
Mobile Resource Allocation

Dissertation
In partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

at the Faculty of Computer Science,
Electrical Engineering and Mathematics

at Paderborn University

submitted by
BJÖRN FELDKORD

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide,
Paderborn University

• Dr. habil. Marcin Bieńkowski,
Wrocław University

Zusammenfassung

Die vorliegende Arbeit behandelt Ressourcenallokationsprobleme für Anwendungen, welche
hauptsächlich von mobilen Nutzern ausgeführt werden. Ressourcen werden dabei nah am Nutzer
platziert, wie beispielwiese in den Basisstationen des mobilen Netzwerkes. Die Performanz
von Anwendungen für den Benutzer hängt unter anderem von Latenzen ab, welche durch eine
entsprechende Platzierung gewährleistet werden müssen. So muss die Konfiguration der Ressourcen
einerseits stetig angepasst werden, andererseits müssen die entsprechenden Änderungen leicht
berechenbar und schnell dürchführbar sein um eine hohe Qualität des entsprechenden Services zu
gewährleisten.

Wir behandeln zwei grundlegende Modelle, die sich mit der Platzierung mobiler Ressourcen
beschäftigen: In unserem Mobile Server Problem untersuchen wir eine fixe Anzahl Ressourcen
welche vor Beantwortung einer eintreffenden Anfrage über eine kurze Distanz verschoben werden
können. Wir geben für dieses Problem Online Algorithmen an, welche auf vorhandenen Methoden
zu ähnlichem Problemen wie k-Server und Page Migration aufbauen, und kompetitive Faktoren
asymptotisch nah an einem optimalem Ergebnis erreichen.

Unser zweites Problem ist eine Erweiterung des Online Facility Location Problems, in welchem
wir dem Online Algorithmus erlauben, die Positionen seiner Facilities über die Zeit zu korrigieren.
Dabei limitieren wir die Korrektur sowohl durch damit verbundene, proportionale Kosten, also
auch durch eine fest Schranke pro Zeitschritt. Wir geben Online Algorithmen an, welche einen
kompetitiven Faktor unabhängig von der Anzahl der Zeitschritte bzw. der Anfragen erreichen und
asymptotisch optimal auf der Linie sind.

Abstract

This thesis covers the topic of resource allocation problems that are tailored to scenarios primarily
involving mobile users. The resources are placed close to the users, e.g., at the base stations of
a mobile network. The performance of applications accessed by the users depends, among other
things, on latencies which have to be guaranteed by a suitable placement of the resources. This
implies that the configuration of resources must be continuously adapted. However, these changes
must be easily computable and quickly applicable to maintain a high service quality.

We propose two basic models, which deal with the placement of mobile resources: Our first
model is called the Mobile Server problem, where we are concerned with the placement of a fixed
number of resources. These resources can be moved over a short distance before answering an
incoming request. For this problem, we propose online algorithms based on the methods used in
similar problems such as the k-Server and Page Migration problems, and prove asymptotically
almost optimal competitive ratios.

The second problem is an extension of the Online Facility Location problem, where we allow an
online algorithm to correct its positions of the facilities over time. The movement distance is limited
implicitly through a cost proportional to the distance as well as directly through a fixed upper bound
per time step. We propose online algorithms that achieve competitive ratios independent of time
and the number of clients. The results are asymptotically optimal on the line.

Preface

When I started to work in research about four and a half years ago, I had no idea what this thesis
would be about, except for a few basic concepts I picked up during my studies. Luckily, since then
I met a number of people who have helped me move forward and who I would like to thank at this
opportunity.

First of all, I would like to thank my advisor Prof. Dr. Friedhelm Meyer auf der Heide for
giving me the opportunity to work at his Algorithms and Complexity group and for always pushing
me in the right direction. I would also like to thank Prof. Dr. Marcin Bieńkowski for agreeing to
review this thesis and joining the commission, as well as all the other members of the commission.
Further thanks goes to my coauthors from various publications; it was a pleasure working with you.
I would like to thank all my colleagues at the HNI for our amazing time together, be it at work or at
less serious occasions like the social events of our AG Seminar. A special shout-out goes to the
colleagues from my office: Daniel, Manuel and Max, who provided the necessary motivation to
push on when needed, each in their own way.

Finally, I would like to thank my family for all their support during this project.

Björn Feldkord
September 2019

Contents

1 Introduction . 11

1.1 Technical Background 13
1.2 Related Work 15

2 The Mobile Server Problem . 19

2.1 Formal Model 20
2.2 Summary of Results 21
2.3 One Server, Multiple Requests 21
2.3.1 Lower Bounds . 21
2.3.2 The Move-to-Center Algorithm . 23
2.3.3 Locality of Requests . 32

2.4 Multiple Servers, One Request 34
2.4.1 Lower Bounds . 34
2.4.2 An Algorithm for the Unweighted Problem . 37
2.4.3 Extension to the Weighted Problem . 53

3 Online Facility Location with Mobile Facilities 63

3.1 Formal Model 64
3.2 Summary of Results 65
3.3 Algorithms 65
3.3.1 Technical Overview . 66
3.3.2 A Randomized Algorithm for Unlimited Movement . 67
3.3.3 Extension to Limited Movement . 70
3.3.4 Extension to Higher-Dimensional Spaces . 71

3.4 Lower Bounds 73

4 Conclusion & Open Problems . 75

1. Introduction

Consider a network of processors working on common data. The data is organized in memory
pages, where each page can be located in the local memory of any processor, but only one copy
may exist at a time. Processors who want to access the page but do not have it in their local memory
must communicate over the network with the processor holding the page. This communication
induces costs; to reduce it, an algorithm may decide to move the page to a different processor.
However, this also induces costs which may be high due to the size of the page, and hence moving
the page only pays off if it reduces the costs of multiple requests. An algorithm for the problem is
evaluated by the total cost incurred by communication and the movement of the page.

The above problem, commonly referred to as Page Migration, belongs to the broad class of
resource allocation problems. These models are of interest from both a theoretical and a practical
point of view: While they capture many challenges occurring in different distributed systems
in a simple model, they still maintain the basic combinatorial complexity behind the practical
systems and therefore require non-trivial solutions. This thesis covers resource allocation problems
occurring in large distributed systems: i.e., systems that consist of multiple, heterogeneous entities
(also clients or nodes) forming a dynamic network. The clients request access to shared resources
in the network, which must be allocated by an algorithm. In our problems, we consider a shared
resource that is used throughout the execution of some task and not exclusively bound to a single
entity. Typical examples would be shared files that can be read from or written to, (limited)
storage used by multiple clients, or remotely accessed web-services that are executed on specific
servers. Our models focus on the placement of resources to reduce communication: i.e., the usage
of resources requires communication with a resource that in turn incurs costs dependent on the
distance communicated. An algorithm solving the allocation problems has to make decisions
concerning the location of available resources such that the costs for communication and for the
placement of the resources are minimized.

The models discussed in this thesis are inspired by an emerging trend in computing regarding
applications which are traditionally associated with cloud computing. Motivated by their large
consumption of computational resources, a growing number of applications were shifted from
a single machine at some end user to large computing centers (the "cloud"). Various resource
management problems arise in these computing centers. As an example, data used in common
by multiple processors must be allocated to be accessible by all the processors who work on it.
If multiple copies of the data exists, consistency problems in addition to the question of optimal
placement may arise. This problem is captured in the File Allocation problem [12], which in
turn contains different subproblems which are of independent interest from both a theoretical and
practical standpoint. The most relevant of these subproblems for the research in this thesis is the
aforementioned Page Migration (also known as File Migration) problem [22], which deals with
assigning a single page (or file) to different places in a network such that the costs for access and
migration are minimized. Due to the relation of the formal model to one of our problems, Page
Migration and the associated results are described in more detail in Section 1.2.

12 Chapter 1. Introduction

Other examples for problems of theoretical interest occurring in large computing centers are
scheduling problems, where multiple machines organized in a network use common resources such
as memory and bandwidth of a common communication channel (e.g. [50, 53] for recent examples).
From the user side, resources in computing centers may be utilized by renting them for a certain
time. This was formally modeled by the Parking Permit problem [64] as a basic model for leasing
infrastructure, and then applied to various resources allocation problems (e.g. [1, 4, 65]).

The usage of few, large computing centers has, among many advantages, also some major
drawbacks: Due to the distances of the end user to the cloud, latency guarantees that are critical
for some applications cannot be given. The network infrastructure is also not sufficient to handle
applications where a lot of necessary data is generated at the user devices and then uploaded to the
cloud. Future tasks such as the coordination of automated driving would require too much data to
be sent to cloud servers and processed there to receive a timely answer. A new architecture has been
proposed for solving these problems, commonly referred to as edge computing or fog computing.
Here, computation is not done in a few large computing centers, but closer to the user, e.g., at the
base stations for the wireless network. The high mobility of the users necessitates applications to
be very flexible if they want to be able to adapt to the shifting demands and maintain a high service
quality. An overview of the main motivations, applications and important problems for research in
the area of edge computing can be found in various surveys covering the topic (e.g. [66, 71, 78]).

In this thesis, we focus on resource allocation problems adopted from models initially designed
for the aforementioned cloud computing scenario. We alter the models to fit systems that are closer
to the edge computing scenario: i.e., we assume demands are issued by mobile users who expect
low latencies for their applications. Resources need to be allocated such that the configuration
adapts quickly to the demands of the users in order to meet those expectations. On the other
hand, we allow a high flexibility on the configurations: i.e., our algorithms can choose between
a potentially infinite number of system states (placements) to adapt to the users. These aspects
hopefully contribute a first step towards integrating the aspects of mobile users and the dynamic
applications into classical questions of theoretical computer science.

Our problems all belong to the class of online problems, where the input, which in our models
are clients who want to access resources, arrives over time. The clients’ requests must be served in
the same time step as they pose their request, ensuring minimal delays. The use of competitiveness
(the worst-case ratio between the cost of the online algorithm and an optimal solution) as a metric
ensures that our algorithms perform reasonably well, even in scenarios where nothing is known
of the appearing clients in advance. In our example of Page Migration from the beginning, this
would mean that the online algorithm has to make the choice of where to place the page at each
time without knowing anything about the future access pattern of the processors beforehand. The
algorithm is evaluated by comparing the cost during a worst-case input to that of an optimal solution
(knowing the whole input in advance). It is obvious that while taking worse-case inputs as a
measurement ensures that the resulting performance is guaranteed for all inputs, some results might
be very misleading since a bad competitive ratio might be induced by very specific inputs that
hardly appear in practice. In our work, we use the technique of resource augmentation to show that
the worst-case bounds in our models are due to the exploitation of a specific property of the problem
which disappears if the online algorithm is given slightly more power than the offline solution it
is compared to. In that sense, when facing such problems, simply using resources with enhanced
capabilities such as faster processors or larger storage can help to atone for shortcomings due to the
lack of knowledge about the future. A formal description of online algorithms, competitiveness and
resource augmentation can be found in the following section.

The two major models discussed in this thesis focus on the aspect of the mobility of resources
and users. The first model, titled the Mobile Server problem discussed in Chapter 2, deals with the
placement of a fixed number of mobile resources, which can adapt their position over time with a

1.1 Technical Background 13

limited speed. It is an extension of the classical Page Migration problem, which becomes more
challenging through the introduction of the limited movement. The algorithms build heavily on
the work done for the Page Migration and k-Server problems. This necessary background will be
discussed in Section 1.2. The main result for this model is a competitive online algorithm that can
be easily implemented given an existing k-Page Migration algorithm.

The second model is an extension of the Online Facility Location problem, where facilities are
placed by an algorithm over time to serve clients that are connected to the facilities. In the classical
version of this model, facilities cannot be moved once they are placed by the online algorithm. As a
result, small errors in the facility placement result in a large competitive ratio in specific instances.
We extend the model by allowing the facilities to move for cost as in the Mobile Server problem and
show, that the competitive ratio significantly improves: i.e., its dependence on the number of clients
disappears. The main result is an algorithm based on the randomized algorithm by Meyerson [63]
which combines it with the approach taken for the Mobile Server problem. We formally introduce
the model and present the results in Chapter 3.

Both models isolate a specific aspect of the overall resource allocation scenario as described
above. In Chapter 4, we discuss ways of extending the models to cover more aspects of the scenario
and how to connect it with other research done in the area.

1.1 Technical Background
In this section, we introduce some necessary definitions regarding the technical framework for the
problems discussed in the thesis. Readers familiar with the basic concepts of online computation
may skip the corresponding paragraphs without affecting their understanding of the rest of the
thesis.

Online Algorithms and Competitive Ratio
All problems considered in this thesis belong to the class of online problems. In these problems,
the input is not known in advance to an algorithm, but given to it over time. Dependent on the
concrete problem, the algorithm has to make decisions only on the basis of the input seen so far, but
which will affect the future as well. By making decisions over time, the online algorithm creates a
solution for the entire input, which is evaluated by a cost function. Online algorithms are evaluated
on the basis of their competitive ratio, introduced by Sleator and Tarjan [73]. The competitive ratio
is the maximum ratio between the cost of the solution created by the online algorithm and the cost
of the best possible solution for the same input, taken over all possible inputs. Formally, let A be
an online algorithm, A(I) be the solution of A given input I and CA(I) be the cost of the solution
A(I). In the same way, let Opt(I) and COpt(I) be the optimal solution to input I and COpt(I) its cost.
Finally, let S be the set of all possible inputs. Then, A is called α-competitive if

CA(I) ≤ α ·COpt(I)+β

for all I ∈ S and some constant β independent of I. If β = 0 we call A strictly α-competitive. Note,
that in this thesis we allow α to be a function in the input length, as it is unavoidable for some of
the problems. In the literature, algorithms for which there is no α independent of the input length
are sometimes called not competitive. To avoid confusion, we will not use this term for our models.

For the evaluation of randomized online algorithms, the concept of adversaries is used to
describe different ways of regulating the power of randomization. An adversary is viewed as an
entity that dictates the input of the problem and also creates a solution to the created instance. A
paper by Ben-David et al. [16] discusses three types of adversaries whose strength can be directly
related. The most commonly used adversary, and also the adversary we mostly use in this thesis,
is the oblivious adversary. The oblivious adversary creates the input only on the basis of the
description of the online algorithm, without knowing the outcome of the random experiments

14 Chapter 1. Introduction

the online algorithm does. This description of competitiveness is equivalent to the following: A
randomized algorithm A is called α-competitive against an oblivious adversary, if

E[CA(I)]≤ α ·COpt(I)+β

for all I ∈ S and some constant β independent of I. The expectation is taken over the random
choices of A.

The other two types of adversaries are adaptive to the random choices of the online algorithm:
The adaptive-online adversary creates the instance step-by-step and learns of the random choices
of the algorithm in each time step. However, the adversary also has to create its solution to
the instance online: i.e., it has to make the same decisions as the online algorithm in each time
step. The adaptive-offline adversary, on the other hand, creates the instance in the same way as
the adaptive-online adversary, but only has to create a solution after the creation of the instance
is completed. The paper by Ben-David et al. [16] lays out the connection between these three
adversaries. The most important one is that there is a total order on them with respect to the
possible competitive ratio: For a given problem, if there is an α-competitive algorithm against
an adaptive-offline adversary, there also is an α-competitive algorithm against an adaptive-online
adversary which in turn implies the existence of an α-competitive algorithm against an oblivious
adversary. The best possible competitive ratio for deterministic online algorithms and randomized
algorithms against adaptive-offline algorithms is the same: i.e., randomization brings no advantage
over a deterministic algorithm against an adaptive-offline adversary.

Lower Bounds & Yao’s Principle
When proving lower bounds on the competitive ratio, it must be argued that there is no online
algorithm that can achieve a better competitive ratio than the desired bound. This can be particularly
hard when dealing with randomized algorithms that possibly make a lot of randomized choices
throughout the computation. An established technique to show lower bounds for randomized
algorithms against an oblivious adversary, is the use of Yaos’ Minimax Principle [77]. We make
use of this technique in both our models. The principle, originally formulated for runtime, states
that the best possible (expected) performance of randomized algorithms over all inputs is the
same as the best possible (expected) performance of deterministic algorithms over all probability
distributions over the inputs. On the basis of this, a lower bound on the competitive ratio for online
algorithms against oblivious adversaries can be shown by lower bounding the expected cost ratio
of all deterministic online algorithms against a constructed distribution over the inputs. In order
to properly apply the principle, we need to argue that for our instances the number of possible
algorithms for our given distribution is essentially finite. This is non-trivial in our models since
we use Euclidean metrics as a basis. We will argue that the principle nevertheless applies in the
respective theorems.

Resource Augmentation
Some online problems have hard instances for which online algorithms cannot achieve a constant
competitive ratio: i.e., a competitive ratio independent of the size of the given input sequence. This
does not always mean the problem is generally hard, but the high competitiveness is caused by
only a few specific inputs, which abuse a certain property in the problem definition. Resource
augmentation is a concept that tries to improve the performance of online algorithms in hard
instances by granting them additional power which the offline solution they are compared to
cannot utilize. This technique of giving the online algorithm slightly more power to improve the
competitive ratio was first used by Kalyanasundaram and Pruhs for scheduling problems where the
online algorithms were given slightly faster processors than the offline solution to improve from an
unbounded ratio to a competitive ratio only dependent on the augmentation factor [51].

1.2 Related Work 15

In both of the models in this thesis, we make use of resource augmentation to get competitive
ratios independent of the number of time steps in the input. In the first model (Mobile Server
problem), we give the resources of the online algorithm a higher movement speed than the resources
of the offline algorithm. In the second model (Online Facility Location), we give the originally static
resources the potential to move in order to improve the positioning. For the first case, this can be
interpreted as trading the latency caused by the resource reconfiguration against the communication
cost, i.e., sacrificing service quality for lower cost. In the second case, it illustrates that allowing
small corrections to the online solution leads to a much better outcome. One could also say that
adding more flexibility to the resource configuration improves the overall result.

Note that there are other concepts that offer a refined view on worst-case instances as well:
Applying smoothed analysis [74] to online algorithms, the smoothed competitiveness [14] of an
algorithm is evaluated by perturbing the input values of a problem at random and taking the expected
(w.r.t. the random perturbation) competitive ratio. Another concept is the notion of semi-random
input streams [48], where the order of the input is changed to something in between an adversarial
and completely random order (while the values themselves are still determined by an adversary).
In both concepts, randomness is used to make worst-case instances of a problem very unlikely to
occur. In contrast, the adversary can still fully determine the instance in the resource augmentation
model.

1.2 Related Work

We review the most important results for relevant problems connected to the models discussed
later. Our first model, the Mobile Server problem, can be viewed as a generalization of both the
k-Server and the Page Migration problems. Some of the difficulties occurring in the Mobile Server
problem also need to be solved in these related problems, and hence we reuse ideas contained in
the solutions to these problems for our model. We also use algorithms for the k-Server and Page
Migration problems as black-box simulations in our algorithms, hence it is useful to know some of
the algorithms and their competitive ratio.

Our second model is a variant of the Online Facility Location problem and existing results on
the competitive ratio for the classical version of the problem motivate our variant. In addition, our
algorithms draw inspiration from the randomized solution for the problem mentioned here.

k-Server Problem
The k-Server problem [60] was introduced as a generalization of paging and other online problems.
Given is a metric space and k servers placed within. The input being processed over time is a
sequence of requests, each occurring at a point in the metric space. The requests must be served
by moving one server to the point of the request. The optimization goal is to minimize the total
distance moved.

The k-Server problem is mostly considered in the online setting, since it can be efficiently
solved offline by dynamic programming or a reduction to the Mincost-Maxflow problem. Manasse
et al. [60] showed that no online algorithm could be better than k-competitive on every metric with
at least k+1 points. They stated as the k-Server Conjecture that there is a k-competitive online
algorithm for every metric space. Further, the conjecture is shown to hold for k = 2 and k = n−1
where n is the number of points in the metric space.

For general metrics, the best known result is the Work-Function algorithm (WFA), which was
shown to be 2k−1-competitive by Koutsoupias and Papadimitriou [56]. Although this algorithm
seems generally inefficient in case of runtime and memory, there have been studies showing that an
efficient implementation of this algorithm is indeed possible [68, 69]. It was also shown that the
algorithm has an optimal competitive ratio of k on line and star metrics, as well as metrics with
k+2 points by Bartal and Koutsoupias [13].

16 Chapter 1. Introduction

Since its introduction, many algorithms have been designed for special cases of the pro-
blem. Most notable is the Double-Coverage algorithm by Chrobak and Larmore [28], which
is k-competitive on trees. Like our algorithms in this paper, the Double-Coverage Algorithm is
memoryless in the sense that it does not need to remember the past request sequence to answer
the current request. For the Euclidean plane, Bein et al. constructed a deterministic algorithm that
slightly improves over the competitive ratio of WFA for k = 3 servers to 4.243 [15].

The study of randomized algorithms was initiated by Fiat et al. [38] who gave a log(k)-
competitive algorithm for the complete graph. It is speculated that this factor can be obtained
for all metrics; however, the question is still open. For general metrics, the first algorithm with
a polylogarithmic competitive ratio was an O(log3 n · log2 k)-competitive algorithm by Bansal et
al. [7]. This was recently improved by Bubeck et al. [25] who gave an O(log2 k)-competitive
algorithm for Hierarchical Separated Trees (HSTs). Using a different technique, Buchbinder et
al. [26] achieved similar results. These algorithms can be turned into an O(logn · log2 k)-competitive
one for general metrics by an embedding of general metrics into HSTs [33] often used in literature.
Lee presented an alternative embedding which results in a O(log9 k · log logk)-competitive algorithm
in general metrics [58], using the algorithm in [25] as a basis.

The k-Server problem can be formulated within the general framework of metrical task sy-
stems [23] whose competitive ratio in general depends on the number of states n in the system.
While this bound is linear in the deterministic case, Bartal et al. showed that there is an O(log6n)-
competitive randomized algorithm for general metrics [10]. A recent paper by Bubeck et al.
improves this bound to O(log2n) [24], based on the technique from [25]. Schäfer and Sivadasan
utilized the concept of smoothed analysis to show that small perturbations of the request cost can
lead to a significant improvement of the competitiveness for certain topologies of the underlying
state graph [70].

The dependence of the competitive ratio of the k-Server problem on the number of servers leads
to the question whether increasing the number of servers of the online algorithm in comparison to
the optimal solution improves the competitive ratio towards a constant. This was first considered
by Koutoupias, who showed that in the case of a uniform metric the competitive ratio indeed
decreases as the difference between the number of servers for the online algorithm and the optimal
solution increases [55]. Despite different algorithms that achieve a competitive ratio independent
of the number of servers for special metrics (often parametrized with the size of the metric) [9, 30],
no o(k)-competitive algorithm has been found for general metrics (here k denotes the number
of servers for the optimal solution). Interestingly, for the established optimal Double-Coverage
algorithm, the competitive ratio even slightly increases in the resource augmentation setting [8].

Due to its popularity, the k-Server problem has been studied in many variants that are mostly
unrelated to the problems discussed in this thesis such as having the maximum instead of the sum
of travel distances as an optimization goal [76] and being able to reject requests for a penalty, which
then do not have to be served [21]. Our general definition of the Mobile Server problem allows for
multiple requests per time step, something which Bienkowski and Kutylowski also considered [20].
However, their model has no limit on travel distances and each request needs to be served by its
own server, even if multiple requests occupy the same position.

Page Migration Problem
The Page Migration problem is a simple model for approaching the management of shared data in a
cloud computing scenario. In the classical version of this problem we consider a memory page that
is shared by multiple processors connected in a network. Only one processor can hold the page
at a time. Processors request data from the page which incurs a cost proportional to the distance
within the network. In order to reduce these costs, the page may be moved to another processor;
this however incurs a cost proportional to the distance in the network times the size D of the page.
The offline version of this problem can be solved efficiently by dynamic programming.

1.2 Related Work 17

The Page Migration problem was first considered as an online problem by Black and Sleator [22]
who gave 3-competitive algorithms for arbitrary trees and the complete graph. It was also shown that
3 is the best possible competitive ratio even if the given network just consists of two processors. This
lower bound also holds for randomized algorithms against adaptive adversaries. For deterministic
algorithms, the best known lower bound is slightly above 3 [61, 62].

The first result for deterministic algorithms was given by Westbrook in 1994 [75], who showed
that there exists a 3(1+φ)-competitive algorithm, where φ ≈ 1.62 is the golden ratio. The result
is derived by a transformation of randomized algorithms and the relation of different adversaries.
The first explicit deterministic algorithm was called Move-To-Min as the strategy is to move to the
optimal point in regards to the last D requests [6]. The competitive ratio of this algorithm is 7. The
currently best deterministic result is a 4-competitive algorithm by Bienkowski et al. [19].

Considering randomized algorithms, there is a simple 3-competitive algorithm called the Coin-
Flip algorithm which is simple to describe and also works against adaptive online adversaries. A
more involved solution gives a (1+φ)-competitive algorithm against oblivious adversaries. These
algorithms can be found in a paper by Westbrook [75].

In addition to the above results in general metrics, the Page Migration problem has also been
studied in the Euclidean space explicitly. The best competitive ratio for the Euclidean space and
D = 1 is 2.75 [52]. For large D, the randomized algorithm by Westbrook can be used to obtain a
deterministic algorithm for which the competitive ratio tends to 1+φ [29] (but is worse than the
previous result for D = 1).

The Page Migration problem belongs to the class of relaxed task systems, which is a type of
metrical task system that can be related to another metrical task system, in this case the k-Server
problem. This was used to derive algorithms for the problem with multiple copies of the page
(k-Page Migration). The adaption within the framework results in an O(k)-competitive randomized
and an O(k2)-competitive deterministic algorithm [11].

In contrast to the model of multiple copies of the same page, Albers and Koga studied a variant
with multiple different pages (only one copy per page) but where the processors can hold only one
page at a time. The competitive ratio for this model can be bounded by a constant [2].

All the mentioned variants so far assumed a static network where the distances between the
nodes do not change over time. Bienkowski et al. considered a scenario in which distances
between nodes could change over time. The change in distance was done either by an adversary or
determined by a stochastic process. In this scenario the competitive ratio depends both on the size
of the page and the number of processors [18].

(Online) Facility Location Problem
Facility Location is a well-researched area that captures a variety of allocation problems arising
from applications such as the placement of warehouses to clustering problems. In the Uncapacitated
Metric Facility Location problem, we are given a set of n clients and a set of possible facility
locations which both are part of the same metric space. For each of the possible facility locations,
we are also given an opening cost. The goal is to select a subset of the facility locations such that
the sum of the implied opening costs plus the sum of the distances of each client to the closest
facility is minimized. In this thesis we only consider uncapacitated and metric variants, and hence
will omit these terms in the following.

