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Abstract

Statistical Shape Models (SSM) are beneficial in image processing and computer vi-
sion. SSM account for the variability of the shape from the objects that are present
in the images. There are different reasons why an object may vary its shape from
observation to observation. For instance, in medical imaging the anatomy changes
from patient to patient. SSM are information a priori about the shape of objects, and
are used as constraints by image processing and machine learning approaches. Given
prior knowledge of the position of some meaningful points belonging to the contour
of the object, i.e., the landmarks, a supervised segmentation method can find these
landmarks in new images. Point Distribution Models (PDM) are landmark-based SSM
whose parameters are learned from training samples, and are promising approaches
to solve segmentation problems. PDM are linear models, and therefore provide effi-
ciency, make the estimation procedures simple and have an intuitive interpretation.

There are different issues to be addressed in SSM, and hence improve their seg-
mentation accuracy. To begin with, registering the PDM landmarks in new images
requires good image contrast. Therefore, in challenging medical imaging modalities,
such as fluoroscopic X-ray, the state-of-the-art PDM-based segmentation algorithms
do not provide enough quality. Additionally, heuristics are frequently present in SSM.
One example is the model-order selection of the PDM, which is often chosen with
a “rule-of-thumb” percentage of variance. Ad hoc designs complicate the general-
ization, and the lack of optimization makes SSM lose potential. Moreover, when
training the PDM, we require a collection of sampled points (the landmarks) of the
training contours. These points are very often manually selected, and based only on
experience or subjective criteria.

The goal in this work is to study how to overcome these issues and enhance
the segmentation performance of the SSM, and more particularly the PDM. Firstly,
we have studied ways to add robustness to the segmentation algorithms and at the
same time keep their simplicity. Secondly, we have designed an information-theoretic
model-selection technique that provides optimized PDM with good generalization.
Finally, we have considered how to register the training boundaries without the need
of the corresponding manual landmarks using Dynamic Time Warping.
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Zusammenfassung

Statistische Formmodelle (Statistical Shape Models/ SSMs) sind für die Bildverar-
beitung von Vorteil und berücksichtigen die Formvariabilität von Objekten, die in den
Bildern vorhanden sind. Es gibt verschiedene Gründe, warum ein Objekt seine Form
von Beobachtung zu Beobachtung verändern kann. Beispielsweise ändert sich in der
medizinischen Bildgebung die Anatomie von Patient zu Patient. Statistische Form-
modelle beinhalten a priori Informationen über die Form von Objekten und werden
von Bildverarbeitungs- und maschinellen Lernansätzen als Einschränkungen verwen-
det. Bei vorheriger Kenntnis der Position einiger bestimmter Punkte, die zur Kontur
des Objekts gehören, den sogenannten Landmarken, kann ein überwachtes Segmen-
tierungsverfahren diese Landmarken in neuen Bildern finden. Punktverteilungsmod-
elle (Point Distribution Models/ PDMs) sind auf Landmarken basierende statistische
Formmodelle, deren Parameter aus Trainingsmustern erzeugt werden und vielver-
sprechende Ansätze zur Lösung von Segmentierungsproblemen darstellen. Punk-
tverteilungsmodelle (PDMs) sind lineare Modelle und daher effizient anzuwenden,
vereinfachen die Schätzverfahren und sind intuitiv zu interpretieren.

In statistischen Formmodellen müssen verschiedene Probleme behoben werden,
um die Segmentierungsgenauigkeit zu verbessern. Um die PDM-Landmarken in
neuen Bildern zu identifizieren, sind zunächst ein guter Kontrast und eine gute
Bildqualität erforderlich. Daher bieten die modernen PDM-basierten Segmen-
tierungsalgorithmen bei anspruchsvollen medizinischen Bildgebungsmodalitäten,
wie fluoroskopischem Röntgen, nicht genügend Genauigkeit. Zusätzlich werden häu-
fig Heuristiken und Ad-hoc-Regeln verwendet. Ein Beispiel ist die Auswahl der Mod-
ellordnung des PDMs, die häufig mit einer Faustformel basierend auf der Varianz
erfolgt. Darüber hinaus wird für das PDM-Training eine Sammlung von Stichproben-
punkten (Landmarken) der Trainingskonturen benötigt. Diese Punkte werden sehr
oft manuell ausgewählt und basieren nur auf Erfahrungen bzw. subjektiven Kriterien.

Ziel dieser Arbeit ist es, zu untersuchen, wie diese Probleme behoben und die
Segmentierungsleistung des SSMs und insbesondere des PDMs verbessert werden
kann. Um die Robustheit der Segmentierungsalgorithmen zu erhöhen, wurden ver-
schiedene Möglichkeiten untersucht. Des Weiteren wurde eine informationstheo-
retische Modellauswahlmethode entwickelt, die in einem optimierten PDM resultiert.
Abschließend haben wir uns überlegt, wie Sie die Landmarken zen mithilfe von Dy-
namic Time Warping registrieren können, ohne die entsprechenden manuellen Ori-
entierungspunkte zu benötigen.
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Prólogo

Una tesis es un camino, no una senda perdida (Holzwege), pero menos aún algo
predecible, con un comienzo y un final feliz. Esta investigación ha sido una tentativa,
rigurosa, bien fundada pero no cerrada, en la que no se adivina el final más que en
un horizonte. Solo nos queda avanzar sabiendo que si los resultados parecen felices,
y lo parecen, el horizonte se irá acercando, y si no lo son tanto... se habrán de
desechar ciertas estrategias y abrir, además, otros caminos. Porque la aventura del
conocimiento, si sabe ser realista y por tanto discreta, agradecerá los resultados sean
estos los que fueren. No avanzará el conocimiento menos en un caso que en el otro.

Esta tesis se ha encuadrado en el campo de la salud. No necesita, por tanto,
como pensaba Ortega -con ese prurito de la filosofía de situarse un poco por encima
de la ciencias y también de la ingeniería, - una dirección previa, unos valores. La
dirección la ha puesto la autora y no puede ser más noble: la vida, la salud. Este
trabajo, como decíamos, abre nuevos caminos en sus aciertos y señala vías cerradas,
no transitables. Avanza siempre. Parafraseando a Breton, podríamos decir que esta
tesis que se presenta a continuación es el comienzo y solo el comienzo.

José Ignacio Eguizabal
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Notation and Acronyms

Used Notation

a Scalar (lowercase)
a Column vector (lowercase boldface)
A Matrix (uppercase boldface)
A−1 Inverse of square matrix A
AT Transpose of matrix A
AH Conjugate transpose (Hermitian) of matrix A
Tr(A) Trace of matrix A
Re(a), Im(a) Real and imaginary part of a
|a| Absolute value of a
arg(a) Phase of a
exp(a) The natural exponential function of a
log(a) The natural logaritmus function of a
‖a‖ `2-norm of vector a
|A| Determinant of square matrix A
‖A‖F Frobenius norm of matrix A
blkdiag(A1, . . . , AN) Block-diagonal matrix with matrices A1, . . . , AN along the

main diagonal
diag(a1, . . . , aN) Diagonal matrix with elements a1, . . . , aN along the main

diagonal
vec(A) Column vector comprised of a vertical concatenation of the

columns of matrix A
[A1, . . . , AN] Horizontal concatenation of matrices A1, . . . , AN
[A1; . . . ; AN] Vertical concatenation of matrices A1, . . . , AN
A � B Matrix A− B is positive semidefinite
a[n] ∗ b[n] Linear convolution of sequences a[n] and b[n]
A⊗ B Kronecker product of matrices A and B
A? Optimal solution of an optimization problem in the matrix

variable A
∇A f (A) Derivative of f (A) with respect to A
IN N × N identity matrix (subscript is omitted when the di-

mension is self-evident)
0N N× 1 zero vector (subscript is omitted when the dimension

is self-evident)
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1N N× 1 ones vector (subscript is omitted when the dimension
is self-evident)

RM×N Space of M× N real matrices
CM×N Space of M× N complex matrices
O(N) Orthogonal group of dimension N
SO(N) Special orthogonal group of dimension N
CPN Complex projective space of dimension N
SN Hypersphere of dimension N
T The scale/translation-normalized space
R+ Real positive scalars
dp(a, b) Procrustes distance between a and b
ds(a, b) Shape distance between a and b
g(a, b) Geodesic distance between the pre-shapes a and b
∼ Distributed as
CN (µ, Σ) Multivariate complex Gaussian distribution with mean µ

and covariance matrix Σ
N (µ, Σ) Multivariate real Gaussian distribution with mean µ and

covariance matrix Σ

X 2
` Chi-squared distribution with ` degrees of freedom

Γ(a) Gamma function of scalar a
E[X] Mathematical expectation of random variable X
σx Standard deviation of random variable X
p(X) Probability density function of random variable X
P(X ≤ x) Probability of random variable X being equal to or lower

than x
L(x) Likelihood of parameter x
GP(X, Γ) Gaussian Process with mean deformation X and covariance

function (kernel) Γ
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Acronyms

AIC Akaike Information Criterion
BIC Bayesian Information Criterion
CAS Computer-Assisted Surgery
CLM Constrained Local Models
CPD Coherent Point Drift
CT Computed Tomography
DNN Deep Neural Network
DTW Dynamic Time Warping
EM Expectation Maximization
GLS Generalized Least Squares
GP Gaussian Process
GPA Generalized Procrustes Analysis
ICP Iterative Closest Point
KKT Karush–Kuhn–Tucker
LMMSE Linear Mimimum Mean Squared Error
MAP Maximum A Posteriori
MDL Minimum Description Length
ML Maximum Likelihood
MM Majorization Minimization
MSE Mean Squared Error
OLS Original Least Squares
PCA Principal Component Analysis
PDM Point Distribution Model
RGB Red Green Blue
RMSE Root Mean Squared Error
SNR Signal to Noise Ratio
SSM Statistical Shape Models
SVD Singular Value Decomposition
UME Universal Manifold Embedding
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Chapter1
Introduction

“Understand well as I may, my comprehension can only be an infinitesimal
fraction of all I want to understand.”

— Ada Lovelace

The core of this thesis is the extension of Statistical Shape Models. These are,
as the name implies, mathematical models of the variability in the shape of objects.
Such an analysis could be understood from different disciplines: Image Processing,
Computer Vision, Machine Learning or Artificial Intelligence. In this introductory
chapter, these different perspectives are described in Section 1.1 to give the reader
a broad understanding of the possibilities of the statistical shape analysis. Then,
in Section 1.2, the mathematical description of shape and the typical techniques to
model deformation are introduced, as well as a brief overview of some of the most
common applications of shape analysis. Finally, in Section 1.3 we motivate the need
of our contribution, that is, why the existent shape models should be extended, and
how we propose to address these extensions in this work. In Section 1.4 we provide
an outlook of the thesis.

1.1 A framework for Statistical Shape Models

In this section we provide a possible framework, as illustrated in Fig. 1.1, to situate
the connection between shape analysis and the most related disciplines. Statisti-
cal Shape Models (SSM) can be understood from different fields. One is Artificial
Intelligence (AI). AI develops computer systems and tasks that perform as if they
were human. A very challenging branch is Computer Vision, which aims to emulate
or even outperform the human visual perception. This is an ambitious assignment,
considering there are studies that show that 80–85% of our learning, cognition and
perception-related activities are mediated through our vision [2]. Human vision and
its understanding is the result of many years of evolution of our perceptual power to
recognize objects and faces [3] [4]. Image Processing deals with the tools to enhance
the information within the images. In particular, segmentation methods subdivide an
image into meaningful regions [5]. Next, Machine Learning provides the optimiza-
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Artificial 
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Analysis

Figure 1.1: Venn’s diagram to illustrate the connections between Statistical Shape
Analysis and related engineering disciplines [1].

tion techniques and strategies to the computer to recognize data patterns, acquire
experience from observations, and perform semantic interpretations of the images.

• Artificial Intelligence was first used as a concept at a conference in Dartmouth
College in 1956, where it was discussed as a theoretical paradigm. After that,
its impact on technology development, and on every engineer discipline is ir-
refutable. It has been especially remarkable since this last decade, in which the
information revolution has established a break point of improvement for AI.
Massive amount of data, together with a huge computational power, are trans-
forming machines to a much more competitive level. AI has actually been con-
sidered the new electricity [6]. According to Google Dictionary, AI is “the theory
and development of computer systems able to perform tasks normally requiring hu-
man intelligence, such as visual perception, speech recognition, decision-making,
and translation between languages". Considering this definition, Computer Vi-
sion can be seen as the branch from AI that deals with the visual perception.
Computer Vision is also described as a disorganized intellectual frontier [7].
Consequently it is difficult to find the line between Computer Vision and re-
lated fields like Image Processing and Machine Learning.

• Computer Vision brings visual perception to machines, enhancing the actual
human perception. Technology allows humans to perceive more than the visi-
ble spectrum thorough the eyes: computers can handle radar, infrared, X-ray or
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magnetic resonance, and generate from them many kinds of images, series of
images, or in general multidimensional captures of the real world. Computer
Vision deals with the understanding of cameras and different sensors, and the
generation of every pixel (or voxel) [7]. Also, it handles the interpretation of
this information, from the inferences between pixels to the recognition of ob-
jects. The statistical shape analysis plays an important role on both parts: a vol-
umetric object has different projected shapes depending on the characteristics
and positions of the camera/sensor and the source of illumination/radiation.
The variability of these shapes can thus be studied from a Computer Vision
perspective. We illustrate this motivation in Fig. 1.2.

3D scene

reconstruction

shape model

image 

projection

Figure 1.2: An illustration of a Computer Vision perspective of shape analysis. A
model of deformation of the object in the scene (a mask) can enhance the under-
standing of the camera position and the image projection plane.

• Image Processing deals with the analysis and transformation of images in or-
der to improve their usability, the performance of the processes depending on
them, and the quality of the visual experience they provide. For example, a fil-
ter that provides smoothness to enhance the gradients and provide better edge
detections [8]. The edges are used to find the boundaries of the object in the
images. When the contours of the objects are lines and circles, these are math-
ematically parametrizable and simple. Hence, their segmentation is relatively
efficient with a Hough Transform [5]. When the objects present shapes that are
morphologically more challenging the statistical shape analysis enhances the
processing. This interpretation is illustrated in Fig. 1.3.
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θ

ρ
1 2 3

4

Figure 1.3: An illustration of an Image Processing perspective of shape analysis.
From an RGB image (1), and its gradients (2), the edges can be calculated (3). The
shape of some objects, such as the arc, can be modelled with basic geometry (red
lines in 3). A line is modeled with two parameters (θ and ρ), which can be estimated
from the peaks of a Hough Transform (4) of the edge image.

• Machine Learning is the combination of data analysis, statistics and optimiza-
tion techniques to provide computers with the skill of solving complicated tasks
that require human intellect, and improve the performance after the experi-
ence of solving them. Statistical shape analysis enhances machine learning
algorithms providing prior information about the deformation of the objects
with witch the learning algorithms can check the feasibility of a solution. For
instance, as illustrated in Fig. 1.4, a shape model of human skeleton provides
the information to discard output candidates from a machine learning approach
that segments the bone in images.
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Figure 1.4: An illustration of a Machine Learning understanding of shape analysis.
A shape model of the skeleton constraints the possible outputs from the machine
learning approach and plausibility. The sources of medical images are described in
the Appendix.

1.2 An overview about shape models

As motivated in previous section, Computer Vision, Image Processing and Machine
Learning algorithms need mathematical models of the variability of shape in order to
handle the shape information. There are different approaches of deformable models
in images and volumes. In order to provide an intuition to the reader on how broad
these possibilities are, we provide a few examples on how to address deformation
with models.

There are many applications where these models are useful. For instance, a de-
formable model of shape is essential in medical image analysis. The statistical shape
theory started motivated by the study of archaeology and anthropology [9]. In gen-
eral, deformation information about the objects in a scene has big potential in artifi-
cial vision. In the second part of this section, we introduce some of these application
to motivate the study of shape analysis in this work.

1.2.1 Models for shape and deformation

We give a brief motivation to the mathematical analysis of shape. When the shape of
the object is approximated with basic geometry, a hand-crafted model can be consid-
ered. To enhance the precision of the shape model, the interpolation of splines can
be used. The alternative that we have considered in this work is the landmark-based
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models. These are determined by a collection of points that sample the contour of an
object. We present an overview of these models used in shape analysis

Hand-crafted combination of basic geometry

Complex shapes can often be described as a combination of simple geometry, such as
lines and circles. As an illustrative example we present an X-ray image of the femur
in Fig. 1.5. The femoral shaft is approximated by two lines, and the femoral head
by a circle. The deformation of these basic geometry is modelled with only a few
parameters (two for a line, three for a circle).

A very important inconvenient of these models is that they are hand-crafted, and
each new object would need a complete new model. Also, the models do not gener-
ally account for the whole contour of the object, as they depend on small geometrical
pieces that are very basic. Since they are too simple, they may also not fit accurately
the real contour. For instance, the femoral head may sometimes be elliptical or de-
formed, and a circle may lose precision in the segmentation. Still, a circle model has
been successfully used to segment femoral heads in X-ray images [10].

P𝑛

Figure 1.5: A hand-crafted model of the proximal femur shape, based on two lines
on the shaft and a circle on the femoral head. (Medical image sources are detailed in
the Appendix).

Interpolation of splines

In order to describe the contour with higher precision, it can also be modelled as a
collection of spline interpolants [11]. In Fig. 1.6 we present an illustrative example
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of a set of splines and their control points that define the femur contour. Cubic B-
splines, for instance, have been used in medical image analysis to model anatomical
deformation [12].

Another possibility is a Fourier decomposition of the boundaries [13]. A contour
is decomposed as a collection of ellipses. Shape constraints can be considered in the
parameters that model the Fourier synthesis. These, however, may not be accurate in
very sharp corners.

P𝑛

Figure 1.6: Illustrative example of a model of the femur contour as an interpolation
of splines. The smaller dots represent the control points of the splines. (Medical
image sources are detailed in the Appendix).

Landmark-based shape model

Landmarks are significant points that belong to the object boundary. For instance, the
beginning and the ending points in the femoral head contour are anatomically inter-
esting to study the femur shape. Shape boundaries can be described as collections
of these landmarks, which may be manually chosen and labeled, or directly sampled
from the contour [14]. Shape variability is then modeled as the statistical behaviour
of the coordinates of these landmarks. Coming back to our example, we may study
the distance between the beginning and ending points of the femoral head, and how
much this distance changes among different patients. An illustrative example of a
landmark-based shape for the femur is shown in Fig. 1.7.

The coordinates of these landmarks are typically represented in a vector. When
considering vectors, linear algebra can be used: shape deformation can be modeled
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with linear equations, which provide computational efficiency to the developed algo-
rithms, and at the same time give consistent geometrical representations [15]. Shape
statistics are extracted from the covariance matrix of these shape vectors. Typically
a Principal Component Analysis, i.e., an eigenvalue decomposition of the covariance
matrix, is performed to obtain a collection of eigenvectors describing shape deforma-
tion as a linear combination. We illustrate these linear combination of eigenvectors
in Fig. 1.8. When the covariance matrix is learnt from training data, these models
are known as Point Distribution Models (PDM) [14].

The SSM used in this thesis are landmark-based.

Figure 1.7: A landmark-based shape composed by a collection of points (blue dots)
on the boundary (red line) of the object of interest (the femur). (Medical image
sources are detailed in the Appendix).



1.2 An overview about shape models 11
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Figure 1.8: The deformation of the landmark-based contour is accounted from a
collection of eigenvectors pi, each representing a mode of deformation that is uncor-
related from the other modes.

1.2.2 Applications of shape analysis

There are multiple and varied applications for shape analysis. Shape models are
used as prior knowledge about the deformation of the objects that are segmented or
detected. Objects contain deformation for multiple reasons: different views from the
same object when a camera changes the focal point, industrial products that present
defects, and anatomical parts of the body that are different for each individual.

We overview three of the most common applications of statistical shape analy-
sis. These are the applications that we have observed more frequently during the
development of this thesis.

Medical image analysis

A very important application of shape analysis is medical imaging. Radiology is a dis-
cipline that can greatly benefit from Image Processing and Machine Learning [16].
The anatomy of the human body changes considerably from individual to individual,
and also due to different pathologies, accidents and abnormalities. This collection
of deformations are successfully modeled with shape analysis. Radiologists are con-
stantly observing medical images, and they need to accurately define the anatomical
boundaries. When this task is performed automatically, the radiologists can save time
and be more efficient.

Computer Assisted Surgery (CAS) is also an interesting medical application for
SSM [10]. The principal dataset used in this thesis (see Appendix for more details)
is formed by CAS images. These images were generated during the collocation of an
intramedullary nail in a trauma surgery. In this procedure, the surgeon needs to insert
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the nail inside the medullary cavity of the femur to fix a femoral fracture. A CAS
navigation system guides the surgery team through the procedure, enhancing the
accuracy of the placement, and improving the quality of life of the patients after the
surgery. Such CAS navigation system needs an automatic detection of the boundaries
of the bones. For this, we can use SSM. An illustration of this CAS application is
depicted in Fig. 1.9.

C-arm X-ray image acquisition

Intramedullary nail

navigation system

proximal femur distal femur

Figure 1.9: An illustration of CAS navigation system inside a surgery room. An
automatic process, based on Image Processing and Machine Learning, is able to find
the bone contours in the images. This information is then used to guide the surgery
team during the procedure. (Medical image sources are detailed in the Appendix.
The surgery room and bone drawing were taken from Pixabay and are free licence).

Artificial Vision

Control systems for robots need a good knowledge of the geometry around them to
make motion decisions and compute successful grasps [17]. We illustrate an example
in Fig. 1.10.
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notebook
pen

laptopcup

Figure 1.10: An illustration of artificial vision. Prior knowledge of the geometry and
shape of the objects can enhance the segmentation performed by the control systems.
(Images source: modified from originals in Pixabay with free licence)

Archaeology and Cultural Heritage

Shape analysis has a collection of possible applications in the field of Cultural
Heritage. Actually, the mathematical principles of Point Distributions Models, i.e.,
Kendall’s shape theory [9], were first derived motivated by their applications in Ar-
chaeology. The study of archaeological pieces, for instance, an anthropological study
of the skull as illustrated in Fig. 1.11, is typically based on a collection of land-
marks. Shape analysis has also been used to study the evolution of human tools in
archaeology sites [18].

Figure 1.11: Landmarks (red dots) on two different skulls. The morphological
changes of the position of these landmarks guide anthropological studies. (Images
source: modified from originals in Pixabay with free licence).
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1.3 Motivation to extend Statistical Shape Models

As we have already mentioned, this work focuses on landmark-based shape models,
such as PDM. The reason to choose these models is that they are a good trade-off be-
tween simplicity and flexibility. A collection of landmarks is a very flexible definition
for a contour, and can model many kinds of shapes. Also, PDM are linear models,
and therefore provide efficiency, make the estimation procedures simple and have an
intuitive interpretation [19]. However, these may lead to very simple models that
are not robust enough or are not optimized to a specific use. Furthermore, heuristics
are frequently present in many SSM-related applications. These Adhoc designs and
decisions are also a loss of potential for the SSM.

In this section we overview the problems from SSM that have motivated and
inspired the ideas developed in this thesis.

1.3.1 The need of robustness for fluoroscopic X-ray images

Medical imaging is a challenging discipline. The clinical analyses and medical inter-
vention that depend on the processing of the images are critical, and the imprecision
of the results can cause very serious consequences to the patients. This is the case,
for instance in CAS. The accuracy of the segmentation techniques needs to be very
high, as well as anatomically consistent. When the quality of the medical images is
high, the classical SSM-based approaches have demonstrated good results [14] [20].
However, if the contrast of the images is not good, and some of the anatomical parts
are occluded, SSM are not robust enough to deal with the difficulties. In Fig. 1.12
we show one fluoroscpic vs one diagnostic X-ray to show the consequences of a lower
X-ray dose in the image quality.

In this work, one of the medical imaging modalities we have studied is fluoro-
scopic X-ray in a CAS context. This application demands computation in real time
and high accuracy, whereas the contrast and the SNR are low due to the small X-ray
dose. Furthermore, there are surgical tools and other artifacts that often occlude part
of the anatomy. In such case, after testing the SSM-based Active Shape Models (ASM)
by Cootes [14], the results are inaccurate. Therefore, in order to make a successful
use of the SSM in more challenging medical image modalities, such as fluorosocpy,
there is an important necessity to add more robustness to the shape models, as well
as to the segmentation algorithms that make use of them.

We address this problematic in Chapter 3 of this thesis. In this chapter we propose
a technique to enhance the segmentation permanence of SSM-based algorithms in
fluoroscopic X-ray images.

1.3.2 Heuristic model selection

Selecting the model order of SSM, that is, the number of parameters that determine
the model, is a compromise between a small training error and good generalization.
We have observed that this order is not optimized in the design of SSM, and is often
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0.6 mSv0.05 mSv

Figure 1.12: The fluoroscopic image (left) has approximately ten times less mSv
(mili Sievert, a unit of ionizing radiation dose [21]) than a diagnostic X-ray (right).
Therefore, the differences in contrast, resolution and SNR are visually evident. Also,
an example of an occluding tool that difficulties segmentation processes is seen (left).
The details about the medical image sources are in the Appendix.

chosen heuristically. For instance, in the PDM design, the number of shape eigenvec-
tor is typically selected to account for a fixed percentage of training variance [20],
which is a “rule-of-thumb”.

There are important issues to consider about the over- and underfitting in SSM.
The goal of design of a SSM is to learn a statistical parametrization that generalizes
well to the unseen data. However, if the order is too large, the model may be too
specific to the training data, and therefore not generalize well (overfitting); if the
order is too small, the model is too simple and the representation error is high (un-
derfitting). Therefore, this trade-off should be observed. Furthermore, a good choice
of the model depends on the number of training samples (typically small in medical
applications) and the noise level in the training data set (often unknown and difficult
to model).

We address the model selection problem in Chapters 4 and 5 of this thesis. First, in
Chapter 4 we propose a novel model-order selection technique, based on information
theory, that can be used in general source enumeration problems. Then, in Chapter
5 we show how our proposed technique enhances SSM.

1.3.3 Manual landmark registration

When the SSM are learned from training observations, we require a collection of
points (the landmarks) sampled from the training contours. These points are very
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often manually selected, and based only on experience or subjective criteria. For
instance, a selection of anatomical points that are clinically relevant or relatively
easy to identify. Furthermore, these manual labeling is very time consuming and
error prone.

In order to calculate, for instance, the sample covariance matrix of a set of train-
ing vectors, the landmarks in these vectors need to be in correspondence for every
training sample. This means that, the same landmarks are considered for every obser-
vation, and in the same order. Therefore, if some landmarks are missing or occluded
in some observations, these cannot be included in the training. Also, the number
of landmarks has to be sufficiently small, since training sets do not typically con-
tain many observations, and the SSM may become ill-conditioned. In conclusion,
the design of SSM is not possible if we only have the object boundaries as training
observations instead of the complete collections of landmarks with correspondences.
Interesting information may also be missed when the whole boundary is not consid-
ered in the training process.

We address these problems in Chapter 6 of this thesis. In this chapter we propose
a registration technique that works directly with the object boundary when the corre-
spondence is unknown, and does not need landmarks. We have considered Dynamic
Time Warping to solve the correspondence problem.

1.4 Outlines and contributions of this thesis

This doctoral work provides techniques to enhance SSM. The reader has now a mo-
tivation of the engineering fields, mathematical models and applications in which
shape analysis has an impact, as well as an overview of some of the problems to
be addressed. The main application that motivated the use of SSM in this thesis is
anatomy segmentation, for navigation systems in CAS. These images, based on fluo-
roscopy X-ray, are challenging, since the radiation dose is low, which generates low
contrasts.

In this section we give an overview of the contributions of this thesis, describing
each part of the document. This doctoral work is divided in four parts:

1.4.1 Part I: Introduction and background

The first part of the thesis is meant to provide the motivation and necessary back-
ground to the reader to fully understand the contributions and conclusions of the
work.

Chapter 2: a background on statistical shape analysis

In this chapter we provide a thorough description of the concepts from Shape Theory
that are necessary for a full understanding of the contributions of this thesis. Starting
from Kendall’s concept of shape [9], and arriving to the segmentation techniques that
make use of SSM [14].
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1.4.2 Part II: Contributions and developed work

This part contains the contributions of the thesis.

Chapter 3: robustness keeping simplicity in a generalized least-squares

As already motivated in the previous section, SSM-based segmentation techniques
lack robustness. In this part we propose to enhance these techniques and deal with
the challenging low contrast fluoroscopic images.

The main idea of our contribution is the following. Segmentation algorithms that
use SSM often consider a target shape measured from the image. This target is used
in a regression to find a valid shape that belongs to a SSM. The fit of a target shape
is typically an ordinary least-squares (OLS) minimization. We propose to consider
a generalized least-squares (GLS) fit instead to add robustness. In order to find the
weighting matrix of the GLS, we calculate an estimate of the covariance matrix of
the residuals from training data.

This chapter has produced the following publication:

• A. Eguizabal and P. Schreier, “A weighting strategy for Active Shape Models,”
in Proceedings of the IEEE International Conference on Image Processing (ICIP),
Beijing, China, Sept. 2017, pp. 1-6.

Chapter 4 and 5: model selection and seeking optimality with information theory

We mentioned in previous section that the model selection of SSM is typically un-
dervalued, while its impact is important in the qualities of the SSM. This part of the
contribution deals with the problem of model selection.

A PDM requires choosing a model order q, which determines how much of the
variation seen in the training data is accounted for by the PDM. A good choice of the
model order is key for a good trade-off between over- and underfitting. Yet the most
common approach for choosing it simply keeps a predetermined percentage of the
total shape variation. Our contribution consist on choosing an information-theoretic
approach that considers the ill-posed problems. The model order is chosen as

Model order = a likelihood term + a penalty term,

where the penalty term depends on a selected information criterion, e.g. Akaike [22].
This approach was proved to be extended to more general array signal processing
scenarios.

These chapters have produced the following publications:

• A. Eguizabal, C. Lameiro, D. Ramirez and P. Schreier, “Source enumeration in
the presence of colored noise,” IEEE Signal Processing Letters, vol. 26, no. 3,
2019.

