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Abstract

Vandalism Detection in Crowdsourced Knowledge Bases

Information systems, such as question answering systems and web search engines,
increasingly rely on crowdsourced knowledge bases to answer questions and to display
important information about entities. While crowdsourcing enables the collection of
vast amounts of information, it also brings along the problem of vandalism and damaging
contributions. In this thesis, we focus onWikidata, the largest structured, crowdsourced
knowledge base on the web, and develop novel machine learning-based vandalism
detectors to reduce the manual reviewing effort. To this end, we carefully develop
large-scale vandalism corpora, vandalism detectors with high predictive performance,
and vandalism detectors with low bias against certain groups of editors. We extensively
evaluate our vandalism detectors in a number of settings, and we compare them to the
state of the art represented by the Wikidata Abuse Filter and the Objective Revision
Evaluation Service by the Wikimedia Foundation. Our best vandalism detector achieves
an area under the curve of the receiver operating characteristics of 0.991, significantly
outperforming the state of the art; our fairest vandalism detector achieves a bias ratio of
only 5.6 compared to values of up to 310.7 of previous vandalism detectors. Overall, our
vandalism detectors enable a conscious trade-off between predictive performance and
bias and they might play an important role towards a more accurate and welcoming
web in times of fake news and biased AI systems.
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Zusammenfassung

Vandalism Detection in Crowdsourced Knowledge Bases

Informationssysteme wie Frage-Antwort-Systeme und Websuchmaschinen verwenden
zunehmend crowdsourcing-basierte Wissensdatenbanken, um Fragen zu beantworten
undwichtige Informationen über Entitäten anzuzeigen. Crowdsourcing ermöglicht zwar
die Sammlung großer Informationsmengen, bringt aber auch das Problem von Vandalis-
mus und schädlichen Beiträgen mit sich. In dieser Arbeit betrachten wir Wikidata, die
größte strukturierte, crowdsourcing-basierteWissensdatenbank imWeb und entwickeln
neuartige Vandalismusdetektoren mittels maschinellem Lernen, um den manuellen
Prüfaufwand zu reduzieren. Dazu entwickeln wir große Vandalismuskorpora, Van-
dalismusdetektoren mit hoher prädiktiver Performanz und Vandalismusdetektoren
mit geringer Voreingenommenheit gegenüber schützenswerten Editorengruppen. Wir
evaluieren unseren Ansatz umfassend in zahlreichen Situationen und vergleichen ihn
mit dem Stand der Technik, der durch den Wikidata Abuse Filter und den Objective
Revision Evaluation Service der Wikimedia Foundation repräsentiert wird. Unser bes-
ter Vandalismusdetektor erreicht eine Fläche unter der Kurve der Receiver Operating
Characteristics von 0,991 und übertrifft damit deutlich den Stand der Technik; unser
fairster Vandalismusdetektor erreicht ein Bias-Verhältnis von lediglich 5,6 im Vergleich
zu Werten von bis zu 310,7 vorheriger Vandalismusdetektoren. Insgesamt ermöglichen
unsere Vandalismusdetektoren einen gezielten Kompromiss zwischen hoher prädiktiver
Performanz und geringem Bias und sie könnten in Zeiten von Fake News und vorein-
genommenen KI-Systemen eine wichtige Rolle für die Richtigkeit der Informationen
im Web spielen und zu einem freundlicheren Klima für Editoren beitragen.

v





Acknowledgments

This dissertation was written at Paderborn University in the research group Database
and Information Systems of Prof. Dr. Gregor Engels. I would like to thank all the people
who were part of my PhD journey. I would especially like to thank my supervisor
Prof. Dr. Gregor Engels for his continuous guidance throughout my PhD, Jun.-Prof.
Dr. Martin Potthast for the long-term collaboration, and Prof. Dr. Hannah Bast for
serving as my reviewer. I thank Prof. Dr. Axel-Cyrille Ngonga Ngomo, Jun.-Prof. Dr.
Henning Wachsmuth, and Dr. Theodor Lettmann for being members of my doctoral
committee. I would like to thank my co-authors and colleagues for many valuable
discussions. Thanks especially to Prof. Dr. Benno Stein, Dennis Wolters, and Yan
Scholten. Finally, I would like to express my gratitude to my parents, family, and friends
for their continuous support. Thank you all!

vii





Contents

1 Introduction 1
1.1 Crowdsourced Knowledge Bases in Information Systems . . . . . . . . 2
1.2 Vandalism in Crowdsourced Knowledge Bases . . . . . . . . . . . . . . 6
1.3 A Need for Machine Learning-Based Vandalism Detection . . . . . . . 8
1.4 Challenges of Machine Learning-Based Vandalism Detection . . . . . . 11
1.5 Overview of Contributions and Publications . . . . . . . . . . . . . . . 13

2 Contributions 19
2.1 Corpus Construction and Analysis . . . . . . . . . . . . . . . . . . . . . 19
2.2 Vandalism Detection with High Predictive Performance . . . . . . . . . 24
2.3 Vandalism Detection with Low Bias . . . . . . . . . . . . . . . . . . . . 38
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Conclusions and Outlook 53
3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 61

ix





1
Introduction

Apple’s Siri called chancellor Merkel a pig; Yahoo called Obama the founder of ISIS;
Google insulted the Cardinals baseball team.1 How can incidents like this happen?
Tracing their causes leads to information systems, such as web search engines and
question answering systems relying on crowdsourced knowledge bases. While crowd-
sourced knowledge bases offer vast amounts of valuable information, they sometimes
get vandalized. Manually reviewing millions of contributions every month, however,
places a high burden on the community of a knowledge base. For combatting vandalism
and supporting reviewers, we develop automatic vandalism detectors in this thesis.
Section 1.1 outlines how crowdsourced knowledge bases are used by information

systems and why we focus on the knowledge base Wikidata in this thesis; Section 1.2
describes the problem of vandalism in crowdsourced knowledge bases; Section 1.3 ar-
gues why we need novel approaches to detect vandalism automatically and what their
requirements are; Section 1.4 identifies research challenges; and finally, Section 1.5 de-
scribes our contribution of novel machine learning-based vandalism detectors to detect
vandalism automatically. This cumulative thesis is based on our publications (Heindorf
et al., 2015, 2016, 2017a,b, 2019a,b).
1The sources of the examples are provided in Section 1.2.
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2 1 Introduction

Figure 1.1: Google’s search result page for the query ‘Barack Obama’ showing an example of
a knowledge panel on the right-hand side (retrieved on October 15, 2016).

1.1 Crowdsourced Knowledge Bases in Information Systems

Information systems heavily rely on knowledge bases: web search engines display
knowledge panels; virtual assistants answer questions; online encyclopedias display
infoboxes; social networks normalize user input about cities, colleges, and movies;
newspapers tag their articles; fact checkers double-check the correctness of information.
Figure 1.1 shows one of the largest deployments of knowledge bases: Google extracts
information about entities, such as people, places, movies, and books, from Wikipedia
and Wikidata, and displays the information in knowledge panels. This often suffices to
answer queries directly without users having to browse the links. Users have grown
accustomed to these mechanisms, and expect the information to be correct.

In the following, we give a brief overview of what a knowledge base is, how knowl-
edge bases can be categorized, and why we focus on the knowledge base Wikidata in
this thesis. A knowledge base is “a database designed to meet the complex storage and
retrieval requirements of computerized knowledge management, especially in support
of artificial intelligence or expert systems.”2 Originally, knowledge bases were primarily
employed by expert systems; nowadays, their primary applications have shifted towards
2https://en.wiktionary.org/wiki/knowledge_base

https://en.wiktionary.org/wiki/knowledge_base
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Figure 1.2: Taxonomy of knowledge bases (KBs)

information retrieval by web search engines and question answering by virtual assis-
tants. Perhaps the most widely used knowledge bases as of today are Wikipedia and
Wikidata, as they are publicly available and cover a wide range of domains relevant to a
large audience. Figure 1.2 shows examples of knowledge bases and their categorization
according to four key characteristics:

1. Availability It can be distinguished whether a knowledge base is publicly
available to the research community or not. For example, Wikipedia andWikidata
are publicly available under permissive licenses, whereas the Google Knowledge
Graph is not. Private knowledge bases, however, often include data from public
knowledge bases; hence, improving the latter helps the former, too.
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2. Construction paradigm Knowledge bases can be constructed—to various
degrees—manually or automatically. For example, Wikidata and Freebase are
manually constructed by the crowd, OpenCyc is manually constructed by (paid)
editors, while DBpedia and YAGO are automatically constructed by extracting
information from Wikipedia. Proprietary knowledge graphs such as those by
Google, Bing, and Yahoo automatically combine data from multiple sources,
including Wikipedia and Wikidata. Besides their primary construction princi-
ples, real-world knowledge bases often employ a combination of construction
principles. For example, some Wikidata editors automate routine tasks with
bots, and DBpedia’s editors manually contribute extraction rules. Proprietary
knowledge graphs that are constructed automatically offer facilities to manu-
ally overwrite results, e.g., to immediately correct high-profile errors making
headlines in the news. Both manual and automatic knowledge bases face quality
problems, albeit for different reasons. Manually constructed knowledge bases
rely on the trustworthiness of their editors. Automatic knowledge bases rely on
complex and error-prone heuristics. Many automatic knowledge bases extract
data from Wikipedia, which is manually created by the crowd, thus inheriting
the errors from the crowd and adding extraction errors. Manual knowledge bases
often serve as high-quality training data for machine learning-based information
extractors (Mintz et al., 2009; Dong et al., 2014).

3. Knowledge representation Knowledge bases can be distinguished by
whether they contain structured data, e.g., in the form of subject-predicate-object
triples, or unstructured data, such as web pages, natural language texts, audio,
or video. Prominent examples of structured knowledge bases include Wikidata,
DBpedia, and YAGO, whereas Wikipedia is an example of an unstructured knowl-
edge base. Quora, YouTube, web crawls, and the Internet Archive can be consid-
ered unstructured knowledge bases, too. While unstructured knowledge bases can
contain a range of information, this information is hardly accessible by machines.

4. Domain specificity Knowledge bases can be categorized by their domain
specificity. While some knowledge bases cover specific topics, such as maps,
proteins, movies, or music, open domain knowledge bases cover a wide range of
domains, which are often relevant to web search engines and the general public.
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In this thesis, we focus on Wikidata (Vrandečić and Krötzsch, 2014), the largest
structured, crowdsourced knowledge base on the web. Structured knowledge bases are
widely used in many applications ranging from Wikipedia infoboxes to web search
engines and question answering systems. Manually creating a large-scale structured
knowledge base, requires substantial effort: one of the first and most ambitious struc-
tured knowledge bases, CyC, was created by experts in over 900 person-years (Lenat and
Guha, 1989; Lenat, 2008). For better scalability, a trend towards crowdsourcing knowl-
edge can be observed—where the crowd refers to “a large group of people and especially
from the online community rather than from traditional employees or suppliers.”3 For
example, over 20,000 person-years were required for the English Wikipedia until 2011
alone (Geiger and Halfaker, 2013). Similarly, the structured knowledge base Wikidata is
built by the crowd, and despite its recent launch in 2012, as of October 2019, Wikidata
already contains over 60 million entities created in over 1 billion edits,4 surpassing the
English Wikipedia’s 6 million articles created in about 900 million edits.5 Until recently,
another prominent knowledge base in this category was Freebase (Bollacker et al., 2008),
which was originally developed by Metaweb and acquired by Google. However, Google
has discontinued the project, and the data is being integrated into Wikidata (Pellissier
Tanon et al., 2016). Similarly, the public subset of CyC, OpenCyc, is no longer available
as of 2017, further raising the relevance of Wikidata.
Compared with other public knowledge bases such as DBpedia, YAGO, OpenCyc,

and NELL, Wikidata contains the most entities and triples (Ringler and Paulheim, 2017),
and although Freebase had 60 million entities and 3 billion triples when shut down,6

Färber et al. (2017) found Wikidata to be more complete with respect to relevant entities
from a golden set. In fact, Wikidata “shows an excellent performance for both well-
known and rather unknown entities” (Färber et al., 2017), and it was found to have the
highest overall quality among the public knowledge bases DBpedia, Freebase, OpenCyc,
and YAGO, comparing them along quality dimensions, such as accuracy, completeness,
consistency, and timeliness (Färber et al., 2017).
3https://www.merriam-webster.com/dictionary/crowdsource
4https://www.wikidata.org/wiki/Special:Statistics
5https://en.wikipedia.org/wiki/Special:Statistics
6https://web.archive.org/web/20160501004947/http://www.freebase.com/

https://www.merriam-webster.com/dictionary/crowdsource
https://www.wikidata.org/wiki/Special:Statistics
https://en.wikipedia.org/wiki/Special:Statistics
https://web.archive.org/web/20160501004947/http://www.freebase.com/


6 1 Introduction

1.2 Vandalism in Crowdsourced Knowledge Bases

Crowdsourcing projects such as Wikipedia have shown that the crowd can be
trusted to create one of the largest encyclopedias in the world gathering “the sum of
all human knowledge”.7 Allowing everybody to edit the knowledge base with little
barriers—even without registering—encourages many people to contribute. However,
this freedom-to-edit model occasionally leads to vandalism, which Wikidata defines
as “deliberate attempt to damage or compromise the integrity of Wikidata.”8 This
definition distinguishes intentional from unintentional damage, excluding the latter.
However, for data consumers, the correctness of the data counts regardless of the
intention of the editor. Hence, the literature often generalizes vandalism detection
to damage detection (Kiesel et al., 2017). We follow this approach and use the terms
damage and vandalism synonymously in this thesis. While some previous work focuses
on detecting vandals (Kumar et al., 2015), we follow a more fine-grained approach and
focus on vandalism, i.e., damaging edits instead of damaging editors, since edits are of
varying quality and Wikidata data consumers are primarily interested in the quality
of the data. Notable examples of vandalism that originated in a knowledge base and
spread to information systems include:

