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Abstract

Visual conspicuousness — so-called salience —
affects how we perceive the world. This is well
known and congruent with everyday experiences.
Surprisingly, today, no commonly accepted measure
for the strength of salience exists. Consequentially,
this dissertation aims at providing such a measure
of visual salience. Visual salience arises from physi-
cal contrasts and may affect attention as well as the
perception of the respective stimuli. This thesis is
focused on salience’s influence on attention. Besides
methods from experimental psychology, also meth-
ods from cognitive modeling are applied to derive
such a measure of salience. This cumulative disser-
tation encompasses four articles. Article 1 combines
current salience research with a model based on
Bundesen’s Theory of Visual Attention and the ex-
perimental paradigm of temporal-order judgment.
Article 2 adds a formal salience parameter to the
model, investigates the growth of salience caused
by physical contrast, and finally models and com-
pares different interactions of two types of contrast
as proposed in the literature. Unlike previously pub-
lished results, this model shows that contrasts add
up without a penalty. Bayesian Statistics are applied
throughout all articles. Advantages of Bayesian
Statistics include easy implementation of custom
hierarchical models, their comparison, information-
rich parameter estimation, and the generation of
data based on the model. Article 3 is unique in
the sense that it takes a bird’s eye perspective by
comparing a combination of Bayesian Statistics and
modeling for established and new techniques in psy-
chology. These are, namely, null-hypothesis testing
and machine learning. Article 4 applies the devel-
oped model to the time course of salience. Addition-
ally, this synopsis reports many more experiments
in which the developed modeling and empirical ap-
proach is applied. To sum up, I propose yet another
empirical measure of salience. However, because
of the modeling, it is tightly coupled with a formal
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theory of visual attention so that it has an explicitly
defined meaning for visual selection.
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Zusammenfassung

Visuelle Auffälligkeit, sogenannte Salienz, beein-
flusst, wie wir die Welt wahrnehmen. Dies ist altbe-
kannt und deckt sich mit Alltagserfahrungen. Über-
raschend dabei ist, dass es bis heute kein einheit-
liches Maß für die Stärke von Salienz gibt. Diese
Doktorarbeit untersucht daher, wie genau die Stär-
ke von Salienz, die durch physische Kontraste ent-
steht, gemessen werden kann. Dabei konzentriert
sich die Arbeit auf visuelle Aufmerksamkeit im Ge-
gensatz zu perzeptuellen Eigenschaften der Kon-
traste. Neben den Methoden der Experimentalpsy-
chologie kommt die kognitive formale Modellie-
rung zur Herleitung eines Salienzmaßes zum Ein-
satz. Insgesamt umfasst die kumulative Dissertation
vier Artikel. Artikel 1 verbindet bisherige Salienzfor-
schung mit einer auf Bundesens Theorie der visuel-
len Aufmerksamkeit basierten Modells mit dem ex-
perimentellen Paradigma des zeitlichen Reihenfol-
geurteils. Artikel 2 fügt der Modellierung ein expli-
zites Salienzmaß hinzu, modelliert das Wachstum
von Aufmerksamkeitsvorteil durch physischen Kon-
trast und überprüft verschiedene Interaktionen für
mehr als eine Sorte von Kontrast, die in der Literatur
diskutiert werden. Auf Basis dieser Modellierung
wird gezeigt, dass beide Kontrastarten sich ohne Ein-
buße ergänzen — im Gegensatz zu früheren Ergeb-
nissen. Alle Artikel nutzen dabei die Möglichkeiten
der Bayesischen Statistik. Zu diesen Möglichkeiten
zählen die einfache Implementierung von indivi-
duell entwickelten hierarchischen Modellen, deren
Vergleich, informationsreiche Parameterschätzung
und das Generieren von Daten durch das Modell.
Artikel 3 stellt eine Ausnahme dahingehend dar,
dass die Modellierung und Bayesische Statistik aus
der Vogelperspektive betrachtet und mit bekannten
und neuen Methoden der Psychologie, Nullhypo-
thesentests beziehungsweise maschinellem Lernen,
vergleicht. Artikel 4 wendet die erarbeitete Model-
lierung auf den zeitlichen Verlauf von Salienz an.
Ebenfalls werden kleinere Experimente berichtet,
die alle eine Anwendung der entwickelten Model-
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lierung und des entwickelten Experimentaldesigns
darstellen. Zusammenfassend wird also ein weiteres
empirisches Salienzmaß vorgeschlagen, was jedoch
durch Modellierung und Bezug zu einer formalen
Aufmerksamkeitstheorie in seiner Bedeutung für
visuelle Selektion explizit dargelegt wird.



Preface

Voici mon secret. Il est très simple: on ne voit bien
qu’avec le cœur. L’essentiel est invisible pour les yeux.

Antoine de Saint Exupéry
(de Saint-Exupéry, 1946, p. 72)

I always thought writing the preface to a PhD thesis
would evoke lofty feelings and a great sense of achievement.
Shortly before writing these lines, I hauled a package home
from the post office. Now, I am waiting for my private
tutoring pupil. I drink lukewarm coffee and an extremely
annoying fly buzzes around in my university office — I
could not feel more ordinary.

During the last six years, I often spontaneously remem-
bered my math lecturer Dr. Preis on some occasion saying
something along these lines: “Für das Abitur reicht es aus,
intelligent zu sein; an der Uni muss jeder arbeiten — aber
für die Promotion brauchen Sie psychische Stärke.” In fact,
of all things I have attempted before, this dissertation is the
most demanding — both intellectually and emotionally. It
is only natural to ask and maybe doubt whether this effort
is worth it.

When I have my doubts about my work and future, and
contemplate my decisions and their consequences, and
whether or not I am happy with my situation, I reach a
point where the initial goal appears as a means to an end
rather than an end in itself. Having finished this disser-
tation, for example, has much less value for me than the
thinking, doubting, and experimenting involved while con-
ducting the work. Making sense of the world is intrinsically
valuable to me and a source of great enjoyment. It is the
personal development that I value, the chance for being ed-
ucated by others (“ausgebildet werden”) and the freedom

vii
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to educate myself (“sich bilden”).
Put bluntly, education does not merely enable me to do

something, but created the person that I am today 1. Sure,1see Bieri (2017) for a more
sophisticated elaboration on this
idea. I always possessed curiosity and some creativity but these

initial drives need to be cultivated and developed. “If I have
seen further it is by standing on the shoulders of giants.”
is a statement that I completely agree with. Besides my
understanding of the world and competences, I feel that
education affects my moral sensibilities, taste, and stance
towards political topics.

In my experience, the giants are not luminaries but all
the people that enriched my mental world. People that are
not often thanked for their work and maybe did not even
notice how strongly they have affected others. This is the
reason why I am writing this preface: To say thank you to
at least some people and for some moments I remember.

One of the first things I remember is that my mother
taught me about morality in terms of reason. I remember
that I stole a lego brick from another child once — a sim-
ple single brick that I did not have but wanted to build
something in particular. I had to give it back and apologize
because that is what I would have wanted had I been in
his place. I am deeply grateful that she always provided
reasons rather than mere rules (“Was du nicht willst, das
man dir tu, ...”). My father taught me about natural science.
I particularly remember biology: He explained the monads
to me when I was in elementary school. Today, I know that
“die feinen Unterschiede” become second nature and thus
my preference to think about reason may well have its roots
in this education. So, from a young age, they cultivated my
interest in how things are, but also in why things are the
way they are. Also, my parents always let me try my own
way. Even in situations in which I may have liked more
guidance at the time. For example, at the age of sixteen,
they told me that I have to pick my job without any specific
recommendation or advice because it would be an impor-
tant long term decision. I want to thank my parents for
these and all other occasions in which they laid a piece of
the foundation for my whole life with love and reason —
and for helping with countless relocations.
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After completing the Realschule, it was only natural to
apply for an apprenticeship. My parents — and their par-
ents before them — did not go to university and so going
for an Abitur in order to attend a university afterwards was
not even considered a remote possibility. Besides, I was
tired of school and happy to work in a local computer shop.
However, after a few months, I realized that I would not
be taught to the degree that I had expected. At this time, a
teacher, Andreas Blomberg, gave me some important ad-
vice: Quitting is not a shame but it is much better to quit
early than late — still valuable advice. Also, he suggested
that further learning is still possible after the apprentice-
ship. So, I finished the apprenticeship and applied for an
additional year of school to qualify for higher education
and by lucky coincidence he became my class teacher. I
remember him saying on multiple occasions “Die kochen
auch nur mit Wasser.” when we were worried about higher
education. So, I want to thank him, because he did not only
encourage my pursuit of higher education — he made me
think of it as something that was not just for “the others”.

Besides individuals, there are also institutions and sys-
tems for which I am very grateful. So, the Paderborn Uni-
versity — as a former Gesamthochschule — accepted me
as a student although I did not possess an Abitur. With-
out the BAföG system, the perceived financial risk would
have been much too high for me to try for higher educa-
tion. Furthermore, I am thankful for the support I received
from the DAAD that enabled me to visit the researchers
that came up with the formal theory of attention that is
central in this thesis. Also, I personally have benefited from
the Bologna Process because I was able to pick a master’s
degree that corresponded best with my research interests
after studying within a classical discipline2. 2The advice to first study

within a classical discipline and
specialize afterward is another
valuable piece of advice from
my former teacher, Andreas
Blomberg.

Ingrid Scharlau, the supervisor for this dissertation, is
probably the single most influential person for my aca-
demic self and I am deeply grateful to her. Her influence
did not start with the supervision but much earlier when I
felt recognized by a professor for the first time when she
employed me as a student assistant after reading my first
texts on psychology. This subtle form of recognition en-
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couraged me. I became so interested in psychology besides
my major in computer science that I left Paderborn to study
a cognitive science master’s degree. To me, she is an exam-
ple of some of the best properties a scientist can have. She
is very aware of the fact that everybody has limited knowl-
edge and secure in dealing with this situation. She is also
very aware of discipline specific cultures. Her bird’s eye
perspective on psychology helped me understand how the
discipline works. I am deeply grateful that she showed me
these cultural aspects of science but also likewise cultivated
an atmosphere of curiosity and independent thought. She
encouraged me go beyond the classical methods if neces-
sary, to learn Bayesian statistics and think critically about
the limitations of accepted methods. Also, her interest in
academic writing helped me understand and improve my
own writing.

A special mention is also reserved for Jan Tünnermann.
I am deeply grateful for all discussions and exchanges we
had. To me, Jan is a true polymath and one of the most
remarkable personalities I have ever met. I remember the
first TEAP we attended together: A fellow psychologist per-
ceived Jan as a quiet person but there is an immense stock
of knowledge. We talked about paleontology, astronomy,
evolution and genetics, the power of formalism, artificial
intelligence, physics, philosophy, and society. I find it sur-
prising how much knowledge a person can acquire purely
based on interest without external incentives. I have bene-
fited much from his work in psychology on the connection
between temporal-order judgment and Bundesen’s theory
of visual attention and we both started learning Bayesian
methods together. I think the single most important thing
Jan did for me was to lend an ear whenever I had some sort
of idea or question, even if it was a spontaneous question
for which I should have or could have known the answer.
Jan has a particular way of listening without judging, but
with a deep interest in the content and how it is menaingful.
Having a good intellectual exchange based on my random
ideas is much harder since he left Paderborn.

Also, Markus Hennig deserves a special mention: There
were many days on which his calm advice during our
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lunches together restored my sanity. It is good to be able to
discuss the odd peculiarities of academia with somebody
who knows them well. I will never forget how I became
the Kicker-Azubi of Markus and Jan and consequentially
was introduced to a new hobby.

Signe Vangkilde and Anders Petersen deserve a special
mention as well. I thank them for their warm welcome
in Copenhagen at the Center for Visual Cognition, their
time for my questions and ideas, for taking me along on
events, and for not only organizing a place for me to stay
but also a bicycle — maybe the most important means of
transportation in Copenhagen.

I would also like to thank Juliane Zelder for saving me
from an increasing loneliness and isolation, for reintroduc-
ing many of life’s aspects that I may have neglected in the
pursuit of academic achievement, for believing in me when
I could not, for all the love I sense in her presence, and —
of course — for introducing the Flummitanz as a crucial
means of emotional regulation to my life.

I could mention more people here, I could have tied up
more loose ends in my research, I could have avoided some
pitfalls in experimentation, I could definitively have writ-
ten better texts — I could have done better in many aspects.
As a student, I thought a PhD thesis would be close to
perfection but in hindsight, looking at the sum of many
learning experiences, all far from perfection. What you
find here is my best attempt at showing that I have reached
a level of education that allows me to work independently
as a scientist. Whereas the intellectual content of this dis-
sertation will be the focus of the following chapters, here
I take the freedom to remind myself and the reader that
scientists are embedded and embodied beings that do not
exists apart from culture or emotion — and importantly
other humans. And while I am convinced that education
created the person and scientist I am today, I want to thank
all the individuals that offered love, education, warmth, en-
couragement, friendship, inspiration, solace, and enabled
the development that I have undergone.
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Chapter 1

Introduction

In fact, of course, science is an unparalleled play-
ground of the imagination, populated by unlikely char-
acters with wonderful names (messenger RNA, black
holes, quarks) and capable of performing the most
amazing deeds: sub-atomic whirling dervishes that
can be in several places — everywhere and nowhere —
at the same time; molecular hoop-snakes biting their
own tails; self-copying spiral staircases bearing coded
instructions; miniature keys searching for the locks in
which they fit, on floating odysseys in a trillion synap-
tic gulfs.

Daniel C. Dennett (Hofstadter & Dennett, 2001, p. 458)

Physical contrast affects how the world is visually per-
ceived. Visual contrasts, like edges and colors, are virtually
everywhere, and arguably these contrasts are what the vi-
sual system is all about. Merely thinking about this claim
provides a vivid thought experiment to show the reason
why: A white wall only provides one information “every-
thing is white”. Successively adding contrasts like lumi-
nance contrast conveys the additional information “here is
an edge” or “here is a shade” which increases the amount
of information in the image such that a meaningful shape of
maybe an animal or a plant can emerge. Much like an artist
adding individual strokes of the paintbrush to express an
abstract idea as a painting, the mind integrates informa-
tion from individual contrasts into a coherent concept to
make sense of the world. The importance of contrasts does
of course not only arise from plausible thought about it:

5



6 introduction

Hubel and Wiesel (1959) demonstrated that contrasts are
what the visual cortex is — loosely speaking — interested
in. Individual points of light do not affect cells in the pri-
mary visual cortex but edges, orientations, and contrasts
between on-neurons and off-neurons do. The neuronal
processing discovered by Hubel and Wiesel (1959) is in line
with the intuition evoked from the thought example that it
is the contrasts that convey information.

Because visual contrasts are such a basic way of extract-
ing information from the environment, they have an effect
on many cognitive abilities. This thesis deals with their spe-
cific effect on visual attention. The term visual salience is
used to describe that a physical contrast between stimulus
and surrounding attracts attention. It should be noted that
visual salience may also refer to the visual impression of a
stimulus standing out, of a stimulus being conspicuous. It
is likely that the two constructs — perceiving a stimulus as
standing out because of physical contrasts and attending a
stimulus because of physical contrasts — are related. Yet,
because attention is known to affect perception (e.g., Car-
rasco, 2011; Kerzel, Schönhammer, Burra, Born, & Souto,
2011a) it may be prudent to distinguish both meanings.
Thus, this thesis focuses on the effect of physical contrasts
on attention rather than on perception.

Visual attention is not only affected by contrasts but also
made necessary by visual contrasts. Contrasts make atten-
tion necessary in the sense that attention can be understood
as a selection mechanism (Carrasco, 2011) that, in turn, orig-
inates from the fact that more information is available than
can be processed to its full extent by the cognitive system.
These limitations have been shown empirically, for exam-
ple, in classical psychological experiments on short-term
memory limits (Sperling, 1967) or experiments on inatten-
tional blindness where apparently obvious changes in the
environment are overlooked by the observer (Simons &
Chabris, 1999). These limitations have also been central in
early models of attention (e.g., Broadbent, 1958). Zhaop-
ing (2014) gives a rough estimate in the introduction to her
book stating that the bandwidth for information transfer re-
duces from 109 bits

s in the retina to 107 bits
s in the optic nerve
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further to 102 bits
s that are consciously perceived. Thus, she

argues that looking somewhere is very different from see-
ing something because of attention-based selection.

In addition to empirical analysis and theoretical models,
the limits of visual processing have also been a research
topic in formal sciences: Tsotsos (1990) sets up the problem
of visually searching for a predefined stimulus as a formal
problem solvable by an algorithm. He concludes that such
a problem is intractable, which means that there is no effi-
cient algorithmic solution to finding the optimal solution.
Thus, attention has the difficult role to select potentially
relevant information without knowing what relevance a
further analysis may yield. Accordingly, attention has to
rely on readily available superficial features such as mem-
bership in a more or less relevant familiar category and, of
course, physical contrasts.

In contrast to higher cognitive influences on selection
like category membership, physical contrasts can easily
be measured in common physical measures. Many con-
trasts that are highly likely to affect attention (Wolfe &
Horowitz, 2004) can be quantified rather easily by physical
measures. These contrasts include, e.g., luminance, color,
motion, orientation, and size. So, it is natural to ask how
these quantities influence attention. If certain properties
affect attention more than others, this may be due to the
way in which these properties are processed.

In his review on the neuronal underpinnings of salience,
Treue (2003) describes two intertwined influences on vi-
sual processing: one driven by the stimulus and its salience
and the other by task-relevance. Together, these influences
yield a salience map that affects attention already in early
visual processing. It is important to note that Treue un-
derstands the integration of task relevance and stimulus-
driven influences on attention as the overall salience map.
Some of the processes leading to this salience map are dy-
namic whereas others are hard-wired, e.g., as caused by the
center-surround organization of receptive fields. Particu-
larly contrasts are crucial for the stimulus-driven influences.
The earlier the processing, the more it is based on physi-
cal contrasts. The degree of relevance-based modulation
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increases as the processing becomes more complex: In-
fluences have been found as early as the thalamus. The
primary visual cortex is affected by relevance-based mod-
ulation to a small degree whereas unattended stimuli are
strongly suppressed in the parietal and prefrontal cortex.

After focusing on where attentional selection happens,
Treue (2003) examines what is selected. In short, either
locations, features, or objects are what is selected by atten-
tion. Treue ends with concluding that salience’s function
is to guide eye-movements to relevant stimuli, i.e., further,
more detailed processing, that requires a higher visual
resolution.

If you allow me to digress from the human cognitive
system for a single paragraph, visual contrasts are also
highly relevant for nonhuman animals. In fact, Treue’s
(2003) review is focused on the primate visual cortex in
general. The behavior of animals relying on vision to find
prey can be explained by assuming1 a visual search on the1Assuming visual search is

one of multiple plausible expla-
nations of the observed animal
behavior.

image provided by their visual system (Tinbergen, 1960).
Evidence for this theory comes from findings showing that
predators distribute attention to a specific type of prey and
switching prey types induces costs (Goto, Bond, Burks, &
Kamil, 2014) which is similar to task-relevance induced
influences on attention in the human visual system. Also,
effects from salience have been shown, e.g., for pollinators:
Goulson (2000) showed that bumblebees took twice as long
to search for specific flowers when the surrounding was
composed of similar-looking flowers in comparison to a
neutral background. If the perspective is changed from
the searcher to the prey animal, impressive mechanisms
developed to defend against visual predators: Swarms of
insects or schools of fish seem to be effective in predator
defense because predators loose track of individuals in the
group. This effect has been shown experimentally by dye-
ing some of the individuals which resulted in the predator
being more successful while other factors remained con-
stant (Landeau & Terborgh, 1986). Particularly stunning are
animals that adapt their appearance dynamically to mini-
mize the chance of being detected. This ability is impressive
as it does not only fool predators, but also human observes.
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This camouflage is achieved by resembling the surround-
ing while simultaneously disguising the own shape by
disruptive coloration and countershading (Stevens & Meri-
laita, 2011). Whereas for most readers, the chameleon will
come to mind immediately, cephalopods are the true mas-
ters of camouflage (see Figure 1.1). They reproduce the
perceived environment on their skin. This behavior even
allows studying their perception experimentally (Hanlon,
2007). Thus, there is evidence that nonhumans’ visual sys-
tems are also affected by a similar combination of relevance
and stimulus-driven salience.

(a) 0 ms

(b) 270 ms

(c) 2070 ms

Figure 1.1: An octopus changing
visual features including color
and texture over the course of
2070 ms (Hanlon, 2007, Figure 1)

.

Treue (2003) introduces theoretical concepts and opin-
ions; however, it is difficult to derive quantitative expla-
nations or even testable predictions from the summary of
results he presents. Arguably, science should be able to
explain concrete behavior and provide theories. The en-
tity that can provide quantitative explanations and testable
prediction is models. Modeling of attention is not only
undertaken by psychologists but also by engineers for ar-
tificial attention in technical systems. Central for many
models is the idea of feature maps. These are independent
retinotopic representations of a particular feature across
the visual field. Koch and Ullman (1985) developed an
architecture based on neurophysiological results on early
visual processing in which different feature maps are inte-
grated into a combined salience map. This work has been
the basis for many algorithmic models with different aims.
Some models are designed based on analogy with human
information processing (Itti & Koch, 2001a), others are built
based on theoretical considerations (Bruce & Tsotsos, 2009).
Frintrop, Rome, and Christensen (2010) provide a survey
of this type of model for further details and examples of
this modeling approach. Remarkably, these algorithmic
models produce salience maps for arbitrary input images
or even video streams.

Salience has also been identified as a central component
of attention in many models from cognitive psychology
(Duncan & Humphreys, 1989; Theeuwes, 2010; Wolfe, Cave,
& Franzel, 1989; Müller & Krummenacher, 2006). These
models can explain and predict observable phenomena —
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some of them even provide quantitative predictions. An
example is Wolfe’s (1989) Guided Attention model that
aims to explain the phenomena encountered when search-
ing visually for a particular item. Quantitative predictions
include the search time but also parameters like error rates.
Wolfe (2007) reports that it has been partially implemented
and is indeed capable of quantitatively explaining and pre-
dicting many results of visual search experiments. How-
ever, Wolfe (2007)2 reports that only the red-green axis2In personal communication

in May 2016 at the ITVA meet-
ing in Copenhagen, Wolfe stated
that there were no major im-
provements in the quantitative
predictions by the model.

for color and orientation contrast have been implemented;
other dimensions cannot be used with the computational
model.

Beyond symbolic models, there are subsymbolic mod-
els in which the salience representation emerges from the
organization and behavior of individual (artificial) neu-
rons. This approach has been developed by Li (2002): She
presents an artificial neuronal network as a model of the
primary visual cortex (Li, 2001). The main idea is that it
does not have to represent salience explicitly in symbolic
maps but explains how salience arises from local neuronal
interactions in the architecture of the primary visual cortex.
This model also aims at explaining salience not only on a
conceptual but also on a quantitative level.

To sum up, there are many models that either aims at
modeling salience directly or in which salience plays a cen-
tral role. This might suggest that salience is sufficiently un-
derstood and the main question here is what an adequate
model of salience is. However, when examined further,
the literature yields that quantitative explanation and pre-
dictions are far from satisfactory because many conflicting
results on quantitative aspects of salience exist.

Without a doubt, eye-movements and salience are strongly
connected, yet salience’s predictive power for eye-movements
is low (Betz, Kietzmann, Wilming, & König, 2010). Thus,
it has been suspected that to understand and predict eye
movements other influences on attention are necessary
(Schütz, Braun, & Gegenfurtner, 2011). Additionally, ba-
sic assumptions of algorithmic salience models have been
refuted in experimental conditions: Einhäuser and König
(2003) showed that the simple assumption that less local
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contrast would attract fewer fixations is not true for natural
scenes. Also, it is far from clear which types of features
contribute to salience at all (Engmann et al., 2009) and
in which way the features that do contribute have to be
summed up (e.g., Itti & Koch, 2001b) in symbolic algorith-
mic salience models. For visual search models, Wolfe and
Horowitz (2004) ask whether orientation salience is not
only about contrast, but also about absolute orientation val-
ues. For example, a 30° deviation for otherwise horizontal
line fragments might be better detectable than the same
deviation from a diagonal pattern. Li’s (2002) model leads
to questions particularly about the strength of the interac-
tion of visual properties based on how these features are
represented in primary visual cortex (Koene & Zhaoping,
2007). All of these questions have been answered to a de-
gree. However, closer inspection of these salience studies
reveals a high degree of heterogeneity in the quantification
of salience, which is not without problems.

Most notably, Nothdurft (2000) published a comprehen-
sive study involving luminance, motion color, and orienta-
tion contrasts. He presents a particular method for quanti-
fying and comparing their impact on the cognitive system:
To measure salience, he presented a contrast whose salience
had to be quantified together with 11 steps of gradually
increasing luminance contrast. Participants were presented
with two contrasts and had to judge which one was more
salient. If the first luminance contrast step was clearly less
salient and the last step was clearly more salient than the
physically different contrast in question, then the contrast
in question could be matched to a luminance contrast of the
same intensity. In this experimental design, salience was,
of course, operationalized by the explicit salience judgment.
As the effects on attention may differ from the perception
of which contrasts stands out the most, the quantitative
analysis may not directly be applied to attention. Yet, Noth-
durft provides a quantification of salience and a conclu-
sion about how individual contrasts combine. His analysis
yields that the combined contrast is between 80 % and 30 %
of the sum of the individual values. Nothdurft argues that
these numbers may be related to the percentage of overlap
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between the neuronal mechanisms analyzing each of the
two contrasts individually. Nothdurft’s psychophysical ex-
periments, however, are difficult to replicate, which may
be explained by highly trained participants in the original
study (Koene & Zhaoping, 2007; Krüger, Tünnermann, &
Scharlau, 2016). Nothdurft’s conclusion also entails the
assumption — particular when cited in the context of mod-
els of attention — that the perceived salience is the same
construct as the stimulus-driven effect of physical contrasts
on attention. This is an assumption that should at least be
checked carefully. For example, Kerzel et al. (2011a) showed
that salience changes the appearance of otherwise non-
salient properties. The authors conclude that after salience
is computed on a salience map, this information may boost
the representation of features on the feature maps and thus
appearance may differ from salience.

To sum up, Nothdurft (2000) provides an indirect way of
quantifying salience and concludes that the salience of two
features does not add up perfectly although the salience
clearly increases when two features are combined.

Huang and Pashler (2005) proposed a different method
for measuring salience to mitigate the potential bias intro-
duced by asking participants about their perception. They
argued that a particular problem for measuring salience
in attention-based tasks is that once a stimulus is selected
because it stands out, an additional increase, in contrast,
cannot make it more selected. Thus, an attention-based
increase in performance is unlikely after the respective stim-
ulus already stands out. It is important to note that this is
based on an implicit model of attention that either selects
or does not select, but that cannot boost visual processing
gradually because of salience.

As a consequence, Huang and Pashler (2005) designed a
procedure in which salience is used as a distracting stimu-
lus while participants search for a predefined visual target.
They presented displays with randomly positioned squares
in them. There were three types of squares: Distractors that
were neither bright nor big, a target that was bright and big,
and a so-called key-distractor that was not as bright or as
big as the target but bigger or brighter than the distractors.



13

Huang and Pashler reasoned that looking for the biggest
and brightest distractor will divert part of the attention to-
wards the key-distractor because of its salience: The more
attention is directed towards the key-distractor, the longer
the search will take on average. As soon as there were two
kinds of features involved, they — like Nothdurft (2000)
— compared the salience of one feature to the salience of
a qualitatively different feature. Both methods related be-
havior caused by salience of one type of feature contrast to
behavior caused by another type of feature. By systemati-
cally varying one feature while keeping the other constant,
points of equal salience can be found, and by mapping dif-
ferent feature types to one reference type of feature contrast,
a quantification of salience is achieved.

