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Abstract

In some environments wireless communication with electromagnetic radiation is

unfeasible or simply too dangerous. Molecular communication (MolCom) works

by the sender emitting particles instead and is therefore a promising alternative. A

carrier medium, such as a gas or liquid, physically moves the particles through space.

The presence of particles is then sensed at receivers, which recover the transmitted

data. In an industrial macro-scale MolCom system, existing pipe systems could be

used, into which magnetic particles are injected. Current simulators for this either

lack the capability to consider the complex flow inside the pipe system or suffer

from poor performance. I present the “Pogona” simulator which uses computational

fluid dynamics (CFD) to model the flow of liquid inside the pipe system. The

flow is imported into the simulator and used to predict the movement of particles.

Additionally, models for the injection and sensing of particles are proposed. To

improve performance and flexibility, a scene approach that allows the configuration

of scenarios consisting of independent objects is proposed. I verified my simulator

prototype with simple scenarios that are compared to analytical results and known-

good implementations. Simulation scenarios that match an existing testbed were

created and their output compared to empirical measurements. Overall, a low degree

of agreement was achieved and room for improvement remains. My analysis shows

that the interpolation algorithm applied to the CFD flow output is of importance.

However, finding well-suited interpolation algorithms remains an open research

task.
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Kurzfassung

Klassische Drahtloskommunikation mithilfe von elektromagnetischer Strahlung ist

in einigen Umgebungen kaum möglich oder zu riskant. Molekulare Kommunikation,

bei der stattdessen Partikel vom Sender ausgestoßen werden, stellt eine interessante

Alternative dar. Die Partikel werden vom Träger-Medium, z.B. einem Gas oder einer

Flüssigkeit, durch den Raum bewegt. Der Empfänger detektiert das Vorhandensein

der Partikel und dekodiert die damit übertragene Nachricht. Im industriellen Kon-

text können für diese Art der Kommunikation magnetische Partikel in bestehende

Rohrsysteme eingespritzt werden. Aktuelle Simulatoren sind entweder nicht in der

Lage, die komplexen Strömungen innerhalb der Rohre berücksichtigen, oder sie er-

fordern einen hohen Rechenaufwand. Der von mir präsentierte “Pogona”-Simulator

verwendet einen Simulator für numerische Strömungsmechanik (engl. CFD), um

diese Strömung zu berechnen. Diese Strömung wird importiert und benutzt, um

effizient die Bewegung der Partikel vorherzusagen. Außerdem werden Modelle für

die Einspritzung und das Detektieren der Partikel vorgestellt. Um die Flexibilität

und Performance zu erhöhen, wurde ein Szenen-System mit voneinander unabhän-

gigen Objekten entwickelt. Ich habe den Simulator verifiziert, indem ich diesen mit

analytischen Ergebnissen oder bestehenden Simulatoren in vereinfachten Szena-

rios verglichen habe. Zudem wurde ein bestehendes Experiment modelliert und

die Messungen mit dem Simulationsergebnis verglichen. Dabei konnte nur eine

mittelmäßige Übereinstimmung festgestellt werden und weitere Verbesserungen

bleiben nötig. Ein großer Einfluss des Interpolationsalgorithmus auf das Ergebnis

wurde identifiziert. Passende Algorithmen für diese Anwendung werden benötigt

und stellen den Gegenstand zukünftiger Forschung dar.
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Chapter 1

Introduction

Wireless communication is usually implemented utilizing electromagnetic radiation

at radio frequencies. The sender and receiver employ antennas, with the receiver

sensing the changes in the electromagnetic field introduced by the sender. Molecular

communication works with an entirely different paradigm based on the transport

of particles. Here, the sender disperses particles into the medium, e.g. air, and the

receiver detects the concentration with a sensor. This means that the particles move

physically from the sender to the receiver, which is caused by diffusion, the flow of

the medium, or propulsion systems.

In some scenarios, traditional radio communication is just not viable. The

propagation of radio waves is severely reduced by the environment inside air vents,

underground mines, or oil pipelines. In other cases, for example in explosive gases,

the electric circuitry required is prohibited. Currently, molecular communication is

not used in such industrial scenarios, but appears promising to solve these issues.

Simulation could help in investigating the usefulness of such systems for net-

working on a bigger scale. Particle transport in fluid flows needs to be considered in

the underlying model, since it massively influences the channel characteristics.

The existing simulators [1]–[6] have already been used for molecular communi-

cation (MolCom) on nano-scales. Particle motion caused by diffusion and simplified

fluid flows is captured by their models already. Bronner and Dressler [7] conclude

that they currently lack the capability to consider particle motion caused by more

complex fluid flows.

Well-established tools for predicting complex fluid flow are computational fluid

dynamics (CFD) simulations. They are able to predict the fluid movement, pressure,

temperature, and other characteristics by solving fundamental equations of fluid

dynamics numerically. The continuous distribution of fluid characteristics is mapped

onto a grid, enabling a solver to work on discrete grid nodes only. Single-phase

CFD models are appropriate for scenarios where a single fluid is present, in our case

1



1 Introduction 2

where a tube is filled entirely with water. Multi-phase CFD models are appropriate for

scenarios where different fluids or particles interact, for example the sedimentation

of sand in a river. These are more difficult to model accurately and even more

computationally demanding than single-phase simulations [8]. In theory, such

models would be appropriate to model the particles being carried along with the

water in the tube. Unfortunately, they were never intended to be used for interactive

simulations. Thus, choosing to trigger a new transmission based on received data is

not possible. Additionally, even transmitting a single bit of information with these

models would require hours of CPU time to simulate.

Another model proposed specifically for macro-scale MolCom by Wicke et al. [9]
abstracts the pipe flow as an ideal parabolic flow profile and derives an analytic

solution from it. This approach is very efficient, but only covers ideal, simplified

systems, such as straight pipes. Furthermore, the injection pattern of the particles is

not modeled and requires manual fitting of experimental data.

Instead, I investigate the approach of exporting the resulting fluid motion from

a single-phase CFD simulation and using this as the input for a new simulator. This

approach has recently been proposed by Bronner and Dressler [7]. Inside the simula-

tor, the flow of the surrounding medium is used to predict the movement of discrete

particles injected for communication purposes. This core is accompanied by models

for particle injection and sensing. The combined model aims towards a compromise

between accuracy, flexibility, and computational complexity. It is supposed to be

less computation-heavy and more easily integratable than a multi-phase CFD model.

However, this will necessitate some sacrifices regarding accuracy. On the other hand,

it will be more computation-heavy than analytic solutions. The aim is to support

complex geometries and also predict the injection, thereby improving the accuracy

compared to simple models. This gives the model a wider range of applicability

compared to the restricted set of ideal geometries possible in analytic models.

The remainder of this thesis is organized as follows. First, some fundamentals are

covered in Chapter 2. This includes related work on MolCom, fluid dynamics basics,

CFD, and the algorithms necessary to predict particle movement. Chapter 3 then

presents the simulator prototype that was implemented, as well as the underlying

models. It starts with a high-level overview and goes into details of channel, sender

and receiver model where necessary. In Chapter 4 this simulator is then evaluated.

It focuses on correctness of implementation, followed by performance analysis

and comparison with empirical results. Chapter 5 then concludes the thesis by

generalizing the evaluation results and pointing towards future work.



Chapter 2

Fundamentals

In the following Section 2.1, the basic concept of MolCom is explained. It also gives

an overview of the current progress of the field of MolCom at macro-scales, including

simulation approaches. In particular, the testbed presented by Unterweger et al.

[10] is explained, as the model is compared against measurements from this setup.

Because it consists of circular tube sections, Section 2.2 covers some fundamentals of

fluid dynamics for this case. Another important tool for determining fluid dynamics

in arbitrary geometries is CFD. It is covered in detail in Section 2.3. Because the

simulator works in discrete time steps, the prediction of molecule movement depends

on discrete integration algorithms, which are presented in Section 2.4. Interpolation,

which Section 2.5 covers, is also necessary since the output of the CFD simulation is

spatially discrete. Finally, the quantitative analysis of the channel impulse response

(CIR) as predicted by the simulator is needed. Metrics for this are given in Section 2.6.

2.1 Molecular Communication

MolCom is an active interdisciplinary research topic. The underlying concept is the

physical movement of perturbations in a medium from the sender to the receiver.

This broad paradigm can be implemented on a range of scales and with different

technologies.

For example, hormones are used for communication inside the human body [11].
These are carried by the blood stream to the receptors inside organs, where they

control physiological processes. This inspired the use of MolCom for nano-scale

networks, for example consisting of nanobots inside living tissue.

Only recently, such systems were proposed to be used on a larger scale. A first

experiment was conducted by Farsad, Guo, and Eckford [12], who injected small

droplets of ethanol into the air of a room. A breathalizer-like sensor, which could

detect the changes in ethanol concentration, was placed on the other side of the

3



2.1 Molecular Communication 4

room. To aid the movement of the droplets towards the sensor, a ventilator was used.

Encoding digital data is then done by dividing time in discrete slots of a few seconds

length. Each slot then contains the transmission of a single bit. A bit with value “1”

is transmitted by injecting during a time slot, while no injection occurs for a bit with

value “0”. The receiver can then measure the concentration during each injection

time slot to recover the original bit stream. If the concentration increases, this is

interpreted as a “1” bit, while a decrease is interpreted as a “0” bit. The authors

demonstrated this by transmitting a short text message across the otherwise empty

room.

Jamali et al. [13] have surveyed macro-scale testbeds and found several different

approaches. Some of these are biological, for example using E. coli bacteria or cells.

Others are synthetic, for example using flourescent dye in a water chamber or smoke

vortex rings in open air.

The system that will be considered in this thesis is communication inside an

industrial pipe system containing a flowing liquid. This has been investigated

experimentally by Unterweger et al. [10], utilizing particles injected into flowing

water at the sender and detecting the magnetic susceptibility inside of the pipe at the

receiver. Their experimental setup is shown in Figure 2.1. They use peristaltic pumps

for the continuous background flow and the injection. Their sensor is the commercial

MS2G single frequency susceptibility sensor produced by Bartington. It has a sensor

rate of around 10 Hz. The particles are custom-made “LA38” superparamagnetic

iron oxide nanoparticles (SPIONs) with lactic acid coating. Superparamagnetism

Figure 2.1 – Close-up view of the channel, transmitter and receiver of the
Erlangen experimental setup. The Y-piece in the tube is the injection site of
the transmitter. The pump on the right regulates the injection, pumping the
black nanoparticles to the Y-piece, where they enter the background stream
of water passing in the transparent tube. The grey box contains the sensor
electronics of the receiver, the measurements are done where the tube passes
through the sand-colored casing.
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means that the contained iron will exhibit behavior comparable to a magnet when an

external magnetic field is applied, but remain non-magnetic otherwise. This results

in both a large signal spike when the particles pass through the susceptometer and

low clustering of particles.

In the following, the term “molecule” will be used when referring to what the

IEEE standard 1906.1-2015 [14] defines as a “Message Carrier”. What exactly a

molecule represents will depend on the specific application scenario. It could be a

single atom, a grain of sediment, a nano-machine, a droplet of fluerescent fluid, or a

bacterium. When modeling the Erlangen testbed, SPIONs are the molecules.

2.1.1 Simulation

Several simulators for MolCom have been put forth. Most of these are specifically

aimed at simulating nano-scale systems. In such systems, the influence of diffusion

is dominant, while the influence of flow becomes of a higher importance on larger

scales.

Several approaches for simulation are possible. A microscopic simulation tracks

the movement of individual molecules over discrete time steps. A mesoscopic simula-

tor only considers a more coarse-grained level of detail. For example, one approach

is to split the domain into cells, with only the aggregated concentration of molecules

in each cell being used. Another option is to forego this molecule tracking entirely,

by using an analytical description of the channel behavior instead.