• Apple’s Siri calls chancellor Angela Merkel a pig9

• Yahoo’s knowledge panels call Barack Obama the founder of ISIS10

• Google’s knowledge panels insult the Cardinals baseball team.11

All of these examples were caused by vandalism in the underlying knowledge bases
and hurt the companies with bad publicity. The examples show that vandalism often
contains vulgar and bad words. Other types of vandalism include the removal of
valuable content, the insertion of random keystrokes, sneaky vandalism that is hard to
spot, as well as sloppy mistakes.
7https://en.wikiquote.org/wiki/Jimmy_Wales
8https://www.wikidata.org/wiki/Wikidata:Vandalism
9http://www.spiegel.de/netzwelt/gadgets/siri-beleidigt-angela-merkel-gefaelschter-wikipedia-eintrag-
a-1054790.html

10https://www.mercurynews.com/2016/08/22/president-obama-founded-isis-according-to-yahoo/
11https://www.riverfronttimes.com/newsblog/2013/10/28/some-12-year-old-boy-has-hacked-the-
cardinals-wikipedia-page

https://en.wikiquote.org/wiki/Jimmy_Wales
https://www.wikidata.org/wiki/Wikidata:Vandalism
https://web.archive.org/web/20151006183414/http://www.spiegel.de/netzwelt/gadgets/siri-beleidigt-angela-merkel-gefaelschter-wikipedia-eintrag-a-1054790.html
http://www.spiegel.de/netzwelt/gadgets/siri-beleidigt-angela-merkel-gefaelschter-wikipedia-eintrag-a-1054790.html
https://web.archive.org/web/20151006183414/http://www.spiegel.de/netzwelt/gadgets/siri-beleidigt-angela-merkel-gefaelschter-wikipedia-eintrag-a-1054790.html
http://www.spiegel.de/netzwelt/gadgets/siri-beleidigt-angela-merkel-gefaelschter-wikipedia-eintrag-a-1054790.html
https://web.archive.org/web/20190212094652/https://www.mercurynews.com/2016/08/22/president-obama-founded-isis-according-to-yahoo/
https://www.mercurynews.com/2016/08/22/president-obama-founded-isis-according-to-yahoo/
https://web.archive.org/web/20151104021321/https://www.riverfronttimes.com/newsblog/2013/10/28/some-12-year-old-boy-has-hacked-the-cardinals-wikipedia-page
https://web.archive.org/web/20151104021321/https://www.riverfronttimes.com/newsblog/2013/10/28/some-12-year-old-boy-has-hacked-the-cardinals-wikipedia-page


1.2 Vandalism in Crowdsourced Knowledge Bases 7

Wikidata shares the same problem of spreading false information to its data con-
sumers, but its structured data intensifies the problem: (1) The data is used for many
novel applications ranging from knowledge panels and question answering to fact-
checking. (2) Question answering systems return a single answer without offering
an easy opportunity for double-checking the provided information, thus increasing
demands on data correctness. (3) Structured data is often used to infer new facts, e.g.,
by traversing the type hierarchy, the family tree of people, and biological taxonomies.
Errors encountered on the path accumulate and must be avoided as far as possible.
Examples of Wikidata vandalism include:

• Changing Barack Obama’s description from “44th President of the United States
of America” to “worst president ever”12

• Changing Barack Obama’s type from “human” (Q5) to “extraterrestrial life”
(Q181508)13

• Changing Barack Obama’s spouse from “Michelle Obama” (Q13133) to “Peter
Piper” (Q7176398)14

The first example affects the textual description of an item, which is part of an item’s
head. The second and third examples affect subject-predicate-object triples, which are
part of an item’s body. Wikidata does not enforce any constraints on head and body
content and accepts everything that syntactically fits its data model.

Vandalism examples might be categorized according to different criteria. Regarding
the content that is vandalized, we found that vandalism often affects famous people,
such as politicians, soccer players, and musicians, whereas geographic places, such as
cities, regions, rivers, and mountains are seldom vandalized. Regarding the registration
status of editors, we found that the majority of vandalism originates from anonymous,
unregistered users. However, banning anonymous users would not be a solution,
since (1) most edits by anonymous users are benign,15 (2) many new contributors start
their editing career anonymously before registering,16 (3) vandals could easily register,
and (4) banning anonymous users contradicts the founding principles of Wikimedia.17

12https://www.wikidata.org/w/index.php?diff=prev&oldid=7375872
13https://www.wikidata.org/w/index.php?diff=prev&oldid=318726704
14https://www.wikidata.org/w/index.php?diff=prev&oldid=48347290
15https://en.wikipedia.org/wiki/Wikipedia:IPs_are_human_too
16https://en.wikipedia.org/wiki/Wikipedia:Perennial_proposals
17https://meta.wikimedia.org/wiki/Founding_principles

https://www.wikidata.org/w/index.php?diff=prev&oldid=7375872
https://www.wikidata.org/w/index.php?diff=prev&oldid=318726704
https://www.wikidata.org/w/index.php?diff=prev&oldid=48347290
https://en.wikipedia.org/wiki/Wikipedia:IPs_are_human_too
https://en.wikipedia.org/wiki/Wikipedia:Perennial_proposals
https://meta.wikimedia.org/wiki/Founding_principles
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Further categorizations of vandalism might be performed according to data quality
dimensions. Data quality can be broken down into quality dimensions, such as accuracy,
completeness, consistency, and timeliness (Wang and Strong, 1996; Zaveri et al., 2013).
Vandalism primarily affects the accuracy dimension of data quality, but other dimensions
are affected, too. For example, removing valuable content reduces the completeness of
the knowledge base, and the accuracy must always be assessed with respect to time,
since, for example, the position held by a politician changes over time.
Another categorization might be based on motivational factors and personality

traits of vandals. Shachaf and Hara (2010) studied people performing vandalism on
Wikipedia (called trolls) by investigating examples of vandalism and interviewing
Wikipedia administrators that often encounter vandalism. They identified three motiva-
tional factors: (1) boredom, attention seeking, and revenge, (2) fun and entertainment,
and (3) damage to the community and other people. Buckels et al. (2014) investigated the
relationship of internet trolls18 to personality traits such as sadism, Machiavellianism,
narcissism, psychopathy, finding the strongest association with sadism. These motiva-
tional factors and personality traits might be used to categorize vandals; however, we
do not follow this route, as the distinction is rather fluid, and we focus on fine-grained
edits instead of coarse-grained editors.

1.3 A Need for Machine Learning-Based Vandalism Detection

Detecting vandalism means detecting damaging contributions to a crowdsourced
knowledge base. Until recently, the Wikidata community had to rely on two suboptimal
solutions to detect vandalism: (1) manually reviewing edits and (2) a rule-based abuse
filter. In the following, we point out their limitations, why we experiment with machine
learning in this thesis, and what the requirements of our approach are.
Reviewers often inspect the (recent) edits in the knowledge base’s edit history, and

when a damaging edit is encountered, the edit is reverted. Manually reviewing millions
of edits every month, however, imposes a heavy workload on the community of a
knowledge base. It leads to delays in the reviewing process in which vandalism is widely
visible. Moreover, the time that volunteers spend with tedious reviewing might be
better spent to improve the knowledge base in other ways, such as adding and updating
18Trolls are vandals who intent to provoke an angry reaction in other users (https://en.wikipedia.org/
wiki/Wikipedia:Vandals_versus_Trolls).

https://en.wikipedia.org/wiki/Wikipedia:Vandals_versus_Trolls
https://en.wikipedia.org/wiki/Wikipedia:Vandals_versus_Trolls
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content. While reverting vandalism is the most common reaction, two additional
measures are blocking users and protecting pages. However, both user blocks and page
protections contradict the open philosophy of Wiki projects, and they are not allowed
as preemptive measures.19 Thus, regardless of the countermeasure, vandalism has to
be detected first.

In addition to manual reviewing, Wikidata administrators can add rules to an abuse
filter, which automatically tags revisions that are likely vandalism. The current rule-
based abuse filter, however, has only a small number of rules and detects only a small
fraction of vandalism cases. Extending the number of rules, only partially helps, since
creating and continuously updating a large number of fine-grained rules leads to
maintainability issues due to the variety of vandalism.

To circumvent these limitations, the aim of this thesis is to explore machine learning
for automatic vandalism detection in crowdsourced knowledge bases and in how far it
outperforms currently available alternatives. “Machine learning algorithms can figure
out how to perform important tasks by generalizing from examples. This is often feasible
and cost-effective where manual programming is not” (Domingos, 2012). In recent years
the use of machine learning has increased rapidly, and it has been successfully used for
applications such as spam filters, credit scoring, and fraud detection (Domingos, 2012).

A Need for a Vandalism Corpus

In order to develop machine learning-based approaches to detect damaging edits, an
appropriate dataset is required. The corpus should cover a real-world, current knowl-
edge base in order to be useful in practice and to cover current vandalism patterns,
which might evolve over time; the corpus should be large to enable machine learning
approaches, which benefit from large amounts of training data; the corpus should
be labeled to enable supervised machine learning, which generally outperforms un-
supervised approaches; the corpus should be labeled in a way that is robust against
manipulations by vandals who might try to circumvent detection; and the corpus should
be self-contained to enable reproducible results.
19https://en.wikipedia.org/wiki/Wikipedia:Blocking_policy
https://en.wikipedia.org/wiki/Wikipedia:Protection_policy

https://en.wikipedia.org/wiki/Wikipedia:Blocking_policy
https://en.wikipedia.org/wiki/Wikipedia:Protection_policy
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A Need for a Vandalism Detector with High Predictive Performance

For reducing manual reviewing effort, a vandalism detector with high predictive per-
formance is necessary. (1) Vandalism detectors should assign each edit a vandalism
score denoting the likelihood of vandalism. Edits with a high score can be reverted fully
automatically; edits with a medium score can be ordered by their score to prioritize
reviewing efforts; edits with low scores might not be reviewed at all. (2) Vandalism
detectors should score edits as soon as possible such that vandalism can be reverted
in a timely manner, and does not spread to a large audience. (3) Vandalism detectors
should have a high predictive performance across a wide range of operating points to
make them suitable for automatic detection with high precision, for semi-automatic
detection with high recall, as well as for ranking.

A Need for a Vandalism Detector with Low Bias

Although the discrimination of anonymous editors has long been condemned by the
community,20 both rule-based and machine learning-based approaches have not been
optimized for fairness yet. We found, for example, that benign edits by anonymous
editors receive vandalism scores over 300 times higher than benign edits by registered
editors raising multiple issues: (1) Newcomers often start their editing career anony-
mously before registering,21 and reverting benign edits by newcomers severely affects
newcomer retention (Halfaker et al., 2011, 2013; Schneider et al., 2014), thus jeopar-
dizing the long-term sustainability of crowdsourced projects like Wikidata. (2) Such
a widespread discrimination of editors undermines the founding principles on which
Wikimedia’s projects are built:22 the ability of anyone to edit articles, and the creation
of a welcoming environment. (3) It might violate the “Ethics Guidelines for Trustworthy
AI” by the European Union as well as similar guidelines by IEEE, and large companies,
such as Google, Microsoft, and IBM, with respect to fairness principles.23 Generally, the
fairness of machine learning models recently gets considerable attention from policy
20https://en.wikipedia.org/wiki/Wikipedia:IPs_are_human_too
21https://en.wikipedia.org/wiki/Wikipedia:Perennial_proposals
22https://meta.wikimedia.org/wiki/Founding_principles
23https://ec.europa.eu/futurium/en/ai-alliance-consultation/
https://ethicsinaction.ieee.org/
https://ai.google/principles/
https://www.microsoft.com/en-us/ai/our-approach-to-ai
https://www.ibm.com/watson/ai-ethics/

https://en.wikipedia.org/wiki/Wikipedia:IPs_are_human_too
https://en.wikipedia.org/wiki/Wikipedia:Perennial_proposals
https://meta.wikimedia.org/wiki/Founding_principles
https://ec.europa.eu/futurium/en/ai-alliance-consultation/
https://ethicsinaction.ieee.org/
https://ai.google/principles/
https://www.microsoft.com/en-us/ai/our-approach-to-ai
https://www.ibm.com/watson/ai-ethics/
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makers and the general public—as evidenced by ethics guidelines and investigative
journalism24—making it increasingly important to address such issues.
Overall, vandalism detectors should treat important groups of editors fairly, e.g.,

anonymous and new users, such that these groups do not abandon the project because
they feel treated unfairly. To this end, it is necessary to analyze how much existing
vandalism detectors are biased, how their biases can be reduced, and what the trade-offs
in terms of bias and predictive performance are.

1.4 Challenges of Machine Learning-Based Vandalism Detection

Our central research qestion can be stated as

Q: How to detect damaging contributions to structured, crowdsourced knowl-
edge bases automatically?

As motivated before, in this thesis, we tackle the question with machine learning and
break it down into three sub-questions:

Q1: How to construct a vandalism corpus for structured, crowdsourced knowl-
edge bases?

Q2: How to detect damaging contributions to structured, crowdsourced knowl-
edge bases with high predictive performance?

Q3: How to detect damaging contributions to structured, crowdsourced knowl-
edge bases with low bias?

In the following, we briefly overview the state of the art related to these questions.

Lack of a Vandalism Corpus

Sarabadani et al. (2017) compiled a vandalism dataset simultaneously to us. They took a
sample of manual edits, automatically determined reverted edits, and applied additional
heuristics. Their dataset, however, is not based onWikidata’s entire history and contains
only 500,000 edits from 2015, including less than 700 vandalism examples (in contrast
to 200,000 of our corpus; Heindorf et al., 2017a). While their list of edits is publicly
available, they have not published their data as a self-contained corpus to enable
24https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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reproducible results, and they provide little insights into the characteristics of vandalism.
Tan et al. (2014) compiled a dataset of low-quality contributions to Freebase, but the
usefulness of the data is diminished by the fact that Google has shut down the project,
and no new edits are being made. To the best of our knowledge, no other labeled datasets
for structured knowledge bases are available. While Neis et al. (2012) develop a rule-
based vandalism detector for OpenStreetMap, and Truong et al. (2018) a clustering-based
detector for OpenStreetMap, neither of them constructs a labeled dataset.

