
Efficient algorithmic differentiation of CAD

frameworks

Mladen Banović

Dissertation

Advisor: Prof. Dr. Andrea Walther

Paderborn, December 19, 2019

Acknowledgments

The past four years at Paderborn University (UPB) have been an unforgettable and

wonderful journey of my life. I owe my deepest gratitude to my advisor Prof. Dr. An-

drea Walther for giving me an opportunity to work under her guidance in one of the

most inspiring and challenging ventures I have encountered so far.

This research is part of the IODA project — Industrial Optimal Design using Adjoint

CFD. IODA is a Marie Sk lodowska-Curie Innovative Training Network (ITN) funded

by the European Union’s Horizon 2020 research and innovation program under the

Grant Agreement No. 642959. I find IODA ITN to be a brilliant concept that

provided me a working experience both in academic and industrial environment.

One of the key aspects of an ITN is mobility. That is, during my fellowship I

have taken a number of secondments to IODA associates: Open CASCADE (OCC),

Queen Mary University of London (QMUL), Rolls-Royce Deutschland (RRD) and

the von Karman Institute for Fluid Dynamics (VKI). Being internationally mobile

while doing research is relevant both for professional and personal development. I

am grateful to many people with whom I collaborated and from whom I have learned

a lot. Without these collaborations, certain results achieved in this work would not

be possible. Beside providing the partnership opportunities, the ITN offered various

trainings and workshops to elevate research and transferable skills. Here, I want to

thank the project coordinator Dr. Jens-Dominik Müller (QMUL) and the project

administrator Susan Barker (QMUL) for their organization and enthusiasm, as well

as the European Commission for funding the whole program.

During my research stay at OCC (France) in 2015 I received a great support from

Dr. Herve Legrand and Sergey Slyadnev, which eventually helped me to overcome the

core assignment of my IODA fellowship — algorithmic differentiation of the Open

CASCADE Technology CAD kernel. I would like to extend my deepest gratitude to

IODA fellows Orest Mykhaskiv (QMUL) and Salvatore Auriemma (OCC), as well

as their advisor Dr. Jens-Dominik Müller, who worked with me on a regular basis

from that point until the end of the project.

Regarding the collaboration with VKI, I want to thank Dr. Ismael Sanchez Torregui-

tart and Prof. Dr. Tom Verstraete for their encouragement and knowledge sharing.

I would like to offer my special thanks to Dr.-Ing. Marcus Meyer (RRD) for inviting

me to Rolls-Royce premises where I had the opportunity to work on industrial

problems. His support is highly appreciated as well as the joint work with Ilias

Vasilopoulos (RRD). Moreover, advices from Dr.-Ing. Peter Flassig (RRD) and Dr.-

Ing. André Huppertz (RRD) have been a valuable help in understanding design

principles of turbo-machinery blades.

Thanks should also go to present and former colleagues of the group ‘Mathematics

and its Applications’ at UPB for their insightful comments. I would like to recognize

the assistance I received from Dr. Kshitij Kulshreshtha about the field of algorithmic

differentiation and the software tool ADOL-C.

Last, but not least, my heartfelt appreciation goes to my whole family in Croatia,

especially to my sister Ružica Banović who has moved two years ago to Germany

to live with me. I am thankful to them for believing in me and giving me constant

support in pursuing this life-changing adventure.

4

Abstract

Computer Aided Design (CAD) systems and tools are considered essential for indus-

trial design. They construct and manipulate the geometry of a certain component

with an arbitrary set of design parameters. However, contrary to e.g. Computational

Fluid Dynamics (CFD) solvers, shape sensitivities for gradient-based optimization

of CAD-parametrized geometries have been so far only available with inaccurate

finite differences. Here, Algorithmic Differentiation (AD) is applied to three CAD

libraries to obtain the exact derivative information. This represents the first time

that AD has been integrated into a CAD framework.

First, the open-source CAD kernel Open CASCADE Technology (OCCT) is differ-

entiated using the AD software tool ADOL-C (Automatic Differentiation by Over-

Loading in C++). Furthermore, the differentiated OCCT is coupled with the dis-

crete adjoint CFD solver STAMPS (Source-Transformation Adjoint Multi-Physics

Solver), developed at Queen Mary University of London and also produced by AD.

This achievement represents the first example of a complete differentiated design

chain built from generic, multi-purpose tools. The design chain is demonstrated on

the gradient-based shape optimization of two turbo-machinery test-cases: a U-bend

cooling channel and the TU Berlin (TUB) TurboLab stator. In both cases, the aim

is to minimize the total pressure loss. Moreover, the optimization framework is ex-

tended to support assembly constraints of the TUB stator test-case. In particular,

there are four mounting bolts (cylinders) that are pierced inside the volume of the

blade and they serve to mount the blade to the stator assembly. Their optimal posi-

tion during the aerodynamic shape optimization — that ensures there is no collision

between the optimal blade and the cylinders — is accomplished using the derivative

information from the differentiated OCCT.

Second, the reverse mode of ADOL-C is integrated into the in-house CAD and mesh

generation tool CADO (Computer Aided Design and Optimization) developed at

the von Karman Institute for Fluid Dynamics. The differentiated CADO tool is

used for the derivative computation of the LS89 axial turbine test-case. However,

due to large memory consumption of the differentiated sources, the source code is

modified by exploiting the structure of the mesh generation algorithm to benefit

from an improved efficiency.

Finally, the Rolls-Royce in-house airfoil design and blade generation tool Parablading

is differentiated using the AD software tools ADOL-C and Tapenade. The differen-

tiated Parablading tool is coupled with a discrete adjoint CFD solver that is part

of the Rolls-Royce in-house HYDRA suite of codes, also produced by AD. This dif-

ferentiated design chain is utilized to perform gradient-based shape optimization of

the TUB TurboLab stator test-case with the aim to minimize the total pressure loss

and exit angle deviation objectives. The resulting shape is entirely different from

conventional results achieved so far.

Keywords: Algorithmic Differentiation, CAD kernel, Adjoint CFD method,

Gradient-based optimization.

6

Zusammenfassung

Computer Aided Design (CAD) Systeme und Werkzeuge sind essenzielle Bestand-

teile in Prozessen des industriellen Designs. Diese konstruieren und modifizieren die

Geometrie von Komponenten mit verschiedensten Designparametern. Im Gegensatz

zum großen Bereich der numerischen Strömungsmechanik (Computational Fluid Dy-

namics — CFD) wurden die geometrische Sensitivitäten — für Gradienten-basierte

Optimierung von CAD-parametrisierter Geometrie — bislang nur mit ungenauen

Finiten Differenzen berechnet. In der vorliegenden Arbeit wird das Algorithmische

Differenzieren (AD) auf drei CAD Ansätze angewandt, um die exakten Ableitungen

zu berechnen. Dies ist das erste Mal, dass AD in ein CAD Framework integriert

wird.

Im ersten Teil der vorliegenden Arbeit wird der Open-Source CAD Kernel Open

CASCADE Technology (OCCT) durch die Anwendung des AD Werkzeugs ADOL-

C (Automatic Differentiation by OverLoading in C++) differenziert. Außerdem wird

das differenzierte OCCT mit dem diskreten adjungierten CFD Werkzeug STAMPS

(Source-Transformation Adjoint Multi-Physics Solver) gekoppelt, welches an der

Queen Mary University of London entwickelt wurde und AD verwendet, um Ad-

jungierte zu berechnen. Dieses Ergebnis stellt das erste Beispiel einer vollständig

differenzierten Design Kette dar, welche auf generischen Werkzeugen basiert. Diese

Design Kette wird zur Gradienten-basierten Formoptimierung zweier industrierele-

vanter Beispiele genutzt: ein U-Rohr Kühlkanal und der TU Berlin (TUB) TurboLab

Stator. In beiden Fällen ist es das Ziel, den allgemeinen Druckverlust zu minimie-

ren. Anschließend wird der Optimierungsprozess weiterentwickelt, um geometrische

Nebenbedingungen des TUB Stator Beispiels berücksichtigen zu können. Es gibt

vier Befestigungsschrauben (Zylinder), die in der Schaufel angebracht sind. Diese

verbinden die Schaufel mit dem kompletten Stator. Die optimale Position während

der aerodynamischen Formoptimierung wird durch die Nutzung der Ableitung des

differenzierten OCCTs erreicht. Dadurch kann garantiert werden, dass es zu keinem

Durchdringen der optimierten Schaufel und den Zylindern kommt.

Im zweiten Teil der Arbeit wird der Rückwärtsmodus von ADOL-C in das pro-

prietäre CAD und Gittergenerierung Werkzeug CADO (Computer Aided Design

and Optimization), welches am von Karman Institute for Fluid Dynamics entwi-

ckelt wurde, integriert. Das differenzierte CADO Werkzeug wird für die Berechnung

der Ableitung des LS89 axial turbine Beispiels genutzt. Aufgrund des großen Spei-

cherplatzbedarfs des differenzierten Programms wird der Code so modifiziert, dass

die Struktur des Gittergenerierung-Algorithmus ausgenutzt wird, um die Effizienz

zu erhöhen.

Abschließend wird das proprietäre Rolls-Royce Schaufel Design Werkzeug Parabla-

ding betrachtet. Hier finden die AD Werkzeuge ADOL-C und Tapenade Einsatz. Das

differenzierte Parablading Werkzeug wird mit einem diskreten adjungierten CFD

Werkzeug, welches Teil der proprietäre Rolls-Royce HYDRA Bibliothek ist und mit

Hilfe von AD entwickelt wurde, gekoppelt. Die differenzierte Design Kette wird ge-

nutzt, um eine Gradienten-basierte Optimierung des TUB TurboLab Stator Beispiels

durchzuführen. Das Ziel ist es, den Druckverlust und die Abweichung des Winkels zu

minimieren. Die erzielten Ergebnisse unterscheiden sich fundamental von der bislang

möglichen Formoptimierung.

Stichworte: Algorithmisches Differenzieren, CAD Kernel, Adjungierter CFD An-

satz, Gradienten-basierte Optimierung

8

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Parametrization approaches: CAD-free vs. CAD-based 3

1.3 Current approaches to evaluate derivatives in CAD environment . . 4

1.4 Thesis contribution . 6

1.4.1 Other contributions and collaborations 6

1.5 Thesis structure . 8

2 Test-cases 11

2.1 Parametrization with OCCT . 11

2.1.1 U-bend . 11

2.1.2 TU Berlin stator . 12

2.2 TU Berlin stator parametrization in Rolls-Royce workflow 14

3 Algorithmic differentiation of OCCT 19

3.1 Introduction to OCCT . 19

3.2 Introduction to algorithmic differentiation 22

3.3 Introduction to ADOL-C . 23

3.3.1 Traceless differentiation variant 24

3.3.2 Trace-based differentiation variant 26

3.4 Approaches of differentiating OCCT 29

3.4.1 A sample class . 30

3.4.2 The code duplication approach 31

3.4.3 The inheritance approach . 33

3.4.4 The controller approach . 34

3.4.5 The templating approach . 35

3.4.6 The typedef approach . 36

3.4.7 Compile and run-time issues of OCCT differentiation 37

3.5 Verification of differentiated OCCT 41

3.5.1 Primal functionality validation of differentiated OCCT 41

3.5.2 Gradient verification using U-bend parametrization 42

i

Contents

3.5.3 Gradient verification using TU Berlin stator blade parametri-

zation . 44

3.6 Performance tests of differentiated OCCT 48

3.6.1 Performance of U-bend CAD application 48

3.6.2 Performance of TU Berlin stator CAD application 52

3.7 Summary . 56

4 Aerodynamic shape optimization with differentiated OCCT 59

4.1 Mathematical formulation of CAD-based optimization with adjoint

method . 59

4.2 STAMPS flow solver . 62

4.3 Gradient-based shape optimization framework 63

4.4 U-bend optimization results . 65

4.5 TU Berlin stator optimization results 68

4.6 Summary . 71

5 TU Berlin stator optimization with assembly constraints 73

5.1 Implementation of stator assembly constraints 75

5.1.1 Intersection approach . 75

5.1.2 Interference detection approach based on distance between

shapes . 78

5.1.3 Cylinder positioning during shape optimization 80

5.2 Optimization results . 81

5.3 Summary . 87

6 Improved AD of the VKI in-house CAD and grid generation tool 89

6.1 Mesh generation of LS89 axial turbine profile 91

6.2 Structure-exploiting AD of mesh smoothing process 93

6.2.1 Tailoring trace size to application requirements 98

6.2.2 Coupling ADOL-C drivers to evaluate derivatives 99

6.2.3 Handling conditional branches in mesh smoothing 103

6.2.4 Gradient verification . 105

6.3 Performance tests of differentiated CADO 105

6.4 Summary . 109

ii

Contents

7 Algorithmic differentiation of an industrial airfoil design tool 111

7.1 Parablading differentiation . 111

7.1.1 Introduction to Tapenade . 111

7.1.2 Mixed-language AD of Parablading 112

7.1.3 Parablading differentiation issues 119

7.1.4 Maintenance aspects . 124

7.2 Verification of differentiated Parablading 125

7.2.1 Geometric derivative validation 125

7.2.2 Performance test . 126

7.3 Gradient-based optimization of TU Berlin stator 130

7.3.1 Objective functions . 130

7.3.2 CFD setup and optimization workflow 130

7.3.3 Optimization results . 132

7.4 Summary . 133

8 Conclusion 137

8.1 Future work and research direction 141

Bibliography 143

iii

List of Figures

1.1 Design chain . 2

2.1 U-bend parametrization in OCCT 12

2.2 TUB 2-D section parametrization in OCCT 13

2.3 TUB blade parametrization in OCCT 14

2.4 TUB 2-D section parametrization in Parablading 15

2.5 TUB blade parametrization in Parablading 16

3.1 OCCT modules . 21

3.2 U-part geometric sensitivities evaluated with AD (left) and FD (right) 42

3.3 Taylor test overview for eight U-bend surface point coordinates . . . 43

3.4 TUB stator blade geometric sensitivities evaluated with AD (left) and

FD (right) . 45

3.5 Taylor test overview for eight TUB blade surface point coordinates . 46

3.6 CAD optimization with two U-bends 49

3.7 Summary of run-time ratios (left) and total memory requirements

(right) for U-bend example . 51

3.8 CAD optimization with two TUB stator blades 53

3.9 Summary of run-time ratios for TUB stator example 55

3.10 Summary of memory requirements for TUB stator example 55

4.1 Gradient-based optimization workflow 64

4.2 U-bend optimization results . 67

4.3 Left: Baseline and optimized mid-span velocity magnitude; Right:

Flow streamlines in the outlet leg of U-bend 67

4.4 TUB stator optimization history (low-fidelity CFD simulation) . . . 69

4.5 Left: Baseline (red) and optimal (blue) TUB blade geometry (low-

fidelity CFD simulation); Right: Comparison of mid-sections 70

4.6 TUB stator optimization history (high-fidelity CFD simulation) . . . 70

4.7 Left: Baseline and optimal velocity distribution at TE (high-fidelity

CFD simulation); Right: Comparison of of baseline and optimal geo-

metry and mid-sections . 71

v

List of Figures

5.1 Top-view on the stator vane . 74

5.2 Example of constraint violation between TUB blade and one cylinder 76

5.3 Total intersection area with respect to (x, y) coordinates of the cylinder 77

5.4 BRepAlgoAPI Section algorithm fails to compute all intersection edges 78

5.5 Example of point cloud for one cylinder 79

5.6 Two distances between cylinder and blade 80

5.7 Inequality constraints definition . 80

5.8 Mid-line example and minimum distance between two cylinders . . . 81

5.9 TUB stator optimization history with assembly constraints (low-fidelity

CFD simulation) . 83

5.10 Comparison between initial (left) and optimal (right) blade geometry

with cylinders (low-fidelity CFD simulation) 83

5.11 TUB stator optimization history with assembly constraints (high-

fidelity CFD simulation) . 85

5.12 Comparison of baseline (gray) and optimal (green) TUB blade geo-

metry and mid-sections (high-fidelity CFD simulation) 85

5.13 Comparison between the mid-span velocity distribution of the initial

(top) and final (bottom) iteration of the optimization 86

6.1 LS89 multi-block mesh topology . 91

6.2 LS89 smoothed multi-block mesh . 92

6.3 Improved trace structure of differentiated CADO 94

6.4 ADOL-C driver coupling . 101

6.5 ADOL-C driver coupling with checkpoints 103

6.6 Run-time ratio vs. memory consumption for different AD modes with

respect to p = 22 directions (corresponds to Table 6.2) 107

6.7 Run-time ratio vs. memory consumption for different AD modes with

respect to p = 230 directions (corresponds to Table 6.3) 108

7.1 Mixed-language AD applied to Parablading 113

7.2 TUB surface sensitivities evaluated with AD (left) and FD (right) . 126

7.3 Taylor test for eight TUB surface point coordinates 127

7.4 Summary of run-time ratios (left) and total memory requirements

(right) for TUB test-case . 129

vi

List of Figures

7.5 Gradient-based optimization workflow 131

7.6 Optimization history . 133

7.7 Baseline (grey) vs. optimal (green) geometry 134

7.8 Exit whirl angle distribution for baseline (left) and optimum (right)

blade . 134

vii

List of Tables

3.1 OCCT Automated Testing System final results 41

3.2 AD and FD values comparison for several U-bend point coordinates 42

3.3 AD traceless-forward and AD trace-based forward gradient compari-

son for several U-bend point coordinates 44

3.4 AD traceless-forward and AD trace-based reverse gradient compari-

son for several U-bend point coordinates 44

3.5 AD and FD values comparison for several TUB stator blade point

coordinates . 45

3.6 AD traceless-forward and AD trace-based forward gradient compari-

son for several TUB blade point coordinates 46

3.7 AD traceless-forward and AD trace-based reverse gradient compari-

son for several TUB blade point coordinates 47

3.8 Activity analysis forward AD derivative verification on several TUB

blade point coordinates . 47

3.9 Activity analysis reverse AD derivative verification on several TUB

blade point coordinates . 48

3.10 U-bend single optimization iteration timings for original and differen-

tiated sources with number of directions p = 1 (scalar mode) 50

3.11 U-bend single optimization iteration timings with original and diffe-

rentiated sources with number of directions p = 96 (vector mode) . . 50

3.12 TUB stator single optimization iteration timings for original and dif-

ferentiated sources with number of directions p = 1 (scalar mode) . . 53

3.13 TUB stator single optimization iteration timings with original and

differentiated sources with number of directions p = 184 (vector mode) 54

3.14 ADOL-C trace buffers . 56

5.1 Constraints values for baseline and optimal geometry 84

6.1 Gradient comparison (dJ/dα) between black-box reverse AD and

structured reverse AD . 105

ix

List of Tables

6.2 Run-time and memory requirements of differentiated CADO with re-

spect to LS89 profile defined by 22 design parameters 106

6.3 Run-time and memory requirements of differentiated CADO with re-

spect to LS89 profile defined by 230 design parameters 108

7.1 AD and FD values comparison for several TUB surface point coordinates126

7.2 Original vs. differentiated sources with the number of directions p = 1

(scalar mode) and p = 196 (vector mode) 127

x

Nomenclature

List of abbreviations

2-D two-dimensional

3-D three-dimensional

AD Algorithmic/Automatic Differentiation

ADOL-C Automatic Differentiation by OverLoading in C++

BFGS Broyden-Fletcher-Goldfarb-Shanno

BRep Boundary Representation

CAD Computer Aided Design

CADO Computer Aided Design and Optimization

CAE Computer Aided Engineering

CAM Computer Aided Manufacturing

CFD Computational Fluid Dynamics

CSM Computational Structural Mechanics

ESR Early Stage Researcher

FD Finite Differences

GUI Graphical User Interface

IGES Initial Graphics Exchange Specification

IODA Industrial Optimal Design using Adjoint CFD

ITN Innovative Training Network

L-BFGS-B Limited-memory BFGS with Box constraints

xi

List of Tables

LE Leading Edge

NSPCC NURBS-based Parametrization with Complex Constraints

NURBS Non-Uniform Rational B-Spline

OCC Open CASCADE

OCCT Open CASCADE Technology

PDE Partial Differential Equation

PS Pressure Side

QMUL Queen Mary University of London

RAM Random-Access Memory

RANS Reynolds-Averaged Navier-Stokes

RRD Rolls-Royce Deutschland

S-D Steepest-Descent

SLSQP Sequential Least SQuares Programming

SS Suction Side

STAMPS Source-Transformation Adjoint Multi-Physics Solver

STEP STandard for the Exchange of Product model data

STL STereoLithography

Tcl Tool Command Language

TE Trailing Edge

TUB Technical University of Berlin

UPB Paderborn University

VKI von Karman Institute for Fluid Dynamics

xii

1
Introduction

1.1 Motivation

Computer Aided Design (CAD) systems and tools are considered essential for indus-

trial design. They create and manipulate the geometric representation of a certain

component with an arbitrary set of design parameters. This geometric representation

serves to generate a computational domain (mesh) for Computer Aided Engineering

(CAE). CAE packages such as Computational Fluid Dynamics (CFD) or Compu-

tational Structural Mechanics (CSM) use these meshes when solving the governing

partial differential equations (PDEs) to evaluate the design performance. After a

number of design iterations, the selected CAD model can be manufactured using

Computer Aided Manufacturing (CAM). This complete process represents the so-

called CAD/CAE/CAM workflow. The first two elements of this workflow (CAD

and CAE) form the so-called design chain — illustrated in Fig. 1.1.

To obtain an optimal design, one typically employs shape optimization techniques

that are nowadays profoundly used in aeronautical and automotive industry. With

advances in computational power and numerical simulation methods (e.g. CFD,

CSM), the product development cycle is driven by shape optimization methods,

especially in its early development phase to accelerate design studies and reduce

experimental cost.

Optimization algorithms systematically explore the design space to find the optimal

solution. They are divided into two categories: gradient-free [CSV09] and gradient-

based optimization methods.

The gradient-free methods, such as Particle Swarm Optimization [Ken10] or Evolu-

tionary Algorithms [Bac96], require only the primal value of the objective function to

1

1 Introduction

CAD Computational grid (mesh) CAE

Figure 1.1: Design chain

be optimized. They treat each element of the chain in a black-box fashion and hence

it is straightforward to build the CAD/CAE optimization workflow. Nevertheless,

the gradient-free approaches require a substantial amount of function evaluations.

When these evaluations involve CAE tools such as CFD — that often have rich

design spaces and large computational cost — the gradient-free methods become

prohibitively expensive for industrial applications.

To reduce the cost of the gradient-free approaches in aerodynamic shape optimiza-

tion, one employs surrogate methodologies to build meta-models that mimic the

behavior of expensive CFD simulations [IQ13]. Here, the challenge is to develop

a meta-model that is as accurate as possible, by running only a few high-fidelity

simulations during the whole optimization process. Therefore, the chosen data-set

to train the meta-model highly influences the search direction and quality of the

optimum. Nevertheless, this approach is useful for searching global behavior of the

system being optimized, especially for the preliminary design studies.

On the other hand, the gradient-based methods are recognized for their computa-

tional efficiency when optimizing cases with many design variables and therefore are

considered in this work. Although gradient-based non-linear solvers converge to a

locally optimal point, they are acceptable for industrial applications where the ini-

tial design is based on engineering knowledge and experience, thus characterized by

satisfying aerodynamic properties. Therefore, even a couple of incremental design

updates during the optimization would already provide an improved design in terms

of its performance. However, to involve these methods into the shape optimization,

gradients need to be computed for each element in the design chain.

2

1.2 Parametrization approaches: CAD-free vs. CAD-based

Over the past few decades, the adjoint approach [Pir74, Jam89, GDMP03] in CFD

codes is considered as state-of-the-art for evaluating gradients because its computa-

tional cost is independent on the number of design variables and near-constant to

the primal evaluation.

Today, industrial application of gradient-based optimization is primarily limited by

the immaturity of the parametrization tools that define the design space. That is,

computing CAD gradients still remains challenging.

So far, the derivative computation for a complete design chain, ranging from the

parametrization to desired objective value, has not been demonstrated with exact

gradient computation. Robinson et al. [RAC+12] used rather inaccurate finite dif-

ferences (FD) to evaluate gradients in commercial CAD systems. An alternative

is to use non-CAD parametrization [GWMW07] that can be entirely differentiated,

however offering limited versatility. Most importantly, the optimal shape exists as

a deformed mesh rather than in a CAD format, which implies a severe shortcoming

for the industrial CAD/CAE/CAM workflow. This gap is closed by the results pre-

sented in this work which, among others, is the algorithmic differentiation (AD) of

involved CAD libraries.

1.2 Parametrization approaches: CAD-free vs. CAD-based

CAD-free methods, also referred to as node- or mesh-based approaches, are typ-

ically used within gradient-based optimization workflow. Here a displacement of

every grid point coordinate is considered as a design variable, thus providing the

richest design space that optimizers can explore. However, to avoid oscillatory

shapes, one requires regularization of the gradients, often chosen as implicit [JV00]

or explicit [JM08] smoothing. Other popular approaches to manipulate grid points

are: (i) auxiliary grid perturbations such as Free-Form deformation (FFD) which

interpolates the deformation of the domain within the control lattice of a volume

spline [SP86, JA07], (ii) a globally interpolated distortion field from radial basis

functions (RBF) [DBVdSB06] or (iii) lattices of Hicks-Henne bumps [HH78].

A major drawback of the CAD-free methods is that the optimal shape exists only as

a mesh, rather than in a CAD-specific format. Importing it back to a CAD system

3

1 Introduction

for further investigation is a difficult task. Usually the importing step involves sig-

nificant approximations that impair the optimality of the shape. Another difficulty

is to include geometric constraints that are crucial for the optimization of industrial

components.

On the contrary, CAD-based methods resolve these issues by keeping a CAD frame-

work in the design loop. Therefore, the optimal shape exists in the CAD-specific

format and it is available for further multi-disciplinary analysis and finally manu-

facturing.

1.3 Current approaches to evaluate derivatives in CAD

environment

To integrate the parametric CAD description into a gradient-based optimization

framework, one requires the calculation of the so-called shape sensitivities with re-

spect to design parameters of the model to be optimized. However, computing CAD

gradients is a difficult task and usually this information is not provided in commer-

cial CAD systems, e.g. SIEMENS NX, SolidWorks or CATIA V5.

Agarwal et al. [ARA+18b] compute the shape sensitivity (also referred to as design

velocity) in the commercial CAD systems through FD. Here, a step size (perturba-

tion) has to be carefully chosen for each design parameter used in a CAD feature

tree to limit truncation errors. Moreover, to avoid any issues with possible topology

changes (patch renumbering), they approximate the original and perturbed geome-

tries using surface tessellation of linear triangular elements (also referred to as the

faceted representation). This introduces an additional step of surface-to-surface pro-

jections to compute the distances between the unperturbed and perturbed surface

facets. Nevertheless, this method fits in a wide range of industrial applications where

closed-source CAD software is commonly used.

Xu et al. [XJM13, XRMM15] use NURBS (Non-Uniform Rational B-Spline) patches

in the CAD-native boundary representation (BRep). They developed a geomet-

ric kernel, namely the ‘NURBS-based Parametrization with Complex Constraints’

(NSPCC), which considers only the BRep as given, e.g. in the standardized STEP

(STandard for the Exchange of Product model data) format, therefore ignoring any

4

1.3 Current approaches to evaluate derivatives in CAD environment

internal representation of a CAD system. For this reason, the method is considered

as vendor-neutral. For computing the derivatives, the NSPCC kernel is differentiated

using the source-transformation AD tool Tapenade.

Sanchez Torreguitart et al. [STVM18] differentiated the in-house CAD kernel CADO

(Computer Aided Design and Optimization) developed at the von Karman Institute

for Fluid Dynamics (VKI), using the AD tool ADOL-C (Automatic Differentiation

by OverLoading in C++). They performed aerodynamic CAD-based shape opti-

mization of the LS89 axial turbine nozzle guide vane profile [ALR90], where the

gradients are computed with respect to engineering design parameters such as axial

chord length, trailing edge radius, etc.

Dannenhoffer and Haimes used the open-source CAD kernel Open CASCADE Tech-

nology (OCCT) to develop a fully-parametric, feature-based solid-modeling system

with web-based user interface [HD13]. To obtain the derivatives they applied ana-

lytic differentiation to simple geometrical shapes (such as circles or cylinders), while

finite differences are used for the more complex geometries [DH15]. They also con-

sidered AD of the OCCT code, but did not demonstrate an implementation due to

the high complexity of the source code.

As demonstrated in this study, the AD of OCCT is indeed feasible. Here, the most-

widely used CAD kernel OCCT is differentiated in forward and reverse mode of the

AD tool ADOL-C. This work is the first instance a fully developed CAD kernel has

been differentiated.

Comparing to other CAD-based approaches, the application of AD to a complete

CAD kernel offers a number of significant advantages. As opposed to the FD ap-

proaches [RAC+12, ARA+18b], the AD method does not require the computation

of perturbed geometries, therefore avoiding the risk of topology changes. Further-

more, the geometric derivatives are not affected by truncation or projection errors,

but are exact up to machine accuracy. Finally, the computational efficiency of the

AD method can be demonstrated to be superior compared to the FD approach,

especially when using a large number of design variables.

5

1 Introduction

1.4 Thesis contribution

This work improves CAD-based optimization workflows using gradient-based meth-

ods by applying the AD technique to the existing CAD libraries, in order to compute

the shape sensitivities that are typically not available with the exact gradient com-

putation. The AD-enabled CAD packages are successfully coupled with discrete

adjoint CFD solvers (that are also produced by AD), thus providing complete dif-

ferentiated design chains at hand. These differentiated design chains are utilized to

perform aerodynamic gradient-based optimization of industrial components.

There are several novel contributions of this dissertation:

• AD of the general-purpose open-source CAD kernel OCCT.

• Validation of the differentiated OCCT in the aerodynamic gradient-based op-

timization of parametric CAD models.1

• Integration of geometric constraints in the gradient-based optimization using

the differentiated version of the OCCT kernel.1

• Improved AD of the VKI in-house CAD and mesh generation tool CADO.1

• AD of an industrial CAD tool, namely the Rolls-Royce in-house airfoil design

and blade generation tool Parablading.