Bronner and Dressler [7] have conducted a survey of existing simulators. Their

analysis concludes that NanoNS3, BiNS2, and AcCoRD all offer diffusion and flow

modeling. However, they are lacking in the possible flow complexity. AcCoRD is only

able to consider a constant global flow vector. BloodVoyagerS is specialized for the

human cardiovascular system and uses a constant flow vector that depends on the

diameter of the blood vessel. BiNS2 also supports flow inside a circular pipe segment,

which it uses for blood vessel simulations. NanoNS3 is different in this regard, as it

uses an analytical description of the propagation characteristics. This means that it

could possibly support more complex flows, as long as the corresponding analytical

description were known.

Commercial multiphysics simulators like COMSOL are also used for analysis.

These promise a high level of accuracy, but suffer from long run-times necessary to

obtain the results.

Wicke et al. [9] developed a model for the Erlangen testbed that utilizes transfer

functions. They were able to derive these from a theoretic model of fluid flow in

a circular pipe. However, such approaches are difficult to apply to more complex

geometries where an analytic solution for the flow does not exist. Furthermore, they

had to manually fit the injection pattern of the particles to their experimental data.
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Fabian Bronner proposed an alternative approach using pre-calculated vector

fields to track molecule movement in a simulator [7]. His approach is what this

thesis builds upon, utilizing the output of a dedicated fluid simulator.

2.2 Fluid Dynamics in Circular Pipes

The basic fluid dynamic in a circular pipe is dominated by the friction of the fluid at

the pipe walls. Shear forces cause a velocity of zero right at the pipe wall, while the

fluid in the pipe center displays the highest flow speed. Near the pipe wall, where

the viscosity has the largest effect, a boundary layer forms.

The following formulas are analytically derived for the case of a single fluid

moving continuously in a circular pipe. Additionally, the length of the pipe needs to

be sufficiently larger than the radius, and the disturbances in the area of an in- or

outlet are not considered.

The flow profile is parabolic when investigating a cut-through section. Bird,

Stewart, and Lightfoot [15, §5.1] give Equation 2.1 for determining it. R is the total

pipe radius, while r is the distance of the location to the pipe center. The parabola

is scaled with the maximum velocity vz,max .

vz = vz,max

�

1−
� r

R

�2�

(2.1)

They also give Equation 2.2 for the relation between vz,max and the average

velocity 〈vz〉.

〈vz〉=
1
2

vz,max (2.2)

2.3 Computational Fluid Dynamics

Determining the flow of fluids given some external constraints is a long-standing

task in disciplines like mechanical engineering. Analytical solutions exist for some

geometries, such as the flow inside a circular pipe presented in Section 2.2. With the

advent of modern computers, it has become feasible to find approximate numerical

solutions for more complex geometries where analytical solutions are near-impossible

to obtain. This area of research is called CFD. In the following, the material of

Ferziger and Perić [16] is used when describing how a CFD simulation works.

The foundations for each CFD simulation are differential equations describing

the system behavior. In theory, these would be the full set of Navier-Stokes equations

used to describe the motion of viscous fluids accurately. For practical applications,

approximations enable the use of a reduced set of the Navier-Stokes equations or

alternative models. The domain is split into individual regions or “cells” and time is
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discretized into time steps. This discretization in time and space allows a reduction

of the partial differential equations to algebraic equations. For each time step and

cell, a numerical solution for the equations is determined.

Of paramount importance is the provision of so-called boundary conditions. For

example, the inlet of a pipe might have a user-specified flow rate. Another important

boundary condition is the no-slip condition. It states that the fluid infinitesimally

close to a wall is motionless because of friction. A CFD simulator will then try to

find a flow inside the pipe that satisfies these conditions while also satisfying the

equations. Over several time steps of a laminar flow simulation, the solution that

the simulator comes up with converges towards an unchanging state. Ideally, the

equations fully hold for the resulting flow at the end of the simulation. An ideal

match is usually not possible, so the aim is to reduce the residual error in the balance

of the equations.

An important component of the CFD simulator is the solver. It specifies in which

order and how the equations are to be solved within a time step. These steps are

usually repeated until either the residual error is smaller than a specified threshold

or a cutoff number of iterations has been reached. The solver algorithm does not

affect the converged result of the CFD simulation, but it does influence the speed of

convergence.

2.3.1 Turbulence

When fluid layers flow along without disturbances, the resulting flow is called laminar.

Fluid flow where the flow pattern is complex and time-dependent instead is called

turbulent.

Turbulence is a very complex phenomenon and still an open problem in physics.

The Reynolds number is employed to get an approximation of whether a flow is

laminar. It quantifies the ratio between the inertial and viscous forces in the fluid.

Bird, Stewart, and Lightfoot [15, p. 52] give Equation 2.3 to calculate it in the

case of a circular tube. 〈vz〉 is the average flow velocity in tube direction, ρ is the

density, and µ is the dynamic viscosity of the fluid, while D denotes the internal tube

diameter.

Re=
D〈vz〉ρ
µ

(2.3)

According to Bird, Stewart, and Lightfoot [15], a flow with Re of less than about

2100 is laminar, which enables the usage of simpler flow analysis methods compared

to turbulent flows.

In our scenario, there are particles suspended in the fluid when an injection is

happening. Agrawal, Choueiri, and Hof [17] determined experimentally that the
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presence of suspended particles also influences turbulence. When varying the con-

centration of the suspended particles, they found concentration-dependent changes

in turbulence. However, their results indicate that at a Re of less than 800, the

differences are negligible even for concentrations as high as 25 %.

For turbulent flow, the variations across a wider range of temporal and spatial

scales necessitate alternative approaches for CFD. Solving the full Navier-Stokes

equations in the way outlined in Section 2.3 is called direct numerical simulation

(DNS). The space and time resolution required for DNS is orders of magnitude larger

than the resolution necessary for laminar flow. This usually makes the computation

and memory requirements of the simulation prohibitive. Alternative approaches use

turbulence models to reduce the required resolution and improve the practicality of

turbulent CFD simulation. However, these do not achieve the same level of accuracy

as DNS.

2.3.2 Mesh Generation

Since the fluid simulation only works on discrete cells, the subdivision of the target

geometry into several cells has to be determined. The quality of the fluid simulation

heavily depends on the quality of the underlying mesh. The term mesh resolution

is used to describe the subdivision of the entire object into mesh cells. If the cells

are smaller in relation to the object, then the mesh resolution is higher. A mesh

with higher resolution will produce more fine-grained results, at the cost of higher

Figure 2.2 – Cross section view of a manually-defined O-ring tube mesh. Cell
coloring is based on flow speed.



2.3 Computational Fluid Dynamics 9

computation duration and memory footprint. However, the smaller cells also require

a finer time resolution, further increasing the duration.

Figure 2.2 shows what a manually created tube mesh with an O-Ring structure

around a grid core looks like. This structure is being recommended for the use in

pipes1. It features refined cells towards the pipe wall, where the boundary layer

needs to be resolved. Near the center, where the gradient between neighboring cells

is low, such a fine resolution is not required.

For general shapes without symmetry or easily defined blocks, the manual ap-

proach quickly becomes very labor-intensive, so automated tools are preferable.

Automated mesh generation is possible with the OpenFOAM tool snappyHexMesh2.

With this utility, a regular tetrahedal mesh is generated, and then intersected with

the shape from a 3D object. This shape can be generated using an arbitrary 3D

modeling software. The resulting mesh is then automatically refined at the surface

and finally “snapped” to it. In Figure 2.3 the result of snappyHexMesh for a tube

section is shown. It can be observed that most of the object consists of simple regular

grid cells, while the snapping algorithm takes care of the boundaries.

2.3.3 Nearest Neighbor Search

Vector fields are the mathematical concept underlying CFD data structures. For

discrete positions in n-dimensional space, vectors are defined. In our case, for 3-

1http://www.cfdyna.com/Home/OpenFOAM.html
2https://cfd.direct/openfoam/user-guide/v7-snappyhexmesh

Figure 2.3 – Cross section view of a tube mesh generated with snappyHexMesh.
Cell coloring is based on flow speed.

http://www.cfdyna.com/Home/OpenFOAM.html
https://cfd.direct/openfoam/user-guide/v7-snappyhexmesh
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dimensional spatial coordinates of each mesh cell, a 3-dimensional vector is defined

as the flow (movement) of the fluid in this cell. This is the structure in which most

CFD simulators export their output. Alternatively, only a scalar value is given for each

position. For example, the pressure at a position does not possess any directionality

and is thus represented in this format.

When operating in a vector field, it is necessary to determine the discrete vector

field point closest to an arbitrary query point. This problem is called “Nearest

Neighbor Search”. The general problem may be restated as to determine the m

nearest neighbor positions to the query point in k dimensions.

A naive solution is to use a linear search. This works by determining the distance

from the query point to every vector field point. Then, the m positions with the

smallest distance are returned. This algorithm has linear run-time.

Space partitioning data structures represent point data by slicing k-dimensional

space into regions. This way, points that are close together spatially are in the same

or adjacent regions. A query algorithm then only needs to determine the regions

close to the query point and can disregard all others. Within a region, traditional

algorithms like linear search are then performed to determine an exact solution.

Bentley [18] proposed the “k-d tree”, which is a special case of such a space

partitioning data structure. It slices each region in half by selecting a splitting plane

through a point. All points in the “left” half are stored in the left subtree of the tree

node. All points in the “right” half are stored in the right sub-tree. This is applied to

the sub-trees recursively, until each point is stored in a node. The splitting plane

normal vectors are chosen alternatingly between the k axes. This simplifies tree

operations, as simple coordinate comparisons can be used to determine the region

of a point.

According to Friedman, Bentley, and Finkel [19], creation of a k-d tree has a

run-time of kn log n for n points. Searching for the m closest points has an expected

run-time with relationship log n to the overall number of data points n.

2.4 Integration of Molecule Movement

Taking the vector field output of the CFD model and applying it to particle motion

in discrete time steps also creates errors. These errors are inherent to discrete steps

and well known for numerical integration. The simplest method by Euler takes the

flow at the current particle position pn and follows this direction until the next time

step [20]. Equation 2.4 is used for this, predicting the next position pn+1 from the
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Figure 2.4 – Integration of a particle (black) moving in a rotating field (grey
circles) using the Euler method (path shown in blue). The integrated position
differs from the true position (red), resulting in a substantial integration error
(dashed line).

value of the function f at the current position. h denotes the step size equal to

tn+1 − tn.

pn+1 = pn + hf (tn, pn) (2.4)

Figure 2.4 illustrates one problem of the Euler method. There, the circular

movement underlying the vector field is not replicated by the particle, which follows

a diverging spiral instead. The error for Euler’s method can be made arbitrarily small

by using more fine-grained time steps h, but that increases the computational effort

by the same factor.

The Runge-Kutta integration method has a rich history, going back to the original

1895 publication of Runge [21]. Butcher [22] present the different methods of

this family that aim to decrease the error in Eulers method. They build onto the

Euler method, but iteratively retrieve the flow at the predicted new position and

intermediate steps and consider all for the overall integration. Equations 2.5 through

2.8 show this iterative lookup for four iterations where k1 is equal to the original

Euler step. Equation 2.9 is then used to weight the intermediate values and predict

the next position.
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k1 = h f (tn, pn) (2.5)

k2 = h f
�

tn +
h
2

, pn +
k1

2

�

(2.6)

k3 = h f
�

tn +
h
2

, pn +
k2

2

�

(2.7)

k4 = h f (tn + h, pn + k3) (2.8)
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2.5 Flow Interpolation

The output of the fluid simulator is the discrete flow in entire mesh cells, which only

approximates the continuous distribution in the real world. A molecule is usually

not in the center of a mesh cell, but moves through it at different positions. It is

therefore necessary to interpolate the flow at sampling positions where the fluid

simulation makes no explicit prediction.

