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Abstract I

In this thesis, we investigate three areas of cryptography: searchable encryption, reputation
systems, and cryptographic cloud architectures. We mostly investigate these areas from
fairly distinct perspectives. However, we find applications for the three concepts in crowd
work, and suggest combining aspects of the concepts into a single cryptographic scheme
tailored to the crowd work setting.

Regarding searchable encryption, we formally define the desired security notions and
provide schemes satisfying these notions. Among others, we propose the first searchable
encryption scheme that simultaneously provides fine-grained access control in a multi-reader
and multi-writer setting, is dynamic, forward private, and verifiable.

Concerning reputation systems, we propose a novel security notion, a variant of rater
anonymity, motivated by the crowd work scenario. We then propose a very simple reputation
system that satisfies our anonymity notion, as well as the security requirements typically
imposed on reputation systems.

With respect to cloud architectures, we address the trust and security issues in the
cloud at the most fundamental level, the internal structure of the cloud. Our proposal
relies on hardware security as a trust anchor for the cloud and enables parties to outsource
computations on their secret cryptographic keys to the cloud without cloud service providers
learning these keys.






Zusammenfassung —

In dieser Arbeit untersuchen wir drei Bereiche der Kryptographie: Searchable Encryption,
Reputationssysteme und krypographische Cloud-Architekturen. Diese Themen haben
unterschiedliche Anwendungsbereiche. Dennoch finden wir Anwendungen der untersuchten
Konzepte auf Crowd Work und schlagen vor, Teile der untersuchten Konzepte zu einem
auf Crowd Work zugeschnittenen kryptographischen Verfahren zu vereinen.

Hinsichtlich Searchable Encryption definieren wir formal die gewiinschten Sicherheitsei-
genschaften und schlagen Verfahren vor, die unseren Definitionen geniigen. Unter anderem
schlagen wir das erste Searchable-Encryption-Verfahren vor, das gleichzeitig feingranu-
lare Zugriffskontrolle bei mehreren Lesern und Schreibern erméglicht, dynamisch und
forward-private ist, und verifizierbare Suchergebnisse bietet.

Fiir Reputationssysteme schlagen wir einen neuen Sicherheitsbegriff, eine Variante von
Bewerter-Anonymitét, vor, die im Crowd-Work-Szenario motiviert ist. Wir entwickeln ein
einfaches Reputationssystem, das sowohl unsere Anonymitatsdefinition, als auch andere
fiir Reputationssysteme typische Sicherheitseigenschaften erfiillt.

Hinsichtlich Cloud-Architekturen adressieren wir Sicherheits- und Vertrauenshemmnisse
in der Cloud durch deren grundlegenden inneren Aufbau. Unser Vorschlag basiert auf
Hardware-Sicherheit als Vertrauensanker fiir die Cloud und erméglicht es, Berechnungen
auf kryptographischen Schliisseln in die Cloud auszulagern, ohne dass Cloud-Betreiber
diese Schliissel lernen.
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Part 1

Introduction and Foundations






Introduction e

In an increasingly interconnected world, cryptography provides many tools to protect
legitimate goals and interests from adversarial parties. Private data should be protected
from becoming public knowledge. It should be possible to check that data originates from a
claimed source and that the data has not been altered, for example, during online banking.
Only people who have bought a certain product in an online shop should be able to rate
that product and ratings, once made, should be protected from malicious modification.
Also, raters should be accountable for their reviews.

The first requirement, keeping data private, is covered by encryption schemes. The
second and third requirements, authenticity and integrity, are covered by signature schemes.
The fourth, fifth, and sixth requirements are covered by reputation systems, which can
rely on signature schemes to hold raters accountable and to prevent rating modification.

The given usage examples of encryption schemes, signature schemes and reputation
systems show that cryptographic schemes can have a profound impact on daily life. These
schemes protect people from being blackmailed, from having money stolen by attackers
claiming to be the victim’s bank, or from being scammed into buying products from
unreliable vendors. The given examples also show that cryptographic schemes cannot
only be used individually, but can be combined and build upon each other. The examples
highlight that cryptography is used in a context. One such context relevant for our work is
crowd work.

Crowd work. Crowd work is a work model that has been claimed to have significant
economic impact in the future. It is a particular kind of crowdsourcing, which according
to Estellés-Arolas and Gonzalez-Ladrén-De-Guevara [EG12], is defined as “a type of
participative online activity in which ... [an individual or organization, called requester]
proposes to a group [called crowd] ..., via a flexible open call, the voluntary undertaking
of a task. The undertaking of the task, ...in which the crowd should participate bringing
their ... [resources| always entails mutual benefit. The user will receive ... [a reward], while
the ... [requester] will obtain and utilize to their advantage that what the user has brought
to the venture ...” Following the definition, in crowd work, the crowd provides resources
in the form of labor and receives a monetary reward in return.

Context of this thesis. Crowd work is subject to research in the research program
Digital Future that the author of this thesis participates in. In this thesis, we discuss
three main areas of cryptographic research that are not necessarily investigated with a
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focus on crowd work. After all, cryptography often separates cryptographic schemes from
their usage contexts to get general schemes that are applicable in other contexts as well.
However, we tie the individual classes of cryptographic schemes together towards the end
of the thesis and in the context of crowd work.

Contribution. The three main research areas covered in this thesis are searchable
encryption, reputation systems, and cryptographic cloud architectures. These topics are
covered by four publications to which the author has made substantial contributions.

At the International Conference on Availability, Reliability and Security, ARES 2017,
we have presented some of our work on searchable encryption [Lok17]. We have expanded
upon that work and have presented the results at the Foundations and Practice of Security
conference, FPS 2019 [BL19a]. At the earlier 2017 edition of FPS, we have presented
our initial work on cloud architectures [Bl6+17]. Cloud architectures and searchable
encryption have been jointly addressed at ARES’s 2018 edition; the presented work evolves
the previously covered cloud architecture and expands on its features [BL18]. Reputation
systems in the context of crowd work have been presented at the International Workshop on
Security and Trust Management, STM 2019 [BL19b]. In addition to previously published
material, this thesis also contains previously unpublished work on searchable encryption.

Outline. We precede our discussion of the classes of cryptographic schemes by briefly
reviewing some of the foundations and approaches of modern cryptography, and by pre-
senting some cryptographic building blocks used throughout this thesis. The material can
be found in the remainder of Part I. Our research on searchable encryption can be found in
Part II. Parts IIT and IV cover our research on reputation systems and cloud architectures,
respectively. Each part features a more detailed introductions to the class of cryptographic
scheme discussed within that part. Finally, in Part V, we bring our results and intuitions
from the various research areas together, and address the application of our results to
crowd work.



Basic Concepts and Notation .

In this chapter we briefly review three fundamental concepts in modern cryptography:
probabilistic polynomial time algorithms, security parameters, and security experiments.
Alongside these concepts, we familiarize ourselves with our notation.

Algorithms and randomness. Throughout this thesis, we consider algorithms that
run in probabilistic polynomial time (PPT). That means, the runtime of the algorithm,
expressed as a function of the length of the input to the algorithm, is bounded by some
polynomial in the length of the algorithm’s input. An algorithm running in PPT also means,
that the algorithm has access to randomness, allowing it to draw values according to any
computable probability distribution.

In our context, this probability distribution is typically a uniform distribution, and
we denote the assignment of a value uniformly sampled from a set X to a variable y as
y <—¢ X. In contrast, the assignment of a fixed value x to variable y is denoted as y < x.
We use the same notation to denote the assignment of a value that is the result of a call to
some PPT algorithm.

Security parameter A\. Modern provably secure cryptography attempts to quantify
the degree of security achieved by concrete instantiations of cryptographic schemes. For
quantification purposes, a security parameter A is used. When instantiating a cryptographic
scheme, the parameter is passed to the operation of the scheme that is supposed to be
executed first. Often, those operations are called Setup or KeyGen and serve the purpose of
deriving other system parameters and cryptographic keys such that an instantiation of the
scheme using those parameters and keys provides the desired degree of security.

A popular interpretation of the security parameter is that it represents the length
(in bits) of a cryptographic key. This is what is meant when a scheme is referred to as
providing 80 or 128 bits of security. However, it must be noted that the intuition “security
parameter = key length” only holds for a very limited range of schemes. Oftentimes the
actual key or system parameter length is a multiple of the security parameter.

Since we want cryptographic schemes to be practical, we require the algorithms that
make up a scheme to run in PPT. However, if we stick with the flawed intuition of “security
parameter = key length,” we immediately see that no PPT algorithm, given the security
parameter A as input, coded in binary, can output anything of length A. Simply producing
that output requires time exponential in the length of A. In order to circumvent this, the
security parameter is passed in unary, denoted as 1*. Again relying on the intuition of



“security parameter = key length,” the other algorithms that make up a cryptographic
scheme, by using keys of the given length, can run in time polynomial in 1*.

Quantifying security. The security of cryptographic schemes is assessed through se-
curity experiments. In these experiments, an algorithm denoted “adversary” attempts to
compute something that depends on what security notion the experiment captures. For
example, to assess the security of encryption schemes, the adversary, given a ciphertext,
has to identify the message whose encryption resulted in the ciphertext, with there being
two options to choose from. If the adversary successfully computes an acceptable output,
again depending on the security notion, the experiment’s outcome is 1. If the adversary
does not produce an acceptable output, the experiment’s outcome is 0.

During the experiment, the adversary can typically interact with the experiment, or a
challenger running the experiment, via its inputs and outputs, and via oracles. Oracles allow
the adversary to see a cryptographic scheme in action. For example, an oracle may cause a
party played by the experiment/challenger to encrypt a message of the adversary’s choice.
Thus, oracles enable the adversary to gather information that may help in computing
whatever the adversary needs to compute in order to make the experiment’s outcome 1.

Note that our experiments are parameterized with the security parameters that the
experiment /challenger uses to instantiate cryptographic schemes. When evaluating the
security of a cryptographic scheme [ relative to an experiment, we consider the probability of
the outcome of experiment Exp to be 1 if run with adversary A, denoted Pr[Exp 4 n(A) = 1].
Specifically, we consider the advantage of the adversary. The advantage considers the
probability of the experiment’s outcome to be 1 by chance. For example, in the mentioned
encryption example, the adversary has to decide what message was encrypted to a given
ciphertext and the adversary knows the two options. The experiment/challenger chooses
the message to encrypt uniformly at random from its options. So by simply guessing,
an adversary can cause the experiment’s result to be 1 50% of the time. Therefore, if
Exp denotes the security experiment for encryption schemes and 1 denotes an encryption
scheme, the advantage of an adversary A is computed as |Pr[Exp4n()\) = 1] — 1/2],
meaning how much better the adversary performs when compared to a random guess.

Qualifying security. The above approach allows us to quantify security of a crypto-
graphic scheme as a probability or advantage for an adversary to perform well in an
experiment. Yet, we still need to ask what types of adversaries we need to consider, how
much computational power adversaries can wield, and what adversarial advantage we can
allow for a scheme to be still considered secure. An adversary can be assumed to make
full use of its powers, for example, by using the information gained from decrypting a
ciphertext the adversary is not allowed to decrypt. Therefore, we typically restrict ourselves
to adversaries that complete their computations within a manageable time frame. This is
captured by the notion of polynomial time. Therefore, cryptography generally restricts
adversaries to run in PPT, where schemes’ security parameters are taken as reference, so
adversaries asymptotically have the same resources as someone running the scheme.

We generally consider schemes secure with respect to some experiment if, in the
experiment, no PPT adversary can perform significantly better than the random guess.
What is considered significant, depends on the runtime of the adversary, and thus, the
security parameter. Fixing a security parameter A, we allow our adversaries runtimes
polynomial in A, denoted as poly(A). We consider a PPT adversary’s advantage against a
scheme negligible in the security parameter A\, denoted negl()), if the adversary’s advantage,
as a function in A, is asymptotically less than 1/poly(\). This means the advantage
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CHAPTER 2. Basic CONCEPTS AND NOTATION

converges to 0 faster than every inverse polynomial.

Given this notation, our security definitions for cryptographic schemes take the following
form. A cryptographic scheme [1, is called secure relative to experiment Exp if, for all
PPT adversaries A, Pr{Exp 4 q()\) = 1] < negl()) or | Pr[Exp 4 q(A) = 1] — 1/2] < negl()),
depending on context, where the probabilities are taken over the random choices of the
experiments and the adversaries.

Interaction with oracles. Before, we have mentioned oracles that an adversary can
use to interact with a security experiment. Notation-wise, in descriptions of experiments,
an adversary A on input 1* with access to oracle O is denoted as A9C) (1}) or AC@)(14),
The first version means that the oracle takes two inputs, both of which the adversary
can freely choose. In the second version, the oracle also takes two inputs, but the first
input is fixed to z, so the adversary can only choose the second input. Particularly, x
remains hidden from the adversary if the adversary does not get access to x by other
means. For example, if x is a secret key that the adversary should not learn, we use oracles
so the adversary can evaluate a function of the secret key without learning the key. If
the adversary was allowed to learn x, we could give = to the adversary directly, so the
adversary could compute on x itself, rather than relying on the oracle.






Building Blocks for Crypto-
graphic Schemes -

This chapter presents the cryptographic primitives that we use in various constructions
throughout this thesis. Our discussion of primitives spans fundamental functions, such
as hash functions, and other basic building blocks, such as encryption and signature
schemes. We address each of these primitives, as well as some relations between them, in
the upcoming sections.

3.1 The Fundamental Functions

Hash functions, pseudorandom functions, and trapdoor permutations are some of the
most fundamental cryptographic primitives. They can be used to realize many other
cryptographic concepts, including some of the other primitives presented in this chapter.

3.1.1 Hash Functions

A hash function can be used to efficiently map objects, for example, bit strings, into a
finite set. The result of applying a hash function to an object is called a hash or digest. A
typical security requirement is for different objects to result in different hashes. Of course,
given that we have no restriction on the sizes of objects, particularly the lengths of bit
strings being hashed, there must be two objects that result in the same hash. Therefore,
the above requirement is slightly relaxed to the notion of collision resistance. That is, it
is hard for any reasonable attacker to come up with two objects that result in the same
digest under the hash function. A pair of distinct objects that result in the same digest is
called collision. The notion of hash functions can be formalized as follows.

Definition 1 (Def. 5.1 of [KL14]). A hash function is a pair [ = (Gen,Hash) of PPT
algorithms.

Gen takes a security parameter 1, and outputs a key s.

Hash takes a key s and a bit string x € {0,1}*, and outputs a bit string y € {0, 1}5()‘),
where £ is a polynomial and X is implicit in s. The algorithm is deterministic.

We note that the key of a hash function is public. Although our formal definition
operates on bit strings, the notion of hash functions can be generalized. For that, we use
the fact that objects can be represented as bit strings, thus allowing objects to be input to
and output by hash functions. Such conversions from objects to bit strings and bit strings
to objects remain implicit throughout this thesis.

9



3.1 THE FUNDAMENTAL FUNCTIONS

Expfé(l),lll'l_res ( )\)

e 5 T1.Gen(1")

o (z,2)«+ A(s)

e the experiment outputs 1 if
1. z#2 and
2. M.Hash(s,z)=M.Hash(s,z’)
otherwise the experiment outputs 0.

Figure 3.1: Collision resistance experiment for hash function 1 = (Gen, Hash) and attacker

A

The security notion of collision resistance is defined relative to experiment Exp©res

as presented in Figure 3.1.

Definition 2 (Def. 5.2 of [KL14]). A hash function M = (Gen,Hash) is called collision
resistant if, for all PPT adversaries A,

PriExpXfi"™(A) = 1] < negl()),

where the probability is taken over the random bits of the adversary and the experiment.

3.1.2 Pseudorandom Functions

A pseudorandom function (PRF) is an efficiently computable keyed function that maps bit
strings from some range to bit strings from some domain. The idea is for the mapping to
look unpredictable — or pseudorandom — even though it is deterministic. Therefore, the
notion for PRFs considers a truly random function. That is, a function chosen uniformly
at random from the set of functions that, for every security parameter A, have the same
domain and range as the PRF. No PPT attacker can be able to distinguish the PRF from a
truly random function. The notion of PRFs can be formalized as follows.

Definition 3 (Def. 3.25 of [KL14]). A pseudorandom function is a pair 1 = (Gen, Eval)
of PPT algorithms.

Gen takes a security parameter 1, and outputs a key k.

Eval takes a key k and a bit string x € {0,1}*, and outputs a bit string y € {0,1}*. The
algorithm is deterministic.

We require, for every PPT distinguisher D,
| P[DERI0)(1%) = 1] — Pr[DO (1) = 1] < negl(V),

where k < Gen(1Y), f is chosen uniformly at random from the set of functions that, for
security parameter A, have the same domain and range as Eval, the superscript denotes
oracle access, and the probability is taken over the random choices of f, k, and the adversary.

PRFs look very similar to hash functions, and indeed PRFs naturally satisfy the collision
resistance definition. Nevertheless, PRFs and hash functions are not the same. Particularly,
the key used in a PRF is private.

10



CHAPTER 3. BUILDING BLOCKS FOR CRYPTOGRAPHIC SCHEMES

ExpiE*())

(I,td) < Gen(1")

x < Sample([)

' A(lx)

the experiment outputs 1 if Eval(z)=Eval(z’) ; otherwise the experiment outputs 0.

Figure 3.2: Inversion experiment for trapdoor permutation 1 = (Gen, Sample, Eval, Inv)
and adversary A

3.1.3 Trapdoor Permutations

A trapdoor permutation is a permutation that is easy to compute, but hard to invert,
unless one knows a “trapdoor” that allows for efficient inversion. This can be formalized
as follows.

Definition 4 (Def. 13.1 of [KL14]). A trapdoor permutation is a tuple 1 = (Gen, Sample,
Eval, Inv) of PPT algorithms.

Gen takes a security parameter 1* and outputs tuple (I, td) with |I| > X. The pair (I,td)
implicitly defines D, the domain and range of the permutation.

Sample on input I outputs a uniformly chosen element from D.
Eval on input I and x € D outputs y € D.
Inv on input td and y € D outputs x € D.
We require, for all (I,td) <+ Gen(1%),
1. Eval is a bijection and,
2. for all z € D, Inv(td, Eval(I,x)) = z.

For N = (Gen, Sample, Eval, Inv) to be a trapdoor permutation, we also require, for all PPT
adversaries A,
PrExp1i™(A) = 1] < negl()),

where experiment Exp™°™ is as defined in Figure 3.2 and the probability is taken over the

randomness of the experiment and the adversary.

3.1.4 The Random Oracle Model

The random oracle methodology offers techniques to prove cryptographic schemes secure
in an idealized setting [BR93|. The random oracle itself is an idealization of objects such
as hash functions, PRFs and trapdoor permutations. Random oracles behave like randomly
chosen functions that have no publicly known description. Without a public description,
in order to evaluate the oracle at some value, the oracle has to be queried. To anyone
querying a value at the oracle, the answers they eventually receive are unpredictable if
they have not queried the oracle on the same value before.

The unpredictability of random oracles is useful in security proofs. For that, in a proof
of security of some construction, a primitive, for example, a hash function, used within
the construction is treated as a random oracle. When the construction is implemented,
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the random oracle is instead replaced by an actual function, for example, the AES scheme
[DR98] if the random oracle represents a PRF.

In security proofs, random oracles come in two flavors: non-programmable and pro-
grammable. Non-programmable random oracles just produce unpredictable output as
discussed above. Programmable random oracles, on the other hand, are under the proof’s
control, so the oracle can be made to produce outputs that are convenient for the proof.
A particular use of programmability is to “patch” random oracles. That is the proof
determines inputs (to an oracle) that result in a certain output that is unknown at the time
the inputs are defined. Later on in the proof, the outputs become clear, and the random
oracle is retroactively defined (“patched”) to behave in that particular way. Occasionally,
patching the oracle may fail, namely, if the inputs have already been defined to result in a
different output.

It has been shown that some cryptographic schemes can be proven secure if a primitive
is modelled as a random oracle, but no matter how the primitive is instantiated, the
instantiation is insecure [CGHO4][; it must however be noted that such schemes are highly
contrived. A scheme’s proof of security in the random oracle model thus does not necessarily
prove security of any instantiation of the scheme, but, as Katz and Lindell put it (p. 181
of [KL14]), “a proof of security for a scheme in the random oracle model indicates that
the scheme’s design is “sound,” in the sense that the only possible attacks on a real-world
instantiation of the scheme are those that arise due to a weakness in the hash function [or
other primitive] used to instantiate the random oracle.” So, we hope that instantiations of
primitives are good enough at mimicking random oracles.

3.2 Encryption

Encryption aims at providing confidentiality of messages. That is, no unauthorized entity
can learn any bit of the plaintext message from the encrypted message, also called ciphertext.
While the concept of encryption is widely applicable, there are significant differences in
usage scenarios that need to be accounted for in formal definitions of security. Differences
may be due to the number of entities that may author a message, or the number of
addressees of a message. We must also consider differences in an attacker’s capabilities.

Concerning an attacker’s capabilities, we mostly consider attackers that know many
plaintext—ciphertext pairs for plaintexts of the attacker’s choice. This is captured by the
notion of security against chosen plaintext attacks (CPA). The notion is defined relative to
a security experiment. As part of the CPA-security experiment, the attacker chooses two
messages of its choice. One of these messages is encrypted, and the resulting ciphertext
is given to the attacker. The attacker then has to decide which of the two messages was
encrypted. This necessitates the two messages to be of equal length. Otherwise, it might
be trivial to decide which message was encrypted, because short messages generally result
in short ciphertexts, whereas long messages result in long ciphertexts. An encryption
scheme is CPA-secure if the attacker is unable to decide which message was encrypted. This
means the attacker essentially guesses what message was encrypted, despite the attacker
knowing the two options, and knowing lots of ciphertexts for plaintexts of its choice,
including plaintext—ciphertext pairs for the challenge messages. Achieving this security
notion necessitates encryption to be probabilistic.

In addition to CPA-security, we also consider a stronger notion called security against
chosen ciphertext attacks (CCA). In the CCA-security experiment, the attacker does not
only know ciphertexts for plaintexts of its choice, but also plaintexts for ciphertexts of its
choice (with the exception of the challenge ciphertext).

12
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We also consider a notion of security called security against eavesdropping attacks. In
this notion, in contrast to the CPA setting, the attacker has no knowledge of plaintext—
ciphertext pairs. Depending on the number of potential authors and addressees in a scheme,
eavesdropping-security is weaker than CPA-security or equivalent to CPA-security.

Concerning the numbers of potential authors and addressees of messages, we consider
three cases.

1. The symmetric setting, in which the author is the addressee, or the author and the
addressee share a secret. A prime example for the use of symmetric encryption is in
order to prevent cloud service providers from learning the data that they store on
behalf of their customers.

2. The public key setting, which features multiple authors, but a single addressee. Public
key encryption can be used to encrypt communication directed at the addressee.
Encryption of e-mails is a popular example.

3. The attribute-based setting, which features multiple authors and addressees that the
author of a message may not identify by name, but by certain attributes. Attribute-
based encryption is best used within (large) organizations. In such a setting, commu-
nication may be directed at all individuals that fill a certain role, like department
heads, that is reflected in their attributes.

In this section, we now formally define the three cases, what security means in the
respective context, and how the cases are often combined.

3.2.1 Symmetric Encryption

As stated, symmetric encryption targets the setting in which the author of a message and
the addressee are the same or share a secret. In this setting, the shared secret is used
during encryption and decryption. This can be formalized as follows.

Definition 5 (Def. 3.7 of [KL14]). A symmetric encryption scheme is a triple 1 =
(KeyGen, Enc, Dec) of PPT algorithms.

KeyGen takes a security parameter 1* and outputs key sk.

Enc takes key sk and a message msg, and outputs a ciphertext ct.

Dec takes key sk and ciphertext ct, and outputs a message msg.

We require, for all sk + KeyGen(1*) and all messages msg, Dec(sk, Enc(sk, msg)) = msg.

For symmetric encryption schemes, CPA-security is defined relative to experiment
ExpSKFP2 a5 presented in Figure 3.3. In this experiment, an attacker can request
ciphertexts for arbitrary messages by asking the encryption oracle provided.

Definition 6 (Def. 3.22 of [KL14]). A symmetric encryption scheme N1 = (KeyGen, Enc,
Dec) is called CPA-secure if, for all PPT adversaries A = (A1, As),

| Pr{Exp S ()] — 1/2] < negl(\),
where the probability is taken over the random choices of the adversary and the experiment.
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Exp’p (V)

sk +KeyGen(1")
(st.msgo;msgy) = AT (1Y)
b<—$ {0,1}
ct* « Enc(sk,msgy)
o V¢ AR (gt )
the experiment outputs 1 if
1. |msgg|=|msg;| and
2. b=V;
otherwise the experiment outputs 0.

Figure 3.3: CPA-security experiment for symmetric encryption scheme N = (KeyGen, Enc,
Dec) and attacker A = (A7, A2)

EXpiﬁ-I;]-ma( )\)

o sk<KeyGen(1*)
(St,msgo,msgl)<—AEHC(Sk7.)’DeC(8k7.)(1>\)

b<—$ {0,1}

ct* < Enc(sk,msgy)

. b/%Agnc(sk;),Dec(skg)(St’ct*)

the experiment outputs 1 if

1. msgol =msgy ;

2. b=U, and

3. As has not queried ct* at the decryption oracle;
otherwise the experiment outputs 0.

Figure 3.4: CCA-security experiment for symmetric encryption scheme N = (KeyGen, Enc,
Dec) and attacker A = (A;, As)
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KeyGen(1)
e sk PRF.KeyGen(1%)

Enc(sk,msg)

e r<g{0,1}

e < PRF.Eval(sk,r)®msg
e output (r,c)

Dec(sk,ct)

e output PRF.Eval(sk,r)®c

Figure 3.5: The CSSE symmetric encryption scheme built from a PRF; & denotes bit-wise
xor; msg is assumed to be no longer than the output of the PRF

ExpSFe ()

sk +KeyGen(1*)
(st,msgg,msgy) A1 (1%)
b<—$ {0,1}
ct* < Enc(sk,msgy)
b < Ag(st,ct*)
the experiment outputs 1 if
1. |msgo|=|msg;| and
2. b=V;
otherwise the experiment outputs 0.

Figure 3.6: Eavesdropping-security experiment for symmetric encryption scheme 1 =
(KeyGen, Enc, Dec) and attacker A = (A1, .A2)

Security of symmetric encryption schemes against chosen-ciphertext attacks is defined
relative to experiment ExpS¥F°® form Figure 3.4. The experiment is similar to the
CPA-security experiment, but the adversary can query a decryption oracle in addition to
the encryption oracle. However, the adversary is prohibited from querying the challenge
chiphertext at the decryption oracle, as to not allow the adversary to trivially win the
experiment.

Definition 7 (Def. 3.33 of [KL14]). A symmetric encryption scheme N = (KeyGen, Enc,
Dec) is called CCA-secure if, for all PPT adversaries A = (A1, A2),

| PrExpi{iy (V)] — 1/2| < negl(A),
where the probability is taken over the random choices of the adversary and the experiment.

Symmetric encryption schemes are tightly linked to pseudorandom functions (PRFs).
An example is shown in Figure 3.5, which presents the CSSE (CPA-secure symmetric
encryption) scheme.

Relaxation and use of symmetric encryption. In our use of symmetric encryption,
CPA-security is occasionally stronger than what we need. Schemes achieving CPA-security
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KeyGen(17)

k < PRF.KeyGen(1*)
o 7+4{0,1}*

o sk« (k,r)

e output sk

Enc(sk,msg)

e output PRF.Eval(k,r)®msg
Dec(sk,ct)

e output PRF.Eval(k,r)®ct

Figure 3.7: The ESSE symmetric encryption scheme built from a PRF; & denotes bit-wise
xor; msg is assumed to be no longer than the output of the PRF

are impractical for some of our uses due to the inherent randomization in such schemes, see,
for example, the use of random r in the above CSSE scheme. We therefore settle for the
weaker model of security against eavesdropping attacks. Eavesdropping-security is defined
relative to experiment ExpS¥¥® as shown in Figure 3.6. This experiment is similar to
experiment Exp®¥FP2 but does not grant the adversary access to an encryption oracle,
so the adversary only observes a single ciphertext encrypted under the secret key.

Definition 8 (Def. 3.8 of [KL14]). A symmetric encryption scheme N = (KeyGen, Enc,
Dec) is called eavesdropping-secure if, for all PPT adversaries A = (A, As),

| Pr{ExpZ{iv (M) — 1/2| < negl()),
where the probability is taken over the random choices of the adversary and the experiment.

As a consequence of the experiments, every CPA-secure symmetric encryption scheme
is also eavesdropping-secure. The converse is not true, as we see in the following.

Consider the ESSE (eavesdropping-secure symmetric encryption) scheme shown in
Figure 3.7. Note the similarities between the CSSE and ESSE schemes. Both schemes use
the exact same mechanisms. The schemes only differ in the use of the random string r and
when it is chosen. In the CSSE scheme, 7 is chosen during encryption and only used in the
generation of a single ciphertext, whereas in the ESSE scheme, r is part of the secret key
and used for all ciphertexts.

This subtle difference results in the ESSE scheme only being eavesdropping-secure, but
not CPA-secure: assume two ESSE ciphertexts ¢t and ct’ computed from messages msg
and msg’, respectively; then ct @ ct’ = msg ® msg’, so the key cancels out. In experiment
ExpSKFP2  the adversary can easily exploit this property to distinguish ciphertexts for
either of the two challenge messages. In contrast, in experiment Exp ¥V the adversary
only learns one ciphertext, so the property cannot be exploited.

3.2.2 Public Key Encryption

Public key encryption schemes target a setting with multiple potential authors of messages.
It is somewhat impractical for authors to establish shared secrets with every potential
addressee and vice versa. Therefore, public key encryption uses a key pair, consisting of a
public and a secret key. The key pair is generated by an addressee who keeps the secret
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EXPZI}F_Cpa( /\)

(pk,sk) < KeyGen(1*)
(st,msgg,msgy) <A1 (pk)
b<—$ {0,1}
ct* < Enc(pk,msg)
b < Ag(st,ct*)
the experiment outputs 1 if
1. |msgy|=|msg;| and
2. b=V;
otherwise the experiment outputs 0.

Figure 3.8: CPA-security experiment for public key encryption scheme N = (KeyGen, Enc,
Dec) and attacker A = (A1, A2)

key to herself. In contrast, the public key, as the name implies, is published, and every
author who wishes to communicate a message to the addressee uses the addressee’s public
key during encryption. The addressee users her secret key during decryption. All in all,
public key encryption can be formalized as follows

Definition 9 (Def. 11.1 of [KL14]). A public key encryption scheme is a triple N =
(KeyGen, Enc, Dec) of PPT algorithms.

KeyGen takes a security parameter 1% and outputs public—private key pair (pk, sk).
Enc takes public key pk and a message msg, and outputs a ciphertext ct.
Dec takes secret key sk and a ciphertext ct, and outputs a message msg.
We require, for all (pk, sk) < KeyGen(1*) and all messages msg.
Pr[Dec(sk, Enc(pk, msg)) = msg] > 1 — negl(A).

For public key encryption schemes, CPA-security is defined relative to experiment
Exp"8E-cP2 a5 presented in Figure 3.8. In contrast to the CPA-security experiment for
symmetric encryption schemes, the attacker is not given explicit access to an encryption
oracle, because the attacker gets a public key. Therefore, the attacker can encrypt messages
on its own.

Definition 10 (Prop. 11.3 of [KL14]). A public key encryption scheme N = (KeyGen, Enc,
Dec) is called CPA-secure if, for all PPT adversaries A = (A1, As),

| Pr[Exply T(\)] — 1/2| < negl(}),
where the probability is taken over the random choices of the adversary and the experiment.

Concerning the notion of eavesdropping-security in the context of public key encryption,
eavesdropping-security is equivalent to the notion of CPA-security. This is due to attackers
having access to the public key, which turns the experiment for eavesdropping-security into
a CPA-security experiment.

The security notion of CCA-security can also be defined for public key encryption
schemes. Figure 3.9 shows the relevant security experiment. As in the symmetric case, the
adversary gets access to a decryption oracle, but must not query the challenge ciphertext
at the oracle.
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Expil}lE'Cpa (A)

(pk,sk) < KeyGen(1*)
(st,msgg,msg; ) <A1 (pk)
b<—$ {0,1}
ct* < Enc(pk,msg;)
V< Ag(st,ct*)
the experiment outputs 1 if
1. |msgo|=|msg;| and
2. b=V;
otherwise the experiment outputs 0.

Figure 3.9: CCA-security experiment for public key encryption scheme N = (KeyGen, Enc,
Dec) and attacker A = (A1, A2)

Definition 11 (Prop. 11.13 of [KL14]). A public key encryption scheme N = (KeyGen,
Enc, Dec) is called CCA-secure if, for all PPT adversaries A = (A1, As),

\Pr[Expiff—,E'CC“()\)] —1/2| < negl()\),

where the probability is taken over the random choices of the adversary and the experiment.

3.2.3 Attribute-Based Encryption

Attribute-based encryption (ABE) schemes are used in settings in which authors address
multiple addressees, potentially without knowing them directly. Particularly, addressees are
known and addressed by their properties or roles, called attributes, rather than their names.
ABE can be seen as an extension of public key encryption in which there are multiple secret
keys — one per attribute — for the same public key, and multiple secret keys have to
be used simultaneously during decryption. Whether or not a given combination of secret
keys can be used to decrypt a ciphertext depends on a policy that served as input to the
encryption operation that resulted in the ciphertext. This is reflected by our formalization
of ABE.

Definition 12 ([SW05]). An ABE scheme is a tuple [1 = (Setup, KeyGen, Enc, Dec) of four
PPT algorithms.

Setup takes a security parameter 1* and outputs a public parameters—master secret pair
(pp, msk).

KeyGen takes master secret msk and attribute set U, and outputs a user secret usky.

Enc takes public parameters pp, an access policy A, and a message msg, and outputs a
ciphertext ct.

Dec takes parameters pp, user secret usk and ciphertext ct, and outputs a message msg.

We require, for all (pp, msk) «+ Setup(1?), all messages msg, and all access policy-attribute
set pairs (A, U), if U satisfies A, then, for usky < KeyGen(msk,U), we have

Pr[Dec(pp, usky, Enc(pp, A, msg)) = msg] > 1 — negl(\).
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Expj]’?_lE—Cpa(A)

o (pp,msk) < Setup(1*)

(st, A msgomsgy) < Ay ) (pp)

b<—$ {0,1}

ct* < Enc(pp,A*,msg;)

b/<_A2KeyGen(msk,~)(8t’Ct*)

the experiment outputs 1 if

L. |msgo|=|msg,],

2. b=V, and

3. for no query to oracle KeyGen(msk,U), U satisfies A*;
otherwise the experiment outputs 0.

Figure 3.10: CPA-security experiment for ABE scheme N = (Setup, KeyGen, Enc, Dec) and
attacker A = (A1, A2)

For ABE schemes, CPA-security is defined relative to experiment Exp”B™P2  as pre-

sented in Figure 3.10. Since ABE requires a policy during encryption, in the experiments,
the adversary not only outputs two messages to be challenged upon, but also a policy A*
used to create the challenge ciphertext ct*. As in the case of public key encryption, the
attacker can encrypt arbitrary messages under arbitrary policies. In contrast to the case
of public key encryption, the attacker gets access to a KeyGen(msk,-) oracle, so it can
gain decryption keys for arbitrary attribute sets. This means the adversary controls some
corrupted users. However, this necessitates that the attacker must not ask for keys for
attribute sets that satisfy the challenge policy A*.

Definition 13 ([SWO05]). An ABE scheme N1 = (Setup, KeyGen, Enc, Dec) is called CPA-
secure if, for all PPT adversaries A = (A1, A2),

| PrExpi i (V)] — 1/2] < negl()),
where the probability is taken over the random choices of the adversary and the experiment.

In the CPA case, the KeyGen oracle directly outputs the generated key. In contrast, in
the CCA case, the KeyGen oracle does not output the key, but rather a handle of the key.
The attacker can obtain the key by calling the Reveal oracle on the handle. The handle is
also used to identify the key to use for queries to oracle Dec, which attempts to decrypt a
given ciphertext by using the key identified by the handle.

Using the handle enables the adversary and the experiment to re-use the same key
for multiple queries. As an alternative, some authors have suggested to generate a new
user secret for each key generation or decryption query, and to use that secret only to
answer that single query, see [KV08] for an example. It can be argued that both notions
capture the intuitive description of CCA-security. However, it has been shown that the
model we chose is strictly stronger than the alternative model [BL17]. Their CCA-security
experiment Exp®BF°? for ABE schemes is presented in Figure 3.11, and CCA-security is
defined relative to that experiment.

Definition 14 ([BL17]). An ABE scheme Il = (Setup, KeyGen, Enc, Dec) is called CCA-
secure if, for all PPT adversaries A = (A1, A2),

]Pr[Expﬁﬁ—,E'cca()\)] —1/2] < negl()),
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Expﬁ]f_lE—cca ( )\)

2 4 LK, ,Ileveal . ,Dec N

(Sth*vmng7msgl pp)
b<—$ {0,1}
ct* < Enc(pp,A*,msg;)

b« AKeyCen(msks) Reveal().Decl) gy 4

the experiment outputs 1 if

1. |msg|=|msg,,

2. b=V, and,

3. for every query to oracle KeyGen(msk,U) that resulted in handle h, if U satisfies
A*, then there is no query Reveal(h), and there is no query Dec(h,ct*);

otherwise the experiment outputs 0.

Figure 3.11: CCA-security experiment for ABE scheme [1 = (Setup, KeyGen, Enc, Dec) and
attacker A = (A1, A2)

where the probability is taken over the random choices of the adversary and the experiment.

A security property implicit in the definitions of CPA and CCA-security for ABE is
collusion resistance. That is, users cannot combine their secret keys in order to decrypt
ciphertexts that neither user can decrypt on her own. Given the collusion resistance
property, ABE can be used to cryptographically enforce access control, and we use ABE in
this capacity.

We note that there are multiple flavors of ABE, most notably ciphertext-policy [BSWO7]
and key-policy [Goy+06] ABE. Our presentation of ABE presents the ciphertext-policy case.
In contrast, in key-policy ABE, the uses of attributes and policies are switched, so policies
are used in key generation, and attributes are used in encryption.

The literature on ABE distinguishes schemes with different sizes of attribute universes,
namely, small-universe ABE and large-universe ABE. In small-universe ABE, the total
number of attributes supported by an instantiation of the scheme is polynomially bounded
by the security parameter. In contrast, large-universe ABE supports attribute universes of
super-polynomial or even infinite size.

Supporting key delegation. For our use of ABE, it is important that schemes feature
key delegation [BSWO7]. That is, given public parameters pp and a user secret for attribute
set U, it is possible to efficiently derive a user secret for every set U’ C U, and the derived
key is functionally equivalent to a user key for attribute set U’ computed via KeyGen. This
is formalized as follows.

Definition 15. An ABE scheme 1 = (Setup, KeyGen, Enc, Dec) supports key delegation if
there is a PPT algorithm Delegate such that, for all sets U # O # U’ of attributes from MN’s
attribute universe with U' C U, the probability distributions

(pp, msk, usky, usky) = (pp, msk) < Setup(11), usky < KeyGen(msk, U),
{ usky: < KeyGen(msk,U") }
and
(pp, msk, uskyr, usky) = (pp, msk) < Setup(l)‘), usky < KeyGen(msk,U),
{ usky < Delegate(pp, usky,U’) }
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are computationally indistinguishable.

Key delegation is supported by various ABE schemes, among others [BSW07; Wat11;
RW13]. Due to indistinguishability of delegated user keys from keys computed via KeyGen,
CCA-security, CPA-security and collusion resistance hold in the presence of delegated keys.
Particularly, it is not possible to (re-)combine user secrets derived from the same original
user secret.

3.2.4 Hybrid Encryption

In practice, asymmetric encryption, for example, in the form of public key and attribute-
based encryption, suffers from low throughput during encryption and decryption. This is
due to computationally expensive primitives used to implement asymmetric encryption.
Symmetric encryption does not have this drawback.

Therefore, a common approach when dealing with large volumes of data is to use hybrid
encryption, c.f. Section 11.3 of [KL14]. In hybrid encryption, in order to encrypt the
data, one first samples a key for symmetric encryption, and then symmetrically encrypts
the data and asymmetrically encrypts the symmetric key. Under hybrid encryption, a
ciphertext thus consist of a symmetric and an asymmetric ciphertext. For decryption,
first the symmetric key is restored from the asymmetric ciphertext, and then the data is
recovered from the symmetric ciphertext. We note that a hybrid encryption scheme is
CPA-secure if the asymmetric component is CPA-secure, and the symmetric component is
eavesdropping-secure.