Contrary to the argument by Huang and Pashler (2005)
— that the search time for unique elements is not a good de-
pendent measure for salience, Koene and Zhaoping (2007)
compared salience by varying the target of the visual search
task. The authors did not use the time needed for search-
ing as a direct measure of salience but used it to compare
two models. One model treats the two features as indepen-
dent cues by assuming statistical facilitation (e.g., Miller,
2016) because of two independent cues for the search tar-
get whereas the other model assumes an improved per-
formance beyond statistical facilitation so that one could
expect some form of interaction between both cues. In line
with their expectations, only a color and motion combina-
tion did not show an interaction whereas color-orientation
and orientation-motion combinations show an interaction
according the the used race model. This result is, however,
at odds with Nothdurft (2000) who reported the opposite:
color and motion combinations showed more interaction
than color-orientation and orientation-motion combina-
tions. One explanation is that the statistical model compar-
ison can be paraphrased as testing for the least bad model,
which means that the validity of the result depends on the
matches between assumed processes and used models. To
evaluate this, however, one would have to spell out a quan-
titative model of attention for visual search tasks, including
this experiment.
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A point of criticism applicable to all mentioned experi-
ments on salience is that salience is task-relevant. If salience’s
effect on stimulus-driven attention ought to be measured,
the same salience should not be helpful to solve the task
at hand. Otherwise, it would undoubtedly receive an ad-
ditional attentional advantage because it is relevant in the
respective situation. Although it is reasonable not to mix
relevance and stimulus-driven attentional influences in
a quantitative measure of salience it is quite difficult to
achieve this: E.g., despite their attempt to rule out influ-
ences from task relevance, Huang and Pashler’s (2005) key-
distractor was not defined by features different from the
features of the element to be searched. That is, if atten-
tion was directed towards these features, then also the key-
distractor would draw attention because of the relevance
of its features in this context.

To sum up this introductory chapter, physical contrasts
that attract attention are called salient. Although salience
is a central concept in theories and models of attention,
methods for salience measurement are heterogeneous and
sometimes yield conflicting results. One cause for these
conflicting results are assumptions made about salience,
e.g., whether it is affected by task relevance. These assump-
tions are partially implicit and can be explained by different
intellectual judgments about salience which — in turn —
affect both the design of the experiment and the analysis of
data. As in the Dennett quote at the beginning of this chap-
ter, creativity and the imagination of possible explanations
thus are as vital in science as the empirical collection of
data. However, the heterogeneity of salience measurement
becomes problematic when models of salience are to be
developed or quantitatively evaluated.

The approach to the quantification of visual salience
presented in this dissertation aims to resolve ambiguities
by explicitly the linking intellectual judgments and theory
to experimental data by a formal model. In this way, I
do not present the right way of quantifying salience but a
way that resolves ambiguities in salience measurement by
explicit appeal to theory while maintaining applicability
to a broad array of stimuli.



Chapter 2

Psychology as a science

The first principle is that you must not fool yourself —
and you are the easiest person to fool.

Richard P. Feynman (Feynman, 1974)

When I started my work as a young scientist, replication
attempts were the first practical work I did. When these
replications failed, I blamed the outcome on myself. Surely,
the published work must be reliable — I am making mis-
takes, I told myself. In retrospect, I feel pity for my past self
because I was unaware of the significance that replications
bear for empirical science: On the one hand, replications
are indeed an instructive way of learning the tools of the
trade; on the other hand, the results of a well-made replica-
tion are actually of scientific value (Frank & Saxe, 2012). At
that time, my attitude was completely different; I did not
try to o convince others — myself included — that an em-
pirical result is reliable, but to make an experiment “work.”
Making the experiment “work” entails trial and error and
a lot of hidden flexibility both in experimental design and
data analysis whereas convincing others is characterized
by a well structured, systematic, and transparent process
(e.g., guidelines see Asendorpf et al., 2013; Brandt et al.,
2014).

In contrast to my anecdotal evidence about the repro-
ducibility of a particular experiment, today, we have sys-
tematic evidence about the reproducibility in psychology
as a discipline. The reproducibility project (Open Science
Collaboration, 2015) attempted to replicate 100 experiments

15
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from three esteemed psychological journals and revealed
that much of the published research is not as reliable as
many scientists expected it to be — The reproducibility
project evaluated the p-value, effect size, subjective assess-
ment, and meta-analysis of effect size. Depending on the
type of analysis that is preferred, between 39 % (subjective
judgments) and 68 % (the combination of replication re-
sults and original) of replications were successful. As the
large difference in these values suggests, there is discord
about what counts as successful replication. Gilbert, King,
Pettigrew, and Wilson (2016), e.g., reanalyzed the data by
making different decisions in the analysis process. Their
analysis revealed the opposite result of the (Open Science
Collaboration, 2015), that is: Reproducibility is actually
high. So, the discord on reproducibility warrants a closer
look at the scientific methods of psychology.

Besides a discussion on how to estimate reproducibility
for psychology as a whole, the initial results of the repli-
cation attempts motivated many more coordinated repli-
cation attempts. These replication attempts are aimed at
individual well-known and evocative experiments — e.g.,
the experiment on the facial feedback hypothesis by Strack,
Martin, and Stepper (1988). Strack et al. (1988) tested the
hypothesis that not only emotion cause facial expressions
but that facial expressions affect the perception of emotion.
With a clever manipulation, either holding a pen with the
teeth or with the lips, they produced a “smile” and “pout”
condition. Subsequently presented comics were rated to be
0.82 points more funny on a ten items Likert scale for the
“smile” condition. This experiment is literally a textbook
example of how states of the body affect the perception
of emotion. Acosta et al. (2016), however, showed that 17
independent direct replications conducted in 17 labs only
found a difference of 0.03 instead of the original difference
of 0.82 on the Likert scale. Only one of the 34 Bayesian
statistical tests in the 17 labs decided against the null hy-
pothesis. Overall, the replication attempt failed — however,
it is important to note that the authors do not think that
they falsified the facial feedback hypothesis. They merely
conclude that it is possible that this particular experiment
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does not provide a strong test of the hypothesis. So, the is-
sue here is the lacking reproducibility of a statistical result
without immediate consequences for the theory.

Whereas the psychological theory on emotions stays
largely untouched by the aforementioned replication at-
tempt, so-called ego depletion — the idea the willpower
draws from a limited resource — is a different case. Repli-
cation and some meta-analyses have raised serious doubts
about the underlying theoretical claims. Ego depletion
sounds plausible as a cause for behavior and as such it is
not only a textbook example for concrete findings of moti-
vation (e.g., Ryan, 2013) but also the basis for advice and
guides (e.g., Baumeister, Heatherton, & Tice, 1994) for the
public. And indeed, a meta-analysis finds convincing ev-
idence for the existence of ego depletion (Hagger, Wood,
Stiff, & Chatzisarantis, 2010). However, a coordinated repli-
cation attempt of the original study conducted in 23 labs
(Hagger et al., 2016) was not able to replicate the results of
the original experiments by Baumeister, Bratslavsky, Mu-
raven, and Tice (1998). It is important to note that this was
no direct replication because the original experiments were
difficult to standardize for different labs. So the developed
procedure included some carefully chosen design elements
from other successful ego-depletion experiments (for de-
tails, see Hagger et al., 2016). Hagger et al. (2016) report a
replication study that reveals that the effect size was highly
overestimated. One reason may be that sample sizes are
typically small in psychology and journals tend to publish
only positive results. There are many ways to address bias
in publications in meta-analyses. If this is done, the anal-
yses, including many hundred ego-depletion studies, are
inconclusive (Carter & McCullough, 2014; Vadillo, Gold, &
Osman, 2016). Friese, Loschelder, Gieseler, Frankenbach,
and Inzlicht (2018) give a summary of the arguments pro
and contra the existence of ego depletion. They conclude
that based on the evidence currently available, skeptics will
not be convinced that ego depletion exists and a proponent
of ego depletion will not be convinced of its nonexistence.
The authors state that if this inconclusiveness is the result
of two decades of research and hundreds of articles on
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ego depletion, then something must have gone seriously
wrong.

Psychology is, by no means, the only empirical science
that faces problems with reproducibility (Peng, 2015). In a
nature online survey 88 % of the 1,576 scientists from dif-
ferent disciplines report at slight or a major reproducibil-
ity crisis (Baker, 2016). Among other disciplines where
problems with reproducibility have been made evident are
neuroscience (Button et al., 2013), cancer research (Begley
& Ellis, 2012) and even artificial intelligence (Hutson, 2018).

What can go wrong in empirical science and cause grossly
false conclusions and doubts about the reliability of results
as in the cases mentioned above1? The obvious suspect is,1Chambers (2017) provides

an apt summary of the critique of
scientific practice in psychology.
Most of it is however beyond the
point of this chapter.

of course, the theory and practice of statistical inference.
Thus, I will give a survey of debates about statistical infer-
ence in psychology and related sciences. This will result
in the assessment that all statistical inference needs mod-
els. What constitutes a good model, in turn, depends on
the scientific inference to be made. Consequently, I will
elaborate on scientific inference. At the end of the chapter,
the perspective of Bailer-Jones (2009), a philosopher of sci-
ence, is introduced in which statistical, as well as scientific
inference, is used to link data and theory by models.

Statistical inference

The predominant tool for statistical inference is arguably
null hypothesis significance testing (NHST). Despite its
limitations — that have been presented clearly decades ago
(e.g., Oakes, 1986; Cohen, 1990) and reiterated recently (e.g.,
Gigerenzer, 2018; Cumming, 2013) — This procedure is
often used mechanically and without considering other ap-
proaches to statistical inference. It also creates the illusion
of a “free lunch”compared to other more complex analysis
methods (Rouder, Morey, Verhagen, Province, & Wagen-
makers, 2016) — namely that one can generate evidence
for a particular and often only implicitly stated alternative
model by rejecting a null-model which naturally seems sim-
pler that formalizing this alternative model and compare
both models statistically. Gigerenzer (2004) describes the



statistical inference 19

prevalent practice of applying NHST as follows:

1. Set up a statistical null hypothesis of ‘no
mean difference’ or ‘zero correlation.’ Don’t
specify the predictions of your research hypoth-
esis or of any alternative substantive hypothe-
ses.

2. Use 5% as a convention for rejecting the null.
If significant, accept your research hypothesis.
Report the result as p < 0.05, p < 0.01, or p <

0.001 (whichever comes next to the obtained
p-value).

3. Always perform this procedure. (p. 588)

Gigerenzer argues succinctly that statistical thinking is of-
ten replaced with statistical rituals that rather conform to
superficial rules of orthodoxy. This problem can partially
be alleviated by drawing attention to other useful tools in
the statistical toolbox like effect size, confidence intervals,
and meta-analyses, e.g., as explained by Cumming (2013).
However, to decide which tool to use, it is mandatory to
understand implications, strength, and weaknesses of the
approaches — or as Gigerenzer (2018) calls it “statistical
thinking” rather than the application of mechanical rules.

Besides Gigerenzer’s (e.g., 2018) argument that the in-
ferential power of orthodox statistical methods is overesti-
mated and affected by wishful thinking, another position
identifies the problem in the incentives of the scientific sys-
tem. John, Loewenstein, and Prelec (2012) revealed that sci-
entists apply questionable research practices — sometimes
even against better knowledge, e.g., the rare but outrageous
cases of proven fraud — because they yield publishable
results.

The publication system itself is also problematic: New
and “sexy” findings are eagerly published whereas con-
flicting evidence, e.g., in the form of a replication study
is much harder to publish and will almost certainly not
lead to academic recognition. This affects both the presen-
tation in individual papers (Giner-Sorolla, 2012) and the
literature at large (Song et al., 2010). Thus, the research
literature provides an incomplete and biased view of the
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works of researchers. This is directly linked to the practice
of controlling the type I errors, the false positives. Conse-
quentially, if a researcher tests 20 “sexy” hypotheses that
are not true, they will in almost two-thirds of the cases
have at least one chance find. Thus, to assess the actual
probability of a type I error, one would have to take all the
nonsuccessful unreported experiments into account.

Similarly, orthodox statistics require knowing the sam-
pling intentions of the experimenter: Did they collect data
until they reached 30 participants, or until 30 days had
passed or until they reached predetermined confidence in
their estimation. Each intention leads to a different statisti-
cal test because it changes sampling distribution (Dienes,
2008, 2011).

Independently of whether the questionable practices of
applying NHST rather stem from systematic incentives or
from an overestimation of NHST’s inferential capabilities,
it is fairly safe to assume that most researchers do not want
to cheat. If methods are applied such that the error rates
are not controlled, it is likely that this is related to problems
in understanding the logic of NHST. Gigerenzer presents
examples from textbooks that use an imprecise and at times
contradictory verbal descriptions of NHST’s results. As
Haller and Krauss (2002) showed with a six-item question-
naire, the inferential power of NHST is also misunderstood
by scientists and even by teachers of methodology.

A reason for the difficulties in understanding NHST may
be that it is used as an amalgamation of two not completely
compatible approaches: the approach by Fisher and the
approach to statistics developed by Neyman and Pearson.
How today’s NHST deviates from the originally proposed
procedures has been explained by, e.g., Gigerenzer (2004).
If the reader — like myself — is interested in a comparison
between both procedures, see Christensen (2005) for a pre-
sentation of the individual approaches with reference to
an example. Whereas the distinction between Fisher’s ap-
proach and the Neyman-Pearson approach is often referred
to, I seldom found the different conceptualizations outlined
beside each other. Thus, I found the concise summary by
Christensen (2005) especially helpful.
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The basic elements of a Fisherian test are: (1)
There is a probability model for the data. (2)
Multidimensional data are summarized into a
test statistic that has a known distribution. (3)
This known distribution provides a ranking of
the ‘weirdness’ of various observations. (4) The
p-value, which is the probability of observing
something as weird or weirder than was actu-
ally observed, is used to quantify the evidence
against the null hypothesis. (5) α level tests are
defined by reference to the p-value.

The basic elements of an NP test are: (1) There
are two hypothesized models for the data: H0

and HA. (2) An α level is chosen, which is to
be the probability of rejecting H0 when H0 is
true. (3) A rejection region is chosen so that
the probability of data falling into the rejection
region is α when H0 is true. With discrete data,
this often requires the specification of a ran-
domized rejection region in which certain data
values are randomly assigned to be in or out
of the rejection region. (4) Various tests are
evaluated based on their power properties. Ide-
ally, one wants the most powerful test. (5) In
complicated problems, properties such as unbi-
asedness or invariance are used to restrict the
class of tests prior to choosing a test with good
power properties. (p. 125)2 2Such a long quote is un-

usual but this text does an excep-
tionally good job at boiling down
the unique features of two funda-
mentally different approaches to
statistics whose differences are
much too often not recognized
at all.

However, NHST may not only be difficult to understand
because two approaches are mixed in NHST but as Oakes
(1986) already points out, some misunderstandings are
based on an intuitive Bayesian conceptualization of proba-
bility. The reader can check their own intuitions about how
statistics ought to work with the three example questions
by Dienes (2011). Arguably, results of Bayesian methods
are more in line with what researchers are interested in:
Namely, the probability of two or more hypotheses given
the data rather than the probability of data given a null-
hypothesis. Bayesian methods have been used to recreate
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well-known analysis techniques (e.g., the t-Test Kruschke,
2013; Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wa-
genmakers, Lodewyckx, Kuriyal, & Grasman, 2010) so that
NHST can simply be swapped for another — a Bayesian —
tool.

So should we all become believers in Bayesian statistics
instead of doing NHST? Hardly. Simonsohn (2014) showed
that many questionable research practices are still possible
with Bayesian methods. Also, the comparison of 855 t-Tests
revealed that by and large Bayesian methods yield similar
results (Wetzels et al., 2011). Only in extreme cases that
are often particularly constructed to show a discrepancy,
Bayesian and NHST results differ.

If you want to be critical of Bayesian methods, you could
even say that proponents Bayesian methods for the bet-
terment of reproducibility have to have some sort of split
personality disorder: They take a deficient control of error
rates as a reason to switch to a statistical procedure that
cannot control error rates at all. This might be as surprising
to the reader — as it was to me, but if examined closely,
Bayesian methods are neither designed nor guaranteed to
control error rates (Mayo, 2016, e.g.,). It all boils down to
the fact that Bayesian understand probability as a degree
of belief that can be assigned to any propositions, whereas
NHST is build on the assumption that a probability is a
long-run frequency (Hacking, 2001).

This clash of different schools of thought might be re-
solved by practically-minded statisticians: It has been ar-
gued that both methods have strength and weaknesses and
should be chosen with these properties in mind when a
problem is tackled (Efron, 2005). Little (2006) in particular
proposes to use NHST if little is known about the phe-
nomenon at hand whereas Bayesian statistics is apter if the
researcher has already a rough idea how a model of the
phenomenon may look.

One conclusion of the surveyed debates may be that
statistical tools are based on assumptions and that it de-
pends on the match of the implied model and the situation
whether the analysis is less useful (Box, 1976). Rodgers
(2010) establishes that the awareness for the role of mod-
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els for analyses has been raised within psychology. He
even calls this process a “quiet revolution”. It is revolu-
tionary because a researcher himself or herself engages in
explicitly designing a model that corresponds to his un-
derstanding of the phenomenon such that many implicit
intellectual judgments are declared formally in the model
and thereby made explicit. Whereas previously a model
has been chosen from a toolbox, e.g., as linear regression.
This approach is particularly interesting for cognitive psy-
chology because many cognitive abilities entail nonlinear
dependencies (Rouder & Lu, 2005). Particularly, in the
domain of visual attention, many mechanisms are well
documented such that it appears much more pressing to
me how all the different findings can be subsumed under
theories rather than finding yet another effect or interac-
tion within a particular design. In fact, it has been shown
that formal models of attention can be used to accumulate
progress (Logan, 2004).

To sum up, statistical inference is central to many empiri-
cal research questions. There are, however, some problems
associated with the use of statistics within psychology. On
the one hand, there are problems with the practices of how
statistics are actually used as opposed to how the methods
were designed to be used. On the other hand, there is a
rather new debate on whether to abandon NHST in favor of
Bayesian statistics. To make informed decisions regarding
both debates, it is important for a scientist to become aware
of her own conceptualization of the phenomenon and the
problem that ought to be solved by statistics. For example,
Bayesian statistics are particularly apt for inference under
custom models. Much less debated but nonetheless rele-
vant for methodology is the increase in modeling. So, how
does a researcher know which method to pick? This choice
depends on the scientific inference to be made.

Scientific inference

Up until now, I reviewed psychology as a science from
the perspective of its methods, which brought us roughly
speaking from statistical tests to models and further to
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theory — like, e.g., laws of nature. Another perspective
on psychological science is to start with its theories. A
lack of theories explains problems with reproducibility
well because, without a precise understanding of what re-
sults count as expected and in line with theory and what
results are surprising, it is difficult to judge which find-
ings need replications before publishing and which do not
(Muthukrishna & Henrich, 2019). Unfortunately, theories
in psychology are a complicated matter. While most re-
searchers would state that theoretical progress is clearly
the goal of their research, it is nearly impossible to find
an all-encompassing theoretical framework to which all
those researchers could commit (Green, 2015). Attempts
have been made (for a review regarding evolutionary psy-
chology, see Fitzgerald & Whitaker, 2010a), yet all have
been met with resistance. To make the matters even worse,
seven meanings of the term “theory” can be distinguished
(Abend, 2008) — a further reason why describing theo-
rizing merely as the search for laws is too simple. While
not all of these conceptualizations are equally important
in psychology, neither does psychology limit itself to one
meaning of the word. Bolacchi (2004) even presents an anal-
ysis according to which psychology is a pre-science because
scientific methods are used with pre-scientific philosoph-
ical conceptualizations like the search for essences as in
Aristotelian thinking. Summing up this short look at the
status of theories in psychology, one would be justified in
saying that it is a complicated matter and that one has to be
careful not to conduct a cargo-cult science (Feynman, 1974)
— an undertaking that applies scientific methods from natu-
ral science that are bereft of their inferential power because
of a gap between method and theory. Because there is
no common theoretical framework in psychology, I will
continue form the methods to what might be meaningful
implications for theorizing.

In order to know which statistical method is meaningful,
it is crucial to think about its role in the scientific inference
process. Probably most empirical scientists would agree
that they work according to some variant of the hypothetico-
deductive (H-D) model. Godfrey-Smith (2003) describes it
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succinctly as

(1) Gather some observations, (2) formulate a
hypothesis that would account for the obser-
vations, (3) deduce some new observational
predictions from the hypothesis, and (4) see
if those predictions are true. If they are true,
go back to step 3. If they are false, regard the
hypothesis as falsified and go back to step 2.
(p. 236)

Its core idea is that hypotheses cannot be proven but
merely tentatively accepted. Superficial, there is a resem-
blance between falsification in scientific inference as intro-
duced by Popper (1959), and NHST whereas Popper pro-
poses that scientific inference is not achieved by proving
propositions but rather by disproving the wrong proposi-
tions. NHST disproves a null hypothesis in order to create
evidence for an arbitrarily chosen alternative. So, is there a
direct correspondence in both lines of reasoning?

First of all, it is helpful to acknowledge that there are
severe differences between (Popperian) scientific inference
and statistical inference about chance experiments (Dienes,
2008, p. 71). The argument, why NHST is no application
of falsification is that scientific reasoning and statistical
reasoning works differently: Statistical inference introduces
quantified uncertainty in the form of probability whereas
scientific inference is about the truth or falsehood of a claim.

The difference between logical reasoning in scientific
inference and statistical inference with uncertainty is nicely
spelled out by Wagenmakers et al. (2017). They compare
syllogistic reasoning with probabilistic reasoning. Take for
example a classical syllogism

(Premise) All men are mortal;
(Premise) Sokrates is a man;
(Conclusion) Sokrates is mortal.

and an example adapted from Wagenmakers et al. (2017):
(Premise) If Socrates is a human, he is unlikely to be

a famous philosopher (because only very few humans are
famous philosopher);

(Premise) Socrates is a famous philosopher;
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(Conclusion) Socrates is probably not a human.
From this example, you see that introducing uncertainty

does not make reasoning a bit more uncertain but annihi-
lates the validity of the proof by contradiction. Thus, rea-
soning with uncertainty is fundamentally different from
bivalent logic, and it cannot be said that NHST follows
the same logic as Popper’s falsification. This property of
NHST may not be obvious because statistical inference is
only used to show that the data is highly unlikely under
the null hypothesis — yet, not that the null is falsified in
Popper’s sense.

Thus, one could say that the imperfections of inductive
reasoning are all shifted into statistical inference by the H-D
model (e.g., as opposed to Bayesianism in the philosophy
of science; see, e.g., Carrier, 2019, p. 107) But when scien-
tists apply NHST, to produce evidence for an alternative
hypothesis, they perform quite a stretch in terms of logic.
This is because scientific inference usually takes such a re-
sult as evidence for whatever alternative was hypothesized
without statistically testing it either individually or in direct
comparison with the null hypothesis. This consideration
of the alternative hypothesis is the central advantage for
the Bayesian version of the t-Test (Rouder et al., 2009). This
is the reason why the H-D model and Bayesian statistics,
in fact, go along quite well (Gelman & Shalizi, 2013).

The reader may wonder if a null hypothesis as in the
t-Test or ANOVA also includes some sort of model that, in
turn, should be able to provide a link between data and
theory. The mathematical formulation of the null hypoth-
esis can indeed be understood as a model (for details on
what to call a model in psychology, see Rodgers, 2010, Foot-
note 2); however, as Taagepera (2008) argues that these
models are descriptive. He distinguishes them from log-
ical models. A descriptive model provides a convenient
description of the data in the form of parameter values.
Descriptive models, however, do not necessarily represent
the logic of the data at hand that is intellectual judgments
about the phenomenon. This would, for example, include
forbidden areas (a response time cannot be negative thus
fitting a normal distribution does not provide a logic model
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of the data).
Interestingly, also Neyman and Pearson proposed that

it is necessary to formulate the alternative hypothesis as
part of the statistical analysis, however, this is the part that
is left out when Fishers and Neyman-Pearson approaches
are mixed. Arguably, the newly developed interest of psy-
chologists in modeling, as documented by Rodgers (2010),
may change this in the future such that individual models
are compared rather than null hypothesis being rejected
to provide evidence for an arbitrary alternative. Modeling
becomes a central concept here because to test Hypothesis 0
against Hypothesis A, it is necessary to relate the hypothe-
ses to the data explicitly. This explicit link is created by
modeling.

For example, consider the Normal distribution: Usu-
ally, it goes without questions to assume that a property is
distributed according to the normal distribution in a pop-
ulation. There are different arguments how to justify this
that are described and used as an example in Section 3.

Taagepera (2008, p. 124) gives an impressive example of
how crude some links between data and hypothesis actu-
ally are: Telephones per capita has been modeled with a
normal distribution in social science publications leading
to a negative number of telephones per capita for a substan-
tial percentage of countries. He calls this ignorance-based
modeling — not considering that there are reasons lead-
ing to a normal distribution but rather assuming that a
normal distribution appears in the absence of any causal
factors. If the link between data and hypothesis already
entails logically impossible conclusions, the validity of the
resulting scientific inference may be limited by the weak
link between data and hypothesis.

Besides coupling scientific and statistical inference (e.g.,
as formulated by Rouder, Haaf, & Aust, 2017), modeling
may also be important for explanations in psychology: Of-
ten it is assumed that discovering an effect suffices to ex-
plain a phenomenon. For Example, if I cannot read out the
color word “green” quickly because it is drawn in yellow,
then I could say: “It’s the Stroop effect!.” According to Cum-
mins (2000), however, named effects like the Stroop effect
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are rather explananda than explanantia. Roughly speak-
ing Cummins argues that although discovering effects is
clearly central in psychology, they themselves cannot ex-
plain — so to speak — their own existence. The particular
phenomenon that we understand as an instance of Stroop
Effect is thus merely described by “Stroop effect”. An ex-
planation, i.e., explanans, would involve reasons for the
existence of the Stroop effect. Cummins continues by elab-
orating that the classical model for an explanation in the
philosophy of science is the deductive-nomological (DN)
model. The general idea of this model is that the explanan-
dum is explained by the explanans only if the explanans
allows to deduce the explanandum form its premises and
that at least one of these premises is a law of nature (thus
deductive and nomological). This view is, however highly
problematic in the philosophy of science because a law of
nature is surprisingly difficult to pin down to a precise con-
cept. This is, in particular, the case for the special sciences
like psychology, sociology or geology whose subject are
particular phenomena and not the general laws of nature.

The solution for Cummins is what he calls functional
analysis. Roughly speaking, this means to break down a
complex and problematic system into a set of less com-
plex, less problematic systems. Modeling is relevant in
this context because it makes this process of deconstruc-
tion into individual factors and their interaction explicit.
Thus, a logical model can be understood as making a phe-
nomenon explainable and providing the content for the act
of explaining (Krüger, Tünnermann, Rohlfing, & Scharlau,
2018).

Although models are often presented as a link between
data and theory, it is much harder to find a coherent posi-
tion in philosophy of science that explains how models fit
within the hypothetico-deductive understanding of science.
Among the few sources, there is a particularly comprehen-
sive one by Bailer-Jones (2009). She provides an overview
of scientific models in the philosophy of science by review-
ing current and historical perspectives on models. From
this review, she develops an own account of the function
of models within science. As she explains, this account is
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broad enough to cover the concept of “model” through-
out the different scientific disciplines as well as thorough
enough to explicate how “model” relates to other concepts
and points of view in the philosophy of science. According
to her account, models are positioned between phenomena
and theories.

What is the difference between a theory and a model?
Historically, before the 1950ies, theories have been thought
to make models obsolete. Roughly speaking, a model was
an inferior precursor of a theory that was not sufficiently
abstract. Theories are abstract sets of propositions. They
are abstract in the sense that they do not aim to capture the
concrete properties of a phenomenon. In fact, they omit
as many concrete properties as possible to be widely ap-
plicable. Models are needed to apply abstract theories to
concrete phenomena. Models satisfy abstract logical con-
straints of theory and concrete empirical constraints of a
phenomenon. Bailer-Jones (2009, p. 1) defines models as
“interpretative descriptions of phenomena that facilitate
access to that phenomenon.” As an interpretative descrip-
tion, models can still be abstract but have to satisfy at least
some empirical constraints of the phenomenon. Thus, mod-
els are always less abstract than theories. In other words,
models are customizations of theories such that they be-
come applicable to some of the concrete properties of the
phenomena by filling in the gaps.

A good example of how different models may satisfy
different empirical constraints is Marr’s (1982) three lev-
els of analysis. These levels are used to model complex
information processing systems with distinct yet comple-
mentary levels of analysis. On the computational level, it
is described what the system does, that is what problem it
solves or why does it what it does. The algorithmic level
is concerned with how the system achieves the outcomes,
e.g., what representations are involved and what processes.
The implementation level or physical level deals with how
the system is realized in the physical world, e.g., is it made
of transistors or neurons, how are they connected, and how
are the algorithms realized on this substrate. A theory of,
e.g., vision can now be tested and instantiated by a theoretic
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model for the individual levels.
For example, the theory that there is purely stimulus-

driven attentional capture can be instantiated on the algo-
rithmic level by modeling how the information is processed
without referring to neuronal substrates or by a neuronal
model that is explicitly about how such purely stimulus-
driven process is implemented in the brain. By filling in the
gaps for an application to an empirical phenomenon, these
theoretic models make predictions testable — however, the
phenomenon is not directly linked to the theoretic model.