The simplest approach would be to assume the flow is constant within each

cell. This means we can simply use the flow associated to the cell that the sampling

position is inside of. However, the output of this algorithm will poorly match any

flow containing gradients, producing discrete jumps at cell borders instead.

One advanced algorithm that aims to eliminate these discontinuities while main-

taining the underlying flow structure is to apply inverse distance weighting to all flow

values. The approach by Shepard [23] works on scatted data points and takes the

distance to the known data points into account when determining the interpolated

value at the sample location. Its definition is given in Equation 2.10, where x is

the lookup point, x1, . . . , xn are the known points, while f (x i) are the associated

function values. The normalized weights given in Equation 2.11 are used, which

ensures that they sum up to 1. The weights are simply the inverse distances as given

in Equation 2.12, using an exponent µ and calculated with the Euclidean norm | · |.

Sµ[ f ](x) =
n
∑

i=1

fWµ,i(x) f (x i) (2.10)

fWµ,i(x) =
Wµ,i(x)

∑n
k=1 Wµ,k(x)

(2.11)

Wµ,i(x) = |x − x i |−µ (2.12)
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In the original version, an exponent of µ= 2 was chosen. This worked well for

the 2D map interpolation Shepard was working on [23]. However, the general form

allows for arbitrary exponents, as long as they satisfy µ > 0.

This approach considers all known data points, which can be a performance issue

for large data sets. Additionally, a large exponent needs to be picked. The reason

for this was pointed out by Han-Kwang Nienhuys on the Wikipedia page on inverse

distance weighting (IDW)3. He shows that the exponent should be bigger than the

spatial dimension, because otherwise the summed weights of far-away values will

be bigger than the summed weights of the nearest neighbors. A modified version

of this proof using 3 dimensions is given in Appendix A. It shows that an exponent

below 3 is not suitable for large data sets.

An alternative that only needs to consider local information is to define an area

of influence around the sampling point and only using the known data points inside

of it. This raises the questions of determining the area of influence and weighing the

elements inside of it. A simple approach would be to define a fixed sphere of influence

and applying Shepard’s method inside of it. Another would be to define a desired

number of elements inside the sphere and dynamically scaling the sphere depending

on the local neighborhood. Smaller exponents can be used in this approach, since

far-away values have no influence.

Franke and Nielson [24] have proposed using Equation 2.13 as a replacement for

the original inverse distance weighting. It also weights the distances with exponent

µ, but substracts the radius Rwi
of the sphere of influence first. This ensures that the

resulting interpolant remains smooth. If the original weights are used, discontinuities

appear when new values enter or leave the sphere of influence. With the modified

weights, these are initially not considered. For them, the distance |x − x i | equals the

influence radius Rwi
, resulting in a weight of Wµ,i(x) = 0.

Wµ,i(x) =

�

1
|x − x i |

−
1

Rwi

�µ

(2.13)

The choice for Rwi
is a trade-off. The bigger it is chosen, the smoother the inter-

polant becomes. This also results in increased computation cost and underprediction

of extreme values. Chosen too small, the interpolant is not as smooth or no neighbors

might be found at all.

To address differing sample densities or scales, Nw, the number of nearest neigh-

bors to consider, is defined instead. Rwi
is then chosen in such a way that the sphere

of influence includes the desired number of neighbors. This can be done by determin-

ing the NW nearest neighbors and setting Rwi
to the largest distance of any of them.

One aspect to consider is that due to the weighting function reaching 0 at distance

Rwi
, the most distant point is not actually incorporated into the interpolation. Only

3https://en.wikipedia.org/wiki/Inverse_distance_weighting#Basic_form

https://en.wikipedia.org/wiki/Inverse_distance_weighting#Basic_form
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at most Nw − 1 neighbors will be taken into account, which means that Nw = 9

considers the eight nearest neighbors.

In theory, only cells that are adjacent to the lookup point in the underlying CFD

mesh structure would need to be considered for flow interpolation. In a regular

grid, there would be eight of these cells and trilinear interpolation could be used.

However, IDW can be used for arbitrary irregular meshes as well. Wilhelms et al.

[25] successfully used eight nearest neighbor IDW for interpolation in hexahedral

meshes. They picked eight since these are the the cube vertices for regular grids.

However, they point out that for arbitrary hexahedral cells, the nearest neighbors

might not match the cube vertices.

2.6 Channel Impulse Response Metrics

Several metrics exist for assessing the CIR. To illustrate this, Figure 2.5 shows a CIR

example with the various metrics drawn in.

In general, τ specifies the delay between the very first received signal component

and some other component. These multipath components are usually discrete, for

example caused by the reflection of radio waves. For MolCom, the delays until the

particles are sensed at the receiver can be interpreted as components.

The delay of the maximum peak component relative to the first received signal

component is defined as the τmax .

The simplest is the maximum amplitude, which is shown as Vmax . Another

important metric for inter-symbol interference (ISI) is the delay spread, shown as

τ in the figure. Goldsmith [26, p. 58] defines the delay spread as “the time delay
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delay spread 𝜏propagation delay
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Figure 2.5 – Example channel impulse response.
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between the arrival of the first received signal component [...] and the last received

signal component associated with a single transmitted pulse.” In the case of particles

in a pipe, this is difficult to determine, as the delay spread is, in theory, infinite. This

is caused by particles close to the pipe wall that have an arbitrarily small movement

speed, resulting in an arbitrarily large time of arrival at the receiver. For practical

reasons, we therefore only consider the delay spread of portions of the signal which

reach above the noise floor to analyze the simulations.

Another metric is the full width at half maximum (FWHM). For each CIR peak,

the time delay between the first time the received signal raises above 50 % of the

Vmax and the last time it stays above it is determined.

A metric that summarizes the delay behavior is the root mean squared (RMS)

delay spread. It quantifies the deviation from the average delay. Equation 2.14 gives

the definition used by Goldsmith [26, p. 87] for the RMS delay spread. It measures

the deviation from the average delay spread µTm
of the power delay profile Ac(τ).

σTm
=

√

√

√

√

∫∞
0

�

τ−µTm

�2
Ac(τ)dτ

∫∞
0 Ac(τ)dτ

(2.14)



Chapter 3

The Pogona Simulator

The core idea for the MolCom model consists of predicting particle movement

based on the flow output of a CFD simulation. The full simulator then consists of

CFD, sender, receiver, and channel models. Such a simulator architecture, allowing

integration of different models, has been created and is described in Section 3.1.

This architecture along with selected models were implemented in a Python 3

prototype. I collaborated with Fabian Bronner and Lukas Stratmann in implementing

the simulator we decided to name “Pogona”. The core functionality providing the

supporting framework for the models is described in Section 3.2. Section 3.3 explains

how the real-world particles are represented in the simulation. The remainder of

this chapter presents the actual models and their Pogona implementations. It starts

with the channel model for movement prediction in Section 3.4, followed by the

transmitter modeling in Section 3.5. This chapter concludes with the different

receiver models for particle sensing in Section 3.6.

3.1 Architecture

The core simulation components and their interaction during a simulation time step

are displayed in the diagram in Figure 3.1. How they work together and what their

respective responsibilities are will be covered step by step in this chapter.

Initially, the simulator reads the configuration files containing the model setup

and respective parameters. The simulator components are then created and initial-

ized. This initialization procedure encompasses reading the CFD result files and

setting up the necessary data structures.

At a high-level view, a time step then consists of the following. First, the trans-

mitters create new molecules. Then, the movement of all molecules during the

time step is calculated by the channel components. If a molecule is positioned in

a receiver’s detection area at the end of the time step, the receiver considers the

16
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Figure 3.1 – Diagram of component interactions within a time step.
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molecule for the reported value. Finally, the simulation time is incremented by the

duration of the time step by the simulation kernel. This loop is repeated until the

specified simulation duration is reached. The non-aggregated component output can

be written to file during this simulation loop. This is done for the current position of

each molecule, facilitating post-processing with 3D visualization software.

At the end of the simulation, every component is notified. This is used to write

the aggregated sensor observations from the simulation to a file, which can later be

analyzed with other tools.

3.2 Framework

To facilitate flexibility in the implementation of the architecture described in Sec-

tion 3.1, a supporting framework is needed. This means providing a class with

base functionality for the various simulation components that a new component

can inherit from. This Component approach is presented in Section 3.2.1. However,

the interconnection of the components and the progression of time also need to be

facilitated. This is the responsibility of the SimulationKernel which is explained

in Section 3.2.2.

3.2.1 Components

The simulator consists of several components that can be dynamically combined

and configured to model a particular experimental setup. This approach enables

flexibility both in modeling new setups and in extending the simulator with new

components.

Each component implements its own initialization procedure. The order of the

initialization steps is enforced, simplifying interdependent initialization involving

more than one component. After each time step, all components get notified. Finally,

the finalize procedure of each component is called at the end of the simulation.

A component may choose to implement only a subset of these functions.

3.2.2 Simulation Kernel

The central controller of the simulation is the SimulationKernel, which manages

the progression of time in the main simulation loop. This loop splits the otherwise

continuous molecule movements into steps, creating a discrete-event simulation.

Every time step covers a pre-defined duration, usually less than a second.

At the start of the simulation, the kernel initializes the simulation components.

This allows enforcing the execution order of the initialization steps. The components
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get notified based on events during a time step by the kernel. Finally, the kernel also

finishes the simulation by finalizing each component.

In addition to this time progression, the kernel is also responsible for the inter-

connection of the components. This allows simulation components themselves to be

loosely coupled and interchangeable.

3.3 Molecule

The centerpiece of molecular communication is the molecule. It acts as the informa-

tion carrier in the system by moving from one place to another.

For our purposes, a molecule is simply the internal simulation representation

of the information carriers in the real world. These are not confined to individual

chemical molecules, but could be made up of liquid droplets, bacteria, nano-robots,

or bigger engineered particles. In the Erlangen testbed, the SPIONs correspond to

the molecules of this simulation.

Simulating every single information carrier with a molecule is usually not feasi-

ble, since there is a very large number of them. The basic assumption made is that

information carriers that are close to each other will behave in the same way. This

allows them to be represented by a single molecule instead. If a certain, moder-

ately large number of molecules is simulated, the simulation is therefore expected

to give a result that is close to a simulation which considers the behavior of all

individual information carriers. This enables simulation with only a tiny fraction of

the computational resources necessary for the entire, fine-grained simulation on a

particle level. This has to be accounted for, for instance when the sensor response

is calculated. Additionally, the number of molecules needs to be large enough so

that the randomization in their initial positions creates an approximately uniform

coverage.

The Molecule class in the simulator implements this. It primarily consists of

the molecule position, a 3-dimensional vector. This position is in world coordinates,

which is transformed to and from local coordinates where necessary. In addition,

every Molecule is given a unique identifier (ID). This enables tracking of a single

Molecule throughout the simulation. The Molecule can readily be extended with

other characteristics, for example to model different information carrier types. Only

a single type of SPIONs is used in the Erlangen testbed, so this was not implemented.

Other information used by the various simulation components is saved as well, but

will covered in the Section of the respective component.
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3.4 Channel

The channel essentially represents those simulation components tasked with pre-

dicting the behavior of molecules. The MovementPredictor (see Section 3.4.3)

integrates the molecule movement based on the flow. It retrieves the flow from the

SceneManager (3.4.7), which forwards the request to the Object (3.4.9) that the

molecule is in. The object itself contains a VectorFieldManager (3.4.5), which is

responsible for the interpolation of the flow. It uses a k-d tree to store the actual

vector field from which it retrieves the closest cell centers.

3.4.1 Scene System

One limitation of the vector field simulation as presented before is the mesh size.

