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Zusammenfassung

Diese Arbeit untersucht Anfangs-Randwertprobleme von Systemen partieller Differen-
tialgleichungen, welche in der mathematischen Biologie zur theoretischen Beschreibung
von Bakterienpopulationen auftreten. Die einzelnen Bakterien können dabei ihre Be-
wegung durch Reaktion auf einen Signalgradienten anpassen. Ein großer Anteil der
häufig verwendeten Modelle vernachlässigt dabei den Einfluss der Umgebung auf die
Bakterien. Um eine womöglich angemessenere Modellierung der Interaktion zwischen
flüssiger Umgebung und Bakterien in die mathematische Beschreibung einfließen zu
lassen, können verschiedene Keller–Segel Systeme mit den Stokes- oder Navier–Stokes-
Gleichungen gekoppelt werden. Es ist das Ziel dieser Arbeit, die qualitativen Lösungs-
eigenschaften in solchen ausgewählten Chemotaxis-Fluid Systemen zu untersuchen. Über
Bedingungen für die globale Existenz von Lösungen in geeigneten Lösungskonzepten hin-
aus werden die Beschränktheit, eventuelle Regularität und die Konvergenz von Lösungen
betrachtet.

Abstract

This work investigates initial-boundary value problems for systems of partial differential
equations arising in mathematical biology to theoretically describe collective behavior in
populations of bacteria which may adjust their motion in response to a signal gradient.
Large quantities of the commonly used models neglect the influence of the environment
on the bacteria. It is the aim of this work to study the qualitative solution behavior
in selected chemotaxis-fluid systems, which by means of a coupling between various
Keller–Segel systems and the Stokes or Navier–Stokes equations allow for a potentially
more appropriate modeling of the interaction between liquid environments and bacterial
populations. Beyond conditions for the global existence of solutions in suitable solvability
concepts, we will inspect boundedness properties, eventual regularity and convergence
of solutions.

iii





Danksagung

Jeder von uns ist umgeben von Personen, die uns auf unserem Weg begleiten, uns motivieren
und inspirieren, uns neue Wege aufzeigen und uns gegebenenfalls auch dabei unterstützen, den
schwereren dieser Wege zu gehen. Anerkennung für den Einfluss, den sie auf unser Leben haben
geben wir ihnen jedoch eher selten. An dieser Stelle möchte ich einem wichtigen Teil dieser
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1 Introduction

The adaptation of migrational patterns according to an external stimulus is an effective
strategy for survival in the form of an optimized nutrient acquisition and reduced energy
depletion. The innate behavior of organisms to orient their movement in response to
stimuli is known as taxis and famous examples include rheotaxis of fish ([3]), phototaxis
of insects ([39]) and chemotaxis, which can even be observed on the smallest scales of
life, with single-celled organisms and bacteria adjusting their locomotion according to the
concentration gradient of a signal chemical ([1]). Though quite simple in their individual
behavior, it has been observed in numerous experiments that, due to this chemotactic cell
kinetics, larger populations of some bacteria can organize themselves in complex spatial
patterns ([1, 11]). When Keller and Segel proposed a prototypical system of partial
differential equations modeling the chemotactic migration of Dictyostelium discoideum
([40, 41]), they sparked the interest of many mathematical biologists and numerous
studies trying to capture the mathematical mechanisms underlying the experimentally
observed physical processes, such as pattern formation of cells, were initiated. Letting n
and c denote the density of the cells and the concentration of the chemical, respectively,
a very simple realization of the acclaimed system by Keller and Segel can be formulated
as {

nt = ∆n−∇ ·
(
n∇c

)
,

ct = ∆c− c+ n.

Remarkably, even in this simple form the Keller–Segel system has been proven to be
able to describe self-organizing behavior of cells, like the spontaneous aggregation of
Dictyostelium discoideum, without even including possible interaction between the cells
and their surrounding environment ([35]). Experiments undertaken in [20, 85], how-
ever, highlighted that, in particular, with populations of aerobic bacteria suspended in
drops of water, certain buoyancy and mixing effects should not be neglected. In order
to capture plume-like convection patterns witnessed with colonies of Bacillus subtilis
suspended in drops of water, it was suggested in [85] to consider the Keller–Segel system
in combination with the Navier–Stokes equations, while incorporating a buoyancy effect
as source term in the added fluid equation.

With the proposed coupling merging both fluid equations and chemotaxis equations, at
first glance it appears to be quite hopeless to obtain a thorough understanding of the
interplay between both of them, as each on their own still has a wide array of unanswered
questions and difficult challenges to overcome. On the one hand there is the notable
example of the open Millennium Prize Problem from the Clay Mathematics Institute for
the celebrated Navier–Stokes equations, and on the other hand due to the cross-diffusive
mechanism present in the chemotaxis equations, the possibility of solutions blowing up is
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Ch.1. Introduction

a recurrent theme throughout the many variations of Keller–Segel type systems. In this
respect, as the interplay between the equations moreover negates many strategies and
methods applicable in the fluid-free Keller–Segel system, it is also not very surprising
that, undeterred by the considerable activity in both fields, the knowledge on coupled
chemotaxis-fluid equations is still only quite fragmentary. Especially, the workings in
three-dimensional domains are mostly enigmatic, but the qualitative behavior in two-
dimensional domains is also quite hard to access with the methods of mathematical
analysis.

In light of this inherent difficulty and the close relation to real world applications, a care-
fully crafted solution theory is the very necessary foundation of the studies in this field.
If we consider solution concepts too abstract, any meaningful insight obtained from the
mathematical analysis may get lost upon interpretation of the results in the underlying
natural model and hence results in studies of purely academic nature. Finding the opti-
mal degree of generalization, however, is a task far from trivial and is, in particular in the
context of Keller–Segel systems, deeply intertwined with the qualitative understanding
of the model behind the equations. Depending on the precise variant of the Keller–Segel
model, the existence of solutions blowing up in finite time, which in the physical inter-
pretation is commonly linked to the aggregation of cells, may actually not be the desired
outcome, as experiments may suggest that rather a steady state should be approached.
Hence, with the importance of the solution theory in mind, a major question concerning
the coupled chemotaxis-fluid systems is how much of the qualitative solution properties
can be maintained from the fluid-free setting, despite the possibly deregularizing effect
of the fluid. In particular, since the emergence of patterns and aggregation phenomena
is closely related to the convergence towards non-constant steady states and blow-up
of solutions, respectively, a great area of interest consists of the transference of global
existence results in sufficiently well-behaved function spaces from the fluid-free setting
to the chemotaxis-fluid framework.

Before we take a more in depth look at the main results of this thesis, let us first specify a
quite general formulation of the chemotaxis-fluid system proposed in [85], where u, P and
φ denote the fluid-velocity field, the associated pressure and a prescribed gravitational
potential, respectively.

nt + u ·∇n= ∇·
(
D(n)∇n− nS(n, c)∇c

)
,

ct + u ·∇c= ∆c+ g(n, c),
ut + (u ·∇)u= ∆u−∇P + n∇φ,

∇·u= 0.

In this setting D(n) describes the diffusivity of cells, S(n, c) models the chemotactic
sensitivity of the organisms and the source term g(n, c) is related to the interaction
between cells and chemical substance. The simplest choices for these functions are
D(n) ≡ 1, S(n, c) ≡ 1 and g(n, c) = −c + n for a signal producing population of
bacteria or g(n, c) = −nc in the case of cells consuming the chemical. Briefly noting
that, depending on the space dimension and the choices for the functions D, S and g,
the solution of the system may, even without considering the fluid component, very well
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only exist on finite time intervals or globally, but only in generalized solution concepts
requiring less regularity than the standard variational concept of weak solvability, we
can now outline the core results of this work.

Main results of the thesis. The systems we are going to consider here can, with
respect to the interaction between the bacteria and the signal chemical, be grouped
in two major classes. In Chapters 2 and 3 we will investigate two slightly different
chemotaxis-fluid settings where the signal is produced by the bacteria akin to the Keller–
Segel model based on the aggregation of Dictyostelium discoideum, while Chapters 4 and
5 will be concerned with two different questions regarding signal consumption processes
as witnessed with populations of Bacillus subtilis and Escherichia coli. Without going
into too much detail, the corresponding results can be summarized in following ways.

In Chapter 2 we will discuss a case where the evolution of the fluid-velocity is described
by the Stokes equations instead of the full Navier–Stokes equations. We will prove that
in a two-dimensional domain a Keller–Segel–Stokes system with a sublinear production
rate of the from g(n, c) = −c + f(n) satisfying 0 ≤ f(s) ≤ K0s

α for all s ∈ [0,∞) and
some 0 < α < 1 always emits time-global and bounded classical solutions regardless of
the size of the initial data. This result is maintained from the fluid-free setting ([54]) and
the sublinear growth-rate is optimal in respect to α in the sense that for g(n, c) = −c+n
a critical mass phenomenon (i.e. blow-up occurs if the initial mass of n is above a critical
number) is known from the fluid-free setting ([38, 64, 62]).

In Chapter 3 we are going to consider a nonlinear diffusion of porous-medium-type
D(n) = mnm−1, which, at least biologically, appears to be more appropriate, since
densely packed cells suffer a larger portion of stress and try to move away from one
another ([43]), and sensitivities of the type S(n) = 1

(n+1)α , which can be motivated by
the fact that whenever there are large amount of cells present in an area, the movement
of the individuals is inhibited ([70]). While a sublinear production rate was the main
ingredient for global existence in Chapter 2 and the Stokes equations even enabled us to
discuss solutions in the classical concept of solvability, there have been studies for the
fluid-free framework indicating that the growth rate of the ratio S(n)

D(n) is also a crucial

quantity distinguishing whether blow-up can occur or not ([80, 95]). Trying to capture
the importance of this growth rate in the chemotaxis-fluid setting, in Chapter 3 we
will consider a three-dimensional chemotaxis-Navier–Stokes system with cell diffusion
of porous medium type, sensitivity functions satisfying a saturation effect essentially
specified through |S(n, c)| . 1

(1+n)α and linear signal production rate. Depending on the
parameters m and α, we will prove global existence of solutions in two different concepts
of weak solvability, where we also note that the solution concepts exclude the formation of
Dirac-type singularities and that the parameter range for the weakest concept coincides
with the range excluding blow-up in the fluid-free system.

In Chapter 4 we will then consider a chemotaxis-Stokes setting with signal consumption,
i.e. g(n, c) = −nc, combined with the singular sensitivity function S(n, c) = 1

c , a setting
much more unfavorable for global existence. Even in the fluid-free Keller–Segel system
only so called global generalized solutions, which merely satisfy very mild regularity
conditions, have been shown to exist ([102]). The concept of generalized solvability
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Ch.1. Introduction

can be adjusted to the corresponding two-dimensional Keller–Segel–Stokes setting in a
straightforward fashion ([87]) and despite the unobtainable global regularity result in
good spaces, we may still hope for an eventual regularization process to occur. In the
main results of this chapter we will prove that, under a smallness assumption on the
initial mass, the global generalized solution of the two-dimensional chemotaxis-Stokes
system will eventually become a classical solution and that the solution converges to a
constant steady state, which in turn rules out the emergence of complex spatial patterns.
As an interesting byproduct we also obtain a condition on global classical solvability
under certain constraints on the initial data.

Finally, in Chapter 5 we make use of an eventual regularization process, as witnessed
in the previous chapter, in order to get a grasp on some quantifiable difference between
using the Stokes approximation and the full Navier–Stokes equations for the descrip-
tion of the fluid-velocity. The focus being on the differences between the evolution of
the fluid-velocity, we consider a minimal chemotaxis-consumption system, in particu-
lar more well-behaved than the one present in Chapter 4. To be precise, we consider
a chemotaxis-Navier–Stokes consumption system in a three-dimensional domain with
linear diffusion, standard chemotactic sensitivity S(n, c) = 1, and investigate the small-
convection limit behavior of the corresponding solutions. While time-local convergence
is quite easily obtainable, a result for time-global convergence is more intricate. To man-
age convergence on large time-scales we will first prove a result on eventual regularity,
where the smoothing time is independent of the convection strength. Afterwards, we will
finally conclude that in the Stokes limit, the weak solution of the chemotaxis-Navier–
Stokes system converges towards a weak solution of the chemotaxis-Stokes system in the
standard solution space for weak solutions of the chemotaxis-Navier–Stokes system.

For more details on the context and related works to each of these chapters as well as
the precise statements of the individual theorems, we refer the interested reader to the
introductions at the start of each chapter. We made sure that recurrences of arguments
between chapters are kept to a minimum, but favored independent readability of the
chapters when necessary, so that in fact each chapter may be read on its own.
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2 Sublinear signal production in a
two-dimensional Keller–Segel–Stokes
system

2.1 Introduction

Keller–Segel models. The acclaimed chemotaxis system{
nt = ∆n−∇· (n∇c), x ∈ Ω, t > 0,
ct = ∆c− c+ n, x ∈ Ω, t > 0,

(2.1.1)

by Keller and Segel ([40, 41]) alone has been studied intensively in the last decades and
a wide array of interesting properties, such as finite time blow-up and spatial pattern
formation, have been discovered (see also the surveys [4, 34, 35]). For instance, the initial-
boundary value problem obtained from (2.1.1) with homogeneous Neumann boundary
conditions where Ω ⊂ RN is a ball, emits blow-up solutions for N ≥ 2, if the total initial
mass of cells lies above a critical value ([33, 38, 62, 64, 97]), while all solutions remain
bounded when either N = 1, or N = 2 and the initial total mass of cells is below the
critical value ([68, 66]).
Through its application to various biological contexts, many variants of the Keller–Segel
model have been proposed over the years. In particular, adaptations of (2.1.1) in the
form of

nt = ∆n−∇· (nS(x, n, c) · ∇c), x ∈ Ω, t > 0, (2.1.2)

with given chemotactic sensitivity function S, which can either be a scalar function, or
more general a tensor valued function (see e.g. [108]), for the first equation or

ct = ∆c− ng(c), x ∈ Ω, t > 0, (2.1.3)

with given function g for the second equation, have been studied. Both of these adjust-
ments are known to have an influence on the boundedness of solutions to their respective
systems. For instance, if we replace the first equation of (2.1.1) with (2.1.2), where S is a
scalar function of n satisfying S(n) ≤ C(1+n)−γ for all n > 0 and some γ > 1− 2

N , then
all solutions to the corresponding Neumann problem are global and uniformly bounded.
On the other hand if N ≥ 2, Ω ⊂ RN is a ball and S(n) ≥ Cn−γ for all n ≥ 1 and some
γ < 1− 2

N then the solution may blow up ([36]).
Considering the variant of (2.1.1) with (2.1.3) as second equation, which basically cor-
responds to the model assumption that the cells consume some of the chemical instead

7
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of producing it, it was shown in [81, Proposition 1.2] that for N = 2 the corresponding
Neumann problem possesses a bounded classical solution for suitable regular initial data
not depending on a smallness condition. For N = 3 it was proven that there exist global
weak solutions which eventually become smooth and bounded after some waiting time.
A combination of both adjustments, where S is matrix-valued with non-trivial nondiago-
nal parts, was studied in [101]. There it was shown that under fairly general assumptions
on g and S at least one generalized solution exists which is global. This result does nei-
ther contain a restriction on the spatial dimension nor on the size of the initial data.
One last variant of (2.1.1) we would like to mention has only recently been studied
thoroughly and concerns the system{

nt = ∆n−∇· (n∇c), x ∈ Ω, t > 0,
ct = ∆c− c+ f(n), x ∈ Ω, t > 0,

(2.1.4)

with f ∈ C1 ([0,∞)) satisfying 0 ≤ f(s) ≤ Ksα for any s ≥ 0 with some K > 0 and
α > 0. In this setting, it is known that the system (2.1.4) does not emit any blow-up
solution if α < 2

N ([54]) but it remains an open question whether this exponent is indeed
critical.
Similar forms of f(n) have been treated before either in the linear case f(n) = n ([59]) or
(sub-)linear cases with an additional logistic growth term introduced to the first equation
(e.g. [69, 96, 67]).
Chemotaxis-fluid systems. Nonetheless, one assumption is shared by all of these
Keller–Segel-type models. That is, only the cell density n and the chemical concentra-
tion c are unknown and all other system parameters are fixed. In particular, the models
assume that there is no interaction between the cells and their surroundings. However,
experimental observations indicate that chemotactic motion inside a liquid can be sub-
stantially influenced by the mutual interaction between cells and fluid. For instance, in
[85] the dynamical generation of patterns and emergence of turbulence in a population of
aerobic bacteria suspended in sessile drops of water is reported, whereas examples involv-
ing instationary fluids are important in the context of broadcast spawning phenomena
related to successful coral fertilization ([16, 58]).
A model considering the chemotaxis-fluid interaction building on experimental observa-
tions of Bacillus subtilis was given in [85]. In the system in question, the fluid-velocity
u = u(x, t) and the associated pressure P = P (x, t) are introduced as additional un-
known quantities utilizing the incompressible Navier–Stokes equations. One of the first
theoretical results concerning the solvability in this context were shown in [56], where
the local existence of weak solutions for N ∈ {2, 3} was shown. This setting, however,
involved signal consumption in the form of per-capita oxygen consumption of the bac-
teria, which corresponds to an equation of the form (2.1.3). Since we want to focus on
the case of signal production by the cells as realized in (2.1.1), a more suitable system
in this context is the Keller–Segel–Navier–Stokes system

nt +u ·∇n= ∆n−∇· (n∇c), x ∈ Ω, t > 0,
ct + u ·∇c= ∆c− c+ n, x ∈ Ω, t > 0,
ut + u ·∇u= ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇·u= 0, x ∈ Ω, t > 0,

(2.1.5)
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where the fluid is supposed to be driven by forces induced by the fixed gravitational
potential φ and transports both the cells and the chemical.
The mathematical analysis of (2.1.5) regarding global and bounded solutions is far from
trivial, as on the one hand its Navier–Stokes subsystem lacks complete existence theory
([94]) and on the other hand the previously mentioned properties for the Keller–Segel
system can still emerge. In order to weaken the necessary analytical effort, a commonly
made simplification is to assume that the fluid flow is comparatively slow and thus the
fluid-velocity evolution may be described by the Stokes equation rather than the full
Navier–Stokes system.
Of course, all alterations to (2.1.1) described above can be included as adjustments to the
systems in this Keller–Segel(–Navier)–Stokes setting as well. Their influences on global
and bounded solutions are one focal point of recent studies. For instance, an adjustment
making use of both sensitivity and chemical consumption has been applied to Keller–
Segel–Stokes systems in [104], where for scalar valued sensitivity functions S the existence
of global weak solutions for bounded three-dimensional domains has been established.
Building on this existence result, it was shown in [105] that the solution approaches
a spatially homogeneous steady state under fairly weak assumptions imposed on the
parameter functions S and g. Under similar assumptions, the existence of global weak
solutions for suitable non-linear diffusion types have been proven in [17] and the existence
of bounded and global weak solutions even allowing matrix-valued S not requiring a
decay assumption in [100].
A Keller–Segel–Stokes system corresponding to the adjustment made to (2.1.1) by only
making use of rotational sensitivity was studied in [89], where it was shown that the Neu-
mann problem for the 2D Keller–Segel–Stokes system possesses a unique global classical
solution which remains bounded for all times, if we assume S to satisfy |S(x, n, c)| ≤
CS(1 + n)−a with CS > 0 for some a > 0.
Regarding the introduction of the additional logistic growth term +rn−µn2 with r ≥ 0
and µ > 0 to the first equation, it was shown in [82, Theorem 1.1] for space dimension
N = 3, that every solution remains bounded if µ ≥ 23 and thus any blow-up phenomena
are excluded. Moreover, these solutions tend to zero ([82, Theorem 1.2]).
Some of these results have in part been transferred to the full chemotaxis Navier–Stokes
system. This includes global existence of classical solutions for N = 2 with scalar valued
sensitivity ([98]), large time behavior and eventual smoothness of such solutions ([105])
and even global existence of mild solution to double chemotaxis systems under the effect
of incompressible viscous fluid ([44]). Boundedness results with matrix-valued sensitivity
without decay requirements but for small initial data have been discussed in [13] and
boundedness results under influence of a logistic growth term in [83].
Main results. The results above indicate that certain alterations to the systems are
always favorable for the existence of global and bounded solutions and, if their respective
influence is strong enough, they may even withstand the possibly deregularizing effect
of the fluid interaction successfully. Motivated by this observation and the result of [54]
for (2.1.4) mentioned above, we are now interested in whether the influence of a coupled
slow moving fluid described by Stokes equation affects the possible choice for α ∈ (0, 1),
while still maintaining the exclusion of possible unbounded solutions. Henceforth, we

9



Ch.2. Sublinear signal production in a two-dimensional Keller–Segel–Stokes system

will consider that the evolution of (n, c, u, P ) is governed by the Keller–Segel–Stokes
System 

nt +u ·∇n= ∆n−∇· (n∇c), x ∈ Ω, t > 0,
ct + u ·∇c = ∆c− c+ f(n), x ∈ Ω, t > 0,
ut + ∇P = ∆u+ n∇φ, x ∈ Ω, t > 0,

∇·u = 0, x ∈ Ω, t > 0,

(2.1.6)

where Ω ⊂ R2 is a bounded and smooth domain and f ∈ C1([0,∞)) satisfies

0 ≤ f(s) ≤ K0s
α for all s ∈ [0,∞) (2.1.7)

with some α ∈ (0, 1] and K0 > 0. We shall examine this system along with no-flux
boundary conditions for n and c and a no-slip boundary condition for u,

∂n

∂ν
=
∂c

∂ν
= 0 and u = 0 for x ∈ ∂Ω and t > 0, (2.1.8)

and initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω. (2.1.9)

For simplicity we will assume φ ∈ W 2,∞(Ω) and that for some ϑ > 2 and % ∈ (1
2 , 1) the

initial data satisfy the regularity and positivity conditions
n0 ∈ C0

(
Ω
)

with n0 > 0 in Ω,

c0 ∈W 1,ϑ(Ω) with c0 > 0 in Ω,

u0 ∈ D(A%) ,

(2.1.10)

where here and below A% denotes the fractional power of the Stokes operator A := −P∆
regarding homogeneous Dirichlet boundary conditions, with the Helmholtz projection
P from L2

(
Ω;R2

)
to the solenoidal subspace L2

σ(Ω) :=
{
ϕ ∈ L2

(
Ω;R2

)∣∣∇·ϕ = 0
}

and

domain D(A) := W 2,2(Ω;R2) ∩W 1,2
0 (Ω;R2) ∩ L2

σ(Ω). In this framework we can state
our main result in the following way:

Theorem 2.1.
Let ϑ > 2, % ∈ (1

2 , 1) and Ω ⊂ R2 be a bounded and convex domain with smooth bound-
ary. Assume φ ∈ W 2,∞(Ω) and that n0, c0 and u0 comply with (2.1.10). Then for any
α ∈ (0, 1), the PDE system (2.1.6) coupled with boundary conditions (2.1.8) and initial
conditions (2.1.9) possesses a solution (n, c, u, P ) satisfying

n ∈ C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
,

c ∈ C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
,

u ∈ C0
(
Ω×[0,∞);R2

)
∩ C2,1

(
Ω×(0,∞);R2

)
,

P ∈ C1,0
(
Ω×[0,∞)

)
,

10
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which solves (2.1.6) in the classical sense and remains bounded for all times. This
solution is unique within the class of functions which for all T ∈ (0,∞) satisfy the
regularity properties

n ∈ C0
(
[0, T );L2(Ω)

)
∩ L∞

(
(0, T );C0

(
Ω
))
∩ C2,1

(
Ω×(0, T )

)
,

c ∈ C0
(
[0, T );L2(Ω)

)
∩ L∞

(
(0, T );W 1,ϑ(Ω)

)
∩ C2,1

(
Ω×(0, T )

)
,

u ∈ C0
(
[0, T );L2

(
Ω;R2

))
∩ L∞ ((0, T );D(A%)) ∩ C2,1

(
Ω×(0, T );R2

)
,

P ∈ L1
(
(0, T );W 1,2(Ω)

)
,

(2.1.11)

up to addition of functions p̂ to P , such that p̂(·, t) is constant for any t ∈ (0,∞).

In view of Theorem 2.1, there is no evident difference regarding α between the coupled
system (2.1.6) and the chemotaxis system without fluid (2.1.4) for dimension N = 2.
In Section 2.2 we will briefly discuss local existence of classical solutions and basic a
priori estimates. Section 2.3 is dedicated to the connection between the regularity of n
and the regularity of the spacial derivative of u, which plays a crucial part in obtaining
additional information on the regularity of c. In Section 2.4 we will combine standard
testing procedures with the results from the previous sections to prove the boundedness
and globality of classical solutions to (2.1.6).

2.2 Local existence of classical solutions

The following lemma concerning the local existence of classical solutions and an ex-
tensibility criterion can be proven with exactly the same steps demonstrated in [98,
Lemma 2.1] and [78, Lemma 2.1].

Lemma 2.2. - Local existence of classical solutions
Let ϑ > 2, % ∈ (1

2 , 1) and Ω ⊂ R2 be a bounded and convex domain with smooth boundary.
Suppose φ ∈ W 2,∞(Ω) and that n0, c0 and u0 satisfy (2.1.10). Then there exist Tmax ∈
(0,∞] and functions (n, c, u, P ) satisfying

n ∈ C0
(
Ω×[0, Tmax)

)
∩ C2,1

(
Ω×(0, Tmax)

)
,

c ∈ C0
(
Ω×[0, Tmax)

)
∩ C2,1

(
Ω×(0, Tmax)

)
,

u ∈ C0
(
Ω×[0, Tmax);R2

)
∩ C2,1

(
Ω×(0, Tmax);R2

)
,

P ∈ C1,0
(
Ω×[0, Tmax)

)
,

which solve (2.1.6) with (2.1.8) and (2.1.9) in the classical sense in Ω×(0, Tmax). More-
over, we have n > 0 and c > 0 in Ω×[0, Tmax) and the alternative

either Tmax =∞ or

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,ϑ(Ω) + ‖A%u(·, t)‖L2(Ω) →∞ as t↗ Tmax. (2.2.1)

The solution is unique among all functions satisfying (2.1.11) for all T ∈ (0, Tmax), up
to addition of functions p̂, such that p̂(·, t) is constant for any t∈(0, T ), to the pressure
P .
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Ch.2. Sublinear signal production in a two-dimensional Keller–Segel–Stokes system

Local existence at hand, we can immediately prove two elementary properties, which
will be the starting point for all of our regularity results to come.

Lemma 2.3.
Under the assumptions of Lemma 2.2, the solution of (2.1.6) satisfies∫

Ω
n(x, t) dx =

∫
Ω
n0 =: m for all t ∈ (0, Tmax) (2.2.2)

and there exists a constant C > 0 such that∫
Ω
c(x, t) dx ≤ C for all t ∈ (0, Tmax). (2.2.3)

Proof: The first property follows immediately from simple integration of the first equa-
tion in (2.1.6). For (2.2.3) we integrate the second equation of (2.1.6) and recall (2.1.7)
to obtain

d

dt

∫
Ω
c+

∫
Ω
c ≤ K0

∫
Ω
nα for all t ∈ (0, Tmax).

Hence, making use of (2.2.2) and the fact α < 1, y(t) =
∫

Ωc(x, t) dx satisfies the ODI

y′(t) + y(t) ≤ C1‖n0‖αL1(Ω) = C2 for all t ∈ (0, Tmax)

for some C1 > 0 and C2 := C1m
α > 0 in view of (2.1.10). Upon integration we infer

y(t) ≤ y(0)e−t + C2

(
1− e−t

)
for all t ∈ (0, Tmax),

which, due to the assumed regularity of c0 in (2.1.10), completes the proof.

2.3 Regularity of u implied by regularity of n

Let us recall that P denotes the Helmholtz projection from L2
(
Ω;R2

)
to the subspace

L2
σ (Ω) =

{
ϕ ∈ L2

(
Ω;R2

)
| ∇·ϕ = 0

}
and A := −P∆ denotes the Stokes operator under

homogeneous Dirichlet boundary conditions.
For now we limit our observations to a projected version of the Stokes subsystem d

dtu+
Au = P (n∇φ) in (2.1.6) without regard for the rest of the system. In contrast to the
setting with the full Navier–Stokes equations we can make use of the absence of the
convective term (u · ∇)u in the Stokes equation to gain results concerning the regularity
of the spatial derivative Du based on the regularity of the term P (n∇φ), which in fact
solely depends on the regularity of n, due to the assumed boundedness of ∇φ.
In [89, Lemma 2.4] this correlation between the regularity of u and n is proven in space
dimension N = 2. The proof of [89, Lemma 2.4] is based on an approach employed in
[100, Section 3.1], which makes use of general results for sectorial operators shown in
[24], [32] and [28] and mainly relies on an embedding of the domains of fractional powers
D (A%) into Lp(Ω), see [32, Theorem 1.6.1] or [28, Theorem 3], for instance. Since we
are only working in two-dimensional domains we will only state the result from [89,
Lemma 2.4] here and refer the reader to [100, Corollary 3.4] and [89, Lemma 2.5] for the
remaining details regarding the proof.
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Global existence and boundedness in two-dimensional domains

Lemma 2.4.
Let p ∈ [1,∞) and r ∈ [1,∞] be such that{

r < 2p
2−p if p ≤ 2,

r ≤ ∞ if p > 2.

Furthermore, assume Ω ⊂ R2 to be a smoothly bounded domain and let T > 0 be such
that n : Ω× (0, T ) 7→ R satisfies

‖n(·, t)‖Lp(Ω) ≤ L for all t ∈ (0, T ),

with some L > 0. Then for u0 ∈ D(A%) with % ∈
(

1
2 , 1
)

and φ ∈ W 2,∞(Ω) all solutions
u of the third and fourth equations in (2.1.6) fulfill

‖Du(·, t)‖Lr(Ω) ≤ C for all t ∈ (0, T ),

with a constant C = C(p, r, L, u0, φ) > 0.

Evidently, a supposedly known bound for n at hand, we immediately obtain the desired
boundedness of u in view of Sobolev embeddings. Nevertheless, since we only have the
time independent L1 bound of n from Lemma 2.3 as a starting point, obtaining a bound
for n in Lp(Ω) with suitable large p > 1 will require additional work.

2.4 Global existence and boundedness in two-dimensional
domains

For the rest of the chapter, unless stated otherwise, we fix ϑ > 2, % ∈ (1
2 , 1), initial

data satisfying (2.1.10) and Ω ⊂ R2 meeting all requirements of Lemma 2.2. We then
let (n, c, u, P ) denote the solution given by Lemma 2.2 and Tmax its maximal time of
existence. Making use of the connection between the regularity of u and n discussed in
the previous section, we immediately obtain the following result.

Proposition 2.5.
For all r < 2 and all q < ∞ there exist constants C1 > 0 and C2 > 0 such that the
solution to (2.1.6) satisfies

‖Du(·, t)‖Lr(Ω) ≤ C1 for all t ∈ (0, Tmax)

and

‖u(·, t)‖Lq(Ω) ≤ C2 for all t ∈ (0, Tmax).

Proof: In light of (2.2.2) and (2.1.10) we can find C3 > 0 satisfying ‖n(·, t)‖L1(Ω) =
‖n0‖L1(Ω) ≤ C3 for all t ∈ (0, Tmax). Thus, we may apply Lemma 2.4 with p = 1 to
obtain for any r < 2 that ‖Du(·, t)‖Lr(Ω) ≤ C2 for all t ∈ (0, Tmax) with some C2 > 0.
The second claim then follows immediately from the Sobolev embedding theorem ([23,
Theorem 5.6.6]).
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Ch.2. Sublinear signal production in a two-dimensional Keller–Segel–Stokes system

2.4.1 Obtaining a first information on the gradient of c

In order to derive the bounds necessary in our approach towards the boundedness re-
sult, we require an estimate on the gradient of c as a starting point. To obtain a first
information in this matter, we apply standard testing procedures to derive an energy
inequality involving integrals of n lnn and |∇c|2. But first, let us briefly recall Young’s
inequality in order to fix notation.

Lemma 2.6.
Let a, b, ε > 0 and 1 < p, q <∞ with 1

p + 1
q = 1. Then

ab ≤ εap + C(ε, p, q)bq,

where C(ε, p, q) = (εp)
− q
p q−1.

Before deriving an inequality for the time evolution of
∫

Ωn lnn we employ the Gagliardo–
Nirenberg inequality to show one simple preparatory lemma on which we will rely mul-
tiple times later on.

Lemma 2.7.
Let Ω ⊂ R2 be a bounded domain with smooth boundary. Let r ≥ 1 and s ≥ 1. Then for
any L > 0 there exists C > 0 such that

∫
Ω
|ϕ|rs ≤ C

(∫
Ω
|∇(|ϕ|r/2)|2

) (rs−1)
r

+ C

holds for all functions ϕ ∈ L1(Ω) satisfying ∇(|ϕ|r/2) ∈ L2
(
Ω;R2

)
and

∫
Ω|ϕ| ≤ L.

Proof: By an application of the Gagliardo–Nirenberg inequality (see [52, Lemma 2.3]
for a version including integrability exponents less than 1) we can pick C1 > 0 such that∫

Ω
|ϕ|rs = ‖|ϕ|r/2‖2sL2s(Ω) ≤ C1‖∇(|ϕ|r/2)‖2saL2(Ω)‖|ϕ|

r/2‖2s(1−a)

L
2
r (Ω)

+ C1‖|ϕ|
r/2‖2s

L
2
r (Ω)

holds for all ϕ ∈ L1(Ω) with ∇(|ϕ|r/2) ∈ L2
(
Ω;R2

)
, with a ∈ (0, 1) provided by

a =
r
2 −

1
2s

r
2 + 1

2 −
1
2

= 1− 1

rs
.

Since
∫

Ω|ϕ| ≤ L we have ‖|ϕ|r/2‖
L

2
r (Ω)

=
(∫

Ω|ϕ|
) r

2 ≤ L
r
2 and thus

∫
Ω
|ϕ|rs ≤ C2

(∫
Ω
|∇(|ϕ|r/2)|2

) (rs−1)
r

+ C2

for all ϕ ∈ L1(Ω) satisfying ∇(|ϕ|r/2) ∈ L2
(
Ω;R2

)
, where C2 = C1 max{L,Lrs} > 0.

The particular form in which we will need this inequality most often is the following:
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Corollary 2.8.
There exists a constant K1 > 0 such that the solution of (2.1.6) fulfills∫

Ω
n2 ≤ K1

∫
Ω
|∇(n

1/2)|2 +K1

for all t ∈ (0, Tmax).

Testing the first equation of (2.1.6) with 1 + lnn yields the following estimation.

Lemma 2.9.
There exists a constant K2 > 0 such that the solution of (2.1.6) fulfills

d

dt

∫
Ω
n lnn+

∫
Ω
|∇(n

1/2)|2 ≤ K2

∫
Ω
|∆c|2 +K2 for all t ∈ (0, Tmax). (2.4.1)

Proof: Making use of (2.2.2) and ∇·u = 0 in Ω, multiplication of the first equation in
(2.1.6) with 1 + lnn and integration by parts yield

d

dt

∫
Ω
n lnn+

∫
Ω

|∇n|2

n
=

∫
Ω
∇c ·∇n for all t ∈ (0, Tmax). (2.4.2)

To further estimate the right hand side, we first let K1 > 0 be as in Corollary 2.8. Then,
integrating the right hand side of (2.4.2) once more by parts and applying Young’s
inequality with p = q = 2 and ε = 3

K1
(see Lemma 2.6) and Corollary 2.8, we obtain

d

dt

∫
Ω
n lnn+ 4

∫
Ω
|∇(n

1/2)|2 ≤ 3

K1

∫
Ω
n2 + C1

∫
Ω
|∆c|2

≤ 3

K1

(
K1

∫
Ω
|∇(n

1/2)|2 +K1

)
+ C1

∫
Ω
|∆c|2

for all t ∈ (0, Tmax) and some C1 > 0. Reordering the terms appropriately completes
the proof with K2 := max{3, C1}.

The second separate inequality treats the time evolution of
∫

Ω|∇c|
2.

Lemma 2.10.
Given any ξ > 0, there exists a constant K3 > 0 such that

ξ

2

d

dt

∫
Ω
|∇c|2 +

ξ

4

∫
Ω
|∆c|2 + ξ

∫
Ω
|∇c|2 ≤ 1

2

∫
Ω
|∇(n

1/2)|2 +K3 (2.4.3)

holds for all t ∈ (0, Tmax).

Proof: Testing the second equation of (2.1.6) with −ξ∆c and integrating by parts we
obtain

ξ

2

d

dt

∫
Ω
|∇c|2 + ξ

∫
Ω
|∆c|2 + ξ

∫
Ω
|∇c|2 = −ξ

∫
Ω
f(n)∆c+ ξ

∫
Ω

∆c∇c · u
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for all t ∈ (0, Tmax). An application of Young’s inequality to both integrals on the right
side therefore implies that

ξ

2

d

dt

∫
Ω
|∇c|2 + ξ

∫
Ω
|∆c|2 + ξ

∫
Ω
|∇c|2

≤ ξ
∫

Ω
f(n)2 +

ξ

2

∫
Ω
|∆c|2 + ξ

∫
Ω
|∇c|2|u|2 (2.4.4)

holds for all t ∈ (0, Tmax). We fix q > 2 and make use of Hölder’s inequality to see that

ξ

∫
Ω
|∇c|2|u|2 ≤ ξ‖∇c‖2

L
2q
q−2 (Ω)

‖u‖2Lq(Ω) (2.4.5)

is valid for all t ∈ (0, Tmax). An application of the Gagliardo–Nirenberg inequality
combined with [73, Theorem 3.4] allows us to further estimate

‖∇c‖2
L

2q
q−2 (Ω)

≤ C1‖∆c‖
4q+4

3q

L2(Ω)
‖c‖

2q−4
3q

L1(Ω)
+ C1‖c‖2L1(Ω)

≤ C2‖∆c‖
4
3

+ 4
3q

L2(Ω)
+ C2 for all t ∈ (0, Tmax)

for some C1 > 0 and C2 > 0 in view of (2.2.3). Plugging this into (2.4.5) and recalling
Proposition 2.5, we thus find C3 > 0 such that

ξ

∫
Ω
|∇c|2|u|2 ≤ C3‖∆c‖

4
3

+ 4
3q

L2(Ω)
+ C3 for all t ∈ (0, Tmax).

Since q > 2, we have 4
3 + 4

3q < 2 and may apply Young’s inequality to obtain

ξ

∫
Ω
|∇c|2|u|2 ≤ ξ

4
‖∆c‖2L2(Ω) + C4, (2.4.6)

for some C4 > 0 and all t ∈ (0, Tmax). To estimate the term containing f(n)2 in (2.4.4)
we let K1 denote the positive constant from Corollary 2.8. Then, recalling (2.1.7) and
making use of the fact α < 1, an application of Young’s inequality yields C5 > 0 fulfilling
ξf(n)2 ≤ 1

2K1
n2 + C5 for all (x, t) ∈ Ω× (0, Tmax) and thus, by Corollary 2.8

ξ

∫
Ω
f(n)2 ≤ 1

2K1

∫
Ω
n2 + C5|Ω| ≤

1

2

∫
Ω
|∇(n

1/2)|2 + C6 for all t ∈ (0, Tmax) (2.4.7)

with C6 := 1
2 + C5|Ω|. Combining (2.4.4), (2.4.6) and (2.4.7) completes the proof.

Before we are able to combine the previous lemmata to derive an ODI appropriate for
our purpose, we require one additional result which is a corollary from Lemma 2.7.

Corollary 2.11.
There exists a constant K4 > 0 such that the solution to (2.1.6) fulfills

1

2

∫
Ω
|∇(n

1/2)|2 ≥ K4

∫
Ω
n lnn− 1

2
for all t ∈ (0, Tmax).
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Proof: In view of the pointwise inequality s ln s ≤ s2 for s ∈ (0,∞), the positivity of n
ascertained in Lemma 2.2 therefore implies n lnn ≤ n2 for all t ∈ (0, Tmax) and thus an
application of Corollary 2.8 immediately shows that there exists C1 > 0 such that∫

Ω
n lnn ≤

∫
Ω
n2 ≤ C1‖∇(n

1/2)‖2L2(Ω) + C1

holds for all t ∈ (0, Tmax). Hence, multiplying by K4 := 1
2C1

and reordering the terms
appropriately proves the asserted inequality.

Adding up suitable multiples of the differential inequalities in Lemma 2.9 and Lemma
2.10, we obtain a first bound on the gradient of c.

Proposition 2.12.
There exists a constant C > 0 such that the solution of (2.1.6) fulfills∫

Ω
|∇c|2 ≤ C for all t ∈ (0, Tmax). (2.4.8)

Proof: Letting K2 denote the positive constant from Lemma 2.9, we set ξ = 4K2+4 and
then K3 > 0 as the corresponding constant given by Lemma 2.10. With the constants
defined this way, we know that the inequality

(2K2 + 2)
d

dt

∫
Ω
|∇c|2 + (K2 + 1)

∫
Ω
|∆c|2 + (4K2 + 4)

∫
Ω
|∇c|2 ≤ 1

2

∫
Ω
|∇(n

1/2)|2 +K3,

(2.4.9)

holds for all t ∈ (0, Tmax) due to Lemma 2.10. Thus, adding up (2.4.1) and (2.4.9) entails

d

dt

(∫
Ω
n lnn+ (2K2 + 2)

∫
Ω
|∇c|2

)
+

1

2

∫
Ω
|∇(n

1/2)|2 +

∫
Ω
|∆c|2 + (4K2 + 4)

∫
Ω
|∇c|2 ≤ C1

for all t ∈ (0, Tmax) with C1 = K2 + K3 > 0. By Corollary 2.11 we can estimate
1
2

∫
Ω|∇(n1/2)|2 from below to obtain

d

dt

(∫
Ω
n lnn+ (2K2 + 2)

∫
Ω
|∇c|2

)
+K4

∫
Ω
n lnn

+

∫
Ω
|∆c|2 + 2(2K2 + 2)

∫
Ω
|∇c|2 ≤ C2

for all t ∈ (0, Tmax), with K4 > 0 provided by Corollary 2.11 and C2 = C1 + 1
2 > 0.

Dropping the nonnegative term
∫

Ω|∆c|
2, we find that y(t) :=

∫
Ωn lnn+(2K2+2)

∫
Ω|∇c|

2,
t ∈ [0, Tmax) satisfies

y′(t) + C3y(t) ≤ C2 for all t ∈ (0, Tmax),

where C3 := min {K4, 2} > 0. Upon an ODE comparison ([86, Thm. IX]), this leads to
the boundedness of y and hence (2.4.8) due to n lnn being bounded from below by the
positivity of n.
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2.4.2 Further testing procedures

The L2 bound of the gradient of c from the previous lemma will be our starting point
in improving the regularity of both n and c. Preparation and combination of differential
inequalities concerning np and |∇c|2q, for appropriately chosen q and p, will be the main
part of this section. The testing procedures employed in this approach are based on the
application to a similar chemotaxis-Stokes system discussed in [100].
The following preparatory result, taken from [79, Lemma 2.6], will be a useful tool in
estimations later on and is a simple derivation from Young’s inequality.

Lemma 2.13.
Let a > 0 and b > 0 be such that a+ b < 1. Then for all ε > 0 there exists C > 0 such
that

xayb ≤ ε(x+ y) + C for all x ≥ 0 and y ≥ 0.

The first step to improve the known regularities of n and c consists of an application of
standard testing procedures to gain separate inequalities regarding the time evolution of∫

Ωn
p and

∫
Ω|∇c|

2q, respectively.

Lemma 2.14.
Let p > 1. Then the solution of (2.1.6) satisfies

1

p

d

dt

∫
Ω
np +

2(p− 1)

p2

∫
Ω
|∇(n

p/2)|2 ≤ p− 1

2

∫
Ω
np|∇c|2 (2.4.10)

for all t ∈ (0, Tmax).

Proof: We multiply the first equation of (2.1.6) with np−1 and integrate by parts to see
that

1

p

d

dt

∫
Ω
np = −(p− 1)

∫
Ω
|∇n|2np−2 + (p− 1)

∫
Ω
np−1∇c · ∇n− 1

p

∫
∂Ω
npu · ~ν

holds for all t ∈ (0, Tmax), where we made use of the fact ∇·u = 0 and the divergence
theorem to rewrite the last term accordingly. Due to the boundary condition imposed
on u the last term disappears, and therefore an application of Young’s inequality to the
second to last term implies

1

p

d

dt

∫
Ω
np + (p− 1)

∫
Ω
|∇n|2np−2 ≤ p− 1

2

∫
Ω
|∇n|2np−2 +

p− 1

2

∫
Ω
np|∇c|2

for all t ∈ (0, Tmax). Reordering the terms and rewriting |∇n|2np−2 = 4
p2 |∇(np/2)|2

completes the proof.

Lemma 2.15.
Let q > 1. Then the solution of (2.1.6) satisfies

1

2q

d

dt

∫
Ω
|∇c|2q +

2(q − 1)

q2

∫
Ω

∣∣∣∇|∇c|q∣∣∣2 +

∫
Ω
|∇c|2q

18



Global existence and boundedness in two-dimensional domains

≤
(
K0(q − 1) +

K0√
2

)2 ∫
Ω
n2α|∇c|2q−2 +

∫
Ω
|∇c|2q|Du| (2.4.11)

for all t ∈ (0, Tmax).

Proof: Differentiating the second equation of (2.1.6) and making use of the fact that
∆|∇c|2 = 2∇c · ∇∆c+ 2|D2c|2, we obtain for all (x, t) ∈ Ω× (0, Tmax) that

1

2

(
|∇c|2

)
t

= ∇c · ∇ (∆c− c+ f(n)− u · ∇c)

=
1

2
∆|∇c|2 − |D2c|2 − |∇c|2 +∇c · ∇f(n)−∇c · ∇ (u · ∇c) .

Multiplying this identity by
(
|∇c|2

)q−1
and integrating by parts, where, due to the

Neumann boundary conditions imposed on n and c, every boundary integral except the

one involving ∂|∇c|2
∂ν disappears, we find that

1

2q

d

dt

∫
Ω
|∇c|2q +

q − 1

2

∫
Ω
|∇c|2q−4

∣∣∣∇|∇c|2∣∣∣2 +

∫
Ω
|∇c|2q−2|D2c|2 +

∫
Ω
|∇c|2q

=

∫
Ω
|∇c|2q−2∇c · ∇f(n)−

∫
Ω
|∇c|2q−2∇c · ∇ (u · ∇c) +

1

2

∫
∂Ω
|∇c|2q−2∂|∇c|2

∂ν
(2.4.12)

holds for all t ∈ (0, Tmax). Recalling (2.1.7), we integrate the first integral on the right
by parts to see that∫

Ω
|∇c|2q−2∇c · ∇f (n) ≤ K0

∫
Ω

∣∣∣∇|∇c|2q−2
∣∣∣|∇c|nα +K0

∫
Ω
|∇c|2q−2|∆c|nα

holds for all t ∈ (0, Tmax). Since ∇|∇c|2q−2 = 2(q− 1)|∇c|2q−4D2c · ∇c in Ω× (0, Tmax),
wherein the Cauchy-Schwarz inequality furthermore implies |∆c| ≤

√
2|D2c|, we may

apply Young’s inequality to obtain∫
Ω
|∇c|2q−2∇c · ∇f (n)

≤
∫

Ω
|∇c|2q−2|D2c|2 +

(
2K0(q − 1) +

√
2K0

)2
4

∫
Ω
|∇c|2q−2n2α

=

∫
Ω
|∇c|2q−2|D2c|2 +

(
K0(q − 1) +

K0√
2

)2 ∫
Ω
|∇c|2q−2n2α (2.4.13)

for all t ∈ (0, Tmax). To treat the second integral on the right hand side of (2.4.12), we
first rewrite

−
∫

Ω
|∇c|2q−2∇c · ∇ (u · ∇c)

=−
∫

Ω
|∇c|2q−2∇c · (Du · ∇c)−

∫
Ω
|∇c|2q−2∇c ·

(
D2c · u

)
(2.4.14)
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Ch.2. Sublinear signal production in a two-dimensional Keller–Segel–Stokes system

for all t ∈ (0, Tmax), and then make use of the pointwise equality

|∇c|2q−2∇c ·
(
D2c · u

)
=

1

2q
u · ∇|∇c|2q in Ω× (0, Tmax),

to see that, since u is divergence free,

−
∫

Ω
|∇c|2q−2∇c ·

(
D2c · u

)
=

1

2q

∫
Ω
(∇·u)|∇c|2q = 0

holds for all t ∈ (0, Tmax). Thus, (2.4.14) implies

−
∫

Ω
|∇c|2q−2∇c · ∇ (u · ∇c) ≤

∫
Ω
|∇c|2q|Du| for all t ∈ (0, Tmax). (2.4.15)

For the remaining boundary integral in (2.4.12) we recall that the convexity of Ω ensures
∂|∇c|2
∂ν ≤ 0 on ∂Ω (see [53, Lemme I.1, p.350]). Combining this with (2.4.12), (2.4.13)

and (2.4.15) completes the proof due to the identity∣∣∣∇|∇c|q∣∣∣2 =
q2

4
|∇c|2q−4

∣∣∣∇|∇c|2∣∣∣2 in Ω× (0, Tmax).

Before uniting the inequalities from (2.4.10) and (2.4.11) into a single energy-type in-
equality, we estimate the right hand sides therein separately.

Lemma 2.16.
Let ∞ > q > max{2, 1

α}, p = αq. For any η > 0 there exist constants K5,K6 and
K7 > 0 such that

p− 1

2

∫
Ω
np|∇c|2 ≤ η

6

(∫
Ω
|∇(n

p/2)|2 +

∫
Ω

∣∣∣∇|∇c|q∣∣∣2)+K5, (2.4.16)

(
K0(q − 1) +

K0√
2

)2∫
Ω
n2α|∇c|2q−2 ≤ η

6

(∫
Ω
|∇(n

p/2)|2 +

∫
Ω

∣∣∣∇|∇c|q∣∣∣2)+K6 (2.4.17)

and ∫
Ω
|∇c|2q|Du| ≤ η

6

∫
Ω

∣∣∣∇|∇c|q∣∣∣2 +K7 (2.4.18)

hold for all t ∈ (0, Tmax).

Proof: To prove (2.4.16), we first fix some β1 > 1 and apply Hölder’s inequality to
obtain

p− 1

2

∫
Ω
np|∇c|2 ≤ p− 1

2

(∫
Ω
npβ1

) 1
β1

(∫
Ω
|∇c|2β′1

) 1
β′
1

(2.4.19)
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for all t ∈ (0, Tmax), where β′1 denotes the Hölder conjugate of β1. By (2.2.2) and
Lemma 2.7 applied to ϕ = n, L = m, r = p and s = β1, we can find C1 > 0 such that(∫

Ω
npβ1

) 1
β1

≤ C1

(∫
Ω
|∇(n

p/2)|2
)1− 1

pβ1

+ C1 for all t ∈ (0, Tmax). (2.4.20)

An application of the Gagliardo–Nirenberg inequality ([52, Lemma 2.3]), similar to the
one utilized in Lemma 2.7, shows that the second integral on the right in (2.4.19) satisfies(∫

Ω
|∇c|2β′1

) 1
β′
1 ≤ C2

(∥∥∥∇|∇c|q∥∥∥ 2b1
q

L2(Ω)

∥∥∥|∇c|q∥∥∥ (2−2b1)
q

L
2
q (Ω)

+
∥∥∥|∇c|q∥∥∥ 2

q

L
2
q (Ω)

)
(2.4.21)

for all t ∈ (0, Tmax) with C2 > 0 and b1 ∈ (0, 1) provided by

b1 =

q
2 −

q
2β′1

q
2 + 1

2 −
1
2

= 1− 1

β′1
=

1

β1
.