• A. Eguizabal, P. Schreier and D. Ramirez, “Model-order selection in Statistical
Shape Models,” in Proceedings of the IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), Aalborg, Denmark, Sept. 2018, pp. 475-
479.
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Chapter 6: registration and correspondence with Dynamic Time Warping

The landmarks in the training samples for SSM are often manually selected, and
need to be in correspondence. The correspondence problematic is also an issue to
perform a shape fit, that is, the least-squared problem mentioned before needed in a
SSM-based segmentation. Therefore, it is not possible to use the boundaries of the
shapes directly neither to design the SSM nor to fit the shape model.

In this chapter we propose a strategy that uses the boundaries directly, instead
of a collection of landmarks in correspondence. Our technique is based on Dynamic
Time Warping (DTW), a times-series algorithm that uses dynamic programming.

This chapter has produced the following publication:

• A. Eguizabal, P. Schreier, and J. Schmidt, “Procrustes registration of two-
dimensional statistical shape models without correspondences,” submitted to
IEEE Transactions on Image Processing 2019, available on ArXiv.

1.4.3 Part III: Conclusions and future lines of research

We finally close the thesis providing the concluding remarks. In this final section
we also present the contributions under developments, as well as the future lines of
research.

There are many interesting open ideas to explore the potentials of shape anal-
ysis. An important step is to continue the line of Chapter 6 with, for example, an
extension to three-dimensional surfaces of our proposed registration strategy. In this
part we present the preliminary results of our work under development, as well as
an introduction to our future lines of research.

1.4.4 Appendix: The data

It is a difficult task to collect medical images for research purposes. During the de-
velopment of this work, we had to manually label our own database, and had to
design a program to perform these tasks consistently and accurately. In the appendix
we present the details about our own medical image database. Also, we briefly de-
scribed other publicly available datasets used in our tests.



Chapter2
Statistical shape analysis

“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

— Maria Sklodowska-Curie

In order to fully understand this thesis, we need to establish the mathematical fun-
damentals of the statistical models of shape. Landmark-based models, which are the
shape models considered in this work, are based on Kendall’s definition of shape [9].
Kendall formulated his shape theory to study the stochastic processes on shapes, and
motivated by archaeological studies: the archaeologists usually annotated landmarks
on their notebooks. Kendall was willing to present a definition of shape defined by
landmarks and forming a polygon. In order to provide a mathematical framework
to the statistical shape analysis, these polygons need to be independent of any trans-
lation, scale or rotation, that is, those transformation that do not alter the shape.
Therefore, a distance that is invariable to these transformations needs to be defined.
Section 2.2 provides an introduction to shape theory, to these invariant distances,
and to the concept of Procrustes analysis. Section 2.3 focuses on the particular case
of shape in two dimensions (i.e., in an image), where certain mathematical advan-
tages can be considered with respect to the general formulation. Having reached
that theoretical introduction, we focus particularly in the Point Distribution Models.
In Section 2.4 we describe how these shape models are used by the segmentation
algorithms, and how they are fit into the images. Finally, in Section 2.5 we introduce
the existing solutions to deal with incomplete training samples.

2.1 Landmark-based shape

When we wish to perform statistical analysis of shape we assume that the shape ob-
servations belong to real world forms. These may come from a sketch of an archae-
ologist, an automatic segmentation of a Computer Vision algorithm, or a manually
drawn anatomical piece. As a general basis, we understand that a planar shape ob-
servation contains the vertices of an outline representing the contour of an object
of interest. This object may belong to nature, and thus its contour does not follow
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a simple mathematical behaviour, i.e., it cannot be simplified by basic geometrical
shapes. These are actually the kind of shapes that generate interest to be statistically
analysed.

When we collect shape observations to perform a statistical analysis, we assume
that they all contain the same number of N points, and that all points are in one-to-
one correspondence for each point n = 1, . . . , N. These points (or vertices) are also
known as landmarks, since its position is generally determined by some meaningful
information. For instance, in the archaeological study of spears, an evident landmark
is the tip. With respect to an anatomical study of a hand outline, also the tips of the
fingers are intuitive landmarks. Depending of the nature of the landmark, we classify
them into:

• Manual: a human observer decides where the landmark needs to be. These
landmarks must be on a point of the curve that is easy to inspect and reproduce
in new observations, providing consistency to the identification.

• Automatic (or semi-automatic): typically equidistantly placed along the curve
between two manual landmarks.

We show a few examples of landmarks-based shapes in Fig. 2.1.

Figure 2.1: Landmark-based shape examples of (from left to right) a femur, a lung
and a hand.

2.2 Shape theory

Before defining what the analysis of statistical shape is, we should clarify the termi-
nology of shape. Our starting point is the definition that Kendall published on his
shape theory in 1977 [23]:

“Shape is all the geometrical information that remains when location, scale,
and rotational effects are quotiented (or filtered) out from an object”

In this dissertation the shapes are considered to be a collection of vertices of a poly-
gon, i.e., landmark-based. Some examples could be, a set of pixels forming a curve
in a image, a set of landmarks representing significant points of a curve, or a cloud
of points belonging to a volume.
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2.2.1 A shape manifold

A manifold is a topological space that is locally Euclidean. Shape theory defines the
shape manifold [23]. This manifold attempts to be a framework to shape modeling.
A point in a shape manifold represents any collection of N points in a D-dimensional
Euclidean space forming the same shape, i.e., a set of N vertices of dimension D = 2
(planar shape) or D = 3 (volumetric shape). As aforementioned, shape is invariant
to scale, rotation and rigid translation. Consequently, the same shape formed by D-
dimensional N vertices is mapped to the same point in the manifold, independently
of its original position, rotation or size. A distance between two shapes can then be
determined as a geodesic between two points of the shape manifold. In Fig. 2.2 we
illustrate a shape manifold. Shape theory concludes that, a shape manifold can be

Figure 2.2: Representation of the shape manifold

defined if D = 2 but not for D = 3 [23]. When D = 3 the determined space is
not topologically a manifold. Therefore, more generally, shape theory considers the
shape space, which fulfils manifold properties only if D = 2.

2.2.2 Shape invariant transformations

We assume that the shapes exist naturally in an Euclidean space of dimension D (for
planar shapes D = 2, for volumetric shapes D = 3). Let xn ∈ RD×1 be a column
vector with the coordinates of the n-th vertex of a D dimensional polygon. Thus, N
vertices are contained in a matrix X = [x1, . . . , xN], such that X ∈ RD×N. We also
assume that a shape always contains more vertices than dimensions, i.e., N > D.

Considering the shapes belong originally to RD×N, we start by identifying the
transformations in this manifold that do not alter the shape of X. These transfor-
mations are translation (move a shape in the space), scaling (shrink or dilate), and
rotation. The shear transformation deforms the angles between the vertices of X and
thus is not shape invariant. Furthermore, the reflection is not considered shape in-
variant either. Thus, a mirrored version of a shape is a new shape. For instance, a
planar shape of a hand after a reflection changes from a left hand into a right hand
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or vice-versa, and consequently, the left and the right hand are considered different
shapes.

The following transformations to X do not alter its shape [24], as illustrated in
Fig. 2.3,

Translation: t ∈ RD×1, X + t1N = [x1 + t, . . . , xN + t] (2.1)

Scale: s ∈ R+, sX = [sx1, . . . , sxN] (2.2)
Rotation: R ∈ SO(D), RX = [Rx1, . . . , RxN] (2.3)

where 1N = [1, 1, . . . , 1] ∈ R1×N and SO(D) refers to the special orthogonal group
of RD , i.e., R is an orthogonal matrix with positive determinant.

original shape translation scale rotation

Figure 2.3: An illustrative example of the shape invariant transformations. The
translation moves the original sample along the plane. The scale changes its size. The
rotation transform the angles without altering the relative angles between vertex.
These transformation, as well as a linear combination of them, do not change the
shape from the original sample.

2.2.3 A distance between shape observations

Considering the original space RD×N as the initial manifold, we define the distance
between two shapes in this space as the sum of squared Euclidean distances between
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corresponding vertices. Let us define X(1), X(2) ∈ RD×N, this distance is

d(X(1), X(2)) =

√√√√ N

∑
n=1
||x(1)n − x(2)n ||2 =

√
Tr
(
(X(1) − X(2))(X(1) − X(2))T

)
. (2.4)

This distance is, however, not invariant to the previously defined transformations.
Thus is not valid to measure differences between shape. This is straightforward to
demonstrate. Let us assume two matrices with the same shape, X(1) and X(2) =
sRX(1) + t1N. The shape distance d(X(1), X(2)) should be 0. From observing (2.4),
we see that, when the distance is 0, ||x(1)n − x(2)n ||2 must be 0 for all n = 1, . . . , N. We
can easily show that the difference between the first elements x(1)11 − x(2)11 is generally

different from 0 and consequently so is ||x(1)n − x(2)n ||2. Considering that the first row
of the rotation matrix R is x1 = [r11, r12]

T, and the first element of t is t1, then
x(2)11 = s(r11x(1)11 + r12x(1)21 ) + t1, and the difference

x(1)11 − x(2)11 = x(1)11 (1− sr11)− sr12x(1)21 − t1, (2.5)

which is different from 0 unless s = 1 and R = I. In order to derive a distance in the
shape space that is invariant to the aforementioned transformations, we introduce
the concepts of centroid and size.

2.2.4 Centroid and size

Let us define the centroid of X as

C(X) =
1
N

N

∑
n=1

xn. (2.6)

This centroid operator is linear, and therefore, when X is rotated, translated or scaled,
so is its centroid under the same transformation, that is

C(sX) =
1
N

N

∑
n=1

sxn = sC(X), (2.7)

C(X + t1N) =
1
N

N

∑
n=1

(xn + t) = C(X) + t, (2.8)

C(RX) =
1
N

N

∑
n=1

Rxn = RC(X). (2.9)

Let us also find a definition to the size of X. Following [9], we determine the size as
the distance of each vertex to the shape centroid, that is

S(X) =

√√√√ N

∑
n=1
||xn − C(X)||2 =

√
Tr{(X− C(X)1N)(X− C(X)1N)T}. (2.10)
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This size is invariant under translation [24],

S(X + t1N) =

√√√√ N

∑
n=1
||xn + t− (C(X) + t)||2 =

√√√√ N

∑
n=1
||xn − C(X)||2 = S(X),

(2.11)
invariant under rotation,

S(RX) =

√√√√ N

∑
n=1
||Rxn − RC(X)||2 =√√√√ N

∑
n=1
||R(xn − C(X))||2 =

√
Tr{(R(xn − C(X)))(R(xn − C(X)))T} =√

(Tr{(X− C(X)1N)TRTR(X− C(X)1N)} = S(X), (2.12)

and homogeneous to the scaling

S(sX) =

√√√√ N

∑
n=1
||sxn − sC(X)||2 = sS(X). (2.13)

2.2.5 A distance invariant to translation, scale and rotation

We define a function that transforms a shape matrix X so that it is invariant to scale
and translation as

T(X) =
1

S(X)
(X− C(X)1N). (2.14)

After this transformation, translation and scale are removed. Let us define the ma-
trices X and its scale and translated transformation, that is, sX + t1N. The distance
between T(X) and T(sX + t1N) is then invariant to translation and scale, that is

d(T(X), T(sX + t1N)) =

√√√√ N

∑
n=1
||xn − C(X)

S(X)
− sxn + t− sC(X)− t

sS(X)
||2 = 0. (2.15)

However this distance is still not invariant to rotation. There is not a specific rota-
tion reference to perform an equivalent action as in (2.14), where the centroid and
size are references for translation and scale. Therefore, we determine the wished
invariante Sdistance between two different shape matrices X(1) and X(2) as

ds(X(1), X(2)) = min
R∈SO(D)

d(T(X(1)), RT(X(2))), (2.16)

where the rotation R is

R∗ = arg min
R∈SO(D)

d(T(X), RT(X)). (2.17)
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2.2.6 Procrustes analysis

According to Greek Mythology, Procrustes (or Damases) [25] was the son of Posei-
don, and a monster that lived in the vicinity of Athens. He used to force every visitor
of his territory through a trial that always ended with his death: after making them
lie on a bed that never had the same proportions, he prolonged with hammer blows
the limbs that did not reach the ends. He gives his name to Procrustes Analysis,
where a rotation forces two matrices of vertices to fit each other.

Let us consider X1 = T(X(1)), X2 = T(X(2)), and the optimal rotation defined as

R∗ = arg min
R∈SO(D)

d(X1, RX2) = arg min
R∈SO(D)

Tr{(X1 − RX2)(X1 − RX2)
T}

= arg min
R∈SO(D)

[
Tr{X1XT

1 } − 2Tr{RX2XT
1 }+ Tr{X2XT

2 }
]
= arg max

R∈SO(D)

Tr{RX2XT
1 }.

(2.18)

This problem is a special case of the Procrustes problem in [26]. In [27], Schöne-
mann proposed a solution to the Orthogonal Procrustes problem defined as

R∗ = arg max
RRT=ID

Tr{RX2XT
1 }, (2.19)

where R is constrained to be orthogonal, i.e., R ∈ O(D), but not necessarily a ro-
tation matrix. This means that |R| could be 1 or −1. The solution is the following.
Let us consider the Singular Value Decomposition (SVD) of X2XT

1 = UΛVT, where U
and V are orthonormal matrices and Λ = diag{λ1, . . . , λD} is a diagonal matrix with
non-negative elements, λi ≥ 0 ∀i = 1, . . . , D. Therefore, the trace to maximize in
(2.19) can be expressed as

Tr{RUΛVT} = Tr{VTRUΛ} = Tr{SΛ} =
D

∑
i=1

λisii, (2.20)

where sii is the i-th element of the diagonal of the matrix S = VTRU. The matrix
S results from the product of orthonormal matrices and thus it is orthonormal, that
is |sii| ≤ 1. Therefore, the solution that maximizes the sum in (2.20) is such that
sii = 1 ∀i = 1, . . . , D [27]. This means that the orthogonal matrix S is the identity
matrix, S = ID, and thus VTRU = ID. The orthogonal matrix R∗ is then

R∗ = VUT . (2.21)

However, this solution does not provide necessarily a rotation matrix, since the de-
terminant |R∗| could still be negative and thus perform reflections, which are not
considered shape-invariant transformations. Thus, a modified version with an addi-
tional constraint to the determinant, |R| = 1, i.e., R ∈ SO(D), is proposed:

max
|R|=1

D

∑
i=1

λisii. (2.22)
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The expression in (2.21) is a rotation matrix when |U||V| = 1. In that case, (2.21)
is also the solution to (2.22). However, when |U||V| = −1, (2.21) is not a rotation
matrix and hence not a valid solution to (2.22). Since |R∗| = 1 is required, in that
case |S| = −1 and thus the solution to S cannot be the identity matrix. Still, S would
be an orthogonal matrix with negative determinant. As described in [24], a vector
s = [s11, s22, . . . , sDD]

T is the diagonal of such a matrix if an only if it lies in the
convex hull of

ε = {[±1, . . . ,±1] | odd number of minus signs}. (2.23)

This result can be used to find the optimal solution of (2.22) as follows. First, we
notice that the singular values in (2.22) are arranged in decreasing order, i.e., λ1 ≥
λ2 ≥ . . . λD. Second, as the objective function of (2.22) is linear, its optimal solution
lies on a extreme point of the feasible set, which is the convex hull of ε. The extreme
points of ε have an odd number of negative signs. More 1s instead of −1s in S make
the sum to maximize in (2.22) bigger. Consequently, the optimal extreme point is
only one negative element, corresponding to the minimum singular value, i.e., sDD.
Therefore, the new solution is

S = diag{1, 1, . . . , |U||V|},
R∗ = USVT . (2.24)

A more detailed derivation to this solution can be found in [28].

2.2.7 Pre-shape and shape spaces

The action of the function T(X) defined in (2.14) can be seen as a transformation of
the shape matrix X into a new set T, in which the size is fixed to 1, and the centroid
is on the origin of RD. Therefore, the scale and translation are constant for every
matrix X in the set. This scale/translation-normalized set is defined as

T =
{

XT ∈ Rd×N : XT =
1

S(X)
(X− C(X)1N)}. (2.25)

The set T is equivalent to the pre-shape sphere SN
D defined in shape theory [23]. The

term pre-shape means that the space is one step ahead from the shape space, since
the rotations are not filtered yet. The pre-shape space is therefore not invariant to
rotation. Also, in T the N vertices can be expressed with respect to their centroid.
This means that, a projection of the vertices Z = QX, where Q is an orthogonal
matrix, can be determined such that one of the new projected elements in Z is the
scaled centroid [23]. Since the centroid of the elements in T is known, a degree of
freedom can be neglected from Z, remaining N − 1 new vertices in Z̃ ∈ Rd×(N−1).
Thus, the pre-shape is considered to be the unit hypersphere

SD(N−1)−1 = T/{0} =
{

Z̃ ∈ RD×(N−1) : C(Z̃) = 1
}

. (2.26)
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The shape space is defined after the SO(D) group is quotient out of the pre-shape
space, that is

ΣN
D = SD(N−1)−1/SO(D). (2.27)

The shape space captures what is invariant to scale, translation and rotation. In the
shape space, a geodesic distance between two pre-shape X1, X2 ∈ T is defined as
[24]

g(X1, X2) = arccos max
R∈SO(D)

Tr(RX1XT
2 ), (2.28)

where R is the solution to a Procrustes analysis proposed in section 2.2.6. This
geodesic distance g(X1, X2) is directly related to the shape invariant distance defined
in Eq. (2.16) as

ds(X(1), X(2)) = min
R∈SO(D)

d(T(X(1)), RT(X(1))) =

min
R∈SO(D)

√
Tr{X1XT

1 − 2RX1XT
2 + X2XT

2 } =

max
R∈SO(D)

√
2(Tr{RX1XT

2 } − 1) =√
2(cos(g(X1, X2))− 1) (2.29)

The shape space ΣN
D only fulfils the properties of a Riemannian manifold when D < 3

[23]. For higher dimensions the rotations R ∈ SO(D) are not free actions, which
means that a rotation different from R = ID may preserve the pre-shape, i.e., RX1 =
X1 for some R 6= ID. Therefore, we can only talk about a shape manifold when
we analyze planar shapes, that is D = 2 (we assume D = 1 is a trivial an non-
interesting case). ΣN

2 is a Riemanninan manifold, and has an inner product defined
in the tangent space, allowing to measure the angle at each point and define the
lengths of the curves [29]. When D > 2 we deal with a shape space that is not a
Riemannian manifold, where we can still define a generalized geodesic [30].

2.2.8 Statistical Shape Models

After shape matrices are centered and size-normalized, they live in a shape manifold
[23]. The shape space ΣN

D is a manifold that accounts for all shape structures X with
N vertices in RD. In order to model shape variability, the distance metric to consider
is the geodesic over this manifold.

We initially consider a statistical model of shape as a random process, whose re-
alizations are shape manifold points in a neighborhood around a reference in this
manifold. Let us consider the reference shape matrix Xref ∈ RD×N, and its represen-
tation in the shape space ΣN

D as X̃ref =
1

S(Xref)

(
Xref−C(Xref)1N

)
. In order to generate

shape structures that are deformations of the shape reference, the following function
is considered:

X̃ ∼ ΦX̃ref
(Θ), (2.30)
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where X̃ ∈ ΣN
D is a shape structure that distributes as the random process of defor-

mation ΦX̃ref
(Θ), which depends on the reference X̃ref ∈ ΣN

D and a set of parameters
Θ. An ensemble of realizations of X̃, that is {X̃1, X̃2, . . . , X̃M}, have the same shape
property [9].

The random process ΦX̃ref
and its statistical analysis over the shape manifold is

non-linear, since the shape variability is determined by geodesic distances. In prac-
tice, this is going to be problematic for the performance and understanding of the
models [31]. Gaussian Process Morphable Models, formulated in [32], consider a
Gaussian Process (GP) for ΦX̃ref

. Consequently, a linear model of deformation deter-
mines the realizations of X̃ as

X̃ ∼ GP(X̃ref, Γ), (2.31)

where Γ ∈ RDN×DN is a kernel function that defines the covariance function of the
process. The only requirement for Γ is that it is a symmetric and positive semi-
definite kernel [32]. This kernel function is chosen according to the deformation
properties that are expected from the object of interest. GP are used to model shape
of anatomical objects [32]. In such cases the variability is assumed to be smooth,
and highly correlated between neighbor vertices. Typically more than one reference
is available as training data to learn the shape model. In than case, the mean and
covariance kernel of the GP can be estimated from this training data. This is also the
case for Point Distribution Models [14]. We explain this in detail in the following
sections.

The tangent to the shape space

The GP linear model of statistical shape in Eq. (2.31) does not consider that the
shape structure must belong to a shape manifold, i.e., the spherical topology of the
shape space is disregarded [33]. This means that, the distances between observations
are not geodesics of the shape space. Thus, different realizations may have not only
different shape but also different scale or rotation from the reference.

An alternative to the shape space is to consider a local tangent space analysis at
the reference. In [33] the authors consider a tangent space that preserves distances
and angles with an exponential mapping of X̃. Also, the geodesic distances can be
directly considered in the statistical analysis [34]. The concept of the tangent space
is also considered for Point Distribution Models in [35] and [31]. The training shape
structures are projected onto the so defined tangent space to the reference structure,
which is the mean shape in that case. These projections are simply the rescaled
observations

X̃t =
S(X̃ref)

X̃T
refX̃

X̃ (2.32)

where X̃t is the projection on the tangent space over X̃ref.
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2.3 Statistical analysis of planar shapes

One of the most common cases in image processing are planar shapes, i.e., shapes
with D = 2 in R2. In this case, the shape space ΣN

2 has the structure of a Riemanian
manifold [23]: it is differentiable, and the tangent space at each point has an inner
product. These properties provide an interesting mathematical framework for the
statistical analysis of shape. Also, the rotation R ∈ SO(2) can be understood as a
complex scalar multiplication. This allows to simplify the formulation of the manifold
properties ΣN

2 and consider equivalently a projective complex space CP(N−2).
Let us consider the complex space C. The vertices (or points) of a shape be-

long to a complex vector, whose real and imaginary parts correspond to each of
the coordinates of R2. The shape invariant transformations parameters (scale, ro-
tation and translation) are defined by a complex affine transformation. Thus, we
model a collection of shape points in a complex vector κ ∈ CN×1. The N vertices
in κ = [κ1, . . . ,κN]

T are now complex scalars, i.e., κn ∈ C ∀n = 1, . . . , N. A shape
invariant transformation on a vector κ(1) is defined as:

κ(2) = rκ(1) + t, (2.33)

where {r, t} ∈ C are the parameters of the rigid transformation (r is the scale in
magnitude and rotation in phase, and t the translation), and κ(2) ∈ CN×1 is the
transformed vector. κ(1) and κ(2) represent the same shape.

Given that the contributions of this thesis are mainly about planar shapes,from
this point of the chapter we will consider the complex notation to refer to a shape
vector.

2.3.1 A distance in the complex space

We derive the distance defined in Eq. (2.4). Let us define the centroid of κ for two
vectors κ(1),κ(2) ∈ CN×1 as

d(κ(1),κ(2)) =

√√√√ N

∑
n=1
|κ(1)n −κ

(2)
n |2 =

√
||κ(1) −κ(2)||2 = ||κ(1) −κ(2)||, (2.34)

which is the l2-norm of the difference of the vectors. Since this is a particular case of
Eq. (2.4), the same properties are met. The distance is not invariant to translation,
scale and rotation. We comparably define the centroid and size of κ, as well as a
distance of shape that is invariant to translation, scale and rotation. The centroid of
κ is the average of the N vertices in κ

C(κ) =
1
N

N

∑
n=1

κn, (2.35)

where C(κ) ∈ C. The size of κ is defined as

S(κ) =

√√√√ N

∑
n=1
|κn − C(κ)|2 = ||κ − C(κ)1N||, (2.36)
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where S(κ) ∈ R+, and it is the l2-norm of κ − C(κ)1N. The transformation function
that filters out translation and scale is thus

T(κ) =
κ − C(κ)1N

||κ − C(κ)1N||
= τ . (2.37)

The vector τ has the geometrical properties of the pre-shape space [23]. We will
refer to τ as the pre-shape vector. We define the shape distance, ds, that is also
invariant to the action of rotations. A rotation matrix R ∈ SO(2) is now equivalent
to a scalar complex r ∈ C with |r| = 1. Let us assume two pre-shapes τ1 = T(κ(1))
and τ2 = T(κ(2)), where the shape distance between κ(1) and κ(2) is

ds(κ
(1),κ(2)) = min

|r|=1
d(τ1, rτ2) = min

|r|=1
||τ1 − rτ2||, (2.38)

and the rotation we need to compute is

r∗ = arg min
|r|=1

||τ1 − rτ2||. (2.39)

This distance ds in this case is much simpler that the one presented in the previous
section, since now there is no need to solve a Procrustes analysis to determine r. We
can simply derive it, considering r = e jθ, as

θ∗ = arg min
θ

||τ1 − e jθτ2|| = (τ1 − e jθτ2)
H(τ1 − e jθτ2)

= arg min
θ

(τH
1 τ1 − e− jθτH

2 τ1 − τH
1 τ2e jθ + e− jθτH

2 τ2e jθ)

= arg min
θ

(
2− [(τH

1 τ2e jθ) + (τH
1 τ2e jθ)∗]

)
= arg max

θ

Re[τH
1 τ2e jθ] (2.40)

The real part of a complex number is maximum when this number is real, and thus
it is equivalent to the magnitude. Thus, the solution is θ∗ = −arg(τH

1 τ2). The shape
distance results in

ds(κ
(1),κ(2)) = ||τ1 − e− jarg(τH

1 τ2)τ2|| = 2
(

1− |τH
1 τ2|

)
. (2.41)

The geodesic between two pre-shapes is then

g(τ1,τ2) = arccos |τH
1 τ2|. (2.42)

2.3.2 Procrustes registration of two planar shapes

In certain cases, we do not need to project the shape vectors into a shape manifold,
but instead, we consider a reference shape vector, κ(1). A Procrustes registration is a
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linear transformation of the points on a shape vector, i.e., target vector κ(2), to best
conform the locations of the points of a reference vector shape κ(1). We consider this
transformation to be shape invariant, that is, to be produced by translation, scale and
rotation.

Considering that planar shapes live in a complex space, we model the Procrustes
registration (scale, rotation and translation) as a complex affine transformation. We
rename the previously define distance between κ(1) and κ(2) as Procrustes distance
dp as

dp(κ
(1),κ(2)) = d(κ(1),κ(2)) = ||κ(1) −κ(2)||, (2.43)

and formulate this registration as a minimization of the squared Procrustes distance.
Let us assume we have the shape vectors κ(1) and κ(2), and consider the Procrustes
registration of κ(2) (target) over κ(1) (reference), that is, the projection of κ(2) into
the pose of κ(1). This is performed by the pose parameters r, t ∈ C that minimize the
squared Procrustes distance dp(κ(1),κ(2))2:

r, t = arg min
r,t

dp(κ
(1),κ(2))2 = arg min

r,t
||κ(1) − (rκ(2) + 1t)||2. (2.44)

Let us express the transformation as rκ(2) + 1t = [κ(2) 1]r̃ = K(2) r̃, where
r̃ = [r t]T is a vector containing the pose parameters (scale, rotation and trans-
lation). This problem is actually very well-known and straightforward: the vector
r̃ that minimizes the squared Procrustes distance between κ(1) and rκ(2) + 1t is the
solution to the linear least-squares fit

r̃∗ = arg min
r̃
||κ(1) −K(2) r̃||2, (2.45)

where the closed-form optimal solution of the pose vector is r̃∗ =
(K(2)HK(2))−1K(2)Hκ(1).

2.3.3 Group-wise Procrustes registration

When a statistical shape model is learned from a set of training observations of the
shape structure, we need to measure variability that is independent to rotation, scale
and translation. In order to learn this shape variability, we perform a group-wise
registration of this set of training structures. Therefore, these training samples are
registered to a reference κref, which is typically a mean [36]. This is the case, for
instance, to design Point Distribution Models [14].

A group-wise registration consists on the following. For every mth shape vector
κm in the training set we find the pose parameters

[r∗m, t∗m] = arg min
rm ,tm

M

∑
m=1
||κref − (rmκm + 1tm)||2. (2.46)

Let us assume a set of M shape vectors, that is κ1, . . . ,κM. According to the proposed
definition of shape [9], the shape variability is what remains after these shape vectors



32 Statistical shape analysis

have a common scale, translation and rotation with respect to a pre-shape vector of
reference τ ref, which is assumed to have unit scale and null translation. This process
is a group-wise rigid registration or superimposition. The observed shape vectors are
transformed, as described in Section 2.3.1, to filter out the translation and the scale
to obtain τm

τm = T(κm) =
κm − C(κm)1N

||κm − C(κm)1N||
, (2.47)

for every observation m = 1, . . . , M. In order to complete the superimposition of
the M observation to the shape vector reference τ ref, we choose rotations rm, with
|rm| = 1 and with the following minimization, as explained in Section 2.3.1,

r∗m = arg min
|rm|=1

||τ ref − rmτm||, (2.48)

where the reference vector τ ref is typically the mean shape [37].

The Procrustes mean shape

To perform a group-wise registration, we consider the Procrustes mean shape [37]
as the reference pre-shape τ ref. This definition is geometrically convenient in shape
theory so that the statistical shape model is defined on a tangent to the hypersphere
of the mean shape µ [36]. This mean shape is determined as follows. Considering
we have a set of M training shape vectors, and their preshapes are τ1, . . . ,τM, the
mean shape is defined as

µ∗ = arg min
||µ||2=1

M

∑
m=1

ds(τm,µ), (2.49)

and assuming we know the rotations rm to superimpose τm on µ, as explained in
Eq. (2.48), then the estimate of µ is the closed-form solution of a constrained least-
squares

µ =
∑

M
m=1 rmτm

||∑M
m=1 rmτm||

. (2.50)

However, the rotations rm are not known and therefore the mean µ and the rotations
are mutually dependent.

