  14:00  15:30

d=1 0.0985 0.0933 0.0912 0.0921 0.1018
d=2 0.1069 0.1046 0.0931 0.1070 0.0878

In Table 5.2, the bandwidths are selected by using the scale function with
d =1 and d = 2. The selected bandwidths with d = 1 are generally smaller than
that for d = 2 and smaller bandwidths describe changes in data more accurately.
Besides, if the scale function with d = 1 is applied, the returns are estimated in
the absolute form and it only requires the existence of the fourth moment, which

is much weaker than the eighth moment requirement with d = 2.

The fitted APARCH, EGARCH and CGARCH models with the student-t dis-
tribution can be obtained based on the standardized returns. The best order in
all cases is the order (1,1) by comparing the BIC in Table 5.3. Therefore, we
only discuss the APARCH(1,1), EGARCH(1,1) and CGARCH(1,1) models in this
work. If the best model is selected only by the BIC, the EGARCH models are
the best model in all five cases and the CGARCH models are the worst. However,
different models can be used in different economic situations, i.e. the APARCH

and EGARCH models can show the leverage effect, while the CGARCH models
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exhibit the persistence of the shocks in the long-term and the short-term.

Table 5.3: BIC of all selected models of ALV

T 09:30  11:00 12:30  14:00  15:30

APARCH-t(1,1) 27117 2.7542 2.7543 2.7424 2.7558

APARCH-t(1,2) 2.7151 2.7577 2.7577 2.7458 2.7593
APARCH-t(2,1) 2.7183 2.7611 2.7606 2.7493 2.7622
APARCH-t(2,2) 2.7218 2.7645 2.7641 2.7524 2.7656
EGARCH-t(1,1) 2.7108 2.7528 2.7524 2.7396 2.7545
27176 2.7597 2.7579 2.7458 2.7609
EGARCH-t(2,2) 2.7204 2.7631 2.7614 2.7492 2.7646
CGARCH-t(1,1) 2.7283 2.7671 2.7690 2.7592 2.7715
CGARCH-t(1,2) 2.7309 2.7706 2.7725 2.7627 2.7750

CGARCH-t(2,1

)
)
)
)
)
EGARCH-t(1,2) 27142 27562 2.7558 2.7430 2.7580
)
)
)
)
) 27317 27706 2.7721 27625 2.7742
)

(
(
(
(
(
(
EGARCH-t(2,1
(
(
(
(
(

CGARCH-t(2,2) 27342 2.7740 2.7756 2.7660 2.7777

From Table 5.4 to 5.8 display the estimated coefficients for Allianz at the five
given trading time points, respectively. From the value of shapes, we can see that
the APARCH model usually has the largest degree of freedom of the distribution
in each case, while the CGARCH model has the smallest. At 09:30, 11:00 and
14:00 the degrees of freedom are all between 6 and 7,5 and in all models at 12:30
and in the EGARCH and CGARCH models at 15:30 the degrees of freedom are
almost equal to 8. It means that the distributions in these trading time points
are nearly heavy-tailed and the eighth moment of ¢; does not exist, but the fourth
moment. In the APARCH model at 15:30 the degree of freedom is 8.13. Now the
distribution is also nearly heavy-tailed but the eighth moment of ¢; exists. The
possibility of an extreme return at 09:30, 11:00 and 14:00 is higher than that at
12:30 and 15:30. From the above discussion, the eighth moment in most cases
does not exist. This also expresses that the selection of the scale function with

d =1 is better.
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Table 5.4: Estimated coefficients of the selected models of ALV at 09:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

I 0.0308 0.0182 0.0235 0.0181 0.0462 0.0180
w 0.0721 0.0172 -0.0085 0.0060 0.0047 0.0006
o1 0.0656 0.0309 -0.1215 0.0208 0.1018 0.0191
51 0.8411 0.0288 0.9281 0.0167 0.8351 0.0300
Y1 0.7207 0.3454 0.1729 0.0304 - -

1) 1.8156  0.3597 - - - -
N1 - - - - 0.9956 0.0000
n21 - - - - 0.0000 0.0000

shape 6.5064 0.8851 6.3915 0.8530 6.0607 0.7792

Table 5.5: Estimated coefficients of the selected models of ALV at 11:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

1 0.0279 0.0189 0.0282 0.0191 0.0442 0.0187

w 0.0868 0.0219 -0.0068 0.0059 0.0054 0.0006
a1 0.0717 0.0226 -0.1202 0.0215 0.0915 0.0188
51 0.8336  0.0341 0.9160 0.0210 0.8412 0.0347

Y1 0.6554 0.2800 0.1427 0.0304 - -

0 1.6610 0.3892 - - - -
M1 - - - - 0.9949  0.0000
721 - - - - 0.0000 0.0000

shape 7.3037 1.1341 7.1364 1.0881 6.9448 1.0259
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Table 5.6: Estimated coefficients of the selected models of ALV at 12:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

7 0.0242 0.0190 0.0201 0.0190 0.0438 0.0188

w 0.0858 0.0204 -0.0068 0.0057 0.0034 0.0003
o1 0.0724 0.0215 -0.1192 0.0208 0.0921 0.0181
51 0.8398 0.0311 0.9174 0.0200 0.8330 0.0324
Y 0.7439 0.2797 0.1439 0.0307 - -

1) 1.4690 0.2978 - - - -
N1 - - - - 0.9967 0.0000
N21 - - - - 0.0000  0.0000

shape 7.9157 1.2338 7.7971 1.1984 7.2398 1.0469

Table 5.7: Estimated coefficients of the selected models of ALV at 14:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

1 0.0237 0.0187 0.0231 0.0180 0.0428 0.0186
w 0.0957 0.0204 -0.0094 0.0067 0.0038 0.0004
Qg 0.0884 0.0199 -0.1339 0.0220 0.1000 0.0191
51 0.8292 0.0291 0.9039 0.0210 0.8207 0.0327
o0 0.8207 0.2096 0.1647 0.0324 - -

0 1.1473  0.2595 - - - -
M1 - - - - 0.9963 0.0000
721 - - - - 0.0000 0.0000

shape 7.4317 1.0993 7.4128 1.0943 6.8385 0.9355




96 5. Modeling high-frequency returns using general SemiGARCH models

Table 5.8: Estimated coefficients of the Selected models at of ALV 15:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

I 0.0119 0.0190 0.0085 0.0189 0.0295 0.0190
w 0.0703 0.0189 -0.0052 0.0052 0.0041 0.0004
o1 0.0636 0.0221 -0.1108 0.0197 0.0830 0.0173
51 0.8570 0.0309 0.9281 0.0192 0.8462 0.0333
Y1 0.6649 0.2724 0.1378 0.0317 - -

1) 1.7361 0.4075 - - - -
N1 - - - - 0.9960 0.0000
n21 - - - - 0.0000 0.0000

shape 8.1277 1.2303 7.9807 1.1877 7.6925 1.1261

In the APARCH models, the leverage parameters v for the five given trading
time points are 0.72, 0.83, 0.74, 0.82 and 0.66, respectively. This means that the
leverage effect of Allianz is always strong and the contribution of a negative return
is more than the contribution of a positive return. In the EGARCH models, «
is the sign effect and ~y is the size effect. According to the tables, the estimated
« is smaller than —0.1 in all cases. So, we can say that this model is also able
to expresses the leverage effect. From the estimated coefficients of the CGARCH
model, all the p values are larger than 0.99, and ¢ are equal to 0, leading to a
smaller immediate impact of shocks on the long-run component than that on the
short-run component. Because the p value is close to one, the shock cannot only
cause the change of short-term volatility but also keep this abnormal volatility in
the long term. The value of (av+ 3) is between 0.9 and 1, and 0 < (a+3) < p < 1.
It indicates that volatility can reflect the shock immediately and the persistence
is long. The impact of volatility on the short-run component will diminish as well

but will be more persistent on the long-run component.
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From Fig. 5.6 to 5.10, all of the APARCH, EGARCH and CGARCH models’
volatility can express the financial crisis. However, when there is positive news, the
APARCH and EGARCH models have lower volatility than the CGARCH model,

like the marked areas by square.

In the circle marked areas, there is higher volatility for negative news and
obviously, the negative news causes a larger change than positive one. For another,
the fitted volatility of CGARCH is extremely high due to the missing earlier
returns, required in the first several points estimation. Generally, the first several
estimated points are not considered in the discussion. Although the extreme points
appear in the volatility, they are ignored without any influence in the following

fitted volatility.
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ALY ized returns and fitted volatility at 11:00 from Jan 2006 to Sep 2014
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ALY ized returns and fitted volatility at 14:00 from Jan 2006 to Sep 2014
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5.3.2 The empirical result of BMW

In this section, the semiparametric volatility models are applied to the stock price
of BMW at five given trading time points, i.e. 09:30, 11:00, 12:30, 14:00 and 15:30
from January 2006 to September 2014. Similar to the analysis of Allianz, the
semiparametric volatility models are also used to discuss the risk and the leverage

effect by the estimated scale function and the conditional heteroskedasticity.

The observations, the log-returns, the estimated scale functions with d = 1
and d = 2 and the standardized returns are displayed from Fig. 5.11 to 5.15.
In the figures, the returns change dramatically in two sub-periods, which corre-
sponding to the global financial crisis and the Euro debt crisis. Although the
volatility change between the two financial crisis is relatively stable, it fluctuates
still stronger than before and after the financial crisis, showing the relatively high-
er risk. Besides, the volatilities at 09:30 and 11:00 are stronger than that at 12:30,
14:00 and 15:30, possibly due to the overnight effect. The volatility near close
time is weaker than that at open time, but stronger than that at the other trans-
action time. Correspondingly, it is found that the estimated scale functions have
two peaks. Furthermore, the scale functions stay at an extremely high level (out
of the confidence interval) in the global financial crisis and a relatively high level
(within the confidence interval) in the Euro debt crisis. Obviously, BMW has a

higher risk in the global financial crisis.

The estimated scale functions at each given time is calculated with d = 1 and
d = 2. In this case, at the boundary there is no significant difference between the
scale functions with d = 1 and d = 2 at 09:30, 11:00, 12:30 and 14:00. However,
the scale function with d = 2 at 15:30 is below that with d = 1 after the year
2014. In the two financial crises, the two lines show up clear differences. From the
beginning of the global financial crisis, the estimated scale function with d = 2
is up to the one with d = 1 at the five given trading time points. At 12:30 and
14:00, the level of the scale functions with d = 1 are higher than the others, so
the difference between the two estimated scale functions is limited at 12:30 and

14:00. Only the scale functions at 09:30 tend to gradually overlap after the drop



5.3 The empirical study 101

BMW price, returns, scale function and standadized returns at 9:30 from Jan 2006 to Sep 2014
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Figure 5.11: The smoothing results of BMW at 09:30
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BMW price, returns, scale function and standadized returns at 12:30 from Jan 2006 to Sep 2014
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Figure 5.13: The smoothing results of BMW at 12:30
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BMW price, returns, scale function and standadized returns at 15:30 from Jan 2006 to Sep 2014
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Figure 5.15: The smoothing results of BMW at 15:30

off the peak, However, the rest have still intersections. In the Euro debt crisis, the
scale function with d = 1 at 09:30 is below the one with d = 2 and then overlaps.
At 12:30, 14:00 and 15:30 the overlap of the two lines remains in short. Then,
the scale function with d = 2 is below the one with d = 1, however above at the

beginning of the second financial crisis.

Table 5.9: Selected bandwidths at fixed time points of BMW

T 09:30  11:00 12:30  14:00  15:30

d=1 0.1047 0.1043 0.1047 0.1050 0.1054
d=2 0.1020 0.1061 0.1075 0.1071 0.1067

Comparing the selected bandwidth with d = 1 and d = 2 in Table 5.9, smaller
bandwidth is always obtained with d = 1. Therefore, the standardized returns are
estimated by the scale function with power one. The fitted APARCH, EGARCH
and CGARCH models of orders (1,1), (1,2), (2,1) and (2,2) are fitted to the stan-
dardized returns. The BIC values are listed in Table 5.10. In this example, the

best order of all cases is also order (1,1).
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Table 5.10: BIC of all selected models of BMW

T 09:30  11:00 12:30  14:00  15:30

APARCH-t(1,1) 2.7862 2.7904 2.7923 2.8003 2.7906

APARCH-t(1,2) 27897 2.7933 2.7958 2.8039 2.7941
APARCH-t(2,1) 27931 2.7973 2.7993 2.8073 2.7964
APARCH-t(2,2) 2.7965 2.8002 2.8016 2.8108 2.7996
EGARCH-t(1,1) 2.7842 2.7881 2.7905 2.7988 2.7892
27912 2.7938 2.7969 2.8058 2.7933
EGARCH-t(2,2) 2.7945 2.7968 2.7995 2.8049 2.7968
CGARCH-t(1,1) 2.7959 2.7976 2.8004 2.8055 2.8026
CGARCH-t(1,2) 2.7995 2.8000 2.8037 2.8092 2.8064

2.7996 2.8013 2.8041 2.8092 2.8041

)
)
)
)
)
EGARCH-t(1,2) 27878 2.7909 2.7941 2.8024 2.7927
)
)
)
)
CGARCH-t(2,1)
)

(
(
(
(
(
(
EGARCH-t(2,1
(
(
(
(
(

CGARCH-t(2,2) 2.8027 2.8035 2.8071 2.8119 2.8076

In the following tables, the shape values at 09:30, 11:00, 12:30 and 14:00 are
between 5 and 8. The distribution is nearly heavy tails and the eighth moment
of the models does not exist but the fourth moment exists. At 15:30 the shape
values of the APARCH, EGARCH and CGARCH models are all larger than 8§,
meaning that the distribution is also nearly heavy tails and the eighth moment
exists. Also, it is found in the tables that the estimated leverage parameters ~y
of the APARCH(1,1) model at 09:30, 11:00, 12:30 and 15:30 are 0.72, 0.8, 0.81
and 0.797, indicating a strong leverage effect, while at 14:00, the value of v is just
0.37, showing that the leverage effect is weak. The estimated sign effect a of the
EGARCH(1,1) model at these five trading time points are -0.072, -0.069, -0.062,
-0.056 and -0.09, which are all smaller than 0. The leverage effect exists in the
EGARCH model and it reach its peak at 15:30 and its low at 14:00.