• Validation of the differentiated Parablading in the aerodynamic gradient-based

optimization of an industrial component.1

1.4.1 Other contributions and collaborations

Applications of the differentiated CAD libraries into the gradient-based optimization

workflows have been conducted among partners within the project IODA2 (Industrial

Optimal Design using Adjoint CFD) funded by the European Commission. During

the project, the author has taken a number of secondments to IODA associates:

Open CASCADE (OCC), Queen Mary University of London (QMUL), Rolls-Royce

Deutschland (RRD) and von Karman Institute for Fluid Dynamics (VKI). These

research activities and collaborations made a significant contribution to this disser-

1Read Sec. 1.4.1

6

1.4 Thesis contribution

tation — certain results would not be even possible without them.

First, three early-stage researchers (ESRs) performed a short research activity (the

second half of the year 2015) together at OCC premises to start with the differ-

entiation of the OCCT kernel: Mladen Banović (ESR12, Paderborn University)

— the author of this dissertation, Orest Mykhaskiv (ESR2, QMUL) and Salva-

tore Auriemma (ESR9, OCC). With support of Sergey Slyadnev (OCC), several

differentiation approaches resulting in different code modifications were discussed.

After an agreement, the chosen differentiation approach was performed by the au-

thor at Paderborn University (UPB) to integrate the AD software tool ADOL-

C into the OCCT sources. The geometric derivatives were successfully verified

against finite differences, using the following parametric models: (i) a U-bend cool-

ing duct and (ii) the TU Berlin (TUB) TurboLab stator. These parametric mod-

els were designed and coded in OCCT by ESR9. Moreover, ESR2 created an op-

timization framework to couple the differentiated OCCT with a discrete adjoint

CFD solver developed at QMUL. The author also contributed to the optimiza-

tion framework with the derivative computation of the parametric models. This

framework has been used for a gradient-based optimization of the parametric U-

bend and TUB stator models and the results are elaborated in common publica-

tions [ABM+16, BMA+18, MBA+18, ABW+18]. Furthermore, in a collaboration

with ESR9, the author expanded the gradient-based optimization framework to han-

dle assembly (geometric) constraints of the TUB stator test-case, using the derivative

information from the differentiated OCCT.

Second, the VKI in-house CAD and grid generation tool CADO was differentiated

using the reverse mode of ADOL-C in a collaboration with Ismael Sanchez Torre-

guitart (ESR13, VKI) and used for the derivative computation of the LS89 axial

turbine test-case. However, the reverse differentiated CADO sources consumed a

large amount of memory (more than 30 GB of memory). For this reason, further

work was carried out by the author to perform structure exploitation, i.e. to modify

the reverse differentiated CADO sources to increase their efficiency.

Finally, the AD of the industrial airfoil design tool Parablading was performed solely

by the author at RRD. However, its integration into the Rolls-Royce optimization

2https://ioda.sems.qmul.ac.uk/

7

1 Introduction

workflow was carried out in a collaboration with Ilias Vasilopoulos (ESR11, RRD)

to optimize the TUB stator component. The results are published as a scientific

article in the ‘Optimization and Engineering’ journal [BVWM19].

1.5 Thesis structure

The thesis is structured as follows.

Chapter 2 explains the parametrization principles used to construct three CAD

models optimized in this work. First, the parametric models of the U-bend cooling

duct and the TUB stator blade are defined using the OCCT kernel. Second, the TUB

stator blade is also parametrized using the Rolls-Royce in-house airfoil design and

blade generation tool Parablading. Although the author did not parametrize these

models, it is important to explain how the mentioned components are constructed

because the underlying CAD sources were differentiated to compute the geometric

sensitivities.

Chapter 3 describes the algorithmic differentiation of the OCCT CAD kernel. It of-

fers a discussion about several investigated approaches to differentiate OCCT among

with compile- and run-time issues faced upon the differentiation process. After the

successful differentiation, the primal functionality is validated using an automated

test system. Moreover, the gradients evaluated with AD are verified against FD, by

using the parametric models of the U-bend duct and the TUB stator blade. Finally,

Chapter 3 presents performance tests of the differentiated OCCT.

Chapter 4 presents the governing equations for a flow problem and its adjoint, to-

gether with an assembly of the relevant derivatives. That is, it explains how the

differentiated OCCT is coupled with the STAMPS (Source-Transformation Adjoint

Multi-Physics Solver) flow solver to form the gradient-based shape optimization

framework. Finally, it shows an application of the complete differentiated design

chain to the gradient-based optimization of the U-bend duct and the TUB stator

blade.

Chapter 5 expands the optimization workflow explained in Chapter 4 by handling

assembly constraints defined for the TUB stator test-case. In particular, the blade

has to accommodate four mounting bolts (cylinders) that serve to attach the blade

8

1.5 Thesis structure

to its casing. This is a rather challenging geometric requirement to fulfill because

the position of the cylinders is arbitrary in the blade whose shape is changing during

the optimization process. The proposed method to tackle this constraint, i.e. that

ensures there is no interference between the optimal blade and the cylinders, is

elaborated in the chapter, together with the optimization results.

Chapter 6 explains improved AD of the VKI in-house CAD and grid generation tool

CADO. The CADO sources are differentiated using the reverse mode of ADOL-C to

compute the derivative information of the LS89 axial turbine test-case. Nevertheless,

the differentiated CADO tool required a large amount of memory (more than 30 GB).

Therefore, the structure exploitation of the differentiated sources is performed to

benefit from an improved efficiency.

Chapter 7 describes the algorithmic differentiation of the Rolls-Royce in-house airfoil

design and blade generation tool Parablading. Moreover, it presents the derivative

verification and the performance tests of the differentiated sources. After the suc-

cessful differentiation, the Parablading tool is coupled with a discrete adjoint CFD

that is part of the Rolls-Royce in-house HYDRA suite of codes. Furthermore, the

gradient-based shape optimization is performed on the TUB stator test-case and the

optimization results are presented.

Finally, Chapter 8 offers conclusions and a discussion about possible future directions

in this field of research.

9

2
Test-cases

As explained in Sec. 1.4, the author did not contribute to definitions of parametric

CAD models used in the gradient-based optimization framework. However, it is

important to give a brief description of parametrization principles, as the underlying

source code was differentiated in order to compute the CAD sensitivities. The author

used the parametric models to verify correctness of the computed derivatives and to

measure performance of the differentiated sources.

2.1 Parametrization with OCCT

Two industrial components were parametrized in the original OCCT by Salva-

tore Auriemma (OCC): a U-bend cooling duct and the TUB stator as well es-

tablished benchmark [MV]. The detailed parametrization principles can be found

in [BMA+18, ABW+18].

2.1.1 U-bend

The U-bend duct is a typical cooling channel used in a turbine blade application.

The baseline geometry, shown in Fig. 2.1, consists of a circular U-part with attached

inlet and outlet legs. The attached legs are not modified during the optimization

and therefore the parametrization is only defined on the U-part.

The three-dimensional (3-D) U-part shape is based on a cross-sectional design ap-

proach — also known as lofting operation in CAD. This approach constructs the

final B-Spline surfaces by taking as inputs n two-dimensional (2-D) slices gener-

ated along a guiding path-line. Each slice lies on a plane that is orthogonal to the

11

2 Test-cases

Path-line

Inlet pipe

Outlet pipe

Last slice

Figure 2.1: U-bend parametrization in OCCT3

path-line. The path-line is described as a B-spline curve and it is not manipulated

during the optimization. The slice consists of four Bézier curves forming a closed

wire and having in total twelve control points. Each control point has its own law

of evolution along the path-line that determines its position in the specific plane.

The laws of evolution are defined as B-spline curves and their control points are the

actual design parameters considered in the optimization, in this example 96 degrees

of freedom.

2.1.2 TU Berlin stator

The TUB TurboLab stator is a compressor stator designed at the Chair for Aero

Engines of the TU Berlin. It is used in modern jet engines compressors with the

purpose to turn the incoming flow of 42◦ whirl angle into an axial direction at the

outlet. Complete description of the test-case as well as the corresponding CAD

geometry (given in STEP, IGES and parasolid formats) can be found in [MV].

2-D profile parametrization

The parametrization starts by defining a camber-line as a B-spline curve consisting

of seven control points. Orthogonally to the camber-line, eight control points are

3Picture provided by Salvatore Auriemma

12

2.1 Parametrization with OCCT

LE radius

Camber-line control points

Blade thickness

TE radius

Figure 2.2: TUB 2-D section parametrization in OCCT4

generated both for suction and pressure side B-spline curves. Finally, the suction

and pressure B-splines are smoothly joined at the leading and trailing edge (LE and

TE) of the camber-line, using a specified radius of curvature.

The 2-D profile, illustrated in Fig. 2.2, consists of 23 parameters: (i) 13 parameters

to control the camber-line and (ii) ten parameters to control thickness, where two

of them define LE and TE radii.

3-D parametrization

Identical to the U-bend test-case (described in Sec. 2.1.1), the 3-D blade parametriza-

tion is also based on the cross-sectional design approach. As illustrated in Fig. 2.3,

a number of 2-D slices is distributed along a blade span that is defined as a B-spline

curve, also referred to as the path-line. Each 2-D section parameter is character-

ized by a law of evolution along the path-line. The laws of evolution are defined

as B-spline curves, consisting of eight control points each. Certain control point

parameters are the actual design parameters of the optimization. In total there are

4Picture provided by Salvatore Auriemma

13

2 Test-cases

Path-line

TE law of
evolution

Figure 2.3: TUB blade parametrization in OCCT5

184 design parameters (23 section parameters × 8 law of evolution parameters).

2.2 TU Berlin stator parametrization in Rolls-Royce

workflow

Since the TUB stator test-case has been also optimized in the Rolls-Royce workflow,

its geometry has been re-parametrized with the in-house CAD tool Parablading.

Here, the author gives a brief description of the parametrization, more details can

be found in [BF10].

2-D profile parametrization

The stator’s blade geometry is characterized by a set of individual 2-D sections.

The 2-D section parametrization is shown in Fig. 2.4. It consists of the following

individual design parameters:

5Picture provided by Salvatore Auriemma

14

2.2 TU Berlin stator parametrization in Rolls-Royce workflow

β (x)

C (x)T
maxT (x)

β
E

β
I

T
E r

E

T
I

r
I

p c
x

Figure 2.4: TUB 2-D section parametrization in Parablading6

• leading/trailing edge radii (rI/rE),

• inlet/exit blade angles (βI/βE),

• maximum thickness (Tmax).

The chord length c is set to be constant. Extra parameters serve to control camber-

line and thickness distribution. However, instead of controlling the camber-line

C(x) directly, Bestle et al. [BF10] and Vasilopoulos et al. [VFM17] prefer to use

the camber-line angle distribution β(x). Moreover, they normalize both camber-line

angle β(x) and thickness T (x) distributions using the blade inlet and exit angles

(βI/βE), maximum thickness (Tmax) and the chord length c:

β̃(x̃) =
βI − β(x̃)

βI − βE
∈ [0, 1], x̃ =

x

c
∈ [0, 1] (2.1)

T̃ (x̃) =


T (x̃)− TI
Tmax − TI

for 0 ≤ x̃ ≤ p̃,

T (x̃)− TE
Tmax − TE

for p̃ < x̃ ≤ 1

∈ [0, 1], p̃ =
p

c
∈ [0, 1] (2.2)

where p̃ is the normalized position of the maximum thickness (T̃max) for the non-

dimensional thickness distribution T̃ (x̃). The normalized distributions are character-

ized by two-dimensional B-spline curves whose control points are indirectly modified

during the optimization.

6Picture provided by Ilias Vasilopoulos

15

2 Test-cases

PS

SS

LE

TE

Figure 2.5: TUB blade parametrization in Parablading

3-D parametrization

As well as the U-bend and TUB parametric models described in Sec. 2.1, here also

is the 3-D blade parametrization based on the lofting design approach. That is,

a number of 2-D sections is radially stacked along the blade span. These sections

are provided to an algorithm of Parablading that constructs four B-spline surfaces:

leading edge (LE), trailing edge (TE), suction side (SS) and pressure side (PS), as

illustrated in Fig. 2.5.

There are two additional stacking parameters to move the 2-D section: axial and

circumferential shifts. Each 2-D profile parameter is manipulated by a law of evo-

lution in the radial direction. The laws of evolution are defined as cubic splines and

their control points are the actual design parameters of the optimization. There are

28 design parameters per section:

• five individual design parameters (rI , rE , βI , βE , Tmax),

• ten control point parameters for the non-dimensional camber-line angle distri-

bution,

• eleven control point parameters for the non-dimensional thickness distribution

16

2.2 TU Berlin stator parametrization in Rolls-Royce workflow

• two stacking parameters: axial and circumferential shifts.

The blade has 21 sections, seven of which are considered as design sections. Other

sections are moved accordingly to intermediate cubic spline values to ensure smooth

surfaces. For this set-up, a potential number of design parameters is 196. However,

the stacking parameters of the hub and tip sections are kept constant, therefore

yielding the total number of 192 degrees of freedom.

17

3
Algorithmic differentiation of OCCT

3.1 Introduction to OCCT

The OCCT kernel [Ope] is the most-widely used open-source general-purpose CAD

library. It consists of thousands of classes developed in C++ to provide solutions

in surface and solid modeling, 2-D and 3-D visualization, and data exchange in

standardized CAD formats.

The C++ sources of OCCT are organized into packages, the packages belong to

toolkits and the toolkits are formed into modules. As illustrated on a dependency

graph in Fig. 3.1, the OCCT library consists of seven modules, briefly explained as

follows:

• Foundation classes — this module contains low-level classes such as primi-

tive data types and structures, collections, linear algebra calculations, numer-

ical algorithms, basic geometry types and geometric computations, exceptions

handling, and memory management which includes smart pointers (also re-

ferred to as handles) to support dynamically created objects.

• Modeling data — provides data structures to implement a boundary repre-

sentation (BRep) of a 3-D object. The BRep structure represents the shape

as a composition of geometry and topology. The geometry is a mathematical

description of an object, e.g. represented in a form of curves and surfaces. The

topology defines connection between different geometrical entities. Besides

necessary data structures, this module provides algorithms to create paramet-

ric curves and surfaces by approximation or interpolation of a given point

set, algorithms of direct construction to build elementary geometric entities

(e.g. lines, curves, planes, circles, cones, etc.), conversion of curves and sur-

19

3 Algorithmic differentiation of OCCT

faces to a NURBS form and computation of extrema between objects, i.e. the

minimum distance between geometric entities.

• Modeling algorithms — provide a wide range of geometric and topolog-

ical routines used in geometric modeling. This module is divided into two

submodules: low-level and top-level routines. The low-level routines include

algorithms for: (i) intersection between two curves, intersection between two

surfaces or between a curve and a surface, (ii) projection of points to curves

and surfaces or projection of a 3-D curve to a surface, (iii) line and circle con-

struction considering constraints and (iv) conversion of a shape to the NURBS

form. The top-level routines are used for: (i) direct construction of primitives

(e.g. boxes, cylinders, spheres, etc.), (ii) fillets/chamfers to create smooth or

sloped transitions between edges of a 2-D object or between adjacent faces of a

3-D object, (iii) linear and general-form sweeps to construct prisms and pipes,

(iv) lofting (also known as the skinning algorithm) that constructs a shape

out of a given set of 2-D cross-sections (as mentioned in Sec. 2, this algorithm

is highly beneficial for this work), (v) Boolean operations (union, intersection

and difference) that create a new shape from the given input shapes, (vi) mesh-

ing functionality to deal with tessellated representations of objects in a form

of triangular surfaces.

• Visualization — provides data structures and tools for a graphical repre-

sentation of an object (shape, mesh, etc.). This module contains low-level

routines to work with the geometry and the topology and high-level routines

to support a real-time rendering of objects using ray tracing.

• Data exchange — implements a set of interfaces to import or export data

from or to various CAD libraries, e.g. STEP and IGES (Initial Graphics Ex-

change Specification) data formats. It relies on the Shape Healing library that

provides a functionality to correct and adjust the topology and the geometry

of shapes imported to OCCT from different CAD software tools. Another im-

portant feature implemented in this module is an STL (STtereoLithography)

converter that translates OCCT shapes to the STL file format (triangular

surfaces), which is commonly used in computer-aided manufacturing and 3-D

printing.

20

3.1 Introduction to OCCT

Foundation classes

Modeling data

Modeling algorithms

Visualization

Data exchange

Application framework

Draw

Figure 3.1: OCCT modules

• Application framework (also referred to as OCAF) — offers services to sup-

port a development of CAD applications based on the OCCT library. It han-

dles user-specific data attributes and provides functionalities like open/save,

copy/paste and undo/redo. Additionally, it is also possible to track and alter a

modification history of a model (also known as feature tree), therefore directly

influencing its parametrization.

• Draw Test Harness (also referred to as Draw) — a test environment imple-

mented as a command interpreter with a graphical system. It offers a set of

predefined commands based on Tcl (Tool Command Language) and a number

of 2-D and 3-D viewers to test all libraries. Furthermore, the user can add

commands to verify or demonstrate custom functionalities.

OCCT does not provide a graphical user interface (GUI) to design/parametrize com-

ponents. For this reason, the user has to write a piece of code to actually construct

objects. One possibility is to directly use the Draw module and its predefined set

of Tcl commands, while the other option is to write the parametrization using the

C++ language that can be beneficial for advanced and tailored applications like the

ones developed in this study.

21

3 Algorithmic differentiation of OCCT

Regarding the users that prefer to have a GUI for the design purposes, while still hav-

ing the OCCT kernel capabilities, there is a solution — FreeCAD [FC12]. FreeCAD

is a powerful general-purpose 3-D modeling system that is completely open-source.

It uses OCCT as the CAD engine and has a complete GUI implemented in the Qt

framework.

3.2 Introduction to algorithmic differentiation

Algorithmic (Automatic) Differentiation (AD) is a technique to accurately and effi-

ciently evaluate derivatives of a function given by a computer program. Any com-

puter program, no matter how complicated, can be viewed as a sequence of elemen-

tary arithmetic operations (+, −, ∗, /) and elementary functions (e.g. sin, cos, log,

exp, etc.). Let us assume there is a function f(x) defined as follows:

f(x) = fn(f(n−1(fn−2(. . . f1(x))))) ,

where f1, f2, . . . , fn represent a sequence of elementary operations and functions that

calculate intermediate results of the computer program. The derivatives of these

statements can be easily calculated and coupled using the chain rule of calculus:

df(x)

dx
=

∂fn
∂fn−1

· ∂fn−1
∂fn−2

· · · · · ∂f1(x)

∂x
.

In principle, AD software tools exploit this fact to generate a differentiated code

that is able to compute the derivatives accurately up to a floating point round-off.

There are two basic modes of AD to compute the derivatives: forward (tangent) and

reverse (adjoint). Both modes have been used in this work to compute first-order

derivatives, however one can combine them to calculate higher-order derivatives.

The forward mode evaluates Jacobian-vector products (also referred to as the scalar

forward mode) and Jacobian-matrix products (also referred to as the vector forward

mode), while the reverse mode evaluates vector-Jacobian products (also referred to

as the scalar reverse mode) and matrix-Jacobian products (also referred to as the

vector reverse mode).

A comprehensive introduction to AD can be found in the literature [GW08, Nau12],

22

3.3 Introduction to ADOL-C

where the temporal complexity bounds for each of the modes as well as the expected

memory requirements are elaborated.

3.3 Introduction to ADOL-C

ADOL-C is an open-source AD software tool, developed and maintained at Pader-

born University in the research group led by Prof. Dr. Andrea Walther. It computes

first and higher derivatives of vector functions that are defined by computer pro-

grams written in C or C++ [WG12].

ADOL-C defines the class adouble that augments the most common operators and

elementary functions to enable the computation of derivatives. This is also referred

to as the operator-overloading concept and it is typically allowed in object-oriented

languages like C++.

To differentiate a certain code with ADOL-C, one has to replace the declaration

types of all relevant real variables (e.g. float, double) with the adouble type. The

relevant (also referred to as active) variables are: inputs (independents), outputs

(dependents) and all intermediate variables that depend on independent variables

and influence the output variables. A compiler error arises if certain intermediate

variables depend on active variables but are not declared as adoubles, since the

adouble class on purpose does not support implicit and explicit type conversion to

native data types.

Based on the differentiation options, the adouble class has two kinds of implemen-

tations:

• traceless (differentiation mode: forward),

• trace-based (differentiation modes: forward and reverse).

These options impose different ways of derivative computation. The traceless option

computes the derivatives directly together with the function (primal) evaluation. It

is easier to use and understand, since all operators implement both primal and

derivative statements. On the other hand, the trace-based option uses the operator-

overloading to generate an internal representation of the code to be differentiated

— called trace. After the trace is created, one calls ADOL-C drivers to evaluate

23

3 Algorithmic differentiation of OCCT

the derivatives. Moreover, this option is more powerful than the traceless one as

it features the reverse mode of AD that has a potential to dramatically reduce the

temporal complexity of the derivative computation.

Both traceless and trace-based options support the derivative computation in scalar

(one direction) and vector mode (many directions). For example, when using the

scalar forward mode of AD, one has to execute the differentiated sources separately

with respect to each independent variable to compute the corresponding derivatives.

As this evaluation process can become very time consuming, a more efficient option

is to integrate the vector forward mode of AD that enables the derivative compu-

tation with respect to many design parameters simultaneously, i.e. in a single code

execution.

3.3.1 Traceless differentiation variant

The traceless adouble class is defined in the adtl namespace (<adolc/adtl.h>

header). It contains a double-type pointer to an array of size p + 1, named adval,

where the zeroth element represents the real part of an adouble object (the primal

value), while the other elements correspond to directional derivatives. The number

p is a user-defined constant and it represents the desired number of directions.

By default the constant p is set to 1 which implies that the scalar mode of the

derivative computation is being used. Therefore, the vector mode is activated when

p > 1. In that case, the i-th element of the adval array corresponds to the i -th

direction, where i = 1, . . . , p, meaning that each direction has its own dedicated

element in the adval array. This enables simultaneous derivative computation with

respect to many design variables.

There are two possibilities to set the number of directions. The simpler option

is to use the adtl::setNumDir(p) method. However, it is important to call this

method before any adouble initialization such that dynamically allocated memory

assigned to adval pointers is consistent during the program execution. Otherwise,

changing the number p at any other part of the program execution can cause a

run-time exception because the pointers get corrupted. Another obstacle are static

variables that are initialized even before the main function is executed, which means

there is a possibility that static adoubles have a different number p than the one

24

3.3 Introduction to ADOL-C

requested by the user. This issue was encountered in the differentiated version of

OCCT. For this reason, the recommended way that avoids any chance of memory

corruption is to change the number of directions directly in the ADOL-C sources

(file adouble tl.cpp). To apply the change, one has to type the make && make

install command in ADOL-C directory to re-compile the traceless library, which

is finished in a couple of seconds.

To get and set the primal value of an adouble object, one calls the methods getValue

and setValue, respectively. Likewise, the methods getADValue and setADValue serve

to get and set the derivative components. Other possibilities to manipulate these

values are via adouble constructor or assignment operator (=). More details can be

found in the ADOL-C manual provided with the sources.

3.3.1.1 Boost memory management

A complex application like OCCT may consist of thousands of adouble objects that

are dynamically allocated using the new operator. When using this operator, the

memory management depends on the implementation of the C++ standard library

as well as on the operating system. For a fast and efficient memory management,

one can employ pool-based allocators in conjunction with the C++ standard library

containers. One of such pool-based allocators is implemented in the Boost C++

framework, namely the Boost.Pool, and it can be used in the traceless ADOL-C

library.

The Boost pool allocator does not change the behavior of the operating system, but

it adds a layer between the application and the operating system. When a pro-

gram starts, the pool allocator requests a memory block from the operating system

(e.g. using the operator new). Moreover, this memory is partitioned into segments

with the same size. The size of a segment is set accordingly to the number of di-

rections p, i.e. to accommodate p+ 1 double elements. Every time the application

requests the memory from the Boost.Pool to initialize an adouble object, the frame-

work accesses the next free segment and assigns it to the adval pointer. Therefore,

the segments are just marked as used or free on the pool layer without actually

dealing with the operating system. This approach is very useful if many objects of

the same size have to be created or destroyed frequently, since the memory can be

25

3 Algorithmic differentiation of OCCT

provided or released quickly.

The Boost.Pool allocator is initialized in the adouble tl.cpp file with the default

maximum number of 10,000 segments, that can be changed by the user. For the

OCCT differentiation purposes, this number is sufficient.

3.3.2 Trace-based differentiation variant

The trace-based adouble class is defined in the <adolc/adouble.h> header. As

opposite to the traceless adouble class, the trace-based variant does not calculate

the derivatives on-the-fly with the primal evaluation. Here, first the internal rep-

resentation of the function to be differentiated — trace — is generated using the

operator-overloading concept.

The trace is a sequential data set that contains all adouble-related instructions

recorded during an active section of the code to be differentiated. It is divided

into four internal arrays: (i) operation — contains unique identifiers of operations

(instructions), (ii) location — contains unique identifiers of adouble objects, (iii)

value — contains values of constants that contribute to the derivative computation

(variables declared as e.g. int, float or double) and (iv) a Taylor buffer. The latter

is optional and serves to keep the values of intermediate results. All buffers can

be written to four corresponding files on a hard drive, however it is preferred to

keep them in the random-access memory (RAM) due to faster performance of the

differentiated sources.

The default array length of buffers is defined in <adolc/internal/usrparms.h>

with parameters OBUFSIZE, LBUFSIZE, VBUFSIZE, and TBUFSIZE, that are by default

set to 524288. They can be changed in the header before compiling the ADOL-C

library, however the recommended way is to create the .adolcrc file in the directory

where the differentiated sources are executed. In this file, the user can set all buffer

parameters using the notation: "VARIABLE " = "VALUE ", where the quotation marks

are mandatory. The ADOL-C library searches for this file right at the beginning

of the program execution and initializes all buffers accordingly. In the case that

application requirements exceed the predefined buffer lengths, the buffers are saved

to the hard drive.

26

3.3 Introduction to ADOL-C

It is important to note that one has to carefully choose the buffer lengths because

ADOL-C trace manager may request more memory than it is available on the op-

erating system, which could cause a run-time exception. The exact number of

bytes depends on the operating system and it is calculated as follows: OBUFSIZE

* sizeof(unsigned char) + LBUFSIZE * sizeof(unsigned int) + VBUFSIZE *

sizeof(double) + TBUFSIZE * sizeof(double). When using the default lengths,

the trace takes approximately 10 MB of memory. This is sufficient for simple appli-

cations, however the differentiated OCCT sources required a few GB of memory to

store the trace. For this reason, the buffer lengths are tailored accordingly to appli-

cation demands. To find out the exact lengths of buffers required by an application,

one can call the function printTapeStats(std::cout, tag) after the tracing pro-

cess, which prints information about the trace status to the standard output. This

information is beneficial, when entering custom buffer lengths into the .adolcrc

file, which was exactly the procedure for dealing with the differentiated OCCT.

The active section of the code to be differentiated is marked with ADOL-C routines

trace on(tag,keep) and trace off(file). Pairs of these routines can appear anywhere in

the code, however they must not overlap. The parameter tag is a non-negative inte-

ger that identifies a certain trace and therefore is considered to be unique. Otherwise,

if the user provides the same tag to many traces, their content will be overwritten.

The flag keep should be given as either 1 (true) or 0 (false). In the case it is true,

the primal values of intermediate results are saved to the Taylor buffer during trac-

ing. This is useful when evaluating the derivatives using the reverse mode of AD

right after the trace is generated. The flag file indicates whether the trace should

be stored on the hard drive, no matter how large the buffers are.

To mark the independent and dependent variables of the active section, one uses bit-

wise shift operators <<= and >>=, respectively. For this purpose, they are overloaded

in the trace-based adouble class. One declares the independent variables (indepen-

dents) immediately after calling the trace on routine and the dependent variables

(dependents) at the end of the active section, i.e. before calling the trace off rou-

tine.

Once the trace is successfully generated, one calls the ADOL-C drivers to evaluate

the primal and the derivatives up to an arbitrary order using the forward/reverse

mode of AD. There is a vast set of ADOL-C drivers available that are explained in

27

3 Algorithmic differentiation of OCCT

the manual provided together with the sources. These routines can be also used to

evaluate the trace at a different set of arguments, i.e. different values of the inde-

pendent variables than the original ones that were used during the tracing process.

This approach can significantly reduce run times, however it is important that a

control flow of a program stays unaltered, e.g. comparison operators involving adou-

bles yield the same results. If there is a change in the control flow, ADOL-C gives

a warning that the tracing process has to be repeated.

3.3.2.1 Activity analysis

Activity analysis is one of the recent features of ADOL-C implemented by Dr. Kshitij

Kulshreshtha. Its purpose is to improve the computation efficiency of the trace-based

differentiation variant when dealing with the differentiated sources that contain a

large amount of adoubles that are in fact constants and therefore should not be

treated as differentiable quantities. This situation typically happens when differen-

tiating a certain source code by using the so-called typedef differentiation approach,

explained in Sec. 3.4.6, where almost all real variables are re-declared with the adou-

ble type. However, the activity analysis discovers all constant adoubles during the

tracing process and deals with them accordingly.

In principle, every adouble object used in the active section has a corresponding

char variable stored in the ADOL-C buffer memory that can be either 1 (true) or 0

(false). At the beginning of the tracing process, this activity state is set to true for

all independent variables once they are marked with the <<= bitwise shift operator.

Later on, all intermediate adoubles inherit the activity state from their predecessors.

Based on the activity states, only the operations with at least one active adouble are

recorded on the trace, otherwise they are ignored. Moreover, in case for operations

with two adouble operands where only one is active, the other one is treated as a

constant, e.g. like a regular double variable.

Although the activity analysis imposes additional if -statements for each overloaded

operator of the adouble class to test the activity status of operands, and therefore

may increase the tracing time, it reduces the overall trace memory consumption.

Furthermore, the invested effort for the activity analysis upon tracing pays-off when

evaluating a smaller trace with the ADOL-C drivers, which improves the perfor-

28

3.4 Approaches of differentiating OCCT

mance of the differentiated sources.

By default, the activity analysis is disabled and one can enable it, while configuring

the ADOL-C makefile, with a flag --enable-activity-tracking. The activity

analysis is successfully validated and verified with the differentiated OCCT sources

by the author and its performance is presented in Sec. 3.6.2.