This entire mesh has to be kept in memory during the setup of the CFD simulation

and a k-d tree containing the cell centers is stored in memory. With meshes routinely

consisting of several million cells, this can become a problem. Additionally, the

simulation duration of a CFD simulation tends to scale linearly with the mesh size

as well.

I propose to use a “scene” approach to address these issues. This idea is taken from

computer graphics, where a complex scenery is broken down into individual objects.

Such an object, e.g. a tree, can then be reused several times and exists independently

from the other objects or the scene itself. In a molecular communication system,

such independent objects can be identified, too. Figure 3.2 illustrates this scene

approach. The complex scene has been broken down into two straight pipe objects,

two injection objects, and an S-bend. The CFD simulation is run for each object

Pump

Pump

Pump

Pu
mp

Sen
sor

Figure 3.2 – Schematic of a scene with four pumps, a sensor, and five different
objects (dashed). Originally created by Lukas Stratmann.
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separately, solving the memory issue outlined above. Here, the injection objects and

straight pipe segments can be reused. Due to the reuse of objects, the total CFD

simulation time is reduced as well.

Unfortunately, the objects in the scene system are not as decoupled from each

other as the trees in the graphics example. When a pump turns on or off, the

changes in volumetric flow rate need to be propagated downstream. This is why our

simulator allows the definition of interconnected inlets and outlets of objects. This

approach is illustrated in Figure 3.3 As soon as the flow rate of an outlet changes,

the SceneManager makes sure to propagate this change to all attached inlets. The

object associated with the inlet is notified, calculates its changed outlet flow rates

based on the modeled geometry and notifies the SceneManager. This recursively

updates the flow rates in the entire system. How the inlet flow rates influence the

outlet flow rates is implemented by each object. For the Y-piece shown at the left

of the Figure, the calculation is a simple addition of inlet flows. The tube simply

propagates the inlet flow rate as the outlet flow rate. A splitter like the one shown

at the right requires more complex calculations to determine the flow rates.

One additional advantage of the scene system is explained with this changing

flow rate. This can be explained using the flow rates of the example in Figure 3.2.

With four pumps being either switched on or off, there is a total of 24 possible

system states. This means that in a single CFD simulation, the entire setup has to be

run 16 times to account for each state. This obviously scales very poorly for larger

systems. In the scene system, however, several states result in the same flow rate at

an object. For example, both injectors do not influence each other. That means that

the total number of injector CFD simulations is reduced to 22. Also, several injector

combinations result in the same flow rates in the S-bend and the sensor tube.

3.4.2 Molecule Manager

The MoleculeManager is a central component which encapsulates the state of the

simulation. It contains a list of all molecules present in the simulation. Whenever a

molecule is added, deleted, or changes one of its attributes, this change is propagated

to the manager, which updates its local store. Other components retrieve this list of
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Figure 3.3 – Example flow calculation for three interconnected objects. Volu-
metric flow rate is given in mL/min
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molecules for manipulation, usually by iterating over it and performing operations

on each molecule independently. For performance reasons, the changes are usually

transferred back to the MoleculeManager in the form of an updated list, instead of

individual function calls.

3.4.3 Movement Predictor

The particle movement is assumed to match the movement of the fluid at the particle’s

position. This requires that the simulated flow has a low Stokes number. It would

certainly be possible to consider the momentum of the particle, approximate the

inertia and simulate other Stokes numbers. For the Erlangen testbed, the nanoparti-

cles are considered sufficiently small and with low inertia. This is why the current

implementation of the MovementPredictor simply retrieves the flow and uses it to

predict the next position.

As pointed out in Section 2.4, there are several approaches of how to determine

the new position. Implementing Euler’s method is straightforward. The list of

molecules is retrieved from the MoleculeManager and iterated over. Then, the

movement of every molecule is independently predicted. First, the flow at the

current position of each molecule is retrieved and saved in k1. Then, this flow is

multiplied with the time step duration to determine the movement during the time

step. This movement is added on top of the current position and returned.

For Runge-Kutta 4, the calculation does not stop there. The flow is retrieved

at the centerpoint between the current position and k1, multiplied with the time

step duration, and saved in k2. This process is repeated for k3 and k4 according to

the Equations given in Section 2.4. Finally, k1 to k4 are weighted, summed up and

added to the current position. This is then returned as the new position.

Parallelizing this prediction is easily possible, provided that the flow lookups can

be made in parallel as well. However, Python’s multithreading support was found to

be unsuitable for this. One alternative would be to use multiple processes, which

was also tested. A naive implementation with the multiprocessing map function

provided by Python needed to transfer the vector field across processor boundaries.

Therefore, the effective performance of the simulator degraded instead. For these

reasons, the simulator only uses a single processor and thread.

3.4.4 Vector Field Parser

For parsing the vector field, the Python library “ofpp”4 is used. It supports reading

OpenFOAM mesh and output files, both in binary and in text output formats. However,

some minor errors surfaced when the library was integrated into the simulator. These

4https://github.com/dayigu/ofpp

https://github.com/dayigu/ofpp
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errors were addressed and a fixed version was published to the Python Package Index

under the new name “OpenFOAMparser”5. The parsed data is then transformed into

the vector field representation used in the simulator. This data structure consists

of two lists of 3-Dimensional vectors. The first list stores the positions of the cell

centers of the mesh. The second list stores the associated flow of the cells.

3.4.5 Vector Field Manager

The VectorFieldManager abstracts away the access to the vector field returned

by the VectorFieldParser. As outlined in Section 2.5, some kind of interpolation

needs to be applied when determining the flow at the position of a molecule. This

lookup needs to be run for every molecule in every time step, so it is paramount that

it is optimized. The VectorFieldManager implements this interpolation, returning

the interpolated flow to the Object.

It uses the k-d tree presented in Section 2.3.3 to store the cell centers internally,

instead of the list structure used by the VectorFieldParser. This tree structure

allows the efficient retrieval of the n closest cell centers to any point. The interpolation

algorithms I implemented make use of this data structure to improve the simulation

speed. These algorithms, nearest neighbor interpolation, Shepard’s interpolation,

and a modified version of it, are covered in the following sections.

3.4.5.1 Nearest Neighbor Interpolation

When applying the current cell lookup method for nearest neighbor interpolation, it

is necessary to determine the exact cell a molecule is in. It would be necessary to

determine the cell faces of surrounding cells, their positions, and their orientation

relative to the sample point for this. Such an implementation is expected to consume

a lot of computational resources just for this lookup. An approximation with higher

efficiency is used instead. The single closest cell center, which is not necessarily

the center of the cell the sample point is in, is determined. For a regular grid, this

approximation method is equivalent to the actual cell center calculation, while still

giving appropriate results for an irregular one. It is also fast, since the nearest cell

center can be determined efficiently with an optimized spatial data structure like a

k-d tree. Using a spatial data structure instead of a simple list of points was therefore

one of the earliest optimizations and improved the run time of the simulations by

several orders of magnitude.

5https://pypi.org/project/openfoamparser/

https://pypi.org/project/openfoamparser/
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3.4.5.2 Shepard’s Interpolation

Using more advanced interpolation algorithms aims to reduce grouping of molecules

and creating a smooth channel impulse response. Shepard’s interpolation is described

to be very smooth and easy to implement. It calculates the distance of each known

data point to the sampling point and weights the function value at the data point

with the inverse of this distance. The definition of Shepard’s interpolation is given

in Section 2.5. The simulator implements this by iterating over all cell centers,

calculating the distance to the sampling point, and using this for the weights. The

exponent µ is configurable.

3.4.5.3 Modified Shepard’s Interpolation

The original Shepard’s interpolation is global and needs to consider every single mesh

cell. For the purpose of the simulator, the performance turns out to be unacceptable,

since the mesh easily contains millions of cells. Since a k-d tree readily supports

efficient queries for the nearest Nw neighbors, I also implemented the local variant

by Franke and Nielson [24]. This means using the modified weighting function given

in Equation 2.13.

The radius of the sphere Rwi
is determined by retrieving the Nw nearest neighbors

from the k-d tree and calculating the distance to the one furthest away. Since the

weight of positions on the surface of the sphere of influence is zero, no jumps occur

and the interpolation is sufficiently smooth. The distance calculations involved can

be reused from the k-d tree lookup, improving performance.

The choice for the configurable exponent µ will be discussed in detail in Sec-

tion 4.2.5.4. A value for Nw has to be determined as well. Considering the eight

cell vertices surrounding the query point appears as a reasonable approach for CFD

interpolation. As pointed out in Section 2.5, the most distant value is not incorpo-

rated into the modified interpolation. I therefore picked Nw = 9 to consider all eight

nearest neighbors.

One challenge remains: The boundary of the mesh. As soon as a molecule

comes close to the boundary or crosses it, the interpolation will fail. This is because

suddenly, all of the known flow values are on one side of it, instead of all around in

different directions. Under those conditions, Shepard’s methods extrapolate instead

of interpolate.

Switching the interpolation method at the wall is my proposed solution special-

ized for fluid simulations. The interpolation algorithm returns no flow at the wall

because of the no-slip boundary condition there. For the boundary cell only, the

flow is then extrapolated linearly, approximating the boundary layer. This is done

by determining the distance between the sample point and the wall as well as the

distance between the cell center and the wall. At the wall, the flow is set equal to
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none. At the cell center, the flow is equal to the flow of the cell. At the face opposite

of the wall, the flow is double the flow of the cell. For cells adjacent to more than

one wall, only the closest wall is considered.

3.4.6 Mesh Manager

Since parsing a vector field and setting up the required data structures is compu-

tationally expensive, the MeshManager was implemented to use caching wherever

possible. Objects can pass an OpenFOAM path to be parsed, which the MeshManager

instructs the VectorFieldParser to turn into an in-memory representation of the

cell center positions and their associated flow. A version of this in-memory represen-

tation is kept by the MeshManager. If the same vector field is used afterwards, only

the in-memory version is returned and the parsing is not re-executed. An additional

caching step speeds up the initialization of subsequent simulation runs. After parsing,

the in-memory representation is serialized with the Python tool “pickle” and stored

on disk. Before running the VectorFieldParser, the cache folder is checked for

existing “pickled” versions of the data. Again, if a cached file is found, the file is

deserialized instead and no parsing takes place. Since the CFD simulations only

change rarely, this caching can be very useful. When a CFD simulation change occurs,

the cache folder needs to be cleared.

3.4.7 Scene Manager

The scene system presented in Section 3.4.1 is implemented with the use of the

SceneManager.

When implementing the scene system, a decision has to be made between

optimizing for memory footprint or simulation run-time. Since the same object

can exist several times in the scene at different places, the handling of coordinate

transformations for these positions has to be decided. To reduce the memory footprint

of the simulator, saving the mesh only once would be a possible solution. This

would require transforming from world into object coordinates for every single

mesh access, increasing the simulation run-time. Another option would be to load

several copies of the mesh into memory and applying the different transformations

to the respective meshes only once at the beginning of the simulation. The choice

currently implemented in the Pogona simulator is coordinate transformation for

each access. This decision was motivated by the scarcity of simulation machines with

large memory, while running simulations for a slightly longer time was acceptable.
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3.4.8 Teleporting Sensor

The scene system requires the coupling of several objects to create a single inter-

connected tube system. This coupling is realized with the SensorTeleporting

component. Where an outlet of one object is connected to an inlet of another object,

the teleporter is placed automatically. For this purpose, each object needs to specify

its outlet areas. The teleporter geometry then encompasses this outlet area.

The operation of the teleporter itself is simple. Whenever a molecule enters the

outlet area of the source object, its object ID is replaced with the ID of the target

object of the interconnection. Subsequent requests for the flow of the molecule’s

position are then routed to the target object instead of the source object.