Since Proposition 2.12 implies the boundedness of ‖|∇c|q‖
L

2
q (Ω)

, plugging (2.4.20) and

(2.4.21) into (2.4.19) we obtain C3 > 0 such that

p− 1

2

∫
Ω
np|∇c|2 ≤ C3

(∫
Ω
|∇(n

p/2)|2
)1− 1

pβ1

(∫
Ω

∣∣∣∇|∇c|q∣∣∣2) 1
qβ1

+ C3

(∫
Ω
|∇(n

p/2)|2
)1− 1

pβ1

+ C3

(∫
Ω

∣∣∣∇|∇c|q∣∣∣2) 1
qβ1

+ C3

holds for all t ∈ (0, Tmax). Due to α < 1 the choice of p = αq implies p < q and thus,
1− 1

pβ1
+ 1

qβ1
< 1. Therefore, we may apply Lemma 2.13 with ε = η

12 to the three terms
on the right hand side containing an integral and obtain for some C4 > 0 that

p− 1

2

∫
Ω
np|∇c|2 ≤ η

6

(∫
Ω
|∇(n

p/2)|2 +

∫
Ω

∣∣∣∇|∇c|q∣∣∣2)+ C4

holds for all t ∈ (0, Tmax), which proves (2.4.16). The proof of (2.4.17) follows the same
reasoning. First, we apply Hölder’s inequality with β2 = q+1

2 and β′2 as corresponding
Hölder conjugate to obtain∫

Ω
n2α|∇c|2q−2 ≤

(∫
Ω
n2αβ2

) 1
β2

(∫
Ω
|∇c|(2q−2)β′2

) 1
β′
2

(2.4.22)

for all t ∈ (0, Tmax). Since the choices of β2 and p imply 2αβ2

p = α(q+1)
αq > 1, we can

utilize Lemma 2.7 with ϕ = n, r = p and s = 2αβ2

p to estimate

(∫
Ω
n2αβ2

) 1
β2

≤ C5

(∫
Ω
|∇(n

p/2)|2
) 2αβ2−1

pβ2

+ C5 for all t ∈ (0, Tmax), (2.4.23)
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with some C5 > 0. For the integral involving |∇c|(2q−2)β′2 , we make use of the Gagliardo–
Nirenberg inequality as shown before to obtain C6 > 0 such that(∫

Ω
|∇c|(2q−2)β′2

) 1
β′
2 ≤ C6

(∫
Ω

∣∣∣∇|∇c|q∣∣∣2) (q−1)b2
q

+ C6 (2.4.24)

holds for all t ∈ (0, Tmax), with b2 ∈ (0, 1) determined by

b2 =

q
2 −

q
2(q−1)β′2

q
2 + 1

2 −
1
2

= 1− 1

(q − 1)β′2
= 1− 1

(q − 1)
+

1

(q − 1)β2
.

Thus, a combination of (2.4.22), (2.4.23) and (2.4.24) leads to(
K0(q − 1) +

K0√
2

)2∫
Ω
n2α|∇c|2q−2

≤ C7

(∫
Ω
|∇(n

p/2)|2
) 2αβ2−1

pβ2

(∫
Ω

∣∣∣∇|∇c|q∣∣∣2) (q−1)b2
q

+ C7

(∫
Ω
|∇(n

p/2)|2
) 2αβ2−1

pβ2

+ C7

(∫
Ω

∣∣∣∇|∇c|q∣∣∣2) (q−1)b2
q

+ C7

for all t ∈ (0, Tmax) with some C7 > 0. Here the choice of p and the fact that α < 1
imply

2αβ2 − 1

pβ2
+

(q − 1)b2
q

=
2α

p
− 1

pβ2
+
q − 2

q
+

1

qβ2

=
2

q
− 1

αqβ2
+
q − 2

q
+

1

qβ2
= 1− 1− α

αqβ2
< 1.

Therefore, the requirements of Lemma 2.13 are satisfied again and an application thereof
yields C8 > 0 such that(

K0(q − 1) +
K0√

2

)2∫
Ω
n2α|∇c|2q−2 ≤ η

6

(∫
Ω
|∇(n

p/2)|2 +

∫
Ω

∣∣∣∇|∇c|q∣∣∣2)+ C8

holds for all t ∈ (0, Tmax) and thus proves (2.4.17). To verify (2.4.18) we fix β3 = 3
2 and

β′3 = 3. Since β3 < 2 Hölder’s inequality yields∫
Ω
|∇c|2q|Du| ≤

(∫
Ω
|∇c|2qβ′3

) 1
β′
3

(∫
Ω
|Du|β3

) 1
β3

≤ C9

∥∥∥|∇c|q∥∥∥2

L6(Ω)

for some C9 > 0, in view of the boundedness of ‖Du‖
L

3
2 (Ω)

shown in Proposition 2.5.

Similarly to the previous applications of the Gagliardo-Nirenberg and Young inequalities
we can make use of the boundedness of ‖|∇c|q‖

L
2
q (Ω)

to obtain C10 > 0 such that∫
Ω
|∇c|2q|Du| ≤ η

6

∫
Ω

∣∣∣∇|∇c|q∣∣∣2 + C10

for all t ∈ (0, Tmax), which completes the proof.
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Combining the three previous lemmata we are now in the position to control norms of
n and ∇c in Lp(Ω) with arbitrarily high p. In fact, we have the following:

Proposition 2.17.
Let ∞ > q > max{2, 1

α} and p = αq. Then we can find C > 0 such that, the solution of
(2.1.6) satisfies ∫

Ω
np ≤ C for all t ∈ (0, Tmax) (2.4.25)

and ∫
Ω
|∇c|2q ≤ C for all t ∈ (0, Tmax). (2.4.26)

Proof: Given q > max{2, 1
α} and p = αq we fix η = min

{
2(q−1)
q2 , 2(p−1)

p2

}
. By the

Lemmata 2.14, 2.15 and 2.16, we can find C1 := K5 +K6 +K7 > 0 such that

d

dt

(
1

p

∫
Ω
np +

1

2q

∫
Ω
|∇c|2q

)
+

2(p− 1)

p2

∫
Ω
|∇(n

p/2)|2 +
2(q − 1)

q2

∫
Ω

∣∣∣∇|∇c|q∣∣∣2
+

∫
Ω
|∇c|2q ≤ η

2

(∫
Ω
|∇(n

p/2)|2 +

∫
Ω

∣∣∣∇|∇c|q∣∣∣2)+ C1

holds for all t ∈ (0, Tmax). Herein the choice of η implies

d

dt

(
1

p

∫
Ω
np +

1

2q

∫
Ω
|∇c|2q

)
+
p− 1

p2

∫
Ω
|∇(n

p/2)|2

+
q − 1

q2

∫
Ω

∣∣∣∇|∇c|q∣∣∣2 +

∫
Ω
|∇c|2q ≤ C1 (2.4.27)

for all t ∈ (0, Tmax). We drop the nonnegative term q−1
q2

∫
Ω|∇|∇c|

q|2 and apply Lemma

2.7 to estimate
∫

Ω|∇(np/2)|2 from below in (2.4.27), to obtain C2, C3 > 0 such that
y(t) := 1

p

∫
Ωn

p + 1
2q

∫
Ω|∇c|

2q, t ∈ (0, Tmax) satisfies

y′(t) + C2y(t) ≤ C3 for all t ∈ (0, Tmax),

from which we infer the boundedness of y upon an ODE comparison and thus (2.4.25)
and (2.4.26).

2.4.3 Global existence and boundedness

We can now begin to verify the boundedness of the three quantities appearing in the
extensibility criterion (2.2.1). The first of these quantities will be ‖A%u(·, t)‖L2(Ω).

Proposition 2.18.
Let % ∈ (1

2 , 1) be as in Lemma 2.2. There exists a constant C > 0 such that the solution
of (2.1.6) satisfies

‖A%u(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax).
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Proof: The proof essentially follows the argumentation of [79, Lemma 2.4], whilst mak-
ing use of the previously proven bound ‖n‖Lp(Ω) ≤ C for all t ∈ (0, Tmax) with some
p > 2. Nonetheless, let us recount the main arguments.
It is well known, see [72, Theorem 38.6] and [75, p.204] for instance, that the Stokes oper-
ator A is a positive, sectorial operator and generates a contraction semigroup

(
e−tA

)
t≥0

in L2
σ(Ω) with operator norm bounded by

‖e−tA‖ ≤ e−λ1t for all t ≥ 0,

with some λ1 > 0. Furthermore, the operator norm of the fractional powers of the
Stokes operator satisfy an exponential decay property ([72, Theorem 37.5]). That is,
there exists C1 > 0 such that∥∥A%e−tA∥∥ ≤ C1t

−%e−λ1t for all t > 0. (2.4.28)

Thus, representing u by its variation of constants formula

u(·, t) = e−tAu0 +

∫ t

0
e−(t−s)AP (n(·, s)∇φ) ds, t ∈ (0, Tmax),

and applying the fractional power A%, we can make use of the fact that e−tA commutes
with A% ([75, IV.(1.5.16), p.206]), the contraction property and (2.4.28) to find C2 > 0
such that

‖A%u(·, t)‖L2(Ω)

≤ ‖A%u0‖L2(Ω) + C1

∫ t

0
(t− s)−% e−λ1(t−s) ‖P (n(·, s)∇φ)‖L2(Ω) ds

≤ ‖A%u0‖L2(Ω) + C2 sup
t∈(0,Tmax)

‖n(·, t)‖L2(Ω)

∫ ∞
0
σ−%e−λ1σ dσ (2.4.29)

holds for all t ∈ (0, Tmax), by the boundedness of ∇φ. In light of (2.1.10) we have
‖A%u0‖L2(Ω) ≤ C3 for some C3 > 0. Furthermore, since % < 1 the integral converges

and by Proposition 2.17, applied with some q > 2
α , we can find C4 > 0 such that

‖n(·, t)‖L2(Ω) ≤ C4 for all t ∈ (0, Tmax). Combining these facts with (2.4.29) yields

‖A%u(·, t)‖L2(Ω) ≤ C5 for all t ∈ (0, Tmax)

with some C5 > 0, which completes the proof.

The next quantity of the extensibility criterion we treat is ‖c(·, t)‖W 1,ϑ(Ω). In view of

Proposition 2.17, we can take some q > max{ϑ, 1
α} to obtain the following corollary from

a simple application of the Poincaré inequality.

Corollary 2.19.
There exists a constant C > 0 such that

‖c(·, t)‖W 1,ϑ(Ω) ≤ C

holds for all t ∈ (0, Tmax).
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Now, to prove the last remaining bound required for the extensibility criterion (2.2.1)
as well as one of the estimates required for the boundedness result, we require some
well known results concerning the Neumann heat semigroup

(
et∆
)
t≥0

. These semigroup
estimates and Proposition 2.17 will be the main ingredients of our proof. For more details
concerning the estimation process employed, we refer the reader to [12, Lemma 2.1], [97,
Lemma 1.3] and [32].

Proposition 2.20.
There exists a constant C > 0 such that

‖n(·, t)‖L∞(Ω) ≤ C

holds for all t ∈ (0, Tmax).

Proof: First, we fix p > 2 and represent n by its variation of constants formula

n(·, t) = et∆n0 −
∫ t

0
e(t−s)∆(∇ · (n∇c) + u · ∇n

)
(·, s) ds, t ∈ (0, Tmax).

The fact ∇·u = 0 and the maximum principle then yield

‖n(·, t)‖L∞(Ω) ≤ ‖n0‖L∞(Ω) +

∫ t

0

∥∥∥e(t−s)∆(∇ · (n∇c+ un)
)
(·, s)

∥∥∥
L∞(Ω)

ds

for all t ∈ (0, Tmax). Now, we can make use of the well-known smoothing properties of
the Neumann heat semigroup (see [12, Lemma 2.1 (iv)]), to estimate

‖n(·, t)‖L∞(Ω) ≤ ‖n0‖L∞(Ω) (2.4.30)

+ C1

∫ t

0

(
1 + (t− s)−

1
2
− 1
p

)
e−µ1(t−s) ‖(n (∇c+ u)) (·, s)‖Lp(Ω) ds

for all t ∈ (0, Tmax) and some C1 > 0, where µ1 denotes the first nonzero eigenvalue of
−∆ in Ω with regards to the homogeneous Neumann boundary conditions. To estimate
‖n(∇c+ u)‖Lp(Ω) we apply Hölder’s inequality to obtain some C2 > 0 such that

‖n(∇c+ u)(·, t)‖Lp(Ω) ≤ ‖n(·, t)‖L2p(Ω)

(
‖∇c(·, t)‖L2p(Ω) + ‖u(·, t)‖L2p(Ω)

)
≤C2

holds for all t ∈ (0, Tmax), wherein the boundedness of all quantities on the right hand
side followed in view of Propositions 2.5 and 2.17. Plugging this into (2.4.30) and
recalling n0 ∈ C0

(
Ω
)

yields C3 > 0 such that

‖n(·, t)‖L∞(Ω) ≤ C3 + C3

∫ ∞
0

(
1 + σ

− 1
2
− 1
p

)
e−µ1σ dσ

is valid for all t ∈ (0, Tmax). By the choice of p we have −1
2 −

1
p > −1 and thus there

exists C4 > 0 such that

‖n(·, t)‖L∞(Ω) ≤ C4 for all t ∈ (0, Tmax),

which completes the proof.
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Let us gather the previous results to prove our main theorem.

Proof of Theorem 2.1: As an immediate consequence of the bounds in Proposition
2.18, Corollary 2.19 and Proposition 2.20, we obtain Tmax = ∞ in view of the ex-
tensibility criterion (2.2.1). Secondly, since ϑ > 2 we have W 1,ϑ(Ω) ↪→ Cγ1(Ω) with
γ1 = ϑ−2

ϑ ([23, Theorem 5.6.5]). Thus, Corollary 2.19 implies ‖c(·, t)‖L∞(Ω) ≤ C for all

t ∈ (0, Tmax). Additionally, since for % ∈ (1
2 , 1) the fractional powers of the Stokes oper-

ator satisfy D(A%) ↪→ Cγ2(Ω) for any γ2 ∈ (0, 2%− 1) (see [75, Lemma III.2.4.3] and [23,
Theorem 5.6.5]), Proposition 2.18 shows that ‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax) and
the boundedness of ‖n(·, t)‖L∞(Ω) for all t ∈ (0, Tmax) follows directly from Proposition
2.20.
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3 Global solvability of chemotaxis fluid
systems with nonlinear diffusion and
matrix-valued sensitivities in three
dimensions

3.1 Introduction

A distinct feature of Keller–Segel-type models (even without fluid) is their possibility
to capture the emergence of patterns arising from the aggregation of bacteria, which on
the solution level of the corresponding PDE system

nt = ∇ ·
(
D(n)∇n− nS(n, c)∇c

)
ct = ∆c− c+ n, (3.1.1)

can be observed as blow-up of solutions. Accordingly, obtaining results proving or ex-
cluding the possibility of blow-up has been a significant concern of the literature. For
the Keller–Segel system of the form in (3.1.1), the quantity governing the behavior has

been identified to be the growth ratio of nS(n)
D(n) , with its critical number given by 2

N and

N being the space dimension (see [80] and references therein). Essentially, considering
a corresponding Neumann-boundary value problem in a smooth domain Ω ⊂ RN , the
classical solutions emerging from suitably regular initial data remain bounded for all
times, whenever S = S(n) and

nS(n)

D(n)
≤ C(1 + n)β for all n ≥ 0 with some C > 0 and β <

2

N
.

On the other hand, in [95] smooth solutions blowing-up in either infinite or finite time
have been shown to exist under the assumption of

nS(n)

D(n)
≥ Cnγ for all n > 1 with some C > 0 and γ >

2

N
.

(Finite time blow-up has also been witnessed in [15].) Especially, considering cell dif-
fusion as covered by variants of the porous medium operator, but nondegenerate, i.e.
D(n) ≡ m(n+ 1)m−1, and a sensitivity function satisfying S(n) ≡ (1 + n)−α, the condi-
tion for finite time blow-up to be excluded in (3.1.1) can be expressed as m+α > 2N−2

N .
This number will act as our comparison point for conditions arising in the setting of a
Keller–Segel system coupled to fluid equations, where the underlying model is motivated
by the fact that studies on broadcast spawning ([16, 58]) indicate a great impact of the
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Ch.3. Glob. solv. of ct-fluid systems with nonlin. diff. and matrix-valued sensitivities

the surrounding liquid on the migration process. The literature concerning global ex-
istence in systems incorporating both fluid interaction and signal production described
by 

nt + u ·∇n = ∇ ·
(
D(n)∇n− nS(x, n, c)∇c

)
,

ct + u ·∇c = ∆c− c+ n,
ut +κ(u · ∇)u = ∆u−∇P + n∇φ,

∇ · u = 0,

(3.1.2)

where S may be a tensor-valued function, u denotes the fluid-velocity field, P the cor-
responding pressure and φ is a given gravitational potential, however, is not as rich
and mostly focuses either on the case D(n) ≡ 1 or on S(x, n, c) ≡ 1. (A more com-
mon variant of (3.1.2) is concerned with signal consumption as proposed by [85]. For
this setting the results are a bit more extensive and an overview of known results in
three-dimensional domains can be found in the references of [7].) The tensor-valued
sensitivity function present in (3.1.2) is motivated by the observation that movement
of bacteria is biased, as witnessed in colonies of Proteus mirabilis ([109]), where spiral-
ing streams always turn counterclockwise, or with E. coli cells always following clock-
wise, circular trajectories near solid boundaries ([19, 49]). Actually, a contribution to
the chemotaxis term perpendicular to the signal gradient also appears when deriving
macroscopic chemotaxis equations from a cell-based model incorporating swimming bias
([108]). Let us briefly recapitulate the recent developments for porous medium type
diffusion D(n) = mnm−1. In the case of m = 1 (i.e. linear diffusion) and tensor-valued
S(x, n, c) satisfying |S(x, n, c)| ≤ (1 + n)−α global weak solutions were shown to ex-
ist for α ≥ 3

7 ([55]) and global very weak solutions were established whenever α > 1
3

([88]). In space dimension N = 2 the optimal condition α > 0 can even be reached
with global bounded classical solutions ([90]). If we simplify to Stokes-fluid (κ = 0 in
(3.1.2)) instead of full Navier–Stokes-fluid, more regular solutions can also be achieved
in dimension N = 3, as indicated by the recent studies on bounded classical solutions
in [106]. On the other hand, in the case of S(x, n, c) ≡ 1 (i.e. α = 0) and m > 1 global
weak solutions were obtained first for m > 2 in [111] and more recently for m > 5

3 in [7],

1 2
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2

4
3

5
3

4
3

3
7

α

m
Global existence of

very weak solution

weak solution

Fig. 3.1: Overview of global existence in (3.1.2) prior to this work

where also global very weak
solutions were shown to ex-
ist whenever m > 4

3 . The
results concerning N = 3
and Navier–Stokes-fluid can
be illustrated by the picture
on the left. Comparing with
the either or cases from the
fluid-free setting one would
expect global very weak so-
lutions to exist for all m ≥ 1
and α ≥ 0 satisfying m+α >
4
3 . However, connecting the
currently known limit cases
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Introduction

for weak solutions in the standard sense to exist leads to a line which appears to have
a rather unnatural slope, posing the question whether the current condition m = 1 and
α > 3

7 is critical in α for global weak solutions to exist. Our main interest thereby
consists in extracting a priori estimates from the sparse information provided by the
system, which, most importantly, capture optimal conditions on m ≥ 1 and α ≥ 0.
Main results. Suppose that Ω ⊂ R3 is a bounded domain with smooth boundary,
m ≥ 1 and that for some α ≥ 0 and S0 > 0 the tensor-valued sensitivity function
S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies

|S(x, n, c)| ≤ S0

(1 + n)α
for all x ∈ Ω, n ≥ 0 and c ≥ 0. (3.1.3)

Under these assumptions we will consider
nt + u ·∇n = ∆nm −∇· (nS(x, n, c)∇c), x ∈ Ω, t > 0,
ct + u ·∇c = ∆c− c+ n, x ∈ Ω, t > 0,
ut + (u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(3.1.4)

complemented with boundary conditions(
∇nm(x, t)− n(x, t)S

(
x, n(x, t), c(x, t)

)
∇c(x, t)

)
· ν = 0, (3.1.5)

∇c(x, t) · ν = 0 and u(x, t) = 0 for x ∈ ∂Ω and t > 0,

and initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω, (3.1.6)

where the gravitational potential φ is assumed to satisfy

φ ∈W 2,∞(Ω). (3.1.7)

Prescribing initial data which satisfy the conditions
n0 ∈ Cγ

(
Ω
)

for some γ > 0 with n0 ≥ 0 in Ω and n0 6≡ 0,

c0 ∈W 1,∞(Ω) with c0 ≥ 0 in Ω, and c0 6≡ 0,

u0 ∈W 2,2
(
Ω;R3

)
∩W 1,2

0

(
Ω;R3

)
such that ∇ · u0 = 0,

(3.1.8)

we obtain the following main results.

Theorem 3.1.
Let Ω ⊂ R3 be a bounded domain with smooth boundary. Suppose that m ≥ 1 and α ≥ 0
satisfy m + 2α > 5

3 . Moreover, assume S ∈ C2
(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with

some S0 > 0 and that n0, c0 and u0 comply with (3.1.8). Then (3.1.4)– (3.1.6) admits at
least one global weak solution in the sense of Definition 3.6 below.

If we merely prescribe m + 2α ≤ 5
3 , we have to weaken the solution concept in order

to verify the existence of global solutions – which is due to the obtainable a priori
information being so weak that we have to consider a sublinear functional of n for our
testing methods.
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Theorem 3.2.
Let Ω ⊂ R3 be a bounded domain with smooth boundary. Suppose that m ≥ 1 and α ≥ 0
satisfy m+α > 4

3 . Moreover, assume S ∈ C2
(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) and that

n0, c0 and u0 comply with (3.1.8). Then (3.1.4)– (3.1.6) admits at least one global very
weak solution (n, c, u) in the sense of Definition 3.5 below. In particular, this global very
weak solution satisfies

n ∈ L2(m+α)− 4
3

loc

(
Ω×[0,∞)

)
, c ∈ L2

loc

(
[0,∞);W 1,2(Ω)

)
, u ∈ L2

loc

(
[0,∞);W 1,2

0 (Ω;R3)
)
,

and ∫
Ω
n(·, t) =

∫
Ω
n0 for a.e. t > 0.

Remark 3.3.
For the linear diffusion case m = 1 Theorem 3.1 provides the existence of a global weak
solution for α > 1

3 , extending the results of [88] and [55], which provided the existence of
a global very weak solution for α > 1

3 and a global weak solution for α > 3
7 , respectively.

Since we are considering Navier–Stokes-fluid, smooth global solutions can not be ex-
pected. However, it could be likely that the very weak solutions obtained for m+α > 4

3
may in fact become smooth solutions after some waiting time, i.e. there may exist
some T > 0 such that the global very weak solutions satisfies the additional regularity
properties

n, c ∈ C2,1
(
Ω×[T,∞)

)
and u ∈ C2,1

(
Ω×[T,∞);R3

)
.

Effects of this kind have, in more generous settings featuring signal consumption instead
of production, been observed in e.g. [105]. However, since the methods underlying
the proof of those results rely heavily on the consumption of the chemical, a result on
eventual smoothness in presence of signal production, to the best of our knowledge, is
still open. Illustrating the previous diagram once more with the new results, we obtain
the figure below, which neatly fits together with the expectations we obtained from
Figure 3.1.
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Fig. 3.2: Overview of global existence in (3.1.4) with Thm. 3.1 and Thm. 3.2
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The notions of weak and very weak solutions

Mathematical difficulties. The absence of any energy-functional in this setting in-
corporating both fluid interaction and signal production is one of the main difficulties
in obtaining estimates optimal with respect to m and α. Most of the problems result-
ing from this lack of an energy estimate can be combated by utilizing similar methods
as displayed in [88] and our previous work [7], but even greater care has to be taken
when trying to derive information on gradient terms and combined quantities without
tightening the scope for m and α. After regularizing the problem in a suitable fashion,
a functional of the form∫

Ω
(nε + ε)m+2α−1(·, t) +

∫
Ω
c2
ε(·, t), t > 0,

(which, specifically, for small values of m and α is of sublinear growth with respect
to n) will be the main cornerstone of our analysis and will also provide bounds on∫ t+1
t

∫
Ω

∣∣∇(nε+ε)
m+α−1

∣∣2 as well as
∫ t+1
t

∫
Ω|∇cε|

2 (Lemma 3.10), which by the Gagliardo–
Nirenberg inequality can be refined into more spatio-temporal regularity information on
nε (Lemma 3.11). The careful combination of these estimates with standard arguments
for the Navier–Stokes-subsystem will enable us to conclude from compactness arguments
the existence of the desired limit object (Proposition 3.19). Depending on the size of m
and α, the convergence properties can be relied on to conclude Theorems 3.1 and 3.2.

3.2 The notions of weak and very weak solutions

Let us start by laying out the exact formulations of the different concepts of solvability
we are going to discuss. The notion of very weak solvability present in Theorem 3.2 is
adapted from the related works in [101, 88, 7] and the main distinguishing aspect when
comparing to the standard notion of weak solvability is the fact that the first component
of the system only has to satisfy a supersolution property.

Definition 3.4.
Let Φ ∈ C2([0,∞)) be a nonnegative function satisfying Φ′ > 0 on (0,∞). Assume that
n0 ∈ L∞(Ω) is nonnegative with Φ(n0) ∈ L1(Ω) and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) for some S0 > 0 and α ≥ 0. Suppose that c ∈ L2

loc

(
[0,∞);W 1,2(Ω)

)
and u ∈ L1

loc

(
[0,∞);W 1,1

0

(
Ω;R3

))
with ∇·u ≡ 0 in D′

(
Ω × (0,∞)

)
. The nonnegative

measurable function n : Ω × (0,∞) → R satisfying n ∈ L1
loc

(
[0,∞);W 1,1(Ω)

)
will be

named a global weak Φ–supersolution of the initial-boundary value problem
nt + u ·∇n = ∆nm −∇·

(
nS(x, n, c)∇c

)
, x ∈ Ω, t > 0,

∂n
∂ν = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), x ∈ Ω,

(3.2.1)

if

Φ(n), and Φ′′(n)nm−1|∇n|2 belong to L1
loc

(
Ω×[0,∞)

)
,

Φ′(n)nm−1∇n, and Φ(n)u belong to L1
loc

(
Ω×[0,∞);R3

)
, (3.2.2)

Φ′(n)n belongs to L2
loc

(
Ω×[0,∞)

)
, and Φ′′(n)n∇n belongs to L2

loc

(
Ω×[0,∞);R3

)
,
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and if for each nonnegative ϕ ∈ C∞0
(
Ω×[0,∞)

)
the inequality

−
∫ ∞

0

∫
Ω
Φ(n)ϕt −

∫
Ω

Φ(n0)ϕ(·, 0)

≥ −m
∫ ∞

0

∫
Ω

Φ′′(n)nm−1|∇n|2ϕ−m
∫ ∞

0

∫
Ω

Φ′(n)nm−1(∇n · ∇ϕ) (3.2.3)

+

∫ ∞
0

∫
Ω

Φ′′(n)n
(
∇n · S(x, n, c)∇c

)
ϕ+

∫ ∞
0

∫
Ω

Φ′(n)n
(
S(x, n, c)∇c · ∇ϕ

)
+

∫ ∞
0

∫
Ω

Φ(n)(u · ∇ϕ)

is satisfied.

Let us briefly remark on the test function we will use later on. For m ≥ 1 and α ≥ 0
satisfying the conditionsm+α > 4

3 andm+2α < 2 we will consider Φ(s) ≡ (s+1)m+2α−1.
Due to m + 2α − 1 < 1 our main intention in the coming sections will be to obtain a
priori bounds which allow for the conclusion that nm+2α−1 ∈ L2

loc

(
[0,∞);W 1,2(Ω)

)
.

Combining this with suitable regularity information on the other solution components is
sufficient to determine that all of the integrals appearing in the supersolution property
above are well defined (see also Corollary 3.12 and Lemma 3.24 below).
Complementing Definition 3.4 with the standard properties of weak solvability for the
remaining subproblems of (3.1.4) will lead us to the following notion of global very weak
solutions.

Definition 3.5.
A triple (n, c, u) of functions

n ∈ L1
loc

(
Ω×[0,∞)

)
,

c ∈ L2
loc

(
[0,∞);W 1,2(Ω)

)
,

u ∈ L1
loc

(
[0,∞);W 1,1

0

(
Ω;R3

))
,

satisfying n ≥ 0 and c ≥ 0 in Ω×[0,∞), cu ∈ L1
loc

(
Ω×[0,∞);R3

)
, as well as u ⊗ u ∈

L1
loc

(
Ω×[0,∞);R3×3

)
will be called a global very weak solution of (3.1.4)– (3.1.6), if∫

Ω
n(·, t) ≤

∫
Ω
n0 for a.e. t > 0,

if ∇ · u = 0 in D′
(
Ω× (0,∞)

)
, if the equality

−
∫ ∞

0

∫
Ω
cϕt −

∫
Ω
c0ϕ(·, 0) = −

∫ ∞
0

∫
Ω
∇c · ∇ϕ−

∫ ∞
0

∫
Ω
cϕ+

∫ ∞
0

∫
Ω
nϕ+

∫ ∞
0

∫
Ω
c(u · ∇ϕ)

(3.2.4)

holds for all ϕ ∈ L∞ (Ω× (0,∞))∩L2
(
(0,∞);W 1,2(Ω)

)
with ϕt ∈ L2 (Ω× (0,∞)), which

are compactly supported in Ω×[0,∞), if

−
∫ ∞

0

∫
Ω
u · ψt −

∫
Ω
u0 · ψ(·, 0) = −

∫ ∞
0

∫
Ω
∇u · ∇ψ +

∫ ∞
0

∫
Ω
(u⊗ u) · ∇ψ +

∫ ∞
0

∫
Ω
n∇φ · ψ

(3.2.5)
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is fulfilled for all ψ ∈ C∞0
(
Ω× [0,∞);R3

)
with ∇ · ψ ≡ 0 in Ω × (0,∞), and if finally

there exists some nonnegative Φ ∈ C2([0,∞)) with Φ′ > 0 on [0,∞) such that n is a
global weak Φ–supersolution of (3.2.1) in the sense of Definition 3.4.

If, on the other hand, m+ 2α > 5
3 we will obtain global weak solutions in the standard

sense. Let us formulate this well-established concept for the sake of completeness in the
following definition.

Definition 3.6.
Let S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfy (3.1.3) for some S0 > 0 and α ≥ 0. A triple

(n, c, u) of functions

n ∈ L1
loc

(
Ω×[0,∞)

)
, c ∈ L1

loc

(
[0,∞);W 1,2(Ω)

)
, u ∈ L1

loc

(
[0,∞);W 1,1

0

(
Ω;R3

))
,

satisfying n ≥ 0 and c ≥ 0 in Ω×[0,∞) will be called a global weak solution of (3.1.4)–
(3.1.6), if n ∈ L1

loc

(
[0,∞);W 1,1(Ω)

)
and u ⊗ u ∈ L1

loc

(
Ω×[0,∞);R3×3

)
, if ∇ · u = 0 in

D′
(
(Ω× (0,∞)

)
, if

nm−1∇n, n∇c and nu, as well as cu belong to L1
loc

(
Ω×[0,∞);R3

)
,

if equality (3.2.4) holds for all ϕ ∈ L∞ (Ω× (0,∞)) ∩ L2
(
(0,∞);W 1,2(Ω)

)
with ϕt ∈

L2 (Ω× (0,∞)), which are compactly supported in Ω×[0,∞), if (3.2.5) is fulfilled for
all ψ ∈ C∞0

(
Ω× [0,∞);R3

)
with ∇ · ψ ≡ 0 in Ω × (0,∞), and if finally for each

ϕ ∈ C∞0
(

Ω×[0,∞)
)

the equality

−
∫ ∞

0

∫
Ω
nϕt −

∫
Ω
n0 ϕ(·, 0) (3.2.6)

= −m
∫ ∞

0

∫
Ω
nm−1

(
∇n · ∇ϕ

)
+

∫ ∞
0

∫
Ω
n
(
S(x, n, c)∇c · ∇ϕ

)
+

∫ ∞
0

∫
Ω
n(u · ∇ϕ)

is satisfied.

Remark 3.7.
i) If (3.2.3) is satisfied for Φ(s) ≡ s with equality, then (n, c, u) is a global weak solution
of (3.1.4) in the sense of Definition 3.6, which shows that every global weak solution is
also a global very weak solution.
ii) If the global very weak solution (n, c, u) satisfies the regularity properties n, c ∈
C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
and u ∈ C0

(
Ω×[0,∞);R3

)
∩ C2,1

(
Ω×(0,∞);R3

)
,

it can be checked that the solution is also a global classical solution, i.e. one can find
P ∈ C1,0

(
Ω×(0,∞)

)
such that (n, c, u, P ) solves (3.1.4) in the classical sense. See [101,

Lemma 2.1] for the arguments involved.

3.3 A family of regularized problems

As a first step in the construction of global solutions in either of the senses above, we
will first adapt the approaches undertaken in [101, 88, 7] to our setting in order to
approximate the system (3.1.4) by problems in which the no-flux boundary condition of
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the first component reduces to a homogeneous Neumann boundary condition and which
are solvable globally in time. With a family (ρε)ε∈(0,1) ⊂ C∞0 (Ω) of cut-off functions in
Ω satisfying

0 ≤ ρε(x) ≤ 1 for all x ∈ Ω such that ρε ↗ 1 as ε↘ 0,

we define

Sε(x, n, c) := ρε(x)S(x, n, c), (x, n, c) ∈ Ω× [0,∞)2 (3.3.1)

and accordingly for ε ∈ (0, 1) consider regularized problems of the form

nεt + uε ·∇nε = ∇ ·
(
m(nε + ε)m−1∇nε − nεSε(x,nε,cε)

(1+εnε)3 ∇cε
)
, x ∈ Ω, t > 0,

cεt + uε ·∇cε = ∆cε − cε + nε, x ∈ Ω, t > 0,
uεt + (Yεuε · ∇)uε = ∆uε −∇Pε + nε∇φ, x ∈ Ω, t > 0,

∇ · uε = 0, x ∈ Ω, t > 0,
∂νnε = ∂νcε = 0, uε = 0, x ∈ ∂Ω, t > 0,
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(3.3.2)

where the Yosida approximation Yε of the Stokes operator A := −P∆ is given by

Yεϕ := (1 + εA)−1ϕ for ε ∈ (0, 1) and ϕ ∈ L2
σ(Ω),

and L2
σ(Ω) :=

{
ϕ ∈ L2

(
Ω;R3

)
| ∇ · ϕ = 0

}
denotes the solenoidal subspace of L2

(
Ω;R3

)
.

3.3.1 Global existence of approximating solutions and basic properties

By standard arguments involving well-established testing procedures and a Moser-type
iteration one can readily verify that for all m ≥ 1 and α ≥ 0 the classical solutions to
the approximating system above are in fact global solutions, which in addition satisfy
certain L1 estimates.

Lemma 3.8.
Let Ω ⊂ R3 be a bounded domain with smooth boundary, φ ∈ W 2,∞(Ω), ϑ > 3, m ≥ 1
and α ≥ 0. Suppose that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) for some S0 > 0

and assume that n0, c0 and u0 comply with (3.1.8). Then for any ε ∈ (0, 1), there exists
a uniquely determined triple (nε, cε, uε) of functions satisfying

nε ∈ C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
,

cε ∈ C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
∩ C0

(
[0,∞);W 1,ϑ(Ω)

)
,

uε ∈ C0
(
Ω×[0,∞);R3

)
∩ C2,1

(
Ω×(0,∞);R3

)
,

which, together with some Pε ∈ C1,0
(
Ω×(0,∞)

)
, solve (3.3.2) in the classical sense and

fulfill nε ≥ 0 and cε ≥ 0 in Ω×[0,∞), as well as∫
Ω
nε(·, t) =

∫
Ω
n0 for all t ∈ (0,∞) (3.3.3)

34



A family of regularized problems

and ∫
Ω
cε(·, t) ≤ max

{∫
Ω
n0,

∫
Ω
c0

}
for all t ∈ (0,∞). (3.3.4)

Proof: Adapting well-established fixed point arguments as illustrated for similar chemo-
taxis frameworks in e.g. [78, Lemma 2.1], [48, Lemma 2.2] and [98, Lemma 2.1], we
can readily achieve time-local existence of classical solutions. Moreover, denoting by
Tmax,ε ∈ (0,∞] the maximal existence time of the solution, the solution satisfies that if
Tmax,ε <∞, then

lim sup
t↗Tmax,ε

(
‖nε(·, t)‖L∞(Ω) + ‖cε·, t)‖W 1,ϑ(Ω) + ‖A%uε(·, t)‖L2(Ω)

)
=∞ (3.3.5)

for all ϑ > 3 and % ∈ (3
4 , 1). The nonnegativity of nε and cε in Ω×[0, Tmax,ε) can then be

established by relying on the maximum principle, whereas the L1 estimates for nε and
cε on (0, Tmax,ε) follow immediately from integrating the corresponding equations and,
for cε, an additional employment of an ODE comparison argument ([86, Thm. IX]). To
verify that the solution is indeed global in time we pick some T ∈ (0, Tmax,ε] satisfying
T < ∞, let γ := max{m − 1, 6} and fix ε ∈ (0, 1). Making use of the first equation
in (3.3.2), integration by parts, the divergence-free property of uε and the fact that
|Sε(x, nε, cε)| ≤ S0 holds in Ω× (0, Tmax,ε), we find that

1

γ

d

dt

∫
Ω
nγε =

∫
Ω
nγ−1
ε ∇ ·

(
m(nε + ε)m−1∇nε −

nεSε(x, nε, cε)

(1 + εnε)3
∇cε

)
− 1

γ

∫
Ω
∇ · (nγεuε)

≤ −(γ − 1)m

∫
Ω
(nε + ε)m−1nγ−2

ε |∇nε|2 + S0(γ − 1)

∫
Ω

nγ−1
ε

(1 + εnε)3
(∇nε · ∇cε)

on (0, Tmax,ε). Now, noticing that m ≥ 1 implies −(s + ε)m−1 ≤ −sm−1 for all s ≥ 0,
that s

1+εs ≤
1
ε for all s ≥ 0 and that, by the choice of γ, the inequalities γ −m+ 1 ≥ 0

and m− γ + 5 ≥ 0 are also satisfied, we draw on Young’s inequality to obtain that

1

γ

d

dt

∫
Ω
nγε ≤ −

(γ − 1)m

2

∫
Ω
nm+γ−3
ε |∇nε|2 +

S2
0(γ − 1)

2mεγ−m+1

∫
Ω
|∇cε|2 on (0, T ). (3.3.6)

In a similar fashion, we multiply the second equation of (3.3.2) with (cε + 1)γ−1 and
again using that uε is divergence-free, we integrate by parts and see that

1

γ

d

dt

∫
Ω
(cε + 1)γ + (γ − 1)

∫
Ω
(cε + 1)γ−2|∇cε|2 +

∫
Ω
cε(cε + 1)γ−1 =

∫
Ω
nε(cε + 1)γ−1

is valid on (0, T ), from which we infer by positivity of cε and an application of Young’s
inequality that

S2
0

γmεγ−m+1

d

dt

∫
Ω
(cε + 1)γ +

S2
0(γ − 1)

mεγ−m+1

∫
Ω
|∇cε|2 (3.3.7)

≤ S2
0

γmεγ−m+1

∫
Ω
nγε +

S2
0(γ − 1)

γmεγ−m+1

∫
Ω
(cε + 1)γ on (0, T ).

35



Ch.3. Glob. solv. of ct-fluid systems with nonlin. diff. and matrix-valued sensitivities

Thus, combining (3.3.6) and (3.3.7) and integrating the resulting inequality implies the
existence of C1 := C1(T, ε) satisfying∫

Ω
n6
ε(·, t) +

∫
Ω
(cε(·, t) + 1)6 ≤ C1 for all t ∈ (0, T ), (3.3.8)

in light of the fact that γ ≥ 6. In order to attain some information on the spatial
gradient of cε we will first require information on uε. Due to the continuous embedding
D(A%) ↪→ Cθ

(
Ω
)

for any θ ∈ (0, 2%− 3
2) (see [75, Lemma III.2.4.3] and [23, Thm. 5.6.5]),

we immediately obtain a bound for the norm of uε in L∞(Ω), if we find C2 > 0 such
that ‖A%uε(·, t)‖L2(Ω) ≤ C2 holds for t ∈ (0, T ). For this, we first test the third equation
of (3.3.2) by uε to obtain

1

2

d

dt

∫
Ω
|uε|2 +

∫
Ω
|∇uε|2 =

∫
Ω
nεuε · ∇φ for all t ∈ (0, T ),

where we used the facts that ∇ · uε ≡ 0 and ∇ · (1 + εA)−1uε ≡ 0. In light of (3.1.7)
and (3.3.8) this readily implies ‖uε(·, t)‖L2(Ω) ≤ C3 on (0, T ) for some C3 > 0. Relying
on properties of the Yosida approximation Yε, we can also immediately find C4 > 0 (cf.
[60, p.462 (3.6)]) such that vε := (1 + εA)−1uε satisfies

‖vε(·, t)‖L∞(Ω) = ‖(1 + εA)−1uε(·, t)‖L∞(Ω) ≤ C4‖uε(·, t)‖L2(Ω) ≤ C5 := C3C4

for all t ∈ (0, T ). Finally, we can refine these bounds into the desired estimate for
‖A%uε(·, t)‖L2(Ω) by a two-step procedure (see e.g. [104, Lemma 3.9]). Firstly, testing
the equation uεt +Auε = P(−(vε · ∇)uε + nε∇φ) against Auε yields C6 > 0 such that∫

Ω
|∇uε|2 =

∫
Ω
|A

1
2uε|2 ≤ C6 for all t ∈ (0, T ),

and C7 > 0 satisfying ‖P((vε · ∇)uε + nε∇φ)‖L2(Ω) ≤ C7 for all t ∈ (0, T ). Secondly, we
express A%uε by its variation-of-constants representation and make use of well-known
smoothing properties of the Stokes semigroup (e.g. [100, Lemma 3.1]) to obtain C8 > 0
such that

‖A%uε(·, t)‖L2(Ω) ≤ C8t
−%‖u0‖L2(Ω) +

C8T
1−%

1− %
for all t ∈ (0, T ),

yielding a bound on both the quantity ‖A%uε‖L2(Ω) appearing in the extensibility crite-
rion and ‖uε‖L∞(Ω) by the previously mentioned embedding. These bounds at hand, we
can now go to testing the second equation by −∆cε to obtain

1

2

d

dt

∫
Ω
|∇cε|2 +

1

2

∫
Ω
|∆cε|2 +

∫
Ω
|∇cε|2 ≤

∫
Ω
n2
ε + ‖uε‖2L∞(Ω)

∫
Ω
|∇cε|2

on (0, T ). Plugging in our previous bounds, this immediately entails the existence of
C9 > 0 such that ‖∇cε(·, t)‖L2(Ω) ≤ C9 holds for all t ∈ (0, T ). The L2 regularity of ∇cε
at hand, we can now draw on well-known smoothing properties for the Neumann heat
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semigroup (e.g. [97, Lemma 1.3]) to find C10 > 0 such that ‖∇cε(·, t)‖
L

11
2 (Ω)

≤ C10 for

all t ∈ (0, T ), by expressing ∇cε through its variation-of-constants representation. In
fact, this entails that

nε(·, t)Sε
(
x, nε(·, t), cε(·, t)

)
(1 + εnε(·, t))3

∇cε(·, t) + nε(·, t)uε(·, t) ∈ Lq(Ω)

for all t ∈ (0, T ) with some q > 5. Hence, we may employ a Moser-type iteration (see
[80, Lemma A.1] for a version applicable to our system) to obtain C11 > 0 such that
‖nε(·, t)‖L∞(Ω) ≤ C11 holds for all t ∈ (0, T ). In light the bounds attained above, we
find that assuming Tmax,ε <∞ contradicts the extensibility criterion (3.3.5). Thus, we
finally conclude that in fact Tmax,ε =∞.

3.4 A priori estimates

Since our main focus will be on values m ≥ 1 and α ≥ 0, which are both as small as
possible, our main task will be to obtain regularity information independent on ε ∈ (0, 1),
restricting m and α in the least possible way. As in particular no energy-structure is
present in (3.3.2), we are thereby tasked with finding a testing procedure, capturing as
optimal conditions on these parameters as possible. Even obtaining an estimate for the
norm of nε in L2(Ω) seems to be far out of reach without gravely restricting either m
or α. Thus, similar to the approach in [7], we decide to investigate a functional, which
for small values of m and α is of sublinear growth, hoping to obtain a spatio-temporal
bound on the gradient of nε, which we can refine later to a regularity estimate beyond
the L1 estimate of Lemma 3.8.

3.4.1 Estimates capturing optimal conditions on m and α

Let us start with an elementary identity laying the groundwork to impending testing
procedures.

Lemma 3.9.
Let m ≥ 1, α ≥ 0, β ≥ 1 be such that m + β

2α > 1, assume that n0, c0 and u0 comply
with (3.1.8) and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
. Then for any ε ∈ (0, 1) the classical

solution (nε, cε, uε) of (3.3.2) satisfies

d

dt

∫
Ω
(nε + ε)m+βα−1

= − m(m+ βα− 1)(m+ βα− 2)

(m+ β
2α− 1)2

∫
Ω

∣∣∇(nε + ε)m+β
2
α−1
∣∣2 (3.4.1)

+
(m+ βα− 1)(m+ βα− 2)

m+ β
2α− 1

∫
Ω

nε(nε + ε)
β
2
α−1

(1 + εnε)3

(
∇(nε + ε)m+β

2
α−1 · Sε(x, nε, cε)∇cε

)
on (0,∞).
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Proof: Drawing on the first equation of (3.3.2), straightforward calculations show that

d

dt

∫
Ω
(nε + ε)m+βα−1

= (m+ βα− 1)

∫
Ω
(nε + ε)m+βα−2∇ ·

(
m(nε + ε)m−1∇nε −

nε
(1 + εnε)3

Sε(·, nε, cε)∇cε
)

− (m+ βα− 1)

∫
Ω
(nε + ε)m+βα−2(uε · ∇nε)

holds on (0,∞). Making use of the fact that ∇ · uε ≡ 0 in Ω × (0,∞) as well as the
imposed boundary conditions, we find that the asserted equality follows immediately
upon integration by parts and appropriate reformulation of some terms.

Depending on the sign of m + 2α − 2, we will multiply the equality of Lemma 3.9
with either positive or negative constants and then estimate. Combining the resulting
inequality with a standard testing procedure for the second equation, we will derive some
information on (nε + ε)m+2α−1, ∇(n + ε)m+α−1, c2

ε and ∇c2
ε. This approach has been

undertaken previously in e.g. [88, Lemma 4.1].

Lemma 3.10.
Let m ≥ 1, α ≥ 0 be such that m+ α > 4

3 , suppose that n0, c0 and u0 fulfill (3.1.8) and
assume that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0. Then there

exists some C > 0 such that for all ε ∈ (0, 1) the global classical solution (nε, cε, uε) of
(3.3.2) satisfies∫

Ω
(nε + ε)m+2α−1(·, t) +

∫
Ω
c2
ε(·, t) +

∫ t+1

t

∫
Ω

∣∣∇(nε + ε)m+α−1
∣∣2 +

∫ t+1

t

∫
Ω
|∇cε|2 ≤ C

(3.4.2)

for all t ≥ 0.

Proof: We will first assume m + 2α 6= 2 and later give comments on the adjustments
necessary for the case m+ 2α = 2. For m+ α > 4

3 with m+ 2α 6= 2 we employ Lemma

3.9 with β = 2 and multiply the resulting identity by sgn(m+2α−2)
(m+2α−1) . Relying on Young’s

inequality and the fact that
∣∣∣nε(nε+ε)α−1Sε(·,nε,cε)

(1+εnε)3

∣∣∣ ≤ S0 in Ω × (0,∞) we then obtain

that for all ε ∈ (0, 1)

sgn(m+ 2α− 2)

m+ 2α− 1

d

dt

∫
Ω
(nε + ε)m+2α−1 (3.4.3)

≤ −m|m+ 2α− 2|
2(m+ α− 1)2

∫
Ω

∣∣∇(nε + ε)m+α−1
∣∣2 +

S2
0 |m+ 2α− 2|

2m

∫
Ω
|∇cε|2

holds on (0,∞). Preparing a corresponding differential inequality for the signal chemical,
we test the second equation of (3.3.2) by cε, and make use of the fact that uε is a
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solenoidal vector field, integration by parts, an application of Hölder’s inequality and
the embedding W 1,2(Ω) ↪→ L6(Ω) to find that there exists C1 > 0 such that

1

2

d

dt

∫
Ω
c2
ε(·, t) +

∫
Ω
|∇cε|2 +

∫
Ω
c2
ε ≤ ‖cε(·, t)‖L6(Ω)‖nε(·, t)‖L 6

5 (Ω)

≤ C1

(
‖∇cε(·, t)‖L2(Ω) + ‖cε(·, t)‖L2(Ω)

)
‖nε(·, t)‖

L
6
5 (Ω)

is valid for all t > 0 and all ε ∈ (0, 1). Here, an additional application of Young’s
inequality entails that

d

dt

∫
Ω
c2
ε(·, t) +

∫
Ω
|∇cε(·, t)|2 +

∫
Ω
c2
ε(·, t) ≤ C2‖nε(·, t)‖2

L
6
5 (Ω)

(3.4.4)

for all t > 0 and all ε ∈ (0, 1), with C2 := C2
1 . Moreover, drawing on the Gagliardo–

Nirenberg inequality (e.g. [52, Lemma 2.3]), the nonnegativity of nε, the mass con-
servation featured in Lemma 3.8 and the fact that ε ∈ (0, 1), we obtain C3 > 0 such
that

C2‖nε‖2
L

6
5 (Ω)
≤ C2

∥∥(nε + ε)m+α−1
∥∥ 2
m+α−1

L
6

5(m+α−1) (Ω)

≤ C3

∥∥∇(nε + ε)m+α−1
∥∥ 2

6(m+α)−7

L2(Ω)
+ C3

holds on (0,∞) for all ε ∈ (0, 1), and, since m + α > 4
3 implies 2

6(m+α)−7 < 2, an
application of Young’s inequality thereby provides C4 > 0 such that

C2‖nε(·, t)‖2
L

6
5 (Ω)
≤ m2

4S2
0(m+ α− 1)2

∫
Ω

∣∣∇(nε + ε)m+α−1(·, t)
∣∣2 + C4 (3.4.5)

for all t > 0 and all ε ∈ (0, 1). Thus, combining (3.4.3) with a suitable multiple of (3.4.4)
and (3.4.5) consequently entails

y′ε(t) + yε(t) + gε(t) ≤ C4C5 for all t > 0 and all ε ∈ (0, 1), (3.4.6)

where we have set C5 :=
S2

0 |m+2α−2|
m > 0,

yε(t) :=
sgn(m+ 2α− 2)

m+ 2α− 1

∫
Ω
(nε + ε)m+2α−1(·, t) + C5

∫
Ω
c2
ε(·, t), t > 0,

and

gε(t) :=
m|m+ 2α− 2|
8(m+ α− 1)2

∫
Ω

∣∣∇(nε + ε)m+α−1(·, t)
∣∣2 +

C5

2

∫
Ω
|∇cε(·, t)|2, t > 0.