3.4 Approaches of differentiating OCCT

As mentioned in the Sec. 3.3, the ADOL-C library is integrated into OCCT by

injection of its specific adouble type instead of the native real type used by OCCT.

That is, one has to use the specific ADOL-C type as the declaration type to all

relevant real variables, i.e. variables that depend on the design variables and influence

the output variables. Otherwise, if the adouble chain is broken in some part of the

code, the derivative values will be incorrect. When applying this to a complicated

object-oriented code like OCCT, the process of replacing the declaration types is not

simple. Different approaches of ADOL-C integration are investigated and discussed

in this section.

To perform the algorithmic differentiation of the OCCT kernel using ADOL-C, sev-

eral possible approaches with respect to the code modification were investigated:

1. Code duplication: duplicate original entity classes and introduce AD spe-

cialized properties and methods.

2. Use an inheritance model to implement child classes of the original entities,

defining extra AD properties and methods.

3. Create completely isolated entry points designed for AD only — controller

approach.

4. Templating approach: apply generic programming (C++ templates) to every

original class, such that it becomes a class template.

5. Typedef approach: redefine the Standard Real type used in OCCT to be the

adouble type of ADOL-C.

29

3 Algorithmic differentiation of OCCT

3.4.1 A sample class

To demonstrate AD in principle and explain every code modification approach, let

us consider a geometrical entity class that corresponds to a two-dimensional B-

spline curve — Geom2d BSplineCurve. A shortened and simplified presentation of

the complex Geom2d BSplineCurve class is shown in Listing 3.1. The aim is to

differentiate the shape of a curve with respect to its properties/parameters:

• poles — collection of two-dimensional Cartesian points (class: gp Pnt2d),

• weights — collection of Standard Real values (in OCCT, Standard Real is the

alias for the native double data-type).

Listing 3.1: Geom2d BSplineCurve class (simplified)

1 class Geom2d_BSplineCurve : public Geom2d_BoundedCurve

2 {

3 public:

4 Geom2d_BSplineCurve(TColgp_Array1OfPnt2d& Poles ,

5 TColStd_Array1OfReal& Weights , TColStd_Array1OfReal& Knots ,

6 int Degree , bool Periodic = Standard_False , ...);

7 void D0 (const Standard_Real U, gp_Pnt2d& P) const Standard_OVERRIDE;

8 private:

9 Handle(TColgp_HArray1OfPnt2d) poles;

10 Handle(TColStd_HArray1OfReal) weights;

11 };

The gp Pnt2d class is briefly described in Listing 3.2. It supports operations like ro-

tation, translation, mirroring, etc., but uses another entity to store its coordinates —

gp XY. The gp XY class represents a Cartesian coordinate entity in two-dimensional

space and supports basic algebraic operations. As private fields, it contains two

Standard Real variables (Xp, Y p).

Listing 3.2: gp Pnt2d class (simplified)

1 class gp_Pnt2d

2 {

3 public:

4 gp_Pnt2d ();

5 gp_Pnt2d(const gp_XY& Coord);

6 gp_Pnt2d(const Standard_Real Xp, const Standard_Real Yp);

7 private:

8 gp_XY coord;

9 };

30

3.4 Approaches of differentiating OCCT

Furthermore, as shown in Listing 3.1, OCCT features special collection (array) data-

types: TColgp HArray1OfPnt2d and TColStd HArray1OfReal. An instance of such

collections is managed by handles. The handle is a native smart-pointer of OCCT

used for automatic memory management of shared objects. Additionally, OCCT also

features collections that are not managed by handles, e.g. TColgp Array1OfPnt2d

and TColStd Array1OfReal.

The following sections describe differentiation approaches with respect to the sample

class Geom2d BSplineCurve and its parameters (poles and weights).

3.4.2 The code duplication approach

The code duplication approach creates AD-classes from the existing original en-

tities and introduces AD-specialised properties and methods. To differentiate the

sample class using this approach, several steps are required. The first step is to

create new classes:

• gp XY AD — the two-dimensional Cartesian coordinate entity that has (Xp,

Y p) variables declared as adoubles,

• gp Pnt2d AD — the two-dimensional Cartesian point class that uses the pre-

viously implemented gp XY AD class to store its coordinates.

The next step is to define new collection data-types managed by the OCCT handles

(TColgp HArray1OfPnt2d AD and TColStd HArray1OfReal AD) as well as collec-

tion data-types not managed by the OCCT handles (TColgp Array1OfPnt2d AD

and TColStd Array1OfReal AD), in order to manipulate with gp Pnt2d AD and

adouble objects.

Some additional methods are needed. A point on a curve is calculated in the D0

method. Therefore, a new method is introduced in the Geom2d BSplineCurve AD

class — D0 AD. As the name implies, this method works with AD poles and weights.

Starting from this function, the adouble injection, i.e. the change of the variable type,

has to be consistently propagated to all dependent routines such that the chain rule

is not broken. It is important to note that these routines are not just in the B-spline

class, but also in other classes that provide B-spline evaluation algorithms. Hence,

they are all differentiated using the same approach.

31

3 Algorithmic differentiation of OCCT

Finally, the new AD-class named Geom2d BSplineCurve AD is presented in List-

ing 3.3. As one can notice, the elements of the source code of the original D0 method

are still present as well as the original collections of poles and weights. The reason

for keeping the D0 method is that the Geom2d BSplineCurve AD class inherits from

an abstract class where the D0 method is defined as pure virtual. Hence, there is

a requirement that any derived class that inherits from Geom2d Curve has to im-

plement such defined methods. Not only D0 is required to be implemented by the

parent abstract classes, but also many other methods, e.g. D1, D2 and D3, have to

be implemented. This implies that the original collections of poles and weights are

necessary, because they are used in the original methods like D0. One option is to

keep them in the AD-class and synchronize them with the AD-collections, whereas

the other possibility is to add a certain code in each original method that will cre-

ate ‘double’ versions of poles and weights on-the-fly by copying the values from the

existing AD-collections wherever they are requested.

Listing 3.3: Geom2d BSplineCurve AD class (simplified)

1 class Geom2d_BSplineCurve_AD : public Geom2d_BoundedCurve

2 {

3 public:

4 Geom2d_BSplineCurve_AD(TColgp_Array1OfPnt2d_AD& Poles ,

5 TColStd_Array1OfReal_AD& Weights , TColStd_Array1OfReal& Knots ,

6 int Degree , bool Periodic = Standard_False , ...);

7 void D0 (const Standard_Real U, gp_Pnt2d& P) const Standard_OVERRIDE;

8 void D0_AD (const adouble U, gp_Pnt2d_AD& P) const;

9 private:

10 Handle(TColgp_HArray1OfPnt2d) poles;

11 Handle(TColStd_HArray1OfReal) weights;

12 Handle(TColgp_HArray1OfPnt2d_AD) poles_AD;

13 Handle(TColStd_HArray1OfReal_AD) weights_AD;

14 };

The code duplication approach may be useful for exploratory differentiation, e.g. for

a proof of concept for the algorithmic differentiation of the sample class, but to

use it on a full-scale differentiation of OCCT is not reasonable. The first and most

important concern is the maintenance of the differentiated code alongside with the

original code development. The second issue, noticeable in the B-spline example,

is that the approach imposes duplicate collections of poles and weights in the same

object, which can be error-prone. Simply replacing the original collections with the

32

3.4 Approaches of differentiating OCCT

AD collections is not feasible because it will lead to compilation errors. The original

signatures should remain untouched, otherwise one has to modify the signatures

of the parent classes as well as other source files that are using them. Another

concern that needs to be addressed is data consistency: if the original collections

are modified, one has to make sure that at the same time the AD collections are

updated as well. Without implementing a synchronization between these collections,

this approach is not a good choice because one has to track the original collections

throughout the computation. Moreover, the same object has duplicated methods

(e.g. the D0 and D0 AD methods). For these reasons, the code duplication approach

is rejected for the differentiation of the full OCCT kernel.

3.4.3 The inheritance approach

An example of differentiating the Geom2d BSplineCurve class with the inheritance

approach is shown in Listing 3.4. The difference between this approach and the code

duplication approach presented in Listing 3.3 is that the Geom2d BSplineCurve AD

class now inherits from the original Geom2d BSplineCurve class instead of the orig-

inal parent class Geom2d BoundedCurve. Therefore, it is easier to distinguish be-

tween the AD versions and the original entities, but this approach is not a good

choice because it does not represent the real inheritance model:

• The final object will contain duplicate collections of poles and weights.

• The final object will contain duplicate methods (e.g. the D0 and D0 AD meth-

ods).

• The majority of methods from a parent class will not be used (e.g. in the case

of B-spline curve, only the D0 method is interesting for differentiation).

Listing 3.4: Geom2d BSplineCurve AD class that inherits from

Geom2d BSplineCurve (simplified)

1 class Geom2d_BSplineCurve_AD : public Geom2d_BSplineCurve

2 {

3 public:

4 Geom2d_BSplineCurve_AD(TColgp_Array1OfPnt2d_AD& Poles ,

5 TColStd_Array1OfReal_AD& Weights , TColStd_Array1OfReal& Knots ,

6 int Degree , ...);

7 void D0_AD (const adouble U, gp_Pnt2d_AD& P) const;

8 private:

33

3 Algorithmic differentiation of OCCT

9 Handle(TColgp_HArray1OfPnt2d_AD) poles;

10 Handle(TColStd_HArray1OfReal_AD) weights;

11 };

This approach shares the major drawbacks with the code duplication approach that

are related to duplicate properties and methods in the same object. Therefore, it is

also rejected as a solution for the differentiation of the full OCCT kernel.

3.4.4 The controller approach

The controller approach introduces new lightweight classes — controllers, which

are isolated entry points for AD only. Considering the two-dimensional B-spline

curve class, a new controller class Geom2d BSplineCurve ADController consists of:

• a pointer to the original curve (entity),

• the AD collections as properties, together with corresponding methods for

getting and setting them (also known as getters and setters),

• designated methods, like the D0 AD (almost exact copy of the original one),

which are modified for dealing with adoubles.

An example of the controller class for Geom2d BSplineCurve is shown in Listing 3.5.

The controller class does not inherit any OCCT classes, therefore no additional

methods have to be implemented, except the ones needed for AD. To further simplify

the controller implementation, it may be declared as a friend of the original curve

in order to obtain a direct access to its private and protected members.

Listing 3.5: Geom2d BSplineCurve ADController class (simplified)

1 class Geom2d_BSplineCurve_ADController

2 {

3 public:

4 Geom2d_BSplineCurve_ADController(

5 const Handle(Geom2d_BSplineCurve)& C);

6 void D0_AD (const adouble U, gp_Pnt2d_AD& P) const;

7 private:

8 Handle(Geom2d_BSplineCurve) curve; // original curve

9 Handle(TColgp_HArray1OfPnt2d_AD) poles;

10 Handle(TColStd_HArray1OfReal_AD) weights;

11 };

34

3.4 Approaches of differentiating OCCT

Although the controller approach yields better code in terms of readability and

usability in comparison with the two previously described approaches, this approach

is not selected here. All three approaches explained so far require an additional effort

to differentiate extra methods, i.e. PrepareEval, BuildEval and Eval, used in the

recursion tree of the D0 method. These methods are members of the BSplCLib class

(B-spline Curve Library). Therefore also a substantial amount of code duplication

arises which could be reduced for some cases by reorganizing and modifying the

original OCCT sources in a generic (template) way. Before doing so, one does not

know how many methods except D0 would have to be differentiated and how deeply

into the call tree the sources need to be edited to propagate the adouble injection

to all extra AD methods. Once again, it would be very hard and time consuming

to maintain such a code.

3.4.5 The templating approach

In order to avoid the code duplication as much as possible, one could consider the

templating approach to apply a generic programming (C++ templates) to the

OCCT classes such that they become class templates, as shown in Listing 3.6. This

approach is ideal from the maintenance point of view because there would be no

additional AD classes introduced. Instead, one would choose between the original

or differentiated functionality just by specifying a template parameter, i.e.:

• Geom2d BSplineCurve<double>,

• Geom2d BSplineCurve<adouble>.

The template-based approach allows keeping only one version of the OCCT library

in the final application. That is, one does not have to recompile the source code

to switch between the original and AD version (and vice-versa). This allows to use

the AD entities only when the gradients are required, otherwise, the original OCCT

functionality is sufficient. In this way it is possible to avoid unnecessary performance

overhead introduced when using the AD classes in the whole geometric kernel.

The code duplication risk is minimal, but still exists, because adouble objects cannot

just fit everywhere. There are a lot of places in the code, some of which will be

mentioned later, where one must interfere and add/modify some code lines in order

35

3 Algorithmic differentiation of OCCT

to make everything work. For such cases, one has to use template specialization,

which is somehow similar to function overloading and allows the user to write specific

method implementations that will be used for adoubles. In most of the cases, these

specific implementations will not be that much different from the original ones, which

is why they impose a certain code duplication. Furthermore, it is important to note

that these methods have to be maintained together with the templated code.

Although the final outcome of using this approach is advantageous and reduces the

code duplication as much as possible, it is the most intrusive way of differentiating

OCCT because it requires to change (template) the complete OCCT code structure.

Moreover, it reduces significantly the readability of the kernel’s code, especially when

applying the template specialization for the cases where adoubles require additional

code modifications. Therefore, it is not selected to differentiate the OCCT kernel.

Listing 3.6: Geom2d BSplineCurve template class (simplified)

1 template <class T>

2 class Geom2d_BSplineCurve : public Geom2d_BoundedCurve <T>

3 {

4 public:

5 Geom2d_BSplineCurve(NCollection_Array1 <gp_Pnt2d <T>>& Poles ,

6 NCollection_Array1 <T>& Weights , TColStd_Array1OfReal& Knots ,

7 int Degree , ...);

8 void D0 (const T U, gp_Pnt2d <T>& P) const Standard_OVERRIDE;

9 private:

10 Handle(NCollection_SharedArray1 <gp_Pnt2d <T>>) poles;

11 Handle(NCollection_SharedArray1 <T>) weights;

12 };

3.4.6 The typedef approach

The typedef specifier is a reserved keyword in C/C++ used to declare an alias for

another data type. OCCT defines the alias Standard Real for the double data-type

and it has been used as an entry point for AD, changing Standard Real to become

the alias for the adouble type of ADOL-C. In the so-called typedef approach, almost

all declarations of doubles variables are replaced by the declaration of adouble vari-

ables. The main advantage of this approach is that the code modification should be

minimal with the drawback of sacrificing memory and efficiency to some extent be-

cause almost all double variables, even the ones that are not needed for AD, become

36

3.4 Approaches of differentiating OCCT

adouble objects. With the minimal code modification, it should be also straightfor-

ward to maintain the differentiated code alongside the original code development.

Moreover, the typedef approach is significantly less error-prone compared to the

methods described previously. That is, the risk of a human mistake which can lead

to unnoticed breaking of the chain rule is minimal. Therefore, it is a very appropriate

solution for differentiating large and complex source codes like OCCT.

Although the idea about the typedef approach looks simple, it is not as straight-

forward as one would expect. The differentiation of OCCT version 7.0 involved a

significant amount of code modification and even after the successful compilation, a

large number of run-time errors had to be resolved during the testing phase.

It is important to note that the default tests provided with the OCCT kernel are

related only to the primal functionality. Even though the primal tests went suc-

cessfully as described in Sec. 3.5.1, this achievement does not imply the successful

differentiation as these tests use only the primal. To make sure that the AD version

is sound, it is necessary to add extra test cases which will validate the derivatives.

In this study, the AD functionality of OCCT was successfully validated using only

the parametric U-bend and TUB stator models, as elaborated in Sec. 3.5.2 and

Sec. 3.5.3, respectively.

3.4.7 Compile and run-time issues of OCCT differentiation

This section describes the difficulties faced during the typedef implementation and

the corresponding solutions. Some of the compile-time issues were related to:

• On a very low level of the OCCT kernel, static assertion is used to check

whether the size of Standard Real is equal to the size of 2×Standard Integer

(which is the typedef for int type). Once the typedef Standard Real corre-

sponds to adouble, the static assertion fails, therefore yielding a compile-time

error. The reason of having such an assertion is due to a definition of the union

with two members of {Standard Real, 2×Standard Integer}. Union is a user-

defined type in C/C++ in which all its members occupy the same physical

space in memory. Until C++11 standard, unions were allowed to store only

primitive data types. Without further investigation how to integrate a non-

primitive type with C++11 standard, the author kept the double data-type

37

3 Algorithmic differentiation of OCCT

here because the union appears only in the low level of OCCT that is not re-

lated to the modeling algorithms. This affects the class FSD BinaryFile, where

the union is used to inverse bytes of a real number. To overcome compile-time

issues, keeping the double variables results in a certain modification of other

sources that used the union in order to create a sort of bridge between doubles

and adoubles.

• Hundreds of places in the OCCT code involve explicit/implicit conversion of

Standard Real to int type. In the terms of algorithmic differentiation, this

could cause a problem because an integer object does not carry along the

derivative information. By doing such a type change, the computational graph

of the function to be differentiated is disconnected in that part. Hence, the

chain rule is broken and wrong derivatives may be computed as a result. This

is the reason why such a cast is not automatically supported in the adouble

class. Being aware of the risk, the type-casting has been allowed simply by

using the getValue method on the adouble object which extracts the primal

(double) value of it. A small example where this could cause a problem is

related to a method of the BndLib Box2dCurve class, as shown in Listing 3.7.

Let us assume that the input adouble variables aT and aPeriod carry the

derivative information. Such a derivative information will not be propagated

in the line where k is computed because the expression (-aT/aPeriod) is

converted to int. On the following line, the result aTRet is computed using

the previously described variable k with the truncated derivative information.

On the other hand, there is no problem if the inputs aT and aPeriod are

not ‘active’, i.e. if they do not carry derivative information. Since this issue

is application-dependent, the derivatives have to be carefully verified or the

original code structure has to be modified to avoid such problems.

• Standard Real is not the only typedef for double in OCCT. Although it is

broadly used in OCCT, there are many other typedefs: Quantity Acceleration,

Quantity Area, Quantity Coefficient, doublereal, GLdouble, etc. Most of them

are replaced with Standard Real to keep consistency across the OCCT kernel,

but there are also exceptions where the native double type is required. These

exceptions mostly relate to packages that belong to the Visualization module

of OCCT, e.g. the OpenGL package which uses both doubles and floats. This

38

3.4 Approaches of differentiating OCCT

means that the adouble presence is reduced in such packages as much as pos-

sible (which is reasonable), but not entirely. The issue lies in the fact that

visualization packages use geometric entities like point, vector and axis, that

already contain adouble objects because they use Standard Real typedef. To

overcome this problem is not simple, but it is successfully resolved by intro-

ducing intermediate variables and breaking the chain rule wherever required.

• Functions that are part of external libraries cannot work with adoubles. There-

fore, the compiler reports type mismatch in such places. Depending on the

function arguments, whether they are pointers or not, it was necessary to

substitute adoubles with doubles or call the getValue method on the adouble

objects. This includes also functions like modf (decomposes a number into

integer and fractional parts) and fmod (calculates remainder of the floating

point division operation). They are C-functions (defined in the header cmath)

and the differentiation rule for them is simply not defined. Therefore, similarly

to the type casting described above, the chain rule is broken when using these

functions.

• Functions for printing to an output, like sprintf, cannot accept adouble as an

argument. However, the sprintf function is used in a lot of places in OCCT,

mostly referred to printing standard CAD output formats like STEP and IGES.

Since sprintf is a C-function and cannot be overloaded in ADOL-C, the get-

Value method was used here as well.

Listing 3.7: BndLib Box2dCurve class method (simplified)

1 Standard_Real BndLib_Box2dCurve :: AdjustToPeriod(

2 const Standard_Real aT,

3 const Standard_Real aPeriod)

4 {

5 Standard_Integer k;

6 Standard_Real aTRet;

7 aTRet=aT;

8 if (aT <0.) {

9 // possible derivative loss:

10 k=1+(Standard_Integer)(-aT/aPeriod). getValue ();

11 aTRet=aT+k*aPeriod;

12 }

13 //...

14 return aTRet;

15 }

39

3 Algorithmic differentiation of OCCT

Furthermore, some of the run-time issues were related to:

• The left and right shift operators (<< and >>) for printing to an output are

overloaded in the adouble class. Since they are also used in the OCCT output

system, the files were corrupted by adoubles, because the derivative information

is also printed. There is no need that files like STEP contain such an additional

information. Hence, the solution was just to extract the primal values of

adoubles using the getValue method wherever necessary.

• C dynamic memory allocation is used in the OCCT kernel. This causes errors

once the adoubles are initialized. An adouble object has to be initialized us-

ing its constructor, such that the correct memory amount is allocated. The

C-function malloc does not achieve that, triggering ‘segmentation fault’ er-

rors upon program execution. For this reason, the functions malloc/free are

replaced with the C++ operators new/delete. Moreover, the C-functions mem-

set and memcpy are replaced with for -loops in order to manually assign or

copy the values from one pointer to another. Otherwise, a memory exception

occurs. Even more complex low-level memory management is used in one spe-

cific package of OCCT that is non-differentiable with ADOL-C, as described

in Sec. 3.5.1.

• In many places of the OCCT code, the explicit conversion from real numbers

to adoubles is required in the case where these numbers are passed as argu-

ments to the specific overloaded methods. For example, consider the SetCoord

method which is overloaded in OCCT in two different ways: (i) the first op-

tion SetCoord(Standard Integer, Standard Real) sets a coordinates value by

its index and (ii) the second option SetCoord(Standard Real, Standard Real)

specifies each coordinate value independently. A case in the code where devel-

oper uses the second method with real numbers, e.g. SetCoord(6., 8.), is not

correctly identified in the differentiated sources because the compiler calls the

method with primitive types as arguments, which is the first method. Without

any interaction this may not produce a runtime error, but certainly the values

are wrong. The correct way in such cases is to add an explicit conversion,

i.e. SetCoord((Standard Real) 6., (Standard Real) 8.).

40

3.5 Verification of differentiated OCCT

Both traceless and trace-based differentiation variants have been integrated into

OCCT by using the typedef approach, therefore yielding two different versions of

the differentiated OCCT sources. Their validation is described in the following

section.

3.5 Verification of differentiated OCCT

3.5.1 Primal functionality validation of differentiated OCCT

After the successful compilation of the differentiated OCCT kernel, the first step is

to verify the original (primal) functionality. For such purposes, OCCT provides its

own Automated Testing System which consists of more than 10,000 tests related to

all OCCT modules. As mentioned in Sec. 3.4.7, a large number of run-time errors

had to be resolved during the testing phase. A very small number of issues could

not be resolved, see Table 3.1 for details.

Table 3.1: OCCT Automated Testing System final results

Tests marked: OK Tests marked failed: FAILED Success rate

11,306 374 97%

The majority of the tests marked failed are related to the package AdvApp2Var

which deals with an approximation of functions based on Legendre polynomials.

This package is a legacy code that was firstly written in Fortran and later automat-

ically translated to C code. It involves low-level memory management instructions

which make adouble handling quite difficult. Whenever it is used by the testing

system, a run-time memory exception occurs. There are two possibilities to solve

this problem: (i) rewrite the package such that it follows the C++ standards for

memory management or (ii) use the source-transformation AD tool Tapenade to

differentiate the AdvApp2Var source package and couple it with ADOL-C.

The following section elaborates the verification of derivatives, using the parametric

models of U-bend and TUB stator test-cases described in Sec. 2.1.

41

3 Algorithmic differentiation of OCCT

AD magnitude FD magnitude
2,959e-01

0,22192

0,14795

0,073974

0,000e+00

2,959e-01

0,22192

0,14795

0,073975

0,000e+00

Figure 3.2: U-part geometric sensitivities evaluated with AD (left) and FD (right)

Table 3.2: AD and FD values comparison for several U-bend
point coordinates

AD value FD value Abs. difference

0.00038436 0.00038426 1.02e-07
0.06339189 0.06339125 6.41e-07
0.15615249 0.15614906 3.43e-06
0.12874039 0.12873815 2.24e-06

...
...

...

0.27459387 0.27458089 1.30e-05*

*Maximal difference

3.5.2 Gradient verification using U-bend parametrization

The derivative verification is firstly performed on the U-bend test-case described in

Sec. 2.1.1. As a representative example, let us compare the surface sensitivities with

respect to one design parameter calculated with the traceless forward mode of AD

and finite differences, shown in Fig. 3.2. As noticeable, the overall magnitude plots

coincide to a very high extent. Furthermore, the quantitative comparison presented

in Table 3.2 confirms mutual agreement.

Moreover, the same surface sensitivities are also verified with a Taylor test:

f(x+ h)− f(x)− h∂f
∂x

(x) = O(h2). (3.1)

42

3.5 Verification of differentiated OCCT

10−810−710−610−510−410−310−210−1

Step size (h)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

E
rr

or

h
2

Figure 3.3: Taylor test overview for eight U-bend surface point coordinates

The Taylor test is evaluated on a number of arbitrary surface point coordinates

with a range of step sizes h ∈ [10−1, 10−10]. The error plots (the left-hand side of

Eq. (3.1)) in eight surface point coordinates are presented in Fig. 3.3. Here, one

observes even better convergence than the theoretical convergence rate of h2. This

behavior continues until h = 10−4, where the errors reach machine precision.

Once the traceless forward mode of AD is successfully verified, the next step is to

compare the derivatives against the trace-based differentiation modes. The results

presented in Table 3.3 and Table 3.4 show some small disparity (close to the machine

precision) between the gradients. This is due to different implementations of certain

overloaded operators (power and division) in ADOL-C with respect to the trace-

based and traceless options. Not only the derivative calculation but also the primal

evaluation is affected in the same order of magnitude. The differences between

the trace-based and the traceless variants are therefore small enough not to yield

radically different CAD models, and hence both can be used equally.

This verification ensures the correctness of the computed derivatives only for the

computational path exercised by the U-bend geometry. Although this test-case does

use a lot of methods from the OCCT kernel, it represents a very small part of

the complete OCCT capability. Clearly, adding definitions for all possible input and

output variables to all regression tests is not a feasible task. An unanswered challenge

to the AD community is how to not just automatically produce the derivative code,

43

3 Algorithmic differentiation of OCCT

Table 3.3: AD traceless-forward and AD trace-based forward gradient compar-
ison for several U-bend point coordinates

Traceless-forward gradient Trace-based forward gradient Abs. difference

1.03293863915149e-01 1.03293863915283e-01 1.34e-13
2.36707086987917e-01 2.36707086987913e-01 4.00e-15
1.28682761975210e-01 1.28682761975225e-01 1.50e-14
1.25652442670046e-02 1.25652442669980e-02 6.60e-15

...
...

...

2.24699593280905e-01 2.24699593281250e-01 3.45e-13*

*Maximal difference

Table 3.4: AD traceless-forward and AD trace-based reverse gradient compar-
ison for several U-bend point coordinates

Traceless-forward gradient Trace-based reverse gradient Abs. difference

1.03293863915149e-01 1.03293863915222e-01 7.30e-14
2.36707086987917e-01 2.36707086987912e-01 5.00e-15
1.28682761975210e-01 1.28682761975216e-01 6.00e-15
1.25652442670046e-02 1.25652442670053e-02 7.00e-16

...
...

...

2.24699593280905e-01 2.24699593281155e-01 2.50e-13*

*Maximal difference

but also to derive relevant derivative regression tests from existing primal tests.

3.5.3 Gradient verification using TU Berlin stator blade parametrization

The same derivative verification procedure is repeated for the TUB stator test-case

described in Sec. 2.1.2, since its parametrization uses slightly different OCCT mod-

eling functionalities. The surface sensitivities with respect to one design parameter

calculated with the traceless forward mode of AD and FD are shown in Fig. 3.4.

They show mutual agreement, as confirmed by the quantitative comparison pre-

sented in Table 3.5.

Furthermore, the TUB blade surface sensitivities are also verified with the Taylor

test (presented in Eq. (3.1)). The Taylor test is evaluated on a number of arbitrary

44

3.5 Verification of differentiated OCCT

AD magnitude

2,909e-02

0,021814

0,014543

0,0072713

0,000e+00

FD magnitude

2,909e-02

0,021814

0,014543

0,0072713

0,000e+00

Figure 3.4: TUB stator blade geometric sensitivities evaluated with AD (left) and
FD (right)

Table 3.5: AD and FD values comparison for several TUB stator blade point
coordinates

AD value FD value Abs. difference

-3.9664798813e-07 -3.9664715956e-07 8.29e-13
6.4515277484e-07 6.4515282006e-07 4.52e-14
-8.2421051717e-06 -8.2420958947e-06 9.28e-12
-3.0079939641e-05 -3.0079916336e-05 2.33e-11

...
...

...

2.5489612529e-03 2.5489583777e-03 2.88e-09*

*Maximal difference

45

3 Algorithmic differentiation of OCCT

101 10−2 10−5 10−8

Step size (h)

10−16

10−13

10−10

10−7

10−4

10−1

E
rr

or

h
2

Figure 3.5: Taylor test overview for eight TUB blade surface point coordinates

surface point coordinates with a range of step sizes h ∈ [101, 10−14]. The error

plots (the left-hand side of Eq. (3.1)), presented in Fig. 3.5, follow the theoretical

convergence rate of h2. This behavior continues until h = 10−4, where the errors

reach machine precision.

The following step is to compare the derivatives evaluated with the traceless forward

mode of AD against the trace-based differentiation variants. The results presented

in Table 3.6 and Table 3.7 show only small discrepancies between the traceless and

trace-based options, that are close to machine precision and therefore can be ignored.

Table 3.6: AD traceless-forward and AD trace-based forward gradient compar-
ison for several TUB blade point coordinates

Traceless-forward gradient Trace-based forward gradient Abs. difference

1.222314947336750e-05 1.222314947336728e-05 2.20e-19
-2.675251117738395e-06 -2.675251117738355e-06 4.02e-20
-6.058242522306152e-04 -6.058242522306183e-04 3.04e-18
-4.452581416338372e-07 -4.452581416338355e-07 1.69e-21

...
...

...

2.523646741428816e-04 2.523646741428715e-04 1.01e-17*

*Maximal difference

Additionally to the original trace-based variants, the TUB stator derivatives are

46

3.5 Verification of differentiated OCCT

Table 3.7: AD traceless-forward and AD trace-based reverse gradient compar-
ison for several TUB blade point coordinates

Traceless-forward gradient Trace-based reverse gradient Abs. difference

1.222314947336750e-05 1.222314947336682e-05 6.81e-19
-2.675251117738395e-06 -2.675251117738477e-06 8.17e-20
-6.058242522306152e-04 -6.058242522306268e-04 1.16e-17
-4.452581416338372e-07 -4.452581416338406e-07 3.44e-21

...
...