Lack of a Vandalism Detector

The Wikimedia Foundation developed a machine learning-based vandalism detector
for Wikidata simultaneously to us (Sarabadani et al., 2017). They employ a random
forest model with 14 features taking into account the edited content, the editor, and the
edit operation (Sarabadani et al., 2017; Heindorf et al., 2017b). We include their features
in our candidate set for feature selection and add many more features. Moreover,
we experiment with multiple-instance learning, and demonstrate that our approach
significantly outperforms theirs in a number of settings ranging from different types of
content to different points in time. Before, the Wikimedia Foundation had to rely on
substantial manual reviewing efforts and a rule-based abuse filter, whose performance
had never been systematically evaluated. Tan et al. (2014) tackled the problem of
automatically detecting low-quality contributions to Freebase, which has been shut
down and whose data model and user community differ from Wikidata, leaving it
unclear how well vandalism detection can be detected automatically in today’s largest
active crowdsourced knowledge base, Wikidata. Our model integrates Tan et al.’s
best-performing features, complements them by further features tailored to Wikidata,
and evaluates them on a large-scale, up-to-date dataset.

Lack of a Vandalism Detector with Low Bias

None of the existing vandalism detectors goes beyond optimizing predictive perfor-
mance and aims for fair predictions. Most vandalism detectors rely on biased user
features, such as the geolocation of IP addresses, the age of user accounts, or the lan-
guage of edited content (West et al., 2010; Adler et al., 2011; Heindorf et al., 2017b).
While these features are easy to obtain, they do not directly assess the quality of an
edit and harm some benign editors.
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Figure 1.3: Vandalism detector in the context of a crowdsourced knowledge base.

Berk et al. (2018) survey the state of the art of fair machine learning: They give
an overview of different notions of fairness, hint at potential means of increasing
fairness, and outline what is known about trade-offs between fairness and predictive
performance. In our work, we employ the fairness notion equality of opportunity (Hardt
et al., 2016), argue why it is suitable for our problem, and adapt it to continuous scores.
Countermeasures for debiasing can be categorized as pre-processing, in-processing, and
post-processing (Berk et al., 2018): pre-processing includes modifications of datasets,
weighting of training samples, and modification of feature sets; in-processing includes
modifications of machine learning algorithms; post-processing includes modifications
of predictions. Since it is not clear what method works best for our problem of vandalism
detection, we experiment with many of the methods and evaluate them in terms of
predictive performance and bias. While trade-offs between accuracy and fairness are
explored by Berk et al. (2018), Kleinberg et al. (2017), Corbett-Davies et al. (2017), and
Chouldechova (2017), performance measures for imbalanced datasets such as PRAUC

and ROCAUC are not considered. Wikidata makes for an interesting case study for fair
vandalism detection, since its subject-predicate-object triples allow to pay particular
attention to the content of an edit rather than its meta data.

1.5 Overview of Contributions and Publications

Our envisioned vandalism detector in the context of a crowdsourced knowledge
base is depicted in Figure 1.3: A large number of editors from the crowd edit the
knowledge base, sometimes vandalizing it. Each edit results in a new revision within the
knowledge base’s revision history, and revisions are scored immediately by a vandalism
detector. Based on the scores, reviewers inspect revisions and rollback damaging ones.
Reviewers’ decisions might serve for training new vandalism detectors.
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Figure 1.4: Overview of the three main contributions of this thesis: (1) We construct and an-
alyze a vandalism corpus. (2) We develop a machine learning approach with high predictive
performance. (3) We develop a machine learning approach with low bias.

The three main contributions of this thesis regarding the novel task of vandalism
detection in the crowdsourced, structured knowledge base Wikidata are shown in
Figure 1.4: (1) We construct the first large-scale vandalism corpus and perform an
analysis of the corpus. (2) We develop a new machine learning approach for vandalism
detection with high predictive performance by engineering features, optimizing models,
and evaluating them. (3) We develop a vandalism detector that increases fairness
towards anonymous users, thus promoting the retention of editors and the long-term
sustainability of the knowledge base. All data and source code underlying our research
is available as open source to enable the reproducibility of our results and to enable
future research.25 In the following, we detail our contributions.

Corpus Construction and Analysis

We compile the first large-scale corpus ofWikidata vandalism calledWikidata Vandalism
Corpus WDVC-2015, which comprises over 24 million revisions of which 100,000 are
labeled as vandalism (Heindorf et al., 2015). Moreover, we conduct a corpus analysis
to investigate what content is vandalized, who the vandals are (Heindorf et al., 2015),
and what potential features for vandalism detection are (Heindorf et al., 2016). We
25http://www.heindorf.me/wdvd

http://www.heindorf.me/wdvd
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carefully split the dataset into subsets for training, validation, and testing to avoid
“information leaks” (Heindorf et al., 2016). Moreover, we construct an updated version
of our corpus, calledWDVC-2016 (Heindorf et al., 2017b), for evaluating the submissions
to the WSDM Cup 2017, the data science challenge that we organized to drive progress
on the vandalism detection task.

Vandalism Detection with High Predictive Performance

In Heindorf et al. (2016), we contribute a new machine learning-based approach for van-
dalism detection inWikidata, calledWikidata Vandalism Detector (WDVD). We develop
and carefully analyze features taking into account both content and context information
of a Wikidata revision to obtain a set of 47 high-performing features. Experimenting
with different machine learning algorithms and carefully tuning their hyperparameters,
we find multiple-instance learning—which exploits the dependence of consecutive edits
by the same editor on the same item (i.e., within an editing session)—to outperform
all other models that we tried. Our best model based on multiple-instance learning on
top of bagging and random forests achieves an area under the curve of the receiver
operating characteristic (ROCAUC) of 0.991 and significantly outperforms the state of the
art represented by the rule-based Wikidata Abuse Filter, FILTER (0.865 ROCAUC), and
the machine learning-based Objective Revision Evaluation Service by the Wikimedia
Foundation, ORES (0.859 ROCAUC), on the Wikidata Vandalism Corpus WDVC-2015.
We extensively evaluate our approach in a number of settings, including algorithms,
hyperparameters, content types, feature groups, and performance over time.

In Heindorf et al. (2017a,b), we report the results of theWSDMCup 2017. We compare
our approach to the submissions of the five participating teams in terms of features,
model variants, and predictive performance. Only two teams were able to slightly
outperform our approach in terms of ROCAUC; none of the teams outperformed our
approach in terms of PRAUC, thus stressing the strength of our approach. Moreover, we
developed an ensemble of all approaches, outperforming them in terms of ROCAUC.

Vandalism Detection with Low Bias

To the best of our knowledge, we present the first machine learning approach for
detecting damaging contributions to online communities aiming to make fair predic-
tions (Heindorf et al., 2019a,b). We carefully analyze biases in state-of-the-art Wikidata
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Table 1.1: Overview of publications underlying this thesis in terms of venue, Core ranking,
number of pages, and corresponding section in thesis.

Publication Venue Core Pages Main contribution

Heindorf et al. (2015) SIGIR A* 4 2.1 Corpus construction
Heindorf et al. (2016) ✩ CIKM A 10 2.2 High predictive performance
Heindorf et al. (2017a) WSDM A* 2 2.2 High predictive performance
Heindorf et al. (2017b) WSDM Cup — 9 2.2 High predictive performance
Heindorf et al. (2019a) WWW A* 11 2.3 Low bias
Heindorf et al. (2019b) INFORMATIK — 2 2.3 Low bias

✩ ACM Best Paper Award at CIKM 2016

vandalism detectors, and develop two novel models that have a low bias against anony-
mous users, who may withdraw from the project if treated unfairly: Our model FAIR-E
employs graph embeddings, focusing on the content of an edit rather than biased user
information. Our model FAIR-S selects the most predictive hand-engineered features
under the constraint that no user features are used. For comparison, we experiment with
two transformations of the state-of-the-art vandalism detector WDVD: post-processing
scores and weighting training samples. We evaluate our models on a subset of the
large-scale Wikidata Vandalism Corpus 2016 and find that FAIR-E and FAIR-S signifi-
cantly reduce the bias ratio to only 5.6 and 11.9, respectively, from over 310.7 in case
of WDVD. Compared to WDVD’s transformations based on post-processing scores and
weighting training samples, our models FAIR-E and FAIR-S are significantly simpler,
hence, better suitable to explain predictions to editors, and achieve roughly similar
trade-offs in terms of predictive performance and bias.

Publications

Table 1.1 overviews the publications underlying this thesis. Heindorf et al. (2015)
describe our corpus construction and analysis. Heindorf et al. (2016) introduce our
Wikidata vandalism model, and report on its optimization and evaluation. Heindorf
et al. (2017a) and Heindorf et al. (2017b) evaluate our approach by comparing it with
third-party submissions to the WSDM Cup 2017. Heindorf et al. (2019a) and Heindorf
et al. (2019b) analyze biases of vandalism detectors and develop novel approaches to
significantly reduce biases against anonymous editors.
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Structure of Thesis

Having motivated our work in this chapter, Chapter 2 summarizes our three main
contributions and presents them in a coherent way. Chapter 3 concludes the thesis with
a summary and outlook on future research directions.





2
Contributions

This chapter describes our three main contributions: in Section 2.1, we construct
vandalism corpora; in Section 2.2, we create vandalism detectors with high predictive
performance; in Section 2.3, we create fair vandalism detectors with low bias against
certain groups of editors. We discuss our findings in Section 2.4. This chapter is based on
our publications (Heindorf et al., 2015, 2016, 2017a,b, 2019a,b) and provides a coherent
presentation of our main findings.

2.1 Corpus Construction and Analysis

Following a data-driven approach for developing vandalism detectors, we need
suitable datasets for engineering features, optimizing machine learning models, and
evaluating themodels. In this section, we describe our corpus constructionmethodology,
validate the methodology, analyze what content is vandalized in Wikidata, who the
vandals are, and describe our dataset split for training, validating, and testing models.

2.1.1 Corpus Construction Methodology

Our goal is to derive large-scale, labeled vandalism corpora that are suitable for analyz-
ing vandalism in Wikidata and training supervised machine learning-based vandalism
detectors. Moreover, we aim for a construction methodology that is robust against
manipulation by vandals. We derive our vandalism corpora from Wikidata database

19
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Table 2.1: Construction of the Wikidata Vandalism Corpus 2015 (WDVC-2015) from the
Wikidata edit history.

Wikidata revisions until October 2014 167,802,227 100%

w/o revisions on meta pages 1,211,628 1%
w/o revisions on special items 11,167 0%
w/o revisions by automatic bots 142,574,999 85%

WDVC-2015 24,004,433 14%

dumps which contain the full revision history of Wikidata and are provided by theWiki-
media Foundation under a permissive CC0 license.1 Our ground truth labels—benign or
vandalism—are derived from the decisions of Wikidata administrators and privileged
users who review edits and revert them if they find vandalism. For reverting edits, the
Wikidata software offers a rollback2 feature that is explicitly meant to revert vandalism
and allows privileged users to revert damaging edits with one click. The rollback op-
eration is recorded in Wikidata’s edit history and allows to determine what revisions
were reverted, thus yielding examples of vandalism and benign revisions. Moreover, we
restrict our dataset to manual revisions on Wikidata items (see Table 2.1): we filter out
revisions onmeta pages, such as user talk pages and property pages, revisions on special
items, such as test items, and revisions by automatic bots, e.g., for simple maintenance
tasks. We believe damaging edits by bots are more systematic and should be dealt with
separately, e.g., by improving the reviewing process of bots and the bots themselves.
Our corpora are publicly available to enable reproducible results.3

2.1.2 Corpus Validity

To validate our corpus construction methodology, which is based on the rollback
decisions byWikidata administrators and privileged users, we manually double-checked
a random sample of 1,000 revisions that were rollback reverted and 1,000 revisions that
were not reverted. About 86% of the rollback revisions turned out to be vandalism while
only about 1% of the non-reverted revisions. We experimented with other means of
constructing the corpus, e.g., using the undo/restore feature that cannot only be used
1https://dumps.wikimedia.org/legal.html
2https://www.wikidata.org/wiki/Wikidata:Rollbackers
3https://www.heindorf.me/wdvd

https://dumps.wikimedia.org/legal.html
https://www.wikidata.org/wiki/Wikidata:Rollbackers
https://www.heindorf.me/wdvd
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by privileged users but all users. However, we found the rollback feature to yield a
significantly larger amount of vandalism and that at a significantly higher precision—
possibly due to administrators and privileged users having a lot of experience and being
familiar with the intricate details ofWikidata. Moreover, focusing on administrators and
privileged users makes our corpus construction methodology robust against vandals
trying tomanipulate our training data since people need to earn the trust of theWikidata
community before being granted the right to rollback revisions.

2.1.3 Corpus Analysis

Using the corpus constructionmethodology described above, we identified about 100,000
out of 24 million manual revisions as vandalism inWikidata’s history from October 2012
to October 2014 (Wikidata VandalismCorpusWDVC-2015) and about 200,000 vandalism
revisions from October 2012 until June 2016 (Wikidata Vandalism Corpus WDVC-2016).
Figure 2.1 shows our data over time. The total number of edits per month is increasing
over time (top) with about 2 million edits per month towards the end ofWDVC-2015 and
about 5 million edits per month towards the end of WDVC-2016. The number of vandal-
ism edits per month varies without a clear trend (bottom) and stays at around 5 thousand
vandalism edits per month. Moreover, we break the total number of edits down by
content type: Head content is shown on the top of a Wikidata page and includes labels,
descriptions, and aliases in up to 375 supported languages. It is used for rendering
the data in human-readable form, for example, on Wikidata pages and in Wikipedia
infoboxes, thus being visible to a large audience. Body content is shown below on the
Wikidata page and includes statements and sitelinks and makes up the core of the actual
knowledge graph. We attribute the increases in edits per month around May 2014 to
the emergence of semi-automatic editing tools for Wikidata, such as Wikidata Game,
allowing to make large amounts of edits in a short amount of time, e.g., by confirming
or refusing edits suggested by simple rule-based scripts. We attribute the drop in head
vandalism in April 2015 to the redesign of Wikidata’s user interface around this time,
which makes it less obvious to edit head content and might deter many drive-by van-
dals. Before May 2013, Wikidata’s statements often had no automatically generated
comment (“Misc” in Figure 2.1) that we employ in our analysis.
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Figure 2.1: Vandalism corpora WDVC-2015 and WDVC-2016 over time in terms of total edits
per month (top) and vandalism edits per month (bottom). Colors indicate different content
types. Dashed lines indicate the split into training, validation, and test sets.

