
Model-Driven Engineering of
Self-Adaptive User Interfaces

Enes Yiğitbaş

Faculty of Computer Science, Electrical Engineering and Mathematics
Paderborn University

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Paderborn, December 2019

I would like to dedicate this thesis to my loving parents . . .

Acknowledgements

Writing this thesis would not have been possible without the support of numerous people.
Hence, I would like to thank the following people for sharing their experience, time, and
patience.

First of all, I would like to thank my advisor and mentor, Prof. Dr. Gregor Engels, for his
efforts to drive me to success with wise advice, patient guidance, and kind encouragement.
Gregor, thanks for your trust, all the opportunities and the fruitful environment for learning
and growing into many different directions. Talking about opportunities, I further thank Dr.
Stefan Sauer who allowed me to work in inspiring projects at the s-lab – Software Quality Lab
and si-lab – Software Innovation Lab. I would also like to thank my committee members Prof.
Dr. Philippe Palanque, Prof. Dr. Regina Bernhaupt, and Jun. Prof. Dr. Anthony Anjorin for
the friendly guidance and thought-provoking suggestions while carefully reviewing my work
to strengthen and elevate its quality.

I thank all my current and past colleagues from the Database and Information Systems
research group for providing such an excellent, professional, and friendly atmosphere in our
research group.

Abstract

The user interface (UI) is a key component of any interactive software application and
is crucial for the acceptance of the application as a whole. Modern UIs are increasingly
expected to be plastic, in the sense that they retain a constant level of usability, even when
subjected to context (user, platform, and environment) changes at runtime. Self-adaptive
User Interfaces (SAUIs) have been promoted as a solution for context variability due to their
ability to automatically detect context changes and adapt to the current context-of-use at
runtime.

However, engineering SAUIs is a challenging and complex task. Concerning development,
aspects such as context management and UI adaptation further increase complexity compared
to the development of classical UIs. Thus, an integrated development approach enabling
context management and UI adaptation is required. Concerning evaluation, usability plays a
crucial role for acceptance of SAUIs. Especially the usability aspect end-user satisfaction
regarding UI adaptations at runtime is important to assess whether end-users accept the
quality of use. As the UI and the context-of-use are both constantly changing, usability
evaluation becomes more complex.

To address the mentioned issues, we introduce a model-driven engineering approach for
SAUIs with twofold contribution:

On the one hand, we introduce a model-driven development approach for SAUIs. Our
development approach supports modeling, transformation and execution of SAUIs. The
development approach covers an integrated model-driven development solution where a
classical model-driven development of UIs is coupled with a model-driven development
of context-of-use and UI adaptation rules. We base our approach on the core UI modeling
language Interaction Flow Modeling Language (IFML) and introduce new modeling lan-
guages for context-of-use (ContextML) and UI adaptation rules (AdaptML). The generated
UI code, based on the IFML model, is coupled with the Context and Adaptation Services,
generated from the ContextML context model and AdaptML adaptation model, respectively.
The integration of the generated artifacts, namely UI code, Context, and Adaptation Services
in an overall rule-based execution environment, enables runtime UI adaptation.

v

On the other hand, we present a novel on-the-fly usability testing solution for SAUIs.
It allows to evaluate the end-user satisfaction of SAUIs by combining context monitoring
together with collection of instant user feedback. Our model-driven development approach
serves as a basis for driving the on-the-fly usability test. Based on the underlying models (e.g.,
adaptation models), we can derive usability interview questions for assessing the acceptance
of various UI adaptation features. The developed usability evaluation solution enables us
to continuously track various context information data, collect user feedback, as well as
perform a data-driven usability evaluation.

The overall evaluation of our model-driven engineering approach focuses on the appli-
cability of our model-driven development approach as well as usability evaluation of the
resulting self-adaptive UIs. The applicability of our model-driven development approach is
demonstrated by two case-studies showing the development of self-adaptive UIs for a library
application and an e-mail application. Furthermore, the results of a usability study based on
the derived e-mail application are presented.

Zusammenfassung

Die Benutzungsschnittstelle (engl. User Interface, UI) ist eine Schlüsselkomponente jeder
interaktiven Softwareanwendung und von entscheidender Bedeutung für die Akzeptanz der
Gesamtanwendung. Es wird zunehmend erwartet, dass moderne UIs in dem Sinne plastisch
sind, dass sie ein konstantes Maß an Benutzerfreundlichkeit behalten, selbst wenn sie zur
Laufzeit Änderungen des Nutzungskontexts (Benutzer, Plattform und Umgebung) unter-
liegen. Selbst-adaptive UIs (SAUIs) wurden als Lösung für Kontextvariabilität eingeführt,
da sie automatisch Kontextänderungen erkennen und sich zur Laufzeit an den aktuellen
Nutzungskontext anpassen können.

Das Engineering von SAUIs ist jedoch eine herausfordernde und komplexe Aufgabe. In
Bezug auf die Entwicklung erhöhen Aspekte wie das Kontextmanagement und die Anpassung
des UIs die Komplexität im Vergleich zur Entwicklung klassischer UIs. Daher ist ein
integrierter Entwicklungsansatz erforderlich, der das Kontextmanagement und die Anpassung
des UIs ermöglicht. In Bezug auf die Usability Evaluation spielt die Benutzerfreundlichkeit
eine entscheidende Rolle für die Akzeptanz von SAUIs. Insbesondere ist der Usability-
Aspekt der Nutzerzufriedenheit im Hinblick auf UI-Anpassungen zur Laufzeit wichtig, um
zu beurteilen, ob Nutzer die Nutzungsqualität akzeptieren. Da sich sowohl das UI als auch der
Nutzungskontext ständig ändern, wird die Bewertung der Benutzerfreundlichkeit komplexer.

Um die genannten Probleme anzugehen, führen wir einen modellgetriebenen Engineering-
Ansatz für SAUIs mit zwei Beiträgen ein:

Einerseits führen wir einen modellgetriebenen Entwicklungsansatz für SAUIs ein. Unser
Entwicklungsansatz unterstützt die Modellierung, Transformation und Ausführung von
SAUIs. Der Entwicklungsansatz umfasst eine integrierte modellgetriebene Entwicklungslö-
sung, bei der eine klassische modellgetriebene Entwicklung von UIs mit einer modellgetriebe-
nen Entwicklung von Nutzungskontext- und UI-Anpassungsregeln gekoppelt ist. Wir stützen
unseren Ansatz auf die zentrale UI-Modellierungssprache Interaction Flow Modeling Lan-
guage (IFML) und führen neue Modellierungssprachen für Nutzungskontext (ContextML)
und UI Anpassungsregeln (AdaptML) ein. Der generierte UI-Code, der auf dem IFML-
Modell basiert, wird mit den Kontext- und Anpassungsdiensten gekoppelt, die aus dem
ContextML-Kontextmodell bzw. dem AdaptML-Anpassungsmodell generiert werden. Die

vii

Integration der generierten Artefakte, nämlich UI-Code, Kontext- und Anpassungsdienste, in
eine allgemeine regelbasierte Ausführungsumgebung ermöglicht die Anpassung des UI zur
Laufzeit.

Zum anderen präsentieren wir eine neuartigen Ansatz zum Testen der Benutzerfre-
undlichkeit von SAUIs, der als "‘On-the-Fly-Usability-Test"’ bezeichnet wird. Dieser er-
möglicht die Bewertung der Nutzerzufriedenheit, indem die Kontextüberwachung mit der
Erfassung von sofortigem Benutzerfeedback kombiniert wird. Unser modellgetriebener
Entwicklungsansatz dient als Grundlage für den erwähnten "‘On-the-Fly-Usability-Test"’.
Basierend auf den zugrunde liegenden Modellen (z.B. Anpassungsmodellen) können wir
Usability-Interviewfragen ableiten, um die Akzeptanz verschiedener UI-Anpassungsmerkmale
zu bewerten. Die entwickelte Usability-Evaluierungslösung ermöglicht es uns, verschiedene
Kontextinformationsdaten kontinuierlich zu verfolgen, Benutzerrückmeldungen zu sammeln
sowie eine datengesteuerte Usability-Evaluierung durchzuführen.

Die Gesamtbewertung unseres modellgetriebenen Engineering-Ansatzes konzentriert
sich auf die Anwendbarkeit unseres modellgetriebenen Entwicklungsansatzes sowie auf
die Usability Evaluation der resultierenden SAUIs. Die Anwendbarkeit unseres modell-
getriebenen Entwicklungsansatzes wird anhand von zwei Fallstudien demonstriert, die die
Entwicklung von SAUIs für eine Bibliotheksanwendung und eine E-Mail-Anwendung zeigen.
Darüber hinaus werden die Ergebnisse einer Usability-Studie basierend auf der abgeleiteten
E-Mail-Anwendung vorgestellt.

Table of contents

List of figures xi

List of tables xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Solution Overview and Scientific Contributions 7
1.4 Publication Overview . 14
1.5 Thesis Structure . 16

2 Foundations 18
2.1 Model-Driven User Interface Development 18

2.1.1 Background . 18
2.1.2 Model Driven Architecture . 20
2.1.3 CAMELEON Reference Framework 22

2.2 User Interface Description Languages (UIDLs) 23
2.2.1 Overview . 24
2.2.2 IFML . 24

2.3 Context-Aware Computing . 32
2.3.1 Notion of Context . 32
2.3.2 Context Acquisition and Modeling 34

2.4 Self-adaptive Software Systems . 36
2.4.1 Background: Autonomic Computing 37
2.4.2 Self-adaptation and Self-*properties 38
2.4.3 Self-adaptive User Interfaces . 41

2.5 Usability Engineering . 43
2.5.1 Usability . 43

Table of contents ix

2.5.2 Usability Evaluation Methods . 44
2.6 Technologies . 46

2.6.1 Angular Framework . 47
2.6.2 Nools Rule Engine . 49
2.6.3 Xtext and Xtend . 51

3 Scenario and Related Work 56
3.1 LibSoft - The Running Example . 56
3.2 Requirements . 58
3.3 Related Work . 61

3.3.1 Context Management . 61
3.3.2 UI Adaptation . 64
3.3.3 Usability Evaluation . 70

3.4 Summary . 75

4 Modeling 76
4.1 Language Engineering Approach . 76
4.2 Modeling Framework for Self-adaptive UIs 79
4.3 Context Modeling with ContextML . 82
4.4 Adaptation Modeling with AdaptML . 87
4.5 Summary and Discussion . 92

5 Transformation 94
5.1 Transformation Approach Overview . 94
5.2 UI Generation . 96

5.2.1 Mapping: DomainModel2AngularClasses 97
5.2.2 Mapping: IFML2AngularViews 98
5.2.3 Implementation of UI Generator 109

5.3 Context Service Generation . 113
5.3.1 Mapping: ContextML2AngularServices 113
5.3.2 Implementation of Context Service Generator 115

5.4 Adaptation Service Generation . 117
5.4.1 Mapping: AdaptML2AngularServices 117
5.4.2 Implementation of Adaptation Service Generator 118

5.5 Summary and Discussion . 122

Table of contents x

6 Execution 124
6.1 Runtime Architecture for Self-adaptive UIs 124
6.2 Execution Environment for Self-adaptive UIs 126
6.3 Tool-Support: Adapt-UI IDE . 129

6.3.1 Modeling Workbench . 130
6.3.2 Code Generators . 131

6.4 Summary and Discussion . 132

7 Evaluation 133
7.1 Case Studies . 133

7.1.1 Case-Study 1: Library Application (LibSoft) 134
7.1.2 Case-Study 2: E-Mail Application (MailSoft) 139
7.1.3 Case studies: Evaluation Discussion 144

7.2 Usability Study . 145
7.2.1 On-the fly Usability Evaluation Solution 146
7.2.2 Usability Experiment and Results 153
7.2.3 Usability Study: Evaluation Discussion 162

7.3 Summary and Discussion . 163

8 Conclusion and Future Work 165
8.1 Summary of Contributions . 165
8.2 Requirements Revisited . 167
8.3 Future Work . 169

References 175

List of figures

1.1 Abstract Solution Overview . 8
1.2 Model-driven Architecture for Self-adaptive UIs 9
1.3 Runtime perspective: Architectural Overview for Self-adaptive UIs 10
1.4 Human-in-the-loop: On-the-fly usability evaluation of UI adaptation features 11
1.5 Solution Overview . 13
1.6 Publication Overview . 15
1.7 An Overview of the Thesis Structure . 16

2.1 Model Driven Architecture (MDA) . 21
2.2 CAMELEON Reference Framework (simplified) 22
2.3 An excerpt of the IFML metamodel based on [BUA17] 26
2.4 Different types of View Containers in IFML 27
2.5 ViewComponents and ViewComponentParts in IFML 27
2.6 Events in IFML . 28
2.7 Action element in IFML . 28
2.8 InteractionFlows in IFML . 29
2.9 Parameters in IFML . 29
2.10 Example of a simple UI and its IFML specification. 30
2.11 Tree view representation of the IFML model example 31
2.12 Abstracting context-of-use with a context model 35
2.13 IBM MAPE-K Loop [IBM05] . 37
2.14 Hierarchy of the self-* properties [ST09] 40
2.15 Self-* properties of Self-adaptive UIs [ABY14a] 41
2.16 Architectural Overview of the Angular framework [GS13] 47
2.17 Overview of Nools’ basic concepts . 50

3.1 Example scenario: UIs in dynamically changing context-of-use situations . 57
3.2 Engineering Self-Adaptive UIs: Overview of relevant aspects 57

List of figures xii

3.3 Overview of requirements for development and evaluation of self-adaptive UIs 58
3.4 Evaluation of context management approaches 62
3.5 Evaluation of UI adaptation frameworks and approaches 65
3.6 Evaluation of usability evaluation approaches for self-adaptive UIs 72

4.1 Language Engineering Approach . 77
4.2 Overview of the Modeling Framework . 79
4.3 Example: Integrated Modeling of Self-adaptive UIs 81
4.4 ContextML: Overview of the Context Metamodel 83
4.5 ContextML metamodel for UserContext 84
4.6 ContextML metamodel for PlatformContext 85
4.7 ContextML metamodel for EnvironmentContext 86
4.8 Example ContextML model: graphical (left) and textual concrete syntax (right) 87
4.9 AdaptML: Adaptation Metamodel Overview 88
4.10 AdaptML: Overview Adaptation Operations 90
4.11 Example UI adaptation rules based on AdaptML 92

5.1 Architecture Overview of the SAUI-Generator 95
5.2 Simplified Overview: Angular Framework (UI view parts marked blue) [GS13] 96
5.3 UMLClass2AngularClass mapping . 97
5.4 UMLClass2AngularClass: Attribute mapping for primitive types 98
5.5 Mapping for SimpleField element . 100
5.6 Mapping for Parameter element . 101
5.7 DataFlow to Action mapping . 102
5.8 NavigationFlow to ViewContainer mapping 103
5.9 Mapping for ParameterBinding element 104
5.10 Mapping for ViewContainer element . 105
5.11 Mapping for DataBinding element . 107
5.12 Architectural overview of the UI Generator 109
5.13 ContextEntity2ContextProfile Mapping . 114
5.14 ContextProvider2ContextProviderService Mapping 114
5.15 Architectural overview of the Context Service Generator 115
5.16 Xtend template excerpt for ContextProviderGenerator and its generated code 116
5.17 Example Mappings: (a) AdaptationRule2Flow and (b) Premise2FlowRule . 118
5.18 Adaptation Service Generation . 119
5.19 Xtend template excerpt for NoolsServiceGenerator and its generated code . 122

6.1 Overview of Conceptual Runtime Architecture for Self-adaptive UIs 125

List of figures xiii

6.2 Architectural Overview of the Angular framework [GS13] 127
6.3 Overview of implemented Execution Environment for Self-adaptive UIs . . 128
6.4 Adapt-UI Development Environment . 130

7.1 Example scenario: UIs in dynamically changing context-of-use situations . 134
7.2 Library application: Context-of-use object model excerpts 135
7.3 Domain model for LibSoft example scenario 136
7.4 IFML model excerpt for LibSoft example scenario 136
7.5 ContextML model specified for the LibSoft example scenario 137
7.6 AdaptML model specified for the LibSoft example scenario 138
7.7 Library application: UI adaptations according to different contexts-of-use . 139
7.8 Domain model for MailSoft example scenario 140
7.9 IFML model excerpt for MailSoft example scenario 141
7.10 E-mail application: UI adaptations according to different context changes . 142
7.11 E-mail application: Context-of-use object model excerpts 143
7.12 E-mail application: applied UI adaptation rules for above described scenario 143
7.13 Human-in-the-loop: On-the-fly usability testing of UI adaptation features . 146
7.14 Login (left), participation info (middle), and preliminary questionnaire (right)

screens . 148
7.15 UI Adaptations: "iconic" UI (left), "grid" UI (middle), vocal UI (right) . . . 151
7.16 Database schema: Stored context information as extended entity relationship

(EER) diagram . 152
7.17 Feedback prompt . 153
7.18 Overview of feedback question for each UI adaptation 154
7.19 Total usage time of the application for each user 156
7.20 Amount of given user feedback for each hour of the day 156
7.21 Amount of user feedback collected for each predicted user activity. Only

responses are shown for which the activity could be predicted with high
certainty (280 cases). 157

7.22 Overview: UI adaptation features and received user feedback 159
7.23 Categorization of UI adaptation techniques according to their degree of

end-user satisfaction . 160
7.24 Distribution of positive and negative feedback responses over the day. The

green (top) and red (bottom) colored areas show the density estimates of the
time of day for positive and negative responses, respectively. The vertical
lines represent the underlying datapoints. 161

List of tables

5.1 IFML2AngularElement Mappings for UI Generation 99
5.2 ContextML2AngularService Mappings for Context Service Generation . . . 113
5.3 AdaptML2AngularService Mappings for Adaptation Service Generation . . 117

7.1 Context change information . 157
7.2 User feedback . 158

Chapter 1

Introduction

In this chapter, we describe the motivation and problem statement for this thesis. We point
out our solution approach and main contributions. We present an overview of publications
published in the context of this thesis and provide a structural overview of the thesis.

1.1 Motivation

The user interface (UI) is a key component of any interactive software application and is
crucial for the acceptance of the application as a whole. Acceptance and usability of a user
interface are highly influenced by its context-of-use, which is defined in terms of the user,
platform, and environment [CCT+03].

With the advent of the Internet of Things (IoT) and mobile applications, users are nowadays
surrounded by a broad range of networked interaction devices (e.g., smartphones, smart-
watches, tablets, terminals, etc.) for carrying out their work and everyday activities. Due
to the growing number of such interaction devices, new possible interaction techniques
(e.g. multi-touch or tangible interaction), and distributed user interfaces transcending the
boundaries of a single device, software developers and user interface designers are facing
new challenges.

As the user interfaces of interactive systems become increasingly complex since many hetero-
geneous contexts-of-use (platform, user, and working environment) have to be supported, it is
no longer sufficient to provide a single "one-size-fits-all" user interface. Still, most of today’s
user interfaces are typically designed with the assumption that they are going to be used
by an able-bodied user, who is located in a stable environment, and who is using dedicated
platform devices [Mot13]. However, this assumption leads to a significant gap between the

1.1 Motivation 2

actual needs of end users and what technology offers them, because in reality users comprise
a heterogeneous group with different abilities, preferences etc., that interact via different
devices in distinct working environments. The problem increases even more if we consider
dynamic changes in the context-of-use parameters at runtime, e.g., changes of a specific
user role, the device type, or environmental factors such as brightness or loudness level
when the interaction is taking place. In this case, the "one-size-fits-all" approach is unable to
accommodate all the cases of variability in the context-of-use, in many cases leading to a
diminished user experience [ABY14a].

Adaptive UIs have been promoted as a solution for context variability due to their ability to
automatically adapt to the context-of-use at runtime [ABY14a], for example by changing the
UI’s navigational flow, its content, or layout. A key goal behind adaptive UIs is plasticity
characterizing a UI’s ability to preserve its usability across multiple contexts-of-use [Cou10].
A very important prerequisite for UI adaptivity is context-awareness. If the UI is aware of its
context and is able to detect context changes, then it can trigger adaptations in response to
those changes in order to preserve its usability. UIs that are able to automatically capture
context information using sensors from heterogeneous sources, and monitor dynamic context
changes to enable UI adaptation at runtime, are called self-adaptive UIs. Summing up,
from the end users’ perspective, a user interface should be flexible and self-adaptive in
order to automatically monitor context changes, and adjust itself according to the changing
context-of-use parameters to provide a high usability.

Changing the view from the users’ demands for an interactive system’s UI to that of the
developers’ who implement such flexible interactive systems, one major challenge can be
identified: complexity in the development process of such flexible user interfaces. The
development of user interfaces for interactive software systems is a time-consuming and
error-prone task [MR92]. By analyzing a number of different software applications, it was
found that about 48% of the source code, about 45% of the total development time, about
50% of the implementation time, and about 37% of the maintenance time is required for
aspects regarding user interfaces. A more recent study [Pet07] argues that the time effort
needed for implementing user interfaces is still at least 50% and justifies it with the increasing
spread of interactive systems and their requirements due to the progressive growth in the
amount and diversity of technological devices available on the market.

Relating above mentioned facts to the realization of self-adaptive UIs, shows that additional
complexity arises to cope with dynamically changing context-of-use parameters and auto-

1.2 Problem Statement 3

matically adapting the UI at runtime. Building multiple UIs for the same functionality due
to context variability is a difficult task since context changes can lead to a combinatorial
explosion of the number of possible adaptations and there is a high cost incurred by manually
developing multiple versions of the UI [ABY14a]. Hence, the development of advanced
UIs, such as self-adaptive UIs, demands for sophisticated engineering processes and methods.

Not only the development, but also the evaluation of self-adaptive UIs is a challenging task
that should be addressed by adequate methods and techniques. Concerning evaluation, usabil-
ity plays a crucial role for the acceptance of self-adaptive UIs. Especially the usability aspect
end-user satisfaction, regarding UI adaptations at runtime, is important to assess whether
end-users accept the quality of use. As the UI and the context-of-use are both constantly
changing, usability evaluation becomes more complex. Furthermore, classical usability
evaluation methods such as usability tests, interviews or cognitive walkthroughs mostly focus
on a posteriori analysis techniques and do not fully consider the current context-of-use at
runtime.

To address the mentioned issues regarding development and evaluation of self-adaptive
UIs, we introduce a model-driven engineering approach for self-adaptive UIs. On the one
hand, it consists of a model-driven development approach for self-adaptive UIs. It supports
developers in modeling, transformation, and execution of self-adaptive UIs. On the other
hand, the engineering approach introduces a novel on-the-fly usability testing solution for self-
adaptive UIs. It allows to evaluate the end-user satisfaction of self-adaptive UIs by combining
context monitoring together with collection of instant user feedback. The developed usability
evaluation solution enables us to continuously track various context information data and
user feedback as well as to perform a data-driven usability evaluation.

1.2 Problem Statement

Among the various components of software applications, the user interface is especially
important as it connects the end-users to the actual functionality of an interactive system.
As stated before, the effort of implementing an application’s user interface constitutes at
least 50% of the total implementation effort [Pet07]. Developing separate applications
for each potential device and operating system is neither a practical nor a cost effective so-
lution, especially if we consider heterogeneous contexts-of-use as they were described before.

1.2 Problem Statement 4

Providing an adequate user interface that is suitable for the current contextual situation of the
end-user is a complex task that imposes special challenges beyond classical UI development
that targets a fixed set of users or platforms.

The first challenge is to automatically capture context information about the user, platform,
and environment by making use of different sensors. The main goal is to continuously
monitor the contextual parameters and to detect context changes. The second challenge is to
analyze the collected context information data and to argue based on those data whether UI
adaptation is needed to react on the context changes to provide a more suitable user interface.
Finally, if some UI adaptation operations are needed to overcome the situational mismatch
between shown UI and the current context-of-use, the execution of the UI adaptation op-
erations is used to reflect the changes on the UI. These adaptation operations could be for
example layout changes, content changes or changes in the navigational flow of the UI.

Tackling the above described challenges of context management and UI adaptation is already
a complex task on its own. Moreover, additional complexity is given due to the fact that
today’s user interfaces of interactive systems become increasingly complex due to new
interaction paradigms, use of innovative technologies, multimedia, and interaction modali-
ties. Their development thus demands for sophisticated processes and methods, as they are
deployed in software engineering [Sau11].

One promising way for dealing with the complex development task of self-adaptive UIs is
model-based or model-driven UI development. Model-Based UI Development (MBUID)
provides a means to decrease the development effort through the use of high-level models that
are refined for a certain context-of-use (e.g. user, platform, or environment). Model-driven UI
development (MDUID), in addition, puts the models at the center of the refinement process
and applies automated model-to-model and model-to-code transformations to transform
high-level UI models to source code of the final UI.

In the past, various MDUID approaches were proposed to support the efficient development
of UIs. Widely studied approaches are based on UsiXML [LVM+04], MARIA [PSS09], and
IFML [BF14] that support the abstract modeling of user interfaces and their transformation
to final user interfaces. However, in classical MDUID approaches, specific aspects and
requirements regarding the development of self-adaptive UIs such as context management
and UI adaptation are not covered in an integrated manner. Those aspects introduce additional
complexity and need to be taken into account. As most of the existing approaches focus

1.2 Problem Statement 5

on special aspects of UI adaptation, an integrated model-driven development approach for
self-adaptive UIs is not fully covered.

In practice, especially in the context of web design and web technologies, the paradigm of
Responsive Web Design (RWD)1 is widely used to adapt the layout of a web page in response
to the characteristics of the used device. While RWD adaptations are mainly focusing on
the contextual parameter Platform, considering device characteristics such as screen size or
resolution, our scope in this thesis is going far beyond by focusing on a holistic dimension
of contextual parameters where various context-of-use situations can be handled. Beside
RWD and MDUID approaches in general, there are existing specific approaches such as
Supple [GWW10], MASP [FBA06], MyUI [PHJS12] or RBUIS [ABY16] which present
methods, techniques and tools for the development of adaptive UIs. Although all of these
approaches varying in the used technique (rule-based, optimization-based, learning-based)
show a successful implementation of UI adaptation features and their practical usage in
different domains, an integrated model-driven engineering approach for self-adaptive UIs is
not fully addressed. Such an integrated engineering approach should support the development
and usability evaluation of self-adaptive UIs, which leads to the main research question of
this thesis:

(RQ) How can we support the model-driven engineering of self-adaptive UIs for hetero-
geneous contexts-of-use?

Regarding the development of self-adaptive UIs, an integrated model-driven development
approach is required that should provide dedicated languages for context and adaptation
modeling which complement UI modeling. Following the idea of MDUID and reducing
the complexity in the development of self-adaptive UIs, specific code generators are further
required. Beside the Final UI (FUI) code, these are code for Context Services to monitor the
context information at runtime and also code for Adaptation Services to represent adaptation
logic and enable UI adaptation at runtime. Thus, for addressing the development part of
our model-driven engineering approach for self-adaptive UIs, the following challenges were
identified:

Context Management Challenges:

• C1: Specification of contextual parameters: A context modeling language is required
for specifying different contexts-of-use. Such a context modeling language should

1https://www.w3schools.com/whatis/whatis_responsive.asp

https://www.w3schools.com/whatis/whatis_responsive.asp

1.2 Problem Statement 6

enable modeling of different contextual situations that can occur during usage of the
UI. With the help of this language, developers should be able to specify needed context
sensor services to monitor various contextual parameters.

• C2: Generation of Context Services: A Context Service provides context information
(e.g., brightness level, mood of the user etc.) which are specified in the context model
by accessing hardware sensors. A transformation method for automatic generation of
heterogeneous Context Services based on the context model is needed. The specified
context model serves as input for generating code for the required Context Services
which enable the monitoring of context information and triggering the adaptation at
runtime.

• C3: Execution of Context Services and runtime monitoring: An execution environment
is required for executing the generated Context Services. For supporting runtime
monitoring of dynamic context changes, the generated Context Services should observe
the context sensors and provide context information data within the overall UI execution
environment.

UI Adaptation Challenges:

• C4: Specification of UI adaptation rules: An adaptation modeling language is required
for specifying UI adaptation changes in an abstract manner. With the help of this
language, UI designers should be able to specify various UI adaptation rules for
different contexts-of-use which can adapt the UI at runtime.

• C5: Generation of UI Adaptation Services: An Adaptation Service is responsible for
monitoring the context information provided by the context service and adapting the UI
at runtime. A transformation method for automatic generation of different Adaptation
Services is needed. Based on the specified abstract UI adaptation rules, the code for
the executable Adaptation Services needs to be generated for supporting UI adaptation
capabilities at runtime.

• C6: Execution of UI adaptation at runtime: An integrated execution environment is
required for executing the generated Context and Adaptation Services. For supporting
runtime UI adaptation enabling automatic reaction to dynamic context-of-use changes,
the generated Adaptation Services need to be coupled with generated code for the UI
and Context Services as well as integrated in an overall UI execution environment.

While above described challenges are related to development aspects, the aspect of us-
ability evaluation should be also integrated in the model-driven engineering approach for

1.3 Solution Overview and Scientific Contributions 7

self-adaptive UIs. With this regard, the usability aspect end-user satisfaction regarding
UI adaptations at runtime is important for acceptance of self-adaptive UIs. Focusing the
ubiquitous domain of mobile UI platforms, where dynamically changing context-of-use
situations are usual, usability evaluation of UI adaptations is still a challenging task. One
can possibly use classical usability evaluation methods such as usability tests, interviews or
cognitive walkthroughs. However, these methods are not sufficient for a proper evaluation of
UI adaptation features. The reason is that classical usability evaluation methods mostly focus
on a posteriori analysis techniques. However, usability testing of UI adaptation features
should consider the current context-of-use when the adaptation is triggered and also the
user’s feedback should be taken into account. Therefore, a solution for usability testing
of UI adaptations should be incorporated in the model-driven engineering approach for
self-adaptive UIs, which tackles the following challenges.

Usability Evaluation Challenges:

(C7) On-the-fly Testing: The usability evaluation method enables testing the acceptance of
UI adaptation features at runtime despite the dynamic nature of adaptive UIs where
context parameter and the UI itself are continuously changing.

(C8) Collection of Instant User Feedback and Context-of-use Data: The usability evaluation
method enables testing the acceptance of UI adaptation features at the very moment
when the adaptations occur incorporating the current context-of-use and instant user
feedback.

1.3 Solution Overview and Scientific Contributions

To address the above mentioned challenges, the main goal of this thesis is to support model-
driven engineering of self-adaptive UIs. As depicted in Figure 1.1, the contribution of this
thesis is twofold. On the one hand, we present a model-driven development approach for self-
adaptive UIs which covers relevant aspects such as UI, context, and adaptation. On the other
hand, we introduce a novel data-driven usability evaluation approach which allows on-the-fly
usability testing of self-adaptive UIs and supports a context- and data-driven satisfaction
analysis of self-adaptive UIs. In this constellation, the model-driven development approach
with its underlying models (e.g. adaptation models) serves as a basis for the on-the-fly
usability testing solution as we can derive usability test questions from the specified UI
adaptation rules. In the following, we will describe the engineering approach in more detail.

1.3 Solution Overview and Scientific Contributions 8

Model-Driven
Engineering of

Self-Adaptive UIs

Model-Driven
Development

Approach

Data-Driven
Usability Evaluation

Approach

UI Context Adaptation
On-the-fly
Usability
Testing

Data-Driven
Usability
Analysis

drives

Fig. 1.1 Abstract Solution Overview

Model-Driven Self-Adaptive UI Development Approach
Model-driven User Interface Development (MDUID) is a promising candidate and starting
point for mastering the complex development task of self-adaptive UIs in a systematic, pre-
cise, and appropriately formal way. Our model-driven solution architecture for self-adaptive
UIs is depicted in Figure 1.2 and consists of three development paths.

The first development path (left side of Figure 1.2) addresses the model-driven development
of UIs. It makes use of an Abstract UI Model and a Domain Model which are then trans-
formed by a code generator (UI Generator) into a Final UI. This development path has
been subject of extensive research [PS12] and previous works present the realization and
application of an MDUID approach for different target platforms ([YKUS16], [YS16b]) (in-
cluding smartphone, desktop and self-service systems). The first development path supports
efficient development of heterogeneous UIs for different target platforms. However, on its
own, this development path is not enough to support context management and UI adaptation
capabilities.

Therefore, in this thesis, we extended the classical MDUID approach with two additional
parallel development paths which support model-driven context management and develop-
ment of UI adaptations. In this way, the model-driven UI development path is complemented

1.3 Solution Overview and Scientific Contributions 9

Domain	Model
(UML	Class	
Diagram)

Abstract	UI	
Model
(IFML)

Adapta;on	
Model

(AdaptML)

UI	
Generator

Adapta;on	
Service	

Generator

Final	UI
Adapta;on	
Service

input input

generates

adapts

monitors

Context
Model

(ContextML)

Context
Service

Context
Service	

Generator
generates generates

User	Interface Adapta/on

input

references

referencesreferences

Context

Ex
ec
u/

on
Tr
an

sf
or
m
a/

on
M
od

el
in
g

Fig. 1.2 Model-driven Architecture for Self-adaptive UIs

by analogous development paths responsible for context management and UI adaptation
concerns. As these complementary paths are also based on the paradigm of model-driven de-
velopment, the solution preserves various advantages of model-driven software development
such as separation of concerns, extensibility or maintainability.

The second development path (in the middle of Figure 1.2) is responsible for characterizing
the dynamically changing context-of-use parameters. A Context Model supports the abstract
specification of heterogeneous context-of-use situations. Based on the Context Model, the
Context Service Generator enables the generation of various Context Services which should
monitor context information via hardware sensors.

The model-driven UI adaptation development path is depicted on the right side of Figure
1.2. In general, this development path supports the specification of an Adaptation Model in
the means of abstract UI adaptation rules in alignment to an abstract UI modeling language.
The UI adaptation rules, specified in the Adaptation Model reference the Context Model to
define the context constraints for triggering adaptation rules. The UI adaptation rules of an
Adaptation Model also have a reference to the Abstract UI Model to define which UI elements
are scope of an UI adaptation change. The specified Adaptation Model serves then as an
input for the Adaptation Service Generator which transforms it to an Adaptation Service.
The Adaptation Service is responsible for monitoring the context information provided by
the Context Service and adapting the generated Final UI at runtime.

1.3 Solution Overview and Scientific Contributions 10

For illustrating the interplay between the generated Final UI, the Context Service, and the
Adaptation Service at runtime, as well as to present the effect of specified UI adaptation
rules on the final user interface, we elaborate on the aspect of UI adaptation. Figure 1.3
shows a detailed overview of the runtime perspective for UI adaptation containing the main
components for realizing self-adaptive UIs that are able to automatically react to changes in
their context-of-use. Our solution architecture for realizing such self-adaptive UIs is based
on IBM’s MAPE-K [IBM05] architecture which is common in the field of self-adaptive
software systems. In the following, the specific components of our solution architecture will
be described.

Adaptation Service

UI
Views

monitors adapts DP

Display
Properties

Knowledge

Context
Sensor

Monitor Execute

Evaluate
Conditions

adapts UI

adapt schema

Context Service Final UI

Fig. 1.3 Runtime perspective: Architectural Overview for Self-adaptive UIs

An essential component for UI adaptation at runtime is the Context Service. The Context
Service provides context information to the Adaptation Service based on the Context Sensors
which are specified in the Context Model. The provided context information is monitored
by the Adaptation Service. Unlike the MAPE-K loop with its analyze and plan phases, the
Adaptation Service relies on the application of predefined (by the abstract UI Adaptation
Rules) conditions and associated actions. Hence, the two phases in the MAPE-K loop are
replaced by the Evaluate Conditions component. The rules that satisfy the conditions are
executed in the Final UI. The Final UI consists of two subcomponents: The UI Views which
are responsible for representing the UI and Display Properties which are affected by the
adaptation rules and contain the adaptable schema and type information of the UI. The
executed adaptation operations can modify the UI directly or edit the Display Properties. In

1.3 Solution Overview and Scientific Contributions 11

general, the UI is directly modified, if the change only affects the current view (adaptation of
the current instance). If it is, for example, a property change that would affect several pages,
it is set in the Display Properties (adaptation of schemas). An example for a property could
be the layout of tables in the whole UI. The properties are referenced from within the views,
and thereby can adapt the layout and design. The Knowledge component of the MAPE-K
loop is responsible for storing different information during the monitoring and adaptation
process. For example, monitored context information data, applied adaptation operations
or user interaction data can be stored in the Knowledge component. In our approach, it is
especially used for supporting the usability evaluation that is described in the following.

Data-Driven Usability Evaluation Approach
For addressing the challenges regarding usability evaluation of self-adaptive UIs, we de-
veloped a novel on-the-fly usability evaluation solution. The developed solution targets
rule-based UI adaptation approaches and continuously monitors context information about
context characteristics as well as collects instant user feedback about triggered UI adaptation
features.

Adaptation Service

monitors Knowledge
Monitor Execute

Evaluate
Conditions

adapts

Context Service Final UI

...

Fig. 1.4 Human-in-the-loop: On-the-fly usability evaluation of UI adaptation features

Figure 1.4 illustrates the main idea of our on-the-fly usability testing solution for UI adapta-
tions. For supporting on-the-fly usability evaluation of UI adaptation features, we integrated
an instant user feedback mechanism into the context monitoring and UI adaptation loop.
The feedback mechanism allows users to explicitly rate the triggered UI adaptations. The
users can give a positive or negative feedback or they can ignore that and focus on their main

1.3 Solution Overview and Scientific Contributions 12

application task. As Figure 1.4 shows, there is a Knowledge Base which is responsible for
storing all context information before and after a context change occurred (that lead to a
UI adaptation triggering), all triggered adaptation rules, and the corresponding instant user
feedback. Based on the stored information, it is possible to analyze the acceptance of UI
adaptations based on the current context of the user and the user’s feedback.

In summary, as depicted in Figure 1.5, this work provides the following contributions to
support the different phases in model-driven engineering of self-adaptive UIs:

➊Modeling
Firstly, an integrated modeling approach is provided for UI/Web Designers to support the
modeling of self-adaptive UIs. Two complementary modeling languages to the Interaction
Flow Modeling Language (IFML) [Obj15] were developed to accompany the development
process of self-adaptive UIs by explicitly covering the aspects of context management and
UI adaptation. The first domain-specific language is called ContextML and supports the mod-
eling of heterogeneous context-of-use parameters. The second developed domain-specific
modeling language is called AdaptML and supports the specification of abstract UI adaptation
rules that cover various UI adaptation techniques (e.g. layout, navigation, etc.).

➋Transformation
Beside the modeling phase, our model-driven engineering approach also supports the work
of Software Developers. To reduce the amount of work, our engineering approach provides
Specific Code Generators which enable the generation of the Final UI (FUI) code, as well as
code for Context Services for monitoring context-of-use parameters and Adaptation Services
to automatically adapt the UI at runtime. The Specific Code Generators, namely, UI Genera-
tor, Context Service Generator, and Adaptation Service Generator are basically realized by
code generators that implement a model-to-text-transformation approach.

➌Execution
To enable the execution of generated Context and Adaptation Services in a flexible way,
an execution environment for self-adaptive UIs is provided that makes use of a rule-based
execution engine. The rule-based execution engine triggers UI adaptations based on identified
context changes that might occur during the usage of the self-adaptive UI. The provided
execution environment supports the work of Software Developers during the execution phase
as the runtime behavior of the self-adaptive UI can be maintained in a flexible way by adding
and removing Context and Adaptation Services as needed. Also, depending on the specific

1.3 Solution Overview and Scientific Contributions 13

usage context, the rule-based execution engine can be deployed and distributed over several
client devices to enable a decentralized UI adaptation.

➍Evaluation and Application
Finally, our engineering approach incorporates a novel ’on-the-fly’ usability evaluation solu-
tion for evaluating the acceptance of self-adaptive UIs. While the End Users are interacting
with the interactive system during usage time, it allows to evaluate the End User satisfaction
of self-adaptive UIs by combining context monitoring together with collection of instant
user feedback. Furthermore, the benefit and applicability of our model-driven development
approach is shown based on two application scenarios: self-adaptive UIs applied to a library
and e-mail application.

M
o

d
el

in
g

T
ra

n
sf

o
rm

at
io

n
Ex

e
cu

ti
o

n

Specify
UI Model

Specify
Context Model

Specify
Adaptation Model

IFML
Model

ContextML
Model

AdaptML
Model

Specific Code
Generators

UI
Generator

Adaptation
Service

Generator

Context
Service

Generator

input

Self-adaptive UI

monitors
adapts

Ev
al

u
at

io
n

 &

A
p

p
lic

a
ti

o
n

generates generates generates

input input

Deployment

On-the-fly
Usability Testing

Interaction & Instant
Feedback

FUI
Context
Service

Adaptation
Service

1

2

3

4

UI/Web
Designer

Software
Developer

Software
Developer

End
User

Fig. 1.5 Solution Overview

1.4 Publication Overview 14

1.4 Publication Overview

Most of the presented contributions in this thesis have been reviewed and published in the
proceedings of international conferences and workshops. An overview of these papers is
given in Figure 1.6.

Our model-driven engineering approach for self-adaptive UIs emerged from an industrial
research project in the context of model-driven UI development and Human-Computer
Interaction (HCI). The research has been partly conducted in a joined project with Wincor
Nixdorf International GmbH partially funded by the "‘it’s OWL"’ Leading-Edge Cluster of
the German Federal Ministry of Education and Research (BMBF). The industrial project
work has been performed within the s-lab - Software Quality Lab of the Paderborn University.
In the following, the publications that were created in the course of this thesis and their
influence on the solution will be briefly explained.