The teleporter is implemented as a Sensor for performance reasons. Since it

only needs to work on molecules in the outlet area, it uses the sensor subscription

architecture that will be presented in Section 3.6.1 to reduce the simulator run-time.

It has to be ensured that molecules will actually hit the sensor area of the tele-

porter. Otherwise, they continue in the geometry of the target object, but use the

closest flow from the outlet of the source object. The resulting molecule movement

would therefore be incorrect. This is why the outlet area needs sufficient depth

such that fast moving molecules do not accidentally skip over it. Checking for this is

advised when using large time steps.

3.4.9 Objects

The scene system presented in Section 3.4.1 supports different Object components.

These correspond to nearly independent sections of the tube system. For the investi-

gations in this thesis, only two different objects were necessary. These are handled

by the SceneManager. The first is a simple cylindrical tube, while the second is a

Y-piece with tube sections attached to it.

The cylindrical tube is shown in Figure 3.4a. It has a configurable length, outlet

zone, and inlet “dead zone”. The inlet zone is necessary because the flow profile

only develops the proper shape some distance downstream of the inlet. The tube

position is translated upstream such that molecules entering will only be positioned

at the sections where the flow has properly developed. The outlet zone is the

section of the tube where entering molecules will be teleported away to the attached

inlet of the next object. The user-configured tube length is achieved by picking the

shortest tube mesh that is longer than the sum of the three user-supplied zones. The

outlet teleporter is then placed in such a way that the distance from the inlet to the

teleporter matches the user-configured length. Thereby, the tube appears shorter to

the molecules than the mesh itself would suggest, and the remaining last section of

the tube mesh is not actually used.
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(a) Tube

(b) Y-piece

Figure 3.4 – Geometries of the simulator objects. Wireframes of the CFD mesh
are used for visualization.

The second object, a Y-piece intersection of three tubes, is shown in Figure 3.4b.

It does not possess the scaling capabilities of the tube. However, variable-length

tubes can be attached to it in the scene if longer tube sections are required. It has

an injection inlet, which is the longer tube in the foreground of the Figure. The

inlet for the background flow is shown at the top left. Because no molecules enter

through here in our scenarios, it has been kept as short as possible. The second

long tube at the top right is the outlet of the combined flow. It has a configurable

length, again achieved by a variable position of the outlet teleporter. These tubes

are positioned such that the injection inlet and the outlet intersect at an angle of 30°,

while the other two angles are 165°. This mirrors the Y-piece used in the Erlangen

testbed [10].
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3.5 Transmitter

The transmission of information is implemented by the spawning of molecules. The

basic on-off keying (OOK) modulation works by splitting time into discrete steps. In

each step, either information carriers are injected, or not. This spawning of molecules

is implemented by the Injector covered in Section 3.5.1. The modulation itself is

implemented in the InjectorController covered in Section 3.5.2, which regulates

the Injector.

3.5.1 Injector

The creation of molecules is done by an Injector. It spawns new Molecule objects

and initializes their properties. For example, the initial position of a molecule needs

to be set, as well as the object in which it resides. The positions are sampled

independently at random from a uniform distribution inside the injector geometry.

Possible geometries are cubes, cylinders, spheres, or a single point source. These

existing geometries are easily extended to cover more complicated shapes. The

object ID a molecule initially receives is determined by the single object each injector

is attached to.

An injector may be turned on or turned off. When turned on, it spawns a

configurable number of molecules in each time step.

An injector also has an alternative mode of operation, which is called “burst”.

There, when the injector is turned on, all molecules are created in a single time

step and not continuously. When the injector is turned off again, all molecules that

remain in the injection area are deleted. The reasoning for this particular mode of

operation can be found in Section 4.1.2.

3.5.2 Injector Controller

The spawning of the Injector is toggled by an InjectorController, which im-

plements the modulation scheme used by the transmitter. For our investigations,

a simple repetitive on-off pattern with constant pauses and injection durations is

used. When extending the simulator, this component can be coupled with an existing

network simulator such as NS-3 or omnet++ to simulate higher network layers. OOK

is already implemented in the Pogona simulator and other modulation algorithms

can be easily added. Different amplitudes of injections can be implemented by

varying the number of molecules created by the Injector.
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3.6 Receiver

One fundamental issue is the performance of the simulator for a large number of

receivers. A naive implementation requires every receiver to evaluate the position of

every molecule at every time step to determine the sensor response. In the following,

a more reasonable approach for this problem is presented in Section 3.6.1. How

the receivers themselves evaluate the positions is covered in Section 3.6.2. It is

used by the simple counting sensor presented in Section 3.6.2.1. A more advanced

sensor which weights molecules based on empirical measurements is explained in

Section 3.6.2.2. The destructing sensor is used after molecules pass through the

other sensors and covered in Section 3.6.2.3.

3.6.1 Sensor Manager

The naive implementation needs to notify all sensors for each molecule movement.

Each sensor then evaluates the molecule position and subsequently decides which

action to take, e.g. to increment a counter. However, most of the time a molecule is

not in a sensor, or only in a single one. This is inefficient and increases the run-time

of the simulation. Since sensors are assumed to be stationary, a pre-computation can

be employed to speed up this process. If one were to split the simulation area into

regions, only the sensors that overlap with the region the molecule is in would need

to be notified. Several spatial data structures that do this exist, but the simulator

already uses the CFD mesh as its underlying spatial structure. Whenever movement

is calculated, the closest cell is already determined to retrieve the associated flow.

These cell IDs can then be used to save whether or not a sensor might be interested

in a particular molecule. Which sensor overlaps which cell needs to be determined

only once in a pre-processing step and can be used in each subsequent time step.

The SensorManager component implements this approach. However, it remains

optional, both on a global and on a per-object level. Disabling it globally might be

necessary because of memory constraints, since the subscription array may become

large. Disabling it for a single object might be necessary because the mesh of the

object is not suitable to be used for this purpose, or simply because it does not possess

one.

For each object in the simulation, the component is keeping a list of mesh cells.

Each cell can have several sensors attached to it. During simulation initialization,

the SensorManager will retrieve the mesh of each object and will iterate over all the

cells. For each cell, a sensor subscription is added if the cell center is inside of the

sensor area. When a molecule gets a new position from the MovementPredictor,

the closest cell to the new position is determined. This cell is then used to look up

the subscribed sensors for this cell in the list.
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3.6.2 Sensors

A receiver consists of a sensor that measures the presence of molecules. In the

experimental setup of Unterweger et al. [10], this is a MS2G single frequency

susceptibility sensor from Bartington. It consists of a coil around a central cavity in

which a material probe is to be placed. Instead of a probe, the plastic tube carrying

water background flow and SPIONs is placed through it. Since the particles are

superparamagnetic, they increase the magnetic susceptibility measured by the coil.

3.6.2.1 Counting Sensor

A simple assumption would be that the sensor sensitivity is constant along the cavity

and that the sensor is not measuring anything outside of the cavity. This is modeled

in the following way in the SensorCounting component. The section of the tube

that is inside the sensor cavity is determined. In each time step, the number of

molecules inside this section is determined, while ignoring all other molecules. The

sensor response is then simply the number of molecules times a sensitivity factor for

the given sensor. The sensitivity factor can be determined both experimentally and

analytically. For the experimental sensitivity factor, one can simply scale the output

CIR to match the experimental data. For the analytical sensitivity factor, it has to be

determined how many real SPIONs one simulated molecule represents. When the

magnetic susceptibility of one particle is known, the sensor response is simply the

representation ratio times the susceptibility of a single particle.

3.6.2.2 Empirical Sensor

However, the sensor used in the Erlangen experiments exhibits non-linear character-

istics. This was determined by Harald Unterweger with the following experiment. A

plastic container was filled with the SPIONs. It was then placed in the measurement

cavity of the susceptibility sensor, which was oriented vertically. After noting the

sensor reading, the container was lifted by 1 mm by inserting a plastic washer below

it. This was repeated until the container exited the sensor area at the top of the

device.

Figure 3.5 shows the susceptibility readings that were obtained in the experiment.

When the container filled the entire sensor cavity, we see that the measured magnetic

susceptibility reaches its maximum. When the container has exited the sensor cavity,

the magnetic susceptibility comes close to zero. In between, we see non-linear

behavior. One can deduce that the sensor is not as sensitive to magnetic particles in

the outermost regions of the cavity, but much more sensitive to those in the center

where the slope is steeper.
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Figure 3.5 – Measured susceptibility of a container filled with SPIONs placed
at different offsets in the sensor cavity. Measurement data provided by Harald
Unterweger. The logistic function fitted to the measurement is shown.
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Figure 3.6 – Empirical sensor sensitivity as a function of the nanoparticle
offset in the sensor cavity. Obtained by derivation of the fitted logistic function
shown in Figure 3.5.
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Based on this experiment, one can derive a model that takes this non-linearity

into account. First, the measurement errors seen in Figure 3.5 are smoothed out.

As Fabian Bronner noted, a logistic function can be fitted nicely to this experiment,

returning a smooth and continuous susceptibility prediction. However, the container

is inserted step by step, whereas the model needs to predict the sensor response to a

single molecule. The container in the measurement therefore acts as an integrator

over the real sensitivity function. The underlying sensitivity that produces the ob-

served curve can be determined by derivation of the fitted function. Figure 3.6 shows

what the derivative of the logistic function looks like. The function shows a clear

central spike where the sensitivity is highest. To both sides, the sensitivity is greatly

reduced, with an asymptotic convergence towards zero close to the boundaries of

the sensor cavity.

The improved sensor model of the SensorEmpirical component thus works in

the following way. Again, the molecules outside of the sensor cavity are ignored,

since the experiment above confirmed that the sensor sensitivity is very close to

zero outside of it. Inside the cavity, the offset of each molecule inside the sensor

is calculated. The sensitivity at this offset is used as a factor for the magnetic

susceptibility which the single molecule contributes. Again, these sensed magnetic

susceptibilities of the molecules are added up to get the total magnetic susceptibility.

As with the linear sensor model, the total amplitude can be scaled based on

experiment. However, it is again possible to derive an analytical solution by applying

the density of the molecules in the container and its dimensions. Unfortunately, the

exact density is not known, so an analytical solution is not easily obtainable.

3.6.2.3 Destructing Sensor

To take care of molecules after sensing, the SensorDestructing was created. It

simply deletes all molecules that enter its sensor area. This sensor can be placed

at the end of pipes where molecules leave the simulated area. For example, the

molecules in the Erlangen testbed end up in a waste container after passing through

the sensor [10]. Instead of continuing to calculate their movements, which is no

longer relevant for the simulation, these molecules can be discarded instead. This

boosts the performance of the simulator, since the number of molecules present in

the simulation massively influences the simulator run-time. Further details on this

can be found in Section 4.3.1.

The decision to implement this component as a sensor was motivated by perfor-

mance. Since the component is only interested in the molecules in a certain area, e.g.

the pipe outlet, it only needs to be informed about molecule movement there. The

SensorManager already implements the necessary optimizations, so it was used to

improve the run-time of the destructor as well.
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For the InjectorController in burst mode, the SensorDestructing is used,

too. The InjectorController is attached to it and can turn it on and off for these

purposes. When the sensor is turned off, it will simply ignore all molecules entering

its sensor area.



Chapter 4

Evaluation

The new Pogona simulator needs to be verified and validated. Verification encom-

passes various checks to ensure the implementation of the underlying theoretic

model is correct. Validation determines whether the model actually matches the real

world.

Section 4.1 gives the simulator configuration used for these comparisons. Sec-

tion 4.2 contains a thorough analysis of the correctness of the Pogona simulator.

This is followed by an investigation of its efficiency in Section 4.3, since this is one

of the primary goals of the simulator. Finally, the simulator output is compared to

the Erlangen testbed in Section 4.4.