The Generalized Procrustes Analysis

The rotations rm and the mean µ are mutually dependent. The Generalizes Pro-
crustes Analysis (GPA) is an alternating optimization framework to obtain a solution
to both. The GPA iterates between minimizing the distances of the pre-shapes to µ,
i.e., calculating the rotations rm and estimating µ. For each of the m shape vectors,
the minimization
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[r∗m,µ∗] = arg min
|rm|=1
||µ||2=1

M

∑
l=1
||rmτm −µ||2 (2.51)

is solved. The GPA provides a solution to Eq. (2.51) as described in Algorithm 2.1.
We show an example of the results of this analysis over a collection of 50 femur shape
vectors in Fig. 2.4.

before GPA after GPA Procrustes mean

Figure 2.4: An example of a collection of 50 femur shapes before (left) and after
(center) a Generalized Procrustes Analysis, as well as the Procrustes mean (right).
More information about the source of the data can be found in the Appendix.
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Algorithm 2.1 Group-wise rigid registration in a GPA.
Data: κ1 . . . ,κM, with length N and assigned correspondence.
Result: rm, for m = 1, . . . , M, and µ (i.e., solution to Eq. (2.51)).
initialization: i < imax, c > cmin, µ(0) = T(κ1), τ

(0)
m = T(κm) for m = 1, . . . , M

while c > cmin and i < imax do
for m = 1, . . . , M do

• Find rotation {rm} to superimpose τ
(i)
m over µ(i) considering Eq. (2.39).

• Determine superimposed vector τ (i+1)
m = rmτ

(i)
m .

end

• Re-calculate Procrustes mean as µ(i+1) = ∑
M
m=1 τ

(i+1)
m

||∑M
m=1 τ

(i+1)
m ||

.

• Compute c = ||µ(i+1) −µ(i)||2, and iterate i = i + 1

end

As an alternative, the following group-wise registration is typically used in statis-
tical shape analysis,

[r∗m, t∗m,µ∗] = arg min
||µ||2=1

M

∑
l=1
||(rmτm + 1Ntm)−µ||2, (2.52)

which considers that the shape observation do not need to be unit size neither have a
centroid at the origin, and thus the variability remained after the registration to the
estimated mean is not necessarily only due to shape as defined by Kendall. An ap-
proach like the GPA Algorithm in 2.1, with minor extensions, also provides a solution
to Eq. (2.52).

2.3.4 Point Distribution Models

When a set of training samples are available, an average and a sample covariance
matrix can be estimated from these samples. The first and second order moments are
statistical parameters that can be used to determine a linear model of shape. Point
Distribution Models (PDM) are linear models of shape variability [14], in which an
observed shape vector is described as

κm = rm(µ + δ) + 1tm, (2.53)

where δ is considered to be a vector of shape deformation, µ is the mean shape, and
rm and tm are the pose parameters. To be consistent with Kendall’s shape definition,
the vector δ should accomplish certain constraints so that µ + δ is unit size and its
centroid is the origin. However, these constraints are not usually considered and



2.4 Shape model fitting 35

a simplified model of δ is preferred. This vector of deformation can be considered
deterministic or random. When modeled as a random vector, a possible distribution
is normal, i.e., δ ∼ CN (0, Σ). Independently of the distribution of δ, its sample
covariance matrix can be calculated from a collection of M observations κm. After
applying a GPA, as described in Algorithm 2.1 and thus obtaining the mean-registered
vectors τm and its mean µ, the sample covariance matrix of the training set remains

Σ̂ =
1

M− 1

M

∑
m=1

(τm −µ)(τm −µ)H . (2.54)

The principle of PDM is to consider that the N elements within the shape vector
τm are highly correlated, and thus most of the information about shape variability
is contained in a lower-dimensional subspace. Also, typically a correlation between
the two coordinates of the planar space, that is the real and imaginary parts of the
shape vector τm, is not dismissed. This means that, the complex random vector δ
is supposed to be improper [38]. Instead of considering the complementary matrix
with the sample covariance matrix [38], we define a new real vector as a composite of
the real and imaginary parts of the initial complex vector. Let us define an invertible
function V : CN×1 → R2N×1 as V(τ) = [Re(τ)T , Im(τ)T]T, which provides the
corresponding real description. Thus, we define the vectors xm = V(τm) ∈ R2N×1

and µx = V(µ) ∈ R2N×1, and the sample covariance

Σ̂x =
1

M− 1

M

∑
m=1

(xm −µx)(xm −µx)
T . (2.55)

Let us define its eigenvalue decomposition, i.e., Σ̂x = QΛQT. We perform dimen-
sionality reduction, assuming the linear model

x = µx + Pb +ε, (2.56)

where b ∈ Rp is a vector of p < 2N parameters, and P = [q1, q2, . . . , qp] ∈ R2N×p

are the p eigenvectors of Σ̂x corresponding to the p largest eigenvalues. In order to
preserve shape plausibility, b is restricted to a set B(λ), where λ is a p-dimensional
vector containing the p largest eigenvalues of Σ̂x. The vector ε accounts for the
variability that we do not represent with the model. Consequently, any observed
shape vector κm can be linearly approximated as xm ≈ µx + Pbm, and therefore any
vector of landmarks can be approximated as

κm ≈ rmV−1(µx + Pbm) + 1tm , (2.57)

characterized by the parameters bm ∈ Rp, which is the shape parameter vector of
κm, and {rm, tm}, which are the rotation and translation (pose) parameters.

2.4 Shape model fitting

Now that we have introduced the fundamentals of shape theory, and particularly
described the statistical analysis of planar shapes to build shape models, we focus
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now on how to use these models in a practical scenario. We describe in this section
how segmentation algorithms make use of SSM in order to enhance the accuray of
the results.

Segmentation algorithms that use SSM [14] [20] typically consists in two steps.
First, a collection of candidate landmarks are found in the image. Second, the shape
model is fit to these collection of target points, such that the resulting segmentation
is a valid shape observation of the SSM. Very popular algorithm such as Active Shape
Models (ASM) [14] and Constraint Local Models (CLM) [20] iterate between these
two steps until they converge into a segmentation solution. We illustrate a shape
model fit iterative process in Fig. 2.5, and describe the two steps in detail in the
following of this section.

target

shape

initial guess

final decision

shape model fit 
to ensure plausibility
Update T and b to minimize

subject to some constraints on b

target points search
with appearance models

Figure 2.5: Illustration of the process of an iterative shape fitting that was run on the
image of example. First, an initial guess (yellow) was given. Then, the algorithms
iterates between searching the target landmarks (blue) and fitting the shape model
(green). After converge, the resulting landmarks are provided (magenta). More
details about the medical images are found in the Appendix.

2.4.1 Target point search

A SSM-based segmentation starts with a search of candidate landmarks. During
iteration i we need to find the targets κ̃(i) in the image I. We determine these by
means of a detector T (κ(i−1), I) = κ̃(i), which considers the result of the previous
iteration κ(i−1). These detectors are named part-based when the search of each nth
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landmark in κ̃(i) is independent of the rest of the landmarks. The detectors are known
as holistic if the localization of each landmark depends on the other landmarks [39].

The detector can consist on a one-dimensional gray-level path of the image or
on a two-dimensional region or patch, as illustrated in Fig. 2.6. In the rest of these
section we describe the typical approaches for target search.

1 2 3

Figure 2.6: An illustration of the target point search. 1. The process starts with the
landmarks from previous iteration. 2. The target point search is performed within a
one-dimensional path perpendicular to the landmarks (left), or with a patch around
the landmarks (right). The found targets are illustrated as green circles. 3. The
target points are considered for the shape model fit, which generates the result.

One-dimensional gray-level profile

As described in the first version of the Active Shape Models (ASM) segmentation
algorithm [14], a target search can consist in evaluating a grey-level profile for each
landmark. ASM considers the current estimate of landmarks κ(i), to define a line of
search in the image for each landmark. We illustrate this search in Fig. 2.6(2) left.

A vector of one-dimensional intensity values is extracted from for each nth land-
mark. This line contains the current value of the κ

(i)
n , typically at the middle point,

and is approximately perpendicular to the boundary formed by κ(i). We illustrate
the extraction of this line in Fig. 2.7. The best candidate to be the next target point
is selected according to a determined metric. The simplest approach is to consider
an intensity change, that is, to assume that the landmark is on an edge. Thus, the
derivative of the gray values is approximated by finite differences, and its maximum
point is found. A different and more complex approach consists on a model of ap-
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pearance of the gray-level profile. Let us denote by g(i)
n ∈ R`×1 the vector containing

` intensity (or differences of intensity) values representing the appearance on the
image line for landmark n. Assuming g(i)

n ∼ N (µgn , Sgn), an average µgn and co-
variance matrix Sgn are estimated from the training images. Then, during the target

search, the Mahalanobis distance d(i)n = (g(i)
n −µgn)

TS−1
gn (g

(i)
n −µgn) is measured on

vector candidates at different positions, and the smallest distance corresponds to the
best target [14]. We illustrate this search on Fig. 2.7. There are several extensions of
this approach. For instance, in [40] the authors consider a multi-resolution search,
where different models are learnt from coarse to fine resolutions. In [41] the authors
build color models instead of gray. Also, robust estimators such as M-estimators and
RANSAC have been considered to find the targets [42]. Other strategies consider a
regularizated search, as the authors in [43], that define smoothness constraints in a
regularized iterative search, and solve it with dynamic programming.

derivative of

intensity

mean of intensity modelobject to 

segment

Figure 2.7: An illustration of the one-dimensinal gray-level profile target search, as
used in the ASM algorithm [35].

Classification/regression of patch-based features

A grey-level vector is a very simple approach to analyse local appearance. The next
level of complexity is to consider a 2-dimensional patch around each landmark. We
illustrate this search in Fig. 2.6(2) right. In such a search, different image features
are extracted to conform either a regression of distance to a target point, or a classi-
fication to decide if a point is the target or not. The Constrained Local Models (CLM)
approach [44], with a patch-based search, has been successful in facial landmark de-
tection. Similarly to ASM, in CLM a region is extracted around each nth landmarks
at current κ(i)n and at each iteration i, generating a response patch that represents
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the likelihood of each of the points in the patch to be the next target. The appear-
ance of each nth patch is modelled as a normalized grey-level vector, from which,
similarly to the Point Distribution Model, a linear model of principal components is
determined. More recent versions of the CLM consider random forests to vote for
the needed displacement from the current point to the next target. In [20] the au-
thors considered Haar features as inputs to the random forests. The best appearance
features are, however, uncertain and typically chosen by heuristics. One approach
to overcome this is to consider an ensemble of weak classifiers as an AdaBoost [45].
Similar approaches consider cascaded regression models [46], and robust discrim-
inative regressions [47] [48]. Nevertheless, there are many different features and
detection strategies that can be considered to determine a target position. To name
a few: a generalized Hough Transform [49], Support Vector Machines [50], Scale
Invariant Feature transform [51], Histogram Oriented Gradients [52], a multiview
approach [53], etc.

Detection with Deep Neural Networks

More recent approaches start considering Deep Learning and Convolutional Neural
Networks (CNN) to search for the target landmarks κ̃(i) [54], [55], [56]. Particu-
larly, the U-net architecture has been demonstrated to be very successful in landmark
localization, as it is shown in the results of [57], [58], and [59]. At the time of
selecting an architecture it is important to consider the computational expense of
running a neural net for each target localization, which may compromise real-time
requirements.

2.4.2 Shape model fit

After the target search provides a collection of landmarks, these may not form a con-
sistent shape. Fitting a SSM to the target landmarks incorporates the prior knowledge
about shape. Let us recall that, as described in previous section, at each iteration new
target landmarks κ̃ are detected. However, κ̃ may not describe a plausible shape nor
an accurate pose. In this section we describe how to fit the shape model after search-
ing for the targets, as well as how to solve both problems (find targets and shape fit)
simultaneously.

Shape fit with known targets

When these target points κ̃ have been calculated independently from each other,
the shape fit consist in finding the vector of landmarks κ that is closest in pose and
shape to the target vector κ̃. This model matching is presented as the following
least-squares minimization

κ∗ = arg min
r,t,b∈B

||κ(r, t, b)− κ̃||2 , (2.58)
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whereκ(r, t, b) = 1
r [V
−1(µx +Pb)− 1t] as described by the PDM, r and t are the pose

parameters, and b is the shape parameter vector. To enforce shape plausibility b must
be contained in a subset B. A typical definition for this subset is an element-based
constraint with respect to the eigenvalues of the model, λp. This vector is interpreted
as the variances of the elements of b during the training [14]. The feasible set is then
expressed as

Bvar = {b ∈ Rp×1 : |bn| < α
√

λn, ∀n = 1, . . . , p}, (2.59)

where α is typically equal to 3, and λi are the elements on the vector of eigenvalues
λp. Then, the resulting elements in b must be contained within α times the stan-
dard deviation of the training. Another common subset B, also presented in [14],
considers the Mahalanobis distance of b and a threshold ξ as

BMah = {b ∈ Rp×1 : bTΛpb ≤ ξ}, (2.60)

where Λp is a diagonal matrix whose diagonal is the vector of eigenvalues of the
model λp. In this constraint, the impact of each element of b is not independent,
but it is a weighted part in the total Mahalanobis distance instead. This means that,
if there is only one value bn that is very far from the model, the constraint may not
affect the solution.

The proposed fit in (2.58) is a non-linear least-squares problem, since the pose
parameters and the shape parameter are non-linearly dependent. Still, an optimal
solution can be found in an alternating optimization framework, by solving the fol-
lowing subproblems on each iteration search i:

• Subproblem 1: find the pose parameters r(i) and t(i), assuming b is fixed (using
the previous, b(i−1)), and thus calculating k = V−1(µ + Pb(i−1)). We then
solve

[r(i), t(i)] = arg min
r, t

||(rk + 1t)− κ̃||2 , (2.61)

which is a linear least-squares problem with closed form solution [r(i) t(i)]T =
(KHK)−1KHκ̃, with K = [k 1].

• Subproblem 2: find the shape parameters b(i), assuming r and t are fixed, that
is, considering the already calculated r(i) and t(i). Computing x̃ = V[ 1

r(i)
(κ̃ −

1t(i))], the problem remains

b(i) = arg min
b∈B

||µ + Pb− x̃||2 , (2.62)

which is also a linear least-squares problem. The optimal unconstrained so-
lution is bu = PT(x̃ − µ). When the constraints are defined with subset Bvar
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as in (2.59), the optimal solution to b(i) consists in rescaling bu such that the
constraints are fulfilled, that is

b(i)n =
bu

n
|bu

n|
×min(|bu

n|,α
√

λn), ∀n = 1, . . . , p, (2.63)

where b(i)n is the nth element of b(i), and bu
n is the nth element of bu.

If the subset BMah is considered instead, an equivalent rescaling, as suggested
in [14], is b(i)n = bu

n ×
(√

ξ
bu TΛpbu

)
, ∀n = 1, . . . , p. However, this is not the

optimal solution to (2.62). Consequently, there is no guarantee that the al-
ternating optimization converges when BMah is considered. Nevertheless, the
problem remains convex, and the optimal solution can be found, although not
in closed-form and the computation expense may not be worth it. This subop-
timal solution has been often used to solve the ASM problem [14].

This optimization problem is the most common in the ASM fit, where the targets κ̃
are obtained with grey-level profiles [14]. Also, it is used in the CLM [60], when the
targets are also fixed before the optimization takes place. The described alternating
optimization solution to the shape model fit is summarized in Algorithm ??. In these
kind of segmentation strategies, new target points κ̃(i) are calculated every ith search
iteration; the iteration finishes when a shape model is fit to the targets. The overall
iterative segmentation framework that alternates between searching the targets and
fitting the shape model, i.e., based on the ASM, is shown in Algorithm 2.2. Notice
that, there are two iterative process: one is the target search, and the second one
(inside this) is the alternating optimization for the shape model fit.

Data: κ̃ (target points), and {P,µ, λ} (SSM).
Result: κ(r, t, b) (shape model fit)
initialization: c > cmin, i = 0, κ(0) = V−1(µ)
while c > cmin and i < imax do

• Obtain r(i+1) and t(i+1) considering Subproblem 1 (2.61).

• Obtain b(i+1) considering Subproblem 2 (2.62)

• κ(i+1) = r(i+1)V−1(µ + Pb(i+1)) + 1t(i+1) .

• c = ||κ(i+1) −κ(i)||2, and iterate i = i + 1

end
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Algorithm 2.2 Segmentation framework that alternates between two independent
steps: searching for the targets κ̃, and fitting a shape model.

Data: I (image), κ(0) (initial guess), and {P,µ, λ} (SSM).
Result: κ (segmentation result)
initialization: c > cmin, i = 0, κ(0) = V−1(µ)
while c > cmin and i < imax do

• Search for the new target points κ̃(i+1) = T (κ(i), I), as in Section 2.4.1.

• Fit a plausible shape κ(i+1) considering Algorithm ?? with input κ̃(i+1).

• c = ||κ(i+1) −κ(i)||2, and iterate i = i + 1

end

Find targets and fit shape simultaneously

In the least-squares formulation in (2.58) the detection of the targets κ̃ is indepen-
dent from the shape fit optimization. However, in practice the shape fit optimiza-
tion has an influence on the target search T (κ(i), I) and vice versa. Therefore, they
should be considered dependent parameters, and be determined jointly in a global
optimization that entails the targets search and the shape model fit simultaneously.
Nevertheless, it is not trivial to establish a relation between both process using reg-
ularization terms and constraints. Also, the resulting problems may become more
complex, computationally demanding, and only feasible with heuristic solutions.

Nevertheless, there are different approaches that consider to solve both, target
search and shape fit, simultaneously. An alternative to a global optimization is a
Maximum a Posteriori (MAP) approach as in [43], [39], [44] and [61]. The MAP
comprises a target search (either based on grey-level profile models or patch-based
classifications) and the assumption of the shape model parameters as a prior. The
output of the target detection, T (κ(i), I), is interpreted as a maximum likelihood of
the targets κ̃, given the shape fit parameters [r, t, b]. Then, the shape plausibility is
endorsed considering a prior probability of these parameters. The posterior proba-
bility after a Bayes setting remains

[r, t, b] = arg max( log p(κ̃|r, t, b)︸ ︷︷ ︸
likelihood of targets

+ log p(r, t) + log p(b)︸ ︷︷ ︸
prior pobab.

), (2.64)

where p(.) stands for probability density function. The likelihood term may be a func-
tion of a set of examined grey-level profiles, such as p(κ̃|r, t, b) = ∏

N
n=1 p(gn|gn, Sgn)

[43], or a probabilistic interpretation of the regression result of a patch-based search
[62] [61]. With respect to the priors, the pose parameters (r and t) are typically
assigned a non-informative prior [61]. On the contrary, the prior of the shape vec-
tor b, statistically independent from r and t, is defined considering the shape model
parameters (P, µ, and Λt) as log p(b) ∝ −bTΛtb [44] [61] [39]. The complex
solution of these objective functions typically leads to approximated solutions. One
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option is a Nelder-Meade simplex method [43] [44], or an approximated Expectation
Maximization iterative approach [61].

The shape matching can also be performed optimizing a quality-of-fit with no
explicit probability interpretation, considering an independent sum of costs for each
landmark [63] as

[r, t, b] = arg min
r(i) ,t(i) ,b(i)∈B

N

∑
n=1
T (κ(n)) , (2.65)

which in [63] is heuristically optimized in an iterative process after a patch-based
search result. Notice that the optimization procedures to solve either (2.64) or and
(2.65) need to be computed several times during the segmentation, since the search
and shape match are inside an iterative segmentation framework similar to the one
described in Algorithm 2.2. Therefore, these approaches may become too computa-
tionally complex.

More recently, after the strong incorporation of Deep Neural Networks in Com-
puter Vision, the research focus has moved to integrate shape information into the
back-propagation processes of the network training [64] [65]. Therefore, novel ap-
proaches such as deep structured Convolutional Neural Network [65] and deep Re-
gressors [64] consist in an end-to-end segmentation system that comprehends the
shape constraints in a SSM-based layer, together with the search of best segmenta-
tion landmarks, all integrated in a single architecture.

2.5 Statistical shape analysis with incomplete data

SSM may also be used to estimate a collection of landmarks on a shape vector that
are occluded or missing. These incomplete observations are calculated considering
the observed points as a starting point, together with the statistical information of the
shape model. Also, another topic concerning incomplete data is the shape model de-
sign when the training samples are incomplete. This is a very common pre-processing
step required for real data in data mining algorithms [66].

Hence, shape vectors present missing points and outliers in both training and
to-be-segmented images. We present in this section how we have dealt with both
problematics: finding missing landmarks in a shape vector, and dealing with incom-
plete data to train a shape model.

2.5.1 Linear Minimum Mean Square Error for missing landmarks

There are many applications where the object to segment may be partially occluded
and the goal is to estimate this hidden section of the boundary of the object or to
reconstruct a damage section of an object. A naive estimate of these occlusions is
the mean shape µ. An assumed distribution of shape deformation may also be used
to estimate a posterior shape [67]. Finding a collection of missing landmarks is an
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estimation problem. In order to find a trade-off between the error variance and
the bias of the estimate, we consider to minimize the mean squared-error of the
estimation.

When we consider PDM we can a linear estimator. Let us recall the real descriptor
vector of shape, x = V(τ) ∈ RN, where τ ∈ CN is a shape vector registered to the
Procrustes shape mean. Let xl ∈ RNl denote the elements in x that correspond to
the lost landmarks (or missing), and xo ∈ RNo the elements corresponding to the
observed landmarks, and N = Nl + No. The PDM parameters, that is, P, Λ and µx
are re-ordered to determine P̃, Λ̃ and µ̃x so that the first Nl elements in µ̃x, and the
first Nl rows in P̃ and Λ̃ correspond to the missing elements xm, that is

xl = µl
x + Plbl ,

xo = µo
x + P,obo,

µ̃x = [(µ,lx )
T , (µo

x)
T]T ,

P̃ = [(Pl)T , (Po)T]T ,

(2.66)

where Pl and Po are the rows of P that correspond to Nl and No respectively, and µl
x

and µo
x are the Nl and No elements in µx. Let us assume that xm is a random vector

of shape, and that we define a linear estimate from the observed vector xo calculating

P̃Λ̃P̃T = Σ̃ =

[
Σll Σlo

(Σlo)T Σoo

]
, (2.67)

where Σlo denotes the sample cross-covariance matrix between the missing land-
marks xl and the remaining available landmarks xo, and Σoo is the covariance matrix
of the available landmarks. The Linear Minimum Mean Squared Error (LMMSE) [68]
estimator of the missing landmark from the remaining landmarks is then

x̂l = Σlo(Σoo)−1(xo −µo
x) +µl

x. (2.68)

2.5.2 Building shape models with incomplete training samples

For building PDM we need to estimate the mean and the covariance matrix of the
training shape vectors, from which we extract the corresponding eigenvectors and
eigenvalues. Training vectors are collected from real-world data, which contains
very frequently imperfections and artifacts . Also, there may be occlusions in these
training contours. All these effects translate into missing landmarks, randomly lo-
cated in different positions of the training vectors. In order to train the PDM we need
to estimate these missing landmarks first [66].

This missing data estimation can be done in an Expectation-Maximization (EM)
framework. One of the applications of the EM algorithm is to find maximum likeli-
hood solutions for models having latent variables [69], which are the missing land-
marks in this case. In spite of these incomplete samples, we need to find the maxi-
mum likelihood estimate of the covariance matrix from the training samples. In each
iteration, the Expectation (E-step) consists in calculating the missing values for each



2.5 Statistical shape analysis with incomplete data 45

training sample xm, that is xl
m, considering an LMMSE estimate as described in the

previous section [70]. When the observations are considered jointly Gaussian, i.e.,
x ∼ N (µx, Σ), the LMSSE-estimate x̂l

LMMSE, coincides with the expected value of the
posterior likelihood of the missing values , and

xl|xo ,µx ,Σ ∼ N (x̂l
LMMSE, Q), (2.69)

with Q = Σll − Σlo(Σoo)−1(Σlo)T. Then, when this is done for all the M samples,
the Maximization (M-step) consist in finding the maximum likelihood estimates of
the mean and covariance matrix of the training data, Σ and µx, given the LMSSE
estimates of the missing values. The strategy is described in Algorithm 2.3.

Algorithm 2.3 EM-based approach to estimate the mean and covariance matrix of
training data when there are missing values.
Data: training data x1, . . . , xM.
Result: ML estimates Σ, µx
initialization: µ(0),Σ(0), c > cmin, i = 0
while c > cmin and i < imax do

E-step:
for m = 1, . . . , M do

• LMMSE estimate of the missing variables

x̂l
LMMSE = Σlo(i)(Σoo(i))−1(xo

m −µo(i)) +µo(i) (2.70)

• Impute observation in correct variable order:

x̃m = reorder[xo
m, x̂l

LMMSE] (2.71)

end
M-step:

• ML estimates:

µ(i+1) =
1
M

M

∑
m=1

x̃m (2.72)

Σ(i+1) =
1

M− 1

M

∑
m=1

(x̃m −µ(i+1))(x̃m −µ(i+1))T (2.73)

• Check convergence: c = ||Σ(i) − Σ(i+1)||F.

• Increase iteration: i = i + 1.

end

The resulting sample covariance matrix, Σ is positive-semi-definite. However, it
may be ill-conditioned if too many samples are missing. In such cases, the submatrix
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Σoo may already be poorly conditioned, providing unstable and erroneous results
to the LMMSE and maximum likelihood estimates. To overcome this, a regularized
version of the EM algorithm is proposed in [70]. This EM-based solutions does not
guarantee optimality, nor convergence, given the unknown nature of the training
data [71], which may not be normal, and the missing values may be distributed under
certain patters, providing correlation between the observations. Still, this approach
has been empirically demonstrated to provide successful results [66].
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Chapter3
Robust Active Shape Models

“Ideas do not last long. We must do something with them.”
— Santiago Ramón y Cajal

As described in Chapter 2, Active Shape Models are an iterative segmentation
technique to find a landmark-based contour of an object in an image. In each it-
eration, a least-squares fit of a plausible shape to some detected target landmarks
is determined. However, as motivated in Chapter 1, ASM-based segmentation algo-
rithms fail to work in fluoroscopic images, since these have low resolution. Finding
the target landmarks is a critical step in ASM: some landmarks are more reliably de-
tected than others, and some landmarks may not be within the field of view of their
detectors. To add robustness while preserving simplicity at the same time, a gen-
eralized least-squares approach can be used instead, where a weighting matrix can
incorporate reliability information about the landmarks. In this chapter we propose a
strategy to choose this matrix. We evaluate our strategy on fluoroscopic X-ray images
to segment the femur. We show that our technique outperforms the standard ASM as
well as other more heuristic weighted least-squares strategies.

In Section 3.1 we motivate the contribution with is a state-of-the-art, as well as
with an overview of the preliminary concepts. In Section 3.2 we discuss our approach
in detail. In Section 3.3 we evaluate the performance of our technique, which is based
on a leave-one-out test.

The results of this chapter haven been published in:

• A. Eguizabal and P. Schreier, “A weighting strategy for Active Shape Models,”
in Proceedings of the IEEE International Conference on Image Processing (ICIP),
Beijing, China, Sept. 2017, pp. 1-6.

3.1 Motivation and preliminaries

ASM adapt to many kinds of shapes and imaging modalities. However, they do re-
quire images with reasonably good contrast in order to find the object contours. An
example of a challenging scenario is intraoperative fluoroscopic X-ray imaging, which
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produces low-quality images due to the low X-ray dose. More robust alternatives to
ASM exist (e.g., [20]), but they are typically more computationally expensive. Mo-
tivated by the real-time computation requirements in CAS, our goal is to keep the
simplicity of ASM and still improve robustness. For this purpose we propose replac-
ing the least-squares procedure in the ASM with a generalized least-squares (GLS)
approach. The idea of GLS is to weight individual landmarks according to their
reliability: reliably identified landmarks should be trusted more than less reliable
landmarks. This raises the question of how to identify the right weighting strategy.
This question has already been addressed before: in [72], where a directional regu-
larization is proposed; in [42], which suggests to use robust parameter estimation;
in [73] and [74], where the weights change in every iteration depending on a score
of the target detectors; in [75], which proposes a pose-invariant metric; and in [76],
which measures the reliability of the landmarks based on models of local appearance.
Many of these weighting strategies are heuristic and also prone to over-fitting. Some
of them also add computational complexity to the ASM algorithm.

Our contribution in this chapter is a strategy for choosing the weights, which
has a theoretical justification and still keeps the simplicity of the ASM algorithm.
Our proposed strategy measures the reliability of the target landmarks based on the
covariance of the residuals of the fit obtained from training data. Additionally, we
perform a test to determine whether a landmark is valid, i.e., whether it is within
the field of view of its target detector, and we incorporate this test into the weighting
matrix.

3.1.1 The least-squares fit in ASM

As described in Chapter 2, the ASM places a set of N landmarks on the contour of
the object of interest. We use M training images with manually placed landmarks to
learn the shape variability. We model the landmarks in a complex space C, where the
pose parameters are defined by a complex affine transformation: the landmarks in
the mth training image are complex vectors κm ∈ CN×1, whose real and imaginary
parts correspond to the coordinates of the two-dimensional Euclidean space.

Recalling the description of PDM in Chapter 2, a vector of landmarks can be
approximated as

κm ≈
1

rm

(
V−1(µ̂x + Pbm)− 1tm

)
, (3.1)

where bm ∈ Rp×1 is the shape parameter vector of κm, and {rm, tm} its pose pa-
rameters. Let us assume that κ(i) is the resulting vector of landmarks after iteration
i of the ASM. As described in Chapter 2, each iteration first examines local regions
around each landmark in κ(i−1) in order to detect new target landmarks κ̃(i). How-
ever, κ̃(i) may not describe a plausible shape or an accurate pose. In order to find the
closest plausible shape and pose, that is, the landmarks in vector κ(i), the following
least-squares problem is solved:

min
r(i) ,t(i) ,b(i)∈B

||κ(i) − κ̃(i)||2 . (3.2)
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Ordinary least-squares as a maximum likelihood problem

The typical ASM is based on an OLS fit that obtains the pose (r, t) and shape
(b) parameters. The residuals ε of this regression are the difference between the
parametrized vector following the model, κ(r, t, b) ∈ CN, and the observed vector
κ̃ ∈ CN, that is, ε = κ − κ̃. The OLS fit consists in minimizing the squared sum of
the elements on the residual vector ε

min
r,t,b
||ε||2. (3.3)

Let us assume ε ∼ CN (0,σ2I), where each of the components in ε =
[ε1, . . . ,εn, . . . ,εN]

T correspond to the residual of one landmark. The likelihood of
the parameters r, t, b given a single landmark εn follows

L(r, t, b|εn) =
1√

2πσ2
exp

(−ε2
n

2σ2

)
. (3.4)

Since we have assumed white noise, each residual εn is independent of each other,
and the expression of the likelihood considering the N landmarks remains

L(r, t, b) =
N

∏
n=1
L(r, t, b|εn). (3.5)

Therefore, under these conditions, the least-squares problem in (3.3) is equivalent to
a maximum likelihood estimation of the parameters, that is

[r?, t?, b?] = arg max
r,t,b

L(r, t, b) = arg min
r,t,b

[− logL(r, t, b)] =

arg min
r,t,b

N

∑
n=1

( ε2
n

2σ2 +
1
2

log(2πσ2)
)
= arg min

r,t,b
||ε||2. (3.6)

Our proposed approach in this chapter is based on interpreting the least-squares in
ASM as an ML in order to give a statistical meaning to the residuals.