First of all, a number of publications is directly related to our solution. Initial ideas
about a model-based UI development approach for distributed self-service systems in the
context of the above mentioned joint industrial project with Wincor Nixdorf were presented
in [YFKP14] (HCSE’14 – [YFKP2014]). In [YSE15] (HCI’15 – [YSE2015]), we presented
a model-based reference framework for multi-adaptive migratory user interfaces. The pre-
sented framework supports the development of distributed UIs across a variety of devices
and depicts a first runtime architecture for adaptive UIs. A refined solution and application
of this framework is presented in our publication [YS16b] (HCSE’16 – [YS2016a]). In this
work, we present a first state of our modeling languages and the model-driven engineering
approach for adaptive UIs in the context of cross-channel applications. Beside these works on
foundations and frameworks for adaptive UIs, we also focused on the specific requirements
for supporting the different transformation steps in the solution to automatically derive code
for self-adaptive UIs. The coupling of the MDUID process with a model-driven adaptation
process was presented in [YSSE17] (ECMFA’17 – [YSSE2017]). In this work, we present
our domain specific language for adaptation modeling AdaptML and how Adaptation Services
can be generated based on the specified adaptation rules in order to automatically adapt
the UI. The model-driven engineering approach for self-adaptive UIs was then completed
by the complementary model-driven context management work [YGSE17] (UCAmI’17 –
[YGSE2017]), where we introduced our context modeling language ContextML and showed
analogously the generation of Context Services for monitoring the context-of-use parameter
which trigger the UI adaptations at runtime. Furthermore, in our work [YSE17] (EICS’17
– [YSE2017]) we presented our tool-support for model-driven engineering of self-adaptive
UIs. The presented tool-chain supports developers in the different phases of the engineering
process from modeling, transformation to execution of self-adaptive UIs. Based on our

1.4 Publication Overview 15

Modeling

Transformation

Execution

Evaluation and
Application

ECMFA’17 – [YSSE17]
Self-Adaptive UIs: Integrated Model-Driven Development of UIs and their

Adaptations

UCAmI’17 – [YGSE17]
Model-Driven Context Management for Self-Adaptive UIs

HCI’15 – [YSE15]
A Model-Based Framework for Multi-adaptive Migratory User Interfaces

HCSE’16 – [YS16b]
Engineering Context‐Adaptive UIs for Task‐Continuous Cross‐Channel

Applications

EICS’17 – [YSE17]
Adapt-UI: An IDE Supporting Model-Driven Development of Self-Adaptive UIs

HCSE’14 – [YFKP14]
Model-Based Development of Adaptive UIs for Multi-channel Self-Service

Systems

ICWE’16 – [YKUS2016]
Multi-Device UI Development for Task-Continuous

Cross-Channel Web Applications

Related Publications

EICS’15 – [YMS15]
Model-Driven UI Development integrating HCI

Patterns

INTERACT’15 – [FYS15]
Integrating Human-Centered and Model-Driven

Methods in Agile UI Development

MuC’16 – [YS16a]
Customized UI Development Through Context-

Sensitive GUI Patterns

REFSQ’16 – [FRYF16]
Towards a Task Driven Approach Enabling Continuous

User Requirements Engineering

1

2

3

4

EICS’19 – [YJJ⁺19a]
Component-Based Development of Adaptive UIs

EICS-PACMHCI’19 – [YHR⁺19]
Context- and Data-driven Satisfaction Analysis of User Interface Adaptations

Based on Instant User Feedback

INTERACT’19 – [YJJ⁺19b]
On-the-fly Usability Evaluation of Mobile Adaptive UIs through Instant User

Feedback

INFORMATIK’13 – [YGS13]
Konzeption modellbasierter Benutzungsschnittstellen

für verteilte Selbstbedienungssysteme

MuC’14 – [YS14]
Flexible & Adaptive UIs for Self-Service Systems

BX’18 – [AYKP18]
On the development of consistent user interfaces

BX’19 – [AYK19]
Consistent Runtime Adaptation of User Interfaces

ICWE’16 – [YKUS16]
Multi-Device UI Development for Task-Continuous

Cross-Channel Web Applications

HCSE’18 – [YAJ⁺18]
Usability Evaluation of Model-Driven Cross-Device

Web User Interfaces

Fig. 1.6 Publication Overview

1.5 Thesis Structure 16

tool-chain, in [YJJ+19a] (EICS’19 – [YJJKAE2017]) we presented an additional solution
for development of adaptive UIs which complements the model-driven engineering approach
through a component-based development approach. In this work, the generated Context
and Adaptation Services were encapsulated as independent software components to improve
reusability. For the evaluation of self-adaptive UIs, we have developed a novel on-the-fly
usability evaluation method which was presented in [YHR+19] (EICS-PACMHCI’19 –
[YHMASE2019]). A demo of this evaluation method was presented in [YJJ+19b] (INTER-
ACT’19 – [YJJSE2019]).

Beside peer reviewed international conference papers directly related to the core solution
of this thesis, several other papers were published that are related to the fields of MDUID,
usability engineering, and consistent UI adaptation. An overview of these related publications
is shown at the bottom of Figure 1.6.

1.5 Thesis Structure

An overview of the structure of this thesis is shown in Figure 1.7.

1	Introduc+on 2	Founda+ons
3	Scenario	and	
Related	Work

4	Modeling

4.2	Modeling	
Framework

4.3	Context	
Modeling

4.4	Adapta5on	
Modeling

5.1	Transforma5on	
Approach	

5.4	Adapta5on	
Service	Genera5on

5.3	Context	Service	
Genera5on

5	Transforma+on

6.1	Run5me
Architecture

6.2	Execu5on	
Environment

6	Execu+on

6.3	Tool-Support

8	Conclusion	and	
Future	Work

7	Evalua+on

7.1	Case	Studies 7.2	Usability	Study

4.1	Language	
Engineering

5.2	User	Interface	
Genera5on

Fig. 1.7 An Overview of the Thesis Structure

1.5 Thesis Structure 17

As can be seen, the remainder of this thesis is structured as follows:

• Chapter 2 lays the foundations for the presentation of our approach. We address the
general concepts of model-driven software development while especially focusing on
model-driven user interface development and UI modeling languages. Further, we
present important foundations on context-aware and self-adaptive software systems
and introduce relevant aspects of adaptive user interfaces.

• In Chapter 3, we present a detailed problem analysis by comparing and discussing
existing state-of-the-art approaches. Based on this discussion, we depict open issues in
this research area and derive concrete requirements for solving the issues.

• Our modeling approach for engineering self-adaptive UIs is described in Chapter 4.
This chapter introduces first the integrated modeling framework for self-adaptive UIs.
After that, we present our modeling language ContextML for describing contextual
parameters representing the different contexts-of-use. Furthermore, our adaptation
modeling language AdaptML for specifying UI adaptation rules is described.

• In Chapter 5, we present our transformation approach. In this context, we first give an
overview on the overall transformation approach. After this, we describe the needed
transformation steps for generating self-adaptive UIs. For this purpose, we describe
in detail how code for the final UI as well as Context and Adaptation Services are
generated based on the corresponding models.

• A description of our rule-based execution environment is presented in Chapter 6. In
this chapter, we first give an overview on the runtime architecture for self-adaptive UIs.
After that, we describe our implemented UI execution environment that is responsible
for runtime adaptation of the generated self-adaptive final UIs. Furthermore, we present
the developed tool-chain for supporting model-driven development of self-adaptive
UIs.

• In Chapter 7, the evaluation of our approach is described. For this purpose, we first
describe two case-studies which show the application of our engineering approach
to devise self-adaptive UIs. Then, we present our on-the-fly usability evaluation
solution which is used to assess the end-user satisfaction of self-adaptive UIs. Finally,
we describe and discuss the gained results of our usability experiment based on a
data-driven usability evaluation.

• We conclude this thesis in Chapter 8. We summarize the contributions of our approach
and give an outlook of future work and research challenges.

Chapter 2

Foundations

In this chapter, we give an overview of foundations that are relevant for this thesis. First, we
introduce in Section 2.1 the general concepts of model-driven user interface development. In
Section 2.2, we present the main idea of user interface description languages in the context
of model-driven UI development and give an overview of the Interaction Flow Modeling
Language (IFML) which is an OMG standardized UI modeling language. Further, we
introduce general concepts of context-aware computing and context modeling approaches in
Section 2.3. In Section 2.4, we present relevant concepts of self-adaptive software systems
and introduce self-adaptive user interfaces. In Section 2.5, we describe relevant concepts
and methods related to usability engineering. Finally, Section 2.6 gives an overview of used
technologies.

2.1 Model-Driven User Interface Development

This section provides basic information about model-driven user interface development
(MDUID) and its background. The main goals and concepts of MDUID are explained. In
addition, two related conceptual approaches, the Model Driven Architecture (MDA) and the
CAMELEON Reference Framework (CRF), are introduced.

2.1.1 Background

For describing the underlying concepts of model-driven UI development, we start with a
historical background by differentiating between model-based and model-driven software
development.

2.1 Model-Driven User Interface Development 19

Model-based development (MBD) assumes the use of models during development. In this
context, models are primarily used to facilitate the communication between experts from
different domains. However, the models are not directly involved in the development process
and are thus an operational add-on [BCW12]. Model-based development has been used
for UI development since the 1980s ([Sze96], [MPV11]), aiming for high-quality UIs with
reduced development effort. In the 1990s, model-based UI development approaches already
specified architectures, development methods based on models, and how these models have
to be refined to achieve running applications, in addition to exploiting their communicative
value (e.g., Mobi-D [Pue97] or Trident [BHV+94]).

Model-driven development (MDD) is the general approach of making models the primary
artifact in the development process rather than application code, along with automated model
transformations ([Sch06], [BCW12]). Models are described by a modeling language, and a
modeling language in turn is defined by a so-called meta-model. An MDD process usually
involves multiple models on different levels of abstraction. Through model transformations,
defined by transformation rules, high-level models can be stepwise transformed into more
concrete models and finally into implementation code. Model transformation rules are defined
on the meta-model level hence they can be applied for any model that is an instance of the
meta-model. Since MDD has been established in software engineering, several powerful tools
and concepts which support the work with models, meta-models and model transformations
are available. Some of them are discussed in the later sections of this chapter. The core idea
of MDUID is to apply the principles mentioned above on user interface development. Based
on models and model transformation, MDUID has the potential to improve user interface
development by the following four characteristics (taken from [MPV11]):

• Multiple levels of abstraction: The user interface is described on multiple levels of
abstraction by models. Usually a certain abstraction level abstracts from a concrete
aspect, e.g., a specific technology or the final user interface design.

• Reusability: As high-level models and meta-models are independent from certain
aspects such as platform, technology and/or user interface design, they naturally have
a reusability value.

• Machine readability: Model instances are limited by the formal definition of their
related modeling language, thus they have a specific format. Formatted data can
be processed by a computer system. This is a basic precondition for automated
transformations of model instances.

2.1 Model-Driven User Interface Development 20

• Automated transformation: Model transformations describe mappings between a
source model and a target model or executable/interpretable code. Once such a
mapping is implemented, it can be automatically executed for any instance of the
source model.

Model-driven development supports the separation of software into different abstraction
levels, each with its own purpose. This enables the usage and creation of models describing
the user interface at different phases of the development process. Even non-technical
stakeholders can participate in the early stage of interaction and interface design. This
in turn results in a development process where requirements defined by stakeholders and
domain experts can be validated early on. Another well-known use case is the separation of
content of user interfaces from the design of user interfaces. In such a way, content can be
reused in combination with different designs. Beside the separation of software into different
abstraction levels, model driven development also enables the separated development of a
software system according different development aspects such as UI, core application or data
management. The applicability of such a separated model-based/-driven development of UIs
complementary to the core application and data management is shown in [Bot11]. However,
the implementation of an MDUID process, in general, is a time-consuming and expensive
task, including the definition of multiple modeling languages, model transformations, and
appropriate tooling if needed [BCW12].

2.1.2 Model Driven Architecture

A specific type of MDD and an approved standard in the field of software engineering is
the Model Driven Architecture (MDA), which was proposed by the OMG in 2003 (see
[MM03]). The core idea of MDA is similar to MDD, namely to abstract from the plain
application code to a more general and less complex representation, i.e., models. Beside
documentation and specification purpose, MDA further suggests models for the definition of
the architecture, design, and implementation of software. Therefore, in MDA, three model
levels and transformations between them are specified. As depicted in Figure 2.1, MDA
differentiates between the Computation-Independent Model (CIM), Platform-Independent
Model (PIM), and Platform-Specific Model (PSM) level. The objective of these model levels
is the so-called separation of concern. PIM and PSM are the core models. On the CIM
level, the software is described by its general requirements. On the PIM level, the software
is described in terms of a software specification (users point of view) while on the PSM
level the software is described in terms of the technical realization (developers point of view)
including aspects of a concrete platform. This clear separation of platform-independent

2.1 Model-Driven User Interface Development 21

and platform-dependent information facilitates reusability and portability of PIM instances
[Pet07], since they can be maintained for other platforms, PSMs.

Computation-Independent Model
(CIM)

Platform-Independent Model
(PIM)

Platform-Specific Model
(PSM)

Source Code

Model-to-Model Transformation (M2M)

Model-to-Model Transformation (M2M)

Model-to-Text Transformation (M2T)

Fig. 2.1 Model Driven Architecture (MDA)

Furthermore, MDA suggests the transformations of model instances between model levels
and the generation of application code from PSM instances. These Model-to-Model (M2M)
and Model-to-Text (M2T) transformations are represented by arrows in Figure 2.1. The
last transformation from PSM to implementation is usually realized by an automated M2T
transformation while inter-model transformations from PIM to PSM are realized by M2M
transformations. M2T transformations define, which code snippets are generated for the
different PSM elements. Since the transformations are defined on the model level, they
can be reused for any instance of the PSM and the PIM. Another principle of MDA is
the concept of meta-models. Meta-models are models of modeling languages, i.e., they
facilitate the definition of a modeling language itself. MDA provides the general concept for
separating specification and technical realization of software, Model-to-Model and Model-to-
Text transformations, and metamodeling. Particularly, interactive applications with complex
user interfaces have more specific requirements than software in general. Therefore, a
framework is introduced in the following chapter that applies the principles of MDA to
model-driven development of interactive applications.

2.1 Model-Driven User Interface Development 22

2.1.3 CAMELEON Reference Framework

While MDA has been designed as a general-purpose architecture for model-driven software
development, the CAMELEON Reference Framework [CCT+03], translates the conceptual
approach of MDA to the model-based/-driven UI development domain.

The CAMELEON Reference Framework (CRF) is a result of the FP5 CAMELEON (Context
Aware Modeling for Enabling and Leveraging Effective interactiON) project carried out by
a consortium composed of various universities and research groups. It was conceived as a
conceptual framework which supports the model-based development process of multi-target
user interfaces. However, the CRF is not a prescription of methods and procedures which
describe how the different steps of development can be realized. The framework rather
provides a unified understanding and common representation of user interface development
and its related models, methods and processes. In order to do so, the CRF defines a conceptual
reference framework composed of different abstraction layers, which are important for model-
based/-driven UI development, and the relationships between them.

Tasks & Concepts (T&C)
Model

Abstract UI (AUI)
Model

Concrete UI (CUI)
Model

Final UI (FUI)
Code

CIM

PIM

PSM

Code

Model-to-Model Transformation (M2M)

Model-to-Model Transformation (M2M)

Model-to-Text Transformation (M2T)

Fig. 2.2 CAMELEON Reference Framework (simplified)

As illustrated in Figure 2.2, the CRF consists of four basic layers. The first abstraction layer
is the Tasks and Concepts Model. It defines the tasks that can be performed by the user
during interaction with the user interface. It also considers the hierarchy of these tasks and
their temporal order. In addition to such a Task model, the Tasks and Concepts Model layer

2.2 User Interface Description Languages (UIDLs) 23

can contain a Domain model. The Domain model describes the information handled by the
application, e.g., the data types of properties or methods accessed by the user interface.

The Abstract User Interface (AUI) Model expresses the user interface by means of
abstract containers and individual components. While containers describe logical groupings,
individual components are mainly input/output definitions or actions performed on these
inputs/outputs. Both containers and components are Abstract Interaction Objects (AIOs),
i.e., they are independent of any platform or interaction type available on the target (e.g.,
graphical, vocal, video-based, virtual [Van08] p.4). In other words, the AUI model only
contains information about what is presented and not how it is presented.

The next layer, Concrete User Interface (CUI), is derived by transforming the AUI model
into an interactor-dependent representation, i.e., AIOs are reified into Concrete Interaction
Objects (CIOs). CIOs depend on a specific interactor type, but are still implementation-
language independent. A specific interactor type is for example a Button or a Voice Command.
CIOs clarify how the interface is perceived by the users. This includes layouting, coloring
and the actual presentation of the user interface elements. Typical examples of CIOs are
frames, buttons or voice entries.

The Final User Interface (FUI) layer represents the UI by source code depending on one
or more specific implementation technologies. It can be expressed in any implementation
language, e.g., Java or a mark-up language such as XML. Usually, the FUI is generated from
the CUI model and can be interpreted or compiled, depending on the applied implementation
technology.

As shown in Figure 2.2, the CRF suggests a four-step transformation process from high-
level abstract descriptions to implementation code. Starting with the Tasks and Concepts
model, an AUI model is derived and in turn transformed to a CUI model. While these
transformation steps are usually supported by Model-to-Model transformations, the last step
to the FUI is realized by a Model-to-Text transformation.

Model-based and model-driven UI development approaches require UI models for spec-
ifying the UI on different abstraction levels of the CAMELEON Reference Framework
(CRF). Therefore, the following subsection deals with the topic of User Interface Description
Languages (UIDLs) to describe the means for characterizing UI aspects based on models.

2.2 User Interface Description Languages (UIDLs)

This subsection provides an overview of common user interface description languages
(UIDLs) in the context of MDUID. Moreover, the Interaction Flow Modeling Language
(IFML) is presented which plays an important role in this thesis.

2.2 User Interface Description Languages (UIDLs) 24

2.2.1 Overview

Model-based and model-driven UI development approaches require UI models for specifying
the UI on different abstraction levels of the CAMELEON Reference Framework (CRF).
For this purpose, different User Interface Description Languages (UIDLs) exist. Regarding
the Tasks and Concepts layer, different types of Task models and Domain models are used.
For describing the tasks of an interactive system, task-tree based modeling approaches
such as ConcurTaskTrees (CTT) [PMM97] or HAMSTERS [PM15] are widely spread. On
the same abstraction level, Domain models like UML class diagrams are often used to
characterize the relevant data entities for the interactive application. For describing the AUI
layer, abstract UI modeling languages such as MARIA XML [PSS09], DISL [SBM06] or
the OMG standard IFML [BF14] were introduced. Furthermore, there are also UI modeling
languages for the CUI layer such as UIML [APB+99], MARIA XML [PSS09] or UsiXML
[LVM+04]. Through its mobile and web extension mechanisms (details can be found in the
next subsection) IFML is also supporting modeling of CUI aspects. Please note that UsiXML
and MARIA XML are UI modeling languages that build up on CTT and cover all abstraction
layers including AUI and CUI layers to finally derive code for the final UI. Although both of
the UI modeling languages UsiXML and MARIA XML are widely studied and applied in
different application areas, in this thesis we focus and build up on the IFML as it is an OMG
standardized language for UI modeling. In the following, IFML is introduced and presented
in more detail.

2.2.2 IFML

The Interaction Flow Modeling Language (IFML) is an abstract user interface modeling
language and was adopted as a standard by the OMG in March 2013 [BF14]. IFML is a UML
profile and originates from the Web Modeling Language (WebML) [CFB00], which was
defined in 2000. While WebML focuses on the conceptual definition of data-intensive Web
applications, IFML is designed for a more general usage. As its name suggests, IFML works
with interaction flows and interaction flow elements, which describe the content, the user
interaction, and the control behavior of any application rather than only web applications.
In other words, IFML supports the specification of a user interface’s general structure, its
content, events, event handlers, and input/output parameters which are bound to specific view
components ([BF14] pp.5-6).

2.2 User Interface Description Languages (UIDLs) 25

Currently, IFML is supported by two editor tools. The first is the WebRatio1 development
platform, a proprietary tool supporting MDD as well as the integration of external systems
and services in combination with IFML. The second tool is an open-source editor2 based
on the Sirius framework and is currently in development state. The Sirius framework is a
framework with which workbenches providing editors including diagrams, tables or trees can
be defined and deployed into Eclipse IDEs. Such workbenches provide rich and specialized
modeling editors that support the creation, deletion, modification of according models.

An increasing number of business-to-consumer (B2C), business-to-business (B2B), and
business-to-employee (B2E) applications rely on browser-based GUIs with capabilities
such as form-based interaction, information browsing and link navigation. Usually, these
GUIs are built on top of a variety of technologies and platforms. As described in [BF14],
IFML is motivated by such applications. It supports the platform-independent description
of an application’s front-end as it is perceived by the end user. As a PIM language, IFML
follows the separation of concern paradigm and perfectly fits into the AUI level of the
CRF [RMB13]. Furthermore, IFML includes a well-defined specification as well as a
standardization document providing guidelines for the mapping of IFML models to PSMs.

IFML metamodel and basic modeling concepts

The Interaction Flow Modeling Language (IFML) is designed for expressing the content, user
interaction and control behavior of the front-end of software applications. Its metamodel uses
the basic data types from the UML metamodel, specializes a number of UML metaclasses as
the basis for IFML metaclasses, and presumes that the Domain model is represented in UML.
A simplified excerpt of the IFML metamodel, based on [BUA17], is depicted in Figure 2.3
which illustrates the main InteractionFlowElements and InteractionFlows.

In the following, the relevant IFML concepts used in this thesis and their corresponding
notation in the IFML visual syntax are presented. This description is based on the modeling
notation description in the IFML specification document.

ViewContainer
An important InteractionFlowElement in IFML to support view structure specification is
a ViewContainer (specialization of ViewElement, see Figure 2.3) which consists of one
or more possibly nested ViewContainers. For example, windows in traditional desktop
applications or page templates in web applications. A ViewContainer is a user interface

1https://www.webratio.com/site/content/en/home
2https://ifml.github.io/

2.2 User Interface Description Languages (UIDLs) 26

Fig. 2.3 An excerpt of the IFML metamodel based on [BUA17]

2.2 User Interface Description Languages (UIDLs) 27

element which contains other interface elements (other ViewContainers or ViewComponents).
It can group elements that can be accessed by the user at the same time, and it can also do
the opposite: grouping elements which the user can only see alternatively. Figure 2.4 depicts
the four different types of ViewContainers. Figure 2.4(a) shows a basic ViewContainer
that can group other user interface elements. Figure 2.4(b) shows an XOR ViewContainer,
denoted by ’[XOR]’. XOR ViewContainers group other ViewContainers and constrain them
to be displayed alternatively. Only one ViewContainer inside an XOR ViewContainer can
be shown at a time. When an XOR ViewContainer is displayed, the container’s default
contained ViewContainer will be displayed. Such a default ViewContainer is depicted in
Figure2.4(d) and it is denoted by ’[D]’. Another type of ViewContainer is landmark, depicted
in Figure 2.4(c). Landmarks, by definition, can be reached from any other interface element.
Landmarks are denoted by ’[L]’.

View Container [XOR] View Container [L] View Container [D] View Container

(a) (b) (c) (d)

Fig. 2.4 Different types of View Containers in IFML

ViewComponent
A ViewComponent, as depicted in Figure 2.5(a), is a user interface element that is contained
in a ViewContainer. It can present content to the user and/or allows for interaction. View-
Components denote the publication of static or dynamic content, or interface elements for
data entry (such as input forms). A ViewComponent can have input and output parameters.
An example for a ViewComponent is a list of search result items or a contact form.

View Component

Login Form

<<Field>> userName:String

<<Field>> password:String

(a) (b)

Fig. 2.5 ViewComponents and ViewComponentParts in IFML

A ViewComponentPart is an element that can only reside in a ViewComponent (see Figure
2.5(b)). It can provide more in-depth interaction details of a ViewComponent. For example, a

2.2 User Interface Description Languages (UIDLs) 28

login form that contains a password input field, where the form itself is the ViewComponent
and the password field the ViewComponentPart.

Event
A ViewContainer and a ViewComponent can be associated with an Event (see Figure2.6), that
can represent users’ interactions or system-generated occurrences. For example, an Event
for selecting one or more items from a list can be characterized through a Select Event or
for submitting inputs from a form through a Submit Event. A Throwing Event describes a
system generated event that can be used to trigger an Action.

Select Event Submit Event Throwing Event

Fig. 2.6 Events in IFML

Action
An Action in IFML as shown in Figure 2.7 is an operation performed by the application
behind the scenes. Actions are triggered by Events. For example, delete an item from a user’s
profile on request of the user (the user request is the triggering event).

Action

Fig. 2.7 Action element in IFML

InteractionFlow
The effect of an Event is represented by an InteractionFlow connection. The InteractionFlow
expresses a change of state of the user interface. An InteractionFlow carries parameters
between elements in the IFML model, upon the occurrence of an Event. The parameters
sent in the outgoing side of the flow are used as input parameters for the element at the
incoming side of the flow. As depicted in Figure 2.8, there are two kinds of Interaction
Flow: NavigationFlow and DataFlow. NavigationFlows (denoted by a full arrow line) do
not only carry the parameters, but also navigate the user to the element at the arriving side
of the flow. DataFlows (denoted by a dashed arrow line), on the other hand, are only used
to carry parameters around. They are often used as auxiliary flows for NavigationFlows

2.2 User Interface Description Languages (UIDLs) 29

when not all the necessary parameters can be found in the IFML element at the outgoing side
of the NavigationFlow. Also worth mentioning is that NavigationFlows do not necessarily
need to carry parameters (e.g., when the user browses to another page in a website, merely
following a hyperlink). An example of a NavigationFlow which does carry parameters can
be the following: a user submits an item using a form and arrives at a details page of the item
he just inserted (carried parameters: the details of the item).

Navigation Flow Data Flow

Fig. 2.8 InteractionFlows in IFML

Parameter
A Parameter as depicted in Figure 2.9(a), is a variable with a typed and named value that can
be passed around by flows. It can be held by any IFML element which can have incoming or
outgoing flows. For example, a View Component that contains a list of songs can contain the
Parameter SelectedSong. When the user selects a song from the list, the parameter is set and
can be passed onto a flow which leads to another interface element playing the selected song.

From To

<<ParamBindingGroup>>

Name
Password

UserName
UserPassword

From To

<<Parameter>> State: String

(a) Parameter (b) Parameter Binding (c) Parameter Binding Group

Fig. 2.9 Parameters in IFML

A ParameterBinding as shown in Figure 2.9(b), is the association of input and output param-
eters of a flow. They specify how parameters are transferred. For example, the Parameter
SelectedSong of a list with songs is bound to the Song parameter of a details view about the
song, upon transferring it between both views by means of a navigation flow. ParameterBind-
ings have two syntactical notations with equal semantics, and are connected to the associated
flow by means of a dashed line.

2.2 User Interface Description Languages (UIDLs) 30

Figure 2.9(c) depicts a ParameterBindingGroup which groups several ParameterBindings
which are associated to the same flow. For example, to login to a website both parameters
username and password are sent to an action (at the server-side) which checks whether the
username-password combination is valid. In this example, both username and password are
bound in the ParameterBindingGroup of the flow between the login form and the server
action.

IFML Example
Beside the above described basic IFML modeling concepts there are further concepts such as
Modules for compact representation of complex IFML models, ActivationExpressions for
defining interaction flow constraints, and also many other extension mechanisms for modeling
specific front-end aspects of mobile and web applications. The interested reader may refer to
the IFML book published by Brambilla et al. [BF14]. Instead of further elaborating on the
modeling concepts of IFML, we present, in the following, a small IFML modeling example
to provide a better intuition for the usage of IFML. Figure 2.10 shows an initial example
IFML model of a simple user interface. The view structure consists of three ViewContainers

<<Window>> AlbumSearch

<<Form>>

Album
Search

<<Window>> Albums

<<List>>

Album
List

<<Window>> Album

<<Details>>

Album
Details

<<ParamBindingGroup>>

Title
Year

AlbumTitle
AlbumYear

<<ParamBindingGroup>>

Title
Year

AlbumTitle
AlbumYear

Fig. 2.10 Example of a simple UI and its IFML specification.

(AlbumSearch, Albums, and Album), which reflect the top-level organization of the graphical
UI in three distinct pages. The model shows the content of each ViewContainer. For example,
the AlbumSearch ViewContainer comprises one ViewComponent called AlbumSearch. This
notation represents the content of the respective page in the GUI (i.e., a form to search for
a specific book based on the title and publication year). Events are represented in IFML as

2.2 User Interface Description Languages (UIDLs) 31

circles. The SubmitEvent Event specifies that the AlbumSearch component is interactive
and it triggers the Parameter passing from the ViewComponent owning the Event to the
ViewComponent target of the NavigationFlow outgoing from the Event. In the graphical UI,
it means that the user can enter values for the search regarding title and year. The effect
of the SubmitEvent Event is represented by the outgoing arrow (called InteractionFlow in
IFML), which specifies that the triggering of the Event causes the display of the Albums

ViewContainer and the display of its AlbumList ViewComponent (i.e., the list of albums
based on the search results). The input–output dependency between the AlbumSearch

and the AlbumList ViewComponents is represented as a ParameterBinding (the IFML
ParameterBindingGroup). The values of the Parameter Title and Year, which denote
the search values entered by the user in the AlbumSearch ViewComponent, is associated
with the value of the input Parameters AlbumTitle and AlbumYear which is requested
for the computation of the AlbumList ViewComponent. The AlbumList ViewComponent
specifies a list for the search results where the user can select one specific album item
that is triggered through the SelectItemEvent. The SelectedAlbum is passed through a
ParameterBinding to the target ViewComponent AlbumDetails which is responsible for
showing detailed information about the selected album item. The tree view representation
for the above described IFML model example is shown in Figure 2.11.

Fig. 2.11 Tree view representation of the IFML model example

2.3 Context-Aware Computing 32

In summary, IFML is an OMG standardized UI modeling language for describing the content,
user interaction and control behavior of the front-end of software applications. Although it
serves as a solid solution for UI modeling, it lacks means for explicitly modeling aspects
such as context management and UI adaptation which have to be taken into account when it
comes to the development of self-adaptive UIs.

2.3 Context-Aware Computing

As context management aspects (e.g., context monitoring, change detection, etc.) represent
an important prerequisite for realizing self-adaptive UIs, the following Section introduces
the term Context-aware Computing and its main concepts.

Context-aware Computing stems from the vision articulated by Marc Weiser in his
seminal paper: ’The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from it’ [Wei99].
The goal of context-aware computing is to acquire and utilize information pertaining to the
physical world, and then select, configure, and provide a variety of services accordingly.

Context-aware systems are concerned with the acquisition of context (e.g., using sensors
to perceive a situation), the abstraction and understanding of context (e.g., matching a
perceived sensory stimulus to a context), and application behavior based on the recognized
context (e.g., triggering actions based on context). Context-awareness is regarded as an
enabling technology for ubiquitous computing systems.

In the following, we introduce the notion of context based on [Sch13] and describe
relevant information regarding context acquisition through sensors and modeling context-of-
use situations.

2.3.1 Notion of Context

For the creation of flexible and highly usable user interfaces it is essential to understand
the context-of-use. With context-aware computing, we have the means of considering the
context-of-use not only in the design process, but also at runtime while the device is in
use. In Human-Computer Interaction (HCI), it is important to understand the user and the
context-of-use and create designs that support the major anticipated use cases and situations
of use. In Context-Aware Computing, on the other hand, the consideration of context causes
a fundamental change: We can support multiple contexts-of-use that are equally optimal.
At runtime, when the user interacts with the application, the system can decide what the
current context-of-use is and provide a user interface specifically optimized for this context.

2.3 Context-Aware Computing 33

With context-awareness, the job of designing the user interface typically becomes more
complex as the number of situations and contexts which the system will be used in usually
increases. In contrast to traditional systems, we do not design for a single or a limited set of
contexts-of-use. Instead, the overall goal in context-aware computing is to design for several
contexts. The advantage of this approach is that we can provide optimized user interfaces for
a range of contexts [Sch13].

In the early days of the computing era, the context in which systems were used was
strongly defined by the place in which computers were set up. Personal computers were
used in office environments or on factory floors. The context-of-use did not change much,
and there was little variance in the situations surrounding the computer. Hence, there was
no need to adapt to different environments. Many traditional methods in the discipline of
Human-Computer Interaction (HCI), such as contextual inquiry or task analysis, have their
origin in this period and are most easy to use in situations that do not constantly change.
With the rise of mobile computers and ubiquitous computing, this changed [Sch13]. Users
take computers and smart devices with them and use them in many different situations.

The term context is widely used with very different meanings. A rather generic description
of what constitutes context, has been provided by Dey [Dey01]:

“Context describes any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves.‘’

For defining the term context, the research community on model-based user interfaces shift
the emphasis towards the notion of context-of-use. Much of the work in this area builds on
the unifying reference framework by Calvary et al. [CCT+03], who define the context-of-use
of an interactive system by three classes of entities:

• The users of the system who are intended to use (and/or who effectively use) the
system,

• the hardware and software platform(s), that is, the computational and interaction
device(s) that can be used (and/or are used, effectively) for interacting with the system,
and

• the physical environment where the interaction can take place (and/or takes place in
practice).

2.3 Context-Aware Computing 34

Under software engineering considerations, Calvary et al. [CCT+03] distinguish between
predictive contexts-of-use that are known at design-time and the effective contexts-of-use
that can only be determined at runtime, and which may differ.

2.3.2 Context Acquisition and Modeling

An important prerequisite for context-aware computing is the acquisition of contextual
information. It can have different sources, although the most relevant are sensors in our
environment. In that case we can refer to information as “sensed context information‘’.
These sensors can have various forms and deliver very different types of results. All of them
are object to failure and noise. There is usually a significant gap between sensor output and
the level of information that is useful to applications. Therefore, this gap must be bridged
by various kinds of processing of context information before the information is passed to
context-aware services [HS09].

Most current devices, by which web and mobile applications are accessed today, have a di-
verse set of sensors to support a broad spectrum of applications. Those are primarily intended
to be utilized by the operating system or native applications. But browsers continuously
support the access of hardware sensors via APIs or libraries. Standards for sensor access are
set by the World Wide Web Consortium (W3C)3 and implemented by different browsers,
such as Google Chrome or Mozilla Firefox. Not all standards are implemented right away or
even get reverted, e.g., for privacy concerns.

A specific property of context may be derived by different sources. Like the current position
can be derived from the IP address or, if existing, from a GPS sensor. Moreover, different
sources of sensory information can be combined to derive new properties. For example,
the accelerometer and the light sensor combined with even more sensors are being used
to detect if a smartphone is inside a pocket or in the hand of a user. This enhances the
contextual information, but that is not the main focus of this thesis. It will be assumed
that the needed information for the definition of UI adaptations can be obtained primarily
through the use of external APIs and libraries, which themselves can access diverse sensory
information and therefore upvalue the given contextual information themselves. For example,
the AffectivaSDK4, utilized in this thesis, accesses the front-camera of the used device and
derives the current mood of the user. This means that the SDK enhances pure information

3https://www.w3.org
4https://developer.affectiva.com

https://www.w3.org
https://developer.affectiva.com

2.3 Context-Aware Computing 35

about the view in front of the device to information about the current state of the user.

According to [GS01], sensed context is information and can therefore be modeled as such. It
contains important characteristics that are utilized in a model:

• information content

– sensed properties

– the subject of sensing

• meta information

– information quality attributes

– information about the source of the content

Context Model
User : UB

Platform: PB

Environment: EB

Context Model
User : UA

Platform: PA

Environment: EA

Sensors Sensors

Fig. 2.12 Abstracting context-of-use with a context model

As explained in [dK01], a model is a simplification of reality and abstracts systems’ concepts,
including their properties, methods, relationships, cardinalities, and constraints. This shall
provide a version of a system sufficiently complete to comprehend the systems’ goals.
That facilitates a possibility to describe the context of the regarding application. Different
circumstances will lead to a different state of the context model, as shown in Figure 2.12.
A metamodel serves as a basis for developers to extend existing models or create new ones.
Different approaches for modeling context have been developed over time. In general, the
approaches can be classified according to the following types, as stated in [SLP04] (for every
type, an example work is given):

2.4 Self-adaptive Software Systems 36

• Key-Value Models: Represent simple structure for context information. Services are
described by a list of simple attributes in a key-value manner. They are easy to manage,
but lack capabilities for structuring for efficient context retrieval [SAW94].

• Markup Scheme Models: Hierarchical data structure consisting of markup tags with
attributes and content. Content is usually recursively defined by other markup tags.
Languages are often based on generic markup languages like XML [HBSS02].

• Graphical models: Often based on general purpose modeling artifacts such as Unified
Modeling Language (UML) diagrams. Standard tools are often extended to enlarge the
context modeling capabilities [HIR03].

• Object-Oriented Models: This is based on the concept of objects and relation-ships be-
tween them as in the object-oriented programming paradigm. Object-oriented context
models aim to utilize encapsulation and increase reusability. Access to information is
provided through specified interfaces only [SBG99].

• Logic-Based Models: Facts, expressions, and rules are used to define a context model.
The logic defines the conditions on which a concluding expression or fact is derived
from a set of other expressions or facts. These models have a high degree of formality
[GS01].

• Ontology-Based Models: This approach is based on ontology models and enables to
specify concepts and interrelations of information. Some also allow for consistency
checking and contextual reasoning [zA97].

Above listed context modeling approaches have different capabilities and are suitable for
different problems. The application of a concrete context modeling approach depends on the
specific requirements of the application scenario and domain.

2.4 Self-adaptive Software Systems

In this section, we provide basic information about self-adaptive software systems by describ-
ing the background and concept of autonomic computing. Then, we explain self-adaptive
software systems and different types of self-* properties in general. After introducing self-
adaptive software systems in general, we transfer the idea of self-adaptivity to the context of
user interfaces. For this purpose, we present different types of UI adaptation techniques and
differentiate between different self-* properties of self-adaptive UIs.

2.4 Self-adaptive Software Systems 37

2.4.1 Background: Autonomic Computing

The term Autonomic Computing (also known as AC) refers to the self-managing character-
istics of distributed computing resources, adapting to unpredictable changes while hiding
intrinsic complexity to operators and users [KC03]. Autonomic Computing, initiated by IBM
in 2001, helps to address the development of computer systems capable of self-management,
to overcome the rapidly growing complexity of computing systems management, and to
reduce the barrier that complexity poses to further growth [IBM05]. The term autonomic
is derived from human biology. The autonomic nervous system monitors the heartbeat,
checks the blood sugar level, and keeps the body temperature in an ideal degree without
any conscious effort needed from the human side. In much the same way, self-managing
autonomic capabilities anticipate IT system requirements and resolve problems with minimal
human intervention [IBM05].

The AC system concept is designed to make adaptive decisions, using high-level policies.
It will constantly check and optimize its status and automatically adapt itself to changing
conditions. The MAPE-K loop was introduced by IBM as a reference architecture for
autonomic computing [IBM05]. As depicted in Figure 2.13, the reference architecture for
autonomic computing integrates the two main components Autonomic Manager and Managed
Resource.

Autonomic Manager

Monitor

Analyse Plan

Execute
Knowledge

Managed Resource

Managed resource touchpoint

Sensors Effectors

Fig. 2.13 IBM MAPE-K Loop [IBM05]

2.4 Self-adaptive Software Systems 38

A Managed Resource is a hardware or software component that can be managed. A Managed
Resource could be a server, storage unit, database, application server, service, application or
other entity like the user interface as it is the case in this work. A touchpoint is an autonomic
computing system building block that implements sensor and effector behavior for one
or more of a managed resource’s manageability mechanisms. Through a touchpoint the
Managed Resource provides the ability to be sensed (via Sensors) and changed (via Effectors)
by the Autonomic Manager.

The Autonomic Manager is responsible for continuously monitoring the Managed Resource
through Sensors and to automatically react to changing conditions by adapting the Managed
Resource through Effectors. For this purpose, the Autonomic Manager consists of a control
loop that is called MAPE-K, while this acronym represents the starting letters of the main
sub components:

• Monitor: The monitor component provides the mechanisms that collect, aggregate,
filter and report details collected from a managed resource.

• Analyze: The analyze component provides the mechanisms that correlate and model
complex situations (for example, time-series forecasting and queuing models). These
mechanisms allow the autonomic manager to learn about the IT environment and help
predict future situations.

• Plan: The plan component provides the mechanisms that construct the actions needed
to achieve goals and objectives. The planning mechanism uses policy information to
guide its work.

• Execute: The execute component provides the mechanisms that control the execution
of a plan with considerations for dynamic updates.

• Knowledge: Data used by the autonomic manager’s four components (monitor, analyze,
plan and execute) are stored as shared knowledge. The shared knowledge includes data
such as topology information, historical logs, metrics, symptoms, and policies.

2.4.2 Self-adaptation and Self-*properties

Many researchers use the terms Autonomic Computing and Self-adaptive (not specifically self-
adaptive software) interchangeably. Whereas the term of Autonomic Computing has emerged
in a broader context and covers the complete layers of a software intensive system that consists
of application(s), middleware, network, operating system, and hardware, Self-adaptive

2.4 Self-adaptive Software Systems 39

Software Systems are more specific and primarily cover the application and middleware
layers. This means self-adaptive software systems are a specific subclass of autonomic
systems and fall under their umbrella [ST09]. A more concrete definition for self-adaptive
software, is provided in a DARPA Broad Agency Announcement (BAA) by Laddaga [Lad97]:

“Self Adaptive Software evaluates its own behavior and changes behavior when
the evaluation indicates that it is not accomplishing what the software is intended
to do, or when better functionality or performance is possible.‘’

A similar definition is given in Oreizy et al. [OGT+99]:

“Self-adaptive software modifies its own behavior in response to changes in its
operating environment. By operating environment, we mean anything observable
by the software system, such as end-user input, external hardware devices and
sensors, or program instrumentation.‘’

Both definitions underline the aspect that Self-adaptive software aims to adjust various arti-
facts or attributes in response to changes in the self and in the context of a software system.
By self, the whole body of the software is meant, mostly implemented in several layers, while
the context encompasses everything in the operating environment that affects the system’s
properties and its behavior. Therefore, a self-adaptive software is a closed-loop system with
feedback from the self and the context.

Self-adaptive software is expected to fulfill its requirements at runtime in response to changes.
To achieve this goal, software should have certain adaptivity characteristics, known as self-*
properties ([IBM05], [BJM+05]). The need for self-adaptive software or adaptivity capa-
bilities can have a broad range of reasons. For instance, a self-adaptive software system
might react to erroneous system states or optimize its own behavior to perform a specific task
more efficiently. Based on the initial well-known set of self-* properties, introduced by IBM,
Salehie et al. [ST09] present a hierarchical set of self-* properties (see Figure 2.14) which
are briefly explained in the following.

General Level: This level contains global properties of self-adaptive software. A subset
of these properties, which falls under the umbrella of self-adaptiveness, consists of self-
managing, self-governing, self-maintenance, self-control and self-evaluating.

Major Level: The IBM autonomic computing initiative defines a set of four properties at this
level. This classification serves as the de facto standard in this domain. These properties

2.4 Self-adaptive Software Systems 40

General Level

Primitive Level

Major Level

Self-
Adaptiveness

Self-Configuring

Self-Optimizing

Self-Healing

Self-Protecting

Self-Awareness Context-Awareness

Fig. 2.14 Hierarchy of the self-* properties [ST09]

have been defined in accordance to biological self-adaptation mechanisms. The following
list further elaborates on the details.

• Self-configuring is the capability of reconfiguring automatically and dynamically in
response to changes by installing, updating, integrating, and composing/decomposing
software entities.

• Self-healing, which is linked to self-diagnosing or self-repairing, is the capability of
discovering, diagnosing, and reacting to disruptions. It can also anticipate potential
problems, and accordingly take proper actions to prevent a failure. Self-diagnosing
refers to diagnosing errors, faults, and failures, while self-repairing focuses on recovery
from them.

• Self-optimizing, which is also called self-tuning or self-adjusting, is the capability of
managing performance and resource allocation in order to satisfy the requirements of
different users. End-to-end response time, throughput, utilization, and workload are
examples of important concerns related to this property.

• Self-protecting is the capability of detecting security breaches and recovering from
their effects. It has two aspects, namely defending the system against malicious attacks,
and anticipating problems and taking actions to avoid them or to mitigate their effects.

Primitive Level: Self-awareness and context-awareness are the underlying primitive proper-
ties. The following list further elaborates on the details.

• Self-Awareness means that the system is aware of its self states and behaviors. This
property is based on self-monitoring which reflects what is monitored.

• Context-Awareness means that the system is aware of its context, which is its opera-
tional environment.

2.4 Self-adaptive Software Systems 41

2.4.3 Self-adaptive User Interfaces

The user interface (UI) layer is considered as one of the key components of software appli-
cations since it connects their end-users to the functionality. Providing an easy to use and
adequate user interface that is suitable for the current contextual situation of the end-user is
a complex task due to dynamically changing heterogeneous context-of-use situations. As
discussed in the previous subsections, self-adaptive software systems cover the application
layer and thus self-* properties can be also integrated in the UI layer to increase usability
and flexibility of the user interface.

Based on the described hierarchy of self-* properties for self-adaptive software systems by
Salehie et al. [ST09] (see Figure 2.14), Akiki et al. [ABY14a] identify self-* properties
for self-adaptive UIs. In their literature study, they noticed that some of the problems are
technical and related to devising systems that can support the development of self-adaptive
UIs, while others are related to human factors such as the end-user acceptance of these UIs.
As depicted in Figure 2.15, the authors point out the essential self-* properties which should
be realized to handle the relevant technical and human problems related to self-adaptive UIs.