Because of gε(t) ≥ 0 for all t > 0, an ODE comparison thereby implies

yε(t) ≤ C6 := max

{
sgn(m+ 2α− 2)

m+ 2α− 1

∫
Ω
(n0 + 1)m+2α−1 + C5

∫
Ω
c2

0, C4C5

}
(3.4.7)

for all t > 0 and all ε ∈ (0, 1). For m + 2α > 2 this indeed entails the boundedness of
the first two terms appearing in (3.4.2), whereas in the case of m+ 2α < 2 the asserted
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bound cannot be deduced yet, as yε(t) may in fact be negative. Nevertheless, since in
this case m + 2α − 1 < 1, we conclude from Lemma 3.8 the existence of C7 > 0 such
that for all ε ∈ (0, 1) the estimate 1

m+2α−1

∫
Ω(nε + ε)m+2α−1 ≤ C7 is valid on (0,∞).

Combining this with (3.4.7) shows that

C5

∫
Ω
c2
ε(·, t) = yε(t) +

1

m+ 2α− 1

∫
Ω
(nε + ε)m+2α−1(·, t) ≤ C6 + C7

for all t > 0 and ε ∈ (0, 1), proving boundedness of the first two terms in (3.4.2) also
in the case that m + 2α < 2. In a second step, in order to obtain estimates on the
spatio-temporal quantities featured in the formulation of the Lemma, we observe that
integrating (3.4.6) with respect to time implies that∫ t+1

t
gε(s) ds ≤ yε(t)− yε(t+ 1)−

∫ t+1

t
yε(s) ds+ C4C5 for all t > 0 and all ε ∈ (0, 1).

By the definition of yε and nonnegativity of
∫

Ωc
2
ε, this leads to∫ t+1

t
gε(s) ds ≤ yε(t) +

1

m+ 2α− 1

∫
Ω
(nε + ε)m+2α−1(·, t+ 1)

+
1

m+ 2α− 1

∫ t+1

t

∫
Ω
(nε + ε)m+2α−1(·, s) ds+ C4C5

for all t > 0 and all ε ∈ (0, 1), which, in light of (3.4.7) and the uniform bound on∫
Ω(nε+ε)m+2α−1 obtained in the first part of this proof, completes the proof for the case
m+ 2α 6= 2.

To verify the asserted bound in the case of m+ 2α = 2, we note that m+α− 1 = 1−α
and that moreover α ≤ 1

2 due to m ≥ 1. Thus, estimating

d

dt

∫
Ω
(nε lnnε)(·, t) ≤ −

m

2(1− α)2

∫
Ω

∣∣∇(nε + ε)1−α(·, t)
∣∣2 +

S2
0

2m

∫
Ω
|∇cε(·, t)|2,

for all t > 0 and all ε ∈ (0, 1), and combining with (3.4.4) we obtain an inequality of the
form

d

dt

(∫
Ω
(nε lnnε)(·, t) +

S2
0

m

∫
Ω
c2
ε(·, t)

)
+ C7

∫
Ω

∣∣∇(nε + ε)1−α(·, t)
∣∣2

+ C7

∫
Ω
|∇cε(·, t)|2 + C7

∫
Ω
c2
ε(·, t) ≤ C8,

with some C7 > 0 and C8 > 0. By means of the Gagliardo–Nirenberg inequality and the
evident estimate s ln s ≤ s5/3 for s > 0 we have C9 > 0 satisfying∫

Ω
nε lnnε ≤

∥∥(nε + ε)1−α∥∥ 5
3(1−α)

L
5

3(1−α) (Ω)

≤ C9

∥∥∇(nε + ε)(1−α)
∥∥ 4

5−6α

L2(Ω)
+ C9 on (0,∞).

Because of 4
5−6α ≤ 2 for α ≤ 1

2 , this now allows to pursue a similar reasoning as before,

while making use of the fact that s ln s ≥ −1
e for all s > 0.
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While the main idea of utilizing the latter spatio-temporal bound for ∇(nε + ε)m+α−1

to establish time-space bounds for nε + ε remains unchanged from the previous works
[88, Lemma 4.2] and [7, Lemma 4.3], we have to treat the term more delicately in order
to prepare sufficient information for the limiting procedure later on.

Lemma 3.11.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and assume that n0, c0 and u0 comply with
(3.1.8) and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with some S0 > 0. Then for

all p ∈
(
1, 6(m + α − 1)

)
there exists C > 0 such that for all ε ∈ (0, 1) the solution

(nε, cε, uε) of (3.3.2) satisfies∫ t+1

t

∥∥nε(·, s) + ε
∥∥ 2p(m+α− 7

6 )

p−1

Lp(Ω) ds ≤ C for all t ≥ 0. (3.4.8)

In particular, there exist r ∈ (1, 2) and C > 0 such that∫ t+1

t

∥∥nε(·, s) + ε
∥∥ 2r

2−r

L
6r

6−r (Ω)
ds ≤ C and

∫ t+1

t

∥∥nε(·, s) + ε
∥∥2(m+α)− 4

3

L2(m+α)− 4
3 (Ω)

ds ≤ C

(3.4.9)

hold for each ε ∈ (0, 1) and all t ≥ 0.

Proof: We employ reasoning similar to [88, Lemma 4.2]. Due to p ∈
(
1, 6(m+ α− 1)

)
and m + α > 4

3 >
7
6 we can utilize the Gagliardo–Nirenberg inequality to find C1 > 0

such that with

a =
m+ α− 1− m+α−1

p

m+ α− 1 + 1
3 −

1
2

=
p− 1

p
· 6(m+ α− 1)

6m+ 6α− 7
∈ (0, 1)

the inequality∫ t+1

t

∥∥nε(·, s) + ε
∥∥ 2p(m+α− 7

6 )

p−1

Lp(Ω) ds =

∫ t+1

t

∥∥(nε + ε)m+α−1(·, s)
∥∥ 2p
p−1
· 6m+6α−7
6(m+α−1)

L
p

m+α−1 (Ω)
ds

≤C1

∫ t+1

t

∥∥∇(nε + ε)m+α−1(·, s)
∥∥ 2p
p−1
· 6m+6α−7
6(m+α−1)

·a
L2(Ω)

∥∥(nε + ε)m+α−1(·, s)
∥∥ 2p
p−1
· 6m+6α−7
6(m+α−1)

·(1−a)

L
1

m+α−1 (Ω)
ds

+ C1

∫ t+1

t

∥∥(nε + ε)m+α−1(·, s)
∥∥ 2p
p−1
· 6m+6α−7
6(m+α−1)

L
1

m+α−1 (Ω)
ds

holds for all t ≥ 0 and all ε ∈ (0, 1). Combined with the mass conservation of nε, as
established in Lemma 3.8, this implies the existence of C2 > 0 such that∫ t+1

t

∥∥nε(·, s) + ε
∥∥ 2p(m+α− 7

6 )

p−1

Lp(Ω) ds ≤ C2

∫ t+1

t

∥∥∇(nε + ε)m+α−1(·, s)
∥∥2

L2(Ω)
ds+ C2

holds for all t ≥ 0 and all ε ∈ (0, 1), which proves (3.4.8) under consideration of Lemma
3.10. For the first special case in (3.4.9) we note that due to m + α > 4

3 the interval
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I :=
(

1,min
{

1+2(m+α− 7
6

)

m+α , 2
})

is not empty and that, as m+α > 7
6 , for arbitrary r ∈ I

we have r < 6(m+α−1)
m+α and q := 6r

6−r ∈
(
1, 6(m+ α− 1)

)
. Hence,

2q(m+ α− 7
6)

q − 1
=

12r(m+ α− 7
6)

7r − 6
>

2r

2− r
.

This entails the first part of (3.4.9), in light of Young’s inequality and (3.4.8) employed
to p = 6r

6−r . For the second bound in (3.4.9) we work along similar lines noting that,

again due to m + α > 4
3 , 2(m + α) − 4

3 ∈
(
1, 6(m + α − 1)

)
and that 2(m + α) − 4

3 =
2(m+α− 7

6
)(2(m+α)− 4

3
)

2(m+α)− 4
3
−1

, making the first part of the lemma applicable once more.

Let us also briefly establish some supplementary spatio-temporal estimates under the
additional assumption that m+2α < 2. These bounds follow in a straightforward fashion
from Lemma 3.10 and Lemma 3.11, and will later form a cornerstone in obtaining the
convergence properties necessary to pass to the limit in the integrals making up the
global weak Φ-supersolution for Φ(s) = (s+ 1)m+2α−1.

Corollary 3.12.
Let m ≥ 1, α ≥ 0 be such that 4

3 < m+α and m+ 2α < 2 hold. Suppose that n0, c0 and
u0 fulfill (3.1.8) and assume that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some

S0 > 0. Then there exists some C1 > 0 such that for all ε ∈ (0, 1) the global classical
solution (nε, cε, uε) of (3.3.2) satisfies∫ t+1

t

∫
Ω

∣∣∇(nε + 1)m+α−1
∣∣2 +

∫ t+1

t

∫
Ω

∣∣(nε + 1)
m+2α−3

2 (nε + ε)
m−1

2 ∇nε
∣∣2 ≤ C1, (3.4.10)

for all t ≥ 0. Moreover, there exist p > 2, r > 1 and C2 > 0 such that∫ t+1

t

∥∥(nε + 1)m+α−1
∥∥p
Lp(Ω)

≤ C2 and

∫ t+1

t

∥∥(nε + 1)α(nε + ε)m−1
∥∥p
Lp(Ω)

≤ C2,

(3.4.11)

as well as ∫ t+1

t

∥∥(nε + 1)m+2α−1
∥∥ 2r

2−r

L
6r

6−r (Ω)
≤ C2 (3.4.12)

hold for each ε ∈ (0, 1) and all t ≥ 0.

Proof: Due to m+ 2α < 2 and α ≥ 0 we clearly also have m+ α ∈ (4
3 , 2). Hence, it is

obvious that

1

(m+ α− 1)2

∫ t+1

t

∫
Ω

∣∣∇(nε + 1)m+α−1
∣∣2 =

∫ t+1

t

∫
Ω
(nε + 1)2(m+α−2)|∇nε|2

≤
∫ t+1

t

∫
Ω
(nε + ε)2(m+α−2)|∇nε|2 =

1

(m+ α− 1)2

∫ t+1

t

∫
Ω

∣∣∇(nε + ε)m+α−1
∣∣2
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holds for all ε ∈ (0, 1) and t ≥ 0, whereupon the boundedness of the first term in (3.4.10)
immediately follows from Lemma 3.10. The bound for the second term contained in
(3.4.10) then is a direct consequence of the first bound in light of the fact that m ≥ 1.
Reiterating the proof of Lemma 3.11 for (nε + 1) instead of (nε + ε), while relying on
(3.4.10), we find that for all q ∈

(
1, 6(m+ α− 1)

)
there exists C > 0 such that

∫ t+1

t

∥∥nε(·, s) + 1
∥∥ 2q(m+α− 7

6 )

q−1

Lq(Ω) ds ≤ C for all t ≥ 0.

This spatio-temporal estimate at hand, straightforward calculations, similar to those
undertaken to prove the special cases presented in Lemma 3.11, verify (3.4.11) and
(3.4.12), due to the facts that m ≥ 1, α ≥ 0, m+α > 4

3 and m+ 2α < 2 also entail that
α < 2

3 .

3.4.2 Estimates involving the fluid component uε

We will briefly state [46, Lemma 3.4] without proof. This result will be applied to a
differential inequality for

∫
Ω|uε(·, t)|

2 in the lemma thereafter to obtain a first bound-
edness information on the fluid component, which can then be refined to additional
spatio-temporal bounds.

Lemma 3.13.
For some T ∈ (0,∞] let y ∈ C1((0, T ))∩C0([0, T )), h ∈ C0([0, T )), C > 0, a > 0 satisfy

y′(t) + ay(t) ≤ h(t),

∫ t

(t−1)+

h(s) ds ≤ C

for all t ∈ (0, T ). Then y ≤ y(0) + C
1−e−a throughout (0, T ).

Drawing on Lemmata 3.11 and 3.13 as well as Hölder’s inequality, we are now in a
position to utilize quite standard arguments, which have been successfully employed
before in e.g. [104, Lemmata 3.5 and 3.6] and [88, Lemma 4.3].

Lemma 3.14.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and assume that n0, c0 and u0 comply with
(3.1.8) and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with some S0 > 0. Then there

exists C > 0 such that for all ε ∈ (0, 1) the solution (nε, cε, uε) of (3.3.2) satisfies∫
Ω
|uε(·, t)|2 +

∫ t+1

t

∫
Ω
|∇uε|2 +

∫ t+1

t
‖uε‖2L6(Ω) ≤ C

for all t ≥ 0.

Proof: Multiplication of the third equation in (3.3.2) by uε, integration by parts and
an application of the Hölder inequality shows that

1

2

d

dt

∫
Ω
|uε|2(·, t) +

∫
Ω
|∇uε(·, t)|2 ≤ ‖∇φ‖L∞(Ω)‖uε(·, t)‖L6(Ω)‖nε(·, t)‖L 6

5 (Ω)
(3.4.13)
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holds for all t > 0 and all ε ∈ (0, 1). Recalling the embedding W 1,2
0 (Ω) ↪→ L6(Ω) and

the Poincaré inequality we find C1 > 0 satisfying

‖uε(·, t)‖2L6(Ω) ≤ C1

∫
Ω
|∇uε(·, t)|2 for all t > 0 and all ε ∈ (0, 1), (3.4.14)

which upon combination with (3.4.13), (3.1.7) and Young’s inequality entails the exis-
tence of C2 > 0 such that

1

2

d

dt

∫
Ω
|uε|2(·, t) +

1

2

∫
Ω
|∇uε(·, t)|2 ≤ C2‖nε(·, t)‖2

L
6
5 (Ω)

(3.4.15)

is valid for all t > 0 and all ε ∈ (0, 1). Due to Lemma 3.11 implying the existence of
C3 > 0 satisfying

∫ t+1
t ‖nε(·, t)‖2

L
6
5 (Ω)

≤ C3 for all t > 0, we find that by estimating

the gradient term by means of the Poincaré inequality from below and then employing
Lemma 3.13, there exists C4 > 0 such that∫

Ω
|uε|2(·, t) ≤ C4 for all t > 0 and all ε ∈ (0, 1).

The estimate for
∫

Ω|uε|
2 at hand, we can integrate (3.4.15) with respect to time to obtain

that ∫ t+1

t

∫
Ω
|∇uε|2 ≤ C4 + 2C2C3 for all t > 0 and all ε ∈ (0, 1),

which also immediately implies∫ t+1

t
‖uε‖2L6(Ω) ≤ C1C4 + 2C1C2C3 for all t > 0 and ε ∈ (0, 1),

in light of (3.4.14), and thus concludes the proof.

With a first set of ε-independent estimates for the fluid component at hand, let us
also briefly derive some spatio-temporal bounds for the combined quantities nεuε and
(nε+1)m+2α−1uε. These estimates will be a cornerstone in the treatment of the integrals
appearing in the solution concepts of (3.3.2), which involve the fluid interaction.

Lemma 3.15.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and assume that n0, c0 and u0 comply with
(3.1.8) and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with some S0 > 0. Then there

exist r > 1 and C1 > 0 such that for all ε ∈ (0, 1) the solution (nε, cε, uε) of (3.3.2)
satisfies ∫ t+1

t

∫
Ω
|nεuε|r ≤ C1 for all t ≥ 0.

If, additionally, m+ 2α < 2, then there are s > 1 and C2 > 0 such that∫ t+1

t

∫
Ω

∣∣(nε + 1)m+2α−1uε
∣∣s ≤ C2

hold for each ε ∈ (0, 1) and all t ≥ 0.
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Proof: For any r ∈ (1, 2) an employment of the Hölder and Young inequalities shows
that ∫ t+1

t

∫
Ω

∣∣nεuε∣∣r ≤ ∫ t+1

t

∥∥(nε + ε)uε
∥∥r
Lr(Ω)

≤
∫ t+1

t
‖nε + ε‖r

L
6r

6−r (Ω)
‖uε‖rL6(Ω)

≤
∫ t+1

t
‖nε + ε‖

2r
2−r

L
6r

6−r (Ω)
+

∫ t+1

t
‖uε‖2L6(Ω) for all t ≥ 0.

Thus, taking r > 1 as provided by Lemma 3.11, the proof of the first assertion follows
immediately from combining the estimate above with Lemmata 3.11 and 3.14. In a
similar fashion we find that for s ∈ (1, 2) we have∫ t+1

t

∫
Ω

∣∣(nε + 1)m+2α−1uε
∣∣s ≤ ∫ t+1

t

∥∥(nε + 1)m+2α−1
∥∥ 2s

2−s

L
6s

6−s (Ω)
+

∫ t+1

t
‖uε‖2L6(Ω)

for all t ≥ 0 and hence the second part of the lemma is implied by Corollary 3.12 and
Lemma 3.14.

3.4.3 Time regularity

Having in mind an Aubin-Lions type argument to conclude the existence of limit objects
of our approximate solution (nε, cε, uε) when taking ε ↘ 0, we still require regularity
estimates for the time derivatives. Relying on the bounds established in the previous sec-
tions alone does not yet yield sufficient information on terms appearing in our estimation
process.

Lemma 3.16.
Let m ≥ 1, α ≥ 0 be such that m+α > 4

3 , suppose that n0, c0 and u0 comply with (3.1.8)
and assume that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0. Then

there exists C > 0 such that for all ε ∈ (0, 1) the global classical solution (nε, cε, uε) of
(3.3.2) satisfies ∫ t+1

t

∫
Ω

∣∣∇(nε + ε)m+α
2
−1
∣∣2 ≤ C

for all t ≥ 0.

Proof: Similar to the proof of Lemma 3.10 we first assume m+ α 6= 2, employ Lemma
3.9 for β = 1 and multiply the equality by sgn(m+α−2)

m+α−1 to obtain upon one application of
Young’s inequality that

sgn(m+ α− 2)

m+ α− 1

d

dt

∫
Ω
(nε + ε)m+α−1 +

m|m+ α− 2|
2(m+ α

2 − 1)2

∫
Ω

∣∣∇(nε + ε)m+α
2
−1
∣∣2 (3.4.16)

≤ |m+ α− 2|
2m

∫
Ω

n2
ε(nε + ε)α−2

(1 + εnε)6
|Sε(x, nε, cε)|2|∇cε|2
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holds on (0,∞). Noting that by Sε ≤ S on Ω× [0,∞)2 and (3.1.3) we have

n2
ε(nε + ε)α−2

(1 + εnε)6
|Sε(x, nε, cε)|2 ≤

S2
0(nε + ε)α

(1 + nε)2α
≤ S2

0 , (3.4.17)

we integrate (3.4.16) to find that

sgn(m+ α− 2)

m+ α− 1

∫
Ω
(nε + ε)m+α−1(·, t+ 1) +

m|m+ α− 2|
2(m+ α

2 − 1)2

∫ t+1

t

∫
Ω

∣∣∇(nε + ε)m+α
2
−1
∣∣2

≤ sgn(m+ α− 2)

m+ α− 1

∫
Ω
(nε + ε)m+α−1(·, t) +

S2
0 |m+ α− 2|

2m

∫ t+1

t

∫
Ω
|∇cε|2

for all t ≥ 0, which proves the asserted bound for both m+α < 2 and m+α > 2, in light
of Lemma 3.10. For m+α = 2, however, we consider the time-evolution of

∫
Ωnε lnnε to

obtain that

d

dt

∫
Ω
nε lnnε +

m

2(1− α
2 )2

∫
Ω

∣∣∇(nε + ε)1−α
2

∣∣2 ≤ S2
0

2m

∫
Ω
|∇cε|2 (3.4.18)

on (0,∞), where we used estimations akin to those in (3.4.17) and the fact that in this
case m − 1 = 1 − α. Here, we rely on the elementary inequality s ln s ≤ s5/3 for s > 0,
the Gagliardo–Nirenberg inequality and the mass conservation (3.3.3) to estimate∫

Ω
nε lnnε ≤

∥∥(nε + ε)1−α
2

∥∥ 5
3(1−α2 )

L

5
3(1−α2 ) (Ω)

≤ C1

∥∥∇(nε + ε)1−α
2

∥∥ 5a
3(1−α2 )

L2(Ω)
+ C1 on (0,∞),

with some C1 > 0 and a = 12−6α
25−15α . Since, in this case, α ≤ 1 we have 5a

3(1−α
2

) ≤ 2 and

hence (after an application of Young’s inequality if necessary) there exists C2 > 0 such
that

d

dt

∫
Ω
nε lnnε + C2

∫
Ω
nε lnnε ≤

S2
0

2m

∫
Ω
|∇cε|2 + C2 on (0,∞).

Due to Lemma 3.13 and Lemma 3.10 this implies on one hand that there exists C3 > 0
satisfying

∫
Ωnε lnnε(·, t) ≤ C3 for all t ≥ 0 and on the other hand, upon returning to

(3.4.18) and integrating with respect to time, that the asserted bound of the lemma
holds in light of the fact that s ln s ≥ −1

e for all s > 0.

Now we can rely on standard reasoning to obtain the following:

Lemma 3.17.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and assume that n0, c0 and u0 comply with
(3.1.8) and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with some S0 > 0. For every

T > 0 there exists C(T ) > 0 such that for any ε ∈ (0, 1) the solution (nε, cε, uε) of
(3.3.2) satisfies ∥∥∂t((nε + ε)m+α−1

)∥∥
L1((0,T );(W 3,2

0 (Ω))∗) ≤ C(T ),

and

‖cεt‖L1((0,T );(W 3,2
0 (Ω))∗) ≤ C(T ).
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Proof: For fixed T > 0 we find C1 > 0 such that

‖ϕ‖L∞((0,T );W 1,∞(Ω)) ≤ C1‖ϕ‖L∞((0,T );W 3,2
0 (Ω)) for all ϕ ∈ L∞

(
(0, T );W 3,2

0 (Ω)
)
,

in light of the continuous embedding of W 3,2(Ω) ↪→ W 1,∞(Ω). Here, noting that
L∞
(
(0, T );W 3,2

0 (Ω)
)

is the dual space of L1
(
(0, T );

(
W 3,2

0 (Ω)
)∗)

, we fix an arbitrary

ϕ ∈ L∞
(
(0, T );W 3,2

0 (Ω)
)

satisfying ‖ϕ‖
L∞((0,T );W 3,2

0 (Ω)) ≤ 1 and make use of the first

equation of (3.3.2), the Cauchy–Schwarz inequality and the bound (3.1.3) to obtain

1

m+ α− 1

∣∣∣ ∫
Ω
∂t
(
(nε + ε)m+α−1

)
ϕ
∣∣∣

≤ m|m+ α− 2|C1

(m+ α
2 − 1)2

∫
Ω

∣∣∇(nε + ε)m+α
2
−1
∣∣2

+
mC1

m+ α
2 − 1

(∫
Ω
(nε + ε)2(m+α

2
−1)
) 1

2
(∫

Ω

∣∣∇(nε + ε)m+α
2
−1
∣∣2) 1

2

+
|m+ α− 2|S0C1

m+ α
2 − 1

(∫
Ω

n2
ε(nε + ε)α−2

(1 + εnε)6(1 + nε)2α

∣∣∇(nε + ε)m+α
2
−1
∣∣2) 1

2
(∫

Ω
|∇cε|2

) 1
2

+ S0C1

(∫
Ω

n2
ε(nε + ε)2(m+α−2)

(1 + εnε)6(1 + nε)2α

) 1
2
(∫

Ω
|∇cε|2

) 1
2

+
C1

m+ α− 1

(∫
Ω
|uε|2

) 1
2
(∫

Ω

∣∣∇(nε + ε)m+α−1
∣∣2) 1

2

on (0, T ) for all ε ∈ (0, 1). Since n2
ε(nε+ε)

α−2

(1+εnε)6(1+nε)2α ≤ (nε+ε)α

(1+nε)2α ≤ 1, multiple applications

of the Young inequality and integration over (0, T ) entails the existence of C2 > 0 such
that ∫ T

0

∣∣∣ ∫
Ω
∂t
(
(nε + ε)m+α−1

)
ϕ
∣∣∣

≤ C2

∫ T

0

∫
Ω

∣∣∇(nε + ε)m+α
2
−1
∣∣2 + C2

∫ T

0

∫
Ω

∣∣∇(nε + ε)m+α−1
∣∣2

+ C2

∫ T

0

∫
Ω
|∇cε|2 + C2

∫ T

0

∫
Ω
(nε + ε)2m+α−2 + C2

∫ T

0

∫
Ω
|uε|2 + C2

holds for all ε ∈ (0, 1) and all ϕ ∈ L∞
(
(0, T );W 3,2

0 (Ω)
)

with ‖ϕ‖
L∞((0,T );W 3,2

0 (Ω)) ≤ 1.

Because of 2m+ α− 2 < 2(m+ α)− 4
3 , a combination of Lemmata 3.10, 3.11, 3.14 and

3.16 now leads to the existence of C3(T ) > 0 such that for all ϕ ∈ L∞
(
(0, T );W 2,3

0 (Ω)
)

with ‖ϕ‖
L∞((0,T );W 3,2

0 (Ω)) ≤ 1∫ T

0

∣∣∣ ∫
Ω
∂t
(
(nε + ε)m+α−1

)
ϕ
∣∣∣ ≤ C3(T )

is satisfied. For the second part of the Lemma we follow a complementary reasoning for
the second equation. For fixed ϕ as before we obtain C4 > 0 such that
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∣∣∣ ∫
Ω
cεtϕ

∣∣∣ ≤ C1

∫
Ω
|∇cε|2 + C1

∫
Ω
cε + C1

∫
Ω
nε +

C1

2

∫
Ω
|uε|2 +

C1

2

∫
Ω
c2
ε + C4

is valid on (0, T ) for all ε ∈ (0, 1). Hence, we can conclude the proof upon integration
over (0, T ) in light of the bounds featured in Lemmata 3.8, 3.10 and 3.14.

Enhancing similar arguments by known results for the Yosida approximation and the
Stokes operator, a complementary result can be established for the third solution com-
ponent.

Lemma 3.18.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and suppose that n0, c0 and u0 fulfill (3.1.8)
and that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0. For every T > 0

there exists C(T ) > 0 such that for any ε ∈ (0, 1) the solution (nε, cε, uε) of (3.3.2)
satisfies ∫ T

0
‖uεt‖

4
3

(W 1,2
0 (Ω))∗

≤ C(T ). (3.4.19)

Proof: In light of (3.4.9) from Lemma 3.11 there is C1 > 0 such that
∫ t+1
t ‖nε(·, t)‖

4
3

L
6
5 (Ω)

≤ C1 for all t > 0 and hence we can follow the proof of [88, Lemma 5.5], where the related
system with linear diffusion was discussed, to conclude the desired bound. Let us state
a brief outline of the steps involved. We multiply the third equation of (3.3.2) with a
fixed ψ ∈ C∞0 (Ω;R3) satisfying ∇ · ψ ≡ 0 throughout Ω and employ Hölder’s inequality
to obtain∣∣∣ ∫

Ω
uεt · ψ

∣∣∣ ≤ ‖∇uε‖L2(Ω)‖∇ψ‖L2(Ω) + ‖Yεuε‖L6(Ω)‖uε‖L3(Ω)‖∇ψ‖L2(Ω)

+ ‖∇φ‖L∞(Ω)‖nε‖L 6
5 (Ω)
‖ψ‖L6(Ω)

on (0,∞) for all ε ∈ (0, 1). Next, we make use of known facts for the Yosida approxi-
mation and the Stokes operator, the embedding W 1,2

0 (Ω) ↪→ L6(Ω) and the Gagliardo–
Nirenberg inequality to obtain C2 > 0 such that

‖Yεuε(·, t)‖L6(Ω) ≤ ‖∇uε(·, t)‖L2(Ω),

and ‖uε(·, t)‖
4
3

L3(Ω)
≤ C2‖∇uε(·, t)‖

2
3

L2(Ω)
‖uε(·, t)‖

2
3

L2(Ω)

hold for all t > 0 and all ε ∈ (0, 1). Combining the estimates above with Young’s
inequality shows that with some C3 > 0 we have∫ T

0
‖uεt‖

4
3

(W 1,2
0 (Ω))∗

≤ C3

∫ T

0
‖∇uε‖

4
3

L2(Ω)
+ C3

∫ T

0
‖∇uε‖2L2(Ω)‖uε‖

2
3

L2(Ω)
+ C3T

for all T > 0 and all ε ∈ (0, 1), completing the proof in terms of Lemma 3.14.
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3.5 Limit functions and their regularity properties

The uniform bounds prepared in the previous section enable us to derive the existence
of limit functions n, c, u, satisfying the regularity conditions imposed by Definition 3.5.
With the precompactness properties contained in the previous lemmata, we also imme-
diately obtain convergence properties favorable enough to pass to the limit in most of
the integrals making up the solution concepts discussed in Section 3.2. In contrast to the
scalar sensitivity case discussed in [7] and the linear diffusion case discussed in [88], the
very weak solution concept features terms combining nε+1 and nε+ε in a slightly more
varied way, which necessitates the preparation of additional convergence properties.

Proposition 3.19.
Let m ≥ 1, α ≥ 0 be such that m+α > 4

3 and suppose that n0, c0, u0 comply with (3.1.8)
and assume that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with some S0 > 0. Then there

exist a sequence (εj)j∈N ⊂ (0, 1) with εj ↘ 0 as j →∞ and functions

n ∈ L2(m+α)− 4
3

loc

(
Ω×[0,∞)

)
with ∇nm+α−1 ∈ L2

loc

(
Ω×[0,∞);R3

)
,

c ∈ L2
loc

(
[0,∞);W 1,2(Ω)

)
,

u ∈ L2
loc

(
[0,∞);W 1,2

0 (Ω;R3)
)
,

such that the solutions (nε, cε, uε) of (3.3.2) satisfy

(nε + ε)m+α−1 → nm+α−1 in L2
loc

(
Ω×[0,∞)

)
and a.e. in Ω× (0,∞),

(3.5.1)

∇(nε + ε)m+α−1⇀∇nm+α−1 in L2
loc

(
Ω×[0,∞);R3

)
, (3.5.2)

nε + ε⇀n in L
2(m+α)− 4

3
loc

(
Ω×[0,∞)

)
, (3.5.3)

nε + ε→ n and nε → n in Lploc
(
Ω×[0,∞)

)
for any p ∈ [1, 2(m+ α)− 4

3),
(3.5.4)

cε → c in L2
loc

(
Ω×[0,∞)

)
and a.e. in Ω× (0,∞),

(3.5.5)

∇cε⇀∇c in L2
loc

(
Ω×[0,∞);R3

)
, (3.5.6)

as well as

uε → u in L2
loc

(
Ω×[0,∞);R3

)
and a.e. in Ω× (0,∞),

(3.5.7)

∇uε⇀∇u in L2
loc

(
Ω×[0,∞);R3×3

)
, (3.5.8)

Yεuε → u in L2
loc

(
Ω×[0,∞);R3

)
, (3.5.9)

nεuε → nu in L1
loc

(
Ω×[0,∞);R3

)
, (3.5.10)

as ε = εj ↘ 0, and such that n ≥ 0, c ≥ 0 a.e. in Ω×(0,∞). If, additionally, m+2α < 2,
then there exists a further subsequence (εjk)k∈N ⊂ (0, 1) such that (nε, cε, uε) also satisfy

(nε + 1)m+α−1 → (n+ 1)m+α−1 in L2
loc

(
Ω×[0,∞)

)
, (3.5.11)
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(nε + 1)m+2α−1 → (n+ 1)m+2α−1 in L1
loc

(
Ω×[0,∞)

)
, (3.5.12)

∇(nε + 1)m+α−1⇀∇(n+ 1)m+α−1 in L2
loc

(
Ω×[0,∞);R3

)
, (3.5.13)

(nε + 1)α(nε + ε)m−1 → (n+ 1)αnm−1 in L2
loc

(
Ω×[0,∞)

)
, (3.5.14)

(nε + 1)m+2α−1uε → (n+ 1)m+2α−1u in L1
loc

(
Ω×[0,∞)

)
(3.5.15)

as well as

(nε + 1)
m+2α−3

2 (nε + ε)
m−1

2 ∇nε⇀(n+ 1)
m+2α−3

2 n
m−1

2 ∇n in L2
loc

(
Ω×[0,∞);R3

)
,

(3.5.16)

as ε = εjk ↘ 0.

Proof: Noticing that 2(m+α−1) < 2(m+α)− 4
3 , we find that by combining Lemmata

3.10, 3.11 and 3.17 with the Aubin-Lions lemma ([74, Corollary 8.4]){
(nε + ε)m+α−1

}
ε∈(0,1)

is relatively compact in L2
loc

(
Ω×[0,∞)

)
and that hence there exists a sequence εj ↘ 0 such that (3.5.1) holds. Extracting
an additional subsequence (still denoted by εj), we conclude from the spatio-temporal
bounds featured in Lemma 3.10 and Lemma 3.11 that (3.5.2) and (3.5.3) hold as well.
In light of Lemma 3.11 {(nεj + εj)

p}j∈N is equi-integrable for any p < 2(m + α) − 4
3 ,

and thus we can rely on the a.e. convergence of nε + ε entailed by (3.5.1) and the
Vitali convergence theorem to obtain the first part of (3.5.4), with the second part then
being an immediate consequence of the uniform convergence of εj to zero. Along similar
lines the Lemmata 3.10 and 3.17 together with the Aubin-Lions lemma imply that upon
extraction of another subsequence also (3.5.5) and (3.5.6) hold. Moreover, applying these
arguments once more for the third component of the approximate solutions while relying
on Lemmata 3.14 and 3.18 proves (3.5.7) and (3.5.8), whereas (3.5.9) is a consequence
of the dominated convergence theorem and the boundedness of ‖uε‖2L2(Ω×(0,T )) for any

T > 0 (see e.g. [104, Lemma 4.1]). The strong convergence property of the mixed term
nεuε in (3.5.10) can be concluded by combining the a.e. convergences contained in (3.5.1)
and (3.5.7) with the equi-integrability of {|nεjuεj |r}j∈N for some r > 1 implied by Lemma
3.15 and Vitali’s convergence theorem. The assertions for the special case of m+ 2α < 2
follow from identical reasoning in light of Corollary 3.12 and Lemma 3.15. To be precise,
we can conclude (upon extraction of another non-relabeled subsequence) (3.5.13) and
(3.5.16) from (3.4.10). The properties (3.5.11), (3.5.12) and (3.5.14) are a consequence of
(3.4.11), Vitali’s convergence theorem and the fact that m+ 2α− 1 ≤ 2(m+α− 1), and
finally, combining Lemma 3.15 with Vitali’s theorem one last time shows (3.5.15).

3.6 Solution properties of the limit functions

3.6.1 Weak solution properties of c and u

Relying on the convergence properties prepared in Proposition 3.19, we can check in
a straightforward manner that the limit objects c and u are weak solutions of their
corresponding equations in (3.1.4).
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Lemma 3.20.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 , assume that n0, c0 and u0 comply with
(3.1.8) and suppose that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0.

Furthermore, let n, c, u denote the limit functions provided by Proposition 3.19. Then∫
Ω
n(·, t) =

∫
Ω
n0 for a.e. t > 0, (3.6.1)

and c and u satisfy the weak solution properties (3.2.4) and (3.2.5), respectively, of
Definition 3.5.

Proof: The equality in (3.6.1) for almost every t > 0 is a direct result of the mass con-
servation (3.3.3) from Lemma 3.8 and (3.5.4). To verify that c solves its corresponding
equation in the weak sense, we multiply the second equation of (3.3.2) by an arbi-
trary test function ϕ ∈ L∞ (Ω× (0,∞))∩L2

(
(0,∞);W 1,2(Ω)

)
with compact support in

Ω×[0,∞) and ϕt ∈ L2 (Ω× (0,∞)) to find that

−
∫ ∞

0

∫
Ω
cεϕt −

∫
Ω
c0ϕ(·, 0)

=−
∫ ∞

0

∫
Ω
∇cε · ∇ϕ−

∫ ∞
0

∫
Ω
cεϕ+

∫ ∞
0

∫
Ω
nεϕ+

∫ ∞
0

∫
Ω
cε(uε · ∇ϕ)

holds for all ε ∈ (0, 1). In consideration of (3.5.5), (3.5.6), (3.5.4) and (3.5.7) we may
pass to the limit in each of the integrals and conclude that (3.2.4) holds and that hence
c solves its equation in the weak sense. In a similar fashion, we test the third equation
of (3.3.2) by an arbitrary ψ ∈ C∞0

(
Ω× [0,∞);R3

)
satisfying ∇ · ψ ≡ 0 in Ω× (0,∞) to

obtain

−
∫ ∞

0

∫
Ω
uεψt −

∫
Ω
u0ψ(·, 0)

=−
∫ ∞

0

∫
Ω
∇uε · ∇ψ +

∫ ∞
0

∫
Ω
(Yεuε ⊗ uε) · ∇ψ +

∫ ∞
0

∫
Ω
nε(∇φ · ψ)

for all ε ∈ (0, 1). Recalling (3.5.7), (3.5.8), (3.5.9), as well as (3.5.4) and (3.1.7) we can
take ε↘ 0 in all the integrals and find that u satisfies (3.2.5).

3.6.2 Weak solution property of n for m+ 2α > 5
3

The currently known compactness properties do not allow us to take ε↘ 0 in some of the
integrals appearing in the equation for nε corresponding to (3.2.6) of the weak solution
concept in Definition 3.6. However, imposing the additional condition m + 2α > 5

3 we
can obtain supplementary convergence properties to the ones in Proposition 3.19, which
will allow us to pass to the limit in these crucial integrals.

Lemma 3.21.
Let m ≥ 1, α ≥ 0 be such that m + 2α > 5

3 , suppose that n0, c0 and u0 comply with
(3.1.8), and suppose that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0.
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Furthermore, let n, c, u denote the limit functions obtained in Proposition 3.19. Then
n ∈ L2

loc

(
Ω×[0,∞)

)
and for any ϕ ∈ C∞0

(
Ω×[0,∞)

)
the weak solution property (3.2.6)

is satisfied.

Proof: Multiplying the first equation of (3.3.2) by ϕ ∈ C∞0
(
Ω×[0,∞)

)
and integrating

by parts, we find that

−
∫ ∞

0

∫
Ω
nεϕt −

∫
Ω
n0ϕ(·, 0)

=− m

m+ α− 1

∫ ∞
0

∫
Ω
(nε + ε)1−α(∇(nε + ε)m+α−1 · ∇ϕ

)
(3.6.2)

+

∫ ∞
0

∫
Ω

nε
(1 + εnε)3

(
Sε(x, nε, cε)∇cε · ∇ϕ

)
+

∫ ∞
0

∫
Ω
nε(uε · ∇ϕ)

holds for all ε ∈ (0, 1), where we used (nε + ε)m−1∇nε = (nε+ε)1−α

m+α−1 ∇(nε + ε)m+α−1. In
light of (3.5.4) we see that

−
∫ ∞

0

∫
Ω
nεϕt → −

∫ ∞
0

∫
Ω
nϕt as ε = εj ↘ 0.

Moreover, since m + 2α > 5
3 , we have 2(1 − α) < 2(m + α) − 4

3 , so that (3.5.4) implies
that

(nε + ε)1−α → n1−α in L2
loc

(
Ω×[0,∞)

)
as ε = εj ↘ 0,

which together with (3.5.2) shows

− m

m+ α− 1

∫ ∞
0

∫
Ω
(nε + ε)1−α(∇(nε + ε)m+α−1 · ∇ϕ

)
→ − m

m+ α− 1

∫ ∞
0

∫
Ω
n1−α(∇nm+α−1 · ∇ϕ

)
= −m

∫ ∞
0

∫
Ω
nm−1(∇n · ∇ϕ)

as ε = εj ↘ 0. Additionally, since 2(1−α) < 2(m+α)− 4
3 , we can fix 2 < s <

2(m+α)− 4
3

(1−α)+

and find that∫ t+1

t

∫
Ω

∣∣∣nεSε(x, nε, cε)
(1 + εnε)3

∣∣∣s ≤∫ t+1

t

∫
Ω

Ss0n
s
ε

(1 + nε)sα
≤

{
Ss0|Ω|, if α ≥ 1

Ss0
∫ t+1
t

∫
Ω(nε + ε)s(1−α), if α ∈ [0, 1)

holds on (0,∞). Making use of the fact that s(1−α) < 2(m+α)− 4
3 and Lemma 3.11 we

thus obtain that
{
n2
εjSεj (x, nεj , cεj )

2(1+εjnεj )
−6
}
j∈N is equi-integrable, which together

with the a.e. convergences of Sε → S and nε
(1+εnε)3 → n in Ω × (0,∞) and Vitali’s

theorem shows that

nεSε(x, nε, cε)

(1 + εnε)3
→ nS(x, n, c) in L2

loc

(
Ω×[0,∞)

)
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as ε = εj ↘ 0. Merging this convergence property with (3.5.6) we obtain that∫ ∞
0

∫
Ω

nε
(1 + εnε)3

(
Sε(x, nε, cε)∇cε · ∇ϕ

)
→
∫ ∞

0

∫
Ω
n
(
S(x, n, c)∇c · ∇ϕ

)
as ε = εj ↘ 0.

Finally, relying on (3.5.10) we see that∫ ∞
0

∫
Ω
nε(uε · ∇ϕ)→

∫ ∞
0

∫
Ω
n(u · ∇ϕ) as ε = εj ↘ 0.

In conclusion, we may pass to the limit in each of the integrals in (3.6.2) and find that
(3.2.6) holds.

Amalgamating the previous results finalizes the proof of Theorem 3.1.

Proof of Theorem 3.1: The proof is immediate after combination of Lemmata 3.20
and 3.21 with the regularity information on n, c and u presented in Proposition 3.19.

3.6.3 Very weak solution property of n in the case of m+ α > 4
3

Under the weaker assumption that only m+α > 4
3 is satisfied, the obtained limit function

n does not appear to be regular enough to conclude that the integral
∫∞

0

∫
Ωn

m−1∇n ·∇ϕ,
appearing in (3.2.6), is finite. Weakening the solution concept appears to be the only way
to compensate the missing regularity information, which is why we will only consider
global very weak solutions as defined in Definition 3.5 for the parameter range of m ≥ 1
and α ≥ 0 satisfying m+α > 4

3 and m+2α ≤ 5
3 . Working under these weaker hypothesis,

however, the weak convergence statement for ∇cε is insufficient to pass to the limit in
the integral containing both gradient terms. Therefore, we will have to attain a strong
convergence result for ∇cε which we prepare with the following Lemma from [88].

Lemma 3.22.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and assume that n0, c0 and u0 comply with
(3.1.8) and suppose that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0.

Then there exists a null set N ⊂ (0,∞) such that the functions n, c and u obtained in
Proposition 3.19 satisfy

1

2

∫
Ω
c2(·, T )− 1

2

∫
Ω
c2

0 +

∫ T

0

∫
Ω
|∇c|2 ≥ −

∫ T

0

∫
Ω
c2 +

∫ T

0

∫
Ω
nc for all T ∈ (0,∞) \N.

(3.6.3)

Proof: This is precisely [88, Lemma 7.1]. The same lemma has also been used in the
setting with scalar sensitivity in [7, Lemma 6.3]. As the proof is quite technical, we will
only provide a sketch of the main steps as featured in [7] and refer the reader to [88, 101]
for an in-depth look at the details.
Based on (3.5.5), we know that z(t) :=

∫
Ωc

2(·, t), t > 0, satisfies z ∈ L1
loc([0,∞)). Hence,

there exists a null set N ⊂ (0,∞) such that each T ∈ (0,∞) \N is a Lebesgue point of
z, so that

1

δ

∫ T+δ

T

∫
Ω
c2(·, t)→

∫
Ω
c2(·, T ) for all T ∈ (0,∞) \N as δ ↘ 0.
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For given T ∈ (0,∞) \N , δ ∈ (0, 1) and r ∈ (0, 1) we now consider

ζδ(t) :=


1, t ∈ [0, T ],
T+δ−t

δ , t ∈ (T, T + δ),

0, t ≥ T + δ,

and ψr(s) :=
s

1 + rs
, s ≥ 0

as well as

c̃k(x, t) :=

{
c(x, t), (x, t) ∈ Ω× (0,∞),

c0k(x), (x, t) ∈ Ω× (−1, 0],

for k ∈ N, where the nonnegative sequence (c0k)k∈N ⊂ C1
(
Ω
)

is chosen such that c0k →
c0 in L2(Ω) as k →∞. For h ∈ (0, 1) we then denote by

(
Ahψr(c̃k)

)
(x, t) :=

1

h

∫ t

t−h
ψr(c̃k)(x, s) ds, (x, t) ∈ Ω× [0,∞),

the temporal Steklov average and let

ϕ(x, t) := ϕδ,k,h,r(x, t) := ζδ(t) ·
(
Ahψr(c̃k)

)
(x, t), (x, t) ∈ Ω× [0,∞).

It can be checked that ϕ ∈ L∞loc
(
Ω×[0,∞)

)
∩ L2

(
(0,∞);W 1,2(Ω)

)
, that ϕ has compact

support in Ω×[0, T + 1] and that ϕt ∈ L2 (Ω× (0,∞)) and therefore we may use ϕ as a
test function for (3.2.4). Inserting ϕ into (3.2.4) we obtain

−
∫ ∞

0

∫
Ω
c(x, t)ζ ′δ(t)

(
Ahψr(c̃k)

)
(x, t) dx dt−

∫
Ω
c0(x)

(
Ahψr(c̃k)

)
(x, 0) dx

−
∫ ∞

0

∫
Ω
c(x, t)

ζδ(t)

h

[
ψr(c̃k)(x, t)− ψr(c̃k)(x, t− h)

]
dx dt

=−
∫ ∞

0

∫
Ω
∇c(x, t) · ζδ(t)∇

(
Ahψr(c̃k)

)
(x, t) dx dt (3.6.4)

−
∫ ∞

0

∫
Ω
c(x, t)ζδ(t)

(
Ahψr(c̃k)

)
(x, t) dx dt+

∫ ∞
0

∫
Ω
n(x, t)ζδ(t)

(
Ahψr(c̃k)

)
(x, t) dx dt

+

∫ ∞
0

∫
Ω
c(x, t)ζδ(t)u(x, t) · ∇

(
Ahψr(c̃k)

)
(x, t) dx dt.

Noting that ψr(c̃k) ∈ L∞ (Ω× (0, T + 1)), that we have ∇ψr(c̃k) ∈ L2(Ω× (0, T +1);R3)
in light of c0k ∈ C1

(
Ω
)

and that the primitive Ψr of ψr is given by Ψr(s) : [0,∞)→ R,

s 7→ rs−ln(1+rs)
r2 , we rely on known results for Steklov averages (see e.g. [101, Lemma A.2])

to let h↘ 0 in (3.6.4) and obtain

− lim inf
h→0

∫ ∞
0

∫
Ω
c(x, t)

ζδ(t)

h

[
ψr(c̃k)(x, t)− ψr(c̃k)(x, t− h)

]
dx dt

= −
∫ ∞

0

∫
Ω
ζδ(t)

|∇c(x, t)|2

(1 + rc(x, t))2
dx dt−

∫ ∞
0

∫
Ω
ζδ(t)

c2(x, t)

1 + rc(x, t)
dx dt (3.6.5)
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+

∫ ∞
0

∫
Ω
ζδ(t)

n(x, t)c(x, t)

1 + rc(x, t)
dx dt+

∫ ∞
0

∫
Ω
ζ ′δ(t)

c2(x, t)

1 + rc(x, t)
dx dt+

∫
Ω

c0(x)c0k(x)

1 + rc0k(x)
dx.

To estimate the remaining limit (compare (7.11)–(7.14) in [88, Lemma 7.1]), we make
use of the convexity of Ψr, implying

Ψr(c̃k(x, t+ h))−Ψr(c̃k(x, t)) ≥ ψr(c̃k)(x, t)
(
c(x, t+ h)− c(x, t)

)
for a.e. x ∈ Ω and t ∈ (0, T + 1), the substitution s = t+ h, Young’s inequality and the
definition of ζδ to find that

−
∫ ∞

0

∫
Ω

ζδ(t)

h
·
[
ψr(c̃k(x, t)− ψr(c̃k(x, t− h)

]
· c(x, t) dx dt

≤
∫ ∞

0

∫
Ω

ζδ(t+ h)

h

[
Ψr(c̃k(x, t+ h))−Ψr(c̃k(x, t))

]
dx dt+

1

2

∫
Ω

c2
0k(x)

(1 + rc0k(x))2
dx

+
1

2h

∫ h

0

∫
Ω
c2(x, t) dx dt+

∫ ∞
0

∫
Ω

ζδ(t+ h)− ζδ(h)

h
ψr(c̃k(x, t))c(x, t) dx dt.

Combining this with (3.6.5) shows that∫ ∞
0

∫
Ω
ζδ(t)|∇c(x, t)|2 dx dt+

1

2

∫
Ω
c2

0k(x) dx+
1

2

∫
Ω
c2

0(x) dx

≥ −
∫ ∞

0

∫
Ω
ζδ(t)

c2(x, t)

1 + rc(x, t)
dx dt+

∫ ∞
0

∫
Ω
ζδ(t)

n(x, t)c(x, t)

1 + rc(x, t)
dx dt+

∫
Ω

c0(x)c0k(x)

1 + rc0k(x)
dx

+

∫ ∞
0

∫
Ω
ζ ′δ(t)Ψr(c̃k(x, t)) dx dt+

∫
Ω

Ψr(c̃k(x, 0)) dx

for all k ∈ N and r ∈ (0, 1). Drawing on the dominated convergence theorem, we may
next let r ↘ 0 and then k →∞ to arrive at∫ ∞

0

∫
Ω
ζδ(t)|∇c(x, t)|2 dx dt dx+

∫ ∞
0

∫
Ω
ζδ(t)c

2(x, t) dx dt

−
∫ ∞

0

∫
Ω
ζδ(t)n(x, t)c(x, t) dx dt ≥ 1

2

∫
Ω
c2

0(x) dx− 1

2δ

∫ T+δ

T

∫
Ω
c2(x, t) dx dt.

Finally, recalling the Lebesgue point property of T we make use of the dominated con-
vergence theorem once more to take δ ↘ 0 and obtain (3.6.3).

Relying on the spatio-temporal estimates of Section 3.4 and the inequality above, we
can now pass to another subsequence along which ∇cε → ∇c in L2

(
Ω× (0, T );R3

)
holds as ε↘ 0. Similar reasoning has been employed in e.g. [107, Lemma 4.4] and [88,
Lemma 7.2].

Lemma 3.23.
Let m ≥ 1, α ≥ 0 be such that m + α > 4

3 and assume that n0, c0 and u0 comply with
(3.1.8) and suppose that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
satisfies (3.1.3) with some S0 > 0.

Furthermore, denote by (εj)j∈N and n, c, u the sequence and limit functions provided by
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Proposition 3.19. Then there exist a subsequence (εjk)k∈N and a null set N ⊂ (0,∞)
such that for each T ∈ (0,∞) \N the classical solution (nε, cε, uε) of (3.3.2) satisfies

∇cε → ∇c in L2
(
Ω× (0, T );R3

)
as ε = εjk ↘ 0.