Since the problem is NP-hard, many approximation algorithms have been designed. We mainly
focus on the online variant and mention only the most important results for the offline variant here.
An overview of many results and the different techniques can be found in the survey by Shmoys [72].
For general metrics, the currently best algorithm reaches an approximation factor of 1.488 [59],
which is close to the best known lower bound of 1.463 which holds under the assumption that
NP /∈ DT IME(nO(log logn)) [47]. For the Euclidean plane, there exists a randomized approximation
scheme [5]. In contrast, the lower bound we show for our variant even holds for the line, and for the

18 Chapter 1. Introduction

general online variant the lower bound for the line is asymptotically the same as for general metrics.
As a consequence, we are not necessarily interested in the best constant and use other algorithms as
inspirations for the online variant. One prominent example is a fast approximation algorithm by
Jain and Vazirani [49] based on the primal-dual method, which has inspired some of the algorithms
used for the online [40] and leasing variants [65].

The Online Facility Location problem was introduced by Meyerson [63] who gave a simple
randomized algorithm for the problem which achieves a competitive ratio of O(logn

log logn). Fotakis
later proved that this competitive ratio is asymptotically optimal and also gave a deterministic
online algorithm achieving the same competitive ratio, fixing the ratio to Θ(logn

log logn) for both the
deterministic and the randomized case [41]. In addition to the complex deterministic algorithm
which achieves the optimal competitive ratio, there are deterministic algorithms that are much
simpler to implement and achieve an almost optimal competitive ratio of O(logn) [3, 40].

In the same paper where the Online Facility Location problem was introduced, Meyerson also
showed that it is possible to achieve a constant competitive ratio if the clients are given in a random
order [63]. This result was later refined by Lang [57], who showed that the competitive ratio can be
fixed to Θ(log t

log log t) for a t-bounded adversary. That is, an adversary generates a semi-random input
stream from a random order of the (adversarially chosen) clients by permuting the input stream
such that for each element a, less than t elements originally placed before a are then placed after a.

Other works in the area of Online Facility Location tackle the lower bound of the problem
by allowing the algorithm to make some adjustment to the solution over time. The model closest
to our work is by Divéki and Imreh [32] who allow an online algorithm to arbitrarily change the
position of already opened facilities without incurring any additional costs. The requests can also
be reassigned to different facilities for free in each time step. They achieve a competitive ratio
of at most 2 for arbitrary metrics when given black-box access to optimal algorithms for facility
location and k-median. Otherwise their competitive ratio depends on the approximation ratios of
the algorithms for these problems.

Another variant in which some of the facility placements can be revoked completely is the
Incremental Facility Location problem [39]: Motivated by applications to clustering, existing
facilities may be merged into one (for no additional cost) while the clients that were previously
assigned to the merged facilities are then all assigned to the same facility. The algorithm does not
need to pay for facilities that are deleted in this way. In this setting, a constant competitive ratio
can be achieved. A survey by Fotakis [42] covers various algorithms for both the Online and the
Incremental Facility Location problem.

There exist a variety of other models of mobility in Facility Location. The Facility Reallocation
model by de Keijzer and Wojtczak [31] is actually close to the k-Page Migration problem: A fixed
number of facilities can be moved for a cost proportional to the distance to improve the connection
cost to the clients. All clients are present in all time steps and change their location over time. Hence
the model is equivalent to k-Page Migration with D = 1 and multiple requests in each time step.
For the online variant, [31] only focuses on the case of one facility. A recent paper by Fotakis et al.
exploits a connection to the k-Server problem to receive an online algorithm for two facilities [43].

Other concepts of movement related to Facility Location include models where the number of
facilities is fixed and they have to be moved to service clients that appear over time [46], a variant
in which both the clients and facilities may be moved in a network such that each client arrives at
the node of a facility [44], and a mobile version in which a set of clients moves over time and the
movement for a fixed set of facilities has to be determined to fulfill a given property [17]. In all of
these models, the focus lies on the movement of a fixed number of facilities, and thus the aspect of
placement of new facilities is not contained in them. Hence the techniques used for these problems
are of limited use for the Facility Location problem we discuss in Chapter 3, in which the initial
placement (and the cost for the facilities) are still a major concern.

2. The Mobile Server Problem

In this chapter, with the Mobile Server problem we present a simple model that focuses on
managing a fixed number of identical resources (e.g., a fixed number of copies of a data page) that
are requested by mobile devices not known beforehand. We refer to the resources as servers in
accordance with models such as the k-Server problem and allow them to be moved to different
positions (e.g., other base stations or even mobile devices in the network), but only a limited
distance in the network before the next round of requests must be served. The distance limitation
on the movement incorporates the necessity of low latencies into the model: Having the resources
close to the user as described in the introduction is done in order to reduce latencies for critical
applications. It therefore makes sense that the reconfiguration of resources is done quickly and
hence the necessary data should also only be transmitted locally instead over the entire network.

We formulate the problem in the Euclidean space as a metric. Modeling the clients as nodes
within a static network topology is not feasible since we want to cover a scenario with a large
number of mobile devices that can change their position and join or leave the network at all times.
In our model, the servers can also be moved to any point in the Euclidean space. While this might
not be entirely realistic for most applications, there are still some scenarios that come close to it:
Mobile relay stations can be used in scenarios such as natural disasters in order to provide network
access to the respective area, which might be necessary to quickly collect data about the incident to
assist the local helpers. For future applications, it is feasible to consider automated, flying drones
being equipped to not only provide network access, but also provide resources for important local
applications. Even for a more traditional computing scenario, having the entire space as an option
provides a good starting point for the research of models like this, which could then of course be
extended in the future to a limited number of options.

As a cost function, we choose the same model as for the classical Page Migration problem:
The servers can be moved for a cost proportional to the distance and a weight D≥ 1. The requests
are served for costs equal to their distance to the nearest server. This makes our results directly
comparable to popular models in the same area, namely the k-Server and Page Migration problems.

In the following, we formally define the model and its variants and then give an overview of the
results we achieved.

20 Chapter 2. The Mobile Server Problem

Chapter Basis
The model, algorithms and analysis in this chapter are based on the following publications:

Björn Feldkord and Friedhelm Meyer auf der Heide. The Mobile Server Problem.
In: ACM Transactions on Parallel Computing (TOPC), 6(3): 14:1 - 14:17, 2019.
Cf. [37].
A preliminary version appeared at SPAA’17, cf. [35].

Björn Feldkord, Till Knollmann, Manuel Malatyali and Friedhelm Meyer auf
der Heide. Managing Multiple Mobile Resources. In: Proceedings of the 17th
Workshop on Approximation and Online Algorithms (WAOA), 2019 (accepted).
Cf. [34].

2.1 Formal Model

In this section, we formally define the model of the k-Mobile Server problem and establish the
notation used throughout this chapter.

Time is considered discrete and divided into time steps 1, . . . ,T . An input to the k-Mobile
Server problem is given by a sequence of requests v1,1, . . . ,v1,r1 , . . . ,vT,1, . . . ,vT,rT where each of
the rt requests vt,1, . . . ,vt,rt occur in time step t and are represented by points in the Euclidean space
of arbitrary dimension. We are given k servers a1, . . . ,ak controlled by our online algorithm. At
each point in time, one server occupies exactly one point in the Euclidean space. We denote by a(t)i
the position of server ai at end of time step t, and by d(a,b) the Euclidean distance between two
points a and b. For the distance between two servers a(t)i and a(t)j in the same time step t, we also
use the notation dt(ai,a j). We may also leave out the time t entirely if it is clear from the context.

In each time step t, the current requests vt,1, . . . ,vt,rt are revealed to the online algorithm. The
algorithm may then move each server, such that d(a(t−1)

i ,a(t)i)≤ms for all servers ai. The movement
incurs costs of D ·∑k

i=1 d(a(t−1)
i ,a(t)i) for a constant D≥ 1. The requests vt,1, . . . ,vt,rt are then served

by the closest server a(t)i , which incurs costs of d(a(t)i , vt, j). Note that the variables indexed with
the time t represent the configuration at the end of the time step t. The total cost of an algorithm
Alg on a given input sequence can hence be expressed as follows:

CAlg =
T

∑
t=1

(
D ·

k

∑
i=1

d(a(t−1)
i ,a(t)i)+

rt

∑
j=1

min
i∈{1,...,k}

d(a(t)i ,vt, j)

)

We will also discuss a variant we refer to as the Answer-First variant, where the requests have
to be served before moving the servers. The cost of the algorithm in this case is

CAlg =
T

∑
t=1

(
rt

∑
j=1

min
i∈{1,...,k}

d(a(t−1)
i ,rt, j)+D ·

k

∑
i=1

d(a(t−1)
i ,a(t)i)

)
.

We will observe that this small modification of the problem has a huge impact on the best possible
competitive ratio.

In our model, we also consider the locality of requests dictated by a parameter mc limiting the
distance between consecutive requests in case the number of requests is fixed for all time steps,
i.e., d(vt,i,vt+1,i) ≤ mc. We also consider a resource augmentation setting, where the maximum
distance an online algorithm may move is in fact (1+δ)ms for some δ ∈ (0,1). We compare the
costs of an online algorithm to an offline optimum, whose servers are denoted by o1, . . . ,ok and
whose cost is COpt .

2.2 Summary of Results 21

2.2 Summary of Results

The results presented in the following are divided into two major parts: The first part focuses on
the problem with just a single server, but allows for multiple requests to occur in one time step. In
the second part, we discuss the problem with k ≥ 2 servers, but allow only one request per time
step to occur. Combining both an arbitrary number of servers and requests per time step is an open
problem we further comment on in the conclusion of this thesis.

In both major parts, we first establish lower bounds on the competitive ratio for any randomized
online algorithm against an oblivious adversary. As previously explained, this implies the same
lower bound for the other adversary models as well, including a lower bound for deterministic
algorithms. We prove that no online algorithm can achieve a competitive ratio independent of
the number of rounds for the problem, even if k = 1 and the metric is the real line. We therefore
consider the problem in a setting where the maximum distance a server may move is augmented by
a factor of (1+δ) for the online algorithm. For the version with only one server, the competitive
ratio then no longer depends on time, and only depends on the factor between the minimum and
maximum number of requests in each time step and the inverse of the augmentation factor 1/δ .
For k ≥ 2, we show that resource augmentation alone is not sufficient to get a competitive ratio
independent of time. Hence, we restrict the adversary to a locality of requests: i.e., we introduce a
parameter mc by which we can define families of instances classified by the maximum distance
between two consecutive requests. For these instances, we show a lower bound dependent on the
ratio between mc and ms.

On the positive side, we show for k = 1 that a simple algorithm is sufficient to achieve a
competitive ratio independent of the length of the input sequence for several variants of the problem.
In particular, we describe a deterministic algorithm that is O(1/δ

3/2)-competitive in the Euclidean
space when the number of requests per round is fixed. We also briefly sketch how to modify our
analysis to work for the Answer-First variant and a varying number of requests per round.

In case k ≥ 2, we construct a deterministic algorithm for the scenario in which locality of
requests is given. For fast moving resources (mc < (1+δ)ms), our algorithm has an almost optimal
competitive ratio when given an optimal k-Page Migration algorithm. For the case of slow moving
resources (mc≥ (1+δ)ms), we can achieve bounds independent of the length of the input stream. In
detail, we obtain a bound of O(1

δ 4 ·k2 · mc
ms

+ 1
δ 3 ·k2 · mc

ms
·c(K)), where c(K) is the competitiveness

of a given k-Page Migration algorithm. For the case D = 1, which we call the unweighted problem,
the k-Page Migration algorithm can be replaced by a k-Server algorithm.

2.3 One Server, Multiple Requests

In this section we deal with the case k = 1. For this problem we can obtain almost tight competitive
ratios for the resource augmentation setting, in which the server can move a distance of (1+δ)ms.
The lower bounds in this section obviously carry over to the next section with multiple servers
when setting the number of requests to 1. The online algorithm and its analysis presented here,
namely the potential function, contain some important ideas which will be reused in the problem
for multiple servers later.

2.3.1 Lower Bounds
We first show how the different parameters of our model influence the quality of the best possible
approximation by an online algorithm. It should be noted that the following lower bounds hold in
the Euclidean space for an arbitrary dimension. We state all of them on the real line to demonstrate
that a lower dimension does not simplify the problem.

For the lower bounds, we use Yao’s principle [77] as described in Section 1.2. We construct a
distribution of inputs by describing an adversary who issues the requests and may toss a fair coin

22 Chapter 2. The Mobile Server Problem

to make binary decisions. Note that first, for a fixed input length there are only a finite number of
different inputs that are being generated. Second, in all of the bounds the real line can be discretized
into steps of size δms: Since the requests in all our bounds will always be located on those discrete
points, we can restrict algorithms to the points with a loss of at most a factor 2. Hence, the number
of different deterministic algorithms for a fixed input length is also finite, and the principle is
applicable.

First we show that without the use of resource augmentation, there exists no online algorithm
with a competitive ratio independent of the number of time steps T .

Theorem 2.3.1 Every randomized online algorithm for the Mobile Server problem has a compe-
titive ratio of Ω(

√
T/D) against an oblivious adversary, even if there is only one request per time

step.

Proof. Consider a sequence of x time steps with one request each on the starting position of the
server. Consider two opposite directions from the starting position, which we will refer to as left
and right. The adversary decides with probability 1

2 at the beginning of the first step to either move
its server a distance ms to the left or right for the first x time steps. The cost for the adversary is at
most xDms +ms ·∑x

i=1 i≤ xDms + x2ms for these first x steps.
After these x steps, with probability 1

2 the server of the online algorithm has a distance of at
least xms to the server of the adversary.

For the remaining T − x steps of the sequence, the adversary issues requests on the position of
its server and moves it a distance of ms towards the same direction it already did during the first
x steps. The costs for the adversary are (T − x)Dms, while the costs for the online algorithm are
at least (T − x) · xms with probability 1

2 . By choosing x =
√

T the expected competitive ratio is as
large as Ω(

√
T/D). �

In order to have a chance to achieve a competitive ratio independent from T , we augment the
maximum distance by which the server may move in every time step for the respective online
algorithm. We consider online algorithms that, in every round, can move their server by a distance
of (1+δ)ms for some δ ∈ (0,1]. Note that 1 is a lower bound on the competitive ratio of every
algorithm regardless of the movement distance: The adversary can simply create an instance in
which utilizing a higher movement distance than ms does not decrease the algorithm’s cost.

Theorem 2.3.2 Let rmin and rmax be the minimum and maximum number of requests per time
step. Every randomized online algorithm using an augmented maximum moving distance of at
most (1+δ)ms has an expected competitive ratio of Ω(1

δ
· rmax

rmin
) against an oblivious adversary.

Proof. We use a similar sequence as in the proof of the previous theorem to separate the servers of
the adversary and the online algorithm:

For x time steps, there are rmin requests in every step on the starting position of the server. The
adversary moves its server a distance ms for x steps to the left or right with probability 1/2 each,
such that the distance between the two servers is at least xms with a probability of at least 1/2 after
these steps. The costs for the adversary are at most Dxms + rminx2ms.

The adversary now issues rmax requests at the position of its server and moves it by a distance
ms in the same direction as in the previous steps. This is done for exactly as many time steps
as it would take the server of the online algorithm to "catch up" with the server of the adversary
when it it is at least a distance xms away from the adversary’s server and moves towards it with the
maximum distance in each round. The necessary number of steps for that is x/δ , since the distance
between the two servers decreases by at most δms in every round.

The costs the online algorithm has to pay for serving the requests, in case the distance between
the two servers is at least xms at the beginning of this phase, are minimized when the algorithm

2.3 One Server, Multiple Requests 23

moves the server with a maximum distance towards the position of the adversary’s server in every
time step. The costs for the online algorithm are therefore at least

rmax ·∑
x
δ

i=1 (xms− iδms) = rmax

(
x2ms

δ
−δms ∑

x
δ

i=1 i
)

= rmax

(
x2ms
2δ
− xms

2

)
≥ 1

4
rmaxx2ms

δ

by choosing x≥ 2δ . These costs occur with probability 1
2 . The adversary pays x

δ
Dms in this phase.

By choosing x≥ D
δ

, the total costs of the adversary sum up to at most 3rminx2ms over both described
phases.

The adversary can now repeat the two phases arbitrarily often to get a bound for infinitely long
sequences. The costs can be analyzed as above since the one probabilistic choice the adversary
does is made independently of the behavior of the online algorithm and its own former behavior.
The resulting expected competitive ratio is Ω(1

δ
· rmax

rmin
). �

We observe that as a special case, when rmax = rmin, the lower bound of the competitive ratio
becomes independent of the number of requests in each round. In the following section we show
that this is indeed possible to achieve in this scenario.

We finally address our decision to allow the algorithms to move the server before answering the
requests. Consider the scenario in which an algorithm has to answer the requests before moving the
server (Answer-First variant). It can be shown that the competitive ratio of such algorithms depends
on the number of requests in each time step even if it is fixed throughout the whole sequence. Note
that the following theorem also holds for the resource augmentation scenario.

Theorem 2.3.3 In the Answer-First variant, every randomized algorithm has an expected com-
petitive ratio of Ω(r/D) against an oblivious adversary if the number of requests in each time step
is fixed to a constant r.

Proof. Consider the following two time steps: In the first step, r requests are issued at the common
position of the servers. The adversary can now move the server to a position such that with a
probability of at least 1

2 , the distance between the two servers is at least ms. This can be done by
tossing a fair coin and then moving to the left or right as in the previous theorems.

In the second step, r requests are issued at the position of the adversary’s server. The two steps
may be repeated arbitrarily often since the random choice of the adversary does not depend on any
former time steps.

The costs for the online algorithm for one repetition of these two steps are at least rms with a
probability of at least 1

2 , while the costs of the adversary are at most Dms. �

The bound from Theorem 2.3.3 holds in addition to the bound from Theorem 2.3.1 in the case
of no resource augmentation and to the bound from Theorem 2.3.2 in the scenario with resource
augmentation.

2.3.2 The Move-to-Center Algorithm
In this section we provide a simple algorithm that achieves an optimal competitive ratio on the real
line and a near optimal competitive ratio in the Euclidean space with arbitrary dimension. Our
algorithm tries to imitate classical, phase-based solutions of the Page Migration problem such as the
Move-to-Min algorithm [6], but incorporates the fact that it has to adhere to a movement constraint.
Instead of waiting for D requests in total to arrive and then moving to the middle point of these
requests, we move the server a 1/D-fraction towards each request individually.

24 Chapter 2. The Mobile Server Problem

Algorithm 1 — Move-to-Center (MtC). Assume the algorithm has its server located at a point
a and receives requests v1, . . . ,vr. Let c be the point minimizing ∑

r
i=1 d(c,vi). If c is not unique,

pick one minimizing d(a,c). MtC moves the server towards c for a distance of min{1, r
D}·d(a,c)

if this distance is less than (1+ δ)ms. Otherwise it moves the server a distance of (1+ δ)ms

towards c.

The goal of the analysis is to prove the following theorem:

Theorem 2.3.4 Let rmin and rmax be the minimum and maximum number of requests per time
step. Algorithm MtC is O(1

δ
· rmax

rmin
)-competitive on the infinite line and O(1

δ
3/2 · rmax

rmin
)-competitive

in the Euclidean space with arbitrary dimension using an augmented maximum moving distance
of (1+δ)ms for some δ ∈ (0,1].

We first analyze the algorithm for the case where some fixed number r of requests appear per
time, i.e., rmax = rmin =: r. We then describe how the result of this analysis implies the results for
the general case and for the Answer-First variant in Section 2.3.2. Note that in our proof we do not
optimize the constants and instead focus on readability.

We first show that it is sufficient to analyze a simplified version of the problem in which the r
requests occur exactly on the point c picked by MtC in every round.

Lemma 2.3.5 If MtC is α-competitive in an instance where all requests vt,1, . . . ,vt,rt in a time
step t occur on a single point ct , MtC is 2α +1-competitive in an instance where ct is the closest
center of the requests in the respective time step.

Proof. Fix a time step and let v1, . . . ,vr be the requests in an instance where c is the center closest to
the server of MtC and c′ the center closest to the server of the optimal solution OPT when serving
the requests. Let COpt and CAlg be the costs of the optimal solution and the MtC algorithm in this
instance and C′Opt and C′Alg be the respective costs in the simplified instance, where all requests
occur on c, for serving the requests (in the current time step). Note that since c and c′ are optimal
centers we have COpt ≥ ∑

r
i=1 d(c,vi) = ∑

r
i=1 d(c′,vi). Let o be the position of the optimal server in

the simplified instance and a be the position of the algorithm’s server (which is the same in both
instances). We have C′Opt = r · d(o,c) ≤ r · d(o,c′) ≤ ∑

r
i=1 d(o,vi)+∑

r
i=1 d(c′,vi) ≤ 2 ·COpt . For

the algorithm, we have CAlg = ∑
r
i=1 d(a,vi) ≤ r · d(a,c)+∑

r
i=1 d(c,vi) ≤C′Alg +COpt . Therefore

CAlg
COpt
≤ 2

C′Alg
C′Opt

+1. �

For the analysis of the algorithm, we use a potential function argument. Therefore we fix an
arbitrary time step in the input sequence and introduce some notation for this step.

In accordance with Section 2.1 we denote by a and a′ the position of the algorithm’s server
before and after moving it. o and o′ will be used for the optimal server positions before and after
moving, respectively.

For better readability, we define the following abbreviations which we use for the distances:
a1 := d(a,a′), a2 := d(a′,c), s1 := d(o,o′), s2 := d(o′,c), p := d(o,a), h := d(o′,a) and q :=
d(o′,a′). An illustration can be found in Figure 2.1.

Using this notation, the cost of the online algorithm is

CAlg = D ·a1 + r ·a2

and the optimal cost is
COpt = D · s1 + r · s2.

2.3 One Server, Multiple Requests 25

s2

a1a2

h
q

c a′ a

o′ s1

p

o
Figure 2.1: Illustration of relevant points and distances for estimating the potential difference.

We start with an estimation of the difference d(o′,a)−d(o′,a′) = h−q which is essential for
utilizing our potential function in the upcoming parts of the analysis. The lemma describes the
progression of the algorithm’s server towards the optimal server when the optimal server is close to
the center of the requests.

Lemma 2.3.6 If d(o′,c)≤
√

δ

2 d(a′,c), then d(o′,a)−d(o′,a′)≥ 1+ 1
2 δ

1+δ
d(a,a′).

Proof. We want to get a lower bound for h−q given a1. If we assume fixed values for h and s2,
then the value of q is maximized by choosing the angle α between the lines connecting a with a′

and a with o′ as large as possible. This can be done by setting the angle between the lines from c
to o′ and c to a′ to 90 degrees as shown in Figure 2.2. Note that no matter the dimension of the
underlying space, a, a′ and c will always form a line and hence together with o′ they lie on a plane.

s2
a1

a2

h

q

c a′

a

o′

α

·

Figure 2.2: Setting where q is maximized given h,s2 and a1. Fixing the positions of a and a′, the
only decision left is where to place c on the circle.

26 Chapter 2. The Mobile Server Problem

Making use of the 90-degree angle we get h2 = s2
2 +(a1 +a2)

2 and q2 = s2
2 +a2

2. Let s2 = ε ·a2
for some ε ∈ (0,1). Then

h−q =
√
(εa2)2 +(a1 +a2)2−

√
(εa2)2 +a2

2

=
√
(1+ ε2)a2

2 +2a1a2 +a2
1−
√

1+ ε2a2

≥
√
(1+ ε2)a2

2 +2
√

1+ ε2a2
a1√
1+ε2 +

a2
1

1+ε2 −
√

1+ ε2a2

=

√(√
1+ ε2a2 +

a1√
1+ε2

)2
−
√

1+ ε2a2

= a1√
1+ε2 .

It therefore holds

ε ≤
√

(1+δ)2

(1+ 1
2 δ)2

−1⇒ h−q≥ 1+ 1
2 δ

1+δ
a1.

Since √
(1+δ)2

(1+ 1
2 δ)2

−1 =

√
δ + 3

4 δ 2

1+ 1
2 δ

≥
√

δ

2

this implies the lemma. �

For server locations a and o of the online algorithm and the optimal solution, respectively, the
potential φ is defined as

φ(o,a) :=

 4D ·d(o,a) if d(o,a)≤ δ
Dms
4r

16 r
δms
·d(o,a)2 otherwise.

Note that this function is equal to φ(o,a) = max{4D ·d(o,a) , 16 r
δms
·d(o,a)2}. The linear part

of the potential is similar to the function used in the analysis of many Page Migration algorithms,
while the quadratic part captures the situation when the algorithm’s server is far away from
the optimal server similar as in the lower bound instances of the problem. In these cases, the
algorithm incurs a cost quadratic in the distance to the optimum before it catches up to it, which
is reflected in the potential. For each of the following cases we bound the potential difference
∆φ = φ(o′,a′)−φ(o,a) and the cost of the online algorithm as functions of COpt .

Analysis for r > D
In the following, we analyze the algorithm in the case r > D for both the real line and the Euclidean
space of higher dimension. Most arguments apply to any dimension; if there is a special argument
needed for the better bound on the line it is stated explicitly in the respective case.

1. p≤ δ
Dms
4r ≤ δms:

Since the algorithm will either move its server onto c or by a distance of (1+δ)ms, it will be the
same distance or closer to c than the optimal solution after the current time step, i.e., a2 ≤ s2. If
q≤ δ

Dms
4r we have

∆φ = 4D · (q− p)
≤ 4r · (s2 +a2)−4D · p
≤ 8 ·COpt −4D · p

2.3 One Server, Multiple Requests 27

and
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r ·a2
≤ D · (p+ s2)+ r · (s2 +2a2)
≤ 3 ·COpt +D · p.

Otherwise it holds q > δ
Dms
4r ≥ p and we get

∆φ = 16 r
δms
·q2−4D · p

≤ 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
·2q · (2+δ)ms

≤ 96 r
δ
· (s2 +a2)

≤ 192
δ
·COpt

and
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r ·a2
≤ D · s1 + r · (2q+a2)
≤ D · s1 + r · (2s2 +3a2)
≤ 5 ·COpt .

2. p > δ
Dms
4r and q≤ δ

Dms
4r :

If p < δms, we have a2 ≤ s2 as before. The potential difference can be estimated by

∆φ = 4D ·q−16 r
δms
· p2

≤ 4D · (a2 + s2)−4D · p
≤ 8 ·COpt −4D · p

and
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r ·a2
≤ COpt +2D · p.

Else, p > δms, and we have
∆φ = 4D ·q−16 r

δms
· p2

≤ 4D ·q−16r · p
≤ −12r · p

and
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r · (q+ s2)
≤ COpt +3r · p.

3. In all of the following cases, we have p > δ
Dms
4r and q > δ

Dms
4r .

3a. q−h≤−(1+ δ

2)ms:
Since s1 ≤ ms, we have q− p≤ q+ s1−h≤− δ

2 ms. Therefore we get

∆φ = 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
· (q+ p) · (− δ

2 ms)

≤ −8r · (q+ p)

28 Chapter 2. The Mobile Server Problem

complemented by
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r · (s2 +q)
≤ COpt +2r · (p+q).

3b. q−h >−(1+ δ

2)ms and p≥ 4ms:
We estimate a2 in two different ways: First we establish a bound for an arbitrary dimension.