Fig. 2.15 Self-* properties of Self-adaptive UIs [ABY14a]

In the following, based on [ABY14a], the main adaptivity characteristics relevant to the
domain of self-adaptive UIs are described (see Figure 2.15).

• Context-awareness: ’indicates that a system is aware of its context, which is its
operating environment’. If the UI is aware of its context and is able to detect context
changes, then it can trigger adaptations (e.g., based on a set of rules) in response to
those changes in order to preserve its usability.

• Self-configuring: ’is the capability of reconfiguring automatically and dynamically
in response to changes’. To keep the UI adaptation rules up to date with an evolving

2.4 Self-adaptive Software Systems 42

context-of-use (e.g., if a user’s computer skills improve), there is a need for a mecha-
nism that can reconfigure these rules by monitoring such changes. Another type of rule
reconfiguration could be based on the end-users’ feedback. For example, the end-user
may choose to reverse a UI adaptation or select an alternative. Keeping the end-users
involved in the adaptation process could help in increasing their awareness and control,
thereby improving their acceptance of the system.

• Self-optimizing: ’is the capability of managing performance and resource allocation in
order to satisfy the requirements of different users’. To adapt this definition to user
interfaces, we can say that a UI can self-optimize by adapting some of its properties.
For example, adding or removing features, changing layout properties (e.g., size,
location, type, etc.), providing new navigation help, etc.

Beside the above described self-* properties for self-adaptive UIs, it is also important to
consider the different forms and techniques for UI adaptation. A systematic classification
for different types of possible adaptations in the context of user interfaces is provided by
Nebeling [Neb12], who differentiates between the following main types of UI adaptations:

• Adaptation of Content / Task-feature set. According to Brusilovsky [23], content-
level adaptation techniques include conditional text or stretch text to expand and
collapse foldable text paragraphs. Other typical examples of content-level adaptation
include internationalization and localization of web sites as these primarily require the
translation of content, but may also concern the reading order and thus the alignment
of page elements. With regard to content adaptation, it is also important to mention
that task-feature set adaptations enable to adapt the amount of shown display and
interaction elements. Based on the current context-of-use the task-set of the UI can be
increased or decreased to better support the need of the users.

• Adaptation of Navigation. Navigation-level adaptations may support direct guidance
of a user to relevant content within the current document or to related pages. The
explored techniques include structural or link-level adaptations such as hyperlink
sorting, hiding and annotation techniques [23]. The second survey by Brusilovsky
[24] further distinguishes the techniques used for link hiding and also discusses those
for generating new links. Link hiding can be achieved by temporarily or permanently
removing hyperlinks or by disabling them. Link generation techniques may be used for
dynamically adding a list of relevant links for the current document or new useful links
between related pages, as well as creating links based on similarity between navigation
items.

2.5 Usability Engineering 43

• Adaptation of Presentation. Presentation-level adaptations concern the design, i.e. the
font, color and/or style, or the layout, i.e. the position, size and/or order (e.g., z-index)
of rendered page elements. While Brusilovsky [23, 24] classified many different works
into using either adaptive text presentation or adaptive navigation techniques, adaptive
layout techniques often use a combination of different adaptation technologies that
are difficult to tell apart and thus to classify. For example, techniques such as stretch
text are special since they are concerned with both changing the text and the layout
when additional content associated with keywords is expanded or collapsed within
the document and, as a result, shifts other elements in the page [162]. However, some
techniques such as text dimming that Brusilovsky [24] characterised as adaptive text
may be better labeled as an adaptive layout technique, as they essentially only change
the presentation of content and not the content as such.

• Adaptation of Modality. Beside the above introduced types of UI adaptation techniques,
UI changes regarding the interaction modality can be also seen as a further adaptation
technique as illustrated in [Pat13]. With this regard, it is possible to provide different
interaction modalities for the end-users. Based on the current context-of-use one can
switch for between different modalities (e.g., textual UI, graphical UI, vocal UI, etc.

2.5 Usability Engineering

In this section, we give a brief overview on the topics usability and usability evaluation
methods as usability evaluation is an essential part of our model-driven engineering approach
for self-adaptive UIs. First of all, we introduce the main ideas behind usability and relevant
usability criteria that should be considered in the development process of interactive systems.
After that, we briefly present existing usability evaluation methods that are used for assessing
the quality of use of interactive systems.

2.5.1 Usability

Usability is the ease of use and learnability of a human-made object such as a tool or device
[Sta98]. In software engineering, usability is the degree to which a software can be used
by specified consumers to achieve quantified objectives with effectiveness, efficiency, and
satisfaction in a quantified context-of-use. According to ISO 9421-11 [Sta98] usability
focuses on the main criteria of executing tasks with effectiveness, efficiency, and satisfaction.
Effectiveness means that the tasks are fully completed. Efficiency refers to the effort for
task execution which should be as low as possible. Satisfaction, in addition, considers that

2.5 Usability Engineering 44

the task execution must be pleasant for the users. As the definition already shows, usability
depends on the usage context, which covers user groups, tasks to be executed, as well as the
physical and social environment of the user. Therefore, usability may vary strongly between
different usage contexts which means, e.g., that a product can have a high usability for one
person and a low usability for another.

As described in [HG14], a usability issue is a problem with the software that decreases its
usability. This means, it decreases one or several factors of effectiveness, efficiency, and
satisfaction. Usability issues can have different causes like the visual design, the informa-
tion architecture, the performance, or failures of a software. For example, a specific color
combination in the visual design can make it hard for users to identify a certain GUI element
and, therefore, to fulfill a task (effectiveness). Furthermore, the information architecture
may require users to perform long navigation paths through a website (efficiency) to reach a
specific information.

Beside the ISO definition, a further widely accepted notion for usability comes from usability
consultant Jakob Nielsen [Nie93] and computer science professor Ben Shneiderman [Shn00]
who have written (separately) about a framework of system acceptability, where usability is a
part of ’usefulness’ and is composed of:

• Learnability: How easy is it for users to accomplish basic tasks the first time they
encounter the design?

• Efficiency: Once users have learned the design, how quickly can they perform tasks?

• Memorability: When users return to the design after a period of not using it, how easily
can they re-establish proficiency?

• Errors: How many errors do users make, how severe are these errors, and how easily
can they recover from the errors?

• Satisfaction: How pleasant is it to use the design?

2.5.2 Usability Evaluation Methods

The major goal of a usability evaluation is to measure different aspects of the usability of a
software, like effectiveness, efficiency or satisfaction. Basically, usability evaluation aims at
identifying usability issues. This requires the predefinition of evaluation goals, the analysis
of the usage context, and finally the measurement and assessment of usability aspects using

2.5 Usability Engineering 45

dedicated methods. The analysis of the usage context includes the identification of typi-
cal tasks users perform with a software. These tasks serve as input for the evaluation methods.

There are a variety of usability evaluation methods. Certain methods use data from users,
while others rely on usability experts. There are usability evaluation methods for all stages of
design and development, from product definition to final design modifications. As described
in [Har16], usability evaluation methods can be subdivided into expert- and user-oriented
methods.

Expert-oriented methods are performed by experts who know how a specific method must
be applied. These methods define concrete steps the expert has to take to identify usability
issues. For example, an expert measures the achievable efficiency of a user executing a
specific task by identifying detailed actions a user has to take and then estimating the average
time for the action executions.

In contrast, user-oriented methods follow a process in which users use a prototype or a
running software for predefined tasks while they are observed by an evaluator. The observa-
tions are then analyzed and help to identify usability issues. For gathering data during the
observations, different methods like taking notes, recording user actions, letting users fill
out questionnaires, or thinking aloud can be applied. User-oriented usability evaluation or
usability tests can be done in a laboratory or in the field [KSR03]. A laboratory setup might
influence the user and, hence, the evaluation results. When done in the field, user-oriented
usability evaluation lets users do their tasks in their natural environment, i.e., in the matching
usage context making the results more reliable [KSR03].

As a further usability evaluation method it is important to mention model-based usability
evaluation. Model-based usability evaluation methods utilize models (e.g., user models,
UI models, etc.) which can describe users and the way they utilize a software [AIV08] or
the software itself [Træ02]. For example, a model can define average durations for specific
actions or it may describe the graphical UI. Usually, the model is created before and ana-
lyzed during the evaluation. A model can be created manually or automatically where in
the latter case it is usually derived from other models (like the GUI itself) through model
transformation.

Another important term related to usability is usability engineering. Usability engineering
describes the continuous application of usability evaluation methods during the development

2.6 Technologies 46

process of a software with the goal to achieve high usability of the final product [Nie93]. The
application of the evaluation methods requires preparation. Therefore, usability engineering
usually covers five tasks: a) analysis of users and context, b) modeling of a solution, c)
specification of solution details, d) realization, and e) evaluation of the solution. These
tasks must not be understood as successive but as contributing to each other. For example, a
modeling may result in requiring a further analysis of a specific aspect. Usability evaluation
methods are applied in Task e) but require preparation in all other tasks.

It is important to distinguish between usability testing and usability engineering. Usability
testing is a specific activity as part of usability engineering to measure the ease of use of a
product or piece of software. In contrast, usability engineering (UE) is broader and contains
the research and design process that ensures a product with good usability. Usability is a
non-functional requirement. As with other non-functional requirements, usability cannot be
directly measured but must be quantified by means of indirect measures or attributes such as,
for example, the number of reported problems with ease-of-use of a system.

Related to usability are the terms user experience and accessibility. User experience covers a
broader context than usability [LP08]. In addition to usability, it considers an ’... individual’s
entire interaction with the [software], as well as the thoughts, feelings, and perceptions that
result from that interaction.’ [TA13]. In some definitions, user experience covers a whole
customer journey from searching for a product, via buying it, up to using support during
usage. Usability can be seen as an important part contributing to the user experience. In
comparison to the before mentioned terms, accessibility aims at making software usable for
people with certain disabilities. Self-adaptive UIs as aimed in this thesis can also support
improving accessibility issues.

2.6 Technologies

In this section, we give a brief overview of the relevant technologies that were used to imple-
ment the solution approach of this thesis. Therefore, we introduce the Angular framework,
the Nools rule engine, and describe basic concepts behind Xtext and Xtend.

2.6 Technologies 47

2.6.1 Angular Framework

The Angular framework5 is one of the most used UI/Web frameworks. Angular is maintained
by Google and aims to facilitate the development of modern UIs and (web) applications
for different target platforms by relying on established development practices, concepts,
and conventions. Angular has established itself as a de facto standard for front-end/UI
development purposes and is highly used in industrial projects. Angular is based on the
languages JavaScript6 and HTML7. Usually, TypeScript8, a strict syntactical superset of
JavaScript is used while developing Angular applications. It provides a flexible and easy to
use module system as well as type system to ease the work of the developers. As illustrated
in Figure 6.2, the architecture of the Angular framework is very modular.

Module
Component

Module
Service

Module
Value

Module
FN

Injector

Service

Template

Component

Metadata
Event

Binding
Property
Binding

Metadata

Directive

structural atrribute

Fig. 2.16 Architectural Overview of the Angular framework [GS13]

In the following, the individual building blocks of the Angular framework are shortly ex-
plained.

5https://angular.io
6https://www.javascript.com/
7https://www.w3.org/html
8https://www.typescriptlang.org

2.6 Technologies 48

An Angular application is modular and assembled from multiple Modules. Modules are
a collection or grouping of code artifacts which support a common goal. Although they
are optional, use of Modules is encouraged to improve software quality (e.g., readability,
maintenance, etc.). Modules can be made public and imported by use of the statements
import and export respectively.

A Component controls parts of the view, e.g. a list which is displayed. The Component’s
application logic is defined within a class, which can interact with the view. Angular
autonomously manages (creates, updates, and destroys) the Components as they are needed.

The view with which a Component interacts is called Template. A Template is represented
as HTML code and specifies how the Component is displayed. However, additionally to the
HTML code, a Template also contains Angular markup code. This includes, for example,
other Components or different forms of data binding. Data binding is a mechanism that
connects the Component and the Template. The different kinds of data binding allow to
establish a connection in both directions, also called two-way data binding, or just in one
direction (from Component to Template, also called Property Binding, or the other way round,
also called Event Binding).

Angular Templates are rendered dynamically according to the instructions given by the
Directive. Directives can be categorized into two groups: structural and attribute Directives.
Structural directives can be used for broader layout changes. They can add, remove or replace
elements in the Document Object Model (DOM), which is an interface for accessing the
HTML structure. Attribute directives, on the other hand, enable to change the appearance or
behavior of an element.

Services in Angular enable to integrate application functionality into Components through
an Injector. Simple examples for services could be logging, user input validation, data
fetching or calculation functions. Dependency injection (DI), is an important application
design pattern. Angular has its own DI framework, which is typically used in the design of
Angular applications to increase their efficiency and modularity. Dependencies are services
or objects that a class needs to perform its function. DI is a coding pattern in which a class
asks for dependencies from external sources rather than creating them itself. In Angular, the
DI framework provides declared dependencies to a class when that class is instantiated.

As described above, the architecture of the Angular framework fits well to to our concern
to characterize the UI and reflect UI changes to realize runtime UI adaptation. Moreover,
the architecture of the Angular framework is modular and supports sufficient flexibility to
integrate further aspects such as context monitoring and UI adaptation at runtime.

2.6 Technologies 49

2.6.2 Nools Rule Engine

A rule engine, in general, is a software component, which having some knowledge based on
facts, is able to perform conclusions by executing one or more rules in a runtime environment.
Commonly known rule engines are business rule engines from the domain of enterprise
applications. In this domain, a rule engine is used to separate business rules (e.g., "‘All
customers that spend more than 100C at one time will receive a 10% discount"’) from the
application code. The usage of a rule engine brings many advantages which are described in
the following:

• Understandability: Rules are easier to understand for a business analyst or a new
developer than a program written in Java or other imperative-style language.

• Maintainability: Since rules are specified in a declarative manner and separated from
application logic, a developer can spend more time solving the actual problem in his or
her domain of expertise.

• Flexibility: Rule engines bring flexibility to better cope with changes to the require-
ments or changes to the data model. Changing or rewriting an application is never
an easy task. However, thanks to the formalism that rules bring, it is much easier to
change rules than to change the application logic.

• Efficiency and Scalability: Here the advantage comes from the existing efficient
algorithms such as the RETE [For82] algorithm which perform efficiently, accurately
and quickly .

• Reusability: The rules are kept in one place and are separated from the application
logic. This way, already specified beneficial rules can be used in other contexts (e.g.,
for another application, domain, project etc.).

• Runtime Continuity: It is possible to change/redeploy rules and processes without even
stopping the whole application. That means, while the rule engine is executed, the set
of rules can be changed at runtime.

In our solution for model-driven development of self-adaptive UIs, we aim to reduce the
complexity for dealing with UI adaptations by introducing a rule engine for managing UI
adaptations. As our approach focuses on web applications as target technology, we decided
to use the Nools rule engine for managing the UI adaptation rules and enabling runtime UI
adaptation behavior. Nools is an efficient rule engine which is based on the RETE algorithm,
developed by Charles L. Forgy [For82]. It is based on JavaScript and suits well in the context

2.6 Technologies 50

of web application development as it is compatible and can be easily integrated into existing
web frameworks such as Angular.

As illustrated in Figure 2.17, Nools can be used to evaluate a set of rules at runtime. Rules in
Nools are organized in form of a Flow. A Flow acts as a container for Rules. The evaluation
of Rules is done with a so called Session, which is an instantiation of a Nools Flow. The
Session can be obtained directly from the Flow object. To start a Session, first Facts, that
should be asserted, need to be set. A Fact is an item which is checked for matches against
the conditions defined in the Rules.

Flow Rules

Session Facts

contains

evaluateinstances

contains

starts evaluation

Actions
contain and

execute

Fig. 2.17 Overview of Nools’ basic concepts

A Rule has several non-optional parts. First part is a unique Rule Name for identifying the
Rules. Secondly, a rule Rule conditions that should be evaluated. And lastly, a sequence of
Actions that should be performed. The conditions are an array of either a single condition or
a sequence of conditions. A list of available operators for the conditional expressions can
be seen in the Nools documentation9. Actions are functions that are fired if all conditions
of the rule are satisfied. They are called within the scope of the rule engine and get passed
the facts as an argument. Optional parameters of the rule include options to prioritize the
execution of different rules. The priority option is called salience and is given by a number.
The prioritization is done by the developer and to some extent allows conflict resolution
between rule executions. Rules with higher salience are executed before rules with lower
salience.

In Code Excerpt 2.1, a small example for a simple Nools Flow is shown. First, Nools is
loaded as required module and the Fact, Message, is defined. The Flow Hello World

9http://c2fo.io/nools/#constraints

2.6 Technologies 51

contains two rules taking a message as a Fact. Rule Hello is fired if the text message starts
with hello world. Then, in the Action the text message is concatenated by goodbye and
the Fact is modified with the changed text. Now, the condition for the rule Goodbye, ending
with the text message goodbye, is satisfied and the corresponding Action is fired. The Action
prints the text message to the JavaScript console.

1 var nools = require("nools");

2 var Message = function (message) {

3 this.text = message;

4 };

5 var flow = nools.flow("Hello World", function (flow) {

6 //find any message that start with hello

7 flow.rule("Hello", [Message , "m", "m.text =~ /^hello \\ sworld$/"],

function (facts) {

8 facts.m.text = facts.m.text + " goodbye";

9 this.modify(facts.m);

10 });

11 //find all messages then end in goodbye

12 flow.rule("Goodbye", [Message , "m", "m.text =~ /.* goodbye$/"],

function (facts) {

13 console.log(facts.m.text);

14 });

15 });

Code Excerpt 2.1 Nools rule example

To sum up, the Nools rule engine has been used to realize context monitoring and UI
adaptation for self-adaptive UIs. Its concrete role and application in our solution will be
explained in the upcoming chapters.

2.6.3 Xtext and Xtend

As one of the main goal of this thesis is to support model-driven development of self-adaptive
UIs, the development of domain-specific languages and code generation are essential parts of
this work. For addressing these aspects on an implementation specific level, two common
technologies exist: Xtext10 which supports the development of programming languages
and domain-specific languages, and Xtend11 which enables flexible support for realizing
template-based code-generators. In the following, both technologies are briefly described.

10https://www.eclipse.org/Xtext
11https://www.eclipse.org/xtend

2.6 Technologies 52

Xtext

Xtext is a framework for development of programming languages and domain specific lan-
guages. Xtext provides a flexible grammar language to define various languages. In our
case, Xtext is used to define modeling languages to cover the context management and UI
adaptation concerns. The main advantage of Xtext is that it provides a full infrastructure,
including parser, linker, typechecker, compiler as well as editing support for Eclipse or
any editor that supports the Language Server Protocol. Xtext’s language parser creates an
abstract syntax tree from the code, which is easily traversable by a generator, which can be
implemented with Xtend (see next page). In the following, the main idea of Xtext is shown
based on an example grammar.

1 grammar org.example.domainmodel.Domainmodel

2
3 generate domainmodel "http :// www.example.org/domainmodel/Domainmodel"

4
5 (elements += PackageDeclaration)*;

6
7 PackageDeclaration:

8 'package ' name=QualifiedName '{'

9 (elements += Entity)*

10 '}';

11
12 QualifiedName:

13 ID ('.' ID)*;

14
15 Entity:

16 'entity ' name=ID '{'

17 (features += Feature)*

18 '}';

19
20 Feature:

21 (many?='many ')? name=ID ':' type=QualifiedName;

Code Excerpt 2.2 Xtext example grammar

In Code Excerpt 2.2, a small grammar is shown. The root element of the grammar is the
Domainmodel. It can contain zero or more, indicated by the asterisk, PackageDeclarations.
Package declarations consist of text in form of ’package’ and a name. Within the brackets
(’{’ and ’}’) a package can contain Entities. Entities are similar to Package declarations, but
can contain Features. A Feature starts with an optional, indicated by the ’?’, ’many’-tag and

2.6 Technologies 53

then a name and type declaration for the feature. ID is a terminal and can be any user input.
Terminals cannot contain any other elements. An implementation of the grammar looks like
shown in Code Excerpt 2.3.

1 package pkg.example {

2
3 entity Thesis {

4 many chapters: Chapter

5 }

6
7 entity Chapter {

8 title: String

9 content: String

10 }

11
12 }

Code Excerpt 2.3 Xtext example grammar implementation

Xtend

In the following, the Xtend12 programming language is introduced. Xtend is a statically typed
Java dialect providing additional features like type inference and extension methods. Due to
the use of the Java type system, Java and Xtend are fully interoperable. Xtend is a suitable
technology for supporting the implementation of code generators as it offers multi-line
template expressions. This means that Model-to-Text Transformations (M2T) can be flexibly
implemented based on this technology. Since Xtend is very close to Java in most aspects,
in this section the focus will be on the features extension methods and multi-line template
expressions, which are also used in for the implementation of the generators provided in this
thesis.

Extension methods allow the modification of existing types by adding new methods to
them. Methods can be called by using their first argument as receiver. An example for this
can be seen in Code Excerpt 2.4. Both calls of the doSomething-method are equivalent.
However, the goal of extension methods is to achieve better readable code. This is especially
achieved, when method calls can be chained by extensions, instead of being nested.

When writing a code generator, there have to be support of two basic concepts in the
programming language. The first task is traversing the model, which can be solved in Xtend
and Java equally good. The second task is the creation of templates with strings, which is

12http://www.eclipse.org/xtend

2.6 Technologies 54

rather tedious with Java as the string has to be broken up into several parts and concatenated
if variables have to be used. Additionally, if new lines or tabs are needed, special characters
have to be used for formatting. Xtend offers the use of multi-line template expressions for
this.

1 Entity e = new Entity ();

2
3 def static void main(String [] args){

4
5 // passing argument inside parentheses

6 doSomething(e)

7
8 // with extension method

9 e.doSomething ()

10
11 }

12
13 def doSomething(Entity input){

14 // method body

15 }

Code Excerpt 2.4 Example for an extension method

In Code Excerpt 2.5, an example for a template expression is pictured. Variable parts of the
template are inserted by using guillemets (≪ ≫). Within the guillemets any expression can
be specified or any method can be invoked. It is also possible to insert conditional expressions
(IF) and loops (FOR). Also, line breaks and indentations are automatically handled. In Code
Excerpt 2.6, an example output of a template expression, as illustrated before, can be seen.

1 def buildString(Package p) '''

2 <package >

3 �FOR e : p.entities�

4 <entity >

5 �FOR a : e.attributes�

6 <�a.name� �IF a.isMany == true�many='true'�

ENDIF�">

7 </�a.name�>

8 �ENDFOR�

9 </entity >

10 �ENDFOR�

11 </package >

12 '''

Code Excerpt 2.5 Example for a template expression

2.6 Technologies 55

1 <package >

2 <thesis >

3 <chapters many='true '>

4 </chapters >

5 </thesis >

6 <chapter >

7 <title>

8 </title>

9 <content >

10 </content >

11 </chapter >

12 </package >

Code Excerpt 2.6 Example for a template expression return value

In summary, Xtext and Xtend are useful technologies for implementing our model-driven
development approach for self-adaptive UIs, as they support the development of DSLs and
template-based code generators in a practical and easy way.

Chapter 3

Scenario and Related Work

In this chapter, we give an overview of the related work of this thesis. For this purpose, we
first describe a running example in Section 3.1 that originates from a real-world scenario
and will be used throughout this thesis. Based on this scenario, in Section 3.2, we derive a
set of requirements that a solution concept should fulfill. We identify and classify related
work in Section 3.3 and evaluate it against the requirements. The findings of this chapter are
summarized in Section 3.4.

3.1 LibSoft - The Running Example

The running example is based on a real-world scenario which is derived from the domain of
library management. The scenario deals with a library web application for universities which
is called LibSoft. LibSoft provides core library management functionality like searching,
reserving, and borrowing books. LibSoft’s UI can be accessed by heterogeneous users and
user roles (like student or librarian) through a broad range of networked interaction devices
(e.g., smartphones, tablets, terminals etc.) which are used in various environmental contexts
(e.g., at home, en route, etc.).

Depending on the situation, users are able to access their library services where, when
and how it suits them best. Figure 3.1 illustrates such a self-determined cross-channel
book borrowing process example scenario, where the user can begin an interaction using
one channel (search and reserve a book on her laptop at home), edit the reservation on
her way using a mobile channel, and finalize the book borrowing process at the library via
self-check-out terminal or at the staff desk.

In the described example scenario, each channel has its own special context-of-use
and eventually the contextual parameters regarding user, platform, and environment can
dynamically change. Already a small set of contextual parameters can highly influence the

3.1 LibSoft - The Running Example 57

Search
Book

Reserve
Book

Edit Book
Reservation

Borrow
Book

Issue
Book

XOR XOR

Context-of-use 1 Context-of-use 2

Context-of-use 3

Context-of-use 4

Legend

User: Student Librarian

Platform: Laptop Smartphone Desktop Terminal

Environment: At home En route In library

Fig. 3.1 Example scenario: UIs in dynamically changing context-of-use situations

usability of the UI. Therefore, it is important to continuously monitor the context-of-use
parameters and react to possible changes by automatically adapting the UI for the new
context-of-use situation.

Engineering of such self-adaptive user interfaces is not a trivial task as various aspects
have to be taken into account. Regarding the development side of self-adaptive UIs, aspects
like context management and UI adaptation additionally increase the complexity and need
to be supported in an adequate manner. Also, the usability evaluation of the resulting self-
adaptive UI is a challenging task as context and UI are dynamically changing and a suitable
way of testing the usability of self-adaptive UIs at runtime is needed. As already shown
before, Figure 3.2 recaptures the relevant development and evaluation aspects which are
addressed in this thesis. With regards to each of the aspects, we derive in the next section the
concrete requirements for the thesis.

Model-Driven
Engineering of
Self-Adaptive

User Interfaces

Development Evaluation

UI Context Adaptation On-the-fly Usability

Fig. 3.2 Engineering Self-Adaptive UIs: Overview of relevant aspects

3.2 Requirements 58

3.2 Requirements

The main goal of this thesis is to support model-driven engineering of self-adaptive UIs.
As depicted in Figure 3.3, several requirements need to be fulfilled in order to support the
development and evaluation of self-adaptive UIs.

Domain Model
(UML-CD)

Abstract UI
Model
(IFML)

Context
 Model

(ContextML)

references

UI
Generator

Context
 Service

Generator

Final UI
Context
 Service

input input

generates

references

adapts monitors

Adaptation
Model

(AdaptML)

Adaptation
Service

references

Adaptation
Service

Generator

generates generates

AdaptationUser Interface Context

input

deployed to

Runtime
Usability

End-user
Satisfaction

Interaction&
Instant Feedback

R1

R2

R3

R5

R6

R7

R9

R4Context
Tool-Support

R8Adaptation
Tool-Support

R10

R11

Fig. 3.3 Overview of requirements for development and evaluation of self-adaptive UIs

In the following, based on the relevant aspects Context Management, UI Adaptation, and
Usability Evaluation the requirements are described.

Context Management:

• R1 - Context Modeling Approach

R1.1 - Context Modeling: The approach should enable the abstract specification
of contextual parameters as an essential prerequisite for UI adaptation. The context
model should be integrated in the overall modeling environment of self-adaptive UIs
offering a specific viewpoint for modeling context management aspects. The context

3.2 Requirements 59

modeling language should be extensible and it should ease the developer’s work in
specifying and maintaining contextual parameters.

R1.2 - Context Aspects: The approach should support modeling of various context
aspects such as user, platform, and environment characteristics. The context modeling
approach should cover various contextual parameters regarding user, platform, and
environment in a holistic manner.

• R2 - ’Context’ Transformation Approach

The approach should come up with a generative approach where an automated
transformation from context models to executable Context Services is supported. Based
on the specified context model, the developer shall be able to generate code for a
Context Service. Thus, the amount of repetitive manual code for implementing Context
Services should be reduced.

• R3 - Runtime Monitoring

The approach should support runtime context monitoring where the generated
Context Services continuously observe context information and detect context changes
through corresponding hardware sensors. The resulting context service shall provide
context information to the UI adaptation component via a data interface.

• R4 - Context Tool-Support

The approach should provide a tool-support for context management aspects
such as modeling, transformation and execution. The tool-support should enable the
modeling of various contextual parameters and their transformation to an executable
context service which enables context monitoring at runtime.

UI Adaptation:

• R5 - Adaptation Modeling Approach

R5.1 - Adaptation Modeling: The approach should enable the abstract specification
of UI adaptation rules complementary to an existing abstract UI model. The adaptation
model should be integrated in the overall modeling environment of self-adaptive UIs
offering a specific viewpoint for modeling adaptation aspects. The adaptation modeling
language should be also extensible and ease the developers work in specifying and
maintaining UI adaptation rules.

R5.2 - Adaptation Aspects: The approach should support various UI adaptation
aspects such as content-, navigation-, presentation, and modality adaptation. The

3.2 Requirements 60

adaptation modeling approach should support various UI adaptation techniques such
as content-, navigation-, presentation, and modality adaptation.

• R6 - ’Adaptation’ Transformation Approach

The approach should come up with a generative approach where an automated
transformation from adaptation models to executable Adaptation Services is supported.
Thus, the amount of repetitive manual code for implementing Adaptation Services
should be reduced.

• R7 - Runtime Adaptation

The approach should support runtime UI adaptation where the underlying UI is
automatically changed as a reaction to context changes.

• R8 - Adaptation Tool-Support

The approach should provide a tool-support for modeling, transformation or
execution of self-adaptive UIs. The tool-support should enable the modeling of various
adaptation techniques and their transformation to an executable Adaptation Service
which enables UI adaptation at runtime.

Usability Evaluation:

• R9 - End-user Satisfaction Analysis

The approach should consider usability evaluation regarding end-user satisfaction.
The usability evaluation method should enable the assessment and analysis of end-user
satisfaction.

• R10 - Instant User Feedback

The approach should incorporate instant user feedback for usability evaluation.
The usability evaluation method should consider instant user feedback to loop-in the
end-users in the evaluation process. By collecting explicit feedback from the end-users
more insights about user acceptance can be gathered.

• R11 - Usability Test at Runtime

The approach should address usability evaluation at runtime while the user interacts
with the system. The usability evaluation method should work while the users are
interacting with the interactive system and the UI adaptations are happening at runtime.

3.3 Related Work 61

The previously described set of requirements represents the primary focus of this thesis to
enable a basic setup for development and evaluation of self-adaptive UIs. Beside that, further
forms of quality assurance regarding the development and evaluation are possible which are
discussed later on in Section 8.3.

3.3 Related Work

In this section, we present and discuss the state-of-the-art approaches concerning context
management, UI adaptation and usability evaluation related to self-adaptive UIs.

3.3.1 Context Management

Various approaches in the area of context-aware computing were presented in the past years
to deal with the topic of context management. An important architecture for building context-
aware applications was already presented by Dey et al. [DAS01]. They developed a context
toolkit that enables rapid prototyping of context-aware applications. The architecture of their
context toolkit consists of sensors to collect context information, widgets to encapsulate the
contextual information and provide methods to access the information, as well as interpreters
to transform the context information into high-level formats that are easier to handle. Beside
this kind of works which focus on architectural aspects of context management, various other
frameworks and concrete approaches exist. For evaluating the strength and shortcomings
of related approaches concerning context management, we use the previously introduced
criteria R1-R4. The tabular overview in Figure 3.4 shows the main results regarding the
evaluation of context management approaches.

The Context-Aware Application Development Approach (CAADA) [JDB18], as the name
already implies, is a model-driven approach for context-aware applications. It supports
the generation of code for context monitoring classes in Java. The CAADA architecture
consists of three main components, Context Management, Context Change Management,
and Adaptation Management. The framework which builds upon this architecture is called
Dynamic Observation and Notification (DONCIR). It enables the creation of an extensible
context model based on a context metamodel, which also includes adaptation rules. This
context model is transformed to XML and then to Java classes, which can be integrated
in other applications. The framework facilitates the integration of manual code to access
context information. DONCIR also provides an Eclipse plug-in for creating context models.

3.3 Related Work 62

R1.1:
Context

 Modeling
User Platform

CA-PSCF [AYG10]

CAADA [JDB18]

 MAIS-WebML [CDMF07]

 TriPlet [MV13]

 WildCAT [DL05]

 JCAF [Bar05]

c

Legend

Completely fulfills

Partially fulfills

Does not fulfill

Criteria

R1.2: Context Aspects

Environment

Trans-
formation
Approach

R3: Runtime
Monitoring

R4: Tool-
Support

R2: Trans-
Formation
Approach

c

Fig. 3.4 Evaluation of context management approaches

The CAADA approach is quite similar to our approach as it supports the modeling, transfor-
mation and execution phases for context management. However, there are some differences to
our approach. Although CAADA provides a metamodel for context modeling, the granularity
of the context modeling elements are quite abstract and not directly suitable for specifying
contextual parameters for UI adaptation purposes. Hence, the relevant context aspects user,
platform, and environment are not explicitly covered, so that usage of this context model
could hamper the straightforward specification of relevant contextual parameters.

The Context-Aware Pervasive Service Creation Framework (CA-PSCF) [AYG10] is an
approach that allows the generation of Java based applications templates. It consists of a
Context Modeling Framework (CMF). This is realized based on the existing Eclipse Modeling
Framework (EMF), which provides generator components. The CMF embraces a context
modeling language for creating context models. The model can then be transformed to
Context Services, but their functionality still has to be implemented. CA-PSCF provides an
Eclipse plugin for supporting context modeling.

Similar to the previously described approach, CA-PSCF supports the modeling of contex-
tual parameters through a dedicated modeling language. However, this approach also does
not support explicit modeling of context aspects such as user, platform, and environment.
Furthermore, it is important to mention that the transformation approach is only supporting
the generation of stubs where interfaces for the monitoring classes are created. Therefore,

3.3 Related Work 63

additional manual code is needed for establishing the context monitoring functionality.

JCAF [Bar05] and WildCAT [DL05] were introduced to support the development of context-
aware applications. Both, WildCAT and JCAF are frameworks based on the programming
language Java and they support context management by allowing the definition of a dynamic
data model to represent the execution context for several application domains. In addition,
they offer a programming interface to discover, interpret and monitor the events occurring
in an execution context and record every change occurring in the context model. Both,
JCAF and WildCAT facilitate the creation of a context model through a data model. As the
approaches are programming-based, the context model is directly represented as source code
and does not enable the abstract specification of contextual parameters. Also relevant context
aspects like user, platform, and environment are not explicitly covered in these approaches.
A transformation approach for generating Context Services is not needed as the context
definition and handling is represented as source code. Main drawback of both approaches
is that they are primarily developed for Java applications and do not provide fine grained
context monitoring features for supporting UI adaptation.

Another approach for context management is MAIS-WebML [CDMF07], pursued in the
project MAIS in the context of the web modeling language. It embraces a conceptual frame-
work that provides modeling facilities for context-aware web applications. It consists of a
data scheme and a definition of a website structure and behavior. The approach expands
the IFML predecessor WebML for modeling context information and the web application
itself. The approach provides tooling for context modeling based on an editor called CASE.
MAIS-WebML enables the modeling of context, but does not support fine grained specifica-
tion of context aspects such as user or platform. The context aspect environment is out of
scope in this approach. The generation of code for Context Services is also not considered in
MAIS-WebML.

While the before mentioned approaches consider context management for a broad spectrum of
applications areas, there are also specific approaches that deal with context management and
context modeling specifically for supporting the adaptation of user interfaces of interactive
systems. One holistic approach in this direction is the conceptual framework named TriPlet
[MV13]. It consits of a Context-Aware Meta-Model (CAM), a Context-Aware Reference
Framework (CARF) and the Context-Aware Design Space (CADS). The CAM is the basis
for modeling contexts in this approach. It includes the triplet user, platform, environment and
allows context modelers to extend more properties. Other components are the Context-Aware

3.3 Related Work 64

Reference Framework (CARF), a framework for listing relevant concepts as a guide for
implementation, and the Context-Aware Design Space (CADS), for analyzing, comparing
and evaluating context-aware applications. As TriPlet is limited to a conceptual framework
for context-aware applications, it does not support the model-driven generation of code for
Context Services and it is also does not provide any tool-support to enable runtime monitoring
of context information.

In summary, existing approaches related to context management does not fully support a
model-driven context management solution for self-adaptive UIs which enables the specifica-
tion, automatic generation of Context Services, and context monitoring at runtime.

3.3.2 UI Adaptation

In recent research, adaptive or self-adaptive UIs have been promoted as a solution for con-
text variability due to their ability to automatically adapt to the context-of-use at runtime
[ABY14a]. A key goal behind self-adaptive UIs is plasticity denoting a UI’s ability to
preserve its usability despite dynamically changing context-of-use parameters [Cou10]. In
practice, especially in the context of web design, the paradigm of Responsive Web Design
(RWB) is widely used to adapt the layout of a web page in response to the characteristics of
the used device. Furthermore, there are several approaches, which adopt and apply the idea of
adaptive UIs for different domains like health care systems [SRS15], enterprise applications
[Aki14] or smart working environments [GMP+15].

As a survey [ABY14a] on adaptive model driven UI development systems shows, model-
based and model-driven engineering formed the basis for most of the systems targeting the
development of self-adaptive UIs. In the following, we present an overview of existing frame-
works and concrete approaches dealing with the topic of UI adaptation. For evaluating the
strength and shortcomings of those state-of-the art approaches and to compare them against
our UI adaptation approach, we used the previously introduced criteria R5-R8. The tabular
overview in Figure 3.5 shows the main results regarding the evaluation of UI adaptation
frameworks and approaches.

A 3-Layer Architecture was presented by Lehmann et al. [LRBA10] for devising adaptive
smart environment user interfaces. The layered approach represents the life cycle of context-
adaptive applications and the scope of context information at runtime. The authors of this
work, provide a model-based implementation of the proposed architecture which is based on
the idea of executable models. Adaptation modeling is not covered with a dedicated modeling

3.3 Related Work 65

R5.1:
Adaptation
 Modeling

Content Navigation

 CAMELEON-RT [BDB⁺04]

 3-Layer Architecture [LRBA10]

FAME [DC06]

Malai [BB10]

Comet(s) [CCD⁺04]

 TriPlet [Mot13]

 AOM [BMB⁺11]

CEDAR [ABY12]

Legend

Completely fulfills

Partially fulfills

Does not fulfill

Criteria

R5.2: Adaptation Aspects

Presentation Modality

R6: Trans-
formation
Approach

R7: Runtime
Adaptation

R8: Tool-
Support

 DynaMo-AID [CLV⁺03]

MASP [FBA06]

RBUIS [ABY13]

 Mining Minds [HHB⁺18]

MyUI [PHJS12]

 Supple [GWW10]

Fr
am

ew
o
rk
s

A
pp

ro
ac
he
s

Fig. 3.5 Evaluation of UI adaptation frameworks and approaches

language which complements an existing abstract UI modeling language like IFML. Also the
focus is more on the adaptation aspects of making layout changes addressing presentation and
modality. The 3-Layer Architecture does not focus on the generation of executable code for
the adaptation logic, instead executable models are used for realizing the adaptive behavior.
Although the approach was implemented, there is no specific tool-support for devising and
maintaining self-adaptive UIs in general.

CAMELEON-RT [BDB+04] is a reference architecture model for distributed, migratable,
and plastic user interfaces within interactive spaces. It follows the CRF and supports all
abstraction layers. CAMELEON-RT serves as a high-level reference but does not provide
a concrete language for adaptation modeling nor a transformation approach for generating
Adaptation Services. The runtime UI adaptation aspects are explained more on a conceptual
level so that a concrete instantiation is missing. As a proof-of-concept implementation,
the authors present a middleware solution for realizing UI adaptation. However, concrete

3.3 Related Work 66

tool-support for modeling, transformation and execution of self-adaptive UIs is not provided.

CEDAR [ABY12] is a reference architecture for stakeholders interested in developing adap-
tive enterprise application UIs based on an interpreted runtime model-driven approach. This
means CEDAR supports UI adaptation based on the interpretation of UI models at runtime.
Hence, generation of code for Final UIs and Adaptation Services is not necessary. The goal
of CEDAR is to utilize the dynamic nature of the models to improve the flexibility of the
UI adaptation. In general, CEDAR supports UI adaptation modeling, however the involved
UI modeling languages are not based on de facto standards such as IFML. The reusability
of the adaptation modeling approach proposed in CEDAR could be problematic in other
environments as it is highly adopted to the own specific languages and tool-kit. CEDAR is
considering UI adaptation aspects like content and presentation, however there is no explicit
support for navigation- and modality-adaptation.

FAME [DC06] is a model-based Framework for Adaptive Multimodal Environments. It pro-
poses an architecture for adaptive multimodal applications and provides means to represent
adaptation rules - the behavioral matrix - and a set of guidelines to assist the design process
of adaptive multimodal applications. FAME’s practical benefit was shown based on the
development process of an adaptive Digital Talking Book player. The primary focus of FAME
is modality adaptation hence it is not meant to be a general-purpose reference framework
for adapting other UI characteristics. Therefore, adaptation aspects such as navigation or
presentation are not or only partially covered. Similar to the above described frameworks
FAME does not provide a dedicated UI adaptation modeling that is conform to UI modeling
standards.

Malai [BB10] is an architectural model for interactive systems and forms a basis for a tech-
nique that uses aspect-oriented modeling (AOM) for adapting user interfaces. Beside finite
state machine diagrams, a domain specific language called the Malai language is utilized to
specify different UI and adaptation aspects. Supported UI adaptation aspects are content,
navigation, and presentation while modality is not covered. Malai enables the generation
of UI code (e.g., Swing, .NET), however it does not primarily focus on generating code for
Adaptation Services.

TriPlet [Mot13] is a computational framework for context-aware adaptation and consists of a
metamodel, a reference framework and adaptation aspects for adaptive UIs. Based on the
extensive systematic review of existing work, the authors propose a context-aware adaptation

3.3 Related Work 67

(CAA) framework that covers different aspects such as content, navigation, presentation and
modality. Although TriPlet introduces a metamodel for CAA, it does not provide a dedicated
modeling langauge for UI adaptation. Also, a generative approach which is enabling the
transformation of self-adaptive UIs is not covered. There are some proof-of-concept case
studies showing the benefit of CAA and adaptive UIs. However, a generic and practically
usable tool-support for devising self-adaptive UIs is missing.

AOM [BMB+11] is a concrete UI adaptation approach which is build up on the basis of the
before described Malai architecture. It combines aspect-oriented modeling with property-
based reasoning. The encapsulation of variable parts of interactive systems into aspects
permits the dynamic adaptation of user interfaces. Tagging UI components and context
models with QoS properties allows the reasoner to select the aspects the best suited to the
current context. As this approach is based on the idea of aspect-oriented modeling it does
not introduce a holistic UI adaptation modeling. Instead, content and presentation related UI
adaptation aspects are weaved into an existing application to support these UI adaptations at
runtime. Due to the same reason, AOM does not focus on a transformation approach where
code for UI Adaptation Services is generated.

The COntext Mouldable widgET (Comet(s)) [CCD+04] approach was introduced as a set
of widgets that support UI plasticity. It provides an architectural-style for plastic UIs by
combining the toolkit and model-based approaches presented in [DCC08]. A ’Comet’ is an
introspective widget that is able to self-adapt to some context-of-use, or that can be adapted
by a tier-component to the context-of-use, or that can be dynamically discarded (versus
recruited) when it is unable (versus able) to cover the current context-of-use. The novelty in
this approach is to support UI adaptation at widget level and to decentralize the adaptation
logic. Although this approach enables high reusability of various adaptive widget compo-
nents which support the efficient development of self-adaptive UIs, it does not introduce a
UI adaptation modeling language for describing the adaptation logic behind the adaptive
widgets. Similar to the AOM approach it focuses on the adaptation aspects content and
presentation while navigation and modality are not explicitly supported. A transformation
approach is not considered in the Comet(s) approach as it is more relying on the paradigm of
component-based development.