3.1.2 Robustness: why and how

Outliers and robustness

Real-life measurements often contain outliers. These are samples that do not behave
as expected, and differ significantly from the rest of the samples. These may cause
error-prone model parameters when these are trained from measurements with out-
liers. Also, when models are fit to data with outliers, the resulting fit may differ
significantly from a good fit.

In regression models it is often assumed that the measurements contain additive
Gaussian noise. In fact, as described in the previous section, the OLS fit in ASM is
equivalent to an ML estimate if the noise is white and Gaussian. This means that the
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difference between an observed vector x̃ and its regressed (or estimated) value x, i.e.,
the residual ε = x− x̃, is modeled as ε ∼ N (0,σ2I). However, this Gaussian model
would represent the residuals very poorly if there were outliers in the fitting data,
for instance, when some landmarks are not detected by the target search or their
detection is very poor. Robust statistics deal with this problematic [77]. They consist
in preventing the estimation accuracy to break-down in the presence of outliers, and
also adapting to possible deviations from the typical estimation assumptions (such
as the Gaussian white noise model). Therefore, as illustrated in Fig. 3.1, making
a technique more robust consists in a trade-off between optimally obtaining model-
based parameters and fully depending on observed data.

The typical ASM problem entails solving an OLS to obtain the pose and shape
parameters. If the residuals in an OLS minimization are not Gaussian and white, the
parameter calculation may be biased, as illustrated on Fig. 3.2, or even break down.
Consequently, in this chapter we consider the following points to make the ASM more
robust:

1. Contemplate the residuals of the least-squares fit as different from Gaussian
and white.

2. Detect the outliers to discard them before the least-squares fit, and therefore
avoid the bias (as in the illustrative example of Fig. 3.2).

A generalized least-squares in ASM

An approach to add robustness while keeping simplicity is to substitute an OLS by
a generalized least-squares (GLS). The expression in (3.2) is an OLS, where every
component of the difference between the vectors κ(i) and κ̃(i) has the same impact on
the minimization. These components, i.e. the landmark positions, can be weighted
according to their reliability in a GLS:

min
r(i) ,t(i) ,b(i)∈B

(κ(i) − κ̃(i))HW(κ(i) − κ̃(i)) , (3.7)

where W is the matrix of weights that controls the importance of individual land-
marks in the optimization. We will consider both diagonal and nondiagonal weight
matrices. Our goal is to find a good definition of the matrix of weights W that has a
theoretical explanation in the context of the problem.

The chi-square test

Another incorporation that we propose to the robust ASM is a chi-square test. This
test is based on the analysis of a chi-square distribution.

A chi-square distribution with ` degrees of freedom is the probability density func-
tion of the sum of ` squared independent normal random variables. A chi-square test
is based on determining whether a random variable d is distributed as chi-square or
not. This test has many possible applications in statistical analysis, such as deciding
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Data-based
algorithm 

Robust
trade-off

Model-based
parameter estimation

Figure 3.1: Visual intuition of the trade-off given by a robust approach in compari-
son to a fully data-based algorithm (such as a neural net or a decision tree), and to
a model-based parameter estimation (such as a linear regression based on an ordi-
nary least-squares, which is optimized for Gaussian and white residuals). Data-based
algorithms are fully determined by the observed data and a priori more solutions
are possible. However, model-based approaches are typically more constrained since
they need to follow the model. A robust solution allows deviations from a model in
order to account unexpected changes on the data. This chart is inspired in [77] and
[78].

if a set of random variables are independent and normal, or, as in our case, determin-
ing whether the observed data fits a model of statistical behaviour. Assuming that a
vector g ∈ R` behaves as normal, i.e., g ∼ N (µg, Sg), and that we know the param-
eters of the distribution (mean vector µg and covariance matrix Sg), we may detect
an outlier observation of such vector by considering a chi-square test. This test can
be applied during the target search of the ASM algorithm, where the Mahalanobis
distance to an appearance model of a landmark is calculated as

d = (g−µg)
TS−1

g (g−µg). (3.8)

The null hypothesis of the test assumes that d is a sample from a chi-square distribu-
tion of order `, and the alternative hypothesis means that it does not, that is

H0 : d ∼ χ2
`

H1 : d 6∼ χ2
` . (3.9)
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bias

outliers

Figure 3.2: Illustrative example on how a set of outliers in the observed data
(crosses), which differ from the typical observed data (dots), may bias the model
parameters. In this case, the parameters model the slope of a line in a linear regres-
sion.

We consider a false alarm probability p for this outlier test. Therefore, p is the prob-
ability that the null hypothesis is erroneously dismissed, meaning that a sample that
was not an outlier is considered so. Consequently, H0 is assumed to be correct if
d ≤ f , where f is the value at which χ2

` fulfils that the area under its probability
density function from f to ∞ is p, i.e., the probability P(d > f ) = p. In other
words, when the cumulative distribution function of χ2

` at f is 1− p. We illustrate
this explanation in Fig. 3.3.

3.2 A weighting strategy for ASM

Our main contribution consists in designing the matrix W in Eq. (3.7). In each
ASM iteration we need to find the new targets κ̃(i). We determine these by means
of a detector T (κ(i−1)) = κ̃(i), which explores the local regions around the previous
landmarks κ(i−1). We assume that this detector searches for the best match of the
gray-level profile around each landmark as measured by the Mahalanobis distance.
However, our technique can be generalized to other strategies, such as the ones de-
scribed in Chapter 2. A complicating factor is that the true landmarks κ? are not
necessarily within the local regions explored by the detector T (κ(i−1)), i.e. they are
not within its field of view. This is the case when the true landmarks are occluded
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P(false alarm) = P(d > f)

f d

p
ro
b
ab
il
it
y
d
en
si
ty

χ2

Figure 3.3: Illustration of a chi-square test to detect outliers. We depict the proba-
bility density function of χ2

` with ` = 5. The magenta area represents the value of
the probability of false alarm.

or out of alignment (especially during the first iterations of the ASM algorithm).
We therefore incorporate into our strategy a chi-square test to determine whether
the true landmark is visible to the detector. If the test results that a landmark is
not visible, then this landmark is excluded by setting the corresponding entry in the
weighting matrix W to zero.

3.2.1 GLS as a maximum likelihood problem

Let us first assume the true landmarks κ? are within the field of view of the detector
T in iteration i, i.e., when determining κ̃(i). We define the residual error vector
as ε(i) = κ(i) − κ̃(i). We also assume that ε(i) is complex normal with zero mean
and covariance matrix R. Thus, the likelihood of the pose and shape parameters
{r(i), t(i), b(i)} given the error ε(i) is

L(r(i), t(i), b(i)) =
1

πN|R| exp
(
−ε(i)HR−1ε(i)

)
. (3.10)

Given these conditions, and equivalently to Section 3.1.1, the ML estimation of the
parameters {r(i), t(i), b(i)} is equivalent to a GLS problem [79], that is

max
r(i) ,t(i) ,b(i)

L(r(i), t(i), b(i)) = min
r(i) ,t(i) ,b(i)

ε(i)HR−1ε(i) , (3.11)
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where the constraints on b(i) imposed in (3.7) affect the solution, but do not alter
the equality in (3.11). Therefore, if we assume that the residual vector is normally
distributed, finding the weighting matrix W in (3.7) is equivalent to estimating the
covariance matrix of the residuals, i.e., we set W = R−1. If the training dataset for
estimating R is small, it is typically preferable to constrain W to be diagonal in order
to avoid over-fitting. This is equivalent to the assumption of statistical independence
between the residuals of each landmark.

3.2.2 Empirical determination of the residual errors

We need to estimate R based on a set of residual errors that are empirically deter-
mined from training images. We first simulate the search of the target landmarks
using a detector T ′. We split our available training data set containing 2S images
into two subsets of equal size. With the first subset we train T ′; with the second
subset we measure the residual errors when employing T ′. For this, we simulate
the detection of target landmarks, T ′(κ(i−1)), for each of the S images in the second
subset, assuming that the true landmarks of each image are within the field of view
of the detector T ′. This is achieved by setting κ(i−1) = κ?

s + δ, where δ ∈ CN is a
vector of translations small enough so that the true landmarks of the sth image, κ?

s ,
remain within the field of view of T ′(κ(i−1)). We employ the detector that searches
for the best match of a gray-level profile as in [14]; hence we determine δ to place
κ(i−1) on the line perpendicular to the true object contour, with translations small
enough so that κ?

s is sampled by T ′(κ(i−1)).
For each of the S images, we perform T ′(κ?

s +δ) = κ̂s and measure ε̂s = κ?
s − κ̂s,

which is the residual error obtained from training sample s. To determine the sample
covariance matrix of the residuals we assemble the error matrix Ê = [ε̂1, . . . , ε̂S] ∈
CN×S, which contains the residuals from all training samples. The sample covariance
matrix is then

R̂ =
1
S

ÊÊH . (3.12)

We note that the so determined R̂ does not depend on the iteration i of the ASM
algorithm.

3.2.3 Testing whether a target landmark is valid

The sample covariance matrix of the residual errors R̂ is determined under the as-
sumption that the true landmarks κ? are within the field of view of the detectors
T (κ(i−1)). If the true landmarks are not visible to the detector, the determined
target landmarks are certainly incorrect. In such a case, the target landmarks are
not valid. In order to test whether a target landmark in κ̃(i) returned by the ASM
algorithm is valid, we run a hypothesis test based on the metric that is used to de-
termine the target landmark. In our case, this metric is a Mahalanobis distance d(i)n
that measures the distance between the observed and the modeled local appearance.
Let us denote by g(i)

n ∈ R`×1 the vector containing ` intensity values representing
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the appearance observed by detector T (κ(i−1)) to determine landmark n. The null
hypothesis H0 is that the target landmark, which corresponds to the point that min-
imizes d(i)n , is valid. We assume g(i)

n ∼ N (µgn , Sgn). Thus, the Mahalanobis distance

d(i)n = (g(i)
n −µgn)

TS−1
gn (g

(i)
n −µgn) follows a chi-squared distribution with ` degrees

of freedom under the null hypothesis

H0 : d(i)n ∼ χ2
` (3.13)

Therefore, for each iteration i and each landmark n, we perform a chi-square test of
d(i)n : if the null hypothesis is not rejected, then we set an indicator variable f (i)n =

1; otherwise f (i)n = 0. We can fix a false alarm rate for this test based on the χ2
`

distribution. The idea of this approach is to work only with target landmarks whose
observed gray-level profiles are close enough to the model profiles. This test can be
incorporated into the weighting matrix W. For each iteration i, we define a diagonal
matrix

F(i) =


f (i)1 0 · · · 0
0 f (i)2 · · · 0
...

... . . . ...
0 0 · · · f (i)N

 . (3.14)

The weighting matrix W(i) is then obtained as

W(i) = F(i)R̂−1F(i). (3.15)

3.3 Results and discussion

To evaluate the performance of our proposed method we choose a challenging seg-
mentation task: the contour of the femur in fluoroscopic (low-dose) X-ray images.
The quality of this image modality is low and thus the performance of the standard
ASM algorithm suffers. Our database contains 350 gray-scale images that have been
acquired during surgeries treating hip fractures in an approximate anterior-posterior
orientation. These images show the upper part of the femur and part of the hip.
They belong to different surgical interventions and C-arm devices. The image sizes
range between 450x450 to 510x510 pixels. We have a ground truth consisting of a
manually segmented femur contour and landmarks for every image. We show one of
these images in Fig. 3.4. As these images come from surgeries treating hip fractures,
they contain an intermedullary nail and a screw, which further complicate the seg-
mentation task with occlusions. More details about these images can be found in the
Appendix.
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Figure 3.4: Landmarks of a PDM (1 to 40) of the femur in a fluroscopic X-ray image
in anterior-posterior orientation. More information about the medical images source
can be found in the Appendix.

3.3.1 Leave-one-out test

We evaluate the performance of our method using a leave-one-out test. For all the
images in the database we “leave one image out" to test and keep the remaining as
training images. The process is repeated for every available image and the results
are averaged over all test images. For each leave-one-out test iteration t, we obtain
P̂(t), Λ̂(t) and detector T̂(t) from the training images. To perform the chi-square test,
for every landmark n we also obtain µ̂gn(t) and Ŝgn(t). We determine the sample
covariance of the residuals R̂(t) as described in Section 3.2.2.

We performed this leave-one-out test for all considered strategies. The same con-
ditions (initial guess, shape parameters, number of ASM iterations...) were used for
all, only changing the definition of the weighting matrix W. For each strategy, we ran
100 ASM iterations on each image. We then measured the squared distance of every
resulting landmark to the ground truth contour. We show the root mean square error
(RMSE) for each PDM landmark in Fig. 3.5.
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3.3.2 Evaluation of the proposed method

We implemented two different versions of our approach: one where we use the full
matrix W, and one where we restrict it to be diagonal. We compared these to the
following strategies:

1. the standard ASM [14] without weighting, i.e., W = I.

2. W as a diagonal matrix with diagonal elements 1/d̂n, as proposed by [73].

3. W as a diagonal matrix with diagonal elements 1/(1+ trace(Sgn)), as proposed
by [76].

As shown in Fig. 3.5, our strategy outperforms all the other strategies on average,
in particular when W is diagonal, i.e., assuming independent residuals (this could
be due to the small sample size available). The improvement our strategy provides
over other strategies is especially significant in the area of the femoral head (be-
tween landmark 11 and 20, with ∼30% improvement achieved). This is the most
challenging area of segmentation since there is overlap from other hip bones, and
contour edges are particularly weak. Also, for the surgical procedure from which we
obtained these images, this is an important region of interest [80].

As an example, we show in Fig. 3.6 the landmarks found after 100 ASM iterations
for our proposed weighting strategy with diagonal W compared to the standard ASM,
for a particular image in the database. Our strategy follows the real contour much
more closely.

We also further investigated the hypothesis test described in Section 3.2.3: We
measured the norm dn after the simulation of several ASM iterations. Then we col-
lected the observed d̂n values either as d̂n| fn = 1, if the true point was valid (null
hypothesis), or d̂n| fn = 0 otherwise. We computed normalized histograms of d̂n, as
shown in Fig. 3.7, to see how well a chi-squared distribution fits d̂n| fn = 1. The
approximation is fairly good, although it does not account for a strong tail in the
histogram of d̂n| fn = 1. We set a probability of false alarm, i.e., the probability of
classifying a valid landmark as invalid, of 10% based on the approximating χ2

` dis-
tribution. This covers ∼75% of the values from d̂n| fn = 1, but only ∼30% from
d̂n| fn = 0. We suggest to set a relatively low false alarm threshold, which prevents
the least-squares solution to be implausible. If too many landmarks are regarded as
invalid and excluded, the problem may become underdetermined, and solutions may
be unreliable.
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Figure 3.5: RMSE of our proposed strategy compared with [76], [73] and [14].
We mask in gray the areas where the surgical implants (nail and screw) most likely
occlude the bone contour.
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Figure 3.6: One example of a segmented femur, comparing our technique with the
standard ASM algorithm (without weighting). More information about the medical
images source can be found in the Appendix.
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Figure 3.7: Normalized histograms of the distances d̂n| fn = 1 and d̂n| fn = 0 and the
approximating chi-squared distribution for comparison.
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Chapter4
A model-order selection technique

“We consider it a good principle to explain the phenomena by the simplest
hypothesis possible.”

— William of Occam

As explained in Chapter 2, PDM contain statistical information of a collection
of shape landmarks, represented by an affine space of eigenvectors obtained by an
eigenvalue decomposition of the sample covariance matrix estimated from a collec-
tion of training data. We refer to model order as the number of eigenvectors that
compose a PDM. Deciding the number of eigenvenctors is an important problem in
Blind Source Separation (BSS) to select the number of underlying sources. The se-
lection establishes a trade-off: if the order is too large, the model may not generalize
well (overfitting, high variance); if the order is too small, the model may be too
simplified and miss important variability (underfitting, high bias).

During the development of this thesis, we found potential in researching about
the model order in PDM, since the most common way of choosing it is to keep the
eigenvectors that account for a given percentage of variance [20]. This selection is
only heuristic and does ignore the importance of the trade-off between overfitting
and underfitting. This motivation from PDM inspired the development of a new
model selection technique, which is applicable to more general BSS problems to
enumerate the number of sources, for instance in array signal processing. In this
proposed technique we have considered information theory, on the basis that “the
simplest explains the best", as Occam’s razor motivates.

In this chapter we present in detail the proposed new model-order selection strat-
egy. In Section 4.1 we introduce the motivation and basics concepts about informa-
tion theory to fully comprehend the technique. Section 4.2 contains the problem
formulation, and the proposed solution. The results are discussed in Section 4.3. In
Chapter 5 we will formulate the proposed technique for the particular case of shape
models, providing a study within typical shape data.

The results of this chapter haven been published in:

• A. Eguizabal, C. Lameiro, D. Ramirez and P. Schreier, “Source enumeration in
the presence of colored noise,” IEEE Signal Processing Letters, vol. 26, no. 3,
2019.



64 A model-order selection technique

4.1 Motivation and preliminaries

A collection of training shape vectors may be considered, for instance, as a sensor
array processing problem: when building a PDM we obtain a set of observations
such as x ∈ RN described as x = Pbq (without loss of generality let us assume x
is zero-mean). P are the model eigenvectors, and the shape parameters are a set of
underlying sources with lower dimension bq ∈ Rq with q < N. Actually, the vec-
tor of observations is modeled as such a superimposition of signals in many signal
processing problems [81]. Array signal processing comprises many and varied appli-
cations, such as radar, sonar, multiple-input multiple-output (MIMO) wireless com-
munications, and electroencephalography (EEG) [82]. In many cases, they share this
mathematical framework: the observed data is modeled as a superposition of a finite
number of independent sources that are embedded in additive noise. In this section
we start motivating the need of a new strategy to select the model order in these
problems. In the foregoing subsections we introduce the theoretical background of
the proposed technique.

4.1.1 Source enumeration in array signal processing

One of the key processing steps for many of these array signal processing applications
is to estimate the number of source signals [81]. These signals and the noise are of-
ten assumed to be random processes with certain statistical properties. As we have
already motivated in the previous section, it is common to assume that the noise is
spatially white, meaning that its covariance matrix is σ2I, and the noise eigenvalues
are identical and equal to σ2. Yet white noise is unrealistic in many applications.
Noise can be filtered, and there are certain cases where it shows structure. For exam-
ple, in undersea sonar, shipping noise is directional [82]. Also, often different sensors
experience different noise power [83], and there typically exists stronger correlation
between sensors that are close [84]. In PDM the noise may be due to imprecise
training landmarks, presence of non-representative variability in the training set, in-
sufficient samples, or quantization errors. Thus, the noise at different landmarks may
be correlated and may have different variances. Furthermore, the prior Procrustes
alignment typically introduces color in the noise.

When the noise is arbitrarily spatially correlated, the problem may become un-
tractable [84]. However, if the noise is sufficiently weaker than the signal, detection
is still possible. There are few approaches in the literature for the case of colored
noise. Furthermore, in such approaches, certain structure in the noise covariance ma-
trix is typically assumed. In [83] the authors considered non-uniform noise, which is
still spatially uncorrelated. In [85] the noise model is colored, but two arrays of sen-
sors that have uncorrelated noise between each other are assumed. Similarly in [84],
the authors modeled the noise covariance matrix as block-diagonal and assumed to
know the block size. The authors in [86] considered colored noise in their model,
but required a different data set with noise-only observations.

Therefore, we design a new strategy to detect the number of sources, which does
not require an independent noise-only observation set or uncorrelated arrays, and
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which allows an unknown noise covariance matrix. The only requirement is that the
noise is sufficiently weaker than the signal, which is also an implicit requirement of
existing techniques.

4.1.2 Information theory: entropy, differential entropy and mutual
information

Information theory, as it name suggests, considers a theoretical definition for the am-
biguous term information. From a communication point of view, information could
be the content of the messages sent through a channel. In the 1940s Shannon formu-
lates the channel capacity [87] as a tight upper-bound of the reliable transmission
rate, which is determined considering the entropies of the input and output of the
channel in their mutual information. This concept of entropy to account for informa-
tion is related to the one used in Physics for thermodynamics, as well as the one in
Computer Science for the entropy of Kolmogorov complexity, and more generally in
Probability Theory [88].

The entropy measures the average uncertainty of a random variable [88]. We
model the observations as complex vectors x ∈ CN. Therefore, we need to consider
the entropy of a continuous random vector, i.e., differential entropy of a random
vector. Let us define the entropy of the random vector x, with probability density
function f (x), as

h(x) = −
∫
X

f (x) log f (x)dx, (4.1)

where X is the support set of the random vector x. Let us consider a second random
vector y ∈ CN with probability density g(y). The relative entropy (also known and
Kullback-Leibler distance) between two density functions is defined as

D( f (x)||g(y)) =
∫

f (x) log
( f (x)

g(y)
)
dxdy, (4.2)

where the region of integration is the entire space. The mutual information I(x, y)
between two random variables, in this case vectors, is the relative entropy between
the joint distribution of x and y, i.e., f (x, y), and the product f (x)g(y)

I(x, y) = D( f (x, y)|| f (x)g(y)) =
∫

f (x, y) log
( f (x, y)

f (x)g(y)
)
dxdy. (4.3)

4.1.3 Model selection

Model selection consists in choosing the best model from a set of different model
candidates [19]. The goal of design of an SSM is not to learn an exact representation
of the training data, but a statistical parametrization that generalizes to the unseen
data as well [89]. To select the model order, that is, the number of parameters
that determine the model, there is a compromise between a small training error
and a good generalization. Typically, and especially in linear models, the higher
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the complexity of the model, the smaller the training error, but also the worse the
generalization. If the order is too large, the model may be too specific to the training
data, and therefore not generalize well to unseen data (overfitting); if the order is
too small, the model is too simple and the representation error is generally high
(underfitting). We illustrate this effect in Fig. 4.1. This behavior reveals when the
training error is decomposed in bias and variance.
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Figure 4.1: Illustrative example to the underfitting and overfitting effect in model
order selection.

The bias-variance trade-off

As an optimization objective function to train the PDM we consider the mean squared
error (MSE), which is a common optimization criterion in machine learning and esti-
mation [68] [89]. The MSE measures the mean squared deviation from an estimator
to the value to estimate. However, the MSE estimate tends to be biased to the par-
ticular training samples available for the model learning [89], and cannot be written
as a function of only the training data [68]. To understand this problem, we rewrite
the MSE as a combination of bias and variance. Let us consider x̂ as the estimate
generated by a PDM for the unknown true shape x. The MSE of the model, i.e., the
estimator x̂, is then

MSE(x̂) = E
[
||x̂− x||2

]
= ||E

[
x̂
]
− x||2︸ ︷︷ ︸

bias2

+ E
[
||x̂− E[x̂]||2

]︸ ︷︷ ︸
variance

. (4.4)

From Eq. (4.4), we observe that the MSE is a trade-off between bias and variance
[89]. The bias quantifies the expectation of how much the model x̂ varies from the
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true unobserved x. The variance, on the other hand, is a metric of how much the
model x̂ varies from its expected value E[x̂]. If a model x̂ is too simple and does
not fit accurately the training data, the bias will tend to be high, decreasing as the
complexity increases. On the contrary, if the model is too complex and fits very
closely the available training data, it may also be fitting the noise in the training set,
as well as over-representing the limited samples available. Hence, the variance will
be very high, since x̂ will deviate from its yet unknown expected value E[x̂], which
depends on all possible observable data. This intuition is illustrated in Fig. 4.2.
Nevertheless, in practice the expected values in the MSE can only be estimated from
the training data, or assumed to follow certain model. We only have a training set
containing a limited number of samples of the true shape, and the exact model of
representation for x is unknown [90]. Consequently, calculating the value for the
theoretical MSE is unrealizable [68], and this MSE trade-off is compromised by the
training data.
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Figure 4.2: Illustrative example of the variability of the bias and the variance of the
model with respect to its complexity.

Quality of fit and Maximum Likelihood parameter estimation

A PDM is a parametric model of the shape. Considering that we already know the
matrix of eigenvectors Pq ∈ RN×q, let us recall the linear model

x = Pqbq +ε, (4.5)

where x ∈ RN, and, without loss of generality, the mean shape µx is a vector of zeros.
The noise is Gaussian and white, i.e., ε ∼ N (0,σ2I). The parameters to estimate in
the model are bq ∈ Rq (shape descriptor), σ2 (noise variance), and the model order
q. Let us define the parameter vector θq = [bq σ2]T ∈ Rq+1. In order to select a
model order q we need to evaluate the best model fit among all possible orders, i.e.,
consider the possible parameters θ1, . . . ,θN. We can infer the likelihood of model q,
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L(θq), from the probability distribution p(x) = N (Pqbq,σ2I), as

L(θq) = p(x|bq,σ2) =
N

∏
n=1

p(xn|bq, σ2), (4.6)

where, under the white Gaussian assumption, the likelihood reduces to the expres-
sion

L(θq) = p(x|bq,σ2) =
1

(2π)N/2(σ2)N/2
exp

(
−
||x− Pqbq||2

σ2

)
. (4.7)

As the logarithm (log) is a monotonically increasing function, we deduce from Eq.
(4.7) that the parameter values that maximize the likelihood also minimize the ex-
pression

− 2 log p(x|bq,σ2) = N log 2π + N logσ2 +
||x− Pqbq||2

σ2 . (4.8)

Since bq is an unknown deterministic parameter, and the variance of the noise σ2 is
not given, we need to calculate their Maximum Likelihood (ML) estimates, b̂q and
σ̂2, and evaluate

b̂q = arg min
bq∈B
||x− Pqbq||2, (4.9)

σ̂2 =
1
N
||x− Pqb̂q||2. (4.10)

Then, the evaluated likelihood for θq, given the ML estimate, is

− 2 log p(x|b̂q, σ̂2) = N log σ̂2 + constant. (4.11)

When we evaluate this likelihood for all possible model orders, with q = 1, . . . , N, its
quality of fit is

Q(q) = [log p(x|b̂1, σ̂2), . . . , log p(x|b̂N , σ̂2)]T , (4.12)

and a selection of q that maximizes this quality, also maximizes the likelihood of the
respecting parameters, as well as minimizes the least-squares error of fitS. This q
selection is

q? = arg max Q(q). (4.13)

However, to calculate the quality of fit Q(q) we can only consider a limited training
data, and thus log p(x|b̂q, σ̂2) is not good enough as indicator because it tends to
overfit with increasing complexity (bigger q) [69]. We illustrate this effect in Fig.
4.3, where an example from our femoral shape dataset has been used to estimate the
quality of fit Q(q) with respect to the complexity (order q). We see that the error of
fit, i.e., the negation of the quality of fit −Q(q), is monotonically decreasing. Thus,
the model that best represents the observed data (with higher likelihood as measured
by Q(q)) is simply the more complex, which generally produces over-fitting.
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Figure 4.3: A practical example of the trade-off between likelihood of the parameters
of the model given the training data, and the information-theoretic regularization.
The results were obtained after computing the ML parameters estimates, as well as
the likelihood expressions proposed in section 4.1.3, from samples from our femur
data.

Information-theoretic criteria

Regularization is a possible technique to control over-fitting. It consists in adding a
penalty term to the training error function to discourage very complex models [69].
Therefore, we need to choose a function of regularization to penalize high orders.
The ML example just described is equivalent to a least-squares problem, since we
estimate a frequentist parameter bq in white Gaussian noise. Therefore,

b̂q = arg max [log p(x|bq, σ̂2)] = arg min [||x− Pqbq||2]. (4.14)

Let us consider the regularized least-squares error

ERLS = ||x− Pqbq||2︸ ︷︷ ︸
training error

+ γE(bq)︸ ︷︷ ︸
regularization term

, (4.15)

where a typical selection for the penalty is E(bq) = ||b̂q||2 [69]. This regularization
could imply heuristics to choose the penalty term and its weigh γ.

Unlike regularization, information theory provides a trade-off that does not re-
quire such subjective settings [81]. The analysis of the entropies and the statistical
properties of the likelihoods provides a metric on how informative a model is. In
1970s Akaike [22] proposed a bias correction based on the mean differential entropy
(the Kullback-Liebler distance, as defined in Eq. (4.2)) between the likelihood of the
model, log p(x|bq,σ2), and its available estimate log p(x|b̂q, σ̂2) [22] [81]. Inspired
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by Akaike’s work, others studied information-theory based penalties, like Rissanen
[91], who considered the minimum description length (MDL) principle to select the
model that yields the minimum code length. Both derivations (Akaike’s and Rissa-
nen’s) can be expressed as a compromise between the log-likelihood of the observed
data and a penalty depending on the order q [92]. This can be seen as

q∗ = arg min
q

(− log p(x|b̂q, σ̂2)︸ ︷︷ ︸
likelihood term

+ η(q, N)︸ ︷︷ ︸
penalty

), (4.16)

where q is the model order, and N is the number of observations used to com-
pute the likelihood term. We illustrate in Fig. 4.3 the trade-off provided when the
information-theoretic criteria is considered to correct the quality of fit obtained from
the training data. The penalty term η(q, N) is different depending on the contem-
plated information-theoretic criterion. For the example of this section, and consider-
ing the previously mentioned derivations, we obtain the penalties

AIC: η(q, N) = q (4.17)

BIC: η(q, N) =
q
2

log N, (4.18)

where AIC stands for Akaike‘s Information Criteria, and BIC for Bayesian Informa-
tion Criteria, which is equivalent to the MDL criteria described in by Rissanen [91].
Other information-theory-based model selection formulations have the same result-
ing derivation as in Eq. (4.16) [92]. Also, the same scheme is applicable to more
complex models apart from this ordinary least-squares example.