We analyzed what content is vandalized and who the vandals are. Table 2.2 (left and
middle) displays the topmost vandalized items and item categories (in terms of editing
sessions). The table shows that Wikidata items about people—particularly famous
soccer players and musicians—are often vandalized, whereas items about places, such
as cities, mountains, rivers, are relatively seldom vandalized. Regarding the part of
an item (Table 2.2, right) that is vandalized, we found that there are about 4 times
more edits affecting the item body consisting of statements and sitelinks than edits
affecting the item head consisting of labels, descriptions, and aliases. The total number
of vandalism edits affecting item heads and bodies is similar, requiring a vandalism
detector to work well on both parts of an item. Overall, about 0.4% of revisions are
labeled vandalism, 1.4% of head revisions and 0.2% of item revisions.
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Table 2.2: Vandalism analysis in the Wikidata Vandalism corpus WDVC-2015. Top van-
dalized items (left); top vandalized categories and top edited categories in a sample of
1000 items each (middle). Vandalism by item part and user registration status (right).

Cases Item title

47 Cristiano Ronaldo
43 Lionel Messi
43 One Direction
41 Portal:Featured content
34 Justin Bieber
33 Barack Obama
29 English Wikipedia
29 Selena Gomez

Category Vand. All

Culture 20% 12%
People 20% 21%
Society 16% 9%
Nature 14% 15%
Meta items 13% 8%
Technology 9% 4%
Places 8% 31%
Other 1% 1%

Item Part Vand. Total
Head 58,868 4,296,817
Body 41,475 17,201,518
Misc 2,862 2,506,098
Total 103,205 24,004,433

Users Vand. Total

Anonymous 88,592 768,027
Registered 14,613 23,236,406
Total 103,205 24,004,433

Investigating who vandalizes Wikidata (Table 2.2, bottom right), we found that about
86% of vandalism on Wikidata originates from anonymous users (88,592 of 103,205).
Nevertheless, only about 12% of edits by anonymous users are vandalism (88,592
of 768,027). Together with the fact that the open philosophy of Wikidata encourages
edits by anonymous users, this is no justification to block all edits by anonymous users,
and such edits must be considered in a more differentiated way.

2.1.4 Datasets for Training, Validating, and Testing Models

“The fundamental goal of machine learning is to generalize beyond the examples in the
training set. This is because, no matter how much data we have, it is very unlikely that
we will see those exact examples again at test time” (Domingos, 2012). Therefore, we
create different datasets for training models, optimizing models, and finally estimating
their performance on new, unseen data. We split our corpus by time, since our goal is to
detect vandalism as soon as it happens, and we may score an edit only based on earlier
edits in order to prevent leaks “from the future.” Although sometimes done in related
work (e.g., Sarabadani et al., 2017), scoring an edit based on later edits, e.g., done on the
same item or by the same user, would be false, since this information “from the future”
would not be available in practice. All in all, we split our data into three parts by time:
the training set is used for training models; the validation set is used for optimizing
models; the test set is not used until the very end for the final evaluation of models
after their optimization. As shown in Figure 2.1, both corpora start with the release
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of Wikidata in October 2012 and contain two months of edits for validation and two
months of edits for testing. For our models, we chose to start the training set not before
May 2013, since Wikidata’s data model and serialization format was not stable yet.

2.1.5 Summary of Main Contribution

We summarize our main contribution ‘corpus construction and analysis’ as follows:

1. Vandalism corpora We construct large-scale corpora for an important, novel
machine learning task—vandalism detection in the crowdsourced, structured
knowledge base Wikidata. Our datasets serve as basis for our vandalism detectors
as well as for the WSDM Cup.

2. Vandalism characteristics We carefully analyze vandalism characteristics
and find that items about famous people are vandalized particularly often, whereas
items about places seldom. We find that a lot of vandalism originates from
anonymous editors, and we argue that this is no justification for banning them.

3. Corpus split We carefully split the dataset into subsets for training, validation,
and testing to avoid information leaks “from the future.”

2.2 Vandalism Detection with High Predictive Performance

For reducing the manual reviewing effort in crowdsourced knowledge bases, we
develop vandalism detectors with high predictive performance: we engineer features,
experiment with machine learning algorithms, optimize models, and evaluate them in
a number of settings.

2.2.1 Feature Engineering

For engineering features, we studied vandalism characteristics, manually inspected
individual vandalism and benign edits, and took related work into account. This resulted
in a list of over 100 candidate features that we implemented and use as basis for feature
selection: we selected our final set of features as a local optimum such that adding or
removing features from our candidate set of features did not improve performance on
the validation set of our vandalism corpus WDVC-2015. Table 2.3 gives an overview of
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Table 2.3: Features of the Wikidata Vandalism Detector (WDVD) distributed across feature
groups. 40 of the 47 features have not been previously evaluated for Wikidata (Heindorf
et al., 2016). One feature is partially assigned to two groups and shown as ½.

Features WDVD (new)
Content 27 (24)
Character 11 (11)
Word 9 (7)
Sentence 4 (4)
Statement 3 (2)

Features WDVD (new)

Context 20 (16)
User 10½ (9½)
Item 2 (2)
Revision 7½ (4½)

our final set of 47 features, grouped into 27 features characterizing the content of an
edit and 20 features characterizing the context of an edit. To the best of our knowledge,
40 of the 47 features have not been previously evaluated for Wikidata. In the following,
we introduce the two feature groups before providing statistics for selected features.

Content Features Content features mainly target edits on item heads, i.e., on
labels, descriptions, and aliases. They can be subdivided into features operating on
the character level, word level, and sentence level. On the character level, for example,
we observed that many vandals do not use proper capitalization (e.g., everything is
capitalized, or nothing is capitalized). On the word level, we found that vandals often
use bad words, including vulgar and offensive language, as well as literal strings of
languages. On the sentence level, we identified, for example, edits of suspicious length.
Moreover, for subject-predicate-object triples, we found some predicates to have a
higher prior of being vandalism than others.

Context Features Context features target the context of an edit such as the user
performing the edit, the edited Wikidata item, and revision metadata. We distinguish,
for example, edits by registered users from edits by anonymous users. For users with
multiple edits, we capture how experienced a user is, e.g., in terms of edits performed;
for anonymous users, our dataset contains their IP address allowing us to derive their
geolocation (for registered users, IP addresses are withheld by Wikimedia for privacy
reasons). We capture the popularity of items, e.g., in terms of distinct users having
edited the item. Regarding revisions, we consider revision meta data such as the
edit operation performed (“update statement”, “add description”, . . . ). One feature—
revisionTags—belongs to both the group of user and revision features, since some
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Table 2.4: Statistics on selected features (revisionTags, languageWordRatio, revision-
Language, and userCountry). The tables show the number of vandalism revisions, total
revisions, and the empirical vandalism probability. Rows are ordered by vandalism revisions.
Numbers are given in thousands.

revisionTags Vand. Total Prob.

Rev. with tags 52 8,619 0.60%
By abuse filter 49 122 39.90%
By editing tools 3 8,496 0.03%

Rev. w/o tags 52 15,386 0.34%

revisionLanguage Vand. Total Prob.

Rev. with lang. 92 8,747 1.05%
English 40 1,664 2.43%
Spanish 4 370 1.11%
Hindi 3 28 11.51%
German 3 865 0.31%
French 2 623 0.38%
Other languages 39 5,196 0.75%

Rev. w/o lang. 12 15,258 0.08%

languageWordRatio Vand. Total Prob.

Rev. with comment 102 23,304 0.44%
Ratio equals 0 79 22,955 0.34%
Ratio greater than 0 23 349 6.61%

Rev. w/o comment 1 700 0.21%

userCountry Vand. Total Prob.

Rev. by unreg. users 88 705 12.42%
USA 13 65 20.85%
India 11 31 35.29%
Japan 5 46 11.39%
United Kingdom 3 20 14.60%
Germany 3 45 6.09%
Other countries 52 498 10.49%

Rev. by reg. users 16 23,299 0.07%

tags from the Wikidata Abuse Filter contain user information (e.g., “new user removing
something”) and other tags indicate meta data of a revision (e.g., “revision created
with semi-automatic editing tool”). The Wikidata Abuse Filter tags revisions according
to simple rules created by Wikidata administrators. Semi-automatic editing tools tag
revisions by their authentication method, distinguishing them from regular edits.

Feature Statistics During feature engineering, we analyzed vandalism charac-
teristics on the training set. Table 2.4 shows statistics on selected features. For example,
tags by the Wikidata abuse filter (revisionTags) often signal vandalism, while tags by
semi-automatic editing tools signal benign edits (39.90% vs. 0.03% empirical vandalism
probability). Moreover, we found features regarding countries and languages to provide
a strong vandalism signal. For example, edits containing the literal string of a language,
such as “English” or “German,” often point to vandalism (languageWordRatio greater
than 0 in Table 2.4). Apart from such literal strings, vandalism probabilities vary de-
pending on the language of an edit (revisionLanguage): while edits in the English
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language have a vandalism probability of about 2.43%, German edits have a vandalism
probability of only 0.31% and Hindi edits of about 11.51%. Looking at the countries of
anonymous editors, which we can geolocate through their IP addresses (userCountry),
yields a similar picture: most edits come from the U.S. and have a medium vandalism
probability, whereas edits from Germany have a low and edits from India a high vandal-
ism probability. These findings suggest that Wikidata provides new opportunities for
studying cultural differences in crowdsourced knowledge bases, but they might also hint
at undesirable biases of vandalism detectors against certain groups of editors. Last but
not least, the feature languageWordRatio points at potential issues in Wikidata’s user
interface, since we found a number of cases where editors submitted the word “English”
when the user interface suggested “enter a description in English.”

2.2.2 Experimental Setup

Before reporting our evaluation results, we briefly describe our experimental setup in
terms of baselines, evaluation metrics, learning algorithms, datasets, and implementa-
tion details for reproducibility.

Baselines We employ two state-of-the-art baselines for Wikidata vandalism detec-
tion: Wikimedia’s Objective Revision Evaluation Service (ORES; Sarabadani et al., 2017)
and revision tags (FILTER).4 ORES is a machine learning approach developed by the
Wikimedia Foundation to provide machine learning as a service for Wikimedia Projects.
ORES’ vandalism model for Wikidata was developed concurrently to our Wikidata
Vandalism Detector (WDVD) and is based on a random forest with 14 features, many of
which are shared with our approach, since, initially, we made a list of features available
to the authors (Sarabadani et al., 2017; Heindorf et al., 2017a). The FILTER baseline
is based on revision tags, which can be divided into the two groups: (1) tags by the
Wikidata Abuse Filter, and (2) tags by semi-automatic editing tools. Although the abuse
filter has been in use for a long time, to the best of our knowledge, its performance has
never been evaluated.

Evaluation Metrics We evaluate our approach according to the metrics area
under the precision-recall curve (PRAUC) and area under the receiver operating char-
acteristics (ROCAUC). Both metrics are widely used for problems with imbalanced
classes and take a wide range of operating points into account. Each point on one curve
4https://www.wikidata.org/wiki/Special:AbuseFilter

https://www.wikidata.org/wiki/Special:AbuseFilter
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corresponds to one point on the other (Davis and Goadrich, 2006). While the former
emphasizes points in the high precision range, the latter emphasizes points in the high
recall range. Hence, the former is particularly meaningful for fully automatic operation,
while the latter is particularly suitable for semi-automatic operation. Moreover, both
metrics can be interpreted as rankingmetrics. PRAUC is essentially equivalent to thewell-
known ranking metric average precision (AP; Manning et al., 2008), while ROCAUC can
be interpreted as the probability that the score of a randomly chosen vandalism revision
ranks higher than the score of a randomly chosen benign revision (Fawcett, 2006).

Learning Algorithm We use random forests (Breiman, 2001) as learning algo-
rithm for our experiments. In a pilot study, we experimented with different learning
algorithms and their hyperparameters, including naive Bayes and logistic regression,
and we found random forests to outperform all other algorithms that we tried. Our find-
ings are corroborated by the facts that random forests have been found to outperform
other algorithms for Wikipedia vandalism detection (Javanmardi et al., 2011; Tran and
Christen, 2015; Martinez-Rico et al., 2019), random forests are the algorithm of choice
of the ORES baseline (Sarabadani et al., 2017), and the winner of the WSDM CUP 2017
employs a tree-based algorithm (Crescenzi et al., 2017). WSDM Cup participants ex-
perimenting with logistic regression and neural networks report significantly worse
results (Yamazaki et al., 2017; Zhu et al., 2017)—possibly due to problems with encod-
ing high-cardinality features and class imbalance (Micci-Barreca, 2001; Khoshgoftaar
et al., 2007; Wang et al., 2016). We leave it for future work to further experiment in
the direction of logistic regression, neural networks, and deep learning.

Dataset Unless otherwise mentioned, we perform our experiments on the Wikidata
Vandalism Corpus WDVC-2015 using the revisions from May 2013 till June 2014 for
training, the revisions from July and August 2014 for validation, and the revisions from
September and October 2014 for testing, as depicted in Figure 2.1.

Reproducibility The source code and data to reproduce our results are publicly
available.5 We implemented our feature extraction in Java with Wikidata Toolkit6 and
our machine learning models in Python with scikit-learn (Pedregosa et al., 2011).7

5https://www.heindorf.me/wdvd
6https://www.mediawiki.org/wiki/Wikidata_Toolkit
7https://scikit-learn.org

https://www.heindorf.me/wdvd
https://www.mediawiki.org/wiki/Wikidata_Toolkit
https://scikit-learn.org
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2.2.3 Model Optimization

We optimize the predictive performance of our vandalism models in a series of exper-
iments comparing them with state-of-the-art baselines. Table 2.5 gives an overview
of our evaluation results and shows our models of increasing complexity. Starting
with scikit-learn’s default random forest,8 we optimize its hyperparameters, and we
experiment with bagging and multiple-instance learning increasing its performance in
terms of PRAUC by 44%. We perform the same optimizations for our model WDVD as
well as for the baselines FILTER and ORES. Our best model WDVD based on multiple-
instance learning achieves 0.991 ROCAUC at 0.491 PRAUC and outperforms the baselines
by factors ranging from 1.9 to 3.6. Figure 2.2 shows the corresponding precision-recall
curves. Regarding WDVD, up to 30% of vandalism can be reverted fully automatically
at over 70% precision; the workload of Wikidata reviewers can be reduced by a factor of
ten (precision 2% instead of 0.2% in the test dataset) while still identifying over 98.8% of
all vandalism; edits in between can be ranked by their vandalism score and manually
reviewed in this order. In the following, we describe our models in detail.