DYNAmic MOdel-bAsed user Interface Development (DynaMo-AID) [CLV+03] is a design
process and runtime architecture for devising context-aware UIs and is part of the Dygimes UI
framework [CLV+03]. Its runtime architecture includes three major modules namely context

3.3 Related Work 68

monitoring, functional core, and presentation that are linked by a dialog controller. The final
UI is rendered from task models after adapting them to the operating environment and device.
The DynaMo-AID approach does not provide a dedicated UI adaptation modeling language.
Instead, adaptations are described on the Tasks and Concepts layer and out of the task model
the generation of final UIs is supported. The approach mainly focuses on device specific UI
adaptations while context-of-use information about user and interaction environment are not
explicitly covered. The provided tool-support is tailored to the specific application scenario
and does not support the development of self-adaptive UIs in general.

The Multi-Access Service Platform (MASP) [FBA06] is a UI management system targeting
ubiquitous UIs for smart homes. MASP uses a model-based approach to develop and adapt
UIs based on task-tree models similar to the previously mentioned approach. Hence, it does
not provide a dedicated UI adaptation modeling language as a complementary language for
standardized UI modeling languages such as IFML. The main focus of supported UI adapta-
tion aspects are presentation and modality. The used transformation approach is specific in
the sense that it is focusing on the transformation of task-tree models to final UI code.

The Mining Minds platform [HHB+18] proposes a model-based development methodology
for adaptive UIs. The proposed methodology is implemented as an adaptive UI authoring
tool which is called A-UI/UX-A. A-UI/UX-A is a system capable of adapting user interfaces
based on the utilization of contextual factors, such as user disabilities, environmental factors
(e.g., light level, noise level, and location) and used device. The Mining Minds approach
introduces models for specifying user, context and device characteristics. However, there is
not an explicit UI adaptation modeling workbench supported in the A-UI/UX-A tool-chain.
Instead, UI adaptation rules are specified in an event-condition-action-manner based on a
textual description. Compared to our approach the Mining Minds approach focuses on a
model-based development process rather than a model-driven development approach. Hence,
the criteria transformation approach is not fulfilled.

MyUI [PHJS12] is a user interface development infrastructure for improving accessibility
through adaptive UIs. It uses an open pattern repository for defining adaptation rules. User
interfaces are specified as an abstract model that is represented using a notation based on state
charts. MyUI allows adaptations according to the User Profile and Device Profile. Addition-
ally, the developer can specify customization settings in the Customization Profile. The User,
Device and Customization profiles are transformed into the User Interface Profile, which
defines the general characteristics of the UI. It is created at the beginning of each interaction

3.3 Related Work 69

session with an application generated with the MyUI approach. The UI itself, without any
layout specifications, is defined in the Abstract Application Interaction Model (AAIM). The
AAIM and the User Interface Profile are used to select the User Interface Elements, which
suit the current context the best. While MyUI supports context and adaptation modeling in a
detailed manner, it does not consider environmental context information as a basis for UI
adaptation. Therefore, the expressiveness of the adaptation modeling language is limited
and the adaptation aspects can not be fully covered. In [PHJS12], the authors write that
they support the generation process of adaptive UIs based on the presented MyUI concept,
however transformation specific details are not provided in detail.

Role-Based UI Simplification (RBUIS) [ABY13] is a mechanism for improving the usability
of enterprise application UIs by providing users with a minimal feature-set and an optimal
layout based on the context-of-use. As RBUIS is based on the CEDAR architecture the same
argumentation for the evaluation criteria is valid for RBUIS. It has to be noted that CEDAR
and RBUIS with its tool-support called CEDAR studio form a complementary solution
where the benefit of adaptive UIs have been shown. For this purpose, the authors used
their approach to integrate UI adaptation features into an open source ERP legacy system
called OFBiz. From this perspective, this approach is one of the pioneering approaches
for devising adaptive UIs in practical usage scenarios. However, main differences of this
approach compared to ours is that they use an interpretative approach while ours is generative.
Also this approach is not focusing extensively on a separate way of modeling UI adaptations
and context as it is in our case. Hence, our approach also supports context-management in a
more detailed and easy-to use manner as we can can generate Context Services to monitor
different context-of-use situations while this is not possible in RBUIS.

Supple [GWW10] supports automatic generation of UIs adapted to each user’s abilities (e.g.,
motor and vision), devices, tasks, and preferences. It relies on a high-level interface specifica-
tion, device model, and user traces to generate the UI. The only adaptation type supported by
Supple is layout optimization. Vision and motor capabilities are the primary supported adap-
tation aspects, and 40 UI factors (e.g., font size, widget size, etc.) are supported. Supple does
not provide a means for extending adaptation types, aspects, and factors. Also, it has been
criticized for exceeding acceptable performance times. This criticism could be justified by
observing some of its worst-case scenarios that could span over 30 seconds when computing
the most appropriate UI layout. This timing is not appropriate for software systems looking
for high efficiency. One advantage that Supple has over other systems lies in performing true
layout optimization due to its ability to quantify UI quality. The quantification is achieved

3.3 Related Work 70

by using a cost function to compare UI versions in order to determine the most optimal one.
This approach also allows Supple to support trade-off analysis, which was demonstrated for
a fixed number of adaptation aspects, namely motor and vision capabilities. Supple supports
no explicit means for UI adaptation modeling based on a domain specific language, instead it
models users in terms of actual traces. As described above mainly layout optimizations are
considered, hence the main focused adaptation aspect is presentation. As in the context of
Supple, the authors consider interface generation as an optimization problem, there is not a
classical model-driven UI development approach behind where code is generated.

Beyond the above discussed frameworks and approaches which can be categorized as rule-
and optimization- based approaches, there are also learning-based approaches like [HTLK08]
which uses machine learning or [BMB+11] where a genetic algorithm is used to calculate a
well suited UI adaptation.

In summary, existing approaches related to UI adaptation does not fully support a model-
driven engineering solution for self-adaptive UIs where context management and UI adapta-
tion concerns are supported in an integrated manner. Also, most of the existing approaches
are focusing on specific UI adaptation aspects without integrating them together. Finally, it
has to be noticed that most of the existing UI adaptation approaches are model-based and do
not explicitly focus on automated generation of UI Adaptation Services.

3.3.3 Usability Evaluation

As already described in prior work [FG09], usability evaluation of adaptive UIs is a challeng-
ing task that should be addressed by adequate methods and techniques. A literature review
[vVvdGKS08] is showing that mostly questionnaires, interviews, and data log analysis meth-
ods are used for evaluating adaptive UIs. However, the authors argue that these methods are
not fully suitable to investigate the usability of adaptive UIs due to quality of questionnaires,
shallow state of think aloud protocols, or the need for triangulation of the data logs to derive
useful information.

With regard to existing usability evaluation approaches, we can observe that various usability
evaluation criteria such as ease of use, learnability, task performance time, accuracy, pre-
dictability, or satisfaction were investigated. In [PLN04], for example, the authors investigate
usability trade-offs for adaptive UIs with regard to ease of use and learnability. To this
end, a user support concept was developed and applied to a context-aware mobile device
with an adaptive UI. The approach was evaluated based on a usability test and main results

3.3 Related Work 71

show that the user support improved ease of use, but unexpectedly it reduced learnability
of the adaptive UI. Moreover, in [LM10] for example, the authors examine the positive and
possible adverse effects of adaptive UIs in the context of an in-vehicle telematic system. For
this purpose, they conduct a usability experiment with different participants to measure the
task performance time of the users using the proposed adaptive UI. Other studies such as
[GET+08] are examining the relative effects of predictability and accuracy on the usability
of adaptive UIs. The results of this study show, for example, that increasing predictability
and accuracy lead to strongly improved satisfaction.

Beside above mentioned classical usability evaluation methods, prior work in the field of
plastic user interfaces also investigated the question how the notion of mappings as promoted
by Model Driven Engineering (MDE) can be exploited to control UI adaptation according to
explicit usability criteria. In [SCCF07], for example, the authors present a formal mapping
between source and target models specifying the usability properties that are preserved when
transforming source models into target models. However, the applicability of such formal
methods in real application scenarios is quite difficult as ergonomic criteria for ensuring
usability may be inconsistent, and as a result, require difficult trade-offs [SCCF07].

More recent approaches from the area of mixed-initiative interfaces [BCM07], such as Crow-
dAdapt [NSN13], make use of a combination of end-user development and crowd-sourcing
for context-aware adaptation of UIs. Furthermore, [Mez13] suggests to incorporate user
feedback via a promoting/demoting technique to further improve UI adaptations. While this
approach mainly focuses on UI adaptation improvement based on a combination of user
feedback and machine learning, the idea of collecting instant user-feedback can be also used
to test the end-user satisfaction of UI adaptations. As our research question (see Subsection
1.2) is indicating, an important research topic for our work is to investigate the acceptance
of self-adaptive UIs by collecting feedback from the users. In this sense, our work differs
from current research done in the field. For a systematic comparison of our solution with
the existing related work, we used the previously introduced criteria R9-R11. The tabular
overview in Figure 3.6 shows the main results of the comparison.

AppEcho [SOB14] is a user-driven, in situ feedback approach for mobile platforms and
applications. The authors present a mobile feedback approach, which enables users to docu-
ment individual feedback on mobile systems in situ. The collected information can then be
evaluated and used as new requirements by developers. While this approach explicitly targets
mobile platforms and uses instant user feedback mechanisms as in our solution, it is only

3.3 Related Work 72

R9:
End-user

Satisfaction
Analysis

R10:
Instant

User
Feedback

R11:
Usability

Test
at Runtime

 AUE [FBK⁺08]

AppEcho [SOB14]

 Media Maps [WSvT10]

 MOCCA [RB11]

 RBUIS [ABY13]

Mining Minds [HHB⁺18]

 OSApp [AMI17]

 AUI Mobile [MM02]

Legend

Completely fulfills

Partially fulfills

Does not fulfill

Criteria

Fig. 3.6 Evaluation of usability evaluation approaches for self-adaptive UIs

partially focusing on end-user satisfaction analysis. With this regard, the AppEcho approach
is providing a more generic feedback mechanism which is not explicitly focusing on the
evaluation of UI adaptations and their effect on user satisfaction based on the context-of-use.
As the AppEcho approach aims to provide a generic feedback mechanism to collect a large
amount of individual user feedback about mobile applications, it is not designed with the
purpose to support usability testing for self-adaptive UIs at runtime.

Another related approach, called Automated Usability Evaluation (AUE) of model-based
interactive systems, is presented in [FBK+08]. In this paper, the authors describe an approach
to efficiently evaluate the usability of an interactive application that has been realized to
support various platforms and modalities. By using a model-based runtime environment
incorporating a mental model of the end-user, the authors aim to reduce the evaluation effort
by automating parts of the testing process for various combinations of platforms and user
groups. While this approach supports usability testing at runtime and also targets mobile
platforms, it is only partially covering the aspect of instant user feedback. As the user is
not looped in to the real interaction scenario and is represented through a model, an explicit
feedback of the real end-users cannot be collected. In contrast to our solution, this approach
is also not focusing on the usability aspect end-user satisfaction.

3.3 Related Work 73

AUI Mobile [MM02] is a further approach which is investigating the application of adaptive
user interfaces for mobile platforms. In this work, the authors propose a solution for the
adaptation of graphical user interfaces by using a mobile agent system. Applicability of this
approach is shown based on a mobile currency converter and a survey application. This
approach mainly focuses on the application of adaptive UIs for mobile platforms. However,
this work is not focusing on usability evaluation, instant user feedback or usability testing of
UI adaptation features at runtime.

A usability evaluation study of adaptive UIs for mobile platforms is presented in [WSvT10].
In this work, the main research question is whether adaptive UIs improve the usability
of mobile applications. For this purpose, the authors discuss several simple types of UI
adaptations based on a case study dealing with Media Maps. Based on this case study, they
conduct a usability test with 20 participants with a post-test satisfaction questionnaire. The
main results of this usability study show that adaptive UIs have potential to improve mobile
applications regarding accuracy and end-user satisfaction. Compared to our solution, the
described usability study does not incorporate instant user feedback nor establishes a way
to efficiently test the end-user satisfaction rate of individual users based on their current
context-of-use.

A deeper analysis of various usability aspects such as performance, perceived usability, and
aesthetics is presented in the MOCCA [RB11] approach, which is focusing on culturally
adaptive user interfaces. In this work, the authors argue that it is not feasible to design one
interface that appeals to all users of an increasingly global audience. Instead, they propose
to design culturally adaptive systems, which automatically generate personalized interfaces
that correspond to cultural preferences. Based on a usability test with 41 participants of
different cultural backgrounds, they demonstrate the benefit of the approach by showing
that the majority preferred their culturally personalized interfaces to a non-adapted version.
Moreover, this study shows that the participants were able to work 22% faster with the
culturally adapted interface, showing that the approach improves both the performance as
well as the user satisfaction. While the MOCCA approach analyzes the usability of culturally
adaptive UIs for different platforms such as mobile or desktop and also focuses on the aspect
of user satisfaction, it is not incorporating instant user feedback for efficiently testing the
usability of different UI adaptations at runtime. However, this is essential for efficiently
conducting long-term usability studies about adaptive UIs with a large amount of participants.

3.3 Related Work 74

The Mining Minds [HHB+18] platform is a further approach which supports UI adaptation
and provides a detailed usability evaluation based on context and user experience. The
authors of this work present a domain and platform independent model-based methodology
for devising adaptive user interfaces. The methodology is implemented as a tool capable of
adapting the user interface based on contextual factors. The Mining Minds platform supports
various UI adaptation techniques like task-feature set, layout, and modality adaptation for dif-
ferent platforms including mobile devices. In addition, an instant user feedback mechanism
is integrated in this approach. However, the collected user feedback is more general and does
not allow to rate specific UI adaptations in a specific context-of-use. Furthermore, the authors
do not provide evaluation results based on the collected user feedback data, but rather present
the results of a usability experiment with 32 participants based on a questionnaire. Although
the Mining Minds platform is the most similar approach to ours, the main difference is that
our approach supports a fine grained rating for triggered UI adaptation features reflecting
the current context-of-use at runtime. Also in our solution, we use the collected context
and corresponding user feedback data to perform a data-driven satisfaction analysis of UI
adaptation features.

In [AMI17], the authors present a context-aware adaptation approach for mobile applications
driven by software quality and user satisfaction. The proposed approach uses a reward
formula, containing the notion of software availability and the user’s feedback to determine
the best adaptation that needs to be applied in a given context. The feasibility of this approach
is shown based on a mobile application, called Off Site Art OSApp. As a result of their
approach, the authors provide a reward formula by describing the user satisfaction model and
user-perceived service availability model. While this approach covers end-user satisfaction
analysis and targets mobile platforms, it does not focus on instant user feedback and usability
testing at runtime. However, the introduced reward formula in this work could be used to
also assess the usability of adaptive user interfaces for mobile platforms.

Role-Based UI Simplification (RBUIS) [ABY13] is a further approach for supporting adap-
tive UIs. The authors of this work define UI simplification as a mechanism for increasing
usability through adaptive behaviour by providing users with a minimal feature-set and an
optimal layout based on the context-of-use. The RBUIS approach mainly focuses on simplifi-
cation of enterprise applications accessed via a desktop computer, but also considers mobile
device usage. The authors evaluated the approach using an online interactive survey with a
UI pair composed of an initial and a simplified UI. The main results of the user study with
25 participants show that simplifying enterprise application UIs based on roles improves user

3.4 Summary 75

satisfaction and efficiency. Although user feedback is partially integrated in the RBUIS ap-
proach by allowing users to Apply and Keep and Apply Once of UI simplification operations,
it is not used for explicitly testing the acceptance of specific UI adaptation features at runtime.
In contrast to our solution, RBUIS is also not directly mapping the current context-of-use to
the provided feedback by the users.

In summary, the existing approaches and usability evaluation methods are not fully
addressing the analysis of end-user satisfaction for self-adaptive UIs by combining instant
user feedback and usability testing of UI adaptation features at runtime.

3.4 Summary

As the evaluation of related work shows, there are still limitations in the state-of-the-art
approaches for supporting the development and evaluation of self-adaptive UIs.

Concerning the context management aspect, we can sum up that various context modeling
approaches already exist. However, most of the practically suitable approaches which provide
tool-support are not sufficient to enable context modeling for self-adaptive UIs in a fine-
grained manner. The existing approaches which focus directly on context management for
UI aspects are more on conceptual level or do not provide sufficient tool-support to ease the
work of developers in specifying different contextual parameters as an essential prerequisite
for UI adaptation.

The evaluation of existing UI adaptation frameworks and approaches shows that the
state-of-the-art still has some improvement potential to consolidate the various UI adaptation
aspects in an integrated adaptation modeling language. Although various approaches already
provide tool-support for UI adaptation, an integrated model-driven development approach
supporting UI, context, and adaptation concerns is missing.

A similar picture can be seen when we look in to the evaluation results of the usability
evaluation approaches for self-adaptive UIs. A comprehensive and flexible solution for
runtime usability evaluation of self-adaptive UIs regarding end-user satisfaction is missing.
Especially a usability evaluation solution approach for self-adaptive UIs which is incorporat-
ing the current context-of-use enriched with instant user feedback has not been addressed in
previous works.

All in all, based on the detailed analysis of related work, we can conclude that a model-
driven engineering approach is required to support the development and usability evaluation
of self-adaptive UIs as well as to address the drawbacks of the existing approaches.

Chapter 4

Modeling

This chapter describes our general approach to the modeling of self-adaptive user interfaces.
In Section 4.1, we describe the overall language engineering approach that we have taken. In
Section 4.2, we give an overview of our integrated modeling framework for self-adaptive
UIs. In Section 4.3, we introduce our context modeling language ContextML, which supports
the specification of various heterogeneous context-of-use situations. After that, in Section
4.4, we introduce our adaptation modeling language, called AdaptML, which supports the
specification of different UI adaptation rules that can be triggered at runtime in order to
automatically adapt the UI to the changing context-of-use parameters. Section 4.5 concludes
this chapter with a summary and discussion.

4.1 Language Engineering Approach

Modeling self-adaptive UIs is a challenging task as cross-cutting concerns such as context
management and UI adaptation have to be treated appropriately and separately from the
business logic. To address this issue and reduce the complexity in development of self-
adaptive UIs, a novel integrated modeling framework is needed which covers UI, context,
and adaptation modeling aspects in a uniform manner.

The integrated modeling framework that is presented in this chapter was systematically
derived from several information sources. The approach used for language engineering is
depicted in Figure 4.1.

On the top of this figure, the High-level Language Requirements are depicted. According to
our modeling framework for self-adaptive UIs, we have identified the following High-level
Language Requirements:

4.1 Language Engineering Approach 77

Separation of Concerns,
Integration, Intuitiveness,
Extensibility, Genericity

Context
Aspects

Adaptation
Aspects

ContextML AdaptML

UI
 Aspects

IFML

refinesrefines
Language

High-Level Language
Requirements

Concern-Specific
Requirements

refine

refines

Fig. 4.1 Language Engineering Approach

• Separation of Concerns: To allow focusing on the relevant concerns such as UI, context,
and adaptation within a software system. These concerns should be separated from the
core business logic concerns. That is, a modeling approach should provide a dedicated
modeling view to specify UI, context, and adaptation aspects as well as abstracting
from the rest of the system’s logic.

• Integration: To best leverage a method that supports the modeling of self-adaptive UIs,
this method should be integrated into existing software engineering methods. In the
domain of model-driven UI development, that is, a developer can use the modeling
approach in combination and conform to existing standard (UI) modeling languages
from OMG.

• Intuitiveness: To increase acceptance, the approach should be intuitive to use, espe-
cially since early in the engineering process, non-experts might be required to model
and/or understand the context-of-use and UI adaptation specification. To support the
intuitiveness, well-known techniques and paradigms should be reused.

• Extensibility: To increase the flexibility, the modeling approach should be extensible so
that new aspects related to context-management or UI adaptation can be easily added
when it is required.

4.1 Language Engineering Approach 78

• Genericity: As known from general purpose languages such as the UML, the approach
shall be applicable in a variety of domains. The generic approach should support the
specification of self-adaptive UIs on an abstract level using different degrees of detail.

Based on the analysis of the problem domain (see Section 3.2), the High-level Language
Requirements were refined to Concern-Specific Requirements. The Concern-Specific Require-
ments can be divided into three parts: UI Aspects, Context Aspects, and Adaptation Aspects.
Regarding UI Aspects, the concrete concern-specific requirement was basically to model a
user interface by characterizing its content, structure, and navigation in an abstract manner.
Regarding Context Aspects, the main concern-specific requirement was to support the holistic
specification of various context-of-use situations covering especially the context parameters
user, platform, and environment. Finally, the concern-specific requirement for Adaptation
Aspects was to enable the specification of UI adaptations through describing conditional
expressions and characterizing various UI adaptation techniques such as task-feature set-,
layout-, or navigation adaptation.

To fulfill the above described requirements, we decided to structure our integrated
modeling framework for self-adaptive UIs into three main modeling view points: UI, context,
and adaptation (see Language layer at the bottom of Figure 4.1). Each modeling view point is
supported through a dedicated domain-specific language (DSL) to be conform to the paradigm
of separation of concerns. To comply with the second high-level language requirement, we
decided to use the Interaction Flow Modeling Language (IFML) as an OMG standardized UI
modeling language. Based on IFML, we developed two complementary modeling languages:
ContextML for specifying various heterogeneous context-of-use situations and AdaptML for
specifying UI adaptations. In the design process of ContextML and AdaptML, we took special
care for the high-level language requirements Intuitiveness, Extensibility, and Genericity and
also for the mentioned concern-specific requirements which will be explained in detail when
the according DSLs are introduced.

A further important design decision for our language engineering approach was to focus
on the abstract UI layer. Although the CAMELEON reference framework (see Section
2.1.3) ideally foresees four different abstraction layers in the model-driven UI development
process, our approach is not explicitly covering the Tasks and Concepts layer as there is no
flexible solution for automatically deriving IFML abstract UI models based on common task
modeling languages such as CTT [PMM97] or Hamsters [PM15]. Also, an explicit modeling
layer for the Concrete UI (CUI) is not required in our model-driven engineering approach as
it is primarily focusing on web-based applications (see Section 5 for more details). Finally, it
should be noticed that our language engineering approach focuses on the basic aspects UI,

4.2 Modeling Framework for Self-adaptive UIs 79

context, and adaptation for modeling self-adaptive UIs, while other relevant aspects such as
business logic or data management are out of scope.

4.2 Modeling Framework for Self-adaptive UIs

This section gives an overview of our integrated modeling framework and provides an
example for modeling self-adaptive UIs based on our running example LibSoft introduced in
Section 3.1.

Domain Model

IFML AdaptML

references

references
ContextML

references

ContextUI Adaptation

AdaptationRule

Adaptation
Operation

Adaptation
Condition

User
Context

Platform
Context

Environment
Context

Context
Property

Task
Change

Layout
Change

Navigation
Change

Modality
Change

Fig. 4.2 Overview of the Modeling Framework

As shown in the overview in Figure 4.2, our modeling framework for self-adaptive UIs
consists of three integrated modeling languages, namely IFML, AdaptML, and ContextML.
While IFML is a standard modeling language for UI concerns and presumes that IFML
Domain Model is represented as a UML clas diagram, special attention is required for context
management and UI adaptation.

Context management brings additional complexity to cope with, as context information
has to be captured through various sensors from heterogeneous sources and dynamically
changing context-of-use parameters have to be detected. Therefore, we developed the context
modeling language ContextML. It allows to specify different context-of-use parameters
such as UserContext, PlatformContext, and EnvironmentContext. Each of these context-of-
use parameters define a specific ContextProperty to capture a relevant context information
through a context provider which is accessed through a hardware context sensor. Further
details about ContextML and its structure follow in Section 4.3.

4.2 Modeling Framework for Self-adaptive UIs 80

Beside ContextML, we developed another domain specific language, AdaptML, which sup-
ports the modeling of UI adaptations. AdaptML is designed as a complementary modeling
language to OMG’s core UI modeling language IFML and allows domain experts, for exam-
ple web designers, to model adaptation concerns by specifying the conditions and actions for
UI adaptations. Therefore, AdaptML contains AdaptationRule(s) where each AdaptationRule
consists of an AdaptationCondition and AdaptationOperation. AdaptationCondition allows
to specify the conditions for triggering UI adaptations through logical expressions. Therefore,
AdaptML has a reference to ContextML to use the ContextProperty for defining the adapta-
tion rule conditions. AdaptationOperation enables to specify a concrete UI adaptation by
referencing the IFML model. This way, UI AdaptationOperations can be specified that relate
to a specific UI model element. AdaptML supports the specification of various UI Adaptation
Operations such as Task Change, Navigation Change, Layout Change, and Modality Change.
Further details about the Adaptation Operations and AdaptML follow in Section 4.4.

In the following, we describe the general idea of our integrated modeling framework for
self-adaptive UIs based on the running example LibSoft introduced in Section 3.1. Figure
4.3 shows a simplified modeling example for the LibSoft scenario, where UI, context, and
adaptation concerns are specified based on IFML [Obj15], ContextML, and AdaptML in an
integrated manner. On the top of this Figure, small excerpts of the domain model in the form
of a UML [Obj17] class diagram and core UI models are depicted. There is an abstract UI
model for a simplified library application based on IFML which shows the representation of
three UI view containers LoginView, BooksView and BookDetailsView which are connected
by the navigation edges submit and showDetails. To enable the specification of data bindings
in IFML, the corresponding classes from the domain model are referenced, in our case it
is the class Book. For specifying the different context-of-use parameters, in the bottom left
corner of Figure 4.3, an illustrative context model based on ContextML is depicted. The
shown Context Model contains different context Entities to characterize various context
properties like UserContext, PlatformContext or EnvironmentContext. A specific context
Entity is described in detail by its context property (e.g., mood of a user or used device type)
which is defined though a context provider and update type. In the example context model,
for instance, the Vision of the user is specified as a relevant context property which is gathered
through user input. In this example, the context provider is the UserMgmtAPI which manages
to prompt the user questions and store input data about user related information. Another
example is shown based on the context property DeviceType. Here, the contet provider is the
DeviceAPI which is responsible for identification of the used target device (e.g. smartphone,
tablet or desktop). To support the specification of UI adaptation rules in addition to the IFML

4.2 Modeling Framework for Self-adaptive UIs 81

[D]	LoginView

<<Form>>	
LoginForm

<<SimpleField>>
username:String

BookDetailsView

<<Details>>
bookDetails

<<DataBinding>>	
bookBindingshowDetails

<<SimpleField>>
password:String

submit

BooksView

<<List>>
bookList

<<DataBinding>>	
bookBinding

User	Interface
Abstract	UI	Model	(IFML)

Book

?tle:String

author:String

isbn:String

Domain	Model
(UML	Class	Diagram)

Context
Context	Model	(ContextML)

references

references

references

references

references

AdaptaDon
UI	Adapta?on	Rules	(AdaptML)

Fig. 4.3 Example: Integrated Modeling of Self-adaptive UIs

and context model, AdaptML allows to specify and bind different adaptation rules to the IFML
model. The UI adaptation model, depicted on the bottom right side of Figure 4.3, contains
example UI adaptation rules. The first adaptation rule specifies a TaskChangeOperation
based on the user role. In this case, it is checked whether the user has the role admin. If this is
the case, an additional model element can be added by using the AddIFMLElementOperation
which adds a further adminEvent element to the bookDetails component in the example.
More details about the available adaptation operations are provided in Section 4.4. The
second adaptation rule is called NavigationChangeOperation based on UserRole and defines
that the specific view BookDetailsView can be only reached, if a specific user context is
satisfied. For defining this adaptation behavior, AdaptML rules are referencing the context

4.3 Context Modeling with ContextML 82

model where relevant contextual parameters are described and the IFML model to reference
the specific UI model elements that has to be changed. In the case of our example, the user
role user has to be satisfied, so that the BookDetailsView can be reached. In a similar way,
various other UI adaptation rules can be specified. Analogously, the third rule is defining a
LayoutChangeOperation to increase the font size if the user’s vision is under the specified
threshold value. Finally, the last adaptation rule specifies a ModalityChangeOperation for
the BookDetailsView which switches its UI modality from graphical to vocal if a movement
is detected.

4.3 Context Modeling with ContextML

In this section, we present our novel context modeling language ContextML in more detail.
Context management and especially the specification of contextual parameters was identified
as one of the essential prerequisites to support self-adaptive UIs. To support a holistic
modeling of contextual parameters and address the challenge C1: Specification of contextual
parameters conform to the described language engineering requirements, we developed the
modeling language ContextML. It enables to define a set of context properties and the needed
context provider interfaces to capture the relevant context information. These interfaces are
later on referenced as Context Providers. For example, the environmental light condition of
a context-of-use can be captured by using a provided AmbientLightAPI. Also the types of
these properties and their behavior, in terms of data updating, has to be defined. For instance,
ambient light is monitored as current light-level, and it shall be updated as soon as a change
is detected (event-triggered). Figure 4.4 depicts an overview of ContextML’s metamodel.

The root element and central class of the metamodel is the class ContextML that connects
all parts of the metamodel. The root class ContextML is further specialized by specific
context entities, such as UserContext, PlatformContext, EnvironmentContext, and Custom-
Context. Each context entity UserContext, PlatformContext, and EnvironmentContext has
a ContextProperty (abstract class) which covers name and updateVelocity of a contextual
parameter. The abstract class ContextProperty has been introduced to ease the reference
from AdaptML through a central class which connects all the needed context entities. More-
over, the reference to the desired ContextProvider is stored, which is the source of context
information and is provided through a context sensor. The data type of a ContextProperty
provided through a ContextProvider can be a standard type like Integer, String or Boolean,
but also a user-defined type is supported. The updateVelocity describes the way, how a single
data set shall be updated. This can be "slow", "fast", or "eventTriggered", which is whenever
a context information change occurs.

4.3 Context Modeling with ContextML 83

UserContext EnvironmentContextPlatformContext

ContextML

ContextProperty

name : EString
updateVelocity : UpdateVelocityKind

CustomContextPropertyDatatypeCustomDataTypeEnum PredefinedDataType

CustomContext

ContextProvider

name : EString

CustomContextPropertyUpdateVelocityKind

slow
fast
eventTriggered

[0..1] userContext [0..1] environmentContext

[0..1] platformContext

[0..*] customContext

[0..*] provider

[0..*] properties[0..*] properties [0..*] properties

[0..1] datatype

[0..*] customContextProperties

Fig. 4.4 ContextML: Overview of the Context Metamodel

For supporting the language requirements Extensibility and Genericity, the metamodel is
designed for a broad scope of context modeling aspects and allows adding further context en-
tities via CustomContext. Each CustomContext can have a CustomContextProperty inherited
by ContextProperty. Moreover, each CustomContextProperty has a CustomContextProp-
ertyDatatype which can be a CustomDataTypeEnum or a PredefinedDataType. In order
to support a broad spectrum of contextual parameters and ease the work of the developers
in specifying various context-of-use situations, ContextML comes up with a fine-grained
modeling support to cover the context triplet UserContext, PlatformContext, and Environ-
mentContext. In the following, those context categories are described in more detail. It should
be noticed that each context entity UserContext, PlatformContext, and EnvironmentContext
is described through explicit context property classes, in most cases denoted with a [0..1]
cardinality. Beside implementation specific reasons (support better auto-completion support
in the modeling workbench) we have chosen this metamodel structure in order to provide
a flexible specification of the relevant context properties. Figure 4.5 depicts a refinement
of UserContext as part of the ContextML metamodel. It covers several context information
related to the actual user and each user has a unique UserID. Typical context properties
about the user are age, gender, and language. The context property age can be specified
as AgeUserDefined when it is gathered through a user prompt or AgeCalculated when it is
detected through a camera and estimated through a machine learning algorithm. Beside that,
the Mood of the user (happy, angry, suprised, etc.) and if she/he wears Glasses and has a

4.3 Context Modeling with ContextML 84

UserContext

ContextML

GenderKind

UNKNOWN
male
female
diverse

ExperienceKind

NONE
low
intermediate
high

MoodKind

neutral
anger
contempt
disgust
fear
happy
sad
surprised

UserRoleKind

user
admin

AgeUserDefined

value : EInt

AgeCalculated

value : EInt

Glasses

value : EBoolean

Gender

value : GenderKind

Vision

value : EDouble

Experience

value : ExperienceKind

Mood

value : MoodKind

UsageTime

value : EInt

UserID

value : EInt

Language

value : EString

UserRole

value :
UserRoleKind

[0..1] ageUserDefined

[0..1] ageCalculated

[0..1] glasses

[0..1] gender[0..1] vision

[0..1] experience

[0..1] mood

[0..1] usageTime

[0..1] userID

[0..1] language

[0..1] userContext

[0..1] userrole

Fig. 4.5 ContextML metamodel for UserContext

Vision problem can be also detected through a camera and face detection API. Furthermore,
when a user model is specified, we can ask the users for context information about their
Experience level or UserRole for interacting with the system. Lastly, we can specify and
track the UsageTime of each user.

In a similar way, PlatformContext (see Figure 4.6) entity covers aspects according to the
execution platform that should be considered when maintaining usability of the UI. As with
UserContext, each PlatformContext has a unique PlatformID so that the platform model is
mapped to the correct execution platform. Common context properties regarding execution
platform are OSName and OSVersion denoting the name of the running operating system
and its version number, respectively. In addition to that, the context property DeviceType
characterizes the device type of the execution platform, such as desktop, mobile or tablet.
Also, the specific DeviceName and TimeZone can be specified and observed as an additional
context information. A pair of context properties that is essential for the UI is the screen

4.3 Context Modeling with ContextML 85

PlatformContext

ContextML

ConnectionTypeKind

NONE
wifi
cellular

ConnectionSpeedKind

NONE
mobile_2G
mobile_3G
mobile_4G

DeviceTypeKind

UNKNOWN
desktop
mobile
tablet

BatteryState

value :
BatteryStateKind

ConnectionType

value :
ConnectionTypeKind

ConnectionSpeed

value :
ConnectionSpeedKind

DeviceName

value : EString

FontScale

value : EDouble

OSName

value : EString

OSVersion

value : EString

Timezone

value : EString

DeviceType

value : DeviceTypeKind

ScreenWidth

value : EInt

ScreenHeight

value : EInt

PlatformID

value : EInt

BatteryStateKind

low
medium
high
charging

[0..1] deviceName

[0..1] fontscale

[0..1] os_name

[0..1] os_version

[0..1] timezone

[0..1] platformType

[0..1] screenWidth

[0..1] screenHeight[0..1] platformid

[0..1] connectionType

[0..1] connectionSpeed

[0..1] platformContext

[0..1] batteryState

Fig. 4.6 ContextML metamodel for PlatformContext

dimension. In our metamodel it is represented by ScreenHeight and ScreenWidth for the
respective dimension height and width. These context properties are often used to scale the
UI to the respective device. The most important scaling property is that for font, because
UIs mostly contain text elements. As text elements play a major role for UIs, a FontScale is
introduced. It carries the default font scale for the respective device to take into considera-
tion when modifying its value. Furthermore, dynamic platform context properties such as
ConnectionType (wifi, cellular, etc.) and ConnectionSpeed (mobile_2G, mobile_3G, etc.)
can be used to track the quality and speed of the internet connection. Finally, the dynamic
platform context property BatteryState is an important context information that can influence
functionality and usability of the UI.

The EnvironmentContext part of the ContextML metamodel, depicted in Figure 4.7, is
especially important when considering the mobile scenario. In the mobile scenario, the
context parameters regarding the interaction environment can dynamically change. Several
dynamic context changes and various combinations of environmental context properties

4.3 Context Modeling with ContextML 86

EnvironmentContext

ContextMLActivityKind

UNKNOWN
standstill
on_foot
on_bicycle
in_vehicle

WeatherKind

UNKNOWN
clear
sunny
rainy
thunderstorm
storm
cloudy

AmbientLight

value : EDouble

Time

value : EInt

Activity

value :
ActivityKind

Date

value : EString

Weather

value :
WeatherKind

NoiseLevel

value : EDouble

EnvironmentID

value : EInt [0..1] light

[0..1] time

[0..1] date

[0..1] weather

[0..1] noiseLevel

[0..1] enviromentID

[0..1] environmentContext

[0..1] activity

Fig. 4.7 ContextML metamodel for EnvironmentContext

are conceivable. In ContextML, the most relevant environmental properties are considered.
These are Date, Time, AmbientLight, NoiseLevel, Weather, and Activity. While Date and
Time constitute the temporal dimension, Light, NoiseLevel, Weather, and Activity constitute
the space dimension. As part of the space related context properties Activity is defined by an
enumeration over different states of movement such as standstill, on_foot, on_bicycle, etc.
Similarly, context information about the Weather are defined through an enumeration over
different states (clear, sunny, rainy, etc.).

An excerpt of an example context model based on ContextML is depicted in Figure 4.8.
It shows a set of possible context entities. For illustrating the context modeling language,
example entities which contain some illustrative context properties are shown. The example
context model covers three different context entities UserContext, PlatformContext, and
EnvironmentContext. Those context entities are specifically described through context
properties. For example the context entity UserContext has a context properties Mood that
is characterized through suitable data and update types. Also the the context provider as a
source of the context property information is described which in this case is the AffectivaAPI
to get the mood information about the user. Based on the metamodel, we also created a

4.4 Adaptation Modeling with AdaptML 87

:PlatformContext

:ContextML

:UserContext

:Mood

AffectivaAPI:
ContextProvider

:DeviceType

:EnvironmentContext

DeviceAPI:
ContextProvider

:AmbientLight

updateVelocity =
eventTriggered

updateVelocity = fast updateVelocity =
eventTriggered

userContext platformContext environmentContext

deviceTypemood ambientLight

provider provider provider

Fig. 4.8 Example ContextML model: graphical (left) and textual concrete syntax (right)

concrete syntax for ContextML using Xtext1 (see Section 2.6.3). Based on Xtext, we created
an Eclipse plugin for context modeling which allows an easy modeling of the context, due
to error highlighting and code completion (see Section 6.3 Tool-Support for further details).
This way, the required programming knowledge and error potential is reduced. An example
of the concrete syntax is displayed on the right side of Figure 4.8.

In summary, the context model specified in ContextML serves as an input for the Context
Service Generator. The latter creates executable code for the Context Service with a Model-
to-Text-Transformation (M2T). The generation of executable Context Services in the form of
code is described in the next chapter.

4.4 Adaptation Modeling with AdaptML

In the previous section, we introduced ContextML as a generic and extensible modeling lan-
guage for specifying various heterogeneous context-of-use situations. Beside characterizing
the different context-of-use parameters that can influence the usability of the operated UI, UI
developers have to be supported in the task of specifying various UI adaptations. In order to
support the UI adaptation modeling approach and address challenge C4: Specification of UI
adaptation rules conform to the described language engineering requirements, we present
AdaptML. The main purpose of AdaptML is to provide a dedicated modeling perspective
(Separation of Concerns) which allows the separate specification of UI adaptation rules
complementary to the UI and context model (Integration). AdaptML aims to support the

1https://eclipse.org/Xtext/

4.4 Adaptation Modeling with AdaptML 88

specification of various UI adaptations by covering different adaptation techniques and reduce
complexity in designing and maintaining adaptation rules.

AdaptML

Premise

Condition PrimeConditionCombinedCondition

AndCombinedConditionOrCombinedCondition

AdaptationOperationAdaptationRule

name : EString
level : Int

ContextML

ContextProperty

IFMLModel

[1..*] adaptationRule

[1..*] conditions

[0..*] subConditions

[1..*] adaptationOperation

[1..*] premise

[0..1] conditionAttribute

Fig. 4.9 AdaptML: Adaptation Metamodel Overview

An overview of the general structure of the AdaptML language is shown in Figure 4.9. The
root element of the metamodel is the AdaptML class. In order to achieve the mentioned
language engineering requirement Integration, the AdaptML class has a reference to the
ContextML class to evaluate the context conditions and a reference to the IFMLModel class to
define UI adaptations for specific UI elements. AdaptML consists of AdaptationRule elements
which have a rule name and a priority level as attributes. The priority level is used as an
indicator for priority to decide in which order rules are executed if more than one satisfies all
conditions. A rule with higher priority level is executed before rules with lower level. Each
AdaptationRule consists of one or more Premise and AdaptationOperation elements. The
Premise class characterizes the condition part of a UI adaptation and consists of an abstract
class Condition which is the base for describing simple and complex conditions. Simple
conditions can be specified based on the PrimeCondition class which defines a concrete
simple constraint on one ContextProperty. Therefore, PrimeCondition has the attributes
operator and value which are needed to define a condition of a UI AdaptationRule expressed
as a logical expression.

More complex conditions can be specified through the abstract class CombinedCondition
which allows a combination of conditional expressions concatenated by OR-operators and

4.4 Adaptation Modeling with AdaptML 89

AND-operators. For this purpose, the subclasses OrCombinedCondition and AndCombined-
Condition are defined in the AdaptML metamodel.

Beside the above described conditional expressions, an AdaptationRule enables to specify
different UI adaptation techniques that are executed if the associated conditions are satisfied
at runtime. For this purpose, each AdaptationRule consists of one or many AdaptationOpera-
tion elements. In order to fulfill the concern-specific requirements introduced in Section 3.2,
the AdaptML language supports different types of adaptation techniques which are depicted
in Figure 4.10: TaskChangeOperation, NavigationChangeOperation, LayoutChangeOper-
ation, ModalityChangeOperation, and ServiceOperation. Also, a combination of multiple
adaptation techniques is possible. In AdaptML, this is implicitly modelled by the composition
relation between AdaptationRule and AdaptationOperation.

TaskChangeOperation enables the specification of UI adaptations which allow to decrease
and increase the task-feature-set to provide a more minimalistic or detailed UI view upon
the current context-of-use. For hiding and showing specific UI elements, TaskChangeOpera-
tion supports the AddIFMLElementOperation and DeleteIFMLElementOperation through a
targetPath which enables to apply these operations on specific UI elements of the specified
IFML model. For this purpose, TaskChangeOperation has a target reference to the IFML
class InteractionFlowElement.

Similarly, NavigationChangeOperation enables to specify UI adaptations where the
navigation flow of a UI can be changed based on the context-of-use. For this purpose, Navi-
gationChangeOperation has the subclasses AddNavLinkOperation, DeleteNavLinkOperation,
RedirectNavLinkOperation, and ClearNavOperation. The first three classes or navigation
change operations support the addition, deletion, and redirection of a specific navigation edge,
denoted as NavigationFlow in the IFML model, which is referenced through a targetPath.
Lastly, the navigation change operation ClearNavOperation can be used to remove all links
that are currently stored in the navigation component.