...

1.762384886025022e-03 1.762384886024947e-03 7.50e-17*

*Maximal difference

Table 3.8: Activity analysis forward AD derivative verification on several TUB
blade point coordinates

Original trace-based forward AD Activity forward AD Abs. difference

1.222314947336728e-05 1.222314947336725e-05 3.05e-20
-2.675251117738355e-06 -2.675251117738024e-06 3.31e-19
-6.058242522306183e-04 -6.058242522306170e-04 1.30e-18
-4.452581416338355e-07 -4.452581416338328e-07 2.70e-21

...
...

...

1.698562701792327e-03 1.698562701792331e-03 4.12e-18*

*Maximal difference

also calculated with the activity analysis feature to improve the performance of the

differentiated OCCT sources, as explained in Sec. 3.3.2. Since the activity analysis

imposes certain modifications to the trace-based adouble operators, the blade surface

derivatives are verified against the original adouble class. The results presented

in Table 3.8 and Table 3.9 show mutual agreement between the original ADOL-C

sources and the activity analysis feature, with only very small discrepancies close to

the machine precision. Therefore, both variants can be used equally.

To summarize, all ADOL-C differentiation options are successfully verified on the

differentiated OCCT algorithms used for the parametric TUB stator blade model.

47

3 Algorithmic differentiation of OCCT

Table 3.9: Activity analysis reverse AD derivative verification on several TUB
blade point coordinates

Original trace-based reverse AD Activity reverse AD Abs. difference

1.222314947336682e-05 1.222314947336696e-05 1.41e-19
-3.025506251750016e-07 -3.025506251749999e-07 1.75e-21
-8.042184953312162e-06 -8.042184953312191e-06 2.88e-20
-4.452581416338406e-07 -4.452581416338404e-07 2.12e-22

...
...

...

1.431719066031524e-04 1.431719066031544e-04 2.01e-18*

*Maximal difference

3.6 Performance tests of differentiated OCCT

3.6.1 Performance of U-bend CAD application

An optimization example is developed to measure performance of the differentiated

OCCT sources by computing a large number of derivatives. The example is a typical,

often executed task in CAD, the so-called ‘surface fitting’. It is used to find a set

of design parameters in parametrization P to match a certain geometry T, with the

following optimization problem:

min
x∈R96

f(x) =

12000∑
i=1

‖Pi(x)− Ti‖2 s.t. lbj ≤ xj ≤ ubj , j = 1, . . . , 96. (3.2)

where j is the number of the design variables, i is the index of one of 12,000 sampling

points distributed uniformly over the surface, Pi(x) and Ti are the points on the

original and target (perturbed) surfaces respectively, lbj and ubj are lower and upper

box limits for the j-th design parameter.

The verification proceeds as follows:

1. Construct two U-bends: original and perturbed, see Fig. 3.6.

2. Sample both final B-spline surfaces with 12,000 pairs of (ui, vi) parametric

coordinates. These parametric coordinates are later used the in B-spline algo-

rithms to evaluate the corresponding 3-D points Pi(x) and Ti.

48

3.6 Performance tests of differentiated OCCT

(a) Original U-bend shape (b) Perturbed U-bend shape

Figure 3.6: CAD optimization with two U-bends

3. Define an objective function as in Eq. 3.2.

4. Declare the original design parameters x as the independent variables of the

system.

5. Compute gradients with ADOL-C.

6. Minimize the objective function f(x) by using the limited-memory BFGS op-

timization algorithm with box constraints (L-BFGS-B) [ZBLN97].

Before analyzing the performance, the surface fitting example was executed with

the traceless forward mode and the trace-based reverse mode of AD. The L-BFGS-B

optimizer converged at the same point using the gradients provided by both differ-

entiation modes. This step served as an additional effort to validate the derivatives.

The performance of the differentiated OCCT sources has been analyzed and com-

pared to the original sources. The time required for a single geometry optimization

iteration — the objective function value and the corresponding derivatives — has

been measured. All three original differentiation modes of ADOL-C (the traceless

forward mode and the trace-based forward and reverse modes) have been evaluated

in the tests.

It is important to note that the measurements related to the trace-based variants

include the time for generating the trace (tracing) on every iteration. Typically,

when dealing with simple functions that do not involve code branching, the tracing is

49

3 Algorithmic differentiation of OCCT

Table 3.10: U-bend single optimization iteration timings for original and differ-
entiated sources with number of directions p = 1 (scalar mode)

Computation mode Avg. time [s] Run-time ratio

Original sources (primal) 0.421
Traceless forward AD 1.260 2.99
Trace-based forward AD 4.726 11.23
Trace-based reverse AD 4.660 11.07

Timings are averaged on 10 measurements. Tracing time: 3.9s, run-time ratio: 9.25.

Table 3.11: U-bend single optimization iteration timings with original and dif-
ferentiated sources with number of directions p = 96 (vector mode)

Computation mode Avg. time [s] Run-time ratio

Original sources (primal) 0.421
Traceless forward AD 12.597 29.92
Trace-based forward AD 18.132 43.07
Trace-based reverse AD 4.654 11.05

Timings are averaged on 10 measurements. Tracing time: 3.9s, run-time ratio: 9.25.

performed only once at the beginning, i.e. on the initial iteration. Later on, the same

trace can be re-used to evaluate the function and its derivatives for different values

of arguments x. This capability can significantly reduce the run-time. However,

the OCCT geometry computation is a highly non-linear algorithm and a different

computational path may be traversed at each design iteration, which disables the

possibility to re-use the trace. For this reason, the tracing process is repeated for

every iteration and therefore its required time is calculated in the measurements.

The results, i.e. quantitative comparisons of the average timings and run-time ra-

tios (tad/tprimal), where the derivatives have been computed in one direction (scalar

mode) as well as in 96 directions (vector mode), are shown in Table 3.10 and Ta-

ble 3.11, respectively.

According to the theory [GW08], the run-time ratio between the derivative com-

putation in the forward mode of AD and the primal evaluation should be in range

[1 + p, 1 + 1.5p], where p is the number of directions. Furthermore, the run-time

ratio between the derivative computation in the reverse mode of AD and the primal

50

3.6 Performance tests of differentiated OCCT

0 8 16 24 32 40 48 56 64 72 80 88 96

Number of directions (p)

0

20

40

60

80

100

120

140

160

R
un

-t
im

e
ra

ti
o

1 + 1.5p
1 + 1p
Finite Differences
AD Traceless-Forward
AD Trace-Forward
AD Trace-Reverse

Derivative computation mode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
ot

al
m

em
or

y
co

ns
um

pt
io

n
[G

B
] p = 96

Finite Differences
AD Traceless-Forward
AD Trace-Forward
AD Trace-Reverse

Figure 3.7: Summary of run-time ratios (left) and total memory requirements (right)
for U-bend example

evaluation should be in range [1 + 2q, 1.5 + 2.5q], where q is the number of adjoints.

In the U-bend test example one has q = 1, therefore the expected range is [3, 4].

Comparing this with the results in Table 3.10 and Table 3.11, one can state that the

differentiated OCCT sources yield run-time ratios that are even below the theoret-

ical lower range boundaries for the forward mode. One reason for this is that the

derivation of the theoretical bounds assumes a rather pessimistic runtime ratio for

nonlinear univariate operations. Therefore, much better run-time ratios achieved

with the traceless forward mode might be connected to the limited use of these

costly operations by OCCT. Alternatively, one might also assume that compiler op-

timization could be a reason for this good run-time ratio. However, a similar effect,

i.e. a better run-time ratio than predicted by the theory, is observable also for the

trace-based forward mode where compiler optimization is not available in a compre-

hensive fashion due to the used overloading approach. Finally, the reverse mode of

AD obtains a 63% improved efficiency in contrast to the traceless forward mode of

AD for p = 96 design variables.

An overview of all run-time ratios evaluated in the range of 1 to 96 directions,

together with the memory requirements with respect to the maximal number of

directions, is shown in Fig. 3.7. Additionally to the AD run-time ratios, the run-

51

3 Algorithmic differentiation of OCCT

time ratios for FD are also shown. To evaluate the memory requirements (with

p = 96), the same U-bend application has been profiled with the profiling tool

Massif — which is a part of the Valgrind tools for debugging and profiling [NS07].

The sources have been compiled with two compilers: g++ v4.8.5 and clang++

v3.7.0, showing similar results. To summarize, AD requires more memory than

the FD approach, but it performs significantly faster, especially when using many

directions.

3.6.2 Performance of TU Berlin stator CAD application

Analogously to the U-bend CAD application, the surface fitting algorithm is devel-

oped for the TUB stator test-case. Here, the optimization problem is defined as

follows:

min
x∈R184

f(x) =

1800∑
i=1

‖Pi(x)− Ti‖2 s.t. lbj ≤ xj ≤ ubj , j = 1, . . . , 184. (3.3)

where j is the number of the design variables, i is the index of one of 1,800 sampling

points distributed uniformly over the surface, Pi(x) and Ti are the points on the

original and target (perturbed) surfaces respectively, lbj and ubj are the lower and

upper box limits for the j-th design parameter.

The verification follows the workflow described in the previous section, using the

original (P) and perturbed (T) geometries that are presented in Fig. 3.8. In com-

parison with Eq. (3.2), here the objective function depends on 184 design variables,

while the number of sampling points is reduced to 1,800.

The time required for a single geometry optimization iteration — the objective

function value and the corresponding derivatives — has been measured. Additionally

to the traceless and original trace-based differentiation variants, the activity analysis

feature is also considered in the measurements.

The results, i.e. quantitative comparisons of the average timings and the run-time ra-

tios (tad/tprimal), where the derivatives have been computed in one direction (scalar

mode) as well as in 184 directions (vector mode), are shown in Table 3.12 and

Table 3.13, respectively.

52

3.6 Performance tests of differentiated OCCT

(a) Original blade (b) Perturbed blade

Figure 3.8: CAD optimization with two TUB stator blades

Table 3.12: TUB stator single optimization iteration timings for original
and differentiated sources with number of directions p = 1
(scalar mode)

Computation mode Avg. time [s] Run-time ratio

Original sources (primal) 0.047
Traceless forward AD 0.489 10.42
Trace-based forward AD 2.881 61.45
Trace-based forward activity AD 1.844 39.34
Trace-based reverse AD 2.921 62.30
Trace-based reverse activity AD 1.904 40.62

Timings are averaged on 10 measurements.

53

3 Algorithmic differentiation of OCCT

Table 3.13: TUB stator single optimization iteration timings with original
and differentiated sources with number of directions p = 184
(vector mode)

Computation mode Avg. time [s] Run-time ratio

Original sources (primal) 0.047
Traceless forward AD 7.134 152.16
Trace-based forward AD 10.776 229.84
Trace-based forward activity AD 5.260 112.19
Trace-based reverse AD 2.897 61.79
Trace-based reverse activity AD 2.244 47.87

Timings are averaged on 10 measurements.

For this test-case, the results are not as good as the ones presented in Sec. 3.6.1.

That is, the scalar run-time ratios for forward mode of AD (presented in Table 3.12)

are much higher than the upper theoretical limit of 2.5. The reason for such a slow-

down could be that the compiler is not able to optimize complex blade construction

algorithms as good as it does for the U-bend parametrization code. However, this

pays off when using forward vector mode of AD with the complete design space of

184 parameters, where the differentiated sources yield a run-time ratio that is even

better than the lower theoretical expectation.

Considering the reverse mode of AD, its performance is significantly slower than the

upper theoretical boundary of 4. Nevertheless, the results presented in Table 3.13

show that the original reverse mode of AD obtains a 59.4% improved efficiency in

contrast to the traceless forward mode of AD. Once the activity analysis is enabled,

it improves the computation efficiency by additional 22.5% in contrast to the original

reverse mode of AD.

An overview of all run-time ratios evaluated in the range of 1 to 184 directions is

shown in Fig. 3.9. Additionally to the AD run-time ratios, the run-time ratios for

FD are also shown. As one can notice, the best performance for this example is

achieved when computing the gradients with respect to the complete design space

using the reverse mode of AD with enabled activity analysis.

The same TUB stator application is profiled with the Massif profiling tool to evalu-

ate the maximal memory requirements of the differentiated sources when computing

54

3.6 Performance tests of differentiated OCCT

0 23 46 69 92 115 138 161 184

Number of directions (p)

0

25

50

75

100

125

150

175

200

225

250

275

300
R

un
-t

im
e

ra
ti

o
1 + 1.5p
1 + p
Finite Differences
Traceless-Forward
Trace-Forward Original
Trace-Forward Activity
Trace-Reverse Original
Trace-Reverse Activity

Figure 3.9: Summary of run-time ratios for TUB stator example

Derivative computation mode
0

1

2

3

4

5

6

M
ax

.
m

em
or

y
co

ns
um

pt
io

n
[G

B
]

p = 184
Finite Differences
Traceless-Forward
Trace-Forward Original
Trace-Forward Activity
Trace-Reverse Original
Trace-Reverse Activity

Figure 3.10: Summary of memory requirements for TUB stator example

55

3 Algorithmic differentiation of OCCT

Table 3.14: ADOL-C trace buffers

Original ADOL-C Activity analysis

Buffer type Size Memory [MB] Size Memory [MB]

Operation 103900078 99.09 38079347 36.32
Location 163085895 622.12 71488624 272.71
Value 3643416 27.80 9810737 74.85
Taylor 96946436 739.64 35656343 272.04

the derivatives in 184 directions, as shown in Fig. 3.10. The lowest memory con-

sumption of the differentiated sources is achieved when using the reverse mode of

AD with activity analysis.

In addition to the memory profiling with Massif, the ADOL-C trace buffers’ sizes

are examined and written in Table 3.14. To retrieve these numbers, one calls the

function of ADOL-C named printTapeStats. In comparison to the original ADOL-

C trace-based variant, the activity analysis requires much less resources, i.e. the

size of operation, location and Taylor buffers is significantly reduced. Only the

value buffer is increased, but this is exactly the expected behavior. As explained

in Sec. 3.3.2, the activity analysis discovers all adoubles that are constants and

stores only their values in the value buffer (hence reducing their footprint in other

buffers). Therefore, when evaluating the trace, all constant adoubles are treated in

the same way as regular double variables. When using the activity analysis for this

particular case, the total memory consumed by the trace is reduced from 1488.65 MB

to 655.92 MB, i.e. by 56%. This also justifies its faster evaluation than the original

trace-based code (shown in Fig. 3.9).

3.7 Summary

The AD of OCCT was achieved by integrating the AD tool ADOL-C into its sources.

During the differentiation, a large number of compile- and run-time errors had to

be resolved, which resulted in a considerable amount of code modification. Both

traceless and trace-based ADOL-C features were integrated into OCCT, leading to

two different versions of the differentiated sources.

56

3.7 Summary

After the differentiation, the primal functionality was validated with the automated

testing system of OCCT. Next, the derivatives computed with AD were successfully

verified against FD, using the parametric models of U-bend and TUB stator.

The same test-cases have been employed to measure performance of the differentiated

sources. Regarding the U-bend test-case, the reverse mode of AD obtains a reduction

of 63% in run-time contrary to the traceless forward mode of AD for p = 96 design

parameters. Regarding the TUB stator test-case, the reverse mode of AD yields a

reduction of 59.4% in contrast to the traceless forward mode of AD for p = 184 design

parameters. For this test-case, the activity analysis feature of ADOL-C has been

employed, which resulted in a faster execution and reduced memory requirements

of the reverse differentiated OCCT sources.

57

4
Aerodynamic shape optimization with

differentiated OCCT

4.1 Mathematical formulation of CAD-based optimization

with adjoint method

Aerodynamic performance of a given CAD model is usually described with a scalar

objective function J such as drag, lift or total pressure loss. Here, the optimization

problem can be stated as follows:

min
α

J(U(X(α)), X(α)) , (4.1)

R(U(X(α)), X(α)) = 0 . (4.2)

In our context Eq. (4.2) denotes the system of steady-state Reynolds-Averaged

Navier-Stokes equations (RANS), where the flow residual R is driven to zero by an

iterative solution procedure. Both the objective function J and the residual R are

functions of the flow state variable U and the mesh coordinates X, which successively

depend on CAD design parameters α. Differentiating the system Eq. (4.1)-(4.2) with

respect to α yields:
dJ

dα
=
[∂J
∂U

∂U

∂X
+
∂J

∂X

]∂X
∂α

. (4.3)

dR

dα
=
[∂R
∂U

∂U

∂X
+
∂R

∂X

]∂X
∂α

= 0 . (4.4)

The latter can be written in a form of a linear system:

A u = b , (4.5)

59

4 Aerodynamic shape optimization with differentiated OCCT

where

A =
∂R

∂U
, u =

∂U

∂X
and b = − ∂R

∂X
.

The solution u is obtained by solving the linear system presented in Eq. (4.5). Later,

it can be used to compute the objective function gradient:

dJ

dα
=
[
g u+

∂J

∂X

]∂X
∂α

, (4.6)

where

g =
∂J

∂U
.

The described workflow represents the so-called tangent-linear approach (or forward

mode) to compute the gradient [XJM13]. However, the right-hand side of the linear

system in Eq. (4.5), as well as the solution u depends on X. Therefore, the solution

u needs to be recomputed for each variable X solving Eq. (4.5) [CJM11]. This

causes the gradient computational cost to scale linearly with respect to the number

of mesh variables, which is expensive for industrial applications where the mesh

size is typically quantified in thousands or more likely millions when dealing with

high-fidelity simulations.

A more efficient approach to compute the gradient is the adjoint method [GDMP03,

YMJC11, XJM13, XRMM15]. With this approach, one computes the transposed

gradient which allows regrouping of the terms in Eq. (4.6):

dJ

dα

>
=
∂X

∂α

>[
(g A−1 b)> +

∂J

∂X

>]
(4.7)

=
∂X

∂α

>[
b> A−> g> +

∂J

∂X

>]
.

To avoid computing the inverse of the matrix A in Eq. (4.7), one applies the following

expression:

A−> g> ≡ ν . (4.8)

Multiplying Eq. (4.8) from the left side by A>, one retrieves a linear system:

60

4.1 Mathematical formulation of CAD-based optimization with adjoint method

A> ν = g> ≡ ∂R

∂U

>
ν =

∂J

∂U

>
. (4.9)

Eq. (4.9) is referred to as the adjoint equation. The adjoint solution ν can be utilized

in Eq. (4.6) to compute the gradient by applying the following equivalence:

g u = (g>)
>
u = (A> ν)

>
u = ν> A u = ν> b . (4.10)

Using this equivalence statement (Eq. (4.10)), the total gradient in Eq. (4.6) is

reformulated as follows:

dJ

dα
=
[
ν> b+

∂J

∂X

]∂X
∂α

. (4.11)

Another approach to derive the adjoint equation is by means of the Lagrange cal-

culus, where ν is the so-called Lagrange multiplier. A comprehensive explanation of

this method can be found in [Gun02].

The benefit of using the adjoint approach is that the linear system presented in

Eq. (4.9) is independent of the mesh points X contrary to the direct approach

defined in Eq. (4.5). In the case of a scalar objective function J , the adjoint linear

system requires only a single evaluation. The adjoint sensitivity defined in Eq. (4.11)

still depends on the source term b which depends on X, however b is not involved

any more in an expensive linear system solution process and the term ν> b can

be efficiently computed using the reverse mode of AD. That is the reason why the

adjoint method is advantageous for applications such as CFD that typically have a

few objective functions (outputs) and many design variables (inputs).

Typically, the parametrization code is decoupled from the CFD tool, as it is the case

in this study. Therefore, the adjoint formulation explained above computes only the

volumetric sensitivity dJ/dX (instead of dJ/dα). Applying the chain rule, the total

sensitivity can be assembled as follows:

dJ

dα
=
dJ

dX

dX

dXS

dXS

dα
, (4.12)

where XS represents the mesh coordinates of the design surface.

61

4 Aerodynamic shape optimization with differentiated OCCT

The term dX/dXS describes the relation between volume and surface mesh per-

turbation, i.e. how the computational grid is affected by the change in the design

surface. One possibility to compute it is to differentiate a mesh generation algorithm.

This can be useful if the mesh generation is repeated at every design update during

the optimization. A more efficient approach is to utilize mesh morphing techniques

that deform volume mesh nodes accordingly to the design surface perturbation. The

common mesh deformation algorithms are: linear elasticity [Dwi09], spring analogy

[Blo00] and inverse-distance weighting [WB09].

By differentiating the mesh morphing algorithm, one can combine the retrieved

sensitivity with the adjoint volumetric sensitivity to assemble the adjoint surface

sensitivity:

dJ

dXS
=
dJ

dX

dX

dXS
. (4.13)

By employing the adjoint surface sensitivity in Eq. (4.12), the total gradient is

rewritten as follows:

dJ

dα
=

dJ

dXS

dXS

dα
. (4.14)

The first term in Eq. (4.14), the so-called CFD sensitivity, corresponds to the sen-

sitivity of the objective function with respect to displacements of the surface grid

points XS . The second term in Eq. (4.14), the so-called CAD sensitivity, repre-

sents the geometric derivative of the surface grid points XS with respect to design

parameters α. After obtaining the total gradient, one can use it in gradient-based

optimization loop:

α(n+1) = A
(
α(n),

dJ

dα
(α(n))

)
, (4.15)

with A as an iterative optimization algorithm.

4.2 STAMPS flow solver

The CFD optimization group at Queen Mary University of London develops the

open-source discrete adjoint CFD solver STAMPS [MGX+16, MHM18]. This CFD

62

4.3 Gradient-based shape optimization framework

solver employs a typical edge-based vertex-centered finite volume formulation to

solve the primal system of equations (defined in Eq. (4.2)) on unstructured grids.

Its source code is developed in the Fortran90 language. This enables the application

of the source-transformation AD — in particular the AD tool Tapenade is used —

in order to produce the adjoint code. Contrary to the operator-overloading concept,

the source-transformation AD enables a lower memory footprint of the differentiated

sources, which is extremely beneficial for applications such as CFD. As reported in

[MHM18], the adjoint solve requires only 15% more memory comparing to the primal

evaluation on the TUB stator test-case.

4.3 Gradient-based shape optimization framework

As mentioned in Sec. 1.4.1, Orest Mykhaskiv (QMUL) developed the gradient-based

shape optimization framework used in this work as illustrated in Fig. 4.1. The

author contributed to the CAD sensitivity evaluation part and its integration into

the optimization framework. The framework development is based on the object-

oriented programming paradigm, such that different tools or optimization methods

could be connected to it. Therefore, the workflow presented in Fig. 4.1 represents

the general CAD-based optimization loop.

The optimization process is described as follows. The baseline CAD model is con-

structed using the provided initial set of design parameters α. The CAD geometry

is exported to a STEP file which is used by a mesh generator to create the computa-

tional grid for the CFD tool. The mesh points that belong to the design surface are

projected to the B-spline surface of the model to find corresponding (u, v) parametric

coordinates. Typically, the CAD model has several faces (B-spline surfaces). There-

fore, in addition to the parametric coordinates, one stores the face index where the

certain point is projected. This information is later required to compute the CAD

sensitivity. Afterwards, one executes the CFD tool (in this case the STAMPS flow

solver) that solves the primal and the adjoint equations. As the output, one obtains

the objective function value and the adjoint volumetric sensitivity. The following

step is to map the volumetric sensitivity to the adjoint surface sensitivity. For this

purpose, STAMPS provides the mesh morphing capability that is also algorithmi-

63

4 Aerodynamic shape optimization with differentiated OCCT

Initial CAD (α)

Mesh on CAD

Primal CFD

Adjoint CFD

CFD sensitivity

CAD sensitivity

dJ
dα = dJ

dXS

dXS
dα

α(n+1) =
A
(
α(n), dJdα(α(n))

)

Volume mesh
perturbation

Update surface
mesh (α(n+1))

Update CAD
(α(n+1))

Converged? Final CAD

No

Yes

Figure 4.1: Gradient-based optimization workflow

64

4.4 U-bend optimization results

cally differentiated. In this work, the inverse-distance weighting method is used.

Once the CFD sensitivity is assembled, there are two possibilities to compute the

total gradient dJ/dα:

1. Compute the CAD sensitivity by using the differentiated OCCT kernel in the

traceless forward mode of ADOL-C and couple both sensitivities at the end.

2. Use the differentiated OCCT kernel in the trace-based reverse mode of ADOL-

C, thus having a full reverse mode differentiation of the complete differentiated

design chain to compute the desired gradient.

When choosing the first approach, the CAD and CFD parts can be executed in

parallel since their sensitivity computation is independent of each other. In this

case, the total gradient is calculated at the end just by multiplying the two sensi-

tivities. On the other hand, the second approach requires that the CFD sensitivity

is computed first and then propagated as a derivative seed vector to the reverse

differentiated OCCT. Basically, the derivative seed vector is given to an ADOL-C

driver routine that evaluates the trace by using the reverse mode of AD and gives

the total gradient as the output.

The total gradient is provided to an optimizer to update the values of the design

parameters α. There are three optimization methods used in this work: steepest-

descent (also referred to as gradient-descent), L-BFGS-B and SLSQP (Sequential

Least SQuares Programming).

The next step is to update the CAD geometry and the surface mesh. The surface

displacements are propagated into the interior domain by the mesh morphing algo-

rithm. After the volume mesh perturbation is completed, the CFD tool is executed

again and the complete process is repeated until the convergence is achieved. As

already stated, the benefit of using the CAD-based optimization methods is that

one retrieves the optimal shape in the CAD-specific format.

4.4 U-bend optimization results

The gradient-based optimization methodology elaborated in the previous section is

applied to the U-bend test-case whose parametrization is described in Sec. 2.1.1.

The complete case description can be found in [Ver] with the corresponding related

65

4 Aerodynamic shape optimization with differentiated OCCT

research [VCB+13, CVB+13]. The objective function to minimize is the total pres-

sure loss between the inlet and the outlet pipe. The U-bend is a rather challenging

case for the CFD solver, since the flow completely changes its direction after the

U-part.

The computational grid for the CFD tool was created in ANSYS ICEM CFD and has

approximately 170,000 cells. The CFD computations are performed by the discrete

adjoint solver STAMPS.

STAMPS includes several methods for robust volume mesh movement. As men-

tioned previously, the inverse-distance weighting method is used in this work. There-

fore, at each optimization step, the surface mesh is recalculated on the updated CAD

geometry given by the OCCT kernel and then the resulting surface displacements

are propagated into the interior domain of the volume mesh.

Two optimization methods were applied: L-BFGS-B and steepest descent (S-D). The

efficient L-BFGS-B algorithm was taking too large steps in the initial iteration that

generated a U-bend shape not suitable for the volume mesh movement and therefore

breaking the optimization process. On the other hand, the S-D method is considered

to be inferior in performance, however its explicit control of the design steps made

parametrization updates and corresponding volume mesh movement more robust

and hence was finally used to drive the optimization.

The optimization history, yielding 18% improvement, is shown in Fig. 4.2 together

with a comparison between the baseline and the optimal geometry. The design it-

erations broke down at this stage because the mesh quality of the deformed mesh

became too poor for the flow solver to converge. As there is an exact CAD de-

scription of the U-bend geometry, one could re-mesh and run further optimization

steps. Nevertheless, re-meshing is currently a manual step and not included in the

automated design algorithm.

The dominant flow phenomenon in the baseline geometry is the separation after

the U-part and downstream in the outlet leg, which significantly adds to the total

pressure loss. As shown in Fig. 4.3, the CAD-based optimization managed to reduce

its size, resulting in much lower loss of the total pressure. This is mainly due to the

increase in inner radius of the bend and the cross-sectional area of the U-part.

7Picture 4.2 (b) provided by Orest Mykhaskiv

66

4.4 U-bend optimization results

0 5 10 15 20 25

Number of iterations

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

is
ed

pr
es

su
re

lo
ss

(p
/p

0)

(a) Objective function (b) Initial (green) and optimized (gray) CAD
model

Figure 4.2: U-bend optimization results7

u/u0

1.81

1.36

0.90

0.45

0.00

Figure 4.3: Left: Baseline and optimized mid-span velocity magnitude; Right: Flow
streamlines in the outlet leg of U-bend8

67

4 Aerodynamic shape optimization with differentiated OCCT

4.5 TU Berlin stator optimization results

The gradient-based optimization framework (described in Sec. 4.3) is also utilized

to perform aerodynamic shape optimization of the TUB compressor stator blade

elaborated in Sec. 2.1.2. The task of the stator is to turn the incoming flow with

a whirl angle of 42◦ into the axial direction with a minimal total pressure loss.

Therefore, the objective function to minimize is the total pressure loss between the

inlet and the outlet CFD domain. The second objective is to minimize the flow

angle deviation from the axial direction at the outlet, however it is not considered

in this optimization.

The optimization was performed in two stages, with low-fidelity and high-fidelity

CFD simulations performed by STAMPS. The computational grids were created

in ANSYS ICEM CFD and have approximately 20,000 and 400,000 cells for the

low-fidelity and the high-fidelity CFD simulation, respectively.

There are several geometric/manufacturing constraints that have to be satisfied

during the optimization:

1. G2 continuity is imposed on every blade section to ensure a smooth blade

surface. In the context of a single blade section, the G2 continuity or curvature

continuity means that the suction and the pressure B-spline curves have a

common point (e.g. leading edge), their tangent vectors lie along the same

direction and the curvature change at that point is equal for both curves. In

other words, when two curves join at a certain point, their angles are identical

as well as their radii. The G2 continuity is respected both for the leading and

the trailing edge (LE and TE) and guaranteed by the parametrization.

2. The axial chord of the blade has to be kept constant: the axial-coordinate of

the last camber-line control point is set to be equal to the axial-coordinate of

the first control point plus the constant axial chord value.

3. Minimum blade thickness distribution.

4. Minimum LE and TE radii.

5. Minimum thickness near the hub and the shroud to accommodate four mount-

8Picture provided by Orest Mykhaskiv

68

4.5 TU Berlin stator optimization results

ing bolts (cylinders) that serve to mount the blade to its casing.