The term phenomenon was not yet introduced properly.
A phenomenon is a fact or event in nature. It arises from ob-
servation and is at least suspected to be stable and not a ran-
dom. The discovery of a phenomenon can be theory-laden.
Certain phenomena like search asymmetries would not be
recognized without previous research in a field like visual
search. What the phenomenon is can change throughout
the investigation. So, the phenomenon may be debunked
as a chance finding or as caused by a faulty measuring
device (e.g., faster-than-light particles; Cho, 2012).

An important assertion is that a phenomenon is, how-
ever, not equal to data. Data arises according to Bailer-Jones
(2009) view from a specific way of observation or exper-
imentation. The collected data is, thus always a certain
aspect of the phenomenon. A phenomenon, however, is as-
sumed to be stable beyond the currently available data. The
collection of data is not seen as theory-laden because in con-
trast to identifying the phenomenon, gathering data is un-
derstood as reading a measure of an instrument. In psychol-
ogy, this may not be the case, e.g., studies including expert
raters. However, for the experimental designs presented
here, this view seems applicable: Automatically recorded
participant judgments are arguably not influenced by theo-
retic views held by the experimenter. However, models and
the discovery of phenomena can be influenced by theories.

Data does not directly allow to test hypotheses because
of measurement errors and limited sample size. Data mod-
els, thus deal with these problems. They allow a statistical
inference. A statistical inference does not directly test a
theory but tests the prediction of the theoretic model; The
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theoretic model models an experimental situation and sat-
isfies empirical constraints as well as theoretical constraints.
That is, the theoretic model states what the theory means
for a particular experimental or observational setup. Incor-
porating all these points into one frame, Bailer-Jones (2009)
arrives at the relations depicted in Figure 2.1.

theory

theoretical model

data model

data

phenomenon

Figure 2.1: Bailer-Jones’ 2009
complete picture of how models
are a part of in statistical and sci-
entific inference.

Bailer-Jones’ (2009) account accommodates many points
of view. Her frame allows reflecting practices in psychol-
ogy because it accommodates central concepts like phe-
nomenon, data, theory, and of course their interconnection
with scientific models. Bailer-Jones’ account is in accord
with the hypothetico-deductive method as theoretic mod-
els are derived from theories and thus allow to test theories.
The frame does not answer whether a theory or an auxiliary
hypothesis was falsified but rather makes explicit at which
points auxiliary hypotheses are introduced to satisfy both
the empirical and the theoretic constraints.





Chapter 3

From phenomenon to
theory and back

Finally we shall place the Sun himself at the center of
the Universe. All this is suggested by the systematic
procession of events and the harmony of the whole
Universe, if only we face the facts, as they say, “with
both eyes open.”

Nicolaus Copernicus as quoted by Kuhn (1957, p. 154)

In the last chapter, the scientific-philosophical frame-
work by Bailer-Jones (2009) was introduced to explain how
models close the gap between data and theory. Particu-
larly, the framework shed light on how models fit into
the hypothetico-deductive method that constitutes one of
the foundation of scientific psychology (e.g., Dienes, 2008).
This chapter takes the introduced framework and applies it
to psychological research on salience. This is not a straight-
forward task because the framework is idealized and was
not developed particularly for psychology but rather for
empirical science in general — with a strong emphasis on
physics. Also, Bailer-Jones states in her conclusion that
the framework is still incomplete and, as it is typical for
philosophy, competing positions exist. So, why bother to
locate research results within this particular framework?

The answer is that by locating a research result within the
framework, we gain an idealized view of what a particular
research result should and should not be used for within
the hypothetico-deductive method. Even if the reader does

33
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not agree with parts of this framework or its content, it
helps to pinpoint critique to a particular aspect whereas
the value of another part of the contribution can be evalu-
ated independently. This line of reasoning has also been
described in Krüger et al. (2018)1. To support this evalu-1This chapter has partially

been written before the article
and is largely overlapping with
its topic of linking data and
theory quantitatively (Krüger et
al., 2018). In addition to the
present chapter, the article com-
pares NHST, machine learning
in psychology (for a review, see,
Yarkoni & Westfall, 2017) and

inference under Bayesian mod-
els with a particular focus on
whether they provide a good ex-
planation of the data.

ation and provide the rationale for the reasoning behind
this work, the current chapter will discuss several candi-
dates or views for each of the positions to be filled within
Bailer-Jones’ framework. Certain theories, phenomena, and
methods of scientific and statistical inference have been
mentioned previously and will reoccur in this chapter be-
cause they have not yet reviewed in relation to Bailer-Jones
framework. Thus, although I try to keep it to a minimum,
there may be some overlap with the first two chapters.

The chapter starts by reviewing phenomena that are re-
lated to salience but also phenomena that ought to be dis-
tinguished from salience in a systematic investigation (for a
more comprehensive overview on covert attention, see, e.g.,
Wright & Ward, 2008). From there on, the order might sur-
prise the reader as Bailer-Jones’ framework is not traversed
from end to another. In contrast, the framework is filled
in the order that is best to follow so that a topic does not
presuppose a content from not yet introduced parts of the
framework. So, after phenomena, I discuss theories that
may be suitable for a quantitative investigation of visual
salience. A focus is put on formal theories of attention, par-
ticularly on Bundesen’s (1990) Theory of Visual Attention
(TVA) that provides the basis for the present work. In con-
gruence with Bailer-Jones, theoretical models link theory
and concrete situations. In the case of experimental psy-
chology, these concrete cases correspond to experimental
paradigms. In Section 3, I discuss approaches to statistics
that comprise and compare methods from the Bayesian
school, Nayman-Pearson school, and likelihood-based ap-
proaches. The chapter ends with a decision in favor of
Bayesian methods for the present work.

Thus, after this chapter, the phenomenon of salience is
distinguished from related phenomena and embedded in
a theoretical context.



phenomenon 35

Phenomenon

Salience can be distinguished from other sources of atten-
tion with the help of taxonomies. Salience affects atten-
tion; this much is already known from the introductory
examples of Chapter 1. However, it is important to clearly
describe this phenomenon, its boundaries, and phenomena
ascribed to other causes to ensure that whatever quantita-
tive measure of salience is not confounded by related yet
different influences on attention.

As a first systematic approach to salience and attention
research as a whole, it is useful to situate salience within a
taxonomy of attention. Already James (1890) distinguished
different phenomena under the term attention by means
of two central categories. Particularly, James distinguished
between “passive” and “active” attention. Whereas “pas-
sive” attention is a reflex-like, nonvoluntary, and effort-
less attraction of attention, “active” attention is the volun-
tary direction of attention towards a particular stimulus
or thought. In over a hundred years, these distinction is
still central although “passive” is usually called bottom-up,
exogenous, or stimulus-driven whereas James’ “active” at-
tention is called top-down, endogenous, or goal-directed.
In congruence with a current taxonomy of attention by
Chun, Golomb, and Turk-Browne (2011), I will use the
terms stimulus-driven and goal-directed in this work. This di-
chotomy has been established in experimental psychology,
e.g., by the seminal work of Posner (1980). Another impor-
tant contribution that emphasizes this decision is Corbetta
and Shulman (2002) influential review on the partially-
segregate neuronal substrates of these two mechanisms.
According to Corbetta and Shulman (2002), the process-
ing of stimulus-driven events in the ventral frontoparietal
network works as a “circuit breaker” for the goal-directed
system that is located dorsally. However, this conceptual-
ization as a dichotomy of influences may not capture all
attentional selection biases and as such fail to provide a
true dichotomy (e.g., Awh, Belopolsky, & Theeuwes, 2012).
In his recent review, Wolfe and Horowitz (2017) distin-
guishes three additional factors: history, perceived value,
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and scene guidance. Nevertheless, it is undisputed that
stimulus-driven influences like salience are distinguishable
from goal-directed influences.

Attentional phenomena caused by salience clearly be-
long to stimulus-driven attention. However, sooner or later,
salience-based influences get integrated with goal-directed
influences. This is a central point in Treue’s (2003) already
discussed comprehensive review of the underpinnings
of salience. In particular, Treue notes that the computa-
tion of salience is at least partially hard-wired because of
the center-surround organization of many neurons. Fur-
thermore, the neuronal processing can be understood as
composed of different stages as processing in the retina is
stimulus-driven with a special emphasis on discontinuity.
Whereas the bandwidth decreases, the goal-directed influ-
ence increases along the path through the visual system
and cannot be segregated into a late modulation of a largely
stimulus-driven process. In Treue’s (2003) view, this sys-
tem has — roughly speaking — a common currency2 of2A common currency as the

Euro is for many EU countries so
that qualitatively different things
like goods or services can be
quantitatively compared.

attention that “equates the absence of attention with low
stimulus power” (p. 430). Thus, different influences on
attention can be understood as contributing to a common
currency that determines how much attention is attracted.

The information reduction throughout the visual pro-
cessing indicates stimuli competing for limited resources.
As the representations become more complex in the later
stages, the amount of stimuli that can be represented di-
minishes. Desimone and Duncan (1995) describe this as a
parallel biased competition because only a few of simulta-
neously visible stimuli are available for higher cognitive
processing including conscious perception and the chance
to reach such a representation is biased towards stimuli
that are relevant for behavior. This bias corresponds well
with Treue’s (2003) common currency of attention in which
stimulus-driven and goal-directed influences are factored
in.

Whereas the distinction of stimulus-driven and goal-
directed influences shed light on how a stimulus is se-
lected, one can also ask what is selected. As summarized
by several reviews (Treue, 2003; Corbetta & Shulman, 2002;
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Carrasco, 2011) attentional selection is either based on lo-
cation, feature, or object. Also, points in time can be se-
lected (Egeth & Yantis, 1997; Los, 2010). It is important to
note that these phenomena can occur without shifting the
gaze (covert attention; Carrasco, 2011). The rationale for
a keeping the gaze and eccentricity of the salient stimuli
constant is that spatial resolution changes depending on
the eccentricity (for orientation, see Westheimer, 1998; for
color, see Hansen, Pracejus, and Gegenfurtner, 2009). Thus,
a quantitative investigation of salience manipulations can
be operationalized with what is selected when external
factors like visual resolution are controlled.

In summary, stimulus-driven influences like salience can-
not be separated cleanly from goal-directed on the substrate
level where selection mechanisms are implemented in the
brain. Both mechanisms are, however, partly segregated
and contribute to an overall currency of attention. This
currency, in turn, is used to distribute limited processing
resources. For a quantitative measure of salience, salience
has to be manipulated while goal-directed and more basic
influences like visibility have to be kept constant. A quanti-
tative measure of salience would be particularly meaning-
ful for the functional analysis (Cummins, 2000) of attention
if it were formally distinguished from and explicitly related
to goal-directed influences and the selection mechanism
itself.

Whereas the previous paragraphs were about properties
of phenomena that are shared by many attentional phenom-
ena, now properties specific to salience will be reviewed.
To this end, I start with a thought experiment and review
empirical evidence in this direction afterward.

Figure 3.1: Salience example:
The more difficult to predict a
stimulus from its surrounding,
the more salient it is.

Salience is understood in the context of this work as lo-
cal physical contrasts that affect attention as mentioned in
the introduction. This should not be taken for granted as
salience may also refer to the perceived conspicuousness
of a stimulus standing-out from its surrounding. Kerzel,
Schönhammer, Burra, Born, and Souto (2011b) showed that
salience changes perception which indicates the possibil-
ity that salience may have distinct effects on perception
and attention. Although the perceived conspicuousness
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is not focused in the present work, it provides an evoca-
tive thought experiment: Suppose you have a photo and
what a rough estimate of the salience of a particular re-
gion, e.g., one that shows a particular object. Now, cover
this region with a coin and imagine a reconstruction of the
coin-covered part purely from the rest of the image. Figure
3.1 shows an example. You will notice that some parts are
more easily reconstructed that others — or more precisely,
these parts deviate less from a reconstruction based on the
local environment. These regions are of low salience. Other
parts may be so specific in their contrasts, colors, and edges
that they can hardly be inferred from their surroundings.
Such regions are of high salience. If you limit your mental
reconstruction of the covered regions to physical proper-
ties, you are doing something comparable to a neuron with
a center-surround organization that exhibits a high fire rate
of center and surrounding deviate.

The idea that salience is connected to the likelihood of re-
construction a visual stimulus from its surrounding is taken
from a purely information-theoretic approach to salience
and the respective model by Bruce and Tsotsos (2009). This
model does not analyze the semantics but information-
theoretic properties of pixel images not wholly unlike a
statistical analysis. The model does not claim to model
empirical findings in particular but the functional proper-
ties of salience. And indeed, in congruence with empirical
findings, this model shows that according to information
theory, the more physically unique, the more likely a stim-
ulus attracts attention. This is, however, only every rough
description because the interesting aspect is not that the
model tells us that a unique thing stands out in an image
but why — it contains the most information.

With this example, I do not want to discuss the model
(Bruce & Tsotsos, 2009) in depth; after all this section is
about the phenomenon to study. However, the model is
supposed to prompt the intuition that the more basic prop-
erties a spot in an image contains that cannot be inferred
from its surrounding, the more salient it should be accord-
ing to information theory. Of course, the view presented
by Bruce and Tsotsos is idealized and developed from an
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engineering perspective. To detect in how far the actual hu-
man visual system deviates from this idealized principle, I
will review research on the influence of visual properties
in the following.

Already James (James, 1890) identifies individual fea-
tures that attract attention. Among his examples are “strange
things, moving things, wild animals, bright things, pretty
things, metallic things, words, blows, blood.” (p. 417) Cur-
rent research does not confirm most of these examples as
sources of stimulus-driven attention because attention is
not drawn by a feature per se but by its contrast to the sur-
rounding (Duncan & Humphreys, 1989). Still today, differ-
ent types of features and feature contrasts are distinguished
into feature dimensions as, e.g., motion or color. This view
is likely founded in the early research on visual attention in
which the processing of visual features was seen as build-
ing blocks from which more complex representations are
pieced together. This view, however, showed to have lim-
ited explanatory power. Nevertheless, and as explained by
Treue (2003) salience is at least partially “hard-wired” so
that independent dimensions based on neurophysiology
are reasonable idea to start with.

As reviewed by Wolfe and Horowitz (2004), there is a
continuum of feature dimensions from being either highly
likely to affect stimulus-driven attention to highly unlikely
to do so. In congruence with the assumption of basic prop-
erties driving visual salience, properties like motion, ori-
entation, luminance, and color contrast are all effective at
manipulating attention.

Another important aspect of salience is conveyed by
the work on visual contrast by (Duncan & Humphreys,
1989). Duncan and Humphreys used the paradigm of vi-
sual search to show that search efficiency is affected grad-
ually by the degree of similarity between target and dis-
tractor stimuli (which makes the search less efficient) and
the degree of similarity amongst the distractor stimuli (the
more homogenous the distractors, the more efficient the
search). So, salience is a gradual property that depends
on the similarity between an object and its surrounding
with respect to certain salience-relevant feature dimensions.
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This also fits well with the rescinding of the dichotomous
distinction between parallel and sequential search in which
a stimulus was believed to be either immediately found or
found later by linearly scanning the whole stimulus array.
Instead, today, a continuum of efficient to inefficient search
is assumed (Wolfe & Horowitz, 2017).

Whereas much research has been done on what physi-
cal contrasts can affect attention (Wolfe & Horowitz, 2004),
much less research has been done to investigate how salience
strength and physical contrasts are related. Roughly speak-
ing, instead of asking whether a feature dimension can
affect attention at all, here one would ask if its impact is
strong or weak and whether it contributes independently of
other feature dimensions to a common currency of salience.
Moreover, the few results stem from different research
methods and yield contradictory results. Related works
have already been introduced in Chapter 1. The next para-
graph provides a short summary.

Nothdurft (2000) provides a comprehensive comparison
of single-dimension contrasts, e.g., a stimulus only unique
because of a color difference, and contrasts combined from
two contrast, e.g., a stimulus unique because of a color and
an orientation contrast to its surrounding. He concludes
that the estimated salience from the contrast combinations
is always higher than the salience of the individual con-
tests. However, the salience of this combination is always
less that the salience estimates of the individual contrasts
added up. Whereas Nothdurft (2000) explicitly asked to
judge the salience, Huang and Pashler (2005) proposed
method to reduce goal-directed influences on the salience
estimate by estimating the salience of a distracting element
rather than on an element that has to be found to solve the
experimental task. Again, a salience value for the combi-
nation of two contrasts was found that was between the
maximum of the individual contrasts’ salience estimate
and the sum of both estimates. Koene and Zhaoping (2007)
report that they were not able to replicate Nothdurft (2000).
Similarly to Huang and Pashler (2005), Koene and Zhaop-
ing (2007) used a search task but did not use the degree of
distraction but the search time for the salient target stimu-
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lus. Koene and Zhaoping (2007) did not estimate salience
directly but decided whether salience dimensions interact
by a model comparison. This model comparison contra-
dicts Nothdurft (2000) findings who reported a stronger
interaction for the color-motion combination for the color-
orientation and orientation-motion combinations whereas
Koene and Zhaoping (2007) found no interaction at all for
color-motion but interactions for the other two combina-
tions.

Whereas this review clearly shows that there is no ob-
vious or simple way how questions about the strength of
salience should be translated into an experimental design
or statistical analysis, some critical points can be observed:
Salience was part of the task in all designs because salience
was necessary to solve the task at hand. Thus, goal-directed
influences may have been kept constant but are difficult
to discern from the influence of salience; Although Koene
and Zhaoping (2007) use a model, they do not actually ap-
ply statistical model comparison, instead their argument is
based on the nonsignificant deviation from model predic-
tion for the color-motion combination. So, for the validity
of the argument, the absence of a statistical effect has to
be show. Although it is possible to argue for the null hy-
pothesis, a high power is needed such that possible effects
are not overlooked. Their sample size of eight and the ab-
sence of a power analysis makes their argument look vague.
Nothdurft’s (2000) sample size comprised even less partici-
pants; There were five, probably highly trained individuals
including the author himself.

Salience also has a distinct time course such that it peaks
at around 100 ms to 150 ms after stimulus onset and decays
afterward. Again, like in the case of possible interactions,
it is tightly connected to the question of how to access the
strength of salience at all. In this pursuit different designs
have been used: Saccadic selection (Donk & van Zoest,
2008; Silvis & Donk, 2014), saccadic trajectories (van Zoest,
Donk, & Van der Stigchel, 2012; Tudge, McSorley, Brandt, &
Schubert, 2017), variants of cueing (Donk & Soesman, 2010;
Dombrowe, Olivers, & Donk, 2010), visual search (Couffe,
Mizzi, & Michael, 2016), temporal order judgements (Donk
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& Soesman, 2011). It is unclear in how far a deviation for
a straight saccadic trajectory measures the same construct
as for example response time in a cueing experiment. An
additional difficulty with assessing salience’s time course
is that whatever paradigm is used, the presentation dura-
tion of the salient stimulus has to be manipulated largely
independent of other factors. Also, the transient influence
of salience has to be distinguished from potentially con-
founded temporal phenomena like expectation (Vangkilde,
Coull, & Bundesen, 2012) and alertness (Matthias et al.,
2010).

To sum up the relevant properties of the phenomenon of
visual salience, I would like to come back to the initial ex-
ample. In the model by (Bruce & Tsotsos, 2009), a stimulus
is salient when it is difficult to “predict” it from is surround
that is it carries much information because of its high con-
trast to the surrounding. The example also illustrates the
point that although salient stimuli may appear as conspicu-
ous, it is unclear whether this is the same as the effect that
physical contrasts have on attention. Visual salience affect-
ing attention is effectively manipulated using basic visual
contrast types. These types are categorized in dimensions.
These dimensions are likely not entirely independent nei-
ther do they add up perfectly. As hypothesized by Koene
and Zhaoping (2007) and Nothdurft (2000) alike, this is
likely linked to the underlying neurophysiology. Yet, there
are many competing measures of visual salience such that
different findings may equally likely be contributed to the
different methods than to true effects of the independent
variables. All of these methods must deal with the problem
that salience is sooner or later integrated with goal-directed
influences on attention. They also must account for the fact
that different salience dimensions must be manipulable to
measure and compare the effect of salience. Additionally,
time is a crucial factor when measuring the quantitative
strength of salience as salience is not stable in time. Thus,
questions about the quantitative strength of salience are
unlikely to be solved by yet another experimental design
alone. Instead, it is advisable to look at existing theories
and models to develop a measure of salience such that its
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quantification can derive meaning from its relationship to
theoretical constructs and functions.

Theories

Theories are particularly difficult to discriminate from the-
oretical models. According to Bailer-Jones (2009), the ide-
alized version of a theory is maximally abstract. That is,
for example, the case for a set of mathematical axioms. To
apply a theory, however, a connection has to be made to
concrete instances in which the theory is applied. For ex-
ample, this would be formulas derived from these axioms
that describe a certain experimental situation so that a par-
ticular outcome is expected based on the theory. Such a
formulation, however, hold the status of a formal model
rather than theory.

Bailer-Jones (2009) further summarizes that abstract the-
ories arise form descriptions of concrete instances and are
then formulated independently of the these instances when
much evidence has shown to support the idea expressed by
the theory. So, it is not surprising that during their devel-
opment, many theories are incorporated into models but
may not be formulated independently of the models de-
scribing certain situations. However, in this section, works
are reviewed that provide a set of abstract assumptions
about salience and attention in general.

In contrast to early concepts of attention, e.g., in James’
(1890) work, attention is not understood as a unitary con-
struct (Poth & Schneider, 2013). Carrasco (2011) adds that,
rather than to simply infer attention’s presence, it is neces-
sary to define and manipulate it while keeping the stim-
uli and task constant. She also summarizes that attention
research is conducted on many levels of analysis and is
advanced by their integration. The climate for a unified
theory of attention is rather bad as there are many rather in-
dependent research processes that additionally are studied
on different levels of analysis.

One way of dealing with this complexity is to focus the-
orizing on a specific paradigm. This has been done in the
case of visual search. Visual search is closely connected
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to the phenomenon of visual salience because stimulus-
driven attention is one factor that can guide attention to-
wards the target stimulus. Some examples are shown, e.g.,
by Wolfe and Horowitz (2004), Wolfe and Horowitz (2017).
So, salience plays an important part in whether a stimu-
lus is found among others efficiently. Theoretical work
aims at how this search works in general. Thus, theories
from this particular paradigm are worth a look. In this
pursuit, it is apt to start with Treisman’s (1980) Feature
Integration Theory (FIT). FIT, however, assumed a sharp
distinction between features that can be pre-attentive and
that others require attention. Wolfe’s Guided Search The-
ory was a successor to FIT. This theory proposes an early
but shallow parallel analysis of all locations that selects
some stimuli based on features to make them accessible to
higher cognitive processing (Wolfe, 1994). The core idea is
that features are represented in maps. Without the inten-
tion to mock this approach one may say that introducing
a map is basically just claiming that features are not rep-
resented independently of the space which, if put plainly,
seems quite obvious because, e.g., eye movements need a
target location. Thus, it is highly likely that each theory of
attention will deal with features and locations. The interest-
ing question is how this works. Wolfe (1994) hypothesizes
different possible organizations of feature maps. Central
to this question is which features are independently an-
alyzed. So, it is questionable whether there is a map for
color in general or red-green and blue-yellow contrasts. In-
dependently of how the feature analysis is organized, the
respective dimensions are multiplied with a goal-directed
influence.

The theory part of Guided Search provides a qualitative
account of how the search process is structured and which
type of representations are used. To research quantitative
aspects of salience, it would be crucial to know in advance
how the maps are organized and how other influences like
goal-directed feature-based attention interacts with these
stimulus-driven influences. In fact, if this information were
known, the present research question would be obsolete.
Also, it is important to note that visual search theories are
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by their nature focused on the particular task of search
so one may argue that a measure of salience should be
based on a theory that is at least not by design focused on
one paradigm. Thus, visual search theories elicit important
structural properties of attention but are not a suitable basis
for quantitative analysis of salience.

If theories are not focused on a particular paradigm, an-
other approach is to focus on the phenomenon of salience
itself by providing a computational explanation. Koch and
Ullman (1985) provide such a theory. Basically, they pro-
pose independent maps as in Wolfe’s (1994) Guided Search.
However, this architecture is not limited to a particular
paradigm and specifies how salience might arise from neu-
ronal representations of contrasts. The core idea in this
architecture is retinotopic maps that encode independent
contrasts and are combined only after the contrasts have
been computed. A master map determines where to attend.
Combined with the inhibition of return mechanisms, this
theory provides the basis for many computational models
of salience and attention. Arguably the independence of a
certain task makes it even harder to discern stimulus-driven
and goal-directed influences quantitatively and it is often
not clear which dependent measure is actually predicted
(Koehler, Guo, Zhang, & Eckstein, 2014). As in the case
of visual search theories: If these theories of the neuronal
origin of salience were already certain about quantitative
aspects of salience, this work would be obsolete.

Li (2002) approaches a computational explanation of
salience based on modeling the neuronal structure of the
primary visual cortex. This model focuses on the imple-
mentation level of analysis (in contrast to computational
or algorithmic as discussed in detail in Section 3) that is
how is salience actually been computed by neurons. Li
proposes that the structure of the artificially recreated neu-
ronal connections in the primary visual cortex (Li, 2001)
suffice to compute salience without a separate and explicit
master map. However, again, this model is not explicit in
how goal-directed influences affect these computations.

Instead of the paradigm specific theories, these theories
are salience-specific by which I mean that they are not
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specific about other influences of attention or provide a
specific prediction for particular paradigms. Thus neither
paradigm-specific nor salience-specific theories provide a
sufficient basis for a quantitative investigation. Existing
quantitative modeling on the basis of these theories will
be reviewed in the next Section 3 on theoretical models to
provide additional support for this claim.

The third approach to theories that I present is formal
theories of attention. These are rather abstract, but their
mathematical form ensures that influences are quantita-
tively discernible. In comparison to the paradigms-specific
or salience-specific theories, they are better suited to ac-
cumulate progress in attentional research as they have a
more general scope (Logan, 2004). Logan reviews two ap-
proaches: signal-detection theory and similarity-choice ap-
proaches, including Bundesen’s theory of visual attention
that is discussed in the next section.

Viewed from a more abstract vantage point, one could
say that attention is always about selection. Desimone and
Duncan (1995) describe this selection as parallel process-
ing of stimuli until a bottleneck is reached. In this case, a
stimulus is selected according to its attentional bias. This
becomes evident in the phenomenon that attended stimuli
are perceived earlier than otherwise equal stimuli. It has
already been formulated by James (1890) and is currently
well established within experimental psychology under the
term prior entry (for reviews, see Shore, Spence, & Klein,
2001; Spence & Parise, 2010). These particular implications
will be relevant to the theoretical model of the present ap-
proach. Salience, thus, can be understood as merely one
“trick” the visual system uses to select information without
full knowledge about its implications.

Summing up, there are usually more visual stimuli than
can be processed by limited cognitive resources. Thus,
stimuli must be selected for processing. This is done by the
attention, which includes salience as the effect of physical
contrasts. These do not have a status as exclusive as initially
assumed in FIT, i.e., privileged pre-attentive processing.
Instead, contrasts guide attention. Theories of salience
admit that it is affected by goal-directed influences but also
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assume a rather fixed “hard-wired” computational process.
Although theories differ in whether they assume an explicit
neuronal representation of salience, all agree that some
sort of retinotopic mapping must happen in which the
surrounding plays a crucial role in determining the amount
of contrast. Different types of contracts are distinguished,
based on neurophysiology. Whereas these computational
models focus the process of how salience arises, there are
also formal mathematical theories of attention that aim at
relating abstract concepts as attentional bias and selection
by mathematical functions. These different approaches
may seem quite alike and can, in fact, they can overlap.
However, they differ in the focus of what to explain, which
may become more clear when the theoretical models are
discussed that such theories may entail.

Theoretical models

Theoretical models are what links abstract principles or
theoretical axioms to actual situations. In actual theoretical
work, this distinction is, however, seldom made and maybe
a seem a bit artificial. However, as Bailer-Jones (2009) ar-
gues, theories cannot be tested directly: One has to specify
what exactly they entail for a particular concrete situation.
This is done by the theoretical model. Theoretical models
can be differentiated in how general or situation-specific
they are; Some may deal with classes of instances whereas
others deal with one particular experimental design.