OptimizedRandomForest We systematically optimized our random forest model
by varying its hyperparameters on the validation set: We optimized the maximal depths
of the trees, the number of features per split, and the number of trees. Varying the
maximal depths in the range {1, 2, 4, 8, 16, 32, 64,∞} and the maximal features per
split in the range {1, 2, ‘log2’, ‘sqrt’}, we achieved the best results in terms of PRAUC

with ‘sqrt’ features per split and a maximal depth of 8 for WDVD, and a maximal depth
of 16 for FILTER and ORES. While increasing the number of trees per forest and jointly
optimizing the other hyperparameters hardly increases predictive performance, the
runtime increases linearly. Hence, we stick to scikit-learn’s default number of trees (10).
Table 2.5 shows the resulting performance on the test set. Both PRAUC and ROCAUC

significantly improve. WDVD improves by 19% (from 0.342 PRAUC to 0.406 PRAUC),
ORES by 35%, whereas FILTER does not improve.

Bagging Investigating the amount of training data required, we observed that the
predictive performance of WDVD on the validation set can be increased by training
our model on a random sample of the training set. We believe this effect to be due to
810 trees per forest, no maximal depth of the trees, and ‘sqrt’ features per split
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Table 2.5: Evaluation results of our Wikidata vandalism detector, WDVD, and of the two
baselines FILTER and ORES. Performance measures are the area under curve of the receiver
operating characteristic (ROCAUC), and the area under the precision-recall curve (PRAUC).
Performance values are reported for the entire test dataset as well as divided by item part.
The darker a cell, the better the performance.

Classifier Item head Item body Entire item

Optimization ROCAUC PRAUC ROCAUC PRAUC ROCAUC PRAUC

WDVD (our approach)
Multiple-instance 0.985 0.575 0.981 0.216 0.991 0.491
Bagging 0.980 0.521 0.879 0.175 0.960 0.430
Optimized random forest 0.980 0.487 0.942 0.171 0.978 0.406
Default random forest 0.922 0.451 0.800 0.087 0.894 0.342

FILTER (baseline)
Multiple-instance 0.819 0.345 0.893 0.020 0.900 0.218
Bagging 0.768 0.297 0.816 0.014 0.865 0.201
Optimized random forest 0.770 0.351 0.816 0.015 0.865 0.257
Default random forest* 0.770 0.358 0.816 0.015 0.865 0.265

ORES (baseline)
Multiple-instance 0.962 0.269 0.946 0.132 0.975 0.228
Bagging 0.956 0.197 0.900 0.124 0.960 0.169
Optimized random forest 0.953 0.214 0.896 0.111 0.960 0.182
Default random forest* 0.882 0.176 0.749 0.058 0.859 0.135

*These approaches represent the state of the art; to the best of our knowledge,
the outlined optimizations have not been tried with ORES and FILTER before.

many similar training samples resulting in reduced variance of the trees and overfitting.
Hence, we experimented with bagging (bootstrap aggregating; Breiman, 1996) to
increase predictive performance: We employ an ensemble of 16 random forests each
trained on 1/16 of the training set containing 8 trees per forest. Performing a new
grid search for random forest hyperparameters, we obtain a maximal tree depth of 32
with 2 features per split for WDVD, a maximal tree depth of 8 with 1 feature per split
for FILTER, and a maximal depth of 16, and ‘sqrt’ features per split for ORES. Bagging
improves PRAUC of WDVD by 6% on the test set (from 0.406 PRAUC to 0.430 PRAUC)
compared to optimized random forests. ROCAUC and the baselines do not improve.
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Figure 2.2: Precision-recall curves of the models shown in Table 2.5 on the test set.

Multiple-Instance Learning We noticed that consecutive edits by the same
user on the same item, which we refer to as an editing session, are often closely related.
Hence, we experiment with multiple-instance learning to classify sessions instead of
single revisions (Amores, 2013; Gärtner et al., 2002). Our best model on the validation set
combines two approaches: single-instance learning (SIL) and simple multiple-instance
learning (Simple MI).

SIL operates in the instance space and assigns the same average score to all revisions
within a session: Formally, let xi =

(︁
xi1, . . . , x

i
n

)︁
be the feature vectors within the editing

sessionX =
(︁
x1, . . . , xd

)︁
with d revisions. Let cSIL : Rn → R be a classifier that is trained

on single revisions and assigns a score to every revision. Then SIL assigns the same
average score CSIL (X ) to each revision in the session:

CSIL(X ) =
1
d

d∑︂
i=1

cSIL
(︁
xi
)︁
.
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SimpleMI (SMI) operates in an embedded space. The single, fixed-size feature vector x̄
of an editing session is obtained by concatenating the element-wise minima and maxima
of the sessions’ feature vectors xi : Let aj = maxi∈{1,...,d} xij and bj = mini∈{1,...,d} xij for
j ∈ {1, . . . ,n}. Then the embedded vectors x̄ = (a1, . . . ,an,b1, . . . ,bn) are used for
training the classifier cSMI : R2n → R and assigning the same score

CSMI (X ) = cSMI (x̄)

to each revision in the session.
Finally, we combine both approaches to obtain our final prediction C for every

revision within session X :

C(X ) =
CSIL(X ) +CSMI (X )

2
.

As classifiers cSIL and cSMI , we employ the bagging model based on random forests as
described above—one time trained on single instances and one time trained in embedded
space. Multiple-instance learning improves PRAUC of WDVD by 14% compared to
bagging. FILTER and ORES improve, too.
Multiple-instance learning brings along a minor limitation: Edits cannot be scored

immediately, but only after a session has ended—possibly due to a timeout. Alterna-
tively, multiple-instance learning can be applied in an online variant, where the set
of revisions X is continuously updated, and the most up-to-date version is used for
immediate classification. We employ the latter variant in the WSDM Cup 2017, which
is described in the next section.

2.2.4 Model Evaluation

We evaluate our approach by content type, by feature group, for different points in
time, and we compare it with submissions to the WSDM Cup 2017.

Head Content vs. Body Content

Table 2.5 reports the performance of our approaches divided by content type where
head content refers to the head of an item page and includes labels, descriptions, and
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aliases, and body content refers to the body of an item page and includes statements
and sitelinks. Investigating a sample of edits revealed different kinds of vandalism in
head vs. body content: head content attracts rather obvious vandalism on the lexical
level, e.g., bad words or wrong capitalization, whereas body content attracts rather
sophisticated vandalism on the semantic level, e.g., incorrect information; head content
is predominantly edited by anonymous users, whereas body content is predominantly
edited by registered users (Heindorf et al., 2015); head content is needed to represent
the knowledge base in human-readable form, e.g., in infoboxes, on item pages and
in search suggestions, whereas body content makes up the core of the knowledge
base, the actual knowledge graph. While the number of edits affecting body content
is larger, both head and body content contain about the same number of vandalism
edits (Figure 2.1). Overall, for a vandalism detector, it is important to detect vandalism
in both head and body content. WDVD significantly outperforms the baselines both on
head and body content. Moreover, both WDVD and the baselines perform better on
head content than body content (with the exception of FILTER in terms of ROCAUC).
This might be explained by more obvious vandalism in head content and a larger
vandalism fraction in head content making it easier to achieve a high PRAUC,9 but this
also hints at opportunities to engineer more advanced features for body content, e.g.,
using graph embeddings as we do in Section 2.3.2.

Content Features vs. Context Features

We evaluate the performance of content and context features for our four approaches
from Table 2.5. Figure 2.3 shows the corresponding precision-recall curves per approach
and feature group. It shows that context features generally outperform content features
with context features particularly contributing to a high recall and content feature
contributing to a high precision. The best performance is achieved by combining content
and context features (except for a small range of recall values with the “Optimized
Random Forest”). Employing more advanced algorithms such as multiple-instance
learning improves the performance of both content and context features, with the effect
being particularly strong for content features.
9PRAUC varies as class imbalance changes (Davis and Goadrich, 2006; Boyd et al., 2012), whereas ROCAUC
does not (Fawcett, 2006).
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Figure 2.3: Precision-recall curves for content features, context features, and both combined
on the test dataset by classifier.

Online Learning and Evaluation over Time

Vandalism detection can be considered an online learning problemwhere newly arriving
revisions are scored immediately, and the model is dynamically updated as soon as
new vandalism cases are identified. In an initial experiment, we experimented with
scikit-learn’s online learning algorithms, including stochastic gradient descent and
naive Bayes. However, the online algorithms performed significantly worse than
random forests applied in a batch setting. Hence, we stick to our random forest model
and evaluate it in a setting where it is regularly retrained and evaluated. Figure 2.4
shows the performance on the corresponding pseudo-test sets in intervals of two
months: We use our best-performing model based on multiple-instance learning, train
it from May 2013 until the start of our pseudo-test sets, which we vary in two-month
increments from July 2013 to September 2014. This way, our penultimate pseudo-
test set corresponds to our actual validation set and our ultimate pseudo-test set to
our actual test set. The plot shows that the performance of WDVD varies between
0.46 PRAUC in July & August 2013 and 0.69 PRAUC in March & April 2014, while ORES
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Figure 2.4: Performance over time of our best vandalism detector WDVD (multiple-instance)
and the baselines FILTER and ORES. Test datasets vary while classifiers were trained on all
preceding revisions. The blue line plot shows the vandalism fraction in the test datasets.

and FILTER fluctuate below 0.32 PRAUC. Hence, WDVD outperforms the baselines
at all points in time. Investigating what causes the variance, we identified changing
fractions of vandalism in our pseudo-test sets (blue line-plot in Figure 2.4) as a partial
explanation: The emergence of semi-automatic editing tools around May 2014 lead to
large amounts of benign edits, thus reducing the fraction of vandalism cases and making
predictions at high precision more difficult for the machine-learning models WDVD
and ORES. Moreover, we suspect changing vandalism patterns over time contributing
to the variance, emphasizing the need to regularly retrain the models.

Evaluation of WSDM Cup 2017 Submissions

In order to drive progress on the vandalism detection task and further improve predictive
performance, we organized a data science challenge—the WSDM Cup 2017 (Heindorf
et al., 2017a,b), which was held in conjunction with the International Conference
on Web Search and Data Mining (WSDM 2017). We invited participants from all
over the world to contribute novel solutions; we constructed an updated version of
our vandalism corpus—the Wikidata Vandalism Corpus WDVC-2016; and we set up
an evaluation framework—ensuring the reproducibility of submissions, preventing
cheating, and enforcing that the vandalism score is computed in a streaming fashion
based on information available at the time of an edit but not on information emerging
later. The winner was determined based on ROCAUC. Table 2.6 gives an overview of
the submissions, comparing them to WDVD as well as the FILTER and ORES baselines.
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Table 2.6: Overview of the WSDM Cup 2017 submissions in terms of features, learning algo-
rithms, and performance. Performance values are reported in terms area under the precision-
recall curve (PRAUC), and area under curve of the receiver operating characteristic (ROCAUC)
on the test dataset of the Wikidata Vandalism Corpus WDVC-2016. The darker a cell, the
better the performance. Rows are ordered by ROCAUC, starting with the best.

Submission Features Learning Algorithms Performance
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PRAUC ROCAUC

META ALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.475 0.950
Buffaloberry WDVD + NEW ✓ – – – – – – ✓ 0.458 0.947
Conkerberry BoW(WDVD) – ✓ – – – – – – 0.352 0.937
WDVD (baseline) WDVD – – – ✓ – – – ✓ 0.486 0.932
Honeyberry WDVD – – ✓ ✓ ✓ ✓ ✓ – 0.206 0.928
Loganberry ⊆WDVD ✓ – – – – – – – 0.337 0.920
Riberry WDVD + WDVDOverfit – – – ✓ – ✓ – – 0.174 0.894
ORES (baseline) ORES – – – ✓ – – – – 0.347 0.884
FILTER (baseline) FILTER – – – ✓ – – – – 0.227 0.869

All teams build upon our approach WDVD, which we provided as a baseline. The
best-performing approach Buffaloberry10 (Crescenzi et al., 2017) engineered a few new
features replacing some of WDVD’s, for example, generalizing some of our sentence
level features to better work with languages other than English and checking whether
edits on labels, descriptions, and aliases are made in the correct language. Conker-
berry (Grigorev, 2017) reusedmany ofWDVD’s features, but encoded them in a different
way: WDVD’s features were converted to a string before representing them as a bag-
of-words model. Honeyberry’s (Yamazaki et al., 2017) feature set is similar to WDVD’s
but omits some features on bad words and users. Loganberry (Zhu et al., 2017) used a
subset of WDVD’s features lacking geolocation features, while Riberry (Yu et al., 2017)
used many features that we had previously excluded from our model due to overfitting,
10All participants of the vandalism detection task were assigned a team name with the -berry suffix.
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corroborating our previous findings. For comparison, we report the performance of
our baselines WDVD,11 ORES,12 and FILTER, and we create an ensemble, called META,
of all five submissions and three baselines to estimate the performance that could be
achieved by integrating all approaches.
In terms of algorithms, Buffaloberry employs multiple-instance learning in com-

bination with XGBoost, a fast boosting approach based on decision trees (Chen and
Guestrin, 2016). Conkerberry trains a linear SVM, slightly outperforming WDVD in
terms of ROCAUC, but not in terms of PRAUC. Honeyberry builds a complex ensemble
of a variety of learning algorithms, but they do not outperform the simpler models of
WDVD, Buffaloberry, and Conkerberry—possibly due to their omission of some features
and their lack of using multiple-instance learning. Loganberry employs XGBoost, while
Riberry employs random forests and gradient boosted trees, with the performance of
both approaches seeming limited by their respective feature sets.
In terms of ROCAUC, two submissions slightly outperform our strong baseline

WDVD—Bufalloberry and Conkerberry—supposedly due to slight modifications of
features and algorithms. In terms of PRAUC, WDVD still outperforms all other ap-
proaches, including META. Compared to our previous performance values reported on
the Wikidata Vandalism Corpus 2015, performance values on the Wikidata Vandalism
Corpus 2016 are lower due to an outlier in the new dataset (Heindorf et al., 2017b).
Beyond their final models submitted for evaluation, some WSDM Cup participants

report additional experiments, all resulting in lower predictive performance, corroborat-
ing our previous findings. Both Grigorev (2017) and Zhu et al. (2017) experimented with
different learning algorithms, including logistic regression and ensembles of multiple al-
gorithms. Grigorev (2017) experimented with online learning, as well as undersampling
and oversampling for balancing the dataset.