The first two requirements are embedded in the parametrization. The third and the

fourth constraint are handled by the optimization algorithm. For this purpose, the

L-BFGS-B algorithm is used as the optimizer, since it allows to impose bounding

ranges (lower and upper limits) for the CAD parameters α. The last prerequisite

that the optimal blade has to accommodate four cylinders is rather challenging to

fulfill, however a suitable solution is elaborated in Chapter 5.

The CAD-based optimization with the low-fidelity CFD simulation yields 13.72%

reduction of the objective function after eleven iterations, as shown in Fig. 4.4. A

comparison between the baseline and the optimal geometry is presented in Fig. 4.5.

As one can notice, the optimization reduces LE and TE radii as well as the blade

thickness, while respecting the predefined minimum values.

0 2 4 6 8 10 12

Number of iterations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

is
ed

pr
es

su
re

lo
ss

(p
/p

0)

Figure 4.4: TUB stator optimization history (low-fidelity CFD simulation)

The optimization with the high-fidelity CFD simulation converged after 23 iterations

and yields 6.7% improvement of the objective function, as presented in Fig. 4.6. As

shown in Fig. 4.7, the optimal blade is a bit thinner comparing to the original

one with slightly bended trailing edge at the mid-span. It achieves a signification

reduction of the flow separation at the shroud (tip).

9Picture provided by Orest Mykhaskiv
10Picture provided by Orest Mykhaskiv

69

4 Aerodynamic shape optimization with differentiated OCCT

Initial mid-section
Optimized mid-section

Figure 4.5: Left: Baseline (red) and optimal (blue) TUB blade geometry (low-fidelity
CFD simulation); Right: Comparison of mid-sections9

0 5 10 15 20 25

Number of iterations

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

N
or

m
al

is
ed

pr
es

su
re

lo
ss

(p
/p

0)

Figure 4.6: TUB stator optimization history (high-fidelity CFD simulation)

70

4.6 Summary

Initial CAD
Optimized CAD

Figure 4.7: Left: Baseline and optimal velocity distribution at TE (high-fidelity CFD
simulation); Right: Comparison of baseline and optimal geometry and
mid-sections10

4.6 Summary

In this chapter it is described how to formulate the CAD-based optimization with the

adjoint CFD method. Furthermore, the gradient-based shape optimization workflow

developed in this work is presented. In particular, the differentiated OCCT kernel

is coupled with the discrete adjoint CFD solver STAMPS, that is also produced

by AD. This differentiated design chain is demonstrated on the aerodynamic shape

optimization of the U-bend and TUB stator parametric models, in order to mini-

mize the total pressure losses. The following optimization methods were used: S-D

and L-BFGS-B. The U-bend optimization with S-D converged after 25 iterations

yielding 18% reduction of the objective. Regarding the TUB stator test-case, the

optimization was performed in two stages, both using L-BFGS-B as the optimizer.

First, the optimization with the low-fidelity CFD simulation converged after eleven

iterations decreasing the total pressure loss between the inlet and the outlet by

13.72%. Second, the optimization with the high-fidelity CFD simulation converged

after 23 iterations and yields 6.7% improvement of the objective function.

71

5
TU Berlin stator optimization with

assembly constraints

Assembly CAD models are complex structures defined in a CAD system with the

purpose to describe how a set of individual 3-D components are put together in

order to construct a whole product. They are crucial part of a product’s design

process since they define relations between all components in the product (i.e. how

the individual components are connected), as well as their position and volume to

be occupied. These CAD files also serve as inputs to manufacture the final product

with CAM.

Due to their complexity, shape optimization in industrial workflows is typically per-

formed on the extracted individual components of the product (i.e. on a component-

by-component basis) rather than considering the highly-detailed assembly CAD

models. Once an individual component is optimized, its CAD model needs to be

re-inserted to the assembly CAD model to ensure the fitting with the surrounding

components.

A collision arises when the optimized model occupies the same physical space as one

of the neighboring elements. In this case, the optimized shape has to be modified

until all collisions disappear. However, any post-optimization modifications impose

additional costs as they require further analysis (e.g. with CAE tools) and may im-

pair the optimal solution. Therefore, it is important to respect assembly constraints

during the shape optimization process.

Another type of assembly constraint is related to fasteners such as bolts, screws and

nuts, that serve to connect various components in the product’s assembly. Therefore,

one has to ensure the fitting of the fasteners in the optimal shape as well. This kind

73

5 TU Berlin stator optimization with assembly constraints

Figure 5.1: Top-view on the stator vane11

of requirement is defined for the TUB stator assembly.

As described in Sec. 4.5, the TUB stator test-case has several manufacturing con-

straints to be respected during the aerodynamic shape optimization. While the

majority of them are handled by the parametrization itself and by imposing lower

and upper bounds on the design space, the fitting of the fasteners in the optimal

blade required a more sophisticated solution elaborated in this chapter.

In particular, there are four mounting bolts (cylinders) that are pierced inside the

volume of the blade and they serve to mount the blade to the stator assembly. As

shown in Fig. 5.1, a cylinder has a radius of 5 mm and a depth of 20 mm to allow

cutting the screw thread at both hub (inner part of the stator) and shroud (outer

part of the stator). There are two cylinders per side of the blade. Their position is

arbitrary, however the axial distance between the two cylinders (in correspondence

to the hub or the shroud) has to be at least 60 mm.

The proposed approaches to tackle the assembly fit constraint during the optimiza-

tion are explained in the following section. Salvatore Auriemma developed the

method to measure the geometric constraints using the OCCT kernel, while the

author contributed to gradient computation and integration of constraints into the

shape optimization framework.

11Picture taken from the TUB test-case description [MV]

74

5.1 Implementation of stator assembly constraints

5.1 Implementation of stator assembly constraints

5.1.1 Intersection approach

Let us consider one cylinder that is placed inside the volume of a perturbed blade

such that the constraint is already violated, as shown in Fig. 5.2. One possibility

to define the constraint is to measure the intersection between the blade and the

cylinder. For this purpose, the OCCT kernel provides the BRepAlgoAPI Section

class which belongs to Boolean operations. Given two shapes, it calculates vertices

and edges that are the result of a conjunction between those shapes.

The next step is to analyze the collections of resulting edges with the ShapeAnaly-

sis FreeBounds class. It provides a method for connecting edges to wires. The wire

is a sequence of edges connected by their vertices. It can happen that there are

several wires found by the algorithm, e.g. if the cylinder intersects the blade both

on the suction and the pressure side.

There are open and closed wires. For this reason, one has to loop over all wires

provided by the ShapeAnalysis FreeBounds algorithm in order to identify open wires.

The open wires have to be manually closed, i.e. by creating a straight line between

the first and the last vertex of the wire and joining the newly created edge with the

original wire.

Once ensured that all wires are closed, one can calculate the area bounded by every

wire. This can be achieved with the method ContourArea implemented in the Sha-

peAnalysis class. Finally, one can sum over all evaluated areas to retrieve the total

intersection area that represents the constraint.

To validate the proposed approach for implementing the assembly constraint, an

optimization problem is defined to find the position of the cylinder where the objec-

tive function (intersection area) is minimal. That is, the blade parameters are fixed,

while the center coordinates of the cylinder (x, y) are defined as the independent

variables of the system (the z-coordinate is constant). The initial position of the

cylinder is presented in Fig. 5.2.

The L-BFGS-B algorithm is used as the optimizer, where the lower and the upper

bounds of the (x, y) coordinates are defined such that the cylinder does not end up

75

5 TU Berlin stator optimization with assembly constraints

Figure 5.2: Example of constraint violation between TUB blade and one cylinder

outside of the blade. Although in this case the objective function would be zero,

the solution is not valid. Therefore, a movement of the cylinder is limited to a few

millimeters in x- and y-direction. The derivatives of the objective function with

respect to (x, y) variables are calculated using the reverse mode of AD.

However, the optimization did not converge. The first assumption was that the gra-

dient information provided by the differentiated OCCT could be wrong, so the same

optimization was repeated with the original OCCT sources and the FD approach

to compute the derivatives. Still, the result was the same as with the differentiated

OCCT. This required further investigation of the intersection algorithm.

The first step was to evaluate the total intersection area (the primal) in many points

in order to generate a 3-D plot. That is, the center coordinates of the cylinder (x, y)

were moved in the neighborhood defined with the following range: [x− 2.5, x+ 2.5]

and [y − 2.5, y + 2.5], using a step size that produced 104 samples for the plot

presented in Fig. 5.3. The red dot in the middle represents the initial position of

the cylinder (as in Fig. 5.2). As one can notice, the objective function is very noisy

and contains a large number of spikes, making it unstable for the gradient-based

optimization. The actual number of spikes is unknown as it may differ with coarser

or finer step size for (x, y) coordinates.

76

5.1 Implementation of stator assembly constraints

Figure 5.3: Total intersection area with respect to (x, y) coordinates of the cylinder

One of such locations where a spike arises was extracted to visualize the blade and

the cylinder, as well as all edges found by the BRepAlgoAPI Section algorithm. This

example is presented in Fig. 5.4. As one can notice, the intersection edge on the

‘B’ side is not computed by the intersection algorithm, therefore causing the drop

in the objective function.

The problem was reported to Open CASCADE engineers to find an appropriate

solution. However, the conclusion is that the OCCT intersection algorithm works

poorly in the tangential cases and that is the reason why it failed to find all intersec-

tion edges. This is a general issue reported by Barnhill et al. [BFJP87], where they

stated that one class of examples difficult for surface-surface intersection algorithms

are surfaces which are tangent to each other. Due to this obstacle, the intersection

approach to define assembly constraint was rejected. The working alternative is

elaborated in the following section.

12Picture provided by Salvatore Auriemma

77

5 TU Berlin stator optimization with assembly constraints

Computed intersection edges

No edge found for B

Figure 5.4: BRepAlgoAPI Section algorithm fails to compute all intersection edges12

5.1.2 Interference detection approach based on distance between shapes

Another possibility to treat the assembly constraints is the interference detection

that is available in certain commercial CAD systems. Agarwal et al. [ARA18a]

proposed a CAD-based shape optimization framework that exploits this capability.

They use the interference detection tool in CATIA V5 which returns the minimum

distance required to translate a component to avoid collision. In the case there is no

collision between the observed shapes, it returns the allowed (clearance) distance.

These values serve to define inequality constraints of the optimization. Furthermore,

Agarwal et al. use FD to compute the gradient of the constraints with respect to

design parameters of a CAD model. They have successfully optimized an automotive

ventilation duct, the so-called S-bend, while respecting adjacent components in the

assembly. The similar concept is explained in this section to implement the TUB

bolts constraint.

To describe the algorithm, let us consider a relation between one cylinder and the

blade. First, a point cloud is distributed uniformly on the cylindrical surface, as

shown in Fig. 5.5. Second, each point is projected to the suction and the pressure

side of the blade in order to evaluate all distances between the mesh and both

sides of the blade. Finally, only two distances are selected to define two inequality

13Picture provided by Salvatore Auriemma

78

5.1 Implementation of stator assembly constraints

Figure 5.5: Example of point cloud for one cylinder13

constraints: C1 ≥ 0 and C2 ≥ 0, as illustrated in Fig. 5.6.

The selection algorithm works on the following criteria:

• In the case the cylinder is completely inside the volume of the blade, two mesh

points are identified at the minimum distance to the suction and pressure

sides and these distances are assigned to C1 and C2, respectively. Here, both

constraints are satisfied, as illustrated in Fig. 5.7a.

• If there is a collision between the shapes, e.g. at the suction side of the blade

such that C1 is not respected, the algorithm identifies the mesh point at the

maximum distance to the suction side. This distance is multiplied with −1 and

assigned to C1, as shown in Fig. 5.7b, while C2 still has the positive minimum

distance to the pressure side. For this example, the negative value of C1 implies

to the optimizer that only the constraint C1 is violated.

Following the same procedure, the interference detection approach is implemented

for all cylinders, yielding the number of eight inequality constraints (C1,...,8). Nev-

ertheless, this is not the total number of inequality constraints — there are two

additional constraints described in the next section.

79

5 TU Berlin stator optimization with assembly constraints

Pressure side

Suction side

Figure 5.6: Two distances between cylinder and blade14

(a) Constraints satisfied (b) C1 violated

Figure 5.7: Inequality constraints definition15

5.1.3 Cylinder positioning during shape optimization

The position of all four cylinders is arbitrary as long as they are inside the volume

of the blade and the axial distance between cylinder pairs (in correspondence to the

hub and the shroud) is at least 60 mm. The proposed solution to allow the movement

of the cylinders while respecting this constraint is defined as follows:

1. During the cross-sectional build-up of the blade geometry, two additional B-

spline curves are constructed on the bottom (hub) and top (shroud) sections.

They are created in the middle between the corresponding suction and pressure

B-splines and therefore referred to as ‘mid-lines’, as illustrated in Fig. 5.8.

2. The cylinders are allowed to slide on the mid-line. This is achieved by defining

the center coordinates of the cylinder as functions of the parametric coordinate

u of the mid-line (x(u), y(u)). Since each cylinder has the corresponding

14Picture provided by Salvatore Auriemma
15Picture provided by Salvatore Auriemma

80

5.2 Optimization results

parametric coordinate u to define its center, there are four additional design

parameters considered in the optimization (u1,...,4).

3. Finally, the axial distance constraints C9 and C10 are defined in Eq. (5.1) and

Eq. (5.2), respectively.

C9 = x(u2)− x(u1)− 60 ≥ 0, (5.1)

C10 = x(u4)− x(u3)− 60 ≥ 0. (5.2)

Figure 5.8: Mid-line example and minimum distance between two cylinders

Additionally to the inequality constraints, the parameters u are bounded with lower

and upper limits. In this way, every cylinder moves in its own half of the blade

and therefore it can not end up on the opposite side of the mid-line (which can

happen during the optimization if there are no imposed bounds). It also ensures

that the expressions x(u2) − x(u1) in Eq. (5.1) and x(u4) − x(u3) in Eq. (5.2) are

always positive. That is, the values of C9 and C10 become negative only if the axial

distance is lower than 60 mm, which would imply that the constraint is violated.

5.2 Optimization results

The gradient-based optimization framework described in Sec. 4.3 has been expanded

to support all inequality constraints explained in this chapter. Here, the SLSQP al-

gorithm from the Python’s SciPy library is chosen as the optimizer. Since the opti-

mization framework used in this work is originally implemented in C++, it required

further development to couple Python functions used by the SLSQP optimizer with

their corresponding C++ implementations.

81

5 TU Berlin stator optimization with assembly constraints

The optimization problem is defined as follows:

min
α∈R188

J(α)

s.t. Ci(α) ≥ 0, i = 1, . . . , 10

lbj ≤ αj ≤ ubj , j = 1, . . . , 188

As opposed to the TUB stator optimization explained in Sec. 4.5, here the total

number of design parameters is 188 instead of 184 (4 additional parameters serve to

move the cylinders during the optimization) and there are 10 inequality constraints

to ensure the fitting of cylinders inside the volume of the optimal blade.

The gradients of the objective function and the constraints are computed using

the reverse mode of AD. The derivatives of the objective function with respect to

the last four design parameters are equal to zero, i.e. the flow solver is not aware of

cylinders and in principle it should not be because the cylinders have to be inside the

optimal blade and therefore have no influence on the computational grid analyzed

by CFD. The derivatives of the geometric constraints are calculated with respect to

the complete design space, i.e. both blade and cylinder design parameters as they

all contribute to the gradient information.

The optimization was performed two times. First, the low-fidelity CFD simula-

tion with STAMPS used a computational grid of approximately 20,000 cells. This

optimization served as a proof of concept that the assembly constraints can be im-

plemented. Second, the high-fidelity CFD simulation used approximately 800,000

cells which required the computation to be executed by Salvatore Auriemma on a

cluster at Queen Mary University of London. The objective function to minimize is

the total pressure loss between the inlet and the outlet of the stator.

The CAD-based optimization with the low-fidelity CFD simulation yields 12.3%

reduction of the objective function after 18 iterations. The optimization history

with constraints is presented in Fig. 5.9, while the comparison between the initial

and the optimal blade shape is shown in Fig. 5.10. Here, a height of the cylinders

exceeds the blade volume due to presentation purposes, i.e. to better perceive their

positions. As visible in Fig. 5.10, the optimizer pushes the cylinders towards the

middle of the optimal blade due to a reduction of the blade’s thickness, however

respecting the minimal axial distance of 60 mm.

82

5.2 Optimization results

0 5 10 15 20

Iteration

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

is
ed

pr
es

su
re

lo
ss

(p
/p

0)

Objective

0 5 10 15 20

Iteration

−5

0

5

10

15

20

25

C
on

st
ra

in
t

va
lu

e
[m

m
]

Constraints

Figure 5.9: TUB stator optimization history with assembly constraints (low-fidelity
CFD simulation)

Figure 5.10: Comparison between initial (left) and optimal (right) blade geometry
with cylinders (low-fidelity CFD simulation)

83

5 TU Berlin stator optimization with assembly constraints

Table 5.1: Constraints values for baseline and optimal geometry

Constraint Initial value [mm] Optimal value [mm]

C1 0.42 0.10
C2 0.46 0.63
C3 1.66 1.33
C4 1.68 0.46
C5 0.42 0.10
C6 0.46 1.52
C7 1.65 1.68
C8 1.68 0.40

C9
* 9.90 5.97

C10
* 9.90 2.36

* One should add 60 mm to get the actual axial distance between cylinders

As one can notice, there are small dots on the optimal blade (Fig. 5.10) that indicate

possible violation of constraints, however this is only due to a visualization with

FreeCAD. That is, all constraints are satisfied as presented in the plot on the right

side of Fig. 5.9.

The CAD-based optimization with the hight-fidelity CFD simulation converged after

42 iterations, reducing the total pressure loss objective by 14%. The optimization

history is presented in Fig. 5.11, while the baseline and optimal TUB blade ge-

ometries are compared in Fig. 5.12. The optimal blade has a curved trailing edge

and it is thinner than the original one, especially when looking at the mid-sections.

One can also notice that the position of the bolts is slightly modified during the

optimization.

The objective function does not drop continuously during the optimization due to

violation of certain constraints. Nevertheless, the optimizer recovers successfully,

satisfying all constraints in the end, as shown in Table 5.1.

Furthermore, the comparison between the initial and the optimal mid-span velocity

distribution is shown in Fig. 5.13. Here one observes that the separation bubble

(blue region in the initial case) is significantly reduced in the final iteration. This

contributes to the reduction of the objective function.

16Picture provided by Salvatore Auriemma

84

5.2 Optimization results

0 5 10 15 20 25 30 35 40

Iteration

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

is
ed

pr
es

su
re

lo
ss

(p
/p

0)

Objective

0 5 10 15 20 25 30 35 40 45

Iteration

−20

−10

0

10

20

30

40

C
on

st
ra

in
t

va
lu

e
[m

m
]

Constraints

Figure 5.11: TUB stator optimization history with assembly constraints (high-
fidelity CFD simulation)

Figure 5.12: Comparison of baseline (gray) and optimal (green) TUB blade geometry
and mid-sections (high-fidelity CFD simulation)

85

5 TU Berlin stator optimization with assembly constraints

Velocity magnitude

0.000e+00 18.7 37.3 56 7.470e+01

Velocity magnitude

0.000e+00 18.7 37.3 56 7.470e+01

Figure 5.13: Comparison between the mid-span velocity distribution of the initial
(top) and final (bottom) iteration of the optimization16

86

5.3 Summary

5.3 Summary

This chapter proposed an approach to deal with the assembly constraints of the

TUB stator during the aerodynamic shape optimization. The optimal blade has

to accommodate four mounting bolts (cylinders) — two at the hub and two at the

shroud of the stator. Moreover, their position in the blade is arbitrary, however the

axial distance between the corresponding cylinder pairs has to be at least 60 mm. For

this purpose, ten inequality constraints were developed and provided to the SLSQP

optimizer together with the derivative information calculated with the differentiated

OCCT kernel. The gradient-based optimization was performed in two stages. First,

the optimization with the low-fidelity CFD simulation yields 12.3% reduction of

the objective function after 18 iterations. Second, the optimization with the high-

fidelity CFD simulation results in 14% reduction of the objective function after 42

iterations. The developed approach ensures there is no collision between the blade

and the cylinders.

87

6
Improved AD of the VKI in-house CAD

and grid generation tool

CADO (Computer Aided Design and Optimization) is a computer aided design and

optimization tool utilized for design of turbomachinery components at the von Kar-

man Institute for Fluid Dynamics [Ver10]. It consists of the following components:

a Computer Aided Graphical Design (CAGD) library used for airfoil and blade de-

sign, a mesh generation tool (both for the fluid domain and the solid domain) and

CAE packages (CFD and CSM).

So far, the CADO framework has been mainly used in a gradient-free optimization

context by applying a meta-model assisted evolutionary algorithm to drive the design

process. A recent development of a discrete adjoint CFD solver, presented by Mueller

et al. [MV17], enabled a shift towards gradient-based optimization methods.

To complete the chain rule of derivatives, ranging from the CAD parametrization

to the desired objective function value, one requires the derivative information from

the other elements in the VKI’s design chain. For this purpose, Sanchez Torreguitart

et al. [STVM16] performed the algorithmic differentiation of the CAD kernel and

the mesh generator using the traceless forward mode of ADOL-C. They used the

typedef approach (explained in Sec. 3.4.6), i.e. the alias cado::Real, to inject the

traceless adouble class into the CADO sources. The complete differentiated design

chain was demonstrated on the gradient-based optimization of the LS89 axial turbine

profile [STVM18].

The next step was to integrate the reverse mode of AD into the CAD and the grid

generation tool and couple them with the adjoint CFD solver in order to have the

complete reverse differentiated design chain and possibly benefit from an improved

89

6 Improved AD of the VKI in-house CAD and grid generation tool

efficiency. This stage was successfully achieved during a collaboration between UPB

and VKI.

First, one has to replace the declaration type cado::Real to become the alias for

the trace-based adouble class which is implemented in a different header of ADOL-C

(<adolc/adouble.h>). Every additional source code modification caused by the

type replacement was wrapped using the preprocessor directives with conditional

compilation to enable simple switching between the original and different versions

of the differentiated sources. Second, in the trace-based version of ADOL-C one has

to use the ADOL-C drivers to compute the derivatives. That is, the CFD sensitivity

is evaluated first and then propagated as a derivative seed information to one of the

ADOL-C routines, e.g. fos reverse (first-order scalar reverse mode of AD). Such

a routine evaluates the trace which contains the necessary data about executed

operations and intermediate variables in the CAD kernel and the mesh generator.

Finally, one obtains the gradient of the objective function, e.g. total pressure loss,

with respect to the design space defined at the CAD level. The verification of

gradients as well as the performance test of the differentiated sources are described

by Ismael Sanchez Torreguitart [ST19].

The performance of the reverse differentiated sources was not satisfactory because

the trace size took approximately 36 GB of memory. Such a large trace cannot fit

into the RAM and therefore is stored on a hard drive. This has a negative impact

of the performance of the differentiated sources, because reading the trace from the

hard drive is slower than reading the trace from the RAM. The following step was

to investigate the CADO sources in order to locate the cause for such an increased

memory requirement.

The CADO workflow that creates a computational domain for the CFD tool can be

divided into the following steps: (i) construct a 2-D geometry of the LS89 airfoil,

(ii) generate a 2-D block-structured mesh, (iii) perform mesh smoothing and (iv)

extrude the 2-D mesh computed in the previous step to construct a quasi 3-D mesh

that is required by the CFD tool (in sense that the geometry still remains 2-D). The

mesh smoothing part is an iterative process that executes almost an identical code

sequence 300 times and it was discovered as the main cause for having the large

trace files. Therefore, the aim is to exploit its structure in order to benefit from an

improved efficiency of the differentiated sources.

90

6.1 Mesh generation of LS89 axial turbine profile

Figure 6.1: LS89 multi-block mesh topology17

6.1 Mesh generation of LS89 axial turbine profile

The computational grid of the LS89 airfoil is generated by splitting the domain into

several structured blocks that are independent from each other, however sharing

common interfaces. This is also referred to as the multi-block approach. Contrary

to the single-block approach, it allows more control over cell size and shape, which

is beneficial when optimizing a complex geometry [ST19].

The LS89 multi-block grid topology is presented in Fig. 6.1. A single grid is con-

structed around the LS89 profile (also referred to as the O-grid in [ST19]). There

are additional six grids, four of which are placed around the O-grid and two of which

serve as the inlet and the outlet domain (these six grids are also referred to as the

H -grids in [ST19]).

There are two steps to generate the initial grid. First, the grid points are dis-

tributed on the boundary edges of all blocks. After that, the internal points are

calculated from the boundary points using the Transfinite Interpolation (TFI) equa-

tions [TSW98].

However, as stated in [ST19], when using this method there is no guarantee that the

grid lines will not intersect or that corners from the side will not be propagated inside

17Picture provided by Ismael Sanchez Torreguitart

91

6 Improved AD of the VKI in-house CAD and grid generation tool

Figure 6.2: LS89 smoothed multi-block mesh18

the domain. Therefore, it is advantageuous to smooth the grid blocks afterwards by

solving a PDE of a certain type — elliptic in this case.

In particular, the elliptical equations being solved are the Poisson equations and

their application to the structured grid generation was proposed by Thompson et

al. [TTM74]. The right-hand side of the Poisson equation (also referred to as the

source term) is used to control geometrical aspects of the mesh cells. That is,

the source terms enable control over the mesh cell orthogonality, clustering and

smoothness. Two approaches are used in CADO to define the source terms: (i) the

Steger and Sorenson [SS79] method which is employed for the O-grid and (ii) the

Laplace method which basically sets all source terms to zero and is mainly used for

the H -grids.

The corresponding PDEs used in the CADO mesh smoothing part can be found

in [STVM16, ST19]. An example of the final grid after smoothing is shown in

Fig. 6.2.

18Picture provided by Ismael Sanchez Torreguitart

92

6.2 Structure-exploiting AD of mesh smoothing process

The next step was to perform the structured AD of the CADO sources such that the

iterative process of solving governing PDEs is exploited from the AD perspective.

6.2 Structure-exploiting AD of mesh smoothing process

Instead of having a single large trace file which contains the differentiation data

about the complete CADO workflow (including 300 iterations of solving the mesh

smoothing PDEs), the differentiated CADO sources were modified in order to sep-

arate the gradient evaluation on three traces, as shown in Fig. 6.3. The traces are

formed as follows:

1. Trace T1 computes the LS89 geometry and initializes mesh blocks, interfaces

and smoothers.

2. Trace T2 performs a single 2-D mesh smoothing iteration.

3. Trace T3 takes the final 2-D mesh after smoothing as input and produces a

3-D mesh that is required by the CFD tool.

Since the main motivation is to detach the mesh smoothing iteration from the rest of

the code, every calculation that happens before it goes on the trace T1, while every-

thing what happens after the mesh smoothing goes on the trace T3. However, the

decoupling process is not straightforward because CADO is an object-oriented C++

library. It means that the data about mesh blocks, mesh interfaces and smoothing

algorithms is encapsulated in objects.

The smoothing process is actually a for -loop that executes a code sequence 300 times

(this number is a user-defined variable). In the loop’s body, the Update method is

called on every smoother object. After the update of seven mesh blocks is finished,

the mesh interfaces are updated as well. The aim is to eliminate the for -loop and

trace only the instructions called in its body. Later on, the trace T2 can be repeat-

edly evaluated using the ADOL-C drivers which can speed-up the execution of the

differentiated sources.

Simply putting the trace on and trace off ADOL-C commands around this code

block would not work, because the tracing process would miss the information about

the independent and dependent variables and how they relate to the underlying

93

6 Improved AD of the VKI in-house CAD and grid generation tool

Trace T1

design parameters
α1, α2, . . . , α22

2-D mesh coordinates ρ; smoothing parameters σ
ρ1, ρ2, . . . , ρ116150;σ116151, σ116152, . . . , σ187057

Trace T2

updated : 2-D mesh coordinates ρ̃; smoothing parameters σ̃
ρ̃1, ρ̃2, . . . , ρ̃116150; σ̃116151, σ̃116152, . . . , σ̃187057

Trace T3

3-D mesh coordinates τ
τ1, τ2, . . . , τ348450

Figure 6.3: Improved trace structure of differentiated CADO

94

6.2 Structure-exploiting AD of mesh smoothing process

code of every Update method. To complete this computational graph which defines

a single mesh smoothing iteration, one has to investigate how the mesh smoother

objects correlate with the mesh blocks and whether there are additional variables

encapsulated in the smoother objects that transmit the derivative information from

one iteration to another.

In order the simplify the explanation, let us consider an example where only the O-

grid around the LS89 profile is updated. The simplified code snippet of structuring

ADOL-C traces in CADO sources is shown in Listing 6.1.

The trace T1 (Line 1 – Line 25) includes everything from defining the design parame-

ters to initializing the mesh, mesh interfaces and mesh smoother objects. In addition

to marking the active sections of the code to be differentiated (with trace on/trace off

routines), one has to mark the independent and dependent variables using the bit-

wise shift operators (<<= and >>=), as described in Sec. 3.3.2. The left-hand side

of the operator <<= has to be an adouble object, while the right-hand side has to

be a primitive-type variable. The opposite rule applies to the >>= operator. An

example of marking the design parameters as the independent variables is shown in

Line 3 – Line 4. The design parameters are simply re-set using the same values,

however they become activated from the AD perspective. For this test-case, there

are 22 design parameters, however CADO supports advanced LS89 parametrization

principles that can involve up to a few hundred parameters.

After constructing the LS89 airfoil geometry and the initial mesh block, a smoother

object is initialized (Line 14) by taking a reference to the mesh block in its construc-

tor. The constructor performs additional operations: it initializes the Steger and

Sorenson source terms and other variables like the default cell thickness which is

calculated from the initial grid. Such variables are crucial for the gradient computa-

tion and need to be considered when marking the independent/dependent variables

of the ADOL-C traces. They are commonly referred to as the smoothing parameters

σ in Fig. 6.3.

Before ending the T1 tracing process, all mesh point coordinates ρ and the smoothing

parameters σ (that are previously extracted from the smoother object) are marked

as the dependent variables. An example of marking the Block1 is shown in Line 17

– Line 23 of Listing 6.1.