In the CGARCH(1,1) model the estimated « are larger than 0.99 and ¢ are

equal to 0 at the trading time points. The sum of o« and [ are around 0.9 but
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Table 5.11: Estimated coeflicients of the selected models of BMW at 09:30

APARCH(1,1)

EGARCH(1,1)

CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

1 0.0260 0.0191 0.0261 0.0185 0.0370 0.0193

w 0.0597 0.0185 -0.0012 0.0046 0.0070 0.0005
o 0.0471 0.0152 -0.0726 0.0230 0.0602 0.0199
51 0.9009 0.0253 0.9392 0.0555 0.8522 0.0654
o0 0.7239 0.3196 0.0941 0.0539 - -

0 1.2406 0.3924 - - - -
mi - - - - 0.9932  0.0000
n21 - - - - 0.0000  0.0000

shape 6.5687 0.9092 6.5137 0.9122 6.3533 0.8636

Table 5.12: Estimated coefficients of the selected models of BMW at 11:00

APARCH(1,1)

EGARCH(1,1)

CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

I 0.0278 0.0194 0.0281 0.0193 0.0372 0.0193

w 0.0752 0.0269 -0.0006 0.0045 0.0060 0.0004
o1 0.0426 0.0168 -0.0692 0.0183 0.0632 0.0187
51 0.8898 0.0354 0.9276 0.0260 0.7930 0.0713
Y1 0.8004 0.4057 0.0843 0.0292 - -

1) 1.1979 0.3336 - - - -
M1 - - - - 0.9942  0.0000
721 - - - - 0.0000  0.0000

shape 6.0425 0.7978 5.9940 0.7878 6.0006 0.7820
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Table 5.13: Estimated coeflicients of the selected models of BMW at 12:30

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

I 0.0363 0.0158 0.0340 0.0194 0.0386 0.0195
w 0.0661 0.0219 -0.0018 0.0045 0.0050 0.0003
o1 0.0453 0.0137 -0.0617 0.0175 0.0644 0.0186
51 0.9019 0.0302 0.9276 0.0254 0.8041 0.0671
Y1 0.8082 0.2651 0.0956 0.0291 - -

1) 0.7496 0.3598 - - - -
M1 - - - - 0.9951 0.0000
n21 - - - - 0.0000 0.0000

shape 6.7253 0.9246 6.6818 0.9171 6.6061 0.8890

Table 5.14: Estimated coeflicients of the selected models of BMW at 14:00

APARCH(1,1) EGARCH(1,1) CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

1 0.0317 0.0198 0.0317 0.0191 0.0386 0.0196
w 0.0945 0.0340 -0.0021 0.0050 0.0028 0.0002
a1 0.0502 0.0181 -0.0557 0.0179 0.0633 0.0170
51 0.8547 0.0445 0.9140 0.0287 0.8192 0.0598
Y1 0.3677 0.2215 0.1083 0.0293 - -

0 1.7718 0.7278 - - - -
M1 - - - - 0.9973 0.0000
721 - - - - 0.0000  0.0000

shape 7.6362 1.1848 7.6910 1.2046 7.4619 1.1223
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Table 5.15: Estimated coeflicients of the selected models of BMW at 15:30

APARCH(1,1)

EGARCH(1,1)

CGARCH(1,1)

coef. s.e. coef. s.e. coef. s.e.

1 0.0203 0.0197 0.0172 0.0197 0.0337 0.0196

w 0.1006  0.0276 -0.0034 0.0056 0.0008 0.0000
o 0.0493 0.0217 -0.0898 0.0199 0.0644 0.0157
51 0.8462 0.0362 0.9018 0.0259 0.8229 0.0472
o0 0.7967 0.4200 0.1152 0.0275 - -

1) 1.5174 0.4334 - - - -
mi - - - - 0.9992 0.0000
n21 - - - - 0.0000  0.0000

shape 8.6502 1.4846 8.6297 1.4785 8.0625 1.2700

smaller than 0.99. The correlation of these parameters is obvious 0 < (a + ) <

p < 1 . Therefore, volatility can reflect the shock immediately. The volatility

impact on the short-run component diminish soon but last long on the long-run

component.

In the figures, if there is positive news, the APARCH and EGARCH models

have lower volatility than the CGARCH model as the marked area by square and

have higher volatility for negative news as the marked area by circle. Moreover,

the negative news causes a larger change than positive news. However, at 14:00

the APARCH model expresses a weak leverage effect. From Fig. 5.19, the leverage
effect also cannot be detected by comparing with the EGARCH and CGARCH
models. For the CGARCH models, the first few estimations can also be neglected.
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BMW ized returns and fitted volatility at 9:30 from Jan 2006 to Sep 2014

© standadized returns
= | — fited volaflty with APARCH-(1,1

T
a

14
!
—_—
T
2

fitted volatility
1.2,
L

T
1.0
L
T
-2

T
[
standadized returns

8
-4

- standadized returns
— fitted volafiljy with EGARCH-t(1,1 | .
@
T “ ‘ £
> >
= F oo
£ 1 B
T o
o~
> | o 08
T o
ge S
h=gd I ol
i '@
| K
@ J
° -

-4

T
4

4 standadized returns
— fitted volatility with CGARCH-(1,1)

1]
: £
Zz° L o2
£ ﬂ \ B
©
3n ] i I L%
% B
= T
= | anC
= 's
[}
Z— T T T T T
2006 2008 2010 2012 2014
Figure 5.16: The volatility series of different models of BMW at 09:30
BMW standadized retumns and fitted volatility at 11:00 from Jan 2006 to Sep 2014
] e v Il -
1]
< | .E
ol =
g ‘ 8
S L oo
Rl g
E | i) ‘ ‘ og
= ot
[

T
-4

T
4

- standadized returns
— fitted volatiity with EGARCH-t(1,1

b i g
z 2
= 8
©q T
S | Lo
o~ o
> i N
T I T
£ i | I og
=2 4 =)

£

[

T
-4

T
4

@
= standadized returns
— fitted volatility with CGARCH-(1,1

T
2

fitted volatility
14
L
T
0
standadized returns

1.2
!
T
-4 -2

1.0
T

=

T
2008 2008 2010 2012 2014
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returns and fitted volatility at 12:30 from Jan 2006 to Sep 2014
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BMW standadized returns and fitted volatility at 15:30 from Jan 2006 to Sep 2014
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Figure 5.20: The volatility series of different models of BMW at 15:30

5.4 Final remarks

In this chapter, the semiparametric volatility models are applied to the high-
frequency returns at fixed trading time points by introducing a smooth scale func-
tion into the standard GARCH model. Therefore, the conditional heteroskedas-
ticity and scale change in a financial time series can be modeled at the same time.
In the empirical research, the semiparametric model works well with the data at
fixed trading time points. It can express the trend of the returns and the leverage
effect at the different trading time points. The SemiAPARCH and SemiEGARCH
model show up the leverage effect and in the SemiAPARCH model, the leverage
effect is obvious. In the SemiCGARCH model, the immediate shock impact on
the short-run component is detected and the persistence in the long-run is also

strong.



CHAPTER 6

A Box-Cox semiparametric

multiplicative error modell

A general class of SemiMEM (semiparametric multiplicative error) models is pro-
posed by introducing a scale function into a MEM (multiplicative error) class mod-
el to analyze the non-negative observations. The estimation of the scale function
is not limited by any parametric models specification and the moments condition
is also reduced via the Box-Cox transformation. For the purpose, an equivalen-
t scale function is applied in a local linear approach and converted to the scale
function under weak moment conditions. The equivalent scale function estimation
and the bandwidth, the constant factor in the asymptotic variance and the power
transformation parameters estimation are proposed based on the iterative plug-in
(IPT) algorithms. In the power transformation estimation, the maximum likeli-
hood estimation (MLE), the normality test and the quantile-quantile regression
(QQr) are employed and simulation algorithms for the confidence interval of esti-
mated power transformation parameter are also developed by the block bootstrap

method. The algorithms fit the selected real data well.

6.1 Introduction

The MEM model was built up by Engle (2002) to model the common non-negative

financial data in practice, such as the mean duration (MD), the absolute returns

IChapter 6 is based on the working paper: A Box-Cox semiparametric multiplicative error

model (Zhang, 2019a), CIE, 2019-05.
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(AR), the trading volume (VO) and the trading number (TR). The MEM models
were first developed as autoregressive conditional duration (ACD, Engle and Rus-
sell, 1998) model for featuring the stochastic process of the time between events.
Manganelli (2005) applied the MEM model to the non-negative expected trading
volume series and proposed the autoregressive conditional volume (ACV) model.
Besides, the MEM framework was extended to a more general functional form
by Box-Cox transformation. The Box-Cox ACD model (Dufour and Engle, 2000;
Hautsch, 2002; Fernandes and Grammig, 2006) were proposed as a flexible model
to analyze the process of the conditional mean to recent durations based on Box-
Cox transformation. If the Box-Cox parameter reduces to zero, the duration can
be modeled by the Log-ACD model (Bauwens and Giot, 2000) or the EACD mod-
el (Karanasos, 2008) and the log-data follows an ARMA process. Recently, the
MEM model is also applied widely. Taylor and Xu (2017) proposed a log-vMEM
model, discussing the cross-dependent error terms and the non-negative condition-
al mean without any restriction. The multiplicative error model with volatility
jumps (MEM-J, Caporin et al., 2017) was developed to investigate the probability
and density of the extreme values in the daily volatility. The MEM model is al-
so feasible under the semiparametric framework, such as the SemiGARCH model
(Feng, 2004), the Spline-GARCH model (Engle and Rangel, 2008), the general
Box-Cox SemiGARCH model (Zhang et al., 2017), etc.

In this chapter, a general class of semiparametric MEM model, applying a
time-varying scale function with the Box-Cox transformation into the MEM mod-
el to analyze the non-negative financial time series, is developed. Nonparametric
estimation of the scale function is studied in detail. It is shown that the scale
function can be estimated using nonparametric regression based on the Box-Cox
transformation of the data and it is closely related to its equivalent scale function,
which is obtained in the local linear regression. Note that the difference between
the scale function and the equivalent scale function is only a constant parameter,
depending on the power transformation of the data under a weak moment condi-
tion, while, the parametric model can be also estimated under the weak moment

condition after removing the long term trend component. An iterative plug-in
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(IPI, Gasser et al. 1991) algorithm is developed for the bandwidth, the power
parameter and the lag-window estimator c; selection. Following Beran and Feng
(2002), the initial bandwidth is selected by exponential inflation method (EIM) as
bo = T~°/7 instead of that with the power minus one of the sample size (Gasser et
al., 1991) to minimize the rate of mean square error (MSE). In the ¢; estimation,
the spectral density at the origin is of great interest and the data-driven algorithm
(Bithlmann, 1996; Feng and Gries, 2017; Feng et al., 2019) are employed according
to the Bartlett-window, leading to an optimal c¢; choice rather than manual input.
Meanwhile, the power transformation parameter is also estimated in the data-
driven algorithm with various criteria, such as the maximum likelihood estimation
(MLE, Box and Cox, 1964), the normality test (Jarque-Bera test, JB; Shapiro-
Wilk test, SW) and the quantile-quantile regression (QQr). A block bootstrap
method is put forward to the power transformation parameter confidence interval
(CI) estimation without sample distribution assumptions due to its dependence.
The simulation results show that the absolute values of the power parameter are
far smaller than one, satisfying the requirement of the weak moments conditions
in real financial markets and the properties of the power parameter depend on the
considered sample classes, e.g. for trading volume, the power parameter is about
zero, indicating a possible logarithmic data transformation. Finally, the selection
of the above parameters are implemented in the same IPI procedure and all the
parameters can achieve a convergence value in a few IPI steps. The applications

to the non-negative data samples show that the algorithm is feasible.

The chapter is organized as follows. In Section 6.2, the model is interpreted.
Section 6.3 proposes the semiparametric estimation and the properties of the es-
timators. The data-driven algorithms are raise in Section 6.4. Data examples in
Section 6.5 show the proposal works well in real financial markets. Section 6.6

concludes the chapter. The proof of some results is provided in the appendix.
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6.2 The model

A general SemiMEM is proposed to analyze the nonnegative financial data. To

reduce the moment condition, the Box-Cox transformation is also introduced.