Proof: With r ∈ (1, 2) as given by Lemma 3.11 we note that, due to the bounds
presented in Lemmata 3.10 and 3.11, the nonnegativity of nε and the Hölder and Young
inequalities we have C > 0 satisfying∫ t+1

t

∫
Ω
|nεcε|r ≤

2− r
2

∫ t+1

t
‖nε + ε‖

2r
2−r

L
6r

6−r (Ω)
+
r

2

∫ t+1

t
‖cε‖2L6(Ω) ≤ C

for all t > 0 and all ε ∈ (0, 1). Since r > 1, we can combine the a.e. convergence of
nεcε → nc in Ω × (0,∞) as ε = εj ↘ 0, as implied by Proposition 3.19, with Vitali’s
convergence theorem, to find that for all T > 0∫ T

0

∫
Ω
nεcε →

∫ T

0

∫
Ω
nc as ε = εj ↘ 0.

Denoting by N1 ⊂ (0,∞) the null set given by Lemma 3.22 we see that by Proposi-
tion 3.19 there exists another null set N2 ⊃ N1 and a subsequence (εjk)k∈N such that∫

Ω
c2
ε(·, T )→

∫
Ω
c2(·, T ) for all T ∈ (0,∞) \N2 as ε = εjk ↘ 0.

Hence, for any such T ∈ (0,∞) \N2, by testing the second equation of (3.3.2) by cε and
making use of Lemma 3.22 and Proposition 3.19 we obtain∫ T

0

∫
Ω
|∇c|2 ≥ −1

2

∫
Ω
c2(·, T ) +

1

2

∫
Ω
c2

0 −
∫ T

0

∫
Ω
c2 +

∫ T

0

∫
Ω
nc

= lim
εjk↘0

(
− 1

2

∫
Ω
c2
εjk

(·, T ) +
1

2

∫
Ω
c2

0 −
∫ T

0

∫
Ω
c2
εjk

+

∫ T

0

∫
Ω
nεjk cεjk

)
= lim

εjk↘0

∫ T

0

∫
Ω
|∇cεjk |

2,

which together with the fact that the norm in L2
(
Ω× (0, T );R3

)
is weakly lower semi-

continuous and the weak convergence property in (3.5.6) implies that actually ∇cε → ∇c
in L2

(
Ω× (0, T );R3

)
as ε = εjk ↘ 0.

Finally, as a last step before proving Theorem 3.2, we can verify the Φ-supersolution
property of Definition 3.4 for the choice of Φ(s) = (s + 1)m+2α−1 whenever m ≥ 1 and
α ≥ 0 satisfy m + α > 4

3 and m + 2α < 2. The restriction m + 2α < 2, however,
is of no consequence for our Theorem, since for m ≥ 1 and α ≥ 0 with m + α > 4

3
and m + 2α ≥ 2, the existence of a global very weak solution is already established by
Theorem 3.1 in light of the fact that every weak solution is also a very weak solution.
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Lemma 3.24.
Let m ≥ 1, α ≥ 0 satisfy m + α > 4

3 and m + 2α < 2. Assume that n0, c0, u0 comply
with (3.1.8) and suppose that S ∈ C2

(
Ω×[0,∞)2;R3×3

)
fulfills (3.1.3) with some S0 >

0. Moreover, denote by n, c, u the limit functions provided by Proposition 3.19 and let
Φ(s) := (s + 1)m+2α−1 for s ≥ 0. Then n is a global Φ–supersolution of (3.1.4) in the
sense of Definition 3.4.

Proof: Because of m+ 2α < 2 we may draw on the special case convergences discussed
in Proposition 3.19, i.e. (3.5.11)–(3.5.16). With Φ(s) := (s + 1)m+2α−1 for s ≥ 0, we
find that the regularity requirements demanded by Definition 3.4 were already obtained
in Proposition 3.19. In particular, we find that the conditions concerning n contained in
(3.2.2) are implied by (3.5.12), (3.5.16), (3.5.13) together with (3.5.14), (3.5.15), (3.5.11)

and (3.5.13), respectively, where we also used the fact that n(n+1)α−1

(1+n)α ∈ L∞loc
(
Ω×[0,∞)

)
.

What remains is the verification of (3.2.3). We pick an arbitrary nonnegative test
function ϕ ∈ C∞0

(
Ω×[0,∞)

)
satisfying ∂ϕ

∂ν = 0 on ∂Ω×(0,∞) and then fix T > 0
such that ϕ ≡ 0 in Ω× (T,∞). Keeping in mind that m+ 2α < 2, we multiply the first
equation of (3.3.2) with (m + 2α − 1)(nε + 1)m+2α−2ϕ, integrate by parts and rewrite
some terms to obtain that

−
∫ T

0

∫
Ω
(nε + 1)m+2α−1ϕt −

∫
Ω
(n0 + 1)m+2α−1ϕ(·, 0)

= m(m+ 2α− 1)(2− (m+ 2α))

∫ T

0

∫
Ω

∣∣(nε + 1)
m+2α−3

2 (nε + ε)
m−1

2 ∇nε
∣∣2ϕ

− m(m+ 2α− 1)

m+ α− 1

∫ T

0

∫
Ω
(nε + 1)α(nε + ε)m−1

(
∇(nε + 1)m+α−1 · ∇ϕ

)
(3.6.6)

− (m+ 2α− 1)(2− (m+ 2α))

m+ α− 1

∫ T

0

∫
Ω

(nε + 1)α−1nε
(1 + εnε)3

(
∇(nε + 1)m+α−1 · Sε(·, nε, cε)∇cε

)
ϕ

+ (m+ 2α− 1)

∫ T

0

∫
Ω
(nε + 1)m+α−1 (nε + 1)α−1nε

(1 + εnε)3

(
Sε(·, nε, cε)∇cε · ∇ϕ

)
+

∫ T

0

∫
Ω
(nε + 1)m+2α−1(uε · ∇ϕ)

holds for all ε ∈ (0, 1). Making use of (3.1.3), we find that
∣∣ (nε+1)α−1nε

(1+εnε)3 Sε
∣∣ ≤ S0 for all

ε ∈ (0, 1). Since moreover,

(nε + 1)α−1nε
(1 + εnε)3

Sε(·, nε, cε)→ (n+ 1)α−1nS(·, n, c) a.e. in Ω× (0,∞) as ε↘ 0

we find that

(nε + 1)α−1nε
(1 + εnε)3

Sε(·, nε, cε)∇cε → (n+ 1)α−1nS(·, n, c)∇c in L2
(
Ω× (0, T );R3

)
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as ε = εjk ↘ 0, in light of Lemma 3.23 and [101, Lemma A.4]. Combining this strong
convergence with (3.5.11) and (3.5.13) entails that∫ T

0

∫
Ω
(nε + 1)m+α−1 (nε + 1)α−1nε

(1 + εnε)3

(
Sε(·, nε, cε)∇cε · ∇ϕ

)
→
∫ T

0

∫
Ω
(n+ 1)m+2α−2n

(
S(·, n, c)∇c · ∇ϕ

)
and

−
∫ T

0

∫
Ω

(nε + 1)α−1nε
(1 + εnε)3

(
∇(nε + 1)m+α−1 · Sε(·, nε, cε)∇cε

)
ϕ

→ −
∫ T

0

∫
Ω
(n+ 1)α−1n

(
∇(n+ 1)m+α−1 · S(·, n, c)∇c

)
ϕ

as ε = εjk ↘ 0, respectively. Moreover, relying on (3.5.12), (3.5.13), (3.5.14) and (3.5.15)
we obtain that

−
∫ T

0

∫
Ω
(nε + 1)m+2α−1ϕt → −

∫ T

0

∫
Ω
(n+ 1)m+2α−1ϕt,

−
∫ T

0

∫
Ω
(nε + 1)α(nε + ε)m−1

(
∇(nε + 1)m+α−1 · ∇ϕ

)
→ −

∫ T

0

∫
Ω
(n+ 1)αnm−1

(
∇(n+ 1)m+α−1 · ∇ϕ

)
∫ T

0

∫
Ω
(nε + 1)m+2α−1(uε · ∇ϕ)→

∫ T

0

∫
Ω
nm+2α−1(u · ∇ϕ)

as ε = εjk ↘ 0. Lastly, we depend on the lower semicontinuity of the norm in
L2
(
Ω× (0, T );R3

)
with respect to weak convergence to conclude from (3.5.16) that

lim inf
εjk↘0

∫ T

0

∫
Ω

∣∣(nε + 1)
m+2α−3

2 (nε + ε)
m−1

2 ∇nε
∣∣2ϕ ≥ ∫ T

0

∫
Ω

∣∣(n+ 1)
m+2α−3

2 n
m−1

2 ∇n
∣∣2ϕ.

Uniting the statements above with (3.6.6) and the fact that m+ 2α < 2 entails that

−
∫ ∞

0

∫
Ω
(n+ 1)m+2α−1ϕt −

∫
Ω
(n0 + 1)m+2α−1ϕ(·, 0)

≥ m(m+ 2α− 1)(2− (m+ 2α))

∫ ∞
0

∫
Ω

∣∣(n+ 1)
m+2α−3

2 n
m−1

2 ∇n
∣∣2ϕ

− m(m+ 2α− 1)

m+ α− 1

∫ ∞
0

∫
Ω
(n+ 1)αnm−1

(
∇(n+ 1)m+α−1 · ∇ϕ

)
− (m+ 2α− 1)(2− (m+ 2α))

m+ α− 1

∫ ∞
0

∫
Ω
(n+ 1)α−1n

(
∇(n+ 1)m+α−1 · S(·, n, c)∇c

)
ϕ

+(m+ 2α− 1)

∫ ∞
0

∫
Ω
(n+ 1)m+2α−2n

(
S(·, n, c)∇c · ∇ϕ

)
+

∫ ∞
0

∫
Ω
(n+ 1)m+2α−1(u · ∇ϕ),
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where we used that ϕ ≡ 0 in Ω×(T,∞). It can easily be checked that this is an equivalent
formulation of (3.2.3) for our choice Φ(s) ≡ (s+ 1)m+2α−1, which thereby completes the
proof.

The previous lemma at hand, we can conclude Theorem 3.2 in a straightforward manner.

Proof of Theorem 3.2: The existence of a global very weak solution for m ≥ 1 and
α ≥ 0 satisfying m + 2α > 5

3 is already established in light of Theorem 3.1, since any
global weak solution is also a global very weak solution for the choice Φ(s) ≡ s. Evidently,
we can restrict ourselves to verifying the Φ–supersolution property of Definition 3.4 for
m ≥ 1, α ≥ 0 satisfying m + α > 4

3 and m + 2α ≤ 5
3 . In this case Lemma 3.24 is

applicable and therefore, an evident combination of Lemmata 3.20 and 3.24 with the
regularity information presented in Proposition 3.19 completes the proof.

59





4 Eventual smoothness of generalized
solutions to a singular chemotaxis-Stokes
system in 2D

4.1 Introduction

Even among the smallest and most primitive organisms there are cases of complex and
macroscopic collective behavior, for instance bacteria of species E. coli were confirmed
to form migrating bands when subjected to a test environment featuring gradients of
nutrient concentration ([1]). Following these experimental findings, chemotaxis systems
of the form {

nt = ∆n−∇· (nS(n, c)∇c),
ct = ∆c− nc, (4.1.1)

were among the first phenomenological models proposed by Keller and Segel ([42]) to
study these processes of chemotactic migration. Herein, in contrast to the models dis-
cussed in the previous chapters, the bacteria orient their movements towards a substance
which serves as their food source and is thereby consumed in the process. In the men-
tioned reference the prototypical choice for S(n, c) was the singular S(n, c) = 1

c , modeling
the assumption that the signal is perceived in accordance with the Weber-Fechner law
([42, 34]). An outstanding facet of this system, as already illustrated in [42], is the oc-
currence of wave-like solution behavior without any type of cell kinetics, which is known
to be vital for such effects in standard reaction-diffusion equations. For studies on exis-
tence and stability properties of traveling wave solutions of (4.1.1), see [92, 51, 65] and
references therein.
The results on global existence to systems of the form (4.1.1) are very sparse, with
widely arbitrary initial data only being treated for the one-dimensional case ([84, 50]).
In higher dimensions, the results were constrained to the Cauchy problem for (4.1.1) in
Rn with n ∈ {2, 3}, where smallness conditions on the initial data had to be imposed
to show the existence of globally defined classical solutions ([93]). Only recently ([102]),
so called global generalized solutions to (4.1.1) were constructed in the two-dimensional
case. The solutions are obtained through the study of a suitably chosen regularization,
guaranteeing that the regularized chemical concentration is strictly bounded away from
zero for all times. These generalized solutions comply with the classical solution concept
in the sense that generalized solutions which are sufficiently smooth also solve the system
in the classical sense. In a sequel to the previously mentioned work, it was furthermore
proved that if the initial mass is small, these generalized solutions eventually become
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classical solutions after some (possibly large) waiting time and that the solutions satisfy
certain kind of asymptotic properties ([103]).

Eventual regularity and fluid interaction. Our interest slightly differing from the
system proposed by Keller and Segel, we will consider the case that the bacteria may be
affected by their liquid environment. Let us first recall the prototypical model developed
in [85] to describe the experimental evidence of spontaneously emerging turbulence in
populations of aerobic bacteria suspended in sessile drops of water. The proposed system,
which not only incorporates the interaction by means of transport, but also in form of
a feedback between cells and fluid-velocity stemming from a buoyancy effect, is of the
form 

nt + u ·∇n = ∆n−∇· (n∇c),
ct + u ·∇c = ∆c− nc,
ut +κ(u · ∇)u = ∆u−∇P + n∇φ,

∇·u = 0,

(4.1.2)

and has been the groundwork for many articles concerning the mathematical analysis of
chemotaxis-fluid interaction since the first analytical results asserting local existence of
weak solutions ([56]). Obtaining results concerning the global existence of solutions in
this setting, however, is far from trivial. Even in the more favorable setting with u ≡ 0
the global existence of classical solutions is only known under a smallness condition on
the initial data ([77]), or when N = 2 (e.g. [98]). The currently known results read
similar in the case of u 6≡ 0. In the two-dimensional setting, global classical solutions
stemming from reasonably smooth initial data have also been shown to exist in [98],
whereas many results treating variants of (4.1.2) in three-dimensional frameworks are
again restricted to weak solutions emanating from small initial data (e.g. [44, 13]).
Nevertheless, even in theses cases, where global regularity is hard to prove, some results
concerning eventual regularity of solutions have been shown. In particular, for the fluid-
free case eventual smoothness of solutions was shown in [81] for N = 3 and a result
including fluid is contained in [105], where certain weak eventual energy solutions are
considered.

Similar smoothing effects can also be observed in a setting where N = 3 and logistic
growth terms of the form +ρn − µn2 (ρ ≥ 0, µ > 0) are included in the first equation.
In this framework it is still unclear whether global classical solutions exist for small
µ > 0 and reasonably arbitrary initial data, but weak solutions which eventually become
smooth are known to exist for any µ > 0 and possibly large initial data, as indicated by
the studies in e.g. [47].

Chemotaxis-fluid system with singular sensitivity. In light of the regularizing
effects observed in the chemotaxis and chemotaxis-fluid problems mentioned above, it
seems reasonable to assume that also in the case of singular sensitivity the smoothing
effect of the second equation will eventually result in classical solutions, even if fluid
interaction with the bacteria is present. As the construction of global weak solutions
used in [87] does not work for the full Navier–Stokes subsystem (as included in (4.1.2)),
we instead work with the simpler Stokes realization of the fluid, which was also employed
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in [87], instead. In fact we will study systems of the form
nt +u ·∇n= ∆n−∇· (nc∇c), x ∈ Ω, t > 0,
ct + u ·∇c = ∆c− nc, x ∈ Ω, t > 0,
ut + ∇P = ∆u+ n∇φ, x ∈ Ω, t > 0,

∇·u = 0, x ∈ Ω, t > 0,

(4.1.3)

with boundary conditions

∂n

∂ν
=
∂c

∂ν
= 0, and u = 0 for x ∈ ∂Ω and t > 0, (4.1.4)

and initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω. (4.1.5)

Ω ⊂ R2 denotes a bounded domain with smooth boundary and the gravitational potential
φ is assumed to satisfy

φ ∈ C2
(
Ω
)

with K1 := ‖φ‖W 1,∞(Ω). (4.1.6)

For the initial distributions we will prescribe the regularity assumptions
n0 ∈ C0

(
Ω
)

with n0 ≥ 0 in Ω and n0 6≡ 0,

c0 ∈W 1,∞(Ω) with c0 > 0 in Ω,
u0 ∈ D

(
A%r
)

for all r ∈ (1,∞) and some % ∈ (1
2 , 1),

(4.1.7)

with Ar denoting the Stokes operator Ar := −Pr∆ in Lr
(
Ω;R2

)
with domain D (Ar) =

W 2,r
(
Ω;R2

)
∩W 1,r

0

(
Ω;R2

)
∩ Lrσ(Ω), where Lrσ(Ω) = {ϕ ∈ Lr

(
Ω;R2

)
| ∇·ϕ = 0} stands

for the solenoidal subspace of Lr
(
Ω,R2

)
obtained by the Helmholtz projection Pr.

In this setting, building on the work [102], it was shown in [87] that for any (n0, c0, u0)
satisfying (4.1.7), the system (4.1.3) possesses at least on global generalized solution (in
the sense of Definition 4.8 below). These solutions are constructed by a similar limiting
procedure as in the fluid free setting, making sure that for each of the approximate solu-
tions the quantity c remains strictly positive throughout Ω for all times. In a simplified
version the result one global existence of generalized solutions and basic decay properties
of c obtained in [87] can be summarized as follows:

Theorem A.
Let Ω ⊂ R2 be a bounded domain with smooth boundary. Then for all (n0, c0, u0) satisfy-
ing (4.1.7), the problem (4.1.3)– (4.1.5) possesses at least one global generalized solution
(n, c, u) in the sense of Definition 4.8 below. For each p ∈ [1,∞) the solution has the

properties that n(·, t) ∈ Lp(Ω) and ∇c(·,t)
c(·,t) ∈ L2

(
Ω;R2

)
for a.e. t > 0. Moreover, c is

continuous on [0,∞) as L∞(Ω)–valued function with respect to the weak–? topology on
L∞(Ω), and satisfies

c(·, t) ?
⇀ 0 in L∞(Ω) and c(·, t)→ 0 in Lp(Ω) as t→∞.
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Main results. The existence of global generalized solutions provided by Theorem A at
hand, it is the purpose of the present chapter to study the question how far the eventual
regularity and stabilization results for small data as obtained in [103] for (4.1.1), may
be affected by the interaction of the bacteria with their liquid surroundings.

Theorem 4.1.
Let Ω ⊂ R2 be a bounded domain with smooth boundary. Then there exists some m?> 0
such that for any (n0, c0, u0) satisfying (4.1.7) as well as∫

Ω
n0 ≤ m?, (4.1.8)

the global generalized solution of (4.1.3)– (4.1.5) from Theorem A has the property that
there exists T > 0 such that

n ∈ C2,1
(
Ω×[T,∞)

)
, c ∈ C2,1

(
Ω×[T,∞)

)
and u ∈ C2,1

(
Ω×[T,∞);R2

)
, (4.1.9)

that

c(x, t) > 0 for all x ∈ Ω and any t ≥ T, (4.1.10)

and such that (n, c, u) solve (4.1.3)– (4.1.5) classically in Ω× (T,∞). Furthermore, this
solution satisfies

n(·, t)→ 1

|Ω|

∫
Ω
n0 in L∞(Ω), c(·, t)→ 0 in L∞(Ω), u(·, t)→ 0 in L∞(Ω),

(4.1.11)

and

∇c(·, t)
c(·, t)

→ 0 in L∞
(
Ω;R2

)
(4.1.12)

as t→∞.

Our analysis will also in straightforward manner allow us to formulate a result for global
classical solutions to (4.1.3)– (4.1.5) if certain smallness conditions are fulfilled by the ini-
tial distributions. Furthermore, these global classical solutions inherit the same asymp-
totic properties stated in Theorem 4.1. In order to completely formulate this outcome,
we note that in two-dimensional domains by the Gagliardo–Nirenberg inequality and
elliptic regularity theory one can find K2 > 0 and K3 > 0 such that

‖ϕ‖3L3(Ω) ≤ K2‖ϕ‖2W 1,2(Ω)‖ϕ‖L1(Ω) for all ϕ ∈W 1,2(Ω) (4.1.13)

and

‖∇ϕ‖4L4(Ω) ≤ K3‖∆ϕ‖2L2(Ω)‖∇ϕ‖
2
L2(Ω) for all ϕ ∈W 2,2(Ω) with

∂ϕ

∂ν
= 0 on ∂Ω .

(4.1.14)

We obtain the following:

64



Introduction

Theorem 4.2.
Let Ω ⊂ R2 be a bounded domain with smooth boundary. Then there exists m?? > 0 such
that for any (n0, c0, u0) satisfying (4.1.7),∫

Ω
n0 ≤ m??, and

∫
Ω
|u0|4 ≤ m?? (4.1.15)

as well as ∫
Ω
n0 ln

n0

µ
+

1

2

∫
Ω

|∇c0|2

c2
0

< min

{
1

4K3
,

1

8K2

}
− µ|Ω|

e
(4.1.16)

for some µ > 0 and K2, K3 given by (4.1.13) and (4.1.14), respectively, there exists a
triple (n, c, u) of functions, for each ϑ > 2 uniquely determined by the inclusions

n ∈ C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
,

c ∈ C0
(
Ω×[0,∞)

)
∩ C2,1

(
Ω×(0,∞)

)
∩ L∞loc

(
[0,∞);W 1,ϑ(Ω)

)
,

u ∈ C0
(
Ω×[0,∞);R2

)
∩ C2,1

(
Ω×(0,∞);R2

)
,

such that n > 0 in Ω×(0,∞) and c > 0 in Ω×[0,∞), and such that (n, c, u) together
with some P ∈ C1,0

(
Ω×[0,∞)

)
solve (4.1.3)– (4.1.5) in the classical sense in Ω×(0,∞).

Furthermore, this solution has the convergence properties stated in Theorem 4.1.

In contrast to the known result for the system without fluid, obtained by taking u ≡ 0 in

(4.1.3), where requiring only
∫

Ωn0 ln n0
µ + 1

2

∫
Ω
|∇c0|2
c20

to be small was sufficient to obtain

global classical solutions, in this case we require additional smallness conditions in the
form of sufficiently small bounds for n0 in L1(Ω) and u0 in L4(Ω). Let us also briefly note
that the approach utilized here can not be used to prove eventual smoothness of global
generalized solutions in higher dimensions, mainly due to the Gagliardo-Nirenberg type
inequalities (4.1.13) and (4.1.14). In particular, the functional Fµ(n, z) :=

∫
Ωn ln n

µ +
1
2

∫
Ω|∇z|

2 (c.f. Sections 4.2.2 and 4.4.1) has to be nonincreasing for small mass (see
Lemma 4.11 below), necessitating control on ‖∇z‖4L4(Ω) by ‖∆z‖2L2(Ω)‖∇z‖

2
L2(Ω) (c.f

(4.4.6)), which is only possible in two dimensions. Similarly, problems stemming from
dimension dependency of inequalities employed in the proofs also arise in Lemma 4.19.
Moreover, one would also have to consider additional steps in order to control ‖u‖L4(Ω)

in Lemma 4.11 as Lemma 4.4 does not hold in higher dimensions.

Throughout the chapter, in addition to the previously mentioned assumptions in (4.1.6)
and (4.1.7) for Ω, φ, the initial data, the Stokes operator and its semigroup, we will
make use of the following notations. λ1 > 0 will always denote the first positive eigen-
value of the Stokes operator in Ω with respect to homogeneous Dirichlet boundary data.
Since A%rϕ, e−tArϕ and Prψ are independent of r ∈ (1,∞) for ϕ ∈ C∞0 (Ω) ∩ Lrσ(Ω)
and ψ ∈ C∞0

(
Ω;R2

)
, we will drop the subscript whenever there is no danger of con-

fusion. Similar to denoting by Lrσ(Ω) all divergence free functions of Lr(Ω), the space
of divergence free, smooth test functions with compact support in Ω × (0,∞) will be
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denoted by C∞0,σ(Ω× (0,∞)). Additionally, when talking about classical solutions to
some of the featured systems in Ω × (t0,∞) for some t0 ≥ 0, we will often shorten the
notation to (n, c, u) ∈ C0(Ω× [t0,∞)), when we are actually considering (n, c, u, P ) ∈
C0(Ω× [t0,∞))×C0(Ω× [t0,∞))×C0

(
Ω× [t0,∞);R2

)
×C1,0

(
Ω×[t0,∞)

)
. The nota-

tion (n, c, u) ∈ C2,1(Ω× (t0,∞)) will be used in a similar fashion.

4.2 Basic properties of a family of generalized problems

The construction of the generalized solution mentioned above is based on a limit proce-
dure of solutions to regularized problems and a transformation thereof. Since the original
problem (4.1.3) and the family of approximate problems in question are quite similar,
we will first consider the even more general family of problems

nt +u ·∇n= ∆n−∇·
(
nf ′(n)
c ∇c

)
, x ∈ Ω, t > 0

ct + u ·∇c = ∆c− f(n)c, x ∈ Ω, t > 0,

ut + ∇P = ∆u+ n∇φ, x ∈ Ω, t > 0,

∇·u = 0, x ∈ Ω, t > 0,

(4.2.1)

where we only require that the functions f ∈ C3([0,∞)) satisfy

f(0) = 0 and 0 ≤ f ′ ≤ 1 on [0,∞). (4.2.2)

Upon proper choice of a subfamily of these functions (cf. (4.3.5) below), the system
will be regularized in a way that ensures that c is bounded away from zero, from which
one can easily obtain global and bounded solutions to the corresponding approximate
problems. These global and bounded solutions are one of the main ingredients of the
limit process involved in the construction of the generalized solution ([102, 87]).

The problems (4.2.1) will be regarded under the boundary conditions

∂n

∂ν
=
∂c

∂ν
= 0, and u = 0 for x ∈ ∂Ω and t ∈ (0, Tmax), (4.2.3)

and the initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω. (4.2.4)

For any f ∈ C3([0,∞)) satisfying the conditions above, local existence of classical so-
lutions can be obtained by well-established fixed point methods. Since the necessary
adaptions are quite straightforward, we will refer to local existence proofs in closely
related situations for details.
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Lemma 4.3.
Let Ω ⊂ R2 be a bounded domain with smooth boundary, ϑ > 2 and suppose that f ∈
C3([0,∞)) satisfies (4.2.2). Then for all (n0, c0, u0) satisfying (4.1.7) there exist Tmax ∈
(0,∞] and uniquely determined functions

n ∈ C0
(
Ω×[0, Tmax)

)
∩ C2,1

(
Ω×(0, Tmax)

)
,

c ∈ C0
(
Ω×[0, Tmax)

)
∩ C2,1

(
Ω×(0, Tmax)

)
∩ C0

(
[0, Tmax);W 1,ϑ(Ω)

)
,

u ∈ C0
(
Ω×[0, Tmax);R2

)
∩ C2,1

(
Ω×(0, Tmax);R2

)
,

which together with some P ∈ C1,0
(
Ω×[0, Tmax)

)
solve (4.2.1)– (4.2.4) in the classical

sense and satisfy n > 0 and c > 0 in Ω×(0, Tmax) as well as

either Tmax =∞, or lim inf
t↗Tmax

inf
x∈Ω

c(x, t) = 0, (4.2.5)

or lim sup
t↗Tmax

(
‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,ϑ(Ω) + ‖A%u(·, t)‖L2(Ω)

)
=∞.

Furthermore, the solution has the properties that∫
Ω
n(x, t) dx =

∫
Ω
n0(x) dx for all t ∈ (0, Tmax) (4.2.6)

and

c(x, t) ≤ ‖c0‖L∞(Ω) for all (x, t) ∈ Ω×[0, Tmax). (4.2.7)

Proof: Local existence, uniqueness and the blow-up criterion (4.2.5) can be obtained
by straightforward adaptation of well-known arguments as detailed in [36, 26, 25] and
[98] for related situations. Simple integration of the first equation in (4.2.1) proves
(4.2.6), whereas by the nonnegativity of f , an application of the parabolic comparison
principle to the second equation in (4.2.1), with c̄ ≡ ‖c0‖L∞(Ω) taken as supersolution,
immediately entails (4.2.7).

4.2.1 Regularity of the Stokes subsystem

It is known that the Stokes subsystem d
dtu+ Au = P(n∇φ) in (4.2.1) has the property

that the regularity of the spatial derivative ∇u is solely reliant on the regularity of n
(since ∇φ is bounded). In fact, for Stokes systems of the form

ut = ∆u−∇P + n∇φ, x ∈ Ω, t0 > 0,

∇·u= 0, x ∈ Ω, t0 > 0,

u= 0, x ∈ ∂Ω, t0 > 0,

(4.2.8)

we can obtain the following two results. The first of which is a refinement of a basic
boundedness result e.g. featured in [89, Lemma 2.4].
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Lemma 4.4.
Let φ ∈ C2

(
Ω
)
. There exist constants λ1 > 0 and Ku > 0 such that whenever u ∈

C0
(
Ω×[t0, T0);R2

)
∩C2,1

(
Ω×(t0, T0);R2

)
is a classical solution of (4.2.8) in Ω×(t0, T0)

for some 0 ≤ t0 < T0 ≤ ∞ and n ∈ C0
(
Ω×[t0, T0)

)
satisfies∫

Ω
|n(·, t)| ≤ L for all t ∈ (t0, T0),

with some L > 0, then

‖u(·, t)‖L4(Ω) ≤ Kue
−λ1(t−t0)‖u(·, t0)‖L4(Ω) +KuL for all t ∈ (t0, T0).

Proof: By the variation-of-constants representation for u we have

u(·, t) = e−(t−t0)Au(·, t0) +

∫ t

t0

e−(t−s)AP(n(·, s)∇φ) ds for all t ∈ (t0, T0).

Fixing any γ ∈ (3
4 , 1) we see that

‖u(·, t)‖L4(Ω) ≤ ‖e−(t−t0)Au(·, t0)‖L4(Ω) +

∫ t

t0

‖Aγe−(t−s)AA−γP(n(·, s)∇φ)‖L4(Ω) ds

holds for all t ∈ (t0, T0). Now, in view of the well known regularity estimates for the
Stokes semigroup (e.g. [100, Lemma 3.1]) we find constants λ1 > 0 and C1 > 0 such
that

‖e−(t−t0)Au(·, t0)‖L4(Ω) ≤ C1e
−λ1(t−t0)‖u(·, t0)‖L4(Ω) for all t > t0,

and, since for 1 ≤ p < q < ∞ and γ ∈ (0, 1) satisfying γ > 1
p −

1
q it holds that

‖A−γPϕ‖Lq(Ω) ≤ C‖ϕ‖Lp(Ω) for all ϕ ∈ C∞0
(
Ω;R2

)
([89, Lemma 2.3]), there exists

C2 > 0 such that

‖Aγe−(t−s)AA−γP(n(·, s)∇φ)‖L4(Ω) ≤ C2(t− s)−γe−λ1(t−s)‖n(·, s)∇φ‖L1(Ω)

for all s ∈ (t0, t), by choice of γ ∈ (3
4 , 1). Hence, relying on (4.1.6) and our assumption

for
∫

Ω|n(·, t)|, we may estimate

‖u(·, t)‖L4(Ω) ≤ C1e
−λ1(t−t0)‖u(·, t0)‖L4(Ω) + C2K1L

∫ ∞
0

σ−γe−λ1σ dσ

for all t > 0, which due to γ < 1 concludes the proof upon obvious choice for Ku.

The second lemma regarding the Stokes subsystem concerns norms of the spatial gra-
dient of u. These results are widely recognized, see e.g. [89, Lemma 2.5] and [100,
Corollary 3.4] for details.
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Lemma 4.5.
Assume % ∈ (1

2 , 1), t0 ≥ 0 and φ ∈ C2
(
Ω
)

and let p ∈ [1,∞) and r ∈ [1,∞] be such that{
r < 2p

2−p if p ≤ 2,

r ≤ ∞ if p > 2.

Then for any u(·, t0) ∈ D
(
A%r
)

there exists a constant C = C(u(·, t0), φ, p, r, L) > 0 such
that whenever u ∈ C0

(
Ω×[t0, T0);R2

)
∩ C2,1

(
Ω×(t0, T0);R2

)
is a classical solution of

(4.2.8) in Ω× (t0, T0) for some 0 ≤ t0 < T0 ≤ ∞ and n ∈ C0
(
Ω×[t0, T0)

)
satisfies

‖n(·, t)‖Lp(Ω) ≤ L for all t ∈ (t0, T0),

with some L > 0, then

‖∇u(·, t)‖Lr(Ω) ≤ Ce−λ1(t−t0) + CL for all t ∈ (t0, T0).

In particular, taking the mass conservation property of n and the Sobolev embedding
theorem into consideration, we can easily obtain bounds independent of f for the quan-
tity ‖u‖Lp(Ω) with p <∞ from the previous lemma. For these potentially better bounds
than the one provided by Lemma 4.4 however, we do not know the exact relation to
u(·, t0).

4.2.2 Logarithmic rescaling and basic a priori information on z

Now, a quite standard change in variables transformation obtained by taking n, c and
u from Lemma 4.3 and setting

z := − ln

(
c

‖c0‖L∞(Ω)

)
and z0 := − ln

(
c0

‖c0‖L∞(Ω)

)
,

will lead to the transformed systems
nt +u ·∇n= ∆n+∇· (nf ′(n)∇z), x ∈ Ω, t > 0,
zt + u ·∇z = ∆z − |∇z|2 + f(n), x ∈ Ω, t > 0,
ut + ∇P = ∆u+ n∇φ, x ∈ Ω, t > 0,

∇·u = 0, x ∈ Ω, t > 0,

(4.2.9)

building the basis for our analysis of the energy-type inequalities featured in Section 4.4.1.
This transformation has been thoroughly used in previous literature (see e.g. [93, 102,
103]) to analyze systems in similar settings. We will consider (4.2.9) along with the
boundary conditions

∂n

∂ν
=
∂z

∂ν
= 0, and u = 0 for x ∈ ∂Ω and t > 0, (4.2.10)

and initial conditions

n(x, 0) = n0(x), z(x, 0) = z0(x) := − ln

(
c0(x)

‖c0‖L∞(Ω)

)
, u = u0(x), x ∈ Ω.
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Remark 4.6.
Let f ∈ C3([0,∞)) satisfy (4.2.2). Assume that (n, z, u) ∈ C2,1

(
Ω×(T1, T2)

)
is a clas-

sical solution of the boundary value problem (4.2.9),(4.2.10) in Ω × (T1, T2) with some
T1 ≥ 0 and T2 ∈ (T1,∞]. Then the solution satisfies the mass conservation property

d

dt

∫
Ω
n(·, t) = 0 for all t ∈ (T1, T2).

This reformulation of our previous systems at hand, we immediately obtain the following
basic information – not depending on f – about the transformed chemical concentration
z.

Lemma 4.7.
Let m0 > 0. Suppose that for f ∈ C3([0,∞)) satisfying (4.2.2) and t0 ≥ 0 the triple
(n, z, u) ∈ C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)–(4.2.10) in Ω× (t0,∞) with

the properties that n ≥ 0 in Ω× (t0,∞) and
∫

Ωn(·, t0) ≤ m0. Then∫
Ω
z(·, t) +

∫ t

t0

∫
Ω
|∇z|2 ≤

∫
Ω
z(·, t0) + (t− t0)m0 for all t > t0. (4.2.11)

Proof: Integrating the second equation of (4.2.9) with respect to space shows that

d

dt

∫
Ω
z =

∫
Ω

∆z −
∫

Ω
|∇z|2 +

∫
Ω
f(n)−

∫
Ω
u · ∇z

holds for all t ∈ (t0,∞). Making use of ∇·u = 0, the Neumann boundary conditions for
z, n ≥ 0 and the fact that f(s) ≤ s for all s ≥ 0 we obtain, upon integration by parts,
that

d

dt

∫
Ω
z +

∫
Ω
|∇z|2 ≤

∫
Ω
n

is valid on t ∈ (t0,∞). Due to the mass conservation we have
∫

Ωn(·, t) ≤ m0 for all
t > t0 and therefore integrating this inequality immediately establishes (4.2.11).

4.3 Generalized solution concept and approximate solutions

Before going into more detail for our eventual smoothness result, let us briefly review
the solution concept of generalized solutions and the exact form of the approximate
problems. These were already used in [101, 102] for closely related settings without fluid
and in [87] for the system with Stokes fluid.
A global generalized solution is defined as follows (see also [101, Definition 2.1–2.3],[87,
Definition 2.1]).

Definition 4.8.
Assume that (n0, c0, u0) satisfy (4.1.7). Suppose that a triple (n, c, u) of functions

n∈L1
loc

(
Ω×[0,∞)

)
,

c ∈L∞loc
(
Ω×[0,∞)

)
∩ L2

loc

(
[0,∞);W 1,2(Ω)

)
,

u∈L1
loc

(
[0,∞);W 1,1

0

(
Ω;R2

))
,

(4.3.1)
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satisfies

n ≥ 0, and c > 0, and ∇·u = 0 a.e. in Ω× (0,∞) (4.3.2)

as well as

∇ ln(n+ 1) ∈ L2
loc

(
Ω×[0,∞);R2

)
and ∇ ln c ∈ L2

loc

(
Ω×[0,∞);R2

)
. (4.3.3)

Then (n, c, u) will be called a global generalized solution of (4.1.3)– (4.1.5) if n satisfies
the mass conservation property∫

Ω
n(x, t) dx =

∫
Ω
n0(x) dx for a.e. t > 0,

if the inequality

−
∫ ∞

0

∫
Ω

ln(n+ 1)ϕt −
∫

Ω
ln(n0 + 1)ϕ(·, 0)

≥
∫ ∞

0

∫
Ω
|∇ ln(n+ 1)|2ϕ−

∫ ∞
0

∫
Ω
∇ ln(n+ 1) · ∇ϕ+

∫ ∞
0

∫
Ω

n

n+ 1
∇ ln c · ∇ϕ (4.3.4)

−
∫ ∞

0

∫
Ω

n

n+ 1
(∇ ln(n+ 1) · ∇ ln c)ϕ+

∫ ∞
0

∫
Ω

ln(n+ 1)(u · ∇ϕ)

holds for each nonnegative ϕ ∈ C∞0
(
Ω×[0,∞)

)
, if the identity∫ ∞

0

∫
Ω
cψt +

∫
Ω
c0ψ(·, 0) =

∫ ∞
0

∫
Ω
∇c · ∇ψ +

∫ ∞
0

∫
Ω
ncψ −

∫ ∞
0

∫
Ω
cu · ∇ψ

is valid for any ψ ∈ L∞ (Ω× (0,∞)) ∩ L2
(
(0,∞);W 1,2(Ω)

)
compactly supported in

Ω×[0,∞) with ψt ∈ L2 (Ω× (0,∞)), and if furthermore the equality∫ ∞
0

∫
Ω
u ·Ψt +

∫
Ω
u0 ·Ψ(·, 0) =

∫ ∞
0

∫
Ω
∇u · ∇Ψ−

∫ ∞
0

∫
Ω
n∇φ ·Ψ

holds for all Ψ ∈ C∞0,σ
(
Ω× [0,∞);R2

)
.

It can easily be verified that the supersolution property in (4.3.4) combined with the
mass conservation (4.2.6) is sufficient to obtain that sufficiently regular global generalized
solutions are also global solutions in the classical sense (see [102, Remark 2.1 ii)]), i.e.
if (n, c, u) is a global generalized solution in the sense of Definition 4.8 and satisfies
n ≥ 0 and c > 0 in Ω×[0,∞) as well as (n, c, u) ∈C0

(
Ω×[0,∞)

)
∩C2,1

(
Ω×(0,∞)

)
then

(n, c, u) solves (4.2.1) in the classical sense.
Generalized solutions in the sense of Definition 4.8 are constructed by an approximation
procedure relying on regularizations in the form of (4.2.9) with suitably chosen f ≡ fε
([102, 103, 87]). For this we first fix a nonincreasing cut-off function ρ ∈ C∞([0,∞))
fulfilling ρ ≡ 1 in [0, 1] and ρ ≡ 0 in [2,∞) and define the family of functions {fε}ε∈(0,1) ⊆
C∞([0,∞)) given by

fε(s) :=

∫ s

0
ρ(εσ) dσ, s ≥ 0. (4.3.5)
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Every function in this family evidently has the properties

fε(0) = 0 and 0 ≤ f ′ε ≤ 1 on [0,∞) (4.3.6)

as well as

fε(s) = s for all s ∈ [0, 1
ε ] and f ′ε(s) = 0 for all s ≥ 2

ε .

Furthermore, it holds that

fε(s)↗ s and f ′ε(s)↗ 1 as ε↘ 0

for each s ≥ 0. According to this choice, we can ensure that for the local solutions to
(4.2.1) –(4.2.4) nε is bounded throughout Ω × (0, Tmax), and that cε is strictly positive
on Ω×(0, Tmax), meaning that the most troublesome terms of the extensibility criterion
in (4.2.5) remain bounded, whence the further estimation of remaining less troublesome
terms in fact shows that the solution is actually global ([87]).
Relying on the logarithmic transformation again we obtain for this family of regularizing
functions, (4.2.9)– (4.2.10) systems of the form


nεt +uε ·∇nε = ∆nε +∇· (nεf ′ε(nε)∇zε), x ∈ Ω, t > 0,
zεt− uε ·∇zε = ∆zε − |∇zε|2 + fε(nε), x ∈ Ω, t > 0,
uεt + ∇Pε = ∆uε + nε∇φ, x ∈ Ω, t > 0,

∇·uε = 0, x ∈ Ω, t > 0,

(4.3.7)

with boundary conditions

∂nε
∂ν

=
∂zε
∂ν

= 0, and uε = 0 for x ∈ ∂Ω and t > 0, (4.3.8)

and initial conditions

nε(x, 0) = n0(x), zε(x, 0) = z0(x) = − ln

(
c0(x)

‖c0‖L∞(Ω)

)
, uε(x, 0) = u0(x), x ∈ Ω.

(4.3.9)

As reported by [87] also these problems possess global classical solutions, with again
nε and zε being nonnegative, nε still satisfying the mass conservation property as in
Remark 4.6 and (nε, zε, uε) correspond to solutions of systems of the form (4.2.1) by

means of the substitution zε = − ln
(

cε
‖c0‖L∞(Ω)

)
.

The following result summarizes the outcome on the approximation of the generalized
solutions established in [87, Lemma 2.5].

Proposition 4.9.
Let (4.1.7) hold and denote by (n, c, u) the global generalized solution of (4.1.3)– (4.1.5)
from Theorem A. Then there exists a sequence {εj}j∈N ⊂ (0, 1) such that εj ↘ 0 as
j → ∞ and such that, for the choice of f ≡ fε in (4.2.1), the corresponding solution
(nε, cε, uε) of (4.2.1)– (4.2.4) satisfies

nε → n and cε → c as well as uε → u a.e. in Ω× (0,∞).

as ε = εj ↘ 0.
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4.4 Eventual smoothness of small-data generalized solutions

4.4.1 Nonincreasing energy for small mass

We will appropriately adjust the functional methods employed in [103] to our needs. In
fact, we will study the behavior of functionals of the form

Fµ(n, z) :=

∫
Ω
n ln

n

µ
+

1

2

∫
Ω
|∇z|2 (4.4.1)

for µ > 0, 0 ≤ n ∈ C0
(
Ω
)

and z ∈ C1
(
Ω
)
. We will show that a suitably chosen condition

on the size of Fµ
(
n(·, t0), z(·, t0)

)
for some t0 ≥ 0 implies that Fµ is non-increasing from

that time onward along the trajectory of classical solutions to the system (4.2.9). Since
we are working with the more generalized version of (4.3.7), almost all of the properties
of Fµ also hold in the limit case f(ξ) ≡ ξ obtained by taking ε ↘ 0 in (4.3.7). In
particular, this will also hold true for the conditional regularity estimates discussed in
Section 4.4.2.
We start with some basic relations between Fµ and the quantities appearing therein.

Lemma 4.10.
For µ > 0 let Fµ be given by (4.4.1). Then for all nonnegative n ∈ C0

(
Ω
)

and any
z ∈ C1

(
Ω
)

we have ∫
Ω
n| lnn| ≤ Fµ(n, z) + lnµ

∫
Ω
n+

2|Ω|
e

(4.4.2)

and ∫
Ω
|∇z|2 ≤ 2Fµ(n, z) +

2µ|Ω|
e

(4.4.3)

as well as

Fµ(n, z) ≥ −µ|Ω|
e
. (4.4.4)

Proof: Making use of the facts that n is nonnegative and that −ξ ln ξ ≤ 1
e for all ξ > 0

we can see that∫
Ω
n| lnn| = Fµ(n, z)− 1

2

∫
Ω
|∇z|2 + lnµ

∫
Ω
n− 2

∫
{n<1}

n lnn ≤ Fµ(n, z) + lnµ

∫
Ω
n+

2|Ω|
e
,

proving (4.4.2). Similarly, we may compute

1

2

∫
Ω
|∇z|2 = Fµ(n, z)− µ

∫
Ω

n

µ
ln
n

µ
≤ Fµ(n, z) +

µ|Ω|
e
,

verifying (4.4.3) and, upon reordering and dropping one term, also (4.4.4).

The main ingredient in showing that this generalized energy is non-increasing (after
some waiting time) will be the following differential inequality.
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Lemma 4.11.
Let m > 0 and T ≥ 0 and assume that for f ∈ C3([0,∞)) fulfilling (4.2.2) the triple
(n, z, u) ∈ C2,1

(
Ω×(T,∞)

)
is a classical solution of (4.2.9)– (4.2.10) in Ω × (T,∞)

satisfying
∫

Ω|u(·, T )|4 ≤ `, and
∫

Ωn(·, t) ≤ m for all t > T as well as n > 0 in Ω×(T,∞).
Then for all µ > 0 and all t > T we have

d

dt
Fµ
(
n(·, t), z(·, t)

)
+

∫
Ω

|∇n(·, t)|2

n(·, t)

+

{
1

2
− K3

2

∫
Ω
|∇z(·, t)|2 −K

1
2
3 Ku|Ω|

1
4
(
`e−λ1(t−T ) +m

)}∫
Ω
|∆z(·, t)|2 ≤ 0,

with K3 as in (4.1.14) and Ku, λ1 provided by Lemma 4.4.

Proof: Since n is positive in Ω×(T,∞) we see by utilizing integration by parts that

d

dt
Fµ(n, z) = −

∫
Ω

|∇n|2

n
−
∫

Ω
|∆z|2 +

∫
Ω

∆z|∇z|2 +

∫
Ω

∆z(u · ∇z) (4.4.5)

holds for all t > T , where we used the first and second equations of (4.2.9) and ∇·u = 0.
By Young’s inequality and (4.1.14) we have∫

Ω
∆z|∇z|2 ≤ 1

2

∫
Ω
|∆z|2 +

1

2

∫
Ω
|∇z|4 ≤

{
1

2
+
K3

2

∫
Ω
|∇z|2

}∫
Ω
|∆z|2 for all t > T.

(4.4.6)

To estimate the last term in (4.4.5), we note that by Hölder’s inequality and (4.1.14)

there holds ‖∇z‖L4(Ω) ≤ K
1
2
3 |Ω|

1
4 ‖∆z‖L2(Ω) for all t > T , which together with Lemma

4.4 implies∫
Ω
|∆z(u · ∇z)| ≤ ‖∆z‖L2(Ω)‖u‖L4(Ω)‖∇z‖L4(Ω)

≤ K
1
2
3 |Ω|

1
4 ‖∆z‖2L2(Ω)‖u‖L4(Ω)

≤ K
1
2
3 Ku|Ω|

1
4
(
`e−λ1(t−T ) +m

) ∫
Ω
|∆z|2 for all t > T, (4.4.7)

since
∫

Ωn ≤ m in (T,∞). Combining (4.4.5)–(4.4.7) and reordering appropriately com-
pletes the proof.

In view of the lemma above, we will need to depend on the nonnegativity of the term
1
2 −

K3
2

∫
Ω|∇z(·, t)|

2−K
1
2
3 Ku|Ω|

1
4 (`e−λ1(t−T ) +m) in order to obtain an inequality of the

form d
dtFµ

(
n(·, t), z(·, )

)
≤ 0. Most of all, this will require some large waiting time t0 and

some small bound on
∫

Ωn in order to treat the term `e−λ1(t−T ) + m. Similarly to the
fluid-free case, we further require that the energy at a certain time is already sufficiently
small, which will provide control of the term containing

∫
Ω|∇z|

2.
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Lemma 4.12.

Let T ≥ 0 and
(

4K
1
2
3 Ku|Ω|

1
4

)−1
> m0 > 0, with K3 and Ku provided by (4.1.14) and

Lemma 4.4, respectively. Suppose that for f ∈ C3([0,∞)) satisfying (4.2.2) the triple
(n, z, u) ∈ C2,1

(
Ω×(T,∞)

)
is a classical solution of (4.2.9)– (4.2.10) in Ω × (T,∞)

satisfying
∫

Ω|u(·, T )|4 ≤ ` and m :=
∫

Ωn(·, T ) ≤ m0 as well as n > 0 in Ω× (T,∞) and
z ∈ C0

(
[T,∞);W 1,2(Ω)

)
. Then if there exist t0 ≥ T and µ > 0 such that

`e−λ1(t0−T ) +m0 ≤
1

4K
1
2
3 Ku|Ω|

1
4

(4.4.8)

and

Fµ
(
n(·, t0), z(·, t0)

)
<

1

4K3
− µ|Ω|

e
, (4.4.9)

then

d

dt
Fµ
(
n(·, t), z(·, t)

)
≤ 0 for all t > t0. (4.4.10)

Furthermore, one can find δ > 0 such that∫ t

t0

∫
Ω

|∇n|2

n
+ δ

∫ t

t0

∫
Ω
|∆z|2 < 1

4K3
for all t > t0. (4.4.11)

Proof: First, we note that in view of Remark 4.6, the inequality in (4.4.8) implies that

`e−λ1(t−T ) +m < `e−λ1(t0−T ) +m0 ≤
1

4K
1
2
3 Ku|Ω|

1
4

for all t > t0. (4.4.12)

Furthermore, recalling Lemma 4.10 we see that (4.4.9) implies

K3

2

∫
Ω
|∇z(·, t0)|2 ≤ K3Fµ

(
n(·, t0), z(·, t0)

)
+
K3µ|Ω|

e
<

1

4
.

Therefore, the set

S :=
{
T ′ > t0

∣∣∣ K3

2

∫
Ω
|∇z(·, t)|2 < 1

4
for all t ∈ [t0, T

′)
}

is not empty and TS := supS is a well-defined element of (t0,∞]. In order to verify that
actually TS = ∞ we assume TS < ∞ and derive a contradiction. To this end, we make
use of Lemma 4.11 to obtain from the definition of TS and (4.4.12) that

d

dt
Fµ
(
n(·, t), z(·, t)

)
+

∫
Ω

|∇n(·, t)|2

n(·, t)
+ δ

∫
Ω
|∆z(·, t)|2 ≤ 0 for all t ∈ (t0, TS), (4.4.13)
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with some small δ > 0. Due to the assumed W 1,2(Ω)-valued continuity of z, the mapping
[t0,∞) 3 t 7→ Fµ

(
n(·, t), z(·, t)

)
is continuous as well and we infer from the definition of

TS that K3
2

∫
Ω|∇z|

2 < 1
4 for all t ∈ (t0, TS), but

K3

2

∫
Ω
|∇z(·, TS)|2 =

1

4
. (4.4.14)

Integrating (4.4.13) we obtain

Fµ
(
n(·, TS), z(·, TS)) ≤ Fµ

(
n(·, t0), z(·, t0)

)
,

which by Lemma 4.10 and (4.4.9) shows∫
Ω
|∇z(·, TS)|2 ≤ 2Fµ

(
n(·, TS), z(·, TS)) +

2µ|Ω|
e
≤ 2Fµ

(
n(·, t0), z(·, t0)

)
+

2µ|Ω|
e

<
1

2K3
,

contradicting (4.4.14) and thus proving TS = ∞. Therefore, the inequality (4.4.13)
actually holds for all t > t0, which firstly proves (4.4.10) and secondly, upon integration
of (4.4.13) shows (4.4.11) due to (4.4.9).