Summarizing the results of the WSDM Cup 2017, the best vandalism model in terms
of PRAUC, i.e., for fully automatic vandalism detection at high precision, is still our
approach WDVD based on 47 features, random forests, and multiple-instance learning.
11We use the same hyperparameters for this model as reported in Section 2.2.3. To adjust WDVD to the
new evaluation setup, where edits must be scored in a streaming fashion, we adjust multiple-instance
learning to employ only edits up to the current one.

12We use the original hyperparameters by Sarabadani et al. (2017): 80 decision trees with ‘log2’ features
per split using the ‘entropy’ criterion. While Sarabadani et al. (2017) experimented with balancing
the weights of the training examples, we do not do so for the ORES baseline, since it has no effect on
performance in terms of ROCAUC and decreases performance in terms of PRAUC.
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The best vandalism models in terms of ROCAUC are Buffaloberry and META, slightly
outperforming WDVD by employing a couple of new features and employing XGBoost
in combination with multiple-instance learning.

2.2.5 Summary of Main Contribution

We summarize our main contribution ‘vandalism detection with high predictive perfor-
mance’ as follows:

1. Content and Context Features We design a machine learning approach
for an important, novel task—vandalism detection in the crowdsourced, struc-
tured knowledge base Wikidata. We study vandalism characteristics and derive
47 features taking into account both the content and the context of an edit.

2. Multiple-Instance Learning We experiment with machine learning algo-
rithms and their hyperparameters, finding multiple-instance learning on top of
bagging and random forests to outperform all other variants that we tried.

3. High Predictive Performance We extensively evaluate our approach in
a number of settings, including different types of content and different points in
time, finding our approach to outperform state-of-the-art baselines in all settings.
Our approach turned out to be competitive with the WSDM Cup submissions.

2.3 Vandalism Detection with Low Bias

For treating knowledge base editors fairly, we analyze biases of vandalism detec-
tors and develop two novel models to reduce biases: Our model FAIR-E employs graph
embeddings to focus solely on the content of an edit instead of biased user features. Our
model FAIR-S systematically selects the best-performing features under the constraint
that no user features are used. Moreover, we experiment with transformations of our
best-performing model WDVD: post-processing scores and weighting training samples.
We evaluate our novel models on a subset of the Wikidata Vandalism Corpus 2016 and
analyze trade-offs between predictive performance and bias comparing our models to
state-of-the-art vandalism detectors, including WDVD.
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2.3.1 Bias Analysis

Bias can be defined as “inclination towards something; predisposition, partiality, prej-
udice, [. . .],”13 which often leads to discrimination, i.e., “treatment of an individual or
group to their disadvantage.”14 In our case, benign edits receiving high vandalism scores
are more likely to be reverted, and benign editors whose edits are reverted are more
likely to withdraw from the project (Halfaker et al., 2011, 2013; Schneider et al., 2014).
In this section, we briefly define metrics for measuring bias before analyzing biases.

Measuring Bias

Tomeasure bias of a classifier producing continuous scores, roughly following Kleinberg
et al. (2017) and Zemel et al. (2013), we compare the average scores of two groups, which
by convention, are called the protected and unprotected groups (against discrimination).
Our goal is to achieve equality of opportunity (Hardt et al., 2016), i.e., benign edits from
both groups should receive similar vandalism scores, giving them similar opportunities
of being not reverted. The deviation from this goal, the bias, can be measured in terms
of the difference and ratio. We focus on the protected group of anonymous users in
this work. Further protected groups based on the time, since registration and country
of origin are analyzed in Heindorf et al. (2019a).

Formally, given ground truth labels whether a revision is benign as well as calibrated
vandalism scoresyi ∈ Y withyi ≈ Pr(i = vandalism | xi), where xi is revision i’s feature
vector, we divide the scores of benign edits into the two groups of anonymous and
registered editors:

Y anon
benign := {yi ∈ Y | benign edit i by anonymous editor} ,

Y
reg
benign := {yi ∈ Y | benign edit i by registered editor} .

Then the bias can be measured in terms of the difference and ratio of their average
scores:

Diff . := mean
(︂
Y anon
benign

)︂
−mean

(︂
Y
reg
benign

)︂
,

Ratio := mean
(︂
Y anon
benign

)︂
/mean

(︂
Y
reg
benign

)︂
.

13https://en.wiktionary.org/wiki/bias
14https://en.wiktionary.org/wiki/discrimination

https://en.wiktionary.org/wiki/bias
https://en.wiktionary.org/wiki/discrimination
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Table 2.7: Number of user features as well as average vandalism scores for anonymous and
registered users and bias measured in terms of difference and ratio.

WDVD ORES FILTER

User features 10½ 2 ½

mean
(︂
Y anon
benign

)︂
0.1215 0.1144 0.0978

mean
(︂
Y
reg
benign

)︂
0.0004 0.0009 0.0014

Diff. 0.121 0.114 0.096
Ratio 310.7 133.1 69.2

Biases of Vandalism Models

All existing models exhibit significant biases against anonymous users, newcomers, and
users from certain countries (Heindorf et al., 2019a). Table 2.7 shows that the models
FILTER, ORES, and WDVD assign benign edits by anonymous users vandalism scores
between 69.2 and 310.7 times higher than benign edits by registered users. The bias
might be explained by user features that do not take the content of an edit into account
to check its correctness. For example, both WDVD and ORES employ the feature
isRegisteredUser, a simple user feature with high predictive performance, but high
bias: 9.00% of edits by anonymous users constitute vandalism whereas only 0.03% of
edits by registered users (in the training and validation set of WDVC-2016-Links). As
this feature does not take any content information into account, it assigns benign edits
by anonymous users vandalism scores about 300 times higher than benign edits by
registered users. Similarly, ORES includes user age (userAge); WDVD includes the
numbers of revisions and items edited by a user (userFrequency, cumUserUnique-
Items); FILTER assigns tags for “new user changing something” or “new user removing
something”—all user features correlated with protected attributes.

2.3.2 Fair Vandalism Detection Models

For developing fair vandalism detectionmodels, we remove user features and strengthen
content features, resulting in two novel models: (1) FAIR-E employs graph embeddings
for subject-predicate-object triples solely focusing on the content of an edit rather
than meta data such as user information, (2) FAIR-S selects the best-performing hand-
engineered features under the constraint that no user features are used.
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Figure 2.5: Example of a triple embedding. Subject, predicate, and object are represented in
3-dimensional predicate space (top) and combined via outer product (middle) and concatena-
tion (bottom).

FAIR-E: Graph Embeddings for Wikidata

For taking the graph structure into account, we experiment with graph embeddings,
and propose a novel embedding FAIR-E, which to the best of our knowledge, has never
been used before and results in a low bias. Figure 2.5 illustrates our construction.
Given a subject-predicate-object triple,15 we encode it in predicate space: the subject is
represented by its set of outgoing predicates encoded as a binary vector S ; the predicate
is represented by its binary vector P ; the object is represented by its set of incoming
predicates encoded as binary vectorO . A subject-predicate-object triple then is encoded
as S × P + P ×O where + denotes the concatenation of vectors and × the outer product,
i.e., the pair-wise combination of vector elements. As machine learning algorithm, we
employ logistic regression. Our model learns which interactions of subject-predicates,
predicates, and object-predicates typically signal vandalism or benign edits. To avoid
overfitting, we utilize the top n := 100 most frequent predicates of our item graph as
determined independently per subject, predicate, and object on our training set. Hence,
a subject-predicate-object triple is represented by a 2n2 = 20,000-dimensional vector.
We experimented with different variants of our model, including different values

for n, varying interactions of S , P , and O , and outgoing object predicates instead of
incoming. We found the above variant to work best on our validation dataset in terms of
predictive performance. We also experimented with different regularization strengths
15InWikidata, an edit usually affects only one triple. In rare cases, when an edit is made viaWikidata’s API
and affects more than one triple, we employ the edit’s main triple as determined by the automatically
generated comment.
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of logistic regression, which had little effect on predictive performance, but large effect
on bias, leading us to disable regularization. We also experimented with existing graph
embeddings such as random walks (Dong et al., 2014; Gardner and Mitchell, 2015), but
found our graph embeddings to outperform them.
Pointing out limitations, about 15% of triples are represented by the zero vector

because their predicates are not among the top n selected; the learning algorithm
assigns them all the same, small vandalism probability. We classify new versions of
updated triples. Our graph embeddings do not distinguish additions and removals of
triples, and we leave it to future work to include edit operations in a way that improves
predictive performance. As the set and distribution of predicates evolve over time, the
classifier needs to be retrained from time to time.

FAIR-S: Selecting Unbiased Features

As an alternative to graph embeddings, we experimented with feature selection. Starting
with a candidate set of features consisting of WDVD’s and ORES’ features as well as a
couple of new features, including FAIR-E’s, we omit all user features and features not
targeting subject-predicate-object triples. We determine our final set of features as a
local optimum such that adding or removing any features from our candidate set does
not improve ROCAUC. Our final set of 14 features is described below. Seven features
were selected from Heindorf et al. (2016), three features from Sarabadani et al. (2017) as
well as four new features (Heindorf et al., 2019a). We employ a random forest algorithm
with 32 trees and a maximal tree depth of 16. In a pilot study, all other algorithms,
including logistic regression, neural networks, and gradient boosted decision trees
performed worse despite tuning their hyperparameters.

Subject Subject features capture the popularity of a subject among editors (subject-
LogCumUniqueUsers, subjectLogFrequency), the amount of information available
about this subject (subjectNumberOfLabels, subjectNumberOfAliases, subject-
PredicateCumFrequency) as well as the type and complexity of the subject (sub-
jectLabelWordLength), for example, proper nouns often have one word in their label,
persons two words, and complex topics multiple.

Predicate We encode predicates by the number of times they were used in our
training set (predicateFrequency).
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Object Similarly, we encode the object by the number of times it occurred in the
training set (objectFrequency), its popularity (objectPredicateCumFrequency) as
well as its embedding representation derived from our graph embeddings (objectPred-
icateEmbedFrequency): We represent the object in terms of the n = 100 most-frequent
incoming object predicates in the knowledge graph and count how often the resulting
embedding vectors appear in our training set. The idea behind the feature is that
incoming object predicates represent in what context the object is typically used.

Edit Additionally, we characterize an edit by the edit operation performed such
as “add”, “update”, “remove” (editActionFrequency, editSubactionFrequency), the
previous action performed on the same item (editSubactionFrequency), and the
number of triples added (editProportionOfTriplesAdded) relative to the current
number of triples of the subject.

Variants Variants that we experimented with but that did not yield improvements
include: Taking the super types of the subject and object according to Wikidata’s
instance of hierarchy as features. Similar information is already captured by the graph
embeddings (e.g., by objectPredicateEmbedFrequency). A bag-of-words model of
the subjects’ and objects’ labels did not help, either.

2.3.3 Experimental Setup

Before reporting our evaluation results, we briefly describe our experimental setup in
terms of baselines, evaluation metrics, datasets, and details for reproducibility.

Baselines We employ the same state-of-the-art vandalism detectors as before: our
Wikidata Vandalism Detector WDVD, Wikidata’s machine learning-based vandalism
detector ORES, and Wikidata’s rule-based abuse filter FILTER.16

Evaluation Metrics For measuring predictive performance, we employ the same
metrics as described before: PRAUC and ROCAUC. For measuring bias, we employ the
bias difference and bias ratio as described in Section 2.3.1.
16WSDM Cup submissions are not considered, since they derive from WDVD and hardly outperform it.
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Dataset Our experiments are based on a subset of the Wikidata Vandalism Corpus
WDVC-2016, called WDVC-2016-Links. Since our goal is to pay particular attention
to the content of an edit and to experiment with graph embeddings, we filter edits
not affecting the actual knowledge graph induced by subject-predicate-object triples
between entities. Moreover, we filter edits by semi-automatic editing tools because
they contain little vandalism, and we believe systematic quality checks should be
built directly into them. While WDVC-2016 contains all edits in sequential order, for
computing our novel content features, we need to represent the data as a graph and
employ Wikidata’s static graph ahead of the validation set for this.17

Reproducibility The source code and data to reproduce our results are publicly
available.18 We perform our feature extraction in Java and our classification in Python
with scikit-learn (Pedregosa et al., 2011).19 To calibrate classifier scores before computing
bias, we use isotonic regression.

2.3.4 Model Optimization and Evaluation

Table 2.8 shows the bias and predictive performance of our models FAIR-E and FAIR-S,
which are both based on feature engineering. For comparison, we also experiment with
two alternative approaches described below: post-processing scores and weighting
training samples. Our models FAIR-E and FAIR-S reduce the bias ratio to only 5.6
and 11.9, respectively, compared to over 310.7 for the state-of-the-art baseline WDVD.
Our models FAIR-E and FAIR-S achieve similar predictive performance and bias values
as by post-processing scores and weighting training samples, but better explainability.

Debiasing via Feature Engineering

Both our models FAIR-E and FAIR-S focus on the content of an edit rather than biased
user features. FAIR-E uses graph embeddings as described in Section 2.3.2. Experiment-
ing with different combinations of subject S , predicate P , and object O embeddings,
we generally found the more complex the interactions are, the higher the predictive
performance was, but also the bias (Heindorf et al., 2019a). Given the relatively low
bias overall, we choose our variant with the highest predictive performance as our
model FAIR-E (S × P + P ×O).
17https://archive.org/download/wikidata-json-20160229
18https://www.heindorf.me/wdvd
19https://scikit-learn.org

https://archive.org/download/wikidata-json-20160229
https://www.heindorf.me/wdvd
https://scikit-learn.org
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Table 2.8: Evaluation results in terms of predictive performance and bias on the test dataset
of the Wikidata vandalism corpus WDVC-2016-Links.