As a further UI adaptation technique, AdaptML supports the specification of layout
changes which are characterized through the LayoutChangeOperation class. Although IFML
in general is an abstract UI modeling language which is not directly focusing on platform-
specific details like layout, we decided to incorporate layout change operations in AdaptML
as we see a higher potential and flexibility for UI adaptations through this possibility. The
LayoutChangeOperation(s) are mainly inspired by commonly used Cascading Style Sheet
(CSS)2 properties. The main idea is to ease the developers work in specifying layout change
operations by reusing a common standard and integrating it into our modeling approach as it
is also the case with IFML. Similar to the targetPath attribute of the TaskChangeOperation(s),

2https://www.w3.org/Style/CSS/Overview.en.html

https://www.w3.org/Style/CSS/Overview.en.html

4.4 Adaptation Modeling with AdaptML 90

Ad
dI

FM
LE

Le
m

en
tO

pe
ra

tio
n

D
el

et
eI

FM
LE

le
m

en
tO

pe
ra

tio
n

Ad
dN

av
Li

nk
O

pe
ra

tio
n

pa
th

 :
ES

tr
in

g
la

ng
Ke

y
: E

St
rin

g

D
el

et
eN

av
Li

nk
O

pe
ra

tio
n

pa
th

 :
ES

tr
in

g

Re
di

re
ct

N
av

Li
nk

O
pe

ra
tio

n

pa
th

 :
ES

tr
in

g

Cl
ea

rN
av

O
pe

ra
tio

n

Ad
ap

tC
ss

Cl
as

sO
pe

ra
tio

n

cl
as

s
: E

St
rin

g
at

tr
ib

ut
Ke

y
: E

St
rin

g
at

tr
ib

ut
eV

al
ue

 :
ES

tr
in

g

M
od

al
ity

Ch
an

ge
O

pe
ra

tio
n

Ad
ap
ta
tio
nO

pe
ra
tio
n

Se
tD

is
pl

ay
Pr

op
er

ty

Ta
sk

Ch
an

ge
O

pe
ra

tio
n

ta
rg

et
Pa

th
 :

ES
tr

in
g

N
av

ig
at

io
nC

ha
ng

eO
pe

ra
tio

n

La
yo

ut
Ch

an
ge

O
pe

ra
tio

n

ta
rg

et
U

ID
 :

ES
tr

in
g

Sw
itc

hU
IM

od
al

ity

ta
rg

et
M

od
al

ity
 :

M
od

al
ity

Ki
nd

M
od

al
ity

Ki
nd

gr
ap

hi
ca

l
vo

ca
l

D
is

pl
ay

Pr
op

er
ty

ke
y

: E
St

rin
g

va
lu

e
: E

St
rin

g

Se
rv

ic
eO

pe
ra

tio
n

Se
tL

an
gu

ag
eO

pe
ra

tio
n

la
ng

Ke
y

: E
St

rin
g

Ch
an

ge
La

yo
ut

Ty
pe

la
yo

ut
Ty

pe
 :

ES
tr

in
g

Ch
an

ge
Si

ze

w
id

th
 :

EI
nt

he
ig

ht
 :

EI
nt

Ch
an

ge
M

ar
gi

n

to
p

: E
In

t
rig

ht
 :

EI
nt

bo
tt

om
 :

EI
nt

le
ft

: E
In

t

Ch
an

ge
Pa

dd
in

g

to
p

: E
In

t
rig

ht
 :

EI
nt

bo
tt

om
 :

EI
nt

le
ft

: E
In

t

Se
tB

or
de

r

si
ze

 :
EI

nt
so

lid
ity

 :
ES

tr
in

g
co

lo
r :

 E
St

rin
g

Se
tF

lo
at

in
g

ty
pe

 :
ES

tr
in

g

Se
tT

ex
tC

ol
or

co
lo

r :
 E

St
rin

g

Se
tB

ac
kg

ro
un

d

co
lo

r :
 E

St
rin

g

Se
tF

on
t

st
yl

e
: E

St
rin

g
va

ria
nt

 :
ES

tr
in

g
w

ei
gh

t :
 E

St
rin

g
fo

nt
Si

ze
 :

EI
nt

lin
eH

ei
gh

t :
 E

In
t

fo
nt

Fa
m

ily
 :

ES
tr

in
g

Se
tF

on
tS

iz
e

si
ze

 :
ED

ou
bl

e
un

it
: E

St
rin

g

Se
tT

ex
tD

ec
or

at
io

n

ty
pe

 :
ES

tr
in

g

Se
tP

os
iti

on

ty
pe

 :
ES

tr
in

g
to

p
: E

In
t

bo
tt

om
 :

EI
nt

le
ft

: E
In

t
rig

ht
 :

EI
nt

In
te

ra
ct

io
nF

lo
w

El
em

en
t

In
te

ra
ct

io
nF

lo
w

N
av

ig
at

io
nF

lo
w

[0
..1

] d
is

pl
ay

pr
op

er
ty

[0
..1

] t
ar

ge
t

[0
..1

] t
ar

ge
t

[0
..1

] t
ar

ge
t

[0
..1

] t
ar

ge
t

[0
..1

] t
ar

ge
t

Fig. 4.10 AdaptML: Overview Adaptation Operations

4.4 Adaptation Modeling with AdaptML 91

the LayoutChangeOperation class contains the targetUID attribute identifying a UI element
uniquely. This way, different LayoutChangeOperation(s) can be applied to specific UI
elements which are contained in the IFML class InteractionFlowElement. Typical layout
change operations commonly known from CSS are for example SetFontSize, SetPosition
or SetTextColor. Furthermore, we added the ChangeLayoutType operation to support a
switch between different layout types like grid or linear layout. Finally, we also added a
generic AdaptCSSClassOperation. With this operation it is possible to set fine granular style
properties for a specific class of UI elements. The class attribute in AdaptCSSClassOperation
is equal to a CSS class, while the attributeKey is intended to be a CSS property and the
attributeValue a valid value to that key. The AdaptCSSClassOperation is not intended
to be used in general, but represents an alternative solution in cases where the specific
LayoutChangeOperation is not implemented in AdaptML.

In addition to LayoutChangeOperation, AdaptML also supports the specification of basic
modality changes for the interaction with the UI. For this purpose, the ModalityChange-
Operation class is provided which enables to switch the interaction modality type via the
SwitchUIModality class between graphical and vocal user interface.

As a last type of adaptation technique AdaptML supports a ServiceOperation in the
target language of the UI. In our approach, reusable predefined Angular services were
provided to support UI adaptations for the web platform. The definition of these services
enables to use them later on in the rule specification. A ServiceOperation is defined by
its name and relative location to the Services folder of the Angular implementation. A
ServiceOperation can contain interfaces to functions. ServiceOperation(s) are helpful to
specify UI changes that affect bigger parts or a group of UI elements. For this purpose,
ServiceOperation has a subclass SetDisplayProperty which takes a DisplayProperty object
as input and enables a group of changes in the UI. As an example, AdaptML comes up with a
predefined SetLanguageOperation which supports internationalization of the UI language.
Therefore, each text on the UI is represented by a language key which is automatically set to
the detected language on the used device.

Based on Xtext (see Section 2.6.3), we also created an Eclipse plugin for adaptation
modeling which allows an easy modeling of UI adaptation rules, due to error highlighting
and code completion (see Section 6.3 Tool-Support for further details). This way, the required
programming knowledge and error potential is reduced. An example of the concrete syntax
for AdaptML is shown in Figure 4.11, which contains example UI adaptation rules.

The first UI adaptation rule specifies a TaskChangeOperation based on user’s mood. If
a sad mood is detected through the face detection API, a helpEvent is added through the
AddIFMLElementOperation to provide for instance a textual help for the user. In the second

4.5 Summary and Discussion 92

Fig. 4.11 Example UI adaptation rules based on AdaptML

adaptation rule a LayoutChangeOperation based on the environmental light condition is
specified. When the light condition is under a certain threshold value, the contrast of the UI is
increased through the AdaptCSSClassOperation. Similarly, the third adaptation rule specifies
a LayoutChangeOperation based on the user’s experience level while the fourth rule encodes
a ModalityChangeOperation to trigger a switch in to the vocal UI if a movement is detected.
Finally, a language adaptation is shown in the last adaptation rule where the UI language is
switched based on the user’s currently used language using the ServiceOperation.

In summary, AdaptML models serve as an input for the Adaptation Service Generator.
The latter generates the adaptation logic for the Adaptation Service with a Model-to-Text-
Transformation (M2T). The generation of executable Adaptation Services in the form of
code is described in the next chapter.

4.5 Summary and Discussion

In this chapter, an integrated modeling framework for self-adaptive UIs has been introduced.
The modeling framework is based on OMG’s standard UI modeling language IFML and
builds around two complementary novel modeling languages ContextML and AdaptML.
Through integration of these modeling languages, we allow a comprehensive specification

4.5 Summary and Discussion 93

of self-adaptive UIs. In the following, we recapture the high-level and concern-specific
requirements considering our presented modeling framework.

• Separation of Concerns: Through the integration of IFML, ContextML, and AdaptML
we provide different modeling views which allow to focus on the relevant concerns
such as UI, context, and adaptation. This way, developers are able to specify the
relevant concerns in an appropriate and separate way. The relevant core concerns are
also separated from the system’s business logic in order to reduce the complexity.

• Integration: As already mentioned above, our modeling framework is designed in
a way that it is fully integrated with OMG’s standard UI modeling language IFML.
Therefore, similar development projects which aim to devise self-adaptive UIs and rely
on IFML can use our modeling framework. As IFML is an OMG standard it complies
with other OMG standardized languages such as UML or BPMN which can be also
seen as an advantage for our modeling framework.

• Intuitiveness: Our modeling framework makes use of standard modeling techniques
such as UML class diagrams for the domain model and IFML for the abstract UI
model. Also the newly introduced domain specific languages ContextML and AdaptML
are smoothly integrated in our modeling workbench (see Section 6.3) allowing clear
separation of different internal concerns which help to master the complexity of
modeling self-adaptive UIs.

• Extensibility: Both newly introduced modeling languages ContextML and AdaptML are
designed in a way that new modeling concepts can be flexibly added. In ContextML, for
this purpose, we have introduced the concept of CustomContextPoperty which allows
developers to define their own context-of-use parameters based on suitable self-defined
data types. In AdaptML extensibility is supported through the AdaptationOperation
class which can be extended to further UI adaptation techniques.

• Genericity: Our modeling framework is designed with genericity in mind. That is, our
modeling framework provides concepts and techniques to specify self-adaptive UIs for
different application domains.

Regarding the concern-specific requirements according to context and UI adaptation, we can
sum up that all relevant concerns are addressed by our modeling framework. The context
aspects user, platform, and environment are covered in detail by ContextML and also AdaptML
provides means to define various UI adaptations based on different adaptation techniques
such as TaskChangeOperation, NavigationChangeOperation or ModalityChangeOperation.

Chapter 5

Transformation

This chapter describes our transformation approach for self-adaptive user interfaces. Firstly,
in Section 5.1, we provide an overview of the general architecture for our code generator
for self-adaptive UIs. In Section 5.2, we describe the structure and functionality of the UI
Generator which is responsible for automatically creating the final user interface. Analo-
gously, Section 5.3 serves to present the Context Service Generator which is responsible for
automatically deriving a Context Service that monitors the contextual parameter. Section
5.4 deals with the generation of an Adaptation Service. Finally, Section 5.5 concludes this
chapter with a brief summary and discussion.

5.1 Transformation Approach Overview

In the previous chapter, we have presented our modeling framework for self-adaptive UIs. In
order to support the utilization of our modeling framework and the model-driven development
approach for devising self-adaptive UIs, we implemented a code generator for self-adaptive
UIs (SAUI-Generator). Our code generation approach is targeting web applications as they
are widely spread and used in various application domains. Relying on the principles of the
World Wide Web (WWWW1), web applications provide many advantages (e.g., portability
interoperability, accessibility, etc.). With this regard, one of the most important advantage of
web applications is that they are accessible via a browser from different target platforms such
as mobile, tablet or desktop. Thus, in order to use the potential of web applications as an
enabler for self-adaptive UIs, our code generation approach is focusing on web applications as
target technology. As already described in Section 2.6, Angular represents a de facto standard
framework for developing web applications. Therefore, our code generation approach is

1https://www.w3.org/

5.1 Transformation Approach Overview 95

especially based on and illustrated by focusing on this target technology. At this point, it
should be also noticed that our code generation approach mainly focuses on the core aspects
of self-adaptive UIs, which are UI, context, and adaptation whereas business logic, data
management and other related aspects of web applications are out of scope.

Figure 5.1 shows the overall architecture of the implemented SAUI-Generator. It consists
of a main generator, Generator Core, and three sub-generators UI Generator, Context Service
Generator, and Adaptation Service Generator.

SAUI-Generator

Generator	
Core

IFML+Domain	Model

Context	Model

Adapta7on	Model

UI	
Generator

Context
Service

Generator

Adapta7on
Service	

Generator

IFML+	Domain
Model

Context
Model

Adapta7on	
Model

Context
Service

Adapta7on
Service

Final	UI

UI	ViewComponent

Injector

event	binding

property	binding

injects

generated	file

generator data	flow

binding

injec7on

Fig. 5.1 Architecture Overview of the SAUI-Generator

The Generator Core gets as input the IFML and Domain Model as well as the Context and
Adaptation Model which were specified based on the presented integrated modeling approach
in the previous chapter. The models are then delegated to the corresponding sub-generators.
Based on the IFML and Domain Model, the UI Generator automatically creates the Final
UI as Angular Components and UI Views. Furthermore, based on the specified Context and
Adaptation Model, the Context and Adaptation Services are generated, respectively. The

5.2 UI Generation 96

generated services are injected into the Component element of the Final UI by using the
Angular Injector2 technique (see Section 2.6.1 for further details).

The main idea of the generation approach relies on Model-to-Text (M2T) Transformations
based on Xtend as transformation language (see Section 2.6.3). In the following sections, we
describe the implementation of the specific code generators responsible for the automated
creation of the UI, Context, and Adaptation Services. The interplay of those generated
elements within the execution environment is essential to support context management and
UI adaptation at runtime.

5.2 UI Generation

The main goal of the UI Generator is to automatically create the Final UI (FUI) in the means
of Angular UI Views (see Section 2.6.1). The UI Views in Angular are mainly represented by
two parts, a Template and a Component (see parts of Figure 5.2 marked blue). A Component
defines a graphical view that contains display and interaction elements like a list or buttons.
An application’s UI is a hierarchy of multiple components starting from a root component.
The Component element usually also contains the application logic which can be injected
through Services characterizing specific function calls. In our case, this technique is used
to integrate the Context and Adaptation Services which is described later on in Section 6.2.
The Template of a Component is defined as HTML markup which is extended by an Angular
specific notation, called Directive, to achieve a property binding and event binding between
the Component and Template in order to access data and trigger interaction events.

Template

Component

Service
Service Inject services

Service

Property Binding Event Binding

Directive

Fig. 5.2 Simplified Overview: Angular Framework (UI view parts marked blue) [GS13]

2https://angular.io/api/core/Injector

5.2 UI Generation 97

As decribed in the previous chapter, the UI is modeled by an IFML model and a domain
model represented as a UML class diagram. The elements of these models need to be mapped
into Angular UI Views. To achieve this, model-to-text transformation templates for the
elements of these models have been defined. In the following, firstly, the Xtend templates
for transformation of the domain models to Angular Classes are presented, then a selection
of Xtend templates for the transformation of the IFML model elements to corresponding
Angular target elements are described.

5.2.1 Mapping: DomainModel2AngularClasses

The input domain model is represented as a UML class diagram. The specific UML Classes
in the UML class diagram need to be represented as Angular classes in the target file. The
mappings are visualized in the following figures. The currently selected source model
element for the mapping is marked blue and shown on the top of the grey mapping arrow.
Below this, the newly created elements of the target artifacts are shown. As a general rule
for source (top) and target (below), elements with white background define the application
context of the rule.

export class «p.name» {
 constructor(
){};
}

1
2
3
4

p:Classp:Class

name = ClassName

Class

Fig. 5.3 UMLClass2AngularClass mapping

For each UML Class, a new Angular class file, implemented in TypeScript, will be created
with the name of the UML class as the Angular Class name (see Fig 5.3). The class content
initially only consists of an empty constructor.

Within the Angular class, the variable declarations for the UML attributes have to be created.
There are two possible mappings which depend on the type of the attribute: primitive
and complex types. In both cases, the declaration of a variable is a parameter of the
constructor. Then, TypeScript automatically creates the global declaration when it is compiled
to JavaScript at compile time of the UI. For variables of a primitive type, like a boolean value,
just the variable name and its type are created as declaration in the constructor parameter

5.2 UI Generation 98

list. A global variable is created when the TypeScript code is compiled to JavaScript. If an
unknown type is used, the variable is declared as being of the type ’any’.

r : Classr : Class
n

a : Attribute
n

a : Attribute

type
name = AttributeName

Import { «a.type.name» } from './«a.type.name»';

export class «p.name» {
 constructor(
 public «a.name»: «a.type.name»
){};
}

name = RClassName

p : Classp : Class

name = PClassName

1
2
3
4
5
6
7

Class

Fig. 5.4 UMLClass2AngularClass: Attribute mapping for primitive types

If the type of the attribute refers to another class in the domain model, additionally to the
variable declaration in the constructor, the other class needs to be imported into the Angular
class (see Fig 5.4). The import statement is added in the header of the Angular class. The
variable declaration as parameter of the constructor is the same as for primitive types. The
location of the imported class is known, since it is also created by the generator.

5.2.2 Mapping: IFML2AngularViews

Similar as the domain model, the abstract UI model, represented in IFML, needs to be
mapped to Angular specific target elements to cover the Final UI. For this purpose, a subset
of IFML model elements has been selected and mapped to corresponding Angular Elements3

to establish the concept of the UI generation part of this thesis. Our transformation approach
for UI generation supports the mappings that are listed in Table 5.1.

The source elements in Table 5.1 describe IFML model elements that were introduced
in Section 2.2.2, while the targeting elements on the right column refer to specific Angular
Elements to represent the abstract UI model elements through concrete web interaction
elements. In general, the source model elements can be divided into two groups: simple
elements without child elements and complex model elements which can contain other nested
IFML model elements as child elements. In the following, we describe the IFML2Angular
mapping relations based on illustrative simple and complex elements.

3https://angular.io/guide/elements

5.2 UI Generation 99

Source Element Target Element
Action Function stub in Angular Component
Data Binding HTML content binding and Angular

property binding
Data Flow Function call
Details HTML table for one element
Form HTML form
List HTML table for multiple elements
Navigation Flow Navigation to an Angular View
OnSelectEvent HTML button and function stub
OnSubmitEvent HTML button and function stub
Parameter Selected element of HTML table and

Angular property binding
Parameter Binding URL parameter
Parameter Binding Group URL parameters
Simple Field Field in HTML form
View Container Angular Component + Template
Visualization Attribute Column in HTML list

Table 5.1 IFML2AngularElement Mappings for UI Generation

Simple elements

Simple elements in context of the mapping are defined as IFML model elements that are
not a parent container of other elements. Since the target technological environment of the
transformation is the Angular framework, the mappings are defined with this in mind. As
described before, a view in Angular consists of a Template and a Component. The Template
is the HTML representation of the view, while the Component is the view controller, imple-
mented in TypeScript. To visualize the mappings, an excerpt of the IFML model is shown.
Elements with blue background in the IFML model are the current focus of the mapping.
Elements with white background are the context of the mapping. In addition to the IFML
model elements, the representation of those elements in Angular is shown. The Angular
representation is split in Template, for the HTML representation, and Component, for the
TypeScript view controller. Colored code excerpts are the part of the code that is newly
created. Code parts that are grey are indicating the context of the excerpt. References to
attributes of the IFML model are indicated with the ≪≫-brackets.

Source Element: SimpleField
Target Element: HTML Input + Label, Variable for property binding
Chronology: SimpleFields are child elements of IFML Forms. This means, the transforma-
tion for SimpleFields happens within the transformation for Forms. However, the property

5.2 UI Generation 100

binding, as it is also part of the Angular Component, is generated during the ViewContainer
generation which is described later in this Section (see Figure 5.10).

f : Formf : Form
n

s : SimpleField

n

s : SimpleField

name = FieldName

viewComponent

viewComponentParts

type = FieldType

<form>
 <div class="form-group">
 <label for="«s.name»Input">«s.name»</label>
 <input type="text" class="form-control" id="«s.name»Input" [(ngModel)]="«s.name»" placeholder="«s.name»">
 </div>
</form>

export class «vc.name»Component{
 «s.name»: «s.type»;
}

Template

Component1
2
3

1
2
3
4
5
6

viewContainer

viewElements

vc:ViewContainervc:ViewContainer

name = ViewName

Fig. 5.5 Mapping for SimpleField element

Description: SimpleFields have a type, indicating the data type of the field, and a name
associated with them (see Figure 5.5). Every SimpleField is associated with an IFML Form.
Likewise, in the Angular Template they are created as child elements of an HTML form (Tem-
plate Line 2-5). Every SimpleField is represented by a label-element and an input-element.
The label is the text displayed next to the input, which is a simple text input, to give the user
an idea of the information the field should contain. In the mapping, there is already some
layout information, in form of CSS classes (’form-group’ and ’form-control’), present. In the
input-element, there is an ngModel-attribute. This attribute is responsible for establishing the
property binding with the Angular variable (Component Line 2) for the field. This means,
when information is added to the field, it needs to be shared with the Component. Likewise, if
information changes occur in the Component, due to the bidirectional binding, these changes
are reflected to the input field.

Source Element: Parameter
Target Element: Selected data item (e.g., row in HTML table), Variables for Property
Binding
Chronology: In Figure 5.6, the mapping for a parameter associated to a list is shown. The
transformation of parameters with other associated contexts is similar. However, during the
generation of the list, which is represented by an HTML list, an attribute for conditionally
changing the CSS class of the table row is added.

5.2 UI Generation 101

l:Listl:List interactionFlowElement

parameters

<tr *ngFor="#el of dataBinding| listFilter: fi lterBy" (click)="onSelect(el)"
 [class.info]="el === selected«p.name»">

</tr>

export class «vc.name»Component{
 selected«p.name»: «p.type»;
 isSelected«p.name»: boolean;

 onSelect(el: DomainConcept){
 if(this.selected«p.name» === el){
 this.selected«p.name» = undefined;
 this.isSelected«p.name» = false;
 }else{
 this.selected«p.name» = el;
 this.isSelected«p.name» = true;
 }
 }
}

Template

Component

p:Parameterp:Parameter

name = ParameterName
type = PrimitiveType

viewContainer

viewElements

vc:ViewContainervc:ViewContainer

name = ViewName

1
2
3
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 5.6 Mapping for Parameter element

Description: Parameters are InteractionFlowModelElements and are part of an Interaction-
FlowElement. An InteractionFlowElement can be for example a ViewElement in form of
a List (as shown in Figure 5.6). To establish a property binding for the parameter between
the Angular Component and the Template, a variable declaration is needed in the Angular
Component. The variable declaration creates a variable with name and type defined for
the parameter in the IFML model (Component Line 2). Additionally, a flag is created that
indicates whether the parameter is filled with information (Component Line 3). Within the
onSelect-function, which is called when an element in the HTML table representing the list
is selected, the variables for the parameter and the parameter flag are set (Component Line
6-11). In the Template, a conditional CSS class attribute is added for each row. The condition
is satisfied if the data item presented in the row is the currently selected item, indicated by
content of the parameter property binding (Template Line 2).

OnSelectEvents and OnSubmitEvents are mapped to elements in both, the Angular Compo-
nent and the Angular Template. The mapping, however, is rather intuitive. In the Template,
the events (meaning either OnSelectEvent or OnSubmitEvent) are created as HTML Button,
calling a newly created function stub for the specific event in the Angular Component. There

5.2 UI Generation 102

is no functionality added to those stubs as application code is not the main focus of this
solution. The functionality comes with the associated interaction flow and its target element.

Source Element: DataFlow (from OnSelectEvent to Action)
Target Element: HTML Button, function for OnSelectEvent + stub for Action
Chronology: An OnSelectEvent is associated with a List. Within the generator for the List,
a button for the event is added to the HTML Template. Functions for Event and Action are
created during ViewContainer generation (see Figure 5.10).

e:OnSelectEvente:OnSelectEvent

name = EventName

a:Actiona:Action

name = ActionName

inInteractionFlows

sourceInteractionFlowElement

outInteractionFlows df:DataFlowdf:DataFlow

targetInteractionFlowElement

<table>
</table>
<button type="button" class="btn btn-default" (click)="<<e.name>>()" >
 <<e.name>>
</button>

<<e.name>>(){
 this.<<a.name>>Action();
}

<<a.name>>Action(){
 // PROTECTED REGION ID _A2qEQIC_Eea2S59Os6LSKA.<<a.name>>Action ENABLED START
 // PROTECTED REGION END
}

Template

Component

l:Listl:List

viewElement

viewElementEvents

1
2
3
4
5
6
7
8

1
2
3
4
5

Fig. 5.7 DataFlow to Action mapping

Description: Figure 5.7 illustrates the mapping of a DataFlow from an OnSelectEvent to
an Action. Within the Component, a function with the name of the OnSelectEvent is created
(Component Line 1-3). The DataFlow is modeled by a call to a function stub created for
the Action. The Action stub can be seen in Component Line 5-8. Since there is no Parame-
terBindingGroup associated with the DataFlow, there are no parameters transferred. Within
the Action stub, a protected region is created. Protected regions allow the preservation of
manually written code between code generation iterations. Within the Template, a button that
calls the function stub for the event is created (Template Line 3-5).

5.2 UI Generation 103

Source Element: NavigationFlow (from OnSelectEvent to ViewContainer)
Target Element: HTML Button, function for OnSelectEvent with navigation to ViewCon-
tainer
Chronology: An OnSelectEvent is associated with a List. Within the generator for the List,
a button for the event is added to the HTML Template. The function for the Event is created
during ViewContainer generation.

e:OnSelectEvente:OnSelectEvent

name = EventName

v:ViewContainerv:ViewContainer

name = ViewName

inInteractionFlows

sourceInteractionFlowElement

outInteractionFlows nf:NavigationFlownf:NavigationFlow

targetInteractionFlowElement

<table>
</table>
<button type="button" class="btn btn-default" (click)="«e.name»()" >
 «e.name»
</button>

«e.name»(){
 this._router.navigate(['«v.name»']);
}

Template

Component

l:Listl:List

viewElement

viewElementEvents

1
2
3

1
2
3
4
5

Fig. 5.8 NavigationFlow to ViewContainer mapping

Description: In contrast to DataFlows, NavigationFlows (see Figure 5.8) can change the
current view. The targetInteractionFlowElement of a NavigationFlow is a ViewContainer.
The OnSelectEvent is mapped to a function with identical name in the Angular Component.
The NavigationFlow is implemented in the Component as a call to the routing service of
Angular. The routing service transfers the view focus to the target ViewContainer, however,
no information is transferred between the views. To transfer information from one view
to another, we need ParameterBindings. When a ParameterBinding is associated with the
NavigationFlow, the source Parameter is added as URL parameter to the routing service
navigation call. Again, a button is created within the Template to call the function stub in the
Component (Template Line 3-5).

Source Element: ParameterBinding (on NavigationFlow for target ViewContainer)
Target Element: URL parameter retrieval

5.2 UI Generation 104

Chronology: Incoming interactionFlows are evaluated within the ViewContainer generation
in the ngOnInit-function.

pb:ParameterBindingpb:ParameterBinding

nf:NavigationFlownf:NavigationFlow

bg:ParameterBindingGroupbg:ParameterBindingGroup

ngOnInit(){

 // Incoming Navigation Flow with Parameter Binding
 this._route.params.subscribe(params => {
 if(params['«t.name»'] != undefined){
 this.selectedBookToIssueBinding = JSON.parse(decodeURI(params['«t.name»']));
 }
 });

 // PROTECTED REGION ID _tPI6IIaoEeaTJocisBH8lA.ngOnInit ENABLED START
 // PROTECTED REGION END
}

Component

s:Parameters:Parameter

name:String

t:Parametert:Parameter

name:String

parameterBinding

sourceParameter

targetParameter

parameterBindings

parameterBindingGroup

parameterBindingGroup

interactionFlow

vc:ViewContainervc:ViewContainer

name = ViewName

parameters

interactionFlowElement

targetInteractionFlowElement

inInteractionFlows

1
2
3
4
5
6
7
8
9

10
11
12

Fig. 5.9 Mapping for ParameterBinding element

Description: NavigationFlows in IFML can have associated ParameterBindingGroups (see
Figure 5.9). This mapping will focus on an incoming NavigationFlow of a ViewContainer
with ParameterBinding. The route service of Angular allows to subscribe to URL parameters
that are transmitted to the view. This is done within the ngOnInit-function in the Angular
Component. Each ParameterBindingGroup can have multiple ParameterBindings of type
Parameter, however, no other child type is possible. For the sake of simplicity and a better
overview, ParameterBindingGroups will therefore be considered as a simple element. The
value of the sourceParameter is retrieved from the URL by the name of the targetParameter
associated with the target ViewContainer (Component Line 4-8). It is then assigned to a
variable within the Angular Component.

In the following, the IFML2Angular mappings are described for the more complex IFML
model elements such as ViewContainer, ViewComponent, and DataBinding.

5.2 UI Generation 105

Complex elements

In contrast to the previously explained simple element mappings from IFML to Angular, the
elements in this section are more complex, as they can be the parent container of other IFML
model elements. We start with the description of an IFML2Angular mapping for the most
relevant IFML model element ViewContainer.

v:ViewContainerv:ViewContainer

name = ViewName

<div class="col-md-12">
 <div name="content">

 </div>
</div>

// Angular Imports
import { Component, OnInit } from '@angular/core';
import { ActivatedRoute } from '@angular/router';
import { Router } from '@angular/router';
import { NgClass } from '@angular/common';

@Component({
 selector: '«v.name»',
 templateUrl: 'app/views/«v.name».component.html'
})

export class «v.name»Component {
 // PROTECTED REGION ID _tPI6IIaoEeaTJocisBH8lA.bookReservations ENABLED START
 // PROTECTED REGION END

 constructor(
 private _router: Router,
 private _route: ActivatedRoute){
 }

 ngOnInit(){
 // PROTECTED REGION ID _tPI6IIaoEeaTJocisBH8lA.ngOnInit ENABLED START
 // PROTECTED REGION END
 }
}

Template

Component

isDefault = false

export const routes: RouterConfig = [
 {
 path: '«v.name»',
 component: «v.name»Component
 }
];

Router

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1
2
3
4
5
6

Fig. 5.10 Mapping for ViewContainer element

5.2 UI Generation 106

Source Element: ViewContainer
Target Element: Angular Component and Template base structure, Angular Routes
Chronology: Chronologically, the ViewContainer is the first executed transformation in
the UI Generator as all child elements of the ViewContainer are called from within the
ViewContainer generator (see Section 5.2.3 for further implementation details).
Description: The ViewContainer (see Figure 5.10) is the parent container of most IFML
elements used in this thesis. On the Angular side, the IFML ViewContainer is equivalent
to a view, meaning the Angular Component as well as the Template. Additionally, the set
of ViewContainers determines the routing within the Angular application. The Template
created for a ViewContainer is just the base structure of the HTML representation with two
nested div-elements, which only carry some layout information (Template Line 1-5). The
Angular Component carries some more information. Firstly, the imports of required classes
and modules are defined (Component 2-5). Then, there is the @Component declaration,
which defines the selector of the Component and the location of the Template (Component
Line 7-10). Both are based on the name of the ViewContainer. The class declaration, created
again with the name of the ViewContainer, contains a protected region, a constructor and an
Angular initialization method (ngOnInit). The protected region is used to allow developers
implementing manually written code which is preserved, even on new generations. The
constructor receives navigation centered Angular services as input (Component Line 16-19).
The initialization method (Component Line 21-24), initially, contains only another protected
region to make manual adjustments to the view on initialization. There are other parts of
code generated within the ViewContainer generator, but they depend on other, specific IFML
model elements, and as such are explained in the mapping of those elements. Of special
consideration is also the creation of Routes. The navigation between views is managed by
URLs, which are mapped to a single view, represented by a Component (Router Line 3-4).
Path and, as previously explained, Component name are derived from the ViewContainer
name. A special case, not depicted in the shown mapping, is the DefaultViewContainer. In
the RouterConfig a default path can be set, if the URL does not contain a path to a view. The
default path then redirects to the path of the (unique) DefaultViewContainer.

Source Element: DataBinding
Target Element: HTML Table content binding, Function stub and property binding for data
retrieval in Component
Chronology: The HTML Table content binding is done within the ViewComponent genera-
tion. Function stub and property binding are created within ViewContainer generation.

5.2 UI Generation 107

export class <<vc.name>>Component{
 // variable for list data binding
 <<db.name>>: <<db.domainConcept>>[];

 // stubs for data service calls for data bindings
 get<<db.name>>(){
 // PROTECTED REGION ID _zM55EIaoEeaTJocisBH8lA.get<<db.name>> ENABLED START
 // PROTECTED REGION END
 }

 ngOnInit(){
 // Call stub for filling data binding
 this.get<<db.name>>();
 }
}

Component

db:DataBindingdb:DataBinding

name = BindingName

va:VisualizationAttributeva:VisualizationAttribute dataBinding

visualizationAttribute

dc:DomainConceptdc:DomainConcept

dataBinding

domainConcept

l:Listl:ListviewComponent

viewComponentParts

vc:ViewContainervc:ViewContainer

name = ViewName

viewContainer

viewElements

<tr *ngFor="#el of <<db.name>>| exampleListFilter: filterBy" (click)="onSelect(el)"
 [class.info]="el === selectedParameterBinding">

</tr>

Template1
2
3
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 5.11 Mapping for DataBinding element

Description: DataBindings in Lists and Details in ViewComponents basically have the same
functional behavior. Therefore, only DataBindings associated with Lists are explained in de-
tail. DataBindings are specifying the data which should be displayed in the ViewComponent
(see Figure 5.11). The type of data is defined by the associated DomainConcept. When it
gets to mapping, the property binding between Template and Component is important. In
the Template, the property binding is done in the for-loop (ngFor) for creating the different
table rows (Template Line 1). The variable referred to in the for-loop is also created in the
Component as an array of objects of the specified DomainConcept (Component Line 3). The
array is supposed to be filled in the function stub containing a protected region (Component
Line 6-9). Within this protected region, the developer can make calls to the service man-
aging the data access. The stub is called automatically as soon as the view is initialized
(Component Line 13). The VisualizationAttributes are dependent on the type of the View-
Component, and as such, are created within the ViewComponent generation. They specify,
which attributes of the specified DomainConcept of the DataBinding are presented to the user.

5.2 UI Generation 108

Source Element: List
Target Element: HTML Table
Chronology: The generator to generate the HTML Table is called, when the ViewContainer
template is created. The imports to support the search and filtering of the generated table are
created within the ViewContainer generator.
Description: The ListViewComponent is represented as an HTML Table in the Angular
Template. The displayed data is retrieved from the variable created for the DataBinding.
Columns in the table, however, are only created for the VisualizationAttributes associated
with the DataBinding. The generation of the OnSelectEvents creates HTML buttons in
the Template, as well as the corresponding function stubs in the Component. The HTML
table also provides functionality, which allows filtering and searching the elements of the
DataBinding. For this, some requirements need to be imported into the Angular Component
in form of directives and pipes. The search directive is also added to the Angular Template.
Another feature of the HTML table is the ability to switch between the table view and a
special details view for mobile devices (Mobile Details View). This special mobile view
element is also added to the HTML Template.

Based on the above described mappings, we have implemented a UI Generator which takes
as input the domain and IFML model and creates the Final UI (FUI) code in an automated
way. At this point, it should be noticed that our generation approach was illustrated based on
a subset of IFML model elements. Although it supports the generation of quite representative
FUIs based on Angular, its main objective is not to be complete in the sense that all IFML
and Angular target elements are fully covered. Beside that, it is important to mention that
the defined mappings are focusing on Angular as target Web/UI framework. However, due
to the flexibility offered by template-based code generators (see Section 2.6.3), it is easily
possible to define and establish a mapping from IFML to further target technologies to
enable the generation of Final UI code for other UI frameworks. With this regard, IFML
provides a mapping specification4 to other frameworks such as .NET’s Windows Presentation
Foundation (WPF) or Java Swing. In the following, we elaborate on the implementation
of the UI Generator and describe how the defined mappings were used to implement a
template-based code generator for FUIs in Agular.

4http://www.ifml.org/wp-content/uploads/IFML-PSM-mappings.pdf

5.2 UI Generation 109

5.2.3 Implementation of UI Generator

The technical implementation of the UI Generator is realized with Xtend5 and is based on
the previously defined mappings. As introduced in Section 2.6.3, Xtend supports template
expressions to enable the easy implementation of a template-based code generation approach.
In a template-based generation, predefined templates are filled with information from the
model to generate the target code. In our case, this means that for every IFML element,
depending on its type, one or more Xtend templates, either for the Angular Template, the
Angular Component or both, have to be defined and filled with information extracted from the
IFML model element. There are different supporting Classes to realize such a template-based
code generation approach based on Xtend. ClassGenerators allow the creation of the Angular
Component and Template file by utilizing one method for the creation of each Angular part.
CodeGenerators contain a function to just create an Xtend template as return value, without
creating a file. FileGenerators can create a file of arbitrary type and content. Figure 5.12
shows the general structure of the UI Generator. As it can be seen, the UI Generator
calls for each IFML ViewContainer in the IFML model, the ViewContainerGenerator. The
ViewContainerGenerator is responsible for creating the basic structure of both the Angular
Component and Template.

<<com ponent >>
UI Generat or

<<com ponent >>
ViewCont ainerGenerat or

<<com ponent >>
ViewElem ent Generat or

ViewContainers

<<com ponent >>
ViewElem ent Event Generat or

<<com ponent >>
Det ailsGenerat or

<<com ponent >>
Form Generat or

<<com ponent >>
List Generat or

<<com ponent >>
OnSelect Event Generat or

<<com ponent >>
OnSubm it Event Generat or

ViewElementEventsViewElements

Details
Forms Lists OnSelectEvents OnSubmitEvents

Fig. 5.12 Architectural overview of the UI Generator

The information that is filled into the Angular Template is either directly extracted
from the IFML ViewContainer element or created by calling another generator for the

5http://www.eclipse.org/xtend/

http://www.eclipse.org/xtend/

5.2 UI Generation 110

specific element. As previously described, the mapping used for the transformation of the
ViewContainer element can be seen in Figure 5.10.

Each subcomponent of the UI Generator is implemented through an Xtend template
characterizing the before mentioned IFML model to Angular element mappings on a technical
implementation level. As most of the Xtend templates are quite exhausting and require lots
of space, example templates are presented in the following to give a better impression about
the implementation of the UI generation approach.

Code Excerpt 5.1 shows a part of the ViewContainerGenerator Xtend template (see also
the corresponding mapping in Figure 5.10). The ViewContainerGenerator creates at first the
necessary Angular core imports (Line 3-6). These are static and include, for example, the
Angular services responsible for routing or the component definition. After that, depending
on the contained IFML ViewComponents, further import statements, which are required
by the IFML ViewComponents, are created. If there is a ViewComponent of type List for
example (Line 9), certain components to enable the filtering of the items within the List are
needed (see mapping for list element).

1 class ViewContainerGenerator extends AbstractClassGenerator <

ViewContainerImpl > {

2 // Angular Imports

3 import { Component , OnInit } from '@angular/core ';

4 import { ActivatedRoute } from '@angular/router ';

5 import { Router } from '@angular/router ';

6 import { NgClass } from '@angular/common ';

7
8 �FOR vElem : it.viewElements�

9 �IF (vElem instanceof ListImpl)�

10 // Search Component Imports

11 import { SearchComponent } from '../ dynamic/search.component

';

12 import { �vElem.name.toFirstUpper�Filter } from '../ helper/

pipes/�vElem.name.toFirstLower�.pipe ';

13 �ENDIF�

14 �ENDFOR�

15 // Service Imports

16 �FOR service : ServiceCollection.sharedInstance.services�

17 import { �service.name� } from '..�service.location� ';

18 �ENDFOR�

19 ...

20 }

Code Excerpt 5.1 Xtend template excerpt from ViewContainerGenerator

5.2 UI Generation 111

First of all, there is the SearchComponent (Line 11), which is a directive that provides
the input fields for the filter value. Additionally a filter, or pipe, is imported (Line 12). The
filter is generated specifically for each ViewComponent of type List.

The generation of the different filters is orchestrated from within the CodeGenerator
class. Also, the import statements for different services (Line 16-18), which are statically
defined, are created. These services include general functions like user authentication and
which are then used within the transformation templates.

A further Xtend template example is shown in Code Excerpt 5.2. The ViewElementGen-
erator takes all the IFML View Components as a list of parameter. Within the ViewElement-
Generator, for each IFML View Component it is decided, which specialized generator is
called. We have implemented specific generators for each IFML View Component such as
Details, Forms, and Lists.

1 public class ViewElementGenerator {

2
3 protected def String generateCode(List <ViewElement >

viewElementList){

4 var output = ""

5
6 for (viewElement : viewElementList){

7 switch viewElement {

8 ListImpl: output += new ListGenerator ().

generateTemplate(viewElement)

9 FormImpl: output += new FormGenerator ().

generateTemplate(viewElement)

10 DetailsImpl: output += new DetailsGenerator ().

generateTemplate(viewElement)

11 default: output += ""

12 }

13 }

14 return output

15 }

16 }

Code Excerpt 5.2 Xtend template excerpt from ViewElementGenerator

The DetailsGenerator, FormGenerator, and ListGenerator are creating code as output without
creating a new file. Since it is mostly generated HTML code, no code excerpt is listed here.
The DetailsGenerator creates an HTML table for the IFML Details with fields created with
regards to the IFML Data Binding. The IFML Visualisation Attributes of the IFML Data
Binding determine which attributes are created as fields in the table. The FormGenerator
works in a similar way and creates also a table for displaying the Visualisation Attributes in

5.2 UI Generation 112

the IFML List. However, the table has a traditional layout, opposed to the tilted layout in
the DetailsGenerator, where the table headers are the first column and the elements are the
second column.

Furthermore, HTML buttons for IFML View Element Events are added. For this purpose,
the ViewElementEventGenerator calls the specialized generators OnSelectEventGenerator
and OnSubmitGenerator (see Code Excerpt 5.3). Both generators, OnSelectEventGenerator
and OnSubmitEventGenerator create function stubs for the events in the Angular Component
with protected regions.

1 public class ViewElementEventGenerator {

2 protected def String generateCode(List <ViewElement >

viewElementList){

3 var output = ""

4 for (viewElement : viewElementList){

5 switch viewElement {

6
7 // OnSelect

8 ListImpl: output += new OnSelectEventGenerator ().

generateCode(viewElement)

9 // OnSubmitEvent

10 FormImpl: output += new OnSubmitEventGenerator ().

generateCode(viewElement)

11
12 default: output += ""

13 }

14 }

15 return output

16 }

17 }

Code Excerpt 5.3 Xtend template excerpt from ViewElementEventGenerator

To sum up, based on the above described transformation approach using a template-based
code generation technique based on Xtend, we were able to automatically generate the needed
UI views for our model-driven engineering approach for self-adaptive UIs. As the UI on
its own provides no context-management and UI adaptation capabilities, in the following
subsections we present how to automatically generate Context and Adaptation Services.

5.3 Context Service Generation 113

5.3 Context Service Generation

To address the requirement R2 ’Context’ Transformation Approach introduced in Section
3.2, we will describe the generation approach for a Context Service. The goal of the Context
Service Generator is the automated creation of an Angular service that allows context
monitoring of specified context-of-use parameters at runtime using hardware sensors of the
target platform.

In the following, we first describe the mappings between ContextML and Angular services
for supporting the transformation process. After that, we describe implementation related
details about the Context Service generation.

5.3.1 Mapping: ContextML2AngularServices

The Context Service Generator gets as input the previously mentioned Context Model which
is based on ContextML. The following Table 5.2 depicts on the left column the main source
elements of ContextML that has to be translated to derive an Injectable ContextService.

Source Element Target Element
ContextML Injectable ContextService
ContextEntity ContextProfile
ContextProvider ContextProviderService
ContextTypeEnumeration ContextEnum

Table 5.2 ContextML2AngularService Mappings for Context Service Generation

The core elements of ContextML to specify context-of-use parameters are ContextEntity
which is transformed to a ContextProfile, ContextProvider which is transformed to a Con-
textProviderService, and finally ContextTypeEnumeration which is transformed to a Con-
textEnum. For each of the source ContextML model element we have defined a translation
mapping in to the target technology characterizing the Context Service in Angular.