4.4.2 Conditional regularity estimates

In this section we will establish appropriate Hölder bounds for the components of our
approximate solutions under the assumption that we already have control of

∫
Ω|∇z|

p

for some p > 2. In fact, as we will see in Section 4.4.3, obtaining the bound assumed
throughout the section for the special value of p = 4 will only require bounds on

∫
Ωn| lnn|

and
∫

Ω|∇z|
2. This, at least for possibly large times, can be obtained by relying on our

analysis of Fµ (see Section 4.4.4). Our arguments here are inspired by an approach
illustrated in [103, Section 4.2 and 4.3].

Lemma 4.13.
Let p > 2, m0 > 0, M > 0 and τ > 0. Then there exists C = C(p,m0,M, τ) > 0
such that if for f ∈ C3([0,∞)) satisfying (4.2.2) and some t0 ≥ 0 the triple (n, z, u) ∈
C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)–(4.2.10) in Ω× (t0,∞) with n ≥ 0 in

Ω× (t0,∞) and ∫
Ω
n(·, t0) ≤ m0 (4.4.15)

as well as ∫
Ω
|∇z(·, t)|p ≤M for all t > t0,

then

‖n(·, t)‖L∞(Ω) ≤ C for all t ≥ t0 + τ. (4.4.16)
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Proof: The proof is based on arguments employed in e.g. [103, Lemma 4.4]. We let
T > t0 + 1 and define

S(T ) := max {S1, S2(T )}

with

S1 := max
t∈[t0,t0+1]

(t− t0)‖n(·, t)‖L∞(Ω) and S2(T ) := max
t∈[t0+1,T ]

‖n(·, t)‖L∞(Ω).

Now, in order to estimate S(T ) from above, we let t1(t) := max{t − 1, t0} and for
t ∈ (t0, T ) represent n(·, t) according to

n(·, t) = e(t−t1)∆n(·, t1) +

∫ t

t1

e(t−s)∆
[
∇ ·
(
n(·, s)f ′(n(·, s))∇z(·, s)

)
−
(
u(·, s) ·∇n(·, s)

)]
ds

=: e(t−t1)∆n(·, t1) + I(t1, t), (4.4.17)

where (eσ∆)σ≥0 denotes the heat semigroup with Neumann boundary data in Ω. Fixing
some q ∈ (2, p), we may rely on well known estimates for the heat semigroup (e.g. [97,
Lemma 1.3] and [27, Lemma 3.3]) to find C1 > 0 and C2 > 0 such that for all σ ∈ (0, 1)
there holds

‖eσ∆ϕ‖L∞(Ω) ≤ C1σ
−1‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω) (4.4.18)

and

‖eσ∆∇ · ϕ‖L∞(Ω) ≤ C2σ
−γ‖ϕ‖Lq(Ω) for all ϕ ∈ C1

(
Ω
)

such that ϕ · ν = 0 on ∂Ω,

(4.4.19)

with γ := 1
2 + 1

q < 1. In the case t ∈ (t0, t0 + 1], where t1(t) = t0, we thus have∥∥e(t−t0)∆n(·, t0)
∥∥
L∞(Ω)

≤ C1m0(t− t0)−1, (4.4.20)

thanks to (4.4.15) and (4.4.18). Furthermore, making use of ∇·u = 0, the fact that
f ′ ≤ 1 on [0,∞), and (4.4.19) we see that

‖I(t0, t)‖L∞(Ω) ≤ C2

∫ t

t0

(t− s)−γ
(∥∥n(·, s)∇z(·, s)

∥∥
Lq(Ω)

+
∥∥n(·, s)u(·, s)

∥∥
Lq(Ω)

)
ds

holds for all t ∈ (t0, t0 + 1]. Herein, multiple applications of the Hölder inequality show
that ∥∥n(·, s)∇z(·, s)

∥∥
Lq(Ω)

≤ ‖n(·, s)‖aL∞(Ω)‖n(·, s)‖1−a
L1(Ω)

‖∇z(·, s)‖Lp(Ω)

≤ m1−a
0 M

1
p ‖n(·, s)‖aL∞(Ω) for all s > t0 (4.4.21)

with a := 1− p−q
pq ∈ (0, 1) and∥∥n(·, s)u(·, s)

∥∥
Lq(Ω)

≤ C3(1 +m0)m1−a
0 ‖n(·, s)‖aL∞(Ω) for all s > t0, (4.4.22)
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for some C3 > 0, where ‖u(·, t)‖Lp(Ω) ≤ C3(1 + m0) in view of Lemma 4.5 and Sobolev
embeddings. In particular, recalling the definition of S1 we have

‖I(t0, t)‖L∞(Ω) ≤ C4S
a
1

∫ t

t0

(t− s)−γ(s− t0)−a ds for all t ∈ (t0, t0 + 1]. (4.4.23)

with some C4 > 0. Since for any t ∈ (t0, t0 + 1]∫ t

t0

(t− s)−γ(s− t0)−a ds = (t− t0)1−γ−a
∫ 1

0
(1− ζ)−γζ−a dζ

is finite according to the facts that γ < 1 and a < 1, we consequently see that collecting
(4.4.17), (4.4.20), and (4.4.23) shows that there exists some C5 > 0 such that

(t− t0)‖n(·, t)‖L∞(Ω) ≤ C5 + C5S
a
1 for all t ∈ (t0, t0 + 1],

which, due to a < 1, implies that

S1 ≤ C6 := max
{

1, (2C5)
1

1−a
}
. (4.4.24)

The estimation of S2(T ) follows a similar path. We fix t ∈ [t0 + 1, T ] and obtain from
(4.4.17), (4.4.18), and (4.4.19) that

‖n(·, t)‖L∞(Ω)

≤
∥∥e∆n(·, t− 1)

∥∥
L∞(Ω)

+ ‖I(t− 1, t)‖L∞(Ω)

≤ C1‖n(·, t− 1)‖L1(Ω) + C2

∫ t

t−1
(t− s)−γ

(∥∥n(·, s)∇z(·, s)
∥∥
Lq(Ω)

+
∥∥n(·, s)u(·, s)

∥∥
Lq(Ω)

)
ds,

from which, again by relying on (4.4.15), (4.4.21) and (4.4.22), we infer that

‖n(·, t)‖L∞(Ω) ≤ C1m0 + C2m
1−a
0

(
M

1
p + C3(1 +m0)

) ∫ t

t−1
(t− s)−γ‖n(·, s)‖aL∞(Ω) ds

holds for all t ∈ [t0 + 1, T ]. By the definition of S2(T ) we have ‖n(·, s)‖aL∞(Ω) ≤ Sa2 (T )

for all s ∈ [t0 + 1, T ], so that in both of the cases t ∈ [t0 + 1, t0 + 2] and t ∈ (t0 + 2, T ]
we may estimate∫ t

t−1
(t− s)−γ‖n(·, s)‖aL∞(Ω) ds ≤ Sa1

∫ t

t−1
(t− s)−γ(s− t0)−a ds+ Sa2 (T )

∫ t

t−1
(t− s)−γ ds

≤ C7S
a
1 +

1

1− γ
Sa2 (T ).

with some C7 > 0. Collecting these estimates and making use of (4.4.24) we find C8 > 0
such that

‖n(·, t)‖L∞(Ω) ≤ C8 + C8S
a
2 (T ) for all t ∈ [t0 + 1, T ],

which implies S2(T ) ≤ C9 := max
{

1, (2C8)
1

1−a
}

for all T > t0 + 1. Finally, combining

both estimates for S1 and S2(T ) establishes (4.4.16) if we let C := max{S1,
S1
τ , C9}.
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With the improved regularity for n at hand, we can easily derive the time local Hölder
continuity of n and u under the same assumptions as above.

Lemma 4.14.
Let p > 2, m0 > 0, M > 0 and τ > 0. Then there exist some θ = θ(p) ∈ (0, 1) and
C = C(p,m0,M, τ) > 0 such that if f ∈ C3([0,∞)) satisfies (4.2.2) and if for some
t0 ≥ 0 the triple (n, z, u) ∈ C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)–(4.2.10) in

Ω× (t0,∞) with the properties that n ≥ 0 in Ω× (t0,∞) and∫
Ω
n(·, t0) ≤ m0 (4.4.25)

as well as ∫
Ω
|∇z(·, t)|p ≤M for all t > t0, (4.4.26)

then

‖n‖
Cθ,

θ
2(Ω×[t,t+1])

≤ C and ‖u‖
Cθ,

θ
2(Ω×[t,t+1])

≤ C for all t ≥ t0 + τ.

Proof: With % given by (4.1.7) we fix β ∈
(

1
2 , %
)
. Then we apply the fractional power

Aβ of the L2 realization of the Stokes operator to a variation-of-constants representation
for u to achieve the identity

Aβu(·, t) = Aβe−(t−t1)Au(·, t1) +

∫ t

t1

Aβe−(t−s)AP (n(·, s)∇φ) ds, t ≥ t1,

where t1 := max{t − 1, t0}. Recalling that the positive sectorial Stokes operator A
generates the contracting semigroup

(
e−tA

)
t≥0

in L2
σ (Ω) and the fractional powers of

the Stokes operator fulfill the decay property∥∥Aβe−tA∥∥ ≤ C0t
−βe−λ1t for all t > 0,

with some C0 > 0 ([72, Theorem 37.5]), we can make use of the boundedness of P in
L2(Ω), (4.1.6), (4.4.25), and Lemma 4.5 to obtain C1 > 0 such that∥∥Aβu(·, t)

∥∥
L2(Ω)

≤
∥∥Aβe−(t−t1)Au(·, t1)

∥∥
L2(Ω)

+

∫ t

t1

∥∥Aβe−(t−s)AP (n(·, s)∇φ)
∥∥
L2(Ω)

ds

≤ C1(t− t1)−β + C1K1

∫ t

t1

(t− s)−β‖n(·, s)‖L2(Ω) ds (4.4.27)

for all t > t1. Since the assumptions (4.4.25) and (4.4.26) allow for an application
of Lemma 4.13, we can find C2 > 0 such that ‖n(·, t)‖L2(Ω) ≤ C2 for all t ≥ t0 + τ .

Combining β < 1 with the fact that in both cases (t−t1)1−β ≤ 1 and (t−t1)−β ≤ 1+τ−β

hold for t ≥ t0+τ , we infer from (4.4.27) the existence of some C3 := C3(p,m0,M, τ) > 0
such that ∥∥Aβu(·, t)

∥∥
L2(Ω)

≤ C3 for all t ≥ t0 + τ.
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Considering that, since β ∈ (1
2 , %) the domains of fractional powers of the Stokes semi-

group satisfy D(A%) ↪→ D(Aβ) ↪→ Cθ1
(
Ω
)

for any θ1 ∈ (0, 2β− 1) ([75, Lemma III.2.4.3]
and [23, Theorem 5.6.5]), the previous estimate entails the existence of some C4 > 0
such that

‖u(·, t)‖Cθ1(Ω) ≤ C4 for all t ≥ t0 + τ.

Making use of similar arguments we can find C5 > 0 such that∥∥Aβu(·, t)−Aβu(·, t2)
∥∥
L2(Ω)

≤ C5(t− t2)1−β for all t2 ≥ t0 + τ and t ∈ [t2, t2 + 1],

which together with (4.4.27) readily implies the Hölder regularity of u for some θ2 :=
min{1 − β, θ1}. For the regularity of n we first note that by Lemma 4.13 we obtain a
constant C6 := C6(p,m0,M, τ) > 0 such that n(x, t) ≤ C6 for all x ∈ Ω and t ≥ t0 + τ

2 .
Hence, the function n is a bounded distributional solution to the parabolic equation

ñt −∇· a(x, t, ñ,∇ñ) = 0 in Ω× (t0,∞),

with a(x, t, ñ,∇ñ) := ∇ñ+n(x, t)f ′
(
n(x, t)

)
∇z(x, t)−u(x, t)n(x, t) and a(x, t, ñ,∇ñ)·ν =

0 on the boundary of Ω. Considering that with the arguments illustrated in the first
part of the proof, we can find C7 := C7(p,m0,M, τ) > 0 such that |u(x, t)| ≤ C7 for
all x ∈ Ω and t ≥ t0 + τ

2 , we let ψ0(x, t) := n(x, t)2|∇z(x, t)|2 + |u(x, t)n(x, t)|2 and
ψ1(x, t) := C6|∇z(x, t)|+C6C7 and then see by means of Young’s inequality and (4.2.2)
that

a(x, t, ñ,∇ñ)∇ñ ≥ 1

2
|∇ñ|2 − ψ0 and |a(x, t, ñ,∇ñ)| ≤ |∇ñ(x, t)|+ ψ1(x, t)

for all (x, t) ∈ Ω × (t0 + τ
2 ,∞). As moreover (4.4.26) provides a bound for |∇z|2 in

L∞
(
(t0,∞);L

p
2 (Ω)

)
, we obtain from a well known result in [71, Theorem 1.3] that

‖n‖
Cθ3,

θ3
2 (Ω×[t,t+1])

≤ C8 for all t > t0 + τ with some θ3(p) > 0 and C8 > 0. Pick-

ing θ ∈ (0,min{θ2, θ3}) the claim follows immediately.

In order to prepare a further improvement on the regularity we will show the following:

Lemma 4.15.
Let p > 2, m0 > 0, m1 > 0, M > 0 and T > 0. Then there is C = C(p,m0,m1,M, T ) >
0 such that if for f ∈ C3([0,∞)) satisfying (4.2.2) and t0 ≥ 0 the triple (n, z, u) ∈
C0
(
Ω×[t0,∞)

)
∩C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)–(4.2.10) in Ω×(t0,∞)

with the properties that n ≥ 0 in Ω× (t0,∞) and∫
Ω
n(·, t) ≤ m0 for all t > t0 (4.4.28)

and ∫
Ω
z(·, t0) ≤ m1 (4.4.29)
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as well as ∫
Ω
|∇z(·, t)|p ≤M for all t > t0, (4.4.30)

then

z(x, t) ≤ C for all x ∈ Ω and t ∈ (t0, T ).

Proof: Because of the assumption p > 2, we have W 1,p(Ω) ↪→ C
1− 2

p (Ω) and thus, there
exists some constant C1 > 0 such that for each ϕ ∈W 1,p(Ω) it holds that

|ϕ(x)− ϕ(y)| ≤ C1|x− y|1−
2
p ‖∇ϕ‖Lp(Ω) for all x, y ∈ Ω. (4.4.31)

By Lemma 4.7, Remark 4.6 and the assumptions (4.4.28) and (4.4.29) we see that∫
Ω
z(·, t) ≤

∫
Ω
z(·, t0) +m0(t− t0) ≤ m1 +m0T for all t ∈ (t0, T ),

whence for any such t ∈ (t0, T ) we can find x0(t) ∈ Ω such that

z(x0(t), t) ≤ m1 +m0T

|Ω|
.

Therefore, (4.4.31) in conjunction with the assumption (4.4.30) shows that

z(x, t) ≤ z(x0(t), t) +
∣∣z(x, t)− z(x0(t), t)

∣∣
≤ m1 +m0T

|Ω|
+ C1|x− x0(t)|1−

2
p ‖∇z(·, t)‖Lp(Ω)

≤ m1 +m0T

|Ω|
+ C2M

1
p

holds for all x ∈ Ω, with C2 only depending on p and the diameter of Ω.

Drawing on the time-local bound for z, we can rely on the Hölder estimates for n and u
and well-known parabolic regularity theory to show the following set of further bounds.

Lemma 4.16.
Let p > 2,m0 > 0,m1 > 0,M > 0, T > 0 and τ > 0. Then there exist θ = θ(p) ∈ (0, 1)
and C = C(p,m0,m1,M, T, τ) > 0 such that if for f ∈ C3([0,∞)) satisfying (4.2.2) and
t0 ≥ 0 the triple (n, z, u) ∈ C0

(
Ω×[t0,∞)

)
∩ C2,1

(
Ω×(t0,∞)

)
is a classical solution of

(4.2.9)–(4.2.10) in Ω × (t0,∞) with the properties that n ≥ 0 and z ≥ 0 in Ω × (t0,∞)
and ∫

Ω
n(·, t0) ≤ m0

and ∫
Ω
z(·, t0) ≤ m1
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as well as ∫
Ω
|∇z(·, t)|p ≤M for all t > t0,

then

‖n‖
C2+θ,1+ θ

2(Ω×[t0+τ,T ])
≤ C, ‖z‖

C2+θ,1+ θ
2(Ω×[t0+τ,T ])

≤ C, ‖u‖
C2+θ,1+ θ

2(Ω×[t0+τ,T ])
≤ C.

(4.4.32)

Proof: By Lemma 4.15 and the fact that z is nonnegative we have

0 ≤ z ≤ C1 in Ω× (t0, T )

with some C1 = C1(p,m0,m1,M, T ) > 0. Thus, letting c̃ := e−z we obtain

e−C1 ≤ c̃ ≤ 1 in Ω× (t0, T ). (4.4.33)

Since Lemma 4.14 entails the existence of θ1 ∈ (0, 1) and C2 = C2(p,m0,M, τ, T ) > 0
such that

‖n‖
Cθ1,

θ1
2 (Ω×[t0+ τ

4
,T ])

+ ‖u‖
Cθ1,

θ1
2 (Ω×[t0+ τ

4
,T ])
≤ C2,

we find that c̃ solves the Neumann boundary value problem c̃t = ∆c̃ − u∇c̃ − f(n)c̃ in
Ω× (t0,∞) with Hölder continuous coefficients. Hence, according to standard parabolic
Schauder theory ([45, III.5.1 and IV.5.3]), there exists some θ2 ∈ (0, θ1) and C3 =
C3(p,m0,m1,M, T, τ) such that

‖c̃‖
C2+θ2,1+

θ2
2 (Ω×[t0+ τ

2
,T ])
≤ C3,

yielding the regularity assertion for z featured in (4.4.32) due to the lower bound for
c̃ in (4.4.33). Relying on parabolic Schauder theory once more, we can conclude from
the first equation that n satisfies (4.4.32). That, moreover, u satisfies (4.4.32) can be
readily achieved by well known smoothing properties of the Stokes operator (see e.g.
[30, Theorem 2.8], [2, Theorem 1.1]) and the boundedness of n established in Lemma
4.13.

4.4.3 Conditional estimates for
∫

Ω
|∇z|4 and

∫
Ω
n2

In this section, we will focus on attaining a bound on
∫

Ω|∇z|
4, which in view of Section

4.4.2 is the main requirement for the regularity estimates we will depend on later. As a
preliminary step, we derive some basic differential inequalities through standard testing
procedures.

Lemma 4.17.
Suppose that for f ∈ C3([0,∞)) satisfying (4.2.2) and t0 ≥ 0 the triple (n, z, u) ∈
C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)– (4.2.10) in Ω× (t0,∞). Then

d

dt

∫
Ω
n2 +

∫
Ω
|∇n|2 ≤

∫
Ω
n2|∇z|2 for all t > t0. (4.4.34)
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Proof: By simply testing the first equation of (4.2.9) with n, we can rely on integration
by parts, one application of Young’s inequality, and the fact |f ′(n)| ≤ 1 to easily arrive
at (4.4.34).

Lemma 4.18.
For any η ∈ (0, 5

4) there exists C > 0 such that if for f ∈ C3([0,∞)) satisfying (4.2.2) and
t0 ≥ 0 the triple (n, z, u) ∈ C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)– (4.2.10)

in Ω× (t0,∞) with n ≥ 0 in Ω× (t0,∞), then

d

dt

∫
Ω
|∇z|4 +

(
5

2
− 2η

)∫
Ω

∣∣∣∇|∇z|2∣∣∣2
≤ 8

∫
Ω
|∇z|6 +

12

η

∫
Ω
n2|∇z|2 + 4

∫
Ω
|∇z|4|∇u|+ C

(∫
Ω
|∇z|2

)2

(4.4.35)

holds for all t > t0.

Proof: We differentiate the second equation of (4.2.9) with regard to space and multiply
by |∇z|2∇z. In the resulting equality we can employ the identity ∇z ·∇∆z = 1

2∆|∇z|2−
|D2z|2 to obtain upon integration by parts that

d

dt

∫
Ω
|∇z|4 + 2

∫
Ω

∣∣∇|∇z|2∣∣2 + 4

∫
Ω
|∇z|2|D2z|2

= −4

∫
Ω
|∇z|2∇z · ∇|∇z|2 − 4

∫
Ω
|∇z|2f(n)∆z − 4

∫
Ω
f(n)∇|∇z|2 · ∇z

− 4

∫
Ω
|∇z|2∇z · (∇u · ∇z) + 2

∫
∂Ω
|∇z|2∂|∇z|

2

∂ν
(4.4.36)

holds for all t > t0, due to the fact that u is divergence free and the assumed boundary

conditions. Drawing on the fact that ∂|∇z|2
∂ν ≤ C1|∇z|2 on ∂Ω holds for some C1 >

0 only depending on Ω ([61, Lemma 4.2]) and adapting arguments first employed in
[37, Proposition 3.2] to find that for fixed η ∈ (0, 5

4) there exists C2 > 0 such that
2C1‖|∇z|2‖2L2(∂Ω) ≤ η‖∇|∇z|

2‖2L2(Ω) + C2‖∇z‖4L2(Ω), we find that

2

∫
∂Ω
|∇z|2∂|∇z|

2

∂ν
≤ η

∫
Ω

∣∣∇|∇z|2∣∣2 + C2

(∫
Ω
|∇z|2

)2
for all t > t0. (4.4.37)

For the remaining integrals, we note that since f(n) ≤ n and |∆z|2 ≤ 2|D2z|2 by the
Cauchy-Schwarz inequality, we can employ Young’s inequality to see that

−4

∫
Ω
|∇z|2∇z · ∇|∇z|2 ≤ 1

2

∫
Ω

∣∣∇|∇z|2∣∣2 + 8

∫
Ω
|∇z|6 for all t > t0, (4.4.38)

−4

∫
Ω
|∇z|2f(n)∆z ≤ η

∫
Ω
|∇z|2|∆z|2 +

4

η

∫
Ω
n2|∇z|2

≤ 2η

∫
Ω
|∇z|2|D2z|2 +

4

η

∫
Ω
n2|∇z|2 for all t > t0 (4.4.39)
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as well as

−4

∫
Ω
f(n)∇|∇z|2 · ∇z ≤ η

2

∫
Ω

∣∣∇|∇z|2∣∣2 +
8

η

∫
Ω
n2|∇z|2 for all t > t0. (4.4.40)

Collecting (4.4.36)–(4.4.40) yields

d

dt

∫
Ω
|∇z|4 +

(
3

2
− 3

2
η

)∫
Ω

∣∣∇|∇z|2∣∣2 + (4− 2η)

∫
Ω
|∇z|2|D2z|2

≤ 8

∫
Ω
|∇z|6 +

12

η

∫
Ω
n2|∇z|2 + 4

∫
Ω
|∇z|4|∇u|+ C2

(∫
Ω
|∇z|2

)2

for all t > t0, which due to the pointwise inequality
∣∣∇|∇z|2∣∣2 ≤ 4|D2z|2|∇z|2 readily

implies (4.4.35).

The combination of the two prepared inequalities will now result in the desired bounds for∫
Ω|∇z|

4 and
∫

Ωn
2, if we assume that we already have suitable bounds for the quantities∫

Ωn lnn and
∫

Ω|∇z|
2. The bounds on these quantities will later on be acquired from the

energy functional upon the requirement that
∫

Ωn0 is small.

Lemma 4.19.
Let K2 be as in (4.1.13). Then for all m0 > 0, each L > 0 and any M ∈

(
0, 1

4K2

)
and

τ > 0 there exists C > 0 such that if for f ∈ C3([0,∞)) satisfying (4.2.2) and some
t0 ≥ 0 the triple (n, z, u) ∈ C2,1

(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)– (4.2.10)

in Ω× (t0,∞) satisfying n ≥ 0 in Ω× (t0,∞) and∫
Ω
n(·, t0) ≤ m0 (4.4.41)

as well as∫
Ω
n(·, t)| lnn(·, t)| ≤ L and

∫
Ω
|∇z(·, t)|2 ≤M for all t > t0, (4.4.42)

then ∫
Ω
n2(·, t) ≤ C and

∫
Ω
|∇z(·, t)|4 ≤ C for all t ≥ t0 + τ. (4.4.43)

Proof: First, we note that due to M < 1
4K2

, by continuity, one can find some small
η ∈ (0, 1) such that

M <
(2− 2η)(1− η)

8K2(1 + η)
. (4.4.44)

Now, assuming (4.4.41) and (4.4.42) to hold, we combine the inequalities established in
Lemma 4.17 and Lemma 4.18 to obtain

d

dt

{∫
Ω
n2 +

∫
Ω
|∇z|4

}
+

∫
Ω
|∇n|2 +

(5

2
− 2η

)∫
Ω

∣∣∇|∇z|2∣∣2 (4.4.45)
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≤
(

1 +
12

η

)∫
Ω
n2|∇z|2 + 8

∫
Ω
|∇z|6 + 4

∫
Ω
|∇z|4|∇u|+ C1M

2 for all t > t0,

with some C1 > 0. Herein, Young’s inequality provides C2 > 0 such that(
1 +

12

η

)∫
Ω
n2|∇z|2 ≤ 8η

∫
Ω
|∇z|6 + C2

∫
Ω
n3 for all t > t0. (4.4.46)

To further control the term containing n3, we recall that by a variant of the Gagliardo–
Nirenberg inequality (cf. [5, (22)]) and Remark 4.6 we have

C2

∫
Ω
n3 ≤ 1

2L

(∫
Ω
|∇n|2

)(∫
Ω
n| lnn|

)
+ C3

(∫
Ω
n

)3

+ C3

≤ 1

2

∫
Ω
|∇n|2 + C3m

3
0 + C3 for all t > t0, (4.4.47)

with some C3 > 0. Returning to the analyzation of the remaining terms in (4.4.45), we
observe that by Hölder’s inequality, Lemma 4.5 combined with (4.4.41), the Gagliardo–
Nirenberg inequality, and finally Young’s inequality we can find C4, C5, C6 > 0 such
that

4

∫
Ω
|∇z|4|∇u| ≤ 4

∥∥|∇z|2∥∥2

L6(Ω)
‖∇u‖

L
3
2 (Ω)
≤ C4(1 +m0)

∥∥|∇z|2∥∥2

L6(Ω)

≤ C5

(∫
Ω

∣∣∇|∇z|2∣∣2) 5
6
(∫

Ω
|∇z|2

) 1
3

+ C5

(∫
Ω
|∇z|2

)2

≤ 1

2

∫
Ω

∣∣∇|∇z|2∣∣2 + C6M
2 for all t > t0. (4.4.48)

The estimation of the leftover term on the right in (4.4.45) is more involved. First, note
that by (4.1.13) we have∫

Ω
|∇z|6 ≤ K2

(∫
Ω

∣∣∇|∇z|2∣∣2)(∫
Ω
|∇z|2

)
+K2

(∫
Ω
|∇z|4

)(∫
Ω
|∇z|2

)
for all t > t0,

where additionally by the Cauchy-Schwarz inequality∫
Ω
|∇z|4 ≤

(∫
Ω
|∇z|6

) 1
2
(∫

Ω
|∇z|2

) 1
2

for all t > t0,

so that an application of Young’s inequality combined with our assumption (4.4.42)
implies that∫

Ω
|∇z|6 ≤ K2

(∫
Ω

∣∣∇|∇z|2∣∣2)(∫
Ω
|∇z|2

)
+ η

∫
Ω
|∇z|6 +

K2
2

4η

(∫
Ω
|∇z|2

)3

≤ K2M

∫
Ω

∣∣∇|∇z|2∣∣2 + η

∫
Ω
|∇z|6 +

K2
2M

3

4η
for all t > t0
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and therefore

(8 + 8η)

∫
Ω
|∇z|6 ≤ 8(1 + η)K2M

1− η

∫
Ω

∣∣∇|∇z|2∣∣2 +
2(1 + η)K2

2M
3

(1− η)η
for all t > t0.

(4.4.49)

Collecting (4.4.46)–(4.4.49), we infer from (4.4.45) that for some C8 > 0 we have

d

dt

{∫
Ω
n2 +

∫
Ω
|∇z|4

}
+ C7

∫
Ω
|∇n|2 + C7

∫
Ω

∣∣∇|∇z|2∣∣2 ≤ C8 for all t > t0, (4.4.50)

where C7 := min
{

1
2 , 2− 2η − 8(1+η)K2M

1−η

}
is positive due to (4.4.44). In order to con-

clude the desired bounds, we want to derive from the inequality above a differential
inequality of the form y′(t) + Cy2(t) ≤ C, where y(t) :=

∫
Ωn

2(·, t) +
∫

Ω|∇z(·, t)|
4 and

C > 0. To this end, we still need to estimate the terms without time derivatives, arising
in (4.4.50) on the left, from below. By making use of the Gagliardo–Nirenberg inequality,
we firstly obtain upon use of the mass conservation and (4.4.41) that(∫

Ω
n2

)2

≤ C9

(∫
Ω
|∇n|2

)(∫
Ω
n

)2

+ C9

(∫
Ω
n

)4

≤ C9m
2
0

∫
Ω
|∇n|2 + C9m

4
0

for all t > t0 with some C9 > 0, and secondly, relying on (4.4.42), we find C10 > 0 such
that (∫

Ω
|∇z|4

)2

≤ C10

(∫
Ω

∣∣∇|∇z|2∣∣2)(∫
Ω
|∇z|2

)2

+ C10

(∫
Ω
|∇z|2

)4

≤ C10M
2

∫
Ω

∣∣∇|∇z|2∣∣2 + C10M
4 for all t > t0.

Thus, letting C11 := max{2C9m
2
0, 2C10M

2}, we see that y satisfies

y′(t) + C12y
2(t) ≤ C13 for all t > t0,

with C12 := C7
C11

and C13 := C8 +
C9m4

0+C10M4

C11
. By application of an ODE comparison

argument, we observe that ȳ(t) := 2
C12(t−t0) +

√
2C13
C12

satisfies y(t) ≤ ȳ(t) for all t > t0,

implying that

y(t) ≤ 2

C12τ
+

√
2C13

C12
for all t ≥ t0 + τ

and thus proving (4.4.43).

4.4.4 Eventual smoothness for generalized solutions with small mass

For our next proof we will require the following result demonstrated in [87, Lemma 2.6],
which is based on an application of the Trudinger–Moser inequality combined with a
spatio-temporal estimate on ∇ ln(nε + 1) in L2.
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Lemma 4.20.
There exists K4 > 0 such that for all ε ∈ (0, 1) the solution to (4.3.7)– (4.3.9) satisfies∫ t

0
ln

{
1

|Ω|

∫
Ω
(nε(x, s) + 1)2 dx

}
ds

≤ K4

(
1 +

∫
Ω
n0

)
t+K4

(∫
Ω
z0 +

∫
Ω
n0

)
for all t > 0.

Relying on the properties previously established for Fµ, we can now determine some
possibly large time t? depending on the initial data but not on ε ∈ (0, 1), for which∫

Ωnε| lnnε|,
∫

Ω|∇zε|
2 and Fµ(nε, zε) are sufficiently small for all times beyond t?. This

in turn will then ensure that we can achieve the conditional estimates featured in Section
4.4.3 for times larger than t?.

Lemma 4.21.
Let K2,K3 be as in (4.1.13) and (4.1.14), respectively. Then, there exist constants
m?,Γ,M > 0 and µ ∈ (0, 1) such that

Γ <
1

4K3
− µ|Ω|

e
and M <

1

4K2
, (4.4.51)

and such that if the initial data (n0, c0, u0) satisfy (4.1.7) as well as

m :=

∫
Ω
n0 ≤ m?, (4.4.52)

then one can find t? > 0 such that for each ε ∈ (0, 1) the solution (nε, zε, uε) of (4.3.7)–
(4.3.9) satisfies

Fµ
(
nε(·, t), zε(·, t)

)
≤ Γ for all t ≥ t? (4.4.53)

and ∫
Ω
nε(·, t) |lnnε(·, t)| ≤

1

4K3
+

2|Ω|
e

for all t ≥ t? (4.4.54)

as well as ∫
Ω
|∇zε(·, t)|2 ≤M for all t ≥ t?. (4.4.55)

Proof: We fix M ∈
(
0, 1

4K2

)
and afterwards choose some small µ ∈ (0, 1), such that

2µ|Ω|
e
≤ M

2
and 0 <

1

4K3
− µ|Ω|

e
. (4.4.56)

Upon these choices, we can pick Γ > 0 fulfilling the first inequality in (4.4.51) as well as

Γ ≤ M

4
. (4.4.57)
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Furthermore, letting K4 be provided by Lemma 4.20 we can find η ∈ (0, 1) such that

η|Ω|e16K4 ≤ Γ

4
. (4.4.58)

Relying on the previous choices and with K3,Ku given by (4.1.14) and Lemma 4.4,
respectively, we introduce the positive number

m? := min

1,
Γ

4 ln 1
ηµ

,
Γ

8
,

1

5K
1
2
3 Ku|Ω|

1
4

 , (4.4.59)

where the positivity follows from the facts µ, η < 1. Now given (n0, c0, u0) such that
(4.1.7) and (4.4.52) hold, we find ` > 0 such that

∫
Ω|u0|4 ≤ `, due to D(A%) ↪→ L4(Ω)

([13, Lemma 2.3 iv)]). Moreover, since λ1 > 0, we can easily find t0 ≥ 0 such that

`e−λ1t0 +m? ≤
1

4K
1
2
3 Ku|Ω|

1
4

(4.4.60)

holds. We next claim that the asserted inequalities are true if we fix some large t?
satisfying the conditions

(1 +m)t? ≥
∫

Ω
z0 +m, mt? ≥

∫
Ω
z0, and t? > 2t0, (4.4.61)

with z0 as defined in (4.3.9). To verify this claim we define the sets

S1(ε) :=

{
t ∈ (0, t?)

∣∣∣ ln
{ 1

|Ω|

∫
Ω
(nε(·, t) + 1)2

}
> 8K4(1 +m)

}
and

S2(ε) :=

{
t ∈ (0, t?)

∣∣∣ ∫
Ω
|∇zε(·, t)|2 > 8m

}
and estimate their respective sizes. By Lemma 4.20 we know that for all ε ∈ (0, 1) we
have

I1(ε) :=

∫ t?

0
ln
{ 1

|Ω|

∫
Ω
(nε(·, t) + 1)2

}
dt ≤ K4(1 +m)t? +K4

(∫
Ω
z0 +m

)
,

so that the first condition in (4.4.61) combined with our definition of S1(ε) shows that

2K4(1 +m)t? ≥ K4(1 +m)t? +K4

(∫
Ω
z0 +m

)
≥ I1(ε) ≥ 8K4(1 +m)|S1(ε)|

holds for all ε ∈ (0, 1), meaning that

|S1(ε)| ≤ t?
4

for all ε ∈ (0, 1). (4.4.62)
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In pursuance of a similar bound for the size of |S2(ε)|, we recall that by Lemma 4.7 we
have

I2(ε) :=

∫ t?

0

∫
Ω
|∇zε|2 ≤

∫
Ω
z0 +mt? for all ε ∈ (0, 1).

Relying on the second inequality in (4.4.61) and the definition of S2(ε) we infer that

2mt? ≥
∫

Ω
z0 +mt? ≥ I2(ε) ≥ 8m|S2(ε)|

holds for all ε ∈ (0, 1) and hence

|S2(ε)| ≤ t?
4

for all ε ∈ (0, 1). (4.4.63)

Now, (4.4.62) and (4.4.63) guarantee that∣∣(0, t?) \(S1(ε) ∪ S2(ε)
)∣∣ ≥ t?

2
for all ε ∈ (0, 1),

so that we conclude from the third inequality in (4.4.61) that for any ε ∈ (0, 1) we can
pick some tε ∈ (t0, t?) such that

ln

{
1

|Ω|

∫
Ω

(
nε(·, tε) + 1

)2} ≤ 8K4(1 +m) and

∫
Ω
|∇zε(·, tε)|2 ≤ 8m (4.4.64)

hold. Relying on the elementary estimate s ln s
µ ≤ η(s + 1)2 + s ln 1

ηµ for all s > 0 (cf.
[103, Lemma 5.5]), we can combine the mass conservation from Remark 4.6 with (4.4.52)
and the first part of (4.4.64) to obtain that∫

Ω
nε(·, tε) ln

nε(·, tε)
µ

≤ η
∫

Ω

(
nε(·, tε) + 1

)2
+ ln

1

ηµ

∫
Ω
nε(·, tε)

≤ η|Ω|e8K4(1+m) +m ln
1

ηµ
.

Now, recalling the first and second requirement for m? from (4.4.59) as well as (4.4.58),
we see that ∫

Ω
nε(·, tε) ln

nε(·, tε)
µ

≤ η|Ω|e16K4 +m ln
1

ηµ
≤ Γ

4
+

Γ

4
=

Γ

2
.

In a similar fashion, the second part of (4.4.64) in conjunction with the third inequality
contained in (4.4.59) entails that

1

2

∫
Ω
|∇zε(·, tε)|2 ≤

Γ

2

and thus we obtain that

Fµ
(
nε(·, tε), zε(·, tε)

)
=

∫
Ω
nε(·, tε) ln

nε(·, tε)
µ

+
1

2

∫
Ω
|∇zε(·, tε)|2 ≤ Γ.

89



Ch.4. Ev. smooth. of gen. sol. to a singular chemotaxis-Stokes system

In accordance with (4.4.51) and (4.4.60), this allows for the application of Lemma 4.12,
implying that

Fµ
(
nε(·, t), zε(·, t)

)
≤ Γ for all t ≥ tε, (4.4.65)

which, since tε < t?, immediately establishes (4.4.53) again due to (4.4.51). Now, to
verify that also (4.4.54) and (4.4.55) hold, we recall that in view of Lemma 4.10 we have∫

Ω
nε(·, t)| lnnε(·, t)| ≤ Fµ

(
nε(·, t), zε(·, t)

)
+ lnµ

∫
Ω
nε(·, t) +

2|Ω|
e
.

Therefore, (4.4.65), the fact µ < 1 and once more (4.4.51) imply∫
Ω
nε(·, t)| lnnε(·, t)| ≤ Γ +

2|Ω|
e

<
1

4K3
+

2|Ω|
e

for all t ≥ tε,

proving (4.4.54), because t? > tε. Similarly, again relying on Lemma 4.10 and (4.4.65),
we conclude that due to (4.4.57) and the first restriction in (4.4.56), we have∫

Ω
|∇zε(·, t)|2 ≤ 2Fµ

(
nε(·, t), zε(·, t)

)
+

2µ|Ω|
e
≤ 2Γ +

2µ|Ω|
e
≤ M

2
+
M

2
= M

for all t ≥ tε, which proves (4.4.55).

The bounds for
∫

Ωnε lnnε and
∫

Ω|∇zε|
2 at hand, we can first draw on the conditional

estimates on
∫

Ω|∇zε|
4 from Section 4.4.3 and afterwards on the conditional regularity

estimates from Section 4.4.2 to derive the following result.

Proposition 4.22.
Let m? > 0 be as provided by Lemma 4.21. Suppose that (n0, c0, u0) satisfy (4.1.7) as
well as ∫

Ω
n0 ≤ m?,

and let (n, c, u) denote the global generalized solution of (4.1.3)– (4.1.5) from Theorem
A. Then there exists T > 0 such that

n ∈ C2,1
(
Ω×[T,∞)

)
, c ∈ C2,1

(
Ω×[T,∞)

)
and u ∈ C2,1

(
Ω×[T,∞);R2

)
,

(4.4.66)

that

c(x, t) > 0 for all x ∈ Ω and any t ≥ T,

and such that (n, c, u) solves (4.1.3)– (4.1.5) classically in Ω × (T,∞). Moreover, one
can find µ > 0 such that

Fµ
(
n(·, t), z(·, t)

)
<

1

4K3
− µ|Ω|

e
for all t ≥ T, (4.4.67)

with z := − ln
(

c
‖c0‖L∞(Ω)

)
.
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Proof: Let K2,K3 be provided by (4.1.13) and (4.1.14), respectively. In view of Lemma

4.21 we can find µ ∈ (0, 1), Γ ∈
(
0, 1

4K3
− µ|Ω|

e

)
, M ∈ (0, 1

4K2
), L > 0 and t? > 0 such

that for any choice of ε ∈ (0, 1) we have

Fµ
(
nε(·, t), zε(·, t)

)
≤ Γ for all t > t? (4.4.68)

and ∫
Ω
nε(·, t)| lnnε(·, t)| ≤ L as well as

∫
Ω
|∇zε(·, t)|2 ≤M for all t > t?.

Since M < 1
4K2

, we may employ Lemma 4.19 to obtain C1 > 0 such that for any ε ∈ (0, 1)
we have ∫

Ω
|∇zε(·, t)|4 ≤ C1 for all t > t? + 1.

This bound at hand, Lemma 4.16 yields θ ∈ (0, 1) such that for each T > t? + 2 we can
pick C2(T ) > 0 such that

‖nε‖
C2+θ,1+ θ

2(Ω×[t?+2,T ])
+ ‖zε‖

C2+θ,1+ θ
2(Ω×[t?+2,T ])

+ ‖uε‖
C2+θ,1+ θ

2(Ω×[t?+2,T ])
≤ C2(T )

for all ε ∈ (0, 1). In view of the Arzelà-Ascoli theorem, we can find a subsequence (εjk)k∈N
of the sequence provided by Proposition 4.9, along which nε, zε and uε are convergent
in C2,1

loc

(
Ω×[t? + 2,∞)

)
. The respective limits of nε, zε and uε must clearly coincide

with n, z and u, which ensures that n, c and u have the desired regularity properties
in (4.4.66). Additionally, the continuity of z implies c > 0 in Ω×[T,∞) and passing to

the limit for ε = εjk ↘ 0 in (4.4.68), we easily obtain (4.4.67) due to Γ < 1
4K3
− µ|Ω|

e .
Letting ε = εjk ↘ 0 in (4.3.7), we first conclude that (n, z, u) solves (4.2.9)–(4.2.10) with
f(ξ) ≡ ξ classically in Ω × (T,∞), which then in combination with c > 0 in Ω×[T,∞)
entails that (n, c, u) solve (4.1.3)–(4.1.5) classically in Ω× [T,∞).

4.4.5 Stabilization of solutions with small energy

This section discusses the last missing part for the proof of Theorem 4.1, which are the
convergence properties featured therein. Since from the last section we already know
that our generalized solutions will be classical solutions after some waiting time, we will
concern our investigation only with convergence of classical solutions to (4.2.9). Before
proving the desired large time behavior we require one additional preparation in form of
a time-independent Hölder bound for ∇z.
Lemma 4.23.
For all m0 > 0, M > 0, τ > 0 there exist θ ∈ (0, 1) and C > 0 such that if for
f ∈ C3([0,∞)) satisfying (4.2.2) and t0 ≥ 0 the triple (n, z, u) ∈ C0

(
Ω×[t0,∞)

)
∩

C2,1
(
Ω×(t0,∞)

)
is a classical solution of (4.2.9)– (4.2.10) in Ω× (t0,∞) satisfying∫

Ω
n(·, t0) ≤ m0
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and ∫
Ω
|∇z(·, t)|4 ≤M for all t > t0,

then

‖∇z(·, t)‖Cθ(Ω) ≤ C for all t ≥ t0 + τ. (4.4.69)

Proof: The arguments are quite similar to the ones employed in [103, Lemma 4.9] and
we will not recount all details here. First, we note that by Lemma 4.13 we can find
C1 > 0 such that

‖n(·, t)‖L4(Ω) ≤ C1 for all t ≥ t̃0 := t0 +
τ

2
. (4.4.70)

Now, we may choose some β ∈ (0, 1) close to 1 such that β > 1
4 and afterwards q > 1

satisfying 1
4 <

1
q <

5
4−β. With these values fixed we will make use of several well-known

estimates for the Neumann heat semigroup
(
e−sB

)
s≥0

in L4(Ω), where B := −∆ + 1

(e.g. [97]). In particular, for any fixed θ ∈ (0, 2β − 3
2) we have that D

(
Bβ
)
↪→ C1+θ

(
Ω
)

([32, Theorem 1.6.1]) and hence

‖∇ϕ‖Cθ(Ω) ≤ C2‖Bβϕ‖L4(Ω) for all ϕ ∈ D
(
Bβ
)
, (4.4.71)

with some C2 > 0. Letting

S1 := max
t∈[t̃0,t̃0+1]

(t− t̃0)β‖∇z(·, t)‖Cθ(Ω) and S2(T ) := max
t∈[t̃0+1,T ]

‖∇z(·, t)‖Cθ(Ω)

for T > t̃0 + 1 we continue by estimating S(T ) := max {S1, S2(T )}. Consequently, with
t1(t) := max{t− 1, t̃0} we start by representing z(·, t) according to

z(·, t) = z(·, t1) + et−t1e−(t−t1)B
(
z(·, t1)− z(·, t1)

)
−
∫ t

t1

et−se−(t−s)B|∇z(·, s)|2 ds

+

∫ t

t1

et−se−(t−s)Bf
(
n(·, s)

)
ds−

∫ t

t1

et−se−(t−s)Bu(·, s)∇z(·, s) ds, (4.4.72)

where ϕ := 1
|Ω|
∫

Ωϕ denotes the spatial average. In the case of t− t̃0 ≤ 1 we make use of

Young’s inequality, (4.4.71), the semigroup estimates for the Neumann heat semigroup,
and the fact that f(s) ≤ s for all s ≥ 0 to obtain C3 > 0 such that

‖∇z(·, t)‖Cθ(Ω)

≤ C3e(t− t̃0)−β‖z(·, t̃0)− z(·, t̃0)‖L4(Ω) + C3e

∫ t

t̃0

(t− s)−γ
∥∥|∇z(·, s)|2∥∥

Lq(Ω)
ds

+ C3e

∫ t

t̃0

(t− s)−β‖n(·, s)‖L4(Ω) ds+ C3e

∫ t

t̃0

(t− s)−β‖u(·, s)‖2L8(Ω) ds, (4.4.73)
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holds for all t ≤ t̃0 + 1, where γ := β + 1
q −

1
4 < 1. Herein, (4.4.70), Lemma 4.5 and the

fact that β < 1 imply the existence of C4 > 0 such that

C3e

∫ t

t̃0

(t− s)−β‖n(·, s)‖L4(Ω) ds+ C3e

∫ t

t̃0

(t− s)−β‖u(·, s)‖2L8(Ω) ds

≤ C4

∫ t

t̃0

(t− s)−β ds ≤ C4

1− β

for all t ≥ t̃0 + 1, and the Poincaré inequality provides C5 > 0 satisfying

‖z(·, s)− z(·, s)‖L4(Ω) ≤ C5‖∇z(·, s)‖L4(Ω) ≤ C5M
1
4 for all s ≥ t̃0.

Furthermore, by means of the Hölder inequality we see that∥∥|∇z(·, s)|2∥∥
Lq(Ω)

≤ ‖∇z(·, s)‖
4
q

L4(Ω)
‖∇z(·, s)‖aL∞(Ω) ≤M

1
q ‖∇z(·, s)‖a

Cθ(Ω)

for all s ≥ t̃0, with a := 2q−4
q . Hence, for all t ≥ t̃0 + 1 we have∫ t

t̃0

(t− s)−γ
∥∥|∇z(·, s)|2∥∥

Lq(Ω)
ds

≤M
1
qSa1 (t− t̃0)1−γ−βa

∫ 1

0
(1− σ)−γσ−βa dσ ≤ C6M

1
qSa1 (t− t̃0)1−γ−βa,

where we used that
∫ 1

0 (1− σ)−γσ−βa dσ =: C6 is finite due to the facts that 0 < a < 1,
0 < β < 1 and γ < 1. Accordingly, from (4.4.73) we infer that

(t− t̃0)β‖∇z(·, t)‖Cθ(Ω) ≤ C3C5eM
1
4 + C3C6eM

1
qSa1 (t− t̃0)1−γ+(1−a)β +

C4

1− β
≤ C7 + C7S

a
1

for all t ∈ [t̃0, t̃0 + 1], with some C7 > 0, which implies that S1 ≤ max{1, (2C7)
1

1−a }.
Similarly, in the case t ∈ [t̃0 + 1, T ] we conclude from (4.4.72) that

‖∇z(·, t)‖Cθ(Ω) ≤ C8M
1
4 + C8M

1
q

∫ t

t−1
(t− s)−γ‖∇z(·, s)‖a

Cθ(Ω) ds+ C8

∫ t

t−1
(t− s)−β ds,

for some C8 > 0. In both of the cases t ≤ t̃0 + 2 and t > t̃0 + 2 we can estimate∫ t

t−1
(t− s)−γ‖∇z(·, s)‖a

Cθ(Ω) ds ≤ Sa1
∫ t

t−1
(t− s)−γ(s− t̃0)−βa ds+ Sa2 (T )

∫ t

t−1
(t− s)−γ ds

≤ C6S
a
1 +

1

1− γ
Sa2 (T )

with C6 as defined above. Therefore, for suitable large C9 > 0 we have

S2(T ) ≤ C9 + C9S
a
2 (T ) for all T > t̃0 + 1,

which implies that S2(T ) ≤ max{1, (2C9)
1

1−a } =: S2 for all T > t̃0 + 1. Conse-
quently, together with the previous estimate for S1, this establishes (4.4.69) with C :=
max{S1,

S1
τ , S2}.
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Assuming that the energy Fµ(n, z) remains small for all times succeeding some waiting
T ≥ 0, which according to Proposition 4.22 is true for the generalized solutions with
small mass, we will now show that any given solution to (4.2.9)–(4.2.10) in Ω× (T,∞)
will satisfy the asymptotic properties described in Theorem 4.1. Here we explicitly allow
T = 0 because, if the energy is already suitably small initially, we can transfer these
asymptotic properties also to the global classical solutions discussed in Section 4.4.6.

Proposition 4.24.
Assume T ≥ 0, ` > 0 and let m? > 0 be as in Lemma 4.21. Suppose that for f ∈
C3([0,∞)) satisfying (4.2.2) with f > 0 on (0,∞) the triple (n, z, u) ∈ C0

(
Ω×[T,∞)

)
∩

C2,1
(
Ω×(T,∞)

)
is a classical solution of (4.2.9)– (4.2.10) in Ω× (T,∞) satisfying z ∈

C0
(
[T,∞);W 1,2(Ω)

)
, m :=

∫
Ωn(·, T ) < m?, 0 ≤ n 6≡ 0 and

∫
Ω|u(·, T )|4 ≤ ` as well as

inf
t>T

Fµ
(
n(·, t), z(·, t)

)
<

1

4K3
− µ|Ω|

e
(4.4.74)

for some µ > 0. Then

n(·, t)→ nT :=
1

|Ω|

∫
Ω
n(·, T ) in L∞(Ω) as t→∞ (4.4.75)

and

∇z(·, t)→ 0 in L∞
(
Ω;R2

)
as t→∞ (4.4.76)

and

inf
x∈Ω

z(x, t)→∞ as t→∞ (4.4.77)

as well as

u(·, t)→ 0 in L∞
(
Ω;R2

)
as t→∞. (4.4.78)

Proof: The convergence of n and z can be proven by relying on the methods shown
in [103, Lemma 6.1], whereas the decay of u then follows by adapting the arguments
illustrated in [100, Lemma 5.3]. For the sake of completeness we only recount the
main steps and refer to the mentioned sources for more details. Recalling that m? <(
4K

1
2
3 Ku|Ω|

1
4

)−1
, we can first find t0 > T such that `e−λ1(t0−T ) +m? ≤

(
4K

1
2
3 Ku|Ω|

1
4

)−1

and then rely on (4.4.74) and Lemma 4.12 to see that we can pick t? > t0 > T such that

d

dt
Fµ
(
n(·, t), z(·, t)

)
≤ 0 for all t > t? (4.4.79)

and

Fµ
(
n(·, t), z(·, t)

)
< C1 :=

1

4K3
− µ|Ω|

e
for all t > t? (4.4.80)
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and that with some δ > 0,∫ ∞
t?