6.2.1 The SemiMEM model

Let zq,...,x,, denote the observed non-negative observations. The MEM model
was introduced by Engle (2002) for modeling positive time series. The MEM class
is a wide class of models including the ARCH and GARCH family as a special case.
Numerous parameterizations for the expected variables are proposed and studied
in the literature. In this section, the MEM will be generalized to a semiparametric
class by introducing a smooth mean function into the parametric MEM model
so that slowly changing dynamics caused by the economic environment can be

modeled. This leads to the conditional distribution defined by

X = m(m)eny, (6.1)

where 7, = t/n is the rescaled time, m(-) > 0 is a smooth trend, which is the
localized unconditional mean function or the scale function in Xy, ¥; > 0 denote

the conditional mean, 7; > 0 are i.i.d. innovations with unit mean and

Ty = Py (6-2)

is the descaled stationary process. Throughout this chapter, the notation of the
condition, i.e. the past information set, F;_; will be omitted for simplicity. The
use of re-scaled time 7; € [0,1] is a standard technique in nonparametric regres-
sion with time series errors. Due to E(z¢|F;_1) = Ve E(n:|Fi—1) = 1y, it is obvious
that 1), is the conditional mean. To ensure that model (6.1) is uniquely defined,
it is assumed that E(¢;) = 1. However, it is not necessary and the quantities
E(n;) and E(1;) may also be determined by the situation under consideration
or by the estimation procedure used. This model will be called a varying scale

MEM model (VSMEM), which is also indeed the SemiMEM model (Feng (2014),
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Feng and Zhou(2015)). Equation (6.1) defines indeed a sequence of models. The
process {X;} is nonstationary unless m(-) is constant. But it can be shown that
the SemiMEM model is locally stationary following Dahlhaus (1997). Our pur-
pose is to develop consistent data-driven estimators of m(-) under certain moment
condition E(XF) < oo, where k > 0 is a real number, e.g. k = 2. Then an
approximation of the descaled stationary process z; can be achieved which can
be further studied following some known proposals in the literature. We will see
that the use of some suitable power transformation X} works well, where with

IA| < k/4 is an exponent. Note that X;* belongs to the SemiMEM class.

A closely related class of models is the general semiparametric GARCH frame-
work proposed by Feng (2004). The definition of such a model in the second order

sense is given by
Ty = S(Tt) \V htgty (63)

where s%(-) > 0 is the variance of r;, h; is the conditional variance and ¢; are
i.i.d. N(0,1) innovations. The descaled stationary process & = +/h;e; stands
for an ARCH type model. It is assumed that E(h;) = 1 to ensure that the
model is well defined. Here s%(-) is the scale function in r? and s(-) is the scale
function in ;. Due to the assumptions E(¢?) = 1 and E(h;) = 1, we have
E(r?) = s*(r;). But s(7;) is not the mean of |r;|. We will see that the difference
between s(1y) and E(|r;|) is a constant factor depending on the distribution of
&. Model (6.3) will be called a varying scale GARCH model (VSGARCH, also
SemiGARCH). A nonparametric trend in the mean or a parametric regression
for the mean based on some exogenous variables can also be included in (6.3).
Assume again that E(rF) < oo with e.g. k = 4. The scale function s(-), up to
a constant factor, can be estimated consistently from |r,|* by some data-driven
nonparametric regression algorithm, provided 0 < A < k/4 is used. Again, |ry|*

also belongs to the SemiMEM class.

We see, m(-) in (6.1) and s(-) in (6.3) can be estimated in the same way. And
the conditional mean 1 in (6.1) can also be modeled following the idea of ARCH
and GARCH models for the conditional variance h; in (6.3) (Engle, 2002). But
the SemiGARCH and SemiMEM classes do not coincide with each other. On
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the one hand, the signs of the observations of a SemiGARCH process may play
an important role theoretically and in practice. Hence an original SemiGARCH
process is not a member of the SemiMEM class. On the other hand, if the original
process is non-negative, e.g. a duration process, it is of course not a member of

the SemiGARCH class.

The descaled z; in (6.2) process can be modeled following any suitable pa-
rameterization. Different parameterizations will lead to different semiparametric
models. For instance, if X; is a duration process, 1; can then be modeled by the

well known ACD model introduced by Engle and Russell (1998) with
p q
=00+ Y oimii+ Y B, (6.4)
i=1 j=1

where p and ¢ are the orders, ag > 0, a, ..., ap, Bi, ..., By > 0 are unknown param-
eters such that )37 | a; + 37, B; < 1. Equations (6.1) and (6.4) together define
a semiparametric varying scale ACD model (VSACD, also SemiACD).

The overall mean in the SemiACD model can be thought of as a weighted
sum of the unconditional local mean m(7;), the last ¢ conditional means and the
last p observations, which reflect long run, middle term and short term dynamics
in the mean of X;. Their weights are 1 — Y a; — > 5;; b1, ..., By; and aq, ..., ay,
respectively. Due to the restriction of the conditional mean, the scale parameter,
Qyp, is no more a free parameter, because it holds ap = 1 — > o; — > ;. That
is ap in the conditional mean of the rescaled process is itself the weight for the
unconditional local mean. The difference between the ACD and the SemiACD is
just that the unconditional mean in the former is a constant but it is a smooth

nonparametric function in the latter. Moreover, let m; = m(7;)1;, we have
p q
my = ao(T) + Z ;X + Z Bimi_; +O(n™"), (6.5)
i=1 =1

where ag(7:) = apm(7) is a time-varying parameter. We see, the SemiACD model

is approximately an ACD model with a time-varying scale parameter.

In the remaining part of the chapter, only the estimation of m(-) in (6.1)
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and the estimation of the unknown parameters in (6.4) based on the descaled
data will be discussed in detail and the estimation of s(-) in (6.3) and of the
unknown parametric parameters can be done following the same procedure. The
scale function m(-) will be first estimated without using any further parametric
assumption. It allows further parameter estimation under different, not only the

ACD, specifications.

6.2.2 The Box-Cox SemiMEM model

The discussion of the scale function m(-) and the conditional mean ¢, in the
SemiMEM model are always considered. In the section, we study the estimation
of the slow scale change based on the Box-Cox power transformation z; for some
|A| < 1. Here a nonparametric estimator of the scale function in x; will be esti-
mated first. Then the back-transformed estimator will be used. We will see that
the resulting estimator is usually not a consistent estimator of m(-) but of some

equivalent scale function.

In this section, any function of the form m(n) = C - m(r) with C' > 0 will
be called an equivalent scale function. Because &; = X;/m(7), then 7, = Cla,
is a stationary process having the same properties as x; but with a different scale
parameter. Hence the resulting estimator based on x; can be used to remove the
effect of the slowly changing scale in X;. There are different further transforma-
tions, which can be used for estimating an equivalent scale function. The power
transformations (or equivalently the Box-Cox transformations with |[A| < 1) are
just the most simple examples. For a more general description on this point, we

refer the reader to Eagleson and Miiller (1997).

We see, the development of a consistent data-driven estimator is always possible
based some power transformation. If it is assumed that E(X;) < oo, the maximal
allowed A is 1/4. For conducting maximum likelihood estimators of the unknown
parameters, the condition E(X?) < oo was indicated by Lee and Hansen (1994)
and Engle and Russell (1998). Now, |A| < 1/2 can be used. Assume that E(XF) <
0o. Let § = min(k/4,1) for some |A| < 6. We have the Box-Cox SemiMEM model
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as

Xi = m(7e)ze,5, (6.6)

where z, ) is stationary with E(x;\) = 1. If x, ) satisfies a specific parameter-
ization, e.g. an ACD process, model (6.6) becomes a Box-Cox SemiACD (or a
/A

Box-Cox VSACD) process. Obviously, the stationary process z;) = c;l xr; and
the equivalent scale function m(r) = my(r) = C)l\/ *.m(r). The value of Cy
is determined by A and the marginal distribution of x;. Under the assumption
E(z:) =1 as used in (6.2) we have Cy = 1. This shows again why commonly pro-
posed estimators of m(-) are based on x;. However, model (6.1) can also be defined
according to the Ao-th moments of the process for some |\g| < k/4. That is, we
can assume that E(x)°) = 1 and F(;°) = 1. This implies that E(X;°) =: my,(7)
is the scale function in X;°. Under this definition we have Cy, = 1. The Box-Cox
SemiACD model in the section has a close relation with the parametric Box-Cox
ACD model, i.e. if the power parameter is nonzero, a varying scale Box-Cox ACD

is considered and if the power parameter is zero, then the model reduces to a

logarithmic form.

6.3 The model estimation and properties

The Box-Cox SemiMEM models can be estimated using a semiparametric proce-
dure. The scale function can be estimated and removed under very weak moment
condition based on suitable power transformation of the data. The conditional

variance can be analyzed using any parametric model.

6.3.1 Estimation of m)(n)

In Efromovich (1999), the scale function can be estimated by a general nonpara-
metric regression process. Following the proposal, Equation (6.6) can be written

as a nonparametric regression model

X7 = gx(7) + 9a(7)Cen, (6.7)
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where g\(7) = ecxm™(y) = [ma(m)]* and G\ = 27, — 1 with E(¢\) = 0 and
var ((;n) = 1. Hence g¢,(-) can be estimated for instance by kernel (Feng and

Heiler 1998 and Feng, 2004) or local liner regression (Fan and Yao, 1998).

Since by definition the observations z; are non-negative, kernel estimates of
gx(7¢) based on non-negative kernels are always positive. However, at boundary
points (i.e. 7z < bor 7 > 1 — b), the rate of convergence of kernel estimators is
lower than in the interior unless boundary kernels are used. Alternatively, one may
use local linear estimates which have the same rate of convergence for all 7, € [0, 1].
However, boundary kernels or local linear regression lead to estimates that may be
negative at boundary points. We therefore propose to use the estimator g,(7;) =

|gx(7)| where gx(7;) = ao(z) is a local linear estimate obtained by minimizing

Qag.ar) = > {X} —ao(r) — ar(7)(m — 1)} K (Tt - T) (6.8)

with K being a symmetric non-negative kernel function and 0 < b < % the band-
width. Using gx(7) instead of §\(7;) can be justified as follows. First, note
that gx(7¢) = gx(7), if ga(re) > 0. If ga(z) < 0, we have |g\(7¢) — ga(72)| =
gx(7e) + |9x ()| and |ga(7e) — ga(7)] = |[ga(7e)| = 9x(7e)| < ga(7e) + |ga(7e)[. Hence
El(gx(1t) — gx(1))?] < E[(gx(7¢) — ga(7))?]. That is the MSE of §,(7) is no larger
than that of gy(7;). Moreover, the possibility of negative values is a finite sam-
ple problem and can only occur at boundary points, because in the interior the
weights of a local linear estimate are exactly equal to the kernel weights and are
hence non-negative. Finally, even at a boundary point, §(7;) and g,(7;) coincide

with asymptotic probability one, as shown in Zhang et al. (2017).

Let that m(-) be a consistent estimator of my(-), we can obtain i}, =

ﬂft,A/[?ﬁA(Tt)]l/A

is an approximation of the stationary process xy,. Define Z; \ =
X}, then = Zix/m(73) is its approximate estimation of x;) with Box-Cox

transformation. A suitable parametric model can be fitted to either &, or Zf,.

Assume that the moments condition F(XF) < oo and E(zf) = 1 hold, for
k # 0. The scale function m(7;) in the Box-Cox SemiMEM model is estimated by

its equivalent scale gy(7:) as m(r) = (j;l/)‘ - ga(7¢), where (j;lM = [2 > af, VR,
t=1
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Zhang et al. (2017) discussed the estimation under a Box-Cox SemiGARCH frame-
work and the constant parameter of the equivalent scale function is regarded re-
lated to the mean of the stationary second order stationary process. Following
the definition of Box-Cox SemiMEM model, for A # 0, we can conclude that the
scale function is estimated by its equivalent scale function as my () = c}\/ Min().

Then,

X = m/\(Tt) * T

= ci/)‘ -m(T¢) - Tex
=m(m) - x4, (6.9)

/A

it is obvious that x; y = c)_\1 z;. Under the assumptions of Proposition, if E(zf) =

1 and k£ # 0 hold, the power k-th expectation of the transformed non-negative

variable is

=" (6.10)

Also, the constant for the equivalent scale function is

o' = (B )R (6.11)

)

Obviously, if the stationary process follows a GARCH process and a second

order transformation, the constant of the equivalent scale function is

—1/x _
C)\ —

(6.12)
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and for the ACD model, under the assumption E(x;) = 1, the constant reads as
e = B(yy)
1 n
= D da, (6.13)
t=1

which is indeed the mean of the stationary process.

6.3.2 Properties of §)(7)

The asymptotic properties of §,(7) are similar to those of a local linear estimator
of the mean function in the presence of heteroskedastic time series errors and are
closely related to known results on nonparametric regression with dependent errors
(see e.g. Altman, 1990, Hart, 1991 and Beran and Feng, 2002). The results given

in this section do not depend on any parametric specification of x; ,.