As depicted in Figure 5.13, the context-of-use parameter information from each context
entity UserContext, PlatformContext, and EnvironmentContext is accessed and stored in a
generic context profile where the context data are persisted conform to the specified data
types in the conext model. Furthermore, Figure 5.14 shows, how ContextProvider hardware
sensors are requested to receive the context-of-use data that were specified before. The
last mapping from ContextTypeEnumeration to ContextEnum is not illustrated here as it is
characterized by a trivial mapping based on enumeration classes.

5.3 Context Service Generation 114

context:ContextML

platform:PlatformContextuser:UserContext environment:EnvironmentContext

userContext
platformContext

environmentContext

Fig. 5.13 ContextEntity2ContextProfile Mapping

contextOfUse:ContextProvider

+ name:String

Fig. 5.14 ContextProvider2ContextProviderService Mapping

5.3 Context Service Generation 115

5.3.2 Implementation of Context Service Generator

The structure of the ContextServiceGenerator is shown in Figure 5.15. It has a main generator
that splits the generation into four kinds of files that will be generated: ContextControllerGen-
erator, ContextProvidersGenerator, ContextTypesGenerator, and ContextProfileGenerator.
Our ContextServiceGenerator is a template-based code generator that is also implemented
based on Xtend6.

Context Service Generator

<<component>>
ContextServiceGenerator

<<component>>
ContextControllerGenerator

<<component>>
ContextProvidersGenerator

<<component>>
ContextProfileGenerator

<<component>>
ContextProviderGenerator

<<component>>
ContextTypesGenerator

<<component>>
ContextTypeGenerator

<<component>>
ContextEntityGenerator

<<component>
>

Component

Controller DefTypes

DefType

Providers

Provider

Profile

Entity

Powered By�Visual Paradigm Community Edition

Fig. 5.15 Architectural overview of the Context Service Generator

Firstly, as depicted in Code Excerpt 5.4, the ContextServiceGenerator invokes the Con-
textControllerGenerator, which generates the main Angular service that connects and con-
trols all the other parts. The generated ContextController contains subscriptions to context
properties, which push changed data automatically to the subscriber based on the RxJS
observer pattern7. Furthermore, it contains timers for the properties which are not updated
in an event-based manner.

1 class ContextServiceGenerator{

2 def generateFiles(ContextML context){

3
4 // Invoke the four parts of the Context Service Generator

5 new ContextControllerGenerator ().generateFile(context);

6 new ContextProvidersGenerator ().generateFiles(context);

7 new ContextTypesGenerator ().generateFiles(context);

8 new ContextProfileGenerator ().generateFile(context);

9 }

10 }

Code Excerpt 5.4 Xtend template excerpt from ContextServiceGenerator

6http://www.eclipse.org/xtend/
7https://github.com/Reactive-Extensions/RxJS

5.3 Context Service Generation 116

The ContextProvidersGenerator invokes the ContextProviderGenerator for each provider
that is listed in the Context Model. This creates a folder with all provider files. Each file
contains standard imports and used DefTypes. The business logic code for controlling and
managing of sensor sources, like APIs or libraries has to be inserted manually. This is due to
the very individual structure of numerous interfaces. Those can be fairly easy to use, like
standard HTML5 APIs8, but can be individual and more complex as well, like the Affectiva
SDK for emotion recognition.
Similarly, the ContextTypesGenerator invokes the ContextTypeGenerator for each user
defined DefType. This creates a folder with type files, that are imported by the providers.
Each file contains the Enums defined in the Context Model.

The last generator component is the ContextProfileGenerator that creates a central
context data profile file and invokes the ContextEntityGenerator for each declared entity in
the Context Model. This creates a file for each entity which contains all the defined properties
and the corresponding getter and setter methods. The generated Context Service files are
injected into the Angular UI framework as modular components.

Xtend Template for AmbientLightProviderService Generated AmbientLightProviderService

Fig. 5.16 Xtend template excerpt for ContextProviderGenerator and its generated code

8https://www.w3.org/2009/dap/

5.4 Adaptation Service Generation 117

An example for the generation of a Context Provider is depicted in Figure 5.16. The code
excerpt depicted in Figure 5.16 represents on the left side the Xtend template for generating
a specific context provider for capturing the ambient light level through a sensor library.
On the right side of Figure 5.16, the generated code for the AmbientLightProviderService
is illustrated. The code of the generated context provider is responsible for monitoring the
environmental lighting condition at runtime by using the AmbientLightAPI.

5.4 Adaptation Service Generation

For addressing the requirement R6 ’Adaptation’ Transformation Approach introduced in
Section 3.2, we describe the generation approach for an Adaptation Service. The goal of the
Adaptation Service Generator is the automated creation of an Angular service that allows
UI adaptation at runtime. UI adaptations, as introduced in the context of our modeling
framework (see Chapter 4), are expressed in a rule-based manner using AdaptML. Based on
this input file, the Adaptation Service Generator generates an Angular service containing
the JavaScript rule engine Nools9. Nools is an efficient RETE-based rule engine written in
JavaScript and provides an API for specifying facts and rules (see Section 2.6.2 for further
details). In the following, analogously to the previous section, first the mappings between
AdaptML and Angular services are described. After that, we describe implementation related
details about the Adaptation Service generation.

5.4.1 Mapping: AdaptML2AngularServices

Firstly, we give an overview to characterize the automatic translation from abstract UI
adaptation rules represented in AdaptML to a Nools service that represent the UI adaptation
logic at runtime. The following Table 5.3 depicts on the left column the main source elements
of AdaptML that has to be translated to derive an Injectable NoolService.

Source Element Target Element
AdaptML Injectable NoolsService
AdaptationRule Flow
Premise (Condition) FlowRule
AdaptationOperation NoolsAction

Table 5.3 AdaptML2AngularService Mappings for Adaptation Service Generation

The core elements of AdaptML to specify UI adaptations are AdaptationRule which is
transformed to a Flow, Premise (Condition) expressions which are transformed to a FlowRule,

9http://noolsjs.com/

5.4 Adaptation Service Generation 118

and finally AdaptationOperation which is transformed to a NoolsAction. For each of the
source AdaptML model element we have defined a translation mapping into the target
technology of the used rule engine Nools. Figure 5.17 (left) depicts the mapping of an
AdaptationRule to a Flow. In this case, the mapping is quite straight forward as each specified
AdaptationRule is inserted into a Nools session as a Flow. Each Flow has a name and a
salience which conforms to the AdaptationRule’s attributes name and priority, respectively.
The Premise (Condition) part of a UI adaptation rule is translated to a FlowRule. As shown on
the right side of Figure 5.17, the mapping of the AdaptML conditions into Nools conditions is
processed based on the PrimeCondition and structure of the CombinedCondition. Similarly,
each AdaptationOperation is inserted as a NoolsAction into an actionNodeList which is then
provided to Nools.

p:Premise

+operator:String
+value:String

rule:AdaptationRule

+name:String
+priority:int

Premise2FlowRule
Mapping

AdaptationRule2Flow
Mapping

(a) (b)

Fig. 5.17 Example Mappings: (a) AdaptationRule2Flow and (b) Premise2FlowRule

5.4.2 Implementation of Adaptation Service Generator

The Adaptation Service Generator, which is synonymously called NoolsServiceGenerator
in this work, due to the name of the used rule engine, is implemented with Xtend and takes
the UI adaptation rules as input. Structurally, as shown in Figure 5.18, it consists of the
components NoolsServiceGenerator, NoolsRuleGenerator, NoolsConditionGenerator, and

5.4 Adaptation Service Generation 119

NoolsActionGenerator. These components are responsible for creating an injectable Angular
service conform to the above described mappings.

<<component>>
NoolsServiceGenerator

<<component>>
NoolsRuleGenerator

<<component>>
NoolsCondi3onGenerator

<<component>>
NoolsAc3onGenerator

Rules

Condi1ons Ac1ons

Fig. 5.18 Adaptation Service Generation

In the following, each component involved in the Adaptation Service generation is described
based on its realized Xtend template.

Code Excerpt 5.5 shows a part of the Xtend template for the NoolsServiceGenerator.

1 class NoolsServiceGenerator extends AbstractFileGenerator <AdaptML > {

2 ...

3 @Injectable ()

4 export class NoolsService {

5 private flow;

6 private m: Profile;

7 constructor(

8 private dcl: DynamicComponentLoader ,

9 private injector: Injector ,

10 private _Router: Router ,

11 private _LoggerService: LoggerService ,

12 private _ResourceService: ResourceService){

13 this.flow = nools.flow("�flow.attributes.

getNamedItem("name").nodeValue�", function(

flow){�new NoolsRuleGenerator ().generateCode(

flow.childNodes , serviceMap , functionMap)�});

14 }

15 ...

16 }

Code Excerpt 5.5 Xtend template excerpt from NoolsServiceGenerator

It creates an injectable Nools service which consists of the required Angular imports,
the class declaration of the service and the implementation of the Nools flow. The flow is

5.4 Adaptation Service Generation 120

composed of all the rules defined in the abstract UI adaptation rules based on AdaptML. For
each rule it is defined under which conditions the rule actions are executed. The generation
of the individual rules is delegated to the NoolsRuleGenerator.

The NoolsRuleGenerator’s Xtend template is shown in Code Excerpt 5.6. For each adaptation
rule it creates a Nools flow where the name of the Adaptation Service is the name of the
abstract UI adaptation rule. The salience of the rule is the priority level of the rule and
corresponds to the level defined in the AdaptML rule specification. In addition to that, the
rule fact is defined by the factType and factName attributes. The generation of the conditions
and adaptation operations of the rule is delegated to the NoolsConditionGeneratorand the
NoolsActionGenerator, respectively.

1 public class NoolsRuleGenerator{

2 ...

3 def protected generateTemplate(AdaptationRule [] ruleset) {

4 var output = ""

5 for(rule: ruleset){

6 output += '''

7 flow.rule("�attr.getNamedItem ("name").nodeValue�

", {salience:�attr.getNamedItem (" priority ").

nodeValue�},[�attr.getNamedItem (" factType ").

nodeValue� ,"�attr.getNamedItem (" factName ").

nodeValue�","�new NoolsConditionGenerator ().

generateCode(rule.firstChild)�"], function(

facts){

8 �new NoolsActionGenerator ().generateCode(rule.

firstChild.nextSibling.childNodes , serviceMap ,

functionMap)�});

9 '''

10 }

11 return output

12 }

13 ...

14 }

Code Excerpt 5.6 Xtend template excerpt from NoolsRuleGenerator

Code Excerpt 5.7 shows the Xtend emplate for the NoolsConditionGenerator. The NoolsCon-
ditionGenerator is responsible for creating the rule conditions. All child elements of the
condition element are combined with the OR-operator. If there is a conditionGroup element,
all child elements of the conditionGroup are combined with the AND-operator. The result is

5.4 Adaptation Service Generation 121

a string of concatenated conditions with operators.

1 public class NoolsConditionGenerator extends

AbstractViewElementGenerator <Premise >{

2 ...

3 def String recursiveConditionUnrolling(Condition c){

4 val output = new LinkedList <String >;

5 if(c instanceof AndCombinedCondition){

6 for(subCondition:c.subConditions){

7 output.add(recursiveConditionUnrolling(subCondition))

;

8 }

9 return output.join(' && m.');

10 }

11 else if(c instanceof OrCombinedCondition){

12 for(subCondition:c.subConditions){

13 output.add(recursiveConditionUnrolling(subCondition))

;

14 }

15 output.join(' || m.');

16 }

17 else if(c instanceof PrimeCondition){

18 return c.conditionAttribute + '()' + c.operator + '' + c.

value +''

19 }

20 }

21 ...

22 }

Code Excerpt 5.7 Xtend template excerpt from NoolsConditionGenerator

Likewise, to generate the actions that the rule should execute when the conditions are sat-
isfied, the NoolsActionGenerator is called with the actions element as parameter. As this
is characterized mainly by a parameter handover, we rather show an illustrative example
instead of the Xtend template.

An example for the generation of a Nools Adaptation Service is depicted in Figure 5.19.
The code excerpt depicted in Figure 5.19 represents on the left side the Xtend template for
generating a Nools Adaptation Service. On the right side of Figure 5.19, the generated code
for the Nools Adaptation Service is illustrated, which is at runtime responsible for executing
the UI adaptations.

5.5 Summary and Discussion 122

Xt
en

d
Te

m
pl

at
e

fo
r t

he
 N

oo
ls

Se
rv

ic
e

G
en

er
at

ed
 N

oo
ls

Se
rv

ic
e

Fig. 5.19 Xtend template excerpt for NoolsServiceGenerator and its generated code

5.5 Summary and Discussion

In this chapter, we have presented our transformation approach for self-adaptive user inter-
faces (SAUIs). Its main goal is to support the generation of code for the Final UI (FUI),

5.5 Summary and Discussion 123

Context Services, and Adaptation Services in an automated way. For this purpose, we gave an
overview of the transformation approach and specified mappings between the source models
and target artifacts to enable the implementation of template-based code generators. Based
on the specified mappings characterized through Xtend templates, the implementation of the
SAUI-Generator was explained in more detail by elaborating on each specific subgenerator
UI Generator, Context Service Generator, and Adaptation Service Generator. In summary,
the implemented SAUI-Generator supports the development approach of SAUIs. Based on
the specified models (Domain Model, IFML, ContextML, and AdaptML), the creation of the
FUI, Context Service and Adaptation Service in supported in an automated way.

While the implemented SAUI-Generator illustrates the main idea of realizing model-
driven SAUI development based on the Angular framework focusing on web technologies, it
is also conceivable to use our approach to devise SAUIs for other target technologies. In this
case, our Xtend templates can be reused and adjusted to realize the requirements for the new
target platform. As our proof-of-concept implementation of the SAUI-Generator supports
a subset of IFML model elements, it is also possible to extend our template-based code
generator with further template expressions to cover more IFML model elements in order to
realize more sophisticated UIs. Similarly, the existing set of Xtend templates for generating
Context and Adaptation Services can be extended to cover further context monitoring and UI
adaptation aspects.

Regarding the generation of Context Services it should be marked that due to the very
individual structure of some context sources, the code for controlling and managing sensor
sources, like APIs, SDKs or libraries, could not be always automatically generated and thus
had to be implemented manually. The code is written in static files, which are scanned during
the generation process and inserted into predefined sections among the generated code using
the concept of protected regions. Hence, the proof-of-concept implementation of the Context
Service Generator covers the automated generation of code for a specific set of Context
Services and can be extended to cover further context sensors and information.

Our Adaptation Service generation approach relies on the usage of Nools which is an
efficient rule engine based on the RETE algorithm. Instead of Nools it is conceivable to use
other rule engines such as Drools10 or NRules11. In such a case, the flexible structure of our
Adaptation Service Generator can be easily adjusted according to new code templates to
enable a translation of the AdaptML models to the syntax of the target rule engine.

10https://www.drools.org
11https://github.com/NRules/NRules

Chapter 6

Execution

In this chapter, we present the execution environment for self-adaptive UIs. Firstly, in Section
6.1, we describe the runtime architecture for supporting context monitoring and UI adaptation.
After that, in Section 6.2, we describe the proof-of-concept implementation of our rule-based
execution environment for realizing self-adaptive UIs. Subsequently, in Section 6.3, we
present our tool-chain which was implemented to support our model-driven development
approach for self-adaptive UIs. Finally, main results of this chapter are briefly summarized
and discussed in Section 6.4.

6.1 Runtime Architecture for Self-adaptive UIs

In the previous two chapters, we presented the modeling and transformation phases of our
model-driven development approach for self-adaptive UIs. For enabling the execution of
self-adaptive UIs, the following main requirements were identified in Section 3.2:

• R3 - Runtime Monitoring: The approach should support runtime context monitor-
ing in such a way that the generated Context Services continuously observe context
information and detect context changes through corresponding hardware sensors. The
resulting Context Services shall provide context information to the UI Adaptation
Service via data interface.

• R7 - Runtime Adaptation: The approach should support runtime UI adaptation in
such a way that the generated Adaptation Services enable to automatically change the
UI as a reaction to context changes.

To address the above mentioned requirements, existing Web and UI frameworks are not
sufficient as they do not explicitly cover context management and UI adaptation concerns

6.1 Runtime Architecture for Self-adaptive UIs 125

in an integrated execution framework. Usually, classical Web and UI frameworks rather
support a generic execution framework, commonly based on the Model View Controller
(MVC)1 paradigm (or similar paradigms), to enable the view representation, data binding,
and integration of application logic services. As the focus of this thesis is to support model-
driven development of self-adaptive UIs in a flexible and modularized way, a novel execution
environment for self-adaptive UIs is required that fulfills the before mentioned requirements.

For this purpose, we have conceptualized a generic runtime architecture for self-adaptive UIs
which is shown in Figure 6.1.

Adaptation Service

UI
Views

monitors adapts DP

Display
Properties

Knowledge
Monitor Execute

Evaluate
Conditions

adapts UI

adapt schema

Final UI

Context
Controller

Context Service

Context
Profile

Context
Provider

push

data

updates

...Sensor
API n

Runtime Architecture for
Self-Adaptive UIs

AdaptML

IFMLContextML

Context
Sensor n

Fig. 6.1 Overview of Conceptual Runtime Architecture for Self-adaptive UIs

The depicted runtime architecture consists of three main components, namely, Final UI, Con-
text Service, and Adaptation Service which are integrated in an overall execution environment.

The Final UI, which is derived based on the specification of the IFML model, has different
subcomponents to enable the view representation based on specific UI Views and Display
Properties. As this component supports basic functions for displaying and controlling the
UI elements, it can be covered through a classical Web or UI framework as described in the
beginning of this section.

To extend the UI framework in order to support context monitoring and UI adaptation at
runtime as well as to support an overall execution environment for self-adaptive UIs, the

1https://martinfowler.com/eaaDev/uiArchs.html

6.2 Execution Environment for Self-adaptive UIs 126

following components were added and integrated into the runtime architecture:

The Context Service is derived based on the specification of the ContextML model and has
different subcomponents to provide context information to the UI adaptation component
(Adaptation Service) via data interface. As already introduced in the ContextML modeling
Section 4.3, the subcomponent Context Provider is essential for gathering context information
data through Context Sensors. To collect various context information, the Context Sensors are
accessed through a dedicated Sensor API. At runtime, the Context Service uses the Context
Provider to continuously monitor various context-of-use information. To provide the needed
context information data, the Context Provider pushes the context information data to the
Context Controller which again updates the Context Profile after each context change. The
Context Profile contains the current context-of-use information about the sensed contextual
parameters and delivers it through a data interface.

The Adaptation Service, which is derived based on the specification of the AdaptML model,
is responsible for enabling runtime UI adaptation. It is based on IBM’s MAPE-K loop
[IBM05] and consists of the following subcomponents Monitor, Evaluate Conditions, Exe-
cute, and Knowledge. As the name implies, the Monitor subcomponent monitors the context
informtion data that is delivered by the Context Profile subcomponent of the Context Service.
The context information data is processed in the Evaluate Conditions subcomponent which
analyzes and plans the execution of the UI adaptation operations as they were specified based
on the UI adaptation rules specified with the help of AdaptML. The Execute subcomponent is
finally responsible for applying the UI adaptation operations on the Final UI. Executed UI
adaptation operations can effect changes to specific UI Views or trigger more generic changes
by changing the Display Properties. Finally, the Knowledge subcomponent is responsible for
storing context information and applied UI adaptation rules. In the next chapter, it will be
explained how also user feedback can be logged in the Knowledge subcomponent to enable
usability evaluation of UI adaptations.

In the following section, we present how the sketched runtime architecture has been imple-
mented as a proof-of-concept execution environment for supporting self-adaptive UIs.

6.2 Execution Environment for Self-adaptive UIs

In order to realize the idea of a runtime architecture for self-adaptive UIs, we implemented a
rule-based execution environment for self-adaptive UIs. Our proof-of-concept implementa-

6.2 Execution Environment for Self-adaptive UIs 127

tion of the execution environment relies on the open source Angular framework2 which is
one of the most used UI/Web frameworks. Angular is maintained by Google and aims to
facilitate the development of modern UIs and (web) applications for different target platforms
by relying on established development practices, concepts, and conventions. Angular has
established itself as a de facto standard for front-end/UI development purposes and is highly
used in industrial projects. As already introduced in section 2.6 and recaptured in Figure 6.2,
the architecture of the Angular framework is very modular.

Module
Component

Module
Service

Module
Value

Module
FN

Injector

Service

Template

Component

Metadata
Event

Binding
Property
Binding

Metadata

Directive

structural atrribute

Fig. 6.2 Architectural Overview of the Angular framework [GS13]

Beside that, the architecture of the Angular framework fits well to to our concern to character-
ize the UI and reflect UI changes to realize runtime UI adaptation. Moreover, the modularity
of the Angular architecture supports sufficient flexibility to further integrate Context Ser-
vices and Adaptation Services to cover our concerns context monitoring and UI adaptation
at runtime. Therefore, the Angular framework has been chosen as a basis UI framework
and extended for the proof-of-concept implementation of our execution environment for
self-adaptive UIs, which is depicted in Figure 6.3.

Our execution environment uses the existing Angular concepts for characterizing the Final
UI which is generated by the sub-generator UI Generator (see Section 5.2). The Final UI

2https://angular.io

6.2 Execution Environment for Self-adaptive UIs 128

UI
Views

monitors
adapts DP
(structural
Directive)

Display
Properties

Knowledge
(MySQL DB)

Monitor
(Facts)

Execute
 (Actions)

Evaluate
Conditions

(Rules)

adapts UI
(attribute
Directive)

adapt schema

Final UI
(Angular)

Context
Controller

Context Service
(Typescript)

Context
Profile

push

data

updates

...

Execution Environment for
Self-Adaptive UIs

Context
Provider

Device
Sensor API

Adaptation Service
(Nools Rule Engine)

Affectiva
API

AmbientL
ight API

Camera
Light

Sensor
Gyroscope ...

Template

Component p
ro

p
e

rt
y

 b
in

d
in

g

e
ve

n
t

b
in

d
in

g

injected to

Fig. 6.3 Overview of implemented Execution Environment for Self-adaptive UIs

consists of Templates describing the UI Views and Display Properties in HTML as well as
Components in form of Typescript code for managing the UI Views and binding functional
services to cover business logic.

Beside the Final UI, our execution environment consists of Context Services that are gener-
ated by the sub-generator Context Service Generator (see Section 5.3) and represented in
Typescript code. For integrating Context Services into our execution environment, we use
Angular’s Injector component which supports code injection. At runtime, the generated Con-
text Service works as a background service, that can be used by any application based on the
Angular framework. For this purpose, the Context Provider accesses the context information
data through different Sensor APIs (e.g., Affectiva API, Light Sensor API, Device Sensor
API, etc.) by using the hardware Context Sensors (e.g., Camera, Light Sensor, Gyroscope,
etc.). The gathered context information data is forwarded to the Context Controller. Through
the subjects of the observer pattern, new data is directly pushed to the subscriptions of the
Context Controller. At the same time, the corresponding property is updated in the Context
Profile which can be accessed to get the current-context-of use information.

Apart from the previously described components, our execution environment for self-adaptive
UIs needs a component to realize the adaptation logic for enabling UI adaptation at runtime.
For this purpose, the rule engine Nools is integrated into our execution environment by
using the code injection technique. Nools is an efficient Javascript based rule engine which

6.3 Tool-Support: Adapt-UI IDE 129

is based on the RETE algorithm [For82]. Due to its many advantages such as flexibility,
reusability, efficiency etc. (see Section 2.6 for further details) and to reduce the complexity in
handling UI adaptations at runtime the Nools rule engine is an integral part of our execution
environment.

In this thesis, Nools is integrated into the execution environment to support the execution of
the Adaptation Service and to enable runtime UI adaptation. The Adaptation Service uses
Nools for monitoring the context information provided by the Context Service and executes
the adaptation rules whose conditions are satisfied. To adapt the UI View elements of the
Final UI on instance level, JQuery3 is used to directly manipulate the DOM tree of the UI
View. Changes only affect the current UI View element and do not persist in other UI views.
When changing the schema for a group of UI View elements in the Display Properties, the
adaptation affects the properties of all UI View elements of this type. This also includes
instances of this UI View element type on subsequently visited UI Views. This is done by
binding the layout class of the UI View elements of this type, represented by CSS classes, to
the properties stored within the Display Properties.

In summary, our described execution environment extends the existing Angular UI framework
to support context management and UI adaptation concerns by integrating the Nools rule
engine. The Nools rule engine enables to manage the Context Services and Adaptation
Services. Thus, runtime context monitoring and UI adaptation is supported in an integrated
execution environment that was protoypically implemented.

6.3 Tool-Support: Adapt-UI IDE

In this section, we present our integrated development environment (IDE) for supporting
model-driven development of self-adaptive UIs. This IDE, named Adapt-UI, provides in-
tegrated views for UI, context and adaptation modeling. Based on the specified models,
Final UI code and Context as well as Adaptation Services are generated and integrated in an
overall UI framework. This allows runtime UI adaptation realized by an automatic reaction
to context-of-use changes.

In the following sections, the main features of Adapt-UI and the process of using this tool
to support model-driven development of self-adaptive UIs is explained. Therefore, the

3https://jquery.com

6.3 Tool-Support: Adapt-UI IDE 130

implemented modeling workbench of Adapt-UI and the provided generation tools are briefly
summarized.

6.3.1 Modeling Workbench

The modeling workbench of Adapt-UI (see Figure 6.4) provides three different modeling
views to support model-driven development of self-adaptive UIs: UI, context, and adaptation.
In the following, each view is shortly explained.

UI	Modeling	View Context	Modeling	View Adapta4on	Modeling	View

Fig. 6.4 Adapt-UI Development Environment

UI Modeling View: The goal of the UI Modeling View is to support the specification of an
abstract UI model that serves as a basis for generating the final UI. For accomplishing this
task, Adapt-UI makes use of the Interaction Flow Modeling Language (IFML), which is
standardized by the Object Management Group (OMG). Based on the open source IFML
Editor Eclipse Plugin that is integrated into our IDE, developers are able to specify core UI
aspects. That means, a domain model describing the relevant data entities of the UI and an
IFML model characterizing the structure, content and navigation of the UI can be modeled in
a graphical notation.

6.3 Tool-Support: Adapt-UI IDE 131

Context Modeling View: Beside the UI model, the modeling workbench of Adapt-UI pro-
vides a Context Modeling View, which enables to specify the context model for characterizing
dynamically changing context-of-use parameters. The Context Modeling View is based on our
context modeling language ContextML and covers the main context entities user, platform,
and environment, which are characterized by various attributes. Beside the context entities,
the context modeling view also enables the definition of context providers that are used for
sensing special context information data. Based on ContextML different potential contextual
parameters can be modeled, so that a customizable context manager is generated for different
usage scenarios.

Adaptation Modeling View: Moreover, the Adapt-UI modeling workbench enables the
specification of UI adaptation rules based on our adaptation modeling language AdaptML.
AdaptML is based on the Event-Condition-Action (ECA) Paradigm and supports the different
categories of UI adaptation techniques such as task change operation, navigation change
operation, layout change operation, and modality change operation. Task change operations
support UI adaptation by flexibly showing and hiding UI interaction elements like tables,
buttons, text-fields etc. Navigation change operation means that the navigation flow of
the UI can be flexibly adapted based on the contextual parameters by adding, deleting or
redirecting links between user interface flows. Furthermore, layout change operation deals
with adaptation rules that support layout optimization like changing font size, colors or
positioning. Finally, a modality change operation enables to switch the UI’s interaction
modality, for instance between graphical or vocal mode. As it is shown in the adaptation
modeling view (see Figure 2), AdaptML references context entity attributes like age or mood
to define application conditions for the UI adaptation rules. AdaptML also allows specifying
and binding different adaptation rules to the IFML modeling elements, because the adaptation
modeling view is linked with both views context and UI modeling.

6.3.2 Code Generators

The integrated development environment Adapt-UI provides the following core code genera-
tors:

UI Generator: The provided UI Generator is responsible for automatically generating the
Final UI code based on the IFML specification. The Final UI code consists of Angular views
which are represented as an HTML template to display the UI in the browser, and an Angular
component, which is implemented in TypeScript and manages the view.

6.4 Summary and Discussion 132

Context Service Generator: The goal of the provided Context Service Generator (CSG)
is the automated creation of Angular services for sensing and providing context sensory
data for triggering the adaptation mechanism. Therefore, based on the specified context
model with ContextML, the CSG automatically creates code for the Context Services that
themselves make use of existing libraries like Affectiva API or Geolocation API. The CSG is
implemented with Xtend and realizes a model-to-text transformation where context model
elements are mapped to corresponding Context Service function calls of the used context
sensor libraries.

Adaptation Service Generator: The goal of the Adaptation Service Generator (ASG) is
the automated creation of an Angular service that allows the adaptation of the UI at runtime.
The adaptations to the UI are expressed in a rule-based form based on AdaptML. Based on
this input file, the ASG generates an Angular service containing the JavaScript rule engine
Nools. Nools is an efficient RETE-based rule engine written in JavaScript and provides an
API for specifying facts and rules. The ASG is also implemented with Xtend and receives
the UI adaptation rules as input. Based on this input, the ASG is responsible for creating
an injectable Angular service for monitoring the context information and executing UI
adaptation operations.

6.4 Summary and Discussion

In this chapter, we have presented a runtime architecture for self-adaptive UIs which extends
classical UI frameworks through context management and UI adaptation concerns. As a
proof-of-concept implementation of the runtime architecture, we have implemented an execu-
tion environment based on the Angular framework that was extended through a rule engine to
enable context monitoring and UI adaptation at runtime. Furthermore, we have presented our
integrated development environment Adapt-UI which builds around a modeling workbench
and the provided code generators to derive self-adaptive UIs.

Regarding the execution of self-adaptive UIs, it should be noticed that the execution of UI
adaptations relies on the specification of the AdaptML model. Due to human errors it is
possible, that conflicting UI adaptations may be specified that lead to unexpected behavior
of the used interactive system. With this regard, further quality assurance mechanisms to
ensure a reliable execution of self-adaptive UIs are needed. In this context, it is conceivable,
for example, to use model-checking techniques to verify the correctness of UI adaptation
operations.

Chapter 7

Evaluation

In the previous chapters, we presented our model-driven development part of our engineering
approach for self-adaptive user interfaces. This chapter deals with the evaluation part of our
model-driven engineering approach consisting of two parts: an analysis of the applicability
of our model-driven development approach based on two case studies as well as a usability
evaluation of the resulting self-adaptive UIs.

Firstly, in Section 7.1, the benefit of our model-driven development approach is demonstrated
by two case-studies showing the development of self-adaptive UIs for different application
scenarios. The first application scenario for which we devised self-adaptive UIs is a library
web application. The second application scenario deals with the development of an e-mail
application with UI adaptation capabilities. In Section 7.2, we present our usability evaluation
for self-adaptive UIs. For this purpose, we introduce our novel usability evaluation solution
for on-the-fly usability testing of self-adaptive UIs. Furthermore, we report on a usability
study that was conducted based on this and present its results. Moreover, we discuss the
results and limitations of the usability evaluation. Finally, Section 7.3 concludes this chapter
by summarizing and discussing the main findings of the evaluation.

7.1 Case Studies

The purpose of the cases studies is to evaluate the applicability of the solution concept of
this thesis, i.e., the model-driven development approach for self-adaptive UIs. Therefore,
two different real-world application scenarios were selected to instantiate our development
approach and to analyze its benefit regarding practice of use. For the case studies, we aim to
evaluate the applicability of our solution approach with respect to the following questions

7.1 Case Studies 134

that were derived based on the identified requirements in Section 3.2:

EQ1 Does the solution approach support the integrated modeling of self-adaptive UIs by
covering relevant concerns such as core UI aspects, context management, and UI adaptation?

EQ2 Does the solution enable the generation of code for the Final UI, Context Services, and
Adaptation Services to automate the development approach for self-adaptive UIs?

EQ3 Does the solution approach enable runtime UI adaptation by integrating the generated
artifacts Final UI code, Context, and Adaptation Services in an overall rule-based execution
environment?

In the following, we present the case studies and discuss for each application scenario the
previously described evaluation questions.

7.1.1 Case-Study 1: Library Application (LibSoft)

The first case study has already been introduced in Section 3.1 as a running example. This
example is derived from the library management domain (see Figure 7.1). The scenario
setting is a library web application for universities called LibSoft.

Search
Book

Reserve
Book

Edit Book
Reservation

Borrow
Book

Issue
Book

XOR XOR

Context-of-use 1 Context-of-use 2

Context-of-use 3

Context-of-use 4

Legend

User: Student Librarian

Platform: Laptop Smartphone Desktop Terminal

Environment: At home En route In library

Fig. 7.1 Example scenario: UIs in dynamically changing context-of-use situations

LibSoft provides core library management functionality like searching, reserving, and borrow-
ing books. LibSoft’s UI can be accessed by heterogeneous users and user roles (like student
or staff member) through a broad range of networked interaction devices (e.g., smartphones,

7.1 Case Studies 135

tablets, terminals etc.) used in various environmental contexts (e.g., brightness, loudness,
while moving etc.). Depending on the situation, users are able to access their library services
where, when, and how it suits them best. For example, if the user wants to pursue a self-
determined cross-channel book borrowing process, she can begin an interaction using one
channel (search and reserve a book with her laptop at home), modify the book reservation
on her way using a mobile channel, and finalize the book borrowing process at the library
via self-check-out terminal or at the staff desk. In the above described example scenario,
each channel has its own special context-of-use and the contextual parameters regarding user,
platform, and environment can dynamically change. Figure 7.2 shows a concrete context-of-
use (CoU) change from CoU2 to CoU4 (compare Figure 7.1). The depicted context-of-use
object model excerpts in Figure 7.2 illustrate how different contextual parameters regarding
user, platform, and environment change. Already a small set of contextual parameters can
highly influence the usability of the UI as many context-of-use parameters might dynamically
change. Therefore, it is important to continuously monitor the context-of-use parameters
and react to possible changes by automatically adapting the UI for the new context-of-use
situation.

CoU2:ContextModel

e1:Environment

user

pla(orm

environment

p1:Pla6orm

type	=	“mobile”

CoU4:ContextModel

e2:Environment

user

pla(orm

environment

ambientLight	=	“high”

p2:Pla6orm

type	=	“desktop”

Context-of-Use
Change

u1:User

name	=	“John	Doe”
age	=	26
language	=	“en”
visionAid	=	false
experienceLevel	=	“high”

admin	=	false
role	=	“student”

u2:User

name	=	“Ada	Roe”
age	=	50
language	=	“de”
visionAid	=	false
experienceLevel	=“low”

admin	=	true
role	=	“staff”

		ambientLight	=	“very	low”

Fig. 7.2 Library application: Context-of-use object model excerpts

For utilizing our integrated model-driven development approach in the case study setting, a
Domain Model, an IFML Model, a Context Model, and an Adaptation Model with a set of
UI adaptation rules were created as described in Chapter 4. Figure 7.3 depicts the domain
model of the LibSoft application in form of a UML class diagram specifying the main data
entities for the user interface. An IFML model excerpt specifying example UI views of the
LibSoft application is depicted in Figure 7.4.

It shows mainly four UI views characterizing the abstract UI for the login page specified as
loginForm, home menu denoted as home, and the pages for searching for books searchBooks
and reserving books bookReservations. The loginForm is simply describing the login form
for entering username and password. The home ViewContainer contains a ViewComponent

7.1 Case Studies 136

Fig. 7.3 Domain model for LibSoft example scenario

[D] home
«ViewComponent»
homeComponent

bookReservation

searchBooks

 bookReservations
«List» List

«DataBinding» Data Binding

«VisualisationAttribute» ReservedBy: User

«VisualisationAttribute» ReservedBook: Book

«Parameter»Parameter: BookInfo Parameter

searchBook

bookReservation

 loginForm

«Form» loginForm

«SimpleField»username: String

«SimpleField»password: String

login

«Action»
loginAction

 searchBooks

«List» inventoryList

«DataBinding» booksBinding

«VisualisationAttribute» BookInfo: BookInfo

«VisualisationAttribute» BookStatus: Boolean

«Parameter»bookBinding: Book bookBinding returnBook

bookReservation

<<adaptationrule>>
Userrole == admin

<<adaptationRule>>
Userrole ==user

Fig. 7.4 IFML model excerpt for LibSoft example scenario

called homeComponent which characterizes the navigation menu. It is denoted with a [D]
as it is the default landing page from where on different pages can be accessed. One of
these reachable pages is for example searchBooks. This IFML model element contains a list
called inventoryList which is responsible for listing the found books with information about
BookInfo and BookStatus, etc.. A further reachable page is bookReservations which shows an
overview of the reserved books corresponding to the lender. The annotations shown in yellow
background color, characterize authentication expressions for handling the UI adaptations
regarding different user roles. For example, by default, it is specified that the searchBook
event in bookReservations can be only accessed by the user with user role equals user. The
other events in the example are by default specified to be accessible by the admin user role.

7.1 Case Studies 137

Furthermore, Figure 7.5 depicts an illustrative context model specified for the LibSoft example
scenario. It specifies the relevant context-of-use parameters that should be monitored while
the self-adaptive UI is used.

Fig. 7.5 ContextML model specified for the LibSoft example scenario

In a similar way, based on our modeling workbench, the needed UI adaptation rules can be
specified for the LibSoft example scenario. Figure 7.6 shows a small set of such UI adaptation
rules that were specified based on AdaptML.

Using our SAUI-Generator the specified models were transformed to Final UI code
including the generated code for Context and Adaptation Services.

Example screenshots of the resulting self-adaptive UI are depicted in Figure 7.7. Ac-
cording to the monitored context information for CoU2, the layout for the UI is optimized

7.1 Case Studies 138

Fig. 7.6 AdaptML model specified for the LibSoft example scenario

for a mobile device used in a darker environment, because the user John is editing his book
reservation while travelling to the library and it is already quite dark outside (see left side
of Figure 7.7). Also, the UI is adapted to the user properties by enabling access to the
functions and navigation available to students. The UI language is set to English as it is
preferred by John. As John is recognized as an experienced user with the application (based
on his usage time), he gets extended functionalities, like a more complex search and filter
mechanism for the list view of the books. When the context changes from CoU2 to CoU4,
the generated self-adaptive UI adapts itself automatically to the new contextual parameters.
In this case, the staff members view on a desktop device with a wider and brighter layout
is shown, displaying the list of reserved books, because in CoU4 a staff member, Ada Roe,
uses her desktop computer to issue the book to John. Additionally, to the functionalities
and functions available to staff members, Ada is provided with a link to the administration
interface, because she is granted access to the administration interface. The UI language is

7.1 Case Studies 139

Change	of
Context-of-use

Context-of-use	2 Context-of-use	4

[User,	Pla+orm,	Environment]

Fig. 7.7 Library application: UI adaptations according to different contexts-of-use

set to German and the search and filter mechanisms of the list are simplified, because she
just started using LibSoft and is, therefore, not yet experienced with the application. As the
location is a well-lit library, the default brightness level is shown on the screen of the desktop
computer.

The case study demonstrates the benefit of our approach for supporting the development of
self-adaptive UIs. By using our integrated modeling workbench and the corresponding SAUI-
Generator, we were able to model and generate a self-adaptive UI for the LibSoft example
scenario. To sum up, our solution approach was helpful for addressing the introduced
evaluation questions EQ1-EQ3 as it provides an integrated model-driven development
approach for self-adaptive UIs.

7.1.2 Case-Study 2: E-Mail Application (MailSoft)

As a second case study, we present a real world example scenario which is based on an
e-mail application. E-mail applications are one of the most recurrently used applications on
different devices. People read and write e-mails while commuting to work, before going to
sleep, while walking, watching TV or doing different other activities. As various dynamically
changing context-of-use situations are faced when using such an e-mail application, we
decided to develop an e-mail application with UI adaptation capabilities, called MailSoft.

7.1 Case Studies 140

Therefore, we used again our integrated modeling environment for specifying the UI, context,
and adaptation concerns of MailSoft.

Figure 7.8 depicts the domain model of the MailSoft application in form of a UML class
diagram specifying the main data entities for the user interface.

Fig. 7.8 Domain model for MailSoft example scenario

An IFML model excerpt specifying example UI views of the MailSoft application is depicted
in Figure 7.9. It shows mainly two UI views characterizing the abstract UI for the main page
specified as homeViewInbox and the page for reading mails denoted as readViewReadMail.
The homeViewInbox view container describes the mail overview page where the binding
and listing of mail messages are shown. By selecting a specific mail item, the navigation
flow directs to a further view container which is called readViewReadMail. In this view
container, detailed information about the mail message regarding sender, recipient, subject,
and mail body are described. To overcome the limitations of IFML, also in this example
scenario, we have used specific annotations (boxes with yellow background color) to better
guide and support the UI generation. Firstly, the last mentioned visualisation attributes for
specifying sender, recipient, subject, and mail body were annotated with an order value to
describe the exact sequence of the elements for better layouting purposes. Secondly, the
mailMessageDetails element is annotated with the label readable which denotes that the UI
adaptation operation SwitchUIModality(vocal) (see Section 4.4) can be applied to this view
element. Further annotations were used to encode functional aspects, for example, whether

7.1 Case Studies 141

the search field is enabled or not. Finally, in some cases annotations were also used to encode
important icon resources (IconHolder with path to icon source file).

 homeViewInbox

«List» mailBoxList

«DataBinding» mailBoxBinding

«VisualisationAttribute» boxName: String

«Parameter»mailBoxBinding : MailBox mailBoxBinding

openMailBox

«List» messageList

«DataBinding» msgBinding

«VisualisationAttribute» msgFrom: EmailUser

«VisualisationAttribute» msgSubject: String

«Parameter»msgBinding : MailMessage msgBinding

openSingleMessage

«Action»
onSelectMailBox

 readViewReadMail

«Details» mailMessageDetails

«DataBinding» concreteMsgBinding

«VisualisationAttribute» bodyBinding: String

«VisualisationAttribute» subjectBinding: String

«VisualisationAttribute» toRecipientBinding: EmailUser

«VisualisationAttribute» fromUserBinding: EmailUser

«Parameter»concreteMsgBinding : MailMessage concreteMsgBinding

«ParameterBindingGroup»
msgBinding -->concreteMsgBinding

<<ordered>>

<OrderedItem> value=4

<OrderedItem> value=3

<OrderedItem> value=2

<OrderedItem> value=1

<<NavigationOption>> label = Back

<<IconHolder>> imgSubPath = ".
/resources/homeIcon.png"

<<CustomizedList>> searchEnabled=false
directSelectable=true

<<CustomizedList>> searchEnabled=false
ownButtonSelectable=true

<<Readable>>

Fig. 7.9 IFML model excerpt for MailSoft example scenario

The specified input models were given as input to our SAUI-Generator to generate code
for the Final UI, Context, and Adaptation Services of the self-adaptive UI of the e-mail
application.

Figure 7.10 depicts an illustrative sequence of context changes and how the UI of the
e-mail application adapts to the changed context in each case.

Each state is a pair of the self-adaptive UI, depicted as a screenshot of the e-mail applica-
tion, and the current context as experienced by the user. For the sake of simple visualization,
the context is reduced to three components: (i) if the user is on the move, in a moving
vehicle, or immobile (and probably at home), (ii) if the brightness level (ambientLight) is
high (sunny), low (cloudy), or very low (night-time), and finally, (iii) if the user is a novice
or experienced user, based on a threshold value of usage time.

7.1 Case Studies 142

1 2

3

4 5

change	of
context-of-use

[User,	Pla:orm,	Environment]

Fig. 7.10 E-mail application: UI adaptations according to different context changes

The first state (left upper corner in Fig. 7.10) represents a novice user on the move and
experiencing high brightness levels (ambient light). The corresponding self-adaptive UI
recognizes the context properties movement and ambientLight and uses a grid layout to
simplify haptic interaction.