∫
Ω

|∇n|2

n
+ δ

∫ ∞
t?

∫
Ω
|∆z|2 ≤ C2 :=

1

4K3
. (4.4.81)

Since (n, z, u) solve (4.2.9) classically in Ω× (T,∞) by Remark 4.6 we have∫
Ω
n(·, t) = m for all t > T, (4.4.82)

and thus, making use of (4.4.2) and (4.4.80), we see that∫
Ω
n(·, t)| lnn(·, t)| ≤ Fµ

(
n(·, t), z(·, t)

)
+ lnµ

∫
Ω
n(·, t) +

2|Ω|
e
≤ C1 +m lnµ+

2|Ω|
e

(4.4.83)

holds for all t > t?. Since W 1,1(Ω) ↪→ L2(Ω), a Poincaré–Sobolev inequality implies the
existence of C3 > 0 such that

‖ϕ− ϕ‖L2(Ω) ≤ C3‖∇ϕ‖L1(Ω) for all ϕ ∈W 1,1(Ω). (4.4.84)

Similarly, by means of elliptic regularity theory we can find C4 > 0 satisfying

‖∇ϕ‖L2(Ω) ≤ C4‖∆ϕ‖L2(Ω) for all ϕ ∈W 2,2(Ω) such that
∂ϕ

∂ν
= 0 on ∂Ω . (4.4.85)

According to (4.4.84) and the Cauchy-Schwarz inequality we thus have∫ ∞
t?

‖n(·, t)− nT ‖2L2(Ω) dt ≤ C2
3

∫ ∞
t?

‖∇n‖2L1(Ω) dt ≤ mC2
3

∫ ∞
t?

∫
Ω

|∇n|2

n
,

whereas (4.4.85) shows that∫ T

t?

‖∇z(·, t)‖2L2(Ω) dt ≤ C2
4

∫ ∞
t?

∫
Ω
|∆z|2.

By combination of the two previous estimates with (4.4.81) we thereby see that∫ ∞
t?

{
‖n(·, t)− nT ‖2L2(Ω) + ‖∇z(·, t)‖2L2(Ω)

}
dt ≤ mC2C

2
3 +

C2C
2
4

δ
(4.4.86)

which implies that there must exist (tk)k∈N ⊂ (t?,∞) such that tk →∞ and such that

n(·, tk)→ nT in L2(Ω) and ∇z(·, tk)→ 0 in L2
(
Ω;R2

)
(4.4.87)

as k →∞. Relying on the convexity of 0 < ξ 7→ ξ ln ξ and the Jensen inequality we see
that ∫

Ω
ϕ lnϕdx ≥

∫
Ω
ϕ lnϕ for all positive ϕ ∈ C0

(
Ω
)
,
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and thus, we can make use of the mean value theorem, the Cauchy-Schwarz inequality,
(4.4.82) and the first convergence in (4.4.87) to obtain

0 ≤
∫

Ω
n(·, tk) lnn(·, tk)−

∫
Ω
nT lnnT =

∫
Ω
n(·, tk)

(
lnn(·, tk)− lnnT

)
≤
∫
{n(·,tk)>nT }

n(·, tk)
(

lnn(·, tk)− lnnT
)

≤ 1

nT
‖n(·, tk)‖L2(Ω)‖n(·, tk)− nT ‖L2(Ω) → 0 as k →∞. (4.4.88)

This, together with the definition of Fµ and the second convergence established in
(4.4.87), shows that Fµ

(
n(·, tk), z(·, tk)

)
→ C5 :=

∫
ΩnT ln nT

µ as k → ∞, which in turn
by the monotonicity property (4.4.79) implies

Fµ
(
n(·, t), z(·, t)

)
→ C5 as t→∞.

In view of (4.4.88) this convergence actually yields

lim sup
t→∞

∫
Ω
|∇z(·, t)|2 = 2 lim sup

t→∞

{
Fµ
(
n(·, t), z(·, t)

)
−
∫

Ω
n(·, t) ln

n(·, t)
µ

}
≤ 2C5 − 2C5 = 0. (4.4.89)

Combining this with the bound provided by (4.4.83), we may first employ Lemma 4.19
and afterwards Lemma 4.14 and Lemma 4.23 to obtain t?? > t?, θ ∈ (0, 1) and C6 > 0
such that

‖n‖
Cθ,

θ
2(Ω×[t,t+1])

≤ C6, ‖u‖
Cθ,

θ
2(Ω×[t,t+1])

≤ C6, and ‖∇z(·, t)‖Cθ(Ω) ≤ C6

(4.4.90)

for all t ≥ t??. If the asserted convergence for n in (4.4.75) was false, we could find
(t̃k)k∈N ⊂ (t??,∞) and C7 > 0 such that t̃k →∞ as k →∞ and

‖n(·, t̃k)− nT ‖L∞(Ω) ≥ C7 for all k ∈ N,

implying that, due to the uniform convergence of n in Ω×[t??,∞) asserted by (4.4.90),
there exist (xk)k∈N ⊂ Ω, r > 0, and τ > 0 such that Br(xk) ⊂ Ω for all k ∈ N and∣∣n(x, t)− nT

∣∣ ≥ C7

2
for all x ∈ Br(xk) and each t ∈ (t̃k, t̃k + τ).

Consequently, this would show that∫ t̃k+τ

t̃k

‖n(·, t)− nT ‖2L2(Ω) dt ≥ τ C
2
7

4
πr2 for all k ∈ N,

contradicting the spatial-temporal estimate (4.4.86) and thus proving (4.4.75). In a
similar fashion, assuming that (4.4.76) is false, in view of the third portion of (4.4.90),
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we could find (t̂k)k∈N ⊂ (t??,∞), (x̂k)k∈N ⊂ Ω, r > 0, and C8 > 0 such that t̂k →∞ as
k →∞ and Br(x̂k) ⊂ Ω for all k ∈ N as well as

|∇z(x, t̂k)| ≥ C8 for all x ∈ Br(x̂k) and each k ∈ N.

This implies that ∫
Ω
|∇z(·, t̂k)|2 ≥ C2

8πr
2 for all k ∈ N,

which contradicts (4.4.89) and thereby proves (4.4.76). For (4.4.77) we make use of the
fact that (4.4.75) together with the nontriviality of n establishes the existence of some
t??? > T satisfying

n(x, t) >
nT
2

for all x ∈ Ω and t > t???,

whence, by relying on the nonnegativity of z, the fact that f ′ ≥ 0 and parabolic com-
parison with the function Ω×[t???,∞) 3 (x, t) 7→ f(nT2 )(t− t???), we see that

z(x, t) ≥ f
(
nT
2

)
(t− t???) for all x ∈ Ω and t > t???,

ensuring (4.4.77) due to f > 0 on (0,∞). In order to prove (4.4.78), we recall that
the Stokes operator A in L2

σ(Ω) is positive and self-adjoint with compact inverse and
as such, there exists a complete orthonormal basis (ψk)k∈N of eigenfunctions of A to
positive eigenvalues λk, k ∈ N. Since

⋃
m∈N span {ψk | k ≤ m} is dense in L2

σ(Ω), in view
of the uniform Hölder continuity of u in Ω× (t??,∞) from (4.4.90), we only have to show
that for each k ∈ N we have∫

Ω
u(x, t) · ψk(x) dx→ 0 as t→∞. (4.4.91)

To this end we fix k ∈ N and let y(t) :=
∫

Ωu(x, t) · ψk(x) dx, t > T . From the third
equation in (4.2.9), the eigenfunction property of ψk as well as the fact that ∇·ψk = 0
we obtain

y′(t) = −λk
∫

Ω
u · ψk +

∫
Ω

(
n− nT

)
∇φ · ψk for all t > T. (4.4.92)

Since n→ nT in L∞(Ω) as t→∞ by (4.4.75), for any given real number χ > 0 we can
find t� > T such that∣∣∣∣∫

Ω

(
n(x, t)− nT

)
∇φ · ψk(x) dx

∣∣∣∣ ≤ χλk
2

for all t > t�,

which shows upon integration of (4.4.92) that, due to the boundedness of u in Ω×(T,∞),
we have

y(t) ≤ y(t�)e
−λk(t−t�) +

λkχ

2

∫ t

t�

e−λk(t−s) < C9e
−λk(t−t�) +

χ

2
for all t > t�,
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with some C9 > 0. Now letting t�� := max
{
t�, t� + 1

λk
ln 2C9

χ

}
we have

|y(t)| < χ for all t > t��,

yielding (4.4.91) and thus completing the proof.

All that is left is to gather the results of our previous two propositions to conclude the
proof of Theorem 4.1.

Proof of Theorem 4.1: With m? > 0 provided by Lemma 4.21, we obtain from
Proposition 4.22 that for any initial data (n0, c0, u0) satisfying (4.1.7) as well as (4.1.8),
there exists T > 0 such that the solution (n, c, u) from Theorem A has the regular-
ity properties featured in (4.1.9) and the positivity of c in Ω×(T,∞) as claimed in
(4.1.10) are valid. Since (4.4.67) from Proposition 4.22 furthermore guarantees that

inft>T Fµ
(
n(·, t), z(·, t)

)
< 1

4K3
− µ|Ω|

e , we may employ Proposition 4.24 to obtain (4.1.11)
and (4.1.12).

4.4.6 Global classical solutions for small initial data

As mentioned in the Section 4.1, the result featured in Theorem 4.2 is a by-product of
our previous analysis. Our main tools in the proof will on one hand be the fact that
the assumed smallness conditions for the initial data, expressed in (4.1.15) and (4.1.16),
allows for the choice of t0 = 0 in Lemma 4.12, and on the other hand the uniqueness
statement from Lemma 4.3. The uniqueness statement is essential, since we can only
guarantee the global existence for our approximate solutions when f(s) ≡ fε(s) with
fε(s) provided by (4.3.5).

Proof of Theorem 4.2: We denote by (n, c, u) the local classical solution from Lemma
4.3 for f(s) ≡ s, extended to its maximal existence time Tmax ∈ (0,∞]. Then, writing
z := − ln

(
c

‖c0‖L∞(Ω)

)
and τ := min{1, Tmax2 }, we infer that C1 := ‖n‖L∞(Ω×(0,τ)) is

finite by the continuity of n in Ω×[0, Tmax). On the other hand, let us also consider
the approximate problems (4.3.7) and denote the corresponding solutions by (nε, zε, uε)
with ε ∈ (0, 1), which, according to [87, Section 2.1], are global for each ε ∈ (0, 1). For
these solutions and µ as in (4.1.16) we have

Fµ
(
nε(·, 0), zε(·, 0)

)
= C2 :=

∫
Ω
n0 ln

n0

µ
+

1

2

∫
Ω

|∇c0|2

c2
0

for all ε ∈ (0, 1).

Furthermore, defining m?? := 1

8K
1
2
3 Ku|Ω|

1
4

we conclude that the inequalities contained in

(4.1.15) imply ∫
Ω
|u0|4e−λ1t +

∫
Ω
n0 <

1

4K
1
2
3 Ku|Ω|

1
4

for all t > 0.
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In light of (4.2.6) and (4.1.16) we have C2 < 1
4K3
− µ|Ω|

e and Lemma 4.12 becomes
applicable, asserting that

Fµ
(
nε(·, t), zε(·, t)

)
≤ C2 for all t > 0 and each ε ∈ (0, 1).

Thanks to Lemma 4.10, this implies that for any ε ∈ (0, 1) we have∫
Ω
nε |lnnε| ≤ C2 + lnµ

∫
Ω
n0 +

2|Ω|
e

and

∫
Ω
|∇zε|2 ≤M := 2C2 +

2µ|Ω|
e

on (0,∞). Herein, the second restriction on C2 from (4.1.16) shows that

M <
2

8K2
− 2µ|Ω|

e
+

2µ|Ω|
e

=
1

4K2
.

Hence, we may employ Lemma 4.19 to find C3 > 0 such that∫
Ω
|∇zε(·, t)|4 ≤ C3 for all t >

τ

2
and each ε ∈ (0, 1).

In turn, Lemma 4.13 becomes applicable and provides C4 > 0 such that

‖nε(·, t)‖L∞(Ω) ≤ C4 for all t > τ and every ε ∈ (0, 1). (4.4.93)

Now, fixing ε ∈ (0, 1) so small such that it satisfies ε ≤ min
{

1
C1
, 1
C4

}
, we see that by

the definition of fε in (4.3.5) we have

fε(n) = n in Ω×[0, τ ],

from which , in view of the uniqueness statement contained in Lemma 4.3 when applied
to the system (4.2.1) with f ≡ fε, we infer that

(n, z, u) ≡ (nε, zε, uε) in Ω×[0, τ ]

for our fixed ε. On the other hand, relying on (4.4.93) and the second restriction on
ε we also have fε(nε) ≡ nε in Ω×(τ,∞), and (nε, zε, uε) actually solves (4.2.9) in Ω ×
(τ,∞) with f(s) ≡ s. Now, making use of the uniqueness result from Lemma 4.3 once
more, when applied to (4.2.1) with f(s) ≡ s, guarantees that Tmax = ∞ and that
(n, z, u) ≡ (nε, zε, uε) in Ω × (0,∞). The desired convergence properties easily follow

from Proposition 4.24, since C2 <
1

4K3
− µ|Ω|

e .

99





5 The Stokes limit in a three-dimensional
chemotaxis-Navier–Stokes system

5.1 Introduction

The research of mathematical models which accurately describe natural phenomena
often demands large analytical efforts, and even the most thorough studies encounter
challenges for which the known mathematical tools reach their limit. In particular,
models with inherent nonlinear structure may turn out to be very problematic. This
is especially true for the models obtained by the interplay of Keller–Segel-type systems
and Navier–Stokes equations, as their individual parts, chemotaxis equations on one
hand and fluid equations on the other, each on their own feature significantly complex
behavior. We witnessed one example in the previous chapter, but additional examples
also reside in the apparently simpler consumption models of the form

nt + u ·∇n = ∇·
(
D(n)∇n− n∇c

)
, x ∈ Ω, t > 0,

ct + u ·∇c = ∆c− cn, x ∈ Ω, t > 0,
ut +κ(u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

with D ≡ const., where in Ω ⊂ R3 neither of the subsystems is understood completely.
For instance, working in the fluid-free three-dimensional setting, obtained upon letting
u ≡ 0 in the system above, global bounded classical solutions were only obtained under
the assumption that the initial chemical concentration ‖c(·, 0)‖L∞(Ω) is small ([77]). In
contrast, for arbitrary initial data, global weak solutions have been shown to exist,
which become smooth and classical after some waiting time ([81]). On the other hand,
existence theory for the Navier–Stokes equations, which has already been garnering
lots of interest for the better part of a century, beyond mere global weak solutions
also remains dependent on various assumptions in the three-dimensional setting ([75]).
Correspondingly, the known results for the given chemotaxis-Navier–Stokes system with
arbitrary initial data also mainly cover global existence of weak solutions ([104]) and
eventual smoothing properties ([105]). Even in more favorable scenarios, where the
diffusion process is enhanced at large cell densities as e.g. incorporated by the choice
D(s) = sm−1, s > 0, with m > 1, only weak solutions could be established, as indicated
by the results of [63, 110] m > 2

3 .

Neglecting the fluid convection term. In light of this difficulty, a substantial amount
of the studies dedicated to the mathematical analysis of chemotaxis-fluid interaction
mainly concentrates on systems where the fluid evolution is described by the Stokes
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equation obtained by letting κ = 0, i.e.
nt +u ·∇n = ∆n−∇· (n∇c), x ∈ Ω, t > 0,
ct + u ·∇c = ∆c− cn, x ∈ Ω, t > 0,

ut = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0.

(Λ0)

In this setting, considerably stronger results besides mere global existence ([21, 98]) have
been shown (see e.g [14, 22, 44] and [4, Section 4.1] for an additional non-exhaustive
overview). The reasoning behind the neglection of the convection term, however, mostly
originates from experimental observations indicating Reynolds numbers of order R ≈
10−4 ([57]) for the bacteria in question. Rigorous mathematical results appear to be
mostly lacking. In fact, only recently it was shown in the two-dimensional setting that
upon taking κ → 0, the global classical solution

(
n(κ), c(κ), u(κ)

)
of the chemotaxis-

Navier–Stokes system convergences uniformly in time towards the global classical solu-
tion (n(0), c(0), u(0)

)
of (Λ0) in the sense that there exist C > 0 and µ > 0 such that

whenever κ ∈ (−1, 1),∥∥n(κ)(·, t)− n(0)(·, t)
∥∥
L∞(Ω)

+
∥∥c(κ)(·, t)− c(0)(·, t)

∥∥
L∞(Ω)

+
∥∥u(κ)(·, t)− u(0)(·, t)

∥∥
L∞(Ω)

≤ C|κ|e−µt

holds for all t > 0 ([91]).
Main results. Motivated by the temporally uniform convergence result for the limit
κ→ 0 from [91], we aspire to quantify the effect of the Stokes approximation in the more
intricate three dimensional setting beyond the expected mere time-local convergence.
Before we take a brief look at the major challenges entailed by the increased space
dimension, let us specify the framework and the main result obtained in this chapter.
Under the assumptions that Ω ⊂ R3 is a bounded domain with smooth boundary and
that κ ∈ [−1, 1] we will consider

nt + u ·∇n = ∆n−∇· (n∇c), x ∈ Ω, t > 0,
ct + u ·∇c = ∆c− cn, x ∈ Ω, t > 0,
ut +κ(u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(Λκ)

with boundary conditions

∇n(x, t) · ν = 0, ∇c(x, t) · ν = 0 and u(x, t) = 0 for x ∈ ∂Ω and t > 0 (5.1.1)

and initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω, (5.1.2)

where

φ ∈ C1+β(Ω) for some β > 0. (5.1.3)
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Moreover, we assume the initial data to satisfy
n0 ∈ C0

(
Ω
)

nonnegative with n0 6≡ 0,

c0 ∈W 1,∞(Ω) with c0 > 0 in Ω,
u0 ∈ D(A%) for some % ∈ (3

4 , 1),

(5.1.4)

where A := −P∆ denotes the realization of the Stokes operator in L2(Ω;R3) under homo-
geneous Dirichlet boundary conditions with its domain given by D(A) := W 2,2(Ω;R3)∩
W 1,2

0 (Ω;R3)∩L2
σ(Ω). Herein, L2

σ(Ω) :=
{
ϕ ∈ L2(Ω;R3) | ∇ · ϕ = 0

}
stands for the Hilbert

space of solenoidal vector fields in L2
(
Ω;R3

)
, and P represents the Helmholtz projection

of L2(Ω;R3) onto L2
σ (Ω). Accordingly, we also abbreviate W 1,p

0,σ (Ω) := W 1,p
0 (Ω;R3) ∩

L2
σ(Ω) and C∞0,σ(Ω) := C∞0 (Ω;R3) ∩ L2

σ (Ω).
With the framework and notations clarified, we can now precisely state the main result.

Theorem 5.1.
Let Ω ⊂ R3 be a bounded and smooth domain and suppose that φ and n0, c0, u0 comply
with (5.1.3) and (5.1.4), respectively. Let

X := L∞
(
(0,∞);L1(Ω)

)
∩ L

5
3
loc

(
Ω×[0,∞)

)
∩ L

5
4
loc

(
[0,∞);W 1, 5

4 (Ω)
)

× L∞
(
Ω× (0,∞)

)
∩ L4

loc

(
[0,∞);W 1,4(Ω)

)
× L∞loc

(
[0,∞);L2

σ(Ω)
)
∩ L

10
3
loc

(
Ω×[0,∞);R3

)
∩ L2

loc

(
[0,∞);W 1,2

0,σ (Ω)
)
.

Then there exist a family
{(
n(κ), c(κ), u(κ)

)}
κ∈[−1,1]

⊂ X of global weak solutions, in the

sense of Definition 5.2 below, to the corresponding family of chemotaxis-Navier–Stokes
systems (Λκ),(5.1.1),(5.1.2) and T� > 0 such that (n(κ), c(κ), u(κ)) together with some
P (κ) ∈ C1,0

(
Ω×(T�,∞)

)
solve (Λκ),(5.1.1),(5.1.2) classically in Ω× (T�,∞). Moreover,

for any null sequence (κj)j∈N ⊂ [−1, 1] there exist a subsequence (κjk)k∈N and a global
weak solution (n, c, u) ∈ X of the chemotaxis-Stokes system (Λ0),(5.1.1),(5.1.2), such
that (

n(κjk ) − n
)
→ 0 in Lp1

(
Ω× (0,∞)

)
for any p1 ∈ [1, 5

3),(
∇n(κjk ) −∇n

)
→ 0 in Lp2

(
Ω× (0,∞);R3

)
for any p2 ∈ [1, 5

4),(
c(κjk ) − c

)
→ 0 in Lq1

(
Ω× (0,∞)

)
for any q1 ∈ [1,∞), (5.1.5)(

∇c(κjk ) −∇c
)
→ 0 in Lq2

(
Ω× (0,∞);R3

)
for any q2 ∈ [1, 4),(

u(κjk ) − u
)
→ 0 in Lr1

(
Ω× (0,∞);R3

)
for any r1 ∈ [1, 10

3 ),(
∇u(κjk ) −∇u

)
→ 0 in Lr2

(
Ω× (0,∞);R3×3

)
for any r2 ∈ [1, 2)

as κjk → 0, and such that (n, c, u) together with some P ∈ C1,0
(
Ω×(T�,∞)

)
solve

(Λ0),(5.1.1),(5.1.2) classically in Ω× (T�,∞).

Mathematical challenges and the approach. In the two-dimensional setting investi-
gated in [91], it is known that (Λκ) already emits a classical solution on Ω×(0,∞), which
in turn allows for testing procedures immediately targeting the quasi-energy functional∫

Ω
n(κ) lnn(κ) +

1

2

∫
Ω

∣∣∇c(κ)
∣∣2

c(κ)
+ η

∫
Ω

∣∣u(κ)
∣∣2
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for large η > 0 independent of κ ∈ [−1, 1] to derive, after some bootstrapping, κ-
independent bounds in C1

(
Ω
)
× C2

(
Ω
)
×D(A%) uniform in time. These bounds, when

combined with decay properties of (Λκ), then become the driving force of the exponen-
tial stabilization featured in [91]. In stark contrast, in the current three-dimensional
framework we cannot utilize a corresponding quasi-energy functional immediately, as
for (Λκ) only the global existence of a weak solution obtained by a limiting procedure
from approximating systems is known ([104]). To transfer any reasonable information
to this weak solution, however, we have to ensure that the precompactness properties
used in the limit procedure are independent of κ. Even though the methods behind the
derivation of the corresponding bounds are known (the same quasi-energy as above is
exploited for the approximate system), their possible dependence on κ has not yet been
ruled out and will be inspected in Sections 5.2 and 5.3. While the strong convergence
properties entailed by these bounds (due to the independence of κ) would also entail a
time-local convergence in certain Lp spaces in the limit κ → 0, we strive for a stronger
convergence result global in time. To expand the knowledge, however, we will need to
meticulously adjust the analytic machinery behind the eventual smoothness results of
[105, 47] in order to be able to carefully track the possible κ-dependence in the eventual

smallness of oxygen, the eventual regularity estimates for n
(κ)
ε and c

(κ)
ε and their even-

tual stabilization properties presented in Sections 5.4 – 5.6. We can then utilize maximal
Sobolev regularity estimates for the Stokes and Neumann heat semigroups to obtain an
eventual smoothing time T� > 0, which does not depend on κ, ensuring that the triple(
n(κ), c(κ), u(κ)

)
, obtained in the limit ε→ 0, solves (Λκ) classically on Ω× (T�,∞) (Sec-

tion 5.7). Section 5.8 will then be devoted to gain insight in exponential decay estimates
valid starting from the smoothing time T� > 0 and finally in Section 5.9, we will take
κ→ 0 to obtain Theorem 5.1.

5.2 Preliminaries. Weak solutions and a priori information for a
family of approximating systems

Before we start with our detailed analysis, let us also briefly specify what constitutes a
weak solution as mentioned in Theorem 5.1. In the following definition, adapted from
[104], we merely prescribe the weakest regularity necessary to ensure that all integrals
in the equalities below are well defined. The solutions constructed later, however, will
satisfy considerably stronger regularity assumptions.

Definition 5.2.
For κ ∈ [−1, 1] a triple (n(κ), c(κ), u(κ)) of functions

n(κ) ∈ L1
loc

(
[0,∞);W 1,1(Ω)

)
,

c(κ) ∈ L1
loc

(
[0,∞);W 1,1(Ω)

)
,

u(κ) ∈ L1
loc

(
[0,∞);W 1,1

0 (Ω;R3)
)
,

satisfying n(κ) ≥ 0, c(κ) ≥ 0 and ∇ · u(κ) = 0 a.e. in Ω×[0,∞) as well as the properties
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n(κ)c(κ) ∈ L1
loc

(
Ω×[0,∞)

)
and κu(κ) ⊗ u(κ) ∈ L1

loc

(
Ω×[0,∞);R3×3

)
with

n(κ)∇c(κ), n(κ)u(κ) and c(κ)u(κ) belonging to L1
loc

(
Ω×[0,∞);R3

)
,

will be called a weak solution of the system (Λκ), (5.1.1) and (5.1.2), if the equality

−
∫ ∞

0

∫
Ω
n(κ)ϕ−

∫
Ω
n0ϕ(·, 0)

=

∫ ∞
0

∫
Ω
n(κ)u(κ) · ∇ϕ−

∫ ∞
0

∫
Ω
∇n(κ) · ∇ϕ+

∫ ∞
0

∫
Ω
n(κ)∇c(κ) · ∇ϕ

holds for each ϕ ∈ C∞0
(
Ω×[0,∞)

)
, if moreover

−
∫ ∞

0

∫
Ω
c(κ)ψt −

∫
Ω
c0ψ(·, 0)

=

∫ ∞
0

∫
Ω
c(κ)u(κ) · ∇ψ −

∫ ∞
0

∫
Ω
∇c(κ) · ∇ψ −

∫ ∞
0

∫
Ω
n(κ)c(κ)ψ

is fulfilled for every ψ ∈ C∞0
(
Ω×[0,∞)

)
and if finally

−
∫ ∞

0

∫
Ω
u(κ) ·Ψt −

∫
Ω
u0 ·Ψ(·, 0)

=−
∫ ∞

0

∫
Ω
∇u(κ) · ∇Ψ + κ

∫ ∞
0

∫
Ω
u(κ) ⊗ u(κ) · ∇Ψ +

∫ ∞
0

∫
Ω
n(κ)Ψ · ∇φ

is valid for all Ψ ∈ C∞0
(
Ω× [0,∞);R3

)
satisfying ∇ ·Ψ ≡ 0.

Weak solutions to (Λκ), in the sense above, will be constructed as limit objects from a
family of appropriately regularized systems. The regularization we incorporate for our
problem has previously (and in a more general fashion) been employed in [47, 104, 105].
To be precise, for ε ∈ (0, 1) and κ ∈ [−1, 1] we will consider

n
(κ)
εt + u

(κ)
ε ·∇n(κ)

ε = ∆n
(κ)
ε −∇·

(
n

(κ)
ε

1+εn
(κ)
ε

∇c(κ)
ε

)
, x ∈ Ω, t > 0,

c
(κ)
εt + u

(κ)
ε ·∇c(κ)

ε = ∆c
(κ)
ε − 1

ε ln
(
1 + εn

(κ)
ε

)
c

(κ)
ε , x ∈ Ω, t > 0,

u
(κ)
εt + κ(Yεu

(κ)
ε · ∇)u

(κ)
ε = ∆u

(κ)
ε −∇P (κ)

ε + n
(κ)
ε ∇φ, x ∈ Ω, t > 0,

∇ · u(κ)
ε = 0, x ∈ Ω, t > 0,

∂νn
(κ)
ε = 0, ∂νc

(κ)
ε = 0, u

(κ)
ε = 0, x ∈ ∂Ω, t > 0,

n
(κ)
ε (x, 0) = n0(x), c

(κ)
ε (x, 0) = c0(x), u

(κ)
ε (x, 0) = u0(x), x ∈ Ω,

(Λε,κ)

where for ε ∈ (0, 1), Yε denotes the standard Yosida approximation ([60, 75]) given by

Yεϕ := (1 + εA)−1ϕ, for ϕ ∈ L2
σ(Ω).
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Let us also note that

1

2
min{s, 1} ≤ 1

ε
ln(1 + εs) ≤ s for all s ≥ 0 and all ε ∈ (0, 1), (5.2.1)

which, due to the nonnegativity of n
(κ)
ε we will establish later, are two useful estimates

for one of the terms appearing in the second equation of (Λε,κ) and will be used on
multiple occasions throughout the chapter.

Now, let us start our analysis by gathering basic results for the family of approximating
systems, most of which has already been discussed in works with fixed κ = 1 and can
be obtained in well-known manner. Nevertheless, we have to ascertain that all of these
familiar properties are κ-independent and therefore we will take a closer look at some
(parts) of the proofs involved.

Lemma 5.3.
Let q > 3. For any ε ∈ (0, 1) and κ ∈ [−1, 1] there exist T

(κ)
max,ε ∈ (0,∞] and a unique

triplet (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of functions satisfying

n(κ)
ε ∈ C0(Ω×[0, T (κ)

max,ε)) ∩ C2,1(Ω×(0, T (κ)
max,ε)),

c(κ)
ε ∈ C0(Ω×[0, T (κ)

max,ε)) ∩ C2,1(Ω×(0, T (κ)
max,ε)) ∩ L∞

(
(0, T (κ)

max,ε);W
1,q(Ω)

)
,

u(κ)
ε ∈ C0(Ω×[0, T (κ)

max,ε);R3) ∩ C2,1(Ω×(0, T (κ)
max,ε);R3),

which together with some P
(κ)
ε ∈ C1,0(Ω × (0, T

(κ)
max,ε)) solves (Λε,κ) classically in Ω ×

(0, T
(κ)
max,ε). In addition, if T

(κ)
max,ε <∞, then

‖n(κ)
ε (·, t)‖L∞(Ω) + ‖c(κ)

ε (·, t)‖W 1,q(Ω) + ‖A%u(κ)
ε (·, t)‖L2(Ω) →∞ as t↗ T (κ)

max,ε

for all % ∈ (3
4 , 1). The triplet

(
n

(κ)
ε , c

(κ)
ε , u

(κ)
ε ) moreover satisfies n

(κ)
ε ≥ 0 and c

(κ)
ε > 0

in Ω×[0, T
(κ)
max,ε) as well as∫

Ω
n(κ)
ε (·, t) =

∫
Ω
n0 and ‖c(κ)

ε (·, t)‖L∞(Ω) ≤ ‖c0‖L∞(Ω) for all t ∈ [0, T (κ)
max,ε) (5.2.2)

and the mapping t 7→
∥∥c(κ)
ε (·, t)

∥∥
L∞(Ω)

is nonincreasing on (0,∞).

Proof: The proof of this local existence result draws on a standard reasoning involv-
ing semigroup estimates, Banach’s fixed point theorem employed to a closed subset of
L∞

(
(0, T );C0

(
Ω
)
×W 1,q(Ω)×D(A%)

)
and parabolic regularity theory. We refer the

reader to [98, Lemma 2.1] for a detailed proof of the existence of a unique local solution,
the extensibility criterion and the nonnegativity and positivity properties in a closely

related setting. The conservation of mass
∫

Ωn
(κ)
ε =

∫
Ωn0 on (0, T

(κ)
max,ε) then follows di-

rectly from integrating the first equation of (Λε,κ), whereas the nonincreasing property of

t 7→
∥∥c(κ)
ε (·, t)

∥∥
L∞(Ω)

on (0,∞) and bound for
∥∥c(κ)
ε

∥∥
L∞(Ω)

are an immediate consequence

of the parabolic comparison principle employed to the second equation of (Λε,κ).
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Since κ only impacts the third equation of (Λε,κ) directly, we can, without any necessary
change, adopt the results from [47, Lemmata 2.6 and 2.8] and [104, Lemma 3.4] to obtain
the following:

Lemma 5.4.
There exists K0 > 0 such that for all ε ∈ (0, 1) and all κ ∈ [−1, 1] the solution

(n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies

d

dt

(∫
Ω
n(κ)
ε lnn(κ)

ε +
1

2

∫
Ω

∣∣∇c(κ)
ε

∣∣2
c

(κ)
ε

)

+
1

K0

(∫
Ω

∣∣∇n(κ)
ε

∣∣2
n

(κ)
ε

+

∫
Ω

∣∣D2c
(κ)
ε

∣∣2
c

(κ)
ε

+

∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3

)
≤ K0

∫
Ω

∣∣∇u(κ)
ε

∣∣2 +K0

on (0, T
(κ)
max,ε).

Proof: Since the well-established testing procedures used to derive this inequality do
not depend on κ in any way, we refer the reader to the detailed proofs in [47, Lem-
mata 2.6 and 2.8] (with κ = 1) and [104, Lemma 3.4] (in convex domains with κ = 1).

Moreover, due to u
(κ)
ε being divergence free, testing the third equation against u

(κ)
ε itself

also removes any dependence on κ and hence we readily transfer the result from [47,
Lemma 2.9] to our setting.

Lemma 5.5.
For any ε ∈ (0, 1) and κ ∈ [−1, 1] the solution (n

(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies

1

2

d

dt

∫
Ω

∣∣u(κ)
ε

∣∣2 +

∫
Ω

∣∣∇u(κ)
ε

∣∣2 =

∫
Ω
n(κ)
ε ∇φ · u(κ)

ε

on (0, T
(κ)
max,ε).

Proof: Since ∇ · u(κ)
ε = 0 on Ω × (0, T

(κ)
max,ε) also implies that ∇ · Yεu(κ)

ε = 0 on Ω ×
(0, T

(κ)
max,ε), we have

κ

∫
Ω

(
Yεu

(κ)
ε · ∇

)
u(κ)
ε · u(κ)

ε = −κ
∫

Ω
∇ ·
(
Yεu

(κ)
ε

)∣∣u(κ)
ε

∣∣2 − κ

2

∫
Ω
Yεu

(κ)
ε · ∇

∣∣u(κ)
ε

∣∣2 = 0

on Ω × (0, T
(κ)
max,ε). Thus, we find that by multiplying the third equation of (Λε,κ) by

u
(κ)
ε and integrating by parts

1

2

d

dt

∫
Ω

∣∣u(κ)
ε

∣∣2 +

∫
Ω

∣∣∇u(κ)
ε

∣∣2 =

∫
Ω
n(κ)
ε ∇φ · u(κ)

ε

is valid on (0, T
(κ)
max,ε).

A combination of the previous two lemmata now yields uniform a priori estimates which
will be the basis for the remainder of our regularity analysis.
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Lemma 5.6.
Let K0 > 0 be provided by Lemma 5.4. There exists K1 > 0 such that for all ε ∈ (0, 1)

and each κ ∈ [−1, 1] the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫

Ω
n(κ)
ε lnn(κ)

ε +
1

2

∫
Ω

∣∣∇c(κ)
ε

∣∣2
c

(κ)
ε

+K0

∫
Ω

∣∣u(κ)
ε

∣∣2 ≤ K1

on (0, T
(κ)
max,ε) and∫ t+τ

t

∫
Ω

∣∣∇n(κ)
ε

∣∣2
n

(κ)
ε

+

∫ t+τ

t

∫
Ω

∣∣D2c
(κ)
ε

∣∣2
c

(κ)
ε

+

∫ t+τ

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3

+

∫ t+τ

t

∫
Ω

∣∣∇u(κ)
ε

∣∣2 +

∫ t+τ

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4 ≤ K1

for all t ∈ (0, T
(κ)
max,ε − τ), where τ := min

{
1, 1

2T
(κ)
max,ε

}
.

Proof: We replicate and adjust the steps of [47, Lemmata 2.10 and 2.11] and [104,
Lemmata 3.6 and 3.8]. Adding up suitable multiples of the differential inequalities from
Lemma 5.4 and Lemma 5.5 we find that for any ε ∈ (0, 1), κ ∈ [−1, 1]

d

dt

(∫
Ω
n(κ)
ε lnn(κ)

ε +
1

2

∫
Ω

∣∣∇c(κ)
ε

∣∣2
c

(κ)
ε

+K0

∫
Ω

∣∣u(κ)
ε

∣∣2)+K0

∫
Ω

∣∣∇u(κ)
ε

∣∣2 (5.2.3)

+
1

K0

(∫
Ω

∣∣∇n(κ)
ε

∣∣2
n

(κ)
ε

+

∫
Ω

∣∣D2c
(κ)
ε

∣∣2
c

(κ)
ε

+

∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3

)
≤ 2K0

∫
Ω
n(κ)
ε ∇φ · u(κ)

ε +K0

holds on (0, T
(κ)
max,ε). To estimate the right-hand side further, we make use of the bound-

edness of∇φ and Hölder’s inequality, the embedding W 1,2
0 (Ω) ↪→ L6(Ω) and the Poincaré

inequality to obtain C1 > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t ∈ (0, T
(κ)
max,ε)

we have ∫
Ω
n(κ)
ε ∇φ · u(κ)

ε ≤
∥∥∇φ∥∥

L∞(Ω)

∥∥n(κ)
ε

∥∥
L

6
5 (Ω)

∥∥u(κ)
ε

∥∥
L6(Ω)

≤ C1

∥∥∇φ∥∥
L∞(Ω)

∥∥n(κ)
ε

∥∥
L

6
5 (Ω)

∥∥∇u(κ)
ε

∥∥
L2(Ω)

.

Here, we employ Young’s inequality to find that

2K0

∫
Ω
n(κ)
ε ∇φ · u(κ)

ε ≤
K0

2

∥∥∇u(κ)
ε

∥∥2

L2(Ω)
+ 2K0C

2
1‖∇φ‖2L∞(Ω)

∥∥n(κ)
ε

∥∥2

L
6
5 (Ω)

(5.2.4)

on (0, T
(κ)
max,ε). According to the Gagliardo–Nirenberg inequality there is some C2 > 0

such that

‖ϕ‖4
L

12
5 (Ω)

≤ C2‖∇ϕ‖L2(Ω)‖ϕ‖3L2(Ω) + C2‖ϕ‖4L2(Ω)
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holds for all ϕ ∈ W 1,2(Ω) and hence, in light of the mass conservation
∫

Ωn
(κ)
ε =

∫
Ωn0

for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t ∈ (0, T
(κ)
max,ε) from Lemma 5.3, there exists some

C3 > 0 such that for each ε(0, 1) and κ ∈ [−1, 1]∥∥n(κ)
ε

∥∥2

L
6
5 (Ω)

=
∥∥n(κ)

ε

1
2
∥∥4

L
12
5 (Ω)

≤ C2

∥∥∇n(κ)
ε

1
2
∥∥
L2(Ω)

∥∥n(κ)
ε

1
2
∥∥3

L2(Ω)
+ C2

∥∥n(κ)
ε

1
2
∥∥4

L2(Ω)

≤ C3

∥∥∇n(κ)
ε

1
2
∥∥
L2(Ω)

+ C3

is valid on (0, T
(κ)
max,ε). Employing Young’s inequality once more in (5.2.4), we thereby

obtain C4 > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t ∈ (0, T
(κ)
max,ε) the

inequality

2K0

∫
Ω
n(κ)
ε ∇φ · u(κ)

ε ≤
K0

2

∫
Ω

∣∣∇u(κ)
ε

∣∣2 +
1

2K0

∫
Ω

∣∣∇n(κ)
ε

∣∣2
n

(κ)
ε

+ C4

holds. Plugging this into (5.2.3) we find C5 := max{C4 + K0,
2
K0
, 2K0} > 0 such that

for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t ∈ (0, T
(κ)
max,ε) the functions

y(κ)
ε (t) :=

∫
Ω

(
n(κ)
ε lnn(κ)

ε

)
(·, t) +

1

2

∫
Ω

∣∣∇c(κ)
ε (·, t)

∣∣2
c

(κ)
ε (·, t)

+K0

∫
Ω

∣∣u(κ)
ε (·, t)

∣∣2
and h(κ)

ε (t) :=

∫
Ω

∣∣∇n(κ)
ε (·, t)

∣∣2
n

(κ)
ε (·, t)

+

∫
Ω

∣∣D2c
(κ)
ε (·, t)

∣∣2
c

(κ)
ε (·, t)

+

∫
Ω

∣∣∇c(κ)
ε (·, t)

∣∣4(
c

(κ)
ε (·, t)

)3 +

∫
Ω

∣∣∇u(κ)
ε (·, t)

∣∣2
satisfy the differential inequality

d

dt
y(κ)
ε (t) +

1

C5
h(κ)
ε (t) ≤ C5. (5.2.5)

Invoking the Poincaré inequality, Young’s inequality, the boundedness of c
(κ)
ε , the in-

equality z ln z ≤ 3
2z

5
3 for z ≥ 0 and the Gagliardo–Nirenberg inequality, it can be easily

checked that there is some C6 > 0 (independent of ε and κ) such that

y(κ)
ε (t) ≤ C6h

(κ)
ε (t) + C6 for all t ∈ (0, T (κ)

max,ε).

And hence (5.2.5) takes the form

d

dt
y(κ)
ε (t) +

1

2C5
h(κ)
ε (t) +

1

2C5C6
y(κ)
ε (t) ≤ C5 +

1

2C5
for all t ∈ (0, T (κ)

max,ε),

which on the one hand implies for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t ∈ (0, T
(κ)
max,ε) that

y(κ)
ε (t) ≤ C7 := max

{∫
Ω
n0 lnn0 +

1

2

∫
Ω

|∇c0|2

c0
+K0

∫
Ω
|u0|2, 2C2

5C6 + C6

}
,
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and, on the other hand, shows upon integration that for each ε ∈ (0, 1), κ ∈ [−1, 1]

1

2C5

∫ t+τ

t
h(κ)
ε (t) dt ≤ y(κ)

ε (0) +
(
C5 +

1

2C5

)
τ ≤ C7 + C5 +

1

2C5
=: C8

is valid for all t ∈ (0, T
(κ)
max,ε − τ) with τ := min{1, 1

2T
(κ)
max,ε}. Moreover, drawing on the

boundedness of c
(κ)
ε obtained in Lemma 5.3, we find that∫ t+τ

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4 ≤ sup
s∈[t,t+τ ]

∥∥c(κ)
ε (·, s)

∥∥3

L∞(Ω)

∫ t+τ

t

∫
Ω

∣∣∇c(κ)
ε |4

c
(κ)
ε

3

≤ ‖c0‖3L∞(Ω)

∫ t+τ

t
h(κ)
ε (t) dt ≤ 2C5C8‖c0‖3L∞(Ω)

is valid for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t ∈ (0, T
(κ)
max,ε − τ), completing the proof

upon obvious choice of K1 > 0.

Assuming a finite maximal existence time, we can now make use of the bounds from the
previous lemma to derive a contradiction to the extensibility criterion featured in the
local existence result.

Lemma 5.7.
For all ε ∈ (0, 1) and κ ∈ [−1, 1] the solution to (Λε,κ) is global in time, i.e. T

(κ)
max,ε =∞.

Proof: Assuming T
(κ)
max,ε to be finite we will derive a contradiction to the extensibility

criterion presented in Lemma 5.3. Reasoning along these lines is common in many
related works and can e.g. be found in [104]. For the sake of completeness, we sketch

the main parts of the proof. We first note that, due to T
(κ)
max,ε <∞, Lemma 5.6 provides

the existence of C1 > 0 satisfying∫ T
(κ)
max,ε

0

∫
Ω

∣∣∇c(κ)
ε

∣∣4 ≤ C1 and

∫
Ω

∣∣u(κ)
ε (·, t)

∣∣2 ≤ C1 for all t ∈ (0, T (κ)
max,ε). (5.2.6)

Testing the first equation of (Λε,κ) against (n
(κ)
ε )3, we find upon integrating by parts,

utilizing the fact that s
1+εs ≤

1
ε for all s ≥ 0 and invoking Young’s inequality that

1

4

d

dt

∫
Ω
n(κ)
ε

4
+ 3

∫
Ω
n(κ)
ε

2∣∣∇n(κ)
ε

∣∣2 ≤ ∫
Ω
n(κ)
ε

2∣∣∇n(κ)
ε

∣∣2 +

∫
Ω

∣∣∇c(κ)
ε

∣∣4 +
81

64ε4

∫
Ω
n(κ)
ε

4

on (0, T
(κ)
max,ε), implying that there is some C2 > 0 (possibly depending on ε) such that∫

Ω(n
(κ)
ε )4(·, t) ≤ C2 holds for all t ∈ (0, T

(κ)
max,ε), according to (5.2.6). Furthermore, in

light of the embedding D(1 + εA) = W 2,2(Ω;R3) ∩W 1,2
0,σ (Ω) ↪→ L∞

(
Ω;R3

)
and (5.2.6)

we obtain C3, C4 > 0 satisfying∥∥Yεu(κ)
ε (·, t)

∥∥
L∞(Ω)

=
∥∥(1 + εA)−1u(κ)

ε (·, t)
∥∥
L∞(Ω)

≤ C3

∥∥u(κ)
ε (·, t)

∥∥
L2(Ω)

≤ C4 for all t ∈ (0, T (κ)
max,ε).
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Hence, testing u
(κ)
εt +Au

(κ)
ε = P

(
−κ
(
Yεu

(κ)
ε ·∇

)
u

(κ)
ε +n

(κ)
ε ∇φ

)
against Au

(κ)
ε we obtain

some C5 > 0 such that

1

2

d

dt

∫
Ω

∣∣A 1
2u(κ)

ε

∣∣2 +

∫
Ω

∣∣Au(κ)
ε

∣∣2 ≤ ∫
Ω

∣∣Au(κ)
ε

∣∣2 + C5

(∫
Ω

∣∣∇u(κ)
ε

∣∣2 +

∫
Ω
n(κ)
ε

2
)

on (0, T
(κ)
max,ε), in light of Young’s inequality, (5.1.3) and the facts that |κ| ≤ 1 and

‖Pϕ‖L2(Ω) ≤ ‖ϕ‖L2(Ω) for all ϕ ∈ L2
(
Ω;R3

)
. Since

∫
Ω|A

1
2ϕ| =

∫
Ω|∇ϕ|

2 for ϕ ∈ D(A),
we thereby find C6 > 0 fulfilling∫

Ω

∣∣∇u(κ)
ε (·, t)

∣∣2 ≤ C6 for all t ∈ (0, T (κ)
max,ε).

Combining these bounds with well-known properties of the Stokes semigroup (see e.g.

[29, p.201]) first provides a bound on
∥∥A%u(κ)

ε (·, t)
∥∥
L2(Ω)

for all t ∈ (0, T
(κ)
max,ε), where %

is as in (5.1.4). By our choice of %, the embedding D(A%) ↪→ L∞
(
Ω;R3

)
also readily

entails an L∞ bound on the third component. Secondly, combining these bounds with
semigroup estimates for the Neumann heat semigroup (e.g. [97, Lemma 1.3]), (5.2.1),

(5.2.2) and (5.2.6), implies the boundedness of
∥∥∇c(κ)

ε (·, t)
∥∥
L4(Ω)

for all t ∈ (0, T
(κ)
max,ε),

which upon final combination with Neumann heat semigroup estimates with previous

bounds also yields a bound on
∥∥n(κ)

ε (·, t)
∥∥
L∞(Ω)

for all t ∈ (0, T
(κ)
max,ε), contradicting the

extensibility criterion from Lemma 5.3, and hence we conclude T
(κ)
max,ε =∞.

In a straightforward manner, we can also draw on the Gagliardo–Nirenberg and Hölder
inequalities to refine the spatio-temporal bounds on the gradient terms in Lemma 5.6

into slightly improved bounds for n
(κ)
ε , ∇n(κ)

ε and u
(κ)
ε . The following lemma will play

an important role in deriving the necessary precompactness properties to verify that the
objects obtained from the limiting procedure actually constitute a weak solution of our
system.

Lemma 5.8.
For every T > 0 there exists C(T ) > 0 such that for any ε ∈ (0, 1) and all κ ∈ [−1, 1]

the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫ T

0

∫
Ω
n(κ)
ε

5
3 +

∫ T

0

∫
Ω

∣∣∇n(κ)
ε

∣∣ 5
4 +

∫ T

0

∫
Ω

∣∣u(κ)
ε

∣∣ 10
3 ≤ C(T ).

Proof: These spatio-temporal bounds are an immediate consequence of the Gagliardo–
Nirenberg and Hölder inequalities along with the bounds prepared in Lemma 5.6. Details
on the steps involved are found in [104, Lemma 3.10].

5.3 Existence of a limit solution family when ε↘ 0

In preparation of an Aubin–Lions type argument, which is the starting point for our
convergence result, we will require information on the regularity of the time derivatives
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of our solution components. Again, taking care that our estimates do neither depend on
ε nor on κ, these bounds on the time derivative will not only be useful for the ε–limit,
but also for the κ–limit discussed in Section 5.9.

Lemma 5.9.
For any T > 0 there exists C > 0 such that for each ε ∈ (0, 1) and κ ∈ [−1, 1] the

solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫ T

0

∥∥n(κ)
εt

∥∥ 10
9

(W 1,10(Ω))∗
+

∫ T

0

∥∥∥∂t√c(κ)
ε

∥∥∥ 5
3(
W 1, 52 (Ω)

)∗ +

∫ T

0

∥∥u(κ)
εt

∥∥ 5
4

(W 1,5
0,σ (Ω))

∗ ≤ C.