Parameter Unit Value

tube radius mm 0.75
kinematic viscosity m2/s 1e-6
background volumetric flow rate L/min 5
injection volumetric flow rate L/min 10
injection volume µL 17.3
injection molecule count 2000
injection duration ms 103.8
simulation duration s 25
time step duration ms 1
integration method Runge-Kutta 4
interpolation method Modified Shepard’s, exponent 1
RNG seed 1337

Table 4.1 – Common simulation parameters.

34
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4.1 Reference Cases

In the following, the reference cases used for analysis are covered. This includes the

geometry as well as other simulator settings. First, the simulator setup for a simple

tube is explained in Section 4.1.1. Then, Section 4.1.2 explains the more complex

Y-Piece injection.

The parameters for the reference simulations are listed in Table 4.1. It is explicitly

pointed out where a simulation deviates from these.

4.1.1 Simple Tube

The simplest flow-dominated channel for molecular communication is a cylindrical

pipe. This has the advantage of having very well understood fluid dynamics and easy

to produce experimental setup. The physical channel investigated by Unterweger et al.

[10] is a tube, which is why comparison with experimental results is straightforward.

For the CFD simulation, the O-ring mesh shown in Figure 2.2 is used.

The injection in this case is spawning all molecules on a 2-dimensional circular

disk at the inlet. This injection happens in burst mode at the very beginning of the

simulation. The first time step is the only one where spawning takes place.

The sensor is a simple SensorCounting as explained in Section 3.6.2.1. The

sensor geometry is a cube which is placed to encompass a section of the tube. Its

centerpoint is located 5 cm downstream of the inlet unless stated otherwise. The

length of the cylinder is 5 mm, since that is the main sensing area determined by

Unterweger et al. [10].
A SensorDestructing, as explained in Section 3.6.2.3, is placed immediately

behind the counting sensor. It is turned on continuously, deleting molecules as they

are about to leave the tube. It is important that this sensor does not overlap with

the counting sensor, as the reported count would be too low otherwise. Additionally,

this sensor needs to be placed inside the tube, as the optimized sensor subscription

feature presented in Section 3.6.1 would malfunction otherwise.

4.1.2 Y-Piece Injection

The Y-piece injection is a more sophisticated scenario that models the complicated

interactions between the injection flow and the background flow. In the testbed,

the particles are stored in a syringe and injected by a pulsed pump into the main

tube. This is modeled by creating the molecules in the inlet of the y-piece object.

The injector geometry is thus a cylinder matching the inlet tube. When the injection

begins, the injector is turned on in burst mode. Simultaneously, the injection inlet

flow for the Y-piece object is set to the injection flow. This means that a CFD simulation
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Figure 4.1 – Y-piece during the injection. Molecules are shown as the gray
spheres in the top half of the Y-piece. The CFD results are shown in the bottom
half, with the flow speed used for coloring.

with both inlets active is used for flow predictions. This carries the molecules in the

injection tube around the edge into the outlet tube. After a fixed time has elapsed,

the injection finishes. At this time, the inlet flow is set back to none, resulting in

another change in the CFD simulation being used. This simulation only has the

background flow turned on, and will carry all molecules that made it into the outlet

tube further down the tube. At the end of the tube, the sensor is placed. Alternatively,

a tube object is placed after the outlet to allow simulation of longer pipes.

One issue with subsequent injections are the molecules that remain in the inlet

tube after previous injections. These are only carried into the main pipe when the

next injection starts. If they were added to the newly created molecules, they would

distort the distribution of molecules in the inlet. Additionally, their movement would

have to be calculated even when they remain stationary between the injections. To

address this, a destructor is placed with the same geometry as the injector. As soon

as the injection finishes, the destructor is turned on. This only deletes molecules

that would remain in the inlet otherwise, thus not affecting the CIR.

4.2 Verification

There are different approaches to verify the correctness of a simulator. For a CFD

simulation, convergence is the primary concern. This is covered in Section 4.2.1.

Since the fluid simulation assumes a laminar flow, this assumption is checked in

Section 4.2.2. Whether the CFD simulation properly preserves the configured vol-

umetric flow rates is analyzed in Section 4.2.3. As explained in Section 2.3, the
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correct flow profile only develops a certain distance from the inlet of a tube. The

unsuitable length of the tube is determined in Section 4.2.4. This section is then

configured to be discarded in the Pogona simulator. Because issues were discovered

with interpolation, the algorithms are scrutinized in detail in Section 4.2.5. The

integration algorithm is verified by comparison with a known-good implementation

in Section 4.2.6. A tube object using the analytic solution outlined in Section 2.2

was created as a reference. This eliminates the influence of the CFD simulation and

the interpolation algorithm. Section 4.2.7 compares it with the regular CFD-based

tube object to quantify the introduced errors.

4.2.1 Convergence

When determining the convergence of CFD simulations, the residuals are investigated

first. All simulations used in this thesis were checked for this convergence. The top

of Figure 4.2 shows the residuals in one of the tube examples over time. It shows an

inverse relationship between the residuals and the simulation duration. As explained

in Section 2.3, we see a gradual improvement. However, the solver will stop iterating

if the residual error falls below a pre-defined threshold. This can be seen in the

bottom of the Figure, where the pressure solver, as well as the flow solvers, reduces

the iteration count over time. This eventually leads to an equilibrium, where the

both residuals and iterations oscillate. In the current example, this occurs after

around 0.6 s. At this point, running the simulation for a longer simulated time will

not yield more accurate results.

4.2.2 Turbulence

The CFD model assumes that no turbulence occurs. This is tested by calculating

the Reynolds number Re for the tube case. We assume a maximum volumetric flow

rate of 15 mL/min and a water temperature of 18 ◦C. We calculate the average flow

speed from the volumetric flow rate in Equation 4.1. When inserting this together

with the tube parameters into Equation 2.3, we arrive at Equation 4.2.

〈vz〉=
15 mL/min
π(0.75mm)2

=
0.25 cm3/s

1.767× 10−6 m2 = 0.1415 m/s (4.1)

Re=
D〈vz〉ρ
µ

=
0.75 mm× 2× 0.1415m/s× 998.57 kg/m3

0.001051 8N s/m2 = 201.5 (4.2)

The resulting value of 201.5 indicates that this flow does not show any turbulent

behavior. Calculating Re for the Y-piece is not possible, since no analytical solution
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Figure 4.2 – CFD simulation convergence in the 15 cm tube case. Top diagram
shows residuals after applying the solver, bottom diagrams show the number
of solver iterations necessary.
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exists for the flow inside. Because its dimensions are comparable to those of the

tube, it is assumed that no turbulence occurs as well.

4.2.3 Flow Conservation

The predicted flow speeds in the tube influence the timing results of the overall CIR

simulation.

In order to verify the flow conservation of the calculations, the CFD simulation

result is analyzed in paraView. The 15 cm tube was configured with a volumetric flow

rate of 2.499× 10−7 m3/s, which corresponds to 14.994 mL/min. The discrepancy

with the intended 15 mL/min was introduced by human rounding errors during

simulation setup. A slice of the tube is taken and the flow speed through it integrated,

which should return the same value for any position in the pipe. Additionally, this

value should match the configured inlet flow rate.

For the snappyHexMesh with a configured flow rate of 2.499× 10−7 m3/s, the

value at both 1 cm and 14 cm distance from the inlet is 2.4989× 10−7 m3/s. For the

regular O-ring mesh, the value at 14 cm is 2.249 900 03× 10−7 m3/s instead, yielding

a smaller deviation from the configured value. Although the mesh structure seems

to influence the resulting error, the error magnitude is too small to be noticeable

in the context of this thesis. This shows that the basic conservation of flow is being

observed by the CFD simulation in the tube case.

For the y-piece, the background inlet is configured with 8.33× 10−8 m3/s and

the injection inlet is configured with 1.666× 10−7 m3/s. After both flows join, this

should yield a combined volumetric flow rate of 2.499× 10−7 m3/s. When applying

the integration method used for the tube, the flow rate 6 cm downstream from the

joining point is 2.498 998 899× 10−7 m3/s. This shows the conservation of flow for

the case of confluence.

4.2.4 Flow Profile Development

One issue with CFD simulations of pipes is the inlet area. The common boundary

condition at the inlet is a volumetric flow that is constant across the entire area. In

this case, the flow speeds at the center will be lower than appropriate, while the

flow speeds at the wall will be higher. As the fluid moves further down the pipe, the

drag of the wall will slow down the outer layers, while the ones in the center speed

up accordingly.

This means that a certain area downstream of the inlet is unusable, since the

flow has not fully developed there. Figure 4.3 shows the flow profile at different

distances from the inlet in our tube simulation. It is apparent that the flow eventually

converges to the theoretically predicted profile at the end of the tube. Determining
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Figure 4.3 – Flow profile at different offsets near the inlet of the tube. Flow
profile at the outlet and the theoretic parabola added for reference.

at which point the development is sufficient depends on the accuracy requirements

of the simulation.

Table 4.2 shows the flow speed at the center of the pipe. This was determined

using the sample utility in paraView. For our purposes, 4 digits of agreement are

considered enough. This means that the first 5 cm of the pipe have to be discarded.

After that, no significant change to the flow profile is to be expected.

4.2.5 Interpolation

The interpolation algorithms described in Section 3.4.5 turned out to have a large

influence on the CIR prediction. To verify it, the first step is to compare the flow profile

it produces. Section 4.2.5.1 contains this analysis, concluding that discontinuities

Distance to inlet (cm) Flow speed (m/s)

1 0.2679
4 0.281752
5 0.28178

10 0.281785
15 0.281785

Table 4.2 – CFD Flow speeds at the pipe center.
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appear in the flow profile. The influence of these discontinuities for the particle

movement is presented in Section 4.2.5.2. The non-uniform particle movement can

then be identified in the CIR analyzed in Section 4.2.5.3. To conclude the analysis,

the possible IDW exponents are evaluated in Section 4.2.5.4.

4.2.5.1 Flow Profile

Figure 4.4 demonstrates the effect of the interpolation algorithm for an example

tube with a flow of 15 mL/min. The flow is sampled in a straight line that cuts

through the tube perpendicularly. In particular, the sampling is done near the pipe

outlet, 14.05 cm from the inlet. The y-coordinate is fixed to 0 for this purpose, and

the x-coordinate is varied in 1500 small steps. The interpolated flow downstream

through the tube in z-direction is plotted for each sampling location.

Nearest neighbor interpolation creates a discontinuity at the interface between

neighboring cells. This effect is shown as the flow jumps in Figure 4.4b. It becomes

apparent that this does not approximate the analytic flow profile well.
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Figure 4.4 – Flow profile in a tube, calculated from the CFD simulation using
different interpolation algorithms.
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The interpolation result of the original version of Shepard’s interpolation is

unusable. It uses an exponent of 2, which suffers from the domination of far-away

values mentioned in Section 2.5. With a choice of 4, the result is much better, as

shown in Figure 4.4c. However, even though the interpolation is very smooth, the

differences to the theoretic parabola are simply too big. The extrapolation issues

discussed in Section 2.5 are also visible, with the flow speed rising again behind the

wall.

Figure 4.4d finally shows the modified version of Shepard’s interpolation with an

exponent of 1. It can be seen that the interpolant is close to the analytical flow, except

for a jump near the wall. At this point, Shepard’s interpolation already appears to

be suffering from the extrapolation issue. Where the interpolation algorithm finally

switches over, a jump appears. The remainder of the interpolant is close to the

analytical flow, but there are still inaccuracies left that can be spotted upon close

inspection. These will be analyzed in detail in Section 4.2.5.4.

4.2.5.2 Grouping

The effect of the interpolation algorithm choice on the behavior of molecules in the

simulator was investigated in the simple tube case. The positions of the molecules

are displayed in Figure 4.5.