Note that a local linear estimator at point x generates an equivalent kernel
K (u) which is the same as K (u) for b < 7, < 1—b and equal to a boundary kernel
at boundary points. To reduce the variance, we will use a varying bandwidth b,
at boundary points, such that the length of the window is always 2b. For kernel
functions K and K, define R(K) = [ K*(u)du, I(K) = [v*K(u)du, R(K) =
[ K*(u)du and I(K) = [4*K(u)du. Furthermore, let (k) = cov(zx, Trix ).
Assume that y(k) are absolutely summable and ¢y denotes the value of the spectral
density of x; » at the origin A = 0. Under the assumptions Al through A5 stated

in the appendix the following holds, as n — oo, b — 0 and nb — oc:

The bias and variance of g,(7;) are

Bloa(m)] = B(in(r)) — r(m) = g0264(r)I(K) + o), (6.14)
and
. 2mcrgi(ri) R(K) 1 V; 1
var(ga(m)) = 9 e +o0 <nb7> = +o (an) : (6.15)

where V, = 2mcpg3 () R(K)/(nb,).
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Based on the bias and variance of the estlmated equivalent scale function, the

mean integrated squared error of gy, MISE(g,) f{gA — gx(7)}3dT, is
2drI*(K) 2 YdTR(K 1
MISE(ga )—b4f 4T >+ mer J 3 (7) 2 R )+max{0(b4),o(—b }
n n

(6.16)

Then, the asymptotically optimal bandwidth, which minimizes the dominating

part of the MISE is given by

e R(K) fg)\(T 1o -1/5 — (97 R(K) ](gi) 1/5 1
bA_(2 fp(K)f[gx(T)]QdT> ! _(2 ff?(K)I[(QK)2]> (6717)

where I(g3) = [ g3(r)dr and I([g})?) = [lg}(r)dr.

Further, if a bandwidth b = o(b4) is used, the bias is asymptotically negligible

and

Vnb[gx — ga] — N(0,V), (6.18)

where V is as V = 271c; g3 R(K)/(nb).

Note that both the kernel K (u) and the bandwidth b, in the bias and variance
of g(ry) depend on 7;. But the effect of boundary points on the MISE of g is
asymptotically negligible. Thus, the asymptotically optimal global bandwidth
can be calculated using the MISE over the whole interval 7, € [0,1]. Eq. (6.17)
provides the basis for developing a plug-in bandwidth selector. The difference
between the formula of the optimal bandwidth b4 here, compared to nonparametric
regression with i.i.d. errors is that the two unknown constants ¢; and I(g,) are
different. Here, the factor ¢y measures the effect of the stationary time series errors
on by. The constant I(g,) is determined by the (deterministic) heteroskedasticity
characterized by the scale function in (6.7). The result of Eq. (6.18) shows that gy
is asymptotically unbiased and asymptotically normal if a bandwidth of a smaller

order than b4 is used.
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6.4 The data-driven algorithms

In this section, data-driven estimation algorithms of the bandwidth and the c;
selection are developed. Besides, a bootstrap method is proposed to simulate the

confidence interval of the power parameter.

6.4.1 The bandwidth selection

In this section, we develop a data-adaptive bandwidth selector for the SemiACD
model following the iterative plug-in method (IPI, see Gasser et al. 1991). For
simplicity, global bandwidth selection will be considered. The plug-in bandwidth
selector is based on an iteration algorithm where estimates of ¢z, I(g3) and I([g}]*)
are plugged into (6.17). The key point here is the estimation of I([g}]?), because
the estimation of ¢y and I(g3) are relatively easy. The IPI method has been
extended successfully to nonparametric regression with time series errors (see e.g.
Herrmann et al. 1992, Brockmann et al. 1993, Beran and Feng 2002 and Ghosh
and Draghicescu 2002). We will, therefore, use this approach here.

Let b;_; denote the bandwidth in the (j — 1)th iteration. The IPI algorithm
estimates ([g}]?) in the jth iteration by I;([g}]?) = n~" é[g’;j (7:)]?, where g3 ()
is estimated using a bandwidth by; obtained from b;_; by a so-called inflation
method. The word ‘inflation’ comes from the fact that by; is much larger than that
the bandwidth for estimating m itself. Once the estimate I;([¢7]?) is calculated,
it is inserted into (6.17) to calculate b; in the jth iteration. This procedure is

repeated until the selected bandwidth converges.

Two choices have to be made to define the algorithm. One needs to fix an
initial bandwidth by, and a concrete inflation method has to be specified. Gasser

et al. (1991) propose to set by = n~!.

However, this bandwidth cannot be used
for estimating /(m) in the first iteration. Beran and Feng (2002) therefore suggest
by = n %7 which is a very small bandwidth but satisfies the assumptions in The-
orem 6.1. As it turns out, the final bandwidth is not sensitive to the choice of by.

However, the number of required iterations depends heavily on by. A data-driven
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possibility that reduces the number of iterations is by = Bcv where Ecv is the

bandwidth selected by the cross-validation criterion (Wahba and Wold 1975).

With respect to the inflation method, the so-called exponential inflation method
proposed (EIM) in Beran and Feng (2002) with by; = (b;_1)* (where 0 < av < 1)
is well suited in the current context. We propose to choose aw = 5/7 which means
that the rate of the MSE of I([¢/]?) is minimized. Note that, in comparison, the
original multiplicative inflation method (MIM) of Gasser et al. (1991) defined by
byj = bj_1m*/1% does not work well in the current context. The main reason is that
the rate of convergence of the estimated bandwidth is O(n~'/%) which is clearly
lower than the rate of convergence O(n~2/7) achieved by the EIM method (see the
theorem below). An additional problem with the MIM is that for large sample
sizes T' the inflation factor is too strong which often leads to poor final bandwidth.
In each iteration, I(g3) can be estimated from g, which is based on the previous
bandwidth b;_;. Since BCV is already a consistent estimator of b4, using by = l;cv

is likely to provide a good initial estimate of I(g3).

The asymptotic performance of the selected ba by the IPI algorithms in the
following subsection is given by the following theorem. For this purpose, the

following assumptions are required.

Al. The scale function g,(7;) is strictly positive, bounded, and at least twice

continuously differentiable on [0, 1].
A2. The kernel K (u) is a symmetric density with compact support |[-1, 1].

A3. {z;} is a stationary ACD process defined by (6.2).

Theorem 6.1 Under Assumptions Al to A3 and the additional assumption that

E(z}) < oo, we have

ba = ba[l +O,(n~ 27 + O(n~?)]. (6.19)

A sketched proof of Theorem 6.1 is given in the appendix. The O,(n=%7)
term in (6.19) is caused by the error in ([¢7]?) and whereas the O(n~'/3) term is

due to the error in ¢;. If the parametric specification in (6.2) and (6.4) is used,
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then the (relative) effect of the error in ¢; will be of the order O(n=?/%) (see e.g.
Feng, 2004), which is smaller than O(n~'/3). However, the O(n~'/3) term is still
asymptotically negligible compared to Op(n*Q/ 7). Hence the asymptotic properties
and in particular the rate of convergence of b4 are determined by those of I ([94]?)-
Note in particular that, although the bandwidth selection problem under model
(6.7) is more complex, the rate of convergence of the selected bandwidth is the
same as for the DPT (direct plug-in) bandwidth selector proposed by Ruppert et al.
(1997) in the context of nonparametric regression with i.i.d. errors. Furthermore,
ba is not well defined, if g\(7:) = go, because I([g}]?) = 0. Nevertheless, the
SemiACD model and the proposed algorithm are still applicable in this case. For
instance, if y; follows an MEM model, it can be shown that b; converges to a
nonzero constant as j — co. Besides, it can be shown that 6 (obtained from ;)
has the same asymptotic properties as 0 (obtained from the MEM observations z;),
because b >> O, (n~%/?). Moreover, suppose that no maximal number of iterations
is fixed. Then (nb;)~! is asymptotically of the order n~* though b; < 1. Therefore
gx(1) is y/n-consistent, with some loss in efficiency compared to a parametric

estimator.

6.4.2 The c; estimation

The remaining unknown quantity cy can be estimated using any nonparametric

estimator of the spectral density. The spectral density of x; , is

o0

fO) == ) ke —r <A< (6.20)

If A = 0, we can obtain that ¢y = f(0). In the following, we will use the lag-window
estimator with the Bartlett-window (see e.g. Priestley, 1981)

K
g1 .
=5 ]g Kwk%‘(k) (6.21)

to estimate the cy. In the formula, 4;(k) denotes the sample autocovariance at lag

k calculated from the residuals in the (j — 1)th iteration, wy =1 —k/(K + 1) and
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K << T is the bandwidth of the lag-window, included in ¢;.

The optimal choice of K is of the order O(n'/3). To focus on the main results,

we do not address the issue of data-driven algorithms for selecting K. In the

applications we will use K = [c;n!/%] with ¢; selected in the same IPI algorithm.

The proposed IPI data-driven algorithm, including the bandwidth selection with

power transformation and the ¢y estimation, reads as follows:

1. Select by using the CV criterion ignoring correlations and changes in the

scale. Set 7 = 1.

2. Select bandwidth correlations and changes in the scale, using J; IPI-iterations.

3. In the j-th iteration for 7 > J; carry out the following calculations:

a) Estimate g, () with b;_; and let 2, , = X, /[ax ()]

b) Estimate ¢; with the Bartlett-lag-window estimator.

i)

i)

iii)

Set the starting Bartlett-window as My = [n/2], where |-] is the

integer part.

Global estimation. Following Biihlmann (1996), estimate the inte-
gration of the first derivative [ f((X\)d\ with the Bartlett-window
width K} = K 1/ n?/?' Insert the estimates into the optimal glob-
al window width equation (Biithlmann, 1996, Eq. 5), then calculate
K. Increase j by one and repeat the above procedures until the
selected K converges or reach the maximal 20 iterations. Denote

the selected optimal global window width as K.

Local estimation. Calculate [ f((\)dA with the optimal local win-
dow width K, = Kg/n??' and insert the estimates into optimal
local window width equation (Biihlmann, 1996) with A =0

3 JZ(F()?)dA 173
37 FO(A2dN

Kopt =n (622)

The finally selected Bartlett-window width is denoted as K = Kopt.
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¢) Denote by I(gy) the estimate of I(gy) obtained using b;_; and by I(g¥)
the estimate of I(gy) based on bandwidth by; = b?é ". Consider the
power transformation parameter in the range [—1, 1] and let the power
transformation parameter increase interval be 0.01. In the k-th iteration
with k£ > 1, estimate the trend gy, (7) using M\v_1. Remove the trend
and obtain the optimal transformation parameter A\, by the MLE, JB,

SW and QQr criteria. Increase k by one and repeat the previous steps

until reach the convergence or the maximal number of iterations.

d) Improve b;_; by

. 1/5
b = (27@ f;((? I(gk)> n1, (6.23)

NS
~>
—~
Q
>33
N—

e) Increase j by one and repeatedly carry out a) to c) until convergence

or a given maximal number of iterations has been reached.

The finally selected bandwidth b4 is obtained in the last iteration of Step 3. In
the IPI procedures of the bandwidth, ¢y and the power parameter estimation, we
find that if the selected statistics converge, the values usually are not affected by
the initial inputs. Hence, the proposed IPI algorithm can be carried out without
starting restrictions. In the section for simplicity, the Bartlett-window is applied in
the ¢y selection algorithm. Besides, Bithlmann (1996) also discussed a C?-window
for the optimal window width. Finally, Feng and Gries (2017) introduced that the
estimation quality of ¢; can be improved if the optimal bandwidth for calculating

the x; , is considered and vice versa.

6.4.3 The confidence interval simulation of A\

In the previous section, we obtain the stationary time series y y, ...,z by re-
moving the time-varying scale function. For estimating the power transformation
parameter \, we propose to construct an estimator )\ based on the descaled time
series via the MLE, JB, SW and QQr criteria. The confidence interval of A at

a given confidence level with MLE has been well discussed. However, the confi-
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dence intervals depending on the other criteria, are unknown in practice and often
very complicated. Bootstrap methods provide a general solution for estimating
the confidence interval of A without the consideration of the time series model

assumptions.

The bootstrap was published by Efron (1979) for i.i.d. random variables as
a simulation method using the resampling technique to estimate the variables
distributions and the statistic inference, such as the bias, the variance, the confi-
dence intervals, the reject probability in a hypothesis test, etc. The advantage of
the bootstrap method is that the simulation algorithm requires no distribution or
parametric assumption of the under analysis data set or process. The bootstrap
provides information about the whole sampling distribution and performs com-
putational efficient rather than the other resampling technique— jackknife (Tukey,

1958), recognized as the "leave-one-out" method.

For the time series, however, the dependent and correlated data are not suit-
able to directly apply the bootstrap algorithm. As discussed by Kiinsch (1989),
Hall (1992), Liu and Singh (1992) and Politis and Romano (1993), for the de-
pendent time series data, the block bootstrap method is the potential solution
to estimate the unknown distribution by dividing the data into several blocks,
to hold the original time series dependence structure within blocks. Because the
asymptotic properties of the estimator may be affected by the block selection, i.e.
the dependence of the resampling time series is always regarding to the randomly
selected blocks. Thus, a modification bootstrap— moving block bootstrap (MBB)
was proposed by selecting the optimal block length, also recognized as the over-
lapping block bootstrap, which preserves the data structure of the original series

in each formed block. In the MBB, the length of the block is
= TLO/Nbl, (624)

where n, is the length of the original time series and Ny is the number of the
resampling blocks and according to the MBB, the independence of the [ subsam-

pling is for sure. If dependent data is considered, then an unnecessary requirement
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is
[ — oo and N;;'l — 0 as Ny — oc. (6.25)

Obviously, the selection of the block length is the most concerned problem in the
block bootstrap (Efron and Tibshirani, 1993). As indicated by Biihlmann and
Kiinsch (1999) and Biihlmann (2002), they proposed the bootstrap variance is
equivalent to a lag weight estimator of the spectral density of the bootstrapped
variable’s influence function (IF, Hampel et al., 1986) at the interesting origin and
the block length is obvious obtained as inverse of the bandwidth. Furthermore,
they also developed a data-driven algorithm, suggesting a two-step procedure se-
lecting the optimal block length in the blockwise bootstrap and in this algorithm,
the IF is estimated first, then optimal block length is obtained as the estimated
value of the lag weight spectral density with certain lag window (e.g. Bartlett
window) at frequency zero. Following the algorithm, the optimal block length is
approximate to the cubic root of the sample size. Politis and White (2004) dis-
cussed a data-based block length selection algorithm and found that the optimal

block length order for the stationary bootstrap is also one third.