Visual salience can be approached by different disci-
plines from different angles — as other phenomena that
emerge in complex cognitive systems. These approaches
have different and sometimes competing foci: Computer
scientists are interested in computational properties of
salience models, neuroscientists are concerned with identi-
fying and locating the neuronal substrate of salience, and
psychologists are interested in observable behavior. In all of
these different approaches to salience, models are present
although they provide — borrowing form Bailer-Jones defi-
nition — a different interpretative view that provides access
to a phenomenon. One way to bring order to these different
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models and their different perspectives are Marr’s (1982)
levels of analysis that are divide models into either dealing
with the computational analysis that is what problem does
the system solve; algorithmic how is the problem solved
which includes processes, mechanisms and representation;
and finally the implementation level that analyses how
a system is physically implemented, e.g., on a neuronal
substrate.

There are a large number of computational models that
are built around Koch and Ullman’s (1985) theory of map-
like representations that are combined to a master map
(for a survey, see Frintrop et al., 2010) these models are
not necessarily based on empirical research. For example,
Bruce and Tsotsos (2009) use information theory, a purely
theoretical approach, to implement a model that attends to
the spots that convey the most information. The impressive
achievement of these models is that “attention” can be
predicted for every digital image or even digital video.

From a psychological perspective, however, these models
are often not very precise in terms of which psychologi-
cal construct they predict. As reviewed earlier attention is
not a unitary construct thus predicting “attention” for all
stimuli, all tasks, etc. may be an approach that will never
reach a precise prediction of human behavior because it
may be too ignorant of the individual processes and prop-
erties involved in attention. One use of these models is
to predict eye-movements. As Schütz et al. (2011) review,
these models usually explain only a fraction of the variance,
and their performance depends on the task. More gener-
ally, Koehler et al. (2014) ask “What do salience models
predict?” by comparing model predictions to different be-
havior measures. It turned out that the best models where
better in predicting explicit judgments of salience than eye-
movements in free-viewing, object search, and salience
search tasks.

Also, with Bailer-Jones (2009) in mind, the linking of
theory and data is somewhat unidirectional in these mod-
els as they allow to predict data for an arbitrary input but
do not shed light on how the model or the theory should
be changed in case predictions not deemed good enough.
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The reason for this is that the theory is quite explicit how
salience arises but remains vague in terms of other psycho-
logical phenomena like selection or visual search speed.
Thus for applying the hypothetico-deductive method to
the theories is difficult, its auxiliary hypotheses are not
precisely formulated, yet needed to apply it to concrete
behavior as eye-movements.

Models that have a more precise focus have other diffi-
culties to deal with: Wolfe (2007) reports that parts of his
guide search model can describe and predict the quanti-
tative properties of empirical results. Yet, to this day, the
model is not fully implemented, and the details of the im-
plementation are based on assumptions and phenomena
that are related to but not exactly salience, e.g., detectabil-
ity of difference between contrasts which are a necessary
but not sufficient criterion for salience. Also, Li’s (2002)
neuronal salience model is implemented as an artificial
neuronal network based on a simulation of primary visual
cortex (Li, 2001). Yet to this point, it cannot be used for
precise quantitative prediction of salience.

Whereas up until now models particularly focused on
how salience arises in general or in particular situations
or by particular means of computation, formal theories of
attention are — as mentioned in the previous section — con-
cerned with formal relationships between abstract concepts
like selection and attentional bias. As such, they aim at a
functional analysis, which Cummins (2000) proposed as a
primary mode of explanation in psychology. Furthermore,
Moore (2015) formulates how the activities of mathematical
modeling and theorizing are overlapping activities, which
both contributing to the gain of knowledge.

Two formal approaches to attention are reviewed by Lo-
gan (2004). These are similarity-choice based theories and
signal-detection-theory based works. Similarity-choice the-
ory aims to predict choice probabilities based on similar-
ity and bias whereas signal-detection theory’s goal is to
separate sensitivity from bias (for a detailed review, see
Logan, 2004). He concludes that similarity-choice based
theories may be better at providing insight into the cog-
nitive processes, or in Cummins’ (2000) terms provide a
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better functional analysis. Bundesen’s theory of visual at-
tention (TVA) which is used in the present work is a well
worked out formal theory following the similarity-choice
thinking (Bundesen, 1998, 1990). It is a promising candi-
date to make explicit how salience affects attention and
processing of visual stimuli because TVA is a formal and
quantitative account for visual selection and recognition.
TVA, in particular, allows estimating attentional parame-
ters with high precision (Habekost, Petersen, & Vangkilde,
2014).

Data models

According to Bailer-Jones (2009), data models deal with the
problem that, whatever data are collected, they provide
only a limited perspective on the phenomenon to be mea-
sured. She provides the example of measuring the melting
point of lead: The exact melting temperature may not be
read of the thermometer once during an experiment. The
mean of repeated measurements, however, will be very
close to the true melting point.

From Bailer-Jones’ (2009) perspective, data are a limited
perspective on a phenomenon that is persistent beyond
the data. Thus, intellectual judgments are needed to infer
general properties from individual observations. These as-
sumptions are formalized in the data model. Data models
include intellectual judgments to infer general properties
form limited observation.

Such intellectual judgments, for example, are the assump-
tion that a certain property is normally distributed within
a population. As mentioned in Chapter 2, Taagepera (2008)
notes that some scientists believe that a normal distribu-
tion tends to happen exactly when causal factors are absent
which he calls ignorance-based modeling. However, there
are of course proper arguments for the assumption of a
normal distribution; This assumption can be justified by
the central limit theorem if there are many independent
factors affecting the property in question. Another justi-
fication is based on observation; many natural properties
are roughly normally distributed. Even if the normal dis-
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tribution is nearly omnipresent when making statistical
inferences, both arguments — theoretical necessity and
empirical fact — can be disputed effectively.

The assumptions necessary for the central limit theorem
as the cause of the distribution are in practice often violated
(Lyon, 2013). Lyon illustrates this with baking loaves of
bread: He tries to justify the normal distribution of the
baked loves by the central limit theorem step by step. This
exercise shows that the argument is far from trivial an does
not work for many practical examples where the number
of factors is limited (in his example, the weights of flour,
water, sugar, salt, yeast, and water lost during the baking
process). Additionally, the central limit theorem does not
only support the argument for the normal distribution; If
the influences rather interact than being independent, the
same argument would yield the log-normal distribution.

The log-normal distribution plays also a role in disput-
ing the claim that the normal distribution is simply best
for describing most data of natural phenomena, i.e., an
empirical fact. Limpert, Stahel, and Abbt (2001) challenge
this claim by showing that the log-normal distribution pro-
vides a better fit for many datasets. Considering that the
central limit theorem argument can also be used to sup-
ports the log-normal distributions, the argument for the
normal distribution seam at least far from obvious.

Maybe Taagepera (2008) is right that the normal distribu-
tion reflects ignorance. This assessment does not have to be
negative, however. Lyon (2013) shows a third argument for
the preferential use of the normal distribution: The normal
distribution may be “normal” in science because of all dis-
tribution with the same variance the normal has maximum
entropy, that is it has the minimum amount of informa-
tion. Thus, applying the normal distribution may simply
be the optimal way of complexity reduction for values of a
continuous random variable.

This discussion of the normal distribution should not be
seen a general argument for or against its use but rather
as an example that intellectual judgments are crucial for
checking the validity of a model — even thought “method-
ologists and statisticians might be uncomfortable with the
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mean and variance being defined as ‘models.’” (Rodgers,
2010, p. 4). Also, the normal distribution serves a an exam-
ple here because its omnipresence and the usually assumed
obviousness of its justification.

Taagepera (2008) distinguishes two types of models: de-
scriptive models and logical models. Whereas descriptive mod-
els describe the data, logical models capture the intellectual
judgements about the data. For example, describing tele-
phones per capita or response time as a normal distribution
does not fit the intellectual assessment that these quantities
cannot be negative. Thus, a normal distribution may be
able to describe the data but does not capture basic logical
properties of these quantities. Additional logical proper-
ties are forbidden areas (like being nonnegative), anchor
points, modeling of nonlinear relations.

Also, variability may stem from different sources. Hier-
archical models can model these sources separately which
is particularly apt for inferences under nonlinear cognitive
models (Rouder & Lu, 2005; Rouder et al., 2009). For ex-
ample, such a hierarchical model can represent that each
participant is assumed to have individual attentional pa-
rameters that is drawn from the same distributions but may
also varying in trial tor trial to performance when taking
repeated measurements are taken.

Although there are different philosophies behind sta-
tistical inference, all of them need model assumptions for
their inferences (Rodgers, 2010). Like in the introductory
quote, data does not speak for themselves but has to be
evaluated with respect to intellectual judgements on the
matter. Bayesian Statistics is particularly apt when par-
ticular models are assumed (Little, 2006) and is able to
handle the nonlinearity of many cognitive processes more
easily than frequentist methods (Rouder & Lu, 2005). It
is important to note that Bayesian methods go along well
with the hypothetico-deductive method (Gelman & Shalizi,
2013). Thus, Bayesian methods are used within this work.
A further argument pro Bayesian methods is that its prop-
erties may be more in line with the behavior expected and
desired by psychologists (Dienes, 2011). The reader does
not have to adopt a Bayesian approach to epistemology in
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order to accept Bayesian inference as valid. Furthermore, I
find it important to note that all the work presented here
could have been done without Bayesian data models. For
example, maximum likelihood estimation can be used for
parameter estimation. Thus, Bayesian inference is not used
as a part of the theoretical model (in contrast to assuming
cognitive processes to work according to the principles of
Bayesian Inference, e.g., as in the assumption that the brain
works according to Bayesian principles Friston, 2012) but
merely as a convenient tool for statistical inference.





Chapter 4

Bundesen’s Theory of
Visual Attention

Philosophy is written in that great book which ever lies
before our eyes — I mean the universe — but we cannot
understand it if we do not first learn the language and
grasp the symbols, in which it is written. This book is
written in the mathematical language, and the symbols
are triangles, circles, and other geometrical figures,
without whose help it is impossible to comprehend a
single word of it; without which one wanders in vain
through a dark labyrinth.

Galileo Galilei in The Assayer (1623), as translated by
Thomas Salusbury (1661), p. 178, as quoted in The

Metaphysical Foundations of Modern Science (2003)
by Edwin Arthur Burtt, p. 75.

In his comprehensive book, Bundesen (2008) introduces
TVA as an attempt to move from metaphorical explanations
of attention to process-based explanations. He compares
TVA’s approach to the theory by Shiffrin and Schneider
(1977), who hypothesize an attentional director. A valid
pint of criticism of this approach might be that postulating
an intelligent agent as part of explaining another intelligent
agent’s internal processes merely shifts the problem and
in doing so creates a strange loop (Hofstadter, 2007): The
explanation of how the attentional director chooses which
stimulus to attend ends up right where it started.

TVA, on the other hand, provides a formal mechanistic
description of cognitive processes that belong to attention.

55
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TVA by no means discards the view that attention is influ-
enced by an intelligent agent. However, what TVA aims
at is identifying mechanisms on which the agent relies to
direct its attention. As such, TVA is the result of functional
analysis as described by Cummins (2000), see Section 3: In-
stead of postulating axioms and laws, a complex system is
decomposed into smaller, less problematic systems. These
interacting simple systems explain different attentional phe-
nomena with high precision. The decomposition can be
tracked step by step by reading Bundesen and Habekost’s
(2008) historical introduction to TVA: The authors explain
individual experiments on recognition and selection and
how the processes involved were first modeled indepen-
dently, and finally by a single integrated model that was
developed into TVA. This chapter provides a general intro-
duction to TVA and explains current developments in TVA
research that are related to the quantification of salience as
described in Chapter 6.

The basic TVA model

TVA belongs to the formal theories of attention (Logan,
2004), that is, TVA provides a formal description of cogni-
tive processes involved in visual attention. Nevertheless,
it may be helpful to introduce an analogy before the for-
malism. Imagine a horse race. Such a horse race — like all
analogies — has certain aspects that map nicely to TVA’s
properties whereas others may evoke inadequate ideas
about TVA1. So, let me point out the properties of a horse1Analogical reasoning is in

itself an highly interesting topic
and is related to both scien-
tific explanation and modeling
(Bartha, 2013). Interestingly,
Bailer-Jones (2009) provides one
of the few distinctions between
analogy and model: Whereas
analogies establish plausibility,
models aim at predicting and ex-
plaining. Following this distinc-
tion, please note that the horse
race analogy is not supposed to
model attention — like the at-
tentional director — but merely
seeks to establish plausibility of
TVA’s processes.

race that map nicely to TVA’s formal properties. First of
all, all horses start at the same point in time. Also, horses
may race at different speeds that are independent of the
other racers. Although one horse will finish first, there
are also prices for the second, third, and maybe even more
runners-up, though not for all competitors. Also, there may
be favorites in each race that are likely to win, yet before the
race actually happens it is not predetermined that they will
win, i.e., there is uncertainty about the outcome of each
race individually but tendencies over many races.

The analogy fits visual attention if you imagine the horses



the basic tva model 57

to be visual stimuli, all revealed at the same time and for a
brief moment. Our visual system will process these stim-
uli. However, the system has limited resources: It takes
a certain time to process a stimulus. This speed is anal-
ogous to the speed of an individual racing horse. Also,
only a limited number of stimuli can be stored in the visual
short-term memory (VSTM). This property is analogous to
multiple winners, e.g., gold, silver, and bronze medals with
other runners-up not getting a medal, meaning only a few
visual stimuli, usually up to four or five, can be reported
from VSTM after their brief presentation. Thus, there are
two capacity limitations: One for processing stimuli and
another one for storing visual stimuli.

The formal equivalent of the analogy is a fixed-capacity
independent race model (FIRM). In their seminal work,
Shibuya and Bundesen (1988) described this type of pro-
cessing for TVA. It can be imagined as a fixed capacity for
visual processing that is distributed to the stimuli in the
visual field. This property does not map well to a horse race
because the sum of the horses’ speed is not fixed in advance,
i.e. one horse may increase speed without another horse
becoming slower. This overall visual processing capacity
is formalized as a processing rate, C, that describes how
many stimuli per second can be processed. Because a rate
(units per time) can easily be transformed into speed (time
per unit), processing rate and processing speed are some-
times used interchangeably. The processing rate parameter
for process i is denoted as vi. The overall processing capac-
ity of the visual system is equal to the sum of all processing
rates C =

�
i vi.

Figure 4.2 shows how the process can be imagined for
two stimuli. The overall capacity, C, is distributed to the
stimuli in the visual field. Each stimulus i is processed at
its individual rate, vi. How much of the overall capacity is
received by a stimulus depends on its attentional weight, w.
The higher the rate vi, the more likely it is for the stimulus i
to finish first and arrive in VSTM. Because VSTM is limited
in its memory capacity, stimuli finishing late may not be
represented in VSTM and thus be unavailable for higher
cognitive processes. It is important to note, however, that
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the FIRM is based on stochastic processes — meaning a
higher rate means higher odds to win the race — but does
not determine a particular outcome in each individual situ-
ation. This is illustrated by Figure 4.1: With increasing time
(x-axis), the chance of being encoded to VSTM increases
(y-axis). According to the logic of the stochastic processes, a
process with a low rate parameter can sometimes overtake
a process with a high parameter.

To fully describe the Figure 4.1, another variable has to be
introduced: The maximum ineffective exposure duration,
t0, describes the maximum duration for which a stimulus
can be presented without a chance for its processing to
finish. Or, roughly speaking, t0 denotes the time it takes
until complete processing starts.

The distribution of arrival time of stimulus x can thus be
written, as shown in Equation 4.1.
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Figure 4.1: Distribution func-
tions, Equation 4.1, of FIRM ar-
rival times for a stimulus pro-
cessed at a high rate (shown in
black) and at a low rate (shown
in gray; the same exemplary
stimuli as in Figure 4.2).

F (t) =

�
1− e−vx(t−t0), if t > t0

0, else
(4.1)

Critical thinking reveals that TVA does not model how
evidence for a stimulus is accumulated over time as it may
happen, e.g., in a neuronal network. It is not possible to, so
to speak, look into the race at a particular moment: Only
the outcome is modeled in the present FIRM. This is, how-
ever, not a fundamental limitation of TVA because TVA
does not depend on exponentially distributed arrival times.
In the terms of Bailer-Jones’ framework, this means that
the present FIRM is part of the theoretic model but not a
part of the theory. As such, it can be replaced by a different
mathematical model and still be consistent with TVA (e.g.,
for modeling perceptual confusion and blind guessing;
and response time modeling, respectively, see Kyllingsbæk,
Markussen, & Bundesen, 2012; Blurton, Nielsen, Kyllings-
buk, & Bundesen, 2016). This work limits itself to FIRM,
however. Also, I will omit to discuss the neuronal or con-
nectionist version of TVA, the nTVA (Bundesen, Habekost,
& Kyllingsbæk, 2005, 2011) — even though the theory is
strong in the sense that it makes testable predictions lead-
ing to discoveries; (Li, Kozyrev, Kyllingsbæk, et al., 2016) —
because this work focuses on symbolic modeling and these
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aspects, like the evidence accumulation models, assume a
more complex theoretical model.

Figure 4.2: Sketch of the fixed-capacity independent race model for
visual processing of two stimuli.

So far, I introduced FIRM; however, TVA is about recogni-
tion as well as selection. The mechanisms that enable recog-
nition and selection are called pigeonholing and filtering in
TVA literature. The interplay between both mechanisms
is what enables TVA to explain a range of experimental
findings with high quantitative precision. This interplay
is also what determines processing speed and attentional
weight of stimuli. TVA’s rate equation, Equation 4.2, and
weight equation, Equation 4.3, formally express how both
mechanisms interact. The previous example of stimuli rac-
ing being represented in VSTM was simplified in that a
stimulus does not necessarily have to be encoded correctly.
If you imagine handwritten letters, some letters are easier
to recognize than others. In TVA, this ease of recognition
is expressed by the sensory evidence, η(x, i), that stimulus
x provides for belonging into category i.

As the rate equation, Equation 4.2, shows, the processing
rate is further affected by the perceptual decision bias βi,
and the relative attentional weight for the stimulus X . The
perceptual decision bias, βi, describes a bias towards mak-
ing categorizations of the category i. The fraction contain-
ing the attentional weights expresses that the attentional
advantage of stimulus x does not only depend on its own
effects on attention but on its attentional advantage relative
to the set of all stimuli in the visual field S.
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v(x, i) = η(x, i)βi
wx�
z∈S wz

(4.2)

How the attentional weights are computed is described
by TVA’s weight equation, Equation 4.3. This equation states
that the attentional weight for stimulus x, wx, depends on
the sensory evidence, η(x, j), which stands for the evidence
of x belonging to a particular category j and the pertinence,
πj , of the respective category. Of course, all possible cate-
gorizations, R, are considered to calculate the attentional
weight. These properties are expressed by the sum. The
pertinence can be understood as the task-relevance of a
particular category.

wx =
�

j∈R
η(x, j)πj (4.3)

Together, these equations form the basic TVA model.
This model is used — together with partial and whole
report designs — to estimate attentional parameter in clin-
ical (e.g., Finke et al., 2005) as well as basic research (e.g.,
Schubert et al., 2015). I call this model basic because many
additions have been made in the past 30 years (for a recent
review, see Bundesen, Vangkilde, & Petersen, 2015). In the
following, I will introduce work concerning salience, and
the use of TVA in the temporal-order judgment paradigm.

Salience in TVA

The basic TVA model, as described by Bundesen (1990,
1998), does not explicitly deal with salience. Initially, the
phenomena of visual contrasts attracting attention could
only be modeled in terms of relevant features, that is feature-
based attention: The contrast must be modeled as part of
a categorization and the respective category must be as-
signed a pertinence value larger than 0. Roughly speaking,
salience is a perceptual category that is in some way im-
portant for the task. Conceptualization of the impact of
salience is necessary because an attentional weight could
only be attained through the evidence for categories that
are relevant. However, physical contrasts that are not di-
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rectly task-relevant are known to affect attention and per-
formance in experiments as well2 . This phenomenon has 2The ongoing discussion on

the nature of attentional capture
is related (e.g., Theeuwes, 2013;
Folk, Remington, & Johnston,
1992).

also been researched with TVA formalisms and paradigms.
In this pursuit, Nordfang, Dyrholm, and Bundesen (2013)

introduced a salience manipulation in the partial report
design often used with the basic TVA model. Their de-
sign extends the partial-report design: Letters and digits
were shown, only letters ought to be reported after mask-
ing. Masking was done after different intervals which is
necessary to estimate the processing rate in this design.
Nordfang et al. (2013) added a task-irrelevant color to one
of the elements. This is not trivial because the color must
not affect sensory evidence for the identity of the respective
element, see Chapter 6 for details and an example. After
careful experimentation, they introduced a new parameter
to TVA to capture the stimulus-driven influence of visual
attention caused by the color. The new parameter is named
κ. This parameter is supposed to capture the influence of
contrasts on attention that should have a pertinence value
of 0 but affect attention in experiments nonetheless. The
resulting new version of the weight equation is shown in
Equation 4.4. Interestingly, Nordfang et al. (2013) found
salience to multiply with the task-relevance based influ-
ences from the potential category memberships3. 3To be completely frank, I

only became aware of this work
after I had tried to capture
salience in TVA’s attentional
weight, w, which is the more gen-
eral attentional weight. This ap-
proach is reported in Section 6.

wx = κx

�

j∈R
η(x, j)πj (4.4)

TVA-TOJ
TVA is a theory that aims to describe visual attention in gen-
eral. Although it is usually used with the whole and partial
report experimental design (e.g., Nordfang et al., 2013), it is
also applied to model other experimental paradigms like vi-
sual search (Logan, 1996), attentional dwell time (Petersen,
Kyllingsbæk, & Bundesen, 2013), and more recently the
TOJ (Tünnermann, Petersen, & Scharlau, 2015).

The TOJ design is particularly interesting because it fea-
tures a simple decision task comparable to the design by
Nothdurft (2000) and a model that is less complex than the
model by Logan (1996) and even less complex than basic
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TVA4. It features two events that have to be judged accord-4Because it is simpler, it does
not allow to measure all TVA pa-
rameters. Thus, simplicity does
come at a cost.

ing to their temporal order. These events are usually called
probe, p, and reference, r, and usually refer to the onset of
stimuli (although other events are possible: for offsets, see,
e.g., Vingilis-Jaremko, Ferber, & Pratt, 2008). Both events
are separated by the stimulus onset asynchrony (SOA). The
closer the SOA is to 0, the more uncertainty in the judgment
is to be expected, which is indicated by the performance
being close to guessing probability. However, if attention
is directed either goal-directed or stimulus-driven to the
probe stimulus, this point of maximum uncertainty shifts.
This is interpreted as a shift of subjective simultaneity. The
point of subjective simultaneity (PSS) is shifted so that the
reference has to be shown objectively earlier to create the
impression of subjective simultaneity. This phenomenon
could be caused either by a speed-up of the attended probe,
a slow-down of the unattended reference, or both. If TVA
is adopted as a model, TVA provides a clear prediction
about the cause: It is both influences, speed-up of attended
and slow-down of unattended stimulus, because the at-
tentional weight is shifted, resulting in a redistribution of
speed. This has indeed been confirmed by research inde-
pendent of TVA (Weiß & Scharlau, 2011).

The PSS is, however, not immediately obvious but es-
timated from the data. To estimate the PSS, a sigmoid
(“S”-shaped) function is assumed and fitted to the data.
See Wichmann and Hill (2001) for a non-Bayesian approach
and Kuss, Jäkel, and Wichmann (2005) for a Bayesian ap-
proach to this estimation. As explained in both articles,
there are multiple functions that can be used to estimate
the PSS. A reason why multiple functions can be used is
that all of them do a reasonably good job at describing the
data. However, they are not derived from a psychological
theory — that is, all functions are descriptive models, not
logical models. This comes at the cost that their parameters,
apart from the PSS itself, may be difficult to interpret.

Another approach is to derive a function from theory
that is focused on the explanation of TOJ: Tünnermann
et al. (2015) use TVA for an explanation of TOJ: A specific
formal TOJ model is derived from the more general formal
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description of attention as proposed by TVA. The central
idea is that the function that describes the data collected
from the judgments is a consequence of the visual process-
ing rates of both probe stimulus, p, and reference stimulus,
r. By shifting attentional weight from one stimulus to the
other, the overall fixed visual processing capacity, C, is dis-
tributed differently, causing the different processing speeds.
While plausible, when expressed verbally, it is not obvious
how to apply TVA in such a way. Tünnermann et al. (2015)
described the function for judging “probe first”, Pp, based
on the processing rate for probe, vp, reference, vr, and Δt

(corresponding to SOA) as in Equation 4.5. It holds that
Δt = SOA + tp0 − tr0, where tp0 and tr0 are the maximum
ineffective exposure durations for the two stimuli.

Pp(vp, vr,Δt) =





1− evp|Δt| + evp|Δt|
�

vp
vp+vr

�
, for Δt < 0

evr|Δt|
�

vp
vp+vr

�
, for Δt ≥ 0

(4.5)
The term 1−e−vp|Δt| represents the probability that probe

stimulus, p, is encoded before reference stimulus, r, and
begins the race to VSTM. The term evp|Δt| represents the
probability that probe stimulus, p, is not encoded before the
reference stimulus, r, starts its race. Then, the probability
of encoding probe stimulus, p, is first given by Luce’s choice
axiom vp

vp+vr
=

�∞
0

vpe
−vpt · e−vrtdt.

This formal model allows applying TVA to TOJ-based de-
signs featuring different stimulus material. This approach
has been described in detail in Tünnermann, Krüger, and
Scharlau (2017) for different TOJ designs.

Summing up, TVA provides a formal theory in which a
few parameters and fixed processes yield a good fit for data
of multiple experimental designs involving attention. TVA
can be used to provide explicit theoretic models like the
TVA-based TOJ model as described by Bailer-Jones (2009)
and thus may provide good conditions for an explicit and
tight link between observed data and theoretical explana-
tion.





Chapter 5

Bayesian inference

How often have I said to you that when you have elim-
inated the impossible, whatever remains, however im-
probable, must be the truth?

(Doyle, 1890, p. 111)

Bayesian statistics are used in all the articles included in
the present dissertation. This chapter introduces key con-
cepts of Bayesian statistics and also examines the reasons
for using it. Bayesian statistics is actually a subcategory of
Bayesian inference. Bayesian inference as a term does not
give away any property of what is meant by the term; there
is another term that captures the whole idea beautifully:
inverse probability1. Bayesian inference — or inverse proba- 1a term that can be tracked

back even further than 1800 to
Laplace (Stigler et al., 1986)bility — describes how you can reason from effect to cause,

if you know how the cause evokes the effect.
In the first edition of his introductory book, Kruschke

(2010, Chapter 4.3, p. 63) clearly formulates three things
that can be done using Bayesian statistics: estimate pa-
rameters, compare models, and predict new data. I found
this presentation helpful to understand that a particular
Bayesian analysis can pursue either goal. In the second edi-
tion (Kruschke, 2014, Chapter 2.1, p. 16), Bayesian analysis
is presented more generally as the reallocation of credibility
across possibilities much like the famous Sherlock Holmes
quote at the beginning of this chapter.

In the accessible and highly recommendable introduc-
tion by Kruschke (2014), coin tosses are used as an example
for hundreds of pages to illustrate the principles of Bayesian

65
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inference (see Chapter 5.3 for a complete example).
Assume, as Kruschke (2014) does, for example, that we

want to estimate the bias of a coin. For this estimation,
we need the likelihood function. The likelihood function
expresses how the bias causes the results of coin tosses.
This direction from cause to effect will later be reverted
in the estimation. The likelihood function expresses our
modeling assumptions in a straightforward way. For the
estimation of the bias from observations, the observations
— also data or evidence — is needed as the second compo-
nent2. In this example, the evidence is a sequence of heads2With the two components,

the analyst can already perform
maximum likelihood estimation
which is almost a Bayesian infer-
ence: The maximum likelihood
estimation is performed by the
mathematical equivalent of ask-
ing which parameter value is the
most likely to have produced the
outcome.

and tails yielded from tossing the coin. The third and final
component to a Bayesian inference is the prior. The prior
is an initial distribution of credibility of parameter values
— it is a probability distribution. For example, you may
assume that most coins are fair and that the extreme bi-
ases are less likely than small or moderate biases. Thus,
the prior is symmetrical around the parameter value of an
unbiased coin. Choosing a good prior is a topic on its own
(see, e.g., Vanpaemel, 2011). Importantly, if you have the
three components, likelihood function, evidence, and prior,
Bayesian inference yields a posterior. Like the prior, the
posterior is a probability distribution. The posterior is an
updated version of the prior and corresponds to a rational
reallocation of credibility after observing the data. In the
example, one may observe more tails than heads, leading
to a shift of the prior towards the respective bias.