As a convention for this thesis, asymmetric encryption is always used as part of hybrid
encryption, even if we do not explicitly say so.

3.2.5 Non-committing Encryption

For some of our security proofs, we need to create dummy ciphertexts. At the time these
ciphertexts are created, it is unknown, even to the ciphertext creator, what plaintexts
correspond to any of the ciphertexts. That relation between ciphertexts and plaintexts
only becomes known at a later point in time. This dilemma is targeted by non-committing
encryption, introduced by Canetti et al. [Can+96], and formalized, for example, by
Hemenway et al. [HOR15]. While Hemenway et al. define non-committing encryption in
the public key setting, we adapt their definition to the symmetric key setting.

Definition 16. An encryption scheme N1 = (KeyGen, Enc, Dec) is called non-committing
if there exists a pair of PPT algorithms (SimKeyGen, SimEnc) such that, for every message
msg, the probability distributions

{(msg, sk,r1,r9) : sk < KeyGen(l)‘; r1), ct < Enc(sk, msg;ra)}

and
{(msg, sk,r1,72) : (ct,t) < SimEnc(1*), (sk,71,79) < SimKeyGen(m, t)}

are computationally indistinguishable, where r1 and ro are the random bits used by the
probabilistic algorithms.

Note that the ciphertexts ct are not considered as part of the tuples. This is because
the ciphertexts deterministically depend on tuple components msg, sk, and ro via the Enc
algorithm. Including ct in the tuples would therefore be redundant.

Definition 16 requires the existence of two simulator algorithms SimKeyGen and SimEnc.
Algorithm SimEnc produces a dummy ciphertext ¢t and a trapdoor ¢. The trapdoor is
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KeyGen(1*)

k< PRF.KeyGen(1*)
r<—g {0,1})‘

sk < (k,r)

output sk

Enc(sk,msg)

e output PRF.Eval(k,r)@&msg

Dec(sk,ct)

e output PRF.Eval(k,r)®ct

SimEnc(1*)

o (k,r)=sk<KeyGen(1")

let r1 be the random bits used by KeyGen
ct+¢{0,1}*

t<(ct,sk,r1)

output (ct,t)

SimKeyGen(t,msg)

o ro— 1

e program PRF such that PRF.Eval(k,r)=ct®msg
e output (sk,rq,r2)

Figure 3.12: Non-committing variant of the ESSE symmetric encryption scheme

then used as input by algorithm SimKeyGen, which additionally takes a message msg as
input. SimKeyGen computes a symmetric key sk and random bits 1, ro such that algorithm
KeyGen run with random bits r; produces the key sk and algorithm Enc run with random
bits 7o on inputs sk and msg outputs the ciphertext ct.

We now illustrate how to construct non-committing, but secure, symmetric and hybrid
encryption from PRFs and asymmetric encryption in the random oracle model. For the
symmetric case, we rely on the ESSE scheme from Figure 3.7. Modelling the PRF as a
programmable random oracle, the ESSE scheme is a non-committing eavesdropping-secure
encryption scheme. The simulator algorithms are as shown in Figure 3.12, which also
shows the original algorithms of the ESSE scheme. For the sake of simplicity, here we fix
the PRF’s key space, range, and domain as {0, 1}*, which restricts the length of messages
the scheme can encrypt to A. The SimEnc algorithm declares a randomly chosen bit string
as dummy ciphertext. The algorithm also chooses a secret key sk and randomness r;
that it outputs as the trapdoor ¢. Algorithm SimKeyGen later on programs the random
oracle to map the chosen secret key to a bit string that is the bit-wise xor of the dummy
ciphertext and the plaintext. Randomness ry is set to the error symbol, because in ESSE,
the encryption algorithm is deterministic and does not use random bits. Note that we
choose the key and randomness as part of algorithm SimEnc, although the formalization of
non-committing encryption allows us to wait and choose the randomness and key as part of
the SimKeyGen algorithm. This choice comes in handy when constructing non-committing
hybrid encryption.

Given the above simulator algorithms SimEnc and SimKeyGen, the ESSE scheme is
non-committing in the random oracle model: In the random oracle model, the ciphertext ct,

22



CHAPTER 3. BUILDING BLOCKS FOR CRYPTOGRAPHIC SCHEMES

randomness 71, and randomness ro are independent from each other and from the message
msg, while randomness r; fixes the secret key. Therefore, the probability distribution
induced by KeyGen and Enc, for every message msg, has fixed components msg and ro,
uniformly distributed component 1, and component sk is determined by 1 via the KeyGen
algorithm. The probability distribution induced by the simulator algorithms has the same
properties, so both distributions are identical, and thus indistinguishable.

Going asymmetric. Building on this non-committing eavesdropping-secure symmetric
encryption scheme, we can also achieve non-committing CPA-secure hybrid encryption in
the random oracle model. For this, we produce a dummy ESSE ciphertext ct via SimEnc,
and use CPA-secure asymmetric encryption to encrypt the symmetric key from the trapdoor
t also output by SimEnc. Later on, when the hybrid ciphertext is to be decrypted, algorithm
SimKeyGen is executed on the desired plaintext message.

One particular advantage of combining the ESSE scheme with an asymmetric scheme
is that the SimEnc algorithms of the ESSE scheme outputs a symmetric key as part of
the trapdoor. This allows us to encrypt these keys using asymmetric encryption right
away, before any plaintext messages are revealed. As a consequence, we can produce many
ciphertext that can be decrypted to arbitrary messages under the same public key or
system parameters.

We use non-committing asymmetric encryption in multiple proofs, but do not make
explicit use of the simulator algorithms. Instead, we refer to dummy ciphertexts to indicate
that these ciphertexts can be decrypted to arbitrary plaintexts of adequate length.

3.3 Commitment Schemes

A commitment is the cryptographer’s equivalent to a sealed envelop [KL14]. The envelop
contains information that the seal protects from modification after the envelop has been
sealed. At the same time, as long as the envelop remains sealed, its contents remain private,
so no party except for the sender of the envelop knows the information contained in it.

Definition 17 (Adapted from p. 188 of [KL14]). A commitment scheme s a tuple N =
(Setup, Commit, Open) of three PPT algorithms.

Setup takes in a security parameter 1* and outputs public parameters pp.

Commit takes in parameters pp and message msg, and outputs a pair (c,d) consisting of
a commitment ¢ and a decommit value d.

Open takes in parameters pp, a commitment ¢ and decommit value d, and outputs a bit.

We require, for pp < Setup(1*) and all messages msg, if (c,d) < Commit(pp, msg), then
Pr[Open(pp,c,d) = 1] > 1 — negl(\).

The formal definition does not make the relation of commitment schemes and the sealed
envelop metaphor explicit. The Commit operation creates the sealed envelop represented
as commitment ¢, while the decommit value represents a tool needed to crack the seal.
Typically, the message msg is considered to be part of the decommit value d. Submitting
the envelop then means that the commitment is published or sent to some addressee. Only
when the creator of a commitment is willing to crack the seal on some envelop, she sends
or publishes the decommit value that corresponds to the commitment.
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ExpSp™ ()

o pp<Setup(1?)

. (C,dl,dg)%A(l/\)

e the experiment outputs 1 if
1. msg,#msgy (With messages msg,,msg, contained in decommit values d,dz) and
2. Open(pp7c7d1) =1= Open(ppacvd2);
otherwise the experiment outputs 0.

Figure 3.13: Binding experiment for commitment scheme 1 = (Setup, Commit, Open) and
attacker A

Expl i)

pp < Setup(1*)

(8t7m5907m591) <_“41(1)\)

b<—$ {0,1}

¢« Commit(pp,msgy,)

b« As(st,c)

the experiment outputs 1 if b="V'; otherwise the experiment outputs 0.

Figure 3.14: Hiding experiment for commitment scheme N = (Setup, Commit, Open) and

attacker A = (A1, A2)

For security, some commitment schemes require the Setup operation to be executed
honestly or by a party not involved in the other operations, for example, the scheme
proposed in [GS12] and schemes based on public key encryption. Security notions for
commitment schemes must ensure that authors cannot change the message they committed
to after submitting their commitment. The notions must also ensure that receivers of
a commitment cannot learn the message from the commitment before obtaining the
corresponding decommit value. The latter two properties are called binding and hiding,
and are defined relative to experiments Exp®omm-bind and ExpComm-hide
Figures 3.13 and 3.14, respectively.

as shown in

Definition 18 (Def. 5.13 of [KL14]). A commitment scheme N = (Setup, Commit, Open)
1s called binding and hiding if, for all PPT adversaries,

Pr[Expﬁ?ﬁ”m'bmd(A) = 1] < negl(A) and |Pr[Expﬁ’°ﬁ"m'hide(A) = 1] —1/2] < negl()),
respectively. A commitment scheme is called secure if it is binding and hiding.

Note that we restrict our security notions above to computational notions, that is,
security is defined relative to PPT adversaries. Stronger security notions exist, for example,
statistical and perfect variants of the binding and hiding properties, and these notions can
easily be achieved. However, computational security is sufficient in our settings.

A simple commitment scheme can be constructed from CPA-secure public key encryption
as follows. For Setup, run the encryption scheme’s KeyGen algorithm and output the
resulting public key as pp. For committing to a message msg, encrypt msg under pp; c
is the resulting ciphertext, d consists of msg and the randomness used by the encryption
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Exp?i:gl:leuf—cma ( )\)

o (sk,vk)<KeyGen(1*)

° (msg*,a*)(—ASign(Sk")(vk)

o the experiment outputs 1 if (1) Verify(vk,msg*,0*)=1 and (2) none of A’s oracle queries
Sign(sk,m) satisfies m=msg*; otherwise the experiment outputs 0.

Figure 3.15: EUF-CMA-security experiment for signature scheme N = (KeyGen, Sign, Verify)
and attacker A

algorithm. For opening a commitment, recompute the commitment ¢ from the message
and randomness from the decommit value. If the recomputed value equals the original
commitment, output 1; otherwise, output 0.

The described scheme is binding. If it was not, there were two messages that can be
encrypted to the same ciphertext under the same public key. This, however, violates the
reconstruction requirement of public key encryption schemes. On the other hand, the
above commitment scheme is hiding, because otherwise, the encryption scheme was not
CPA-secure.

3.4 Signature Schemes

Signatures are supposed to guarantee a signed message (document) to originate from
the signer or being approved by the signer, while making sure that the message has not
been altered. Digital/cryptographic signatures realize these properties with cryptographic
guarantees. In contrast to handwritten signatures, digital signatures should always be
verifiable, and not just by comparing it to another signature from the same origin. Therefore,
the verification mechanism for digital signatures includes a verification key, and all signatures
of the same origin can be verified relative to that key.

Definition 19 (Def. 12.1 of [KL14]). A signature scheme is tuple [1 = (KeyGen, Sign, Verify)
of three PPT algorithms.

KeyGen takes a security parameter 1* and outputs signing-verification key pair (sk, vk).
Sign takes signing key sk and message msg, and outputs a signature o.
Verify takes verification key vk, message msg and signature o, and outputs a bit.
We require, for (sk,vk) < KeyGen(1) and all messages msg,
Verify(vk, msg, Sign(sk, msg)) = 1.

Similar to handwritten signatures, digital signatures must be hard to forge. The
unforgeability property of signatures is defined relative to experiment ExpSigeufema  aq
presented in Figure 3.15.

Definition 20 (Def. 12.2 of [KL14]). A signature scheme I = (KeyGen, Sign, Verify)
provides existential unforgeability under adaptively chosen message attack, or EUF-CMA-
security, if, for all PPT adversaries A,

Pr[Expif’r_leuf_cma()\) = 1] < negl(\).
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Expi‘i?;[:lsuf—cma ( )\)

o (sk,vk)+KeyGen(1")

° (msg*’o_*)(_ASign(sk;)(vk)

e the experiment outputs 1 if (1) Verify(vk,msg*,0*)=1 and (2) none of A’s oracle queries
Sign(sk,m) satisfies m=msg* and resulted in o*; otherwise the experiment outputs 0.

Figure 3.16: SUF-CMA-security experiment for signature scheme N = (KeyGen, Sign, Verify)
and attacker A

The notion of EUF-CMA-security means that it is hard to forge signatures on messages
not queried at the signing oracle. For some applications, EUF-CMA-security is insufficient.
A stronger notion of security, denoted as SUF-CMA-security, means that it is even hard to
forge new signatures on messages queried at the signing oracle. The strong unforgeability
notion is defined relative to experiment Exp>iestfcma aq presented in Figure 3.16.

Definition 21 (Def. 1 of [BSW06]). A signature scheme I = (KeyGen, Sign, Verify) provides
strong existential unforgeability under adaptively chosen message attack, or SUF-CMA-
security, if, for all PPT adversaries A,

PrExp’$™ " (\) = 1] < negl()).

Obviously, an SUF-CMA-secure signature scheme is also EUF-CMA-secure, but the con-
verse does not hold. There are re-randomizable signatures that allow the derivation of new
signatures on a given message from other signatures on the message, for example, the re-
randomizable sigantures from [PS16]. It is easy to see that EUF-CMA-secure re-randomizable
signatures cannot be SUF-CMA-secure.

Signing long messages: hash—then—sign. Signature schemes in practice suffer from
inefficiencies when being applied to long messages, similar to asymmetric encryption. In
asymmetric encryption, we deal with such inefficiencies by combining asymmetric and
symmetric encryption, yielding hybrid encryption. A similar approach is used for signature
schemes: one uses a hash function to shorten long messages to a short hash, and then
signs the hash. This hash—then—sign approach yields EUF-CMA-secure signatures if the
underlying signature scheme is EUF-CMA-secure and the hash function is collision resistant,
c.f. Theorem 12.4 of [KL14]. An analogous result holds for SUF-CMA-secure signatures.

Hiding the message. Some of our applications necessitate signed messages to remain
hidden from the public for some time. At the same time, the signature should be public in
order to communicate the existence of the signed message, and the origin of the signature
should be verifiable. At some later point in time, the signer can release an open value to
the public that allows the signature itself (not just its origin) to be verified.

These ideas are captured by the notion of signature schemes with delayed verifiability
[BL19a]. Such signature schemes have two verification algorithms: one for verifying a
signature’s origin and one for verifying the signature relative to the signed message.

Definition 22 ([BL19a]). A signature scheme with delayed verifiability is a tuple I =
(KeyGen, Sign, VOrig, VSig) of four PPT algorithms.

KeyGen takes a security parameter 1* and outputs a signing—verification key pair (sk, vk).
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Expﬁ?ﬁg—euf—cma( /\)

o (sk,vk)<KeyGen(1*)

° (msg*,a*,d*)(—.ASign(Sk")(’Uk?)

e the experiment outputs 1 if
1. VSig(vk,msg*,c*,d*)=1 and
2. none of A’s oracle queries Sign(sk,m) satisfies m=msg*;
otherwise the experiment outputs 0.

Figure 3.17: Signature unforgeability experiment for signature scheme M = (KeyGen, Sign,
VOrig, VSig) with delayed verifiability and attacker A

ExplZ3 ()

o (sk,vk)<KeyGen(1*)

o (o) ASEN(E) (yk)

e the experiment outputs 1 if
1. VOrig(vk,0*)=1 and
2. o* was not output by oracle Sign(sk,-);
otherwise the experiment outputs 0.

Figure 3.18: Origin unforgeability experiment for signature scheme N = (KeyGen, Sign,
VOrig, VSig) with delayed verifiability and attacker A

Sign takes signing key sk and a message msg, and outputs a signature—open value pair
(0,d).

VOrig takes verification key vk and signature o, and outputs a bit.

VSig takes verification key vk, message msg, signature o and open value d, and outputs a
bit.

We require, for (sk,vk) < KeyGen(1") and all messages msg, if (o,d) < Sign(sk, msg),
then
VOrig(vk,o) = 1 = VSig(vk, msg, o, d).

Signature schemes with delayed verifiability must satisfy unforgeability properties
similar to signature schemes, and these properties must hold relative to both verification
algorithms. Unforgeability properties are defined relative to experiments ExpPS&°1e and
ExpPSig-eufema oq show in Figures 3.17 and 3.18, respectively. The notion of keeping the
signed message hidden until the corresponding open value is released is defined relative to
experiment ExpPS&hide a5 show in Figure 3.19.

Definition 23 ([BL19a]). A signature scheme IN = (KeyGen, Sign, VOrig, VSig) with delayed
verifiability is called secure if, for all triples (A, A', A* = (A1, A2)) of PPT adversaries,

Pr[Exp/{ 17" (\) = 1] < negl()),
Pr[Exply i 7 (A) = 1] < negl()),
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EXPE"SIEIg—hide ( )\)

(sk,vk) < KeyGen(1*)

(st.msgo,msg) 4= A3 =" (uk)

b<—$ {0,1}

(0* )« Sign(sk,msgy)

o e ASER) (st 0%

the experiment outputs 1 if b="¥'; otherwise the experiment outputs 0.

Figure 3.19: Message hiding experiment for signature scheme 1 = (KeyGen, Sign, VOrig,
VSig) with delayed verifiability and attacker A = (A1, .A2)

and o
| Pr[Exp e 8™(0) = 1] — 1/2] < negl(N).

Secure signature schemes with delayed verifiability can be constructed from SUF-CMA-
secure signature schemes and secure commitment schemes in a commit—then—sign fashion.
A construction of this kind is shown in Figure 3.20. Origin unforgeability of our construc-
tion is implied by the SUF-CMA-security of the underlying signature scheme. Signature
unforgeability of our construction can be proven in the same way hash—then—sign is proven
secure by Katz and Lindell (Theorem 12.4, resp. Theorem 5.6 of [KL14]), exchanging the
hash function’s collision resistance for the commitment scheme’s binding property. The
hiding property of our construction follows from the hiding property of the commitment
scheme.

Throughout this thesis, whenever we make use of a signature scheme with delayed
verifiability, we assume the scheme to be constructed following the commit—then—sign
approach, that is the construction follows the template laid out in Figure 3.20.

Note that commitment schemes may not support committing to messages of arbitrary
length. This problem can be mitigated in the same way it is mitigated in signature schemes,
namely, by employing a hash—then—commit strategy. If the hash function is collision
resistant, the hash—then—commit scheme retains the security properties of the underlying
commitment scheme, namely, the hiding and binding property.

Also note that the parameters of the commitment scheme can be computed during key
generation, as is done in our above construction. Alternatively, the parameters can be
supplied externally. If commitment scheme parameters are supplied externally, we denote
this by passing the parameters to the KeyGen algorithm.

Both approaches have security implications in practice that stem from concrete construc-
tions of commitment schemes, for example, trapdoors in commitment schemes. Particularly,
if the commitment scheme needs its parameters to be chosen by a trusted party, it may be
advantageous to supply commitment scheme parameters to our construction externally.
This is especially true if we cannot guarantee that the KeyGen algorithm is executed
honestly. Throughout this thesis, potentially non-honest execution of the KeyGen algorithm
is the norm; therefore we supply commitment scheme parameters externally.

Non-committing signatures. In the random oracle model, we can make signatures
with delayed verifiability non-committing, c.f. non-committing encryption in Section 3.2.5.
Such signatures are not binding, so we can sign unknown messages, and the message
remains undetermined until the signature’s open value gets revealed. Meanwhile, the
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KeyGen(1*)

o (sk' k)< X.KeyGen(1*)
e (pp)<T .Setup(1?)

o output (sk,vk)=((sk',pp),(vk’,pp))
Sign(sk,msq)

e (c,d)«TI.Commit(pp,msg)
e o'+ X .Sign(sk',c)

e 0 (c,0)

e output (o,d)

VOrig(vk,o)

e output X.Verify(vk',c,0")
VSig(vk,msg,0,d))

o if ¥ Verify(vk/,c,0’)=1 and ".Open(pp,c,d)=1: output 1
e otherwise: output 0

Figure 3.20: Construction of a signature scheme 1 = (KeyGen, Sign, VOrig, VSig) with
delayed verifiability from signature scheme ¥ = (KeyGen, Sign, Verify) and commitment
scheme ' = (Setup, Commit, Open)

signature on an unknown message cannot be distinguished from a signature on a known
message, both before and after the open value that corresponds to the signature has been
revealed. As soon as the open value is revealed, the signature becomes binding. As with
non-committing encryption, non-committing signatures with delayed verifiability are a tool
used in security proofs.

We construct non-committing signatures with delayed verifiability using the above
idea of commit—then—sign, but model the commitment part by a random oracle as follows:
Let H be the random oracle; for committing to a message msg, sample r <g {0,1}*,
compute ¢ < H((r,msg)), d < (r, msg), and output (c,d); for opening the commitment
(¢,d = (r,msg)), output 1 if ¢ = H((r, msg)) and 0 otherwise. If the random oracle
cannot be patched, this commitment scheme is binding, but if the random oracle can
be patched, randomness r allows the commitment to be opened to arbitrary messages,
even to messages for which other commitments are already known. When the open value
eventually gets published, patch the random oracle so it maps the open value to the
commitment c¢. Patching the oracle only fails if the open value is already mapped to a
different commitment. This however, is rarely the case due to the randomness r being
chosen from an exponentially large set (in the security parameter \), so oracle patching
only fails with negligible probability. Incidentally, r being chosen from a set of exponential
size is also what makes the above scheme hiding.

3.5 Dictionaries

A dictionary is a dynamic data structure that maps labels to (multi-)sets of values.! The
data structure supports two main operations: Appending new labels and values to the

!The data structures literature uses the term key instead of label. We prefer the term label as to avoid
confusion with cryptographic keys.

29



3.5 DICTIONARIES

data structure, and looking up values for any given label. In this thesis, we make use of
append-only authenticated dictionaries (AADs). These dictionaries provide cryptographic
guarantees, particularly a guarantee that labels and values cannot be removed from the
dictionary once they have been added, and a guarantee that we can be confident that results
to lookup queries are correct, so results can be verified. The cryptographic guarantees
necessitate that AADs feature several helper operation, for example, a setup operation for
generating verification keys and operations for verifying results to lookup queries.

The setup operation is to be executed by a trusted party. A server is to store the
dictionary, to answer lookup queries, and to provide proofs that make the server’s operations
verifiable by users. Proof verification is performed relative to dictionary digests that users
store locally. Occasionally, every user will request an updated digest from the server.
The server provides the most recent digest and proves that the new digest represents a
dictionary that originates from a sequence of append operation that have been applied to
the dictionary represented by the user’s old digest. The proof can be verified relative to
the user’s old digest. It is expected that the user then replaces her old digest by the newly
received one. Similarly, whenever a user causes the server to perform a lookup operation,
the server responds by sending the result of the operation together with a proof that the
result is correct and complete, and the user can verify the proof relative to her dictionary
digest.

These ideas have been formalized by Tomescu et al. [Tom+19], who also provide the
first implementation of AADs with succinct proofs. That is, proofs of size sub-linear in
the number of append operations. In previous constructions, at least one of the two proof
types was non-succinct.

Definition 24 ([Tom+19]). An append-only authenticated dictionary is a tuple I =
(Setup, Append, Lookup, PAppend, VResult, VAppend, Version) of seven polynomial time algo-
rithms.

Setup takes a security parameter A and a capacity B, and outputs parameter—verification
key pair (pp, vk).

Append takes parameters pp, dictionary—digest pair (D,digest(D)) and a set of label-
value pairs {(¢1,v1),..., Uk, vk)}, and outputs an updated dictionary—digest pair
(D, digest(D)).

Lookup takes parameters pp, dictionary D and label £, and outputs a set v together with
a proof Ty .

PAppend takes parameters pp and two dictionaries D, D', and outputs a proof mp pr.

VResult takes verification key vk, digest digest(D), label £, set v and proof 7, and outputs
a bit.

VAppend takes verification key vk, two digests digest(D),digest(D’) and proof w, and
outputs a bit.

Version takes a dictionary digest digest(D) and outputs an integer.

Algorithm Setup is probabilistic; the other algorithms are deterministic. We require AADs
to be membership correct (mc), append-only correct (aoc), and version correct (vc).

mc: For (pp, vk) < Setup(1*, B) and every non-empty sequence of Append operations that
result in dictionary D with digest digest(D), we have that (v, ) < Lookup(pp, D, ¥)
satisfies VResult(vk, digest(D), ¢, v, m) = 1.
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Expi’i ™ (\,5)

o (pp,vk)<Setup(1},5)
o (digest(D),l,v,v/ m7') <+ A(pp)
e the experiment outputs 1 if
1. v#£v/,
2. 0<Version(digest(D)) < /3, and
3. VResult(vk,digest(D),l,v,m) =1=VResult(vk,digest(D),l,v',7');
otherwise the experiment outputs 0.

Figure 3.21: Membership security experiment for AAD 1 = (Setup, Append, Lookup,
PAppend, VResult, VAppend, Version) adversary A

aoc: For (pp,vk) < Setup(1*, 3), every non-empty sequence of Append operations that
result in dictionary D with digest digest(D), and every non-empty sequence of Append
operations that, applied to D, results in dictionary D" with digest digest(D’), we have
that m < PAppend(pp, D, D’) satisfies VAppend(vk, digest(D), digest(D’), 7) = 1.

ve: For (pp, vk) < Setup(1, B), every non-empty sequence of Append operations that result
in dictionary D with digest digest(D), and every Append operation that, applied to D,
results in dictionary D" with digest digest(D’), we have that Version(digest(D)) > 0,
Version(digest(D’)) = Version(digest(D)) + 1, and Version(digest(D')) < S.

Note that we have modified the definition of Tomescu et al. in order to make versions
more explicit and extractable from digests. This change results in the notion of version
correctness that is not present in the original definition.

Conceptually, the correctness notions from the above definition mean

e that answers to Lookup queries can be successfully verified via VResult,

e that proofs resulting from PAppend called on a pair dictionaries of which one is a
successor of the other are accepted by VAppend, and

e that Append operations increment the version counter, as well as that the number of
Append operation is limited by the capacity of the data structure.

In AADs, there is a correspondence between correctness and security notions. Member-
ship correctness corresponds to membership security, append-only correctness corresponds
to append-only security, and version correctness corresponds to fork consistency. Member-
ship security means that an adversary cannot claim two different sets to be associated with
the same label relative to the same digests. Append-only security means that an adversary
cannot claim a value to be associated with some label at some time, but not at a later
time. Fork consistency means that an adversary cannot claim a dictionary digest to be a
successor digest of two different digests that have the same version number. In contrast to
the append-only security and fork consistency definitions of Tomescu et al., we allow the
successor property on dictionary digests to be established indirectly, through a sequence of
append-only proofs. Tomescu et al. only allow the successor property to be established by
a single append-only proof. The three security notions are defined relative to experiments
shown in Figures 3.21, 3.22, and 3.23. They are formalized as follows.
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EXpAAD-aos ( ’ B)

e (pp,vk)<Setup(1*,5)

e the experiment outputs 1 if
L vgv,
2. 0< Version(digest(D1)),
3. for 1<i<n:

4. VAppend(vk,digest(D,,),digest(D’),m,) =1,

otherwise the experiment outputs 0.

o ((digest(Dy,),m)n,digest(D"),l,v,v' 7' 7)< A(pp)

— VAppend(vk,digest(D;),digest(D;y1),m) =1,
— Version(digest(D;)) < Version(digest(D;+1)),

5. Version(digest(D,,)) < Version(digest(D')) <3, and
6. VResult(vk,digest(D),l,v, ") =1=VResult(vk,digest(D’),l,v' ,7");

Figure 3.22: Append-only security experiment for AAD [l

PAppend, VResult, VAppend, Version) adversary A

= (Setup, Append, Lookup,

E AAD fc( 76)
(pp,vk) <+ Setup(1*,8)

e the experiment outputs 1 if
1. digest(D;)+#digest(D)),

3. for 1<i<n and 1<j<m:

— Version(digest(D;)) < Version(digest

— VAppend(vk,digest(

— Version(digest(D})) < Version(digest (D)
VAppend(vk,digest(Dy,),
VAppend(vk,digest(D),, ), digest(D*),7],,) =

N o o

. Version(digest(D,)) < Version(digest(D
otherw1se the experiment outputs 0.

— VAppend(vk,digest(D;),digest(D;+1),m) =1,
(D

1
Version(digest(D,,)) < Version(digest(D*)) <
S

o ((digest(Dy,),mn )n,(digest(Dy,), ) )m,digest(D*)) < A(pp)

2. 0< Version(digest(D;)) = Version(digest(D)),

))

;’)7dige5t( ]+1)>7T;) =1

1))

digest(D*) 7Tn) = 1

")

Figure 3.23: Fork consistency experiment for AAD 1 = (Setup, Append, Lookup, PAppend,

VResult, VAppend, Version) adversary A
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Definition 25 ([Tom+19]). An append-only authenticated dictionary N = (Setup, Append,
Lookup, PAppend, VResult, VAppend, Version) is called membership secure (ms), append-
only secure (aos) and fork consistent (fc) if, for all PPT adversaries A = (A1, Aa, As3) and

all B € O(poly(X)),
Pr[Exp4' ™ (A, 8) = 1] < negl(}),

Pr[Expﬁﬁﬁ'“os(A,B) = 1] < negl(}), and
Pr{Exp’i’ h7°(\, 8) = 1] < negl(),

respectively. An AAD is called secure, if it is membership secure, append-only secure, and
fork consistent.

Properties of secure append-only authenticated dictionaries. As a consequence
of membership security, we have that dictionary digests are unlikely to coincide for the same
version number. That means PPT adversaries, given pp and any dictionary D with digest
digest(D), only succeed with negligible probability in computing two distinct sets LV, LV’
of label-value pairs, such that (D', digest(D’)) < Append(pp, D, LV), (D*,digest(D*)) +
Append(pp, D, LV'), 1 < Version(digest(D’)) < 3, and digest(D’) = digest(D*).

As a consequence of AAD algorithms being deterministic, a dictionary digest cannot
be associated with multiple version numbers, so dictionary digests cannot coincide for
different versions.

As a consequence of fork consistency, we have that dictionary digests depend on
the order of Append operations. We see this by considering (pp,vk) < Setup(1*,3),
dictionary D with digest digest(D), two distinct sets LV, LV’ of label-value pairs, and op-
erations (D1, digest(D1)) < Append(pp, D, LV), (Ds,digest(D2)) < Append(pp, D1, LV'),
(D}, digest(D])) < Append(pp, D, LV"), and (D} digest(D})) <— Append(pp, D}, LV). As-
suming the server is honest, we have

Version(digest(D1)) = Version(digest(D})) < Version(digest(D5)) = Version(digest(Ds)),
and the server can obviously produce append-only proofs 7, 7’ such that
VAppend(vk, digest(D1), digest(Ds), m) = 1 = VAppend(vk, digest(D)), digest(D}), 7).

In this setting, digest(D2) = digest(D)) poses a breach of fork consistency. Therefore,
because our AAD is secure, we have digest(Ds) # digest(D5).

As a combined consequence of membership security and fork consistency, two distinct
sequences of Append operations of equal length are unlikely to result in the same dictionary
digest. Consider the earliest set of label-value pairs that the sequences of Append operations
differ in. Due to membership security, the respective Append operations, except with
negligible probability, result in distinct dictionary digests. Due to fork consistency, except
with negligible probability, the remaining Append operations result in distinct final digests.
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Searchable Encryption
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Introduction to Searchable En-

cryption e

Searchable encryption is a technology that allows for secure — encrypted — storage of
data in an unsecure location, without sacrificing the ability to search the data. Typically,
as a consequence of the security properties of encryption, searching encrypted documents
should be infeasible without decrypting the document ciphertexts first. However, searchable
encryption uses dedicated index structures to enable search, and the search process can
even be performed remotely by the server that also stores the encrypted data without that
server learning the searched keywords or the contents of documents.

In this chapter, we discuss some of the fundamental properties and security guarantees of
searchable encryption on an intuitive level, illustrating what we aim for in our constructions
of searchable encryption, particularly combining searchable encryption and access control
in a multi-user environment.

Goals of searchable encryption. As stated, the goal in searchable encryption is to
store a document collection remotely and in a secure fashion, while maintaining the ability
to search the document collection efficiently. As a consequence of the notions of security
and efficiency, the search procedure has to be performed remotely, and the server that
stores the document collection and performs search cannot learn the contents of (parts of)
the document collection, neither before, nor during, nor after search. The requirement of
the server not learning the contents of the document collection point is due to, typically, the
remote server being operated by entities other than the owner of the searchable document
collection. Such entities generally should not be trusted with data, for example, in the
setting of cloud computing.

For searchable encryption to function as described above, it must feature two main
operations. The first operation captures the search process. The second operation captures
the creation of and updates to the remote document collection. Depending on the setting
of searchable encryption, the search and update operations can be modeled as interactive
protocols, or as collections of probabilistic algorithms (which then imply a, typically 2-
round, protocol). If a process is modelled as a collection of algorithms, it typically consist
of a query formulation algorithm for the user, and a query processing algorithm for the
server.

Whenever a user searches the remote document collection for a keyword, the server is
to respond by sending all documents ever added to the collection that contain the keyword
and are not excluded due to restrictions arising from the applicable usage scenario. For
example, in a multi-user scenario, documents may be excluded from the reply due to access
restrictions.
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Document collections. We illustrate this point by giving an example. However, in
order to do so, we first we need to discuss the structure of documents and document
collections.

A document collection is a set of documents. A document consists of the document’s
content, and additional information such as document name (identifier) and access policies.
Particularly, our documents can be represented by a 6-tuple (D,V, R, W, 0O, K). Compo-
nents D and V of the tuple identify the document: D is the document’s name and V is
the document’s version number, meaning V' counts the number of times the document
has been modified. Components R, W, and O represent the document’s access policies:
R is the policy for read access, W is the policy for write access, and O is the policy
for ownership access. Component K represents the document’s content as a multi-set of
keywords contained in the document. A person that has read access to a document can
access its content. A person that has write access to a document is capable of modifying
the document’s content, creating a new document of the same name but different version
number, and defining the new document’s read policy. A person that has ownership access
to a document is capable of creating a new document of the same name but different
version number, defining the new document’s write and ownership policies. Particularly,
ownership access to a version of a document does not imply write access to that version of
the document.

Example rights and document collection. We now turn to our example, showing
why documents may be excluded from search results due to access restriction, even though
the excluded documents contain the searched keywords. Our example features three users
Alice, Bob, and Charly, who hold access rights {a}, {b}, and {b, c}, respectively. Our
example document collection consists of four document (versions)

o di1 = (D:1, Vi1, R:A(b), W:A(a), 0:A(b), K:{wy, wa}),
o dy1 = (D:2, Vi1, R:A(b), W:A(b), 0:A(c), K:{wi }),

o d31 = (D:3, Vi1, R:A(a), W:A(a), 0:A(b), K:{wr, ws}), and
o dio = (D:1,V:2, R:A(c), W:A(a), 0:A(b), K:{wy, ws}),

where A(7) is an access policy that is satisfied by access right ¢ for i € {a, b, c}.

The need to respect access restrictions. We use this example document collection
to illustrate the aforementioned need to consider access restrictions during search result
computation: consider Alice to search for keyword wi, and suppose, the search result
presented to Alice contains document version d;; despite Alice not being allowed to read
that document. Then, Alice would have learned some information on the contents of
document dj 1, namely, the information that the document contains w;. This however,
contradicts the purpose of access control, which was put in place in order to prevent Alice
from learning such information.

Concerning access control, we point out that all measures taken to enforce access
restrictions must be collusion resistant. That is, if multiple users come together, they are
still unable to access any data that neither of the colluding users can access on her own.
As an example, assume a document that requires access rights {a} and {c} in order to gain
read access. Then, even if our example users Alice and Charly work together, they cannot
access the document, even though together they hold the necessary rights.
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Security of searchable encryption. The setting of searchable encryption asks for
document collections to be stored and searched remotely, for example, in the cloud. As
outlined above, in such settings, it is advisable to not trust the remote server. Therefore,
we need means to verify that the server indeed provides correct search results.

With updatable document collections, we also need to make sure that the option to
update the collection cannot be abused. The update mechanism can be abused in several
ways and by various parties. For example, in a multi-user scenario, a malicious user may
attempt to harm the collection and prevent the server from serving future search requests.
On the other hand, in some scenarios, the server is able to update the searchable document
collection, for instance, with email. The server may abuse the update mechanism in order
to gather information on what users have searched for, and thus threaten the privacy of
user’s search requests. This, in turn, leads to the server learning information about the
contents of the document collection, from knowing what has been searched for, and the
fact that search results have not been empty.

Our contribution. Our contributions to the research on searchable encryption is two-
fold. First, we have devised SEAC, which is the first searchable encryption scheme with
access control that uses a backward index structure for search and includes access control
in that index structure. SEAC has first been presented at ARES 2017 [Lok17]. Previous
approaches to searchable encryption with access control use a different type of index
structures, namely, forward indexes, or apply access control separate from search, for
example to filter out unsuited documents from search results.

Second, we construct dSEAC, which builds upon SEAC and improves it in multiple ways.
For example, SEAC is a static scheme, which does not allow the document collection to be
extended or modified after it has been set up. On the other hand, dSEAC is dynamic. dSEAC
also satisfies the security notions of fork consistency, verifiability, and forward privacy.
This makes dSEAC the first dynamic searchable encryption scheme with access control
that satisfies all these notions simultaneously. The dSEAC scheme has been published at
FPS 2019 [BL19a].

As minor contributions, we present two more searchable encryption schemes, RLS and
DIA, that address some shortcomings in dSEAC. As byproducts of our research on searchable
encryption, we have also made contributions to the research on attribute-based encryption
and signature schemes. For SEAC, we have developed a novel notion of attribute-based
encryption called authority customization for multi-authority attribute-based encryption
(MA-ABE), although the version of SEAC we present in this thesis does not make use of
multi-authority attribute-based encryption with authority key customization. For dSEAC,
we have developed the novel notion of signature schemes with delayed verifiability.

Overview of Part II. In the upcoming chapter, we take a look at the state of the art
in searchable encryption research and its relation to our research. This includes a brief
discussion of the history of searchable encryption and the main approaches to searchable
encryption. The chapter also includes discussions of concepts and schemes from the
literature that have significant influence on our constructions of searchable encryption
schemes.

In Chapter 6, we formalize the notions and properties discussed above and present the
SEAC and dSEAC searchable encryption schemes that have the desired properties. Both
schemes are discussed in great detail.

Discussing some shortcomings of the previous schemes, in Chapter 7, we present and
explore the additional RLS and DIA constructions of searchable encryption schemes that
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attempt to address the shortcomings using techniques from the literature. While one of
the attempts is not very successful, the other scheme addresses the shortcomings, but has
drawbacks of its own. We then briefly compare our constructions, discussing the trade-offs

they make.
We conclude our discussion of searchable encryptions with some closing remarks in

Chapter 8.
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Searchable Encryption: Related
Work and Influential Schemes —

The literature on searchable encryption features many recurring concepts and approaches.
In this chapter, we address these recurring themes and relate them and the state of the art
to our own research on searchable encryption.

To that end, we present in the general approaches to searchable encryption in the
upcoming section. The concept of leakage — the information an observer or participant
may learn from searchable encryption — and the classification of leakage is presented
in Section 5.2. Leakage classification plays an important role in comparing searchable
encryption schemes and evaluating their real-world security.

In Sections 5.3-5.6, we briefly present some searchable encryption schemes, focussing on
their concepts, data structures, and design choices, but also discussing how these schemes
have influenced our own searchable encryption schemes. The schemes presented in this
chapter allow us see the general approaches to searchable encryption in action. They also
allow us to illustrate the data structures used in searchable encryption and how the data
structures relate to each other. Finally, we present a brief general overview of the state of
the art, relating it to our own research.

5.1 Approaches to Searchable Encryption

The majority of searchable encryption schemes can be broadly classified into two categories.
Both types of schemes use index structures to enable search on encrypted data. There
are searchable encryption schemes that rely on forward indexes, and schemes that rely
on backwards indexes. In a forward index, a document is mapped to the set of keywords
contained in the document. Conversely, in a backward or inverted index, a keyword is
mapped to the set of documents that contain the keyword. Both types of index structures
have inherent advantages and disadvantages that make them suitable in certain application
scenarios, but unsuitable in other scenarios.