Figure 7.11 shows exactly this change CoU1 to CoU2 (compare Figure 7.10) using an
object diagram. The depicted context-of-use object model excerpt in Figure 7.11 illustrates
how different contextual parameters regarding user, platform, and environment change.

In response to the context change (depicted in Fig. 7.10 as labelled arrows – in this case
with Label 1) leading to a state where the user is now in a moving vehicle, the UI switches its
modality to audio-based interaction, offering to read new e-mails aloud and enabling control
of the application via audio commands. When the user is immobile for some time (and can
be assumed to be seated in a building – see Label 2), the UI responds by reverting to standard

7.1 Case Studies 143

CoU1:ContextModel

e1:Environment

user

pla(orm

environmentu1:User

name	=	“Ada	Roe”
age	=	50
language	=	“en”
visionAid	=	false
experienceLevel	=	“low”

movement	=	“walking”
ambientLight	=	“high”

p1:Pla7orm

type	=	“mobile”

CoU2:ContextModel

e2:Environment

user

pla(orm

environment

movement	=	“driving”
ambientLight	=	“high”

p2:Pla7orm

type	=	“mobile”

Context-of-Use
Change

u2:User

name	=	“Ada	Roe”
age	=	50
language	=	“en”
visionAid	=	false
experienceLevel	=	“low”

Fig. 7.11 E-mail application: Context-of-use object model excerpts

1

2

3 4

5

Fig. 7.12 E-mail application: applied UI adaptation rules for above described scenario

haptic-based modality and additionally uses a list of icons instead of a grid for more efficient
screen space usage. The next two context changes (Label 3 and 4), represent changes in
brightness level to low brightness and night-time. The UI responds to low brightness levels
by dimming the screen and using sepia tones instead of white/black, and to night-time by
inverting the color scheme. The final context change (Label 5) is triggered when the user
passes a certain usage-time threshold. The UI assumes that the user must now be accustomed
enough to the icons and saves screen space by removing the explanatory labels for each icon.

Figure 7.12 shows an overview of the described UI adaptation process where for each
state the applied UI adaptation rules are depicted.

7.1 Case Studies 144

As a summary, also the second case study shows a successful application of our model-driven
development approach for supporting the development of an e-mail application with context
management and UI adaptation capabilities. By using our integrated modeling workbench
and the corresponding SAUI-Generator, we were able to model and generate self-adaptive
UIs for the e-mail application. Thus, we can conclude that our solution approach was helpful
for addressing the introduced evaluation questions EQ1-EQ3.

7.1.3 Case studies: Evaluation Discussion

In the following, we discuss and answer the evaluation questions introduced in the beginning
of Section 7.1 based on our experiences made as part of the previously described case studies.

EQ1 Does the solution approach support the integrated modeling of self-adaptive UIs by
covering relevant concerns such as core UI aspects, context management, and UI adaptation?

With respect to evaluation question EQ1, our experiences gathered during both case studies
have shown that our integrated modeling approach for self-adaptive UIs is well-suited to
specify core UI, context management and UI adaptation concerns. Especially the usage
of our integrated modeling workbench with its support of different modeling views for UI,
context, and adaptation has shown that it eases the modeling of self-adaptive UIs and also
supports the maintenance of evolving context and adaptation models.

Nevertheless, a limitation of our modeling approach is the lack of modeling support for
application or business logic. As IFML is not intended to specify application or business
logic (and this was also not within the scope of this thesis), we had to manually implement
and add the application logic code for the corresponding case studies. This covers on the
one hand application functionality, but also data storage and communication that had to
be manually implemented for the case studies. Also, some limitations were given due to
the development state of the used open source IFML Eclipse editor which does not support
specific IFML model aspects defined in the IFML metamodel.

EQ2 Does the solution enable the generation of code for the Final UI, Context Services, and
Adaptation Services to automate the development approach for self-adaptive UIs?

Addressing evaluation question EQ2, the experiences from both cases studies have shown
that our model-driven development approach enables the generation of self-adaptive UIs. As
illustrated in both case studies, the relevant artifacts of the self-adaptive UI: Final UI code, as
well as code for Context and Adaptation Services have been generated in an automated way.

7.2 Usability Study 145

Nevertheless, we have to point out that our transformation approach has been implemented as
a proof-of-concept implementation covering a subset of IFML model elements for generating
the UI based on Angular as target UI framework. Due to the very individual structure of some
context sources, the code for controlling and managing sensor sources, like APIs, SDKs
or libraries, could not be always automatically generated and thus had to be implemented
manually.

EQ3 Does the solution approach enable runtime UI adaptation by integrating the generated
artifacts Final UI code, Context, and Adaptation Services in an overall rule-based execution
environment?

The resulting self-adaptive UIs in both case studies show the practicability of our approach
as in both example scenarios, we were able to generate self-adaptive UIs and to test and use
them in action. The identified context changes and the UI adaptations in action demonstrate
that the generated self-adaptive UIs are able to continuously monitor their context-of-use
parameters and automatically adapt the UI at runtime.

As a limitation of the execution part of our solution, it has to be noticed that it is
still a challenging task to correctly time the adaptation operations as time delays in the
communication might happen. For example, the camera is used for sensing the mood of
the user and it takes time to get the mood information from the face detection API from a
different server. Thus, there is potential for improvement to better time the triggered UI
adaptations.

7.2 Usability Study

In the previous section, we have presented case studies based on two different application
scenarios to evaluate the applicability of our model-driven development approach. This
section deals with the usability evaluation of the resulting self-adaptive UIs which have been
developed based on our model-driven development approach. For the usability study, we aim
to evaluate our solution approach with respect to the following central question:

EQ4 Does the solution approach result in self-adaptive UIs which are accepted by the end-
users?

To find an answer for this evaluation question, one can possibly use classical usability
evaluation methods like usability tests, interviews or cognitive walkthroughs. However,

7.2 Usability Study 146

as already argued in the beginning of this thesis, these methods are not sufficient for a
proper evaluation of UI adaptation features (a posteriori analysis, no consideration of current
context-of-use when adaptations are triggered). Therefore, in the following, we first introduce
a novel on-the-fly usability evaluation solution. After that, we describe a usability experiment
conducted based on this usability evaluation solution. Finally, we present and discuss the
results of this usability study.

7.2.1 On-the fly Usability Evaluation Solution

Our on-the-fly usability testing solution for UI adaptation features targets rule-based UI
adaptation approaches, continuously monitors context information about context character-
istics, and collects instant user feedback about triggered UI adaptation features. To realize
such an on-the-fly usability testing solution, we extended our existing rule-based UI adap-
tation approach with capabilities to support continuous context monitoring and collecting
context-driven instant user feedback.

monitors Knowledge
Monitor Execute

Evaluate
Conditions

adapts + triggers user
feedback question

Context Service Final UI

...

End User

Adaptation Service

Provides context
information about
User, Platform, and
Environment.

Stores context
information, triggered
adaptation rules, and
user feedback.

Enables interaction and
instant user feedback
on UI adaptations.

Enables context monitoring and UI
adaptation at runtime. Triggers user
feedback question for each applied
UI adaptation.

Fig. 7.13 Human-in-the-loop: On-the-fly usability testing of UI adaptation features

Figure 7.13 illustrates the main idea of our on-the-fly usability testing solution for UI adap-
tations. As presented earlier, IBM’s MAPE-K loop [IBM05] was used as an architectural
pattern to realize the UI adaptation process. In our realization, we have derived the compo-
nents Final UI, Context Service, and Adaptation Service which are deployed and running on

7.2 Usability Study 147

the same target platform. The Adaptation Service is responsible for monitoring the Context
Service and adapting the Final UI, which is the user interface of a target platform. For
this purpose, the Adaptation Service monitors various context information gathered through
integrated sensors and cameras based on the Context Service. The context information is
then analyzed by evaluating whether UI adaptation rules match to the current context-of-use
situation. If this is the case, the execute component is responsible for executing the UI
adaptation operations on the Final UI.

While the previously described components are essential for supporting rule-based UI
adaptation in general, further components and mechanisms are needed to support on-the-
fly usability testing of UI adaptation features. To this end, we integrated an instant user
feedback mechanism into the context monitoring and UI adaptation loop. The feedback
mechanism allows users to explicitly rate the triggered UI adaptations. To realize this
feedback mechanism, our Adaptation Service triggers simultaneously to each UI adaptation
operation a feedback question for the end user. This way, end users can give positive or
negative feedback about the applied UI adaptations, but they can also ignore the feedback
mechanism and concentrate on their main application task. As Figure 7.13 shows, there is a
Knowledge base which is responsible for storing all context information before and after a
context change occurred (that lead to a UI adaptation triggering), all triggered adaptation
rules, and the corresponding instant user feedback. Based on the stored information, it is
possible to analyze the acceptance of UI adaptations based on the current context of the user
and the user’s feedback. As the Knowledge base characterizes a key component and asset
for the data-driven usability evaluation, all context information were collected in a central
database.

Implementation

We implemented and applied our on-the-fly usability testing solution for UI adaptation
features based on the e-mail application which was presented in Section 7.1.2. We decided to
use an e-mail application as e-mail clients are one of the most frequently used applications on
different target platforms. People read and write mails while commuting to work, before going
to sleep, while walking, watching TV or doing different other activities. The implemented
e-mail application is similar to Gmail and provides full e-mail services like send, receive,
forward, delete, and compose mails. In addition, a file manager is provided allowing users to
download attachments and to open them using different applications on their target platform.
Figure 7.14 shows the starting screens of the e-mail application where login, participation
info, and a preliminary questionnaire are depicted.

7.2 Usability Study 148

Fig. 7.14 Login (left), participation info (middle), and preliminary questionnaire (right)
screens

Beside the core mail application logic, which was manually implemented, we used our
model-driven development approach to devise a self-adaptive UI for the e-mail application
as explained in the second case study in Section 7.1.2). Inspired by [Pat13], we derived and
implemented 28 UI adaptation features based on AdaptML that cover different adaptation
techniques. like task change operation, navigation change operation, layout change operation
or modality change operation.

Before giving an overview and detailed description of the implemented UI adaptation
features for the e-mail application, we firstly describe the main UI adaptation categories that
were used for the e-mail application. In general, the following main adaptation categories
were used for the self-adaptive UI of the e-mail application.

TaskChange (T) adaptations support UI adaptations by flexibly showing and hiding
interaction elements of the UI. LayoutChange (L) adaptations enable UI adaptations that
change the appearance of the UI by modifying presentation aspects like color, font (size),
position, etc. ModalityChange (M) adaptations relate to changes where a switch from one
interaction mode to another one is made (e.g., from the graphical to the vocal UI). While
these UI adaptation categories are derived from AdaptML directly and characterize a superset
of specific UI adaptation operations, further useful adaptation categories were implemented
for the usability study of the e-mail application. With this regard, we noticed that deactivation
rules are helpful to deactivate specific UI adaptation rules if the UI adaptation is not needed

7.2 Usability Study 149

any longer. Therefore, we introduced and implemented a further type of UI adaptation
category which is called Deactivation (D). Furthermore, we have identified a category for
UI adaptations, which are highly related to a specific domain and application area. For the
e-mail application of the usability study, for example, automatic download of attachments
based on the internet connection speed can be see as such a concern. We call this type of UI
adaptations Functional (F) adaptations as they provide an additional value for the underlying
application going beyond the previously mentioned categories. Finally, it is important to note
that adaptation features from the previous categories can be combined to a more complex
adaptation feature, so called Combined (C) adaptation. In the following, we describe the
implemented adaptation features and map them to the corresponding adaptation categories.

• Rule 1: Sad Mood. When the user is in a sad mood (detected through the face camera),
a feedback text field is shown where the user can enter textual feedback. (T)

• Rule 2: Good Mood. When the user is in a good mood (detected through the face
camera), a motivational quotation is shown. (T)

• Rule 3: Neutral Mood. When the user is in a neutral mood (detected through the face
camera), Rule 1 and 2 are deactivated and no pop-up menu appears. (D)

• Rule 4: Iconic UI. If the user has been using the app for a while (usage time), an iconic
UI without text labels is shown (see screenshot on the left of Figure 7.15). (T)

• Rule 5: Minimized Navigation. If the user has been using the app for a while (usage
time), extra information and text labels in the navigation bar are hidden. (T)

• Rule 6: Detailed UI. If the user is not experienced (based on preliminary questionnaire),
additional information in the the UI and navigation are displayed. (T)

• Rule 7: Low Ambient Light. If the environmental lighting condition is low, adapt the
UI color scheme and contrast to improve better readability in the dark. (Layout)

• Rule 8: Normal Ambient Light. If the environmental lighting condition is normal,
adapt the UI color scheme and contrast to default mode. (Layout)

• Rule 9: High Ambient Light. If the environmental lighting condition is high, increase
the UI contrast to improve readability. (L)

• Rule 10: Day Mode. When the day starts (clock timer), all UI elements are shown in
the layout of the day mode. (L)

7.2 Usability Study 150

• Rule 11: Night Mode. When the day ends (clock timer), all UI elements are shown in
the layout of the night mode. (L)

• Rule 12: Vocal UI. When the user is moving (accelerometer), all unread e-mails are
read out using a text-to-speech (TTS) service (see screenshot on the right of Figure
7.15). (M)

• Rule 13: Impaired Vision. If the user has vision problems (preliminary questionnaire),
the font size of the UI elements is increased. (L)

• Rule 14: Middle Aged User. Based on the entered age of the user (preliminary
questionnaire), all UI elements are displayed in the default layout with a slightly larger
font size. (L)

• Rule 15: Older User. Based on the entered age of the user (preliminary questionnaire),
all UI elements are displayed in the grid layout with a bigger font size (see screenshot
in the middle of Figure 7.15). (L)

• Rule 16: Younger User. Based on the entered age of the user (preliminary question-
naire), all UI elements are displayed in the default layout with the default font size.
(L)

• Rule 17: Novice User. Based on the entered experience level of the user (preliminary
questionnaire), the UI is adapted to the grid layout. (L)

• Rule 18: Expert User. Based on the entered experience level of the user (preliminary
questionnaire), the UI is shown in the default layout. (L)

• Rule 19: Smartphone Mode. If the used device is a smartphone, a combined adaptation
is executed where navigation and layout is optimized for smartphone devices. (C)

• Rule 20: Tablet Mode. If the used device is a tablet, a combined adaptation is executed
where navigation and layout is optimized for tablet devices. (C)

• Rule 21: Driving Mode. When the user is driving (accelerometer), a combined
adaptation is executed where the UI is displayed using the grid layout and additionally
the text-to-speech service is activated for reading out mails. (C)

• Rule 22: Driving Mode Off. When the user is still (stopped or reached destination),
the Rule 21 is deactivated. (D)

7.2 Usability Study 151

Fig. 7.15 UI Adaptations: "iconic" UI (left), "grid" UI (middle), vocal UI (right)

• Rule 23: Low Battery. When the battery level of a mobile platform is low, the UI is
displayed in a black and white color scheme to save energy. (L)

• Rule 24: Normal Battery. When the battery level of the mobile platform is normal,
rule 23 is deactivated. (D)

• Rule 25: Wi-Fi Connection. If the used device has a Wi-Fi connection, the e-mails
are displayed in HTML format (if available) and attachments are automatically down-
loaded. (F)

• Rule 26: 3/4G Connection. If the used device has a 3/4G connection, the e-mails are
displayed in HTML format (if available), but attachments are downloaded only on
demand. (F)

• Rule 27: Slow Network. If the used device has a slow connection, the e-mails are
displayed in text format and attachments are not automatically downloaded. (F)

• Rule 28: Vocal UI Off. When the user is still (accelerometer), Rule 12 is deactivated.
(D)

To realize and execute the described UI adaptation features for the e-mail application, we used
our execution environment based on Nools (see Section 6.2). The Nools rule engine is fed
with context information from various integrated sensors and cameras of the target platform.
For example, we use different sensors like ambient light, accelerometer, gyroscope, battery
or network sensor. Furthermore, we use timer, device information or existing recognition

7.2 Usability Study 152

Fig. 7.16 Database schema: Stored context information as extended entity relationship (EER)
diagram

services such as Amazon Rekognition 1 to derive the user’s emotion as well as estimated age
or gender based on camera photos. A complete overview about the stored context information
in the form of an extended entity-relationship model is depicted in Figure 7.16.

In order to avoid a cold start of the adaptation process, we have integrated a preliminary
questionnaire form into our e-mail application (see Figure 7.14) that asks the users for their
birth date, ability to read small fonts, and experience with other mailing applications for
mobile devices. Based on this starting context information, the UI of the mobile e-mail
application can already adapt itself to a suitable starting configuration for the current user.

For realization of the feedback mechanism, we integrated a feedback prompt into the
adaptive e-mail application. The left application screen in Figure 7.17 shows how the
feedback prompt was placed in the mail application. On the top of the screen the feedback
prompt is shown whenever context changes were detected that lead to UI adaptations. The
triggered UI adaptations are explained in the feedback prompt (reason for adaptation and UI
adaptation rule) and the user is able to provide feedback by clicking the positive or negative
smiley indicating whether the user liked the UI adaptation or not. In some cases, for example,
when the user is in a bad mood and the application detects this via camera, a feedback prompt
in the form of a text field appears (see right application screen in Figure 7.17) that allows
the users to provide more detailed feedback. A complete overview of the triggered user

1https://aws.amazon.com/de/rekognition/

7.2 Usability Study 153

Fig. 7.17 Feedback prompt

feedback questions can be seen in Figure 7.18 in relation to the corresponding UI adaptation
rule whose end-user acceptance is tested. The user feedback questions are string elements
which can be freely edited by the developers at design-time to prepare the usability evaluation
questions. As already described before, the user feedback questions are then simultaneously
triggered with the UI adaptations to gather fresh and instant end-user feedback about the UI
adaptations for the current context-of-use.

7.2.2 Usability Experiment and Results

In the following, we describe how the previously presented on-the-fly usability evaluation
solution was used to conduct a usability experiment based on the e-mail application. After
that, we present the main results and the interpretation of our data-driven usability evaluation.

Usability Experiment

During the usability experiment, the developed e-mail application with context management
and UI adaptation capabilities was used for one week by 23 participants, who were recruited
via an invitation e-mail. The test users were encouraged to use the application as often and
in as many different contexts as possible. All users were made aware of the fact that their
interaction with the application would be closely monitored (e.g., using facial recognition). In

7.2 Usability Study 154

Fig. 7.18 Overview of feedback question for each UI adaptation

7.2 Usability Study 155

the following, we present some facts and figures about the test user group and the encountered
contexts.

The participant sample consisted of 10 male and 13 female users. This information
was inferred from the facial recognition component. The facial recognition component also
detected that 8 of the 23 users used reading glasses during the experiment.

Based on the prompt asking users for their date of birth when starting the application for
the first time, the test users were between 22 and 55 years old. The majority of the users
were in their twenties and thirties. From the 23 users, only 2 were 40 years or older. Eight
of the users were between 30 and 40 years old. The rest of the users were younger than 30
years. Three users stated that they have problems reading small fonts while 20 answered
that they do not have problems with small fonts. When asked for their experience with other
e-mailing applications for mobile devices 13 users rated their experience level as high, 5 as
medium, 3 as low and 2 of them stated that they have no experience.

Usability Evaluation Results

The data that was collected during the usability experiment allows us to evaluate the usability
of the UI adaptation features in detail. Our main goal is to examine if the UI adaptations are
accepted by the end-users (EQ4). Furthermore, we aim to understand how the user context
influences the acceptance of the different UI adaptations. To investigate both aspects, an
essential requirement is that the application was indeed used in different contexts by the
end-users. To make sure that this is the case, we first conduct a preliminary analysis of the
collected data, where the total usage time, the amount of given user feedback, and different
context-of-use situations while feedback was given are investigated.

Preliminary Analysis:
The goal of this preliminary analysis is to confirm that the participants did use the mobile

application in different contexts. Figure 7.19 shows the end-users and their aggregated usage
time of the application. On average, each end-user spent almost 15 minutes in the application
during the usability experiment. The user who used the application the most spent a total of
42 minutes in the application while the user who used the application the least only spent
about two minutes in total in the application.

In Figure 7.20 it is shown how often the users gave feedback during each hour of the day.
The users gave the most feedback in the time interval from 7 am to 8 pm. However, we also
received responses to UI adaptations during the rest of the day. This usage pattern provides
several different context-of-use situations for our analysis.

7.2 Usability Study 156

10212016 5 7 17 8 6 1 231319 9 3 2 15 4 11121422
User ID

0

500

1000

1500

2000

2500
To

ta
l U

sa
ge

 T
im

e
(s

)

Fig. 7.19 Total usage time of the application for each user

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time of Day (24H)

0

10

20

30

40

50

60

A
m

ou
nt

 o
f F

ee
db

ac
k

Fig. 7.20 Amount of given user feedback for each hour of the day

7.2 Usability Study 157

To assess the context-of-use based on the used platform sensors, the application tries to
predict the environmental circumstances (still, walking, in vehicle, etc.) of the user. In
Figure 7.21 the amount of feedback that was given during different environmental conditions
regarding movement is shown.

Still In Vehicle Walking Biking
Likely Activity

0

25

50

75

100

125

150

175

200

A
m

ou
nt

 o
f F

ee
db

ac
k

Fig. 7.21 Amount of user feedback collected for each predicted user activity. Only responses
are shown for which the activity could be predicted with high certainty (280 cases).

We can infer that the application was used while commuting or in a fixed environment. All
these context changes were used by the application to adapt the user interface. Furthermore,
the Figure 7.21 underlines the fact that user feedback about UI adaptations was received
under dynamically changing context-of-use situations.

Revisiting Evaluation Question EQ4:
In Table 7.1, we can see some data about the context changes. There were 104404

detected context changes from all devices in the experiment. Of these, only 37465 triggered
an adaptation by the rule engine. However, users gave feedback on the adaptation rules
in only 663 cases. Every time an adaptation rule received feedback, the previous context
additionally to the current context was saved.

Context changes
Detected Significant Feedback
104404 37465 663
Table 7.1 Context change information

7.2 Usability Study 158

User feedback statistics
Total Positive Negative % Positive
663 616 47 93

Table 7.2 User feedback

For an initial evaluation of the research question regarding usability, an analysis of the
collected user feedback is done. In table 7.2 some descriptive statistics about the feedback
provided by the users through the application are shown. In total, the users gave positive
feedback in 616 cases and negative feedback in 47 cases. With about 93% of the feedback
provided by users being positive this means that most of the user interface adaptations were
liked by the users. As a conclusion of this, the evaluation question EQ4 can be answered posi-
tively, meaning that the UI adaptations were accepted by the participants of the usability study.

Direct feedback:
To complement the analysis, users were asked to give a short optional written feedback about
the application and the adaptation rules. Although only seven users provided text feedback,
their contributions can give us a more in-depth understanding of their feedback responses
in the application and their perception of the usability of the application. Most of the users
reported that they liked the application and its adaptations, and found them useful. Two users
reported that although they liked the ability of the application to change colors in different
context situations, the color schemes chosen by the adaptations were not to their liking. Two
users reported that rule 22 deactivated the driving mode at traffic lights or other temporary
stops. This was found problematic by the users, hence the negative feedback.

Further Analysis of Usability Evaluation Data:
To gain more insights regarding the received feedback for the different rules, we created an
overview of the UI adaptation features with the amount of received positive and negative
feedback shown in Figure 7.22. We can see on the far left, the Rule ID of an adaptation
feature, followed by the Rule Name, a short Rule Description, the Category (Task-Feature
(T), Layout (L), Modality (M), Functional (F), Combined (C), Deactivation (D)) where the
UI adaptation feature belongs to, the total number of feedback points, the number of positive
feedback responses, negative feedback responses, and finally the percentage of negative
feedback. Some of the UI adaptation features received no feedback at all, some received only
positive feedback and some of them a combination of both positive and negative feedback.
Four rules (14%) received no feedback from any user. This could be because the conditions
for those rules were not met or users simply decided not to give feedback on these rules

7.2 Usability Study 159

Fig. 7.22 Overview: UI adaptation features and received user feedback

(users could ignore the feedback prompt and continue using the application). Eleven rules
(almost 40%) received only positive feedback. No rules received only negative feedback.

From the 13 rules that received negative feedback, ten got mostly positive feedback with
only 10% or less of the received feedback being negative. The rules that got most negative
feedback are rule 22 (Drive Mode Off) with 31% negative feedback, rule 2 (Good Mood)
with 23% negative feedback, and rule 3 (Neutral Mood) with 19% negative feedback. Two
of these rules, namely 3 and 22 are deactivation rules, meaning that the purpose of this
adaptation rules is to deactivate the effects of rules whose condition is no longer active.
Please note that looking only at the percentage of negative feedback can be in some cases a
little misleading, as some rules received very little feedback overall. In these cases, a single
negative response can have a significant impact on the overall percentage value.

Relying on the shown results in Figure 7.22, by separately calculating the average amount
of positive and negative feedback for each adaptation category, we derived a categorization
of UI adaptation techniques according to their degree of end-user satisfaction. The results of
this categorization are shown in Figure 7.23.

As the amount of feedback data is low, especially regarding the number of negative
feedback, and the received amount of feedback is not balanced for each category (see table
column Category in Figure 7.22), the results should be cautiously interpreted. However, we

7.2 Usability Study 160

Combined
 (C)

Functional
 (F)

Layout
(L)

Task-Feature
(T)

Modality
(M)

Deactivation
(D)> > > > >

Degree of end-user satisfaction

Fig. 7.23 Categorization of UI adaptation techniques according to their degree of end-user
satisfaction

can observe that Combined (C) UI adaptation features that were aggregated based on basic
UI adaptation features such as rule 19 (a combination of layout and navigation adaptation)
have the largest impact on increasing user satisfaction. The second category which has also a
big impact on increasing user satisfaction is Functional (F) UI adaptation. Functional UI
adaptations, such as rule 25 are domain specific changes that provide additional value to the
application for example by downloading the attachments if a high network connection is
available. Good results regarding user satisfaction can be also reached by Layout (L) and
Task-Feature (T) set adaptation rules. However, more attention has to be paid when it comes
to the design of adaptive UIs incorporating Modality (M) changes and Deactivation rules. UI
adaptations regarding Modality changes have potential for improving user satisfaction, but as
the textual feedback by the users shows, many switches between two different modalities can
also confuse the users and result in negative feedback. We observed that Deactivation rules
for UI adaptations can have a negative influence on user satisfaction if timing and mapping to
the current context-of-use is not well suited. The textual feedback by the participants shows,
for example, that deactivation rule 22 was problematic when sudden context changes from
the state driving to still were recognized and the vocal UI was deactivated. In this case, a
warning message or better timing of UI adaptations was desired by the users.

To gain a better understanding of the provided feedback, we also performed a graphical
exploratory data analysis. We treated the feedback of the user to a UI adaptation as the
dependent variable. The independent variables were composed of variables describing the
context-of-use when the UI adaption was triggered and the context-of-use when the user
feedback was given. The variables describing the context-of-use consist of the user, platform
and environment variables. We graphically analyzed the interaction between the dependent
and the independent variables with the goal to find patterns and anomalies. As it is not
possible to find any interesting interaction effects in case that (almost) all considered data
points represent positive feedback, we only considered rules for which at least 4 negative
responses exist. We note that due to the very limited amount of negative responses for all
rules, it is not possible to draw any statistical significant conclusions based on the given data.

7.2 Usability Study 161

However, we show based on the following example that our analysis allowed us to identify
an unintended behavior of the application based on the collected data.

Example: Analysis for Adaptation Rule 10
Rule number 10 is activating the day mode by changing the layout color scheme. During
the experiment, users gave feedback on this rule 164 times. From these responses, 149 were
positive while only 15 were negative. During the exploratory data analysis we examined
the relationship between the user feedback for this rule and the context variable describing
the time of day using the visualization shown by Figure 7.24. It shows the distribution of
positive and negative feedback responses via a density plot (created using kernel density
estimation). We can see that while negative feedback was given at all times of the day, most
of the negative feedback was received after 15:30. After a closer investigation, we derived
the following explanation for this observation: Rule 10 correctly activates the day mode and
displays that change to the user in the form of a feedback prompt. However, in cases where
the application is used for the first time of the day in the evening, this might confuse users
as they expect the activation and not the deactivating of the night mode (which is implicitly
done when activating the day mode). In fact, asking the user for feedback in these cases
was not an intended behavior of the application, because the user should have been only
asked for feedback on recent context changes when starting the application. Our data-driven
approach allowed us to identify this confusing and unintended behavior of this adaptation rule.

0 5 10 15 20
Time of Day (24H)

D
en

si
ty

User Feedback
Positive
Negative

Fig. 7.24 Distribution of positive and negative feedback responses over the day. The green
(top) and red (bottom) colored areas show the density estimates of the time of day for positive
and negative responses, respectively. The vertical lines represent the underlying datapoints.

7.2 Usability Study 162

7.2.3 Usability Study: Evaluation Discussion

In the following, we discuss the main results of the conducted usability study by summarizing
the lessons learned and describing the limitations of the study.

Lessons Learned

From user’s perspective our data-driven usability evaluation study shows that self-adaptive
UIs have potential to improve usability of the UI. Especially the amount of positive feedback
which was collected during the experimental phase shows that self-adaptive UIs enable an
improved interaction with UIs which highly increase end-user satisfaction.

Based on the conducted usability experiment and analysis of the results, we derived
lessons learned about specific UI adaptation categories as well as about the relationship
between context-of-use and triggering UI adaptations.

Based on the conducted usability experiment, we identified that users should only be
asked for feedback on adaptions that concern context changes that the user is still aware of.
UI adaptations regarding an outdated context change (which happened in the past) should
just be discarded or applied without asking or informing the user, who would not be able to
understand it anyway as the context-of-use has probably already completely changed. This is
especially the case when starting the application after a while. In this case, the user no longer
knows the context of the last usage of the application.

Furthermore, we identified that deactivation rules should have a (configurable) time
window before they fire. This should be long enough to prevent unwanted reactions to
temporary switches (a cloud, a traffic light, ...).

Regarding modality changes, it is important to prevent continuous changes in the interac-
tion mode as users can be irritated. In this case, user feedback mechanisms about the allowed
interaction mode or feedback about upcoming modality changes can be helpful to improve
the user experience.

Likewise, as already presented in [ABY13], task-feature set changes have a big potential
to simplify the user interface. Regarding this adaptation category, it is essential to identify
the right amount of information that is displayed on the screen, based on the current context-
of-use.

Moreover, the usability evaluation results show that layout changes, in general, are useful
to improve user satisfaction. However, as presented in [RB11] it is important to identify the
individual and cultural preferences of the users as some adaptation rules were liked by a
subset of the users and disliked by another subset of users.

7.3 Summary and Discussion 163

Beside layout changes, the design of adaptive UIs can be improved when UI adaptations
complement domain-specific functionalities of the targeted application.

Finally, based on the usability evaluation results, we identified that a smart composition
of previously mentioned basic UI adaptations to a combined UI adaptation has the largest
potential to improve user satisfaction. An important and still open question regarding this
aspect is how to combine different basic adaptation rules to a smart combined adaptation rule
that satisfies the current context-of-use the most.

Limitations of Usability Study

In this section, we shortly discuss the limitations of the conducted usability study and their
impact on the validity of the results. Above all else, the small number of participants (and the
low share of negative user responses) make it infeasible to draw any statistically significant
conclusions from the experiment. In view of this fact, we are very careful to not make any
definite claims regarding the interpretation of the results. Another limitation concerns the
recruiting process of the participants of the experiment. The invitations were mostly sent to
students, colleagues, and friends. It must be assumed that the invited students and colleagues
are (compared to the general population) rather tech-savvy. In addition, all groups are likely
well disposed towards the organizers, potentially leading to a bias of the collected feedback
data. With regard to a potential bias of the collected data, we have to underline the fact that
users can ignore feedback questions and that the absence of explicit user feedback should not
be interpreted as a positive result for end-user satisfaction. Therefore, the resulting percentage
values should be rather seen as an indicator. Finally, an open point for discussion is the
frequency of asking users for explicit feedback. Asking for feedback in this fine-grained
manner can annoy the users and result in an intrusive evaluation method. However, it can
be seen as a trade-off where one has to decide about the frequency of asking users and
the amount of qualitative user feedback data that can be collected in addition to implicit
interaction data. Although our informal interview with the participants showed that the
separate design of the screen (feedback bar and "task specific" UI) mitigate the mentioned
problem of annoyance to some extent, there is still room for improvement regarding this
aspect.

7.3 Summary and Discussion

In this chapter, we described two case studies for which we applied our model-driven
development approach to devise self-adaptive UIs and presented a usability study to evaluate
their acceptance by the end-users.

7.3 Summary and Discussion 164

Regarding the case studies, we first introduced the evaluation questions for analyzing the
applicability of our model-driven development approach. Then, we presented the two case
studies showing the development of self-adaptive UIs for different application scenarios.
The first application scenario for which we devised self-adaptive UIs was a library web
application. In the second application scenario, analogously, we developed an e-mail appli-
cation with context management and UI adaptation capabilities. For both case studies, the
actual application of our model-driven development approach was described by introducing
the main artifacts and findings of each development phase. The case study applicability
evaluation was concluded with a summary and discussion of the evaluation questions.

Finally, an on-the-fly usability evaluation solution was presented. It was applied for the
mentioned e-mail application to conduct a usability study which aimed to analyze the end-
user satisfaction of self-adaptive UIs. After that, the conducted usability experiment and its
main results were presented. Finally, we have discussed lessons learned and limitations of
the conducted usability study.

Chapter 8

Conclusion and Future Work

In this thesis, we have presented our solution for the model-driven engineering of self-
adaptive user interfaces. Our solution approach covers modeling, transformation, execution,
and evaluation of self-adaptive user interfaces. We presented a prototypical implementation
of our model-driven engineering approach as well as its evaluation based on example appli-
cation scenarios and a usability study. In this concluding chapter, we first summarize our
contributions in Section 8.1. In Section 8.2, we then discuss how our solution fulfills the re-
quirements identified in Section 3.2. An overview of future work in the field of model-driven
engineering of self-adaptive UIs is given in Section 8.3.

8.1 Summary of Contributions

The development and evaluation of self-adaptive UIs is a challenging and complex task.
Concerning development, aspects such as context management and UI adaptation further
increase complexity compared to development of classical UIs and require an integrated
development approach. Concerning evaluation, usability plays a crucial role for acceptance
of self-adaptive UIs.

The goal of this thesis was to develop a solution for engineering self-adaptive user in-
terfaces that support automatic UI adaptations at run-time as a reaction to dynamic context
changes regarding user, platform, and environment characteristics. On the one hand, such
a solution needs to support the development process by easing the developer’s work in
mastering the complex task of developing self-adaptive UIs. On the other hand, the outcome
of the development process should result in self-adaptive UIs that are easy to use and offer
a high usability for the end-users of the involved interactive system. To achieve the goals
of this thesis, we presented our model-driven engineering approach for self-adaptive UIs
that comprises four phases: Modeling, Transformation, Execution, and Evaluation. In the

8.1 Summary of Contributions 166

following, we shortly describe these contributions:

Modeling
The first phase of our approach supports the modeling of self-adaptive UIs. Based on the
OMG’s standardized UI modeling language IFML, we developed and introduced comple-
mentary domain-specific languages to cover the aspects of context-management and UI
adaptation, which are important prerequisites for self-adaptive UIs. In this course, we have
developed on the one hand ContextML, a textual modeling language, that supports the speci-
fication of context models that represent various context-of-use situations covering different
static and dynamic aspects regarding user, platform, and environment. On the other hand, we
have developed AdaptML, also a textual modeling language, that supports the specification of
UI adaptation rules which describe how the UI is changed under which situation or circum-
stance. The introduced modeling languages ContextML and AdaptML have been integrated
in the IFML Eclipse plugin to provide an integrated modeling workbench for self-adaptive
UIs.

Transformation
Following the idea of model-driven development techniques, our solution provides three
types of specific code generators to transform the specified models based on IFML, Con-
textML, and AdaptML into executable code artifacts. For this purpose, we have developed a
new UI Generator that supports the transformation of final UI code from IFML models. In
addition to that, we have developed a novel approach to derive executable Context Services
from a context model. Our introduced Context Service Generator gets as input the specified
context model and generates a Context Service that monitors the specified context properties
through sensor probes. Analogously, we have developed an Adaptation Service Generator
that gets as input the specified adaptation model and generates an Adaptation Service which
is responsible for UI adaptation at runtime.

Execution
The execution of the self-adaptive UI is supported through an integrated UI framework
where the different generated code artifacts regarding Final UI code, Context Service, and
Adaptation Service are integrated in an overall execution environment. For supporting the
monitoring and adaptation concerns at runtime, we have developed a run-time architecture
for self-adaptive UIs. For implementing the rule-based execution environment we used the
Nools rule engine.

8.2 Requirements Revisited 167

Evaluation
The evaluation of our model-driven engineering approach consists of two parts. Firstly,
the benefit of our model-driven engineering approach is demonstrated by two case-studies
showing the development of self-adaptive UIs for different application scenarios. The first
application scenario targets a library web application while the second one deals with an
e-mail client application for which we devised self-adaptive UIs. Furthermore, we have also
evaluated the usability of self-adaptive UIs by conducting a usability study. For this purpose,
we have analyzed the usability of an adaptive mobile e-mail application. The adaptive mobile
e-mail application contains different adaptation features that are triggered at runtime and can
be rated by the users. Based on the stored context information and gathered user feedback,
we have conducted a data-driven usability evaluation of self-adaptive UIs regarding end-user
satisfaction.

8.2 Requirements Revisited

In Section 3.2, we stated a set of requirements that a model-driven engineering approach
needs to fulfill in order to enable the development and evaluation of self-adaptive user inter-
faces. Subsequently, we describe how our solution fulfills these requirements.

Context Management:
The requirements for context management claim that the solution approach for engineer-
ing self-adaptive UIs supports context modeling (R1), context model transformation (R2),
runtime context monitoring (R3), and appropriate tool support for managing those context
management activities (R4).

Our solution approach introduces a context modeling language, ContextML, which sup-
ports the specification of various context-of-use parameters. Thus, requirement (R1) is
fulfilled. The second requirement, context transformation (R2), is addressed by our Context
Service Generator which has been implemented to support the transformation of context
models based on ContextML to executable code of Context Services. As the generated
Context Services enable continuous monitoring of heterogeneous context-of-use parameters
at runtime though different hardware sensors, requirement (R3) is also fulfilled. Finally, ap-
propriate tool support for context management (R4) is also given by our solution approach as
it provides a dedicated, modeling view for context modeling and a Context Service Generator
in the proof-of-concept implementation.

8.2 Requirements Revisited 168

UI Adaptation:
The requirements for UI adaptation claim that the solution approach for engineering self-
adaptive UIs supports adaptation modeling (R5), adaptation model transformation (R6),
runtime UI adaptation (R7) and appropriate tool support for managing those UI adaptation
activities (R8).

Our solution approach introduces the adaptation modeling language AdaptML, which sup-
ports the specification of various UI adaptation rules covering different adaptation techniques.
Thus, requirement (R5) is fulfilled. The next requirement, adaptation model transformation
(R6) is addressed by our Adaptation Service Generator which has been implemented to
support the transformation of adaptation models based on AdaptML to executable code of
adaptation rules that are managed by the rule engine Nools. As the generated Adaptation
Services enable continuous runtime UI adaptation, requirement (R7) is also fulfilled. Finally,
appropriate tool support for UI adaptation (R8) is also given by our solution approach as it
provides a dedicated, adaptation modeling view and an Adaptation Service Generator in the
proof-of-concept implementation.

Usability Evaluation:
The requirements for usability evaluation of self-adaptive UIs claim that the solution approach
for assessing the quality of use of such UIs considers end-user satisfaction (R9), incorporates
a collection of explicit and implicit user-feedback (R10), and enables a runtime usability
testing (R11) of the UI while end-users are interacting with the systems and UI adaptations
are happening at runtime.

Our on-the-fly usability evaluation solution focuses on end-user satisfaction analysis
as we ask the end-users to rate the triggered UI adaptations (like or dislike). Thus, we get
explicit feedback from the end-users whether they appreciate the triggered UI adaptations
or not, and thus (R9) is fulfilled in our solution. As the end-users are asked for feedback
whenever a UI adaptation feature is triggered at runtime, also (R10) is fulfilled, because
based on the very current context-of-use we get and map to it the user feedback. Finally,
requirement (R11) is also addressed by our approach, as the usability evaluation method
enables evaluation of the acceptance of UI adaptations while the end-users are interacting
with the interactive system at the moment when UI adaptations occur and the end-user’s
indentation about them are quite fresh.

As described in this section, our solution for model-driven engineering of self-adaptive UIs
fulfills the requirements stated in Section 3.2. As a conclusion of this, the research question,

8.3 Future Work 169

introduced in the beginning of this thesis has been addressed within our model-driven
engineering approach for self-adaptive UIs.

8.3 Future Work

In this thesis, we presented a model-driven engineering approach for self-adaptive UIs. Apart
from its current features and contributions, there are certain aspects that can be addressed in
future work to further advance the solution approach. In this section, based on the phases of
our engineering approach, we discuss possible extensions and present ideas for follow-up
research.

Modeling Extensions
Our model-driven engineering approach aims to support the development of self-adaptive
UIs in a comprehensive way. For this purpose, we address the key modeling concerns UI,
context management, and UI adaptation in our solution approach. However, the modeling
and generation of application logic was out of scope and is only partially addressed through
IFML Action elements. Thus, we only generate function stubs for the application logic that
still must be manually coded. To overcome this issue, additional models such as BPMN or
UML state charts, activity or sequence diagrams could be used to cover application logic
aspects and to integrate them into the overall engineering approach for self-adaptive UIs.

While our introduced textual modeling languages ContextML and AdaptML provide ad-
vantages such as auto-completion and syntax checks in specifying the context and adaptation
model, it would be helpful for UI/Web designers to have a visual language that supports the
modeling of these aspects in a similar graphical way like the modeling of the core UI based
on IFML. Moreover, it has to be noticed that the introduced modeling languages ContextML
and AdaptML provide a core basis to support holistic modeling of various context-of-use
parameters and UI adaptation rules. Although the metamodels provide predefined classes for
characterizing various aspects, they do not have the objective to be complete, but they are
rather extensible for covering further aspects. As an example, the metamodel UserContext
provides only basic predefined classes for characterizing the end-users of a self-adaptive UI.
Of course, one can think about more fine grained modeling techniques to characterize the
user, for example, through a digital twin of a human model as we have presented in [JYE19b]
for supporting multi-modal UI adaptation for assistance systems in Industry 4.0 scenarios
[JYE19a]. Moreover, considering the presented case studies in the previous chapter, we ob-
served that our introduced domain specific languages ContextML and AdaptML are a suitable
complement to the OMG’s UI modeling language IFML to specify context management and

8.3 Future Work 170

UI adaptation concerns. Especially the separation of different modeling views for UI, context,
and adaptation eases the modeling of self-adaptive UIs and also supports the maintenance
of evolving context and adaptation models. As the presented case studies are showing, our
integrated development approach allows the generation of self-adaptive UIs that can have
quite complex UI adaptation features. In this regard, we have to point out that our approach
is not supporting the analysis and resolution of conflicting UI adaptation rules. Although
we have introduced priority levels to determine the execution order of UI adaptation rules,
still it is a complex and error-prone task to manually specify a sound set of UI adaptations.
When designing the UI adaptation rules it can happen due to human errors that conflicting
adaptation rules are modeled which can result in undesirable UI adaptations. To solve this
problem further formalization of adaptation rules for example based on TGGs is possible to
establish analysis techniques to detect conflicting rules already at design-time [AYKP18].
As an extension of this idea, in [AYK19], we suggest a useful definition of consistency for
runtime UI adaptation, identify some important and open consistency-related challenges, and
highlight solution strategies inspired by results and in-sights from research on bidirectional
transformations.