If a1 = (1+ δ)ms, then h− q < (1+ δ

2)ms ≤ 1+ δ

2
1+δ

a1. According to Lemma 2.3.6, this implies√
δ

2 a2 ≤ s2.
If the given space is the real line, a1 = (1+δ)ms directly implies a2 ≤ s2 since o′ cannot be

located between a′ and c (otherwise q−h =−(1+δ)ms).
For any dimension, if a1 < (1+δ)ms, then a2 = 0≤ s2.
Now if 1

2 p≤ q we may estimate

∆φ = 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
·3q · (a1 + s1)

≤ 16 r
δms
·3q ·3ms

≤ 144 r
δ
· (s2 +a2)

≤ 432
δ

3/2 ·COpt

and
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r ·a2
≤ D · (s1 +3q)+ r ·a2
≤ D · (s1 +3(s2 +a2))+ r ·a2

≤ 10√
δ
·COpt .

Both estimations can be reduced by a factor of 1√
δ

when dealing with the infinite line, using a2 ≤ s2.

In case 1
2 p > q we use

∆φ = 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
· (q+ p) · (−1

2 p)

≤ −4D · p
and

CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r 2√
δ
· s2

≤ D · (p+ s1 +a2 + s2)+ r 2√
δ
· s2

≤ 5√
δ
·COpt +D · p.

2.3 One Server, Multiple Requests 29

3c. q−h >−(1+ δ

2)ms and p < 4ms:

We get
√

δ

2 a2 ≤ s2 and a2 ≤ s2 for arbitrary dimension and the real line, respectively, as before.
Since q≤ s1 + p+a1 ≤ p+3ms we have

∆φ = 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
· (q+ p) ·q−16 r

δms
· (q+ p) · p

≤ 16 r
δms
·11m ·q−16 r

δms
· (q+ p) ·δ Dms

4r

≤ 176 r
δ
· (s2 +a2)−4D · (q+ p)

≤ 528
δ

3/2 ·COpt −4D · (q+ p)

and
CAlg = D ·a1 + r ·a2

≤ 5√
δ
·COpt +D · p.

Again, both estimations can be reduced by a factor of 1√
δ

for the 1-dimensional space.

In all cases we have CAlg+∆φ ≤O(1
δ

3/2) ·COpt for arbitrary dimensions and CAlg+∆φ ≤O(1
δ
) ·COpt

for the 1-dimensional Euclidean space.

Analysis for r ≤ D
For r ≤ D we first give a detailed analysis for arbitrary dimensions and then briefly describe how
to modify the necessary parts to work for the 1-dimensional space so that the competitive ratio
becomes O(1

δ
).

1. q≤ δ
Dms
4r :

Note that −16 r
δms
· p2 ≤−4D · p in case p > δ

Dms
4r and hence ∆φ ≤ 4D · (q− p) for all values of p.

1a. s2 ≤
√

δ

2 a2:
Using Lemma 2.3.6, we bound the potential difference by

∆φ ≤ 4D · (q− p)
≤ 4D · (q−h+h− p)

≤ −4D 1+ δ

2
1+δ
·a1 +4D · s1.

Note that either a1 =
r
D(a1 +a2) or a1 = (1+δ)ms. If a1 =

r
D(a1 +a2), then ∆φ ≤−2r · (a1 +

a2)+4 ·COpt . We have CAlg ≤ D · r
D(a1 +a2)+ ra2 ≤ 2r · (a1 +a2).

Otherwise, a1 =(1+δ)ms which gives us ∆φ ≤−4D(1+ δ

2)ms+4 ·COpt . In this case q≤ δ
Dms
4r

can be used to get
CAlg = D ·a1 + r ·a2

≤ D(1+δ)ms + r · (δ Dms
4r + s2)

≤ 2D(1+δ)ms +COpt .

1b. s2 >
√

δ

2 a2:
If 1

2 p≤ q then
∆φ ≤ 4D · (q− p)

≤ 4D · (s1 + p+a1− p)
≤ 4D · s1 +4r · (a1 +a2)
≤ 4D · s1 +4r · (p+ s1 +q+a2)
≤ 8D · s1 +4r · (3q+a2)
≤ 8D · s1 +4r · (3s2 +4a2)

≤ 44√
δ
·COpt

30 Chapter 2. The Mobile Server Problem

and
CAlg = D ·a1 + r ·a2

≤ r · (a1 +a2)+ r ·a2
≤ r · (p+ s1 +q)+2r ·a2
≤ r · (s1 +3q)+2r ·a2
≤ r · (s1 +3(s2 +a2))+2r ·a2

≤ 11√
δ
·COpt .

Else 1
2 p > q and we have

∆φ ≤ 4D · (q− p)
≤ −2D · p

and
CAlg = D ·a1 + r ·a2

≤ D · (p+ s1 +q)+ r ·a2

≤ 2√
δ
·COpt +

3
2 D · p.

2. q > δ
Dms
4r :

Note that −4D · p≤−16 r
δms
· p2 in case p≤ δ

Dms
4r and hence ∆φ ≤ 16 r

δms
· (q2− p2) for all values

of p.

2a. s2 ≤
√

δ

2 a2:
We have

∆φ ≤ 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
· (q+ p) · (−1+ δ

2
1+δ

a1 + s1).

If a1 = (1+δ)ms then ∆φ ≤−8r · (q+ p) and

CAlg = D ·a1 + r ·a2
≤ 2r · (a1 +a2)
≤ 2r · (q+ s1 + p+ s2 +q)
≤ 2 ·COpt +2r · (p+q).

Else, a1 =
r
D(a1 +a2)< (1+δ)ms and hence a1 +a2 ≤ 2 Dms

r . We get

∆φ ≤ 16 r
δms
· (q2− p2)

= 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
· (q+ p) · s1−16 r

δms
· (q+ p) · 1+ δ

2
1+δ
·a1

≤ 16 r
δms
· (s1 +a1 +2q) · s1−16 r

δms
·δ Dms

4r · 1
2

r
D · (a1 +a2)

≤ 16 r
δms
· (s1 +a1 +2s2 +2a2) · s1−2r · (a1 +a2)

≤ 16 r
δms
· (s1 +4 Dms

r) · s1 +16 r
δms
·2s2 · s1−2r · (a1 +a2)

≤ 80 D
δ
· s1 +32 r

δ
· s2−2r · (a1 +a2)

≤ 80
δ
·COpt −2r · (a1 +a2).

For the online algorithm we have CAlg ≤ 2r · (a1 +a2).

2.3 One Server, Multiple Requests 31

2b. s2 >
√

δ

2 a2:
If 1

2 p≤ q we use this to get

∆φ = 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
·3q ·3ms

≤ 16 r
δms
·3(a2 + s2) ·3ms

= 432 r
δ

3/2 · s2

and
CAlg = D ·a1 + r ·a2

≤ 2r · (a1 +a2)
≤ 2r · (p+ s1 +q+a2)
≤ 2r · (s1 +3q+a2)
≤ 2r · (s1 +3s2 +4a2)

≤ 22√
δ
·COpt .

Otherwise, we have 1
2 p > q and therefore

∆φ = 16 r
δms
· (q+ p) · (q− p)

≤ 16 r
δms
· (q+ p) · (−q)

= −4D · (q+ p)

and CAlg ≤ D · (q+ s1 + p)+ r ·a2 ≤ 2√
δ
·COpt +D · (p+q).

To get the bound for the line, in each of the two big cases replace the distinction whether
s2 ≤

√
δ

2 a2 by s2 ≤ a2. Also the estimation of q−h under the use of Lemma 2.3.6 may be replaced
by q−h≤−a1.

Again, in all cases we have CAlg +∆φ ≤O(1
δ

3/2) ·COpt for the case of an arbitrary dimension
and CAlg +∆φ ≤O(1

δ
) ·COpt for the 1-dimensional case.

General Case and Answer-First Variant
So far we assumed that the number of requests per time step is fixed to a constant r. We now
briefly describe how to modify the analysis such that the result for general rmin and rmax follows.
Furthermore we show that the Move-To-Center algorithm is also almost optimal in the Answer-First
variant.

The general result can be derived as follows: We replace the fixed number of requests r in the
potential function by the maximum number of requests rmax. In the cases where the potential is
used to cancel out the cost of the algorithm this is then still possible. However, if the potential
difference is positive it may add a term that is O(rmax

rmin
) times the optimal cost. This concludes the

proof of Theorem 2.3.4.

Theorem 2.3.7 Let r ≥ D be the fixed number of requests per time step. Algorithm MtC is
O(1

δ
3/2 · r

D)-competitive utilizing a maximum moving distance of (1+δ)ms in the Answer-First
variant.

Proof. We relate the cost of the algorithm in the Answer-First variant to the cost for the same
request sequence in the original model. The optimal solution may be assumed to be the same for
both model variants given the same request sequence, since we can insert r dummy requests on the
starting point of the server at the beginning of the sequence which allows the optimal solution to
operate the same as in the Answer-First model and only has additional costs of at most rms. This

32 Chapter 2. The Mobile Server Problem

will also not change the behavior of the MtC algorithm. However, the cost of the online algorithm
will increase by r ·d(a,a′) for each step.

In case r ≤ D, the additional term r ·d(a,a′) in the cost of the algorithm can be estimated via
r · d(a,a′) ≤ D · d(a,a′) which implies an increase of the algorithm’s cost by at most a factor 2,
since this is equal to the movement cost. For the case r > D, the additional term in the cost of the
algorithm r ·d(a,a′)≤ r

D ·D ·d(a,a′) implies the cost of the algorithm increases by a factor of at
most 2 r

D . �

2.3.3 Locality of Requests
We turn our attention to instances where we demand a locality of requests: i.e., the number of
requests is fixed and the sequence can be represented as r agents traveling a distance of at most
mc per time step. Note that the assumption we made in the original analysis of the MtC algorithm
still holds: Since each agent posing the requests moves by at most mc, there always is a center
point c minimizing the sum of distances to all agents and which is a distance of at most mc to the
previous center picked by MtC. Hence, we may still assume with only a constant factor loss, that
the r requests all occur at the chosen center c of the MtC algorithm.

We first show that the competitive ratio depends on T if mc is larger than ms if we do not make
use of resource augmentation.

Theorem 2.3.8 Let mc > ms. No randomized online algorithm can be better than Ω(
√

T
D

(mc−ms)
mc

)-
competitive against an oblivious adversary when consecutive requests (by the same agent) are
within a distance mc.

Proof. The construction is similar to the bound in Theorem 2.3.1. We divide the input sequence
into two major phases. In the first phase, for some value x chosen later, the adversary moves the
server x · mc

ms
rounds by a distance of ms in one of two opposite directions determined by a fair coin.

The requesting agent stays at the starting point and moves to the position of the adversary only for
the last x time steps. The costs for the adversary in this step are at most Dxmc + x2 m2

c
ms

. By the end
of this phase, with probability 1/2 the online algorithm has a distance of at least x(mc−ms) to the
agent and the adversary, since it can only move x steps towards the agent after the outcome of the
random experiment is revealed.

In the second phase the adversary and the agent continue to move in the same direction by a
distance of ms in each round. Hence the costs of the online algorithm are at least (T − x mc

ms
)x(mc−

ms) while the costs of the adversary are at most D(T − x mc
ms
)ms. By setting x =

√
T · ms

mc
we get a

competitive ratio of Ω(
√

T
D

(mc−ms)
mc

). �

Since this model is a restriction of the general model, Theorem 2.3.4 directly gives us that
by using an augmented maximum moving distance of (1+δ)ms for the online algorithm, we can
achieve a competitive ratio independent of T .

Corollary 2.3.9 MtC is O(1
δ

3/2)-competitive, when consecutive requests are bounded by a
distance mc, using an augmented maximum moving distance of (1+δ)ms for some δ ∈ (0,1].

Until now, we only discussed the case mc > ms. Note that in case mc ≤ ms standard solutions
to the Page Migration problem still do not apply, since they require moving to a specific point
after collecting a batch of requests. This point may still lie outside the allowed moving distance
ms. However, we can show that the MtC algorithm used to solve our original problem achieves a
constant competitive ratio.

The algorithm in our case does the following: Upon receiving the requests with center point c,
move the server a distance of min{ms,min{ r

D ,1} ·d(a,c)} towards c.

2.3 One Server, Multiple Requests 33

For the analysis, we use a simpler version of Lemma 2.3.6 which we state separately since it
will also be useful in the next section.

Lemma 2.3.10 If d(o′,c)≤ d(a′,c), then d(o′,a)−d(o′,a′)≥ 1√
2
d(a,a′).

Proof. Replace ε with 1 at the end of the first estimation in the proof of Lemma 2.3.6. �

Theorem 2.3.11 Let mc ≤ ms. The MtC algorithm is O(1)-competitive when consecutive
requests are bounded by a distance mc.

Proof. We define the potential φ(a,o) := 2
3
2 D ·d(a,o). We use the same notation as in the proof of

Theorem 2.3.4, shown in Figure 2.1. Hence

∆φ = 2
3
2 D · (q− p)≤ 2

3
2 D · (q−h+ s1).

1. r > D:
Since we always move the server onto c we have a2 = 0. We hence have

CAlg = Da1 ≤ D(p+ s1 +q)≤ D(p+ s1)+ rs2 = Dp+COpt

and
∆φ = 2

3
2 D(q− p)≤ 2

3
2 rs2−Dp = 2

3
2 COpt −Dp

where the first inequality is due to q≤ a2 + s2.

2. r ≤ D:
We first note that a2 ≤Dms: In each round, the distance to c increases by at most mc, and decreases
by ms as soon as the distance to the center is at least D

r ms. We distinguish two cases:
If s2 ≤ a2, then ∆φ ≤ 2

3
2 Ds1−2Da1 by Lemma 2.3.10. Either a1 =

r
D(a1 +a2) and hence

CAlg +∆φ = D · r
D
(a1 +a2)+ ra2 +∆φ ≤ 2

3
2 Ds1

or a1 = ms and
CAlg +∆φ ≤ 2Dms +∆φ ≤ 2

3
2 Ds1

since a2 ≤ Dms.
For the second case, which is a2 < s2, we make use of

CAlg ≤ r(a1 +2a2)
≤ r(p+ s1 +q+2a2)
≤ rp+4COpt .

If q≤ (1− 1
23/2)p then ∆φ ≤−Dp and

CAlg +∆φ ≤ 4COpt .

Else
∆φ = 2

3
2 D(q− p)

≤ 2
3
2 D(s1 + p+a1− p)

≤ 2
3
2 Ds1 +2

3
2 r(a1 +a2)

≤ 2
3
2 Ds1 +2

3
2 r(p+ s1 +q+a2)

≤ 2
5
2 Ds1 +2

3
2 r(3q+a2)

≤ 2
5
2 Ds1 +2

3
2 r(3s2 +4a2)

≤ 36COpt

34 Chapter 2. The Mobile Server Problem

and
CAlg ≤ rp+4COpt ≤ 8COpt .

�

2.4 Multiple Servers, One Request
We now turn our attention to the scenario in which we have multiple (k) servers, but only one request
per time step. Having more than one server increases the challenge of the problem significantly, as
illustrated by the lower bounds shown in the following section. Our algorithms for the model rely
on the simulation of existing algorithms for the k-Server and k-Page Migration problems which
they use as a guidance for the placement. This takes away some of the challenges of our model
which are the same as in these problems, allowing us to focus on the difficulties introduced by the
limited speed of the servers.

2.4.1 Lower Bounds
The following lower bounds investigate the additional challenges introduced into the problem when
dealing with k ≥ 2 servers. In contrast to the model with only one server, they show the importance
of both the resource augmentation and the locality of requests in order to achieve a competitive
ratio independent of time. As before, all our lower bounds already hold on the line (and therefore in
arbitrary dimensions, too). Since our model is an extension of the k-Page Migration problem, Ω(k)
is a lower bound for deterministic algorithms inherited from that problem (which itself inherits the
bound from the k-Server problem, see [11, 60]). Even when the maximum distance between two
consecutive requests mc is restricted, the lower bound instance can simply be scaled down such that
the distance limits are not relevant for the instance.

We start by discussing the model without any restriction on the distance between the requests
in two consecutive time steps, i.e., the parameter mc is unbounded. We also consider the case, that
there is no resource augmentation: i.e., the maximum movement distance of the online algorithm
and of the offline solution are the same. The bound of Ω(

√
T/D) from Theorem 2.3.1 obviously

still applies in this case. For more than one server, we obtain an additional bound that cannot be
resolved with the help of the speed augmentation.

Theorem 2.4.1 For k ≥ 2, every randomized online algorithm for the k-Mobile Server problem
has a competitive ratio of at least Ω(T

Dk2).

Figure 2.3: The line as used in the proof of Theorem 2.4.1 for k = 2. The circles indicate a possible
configuration of the servers of the online algorithm and the optimal solution at the beginning of the
second phase. The four segments are indicated by the dashed lines. The adversary has successfully
chosen a segment that the online algorithm does not occupy.

Proof. We first explain the proof for k = 2 in detail and then describe how to extend it to k > 2
servers. All servers start on the same position on the real line, which we identify with 0. The input
proceeds in two phases. In the first phase, there are x ·ms requests on point 0. At the start of the

2.4 Multiple Servers, One Request 35

second phase, choose one of the following points uniformly at random: −3
4 x ·ms,−1

4 x ·ms,
1
4 x ·

ms,
3
4 x ·ms. We refer to this point as Z. In the second phase, issue x/8 requests on Z.
The optimal solution moves one server to Z during the first phase and has costs of at most

Dx ·ms. Since the online algorithm only has two servers, both of its servers have a distance
of at least x

8 ·ms to Z with a probability of at least 1/2: Divide the line into four segments of
size 1

4 x ·ms. The online algorithm can occupy at most two of theses segments (cf. Figure 2.3).
As a consequence, the expected costs for the online algorithm in the second phase are at least
1
2 ∑

x
8
i=1(

1
8 x ·ms− i ·ms)≥ x2

264 ms. The cost ratio is then Ω(x/D) = Ω(T/D).
For k > 2 servers, split the line to the right of the starting point into 4(k−1) segments of size

x ·ms each. The segments are divided into k−1 groups of 4. Each group has two inner and two
outer segments, where the outer segments neighbor segments of other groups. The adversary now
chooses in each group one of the two inner segments uniformly at random. We refer to the middle
point in each of the chosen segments as Z1, . . . ,Zk−1. During the first phase, 4kx requests appear at
the starting point, and the adversary moves one server to Z1, . . . ,Zk−1 each, the last server remains
at the starting point. The moving costs for the adversary are O(Dk2x ·ms).

Figure 2.4: The line as used in the proof of Theorem 2.4.1 for k > 2 (here k = 5). The circles
indicate a possible configuration of the servers of the online algorithm and the optimal solution at
the beginning of the second phase. The groups are indicated by the dashed lines. The adversary has
successfully chosen two inner segments that the online algorithm does not occupy.

In the second phase, on each point Z1, . . . ,Zk−1, x/4 requests appear in order of distance to the
starting point. As before, if at the first time when a request appears on Zi the online algorithm does
not have one server in the corresponding segment, then the costs for serving requests for the online
algorithm are at least Ω(x2ms). Now we iterate over the groups of segments: Consider the group
that contains Z1. At the time of the first request on Z1 the online algorithm either covers both, one
or no inner segment of that group. In case of only one covered segment, Z1 lies in the other inner
segment with probability 1/2. Consider a server in one of the inner segments: This server cannot
move into a neighboring group within x/4 time steps. Hence we can regard the servers that cover
inner segments as "used up" for the following groups and we therefore may apply the arguments
inductively. Let a, b and c be the number of groups where the online algorithm covers both, one
and no inner segment of that group, respectively. We have a+b+ c = k−1, 2a+b≤ k and the
expected number of segments for which the online algorithm incurs costs of Ω(x2ms) are at least
a+ 1

2 b. It is easy to see that the number of these segments are in Ω(k).

For the ratio we compare the costs and get Ω(kx2ms)
O(Dk2x·ms)

= Ω(x
Dk) = Ω(T

Dk2). �

As a consequence of this lower bound, we apply the two modifications to our model mentioned
previously, which help us to achieve a competitive ratio independent of the length of the input
sequence. We use the concept of resource augmentation just as in the case of one server: i.e.,
we allow the online algorithm to utilize a maximum movement distance of (1+ δ)ms for some
δ ∈ (0,1) as opposed to the distance ms used by the optimal offline solution. This measure alone
does not address the bound from Theorem 2.4.1 (the ratio shrinks, but still depends on T). Hence,

36 Chapter 2. The Mobile Server Problem

we also use the locality of requests, i.e., restrict the distance between two consecutive requests to a
maximum distance of mc. Note that only restricting the distance between consecutive requests does
also not remove the dependence on T , as was shown in the previous section (see Theorem 2.3.8).
The following theorem can be obtained in a similar way as Theorem 2.4.1:

Theorem 2.4.2 For k ≥ 2, every randomized online algorithm for the k-Mobile Server problem,
where the distance between consecutive requests is bounded by mc, has a competitive ratio of at
least Ω(mc

ms
).

Proof. The proof follows the structure of the proof of Theorem 2.4.1. We first describe the bound
for k = 2 and then extend it to k > 2 servers. All servers start on the same position denoted by 0 on
the real line. The input is given in three phases. In the first phase, x requests are issued consecutively
on point 0. At the beginning of the second phase, choose uniformly at random one of the points
−3

4 x ·ms,−1
4 x ·ms,

1
4 x ·ms,

3
4 x ·ms. Let the chosen point be Z. Now move the request by mc towards

Z in each time step until Z is reached. In the third phase, issue x/8 requests consecutively at Z.

Observe that the request needs at most x · ms
mc

time steps to get to Z. The optimal solution moves
one of its servers in the first phase to Z and has a movement cost of at most Dx ·ms. Since the
distance between the request and an optimal server in each step in the second phase is at most x

2 ·ms,

the costs of the optimal solution in this phase are bounded by x2

2 ·
m2

s
mc

. The optimal solution does not
incur costs in the third phase.

Since the point Z is unknown to the online algorithm, both servers of the online algorithm have
a distance of at least 1

8 xms to Z after the first phase with a probability of at least 1/2. From here
on, we assume that this is this the case. After the second phase the distance of an online server to
the request is at least 1

8 xms− x · m2
s

mc
=: y ·ms. The costs for serving requests in the third phase is

minimized for the online algorithm, if it moves with speed ms towards Z in each time step. The
induced costs are at least ∑

y
i=0(y− i) ·ms ≥ y2

2 ms =
1
2(

1
8 − ms

mc
)2x2ms ≥Ω(x2ms) if mc is sufficiently

large.

In total, the competitive ratio is Ω(x2ms)

Dxms + x2/2 · m2
s/mc

= Ω(mc
ms
) for sufficiently large x.

Now consider the case of k > 2 servers. We use a similar construction as in the proof of
Theorem 2.4.1, but now split the line to the right of the starting point into 5(k−1) segments of size
x ·ms each. The segments are divided into k−1 groups of 5. Each group has three inner and two
outer segments, where the outer segments neighbor segments of other groups. The adversary now
chooses in each group one of the two inner segments that neighbor an outer segment uniformly
at random. We refer to the middle point in each of the chosen segments as Z1, . . . ,Zk−1. During
the first phase, 5kx requests appear at the starting point, and the adversary moves one server to
Z1, . . . ,Zk−1 each, the last server remains at the starting point. The moving costs for the adversary
are O(Dk2x ·ms).

In the second phase, on each point Z1, . . . ,Zk−1, x/4 requests appear in order of distance to the
starting point, with requests in between when it moves over the line. The latter type of requests
induce costs for the adversary of O(k x2m2

s
mc

) if mc
ms

is sufficiently large (same argument as above).
The costs of the online algorithm can be bounded as in the previous theorem, with the additional
argument that while the request moves past the first potential choice for a Zi, any server covering
this segment does not get to the second potential candidate in time. With this, the costs for the
online algorithm are still Ω(kx2ms).

For the ratio we compare the costs and get Ω(kx2ms)

O(Dk2x·ms+k x2m2
s

mc
)
= Ω(mc

ms
) for sufficiently large x. �

2.4 Multiple Servers, One Request 37

2.4.2 An Algorithm for the Unweighted Problem
In this section we consider the unweighted problem (D = 1). Our algorithm does the following:
We mainly attempt to imitate a simulated k-Server algorithm, but always move the closest server
greedily towards the request.

We use the following notation in this section: Denote by a1, . . . ,ak the servers of the online
algorithm, c1, . . . ,ck the servers of the simulated k-Server algorithm and o1, . . . ,ok the servers of the
optimal solution. For an offline server oi, we denote by oa

i the closest server of the online algorithm
to oi (this might be the same server for multiple offline servers). Furthermore, we denote by a∗, c∗

and o∗ the closest server to the request of the algorithm, the k-Server algorithm, and the optimal
solution, respectively. For a fixed time step t, we add a ”′” to any variable to denote the state at the
end of the current time step: e.g., a1 = a(t−1)

1 is the position of the server at the beginning of the
time step and a′1 = a(t)1 is the position at the end of the current step.

Algorithm 2 — Unweighted-Mobile Servers (UMS). Take any k-Server algorithm K with
bounded competitiveness in the Euclidean space. Upon receiving the next request v′, simulate the
next step of K . Calculate a minimum weight matching (with the distances as weights) between
the servers a1, . . . ,ak of the online algorithm and the servers c′1, . . . ,c

′
k of K . There must be a

server ci for which c′i = v′. If the server matched to c′i can reach v′ in this turn, move all servers
by a distance (1+δ)ms towards their counterparts in the matching. Otherwise, select the server
ã that is closest to v′ and move it to v′ a distance of at most (1+ δ

2)ms. All other servers move
the maximum distance (1+δ)ms towards their counterparts in the matching.

We briefly want to discuss the fact that both steps of our algorithm are necessary for a competi-
tiveness independent of T . For the classical k-Server problem, a simple greedy algorithm, which
always moves the closest server onto the request, has an unbounded competitive ratio. We can
show, that a simple algorithm that just tries to imitate any k-Server algorithm as best as possible is
also not successful. Intuitively, the simulated algorithm can move many servers towards the request
within one time step and serve the following sequence with them, while the online algorithm needs
multiple time steps to get the corresponding servers in position due to the speed limitation.

The simple algorithm works as follows:
Let K be any given k-Server algorithm. The k-Mobile Server algorithm does the following:
Simulate K . Compute a minimum weight matching (with the distances as weights) between the
own servers and the servers of K . Move every server towards the matched server at maximum
speed.

Theorem 2.4.3 For k ≥ 2, there are k-Server algorithms with constant competitiveness such
that the corresponding simple algorithm for the k-Mobile Server problem does not achieve a
competitive ratio independent of T .

Proof. Consider the following instance: All servers and the request start at the same point on the
real line. The request moves x times to the right by a distance of ms each. It then moves y < x

4 steps
to the left again and remains at that point for the remaining x−2y time steps.