95

6 Improved AD of the VKI in-house CAD and grid generation tool

Listing 6.1: Structured AD of CADO workflow (simplified)

1 trace_on (1);

2 // declare independents for trace T1

3 m_AxialChordLength <<= m_AxialChordLength.getValue ();

4 m_LERadius <<= m_LERadius.getValue ();

5 // etc. (there are 22 design parameters)

6

7 // construct geometry using the previously activated design parameters

8 Geo airfoil = ConstructGeometry(designParameters);

9 // generate mesh that contains faces: Block1 , Block2 etc.

10 Mesh2D m_MeshFluid = ConstructMultiBlock(airfoil);

11 Face2D Block1 = m_MeshFluid.GetBlock1 ();

12

13 // initialize smoother object with a reference to Block1

14 Smoother2DStegerSorenson Smoother_Block1(Block1);

15

16 // declare dependents for trace T1

17 double output;

18 for(int i = 0; i < Block1.GetNPntI (); ++i) { // X direction

19 for(int j = 0; j < Block1.GetNPntJ (); ++j) { // Y direction

20 Block1.GetPnt(i,j).X() >>= output;

21 Block1.GetPnt(i,j).Y() >>= output;

22 }

23 }

24 //... extract and mark the smoothing parameters sigma as dependents

25 // end the tracing process

26 trace_off ();

27 // start the middle trace T2

28 trace_on (2);

29 // declare independents for T2

30 for(int i = 0; i < Block1.GetNPntI (); ++i) {

31 for(int j = 0; j < Block1.GetNPntJ (); ++j) {

32 cado::Real x, y;

33 x <<= Block1.GetPnt(i,j).X(). getValue ();

34 y <<= Block1.GetPnt(i,j).Y(). getValue ();

35 Block1.SetPnt(i, j, Vertex2D(x, y));

36 }

37 }

38 //... declare the sigma parameters as independents

39 //... provide them to the smoother

40

41 // perform the update method

42 Smoother_Block1.Update ();

43

44 // declare dependents for T2

45 for(int i = 0; i < Block1.GetNPntI (); ++i) {

46 for(int j = 0; j < Block1.GetNPntJ (); ++j) {

96

6.2 Structure-exploiting AD of mesh smoothing process

47 Block1.GetPnt(i,j).X() >>= output;

48 Block1.GetPnt(i,j).Y() >>= output;

49 }

50 }

51 // ... extract the sigma parameters and mark them as dependents

52 // end the middle trace T2

53 trace_off ();

54 // start the trace T3

55 trace_on (3);

56 // declare independents for T3 - only the mesh data is relevant

57 for(int i = 0; i < Block1.GetNPntI (); ++i) {

58 for(int j = 0; j < Block1.GetNPntJ (); ++j) {

59 cado::Real x, y;

60 x <<= Block1.GetPnt(i,j).X(). getValue ();

61 y <<= Block1.GetPnt(i,j).Y(). getValue ();

62 Block1.SetPnt(i, j, Vertex2D(x, y));

63 }

64 }

65 // construct 3D block

66 // iterate through the mesh coordinates and mark them as dependents

67 // end trace T3

68 trace_off ();

The middle trace T2 is defined as follows. The O-grid and the σ parameters, that

are indicated as the dependents of T1, have to be marked as the independents of T2

(Line 30 – Line 37). The order in the marking process is important, as it helps to

couple the trace evaluation later. Moreover, the activated σ parameters have to be

set in the smoother object. After that, the Update method can be executed (Line

42). Once the mesh is updated, its coordinates and the σ parameters are labeled as

the dependents of T2 (Line 45 – Line 50).

Finally, the trace T3 starts by marking only the mesh coordinates as the indepen-

dents. Here, the σ parameters are not relevant any more as they do not contribute

to the construction of a 3-D block. As already mentioned, the 3-D mesh is created

by extruding the 2-D mesh in the z-direction. However, all LS89 design parameters

are two-dimensional, i.e. there is no design parameter that influences the z-direction.

Therefore, the derivatives of the z-coordinates with respect to any design parameter

are always zero. For this reason, only the (x, y) coordinates of the 3-D mesh are

labeled as the dependents of T3. This avoids any unnecessary computation.

During the tracing process, it was observed that all traces were stored onto the hard

97

6 Improved AD of the VKI in-house CAD and grid generation tool

drive. To increase the efficiency of the differentiated sources, one can customize

ADOL-C configuration such that the traces fit into the RAM, which is explained in

the following section.

6.2.1 Tailoring trace size to application requirements

To ensure that all traces fit into the RAM (which would enable faster execution), one

has first to investigate the size of trace buffers for each of the traces. As explained in

Sec. 3.3.2, the trace has four internal arrays: operation, location, value and the Taylor

buffer. The default array length of these buffers is equal to 524288 (219). To obtain

the actual size of each trace, one can call the function printTapeStats(std::cout,

tag) right after the trace off routine.

If these array lengths are not exceeded during the trace generation, the buffers will

be kept in the RAM. Otherwise, any buffer that is larger than its predefined size

is stored on the hard drive. Since the default array lengths are too small for such

an application as the differentiated CADO, one has to customize the buffers’ size to

keep all traces in the memory.

There are two possibilities to customize the array lengths. As mentioned in Sec. 3.3.2,

one can create the .adolcrc file in the working directory where the executable can

be found. In this file, the user can define parameters OBUFSIZE, LBUFSIZE, VBUFSIZE

and TBUFSIZE. The ADOL-C tool reads the file .adolcrc right at the beginning of

the program execution to properly set-up the trace manager with the user-defined

values. After that, every trace is initialized with these predefined array lengths.

However, this is not an appropriate solution when having multiple traces, because

the traces T1, T2 and T3 have different memory requirements. Therefore, the

recommended approach to tailor the array lengths independently for each trace is

to do it directly while calling the trace on routine.

An example of customizing the buffers of the trace T2 is shown in Listing 6.2. To

compute the actual trace size in bytes, one has to apply the expression shown in

Line 9 – Line 11. For this particular case, the trace T2 takes approximately 143 MB.

98

6.2 Structure-exploiting AD of mesh smoothing process

Listing 6.2: Customizing trace buffers

1 trace_on (2,0,

2 6765000 , //size of the operation buffer

3 17381000 , //size of the location buffer

4 2029000 , //size of the value buffer

5 7626000 //size of the taylor buffer

6);

7

8 // actual size in bytes (B) - depends on operating system

9 unsigned t2size = 6765000 * sizeof(unsigned char) +

10 17381000 * sizeof(unsigned int) +

11 2029000 * sizeof(double) + 7626000 * sizeof(double);

The following section describes how to couple the ADOL-C drivers in order to eval-

uate the generated traces.

6.2.2 Coupling ADOL-C drivers to evaluate derivatives

The traces are evaluated by employing the ADOL-C drivers. Two of such drivers

are used in the differentiated CADO sources: (i) zos forward — evaluates only

the primal and (ii) fos reverse — evaluates the first-order scalar adjoint. Their

signatures are presented in Listing 6.3 and Listing 6.4, respectively.

Listing 6.3: ADOL-C zos forward driver (evaluates y = F (x))

1 int zos_forward(tag , m, n, keep , x, y)

2 short int tag; // trace identifier

3 int m; // number of dependents

4 int n; // number of independents

5 int keep; // flag for reverse mode preparation

6 double x[n]; // vector of independents

7 double y[m]; // resulting vector of dependents

Listing 6.4: ADOL-C fos reverse driver (evaluates z> = u>F ′(x))

1 int fos_reverse(tag , m, n, u, z)

2 short int tag; // trace identifier

3 int m; // number of dependents

4 int n; // number of independents

5 double u[m]; // weight vector

6 double z[n]; // resulting adjoint

99

6 Improved AD of the VKI in-house CAD and grid generation tool

The input arguments used by the ADOL-C drivers are given as follows. The traces

T1, T2 and T3 have identifiers 1, 2 and 3, respectively. The number of independents

(n) or dependents (m) for each of the traces is defined in Fig. 6.3, where the trace

structure is presented. For example, the trace T1 has n = 22 and m = 187057,

while the trace T2 has n = m = 187057. The argument keep is used only by the

forward mode drivers. When it is equal to 1, the zos forward driver stores the

required intermediate variables during the forward sweep and prepares the trace for

the reverse mode. The vector of independents, e.g. regarding the trace T2, contains

the values of the 2-D mesh point coordinates ρ and the smoothing parameters σ. It

is important to note that the values of this vector are set in the same order as they

are labeled as the independent variables during the tracing process. If this criterion

is not fulfilled, the trace might be evaluated without errors, but the computed values

will be wrong in the end. The weight vector u (Line 5 of Listing 6.4) can contain,

for instance, the adjoint values provided by the CFD solver — which is the case for

the trace T3. Again, the order of setting the values of the weight vector has to be

the same as the dependent variables are marked during the tracing process.

The developed workflow to compute the gradient of the objective function J (e.g. the

total pressure loss) with respect to the LS89 design parameters α is presented in

Fig. 6.4. The green arrows represent the forward sweeps, while the red arrows

represent the reverse (or backward) sweeps.

First, the adjoints of the trace T3 have to be evaluated. To achieve that, the following

procedure is performed:

1. The forward sweep is executed on T1 by taking the design parameters α as

inputs. The output of T1 is stored because it will be required more than once

during the whole process.

2. The output of T1 is given as input to the forward sweep of T2 which computes

the mesh smoothing iteration for k = 1. Next, the output of the first iteration

is provided as input to the forward sweep of T2 to execute the second iteration

(k = 2) and so forth, until k = 300.

3. The forward sweep of T3 with keep = 1 takes the final output of T2 as input.

After it is completed, the reverse sweep of T3 can be executed by taking the

adjoint information from the CFD tool as the weight vector u. As the result,

100

6.2 Structure-exploiting AD of mesh smoothing process

one retrieves the adjoints from the trace T3.

T2T2

T2

T2

T2

T2

T1

T1

T3

zos_forward

fos_reverse

Figure 6.4: ADOL-C driver coupling

The following task is to compute the adjoints of all mesh smoothing iterations,

which requires much more effort than the previous steps. For example, to compute

the adjoints of T2 for k = 300, one has first to execute 300 forward sweeps of T2

(k = 1, 2, . . . 300), while setting the keep flag to 1 only during the last iteration

(k = 300) in order to prepare the trace for the reverse sweep. Similarly, to compute

the adjoints of T2 for k = 299, one has to start from the beginning and execute

299 forward sweeps of T2 (k = 1, 2, . . . , 299), while setting keep = 1 during the last

iteration (k = 299). This pattern can be also noticed in Fig. 6.4. The amount of

the forward sweeps of T2 required to reverse differentiate the mesh smoothing part

can be calculated as the sum of arithmetic progression (1, 2, . . . , 300):

Sn =
n

2
(a1 + an) =

300

2
(1 + 300) = 45150 .

Although a single trace execution time with ADOL-C is negligible for T2, the large

number of 45150 forward sweep executions slows down the performance of the dif-

101

6 Improved AD of the VKI in-house CAD and grid generation tool

ferentiated sources. With this approach, it takes approximately 20 minutes on an

average desktop computer (with Intel Core i5 processor) to compute the adjoints of

the mesh smoothing process, which is about 300 times slower than an execution of

the original code.

Nevertheless, there is a solution to reduce the number of T2 forward sweeps. That

is, the output values of certain forward sweeps can be copied to vectors which will

be used as snapshots (also known as checkpoints). A checkpoint represents a record

of values of all variables at a certain time of the program execution. The aim is

to distribute a number of checkpoints in the mesh smoothing part such that the

forward sweeps of T2 do not have to start from the beginning (k = 1) every time

when computing the adjoints of the mesh iteration k.

Two checkpointing strategies are employed in this work: equidistant and binomial.

The equidistant (or one-level) checkpointing technique is the simplest one and it

distributes checkpoints equidistantly over a given interval. It can be useful when

the total number of iterations is know a priori (which is equal to 300 in this case) and

the trace evaluation time is almost the same for every iteration. Here, a distribution

of checkpoints is determined by the user-defined step size s such that the output of

any iteration k, which is a multiple of s, is stored as a checkpoint. An example of

the ADOL-C driver coupling together with the equidistant checkpoint distribution

is illustrated in Fig. 6.5, where the step size s = 3. With this approach, the total

number of T2 forward sweeps would be reduced from 45150 to 600, which would

significantly speed-up the execution of the differentiated sources.

A more sophisticated solution is the binomial checkpointing [WG04], which is im-

plemented in the algorithm named Revolve [GW00]. Revolve provides the opti-

mal strategy of distributing the checkpoints such that the computational effort is

minimized. This algorithm is integrated into the differentiated CADO sources to

efficiently compute the adjoints of the mesh smoothing process.

The checkpoints require additional memory, which is discussed in Sec. 6.3 together

with run-time tests.

102

6.2 Structure-exploiting AD of mesh smoothing process

T2

T2

T2

T2

T2

T2 T2

T2

T2

T2

T2

T2

Output from T1 Checkpoint

Figure 6.5: ADOL-C driver coupling with checkpoints

6.2.3 Handling conditional branches in mesh smoothing

After the successful coupling of the ADOL-C drivers, it was still not possible to re-

evaluate the trace T2 for all mesh smoothing iterations. That is, while progressing

from one iteration to another, the zos forward driver stopped the evaluation and

reported that code branching is detected. This can happen when evaluating the

same trace with a different values of independent variables than the ones that were

used for generating the trace. The reason is that a different set of values could

traverse different paths of the program execution caused by e.g. if -statements. If

this happens, the trace does not contain further information about the code branches

that were not executed during the trace recording process. That is, the information

stored on the trace always follows the primal program flow originated by a specific

set of independent variables. This behavior represents a general issue for operator-

overloading AD tools when reusing the trace with arbitrary input values.

ADOL-C detects certain code branching only if an adouble object is evaluated in

the if -statement. Otherwise, when evaluating only primitives or other data-types

in the conditional statements, ADOL-C does not store any kind of information that

the branching occurred. This could lead to wrong derivatives when re-evaluating the

trace for arbitrary arguments and the user will not even receive a warning. Therefore,

it is important to be very familiar with the differentiated source code and check if

every relevant if -statement evaluates the adouble object in its condition (instead of

103

6 Improved AD of the VKI in-house CAD and grid generation tool

a primitive variable). Once this is ensured, the ADOL-C tool stores the information

about the condition being evaluated and also the result of the condition such that

it can warn the user if a different path of the program flow is traversed.

In the case the user receives such a warning, there are two possibilities to deal with

this problem. The simpler option is to re-trace the code with the current set of

independent variables and after that to call the desired ADOL-C driver to evaluate

the trace. However, this solution is not preferred as it would significantly slow down

the performance of the differentiated sources and the whole previous effort about

decoupling the traces would probably be worthless. Another possibility is to replace

simple branches with conditional assignments that are specially treated by ADOL-C.

For this purpose, ADOL-C provides a function named condassign(a, b, c, d).

It corresponds to the following conditional (ternary) operator in C++:

a = (b > 0) ? c : d;

where all arguments are actually adoubles. If the statement b > 0 yields true, a = c,

otherwise, a = d. The header <adolc/adouble.h> contains also the corresponding

definition for the passive arguments (primitive data-types) such that the modified

code can be tested against the original code by considering only the primal values.

This function is employed in the CADO sources to treat simple if -statements. An

example is presented in Listing 6.5 as a comparison between the original code (Line

2 – Line 8) and the modified (differentiated) code (Line 10 – Line 11).

Listing 6.5: Conditional assignments in ADOL-C

1 // original code

2 if (m_Pt(i,0) > 0.0) {

3 x_xi = x_xi_forward;

4 y_xi = y_xi_forward;

5 } else {

6 x_xi = x_xi_backward;

7 y_xi = y_xi_backward;

8 }

9 // modified code with condassign function of ADOL -C

10 condassign(x_xi , m_Pt(i,0), x_xi_forward , x_xi_backward);

11 condassign(y_xi , m_Pt(i,0), y_xi_forward , y_xi_backward);

104

6.3 Performance tests of differentiated CADO

Table 6.1: Gradient comparison (dJ/dα) between black-box reverse AD
and structured reverse AD

Black-box reverse AD Structured reverse AD Abs. difference

1.729432013772604e+00 1.729432013772566e+00 3.80e-14
-1.068101293938237e-02 -1.068101293938237e-02 0.00e+00
1.724495473563913e-02 1.724495473564018e-02 1.05e-15
6.540462563168633e-01 6.540462563168633e-01 0.00e+00

...
...

...

-3.824269579188263e+01 -3.824269579188149e+01 1.14e-12*

*Maximal difference

After the condassign function was integrated into the differentiated CADO sources,

all mesh smoothing iterations were successfully computed by reusing the trace T2

without any warnings or errors.

6.2.4 Gradient verification

The structured trace workflow presented in Fig. 6.4 to compute dJ/dα is validated

against the original (‘black-box’) reverse mode of AD where a single trace includes

everything. The gradient comparison is shown in Table 6.1. As one can notice, there

are very small discrepancies with respect to a few design parameters. However, they

are close to machine precision and therefore acceptable.

6.3 Performance tests of differentiated CADO

The performance of the reverse differentiated CADO sources is measured while com-

puting the total gradient dJ/dα. Here the CFD sensitivity is previously computed

and just loaded from a file, such that almost all computational resources are dedi-

cated to the CAD, mesh generation and mesh smoothing parts.

There are two types of the LS89 parametrization, with the total number of 22 and

230 design parameters, respectively. They execute different paths in the geometry

construction code, thus influencing only the trace T1, while the traces T2 and T3

remain the same.

105

6 Improved AD of the VKI in-house CAD and grid generation tool

Table 6.2: Run-time and memory requirements of differentiated CADO with respect
to LS89 profile defined by 22 design parameters

AD mode Avg. run-time* [s] Run-time ratio Memory [GB]

Primal 3.26 0.07
Traceless forward vector 96.21 29.51 0.56
Black-box reverse 130.43 40.01 36.14
Structured reverse 1229.23 377.06 1.69
Equidistant checkpointing 56.93 17.46 1.77
Binomial checkpointing 47.63 14.61 1.78

*Run-time averaged on 5 measurements

Five different derivative computation modes are considered for measuring the perfor-

mance: (i) traceless forward vector mode (with 22 and 230 directions, depending on

the parametrization type), (ii) black-box reverse mode, (iii) structured reverse mode,

(iv) structured reverse mode with the equidistant checkpointing and (v) structured

reverse mode with the binomial checkpointing.

Regarding the equidistant checkpointing, the checkpoints are taken every five steps

of the mesh smoothing process, which results in the total number of 900 T2 forward

sweeps and 59 checkpoints. The output values of the trace T1 are not deleted after

its evaluation and they serve as the initial checkpoint (otherwise there would be in

total 60 checkpoints instead of 59). For this setup, the checkpoints occupy 84.2 MB

of memory (each checkpoint is a double-type array of 187057 elements).

Concerning the binomial checkpointing, the algorithm Revolve is initialized with

two arguments (numbers): the total number of 300 mesh smoothing steps and the

total number of 60 checkpoints. The checkpoints occupy 85.6 MB of memory. As

opposed to the equidistant checkpointing, the Revolve algorithm executes only 538

T2 forward sweeps.

Table 6.2 and Table 6.3 compare average run-time, run-time ratio (tAD/tprimal) and

the peak memory requirements (evaluated with the profiling tool Massif) of the dif-

ferentiated CADO sources with respect to LS89 profiles defined by 22 and 230 design

parameters, respectively. Additionally, the run-time and memory requirements of

the primal code are also shown. Furthermore, the information from Table 6.2 and

Table 6.3 is visualized in Fig. 6.6 and Fig. 6.7, respectively, such that one can easily

106

6.3 Performance tests of differentiated CADO

0 5 10 15 20 25 30 35 40

Memory consumption [GB]

0

50

100

150

200

250

300

350

400

R
un

-t
im

e
ra

ti
o

p = 22

Traceless-forward vector
Black-box reverse
Structured reverse
Equidistant checkpointing
Binomial checkpointing

Figure 6.6: Run-time ratio vs. memory consumption for different AD modes with
respect to p = 22 directions (corresponds to Table 6.2)

observe a trade-off between the run-time ratio and the memory consumption with

respect to different AD modes. The number of directions p for which the derivatives

are computed is equal to 22 and 230, regarding the performance results presented

in Table 6.2 and Table 6.3, respectively.

Analyzing the data of Table 6.2, one can notice that the structured reverse mode with

the binomial checkpointing requires approximately three times more memory than

the traceless forward AD, however it obtains a memory reduction of 95% comparing

to the original reverse mode of AD. Moreover, it yields the lowest run-time comparing

to other AD modes.

When using the design space of 230 variables, the memory requirements of the reverse

differentiated sources increase by approximately 6 GB, as visible in Table 6.3. This

is caused by a larger amount of instructions recorded on the trace T1 due to a

more complex LS89 geometry. Nevertheless, the traces T2 and T3 require the same

amount of memory as in the previous case because the mesh part does not change.

Moreover, Table 6.3 shows a significant advantage in run-time of the structured

reverse mode with the binomial checkpointing over other AD modes. Even though

107

6 Improved AD of the VKI in-house CAD and grid generation tool

Table 6.3: Run-time and memory requirements of differentiated CADO with respect
to LS89 profile defined by 230 design parameters

AD mode Avg. run-time* [s] Run-time ratio Memory [GB]

Primal 4.03 0.07
Traceless forward vector 989.66 245.57 5.00
Black-box reverse 157.60 39.11 42.06
Structured reverse 1247.08 309.45 7.58
Equidistant checkpointing 73.16 18.15 7.66
Binomial checkpointing 63.59 15.78 7.72

*Run-time averaged on 5 measurements

0 5 10 15 20 25 30 35 40 45

Memory consumption [GB]

0

50

100

150

200

250

300

350

R
un

-t
im

e
ra

ti
o

p = 230

Traceless-forward vector
Black-box reverse
Structured reverse
Equidistant checkpointing
Binomial checkpointing

Figure 6.7: Run-time ratio vs. memory consumption for different AD modes with
respect to p = 230 directions (corresponds to Table 6.3)

108

6.4 Summary

it requires approximately 1.5 times more memory than the traceless forward mode,

the execution of traces is very fast because they fit in the RAM. Furthermore, it

yields a memory reduction of 82% comparing to the black-box reverse mode of AD

for this particular case.

6.4 Summary

The structure-exploiting AD has been successfully applied to the reverse differenti-

ated CADO sources to reduce large memory requirements imposed by the ‘black-box’

reverse differentiation where a single trace contains the whole information about the

geometry, the mesh generation and the mesh smoothing. However, this achievement

imposed a significant amount of code modification to split the initial large trace into

three smaller traces. The main effort was invested into the 2-D mesh smoothing part

such that the middle trace corresponds only to a single mesh smoothing iteration.

Once this is achieved, one can employ the ADOL-C drivers to re-use the same trace

in order to compute the gradients of all mesh smoothing iterations.

Additionally to the structured reverse AD, two checkpointing techniques were em-

ployed to reduce the total number of trace evaluations, namely the equidistant and

binomial checkpointing. The second approach allows the optimal distribution of

checkpoints to minimize the computational efforts for evaluating the adjoints of the

mesh smoothing process. The total number checkpoints is equal to 60 and they

occupy approximately 85 MB of additional memory which is negligible comparing to

the total amount of memory required by the differentiated sources.

Two types of the LS89 parametrization are considered for measuring the perfor-

mance. When using the first parametrization with 22 design variables, the struc-

tured AD with the binomial checkpointing reduces the memory consumption from

36.14 GB to only 1.78 GB, i.e. by 95%. When considering the parametrization with

230 design variables, the structured AD with the binomial checkpointing reduces

the memory consumption from 42.06 GB to 7.72 GB, i.e. by 82%. Moreover, its

performance prevails over any other differentiation mode used in this test-case.

109

7
Algorithmic differentiation of an industrial

airfoil design tool

Based on the OCCT differentiation experience, an industrial CAD tool has been

differentiated, namely the Rolls-Royce in-house airfoil design and blade generation

tool Parablading. This achievement represents the first example of applying AD to

an industrial design workflow. The differentiated Parablading tool is coupled with a

discrete adjoint CFD solver that is part of the Rolls-Royce in-house HYDRA suite of

codes, also produced by AD. This complete differentiated design chain is utilized to

perform the gradient-based optimization of the TUB stator test-case to minimize the

total pressure loss and exit whirl angle objectives. The TUB stator parametrization

in Parablading is explained in Sec. 2.2.

7.1 Parablading differentiation

7.1.1 Introduction to Tapenade

Tapenade [HP13] is the source-transformation AD tool developed at INRIA. It com-

putes the first-order derivatives of computer programs written in Fortran and C. As

opposed to the operator-overloading concept (e.g. used in ADOL-C), the source (pro-

gram) transformation generates intermediate source files. In order to differentiate

a certain program with Tapenade, the user provides its source files to the AD tool

as inputs. Tapenade parses the input files to generate an internal representation.

This internal representation serves to build the differentiated code as the output.

Such an output usually follows the original code structure with additional derivative

statements that are readable to the end-user. Similarly to ADOL-C, Tapenade sup-

111

7 Algorithmic differentiation of an industrial airfoil design tool

ports the forward and the reverse mode of AD, together with the scalar and vector

derivative computation options.

To differentiate a certain function/routine with Tapenade, one calls the Tapenade

executable with the following basic set of arguments:

• input language, only if Tapenade cannot determine it from the file extension,

• name of the routine to be differentiated with a list of arguments to be treated

as independent (input) / dependent (output) variables,

• differentiation mode: forward or reverse,

• filename where the routine is located.

If the function to be differentiated employs other functions that are implemented in

different source files, the user can also provide a list of filenames where the functions

found in the call-graph are located. In this way, Tapenade is able to differentiate

them as well. However, if certain functions cannot be differentiated due to the fact

that they are not found in the provided files, the AD tool gives a warning about

these issues.

Optional arguments serve to specify output language, the vector mode differenti-

ation and the output filename/directory where the differentiated routine(s) should

be stored. The detailed explanation is available in the Tapenade tutorial whose

location is provided with the sources.

7.1.2 Mixed-language AD of Parablading

The Parablading tool is differentiated in the forward mode of AD, using the AD

software tools ADOL-C and Tapenade. The reason for applying two different AD

techniques comes from the fact that Parablading is developed both in C++ and For-

tran. Such a code environment requires mixed-language algorithmic differentiation.

Bischof et al. [BJMS95] applied this approach to differentiate a 3-D volume grid

generation software. They combined AD tools ADIC [BRMO97] and ADIFOR

[BKMC96] to compute the derivative information from the source code developed

in C and Fortran, respectively. Moreover, Pascual et al. [PH18] utilized the mixed-

language AD approach to differentiate the CalculiX finite element library. They de-

112

7.1 Parablading differentiation

C++ sources Fortran sources

ADOL-C
operator overloading

Tapenade
source transformation

Differentiated code

Original Parablading code

Figure 7.1: Mixed-language AD applied to Parablading

veloped an extension for the Tapenade tool to differentiate a code written in C and

Fortran. However, object-oriented languages like C++ are so far not supported by

the source-transformation tools like Tapenade. Therefore, the operator-overloading

AD tool ADOL-C has been used to differentiate a large part of the Parablading

source code written in C++, while Tapenade has been used to differentiate the rest

of the sources written in Fortran, as shown in Fig. 7.1.

ADOL-C has been integrated in Parablading by using the typedef approach (ex-

plained in Sec. 3.4.6) that was proven to be successful with the OCCT CAD kernel.

As opposed to OCCT, Parablading did not have any existing alias for the double

data-type. For this reason, the alias doublereal — as shown in Listing 7.1 — is

defined. The alias corresponds to the traceless adouble class of ADOL-C. After this,

the differentiation is executed by replacing the declaration types of all relevant real

variables in the sources with the doublereal type.

There are several practical reasons for choosing the traceless adouble as the starting

point of the Parablading differentiation. First, the forward mode of AD serves as

a reference to later verify the derivatives calculated with the reverse mode of AD.

Second, the traceless forward mode performs faster than the trace-based forward

mode (as demonstrated with the differentiated OCCT kernel in Sec. 3.6). Further-

113

7 Algorithmic differentiation of an industrial airfoil design tool

more, it is simpler to debug the differentiated code that uses the traceless adouble

class because the primal and the derivative information can be easily extracted from

the adouble objects by calling the methods getValue and getADValue, respectively.

The debugging of the differentiated code that employs the trace-based differentiation

modes requires a few more steps to obtain the derivatives as mentioned in Sec. 3.3.2.

Finally, due to the coupling with a CFD solver which runtime is dominant for the

whole optimization process, the runtime increase caused by using the forward mode

of AD in comparison to the reverse mode of AD just for the CAD part is insignificant.

Listing 7.1: Entry point for AD

1 #define AUTODIFF 1 //or 0

2 #if AUTODIFF

3 typedef adtl:: adouble doublereal;

4 #else

5 typedef double doublereal;

6 #endif

In addition to the defined alias for the traceless adouble class, the author used pre-

processor directives (as visible in Listing 7.1). The preprocessor directives are source

lines preceded by a hash sign (#) and analyzed before compilation. One of their

features is conditional compilation that allows to perform or skip the compilation of

a certain program part based on user-defined criteria. In this case, the condition is

based on a flag (macro), e.g. AUTODIFF, and its state (0 or 1).

This approach is very useful for the Parablading differentiation, because all source

code modifications imposed by the differentiation are wrapped with the preprocessor

directives in order to distinguish between the original and the differentiated sources.

Such a coding style with the conditional compilation may not look elegant, but

allows to switch between the original and the differentiated sources (and vice-versa)

just by activating/deactivating the flag AUTODIFF. The maintenance aspects of

this solution are discussed in Sec. 7.1.4.

The differentiated Parablading features both scalar and vector variants to compute

the derivatives. The switching process from the scalar to the vector mode of AD

is straightforward in ADOL-C, i.e. it does not impose modifications to the differen-

tiated sources (as explained in Sec. 3.3.1). On the other hand, Tapenade requires

re-differentiation of the sources with the -multi flag turned on in order to support

114

7.1 Parablading differentiation

the vector mode of AD. For this reason, the Parablading AD development is divided

into two branches that correspond to the scalar and the vector mode of AD, leading

to two different versions of the differentiated Parablading tool. The derivatives com-

puted with the vector forward mode of AD have been successfully verified against

the scalar forward mode of AD.