Outlook of the information-theoretical model selection

Consequently, in order to perform a model order selection based on information
theory, the following steps apply:

1. Choose a model to describe the training data. The order of such model is the
open question.

2. Find an expression for the log-likelihood of the training data and the ML esti-
mates of the model parameters.

3. Choose an order selection rule (AIC, BIC...) and verify that the assumptions
made to derive its corresponding penalty term hold for the chosen model.

There is, however, not a closed rule to select the optimal penalty criterion. The best
penalty choice will depend on the specific application [92]. The general assumptions
made to derive the information-theoretic penalty terms are weak and usually hold
[92]. AIC tends to asymptotically overestimate the model order, whereas BIC yields
a consistent estimate [81].
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4.1.4 The majorization-minimization optimization

The model under white Gaussian noise considered in the previous section is, in most
cases, unrealistic. When more general noise models are assumed, the problem for-
mulation becomes more complicated. Also, the fact that the parameters to estimate
are constrained to a set B adds difficulty to calculate its ML estimates. Therefore,
these estimates will not remain simply as a closed-form solution to an ordinary least-
squares optimization. To deal with more complicated ML estimates we have con-
sidered the majorization-minimization (MM) algorithmic framework [93]. Closely
related to the EM algorithm described in Chapter 2, this technique can be widely
used to find minima in objective functions, and has applications in statistics, image
processing and machine learning [93].

The MM framework consists in the following. Let us consider the optimization
problem

minimize
x

f (x),

s.t. x ∈X
(4.19)

where X ∈ RN in the feasible set, and f (x) a continuous objective function f : X →
R. The process initializes at the starting point xo ∈ X . The algorithm generates a
sequence of feasible points xt, with t ∈ N, iterating between the following steps:

1. Majorization: find a surrogate function g(x) that locally around xt approxi-
mates the objective function f (x), and is also an upperbound, that is

g(x|xt) ≥ f (x) + ct, ∀x ∈ X , (4.20)

with ct = g(xt|xt) − f (xt) and the difference between g(x|xt), and f (x) is
minimum at xt.

2. Minimization: find the value xt+1 that minimizes the surrogate function
g(x|xt), that is,

xt+1 = arg min
x∈X

g(x|xt). (4.21)

In Fig. 4.4 we show two iteration steps of this process, considering the problem of
minimizing the objective function f (x).

The MM algorithm converges towards a stationary point of the original problem.
If f (x) is convex all stationary points of the problem are global optima. Therefore,
MM converges to global optima for convex problems.

The surrogate function

There is no closed rule to choose the surrogate function in the MM process. Still,
there are some very commonly used functions, such as the first and second order
Taylor expansions of the objective function. A summary of the most frequent surro-
gate functions and their applications can be found in [93].
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Figure 4.4: Illustrative example of the MM algorithm to minimize the scalar function
f (x) considering the surrogate g(x|xt), inspired by [93].

Let us we consider the second order Taylor expansion at xt ∈ X of the objective
function f (x), and that there exists a matrix M � ∇2 f (x), ∀x ∈ X . Then, the
following inequality holds

f (x) ≤ f (xt) +∇ f (xt)
T(x− xt) +

1
2
(x− xt)

TM(x− xt). (4.22)

In the previously described ML estimation, that is, minimizing the cost f (x) = ||x||2
when the noiseε is white, the problem is an ordinary least-squares fit. This becomes a
generalized least-squares problem when the noise ε is not white, i.e., f (x) = xTΣ−1x
when ε ∈ N (0, Σ). When we consider a more general complex case, with x ∈ CN,
the cost function becomes f (x) = xHΣ−1x, where Σ = E[εεH] is a Hermitian matrix.
Following Eq. (4.22), and by applying Wirtinger calculus for complex-valued matrix
differentials [93], this complex valued function can be upperbounded as

xHΣ−1x ≤ xHMx + 2Re[xH(Σ−1 −M)xt] + xH
t (M− Σ−1)xt, (4.23)

where the matrix M can have a desired structure to simplify the optimization process,
for instance diagonal. Notice that the quadratic term of the bound only depends on
M and not on Σ. For further details about the bound derivations we refer to [93].
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4.2 An information-theoretical approach

Let us now formulate the problem to deal with. Giving that the PDM can be con-
sider as a particular case of an array processing problem, instead of N landmarks
let us consider the more general case of an array of N sensors, and the observed
N-dimensional vector x(m) ∈ CN, which corresponds to the mth observation. We
collect M observations according to model

x(m) = As(m) + n(m), (4.24)

where A = [a1, . . . , aq] is the array mixture matrix with full column rank, and
s(m) = [s1(m), . . . , sq(m)]T is the vector of sources. The number of sources, q, is
unknown, and we wish to determine it. These sources are modeled as unknown
Gaussian random variables [81]. The q source signals are assumed to be zero-mean
and independent. Typically, the noise vector n(m) is assumed to be independent of
the sources, Gaussian and white, i.e., with covariance matrix σ2I. In that case the
N − q smallest eigenvalues of the covariance matrix Rxx = E[xxH] correspond to the
noise subspace and are equal to σ2. The separation of signal from noise is typically
based on the assumption that the noise eigenvalues are identical [81], [94]. This
does not work if the noise is not white.

Let us now assume the noise n(m) is colored, i.e., a zero-mean random vector
with an arbitrary covariance matrix Σ. If the source vector s(m) has covariance
matrix Rss, the covariance matrix of the observed data x(m) is

Rxx = ARssAH + Σ. (4.25)

If the signal-to-noise ratio (SNR) is sufficiently high, the signal subspace is at least
approximately spanned by the q eigenvectors corresponding to the q largest eigen-
values of Rxx. However, the problem is that, in order to separate signal from noise
eigenvalues, the approaches in [81] and [94] need to assume that the N− q smallest
eigenvalues (due to noise) are equal. If this is not the case, they will fail. We now
propose a strategy that can estimate q accurately under these conditions.

Inspired by statistical shape models, we propose an interpretation of the problem
as a multivariate regression. In PDM, the eigenvectors of the sample covariance ma-
trix obtained from the observed (training) data determine the regression parameters.
Furthermore, in PDM there are constraints on the regression in order to ensure shape
plausability, and that the values of the explained variables are sufficiently likely con-
sidering the examples seen in the training data. Therefore, we separate signal from
noise by regarding everything that looks non-representative as noise.

4.2.1 Regression interpretation

We separate the observed data in two subsets of sizes M1 and M2, with M1 + M2 =
M, in order to obtain M1 training and M2 test observations. We show that our
method is fairly robust with respect to the precise split into M1 and M2, and
choosing M1 of similar size as M2 works best. Thus, these subsets are X1 =
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[
x(1), . . . , x(M1)

]
∈ CN×M1 , and X2 =

[
x(M1 + 1), . . . , x(M1 + M2)

]
∈ CN×M2 .

Within the first set we obtain the matrix of regressors, for which we estimate the
sample covariance matrix of the observed data, R̂xx = 1

M1
X1XH

1 , and compute its
eigenvalue decomposition as R̂xx = PΛPH. We also define λ =

[
λ1, . . . , λq, . . . , λN

]
as the diagonal of Λ, with eigenvalues in decreasing order. These will determine
constraints on the regression. We assume the first q values in λ correspond to signal
and the remaining N − q to noise.

Let us assume the following interpretation of (4.24) for a fixed q:

x(m) = Pqbq(m) + e(m), (4.26)

where Pq is the matrix of regressors containing the eigenvectors corresponding to
the q largest eigenvalues of R̂xx, bq(m) ∈ Cq is a deterministic vector of regression
parameters, and e(m) ∼ CN (0, Σq) is the residual error. Letε =

[
ε1, . . . ,εN

]
denote

the eigenvalues of Σq, arranged in descending order. In order to make sure that x(m)
generated by (4.26) have statistics sufficiently similar to the observations from the
first split X1, the following structure is assumed in the regression [95]:

1. An energy constraint is placed on the vector of unknown parameters bq(m) =

[b1, . . . , bq]T, such that |bn|2 ≤ λn, ∀n = 1 . . . q (equivalently to shape plausibil-
ity constraint).

2. Σq is assumed to be full rank. In order to enforce this, its smallest eigenvalue
εN is constrained to be εN ≥ λN.

Considering the samples in X2, we define the following multivariate linear regres-
sion:

X2 = PqBq + E, (4.27)

where Bq =
[
bq(1), . . . , bq(M2)

]
∈ Cq×M2 is the matrix of unknown regression pa-

rameters, and the columns of the error matrix E =
[
e(1), . . . , e(M2)

]
∈ CN×M2 are

samples of the residual error e(m).
The problem is therefore to determine the model order q of the regression in

(4.27), which is equal to the number of source signals. In this interpretation, Pq is
assumed to be a known matrix of regressors and Bq is modeled as a deterministic ma-
trix of unknown parameters. In order to determine the best trade-off between over-
and underfitting, we propose an information-theoretic criterion for multivariate re-
gression [96], which we modify in order to include the constraints and the proposed
colored noise model. An information-theoretic criterion is composed of a likelihood
and a penalty term, and the best model order q∗ is obtained as

q∗ = arg min
q

(− log p(X2|B̂q, Σ̂q)︸ ︷︷ ︸
likelihood term

+ η(q)︸︷︷︸
penalty

), (4.28)

where B̂q and Σ̂q are the constrained Maximum Likelihood (ML) estimates of the
model parameters for model order q, and p(·) stands for the likelihood function.
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The penalty η(q) depends on the selected criterion (Akaike, Bayesian, etc. [92]).
We assume a frequentist interpretation of the regression. Thus, the only random
variable in the regression is the residual error matrix E = X2 − PqBq, which we have
defined as samples of a complex Gaussian distribution with covariance matrix Σq.
Consequently, the log-likelihood expression in (4.28), ignoring the constant terms,
becomes

log p(X2|B̂q, Σ̂q) = −M2 log |Σ̂q| − Tr{(X2 − PqB̂q)
HΣ̂
−1
q (X2 − PqB̂q)}. (4.29)

4.2.2 ML estimates of the model parameters

The ML estimates of parameters Σq and Bq are mutually dependent. Therefore we
propose an alternating optimization, in which the optimal solution for each subprob-
lem is obtained to ensure the convergence.

Estimate of Σq

This is obtained from the expression

Σ̂q = arg min
Σq�λNI

[
M2 log |Σq|+ Tr{(X2 − PqB̂q)

HΣ−1
q (X2 − PqB̂q)}

]
, (4.30)

where Σq � λNI denotes that Σq − λNI is positive semi-definite. The optimal so-
lution to (4.30) is derived from the unconstrained ML estimate of Σq [97], which
is the sample covariance matrix, that is Σ̂

u
q = 1

M2
(X2 − PqB̂q)(X2 − PqB̂q)H . Let its

eigenvalue decomposition be Σ̂
u
q = VΨVH. The eigenvalues in Ψ that are smaller

than λN are replaced with λN. Based on results in [97], this leads to the solution

Σ̂q = VΨ̃VH , [Ψ̃]nn = max([Ψ]nn, λN), ∀n = 1 . . . N, (4.31)

where [Ψ]nn denotes the element on the diagonal of Ψ. This Σ̂q is the optimal solution
to (4.30).

Notice that Σq � λNI ⇔ Σ−1
q � λ−1

N I. Thus, the optimization problem in (4.30)
is equivalent to

minimize
0�Σ̃q�λ−1

N I
− log

∣∣Σ̃q
∣∣+ Tr

(
SΣ̃q

)
, (4.32)

where Σ̃q = Σ−1
q and S = M−1

2 (X2 − PqB̂q)(X2 − PqB̂q)H. The above problem is
similar to the one considered in Lemma 3.2 of [97]. Following the proof provided in
[97], we readily obtain

Σ̃q = VΨ̃
′VH , [Ψ̃

′
]nn = min

{
([Ψ]nn)

−1, λ−1
N

)
, ∀ n, (4.33)

where V and Ψ contain the eigenvectors and eigenvalues, respectively, of S. There-
fore, the optimal solution of (4.30) is Σ̂q = Σ̃

−1
q , i.e., Eq. (4.31).
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Estimate of Bq

The constrained ML estimation of Bq is obtained by maximizing the likelihood given
in (4.29), or, equivalently, solving the generalized least-squares problem

B̂q = arg min
Bq∈B(λ)

Tr{(X2 − PqBq)
HΣ̂
−1
q (X2 − PqBq)}, (4.34)

where B(λ) = {[y(1), . . . , y(M2)] ∈ Cq×M2 : |yn(m)|2 ≤ λn, ∀n = 1 . . . q, ∀m =
1 . . . M2}. Even though the foregoing problem is convex and hence its optimal so-
lution can be found by standard numerical methods [98], the computational cost is
expensive since it does not admit a closed-form solution. As an alternative, we pro-
pose a more focused algorithm based on majorization-minimization (MM) [93] that
is faster and converges to the optimal solution. Considering the least-squares form
in (4.34), and E = X2 − PqBq, we construct the surrogate function g(E|E(t)) that is
derived from the second-order Taylor expansion of (4.34). Thus, the cost function
in (4.34) is upper-bounded by g(E|E(t)), as introduced in Section 4.1 and derived in
[93],

g(E|E(t)) = Tr{EHΣ−1
minE + 2Re[E(Σ̂

−1
q − Σ−1

min)E(t)]

+ EH
(t)(Σ

−1
min − Σ̂

−1
q )E(t)}, (4.35)

where Σ−1
min = 1

εN
I. The original cost function in (4.34) is equal to (4.35) only when

E = E(t). At each iteration of the MM algorithm, the feasible points E(t) are updated
as

E(t+1) = arg min
Bq∈B(λ)

g(E|E(t)). (4.36)

This surrogate objective function, g(E|E(t)), is convex since Σmin is positive definite.
Additionally, the feasible set B(λ) is also convex, which makes (4.36) a convex opti-
mization problem. Furthermore, it satisfies Slater’s condition, i.e., the feasible set has
a non-empty interior, which implies that the Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient for optimality [98]. Hence, we start with the Lagrangian
function, which is given by

L =g(E|E(t)) +
M2

∑
m=1

Tr
[
Φm

(
bq(m)bq(m)H − λ̃λ̃

H
)]

, (4.37)

where λ̃ = [
√
λ1, . . . ,

√
λq]T, and Φm is a diagonal matrix with diagonal φ(m),

whose nth element [φ(m)]n is the Lagrange multiplier associated with the constraint
|[bq(m)]n|2 ≤ λn. The derivative of the Lagrangian with respect to b∗q(m) can be
shown to be given by

∂L
∂b∗q(m)

= −PH
q Σ−1

min
(
x2(m)− Pqbq(m)

)
− PH

q v(m) +Φmbq(m), (4.38)
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where v(m) and x2(m) are the mth columns of (Σ̂
−1
q −Σ−1

min)E(t) and X2, respectively.
Equating (4.38) to zero yields

bq(m) =
(

PH
q Σ−1

minPq +Φm

)−1
PH

q

(
Σ−1

minx2(m) + v(m)
)

. (4.39)

Furthermore, since Σ−1
min = 1

εN
I and PH

q Pq = I, (4.39) can be further simplified to

bq(m) =

(
1
εN

I +Φm

)−1

PH
q

(
1
εN

x2(m) + v(m)

)
. (4.40)

The foregoing expression is the optimal value of the mth column of Bq in terms of the
Lagrange multipliers. Now we observe the following. First, since Φm is a diagonal
matrix, we have that ( 1

εN
I +Φm)−1 is also a diagonal matrix with elements[(

1
εN

I +Φm

)−1
]

nn

=
εN

[φ(m)]nεN + 1
, (4.41)

where [·]nn indicates the nth element along the diagonal and [φ(m)]n is the nth
element ofφ(m). Thus, the Lagrange multiplier [φ(m)]n only affects the nth element
of bq(m). Second, by the KKT conditions [φ(m)]n 6= 0 when |[bq(m)]n|2 = λn,
and [φ(m)]n = 0 otherwise. Therefore, if the nth element of the unconstrained
solution (obtained by taking Φm = 0 in (4.40)) fulfills |[bq(m)]n|2 ≤ λn, this is
also the optimal solution of the original problem. Otherwise, the nth element of the
unconstrained solution has to be scaled such that |[bq(m)]n|2 = λn.

Through these conditions it is shown, that the optimal solution to (4.36) can be
obtained by scaling the unconstrained solution. This unconstrained solution can be
obtained straightforwardly as

Bu
q(t+1) = εNPH

q
(
Σ−1

minX2 + (Σ̂
−1
q − Σ−1

min)E(t)
)

= εN
(
PH

q Σ̂
−1
q X2 − PH

q (Σ
−1
min − Σ̂

−1
q )PqBq(t)

)
. (4.42)

The optimal solution Bq(t+1) is therefore obtained by scaling each element of Bu
q(t+1)

such that the constraints are fulfilled. That is, each column bq(t+1)(m) of Bq(t+1) is

bq(t+1)(m) = b̃, b̃n =
bu

n(m)

|bu
n(m)| ×min(|bu

n(m)|,
√

λn)

∀n = 1, . . . , q ∀m = 1, . . . , M2, (4.43)

where b̃n is the nth element of b̃, and bu
n(m) is the nth element of the mth column

of Bu
q(t+1). The resulting ML estimate B̂q is then given by the value of Bq(t+1) upon

convergence of the MM algorithm.
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Algorithm 4.1 Alternating optimization to obtained constrained ML estimates of Bq
and Σq.
Data: Inputs are Pq, λ, X2, imax and cmin

Result: B̂q and Σ̂q

initialization i = 1, Σ̂
(0)
q = I, c > cmin

while c > cmin do

1. Obtain B̂(i)
q as in (4.34) with MM.

2. Obtain Σ̂
(i)
q as in (4.30) and (4.31).

3. c = ||Σ̂(i)
q − Σ̂

(i−1)
q ||F, i = i + 1.

end

4.2.3 Determining the model order

As shown in (4.30) and (4.34), the ML estimates B̂q and Σ̂q are mutually depen-
dent, which prohibits finding a closed-form solution. In this section we have pro-
posed an alternating optimization algorithm (see Algorithm 4.1) to maximize the
log-likelihood in (4.28). Since B̂q and Σ̂q are obtained optimally, the algorithm is
guaranteed to converge.

The procedure to estimate q is as follows. For every possible model order q (with
q = 1, . . . , min(N, M1)− 1), we compute the ML estimates B̂q and Σ̂q by means of
Algorithm 4.1. Then, following (4.28), we estimate the model order as

q∗ = arg min
q

[
M2 log |Σ̂q|+ Tr(ÊHΣ̂

−1
q Ê) + η(q)

]
, (4.44)

where Ê = X2 − PqB̂q.

Sample-poor case

Sometimes we have access to only a small number M of observed training vectors
relative to the number N of landmarks (or sensors). Under these circumstances, the
covariance matrix of residuals in (4.30) may be ill-conditioned. In order to address
this situation and reduce the number of parameters to estimate in (4.30), we pro-
pose the following solution. We model Σq as block-diagonal (even though it has an
arbitrary structure) with blocks of size s × s. This results in d =

⌈N
s
⌉

blocks, that
is Σq = blkdiag{Σ1

q , · · · , Σd
q}, where the size of the last block Σd

q differs from the
other blocks if N

s is not an integer. The size s of the blocks gives a trade-off between
a well-conditioned and a biased estimate of the true Σq. Considering this, the ML
estimate Σ̂q is simply the block-diagonal version of the matrix defined in (4.30). We
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reformulate (4.44) such that the model order q∗ is obtained as

q∗sp = arg min
q

[ d

∑
n=1

(
M2 log(|Σ̂n

q |) + Tr(ÊH(Σ̂
n
q )
−1Ê)

)
+ ηsp(q)

]
, (4.45)

where the subscript of q∗sp stands for sample poor.

4.3 Results and discussion

In this section we validate our strategy with numerical results. We have considered
simulated data, where the model order is controlled and hence there is a ground-
truth to validate the results.

4.3.1 Simulation settings

We consider the linear model in (4.24) to generate simulated observations. We as-
sume the matrix A to be unitary (in order to control the SNR) and choose it as
uniformly distributed on the unitary group [99]. We fix the number of sources q at
a known value. We generate random values uniformly distributed between 1 and
10 as the signal eigenvalues in Rss. First, we evaluate the technique when the num-
ber of samples M is hight. Then, we propose relatively sample-poor scenarios, so
our estimate in the presented simulations is based on q∗sp in (4.45) with block size
s = 2. Consequently, the number of parameters to estimate in Σq is reduced, and its
estimate is less biased than a diagonal estimate. We choose the Akaike information
criterion [22], as in [94]. Therefore η(q) = 2M2q+ N(N−1)

2 , and for the sample-poor
case ηsp(q) = 2M2q + 3

2 N. η(q) and ηsp(q) are the number of degrees of freedom
in the respective likelihood expressions. To simulate the noise, we randomly choose
U and Ω, from which we compute Rnn = N UΩUH

Tr{Ω} . The trace of Rnn is N, U is uni-
formly distributed on the unitary group, and Ω is a diagonal matrix of N eigenvalues
uniformly distributed between 0.1 and 1. We consider different structures of covari-
ance matrices Σ to address four models of noise: white noise, Σs1 = I; a mixture
of white and colored noise, Σs2 = I + Rnn; colored noise, Σs3 = Rnn; and colored
noise with block-diagonal structure, Σs4, whose blocks are equal to those along the
block-diagonal of Rnn. Finally, we scale the noise observations in order to accomplish
the SNR settings. We define the SNR by a parameter β that is the ratio of the smallest
signal eigenvalue in Rss and the largest noise eigenvalue in Σ.

Comparative strategies

We compare our proposed strategy with four others:

1. [81], the classical approach that considers additive white Gaussian noise.

2. [94], which assumes additive white Gaussian noise and a sample-poor scenar-
ios
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3. [83], which considers non-uniform, i.e., spatially uncorrelated noise with diag-
onal (but not identity) covariance matrix; and

4. [84], which allows colored noise, but assumes that the noise is block-diagonal
with known block size.

4.3.2 Splitting data into training and test data

We present an empirical study of the impact of sizes M1 and M2 to show that the
precise split of data into training and test data does not strongly affect the results of
the estimate in the observed scenarios. As we can see in Fig. 4.5, the precise split was
not critical, thus there is no good reason for deviating much from an even split with
M1 = M2. This choice can be further justified by looking at how many parameters
we need to estimate. Within X1, the calculation of Pq and λ involves q(2N − q) + 1
parameters [81], and the expression log p(X|B̂q, Σ̂q), in (4.34), has 2(Mq) + (s+1)

2 N
degrees of freedom. In many scenarios, M and N are values of similar order, and q
is not very high. Thus, the degrees of freedom are similar for both training and test,
so a similar size for both sets seems reasonable. Therefore, in further simulations we
chose M1 = M2.
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Figure 4.5: Probability of correctly choosing the model order q. The settings are β =
10 dB, N = 50 sensors, q = 10 sources, and simulated noise follows the covariance
matrix Σs2 = I + Rnn. We averaged 100 simulations.

4.3.3 Comparison with a classical white-noise based approach

The classical approach in [81] considers white noise in the model. Therefore, its
performance is very poor in our simulations when the noise differs white. In Fig.
4.1, we see that, in a colored-noise scenario our strategy maintains a much better
performance when the noise is relatively high (β = 5 dB), and it almost does not
alter with respect to a white-noise scenario when the SNR improves (β = 10 dB).
The chassical strategy in [81] deteriorates much more as the number of observations
M increases. The problematic is not experiences by our proposed strategy.
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4.3.4 Sample-poor case

In Fig. 4.7 we illustrate the performance with respect to the number of samples
for a fixed SNR parameter β, as well as with respect to β for a fixed number of
samples. In Figs. 4.7(a) and 4.7(b) the noise structures are Σs1 (white noise, optimal
conditions for the strategy in [94]) and Σs2. In Figs. 4.7(c) and 4.7(d) we consider
Σs3 (noise covariance without structure) and Σs4 (block-diagonal, which constitutes
the optimal conditions for the strategy in [84]; we choose block size N

2 ). In Figs.
4.7(a) and 4.7(b) we see that the strategy based on white noise [94] fails when
the noise is colored. While having similar performance to our strategy when the
noise is white, in the case of colored noise its performance is poor even when the
noise is considerably weaker than the signal. Similarly, in Figs. 4.7(c) and 4.7(d),
the block-diagonal strategy [84] fails when the covariance matrix of the noise is not
block-diagonal. Even when the noise is block-diagonal, unlike our strategy, [84]
needs to know the actual block-size. It also requires more samples and larger β for
a performance similar to our proposed technique. The strategy [83], which assumes
non-uniform noise, delivers good results for large β and large number of samples.
However, our strategy requires fewer samples and smaller β to achieve the same
probability of correct model-order choice.
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Figure 4.6: Comparison of the performance with respect to the number of samples
M of the proposed (prop.) estimator with the classical one in [81], depicted in
different colors (prop. in blue, and [81] in red]. We show results averaged over 100
simulations with parameter setting N = 10 and q = 3. In (a) β = 5 dB. In (b) β = 10
dB. We have generated three different noise structures.
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(c) Sample size variation with noise covariance matrices Σs3 and Σs4.
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(d) β variation with noise covariance matrices Σs3 and Σs4.

Figure 4.7: Comparison of the performance of the proposed (prop.) estimator with
the ones in [94], [83], and [84], depicted in different colors. We show results aver-
aged over 100 simulations with parameter setting N = 50 and q = 10, emulating the
typical shape model scenario. In (a) and (c): β = 10 dB and we vary M. In (b) and
(d): M = 150 and we vary β. We generate four different noise structures.
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Chapter5
Model-order selection in statistical

shape models

“One accurate measurement is worth a thousand expert opinions.”
— Grace Hopper

As we have already motivated in Chapter 4, SSM require choosing a model order,
which determines how much of the variation seen in the training data is accounted
for by the SSM. A good choice of this order also depends on the number of training
samples and the noise level in the training data set. Yet the most common approach
for choosing the model order in SSM simply keeps a predetermined percentage of the
total shape variation of the training set. This is a heuristic design that undervalues
of the potential of the models.

In this chapter, we particularize the technique proposed in Chapter 4 for SSM. We
empirically show that the model order chosen by our proposed technique provides
a better trade-off between over- and underfitting than the existing techniques. We
start describing the state-of-the-art of model selection in PDM in Section 5.1, and
motivate the need of model selection in shape analysis. Then, in Section 5.2 we
consider the model order strategy proposed in Chapter 4 applied to PDM. In Section
5.3, we discuss results over artificial and real shape data, and the importance of
model selection in shape analysis.

The results of this chapter haven been published in:

• A. Eguizabal, P. Schreier and D. Ramirez, “Model-order selection in Statistical
Shape Models,” in Proceedings of the IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), Aalborg, Denmark, Sept. 2018, pp. 475-
479.

5.1 Motivation and preliminaries

The most common way of choosing the model order of a PDM is to keep the eigen-
vectors that account for a given percentage of variance (typically 90-98% [20]). This
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consists simply in calculating the accumulative sum of the eigenvalues of the PDM of
N landmarks, i.e., λN = [λ1, . . . , λN], an choose the order q such that

∑
q
n=1 λn

∑
N
n=1 λn

< 90%, (5.1)

where in this case the percentage is 90%. We illustrate this heuristic selection in Fig.
5.1, where we have calculated the expression in (5.1) considering the PDM of the
proximal femur.

Figure 5.1: Calculation of the cumulative variance of the PDM from the proximal
femur. According to this heuristic criterion, based on keeping 90% of the training
variance, the selected order is q = 10.

Many landmark-based shapes, such as anatomical shapes in medical image anal-
ysis, are high-dimensional, and often only few observations are available. These
observations may also contain noise artifacts. The heuristic approach of choosing the
model order based on a kept fraction of total variance may therefore be suboptimal.
The best model order varies significantly depending on the number of samples and
noise level of the training data set. Our motivation is to design a model-order se-
lection rule that has a theoretical justification and leads to a statistical shape model
with good representation ability. We consider therefore information theory, which
has successfully been used before to enhance registration and detection algorithms
[100][101], as well as to place landmarks automatically in statistical shape models
[102].

This model-order selection problem has been addressed before in statistical shape
model design. In [103] the authors suggested a t-test of bootstrap stability of the PCA
modes of the PDM, and they validated the strategy on simulated anatomical shapes
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with white noise. The authors in [94] proposed a strategy based on an information-
theoretic criterion for small sample support in a more generic array-processing con-
text, also assuming white noise. These techniques may fail if the noise is not white. In
[83], also in an array-processing context, the authors considered nonuniform noise.

In PDM design, there is no obvious model for the noise. Therefore, techniques
that consider a specific noise structure may not work well. In order to address this,
we propose a new strategy, based on information-theoretic criteria, that assumes a
more generic colored-noise model. Our strategy is specifically designed to determine
the model order in a PDM, although it may also be applied to other model-order
selection problems with colored noise. We interpret the PDM as a multivariate re-
gression, where the model order is determined considering the statistical properties
of the regression residuals. We also perform a comparative study, with simulated and
real shapes, where we prove the good performance of our strategy, as well as the
importance of an accurate model order in PDMs.

5.2 Determining the model order in PDM

Let us assume we obtain M observations of the shape vector x. ∈ RN that contains the
two concatanated coordinades in the Euclidean space of N

2 landmarks. We consider
the M shape training samples x(m), m = 1, ..., M, after a Procrustes alignment. The
proposed solution in Chapter 4 divides the problem into two steps. First, we obtain
estimates for the model parameters P, Λ, and µx. Then, we estimate the model order
q. For this, we split the observed data into two subsets of sizes X1 and X2. Within
the first set X1, we compute the sample mean µ̂x = 1

M1
∑

M1
m=1 x(m) as well as the

sample covariance matrix R̂yy = 1
M1

(X1XT
1 − µ̂xµ̂

T
x ) and its eigenvalue decomposition

R̂yy = PΛPT. Let us define the matrix Y that contains the entries of X2 with mean
removed, and consider the following multivariate linear regression:

Y = PqBq + E, (5.2)

We propose the information-theoretic formulation for model selection in multivariate
linear regressions, similarly as described in Chapter 4, where the model order q∗ is
chosen as

q∗ = arg min
q

(− log p(Y|B̂q, Σ̂q)︸ ︷︷ ︸
likelihood term

+ η(q)︸︷︷︸
penalty

), (5.3)

and the log-likelihood expression in (5.3) can be written as

log p(Y|B̂q, Σ̂q) = −
M2

2
log |Σ̂q| −

1
2

Tr{(Y− PqB̂q)
TΣ̂
−1
q (Y− PqB̂q)}+ constant.