As expected, molecules move together in distinct groups when nearest neighbor

interpolation is used. All molecules within a cell move at the same speed, and

thus reach the sensor in groups. This creates large artifacts in the channel impulse

response, which now consists of several distinct spikes generated by each group’s

arrival. Additionally, a lot of groups move at approximately the same speed. This is

caused by the O-ring mesh structure shown in Figure 2.2. For the outermost circular

(a) Nearest Neighbor Interpolation

(b) Modified Shepard’s Interpolation

Figure 4.5 – Molecule positions after 110 ms in the simple tube case using
different interpolation methods.
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cell ring, the flow speed of the CFD simulation is virtually identical across all cells

due to its symmetry. This is also true for the adjacent cell rings close to the wall.

This effect can be observed as the vertical lines to the left of Figure 4.5a. After the

four outermost cell rings, the flow speeds of adjacent rings begin to overlap, creating

a more uniform distribution of the group speeds.

For the modified Shepard’s interpolation, a much more uniform distribution is

observed. However, a gap near the inlet remains, where no molecules are present.

This can be explained with the change in interpolation algorithm for the outermost

cell. The jump in the flow profile shown in Figure 4.4d determines a speed range

that none of the molecules reach. Either the speed is below the range because the

interpolation algorithm is linear interpolation at the wall, or it is above the range

because of the extrapolation issue. This non-existent speed range is then visible as

the gap in Figure 4.5b.

4.2.5.3 Channel Impulse Response

The CIR of the nearest neighbor interpolation is not usable at all. The grouping

identified in Section 4.2.5.2 is clearly visible. Instead of single molecules entering

the sensor area one by one, the CIR displays jumps of groups consisting of up to
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30 molecules at once. The ring issue is also obvious. After the first 2.5 s, only the

molecules from a single ring arrive at the same time, with distinct gaps between

the rings. The three outermost rings that are non-overlapping arrive at 3 s, 5 s, and

15 s. They corresponds to the three leftmost vertical lines in the molecule positions

in Figure 4.5a. This demonstrates the significant influence of the interpolation

algorithm on the CIR.

The molecule-free zone identified in Section 4.2.5.2 has a profound effect on

the CIR shown in Figure 4.6. Since the molecules of the It can be seen that when

using the modified Shepard’s interpolation the susceptibility drops to zero after

about 6 s, only to rise again later. In reality, the measured susceptibility should be

monotonically decreasing at this time.

4.2.5.4 Exponent of Modified Shepard’s Interpolation

As outlined in 2.5, only an exponent of 3 or above is suitable for the original algorithm

by Shepard. If the modified local version is used with exponent 4, this results in a

less-than-ideal interpolation. The issues can be spotted fairly easily in Figure 4.7,

where the interpolated flow is plotted in two dimensions. Although the basic task

of creating a mostly smooth interpolation is usually achieved, some discontinuities

stand out. For example, at 140.27 mm from the inlet, a band of jumps is visible that
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Figure 4.7 – 2D plot of the flow at the wall near the tube outlet, using Modified
Shepard interpolation with exponent 4.
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goes all across the pipe. This occurs at the border between cells where the closest

neighboring cell centers change. Additionally, once the sampling location comes

close to the cell centers at 140.13 mm and 140.42 mm, the large exponent causes

the center to become dominant over all others. This in turn causes visible artifacts

that could be avoided. The last feature to stand out is the perfectly smooth region

close to the wall, which is seperated from the remaining area by a discrete jump

in the interpolant. This is the effect of the changed interpolation algorithm in the

outermost layer of cells. The jump observed in Figure 4.4d thus becomes visible in

this plot as well.

Because the issue of far-away values is not applicable in the modified local

version, smaller exponents are possible as well. Figure 4.8 shows what influence the

exponent has on the resulting CIR. The unexpected peaks change their shape based

on the exponent being employed. It is therefore suspected that the peaks are caused

by irregularities in the interpolation. For linear weighting with an exponent of one,

the peaks are somewhat reduced.

When inspecting the interpolant of linear weighting shown in Figure 4.9, the

reason becomes apparent. Whereas an exponent of 4 causes visible banding at the

cell border, only small artifacts remain for an exponent of 1. The influence of the

cell centers themselves on the surrounding interpolant disappears almost completely.
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Figure 4.8 – CIR in the Y-piece injection case, using Modified Shepard inter-
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Figure 4.9 – 2D plot of the flow at the wall near the tube outlet, using Modified
Shepard interpolation with exponent 1.

Still, horizontal grouping remains in spite of sufficient smoothness. A molecule will

travel across thousands of subsequent artifact regions when it moves through the

pipe. This means the errors introduced by the artifact will accumulate, which could

explain the remaining peaks in the CIR.

4.2.6 Integration

The paraView visualization toolkit6 provides a variety of data analysis algorithms. It

was created by the Sandia National Laboratories, Los Alamos National Laboratories,

and Kitware Inc. and is often used for analysis of large data sets, for example at

the National Center for Computational Sciences. One of the analysis algorithms is a

stream tracer that follows the path of a hypothetical particle through a flow. The

flow itself can be imported from OpenFOAM results, through a plugin provided by

OpenFOAM. This plugin was used to import the Y-piece CFD results into paraView.

Then, a configuration of an injection point source placed in the inlet was created and

run in the simulator. The simulator outputs the position of molecules in a format

that can be imported in paraView. A screenshot of paraView is shown in Figure 4.10,

depicting the molecule positions calculated by the simulator and the ones predicted

by the stream tracer. Both the simulator and the stream tracer were configured to

6https://www.paraview.org

https://www.paraview.org
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Figure 4.10 – Molecule positions calculated with Runge-Kutta 4 integration.
The simulator output is shown as spheres, the paraView stream tracer is shown
as the white line.

use the Runge-Kutta 4 integration method presented in Section 2.4. The agreement

between the known-good implementation of Runge-Kutta 4 integration in paraView

and our simulator confirms the correctness of our Runge-Kutta 4 implementation.

4.2.7 Analytical Tube

The analytical tube is an Object implemented as a reference for the regular, CFD-

based tube object. Instead of running a CFD simulation, importing it as a vector

field and interpolating the flow, it uses a theoretic parabola. The distance to the

tube center is determined and input as r into Equation 2.1.

This allows eliminating the influence of the discrete vector field and the inter-

polation algorithm on the CIR. The resulting CIR for the simple reference case is

shown in Figure 4.11. There are three observations to make here. First, the overall

shape of the CIR is identical. This means that the CFD simulation, even though dis-

cretized and interpolated, results in roughly the same movement prediction as using

the analytical formula. Second, there is a spike before about 5 s and drop to zero

afterwards that is only observed in the CFD-based simulation. This finally confirms

the influence of the interpolation-induced flow profile jump from Figure 4.4d. Third,

there is a constant time offset between both curves that is growing. This means that

the overall movement speed predicted by the CFD-based tube is slightly lower than
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Figure 4.11 – CIR in the simple tube case using either the CFD-based tube
object or the analytical tube object.

the analytical one. However, the influence of this discrepancy on the CIR remains

small in this case.

4.3 Efficiency

The simulator needs to be efficient in order to be useful. In the following, both the

theoretic and the practical computational complexity are analyzed. Section 4.3.1

establishes the theoretic complexity depending on input sizes. The different interpo-

lation algorithms are evaluated empirically in Section 4.3.2.

4.3.1 Theoretic Complexity

The algorithmic complexity of the simulator model presented in Chapter 3 depends

on several input sizes, as well as configuration choices.

Most important is the number of molecules m. Since the movement prediction

works on each molecule separately, this piece of the simulator exhibits a linear

relationship.
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The second factor is the time resolution and simulation duration. The simulation

kernel goes over each discrete time step in a loop. Therefore, the time complexity is

linear in the number of time steps t, which can be calculated with Equation 4.3.

t =
simulation duration

step duration
(4.3)

Another important input is the CFD vector field, in particularly, the number of

cells in the mesh c. The run time of the flow lookup is determined by this input

size. In 2.3.3, the result of Friedman, Bentley, and Finkel [19] has been presented

regarding the expected run time. Since we are executing a large number of lookups,

the average run time of each individual lookup is expected to converge towards this

expectation. Additionally, we only need to do a constant number of lookups. We can

therefore assume the lookup time scales with log(c). We arrive at the movement

complexity given in Equation 4.4.

Cmovement = O
�

tm log(c)
�

(4.4)

The sensor calculations scale in the same way with timesteps and molecules. The

naive implementation of notifying all sensors for all molecules in every time step

also scales with the number of sensors s. Its complexity is given in Equation 4.5.

Csensors = O (tms) (4.5)

It is apparent that the sensor notification would become the dominating over

the flow lookup for a large number of sensors. However, the sensor subscription

feature proposed in Section 3.6.1 reduces the computational complexity. For each

molecule movement, only the closest cell ID needs to be determined. The complexity

for this is equal to Equation 4.4 and can be integrated into the movement prediction,

incurring no additional cost. Because the sensor coils cannot physically overlap in the

considered testbeds, the assumption that all simulation sensors are non-overlapping

appears reasonable. Under this assumption, only one notification at most is necessary

for each molecule movement. This notification can be determined in constant time

by lookup in the subscription list. Of course, this list now occupies memory of size

c. This is acceptable in most cases, since the memory footprint of the movement

prediction is proportional to c already. The run time of the sensor calculation is then

reduced to Equation 4.6.

Csensors = O (tm) (4.6)

However, the subscription list needs to be initialized as well. This again necessi-

tates checking each mesh cell against each sensor, resulting in the complexity given
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in Equation 4.7. This trade-off of increased initialization complexity is preferable in

many situations, where scaling with tm is worse than scaling with c.

Csubscription initialization = O (cs) (4.7)

Finally, we need to consider the complexity of injecting molecules. The injection

itself scales with the total number of molecules. Checking whether an injection is

necessary in the current time step scales with both the number of injectors i and the

number of time steps. It can thus be described with Equation 4.8.

Cinjection = O (m+ i t) (4.8)

The total simulation time complexity of movement, initialization and sensing is

given in Equation 4.9. This requires the sensor assumption for Equation 4.6 to hold.

C = O
�

t
�

m log(c) + i
�

+ sc
�

(4.9)

4.3.2 Interpolation Benchmarking

To measure the performance of the different interpolation algorithms, a real-world

benchmark was executed. The benchmark is similar to the flow sampling from

which Figure 4.4 was generated. The execution time of the flow sampling was

measured with the Python timeit library. A VectorFieldManager, instantiated

independently from other simulation components, is used. This eliminates any other

possible simulator interactions that might have an influence on the run-time. The

underlying tube mesh contained 332750 cells and had a length of 15 cm, which is

representative for medium-sized simulation objects. The sampling was done along a

y-axis parallel line, starting and ending at the respective tube walls. 1500 samples

were taken by accessing the VectorFieldManager directly and saving the returned

flow to an array. The timing starts immediately before these samples are taken and

ends immediately afterwards. To eliminate noise, the measurements were done on

an otherwise idle machine and repeated 10 times. The interpolation algorithm was

rotated in a round-robin fashion to ensure that performance degradation over time,

e.g. caused by CPU heating, would affect all interpolation algorithms equally.

Interpolation Mean Min Max

Nearest Neighbor 135.5 ms 134.5 ms 137.4 ms
Shepard’s 433 098.9 ms 431 127.3 ms 434 675 ms

Modified Shepard’s 310 ms 301.8 ms 317.8 ms

Table 4.3 – Execution time of flow sampling at 1500 positions using different
interpolation algorithms. 10 repetitions were performed.
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The machine used for the benchmark was a dedicated simulation machine. It is

equipped with 15.6 GB of RAM and an Intel i7-2600 CPU running at up to 3.40 GHz.