Besides, we still consider a model-based bootstrap method (such as autore-
gressive bootstrap (ARB), Efron, 1979), by removing the nonstationary trend and
building up the i.i.d. error terms under the MEM model assumption. Due to the
model-based bootstrap depending on not only the parameters in models but also
the identified structure with the original data. Obviously, the model-based resam-
pling is greatly affected by both the model and its structure and the asymptotic
properties of original data can not be correctly revealed if the model misspecifi-
cation occurs, leading to the inconsistent between the built-up i.i.d data and the
original ones. In the section, the MBB methodology works very well in practice,

however, the model-based idea seems not.

There are several procedures to calculate the confidence intervals of the re-
sampling data sets, such as the percentile method, the bootstrap-t method, the
bias-corrected (BC) method, the bias-corrected and accelerated (BCa) method,
the approximate bootstrap confidence (ABC) method and calibration. For sim-

plicity, we consider only the ordinary percentile method in the chapter.
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In the percentile approach, we consider the a/2 and (1 — «)/2 percentiles of
the bootstrap distribution of \. Let the number of the bootstrap replications of A
be Ng. Then, the order statistic of A

M <A < <A < S A, (6.26)
and the bootstrap confidence interval (BCI) at the 100(1 — a))% is

where k; = [2(Np + 1)] and ky = [(Np + 1) — kz]

The percentile method gets rid of the assumption limitation of the bootstrap
variable in theory, however, if the resampling replication number is too small, the
simulation may not perform well, requiring the percentiles corrections, new resam-

pling histogram assumptions, bias-correction factors and acceleration parameters.

6.5 The empirical examples

The selection of the \ is an important issue regarding to the model selection in
the risk management. In the section, we apply the proposal to the non-negative
transaction data (MD, AR, VO and TR) of Siemens (SIE) and Deutsche Bank
(DBK) from 2000 to 2013. The MD, VO and TR data are organized as equidistant
daily data from the intraday high-frequency transaction records, meanwhile, the

AR data is calculated as the absolute returns of the daily stock close price.

From Fig. 6.1 to Fig. 6.8, the histograms of the selected A with the MLE, JB,
SW and QQr are displayed respectively. Because the sample sizes of the considered
data sets are about 3500, we apply the length of 16 (the approximate cubic root of

the size of the observation) as the optimal block length in the bootstrap procedures.
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Figure 6.2: Simulated A confidence interval of the SIE absolute returns
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In the figures, we find that the A of MD is very close to 0 in all cases and the
confidence interval also covers the origin. In Table 6.1, the CIs of SIE’s MD are
[—0.05,0.25] with the MLE, [—0.08,0.23] with the SW, [—0.15,0.22] with the JB
and [—0.07,0.25] with the QQr and he CIs of DBK’s MD are [—0.06,0.20] with
the MLE, [—0.07,0.18] with the SW, [-0.10,0.13] with the JB and [—0.06,0.19]
with the QQr.  Due to the small value \ and its CI, it seems that a logarithmic
transformation is suitable in the power transformation process. In Fig. 6.9 and
6.10, it is obvious that after the Box-Cox power transformation with ;\, both
the histogram and the Q-Q plot of SIE and DBK perform better than before.
Therefore, in the semiparametric analysis, a Semi-Log-MEM process is preferred

in this case.

Similar to the MD, the VO series also possesses an almost zero Mand a through-
origin CI, which also indicates a log-transform consideration. However, the AR set
performs a little different. The A with all methods are definitely positive and the
values are between (.32 and 0.36. Like the returns in the SemiGARCH model with
Box-Cox transformation (Zhang et al., 2017), a third-root power transformation
based on a SemiMEM process seems to be applicable to the AR series. Besides, the
results of the TR series are between the above two circumstances. The simulated
results of SIE are close to the AR-type, however, those of DBK are in the form of
the MD-VO-type. Thus, for the TR series, both the SemiMEM process and the
Semi-Log-MEM process are the possible power transformation models, depending

on the exact \ selection.
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Table 6.1: The selected A, confidence interval and bandwidth

MLE SW JB QQr
A Cl b A C1 b A Cl b A Cl b
MD 0.09 [-0.05,0.25] 0.07 0.07 [-0.08, 0.23] 0.07 0.00 [-0.15,0.22] 0.08 0.09 [-0.07,0.25 0.07
- AR 034 [0.30,0.37] 0.12 0.34 [0.30,0.39] 0.12 0.32 [0.26,0.39] 0.12 0.35 [0.30,0.39] 0.12
VO 0.05 [0.15,0.18] 0.07 0.09 [0.13,0.21] 0.07 0.16 [0.08 0.27] 0.07 0.05 [0.15,0.20] 0.07
TR 027 [0.00,0.41] 0.08 0.30 [0.03,044] 0.8 0.38 [0.08, 0.50] 0.08 0.26 [0.00, 0.43] 0.08
MD 0.07 [-0.06,0.20] 0.07 0.5 [-0.07,0.18] 0.07 0.00 [-0.10,0.13] 0.07 0.06 [-0.06,0.19] 0.07
- AR 034 [0.32,0.36] 0.07 0.35 [0.33,0.38] 0.07 0.36 [0.33,0.39] 0.07 0.35 [0.33,0.38] 0.07
VO -0.04 [-0.14,0.06] 0.08 -0.02 [-0.13,0.08] 0.08 001 [-0.11,0.12] 0.08 -0.03 [-0.13,0.08 0.08
TR 0.0 [0.04,0.23] 0.07 0.12 [-0.02,0.25 007 020 [0.02,0.30] 0.07 0.11 [-0.03,0.24] 0.07
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Figure 6.10: The histogram and Q-Q plot of SIE

To describe the simulation quality of the N's CI, we have to bring the length

(L) and shape (A) statistics into consideration. The two statistics are defined as

and

o * 3 *
L_)\kU_ kL’

A=\, -

N/, = ).

(6.28)

(6.29)
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Table 6.2: The length and shape of simulated CI

MLE SW JB QQr

L A L A L A L A

MD 030 1.14 031 1.07 0.37 147 032 1.00

AR 0.07 097 0.09 114 0.13 132 0.09 1.02

o VO 0.33 0.65 0.34 0.55 0.35 0.46 0.35 0.75
TR 0.41 0.52 041 0.52 0.42 0.40 043 0.65
MD 0.26 1.00 0.25 1.08 0.23 130 0.25 1.08
AR 0.04 1.09 0.05 1.29 0.06 1.07 0.05 1.07
DBK

VO 020 092 021 091 023 092 021 1.10

TR 0.27 091 027 093 028 0.56 0.27 0.93

In the chapter, we employ the percentile CI, which is a first-order accurate proce-
dure. If the coverage probabilities are identical, the two statistics can be applied to
detect the CI quality. Therefore, we evaluate the simulation quality of CI through
the L and A.

In Table 6.2, we can see that in most case, the lengths of the CI with MLE,
SW and QQr are always more accurate than those with JB, e.g. the CI length of
MD with the MLE, SW and QQr are 0.3, 0.31 and 0.32, however, the CI length of
JB reach even 0.37. For another, from the performance of the shape, the shapes
of the MLE and QQr are closer to one than the other two’s, which means that
the A lies closer to the center of the CI, so that the Cls selected by the MLE and
QQr are more asymmetric. In general, the CIs with the MLE and QQr perform
well in practice, while the CI with JB seems to be not as good as the other ones.
In addition, the CI with SW is not so stable, especially in the shape performance,
e.g. the VO shape of SIE is only 0.55 and the AR shape of DBK is as high as
1.29. So, in the latter descale process, we are going to apply the A by MLE (tiny

difference from \ with QQr ) as the considered power.
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Note that the CIs discussed in this section only refer to the first-order accurate
percentile CI. For the purpose of the CI modification, the second-order accurate
methods can be introduced, such as the bootstrap-t and the BCa methods (Efron,
2003). In addition to the discussed data, we have also tried the realized volatility
(RV), however the A of RV is always negative, due to the extreme values. Hence,

the RV is no longer considered here.
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Figure 6.11: Estimation results of SIE from Jan 2000 to Dec 2013
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Finally, in Fig. 6.11 and Fig. 6.12, the original and descaled data are displayed
at the left side, while the estimation of the scale function and the equivalent scale

function are at the right side.
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Figure 6.12: Estimation results of DBK from Jan 2000 to Dec 2013

Comparing the data, we can see obviously that the descaled data are more

stationary than the original ones, bringing the smaller volatility after removing
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the trend function from the nonstationary process. Further, we have to pay at-
tention to the change of the scale function. During the global financial crisis, the
transaction risk reaches its peak, combining with the high transaction volume and
numbers and low transaction duration. Therefore, we can see that the MD is at its
minimum value, however, the AR, VO and TR all reach the peak values. Besides,
the data are selected from DAX 30, where the German neuer Markt’? (2002-2003)

can also be observed by reaching the changing points in the sub-period.

6.6 Final remarks

We discussed a general SemiMEM model with Box-Cox power transformation to
analyze the non-negative data, such as MD, AR, VO and TR by selecting the
power parameter with the MLE, SW, JB and QQr criteria. In the IPI procedures,
we found that, for the MD and VO, the Semi-Log-MEM model is optimal, due to
the approaching zero A, while for the AR, the \ is significantly positive, leading
to a SemiMEM process. Both the Semi-Log-MEM and SemiMEM are suitable for
the TR, depending on the ) selection in cases. Furthermore, we have discovered
the simulated CI of A without model or distribution assumption by introducing
the block bootstrap method for dependent variables. The simulation CI quality
is also considered. With the accurate coverage probabilities, we introduced the
length and shape parameters to detect the simulated CI quality with the four
mentioned criteria and it is found that the CI qualities with the MLE and QQr
methods are better. Besides, IPI algorithms are also developed, referring to the ¢
selection. The ¢y is selected using the algorithm in Bithlmann (1996), estimating
a Bartlett-window estimator and the optimal window width is proved to be an
O(T‘l/ 3) term. Hence, in the chapter, we selected the cubic root of the sample

size as the optimal block length for simplicity.

Finally, some contributions will be possibly carried out in the future. First, the

long memory parameter can be introduced into the framework. The long mem-

2Listed companies of Nemax 50 declined sharply in share prices within three years since the

dotcom crash in 2000.
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ory models, such as the Semi-FI-MEM and Semi-FI-Log-MEM models, can be
discussed with the suitable power transformation under weak moment conditions,
developing the algorithm of the synchronous selection of the differencing param-
eter d and the power parameter A\. Then, the power transformation technique
can be updated. In the chapter, we applied the Box-Cox transformation and with
this method, the transformation is only close to the normal distribution, lead-
ing to the application of the other distribution, such as sin-arcsin distribution,
sinh-normal distribution, Birnbaum-Saunders distribution, and so on. Further,
the intraday high-frequency financial data can be introduced. Set up the spatial
general SemiMEM models by modeling the high-frequency data in the daily and

intraday dimension.






CHAPTER 7

Further topics

7.1 Introduction

Financial markets have grown rapidly within the last decades and the correspond-
ing financial instruments have become difficult to handle. Issues of particular
importance are highly volatile markets that increase the level of risks for invest-
ment decisions. The need for risk indicators has led to a rapid growth in research
on the price volatility, the trading volume and the trading duration, which are the
non-negative variables in financial markets. Most of the studies have regarded the
above non-negative variables as crucial risk factors in the financial market. There-
fore, the variables are related to uncertainty, since it is crucial in risk management,
portfolio and investment decisions. As a result, the variables are approximated by
using statistical computing methods to carry out perceptible values, such as the

daily changes and intraday changes.

The most common approaches to calculate the discussed non-negative variables
is characterized in parametric, such as the GARCH model and its extensions and
nonparametric models. The restrictiveness of the GARCH models and their cor-
responding weaknesses led to a simpler and more flexible nonparametric approach
to consider the risk in the market. Besides, the bias increases with the sampling
frequency. The literature has investigated, which level of intervals is optimal and
moreover, which sampling scheme is superior. Generally, the calendar time sam-
pling, the business time sampling and the tick time sampling are discussed. In
this chapter, a new sampling method proposed by Feng, the so-called k-method,

is introduced, where each k-th observation is selected in terms of the data densi-
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ty and obviously, the first and last values of the selected observations are fixed.
Moreover, a general class of semiparametric MEM models is suggested with the
semiparametric ACD model as a special case. A Box-Cox transformation is ap-
plied in the general semiparametric MEM process. The purpose of the chapter is
to analyze the high-frequency non-negative variables with a Box-Cox semipara-
metric MEM model. A data-driven iterative plug-in algorithm introduced is used
to carry out the estimation of the scale function and the bandwidth and power
parameter A selection. The selection of the power parameter A is achieved by the
MLE and Jarque-Bera (JB) statistics. Furthermore, the selection and estimation
of appropriate parametric models are also given. The parametric models are a
general MEM class, which makes the semiparametric process as parametric model

free.