Reading results from Bayesian statistics is more intuitive
than reading frequentist results (e.g., Oakes, 1986, Chap-
ter 3). A prominent difference is that parameter estimations
are reported not as point estimated, i.e., the mean is 4.2

but rather as probability distributions. These distributions
do not only show the most likely value at its highest point
but also quantify the uncertainty in the estimation: The
more uncertain, the more the distribution is spread out.
Two central concepts in reporting parameter estimations
are the maximum a posteriori probability (MAP) and the high-
est density interval (HDI) or credibility interval. The MAP
corresponds to the highest point in the probability distri-
bution and the HDI usually corresponds to the interval in
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which 95 % of parameter values are concentrated.
Bayesian statistics can be imagined as using an inference

machine: In goes a model (determining the likelihood), a
prior, and evidence; out comes the posterior. The posterior
integrates prior belief with evidence according to the model.
This inference works according to the Bayes theorem. If we
call the data, D, the model, M , and the parameters we are
interested in θ, one could write (Kruschke, 2013, p. 48) :

p(θ|D,M)� �� �
posterior

= p(D|θ,M)� �� �
likelihood

p(θ|M)� �� �
prior

/ p(D|M)� �� �
evidence

(5.1)

where the evidence is

p(D|M) =

�
dθp(D|θ,M)p(θ|M). (5.2)

For a thorough introduction into how to do Bayesian statis-
tics, see Kruschke (2013). Usually, when introducing this
formal relationship, the model M is omitted except for
when models ought to be compared. The model, M , how-
ever, determines the likelihood function and as there are
neither right nor wrong models, it is valuable to stress that
each inference depends on the used model.

In contrast to typical frequentist methods, the integral
in Equation 5.2 is not guaranteed to have a solution and
thus may be impossible to compute in closed-form. Even
if it has a solution, it can be very hard to find depending
on the used model. This is also the reason why the appli-
cation of Bayesian statistics has been extremely hard for
models that are interesting in actual empirical research.
However, progress in algorithmic approximation allows to
simply approximate this integral even for complex models
on an average personal computer (for a historical overview,
see, e.g., Leonard, 2014; Fienberg, 2006). The algorithms
used to compute the posterior are guaranteed to converge
to the right solution. However, how can the user know
if the so-called parallel chains have converged? Usually,
the approximation is executed multiple times in parallel.
If all solutions are similar, the algorithms likely reached
convergence.

The models used in Bayesian statistics have in common
that they all can be represented qualitatively or structurally
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by directed acyclic graphs. Besides this structure, there is
a second quantitative component; a conditional probabil-
ity distribution that determines how a node in the graph
depends on its predecessors. The notation of the models
used in Bayesian estimations varies across literature. The
notation in this work is taken from Lee and Wagenmakers
(2014).

Given the evidence, e.g., from a behavioral experiment,
one may ask which of two theoretically plausible models
is better supported by the data. Interestingly, this can be
solved by parameter estimation, that is, in the exact way
that has already been described in this section. See Kr-
uschke (2013) for a detailed explanation of how to use this
approach to draw inference analogously to the t-Test. An-
other approach is to compute the Bayes Factor (Rouder
et al., 2009; Wagenmakers et al., 2010). The Bayes factor
quantifies the support of one model over the other. The
Bayes Factor can, however, be difficult to compute for arbi-
trary models. An alternative presents itself in the deviance
information criterion (Spiegelhalter, Best, Carlin, & Van
Der Linde, 2002) and widely applicable information crite-
rion (Watanabe, 2010). These information criteria can be
computed for each model and evidence individually and
compared afterward.

Predicting new data can be done in many ways. For ex-
ample, one could start with merely a prior and a model to
compute which data values would follow if the prior is ade-
quate. In this work, however, the prediction will always be
made in the form of posterior predictive distributions. Poste-
rior predictive distributions provide an estimate of possible
unobserved values based on the values that were observed.
This, for example, allows estimating the response behav-
ior for unobserved experimental conditions like additional
SOAs in the TOJ design.

A recent review of the usage of Bayesian methods in
psychology is provided by Van de Schoot, Winter, Ryan,
Zondervan-Zwijnenburg, and Depaoli (2017). Bayesian
inference was introduced in Section 3 to bridge the gap
between statistical inference and scientific inference (see
also, Krüger et al., 2018) and Van de Schoot et al. (2017)
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review its use in the published psychological literature.
Around half of the reviewed publications use Bayesian
inference to cope with statistical regression problems; the
other half uses Bayesian inference as part of a theory or in
a computational model. Together, these two applications
account for more than 85 % of the reviewed articles.

The articles included in this dissertation fall under the
regression-based category because Bayesian inference is
not part of the theoretical explanation but used as a statisti-
cal tool. Van de Schoot et al. (2017) summarize the reasons
for choosing Bayesian statistical inference: With the use of
complex models, researchers report that they are practically
forced to use Bayesian methods because other solutions
do not exist or are comparably difficult to implement. Fur-
ther reasons include, but are not limited to, the quality of
parameter estimations, the fact that Bayesian methods are
used when assumptions of NHST alternatives are violated,
greater modeling flexibility, handling of missing data, the
possibility of including prior knowledge into the analysis,
available tools for model selection and better performance
for small sample sizes. This multitude of reasons shows
that there are many practical differences between Bayesian
inference is frequentist inference.

For the present work, the ease of modeling was an early
reason for adopting Bayesian inference. It made the im-
plementation of the formulae by Tünnermann et al. (2015)
comparably easy. Also, further in my research, different
theoretical models could be formalized easily into graph-
ical models (Krüger, Tünnermann, & Scharlau, 2017). Di-
rectly connected to this point are the different tools for
model selection: Once the model has been specified, differ-
ent information criteria, the Bayes factor, or a parameter
estimation can be used to compare different models. Be-
cause the models are complex technical problems in one of
the comparison techniques can be overcome by resorting
to one of the alternatives.

One example for the ease of modeling is hierarchical mod-
els: Bayesian Hierarchical Graphical models allow to model
the sources of uncertainty according to the experimental
design. For example, in the literature, TVA parameters are
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often computed per participant by means of maximum like-
lihood estimations. The resulting parameters are then used
in NHST. However, the parameter estimates are associated
with different degrees of certainty. These degrees of cer-
tainty are included in the Bayesian Posterior. Modeling this
as a hierarchical model involves straightforward assuming
the parameters of the posterior distribution are drawn for
a shared population distribution. Thus, it is possible that
the source of uncertainty between trials of an individual
participant is a different source of uncertainty than the one
causing inter-individual differences.

Another major reason for choosing Bayesian methods is
that their results are more in line with the questions that
we are interested in (Dienes, 2011). Rather than providing
the probability of data under assumed parameter values,
Bayesian inference provides the probability parameters
under fixed data. This allows for estimations of the relative
probability of competing theories given some observations.

The ability to predict new data for unobserved cases
was not among the primary decision criteria. However,
being able to predict data with an implemented model
and theoretical assumptions, made the models connect to
the data in yet another way and offers a plausibility check:
Does the developed model reproduce all characteristics of
the data (for the investigation of whether a plateau should
be assumed in TOJ modeling, see Tünnermann & Scharlau,
2018b).

Bayesian statistics are overall advantageous for working
with models; however, there are limitations. Although it is
in principle possible to build highly complex models, these
models have to be handled by an appropriate inference
algorithm. These algorithms work according to the Markov
chain Monte Carlo (MCMC) technique implemented in
software packages like jags (Plummer, 2003) () or pymc3
(Salvatier, Wiecki, & Fonnesbeck, 2016). Consequentially,
the analyst needs to be a programmer with knowledge of
the estimation process in order to choose a package and
implement and run the model successfully.

Another counterargument is that the models and priors
may differ between researchers causing even more free-
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dom for the researcher that may be problematic for repro-
ducibility (Simmons, Nelson, & Simonsohn, 2011). Thus,
“objectivity”3 may not be warranted in the sense as it is 3As described by Hacking

(2001), “subjective” and “objec-
tive” are terms that can easily dis-
tract from fruitful discussion of
inductive logic and lead to empty
polemics.

often suggested by frequentist toolbox methods. This may,
however, be advantageous because it requires statistical
thinking as called for by Gigerenzer (2018). The advan-
tages of “subjectivity” in data analysis are discussed by
Rouder, Morey, and Wagenmakers (2016).

If the advantages of hierarchical Bayesian statistics have
to be expressed by a single argument, it would be the ease
of modeling the data according to intellectual judgments
about the domain.

Subjectivity versus objectivity?

It has been argued that Bayesian statistics it is more subjec-
tive than NHST (e.g., Simmons et al., 2011). Subjectivity
is clearly a problem that science has to deal with. Thus,
increasing subjectivity may naively sound so undesirable
that it may cause a reluctance to learn the Bayesian per-
spective. In their article on subjectivity in data analysis,
Rouder, Morey, and Wagenmakers (2016) succinctly stated
that Bayesian methods require “an overhaul of the relations
between models, data, and evidence.” (p. 1). Further, they
argue that an increase in subjectivity is desirable in scien-
tific data analysis. Consequentially, their argument seems
to support the superficial counterargument that Bayesian
methods are more subjective. While examining their ar-
gument, the reader will notice that Rouder, Morey, and
Wagenmakers (2016) propose to transfer a part of the ver-
bal scientific discourse into data analysis by spelling out
one’s hypothesis by modeling and exposing it to criticism
by putting forth the respective idea in a more falsifiable
way. So, it could also be argued that it increases the overall
objectivity in science.

This and similar arguments rose the suspicion in me that
“subjective” and “objective” cause more obfuscation than
clarification in debates involving Bayesian inference. This
obfuscation is caused by the difficulty to actually assess
what is objective. As scientists, we should be aware of these
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epistemological difficulties all too well. The problem with
this type of “argument” has been described most vividly
by Hacking (2001):

How often have you heard this sort of conver-
sation?

James: That’s just your subjective opinion.

Mary: Nonsense, it is an objective fact.

How often have you talked just like that?

Don’t get into that rut, in philosophy or in the
rest of your life. James andMary are not arguing,
they are just slinging mud at each other. (p. 131)

He further explains that both Bayesian and frequentist
conceptualizations of probability can be called objective but
for other reasons: Whereas frequentist thinking is about a
state of the world, Bayesian reasoning is objective because
of a logical relationship between evidence and proposition.
Certainly, it is possible to take the stance that science is
about the world, and thus only the frequentist approach
provides the right type of objective inference. However,
science is to a similar degree about propositions that ought
to explain and predict the world. Bayesian reasoning pro-
vides an objective link between propositions and evidence.
Thus, a case for the need for Bayesian inference can be made
as well. It is important to note that this is not a practical
debate but depends on one’s stance towards the philosophy
of science.

Popper’s falsification is the basis for scientific inference in
psychology (Dienes, 2008). However, practically, psycholo-
gists rather provide evidence for their own often vague the-
ories by rejecting a theoretically uninteresting null-hypothesis.
Even introductory works on the philosophy of science show
what makes falsification problematic. In fact, after the first
half of his excellent book, Chalmers (2013) explains in Chap-
ter 7 that many theories would not have come into existence
if falsification were actually followed as a paradigm histori-
cally. The lack of strong theories (Muthukrishna & Henrich,
2019) and overarching theoretical frameworks (Fitzgerald &
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Whitaker, 2010b) may partially be connected to this stance
towards the philosophy of science.

What does the philosophy of science have to do with
Bayesian statistics? As Dienes (2011) noted, there are two
definitions for rationality: One is to justify one’s beliefs
sufficiently; The other one is to have subjected one’s belief
to critical scrutiny. Because of psychology’s foundation
from the philosophy of science, it may be difficult to ap-
preciate the rationality and objectivity that comes with the
justification of beliefs. Thus, I argue, that Bayesian statistics
are not more subjective but make the justification part of ra-
tionality — a part that is usually done vaguely and verbally
in psychology — part of the statistical analysis. Consequen-
tially, it is not a question of subjectivity but what inference
the scientist wants to make. Do they focus on a state of the
world or on evidence for a proposition?





Chapter 6

A quantification of visual
salience

Statistical inference techniques are good for what they
were developed for, mostly making decisions about the
probable success of agriculture, industrial, and drug
interventions, but they are not especially appropriate
to scientific inference which, in the final analysis, is
trying to model what is going on, not merely to decide
if one variable affects another.

R. Duncan Luce (Taagepera, 2008, p. v)

In this chapter, I use the concepts from the previous
chapters to propose a measure of salience. This approach
combines multi-element displays, temporal-order judg-
ment (TOJ), and the Bundesen’s Theory of Visual Attention
(TVA) to provide a theoretically justified measure for visual
salience that can capture the different aspects of salience
including that salience arises from different contrast dimen-
sions, that it follows a time course, and that goal-directed
influences are related to it. In this pursuit, there will be
different terms that should be clear from the start of this
chapter: Salience quantification means any form of quanti-
tative representation of the impact of physical contrasts on
attention. By salience measure, I mean a quantification of
salience as well as the means to actually estimate its value
from data. Salience manipulation means a change in the
physical contrast between a stimulus and its surrounding.
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Rationale

Recalling that TVA was extended by a parameter repre-
senting salience called κ, the reader may wonder why not
to use the same experimental setup as the one developed
by Nordfang et al. (2013). After all, the authors were able
to estimate a value describing how strongly a non-task-
relevant physical contrast affected visual attention. This is
exactly what I mean by salience measure. However, Nord-
fang et al. (2013) used only a single salience manipulation.
Namely, one stimulus was presented against a red back-
ground, whereas the other letter’s backgrounds were gray.
Even this single and minor manipulation of salience had
to be tested carefully in pre-tests to ensure that it does
not affect the sensory evidence of the stimulus for being a
particular letter.

For manipulations of other contrasts dimensions like ro-
tation or luminance, it is rather obvious that they will affect
the evidence of the stimulus in the letter report designs
usually used with TVA. For example, the evidence for the
stimulus “L”, xL, for being the particular letter L that is
the sensory evidence, η(xL, L): Luminance contrast will
change the visibility of the letter whereas the rotation devi-
ates from the canonical orientation of letters such that it is
much harder to recognize. This problem also illustrates the
point why the stimulus xL and its identity as the letterL are
distinguished in TVA: A letter “L” in bad handwriting may
be considerably more difficult to identify. Thus, even if the
letter “L” is highly task-relevant it may not receive much
attention because it is simply unclear whether it belongs to
the relevant category. Consequentially, salience manipula-
tions must not affect the sensory evidence because it would
be unclear whether a change in attentional weight must be
attributed to sensory evidence or visual salience. Whereas
a color salience manipulation can be chosen so that it does
not affect sensory evidence in this design, it may be difficult
to compare its salience value to other colors for which it
is not guaranteed that they do not affect sensory evidence.
For other contrast dimensions like luminance and orienta-
tion contrast, it is clear that the more contrast, the more the
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sensory evidence is affected and thus, the salience measure
is confounded by the sensory evidence.

(a) Stimulus material by Nord-
fang et al. (2013).

(b) Stimulus material with hy-
pothetical orientation and lumi-
nance contrast.

Figure 6.1: The salience measure
by Nordfang et al. (2013) allows
only to measure salience caused
by contrast that does not affect
the sensory evidence for the stim-
ulus identity.

Figure 6.1 shows a sketch of the original displays used
by Nordfang et al. (2013) and a (hypothetical) version with
luminance and orientation contrast manipulation to illus-
trate the described problems. Consequentially, this work
is a theoretical foundation, but does not provide a broadly
applicable salience measure.

To come up with a potential solution, it is helpful to ex-
amine what happens according to TVA if a salience manip-
ulation is added to the partial report design. TVA cannot
describe attention if the visual stimuli change dynamically
over different episodes1. Instead, TVA assumes a stimulus

1Although Schneider (2013)
proposes how TVA may be
extended to cover different
episodes, TVA’s formalism has
been extended to attentional
dwell time (Petersen et al., 2013)
but does not cover temporal
episodes in general.

material that is presented at a certain point in time and
stays constant until it is masked. Depending on the time of
masking, the visual system is more or less able to process
the presented stimuli. If the presentation duration is long,
the visual short-term memory (VSTM) can store up to four
or five of the presented stimulus identities. The encoding
process is modeled rather simply because the chance of
success is modeled by a hazard rate, as shown in Equation
4.1 — as mentioned in Chapter 4, models for evidence ac-
cumulation in TVA exist but are far more complex. In this
example, the stimulus “L” is associated with a processing
speed to be encoded as an instance of the letter L, v(xL, L)

according to TVA’s rate equation, Equation 4.2.
Please note that it is not impossible to encode xL as some-

thing other than its true identity. For example, the stimulus
xL could erroneously be encoded as the letter “I”. Thus,
one stimulus may be associated with multiple processing
speeds, in the example, xL may either be correctly encoded
according to rate v(xL, L) or confused with the letter “I”
according to usually a much smaller rate v(xL, I). If a stim-
ulus does not have a clear membership in one of the task-
relevant categories and such confusions are possible, TVA
becomes very difficult to use. This problem is the reason
why overlearned stimuli such as letters and digits are used
with TVA. Also, possible confusions are the reason why
some letters are excluded from the stimulus material. The
point of this short explanation is to justify that, in the fol-
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lowing, it is — as in the usual TVA experiments — assumed
that confusion is negligible (for an example how confusions
can be modeled and may even explain phenomena, see Tün-
nermann & Scharlau, 2018a). This is important because it
implies that a stimulus, for example, xL, is only associated
with precisely one processing rate for encoding it correctly
which is written as vL = v(xL, L) for the sake of brevity.

What determines the processing rate,vL, of a stimulus
xL? The processing rate determines whether or not a stim-
ulus arrives in VSTM for later recollection. Each stimulus is
associated with precisely one processing rate such that this
process may be envisioned as a race like it was presented
in Chapter 4. However, the processing rate depends on
the attentional weights, w, because it is assumed that the
overall processing capacity, the sum of all processing rates,
stays constant. Thus, what happens is a redistribution of
the fixed overall processing capacity according to the at-
tentional weights. The attentional weights are determined
based on the weight equation, Equation 4.3. The central
point is that the actual encoding of the stimulus and the
computation of the attentional weights can be understood
as two waves of processing (for an illustration, see Tünner-
mann et al., 2015). In the first wave, the attentional weights
are determined; in the second wave, the stimuli race to-
wards the VSTM. The second wave is not problematic for
salience measurement at all. However, an experimental de-
sign for quantifying salience in terms of TVA’s parameters
would have to ensure that the first wave of processing is
only affected by manipulating salience.

Summing up, there are two waves of processing of which
only the first causes problems for a salience measurement
in the designs typically used with TVA. A solution would
have to make sure that salience manipulations do not affect
the recognition of a stimulus.

Typical salience experiments work with cluttered multi-
element displays. The justification for using this kind of
stimulus material stems from the assumed underlying pro-
cessing (as in, e.g., Li, 2002; Koch & Ullman, 1985). Such a
display is shown in Figure 6.2. The figure illustrates how
a difference in color hue, luminance, and orientation can
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Figure 6.2: Sketch of a multi-element display used to produce a par-
ticular physical contrast that can direct attention and the hypothetical
stimulus-driven distribution of attention after TVA’s first wave of pro-
cessing.

cause a bar to stand out (upper right corner) whereas an
identical bar (lower left corner) is much harder to spot.
Showing such a stimulus display will cause a distribution
of attention. For example, this has been used by Donk and
Soesman (2010) in a design similar to Posner cueing. A
display of bars was shown to the participants. Four fixed
positions were used in a second step to “probe” attention.
In this step, the original bars were masked by star com-
posed of multiple bars. One of these stars was rotating and
was a probe for which the participant had to indicate its
location by a corresponding button press — top left, top
right, bottom left, bottom right. Responses were fast when
the probe was shown at a location previously occupied
by a salient element and slow when the location was not
previously occupied by a salient bar.

Figure 6.2 sketches how salience displays are able to
direct attention as described by the first wave of processing
in TVA. However, to probe the strength of salience at the
location of the unique element, there has to be some sort of
task such that observable behavior allows estimating the
unobservable strength of salience. So, firstly, this task must
have an interpretation in the TVA framework. Secondly,
the task will influence attention by the task-relevance of
certain stimuli. TVA is very specific about these influences
and how they contribute to the attentional weight.

Different tasks have been used in the past for salience
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measurement: In probe detection (e.g., Donk & Soesman,
2010) a TVA-based interpretation is difficult. Although
encoding the probe as the category “probe” may exactly
be what a TVA processing rate vprobe should stand for, the
actual response time is not modeled by TVA. Speeded re-
sponses include a motor component that TVA does not
model. Also, TVA does not predict the actual time needed
for an encoding process but the probability that it hap-
pens at a particular point in time. I do not want to discuss
in-depth whether such a probe detection experiment can
be modeled by TVA because there are developments in
these directions (Blurton et al., 2016, e.g.,). However, the
resulting model would be far from simple and include a
response time, which is not part of the TVA formulation
used in usual TVA-based research.

Also, search-based designs, which are common in stud-
ies of salience, have been interpreted in terms of TVA (Lo-
gan, 1996). This TVA-based search model is, however, quite
complex and more difficult to relate to salience compared
to the work by Nordfang et al. (2013), Nordfang, Staugaard,
and Bundesen (2017).

Accuracy-based designs in attention research are more
promising candidates for a TVA interpretation. Attended
stimuli are perceived earlier than unattended stimuli. This
conjecture has a long history in psychology (see, e.g., Titch-
ener, 1908, p. 251) and has more recently been backed up
by a wide range of experimental findings subsumed under
the term prior entry, as introduced in Chapter 3. This is fit-
ting to TVA in so far as more attentional weight, w, should
increase the rate of processing, v, such that a stimulus fin-
ishes its race towards VSTM quicker. This would mean that
the attended stimulus has a processing speed advantage
on average when compared to an otherwise similar but
unattended stimulus.

TOJ studies have been used to research salience but ap-
plied modeling assumptions different from the TVA-based
TOJ model introduced in Section 4. The TOJ has been used
for salience measurement with the multi-element displays
(Donk & Soesman, 2011). However, it is not obvious how
TOJ responses can be used to infer the strength of salience.
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Donk and Soesman (2011), for example, used an ANOVA
analysis and conceptualized their two conditions and five
SOAs as a 2 × 5 within-design. It was assumed that the
strength of salience is different in both conditions, and in-
deed the ANOVA revealed a main effect of experimental
condition. This is, however, not a model that expresses a
particular theoretical idea of what salience changes do to
the data. So, it is a descriptive model in Taagepera’s (2008)
terms.

Descriptive models lack an explicit link to the theory
regarding the phenomenon but may be useful nonetheless.
However, using an ANOVA to analyse TOJ data raises ques-
tions concerning the quality of the provided description:
ANOVA assumes, roughly speaking, that the difference
between levels of SOA is roughly the same and has the
same variance within each level. However, a large SOA
will result in an easy decision; The corresponding data can-
not vary beyond always choosing the right order for the
observed events. If the case becomes more difficult because
of SOAs closer to 0, a different pattern of variance is to be
expected logically. Also, the model assumptions underly-
ing the ANOVA analysis do not allow to conclude whether
there was no attentional difference in one condition and
an attentional difference in the other or an attentional dif-
ference in both conditions. In the latter case, a significant
main effect of the experimental condition means simply
that salience did not have equal effects on both conditions,
yet two different effects of salience are possible which is
not discussed by the authors.

A way to improve the analysis of TOJs and move closer
to measure the impact of the salience manipulation quan-
titatively is to determine the SOA at which both stimuli
would have been subjectively perceived to appear simul-
taneously. For example, if — hypothetically — one and a
half time as much attention is directed towards the probe
stimulus, p compared to the reference stimulus, r, the refer-
ence r has to be shown 20 ms earlier to create the subjective
impression of both stimuli to appear simultaneous. This
difference in SOA that would cause subjective simultaneity
is called point of subjective simultaneity (PSS). TOJ designs
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applying the method of constant stimuli cannot include
this SOA in advance. However, if a relationship between
SOA and responses is assumed in the form of a mathemati-
cal function, the data can be used to estimate said function.
Once, this function has been estimated, the PSS becomes
known. The size of PSS can be used to approximate the
influence of attention. The actual value for the PSS estima-
tion depends, however, on the assumed function linking
SOA to responsible behavior. This function is usually cho-
sen so that its shape resembles the expected data patterns.
Naturally, there exists an indefinite number of functions
that can resemble a particular pattern. Moreover, the PSS
is not the only degree of freedom because the data show
that the slope of the underlying function changes. This
parameter is called difference limen (DL) and is much harder
to interpret (for details on functions and their estimation,
see Kuss et al., 2005; Wichmann & Hill, 2001). In terms of
Taagepera (2008), these functions are descriptive because
they are chosen depending on their ability to describe the
data but do not necessarily correspond to a theory on the
cognitive processes causing the TOJ2.2One may argue that the PSS

is a connection to theory, thus if
the model provides a respective
parameter it should be called a
logical model. However, the ac-
tual shape of the function is not
derived from theory. Thus, I call
the models descriptive.

Tünnermann et al. (2015) provide a mathematical model
of how TVA’s second wave of processing can cause prior
entry in the TOJ design. The mathematical model’s de-
tails are described in Section 4. Here, it is important that
the TOJ can be interpreted as this second wave of process-
ing according to Bundesen’s TVA. What remains open is
whether a salience manipulation can be applied during the
first wave of processing to quantify the causes change in
the theoretical attention parameters of TVA.

For a salience measure, a TVA interpretation of a TOJ de-
sign looks quite promising. This combination would allow
using multi-element displays to manipulate salience while
this design would also allow inferring a formal attention
parameter expressing particularly the effect of attention
on visual selection. In contrast to earlier studies (Donk &
Soesman, 2011), the result would neither be an effect size
related to the dependent measure nor a quantitative mea-
sure like the PSS whose relation to salience is not explicitly
spelled out but the amount of attention according to TVA’s
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selection mechanism. The TVA-TOJ formal model would
link the observed data from the prior-entry phenomenon
to a formal theory of attention and thus provide a psycho-
logical explanation of how a particular salience value is
connected to a particular pattern of responses (Krüger et
al., 2018). However, being so explicit about how to inter-
pret TOJs comes at a cost: The overall processing capacity
should remain constant. Otherwise the attentional weight
is surely interpretable, but we would have to admit that the
salience manipulations has effects beyond a re-weighting
of attention in TVA. Also, according to the weight equation
by (Nordfang et al., 2013), the sensory evidence and perti-
nence have to be kept constant in the TOJ design. Whether
his approach is feasible is explored in the first article of this
cumulative dissertation.

Summary of Article 1

The first published article, henceforth called Article 1, inves-
tigates whether the parameter, wp, of the TVA-TOJ model
can actually be used to measure salience in multi-element
displays. All in all, three experiments have been conducted
to test different experimental manipulations. A fourth ex-
periment was conducted to test the successful experimental
manipulation with another salience dimension. The dif-
ference between the first three experiments lies in how to
conduct the TOJ. The three designs use onsets, offsets, and
flicker events, all of which had to be judged according to
their temporal order. Each experiment comprises two ex-
perimental conditions: In the neutral condition probe and
reference have the same orientation as the other elements in
the display; in the salient condition, the probe’s orientation
differs by 90°. In both conditions, the experiments yield an
estimation of two parameters for the population: Overall
processing capacity, C, and attentional weight, wp, for the
probe stimulus p(the attentional weight for the reference,
r, is necessary wr = 1− wp because only two task-relevant
stimuli exist in the design). As explained in the previous
section, the overall processing capacity, C, is expected to
be unaffected by a salience manipulation.
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In the neutral condition, the attentional advantage of
the probe, wp, should be .5 because this corresponds to no
attentional advantage for either stimulus. The experimen-
tal condition comprises a reference stimulus that, again, is
orientated as the other elements of the display. The probe
stimulus has a maximal orientation contrast of 90° should
show a wp > .5 because there should be an attentional ad-
vantage for the probe stimulus if the salience measurement
is possible like it was derived from theory.