An upper bound for the optimal solution can be obtained by just following the request around
with a single server which induces the cost (x+ y)ms. Assume the k-Server algorithm does the
following: As long as the request moves to the right, it gets served by a single server; the requests
after that are served by a second server (this k-Server algorithm would be 2-competitive in this
instance). As a result, the online algorithm will move one server to the rightmost point in the
sequence and then begin to move a second server towards the request. When the request has reached
its final position, the second server of the online algorithm has moved a distance of yms to the right
and hence it requires x− 3y more time steps for it to come closer than a distance of yms to the

38 Chapter 2. The Mobile Server Problem

request. The server of the online algorithm who followed the request initially to the rightmost point
now has a distance of yms to the request. It follows that the costs of the online algorithm are at least
xms +(x−3y)yms. By setting y = Θ(

√
x), the competitive ratio becomes as large as Ω(

√
T). �

Note that the bound above makes use of a hypothetical k-Server algorithm which does not
always move the closest server to the request onto the request. If the simulated k-Server algorithm
does always move the closest server onto the request, e.g., such as the well-known Double-Coverage
algorithm [27], then the bound does not apply.

The remainder of this section is devoted to the analysis of the competitive ratio of the UMS
algorithm. We first consider the case that the distance between consecutive requests mc is smaller
than the movement speed of the algorithm’s servers. This case is easier than the case of slower
servers since we can always guarantee that the online algorithm has one server on the position
of the request. In the other case (mc ≥ (1+δ)ms), we need to extend our analysis to incorporate
situations in which our online algorithm has no server near the request although the optimal offline
solution might have such a server.

Fast Resource Movement
We first deal with the case that mc ≤ (1−ε) ·ms for some ε ∈ (0,1). We show that we can achieve a
result independent of the input length, even without resource augmentation. Afterwards, we briefly
discuss how to extend the result to incorporate resource augmentation: i.e., if the online algorithm
has a maximum movement distance of (1+δ)ms, we handle all cases with mc ≤ (1+δ − ε) ·ms.

Theorem 2.4.4 If mc ≤ (1− ε) ·ms for some ε ∈ (0,1), the algorithm UMS is 2/ε · c(K)-
competitive, where c(K) is the competitive ratio of the simulated k-Server algorithm K .

Proof. We assume the servers adapt their ordering a1, . . . ,ak according to the minimum matching
in each time step. On the basis of the matching, we define the potential ψ := 2

ε
·∑k

i=1 d(ai,ci). Note
that the algorithm reaches the point of v in each time step, and hence only pays for the movement
of its servers, i.e., CAlg = ∑

k
i=1 d(ai,a′i). For the simulated algorithm we assume, that c1 is on the

request after the current time step, i.e., c′1 = v′.
First, consider the case that a1 can reach v′ in this time step. Since each server moves directly

towards their counterpart in the matching, we have

∆ψ = 2
ε
·∑k

i=1 d(a′i,c
′
i)− 2

ε
·∑k

i=1 d(ai,ci)

≤ 2
ε
·∑k

i=1 d(ci,c′i)− 2
ε
·∑k

i=1 d(ai,a′i)

= 2
ε
·CK − 2

ε
·CAlg.

Now assume that a1 cannot reach v′ in this time step. The server moves at full speed and hence
d(a′1,c

′
1)−d(a1,c′1) =−ms. Now let a2 be the server that is at range at most mc to v′ and does the

greedy move possibly away from c′2 onto v′. It holds d(a′2,c
′
2)−d(a2,c′2)≤ mc. In total, we get

∆ψ ≤ 2
ε
(∑k

i=1 d(a′i,c
′
i)−∑

k
i=1 d(ai,c′i))+

2
ε

∑
k
i=1 d(ci,c′i)

≤ 2
ε
(d(a′1,c

′
1)−d(a1,c′1)+d(a′2,c

′
2)−d(a2,c′2))− 2

ε
∑

k
i=3 d(ai,a′i)+

2
ε

∑
k
i=1 d(ci,c′i)

≤ −2ms− 2
ε

∑
k
i=3 d(ai,a′i)+

2
ε
·CK

≤ −∑
k
i=1 d(ai,a′i)+

2
ε
·CK .

We have CAlg +∆ψ ≤ 2
ε
·CK in both cases from which the competitive ratio follows. �

2.4 Multiple Servers, One Request 39

We can extend the above bound to the resource augmentation scenario, where the online
algorithm may move the servers a maximum distance of (1+δ) ·ms. When relaxing the condition
appropriately to mc ≤ (1+δ − ε) ·ms, we get the following result:

Corollary 2.4.5 If mc≤ (1+δ−ε) ·ms for some ε ∈ (0,1), UMS is 2·(1+δ)
ε
·c(K)-competitive,

where c(K) is the competitive ratio of the simulated k-Server algorithm K .

The proof works the same as above by replacing occurrences of ms by (1+δ)ms and changing
the potential to 2·(1+δ)

ε
∑

k
i=1 d(ai,ci).

At first glance, the result seems to become weaker with increasing δ if ε stays the same. The
reason is that by fixing ε the relative difference ((1+δ)ms−mc)/ms between mc and (1+δ)ms

actually decreases: i.e., relatively speaking, mc gets closer to (1+ δ)ms. It can be seen that if
instead we fix the value of mc and increase δ , the value of ε increases by the same amount and
hence the competitive ratio tends towards 2 · c(K).

Slow Resource Movement
We now consider the case mc ≥ (1+δ)ms. The analysis is structured as follows: To support our
potential argument, we first introduce a transformation of the simulated k-Server algorithm which
ensures that the simulated servers are always located near the request. This ensures that in a case
where all online servers are far away from the request, moving towards the simulated servers also
reduces the distance to the optimal solution if the optimal servers are close to the request. We then
introduce an abstraction of the offline solution, reducing it to the positioning of a single server ô
which acts as a reference point for a new potential function. The server ô approximates the optimal
positioning of the servers while at the same time obeys certain movement restrictions necessary in
our analysis. Finally, we complete the analysis by combining the new derived potential function
with the methods from the previous section.

The k-Server Projection
Our goal is to transform a k-Server algorithm K into a k-Server algorithm ˆK , which serves the
requests of a k-Mobile Server instance such that all servers keep relatively close to the current
request v. For the case mc ≥ (1+δ)ms, we want our algorithm to use this projection as a simulated
algorithm as opposed to a regular k-Server algorithm; hence we must ensure that this projection is
computable online with the information available to our online algorithm. The servers of K are
denoted as c1, . . . ,ck and the servers of ˆK as ĉ1, . . . , ĉk.

We define two circles around v:

• The inner circle inner(v) consists of all points p with d(p,v)≤ 4k ·mc.

• The outer circle outer(v) consists of all points p with d(p,v)≤ (8k+1) ·mc.

We will maintain ĉi ∈ outer(v) for all i = 1 . . .k during the entire execution. The time is divided
into phases: A phase starting at time t with the request at position vt ends at the minimum time
t ′ > t with the request at vt ′ , when d(vt ,vt ′)≥ 4k ·mc. During a phase the simulated servers move
to preserve the following:

• If ci ∈ inner(v), then ĉi = ci.

At the end of the phase the servers move such that the following holds:

• If ci ∈ inner(v), then ĉi = ci.

• If ci /∈ inner(v), then ĉi is on the boundary of inner(v) such that d(ci, ĉi) is minimized.

40 Chapter 2. The Mobile Server Problem

Proposition 2.4.6 For the servers ĉ1, . . . , ĉk of ˆK it holds d(ĉi,v) ≤ (8k+ 1) ·mc during the
whole execution. The costs of ˆK are at most O(k) times the costs of K .

Proof. Take a phase between time steps t1 and t2. At the beginning, ĉi ∈ inner(vt) per definition.
Now, if ĉi is never moved for time steps t1 ≤ t ≤ t2 in the phase we have d(ĉi,vt) ≤ d(ĉi,vt1)+
d(vt1 ,vt) ≤ 4k ·mc +(4k + 1) ·mc = (8k + 1) ·mc and hence ĉi ∈ outer(vt). If ĉi is moved into
inner(v) during the phase, the same argument applies between each of the movements of ĉi.

For the estimation of the cost, we define the following potential function: φ = ∑
k
i=1 d(ci, ĉi).

During a phase, the potential decreases every time ĉi moves to ci by the same distance ĉi moves.
Each time ci moves, φ increases by at most the distance that ci moves.

We show that during each phase, K moves its servers by a total distance of at least k ·mc.
Consider the movement of the request from its starting point vt1 to the final point vt2 . We know
that (4k+ 1) ·mc ≥ d(vt1 ,vt2) ≥ 4k ·mc. Imagine drawing a straight line between vt1 and vt2 and
separating it into segments of length mc by hyperplanes orthogonal to the line. There are now at
least 4k such segments. Since the maximum movement distance of v is mc, there is at least one
request per segment.

We consider the configuration of K at the beginning of the phase. Every server of K has two
segments adjacent to its own. We call the segments that do not contain a server of K and are not
adjacent to a segment containing such a server unoccupied segments. Since there are 4k segments
in total and k servers of K , there are at least k unoccupied segments. For any unoccupied segment
it holds that a server of K has to move at least mc to answer a request in the segment since it needs
to cross the entire neighboring segment. Thus, for at least k segments, the servers of K incur costs
of at least mc, implying a total movement cost of at least k ·mc.

We can now bound the costs at the end of a phase: The argument when ci ∈ inner(v) is the
same as before. Otherwise, φ increases by at most d(ĉi, ĉ′i)≤ (4k+1) ·mc. Summing up over all i,
this yields C ˆK ≤ O(k) ·CK . �

The Offline Helper
We define a new offline server ô, which approximates the optimal position o∗ while managing the
role change of o∗ in a smooth manner. By â, we denote the server of the online algorithm with
minimal distance to ô. For a formal description of the behavior, we need the following definitions:

• The inner circle innert(oi) contains all points p with dt(oi, p)≤ δ 2

48960k ·dt(oi,oa
i).

• The outer circle outert(oi) contains all points p with dt(oi, p)≤ δ

48 ·dt(oi,oa
i).

Abusing notation, we also refer to innert(oi) and outert(oi) as distances equal to the radius defined
above. The next part of the analysis is devoted to proving the following:

Proposition 2.4.7 There exists a virtual server ô that moves at a speed of at most (2+ 1020k
δ

) ·mc

per time step, for which d(â, ô)≤ 2 ·d(o∗,o∗a)+d(a∗,v) at all times, and for which the following
conditions hold as long as dt(o∗,o∗a)≥ 2 ·51483 kmc

δ 2 :

1. If v ∈ inner(o∗) at the end of the current time step, ô moves at a maximum speed of
(1+ δ

8)ms: i.e., vt ∈ innert(o∗)⇒ d(ô(t−1), ô(t))≤ (1+ δ

8)ms.

2. If v ∈ inner(o∗) at the end of the current time step, then ô ∈ outer(o∗) at the end of the
current time step: i.e., vt ∈ innert(o∗)⇒ ô(t) ∈ outert(o∗).

In the following, we show that it is possible to define a movement pattern for ô in such a
way, that conditions 1 and 2 of Proposition 2.4.7 hold as long as d(o∗,o∗a)≥ 51483 kmc

δ 2 . Once the
distance d(o∗,o∗a) drops below 51483 kmc

δ 2 , ô will simply follow v and restore the properties once

2.4 Multiple Servers, One Request 41

d(o∗,o∗a)≥ 2 ·51483 kmc
δ 2 . In order to describe the movement in detail, we introduce the concept of

transitions.
In the input sequence and a given optimal solution, we define a transition between two steps

t1 < t2, if there are oi,o j such that oi = o∗ and v ∈ innert1(oi) at time step t1 and o j = o∗ and
v ∈ innert2(o j) at time step t2. In between these two time steps, v /∈ inner(o∗). For such a transition,

we define the transition time as t∗ := t2− t1. If t∗ >
innert1 (o

∗)
mc

+ 2, we call this a long transition.
Otherwise, we call it a short transition. We say that oi passes the request after t1 and o j receives
the request in t2. The concept is illustrated in Figure 2.5.

Figure 2.5: Example for a transition
from oi to o j. By definition, v cros-
ses the border of inner(oi) after time
step t1 (oi passes v after t1). The tran-
sition stops at step t2 when v has en-
tered innert2(o j) (o j receives v in t2).
Note that o j’s position and the radius
of its inner circle may change from t1
to t2. The distance moved by v is at
most (t2− t1) ·mc. The dotted line re-
presents the estimation of dt1(oi,o j)
used in Lemma 2.4.9.

The behavior of ô can be computed as follows:

1. During a long transition between time steps t1 and t2, move with speed d(ô(t−1), ô(t)) ≤
(2+ 1020k

δ
) ·mc towards vt whenever vt /∈ innert(o∗). In the last two steps t2−1 and t2, move

such that ô(t2−1) = vt2 at time t2−1 and do not move in t2 at all. Informally, ô moves one
step ahead of v such that ô = v after the transition, as soon as v ∈ inner(o∗).

2. For a sequence of short transitions starting with o∗= oi in t1, determine which of the following
events terminating the current sequence occurs first:

(a) A long transition from a server o` to o j between time t2 and t3 occurs. In this case, ô
simply moves towards o(t)` in each step t with a speed of at most (1+ δ

8)ms until t2.

(b) A short transition from a server o` to o j between time t2 and t3 occurs, where at one
point prior in the sequence d(o j,o∗) >

outer(o∗)
3 . If ô can move straight towards the

final position of o j in t3 with speed (1+ δ

8)ms without ever leaving outer(o∗), then
do that. Otherwise, move towards a point p with d(p,o`) = 2δ

145 · d(o`,oa
`). Among

those candidates, p minimizes d(p,o(t3)`). When this point is reached, keep the invariant
d(ô,o`) = 2δ

145 ·d(o`,oa
`) whenever the final position of o j is not within 2δ

145 ·d(o`,oa
`)

around o`. Again, the position of ô on the circle around o` should be the one closest to
o j’s final position o(t3)` . When o(t3)j is inside the circle, the position of ô should be equal

to o(t3)j .

3. If dt1(o
∗,o∗a)< 51483 kmc

δ 2 , treat the time until dt2(o
∗,o∗a)≥ 2 ·51483 kmc

δ 2 as a long transition
between t1 and t2: i.e., move towards v with speed (2+ 1020k

δ
) ·mc and skip one step ahead of

v during the last 2 time steps. (Steps 1 and 2 are not executed during this time.)

42 Chapter 2. The Mobile Server Problem

Note that the server ô is a purely analytical tool and hence the behavior as described above does
not have to be computable online.

Our goal is to show that all invariants described in Proposition 2.4.7 hold inductively over
all transitions. We divide the entire timeline into sequences where each sequence starts with
both v and ô being in inner(o∗). A sequence ends when one of the events stated in step 2 of the
algorithm completes. The following lemma states that the initial condition is restored after every
long transition.

Lemma 2.4.8 If ô ∈ outert1(o
∗) at the beginning of a long transition between t1 and t2, then

ô ∈ innert2(o
∗) at the end of the transition.

Proof. During the transition time t∗ := t2−t1, v moves a distance of at most t∗ ·mc. At the beginning,
ô ∈ outert1(o

∗) and v ∈ innert1(o
∗), hence

dt1(ô,v)≤ dt1(ô,o
∗)+dt1(o

∗,v)≤ innert1(o
∗)+outert1(o

∗).

During the first dinnert1(o
∗)/mce time steps, ô can catch up to v a distance of

innert1(o
∗)

mc
· (1+ 1020k

δ
) ·mc = innert1(o

∗)+
1020k

δ
· innert1(o

∗) = innert1(o
∗)+outert1(o

∗)

and therefore reaches v (the speed of ô is an additional mc higher which accounts for the movement
of v). Since t∗ >

innert1 (o
∗)

mc
+2, there are at least 2 time steps remaining where ô can move ahead to

the final position of v. �

Our next goal is to analyze a sequence of short transitions. During these transitions, v moves
faster than ô and hence the distance of ô to o∗ increases due to the role change after a transition.
The next lemma establishes an upper bound on that increase. Since we use the lemma in another
context as well, the formulation is slightly more general.

Lemma 2.4.9 Every short transition between oi in step t1 and o j in step t2 can increase the
distance of some server s, which moves at a speed of at most (1+ δ)ms, to o∗ by at most
min{6.001 δ 2

48960k ·dt1(o
∗,o∗a)+8.001mc , 6.002 · δ 2

48960k ·dt2(o
∗,o∗a)+8.002mc}.

Likewise, s decreases its distance to o∗ by at most
min{6.001 δ 2

48960k ·dt1(o
∗,o∗a)+8.001mc , 6.002 · δ 2

48960k ·dt2(o
∗,o∗a)+8.002mc}.

Proof. We consider a short transition from offline server oi to o j in between time steps t1 and t2.

By definition, t∗ = t2− t1 ≤ innert1 (oi)

mc
+2.

We show that since oi and o j must be relatively close together, their distance to the closest
server of the online algorithm must be similar. We first upper bound the distance between oi and
o j in step t1: The request travels a distance of at most t∗ ·mc between the two. During this time,
o j could have moved a distance of at most t∗ ·ms, and the inner radius could have changed by at
most t∗ · δ

16 ms. Since after the t∗ time steps v enters the inner circle of o j, we can use the above
information to trace the distance between the two servers and the inner circle’s radius of o j back to
time step t1 (see Figure 2.5):

dt1(oi,o j) ≤ d(o(t1)i ,o(t2)j)+d(o(t2)j ,o(t1)j)

≤ innert1(oi)+ t∗ ·mc + innert2(o j)+ t∗ ·ms

≤ innert1(oi)+ t∗ ·mc + innert1(o j)+ t∗ · δ

16 ms + t∗ ·ms.

2.4 Multiple Servers, One Request 43

With this knowledge, we get

dt1(o j,oa
j) ≥ dt1(oi,oa

i)−dt1(oi,o j)

≥ dt1(oi,oa
i)− t∗ · (mc +ms +

δ

16 ms)− innert1(oi)− innert1(o j)

≥ dt1(oi,oa
i)−3 · innert1(oi)− innert1(o j)−4mc

≥ (1−3 · δ 2

48960k) ·dt1(oi,oa
i)− δ 2

48960k ·dt1(o j,oa
j)−4mc

⇔ dt1(o j,oa
j) ≥

1−3· δ2
48960k

1+ δ2
48960k

·dt1(oi,oa
i)− 4

1+ δ2
48960k

·mc

⇒ dt1(o j,oa
j) ≥ (1− 4

48960k+1) ·dt1(oi,oa
i)−4mc.

In reverse, we can bound

dt1(oi,oa
i) ≥ dt1(o j,oa

j)−dt1(oi,o j)

≥ dt1(oi,oa
i)−3 · innert1(oi)− innert1(o j)−4mc

≥ (1− δ 2

48960k) ·dt1(o j,oa
j)− 3δ 2

48960k ·dt1(oi,oa
i)−4mc

⇔ dt1(oi,oa
i) ≥

1− δ2
48960k

1+ 3δ2
48960k

·dt1(o j,oa
j)− 4

1+ 3δ2
48960k

·mc

⇒ dt1(oi,oa
i) ≥ (1− 4

48960k) ·dt1(o j,oa
j)−4mc.

Since s can move away from o j during the transition and o j itself moves at a speed of at most
ms, we get

dt2(s,o j) ≤ dt1(s,o j)+ t∗ · (2+δ)ms

≤ dt1(s,oi)+dt1(oi,o j)+ t∗ · (2+δ)ms

≤ dt1(s,oi)+ t∗ · (mc +ms +
δ

16 ms)+ innert1(oi)+ innert1(o j)+ t∗ · (2+δ)ms

≤ dt1(s,oi)+5 · innert1(oi)+ innert1(o j)+8mc

≤ dt1(s,oi)+5 · δ 2

48960k ·dt1(oi,oa
i)+

δ 2

48960k ·dt1(o j,oa
j)+8mc.

To derive the first bound, we get

dt2(s,o j) ≤ dt1(s,oi)+5 · δ 2

48960k ·dt1(oi,oa
i)+

δ 2

48960k · 1
1− 4

48960k
·dt1(oi,oa

i)

+(8+ δ 2

48960k · 4
1− 4

48960k
) ·mc

≤ dt1(s,oi)+6.001 δ 2

48960k ·dt1(oi,oa
i)+8.001mc.

For the second bound, we continue with

dt2(s,o j) ≤ dt1(s,oi)+5 · δ 2

48960k ·dt1(oi,oa
i)+

δ 2

48960k ·dt1(o j,oa
j)+8mc

≤ dt1(s,oi)+(1+ 5
1− 4

48960k+1
) · δ 2

48960k ·dt1(o j,oa
j)+(8+5 · δ 2

48960k · 4
1− 4

48960k+1
)mc

≤ dt1(s,oi)+6.001 · δ 2

48960k ·dt1(o j,oa
j)+8.001 ·mc.

Next we bound the change in d(o j,oa
j) during the transition:

dt1(o j,oa
j) ≤ dt2(o j,oa

j)+ t∗ · (2+δ)ms

≤ dt2(o j,oa
j)+2 · innert1(oi)+4mc

≤ dt2(o j,oa
j)+2 · δ 2

48960k ·dt1(oi,oa
i)+4mc

≤ dt2(o j,oa
j)+2.001 · δ 2

48960k ·dt1(o j,oa
j)+4.001mc

⇔ dt1(o j,oa
j) ≤ 1

1−2.001· δ2
48960k

·dt2(o j,oa
j)+4.002mc.

44 Chapter 2. The Mobile Server Problem

This gives us

dt2(s,o j) ≤ dt1(s,oi)+
1

1−2.001· δ2
48960k

·6.001 · δ 2

48960k ·dt2(o j,oa
j)

+(8.001+6.001 · δ 2

48960k ·4.002) ·mc

≤ dt1(s,oi)+6.002 · δ 2

48960k ·dt2(o j,oa
j)+8.002mc.

For the bound of decreasing the distance, the same proof can be applied: Start with

dt2(s,o j)≥ dt1(s,o j)− t∗ · (2+δ)ms ≥ dt1(s,oi)−dt1(oi,o j)− t∗ · (2+δ)ms

and use the same estimations as before from there. �

We want to show that ô ∈ inner(o∗) holds after a sequence of short transitions is terminated
by one of the conditions described in step 2 of the algorithm. During the sequence, we must also
show that ô ∈ outer(o∗). The main idea for the following lemma is that d(o`,o∗) ≤ outer(o∗)

3 per
definition and hence following it keeps ô inside outer(o∗).

Lemma 2.4.10 Consider a sequence of short transitions that is terminated by a long transition.
If ô ∈ inner(o∗) at the beginning of the sequence, then ô ∈ inner(o∗) after the long transition.
During the sequence of short transitions, ô ∈ outer(o∗).

Proof. As in step 2 of the algorithm, we assume the sequence starts at time t1 with o∗ = oi, and
terminates with a long transition from o` to o j between time steps t2 and t3. ô selects the server o`
which passes v on to o j over the long transition and follows it. Since d(o`,o∗)≤ outer(o∗)

3 for the
duration of the sequence, we have ô ∈ outer(o`) at the beginning of the sequence and therefore
ô ∈ outer(o`) holds for the entire duration. At the beginning, with

dt1(o
∗,o∗a) ≤ dt1(o

∗,oa
`)

≤ dt1(o
∗,o`)+dt1(o`,o

a
`)

≤ δ

144 ·dt1(o
∗,o∗a)+dt1(o`,o

a
`)

⇔ dt1(o
∗,o∗a) ≤ 1

1− δ

144
·dt1(o`,o

a
`)

we get
dt1(ô,o`) ≤ dt1(ô,o

∗)+dt1(o
∗,o`)

≤ (δ 2

48960k +
δ

144) ·dt1(o
∗,o∗a)

≤ 1
1− δ

144
· (δ 2

48960k +
δ

144) ·dt1(o`,o
a
`)

≤ 0.01 ·δ ·dt1(o`,o
a
`).

Furthermore, since ô at least holds its relative distance to o`, during any step t in the sequence,

dt(ô,o∗) ≤ dt(ô,o`)+dt(o`,o∗)

≤ dt1 (ô,o`)
dt1 (o`,o

a
`)
·dt(o`,oa

`)+dt(o`,o∗)

≤ 0.01 ·δ ·dt(o`,oa
`)+

δ

144 ·dt(o∗,o∗a)
≤ 0.01 ·δ ·dt(o`,o∗a)+ δ

144 ·dt(o∗,o∗a)
≤ 0.01 ·δ · (dt(o`,o∗)+dt(o∗,o∗a))+ δ

144 ·dt(o∗,o∗a)
≤ 0.01 ·δ · (δ

144 ·dt(o∗,o∗a)+dt(o∗,o∗a))+ δ

144 ·dt(o∗,o∗a)
≤ δ

48 ·dt(o∗,o∗a)

and therefore ô ∈ outert(o∗) during the whole sequence. By Lemma 2.4.8, we have ô ∈ inner(o∗)
after the long transition. �

2.4 Multiple Servers, One Request 45

For the second case of step 2, we show with the help of Lemma 2.4.9 that during the sequence
of transitions, ô does not lose too much distance to o∗. Furthermore, the server o j, since at one
point d(o j,o∗)>

outer(o∗)
3 , takes enough time to get into position for a short transition such that ô

can reach the final position of o j in time.

Lemma 2.4.11 Consider a sequence of short transitions that is terminated by a short transition
from o` to o j, where at one point prior in the sequence d(o j,o∗)>

outer(o∗)
3 . If ô ∈ inner(o∗) at

the beginning of the sequence and d(o∗,o∗a)≥ 51483 kmc
δ 2 at all times, then ô ∈ inner(o∗) after

the transition to o j. During the sequence, ô ∈ outer(o∗).

Proof. We assume the sequence starts at time t1 with o∗ = oi, and terminates with a short transition
from o` to o j between time steps t2 and t3.

We first consider the case that ô would run outside outer(o∗) if it moved directly to its target
point. First, we need to show that d(ô,o`) = 2δ

145 ·d(o`,oa
`) is reached before this happens. In the

beginning, it holds d(ô,o`)≤ 2δ

145 ·d(o`,oa
`):

dt1(ô,o`)≤ dt1(ô,o
∗)+dt1(o

∗,o`)≤
(

δ 2

48960k
+

δ

144

)
·dt1(o

∗,o∗a).

With
d(o∗,o∗a) ≤ d(o∗,o`)+d(o`,oa

`)

≤ δ

144 ·d(o∗,o∗a)+d(o`,oa
`)

⇔ (1− δ

144) ·d(o∗,o∗a) ≤ d(o`,oa
`)

we get dt1(ô,o`)≤ 1
1− δ

144
· (δ 2

48960k +
δ

144) ·dt1(o`,o
a
`)<

2δ

145 ·dt1(o`,o
a
`).

Now assume d(ô,o`)≤ 2δ

145 ·d(o`,oa
`). Then

d(ô,o∗) ≤ d(ô,o`)+d(o`,o∗)
≤ 2δ

145 ·d(o`,oa
`)+

δ

144 ·d(o∗,o∗a)
≤ 2δ

145 · (d(o`,o∗)+d(o∗,o∗a))+ δ

144 ·d(o∗,o∗a)
≤ 2δ

145 · (1+ δ

144) ·d(o∗,o∗a)+ δ

144 ·d(o∗,o∗a)
≤ δ

48 ·d(o∗,o∗a),

meaning ô ∈ outer(o∗) for the duration of the sequence. Taking the negation of that statement it
also follows that d(ô,o`) = 2δ

145 ·d(o`,oa
`) is reached before ô /∈ outer(o∗).