For example, a forward index, mapping documents to keyword sets, generally allows for
searchable document collections to be updated efficiently: compute an index for the new
document, and add the document and its index to the document collection. Particularly,
the index of the new document is independent of anything presently contained in the
document collection. However, when searching for a keyword, one needs to check every
document’s index for the searched keyword. As a result, forward indexes are well-suited in
scenarios with uncertainties about communication partners or the contents of the searchable
document collection. Prime examples are multi-user scenarios in which the set of users that
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may access the data is not fixed or unknown at the time the index is computed, for instance,
a document collection that encompasses all of an organization’s storage system. Another
good example scenario for forward indexes is encrypted emails, because the person that
writes a searchable email does not need to know the document collection, which consists of
the addressee’s other searchable emails.

In contrast to forward indexes, a backward index, mapping keywords to document
sets, are harder to maintain during updates to the searchable document collection. This is
because updates alter the already existing index structure, so the whole existing collection
has to be taken into consideration when performing an update. On the other hand, if the
mapping from keywords to document sets is realized using appropriate data structures,
backward indexes generally allow for very efficient search. Therefore, backward indexes are
appropriately used in scenarios that feature static document collections, or in which search
is much more frequent than updates to the searchable document collection. An example
scenario is document collections that span an organization’s archive.

A third category of searchable encryption schemes may be identified: schemes that
rely on (search) trees as their index structures explicitly, rather than just allowing the
index structure to be implemented as a tree. However, the number of schemes in this
potential category is rather low. It can also be argued that tree-based searchable encryption
schemes are a sub-category in the class of schemes relying on inverted indexes, because
the tree structure is typically used to implement an inverted index of some kind. The
tree structure introduces some inefficiencies in the search procedure, typically involving
logarithmic factors as overhead, but the update procedure benefits from the tree structure
and makes updating the index more efficient when compared to other implementations of
inverted indexes.

5.2 Leakage in Searchable Encryption

In the introduction to searchable encryption, Chapter 4, we state that the server that
stores and processes the document collection in searchable encryption learns no information
about the collection. It is hardly possible to construct searchable encryption schemes that
achieve this degree of secrecy while retaining any practical degree of efficiency. Instead,
most schemes accept that the server learns some information over time, but hope that the
information leakage to the server is insignificant.

The information leaked by a searchable encryption scheme is captured in so-called
leakage functions. There is one such function for each type of operation that the server
participates in, and each function relates what the server can learn from the respective
operation to the parameters of the operation, for example, the keyword that is searched
for or the document that gets added to the document collection.

Leakage functions play a role in security definitions, but also allow searchable encryption
schemes to be compared based on their leakage. However, leakage varies slightly between
schemes, making comparisons hard. In order to solve this issue, Cash et al. [Cas+15]
have developed a framework that classifies searchable encryption schemes into four classes
Lq,...,Ly; the classification glances over minor differences in leakage specifications, and
instead focuses on certain characteristics of leakage functions. These characteristics then
relate to the potential damage that can arise from an attacker that abuses the characteristics,
as well as how hard it is to mount such attacks. It is clear that the more information is
leaked, the larger the potential for abuse, and the larger the potential damage of an attack.

Searchable encryption schemes classified L leak the least information to the server;
schemes classified L4 leak the most information. With all leakage classes, the server, which
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is seen as the adversary, learns, for every keyword in a document collection, a substitution
of the keyword. Such a substitution can be computed from a pseudorandom function, c.f.
Definition 3.

Ly: Cash et al. characterize L; leakage as “query-revealed occurrence pattern,” [Cas+15].
That is, the server can identify the set of documents from the collection that contain
a keyword kw only after a search query for kw has been issued.

Lo: This class captures schemes that fully reveal keyword occurrence patterns [Cas+15].
With schemes in this class, the server can, for every keyword kw, identify the set of
documents from the collection that contain kw as soon as the document collection is
stored at the server.

Ls: Schemes in this class are characterized as fully revealing keyword occurrence patterns
and keyword order in documents [Cas+15]. Hence, the server can, for every keyword
kw, identify the set of documents from the collection that contain kw as soon as the
document collection is stored at the server. Additionally, for every document from
the collection, the server can determine the order of keywords’ first occurrence in the
document.

Ly: Cash et al. describe this class as leaking “full plaintext under deterministic word-
substitution cipher,” and describe what the server learns as “the pattern of locations
in the text where each word occurs and its total number of occurrences in the
document collection” [Cas+15]. Therefore, the server can, for every keyword kw,
identify the set of documents from the collection that contain kw as soon as the
document collection is stored at the server. Furthermore, for every document from
the collection, the server can determine the orders of keywords’ occurrences in the
document.

The difference between Ly and Lo leakage is the moment at which the leakage occurs,
upon search or at setup. Leakage Lo differs from L3 in that the order of keyword’s first
occurrence remains hidden from the server in Lo schemes, but is revealed to the server
in L3 schemes. In contrast to L3 schemes, L, schemes reveal the order not only of each
keyword’s first occurrence in a document, but also for every subsequent occurrence. We
stress that with all leakage classes the server never learns the actual keywords, but only
their substitutions.

(Un-)surprisingly, the leakage of schemes, and thus the schemes’ classifications, can be
traced to the fundamental design decisions on how the schemes achieve searchability of
document collections. For example, the naive approach of deterministically substituting
every word in a document by some (pseudorandom) string that depends on the original word
results in schemes from class Ly4. Searchable encryption schemes that rely on encrypted
inverted indexes generally fall into class L;. Most schemes presented in this thesis follow
the encrypted inverted index approach, and thus belong to class L1, and thus, within Cash
et al.’s leakage hierarchy, achieve the least leakage that can be achieved by schemes that
are practical in therms of their performance.

As hinted at above, there are searchable encryption schemes that are hardly practical,
but achieve even less leakage than schemes from class Li. Such schemes rely on techniques
such as oblivious RAM [GO96]; indeed, the original work on oblivious RAM explains how
secure search on a remotely stored document collection can be achieved, even though the
notion of searchable encryption would only be established several years later. However,
Naveed extensively discusses why combining searchable encryption and oblivious RAM is a
“fallacy” [Nav15].
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There are alternatives to oblivious RAM that have been proposed in order to suppress
leakage [KMO18; KM19]. However, it remains to be seen whether these techniques are
practical and applicable. Particularly, we leave the application of these techniques to our
constructions as future work.

Nevertheless, the fact that schemes exist that achieve lower leakage than what is
permitted by Cash et al.’s leakage hierarchy is an indication that the hierarchy is incomplete.
Below, we give an overview of some proposed extensions of the hierarchy. We also have a
look at the impact of leakage as a motivation for the leakage hierarchy and its extensions.

Consequences of leakage. Several papers study the practical impact of leakage by
trying to abuse leakage in order to reconstruct a (plaintext) document collection or
determine what terms users search for [IKK12]. It has been shown that reconstructing
document collections is relatively easy for searchable encryption schemes from leakage classes
Lo—L4 [Cas+15; Gir+17]. Even searchable encryption schemes from leakage class L; may
be successfully attacked if they are dynamic, meaning they allow for documents to be added
to the collection, and do not provide any countermeasures [ZKP16]. Such countermeasures
should make dynamic schemes forward private. A particular countermeasure is batch
updates, which means that instead of adding one document at a time, multiple documents
should be added simultaneously. It has also been shown that the iterative testing approach
to search present in many searchable encryption schemes that rely on forward indexes can
often be attacked with relative ease [RMO17]. Examples of schemes following the iterative
testing approach are the PEKS scheme described below and its derivatives.

Extensions to the leakage hierarchy. Some sub-classes of leakage class L1 have been
proposed, most notably leakage classes L [Gir+17] and Lxwap [RMO17]. Class L] has
the same leakage as class L1 as soon as searches are being conducted, but the leakage
at setup time, when the searchable document collection is initially stored at the server,
is slightly different: while class L; schemes leak (an upper bound on) the number of
keyword—document pairs in the document collection, L] schemes leak, for every keyword,
the number of documents that contain the keyword. Class Lxwap is a leakage class for
schemes that seemingly leak the same information as L; schemes, but follow the iterative
testing approach mentioned in the previous paragraph. The proposals of classes L] by
Giraud et al. [Gir+17] and Lxwap by van Rompay et al. [RMO17] are accompanied by
examples of leakage abuse attacks against the respective class. These attacks are generically
applicable to schemes from the respective class, but not to other schemes from class L.

5.3 The PEKS Scheme

Boneh et al. have presented a searchable encryption primitive, public key encryption with
keyword search, or PEKS for short [Bon+04], that provides searchable encryption in a
multi-writer, single-reader scenario, with the particular example of encrypted e-mail in
mind. The implementation of PEKS proposed by Boneh et al. relies on the forward index
and iterative testing approaches, as outlined above.

Index structure. Conceptually, the forward index is realized as a bunch of tags that
are attached to a document ciphertext; one tag for each keyword that is contained in the
corresponding plaintext document. A tag is computed from a keyword, some randomness,
and the addressee’s public key by applying hash functions and bilinear maps. During
search, the searched keyword and the addressee’s private key are iteratively combined with
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Key Generation: output (sk,pk)=(a,(g,h=g"))

Tag Generation: output (¢1,t2)=(g",Ha(e(Hi(kw),h")))
Query Generation: output ¢= Hj(kw)®

Test for Match: output 1 if Ha(e(q,t1)) =t2, otherwise output 0

Figure 5.1: The PEKS implementation proposed by Boneh et al. Function e is a bilinear
map; Hy, and Hs are hash functions with appropriate domains.

Dictionary HT Array D

‘fL(kval) ‘ Fre(kxc,01)®

E”C (D:3,V:1)

‘fL(kL-,w2)‘fK(kK7w2)@ En {D:l,V:l)
‘fL(kL7w3)‘fK(kK7w3)@ Enc/NiL [ (D:3, V:1)

Figure 5.2: The index structure used in the CGKO scheme. A dictionary HT and a number
of encrypted linked lists stored in an array D. Since the CGKO scheme does not allow the
searchable document collection to be updated, only the first version of each document from
our example document collection, see Page 38, is present in the shown example.

tags’ randomness by applying the bilinear map, and the result is then compared to the
respective tag. If the result of the computation equals part of the tag, then the document
ciphertext associated with the tag is added to the search result.

Abdalla et al. [Abd+08] provide a study of the PEKS primitive and its derivatives,
particularly focussing on its consistency property, and expand on the relation between
PEKS and identity-based encryption already observed in the original work on PEKS by
Boneh et al. [Bon+-04].

Influence of PEKS. The work of Boneh et al. has been very influential regarding
schemes that provide searchable encryption in settings that feature multiple data readers or
writers. Many of those schemes exchange the public key (ElGamal [EIG85]) encryption of
PEKS for attribute-based encryption, additionally achieving access control in the process.

5.4 The CGKO Scheme

The work of Curtmola et al. [Cur+11] (conference version: [Cur+06]) has had significant
impact on the design of searchable symmetric encryption (SSE) schemes. Particularly
Curtmola et al. have presented security notions that must currently be considered standard.
Their proposals have also influenced the actual construction of SSE schemes, for example,
in terms of data structures used in searchable encryption schemes.

Data structures, conceptually. Curtmola et al.’s SSE-1 scheme (hereafter called
CGKO scheme) relies on a backward index that consist of two data structures, as shown
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in Figure 5.2. There is a dictionary HT that contains an entry for each keyword from the
searchable document collection. The label of a keyword’s HT entry is derived from the
keyword using a pseudorandom function. Similarly, a pseudorandom function is applied to
the keyword to obtain an encryption key that is used to encrypt the HT entry’s value. The
value itself is a pointer to a keyword dependent linked list that is stored in some memory
array D. The array D is shared among all such linked lists. Each node of the D list for some
keyword kw points to a document that contains keyword kw. D lists are encrypted in a
node-by-node fashion. A node’s decryption key is stored as part of the pointer to that list
node. Hence, the key is either stored as part of the successor pointer of another list node
or as part of the pointer to a list head, which is stored in an HT entry.

Whenever a user wants to search the document collection for some keyword, she applies
pseudorandom functions to the keyword in order to reconstruct the keyword dependent
label and decryption key for the keyword’s HT entry. The user then sends the label and key
for the search query to the server. The server uses the key to decrypt the value of the HT
entry identified by the label, and then uses the pointer to a D list to recover the (plaintext)
D list in a node-by-node fashion. The server then sends its response — the search result —
to the user. The search result consist of the set of documents that the decrypted D list
points to.

Data structures and design choices. In the CGKO scheme, in addition to keyword
dependent entries, the dictionary HT contains dummy entries that are indistinguishable
from keyword dependent HT entries that have not yet been accessed. Similarly, the memory
array D contains dummy nodes that are indistinguishable from list nodes that have not
been decrypted yet. When the index structure is computed, list nodes are assigned random
free positions in array D. The order of document pointers in any D list is independent of
the order in which the corresponding documents have been processed during computation
of the index structure.

These measures serve to limit the information a server can gain about the underlying
document collection, both before and after a search request has been served. Dummy
entries in HT and D prevent the server from knowing the exact number of keywords in the
document collection, and prevent the server from knowing whether search requests for all
keywords have been made. Pseudorandom labels of HT entries prevent the server from
learning the (plaintext) keywords from the document collection. Encryption of list nodes
prevents the server from learning whether documents share any keyword, at least until a
search request is served and both documents occur in the search result.

Influence and usage of CGKO. The CGKO scheme has influenced subsequent propos-
als of searchable encryption schemes, particularly concerning the index structures that the
schemes rely on. This holds true for many of the schemes presented in this chapter and
throughout the thesis, for example, the schemes in Sections 5.5 and 5.6, the schemes in
Chapters 6 and 7, but also for other schemes from the literature, not discussed in detail,
like the proposals of Kamara et al. [KPR12] and Cash et al. [Cas+14].

5.5 The Yogog Scheme

Bost’s Yogog scheme [Bosl6] is the first dynamic forward-private SSE scheme whose
efficiency is comparable to SSE schemes that do not feature forward privacy, like the
dynamic version of the CGKO scheme presented in [KPR12]. Yogog is dynamic in that the
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Dictionary HT

‘fL(kwl,ﬂsTQ(sks, seed.y,)) ‘ fK(kwl,wgz(sks, seedy, )) ® (D:2, V:1) ‘

‘fL(ka,Trgl(sks, seedyy,)) ‘ fK(kw2,7r§1(sk5, seedy,)) @ (D:1, V:1) ‘

‘f}((k’wl,ﬂ'gg(sks, seedy, ) ‘ fK(kwl,wgS(sks, seed., )) & (D:3,V:1) ‘

‘fL(kw,,Trgl(skS, — ‘ Frc (kw75 (sks, scedu,)) @ (D:1, V:1) ‘

‘fL(kws,wgl(sks, seed.yg)) ‘ Frc(Kuwg, 75 (sks, seedy,)) @ (D:3,V:1) ‘

Figure 5.3: The index structure used in the Yogog¢ scheme, computed from our example
document collection from Page 38. A dictionary HT that stores multiple labels for each
keyword from the document collection; the number of labels depends on the number of
documents from the collection that contain the keyword.

scheme allows documents to be added to the searchable document collection over time,
rather than setting the collection up once and for all.

Data structure, conceptually. Y ogog uses a dictionary HT as its search structure. The
dictionary is employed as a backwards index, as can be seen in Figure 5.3. For each
keyword in a searchable document collection, HT holds multiple entries. Namely, there are
as many HT entries for keyword kw as there are documents that contain kw: Intuitively,
the Yoypoc scheme integrates the D lists of the CGKO scheme into the dictionary HT.

For the computation of the dictionary, the occurrences of keywords are enumerated, and
labels of HT entries depend on keywords, as well as a counter. The labels are derived from
keywords and counters by application of a keyed function, for example, a pseudorandom or
hash function. The key depends on the keyword. The counter determines how often the
inverse of a trapdoor permutation is applied to a keyword dependent seed. The result of
that computation on the seed is then passed as an argument to the function that determines
HT entries’ labels. The value stored in an HT entry for keyword kw is a pointer to a document
that contains kw. The value is encrypted under a pseudorandom bitstring derived in the
same way the label of the HT entry is derived, albeit using a different function.

The owner of a document collection keeps track of the keyword dependent keys, seeds,
and occurrence counters, and stores this information as her state. When searching for
keyword kw, the user iteratively applies the inverse of the trapdoor permutation to the
seed for kw or the result of previous inversions. The total number of inversions equals
kw’s occurrence counter. The result tv of the final iteration, together with kw’s keyword
dependent key and occurrence counter are sent to the server. The server then uses tv and
the keyword dependent key to derive labels and decryption keys for HT entries. After each
derivation, the server applies the trapdoor permutation to tv in order to derive a new
tv value. The occurrence counter tells the server how many iterations of this process to
perform. The search result then is the set of documents pointed to by the decrypted HT
entries.

When adding a new document to the document collection, the user, for each keyword
in the new document, increases the keyword’s occurrence counter from the user’s state.
As before, the user then applies the inverse of the trapdoor permutation on the keyword
dependent seed multiple times. The result of that computation is used together with the
keyword dependent key to derive the label and encryption key for an HT entry that points
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to the new document. That HT entry is then sent to the server for storage.

Throughout this thesis, we refer to the application of a trapdoor function in the above
iterative manner as “Bost’s technique.”

Security and design decisions. The use of the trapdoor permutation makes the X opog
scheme forward private, as the server is prevented from predicting the labels and decryption
keys for future HT entries for any given keyword, even if that keyword has been searched
for before. On the other hand, the trapdoor permutation makes Y ogoc efficient in that
the size of a query is independent of the result size. Particularly, the user does not need
to compute and send all labels for the searched keyword, because the server can compute
these by itself by repeatedly applying the trapdoor permutation to the appropriate value
from the query.

Influence and usage of Yo¢gog. The Yogog scheme has introduced Bost’s technique,
as discussed above. We use Bost’s technique in some of our constructions to achieve the
forward privacy security notion, which has been demonstrated to be crucial for searchable
encryption schemes to be secure in practice [ZKP16]. Although Yogog is a relatively recent
proposal, alternative proposals that explicitly mention >ogog have been made, specifically
criticizing the use of the trapdoor function [Ete+18].

5.6 The AMR scheme

The searchable encryption scheme of Alderman et al. [AMR17] adapts Curtmola et al.’s
single-user CGKO scheme [Cur+06], c.f. Section 5.4, to the multi-reader setting with
a hierarchy of access levels. An example of such a hierarchy is the well-established
hierarchy top secret > secret > eyes only. Most notably, the AMR scheme considers access
restrictions to documents during search, so only users that are allowed to access a certain
document may find that document in search results presented to them.

The main observation of Alderman et al. is that, in a setting with hierarchical access
levels, the documents accessible to users from one level is a subset of the documents
accessible to users from any higher level. Regarding the index structure of the CGKO
scheme, the subset becomes a sub-list: the list that represents the pre-computed search
result for one access level forms the tail of the list that represents the pre-computed search
result for the next level higher up the hierarchy. The data structure that results from this
change is shown in Figure 5.4

Where Curtmola et al.’s CGKO scheme stores, for each keyword, one dictionary entry
that points to the encrypted result list associated with that keyword, AMR stores a
dictionary entry for each keyword—access level pair. The result list in AMR contains
document pointers not in completely random order. Instead, documents with equal access
levels are grouped together and random order is maintained within each group. The result
list features groups with high access levels closer to the list head. As a result, dictionary
entries for a given access level point to a sub-list of the result list, and due to the hierarchical
structure of access levels and the order of document groups in the list, users are allowed to
access all subsequent sub-lists.

Access to sub-lists is restricted by keys given to users. Essentially, for every key used
in the CGKO scheme, AMR features one version of the key per access level, as can be seen
from Figure 5.4 and comparing it with Figure 5.2.
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Figure 5.4: The index structure used in the AMR scheme, computed from our example
document collection from Page 38, assuming the hierarchy of access rights is ¢ > b > a. See,
for example, the result list for keyword w;. All documents that contain w; are accessible
to users holding at least access level b. Therefore, users holding at least access level b get
access to a list containing all document that contain wy, while users holding only access
level a are restricted to the sub-list that only contains document (D:3,V:1).

Usage of AMR. One of our main results, the dSEAC searchable encryption scheme with
access control from Chapter 6.3, achieves strong security guarantees. One drawback of
the scheme is that, in order to achieve one of the security guarantees, verifiability, it has
to leak the access policies of documents that contain a searched keyword. If every access
policy is shared by many documents, the leakage does not pose a problem. If, however,
there is essentially a one-to-one mapping of access policies to documents, the leakage is
significant. We construct the RLS searchable encryption scheme that is based on the AMR
scheme, and that mitigates the leakage of dSEAC at the cost of using AMR’s simpler model
of access control (hierarchical access levels) when compared to dSEAC’s model. At the
same time, RLS provides the same security guarantees that dSEAC provides.

5.7 Development of Searchable Encryption

Ever since its inception in the seminal work of Song et al. [SWP00], searchable encryption
has been an actively researched topic. For a general discussion of the development of
searchable encryption and its flavors, see the survey of Bosch et al. [Bos+14]. See the survey
of Poh et al. [Poh+17] for an extensive discussion of SSE schemes and their properties, as
well as an overview of the historic development of these schemes.

Searchable encryption schemes that rely on forward indexes have been proposed nu-
merous times. Among proposed SSE schemes, early work mostly follows the approach of
forward indexes [Goh03; CMO05]. The majority of schemes with forward indexes implement
searchable encryption in an asymmetric setting, so they feature multiple data writers or
readers, [Bon+04; DRD08; PZ13; RMO15] amongst others. Occasionally, this type of
searchable encryption is referred to as multi-user searchable encryption (MUSE).

As stated before, the work of Boneh et al. has had significant influence on MUSE, and
their PEKS scheme has influenced numerous schemes providing searchable encryption in
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a multi-reader setting. Such schemes achieve access control by applying attribute-based
encryption instead of public key encryption, for example, [LZ14; Sun+14; ZXA14; CD15;
DGC15; Sun+16]. Several of the listed proposals explicitly deal with the challenge of
revoking users’ access rights in order to prevent users from accessing data after they have
been corrupted.

Searchable encryption schemes that rely on backward indexes are often classified as
SSE, although this does does not necessarily restrict these schemes to the single user
setting. Examples of SSE schemes are numerous, both for schemes that explicitly use
backward indexes [Cur+06; Lie+10; Cur+11; KPR12; KO12; KO13; Cas+14; LZC15;
Ash+16; Bos16; GMP16; Ete+18], as well as schemes with tree index structures [KP13;
SPS14; Xia+16]. Typically, one would expect SSE to be restricted to the single user setting,
but this restriction can be mitigated by applying broadcast encryption, as proposed by
Curtmola et al. [Cur+11], by applying dedicated cloud architectures [BL18], or by carefully
modifying the index structure [AMR17]. The latter proposals even achieve access control.
The principles and data structures from SSE and inverted indexes can also be combined
with attribute-based encryption [KB14; Lok17; BL19a; Mic19].

The research mentioned above mainly focuses on searchable encryption schemes that
allow users to search for single keywords. Nevertheless there is significant body of work
aimed at allowing richer types of search queries, for example, Boolean queries, which allow
conjunctions and disjunction of keywords. Boolean queries are subject to research that
focusses on minimizing leakage of such schemes in comparison to the naive approach, which
performs single keyword search for each keyword involved in the query and then computes
the intersections or unions of result sets as described in [Fer+18]. Examples of research
into these queries can be found in [Cas+13; Ore+16].

Other types of rich queries are similarity search and range queries. Searchable encryption
supporting such queries is presented in [OAS15; OKS13]. However, it must be noted
that supporting rich query types potentially worsens the consequences of leakage, as
demonstrated in [Gru+18; MT19] for the case of range queries; the attacks are practical
and achieve (full) database reconstruction.

Chase and Kamara have established a line of research that has branched off of searchable
encryption and aims to generalize it. Their research is into structured encryption [CK10]. In
structured encryption, data is seen as structured. For example, data may be organized in a
dictionary, graph (list, tree, ...), or relational database, and queries to the structured data
can be answered in a privacy preserving, yet meaningful way. In this mindset, searchable
encryption schemes can be seen as structured encryption schemes for certain simple classes
of structures that support keyword search. However, structured encryption schemes provide
solutions for more complex types of structures and queries like adjacency queries on general
graphs [CK10].

Throughout this thesis, we discuss some of the searchable encryption schemes from this
chapter in more detail. This is either because these schemes are very influential or serve as
a basis for our own constructions, c.f. Sections 5.3-5.6, or are construction of our own, like
SEAC [Lok17] in Section 6.2, dSEAC [BL19a] in Section 6.3, and the RLS and DIA schemes

in Section 7.
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Searchable Encryption with Ac-
cess Control .

As we have pointed out in Chapter 4, search and access control must be coupled tightly.
Otherwise, search results can easily be used to circumvent access control. The problem
of coupling search and access control is addressed by two of our main results, which we
present in this chapter. Our searchable encryption schemes consider access control during
the search process in such a way that even the server that performs search on users’ behalf
is unable to bypass access restrictions.

We construct our searchable encryption scheme in multiple steps. First, we present
SEAC, a static searchable encryption scheme with access control [Lok17]. The SEAC scheme
is static in that the searchable document collection is set up once and for all, and cannot
be updated. The restriction to a static document collection has implications for the usage
scenario. Particularly, there is only one owner/data writer, and the owner can be assumed
to behave honestly. Hence, for security of SEAC, we only need to consider the server and
users/data readers to be adversarial, and for them to collude amongst each other.

As a second step, we extend upon SEAC in multiple dimensions. The ultimate goal of
these extensions is to allow us to use SEAC in constructing a searchable encryption scheme
with access control in the multi-writer setting, which is inherently dynamic. Dynamics and
the multi-writer setting come with security requirements that our extensions address.

Our final step is to construct dSEAC, a dynamic searchable encryption scheme with
access control [BL19a]. dSEAC integrates multiple (extended) SEAC instances, one instance
per update. However, simply having multiple SEAC instances is insufficient, and we have
to take additional measures in order to achieve proper integration. For example, it would
be somewhat impractical if users needed to get new or additional cryptographic keys for
every SEAC instance.

Before we turn to our searchable encryption schemes in Sections 6.2 and 6.3, we formalize
the notion of searchable encryption and define its security properties in Section 6.1.

6.1 Preliminaries and Definitions

This section focusses on a formalization of searchable encryption and its security. Our
formalization revolves around two main operations, namely, a Search protocol by which a
user requests a search result from the server and the server provides the requested result
to the user, as well as an Update operation by which users, in cooperation with the server,
can extend the searchable document collection stored at the server by new or updated
documents.
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We have additional operations for setting up system parameters, enrolling users to
the system, and initializing the server. Due to the security model we consider, we also
need a Resolve operation by which the server can blame a malicious user’s actions on that
user. Via the Resolve operation and the notifications it outputs, a judge certifies that an
action has been taken by a malicious user. Our definition features a Version operation that
helps in formalizing some security notions in a way similar to the notions for append-only
authenticated dictionaries (AADs), c.f. Section 3.5.

Definition 26. A searchable encryption scheme with access control is a tuple 1 = (Setup,
UserJoin, Init, Update, Search, Resolve, Version) of two PPT algorithms, and five protocols.

Setup takes a security parameter 1* and outputs system parameters pp, a key issuer’s
master secret msk, a judge’s secret key jsk, and a judge’s state stj,qge. The algorithm
is executed by a trusted party.

UserJoin involves a prospective user and the key issuer. Both parties take in the system
parameters pp; the user also takes in her desired attribute set U; the key issuer also
takes in her private key msk. The user privately outputs a secret key usk and state
Styser- The key issuer publicly outputs a user certificate crt.

Init involves a user and the server. Both parties take in the system parameters pp; the
user also takes in her secret key usk and state styser; the server takes in its state
Stserver- Both parties output updated states.

Update involves a user and the server. Both parties take in the system parameters pp; the
user also takes in her secret key usk, state styser, and a document collection DC'; the
server also takes in its state Stgserer. The server may reject the update. Both parties
output updated states.

Search involves a user and the server. Both parties take in the system parameters pp; the
user also takes in her secret key usk, state styser, and a keyword kw; the server also
takes in its state Stserper- Both parties output updated states; the user also outputs a
search result X or an error symbol L.

Resolve involves the server and the judge. Both parties take in the system parameters pp;
the server also takes in its state Stserver; the judge also takes in her secret key jsk
and her state stjyqqe. The server outputs an updated server state; the judge publicly
outputs a number of notifications ntf, and privately outputs an updated judge’s state.

Version takes pp and user state styser, and outputs an integer vector or an error symbol L.

We require result correctness. That is, for every Setup, for all secret keys usk of users
enrolled via UserJoin, for every document doc contained in any document collection input to
a non-rejected execution of Update, for every user state styser of the enrolled user holding
key usk, and every server state stgerer that resulted from the given update operations, we
have that if (st.,.,., X) < Search(pp, usk, styser, kw|pp, stserver), then

1. X =1, or
2. kw does not occur in doc, or
3. kw’s read policy is not satisfied by usk, or

4. doc € kw, or
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5. there is a notification that originates from an execution of Resolve that bars doc from
being included in X .

Additionally, we require state correctness. That is,

1. for every non-rejected Update operation, the post-Update user state of the user
performing the Update has a greater version number than the user’s pre-Update state,
so all vector components in the post-Update state’s version are at least as large as in
the pre-Update state’s version, and at least one vector component is strictly larger,
and

2. that every search operation results in the same user state that the user that performed
the most recent non-rejected Update operation held after the operation.

For state correctness, the Resolve operation is treated the same as the Update operation,
exchanging the user state for the judge’s state.

Result correctness means that search fails or the reported search results contain all
documents that contain the searched keyword, except those document that are not accessible
to the user on whose behalf search is performed, as well as documents that are certifiably
broken, as documented by a notification. The state correctness notion, like the Version
algorithm, exist for technical reasons: They are used to define and prove security of
searchable encryption schemes.

In the introduction to this chapter, we have discussed static and dynamic searchable
encryption schemes. Definition 26 addresses dynamic searchable encryption with access
control. The following definition restricts dynamic searchable encryption to static searchable
encryption.

Definition 27. A searchable encryption scheme I = (Setup, UserJoin, Init, Update, Search,
Resolve, Version) is called static if the Update operation can be called at most once, Init
and Update take master secret msk instead of a user’s secret usk, and UserJoin cannot be
called before Update has been called; the key issuer keeps a state Stissyer that is additionally
output by Setup, that replaces the user state in operations Init and Update, and that is an
additional input to operation UserJoin.

In the definition of static searchable encryption, the key issuer’s state is present for
technical reasons. The state allows the key issuer to keep track of operations and to enforce
the order of operations laid out in the definition.

Both, static and dynamic searchable encryption schemes must not only be correct, but
also secure. We address this by four security notions, namely, data confidentiality, forward
privacy, verifiability, and fork consistency. Data confidentiality means that the server that
performs search on users’ behalves does not learn more than some specified leakage, even if
the server behaves maliciously and colludes with dishonest users. Forward privacy means
that the server cannot use past search queries to obtain information about updates that
occurred after the query has been made. Verifiability means that result correctness holds
even in the presence of a malicious server. Fork consistency means that if two users hold
distinct states, then one is a successor of the other or in the future they will never hold
states such that one of these states is a successor of the other.

Data confidentiality. As noted in Chapter 5.2, security, and more specifically, data
confidentiality of searchable encryption schemes is defined relative to leakage functions.
These functions describe what an adversary (controlling the server and dishonest users)
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can learn from participating in searchable encryption. An adversary cannot learn more
than the leakage if the adversary is unable to distinguish a real instantiation of the
searchable encryption scheme that uses real data chosen by the adversary from a simulated
instantiation that only relies on the leakage of the adversarially chosen data.

Since leakage functions describe what an adversary can learn from participating in
searchable encryption, there is one leakage function for every type of operation that can
be observed by the adversary. The adversary observes an operation either because the
adversary participates as the server or as a dishonest user, or because the operation
produces publicly observable outputs such as the user certificate crt. The leakage functions
also consider the information gain from corrupting a once honest user.

As a reSUIta we have seven leakage functions (EHonestJoinv ﬁCorruthoim ECorruptionv £In1t7
Lupdates LSearchs LResolve)- Functions LronestJoin models what can be learned from enrolling
honest users. Function LcorruptJoin models what can be learned from enrolling dishonest
users. Function Lcorruption describes what can be learned from corrupting honest users.
Functions Linit, Lupdates Lsearch; and LResolve Mmodel what the adversary can learned from
participating in operations Init, Update, Search, and Resolve, respectively; in these cases
the user or judge that the adversary interacts with behaves honestly.

Note that leakage functions are stateful with a shared state. That means that the
evaluation of one leakage function depends on the inputs to all previous evaluations of all
of the functions. Notation-wise, we keep the shared state implicit.

We define data confidentiality of searchable encryption schemes with access control
relative to two experiments ExpSFeonfreal and ExpSFeontsim ag shown in Figure 6.1. Ex-
periment ExpSFeonfreal represents a real instantiation of a searchable encryption scheme,
while experiment ExpS¢o"f$m represents a simulation of an instantiation. The adversary
can interact with the real instantiation and the simulator, respectively, via oracles. Oracles
correspond to leakage functions, so there are oracles for enrolling honest and dishonest users,
corrupting users, for causing honest users to initialize, update, or search the remote docu-
ment collection, and for resolving conflicts. In our depiction of experiment ExpSF-eonfsim
we denote that the simulator & provides functions that correspond to oracles; for the sake
of notational consistency, the simulator also provides a function Ogetyp-

Using our experiments from Figure 6.1, we formalize data confidentiality by adapting
the security notion of Curtmola et al. [Cur+11] to the dynamic multi-user setting. Our
formalization is as follows.

Definition 28. A searchable encryption scheme with access control N = (Setup, UserJoin,
Init, Update, Search, Resolve, Version) provides data confidentiality relative to leakage func-

tions (EHonestJoiny ﬁCorruthoina £Corruption7 Elm'ta ﬁUpdatea ESearcha ﬁResolve) Zf; fOT all PPT ad-
versaries A, there exists a simulator S such that

| Pr{ExpS 5 7 (A) = 1] — Pr[ExpSTa () = 1]] < negl()),

where the probabilities are taken over the random choices of the adversary and the simulator.

Fork consistency. As stated before, fork consistency means that if two honest users
hold distinct states, then one state is a successor of the other or the users will never hold
states such that one of them is a successor of the other. The notion is defined relative
to experiment Exp>®, as shown in Figure 6.2. The experiment plays two honest users,
while the adversary gets to play the server and an arbitrary number of additional users.
The honest users played by the experiment start out with identical initial states and then
perform two sequences of operations using inputs chosen by the adversary. The adversary
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Expi]?hconf—real ( )\)

o (pp)«Setup(1*)
° b < AOHonestJoin(')’OCOrruthoin () 7OCOrrupti0n () 7OInit (')’OUpdate (7) 7OSearch (’) 7OResolve O (pp) , Where

the experiment reacts to oracle queries as follows:

— OHonestJoin With argument U: run protocol UserJoin, playing the prospective user
and the key issuer; the user takes attribute set U as her input; remember the user’s
key and state

— OcorruptJoin Tun protocol UserJoin, playing the key issuer; the prospective user is
played by A; mark the user certificate crt that results from the protocol execution
as corrupt

— Ocorruption With argument crt: if no run of protocol UserJoin has resulted in cer-
tificate crt or crt is marked as corrupt, output L ; otherwise output the key and
state of the user that participated in the run of protocol UserJoin that resulted in
crt; mark crt as corrupt

— Ot with argument crt: if no run of protocol UserJoin has resulted in certificate
crt or crt is marked corrupt, output _L; otherwise run protocol Init playing the user
that participated in the run of protocol UserJoin that resulted in crt; remember
the updated user state; the server is controlled by A

— OUupdate With arguments (crt,DC): if no run of protocol UserJoin has resulted in
certificate crt, crt is marked corrupt, or DC' is not a document collection, output
L; otherwise, run protocol Update playing the user that participated in the run
of protocol UserJoin that resulted in crt; use document collection DC' as the user’s
input; remember the updated user state; the server is controlled by A

— OSearch With arguments (crt,kw): if no run of protocol UserJoin has resulted in
certificate crt, crt is marked corrupt, or kw is not a keyword, output L; otherwise,
run protocol Search playing the user that participated in the run of protocol UserJoin
that resulted in crt; use keyword kw as the user’s input; remember the updated
user state; the server is controlled by A

— OResolve TuUn protocol Resolve playing the judge; the server is controlled by A

e the experiment outputs b.

ExpSpm ()

® pp %S-OSetup(lA)
o b+« AOHonestioin ():Ocorruptioin ();OCorruption (+),Onit (1),OUpdate (), Osearch (1), OResolve () (pp), where
the experiment reacts to oracle queries as follows:
— Upon call Ox(arys), call S.Ox(Lx (args)), where X € {HonestJoin,CorruptJoin,
Corruption,Init,Update,Search,Resolve}
e the experiment outputs b.

Figure 6.1: Data confidentiality experiments for searchable encryption scheme 1 = (Setup,
UserJoin, Init, Update, Search, Resolve, Version) with access control with leakage functions

(EHonestJoina ECorruthoim ECorruptiona £Inita EUpdate» ESearcha EResolve)a simulator 57 and adver-
sary A
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Expin())

i (pp,msk,jvk;,stjudge)<—Setup(1>‘)

(Uo, Uy, st4) + A?Use”‘)ino (pp), where the experiment reacts to queries to oracle
OUserJoin by playing the key issuer’s part of protocol UserJoin on input (pp,msk)
(usko,sto|crto) <— UserJoin(pp,Us |pp,msk)

(usk1,st1|crty) <— UserJoin(pp,U; |pp,msk)
(1/ ] k l)<_A?UserJoinOvOInit(')70Update('7')7OSearch('a')7OResolveo(

st a,crto,crty), where the ex-
periments reacts to oracle queries as follows:
— OuserJoin Tun the key issuer’s part of protocol UserJoin on input (pp,msk)
— Ot on input b: if b¢ {0,1}, output L; otherwise run protocol Init playing user
b; A plays the server’s part
— Oupdate 00 input b and DC" if b¢ {0,1} or DC' is not a document collection, output
L; otherwise run protocol Update playing the user holding certificate crt;, using
DC as the user’s input; A plays the server’s part
— Osearch on input b and kw: if b¢ {0,1} or kw is not a keyword, output L; otherwise
run protocol Search playing the user holding certificate crty; A plays the server’s part.
— OResolve Tun the judges part of protocol Resolve on input (pp,jsk,stjudge)
For every query to Omit, Oupdate, and Osearch, the experiment remembers the number
of previous queries processed, b and the post-operation state of the user identified by b.
e The experiment outputs 1 if
1. Stop= Stl,
2. queries ¢ and j were processed as user 0 and resulted in user states st{, and st*,
respectively,
3. queries k and [ were processed as user 1 and resulted in user states st} and st*,
respectively,
4. sty sty, and
5. Version(st(,) =Version(st} ) < Version(st*);
otherwise the experiment outputs 0.

Figure 6.2: Fork consistency experiment for searchable encryption scheme I1 = (Setup,
UserJoin, Init, Update, Search, Resolve, Version) and adversary A = (A, .A3)

picks two operations for each of the users and the result of the experiment is determined
relative to the states that the two honest users held after the chosen operations: at some
point, the users states must be distinct, but for the same version, and at a later point, the
states must be identical once more.

Our definition is inspired by the original fork consistency experiment for append-only
authenticated dictionaries (AADs) by Tomescu et al. [Tom+19], see also Figure 3.23 and
Definition 25. However, in the case of AADs, a user state is considered reachable from
another state if there is an append-only proof relating the two states, and in the fork
consistency experiment for AADs, the adversary outputs the proofs and the users’ distinct
states. Since searchable encryption with access control does not feature append-only proofs,
we need to ensure reachability of states in other ways. Additionally, we explicitly want the
users’ distinct states (st(, and stj in our experiment) to be reachable from their identical
initial states. These requirements complicate our definition of fork consistency of searchable
encryption schemes with access control when compared to the fork consistency definition
for AADs.
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Definition 29. A searchable encryption scheme with access control N = (Setup, UserJoin,
Init, Update, Search, Resolve, Version) is called fork consistent, if for all PPT adversaries
A= (A1, As)

Pr[Exp3ii°(A) = 1] < negl()),

where the probability is taken over the random bits of the adversary and the experiment.

Verifiability. Before, we have discussed the possibility of malicious servers in the context
of data confidentiality, considering what the malicious server can learn from participating
in searchable encryption. We now discuss what guarantees we get with a malicious server
in terms of search results. Verifiability means that, if the server answers search queries at
all, then we can verify whether the returned result is indeed correct and complete, meaning
that the result only contains documents satisfying our query, and contains all of them. If a
presented search result cannot be verified, we require the Search algorithm to output L as
the search result.