The software used is an Ubuntu 18.04.3 operating system with Python version 3.6.8

running in a Python virtual environment. Numpy is used in version 1.16.4, scipy in

version 1.3.0.

Table 4.3 shows the measurement results. The minimum and maximum run-

time do not deviate significantly from the mean, indicating that the noise in the

measurement is low. This was confirmed by checking the 95 % confidence interval.

It can be seen quite clearly that the original Shepard’s algorithm is unsuitable

due to its excessive run-time of about eight and a half minutes. The k-d tree based

local versions perform much better. As expected, the Modified Shepard’s algorithm

is slower than nearest neighbor, since it needs to look up eight nearest neighbors on

top of a single one. However, the resulting run-time is not nine-fold as one might

deduce. Due to the workings of the k-d tree lookup, querying for several nearest

neighbors only requires a single descent into the region the query point is in. This is

why the second lookup is only slightly slower than the first. It also appears that the

additional weighting of flow values does not add much run-time either.

4.4 Validation

Finally, the model is compared to the real-world testbed in Erlangen. To rule out

differences between the simulated and the real diameter of the tubes, microscopy

photographs are used in Section 4.4.1. The flow speed of the water inside the tube

is determined based on high-speed video recordings in Section 4.4.2. The final two

Sections are then concerned with a direct comparison of the CIR as predicted by the

Pogona simulator and as measured in the testbed. Section 4.4.3 approaches this

from a qualitative angle while Section 4.4.4 applies the metrics from Section 2.6 in

a statistical analysis.

4.4.1 Pipe Diameter

The internal pipe diameter has a big influence on the flow speed inside it. This in

turn influences the CIR.

To rule out disparities in the CIR, the internal diameter was determined using

precision equipment. The vendor gives a diameter of 1.5 mm, which we were able

to confirm.

One theory for disparities was the flexibility of the plastic tube used in the

Erlangen experiments. Combined with the increased internal pressure caused by

the flow, the tube might expand. This was ruled out by Harald Unterweger, who

used a microscope to measure the internal diameter at different flow speeds. His
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(a) 0 mL/min (b) 24.2 mL/min

Figure 4.12 – Microscopy image of tube at different flow speeds. Data provided
by Harald Unterweger.

findings are shown in Figure 4.12, where no change in diameter can be detected.

Additionally, he used these images to determine an internal diameter of 1.54 mm.

4.4.2 Flow Speeds

What is known about the flow speed in the experiments is the total volumetric

flow rate of each pump, which is configurable. Since the pumps see use in medical

applications, these values are assumed to be fairly accurate. By division with the

internal area of the tube, the average flow speed can be determined.

To check the results of the flow speeds, a high-speed video of the testbed was

created. The testbed was configured with 10 mL/min flow rate for the injection as

well as the background. The camera used for this is able to record at 118 frames per

second. Selected frames from the recording are shown in Figure 4.13, with a ruler

as a scale reference.

During the injection, which is expected to take about 100 ms, the flow speed

is increased, as both the injection flow and the background flow combine. This

period corresponds to 11 frames of video, which creates much uncertainty of the

precise timing of the injection. The maximum speed of the particle cloud appears

to be 0.33 m/s in the first 100 ms. When comparing to the analytic prediction of

Time (ms) Distance Traveled (mm)

100 33
200 59
300 88
400 106

1000 218

Table 4.4 – Movement of the particle tip in the video shown in Figure 4.13.
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(a) 0 ms

(b) 100 ms

(c) 200 ms

(d) 300 ms

(e) 400 ms

Figure 4.13 – Video frames extracted from a high-speed recording of the
Erlangen testbed provided by Harald Unterweger. Times are relative to the
beginning of the injection.
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a maximum flow speed of 0.3772 m/s for the combined flow of 20 mL/min, this is

considerably lower than anticipated.

After the injection, the maximum speed associated with a background flow

of 10 mL/min should be 0.189 m/s. However, the particle tip displays a speed of

0.275 m/s between 100 ms and 300 ms. This could be explained by inaccuracies of

the injection timing, or the speed-up and slow-down time of the pump.

When considering the traveled distance of the particle tip between 300 ms and

1000 ms, a speed of 0.185 m/s is observed. This speed, unaffected by the injection

process, is close to the theoretic expectation.

4.4.3 Qualitative Channel Impulse Response

Figure 4.14 shows a direct comparison between a single simulation injection spike

and one from the Erlangen measurements. The measurement has been aligned based

on the rising flank and the simulation scaled to match vmax of the measurement.

The rising flank is considered to be the first data point which rises above 10 % of the

peak value.

0 1 2 3 4 5
Time, s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ag

ne
ti

c
Su

sc
ep

ti
bi

lit
y,

sc
al

ed

1e-4

Y-Piece Injection
Measurement

Figure 4.14 – CIR in the Y-Piece injection case compared to the Erlangen
measurement. Data provided by Harald Unterweger.
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When comparing the measurement and the Y-piece simulation, it becomes ap-

parent that significant differences between them remain, even though the overall

shape of the CIR is similar.

The simulation underpredicts the delay spread, especially after the first 1.5 s.

After 5 s, no measurable susceptiblity is predicted, but the measurement indicates

otherwise. For pulses that are sent shortly after each other, the simulator would

therefore predict a lower ISI than observed in the experiment.

Peaks in the simulation appear that the measurement does not show. This stands

out at 0.9 s and 1.3 s. Further investigation points to possible inaccuracies in the

movement prediction as a root cause, but no definite explanation could be identified.

4.4.4 Channel Impulse Response Metrics

A direct comparison of CIR metrics of measurement and simulation has been created.

The measurement consists of 15 consecutive pulse injections at 21 s intervals over a

distance of 5 cm. This has been recreated in simulation, using repeated injections in

the Y-piece scenario. The pause duration has been chosen to ensure that the pulses

do not overlap.

Since the measurement data is unevenly spaced at about 10 Hz, it was first

linearly interpolated to the 1 ms sample rate used in the simulation. The peaks

were then identified utilizing the scipy python library. Scipy was used to determine

the FWHM and delay spread as well. As pointed out in Section 2.6, the delay

spread needs to be approximated due to its theoretic infinity. The noise contained

in the measurement was analyzed and a maximum noise amplitude of 5 % of Vmax

determined. Consequently, the given delay spread covers the duration of the signal

with an amplitude of at least 5 % of Vmax . Since the noise also has an adverse effect

on the RMS delay spread, only the signal section covered by the delay spread is

considered for it. For τmax , the same 5 % of Vmax cutoff is used to determine the

rising flank. To enable a fair comparison, the same procedure is applied to the

Metric Erlangen Testbed Pogona Simulator

Mean 95 % CI Mean 95 % CI

FWHM 953 ms 867 ms – 1038 ms 578 ms 535 ms – 621 ms
τmax 434 ms 392 ms – 476 ms 260 ms 248 ms – 273 ms
Delay spread 4484 ms 4108 ms – 4860 ms 1782 ms 1746 ms – 1818 ms
RMS delay spread 969 ms 883 ms – 1054 ms 402 ms 393 ms – 411 ms

Table 4.5 – CIR metrics of the Erlangen testbed and the Pogona simulator. The
mean and the 95 % Confidence Interval (CI) are given. Measurement data
provided by Harald Unterweger.
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simulation, even though it does not suffer from noise. For each metric, the mean as

well as the 95 % confidence interval over the 15 samples is calculated.

What can not be compared is the propagation delay and Vmax . The propagation

delay for the measurement is not known, since the time of injection for the measure-

ment has not been recorded. Vmax is currently not being predicted by the simulator.

As noted in Section 3.6.2.1 and 3.6.2.2, the reason for this lies in the unknown

relationship between a simulated molecule and its measured sensor response.

The results of the comparison are shown in Table 4.5. It is clear that the agreement

between measurement and simulation is low. Especially the average delay spread

and RMS delay spread differ by more than factor 2 with a probability of more than

95 %. This obvious difference has already been observed in Section 4.4.3. The

differences in FWHM and τmax are less pronounced, but still statistically significant.

Their average differs by less than a factor of 2 with a probability of more than 95 %.

However, the low time resolution of the measurements also needs to be considered.

If the rising flank could be identified more accurately than at the provided 100 ms

resolution, the true τmax might turn out to be lower.



Chapter 5

Conclusion

This thesis investigated a simulation approach for molecular communication systems.

The movement of particles used for communication is predicted on the basis of fluid

flow in tube systems, which is calculated with a CFD simulator. The architecture

for a simulator using this approach was presented and used for the development of

the new “Pogona” simulator prototype. It implements sender and receiver models,

supports configurable scenes and utilizes computationally efficient data structures.

The simulator correctness was successfully checked for simplified scenarios with

known results. The output of the fluid simulation was verified as well. Additionally,

the integration algorithm was compared to a known-good implementation.

For validation purposes, measurement data for an experimental testbed in Erlan-

gen were obtained. The testbed uses magnetic particles injected into a water tube,

which are sensed with a susceptometer at the receiver. This testbed was modeled in

the simulator and its output compared to the susceptometer data. Low agreement

was achieved between simulator output and empirical results. Although the CIR

shape matches qualitatively, the predicted delay spreads differ by more than a factor

of two from the measurement.

In the future, the prototype developed as part of this thesis can be further

improved. Its performance could be increased through multi-threading support. The

current Shepard-based interpolation algorithm for the flow already produces good

results with only small artifacts. However, it necessarily fails for locations close to

the tube wall, which was only partially addressed. Additionally, the cause for the

differences in the real-world comparison need to be identified. One issue is the

low time resolution of the measurement, which a different sensor could improve

upon. Additional forces acting on the particles, such as gravity or diffusion, were

not considered in the simulation and might need to be integrated.
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Appendix A

Shepard Divergence Proof

For IDW, the validity of the interpolation for big datasets is important. In our case,

the dataset size easily reaches millions of data points. The influence of data points

that are not in the local neighborhood of the query point should not be too large.

For the following proof, an infinite, uniformly distributed dataset is assumed. If the

the sheer number of non-local data points compared to the limited local data points

is not an issue in this case, then the interpolation works for arbitrarily big datasets.

What can be determined is the ratio α between the unnormalized weights of

local points and the unnormalized weights of the remainder of the dataset. The local

neighborhood is defined to be contained inside an arbitrary, fixed radius r0, while

the remainder is only considered from a distance of r0 up to a distance of R. This

ratio is given in Equation A.1.

α=

∑

r0<|x−x i |<R Wµ,i(x)
∑

|x−x i |<r0
Wµ,i(x)

(A.1)

Equation A.2 follows when the original shepard weights given in Equation 2.12

are inserted.

α=

∑

r0<|x−x i |<R |x − x i |−µ
∑

|x−x i |<r0
|x − x i |−µ

(A.2)

Assuming uniform distribution, the summation of the weights of discrete known

values x i can be approximated by integration over the volume of the encompassed

space instead. To determine the volume while considering the weight variation

with distance, the surface of a sphere with radius r is integrated. The resulting

Equation A.3 assumes a dataset with uniform distribution of density ρ.
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α≈

∫ R

r0
4πr2ρr−µdr

∫ r0

0 4πr2ρr−µdr
(A.3)

=

∫ R

r0
r2−µdr

∫ r0

0 r2−µdr
(A.4)

=

�

1
3−µ r3−µ

�R

r0
�

1
3−µ r3−µ

�r0

0

(A.5)

=
R3−µ

r0
3−µ − 1 (A.6)

=
� R

r0

�3−µ
− 1 (A.7)

When taking the limit for R approaching infinity, the ratio for an infinitely large

data set can be determined. It is clear that because of R> ro, the ratio diverges to

infinity for µ < 3. Thus, for these exponents, the rest of a large data set is weighted

higher than the local neighborhood.
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