(5.4)

5.2.1 ML estimation of the regression parameters

According to the PDM definition, the columns of Bq, denoted by b(m)
q for m =

1, . . . , M2, are contained in a set B(λq). Thus, the ML estimate of Bq is also con-
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strained. We define B(λq) = {bq ∈ Rq×1 : |bi| ≤
√

λ̂i, ∀i = 1 . . . q}, where
bq = [b1, . . . , bq]T, and λq = [λ̂1, . . . , λ̂q]T contains the q largest eigenvalues of R̂yy.
Then, as demonstrated in Chapter 4, the ML estimation of Bq is equivalent to the
regularized least-squares minimization

B̂q = arg min
Bq∈B(λq)

Tr{(Y− PqBq)
TΣ−1

q (Y− PqBq)}, (5.5)

where Bq ∈ B(λq) is applied column-wise. We calculate the solution to (5.5) fol-
lowing the lines of Chapter 4. That is, we first obtain the unconstrained solution to
(5.5), i.e., B̂u

q = (PT
q Σ
−1
q Pq)−1(PT

q Σ
−1
q )Y. Then, we scale it such that the constraints

are fulfilled.
The ML estimate of the covariance matrix of the residual noise Σq is, as long as

N < M2, the sample covariance matrix:

Σ̂q =
1

M2
(Y− PqBq)(Y− PqBq)

T . (5.6)

The ML estimates B̂t and Σ̂q are mutually dependent, which prohibits finding a
closed-form solution. We use the proposed alternating optimization algorithm in
Chapter 4.

5.2.2 Choosing the model order

The shape data is often high-dimensional but with small number of samples. Under
these circumstances, the estimate of the matrix Σq may be ill-conditioned. In order to
deal with this, we reduce the number of parameters to be estimated by assuming Σq

to be a diagonal matrix, with σ2 = [σ2
1 ,σ2

2 , . . . ,σ2
N] on the diagonal. Consequently,

its ML estimate is Σ̂q = diag( 1
M2

(Y− PqBq)(Y− PqBq)T). Following the lines of [96]
and Chapter 4, we choose the Akaike information criterion (AIC), so the penalty term
in (5.3) is η(q) = M2q + N, which corresponds to the degrees of freedom in (5.4).
Notice that AIC has been used as well for similar problems (for example in [94]), and
that the assumptions made to derive it are quite weak [92]. Finally, the model-order
estimate q∗ is obtained by minimizing the terms in (5.3) that depend on q:

q∗ = arg min
q

[
M2

( N

∑
i=1

log(σ̂2
i ) + 2q

)
+

N

∑
i=1

M2

∑
m=1

ε̂
2(m)
i
σ̂2

i

]
, (5.7)

where ε̂
(m)
i is the ith element of vector ε̂(m) = y(m) − Pqb̂(m)

q ; and b̂q and σ̂2
i are the

estimated values after convergence of the alternating optimization in Algorithm 4.1
in Chapter 4.

5.3 Results and discussion

In this section we validate with numerical results the used of our proposed model
selection strategy in shape analysis. In a PDM trained from real data sets, the true
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model order of the shape model is not known. Hence, we have also used simulated
shape data (following the model in Appendix), where the model order q is set be-
forehand and thus known.

5.3.1 Data description

We simulate realistic synthetic shapes following the model in the Appendix and sim-
ilarly to the simulated data in [103]. We use the eigenvectors Pt obtained from
available real shape data sets and choose values for bq that are consistent with the
sample data. Then we add white Gaussian noise ε with different noise levels β,
which we define as the ratio between the smallest kept signal eigenvalue and the
noise variance. We choose these noise levels β such that the produced shapes still
look realistic. Then we randomly rotate, scale, and translate these synthetic shapes
and use Procrustes to re-align them. Procrustes alignment typically colors the noise,
so it may not longer be white when the model order has to be selected.

We have used different shape databases of real contours, in order to show that
the proposed technique generalizes to different structures of shape:

• Proximal femur bone outlines (168 samples with 40 landmarks) and the distal
femur bone outline (111 samples with 40 landmarks) as seen in fluoroscopic
X-rays.

• Lung outlines (246 samples with 44 landmarks) and heart outlines (246 sam-
ples with 26 landmarks) from chest X-rays [104].

• Hand outlines from photographs [31] (38 samples with 20 landmarks).

We show the average shape of each data set in Fig. 5.2. More information about
the data can be found in the Appendix.

Figure 5.2: Examples from the datasets of proximal femur, distal femur, lung, heart
and hand. The landmarks are shown as blue stars.

These data sets are similar: they belong to human anatomy shapes, the number of
samples is limited, each sample contains a fixed number of landmarks in correspon-
dence, and the noise is unknown. In each data set, the shapes are composed by a few
landmarks that are anatomical and manually labeled, and the rest of the landmarks
are equally distributed between these.
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(a) β = 5 dB

(b) β = 20 dB

Figure 5.3: Examples from the artificial femur shapes.

5.3.2 Comparative strategies

We compare our proposed strategy with four others:

1. A variance threshold of 95%, as described in [14] and validated in [20].

2. An information-theoretic technique that considers white noise and a sample
poor scenario [94].

3. An information-theoretic criterion considering non-uniform noise [83].

4. A boostrap t-test designed for PDMs [103] that considers white noise.

5.3.3 Results on simulated shape data

The evaluation of simulated data is straightforward since there is a known ground
truth for the model order q.

In Fig. 5.4 we show the model order obtained from 1000 Monte Carlo simula-
tions. We see that the performance of the 95%-approach [20] (triangle, yellow lines)
depends considerably on the level of noise: there is a tendency to overestimate if β
is moderate (5 dB) and to underestimate if β is high (20 dB). The white-noise strat-
egy in [94] (circles, red lines) tends to overestimate, especially when the number
of samples increases. We believe this is due to color in the noise, introduced in the
simulation by the Procrustes alignment. The t-test strategy [103] (stars, green lines)
does not perform well and leads to results with high variance. The reason for this
may be that this approach assumes white noise to evaluate stability. The nonuniform
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noise strategy [83] (diamond, purple lines) tends to underestimate if β is moder-
ate (5 dB), and it provides an incorrect estimation if the number of samples is very
small. Our proposed strategy (square, blue lines) outperforms the competitors: it
provides the best model-order estimate in general, it needs fewer samples to find the
correct estimate, it is not highly dependent on the noise level, and it is consistent
with increasing number of samples.

The results in Fig. 5.4 empirically show that AIC was suitable for the problem.
Nevertheless, the proposed solution considers a general penalty term. Our approach
can still account for other information theoretical penalties.

10 100 500
0

5

10

15

20

number of samples (M)

se
le

ct
ed

q∗

proposed 95% [20]
white noise [94] nonuniform [83]
t-test [103] true order q

(a) β = 5 dB

10 100 500
0

5

10

15

20

number of samples (M)

se
le

ct
ed

q∗

(b) β = 20 dB

Figure 5.4: Average model order over 1000 Monte Carlo simulations, using simu-
lated femur shapes of 40
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5.3.4 Results on real shape data

There is no known ground truth for model order q in a PDM that is trained with real
shape data sets. Nevertheless, we may still evaluate how plausible the model-order
estimate is when the number of available samples changes and compare this with the
behavior in artificial data. Additionally, we illustrate the importance of the model
order in PDMs with a numerical experiment that shows the impact of the selection of
t when a PDM of order q is used to deal with partial occlusions in shapes.

In Fig. 5.5 we show the estimated model order for different number of samples on
the three data sets. There are similarities with Fig. 5.4: “95%" [20], t-test [103], and
“nonuniform" [83] provide small model orders, while “white-noise" [94] provides
large (probably too large) model orders. Our strategy seems to provide a consistent
model order that starts converging with fewer samples.

As an illustrative example of the importance of the model order in statistical shape
models, we performed an experiment that shows how well the PDM with the selected
model order can deal with partial occlusions. Considering an obtained PDM as the
prior information about shape deformation, we perform an estimate of an occluded
(or missing) landmark in a new observed shape. The test consists in the following:
inside a leave-one-out test, this is, for all m = 1, . . . , M available samples in a data
set, within the mth “left-out" sample we delete one landmark from that shape. Then,
we estimate it from the remaining landmarks using a linear minimum mean-squared
error (LMMSE) estimator. The M − 1 “not left-out" samples are used to design the
PDM, in which we evaluate all possible orders t. Let yi denote the missing land-
mark (which consists of its x- and y-coordinates) and ya the remaining available
landmarks. Let R̂ia denote the sample cross-covariance matrix between the missing
landmark and the remaining available landmarks, and R̂aa the covariance matrix of
the available landmarks. These matrices are calculated from the available PDM of or-
der q. The LMMSE estimator of the missing landmark from the remaining landmarks
is then ŷi = R̂iaR̂−1

aa ya. In our experiment, we successively estimate one landmark i
from the others, repeating this for all i = 1, ..., N/2 landmarks. We average the error
over all landmarks and over all available samples and obtain

eLMMSE(q) =
1
M

1
N/2

M

∑
m=1

N/2

∑
i=1
||ŷ(m)

i − y(m)
i ||

2, (5.8)

which is evaluated for all possible model orders, i.e., q = 1, . . . , min(N, M). Figure
5.6 shows this metric for the three data sets as a function of considered model order q.
In Fig. 5.6, we observe that the evaluated empirical error decreases until it reaches a
minimum, which is different for each data set. A shape model with too small an order
may suffer from underfitting (thus, the error decreases if we add more complexity),
and too large an order may lead to overfitting (and therefore, the error decreases
if we reduce the complexity). We conclude that choosing the right model order is
critical in order to minimize the LMMSE. We see that the model order determined
by our technique (blue squares) leads to the smallest LMMSE among all competing
techniques. We also notice that there is a relatively large interval of model orders
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that lead to similar LMMSEs. The principle of parsimony dictates that in such a case
a smaller order is to be preferred. Our technique observes this principle.
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Figure 5.5: Selected model order for five different real shape data sets. Notice that
the different shapes have different number of total samples M.
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Figure 5.6: eLMMSE for all possible order q. The evaluated model orders are obtained
using all available samples to train the PDMs. The order selected by “white noise"
(orange circle) for the lung data set is not depicted because is out of plot limits.



96 Model-order selection in statistical shape models



Chapter6
Procrustes registration of contours

without correspondences

“All creative people want to do the unexpected.”
— Hedy Lamarr

Shape registration is key in image processing and computer vision. Two contours
of the same shape must be registered in many different applications, such as the de-
sign of statistical shape models, shape retrieval, or segmentation. With anatomical
shapes, the variability among individuals adds difficulty. As it is shown in Chapter
2, a Procrustes registration between two contours with known correspondences is
straightforward. However, these correspondences are not generally available. Manu-
ally placed landmarks are often used for correspondence in the design of SSM. How-
ever, determining landmarks on contours is time-consuming and often error-prone.
The conventional solution to simultaneously find correspondence and registration is
the Iterative Closest Point (ICP) algorithm. However, ICP requires an initial position
of the contours that is close to registration, and it is not robust against outliers. In
this Chapter we propose a new strategy, based on Dynamic Time Warping (DTW),
that efficiently solves the registration problem without correspondences. We study
the registration performance in a collection of different shape data sets and show
that our technique outperforms competing techniques based on the ICP approach.
Furthermore, we extend our strategy so that it can be applied to an ensemble of con-
tours of the same shape, which is an extension of the generalized Procrustes analysis
accounting for a lack of correspondence. The chapter is organized as follows. Sec-
tion 6.1 presents a motivation, an introduction to the ICP algorithm, and an overview
about DTW and dynamic programming. Then, in Section 6.2 we present the problem
formulation and the DTW-based solution. Finally, we present the experiments and
the corresponding results in Section 6.3.

The results of this chapter will be submitted to be published as:

• A. Eguizabal, J. Schmidt, and P. Schreier, “Registration of contours without
correspondences using dynamic time warping,” to be submitted to IEEE Trans-
actions on Image Processing, 2019.
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6.1 Motivation and preliminaries

Iterative Closes Point (ICP) is the conventional solution to find correspondence and
registration simultaneously. This iterative technique, however, is not an optimal so-
lution and depends considerably on the initial guess. Also, the algorithm does not
account for any parametrization of the contours, and hence, needs to assume that
every point in one contour may correspond to any other point on the other con-
tour. This may become computationally very expensive and error-prone. Dynamic
Time Warping (DTW), on the other hand, is a technique to optimize the temporal
assignment between two time series. A set of constraints are considered in the path
of correspondence, thus a more efficient and accurate solutions can be found using
dynamic programming.

In this section we discuss the state-of-the-art and motivate the use of our ap-
proaches. Then, we recall some concepts from Chapter 2 and provide an introduction
to the techniques that are necessary to understand our proposal.

6.1.1 Why to consider registration without correspondences

Image registration is a big challenge in computer vision and medical image analysis
[105]. The registration of shapes is necessary to enhance segmentation and retrieval
algorithms, and more specifically, to build statistical shape models [14], [106]. The
training contours that are required to learn a shape model are generally manually
or semi-automatically obtained from training images, which is very time-consuming
[107]. The training contours can also be automatically extracted from a different
image domain where segmentation is less challenging. For instance, in order to learn
a bone shape for segmentation in fluoroscopic X-ray images, the training contours
may be obtained from diagnostic CT scans. In all these circumstances, registration of
the training contours is required to build the shape model.

A Procrustes registration (rotation, scale, and translation, as defined in [108]) be-
tween two contours with known correspondences is a linear least-squares problem:
when the correspondences are available, a Procrustes analysis can be employed [9].
However, determining correspondences is challenging. Coming back to statistical
shape models, corresponding points are often determined manually with a few land-
marks [35]. The most common choice of landmarks in medical images are anatom-
ical references, which allow to maintain consistency between different samples in
the annotation process. However, it is tedious to determine anatomical landmarks
[63]. Also, the definition of an anatomical landmark typically refers to a point on the
surface of the anatomy, whose projection in the image plane may not belong to the
two-dimensional boundary. This fact is especially problematic in applications where
the focal point of the image may vary, such as in fluoroscopic images that are taken
intraoperatively with a C-arm [109]. Another difficulty arises when the contour is
open and occasionally occluded on the extremes, since the correspondences at the
start and end points are not trivial. Also, establishing manual correspondences is
done based on experience, which is typically not optimal. Furthermore, manual la-
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beling is generally not very dense (the number of landmarks is much smaller than
the image resolution).

When correspondences are unknown, they may also be assigned automatically.
Registration is then typically performed with an ICP approach [110]. This algorithm
iterates between solving the registration and finding the corresponding points, which
are chosen as the closest in terms of a defined distance (e.g. Euclidean). However, the
algorithm only converges if the two contours to be registered are initially close, and
it is not robust against outliers. Assigning correspondences and simultaneously solv-
ing a registration problem has aroused interest before, such as in [111] and [112].
In [111] the problem is presented as an extension of Procrustes alignment, and it
uses a gradient descent approach to determine correspondences. In [112], the au-
thors incorporate probability and cross-entropy in the correspondence and determine
a cost function to minimize. Another approach is given in [113], which optimizes a
similar objective function in a more rigorous way and presents a probabilistic ap-
proach called Coherent Point Drift (CPD). Finally, [114] shows a technique that con-
siders M-estimators in ICP to assign the correspondences. These approaches, like
ICP, typically assume that any point on the reference contour may correspond to any
other point on the target contour. Then, the correspondence is modeled in a match-
ing matrix whose dimensions are reference length times target length.The proposed
technique in [115] introduces an order-preserving constraint in the correspondences,
which allows to define an optimal and computationally efficient solution. It models
the correpondence with graphical models and solves it with dynamic programming.
However, it considers only closed contours. Similarly, the authors in [116] fix the
order of the points of the contours and estimate the correspondence, optimizing a
geodesic distance between them. However, they assume that scale and location have
been filtered out and only consider closed shape contours. In this chapter we pro-
pose DTW [117] to establish an automatic correspondence between two boundaries.
DTW is a common technique in time-series analysis to align signals, and it has also
been successfully used in shape retrieval. The authors in [118] combine DTW with
Fourier analysis. Since they used closed-form contours of similar arc-length, they
correct the scale and the translation normalizing the contours and find a rotation-
invariant representation with the Fourier coefficients. However, their technique does
not apply to open contours. In DTW the input signals contain thousands of points
and the solution is still computationally efficient [119]. Unlike ICP and CPD, DTW
imposes constraints on the order of corresponding points between two contours, and
this leads to more efficient and accurate solutions. Our approach based on DTW is
able to deal with both open and closed contours. Also, since DTW is robust to scaling
and translation of the inputs, there is no need for a very good initialization [117].
Furthermore, to simultaneously solve the registration and the correspondence prob-
lems, we combine DTW with a weighted Procrustes registration to add robustness
against outliers. Additionally, we propose an extension of the generalized Procrustes
analysis considering DTW to assign correspondences.
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Group-wise registration

In order to design a statistical shape model, registration needs to be performed group-
wise for a collection of training contours, that is, an ensemble of contours of the
same shape needs to be registered to the same reference. When correspondences are
known, the typical solution is the generalized Procrustes analysis proposed in Chap-
ter 2 [120], [121]. When correspondences are missing, there are approaches where
the group-wise registration is performed plane-to-plane considering image warping.
In [122] the authors use thin-plate B-splines to model the deformation of the shapes,
together with a generalized Procrustes analysis to perform the registration. However,
the contours they use are not very dense (around 15 landmarks) and the thin-plate
deformation may become very computationally demanding with denser contours of
higher resolution. The authors in [123] define a plane-to-plane warping based on
free deformation and mutual information. They assume, however, a good initial
guess in terms of rotation, scale, and translation. Similarly, in [124] they also con-
sider a plane-to-plane warping and the image appearance in the registration. They
require, however, a good initialization of the samples since they perform an exhaus-
tive search to determine the affine transformations. Other solutions are based on
a contour-to-contour warping. The approach in [17] performs a generalized Pro-
crustes analysis determining a geodesic distance between the contours. Nevertheless
this distance depends on ad-hoc parameters and requires a good initialization of the
registration. In [102] the authors describe a method to build shape models when
correspondences are not available based on information theory. However, in order to
establish the correspondences, they need to select a reference shape whose parame-
terization is fixed. Also, the contours are not longer than 30 points, which is orders
of magnitude smaller than the typical image size.

In our proposed approach we also consider DTW to establish a high resolution cor-
respondence in a group-wise manner, as an extension of the generalized Procrustes
analysis. We register a set of shape vectors and estimate its Procrustes mean when
there is no correspondence information. We assume that the contours to be regis-
tered have the same shape according to Kendall’s definition [9], i.e., they share the
same geometrical information after scale, rotation, and translation are removed.

6.1.2 Procrustes registration with correspondences

Recalling Chapter 2, let us assume we have the shape vectors x1 and x2, both contain-
ing N points, and that all points are in one-to-one correspondence for n = 1, . . . , N.
Let us recall the Procrustes registration, described in Chapter two, to register x2 onto
x1. This is performed by the pose parameters [r, t] ∈ C that minimize the squared
distance between x1 and x2. We define this distance as

d2 =
N

∑
n=1
|x1[n]− x2[n]|2 = ||x1 − x2||2. (6.1)

As discussed in Chapter 2, we can rewrite the transformation as rx2 + 1t = [x2 1]p,
where p = [r t]T is a vector containing the pose parameters. The vector p that
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minimizes the squared distance between x1 and rx2 + 1t is the solution to a linear
least-squares fit. Let us define the matrix X2 = [x2 1]. The pose p? that minimizes
the distance after the Procrustes registration is

p? = arg min
r,t
||x1 − (rx2 + 1t)||2, (6.2)

where p? = (XH
2 X2)

−1XH
2 x1.

6.1.3 Point set registration and the Iterative Closest Point algo-
rithm

The ICP algorithm is a well known approach to infer simultaneously correspondence
and rigid-registration parameters between two sets of points [105]. We assume a
set of N points of dimension D in the matrix X =

[
x[1], . . . , x[N]

]
, where x[n] ∈

RD ∀ n = 1 . . . , N. Let us consider two point sets X1 ∈ RD×N1 and X2 ∈ RD×N2 .
In order to find the registration parameters R ∈ SO(D) (rotation) and t ∈ RD

(translation), the ICP algorithm solves [125]

[R?, t?, c] = arg min
R∈SO(D), t, c

N2

∑
k=1
||x1[ck]− (Rx2[k] + t)||2, (6.3)

where the vector c = [c1, . . . , ck, . . . , cN2 ]
T contains that indexes of correspondence,

that is, ck is the index of the point in X1 that corresponds to the kthe point in X2.
The ICP solution is an iterative process, in which during each iteration i the fol-

lowing steps are performed:

• Step 1: find the correspondence index in X1 for the kth point in X2, that is, the
ck-th point in X1, considering the closest point criterion, and assuming fixed
registration parameter from previous iteration,

c(i)k = arg min
ck

||x1[ck]− (R(i−1)x2[k] + t(i−1))||2, (6.4)

and repeat for every k = 1, . . . , N2.

• Step 2: given the correspondence index c(i)k for every value of k, we can estab-
lish correspondence between X1 and X2 and the problem becomes a Procrustes
analysis, whose solution is described in Chapter 2,

[R(i), t(i)] = arg min
R∈SO(D), t

N2

∑
k=1
||x1[c

(i)
k ]− (Rx2[k] + t)||2. (6.5)

Notice that in the two dimensional case with planar shapes D = 2. Notice also that,
when D = 2, this algorithm could also be expressed in complex number notation as
already discussed in Chapter 2. In that case, the shape vectors are x1, x2 ∈ CN, and
the rotation and translation are expressed with the complex scalars [r, t] ∈ C.
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Originally ICP was implemented to perform a rigid registration between two point
sets, that is, without changing the scale of the sets [125]. Considering changes of
scale does not add complexity to the formulation [126], but may compromise the
performance of the registration. Nevertheless, since the correspondence is based only
on the squared Euclidean distance between points, and all points in one set could
potentially correspond to any of the other points in the other set, the ICP algorithm
needs that the initial position of the sets is already close to registration, and it is also
very sensitive to outliers in the sets. There are many different methods that overcome
the ICP limitations and make it more robust. The authors in [113] consider soft-
assignments of correspondence, that is, they establish the correspondence according
to some probability. In addition, the strategy proposed in [114] applies M-estimation
and therefore replaces the least squares minimization in (6.3) with robust criteria
that handles possible outliers. In any case, the ICP minimization may get stuck on
a local minimum if the initial position is very far from registration. It is certainly
inefficient to assume that the correspondence is allowed between any possible pair
of points, since these points typically have a structure and belong to a particular
surface or contour, which can be parametrized.

6.1.4 Dynamic Programming and Dynamic Time Warping

If the correspondence path has a known structure, that is, we take into consideration
that the points belong to certain surface or contour and, therefore, not every point
of one set can correspond to any other point of the other, then the correspondence
problem simplifies considerably. A solution to this problem was already proposed
for time domain in the 70s [127], in which they solve word recognition in speech
processing. The correspondence between two time series is constrained, since time
is continuous and monotonic. The authors in [127] modeled the time fluctuations
with a nonlinear warping with very specific properties. This made the minimization
process more efficient, and optimally solvable with dynamic programming. We show
an example of two times series and their correspondence path with DTW in Fig. 6.1.

In DTW we assume a set of N “time instants” in the vector x =
[
x[1], . . . , x[N]

]T,
where x[n] ∈ C ∀ n = 1 . . . , N. Then, let us define x1 and x2, containing N1
and N2 points respectively, as two shape vectors with unknown correspondences. We
need to determine the optimal warping-path matrix C ∈ R2×L in terms of Euclidean
distance. This matrix C is composed of L correspondence vectors cl = (n(l)

1 , n(l)
2 )T,

with l = 1, . . . , L. The vectors cl establish correspondences between points x1[n
(l)
1 ]

and x2[n
(l)
2 ]. The optimal warping path C? between x1 and x2 is the one that mini-

mizes the sum of distances

C? = arg min
C∈P

L

∑
l=1
|x1[n

(l)
1 ]− x2[n

(l)
2 ]|2, (6.6)

where P is the set of allowed warping paths. A warping path in P must satisfy the
following contraints [117]:
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1. Boundary condition: The beginning and end points of the shape vectors x1 and
x2 are in correspondence, i.e., c1 = (1, 1) and cL = (N1, N2).

2. Monotonicity condition: The topology of the curve is respected in the corre-
spondence assignment, meaning that n(1)

i ≤ n(2)
i ≤ · · · ≤ n(L)

i for i = 1, 2.

3. Step size condition: Each element of x1 corresponds to at least one element in
x2 and vice versa. Therefore, the elements in the matrix C satisfy cl+1 − cl ∈
{(1, 0), (0, 1), (1, 1)} for all l ∈ {1, . . . , L− 1}.

4. Adjustment window condition [127] [128]: the time-axis fluctuation is con-
strained, for instance to be always smaller than a threshold α [127]. Two
different windows are depicted in Fig. 6.2.

These constraints on the warping path allow an efficient computation of C? with
dynamic programming [117].
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Figure 6.1: An example of Dynamic Time Warping. Left: two time series and its
optimal alignment. Right: corresponding warping path (black) and the path that is
assigned with direct correspondence (red, dotted).

A dynamic programming solution

Dynamic programming is a mathematical tool for making a sequence of decisions
that are interrelated [130]. In opposition to linear programming, there is no stan-
dard formulation for a dynamic programming problem, and the particular equations
depend on each situation. In general, these problems have the property of being
explained in smaller subproblems, and accomplish an optimal substructure [117].

Let us overview an example of a solution process through the concerned DTW. Let
us consider the vectors x1 ∈ RN1 and x ∈ RN2 . We need to evaluate a grid of possible
correspondence pairs. This grid is a matrix D ∈ RN1×N2 with elements D(n1, n2). A
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Figure 6.2: Illustration of two corresponding path (or cost) grids with window con-
traints. The allowed correspondences are in white. We depict the Sakoe-Chiba [127]
(left) and the Itakura-parallelogram (right) [129].

dynamic programming stage is considered for each possible pair of correspondences
(n1, n2), where the cost D(n1, n2) is then evaluated for each possible stage. The
algorithm calculates each stage cost as

D(n1, n2) = d(x1[n1], x2[n2])+

min{D(n1 − 1, n2 − 1), D(n1, n2 − 1), D(n1 − 1, n2)}, (6.7)

in which d can be, for instance, the Euclidean distance, i.e., d(x1[n1], x2[n2]) =
|x1[n1] − x2[n2]|2. In the calculation of this cost the monotonic and continuity of
the correspondence path are taken into account, since it depends only on three pre-
vious stages D(n1 − 1, n2 − 1), D(n1, n2 − 1), D(n1 − 1, n2). Due to the boundary
conditions, the costs D(1, 1) and D(N1, N2) are always considered in the final path.
We illustrate in detail the process of calculating the stages more visually in Fig. 6.3
with a toy example.

The simplest solution of implementation of this algorithm is an iterative approach
to evaluate all possible combinations, and hence every possible stage cost D(n1, n2).
This solution may have a high computational cost, with complexity O(n2) with re-
spect to the number of points the vectors. However, there are strategies to reduce the
computation complexity. For instance, the use of an adjustment window α decreases
the complexity to O(nα). Also, several other hardware accelerations could improve
the approach even to O(n) [131].

6.1.5 Dynamic Time Warping to establish correspondences

Once we obtain the warping-path matrix C with DTW, we define the resulting shape
vectors in point-to-point correspondence as x̃1 =

[
x1[n

(1)
1 ], . . . , x1[n

(L)
1 ]
]T and x̃2 =[

x2[n
(1)
2 ], . . . , x2[n

(L)
2 ]
]T. Each vector contains L points, and max(N1, N2) ≤ L ≤

N1 + N2 − 1.
A Procrustes registration as defined in (6.1) requires a one-to-one correspondence

between vector elements. In most applications this is not available. In order to
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Figure 6.3: A toy example of the use of dynamic programming to find the corre-
spondence path of minimum cost in DTW. In 1. we show how the points in the two
series (in blue and red) look initially. In 2. we illustrate the calculation of the cost
grid D and show the particular cases of D(1, 3) and D(2, 3). In 3. we see how the
correspondence path (in green) is constructed, starting from the end point and go-
ing backwards (following the constrained directions depicted with red arrows), and
summing the neighbour position with minimum cost in the grid; notice that the top-
right corner and bottom-left corner are always inside the path due to the constraints.
We plot the result of the alignment in 4., where we see an example of a many-to-one
correspondence, since x2[2] corresponds both with x1[2] and x1[3].

assign correspondences between two shape vectors, we consider DTW. A non-linear
warping of the signals is considered in order to determine the corresponding points.
The objective of DTW is to align these signals so that the sum of the distances (e.g.
Euclidean) between the corresponding points is smallest. Consequently, DTW can
determine a warping path between two shape vectors that is optimal in terms of
the sum of Euclidean distances between corresponding points. Considering the path
constraints, there is at least one corresponding point in x1[n] and x2[n] for every
n, but there may also be more than one point in x1[n] corresponding to one point
in x2[n] and vice versa. We call this a many-to-one correspondence. This case has
occurred in the toy example in Fig. 6.3.

Simultaneously determining correspondences and registration

When we employ DTW to find a path of correspondence between two boundaries,
the result may change when a linear transformation is applied to the boundaries. The
correspondence path that best explains the shape deformation is the one considered
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after a Procrustes registration between the boundaries. At the same time, this Pro-
crustes registration depends on the determined correspondences. Hence, we need to
obtain the parameters that solve the overall minimization problem

[r?, t?, C?] = arg min
r,t,C∈P

L

∑
l=1
|x1[n

(l)
1 ]− (rx2[n

(l)
2 ] + t)|2, (6.8)

where the transformation parameters r, t and warping path C are mutually depen-
dent.

6.1.6 Group-wise correspondence and registration

In order to learn statistical shape models we need to perform the group-wise reg-
istration of a set of training shape vectors [14], [108]. Let us consider a set of M
shape vectors of the same length N and with one-to-one correspondence, i.e., each
nth element of each of the M vectors corresponds to the same landmark. Recalling
the definition of shape in [9], shape variability is what remains after accounting for
scale, translation and rotation (i.e. after a group-wise Procrustes registration). A typ-
ical way to remove the effects of size and translation is to normalize the shape vectors
to unit size and translate their centroid to the origin of coordinates [23]. That is, for
a given shape vector x, we obtain

xo = x− 1
N

N

∑
n=1

x[n], and τ =
xo

||xo||
, (6.9)

where xo is moved to the origin, and dividing by ||xo|| is a size normalization. We call
the vector τ a preshape, equivalently to the geometrical definition in[23]. The term
preshape refers to the fact that the vector is one step away from registration since
rotation still needs to be removed [108]. Thus, the group-wise registration problem
is reduced to find rotations.