The anticipation of an exact value (for C and wp in the
neutral condition) is an example for Taagepera’s (2008) cri-
tique of the social science: He argues that physics usually
expects a particular value and is interested in deviations
whereas social science usually sets up a no-difference hy-
pothesis and is interested in any deviation. This is a notable
difference from typical psychological experiments because
here we assume particular values based on the logic of the
underlying theory as Taagepera proposes.

Experiment 1

The first experiment tested whether the onset of probe
and reference is a suitable event for the TOJ to measure
the attentional advantage of the probe stimulus over the
reference stimulus. To this end, a multi-element display
is presented first. After an initial interval, the probe and
reference are shown with an abrupt onset.

The results show that the attentional weight of the salient
probe stimulus, wsp, in the experimental condition is not
different from the attentional weight of the nonsalient probe,
wsp, in the neutral condition. This is indicated by largely
overlapping HDIs. Thus, the hypothesis that such an onset-
based TOJ allows measuring salience as the parameter w
was falsified. So, the conclusion is that the experimental
manipulation does not work with onsets.

0.49 0.51 0.53

0.5 0.52 0.53

0

20

40

0

20

40

w
sp

w
np

0.40 0.45 0.50 0.55 0.60
weight

de
ns

ity

Figure 6.3: Results for the
attentional weight estimation
of Experiment 1 of Article 1.
The salient probe’s attentional
weight, wsp, does not differ from
the weight in the neutral condi-
tion where the probe was not
salient.

It is likely that the gaps were salient because they devi-
ated from the pattern in the rest of the display. Li (2002)
gives a neuronal explanation of why the absence of a stim-
ulus can be salient: The homogeneous stimuli in the adja-
cent receptive fields cause an expectancy for the receptive
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field processing the blank spot. Although the blank spot
does not show anything in particular, its deviation from its
surrounding makes the receptive field deviate from its ex-
pected behavior. According to Li (2002) this is how salience
arises. The reason why there is no difference in the atten-
tional weight in the experimental condition is not that there
was no salience but rather that there was the same salience
for both elements during TVA’s first wave of processing.

Interestingly, the Bayesian Analysis reveals a posterior
distribution that was shifted slightly but distinctively to-
wards a higher weight for the probe stimulus even in the
neutral condition where both stimuli were indistinguish-
able. Because Bayesian Inference yield a distribution rather
than a point estimate, it is clearly visible that the theo-
retically expected value is barely on the edge of this dis-
tribution and that there is clearly more evidence for an
attentional weight wp > .5.

In retrospect, it became evident that this shift occurred
because of the temporal expectation of the probe stimulus.
The probe stimulus’ onset always happened after a fixed
interval, whereas the reference stimulus’ onset varied ac-
cording to the SOA. This fits well with the experiments on
temporal expectation by Vangkilde et al. (2012): The au-
thors found that temporal expectation can indeed increase
the visual processing speed.

It speaks, however, for the Bayesian Analysis that it does
reveal that something unexpected is going on. If, on the
contrary, a simple test would have been made whether
the expected value of .5 is still a credible parameter value,
such a test may or may not have been positive. In Bayesian
parameter estimation, however, we see that a distribution
that should theoretically be centered on .5 is obviously
shifted away from this point. Furthermore, this quantita-
tive insight into the credible parameter distribution allows
comparing the nuisance influence to the size of salience’s
influence in Experiment 3.

It is clearly a weakness in the experimental design that
no random jitter was included from the beginning of the
trial until the TOJ. This design is problematic because the
probe’s onset will occur at an unforeseeable point in time,
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the reference’s onset, however, will always occur at exactly
the same point in time from the start of the trial. So, there
is a higher expectancy for the point in time when the refer-
ence’s onset occurs.

Experiment 2

Experiment 2 is highly similar to Experiment 2. Instead of
an onset, we tested the offset of a stimulus as the event to
judge with the TOJ. The rationale is that if the gaps were
likely equally salient during TVA’s first wave of process-
ing and the salience of the stimulus cannot change the
attentional weight prior to the processing of its own onset.
Consequentially, showing both stimuli from the beginning
of the trial onward should distribute attention according
to their physical contrasts such that the salient stimulus is
more attended than the nonsalient when the task-relevant
event occurs.

Results show that indeed, attention was affected; how-
ever, against our expectations, the offset of the salient stim-
ulus was processed not faster but slower than the reference
stimulus. This can be deduced from the attentional weight
smaller than .5, as shown in Figure 6.4. Because I did not
pursue the causes of this results may further, I do not have a
better interpretation than at the time of writing Article 1 for
this unexpected results: It can be explained by the difficulty
to get rid of a representation of a salient element in VSTM
which may take longer than getting rid of a nonsalient
representation and thus realizing whether the respective
stimulus has vanished. However, in order to be sure about
this explanation, further research has to be conducted.

Again, it is concluded that offsets — like onsets — do
not cause data in line with the hypothesized first wave of
processing where the salient stimulus gains more attention
than the reference stimulus and the second wave of pro-
cessing in which said advantage leads to faster processing
of the salient stimulus.
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Figure 6.4: Results for the at-
tentional weight estimation of
Experiment 2 of Article 1. A
Difference between the salient
probe’s attentional weight, wsp,
(experimental condition) and the
nonsalient probe’s attentional
weight, wnp, (neutral condition)
is clearly visible. However, the
salient stimulus turns out to have
less attentional weight associ-
ated with it. The opposite find-
ing was expected.
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Experiment 3

The third experiment is the core contribution of Article 1:
It shows that when a flicker, a brief offset followed by an
immediate onset, is an event that seems suitable to probe
the distribution of attentional weights in a multi-element
display. Results show that wsp is high for the salient probe
in the experimental condition and clearly distinct from the
lower wnp for the nonsalient probe in the neutral condition,
as shown in Figure 6.5.

Additionally, I find these results encouraging for the
FRIM model underlying TVA. It assumes that the same
resources are merely redistributed by attention. Thus, the
overall processing rate should not change. Exactly these
results were yielded by all the experiments of Article 1. In
all of these experiments, the other free parameter besides
the attentional weight, w, the overall processing capacity,
C, stayed constant (for figures see the original article). This
result is also in line with TOJ literature that proposes that
attention neither causes only a speedup of the attended
stimulus nor a slowdown of the unattended stimulus but
both effects simultaneous (Weiß, Hilkenmeier, & Scharlau,
2013).
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Figure 6.5: Results for the at-
tentional weight estimation of
Experiment 3 of Article 1. The
difference between the salient
probe’s attentional weight, wsp,
(experimental condition) and the
nonsalient probe’s attentional
weight, wnp, (neutral condition)
is clearly visible and occurs in
the expected direction.

Experiment 4

Experiment 4 extends the procedure to another salience di-
mension, luminance contrast. Also, instead of the neutral
and the salience conditions, two salience conditions are
introduced. These two conditions entailing low and high
salience ought to show whether differences in salience can
be distinguished by the modeling and empirical approach.
The neutral condition is omitted because it is theoretically
expected for the attentional weight for the probe stimu-
lus wp to be at the .5 level. This hypothesis has also been
supported empirically by Experiment 3. The results show
that luminance contrast can be measured both for the low
and high salience conditions. The low salience condition
shows a smaller wp, attentional weight of the probe stimu-
lus, than the high salience condition. The high luminance
contrast has an attentional weight comparable to the high
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orientation contrast of 90◦.
A critique that could be voiced here and also for Article 2

is that the detection of the offset and onset may not be
completely independent of the stimulus luminance contrast
to the background. For example, imagine a probe stimulus
that is barely visible because it is drawn in dark gray on a
black screen. If the stimulus itself is close to the detection
threshold, the detection of the offset and onset is affected.
However, in the present experiment, the low salience and
high salience stimulus are both clearly visible. To improve
with regard to a possible confound and also to enable the
experimenter to test motion salience, I have developed an
improved stimulus material that swaps an internal pattern
instead of a complete offset and onset. This is explained in
detail in Section 6.6.
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Figure 6.6: Results for the atten-
tional weight estimation of Ex-
periment 4 of Article 1. The at-
tentional weights ob the high
luminance contrast, whp, and
the low luminance contrast, wlp,
are both higher than the neutral
value of .5 but as expected wlp is
larger than .5 but smaller than
whp.

Conclusion

All in all, Article 1 can be seen as a proof of concept. It
shows that the common TOJ designs (onset and offset of
stimuli) are not suited for measuring the attentional weight
of a salient stimulus. Yet, with an adequate event, a flicker,
experimental results are in line with theoretical reason-
ing. Furthermore, different salience dimensions can be
manipulated, which has exemplarily been shown for orien-
tation and luminance contrast. For a salience measurement
based on TVA, two questions have to be answered: Can the
salience of less extreme differences be measured with suffi-
cient precision and can this value be related to a specific
salience value, a common currency of salience?

Summary of Article 2

Article 2 of this cumulative dissertation has the goals to
find a common currency of salience first and then to use
this common currency to answer the question whether
two salience dimensions interact. The salience currency
is based on the procedure developed in Experiment 3 of
Article 1 and the salience parameter κ that was introduced
to TVA Nordfang et al. (2013). In Article 1, the salience
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measure was the general measure of relative attention in
TVA, the attentional weights. These weights, however, can
only be determined in relation to each other. That means,
if you multiply all attentional weights by a certain factor,
they will yield the exact same outcome mathematically as
before. However, Nordfang et al. (2013) simply assumed
that a nonsalient stimulus X to have a κx = 1. Thus, a
nonsalient reference stimulus in the TOJ should allow mea-
suring an exact quantitative representation for the strength
of salience of the salient probe stimulus in the TOJ.

Furthermore, it should be answered whether this mea-
surement of salience is sufficiently precise to distinguish
the salience of different levels of physical contrast. And if
so, how salience arises independently of physical contrast.
After establishing how salience arises within a single di-
mension of physical contrast, it is checked how two such
dimensions combine. To pursue these goals, Article 2 starts
with adapting Experiment 3 of Article 1.

Experiment 1

Adapting the Experiment 3 of Article 1, this experiment in-
troduces more experimental salience conditions. The goal
of Experiment 1 is to understand how salience rises when
physical contrast is increased. For example, a linear in-
crease is a possibility. Also, a logarithmic-looking increase
is plausible that would mean the larger the already existing
contrast, the smaller the gain of adding a fixed-size step.
These two alternatives are sketched in Figure 6.7.
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Figure 6.7: Increasing physical
contrast in equally sized steps
will increase salience. However,
it is not clear how to describe
this increase. Possible findings
include the linear increase. That
is a fixed increase in contrast
always increases salience by a
fixed amount. Alternatively, it is
likely that the salience increase
diminishes if the contrast is al-
ready high. This relationship
can be modeled by a logarithmic
or power function.

Diminishing returns from a fixed contrast increase can
be modeled by a logarithmic function or Steven’s power
law (1957). It is important to understand here that I do
not look for the “law” of salience but rather want to under-
stand how it works. These two approaches are contrasted
by Cummins (2000). This context, this distinction means
that whatever function is more appropriate is used as a
model but not proclaimed as the true law of salience. The
three experimental conditions comprise 30°, 60°, and 90°
of orientation contrast respectively to allow us to see how
salience increases with physical contrast.
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In the modeling part prior to Experiment 1 in Article 2,
it is explained how the relative attentional weight wp and
the absolute amount of salience κ are connected. Namely,
the salience value of the nonsalient probe is set to 1 as it is
designed to be nonsalient (a salience value of 1 instead of
0 is used as a neutral value because salience and other at-
tentional influences multiply according to the CORE equa-
tion Nordfang et al., 2013). This allows to compute κp, the
salience value of the probe stimulus p to be κp =

wp

1+wp
. So,

the reader may think of κp as the theoretically more appro-
priate parameter name for the salience value that, however,
does not carry more information than the w parameter.

From the results in Figure 6.8, it is apparent that the
60° and 90° orientation contrasts do not differ much. This
does, however, not mean that the method does not work
as intended. To the contrary, it is not well studied how
salience rises from linearly increasing steps of contrast. In
fact, psychophysics shows that physical quantities and the
perception of their intensity are often related by a loga-
rithmic (Fechner, Howes, & Boring, 1966) or according to
a power function (Stevens, 1957). If the relation between
orientation contrast and the amount of salience follows a
logarithmic function or a power function with an appro-
priate exponent, it would be expected that the influence of
equally sized steps of contrast recedes. In any case, a linear
increase of salience is not supported by these results.

The analysis of Experiment 1 shows that the power law is
an appropriate model. The appropriateness of this function
stems from two lines of reasoning. First, it can be argued
for from a theoretical position as a generalization of Fech-
ner’s log function. Secondly, it has to fit better to the data
than the alternatives. These empirically tested alternatives
are a logarithmic relation between orientation contrast and
amount of salience and to simply assume independent κ
values for each condition (this is a model that corresponds
to no systematic connection between the values). A model
comparison revealed that the power-law model fits better
to the data if the model complexity is also taken into ac-
count. However, more than three experimental conditions
may have been helpful to determine the exact shape of the
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Figure 6.8: Results of the salience estimation of Experiment 1 of Ar-
ticle 2. These results show that a linear increase is highly unlikely.
Although the data suggests an increase even for the step from 60° to
90° of contrast, the clearest difference is from 0° to 30° of contrast be-
cause the 95 % HDIs (dashed lines) are not overlapping that means a
highly credible difference.

increase of salience. Thus, Experiment 2 was conducted
with more experimental conditions.

As expected, the analysis revealed additionally that the
overall processing capacity, C, stays constant in the exper-
iment. This parameter is another free parameter in the
model but should theoretically not be changed by the ma-
nipulation.

Experiment 2

Because the power-law model of how salience increases
with physical contrast was tested because the data sug-
gested it, it can be ascribed to the context of discovery rather
than the context of justification (Reichenbach & Richardson,
1938). Thus, Experiment 2 was conducted to justify what
was found in Experiment 1. A step size of 15° was chosen
so that the shape of the underlying function may become
more obvious. These additional steps resulted in seven
conditions. The results are shown in Figure 6.9. Again the
three models, logarithmic increase (one parameter), power-
law (two parameters) and independent κ-values (seven
parameters) were tested. The salience increase suggested
by the three models is depicted in Figure 6.10.
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Figure 6.9: Results of the salience estimation of Experiment 2 of Ar-
ticle 2. In contrast to the results of Experiment 1, these estimations
allow a much better impression of the diminishing salience returns for
a fixed step contrast increase. Further analyses revealed that a power
function is an adequate description.
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Figure 6.10: This figure shows
how strongly the three models
differ with respect to the esti-
mated salience value. Please
note that the dots are no raw data
but are punctual salience estima-
tions assuming that the increase
of salience is not connected to the
increase in other conditions at all.
Also, note that the models have
different amounts of free param-
eters: The individual estimation
has seven free parameters, the
power function two and the log-
arithmic model one parameter.

This study, again, yielded that salience does clearly not
rise linearly with linear steps of physical contrast increase.
Visually, the increase in salience looks like a logarithmic
increase. Roughly speaking, this means the more salience,
the more contrast is needed to increase the salience of the
same amount. Both logarithmic and power-law-based func-
tions have been tested again to describe this relationship.
Like in Experiment 1, the power-law model turns out the
be an adequate model. In the model comparison, not only
fit to the data was taken into account but also the number
of free parameters. Again, the analysis revealed that the
overall processing capacity, C, stays constant.

Thus, the first contribution of this Article 2 to the scien-
tific discourse is that the increase of salience can adequately
be modeled by a power law within at least the orientation
dimensions. Previously, the logarithmic model has been
used by Huang and Pashler (2005); however, only a few
data points led to this hypothesis.
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Experiment 3

It stands to reason that the power-law model may general-
ize to other salience dimensions. Thus, luminance contrast
was again tested as another easy to manipulate salience
dimension in Experiment 3 of Article 2.

The general idea of this experiment was to test different
levels of luminance contrast analogously to Experiment 1
and Experiment 2 of Article 2. However, I did not only test
luminance salient stimuli that were brighter than their sur-
rounding but was interested in what happened when the el-
ement that stands out is actually darker than the surround-
ing elements. As currently modeled, only the difference
in physical contrast of unique stimulus and surrounding
homogenous stimuli is used to determine the physical con-
trast. The intention for these additional conditions was —
maybe a bit naively — to test whether the power-law model
can also describe the increase in κ in these conditions. In
retrospect, I think this experiment may have been stronger
if the additional “dark amongst bright” were omitted be-
cause I did not completely reverse the situation because
I keep the background color constant so that the unique
salience stimulus appeared less bright than the surround-
ing elements but brighter than the background color. In
this contrast, much more contrast between surrounding
elements and the unique element is necessary to yield a
measurable effect on attention because the unique stimulus
is not a luminance outlier in the presented display but in
between the luminance values of surrounding elements
and background screen.

In congruence with this post-hoc reasoning, the power-
law described the increase in κ well if the unique element
was indeed the most luminant in the whole visual field.
So, the model was appropriate in this case. However, the
four conditions in which the unique stimulus’ luminance
value was between those of surrounding and background
elements, salience was nearly not affected for the same steps
of contrast increase as in the first four conditions. These
four conditions serve to show the limits of the simplistic
model that salience arises merely because of the physical
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contrasts between foreground and background. Although
these conditions can easily be criticized, I would like to
stress that the model and experimental procedure allow
looking into how strongly attention is actually affected by
a particular element when compared to an inconspicuous
element of the display so that it becomes obvious how
inadequate the simplistic difference in luminance contrast
between homogenous elements and the unique element is
in this case. Figure 6.11 shows the estimated κ value and
may help the reader to imagine the conditions with the
help of the small sketches on the right side.

To summarize Experiment 3, it shows first that the power-
law model is applicable to particular luminance contrasts,
but not to all. Thus, Experiment 3 reveals the limitation of
the model that the luminance of the background screen is
not independent of the actual salience value determined
by the procedure. Because all background screens have a
particular luminance, it has to be kept constant in the exper-
iments but must be remembered to restrict the generality
of the determined salience values. In further research, a
better formal description of the contrast between attended
element and surrounding may be found.

Experiment 4

Besides establishing a model for how salience rises within
a contrast dimension, Article 2 has the second goal to show
how two dimensions interact. Here different ideas have
been proposed in the past. All of them agree that if two
types of salient contrasts are combined, the result is more
salient than the most salient individual contrast but less
salient than the individual contrasts added up. However,
the degree of this interaction seems to vary depending on
the two types of contrast being combined. These previous
works can be criticized in thus far as they worked with an
explicit model of how salience rises within a dimension
and I have shown in the previous experiments that salience
does not rise linearly with contrast. Secondly, only very few
salience estimations are used in the literature to come up
with estimations of the degree of interaction. However, if
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Figure 6.11: Salience estimation of Experiment 3 of Article 3. Whereas
a unique element that has the most luminant surface in the display
causes salience describable be the power function model, the same
contrast levels do not cause a comparable effect if the unique element is
less luminant than the homogeneous elements but more luminant than
the background. These results show the limitation of the simplistic
model that only takes into account differences between homogeneous
and unique elements.

maximum, addition, or as proposed a sort of discounted ad-
dition were the true systems according to which combined
salience is computed, this should lead to particular patterns
of salience estimation in a factorial design of for example
four times four contrast levels. In Figure 6.12 different ways
of computing overall salience have been sketched.

Experiment 4 corresponds exactly to the idea that it
should be possible to determine the amount of discount or
interaction between the two contrast dimension in creating
a combined effect on attention. To this end, four levels of
orientation contrast and four levels of luminance contrasts
have been used in a factorial design. It should be possible to
estimate the degree of interaction by a model that states the
idea of a discounted addition formally. If you think about
the sketches in Figure 6.12, this means that the addition
model is taken and a fixed factor is added for all additions.
This means that if a non-zero contrast from one dimension
is added to another non-zero contrast from another dimen-
sion, individual salience is added up but with a discount of
say 30 % for example. Whether this discount is 10 %, 20 %
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or 80 % could be estimated by the model based on how the
salience arises within each dimension.
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Figure 6.12: The literature
suggests that combining two
physical contrasts from different
contrast dimensions causes a
salience that is at least as strong
as the salience value of the
most salient of the two contrasts
(maximum) and never more
salient that the individually
determined salience values
added up (addition). These two
bound on the expectation of
salience values are depicted in
the figures.

To illustrate the results of this experiment, Figure 6.13
shows the independent κ estimations as green dots as well
as the fitted model. As in Experiment 1 and 2 of Arti-
cle 2, both dots and plane represent models. The underly-
ing logic is that independently estimating the salience has
much more degrees of freedom but may not be an econom-
ical description because it squanders degrees of freedom
where they may add little to the model’s ability to describe
the data concisely. On the other hand, assuming a relation
between these salience values reduces the number of free
parameters but limits how the data can be fitted. Yet an
assumed function may turn out as the better model if it can
still describe the data well while reducing the number of
free parameters. The results show that the discount that
best explains the data under the stated model assumption
is 0. That means salience from the individual contrasts
is simply added up. Whereas this analysis can itself be
counted as model comparison by parameter estimation
(Kruschke, 2013) (meaning a parameter that a model en-
tailing a discount of 0% is equal to the model not having
this particular parameter.) we conducted another model
comparison by formulating the competing model that sim-
ply does not assume any discount. The no-discount model
came out slightly on top again.

The interpretation of these results is that it is better to
assume a simple linear addition than a fixed discount factor.
However, this analysis does not rule out complex discount-
ing mechanisms. The proposed modeling and empirical
approach, however, allows testing different discounting
mechanisms as soon as they are proposed. For the time
being, however, a fixed percentual discount as previously
proposed seems worse than a simple addition for describ-
ing the data of a multi-contrast-level factorial design.

Summing up this chapter, I have introduced, tested, and
tackled research questions by combining an empirical and
modeling approach to salience measurement. This ap-
proach makes use of multi-element displays and the prior-
entry phenomenon that is interpreted with an overarching
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Figure 6.13: Results of the salience modeling of Experiment 4. Green
dots show the salience estimation for each condition individually
whereas the plane shows how salience is modeled by an increase ac-
cording to a power function within each dimension and an addition
across both dimensions.

formal theory of attention. As such, the resulting quan-
titative measure of visual salience is yet another way of
quantifying visual salience. What is different with this
measure is, however, that there is a tight link between data
and theory provided by an explicitly stated logical and
statistical model. The proposed salience measure, κ, has
a specific function within the TVA framework, and addi-
tionally, the experimental procedure allows to manipulate
and compare many physical contrasts that ought to affect
salience. Also, it explicitly treats task-relevance of unique
stimuli in salience experiments: Because the two positions
are known in advance and are always the same, the loca-
tions have the same task-relevance. Thus, it can be argued
that whatever salience adds on top is because of its effect
on attention. In the following chapter, the proposed com-
bination of experimental design and model is tested for
different situations and research questions.





Chapter 7

Quantifying
salience-related
phenomena

Beyond the foundations of TVA-based salience measure-
ment, many more questions can be addressed by using the
proposed method. In this dissertation, Article 1 and Arti-
cle 2 are the foundation of a new quantification of salience.
That is why they and the ideas contained therein were
presented in the separate previous chapter. Once estab-
lished, many salience-related phenomena can be studied
with a TVA- based interpretation of TOJ data. Such fur-
ther research is presented in the present chapter. These
smaller studies have not been written up as a full-sized pa-
per. There are various reasons for this: Often, the research
question is rather small, or results do not match expecta-
tions from previous research so that a further replication is
reasonable before communicating the results to a broader
audience. An exception is the work on the time course of
salience because it has been developed to such a degree
that it can be published as an article in its own right.

Time course of visual salience
(Article 4)

The strength of salience follows a time course. Article 4
extends the applicability of salience measure to this phe-
nomenon. We expected that the salience parameter, κ,

99
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varies over the duration of the first second after the on-
set of the salience display. Roughly speaking, the literature
shows that salience rises in strength up to 150 ms and de-
clines afterward.

Experiment 1 of Article 4 was designed to replicate the
results that were expected from the literature. Although
the hypothesized time course was statistically shown for
the salience parameter κ, this time course was much less
pronounced than the time course of the overall processing
capacity C: In contrast to our expectations, Experiment 1
revealed a distinct reduction in overall visual processing
capacity that was supposed to be similar in all conditions
because it describes the overall visual processing capacity,
the general ability to solve the TOJ task.

To rule out that the TVA-based model is simply a bad
model, and its parameters thus do not adequately describe
the data, a model comparison was conducted: Compared
to the common logistic function, the TVA-based model
provides a slightly better fit for the data while gaining a
precise theoretical meaning for its parameters compared
to the merely descriptive logistic function. Thus, I do not
argue that the TVA-based model provides the better fit
in general — although this may be the case, it is difficult
to show it convincingly — but that the TVA-based model
does not provide an unreasonably worse fit compared to
common psychometric functions.

Experiment 2 justifies the conclusion from the Exper-
iment 1 by replicating the result. In order to be compa-
rable to previously published studies, a single aspect of
the design has been changed: Instead of a fully random-
ized design, a blocked design was used — similar to Donk
and Soesman (2011). As in Experiment 1, the data ob-
served in the 50 ms and 100 ms intervals is much better
explained by a change in visual processing capacity and
salience than a change exclusively in salience. Processing
capacity reaches stable values in the range expected from
previous experiments for the 200 ms, 400 ms, and 800 ms
conditions. Roughly speaking, this means that the partici-
pants’ processing speed in the TOJ was severely and grad-
ually reduced in the first two conditions. This is roughly
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equivalent to a change in the so-called difference limen pa-
rameter of comparable descriptive psychometric functions,
e.g., as used by Matthias et al. (2010) to analyze the effect of
alertness on the TOJ performance. A change in attention, in
contrast, shifts the processing speed from the unattended
to the attended stimulus (Weiß et al., 2013; Tünnermann
et al., 2015).

Furthermore, the paper argues — independently of whether
the reader agrees on the usefulness of the TVA-based model1 1A model based on the pa-

rameters PSS and DL would of
course also reveal a difference in
DL, so the result does not com-
pletely depend on TVA, but TVA
offers a cognitive model for ex-
plaining the parameters in terms
of the visual selection process.

— that a model-based approach is needed to disentangle
attention and other effects on selection. A model of visual
selection must explicate the consequence of a parameter
change in attention as opposed to the general ability to
solve the task (alertness or strength sensory evidence). The
discussion closes with the observation that modeling helps
to refine the concepts in psychology.

In-depth comparison of salience
dimensions

In Experiment 4 of Article 2 (See Section 6), I have shown
how luminance and orientation contrasts interact; however,
other dimensions may behave differently. Nothdurft (2000)
has already shown this in his comprehensive study. His
methods were based on perception. Interestingly, no other
author has — to the best of my knowledge — provided
a comprehensive comparison of the possible interaction
of different salience dimensions. Similarly to Nothdurft’s
study, a TVA-based analysis of color, motion, orientation,
and luminance contrasts in TOJs is possible and may con-
firm or contradict the estimations by Nothdurft.

To test for possible interactions, an improved design had
to be implemented because the flicker creates a big change
in luminance contrast. The flicker is also problematic for
moving stimuli because a stimulus moving quickly might
appear as “jumping” whereas a slow-moving stimulus flick-
ers as intended. Thus, stimulus material was developed
that consists of small bars with an internal pattern of light
and dark areas. The overall luminance of the stimulus
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Figure 7.1: Sketch of TOJ task with bars flipping patterns.

could still be manipulated experimentally. The pattern
could be flipped and hence creates a noticeable change for
the TOJ without changing the overall luminance. A set
of experiments was conducted to evaluate this stimulus
material.

Flipping patterns instead of flickering stimuli

Figure 7.2: Newly developed
stimulus material with internal
pattern that can be flipped.