The chapter is organized as follows. Section 7.2 discusses the sampling scheme
methods of the ultra high-frequency financial data. In Section 7.3, the SemiMEM
model is interpreted and the data-driven algorithms are also provided. The empir-
ical analysis of different trading days is given in section 7.4. Finally, the chapter

ends with a brief conclusion.

7.2 The sampling schemes

In this section, the sampling schemes of high-frequency data are introduced and a
new k-method is also proposed as the sampling schemes in the following empirical

part.

7.2.1 The CTS, TTS and BTS

One major problem, which commonly arises in high-frequency data analysis, is
that not all available transactions can be implemented at one time. The number of
daily-recorded data can be overwhelmingly high, which makes the handling of the
data very difficult, i.e. a sub-grid approach is obligatory. Consequently, the first

step to select the sub-grid is to choose the sampling scheme and the second step is
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to select the target average sampling frequency (Dong and Tse, 2014). According
to Oomen (2006), the time sampling schemes were primarily differentiated as
regulators of data capturing. The calendar time sampling (CTS) scheme selects the
data or transactions on equidistant calendar time, for instance every 10 minutes.
Following the transaction time sampling (TTS) scheme, the data in event times
are without predefined and it is not equidistant. Obviously, in the TTS, each
individual transaction is recorded and the most frequently available information is
provided. Another sampling scheme is the tick-time sampling (TickTS), similar to
the T'TS but all zero returns are removed. Moreover, transactions are commonly
chosen based on regularly spaced numbers of ticks, e.g. every 5 or 10 ticks to
develop the observed price process. Besides, Dacorogna et al. (1993) proposed the
business time sampling (BTS) to analyze the diurnal and weekly seasonality in
the volatility. Practically, the CTS and TTS schemes are more widely used than
the BTS.

7.2.2 The k-method

In this section, we discuss a new sampling method, called the k-method. The idea
is to take every k-th observation of any given time series, obtaining a new series
with M intervals and M + 1 observations. M is the desired number of intervals
in the analysis and usually the same for all transaction days and its value varies,
depending only on the analysis. For the non-negative financial data set, starting
from the first observation, every k-th observation will be selected in terms of the

data density. Obviously, k£ can be determined by
k=]—], (7.1)

where N denotes the number of the non-negative observations per day and ng =
1,n1,...,n—1),nm = N should be chosen on the equal terms if possible. As al-
ready noted, the first value ng = 1 and the last value ny; = N are fixed. According
to the analysis of the non-negative variables in this chapter, M is defined equal to

510 so as to make sure that the interval of the selected series is 510 and the new
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data set contains 511 observations, including the first and last observations from
the original series. Subsequently, every k-th observation will be chosen from the

first observation to the end of the series.

The k-method is similar to the BTS, however not exactly the same. Following
the BTS, the size of the selected data set from each observed transaction day
may be different, which therefore leads to the incomparability among transaction
days. The k-method, however, allows the comparison between various selected
transaction days, since all selected data sets contain the same M + 1 observations.
Consequently, in this chapter, the k-method is carried out as the sampling scheme

method.

7.3 The SemiMEM models to high-frequency data
In the MEM approach, the non-negative data can be specified as

Xy = m(m)eny, (7.2)

where 7, = t/n denotes the rescaled time and m(-) > 0 defines a smooth trend,
which presents either the localized unconditional mean function or the scale func-
tion in X;. Moreover, the conditional mean is here given by ¢, > 0 and 7; > 0 are

i.i.d. innovations with a unit mean,

Ty = Y, (7.3)

signifies the descaled stationary process. A common technique in nonparametric
regression with time series errors is the application of a rescaled time, written as
7. € [0,1]. Since E(z¢|F;—1) = 1y, it becomes evident that 1), is the conditional
mean. In order to guarantee a unique definition of model (7.2), it is required that
E(¢y) = 1. As a result, this model is called a SemiMEM model. The equation of
model (7.2) certainly illustrates a sequence of models. In the case, if m(-) is not

constant, the process {X;} is nonstationary.

Besides, it is also studied the estimation of the slowly scale change that bases
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on the Box-Cox power transformation ) for any —1 < A\ < 1. The the SemiMEM

model with power transformation is defined as
Xt = m)\(Tt).fL"t,)” (74)

where 2,5 is noted as a stationary process with E(z;,) = 1. The Equation (7.4)

can be rewritten with nonparametric regression as

Xi = ga(71) + 9a(72)Cens (7.5)

where my (1) = c}\/Am(Tt) = [ga(7)]¥* and ¢,y is defined as () = xa/\ — 1 with
zero mean and unit variance. As indicated by Zhang et al. (2017) and Zhang
(2019a), it is suggested to use the estimator g\(7:) = |gx(7)|, where ga(7) = ao(2)

is a local linear estimate obtained by minimizing the following equation

Qag,ar) = > {z, — ao(r) — ar(r)(m — 1)} K (Tt - T) , (7.6)

where K is defined as a symmetric non-negative kernel function and 0 < b < 1/2

is the bandwidth.

The X selection algorithm in Zhang et al. (2017) will be carried out in the
chapter. A starting bandwidth b, and power parameter )\, is essential to be
defined. For \g, different values will be considered in empirical research. In this
chapter, \g will be set equal to the values, 1, -1, 0,5 and -0,5. The final values
of A and by are obtained in a six-step iteration process. Finally, it is found that
the final selected estimated value is independent of the initial inputs. Different
methods can be used to specify A, such as the MLE, the normality (JB and SW)
test and the quantile-quantile regression (QQr). In the following, the MLE, JB,
SW statistics and the QQr will be applied in the empirical work of the A selection.
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7.4 The empirical analysis

In this section, the analysis of the high-frequency realized volatility (RV), trading
volume (VO) and trading duration (TR) with Box-Cox SemiMEM models will be
carried out. In the semiparametric process, the power transformation parameter
is selected with the MLE, JB, SW and QQr criteria. Besides, parametric ACD
models with the Burr (BACD), the exponential (EACD), the Weibull (WACD)
and the Gamma (GACD) distributions are considered. In the empirical study, all

sample days are considered, however, only one day is selected to analyze.

7.4.1 The data

The data, Allianz (ALV), Siemens (SIE), BMW and Deutsche Bank (DBK) from
DAX 30 are discussed. Each data covers four weeks from 12.09.2011 to 07.10.2011,
including 20 trading days per company, to analyze the daily pattern in high-
frequency financial data. The source of data is the database Thomson Reuters.

The table below gives an data overview.

Table 7.1: The UHF observations

Obs. period
Company Average obs. Total obs.
Start End
Allianz 09 Sep, 2011 07 Oct, 2011 15559 311187
BMW 09 Sep, 2011 07 Oct, 2011 15394 307888
Deutsche Bank 09 Sep, 2011 07 Oct, 2011 25630 512600
Siemens 09 Sep, 2011 07 Oct, 2011 16560 331215

The above data sets are applied to the designed algorithm. In the first step,
the data is sampled by the k-method. The selected data has 511 observations each
day, due to the fixed open and close time points of the financial market (from 9:00

to 17:30). The non-negative financial data sets are applied to an IPI algorithm
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to obtain suitable power transformation parameters A with MLE, JB, SW and
QQr. The )\ values will also be estimated in the algorithm. Parametric models
will be fitted to the descaled standardized non-negative data. For simplicity, only

the empirical results of ALV are discussed.

7.4.2 The analysis of the intraday trading volume

In the analysis of TR, we consider the data of Allianz on September 27, 2011, as an
example. In Fig. 7.1, it shows the final selected power parameter values with the
IPI processes by JB, MLE, SW and QQr, respectively. Obviously, all A values are
identical from the second IPI procedure and the identical X is the selected conver-
gence power parameter, which is used as the power of the Box-Cox transformation.
However, as displayed in Table 7.2, we get unlike but very close A with different cri-
teria, for example, in this case, the stable A of ALV are —0.64, —0.68, —0.68, —0.73
of JB, MLE, SW and QQr, respectively. Besides, the A value is irrelevant with
the initial inputs for each criteria, defined as —1, —0.5,0, 0.5, 1, reaching the same
stable value. It is also proved in Fig. 7.1. The horizontal axis is defined as the
six IPI steps and the vertical axis is the initial starting A values. It displays the
IPI processes of Allianz with the four criteria and obviously, the A reaches its
convergence no matter how large the initial inputs are. After the 6-step process,
the power parameter A will be finally selected. As shown in the figure, it is not
important which inputs from [—1, 1] are set, because the finally selected A is al-
ways obtained the same value. It is also apparent that the data set will reach
its convergence values after the second IPI procedure, in particular in the \ se-
lection with MLE, which is common, however only a few need a third step, for
instance, the A selected via JB. Figure 7.1 also shows the average trading volume
after the Box-Cox transformation with MLE. Obviously, from the histogram, it
is possible to obtain a transformed distribution that approximates to normal, if
optimal selected X is applied. The scale function is also displayed in Fig. 7.1. In
the plots, it is found that the scale functions the example has a U-curve pattern.
The fitted parametric model and semiparametric ACD models are listed in Table

7.3. Semiparametric models perform better than parametric models form BIC and
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MSE. The semiparametric models obtain smaller BIC values with the same data

and especially, the MSE values are much smaller than those of parametric models.
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Figure 7.1: The power transformation results of ALV VO on 27 Sep, 2011
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Table 7.3: The parametric and SemiBC fitting results of VO with the order (1,1)

Para- SemiBC-

Data Model
w a1 51 y K o2 BIC MSE w o1 51 v K o? BIC MSE
BACD 17.05 0.05 0.88 - 9.54 219 5681.59 5389.63 0.10 0.13 0.76 - 1.63 0.01 621.05 0.09
EACD 12550 0.23 0.25 - - - 6629.85 5257.34 0.71 0.20 0.09 - - - 1036.95 0.09
ALV GACD 137.29 0.22 0.21 0.37 99.46 - 5703.93 5255.77 0.74 0.18 0.08 0.02 23470.00 - 85.70  0.09
WACD 7829 0.24 0.42 3.29 - - 5852.30 5306.35 0.60 0.23 0.17 3.38 - - 237.46  0.09
BACD 38.75 0.20 0.64 - 554 1.54 5951.55 11459.16 0.27 0.17 0.55 - 5.47 1.47 404.36  0.20
EACD 2559 0.17 071 - - - 6569.25 11473.04 0.20 0.16 0.64 - - - 103245 0.21
BMW GACD 36.24 0.18 0.66 0.08 983.88 -  5978.80 11457.10 1.93 0.03 -0.99 0.87 7.54 - 496.03 0.22
WACD 14.64 0.16 0.78 2.25 - - 6131.98 11559.52 0.13 0.14 0.73 2.26 - - 588.14  0.21
BACD 110.89 0.15 0.63 - 6.28 1.25 6562.66 27569.58 0.50 0.12 0.38 - 6.52 1.28 200.03 0.10
EACD 96.01 0.15 0.66 - - - 7376.96 27568.53 0.47 0.13 0.41 - - - 1037.55 0.10
Bl GACD 3946 0.10 0.82 0.26 156.45 -  6568.81 27767.33 0.54 0.12 0.34 0.04 8732.49 - 202.69 0.10
WACD 75.75 0.16 0.68 3.05 - - 6679.71 27618.81 0.33 0.15 0.52 3.06 - - 330.24 0.10
BACD 38.40 0.26 0.56 - 580 1.16 572227 5874.17 0.67 0.24 0.09 - 6.02 1.14 238.78 0.11
EACD 53.05 0.31 044 - - - 6483.37 589581 0.75 0.25 0.00 - - - 103548 0.11
SIE GACD 13.64 0.21 0.73 0.62 22.29 - 5770.09 591764 0.71 0.26 0.03 0.43  52.36 - 272.65 0.11
WACD 69.90 0.32 0.34 2.74 - - 587540 5921.77 0.58 0.14 0.28 2.93 - - 377.78  0.11
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7.4.3 The analysis of the intraday trading duration

In the following the Allianz SE data will be analyzed in detail for the given first
trading day, which is on September 12, 2011. In Fig. 7.3, the six steps IPI pro-
cedures for the lambda selection with JB, MLE, SW and QQr, respectively. The
initial lambda values as before defined as 1, 0.5, 0, -0.5 and -1. When A = 0, a
logarithmic transformation should be considered. The optimal power transforma-
tion parameter A of the Box-Cox transformation is found in the figures when the
curve reaches their convergence values. In this case, the selected A as showed in
Table 7.4, are 0.51,0.54,0.54, 0.56 for the above criteria. Besides, it is known that
the duration series, which is the time between trades, is shorter on average at the
beginning and at the end of the trading day, while about at noon durations reach
their highest values. Meaning that the trading is active at the open and close
time and reduced during midday. Here, in this figure, the diurnal pattern can be
obviously identified. The scale function has lower values also at the beginning and
the end of the day. With increasing observation values the scale function rises and
likewise, the trend decreases with the reduction of durations. Thus the estimated
trend displays the inverse U-shape that is expected for intraday durations. Fur-
ther, the fitted results of the ACD models with different distributions are in Table
7.5. It is found that the mean and variance existence condition of ACD models,
which are a+ 3 < 1 and 82+ 2a8 +2a? < 1, are satisfied by most models. Mean-
while, from the BIC and MSE values, it also supports that the semiparametric
models perform better than the parametric models. Finally, as a difference be-
tween the companies, it can be outlined that the data sets give some information
about the firms’ performance on the stock market, hence also about the size of
the companies. The highest trading activity and shortest average durations are
recognized for large scale firms. The high market capitalization shows that high
market shares and high investments are made, which approves the assumption on

the firm scale.
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Figure 7.2: The power transformation results of ALV TR on 12 Sep, 2011
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Table 7.5: The parametric and SemiBC fitting results of TR with the order (1,1)