It is not straightforward to link ADOL-C and Tapenade in a single differentiated

code because they do not use the same data format. While the traceless option of

ADOL-C encapsulates both primal and derivative information in the adouble object

(internally it is an array of size p + 1), Tapenade works only with primitive data

types and treats the primal and the derivative information as separate variables.

Therefore, any relevant data needs to be propagated manually from one AD tool to

another.

On the contrary, when using the trace-based differentiation option, ADOL-C provides

an elegant solution to couple the functions that are differentiated manually or by

other AD tools. This concept is known as external function differentiation, where

the user provides the required derivatives by using a certain interface defined by

ADOL-C. However, this interface is not available for the traceless option used to

differentiate the Parablading sources.

As an example of linking traceless ADOL-C and Tapenade in the Parablading source

code, let us consider a Fortran function from SLATEC library [VH82] that computes

point coordinates on a B-spline curve — named dbvalu [DB77]. The coupling

example of the scalar differentiated version dbvalu d is shown in Listing 7.2.

First, the information from the adouble array knot is extracted to the double-type

arrays knotPrimal and knotDerivative (Line 20 – Line 25). The same procedure

is repeated for the control points cp and parameter t. The next step is to call

the differentiated routine dbvalu d with the previously created variables (Line 34 –

Line 37). Finally, the results dbvaluPrimal and dbvaluDerivative are copied to

the adouble object result (Line 39 – Line 40). For comparison purposes, Listing 7.2

also shows the original code for executing the dbvalu function (Line 3 – Line 10) to

give an impression of code modifications that were required upon differentiation.

115

7 Algorithmic differentiation of an industrial airfoil design tool

Listing 7.2: Linking ADOL-C and Tapenade in scalar mode

1 #if !AUTODIFF

2 // original code

3 inline double dbValue(std::vector <double > &knot ,

4 std::vector <double > &cp , int *degree , int *deriv , double *t,

5 std::vector <double > &work) {

6 int M = static_cast <int >(cp.size ());

7 int inbv (1);

8 return dbvalu_ (&knot[0], &cp[0], &M, degree , deriv , t,

9 &inbv , &work [0]);

10 }

11 #else

12 // differentiated code in scalar mode

13 inline doublereal dbValue(std::vector <doublereal > &knot ,

14 std::vector <doublereal > &cp , int *degree ,

15 int *deriv , doublereal *t,

16 std::vector <double > &work , std::vector <double > &workd) {

17 int M = static_cast <int >(cp.size ());

18 int inbv (1);

19

20 std::vector <double > knotPrimal(knot.size ());

21 std::vector <double > knotDerivative(knot.size ());

22 for(size_t i = 0; i < knot.size (); ++i) {

23 knotPrimal[i] = knot[i]. getValue ();

24 knotDerivative[i] = knot[i]. getADValue (0);

25 }

26

27 //...

28 // perform the same extracting procedure for control points cp

29 //...

30

31 double tPrimal = (*t). getValue ();

32 double tDerivative = (*t). getADValue (0);

33 double dbvaluPrimal;

34 double dbvaluDerivative = dbvalu_d_ (& knotPrimal [0],

35 &knotDerivative [0], &cpPrimal [0], &cpDerivative [0],

36 &M, degree , deriv , &tPrimal , &tDerivative ,

37 &inbv , &work[0], &workd[0], &dbvaluPrimal);

38

39 doublereal result = dbvaluPrimal;

40 result.setADValue (0, dbvaluDerivative);

41

42 return result;

43 }

44 #endif

116

7.1 Parablading differentiation

Once the vector mode of AD is employed, the linking process between ADOL-C and

Tapenade changes. First of all, the signature of the dbvalu routine differentiated

in the vector forward mode (named dbvalu dv) is different than its scalar version.

Listing 7.3 presents the definition of the dbvalu dv routine implemented in Fortran.

The routine does not return the derivative value dbvalud as it is the case in the

scalar version, because the derivative is now represented by an array instead of a

single value. Therefore, the reference to dbvalud array can be found in the argument

list (Line 2). Another difference is the last argument nbdirs (Line 2) which is only

relevant for the vector mode of AD. It represents the number of directions for which

the derivatives should be evaluated.

Listing 7.3: Fortran routine dbvalu dv and its argument types

1 SUBROUTINE DBVALU_DV(knots , knotsd , cp , cpd , m, degree , deriv ,

2 t, td, inbv , work , workd , dbvalu , dbvalud , nbdirs)

3 INCLUDE ’DIFFSIZES.inc’

4

5 INTEGER m, degree , deriv , inbv

6 DOUBLE PRECISION knots , cp , work , t

7 DOUBLE PRECISION knotsd , cpd , workd , td(nbdirsmax)

8 DIMENSION knots (*), cp(*), work (*)

9 DIMENSION knotsd(nbdirsmax ,*), cpd(nbdirsmax ,*), workd(nbdirsmax ,*)

10 DOUBLE PRECISION dbvalud(nbdirsmax)

11 DOUBLE PRECISION dbvalu

12 INTEGER nbdirs

13 ...

14 END

Furthermore, Listing 7.3 shows the declarations of arguments and their dimensions

(Line 5 – Line 12). There, one can notice the constant named nbdirsmax. This

constant is defined in the file ‘DIFFSIZES.inc’ (Line 3) and it represents the maximal

number of directions used by the differentiated Parablading. The following relation

must hold: nbdirs <= nbdirsmax. Otherwise, a runtime error may occur if the

program tries to access elements that are outside of array bounds. For the TUB

stator test-case, the nbdirsmax is set to 196, because this is the total number of

design parameters. However, the user can for example compute the derivatives only

with respect to a group of 28 parameters. In that case, the value of nbdirs can be

set to 28. Later in the body of the routine, every loop that iterates through the

derivative directions stops at the element index equal to nbdirs.

117

7 Algorithmic differentiation of an industrial airfoil design tool

Another important observation in Listing 7.3 is that the array of knots has a cor-

responding matrix of derivatives knotsd (Line 9), such that each row of this matrix

corresponds to one derivative direction. The same applies for control points cp.

Fortran stores matrices (or higher dimensional arrays) as a linear sequence of el-

ements. Moreover, array storage in Fortran is column-major, which means that

adjacent elements of a column reside next to each other. This is important to know

when propagating the information from the adouble objects to one-dimensional ar-

rays that the Fortran routines expect.

Listing 7.4 presents a coupling example of the vector differentiated dbvalu dv rou-

tine. The coupling follows the same procedure as shown in Listing 7.2, however

there is a difference in dimensions of the variables that correspond to derivatives

(a single value becomes a vector, a vector becomes a matrix). For example, the

code in Listing 7.4 shows how to properly extract the derivative information from

the adouble vector knot to the double vector knotDerivative (Line 13 – Line 19),

which is actually a matrix in the Fortran routine dbvalu dv. On the C++ side,

one has to ensure that the matrix of derivatives is stored as a one-dimensional array

by respecting the column-major storage order required by Fortran. As mentioned

previously, the signature of dbvalu dv is different than its scalar version and this

also affects how it is called from the C++ side (Line 34 – Line 37). Finally, the

resulting derivatives represented by the vector dbvaluDerivative are copied using

the for -loop to the adouble object result (Line 40 – Line 42).

Listing 7.4: Linking ADOL-C and Tapenade in vector mode

1 // differentiated code in vector mode

2 inline doublereal dbValue(std::vector <doublereal > &knot ,

3 std::vector <doublereal > &cp , int *degree ,

4 int *deriv , doublereal *t,

5 std::vector <double > &work , std::vector <double > &workd) {

6 int M = static_cast <int >(cp.size ());

7 int inbv (1);

8

9 const size_t numDir = adtl:: getNumDir (); // equals to 196

10

11 std::vector <double > knotPrimal(knot.size ());

12 // matrix of derivatives in 1-D representation

13 std::vector <double > knotDerivative(knot.size() * numDir);

14 for(size_t i = 0; i < knot.size (); ++i) {

15 knotPrimal[i] = knot[i]. getValue ();

118

7.1 Parablading differentiation

16 for(size_t j = 0; j < numDir; ++j) {

17 knotDerivative[i * numDir + j] = knot[i]. getADValue(j);

18 }

19 }

20

21 //...

22 // perform the same extracting procedure for control points cp

23 //...

24

25 double tPrimal = (*t). getValue ();

26 std::vector <double > tDerivative(numDir);

27 for(size_t j = 0; j < numDir; ++j) {

28 tDerivative[j] = (*t). getADValue(j);

29 }

30 double dbvaluPrimal;

31 double dbvaluDerivative(numDir , 0.0);

32

33 const int numDirInt = static_cast <int >(numDir);

34 dbvalu_dv_ (& knotPrimal [0], &knotDerivative [0],

35 &cpPrimal [0], &cpDerivative [0], &M, degree , deriv ,

36 &tPrimal , &tDerivative , &inbv , &work[0], &workd[0],

37 &dbvaluPrimal , &dbvaluDerivative [0], &numDirInt);

38

39 doublereal result = dbvaluPrimal;

40 for(size_t j = 0; j < numDir; ++j) {

41 result.setADValue(j,dbvaluDerivative[j]);

42 }

43

44 return result;

45 }

7.1.3 Parablading differentiation issues

The AD of Parablading involved a significant amount of code modification. Even

after the successful compilation, the derivatives appeared to be incorrect when ver-

ifying against FD, which required a broad investigation of the complete source code

to resolve the problems. This section briefly summarizes the difficulties faced upon

Parablading differentiation.

119

7 Algorithmic differentiation of an industrial airfoil design tool

7.1.3.1 ADOL-C integration issues

The adouble class cannot fit everywhere in the Parablading code without user’s

interaction. Some of the compile-time issues were related to:

• Standard output/string streams: the adouble class supports the standard C++

output stream ofstream, but not the standard C-style printing functions,

e.g. sprintf, because C functions are not allowed to be overloaded. Further-

more, Parablading is developed using the Qt framework and when the adouble

object is propagated to one of the Qt-classes, e.g. QTextStream or QString,

a compile-time error occurs saying that such an operation is not defined for

an operand of type adouble. Solution to all these issues is very simple and

requires only to call the getValue method on the adouble object to extract its

primal part. By extracting the primal part, one looses the derivative infor-

mation, however in this case it is not even relevant to the output system, as

e.g. the standard CAD output formats (STEP or IGES) do not require this

information anyway.

• Type-casting: many places in the Parablading source code involve explicit/im-

plicit conversion of the type adouble to primitive data-types, i.e. int and float.

Although the type-casting could be overloaded in ADOL-C, it is omitted for

a reason that integer and float variables do not carry along the derivative in-

formation. By doing such a type change, the chain rule gets disconnected in

that part and the derivatives may be incorrect at the end. Therefore, the user

needs to be aware of such situations and allow the conversion only if there

is no risk of breaking the chain rule. In that case, the solution is simply to

call the getValue method on the adouble object. However, the critical case

where the type conversion produced wrong derivatives was encountered in the

BladeSection class. The latter contains control point coordinates that serve to

compute the TUB blade geometry as well as for the purposes of 3D-rendering

with OpenGL. The control point coordinates are declared as arrays of GLfloat

data-type which is the OpenGL alias for the float data-type. The first try

was to leave the original declarations unchanged and allow the type-casting.

However, the derivatives appeared to be all zeros at the end, which means that

the chain rule was completely broken. Therefore, from the AD perspective,

120

7.1 Parablading differentiation

such important entities should be treated as differentiable quantities. For this

reason, the declaration types of all arrays were changed from GLfloat to dou-

blereal. This modification caused many compile-time errors with classes that

deal with visualization. They were resolved by introducing intermediate vari-

ables and breaking the chain rule only where it did not affect the derivative

computation.

• Namespaces: common mathematical functions (e.g. sin, exp, etc.) have the

prefix std (e.g. std::sin, std::exp, etc.) which causes compile-time errors

once the adoubles are present. The common mathematical functions are over-

loaded in the adtl namespace of ADOL-C. To tackle this issue, one has to

remove the std namespace from these functions (e.g. std::sin becomes sin)

and add the corresponding using statements in the global header (e.g. using

std::sin). In this way, both original and differentiated sources compile with-

out errors, i.e. Argument-Dependent Lookup of C++ finds the appropriate

functions based on their argument types (whether they are primitive types or

adoubles).

7.1.3.2 Tapenade differentiation issue

In total there were 38 Fortran routines differentiated with Tapenade version v3.12,

both in the scalar and vector mode variants. Only three of them are considered

as the top-level routines since they are called from the C++ side. In almost all

cases Tapenade generates correctly differentiated code. Here, only one example is

explained in which the differentiation produced wrong output — the dfspvn routine

from SLATEC library.

The part where a problem arises is shown in Listing 7.5. Line 2 introduces the SAVE

statement that is used for variables that retain their values even after a certain rou-

tine finishes its execution. In other words, this is a way of declaring static variables

in Fortran. The DATA statement (Line 3) initializes a variable with a particular

value — in this case elements of deltam and deltap arrays are set to zero. If both

DATA and SAVE statements are applied to the same variable, the DATA statement is

executed only once during the initial routine call and ignored on any future calls,

such that the static variables can keep their values.

121

7 Algorithmic differentiation of an industrial airfoil design tool

Listing 7.5: dfspvn.f (SLATEC library)

1 DIMENSION DELTAM (20), DELTAP (20)

2 SAVE J, DELTAM , DELTAP

3 DATA J/1/,(DELTAM(I),I=1,20),(DELTAP(I),I=1 ,20)/40*0.0 D0/

Instead of generating the same workflow for the corresponding AD quantities —

deltamd and deltapd arrays — Tapenade performs incorrect differentiation, as

shown in Listing 7.6. Rather than using the DATA statement to initialize the content

of the deltamd and deltapd arrays, it initializes them to zero using the DO loop. In

this way, their content will be erased on each subsequent routine call, i.e. the AD

arrays loose their static property. The correct solution is shown in Listing 7.7.

Listing 7.6: dfspvn d.f - incorrect differentiation

1 DIMENSION deltam (20), deltap (20)

2 DIMENSION deltamd (20), deltapd (20)

3 SAVE j, deltam , deltap

4 SAVE deltamd , deltapd

5 DATA j/1/,(deltam(i),i=1,20),(deltap(i),i=1 ,20)/40*0.0 D0/

6 DO ii1=1,20

7 deltapd(ii1) = 0.D0

8 ENDDO

9 DO ii1=1,20

10 deltamd(ii1) = 0.D0

11 ENDDO

Listing 7.7: dfspvn d.f - correct differentiation

1 DIMENSION deltam (20), deltap (20)

2 DIMENSION deltamd (20), deltapd (20)

3 SAVE j, deltam , deltap

4 SAVE deltamd , deltapd

5 DATA j/1/,(deltam(i),i=1,20),(deltap(i),i=1 ,20)/40*0.0 D0/

6 DATA (deltamd(i),i=1,20), (deltapd(i),i=1 ,20) /40*0.0 d0/

Both Tapenade v3.12 and v3.13 produced the same error with the differentiation of

the dfspvn routine. However, the problem was reported to one of Tapenade main

developers (Dr. Laurent Hascoët) and the corresponding patch is included in the

next release.

122

7.1 Parablading differentiation

7.1.3.3 Obstacles between AD and original workflow

After resolving all integration issues related to the AD tools, the derivatives com-

puted with AD still appeared to be zero or much different than the ones evaluated

with FD. This required further analysis of the parametrization workflow and a couple

of places were found in the code that blocked AD sensitivity propagation.

Here, let us consider one issue that led the geometric sensitivities to be zero. It

is related to a method that is used for setting a blade section parameter value, as

shown in Listing 7.8. The method setValue has a conditional statement that checks

whether the absolute difference between the current (dValue) and the new value

is bigger than a certain tolerance (10−14). Only when the tolerance criterion is

satisfied, the parameter value is updated. Due to these circumstances, the method

becomes an obstacle when computing sensitivities with AD.

For example, Listing 7.9 shows a code snippet to activate (in terms of AD) the axial

shift parameter of a blade section. First, one retrieves a pointer to the Parameter

object from the blade section (Line 2). From this object, it is necessary to extract

the adouble variable which represents the parameter value (Line 3). The next step

is to put the AD seed into the adouble object (Line 5 – Line 6). Finally, such an

activated variable is placed back to the parameter object (Line 8) using the setValue

method defined in Listing 7.8.

Since the primal value of the axial shift parameter is unaffected — AD does not

impose any perturbations to the original parameters — the tolerance criterion of

the setValue method (Listing 7.8) is not fulfilled and therefore the section param-

eter is actually not updated with the given AD seed. That is, the AD sensitivity

propagation is blocked and the AD value of the axial shift remains 0 instead of 1. As

a consequence, the blade construction algorithm is executed without any AD seeds

which causes the geometric derivatives to be equal to zero.

Another similar case was detected in the code for setting the parameters of the

blade inlet/exit angles, where the tolerance criterion was significantly larger (10−4).

All these barriers are imposed in the original code due to efficiency reasons, i.e. to

prevent the blade reconstruction for small perturbations of the design parameters.

Therefore, the differentiated Parablading code was additionally modified (simply by

ignoring the tolerance criteria) in order to enable the sensitivity propagation.

123

7 Algorithmic differentiation of an industrial airfoil design tool

Listing 7.8: Original code for setting parameter value

1 void Parameter :: setValue(const doublereal val)

2 {

3 if (Abs(dValue -val) > 1e -14){

4 // set current value

5 dValue = val;

6 }

7 }

Listing 7.9: Example of placing AD seed in design parameter

1 //fetch parameter from section and extract its value

2 Parameter *axialShiftParam = bladeSection.parameter(parameterIndex);

3 doublereal axialShift = axialShiftParam ->getValue ();

4 //put AD seed (scalar mode)

5 double seed = 1.;

6 axialShift.setADValue (&seed);

7 //put activated axialShift back to parameter using the setValue method

8 axialShiftParam ->setValue(axialShift);

When using FD, the aforementioned procedure for setting the design parameter is

not considered to be a problem since the FD approach introduces a step size to the

parameter value in order to compute a perturbed blade geometry. This step size is

most likely bigger than 10−14 and therefore satisfies the tolerance criterion. However,

it is important to note that for the second case, where the tolerance equals to 10−4,

one could obtain wrong sensitivities even with FD. That is, the chosen perturbation

size has to be bigger than 10−4 in order to trigger the update procedure with respect

to the blade inlet/exit angles.

7.1.4 Maintenance aspects

The proposed differentiation concept that combines the typedef approach together

with the preprocessor directives enables straightforward maintenance of the differen-

tiated sources, as both original and differentiated code are implemented on a single

git repository branch. That is, any update to the primal code can be immediately

validated if it works in the differentiated version just by activating the AUTODIFF

flag. In this way, every member of the Parablading development team is involved in

the differentiation process, meaning that the new features become available in the

differentiated sources with a minimal effort.

124

7.2 Verification of differentiated Parablading

The expected places in the code where compile-time errors may arise with further

Parablading development are described in Sec 7.1.3. To fix them, one has to intro-

duce additional preprocessor directives, however in most of the cases the solution

is simple such as calling the getValue method on the adouble object to extract its

primal part. Most likely the compile-time issues will be only related to the C++

side, i.e. the integration of adoubles in the new features, because the Fortran rou-

tines belong to a legacy code that is probably not going to change. For this reason,

the differentiation with Tapenade and the mapping from C++ to Fortran (and vice-

versa) is done only in the beginning. However, further differentiation of the Fortran

routines and coupling with the C++ side will be required when switching to the

reverse mode of AD for computing the derivatives.

An alternative to the proposed differentiation approach is to create separate branches

that would serve only for the AD purposes. In this case, one has to maintain per-

manent parallel branches with respect to the master branch. Here, the preprocessor

directives are not required any more. However, it would be helpful to use the alias

doublereal in all branches, even though it would correspond to the double data-type

in the original sources. This would help to reduce the difference between the mas-

ter and AD branches and also the amount of conflicts that one will face during

the merging process. This concept is useful when only a few persons maintain the

differentiated versions instead of the whole team.

7.2 Verification of differentiated Parablading

7.2.1 Geometric derivative validation

The correctness of the computed derivatives is verified using the TUB blade para-

metric model described in Sec. 2.2. As a representative example, the derivatives of

the surface point coordinates with respect to axial shift of the 8th blade section are

compared. A quantitative comparison of derivatives is presented in Table 7.1 and

shows mutual agreement. Furthermore, as hinted by Fig. 7.2, the overall magnitude

plots for the same design parameter match to a very high extent.

The same surface sensitivities are also verified with the Taylor test (presented in

Eq. (3.1)). The Taylor test was performed on a number of arbitrary surface points

125

7 Algorithmic differentiation of an industrial airfoil design tool

AD magnitude FD magnitude
1,000e-3

0,00075001

0,00050001

0,00025

0,000e+00

1,000e-3

0,0007500

0,0005000

0,00025

0,000e+00

Figure 7.2: TUB surface sensitivities evaluated with AD (left) and FD (right)

Table 7.1: AD and FD values comparison for several TUB surface
point coordinates

AD value FD value Abs. difference

-8.369545e-09 -8.369546e-09 1.07e-15
-2.294342e-06 -2.294351e-06 9.02e-12
-1.011463e-05 -1.011465e-05 1.88e-11
9.568927e-04 9.568959e-04 3.20e-09

...
...

...

1.491902e-04 1.492034e-04 1.32e-08*

*Maximal difference

with a range of step sizes h ∈ [101, 10−6] taken in millimeters. The error plots

(the left-hand side of Eq. (3.1)) in eight surface point coordinates are presented in

Fig. 7.3. Here one observes even slightly better convergence than the theoretical

convergence rate of h2. This behavior continues until h ∈ [10−2, 10−4] (the axial

shift parameter influences differently the chosen surface point coordinates), where

the errors reach machine precision.

7.2.2 Performance test

Performance of the differentiated Parablading sources is measured using the code

for the actual optimization workflow that computes 33,000 surface points (x, y, z)

and their corresponding derivatives. Table 7.2 presents quantitative comparisons

of average timings (based on 10 measurements) and run-time ratios (tad/tprimal),

where the derivatives are computed in 1 direction (scalar mode) and 196 directions

(vector mode).

According to the theory [GW08], the run-time ratio between the derivative compu-

126

7.2 Verification of differentiated Parablading

10−610−510−410−310−210−1100101

Step size (h) [mm]

10−16

10−13

10−10

10−7

10−4

10−1

102

E
rr

or

h
2

Figure 7.3: Taylor test for eight TUB surface point coordinates

Table 7.2: Original vs. differentiated sources with the number of directions p = 1
(scalar mode) and p = 196 (vector mode)

Primal Scalar-forward AD Vector-forward AD (p = 196)

Avg. time [s] 8.12 36.17 1929.30
Run-time ratio 4.45 237.52 ⇒ 1.21 per direction

Timings are averaged on 10 measurements.

127

7 Algorithmic differentiation of an industrial airfoil design tool

tation in the forward mode of AD and the function (primal) evaluation should be

in the range [1 + p, 1 + 1.5p], where p is the number of directions. Comparing this

with the results in Table 7.2, one observes that the scalar mode exceeds the upper

theoretical limit of 2.5, while the vector mode satisfies the theoretical expectations.

The reason for slower performance of the scalar mode is that the theoretical expec-

tations do not assume memory copying between one AD tool to another, as it was

the case here due to ADOL-C and Tapenade linking.

As mentioned in Sec. 7.1.3.2, there are three top-level Fortran routines for which the

C++ to Fortran interface exists. They serve for: (i) computing points on a B-spline

curve and (ii) fitting a B-spline curve to a given data-set. For each blade section,

the top-level Fortran routines are executed more than ten times. Considering that

the total number of sections is 21, one can notice that there are hundreds of memory

copying operations involved just for a single blade construction. Such an overhead

justifies the slower performance of the scalar mode. However, this pays-off when

using the vector mode due to compiler optimization.

An overview of all run-time ratios evaluated in the range of 1 to 196 directions

together with the memory requirements with respect to the maximal number of

directions is shown in Fig. 7.4. Additionally to the AD run-time ratios, the run-

time ratios for forward and central FD (2nd order) are also shown. As one can

notice, the traceless forward mode of AD performs accordingly to the theoretical

expectations. For this particular test-case, it is slower than forward FD, but much

more efficient than central FD that is typically used in the Rolls-Royce optimization

workflow.

To evaluate the peak memory requirements of the primal and the vector forward

mode of AD with the vector size p = 196, the Parablading has been profiled with

the profiling tool Massif. The memory requirements are compared in Fig. 7.4. To

compute a rough estimate of the required memory bA per vector entry in the differ-

entiated sources, one can apply the following expression:

bN + bA + bA ∗ p = mAD

⇔ bA = (mAD − (bN + bA))/p ,

128

7.2 Verification of differentiated Parablading

7 28 49 70 91 112 133 154 175 196

Number of directions (p)

0

50

100

150

200

250

300

350

400

R
un

-t
im

e
ra

ti
o

1 + 1.5p
1 + 1p
Central FD
Forward FD
AD Traceless-Forward

Computation mode
0

1

2

3

4

5

6

T
ot

al
m

em
or

y
co

ns
um

pt
io

n
[G

B
]

0.08

4.94

Primal
AD Traceless-Forward, p = 196

Figure 7.4: Summary of run-time ratios (left) and total memory requirements (right)
for TUB test-case

where bN is the base memory overhead of non-active data, bA is the base memory

of active data and mAD is the total memory required by the differentiated sources

(4.94 GB). Considering that the primal memory (bN + bA) is 0.08 GB and p equals

to 196, one retrieves that bA equals to 0.0248 GB.

The run-time ratio graph in Fig. 7.4 also shows that the high overhead caused by the

scalar forward mode of AD is no longer visible at p = 28. It means that one could

also run the differentiated sources 7 times while setting at each step a different set

of design parameters as the independent variables of the system. In this way, the

Jacobian matrix is computed in blocks of 28 rows. Every run of the differentiated

sources would require approximately 0.77 GB of memory. That is, the total memory

required by the differentiated sources would be reduced while keeping almost the

same performance as running the vector forward mode of AD in 196 directions.

129

7 Algorithmic differentiation of an industrial airfoil design tool

7.3 Gradient-based optimization of TU Berlin stator

7.3.1 Objective functions

The gradient-based optimization of the baseline stator geometry is performed with

respect to two criteria. The first objective to be minimized is the total pressure loss

between inlet and outlet, defined by the loss coefficient:

ω =
pt,I − pt,E
pt,I − ps,I

× 100%

where ps and pt denote the static and total pressure computed using mass-averaging

over the corresponding cross section at inlet (I) and exit (E) of the CFD domain.

The second objective is the flow angle deviation from the axial direction at the stator

outlet AE , which takes into account both the circumferential and radial components:

αE =

√√√√√√√
∫
AE

ṁα2 dAE∫
AE

ṁ dAE
, α = cos−1

(
~V ·~i
|~V |

)
= cos−1

(
u√

u2 + v2 + w2

)

where u, v, w denote the velocity components and ṁ the mass flow rate. Only

design point operating conditions are considered in this case, with a uniform inlet

whirl angle profile of 42◦.

These two objectives are contradicting since the higher turning — which is re-

quired here to achieve a more axial outflow — produces more losses. Normally,

this would lead to a multi-objective optimization problem. However, since gradient-

based optimizers can deal with single-objective optimization problems, an aug-

mented objective function to be minimized is defined using the weighted sum ap-

proach: Faug = ω + c αE , where the weight c = 1 (this value was chosen by Ilias

Vasilopoulos after conducting preliminary studies).

7.3.2 CFD setup and optimization workflow

To build the optimization workflow, the following Rolls-Royce in-house tools were

used:

130

7.3 Gradient-based optimization of TU Berlin stator

• PADRAM meshing tool [SL03] — generates a block-structured 1.9 million

node hexahedral mesh.

• HYDRA primal solver [Lap04] — a steady RANS compressible flow solver with

the Spalart-Allmaras turbulence model.

• HYDRA adjoint solver [Gil02] — a discrete adjoint solver which provides the

volumetric sensitivities. These sensitivities are then projected onto the surface

of the stator using the inverse operation of a spring-based mesh deformation

algorithm.

Start

Parametrization
tool

Parablading

Baseline

blade

Meshing tool

PADRAM

Geometry HYDRA

primal solver

HYDRA

adjoint solver

Mesh Flow

Parametrization
tool

Parablading

Mesh projection

Sensitiviy map

dFaug

dXS

L-BFGS

Gradient
dFaug

dα

Converged?

No

Final CAD
Yes

Figure 7.5: Gradient-based optimization workflow

The automated gradient-based optimization workflow is presented in Fig. 7.5. First,

the mesh is generated using the given baseline geometry and provided to the primal

solver. The primal solver performs the flow simulation until convergence criteria are

met. Subsequently, the adjoint solver reads in the flow solution and executes the

two adjoint simulations in parallel (one for ω and one for αE), which result in the

mesh sensitivities
(
dω
dXS

, dαE
dXS

)
. These sensitivity components are added to compute

the augmented sensitivity
(dFaug

dXS

)
, following the same weighted sum expression as

for the objective functions.

Once this process is completed, the differentiated Parablading computes the geo-

metric sensitivity
(
dXS
dα

)
for each design parameter using the forward vector mode of

AD. Furthermore, it reads in the augmented sensitivity
(dFaug

dXS

)
and computes the

131

7 Algorithmic differentiation of an industrial airfoil design tool

total gradient:

dFaug
dα

=
dFaug
dXS

dXS

dα
.

Although the computational cost for the geometry part scales with the number of

design parameters, the total cost for the 192 parameters (obtained in the forward

mode of AD) is negligible compared to the cost of the primal and adjoint solutions

of the flow simulation. Nevertheless, it would be beneficial to integrate the reverse

mode of AD into the geometry part such that the computational cost does not scale

with the number of design parameters α. Moreover, the reverse mode of AD would

reduce the temporal complexity of the derivative computation in this case because

there is only one output function Faug opposite to 192 inputs (α).

Finally, the gradient is passed to an L-BFGS optimizer which updates the design

space. The whole process is wrapped in Python and is repeated until the optimiza-

tion convergence criteria are met. A similar optimization has been performed in

[VFM17], where the geometric sensitivities were computed using 2nd order finite

differences.

7.3.3 Optimization results

The gradient-based optimization converged after 22 BFGS steps and yields 14.37%

reduction of the augmented objective function Faug (in blue), as shown in Fig. 7.6.