Note that ô can maintain the point at the fixed distance to o` which is closest to the final position
of o j: Imagine the radius 2δ

145 ·d(o`,oa
`) stays fixed and only o` moves by at most ms. Then the point

at the fixed radius closest to o(t3)j only changes by at most ms. Afterwards the radius changes by at
most 3ms · 2δ

145 < δ

20 ms, hence the movement speed of (1+ δ

8)ms is sufficient.
We now need to determine that at the final time step t3, dt3(o j,o`) ≤ 2δ

145 · dt3(o`,o
a
`). Apply

Lemma 2.4.9 by setting s = o` and we can bound

dt3(o j,o`) ≤ 6.002 · δ 2

48960k ·dt3(o
∗,o∗a)+8.002mc

≤ 1
1− δ

144
· (6.002δ 2

48960k + 8.002δ 2

43170) ·dt3(o`,o
a
`)

< 2δ

145 ·dt3(o`,o
a
`).

Now assume it holds true that ô can move straight towards the final position of o j with speed
(1+ δ

8)ms without ever leaving outer(o∗). In this case, we compute a path that constitutes an upper
bound on the distance ô has to traverse, using the following definition:

46 Chapter 2. The Mobile Server Problem

Figure 2.6: The construction of a transition path. The transition path is marked by black dots,
while the movement of om is depicted by dashed arrows. The movement of v is marked by the
gray arrows. Starting at the position of om at t, the last time step ti is identified at which om = o∗

and v ∈ inner(om). Note, that the role of o∗ might change multiple times (e.g. to oy in the picture)
between t and ti. Afterwards, the path goes to the destination ox of a short transition.

Definition 2.4.12 — Transition Path. Assume om = o∗ at time step t and on = o∗ at some later
time step t ′. Consider the path constructed as follows. Start at the position of om in time step t.
Let ti be the last time step before t ′ in which om = o∗ and v ∈ inner(om). The first part of the
path goes from om’s position at time step t to om’s position in time step ti. Afterwards, a short
transition from om to some other server ox between time step ti and t j occurs, in which case our
path goes from om in ti to ox in t j. Continue the procedure recursively until on in time step t ′ is
reached. We call the constructed path a (t, t ′)-transition path.

Figure 2.6 illustrates one of the recursion steps of the definition for the transition path.
The distance traveled by ô during time steps t1 to t3 is bounded by the distance of ô to o∗

at time t1 plus the length of the (t1, t3)-transition path. The former has a length of dt1(ô,o
∗) ≤

δ 2

48960k ·dt1(o
∗,o∗a).

To upper bound the length of the (t1, t3)- transition path, we divide it into two types of edges:
The first type is between the same offline server in different time steps. If the total time is t̂ = t3− t1,
the maximum distance induced is t̂ ·ms.

The second type of edges are between different offline servers and represent a short transition.
By construction, there are at most k such edges. With the help of Lemma 2.4.9 we may upper bound
the length of an edge by 6.001 · δ 2

48960k ·dt ′(o∗,o∗a)+8.001mc, where t ′ is the time the transition
begins (in the lemma, set s to a static server at the position of the server who passes the request at
time t ′).

The distance d(o∗,o∗a) can change in two ways over time: It changes due to the movement of
the servers or due to a role change of o∗, where it suffices to consider only those short transitions
included in our constructed path. Let t ′1, . . . , t

′
k be the points in time where the short transitions

inducing the second type edges begin. We can upper bound their total length as

k

∑
i=1

(6.001 · δ 2

48960k
·dt ′i (o

∗,o∗a)+8.001mc).

Assuming the highest possible distance for each of the dt ′i (o
∗,o∗a), we get for the first transition

the total distance of the movement during the sequence added to the original length, which is
dt1(o

∗,o∗a)+ t̂ · (2+ δ)ms. The transitions after that build inductively on the resulting lengths.
Define T0 := dt1(o

∗,o∗a)+ t̂ ·(2+δ)ms. The first edge length is upper bounded by A1 := 6.001δ 2

48960k ·T0+

8.001mc, the resulting value for d(o∗,o∗a) is T1 := T0+A1. In general, Ai := 6.001δ 2

48960k ·Ti−1+8.001mc

2.4 Multiple Servers, One Request 47

and Ti := Ti−1 +Ai = T0 +∑
i
j=1 A j. We can bound the total increase by

∑
k
i=1 Ai = ∑

k
i=1

(
6.001δ 2

48960k · (T0 +∑
i−1
j=1 A j)+8.001mc

)
≤ k · 6.001δ 2

48960k ·T0 + k ·8.001mc + k · 6.001δ 2

48960k ·∑k
j=1 A j

⇔ (1− 6.001δ 2

48960) ·∑k
i=1 Ai ≤ 6.001δ 2

48960 ·T0 +8.001kmc

⇒ ∑
k
i=1 Ai ≤ 0.0002δ 2 ·T0 +8.002kmc.

The total path length (including the distance from ô to o∗ in t1) may hence be bounded by
t̂ ·ms +0.0002δ 2 · (dt1(o

∗,o∗a)+ t̂ · (2+δ)ms)+8.002kmc +
δ 2

48960k ·dt1(o
∗,o∗a).

For comparison, we lower bound the time it takes o j to move into position such that a short
transition can occur. Take a time step t where dt(o j,o∗)> δ

144 ·dt(o∗,o∗a). We may assume that
t = t1, otherwise the travel time for o j simply increases. For a short transition between time steps t2
and t3 to o j to occur, we need v ∈ innert2(o`), v ∈ innert3(o j) and t∗ := t3− t2 ≤ innert2 (o`)

mc
+2. We

have dt2(o j,o`)≤ t∗ · (mc +ms +
δ

16 ms)+ innert2(o`)+ innert2(o j) (see Figure 2.5 and the proof of
Lemma 2.4.9).

With dt2(o j,oa
j)≤ dt2(o j,o`)+dt2(o`,o

a
`) we get

dt2(o j,o`) ≤ innert2(o j)+ innert2(o`)+ t∗ ·2mc

≤ δ 2

48960k ·dt2(o j,oa
j)+3 · innert2(o`)+4mc

≤ 4 · δ 2

48960k ·dt2(o`,o
a
`)+

δ 2

48960k ·dt2(o j,o`)+4mc

⇔ (1− δ 2

48960k) ·dt2(o j,o`) ≤ 4 · δ 2

48960k ·dt2(o`,o
a
`)+4mc

⇒ dt2(o j,o`) ≤ 4.001 · δ 2

48960k ·dt2(o`,o
a
`)+4.001mc.

Comparing the distances at t1 and t2, we conclude that

dt1(o j,o∗)−dt2(o j,o∗)≥
δ

144
·dt1(o

∗,o∗a)−4.001 · δ 2

48960k
·dt2(o

∗,o∗a)−4.001mc.

In order to lower bound the number of time steps t̂ := t2− t1 needed for bridging that distance,
we first examine the change in d(o∗,o∗a). Recall that o∗ = oi in t1 and o∗ = o` in t2. We can
represent the movement of o∗ with the (t1, t2)-transition path. The distance d(o∗,o∗a) can change
in two ways over time: It changes due to the movement of the servers or due to a role change of o∗,
where it suffices to consider only those short transitions included in our constructed path. If we
set the beginnings of the short transitions at time steps t ′1, . . . , t

′
k, we get the upper bound similar to

before:

dt2(o
∗,o∗a) ≤ dt1(o

∗,o∗a)+ t̂ · (2+δ)ms +∑
k
i=1(6.001 · δ 2

48960k ·dt ′i (o
∗,o∗a)+8.001mc)

≤ dt1(o
∗,o∗a)+ t̂ · (2+δ)ms +0.0002δ 2 · (dt1(o

∗,o∗a)+ t̂ · (2+δ)ms)
+8.002kmc.

Continuing from above, we have

dt1(o j,o∗)−dt2(o j,o∗) ≥ δ

144 ·dt1(o
∗,o∗a)−4.001 · δ 2

48960k ·dt2(o
∗,o∗a)−4.001mc

≥ δ

144 ·dt1(o
∗,o∗a)− 4.001δ 2

48960k · (1.0002 · (dt1(o
∗,o∗a)+ t̂ · (2+δ)ms)

+8.002kmc)−4.001mc.

Now we consider the ways in which d(o j,o∗) shrinks. The first is the movement of o j and
o∗, reducing the distance by at most 2ms per time step: i.e., if the entire sequence lasts t̂ steps,

48 Chapter 2. The Mobile Server Problem

the maximum reduction is t̂ · 2ms. The other way is by the role change of o∗. Note that above,
we just accounted for the change of the distance d(o∗,o∗a) due to the role change, and not for
the change of d(o j,o∗). Lemma 2.4.9 gives us that the distance of o j to any server decreases by
at most 6.001 · δ 2

48960k ·dt(o∗,o∗a)+8.001mc. This decrease is maximized the same as above, i.e.,
0.0002δ 2 · (dt1(o

∗,o∗a)+ t̂ ·2ms)+8.002kmc.
We can now lower bound the number of time steps it takes to complete the sequence: It is

bounded by the minimum time t̂, such that

t̂ ·2ms +0.0002δ 2 · (dt1(o
∗,o∗a)+ t̂ ·2ms)+8.002kmc

≥ δ

144 ·dt1(o
∗,o∗a)− 4.001δ 2

48960k · (dt1(o
∗,o∗a)+ t̂ · (2+δ)ms

+1.0002 · (dt1(o
∗,o∗a)+ t̂ · (2+δ)ms)+8.002kmc)−4.001mc

⇔ t̂ ·2.0004ms +
4.001δ 2

48960k ·2.0002 · t̂ · (2+δ)ms

≥ δ

144 ·dt1(o
∗,o∗a)− 4.001δ 2

48960k ·2.0002 ·dt1(o
∗,o∗a)−0.0002δ 2 ·dt1(o

∗,o∗a)

−8.002kmc− 4.001δ 2

48960k ·8.002kmc−4.001mc

⇒ 2.0009 · t̂ ·ms ≥ 0.0065δ ·dt1(o
∗,o∗a)−12.0047kmc.

To finish the proof, we show that ô has enough time to reach its destination by comparing the
lower bound of the time o j takes to move into position to the upper bound of the travel path of ô:

t̂ · (1+ δ

8) ·ms ≥ t̂ ·ms +0.0002δ 2 · (dt1(o
∗,o∗a)+ t̂(2+δ) ·ms)

+8.002kmc +
δ 2

48960k ·dt1(o
∗,o∗a)

⇔ t̂ · (1+ δ

8) ·ms− (1+0.0006δ 2) · t̂ ·ms ≥ (0.0002δ 2 + δ 2

48960k) ·dt1(o
∗,o∗a)+8.002kmc

⇐ t̂ · (δ

8 −0.0006δ 2)ms ≥ (0.0002δ 2 + δ 2

48960k) ·dt1(o
∗,o∗a)+8.002kmc

⇐ 1
2.0009·ms

· (0.0065δ ·dt1(o
∗,o∗a)

−12.0047kmc) · (δ

8 −0.0006δ 2)ms ≥ (0.0002δ 2 + δ 2

48960k) ·dt1(o
∗,o∗a)+8.002kmc

⇐ 0.0004δ 2 ·dt1(o
∗,o∗a)−0.75δkmc ≥ (0.0002δ 2 + δ 2

48960k) ·dt1(o
∗,o∗a)+8.002kmc

⇐ 0.00017δ 2 ·dt1(o
∗,o∗a) ≥ (8.002+0.75δ)kmc

⇐ dt1(o
∗,o∗a) ≥ 51483k mc

δ 2 .

�

Our analysis of the movement pattern of ô leads directly to the following lemma, in which we
mostly need to argue that either ô ∈ outer(o∗) or ô = v.

Lemma 2.4.13 During the execution of step 1 or 2 of the algorithm,
d(â, ô)≤ 2 ·d(o∗,o∗a)+d(a∗,v).

Proof. We argue that ô ∈ outer(o∗) or ô = v. We have demonstrated, that during a sequence of
short transitions, ô never leaves outer(o∗). It remains to show that the statement holds during a long
transition. We observe ô during the transition time t∗ = t2− t1. Before the first step, v ∈ innert1(o

∗)

and ô ∈ outert1(o
∗). We have already shown that for t∗ ≥ innert1 (o

∗)
mc

, ô catches up to v within the
time t∗ in the proof of Lemma 2.4.8. Expressed in distance, ô catches up to v when v is a distance
of innert1(o

∗) outside the inner circle of o∗. We show that at this time, v is still in outer(o∗).

2.4 Multiple Servers, One Request 49

Let t̂ = dinnert1(o
∗)/mce. We have

dt1+t̂(v,o∗) ≤ dt1(v,o∗)+ t̂ ·2mc

≤ δ 2

48960k ·dt1(o
∗,o∗a)+2 · innert1(o

∗)+2mc

≤ 3 · δ 2

48960k ·dt1(o
∗,o∗a)+2mc.

With

dt1+t̂(o∗,o∗a) ≥ dt1(o
∗,o∗a)− t̂ · (2+δ)ms

≥ dt1(o
∗,o∗a)−2 · innert1(o

∗)−2mc

⇔ dt1+t̂(o∗,o∗a)+2mc ≥ (1− 2δ 2

48960k) ·dt1(o
∗,o∗a)

⇒ 2 ·dt1+t̂(o∗,o∗a)+4mc ≥ dt1(o
∗,o∗a)

we get dt1+t̂(v,o∗)≤ 6δ 2

48960k ·dt1+t̂(o∗,o∗a)+3mc ≤ δ

48 ·dt1+t̂(o∗,o∗a) as long as dt1+t̂(o∗,o∗a)>
145mc. This implies that at all times, either ô ∈ outer(o∗) or v = ô.

We now turn to the claim of the lemma. If ô∈ outer(o∗), then d(â, ô)≤ d(o∗a, ô)≤ 2 ·d(o∗,o∗a).
If ô = v, then â = a∗ and therefore d(â, ô) = d(a∗,v). �

So far we have shown that all claims of Proposition 2.4.7 hold as long as the algorithm is not in
step 3. It remains to analyze step 3 of the algorithm, using similar arguments as for analyzing the
long transitions earlier.

Lemma 2.4.14 After the execution of step 3 it holds ô = v.
Furthermore, d(â, ô)≤ 2 ·d(o∗,o∗a)+d(a∗,v) during step 3 of the algorithm.

Proof. We define time steps t1 and t2 such that they encompass step 3 of the algorithm, i.e.,
t1 < t2 where t1 is chosen maximal and t2 is chosen minimal such that dt1(o

∗,o∗a)< 51483 mc
δ 2 and

dt2(o
∗,o∗a)≥ 2 ·51483 mc

δ 2 . Since d(o∗,o∗a) changes by at most (2+δ)ms ≤ 2mc in each time step,
t2− t1 ≥ 25741 · 1

δ 2 .
If at time t1, the procedure is in a long transition, the algorithm already follows v and can

continue as usual (the result for the long transition holds independently of d(o∗,o∗a)). Otherwise,
we have ô,v ∈ outer(o∗). Hence dt1(ô,v)≤ δ

24 ·dt1(o
∗,o∗a)≤ 51483

24 · mc
δ

. The server ô catches up to
v a distance of at least (1+ 1020k

δ
) ·mc per time step. Clearly, (t2− t1) · (1+ 1020k

δ
) ·mc >

51483
24 · mc

δ

and therefore ô = v at time t2.
The second claim, d(â, ô) ≤ 2 · d(o∗,o∗a) + d(a∗,v) can be shown the same way as in the

previous lemma, where it is clear that v is reached before d(o∗,o∗a) falls below 145mc. �

Algorithm Analysis
We now turn our attention back to the analysis of the UMS algorithm. In the following, we assume
K to be a k-Server algorithm obtained from Proposition 2.4.6. We use a potential composed of two
major parts which balance the main ideas of our algorithm against each other: φ will measure the
costs of the greedy strategy, while ψ will cover the matching to the simulated k-Server algorithm.

Let ô be an offline server that fulfills the properties stated in Proposition 2.4.7. Recall that â
denotes the currently closest server of the online algorithm to ô. The first part of the potential is
then defined as

φ :=

{
4 ·d(â, ô) if d(â, ô)≤ 107548 · kmc

δ 2

4 · 1
δms

d(â, ô)2 +A otherwise

with A := 4 · (107548 kmc
δ 2 − 1

δms
(107548 kmc

δ 2)
2).

50 Chapter 2. The Mobile Server Problem

For the second part, we set

ψ := Y · mc

δms

k

∑
i=1

d(ai,ci)

where the online servers ai are always sorted such that they represent a minimum weight matching
to the simulated servers ci. We choose Y = Θ(k

δ 2) to be sufficiently large.
If we understand φ as a function in d(â, ô), then we can rewrite it as φ(d(â, ô)) = max{4 ·

d(â, ô),4 · 1
δms

d(â, ô)2 +A}. Hence, when estimating the potential difference ∆φ = φ(d(â′, ô′))−
φ(d(â, ô)), we can upper bound it by replacing the term φ(d(â, ô)) with the case identical to
φ(d(â′, ô′)). This mostly reduces estimating ∆φ to bounding the difference d(â′, ô′)−d(â, ô).

For some of our estimations we use a slightly altered version of Lemma 2.3.6 which can be
derived by substituting δ with δ/2.

Lemma 2.4.15 Let s be some server with d(s′,v′) ≤
√

δ

4 ·d(a′i,v′) and ai moves towards v′ a

distance of d(ai,a′i), then d(ai,s′)−d(a′i,s
′)≥ 1+ 1

4 δ

1+ 1
2 δ

d(ai,a′i).

We start the analysis by bounding the second potential difference ∆ψ . The bounds can be
obtained by similar arguments as in the proof of Theorem 2.4.4.

Lemma 2.4.16 ∆ψ ≤ Y · mc
δms
·CK −∑

k
i=1 d(ai,a′i).

Proof. Assume that ã = a1. Every other server ai moves towards its counterpart ci, hence

∆ψ ≤ Y · mc
δms

k
∑

i=1
(d(a′i,c

′
i)−d(ai,ci))

≤ Y · mc
δms

(
d(a′1,c

′
1)−d(a1,c1)+

k
∑

i=2
(d(ci,c′i)−d(ai,a′i))

)
.

Now, if K serves the request with c1, i.e., c′1 = v′, then

∆ψ ≤ Y · mc

δms

k

∑
i=i
(d(ci,c′i)−d(ai,a′i)).

Otherwise, K serves the request with another server (assume c2). Since a2 was not chosen as
ã, it moves the full distance of (1+δ)ms and hence

∆ψ ≤ Y · mc
δms

(
d(a1,a′1)+d(c1,c′1)+d(c2,c′2)−d(a2,a′2)+

k
∑

i=3
(d(ci,c′i)−d(ai,a′i))

)
≤ Y · mc

δms

(
k
∑

i=1
d(ci,c′i)− δ

2 ms−
k
∑

i=3
d(ai,a′i)

)
.

The lemma follows by setting Y ≥ 8, as d(a1,a′1)+d(a2,a′2)≤ 4ms. �

2.4 Multiple Servers, One Request 51

Lemma 2.4.17 If d(a∗
′
,v′)> 0, then ∆ψ ≤ Y · mc

δms
CK −

k
∑

i=1
d(ai,a′i)− Y−4

2 mc.

Proof. We assume ã = a1. Since d(a∗
′
,v′)> 0, we have d(a1,a′1) = (1+ δ

2)ms. If v is served by
c1, then

∆ψ = Y · mc
δms

k
∑

i=1
(d(a′i,c

′
i)−d(ai,ci))

≤ Y · mc
δms

k
∑

i=1
(d(ci,c′i)−d(ai,a′i))

≤ Y · mc
δms

CK − mc
δms

k
∑

i=1
d(ai,a′i)− (Y −1) · mc

δms
(1+ δ

2)ms.

If v is served by a different server of K (assume c2), then

∆ψ = Y · mc
δms

k
∑

i=1
(d(a′i,c

′
i)−d(ai,ci))

≤ Y · mc
δms

k
∑

i=1
d(ci,c′i)− mc

δms

k
∑

i=3
d(ai,a′i)−Y · mc

δms
· δms

2

≤ Y · mc
δms

CK −
k
∑

i=1
d(ai,a′i)− Y−4

2 mc.

This term is larger then the former one for sufficiently large Y . �

Now consider the case that v′ /∈ inner(o∗
′
). We have d(a∗

′
,v′) ≤ d(o∗a

′
,v′) ≤ d(o∗

′
,o∗a

′
)+

d(o∗
′
,v′)≤ (48960k

δ 2 +1) ·d(o∗′ ,v′). The movement costs are canceled by ∆ψ as in Lemma 2.4.16.
It only remains to bound the possible increase of φ . We use d(â′, ô′)−d(â, ô)≤ (3+ 1020k

δ
) ·mc.

1. d(â′, ô′)≤ 107548 · kmc
δ 2 :

∆φ ≤ 4 ·d(â′, ô′)≤ 8 ·d(o∗′ ,o∗a′)+4 ·d(a∗′ ,v′)≤ (12 · 48960k
δ 2 +4) ·d(o∗′ ,v′).

2. 107548 · kmc
δ 2 < d(â′, ô′):

∆φ ≤ 4
δms

(d(â′, ô′)2−d(â, ô)2)

≤ 4
δms

(d(â′, ô′)2− (d(â′, ô′)− (3+ 1020k
δ

) ·mc)
2)

≤ O(k
δ
) · mc

δms
d(â′, ô′)

≤ O(k2

δ 3) · mc
δms

d(o∗
′
,v′).

In all of the above, the competitive ratio is bounded by O(k2

δ 3) · mc
δms

+Y · mc
δms
· c(K).

Finally, we consider the case v′ ∈ inner(o∗
′
). Whenever d(a∗,v′) > 102970 kmc

δ 2 , we use
Lemma 2.4.15 to obtain the following:

Lemma 2.4.18 If d(a∗,v′)> 102970 kmc
δ 2 and v′ ∈ inner(o∗

′
), then d(a′i, ô

′)−d(ai, ô)≤− δ

8 ms.

Proof. By our construction of the simulated k-Server algorithm, we have d(c′i,v
′) ≤ 9kmc ≤

δ 2

9724 ·d(a∗
′
,v′). Furthermore,

d(o∗
′
,o∗a

′
) ≤ d(o∗

′
,a∗

′
)

≤ d(o∗
′
,v′)+d(v′,a∗

′
)

⇔ (1− δ 2

48960k) ·d(o∗
′
,o∗a

′
) ≤ d(v′,a∗

′
).

52 Chapter 2. The Mobile Server Problem

Hence
d(c′i, ô

′) ≤ d(c′i,v
′)+d(v′,o∗

′
)+d(o∗

′
, ô′)

≤ δ 2

9724 ·d(a∗
′
,v′)+(δ

48 +
δ 2

48960k) ·d(o∗
′
,o∗a

′
)

≤ 0.021δ ·d(a∗′ ,v′)
≤ 0.021δ ·d(a′i,v′)

and with Lemma 2.4.15, we get d(a′i, ô
′)−d(ai, ô′)≤−1+ 1

4 δ

1+ 1
2 δ

d(â, â′).

In order to bound the movement of ô, we need to show that d(o∗,o∗a)≥ 2 ·51483 kmc
δ 2 . We use

d(a∗,v′) ≤ mc +d(a∗
′
,v′)

≤ mc +d(o∗a
′
,v′)

≤ mc +(1+ δ 2

48960k) ·d(o∗
′
,o∗a

′
)

⇔ 1
1+ δ2

48960k

(d(a∗,v′)−mc) ≤ d(o∗
′
,o∗a

′
).

The bound follows from d(a∗,v′)> 102970 kmc
δ 2 .

From Proposition 2.4.7 we get d(ô, ô′)≤ (1+ δ

8)ms and therefore

d(â′, ô′)−d(â, ô) ≤ −1+ 1
4 δ

1+ 1
2 δ

d(â, â′)+d(ô, ô′)

≤ −(1+ δ

4)ms +(1+ δ

8)ms

≤ − δ

8 ms.

�

With this lemma, φ can be used to cancel the costs of the algorithm in case of a high distance
to the request.

Lemma 2.4.19 If v′ ∈ inner(o∗
′
), then CAlg +∆φ +∆ψ ≤ Y · mc

δms
·CK +2 ·d(o∗′ ,v′).

Proof. 1. d(â′, ô′)≤ 107548 · kmc
δ 2 : We use

d(a∗
′
,v′) ≤ d(â′,v′)

≤ d(â′, ô′)+d(ô′,v′)
≤ d(â′, ô′)+2 · δ

48 ·d(o∗
′
,o∗a

′
)

≤ (1+ 2δ

47) ·d(â′, ô′)

to get CAlg+∆φ ≤ 6 ·d(â′, ô′)+∑
k
i=1 d(ai,a′i). Furthermore, ∆ψ ≤Y · mc

δms
CK −

k
∑

i=1
d(ai,a′i)−

Y−4
2 mc due to Lemma 2.4.17. In total, CAlg +∆φ +∆ψ ≤ Y · mc

δms
·CK with Y ≥Ω(k

δ 2).

2. 107548 · kmc
δ 2 < d(â′, ô′): We show that the condition of Lemma 2.4.18 applies:

d(â′, ô′) ≤ d(a∗
′
, ô′)

≤ d(a∗
′
,a∗)+d(a∗,v′)+d(v′, ô′)

≤ mc +d(a∗,v′)+2 · δ

48 ·d(o∗
′
,o∗a

′
)

≤ mc +d(a∗,v′)+ 2
47 ·d(â′, ô′)

⇔ 45
47 ·d(â′, ô′)−mc ≤ d(a∗,v′)

⇒ 102970 kmc
δ 2 ≤ d(a∗,v′).

2.4 Multiple Servers, One Request 53

Hence, the lemma gives us

∆φ ≤ 4 · 1
δms

(
d(â′, ô′)2−d(â, ô)2

)
≤ 4 · 1

δms

(
d(â′, ô′)2− (d(â′, ô′)+ δ

8 ms)
2
)

= −d(â′, ô′).

Furthermore, we have

CAlg ≤ d(â′,v′)+∑
k
i=1 d(ai,a′i)

≤ d(â′, ô′)+d(ô′,o∗
′
)+d(o∗

′
,v′)+∑

k
i=1 d(ai,a′i)

≤ d(â′, ô′)+(1+ δ

48) ·d(o∗
′
,v′)+∑

k
i=1 d(ai,a′i)

and ∆ψ ≤ Y · mc
δms
·CK −∑

k
i=1 d(ai,a′i) due to Lemma 2.4.16. In total, we get CAlg +∆φ +

∆ψ ≤ Y · mc
δms
·CK +2 ·d(o∗′ ,v′).

�

The resulting competitive ratio of Y · mc
δms
·c(K)+2 is less than the O(k2

δ 3) · mc
δms

+Y · mc
δms
·c(K)

bound from the former set of cases. Accounting for the loss due to the transformation of the
simulated k-Server algorithm, we obtain the following result:

Theorem 2.4.20 If mc ≥ (1+δ)ms, the algorithm UMS is O(1
δ 4 · k2 · mc

ms
+ 1

δ 3 · k2 · mc
ms
· c(K))-

competitive, where c(K) is the competitive ratio of the simulated k-Server algorithm K .