We define verifiability relative to an experiment Exp V™% as shown in Figure 6.3.
The experiment plays the roles of two honest users with identical access rights, while the
adversary may play the roles of additional users. The honest users played by the experiment
each perform a number of operations of the adversary’s choice. Among these, both users
perform a search query for a keyword of the adversary’s choice. Both queries have resulted
in the users adopting identical post-search user states, but the users have obtained distinct
results. Furthermore, both users must have verified and accepted the result, so neither
result can be L.

As with fork consistency, the notion of verifiability can be related to a security notion for
AADs, particularly the original notion of membership security by Tomescu et al. [Tom+19],
see also Figure 3.21 and Definition 25. The adaptions we have made to the original
membership security experiment are similar to those made to the original fork consistency
experiment (see above).

Definition 30. A searchable encryption scheme I = (Setup, UserJoin, Init, Update, Search,
Resolve, Version) with access control is called verifiable, if for all PPT adversaries A = (Aj,
As)

Pr[Exp’n"(\) = 1] < negl()),

where the probability is taken over the random bits of the adversary and the experiment.

Forward privacy. Forward privacy means that the server does not learn whether any
newly added document contains a specific keyword, even if that keyword has been searched
for before. Intuitively, forward privacy can only be guaranteed if the server does not collude
with users, because otherwise, the server could use a corrupt user’s secret key to extract
information from messages exchanged during an Update operation. Forward privacy may
also only be guaranteed if no fork has occurred, because the server states for different forks
may reveal information on keywords that the forks have in common, and this may not
be preventable. These intuitions can be used to formalize forward privacy. The following
definition has been adapted from Bost [Bos16] to the multi-user setting.

Definition 31. A searchable encryption scheme N = (Setup, UserJoin, Init, Update, Search,
Resolve, Version) with access control is forward private if, in the absence of dishonest users
and forks, its Update-specific leakage function L pdete contains no information on keywords
beyond an upper bound on the number of keywords affected by the Update operation.
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Expin" ()

o (pp,msk,juk,stjudge) <—Setup(1A)

(U,st ) %A?US”JOi“()(pp), where the experiment reacts to queries to oracle Ouserjoin
by playing the key issuer’s part of protocol UserJoin on input (pp,msk)
(usko,sto|crto) <— UserJoin(pp,U|pp,msk)
(usk1,st1|crty) < UserJoin(pp,U|pp,msk)
(i’j)<_A;QUserJoin()voInit('):OUpdate('7')aOSearch(':')70Resolve()(

iments reacts to oracle queries as follows:
— OUserJoin Tun the key issuer’s part of protocol UserJoin on input (pp,msk)
— Ot on input b: if b¢ {0,1}, output L; otherwise run protocol Init playing user
b; A plays the server’s part
— OUpdate 00 input b and DC" if b¢ {0,1} or DC' is not a document collection, output
L; otherwise run protocol Update playing the user holding certificate crt, using
DC as the user’s input; A plays the server’s part
— Osearch on input b and kw: if b¢ {0,1} or kw is not a keyword, output L; otherwise
run protocol Search playing the user holding certificate crty; A plays the server’s part.
— OResolve Tun the judges part of protocol Resolve on input (pp,jsk,stjudge)
For every query to Ommit, Oupdate, and Osearch, the experiment remembers the number
of previous queries processed, b and the post-operation state of the user identified by
b, and the user’s input and output for the operation.
e The experiment outputs 1 if
1. Stog= St1,
2. query i was a Search operation processed as user 0 with input kwg, and resulted
in user state st(, and search result Xo# L,
3. query j was a Search operation processed as user 1 with input kwi, and resulted
in user state st| and search result X;# L,
4. sty=st},
5. kwg=kwq, and
6. Xo#Xu;
otherwise the experiment outputs 0.

st_a,crtg,crty), where the exper-

Figure 6.3: Verifiability experiment for searchable encryption scheme N = (Setup, UserJoin,
Init, Update, Search, Resolve, Version) and adversary A = (A, As)
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Dictionary HT Array A Array D

[ 72tke,w01)] fic e, wi)@ o——FEns[y TEnc(A(D)& Opisearch” & Wrd s (ki wi)”, « H——Ensf y [(D2, V]|
E"C‘ NIL ‘ Enc(A(a)&“Op:search” & “Wrd: f(kp, w1)”, ~—)—H—'EA‘
‘ frlkr,ws) ‘ i (kg ,wa)® »—‘—'Eén‘ NIL ‘ Enc(A(b)& “Op:search” & “Wrd: fp (kp, w2)”, ~—)—H—'EA‘
‘ frlkr,ws) | fr(ki,ws)® »—‘—’Eﬁ‘ NIL ‘ Enc(A(a)& “Op:search” & “Wrd: fp (kp, ws)”, H—H—’Eﬁ‘

Figure 6.4: The index structure used in the SEAC scheme, computed from our example
document collection from Page 38. Data structures HT and D are as in the CGKO scheme,
although lists in array D are potentially shorter in the SEAC scheme. Lists in array A
control access to D lists and employ attribute-based encryption for this purpose. Policies
used for attribute-based encryption depend on the policy shared by documents in the D
list being pointed to, as well as the keyword that is shared by all documents in all D lists
that the A list points to.

6.2 Static Searchable Encryption

Our first construction of a searchable encryption scheme with access control, SEAC, targets
the static case of searchable encryption. As a consequence, SEAC’s Update protocol is
executed at most once. SEAC is an adaption of the CGKO scheme [Cur+11], c.f. Section 5.4,
which results in SEAC only satisfying the security notions of data confidentiality, and
(trivially) forward privacy and fork consistency, but not the notion of verifiability.

Since SEAC is a static scheme, its practical applications are rather limited. One potential
use may be for data archives, which do not get updated after the initial data has been
processed. However, SEAC finds applications in the construction of dynamic searchable
encryption, as demonstrated in Section 6.3. Note that, since SEAC is static, it does not
consider documents’ write and ownership access policies, but only documents’ read policies.

We now turn to discussing the ideas behind SEAC, and later on shift towards technical
details and proofs of security.

6.2.1 SEAC, Conceptually

As stated, the SEAC scheme is an adaption of the CGKO searchable symmetric encryption
scheme. By enhancing the index structure of Curtmola et al.’s scheme [Cur+11], the
CGKO scheme is adapted into the multi-user setting with access control. Particularly, the
encrypted linked list employed by Curtmola et al. to represent pre-computed search results
for each keyword are split into sub-lists. Documents in the same sub-list share an access
policy. The sub-lists for each keyword are still grouped together in an encrypted linked list.
Hence, SEAC uses a two level hierarchy of linked lists. The upper level (A lists), which is
reached from a dictionary HT, as in the CGKO scheme, lists all access policies associated
with a keyword. A list entry in the upper level for a given access policy points to a list on
the lower level of the hierarchy (D lists) that contains all documents with the given access
policy that contain the relevant keyword. The data structures are shown in Figure 6.4.
With the given index structure, a search query contains two pseudorandom strings
generated from the searched keyword, just like search queries are formed in the CGKO
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scheme. Additionally, in SEAC a search query contains parts of a user’s decryption key
for attribute-based encryption (ABE). That key is used for decrypting ABE ciphertexts in
A lists. Only parts of the user’s key are given to the server in order to prevent it from
decrypting document ciphertexts, which are ABE encrypted for access control enforcement.
Document ciphertexts are stored in data structures separate from the index structure.

We introduce namespaces for attributes in order to separate attributes by the roles they
have in SEAC. Namespaces simply prefix the attribute names. We have three namespaces.
Namespace Usr for general purpose attributes of users, for example, attributes describing
users by their roles. Attributes from namespace Op describe operations users are allowed
to perform; in SEAC we use attribute “Op:search” for policies in A list nodes and “Op:read”
for policies of documents. Namespace Wrd prefixes attribute names that are derived from
searchable keywords; they are used for policies in A list nodes.

Attributes from namespace Usr serve access control purposes, preventing users from
accessing documents they are not allowed to access. Attributes from namespaces Op and
Wrd prevent the server from accessing any document plaintexts — despite getting attributes
as part of search queries — and from using these attributes for accessing search results
different from the pre-computed search result for the keyword that the query asks for. The
former property is achieved by not including “Op:read” in search queries, but requiring it in
the policies for documents. The latter property is achieved by keyword-specific attributes
in conjunction with ABE’s collusion resistance, which prevents the server from combining
the (general purpose) attribute from one query with the keyword-specific attribute from
another query. The restriction of users’ ABE keys to certain attributes is done via key
delegation and the reason why, in Section 3.2.3, ABE schemes are required to feature key
delegation.

6.2.2 SEAC, Formally

We now formally present the SEAC scheme, implementing the ideas laid out above. As
building blocks, SEAC uses pseudorandom functions (PRFs) (Definition 3), symmetric
encryption (Defintion 5; implicitly: PRF output @ plaintext, and explicitly: scheme Sym),
and ABE (Definition 12). SEAC uses PRFs and symmetric encryption similarly to the CGKO
scheme, c.f. Section 5.4, for labels and values used in dictionary HT and for encryption
of A and D lists. An additional PRF is used to derive keyword dependent attributes for
namespace Wrd from plaintext keywords.

Construction 32. The SEAC scheme consists of algorithms and protocols (Setup, UserJoin,
Init, Update, Search, Resolve, Version) shown in Figures 6.5-6.7.

Essentially, what the algorithms and protocols of the SEAC scheme do is the following.
Setup computes the PRF keys and sets up an ABE scheme. Private keys form SEAC’s master
secret; the ABE scheme’s parameters form SEAC’s public parameters.

UserJoin has the user send her desired (general purpose) attributes to the key issuer.
The key issuer assigns a random certificate (number) to the user and then computes an
ABE key for the user, giving her keys for the requested attributes (in namespace Usr), and
additionally giving the user keys for attributes “Op:search” and “Op:read”. The user also
gets attribute keys for all keywords kw € words; the set words is assumed to be public
knowledge. The user’s key is composed of the computed ABE key and of the PRF keys
sampled during Setup. The key is given to the user, who also defines her state.

Init effectively does nothing beyond incrementing a counter in the key issuer’s state.
The protocol is only present for SEAC to satisfy the definition of a searchable encryption
scheme with access control.
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Setup(1*)

e kp+ PRF.KeyGen(1")

e ky +PRF.KeyGen(1*)

kr < PRF.KeyGen(1*)
(pp,msk’) < ABE.Setup(1*)

msk < (msk’ kg, ki kr)

gsk <+ L

Stjudge < L

Stissuer <=0

output (pp7mSkJUkaStjudgeaStissuer)

UserJoin(pp,U |pp,msk,stissuer)

U: send U to key issuer

KI: if stisguer <2: send “no document collection” to user and abort protocol

KI: usk’+ ABE.KeyGen(msk',{ “Usr:u” },epy U{ “Op:read”, “Op:search” } U{ “Wrd:PRF.E
KI: crt<+g{0,1}*

KI: usk < (usk’ ,kp,ki,kr,crt)

KI: publish crt

KI: send usk to user

U: if received “no document collection:’
U: styger —1

U: output (usk,styuser) to user

” abort protocol

Init(pp7m5k75tissuer|pp75tserver)

KI: if stisguer >0: abort protocol

KI: send “initialize” to server

S: if Steerver 7 L: send “already initialized” to key issuer and abort protocol
S: Stscrvch(Z)

S: send “initialized” to key issuer

S: output Steerver

KI: if received message “already initialized:” abort protocol

KI: stisguer <1

KI: output stisguer to key issuer

Figure 6.5: Algorithm Setup, and protocols UserJoin and Init of the SEAC scheme
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U pdate(ppum5k73tissueraDO|pp75tserver)
KI: if stisguer > 1: abort protocol
KI: K,R ()
KI: CT HT<+empty dictionaries
KI: for each doc=(dv,rw,0,k)€ DC":
e R+ RU{r}
e for each kwek:
- K+ KU{kw}
— if L{kw,r] is undefined: L[kw,r]<0; else: L[kw,r]« L{kw,r]U{(dv)}
e CT.Append((d,v),ABE.Enc(pp,r&“Op:read” k))
KI: s34 0 rwok)enc 2wer kwl /min{|kw|: (d,v,,rw,0.k) € DCAkw € k}
KI: A<+ empty memory array with |R|-|K| cells marked free
KI: D<empty memory array with s cells marked free
KI: for each (kw,r)€ K xR: // compute D lists
o if L[kw,r] is defined:
— Sp+NIL
— while L{kw,r]#0:
* pick (d,v) uniformly at random from L[kw,r]
Llkw,r]«+ Llkw,r)\{(d,v)}
pick index ¢ uniformly at random from the indices of cells of D marked free
remove free mark from cell ¢ of D
nk < Sym.KeyGen(1*)
D[i] «— Sym.Enc(nk,(sp,(d,v))) // apply padding
% sp<—(i,nk)
— if L{kw] is undefined: L[kw]<0; else: L[kw]< L{kw]U{(r,sp)}
KI: for each kwe K: // compute A lists
e Sp<—NIL
e while L{kw]#0:
— pick (r,lp) uniformly at random from L[kw]
Llkw) < L{kw]\{(r,p)}
— pick index 4 uniformly at random from the indices of cells of A marked free
— remove free mark from cell ¢ of A
— nk < Sym.KeyGen(1*)
— inner <+ ABE.Enc(pp,r& “Op:search” & “Wrd:PRF.Eval(kp,kw)” ,ip)
— A[i] - Sym.Enc(nk,(sp,inner)) // apply padding
— sp<—(i,nk)
e [abel <+ PRF.Eval(kr,kw)
e pointer < PRF.Eval(k ,kw)@sp // apply padding
e HT.Append(label,pointer)
KI: for each cell i of A marked free: A[i] <~ Sym.Enc(Sym.KeyGen(1*),0) // apply padding
KI: for each cell i of D marked free: D[i] <~ Sym.Enc(Sym.KeyGen(1*),0) // apply padding
KI: send (HT,AD,CT) to server
S: if Sterver = L OF Stgerver 7 0: send “operation disallowed” to key issuer and abort protocol
S: send “data stored” to key issuer
S: output Stserver < (HT,A,D,CT) to server
KI: if received message “operation disallowed:” abort protocol
KI: output stisguer <2 to key issuer

K K X ¥

Figure 6.6: Protocol Update of the SEAC scheme
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Search(pp,usk,stuser,kw|pp,Stserver)
U: HTlabel + PRF.Eval(kp,,kw)
U: HTkey < PRF.Eval(kg kw)
U: let uskrestricted D€ the restriction of usk to attributes from namespace Usr, and
additionally the attributes “Op:search” and “Wrd:PRF.Eval(kp,kw)”, computed via
ABE.Delegate
: send query = (HTlabel, HTkey,uskestricted) tO server
if Steerver =_L: send “not initialized” to user and abort protocol
if stgerver =0: send “no data stored” to user and abort protocol
if HT.Lookup(HTlabel) is undefined: send ) to user and abort protocol
rsit <0
(sp,lk) < HT.Lookup(HTLabel) ® HTkey
while p=(sp,lk) #NIL:
(p,inner)<—Sym.Dec(lk,A[sp])
Ip <— ABE.Dec(pp, usk estricted, inner)
if [p=_1: continue to next iteration
while Ip=(np,nk)#NIL:
B (lp,(d,v})<—Sym.Dec(nk,D[np])
— rslt<—rsit U{CT.Lookup({d,v))}
S: send rslt to user
U: if received message “not initialized” or “no data stored:” abort protocol
U: styser<0
U: X0
U: for each ct € rsit:
o X+ XU{ABE.Dec(pp,usk,ct)}
U: output X and styger

ReSOIVe(pp sStserver ‘pp Jsk, Stjudge)
S&J: abort protocol

VerSiOn(pp75tuser)
e output styser

Figure 6.7: Protocols Search and Resolve, and algorithm Version of the SEAC scheme
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Update computes document ciphertexts from all documents in the document collec-
tion; remember that the multi-set k£ from a document’s tuple in a document collection
represents the plaintext document as a multi-set of keywords contained in the document,
c.f. explanation on document collections on page 38. The user proceeds to compute the
index structure, ensuring that the order of documents in pre-computed search results is
independent from their order in the document collection. As in the CGKO scheme, the user
ensures that all symmetric ciphertexts in HT, A, and D, respectively, have the same length,
and that arrays A and D contain dummy entries. Then, the user sends her computed data
to the server, which stores the data as its state.

For Search, the user computes a subset of her key and sends the subset as her query.
Given the partial key, the server recovers some pre-computed search results, which identify
relevant document ciphertexts. The identified ciphertexts are sent to the user, who decrypts
them and outputs the resulting plaintexts.

Resolve and Version effectively do nothing. The protocol and algorithm are present for
SEAC to satisfy the definition of a searchable encryption scheme with access control.

Correctness. From the intuition of protocols Update and Search, we can immediately
see, that SEAC is correct in terms of Conditions 2-4 of the result correctness notion of
searchable encryption with access control: the Update protocol computes an index structure
such that the Search protocol results in the user outputting the set of documents accessible
to the user that contain the searched keyword. Conditions 1 and 5 are trivially satisfied,
because the Search protocol never outputs L to the user and because SEAC does not make
user of notifications. The additional conditions due to state correctness are also satisfied.

Efficiency. A drawback in SEAC is its sensitivity towards the number of keyword—policy
pairs in its document collection and the influence of that sensitivity on the efficiency of
SEAC. The sensitivity can immediately be seen from the size of memory array A, whose size
is an upper bound on the number of keyword—policy pairs. The number of keyword—policy
pairs also influences the number of ABE encryptions that need to be performed when
generating the index structure, particularly then computing memory array A. Similarly,
during search, for each policy the searched keyword is associated with an ABE decryption,
or at least a test whether decryption is possible, needs to take place. All in all, the efficiency
of operations not only depends on the size of a document collection, but also on its inner
structure.

Leakage. In order for us to prove the security of the SEAC scheme, we need to analyze
the scheme’s leakage to an adversary that controls the server and dishonest users. To that
end, we now discuss the leakage functions involved in SEAC. This analysis assumes PRF to
be a pseudorandom function, Sym to be an eavesdropping-secure symmetric encryption
scheme, and ABE to be a chosen plaintext attack (CPA)-secure ABE scheme. Note that
every keyword is associated with an identifier allowing us to distinguish keywords, hat are
otherwise indistinguishable in terms of leakage functions, for example, because they occur
in the same documents. Identifiers of keywords come in the form of keyword dependent
keys, labels, and attributes. From a keyword, we can always infer the respective identifier,
but the reverse is not necessarily true.

The first leakage function to discuss is LijonestJoin, Which is the leakage from enrolling
honest users in the system. In this scenario, the adversary only gets to observe the public
outputs of the UserJoin protocol. This means, the adversary only sees the user certificate
crt output by the key issuer. Hence, Lyonestjoin(U) = crt.
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The adversary gains significantly more knowledge on the plaintext document collection
DC when enrolling dishonest users. The additional knowledge is due to the user keys that
the adversary obtains from the process and the things that the server can do using these
keys, for instance, decrypt document ciphertexts. The server learns the user’s certificate
crt and attributes U. From data structure CT, the server learns the document names and
version numbers, the read access policies, and the contents of documents that the user is
allowed to access due to her attributes. We denote this as

DC(U) = {(d,v, Areaq, k) : (d, v, Ayead, w,0,k) € DC AU satisfies Ayeaq}-

Due to the adversary’s (implicitly assumed) knowledge of all keywords in the document
collection and the adversary’s knowledge of a user’s key, the adversary can compute HT
labels and keys for all keywords, granting the adversary access to all A lists. From the A
lists, the adversary learns all keyword—access policy lists in the document collection DC.
We denote this as

KP(DC) = {(kw, Areaq) : (d,v, Areaq, w,0,k) € DC N kw, € k}.

Therefore,
£Corruthoin() = (C’/’t, U, DC(U), KP(DC))

When corrupting a once honest user, the adversary obtains the same information as if
the user were enrolled as a dishonest user; except for the user’s certificate crt, which the
adversary has already learned before. Hence,

£Corruption(crt) = (C’I"t, Ua DC(U)a KP(DC))

No information can be learned from the server initialization, so Liyit(crt) = L

Since SEAC is static, users cannot perform updates. Instead, the single update is
performed by the key issuer. Users do not even exist at the time the update operation
is performed. The update operation therefore leaks nothing beyond the sizes of data
structures HT, A and D, and some information on document ciphertexts. The size of HT is
determined by the number of distinct keywords in the document collection, so

HT| = [{kw : (d,v, Aread, w, 0,k) € DO A kw € k}|.

The size of arrays A and D is explicitly computed in algorithm Update as an upper bound on
the number of keyword—access policy pairs in the document collection and as the quotient
of the total size of document plaintext and the length of the shortest keyword, which is
a trivial upper bound on the average number of keywords per document from document
collection DC, so

|A| = {(kw, Areaq) : (d,v,7,w,0,k) € DCAkw € kA (d, v, Areaa, o', k') € DCY|

and
|D| . Z(d,v,r,wp,k)EDC kaek‘ ‘kw|
min{|kw| : (d,v,7,w,0,k) € DC N kw € k}
Finally, from data structure CT that stores document ciphertexts, the adversary leans

the set CT(DC) of document names, version numbers, read access policies, and sizes of
documents in DC, so

CT(DC) = {(d,v, Aread; |k|) : (d,v, Areaq, 0, w, k) € DC'}.
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All in all,
Lupdate(DC) = (|HT|, |A], [D|,CT(DC)).

Whenever an honest user with user certificate crt issues a search query for any keyword
kw, the adversary learns the user’s attribute set U(crt), and identifiers of kw, denoted
id(kw), particularly, keyword dependent keys and labels from the query. The adversary also
learns the read policies that occur in conjunction with the keyword kw in the searchable
document collection DC'. This is learned from the cells of array A that can be decrypted
using the decryption key from the query. We denote set of read policies as

Aread (DC, kw) = {Avead : (d,v, Aread, w,0,k) € DC A kw € k}.

From D lists accesses during search, the adversary learns the document names and version
numbers of documents that both, contain the keyword kw and are accessible to the user.
We denote this as

doc(U(crt), kw) = {(d,v) : (d,v, Aread, w,0,k) € DC A kw € k A U(crt) satisfies Ayeaq }-
Therefore,
Lsearch (crt, kw) = (U(ert), id(kw), Avead (DC, kw), doc(U (crt), kw)).

Since protocol Resolve does nothing, nothing can be learned from executing it, so
LResolve() = 1.

Security. We now come to the analysis of SEAC’s security properties. As stated before,
SEAC provides data confidentiality, and, trivially, forward privacy and fork consistency.
We restate these claims as Lemmas 33-35 and proof them individually.

Lemma 33. If PRF is modelled as a random oracle, Sym is an eavesdropping-secure
symmetric encryption scheme, and ABE is a CPA-secure non-committing (hybrid) ABE
scheme, then SEAC provides data confidentiality (Definition 28) relative to the above

leakage functions (‘CHonestJoim £Corruth0ina ECorruptiona Elm'ta L Update ESearch» ‘CResolve) in the
random oracle model.

Proof. Given the lemma’s prerequisites, as argued above, SEAC’s leakage functions take the
described form. For the proof, we use the fact that ABE is non-committing. Hence, random
oracles solve the challenge of performing the Update operation without actually knowing the
underlying document collection. At a later time, when (parts of) the underlying document
collection become known, for instance, due to the adversary corrupting a user or from
search results, the simulator patches a random oracle, and the data stored at the server
becomes dependent on the revealed parts of the document collection.

In the random oracle model, we not only have non-committing ABE, but also non-
committing symmetric encryption. Our proof also uses random oracles to model the PRFs
of the SEAC scheme. As implied by these statements, we make heavy use of random oracles
in our proof and, particularly, the definition of the simulator for experiment ExpSF-oonfsim,
The simulator’s behavior is defined in Figures 6.8 and 6.9.

Due to the simulator’s ability to patch the random oracles, all data structures in
ExpiEscglé%%m behave just like their counterparts in Exp%g%‘ﬁlé'real. This is the conclusion
we draw from two main observations. First, the adversary A only can make meaningful
queries to the random oracles modelling the PRFs after a user has been corrupted. This is
because the adversary has no knowledge of the PRF keys before it has corrupted any user.
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OSetup<1)\>

i (ppamSkijkastissuer)<_Setup(1>\)
e remember msk,Stissuer

e output pp

OHonestJ oin (‘CHonestJ oin (U ) )
e execute protocol UserJoin(pp,d|pp,msk,stissuer); remember the published user certificate
crt

OCorruth oin (ECOrruth oin ())

e if ¢rt from leakage has not been remembered or is marked corrupt: output L to A and
do nothing of the following

e based on received leakage {(d,v,Aeaq,k)} that has not occurred before:

— patch random oracle for non-committing ABE, so the CT entry for document
identifier and version (d,v) with policy Aye,q contains plaintext document k

— compute non-encrypted linked D lists as in protocol Update; patch the random oracle
for non-committing symmetric encryption in order to embed the lists in array D

e based on received leakage {(kw,Aeaq)} that has not occurred before:

— compute non-encrypted linked A lists as in protocol Update, except the ABE cipher-
texts inside the list nodes are dummy ciphertexts, unless a D list for (kw,Aycaq) has
previously been computed, in which case the ABE ciphertext is an encryption of
the pointer to the D list

— patch random oracles for PRFs so the HT entry for keyword kw points to A list for kw

e if any of the above oracle patching fails: output L and abort the simulation
e execute UserJoin with key issuer’s input (pp,msk,stissuer); interact with A, which plays
the user; remember the published user certificate crt and mark it as corrupt

OCorruption (»CCorruption ( CT’t) )
e if crt from leakage has not been remembered or is marked corrupt: output 1 to A and
do nothing of the following
e compute data and patch oracles as in OcorruptJoin
e if no user key usk and state styse for crt have been remembered:
— based on received leakage U: execute (usk,styser) < UserJoin(pp,U|pp,msk,stissuer)
playing the user and key issuer, but do not publish resulting certificate crt
— remember usk as crt’s user key and styser as crt’s state
e mark crt as corrupt
e output (usk,styser) to A

Oniit(Lmit(crt))
e execute protocol Init with key issuer’s input (pp,msk,stissuer); interact with A; remember
updated key issuer’s state

Figure 6.8: Behavior of the simulator & for SEAC’s data confidentiality game against
adversary A: Reactions to setup, enrollment, corruption, and initialization leakage
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OUpdate (‘CUpdate(CTtvD C))
o if Stissuer # 1: do nothing of the following
e based on received leakage on set sizes:

— compute dictionary HT containing dummy entries (labels and values chosen uniformly
at random from appropriate domains); the number of entries is indicated by the
leakage

— compute memory arrays A and D containing dummy cells; the number of entries
is indicated by the leakage

e based on received leakage on CT: compute dummy CT entries for document identifiers
and version numbers with access policies and plaintext sizes as indicated by the leakage

e if any of the above oracle patching fails: output 1 and abort the simulation

e send (HT,A,D,CT) to .A and behave like the key issuer in protocol Update in the ensuing
interaction with the server (played by .A); remember the updated key issuer’s state

OSearch (ACSearch ( crt,kw ) )
e if ¢rt from leakage has not been remembered or is marked corrupt: output L to A and

do nothing of the following
e if the identifier of kw has been observed in previous search leakage: skip to the last point
e else: based on received leakage {(d,v)} that has not occurred before:

— compute non-encrypted linked D lists as in protocol Update; patch the random oracle

for non-committing symmetric encryption in order to embed the lists in array D
e based on received leakage {Aeaq} that has not occurred before:

— compute non-encrypted linked A list as in protocol Update, except ABE ciphertexts
inside the list nodes are dummy ciphertexts, unless a D list for (kw,A;eaq) has
previously been computed, in which case the ABE ciphertext is an encryption of
the pointer to the D list

— patch random oracles for PRFs so the HT entry for keyword kw points to the A list
for kw

e if any of the above oracle patching fails: output L and abort the simulation
e if no user key usk and state stuser for crt have been remembered:

— based on received leakage U: execute (usk,styser)<— UserJoin(pp,U|pp,msk,stissuer)
playing the user and key issuer, but do not publish the resulting certificate crt

— remember usk as crt’s user key and styser as crt’s state

e behave like user c¢rt in protocol Search and interact with the server (played by A); use
PRF images to construct the query that recover lists given in the leakage (the lists have
been created before)

OResolve ([’Resolve () )
e do nothing

Figure 6.9: Behavior of the simulator & for SEAC’s data confidentiality game against
adversary A: Reactions to update, search, and resolution leakage
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Once a user gets corrupted, the incurred leakage ensures that the simulated data structures
are as they are in experiment Expi%CEoAné‘real, at least as far as those parts of the data
structures HT, A, D and CT are concerned that the adversary can decrypt. Those parts of the
data structure that the adversary is unable to decrypt, due to our use of secure encryption
and the adversary’s lack of decryption keys, are covered by our second observation: Since
we use eavesdropping secure symmetric encryption with a fresh key for each ciphertext
and CPA-secure ABE, ciphertexts on plaintexts of equal length are indistinguishable from
each other. Particularly, dummy ciphertexts in A, D, and CT cannot be distinguished from
not yet decrypted lists nodes and documents.

As a consequence of the data structures behaving identically in both experiments, the
adversary cannot use the data structures to distinguish between the experiments. Our
simulator is designed so that its output behavior in experiment ExpSFcontsim g exactly
the same as the oracles’ output behavior in experiment ExpSPcorfreal with the notable
exception that the simulator outputs L if it fails to patch one of its oracles. However,
patching the oracle only fails with probability negligible in the security parameter. O

Lemma 34. The SEAC scheme is fork consistent (Definition 29).

Proof. In order for an adversary to break SEAC’s fork consistency, an adversary needs
to make two honest users with identical initial state sty transition to state st*. In the
process, one user adopts state st({, and the other adopts state st|. These states must satisfy
Version(pp, sto) < Version(pp, st) = Version(pp, st}) < Version(pp, st*). However, in SEAC,
honest users’ states make Version output either —1 or 0, so the above conditions can never
be satisfied. O

Lemma 35. If PRF is a pseudorandom function, Sym is an eavesdropping-secure sym-
metric encryption scheme, and ABE is a CPA-secure ABE scheme, SEAC is forward private
(Definition 31).

Proof. As implied by our proof of SEAC’s fork consistency, the notion of forks is irrelevant
for SEAC. Furthermore, due to the order in which operations must occur in a static
searchable encryption scheme with access control, c.f. Definition 27, there are no dishonest
users at the time SEAC’s update leakage Lupdate 0ccurs. Therefore, in SEAC, update leakage
always occurs in the absence of forks and dishonest users. This is reflected in SEAC’s
leakage function Lypdate, Which is as presented above due to the lemma’s prerequisites,
and which contains no information on keywords beyond an upper bound on the number of
distinct keywords affected by the Update operation, and information that can trivially be
derived from this upper bound. Examples of information that can trivially be derived, are
an upper bound on the number of keyword—policy pairs in the document collection and an
upper bound on the average number of keywords per document. The derived information
is independent of the actual keywords.

The upper bound on the number of distinct keywords in the update comes in the form
of the number of entries in dictionary HT. The bound and information trivially derived
from it is the only information that the Update leakage contains on keywords if no user is
corrupt. Hence, SEAC is forward private. O

6.3 Dynamic Searchable Encryption

An obvious drawback of the searchable encryption scheme with access control from the
previous section is that the SEAC scheme is static. In this section, we expand upon SEAC
and construct dSEAC, which is dynamic.

69



6.3 DYNAMIC SEARCHABLE ENCRYPTION

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6.10: Organization of multiple (extended) SEAC instances in dSEAC: arrays A and
D remain separate for each SEAC instance, but dictionary HT is shared among instances;
SEAC’s dictionary CT is split into two dictionaries Man and Dat that are shared between
instances; additional data structures Ntf, UL, 1lco, and dul are stored at the server

The dynamic aspect of dSEAC is achieved by combining multiple SEAC instances,
one for each update, in a specific manner, such that dSEAC achieves data confidentiality,
forward privacy, fork consistency, and verifiability. At the same time, we keep users’ keys
and public parameters short — not much longer than in a single SEAC instance. As a
consequence of the short key requirement, we cannot achieve dynamic searchable encryption
from a straightforward generic combination of SEAC instances. Such a combination either
does not have short keys, or is not forward private, because key reuse occurs and the
server learns when two document collections have a keyword in common, because then
the resulting SEAC index structures have HT labels in common. The SEAC scheme lacks
the desired feature of verifiability. Additionally, in SEAC, there is only one update to the
searchable document collection and it is performed by the key issuer.

In contrast, our dSEAC scheme allows all users to update the searchable document
collection. Updates to the collection respect write access restrictions set by previous
updates. At the same time, the dSEAC scheme is fork consistent and forward private.
Search respects read access restrictions, while search results are verifiable.

As we can see, we need to make a number of changes to SEAC in order to use it in our
construction of dSEAC. In the upcoming subsections, we present the necessary changes
on a conceptual level, present additional measures we need to take in order make dSEAC
viable, and then present and discuss the complete dSEAC scheme.

6.3.1 dSEAC, conceptually

The dSEAC scheme employs multiple SEAC instances in order to achieve dynamic searchable
encryption with access control. As a consequence, the data structures employed in SEAC
have counterparts in dSEAC. Particularly, the dictionary HT from SEAC becomes a dictionary
shared between SEAC instances in dSEAC. The arrays A and D from SEAC remain separate.
The dictionary CT, used to store document ciphertexts in SEAC, is split into two dictionaries
Man and Dat, which are shared between SEAC instances. The split of CT is a consequence
of dSEAC considering read and write access rights to data, rather than only considering
read access as in SEAC. As we explain further below, Man primarily handles aspects of
write access, whereas Dat primarily handles aspects of read access.

The organization of these data structures is shown in Figure 6.10. The figure also
shows four additional data structures not present in SEAC, namely, data structures Ntf,
UL, 1co, and dul. Ntf is a collection of notifications that originate from conflict resolution,
the process by which an honest server can blame a malicious user’s actions on the user.
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Thus, Ntf plays a role in dSEAC achieving correctness and verifiability. UL is an update
log. It is an AAD that essentially serves as a catalog of all updates ever performed, and
plays a role in conflict resolution. lco represents the last completed (write) operation. It
is a digest of the system state, serves as a discrete clock and plays an important role in
achieving verifiability. Lastly, dul establishes a relation between 1lco and UL, and plays an
important role in achieving fork consistency.

However, the new data structures are insufficient for achieving verifiability and forward
privacy. Achieving these notions requires modifications to internals of some of SEAC’s
original data structures, while retaining their conceptual purpose, c.f. Section 6.2.1. In the
upcoming paragraphs, we discuss the changes to SEAC’s data structures and additional data
structures introduced by dSEAC. The discussion assumes users to hold a signing—verification
key pair (sk,vk) of a signature scheme with delayed verifiability, c.f. Definition 22, in
addition to their SEAC key. Users obtain the key pair during the UserJoin operation. In
dSEAC, the certificate published during the UserJoin operation is a certificate on the user’s
verification key and also contains a list of the (names of) attributes the user holds. In
order for the key issuer to create such certificates, the key issuer holds a singing key. The
corresponding verification key is part of the system parameters pp. Similarly, in dSEAC the
judge holds a signing key, and the corresponding verification key is again contained in pp.

Managing access rights. In our notion of document collections, c.f. page 38, we have
three types of access rights: rights to read a document, rights to write a document, and
rights to own a document. Write access to a document allows a user to create new versions
of the document and to determine that new version’s read policy. Document ownership
allows a user to determine future document versions’ write and ownership policies. Our
SEAC construction only considers read access and ignores restrictions to write and ownership
access, because these restrictions only apply to future document versions, but documents
are only written once and thus have only a single version. In dSEAC, however, documents
can be written multiple times, so restrictions to write access and ownership apply.

As stated before, dSEAC stores documents using two dictionaries Man and Dat, which
replace SEAC’s CT data structure. Particularly, Man and Dat jointly store documents, but
differ in what part of the document they store. The distinction is due to the access rights
necessary to write the respective part of the document. Man stores the part of documents
that requires ownership access to be written, particularly, the document’s ownership and
read policies. Dat stores the part of documents that requires write access to be written,
particularly , the documents’ read policy and contents. We call the label-value pairs stored
in Man and Dat management and data pairs, respectively.

Let (d,v,r,w,0,k) be a document from a document collection, with document identifier
d, version number v, read access policy r, write access policy w, ownership policy o and
keyword set/contents k. The management pair for this document stores ((d,v), (w,0)).
The corresponding data pair stores ((d,v), (r,k)). Both pairs use (d,v) as the label for
their respective dictionary entry.

Management and data pairs enforce the three types of access rights by means of ABE in
combination with signatures (with delayed verifiability). This combination of encryption
and signatures for enforcing (write) access restrictions is inspired by the Sharoes system
[SLO8]. Technically, delayed verifiability of signatures is not required here, but it is used
for consistency. dSEAC implements the pairs described above as follows.

A management pair for document (d,v,r, w, o, k) consists of label (d,v) and value

(vdp, ABE.Enc(o, dskowner), ABE.Enc(w, dskyriter) ,)

dvkowner, AVEwriter, CTtcreators Towners Ocreator
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Component vg, establishes relations between management and data pairs for the same
document; it is discussed further below. The above tuple contains two ABE ciphertexts,
one each under the document’s ownership and write policy. As messages, the ciphertexts
contain document owner’s signing key dskowner and document writer’s signing key dskyriter,
respectively. The corresponding signature verification keys dvkowner and dvkyqiter are
contained in the above tuple. The tuple also contains the certificate cricreator of the user
who has created the tuple. Finally, the tuple contains a signature oowner 0n (d,v) and
tuple components vg, to cricreator Under the document owner’s signing key dskowner, and a
signature oereator O (d,v) and tuple components vg, to Gowner under the tuple creator’s
signing key. The certificate crtcreator i & certificate on the verification key that corresponds
to that signing key.
A data pair for document (d,v,r, w, 0, k) consists of label (d,v) and value

(Umpv ABE.Enc(r, k), CTlcreator, Twriter Ucreator)-

Component vy, is discussed further below. The tuple contains an encryption of the
document’s content under the read access policy, the certificate crtcpeator Of the user who
has created the tuple, and two signatures oyriter and Tcreator. SignNature Oyriter 1S & signature
on (d,v) and tuple components vy, to crtcreator Under the document writer’s signing key
from the management pair that is relevant to this data pair. Signature ocreator is @ signature
on (d,v) and tuple components vy, to Oyriter under the signing key of the tuple’s creator.

As we can see, there is a connection between management and data pairs in the form
of the document writer’s signing key, which is contained in a management pair, but is used
to create a signature in a data pair. The oyriter Signature from the data pair can be used
to check that the creator of the tuple holds the necessary write access rights by verifying
Owriter Telative to the verification key from the management pair relevant to the data pair.
If the creator does not hold the necessary rights, she is unable to obtain the document
writer’s signing key from the management pair’s ABE ciphertext. As an alternative to
holding ABE keys that enable a creator to decrypt the ABE ciphertext in the management
pair, the creator of a new data pair could also be the original creator of the management
tuple, and thus remember the document writer’s singing key. Therefore, when checking
that a creator holds the necessary access rights, relying on signatures is insufficient. We
additionally check that the user is able to decrypt the ABE ciphertext that contains the
writer’s signing key by considering the attributes held by the creator. The set of attributes
held by the creator is contained in the creator’s certificate cricreator as contained in the
new data pair.

The above mechanism enforces write access restrictions to data pairs. With slight
adaptions, the mechanism can also be used to enforce write restrictions to management
pairs. For that, we replace the document writer’s key from the above description by the
document owner’s key from the management tuple. The ABE ciphertext on the owner’s
key together with the tuple creator’s certificate, as before, ensure that the creator of a
management tuple for a new document version holds the rights that allow her to create
the new management tuple.

It is important to note that the write and ownership access policies for document version
v are contained in the management tuple for document version v — 1. As a consequence,
there are no write restrictions for version 1 of documents. As another consequence of write
and ownership policies for version v being contained in the management pair for version
v — 1, a user holding a document’s ownership rights, but lacking the document’s write
rights, seems unable to create a new version of the document. Due to our mechanism for
access rights enforcement, the user can create a management tuple for the new version,
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because her access rights grant her access to the document owner’s signing key from the
previous version’s management tuple, but the lack of write access rights prevents the user
from creating a data tuple for the new document version: Write access, and thus, access to
the document writer’s signing key, is required, because the data pair contains a signature
under that signing key on, among other things, the document version number, which
changes when compared to the data pair of the current version. A similar problem occurs
when a user with write access, but without ownership access, tries to create a new version.