Proof: The proof is basically contained in [104, Lemma 3.11] (where κ = 1 was treated).
To ensure that the constant does not depend on κ, we will illustrate the steps involved for
the fluid component. For details regarding the other two estimation procedures (which
work along similar lines), we refer the reader to the work mentioned above. Given any
fixed ϕ ∈ C∞0,σ(Ω), we test the third equation of (Λε,κ) against ϕ and employ Hölder’s
inequality to obtain that, due to |κ| ≤ 1,∣∣∣∣∫

Ω
u

(κ)
εt (·, t) · ϕ

∣∣∣∣
=

∣∣∣∣−∫
Ω
∇u(κ)

ε (·, t) · ∇ϕ− κ
∫

Ω
(Yεu

(κ)
ε ⊗ u(κ)

ε )(·, t) · ∇ϕ+

∫
Ω
n(κ)
ε (·, t)∇φ · ϕ

∣∣∣∣
≤
(∥∥∇u(κ)

ε (·, t)
∥∥
L

5
4 (Ω)

+
∥∥(Yεu

(κ)
ε ⊗ u(κ)

ε )(·, t)
∥∥
L

5
4 (Ω)

+
∥∥n(κ)

ε (·, t)∇φ
∥∥
L

5
4 (Ω)

)
‖∇ϕ‖W 1,5(Ω)

is valid for all t > 0. In light of (5.1.3) we can find C1 > 0 such that ‖∇φ‖L∞(Ω) ≤ C1

and hence Young’s inequality entails that, with C2 := 2
1
4 (1 + C1) > 0, we have∫ T

0

∥∥u(κ)
εt (·, t)

∥∥ 5
4

(W 1,5
0,σ (Ω))

∗ dt

≤ C2

∫ T

0

∫
Ω

∣∣∇u(κ)
ε

∣∣ 5
4 + C2

∫ T

0

∫
Ω

∣∣Yεu(κ)
ε ⊗ u(κ)

ε

∣∣ 5
4 + C2

∫ T

0

∫
Ω
n(κ)
ε

5
4 (5.3.1)

≤ C2

∫ T

0

∫
Ω

∣∣∇u(κ)
ε

∣∣2 + C2

∫ T

0

∫
Ω

∣∣Yεu(κ)
ε

∣∣2 + C2

∫ T

0

∫
Ω

∣∣u(κ)
ε

∣∣ 10
3 + C2

∫ T

0

∫
Ω
n(κ)
ε

5
3 + 2C2|Ω|T

for all T > 0. Drawing on the fact that ‖Yεv‖L2(Ω) ≤ ‖v‖L2(Ω) holds for all v ∈ L2
σ(Ω), we

may employ Young’s inequality once more to estimate
∫ T

0

∫
Ω

∣∣Yεu(κ)
ε

∣∣2 ≤ ∫ T0 ∫Ω

∣∣u(κ)
ε

∣∣ 10
3 +

|Ω|T and thus conclude the asserted bound from (5.3.1) in light of Lemmata 5.6 and
5.8.

With the uniform bounds from Lemmata 5.3, 5.6, 5.8 and 5.9 we are now in the position
to obtain limit functions n(κ), c(κ) and u(κ), which fulfill the regularity assumptions and
integral equations required for the weak solution formulation of (Λκ).
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Proposition 5.10.
There exists a sequence (εj)j∈N ⊂ (0, 1) with εj ↘ 0 as j → ∞ with the property that
for any κ ∈ [−1, 1] one can find functions

n(κ) ∈ L
5
3
loc

(
Ω×[0,∞)

)
with ∇n(κ) ∈ L

5
4
loc

(
Ω×[0,∞);R3

)
,

c(κ) ∈ L∞ (Ω× (0,∞)) with ∇c(κ) ∈ L4
loc

(
Ω×[0,∞);R3

)
,

u(κ) ∈ L2
loc

(
[0,∞);W 1,2

0,σ (Ω)
)
,

such that the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies

n(κ)
ε → n(κ) in Lploc

(
Ω×[0,∞)

)
for any p ∈ [1, 5

3) and a.e. in Ω× (0,∞), (5.3.2)

∇n(κ)
ε ⇀∇n(κ) in L

5
4
loc

(
Ω×[0,∞);R3

)
, (5.3.3)

n(κ)
ε ⇀n(κ) in L

5
3
loc

(
Ω×[0,∞)

)
, (5.3.4)

c(κ)
ε → c(κ) in Lploc

(
Ω×[0,∞)

)
for any p ∈ [1,∞) and a.e. in Ω× (0,∞), (5.3.5)

c(κ)
ε

?
⇀c(κ) in L∞ (Ω× (0,∞)) , (5.3.6)

∇c(κ)
ε ⇀∇c(κ) in L4

loc

(
Ω×[0,∞);R3

)
, (5.3.7)

u(κ)
ε → u(κ) in L2

loc

(
Ω×[0,∞);R3

)
and a.e. in Ω× (0,∞), (5.3.8)

u(κ)
ε ⇀u(κ) in L

10
3
loc

(
Ω×[0,∞);R3

)
, (5.3.9)

∇u(κ)
ε ⇀∇u(κ) in L2

loc

(
Ω×[0,∞);R3×3

)
, (5.3.10)

as ε = εj ↘ 0. Moreover, the triple (n(κ), c(κ), u(κ)) is a global weak solution of
(Λκ),(5.1.1),(5.1.2) in the sense of Definition 5.2.

Proof: Combining the bounds of Lemmata 5.8 and 5.9 with an Aubin–Lions type lemma
([74, Corollary 8.4]), we obtain that for any κ ∈ [−1, 1]{

n(κ)
ε

}
ε∈(0,1)

is relatively compact in L
5
4
loc

(
Ω×[0,∞)

)
and that hence there is some sequence (εj)j∈N with εj ↘ 0 as j →∞ such that n

(κ)
ε →

n(κ) in L
5
4
loc

(
Ω×[0,∞)

)
and a.e. in Ω× (0,∞). According to the spatio-temporal bounds

in Lemma 5.8, we can furthermore conclude (5.3.3) and (5.3.4) along a subsequence

(which we still denote by εj). Moreover, also by Lemma 5.8, {(n(κ)
ε )p}ε∈(0,1) is equi-

integrable for any p < 5
3 and therefore the a.e. convergence of n

(κ)
ε together with Vitali’s

convergence theorem entails the strong convergence in (5.3.2). In a similar fashion we

can make use of the bounds for c
(κ)
ε in Lemmata 5.3, 5.6 and 5.9 to obtain (5.3.5)–

(5.3.7) and the bounds for u
(κ)
ε from Lemmata 5.6, 5.8 and 5.9 to verify (5.3.8)–(5.3.10)

upon extraction of another subsequence. That (n(κ), c(κ), u(κ)) solves (Λκ) weakly in
Ω × (0,∞) is then a straightforward consequence of the regularity and convergence
properties we established just now, as these allow us to pass to the limit in all integrals
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making up the weak formulation of a solution, where we note that in particular (5.3.2)

and (5.3.9) entail that for Ψ ∈ C∞0 (Ω×[0,∞);R3)
∫∞

0

∫
Ωn

(κ)
ε u

(κ)
ε ·Ψ→

∫∞
0

∫
Ωn

(κ)u(κ) ·Ψ
and that (5.3.8) and the dominated convergence theorem imply that Yεu

(κ)
ε → u(κ) in

L2
loc

(
Ω×[0,∞);R3

)
.

5.4 Eventual smallness of oxygen concentration with waiting
times independent of ε and κ

The main objective of this section will be to establish several eventual smallness results
for the chemical concentration, where, most importantly, the necessary waiting time of
each estimate is independent of ε ∈ (0, 1) and κ ∈ [−1, 1]. While it is known that these
stabilizations occur in the setting with fixed κ = 1 ([105]), the methods behind these
results cannot be transferred directly if we want to maintain independence of the waiting
time from the parameters ε and κ. We start with two rather mild eventual smallness
properties akin to [105, Lemma 4.2].

Lemma 5.11.
For all δ > 0 there exists T > 0 such that for each ε ∈ (0, 1) and κ ∈ [−1, 1] the solution

(n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies

inf
t∈[0,T ]

∫ t+1

t

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε < δ,

as well as

inf
t∈[0,T ]

∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣2 < δ.

Proof: Given δ > 0 we pick T ∈ N satisfying
(
‖c0‖L∞(Ω) + ‖c0‖2L∞(Ω)

)
|Ω|δ−1 < T .

Then, utilizing the second and fourth equations of (Λε,κ) and the prescribed boundary
conditions, we find that for all ε ∈ (0, 1) and all κ ∈ [−1, 1] the equality

d

dt

∫
Ω
c

(κ)
εt =

∫
Ω

∆c(κ)
ε −

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε −

∫
Ω
u(κ)
ε · ∇c(κ)

ε = −
∫

Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε

is valid on (0,∞). Integration over (0, T ) thus shows∫ T

0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε ≤

∫
Ω
c0 for all ε ∈ (0, 1), κ ∈ [−1, 1], (5.4.1)

due to c
(κ)
ε being nonnegative. Similarly, considering 1

2
d
dt

∫
Ω(c

(κ)
ε )2 and making use of the

fact that 1
ε ln(1 + εs) ≥ 0 for all ε ∈ (0, 1) and s ≥ 0, we find that∫ T

0

∫
Ω

∣∣∇c(κ)
ε

∣∣2 ≤ ∫
Ω
c2

0 for all ε ∈ (0, 1), κ ∈ [−1, 1]. (5.4.2)
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From (5.4.1), (5.4.2) and Lemma 5.3, we first obtain that for all ε ∈ (0, 1) and κ ∈ [−1, 1]
we have

T−1∑
t=0

(∫ t+1

t

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε +

∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣2)
=

∫ T

0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε +

∫ T

0

∫
Ω

∣∣∇c(κ)
ε

∣∣2 ≤ (‖c0‖L∞(Ω) + ‖c0‖2L∞(Ω)

)
|Ω| =: M

and infer from this that for all ε ∈ (0, 1) and κ ∈ [−1, 1] there exists some t0 ∈ [0, T ]
satisfying ∫ t0+1

t0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε +

∫ t0+1

t0

∫
Ω

∣∣∇c(κ)
ε

∣∣2 ≤ M

T
< δ.

In conclusion, for all δ > 0 one can find T > 0 such that for all ε ∈ (0, 1) and κ ∈ [−1, 1]

inf
t∈[0,T ]

(∫ t+1

t

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε +

∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣2) < δ,

which clearly implies the assertion of the lemma.

Making use of the uniform bounds from the previous sections and the lemma above, we
can also derive an additional eventual smallness property, which resembles the result of
[105, Lemma 4.4].

Lemma 5.12.
For all δ > 0 there exists T > 0 such that for any ε ∈ (0, 1) and κ ∈ [−1, 1] the solution

(n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies

inf
t∈[0,T ]

∫ t+1

t

∫
Ω
c(κ)
ε < δ.

Proof: As previously employed in the proof of Lemma 5.6, we first note that the
Gagliardo–Nirenberg inequality provides C1 > 0 such that

‖ϕ‖4
L

12
5 (Ω)

≤ C1‖∇ϕ‖L2(Ω)‖ϕ‖3L2(Ω) + C1‖ϕ‖4L2(Ω) (5.4.3)

holds for all ϕ ∈ W 1,2(Ω). Moreover, the embedding W 1,2(Ω) ↪→ L6(Ω), together with
the Poincaré inequality, entails the existence of C2 > 0 satisfying

‖ϕ− ϕ‖L6(Ω) ≤ C2‖∇ϕ‖L2(Ω) for all ϕ ∈W 1,2(Ω), (5.4.4)

where here and below we denote by ϕ := 1
|Ω|
∫

Ωϕ the spatial average. Preparing later

estimates, we abbreviate m :=
∫

Ωn0 and set C3 := 1
2 min

{
|Ω|,m

}
and given any δ > 0

we then fix

0 < δ0 < min

C3δ

2|Ω|
,

C2
3δ

2

4|Ω|2C1C2
2m

3
2

(
K

1
2
1 +m

1
2

)
 , (5.4.5)
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where K1 > 0 is the constant obtained in Lemma 5.6. According to Lemma 5.11, one
can find T > 0 such that for any fixed ε ∈ (0, 1) and κ ∈ [−1, 1] there is some t0 ∈ [0, T ]
satisfying∫ t0+1

t0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε < δ0 and

∫ t0+1

t0

∫
Ω

∣∣∇c(κ)
ε

∣∣2 < δ0. (5.4.6)

To show that in fact this T > 0 already fulfills the asserted property, we continue by
recalling that 1

ε ln
(
1 + εs

)
≥ 1

2 min{s, 1} for all ε ∈ (0, 1) and s ≥ 0 and then estimate∫ t0+1

t0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε −

∫ t0+1

t0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)(
c(κ)
ε − c(κ)

ε

)
(5.4.7)

=

∫ t0+1

t0

c(κ)
ε

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)
≥
∫ t0+1

t0

c(κ)
ε

∫
Ω

1

2
min

{
n(κ)
ε , 1

}
=
C3

|Ω|

∫ t0+1

t0

∫
Ω
c(κ)
ε .

Making use of the Hölder inequality twice and drawing on (5.4.4) as well as the fact that
1
ε ln(1 + εs) ≤ s for all ε ∈ (0, 1) and s ≥ 0, we see that

−
∫ t0+1

t0

∫
Ω

1

ε
ln
(
1 + εn(κ)

ε

)(
c(κ)
ε − c(κ)

ε

)
≤
(∫ t0+1

t0

∥∥c(κ)
ε − c(κ)

ε

∥∥2

L6(Ω)

) 1
2
(∫ t0+1

t0

∥∥1
ε ln

(
1 + εn(κ)

ε

)∥∥2

L
6
5 (Ω)

) 1
2

≤ C2

(∫ t0+1

t0

∥∥∇c(κ)
ε

∥∥2

L2(Ω)

) 1
2
(∫ t0+1

t0

∥∥n(κ)
ε

∥∥2

L
6
5 (Ω)

) 1
2

.

Plugging this into (5.4.7) and combining with (5.4.6) therefore implies that

∫ t0+1

t0

∫
Ω
c(κ)
ε ≤

|Ω|δ0

C3
+
|Ω|C2δ

1
2
0

C3

(∫ t0+1

t0

∥∥n(κ)
ε

∥∥2

L
6
5 (Ω)

) 1
2

.

To further estimate the remaining term, we make use of (5.4.3), the Cauchy–Schwarz
inequality and Lemma 5.6 to find that∫ t0+1

t0

∥∥n(κ)
ε

∥∥2

L
6
5 (Ω)

=

∫ t0+1

t0

∥∥n(κ)
ε

1
2
∥∥4

L
12
5 (Ω)

≤ C1m
3
2

∫ t0+1

t0

∥∥∇n(κ)
ε

1
2
∥∥
L2(Ω)

+ C1m
2

≤ C1m
3
2

(∫ t0+1

t0

∥∥∇n(κ)
ε

1
2
∥∥2

L2(Ω)

) 1
2

+ C1m
2 ≤ C1m

3
2
(
K

1
2
1 +m

1
2
)
,

with K1 > 0 provided by Lemma 5.6. This, in light of (5.4.5), establishes that

∫ t0+1

t0

∫
Ω
c(κ)
ε ≤

|Ω|δ0

C3
+
|Ω|C

1
2
1 C2m

3
4

(
K

1
2
1 +m

1
2

) 1
2

C3
δ

1
2
0 < δ,

and thereby completes the proof.
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Finally, augmenting the arguments of [47, Lemma 3.4] to cover our setting, we obtain
the eventual smallness of the L∞ norm of the oxygen concentration with waiting time
uniform in ε and κ.

Lemma 5.13.
For all δ > 0 there exists T > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T

the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∥∥c(κ)

ε (·, t)
∥∥
L∞(Ω)

< δ.

Proof: Similar to before, we first note that by the Gagliardo–Nirenberg inequality, we
can find C1 > 0 such that

‖ϕ‖L∞(Ω) ≤ C1‖∇ϕ‖
12
13

L4(Ω)
‖ϕ‖

1
13

L1(Ω)
+ C1‖ϕ‖L1(Ω) for all ϕ ∈W 1,4(Ω). (5.4.8)

Moreover, according to Lemma 5.6 there is K1 > 0 such that∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4 ≤ K1 (5.4.9)

is valid for all t > 0, ε ∈ (0, 1) and κ ∈ [−1, 1]. Now, given δ > 0 we fix 0 < δ0 <

min
{

δ
2C1

, δ13

213C13
1 K3

1

}
and note that in light of Lemma 5.12, we thus find T0 > 0 such that

for any fixed ε ∈ (0, 1) and κ ∈ [−1, 1] there is t0 ∈ [0, T0] satisfying∫ t0+1

t0

∫
Ω
c(κ)
ε < δ0. (5.4.10)

From a combination of (5.4.8) with two applications of Hölder’s inequality, (5.4.9) and
(5.4.10) we can directly conclude∫ t0+1

t0

∥∥c(κ)
ε

∥∥
L∞(Ω)

≤ C1

(∫ t0+1

t0

∥∥∇c(κ)
ε

∥∥4

L4(Ω)

) 3
13
(∫ t0+1

t0

∥∥c(κ)
ε

∥∥
L1(Ω)

) 1
13

+ C1

∫ t0+1

t0

∥∥c(κ)
ε

∥∥
L1(Ω)

≤ C1K
3
13
1 δ

1
13
0 + C1δ0,

which, by choice of δ0 implies ∫ t0+1

t0

∥∥c(κ)
ε

∥∥
L∞(Ω)

< δ.

This entails that for all δ > 0 there exists T0 > 0 such that for all ε ∈ (0, 1) and
κ ∈ [−1, 1] one can find t0 ∈ [0, T0] such that

inf
t∈[t0,t0+1]

∥∥c(κ)
ε (·, t)

∥∥
L∞(Ω)

≤
∫ t0+1

t0

∥∥c(κ)
ε

∥∥
L∞(Ω)

< δ,

which, by recalling that t 7→
∥∥c(κ)
ε (·, t)

∥∥
L∞(Ω)

is nonincreasing, immediately implies the

assertion of the lemma with T ≥ T0 + 1.
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5.5 Eventual Lp regularity estimates independent of ε and κ as
consequence of small oxygen concentration

The uniform waiting time for smallness of c
(κ)
ε in L∞(Ω) will be the key ingredient in

obtaining additional regularity estimates for n
(κ)
ε and u

(κ)
ε . We start by deriving a differ-

ential inequality for n
(κ)
ε valid for all times after the chemical concentration has decayed

below some threshold number η which, in a second step, together with Lemma 5.13 will

then show that the norm of n
(κ)
ε in Lp(Ω) is nonincreasing beyond some waiting time.

A functional of similar form to the one we use in Lemma 5.14 to derive the differential
inequality has previously been successfully employed in e.g. [99, Lemma 5.1] and [47,
Lemma 3.5].

Lemma 5.14.
Let T > 0, p > 1, θ > 0 and η > 0, ε ∈ (0, 1) and κ ∈ [−1, 1]. If the solution

(n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∥∥c(κ)

ε (·, t)
∥∥
L∞(Ω)

≤ η for all t > T,

then

d

dt

∫
Ω

n
(κ)
ε

p(
2η − c(κ)

ε

)θ
≤ − p(p− 1)

∫
Ω

n
(κ)
ε

p−2(
2η − c(κ)

ε

)θ ∣∣∇n(κ)
ε

∣∣2
+

∫
Ω

(
p(p− 1)(

1 + εn
(κ)
ε

)(
2η − c(κ)

ε

)θ − 2pθ(
2η − c(κ)

ε

)θ+1

)
n(κ)
ε

p−1(∇n(κ)
ε · ∇c(κ)

ε

)
(5.5.1)

−
∫

Ω

(
θ(θ + 1)(

2η − c(κ)
ε

)θ+2
− pθ(

1 + εn
(κ)
ε

)(
2η − c(κ)

ε

)θ+1

)
n(κ)
ε

p∣∣∇c(κ)
ε

∣∣2
on (T,∞).

Proof: First, we note that, due to
∥∥c(κ)
ε (·, t)

∥∥
L∞(Ω)

≤ η for all t > T , the mapping

t 7→
∫

Ω
(n

(κ)
ε (·,t))p

(2η−c(κ)
ε (·,t))θ

is well-defined on (T,∞) and then a straightforward computation,

utilizing integration by parts, shows

d

dt

∫
Ω

n
(κ)
ε

p(
2η − c(κ)

ε

)θ
= p

∫
Ω

n
(κ)
ε

p−1(
2η − c(κ)

ε

)θ(∆n(κ)
ε −∇ ·

( n
(κ)
ε

1 + εn
(κ)
ε

∇c(κ)
ε

)
−∇n(κ)

ε · u(κ)
ε

)

+ θ

∫
Ω

n
(κ)
ε

p(
2η − c(κ)

ε

)θ+1

(
∆c(κ)

ε −
1

ε
ln
(
1 + εn(κ)

ε

)
c(κ)
ε −∇c(κ)

ε · u(κ)
ε

)
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≤ − p(p− 1)

∫
Ω

n
(κ)
ε

p−2∣∣∇n(κ)
ε

∣∣2(
2η − c(κ)

ε

)θ − pθ
∫

Ω

n
(κ)
ε

p−1(
∇n(κ)

ε · ∇c(κ)
ε

)(
2η − c(κ)

ε

)θ+1
(5.5.2)

+ p(p− 1)

∫
Ω

n
(κ)
ε

p−1(
∇n(κ)

ε · ∇c(κ)
ε

)(
1 + εn

(κ)
ε

)(
2η − c(κ)

ε

)θ + pθ

∫
Ω

n
(κ)
ε

p∣∣∇c(κ)
ε

∣∣2(
1 + εn

(κ)
ε

)(
2η − c(κ)

ε

)θ+1

− pθ
∫

Ω

n
(κ)
ε

p−1(
∇n(κ)

ε · ∇c(κ)
ε

)(
2η − c(κ)

ε

)θ+1
− θ(θ + 1)

∫
Ω

n
(κ)
ε

p∣∣∇c(κ)
ε

∣∣2(
2η − c(κ)

ε

)θ+2

−
∫

Ω

∇(n
(κ)
ε )p(

2η − c(κ)
ε

)θ · u(κ)
ε −

∫
Ω
n(κ)
ε

p∇
(
2η − c(κ)

ε

)−θ · u(κ)
ε

for all t > T , where we also made use of the fact that 1
ε ln(1 + εs) ≥ 0 for s ≥ 0. Herein,

we have

−
∫

Ω

∇(n
(κ)
ε )p(

2η − c(κ)
ε

)θ · u(κ)
ε −

∫
Ω
n(κ)
ε

p∇
(
2η − c(κ)

ε

)−θ · u(κ)
ε = −

∫
Ω
∇
( n

(κ)
ε

p(
2η − c(κ)

ε

)θ) · u(κ)
ε = 0,

due to the imposed boundary conditions and u
(κ)
ε being divergence-free. Therefore,

rearranging the terms of (5.5.2) appropriately, we can immediately conclude (5.5.1).

Waiting long enough for c
(κ)
ε to decay past a certain threshold now entails the following:

Lemma 5.15.
For all p > 1 there exist K2 > 0 and T > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and

every [t1, t2) ⊆ [T,∞) the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫

Ω
n(κ)
ε

p
(·, t2) +

∫ t2

t1

∫
Ω
n(κ)
ε

p−2∣∣∇n(κ)
ε

∣∣2 ≤ K2

∫
Ω
n(κ)
ε

p
(·, t1).

Proof: Given p > 1 we first fix θ ∈ (0, p− 1) and then pick some η > 0 satisfying

η < min

θ + 1

2p
,

√
θ(θ + 1− p

p−1θ)

p(p− 1)

 . (5.5.3)

For these choices of parameters, in light of Lemma 5.13, we find some T = T (p) > 0
such that for all ε ∈ (0, 1) and κ ∈ [−1, 1] we have∥∥c(κ)

ε (·, t)
∥∥
L∞(Ω)

≤ η for all t ≥ T.

Hence, the requirements of Lemma 5.14 are met and the inequality (5.5.1) is valid on

(T,∞). Moreover, by choice of η < θ+1
2p and nonnegativity of n

(κ)
ε and c

(κ)
ε we have(

2η − c(κ)
ε

)
p(

1 + εn
(κ)
ε

)
(θ + 1)

≤ 2ηp

θ + 1
< 1 on [T,∞)
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and hence

pθ(
1 + εn

(κ)
ε

)(
2η − c(κ)

ε

)θ+1
<

θ(θ + 1)(
2η − c(κ)

ε

)θ+2
for all t ≥ T.

Therefore, we can cancel out the term containing
∣∣∇c(κ)

ε

∣∣2 in (5.5.1). In fact, an em-
ployment of Young’s inequality in (5.5.1) shows that for all ε ∈ (0, 1) and κ ∈ [−1, 1] we
have

d

dt

∫
Ω

n
(κ)
ε

p(
2η − c(κ)

ε

)θ ≤ −∫
Ω

(
p(p− 1)(

2η − c(κ)
ε

)θ − 1

4
H
(
n(κ)
ε , c(κ)

ε

))
n(κ)
ε

p−2∣∣∇n(κ)
ε

∣∣2 (5.5.4)

for all t ≥ T , with

H(σ, ξ) :=

(
p(p−1)

(1+εσ)(2η−ξ)θ −
2pθ

(2η−ξ)θ+1

)2

θ(θ+1)
(2η−ξ)θ+2 − pθ

(1+εσ)(2η−ξ)θ+1

, for σ ≥ 0 and ξ ∈ [0, 2η).

To verify that p(p−1)
(2η−ξ)θ −

1
4H(σ, ξ) ≥ 0 for σ ≥ 0 and ξ ∈ [0, 2η), we first write

H(σ, ξ)(2η − ξ)θ

4p(p− 1)
=

p(p−1)(2η−ξ)2

(1+εσ)2 − 4pθ(2η−ξ)
1+εσ + 4pθ2

p−1

4θ(θ + 1)− 4pθ(2η−ξ)
1+εσ

=:
H1(σ, ξ)

H2(σ, ξ)

and note that by the nonnegativity of σ and ξ and latter part of (5.5.3) we have

H1(σ, ξ)−H2(σ, ξ) ≤ p(p− 1)4η2 +
4p

p− 1
θ2 − 4θ(θ + 1) < 0.

Since, due to (5.5.3), we have H2(σ, ξ) ≥ 4θ(θ+ 1)− 8pθη > 0 for σ ≥ 0 and ξ ∈ [0, 2η),
this implies

H(σ, ξ)
(
2η − ξ

)θ
4p(p− 1)

= 1 +
H1(σ, ξ)−H2(σ, ξ)

H2

(
n

(κ)
ε , c

(κ)
ε

)
≤ 1 +

p(p− 1)4η2 + 4p
p−1θ

2 − 4θ(θ + 1)

4θ(θ + 1)− 8pθη

for all σ ≥ 0 and ξ ∈ [0, 2η), from which we infer that

p(p− 1)

(2η − ξ)θ
− 1

4
H(σ, ξ) ≥ C3

p(p− 1)

(2η − ξ)θ
> 0 for all σ ≥ 0, ξ ∈ [0, 2η),

with C3 := −
p(p−1)η2+ p

p−1
θ2−θ(θ+1)

θ(θ+1)−2pηθ > 0. Hence, we conclude from (5.5.4) that

d

dt

∫
Ω

n
(κ)
ε

p(
2η − c(κ)

ε

)θ + p(p− 1)C3

∫
Ω

n
(κ)
ε

p−2(
2η − c(κ)

ε

)θ ∣∣∇n(κ)
ε

∣∣2 ≤ 0 for all t ≥ T,
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which for any [t1, t2) ⊆ [T,∞), upon integration with respect to time, shows that∫
Ω

n
(κ)
ε

p
(·, t2)(

2η − c(κ)
ε (·, t2)

)θ +

∫ t2

t1

∫
Ω

n
(κ)
ε

p−2(
2η − c(κ)

ε

)θ ∣∣∇n(κ)
ε

∣∣2
≤ 1

min{1, p(p− 1)C3}

∫
Ω

n
(κ)
ε

p
(·, t1)(

2η − c(κ)
ε (·, t1)

)θ ,
completing the proof, after taking into account that ηθ ≤ (2η − c(κ)

ε )θ ≤ (2η)θ on Ω ×
[T,∞).

Making use of an inductive argument as exercised in [105, Lemma 6.3], we can get rid
of the time dependence present in the right-hand side of the inequality provided by

Lemma 5.15 entailing the eventual uniform Lp regularity of n
(κ)
ε required for further

analysis.

Lemma 5.16.
For all p > 1 there exist T > 0 and K3 = K3(p) > 0 such that for each ε ∈ (0, 1),

κ ∈ [−1, 1] and all t > T , the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫

Ω
n(κ)
ε

p
(·, t) ≤ K3 and

∫ ∞
T

∫
Ω
n(κ)
ε

p−2∣∣∇n(κ)
ε

∣∣2 ≤ K3.

Proof: Preparing an inductive argument, we first assume that there exist p0 > 1, C0 > 0
and T0 ≥ 0 such that for all ε ∈ (0, 1), κ ∈ [−1, 1] and t > T0 we have∫ t+1

t

∥∥n(κ)
ε

∥∥
Lp0 (Ω)

≤ C0. (5.5.5)

In light of Lemma 5.15 we find for each q ∈ (1, p0] corresponding T1 = T1(q) > 0 and
K2 = K2(q) > 0 with the property that for all ε ∈ (0, 1), κ ∈ [−1, 1] and [t1, t) ⊆ [T1,∞)
the inequality ∫

Ω
n(κ)
ε

q
(·, t) +

∫ t

t1

∫
Ω
n(κ)
ε

q−2∣∣∇n(κ)
ε

∣∣2 ≤ K2

∫
Ω
n(κ)
ε

q
(·, t1) (5.5.6)

is valid. Letting T̄ := max{T0, T1} we see that in view of (5.5.5) there exists C1 > 0
such that for any ε ∈ (0, 1) and κ ∈ [−1, 1] we can find t∗ ∈ [T̄ , T̄ + 1] such that

‖n(κ)
ε (·, t∗)‖Lq(Ω) ≤ C1. Plugging this into (5.5.6) with t1 = t∗ we obtain for all t > T̄ +1

and any ε ∈ (0, 1) and κ ∈ [−1, 1] that∫
Ω
n(κ)
ε

q
(·, t) +

∫ t

T̄+1

∫
Ω
n(κ)
ε

p0−2∣∣∇n(κ)
ε

∣∣2
≤
∫

Ω
n(κ)
ε

q
(·, t) +

∫ t

t∗

∫
Ω
n(κ)
ε

q−2∣∣∇n(κ)
ε

∣∣2 ≤ K2

∫
Ω
n(κ)
ε

q
(·, t∗) ≤ K2C1, (5.5.7)

proving that under the assumption (5.5.5) the asserted bounds are valid for p ∈ (1, p0].
Moreover, due to the embedding W 1,2(Ω) ↪→ L6(Ω) and Hölder’s inequality, there is
some C2 = C2(p0) > 0 such that for all t > T̄ + 1
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(∫ t+1

t

∥∥n(κ)
ε

∥∥
L3p0 (Ω)

)p0

≤
∫ t+1

t

∥∥n(κ)
ε

p0
2
∥∥2

L6(Ω)

≤ C2

∫ t+1

t

(∥∥∇n(κ)
ε

p0
2
∥∥2

L2(Ω)
+
∥∥n(κ)

ε

p0
2
∥∥2

L
2
p0 (Ω)

)
≤ C2p

2
0

4

∫ t+1

t

∫
Ω
n(κ)
ε

p0−2∣∣∇n(κ)
ε

∣∣2 + C2m
p0

≤ C1C2K2p
2
0

4
+ C2m

p0 ,

where we also made use of
∫

Ωn
(κ)
ε (·, t) =

∫
Ωn0 =: m for all t > 0 and (5.5.7). Drawing

on these calculations, the step from p0 to 3p0 is possible and we only have to ensure that
indeed the assumption (5.5.5) is fulfilled for some p0 > 1. Now, in a similar fashion the
embedding W 1,2(Ω) ↪→ L6(Ω) and Lemma 5.6 provide C3 > 0 and K1 > 0 such that for
all ε ∈ (0, 1), κ ∈ [−1, 1] and t > 0 we have∫ t+1

t

∥∥n(κ)
ε

∥∥
L3(Ω)

≤ C3

∫ t+1

t

(∥∥∇n(κ)
ε

1
2 ‖2L2(Ω) +

∥∥n(κ)
ε

1
2
∥∥2

L2(Ω)

)
≤ C3

4

∫ t+1

t

∫
Ω

∣∣∇n(κ)
ε

∣∣2
n

(κ)
ε

+ C3

∫ t+1

t

∫
Ω
n(κ)
ε ≤

C3K1

4
+ C3m,

which shows that (5.5.7) is valid for p0 = 3 and thereby concludes the proof.

An immediate consequence is the eventual boundedness of the forcing term in the third

equation of (Λε,κ), from which we extract new information on the gradient of u
(κ)
ε .

Lemma 5.17.
There exist T > 0 and C > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T the

solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫

Ω

∣∣∇u(κ)
ε (·, t)

∣∣2 ≤ C.
Proof: Recalling that P denotes the Helmholtz projection from L2

(
Ω;R3

)
to L2

σ(Ω) and
A := −P∆ the Stokes operator in L2

(
Ω;R3

)
under homogeneous Dirichlet boundary

conditions, we find that testing the projected third equation of (Λε,κ) by Au
(κ)
ε implies

in view of Young’s inequality that

1

2

d

dt

∫
Ω

∣∣A 1
2u(κ)

ε

∣∣2 +

∫
Ω

∣∣Au(κ)
ε

∣∣2
≤
∫

Ω

∣∣Au(κ)
ε

∣∣2 +
|κ|
2

∫
Ω

∣∣∣(Yεu(κ)
ε · ∇

)
u(κ)
ε

∣∣∣2 +
1

2

∫
Ω

∣∣n(κ)
ε ∇φ

∣∣2 (5.5.8)

is valid for all t > 0, where we also made use of the facts that
∥∥A 1

2u
(κ)
ε

∥∥
L2(Ω)

=∥∥∇u(κ)
ε

∥∥
L2(Ω)

and ‖Pϕ‖L2(Ω) ≤ ‖ϕ‖L2(Ω) for all ϕ ∈ L2
(
Ω;R3

)
. Moreover, since we
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Ev. Lp regularity estimates indep. of ε as consequence of small oxygen concentration

have D(1 + εA) = W 2,2(Ω;R3)∩W 1,2
0,σ (Ω) ↪→ L∞

(
Ω;R3

)
, we see that there exists C1 > 0

such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0 we have

∥∥Yεu(κ)
ε (·, t)

∥∥
L∞(Ω)

≤ C1

∥∥u(κ)
ε (·, t)

∥∥
L2(Ω)

≤ C1

√
K1

K0
=: C2,

where K0,K1 > 0 are the constants obtained in Lemma 5.4 and Lemma 5.6, respectively.
In particular, we obtain from a combination with (5.5.8) and the fact that |κ| ≤ 1 that

d

dt

∫
Ω

∣∣∇u(κ)
ε

∣∣2 ≤ C2

∫
Ω

∣∣∇u(κ)
ε

∣∣2 + ‖∇φ‖2L∞(Ω)

∫
Ω

∣∣n(κ)
ε

∣∣2
on (0,∞). Letting y(t) :=

∫
Ω|∇u

(κ)
ε (·, t)|2 and h(t) := ‖∇φ‖2L∞(Ω)

∫
Ω|n

(κ)
ε (·, t)|2 we find

that by Lemma 5.16 there exist T > 0 and C3 > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1]
and all t ≥ T we have h(t) ≤ C3, and hence

y′(t) ≤ C2y(t) + C3 for all t > T. (5.5.9)

Recalling that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0 we moreover have∫ t+1

t

∫
Ω

∣∣∇u(κ)
ε

∣∣2 ≤ K1,

with K1 > 0 provided by Lemma 5.6, we infer that for any fixed t > T + 1 and each
ε ∈ (0, 1) and κ ∈ [−1, 1] there exists some t∗ ∈ (t− 1, t) such that∫

Ω

∣∣∇u(κ)
ε (·, t∗)

∣∣2 ≤ K1,

which upon integrating the differential inequality (5.5.9) over (t∗, t) shows that

y(t) ≤ y(t∗)e
C2(t−t∗) +

∫ t

t∗

C3e
C2(t−t∗) ≤ K1e

C2 + C3e
C2 ,

completing the proof.

As last step in this section, we also lift the regularity of the signal gradient for times
beyond the waiting times from the previous lemmata.

Lemma 5.18.
There exist T > 0 and C > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T the

solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫

Ω

∣∣∇c(κ)
ε (·, t)

∣∣4 ≤ C.
Proof: We work along similar lines as in the proof of Lemma 5.17 by first establishing

a differential inequality for the quantity
∫

Ω

∣∣∇c(κ)
ε (·, t)

∣∣4. A standard testing procedure

123



Ch.5. The Stokes limit in a three-dimensional chemotaxis-Navier–Stokes system

utilizing the pointwise identity ∇c(κ)
ε · ∇∆c

(κ)
ε = 1

2∆
∣∣∇c(κ)

ε

∣∣2 − ∣∣D2c
(κ)
ε

∣∣2, the fact that

∇ · u(κ)
ε = 0 on Ω× (0,∞) and the upper estimate of (5.2.1) shows that

1

4

d

dt

∫
Ω

∣∣∇c(κ)
ε

∣∣4
≤ 1

2

∫
Ω

∣∣∇c(κ)
ε

∣∣2∆
∣∣∇c(κ)

ε

∣∣2 − ∫
Ω

∣∣∇c(κ)
ε

∣∣2∣∣D2c(κ)
ε

∣∣2 − ∫
Ω

∣∣∇c(κ)
ε

∣∣2∇c(κ)
ε ·

(
∇u(κ)

ε · ∇c(κ)
ε

)
+

∫
Ω

∣∣∇c(κ)
ε

∣∣2∣∣∆c(κ)
ε

∣∣n(κ)
ε c(κ)

ε + 2

∫
Ω

∣∣∇c(κ)
ε ·

(
D2c(κ)

ε · ∇c(κ)
ε

)
n(κ)
ε c(κ)

ε

∣∣ (5.5.10)

holds for all t > 0. To further estimate the first term on the right we draw on arguments
employed in [37, Proposition 3.2]. Let us recall that there exists C1 > 0 such that for any

ϕ ∈ C2
(
Ω
)

with ∂ϕ
∂ν = 0 on ∂Ω we have ∂|∇ϕ|2

∂ν ≤ C1|∇ϕ|2 on ∂Ω (cf. [61, Lemma 4.2]).

Moreover, by utilizing the fact that for r ∈ (0, 1
2) W 1,2(Ω) ↪→↪→ W r+ 1

2
,2(Ω) ↪→ L1(Ω)

([18]), Ehrling’s lemma as well as trace embddings (e.g. [31, Thm. 4.24, Prop. 4.22])
we obtain for every fixed η > 0 some C2 > 0 such that ‖ψ‖L2(∂Ω) ≤ η‖∇ψ‖L2(Ω) +
C2‖ψ‖L1(Ω) holds for any ψ ∈ W 1,2(Ω). Hence, drawing on Lemmata 5.3 and 5.6 to

estimate
∫

Ω|∇c
(κ)
ε |2 ≤ 2K1‖c0‖L∞(Ω) =: C3, we find that for any ε ∈ (0, 1), κ ∈ [−1, 1]

and all t > 0

1

2

∫
Ω

∣∣∇c(κ)
ε

∣∣2∆
∣∣∇c(κ)

ε

∣∣2 = −1

2

∫
Ω

∣∣∣∇∣∣∇c(κ)
ε

∣∣2∣∣∣2 +
1

2

∫
∂Ω

∣∣∇c(κ)
ε

∣∣2∂∣∣∇c(κ)
ε

∣∣2
∂ν

≤ −1

2

∫
Ω

∣∣∣∇∣∣∇c(κ)
ε

∣∣2∣∣∣2 +
1

2

∫
Ω

∣∣∣∇∣∣∇c(κ)
ε

∣∣2∣∣∣2 + C2

(∫
Ω

∣∣∇c(κ)
ε

∣∣2)2

≤ C2C
2
3 .

Combining this with (5.5.10), multiple employments of Young’s inequality show that

1

4

d

dt

∫
Ω

∣∣∇c(κ)
ε

∣∣4
≤ −

∫
Ω

∣∣∇c(κ)
ε

∣∣2∣∣D2c(κ)
ε

∣∣2 +

∫
Ω

∣∣∇c(κ)
ε

∣∣4∣∣∇u(κ)
ε

∣∣+
1

12

∫
Ω

∣∣∇c(κ)
ε

∣∣2∣∣∆c(κ)
ε

∣∣2
+ 3

∫
Ω

∣∣∇c(κ)
ε

∣∣2n(κ)
ε

2
c(κ)
ε

2
+

1

4

∫
Ω

∣∣∇c(κ)
ε

∣∣2∣∣D2c(κ)
ε

∣∣2 + 4

∫
Ω

∣∣∇c(κ)
ε

∣∣2n(κ)
ε

2
c(κ)
ε

2
+ C2C

2
3

is valid on (0,∞). In light of the pointwise estimate
∣∣∆c(κ)

ε

∣∣2 ≤ 3
∣∣D2c

(κ)
ε

∣∣2 and Hölder’s
inequality, this implies that

1

4

d

dt

∫
Ω

∣∣∇c(κ)
ε

∣∣4 +
1

2

∫
Ω

∣∣∇c(κ)
ε

∣∣2∣∣D2c(κ)
ε

∣∣2 (5.5.11)

≤
(∫

Ω

∣∣∇c(κ)
ε

∣∣8) 1
2
(∫

Ω

∣∣∇u(κ)
ε

∣∣2) 1
2

+ 7
(∫

Ω
n(κ)
ε

4
c(κ)
ε

4
) 1

2
(∫

Ω

∣∣∇c(κ)
ε

∣∣4) 1
2

+ C2C
2
3

for all t > 0. Making use of the Gagliardo–Nirenberg inequality we obtain C4 > 0 such
that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0
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Uniform eventual stabilization of n
(κ)
ε and u

(κ)
ε in some Lp spaces

(∫
Ω

∣∣∇c(κ)
ε

∣∣8) 1
2

=
∥∥∥∣∣∇c(κ)

ε

∣∣2∥∥∥2

L4(Ω)

≤ C4

∥∥∥∇∣∣∇c(κ)
ε

∣∣2∥∥∥ 9
5

L2(Ω)

∥∥∥∣∣∇c(κ)
ε

∣∣2∥∥∥ 1
5

L1(Ω)
+ C4

∥∥∥∣∣∇c(κ)
ε

∣∣2∥∥∥2

L1(Ω)

≤ C4C
1
5
3

∥∥∥∇∣∣∇c(κ)
ε

∣∣2∥∥∥ 9
5

L2(Ω)
+ C4C

2
3

≤ C4C
1
5
3

(
4

∫
Ω

∣∣∇c(κ)
ε |2

∣∣D2c(κ)
ε

∣∣2) 9
10

+ C4C
2
3 .

Therefore, again by using Young’s inequality, we infer from (5.5.11) that there is C5 > 0
such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0

1

4

d

dt

∫
Ω

∣∣∇c(κ)
ε

∣∣4 ≤ C5

(∫
Ω

∣∣∇u(κ)
ε

∣∣2)5
+ C4C

2
3

(∫
Ω

∣∣∇u(κ)
ε

∣∣2) 1
2

+ 7

∫
Ω
n(κ)
ε

4
c(κ)
ε

4
+

7

4

∫
Ω

∣∣∇c(κ)
ε

∣∣4 + C2C
2
3 ,

which in light of Lemmata 5.3, 5.16 and 5.17 entails that there are T > 0 and C6 > 0

such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T the function y(t) :=
∫

Ω

∣∣∇c(κ)
ε (·, t)

∣∣4
satisfies the differential inequality

y′(t) ≤ 7y(t) + C6. (5.5.12)

Now, according to Lemmata 5.3 and 5.6 for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0 we
can estimate∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4 ≤ ‖c0‖3L∞(Ω)

∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3 ≤ ‖c0‖3L∞(Ω)K1,

and hence for any fixed t > T +1 and each ε ∈ (0, 1) and κ ∈ [−1, 1] we find t∗ ∈ (t−1, t)
such that ∫

Ω

∣∣∇c(κ)
ε (·, t∗)

∣∣4 ≤ ‖c0‖3L∞(Ω)K1 =: C7,

which upon integrating (5.5.12) over (t∗, t) entails that

y(t) ≤ C7e
7 + C6e

7

as desired.

5.6 Uniform eventual stabilization of n
(κ)
ε and u

(κ)
ε in some Lp

spaces

Eventual decay of the signal component and uniform regularity estimates at hand, we
can now turn towards obtaining eventual stabilization properties of the two remaining
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solution components. These will be an important cornerstone of the maximal Sobolev
regularity type arguments we employ in Section 5.7 to obtain uniform bounds in Hölder

spaces. We start with an eventual smallness result for a mixed quantity of n
(κ)
ε and

∇c(κ)
ε .

Lemma 5.19.
For all δ > 0 there exists T > 0 such that for any ε ∈ (0, 1) and κ ∈ [−1, 1] and all t > T

the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫ t+1

t

∥∥n(κ)
ε ∇c(κ)

ε

∥∥2

L2(Ω)
< δ.

Proof: According to Lemma 5.6, there is K1 > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1]
and all t > 0 we have ∫ t+1

t

∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3 ≤ K1.

Similarly, drawing on Lemma 5.16, we find K3 > 0 and T1 > 0 such that for any
ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T1 the estimate∥∥n(κ)

ε (·, t)
∥∥4

L4(Ω)
≤ K3

is valid. Now, given any δ > 0 we fix

0 < δ0 < min

{
δ

2K1
,

√
δ

2K3

}
and, according to Lemma 5.13, obtain a corresponding T2 > 0 such that for each ε ∈
(0, 1), κ ∈ [−1, 1] and all t > T2 ∥∥c(κ)

ε (·, t)
∥∥
L∞(Ω)

< δ0

is satisfied. Hence, by making use of the estimates above as well as Hölder’s and Young’s
inequalities, we achieve for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > max{T1, T2} that∫ t+1

t

∥∥n(κ)
ε ∇c(κ)

ε

∥∥2

L2(Ω)
≤
∫ t+1

t

∥∥n(κ)
ε

∥∥2

L4(Ω)

∥∥∇c(κ)
ε

∥∥2

L4(Ω)
≤
∫ t+1

t
K

1
2
3

∥∥∇c(κ)
ε

∥∥2

L4(Ω)

≤
∫ t+1

t
K

1
2
3

∥∥c(κ)
ε

∥∥ 3
2

L∞(Ω)

(∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3

) 1
2

≤
∫ t+1

t
K3

∥∥c(κ)
ε

∥∥2

L∞(Ω)
+

∫ t+1

t

∥∥c(κ)
ε

∥∥
L∞(Ω)

∫
Ω

∣∣∇c(κ)
ε

∣∣4
c

(κ)
ε

3

≤ K3δ
2
0 +K1δ0 < δ,

completing the proof.
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In order to successfully extract a uniform stabilization for n
(κ)
ε and u

(κ)
ε in certain Lp

spaces we will require the following auxiliary lemma for ODEs, which we have taken
from [91, Lemma 4.3].

Lemma 5.20.
Let I be any set and λ > 0, and for each ι ∈ I let yι ∈ C0([0,∞)) ∩ C1((0,∞)) and
fι ∈ C0((0,∞)) be nonnegative and such that

y′ι(t) + λyι(t) ≤ fι(t) for all t > 0

and

sup
ι∈I

yι(0) <∞ as well as sup
ι∈I
‖fι‖L∞((0,∞)) <∞

and

sup
ι∈I

∫ t+1

t
fι(s) ds→ 0 as t→∞

hold. Then

sup
ι∈I

yι(t)→ 0 as t→∞.

Tracking the time evolution of y
(κ)
ε (t) :=

∫
Ω

(
n(κ)
ε (·, t)−n0

)2
and shifting the time appro-

priately, we can make use of the statement above to attain a uniform eventual smallness

of y
(κ)
ε .

Lemma 5.21.
For all δ > 0 there exists T > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T

he solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∥∥n(κ)

ε (·, t)− n0

∥∥2

L2(Ω)
< δ.

Furthermore, for all p ≥ 2 and δ′ > 0 there is T ′ > 0 such that for each ε ∈ (0, 1),
κ ∈ [−1, 1] and all t > T ′ the solution satisfies∫ t+1

t

∥∥n(κ)
ε − n0

∥∥p
Lp(Ω)

< δ′.

Proof: We start with the case p = 2. Due to the Young and Poincaré inequalities we
obtain C1 > 0 fulfilling

d

dt

∫
Ω

(
n(κ)
ε − n0

)2 ≤ −∫
Ω

∣∣∇n(κ)
ε

∣∣2 +

∫
Ω

∣∣n(κ)
ε ∇c(κ)

ε

∣∣2
≤ − 1

C1

∫
Ω

(
n(κ)
ε − n0

)2
+
∥∥n(κ)

ε ∇c(κ)
ε

∥∥2

L2(Ω)
for all t > 0,
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where we also made use of the fact that ∇ · u(κ)
ε = 0 in Ω× (0,∞). Moreover, as∥∥(n(κ)

ε ∇c(κ)
ε

)
(·, t)

∥∥2

L2(Ω)
≤
∥∥n(κ)

ε (·, t)
∥∥2

L4(Ω)

∥∥∇c(κ)
ε (·, t)

∥∥2

L4(Ω)
for all t > 0,

in light of Lemmata 5.16, 5.18 and 5.19, we find that there exists some T1 > 0 such that

y(κ)
ε (t) :=

∫
Ω

(
n(κ)
ε (t− T1)− n0

)2
satisfies the conditions of Lemma 5.20. Hence, we conclude that for all δ > 0 there exists
T̄ ≥ T1 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T̄ we have∥∥n(κ)

ε (·, t)− n0

∥∥2

L2(Ω)
< δ,

which, in particular, also immediately implies the second claim for p = 2. For p > 2 we
let K3 := K3(2p) > 0 and T2 > 0 be given by Lemma 5.16 and then, in consideration of
(5.1.4), obtain C2 > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T2 we have∥∥n(κ)

ε (·, t)− n0

∥∥ p(p−2)
p−1

L2p(Ω)
≤ (K3 + ‖n0‖L2p(Ω))

p(p−2)
p−1 ≤ C2.

Therefore, by means of Hölder interpolation and Hölder’s inequality we find that for any
ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T2∫ t+1

t

∥∥n(κ)
ε − n0

∥∥p
Lp(Ω)

≤
∫ t+1

t

∥∥n(κ)
ε − n0

∥∥ p(p−2)
p−1

L2p(Ω)

∥∥n(κ)
ε − n0

∥∥ p
p−1

L2(Ω)
(5.6.1)

≤ C2

∫ t+1

t

∥∥n(κ)
ε − n0

∥∥ p
p−1

L2(Ω)
≤ C2

(∫ t+1

t

∥∥n(κ)
ε − n0

∥∥2

L2(Ω)

) p
2p−2

is valid, due to p
p−1 < 2. Finally, for given δ > 0 we let 0 < δ0 <

δ
C2

and then conclude
the proof by making use of the first part of this Lemma to estimate the remaining term
in (5.6.1) by δ0 for t > T3 large enough.

The second conclusion we can draw from the Lemma 5.20 concerns the gradient of the
fluid-velocity field and, by Sobolev embeddings, the fluid-velocity itself.

Lemma 5.22.
For all δ > 0 there exists T > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T

the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫ t+1

t

∫
Ω

∣∣∇u(κ)
ε

∣∣2 < δ. (5.6.2)

Moreover, for all p ∈ [1, 6] and all δ′ > 0 there exists T ′ > 0 such that for each ε ∈ (0, 1),
κ ∈ [−1, 1] and all t > T ′ ∫ t+1

t

∥∥u(κ)
ε

∥∥2

Lp(Ω)
< δ′ (5.6.3)

holds.
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Proof: Making use of Lemma 5.5 and the divergence-free property of u
(κ)
ε , we first find

that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0 we have

1

2

d

dt

∫
Ω

∣∣u(κ)
ε

∣∣2 +

∫
Ω

∣∣∇u(κ)
ε

∣∣2 =

∫
Ω

(
n(κ)
ε − n0

)
∇φ · u(κ)

ε .