2.4.3 Extension to the Weighted Problem

In this section we extend the previous algorithm and analysis to the case in which the movement
costs are weighted with a factor D> 1. We assume throughout the section that D≥ 2 for convenience
in the analysis. In case D < 2, we may just apply the algorithm from the previous section, whose
cost increases by at most a factor of 2 as a result.

The main difference to the unweighted case is that our algorithm uses a k-Page Migration
algorithm as guidance, whose best competitive ratio in the deterministic case so far is a factor Θ(k)
worse than that of a k-Server algorithm for general metrics. The analysis is slightly more involved
since unlike in the k-Server problem, a k-Page Migration algorithm is not forced to always have
one page at the point of the request. In case of small distances to v, the movement costs have to
be balanced against the serving costs by scaling down the movement distance by a factor of D.
Throughout this section, we use the same notation as for the unweighted version.

Algorithm 3 — Weighted-Mobile Servers (WMS). Take any k-Page Migration algorithm K .
Upon receiving the next request v′, simulate the next step of K . Calculate a minimum weight
matching (with the distances as weights) between the servers a1, . . . ,ak of the online algorithm
and the pages c′1, . . . ,c

′
k of K . Select the closest server ã to v′ and move it to v′ at most a distance

min{mc,
1
D(1− ε) ·d(ã,v′)} in case mc ≤ (1+δ − ε)ms and at most min{(1+ δ

2)ms,
1
D(1− δ

2) ·
d(ã,v′)} in case mc ≥ (1+ δ)ms. All other servers ai move towards their counterparts in the
matching c′i with speed min{(1+δ)ms,

1
D ·d(ã,v′)}. If another server than ã is closer to r′ after

movement, then move all servers towards their counterpart in the matching with speed ms instead.

The remainder of this section is devoted to the analysis of the WMS algorithm and is structured
similar to Section 2.4.2.

54 Chapter 2. The Mobile Server Problem

Fast Resource Movement
We start by analyzing the case that mc ≤ (1− ε) ·ms for some ε ∈ (0, 1

2]. For ε ≥ 1
2 , our algorithm

simply assumes ε = 1
2 . It can be easily verified, that this does not hinder the analysis.

Theorem 2.4.21 If mc ≤ (1− ε) ·ms for some ε ∈ (0, 1
2], the algorithm WMS is

√
2·11/ε · c(K)-

competitive, where c(K) is the competitive ratio of the simulated algorithm K .

Proof. We assume the servers adapt their ordering a1, . . . ,ak according to the minimum matching
in each time step. On the basis of the matching, we define the following potential: ψ :=

√
2 ·

4D
ε

∑
k
i=1 d(ai,ci). We observe, that in all time steps it holds d(a∗,v)≤ D

1−ε
·mc ≤ 2Dmc. We fix a

time step and assume ã = a1.
First examine the case that ã moves towards its matching partner instead of v′. Then

∆ψ ≤
√

2 · 4D
ε

k

∑
i=1

d(ci,c′i)−
√

2 · 4D
ε

k

∑
i=1

d(ai,a′i)

and

CAlg =
k

∑
i=1

d(ai,a′i)+d(a∗
′
,v′)≤

k

∑
i=1

d(ai,a′i)+2Dmc.

Consider the server that is matched to c∗
′
: Either it reaches c∗

′
or it moves a distance of ms. In the

first case d(a∗
′
,v′)≤ d(c∗

′
,v′) which gives a competitive ratio of

√
2 · 4

ε
·c(K) immediately. In the

latter case, there is a server a j such that d(a j,a′j) = ms and hence

∆ψ ≤
√

2 · 4D
ε

k

∑
i=1

d(ci,c′i)−
√

2 · D
ε

k

∑
i=1

d(ai,a′i)−
√

2 · 3D
ε

ms,

which implies a competitive ratio of at most
√

2 · 4
ε
· c(K) as well.

Now assume ã = a1 moves towards v′ and hence a∗
′
= a′1. We have

d(a′1,c
′
1)−d(a1,c′1)≤min{mc,

1
D
(1− ε) ·d(ã,v′)}.

In all of the following cases, we make use of

∆ψ =
√

2 · 4D
ε

(
∑

k
i=1 d(a′i,c

′
i)−∑

k
i=1 d(ai,ci)

)
≤
√

2 · 4D
ε

∑
k
i=1 d(ci,c′i)+

√
2 · 4D

ε

(
∑

k
i=1 d(a′i,c

′
i)−∑

k
i=1 d(ai,c′i)

)
.

We distinguish the following cases with respect to the positioning of the pages of K :

1. d(a∗
′
,v′)≤ d(c∗

′
,v′):

Since we assume D≥ 2, we have

D ·d(a1,a′1) ≤ d(a1,v′)
≤ d(a1,a′1)+d(a′1,v

′)
⇒ D

2 ·d(a1,a′1) ≤ d(c∗
′
,v′).

It follows

CAlg ≤ 3 ·d(c∗′ ,v′)+D ·
k

∑
i=2

d(ai,a′i)

and

∆ψ ≤
√

2 · 4D
ε

k

∑
i=1

d(ci,c′i)+
√

2 · 8
ε
·d(c∗′ ,v′)−D ·

k

∑
i=2

d(ai,a′i).

2.4 Multiple Servers, One Request 55

2. d(a∗
′
,v′)> d(c∗

′
,v′) and c∗

′
= c′1:

We know that

d(a′1,c
′
1)−d(a1,c′1)≤−

1√
2
·d(a1,a′1) =−

1√
2
·min{mc,

1
D
(1− ε) ·d(ã,v′)}

and hence

∆ψ ≤
√

2 · 4D
ε

k

∑
i=1

d(ci,c′i)−
4D
ε
·min{mc,

1
D
(1− ε) ·d(ã,v′)}−D ·

k

∑
i=2

d(ai,a′i).

If d(a1,a′1) = mc then CAlg ≤ 3Dmc +D ·∑k
i=2 d(ai,a′i), otherwise CAlg ≤ 2 · d(ã,v′)+D ·

∑
k
i=2 d(ai,a′i).

3. d(a∗
′
,v′)> d(c∗

′
,v′) and c∗

′ 6= c′1:
We assume c∗

′
= c′2. It must hold a′2 6= c′2 and hence

d(c′2,a
′
2)−d(c′2,a2)≤−min{ms,

1
D
·d(ã,v′)}.

In the case d(a2,a′2) =
1
D ·d(ã,v′),

d(a′1,c
′
1)−d(a1,c′1)+d(a′2,c

′
2)−d(a2,c′2)≤−

ε

D
·d(ã,v′).

This gives us

∆ψ ≤
√

2 · 4D
ε
(

k

∑
i=1

d(ci,c′i)−
ε

D
·d(ã,v′)−

k

∑
i=3

d(ai,a′i)).

With

CAlg = d(a′1,v
′)+D ·

k

∑
i=1

d(ai,a′i)≤ 3 ·d(ã,v′)+D ·
k

∑
i=3

d(ai,a′i)

the bound follows.

In case d(a2,a′2) = ms,

d(a′1,c
′
1)−d(a1,c′1)+d(a′2,c

′
2)−d(a2,c′2)≤ mc−ms ≤−εms.

Similar as before,

∆ψ ≤
√

2 · 4D
ε
(

k

∑
i=1

d(ci,c′i)− εms−
k

∑
i=3

d(ai,a′i))

and

CAlg ≤ 4Dms +D ·
k

∑
i=3

d(ai,a′i).

�

We can extend this bound to the resource augmentation scenario, where the online algorithm may
move the servers a maximum distance of (1+δ) ·ms. When relaxing the condition appropriately to
mc ≤ (1+δ − ε) ·ms, then we get the following result:

56 Chapter 2. The Mobile Server Problem

Corollary 2.4.22 The algorithm is
√

2·11·(1+δ)
ε

· c(K)-competitive, where c(K) is the compe-
titive ratio of the k-Page Migration algorithm K .

Slow Resource Movement
Similar to the k-Server projection discussed in Section 2.4.2, we obtain the following result which
gives us a new k-Page Migration algorithm needed for the case mc ≥ (1+δ)ms.

Proposition 2.4.23 Let K be an online algorithm for the k-Page Migration problem. There
exists an online algorithm ˆK for the k-Page Migration problem with pages ĉ1, . . . , ĉk such that it
holds d(ĉi,v)≤ (32kD+1) ·mc during the whole execution. The costs of ˆK are at most O(k)
times the costs of K .

Proof. The servers of K are denoted as c1, . . . ,ck and the servers of ˆK as ĉ1, . . . , ĉk.
We define two circles around v:

• The inner circle inner(v) consists of all points p with d(p,v)≤ 16kD ·mc.

• The outer circle outer(v) consists of all points p with d(p,v)≤ (32kD+1) ·mc.

We will maintain ĉi ∈ outer(v) for the entirety of the execution. The time is divided into phases,
where each phase ends when there is a distance of 16kD ·mc between the current position and the
position at the beginning of the phase of v. During a phase the simulated servers move to preserve
the following:

• If ci ∈ inner(v), then ĉi = ci.

At the end of the phase the servers move such that the following holds:

• If ci ∈ inner(v), then ĉi = ci.

• If ci /∈ inner(v), then ĉi is on the boundary of inner(v) such that d(ci, ĉi) is minimized.

We define the following potential: φ = D ·∑k
i=1 d(ci, ĉi). During a phase, the potential decreases

every time ĉi moves to ci by D times the distance ĉi moves. Each time ci moves, φ increases by
at most D times the distance that ci moves. In case for the closest server of K to v, which is
c∗ = ci, to hold ci ∈ inner(v), then ĉi = ci and hence the serving costs of the algorithms are the
same. Otherwise, ci /∈ inner(v), ĉi ∈ outer(v) and hence the serving costs differ at most by a factor
of 3.

We show that during each phase, K has costs of at least Ω(1) ·kD2 ·mc. Consider the movement
of the request from its starting point v to the final point v′. We know that d(v,v′) ≥ 16kD ·mc.
Imagine drawing a straight line between v and v′ and separating it into segments of length mc by
hyperplanes orthogonal to the line. There are now at least 16kD such segments. Every server of K
has two segments adjacent to its own. We call the segments that do not contain a server of K and
are not adjacent to a segment containing such a server unoccupied segments. Since there are 16kD
segments in total and k servers of K , there are at least 11kD unoccupied segments at the beginning
of a phase. Since the maximum movement distance of r is mc, there is at least one request per
segment.

The k servers of K divide the unoccupied segments into at most k+1 many groups of segments
right next to each other. We now analyze the cost of a group of size x. We only consider one
half of the group and argue that the other half has at least the same cost. Requests in the given
x/2 segments can be served the following way: An adjacent server moves into the first y segments
and then serves the remaining x

2 − y segments over the distance. The costs incurred are at least

2.4 Multiple Servers, One Request 57

y ·Dmc +∑
x/2−y
i=1 i ·mc ≥ y ·Dmc +

(x/2−y)2

2 ·mc. This term is minimized by setting y = x
2 −D which

implies costs of at least x
2 Dmc− D2

2 mc. No matter how the 11kD unoccupied segments are divided
into k+1 groups, this gives a total cost of at least Ω(1) · kD2mc.

We can now bound the costs at the end of phase: The argument when ci ∈ inner(v) is the
same as before. Otherwise, φ increases by at most D ·d(ĉi, ĉ′i)≤ 32kD2 ·mc. This yields CK ′ ≤
O(k) ·CK . �

From here on we assume K to be a k-Page Migration algorithm obtained from the transforma-
tion in Proposition 2.4.23. The offline helper and its invariants as stated in Proposition 2.4.7 do not
depend on the simulated algorithm and therefore all insights gained from the corresponding section
are still valid. We use a potential composed of two major parts just as for the unweighted case.

Let ô be an offline server that fulfills the invariants stated in Proposition 2.4.7. The first part of
the potential is then defined as

φ :=

{
4 ·d(â, ô) if d(â, ô)≤ 107548D · kmc

δ 2

4 · 1
δms

d(â, ô)2 +A otherwise

with A := 4 · (107548D · kmc
δ 2 − 1

δms
(107548D · kmc

δ 2)
2).

For the second part, we set

ψ := Y ·D mc

δms

k

∑
i=1

d(ai,ci)

where the online servers ai are always sorted such that they represent a minimum weight matching
to the simulated servers ci. We choose Y = Θ(k

δ 2) to be sufficiently large.
We begin by analyzing ψ , reusing ideas from the proof of Theorem 2.4.21.

Lemma 2.4.24 ∆ψ ≤O(1) ·Y · mc
δms
·CK −D ·∑k

i=1 d(ai,a′i).

Proof. Assume that a∗ = a1. Every other server ai moves towards its counterpart ci, hence

∆ψ ≤ Y ·D mc
δms

k
∑

i=1
(d(a′i,c

′
i)−d(ai,ci))

≤ Y ·D mc
δms

(
d(a′1,c

′
1)−d(a1,c1)+

k
∑

i=2
(d(ci,c′i)−d(ai,a′i))

)
.

First examine the case that ã moves towards its matching partner instead of v′. Then

∆ψ ≤ Y ·D mc

δms
·

k

∑
i=1

d(ci,c′i)−Y ·D mc

δms
·

k

∑
i=1

d(ai,a′i).

Now assume ã= a1 moves towards v′. We have d(a1,a′1)≤min{(1+ δ

2)ms,
1
D(1− δ

2) ·d(ã,v′)}.
We distinguish the following cases with respect to the positioning of the pages of K :

1. d(a∗
′
,v′)≤ d(c∗

′
,v′):

Since we assume D≥ 2, we have

D ·d(a1,a′1) ≤ d(a1,v′)
≤ d(a1,a′1)+d(a′1,v

′)
⇒ D

2 ·d(a1,a′1) ≤ d(c∗
′
,v′).

It follows ∆ψ ≤ Y ·D mc
δms

∑
k
i=1 d(ci,c′i)+Y · mc

δms
·d(c∗′ ,v′)−D ·∑k

i=2 d(ai,a′i).

58 Chapter 2. The Mobile Server Problem

2. d(a∗
′
,v′)> d(c∗

′
,v′) and c∗

′
= c′1:

We know that d(a′1,c
′
1)−d(a1,c′1)≤− 1√

2
·d(a1,a′1) and hence

∆ψ ≤
√

2 · 4D
ε

∑
k
i=1 d(ci,c′i)− 4D

ε
·d(a1,a′1)−D ·∑k

i=2 d(ai,a′i).

3. d(a∗
′
,v′)> d(c∗

′
,v′) and c∗

′ 6= c′1:
We assume c∗

′
= c′2. It must hold a′2 6= c′2 and hence

d(c′2,a
′
2)−d(c′2,a2)≤−min{ms,

1
D
·d(ã,v′)}.

This gives us d(a′1,c
′
1)−d(a1,c′1)+d(a′2,c

′
2)−d(a2,c′2)≤−ε ·d(a2,a′2). It follows

∆ψ ≤
√

2 · 4D
ε
(∑k

i=1 d(ci,c′i)− ε ·d(a2,a′2)−∑
k
i=3 d(ai,a′i))

≤
√

2 · 4D
ε

∑
k
i=1 d(ci,c′i)−D ·∑k

i=1 d(ai,a′i).

�

Lemma 2.4.25 If d(a∗
′
,v′)> d(c∗

′
,v′), then

∆ψ ≤ Y · mc
δms

CK −D ·
k
∑

i=1
d(ai,a′i)− Y−4

2 D mc
δms
·min{ms,

1
D ·d(ã,v′)}.

Proof. Assume that a∗ = a1. Every other server ai moves towards its counterpart ci, hence

∆ψ ≤ Y ·D mc
δms

k
∑

i=1
(d(a′i,c

′
i)−d(ai,ci))

≤ Y ·D mc
δms

(
d(a′1,c

′
1)−d(a1,c1)+

k
∑

i=2
(d(ci,c′i)−d(ai,a′i))

)
.

First examine the case that ã moves towards its matching partner instead of v′. Then

∆ψ ≤ Y ·D mc
δms
·∑k

i=1 d(ci,c′i)−Y ·D mc
δms
·∑k

i=1 d(ai,a′i)

≤ Y · mc
δms

CK −D ·
k
∑

i=1
d(ai,a′i)− (Y −1) ·Dmc

since the server matched to c∗
′
moves the full distance.

Now assume ã moves towards v′. If c∗
′
= c′1, we know that d(a′1,c

′
1)− d(a1,c′1) ≤ − 1√

2
·

d(a1,a′1) and hence ∆ψ ≤ Y ·D mc
δms

∑
k
i=1 d(ci,c′i)−D mc

δms
·∑k

i=1 d(ai,a′i)− Y√
2
·D mc

δms
d(a1,a′1) with

d(a1,a′1) = min{(1+ δ

2)ms,
1
D(1− δ

2) ·d(ã,v′)}.
Otherwise, we assume c∗

′
= c′2. It must hold a′2 6= c′2 and hence d(c′2,a

′
2)− d(c′2,a2) ≤

−min{ms,
1
D ·d(ã,v′)}. This gives us d(a′1,c

′
1)−d(a1,c′1)+d(a′2,c

′
2)−d(a2,c′2)≤− δ

2 ·d(a2,a′2).
It follows

∆ψ ≤ Y ·D mc
δms

(∑k
i=1 d(ci,c′i)− δ

2 ·d(a2,a′2)−∑
k
i=3 d(ai,a′i))

≤ Y ·D mc
δms

∑
k
i=1 d(ci,c′i)−D ·∑k

i=1 d(ai,a′i)− Y−4
2 D mc

δms
·d(a2,a′2).

�

Now consider the case that v′ /∈ inner(o∗
′
). We have d(a∗

′
,v′) ≤ d(o∗a

′
,v′) ≤ d(o∗

′
,o∗a

′
)+

d(o∗
′
,v′)≤ (48960k

δ 2 +1) ·d(o∗′ ,v′). The movement costs are canceled by ∆ψ as in Lemma 2.4.24.
It only remains to bound the possible increase of φ . We use d(â′, ô′)−d(â, ô)≤ (3+ 1020k

δ
) ·mc.

2.4 Multiple Servers, One Request 59

1. d(â′, ô′)≤ 107548D · kmc
δ 2 :

∆φ ≤ 4 ·d(â′, ô′)≤ 8 ·d(o∗′ ,o∗a′)+4 ·d(a∗′ ,v′)≤ (12 · 48960k
δ 2 +4) ·d(o∗′ ,v′).

2. 107548D · kmc
δ 2 < d(â′, ô′):

∆φ ≤ 4
δms

(d(â′, ô′)2−d(â, ô)2)

≤ 4
δms

(d(â′, ô′)2− (d(â′, ô′)− (3+ 1020k
δ

) ·mc)
2)

≤ O(k
δ
) · mc

δms
d(â′, ô′)

≤ O(k2

δ 3) · mc
δms

d(o∗
′
,v′).

In all of the above, the competitive ratio is bounded by O(k2

δ 3) · mc
δms

+Y · mc
δms
· c(K).

Finally, we consider the case v′ ∈ inner(o∗
′
). As in the previous section, whenever d(a∗,v′)>

102970D kmc
δ 2 , we make use of Lemma 2.4.15 to obtain the following result, which then helps us

bound ∆φ :

Lemma 2.4.26 If d(a∗,v′)> 102970D kmc
δ 2 and v′ ∈ inner(o∗

′
), then

d(a′i, ô
′)−d(ai, ô′)≤− δ

8 ms.

Proof. By our construction of the simulated k-Server algorithm, we have d(c′i,v
′) ≤ 33Dkmc ≤

δ 2

2652 ·d(a∗
′
,v′). Furthermore,

d(o∗
′
,o∗a

′
) ≤ d(o∗

′
,a∗

′
)

≤ d(o∗
′
,v′)+d(v′,a∗

′
)

⇔ (1− δ 2

48960k) ·d(o∗
′
,o∗a

′
) ≤ d(v′,a∗

′
).

Hence
d(c′i, ô

′) ≤ d(c′i,r
′)+d(v′,o∗

′
)+d(o∗

′
, ô′)

≤ δ 2

2652 ·d(a∗
′
,v′)+(δ

48 +
δ 2

48960k) ·d(o∗
′
,o∗a

′
)

≤ 0.022δ ·d(a∗′ ,v′)
≤ 0.022δ ·d(a′i,v′)

and with Lemma 2.4.15, d(a′i, ô
′)−d(ai, ô′)≤−1+ 1

2 δ

1+δ
d(â, â′) follows.

In order to bound the movement of ô, we need to show that d(o∗,o∗a)≥ 2 ·51483 kmc
δ 2 . We use

d(a∗,v′) ≤ mc +d(a∗
′
,v′)

≤ mc +d(o∗a
′
,v′)

≤ mc +(1+ δ 2

48960k) ·d(o∗
′
,o∗a

′
)

⇔ 1
1+ δ2

48960k

(d(a∗,v′)−mc) ≤ d(o∗
′
,o∗a

′
).

The bound follows from d(a∗,v′)> 102970 kmc
δ 2 .

From Theorem 2.4.7 we get d(ô, ô′)≤ (1+ δ

8)ms and therefore

d(â′, ô′)−d(â, ô) ≤ −1+ 1
2 δ

1+δ
d(â, â′)+d(ô, ô′)

≤ −(1+ δ

4)ms +(1+ δ

8)ms ≤− δ

8 ms.

�

60 Chapter 2. The Mobile Server Problem

Lemma 2.4.27 If v′ ∈ inner(o∗
′
), then CAlg +∆φ +∆ψ ≤ Y · mc

δms
·CK +2 ·d(o∗′ ,v′).

Proof. 1. d(â′, ô′)≤ 107548D · kmc
δ 2 : First consider the case d(a∗

′
,v′)≤ d(c∗

′
,v′).

With Lemma 2.4.24 we can bound the movement costs of the algorithm. Furthermore, we
use

d(o∗
′
,o∗a

′
) ≤ d(o∗

′
, â′)

≤ d(o∗
′
, ô′)+d(ô′, â′)

≤ δ

48 ·d(o∗
′
,o∗a

′
)+d(ô′, â′)

⇔ (1− δ

48) ·d(o∗
′
,o∗a

′
) ≤ d(ô′, â′)

to get
d(ô′, â′) ≤ d(ô′,a∗

′
)

≤ d(a∗
′
,v′)+d(r′,o∗

′
)+d(o∗

′
, ô′)

≤ d(a∗
′
,v′)+2 · δ

48 ·d(o∗
′
,o∗a

′
)

≤ d(a∗
′
,v′)+ 2δ

47 ·d(ô′, â′)
⇒ d(ô′, â′) ≤ 2 ·d(a∗′ ,v′).

Hence ∆φ ≤ 4 ·d(â′, ô′)≤ 8 ·d(c∗′ ,v′). In total, CAlg +∆φ +∆ψ ≤ Y · mc
δms
·CK with Y ≥ 9.

Otherwise, Lemma 2.4.25 applies which gives us

∆ψ ≤ Y · mc

δms
CK −D ·

k

∑
i=1

d(ai,a′i)−
Y −4

2
D

mc

δms
·min{ms,

1
D
·d(ã,v′)}.

We may either use CAlg +∆φ ≤ 9 ·d(ã,v′)+D ·
k
∑

i=1
d(ai,a′i) or

d(a∗
′
,v′) ≤ d(â′,v′)

≤ d(â′, ô′)+d(ô′,v′)
≤ d(â′, ô′)+2 · δ

48 ·d(o∗
′
,o∗a

′
)

≤ (1+ 2δ

47) ·d(â′, ô′)

gives us

CAlg +∆φ ≤ 6 ·d(â′, ô′)+D ·
k
∑

i=1
d(ai,a′i)

≤ 6 ·91414D · kmc
δ 2 +D ·

k
∑

i=1
d(ai,a′i).

In any case, CAlg +∆φ +∆ψ ≤ Y · mc
δms
·CK with Y ≥Ω(k

δ 2).

2. 107548D · kmc
δ 2 < d(â′, ô′): We show that the condition of Lemma 2.4.26 applies:

d(â′, ô′) ≤ d(a∗
′
, ô′)

≤ d(a∗
′
,a∗)+d(a∗,v′)+d(v′, ô′)

≤ mc +d(a∗,v′)+2 · δ

48 ·d(o∗
′
,o∗a

′
)

≤ mc +d(a∗,v′)+ 2
47 ·d(â′, ô′)

⇔ 45
47 ·d(â′, ô′)−mc ≤ d(a∗,v′)

⇒ 102970D kmc
δ 2 ≤ d(a∗,v′).

2.4 Multiple Servers, One Request 61

Hence, the lemma gives us

∆φ ≤ 4 · 1
δms

(
d(â′, ô′)2−d(â, ô)2

)
≤ 4 · 1

δms

(
d(â′, ô′)2− (d(â′, ô′)+ δ

8 ms)
2
)

= −d(â′, ô′).

Furthermore, we have

CAlg ≤ d(â′,v′)+D ·∑k
i=1 d(ai,a′i)

≤ d(â′, ô′)+d(ô′,o∗
′
)+d(o∗

′
,v′)+D ·∑k

i=1 d(ai,a′i)
≤ d(â′, ô′)+(1+ δ

48) ·d(o∗
′
,v′)+D ·∑k

i=1 d(ai,a′i)

and ∆ψ ≤ Y · mc
δms
·CK −D ·∑k

i=1 d(ai,a′i) due to Lemma 2.4.25. In total, we get CAlg +∆φ +

∆ψ ≤ Y · mc
δms
·CK +2 ·d(o∗′ ,v′).

�

The resulting competitive ratio Y · mc
δms
· c(K)+2 is less than the O(k2

δ 3) · mc
δms

+Y · mc
δms
· c(K)

bound from the former set of cases. Accounting for the loss due to the transformation of the
simulated k-Page Migration algorithm, we obtain the following result:

Theorem 2.4.28 If mc ≥ (1+δ)ms, the algorithm WMS is O(1
δ 4 · k2 · mc

ms
+ 1

δ 3 · k2 · mc
ms
· c(K))-

competitive, where c(K) is the competitive ratio of the simulated algorithm K .

3. Online Facility Location with Mobile Facilities

This chapter deals with a variant of the Facility Location problem, which in our general setting
highlights the aspect of placing new resources into the system to improve access for the clients,
measured by their distance to the nearest facility. This improvement comes at a cost as every new
placed resource induces setup costs (or opening costs in the terminology of Facility Location).

In the Metric Facility Location problem, we are given a set of clients and a set of possible
facility locations which both are part of the same metric space. For each of the possible facility
locations, we are also given an opening cost. The goal is to select a subset of the facility locations
such that the sum of the implied opening costs plus the sum of the distances of each client to
the closest facility is minimized. This basic model was extended to the Online Facility Location
problem [63] in which the clients are not given in advance but arrive over time. In each time step,
new clients must be irrevocably assigned to a facility.

Meyerson showed that it is not possible to achieve a competitive ratio for the online version
that is independent of the number of clients (and therefore time) [63]. This lower bound was later
improved by Fotakis to Ω(logn

log logn), where n is the number of clients [41]. In the same work, it was
shown that this bound is tight for both deterministic and randomized algorithms. Furthermore, the
bound holds even for simple metrics such as the 1-dimensional Euclidean space.