Para- SemiBC-

Data Model
w o1 51 v K o? BIC MSE w o1 51 ¥ K o? BIC MSE
BACD 0.01 0.23 0.75 - 2.07 0.11 -127.32 0.07 0.46 0.33 0.21 - 2.19 0.15 743.74 0.27
EACD 0.01 025 0.72 - - - 125.83 0.08 0.45 035 0.21 - - - 102092 0.28
ALV GACD 0.01 0.20 0.78 195 097 - -123.05 0.07 042 030 0.28 180 1.15 - 755.45  0.27
WACD 0.01 0.20 0.78 1.91 - - -129.25 0.07 0.41 0.29 0.30 1.94 - - 749.94  0.27
BACD 0.17 0.26 057 - 1.63 024 867.83 0.50 0.31 0.27 043 - 1.60 0.18 930.27 0.50
EACD 0.17 0.25 0.57 - - - 948.98 0.50 0.32 0.26 042 - - - 101546 0.50
DMWY GACD 0.17 0.25 0.58 1.05 1.65 - 874.06 0.50 0.34 0.25 0.42 1.18 1.39 - 934.23  0.50
WACD 0.17 0.23 0.60 1.39 - 873.28 0.49 0.36 0.24 0.41 1.43 - 930.31  0.50
BACD 0.02 0.33 059 - 274 029 -950.07 0.01 0.37 0.31 033 - 285 0.29 598.62 0.20
EACD 0.02 0.34 057 - - - -553.08 0.01 0.40 0.33 0.27 - - - 102757 0.20
DB GACD 0.02 0.30 0.62 148 2.08 - -935.17 0.01 0.36 0.29 0.36 1.55 2.05 - 615.41  0.20
WACD 0.01 0.25 0.68 2.20 - - -928.89 0.01 0.30 0.23 047 2.28 - 622.13 0.20
BACD 0.02 0.20 077 - 1.89 0.03 60.02 0.10 053 024 023 - 199 0.04 77131 0.29
EACD 0.02 020 0.76 - - - 284.19 0.10 0.59 0.25 0.17 - - - 1029.69 0.29
SIE GACD 0.02 0.20 0.77 1.88 0.98 - 60.19 0.10 0.50 0.23 0.26 2.02 0.94 - 771.51  0.29
WACD 0.02 0.20 0.77 185 - - 53.96 0.10 0.51 0.23 026 195 - - 765.37  0.29
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7.4.4 The analysis of the intraday realized volatility

Take the transaction day on September 26th, 2011 of Allianz as an example. The
smoothing results are given in below Fig. 7.5. In the figure, it displays the average
realized volatility of the Allianz. The x-axis defines the time of the selected trading
day, whereas the y-axis shows the value of the realized volatility. It is interesting
that the given time series possesses a very high value at the very beginning of the
trading day. It is, however, a typical pattern for the RV, which starts very high,
reduces slightly during the day, and increases again at the end of the trading day.
The typical pattern of the RV is also known as the ‘volatility-smile‘ and is in a U-
curve shape. Therefore, Fig. 7.5 shows a common RV process, with very high value
at around 9:00 when the market begins and reduces quickly to almost zero right
after. During the day, the RV is constant with some peaks, such as at around 9:25,
9:50, 13:45 and 15:00. At 16:00, when is very close to the end of the trading day,
the RV increases again. The figure reveals well the time-varying characteristics
of the volatility. Besides, the figure displays the average RV together with scale
function, which fits perfectly with the course of the time series. The transformed
realized volatilities with MLE is also given. The level of the RV values has fallen
dramatically, however, the average RV values seem to be more stable. Due to
the changing values of the RV, a volatility cluster-effect can be recognized and
the scale function fits perfectly with the transformed RV. Furthermore, the figure
displays the standardized realized volatility after removing the trend in red. Here,
the RV looks very similar to the daily average RV, only with smaller values, but
the outliers are exactly the same. The values of the RV range from 1 to 8, but are
almost constant at around 0.7. The standardized RV also seems to be stationary

with clear clusters, except for some outliers.

An IPT algorithm is carried out in the selection of the power transformation
parameter A. The estimated A is then used as the Box-Cox power transformation
parameter in the scale function of the SemiMEM model. According to Zhang
et al. (2017), a fixed A is crucial in the financial market. In Fig. 7.5, the IPI
processes with JB, MLE, SW and QQr are displayed. In the selection, different

initial A values, such as -1, -0.5, 0, 0.5, and 1 are set and moreover, a six-step IPI
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process is applied. The used data set of Allianz on September 26th, 2011 converges
to its final A value with MLE after the 3rd IPI procedure and the rest methods
are after the 2nd procedure to reach the convergence. The selected A\ values of
MLE starting from different initial inputs reach the same final stable value, hence
A = 0.159. The convergence value is also found through the other three methods
and the convergence value is very close to that selected by MLE. The discussed
data set is then transformed by the Box-Cox transformation. With the selected
A, the power transformed RV is very close to the normal distribution from the

histogram plot and Q-Q plot.

The scale function of RV on all transaction days are displayed. It is shown that
the U-curve still exists for the RV data. The results of IPI procedures are shown
in Table 7.6, which indicate that the stable power parameter \ reaches quickly in
the very first few procedures. The fitting results with different ACD (1, 1) models
are listed in Table 7.7. In the table, we can see all the fitted models are stationary
with the sum of all the coefficients are smaller than one, e.g. the sum of the
WACD model of SIE is 0.26 + 0.48 = 0.74 < 1, the sum of the SemiEACD model
0.28 + 0.29 = 0.57 < 1 is also smaller than one. Further, it is also discovered
that, in most cases, the semiparametric ACD models have much smaller BIC and
MSE values than the parametric models, which has proved the advantage of the
semiparametric process. For example, the BIC and MSE of the two models are

3167.72, 74.58 and 867.25, 0.62, respectively.
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Table 7.6: The IPI selected A of ALV RV with MLE, JB, SW and QQr
Day )0 MLE JB SW QQr Day ) MLE JB SW QQr Day )y MLE JB SW QQr Day )\ MLE JB SW QQr
1.00 0.26 0.14 0.21 0.26 1.00 0.24 0.09 0.18 0.27 1.00 0.13 0.15 0.13 0.11 1.00 0.15 0.09 0.12 0.14
0.50 0.26 0.14 0.21 0.26 0.50 0.24 0.09 0.18 0.27 0.50 0.13 0.15 0.13 0.11 0.50 0.15 0.09 0.12 0.14
1 000 026 014 021 026 6 0.00 023 008 0.17 0.26 11 0.00 0.13 0.15 0.13 0.11 16 0.00 0.15 0.09 0.12 0.14
-0.50 0.26 0.14 0.21 0.26 -0.50 0.23 0.08 0.17 0.26 -0.50 0.13 0.15 0.13 0.11 -0.50 0.15 0.09 0.12 0.14
-1.00 0.26 0.14 0.21 0.26 -1.00 0.23 0.08 0.17 0.26 -1.00 0.13 0.15 0.13 0.11 -1.00 0.15 0.09 0.12 0.14
1.00 0.22 0.11 0.18 0.27 1.00 0.43 0.43 0.43 0.43 1.00 0.07 -0.01 0.03 0.06 1.00 0.24 0.19 0.23 0.25
0.50 0.22 0.11 0.18 0.27 0.50 0.43 0.43 0.43 0.43 0.50 0.07 -0.01 0.03 0.06 0.50 0.24 0.19 0.23 0.25
2 000 022 011 0.18 027 7 0.00 043 043 043 043 12 0.00 0.07 0.00 0.03 0.06 17 0.00 0.24 0.19 0.22 0.25
-0.50 0.22 0.11 0.18 0.27 -0.50 0.43 0.43 0.43 0.43 -0.50 0.07 0.00 0.03 0.06 -0.50 0.24 0.19 0.22 0.25
-1.00 0.22 0.11 0.18 0.27 -1.00 0.43 0.43 0.43 0.43 -1.00 0.07 0.00 0.03 0.06 -1.00 0.24 0.19 0.22 0.25
1.00 0.14 0.03 0.09 0.14 1.00 0.44 0.44 0.44 0.44 1.00 -0.01 -0.07 -0.03 0.00 1.00 0.03 -0.01 0.01 0.02
0.50 0.14 0.03 0.09 0.14 0.50 0.44 0.44 0.44 0.44 0.50 -0.01 -0.07 -0.03 0.00 0.50 0.03 -0.01 0.01 0.02
3 000 0.14 0.02 009 014 8 0.00 044 044 044 044 13 0.00 -0.01 -0.07 -0.03 0.00 18 0.00 0.03 -0.01 0.01 0.02
-0.50 0.14 0.02 0.09 0.14 -0.50 0.44 0.44 0.44 0.44 -0.50 -0.01 -0.07 -0.03 0.00 -0.50 0.03 -0.01 0.01 0.02
-1.00 0.14 0.02 0.09 0.14 -1.00 0.44 0.44 0.44 0.44 -1.00 -0.01 -0.07 -0.03 0.00 -1.00 0.03 -0.01 0.01 0.02
1.00 0.01 -0.05 -0.01 0.02 1.00 0.24 0.12 0.20 0.26 1.00 0.29 0.24 0.27 0.45 1.00 -0.13 -0.19 -0.15 -0.10
0.50 0.01 -0.05 -0.01 0.02 0.50 0.24 0.12 0.20 0.26 0.50 0.29 0.24 0.27 0.44 0.50 -0.13 -0.19 -0.15 -0.10
4 000 0.01 -0.05 -0.01 0.02 9 0.00 0.24 0.12 0.19 0.26 14 0.00 0.29 0.24 0.27v 043 19 0.00 -0.14 -0.19 -0.15 -0.11
-0.50 0.01 -0.05 -0.01 0.02 -0.50 0.24 0.12 0.19 0.26 -0.50 0.29 0.24 0.27 0.43 -0.50 -0.14 -0.19 -0.15 -0.11
-1.00 0.01 -0.05 -0.01 0.02 -1.00 0.24 0.12 0.19 0.26 -1.00 0.29 0.24 0.27 0.43 -1.00 -0.14 -0.19 -0.15 -0.11
1.00 0.08 0.01 0.05 0.09 1.00 0.15 0.10 0.13 0.13 1.00 0.38 0.37 0.38 0.39 1.00 -0.08 -0.09 -0.09 -0.10
0.50 0.08 0.01 0.05 0.09 0.50 0.15 0.10 0.13 0.13 0.50 0.38 0.37 0.38 0.39 0.50 -0.08 -0.09 -0.09 -0.10
5 0.00 0.08 0.01 005 0.09 10 0.00 0.15 0.10 0.12 0.13 15 0.00 0.38 0.37 0.38 0.39 20 0.00 -0.08 -0.09 -0.09 -0.10
-0.50 0.08 0.01 0.05 0.09 -0.50 0.15 0.10 0.12 0.13 -0.50 0.38 0.37 0.38 0.39 -0.50 -0.08 -0.09 -0.09 -0.10
-1.00 0.08 0.01 0.05 0.09 -1.00 0.15 0.10 0.12 0.13 -1.00 0.38 0.37 0.38 0.39 -1.00 -0.08 -0.09 -0.09 -0.10
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7.5 Final remarks

In this section, we introduce first a new data process scheme k-method to make
sure the high-frequency non-negative financial data of different firms shares the
same length as 511 per day. Then, the selected data sets are applied under the
Box-Cox SemiMEM framework with ACD models following different distribution-
s. Furthermore, by implementing a data-driven algorithm in the transformation
parameter selection, a great improvement in the scale function estimation of Semi-
ACD models becomes evident. The power parameter A, which is applied in the
scale function estimation, is obtained after the six steps IPI searching process via
JB, MLE, SW and QQr criteria, so as to make the considered data set are close to
the normal distribution, combing with the reduction to the moment requirements.
In the IPI procedure, the selected A\ tends to a convergence value and it is treated
as the power in the Box-Cox SemiMEM models. Further, some daily patterns of
the scale function are also discovered, such as the U-curve of VO and RV, the in-
verse U-curve of TR. From the fitting results, we conclude that the semiparametric
models have smaller BIC and MSE values than the parametric ones, proving the

good performance of the Box-Cox SemiMEM models in practice.