Here, the Poincaré inequality provides C1 > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1]

we have ‖u(κ)
ε ‖2L2(Ω) ≤ C1‖∇u(κ)

ε ‖2L2(Ω), which entails upon an application of Young’s

inequality that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > 0

1

2

d

dt

∫
Ω

∣∣u(κ)
ε

∣∣2 +
1

2

∫
Ω

∣∣∇u(κ)
ε

∣∣2 ≤ C1

∥∥∇φ∥∥2

L∞(Ω)

2

∫
Ω

(
n(κ)
ε − n0

)2
(5.6.4)

is valid on (0,∞). Since the Poincaré inequality moreover implies that for any ε ∈ (0, 1),
κ ∈ [−1, 1] and all t > 0

d

dt

∫
Ω

∣∣u(κ)
ε

∣∣2 +
1

C1

∫
Ω

∣∣u(κ)
ε

∣∣2 ≤ C1‖∇φ‖2L∞(Ω)

∫
Ω

(
n(κ)
ε − n0

)2
holds, we find that in light of Lemmata 5.21, 5.6, 5.16 and (5.1.3), there exists some
T1 > 0 such that the function

y(κ)
ε (t) :=

∫
Ω

∣∣u(κ)
ε (t− T1)

∣∣2
satisfies the conditions of Lemma 5.20. Hence, we find that for all δ0 > 0 there is some
T̄ ≥ T1 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T̄∥∥u(κ)

ε (·, t)
∥∥2

L2(Ω)
< δ0

holds. Now, by making use of the first part of the proof and Lemma 5.21, given any
δ > 0, we find T2 > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T2

‖u(κ)
ε (·, t)‖2L2(Ω) <

δ

2
and

∫ t+1

t

∥∥n(κ)
ε − n0

∥∥2

L2(Ω)
<

δ

2C1‖∇φ‖2L∞(Ω)

.

Therefore, for t > T2 integrating (5.6.4) with respect to time shows∫ t+1

t

∫
Ω

∣∣∇u(κ)
ε

∣∣2 ≤ ∫
Ω

∣∣u(κ)
ε (·, t)

∣∣2 + C1‖∇φ‖2L∞(Ω)

∫ t+1

t

∫
Ω

(
n(κ)
ε − n0

)2
<
δ

2
+
δ

2
= δ,

proving (5.6.2). Finally, (5.6.3) is an immediate consequence of (5.6.2) and W 1,2
0 (Ω) ↪→

L6(Ω).

Making use of semigroup estimates for the Stokes equation we can further refine the
smallness results of the previous lemmata.
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Lemma 5.23.
For all δ > 0 and any p > 3 there exists T > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1]

and all t > T the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∥∥u(κ)

ε (·, s)
∥∥
Lp(Ω)

< δ for any s ∈ [t, t+ 1].

Proof: This is a consequence of Lemmata 5.21, 5.22 and a fixed point argument relying
on the regularizing effects of the Stokes semigroup. The proof we give here is based on
[105, Lemma 7.5] and [47, Lemma 3.8]. We fix some p0 ∈ (3, p) satisfying p0 ≤ 6 and
then let γ := 3

2( 1
p0
− 1
p). We note that by these choices γ fulfills γ ∈ (0, 1

2−
3
2p) and hence

the constant

C1 :=

∫ 1

0
(1− σ)

− 1
2
− 3

2pσ−2γ dσ

is finite. Moreover, according to the well known smoothing properties of the Stokes
operator ([29]), there exist C2, C3, C4 > 0 such that

‖e−tAPϕ‖Lp(Ω) ≤ C2t
−γ‖ϕ‖Lp0 (Ω) for all ϕ ∈ Lp0

(
Ω;R3

)
and all t > 0,

‖e−tAPϕ‖Lp(Ω) ≤ C3‖ϕ‖Lp(Ω) for all ϕ ∈ Lp
(
Ω;R3

)
and all t > 0, (5.6.5)

‖e−tAP∇ · ϕ‖Lp(Ω) ≤ C4t
− 1

2
− 3

2p ‖ϕ‖
L
p
2 (Ω)

for all ϕ ∈ L
p
2
(
Ω;R3

)
and all t > 0.

Now, given δ > 0 we next fix δ0 ∈ (0, δ) such that

δ03
1
2
− 3

2p
−γ
C1C4 <

1

3

and then, in light of Lemma 5.22, Lemma 5.21 and (5.1.3), pick T0 > 0 such that for
any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T0∫ t+1

t

∥∥u(κ)
ε

∥∥
Lp0 (Ω)

<
δ0

3C2
and

∫ t+3

t

∥∥n(κ)
ε − n0

∥∥
Lp(Ω)

<
δ0

31+γC3‖∇φ‖L∞(Ω)
,

which in particular also entails that for any fixed t1 > T0, each ε ∈ (0, 1) and κ ∈ [−1, 1]

there exists t? ∈ (t1, t1 + 1) such that
∥∥u(κ)

ε (·, t?)
∥∥
Lp0 (Ω)

< δ0
3C2

holds. Letting

X :=
{
ϕ : Ω× (t?, t? + 3)→ R3

∣∣ ‖ϕ‖X := sup
s∈(t?,t?+3)

(t− t?)γ‖ϕ(·, s)‖Lp(Ω) <∞
}
,

we now consider the map Ψ acting on the closed subset S := {ϕ ∈ X | ‖ϕ‖X ≤ δ0}
defined by

Ψ(ϕ)(·, t) := e−(t−t?)Au(κ)
ε (·, t?) +

∫ t

t?

e(t−s)AP
(
−κ∇ · (Yεϕ⊗ ϕ)(·, s) + n(κ)

ε (·, s)∇φ
)

ds.
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Drawing on (5.6.5), the contraction property of Yε and the Cauchy-Schwarz inequality,
we find that

‖Ψ(ϕ)(·, t)‖Lp(Ω) ≤ C2(t− t?)−γ
∥∥u(κ)

ε (·, t?)
∥∥
Lp0 (Ω)

+ C4

∫ t

t?

(t− s)−
1
2
− 3

2p ‖ϕ‖2Lp(Ω) ds

+ C3‖∇φ‖L∞(Ω)

∫ t

t?

∥∥n(κ)
ε (·, t)− n0

∥∥
Lp(Ω)

ds (5.6.6)

for all t ∈ (t?, t? + 3). In light of our choice for δ0, the definition of S and the fact that
|t− t?| ≤ 3, (5.6.6) implies that

(t− t?)γ‖Ψ(ϕ)(·, t)‖Lp(Ω)

≤ C2

∥∥u(κ)
ε (·, t?)

∥∥
Lp0 (Ω)

+ δ2
0(t− t?)γC4

∫ t

t?

(t− s)−
1
2
− 3

2p (s− t?)−2γ ds

+ 3γC3‖∇φ‖L∞(Ω)

∫ t?+3

t?

∥∥n(κ)
ε (·, t)− n0

∥∥
Lp(Ω)

ds

<
δ0

3
+ δ2

0(t− t?)γ−
1
2
− 3

2p
−2γ+1

C4

∫ 1

0
(1− σ)

− 1
2
− 3

2pσ−2γ dσ +
δ0

3

≤ δ0

3
+ δ0

(
δ03

1
2
− 3

2p
−γ
C1C4

)
+
δ0

3
< δ0, (5.6.7)

and hence Ψ maps S onto itself. Now, taking into account that for any ϕ,ψ ∈ Lp
(
Ω;R3

)
‖Yεϕ⊗ ϕ− Yεψ ⊗ ψ‖

L
p
2 (Ω)
≤ (‖ϕ‖Lp(Ω) + ‖ψ‖Lp(Ω))‖ϕ− ψ‖Lp(Ω)

we find that for any ϕ,ψ ∈ S

‖Ψ(ϕ)−Ψ(ψ)‖Lp(Ω) ≤ C4

∫ t

t?

(t− s)−
1
2
− 3

2p ‖ϕ⊗ ϕ− ψ ⊗ ψ‖
L
p
2 (Ω)

ds

≤ 2δ0C4‖ϕ− ψ‖X
∫ t

t?

(t− s)−
1
2
− 3

2p (s− t?)−2γ ds on (t?, t? + 3),

so that

(t− t?)γ‖(Ψ(ϕ)−Ψ(ψ))(·, t)‖Lp(Ω) ≤ 2δ03
1
2
− 3

2p
−γ
C1C4‖ϕ− ψ‖X for all t ∈ (t?, t? + 3),

with 2δ03
1
2
− 3

2p
−γ
C1C4 <

2
3 . Thus, Ψ : S → S is a contracting map and therefore, there

exists a unique fixed point of Ψ on S, which has to coincide with u
(κ)
ε on (t?, t? + 3)

([75, Theorem V.2.5.1]) and we conclude from (5.6.7) and the fact that (t1 + 2, t1 + 3) ⊂
(t? + 1, t? + 3) that for any ε ∈ (0, 1), κ ∈ [−1, 1]∥∥u(κ)

ε (·, t)
∥∥
Lp(Ω)

< δ for all t ∈ (t1 + 2, t1 + 3),

completing the proof.
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5.7 Uniform eventual smoothness estimates

In order to obtain an improvement on the regularity of our solution components, we will
incorporate arguments shown in [47, Lemmata 3.9, 3.10 and 3.11]. For this to work,
however, we will require the following cut-off functions (cf. [105] and [47]).

Definition 5.24.
Given any monotonically increasing function ξ0 ∈ C∞(R) satisfying

0 ≤ ξ0 ≤ 1 on R, ξ0 ≡ 0 on (−∞, 0] and ξ0 ≡ 1 on (1,∞)

and some t0 > 0 we set

ξt0(t) := ξ0(t− t0), t ∈ R.

Relying on well known maximal Sobolev estimates for the Stokes equation we can es-

tablish a uniform bound for u
(κ)
ε in certain Hölder spaces.

Lemma 5.25.
There exist γ ∈ (0, 1), T > 0 and C > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all

t > T the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∥∥u(κ)
ε

∥∥
C1+γ,

γ
2(Ω×[t,t+1])

≤ C. (5.7.1)

Proof: The proof follows the approach undertaken in [47, Lemma 3.9], which relies on
maximal Sobolev regularity properties of the Stokes equation and the uniform bounds
already prepared.

Let us first fix the following parameters. Let s > 3, r > 1 and then we pick s1 > 2s and
s′1 such that 1

s1
+ 1

s′1
= 1

s . Then according to Lemma 5.16 we can find T ′ > 0 and C1 > 0

such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T ′∫ t+1

t

∥∥n(κ)
ε

∥∥s
Ls(Ω)

≤ C1 (5.7.2)

holds. Moreover, drawing on Lemmata 5.22 and 5.23 we can fix T > T ′ such that for
any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T we also have∥∥u(κ)

ε

∥∥
L∞((t,t+2);Lr(Ω))

≤ C1,
∥∥u(κ)

ε

∥∥
L∞((t,t+2);Ls(Ω))

≤ C1,
∥∥u(κ)

ε

∥∥
L∞((t,t+2);L

s′
1 (Ω))

≤ C1.

(5.7.3)

Now, for t0 > T we let ξ := ξt0 denote the cut-off function given by Definition 5.24 and

find that ξu
(κ)
ε fulfills(

ξu(κ)
ε

)
t
= ∆

(
ξu(κ)

ε

)
− κ
(
Yεu

(κ)
ε · ∇

)
ξu(κ)

ε −∇
(
ξP (κ)

ε

)
+ ξn(κ)

ε ∇φ+ ξ′u(κ)
ε in Ω× (t0,∞),

∇ · (ξu(κ)
ε ) = 0 in Ω× (t0,∞),

with
(
ξu(κ)

ε

)
(·, t0) = 0 in Ω and

(
ξu(κ)

ε

)
= 0 on ∂Ω×(t0,∞).
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Thus, the maximal Sobolev regularity estimate for the Stokes semigroup ([30]) provides
C2 > 0 such that for all ε ∈ (0, 1) and κ ∈ [−1, 1]∫ t0+2

t0

∥∥(ξu(κ)
ε

)
t

∥∥s
Ls(Ω)

+

∫ t0+2

t0

∥∥D2
(
ξu(κ)

ε

)∥∥s
Ls(Ω)

≤ C2 · 0 + C2

∫ t0+2

t0

∥∥P((Yεu(κ)
ε · ∇

)
ξu(κ)

ε

)∥∥s
Ls(Ω)

+ C2

∫ t0+2

t0

∥∥P(ξn(κ)
ε ∇φ

)∥∥s
Ls(Ω)

+ C2

∫ t0+2

t0

∥∥P(ξ′u(κ)
ε

)∥∥s
Ls(Ω)

. (5.7.4)

According to (5.7.2) and (5.7.3) we obtain C3 > 0 such that for any ε ∈ (0, 1) and
κ ∈ [−1, 1] we may estimate∫ t0+2

t0

∥∥P(ξn(κ)
ε ∇φ

)∥∥s
Ls(Ω)

+

∫ t0+2

t0

∥∥P(ξ′u(κ)
ε

)∥∥s
Ls(Ω)

≤ C3. (5.7.5)

Moreover, we can find C4 > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t0 > T∥∥P((Yεu(κ)
ε · ∇

)
ξu(κ)

ε

)∥∥s
Ls(Ω)

≤ C4

∥∥Yεu(κ)
ε

∥∥s
L
s′
1 (Ω)

∥∥∇(ξu(κ)
ε

)∥∥s
Ls1 (Ω)

≤ C4C
s
1

∥∥∇(ξu(κ)
ε

)∥∥s
Ls1 (Ω)

on (t0, t0 +2), due to Hölder’s inequality and the fact that ‖Yεϕ‖
L
s′
1 (Ω)
≤ ‖ϕ‖

L
s′
1 (Ω)

holds

for all ϕ ∈ Ls′1
(
Ω;R3

)
. Employing the Gagliardo–Nirenberg inequality we then obtain

C5 > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t0 > T∥∥P((Yεu(κ)
ε · ∇

)
ξu(κ)

ε

)∥∥s
Ls(Ω)

≤ C5C4C
s
1

∥∥D2
(
ξu(κ)

ε

)∥∥as
Ls(Ω)

∥∥ξu(κ)
ε

∥∥(1−a)s

Lr(Ω)

≤ C5C4C
(2−a)s
1

∥∥D2
(
ξu(κ)

ε

)∥∥as
Ls(Ω)

holds on (t0, t0 +2), where a =
1
3
− 1
s1

+ 1
r

2
3
− 1
s

+ 1
r

∈ (1
2 , 1). Hence, upon integration with respect to

time, an application of Young’s inequality provides C6 > 0 such that for any ε ∈ (0, 1),
κ ∈ [−1, 1] and all t0 > T

C2

∫ t0+2

t0

∥∥P((Yεu(κ)
ε · ∇

)
ξu(κ)

ε

)∥∥s
Ls(Ω)

≤ 1

2

∫ t0+2

t0

∥∥D2
(
ξu(κ)

ε

)∥∥s
Ls(Ω)

+ 2C6C2,

which combined with (5.7.4) and (5.7.5) shows that for any ε ∈ (0, 1), κ ∈ [−1, 1] and
all t0 > T we have∫ t0+2

t0

∥∥(ξu(κ)
ε

)
t

∥∥s
Ls(Ω)

+
1

2

∫ t0+2

t0

∥∥D2
(
ξu(κ)

ε

)∥∥s
Ls(Ω)

≤ 2C6C2 + C3C2.

Due to ξ ≡ 1 on (t0 + 1, t0 + 2), this readily implies that for any s > 1 there exist C7 > 0
and T > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T∫ t+1

t

∥∥u(κ)
εt

∥∥s
Ls(Ω)

+

∫ t+1

t

∥∥u(κ)
ε

∥∥s
W 2,s(Ω)

≤ C7,

and in light of known embedding results (e.g. [2, Theorem 1.1]) entails (5.7.1).
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Arguments along the same lines of the previous lemma (and previously also employed in
[47, Lemmata 3.10 and 3.11]), this time drawing on maximal Sobolev estimates for the
Neumann heat semigroup also help us derive Hölder bounds for the remaining compo-
nents. We proceed with proving a corresponding bound for the signal chemical.

Lemma 5.26.
For any p ∈ (1,∞) there exist T > 0 and C > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1]

and all t > T the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∫ t+1

t

∥∥c(κ)
εt

∥∥
Lp(Ω)

+

∫ t+1

t

∥∥c(κ)
ε

∥∥
W 2,p(Ω)

≤ C.

Furthermore, there exist γ ∈ (0, 1), T > 0 and C ′ > 0 such that for each ε ∈ (0, 1),
κ ∈ [−1, 1] and all t > T ∥∥c(κ)

ε

∥∥
C1+γ,

γ
2(Ω×[t,t+1])

≤ C ′. (5.7.6)

Proof: Given an arbitrary p ∈ (1,∞) we first fix q ∈ (1, p). Now, according to Lem-
mata 5.25 and 5.16 we can pick T ′ > 0 and C1 > 0 such that for all ε ∈ (0, 1) and
κ ∈ [−1, 1] we have∥∥u(κ)

ε

∥∥
L∞(Ω×(T ′,∞))

+
∥∥n(κ)

ε

∥∥
L∞((T ′,∞);Lp(Ω))

≤ C1.

Then, for any t0 > T ′ we denote by ξ := ξt0 a temporal cutoff function as given by

Defintion 5.24 and observe that ξc
(κ)
ε then satisfies

(
ξc(κ)
ε

)
t
+ ξu(κ)

ε · ∇c(κ)
ε = ∆

(
ξc(κ)
ε

)
+

1

ε
ξc(κ)
ε ln

(
1 + εn(κ)

ε

)
+ ξ′c(κ)

ε on Ω× (t0,∞)

with ∂(ξc
(κ)
ε )

∂ν = 0 on ∂Ω×(t0,∞) and ξc
(κ)
ε (·, t0) = 0 in Ω. In light of the maximal

Sobolev regularity estimates for the Neumann heat semigroup ([30]), (5.2.1) and (5.2.2),
this implies the existence of C2 > 0 such that for all ε ∈ (0, 1) and κ ∈ [−1, 1]∫ t0+2

t0

∥∥(ξc(κ)
ε

)
t

∥∥p
Lp(Ω)

+

∫ t0+2

t0

∥∥∆
(
ξc(κ)
ε

)∥∥p
Lp(Ω)

≤ C2

(
0 +

∫ t0+2

t0

∥∥ξu(κ)
ε · ∇c(κ)

ε

∥∥p
Lp(Ω)

+

∫ t0+2

t0

∥∥ξc(κ)
ε n(κ)

ε

∥∥p
Lp(Ω)

+

∫ t0+2

t0

∥∥ξ′c(κ)
ε

∥∥p
Lp(Ω)

)
≤ C2C

p
1

∫ t0+2

t0

∥∥∇(ξc(κ)
ε

)∥∥p
Lp(Ω)

+ 2C2C
p
1‖c0‖pL∞(Ω) + 2C2‖c0‖pL∞(Ω)‖ξ

′‖pL∞(R) (5.7.7)

holds. Since the Gagliardo–Nirenberg inequality entails the existence of C3 > 0 such
that for all ε ∈ (0, 1), κ ∈ [−1, 1] and t > t0 we have∥∥∇(ξc(κ)

ε

)
(·, t)

∥∥p
Lp(Ω)

≤ C3

∥∥∆
(
ξc(κ)
ε

)
(·, t)

∥∥ap
Lp(Ω)

∥∥ξc(κ)
ε (·, t)

∥∥(1−a)p

Lq(Ω)
+ C3

∥∥ξc(κ)
ε (·, t)

∥∥p
L∞(Ω)

,

134



Uniform eventual smoothness estimates

with a =
1
3
− 1
p

+ 1
q

2
3
− 1
p

+ 1
q

satisfying a ∈ (1
2 , 1), an employment of Young’s inequality together with

Hölder’s inequality and (5.2.2) provides C4 > 0 such that for all ε ∈ (0, 1), κ ∈ [−1, 1]
and any t0 > T ′ the inequality from (5.7.7) reads like∫ t0+2

t0

∥∥(ξc(κ)
ε

)∥∥p
Lp(Ω)

+
1

2

∫ t0+2

t0

∥∥∆
(
ξc(κ)
ε

)∥∥p
Lp(Ω)

≤ ‖c0‖pL∞(Ω)(2C4 + 2C3C2C
p
1 + 2C2C

p
1 + 2C2‖ξ′‖pL∞(R)).

Since ξ ≡ 1 on (t0 + 1, t0 + 2), this shows that for any p > 1 one can find C5 > 0 and
T := T ′ + 1 > 0 such that for any t > T and all ε ∈ (0, 1), κ ∈ [−1, 1] we have∫ t+1

t

∥∥c(κ)
εt

∥∥p
Lp(Ω)

+

∫ t+1

t

∥∥c(κ)
ε

∥∥
W 2,p(Ω)

≤ C5.

The asserted Hölder regularity finally results from an application of an embedding result
e.g. presented in [2, Theorem 1.1] by taking p large enough.

A final iteration of similar arguments entails a uniform Hölder bound for the first solution
component.

Lemma 5.27.
There exist γ ∈ (0, 1), T > 0 and C > 0 such that for each ε ∈ (0, 1), κ ∈ [−1, 1] and all

t > T the solution (n
(κ)
ε , c

(κ)
ε , u

(κ)
ε ) of (Λε,κ) satisfies∥∥n(κ)
ε

∥∥
C1+γ,

γ
2(Ω×[t,t+1])

≤ C. (5.7.8)

Proof: We work along similar lines as in the previous lemma. First, given any p > 1 we
pick q ∈ (1, p) and, in light of Lemmata 5.16, 5.25 and 5.26, can then find T ′ > 0 and
C1 > 0 such that for any ε ∈ (0, 1), κ ∈ [−1, 1] we have∥∥n(κ)

ε

∥∥
L∞((T ′,∞);Lp(Ω))

+
∥∥n(κ)

ε

∥∥
L∞((T ′,∞);Lq(Ω))

+
∥∥n(κ)

ε

∥∥
L∞((T ′,∞);L2p(Ω))

≤ C1,

and C2, C3 > 0 such that for any ε ∈ (0, 1), each κ ∈ [−1, 1] and all t > T ′ the estimates

∥∥∇c(κ)
ε

∥∥
L∞(Ω×(t,t+2))

≤ C2,

∫ t+2

t

∥∥∆c(κ)
ε

∥∥p
L2p(Ω)

≤ C2, and
∥∥u(κ)

ε

∥∥
L∞(Ω×(t,t+2))

≤ C3

hold. Now, for t0 > T ′ we once more denote by ξ := ξt0 the cutoff function from
Definition 5.24 and the maximal Sobolev regularity estimates ([30]) then again entail
the existence of C4 > 0 such that for all ε ∈ (0, 1) and κ ∈ [−1, 1]

∫ t0+2

t0

∥∥(ξn(κ)
ε

)
t

∥∥p
Lp(Ω)

+

∫ t0+2

t0

∥∥∆
(
ξn(κ)

ε

)∥∥p
Lp(Ω)

(5.7.9)

≤ C4

∫ t0+2

t0

(∥∥ξu(κ)
ε · ∇n(κ)

ε

∥∥p
Lp(Ω)

+

∥∥∥∥ξ∇ · ( n
(κ)
ε

1 + εn
(κ)
ε

∇c(κ)
ε

)∥∥∥∥p
Lp(Ω)

+
∥∥ξ′n(κ)

ε

∥∥p
Lp(Ω)

)
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≤ C4C
p
3

∫ t0+2

t0

∥∥∇n(κ)
ε

∥∥p
Lp(Ω)

+ C4

∫ t0+2

t0

∥∥∥∥ξ∇ ·( n
(κ)
ε

1 + εn
(κ)
ε

∇c(κ)
ε

)∥∥∥∥p
Lp(Ω)

+ 2Cp1C4‖ξ′‖L∞(R).

Next, to estimate mixed derivative term, we note that by the bounds prepared at the
start of the lemma∥∥∥∥ξ∇ · ( n

(κ)
ε

1 + εn
(κ)
ε

∇c(κ)
ε

)∥∥∥∥p
Lp(Ω)

=

∥∥∥∥ξ∇n(κ)
ε ·∇c

(κ)
ε

(1+εn
(κ)
ε )2

+ ξ
n

(κ)
ε

1 + εn
(κ)
ε

∆c(κ)
ε

∥∥∥∥p
Lp(Ω)

≤ 2pCp2
∥∥∇(ξn(κ)

ε

)∥∥p
Lp(Ω)

+ 2pCp1
∥∥∆c(κ)

ε

∥∥p
L2p(Ω)

(5.7.10)

is valid on (t0, t0+2). Moreover, the Gagliardo–Nirenberg inequality implies the existence
of C5 > 0 such that

‖∇ϕ‖pLp(Ω) ≤ C5‖∆ϕ‖apLp(Ω)‖ϕ‖
(1−a)p
Lq(Ω) + ‖ϕ‖pLq(Ω) for all ϕ ∈W 2,p(Ω),

where again a =
1
3
− 1
p

+ 1
q

2
3
− 1
p

+ 1
q

∈ (1
2 , 1), and hence we infer from Young’s inequality that there

is C6 > 0 such that

C4(Cp3 + 2pCp2 )‖∇ϕ‖pLp(Ω) ≤
1

2
‖∆ϕ‖pLp(Ω) + C6‖ϕ‖pLq(Ω) for all ϕ ∈W 2,p(Ω). (5.7.11)

Thus, collecting (5.7.9)–(5.7.11), we conclude for all ε ∈ (0, 1) and κ ∈ [−1, 1]∫ t0+2

t0

∥∥(ξn(κ)
ε

)
t

∥∥p
Lp(Ω)

+

∫ t0+2

t0

∥∥∆
(
ξn(κ)

ε

)∥∥p
Lp(Ω)

≤ C4(Cp3 + 2pCp2 )

∫ t0+2

t0

∥∥∇(ξn(κ)
ε

)∥∥p
Lp(Ω)

+ 2pCp1

∫ t0+2

t0

∥∥∆c(κ)
ε

∥∥p
L2p(Ω)

+ 2Cp1C4‖ξ′‖L∞(R)

≤ 1

2

∫ t0+2

t0

∥∥∆
(
ξn(κ)

ε

)∥∥p
Lp(Ω)

+ 2C6C
p
1 + 2pCp1C2 + 2Cp1C4‖ξ′‖L∞(R),

which, due to ξ ≡ 1 on (t0 + 1, t0 + 2) implies the existence of C7 > 0 such that for any
ε ∈ (0, 1), κ ∈ [−1, 1] and all t > T := T ′ + 1 we have∫ t+1

t

∥∥n(κ)
εt

∥∥p
Lp(Ω)

+
1

2

∫ t+1

t

∥∥∆n(κ)
ε

∥∥p
Lp(Ω)

≤ C7.

Taking p large enough, the desired Hölder regularity is again an immediate consequence
of the embedding result in e.g. [2, Theorem 1.1].

In light of standard parabolic theory and the Arzelà–Ascoli theorem, we can make use
of the uniform estimates from the previous three lemmata to conclude that, after an
eventual smoothing time T� > 0, the solution obtained in Proposition 5.10 is actually a
classical solution.
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Lemma 5.28.
There exist γ ∈ (0, 1) and T� > 0 such that for each κ ∈ [−1, 1] the weak solution
(n(κ), c(κ), u(κ)) of (Λκ) obtained in Proposition 5.10 satisfies

n(κ), c(κ) ∈ C2+γ,1+ γ
2
(
Ω×[T�,∞)

)
and u(κ) ∈ C2+γ,1+ γ

2
(
Ω×[T�,∞);R3

)
.

In particular, (n(κ), c(κ), u(κ)) together with some P (κ) ∈ C1,0
(
Ω×(T�,∞)

)
solves (Λκ)

classically in Ω× (T�,∞). Moreover, there exists C > 0 such that for all κ ∈ [−1, 1] and
all t ≥ T�∥∥n(κ)(·, t)

∥∥
C2+γ,1+

γ
2 (Ω×[t,t+1])

+
∥∥c(κ)(·, t)

∥∥
C2+γ,1+

γ
2 (Ω×[t,t+1])

+
∥∥u(κ)(·, t)

∥∥
C2+γ,1+

γ
2 (Ω×[t,t+1])

≤ C. (5.7.12)

Proof: We employ standard parabolic regularity theory in a similar fashion as e.g.
displayed in [47, Lemma 3.12]. Drawing on Lemmata 5.25, 5.26 and 5.27, we can pick
some γ̂ ∈ (0, 1), T > 0 and C > 0 such that (5.7.1), (5.7.6) and (5.7.8) hold for any t > T ,
each ε ∈ (0, 1) and every κ ∈ [−1, 1]. Accordingly, by making use of the Arzelà–Ascoli
theorem we find that for some γ′ ∈ (0, γ̂) we have

n(κ)
ε → n(κ), c(κ)

ε → c(κ) in C1+γ′, γ
′

2
(
Ω×[t, t+ 1]

)
and

u(κ)
ε → u(κ) in C1+γ′, γ

′
2
(
Ω×[t, t+ 1];R3

)
along a subsequence of the sequence (εj)j∈N obtained in Proposition 5.10, the members of
which, for convenience, we still label εj . Now, letting ξ := ξT be given by Definition 5.24
we note that ξc(κ) solves

ct = ∆c+ g, c(T ) = 0,
∂c

∂ν

∣∣
∂Ω

= 0,

in the weak sense with g = −ξn(κ)c(κ) − ξu(κ)∇c(κ) + c(κ)ξ′ ∈ Cγ
′, γ
′

2

(
Ω×(T,∞)

)
. In

light of standard parabolic theory (e.g. [45, Theorems IV.5.3 and III.5.1]), we can hence

conclude that for some γ1 ∈ (0, γ′) c(κ) ∈ C2+γ1,1+
γ1
2

(
Ω×[T + 1,∞)

)
and that for γ ≤ γ1

there is C1 > 0 such that for any κ ∈ [−1, 1] (5.7.12) is true for c(κ). In a similar fashion,
we observe that ξn(κ) is a solution of

nt = ∆n− a · ∇n+ b, n(T ) = 0,
∂n

∂ν

∣∣
∂Ω

= 0,

with a = ∇c(κ) + u(κ) and b = −ξn(κ)∆c+ n(κ)ξ′ both being of class Cγ1,
γ1
2

(
Ω×(T,∞)

)
and employing parabolic regularity theory (e.g. [45, Theorems IV.5.3 and III.5.1]) once

more, we find γ2 ∈ (0, γ1) such that n(κ) ∈ C2+γ2,1+
γ2
2

(
Ω×[T + 1,∞)

)
and that for
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γ ≤ γ2 there is C2 > 0 such that (5.7.12) is valid for n(κ). Lastly, since ξu(κ) solves

ut = ∆u+ h := P
(
ξ′u(κ) − κξ(u(κ) · ∇)u(κ)) + ξn(κ)∇φ

)
,

∇ · u = 0, u(T − 1) = 0, u
∣∣
∂Ω

= 0,

where h is again Hölder continuous due to the bounds from Lemmata 5.25, 5.26, 5.27 and
(5.1.3). Hence, Schauder theory for Stokes equation (e.g. [76, Theorem 1.1]) combined
with the uniqueness property ([75, V.1.5.1]) entails that for some γ3 ∈ (0, γ2) we have

u(κ) ∈ C2+γ3,1+
γ3
2

(
Ω×[T + 1,∞);R3

)
and that for γ ≤ γ3 (5.7.12) is also valid for u(κ).

Letting γ := γ3 we obtain the inclusion in the asserted function spaces, whereas the
existence of a corresponding P (κ) ∈ C1,0

(
Ω×(T�,∞)

)
such that (n(κ), c(κ), u(κ), P (κ))

solves (Λκ) classically in Ω × (T�,∞) is an immediate consequence of these regularity
properties ([75]).

5.8 Uniform exponential decay after the smoothing time

For the remainder of the chapter we will denote by T� > 0 the smoothing time obtained
in Lemma 5.28. Employing a second Aubin–Lions type argument for taking κ → 0,
we are still left with the obstacle that this limit procedure will only yield convergence
on compact subsets of Ω×[0,∞). In order to extend the convergence beyond compact
subsets, our next objective will be to improve the previously obtained stabilization prop-
erties to a more detailed decay including an exponential rate of convergence, which, on
the one hand, will still be independent of κ ∈ [−1, 1] and, on the other, will be valid for
all t > T�. We start with supplementing our decay results by the following lemma.

Lemma 5.29.
For all δ > 0 one can find T ≥ T� such that for each κ ∈ [−1, 1] and all t > T the
solution (n(κ), c(κ), u(κ)) of (Λκ) satisfies∥∥n(κ)(·, t)− n0

∥∥
L∞(Ω)

< δ.

Proof: According to the Gagliardo–Nirenberg inequality there is C1 > 0 such that for
any κ ∈ [−1, 1] and all t > T�∥∥n(κ)(·, t)− n0

∥∥5

L∞(Ω)
≤ C1

∥∥n(κ)(·, t)− n0

∥∥3

W 1,∞(Ω)

∥∥n(κ)(·, t)− n0

∥∥2

L2(Ω)
. (5.8.1)

Moreover, by (5.7.12) and (5.1.4) we can find C2 > 0 such that for any κ ∈ [−1, 1] and
t > T�

C1

∥∥n(κ)(·, t)− n0

∥∥3

W 1,∞(Ω)
≤ C1

(∥∥n(κ)(·, t)
∥∥
C1(Ω) + ‖n0‖L∞(Ω)

)3 ≤ C2, (5.8.2)

due to n0 being spatially homogeneous. Then, given δ > 0 we set δ0 := δ5

C2
and rely on

Lemma 5.21 to find T > T� such that for any κ ∈ [−1, 1] and t > T∥∥n(κ)(·, t)− n0

∥∥2

L2(Ω)
< δ0.
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A combination of this with (5.8.1) and (5.8.2) yields that for any κ ∈ [−1, 1] and all
t > T ∥∥n(κ)(·, t)− n0

∥∥
L∞(Ω)

< (C2δ0)
1
5 = δ

holds, finalizing the proof.

Combining the previous lemma with the fact that (n(κ), c(κ), u(κ)) solves (Λκ) classically
on Ω× (T�,∞), we can improve the eventual decay of the oxygen, which in Lemma 5.13
was still of a quite general nature, to a decay with exponential rate.

Lemma 5.30.
There exist µ > 0 and C > 0 such that for each κ ∈ [−1, 1] and all t > 0 the solution
(n(κ), c(κ), u(κ)) of (Λκ) satisfies∥∥c(κ)(·, t)

∥∥
L∞(Ω)

≤ Ce−µt. (5.8.3)

Moreover, for any p ≥ 1 there exist µ′ > 0 and C ′ > 0 such that for each κ ∈ [−1, 1] and
all t > T� ∥∥c(κ)(·, t)

∥∥
W 1,p(Ω)

≤ C ′e−µ′t. (5.8.4)

Proof: We follow the reasoning of [91, Lemmata 4.5 and 4.6]. Drawing on the κ–
independent stabilization property obtained in Lemma 5.29, we can fix T > T� such
that

n(κ) ≥ C1 :=
n0

2
in Ω× (T,∞),

where C1 is positive due to (5.1.4). Noting that (n(κ), c(κ), u(κ)) is a classical solution of
(Λκ) on Ω× (T�,∞), we can make use of the second equation of (Λκ) to find that

c
(κ)
t ≤ ∆c(κ) − u(κ) · ∇c(κ) − C1c

(κ) in Ω× (T,∞),

and therefore, the comparison principle combined with (5.2.2) implies that

c(κ)(·, t) ≤
∥∥c(κ)(·, T )

∥∥
L∞(Ω)

e−C1(t−T ) ≤ ‖c0‖L∞(Ω)e
−C1(t−T ) for all t > T.

Relying once more on (5.2.2), we find that (5.8.3) also holds for 0 < t ≤ T by letting
C := ‖c0‖L∞(Ω)e

C1T and µ := n0
2 . As for the decay involving the gradient, we note that,

assuming p > 3, the Gagliardo–Nirenberg inequality provides C2 > 0 such that∥∥c(κ)(·, t)
∥∥
W 1,p(Ω)

≤ C2

∥∥c(κ)(·, t)
∥∥ p−3

2p

C2(Ω)

∥∥c(κ)(·, t)
∥∥ p+3

2p

L∞(Ω)

is valid for all t > T�, which according to (5.8.3) and (5.7.12) implies (5.8.4).

With the previous result at hand, we cannot only transfer the exponential rate of con-
vergence to the first solution component, but also establish this decay starting from the
smoothing time T�, clarifying the convergence statement from Lemma 5.29.
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Lemma 5.31.
There exist µ > 0 and C > 0 such that for each κ ∈ [−1, 1] and all t > T� the solution
(n(κ), c(κ), u(κ)) of (Λκ) satisfies∥∥n(κ)(·, t)− n0

∥∥
L∞(Ω)

< Ce−µt. (5.8.5)

Moreover, for any p ≥ 1 there exist µ′ > 0 and C ′ > 0 such that for each κ ∈ [−1, 1] and
all t > T� ∥∥n(κ)(·, t)− n0

∥∥
W 1,p(Ω)

≤ C ′e−µ′t.

Proof: We adjust the arguments of [91, Lemma 4.7] to our setting and start by working
along similar lines as in Lemma 5.21, while this time making sure we keep the L2(Ω)

norm of ∇c(κ)
ε to make full use of the exponential decay established in Lemma 5.30.

In fact, drawing on the first equation in (Λκ) as well as integration by parts, Young’s
inequality and the Poincaré inequality we obtain C1 > 0 such that for any κ ∈ [−1, 1]
and all t > T�

d

dt

∫
Ω

(
n(κ) − n0

)2 ≤ − 1

C1

∫
Ω

(
n(κ) − n0

)2
+ sup
κ′∈[−1,1]

∥∥n(κ′)
∥∥
L∞(Ω×(T�,∞))

∫
Ω

∣∣∇c(κ)
∣∣2

holds. Hence, according to (5.7.12) and Lemma 5.30, we can fix µ1 > 0 with 1
C1

>

µ1 such that for any κ ∈ [−1, 1] the function y(κ)(t) :=
∫

Ω(n(κ)(·, t) − n0)2 satisfies
d
dty

(κ)(t) + 1
C1
y(κ)(t) ≤ C2e

−µ1t for all t > T�, which implies

y(κ)(t) ≤
(
C3 +

C1C2

1− C1µ1

)
eµ1T�e−µ1t for all t > T�,

with C3 := supκ∈[−1,1]

∫
Ω

(
n(κ)(·, T�)−n0

)2
being finite, again due to (5.7.12) and (5.1.4).

Interpolation using the Gagliardo–Nirenberg inequality and, once more, (5.7.12) finally
extends to (5.8.5) upon appropriately adjusting the constants. For the decay of the
Sobolev norm, we assume, again without loss of generality, that p > 3 and draw on the
Gagliardo–Nirenberg inequality to find C4 > 0 such that

∥∥n(κ)(·, t)− n0

∥∥
W 1,p(Ω)

≤ C4

∥∥n(κ)(·, t)− n0

∥∥ p−3
2p

W 2,∞(Ω)

∥∥n(κ)(·, t)− n0

∥∥ p+3
2p

L∞(Ω)

≤ C4

(∥∥n(κ)(·, t)
∥∥
C2(Ω)

+
∥∥n0

∥∥
L∞(Ω)

) p−3
2p
∥∥n(κ)(·, t)− n0

∥∥ p+3
2p

L∞(Ω)

for all t > T�, because n0 is constant in space. Hence, the claimed exponential decay is
a consequence of (5.8.5), (5.1.4) and Lemma 5.28.

In the final part of this section, we extend the exponential stabilization of the first
component to the fluid-velocity field.
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Lemma 5.32.
There exist µ > 0 and C > 0 such that for each κ ∈ [−1, 1] and all t > T� the solution
(n(κ), c(κ), u(κ)) of (Λκ) satisfies∥∥u(κ)(·, t)

∥∥
L∞(Ω)

< Ce−µt. (5.8.6)

Moreover, for any p ≥ 1 there exists C ′ > 0 such that for each κ ∈ [−1, 1] and all t > T�∥∥u(κ)(·, t)
∥∥
W 1,p(Ω)

≤ C ′e−µt.

Proof: Similar to the previous two lemmata and inspired by [91, Lemma 4.8], we proceed
to derive an exponential decay estimate for the fluid-velocity. Due to ∇ · u(κ) = 0 in
Ω × (0,∞) and u(κ) = 0 on ∂Ω×(0,∞), we obtain upon testing the third equation of
(Λκ) against u(κ) and employing Hölder’s inequality that for any κ ∈ [−1, 1] and all
t > T�

1

2

d

dt

∫
Ω

∣∣u(κ)
∣∣2 +

∫
Ω

∣∣∇u(κ)
∣∣2 =

∫
Ω

(
n(κ) − n0

)
∇φ · u(κ) (5.8.7)

≤
√
|Ω|‖∇φ‖L∞(Ω)

∥∥n(κ) − n0

∥∥
L∞(Ω)

∥∥u(κ)
∥∥
L2(Ω)

.

The Poincaré inequality provides C1 > 0 such that for any κ ∈ [−1, 1] and all t > T�

C1

∫
Ω

∣∣u(κ)
∣∣2 ≤ ∫

Ω

∣∣∇u(κ)
∣∣2

holds, and hence we can rely on Young’s inequality to conclude from (5.8.7) that for any
κ ∈ [−1, 1] and all t > T�

1

2

d

dt

∫
Ω

∣∣u(κ)
∣∣2 +

C1

2

∫
Ω

∣∣u(κ)
∣∣2 +

1

2

∫
Ω

∣∣∇u(κ)
∣∣2

≤
√
|Ω|√
C1
‖∇φ‖L∞(Ω)

∥∥n(κ) − n0

∥∥
L∞(Ω)

∥∥∇u(κ)
∥∥
L2(Ω)

≤ C2

∥∥n(κ) − n0

∥∥2

L∞(Ω)
+

1

2

∫
Ω

∣∣∇u(κ)
∣∣2,

where C2 :=
|Ω|‖∇φ‖2

L∞(Ω)

2C1
. Thus, making use of the decay estimate from Lemma 5.31,

we can find µ1 ∈ (0, C1) and C3 > 0 such that y(κ)(t) :=
∫

Ω

∣∣u(κ)(·, t)
∣∣2, t > T� satisfies

d

dt
y(κ)(t) + C1y

(κ)(t) ≤ C3e
−µ1t for all t > T�,

implying that for any κ ∈ [−1, 1] and all t > T�

y(κ)(t) ≤
(
y(κ)(T�) +

C3

C1 − µ1

)
eC1T�e−µ1t =: C4e

−µ1t, (5.8.8)
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where C4 = (y(κ)(T�) + C3
C1−µ1

)eC1T� does not depend on κ and is finite due to (5.7.12).

Now, with % ∈ (3
4 , 1) given by (5.1.4) and according to [32, Theorem 1.4.4], there are

C5, C6 > 0 such that for any κ ∈ [−1, 1] and each t > T�∥∥A%u(κ)(·, t)
∥∥
L2(Ω)

≤ C5

∥∥Au(κ)(·, t)
∥∥%
L2(Ω)

∥∥u(κ)(·, t)
∥∥1−%
L2(Ω)

≤ C6

∥∥u(κ)(·, t)
∥∥%
C2(Ω)

∥∥u(κ)(·, t)
∥∥1−%
L2(Ω)

,

and drawing once more on (5.7.12) and (5.8.8) together with the embedding D(A%) ↪→
L∞

(
Ω;R3

)
([32, Theorem 1.6.1]) provides C7 > 0 such that for any κ ∈ [−1, 1] and all

t > T� ∥∥u(κ)(·, t)
∥∥
L∞(Ω)

≤ C7e
−µ1(1−%)t

2

holds and hence proves (5.8.6). Employing the Gagliardo–Nirenberg inequality in a
similar fashion as in the proofs of the previous two lemmata finally entails the exponential
decay of the desired Sobolev norms.

5.9 The second limit. Taking κ→ 0

The uniform exponential decay starting from the smoothing time T� was the last missing
ingredient for proving our theorem. Before we give the proof of the theorem however,
we first collect many of the prepared estimates for the following second limit procedure.

Proposition 5.33.
Given any null sequence (κj)j∈N ⊂ [−1, 1] one can find a subsequence (κjk)k∈N and
functions

n ∈ L
5
3
loc

(
Ω×[0,∞)

)
with ∇n ∈ L

5
4
loc

(
Ω×[0,∞);R3

)
,

c ∈ L∞ (Ω× (0,∞)) with ∇c ∈ L4
loc

(
Ω×[0,∞);R3

)
,

u ∈ L2
loc

(
[0,∞);W 1,2

0,σ (Ω)
)
,

such that the global weak solution (n(κ), c(κ), u(κ)) of (Λκ),(5.1.1),(5.1.2) satisfies

n(κ) → n in Lploc
(
Ω×[0,∞)

)
for any p ∈ [1, 5

3) and a.e. in Ω× (0,∞),

∇n(κ)⇀∇n in L
5
4
loc

(
Ω×[0,∞);R3

)
,

n(κ)⇀n in L
5
3
loc

(
Ω×[0,∞)

)
,

c(κ) → c in Lploc
(
Ω×[0,∞)

)
for any p ∈ [1,∞) and a.e. in Ω× (0,∞),

c(κ) ?
⇀c in L∞ (Ω× (0,∞)) ,

∇c(κ)⇀∇c in L4
loc

(
Ω×[0,∞);R3

)
,

u(κ) → u in L2
loc

(
Ω×[0,∞);R3

)
and a.e. in Ω× (0,∞),

u(κ)⇀u in L
10
3
loc

(
Ω×[0,∞);R3

)
,
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∇u(κ)⇀∇u in L2
loc

(
Ω×[0,∞);R3×3

)
,

as κ = κjk → 0. The triple (n, c, u) is a global weak solution of the chemotaxis-
Stokes system (Λ0),(5.1.1),(5.1.2) in the sense of Definition 5.2, and one can find P ∈
C1,0

(
Ω×(T�,∞)

)
such that (n, c, u, P ) are a classical solution of (Λ0),(5.1.1),(5.1.2) in

Ω× (T�,∞). Moreover, there exist µ > 0 and C > 0 such that for all t > T�,

‖n(·, t)− n0‖L∞(Ω) + ‖c(·, t)‖L∞(Ω) + ‖u(·, t)‖L∞(Ω) < Ce−µt (5.9.1)

and for any p ≥ 1 there are µ′ > 0 and C ′ > 0 such that

‖n(·, t)− n0‖W 1,p(Ω) + ‖c(·, t)‖W 1,p(Ω) + ‖u(·, t)‖W 1,p(Ω) < C ′e−µ
′t (5.9.2)

is valid for all t > T�.

Proof: As the bounds in Lemmata 5.6, 5.8 and 5.9 are independent of ε ∈ (0, 1) and
κ ∈ [−1, 1], they are inherited by the limit functions n(κ), c(κ) and u(κ) obtained in
Proposition 5.10. Hence, an identical reasoning, drawing on the Aubin–Lions Lemma [74,
Corollary 8.4] and Vitali’s theorem, as previously done in Proposition 5.10, establishes
the asserted convergence properties and weak solution properties of the limit functions
n, c and u. That there exists some P ∈ C1,0

(
Ω×(T�,∞)

)
, which together with (n, c, u)

solves (Λ0) classically in Ω×(T�,∞) is then a consequence of Lemma 5.28 and the Arzelà–
Ascoli theorem. The exponential decay estimates for times larger than the smoothing
time T�, as stated in (5.9.1) and (5.9.2), are a consequence of Lemmata 5.30, 5.31 and
5.32.

With the limit objects and local convergence properties prepared by the previous lemma,
we can finally draw on the uniform exponential decay for large times established in
Section 5.8 to extend the local convergence to convergence beyond compact subsets of
Ω×[0,∞), as claimed in the main theorem.

Proof of Theorem 5.1: The existence, the regularity and the solution properties of
the claimed functions were already established in Propositions 5.10 and 5.33. We are left
with verifying the convergence with respect to the desired norms as in (5.1.5). According
to Lemma 5.31 and (5.9.1), given any p1 ∈ [1, 5

3) we can fix µ > 0 and C1 > 0 such that
for any κ ∈ [−1, 1]∥∥n(κ)(·, t)− n0

∥∥p1

Lp1 (Ω)
+ ‖n(·, t)− n0‖p1

Lp1 (Ω) < C1e
−µt (5.9.3)

holds for all t > T�. Now, given δ > 0 we pick T? ≥ max
{
T�,

1
p1µ

ln
(

2p1+1C1
p1µδ

)}
and

obtain from (5.9.3) that∥∥n(κ) − n
∥∥p1

Lp1((T?,∞),Lp1 (Ω))

≤ 2p1−1

∫ ∞
T?

∥∥n(κ)(·, t)− n0

∥∥p1

Lp1 (Ω)
dt+ 2p1−1

∫ ∞
T?

∥∥n(·, t)− n0

∥∥p1

Lp1 (Ω)
dt
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≤ 2p1C1

∫ ∞
T?

e−p1µt dt =
2p1C1

p1µ
e−p1µT? ≤ δ

2
(5.9.4)

for any κ ∈ [−1, 1]. Next, given a null sequence (κj)j∈N ⊂ [−1, 1] and denoting by
(κjk)k∈N the subsequence from Proposition 5.33, we can conclude from the convergence
statements in Proposition 5.33, the uniform bound in Lemma 5.8 and the Vitali theorem
that due to p1 <

5
3 actually

n(κjk ) → n in Lp1

loc([0,∞), Lp1(Ω)) as κjk → 0.

Hence, for the given δ > 0 there is some k0 ∈ N such that∥∥n(κjk ) − n
∥∥p1

Lp1([0,T?];Lp1 (Ω))
≤ δ

2
is valid for all k ≥ k0. (5.9.5)

Combination of (5.9.4) and (5.9.5) shows that for all k ≥ k0 we have∥∥n(κjk ) − n
∥∥p1

Lp1([0,∞);Lp1 (Ω))

=
∥∥n(κjk ) − n

∥∥p1

Lp1([0,T?];Lp1 (Ω))
+
∥∥n(κjk ) − n

∥∥p1

Lp1((T?,∞),Lp1 (Ω))
≤ δ,

from which we conclude the first part of (5.1.5). Similarly, drawing on Lemma 5.31 and
(5.9.2), for given p2 ∈ [1, 5

4) we can fix µ′ > 0 and C2 > 0 such that for any κ ∈ [−1, 1]∥∥n(κ)(·, t)− n0

∥∥p2

W 1,p2 (Ω)
+ ‖n(·, t)− n0‖p2

W 1,p2 (Ω)
≤ C2e

−µ′t

holds for all t > T�, from which we once again conclude that for the given δ > 0 we can
pick T ′? ≥ max{T�, 1

p2µ′
ln(2p2+1C2

p2µ′δ
)} such that

∥∥∇n(κ) −∇n
∥∥p2

Lp2((T ′?,∞);Lp2 (Ω))
≤ δ

2
for any κ ∈ [−1, 1]. (5.9.6)

Since we know from Lemma 5.33 that

∇n(κjk )⇀∇n in Lp2

loc([0,∞);Lp2(Ω)) as κjk → 0,

we can make use of the fact that p2 <
5
4 to employ Vitali’s theorem in combination with

the uniform bounds presented in Lemma 5.8 to find that actually

∇n(κjk ) → ∇n in Lp2

loc([0,∞);Lp2(Ω)) as κjk → 0.

From this we conclude that there is some k′0 ∈ N such that∥∥∇n(κjk ) −∇n
∥∥p2

Lp2([0,T ′?];Lp2 (Ω))
≤ δ

2
holds for all k ≥ k′0, (5.9.7)

so that a combination of (5.9.6) and (5.9.7) again entails the convergence in the de-
sired topology. Analogous arguments drawing on Lemma 5.30, Lemma 5.32, (5.9.1),
(5.9.2) and the uniform bounds in the Lemmata 5.6 and 5.8 finally entail the remaining
properties listed in (5.1.5), completing the proof.
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