To test the new stimulus material, multiple pre-tests were
conducted with different patterns and small numbers of
participants. All pre-tests showed a reduced overall pro-
cessing capacity, C. This finding is very robust and in line
with the theory because the pattern flip provides less visual
evidence for an event when compared to a complete offset
and onset of the stimulus. This, in turn, makes it more
difficult to judge correctly. Yet, a proper replication was
needed as this explanation was conceived after seeing the
data. The central Experiment 3 of Paper 1 was replicated
with the new stimulus material as a conceptual replication
of the original result. The used stimulus material is de-
picted in Figure 7.1. In this sketch, a TOJ salience-display is
depicted — probe is nonsalient in this example. The TOJ is
implemented by the flipping of the internal pattern, which
is also enlarged in the sketch. Additionally, a large version
of the two states of the stimulus is shown in Figure 7.2.
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There were 31 participants in this experiment.
Results show — as expected from the pre-studies — that

overall processing capacity, C, is around 23 Hz. As already
mentioned, this result is expected because there is less vi-
sual evidence for the event to be judged in TOJ. Yet, the
main finding that processing capacity is not affected by
the experimental manipulation could be replicated suc-
cessfully. More precisely, this means that an orientation
difference of 0° leads to an attentional weight of .5. In-
creasing the orientation contrast in incremental steps of
30°, yields a steep initial rise in attentional weight and a di-
minishing increase for further steps as the power-function
model suggests. Yet the absolute values of the w-parameter
are slightly reduced in comparison to the original exper-
iment. There is a sound theoretical explanation for the
difference. The TOJ task is harder with the flipping pat-
terns; this is evident from the reduced slope of the func-
tion, the corresponding low overall processing capacity, C,
and of course, the reduced physical evidence for a change.
Thus, it is likely that participants focus their attention more
strongly on the a-priori-known relevant locations. Please
note that there was always a mix of task-relevance and
stimulus-driven attention involved in the design; the task-
relevance-based attention was, however, kept constant by
the a-priori-known relevant locations. Also, note that the
explanation is a post-hoc explanation which is not backed
by an additional replication. No additional replication was
conducted because the finding of the original Article 1 was
successfully replicated and numerically identical estimates
were not expected in the first place.

To conclude, the new stimulus material works well enough
to replicate the result of Experiment 3 of Article 1. Even
if the manipulation’s effectiveness is reduced because of
the demanding task, salience can be measured yielding the
same conclusions as in Article 1.
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Comparison of red-green and blue-yellow
color axes

The color axes red-green and blue-yellow of the CIE L*a*b
color space were compared in a 4×4 factorial design similar
to that of Article 2. Although the CIE L*a*b color space is
designed in such a way that distances in the color space
correspond to visually perceived color differences, it has
not yet been tested whether a fixed distance yields the same
advantage for attention on both dimensions. Also, their
interactions are unknown and have been investigated by
the same model as in Article 2.

The actual color differences in the implementation is
based on the color range of a color-calibrated (X-Rite Col-
orMunki Display) CRT-monitor (Iiyama Vision Master Pro
512). The monitor was able to display color values in the
range of −50 to 50 for the a and the b parameter in the
CIE L*a*b color system. Thus, the maximum difference
was 100 for each parameter that corresponds to 1.0 for the
maximum difference in the analysis, 0.5 and 0.25 stand for
a difference of 50 and 25, respectively. The used luminance
value, L parameter, was 70.

The Bayesian hierarchical models and analyses were the
same as described in Article 2: One for the independent es-
timation of salience and one for the power-function model.
Overall, there were 25 participants.

Results show that both dimensions scale differently. This
is evident from the hyper-parameter plot in Figure 7.3 and
the respective two parameters for the power function, the
k, and the n parameter. These parameters link the yellow-
blue and the red-green contrast in CIE L*a*b to the salience
parameter κ. Although difficult to spot from the numbers
alone, the 3d plot in Figure 7.4 shows that yellow-blue con-
trast (Δyellow-blue has an influence on salience (κ) that is
twice as large as red-green contrast (Δred-green). The DIC is
5588 (this value can be compared to other models’ DICs for
the same data to find the best model. This procedure also
accounts for model complexity, for further details, see Arti-
cle 2). If the salience, κ, is estimated for each condition inde-
pendently, i.e., without assuming a relation between them
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in the model, MAPs for salience are obtained as marked
by the green dots in Figure 7.4. The DIC for this model is
5891. Thus, assuming the power-function relation implies
a better model than the individual salience estimation.

Both dimensions are independent in terms of a simple
discount or bonus for a situation in which both dimensions
are combined. This result is the interpretation of the pa-
rameter a that is centered on 0. As expected from Section
7, the overall processing capacity is reduced in comparison
to the experiments in Article 2.

What do these results mean? First of all, the color was
less effective in influencing salience in comparison to the
experiments on luminance and orientation contrast in Ar-
ticle 2. Although the CIE L*a*b color space was designed
so that distances in this space are proportional to the per-
ceived differences, the same distances on the yellow-blue
axis are nearly twice as salient (as estimated for the whole
population). Both dimensions are at least not affected by
a simple discount or bonus for their combination. Thus,
they are either independent or interact in a more complex
manner. Apart from this difficult-to-interpret situation, the
experiment shows that properties that are a priori similarly
salient can be investigated in detail trough the modeling
and empirical approach presented in this work2. 2An experiment of similar

design was also conducted for
color (yellow-blue contrast) and
motion contrast. This exper-
iment, however, was limited
by several factors (it had to
be shorted in order to com-
ply with course credit regula-
tions. Also, the levels of ex-
perimental motion-contrast ma-
nipulation were limited by the
possibly salient collisions of el-
ements). Because of these limi-
tations, the experiment revealed
little more than that motion con-
trast is salient as expected from
the literature. This experiment
is mentioned here to disclose all
lines of experimental research
even if unfinished.

Origin of orientation salience

Orientation salience has been implemented in many mod-
els; however, what does actually cause the strength of
salience? In an experiment based on just-notable differ-
ences in orientation, Foster and Ward (1991) found that the
absolute orientation of stimuli is relevant in addition to
the difference in orientation. For example, showing a back-
ground of vertical lines and a singleton that is rotated 60◦

clockwise makes the difference easier to spot then when
singleton and background orientations are swapped. This
leads to the assumption that a particular orientation con-
trast does not suffice to predict the effect on salience. There
are two explanations why this may be the case: The first one
is provided by Foster and Ward (1991) who argue that the
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Figure 7.3: Hyper-Parameter estimation of the experiment comparing
red-green and- yellow-blue contrast.
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Figure 7.4: Salience as dependent on red-green and- yellow-blue con-
trast based on MAPs. The green dots shows the saliences estimation
if each conditions attentional advantage is modelled as a individual
dependent variable.

visual system responds to some orientations more strongly
than others. The V1-based salience model by Li (2002)
implicitly gives another salience-based explanation: The
vertical lines were positioned on a grid; thus, they created a
long virtual line that was interrupted between the elements.
A deviation from this virtual line caused a much stronger
response based on the neuronal architecture in Li’s model
than the background elements that were rotated by 60◦ and
thus did not form a virtual line.

It is important to mention that it has never been tested
whether the absolute orientations are important addition-
ally to the orientation contrast to predict the effect on atten-
tion. However, Wolfe (2007) assumes that the finding by
Foster and Ward (1991) should probably be used to model
orientation salience. We tested this hypothesis.

Results show that absolute orientation matters. This is ev-
ident from the salience parameter, κ, estimation for the ver-
tical background lines in comparison to the diagonal, −60°,
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lines as shown in Figure 7.7. This image shows the vertical
background conditions. The first four distributions show
the salience, TVA’s κ-parameter, for an increase of orienta-
tion contrast on a vertically oriented elements (levels: 0°,
15°,30°,60° of orientation contrast; see Figure 7.5); The next
four distributions show the same increase of contrast on a
diagonal background ( −60°, see Figure 7.6). When com-
paring both groups, it becomes evident that, the salience
is stronger if the contrasts are presented on the diagonally
orientated background. So, the highest orientation contrast
of 60° on the vertically oriented elements (fourth distribu-
tion from top of Figure 7.7) is roughly as strong as the 30°
contrast on the diagonally oriented background (seventh
distribution from top of Figure 7.7). The overall processing
capacity, C, shown in Figure 7.8, stays constant as theoreti-
cally expected although it is a free model parameter. Thus,
the hypothesis that the salience of orientation does not only
depend on orientation contrasts but also on the absolute
orientation of the background is clearly favored over the
hypothesis derived from Li’s (2002) work. Li (2002) would
have predicted that the deviation from virtual lines causes
the salience — an influence not controlled by Foster and
Ward (1991).

Although one hypothesis is clearly favored by the results,
the results are difficult to publish without replication be-
cause based on Foster and Ward (1991) a stronger salience
was expected from the contrasts presented on the vertically
oriented background. Thus, the quantitative results — in
contrast to the qualitative assessment that salience of orien-
tation contrast also depends on the absolute orientations
involved — are neither in line with the work by Li (2002)
nor the work by Foster and Ward (1991).

Salience, task relevance and location

The work on conjunctions of salience and task relevance
and their effect on locations specific attention was made
possible by a DAAD grant. With this grant, I was able
to visit the Center for Visual Cognition in Copenhagen
for three months. Amongst the researchers, I met there
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Figure 7.5: Background orientation 0° example

Figure 7.6: Background orientation −60° example
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Figure 7.7: Salience parameter, κ, rate per condition.
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Figure 7.8: Overall visual processing, C, rate per condition.
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were Claus Bundesen, Axel Larsen, Thomas Habekost, and
Søren Kyllingsbæk. All are deeply involved in TVA model-
ing and related experiments. The closest contact I was with
Anders Petersen and Signe Vangkilde. For their support
and warm welcome, I am very grateful.

During my time there, I generated a few ideas for TVA-
based research3. The most promising research idea I came3I am particularly grateful

for all researchers that took the
time and discussed these ideas
with me because these discus-
sions helped me understand
that an epistemically interesting
question still needs an interested
audience. I cannot remember
who formulated it this straight,
but one response to an idea was
“This is indeed an open research
question given the literature, but
I doubt that anyone outside this
room would be interested in its
answer.”

up with was based on a recent publication by Nordfang
et al. (2017). The central idea of this publication is that lo-
cation is special when compared to feature-based attention.
Originally, this has not been part of TVA. This publication
addresses this missing link by drawing on many years of
observing location-specific preferences of individual par-
ticipants and refining the empirical finding to a new weight
equation that generalizes the salience-specific findings by
Nordfang et al. (2013). Whereas this extension was con-
ceived from letter-report designs, I wanted to check the
new equation with the TVA-based model of TOJ.

Check a new TVA weight equation in a different experi-
mental paradigm requires theoretical and empirical work.
In particular, hypotheses for the new experimental setup
have to be derived from the equations, and also the manip-
ulations must affect exactly the constructs the TVA param-
eters are supposed to represent.

To explain the reasoning behind the experiments on
location-specific attention in TVA, it is apt to start with
the weight equations. The original weight equation by
Bundesen (1990) as shown previously in Equation 4.3 and
for ease of comparison also repeated here as Equation 7.1.
This equation interpreted by understanding the attentional
weight4 as the result of multiplying η and π that stand for4In TVA stimuli race in par-

allel to be represented in short-
term memory. The attentional
weight represents an attention-
based distribution of process-
ing resources. Stimuli receiving
more resources — have a higher
weight — possess an advantage
in the race to short-term mem-
ory.

the sensoric evidence and pertinence, respectively. Both, η
and π, depend on j in the equation, meaning that a stimu-
lus, x, provides a sensory evidence for being a particular
thing, a thing from the category j. Also, categories differ in
relevance; this is represented by the respective pertinence,
πj , for category j. The sum of this equation means that all
relevant categories from the participants’ long-term mem-
ory have to be considered. In general, this seems quite
difficult to handle because of the potentially large num-
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ber of categories in the participants’ long-term memory.
This problem is addressed by clever experimental design
in which only a few categories matter such that all others
can be assumed to have a pertinence of 0, such that the
evidence is multiplied by 0 and hence not relevant for the
attentional weight.

wx =
�

j∈R
η(x, j)πj. (7.1)

The TVA extension by Nordfang et al. (2013) is compara-
bly simple as shown in Equation 7.2. The only new param-
eter is κ that has already been introduced as the salience
parameter. So interpreting the equation yields that salience
must work multiplicatively with feature-based influences
on attention.

wx = κx

�

j∈R
η(x, j)πj. (7.2)

Another more recent TVA extension by Nordfang et al.
(2017) is more complex but also more general by assuming
that all location-specific attentional influences work sepa-
rately from feature-based attention. This idea is expressed
formally by Equation 7.3.

wx =
�

spatial locations l

η(x, l)πl

�

nonspatial features j

η(x, j)πj. (7.3)

There is a certain beauty in the symmetry of this for-
mulation: The spatial location, l, as well as the nonspatial
features, j, work similar in principle but are summed up
individually, and afterward, they are integrated by multi-
plication.

The two competing models’ predictions should be testable
with the TOJ design. Both equations have been developed
using data from the partial report design. However, the
models predictions should generalize to other instances of
visual selection and recognition. Equation 7.2 and Equa-
tion 7.3 make different prediction for the selection of com-
binations of location specific and non-location-specific fea-
tures affecting attention. These combinations can be pro-
duced in TOJ. Endogenous and exogenous attention ma-
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nipulations are common in TOJ designs (e.g., Shore et al.,
2001) and allow for a manipulation of different location
specific and non-location-specific features.

To come up with two competing hypotheses to test whether
Equation 7.2 or Equation 7.3 describes the distribution of
attention in TOJ more accurately, a connection has to be
made with the attentional manipulations in TOJ. In prior-
entry research, manipulation of location-specific attention
has been done with endogenous and exogenous cues as
reviewed by Shore et al. (2001). Both manipulations af-
fect spatial locations. When examining both equations, it
becomes evident that according to Equation 7.2, salience
always has a multiplicative impact whereas in Equation 7.3
salience and other location-specific influences should add
up in the left sum of the equation. Assuming that the task-
relevance of the flicker is always the same, a combination
of endogenous, task-relevance of location, and exogenous,
salience, attention produces quite different numerical at-
tentional weight because one is based on adding the other
equation assumes a multiplication. These thinking yields
two mutually exclusive hypotheses:

H+ The attentional weight of endogenous and exogenous
location cues in TOJ add up.

H× The attentional weight of endogenous and exogenous
location cues in TOJ multiply.

There is, however, a problem in checking how the atten-
tional weights behave. Attentional weights in TVA are only
assessable up to a constant. That is, only the ratio can be
estimated. For two stimuli, a ration of 0.5 means that their
actual weight values may be 1 and 2 or similarly possible
21 and 42.

Before solving this problem, it has to be checked whether
endogenous attention manipulations work in the TVA-based
TOJ model as expected — when presented individually or
in conjunction with salience.

To address the problems systematically, I first report the
pre-studies that were conducted to check if endogenous
cues and the TVA-based TOJ analysis work as theoretically
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predicted (the cue affects only the weight parameter, not
the overall processing capacity).

Pre-studys

The pre-studies were conducted to develop the actual exper-
iments. There are two difference between the pre-studies
and the actual experiments. First, there was no planned
sample size. The small and not pre-planned sample size is
related to the second difference. Second, the hypotheses
for the pre-studies were note scientifically new but derived
from general assertions. It is because of these differences
that I refrain from a lengthy individual explanation of each
pre-study. Instead, I sketch the development of the experi-
ments with its main findings.

To make the abstract description of pre-studies a bit more
tangible and illustrate why they are reported at all, I start
with an example. In addition to the salience manipulation,
I needed a location-specific task-relevance manipulation.
Such endogenous attention manipulations are well known.
For example, Posner (1980) achieved an endogenous atten-
tion manipulation by providing a cue with 80% validity.
Consequentially, I designed multiple potential locations
for the TOJ, I cued one of them with 80% validity. Four
individuals generated data in sessions lasting for over one
hour. TVA’s attentional weight and overall capacity distri-
butions were strongly overlapping for the valid cue and
nonvalid cue condition.

Let me digress for two paragraphs from the description
of the pre-studies to analyze what I was doing from an epis-
temically perspective. Clearly, the limited sample does not
suffice for a convincing claim that endogenous cueing does
or does not work for TOJs. However, for my particular real-
ization of this cueing procedure four healthy participants
did not show a visible shift in the posterior distributions
of both, the w and the C parameter. Here, the difference
between Bayesian and frequentist thinking becomes evi-
dent again: Clearly, four observed subjects means more
information for a decision regarding the design than zero
observed subjects. The Bayesian approach to statistics now
considers the data as fixed. So, the fixed data (informa-
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tion) is used to estimate the model parameters which are
treated as not-fixed random variables. In the frequentist
logic, the data (events) is randomly drawn from an infinity
collective, i.e. the data is treated as a random variable. The
model parameters, e.g., a mean difference of 0, is treated
as fixed parameter in this logic. Thus, for the frequentist
thinking we would have had to define the collective before
conducting the pre-study otherwise, it did not just have a
low statistical power but cannot be analysed at all — defin-
ing the collective post-hoc after seeing the data is a sure
way of of “fooling” oneself as Feynman (1974) puts it (for
great explanation of the argument — even it the article
goes much further, see Gelman & Loken, 2013). Conse-
quentially, I argue that all pre-studies with out pre-planned
sample sizes are actually not necessarily bad practice but
serve our intuitive Bayesian thinking about the strength of
evidence (for arguments that Bayesian logic may or may
not be more in line with the questions psychologists pose,
see Dienes, 2011).

Following the Bayesian understanding of the pre-study
— that was never intended to make a strong public claim —
I made decisions regarding the design. In this first attempt,
the cued location of probe and reference were located on
opposite locations on an imaginary circle around the fixa-
tion mark. A central cue, a bar, was used to cue to positions.
For example, upper right and lower left, middle left and
middle right, or lower right and upper left location. The
locations were on the opposite site of the circle such that
the distance between probe and reference was equal in all
conditions. Based on the pre-study, I decided that the evi-
dence for a successful endogenous attention manipulation
caused by the cue was too small to conduct a full study
using this design. Note that I neither know whether this
manipulations does not work in general or because of my
realization or sample. So, simply put, I used the statis-
tics for my own decision process rather than to support a
general public claim.

Coming back to the results of the pre-studies, a second
pre-study showed that a simple rephrasing of the TOJ task
can direct more attention to one of the two TOJ locations:
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A central cue, small arrow, indicates which of the two stim-
uli has to be be judged. Of course, logically the TOJ task
remains the same. One cannot judge one of the stimuli with-
out the other. Yet, the phrasing of the task puts sufficient
emphasis on the pointed out location such that a strong
shift in the attentional weight,w, becomes visible. A further
pre-study revealed that this does work comparably even if
the other noncued stimulus location is known in advance.
This is also the reason why, I report this phenomenon to
be caused by the phrasing and not by the prior knowledge
of one location while the other location is not yet known to
the participant — an explanation that I anticipated to be
adequate originally.

A further results of the planning and pre-study phase
was that I realized that a possible interaction of endoge-
nous and exogenous attentional manipulation is actually
not so easy to determine because TVA’s attentional weight
can only be determined up to a factor. For example, an at-
tentional weight for stimulus x of wx = 3 does in itself not
mean anything because it depends on the other attentional
weights. If there was only one further stimulus y, and it had
the weight wy = 2 than the actual information contained in
the values is that x has a relative advantages of 3

2
. Their in-

dividual values can however be as well wx = 6 and wy = 4,
or any value combination for wx and wy such that it holds
that wx

wy
= 3

2
. The relevance of this fact is that attentional

weight cannot be compared easily in a factorial design even
though the values can statistically be determined easily.
To avoid this problem, the processing speeds of the indi-
vidual stimuli will be used for analysis. Table 7.1 shows
the conditions and comparisons for the intended analyses.
There have to be four conditions. They result from a facto-
rial combination of endogenous cue, a small central arrow
that indicates which stimulus’ flicker hast to be rated, and
exogenous cue, low and high salience, either congruent
on the endogenously cued stimulus on incongruent on the
noncued stimulus.

The basic analysis idea for this design is that a salience
increase is much higher if it interacts multiplicatively with
another attention manipulation (H×) than if such a manip-
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Condition Sketch vp vr Speed-up salience Speed-up
difference

1 vp90p vr90p vΔp = vp90p − vp15p
vΔ = vΔp − vΔr

2 vp15p vr15p
3 vp90r vr90r vΔr = vr90r − vr15r4 vp15r vr15r

Table 7.1: The four conditions of pre-study Experiment 2 and the
respective processing rates of the probe and reference stimulus.

ulation is merely additive (H+). To check these hypotheses,
the processing speed increase from low to high salience is
computed between Condition 1 and 2, as well as Condi-
tion 3 and 4, as shown in column “Speed-up salience” of
Table 7.1. The column “Speed-up difference” than shows
how both rate differences may be compared by subtraction.

The data from the pre-study implementing the design
presented in Table 7.1 did not show a difference caused by
the different levels of the salience manipulation. Although
this was not expected — previously orientation differences
increases caused clearly observable changes in attentional
weight, I decided to conduct a full experiment because odd
results may have been caused by the limited sample and the
design was far enough developed to provide a potentially
interesting result — in the sense that this combination of
manipulations and analysis has not yet been conducted.

Summing up, the work in Copenhagen resulted in a
research question, experimental design, and analysis to
answer whether a recent TVA extension provides a better
explanation of the TOJ than the earlier model.

Full Experiments

After the initial idea and pre-studies developed in Copen-
hagen, I refined the idea further and conducted two Experi-
ments. These Experiments aimed at specifically discerning
whether the weight equation by Nordfang et al. (2013) or
Nordfang et al. (2017) is more fitting in the TVA-TOJ setting
with two factors of spatial attention. Two hypotheses have
been derived during the introduction to these sections:

H+ The attentional weight of endogenous and exogenous
location cues in TOJ adds up.
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Nordfang et al. (2013) Nordfang et al. (2017)
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Figure 7.9: Sketch of possible attentional weights and their interaction.

H× The attentional weight of endogenous and exogenous
location cues in TOJ multiply.

The design is equal to the design of the pre-study of Ta-
ble 7.1. However, because the pre-study experiments have
suggested that salience combined with the endogenous
cue does not change the processing rates much, a stronger
salience cue has been used. The salience cue consists of
a 90° orientation contrast and a color contrast (where the
salient element is red and the surrounding gray).

Again, in this design, checking the hypotheses H+ and
H× is difficult because the absolute attentional weight can-
not be estimated by TVA. A comparison of processing rates
between conditions in which both cues coincide at the same
location an conditions in which they appear at separate
locations can be made.

A hypothetical distribution of attentional weight accord-
ing to both hypotheses is sketched in Figure 7.9. Whereas,
according to Nordfang et al. (2013), salience has to multiply
with any other attentional factor, the newer formulation
suggests that different influences of spatial attention add up
similarly as different feature-based attentional influences
add up in the original TVA weight equation (Nordfang
et al., 2017). The sketch illustrates the reasoning behind
the four conditions in the experiment. To help to explain
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the reasoning behind the conditions, the term congruent is
helpful: congruent conditions are conditions in which both
attentional manipulations are applied to the same stimulus,
whereas incongruent conditions are conditions in which
one stimulus is particularly task-relevant while the other
stimulus is salient.

If indeed the influences multiply, then the difference
between the congruent conditions should be much higher
in terms of attentional weight than the difference between
the incongruent conditions. Table 7.1 showed how the
differences in processing rates caused by an increase in
salience could be used to test the hypotheses: The effect of
an increase in salience can be observed in the congruent and
in the incongruent conditions. If salience and endogenous
cue affect the rates additively (H+), a difference in rates
will be observed comparable to the difference between low
and high salience in the incongruent condition. If both
cues work multiplicatively (H×), however, a much larger
difference in rates should be observable between the low
and high salience processing rates for congruent conditions
are compared to those of incongruent conditions.

Experiments

Two experiments were conducted that enabled a rate com-
parison, as explained in the previous paragraph. Both used
a 2×2 design with low and high salience either in a congru-
ent or incongruent condition, i.e., at the same or different
location as an endogenous cue.

The endogenous cue was implemented by instructing the
participants to judge whether the stimulus at the indicated
location flicked first or second. This manipulation had been
tested successfully in the described series of pre-studies.

Experiment 1 used an orientation and color contrast. The
color of the salient stimulus was always red. The experi-
mental factor was whether it was its orientation salience
was low or high. There were 29 participants.

Experiment 2 used motion contrast and orientation con-
trast. To better see possible differences caused by the factor
salience, motion and orientation were increased from the
level low to the level of high salience. There were, again,
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Figure 7.10: Estimated distribution of the speed-up difference of
Experiment 3.

29 participants.

Results and interpretation

The the estimated mean processing speeds are showen in
Figure 7.10 for the first experiment and in Figure 7.11 for
the second experiment.

By comparing the high salience with the low salience
condition, it becomes obvious that there is no clear main ef-
fect of the salience manipulation. This is a problem for the
planned comparisons because they assume that each ma-
nipulation has a clear main effect — merely the interaction
was assumed to be unknown.

The absence of a clear redistribution caused by salience
indicates that whatever process combines endogenous and
exogenous cues is more complicated than initially assumed.

So, comparing the introduced hypotheses by subtracting
processing speeds is not possible. A preliminary conclu-
sion from this line of research is that although TVA models
many details, its applicability even if circumstances are
slightly changed has to be evaluated carefully. Still this
detailed description can be seen as an advantage because a
deviation from expected behavior may not become obvious
unless explicitly stated.

Discussion

This section marks a loose end but also symbolizes a learn-
ing experience. First, I will discuss the loose end aspect
of this series of experiments. Afterward, I will draw a
conclusion for working with TVA and formal modeling in
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Figure 7.11: Estimated distribution of the speed-up difference of
Experiment 3.

general. The reason for the loose end characteristic of this
series of experiments is that the results of both experiments
show that the initial theory-driven assumption that only
the attentional weights change throughout the experimen-
tal conditions is wrong. The attentional weights change
indeed. If forced to give an answer to the initial research
hypothesis, it is possible to say that weights add up ac-
cording to the 2017 formulation of the weight equation
rather than the multiplicative interaction required by the
2013 formulation. This is justified by the comparable dif-
ference in attentional weight from between the congruent
and incongruent conditions: In the congruent condition,
the weight difference is not larger than the difference in the
incongruent conditions. However, this answer does only
work superficially and is not justified after closer examina-
tion: It is obvious that the overall capacity changes form
the congruent to the incongruent cases. Succinctly put,
the difference between congruent and incongruent cases is
thus no mere redistribution of the same resources. Such a
redistribution was, however, initially assumed (and tested
positively in pre-studies). Thus, it was initially assumed
that both central cue and salience are supposed to affect
attentional weight exclusively. Whereas the result to the
contrary sparks an interesting research question in itself
(How do the congruent and incongruent conditions affect
visual processing speed), it makes a comparison of atten-
tional weights difficult: Attentional weights in TVA are
always relative because when all of them are multiplied by
a certain factor, for example, α, the observable result stays
exactly the same. In so far, the sketch in Figure 7.9 maybe
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misleading the used weight should not be 8, 5, and 3 but 8α,
5α, and 3α instead. If the overall capacity stays the same,
it is reasonable to assume the same frame of reference be-
cause the resources of the same process are redistributed. If
the process changes, however, there may be the weights 8α,
5α, and 3α in the situation A, whereas 8β, 5β, and 3β are
the weight in situation B. They will look indistinguishable,
yet β may be quite difficult from α. There may be different
arguments about the meaning of the comparisons between
the experimental conditions in the described experiments.

A possible explanation for the observed results may be
that attention helps to resolve ambiguity in the TOJ design:
The TOJ design creates situations that are difficult to re-
solve correctly because of the limited evidence that short
SOAs provide for the actual order. It may be possible that
attention is then used as a prior in Bayesian statistics: If
there is only a little evidence, the prior becomes more and
more decisive for how the posterior looks. In terms of the
Bayesian Brain perspective on cognition, the Brain would
simply use another readily available signal to disambiguate
a situation in which evidence is too little for reaching a de-
cision boundary. If this perspective was adequate than it
is easy to see that one attention-increasing manipulation
on both stimuli creates much more ambiguity than two
attention-increasing manipulations on one stimulus, thus
the task becomes easier in the latter case, which would be
associated with higher overall processing capacity, C, that
was indeed found. This hypothesis could be easily tested
by testing whether C stays constant in an experiment with
either one salient stimulus or both stimuli salient. Whereas
we conducted a comparable experiment as a pre-study in
the lab once and did not see this behavior, it may be partic-
ularly hard to disambiguate if the attentional cues are not
from the same type. A TOJ experiment where there was a
goal-directed and a stimulus-driven at the same time was
indeed not conducted within our lab. If only this set up
makes disambiguation difficult, it could be counted as evi-
dence for disjoint representations of salience and relevance
such that incongruent cues within these representations
(e.g., multiple orientation contrast manipulations) are eas-
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ily resolved whereas incongruencies between salience and
relevance cannot be used conjointly to disambiguate in the
TOJ design.

For the time being, it is, however, rigorous to not draw
speculative conclusions from these experiments. This in-
conclusiveness is why this section marks a loose end. How-
ever, it also marks a learning situation.