Tuple components vg, and vy, from management and data pairs, respectively, solve
this problem. They allow the creation of a new document version by only creating one
new pair — the one that the user is able to create — and adopting an existing pair for
the pair that the user is unable to create. Then, components vg4, and v,,, reference the
version number of the adopted pair. If a user holds both, ownership and write access
rights, she creates a management pair and a data pair for that document version, and
tuple components vg, and v, take the version number as their value. If a user is only
able to create either the management pair or the data pair for a new document version,
then the vy, or vy, component of the new pair is the same as the vg, or v,,, component
from the previous pair of the same type.

For example, consider our example document collection from Page 38. The collection
contains document dy; = (D:1,V:1,R:A(b), W:A(a), O:A(b), K:{wy,wz}) that later gets
updated to a new version d; 2 = (D:1,V:2, R:A(c), W:A(a), O:A(b), K:{ws, w3}) and there
are three users holding access rights {a}, {b}, and {b, ¢}, where access policy A(7) is satisfied
by access right i for i € {a,b,c}. As we can see, the contents of (entry K of) the document
tuple changes, so the user performing the update needs write access to the document. Only
one user holds these access rights and that user does not have ownership access to the
document, which also is not required for the update, because the update does not modify
the document’s write and ownership policies. The management and data pairs for the
document then look as follows. With ABE scheme ABE and signature scheme ¥, before the
update, we have management pair

1,ABE.Enc(A(b), dskowner ), ABE.Enc(A(a), dskwriter ),

(]-a 1)7 dvkowner, AVkwriter, CTinitial creators

Y .Sign(dskowner, - - - ), £.Sign(uskinitial creators - - - )

and data pair

(1 1) 17ABEEnC(A(b)) {wla w2}), Crtinitial creator;
e Z'Sign(dSkiwriter’ cee )a Z-Sign(utgk;ini‘cial creatory - - - )

stored at the server. After the update, a new data pair

(1.2) L,ABE.Enc(A(c), {w2,w3}), cTtyser {a}s
T\ X.Sign(dskriter, - - - )5 Z.Sign(uskyger {a}r--)

exists at the server.

Given these pairs, both the server and users are given two means to verify the pairs,
particularly, to verify the pairs’ signatures. The first means is given by the signatures under
document owners’ and writers’ keys. The second means is given by the access policies used
in the encryption of the document owners’ and writers’ keys together with user attributes
from the certificate contained in management and data pairs, and the pairs’ signatures that
are verified relative to the signature verification key from that certificate: The certificate’s
attributes must satisfy the respective policies and the creator’s signature must be valid
under the certificate’s verification key.
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Updates and time dependence. In dSEAC, the various SEAC instances share a com-
mon dictionary HT. Due to the short key requirement that we impose on dSEAC, dSEAC
user keys should be about as long as SEAC user keys. Thus, we cannot have separate user
keys for each of the SEAC instances. Therefore, we must reuse SEAC keys for multiple
SEAC instances, but this opens up the possibility for the server to take a search query it
has seen before and apply it to a new SEAC instance. The server having this option means
that this naive approach of key reuse is not forward private. We thus augment the inner
workings of HT to consider creation times to rule out the outlined application of an old
query to a new SEAC instance. Naturally, queries then must consider time as well. As a
consequence of queries considering time, a challenge from SEAC re-occurs, namely, that
the server may use time dependent bits from one search query with time-independent bits
(particularly, attributes) from another search query for the same keyword.

The solution to this challenge is essentially the same as in SEAC: we introduce time
dependent attributes that we include in access policies for ABE ciphertexts in array A. This
involves a new namespace Tme for these time dependent attributes. Just like with keyword
dependent attributes (namespace Wrd), users obtain all time dependent attributes during
operation UserJoin.?

For making HT entries time dependent, we adopt Bost’s technique, c.f. Section 5.5,
from the Yoyog scheme [Bos16]. Specifically, we derive labels and decryption keys for HT
entries via a trapdoor permutation. In Yogocg, the number of applications of the trapdoor
permutation, for each keyword, equals the number of documents the keyword occurs in.
For dSEAC, this means users need to know occurrence counters for each keyword, and
these counters need to be shared between users. The need to maintain a consistent view on
the counter values makes this approach infeasible in dSEAC, specifically because users and
the server may behave maliciously, and thus there is no reason for users to believe in the
correctness of received counter values. Therefore, in our adaption of Bost’s technique, the
number of applications of the trapdoor permutation is independent of occurrence counters,
and instead uses the discrete system time, that is the number of Update operations that
have been performed at and accepted by the server. Hence, the i-th SEAC instance uses i
applications of the trapdoor permutation.

The application of Bost’s technique and time dependent attributes to our example
document collection is shown in Figure 6.11. As can be seen from the figure, the labels and
decryption keys for HT entries are derived, via PRF fp, from keyword dependent PRF keys
and seeds for the trapdoor permutations. We derive the keyword dependent PRF keys and
the keyword dependent seed for the trapdoor function from the relevant keyword. For the
derivation process, we use three PRFs, denoted fx, fr, and fg in the figure, with keys kx,
kr, and kg, respectively. Users get these PRF keys, as well as the secret key sk for the
trapdoor permutation 77 as part of their secret key. The public key pk, for the trapdoor
permutation is part of dSEAC’s public parameters pp.

Verifiability, user states, and last completed operations. For the dSEAC scheme
to be verifiable, we rely on techniques from the literature on authenticated data structures
and combine these techniques with signatures. Particularly, we rely on AADs (Definition 24),
signatures with delayed verifiability (Definition 22), and the concept of “last completed

2These may be a lot of attributes, but satisfy the short key requirement in that users get one attribute
per SEAC instance rather than one attribute per keyword per SEAC instance. Using appropriate techniques,
the number of time dependent attributes may be reduced to a number logarithmic in the number of SEAC
instances — by bit decomposition of the bit string representing time. Then, ABE’s key delegation and
collusion resistance among delegated keys prevent the server from combining bits from multiple search
queries.
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operation” (adapted from Cachin and Geisler [CG09]) for users to share a consistent view
on the system.

dSEAC inherits the partial pre-computed search results that SEAC stores in D and,
indirectly, A lists. We apply signatures with delayed verifiability to these pre-computed
search results. The signatures ensure verifiability of pre-computed results, so users can
verify the integrity of partial search results presented to them. Furthermore, we use AADs
to enable users to check that they have received all partial pre-computed search results
relevant to their search queries. The dictionary digests necessary for verifying that all
pre-computed search results have been received are stored as part of users’ states. User
states represent the views users have on the system, and these views must be synchronized
between users. The last completed operation serves these synchronization purposes.

We now discuss the use and impact of signatures with delayed verifiability, AADs, and
the last completed operation. First, we introduce the concept of list authenticators. A
list authenticator is a signature with delayed verifiability on the linked lists that represent
pre-computed search results, namely, A and D lists. However, we only sign the lists’ contents,
while we ignore administrative data used to maintain the list structure. A list authenticator
on a list is stored alongside the pointer to the respective list. The list authenticator’s open
value is stored as part of the encrypted pointer to the respective list.

As a result, a list authenticator on a D list is a signature with delayed verifiability on
the sequence of pointers (to documents) stored in the D list. The authenticator is stored in
an A list node. Alongside the list authenticator on the D list, we explicitly store the read
access policy shared by the documents in that D list.

Thus, each A list node stores a pointer to its successor node, a list authenticator on a D
list, the access policy shared by the documents the D list points to, and an ABE ciphertext
of a pointer to that D list. We compute the list authenticator on an A list as a signature
with delayed verifiability on the sequence of pairs of list authenticators and access policies
stored in that A list. The list authenticators on A lists are stored in HT entries pointing to
the respective lists. An example of this arrangement can be seen in Figure 6.12.

The use of list authenticators is a first step towards verifiability of dSEAC. Particularly,
during search, the server not only includes documents in search results, but also all list
authenticators on A and D lists, policies from accessed A lists, and open values for list
authenticators on accessed A and D lists. Then, using the list authenticators, the user who
receives the result verifies the results as follows.

1. List authenticators on A list are used to check that all pairs of list authenticators and
access policies from that A list are included in the search result (assuming the creator
of the list was honest; if the creator did not behave honestly, the server engages
in conflict resolution, see below). For this test, verification algorithm VSig of the
signature scheme with delayed verifiability is applied to the list authenticator and
the reported policy-authenticator pairs.

2. The reported policies from A list nodes are used to determine what existing D lists are
accessible using the user’s access rights. All such D lists should have been accessed and
reported in the presented result, and thus, the list authenticators on the respective D
lists should be verifiable in the next step.

3. List authenticators on accessible D lists are used to check that the server has accessed
the respective lists and has included all document pointers from the respective D
lists in the search result. For this test, for each of the accessible lists, verification
algorithm VSig of the signature scheme with delayed verifiability is applied to the
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Figure 6.12: dSEAC’s post-update index structure for our example document collection

from Page 38; in extension to the time dependent mechanics introduced in Figure 6.11,
this figure shows changes to the structure due to list authenticators; the data marked gray

is authenticated by the list authenticators the respective arrows point to
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authenticator on the respective list and the reported document pointers from that
list.

4. Verification algorithm VOrig of the signature scheme with delayed verifiability is
applied to the list authenticators on D lists not accessible using the user’s access
rights.

For all of the above signature verifications, the same signature verification key is used.

All in all, list authenticators enable verification of search results on a per-SEAC-instance
basis. We build upon this preliminary result by specifically implementing the dictionary HT
by an AAD. Using Bost’s technique, necessitated by time dependence, during search, the
server essentially computes search queries for each individual SEAC instance, which results
in a Lookup query to HT for each SEAC instance. The answers to these queries contain list
authenticators on A lists. By including proofs for the results of the Lookup operations in
the search result, users can use the proofs and list authenticators on A lists to determine
that the server has provided correct answers for each SEAC instance considered by the
server. If users also knows how many SEAC instances the server needs to consider, they
can also check that the server has considered all SEAC instances.

Before we handle this condition of users knowing the number of SEAC instances, we
need to mention that the dictionaries Man and Dat used for enforcing access restrictions
to documents are also implemented as AADs. Then, if all users know the digests of these
dictionaries, documents can never be deleted or overridden. This condition, users knowing
digests of dictionaries Man and Dat, can be addressed by the same mechanism as the
requirement of users knowing the number of SEAC instances in the system.

Both issues are solved using the concept of last completed operations. A last completed
operation is a digest of the server’s state after completion of the most recent operation that
has modified the server state. The server state is modified by Init, Update, and Resolve
operations. The server stores the post-operation digest in its 1co variable as part of its state
and registers 1co with the update log UL by appending 1co to the AAD that implements
UL. Appending 1co changes UL’s digest, and the updated digest and append-only proof are
stored in variable dul.

Whenever a user interacts with the server, the user receives a copy of 1co and dul. She
then uses her user state, 1co, dul, and additional data provided by the server to check that
the server is in a state that can be reached form the state the server was in the last time
the user performed such a check. If the check is successful, the user adopts the received
lco and dul tuples as her new user state. As a consequence, the current 1co and dul are
used for the next check.

On a technical level, 1co is a 5-tuple

(t, dig, ch, tvk, o),

where t is the current discrete time stamp, counting the total number of Init, Update,
and Resolve operations that have been performed so far. Component dig = (digest(HT),
digest(Man), digest(Dat), digest(UL)) consists of dictionary digests for the four AADs HT, Man,
Dat, and UL, respectively. Component o of the 1co tuple is a signature on components
t to tvk; the respective signature verification key is provided as part of tvk. Depending
on who has performed the operation, tvk is either the judge’s signature verification key
or the certificate of the user who has performed the operation. Tuple component ch is a
summary of the changes made to the server state during the operation that resulted in
lco being the current server state’s digest; this summary is left empty for Init operations,
it is a user’s signature (with delayed verifiability) on the SEAC instance computed as part
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of the operation for Update operations (in this case the open value is provided as part of
the signature), and for Resolve operations, ch is the judge’s signature from a notification
that resulted from the respective Resolve operation (see below for notifications and Resolve
operations). While component ch is largely irrelevant to users, it plays a role in conflict
resolution.

Given the structure of 1co, we can determine what checks users perform to conclude
that the server’s claimed state (in the form of a new lco and dul) can be reached from
a previously verified state (in the form of the old 1lco stored as the user’s state). The
following conditions must be met for a user to adopt 1co as her new state.

1. The signature o from lco must be valid.
2. lco must have been registered with UL (relative to UL’s digest from dul)

3. UL’s digest from dul must be an immediate successor of UL’s digest from 1co (according
to the append-only proof from dul).

4. The old user state must contain the only last completed operation UL associates with
the state’s time stamp (relative to 1co’s UL digest).

5. Digests of AADs HT, Man and Dat from lco must be successors of the corresponding
digests from the old user state.

These conditions are dropped or tweaked if the user holds no previous state due to having
been enrolled only recently, if the server has not been initialized yet, or if 1co originates
from server initialization.

Intuitively, dul tuples represent the difference between pre-operation and post-operation
UL digests. To that end, the dul tuple that corresponds to an 1lco tuple is a 3-tuple. It
contains the digest of dictionary UL after 1lco has been added, an append-only proof
linking the UL digests from lco and dul, and a proof that the digest from dul represents a
dictionary that contains lco.

Relying on the 1co tuple, users, during search, know how many SEAC instances the
server stores at most. Thus, users know for how many instances the server has to report
search results. Particularly, for each SEAC instance, the server has to report the result for
one Lookup query on dictionary HT. This then allows users to determine that the server
has considered all SEAC instance when computing the result. Since the answers to Lookup
queries also contain list authenticators on A lists for each considered SEAC instance, the
per-SEAC-instance search results are indirectly authenticated by the HT digest from lco.

Notifications and conflict resolution. The goal of conflict resolution is to enable the
server to blame a malicious user’s actions on that user. For example, a malicious user
may submit data as part of an Update operation that is flawed, but cannot be detected
as being flawed during the operation. Examples of flaws include NIL pointers, pointers
to non-existing addresses, and wrong list decryption keys in HT entries or inside the ABE
ciphertexts of A list nodes, as well as list authenticators that can be origin verified, but not
signature verified relative to the data the authenticators are supposed to authenticate. In
all of these examples, the flaws in the data are hidden by layers of encryption.

As a result, the server can detect the flaws only when the data gets decrypted during
Search operations. If the server finds data to be flawed, it engages in conflict resolution
with the judge. During conflict resolution, the server convinces the judge that the flawed
data originates from a successful Update operation. For that, the server sends the SEAC
instance that contains the flawed data and the search query that has lead to the detection
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of the flaw to the judge. Alongside, the server sends proofs that the presented SEAC
instance occurs in the history of Update operations that has lead to the current server state.
This includes sending the current 1lco and dul tuples to the judge. The judge verifies
the server’s claims against her own state and then verifies the proofs and re-performs the
Search operation that resulted in the flaw being detected. The judge determines the SEAC
instance to be flawed if the re-performed operation triggers conflict resolution. If the judge
finds the SEAC instance to be flawed, it issues a notification, publicly certifying the flawed
nature of the instance.

For notifications to serve their purpose, they take the following form. A notification is
a tuple

(1C07 taffected O'),

where 1lco is the 1co tuple the server has sent to the judge, taffecteq iS the time stamp of
the investigated SEAC instance, and o is a signature on tuple components 1co and t,fected
under the judges signing key.

After the judge has concluded her investigation, she advances time by essentially
performing an Update with an empty document collection, registering the notification with
dictionaries HT and UL in the process. This process also updates the judge’s state.

When users obtain a notification as part of a search result, they need to verify the
notification, because users verify search results, and the notification replaces a search result,
so it gets treated identically. For verifying notifications, users verify the notifications’
signature o relative to the judges verification key and verify via AAD.VAppend that the
notification’s 1co occurs in the history of updates that lead to the current user state; the
server provides the necessary proofs.

We stress that neither the server nor the judge attempt to fix a flawed SEAC instance.
After all, the flawed instance may originate from a malicious user. Instead of attempting
to fix the instance, the instance is effectively discarded. However, the instance cannot be
erased from history, because that would require deleting an entry from UL, which is not
possible in an AAD. So instead, the judge issues a notification, essentially ordering users to
ignore the flawed SEAC instance.

Additional extensions. For our security proofs, we need to make one additional change
to the internal structure of HT entries. Specifically, we include an additional layer of
encryption in HT entries’ values. Above, HT entries are shown to take the form

(ekw,ta (Ukw,t7 kkw,t S¥ <dkw,t;pkw,t>))a

where (},,; is the label of the HT entry for keyword kw and time step ¢, o, is the list
authenticator of the A list the HT entry points to, dj,, is the corresponding open value,
Dkw,t is the pointer to the A list, and kj, ¢ is an encryption key that depends on kw and t,
and is used to mask the open value and the pointer. Our additional layer of encryption
affects the pointer and the open value, so we use symmetric encryption with a fresh key
for encrypting the open value and the pointer, while masking the fresh key by ki, ;. As a
result, HT entries take the form

(gkw,t, (O'kw,ta kkw,t @ k,’ Sym-EnC(k‘/, <dkw,tapkw,t>)))7

where k' is freshly sampled for every HT entry.

This extension is required in our proof of dSEAC’s data confidentiality to deal with
adversaries causing forks in the system. Particularly, tuple component ky,, ; deterministically
depends on kw and ¢ and thus may occur on two forks. Our extension then ensures that
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the pointer and list authenticator pairs on the forks are encrypted under independent
symmetric keys, rather than identical symmetric keys.

6.3.2 dSEAC, Formally

Implementing the ideas laid out above, we construct the dSEAC scheme. Naturally, dSEAC’s
algorithms and protocols resemble SEAC’s, so in our description of the algorithms and
protocols we focus on computations not present in SEAC. Note that our presentation
features a helper operation LCO-Update that updates users’ states to the server’s 1co and
dul as described before. Our presentation also features a complementary helper operation
LCO-Registration for registering a new lco tuple with the server’s update log UL. The
helper operations are used as sub-routines in various other operation.

Construction 36. The dSEAC scheme consists of algorithms and protocols (Setup,
UserJoin, Init, Update, Search, Resolve, Version) shown in Figures 6.13-6.18.

We now briefly discuss dSEAC’s operations. The Setup operation is executed by a
trusted party and computes PRF keys, keys to a trapdoor permutation, sets up ABE and
three AADs, parameters for commitment scheme [, and computes signing keys for the key
issuer and the judge. As signature scheme ¥, we use a signature scheme with delayed
verifiability (following the hash—then—commit approach, c.f. Figure 3.20) and externally
supplied commitment parameters, meaning that the scheme’s KeyGen algorithm takes the
public parameters of a commitment scheme as input, and these parameters become part of
the verification key output by KeyGen, c.f. Section 3.4.

During the UserJoin operation, the user computes her singing key (for signature scheme
with delayed verifiability ¥) and requests her (extended) SEAC key from the key issuer.
The key issuer provides the user with the requested key, which contains the requested
attributes, attributes for operations and keywords (as in SEAC), and attributes for all time
stamps that will ever be used, and publishes a certificate on the user’s requested attributes
and signature verification key. Details on algorithms and protocols Setup, UserJoin are
shown in Figure 6.13.

The LCO-Update operation is executed as a sub-routine in protocols Update, Search
and Resolve, and is executed between the user or judge, and the server. The operation
outputs 0 to the user or judge if the any of the checks fail outputs 1 to the user if the
server reports a concurrent Update or Resolve operation, and otherwise outputs (1co,dul)
to the user or judge. Details on protocol LCO-Update are shown in Figure 6.14.

Operation LCO-Registration is a helper protocol executed by the server, and the user or
judge during Init, Update, and Resolve operations. The operation registers the most recent
lco tuple with the update log UL, computes the dul value for the registration process, and
sends dul to the user or judge.

During operation Init, the server initializes four empty AADs and sends the corresponding
dictionary digests to the user, who then computes the first last completed operation (1co)
and registers it with the server. The user adopts 1co and the corresponding dul as her state.
The server initializes additional data structures, and stores the dictionaries, additional
data structures and lco as its state. Details on protocols LCO-Registration and Init are
shown in Figure 6.15.

For operation Update, the user first updates her user state to the current 1co and dul,
and then determines whether she is able to perform the update relative to her rights and
the write access restrictions imposed by previous versions of the document she wants to
write. If the user is able to perform the update, she computes the necessary management
and data tuples (as a replacement for SEAC’s CT), and computes the index structures HT,
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Setup(1*)

kp + PRF.KeyGen(1%)
kg + PRF.KeyGen(1*)
k1 < PRF.KeyGen(1*)
kg + PRF.KeyGen(1*)
(skr,pky) < TDP.KeyGen(1*)
(pp’,msk’) < ABE.Setup(1*)

cpp + T Setup(1*)

(isk ivk) + L. KeyGen(1*,cpp)
(jsk,juk) < X.KeyGen(1*,cpp)
(PPrrsvkar) < AAD.Setup(14,5(\))
(ppMam'UkMan) %AAD-SEtUP(lAa (/\))
(PPpat,Vkpas ) < AAD.Setup(1*,3()\))
(pPur,vko) < AAD.Setup(1*,5()))
msk < (msk’ isk kp.kr kr,ks,skT)

pp < (pp',cpp,ivk juk,ppur, VEHT, PPyan Vkuan DPpat Uk Dat ,PPyL, VR UL)

jsk < (jsk,kr,skT)
Stjudge +— 1L
output (pp,msk,jsk,stiudge)

UserJoin(pp,U |pp,msk)

U:

(usk,uvk) < ¥.KeyGen(1*,cpp)

U: o+« X.Sign(usk,(U,uvk))
U: send U,uvk,o to key issuer

KI: if X.VSig(uvk,(U,uvk),c)#1: abort protocol
KI: uak < ABE.KeyGen(msk',{ “Usr:u” },cpU{ “Op:read”, “Op:search” }U{ “Wrd:PRF.E\

« )
{ Tme:t }tetimestamps

KI: o< X.Sign(isk,(uvk,U))

KI: crt< (uvk,Uo’)

KI: usk’ < (uak,kp,kx kr.ks,skr,)
KI: publish crt

KI: send (usk,crt) to user

U:

usk < (usk’ uck,crt)

U: styger+ L
U: output (usk,styser) to user

Figure 6.13: Algorithm Setup and protocol UserJoin of the dSEAC scheme
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LCO-Update(pp,stuser|pp,stserver)
U: send “LCO-Update” to server

S: if stgerver =-L: send “not initialized” to user and abort protocol

S: if an Update or Resolve operation is being performed: send “concurrent operation” to
user and abort protocol

S: send (1co,dul) to user

U: if received “not initialized” and styger 7% L: output 0 to user and abort protocol

U: if received “not initialized” or “concurrent operation:” output 1 to user and abort
protocol

U: if 1co=styger-1co and dul = st ger.dul:
e send “user initialized” to server
e output (1co,dul) to user
e abort protocol

U: if X.VSig(1co.tvk,(1co.t,1co.dig,1co.ch,1lco.tvk),1co.0) # 1 or AAD.VAppend(vkyr,
1co.digest(UL),dul.digest(UL),dul.mappend) 7 1 or AAD.Version(dul.digest(UL)) #
AAD .Version(1co.dig.digest(UL))+1%#1co.t+1 or AAD.VResult(vkyr,dul.digest(U L),
1co.t,{1co}, M ookup) # 1 OF V1co#{1co} : output 0 to user and abort protocol

U: if 1co.t=0:
e if1co.ch##() or AAD.Version(1co.dig.digest(HT))#0 or AAD.Version(1co.dig.digest(M:

0 or AAD.Version(1co.dig.digest(Dat))#0 or AAD.Version(1co.dig.digest(UL)) #0:
output 0 to user and abort protocol

U: if styger=_L:
e send “user initialized” to server
e output (1co,dul) to user
e abort protocol

U: if 1co.t < Styser-1co.t: output 0 to user and abort protocol

U: if 1co.ch#0) and ¥.VOrig(lco.tvk,1co.ch)#1: output 0 to user and abort protocol

U: send styger.1co.t to server

S: if received “user initialized:” output L to server and abort protocol

S: determine dictionaries HT' Man’,Dat’ for time stamp styser.1co.t from UL

S: determine dictionaries UL/ ,UL* for time stamps styser-1co.t+1 (as recorded by digest

in dul tuple for styser.1co) and Stgerver-1co.t from UL

(vg,m¢) <= AAD.Lookup(ppy,,UL* t)

Tt < AAD.PAppend(ppyr HT HT)

Tan <— AAD.PAppend(ppyan,Man’ Man)

Tpat, — AAD.PAppend(ppp,. ,Dat’ Dat)

oL < AAD.PAppend(ppy; , UL ,UL*)

send (7, T, TMan,Tat,TuL) tO user

U: if AAD.VResult(vkyr,1co.dig.digest(UL),t,{ stuser-1co},m)#1 or AAD.VAppend(vkagr,
Stuser-dig.digest(HT'),1co.dig.digest(HT),myr) # 1 or AAD.VAppend(vkyan,stuser- dig.dig
1co.dig.digest(Man), myan) # 1 or AAD.VAppend(vkpat, Stuser-dig.digest(Dat),1co.dig,
digest(Dat),mpat ) # 1 or AAD.VAppend(vkyr, Styser-dul.digest(UL),1co.dig.digest(UL),
muL) 7 1: output 0 to user and abort protocol

U: output (1co,dul) to user

R R R R,

Figure 6.14: Helper operation LCO-Update of the SEAC scheme; the helper operation is
used as part of protocols Update, Search, and Resolve
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LCO-Registration(pp,stserver,1c0|pp,Styser,1€0)

UL+ UL

(UL,digest(UL)) <— AAD.Append(ppy,UL,{ (1co.t,1co)})

TAppend < AAD-PAppend(ppUL 7UL/7UL)

(ULookupaﬂ-Lookup) — AAD.LOOkUp(ppUL ,UL,,lCO.t)

dul « (digest(UL), T ookup)

send dul to user

output (Ntf,1co,dul HT,ManDat,UL) to server

U: if VAppend(vkyr,1co.digest(UL),dul.digest(UL),dul.mappend) =0 or VResult(vkyr, ,dul.di
0: output 0 to user and abort protocol

U: output (1co,dul) to user

LLRLLD®

Init(pp,usk,stuser|pp;stserver)
U: if styser# L abort protocol

U: send “initialize” to server

S: if steerver 7 L1 send “already initialized” to user and abort protocol

S: initialize empty AADs HT, Man, and Dat with digests digest(HT)y, digest(Man), digest(Dat
and digest(UL), respectively, from AAD parameters and verification keys from pp

S: send dig=(digest(HT),digest(Man)o,digest(Dat)o,digest(UL)g) to user

U: if received message “already initialized:” abort protocol

U: o+« X.Sign(uck,(0,dig,0,crt))

U

U

: 1co<(0,dig,D,crt,o)
: send lco to server

S: if 1co is malformed or X.VSig(crt.uvk,(0,dig,0,crt),1co.c)#1 or L.VSig(ivk,(crt.uvk,
crt.U),crt.o)#1: abort protocol

S: create empty data structure for storing Ntf

S: create empty data structures ASet and DSet for storing SEAC instances’ A and D
MEemory arrays

S&U: (s|u) < LCO-Registration(pp,stserver;1c0|pp,stuser,1c0)

S: output Stgerver ¢S to server

U: if u=0: raise alarm and abort protocol

U: output styser=u to user

Figure 6.15: Helper operation LCO-Registration and protocol Init of the dSEAC scheme; the
helper operation is used as part of protocols Init, Update, and Resolve
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A, and D as in SEAC, including our extensions to HT entries and A list nodes, particularly,
list authenticators and time dependence. The user sends the data to the server, which
appends the dictionary entries to the respective AADs, resulting in new dictionary digests,
which are sent back to the user. The user uses the new digests to compute a new 1co,
registers 1co with the server, and adopts 1co and the corresponding dul as her new state.
Details on protocol Update can be found in Figure 6.16.

During operation Search, the user first updates her user state to the current 1co and
dul, and then computes a master query, which is sent to the server. From the master
query, the server derives search queries for the individual SEAC instances, to which the
queries are applied. The search result consists of the instance-specific results, including
verification data like membership proofs for HT entries, and list authenticators and their
open values. The user uses verification data to verify the result’s completeness, and finally
outputs document plaintexts that correspond to data pairs from the search result. Details
on protocol Search can be found in Figure 6.17.

For protocol Resolve, the judge first updates her state to the current 1co and dul. Then
the server sends data to the judge, such that the judge can determine that a SEAC instance
is indeed flawed, that the instance occurs in a history of updates that lead to 1co, and that
the flaw was detected when serving a recent search query. If the SEAC instance is found to
be flawed, the judge computes a notification on the instance, registers the notification with
dictionary HT, creates a new lco for registering the notification with the update log UL,
registers 1co with the server, and adopts 1co and the corresponding dul as her new state.

Algorithm Version outputs a vector that consists of the current time stamp and the
version numbers of the four dictionary digests. Details on operations Resolve and Version
can be found in Figure 6.18.

Correctness. The dSEAC scheme is correct in that its Search operation either outputs
1 (Condition 1) or numerous document plaintexts that satisfy Conditions 2-4 of the result
correctness definition for searchable encryption schemes; this property is inherited from
SEAC’s search results. However, dSEAC can exclude documents from individual SEAC
instances from the search result by including a notification on the respective SEAC instance
in the search result instead (Condition 5); the judge’s signature in notifications makes sure
notifications can only result from executions of protocol Resolve.

State correctness also holds for dSEAC. Condition 1 holds, because time stamps in 1co
increase with every new lco tuple created, and dictionary digest’s version numbers cannot
decrease. Our Search operation ensures that a user performing search, after search, holds
the 1co and dul tuples as her user state that resulted from the most recently performed
Update operation, and that 1co and dul tuples are the state of the user that performed
the Update operation, so Condition 2 of the state correctness definition also holds.

Efficiency. Due to dSEAC’s reliance on SEAC, dSEAC inherits SEAC’s sensitivity towards
the inner structure of document collections. As in SEAC, the size of memory array A,
for each internal SEAC instance, depends on the number of keyword—read policy pairs.
Similarly, the number of ABE encryptions during generation of A depends on the number
of keyword-read policy pairs. In contrast to SEAC, the number of read policies associated
with a searched keyword not only influences the number of ABE decryptions, but, due to
our verification mechanism for search results, also the size of search results. Particularly,
even an empty search result can have arbitrary size, for example, if the searched keyword
is associated with many policies, but the user on whose behalf search is performed does
not hold access rights that satisfy any of the policies.
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Update(pp,usk,stuser, DC|pp,stserver)

U&S: engage in protocol (o| L)< LCO-Update(pp,stuser|PP,Stserver)
U: if 0=0: raise alarm and abort protocol

U: if o=1: abort protocol

U: styser<—0.1co // 0=(1co,dul)

U

U

S:

: T+ {d:(dwv,rw,0,k)€ DC} // compute management and data pairs
: send T to server
determine highest version numbers for data and management pairs for document

identifiers from T°

S: send version numbers and proofs (from AAD.Lookup) of maximality to user; this
includes data and management pairs

U: verify that version numbers for all document identifiers in 7" have been provided, and
that the version numbers are maximal

U: determine what management and data pairs need to be and can be created given
user’s access rights

U: if a pair needs to be created, but the user is unable to: abort protocol

U: let MP be the set of necessary, newly computed management pairs

U: let DP be the set of necessary, newly computed data pairs

U: compute HT entries (as H) and memory arrays A and D as in SEAC’s Update operation,
but make entries in HT and A time dependent, lists in A and D authenticated, and add
the additional layer of encryption to HT entries

U: I<+(HAD,(MP,DP))

U: o7+ X.Sign(usk,l)

U: send [ to server

U: verify that dictionary entries in I share the same origin (X.VOrig), and that the user
hold the access rights necessary to create new document version; if verification fails:
send “invalid operation” to user and abort protocol

S: AAD.Append dictionary entries from I to respective dictionaries

S: send new dictionary digests dig and append-only proofs to user

U: verify received proofs for HT,Man,Dat and that UL’s digest in dig matches UL’s digest
in dul (from LCO-Update); if verification fails: raise alarm and abort protocol

U: o* <« ¥.Sign(usk,{styser-t+1,dig,o7,crt))

U: lco< (Stuser-t+1,dig,or,crt,o™)

U: send 1co to server

S: verify lco, by verifying signatures and checking that data from lco matches its
expected value; if verification fails: send “invalid operation” to user, roll back changes
made to dictionaries, and abort protocol

S: add A and D from I to ASet and DSet, respectively

S&U: (s|u) < LCO-Registration(pp,stserversLc0|pp,stuser,,1€O)

S: output Stgerver =5 to user

U: if u=0: raise alarm and abort protocol

U: output styser=u to user

Figure 6.16: Protocol Update of the dSEAC scheme
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Search(pp, usk,stuser, kw|pp,stserver )
U&S: engage in protocol (o| L) <—LCO-Update(pp,stuser|pp;Stserver)

: if 0=0: raise alarm and abort protocol

if o=1: output L and abort protocol

Stuser <0 // 0=(lco,dul)

ldk <+ PRF.Eval(kr,kw)

kdk < PRF.Eval(kg ,kw)

seed <— PRF .Eval(kg,kw)

for i=1 to Styser-t: seed < TDP.Inv(skp,seed)

: let uSkpestricted D€ the restriction of usk to attributes from namespace Usr, and
addltlonally the attributes “Op:search”, “Wrd:PRF.Eval(kp,kw)”, and “Tme: st ger-t”
U: og+ Z.Slgn(ugk‘,(ldk:,k:dk:,seed,u,crt,stuser>)

U: Q< (ldk,kdk,seed,u,crt,oq)

U: send @ to server

S: if ¥ Verify(crt.uvk,(ldk,kdk,seed u,crt,1co),00)#1: send “malformed query” to user
and abort protocol

S: rsit< ()

S: for i=1co.t down to 1:

e ¢« (PRF.Eval(ldk,seed),PRF.Eval(kdk,seed u)

e perform search as in SEAC with query ¢ and result X, but include membership
proofs, list authenticators and authenticated data in X; if a notification for the SEAC
instance from time step ¢ exists in Ntf, let X be that notification; if an error occurs
during search: send “malformed data detected” to user, abort the protocol, and
engage in conflict resolution

o rslt+— X

o seed < TDP.Eval(pkp,seed)

S: send rsit to user

U: if received “malformed query” or “malformed data detected:” output L and abort
protocol

U: recompute the server’s (internal) SEAC queries and check that rslt contains (non-
Jmembership proofs for all of these queries, or a notification for the query’s time steps

U: verify all notifications

U: verify list authenticators of A lists from all membership proofs (X.VSig)

U: verify list authenticators of D list from all accessed A lists (X.VSig for accessed D lists,

Y_.VOrig for D lists not accessed)

U: verify that all D lists for access polices satisfied by the user’s attributes are present in rsit

U: verify all management and data pairs from rslt and that their creators were allowed
to create them

U: if any of the above checks fails: raise alarm and abort protocol

U: decrypt all document ciphertexts from data pairs from rsit

U: output the set of resulting plaintexts and styger to user

Figure 6.17: Protocol Search of the dSEAC scheme
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Resolve(pp ,Stserver |pp Juk, Stjudge)

S: send “conflict resolution” to judge

J&S: (0| L)<« LCO-Update(pp,stjudge|PPsStserver)

: let Q=(ldk,kdk,seed u,crt,oq) be the user’s query that led to error detection
S: let ¢’ be the time stamp of the flawed SEAC instance

S: let Iy be the flawed SEAC instance
S
S

wn

: < (AAD.Lookup(ppy.,UL,t"),AAD.Lookup(ppy,,UL,1co.t))

: determine dictionaries HT', Man’, Dat’, UL’ for time stamp ¢’ and dictionary HT* for
time stamp 1lco.t

send (r,Q,t', I,UL[t'], (AAD.PAppend(ppyr, HT',HT), AAD.PAppend(ppya,, Man', Man),
AAD.PAppend(ppp,:,Dat,Dat)))

verify ¢’ is the time stamp occurring in UL[t]

verify received AAD proofs relative to dictionary digests from UL[¢']

verify UL[t| and UL[t'].ch is a signature on Iy

verify o is a signature on () and 1co

if any of the above checks fails: raise alarm and abort protocol

compute the SEAC search query ¢ for time step ¢’

perform search as in SEAC on instance I} with query g; if no error occurs during search:
raise alarm and abort protocol

Ontf = (J;Ltf,dntf) +Y..Sign(jsk,(1co,t’))

ntf < (1co,t',opy)
H<—{(PRF.EvaI(PRF.Eval(kL,kw),TDP.Invlw'tH(PRF.Eval(kg,kw))),a;tf)}kwmwwds
send H to server

AAD.Append dictionary entries from H to HT

send new dictionary digest for HT and corresponding append-only proof to judge

if verification of append-only proof fails: raise alarm and abort protocol

replace UL’s digest in 1co by dul.digest(UL)

replace HT’s digest in 1co by the received HT digest

o< X.Sign(jsk,(1co.t41,1co.dig,ons ,juk))

1co’ +—(1co.t+1,1co.dig,opny,jvk,0)

send (ntf,1co’) to server

publish nif

: add ntf to Ntf

S&J: (s|u) < LCO-Registration(pp,stserver,1¢0’|pp,stiudge,1c0”)

S: output Steerver =5 to server

J: if u=0: raise alarm and abort protocol

J: output stjgee =u to judge

n

Version(pp,stuser)

e if styser=_L: output (—1,-1,—1,—1,—1)

e otherwise: output (Styser-1co.t,AAD.Version(styser-1co.dig.digest(HT)),AAD.Version(stys
AAD .Version(styser-1co.dig.digest(Dat)),AAD.Version(styser.1co.dig.digest(UL)))

Figure 6.18: Protocol Resolve and algorithm Version of the dSEAC scheme
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Leakage. Due to dSEAC allowing users to update the searchable document collection
and the possibility of many updates, we have to consider that the adversary may attempt
to fork the system. The system is forked if two users perform updates on the same system
state. dSEAC is fork consistent, see below, but fork consistency prevents forks from being
merged, not from being created. Therefore, we have to consider forks when analyzing
dSEAC’s leakage. Particularly, even though honest users only operate on a single fork, their
actions may impact all forks. For example, a search query may be applied to all forks,
which is possible because HT labels and keys are deterministically computed from keywords.
Therefore, the following leakage functions occasionally mention the fork that the leakage
occurs on.

Apart from forks, the dSEAC scheme’s leakage is comparable to the leakage of the
SEAC scheme, though distributed over time for the various SEAC instances used internally
by dSEAC. Note however, that in dSEAC some of the leaked data takes a different form
than in SEAC. For example, the user certificate in dSEAC contains a signature verification
key and an attribute set, rather than a meaningless random number. As a result, whenever
a user certificate crt occurs in leakage, we can infer the corresponding attribute set. As
in SEAC, keywords are associated with identifiers which can be inferred from keywords,
but keywords cannot be inferred from keyword identifiers; this allows us to distinguish
keywords that occur in the same documents.

Also as in SEAC, for our analysis of dSEAC’s leakage, we assume PRF to be a pseudo-
random function, Sym to be an eavesdropping secure encryption scheme, and ABE to be a
CPA-secure ABE scheme. We additionally assume TDP to be a trapdoor permutation.

The leakage incurred by enrolling and corrupting users remains conceptually the same
as in SEAC, but in the case of corruption reveals details of all SEAC instances, rather than
a single one. As a result, the leakage from enrolling an honest user is still only the user’s
certificate (now including the user’s attributes) as published by the key issuer during the
UserJoin operation. Therefore, Lionestioin(U) = (crt,U)

When a dishonest user is enrolled, the leakage consists of the new user’s certificate
crt, including the user’s attribute set U, as well as (plaintext) documents and their
identifiers, version numbers, access policies, and the system forks these documents appear
on. Document plaintexts are included in the leakage, because these documents are accessible
due to the new user’s access rights. We denote the document collection from the Update
operation at time ¢ on fork f as DCy; and denote the set of documents from DCy,
accessible to the newly enrolled user as

DC#4(U) = {(f,t,d, v, Aread, k) : (d, v, Aread, w,0,k) € DCry AU satisfies Aread }-

The leakage also contains all keyword—policy pairs present in the searchable document
collection DC'y; for all system forks and time steps prior to enrollment. This information
can be extracted from the various memory arrays A of SEAC instances, which are accessible
from the dictionary HT using the new user’s key and the user’s (implicitly assumed)
knowledge of the set words of possible keywords. We denote this part of the leakage as

KP(DCyy) = {(f.t, kw, Aread) : (d,v, Avead, w,0,k) € DCyy A kw € k}.
All in all,
ECorruthoin() = (C?"t, U7 v(fa t) : DCf,t(U)ﬁv(fa t) : KP(DCf,t>}

As in SEAC, when corrupting a once honest user identified by certificate crt, the leakage
is as if that user were enrolled as a corrupt user, so

Lcorruption(crt) = (crt, UN(f,t) : DCy4(U),Y(f,t) : KP(DCy4)}.
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In contrast to SEAC, server initialization in dSEAC depends on the secret key of the
user that triggered the initialization operation. Particularly, this dependence comes in the
form of the user certificate crt contained in the 1lco tuple created during the operation.
The certificate also contains the attribute set U of the user identified by crt Therefore,
Linit(crt) = (ert,U).