As described in Chapter 2, the preshapes belong to a hypersphere, where
the distance between two preshapes is a geodesic [108] defined as ds(τ1,τ2) =
cos−1 |τH

2 τ1|. Considering we have a set of M training shape vectors, and their
preshapes are τ1, . . . ,τM, the Procrustes mean is defined as

µ? = arginf
µ

M

∑
m=1

ds(τm,µ), (6.10)

whereµ is also considered a preshape so that ||µ||2 = 1 and 1
N ∑

N
n=1 µ[n] = 0. The so-

lution to (6.10) is typically obtained through a generalized Procrustes analysis [121],
[108]. This analysis iterates between minimizing the distances of the preshapes to
µ and estimating µ. However, when we assume not to have correspondences and,
furthermore, the observed vectors may be occluded at the extremes, it is not possible
to determine the preshape space and thus, compute the mean shape as in (6.10).
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Statistical Shape Models

As discussed in Chapter 2, in a statistical linear model of shape, an observed shape
vector xm follows

xm = rm(µ + δm) + 1tm, (6.11)

where rm and tm are the Procrustes registration parameters to minimize the squared
distance between xm and the mean shape µ, and δm is a realization of the random
vector that models shape variability, typically Gaussian δm ∼ CN (0, Σ) [37].

6.2 DTW-based solution

Our goal is to determine a Procrustes registration of shape vectors when the corre-
spondences are not available. Our approach proceeds along the following lines. We
first use DTW to compute a dense correspondence between two shape vectors and
thus perform a Procrustes registration. However, the distance in (6.1) is not robust
against outliers, that is, spurious points of the vector that do not belong to the ac-
tual contour. These may occur, for example, when an edge detector selects parts of
a neighboring object. Hence, we propose a probabilistic interpretation of the Pro-
crustes registration in (6.1) to add robustness against the outliers in the assigned
correspondences.

We then solve an overall minimization problem to determine simultaneously the
registration and the correspondence allocation. In order to overcome the depen-
dencies between registration and correspondence parameters, while aiming for a
tractable solution, we propose an alternating optimization, where we find indepen-
dently a solution for p (registration) and C (warping path of correspondence).

Furthermore, we formulate a group-wise registration approach, in which we cal-
culate the mean shape and hence extend the generalized Procrustes analysis to deal
with the lack of correspondence.

6.2.1 A probabilistic Procrustes registration

Let us recall the vectors x1 and x2 with no assigned correspondences. After DTW we
obtain the vectors x̃1 and x̃2, which are in one-to-one correspondence and have the
same length L. Let us define the distance vector d̃ = x̃1 − (rx̃2 + 1t), where r and
t are the pose parameters of the registration we need to obtain. Let d̃l denote the
elements in the vector d̃ = [d̃1, . . . , d̃L]

T. Thus, d̃l = x̃1[l]− (rx̃2[l] + t) is the distance
between the lth corresponding point, whose contribution should be considered in the
registration calculation only if there is true correspondence between x̃1[l] and x̃2[l].
Therefore, we give a probabilistic interpretation to d̃l.

We model the probability of correspondence as a Bernoulli random variable γl
that takes value 1 when there is correspondence, so

γl =

{
1 with probability wl (correspondence)
0 with probability 1− wl (no correspondence).
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Therefore, the registration distance to consider is d̃lγl, which is random. Instead of
minimizing the sum of squared distances, as in (6.2), the proposed problem is to
minimize the expected value of the sum of these squared random distances, that is

E
[

L

∑
l=1

d̃l
2
γl

]
=

L

∑
l=1

d̃l
2E[γl] =

L

∑
i=1

d̃l
2wl = d̃HWd̃, (6.12)

which results in a weighted least-squares formulation, where W is a diagonal matrix
whose diagonal elements are the probabilities w1, w2, . . . , wL, which will be deter-
mined below.

The pose vector p? = [r? t?]T that minimizes the sum of probabilistic distances
defined in (6.12) is the solution to the weighted least-squares problem

p? = arg min
p

d̃HWd̃ , (6.13)

which is p? = (X̃H
2 WX̃2)

−1X̃H
2 Wx̃1 with X̃2 = [x̃2 1].

6.2.2 Determining the weights

In order to obtain the correspondence probabilities, i.e., the weights wl, we first
transform x̃1 and x̃2 into their respective preshapes τ̃1 and τ̃2, as defined in (6.9). To
this end, we assume that the shape vectors x̃1 and x̃2 belong to the same statistical
shape model as defined in (6.11). This model is determined by the mean µ and
a deformation random vector δ. Assuming there is no prior information about the
shape model, we fix the preshape of x̃1, i.e., τ̃1, to be the mean. Then, the preshape
of x̃2, i.e., τ̃2, can be expressed in terms of τ̃1 as

r̃τ̃2 = τ̃1 + δ′, (6.14)

where r̃ = exp(− jarg(τ̃H
1 τ̃2)), and δ′ = [δ′1, . . . , δ′L]

T is an obervation of the
random vector of shape deformation. Gaussian deformation models are typically
used in shape analysis to model non-rigid deformations [32]. Hence, we choose
δ′ ∼ CN (0,σ2I), where I is the identity matrix. Therefore, each δ′l is assumed to
be independent and identically distributed (i.i.d.) as complex Gaussian with mean
zero and variance σ2. Real and imaginary parts are independent, each with variance
σ2

2 . We may thus employ a chi-squared test since the normalized distances ∆l, for
l = 1, . . . , L, are chi-squared distributed with two degrees of freedom, i.e.,

∆l =
2|δ′l|2

σ2 ∼ χ2
2. (6.15)

Therefore, the weights wl may be determined from the cumulative chi-squared dis-
tribution function as

wl = 1−
∫ ∆l

0

e−u/2

2Γ(1)
du. (6.16)

Since the elements of δ′ are i.i.d., we estimate σ2 as the sample variance, that is,
σ̂2 = 1

L(r̃τ̃2 − τ̃1)
H(r̃τ̃2 − τ̃1).



6.2 DTW-based solution 109

Figure 6.4: Two examples of arc-length fluctuations. Left: There is a many-to-one
correspondence due to local differences in the arc-length. Right: The squares-line is
longer than the circles-line at the end, and thus many points from the squares-line
correspond to a single point from the circles-line.

6.2.3 Soft boundary condition

One of the constraints in DTW is the boundary condition, which requires that the
beginning and end points of the two contours are always in correspondence. There-
fore, when dealing with contours of different lengths, the DTW algorithm assigns
the same correspondences to the additional points at the extremes, as illustrated in
Fig. 6.4 (right), generating many-to-one correspondences at the start or end of the
warping path. These many-to-one correspondences represent a missing part of the
contour and should not influence the weighted least-squares minimization in (6.13).
We detect these situations by analyzing the corresponding values in the warping path
matrix C at the start (l = 1) and end (l = L). Then, we assign zero weight to any
repeated corresponding points. This can be achieved with Algorithm 6.1.

Algorithm 6.1 Adjusting the weights to account for many-to-one correspondences in
W that are due to the soft boundary condition.

Inputs: W with diagonal elements wl = 1 −
∫ ∆l

0
e−u/2

2Γ(1)du ∀l = 1, . . . , L (as in
(6.16)).
Path vectors cl = (n(l)

1 , n(l)
2 ) ∀l = 1, . . . , L.

for i = {1, 2} do

1. l′ = arg maxl(n
(1)
i = n(l)

i ), w1, . . . , wl′−1 = 0

2. l′′ = arg minl(n
(L)
i = n(l)

i ), wl′′+1, . . . , wL = 0.

end
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Figure 6.5: Left: Result from Algorithm 2 after 3 iterations (black, dotted) and con-
verged result (red, dashed). Right: DTW cost function for every pair of points, and
corresponding warping path of correspondence between the two boundaries after
convergence.

6.2.4 Simultaneous pose and correspondences estimation

The whole procedure of jointly estimating the Procrustes registration and correspon-
dences works as follows. We solve the minimization problem

[r?, t?, C?] = arg min
r,t,C∈P

(x̃1 − x̃2)
HW(x̃1 − x̃2) (6.17)

iteratively with an alternating optimization. The solution is described in detail in
Algorithm 6.2. In Fig. 6.5 we show one example of the warping path C as well as
the resulting cost function and registration obtained by the proposed algorithm.

6.2.5 Group-wise solution

Within a set of M shape vectors with no assigned correspondences, we aim at mini-
mizing the DTW distance between their mean µ and their pose- and correspondence-
corrected versions and hence extending the generalized Procrustes analysis in [108].
Starting from the proposed pair-wise solution, let us assume that x1 is a reference
vector and x2 is a target vector and determine the corresponding points with respect
to the reference vector. We define x̂2(x1), of length N1, to contain those points of the
target x2 that correspond to the points in the reference x1. Since x1 and x2 do not
have to have the same lengths and due to possible many-to-one correspondences, we
agree on the following:
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Algorithm 6.2 Proposed algorithm to determine simultaneously the registration and
correspondences based on dynamic time warping.
Input: x1 ∈ CN1 (reference) and x2 ∈ CN2 (target).

Result: Correspondence C and pose {r, t}.
initialization: i = 0, c > cmin, y(0) = x2
while c > cmin and i < imax do

1. Find correspondence C between y(i) and x1, as defined in (6.6).

2. Use C to determine ỹ and x̃1.

3. Calculate W as in Algorithm 6.1.

4. Find pose parameters p = [r t]T as in (6.13).

5. Determine y(i+1) = ry(i) + 1t.

6. c = ||y(i) − y(i+1)||2, i = i + 1

end

• If there is a many-to-one corresponding set of points such as in Fig. 6.4 (left),
and there are more points in the target than in the reference, we keep only the
point that is closest to the mid-point of the fluctuation.

• If the many-to-one correspondences occur the opposite way (more points in
the reference than in the target) we assume the points are repeated, unless
they appear at the extremes (as in Fig. 6.4, right). In such a case, in order to
force the length of x̂2(x1) to be N1, these points are labeled as “empty".

• If the target is longer at the extremes than the reference, we delete the extra
points in the target.

We need to register a set of shape vectors to its estimated mean µ. Following the
above agreements, for each of the M training vectors xm, m = 1, . . . , M, we deter-
mine the vector ŷm(µ) = rmx̂m(µ) + 1tm, which is registered to the mean µ with
one-to-one correspondence. Then, the mean shape is estimated as

µ? = arg min
µ

M

∑
l=1
||µ − ŷm(µ)||2. (6.18)

Notice that µ is a preshape. In order to register each x̃m to the mean µ we need to
determine

[r?m, t?m, C?
m] = arg min

r,t,C∈P
(µ − ŷm(µ))

HWm(µ − ŷm(µ)). (6.19)

The expression in (6.19) is solved for all m = 1, . . . , M. As expected, the estimation
of the mean in (6.18) depends on the extraction of the registration parameters in
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(6.19). This is handled in an iterative process. We describe this method in detail in
Algorithm 6.3. Notice that the points that are labeled as “empty" are not used when
computing the mean.

Algorithm 6.3 Group-wise correspondence and registration as an extended general-
ized Procrustes analysis.
Input: xm, for m = 1, . . . , M, with lengths Nm and no assigned correspondences.

Result: Correspondence Cm, poses {rm, tm} and mean µ.
initialization: i = 0, c > cmin
µ(0) = τm (preshape of any xm, preferably the longest)
while c > cmin and i < imax do

for m = 1, . . . , M do

1. Use Algorithm 6.2 to find Cm, rm and tm
(inputs: µ(i) and xm).

2. Determine ym = rmxm + 1tm.

3. Calculate ŷm(µ) using Cm.

4. xm = ym.

end

1. Compute µ(i+1) with elements µ(i+1)[n] = 1
Mn

∑m∈Mn ŷm(µ)[n]
whereMn is the set of indices such that ŷm(µ)
is not empty, and Mn the number of such indices.

2. c = ||µ(i+1) −µ(i)||2, i = i + 1

end

6.3 Results and discussion

We validate our proposed strategy with contours of the femur extracted from fluoro-
scopic (low dose, and thus low quality) X-ray images. In this context, a registration
technique may be used to design a statistical shape model of the femur for automatic
segmentation [132]. Our database contains manually traced contours of both prox-
imal and distal sides of the femur. We also apply our technique to an open source
database of hand images [133], where the contours are automatically extracted with
conventional edge detectors.

In this section, we study the accuracy of the registration of a pair of shape vectors
in comparison with the competing strategies described in Section 6.3.2. We also
compare our group-wise approach with a generalized Procrustes analysis based on
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manual correspondences, since this is the typical solution for designing statistical
shape models.

6.3.1 Data description

Proximal femur

This set contains contours from the proximal femur extracted from fluoroscopic X-
rays images. These images are in anterior-posterior orientation and acquired with a
C-arm during surgery implanting a cephalomedullary nail for osteosynthesis, which
treats fractures of the femurOur X-ray images therefore also show implants and sur-
gical tools (nail, blade, or k-wire), as seen in Fig. A.1. We collected 350 manually
drawn boundaries that contain between 500 and 1000 points, are one pixel wide,
and 8-connected. On those contours, 9 landmarks are manually annotated. More
details about these images can be found in the Appendix.

Distal femur

This set contains contours from the distal part of the femur, also extracted from
fluoroscopic images from the same surgical interventions as with the proximal femur
[109]. The images show the femur contour and the medial condyle. We collected
116 manually drawn contours and on those manually placed two landmarks that
delimit the condyle. The contours contain between 450 and 950 points and are one
pixel wide and 8-connected. We show some examples in Fig. A.1. More details can
be found in the Appendix.

Hands

The set contains 1000 closed-form contours that are automatically extracted with
conventional edge detectors from natural images of hands. The starting point of the
contour is automatically obtained as approximately located around the wrist [133].
The contours contain between 1200 and 2200 points. This data set does not contain
manually annotated landmarks.

6.3.2 Competing techniques

We present an overview of the competing strategies that we consider in our experi-
ments.

Manual correspondences

We consider a Procrustes registration based on manually determined correspon-
dences. This is the typical registration to train statistical shape models [20]. These
correspondences are determined using the available manually annotated landmarks
on the femur. In order to account for more corresponding points, a fixed number of
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equidistant landmarks is additionally extracted between the manual landmarks [35].
This process is time-consuming and error-prone because the manual landmarks were
tedious to annotate and difficult to define. Due to the C-arm movements, ensur-
ing consistency of the annotated landmarks is very challenging. Also, anatomically
meaningful points, such as “the most proximal point to greater trochanter", are dif-
ficult to determine in the image or may not even lie on the bone boundary. With
manual correspondences the registration parameters are obtained by a least-squares
minimization as defined in (6.2).

Coherent Point Drift [113]

This iterative algorithm, based on ICP, models the points on the contours as Gaussian
mixtures in order to add robustness to the registration. In each iteration, a correspon-
dence matrix that accounts for every possible pair of correspondences is computed
and used to determine the registration parameters.

Robust Iterative Closest Point [114]

This is an iterative algorithm based on ICP. It enhances the robustness of ICP through
M-estimators. The correspondences are calculated in a way similar to the CPD strat-
egy.

6.3.3 Test of performance

We do not have available a ground truth of the registration and correspondence
parameters. Therefore, to evaluate the accuracy of registration, we consider two
different metrics, each with their own particular limitations. To test the robustness
against the presence of outliers, we design a test in which we simulate typical errors
that an automatic edge detector might introduce into the segmentation. Additionally,
since DTW requires ordered input signals, we study the impact of an unknown topol-
ogy with unordered inputs. Finally, we consider the total variance of the group-wise
registration as a quality measure.

Accuracy of pairwise registration

Since there is no ground truth of the registration and correspondence parameters,
we consider the following performance metrics. First, the sum of minimum distances
between a reference vector xref ∈ CNr and a target vector xtarget ∈ CNt , that is

dtest =
1

Nt

Nt

∑
nt=1

min
nr=1,...,Nr

|xtarget[nt]− xref[nr]|. (6.20)

This distance can be interpreted as a modified Hausdorff distance [133]. The in-
terpretation of dtest may be misleading, for instance, in the registration of the hand
contours, where a short distance may be achieved if a finger in the target is aligned
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to an incorrect finger in the reference. We therefore also evaluate a second metric:
the intersection-over-union (IoU) of the areas that the contours cover after the reg-
istration [134]. However, this metric may also be misleading for the evaluation of
incomplete contours, as is the case in our femur database, since a perfect registration
may represent a small intersection area with respect to the union area. Unfortunately,
there does not seem to be one single quantity that perfectly measures the accuracy
of registration in this problem.

Outliers

Outliers are points that do not belong to the contour or have been distorted and
disrupt the shape. The femur contours in our database are almost free of outliers
because they were manually obtained. The competing strategies [113] and [114] are
designed to deal with outliers and noisy contours. In order to compare the robustness
of our strategy to the competing techniques, we perform a test where we add outliers
artificially to our database by emulating the distortion possibly induced by automatic
segmentation. First, we add a noise component to the shape vector xm, i.e., zm =
xm +γ, with γ ∼ CN (0,σ2

nI), to consider a small noisy deformation. Then, for each
noisy shape vector, zm, we randomly contort 10 segments of random length ls, in
different sections of the contour, each starting at a random index ns. Let us denote
the points in these segments as z(s)outliers, for s = 1, . . . , 10. We displace the points from
the contour emulating the typical errors of an edge detector occurring when an edge
from a neighboring structure is detected instead of the true contour. The resulting
displaced and distorted segment is

z(s)outliers = z(s) + 1βs, (6.21)

where z(s) =
[
zm[ns], . . . , zm[ns + ls]

]T and βs ∼ CN (0,σ2
t ). We choose σ2

t , σ2
n and

the range of ls by visual inspection, such that the resulting contours look realistic. We
show an example of a contour from the proximal femur database affected by such
displacements and distortions in Fig. 6.7, where σt = 12 pixels, σn = 1 pixel, and
ls is a uniform random value between 1 and 10 percent of the total length of the
contour.

Unknown order

DTW requires that the order of the entries of each vector follow the contour, with
the first entry corresponding to the start point and the last entry corresponding to
the end point. In our database this is the case because the contours were manually
determined. However, when the contours are automatically extracted, e.g. with an
edge detector, this order may be unknown. The inputs to the competing techniques
are point clouds, with no given topology. In order to determine to what extent the
performance of our technique depends on an a priori known order, we propose the
following test: We randomly shuffle the points in the shape vectors so that the order
is unknown and add the following preprocessing step to estimate the order before
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applying our registration technique. Start and end points are determined heuristi-
cally. Since we assume that the target and reference follow the same shape model,
we have not contemplated mirroring. We may assume w.l.o.g. to follow the contour
in an anti-clockwise direction, and the start and end points are assigned based on
their proximity to the image border. Then, we use alpha shapes [135] to calculate an
approximate order and reorder the points accordingly.

Performance of the group-wise registration

Following the properties of a good shape model described in [102] and [11], we
evaluate the total variance of the group-wise result as a quality metric. We compare
our proposed extended generalized Procrustes alignment to a regular generalized
Procrustes alignment, which is based on landmarks whose correspondence was man-
ually determined.

6.3.4 Procrustes registration of two shape vectors

We first discuss the accuracy of the pair-wise registration. We evaluate the distance
of registering each shape vector to the longest vector in each data set. We measured
the described distance dtest and the IoU. We show the resulting boxplots in Fig. 6.8.
We considered the femoral shapes from our database (proximal and distal) as well
as the hand shapes. Our strategy performs best median results among all competing
techniques, for all three data sets, in terms of both metrics dtest and IoU. It also has the
smallest variability in performance as measured by these metrics. Our technique even
outperforms the manually determined correspondences (where available). We show
one example of the registration results in Fig. 6.9, where our strategy performed a
much more accurate registration.

6.3.5 Outliers and unknown order

To determine how well the techniques handle outliers and possibly unknown order
of points, we perform two further registration tests for the proximal femur contours.

Test with outliers

In Fig. 6.10 (labeled as “Outlier") we show a boxplot of the registration results
with the outlier model discussed in Section 6.2.2 in terms of dtest. We observe that
our strategy, even though it experiences some loss of accuracy with respect to the
outlier-free result, still outperforms the competing strategies. Moreover, if the pro-
posed weighted least-squares minimization in (6.13) is substituted with an ordinary
least-squares approach, i.e., W = I, there is some loss in performance. Hence, the
weighted least-squares registration adds robustness.
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Test with unknown order

In Fig. 6.10 (labeled as “Unsorted") we present the results of a test in which the
points in the vector were shuffled. As expected, this has some effect on our technique
but not the competitors since those do not use a prior point ordering. However, our
strategy still outperforms the competition, and the weights in (6.13) enhance the
accuracy.

Test with outliers and unknown order

In Fig. 6.10 (labeled as “Outliers + Unsorted") we show the results of the combined
effects of outliers and unsorted vectors. Our proposed registration still outperforms
all competing techniques.

6.3.6 Group-wise registration

We performed a group-wise registration of each of our three shape data sets. We
show the results of the obtained mean shape in Fig. 6.11, which look as expected
for each dataset. The estimate is worst at the extremes of the femur contours due to
a smaller number of samples in these regions. For the hands, the wrist experiences
more outliers and variability [133].

We compare the result of our group-wise registration to a registration based on
manual correspondences. We performed this study with the femoral data sets, where
manual landmarks are available. We show the qualitative results in Fig. 6.12. In
order to improve the visualization, we show only 40 points, equidistantly chosen
on the registered contours. We see that the proposed registration provides a more
compact representation. As a quantitative metric we also evaluate the total variance
of the points, which is the trace of the sample covariance matrices of the registered
vectors. This metric is used to quantify the quality of the correspondences in [11].
The ratio between the total variances of the proposed and the manual models is 0.05
for the femoral head, and 0.1 for the condyle. This means that the total variance of
the proposed registration is one order of magnitude smaller, and hence more compact
and better registered [11].
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Figure 6.6: Fluoroscopic images of the femur in our database. The proximal femur
(first three images) contains 9 manually annotated landmarks: the first and second
images have different lengths due to movements of the C-arm; the third image differs
due to a more medio-lateral position. The distal femur (last two images) contains
two manual landmarks, and the lengths of the visible shaft may be different. More
information about the medical images source can be found in the Appendix.
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Figure 6.7: Comparison of an original contour (left) and a contour with artificial
distortion for the outlier test (right).
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Figure 6.8: Boxplots comparing the registration results using our proposed strategy
(blue), CPD [113] (red), r- (robust) ICP [114] (yellow), and manually determined
correspondences (purple). There are no manual correspondences available for the
hand shapes. The left plot shows dtest, which is measured in pixels (in the fluoro-
scopic images the pixel size is ≈ 0.45 mm, and in the hand images ≈ 0.5 mm [133]).
The right plot shows IoU. In Algorithms 6.2 and 6.3 we have employed imax = 100
(maximum number of iterations) and cmin = 10−4 minm=1,...,M ||xm|| (tolerance stop-
ping criterion).
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Figure 6.9: Comparative example of the proposed registration of the contour of the
proximal femur. The reference (ref) and target have different lengths, sizes, and
original positions.
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Figure 6.10: Boxplot of error metric dtest in pixels (pixel size ≈ 0.45 mm) for regis-
tration with outliers and/or without prior ordering, for the proximal femur database.
We considered our proposed strategy (prop., blue) as well as an unweighted version
of our proposed strategy (prop. W = I, violet).
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Figure 6.11: Estimated mean shape (proximal femur, distal femur, hand) obtained
with proposed group-wise solution as described in Algorithm 6.3.

Figure 6.12: 40 equidistant points from proximal and distal femoral contours after
applying the proposed Algorithm 6.3 (left images), and a typical generalized Pro-
crustes analysis that is based on manual landmarks (right images).
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Chapter7
Conclusions and closing remarks

“No amount of experimentation can ever prove me right; a single experiment
can prove me wrong.”

— Albert Einstein

In this thesis we have studied how to improve SSM in order to enhance their
segmentation performance and applicability. The goal of this enhancement is that
the SSM will become more useful and more frequently applied as prior information
in Image Processing, Machine Learning and Computer Vision.

We have particularly focused on medical imaging. Our first motivation was CAS
and fluoroscopic images from the femur, where the femoral contour needs to be
segmented. In this scenario, SSM-based segmentation algorithms did not provide
enough accuracy for the medical application. Therefore, our starting point was to
find the required modifications to make SSM-based segmentation algorithms work
in these challenging image modalities like fluoroscopy. We investigated how to add
robustness while keeping the simplicity of the algorithms, since real-time computa-
tion is critical in CAS applications. A good generalization to other shapes was also a
feature to achieve: our proposed enhancement is not only applicable to the femur.

Additionally, we noticed the heuristic design of SSM parameters, such as as the
model order and the position of the manual landmarks, and studied whether these
heuristic selections were preventing SSM to provide their full benefit and potential.
To this end, we designed a novel model-order selection based on information theory.
Also, we introduced DTW in the generalized Procrustes analysis to avoid the manual
correspondence from the landmarks.

Consequently, our contributions focused on these three points: add robustness
to SSM-based segmentation techniques, select the model order more optimally, and
avoid the need of manual landmarks during the training process. These proposed
improvements and techniques are extensible to different anatomical parts, image
modalities, or even other applications not related to medicine (Computer Vision in
general).

As a closing remark, we provide the following outlook with the conclusions from
each contributions of our work.
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7.1 Add robustness, keep simplicity

Firstly, we observed that SSM-based segmentation algorithms did not perform accu-
rately in fluoroscopic images, which need to be processed real-time to be used in
CAS applications. These algorithms, such as ASM and CLM, are iterative. In each
iteration, a least-squares fit of a plausible shape to some detected target landmarks
is determined. Finding these targets is a critical step: some landmarks are more reli-
ably detected than others, and some landmarks may not be within the field of view
of their detectors

We proposed a GLS instead of an OLS fit as a straightforward and simple strat-
egy to add robustness to the ASM algorithm. The weights in the GLS fit should
not be selected only assuming heuristic confidence metrics of the landmarks, since
these do not generalize and are prone to over-fitting. We chose the weights based on
empirically determined errors of the least-squares fit, where the weighting matrix is
determined as the inverse of the sample covariance of the residuals. This can be inter-
preted as a maximum likelihood solution of the least-squares problem. Additionally
we used a chi-squared test to identify target landmarks that are likely to be incorrect
and thus exclude them from the fit. Therefore, we combine prior knowledge about
the performance of the target detectors in the weighting matrix designed with train-
ing residuals, with additional information about the unreachable landmarks (either
occluded or out of alignment) in the chi-squared test.

We tested the strategy in fluoroscopic X-ray images of the femur taken in actual
surgeries. We showed that our strategy outperforms the standard ASM as well as
other weighting strategies. While our approach was based on a particular metric for
identifying target landmarks (the Mahalanobis distance), our idea should generalize
to other metrics as well.

7.2 The importance of the model order

Secondly, we studied the importance of the model order in statistical shape models,
which determines how much of the variation seen in the training data is accounted
for by PDM. A good choice of the model order depends on the number of training
samples and the noise level in the training data set. Yet the most common approach
for choosing the model order simply keeps a predetermined percentage of the to-
tal shape variation. We proposed a model-order selection strategy that is based on
information-theoretic criteria and thus has a theoretical justification. Furthermore,
this technique can be used in a more general source enumeration problem with ob-
servations in additive colored noise. We considered colored noise because it is more
realistic than white noise, although it is not typically considered in source detection
problems.

In this approach we interpreted the model selection in a different way. That is, in
the typical PCA model-order selection, the way to determine the number of sources is
to consider that the sources are random and the order is inferred from the covariance
matrix of the observations. In our scenario, however, we assume that the sources are
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deterministic, so the order only modulates the mean of the observations. Consider-
ing a generic model of colored noise, we provided a technique for determining the
number of sources when the noise observations have an unknown covariance matrix.

We validated the selection performance of our technique on simulated data, and
it outperformed other model-order selection strategies under different conditions of
sample support and noise level. We have also evaluated the technique on shapes
from real data sets, showing results similar to the evaluation with artificial data.
Additionally, we performed an empirical test to illustrate the impact of the model
order of shape models, and how the choice of order provided by our technique results
on a model with better performance.

7.3 Registration without manual correspondences

Finally, in order to avoid the manual selection of landmarks, we investigated the
problem of registration when there are not correspondence references. Solving the
problem of the correspondence makes the registration of training contours possible
when the landmarks are not available. Furthermore, an accurate registration is fun-
damental in segmentation and retrieval applications, as well as for learning shape
models and atlases, which may be used not only in CAS but in other Computer Vision
applications.

We solved simultaneously the correspondence and the Procrustes registration
problem. The proposed correspondences are based on DTW, and a probabilistic
alignment that adds robustness. DTW preserves the order of points on a contour,
providing higher accuracy and preserving efficiency, which is the main difference
with respect to the strategies based on the ICP algorithm. Our strategy outperformed
competing approaches with similar computation time when tested on three different
anatomical contours, even in the presence of outliers and with unordered points.

We also proposed a group-wise solution that can be used to train SSM. Our tech-
nique saves annotation time and does not require manually placed landmarks. It
also provides a training set that is accurately registered, and hence more compact
and meaningful shape models can be learned.
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Chapter8
Contributions under development

“The alchemists in their search for gold discovered many other things of
greater value.”

— Arthur Schopenhauer

During the development of this work we have discussed many interesting ideas
that were under development at the time of writing this thesis. Chronologically,
the last contribution of the thesis has been Chapter 6. This DTW-based registration
of contours has provided the most promising results in terms of future work, and
has motivated many interesting extensions. The first and most obvious one is a
three-dimensional extension of this registration approach. The registration of three-
dimensional point sets is very important in computer vision and machine learning,
and therefore our DTW-based registration would be incomplete if this extension was
not feasible. Therefore, we propose in Section 8.1 of this chapter a working solution
for the extension, which we have been designing during the last few months prior to
the submission of this thesis.