Debiasing Experiment Performance Bias
Model PRAUC ROCAUC Diff Ratio

Feature engineering
FAIR-E 0.177 0.865 0.016 5.6
FAIR-S 0.316 0.963 0.031 11.9

Post-processing scores
WDVD with p=3.88 0.230 0.966 0.015 5.3
WDVD with p=3.22 0.340 0.976 0.030 11.8

Weighting training samples
WDVD with α = 8.1 0.160 0.963 0.015 5.3
WDVD with α = 4.3 0.314 0.973 0.030 11.5

Baselines
WDVD 0.547 0.990 0.121 310.7
ORES 0.434 0.965 0.114 133.1
FILTER 0.302 0.924 0.096 69.2

FAIR-S selects the most predictive set of features under the constraint of no user
features. The optimization was done on the validation set of WDVC-2016-Links, and
the resulting set of features is described in Section 2.3.2. Unlike WDVD, which consists
of 47 features, FAIR-S consists of only 14 features, making the model simpler, faster,
and easier to explain to editors.
Both FAIR-E and FAIR-S avoid user features, and the small remaining bias can be

explained by slight correlations of other features with the protected attribute—an effect
known as indirect discrimination or redlining (Pedreschi et al., 2008). In many cases, it is
not even desirable to make all groups have exactly the same average scores, since there
might be hidden confounders justifying small differences, and this would be an overre-
action often referred to as affirmative action (Zliobaite, 2015; Romei and Ruggieri, 2014).

Debiasing via Post-Processing Scores

Alternatively to feature engineering, we can achieve comparable results in terms of
bias and predictive performance by post-processing the scores of WDVD. Given the
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uncalibrated scores c(i) ∈ [0, 1] for revisions i , we artificially scale down the scores of
the protected group, i.e., anonymous users:

c∗(i) =

⎧⎪⎪⎨⎪⎪⎩
c(i)p if revision i from anonymous user,

c(i) if revision i from registered user.
c

c∗

p = 2 p = 4

After scaling, we apply isotonic regression to calibrate the vandalism scores such that
c∗(i) ≈ Pr(i = vandalism | xi) in order to prevent lower scores just due to the scores
falling in a smaller range. By experimentally determining p > 1 such that the bias
approximately equals FAIR-E’s and FAIR-S’, we can compare them in terms of predictive
performance. While the resulting predictive performance is similar (Table 2.8), the
resulting model consisting of 47 features and a post-processing step is rather a black
box, making it more difficult to explain decisions to Wikidata editors. In addition to the
polynomial scaling function introduced above, we experimented with other function
families, including linear, fractional, and exponential scaling. But polynomial scaling
outperformed all others in terms of PRAUC.

Debiasing via Weighting Training Samples

As another means to debiasing, we experimented with adjustments to the training data.
We adjust the weights of the training samples as follows: We divide the training data
into four groups according to the edit’s registration status (anonymous vs. registered)
and ground truth (vandalism vs. benign). Then we increase the weights of benign
edits by anonymous users and of vandalism edits by registered users, making it more
expensive for a vandalism detector to make mistakes on these groups. Moreover, we
reduce the maximal tree depth of WDVD from 32 to 16 to increase the number of
training samples per leaf, making the weighting to have a larger effect. We adjust the
training weightw(i) of a training sample i ∈ I as follows (with the set of edits I being
subdivided by anonymous vs. registered and by vandalism vs. benign edits):

w(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α /
|︁|︁I anonbenign

|︁|︁ if revision i ∈ I anonbenign ,

1 /
|︁|︁I anonvand

|︁|︁ if revision i ∈ I anonvand ,

1 /
|︁|︁I regbenign

|︁|︁ if revision i ∈ I
reg
benign ,

α /
|︁|︁I regvand

|︁|︁ if revision i ∈ I
reg
vand .
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By experimentally varying the parameter α , we obtain similar trade-offs in terms of
bias and predictive performance as our models FAIR-E and FAIR-S (Table 2.8). But
the model WDVD is more complex (47 features) and requires adjustments to the
training procedure. Hence, we advocate the simpler models FAIR-E and FAIR-S. We
also experimented with separate constants α1 and α2 per group, but this did not yield
better bias-performance trade-offs.

2.3.5 Summary of Main Contribution

We summarize our main contribution ‘vandalism detection with low bias’ as follows:

1. Optimization target We aim for a novel and important optimization target—
low bias against certain groups of editors.

2. Bias Analysis We analyze biases in Wikidata’s state-of-the-art vandalism
detectors and find all existing vandalism detectors to be highly biased.

3. LowBias We develop low-biased vandalism detectors withmultiple approaches:
graph embeddings, feature selection, post-processing scores, weighting training
samples. We extensively evaluate our approaches and compare them with state-
of-the-art baselines, finding our models to exhibit significantly lower bias.

2.4 Discussion

Having outlined our contributions so far, we discuss limitations and applications
of our approach. Potential future work is discussed in Section 3.2.

Corpus Construction

Our ground truth is based on rollback actions of Wikidata administrators and privi-
leged users. This method allows constructing large-scale vandalism corpora that are
robust against manipulations by vandals, who cannot easily manipulate the rollback
signal. Comparing our ground truth with a manual annotation, we find a reasonable
agreement (Heindorf et al., 2015): About 86% of edits rolled back turned out to be
vandalism while only about 1% of non-reverted edits. Although we found some bias in
the ground truth, e.g., against anonymous editors, a preliminary analysis revealed that
vandalism detectors would still be highly biased even if the evaluation dataset were not
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biased (Heindorf et al., 2019a). Besides the rollback feature, there might be alternatives
for corpus construction—each with their own challenges. For example, attempts by
the Wikimedia Foundation to crowdsource a corpus from volunteers in a dedicated
labeling campaign attracted hardly enough volunteers despite repeated calls on the
mailing list.20 Crowdworkers on Amazon Mechanical Turk might not be familiar with
the intricate details of Wikidata, and obtaining a sufficient amount of vandalism cases
might be expensive due to the large class imbalance (only a small fraction of edits are
vandalism). Techniques based on item states might have a higher recall at the cost of a
lower precision (Heindorf et al., 2017b). We leave it for future work to continuously
update the dataset to reflect evolving patterns of vandalism and to refine the dataset,
e.g., by means of crowdsourcing and statistical denoising.

Vandalism Detection with High Predictive Performance

We develop a vandalism detector with high predictive performance that can be employed
in practice. Our best model achieves 0.991 ROCAUC, significantly outperforming the
state of the art and reducing the reviewing effort of volunteers: 30% of vandalism
can be reverted fully automatically; 90% of edits can be marked as benign, while still
retaining 98.8% of vandalism; the remaining edits can be inspected in the order of their
scores to increase the chance of finding vandalism early. Our approach does not require
large computational resources: for 24 million revisions, our features can be computed
on a standard workstation (16 cores and 64 GB RAM) in less than 2 hours, and training
a model only takes 10 minutes. Overall, our vandalism detector can easily be employed
in practice and can be of great help to the Wikidata community.
As Wikidata is rapidly growing, and more and more applications of Wikidata are

emerging, our vandalism scores might be directly integrated into these applications for
hiding vandalized information or warning users of potentially false information. Besides
its use by search engines and question answering systems (Dubey et al., 2019; Usbeck
et al., 2017), Wikidata is used to populate infoboxes for the different language editions
of Wikipedia and for generating natural language summary articles for underserved
Wikipedia languages (Kaffee et al., 2018; Vougiouklis et al., 2018). It is increasingly
used in the life sciences for integrating biomedical data on genes, diseases, drugs, and
symptoms (Mitraka et al., 2015; Turki et al., 2019; Putman et al., 2017) as well as for
scientific bibliographic information (Mietchen et al., 2015; Nielsen et al., 2017).
20https://labels.wmflabs.org/stats/wikidatawiki/, only 4,854 labels obtained from July 16, 2018 to Septem-
ber 12, 2019.

https://labels.wmflabs.org/stats/wikidatawiki/
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Vandalism Detection with Low Bias

To the best of our knowledge, we make the first attempt to debias vandalism detection
models. As we are breaking new ground, and fairness of machine learning models is
still an emerging topic, our approach has a number of limitations. As of today, there
are no agreed upon measures for bias yet. Our measure aims at group fairness, between
the groups of anonymous and registered edits, and our goal is to achieve equality
of opportunity (Hardt et al., 2016), i.e., we aim to treat benign edits fairly. Treating
both benign and vandalism edits fairly would correspond to the stricter fairness notion
equalized odds (Hardt et al., 2016), which makes it potentially more challenging to find
good trade-offs between fairness and predictive performance. Hence, we stick to the
former, since it is already well-aligned with our goal of retaining benign editors. For
measuring the deviation from the goal, a number of measures have been proposed in the
literature ranging from simple measures such as differences and ratios between average
scores, which we employ in our analysis, to more complex measures such as cost
functions (Pleiss et al., 2017) and conditional Kolmogorov distance (Hardt et al., 2016).
There are different approaches to calibrate vandalism scores before computing bias
measures. We perform a single calibration across groups. Other approaches calibrate
scores within groups (Kleinberg et al., 2017; Pleiss et al., 2017). We focus on the protected
attribute of user registration status. In the future, it might be interesting to explore
further groups, e.g., based on time since registration, gender, country, age, etc.
First theoretical findings suggest that it is impossible to build a vandalism detector

with both high predictive performance and low bias for many notions of predictive
performance and fairness (Berk et al., 2018; Chouldechova, 2017; Corbett-Davies et al.,
2017; Kleinberg et al., 2017). Our empirical experiments corroborate these findings (for
slightly different notions of predictive performance and bias), thus necessitating difficult
trade-offs. Generally, it is hardly desirable to make two groups have exactly the same
distribution of scores, since certain differences between the groups might justify some
differences, and this would be an overreaction, known as affirmative action (Barocas
and Selbst, 2016; Romei and Ruggieri, 2014; Zliobaite, 2015). To overcome this problem,
other approaches focus on individual fairness (Dwork et al., 2012) based on a similarity
function between individuals or fairness based on causal modeling (Kilbertus et al., 2017;
Kusner et al., 2017; Zhang and Wu, 2017). All in all, our work on debiasing vandalism
detection models must be viewed as a first step towards a fair vandalism detector, but
there is certainly more research necessary to develop a truly fair vandalism detector
and to explore the limits to which this is even possible.
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Although vandalism detectors at Wikidata are not operated fully automatically yet
and there are still humans in the loop, biases of vandalism detectors are problematic:
(1) As the number of revisions per month is rapidly increasing, and reviewers have to
review millions of edits every month, they have little time per edit and have to rely
on vandalism scores more and more. (2) Since the decisions of reviewers are used to
train new vandalism models, this might create a vicious cycle of reinforcing biases (cf.,
Baeza-Yates, 2018; Heindorf et al., 2019a). (3) Moreover, as the predictive performance
of vandalism detectors is getting better over time and biases are getting worse—as we
have seen in the past from FILTER over ORES to WDVD—vandalism detectors might
soon rollback edits fully automatically and unless fairness constraints are taken into
account, this might severely affect the retention of editors and the sustainability of the
crowdsourced knowledge base.

Vandalism Detection in Other Crowdsourced Knowledge Bases

In this thesis, we develop vandalism detectors for one of the largest structured, crowd-
sourced knowledge bases, namely Wikidata. Here, we discuss in how far our results
can be transferred to other crowdsourced knowledge bases.

Regarding corpus construction, other knowledge bases have mechanisms to rollback
damaging edits, too.21 However, the degree to which this mechanism is consistently
used and recorded might vary. For example, while in Wikidata rollback actions can
be clearly identified from automatically generated edit comments, in Wikipedia edit
comments are created manually following a convention (Tran and Christen, 2013).
Hence, it might be necessary to guide reviewers to follow the convention strictly and
rollback edits consistently.

Regarding machine learning models, we expect many of our features and algorithms
to be transferable to other crowdsourced knowledge bases. Our content features primar-
ily target labels, descriptions, and aliases, which are available in many knowledge bases.
Our context features primarily target meta data such as the user performing an edit, the
user’s geolocation, or the edit action performed. It seems straightforward to utilize sim-
ilar features for other crowdsourced knowledge bases, too. Similarly, we would expect
random forests and multiple-instance learning to work well for other knowledge bases,
since random forests have already been successfully applied forWikipedia vandalism de-
tection (Adler et al., 2011), and consecutive edits by the same user on the same page are
21https://en.wikipedia.org/wiki/Wikipedia:Rollback
https://community.fandom.com/wiki/Help:Vandalism
https://wiki.openstreetmap.org/wiki/Change_rollback

https://en.wikipedia.org/wiki/Wikipedia:Rollback
https://community.fandom.com/wiki/Help:Vandalism
https://wiki.openstreetmap.org/wiki/Change_rollback
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hardly independent, making it promising to experiment with multiple-instance learning.
Nevertheless, for the highest predictive performance, features might be adapted to the
specifics of a knowledge base, e.g., employing graph-specific features for structured
knowledge bases as we have done with graph embeddings, or domain-specific features
for domain-specific knowledge bases (cf., Figure 1.2).

Regarding debiasing efforts, we restrict our dataset to edits affecting subject-predicate-
object triples between entities in order to focus particularly on the content of an edit.
Our model FAIR-E is based on graph embeddings, and it might be challenging to
generalize it to all Wikidata edits or to unstructured knowledge bases. On the other
hand, our model FAIR-S selects the best-performing features under the constraint
that no user features are used. Such an approach seems to be easily transferable to
other crowdsourced knowledge bases. Our alternative debiasing efforts based on post-
processing scores and weighting training samples seem to be easily transferable to
other knowledge bases, too.

Information Systems, Fake News, and Biases of AI Systems

Viewing our research in a larger context, our vandalism detectors might not only be used
by crowdsourced knowledge bases directly, but also as a pre-processing step by infor-
mation systems importing data from crowdsourced knowledge bases in order to prevent
the spread of vandalism. Moreover, in the context of fake news (Lazer et al., 2018; Shu
et al., 2017) and misinformation on the web (Kumar et al., 2016; Del Vicario et al., 2016),
vandalism in crowdsourced knowledge bases might be considered a special kind of
misinformation, and accurate knowledge bases can help to detect fake news (Conroy
et al., 2015; Pan et al., 2018). From the perspective of data quality, vandalism affects
one of the most important data quality dimensions, namely accuracy (Zaveri et al.,
2016; Piscopo and Simperl, 2019; Mora-Cantallops et al., 2019). From the perspective of
link prediction (Nickel et al., 2016) and fact-checking (Ciampaglia et al., 2015; Shi and
Weninger, 2016), Wikidata edits might serve as real-world data in contrast to artificial
data that is often used in this context. While biases of AI Systems are a hot topic among
machine learning researchers and policy makers (Hardt et al., 2016; Chouldechova,
2017), Wikidata could serve as an interesting case study, since its permissive license
makes it easily accessible by the research community and it allows paying particular
attention to the content of an edit rather than to biased user information.