As a consequence of users being able to perform updates, for update leakage, we need to
distinguish whether or not a corrupt user exists in the system at the time of the respective
Update operation, and what attributes the corrupt user holds. The existence of a corrupt
user is denoted as 3 corrupt U below, and means that one of the corrupt users holds
attribute set U. We also need to consider whether an honest user’s Update for the same
time step, but different system fork, has occurred, because then HT labels and keys occur
on both forks, specifically for keywords shared by the respective document collections.

Let DC\ew denote the new document collection. In dSEAC, every update operation
leaks the certificate crt and attribute set U of the user who performs the operation. The
operation also leaks the number of new HT entries, sizes of memory arrays A and D associated
with the new SEAC instance. These numbers are given by

HTpew| = [{kw : (d,v, Aread, w, 0, k) € DCpew N kw € k},

|A| = [{(kw, Areaq) : (d,v,7,w,0,k) € DCpeyw A kw € kA (d', 0, Areaq, W', 0, k') € DChew},
and
|D’ B Z(d,v,r,w,o,k)GDCnew kaek ‘kw|

min{|kw| : (d,v,7,w,0,k) € DCpew N kw € k}
An Update operation also leaks the identifiers, version numbers, access policies, and sizes
of new and modified documents. This information can be extracted from new management
and data tuples. We denote this information as

CT(DCnew) = {(d7 v, Areadu AWritm Aowm |k’) : (d7 v, A1reaud) AWriteu AOWIU k) S DCHGW}‘

If there is an Update operation for the same time step ¢, but on a different fork f,
and the other Update operation used document collection DC;, then the leakage also
contains the identifiers id(kw,t) of all keywords that DC; and DCpew have in common.
Specifically, the dictionaries HT computed from the document collections share keyword
and time dependent labels and keys. We denote these identifiers as

id(kw,t) : (d,v,r,w,0,k) € DCyew
KW(DChrew,DCyy) = A(d w0 ) e DCyy
Nkwe kN
If there is a corrupt user, the leakage also includes plaintexts of documents accessible by

the corrupt user, so the leakage is as if the user was corrupted after the update operation
occurred. This additional leakage is denoted

DChew(U") = {(d, v, Areaa, k) : (d,v, Aread, w, 0, k) € DCheyw A U’ satisfies Aeaq}

and

KP(DCew) = {(kwvAread) (dyv,r,w,0,k) € DCpew N kw € k}

A(d' V' Aread, 0, k') € DCpew

As a result,

3 corrupt U’ : KP(DChey),V corrupt U’ : DChew(U")

crt,U, |[HThew!, |A], |D|, CT(DChew), KW (DChrew, DC4),
EUpdate(CTta DOI’IBW) = ( I
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Honest users’ search requests for some keyword kw leak the certificate crt and attribute
set U of the user on whose behalf search is performed. The request also leaks identifiers
id(kw,t) of the searched keyword for every time step ¢ < t. so far on the fork of the user
identified by crt. The read policies that occur in conjunction with kw in the document
collections DC'y; are leaked from accessed A lists of the various system forks f for SEAC
instance t, denoted

Avead(DCy, kw) = {Avead : (d, v, Aread, w, 0, k) € DC ¢y A kw € k}.

Accessed D lists of all system forks f and for all SEAC instances t leak the identifiers and
version numbers of documents that contain kw and are accessible to the user on whose
behalf search is performed. We denote this as

doc(DCyy, U, kw) = {(d,v) : (d, v, Aread, w,0,k) € DCy N kw € k AU satisfies Ayeaq}-
Given document identifiers, version numbers, and forks, the corresponding documents’
access policies and potentially contents can be inferred from other (previous) leakage.
Therefore,

t,U, id(kw,t),V(f,t : Avend(DC' g4, kw),
LSearch(Crta kw) = (CT ! ( v ) (f )tStC” d( fit w) > '

V(f, )<ty : doc(DC 4, U, kw)

When the resolve protocol is executed, no information is leaked to the server, so
£Resolve() =1

Security. We now turn to dSEAC’s security properties. Particularly, we prove dSEAC’s
data confidentiality, fork consistency, verifiability, and forward privacy.

Lemma 37. If PRF is modelled as a random oracle, TDP is a trapdoor permutation, Sym is
an eavesdropping-secure symmetric encryption scheme, ABE is a CPA-secure non-committing
(hybrid) ABE scheme, and ¥ is a secure non-committing signature scheme with delayed
verifiability, dSSEAC provides data confidentiality relative to leakage functions (L monestioins
ECor'ruthoina ['Corruptiom £Im't7 EUpdatea ﬁSearcha EResolve) in the random oracle model.

Proof. As in the proof of SEAC’s data confidentiality (Lemma 33), this lemma’s prerequisites
ensure that dSEAC’s leakage is as discussed above. Equally, as in the proof of Lemma 33,
non-committing encryption and patching oracles play significant roles in proving dSEAC’s
data confidentiality. Additionally, we rely on the random oracle for our signatures with
delayed verifiability to be non-committing. Our simulator for the data confidentiality
experiment can be found in Figures 6.19 and 6.20.

Given the simulator’s ability to patch its random oracles, the simulator is able to create

data structures in experiment ExpiEscglleZ’? that the adversary cannot distinguish from

the respective data structures in experiment Expil?(]g%npfgeal. For that, we make three key

observations.

First, list authenticators can be computed from dummy data and later on, by patching a
random oracle, the authenticator can be turned into a signature on any given list. Therefore,
list authenticators are independent of the lists that they supposedly are signatures on;
dependence is only established once the dependence is registered with the random oracle
by patching the oracle. The dependence is only registered with the oracle once the
authenticated data actually becomes known. This is the same reasoning we applied
to SEAC, and that applies here as well for the indistinguishability of ciphertexts: the
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OSetup<1)\)

° (pp,mshjsk:,stjudge)<—Setup(1)‘)
o remember (msk,jsk,stjudge)

e output pp

OHonestJ oin (EHonestJ oin (U) )
e execute protocol (usk,stuser|crt)<— UserJoin(pp,U|pp,msk); remember (crt,usk,stuser)

OCorruth oin (['Corruth oin ())

e if ¢rt from leakage has not been remembered or is marked corrupt: output 1 to A and
do nothing of the following

e based on received leakage {(f,d,v,Aead,k)} that has not occurred before:

— patch random oracle for non-committing ABE, so Dat entry for (d,v) with policy
A eag contains plaintext document k

— compute non-encrypted linked D lists as in protocol Update; patch random oracle
for non-committing symmetric encryption in order to embed the lists in array D
for fork f and time steps in which (d,v) from leakage were added to DC

e based on received leakage {(f,t,kw,Areaq)} that has not occurred before:

— compute non-encrypted linked A as in protocol Update, except the ABE ciphertexts
inside the list nodes are dummy ciphertexts, unless a D list for (kw,t,Aeaq) has
previously been computed, in which case the ABE ciphertext is an encryption of
the pointer to the D list (for the fork and time step from the leakage)

— patch random oracles for PRFs so HT entry for keyword kw points to A list for kw
and the fork and time step from the leakage

e if any of the above oracle patching fails: output L and abort the simulation
e execute UserJoin with key issuer’s input (pp,msk; interact with A, which plays the user;
remember the published user certificate crt and mark it as corrupt

OCorruption (ECorruption ( CTt) )

e if crt from leakage has not been remembered or is marked corrupt: output 1 to A and
do nothing of the following; otherwise: a tuple (crt,usk,styser) has been remembered

e compute data and patch oracles as in OcorruptJoin

e mark crt as corrupt

e output (usk,styser) from remembered tuple to A

Ot (Lnit(crt))

o if ¢rt from leakage has not been remembered or is marked corrupt: output L to A and
do nothing of the following; otherwise: a tuple (crt,usk,styser) has been remembered

e cxecute protocol Init with user’s input (pp,usk,stuser); interact with A; remember
updated user state

Figure 6.19: Behavior of the simulator S for dSEAC’s data confidentiality game against
adversary A: Reactions to setup, enrollment, corruption and initialization leakage
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OUpdate (['Update ( CT“lf,D C))

e if ¢rt from leakage has not been remembered or is marked corrupt: output L to A and
do nothing of the following; otherwise: a tuple (crt,usk,styser) has been remembered

e execute protocol Update with user’s input (pp,usk,styser), but without a document
collection; instead, compute data from received leakage on set sizes and document
properties as follows:

— compute Man entries as in the protocol

— compute Dat entries as in the protocol, using plaintexts from the leakage if available,
and dummy document plaintexts if real plaintexts are not available.

— compute entries for dictionary HT containing dummy data (labels and values chosen
from appropriate domains); respect occurrence of keyword in multiple forks; the
number of entries is indicated by the leakage

— compute memory arrays A and D containing dummy cells; the number of entries
is indicated by the leakage

— if any of the implicit oracle patching above fails: output | and abort the simulation

— remember updated user state

OSearch ('CSearch ( crt, kw ) )

e if ¢rt from leakage has not been remembered or is marked corrupt: output L to A and
do nothing of the following; otherwise: a tuple (crt,usk,styser) has been remembered

e based on received leakage {(f,d,v)} that has not occurred before (for the identifier of
kw from the leakage):

— compute non-encrypted linked D lists as in protocol Update (for all relevant forks
and time steps); patch random oracle for non-committing symmetric encryption
in order to embed the lists in arrays D (for the relevant forks and time steps)

e based on received leakage {(f,t,Areaq)} that has not occurred before:

— compute non-encrypted linked A list as in protocol Update, except ABE ciphertexts
inside the list nodes are dummy ciphertexts, unless a D list for (kw,t,Aeaq) has
previously been computed, in which case the ABE ciphertext is an encryption of
the pointer to the D list for fork f and time step ¢

— patch random oracles for PRF's so HT entries for keyword kw in fork f point to A
lists for kw

e if any of the above oracle patching fails: output | and abort the simulation

e execute protocol Search with user’s input (pp,usk,styser), but with dummy keyword;
internally, use PRF images to construct the query that recover lists given in the leakage
(the lists have been created before); remember updated user state

OResolve (ﬁResolve () )
e execute protocol Resolve planing the judge with input (pp,jsk, stjudge); remember

updated stjudge

Figure 6.20: Behavior of the simulator S for dSEAC’s data confidentiality game against
adversary A: Reactions to update, search and resolution leakage
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adversary lacks information to make meaningful queries to the oracles, and once the
adversary requests the information necessary for making meaningful queries, the oracles
are patched so ciphertexts contain the expected plaintexts and signatures authenticate
the expected data. Unfortunately, this line of reasoning assumes that the system has not
been forked, because relations between forks may cause oracle patching to fail, and that
patching oracles rarely fails due to other reasons.

Second, for all uses of random oracles apart from uses in the creation of HT entries,
inputs to the oracle include a random bit string, for example, the randomness of list
authenticators’ open values and symmetric keys used only once. This ensures that patching
oracles for symmetric and hybrid encryption, and signatures with delayed verifiability will
fail only with negligible probability, independent of system forks.

Third, the additional layer of encryption that we have introduced for the values in
HT entries ensures that, even if two system forks have two keywords in common for any
time step t, the entries’ pointers to A lists and the lists’ authenticator’s open values are
symmetrically encrypted under independent keys. Although the independent keys are
masked by the same value, and thus, the difference between these keys is known to the
adversary, there are still exponentially many pairs of keys (in the security parameter) that
have that distance. Then, with non-committing encryption in the random oracle model,
the values encrypted under these keys — list pointers and authenticators’ open values —
remain unpredictable. As a consequence, even though all forks rely on the same random
oracles, forks can not be used reliably to force oracle patching to fail.

Due to Observations 2 and 3, restrictions on Observation 1 are not applicable. Hence, we
conclude that simulating the data structures fails only with negligible probability, namely,
when an oracle patch fails. We further conclude that if simulating the data structures does

not fail, the simulated data structures in experiment ExpiEscgngi{gl are indistinguishable

from the data structures in experiment Expili]g%{{geal. Furthermore, if none of the oracle

patches fail, the input and output behavior of our simulator in experiment ExpSF-conf-sim
is the same as the behavior of the oracles in experiment ExpSf-eonfreal g5 the adversary
A can distinguish between the two experiments only with probability negligible in the

security parameter. ]

Lemma 38. If dSEAC is instantiated with a secure signature scheme with delayed verifia-
bility and a secure AAD, dSEAC is fork consistent.

Proof. Assume to the contrary of the lemma that an adversary A makes experiment
Expili]fSCEAc output 1. This requires the adversary to cause two honest users 0 and 1 to
adopt two distinct user states st and st] for the same version, and later on make both
users adopt the same state st*. Note that the operations that cause a user to adopt a state
are not necessarily identical to the operations that the adversary from the fork consistency
experiment points out. We now consider the operations of users 0 and 1 that led to them
adopting st*.

First, we consider the case of at least one of these operations being an Init operation.
Without loss of generality, the Init operation was performed by user 0. Then we know
that user 0 has not held a state previously, thus st;, = L; otherwise, user 0 had aborted
the Init operation and st = st*, which would violate condition Version(st;) < Version(st*)
from the fork consistency experiment and the experiment would not have output 1. The
fact that the experiment has output 1 also implies that Version(st}) = Version(st(,) =
(=1,-1,—1,—1,—1). The tests performed by operation LCO-Update during Update and
Search operations imply that the first component of the version vector of any state adopted
due to operation LCO-Update is at least 0; otherwise, such a state is not adopted. Therefore,
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user 1 cannot hold state st* as a result of an Update or Search operation. The user also
cannot hold state st* as a result of a successful Init operation, because a user that holds
a state immediately aborts the Init operation, meaning that, for user 1 to not abort
the Init operation st{ = L. Then, however, st;, = stj and the experiment would not
have output 1. This only leaves an unsuccessful Init operation as the cause for user 1
to hold state st*, meaning that the Init operation has not caused the user to change her
state, so st* has already been held before the operation, meaning st* = st|, and thus,
Version(st}) = Version(st*), so the fork consistency experiment would not have output 1.

Since none of the operations that caused the honest users to adopt state st* is an Init
operation, we now focus on the case of at least one of the operations being an Update
operation. Without loss of generality, assume that user 0 adopted state st* as a result of
an Update operation. We need to consider three sub-scenarios, namely, whether the Update
operation changed the user’s state at all, which depends on the outcome of the operation’s
call to LCO-Update, and whether or not the user’s update was accepted or rejected by the
server. If operation LCO-Update has returned 0 or 1, user 0 did not change her state, and
thus, has held st* before the operation. This implies st* = st;,, which would have caused
the fork consistency experiment to output 0. So, the LCO-Update operation returned 1lco
and dul tuples. If the server had rejected user 0’s Update operation or had not sent a dul
value for the post-update 1lco, the user again did not change her state, so st* = st{, and
the experiment would have output 0. Therefore, for user 0 to adopt state st* # st(, during
an Update operation, the last completed operation that st* represents was performed by
user 0, and we need to consider whether user 1 adopted st* during an Update or Search
operation.

The above reasoning also applies to user 1’s adoption of state st* during an Update
operation, and we conclude that, for the fork consistency experiment to output 1, the
user’s operation must have been successful. This requires that the operation has not been
rejected by the server and that the server has sent a dul tuple for the operation’s 1lco
tuple. The structure of user states then implies that, for both user’s to hold st* after their
respective Update operations, the dictionary digests inside the states must be identical, the
user certificates must be identical, and both user’s signatures on their respective states
must be identical. User certificates being identical requires users 0 and 1 to have identical
signature verification keys and requires both certificates to contain the same signature
under the key issuers’ signing key. Users’ or key issuer’s signatures are secure signatures
with delayed verifiability. Such signatures being identical is unlikely as a consequence of
these signatures satisfying the hiding property, which requires the signing process to be
probabilistic. Note that, above, an event is called unlikely if it happens with probability
negligible in the security parameter.

So, except with negligible probability, user 1 adopted state st* during a Search operation.
As with Update operations, the Search operation’s internal call to operation LCO-Update
must have returned tuples 1co and dul, because otherwise, as before, the fork consistency
experiment would not have output 1. However, both users have seen sequences of append-
only proofs for the digests of dictionary UL, linking the respective digests from the 1lco
components of states st{, and st| to the UL digest from st*’s dul. Such a sequence is a
violation of UL’s AAD fork consistency, and thus the probability for the server to output
such a sequence is negligible in the security parameter. However, the server outputting
such a sequence is necessary for the fork consistency experiment to output 1.

The same reasoning applies if both users 0 and 1 have adopted state st* during a
Search operation. All in all, every scenario that results in the fork consistency experiment
outputting 1 occurs with probability negligible in the security parameter. O
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Lemma 39. If dSEAC is instantiated with a secure signature scheme with delayed verifia-
bility and a secure AAD, dSEAC is verifiable.

Proof. Assume to the contrary of the lemma that an adversary A makes experiment
Expi%‘slgxc()\) output 1, meaning that the adversary makes two honest users holding
identical attribute sets accept two distinct search results for the same keyword, despite the
user verifying their respective search results relative to identical states

Since the experiment outputs 1, we know that neither search result has been rejected.
Therefore, we have Xg # L # X;. Then, because both users hold identical states,
both users have obtained partial search results for each time step, as indicated by their
state. Each partial result either consists of a SEAC search result together with an AAD
membership proof and list authenticators, or is a notification. Particularly, twice the
number of notifications plus the number of SEAC search results must be the number of
time steps from the users’ states. Notifications count twice, once for the SEAC instance
they replace, and once for the time steps during which they were issued.

If the raw search results (that the users decrypt to Xy and X;) differed in the number
of notifications they contained, due to notifications counting twice, one of the raw results
needed to contain two SEAC search results that are replaced by a notification in the other
raw result. Particularly, there must be a SEAC instance for the time stamp from the 1co
tuple that registers the notification with the update log. A partial search result for that
SEAC instance gets presented to the user that is not presented with the notification. Most
notably, for that SEAC instance, there is a membership proof for dictionary HT and the
keyword kw. However, since dSEAC registers the notification with dictionary HT for every
keyword, either the membership proof presented to the user contains a reference to the
notification, or it does not. In the former case, the honest user would have rejected the
search result and output L, resulting in the verifiability experiment outputting 0. In the
latter case, the adversary would have broken HT’s AAD membership security, which only
happens with probability negligible in security parameter A\. The same reasoning applies
to the case of the raw search results containing differing sets of notifications.

The reasoning also applies to adversaries presenting the users with differing results
to the AAD.Lookup queries that are made as part of the internal SEAC search queries.
Hence, for each of the internal SEAC search queries, the adversary reports the same
status (membership or non-membership), and in the case of membership, the reported list
authenticators (on A lists) are identical. Then however, for the verifiability experiment to
output 1, both users must have verified their respective list authenticator for the SEAC
instance successfully, which in turn means that both users’ raw search results contain
the same A list for the list authenticator. Otherwise, the list authenticator, which is a
signature with delayed verifiability, is a signature on two distinct messages. Due to the
signature scheme’s unforgeability properties, the adversary can find such messages only
with probability negligible in the security parameter.

The list authenticators (on A lists) are signatures on lists of pairs of access policies
and list authenticators (on D lists). Since both users hold the same set of attributes and
are presented with identical sets of access policies, they agree on which of the presented
policies their attributes satisfy, and thus the users agree on what D lists they expect to see.

Hence, as a consequence of the users holding identical lists authenticators on A lists, the
users also obtain identical policy—authenticator pairs in their raw search results. The same
reasoning also applies to list authenticators on D lists and the document identifier—version
number pairs from these D lists. This in turn means that both users are presented with
results to identical internal AAD.Lookup queries to dictionaries Man and Dat. Then, due
to AAD membership security, except with negligible probability, both users are presented
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with identical results to these queries.

Since the results to Dat queries contain the ABE ciphertexts that the users decrypt
and output (as Xy and X, respectively) and ABE decryption only fails with negligible
probability, we have that, except with probability negligible in security parameter A, if
Xo # 1 # X4, then Xg = X;. Thus, dSEAC is verifiable. ]

Lemma 40. If PRF is a pseudorandom function, Sym is an eavesdropping secure symmetric
encryption scheme, ABE is a CPA-secure ABE scheme, and ¥ is a secure signature scheme
with delayed verifiability, dSEAC is forward private.

Proof. As before, the lemma’s prerequisites ensure that dSEAC’s leakage functions are as
discussed above. In the absence of forks and dishonest users, dSEAC’s Update operation
leaks no information on keywords beyond an upper bound on the number of distinct
keywords affected by the operation, as well as information that can trivially be derived
from the upper bound, for example, upper bounds on the number of keyword—policy pairs
in the update and the average number of keywords per documents. Particularly, the actual
keywords remain hidden.

The upper bounds can be inferred from the number of new HT entries due to the Update
operation, as well as the sizes of data structures A and D sent to the server during the
operation. All in all, dSEAC is forward private. O
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Leakage in Searchable Encryp-
tion with Access Control I

Our SEAC scheme and its dynamic counterpart dSEAC may be categorized as L1 schemes in
Cash et al.’s leakage classification framework [Cas+15], c.f. Section 5.2. This categorization
is due to the index structure we use; particularly, this classification is inherited from the
CGKO scheme [Cur+11], c.f. Section 5.4.

However, the categorization of our SEAC and dSEAC schemes ignores our schemes
access control mechanisms and what the mechanisms reveal, particularly if we want search
results to be verifiable. Ideally, whenever Alice searches for a keyword kw, Alice only learns
the documents that contain kw and are accessible to Alice. However, verifiability generally
requires Alice to be able to check that documents containing kw not presented to her as
part of the search result are not accessible to her. Hence, Alice at least learns the access
policies of such documents and, particularly, the fact that documents that contain kw exist
despite Alice not being able to access them.

)

Our motivation for integrating access control with searchable encryption was to avoid
such leakage to the greatest extent possible. One may ask whether the leakage that dSEAC
incurs is necessary if the searchable encryption scheme with access control is to be verifiable.
As we demonstrate in this chapter, the answer to this question is no. However, to get this
answer, we restrict the type of access policies to hierarchical access levels, and a single
data owner. This results in the reduced-leakage scheme RLS. The RLS scheme provides
data confidentiality and is forward private, fork consistent, and verifiable.

The RLS scheme integrates dSEAC’s HT, A and D data structure into a single data
structure, so it is natural to ask whether a similar reduction in leakage can also be achieved
by combining only some of dSEAC’s data structures, particularly HT and A, albeit using
the more general access control policies from ABE. With our dictionary-integrated access
control scheme DIA, we explore one such combination. It turns out that the leakage of DIA
is essentially the same as the leakage of dSEAC.

7.1 Reduced-Leakage Scheme: RLS

Our reduced-leakage searchable encryption scheme RLS provides dynamic searchable
encryption in scenarios that feature a single data owner and many data users. Users and
documents are assigned access levels, and users are allowed to access all documents whose
access levels are less than or equal to the user’s access level.

Our RLS scheme is an adaption of Bost’s Yogo¢ scheme [Bos16], c.f. Section 5.5. In
contrast to Xogog, our RLS scheme also handles document ciphertexts. RLS does so by
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7.1 REDUCED-LEAKAGE SCHEME: RLS

storing symmetrically encrypted documents in a dictionary CT, similar to CT’s role in
SEAC, but implementing the dictionary as an AAD for verifiability purposes. Also unlike
Y oypog, RLS works in a multi-reader scenario. The RLS scheme is inspired by the searchable
encryption scheme of Alderman et al. [AMRI17], although RLS barely resembles their
scheme: we mainly adopt their concept of hierarchical access levels, essentially imposing a
total order on the set of users, but we use Bost’s technique to realize the levels.

Construction 41. The RLS scheme consists of algorithms and protocols (Setup, UserJoin,
Init, Update, Search, Resolve, Version) shown in Figures 7.1-7.5.

For notational purposes, we assume the key issuer to also be the single data owner.
The data owner’s user state is denoted as stigsuer- As before in dSEAC, PRF denotes a PRF,
TDP is a trapdoor permutation, AAD denotes an AAD scheme, ¥ is a signature scheme
with delayed verifiability, and Sym is a symmetric encryption scheme.

The index structure that the RLS scheme maintains is conceptually identical to the one
of Xoyog, c.f.Figure 5.3, but with two applications of Bost’s technique, rather than one, for
both the labels and the decryption keys. For the collection of ciphertexts stored in RLS, we
employ Bost’s technique to derive symmetric encryption keys for each of the access levels.

As can be seen from the figure, the RLS scheme also makes use of some of our extensions
(to SEAC) presented in Section 6.3.1, in order to make RLS verifiable. Particularly, we
employ the concept of last completed operations.

Properties of the RLS scheme. We now briefly discuss the properties of the RLS
scheme. First, the scheme is correct. This property is inherited from Bost’s Xogoc¢ scheme.

The leakage involved in the RLS scheme is fairly low. This is mainly due to the fact
that the scheme only supports a hierarchy of access levels, and, as a consequence, has
simpler data structures. For honest user enrollment, only the new user’s certificate crt is
leaked, s0 Lionestjoin(a) = crt.

When a dishonest user joins the system, leakage consists of the user’s certificate crt and
access level a. For the document collection DC' from the ¢-th Update operation, enrollment
of a dishonest user with access level a leaks the document names and version numbers,
access levels and contents of all documents accessible to the user. We denote this partial
leakage as

DCy(a) = {(t,d,v,d', k) : (d,v,a',w,0,k) € DCy Na > d'}.

Thus,
ECorruthoin() = (CTt, a7Vt : DCt(a))

As with SEAC and dSEAC, it does not matter whether a user joins the scheme as a
corrupt user or gets corrupted at some point after joining. Therefore,

Lcorruption(crt) = (crt,a,Vt : DCy(a)).

The Init operation in RLS does not leak any information. Hence, Lpyit(L) = L.
The update leakage in RLS consists of the document names and version numbers, access
levels, and sizes of all documents in the new document collection DCeyw, denoted as

CT(DChew) = {(d,v,a, |k]) : (d,v,a,w,0,k) € DCrpew}-

During an update operation, the number of new HT entries can be extracted from the data
sent by the data owner. The number |HTycy| of new HT entries is given by

HTpew| = |{(kw,a) : (d,v,d',w,0,k) € DC ANkw e kAa<a}|
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Setup(1*)

kp < PRF.KeyGen(1*)

kx < PRF.KeyGen(1*)

kg« PRF.KeyGen(1*)

(sk 4,pk 4) < TDP.KeyGen(1*)
(skp,pk) < TDP.KeyGen (1)
(isk,ivk) < L.KeyGen(1*)
(ppyr,vkar) < AAD.Setup(1*)
(ppCT7Uch) <—AADSetup(1A)
t<«<0

dig <)

o+ X.Sign(isk,(t,dig))

Stissuer € (t,dig,a)

Sq < TDP.Sample()

msk < (kp,kx,ks,ska,skr,isk,s4)
(jSkajUk75tjudge) <~ (J_,J_,J_)

pp < (pkAvkavivkappHT7kaTajvk)
output (ppvmSk7j5k73tjudge75tissuer)

UserJOin(pp>a|pp7m5k75tissuer)

U: send a to key issuer

KI: crt<+g{0,1}*

KI: s, TDP.Inv*(sk 4,54)

KI: usk, < (a,8q,k5 ks, skr,{ldk,= PRF.Eval(k:D,TDP.Invb(skA,sA))}bga,crt)
KI: publish crt

KI: send (uskq,Stissuer) tO user

U: output usk, and styser = Stigsuer tO USer

Init(pp,mSkaStissuer|ppa3tserver)

KI: if stisguer-t>0: abort protocol

KI: send “initialize” to server

S: initialize empty AADs HT and CT with digests digest(HT') and digest(CT)
S: send dig = (digest(HT),digest(CT)) to key issuer

KI: o< X.Sign(isk,(stissuer-t+1,dig))

KI: 1co< (stissuer-t+1,dig,0)

KI: send 1co to server

KI: output stigsuer =1co to key issuer

S: output Stserver = (HT,CT,1co0) to server

Figure 7.1: Algorithms Setup and protocols UserJoin and Init of the RLS scheme
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7.1 REDUCED-LEAKAGE SCHEME: RLS

Update(pp7m5kaStissueryDC‘ppastserver)
KI: t/«t+1
KI: H+0
KI: C«0
KI: for each (d,v,r,w,0,k)€ DC":
e for each kw€k:
— k< PRF.Eval(kp,kw)
— kjy,q < PRF.Eval(kpy,, TDP.Inv*(sk 4,,54))
— (Ud,wt,kw?dil,v,t,kw) < Z.Sign(sk;,(d,v,t,k‘kw@»
— Sgw < PRF.Eval(kg,kw)
— Vgt < TDP.Inv (sk7,50)
- gkw,a,t’ <« PRF.Eva|(kkw7a,<Ukw,t/,1>)
— kkw,a,t’ — PRF.EvaI(kzkw,a,(vkw’t/,()»
— Ckw,at <d7’Uyd:i7fU’t7kw> @kk"w,a,t’
— H«+ HU{(Ekw,a,t’a(o'd,v,t,kwvekw,a,t’))}
o ct<«Sym.Enc(PRF.Eval(kp,TDP.Inv(sk 4,54)),k)
o C+CU{((dyw),ct)}
KI: send (H,C) to server
S: HT'<HT
S: CT/<+CT
S: (HT,digest(HT)) +— AAD.Append(ppyr HT . H)
S: (CT,digest(CT)) +— AAD.Append(ppcr,CT,C)
S
S
S

: 7yt AAD.PAppend(ppyr,HT' HT)
: mcr < AAD.PAppend(pper,CT/,CT)
: send (digest(HT),digest(CT'),mqr,7cr) to key issuer
KI: if verification of append-only proofs fails: raise alarm and abort protocol
KI: dig < (digest(HT),digest(CT))
KI: o< X.Sign(skx,(t',dig))
KI: lco«(t,dig,0)
KI: send 1co to server
KI: output stissuer =1co to key issuer
S: output Stserver = (HT,CT,1co) to server

Figure 7.2: Protocol Update of the RLS scheme
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Search(pp,uskq,Stuser,kw|pp,stserver)
U: send “search” to server
S: send 1lco to user
U: if X Verify(ivk,(1co.t,1co.dig),1co.0)#1: raise alarm and abort protocol
U: send styger.t to server
determine dictionaries HT' and CT’ for time step stuser.t
Tt < AAD.PAppend(ppyr HT HT)
e < AAD.PAppend(pp¢r,CT/ ,CT)
send (7yr,mer) to user
U: if verification of append-only proofs fails: raise alarm and abort protocol
U: styger < 1co
U: kg < PRF.Eval(kg kw)
U: K+
U: for a>1>0:
® ki i < PRF.Eval(kyy,, TDP.Eval®™(pk 4,5,))
° K(—KU{kkw’i}
U: sy, < PRF.Eval(kg,kw)
U: UkwyteTDP.lnvt(skT,skw)
U: query < (K,vpy 1)
U: send query to server
S: rslt <)
S: for each k€ K:
o for 0<i<t:
— (< PRF.Eval(k, <TDP.EvaIi(skT,vkw,t),0>)
— (¢,{e},m) < AAD.Lookup(pp,HT,/)
— (d,d') < e®PRF.Eval(k,(TDP.Eval'(sk7,vku 1), 1))
— ({et},7") <= AAD.Lookup(ppcr,CT,(d,v))
— rslt < rsitU{(k,{e},m,ct,n’)}
S: send rslt to user
U: if verification of received membership proofs or signatures fails: raise alarm and abort
protocol
U: decrypt all document ciphertexts that occur in rsit
U: output set of resulting plaintexts and styser to user

ReSOIVe(pp sStserver ‘pp Jsk, Stjudge)
S&KI: abort protocol

VerSion(pp73tuser)
e output Styser.t

Figure 7.3: Protocols Search and Resolve, and algorithm Version of the RLS scheme
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7.2 THE DIA SCHEME

If there is a corrupt user with access level @/, denoted corrupt a’ below, the leakage also
includes the plaintexts/keyword sets of documents accessible to the corrupt user; we denote
this as

DCpew(a') = {(d,v,a,k) : (d,v,a,w,0,k) € DCpew Ad’ > a}

Therefore,
Lupdate(Ls DChew) = (CT(DChew ),V corrupt @’ : DCheyw(a’)).

Whenever an honest user with access level a performs search, the RLS scheme for all
document collections DC; leaks the document names and version numbers of documents
containing the searched keyword. We denote this as

doc(DCy, a, kw) = {(d,v) : (d,v,d’,w,0,k) € DCy Na > da' A kw € k}.

From the query an identifier id(kw) of the searched keyword and the user’s access level
can be extracted.

Learch (crt, kw) = (a, id(kw),Vt : doc(DCy, a, kw)).

Nothing can be learned from operation Resolve.

Given this leakage, it is fairly easy to see that, in the random oracle model, simulating
the behavior of the real system based on leakage rather than real data is possible, and no
PPT adversary can distinguish simulated behavior from the behavior of the real system.
As a result, if RLS is instantiated with PRF PRF, trapdoor permutation TDP, secure
AAD scheme AAD, secure signature scheme (with delayed verifiability) ¥, and CPA-secure
symmetric encryption scheme Sym, RLS provides data confidentiality.

The RLS scheme is also fork consistent if it is instantiated with secure signature scheme
Y. Fork consistency is a consequence of the fact that user states need to be signed by the
key issuer and the key issuer signs at most one user state for each version number. So, an
adversary that manages to break RLS’s fork consistency has forged a signature under the
key issuer’s signature verification key in order to cause users to adopt distinct states for
the same version number.

The RLS scheme is also verifiable if it is instantiated with secure signature scheme ¥ and
secure AAD scheme AAD. This is because the users know how many results AAD.Lookup
queries the server is to report in raw search results (rslt). Due to AAD membership security,
the server has to report all relevant HT entries generated by the key issuer, and because all
HT entries that originate from the key issuer are signed by the key issuer, the server also
cannot report HT entries that do not originate from the key issuer without facing detection,
unless the server is able to forge signature under the key issuer’s singing key.

Finally, from the above update leakage, we can see that the RLS scheme is forward
private, because the leakage, in the absence of dishonest users, does not leak any information
on keywords beyond an upper bound the number of keywords affected by the update.

7.2 The DIA Scheme

With the Yogo¢ scheme [Bos16] and the RLS scheme above, we have seen that it is possible
to integrate the dictionary HT with a list using Bost’s technique. While > ogog, as an
evolution of the CGKO scheme [Cur+11], integrates HT with the D lists from the CGKO
scheme, here, we take dSEAC as a basis and integrate its dictionary HT with A lists. This
results in a scheme with dictionary-integrated access control, called DIA.
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Dictionary HT

Array D fort =1

7FQUC&QATSL“amﬁ%ﬁ?@?@;? 1) 7 fe(fo(fx (b wi), mpt (skr, fs(ks,w1))), 1) @ Enc(A(D)& ..

7?Q@Qh??z:yaﬂ?»???@@%y 2) TmQquQFS?am;&aﬂ,??mé%y 2) @ Enc(A(a)& ...

| oo (fube, wa), w7 (sbr, sy wa))), )| S Fic ke, wa). iz (shr fis(hs, wa)), ) @ EnclA®)&

|76, w) mi (ke s, w), V) [ 5o e (hic, wa) i (b s (bs, ws), 1) @ Encl(A(@)e

7 fe(fo(folke, we), 72 (skr, fs(ks,w2))), 1) 7 Fe(fo(fic (ki wa), 732 (skr, fs(ks,w2))),1) ® Enc(A(c)& ..

7?Q@Cﬁ??éwyamm@\@,?%m,@wv? 1) 7?Q@Qﬁw?Swyﬁmm@wﬁ??mqéwé, 1) ® Enc(A(c)& ...

Figure 7.4: DIA’s post update index structure for our example document collection from

Page 38; the figure includes the time-based extension from dSEAC and an additional PRF

fE to enumerate HT entries for the same keyword, but different access policies
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An overview of the index structure of the DIA scheme can be found in Figure 7.4.
Essentially, DIA integrates dictionary HT and A lists by enumerating the list nodes. We
achieve this by applying an additional PRF fg, using what was previously used as a label
or encryption key as a PRF key, and using a counter value as the PRF’s argument. We note
that the D lists of the dSEAC scheme remain unchanged in DIA.

As shown in the figure, the DIA scheme is clearly compatible with the time-based exten-
sions from dSEAC. However, applying dSEAC’s mechanisms for verifiability, particularly list
authenticators on D lists, is not possible in a straightforward manner. The reason is that
an authenticator on a D list would also need to authenticate the access structure shared by
the documents the D list points to.

To that end, we propose a slight adaption of our signatures with delayed verifiability: we
allow some data to be verified immediately as part of algorithm VOrig, while the complete
data is only verified by algorithm VSig. This adaption can be implemented in the same
way that signatures with delayed verifiability can be implemented, namely, by following a
commit—then—sign approach; however, in our adaption, the immediately verifiable data is
signed together with the commitment. The commitment only considers the data that is to
be verified only after the commitment’s open value has been released to the public.

List authenticators generated from D lists and the access policies shared by the docu-
ments from the lists can then be included in HT entries in the same way we include them in
dSEAC. By implementing HT as an AAD, we can also apply the concept of last completed
operations to DIA.

Although we do not give pseudocode description of the DIA scheme, due to DIA’s
similarity to dSEAC, with the structure shown in Figure 7.4, the proposed changes to list
authenticators, and the concept of last completed operations, the DIA scheme is a dynamic
searchable encryption scheme with access control and satisfies our four security notions for
such schemes. Proofs of DIA satisfying the security notions are rather similar to the proofs
for dSEAC, due to the similarity of the schemes in terms of applied techniques.

During operation, the DIA scheme leaks essentially the same data as the dSEAC scheme.
The only difference is the update leakage: DIA integrating A lists into dictionary HT changes
the leakage on keywords. Particularly, dSEAC leaks the number of distinct keyword in the
set of new and updated documents (number of new HT entries) and an upper bound on
the number of keyword—policy pairs (size of memory array A). In contrast, DIA leaks the
actual number of keyword—policy pairs instead, because that number is the number of new
HT entries.

7.3 Comparison

We briefly compare our RLS, DIA, and dSEAC schemes. The oypoc-based RLS scheme
achieves dynamic searchable encryption with access control for the class of hierarchical
access levels. The scheme is in the single writer—-multi-reader setting, and achieves data
confidentiality, fork consistency, verifiability, and forward privacy. While our DIA and
dSEAC schemes satisfy the same security notions, they do so for a broader class of access
policies, namely, the access policies supported by the underlying ABE scheme, and in the
multi-writer—multi-reader setting. On the other hand, DIA and dSEAC leak significantly
more information than the RLS scheme.

The differences in leakage can be mostly attributed to the simple class of access policies
supported by RLS. RLS’s restriction to the single writer setting only accounts for RLS
leakage functions not considering different forks.

All in all, in this chapter, we have seen an example of the trade-offs in searchable
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encryption with access control. Particularly, we have seen the trade-off between the
expressiveness of access policies supported by a (verifiable) scheme and the scheme’s
leakage.
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Closing Remarks _

We finish this part of the thesis by a brief discussion of means to shorten users’ keys in
our searchable encryption schemes, particularly SEAC, dSEAC and DIA, and discussing the
revocation of users from our schemes.

Shortening user keys. All of our searchable encryption schemes that rely on ABE for
enforcing access control have the drawback of requiring keyword-specific attributes for
all possible keywords to be present in every users’ secret key. We must therefore ask
whether we can reduce the sizes of user keys. Indeed, the original presentation of our
SEAC scheme in [Lok17] features short user keys by applying a particular type of ABE,
namely, multi-authority attribute-based encryption (MA-ABE) [Cha(7] with authority key
customization [Lok17].