Another important issue when registering a collection of contours with DTW to
train a shape model is that the number of points in the contour is typically high,
since it is initially as dense as the pixel resolution of the training images. The SSM-
based segmentation algorithms like ASM and CLM need to find the landmarks in
new images in their iterative process, as described in Chapter 2. If the SSM contain
too many points this search becomes very slow and may compromise the real-time
requirements of, for instance, CAS applications. Therefore, we have been working on
a landmark selection technique, based on sparse optimization, that chooses a small
collection of landmarks from the initially dense contours. The criterion of selection is
that the non-selected points are estimated from the selected ones using the SSM, and
therefore they do not need to be searched as targets by the segmentation algorithms.
Consequently, this technique can also be considered as a sampling approach. We
present our preliminary results of this promising sampling technique in Section 8.2
of this chapter.
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8.1 Procrustes registration of surfaces without corre-
spondences

The ICP-based algorithms discussed in Chapter 6, such as CPD, are not specific only
for two-dimensional contours. These techniques also work with three-dimensional
point sets. These type of data is very common, since anatomy, archaeological pieces,
and in general everyday objects are volumes. Therefore, their three-dimensional
shape information has great potential in Image Processing and Machine Learning.
For instance, a three-dimensional shape model of a bone can enhance prosthesis de-
sign for trauma surgery. Also, a CAS surgical scene can be controlled by a navigation
system much better with knowledge about the volumes. Consequently, we have con-
sidered important to extend our proposed registration strategy in Chapter 6. In this
chapter we present our three-dimensional approach to register surfaces with DTW,
which is currently under development.

8.1.1 A three-dimensional extension of the DTW-based solution

The classical DTW algorithm deals with time series analysis. This means that, the
signals are in the time domain, and therefore can be parametrized by a one vari-
able: time. However, if we contemplate surfaces, these would need equivalently
two parameters. The warping in this case needs to happen over a two dimensional
space. There are solutions to high dimensional extensions of DTW. For instance, the
authors in [136] consider a two-dimensional warping solved by dynamic program-
ming. However, such an approach would increase the computational requirements
of the registration, and the resulting technique may not be feasible in real time.

If the three-dimensional points inside a set are ordered under certain pattern, and
this order only depends of one parameter, such as time-dependent series are ordered,
the extension of the DTW becomes much simpler. The complex number cost func-
tion, based on the Euclidean distance, is substituted by a sum of Euclidean distances
of points in R3. Then, an equivalent dynamic programming solution to the one in
Chapter 6 can be applied to obtain the path of correspondence. Still, establishing
a point ordering is a challenging task. We have implemented a heuristic approach
to determine an ordering, being aware that better ordering criteria could be de-
fined. Nevertheless, our proposed three-dimensional registration has outperformed
the competing strategy in [113] in our preliminary results.

Our strategy consists in the following. Let us consider the Procrustes registration
of the set X2 ∈ R3×N2 onto the set X1 ∈ R3×N1 , with points X1 =

[
x1[1], . . . , x1[N1]

]
and X2 =

[
x2[1], . . . , x2[N2]

]
. This is performed by the pose parameters s ∈ R+

(scale), R ∈ SO(3) (rotation), and t ∈ R3 (translation) that minimize the trace of
the difference between X1 and X2.

As a pre-processing step to arrange the points of each the point sets we consider
the distance of these points to a reference point inside the volume, similarly as in
Chapter 6. Once the points in the volumetric sets are ordered, the following registra-
tion problem
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[s?, R?, t?, C?] = arg min
s,R,t,C

(
L

∑
l=1
||x1[n

(l)
1 ]− (sRx2[n

(l)
2 ] + t)||2), (8.1)

wich can be solved with the DTW-based registration in Chapter 6. The main differ-
ence in the DTW is that each cost stage D(n1, n2) is now computed considering the
distance

d(n1, n2) = ||x1[n1]− x2[n2]||2. (8.2)

We show an example of our DTW-based registration in Fig. 8.1.
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Figure 8.1: An example of a result of our proposed extension for the DTW-based
registration strategy.

8.1.2 Preliminary results

We present these experimental results to show that the extension of the approach
in Chapter 6 to a three-dimensional case is feasible. Therefore, we have considered
a dataset of femoral volumes and applied our DTW-based registration strategy. We
then compare the registration performance, in terms of accuracy and computation
time, with the CPD algorithm in [113].

We use volume data of the complete femur bone. This set contains 50 surfaces
composed of triangle meshes that belong to FutureLearn course on Statistical Shape
Modelling database [137]. The volumes may correspond to either left of right leg.
More details about this dataset can be found in the Appendix. We validate the DTW-
based registration on these 50 meshes of the femur bone surface. We transform the
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triangle meshes into points in R3 and evaluate the performance of our approach in
terms of registration accuracy (with the so defined in Chapter 6 dtest), and compare
against the CPD algorithm. We study the tendency of these two metrics (accuracy and
computation time) with respect to the number of points considered in the volumes.
For that purpose we uniformly downsampled the volumes.

In this test our approach outperforms CPD on average over the 50 samples in
terms of accuracy, as shown in Fig. 8.2, even though the proposed order parametriza-
tion of the surface is very basic. A better parametrization could be based on an es-
timate of the gradients of the surface. Furthermore, our implementation (which is
based on the MATLAB function dtw.m) performs the registration five times faster that
the CPD MATLAB approach provided by the authors in [113].
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Figure 8.2: Accuracy error (dtest) with respect to the number of points in the point
sets.
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8.2 Target landmark selection via sparse optimization

The contour vectors to train SSM, which are group-wise registered with the DTW-
based strategy proposed in Chapter 6, contain as many points as the resolution of
the training images. This quantity of points may generate SSM fits that are too
dense: if too many landmarks need to be searched to fit a shape model, the resulting
segmentation algorithms may become computationally expensive and not feasible in
real time. Therefore, a landmark selection needs to be performed. Still, SSM with
many points provide good resolution. Consequently we need to find a good trade-off
between neglecting and keeping points during the SSM fit.

We propose to consider a LMMSE to minimize the error of calculating the ne-
glected values in the contour vector x ∈ CN. If some landmarks can be efficiently
estimated from a few points in x, fewer landmarks need to be searched by segmenta-
tion algorithms, and a dense SSM becomes more efficient. We use a sparse optimiza-
tion to select n landmarks from the initially N points in x so that only n targets need
to be searched for the SSM fit.

8.2.1 A sampling method based on sparse optimization

As explained before, the motivation of this technique is to reduce the computational
complexity of each iteration of a segmentation technique, such as ASM, considering
the search of only a few target landmark during the SSM fit. With an LMMSE es-
timation of the non-searched points the high resolution of the DTW-registered SSM
is maintained. Let us assume we have M observations of the shape vector x, that is
X =

[
x(1), . . . , x(M)

]
∈ CN×M. Using an LMMSE estimator, the problem can be cast

as
minimize

A∈RN×N
||X−AX||2F + ρ||A||2,0, (8.3)

where ρ ≥ 0 is the sparsity parameter [138], which forces the sampling matrix A ∈
CN×N to have a particular sparsity structure , i.e., some of the rows are zero valued
as

A =


. . . . . . . . .
−−− 0 −−−
. . . . . . . . .
−−− 0 −−−
. . . . . . . . .

 . (8.4)

This enforces the selection of n landmarks such that the linear estimation of the dis-
carded N − n landmarks is minimum. This problem, however, is highly non-convex,
which makes it intractable. Following the lines in [138], we replace the `0-norm by
the tractable surrogate function and consider MM framework, as the one described
in Chapter 4. Therefore, (8.3) is replaced by

minimize
A∈RN×N

||X−AX||2F + ρ
N

∑
j=1

gεp
(√√√√ N

∑
i=1
|ai j|2

)
, (8.5)
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where ai j are the elements in the ith row and the jth columnd of matrix A, and gεp(·)
is any of the surrogate functions in [138].

8.2.2 Preliminary results

We consider the estimation error of the neglected points in the contour as a metric
of comparative performance. We present a study on the estimation error of recovery
of our proposed method. As competing strategies we use a uniform sampling and a
landmark selection technique presented in [139].

As shape data we use two different contours in the analysis:

1. The femoral head contours that have been group-wise registered with the ap-
proach in Chapter 6.

2. The hand contours that have been group-wise registered with the approach in
Chapter 6.

We have downsampled the contours before applying the selection techniques. There-
fore, the input contours contain 100 points. The goal of the selection is to obtain
10 out of these 100 contour points. The metric considered is the estimation error of
remaining 90 points. The sparsity parameter, that is ρ, is manually adjusted to select
10 points of the contour.

We perform a leave-one-out test to estimate the error, similarly as in Chapter
5. Let xn denote the neglected landmarks during the sparse selection, and xs the
selected landmarks. Let R̂ns denote the sample cross-covariance matrix between the
neglected landmark and the selected landmarks, and R̂ss the covariance matrix of
the selected landmarks. The LMMSE estimator of the neglected landmarks from the
selected landmarks is then x̂n = R̂nsR̂−1

ss xs. We average the error over all neglected
landmarks and obtain

eLMMSE(m) =

√
1

N − n
||x̂(m)

n − x(m)
n ||2, (8.6)

which is evaluated for all samples, i.e., m = 1, . . . , M.
We present the boxplots of eLMMSE, representing the errors for each of the tech-

niques under analysis in Fig. 8.3. Our sparse optimization selection (proposed)
outperforms the other techniques by approximately 0.5 pixels on average over the
complete contour, as measured error in Fig. 8.3.
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Figure 8.3: Boxplot of the performance metric eLMMSE from all the leave-one-out
iterations over all samples. Values are in pixels (pixel size is ≈ 0.45 mm, and in the
hand images ≈ 0.5 mm).
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Chapter9
Future Work

“Science will always be a search, and never a true discovery. Science is the
journey, never the destination.”

— Karl Popper

During the development of this doctoral research, many promising ideas have
been left open. Most of the contributions presented in Part II are related to the
analysis of shape models: model order, group-wise registrations or optimal sampling.
However, we did not invest as much time to develop strategies to fit of the models.
For instance, in an ASM segmentation, finding better target landmarks is critical. It
is a promising path of research to design new target landmark search approaches, as
an alternative to the Mahalanobis distance of a one-dimensional profiles, to provide
more accurate SSM fits and at the same time preserve real-time computation.

Deep Learning is also a very promising tool in image analysis. Although Deep
Learning has been mentioned in Chapter 2, and the presented results in Part II also
have applications in DNNs, its potential in shape analysis has not been studied in
detail in this work, and hence an interesting area of research is still open.

In order to motivate and inspire the readers of this thesis, we describe in this
chapter two promising techniques for future research.

1. A Universal Manifold Embedding [140] of local patches of the image to search
and register target landmarks.

2. A Deep structured learning solution [141], which considers the statistical shape
model as prior knowledge, and its influence has an impact during the the back-
propagation of the error in the learning process.

9.1 A Universal Manifold Embedding to search land-
marks

The target point search in segmentation algorithms an ASM or a CLM is very impor-
tant. As described in Chapter 2, ASM target search is based on a one-dimensional
line search and a Mahalanobis distance to a model of appearance of this line. This
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strategy is very simplified, as well as dependent on the direction of the line of search.
CLM target dectectors are based on features from local image patches around the
landmarks. Still, these are dependent of the affine transformations happening be-
tween observations. A promising techniques to find the landmarks is DNN. However,
we need an adequate number of training samples, which is frequently very difficult
to obtain for some applications like medicine.

We propose a different alternative: the Universal Manifold Embedding (UME).
UME provides a mathematical framework to deal with affine transformations in im-
ages: two images (or image patches) are projected to a subspace that is independent
of affine deformations. Thus, target landmarks could be identified by means of these
subspace projections. We illustrate this idea in Fig. 9.1.

P

Figure 9.1: Considering the UME strategy in [142], we would project an image patch
and an affined tranformed version of it into the same subspace P.

9.1.1 The Universal Manifold Embedding

As an encouragement to the reader about this research line, we provide an intro-
duction about the UME. Let us consider two images f and g as functions R2 (pixel
coordinates) to R (pixel gray value). Image g is the same image as f but after an
affine transformation, that is,

h(x) = g(A−1x + c), (9.1)

where x ∈ R2 are the pixel coordinates in the Euclidean space of the image, A ∈ R2×2

is an invertible matrix that defines the affine transformation, and c ∈ R2 a translation
vector. Consequently, g is an observation of h undergoing an affine transformation
[140]. Therefore, the coordinates of image g(y) relate to the coordinates in h(x) as
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y = Ax + d, and
x = A−1y + d = Dỹ (9.2)

with D = [d A−1] ∈ R2×3 and ỹ = [yT 1]T and y = [y1 y2]
T. Thus, the concept

of Universal Manifold Embedding consists on the following. Let us consider a set of
M ∈ N Lesbegue measurable functions [140], that is, the set of function wm : R→ R
with m = 1, . . . , M. Thus, there is a mapping for image f such that

T( f ) =

∑ ∑ w1 f (y) ∑ ∑ y1w1 f (y) ∑ ∑ y2w1 f (y)
. . . . . . . . .

∑ ∑ wM f (y) ∑ ∑ y1wM f (y) ∑ ∑ y2wM f (y)


M×3

, (9.3)

where matrix T( f ) is rank 3, and ∑ ∑ represents the sum of all the pixels in an image.
One possible solution to wl could be [143]

wm f (y) =
{

1 at f (y) = m
0 elsewhere (9.4)

and M the number of gray-level values in the images, e.g. 255. If we consider the
matrix D̃ = [e1 DT] with e1 = [1, 0, 0]T, then the image h, which is an observation
of g undergoing an affine deformation, then the following equality applies

T(g)|A−1|D̃ = T(h). (9.5)

Consequently T(g) and T(h) have the same column space. Projection matrices have
one-to-one correspondence to subspaces [142]. Therefore, we can evaluate the pro-
jection matrices of T(g) and T(h) to determine if they correspond to the same sub-
space, and therefore represent the same image but with different affine deformations.
The projection matrix P of T is determined as

P = T(THT)−1. (9.6)

In the absence of noise, the distance between the projection matrices of T(g) and
T(h), i.e., PT(g) and PT(h), is

d(h, g) = ||PT(g) − PT(h)||F = 0 (9.7)

However, the distance d(h, g) is exactly zero if the only deformation between the
images is affine, and if the images are noise free. Therefore, if order to determine
if two images are affine related we may consider the distance to an average projec-
tion matrix of the appearance of that image under different deformation and noise
observations. An approach to determine the mean projection matrix P̄ is proposed in
[142].

9.1.2 Applications of the UME in the ASM-CLM algorithm

We could use the UME to find landmarks in the images. For instance, if we calculate
the projection to the UME of a collection of patches in the image, we could find a
target landmark, as illustrated in Fig. 9.2. This could be applied globally in the
image, and find a small collection of landmarks to compute an initial guess for the
shape fit. Also, it could be applied locally around the area of one landmark, and
fine-tune the fit. We illustrate the global and local search in Fig. 9.3
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Figure 9.2: Illustration of the use of UME [142] to find a target landmark.

9.2 Deep Learning and shape models

In the era of Big Data, making use of deep learning together with shape models seems
promising [144]. Deep learning has demonstrated to be a very powerful tool to solve
problems involving image analysis. Neural networks approximate synthesis problems
with a very non-linear parametric solution. This solution can be, indeed, constrained
by models, as well as prior knowledge about the nature of the problem. SSM can be
this prior knowledge [54] [55] and be used to regularize the solution provided by a
deep neural net. Therefore, a good trade-off between model and data-based can be
studied. There are promising research paths about this idea. Two examples are: how
to incorporate SSM in the deep nets training and back-propagation process, and how
to enhance SSM to provide benefits to the results. To give the reader an intuition of
the answer to these questions, in this section we describe our future research line in
this direction.

9.2.1 Deep Structured Active Shape Models

As mentioned in the previous section, a very challenging step in the segmentation
problems based on ASM and CLM is to find the target landmarks. An interesting
solution is to generate mappings of likelihood of the image to determine which pixel
in is more likely to be a landmark. This problem has traditionally been solved with
image gradients, wavelet analysis and machine learning with image features. There-
fore, finding the target landmarks is very dependent on the image data, and probably
composed by non-linear variability that is difficult to model accurately. However, the
position of those targets has a particular structure from which we can learn a prior:
they belong to a family of shapes. This prior can be provided by SSM.
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Figure 9.3: Illustration of the use of UME [142] globally (left) and locally (right).

Nevertheless, how could we consider then an approach that accounts for the “data
power” and at the same time is conditioned or regularized to a given model/prior?
The authors in [65] already considered this problem in an Active Contour Model
context. Their goal was to segment the contours of houses as seen from satellite
images. They realized that, if they train a DNN to find these contours, the resulting
segmentation was sometimes inaccurate in ways that would have been easy to avoid
with prior knowledge: the contours were not rectangular, did not have straight lines,
etc. Therefore, instead of feeding the DNN to train a resulting contour, the authors
train the net to learn the input of an active contour fit. Consequently, the output of
the overall deep learning strategy is a contour that fulfils the constraints of the model-
based active contour fit, i.e, it considers prior contour properties like smoothness.

The same scheme as in [65] can be extended to SSM and ASM, as illustrated in
Fig. 9.4. A DNN, for instance a U-net, could learn an output image D that maps the
likelihood of a pixel being a landmark of the SSM. This could be interpreted as a data-
based edge detector that searches for target landmarks. Then, a Point Distribution
Model can be fit to the resulting mapping. The output of the overall deep learning
strategy is thus a collection of PDM parameters r, t and b. These parameters are the
result of

[r, t, b] = arg max
b∈B(λ)

D
(
r(µ + Pb + t1)

)
. (9.8)

Following similar optimization techniques as in [65], the influence of the last PDM-
step could be back-propagated and hence condition the parameters of the deep net.
One disadvantage of such an approach would be that, in order to consider the impact
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on net gradients, approximations and relaxations are needed to obtain expressions
of the cost functions. Still, there are other possible prior structures in the cost that
allow to include SSM [145].

Deep NN

SSM fit

structured loss

input image

back propagation

PDM

prior

ground truth

Figure 9.4: Inspired by [65], we propose a strategy in which a DNN predicts a
mapping of landmark likelihood. This map is the input of an SSM-fit layer. After this,
a structured loss can be computed and back-propagated.
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AppendixA
Let there be Data

“It is a capital mistake to theorize before one has data.”

— Sherlock Holmes

Many engineers and scientists agree on the fact that the 21st century is the era
of information and data. Statistical models are used to make decisions and predic-
tions, and are drastically becoming data-driven [146]. However, there are certain
challenges with respect to the data that is needed in SSM. These training annota-
tions typically consist on boundaries or surfaces around the objects of interest that
are manually labeled [35]. This means that, the ground-truth generation is very
time-consuming. For these reasons, they are not frequently shared with open access.

SSM are very frequently used in medical imaging to segment anatomy, since the
inter-patient morphological variability is contained in the shape information. Medical
data is especially hard to access. Most researchers in the medical area are hesitant to
open their databases and there is a strong concern about the privacy of the patients.
Therefore, there is an important lack of data-sharing incentives in the community
[147]. For certain medical image disciplines, such as intraoperative fluoroscopy,
there are very few images available . The main reason is that, typically there are
no protocols of image storage during surgery. In conclusion, medical image data sets
are relatively small, and expensive to acquire. Also, they are difficult to label, since
an expert observer needs to supervise the annotation.

In this chapter we present the design of ground-truth annotation of a collection
of medical images, more particularly intraoperative fluoroscopic X-rays, where the
femur bone needs to be segmented. These database is unfortunately not available
for the scientific community. However, we share the segmentation design of the
anatomy under study, as well as the description of the application that we developed
to acquire high quality annotations.
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A.1 Generation of a database of femoral shape

A.1.1 Fluoroscopic images for computer-assisted surgery

Fluoroscopic X-ray images are frequently used in trauma surgery during intervention
such as fracture reduction, joint replacement and screw insertions. Typically a C-arm
mobile fluoroscopic machine belongs to the surgery room and is used to determine
bone positions, implants alignment, and localize surgical tools [148]. We show one
C-arm example in Fig. A.1. X-ray fluoroscopy contains lower radiation dose, which
makes it safer medical staff and patients. The rotation possibility of the mobile C-
arm also allows to take images from many different views during the intervention.
However, fluoroscopy also involves important limitations, such as narrow field of
view, low contrast and image distortion [148].

Figure A.1: A C-arm and its rotations. Image source: https://www.kiranxray.com

The fixation of nails and screws during orthopaedic surgery frequently requires
an interpretation from the surgeon to estimate the relative position between the tools
and the anatomy. The limitations of fluoroscopy may lead to positioning errors. CAS
systems are therefore developed to guide the surgeon. A software that detects and
segments the anatomy in the images can provide navigation guidance during the
surgery without altering the surgical procedure, and it is safer and less expensive than
a more powerful X-ray machine [149]. The precise localization of the anatomy in a
number of fluoroscopic images can also be used to reconstruct a three dimensional
scene, providing very valuable information to the surgeon [10]. Under such low-
contrast and noisy conditions, extracting automatically the anatomy contours, or
more specifically, bone contours, is a challenging task. SSM with landmark-based
segmentation approaches solve this problem.

During the development of this doctoral work, we had access to a set of fluoro-
scopic images, that were extracted from a femoral trochanteric and shaft fractures
[150]. To heal these fractures, typically an intramedullary nail is intersected inside
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the femur bone, as depicted in Fig. A.2. The images were routinely acquired during
surgery at the Clinic for Trauma Surgery and Orthopaedics at Augsburg University
Hospital. All applicable data privacy regulations were observed, and we only worked
with anonymized data.

Figure A.2: An example of an intralmedullary nail, inserted inside the a femur with
multiple fractures, a fixed with a scre in the femoral head. Image source: [150].

A.1.2 A Graphical User Interface to collect data

We have developed a graphical user interface in MATLAB [151] in order to extract
the ground-truth contours for the SSM analysis. This is a user-friendly platform, as
shown in Fig. A.3, intended for the manual labelling of:

• The contour of the structure, i.e. the hip bones.

• Landmarks on this contour, i.e. available biological/geometrical points on the
boundaries that can be found consistently in every different training image.
These landmarks will lead to a straight-forward correspondence between im-
ages.

The developed application incorporates the following features to guide the user
through the boundary and landmark selection:

• Edges: the user can show the Canny edges [8] automatically detected, with
different threshold parameter. An example of the shown edges is depicted in
Fig. A.4

• Pixel grid: shows the pixel-size separation to perform annotations with pixel
precision.

• Colormap: changes the fake-color of the input gray image to enhance visual-
ization.

The developed platform guarantees that the contours are continuous in a eight-
connectivity, and the width of the contour is one pixel.
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Figure A.3: User interface of the developed application

Figure A.4: Input image, in gray color-map and with depicted Canny edges.

Additionally, more than one bone or anatomical structures can be segmented in
every image. In this particular analysis, also the acetabulum has a special interest,
due to the risk to be confused with the femoral head. Therefore, the platform is
ready to sequentially segment first the proximal femur and then the acetabulum in
the same image.

Segmentation protocol

In order to be avoid human errors during the manual segmentation process as much
as possible, we required three different users on each image: two independent users
performed both the boundary and the landmarks selection; and the third user in-
spected the results of the other two to generate the final result.



A.1 Generation of a database of femoral shape 149

The goal is to obtain an accurate manual contour of the bone, as well as a col-
lection of shape landmarks that are easy to locate consistently from image to image,
and from user to user. An example of a femur being segmented is shown in Fig. A.5.

We took into account the following remarks:

• The left and right legs are labeled beforehand in order to avoid mirroring.

• The annotation of the start point and the direction of the drawing are agreed,
so that the topology of the contour is always the same.

• The contour is segmented in small individual segments, which can be deleted
and repeated as many times as necessary.

• When there are different pieces of the boundary and the user is not certain
which belongs to the contour, they may choose the one with strongest Canny
edge (the one that stays with a highest threshold).

• The areas that are occluded by operation tools or other artifacts, as well as the
ones that are outside the view of the C-arm, can be guessed by the user and
depicted as masked.

• After segmenting the contour, the user places the landmarks always on the bone
contour. Masked landmarks can also be added.

Figure A.5: An example of a contour being segmented (in red), and a few landmarks
(light blue) being placed.

Revision and quality check

When the results from the segmentation of the first two users are available, then
the results are reviewed. During the revision phase a new independent user (the
reviewer) who did not observe the image yet is shown the conflict parts (in which
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the othre two users did not agree) in orange color. Then, the reviewer can modify
an editable contour accordingly. The reviewer can inspect both segmentation results
from the other users, as well as the highlighted areas in witch the two previous users
disagreed the most. The following metric is used to find the regions to highlight as
conflictive to the reviewer:

drevision =
1

N1

N1

∑
nt=1

min
nr
|x1[nt]− x2[nr]|, nr = 1, . . . , N2. (A.1)

When the distance drevision is bigger than an agreed threshold, it is highlighted in
orange as shown in Fig. A.6.

Figure A.6: Highlighted regions (A and B, in orange) indicate during a revision that
the users who segmented this image differed considerably in these parts.

A.1.3 Anatomical landmarks in the proximal femur

The proximal femur is the extreme of the femur that is closer to the center of the
body, that is, the extreme with the femoral head. The images used are in front-view.
This means that, the X-rays are crossing the anatomy in an anterior-posterior way
(from the front to the back of the body). Therefore, we design a front-view model
of the observed proximal femur. Following the model in [20], we exclude the lesser
trochanter unless the shaft contour is not visible in that region. We apply the same
criterion with the greater trochanter, which is not included unless the neck is not
visible.

The position of these landmarks has been agreed as the following:

1. Beginning of lesser trochanter

2. End of lesser trochanter

3. Change of curvature neck-head

4. Beginning of head circle

5. End of head circle
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6. Change curvature head-neck

7. Connection neck-greater trochanter

8. Inferior end of greater trochanter

9. Perpendicular point in shaft direction to point 1

An example of a segmented proximal femur is shown in Fig. A.7.

1

2

3
4

5

6

7

8

9

Figure A.7: The result of segmenting the proximal femur contour and the described
landmarks.

A.1.4 Anatomical landmarks distal femur

The distal femur is the extreme of the femur that is closer to the feet and contains the
condyles. We define a contour that contains the femur shaft and the medial condyle.
The anatomical manual landmarks are two:

1. Back side limit of medial condyle

2. From side limit of medial condyle

An example of a segmented distal femur is shown in Fig. A.8.
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12

Figure A.8: The result of segmenting the distal femur contour and the described
landmarks.

A.1.5 Correspondence and semi-landmarks

We consider a contour to be complete when all landmarks are present and no land-
mark is masked. In order to keep continuity in the boundary, we also consider as
valid the small masked segmented guessed by the users as far as they are not at the
extremes. In order to add more landmarks to the SSM, we also sample evenly spaced
more contour points between the landmarks, the semi-landmarks. An example is
shown in Fig. A.9, where a total of 40 landmarks are used considering the initial 9
landmarks.

A.2 Simulated shape data

In Chapter 5 we need simulated data in order to have a controled SSM model order
in the tests. To this aim, we simulate realistic synthetic shapes, similarly to the
simulated data in [103], and follow the model of a PDM, as described in Chapter 2,
with

x = µ + Pb +ε. (A.2)

We use the PDM eigenvectors P, with corresponding eigenvalues λ = [λ1, . . . , λq],
and shape mean µ. These parameters were obtained from the sample covariance
matrix of the available real data, as well as the mean. We then choose values for b
as random samples taken from b ∼ N (0, λ). For the noise, we add white Gaussian
samplesε ∼ N (0,σ2I) with different noise levels β. We define β as the ratio between
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landmark

semi-landmark

Figure A.9: An illustrative example of a femur shape with landmarks (blue) and
semi-landmarks (orange).

the smallest kept signal eigenvalue and the noise variance, i.e., β =
λq
σ2 . We choose β

by visual inspection, so that the produced shape x looks realistic.
Then we randomly rotate, scale, and translate these synthetic shapes, that is, with

random r and t, we compute

κ = rV−1(x) + 1Nt. (A.3)

After simulating M of these samples, we perform a generalized Procrustes analysis,
as described in Chapter 2. The GPA typically colors the noise, and consequently
it may not longer be white when the model order has to be selected in the tests.
The resulting simulated shape vectors are the results from the generalized Procrustes
analysis. We present a collection of artificially generated femur shapes in Fig. A.10.

A.3 Other freely available databases

One of the goals of the shape models and algorithms developed is this work was to
avoid heuristic and ad-hoc solutions. In order to test that our approaches were not
biased to work only in our fluroroscopic X-ray database, we searched for other freely
available databases with anatomical shapes, and used them in our tests. This was a
challenging tasks, since most of the databases used in medical imaging are not freely
available. The following databases have been considered during the development of
this thesis.
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Figure A.10: A collection of artificially generated femur landmarks.

A.3.1 Chest X-ray diagnostic images

A group of radiology researchers in Japan shared a digital image database of 247
chest radiographs to study the presence of lung nodules [104]. The images were
selected from 14 medical centers and were digitized by a laser digitizer with a 2048
× 2048 size (0.175 mm pixels) and a 12-bit gray scale.

Furthermore, the authors of [152] manually segmented (by two human ob-
servers) the lungs, heart and clavicle from the images. These observers placed 44
landmarks on each lung outline, 26 landmarks on the heart, and 24 on each clavicle,
as shown in Fig. A.11.

A.3.2 Natural images from hands

We have also consider natural images, i.e., everyday regular photos, of hands to
study the variability of the hand outline. We found two different data sources. First,
a collection of 38 images of hands with 20 landmarks on the hand outline [31],
as the example in Fig. A.12 (left). Second, a database containing 1000 scanned
hands [133], as shown in Fig. A.12 (right), from which the contours have been
automatically extracted with image processing techniques from MATLAB.

A.3.3 3D surfaces of the femur

A collection of 50 femur surfaces were collected from the Statistical Shape Modelling
course in FutureLearn by the University of Basel [137]. These surfaces were seg-
mented from Computed Tomography (CT) scans of the lower part of the body, from
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Figure A.11: One example of the chest database in [104]

25 different patients. They are described with triangle meshes. The dataset contains
as well a set of 10 triangle meshes of partial femur shapes, as shown in Fig. A.13.
[137]
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Figure A.12: Examples the databases of hands. Left: one example from [31] , with
a natural image and the landmarks. Right: examples from [133], with the scanned
hands and the automatically extracted contours.

Figure A.13: Partial meshes from the dataset in [137]. Image source: [153]
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