CHAPTER 8

Concluding remarks

Following the Basel III and its forthcoming finalization, it is nowadays concerned
to analyze and predict the individual and market financial performance, so as to
reduce the chances of the unnecessary loss, increase the value of firms and mini-
mize the risk in competitive markets. The dissertation provides a comprehensive
overview of the financial time series theory, revealing the hidden laws from the
market data and supporting the decision making under the Basel framework. In
the study, we have found that the semiparametric models perform well in practice

and can be used as a supplement of parametric models in risk management.

In Chapter 3, the framework of general SemiGARCH models is set up by intro-
ducing a time-varying trend to present the short-term and long-term market per-
formance by daily transaction data. The scale function reveals the long-term risk
component, while the classical parametric GARCH models express the short-term
market risk. After removing the scale function, the restriction on the parametric
GARCH models do not exist anymore and the general SemiGARCH framework
requires no assumption on the parametric part, implying parametric model free.
Besides, a power transformation is put forward to reduce the moments require-
ment of the GARCH models. An IPI algorithm is carried out to estimate the

power parameter, reaching a convergence value.

Following Basel III and its coming finalization, we examine the VaR and ES
prediction and backtesting with the parametric models and the semiparametric
models in Chapter 4. The important innovation is that a traffic light test of ES
is carried out by introducing breach indicators. In the empirical research, the ES

backtesting works well and it indeed provides a simple and direct method for the
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ES backtesting evaluation. Besides, some practical cases are found to support the
semiparametric models and they can reveal the market risk reasonably, satisfying
both the regulators and firms, which proves that the semiparametric models are

necessary risk management tools as a supplement of the parametric models.

The general Box-Cox SemiGARCH framework is applied to the high-frequency
data of BMW and Allianz in Chapter 5. The data selected in this Chapter is
the high-frequency data happens at the same fixed time point on each considered
transaction day. Some GARCH models extensions are applied with a time-varying
trend, setting up such as the SemiAPARCH model, the SemiEGARCH model and
the SemiCGARCH model. In the empirical part, it is found that the selected fixed

time point data share similar performance as the daily data.

A general Box-Cox SemiMEM model is provided to analyze the non-negative
data, such as MD, AR, VO and TR in Chapter 6. The general SemiMEM models
nest the general SemiGARCH models if the squared returns are considered. In
the IPI process, we found that different types of data have different features of the
power parameter. Furthermore, a simulated confidence interval of the estimated
power parameter is calculated via the block bootstrap method without any model
or distribution assumption. Then, IPI algorithms of the correlation factor selection
are also developed. The general SemiMEM framework greatly expands the scope

to some non-negative financial data.

Finally, some open questions and further research topics are still under con-
sideration. First, the long memory parameter can be introduced into the general
SemiGARCH and the general SemiMEM framework to build up the long mem-
ory models, such as the Semi-FI-MEM and Semi-FI-Log-MEM models. Then,
the power transformation technique should be improved, due to the restriction of
Box-Cox transformation on obtaining a complete normal distribution. Instead, the
other distribution, such as sin-arcsin, sinh-normal and Birnbaum-Saunders distri-
butions should be considered. Further, spatial models (like in Peitz, 2015) can be
considered under the general semiparametric framework. Finally, new methodolo-
gies of VaR and ES backtesting should be put forward, such as simulating new

test statistics by the Monte Carlo simulation.
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Appendices

Appendix A: Proofs of the Results

Proof of Lemma 3.1

Let Z, = n®/2{g(r;, \) — B[g(r;, \) — g(7:,\)}/&. Under the assumptions of

Lemma 3.1, Z,, is asymptotically standard normal. We have

P(g(r, A) < 0) < Pllg(1, A) — 9(72, A)| > 9(71, A)]
= P{lg(, \) = Blg(ms, \)] = (70, ) + Blg(7s, M| > g(72, )}
< P{[g(r,A) = Blg(s, N)] = g(7, )| > m(z) — |B[g(7, M)}

< P{lg(7e, A) = Blg(m, )] = g(70, A)| > 9(7, A)/2}
if n is large enough. Furthermore, we have

P{l§(ri, \) = Blg(7e, )] — g(7i, )| > (72, M) /2} = P{|Z,| > ng(7,\)/(25)}.

Defining 28 = n™/2g(1;, \)/(25), we have n = L,(22)%/" where L, = [25/g(7;, \)]?/™.
Furthermore let Z ~ N(0,1). Then

nP{|Z,| > z2} = nP{|n| > 22}

22
= 2Lg(z3)2/"2/ e Zdz

—»~0
z=25

o0 22

= 2Lg/ (22)2/™e= 5 dz — 0,
z=2z5

as n — 00, because all moments of Z are finite. Lemma 3.1 is proved. o

To prove the results of Theorem 3.1, the following assumptions are required.

A1. The scale function g(7, A) is strictly positive, bounded, and at least twice
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continuously differentiable on [0, 1].
A2. The kernel K (u) is a symmetric density with compact support [-1, 1].
A3. The bandwidth b satisfies b — 0 and nb — oo as n — oco.

A4. {¢} is a stationary process with unit mean and absolutely summable

autocovariance.

o0

A5. The stationary process {(;} can be represented as ¢, = 1+ > Ny,
i=0

where {14} is a sequence of uncorrelated zero-mean innovations with finite variance,

oo [e.e]
SN #0and Y |\ < oc.
i=0 i=0
Assumptions A1 to A3 are the regular nonparametric regression conditions. A4

is the requirement of the GARCH model. A5 is a sufficient regularity condition

which ensures that the sample means of (; and & are both asymptotically normal.

Proof of Theorem 3.1

Following Lemma 3.1, we can conclude that B[§(, A)] = B[g(, A)]+0,(n~1/?)
and Var [§(7;, A)] = Var [§(7, \)] + 0,(n™!). The proof will hence simply be given
for the unrestricted local linear estimator g(m, \).

i) Bias: Since g(7, A) is a linear smoother, the bias B[g(7, \)] = E[g(7, \)] —
g(1, A) is the same as in the nonparametric regression with i.i.d. errors. This is
the formula given 1i).

ii) Variance: The local linear estimator g(7;, A) is a linear estimator g(7, A) =

T
w?y;. It is well known that the weights w? are asymptotically equivalent to
i Y g i y Y

=1
those defined by the equivalent kernel, i.e.

K ()

w. =
n Ti—T
> i1 Ko ( b,

(2

j [+ 0(1)] = nibTKT (Tbl) [+ o(1)]

for |7, — 7| < b and zero otherwise.

Note that the autocovariances of & and (; are the same. Furthermore, let K be
an integer such that K — oo and K/nb, — 0, as n — oo. For instance, we may

choose K = [\/nb,] where [7] denotes the integer part of 7. Defining by = K/n
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we have bg /b, — 0 as n — oco. The variance of g(7, A) is given by

Var[§(m, Nl = > Y wjw[Cov[g(ri, N, (75, NE)]

|7 —7|<br |7 —7|<br

= ¥ > wiwjCov [g(ri, &, g(75, M)E)]

|mi=7|<(br—br) |7j—T|<br
+ Z Z wiwi Cov [g(Ti, A&, g(75, N (1)

ITi=7|>(br—bk) |7j—7|<br

= Vi+ Vs,

where V] indicates the contribution of the observations in the middle part of the
window and V5 the contribution in the boundary of the window. The definition of
K and bk ensures that V5 = o(V}), i.e. Var[g(m, A)] = V;. Note that the condition
|7; — 7| < by — b ensures that 7;, 7; with |i — j| < K are all within the window.
This will simplify the analysis in the next part. Denote by Vj; the ith sum over

7; in V; for given 7; . Then

V= > wlw]Covg(ri, N, gy, NE)

I7j—7|<br

= Z w]wjiCov [9(75, M), 9(75, A&

li—j|<K
+ Y wiw]Covg(ri, N)&i, g(75, N)&]

li—j|>K

= V§ + Vi, (2)

where V¢ denotes the contribution of the covariances in the central part with lags
|k| < K, whereas V| is the contribution of the covariances in the tail part. For

the first term in (2) we have

VS = Z w;wjiCov [9(73, A&y (75, V)&
li—jI<K
B (n;T)2K3 (Tb_ T) 1+ o(1)]g* (7, M1 + O(bg)] > (k)

|k|<K

2mcy o (Ti— T\ o
R~ K i A). 3
S (M) ®)
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The second term in (2) is asymptotically negligible, because

Vi = ) ww]Cov[g(m:, )&, g(75, V)]

li—j[>K
< ) wfw]Cov[g(mi, Néi, g(75, Mél|
li—j|>K
C
< (an)2[1+0(1)] > k)]

|k|>K

— (ﬁ) , (4)

K (P0) #e (2 ot ot )|

where

C; = sup
li—j|>K

This leads to

Var[f;(n,A)]{ > > w{w;Cov[g<n,A>&,g<n,A>§j]}[1+o<1>]

|7 —7|<(br—bK) |7j—7|<br

|7i—7|<(br—bK) |i—j|>K

_ 2mepg? (T, N) 1 o (Ti— T )
= () { > (" )}“* O

|7 —7|<(br—bK)
o 27chg2(7‘i, )\)R(KT)
a (nb;)

{ > > VS}[Ho(l)]

[1+o(1)] (5)

as given in Theorem 3.1 ii).

iii) Here a more general result v/nb[§(7, \) — B[g(1, \)] — (7, \)] 2, N(0,V)
can be proved, with V defined in (3.11). This leads to v/nb[§(7, \) — g(7, \)] 2,
N(0,V), when b, = o(by), because vnbB|[j(7, )] — 0. Define 6 = j(r, \) —
B[g(1, A)] — g(7, A)]. Note that

8(m) = > wilg(m, Nél

=3 e, (6)

where w* = w]g(m, A). It is easy to check that the regularity conditions (4.2)
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and (4.3) in Beran and Feng (2002) are jointly fulfilled by w;* and A;. Hence,
following Theorem 1 in Beran and Feng (2002), §(7;) is asymptotically normal, if
the sample mean of & is. The latter is guaranteed by A1 and A5. Hence, Theorem

3.1 follows. o

Proof of Theorem 3.2

i) The formula for the MSE of §(7, A) is the sum of the square bias and the vari-
ance. The bias and variance follow i) and ii) in Theorem 3.1.

ii) The MISE can be calculated on the whole support [0, 1], because the contri-

bution of the estimated values in the boundary area is asymptotically negligible.

&

Proof of Theorem 6.1

Define by = Can~'/5, where C} is the constant in by. We have b = Cyn~'/% and
(b—ba)/ba = CiH(Ca — Ch). (7)
Taylor expansion leads to
Ca = Ca = Op(1(g3) = 1(90) + Op(1((93)*) = I((g)%)) + O(é5 = ¢5). (8)
It is well known that
1((95)%) = 1((gR)?) = Opl(n?7). (9)

Following the results in chapter 6.2 of Priestley (1981), the error in the lag-window
estimator of ¢; using the Bartlett-window and a bandwidth K = O(n'/?) is

& —cp = Op(n™'17). (10)

Moreover, the first term O,(1(g3) — I(g?)) is neglectable (see Feng, 2004). &
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Appendix B: POT plots of VaR and ES
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Figure A.1: DAX POT of VaR and ES with semiparametric models
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Figure A.2: DAX POT of VaR and ES with log-models
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Figure A.3: FTSE POT of VaR and ES with parametric models
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FTSE losses & 99%-VaR by SemiGARCH FTSE losses, 97.5%-VaR and ES by SemiGARCH
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Figure A.4: FTSE POT of VaR and ES with semiparametric models
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FTSE losses & 99%-VaR by log-GARCH FTSE losses, 97.5%-VaR and ES by log-GARCH
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Figure A.5: FTSE POT of VaR and ES with log-models
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Figure A.6: EST POT of VaR and ES with parametric models
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Figure A.7: EST POT of VaR and ES with semiparametric models
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Figure A.8: EST POT of VaR and ES with log-models
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Figure A.9: RUT POT of VaR and ES with parametric models
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RUT losses & 99%-VaR by SemiGARCH
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Figure A.10: RUT POT of VaR and ES with semiparametric models



194

Appendices

0.01 0.03

-0.02

0.01 0.03

-0.02

0.01 0.03

-0.02

RUT losses & 99%-VaR by log-GARCH

0 50 100 150 200 250

Out-sample observation day

RUT losses & 99%-VaR by log-APARCH

0 50 100 150 200 250

Out-sample observation day

RUT losses & 99%-VaR by log-EGARCH

T T T T T T
0 50 100 150 200 250

Out-sample observation day

RUT losses, 97.5%-VaR and ES by log-GARCH

0.01 0.03

-0.02

0 50 100 150 200 250

Out-sample observation day

RUT losses, 97.5%-VaR and ES by log-APARCH

0.01 0.03

-0.02

0 50 100 150 200 250

Out-sample observation day

RUT losses & 97.5%-VaR, ES by log-EGARCH

0.01 0.03

-0.02

T T T T T T
0 50 100 150 200 250

Out-sample observation day

Figure A.11: RUT POT of VaR and ES with log-models
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Figure A.12: BSN POT of VaR and ES with parametric models
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BSN losses & 99%-VaR by SemiGARCH
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Figure A.13: BSN POT of VaR and ES with semiparametric models
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BSN losses & 99%-VaR by log-GARCH
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Figure A.14: BSN POT of VaR and ES with log-models
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Figure A.15: BRO POT of VaR and ES with parametric models
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Figure A.16: BRO POT of VaR and ES with semiparametric models
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Figure A.17: BRO POT of VaR and ES with log-models
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