The idea behind MA-ABE is to allow policies to feature attributes managed by multiple
attribute authorities that hand out users keys independently. Yet, the keys a user receives
from the various attributes authorities are compatible amongst each other, so can be used in
decryption, while being incompatible with keys of other users. Authority key customization
then allows an attribute authority to give users all attributes managed by the authority in
a concise way (called customized authority secret). As a consequence, users can generate
actual user keys from the customized authority secret whenever the need arises.

The original SEAC employs one attribute authority for each of the attribute namespaces
Usr, Op and Wrd, and gives a customized authority secret for namespace Wrd to each user
as part of their secret keys. As a result, users can generate keyword-specific attribute keys
themselves and do not need to obtain them explicitly as part of their secret key.

The same technique can be applied to our dSEAC and DIA schemes, and can also be
extended to namespace Tme used by these schemes. The reason why we have not done so
is due to the MA-ABE schemes from the literature. Those schemes either do not feature
authority key customization, for example, Chase’s scheme [Cha07] and the Lewko/Waters
scheme [LW11], or are proven secure in a static setting that is incompatible with our
dynamic schemes, for example, the Rouselakis/Waters scheme [RW15].

Therefore, we encourage research into fully (and dynamically) secure MA-ABE schemes
with authority key customization. Applying such schemes in our generic constructions is
an elegant way to reduce the sizes of user keys.

An alternative approach to shortening user keys is to make the formulation of search
queries interactive between users and the key issuer, so whenever a user wants to search for
some keyword, she has to ask the key issuer for the corresponding keyword-specific attribute.
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However, the privacy implications as well as the need for additional communication make
this solution undesirable.

Revoking users. Many searchable encryption schemes that address a multi-reader
setting and achieve access control via ABE provide means for revoking user’s access rights,
for example, the schemes presented in [Yan+13; YJ12; YJR13; Yan+15; Yu+10; Sun+16].
In these schemes, user revocation is achieved by applying proxy re-encryption or by attribute
version numbers. In the former case, whenever a user’s access rights are revoked, the proxy
stops re-encrypting ciphertext under the re-encryption key that complements the revoked
user’s key.

The latter option associates a version number with each attribute. Whenever an
attribute’s version number changes, user keys that contain the attribute are updated to the
new version number by applying a dedicated update key. So when a user’s access rights are
revoked, all attributes that the user held get new version numbers, and the corresponding
update keys are only distributed to the remaining users. This process also involves the
re-encryption of all ciphertexts, to update attribute version numbers there as well. Since
re-encrypting all ciphertexts is potentially very time consuming, it has been suggested to
perform re-encryption spread out over time, namely, whenever a ciphertext is requested,
rather than re-encrypting all ciphertexts immediately.

Both of the above approaches are quite costly in terms of computation, while the
effectiveness of the mechanisms depends on whether or not the entity responsible for
re-encryption cooperates. In the proxy re-encryption scenario, the proxy must refuse to
apply the re-encryption key that corresponds to the revoked user’s secret key. In the
attribute version number setting, the entity serving users’ requests for ciphertexts can
only serve ciphertexts that have been re-encrypted. However, if the entity responsible
for re-encryption is dishonest, it can choose to serve revoked users with ciphertexts that
have been re-encrypted under the revoked user’s re-encryption key or that have not been
updated to new version numbers.

In our dSEAC and DIA schemes, users need to authenticate themselves by presenting
a certificate of enrollment whenever they interact with the server. By applying standard
certificate revocation mechanisms from the literature, we can effectively revoke users’ access
rights without the need of costly re-encryption. At the same time, our certificate-based
approach to user revocation in secure is the same circumstances that the typical approaches
are secure in, namely, if the server fully cooperates.
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Introduction to Reputation Sys-
tems —

Reputation systems allow customers to rate products and merchants, reflecting the rep-
utation of the rated entity. In turn, potential customers use a merchant’s or product’s
reputation in their decision making process whether or not to buy from that merchant
or to buy the product. The underlying assumption is that past behavior or quality is a
predictor of future behavior or quality [JG09]. Hence, reputation is conceived as a metric
for business prospects. Consequentially, reputation systems have attracted research from
the field of economy. Due to the perceived value of good reputation, reputation systems
are also prone to attacks by malicious parties, and thus, such systems have also attracted
security research.

While we mainly focus on security aspects of reputation systems, the economic aspect
of reputation has an impact on the types of security threats that we need to consider. For
example, consider a merchant trying to improve her reputation score by buying fake ratings.
Obtaining such ratings is somewhat costly, so the merchant will not buy ratings unless
the potential benefits of the ratings, like improved sales, outweigh the ratings’ costs. This
example illustrates why, in some instances, assuming a rational adversary is reasonable,
and this should be reflected in security analyses of reputation systems. However, great care
must be taken when deciding that it is reasonable to only consider rational adversaries,
as a real-world example shows: A journalist has caused a non-existent restaurant to be
among the best rated restaurants in London in the TripAdvisor reputation system [Horl7].

Personal reputation in crowd work. As stated in the Chapter 1, crowd work is a
work model that will potentially have significant economic impact in the future. We
consider reputation in the context of that work model. In crowd work, a requester seeks a
solution to a task. Via an open call published online, a group, called crowd, is asked to
work towards a solution in exchange for monetary rewards.

In practice, the open call in crowd work is typically communicated via dedicated
platforms, which manage their respective crowd, arrange worker payments, and handle
legal matters, for example, the rights to the results of the crowds’ works. Established
platforms often specialize in particular types of tasks. Types of tasks and platforms,
that have been identified are (1) text creation (“marketplace platform”), (2) design and
innovation, (3) micro tasks, (4) mobile tasks/crowd sensing, and (5) software development
and testing.

In mobile and micro tasks, tasks are so simple that generally no expertise is required
for solving the tasks. Software and development tasks may or may not require significant
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expertise. In creative tasks, particularly text creation, design, and innovation, great
expertise is often required for solving tasks.

In our consideration of crowd work, we mainly focus on creative tasks, because platforms
that specialize in creative tasks often make use of reputation systems in a way that workers’
reputations influence their rewards. For example, reputable workers may be granted greater
compensation directly, per solved task, or indirectly by being offered a larger number of
tasks. The relation between reputation and compensation impacts workers’ abilities to
migrate to other platforms (voluntarily or involuntarily) or work for multiple platforms
simultaneously. In the former case, reputation is lost, and in the second case, reputation is
distributed and neither platform knows about the workers’ true (combined) reputation.
This situation, separate reputation systems for each platform, results in vendor lock-in to
the crowd workers’ disadvantage.

We address this issue by our proposal of personal reputation systems. In a personal
reputation system, crowd workers’ reputation is stored by the crowd workers themselves.
As a result, our proposal mitigates vendor lock-in and loss of reputation due to unfortunate
circumstances.

Our contribution. We make three contributions to the research on reputation systems,
published at STM 2019 [BL19b]. First, we propose the novel notion of personal reputation
systems as a particular type of reputation systems. Second, we propose the novel security
notion of rater anonymity towards the general public. The notion is rooted in the crowd
work setting, and applicable to reputation systems in general and personal reputation
systems in particular. Third, we propose PRS, a personal reputation system that satisfies
our rater anonymity notion, as well as other security notions typically imposed on reputation
systems. Our scheme is particularly noteworthy due to its simplicity.

Overview of Part III. In the upcoming Chapter, we first discuss the role of platforms in
crowd work and their impact on personal reputation systems. Building on that discussion,
we formalize the notions of personal reputation systems and rater anonymity towards the
general public. Eventually, we construct our personal reputation system PRS and discuss
its properties. In Chapter 11, we discuss related work on reputation systems and some
technologies we use in our construction.
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Personal Reputation Sys-
tems I

Our concept of personal reputation systems is derived from the crowd work scenario
from the introduction. Therefore, personal reputation systems feature parties common
in crowd work. Particularly, we have platforms, raters a.k.a. requesters, and ratees
a.k.a. crowd workers. Since we envision personal reputation systems to run in parallel to
the infrastructure for crowd work, there is potential for confusion, so we briefly discuss
platforms’ processes and reputation systems processes in order to separate them.

Platform processes. A platform organizes its work force and mediates between crowd
workers and requesters. Crowd workers need to register with the platform in order to be able
to solve tasks communicated via the platform. Registration is necessary to provide contact
details so crowd workers can receive compensation for their work. Similarly, requesters need
to register with the platform before they can communicate their tasks via the platform, so
the platform can bill the requesters for its services and for crowd workers’ compensation.

Since these registration processes are necessary from the platforms’ point of view,
platforms simply exist and do not need to register with anyone. Hence, we have two
registration processes as part of the platforms’ processes.

Reputation system processes. On the other hand, the processes of our personal
reputation system are independent of a particular party. Within our system, ratees only
communicate with raters, so we need a way for both types of parties to establish their
respective (crpytographic) identities with each other. Therefore, we have a straightforward
setup procedure for ratees. For raters, establishing their identity is more involved, and
involves a platform.

Platforms play a pivotal role in achieving a secure personal reputation system. This
is best shown in the involvement of platforms in establishing rater identities: A rater
establishes an identity with a platform, and then the platform certifies that a particular
ratee has provided a solution to one of the rater’s tasks, which was communicated via the
platform. We call that certificate platform transaction reference (PTR). Given the PTR,
the rater can then contact the respective ratee to obtain a rating token, which, later on,
allows the rater to rate the ratee.

Via the rating token, the PTR is included in the final rating. Intuitively, the PTR will
give people confidence in the validity of ratings, particularly, that the ratings are from a
real requester and are not made up by the ratee. We capture this in our security notion of
rating unforgeability. Ratings are verified using a particular verification operation.
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In order for platforms to certify relations between raters and ratees via PTRs, platforms
need a setup procedure of their own. For technical reasons, personal reputation systems
allow for a global setup procedure as well, particularly for setting up parameters shared by
all parties and set up by a trusted entity.

Relations between processes. Our personal reputation system is intended to run
alongside crowd work platforms, so there are relations between the two systems. After
all, the whole point of our personal reputation system is for it to replace or enhance the
platforms’ internal reputation systems in order to better reflect crowd workers’ reputation
by considering work done on other platforms. As a consequence, personal reputation
systems impact platform processes. The converse is also true. When platforms issue PTRs
to raters, they include information on the relation between raters and ratees in the PTR.
This takes the form of a transaction identifier, for example, an invoice number.

Outside parties and anonymity. We have briefly mentioned verifiers, parties verifying
the ratings a ratee has obtained. Typically, raters want to remain anonymous from verifiers,
for example, in order to keep trade secrets. As a consequence crowd workers on design and
innovation platforms often have to sign non-disclosure agreements. We reflect this in one
of our security notions, namely, rater anonymity against the general public.

Specifically, under that notion, raters are only anonymous towards the general public,
but not necessarily towards the parties involved in the transaction that resulted in the
rating, specifically the ratee and the platform. This is a weaker anonymity notion than
the one typically imposed on reputation systems, which is full rater anonymity against
all parties. However, our weaker notion is more sensible in our application scenario:
Reasonable (textual) reviews must reference the criticized work. Such references allow
crowd workers and platforms to identify the requester, because the criticized solution is
uniquely tailored to the requester’s task. Thus, in the crowd work scenario, platforms and
ratees involved in a transaction can be assumed to able to identify the ratee. Threrefore,
the notion of full rater anonymity is not useful in the crowd work context.

10.1 Preliminaries and Definitions

In this section we formalize the ideas laid out above, particularly, the notions of personal
reputation systems, rating unforgeability, and rater anonymity towards the general public.
We begin with a formalization of personal reputation systems.

Definition 42 ([BL19b]). A personal reputation system consists of four PPT algorithms
and three protocols.

GlobalSetup takes a security parameter 1* and outputs system parameters pp. The algo-
rithm is executed by a trusted party.

RateeSetup takes in system parameters pp, and outputs private key usk and verification
key uvk.

PlatformSetup takes in system parameters pp, and outputs private key psk and verification
key puk.

IssuePTR involves a rater and a platform. Both parties take in system parameters pp; the
rater additionally takes in the platforms verification key pvk; the platform additionally
takes in its private key psk, a helper string tid, and a ratee’s verification key uvk.
The rater outputs a PTR ptr.
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IssueRT involves a rater and a ratee. Both parties take in system parameters pp; the
rater additionally takes is the ratee’s verification key uvk and her PTR ptr; the ratee
additionally takes in her private key usk. The rater outputs a rating token rt.

Rate involves a rate and a ratee. Both parties take in system parameters pp; the rater
additionally takes in the ratee’s verification key wvk and her rating token rt and her
(unprocessed) rating msg; the ratee additionally takes in her private key usk. Both
parties output the (processed) rating r.

Verify takes in system parameters pp, a ratee’s verification key wvk, a (processed) rating r
and a platform’s verification key pvk, and outputs a bit.

We require, for pp < GlobalSetup(1*), key pairs (usk, uvk) < RateeSetup(pp) and (psk,
pvk) < PlatformSetup(pp), PTR (ptr|L) < IssuePTR(pp, pvk|pp, tid, uvk), rating token
(rt|L) < lIssueRT (pp, uvk, ptr|pp, usk), and unprocessed rating msg, if (r|r) < Rate(pp,
uvk, rt, msg|pp, usk), then Verify(pp, uvk, r, pvk) = 1.

The correctness notion of personal reputation systems essentially requires ratings to be
verified successfully.

The security notion of rating unforgeability is inspired by the signature unforgeability
notion from Definition 20 with the Rate oracle replacing the Sign oracle. However, the
rating unforgeability experiment Exp®?5r8¢ is more complex due to the presence of
additional oracles. The additional oracles are necessary to model the presence of many
raters, ratees and platforms. Specifically, the experiment provides the adversary with
oracles for setting up honest platforms and raters, for having honest raters obtain rating
tokens, and for making honest raters rate a (potentially dishonest) ratee. Experiment
Exp’R5foree i shown in Figure 10.1 and we define rating unforgeability relative to the
experiment.

Throughout the experiment, we keep track of honest parties, their interactions, and the
results of such interactions. The adversary’s goal in the experiment is to output a ratee’s
verification key and a rating such that Verify accepts the rating under the given ratee’s
verification key and an honest platform’s verification key, and no honest rater has created
the output rating.

Definition 43 ([BL19b]). A personal reputation system Il = (GlobalSetup, RateeSetup,
PlatformSetup, IssuePTR, IssueRT, Rate, Verify) is said to provide rating unforgeability if,
for all PPT adversaries A,

Pr[Exp/ i 77(\) = 1] < negl()).

A second security property of personal reputation systems is the notion of rater
anonymity towards the general public motivated before. We model the notion by an
indistinguishability experiment Exp’®5#1°"  The experiment is presented in Figure 10.2
and relies on oracles behaving as shown in Figures 10.3 and 10.4. In contrast to the
unforgeability experiment, honest parties in the anonymity experiment may interact with
a broader range of dishonest parties. As a result, we have multiple variants for some of the
oracles, particularly for oracles used to issue PTRs, issue rating tokens, and rate an honest
ratee. Specifically, these oracles come in variants C and H. Variant C covers the case of a
corrupt rater interacting with an honest platform or ratee. Variant H covers the case of an
honest rater interacting with a dishonest platform or an honest or corrupt ratee, depending
on the oracle. The oracle for issuing PTRs also features a Variant D, which covers the case
of an honest rater interacting with an honest platform.
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EXpPRS -forge ( )\)

e PR+
e pp < GlobalSetup(1*)
o (uvk* ) AOCreatePlatform()7OCreateRater()’OlssuePTR('7'7')vOIssueRT(')70Rate('>')(pp)’ where the
experiment reacts to oracle queries as follows:
— OcreatePlatform Without arguments:

* (psk,pvk) < PlatformSetup(pp)

* P+« PU{(psk,pvk)}

* output pvk

— OCreateRater Without arguments:

x rid < |R|

* R+ RU{(rid,0)}

* output rid

— OrssuepTr With arguments (puk,rid,uvk):

« if 3(s,pvk) € P for some s and 3(rid,X) € R for some X:

- tid +¢{0,1}*

- run protocol IssuePTR playing the rater and the platform, taking (pp,
puk) as the rater’s input and (pp,s,tid,uvk) as the platform’s input; let
ptr be the rater’s output

- if the protocol did not abort: Y «+ X U{(tid,(uvk,pvk,ptr),1,0,1)}

- else: Y+ XU{(tsd,L,1,0,1)}

- R (B\{(rid, X)D)U{(rid,V)}

- return tid

* return L

— OrgsuerT With argument rid, tid:

* if E(Md X)€R for some X and (tid,(u,v,p),L,0,L)€ X for some u, v and p:
run protocol IssueRT playing the rater, taking (pp,u,p) as input; the
adversary plays the ratee’s part; let 7t be the rater’s output

- it the protocol did not abort: Y < (X \{(tid,(u,v,p),L,0,L)})U{(tid,(u,
v.p),t0,1)}

- else: Y+ (X \{(td,(u,v,p),L,0, )} U{(tid,(u,v,p),invalid,0, L)}

- R (R\{(rid X) }) U{(rid.Y') }

- return 1

* else: return 0

— ORate With arguments (rid,tid,msg):

« if 3(rid,X ) € R for some X and 3(tid,(u,v,p),r”,0,L) € X for some u,v and p

and 7’ #invalid:

- run protocol Rate playing the rater, taking (pp,u,r’;msg) as input; the
adversary plays the ratee’s part; let r be the rater’s output

- Y+ (X \{(tid,(u,0,p),r",0,L) HU{(tid,(u,v,p),r 7" 1)}

- R (R\{(rid, X) D) U{(rid, V) }

- return 1

* return 0

e The experiment outputs 1 if
1. 3(s,pvk) € P such that Verify(pp,uvk™ r*,pvk)=1 and,
2. for all tuples (rid,X) € R and (tid,(uvk*,pvk,p),-,-,r) € X, we have r#£1r";
otherwise the experiment outputs 0.

Figure 10.1: Rating unforgeability experiment for personal reputation system [l and
adversary A
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Expi%%s-anon ( )\)

P+

R0

pp < GlobalSetup(1*)

(usk™ ,uvk™) <— RateeSetup(pp)

OCreatePlatform )>OCreateRater ): OlssueP TR:C (). OlssuePTR: D (), |
° (St‘A,me’de’pvk*’msg*)FA?IssucPTR:H(‘7'7')7OIssucRT:C(‘)7OIssucR,T:H(‘)7ORatc:C('7')aORatc:H(‘v'/
o If (ridy,X),(rid1,Y) ¢ R for any X and Y or (psk,pvk™) ¢ P for any psk, then the
experiment outputs —1 and aborts
e b {01}
e Perform actions of oracle queries tid <— OrssuepTR: D (PVE™ , Tidp, uvk™), OtssuerT: 1 (Tidp, tid).
and s < ORrate:z (rid,tid,msg™)
o If s=1, the experiment outputs —1 and aborts

OcreatePlatform 0:OCreateRater 0>OlssuePTR:C ():OlssuePTR:D (+5°),

Ossue : KRN 70 ssueRT: : 70 ssueRT: : 70 ate: KN 70 Late: KN
o b/%AQI PTR:H (»),OlssueRT:C (), OtssuerT:H (+);ORate: (*);ORate: 1 ( )(StA)

e The experiment outputs 1 if b=0" and 0 otherwise.

Figure 10.2: Rater anonymity experiment for personal reputation system [N and adversary
A = (A1, As)); oracles are shown in Figures 10.3 and 10.4

Definition 44 ([BL19b]). A personal reputation system I = (GlobalSetup, RateeSetup,
PlatformSetup, IssuePTR, IssueRT, Rate, Verify) is said to provide rater anononymity towards
the general public if, for all PPT adversaries A = (A1, Az)),

| Pr[Expii5-amon(n) = 1] — 1/2] < negl()).

10.2 The PRS Construction

In this section, we construct our PRS personal reputation system. To this end, we use a
special building block not introduced among the general building blocks from Chapter 3.
Namely, we use hash chains as described below. Combining hash chains with signature
and commitment schemes, we then build our personal reputation system.

10.2.1 Hash Chains

A hash chain is a folklore example? of an authenticated data structure, c.f. Section 3.5
for an example of another authenticated data structure and some of the terminology.
Essentially, a hash chain is a sequence of blocks of data chained together by a hash function.
We want to restrict who can create blocks, so we have the owner of a hash chain sign the
blocks. As a result, every block on a chain consists of three fields, (1) payload or data, (2)
block hash, and (3) block signature. The block hash is a hash on the block’s payload and
a predecessor block. The block signature is a signature on the block hash.

Due to the block hash, we are able to verify the chain property. That is, given a set of
blocks, we can sort the blocks using the predecessor relation as encoded in the block hash,
and the chain property holds if and only if exactly one block has no predecessor in the set
and exactly one block is not a predecessor of any other block from the set. Hence, a chain

3Similar concepts occur in symmetric encryption as the CBC mode of operation, in message authentication
as CBC-MAC, and in the Merkle-Damgard transform.
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® OcreatePlatform Without arguments:
— (psk,pvk) < PlatformSetup(pp)
— P+ PU{(psk,pvk)}
— output pvk
® OCreateRater Without arguments:
— rid«|R)|
— R« RU{(rid,0)}
— output rid
OlssuePTR:Cc With arguments (pok,uvk):
— tid <¢{0,1}*
— run protocol IssuePTR playing the platform, taking (pp,psk,uvk) as input; the
adversary plays the rater’s part
OrssuePTR:p With arguments (puk,rid,uvk):
— if 3(s,pvk) € P for some s and 3(rid,X ) € R for some X:

* tid g {0,1}}

« run protocol IssuePTR playing the rater and the platform, taking (pp,pvk) as
the rater’s input and (pp,s,tid,uvk) as the platform’s input; let ptr be the
rater’s output

 if the protocol did not abort: R < (R \ {(rid, X)}) U {(rid, X U {(tid,
(uvk,pvk,ptr),1,0,1)})}

x else: R« (R\{(rid,X)})U{(rid, X U{(tid,L,L,0,1)})}

* return tid

— return L
o OruePTR: g With arguments (pvk,rid, tid):
— if 3(rid,X) € R for some X and Y(t,-,-,,) € X :tF tid:

« run protocol IssuePTR playing the rater, taking (pp,pvk) as input; the adversary
plays the platform’s part; let ptr be the rater’s output

« if the protocol did not abort: R < (R \ {(rid, X)}) U {(rid, X U {(td,
(uvk,puk,ptr),1,0,L)})}

x else: R+ (R\{(rid,X)})U{(rid, X U{(tid,L,L,0,L)})}

* return tid

— return L
o OrssuerT:c Without arguments:
— run protocol IssueRT playing the ratee, taking (pp,usk™) as input; the adversary
plays the rater’s part
o OrgsuerT:f With argument rid, tid:
— if 3(rd,X) € R for some X and (tid,(u,v,p),L,0,1)€X for some u, v and p:

« run protocol IssueRT playing the rater, taking (pp,u,p) as input; if u=uvk®,
also play the ratee on input (pp,,usk™), otherwise the adversary plays the
ratee’s part; let rt be the rater’s output

* it the protocol did not abort: R < (R\{(rid,X)})U{(rid,(X \{(tid,(u,v,p),
1,0, L) Hu{(tid, (u,v,p),rt,0, L) })}

« else: R+ (R\{(rid,X)})U{(rid,(X \{(tid,(u,v,p),L,0,L)}) U{(tid,(u,v,p),
invalid,0,L)})}

* return 1

— else: return 0

Figure 10.3: Definitions of oracles for entity creation, and issuance of PTRs and rating
tokens for experiment Exp! RS-anon
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o ORate:c Without arguments:
— run protocol Rate playing the ratee on input (pp,usk™); the adversary plays the
rater’s part
o ORate:y With arguments (rid,tid,msg):
— if A(rid,X) € R for some X and 3(tid,(u,v,p),r",0,1) € X for some u, v and p and
r’ #invalid:
* run protocol Rate playing the rater, taking (pp,u,r’,msg) as input; the adversary
plays the ratee’s part; let r be the rater’s output
* R<— (R\{(rid,X)})U{(rid,( X \{(tid,(u,v,p),r,0,L)}) U{(tid,(u,v,p),r "1,
)1}
* return 1
— return 0

Figure 10.4: Definitions of rating oracles for experiment Exp?RS-anon

of blocks is a hash chain if and only if the predecessor relation totally orders the set. If the
hash function used to compute block hashes is collision resistant and the block hash of
a new block is computed relative to the most recent block, then, except with negligible
probability, the set of blocks is totally ordered.

As stated above, we use signatures to restrict who is able to create new blocks. For that,
the first block in a chain contains a signature verification key as its data and omits the
block hash, but retains the block signature. Thus, the first block is a self-signed certificate.
Omitting the block hash gets rid of the need for a predecessor.

By requiring the first block of a chain to be a self-signed certificate, we can define the
notion of wverification of a set of blocks. Namely, we consider a set of blocks to be a valid
hash chain if and only if

1. the set of blocks contains exactly one self-signed certificate,
2. the set is totally ordered by the predecessor relation, and

3. all blocks’ signatures are valid under the signature verification key from the self-signed
certificate.

We now define the = hash chain scheme from hash function Hash and signature scheme
> . Then, we discuss its algorithms and properties.

Construction 45. The = hash chain scheme consists of algorithms (Setup, Init, Append,
Verify shown in Figure 10.5.

The Setup algorithm chooses and outputs a hash function key. The Init algorithm
establishes a new hash chain based on a hash function key output by Setup, so multiple
chains can share the same hash function key; the algorithm outputs the self-signed certificate
and the corresponding singing key. Algorithm Append computes a new block as a successor
of the most recent block (denoted as max ESet, where ESet is a set of blocks). Algorithm
Verify verifies the set ESet of blocks as outlined above and outputs 1 if and only if verification
finds ESet to be a valid hash chain with self signed certificate min ESet.

Hash chains have interesting security properties. Particularly, they satisfy the member-
ship security, append-only security, and fork consistency properties for authenticated data
structures, c.f. Section 3.5 for the terminology and definitions, albeit for a different data
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Setup(1*)
e hfk < Hash.Gen(1%)
e output hfk

Init(hfk)

(sk,vk) + ¥.KeyGen(1*)

o X.Sign(sk,Hash.Eval(vk))
ESet <« {(vk,0)}

output (sk,ESet)

Append(hfk,sk,data, ESet)

e let e<—maxFESet
h<—Hash.Eval(hfk,(e,data))
o« ¥.Sign(sk,h)

ESet + ESetU{(data,h,0)}
output ESet

Verify(hfk,ESet)
o let (vk,0)<—minESet
o if ¥ .Verify(vk,Hash.Eval(hfk,vk)),0)#1: output 0 and quit
o for e=(d,h,s) € ESet\{(vk,0)} in ascending order:
— let € be e’s predecessor
— if Hash.Eval(hfk,(¢’,d))#h or L .Verify(vk,h,s)#1: output 0 and quit
e output 1

Figure 10.5: Algorithms of the = hash chain scheme constructed from hash function Hash
and signature scheme %
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structure. The security properties of hash chains are due to the collision resistance of the
underlying hash function. Taking the latest block on a hash chain as the chain’s digest
and the number of blocks on a hash chain as the chain’s version number, the set of blocks
serves as the chain’s membership and append-only proofs. Therefore, hash chain proofs
are not concise.

10.2.2 Personal Reputation Systems from Hash Chains

We now construct our personal reputation system, PRS, from the = hash chain scheme,
hash function Hash, signature scheme ¥, and commitment scheme . Note that the hash
function and signature scheme are as in the construction of =, so we can use the hash
function key and signing keys from hash chains for other purposes as well.

Construction 46. The PRS personal reputation system consists of algorithms and proto-
cols (GlobalSetup, RateeSetup, PlatformSetup, IssuePTR, IssueRT, Rate, Verify) shown in Fig-
ures 10.6 and 10.7.

The PRS scheme’s GlobalSetup algorithm sets up parameters for the commitment and
hash chain schemes. Algorithm RateeSetup initializes a hash chain from global parameters.
The hash chain’s public set ESet of blocks is complemented by a public set RSet that
stores the actual ratings received by the ratee. Algorithm PlatformSetup chooses a signing—
signature verification key pair for the platform.

Operation IssuePTR has the rater choose a signing—signature verification key pair. The
platform issues a certificate on the chosen verification key. The certificate also considers
the ratee that will eventually output the rating token that corresponds to the PTR output
by this operation. This is achieved by making the platform’s signature in the certificate
dependent on the self-signed certificate of the ratee. Since the certificate’s signature can be
verified under the platform’s verification key, the certificate ties together all three parties
that participate in the transaction identified by tid. The rater’s PTR consists of a secret
and a public part; the secret part is the rater’s signing key, the public part is the rater’s
verification key and the corresponding certificate, as well as the platform’s verification key
and the transaction number.

Operation IssueRT has the rater request a certificate on her signature verification key
under the ratee’s signing key, the key that the ratee also uses to sign blocks for her hash
chain. The rater’s rating token then consists of her previously obtained PTR and the
certificate. The rater and the ratee engage in an execution of protocol Rate in order to
register the issuance of the rating token with the ratee’s hash chain; an empty (unprocessed)
rating is used for that purpose.

Operation Rate has the rater compute and sign the data for a new block in the ratee’s
hash chain. The new block’s data includes a commitment on the rater’s unprocessed rating.
When computing the signature, the rater considers the commitment and a hash of the most
recent block from the hash chain, assuming that the computed data will end up in the
successor block of the block whose hash has been signed. The ratee appends a block with
the given data to her hash chain. After the rater has verified that the block has indeed
been appended to the ratee’s hash chain, she sends her processed rating to the ratee. The
processed rating consists of the public part of the rater’s PTR and the decommit value for
the block’s commitment, including the unprocessed rating. The ratee then includes the
received processed rating in her RSet.

In operation Verify, the verifier verifies the given ratee’s hash chain and makes sure
that the given rating r occurs in the ratee’s RSet. The verifier checks that there is a hash
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GlobalSetup(1*)

o cpp I Setup(1*)

o hfl < =.Setup(1*)

o pp<—(cpp,hfk)
RateeSetup(pp)
(usk,ESet ) < =.Init(hfk)
RSet 1, —0

publish (ESet 1, RSet ;)
output usk

PlatformSetup(pp)

o (psk,pvk)+ X.KeyGen(1")
e publish pvk

e output psk

IssuePTR(pp,pvk|pp,psk,tid, uvk)

Rr: (rsk,rvk) < X.KeyGen(1*)

Rr: o+ X.Sign(rsk,Hash.Eval(hfk,rvk))

r: send (rvk,0) to platform

r: if X.Verify(rvk,Hash.Eval(hfk,rvk),0)#1: abort protocol
eo < minESet 1

t < X..Sign(psk,Hash.Eval(hfk,(tid eq,vk)))

send ptr' < (pvk,uvk,rvk,tid,t) to rater

ptr < (rsk,ptr’)

output ptr

=~

vITPIIT

IssueRT (pp,uvk,ptr|pp,usk)

Rr: o< X.Sign(rsk,Hash.Eval(hfk,rvk)

Rr: send (rvk,0) to ratee

Re: if X.Verify(rvk,Hash.Eval(hfk,rvk),0)#1: abort protocol
Re: crt <+ X.Sign(usk,Hash.Eval(hfk,rvk))

Re: send crt to rater

Rr: 1t (rsk,ptr’ crt)

Rr&Re: (r|r)<+ Rate(pp,uvk,rt, L pp,usk)

Rr: output rt

Figure 10.6: Algorithms GlobalSetup, RateeSetup and PlatformSetup, and protocols IssuePTR
and IssueRT of our personal reputation system
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Rate(pp,uvk,rt,msg|pp,usk)

Rr: if =.Verify(hfk,ESet,1)#1: abort protocol

Rr: e<—maxESet

Rr: (c,d) <« T.Commit(cpp,msg)

Rr: data<+ (rvk,ptr’,crt,c)

Rr: h<«Hash.Eval(hfk,(e,data))

Rr: o+« X.Sign(rsk,h)

Rr: send (data,h,0) to ratee

Re: if Hash.Eval(hfk,(max ESet ), data)) # h or L. Verify(rvk,h,0)#1: abort protocol
Re: data’ + (rvk,ptr’ crt,c,h,o)

Re: =.Append(hfk,usk,data’,ESet )

Re: send “data appended” to rater

Rr: (d'1,s') < maxESet

Rr: if d' # (rvk,ptr’,crt,c,h,o), h' # Hash.Eval(hfk,(¢’,d')), or ¥ Verify(uvk,h' s') # 1:

abort protocol

Rr: 7« (ptr',d,msg)

Rr: send r to ratee

Rr: output r

Re: RSet < RSety, U{r}
Re: publish RSet i

Re: output r

Verify(pp,uvk,r,pvk)

if =.Verify(hfk, ESetyi) # 1 or r ¢ RSety, or pvk # r.ptr’.pvk or wvk # r,ptr', uvk:
output 0 and quit

let eg <—minESet

if ¥.Verify(puk,Hash.Eval(hfk,(ptr’.tid eq,ptr’.rvk))#1: output 0 and quit

if more than two or less than two entries of ESet,,;, contain r.ptr’: output 0 and quit
let e be the maximal entry in ESet,,; that contains r.ptr/

parse e as ((rvk,ptr’,crt,c,h,o),h o)

let € be e’s predecessor

if X.Verify(uvk,Hash.Eval(hfk, rvk), crt) # 1, ¥.Verify(puk,Hash.Eval(hfk, (ptr'.tid, e,
rok)), ptr’.t) # 1, Hash.Eval(hfk, (¢, (rvk, ptr’, crt,c))) # h, L.Verify(rvk,h,0) # 1, or
.Open(c,d)#1: output 0 and quit

output 1

Figure 10.7: Protocol Rate and algorithm Verify of our personal reputation system
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chain entry for the rating, that the hash chain entry’s commitment is a commitment on
the rating, and that the various signatures encountered during the tests are valid.

Correctness. The conceptual simplicity of our PRS scheme makes it easy to see that the
scheme is correct. Correctness boils down to correctness of signatures and commitments,
as well as our hash chain scheme = ensuring that, except with negligible probability, blocks
are totally ordered by the hash function and the set of blocks on a chain containing exactly
one self-signed certificate.

Efficiency. Most parts of our algorithms and protocols are fairly efficient, typically
consisting of computing or verifying one or two keys, signatures, and hashes. The least
efficient part of the PRS scheme is the =.Verify operation that is called as a subroutine
during rating computation and verification. The operation’s inefficiency is caused by it
requiring time at least linear in the number of blocks on the chain, which is about twice
the number of ratings that the ratee has obtained.

Security. Our PRS scheme satisfies both our security notions, rating unforgeability and
rater anonymity towards the general public. Rater anonymity towards the general public is
achieved, because the rater identities (raters’ signature verification keys) used within our
reputation system are used for a single transaction. A new rater identity is generated for
every transaction, as can be seen in operation IssuePTR. Unless the transaction identifiers or
contents of ratings enable the public to lift raters’ anonymity or allow linking transactions
involving the same rater, the general public is unable to identify raters, and this holds even
in an information theoretic sense. Thus, the following lemma is established.

Lemma 47. The PRS scheme provides rater anonymity towards the general public.

Hence, there is no way for any outside party to link two ratings, or to identify the rater
for a transaction unless any of the parties involved in the transaction decides to lift the
rater’s anonymity.

Lemma 48. If our PRS scheme is instantiated with a collision resistant hash function
Hash, an EUF-CMA-secure signature scheme X, and a binding commitment scheme I, then
PRS provides rating unforgeability.

Proof. Assume to the contrary of the lemma that there is a PPT adversary that breaks
our reputation system’s rating unforgeability. Such an adversary outputs a tuple (uvk,r),
such that Verify(pp, uvk, r, pvk) = 1 for verification key puvk of one of the honest platforms
controlled by the experiment, and none of the honest users has participated in an execution
of the Rate protocol that resulted in .

Looking at the verification algorithm and the origins of components considered by the
verification algorithm, there are only two components that are not under full adversarial
control, namely, ptr’ = (pvk, rok, tid, t), which is part of r, and the data (rvk, ptr’, c, h,o)
from the most recent hash chain block that contains ptr’. Both components contain a
signature under a signing key that is not given to the adversary.

We now prove that every adversary that forges a rating forges at least one of the
signatures t from ptr’ or o from the hash chain block data. From the fact that rating
verification succeeds under an honest platform’s verification key, and the fact that, in the
unforgeability experiment, honest platforms only hand out PTRs to honest raters, we know
that the rater’s verification key rvk from ptr’ belongs to an honest rater, or the adversary
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has forged the signature ¢ from ptr’, which is a signature on rvk under the platform’s
verification key.

If the adversary did not forge a signature under ¢, then signature verification guarantees
that ptr’ originates from an execution of protocol IssuePTR between an honest platform and
an honest rater. This means that the rvk component from pitr’ is the signature verification
key used to verify signature o, and the signing key that corresponds to rvk is held by an
honest rater. Since no honest rater has performed a rating that resulted in r = (ptr’/, d, msg)
and (d, msg) is the open value for the commitment ¢ on which o is a signature, o is a
forgery.

In either case, the adversary has created a forgery under an honest party’s signature
verification key. However, the security of ¥, Hash and ' and the combination of these
primitives in accordance with the provably secure hash-then—sign and commit-then—sign
approaches imply that PPT adversaries succeed in forging signatures with probabilities at
most negligible in the security parameter. As a consequence, PPT adversaries succeed in
breaking PRS’s rating unforgeability only with negligible probability. O

More security. The literature on reputation systems typically impose additional security
properties on reputation systems. Popular examples include that

1. ratings are bound to transactions,

2. repeated rating for the same transaction can be detected,
3. misbehaving raters can be identified, and

4. self-rating is prevented.

Our notion of PTRs covers Notions 1-3: a PTR binds a transaction to all ratings for
that transaction, as well as to the one-time identity of the respective rater. By considering
outside processes, namely, processes of the platform, given a PTR and its transaction
identifier tid, the platform can identify a misbehaving rater.

Concerning Notion 4 (prevention of self-rating) it is impossible to guarantee that
the sets of raters and ratees are disjoint. After all, it is possible for a crowd worker to
communicate a task via a platform and solve the task as a crowd worker on that platform.
However, our use of PTRs and the rating unforgeability property, together ensure that a
ratee buying from themselves (via some platform) is essentially the only scenario in which
self-rating can occur.

Thus, the ratio of costs for obtaining the rating and benefits from the rating have to be
considered. The benefits of a rating are highly dependent on the type of rating, for example,
whether a 5-star scale is used or ratings are textual. Both types of ratings are supported
by our construction, and different raters and platforms may have different guidelines and
preferences for the type of ratings they create or issue PTRs for. This heterogeneity has
to be sorted out by reputation evaluation functions, which are researched in economics.
Grishpoun et al.’s CCR [Gri+09], briefly discussed in Chapter 11, also provides solutions.

Admittedly, in our PRS scheme, a malicious ratee could even set up her own platform,
buying from herself via that platform, so the ratee could create PTRs themselves and thus
minimize the cost of self-rating. However, reputation evaluation functions should also
consider the source of the PTR for a rating when evaluating that rating: the confidence in
ratings for transactions brokered by some obscure platform no one has ever heard of should
be fairly low, in turn minimizing the benefit of self-rating. This is one of the features of

CCR [Gri+09].
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A security property typically not considered in the literature that must be considered
with regard to our construction is the possibility of rating deletion. Since ratees have full
control over their ESets and RSets, they can try to delete unfavorable ratings. However,
due to our use of hash chains, a ratee can only delete the newest block from a hash chain,
although the then-newest entry may then be deleted as well. Malicious ratees are effectively
restricted to such truncating of their hash chains, because deleting any other block from
the ESet results in one of the blocks loosing its predecessor. Then, the predecessor relation
does not totally order the set of blocks, and thus, the chain would not be verifiable any
more.

A ratee also must consider whether deleting an unfavorable old rating offsets the cost
of deleting all newer ratings as well. One may also consider the deletion of entries from a
ratee’s RSet as an additional or alternative method of deleting unfavorable ratings, but
huge discrepancies in cardinalities of a ratee’s ESet and RSet should raise alarms at the
verifier.

It must also be noted that raters obtain a receipt for their rating before they send their
actual rating to the ratees; the receipt is the hash chain block ratees add to their chains in
order to register the rating event with the chains. Raters obtaining these receipts is the
reason for our construction using commitments to hide the actual reviews.