The lower bound constructions of Meyerson and Fotakis are both based on a sequence of clients
which converges towards a point unknown to the online algorithm, but which is the location of
the optimal facility for the offline case. This sequence naturally relies on the order in which the
clients are revealed to the online algorithm to maximize its cost. In fact, Meyerson showed that if
the clients arrive in a uniform random order, there exists a randomized online algorithm with an
expected constant competitive ratio [63].

In our model, we tackle the problem of the specific worst-case sequences from a different
angle: Since the high cost of the online algorithm stems from the placement of facilities on points
that are effectively rendered useless over time, it is only natural to ask whether the performance
of an online algorithm improves asymptotically when it is allowed to make corrections to the
position of its placed facilities. Divékih and Imreh [32] considered such a variant in which the
online algorithm may move the facilities to an arbitrary new position in each time step, without
incurring any additional cost for moving. Their algorithm computes an offline approximation of
the optimal solution in each time step and moves the facilities accordingly. While they achieve a
constant competitive ratio in this scenario, their model also has a major drawback: Since movement
of facilities comes for free, a misplaced facility can be moved to an optimal point without any
disadvantage for the algorithm from the initial misplacement.

We propose a model where the online algorithm may make corrections to the positions of its
facilities, but instead of this being free, it incurs a cost proportional to the distance a facility is
moved. In this way, bigger changes of the configuration of the algorithm are more costly and may
therefore be less advantageous than smaller corrections to the positions. Furthermore, we consider
a variant in which the facilities may not be moved to arbitrary positions but can only be moved

64 Chapter 3. Online Facility Location with Mobile Facilities

a constant maximum distance in each time step. This allows to measure the improvement of the
solution of an online algorithm dependent on the amount of correction it makes in every step, thus
getting a more refined view on the complexity of the problem.

Another difference to the model by Divékih and Imreh is that requests have to be served
instantly as opposed to only counting the connection cost at the end. Our variant therefore also puts
more emphasis on the online aspect of the model, since being able to assign all clients at the end of
the computation seems to contradict the idea that the solution has to be created online.

In addition to the theoretical interest of movement as a refined measure for the complexity, the
extension of the Facility Location problem by movement might also be of independent interest
for some practical applications as mentioned in the introduction. In these scenarios we consider
resources that are mobile in the sense that they can be reconfigured to better fit incoming requests
or are actually mobile in a physical sense. An example for the latter case is the usage of mobile
relay stations to provide network access in certain disaster scenarios, where the commonly used
infrastructure in the area has collapsed. For theses cases, our algorithm presents a solution on how
to best approximate an optimal, static configuration.

Chapter Basis
The model, algorithms and analysis in this chapter are based on the following publication:

Björn Feldkord and Friedhelm Meyer auf der Heide. Online Facility Loca-
tion with Mobile Facilities. In: Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 373–381, 2018.
Cf. [36].

3.1 Formal Model

We first define the Facility Location problem in the Euclidean space (of arbitrary dimension). The
input is a sequence of requests (v1, . . . ,vT) that are represented as points in the Euclidean space. A
feasible solution is a non-empty subset F of facilities. For a facility f ∈ F , p(f) denotes the position
of f in the Euclidean space. The cost of the solution F is c(F) = |F | ·c f +∑

T
t=1 min f∈F d(p(f),rt),

where d(x,y) denotes the Euclidean distance between two points x and y, and c f is a constant called
the opening cost of a facility. Our goal is to find a set F minimizing c(F).

In the Online Facility Location problem, the requests (v1, . . . ,vT) arrive over time and each
request must be served by connecting it to an open facility in that time step: i.e., if Ft represents the
set of open facilities in step t, the cost for serving the request vt is min f∈Ft d(p(f),vt). The request
vt+1 is revealed to the online algorithm only once Ft is fixed.

In our augmented variant of the Online Facility Location problem, an online algorithm may
move currently open facilities to a different position in each time step. In the unlimited version, the
new position of a facility may be arbitrary, while in the limited version, the new position may only
have a distance from the old position of at most a constant m. A solution now formally consists
of sets F1 ⊆ F2 ⊆ . . .⊆ FT and positions pt(f) for all f ∈ Ft , where d(pt(f), pt+1(f))≤ m for all
t with f ∈ Ft in the limited movement variant. The total cost of a solution can be calculated as
follows:

c(F1, . . . ,FT , p1, . . . , pT) = |FT | · c f +
T

∑
t=1

min
f∈Ft

d(pt(f),vt)+
T−1

∑
t=1

∑
f∈Ft

D ·d(pt(f), pt+1(f))

for some constant D≥ 1. The competitive ratio of an online algorithm in this resource augmentation
setting is defined as the worst-case ratio of its cost against a static offline solution, i.e., the adversary
may not utilize the movement of facilities.

3.2 Summary of Results 65

3.2 Summary of Results
We present randomized online algorithms for the two variants of the problem and analyze their
competitive ratios against an oblivious adversary. Our results for the real line as a metric are
as follows: For the case of unlimited movement, we achieve an expected competitive ratio of
O(logD

log logD). In the case of limiting the movement of a facility to some constant m in each time step,

we achieve an expected competitive ratio of O(max{ log(c f/m)
log log(c f/m) ,

logD
log logD}). We extend our result to

the Euclidean space of arbitrary dimension, where we achieve a competitive ratio with an additional
additive O(

√
k) term, where k is the number of facilities in the optimal solution. The algorithms

are the same for both the real line and the Euclidean space of higher dimensions, but the analysis
is different in a key point. It explicitly uses the geometry of the line to achieve the better result
for that case, while the analysis for the general dimension approaches the problem from a more
combinatorial aspect.

Finally, we give lower bounds for both the unlimited and limited movement case, which shows
that our algorithms are asymptotically optimal for the line. As in the original Online Facility
Location problem, these lower bounds hold even in the case if there is only a single facility in the
optimal solution.

3.3 Algorithms
In this section, we present randomized algorithms for our augmented Online Facility Location
problem. We first give a technical overview explaining the main ideas of our algorithms and how
they are reflected in the analysis. Afterwards, we present an algorithm for the case of unlimited
movement on the real line and its analysis in detail. We extend this algorithm to the case of limited
movement and to the Euclidean space of higher dimensions in the subsequent sections, reusing
many ideas from the first case for the analysis.

Note that due to the cost function for moving facilities, the algorithm by Divékih and Imreh [32]
does not achieve an asymptotically optimal competitive ratio if D is large. Their algorithm, called
OptFollow (OFW), computes the optimal solution in every time step and moves its facilities
accordingly if it has as many or less facilities than the optimum. If the algorithm has already
more facilities than the optimal solution, it moves them to the optimal solution of the respective
k-median problem, where k is the number of currently owned facilities. We show that this strategy
is Ω(D)-competitive even on the line.

Theorem 3.3.1 The OFW algorithm cannot achieve a better competitive ratio than 1
2(1+

D
4) on

the real line.

Proof. We construct the following input sequence by identifying points on the line with real
numbers: We create a total of T requests where the i’th request appears at position c f

2i . The optimal
solution has a cost less than 2c f which can be achieved by placing a single facility at point 0.

The OFW algorithm places a facility at point c f
2 in the first time step, which induces cost c f .

Since the optimal cost is less than 2c f , OFW will never construct a second facility. For T ≥ 4 the
optimal solution w.r.t. the input so far, after the T ’th request, will place a single facility at a point
identified with a real number at most c f

4 . Hence the OFW algorithm will move its facility by a
distance of at least c f

4 , inducing costs D · c f
4 . The lower bound directly follows from comparing the

costs of the two solutions. �

This lower bound illustrates that the high movement costs make the approach of always moving
the current optimal solution is infeasible. In the upcoming section we present our approach which
solves this problem and in addition only makes local changes to a solution in every time step.
Hence, it does not require the computation of an offline solution in every time step.

66 Chapter 3. Online Facility Location with Mobile Facilities

3.3.1 Technical Overview

When considering the lower bound constructions for the classical Online Facility Location problem
in [63, 41], we observe that they rely on an input sequence that converges towards a (previously
unknown) point which is optimal for the offline algorithm (similar to the sequence used in the proof
of Theorem 3.3.1). The online algorithm cannot place facilities in points "ahead" in the sequence
(since subsequent points are randomly determined) and therefore incurs significantly higher costs
by requiring the placement of many facilities along the convergence path.

Our first main idea to circumvent the lower bound constructions is to move the facilities along
the convergence path rather than placing new ones. In accordance with our cost function for moving
facilities, we regard the requests associated with one facility as an instance of the Mobile Server
problem. In order to create those instances, we divide the space as follows: Whenever we place a
new facility, we remember its original location (called facility origin) and divide the given space
in such a way that each point is associated to the closest facility origin. A facility will serve all
requests on points associated to its origin by moving a 1/D fraction towards them. This resembles
the algorithm for the Mobile Server problem presented in the previous chapter.

Assume for now that we treat all requests in the described way. The problem of our division of
the space is that it might not be the same as in the optimal solution and therefore requests that the
online algorithm regards as part of the same Mobile Server problem instance are served by different
facilities in the optimal solution. Hence when referring to the optimal solution in our virtual Mobile
Server problem, we would have an offline solution that switches positions without incurring any
costs. It is clear that no online algorithm can achieve a bounded competitiveness against such an
adversary.

Although guessing the optimal division of the space seems hard at first, we show that we
can approximate the proper division during the execution fast enough by randomly placing new
facilities at current requests where the probability to place a new facility is proportional to the costs
that would otherwise occur by serving this request. We analyze this placement strategy by defining
so-called prohibited areas for pairs of facilities. For a pair of two facilities o and o′ in the optimal
solution, the prohibited area of o′ to o represents all points that are much closer to o′ than o. These
points should not be served by a facility of the online algorithm for which the origin is placed near
o, since in this case the serving costs for the online algorithm would be much higher than for the
optimal solution. We show that a facility of the online algorithm associated to o will, after a small
amount of requests, no longer serve requests within the prohibited area of o′ since a new facility
is then placed within that area. The total costs for this separation of optimal facilities are bound
by explicitly utilizing the structure of the solution in the 1-dimensional case. For the Euclidean
space of higher dimensions, we need a more complex, combinatorial argument to achieve a better
bound than the trivial bound that can be achieved by simply counting the maximum costs for the
separation for each pair of optimal facilities. This simple counting would only result in a bound of
O(k), where k denotes the number of optimal facilities.

Now assume we have properly separated the optimal facilities from one another. If we use the
ideas described so far for serving the requests as part of a virtual Mobile Server problem instance,
we would obtain an O(D)-competitive algorithm where the worst case essentially occurs when a
facility is placed far away from an optimal facility and has to be moved all the way towards the
optimal point (cf. the lower bound for the OFW algorithm, Theorem 3.3.1). To further improve
the algorithm, we want to utilize the movement only for requests that are close to the optimal
facility. We achieve this by dividing the requests into two categories called large and short, which
is determined by their distance to the closest facility origin of the online algorithm. Short requests,
i.e., requests that are close to a facility origin, are treated as part of a Mobile Server problem
instance and are therefore served by a mobile facility that moves towards the request as described
above. Large requests are served by an additional static facility that never moves and is located at

3.3 Algorithms 67

the corresponding facility origin. With this categorization of the requests we reduce the amount
of movement done by facilities and obtain a competitive ratio of O(logD

log logD) for the real line. In
Section 3.4, we show that this is asymptotically the best possible ratio achievable by any algorithm.

3.3.2 A Randomized Algorithm for Unlimited Movement
We present a randomized online algorithm for the real line that uses unlimited movement of the
facilities. Both clients and facilities will be denoted as real numbers corresponding to a point on the
line. For two points x 6= y, we say that x is to the left of y if x < y, otherwise x is to the right of y.

During the execution, our algorithm maintains a set of facility origins F ⊆R. Whenever a new
facility is placed at a point f by the algorithm, f will be added to F . We say a point x ∈ R belongs
to f ∈F if d(f ,x)≤ d(f ′,x) for all f ′ ∈F .

In the further description of the algorithm, we refer to placing a new facility origin at point
f . In these cases, the following happens: The algorithm places one static facility at f , which will
never be moved, and a mobile facility at f , which is assigned to the points that belong to f . Hence
for every f ∈F there exist 2 facilities in the solution of the online algorithm.

Algorithm 4 — Unlimited Algorithm. Let v be a request and f ∈F such that v belongs to f .
We say v is short if d(f ,v)≤ 2 c f

D , otherwise we say that v is large.
Upon arrival of a request v, the online algorithm determines f ∈F such that v belongs to f . If
v is a large request, we set the servicing facility to the static facility located at f . If v is short,
the servicing facility is the mobile facility assigned to the area of f . Let a be the position of the
servicing facility. Place a new facility origin with probability d(a,v)

17c f
on v. If no new facility was

placed on v, then either service v directly if a is static (v is large) or move a a distance of d(a,v)
D

towards v and then service v if a is mobile (v is short).

In the following, we analyze the competitive ratio of the online algorithm on the basis of
the ideas from the previous section. The costs for short and large requests can by analyzed
independently of one another.

Lemma 3.3.2 The cost of the online algorithm for large requests are at most O(logD
log logD) times

the cost of the optimal solution.

Proof. Consider a facility o placed by the optimal offline algorithm. We refer to the interval of o as
all points for which o is the closest facility of the optimal solution. Define the inner zone of o as
all points in its interval that have a distance less than c f

D to o. The set of outer zones of o consists
of zones 1, . . . ,h where each zone j contains the points in the interval of o that are at a distance in
[

c f
x j ,

c f
x j−1) from o. We set x := logD

log logD and h := Θ(logD
log logD) such that xh = D. Note that each point in

the interval of o now either belongs to the inner zone or one of the outer zones of o.
For each of the zones of o, there exists a facility origin of the online algorithm in the respective

zone after expected cost at most 17c f incurred by requests within that zone. After a facility origin
is placed within the inner zone of o, large requests can only appear in outer zones since the origin
has a distance of at most c f

D to o and a large request must have a distance of at least 2 c f
D to every

origin. For the outer zones of o where a facility origin is already placed, the distance from a request
v to the origin f ∈F is at most 2 ·d(o,v)+ x ·d(o,v) = O(logD

log logD) ·d(o,v). Combined with the
fact that there are at most h+1 zones for each optimal facility this implies a competitive ratio of
O(logD

log logD) for the large requests. �

We further divide the short requests by their distance to their respective optimal facility. The
competitive ratio on short requests that are far from the optimal facilities is easy to obtain. Note
that the movement in these cases would not be necessary, since the movement only improves the

68 Chapter 3. Online Facility Location with Mobile Facilities

performance when the facility origin is already reasonably close to the optimal facility (i.e., the
convergence point in the lower bound sequences), but also does not increase the cost of any request
by more than a constant factor.

Lemma 3.3.3 Consider the short requests served by a mobile facility of the online algorithm
belonging to a facility origin with a distance of at least 4 c f

D to the nearest optimal facility. The
cost for serving these requests is at most O(1) times the cost of the optimal solution.

Proof. Consider a facility origin f with d(o, f)≥ 4 c f
D , where o is the closest facility in the optimal

solution to f . For all short requests served by a mobile facility assigned to this origin, the optimal
costs will be at least 2 c f

D . On the other hand, the expected costs of the online algorithm will be
no more than O(

c f
D) for each of those requests by definition. Note that this is also true for short

requests that are served by a different optimal facility o′ than o since the space is divided equally
between o and o′ and hence d(o′, f)≥ d(o, f). �

We finally turn our attention to short requests that occur in close proximity to a facility of the
optimal solution. As explained in the previous section, those requests should not be served by a
facility of the online algorithm that originates in the interval of a different optimal facility, since in
that case the costs of the online algorithm are much higher than the costs of the optimal solution.
We formally classify this type of requests as follows: For optimal facilities o and o′, we define the
prohibited area of o′ to o to contain all points v for which d(o′,v)≤ 1

8 ·d(o,o′) holds. It is easy to
see that if there is a facility origin within the prohibited area of o′ to o, no facility with origin in the
interval of o will serve a request in the prohibited area of o′ to o. If this is the case, we say that o′ is
separated from o.

Consider a facility origin f in the interval of o. We call a request v in the prohibited area of o′

to o for which f is the closest facility origin a prohibited request. The concepts of prohibited areas
and requests are illustrated in Figure 3.1.

Figure 3.1: The marked interval on the right contains the prohibited area of o′ to o. If the request v
is served by a facility with origin f (indicated by the arrow), then v is a prohibited request.

Lemma 3.3.4 Consider the short requests served by a mobile facility of the online algorithm
belonging to a facility origin with a distance less than 4 c f

D to the nearest optimal facility. The
cost for serving these requests are at most O(1) times the cost of the optimal solution excluding
prohibited requests.

Proof. For each mobile facility, we define an instance of the Mobile Server problem consisting
of all requests served by that facility. Consider a mobile facility with origin in the interval of
o. We may assume that all requests, which are not in the prohibited area of a different facility
o′ to o, are served by o with only a constant factor loss, since for a request v served by o′ it
holds d(o,v)≤ d(o,o′)+d(o′,v)≤ 9d(o′,v). Let a be the current position of the mobile facility
of the algorithm for this instance. We define the potential associated with the instance to be
φ = 4D ·d(o,a).

When a mobile facility is placed along with a new facility origin on a point v, the potential
φ is initialized with 4D ·d(o,v). Since d(o,v)≤ 4 c f

D , the expected cost for placing a new facility

3.3 Algorithms 69

when v is served by a facility at a is now d(a,v)
17c f
· (c f +4D ·d(o,v))≤ d(a,v). In order to apply the

potential argument properly, the change in potential must be accounted for every time the respective
mobile facility is moved, including the times when it does so to serve prohibited requests. We
show that including the potential in these costs does not increase them by more than a constant
factor. When a mobile facility is moved from a point a to a′ to serve any request v, we get
∆φ = 4D · (d(o,a′)−d(o,a))≤ 4D ·d(a,a′)≤ 4d(a,v). Hence, including the potential argument
does not increase the costs of any request by more than a constant factor.

We now consider the requests that are part of one virtual Mobile Server problem instance but
not prohibited. When the algorithm serves a request v with a facility that is moved from a to a′, the
expected costs are CAlg ≤ D ·d(a,a′)+d(a′,v)+d(a,v), while COPT = d(o,v). First consider the
case that d(a′,v)> d(o,v). The potential difference is ∆φ = 4D · (d(o,a′)−d(o,a))≤−4d(a,v)
since a moves towards v on a line and hence o either has to be located between a′ and v or v is
located between a′ and o. The costs of the algorithm can be estimated by CAlg ≤ D · 1

D d(a,v)+
d(a′,v)+d(a,v)≤ 3 ·d(a,v) and hence CAlg +∆φ ≤ 0.

If d(a′,v)≤ d(o,v), we distinguish the following cases:
If d(o,a′)−d(o,a)≤−1

2 d(o,a), then ∆φ ≤−2D ·d(o,a) and CAlg≤ 2d(a,o)+3d(o,v), hence
CAlg +∆φ ≤ 3COpt .

Else, d(o,a) < 2d(o,a′) holds which implies ∆φ ≤ 4D · d(a,a′) ≤ 4(d(a,o) + d(o,v)) ≤
20d(o,v) and CAlg ≤ 5d(o,v). �

So far, we have bounded all costs either incurred by large requests or by short requests not
part of the prohibited area of an optimal facility o′ to the optimal facility o in whose interval the
servicing facility is originating. For short requests that remain to be analyzed, i.e., the prohibited
requests, the cost of the online algorithm may be much higher than the optimal cost for the same
requests. However, we show that when considering all such requests, the total cost is bounded
within a constant factor of the costs for facilities in the optimal solution.

Lemma 3.3.5 The expected costs for prohibited requests is bounded by O(k · c f) on the real
line, where k is the number of facilities in the optimal solution.

Proof. Consider two optimal facilities o and o′. W.l.o.g. assume that o′ is located to the right of
o. After an expected cost of at most O(c f) for requests in the prohibited area of o′ to o a facility
origin is placed in that area, preventing any facility originating in the interval of o or to the left of it
from entering the prohibited area of o′ to o again.

Now number the optimal facilities o1, . . . ,ok from left to right: i.e., if oi refers to a position
expressed as a real number we have o1 < o2 < .. . < ok. Consider facilities oi,o j with i < j for
which the algorithm has a facility origin placed in the intervals of those facilities but no facility of
the algorithm originates in the intervals of oi+1, . . . ,o j−1. We define the following type of events:

(a) The algorithm places a facility origin in the interval of a facility o`, ` ∈ {i+1, . . . , j−1}.

(b) The algorithm places a facility origin in the prohibited area of oi to o j or vice versa.

Note that we can view these events as being charged by requests in the respective intervals or
prohibited areas. After charging the event with an expected cost of O(c f), it then actually occurs.

For events of type (a), we observe that after an expected cost of O(c f) in the interval of o`
overall, a facility is placed in this interval. When that is the case, facilities originating from intervals
of o > o` no longer serve requests in intervals of facilities o′ < o`. For events of type (b), there are
two of them in such a sequence and only occur once as argued above. Furthermore, any event of
type (a) stops the events from happening. Hence, after an event of type (a) occurs, we can split the
sequence of facilities in two parts oi, . . . ,o` and o`, . . . ,o j and apply the same arguments.

70 Chapter 3. Online Facility Location with Mobile Facilities

It follows that regarding the complete sequence o1, . . . ,ok, event (a) occurs at most k times and
between each of such events at most 2 events of type (b) occur. Hence the costs for the events of
type (a) and (b) on expectation sum up to at most 3k ·O(c f). �

Summarizing all lemmas in this section, we have bounded the costs of the online algorithm for
all possible types of requests independently and can hence conclude the analysis.

Theorem 3.3.6 The online algorithm stated above is O(logD
log logD)-competitive on the real line.

It is noteworthy that our algorithm is in fact O(1)-competitive on short requests, implying that
we have an overall O(1)-competitive algorithm if all requests are at a distance of at most O(

c f
D)

from the nearest optimal facility. In contrast, the lower bound for the classical Online Facility
Location problem would still hold in that scenario for a sufficiently large number of clients T . In
fact, the distances in the lower bound decrease with growing T .

3.3.3 Extension to Limited Movement
We extend the algorithm from the previous section to utilize only a maximum moving distance of
m in each time step. The algorithm considers two major cases: If D is large, then the algorithm
works as in the unlimited case. Else, we need to alter the definition of small and large requests to fit
the restriction of the movement for handling the short requests.

Algorithm 5 — Limited Algorithm. We classify a request v by its distance to the closest facility
origin f ∈F . The classification differs based on the parameters: If D≥ c f/m we use the same
classification as in the unlimited case, namely v is short if d(f ,v)≤ 2 c f

D and large otherwise. If
D < c f/m we classify v as short if d(f ,v)≤ 2m and large otherwise. The servicing facility of v
is either the static facility at f if v is large or the mobile facility assigned to the area in which v
lies if v is short. Let a be the position of the servicing facility. Place a new facility origin with
probability d(a,v)

17c f
on v. When servicing a short request v from a mobile facility at point a, we

move the facility by a distance of d(a,v)
2D towards v and then service the request. Large requests

simply get served by the static facility without any movement.

Note that the movement of the algorithm is possible in all cases under the restriction of a
maximum movement distance m since v is short:
If D≥ c f/m then d(a,v)

2D ≤ 2c f
2D2 ≤ m.

If D < c f/m then d(a,v)
2D ≤ 2m

2D ≤ m (since D≥ 1).

Theorem 3.3.7 The online algorithm with limited movement stated above is
O(max{ log(c f/m)

log log(c f/m) ,
logD

log logD})-competitive on the real line.

Proof. The structure of the proof follows the analysis of the previous section. We consider only the
case D < c f/m for which we need to show that the algorithm is O(log(c f/m)

log log(c f/m))-competitive. In case
D≥ c f/m, the algorithm works the same as in the unlimited case and hence Theorem 3.3.6 directly
gives the desired bound.

We begin by analyzing only large requests, i.e., requests with a distance greater than 2m to their
closest facility origin. The analysis works essentially the same as in Lemma 3.3.2. Consider an
optimal facility o. Requests with a distance of at most m to o incur expected costs of at most O(c f)
before a facility origin is placed within that area and hence no further large requests appear. The
other points can be divided into h = Θ(log(c f/m)

log log(c f/m)) outer zones, where the i’th zone contains all

points within a distance [
c f
xi ,

c f
xi−1) from o where x = log(c f/m)

log log(c f/m) . After placing a facility origin in an

3.3 Algorithms 71

outer zone of o, it is clear that all large requests in the same outer zone can be served for at most 3x
times the optimal cost. From this, the bound for large requests follows.

We partition short requests into multiple instances of the Mobile Server problem as before: i.e.,
all requests served by one mobile facility form an instance. There are two kinds of instances we
need to consider: If the mobile facility has its origin at a distance at least 4m from the optimal
facility o, then the optimal solution has costs of at least 2m for each request and the costs of the
algorithm are at most O(m) (cf. Lemma 3.3.3).

For instances where the origin is a distance less than 4m from o, we use a potential argument
similar as in the proof of Lemma 3.3.4: Let a be the current position of the mobile facility. The
potential is defined as φ(o,a) = 4D · d(o,a). For the initial potential it holds φ0 ≤ 4Dm ≤ 4c f ,
hence the costs for placing a new facility does not increase more than a constant factor. The analysis
for requests that are part of the instance served by the mobile facility outside of prohibited areas of
other facilities to o works as in Lemma 3.3.4. The bound on costs for prohibited requests can also
be derived exactly as in the former case (Lemma 3.3.5). In total, we have shown that the online
algorithm is O(1)-competitive on short requests and O(log(c f/m)

log log(c f/m))-competitive on large requests,
implying the desired bound. �

3.3.4 Extension to Higher-Dimensional Spaces

In this section, we turn our attention to the Euclidean space of higher dimensions. We use the
same algorithms as before. Note, that most of the arguments presented in Sections 3.3.2 and 3.3.3
still hold in this case. However, it should be obvious that the arguments presented in the proof
of Lemma 3.3.5 no longer apply since they make explicit use of the linear structure of the space.
Hence we present a new bound of the costs incurred by prohibited requests that relies more on
the combinatorial aspects of the separation taking place over time rather than the structure of the
underlying space.

Lemma 3.3.8 The expected costs for prohibited requests is bounded by O(k3/2 · c f), where k is
the number of facilities in the optimal solution.

Proof. For two optimal facilities o and o′ we write o | o′ if an online facility origin is located in the
prohibited area of o′ to o, i.e., o is separated from o′. Recall that this implies that no prohibited
requests in the interval of o′ will be served by facilities with their origin in the interval of o. We use
the same notation with sets of facilities, in which the separation holds pairwise.

Consider the optimal facilities o1, . . . ,ok sorted by their distance to o1, such that d(o1,o2)≤
d(o1,o3)≤ . . .≤ d(o1,ok). Now consider a request v which is served by an online facility associated
to oi (meaning the closest optimal facility to its origin is oi). Let o1 be the closest optimal facility
to v and let v be located in the prohibited area of o1 to oi. Furthermore, consider the minimal j ≤ i
such that v lies within the prohibited area of o1 to o j.