This result was mainly affected by the minimization of αE (in green), which is

remarkably reduced by 42.84%. On the other hand, the contradicting objective

ω (in red) is only decreased by 0.45%. For this particular configuration of the

augmented objective, where the weighting factor c = 1, the optimizer chooses to

compromise with respect to the total pressure loss in order to massively reduce the

flow deflection. The final outcome of decreasing the exit angle deviation from the

axial direction about 2◦, while keeping the total pressure loss practically constant,

is clearly beneficial for this industrial application.

Figure 7.7 compares the baseline and optimal stator blade geometry. One can notice

that the optimization resulted with a leaned blade, where the S-shaped trailing edge

is significantly responsible for reducing the exit flow angle deviation. This can be

132

7.4 Summary

0 4 8 12 16 20

Iteration number

2

4

6

8

10

12

O
b
je

ct
iv

e
fu

nc
ti

on
va

lu
e

-14.37%

-0.45%

-42.84%

Faug

ω

αE

Figure 7.6: Optimization history

seen in Fig. 7.8, where the distribution of the whirl angle at the exit plane of the

CFD domain is plotted for both baseline and optimum blades. The optimal stator

blade obtains an average whirl angle much closer to zero.

7.4 Summary

The AD of Parablading CAD tool has been performed by combining two different

AD concepts in the source code which is developed both in C++ and Fortran.

The C++ sources are differentiated with the operator-overloading AD tool ADOL-

C, while the Fortran sources are differentiated with the source-transformation AD

tool Tapenade. There are two versions of the differentiated sources to support the

derivative computation both in the scalar and vector forward mode of AD.

The issues faced upon the differentiation are discussed together with the correspond-

ing solutions. Even the original parametrization workflow was slightly modified to

ensure the correct propagation of sensitivities. The geometric derivatives computed

with AD were successfully verified against FD.

All code modifications imposed by the differentiation are wrapped with the prepro-

cessor directives, to enable easy switching between the original and AD sources. The

19Picture provided by Ilias Vasilopoulos

133

7 Algorithmic differentiation of an industrial airfoil design tool

Suction side

Pressure side

Leading edge (LE)

Trailing edge (TE)

LE

TE

Figure 7.7: Baseline (grey) vs. optimal (green) geometry

Figure 7.8: Exit whirl angle distribution for baseline (left) and optimum (right)
blade19

134

7.4 Summary

maintenance aspects of this approach are described.

The differentiated Parablading tool has been coupled with the HYDRA adjoint CFD

solver, that is also produced by AD. This work demonstrates that AD can be entirely

integrated into an industrial environment.

This differentiated design chain is used to perform the aerodynamic optimization of

the TUB stator blade. Two contradicting terms: the total pressure loss (ω) and the

exit whirl angle distribution (αE), are joined using the weighted sum approach to

the single-objective function. This augmented objective function, together with its

corresponding gradients, is provided to the L-BFGS optimizer that converged after

22 iterations. The optimization was highly influenced by αE that was reduced by

42.84%, while keeping the contradicting objective ω almost constant (0.45% reduc-

tion).

135

8
Conclusion

Gradient-based optimization methods are recognized for their computational effi-

ciency, especially when considering test-cases with a large number of design vari-

ables. Over the past decades, adjoint methods have emerged as the most effective

methods to compute gradients in CFD codes since they can compute the gradients

with respect to an arbitrary number of design parameters at near-constant compu-

tational cost similar to the primal evaluation. Coupling adjoint CFD approaches

with a geometrical parameterization of a component — usually provided in a CAD

framework — enables optimization based on the complete design chain, but includes

additional challenging aspects. To obtain a gradient for the complete design chain,

one requires the computation of shape (or geometric) sensitivities with respect to its

parametrization. However, this information is usually not provided within a CAD

system/tool. Typically, it is computed with rather inaccurate FD. This gap, i.e. the

AD of the involved CAD libraries, is closed by the results presented in this work,

which are suitable to a wide variety of applications.

Chapter 3 presented the AD of the open-source CAD kernel OCCT v7.0 using the

AD software tool ADOL-C, however requiring a significant amount of code modifi-

cation. This achievement represents the first example of applying AD to a general-

purpose CAD library. The correctness of the computed derivatives has been verified

using the parametric models of the U-bend cooling duct and the TUB TurboLab sta-

tor (described in Chapter 2), but the derivative validation of the rest of differentiated

OCCT sources still remains challenging.

The OCCT kernel offers the Automated Testing System that consists of thousands

of tests to validate its primal functionality, from which the derivative tests could

be implemented. However, doing such a job manually would require a tremendous

137

8 Conclusion

amount of work hours. An unanswered challenge to the AD community is how to

develop an automated workflow that would derive relevant derivative regression tests

from the existing primal tests.

The reverse mode differentiation of OCCT yields a significant reduction in the tem-

poral complexity of the derivative computation. Compared to the traceless vector

forward mode of AD, one benefits from an improved efficiency by: (i) 63% for the

U-bend test-case (96 design variables) and (ii) 59.4% for the TUB stator test-case

(184 design variables).

Since ADOL-C is integrated into OCCT by the typedef approach, its new function-

ality activity analysis was employed and tested with the differentiated OCCT in

order to discover adoubles that should not be treated as differentiable quantities.

That is, any adouble found in the computational graph which does not depend on

the independent variables is treated as a constant. This feature reduces the amount

of information stored on the trace and improves the performance of the reverse dif-

ferentiated OCCT. Its performance was evaluated using the TUB stator test-case.

Once the activity analysis is enabled, one benefits from an improved efficiency by

22.5% in comparison to the original reverse mode of AD.

The differentiated OCCT has been coupled with the discrete adjoint CFD solver

STAMPS, that is also produced with AD, as elaborated in Chapter 4. This achieve-

ment demonstrates for the first time the differentiation of a complete design chain

built from generic, multi-purpose components, which can be applied to a very wide

variety of shape parametrizations expressed in CAD. This chain is utilized to perform

the gradient-based shape optimization of the U-bend and TUB stator test-cases, to

minimize the total pressure losses. The optimization of the U-bend duct yields 18%

reduction of the objective function. Regarding the TUB stator test-case, the opti-

mization was executed two times with respect to the low-fidelity and high-fidelity

CFD simulations, reducing the total pressure loss between the inlet and the outlet

by 13.72% and 6.7%, respectively.

In Chapter 5, the previously developed gradient-based optimization workflow was

expanded in order to support assembly constraints of the TUB stator. In particular,

the blade has to accommodate four mounting bolts (cylinders) during the shape

optimization (two on the hub and two on the shroud). The cylinders are allowed to

138

move, however the minimum axial distance between the hub and shroud pairs has to

be 60 mm. For this purpose, ten inequality geometric constraints were implemented

to ensure the fitting of cylinders inside the volume of the optimal blade. The whole

optimization workflow is wrapped in Python and driven by the SLSQP optimizer,

which handles the inequality constraints using the derivative information provided by

the differentiated OCCT. The optimization yields 12.3% reduction of the objective

function when employing the low-fidelity CFD simulation and 14% reduction with

respect to the high-fidelity CFD simulation, while respecting all constraints.

This achievement demonstrates that the differentiation of a complete CAD kernel is

feasible and can be applied to industrial cases. The last two chapters are dedicated

to the AD of specialized turbo-machinery CAD tools.

First, improved AD of the VKI in-house CAD and mesh generation tool CADO

(Chapter 6) was achieved by exploiting the structure of the 2-D mesh smoothing

process. The original ‘black-box’ reverse mode of ADOL-C required a large amount

of memory to store the trace (more than 36 GB). For this reason, the differenti-

ated CADO sources were modified to split the computation on three smaller traces,

where the middle trace represents a single mesh smoothing iteration and can be re-

evaluated many times with ADOL-C drivers to compute the final smoothed mesh. In

addition to the trace structuring, two checkpointing techniques (equidistant and bi-

nomial) were employed to store snapshots during the execution of the differentiated

sources, such that the gradients evaluated with the reverse mode can be computed

more efficiently. These upgrades yield a substantial reduction of the memory re-

quirements in comparison with the black-box reverse AD. The performance was

measured using the two types of LS89 axial turbine parametrization. When consid-

ering the parametrization with 22 design variables, the structured AD with the bino-

mial checkpointing reduces the memory consumption from the original 36.14 GB to

1.78 GB (by 95%). Next, when considering the finer parametrization with 230 design

variables, the structured AD with the binomial checkpointing reduces the memory

footprint from the original 42.06 GB to 7.72 GB (by 82%). Moreover, its performance

is significantly faster than any other differentiation mode used in CADO.

Second, the Rolls-Royce in-house airfoil design and blade generation tool Parablad-

ing is differentiated using the AD software tools ADOL-C and Tapenade (Chapter 7).

The two different AD concepts have been successfully integrated into the Parablad-

139

8 Conclusion

ing source code, however imposing a lot of changes with respect to the original

sources. Even a few places in the original parametrization workflow were found that

blocked the propagation of AD sensitivities. All differentiation issues have been

resolved and the geometric derivatives computed with AD have been successfully

verified against FD.

The code changes imposed upon AD were wrapped with preprocessor directives for

conditional compilation such that the user can easily switch between the original

and differentiated functionality (and vice-versa) just by changing a single flag. If

such coding style could be integrated into a master development branch, it would

allow simpler maintenance of the differentiated sources.

The differentiated Parablading tool has been coupled with the HYDRA adjoint CFD

solver, that is also produced with AD, thus providing a complete differentiated design

chain at hand. This work demonstrates that AD can be entirely integrated into an

industrial environment.

This differentiated design chain was demonstrated on the gradient-based optimiza-

tion of the TUB stator. Two contradicting terms: total pressure loss (ω) and exit

whirl angle distribution (αE), were joined using a weighted sum approach to a single-

objective function. This objective, together with its corresponding gradients, was

provided to the L-BFGS optimizer that converged after 22 iterations. The optimiza-

tion was highly influenced by αE that was reduced by 42.84%, while keeping the

contradicting objective ω almost constant (0.45% reduction).

This thesis demonstrates the feasibility of applying AD to the CAD frameworks.

The involvement of CAD systems/tools in the design chain avoids the effort and

errors associated with the CAD-free (mesh-based) methods when transforming the

optimal mesh back to the CAD format. That is, the developed CAD-based workflows

in this work keep the design tool into the optimization loop, therefore providing the

optimal shape in the CAD format that is convenient for further analysis in a multi-

disciplinary environment and finally manufacturing. Application of AD to the CAD

rather than FD not only produces exact shape sensitivities (up to the machine-

precision), but also reduces its computational cost, especially when employing the

reverse mode of AD. These advancements enable a step change in industrial shape

optimization with the gradient-based methods.

140

8.1 Future work and research direction

8.1 Future work and research direction

In this study, the OCCT kernel v7.0 is differentiated and this version was taken

in 2015 when the IODA ITN started. Since then, there has been a large amount

of updates in the OCCT sources. Unfortunately, they are not included in the AD

version, which is therefore slowly becoming outdated. For this reason, the author

is starting with the differentiation of the latest version — currently v7.3. In the

meantime, the typedef approach (together with the preprocessor directives) to dif-

ferentiate the sources is going to be discussed with Open CASCADE developers to

find an agreement about maintaining the differentiated version such that it regularly

reflects the updates from the master branch. A long-term strategy could be to make

the AD efforts open-source, such that the OCCT community can contribute to its

development. Definitely, the AD of OCCT is not a one-person job when preferring

to catch-up with the regular updates on the original sources.

Another challenge is to develop an automated testing suite for validating the deriva-

tives from the existing primal regression tests. The Automated Testing System of

OCCT involves thousands of tests written in Tcl that execute C++ functionality in

the background. The first step would be to identify which tests are beneficial for the

derivative validation. Next, the set of Tcl capabilities has to be extended in order

to support additional operations such as defining the independent and dependent

variables of the system as well as getting and setting their AD values.

As mentioned in Sec. 3.5.1, there is one source package (AdvApp2Var) in OCCT that

could not be differentiated with ADOL-C. The sources of this package are actually

a legacy code that was firstly written in Fortran and later translated to C. They

involve a complex pointer arithmetic (low-level memory management) that results

in a memory corruption of adouble objects. Either one could rewrite the package

such that it follows the C++ standards for memory management or differentiate it

with Tapenade which would require additional coupling efforts between ADOL-C

and Tapenade.

The Rolls-Royce in-house CAD tool Parablading is differentiated using the AD tools

ADOL-C and Tapenade, however the geometric derivatives are computed only with

the forward mode of AD. The following step is to integrate the reverse mode of AD

to benefit from an improved efficiency.

141

8 Conclusion

The knowledge gained by the AD of CAD libraries investigated in this work could be

applied to the differentiation of commercial (closed-source) CAD systems. Since the

adjoint CFD methods are widely adopted in industrial gradient-based optimization

workflows, the next advancement is expected to be in efficient and exact calculation

of CAD gradients, not only in academia but also in industry.

142

Bibliography

[ABM+16] S. Auriemma, M. Banović, O. Mykhaskiv, H. Legrand, J.-D. Müller,

and A. Walther. Optimisation of a U-bend using CAD-based adjoint

method with differentiated CAD kernel. In ECCOMAS Congress,

2016.

[ABW+18] S. Auriemma, M. Banović, A. Walther, O. Mykhaskiv, and J.-D.

Müller. Applications of differentiated CAD kernel in gradient-based

aerodynamic shape optimisation. In 2018 Joint Propulsion Confer-

ence. American Institute of Aeronautics and Astronautics, 2018.

[ALR90] T. Arts, M. Lambertderouvroit, and A. W. Rutherford. Aero-thermal

investigation of a highly loaded transonic linear turbine guide vane

cascade. A test case for inviscid and viscous flow computations. NASA

STI/Recon Technical Report N, 91, 1990.

[ARA18a] D. Agarwal, T. T. Robinson, and C. G. Armstrong. A CAD Based

Framework for Optimizing Performance While Ensuring Assembly

Fit. In Recent Advances in Intelligent Manufacturing, pages 73–83.

Springer, 2018.

[ARA+18b] D. Agarwal, T. T. Robinson, C. G. Armstrong, S. Marques,

I. Vasilopoulos, and M. Meyer. Parametric design velocity compu-

tation for CAD-based design optimization using adjoint methods. En-

gineering with Computers, 34(2):225–239, 2018.

[Bac96] T. Back. Evolutionary algorithms in theory and practice: evolution

strategies, evolutionary programming, genetic algorithms. Oxford uni-

versity press, 1996.

[BF10] D. Bestle and P. Flassig. Optimal aerodynamic compressor blade de-

sign considering manufacturing noise. In 8th Association for Struc-

tural and Multidisciplinary Optimization in the UK/International

Society for Structural and Multidisciplinary Optimization (ASMO-

UK/ISSMO) Conference on Engineering Design Optimization, Lon-

don, July, pages 8–9, 2010.

143

Bibliography

[BFJP87] R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper. Surface/surface

intersection. Computer Aided Geometric Design, 4(1-2):3–16, 1987.

[BJMS95] C. H. Bischof, W. T. Jones, A. Mauer, and J. Samareh. Application

of automatic differentiation to 3-D volume grid generation software.

CFD for Design and Optimization, 232:17–22, 1995.

[BKMC96] C. H. Bischof, P. Khademi, A. Mauer, and A. Carle. ADIFOR 2.0: Au-

tomatic differentiation of Fortran 77 programs. IEEE Computational

Science and Engineering, 3(3):18–32, 1996.

[Blo00] F. J. Blom. Considerations on the spring analogy. International jour-

nal for numerical methods in fluids, 32(6):647–668, 2000.

[BMA+18] M. Banović, O. Mykhaskiv, S. Auriemma, A. Walther, H. Legrand,

and J.-D. Müller. Algorithmic differentiation of the Open CASCADE

Technology CAD kernel and its coupling with an adjoint CFD solver.

Optimization Methods and Software, pages 1–16, 2018.

[BRMO97] C. H. Bischof, L. Roh, and A. J. Mauer-Oats. ADIC: an extensible

automatic differentiation tool for ANSI-C. Software: Practice and

Experience, 27(12):1427–1456, 1997.

[BVWM19] M. Banović, I. Vasilopoulos, A. Walther, and M. Meyer. Algorith-

mic differentiation of an industrial airfoil design tool coupled with the

adjoint CFD method. Optimization and Engineering, Nov 2019.

[CJM11] F. Christakopoulos, D. Jones, and J.-D. Müller. Pseudo-timestepping

and verification for automatic differentiation derived CFD codes.

Computers & Fluids, 46(1):174–179, 2011.

[CSV09] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to

Derivative-Free Optimization. Society for Industrial and Applied

Mathematics, 2009.

[CVB+13] F. Coletti, T. Verstraete, J. Bulle, T. Van der Wielen, N. Van den

Berge, and T. Arts. Optimization of a U-Bend for Minimal Pressure

Loss in Internal Cooling Channels - Part II: Experimental Validation.

Journal of Turbomachinery, 135(5):051016, 2013.

144

Bibliography

[DB77] C. De Boor. Package for calculating with B-splines. SIAM Journal on

Numerical Analysis, 14(3):441–472, 1977.

[DBVdSB06] A. De Boer, M. S. Van der Schoot, and H. Bijl. New method for mesh

moving based on radial basis function interpolation. In ECCOMAS

CFD 2006: Proceedings of the European Conference on Computational

Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8,

2006. Delft University of Technology; European Community on Com-

putational Methods in Applied Sciences (ECCOMAS), ECCOMAS,

2006.

[DH15] J. Dannenhoffer and R. Haimes. Design Sensitivity Calculations Di-

rectly on CAD-based Geometry. 53rd AIAA Aerospace Sciences Meet-

ing, AIAA SciTech Forum, 2015. AIAA 2015-1370.

[Dwi09] R. P. Dwight. Robust Mesh Deformation using the Linear Elasticity

Equations. In H. Deconinck and E. Dick, editors, Computational Fluid

Dynamics 2006, pages 401–406, Berlin, Heidelberg, 2009. Springer

Berlin Heidelberg.

[FC12] D. Falck and B. Collette. FreeCAD [How-To]. Packt Publishing Ltd.,

2012.

[GDMP03] M. B. Giles, M. C. Duta, J.-D. Müller, and N. A. Pierce. Algorithm

developments for discrete adjoint methods. AIAA journal, 41(2):198–

205, 2003.

[Gil02] M. B. Giles. On the iterative solution of adjoint equations. In Au-

tomatic Differentiation of Algorithms, pages 145–151. Springer New

York, 2002.

[Gun02] M. Gunzburger. Perspectives in Flow Control and Optimization. So-

ciety for Industrial and Applied Mathematics, 2002.

[GW00] A. Griewank and A. Walther. Algorithm 799: revolve: an implemen-

tation of checkpointing for the reverse or adjoint mode of computa-

tional differentiation. ACM Transactions on Mathematical Software

(TOMS), 26(1):19–45, 2000.

145

Bibliography

[GW08] A. Griewank and A. Walther. Evaluating Derivatives: Principles

and Techniques of Algorithmic Differentiation. Society for Industrial

Mathematics, 2nd edition, 2008.

[GWMW07] N. R. Gauger, A. Walther, C. Moldenhauer, and M. Widhalm. Auto-

matic differentiation of an entire design chain for aerodynamic shape

optimization. In New Results in Numerical and Experimental Fluid

Mechanics VI, pages 454–461. Springer, 2007.

[HD13] R. Haimes and J. Dannenhoffer. The Engineering Sketch Pad: A Solid-

Modeling, Feature-Based, Web-Enabled System for Building Paramet-

ric Geometry. 21st AIAA Computational Fluid Dynamics Conference,

Fluid Dynamics and Co-located Conferences, 2013. AIAA 2013-3073.

[HH78] R. M. Hicks and P. A. Henne. Wing design by numerical optimization.

Journal of Aircraft, 15(7):407–412, 1978.

[HP13] L. Hascoët and V. Pascual. The Tapenade Automatic Differentiation

tool: Principles, Model, and Specification. ACM Transactions On

Mathematical Software, 39(3):20:1–20:43, May 2013.

[IQ13] E. Iuliano and D. Quagliarella. Proper Orthogonal Decomposition,

surrogate modelling and evolutionary optimization in aerodynamic de-

sign. Computers & Fluids, 84:327–350, 2013.

[JA07] S. Jakobsson and O. Amoignon. Mesh deformation using radial basis

functions for gradient-based aerodynamic shape optimization. Com-

puters & Fluids, 36(6):1119–1136, 2007.

[Jam89] A. Jameson. Aerodynamic design via control theory. In Recent

advances in computational fluid dynamics, pages 377–401. Springer,

1989.

[JM08] A. Jaworski and J.-D. Müller. Toward modular multigrid design op-

timisation. In C. Bischof and J. Utke, editors, Lecture Notes in Com-

putational Science and Engineering, volume 64, pages 281–291, ”New

York, NY, USA”, 2008. Springer.

146

Bibliography

[JV00] A. Jameson and J. C. Vassberg. Studies of alternative numerical op-

timization methods applied to the brachistochrone problem. Compu-

tational Fluid Dynamics Journal, 9(3):281–296, 2000.

[Ken10] J. Kennedy. Particle swarm optimization. Encyclopedia of machine

learning, pages 760–766, 2010.

[Lap04] L. Lapworth. Hydra-CFD: A Framework for Collaborative CFD De-

velopment. In International Conference on Scientific and Engineering

Computation (IC-SEC), 2004.

[MBA+18] O. Mykhaskiv, M. Banović, S. Auriemma, P. Mohanamuraly,

A. Walther, H. Legrand, and J.-D. Müller. NURBS-based and

parametric-based shape optimization with differentiated CAD kernel.

Computer-Aided Design and Applications, pages 1–11, 2018.

[MGX+16] J.-D. Müller, M. Gugala, S. Xu, J. Hückelheim, P. Mohanamuraly, and

O. R. Imam-Lawal. Introducing STAMPS: an open-source discrete

adjoint CFD solver using source-transformation AD. In 11th ASMO

UK/ISSMO/NOED2016: International Conference on Numerical Op-

timisation Methods for Engineering Design, 2016.

[MHM18] J.-D. Müller, J. Hückelheim, and O. Mykhaskiv. STAMPS: a Finite-

Volume Solver Framework for Adjoint Codes Derived with Source-

Transformation AD. In 2018 Multidisciplinary Analysis and Opti-

mization Conference, 2018.

[MV] J.-D. Müller and T. Verstraete. AboutFlow benchmark test-case:

TU Berlin TurboLab stator. http://aboutflow.sems.qmul.ac.uk/

events/munich2016/benchmark/testcase3/. Accessed 23 October

2018.

[MV17] L. Mueller and T. Verstraete. CAD integrated multipoint adjoint-

based optimization of a turbocharger radial turbine. International

Journal of Turbomachinery, Propulsion and Power, 2(3):14, 2017.

[Nau12] U. Naumann. The Art of Differentiating Computer Programs: An

Introduction to Algorithmic Differentiation. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2012.

147

http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/
http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/

Bibliography

[NS07] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In ACM Sigplan notices, pages 89–

100. ACM, 2007.

[Ope] Open CASCADE. https://www.opencascade.com/. Accessed 17 July

2017.

[PH18] V. Pascual and L. Hascoët. Mixed-language automatic differentiation.

Optimization Methods and Software, 33(4-6):1192–1206, 2018.

[Pir74] O. Pironneau. On optimum design in fluid mechanics. Journal of

Fluid Mechanics, 64(1):97–110, 1974.

[RAC+12] T. T. Robinson, C. G. Armstrong, H. S. Chua, C. Othmer, and

T. Grahs. Optimizing Parameterized CAD Geometries Using Sen-

sitivities Based on Adjoint Functions. Computer-Aided Design and

Applications, 9(3):253–268, 2012.

[SL03] S. Shahpar and L. Lapworth. PADRAM: Parametric design and rapid

meshing system for turbomachinery optimisation. In ASME Turbo

Expo, 2003.

[SP86] T. W. Sederberg and S. R. Parry. Free-form deformation of solid

geometric models. ACM SIGGRAPH computer graphics, 20(4):151–

160, 1986.

[SS79] J. L. Steger and R. L. Sorenson. Automatic mesh-point clustering

near a boundary in grid generation with elliptic partial differential

equations. Journal of Computational Physics, 33(3):405–410, 1979.

[ST19] I. Sanchez Torreguitart. Efficient CAD based adjoint optimization of

turbomachinery using an adaptive shape parameterization. PhD thesis,

05 2019.

[STVM16] I. Sanchez Torreguitart, T. Verstraete, and L. Mueller. CAD Kernel

and Grid Generation Algorithmic Differentiation for Turbomachinery

Adjoint Optimization. In ECCOMAS Congress, 2016.

148

Bibliography

[STVM18] I. Sanchez Torreguitart, T. Verstraete, and L. Mueller. Optimiza-

tion of the LS89 axial turbine profile using a CAD and adjoint based

approach. International Journal of Turbomachinery, Propulsion and

Power, 3(3):20, 2018.

[TSW98] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of grid

generation. CRC press, 1998.

[TTM74] J. F. Thompson, F. C. Thames, and C. W. Mastin. Automatic numer-

ical generation of body-fitted curvilinear coordinate system for field

containing any number of arbitrary two-dimensional bodies. Journal

of computational physics, 15(3):299–319, 1974.

[VCB+13] T. Verstraete, F. Coletti, J. Bulle, T. Vanderwielen, and T. Arts. Op-

timization of a U-Bend for Minimal Pressure Loss in Internal Cooling

Channels - Part I: Numerical Method. Journal of Turbomachinery,

135(5):051015, 2013.

[Ver] T. Verstraete. AboutFlow benchmark test-case: VKI U-

bend. http://aboutflow.sems.qmul.ac.uk/events/munich2016/

benchmark/testcase1/. Accessed 21 February 2017.

[Ver10] T. Verstraete. CADO: a computer aided design and optimization tool

for turbomachinery applications. In 2nd Int. Conf. on Engineering

Optimization, Lisbon, Portugal, September 6-9, 2010.

[VFM17] I. Vasilopoulos, P. Flassig, and M. Meyer. CAD-based Aerodynamic

Optimization of a Compressor Stator using Conventional and Adjoint-

driven Approaches. In ASME Turbo Expo, 2017.

[VH82] W. H. Vandevender and K. H. Haskell. The SLATEC Mathematical

Subroutine Library. SIGNUM Newsl., 17(3):16–21, September 1982.

[WB09] J. Witteveen and H. Bijl. Explicit Mesh Deformation Using Inverse

Distance Weighting Interpolation. 2009.

149

http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase1/
http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase1/

Bibliography

[WG04] A. Walther and A. Griewank. Advantages of Binomial Checkpointing

for Memory-reduced Adjoint Calculations. In M. Feistauer, V. Doleǰśı,

P. Knobloch, and K. Najzar, editors, Numerical Mathematics and Ad-

vanced Applications, pages 834–843, Berlin, Heidelberg, 2004. Springer

Berlin Heidelberg.

[WG12] A. Walther and A. Griewank. Getting Started with ADOL-C, pages

181–202. Chapman & Hall/CRC Computational Science. Dagstuhl

Seminar Proceedings 09061, 2012.

[XJM13] S. Xu, W. Jahn, and J.-D. Müller. CAD-based shape optimisation with

CFD using a discrete adjoint. Int. J. Numer. Meth. Fluids, 74(3):153–

68, 2013.

[XRMM15] S. Xu, D. Radford, M. Meyer, and J.-D. Müller. CAD-Based Ad-

joint Shape Optimisation of a One-Stage Turbine with Geometric Con-

straints. ASME Turbo Expo 2015, 2C: Turbomachinery, 2015.

[YMJC11] G. Yu, J.-D. Müller, D. Jones, and F. Christakopoulos. CAD-based

shape optimisation using adjoint sensitivities. Computers & Fluids,

46(1):512–516, 2011. 10th ICFD Conference Series on Numerical

Methods for Fluid Dynamics (ICFD 2010).

[ZBLN97] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-

BFGS-B: Fortran subroutines for large-scale bound-constrained op-

timization. ACM Transactions on Mathematical Software (TOMS),

23(4):550–560, 1997.

150

	Introduction
	Motivation
	Parametrization approaches: CAD-free vs. CAD-based
	Current approaches to evaluate derivatives in CAD environment
	Thesis contribution
	Other contributions and collaborations

	Thesis structure

	Test-cases
	Parametrization with OCCT
	U-bend
	TU Berlin stator

	TU Berlin stator parametrization in Rolls-Royce workflow

	Algorithmic differentiation of OCCT
	Introduction to OCCT
	Introduction to algorithmic differentiation
	Introduction to ADOL-C
	Traceless differentiation variant
	Trace-based differentiation variant

	Approaches of differentiating OCCT
	A sample class
	The code duplication approach
	The inheritance approach
	The controller approach
	The templating approach
	The typedef approach
	Compile and run-time issues of OCCT differentiation

	Verification of differentiated OCCT
	Primal functionality validation of differentiated OCCT
	Gradient verification using U-bend parametrization
	Gradient verification using TU Berlin stator blade parametrization

	Performance tests of differentiated OCCT
	Performance of U-bend CAD application
	Performance of TU Berlin stator CAD application

	Summary

	Aerodynamic shape optimization with differentiated OCCT
	Mathematical formulation of CAD-based optimization with adjoint method
	STAMPS flow solver
	Gradient-based shape optimization framework
	U-bend optimization results
	TU Berlin stator optimization results
	Summary

	TU Berlin stator optimization with assembly constraints
	Implementation of stator assembly constraints
	Intersection approach
	Interference detection approach based on distance between shapes
	Cylinder positioning during shape optimization

	Optimization results
	Summary

	Improved AD of the VKI in-house CAD and grid generation tool
	Mesh generation of LS89 axial turbine profile
	Structure-exploiting AD of mesh smoothing process
	Tailoring trace size to application requirements
	Coupling ADOL-C drivers to evaluate derivatives
	Handling conditional branches in mesh smoothing
	Gradient verification

	Performance tests of differentiated CADO
	Summary

	Algorithmic differentiation of an industrial airfoil design tool
	Parablading differentiation
	Introduction to Tapenade
	Mixed-language AD of Parablading
	Parablading differentiation issues
	Maintenance aspects

	Verification of differentiated Parablading
	Geometric derivative validation
	Performance test

	Gradient-based optimization of TU Berlin stator
	Objective functions
	CFD setup and optimization workflow
	Optimization results

	Summary

	Conclusion
	Future work and research direction

	Bibliography