Ratings as well as receipts can be used by raters to check at any time that their ratings
are included in a ratee’s ESet and RSet, providing a means for the detection of rating
deletion. Once rating deletion is detected, raters can take appropriate action, although
such action is outside the scope of our personal reputation system. For example, ratees
may be reported to platforms or legal action may be taken. Of course, detection of rating
deletion by ratees requires raters to occasionally check that their ratings are still present
in the hash chains of the respective ratees.

We particularly note that the possibility of rating deletion and the detection mechanism
for rating deletion are independent of the authenticated data structure used to implement
ratee’s ESets. With every data structure, a ratee can revert the data structure to an earlier
state; this is a consequence of ratees having full control over their respective ESet.

10.3 Discussion

We conclude our discussion of personal reputation by discussing some of the shortcomings
and drawbacks of our PRS construction.

Improving efficiency. One major shortcoming of the PRS scheme is the need for
verifying a hash chain during Rate and Verify operations. Hash chain verification takes
time at least linear in the number of blocks on the chain, and needs to transmit the whole
chain to the chain’s verifier, resulting in bandwidth use proportional to the size of the hash
chain. This is because the hash chain is an authenticated data structure that has no concise
membership proofs. Yet, hash chains are fork consistent, append-only and membership
secure.

In the construction of PRS, hash chains may be replaced by other fork consistent
authenticated data structures that have concise membership proofs. However, we expect
replacing hash chains to provide no new insights. Replacing hash chains would require no
significant changes — one minor change would be the need for signing key generation to
happen explicitly during RateeSetup, rather than implicitly as part of the hash chain’s Init
operation, as well as ratees explicitly signing data before appending it to the authenticated
data structure. On the other hand, security would not be affected by replacing hash
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chains for another fork consistent, append-only and membership secure authenticated data
structure.

Improving practicability. From a practical point of view, it is problematic that our
construction requires ratees to be online constantly to serve requests for their ESets
and RSets, so others may verify the raters’ hash chains. This is a consequence of the
decentralization that we aim for.

In practice, it is likely for a cloud service to address the technical aspects of the
ratee’s role, resulting in a middle ground between semi-centralized storage of reputation
by platforms and the implied vendor lock-in, the decentralized approach that requires
ratees to concern themselves with technical details of a personal reputation system, and
the semi-centralized storage of reputation of many ratees by few specialized cloud services.
Such services themselves may result in vendor lock-in, just at a different vendor, namely,
the cloud service provider, and with higher stakes, namely, a ratee’s reputation aggregated
from multiple platforms. However, as long as ratees keep a copy of their signing keys and
a copy of their hash chain, vendor lock-in with respect to cloud services can be prevented.
Given their copies, raters can take on the technical role of ratees for themselves without
having to fear loss of reputation.
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State of the Art I

In the cryptographic literature on reputation systems, the focus is often on reputation
systems for single platforms, for example, online shops or peer-to-peer systems. Nevertheless,
cross-platform reputation has also been considered. For instance, due to the cross-platform
aspect, a user’s reputation in one online forum affects her reputation in another online
forum. Single platform reputation systems have been considered in [And+08; BEJ1S;
BJK15; CSK13; HBC15; 1J02; KSGO03]. Cross-platform reputation has been considered in
[DO15; Gri+-09; PS08].

Cross-platform reputation. The work of Grinshpoun et al. [Gri+09] focuses on
exchanging reputation scores among communities. This is achieved via the cross-community
reputation system CCR, providing mechanisms for translating scores between scales, like
3-star scale to 5-star scale, as well as weighing reputation based on relevance and trust.
For example, an online forum focussing on automobiles may see some limited relevance in
reputation scores imported from a discussion forum focussing on vehicle engines.

Pingel and Steinbrecher [PS08] also address cross-platform reputation. They focus on
aggregating reputation scores in a secure manner, maintaining anonymity of rated entities
and even unlinkability of entities’ pseudonyms used on different platforms. In Pingel’s and
Steinbrecher’s approach, rated entities store their aggregated reputation scores. Having
rated entities store their own reputation is seen as a means to enhance data privacy by
granting entities full control over their reputation scores.

Dennis and Owen [DO15] address the problem of storage of reputation and argue for
decentralized storage, rather than storage of reputation scores on a single centralized server
(or one server per community). They suggest to realize decentralized storage via distributed
ledgers, specifically block chain. In particular, Dennis and Owen consider integrating their
reputation system with the Bitcoin crypto-currency.

We use aspects of the mentioned cross-platform reputation systems for our PRS scheme.
At the same time, we go beyond the above proposals or avoid some of their shortcomings.
Like Pingel and Steinbrecher, we have rated entities store their own reputation, but do
not limit ourselves to reputation that can be aggregated. Instead, we gather reputation of
any kind (5-star scale, textual, ...) rather than aggregating it to some value. Due to our
construction supporting essentially all imaginable ways of expressing reputation, we need to
rely on translation between different forms of feedback, as proposed for Grinshpoun et al.’s
CCR. Finally, on the technical side, with our use of hash chains, we use techniques from
block chains. However, in contrast to Dennis and Owen, due to the significant ecological
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impact of consensus mechanism like proofs-of-work typically seen as part of block chains,
we put away with consensus mechanisms altogether.

Hash chains and the crowd. Our approach of applying hash chains to crowd sourcing
and crowd work is not unique in the cryptographic and security literature. However,
typically, block chains, the crypto-currency variety of hash chains, are applied, because the
security of the proposals rely on the integrated consensus mechanisms in block chains. As
an example, Li et al. [Li+19] propose to decentralize entire platforms by realizing them via
block chain. In this setting, the platforms’ processes are implemented as smart contracts
that are executed on the chain.

Another example application for hash chains in crowd sourcing is crowd decision making.
Ast and Sewrjugin [AS] suggest using a block chain for private court adjudication. The
chain would be used to register and research evidence, and to reach verdicts and document
them.

Finally, Buccafurri et al. [Buc+17] recognize that the crypto-currency variety of hash
chains is not suited to be applied to crowd sourcing. This is because block chains rely on
miners to verify the chain and compute new blocks that contain a list of recent transactions
as data. In order to maintain high throughput, new blocks that elongate the chain need to
be computed as fast as possible. For that, miners are financially incentivized to compute
blocks, for example, by transaction fees. Buccafurri et al. argue that the fees from
transactions related to crowd sourcing are too low for miners to consider registering such
transactions with the chain via new blocks, because competing transactions would result
in higher fees. Therefore, Buccafurri et al. propose to establish a hash chain for crowd
sourcing applications on top of a social network, they suggest Twitter, rather than on top
of a block chain.
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Cloud computing is a paradigm of outsourcing computation and data storage to a remote
location, onto devices owned by cloud service providers. A trademark characteristic of
cloud computing is that resources can be shared between the various customers of the
cloud service provider, and that resources can be allotted to customers based on their
current demand. As a consequence of resources being shared and provided on demand,
cloud computing is often advertised as being cheaper than the outsourcer owning and
operating the resources on their own.

However, while outsourcing computation and data storage may have cost benefits, the
security implications of cloud computing must also be considered. Typical questions concern
the trustworthiness of the cloud service provider, proper separation of data between the
provider’s clients, and security against outside threats. Particularly concerning data storage,
cloud computing guidelines call for the encryption of data before storage [Clo11]. However,
once data has been encrypted, it generally cannot be operated upon in a meaningful
way, unless it is either decrypted or the encryption scheme is compatible with the desired
operation. An example of the latter case is searchable encryption [SWPO00], c.f. Part II.
Depending on who performs encryption, encryption can only prevent outside attackers
form accessing data or may even stop inside attackers like malicious server administrators
at the cloud service provider. The former is achieved if the cloud service provider performs
encryption; the latter is achieved if the data is encrypted by its owner. Who performs
encryption has additional security implications due to the necessary key management
[Clo12]. For example, if encryption is performed by the cloud service provider, there must
be provisions for the data owner to access encryption keys, and thus their data, without
the cloud service provider’s involvement. Such provisions are necessary to ensure data
owners can still access their data in case the cloud service provider goes out of business.

As mentioned, who encrypts the data determines what threats are eliminated by
encryption. Encryption by data owners eliminates threats from outsiders as well as from
insiders at the cloud service provider, whereas encryption by the cloud service provider
only prevents attacks from the outside. Thus, encryption by data owners achieves stronger
security, yet does not take full advantage of the cloud, because data owners still need
to provide their own resources to perform encryption. If we restrict ourselves to these
naive approaches to encryption in cloud computing, we have to make the trade-off between
strong security and extensive cloud usage. However, concerning encryption, a middle
ground can be covered by a “trusted cloud” that mediates between the data owner and
the public cloud. Despite the trusted cloud being labeled “trusted,” there are multiple
ways to achieve trustworthiness of the cloud service provider ranging from relying on the
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providers good will via service level agreements and organizational measures to technical
and cryptographic measures.

Our contribution. Our main contribution is an architecture for the cloud that employs
a trusted cloud. While the idea of a trusted cloud is not new, we present a novel generic
approach to securing computation in the trusted cloud. For that, we introduce the
cryptographic computation service (CCS), which we bundle with hardware security to serve
as the trust anchor in the trusted cloud. Due to the CCS, the cloud is capable of efficiently
and securely storing and computing on data in the cloud.

We have presented the architecture and an early version of the CCS at FPS 2017
[Bl6+17]. The early version was targeted specifically at enforcing access restrictions to data
stored in the cloud. An improved version of the CCS has been presented at ARES 2018
[BL18]. The improvement allows for computations other than enforcement of access control
to be also performed in the cloud. In this thesis, we present a version of the CCS that, in
contrast to the ARES 2018 result, does not distinguish between computations related to
the enforcement of access control and other computations.

Overview of Part IV. In the upcoming chapter, we first present our cloud architecture,
and then discuss the CCS. Our presentation particularly focuses on architectural aspects of
the trusted cloud and on illustrating the versatility of our cloud due to the CCS. To that
end, we apply the CCS in several example scenarios. In Chapter 14, we discuss related
work on cloud architectures and technologies for secure computation and storage in cloud
environments.
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Inspired by the work of Green et al. on outsourced decryption for ABE [GHW11], we have
developed a cloud architecture that enables organizations to outsource their cryptographic
computations to the cloud without needing to fully trust the cloud service provider. Due to
our architecture, if a breach of security occurs, cloud service providers operating according
to our architecture can plausibly deny wrongdoing on their part.

13.1 Our Cloud Architecture

We have proposed a preliminary version of our BGKL architecture in [Bl6+17]. The
architecture features three parts, located at the organization, in a trusted cloud, and in the
public cloud. Trustworthiness of the trusted cloud is achieved by various technical and
organizational means; particularly the trusted cloud features hardware security modules
(HSMs) that serve as trust anchors and are used for operations that are highly security
critical. While HSMs are highly secure, a drawback in them is their low throughput. A
measure taken to balance security and efficiency in the trusted cloud is to have a trusted
(compute) server in addition to HSMs. Trusted compute servers provides the computational
power the HSMs lack at the cost of some degree of security. As a consequence, HSMs and
trusted compute servers operate on distinct sets of cryptographic keys and data. The
trusted server operates on keys and data having limited security implications. In contrast,
keys and data with strong security implications are handled by HSMs.

Our setup involves a public cloud, because the measures taken to achieve security in
the trusted cloud are somewhat financially costly and impact efficiency, so the public cloud
operates on data not critical for security. Using the public cloud for such operations lowers
costs and improves efficiency — when compared to computations solely in the trusted
cloud — without affecting security.

Our original proposal of the BGKL architecture was aimed at organizations outsourcing
file storage and access control to the cloud. Particularly, the organization was not to be
involved in enforcing access control beyond assigning the access rights of the organization’s
members. Within the BGKL architecture, file storage and access control are achieved by
applying ABE. The organization holds its members’ user keys in an organizational key
store (OKS). Whenever one of the organization’s members wants to access a file, she does
so via a service that runs at a trusted server in the trusted cloud, and the trusted cloud
requests the member’s key from the OKS. The trusted cloud then obtains the (encrypted)
requested file from the public cloud, and decrypts the file using the member’s key. Since
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we use hybrid ABE, the member’s user key has strong security implications. Specifically,
the user key can decrypt all files the member has access to, so if the key leaks, many files
are leaked. In contrast, fresh symmetric keys are used for individual files, so if a symmetric
key leaks, only one file is leaked. Therefore, we consider user keys as having strong security
implications and symmetric keys as having limited security implications. As a consequence,
during decryption in the original use of the BGKL architecture, the asymmetric part of
hybrid decryption is performed by an HSM, while the symmetric part is performed by
a trusted server. After decryption, the resultant plaintext is sent to the organization’s
member.

Since the original version of our architecture was developed with this usage scenario
in mind, the BGKL architecture has some drawbacks that prevent it from being used in
combination with some other cryptographic primitives. We have addressed those short-
comings in follow-up work [BL18]. The work aims at making the architecture compatible
with cryptographic primitives beyond (attribute-based) encryption. Specifically, while the
original work on the BGKL architecture aims at storage of and access control to files, the
follow-up work aims at making stored documents searchable, c.f. searchable encryption in
Part II.

Due to the relation between organization’s members and the trusted cloud, searchable
encryption, particularly verifiable searchable encryption, could not easily be combined
with the BGKL architecture. This is because services running in the trusted cloud take on
the roles of users with respect to the public cloud. However, one of the measures taken
to make the trusted cloud trustworthy is that it lacks persistent memory, which in turn
means that the trusted cloud can only play the users’ parts of cryptographic primitives
that do not require users to permanently hold states. This is why verifiable searchable
encryption, which necessitates users to keep states, is incompatible with the original BGKL
architecture. The lack of support for stateful primitives is one of the drawbacks identified
in our follow-up work on the BGKL architecture.

Furthermore, as a relic of the BGKL architecture being tailored to a specific use case,
adding a means for storing user states is a non-trivial task. Specifically, the HSMs should
be involved in storing user states in some capacity due to security reasons. However, in
the BGKL architecture, HSMs are tailored to ABE. Due to security reasons, HSMs do not
admit general computation, so expanding their operations is not an option. The means
used to achieve HSM security also make HSMs very expensive, so putting HSMs tailored to
storing user states in the trusted cloud also is not an option. Following the approach of
specialized HSMs would also mean that specialized HSMs for doing some computations for
searchable encryption would be needed if we were to adapt searchable encryption to the
original BGKL architecture.

Since the approach of inflating the number of HSMs in the trusted cloud is not an option
due to economics, in [BL18|, we propose to put away with specialized HSMs altogether.
Instead, we introduce a general service, called cryptographic computation service (CCS)
that can perform broad classes of cryptographic computations shared as building blocks
by many cryptographic schemes. Examples of building blocks can be found at the start
of Chapter 3, particularly Section 3.1. The cryptographic schemes presented throughout
this thesis demonstrate why a service providing access to the basic cryptographic building
blocks in a secure way is useful. The CCS runs at all HSMs in our architecture.

This allows us to construct stateful services. Specifically, the CCS allows us to restore

4General computation, although feasible in HSMs, prevents HSMs to successfully pass certification
processes. Having passed certification is often necessary for HSMs to be used, for example, in the financial
service industry.

138



CHAPTER 13. A CLOUD ARCHITECTURE FOR CRYPTOGRAPHY IN THE CLOUD

Organization Trusted Cloud Public Cloud
OKS HSM: CCS
Trusted Storage Server Public Storage Server

|:| Trusted Compute Server: Public Compute Server:

User Devices Application-specific Services Application-specific Services

Figure 13.1: Overview of the improved BGKL architecture: entities at the organization
and in the cloud, and communication between them

services’ states; we illustrate this further below. With stateful services, we also need a way
of storing services’ states persistently. Due to costs, it is preferable for services running
in the trusted cloud to store their states in the public cloud. However, the availability
of the public cloud may not be given at all times, so at least some type of emergency
storage needs to be present in the trusted cloud, for example, to cover non-availability of
the public cloud due to power outages. Therefore, we allow the trusted cloud to provide
some persistent memory in order to mitigate issues with the trusted cloud communicating
with the public cloud.

As a consequence, we have revised the BGKL cloud architecture. The resulting improved
architecture is shown in Figure 13.1. The figure shows the three parts of the architecture,
the entities based in these parts, and communication between entities. Particularly, we
can identify the central role that the trusted compute servers play in communication. The
servers ensure that the organization and the public cloud do not need to be aware of each
other or of the (other) entities located in the trusted cloud.

Unfortunately, Figure 13.1 only illustrates how the CCS, run at HSMs, is integrated
in our architecture. However, the figure does not illustrate how the CCS achieves the
properties and power ascribed to it. We address the CCS in detail in the next section.

13.2 The Cryptographic Heart of our Architecture

As stated before, the cryptographic computation service (CCS) runs at HSMs. The service
encapsulates the cryptographic essence of many potential specialized services that may
otherwise run on HSMs within our architecture. The cryptographic essence is given in
the form of fundamental building blocks, some of which are presented in Section 3.1; this
includes hash functions, pseudorandom functions, and trapdoor permutations.

The CCS provides an interface for application-specific services that run at trusted
compute servers to evaluate a concrete instantiation of such a function on a given key and
argument. Examples of such instantiations are the RSA [RSA78] and DLog-based trapdoor
permutations [DH76], the AES pseudorandom function [DR98], and the Keccak/SHA-3
hash function [Ber+13] that can also be used as a pseudorandom function. However, the
whole reason for the use of HSMs is to achieve security by not having the compute servers
operate on cryptographic keys that come with strong security implications. So the question
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arises, how application-specific services can communicate what keys to use to the CCS
without the application-specific services learning the actual keys.

For that, we adopt the concept of tickets form the Kerberos system [Neu+05]. In the
Kerberos system, a ticket represents a user’s right to use a service. Tickets are issued by
some authority and eliminate the need for the authority to directly communicate with the
service. Moreover, the issuing authority can use the ticket to communicate restrictions and
conditions to the service. Example restrictions are validity periods of the ticket. Meanwhile,
the user is unable to learn the conditions or to modify the ticket. Kerberos achieves this
by having a symmetric key shared between an authority and a service. The key is used
to encrypt the ticket with a CCA-secure symmetric encryption scheme, so the service can
be sure that the ticket originates from the authority and has not been modified.> Due to
CCA-secure encryption, no party — with the exception of the authority and the service —
learns the contents of the ticket, and the service can be sure that the ticket originates from
the authority and has not been modified.

In our architecture, we use tickets such that the organization, represented by its OKS,
can grant its members access to services running in the trusted cloud by allowing those
services to make use of the organization’s cryptographic keys without learning the keys. In
this setting, the OKS sends a ticket to a user, the user forwards the ticket to the service she
wants to use, and the service redeems the ticket at the CCS in order to get cryptographic
functions evaluated. For this to work, a ticket must state what service is allowed to present
the ticket to the CCS. We achieve this by requiring application-specific services to hold a
signing—signature verification key pair. The verification key is then included in the ticket.
When using the ticket, the application-specific service signs its request and the CCS can
establish the origin and authenticity of the request.

Of course, for functional purposes, the ticket also includes a list of cryptographic keys
that the CCS can use to serve services’ requests and what cryptographic functions the keys
can be used in conjunction with. Then, a ticket for some application-specific service X is a
ciphertext

tx = Enc(kShared7 <kaa {(id(f,k)v B k)}(f,k:) accessible to X>))a

where Kgpareq is the symmetric key shared between the organization and the CCS and vkx
is X’s signature verification key with corresponding signing key skx. A ticket can hold
many function-key pairs (f, k) represented by the tuples (ids ), f, k). Each such tuple
consists of an identifier id ;) of the function-key pair that the service X can use to refer
to the pair, a function identifier f, and a key k to be used with the function. Then, a
request of service X to the CCS is a tuple

(th Zd(f,k)v a, 0)7

where o < Sign(skx, (tx, id(f k), a)) is a signature on the request under the service’s signing
key. If Dec(kshared,tx) = L or Verify(tx.vkx, (tx,id(sr),a),0) # 1, the CCS’s reply to
the request is L. Otherwise, the reply is f(k,a), meaning that, if the tests succeed, then
the CCS evaluates function f with key k& on argument a and hands over the result to the
application-specific service.

Our tickets are encrypted under a symmetric key shared between an organization and
the C€CS. This conflicts with the desired degree of flexibility in the cloud, particularly,
the ability to share resources like HSMs among multiple customers of the cloud service
provider. We address this issue by introducing master tickets. A master ticket is a way
for an organization to communicate a shared key for the CCS to an HSM, and to claim the

5While this description is not entirely correct, it conveys the basic idea of tickets.
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Figure 13.2: The ElGamal encryption scheme in a group G of prime order p with gener-
ator g; the group and its parameters are chosen by some cryptographic PPT algorithm
GroupGenerator that takes the security parameter A as input

HSM. For this, the shared key is encrypted using CCA-secure public key encryption under
a public key of the targeted HSM. If an HSM receives a master ticket that it can decrypt
and the HSM is not already claimed, the HSM becomes claimed and initializes the CCS to
use the shared key from the master ticket. While the HSM is claimed, it rejects all further
attempts to claim it. Eventually, the organization releases its claim on the HSM. Upon
doing so, the HSM erases the shared key. Afterwards, the HSM can be claimed by the same
or another organization.

13.3 Usage of the Cryptographic Computation Service

We have claimed that the CCS allows for application-specific services to become stateful.
For that, we now demonstrate how a service can store its state in the public cloud in a
secure way and later on recover the state.

In order to store information securely in the public cloud, we need to encrypt the
data. Specifically, we choose the ElGamal [EIG85] public key encryption scheme for that
purpose. The scheme is shown in Figure 13.2 and is known to be CPA-secure if the decisional
Diffie-Hellman assumption holds in the group that the GroupGenerator algorithm outputs.
We use the ElGamal scheme as part of a hybrid encryption scheme, c.f. Section 3.2.4. We
denote the corresponding symmetric encryption scheme as 1. The hybrid version of the
ElGamal scheme is shown in Figure 13.3.

Deriving ticket contents. In order for the hybrid scheme to be used securely in
conjunction with our CCS, we need to analyze the cryptographic keys used in the scheme
and how they are used, and then identify the security implications of a revelation of the
respective key to the public. The ElGamal public key being public means that revelation of
the key happens anyways, so there are no security implications concerning the public key.
On the other hand, if the ElGamal secret key was revealed to the public, all information ever
encrypted under the corresponding public key would be leaked to the public. Therefore,
keeping the key private is of paramount importance and the ElGamal scheme’s secret key
must be kept in the HSM. The symmetric scheme’s secret key is only used for an individual
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KeyGen(1*)
e output ElGamal.KeyGen(1*)

Enc(pk,msgq)

o k< T.KeyGen(1*)

o ¢y < ElGamal.Enc(pk,k)
e ¢ <+ I.Enc(k,msg)

e output (cp,c1)
Dec(sk,ct)

o k< ElGamal.Dec(sk,cp)
e output M1.Dec(k,c;)

Figure 13.3: The hybrid version of the ElIGamal encryption scheme with complementary
symmetric encryption scheme [1

message. If a symmetric key is leaked, this has limited impact on security, because then
only a single message is leaked. Thus, it is acceptable for the symmetric scheme’s secret
key to be used in the trusted cloud, but outside the HSM.

As a consequence of our considerations, the ticket for a stateful application-specific
service that runs in the trusted cloud contains a tuple (state_key, DLog, (pk, sk)). Note
that the key consists of the public and the secret key, so the CCS knows what group to
operate on.

Making services stateful. When a service stores its state, it encrypts the state under
key pk using hybrid EIGamal and stores the resulting ciphertext in the public cloud. When
restoring a state, the service obtains the encrypted state from the public cloud and runs
the decryption procedure from hybrid EIGamal on the ciphertext. The only instruction
the service is unable to perform on its own is the computation of (¢")**. This is where
the service’s ticket and the CCS come in. The service requests the CCS to perform the
operation identified by identifier state_key from the ticket on argument ¢”. All other parts
of ElGamal encryption are performed outside the CCS, but in the trusted cloud. Once the
service has recovered the secret key for the symmetric encryption scheme, it can decrypt
the symmetric ciphertext and then restore its state from the result.

Security. Due to ElGamal decryption being performed completely within the trusted
cloud, all security properties of the EIGamal scheme remain intact. Particularly, to adver-
saries outside the trusted cloud, our adapted ElGamal scheme, with its decryption procedure
jointly performed by a trusted server and an HSM, behaves exactly like the base scheme
does. Concerning adversaries inside the trusted cloud, our use of the trusted compute
server ensures that PPT adversaries learn nothing about the ElGamal secret key that cannot
also be learned from the public key.

Other services. The thought process of our derivation of ticket contents is not specific
to the ElGamal scheme. Indeed, the original work on the BGKL architecture uses the
same thought process to devise what part of an ABE scheme to run on what devices, c.f.
Section 3.2 of [Bl6+17]. In particular, we have adapted the CPA-secure ABE scheme of
Rosuelakis and Waters [RW13] and have applied the outsourced decryption technique of
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Green et al. [GHW11] to the ABE scheme. Due to Green et al.’s technique, in our original
work on the BGKL architecture, we reduce the HSM’s workload to some consistency checks
and an exponentiation, because the most complex aspects of decryption are performed
outside the HSM through “outsourced decryption.” Specifically, outsourced decryption takes
a public key derived from a user’s secret ABE key to strip policy information off of ABE
ciphertexts. The reduced ciphertext then can only be decrypted to a plaintext using a
secret key that complements the public key derived from the user’s ABE key.

The reduced ciphertexts the HSM operates on are triples (7p,71,72) € Gr X G x G
for groups G and Gp of prime order p with a bilinear map e : G x G — G, and two
hash functions Hy : Gr x {0,1}* — Z, and Hs : Gy — {0,1}*, where ) is the security
parameter of the scheme. The private key that complements the public key derived from a
user’s ABE key is an element z € Z,. The reduced ciphertext triples must satisfy

1. R=Ty/T%

2. msg =T, ® Hy(R)

3. s = Hy(R, msg)

4. To = R - e(g,9)**, where e(g, g)* is a public parameter of the ABE scheme.

These consistency checks originate from the Fujisaki-Okamoto transform [FO13], which
transforms cpa-secure asymmetric encryption schemes into cca-secure ones. Here, the
Fujisaki-Okamoto transform is applied to the ABE scheme as part of outsourced decryption.
If a triple satisfies these conditions, the ciphertext is decrypted by the HSM and the
decryption result is the message msg. The message is then further processed by an
application-specific service in the trusted cloud.

When adapting this scheme to work with the CCS rather than an application-specific
HSM, we let the consistency checks and most computations be performed by the respective
application-specific service in the trusted cloud. Then, our CCS only needs to perform the
single exponentiation 75. This is the same operation as in the case of ElGamal decryption,
albeit in a different group, namely, the target group Gr of a bilinear map.

We can also apply the thought process outlined above to searchable symmetric encryp-
tion (SSE). Using the process, we have adapted a single-user SSE scheme to our (improved)
cloud architecture, resulting in a multi-user searchable encryption scheme [BL18]. Specifi-
cally, we have adapted Bost’s Xogog scheme [Bos16], c.f. Section 5.5. For that scheme, the
application-specific service that provides searchable encryption to organizations’ members
needs to rely on the CCS when formulating search queries and, in contrast to the encryption
example, the CCS is used multiple times. Namely, the CCS is required to compute keyword
dependent function keys and for computing the inverse of a trapdoor permutation. Further
application of the CCS is required, because the Xowo¢ scheme requires the service that runs
in the trusted cloud to be stateful: The service needs to remember for each keywords how
many distinct documents contain the keyword.

The Yoyocg scheme is not the only SSE scheme we have adapted to our cloud architecture.
As an alternative to Xowog, we have also adapted the scheme of Etemad et al. [Ete+18].
The adaption of Etemad et al.’s scheme can be found in an extended version of our work
on the BGKL cloud architecture and our improvements [B16+20], not yet submitted for
publication.

As with the ElGamal encryption scheme, when adapting the ABE scheme and the
searchable encryption scheme to be used with our CCS, concerning adversaries outside
our trusted cloud, the security properties of the base schemes carry over to the adapted
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schemes. This is, again, because from outside attackers’ views, the adapted schemes are
indistinguishable from the base schemes. Also as with the EIGamal scheme, adversaries
inside the trusted cloud do not learn more about the secret keys used by the CCS than what
is revealed by function evaluations and tickets. However, we use a CCA-secure encryption
scheme to encrypt tickets. This implies that no PPT attacker can learn any information
on the secret key from the ticket. The security properties of pseudorandom functions and
trapdoor permutations imply that evaluating the functions or their inverses does not allow
PPT adversaries to learn any information about the secret keys involved.

13.4 Trust in the Cloud

As mentioned before, our cloud architecture and the CCS enable organizations to outsource
computations and data storage to the cloud while not fully trusting the cloud service
provider that performs computations or stores the data. This particularly holds with
respect to the cloud service provider running our trusted cloud.

With our cloud architecture, the cloud service provider never gets access to plaintext
data. This is achieved by technical and organizational means that prevent the cloud service
provider from accessing data at the trusted compute server. Beyond the trusted compute
server and the HSMs, data does not exist in plaintext form within out trusted cloud.

The measures taken to secure the trusted compute server take various forms. For
example, there should be multiple levels of physical access restrictions to trusted compute
servers, as to prevent any unauthorized access. The trusted compute servers also lack
persistent memory, as to prevent anyone with authorized physical access to the servers
from getting access to plaintext data. Furthermore, we can rely on remote attestation
in conjunction with signatures on services’ requests at the CCS to prevent impersonation
attacks. Then it is hardly possible for a service that does not run at a trusted compute
server to successfully redeem a service ticket at the CCS. Additionally, trusted compute
servers and the CCS communicate via encrypted channels, so no plaintext data is exchanged
between them.

Similarly, access to plaintext data via trusted storage servers is prevented via encryption.
Services running at trusted compute servers can still access data stored at trusted storage
servers by relying on the CCS for decryption, as shown above for the services’ persistent
states. The same mechanism can also be applied for the organization to securely transmit
data to services running at trusted servers and vice versa, as well as for services running at
trusted compute servers to securely store data at and retrieve data from storage servers in
the public cloud.

The measures taken to make trusted compute servers trusted together with the means
for secure communication and storage of data provided by the CCS make sure that plaintext
data exists in the trusted cloud at only two places, namely, in trusted compute servers and
in HSMs. Both of these places effectively prevent access to the plaintext data. The trusted
compute servers prevent access via technical and organizational means, some of which we
have outlined above. The HSMs prevent access by relying on hardware security.

We have previously mentioned that if a breach of security occurs, a cloud service
provider running our trusted cloud can plausibly deny wrongdoing on their part. This
holds true, because the cloud service provider does not have access to plaintext data. After
all,; the provider cannot leak information it does not have access to. Thus, our cloud
architecture and the CCS at its heart protect organizations’ data when outsourcing data
storage and computation to the cloud, while also protecting the cloud service provider
from being wrongly blamed for security breaches.
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State of the Art

Non-trivial cloud architectures for secure data storage and computation have been rarely
covered by the literature. The literature often assumes the naive cloud model featuring
only users and cloud services and communication features exactly one user and one cloud
service.

Within that setting, secure computation and data storage in the cloud can be achieved
by applying generic techniques. Popular examples of techniques that achieve arbitrary
computation in a generic, yet secure way, are garbled circuits and fully homomorphic
encryption. Concerning storage and communication, there are the techniques of oblivious
RAM and oblivious transfer.

With garbled circuits [Yao86], programs are transformed into circuits that can be
applied to encrypted data and the result of the application is an encryption of the result
of the application of the original program to the plaintext data. A drawback of this
approach is that garbled circuits can only be evaluated once for security reasons, and then
have to be renewed. This makes garbled circuits expensive in terms of computation and
bandwidth, because the circuits need to be computed by the user in order to be secure. As
a consequence, in the simple cloud model, users still have to perform a lot of computations,
that they preferably would not perform themselves.

With fully homomorphic encryption [Gen09], computations can be performed on
homomorphically encrypted data and the result of computations again is homomorphically
encrypted and suitable for further computations up to a certain threshold. After reaching
the threshold, ciphertexts need to be refreshed in order to guarantee that they can eventually
be decrypted, because too many computations may result in decryption failures occurring
with non-negligible probability, c.f. Definition 9. It must be noted, that fully homomorphic
encryption is currently too inefficient to be practical [Bug+11].

With oblivious RAM [GO96], it is possible to hide what memory address has been
effectively accessed and what operation was performed on that address. This is achieved by
reading and writing several cells for each operation, so an observer is unable to distinguish
read access from write access, and is unable to determine the memory cell that holds the
accessed information.

With oblivious transfer [Rab81], two parties can exchange information without learning
what information they have shared. Specifically, one of the parties holds two data items
and the other party chooses which of the data items to access. The party holding the data
does not learn which of the items was accessed and the other party only learns the accessed
data item, but not the other one.
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Concrete techniques for secure computation relying on the simple cloud model are
presented in large volumes in the literature. One example is searchable encryption [SWP00)
(also see Section 5.7). Another example is the suggestion of Troncoso-Pastoriza and Pérez-
Gonzélez to outsource digital signal processing to the cloud by virtualizing (hardware)
signal processors [TP10]. The virtualized processors, called CryptoDSPs, would then be
deployed in the cloud. The processors are supposed to keep the data and the computation
(program) secret. Unfortunately, the authors do not give a concrete instantiation, but
only list (some of the above) generic techniques that can be used to maintain the required
degree of secrecy.

In contrast to generic techniques and the simple cloud model, the works of Sadeghi et al.
[SSW10] and Bugiel et al. [Bug+11] specifically use a non-trivial cloud model. Sadeghi et al.
employ tamper-proof hardware to securely perform computations in the cloud. Specifically,
the hardware is used to compute garbled circuits for the required computations and the
circuits are then evaluated in the cloud. The hardware is given to a cloud service provider
by the user that wants to outsource computations to the cloud.

Bugiel et al. pick up some open questions left in the work of Sadeghi et al. The authors
address secure cloud computing, and suggest a cloud setup similar to ours, consisting
of users, a trusted cloud and the public cloud. The trusted cloud is to achieve security,
while the public cloud is to achieve efficiency. To that end, the trusted cloud computes
garbled circuits that are evaluated in the public cloud. Bugiel et al.’s trusted cloud is
to be instantiated at the user as a private cloud, negating some of the benefits of cloud
computing, or on leased HSMs located in the cloud, which is problematic because HSMs are
not allowed to perform arbitrary computations, c.f. Section 13.1, which would be necessary
for computing circuits. However, Bugiel et al.’s trusted cloud can be implemented by our
trusted cloud.

A non-trivial cloud model can also be found in multi-cloud architectures which feature
cloud resources offered by multiple independent cloud service providers. In this setting,
in order to keep programs or data private, one employs the generic technique of secure
multi-party computation [GMWS8T7]. Proposals that use multi-party computation in this
setting can be found in the work of Loftus and Smart [LS11] and Bohli et al. [Boh+13],
amongst others.

The idea of multi-party computation is for a number of parties to jointly compute a
function of the parties’ private inputs without revealing those inputs to the other parties.
This requires a certain threshold of parties to behave honestly; typically an honest majority
is required. The honesty requirement is the reason why independent cloud service providers
are required in multi-cloud architectures. However, great care must be taken when choosing
providers, because occasionally seemingly independent providers cooperate. For example,
the German telecommunications provider Telekom offers its own “Open Telekom Cloud”
[TSyb], while also hosting parts of Microsoft’s “Azure” cloud [TSya].
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Part V

The Future ...
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Bringing It All Together

In this thesis, we have presented three main research areas, namely, searchable encryption,
reputation systems, and cryptographic cloud architectures. The topics are contextualized
in ways that best illustrate the core purposes of the presented constructions. That is
searchable, yet secure, outsourced document storage for searchable encryption, crowd
work as motivation for our personal reputation system, and secure outsourcing of data
storage and computation as motivation for our cloud architecture. We now apply all our
constructions to crowd work, binding the constructions together in order to address issues
with crowd work that cannot be addressed solely by our personal reputation system.

As stated in Chapters 1 and 9, in crowd work, the crowd invests its labor in exchange
for money, in order to solve tasks proposed by a requester via an open call on the internet.
In practice, the open calls are not directed to everyone. Instead, calls are made via online
platforms to those platforms’ work forces.

In Chapter 9, we have identified the significant impact of a crowd worker’s reputation
on the worker’s earnings. Since platforms store their workers’ reputation as earned on the
respective platform, it is unprofitable for a crowd worker to work on multiple platforms,
assuming a sufficient amount of work is available on that platform. Crowd workers operating
on multiple platforms split their reputation, so no platform is aware of the workers’ total
reputation. As a consequence, workers operating on multiple platforms are not treated as
the reputable workers they are, particularly when compared to workers that have earned
the same total reputation on a single platform.

Platforms focussing on creative tasks often offer requesters to approach highly reputable
workers directly. For example, a designer’s style may appeal to a requester seeking a
new company logo. So the requester may place a direct order with the designer via the
platform, instead of communicating the task via open calls. Requesters directly approaching
individual crowd workers does not fit the strict definition of crowd working. However,
the reputable workers still are crowd workers, who stand out from the crowd due to their
quality work. So, while not strictly being crowd work, we still consider requests directed
at individuals as part of crowd work if the requests are made through a platform that
promotes crowd work and if the targeted individuals are crowd workers on that platform.

This group of crowd workers can greatly benefit from our personal reputation system
from Chapter 10. First, our system allows the workers to earn reputation from multiple
platforms. Second, our system prevents loss of reputation due to unfortunate events,
for example, platform bankruptcy. Crowd workers may also benefit from our personal
reputation system in a third way, namely, if we go beyond reputation. Crowd workers may
have skills and experiences that qualify them for performing certain tasks. For example,
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language skills or experiences working with a certain software may be required for solving
a certain task.

In current practice, platforms require workers to pass tests to verify workers have the
necessary skills and experiences. Workers operating on multiple platforms then have to
pass tests on each platform individually. This redundancy is a waste of the workers’ time
and the platforms’ resources, particularly if each platform has their own version of a test.
Thus, it would be beneficial to workers and platforms to have workers pass a test once and
have the test results documented in a worker’s decentralized platform-independent profile.

By admitting our personal reputation system to include test results as ratings, we make
a first step at evolving our reputation system towards a decentralized platform-independent
profile for crowd workers. Such a profile comes with privacy implications. For instance,
we need to ask what information crowd workers are willing to share with the public and
what information should be restricted to potential requesters. In the setting of crowd
work, everyone is a potential requester, so simply distinguishing potential requesters from
non-requesters is not an option. Instead, we need an access control mechanism that can
work with fine-grained access policies, but is also compatible with the notion of a personal
reputation system. ABE lends itself as an access control mechanism.

Then, we need means for entities authorized to access some information to be able to
search that information. To that end, we can employ searchable encryption with access
control. Admittedly, our constructions of searchable encryption with access control are
possibly not the best options to be combined with our hash chain-based personal reputation
system. This is due to the multi-level index structures in SEAC, dSEAC and DIA, c.f.
Sections 6.2, 6.3 and 7.2, and the limited expressiveness of access policies in RLS, c.f.
Section 7.1. We leave finding a searchable encryption scheme that integrates well with a
personal reputation system as an open problem for future research.

As part of our discussion of practical aspects of our personal reputation system PRS,
c.f. Section 10.3, we consider the possibility of specialized cloud services that operate the
reputation system on crowd workers’ behalves. One advantage of such services is that
crowd workers do not need to concern themselves with the technicalities of operating a
personal reputation system. With our proposed extension of personal reputation systems
towards platform-independent crowd worker profiles, access control mechanisms increase
the number of technicalities. So there is an even greater need for online services operating
crowd workers’ profiles on crowd workers’ behalves.

Running these services securely is a challenge, particularly if we want to mitigate
vendor lock-in. This means, crowd workers must, at all times, maintain full control over
their profiles and be able to migrate the services for their profiles from one cloud service
provider to another. Maintaining full control over their data requires crowd workers to
keep cryptographic keys private and to not reveal the keys to cloud service providers.
Our cloud architecture and the CCS, c.f. Chapter 13, provide means for online services to
operate on crowd workers’ cryptographic keys without the cloud service providers learning
the keys. Then, crowd workers only need to run the organizational key store from our
architecture. Due to the setting, we assume the organizational key store to be rather simple
and bundled with a client-side application that, apart from storing master keys for the
personal reputation system and a searchable encryption scheme with access control, also
has the capacity to generate such keys. As a result, crowd workers do not need to concern
themselves with technicalities. They simply install an application on their devices, choose
the cloud service provider they want to use, and everything beyond is handled automatically
by the application. We leave realizing this idea as future work for the members of research
program “Digital Future.”
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