Now consider an optimal facility o` with j−1≥ `≥ 2. If d(o`,v)≥ 1
8 ·d(oi,o`), then d(oi,v)≤

9d(o`,v)≤ 9(d(o`,o1)+d(o1,v))≤ 92 ·d(o1,v). Hence we may still assume that v is served by oi

in the optimal solution with the loss of only a constant factor. If on the other hand no such ` exists,
then d(o`,v)< 1

8 ·d(oi,o`) and hence if a facility origin is placed on v, online facilities associated
to oi will no longer serve requests located in the prohibited area of o` to oi for all j−1 ≥ ` ≥ 2.
We assume this to be the case from here on.

We collect the impacts of a new facility origin being placed on v. Most obviously, all o` with
`≥ j are now separated from o1, i.e.,

{o j,o j+1, . . . ,oi, . . . ,ok} | o1. (3.1)

72 Chapter 3. Online Facility Location with Mobile Facilities

Additionally, as argued above, we get

oi | {o1, . . . ,o j−1}. (3.2)

The position of v in relation to the facilities is depicted in Figure 3.2.

Figure 3.2: A depiction of an event as described in (3.1) and (3.2). The circles mark the prohibited
areas of o1 to the other facilities indicated by their labels.

We refer to the placement of such a facility origin as an event, and each request that has the
potential to trigger such an event due to its location is referred to as contributing to an event. After
expected costs of O(c f) incurred by requests contributing to any of the events characterized above,
one the events occurs.

We now collect these type of events in a k×k matrix B, where each entry bi j represents an event
in the area of o j served from a facility originating in the area of oi. Note that the implied ordering
of the facilities within the matrix does not correspond to the ordering used to describe the events as
above, since that ordering may be different in each of the events (it depends on the distances to
o j). Each entry bi j ∈ {1, . . . ,k−1} represents the number of facilities oi separates itself from in the
respective event, i.e., the number of elements on the right side of (3.2). If the entry is 0 there was
no such an event. Since oi can separate itself from each facility only once, the sum of entries in a
row is at most k−1. We say that each oi has a budget of k−1 and each element bi j draws from the
budget of oi.

Furthermore, each number in {1, . . . ,k−1} can only appear once per column. This is since
each entry bi j in column j implies that k−bi j facilities are separated from o j after the respective
event (the elements on the left side of (3.1)). Each event, however, must increase the number of
facilities separated from o j by at least 1, since at least oi separates itself from o j.

If we consider the budget of all facilities to be k · (k−1) we can derive that one event draws a
total budget of bi j. Since each bi j can appear at most k times, the number of non-zero entries is
maximized by first choosing k elements to be 1, then k elements to be 2, etc. The total budget is
spent after O(

√
k) rounds of this assignment, yielding a total of O(k3/2) entries that are not 0. �

Utilizing the new bound on prohibited requests we achieve the following result for our algo-
rithms in the Euclidean space of arbitrary dimension.

3.4 Lower Bounds 73

Theorem 3.3.9 The limited algorithm is O(logD
log logD +

√
k)-competitive in the unlimited case and

for a maximum moving distance of m the limited algorithm is O(max{ log(c f/m)
log log(c f/m) ,

logD
log logD}+

√
k)-

competitive in the Euclidean space of arbitrary dimension, where k denotes the number of optimal
facilities.

Proof. We sort the requests into categories as before and collect the results for each of them. Large
requests can be analyzed as in Lemma 3.3.2 for the unlimited case and as in Theorem 3.3.7 for the
limited case. For short requests that are served by a facility with origin more than a distance 4 c f

D (or
4m in the limited case) from the nearest optimal facility we may apply the analysis of Lemma 3.3.3
and for short requests that are not prohibited we use Lemma 3.3.4. Finally, for prohibited requests
we bound the costs via Lemma 3.3.8. �

3.4 Lower Bounds
In this section, we provide lower bounds on the competitive ratio for randomized algorithms against
oblivious adversaries. The results illustrate that our algorithms from the previous section achieve
an asymptotically tight competitive ratio in both the unlimited and limited movement versions on
the real line.

Both lower bounds closely follow the structure of the original lower bound by Fotakis [41]
and utilize Yao’s Min-Max Principle [77]: i.e., we construct a randomized sequence of demands
independently of a deterministic online algorithm processing the input. We construct complete
binary trees as an underlying metric where the distances are chosen in such a way that utilizing the
movement becomes essentially useless for the online algorithm. We show that such trees can be
embedded onto the real line with all necessary properties staying intact.

Figure 3.3: An illustration of the tree used in Theorem 3.4.1 and an example sequence. The
construction is similar to the lower bound in [41].

Theorem 3.4.1 No randomized algorithm whose competitive ratio does not depend on T can be
better than Ω(logD

log logD)-competitive even on the real line and against an oblivious adversary.

74 Chapter 3. Online Facility Location with Mobile Facilities

Proof. We construct a complete binary tree with depth x := b logD
log logDc. The distance between the

root and its children is c f/x and the distance between nodes at level i− 1 and nodes at level i is
c f/xi. We choose a simple path v0, . . . ,vx−1 from the root v0 to a leaf vx−1 by succinctly choosing a
child vi+1 of vi uniformly at random. The input sequence is divided into x phases, where in phase
i∈ {0, . . . ,x−1} there are xi requests on vi. The total number of requests is hence ∑

x−1
i=0 xi ≤ xx ≤D.

The optimal solution can place a facility at vx−1 and pays at most c f +∑
x−2
i=0 xi ·∑x−1

j=i+1
c f
x j ≤ 3c f .

Figure 3.3 shows the constructed tree and an example for the input sequence.
Let Tv be the sub-tree rooted at node v. Consider an online algorithm at the end of phase

i ∈ {0, . . . ,x−2}. If the algorithm has not placed a facility in Tvi or on the edge (vi−1,vi), the costs
are at least xi · c f

xi = c f . Otherwise, if the algorithm placed a new facility within Tvi , it will not be
part of Tvi+1 with a probability of at least 1/2. Hence, the costs for facilities not in Tvi+1 are at least
c f/2. Finally, if the algorithm has moved a facility by a distance δ , it holds for the costs D ·δ ≥ xx ·δ .
Hence moving a facility in order to reduce the costs for the requests does not pay off even if it
reduces the costs of all requests by the amount the facility is moved. We conclude that for every i,
the online algorithm pays Ω(c f) for requests and facilities not in Tvi+1 . It follows that the costs of
the online algorithm are Ω(x · c f) which implies the competitive ratio on the given tree metric.

It remains to describe how to embed the tree onto the real line such that all necessary properties
for the lower bound are preserved. We choose the same embedding as in [41] which puts the tree
root at point 0, and succinctly maps the children of a node v at level i which is located at position
pv to positions pv +

c f
xi+1 and pv− c f

xi+1 . With this embedding it was shown in [41] that no pairwise
distance increases and hence the value of the optimal solution does not increase. Furthermore
the relevant distances from the algorithm’s perspective are maintained in the classical setting, i.e.,
without the option to move a facility. Since the number of requests is the same, moving a facility
any distance only increases the overall cost. It follows that the arguments from above still hold in
the embedding. �

Theorem 3.4.2 No randomized algorithm whose competitive ratio does not depend on n and
whose movement is restricted to m per time step can be better than Ω(log(c f/m)

log log(c f/m))-competitive.

Proof. We construct a similar binary tree as in the proof of Theorem 3.4.1 where the distance

between nodes at level i− 1 and i is 2 c f
xi with x := b log

√
c f/m

log log
√

c f/m
c. The input sequence is again

constructed by choosing a simple path v0, . . . ,vx−1 from the root v0 to a leaf vx−1 by succinctly
choosing a child vi+1 of vi uniformly at random. The input sequence is divided into x phases where
in phase i ∈ {0, . . . ,x−1} there are xi requests on vi. The optimal solution can place a facility at
vx−1 and pays at most 6c f .

Let Tv be the sub-tree rooted at node v. Consider an online algorithm at the end of phase
i ∈ {0, . . . ,x−2}. If the algorithm has not placed a facility in Tvi or on the edge (vi−1,vi), the costs
are at least xi ·2 c f

xi
= 2c f . Otherwise, if the algorithm placed a new facility within Tvi , it will not be

part of Tvi+1 with a probability of at least 1/2. Hence, the expected costs for requests and facilities
not in Tvi+1 are at least c f/2.

Finally, we have to argue that movement does not help the algorithm. Consider the shortest
edge, which has length 2 c f

xx−1 ≥ 2√m · c f . On the other hand, there are at most xx requests in total
and xx ·m≤√m · c f . Hence, over the course of the whole instance, a facility cannot even traverse
half of the shortest edge in the tree. Movement can therefore reduce costs for the algorithm by at
most a factor 2. The embedding onto the real line works the same as in Theorem 3.4.1 and the
lower bound holds using the same arguments. �

Note, that the lower bound in Theorem 3.4.1 also holds for the limited movement case. Hence,
the lower bound for online algorithms becomes the maximum of both presented bounds.

4. Conclusion & Open Problems

We will first recap the results from the previous chapters and comment on potential direct impro-
vements to these results. We will also mention direct extensions to the models discussed in this
thesis. Afterwards, we will mention some more general extensions to the models that would cover
a broader range of aspects of our resource allocation scenario.

For the Mobile Server problem, we have seen that a simple, deterministic algorithm is sufficient
to get an almost optimal competitive ratio in the case of k = 1. For the Euclidean space of dimension
1, we have an asymptotically optimal competitive ratio that cannot be beaten even by a randomized
algorithm against an oblivious adversary. For the Euclidean space of higher dimensions, we miss
the optimal competitive ratio by only a factor of 1/

√
δ . We conjecture that this remaining gap

between the upper and the lower bound can be closed towards the lower bound, but it remains an
open problem to design an improved online algorithm or provide a better analysis to achieve the
better competitive ratio.

For the case of k ≥ 2, we have given deterministic algorithms that transform solutions for the
k-Server and k-Page Migration problems into solutions for the Mobile Server problem. While the
competitive ratio of our solution depends only on the parameters that also appear in the lower
bounds, there still is an asymptotic gap between the upper and lower bounds for the problem. The
question in which direction the gap can be closed is related to the question of the deterministic
upper bound for k-Page Migration: Not only would an O(k)-competitive algorithm for k-Page
Migration directly improve the bound for D > 1, it could also give an idea how to improve the
analysis of the greedy step in our algorithm, such that the costly transformation of the simulated
algorithm would no longer be needed. This would potentially reduce the upper bound by another
factor of k. On the other hand, if Ω(k2) is a lower bound for k-Page Migration, this carries over
to our model as well. The fact that for mc < ms we achieve a competitive ratio nearly equal to
the simulated algorithm suggests that the method of mainly following a simulated algorithm does
not inherently lead to an asymptotic loss in the competitive ratio. However, direct solutions could
still enable a different analysis, which could lead to improvements in the ratio over algorithms
which utilize the simulation. The high constants in our proofs are partially due to allowing easier
argumentation in certain segments of the proof. There is however also great potential in reducing
constants by trying to extend the potential analysis to operate in longer phases instead of doing a
step-by-step analysis, similar to as it is done in the online algorithms for Page Migration.

If we allow randomization, we can get O(polylog(k))-competitive algorithms against oblivious
adversaries for both the k-Server problem [58] and, by the transformation of Bartal et al., for the
k-Page Migration problem [11]. As our construction is entirely deterministic, apart from potentially
the simulated algorithm, it would be interesting whether randomization in our construction can be
used to significantly improve the competitive ratio. The desired result would be an algorithm with a
competitive ratio polylogarithmic in k.

76 Chapter 4. Conclusion & Open Problems

Regarding our variant of the Online Facility Location problem, our algorithm achieves a
competitive ratio independent of the number of clients, surpassing the lower bound of the Online
Facility Location problem without movement. For the real line, the competitive ratio is tight in
both the unlimited and limited movement case. For higher dimensions, it is still open whether a
competitive ratio independent of the number of facilities in the optimal solution can be achieved.
We conjecture that the competitive ratios achieved by our randomized algorithms can also be
achieved with deterministic algorithms, although those algorithms may have to use more complex
policies with regards to placing new facilities. A good candidate algorithm would be to adapt the
deterministic algorithm for the Online Facility Location problem by Fotakis [41], although the
algorithm would then lose the property of working essentially without memory of past requests.
We focused on the most natural cost function for movement, as the linear cost punishes bigger
corrections of the positions and is similar to other resource allocation models. However, it would
also be interesting to consider other cost functions, such as an arbitrary polynomial in the distance
moved to even further punish big moves. On the other hand, constant cost for movement would
encourage the utilization of as few corrections as possible in total. It could also be interesting
to globally restrict the total movement possible for one facility instead of an upper bound on the
movement per round.

Other interesting problems with regards to Online Facility Location could be derived by
changing how the serving costs of the clients are paid for. Right now, the clients pay the distance in
the same step as they appear. For applications related to clustering, where the end result is evaluated
as a whole, one could imagine to count the cost as in the paper by Divékih and Imreh [32] where
the clients are only connected to facilities in the end. Two variants on this are possible: Either the
connections work exactly as in [32] and clients can essentially be reassigned to a different facility
in each time step, or they need to be assigned to a fixed facility in the same step where they arrive
(while still counting the cost as a whole in the end).

We now consider broader extensions to our work. For the Mobile Server problem, it still
remains open to investigate the problem with multiple servers and multiple requests in one time
step. This problem is also still open for the k-Page Migration problem, i.e., without considering any
restrictions on the movement. In Section 1.2 we already mentioned two papers about the Facility
Reallocation problem [31, 43] which indicate that the problem would be interesting even when
restricted to the real line and with D = 1.

In the introduction, we already mentioned the leasing scenario which is a natural extension
regarding many applications of the Facility Location problem [65]. In this model, the competitive
ratio can be formulated in terms of the length of the longest lease instead of the number of
clients [54]. It would be interesting to explore whether the introduction of facility movement to the
leasing model would also lead to the removal of that parameter from the competitive ratio. For the
real line, this was shown to be possible in a Bachelor’s thesis by Marcel Geromel [45].

The leasing framework would also introduce the possibility to temporarily extend the number
of resources in problems such as the Mobile Server problem, where one could use the lease of a
resource to serve requests far away from the permanent servers. This would lead to situations where
the online algorithm has more servers than the offline optimum, a scenario that is also interesting as
a more basic model. The related model is the (h,k)-Server problem [55] in which the cost of an
online algorithm for the k-Server problem is compared to an optimal solution that only uses h < k
servers. Meaningful results for the Euclidean space have not yet been achieved, as the competitive
ratio of algorithms for the k-Server problem do not seem to improve their competitive ratio [8, 9]
and improvements could only be made on discrete metrics where the competitive ratio depends on
the size of the metric [9, 30]. It is reasonable to assume that progress on this basic model is directly
linked to possible extensions of our models in this direction, i.e., investigating the (h,k)-Server
problem in the Euclidean space would be an important first step. Besides the obvious extension to

77

the Mobile Server problem, the concept would also be interesting for an extension of the Online
Facility Location problem if we also allow the adversary to move its facilities for the same cost as
the online algorithm. Here, the online algorithm would have to balance buying potentially more
facilities than the offline algorithm for higher costs against the benefits of more resources for the
underlying movement problem.

The above mentioned problem would be a first idea for how to fuse the two problems of moving
a fixed number of resources (Mobile Server problem etc.) and placing an arbitrary number of
resources to fixed locations (Online Facility Location). Both aspects can be further extended by
making distinctions between read and write requests as in the File Allocation problem [6] or by
making the resources contain heterogeneous data or services. The latter was introduced to the
Facility Location problem [67], but no online algorithms have been given so far.

The open problems described here are obviously only from a small selection of potentially
interesting problems, as the amount of literature surrounding just the basic problems of k-Server
and Facility Location demonstrates. We hope our results will serve as a starting point for future
work in this area which will hopefully lead to a strong theoretical basis of solving problems in the
area of resource allocation in mobile environments.

Bibliography

[1] Sebastian Abshoff, Peter Kling, Christine Markarian, Friedhelm Meyer auf der Heide, and
Peter Pietrzyk. Towards the price of leasing online. J. Comb. Optim., 32(4):1197–1216, 2016.

[2] Susanne Albers and Hisashi Koga. Page migration with limited local memory capacity. In
Proceedings of the 4th International Workshop on Algorithms and Data Structures (WADS),
pages 147–158, 1995.

[3] Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hentenryck. A simple and
deterministic competitive algorithm for online facility location. Inf. Comput., 194(2):175–202,
2004.

[4] Barbara M. Anthony and Anupam Gupta. Infrastructure leasing problems. In Proceedings of
the 12th International Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 424–438, 2007.

[5] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean
k-medians and related problems. In Proceedings of the 30th Annual ACM Symposium on the
Theory of Computing (STOC), pages 106–113, 1998.

[6] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allocation. Inf.
Comput., 185(1):1–40, 2003.

[7] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. J. ACM, 62(5):40:1–40:49, 2015.

[8] Nikhil Bansal, Marek Eliás, Lukasz Jez, Grigorios Koumoutsos, and Kirk Pruhs. Tight bounds
for double coverage against weak adversaries. Theory Comput. Syst., 62(2):349–365, 2018.

[9] Nikhil Bansal, Marek Eliés, Lukasz Jez, and Grigorios Koumoutsos. The (h, k)-server problem
on bounded depth trees. ACM Trans. Algorithms, 15(2):28:1–28:26, 2019.

[10] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive
algorithm for metrical task systems. In Proceedings of the 29th Annual ACM Symposium on
the Theory of Computing (STOC), pages 711–719, 1997.

[11] Yair Bartal, Moses Charikar, and Piotr Indyk. On page migration and other relaxed task
systems. Theor. Comput. Sci., 268(1):43–66, 2001.

[12] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for distributed data
management. J. Comput. Syst. Sci., 51(3):341–358, 1995.

[13] Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theor. Comput. Sci., 324(2-3):337–345, 2004.

80 BIBLIOGRAPHY

[14] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido Schäfer, and Tjark
Vredeveld. Average-case and smoothed competitive analysis of the multilevel feedback
algorithm. Math. Oper. Res., 31(1):85–108, 2006.

[15] Wolfgang W. Bein, Marek Chrobak, and Lawrence L. Larmore. The 3-server problem in the
plane. Theor. Comput. Sci., 289(1):335–354, 2002.

[16] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigderson. On the
power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

[17] Sergei Bespamyatnikh, Binay K. Bhattacharya, David G. Kirkpatrick, and Michael Segal.
Mobile facility location. In Proceedings of the 4th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DIAL-M), pages 46–53,
2000.

[18] Marcin Bienkowski, Jaroslaw Byrka, Miroslaw Korzeniowski, and Friedhelm Meyer auf der
Heide. Optimal algorithms for page migration in dynamic networks. J. Discrete Algorithms,
7(4):545–569, 2009.

[19] Marcin Bienkowski, Jaroslaw Byrka, and Marcin Mucha. Dynamic beats fixed: On phase-
based algorithms for file migration. In Proceedings of the 44th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 13:1–13:14, 2017.

[20] Marcin Bienkowski and Jaroslaw Kutylowski. The k-resource problem in uniform metric
spaces. Theor. Comput. Sci., 459:42–54, 2012.

[21] E. Bittner, Csanád Imreh, and Judit Nagy-György. The online k-server problem with rejection.
Discrete Optimization, 13:1–15, 2014.

[22] David L. Black and Daniel D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-
Mellon University, 1989.

[23] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal online algorithm for metrical
task systems. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 373–382, 1987.

[24] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems
on trees via mirror descent and unfair gluing. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 89–97, 2019.

[25] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 3–16, 2018.

[26] Niv Buchbinder, Anupam Gupta, Marco Molinaro, and Joseph (Seffi) Naor. k-servers with
a smile: Online algorithms via projections. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 98–116, 2019.

[27] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results on
server problems. SIAM J. Discrete Math., 4(2):172–181, 1991.

[28] Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on
trees. SIAM J. Comput., 20(1):144–148, 1991.

BIBLIOGRAPHY 81

[29] Marek Chrobak, Lawrence L. Larmore, Nick Reingold, and Jeffery R. Westbrook. Page
migration algorithms using work functions. J. Algorithms, 24(1):124–157, 1997.

[30] Christian Coester, Elias Koutsoupias, and Philip Lazos. The infinite server problem. In
Proceedings of the 44th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 14:1–14:14, 2017.

[31] Bart de Keijzer and Dominik Wojtczak. Facility reallocation on the line. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (IJCAI), pages 188–194, 2018.

[32] Gabriella Divéki and Csanád Imreh. Online facility location with facility movements. CEJOR,
19(2):191–200, 2011.

[33] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[34] Björn Feldkord, Till Knollmann, Manuel Malatyali, and Friedhelm Meyer auf der Heide.
Managing multiple mobile resources. Accepted for publication in: Proceedings of the 17th
Workshop on Approximation and Online Algorithms (WAOA), 2019.

[35] Björn Feldkord and Friedhelm Meyer auf der Heide. The mobile server problem. In Procee-
dings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 313–319, 2017.

[36] Björn Feldkord and Friedhelm Meyer auf der Heide. Online facility location with mobile
facilities. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 373–381, 2018.

[37] Björn Feldkord and Friedhelm Meyer auf der Heide. The mobile server problem. TOPC,
6(2):14:1–14:17, 2019.

[38] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and
Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.

[39] Dimitris Fotakis. Incremental algorithms for facility location and k-median. Theor. Comput.
Sci., 361(2-3):275–313, 2006.

[40] Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. J. Discrete
Algorithms, 5(1):141–148, 2007.

[41] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–
57, 2008.

[42] Dimitris Fotakis. Online and incremental algorithms for facility location. SIGACT News,
42(1):97–131, 2011.

[43] Dimitris Fotakis, Loukas Kavouras, Panagiotis Kostopanagiotis, Philip Lazos, Stratis Skoula-
kis, and Nikolas Zarifis. Reallocating multiple facilities on the line. CoRR, abs/1905.12379,
2019.

[44] Zachary Friggstad and Mohammad R. Salavatipour. Minimizing movement in mobile facility
location problems. ACM Trans. Algorithms, 7(3):28:1–28:22, 2011.

[45] Marcel Geromel. Mobile Facility Leasing. Bachelor’s thesis, Paderborn University, 2018.

82 BIBLIOGRAPHY

[46] Abdolhamid Ghodselahi and Fabian Kuhn. Serving online requests with mobile servers. In
Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC),
pages 740–751, 2015.

[47] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999.

[48] Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream.
In Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), pages 273–279, 2006.

[49] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001.

[50] Klaus Jansen, Marten Maack, and Malin Rau. Approximation schemes for machine scheduling
with resource (in-)dependent processing times. In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1526–1542, 2016.

[51] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

[52] Amanj Khorramian and Akira Matsubayashi. Uniform page migration problem in euclidean
space. Algorithms, 9(3):57, 2016.

[53] Peter Kling, Alexander Mäcker, Sören Riechers, and Alexander Skopalik. Sharing is ca-
ring: Multiprocessor scheduling with a sharable resource. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 123–132, 2017.

[54] Peter Kling, Friedhelm Meyer auf der Heide, and Peter Pietrzyk. An algorithm for online
facility leasing. In Proceedings of the 19th International Colloquium on Structural Information
and Communication Complexity (SIROCCO), pages 61–72, 2012.

[55] Elias Koutsoupias. Weak adversaries for the k-server problem. In Proceedings of the 40th
Annual Symposium on Foundations of Computer Science (FOCS), pages 444–449, 1999.

[56] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, 1995.

[57] Harry Lang. Online facility location against a t-bounded adversary. In Proceedings of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1002–1014, 2018.

[58] James R. Lee. Fusible HSTs and the randomized k-server conjecture. In Proceedings of the
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 438–449,
2018.

[59] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013.

[60] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms
for server problems. J. Algorithms, 11(2):208–230, 1990.

[61] Akira Matsubayashi. A 3+omega(1) lower bound for page migration. In Proceedings of the
3rd International Symposium on Computing and Networking (CANDAR), pages 314–320,
2015.

BIBLIOGRAPHY 83

[62] Akira Matsubayashi. Asymptotically optimal online page migration on three points. Algo-
rithmica, 71(4):1035–1064, 2015.

[63] Adam Meyerson. Online facility location. In Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 426–431, 2001.

[64] Adam Meyerson. The parking permit problem. In Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 274–284, 2005.

[65] Chandrashekhar Nagarajan and David P. Williamson. Offline and online facility leasing.
Discrete Optimization, 10(4):361–370, 2013.

[66] Jianli Pan and James McElhannon. Future edge cloud and edge computing for internet of
things applications. IEEE Internet of Things Journal, 5(1):439–449, 2018.

[67] R. Ravi and Amitabh Sinha. Approximation algorithms for multicommodity facility location
problems. SIAM J. Discrete Math., 24(2):538–551, 2010.

[68] Tomislav Rudec, Alfonzo Baumgartner, and Robert Manger. A fast work function algorithm
for solving the k-server problem. CEJOR, 21(1):187–205, 2013.

[69] Tomislav Rudec and Robert Manger. A fast approximate implementation of the work function
algorithm for solving the \(k\) -server problem. CEJOR, 23(3):699–722, 2015.

[70] Guido Schäfer and Naveen Sivadasan. Topology matters: Smoothed competitiveness of
metrical task systems. Theor. Comput. Sci., 341(1-3):216–246, 2005.

[71] Weisong Shi and Schahram Dustdar. The promise of edge computing. IEEE Computer,
49(5):78–81, 2016.

[72] David B. Shmoys. Approximation algorithms for facility location problems. In Proceedings of
the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX), pages 27–33, 2000.

[73] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985.

[74] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

[75] Jeffery R. Westbrook. Randomized algorithms for multiprocessor page migration. SIAM J.
Comput., 23(5):951–965, 1994.

[76] Yinfeng Xu, Hongmei Li, Changzheng He, and Li Luo. The online k-server problem with
max-distance objective. J. Comb. Optim., 29(4):836–846, 2015.

[77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complex-
ity (extended abstract). In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS), pages 222–227, 1977.

[78] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Concepts, applications and
issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata@MobiHoc,
pages 37–42, 2015.

	1 Introduction
	1.1 Technical Background
	1.2 Related Work

	2 The Mobile Server Problem
	2.1 Formal Model
	2.2 Summary of Results
	2.3 One Server, Multiple Requests
	2.3.1 Lower Bounds
	2.3.2 The Move-to-Center Algorithm
	2.3.3 Locality of Requests

	2.4 Multiple Servers, One Request
	2.4.1 Lower Bounds
	2.4.2 An Algorithm for the Unweighted Problem
	2.4.3 Extension to the Weighted Problem

	3 Online Facility Location with Mobile Facilities
	3.1 Formal Model
	3.2 Summary of Results
	3.3 Algorithms
	3.3.1 Technical Overview
	3.3.2 A Randomized Algorithm for Unlimited Movement
	3.3.3 Extension to Limited Movement
	3.3.4 Extension to Higher-Dimensional Spaces

	3.4 Lower Bounds

	4 Conclusion & Open Problems