3
Conclusions and Outlook

This chapter concludes the thesis by summarizing our results in Section 3.1 and
giving an outlook on future research directions in Section 3.2. It is partially based on
our publications (Heindorf et al., 2015, 2016, 2017a,b, 2019a,b), but provides many new
ideas for future research.

3.1 Conclusions

Information systems, such as search engines and question answering systems, in-
creasingly rely on crowdsourced knowledge bases, and when crowdsourced knowledge
bases get vandalized, this bears the risk of spreading damaging and false information
to all their users. In this thesis, we devise the novel machine learning task of vandalism
detection in the crowdsourced, structured knowledge base Wikidata and make three
main contributions: (1) We construct a large-scale vandalism corpus for vandalism
detection. (2) We develop vandalism detectors with high predictive performance. (3) We
develop vandalism detectors with low bias.

Corpus Construction

We compiled a large-scale corpus for vandalism detection in the crowdsourced, struc-
tured knowledge base Wikidata. Our automatic labeling strategy is robust against
manipulations by vandals and allows generating updated versions of the corpus, e.g.,

53
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for the organization of data science challenges. Our analysis revealed that items about
famous people are particularly often vandalized, whereas items about places are not;
although a lot of vandalism originates from anonymous editors, we argue that this is
no justification to prevent anonymous edits. The varying vandalism prevalence by
country and language of editors gives rise to explore cultural phenomena. All in all,
our corpora can serve for further analysis of vandalism in crowdsourced knowledge
bases and the improvement of machine learning-based approaches.

Vandalism Detection with High Predictive Performance

Our machine learning approach assigns each edit a vandalism score as soon as the edit
is made allowing immediate action upon vandalism in three modes of operation: edits
with high scores can be reverted fully automatically; edits with medium scores can be
manually reviewed in the order of their scores; edits with low scores might not need to
be reviewed at all. We engineered 47 features to detect vandalism, taking both content
and context information into account. Our best vandalism detector is based on multiple-
instance learning on top of bagging and random forests. It achieves 0.991 ROCAUC

at 0.491 PRAUC on the Wikidata Vandalism Corpus 2015, thus significantly outperform-
ing the state of the art by factors between 1.9 in case of FILTER and 3.6 in case of ORES.
Not only did our approach outperform the baseline on head content, body content, and
at all points in time, it withstood the competition of the WSDM Cup, outperforming all
approaches in terms of PRAUC, and almost in terms of ROCAUC. Our approach is ready
to be employed in practice to save reviewers thousands of hours of work.

Vandalism Detection with Low Bias

Our analysis revealed that today’s vandalism detectors are highly biased against certain
groups of editors, which may cause a number of problems such as decreased user
retention as well as a violation of project and ethics guidelines. We developed two novel
machine learning models that significantly reduce bias against edits by anonymous
editors. Our model FAIR-E, which is based on graph embeddings, achieves a bias ratio
of only 5.6 compared to over 310.7 in case of WDVD. Our model FAIR-S, which is based
on selecting hand-engineered features, achieves a bias ratio of only 11.9. We compared
our models to two transformations of the state-of-the-art vandalism detector WDVD:
post-processing scores and weighting training samples. Regardless of the approach,
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we found that high predictive performance and low bias cannot be achieved at the
same time; however, our models enable a conscious trade-off. Further research on fair
vandalism detectors and their perception by editors is needed to create a welcoming
environment—not only for Wikidata editors but for many editors on the web.

Overall, our vandalism detectors do not make human reviewers fully redundant yet,
but they can certainly help to reduce reviewing efforts. Given the large, emerging body
of work on related topics such as fake news, misinformation on the web, data quality of
knowledge bases, as well as fairness of AI systems, we are confident that our approach
has the potential to influence further work in these directions.

3.2 Outlook

Extensions of our approach might go in multiple directions: improving vandalism
detection in Wikidata, detecting vandalism in other online communities and across
communities, robust vandalism detection in the presence of powerful adversaries,
vandalism detection with explanations, as well as preventing some vandalism with
novel user interfaces. Beyond vandalism detection, it might be interesting to improve
other quality dimensions of knowledge bases and to explore further options to increase
fairness and editor retention.

Vandalism Detection in Wikidata with High Predictive Performance

Ideas to further improve the predictive performance of vandalism detectors include
further exploiting the edit history of the knowledge base, the graph structure of the
knowledge base, and external data sources. Moreover, it might be possible to refine the
training data and evaluation procedures.

What seems particularly promising is the exploitation of the edit history for vandal-
ism detection. In his master’s thesis, Crescenzi (2018) experimented with additional
features taking the history of users and entities into account, improving predictive per-
formance. Similarly, Pellissier Tanon et al. (2019); Nishioka and Scherp (2018) analyze
the edit history of knowledge bases to verify edits using features focusing on the graph
structure, but not the user history. While all mentioned approaches use classical feature
engineering, the predictive performance might be further improved with deep learning
techniques, such as sequence-to-sequence models and recurrent neural networks.
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Another promising direction might be to further take the graph structure into ac-
count and to apply link prediction and link classification approaches to the problem
of vandalism detection. Given a static snapshot of the graph, link prediction is the
task of predicting missing predicates between subject-object pairs. Pairs receiving a
high score are likely correct, whereas pairs receiving low scores are likely incorrect.
Nickel et al. (2016) survey corresponding approaches, which might be based on neural
embeddings (Dong et al., 2014), translational embeddings (Bordes et al., 2013; Wang
et al., 2014; Lin et al., 2015; Wang et al., 2017), matrix factorization (Nickel et al., 2012),
and explicit paths in the graph (Minkov et al., 2006; Lao et al., 2011; Shi and Weninger,
2016; Gardner and Mitchell, 2015; Ciampaglia et al., 2015). While most approaches focus
on predicting links between entities, approaches for predicting attributes are emerging,
too (Speck and Ngonga Ngomo, 2019).

Moreover, it seems promising to double-check edits with external data sources. During
her work as a student assistant and in her master’s thesis, Naphade (2018) double-
checked Wikidata edits with the DBpedia knowledge base. However, a particular
challenge was that DBpedia does not fully cover the same entities and predicates as
Wikidata, and only a fraction of Wikidata edits could be mapped to DBpedia, leading to
little improvements of predictive performance of vandalism detection. For the future, it
seems particularly promising to double-check information via information retrieval on
a large-scale web corpus (if challenges of scalability and outdated web corpora can be
overcome). For example, Lehmann et al. (2012), Syed et al. (2018), Gerber et al. (2015),
and Popat et al. (2018) verify facts with pages retrieved from the web.

Regarding dataset construction, it seems promising to experiment with the paradigm
of “data programming” (Ratner et al., 2016, 2017). The idea is that domain experts
write so-called labeling functions, which are simple heuristics applied to subsets of the
data or crowdsourced labels obtained for subsets of the data. All labeling functions
may have different accuracies and may overlap and conflict with each other. They are
combined by means of a noise-aware generative model to determine the most likely
label of each sample. For the task of Wikidata vandalism detection, promising labeling
functions might be based on rollbacks, undo/restores, item states, external databases,
crowdsourced labeling of small data subsets, as well as fact-checking results obtained
via information retrieval. Future research might even make the approach bias-aware.

Furthermore, the evaluation metrics might be adjusted in the future. Consistent with
previous research, we assign the same weight to every edit regardless of how often the
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edited data is viewed and regardless of whether the edited data affects the instance or
schema level of the knowledge base. However, data that is viewed millions of times
might be more important and should receive higher weights in the evaluation metrics.
Similarly, data that affects the schema of the knowledge base, e.g., in the instance-
of-hierarchy, can indirectly affect large amounts of data. Hence, future evaluation
procedures might put a higher weight on highly visible data and schema level data.
Moreover, the weight of certain edits might also heavily depend on the envisioned
use case. For example, some data in Wikidata is heavily used by Wikipedia projects;
other data is heavily used by search engines and question answering systems. Hence,
the evaluation procedures might be made context-specific tailored to certain use cases.
In order to optimize approaches according to the new evaluation metrics, it might be
beneficial to devise novel datasets, features, and models.

Vandalism Detection in Other Online Communities

Besides Wikidata, malicious edits by users are a wide-spread problem in many online
communities (Kumar and Shah, 2018). It might be interesting to adapt our approach
to detect damaging edits to other knowledge bases, such as MusicBrainz and Open-
StreetMap, to social networks, such as Facebook and Twitter, to question answering
sites, such as StackExchange, to crowdsourcing platforms, such as Amazon Mechanical
Turk, to review platforms, such as by Amazon or Tripadvisor, and to software hosting
sites, such as GitHub. While in this thesis, we study vandalism in one online community,
it might be interesting to investigate how one user behaves across communities.

Vandalism Detection against Powerful Adversaries

In our work, we focus on vandalism by the occasional vandal, and we took steps to
ensure the robustness of our approach against adversaries—by only taking decisions of
administrators and privileged users as training data, which are hard to manipulate by
the occasional vandal. However, we did not assume a sophisticated thread model where
powerful adversaries have advanced knowledge on attacking machine learning models
and spend a lot of time on refining their attacks (cf., Szegedy et al., 2013; Goodfellow
et al., 2015; Papernot et al., 2017; Zügner et al., 2018). It would be interesting to study in-
depth how powerful adversaries can circumvent our vandalism detector, e.g., by creating
user accounts with a high reputation before making damaging edits, by combining
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benign and damaging contributions in an edit, by damaging the knowledge base in
novel ways that are not covered by our features, by making large amounts of benign
edits appear as vandalism, thus distracting reviewers from the actually damaging edits,
and by other novel ways to disrupt the vandalism detection system.
Moreover, we propose to regularly update machine learning models to detect new

kinds of vandalism. While we performed experiments to regularly update the vandalism
detector, in the presence of powerful adversaries, it might be necessary to update
vandalism models more often or to utilize online learning approaches that immediately
adapt to changing patterns of vandalism.

Vandalism Detection with Explanations

Today’s vandalism detectors compute a vandalism score for each edit without providing
explanations to editors how a specific score was obtained. However, explanations might
increase the trust of editors in automatic vandalism detectors. Moreover, explanations
might guide the development of better vandalism detectors by pointing out reasons
for incorrect classifications or pointing out correct classifications due to the wrong
reasons, thus jeopardizing the robustness of the approach. Existing work on explaining
the predictions of classifiers such as Guidotti et al. (2019); Ribeiro et al. (2016) mainly
focuses on textual content and images, and neglects explanations for the classification
of subject-predicate-object triples in knowledge bases.

Vandalism Prevention with Novel User Interfaces

In this thesis, we focus on detecting vandalism after it has already happened. Another
approach might be to focus on vandalism prevention before it happens. For example,
we observed that certain kinds of vandalism are encouraged by the Wikidata user
interfaces, and we found that changes to the Wikidata user interfaces correlated with
changes to the kinds of vandalism. Hence, future work might further analyze this
problem and design user interfaces that particularly discourage vandalism, for example,
by making vandalism harder to commit for the occasional user and by educating users.

Quality of Knowledge Bases

Many quality management approaches for knowledge bases concentrate on assessing
and managing the quality of knowledge bases as a whole (Zaveri et al., 2016; Färber
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et al., 2017). While this might be useful for choosing between different knowledge bases,
this provides little actionable insights to improve the quality of a knowledge base. Our
approach might serve as an example of fine-grained quality management with respect
to the quality dimension of accuracy. In the future, other quality dimensions, such as
completeness, consistency, timeliness might be managed on a fine-grained level, too.

Regarding completeness, Galárraga et al. (2017) developed an approach to detect gaps
in knowledge bases. To fill such gaps in Wikidata, future work might extract the infor-
mation automatically from the web, or editors might be encouraged to fill the gaps. The
automatic extraction might be done with bootstrapping (Agichtein and Gravano, 2000)
or distant supervision (Mintz et al., 2009; Dong et al., 2014). For example, in his bachelor’s
thesis, Scholten (2019) developed a bootstrapping approach to extract one particularly
important predicate, canCause, from the web. Before, knowledge bases contained little
causal information and were often unable to answer questions regarding the causes
of diseases or natural disasters. For encouraging editors to fill the gaps, we envision a
system making personal edit suggestions based on an editor’s editing history.

Regarding consistency, in his master’s thesis, Petkovic (2019) developed an approach
to rank constraint violations according to their importance, such that themost important
constraint violations can be fixed first. Future work might try our graph embeddings
for this task and take our vandalism scores into account when assessing the importance
of fixing a constraint violation.

Debiasing Vandalism Detection and Editor Retention

While our bias measure is based on group fairness and focuses on the two groups of
anonymous and registered users, it would be interesting to explore further groups
and to study biases based on individual fairness (Dwork et al., 2012) and causal model-
ing (Kilbertus et al., 2017; Kusner et al., 2017; Zhang and Wu, 2017).

Having evaluated bias-performance trade-offs in Wikidata, it would be interesting to
develop a general framework for bias mitigation in online platforms, e.g., by employing
evolutionary algorithms to explore the Pareto front of non-dominated models in bias-
performance space. It also seems promising to add fairnessmetrics to automatic machine
learning tools, such as TPOT (Olson et al., 2016) and ML-Plan (Mohr et al., 2018), which
are based on evolutionary algorithms and hierarchical planning and could serve as a
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vehicle for broader adoption of fairness metrics. Similar fairness issues like on Wikidata
have recently been found on Reddit, too (Jhaver et al., 2019).
Our motivation for developing fair vandalism detectors includes increased editor

retention. While fair vandalism detectors contribute towards this goal, there might
be further means such as explaining decisions to editors, improving user interfaces,
creating onboarding programs for newcomers, increasing social interactions, and gam-
ification. The effect of each single intervention might be measured in a data-driven
process with A/B testing. Alternatively, the system might continuously optimize editor
retention with techniques from reinforcement learning.
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