Transformation Extensions
Regarding the transformation approach, our provided code generators have not the objective
of completeness, but rather show for a subset of IFML models that the generation of code for
self-adaptive UIs can be automated.

The proof-of-concept implementation targets the generation of UI views based on the
Angular framework. Although Angular is a widespread and commonly used UI framework
for web applications targeting various end-devices, other UI frameworks such as Vaadin1,
Bootstrap2 or React3 could be used as well for covering the UI part of the self-adaptive UI.

Regarding the generation of Context Services, due to the very individual structure of some
context sources, the code for controlling and managing sensor sources, like APIs, SDKs
or libraries, could not be always automatically generated and thus had to be implemented
manually. The code is written in static files, which are scanned during the generation process
and inserted into predefined sections among the generated code. Hence, the proof-of-concept
implementation of the Context Service Generator covers the automated generation of code
for a specific set of Context Services and can be extended to cover further context sensors
and information.

1https://vaadin.com
2https://getbootstrap.com
3https://reactjs.org

8.3 Future Work 171

Our Adaptation Service generation approach relies on the usage of Nools which is an efficient
rule engine based on the RETE algorithm. In cases where other rule engines are required, the
flexible structure of our Adaptation Service Generator can be easily adjusted according to
new code templates to enable a translation of the AdaptML models to the syntax of the target
rule engine.

Execution Extensions
Regarding the execution phase it is still a challenging task to correctly time the adaptation
operations as time delays in the communication might happen. For example, the camera is
used for sensing the mood of the user and it takes time to get the this information from the
face detection API from a different server. Also, in some cases it is needed to undo triggered
UI adaptation operations which is currently not supported in the actual version of the exe-
cution environment due to dependencies between adaptation operations. However, in our
implementation of the execution environment, the end-user has control over the adaptation
process and can decide whether the monitoring and adaptation processes are switched on or
off. As mentioned above, in our presented engineering approach we use priority levels to
define the execution sequence of UI adaptation rules and to prevent conflicting adaptation
rules. However, beside the described strategies to tackle conflicting rules at design time,
there are further improvement possibilities regarding the quality assurance of self-adaptive
UIs at runtime. In this context, it is possible to use model-checking techniques to verify
the correctness of UI adaptation operations in order to guarantee termination and to prevent
oscillation of UI adaptations. As the complexity of the UI adaptation logic is increasing
with new adaptation features, it is also possible to think about software testing approaches
(especially model-based software testing) to ensure correctness, proper functionality of the
Adaptation Features under dynamically changing context-of-use situations. Finally, it would
be very beneficial to have a large-scale evaluation of the generated self-adaptive UIs to
further analyze the runtime scalability aspect. With this regard, further application of our
engineering approach in different domains would be helpful to gather more information for
improving the execution environment.

Evaluation Extensions
By the evaluation performed in this thesis, we were able to demonstrate the applicability of
our engineering approach to develop self-adaptive UIs for different application scenarios.
Further evaluation of the introduced modeling languages ContextML and AdaptML regarding
usability or learnability can be conducted to gain further insights about the acceptance and
productivity of the developers. In this context, the whole model-driven engineering approach

8.3 Future Work 172

for self-adaptive UIs can be evaluated in detail regarding effectiveness and efficiency to better
analyze its strength and weaknesses from a developer’s perspective.

In our solution, we rather focused on the usability evaluation of the self-adaptive UIs
resulting from our model-driven engineering approach. For this purpose, we have conducted
a data-driven usability evaluation experiment with real end-users to analyze the quality and
acceptance of UI adaptations in different context-of-use situations. Regarding the usability
evaluation results, we can sum up that most of the triggered UI adaptation features were
positively rated. Although this is a positive indicator for the resulting self-adaptive UIs, it
should be noticed that users can ignore feedback questions in our usability experiment setup
and that the absence of explicit user feedback should not be interpreted as a positive result
for end-user satisfaction in general. Moreover, an important observation from the usability
study was that some of the users feel disturbed by the UI adaptations when they are not
aware about the changes. An improvement in this directions would be to integrate smooth
animations which show the UI adaptation changes during the adaptation process [DMV11].

Future experiments, especially long-term evaluation studies should be done with a larger
group of participants to collect even more data about the context-of-use and instant user
feedback to support even stronger evidence for our findings. We are confident that given the
data of a larger user test group, it is possible to identify statistical significant interrelations
between the context-of-use and the user feedback when using more sophisticated techniques
such as regression analysis. Future experiments should also cover a direct comparison
between the adaptive and non-adaptive version of the UI.

Beside end-user satisfaction, further usability criteria such as effectiveness or efficiency
could be also assessed to gain broader insights about the resulting self-adaptive UIs.

For future work, we have several ideas on how to extend the approach to improve the
solution for evaluating self-adaptive UIs and, as a consequence, how to improve the quality of
UI adaptation features. Firstly, a mutation analysis approach can be integrated in our solution
to intersperse "bad UI adaptations", so called mutants in the application. This way, a more
objective rating from end-user perspective can be reached, as they are not always shown
useful adaptation features. In addition, it is possible to use implicit feedback mechanisms
(e.g., shutdown of app, mood, usage time etc.) which are already tracked in our approach to
further improve UI adaptations. In some cases, dependent on the application domain, such as
in the presented mail application, it is also possible to adapt the UI based on the content of
the UI elements, like the mail content itself.

While collecting context information, also issues regarding data privacy can arise and
should be considered. On the one hand, a fine-grained way of collecting explicit instant user
feedback can annoy the users and result in an intrusive evaluation method [YHR+19]. On

8.3 Future Work 173

the other hand, the collection of instant user feedback can be used to further optimize UI
adaptations (see next point).

Follow-Up Work: Smart self-adaptive UIs based on machine learning:
In its current state, the implemented adaptation process follows a rule-based approach and
relies on a rule engine. Further optimization of UI adaptations can be reached through ex-
tending the adaptation manager by machine learning algorithms. This way, log data (context
information, previous adaptations, and user feedback) can be analyzed to learn the most
suitable adaptations for future context-of-use situations. Based on our data-driven usability
experiment with an adaptive mobile app, we have established the main prerequisites to
monitor and store context information as well as collect feedback from end-users. This basis
can be used to extend our approach with further machine learning techniques to realize more
’intelligent’ self-adaptive UIs.

Follow-Up Work: From Legacy UIs to Self-adaptive UIs:
As presented in this thesis, our model-driven engineering approach for self-adaptive UIs
starts from scratch where developers need to create the relevant UI, context, and adaptation
models. Based on the specified models, our engineering approach supports the automated
generation of self-adaptive UIs. While this approach is especially helpful for new application
scenarios starting on the green field or software systems including relevant UI, context, and
adaptation models, there are also lots of software systems that do neither rely on such models
nor incorporate UI adaptation capabilities. In most cases it could be beneficial to integrate
self-adaptive UIs in such legacy software systems especially when it comes to UI modern-
ization. Indeed this idea has been already presented in [ABY14b], where the incorporation
of adaptive UIs is shown based on basic UI adaptation features. However, this idea can be
extend in such a way that more UI adaptations are incorporated to enable sophisticated UI
adaptations. To tackle this issue and to support an automatic transition of non-adaptive legacy
UIs to self-adaptive UIs, in [JYS18], we have addressed the reverse engineering process
to enable the extraction of IFML models from legacy UIs. Once the IFML model of the
legacy system’s UI is extracted, we restructure and enrich it with self-adaptivity features
by applying our existing forward engineering approach for self-adaptive UIs. In addition
to that, techniques from process mining could be used to identify behavioral usage patterns
(interaction logs) for different individual users to better guide the context management and
UI adaptation process.

8.3 Future Work 174

Follow-Up Work: Context-aware AR/VR:
The idea of self-adaptive UIs comprising context management and UI adaptation can be
applied beyond classical desktop, web, and mobile applications. With the spread of aug-
mented (AR) and virtual reality (VR) applications in various domains (e.g., education and
training, engineering or entertainment) targeting heterogeneous end-users, target platforms
(VR headsets, AR glasses, Mobile AR etc.), and dynamically changing mixed environ-
ments (merging virtual and real objects as introduced in mixed reality interfaces) the aspect
context-awareness started to play an important role. Therefore, we have started to apply and
transfer existing concepts of this thesis to virtual and augmented reality interfaces. In our
recent work [YHE19], we have presented a framework for supporting context-aware virtual
reality applications. The benefit of this framework was shown based on a first aid training
application and VR demo. Furthermore, the same idea was also applied for augmented reality
applications. Firstly in [YJSE19b], we have identified the main challenges for development
of context-aware AR applications. To address these challenges, in [YJSE19a] we have
introduced the idea of a model-based framework for the development of context-aware AR
applications. To show the advantage of such context-aware applications we have instantiated
example AR applications for maintenance applications. In future work, we will further
investigate the potentials of context-awareness and UI adaptation for mixed reality interfaces
in the context of different application domains such as cross-device mixed reality interfaces
or human-robot/human-human collaboration via AR/VR.

References

[ABY12] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. Using interpreted runtime
models for devising adaptive user interfaces of enterprise applications. In
ICEIS 2012 - Proceedings of the 14th International Conference on Enterprise
Information Systems, Volume 3, Wroclaw, Poland, 28 June - 1 July, 2012,
pages 72–77, 2012.

[ABY13] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. RBUIS: simplifying en-
terprise application user interfaces through engineering role-based adaptive
behavior. In ACM SIGCHI Symposium on Engineering Interactive Comput-
ing Systems, EICS’13, London, United Kingdom - June 24 - 27, 2013, pages
3–12, 2013.

[ABY14a] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. Adaptive model-driven
user interface development systems. ACM Comput. Surv., 47(1):9:1–9:33,
2014.

[ABY14b] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. Integrating adaptive
user interface capabilities in enterprise applications. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31
- June 07, 2014, pages 712–723, 2014.

[ABY16] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. Engineering adaptive
model-driven user interfaces. IEEE Trans. Software Eng., 42(12):1118–1147,
2016.

[AIV08] Silvia Abrahão, Emilio Iborra, and Jean Vanderdonckt. Usability evaluation
of user interfaces generated with a model-driven architecture tool. In Ma-
turing Usability - Quality in Software, Interaction and Value, pages 3–32.
Springer, 2008.

[Aki14] Pierre A. Akiki. Engineering adaptive model-driven user interfaces for
enterprise applications. PhD thesis, Open University, UK, 2014.

[AMI17] Mai Abusair, Antinisca Di Marco, and Paola Inverardi. Context-aware adap-
tation of mobile applications driven by software quality and user satisfaction.
In 2017 IEEE International Conference on Software Quality, Reliability and
Security Companion, QRS-C 2017, Prague, Czech Republic, July 25-29,
2017, pages 31–38, 2017.

References 176

[APB+99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.
Williams, and Jonathan E. Shuster. UIML: an appliance-independent XML
user interface language. Computer Networks, 31(11-16):1695–1708, 1999.

[AYG10] Achilleas Achilleos, Kun Yang, and Nektarios Georgalas. Context modelling
and a context-aware framework for pervasive service creation: A model-
driven approach. Pervasive and Mobile Computing, 6(2):281–296, 2010.

[AYK19] Anthony Anjorin, Enes Yigitbas, and Hermann Kaindl. Consistent runtime
adaptation of user interfaces. In Proceedings of the 8th International Work-
shop on Bidirectional Transformations co-located with the Philadelphia
Logic Week, BxPLW 2019, Philadelphia, PA, USA, June 4, 2019., pages
61–65, 2019.

[AYKP18] Anthony Anjorin, Enes Yigitbas, Hermann Kaindl, and Roman Popp. On
the development of consistent user interfaces (extended abstract). In Confer-
ence Companion of the 2nd International Conference on Art, Science, and
Engineering of Programming, Nice, France, April 09-12, 2018, pages 18–20,
2018.

[Bar05] Jakob E. Bardram. The java context awareness framework (JCAF) - A service
infrastructure and programming framework for context-aware applications.
In Pervasive Computing, Third International Conference, PERVASIVE 2005,
Munich, Germany, May 8-13, 2005, Proceedings, pages 98–115, 2005.

[BB10] Arnaud Blouin and Olivier Beaudoux. Improving modularity and usability of
interactive systems with malai. In Proceedings of the 2nd ACM SIGCHI Sym-
posium on Engineering Interactive Computing System, EICS 2010, Berlin,
Germany, June 19-23, 2010, pages 115–124, 2010.

[BCM07] Andrea Bunt, Cristina Conati, and Joanna McGrenere. Supporting interface
customization using a mixed-initiative approach. In Proceedings of the 12th
International Conference on Intelligent User Interfaces, IUI 2007, Honolulu,
Hawaii, USA, January 28-31, 2007, pages 92–101, 2007.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 1st edition, 2012.

[BDB+04] Lionel Balme, Alexandre Demeure, Nicolas Barralon, Joëlle Coutaz, and
Gaëlle Calvary. CAMELEON-RT: A software architecture reference model
for distributed, migratable, and plastic user interfaces. In Ambient Intelli-
gence: Second European Symposium, EUSAI 2004, Eindhoven, The Nether-
lands, November 8-11, 2004. Proceedings, pages 291–302, 2004.

[BF14] Marco Brambilla and Piero Fraternali. Interaction Flow Modeling Language
- Model-Driven UI Engineering of Web and Mobile Apps with IFML. The
MK/OMG Press, 2014.

[BHV+94] Francois Bodart, Anne-Marie Hennebert, Leheureux Jean Vanderdonckt,
Jean Vanderdonckt, Franois Bodart, Anne marie Hennebert, Jean marie

References 177

Leheureux, Isabelle Provot, and Jean V. A model-based approach to presen-
tation: A continuum from task analysis to prototype. In In Proceedings of
DSV-IS’94, pages 25–39. Springer-Verlag, 1994.

[BJM+05] Ozalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano
Leonardi, Aad van Moorsel, and Maarten van Steen. Self-star Properties
in Complex Information Systems: Conceptual and Practical Foundations
(Lecture Notes in Computer Science). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[BMB+11] Arnaud Blouin, Brice Morin, Olivier Beaudoux, Grégory Nain, Patrick Al-
bers, and Jean-Marc Jézéquel. Combining aspect-oriented modeling with
property-based reasoning to improve user interface adaptation. In Pro-
ceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive
Computing System, EICS 2011, Pisa, Italy, June 13-16, 2011, pages 85–94,
2011.

[Bot11] Goetz Botterweck. Multi front-end engineering. In Model-Driven Develop-
ment of Advanced User Interfaces, pages 27–42. 2011.

[BUA17] Marco Brambilla, Eric Umuhoza, and Roberto Acerbis. Model-driven devel-
opment of user interfaces for iot systems via domain-specific components
and patterns. J. Internet Services and Applications, 8(1):14:1–14:21, 2017.

[CCD+04] Gaëlle Calvary, Joëlle Coutaz, Olfa Dâassi, Lionel Balme, and Alexandre
Demeure. Towards a new generation of widgets for supporting software
plasticity: The "comet". In Engineering Human Computer Interaction
and Interactive Systems, Joint Working Conferences EHCI-DSVIS 2004,
Hamburg, Germany, July 11-13, 2004, Revised Selected Papers, pages 306–
324, 2004.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon, and Jean Vanderdonckt. A unifying reference framework for multi-
target user interfaces. INTERACTING WITH COMPUTERS, 15:289–308,
2003.

[CDMF07] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico Michele Facca.
Model-driven development of context-aware web applications. ACM Trans.
Internet Techn., 7(1):2, 2007.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language
(webml): a modeling language for designing web sites. Computer Networks,
33(1-6):137–157, 2000.

[CLV+03] Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den Bergh, and
Bert Creemers. Dygimes: Dynamically generating interfaces for mobile
computing devices and embedded systems. In Human-Computer Interaction
with Mobile Devices and Services, 5th International Symposium, Mobile
HCI 2003, Udine, Italy, September 8-11, 2003, Proceedings, pages 256–270,
2003.

References 178

[Cou10] Joëlle Coutaz. User interface plasticity: Model driven engineering to the
limit! In Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’10, pages 1–8, New York, NY, USA,
2010. ACM.

[DAS01] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction, 16(2-4):97–166, 2001.

[DC06] Carlos Duarte and Luís Carriço. A conceptual framework for developing
adaptive multimodal applications. In Proceedings of the 11th International
Conference on Intelligent User Interfaces, IUI 2006, Sydney, Australia, Jan-
uary 29 - February 1, 2006, pages 132–139, 2006.

[DCC08] Alexandre Demeure, Gaëlle Calvary, and Karin Coninx. Comet(s), A soft-
ware architecture style and an interactors toolkit for plastic user interfaces.
In Interactive Systems. Design, Specification, and Verification, 15th Interna-
tional Workshop, DSV-IS 2008, Kingston, Canada, July 16-18, 2008, Revised
Papers, pages 225–237, 2008.

[Dey01] Anind K. Dey. Understanding and using context. Personal Ubiquitous
Comput., 5(1):4–7, January 2001.

[dK01] Nora Parcus de Koch. Software engineering for adaptive hypermedia systems:
reference model, modeling techniques and development process. PhD thesis,
Ludwig Maximilians University Munich, 2001.

[DL05] Pierre-Charles David and Thomas Ledoux. Wildcat: a generic framework for
context-aware applications. In Proceedings of the 3rd International Workshop
on Middleware for Pervasive and Ad-hoc Computing (MPAC 2005), held at
the ACM/IFIP/USENIX 6th International Middleware Conference, November
28 - December 2, 2005, Grenoble, France, pages 1–7, 2005.

[DMV11] Charles-Eric Dessart, Vivian Genaro Motti, and Jean Vanderdonckt. Showing
user interface adaptivity by animated transitions. In Proceedings of the 3rd
ACM SIGCHI Symposium on Engineering Interactive Computing System,
EICS 2011, Pisa, Italy, June 13-16, 2011, pages 95–104, 2011.

[FBA06] Sebastian Feuerstack, Marco Blumendorf, and Sahin Albayrak. Bridging the
gap between model and design of user interfaces. In Informatik 2006 - Infor-
matik für Menschen, Band 2, Beiträge der 36. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), 2.-6. Oktober 2006 in Dresden, pages 131–137,
2006.

[FBK+08] Sebastian Feuerstack, Marco Blumendorf, Maximilian Kern, Michael
Kruppa, Michael Quade, Mathias Runge, and Sahin Albayrak. Automated
usability evaluation during model-based interactive system development. In
Engineering Interactive Systems, Second Conference on Human-Centered
Software Engineering, HCSE 2008, and 7th International Workshop on Task
Models and Diagrams, TAMODIA 2008, Pisa, Italy, September 25-26, 2008.
Proceedings, pages 134–141, 2008.

References 179

[FG09] Leah Findlater and Krzysztof Z. Gajos. Design space and evaluation chal-
lenges of adaptive graphical user interfaces. AI Magazine, 30(4):68–73,
2009.

[For82] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artif. Intell., 19(1):17–37, 1982.

[FRYF16] Holger Fischer, Mirko Rose, Enes Yigitbas, and Peter Forbrig. Towards a task
driven approach enabling continuous user requirements engineering. In Joint
Proceedings of REFSQ-2016 Workshops, Doctoral Symposium, Research
Method Track, and Poster Track co-located with the 22nd International
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2016), Gothenburg, Sweden, March 14, 2016., 2016.

[FYS15] Holger Fischer, Enes Yigitbas, and Stefan Sauer. Integrating human-centered
and model-driven methods in agile UI development. In Proceedings of
15th IFIP TC.13 International Conference on Human-Computer Interaction
(INTERACT), volume 22, pages 215–221. University of Bamberg Press,
2015.

[GET+08] Krzysztof Z. Gajos, Katherine Everitt, Desney S. Tan, Mary Czerwinski,
and Daniel S. Weld. Predictability and accuracy in adaptive user interfaces.
In Proceedings of the 2008 Conference on Human Factors in Computing
Systems, CHI 2008, 2008, Florence, Italy, April 5-10, 2008, pages 1271–
1274, 2008.

[GMP+15] Giuseppe Ghiani, Marco Manca, Fabio Paternò, Jörg Rett, and Atul Vaib-
hav. Adaptive multimodal web user interfaces for smart work environments.
JAISE, 7(6):701–717, 2015.

[GS01] Philip D. Gray and Daniel Salber. Modelling and using sensed context
information in the design of interactive applications. In Engineering for
Human-Computer Interaction, 8th IFIP International Conference, EHCI
2001, Toronto, Canada, May 11-13, 2001, Revised Papers, pages 317–336,
2001.

[GS13] Brad Green and Shyam Seshadri. AngularJS. O’Reilly Media, Inc., 1st
edition, 2013.

[GWW10] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. Automatically
generating personalized user interfaces with supple. Artif. Intell., 174(12-
13):910–950, August 2010.

[Har16] Patrick Harms. Automated Field Usability Evaluation Using Generated Task
Trees. PhD thesis, University of Göttingen, 2016.

[HBSS02] Albert Held, Sven Buchholz, Alexander Schill, and Er Schill. Modeling of
context information for pervasive computing applications, 2002.

References 180

[HG14] Patrick Harms and Jens Grabowski. Usage-based automatic detection of
usability smells. In Human-Centered Software Engineering - 5th IFIP WG
13.2 International Conference, HCSE 2014, Paderborn, Germany, September
16-18, 2014., pages 217–234, 2014.

[HHB+18] Jamil Hussain, Anees Ul Hassan, Hafiz Syed Muhammad Bilal, Rahman
Ali, Muhammad Afzal, Shujaat Hussain, Jae Hun Bang, Oresti Banos, and
Sungyoung Lee. Model-based adaptive user interface based on context and
user experience evaluation. J. Multimodal User Interfaces, 12(1):1–16, 2018.

[HIR03] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Generating
context management infrastructure from high-level context models. In In 4th
International Conference on Mobile Data Management (MDM) - Industrial
Track, pages 1–6, 2003.

[HS09] Christian Hoareau and Ichiro Satoh. Modeling and processing information for
context-aware computing: A survey. New Generation Comput., 27(3):177–
196, 2009.

[HTLK08] Anas Hariri, Dimitri Tabary, Sophie Lepreux, and Christophe Kolski. Context
aware business adaptation toward user interface adaptation. In In Communi-
cations of SIWN, pages 46–52. Springer Verlag, 2008.

[IBM05] IBM. An architectural blueprint for autonomic computing. Technical report,
IBM, June 2005.

[JDB18] Imen Jaouadi, Raoudha Ben Djemaa, and Hanêne Ben-Abdallah. A model-
driven development approach for context-aware systems. Software and
System Modeling, 17(4):1169–1195, 2018.

[JYE19a] Klementina Josifovska, Enes Yigitbas, and Gregor Engels. A digital twin-
based multi-modal UI adaptation framework for assistance systems in indus-
try 4.0. In Human-Computer Interaction. Design Practice in Contemporary
Societies - Thematic Area, HCI 2019, Held as Part of the 21st HCI In-
ternational Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019,
Proceedings, Part III, pages 398–409, 2019.

[JYE19b] Klementina Josifovska, Enes Yigitbas, and Gregor Engels. Reference frame-
work for digital twins within cyber-physical systems. In Proceedings of
the 5th International Workshop on Software Engineering for Smart Cyber-
Physical Systems, SEsCPS at ICSE 2019, Montreal, QC, Canada, May 28,
2019., pages 25–31, 2019.

[JYS18] Ivan Jovanovikj, Enes Yigitbas, and Stefan Sauer. Model-based ui mod-
ernization: From legacy uis to self-adaptive uis. Softwaretechnik-Trends,
Proceedings of the 20th Workshop Software-Reengineering and Evolution
(WSRE) and 9th Workshop Design for Future (DFF), 2018.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

References 181

[KSR03] Laurie Kantner, Deborah Hinderer Sova, and Stephanie Rosenbaum. Alter-
native methods for field usability research. In Proceedings of the 21st annual
international conference on Documentation, SIGDOC 2003, San Francisco,
CA, USA, October 12-15, 2003, pages 68–72, 2003.

[Lad97] R. Laddaga. Self-adaptive software. Technical Report 98-12, DARPA BAA,
1997.

[LM10] Talia Lavie and Joachim Meyer. Benefits and costs of adaptive user interfaces.
Int. J. Hum.-Comput. Stud., 68(8):508–524, 2010.

[LP08] Gitte Lindgaard and Avi Parush. Utility and experience in the evolution of
usability. In Maturing Usability - Quality in Software, Interaction and Value,
pages 222–240. Springer, 2008.

[LRBA10] G. Lehmann, A. Rieger, M. Blumendorf, and S. Albayrak. A 3-layer ar-
chitecture for smart environment models. In 2010 8th IEEE International
Conference on Pervasive Computing and Communications Workshops (PER-
COM Workshops), pages 636–641, March 2010.

[LVM+04] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouil-
lon, and Víctor López-Jaquero. USIXML: A language supporting multi-path
development of user interfaces. In Engineering Human Computer Inter-
action and Interactive Systems, Joint Working Conferences EHCI-DSVIS
2004, Hamburg, Germany, July 11-13, 2004, Revised Selected Papers, pages
200–220, 2004.

[Mez13] Nesrine Mezhoudi. User interface adaptation based on user feedback and
machine learning. In 18th International Conference on Intelligent User
Interfaces, IUI ’13, Santa Monica, CA, USA, March 19-22, 2013, Companion
Volume, pages 25–28, 2013.

[MM02] Nikola Mitrovic and Eduardo Mena. Adaptive user interface for mobile
devices. In Interactive Systems. Design, Specification, and Verification, 9th
International Workshop, DSV-IS 2002, Rostock Germany, June 12-14, 2002,
pages 29–43, 2002.

[MM03] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical Report omg/03-
06-01, Object Management Group (OMG), June 2003.

[Mot13] Vivian Genaro Motti. TriPlet : a conceptual framework for multidimensional
adaptation of user interfaces to the context of use. PhD thesis, Catholic
University of Louvain, Louvain-la-Neuve, Belgium, 2013.

[MPV11] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past, present, and
future of model-based user interface development. i-com, 10:2–11, 2011.

[MR92] Brad A. Myers and Mary Beth Rosson. Survey on user interface program-
ming. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’92, pages 195–202, New York, NY, USA, 1992.
ACM.

References 182

[MV13] Vivian Genaro Motti and Jean Vanderdonckt. A computational framework
for context-aware adaptation of user interfaces. In IEEE 7th International
Conference on Research Challenges in Information Science, RCIS 2013,
Paris, France, May 29-31, 2013, pages 1–12, 2013.

[Neb12] Michael Nebeling. Lightweight informed adaptation: Methods and tools
for responsive design and development of very flexible, highly adaptive web
interfaces. PhD thesis, ETH ZURICH, 2012.

[Nie93] Jakob Nielsen. Usability engineering. Academic Press, 1993.

[NSN13] Michael Nebeling, Maximilian Speicher, and Moira C. Norrie. Crowdadapt:
enabling crowdsourced web page adaptation for individual viewing condi-
tions and preferences. In ACM SIGCHI Symposium on Engineering Interac-
tive Computing Systems, EICS’13, London, United Kingdom - June 24 - 27,
2013, pages 23–32, 2013.

[Obj15] Object Management Group (OMG). Interaction Flow Modeling Language
(IFML) Specification, Version 1.0. OMG Document Number formal/2015-
02-05 (https://www.omg.org/spec/IFML/1.0/PDF), 2015.

[Obj17] Object Management Group (OMG). Unified Modeling Language (UML)
Specification, Version 2.5.1. OMG Document Number formal/2017-12-05
(https://www.omg.org/spec/UML/2.5.1/PDF), 2017.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum,
and Alexander L. Wolf. An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems, 14(3):54–62, May 1999.

[Pat13] Fabio Paternò. User interface design adaptation. In The Encyclopedia of
Human-Computer Interaction, 2nd Ed., chapter 39. Soegaard, Mads and
Dam, Rikke Friis (eds.)., Aarhus, Denmark, 2013.

[Pet07] Roland Petrasch. Model based user interface design: Model driven architec-
ture und HCI patterns TM. Softwaretechnik-Trends, 27(3), 2007.

[PHJS12] Matthias Peissner, Dagmar Häbe, Doris Janssen, and Thomas Sellner. Myui:
generating accessible user interfaces from multimodal design patterns. In
ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS’12, Copenhagen, Denmark - June 25 - 28, 2012, pages 81–90, 2012.

[PLN04] Tim F. Paymans, Jasper Lindenberg, and Mark A. Neerincx. Usability trade-
offs for adaptive user interfaces: ease of use and learnability. In Proceedings
of the 9th International Conference on Intelligent User Interfaces, IUI 2004,
Funchal, Madeira, Portugal, January 13-16, 2004, pages 301–303, 2004.

[PM15] Philippe A. Palanque and Célia Martinie. Designing and assessing interac-
tive systems using task models. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems,
Seoul, CHI 2015 Extended Abstracts, Republic of Korea, April 18 - 23, 2015,
pages 2465–2466, 2015.

https://www.omg.org/spec/IFML/1.0/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

References 183

[PMM97] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. Concurtasktrees:
A diagrammatic notation for specifying task models. In Human-Computer
Interaction, INTERACT ’97, IFIP TC13 Interantional Conference on Human-
Computer Interaction, 14th-18th July 1997, Sydney, Australia, pages 362–
369, 1997.

[PS12] Fabio Paternò and Carmen Santoro. A logical framework for multi-device
user interfaces. In ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS’12, Copenhagen, Denmark - June 25 - 28, 2012,
pages 45–50, 2012.

[PSS09] Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. MARIA: A uni-
versal, declarative, multiple abstraction-level language for service-oriented
applications in ubiquitous environments. ACM Trans. Comput.-Hum. Inter-
act., 16(4):19:1–19:30, 2009.

[Pue97] A. R. Puerta. A model-based interface development environment. IEEE
Software, 14(4):40–47, Jul 1997.

[RB11] Katharina Reinecke and Abraham Bernstein. Improving performance, per-
ceived usability, and aesthetics with culturally adaptive user interfaces. ACM
Trans. Comput.-Hum. Interact., 18(2):8:1–8:29, 2011.

[RMB13] David Raneburger, Gerrit Meixner, and Marco Brambilla. Platform-
independence in model-driven development of graphical user interfaces
for multiple devices. In Software Technologies - 8th International Joint
Conference, ICSOFT 2013, Reykjavik, Iceland, July 29-31, 2013, Revised
Selected Papers, pages 180–195, 2013.

[Sau11] Stefan Sauer. Applying meta-modeling for the definition of model-driven
development methods of advanced user interfaces. In Heinrich Hussmann,
Gerrit Meixner, and Detlef Zuehlke, editors, Model-Driven Development of
Advanced User Interfaces, pages 67–86. Springer, 2011.

[SAW94] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In First Workshop on Mobile Computing Systems and Appli-
cations, WMCSA 1994, Santa Cruz, CA, USA, December 8-9, 1994, pages
85–90, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. There is
more to context than location. Computers & Graphics, 23(6):893–901, 1999.

[SBM06] Robbie Schaefer, Steffen Bleul, and Wolfgang Müller. Dialog modeling for
multiple devices and multiple interaction modalities. In Task Models and Di-
agrams for Users Interface Design, 5th International Workshop, TAMODIA
2006, Hasselt, Belgium, October 23-24, 2006. Revised Papers, pages 39–53,
2006.

[SCCF07] Jean-Sébastien Sottet, Gaëlle Calvary, Joëlle Coutaz, and Jean-Marie Favre.
A model-driven engineering approach for the usability of plastic user in-
terfaces. In Engineering Interactive Systems - EIS 2007 Joint Working

References 184

Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain,
March 22-24, 2007. Selected Papers, pages 140–157, 2007.

[Sch06] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering.
Computer, 39(2):25–31, Feb 2006.

[Sch13] Albrecht Schmidt. Context-aware computing. The Encyclopedia of Human-
Computer Interaction, 2nd Ed., Chapter 14, 2013.

[Shn00] Ben Shneiderman. Universal usability. Commun. ACM, 43(5):84–91, 2000.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey.
In In: Workshop on Advanced Context Modelling, Reasoning and Manage-
ment, UbiComp 2004 - The Sixth International Conference on Ubiquitous
Computing, Nottingham/England, 2004.

[SOB14] Norbert Seyff, Gregor Ollmann, and Manfred Bortenschlager. Appecho: a
user-driven, in situ feedback approach for mobile platforms and applications.
In Proceedings of the 1st International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2014, Hyderabad, India, June 2-3,
2014, pages 99–108, 2014.

[SRS15] Elhadi M. Shakshuki, Malcolm Reid, and Tarek R. Sheltami. An adaptive
user interface in healthcare. In The 10th International Conference on Fu-
ture Networks and Communications (FNC 2015) / The 12th International
Conference on Mobile Systems and Pervasive Computing (MobiSPC 2015)
/ Affiliated Workshops, August 17-20, 2015, Belfort, France, pages 49–58,
2015.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape
and research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42,
May 2009.

[Sta98] International Organization For Standardization. ISO 9241-11: Ergonomic
Requirements for Office Work with Visual Display Terminals (VDTs): Part
11: Guidance on Usability. ISO, 1998.

[Sze96] Pedro Szekely. Retrospective and challenges for model-based interface
development. In Design, Specification and Verification of Interactive Systems

’96, pages 1–27. Springer-Verlag, 1996.

[TA13] Tom Tullis and Bill Albert. Chapter 9 - special topics. In Tom Tullis and Bill
Albert, editors, Measuring the User Experience (Second Edition), Interactive
Technologies, pages 209 – 236. Morgan Kaufmann, Boston, second edition
edition, 2013.

[Træ02] Hallvard Trætteberg. Model-based User Interface Design. PhD thesis,
Norwegian University of Science and Technology, Trondheim, Norway,
2002.

References 185

[vVvdGKS08] Lex van Velsen, Thea van der Geest, Rob Klaassen, and Michaël F. Stee-
houder. User-centered evaluation of adaptive and adaptable systems: a
literature review. Knowledge Eng. Review, 23(3):261–281, 2008.

[Wei99] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput.
Commun. Rev., 3(3):3–11, July 1999.

[WSvT10] Janet Louise Wesson, Akash Singh, and Bradley van Tonder. Can adaptive
interfaces improve the usability of mobile applications? In Human-Computer
Interaction - Second IFIP TC 13 Symposium, HCIS 2010, Held as Part of
WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings, pages
187–198, 2010.

[YAJ+18] Enes Yigitbas, Anthony Anjorin, Ivan Jovanovikj, Thomas Kern, Stefan
Sauer, and Gregor Engels. Usability evaluation of model-driven cross-device
web user interfaces. In Human-Centered Software Engineering - 7th IFIP
WG 13.2 International Working Conference, HCSE 2018, Sophia Antipolis,
France, September 3-5, 2018, Revised Selected Papers, pages 231–247, 2018.

[YFKP14] Enes Yigitbas, Holger Fischer, Thomas Kern, and Volker Paelke. Model-
based development of adaptive UIs for multi-channel self-service systems.
In Human-Centered Software Engineering - 5th IFIP WG 13.2 International
Conference, HCSE 2014, Paderborn, Germany, September 16-18, 2014.
Proceedings, pages 267–274, 2014.

[YGS13] Enes Yigitbas, Christian Gerth, and Stefan Sauer. Konzeption modellbasierter
benutzungsschnittstellen für verteilte selbstbedienungssysteme. In Informatik
2013, 43. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Informatik
angepasst an Mensch, Organisation und Umwelt, 16.-20. September 2013,
Koblenz, Deutschland, pages 2714–2723, 2013.

[YGSE17] Enes Yigitbas, Silas Grün, Stefan Sauer, and Gregor Engels. Model-driven
context management for self-adaptive user interfaces. In Ubiquitous Comput-
ing and Ambient Intelligence - 11th International Conference, UCAmI 2017,
Philadelphia, PA, USA, November 7-10, 2017, Proceedings, pages 624–635,
2017.

[YHE19] Enes Yigitbas, Joshua Heindörfer, and Gregor Engels. A context-aware
virtual reality first aid training application. In Proceedings of Mensch und
Computer 2019, Hamburg, Germany, September 8-11, 2019, pages 885–888,
2019.

[YHR+19] Enes Yigitbas, André Hottung, Sebastian Mansfield Rojas, Anthony Anjorin,
Stefan Sauer, and Gregor Engels. Context- and data-driven satisfaction anal-
ysis of user interface adaptations based on instant user feedback. PACMHCI,
3:19:1–19:20, 2019.

[YJJ+19a] Enes Yigitbas, Klementina Josifovska, Ivan Jovanovikj, Ferhat Kalinci, An-
thony Anjorin, and Gregor Engels. Component-based development of adap-
tive user interfaces. In Proceedings of the ACM SIGCHI Symposium on

References 186

Engineering Interactive Computing Systems, EICS 2019, Valencia, Spain,
June 18-21, 2019, pages 13:1–13:7, 2019.

[YJJ+19b] Enes Yigitbas, Ivan Jovanovikj, Klementina Josifovska, Stefan Sauer, and
Gregor Engels. On-the-fly usability evaluation of mobile adaptive UIs
through instant user feedback. In Proceedings of the 17th IFIP TC.13 Inter-
national Conference on Human-Computer Interaction (INTERACT 2019) (to
appear), 2019.

[YJSE19a] Enes Yigitbas, Ivan Jovanovikj, Stefan Sauer, and Gregor Engels. A model-
based framework for context-aware augmented reality applications. In Han-
dling Security, Usability, User Experience and Reliability in User-Centered
Development Processes (IFIP WG 13.2 and WG 13.5 International Workshop
at INTERACT2019), 2019.

[YJSE19b] Enes Yigitbas, Ivan Jovanovikj, Stefan Sauer, and Gregor Engels. To-
wards model-based development of context-aware augmented reality applica-
tions. Softwaretechnik-Trends, Proceedings of the 21st Workshop Software-
Reengineering and Evolution (WSRE) and 10th Workshop Design for Future
(DFF), 39(2):39–40, 2019.

[YKUS16] Enes Yigitbas, Thomas Kern, Patrick Urban, and Stefan Sauer. Multi-device
UI development for task-continuous cross-channel web applications. In
Current Trends in Web Engineering - ICWE 2016 International Workshops,
DUI, TELERISE, SoWeMine, and Liquid Web, Lugano, Switzerland, June
6-9, 2016, Revised Selected Papers, pages 114–127, 2016.

[YMS15] Enes Yigitbas, Bastian Mohrmann, and Stefan Sauer. Model-driven UI
development integrating HCI patterns. In Proceedings of the 1st Work-
shop on Large-scale and Model-based Interactive Systems: Approaches and
Challenges, LMIS 2015, co-located with 7th ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems (EICS 2015), Duisburg, Germany,
June 23, 2015., pages 42–46, 2015.

[YS14] Enes Yigitbas and Stefan Sauer. Flexible & adaptive UIs for self-service sys-
tems. In Mensch & Computer 2014 - Workshopband, 14. Fachübergreifende
Konferenz für Interaktive und Kooperative Medien - Interaktiv unterwegs -
Freiräume gestalten, 31. August - 3. September 2014, München, Germany,
pages 167–175, 2014.

[YS16a] Enes Yigitbas and Stefan Sauer. Customized UI development through context-
sensitive GUI patterns. In Mensch und Computer 2016 - Workshopband,
Aachen, Germany, September 4-7, 2016, 2016.

[YS16b] Enes Yigitbas and Stefan Sauer. Engineering context-adaptive UIs for
task-continuous cross-channel applications. In Human-Centered and Error-
Resilient Systems Development - IFIP WG 13.2/13.5 Joint Working Confer-
ence 6th International Conference on Human-Centered Software Engineer-
ing, HCSE 2016, and 8th International Conference on Human Error, Safety,
and System Development, HESSD 2016 Stockholm, Sweden, August 29-31,
2016, Proceedings, pages 281–300, 2016.

References 187

[YSE15] Enes Yigitbas, Stefan Sauer, and Gregor Engels. A model-based frame-
work for multi-adaptive migratory user interfaces. In Human-Computer
Interaction: Interaction Technologies - 17th International Conference, HCI
International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings,
Part II, pages 563–572, 2015.

[YSE17] Enes Yigitbas, Stefan Sauer, and Gregor Engels. Adapt-UI: An IDE support-
ing model-driven development of self-adaptive UIs. In Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS 2017, Lisbon, Portugal, June 26-29, 2017, pages 99–104, 2017.

[YSSE17] Enes Yigitbas, Hagen Stahl, Stefan Sauer, and Gregor Engels. Self-adaptive
UIs: Integrated model-driven development of UIs and their adaptations.
In Modelling Foundations and Applications - 13th European Conference,
ECMFA 2017, Held as Part of STAF 2017, Marburg, Germany, July 19-20,
2017, Proceedings, pages 126–141, 2017.

[zA97] Pinar Öztürk and Agnar Aamodt. Towards a model of context for case-
based diagnostic problem solving. In in Context-97; Proceedings of the
interdisciplinary conference on modeling and using context, (Rio de Janeiro,
pages 198–208, 1997.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Solution Overview and Scientific Contributions
	1.4 Publication Overview
	1.5 Thesis Structure

	2 Foundations
	2.1 Model-Driven User Interface Development
	2.1.1 Background
	2.1.2 Model Driven Architecture
	2.1.3 CAMELEON Reference Framework

	2.2 User Interface Description Languages (UIDLs)
	2.2.1 Overview
	2.2.2 IFML

	2.3 Context-Aware Computing
	2.3.1 Notion of Context
	2.3.2 Context Acquisition and Modeling

	2.4 Self-adaptive Software Systems
	2.4.1 Background: Autonomic Computing
	2.4.2 Self-adaptation and Self-*properties
	2.4.3 Self-adaptive User Interfaces

	2.5 Usability Engineering
	2.5.1 Usability
	2.5.2 Usability Evaluation Methods

	2.6 Technologies
	2.6.1 Angular Framework
	2.6.2 Nools Rule Engine
	2.6.3 Xtext and Xtend

	3 Scenario and Related Work
	3.1 LibSoft - The Running Example
	3.2 Requirements
	3.3 Related Work
	3.3.1 Context Management
	3.3.2 UI Adaptation
	3.3.3 Usability Evaluation

	3.4 Summary

	4 Modeling
	4.1 Language Engineering Approach
	4.2 Modeling Framework for Self-adaptive UIs
	4.3 Context Modeling with ContextML
	4.4 Adaptation Modeling with AdaptML
	4.5 Summary and Discussion

	5 Transformation
	5.1 Transformation Approach Overview
	5.2 UI Generation
	5.2.1 Mapping: DomainModel2AngularClasses
	5.2.2 Mapping: IFML2AngularViews
	5.2.3 Implementation of UI Generator

	5.3 Context Service Generation
	5.3.1 Mapping: ContextML2AngularServices
	5.3.2 Implementation of Context Service Generator

	5.4 Adaptation Service Generation
	5.4.1 Mapping: AdaptML2AngularServices
	5.4.2 Implementation of Adaptation Service Generator

	5.5 Summary and Discussion

	6 Execution
	6.1 Runtime Architecture for Self-adaptive UIs
	6.2 Execution Environment for Self-adaptive UIs
	6.3 Tool-Support: Adapt-UI IDE
	6.3.1 Modeling Workbench
	6.3.2 Code Generators

	6.4 Summary and Discussion

	7 Evaluation
	7.1 Case Studies
	7.1.1 Case-Study 1: Library Application (LibSoft)
	7.1.2 Case-Study 2: E-Mail Application (MailSoft)
	7.1.3 Case studies: Evaluation Discussion

	7.2 Usability Study
	7.2.1 On-the fly Usability Evaluation Solution
	7.2.2 Usability Experiment and Results
	7.2.3 Usability Study: Evaluation Discussion

	7.3 Summary and Discussion

	8 Conclusion and Future Work
	8.1 Summary of Contributions
	8.2 Requirements Revisited
	8.3 Future Work

	References