In hindsight, I would not again derive such specific con-
clusions in advance and base a whole experiment on such
specific predictions. On the other hand, it is also not ad-
visable to apply a method of analysis that not so sensitive
for the theoretically different concepts. For example, com-
puting the point of subjective simultaneity would surely
yield a result, yet the change in the difference limen would
probably be simply ignored. In so far, the experiments
made the point that it is good to be so specific that one can
be wrong. In particular, when understood as biased com-
petition, goal-directed and stimulus-driven attentional ma-
nipulations do not simply change the attentional weights
when modeled as independent fixed-capacity races. With-
out a formal model, this mismatch between assumptions
and data patterns would not have become evident.
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Conclusion

Remember that all models are wrong; the practical
question is how wrong do they have to be to not be
useful.

George E. P. Box, (Box & Draper, 1987, p. 74)

This work started with a simple question: “If a physical
contrast attracts attention and is consequentially salient,
how strongly does it affect attention?”. The cover image
illustrates this point by showing two green horizontal bars
one of which — upper right corner — is clearly salient
whereas the other — lower left corner — is clearly non-
salient. In between both extremes lies a continuum of po-
tential contrasts with varying degrees of salience. So, how
can we measure and compare salience from different con-
trasts? 1. 1Actually the image is part

of the animation that varies
the salience of two elements by
changing the background ele-
ments as shown in Figure 8.1

As a solution, I propose to use a model of visual selection
based on TVA to assign numbers to the contrasts’ salience
based on the strength of their impact on attention. The the-
oretical foundation has been developed by Nordfang et al.
(2013), but their suggestions were very difficult to apply be-
cause prestudies had to ensure that salience manipulations
do not affect other parameters such as sensory evidence.
Thus, I used a TVA-based interpretation of the TOJ task
developed by Tünnermann et al. (2015) to combine both
with cluttered multi-element displays. I presented three
articles (Article 1, 2, and 4) developing and applying this
modeling and empirical approach together with further ex-
periments that support the broad applicability. The method
presented allows salience estimation, model comparisons
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(to test alternative explanations) and the prediction of new
data (e.g., for checking the fit or simulating yet unobserved
conditions). Furthermore, the proposed method can be
used with many physical contrast and timing manipula-
tions. Also, the task is simple enough to be embedded in
further tasks or complex environments. These results are
limited by the acceptance of the auxiliary assumptions for
modeling (e.g., no evidence accumulation is used in this
simple TVA model). However, because the assumptions are
incorporated in the formal model, a critic may pin criticism
on specific parts and even compute a model comparison
once their own idea has been incorporated into a competing
model. As such, I do not present the quantification of visual
salience but a quantification, a way how to scientifically
deal with the strength of salience so that theory and data
are well connected by a model that is arguably not wrong
enough to not be useful.

Figure 8.1: An animation il-
lustrating different degrees of
salience by systematically chang-
ing the surrounding of three
fixed stimuli (lower left, upper
right corner, and center).

Before I draw a more elaborate conclusion, let me argue
why a psychologist seeking to understand attention should
be interested in the estimation of salience at all. There are
two parts to this answer: First, theoretically we know a
lot about attention. Second, we do not explicitly use this
knowledge for our analyses. So, instead of using the theory
to specify what we expect to find in the data, we set up null
hypotheses that we are not actually interested in. If such
a null hypothesis is rejected, we use this as evidence for
an alternative that supposedly matches previous results
without stating this alternative model explicitly. Results
obtained by this method are often overestimated with re-
spect to their inferential power (Oakes, 1986; Gigerenzer,
2018; Cohen, 1990; Cumming, 2013). This overestimation
of hypothesis tests may lead to the illusion that other statis-
tical tools are not needed and may even be harmful as they
seemingly introduce less “objective” practices. Rouder,
Morey, Verhagen, et al. (2016) call this the “free lunch” illu-
sion and argue for the value of modeling the hypotheses
of individual studies to test the scientifically interesting
explanations rather than theoretically uninteresting null
models. Explicitly modeling alternatives does not mean to
become a proponent of Bayesianism in the epistemic sense;
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the method works fine with the hypothetico-deductive sci-
entific method (Gelman & Shalizi, 2013).

I find it very important to remark that using NHST tech-
niques is not a bad decision in general. However, it is most
suitable when little is known about the process that causes
the data (Little, 2006; Efron, 2005). Thus, for attention it is
possible and advisable to explicitly state the model that is
supposed to be true according to the researchers’ expecta-
tions from the literature. The lack of (formal) theorizing
and modeling can severely limit empirical research as it
becomes difficult to judge which results are in line with
previous works and which are surprising. To a degree, it
explains a part of the reproducibility crisis discussed in
Section 2 (Muthukrishna & Henrich, 2019).

For visual attention, formal frameworks exist that already
helped accumulating knowledge. Most notably similarity-
choice based theories — TVA is one of those — have been
reviewed to provide the best explanations when compared
to other formal approaches to attention(Logan, 2004). Al-
though modeling has been arguably neglected in the past,
a recent rise and interest in modeling has occurred that
is inconspicuous to a degree that Rodgers (2010) calls it
a quiet revolution. Taagepera (2008), for instance, distin-
guishes between descriptive models — those that fit the
data — and logic models — those that reflect the theoret-
ical judgments about the observed quantities. He argues
that incorporating theory into models makes social science
and psychology more scientific. In fact, this fits Popper’s
opinion that tests have to be severe to be useful.

The advantages of parameter estimation as a statistical
technique have been advocated by Cumming (2013). Ad-
ditionally, Taagepera (2008) argues that it is even better to
estimate parameters that are of theoretical import, and Kr-
uschke continues that Bayesian methods are even better for
estimation (Kruschke & Liddell, 2018), while, amongst oth-
ers, Rouder and Lu (2005) argues that hierarchical models
are particularly apt for nonlinear models of cognition. Yet,
the connection between scientific reasoning and statistical
reasoning is rarely spelled out explicitly.

Bailer-Jones (2009) presents a historical review and a con-
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sequential philosophical position that models link data and
theory in the hypothetico-deductive scientific method. A
core idea is that models are applied hierarchically: Not
only the data has to be modeled to enable statistics but also
the experimental setting has to be interpreted with a the-
ory to deal explicitly with auxiliary hypotheses needed to
make the theory applicable. Applying theories is, accord-
ing to Bailer-Jones (2009), never straightforward because
they are by design maximally abstract to be as general as
possible. This property comes at the cost that an explicit
connection to a situation has to be grounded by additional
assumptions. If these assumptions are made implicitly, it
is very difficult to identify what exactly has been falsified
when a finding is apparently not in line with a theory. It is
a faulty theory or an auxiliary assumption that has been
shown to be wrong. A side effect of this method is that
it produces explanations that link theoretical ideas with
observable data not by appealing to scientific laws2 but2Although the Hempel-

Oppenheimer model is initially
appealing, it is very hard to
defend epistemically.

apt simplifications — models, a thought that is spelled out
in Article 3 and inspired by Bailer-Jones’ (2009) work on
scientific models.

So what do these ideas in modeling have to do with un-
derstanding attention and estimating a salience parameter?
Attention is a form of selection. Stimuli compete for repre-
sentation and are thus not attended to because of a property
they have (as, e.g., done by James, 1890) but by comparing
their properties to those of other stimuli in the visual field.
Attention gates the access to limited resources like repre-
sentation for conscious perception. Thus, already small
differences may result in a different pattern of selected stim-
uli. To understand whether a salience manipulation does
lead to a result in line with the literature, it is important
to make auxiliary assumptions explicit e.g. in a formal
model. This also allows backtracking if a result apparently
refutes the theory: Does it really refute the theory or an
assumption made particularly for the present experimental
setup?

Summing up, we know a lot about attention and need
to explicate this knowledge to see whether results are in
line with this body of research. Especially, when much
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is already known, NHST may create an illusion of free
lunch, i.e., that significant results can be obtained without
referring explicitly to previous theory in the statistical pro-
cedure (Rouder, Morey, Verhagen, et al., 2016). Explicitly
appealing to the theory of attention is important to see
whether salience manipulations actually affect attention
and selection via attention or by other mechanisms. If, on
the other hand, salience always affects selection via atten-
tion, then this explicit quantity may be used to check for
a common currency of salience as hypothesized by e.g.,
Treue (2003).

Explicitly incorporating theory is both an advantage and
a limitation of the presented approach. If a sequential
process model with inhibition of return is assumed, as in
many computational salience models, the actual numbers
estimated for salience in TVA’a κ would be bereft of their
original meaning — a meaning that is defined by TVA’s
equations that assume parallel processing. This is not to say
that the κ estimates are necessarily quantitatively different
from estimates based on such a different model.

Only the future will show whether the TVA-based salience
measure is useful in research. We already undertook a
couple of experiments to test how TVA can be applied in
situations with less experimental control than in those pre-
sented in this dissertation and the results promise that
precise estimation of attentional parameters like salience is
possible in a more applied context. Beyond a potential prac-
tical usefulness, it is my hope that this work among many
others shows that psychology has strong, if not necessarily
universal, theories about cognition.
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Erweiterte deutsche
Zusammenfassung

Visuelle Auffälligkeit bestimmt, wie wir die Welt wahr-
nehmen. Sie hat einen direkten Einfluss auf die visuelle
Aufmerksamkeit. Während diese Tatsache bereits seit lan-
gem bekannt ist, ist es umso verwunderlicher, dass eine ge-
naue quantitative Bestimmung der visuellen Auffälligkeit
bis heute noch nicht gelungen ist, obwohl immer wieder
die Annahme geäußert wird, dass sich verschiedene Fak-
toren zu einer gemeinsamen Aufmerksamkeitswährung
verrechnen lassen (Treue, 2003). Ziel dieser Arbeit ist es,
einen theoretisch gerechtfertigten quantitativen Wert für
die visuelle Auffälligkeit zu bestimmen. Die Schwierigkeit
dabei besteht darin, dass die visuelle Auffälligkeit zwar
von physikalischen Kontrasten hervorgerufen wird, die für
sich genommen gut zu messen sind, wie auffällig diese
Kontraste jedoch für den Betrachter sind, nicht direkt beob-
achtbar ist. Ebenfalls ist die Aufmerksamkeitsausrichtung
im Raum nicht direkt zu beobachten.

Der Einfluss von visueller Auffälligkeit auf die visuelle
Aufmerksamkeit kann auch mit dem Begriff Salienz be-
schrieben werden. Bisherige Methoden, die den Einfluss
von Salienz auf die visuelle Aufmerksamkeit quantitativ
erfassen, sind sehr vielfältig und in ihren Ergebnissen teil-
weise widersprüchlich, wenn es um den Einfluss von Kom-
binationen von individuell salienten Kontrasten handelt. Es
sich wichtig, darauf hinzuweisen, dass Salienz unterschied-
lich verstanden werden kann. So kann es sich um eine Ei-
genschaft handeln, die die Aufmerksamkeitsausrichtung
betrifft (saliente Reize werden stärker beachtet) oder die
die Wahrnehmung betrifft (saliente Reize erscheinen uns
als auffällig). Für ein Beispiel, in dem es um Wahrnehumg
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geht, siehe Kerzel u. a. (2011a). Insbesondere bei algorithm-
sichen Salienzmodellen ist oft unklar, welches Konstrukt
sie konkret modellieren (What do salience models predict).
Diese Modelle zeigen jedoch auch die Interdisziplinarität
des Themas: Auch künstliche Handelnde, etwa Roboter,
können von Aufmerksamkeitsmechanismen profitieren,
und es hat sich um die Algorithmische Modellierung eine
eigene Subdisziplin gebildet (für eine Übersicht siehe Frin-
trop). Während einige Ideen aus diesem Bereich wertvoll
sind3, konzentriert sich diese Arbeit auf die psychologische3Ein Beispiel ist das auf

informationstheoretischen An-
nahmen basierende Modell von
Bruce und Tsotsos (2009), das
grob gesprochen die Stärke von
Salienz darin begründet sieht,
wie gut sich ein Bildinhalt durch
seine Umgebung vorhersagen
lässt. In dem Gedankenexperi-
ment in Abschnitt 3 kann man er-
proben, dass dieses Konzept sich
gut mit dem Alltagsphänomen
Salienz deckt.

Literatur.
Für diese erweiterte Zusammenfassung kann man die

relevantesten Befunde zu Salienz wie folgend zusammen-
fassen. Wie bereits erwähnt ist vorstellbar, dass Salienz
zu einer gemeinsamen Aufmerksamkeitswährung beiträgt,
sich also qualitativ verschiedene Einflüsse auf Aufmerk-
samkeit in einer internen quantitativen Repräsentation zu-
sammenfassen (Treue). Zentral ist dabei, Salienz nicht mit
Aufgabenrelevanz zu konfundieren, was leicht bei Such-
aufgaben passiert, in denen die stimulusgetriebenen Ein-
flüssen von Kontrast damit konfundiert sind, dass genau
diese das Zielelement kennzeichnen. Dies muss keines-
falls immer problematisch ein, schränkt möglicherweise
jedoch die Generalisierbarkeit ein. Für eine aktuelle Taxo-
nomie von Aufmerksamkeit siehe Chun u. a. (2011)4. Im4Für mich ist es immer noch

überraschend, wie stark aktuelle
Taxonomien noch immer der von
James (1890) ähneln.

Kontrast zu frühen Ideen über Auffälligkeit etwa bei Ja-
mes (1890) sind einzelne Eigenschaften nicht etwa per se
auffällig, sondern weil sie von ihrer Umgebung in entschei-
denden Merkmalen unterschiedlich sind. Dies wurde von
Duncan und Humphreys (1989) gezeigt, indem einerseits
die Ähnlichkeit von auffälligem Reiz und Hintergrund va-
riiert wurde, andererseits aber auch die Homogenität des
Hintergrunds. Diese Experimente zeigen klar, dass Salienz
durch den Kontrast zur Umgebung besteht.

Ebenfalls eine zentrale Eigenschaft von Salienz ist, dass
sie zumindest was die Beeinflussung der Aufmerksamkeit
angeht, zeitlich nicht konstant ist. Reviews zeigen, dass
stimulusgetriebene Aufmerksamkeit, zu der auch Salienz
zählt, nur in bestimmten Zeitfenstern nach Onset stark auf
die Aufmerksamkeit einwirken. Für Salienz wurde dies
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unter anderem von Donk und van Zoest (2008), Donk und
Soesman (2010) gezeigt.

Vielleicht ist es offen sichtlich für die Leserin oder den
Leser, aber es gibt natürlich mehrere Arten von Kontrast,
die nicht alle zur Salienz beitragen Wolfe und Horowitz,
2017; Wolfe und Horowitz, 2004. Daher werden in der vor-
liegenden Arbeit nur solche Kontraste verwendet, deren
Einwirkung auf die Aufmerksamkeit als gesichert gelten
kann.

Die vorliegende Doktorarbeit beschäftigt sich mit einem
weiteren Verfahren um Salienz zu messen. Jedoch unter-
scheidet sich das Herangehen von früheren Arbeiten, in-
dem diesem neu erarbeitete Salienzmaß ein Modell zugrun-
de liegt. Der Vorteil des Modells ist, dass die Verbindung
der beiden latenten Variablen, Salienz und visuelle Auf-
merksamkeit, im Bezug auf die visuelle Selektion explizit
formuliert wird.

Das verwendete Modell basiert auf Bundesens Theorie
der visuellen Aufmerksamkeit (TVA; Bundesen, 1990), die
mittlerweile seit 30 Jahren existiert und kontinuierlich er-
weitert wird. Bundesens Theorie zeichnet sich dadurch
aus, dass sich verschiedene theoretisch relevante Parameter
der visuellen Aufmerksamkeit mit hoher Präzision indivi-
duell bestimmen lassen. Dies macht die Theorie zum ei-
nen für die Grundlagenforschung, zum anderen aber auch
für angewandte Forschung im Bereich der klinischen und
der Neuropsychologie interessant. Zu den Parametern der
Theorie zählen die visuelle Verarbeitungsgeschwindigkeit,
v, Aufmerksamkeitsgewichte, w, sowie weitere Parameter,
die für diese Arbeit von geringerer Bedeutung sind.

Der zentrale Erfolg dieser Arbeit besteht darin, die For-
schung zu visueller Salienz mit der Theorie von Bundesen
zu verbinden, in dem ein Experimentaldesign und Modell
entwickelt wurde, welches die Displays aus der Salienz-
forschung mit einem theoriebasierten Modell zusammen-
bringt. In der Salienzforschung werden üblicherweise Dis-
plays verwendet die sehr viele Elemente beinhalten (multi-
element displays), dazu gibt es mindestens ein Element, das
eine besondere, eine saliente, Eigenschaft aufweist. Derarti-
ge Salienzmanipualationen lassen sich nur mit erheblichem
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Aufwand mit den typischen von der TVA modellierten De-
signs einsetzen (Nordfang u. a., 2013). In der vorliegenden
Arbeit wurde für das Experimentaldesign auf das zeitli-
che Reihenfolgeurteil (temporal-order judgment; TOJ) zu-
rückgegriffen. Eine Möglichkeit, dieses Design und TVA
zu verbinden, liefert Tünnermann u. a. (2015). Aufbauend
auf dieser Arbeit werden Multi-element displays mit TOJ
kombiniert sowie ein spezielles TVA-basiertes Modell ent-
wickelt, in dem die Salienzstärke einen eigenen Parameter,
κ, erhält, der die angestrebte Quantifizierung der Salienz
darstellt.

Bundesens Theorie der visuellen
Aufmerksamkeit

Bundesens Theorie der visuellen Aufmerksamkeit ist eine
Theorie des Wiedererkennens und Auswählens von visuel-
len Reizen. Historisch betrachtet ist die Theorie eine Kom-
bination von Luces Auswahlregel (Luce, 1959) mit den so-
genannten Race Modus (Shibuya & Bundesen, 1988). Dies
kann man sich vereinfacht als ein Pferderennen vorstellen,
bei dem alle visuellen Stimuli wie Pferde in einem Wett-
rennen gegeneinander antreten: Nur die Schnellsten der
visuellen Reize werden im begrenzten visuellen Kurzzeit-
gedächtnis encodiert (entspricht dem Race-Modell). An-
dere Eigenschaften der formalen Theorie von Bundesen
passen nicht sehr gut zu der Analogie des Pferderennens:
Zum Beispiel wird angenommen, dass die gesamte visuelle
Verarbeitungskapazität für eine Aufgabe immer gleich ist.
Jedoch wird diese Kapazität durch Aufmerksamkeit auf die
unterschiedlichen Reize im visuellen Feld verteilt. Dabei
kommt Luces Auswahlregel zum Einsatz, die besagt, dass
einerseits die Ähnlichkeit des Reizes mit eine Kategorie
beachtet werden muss, andererseits auch die Aufgabenre-
levanz von verschiedenen Kategorien. So kann ein Reiz zu
einer wichtigen Kategorie gehören und sollte daher auffäl-
lig sein. Gleichzeitig kann derselbe Reiz aber nur schwer
als zu dieser Kategorie gehörig zu erkennen sein. Beispiels-
weise kann man sich vorstellen, dass der Buchstabe “O”
mit der Ziffer “0” verwechselt wird, sodass, wenn Buchsta-
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ben berichtet werden sollen, der Buchstabe “O” weniger
Aufmerksamkeit auf sich zieht als andere Buchstaben, weil
er für eine “0” gehalten werden kann.

Formal basiert Bundesens Theorie auf mehreren Glei-
chungen, die ungefähr das formal ausdrücken, was die vor-
herige Analogie ausdrückt. Bei diesen Gleichungen handelt
es sich um die Ratengleichung und um die Gewichtsglei-
chung.

v(x, i) = η(x, i)βi
wx�
z∈S wz

(8.1)

Die Ratengleichung, Gleichung 8.1, gibt an, mit welcher
Rate ein bestimmter Reiz als eine bestimmte Kategorie en-
codiert wird. Während dies auch das Modellieren von Ver-
wechslungen erlaubt, dass z.B. ein q als p encodiert wird
(siehe Tünnermann cues fate), werden relevante Verwechs-
lungen durch das Experimentaldesign minimiert. Verein-
facht kann man die Gleichung also so verstehen, dass sie
angibt, mit welcher Rate ein Reiz ins VSTM encodiert wird.
Es handelt sich um eine Rate, da die TVA die tatsächliche
Ankunftszeit im VSTM durch eine Hazardrate in einem
fixed-capacity independent-race Modell (FIRM; Shibuya &
Bundesen, 1988) modelliert.

wx =
�

j∈R
η(x, j)πj (8.2)

Die Gewichtsgleichung, Gleichung 8.2, gibt das Aufmerk-
samkeitsgewicht für einen Reiz x an. Sie basiert auf meh-
reren Parametern, die mit der Aufgabenrelevanz und der
sensorischen Evidenz, die vom Reiz ausgeht, zusammen-
hängen. Für eine genauere Beschreibung, siehe Abschnitt
4.

In den vergangenen drei Jahrzehnten wurde diese Theo-
rie beständig weiterentwickelt: Einerseits erläutert die NT-
VA (Bundesen u. a., 2005, 2011) die neuronalen Grundlagen
der Theorie und dient zur Herleitung empirisch testbarer
Vorhersagen (Li, Kozyrev, Kyllingsbæk u. a., 2016), anderer-
seits gibt es immer wieder Überlegungen, den Gültigkeits-
bereich der Theorie auszuweiten, zum Beispiel in Bezug
auf zeitliche Episoden (Schneider, Anders) oder das Model-
lieren von Reaktionszeiten (Blurton). Darüber hinaus wird



138 erweiterte deutsche zusammenfassung

die TVA und die durch sie mögliche Aufmerksamkeits-
parameterschätzung in vielen Arbeiten verwendet. Dabei
handelt es sich zum Beispiel um Grundlangenforschung
(z.B. Vangkilde), klinische Forschung (z. B., Finke u. a., 2005)
und Neuro-Biopsychologie (Li, Kozyrev, Kyllingsbæk u. a.,
2016, z. B., wie bereits erwähnt, ).

Von besonderer Relevanz für diese Doktorarbeit sind die
Veröffentlichungen von Nordfang u. a. (2013), Nordfang
u. a. (2017), die sich mit der Ausweitung der Theorie auf
die Auswirkung von physikalischen Kontrasten intensiv be-
schäftigt hat. Während die Basisgleichungen von Bundesen
(1990) erfordern, dass nur Eigenschaften Aufmerksamkeit
auf sich ziehen können, die eine Relevanz ungleich 0 haben,
so vermögen doch auch irrelevante Reize auch Aufmerk-
samkeit auf sich zu lenken (z.B., Huang & Pashler, 2005).
Die erste Arbeit, Nordfang u. a. (2013), bildet eine Grund-
lage um derartige Phänomene in der TVA zu beschreiben,
weil sie den theoretischen Parameter κ einführt und eine
Abwandlung der Gewichtsgleichung vorstellt, bei der der
Parameter eine zentrale Rolle spielt. Jedoch zeigt die Un-
tersuchung auch, wie kompliziert das Verwenden einer
Salienzmanipulation mit dem partiellen Report ist. Bereits
eine Salienzmanipulation mit einer Stufe erforderte eine
eigene Vorstudie, da die Salienz sich auf die sensorische
Evidenz und folglich auf die Aufgabenrelevanz des Rei-
zes auswirken könnte. Aufbauend auf dieser Arbeit haben
Nordfang u. a. (2017) die Frage gestellt, ob sich die TVA–
Gewichtsgleichung für räumliche Aufmerksamkeit (statt
der typischen feature-basierten Aufmerksamkeit) genera-
lisieren lässt. Das Ergebnis ist, dass räumliche Aufmerk-
samkeit ebenfalls nach der Auswahlregel von Luce verteilt
wird. Beide Faktoren multiplizieren sich im neu entwickel-
ten Modell.

Zeitliche Reihenfolgeurteile

Wie bereits im vorherigen Absatz beschrieben, ist der Ein-
satz von Salienzmanipulationen im partiellen Report-Design
schwierig. Dabei kommt die Vorarbeit von Tünnermann et
al. (2015) zum Tragen: Tünnermann hat bereits die TVA–
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Gleichungen benutzt, um das zeitliche Reihenfolgeurteil
(temporal-order judgment; TOJ) (temporal-order judgment,
TOJ; für eine Übersicht siehe Shore u. a., 2001; Spence &
Parise, 2010) zu modellieren.

Das zeitliche Reihenfolgeurteil-Paradigma besteht aus
zwei Ereignissen. Oft sind die Ereignisse Onsets von Reizen,
welche sich im Rahmen des Artikels 1 für die TVA-basierte
Salienzmessung jedoch nicht als angemessen herausgestellt
haben. Diese Ereignisse werden als Probe und Reference
bezeichnet, um sie unterscheidbar zu machen. Dabei ist Pro-
be das Ereignis, bei dem potentiell eine Aufmerksamkeits-
manipulation stattfindet, während Reference dem Namen
entsprechend einen Referenzpunkt bietet. Die Schwierig-
keit im Bewerten der zeitlichen Reihenfolge von Probe und
Reference besteht darin, dass sie von einem zeitlichen Inter-
vall getrennt sind (SOA), sodass das eine Ereignis kurz vor
dem anderen eintreten kann oder umgekehrt. Die Urtei-
le der Versuchspersonen stellen eine genauigkeitsbasierte
abhängige Variable da.

Das TOJ lässt sich mit der TVA modellieren. Das Mo-
dell lässt sich so erläutern, dass die zwei Ereignisse, die im
zeitlichen Reihenfolgeurteil zu beurteilen sind, durch ein
Wettrennen der beiden modelliert werden. Hierbei ist zen-
tral dass die TVA zwei Verarbeitungswellen unterscheidet
(z.B., Tünnermann u. a., 2015). Die erste Welle bestimmt die
Aufmerksamkeitsgewichte der einzelnen Reize, während
in der zweiten Welle die Reize in das visuelle Kurzzeitge-
dächtnis encodiert werden. Tünnermanns Modell befasst
sich zunächst mit der zweiten Welle. Formal betrachtet
können die Ratengleichungen für Probe und Reference —
diese Namen dienen als Bezeichner für die zwei zu beurtei-
lenden Ereignisse — so umgeformt werden, dass sich eine
psychometrische Funktion ergibt — nicht unähnlich zu je-
nen psychometrischen Funktionen, die bereits häufiger für
die Analyse von TOJs verwendet werden. Im Unterschied
zu diesen Funktionen ist die auf der TVA basierende Funk-
tion jedoch aus einer Theorie hergeleitet und bietet somit
die Möglichkeit Parameter mit exakter theoretischer Be-
deutung zu schätzen.

Für den mit den TOJ vertrauten Leser lohnt sich ein Ver-
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gleich mit den typischen psychometrischen Funktion (z.B.,
Wichmann & Hill, 2001; Kuss u. a., 2005), die in diesem
Bereich eingesetzt werden. Diese Funktionen zeichnen sich
durch 2 Parameter aus, den Punkt der subjektiven Gleich-
zeitigkeit (point of subjective simultaneity; PSS) und das
differnce limen (DL), das umgangssprachlich die Steilheit
der Steigung der Funktion bestimmt. Ohne eine unterlie-
gende formale Theorie wird dabei der PSS als der Einfluss
der Aufmerksamkeit verstanden und das DL als ein Maß
für die Aufgabenschwierigkeit oder Genauigkeit des Ur-
teils. Diese Art der beschreibenden Modellierung wird von
Taagepera (2008) auch deskriptives Modell genannt, da es
ein kompakte Beschreibung der Daten darstellt, nicht aber
die Logik deren Entstehung berücksichtigt.

Das TVA-basierte Modell verfügt ebenfalls Über zwei
Parameter. Diese sind wie bereits erwähnt aus der Theo-
rie hergeleitet und beschreiben die Verarbeitungsrate des
einen sowie des anderen Reizes. Taagepera (2008) nennt
diese Art von Modell ein logisches Modell, da es die Daten
auf der Basis von Überlegungen zu deren theoretische Ur-
sprung modelliert. Die beiden Verarbeitungsraten lassen
sich in die Kapazität und das Aufmerksamkeitsgewicht
umrechnen, sodass ähnlich wie bei den klassischen psycho-
metrischen Funktionen zwei Parameter getrennt existieren.
Während der eine Parameter den Einfluss von Aufmerk-
samkeit beschreibt und der andere Parameter die Kapazität
die zur korrekten Lösung der Aufgabe zur Verfügung steht.

Zeitliche Reihenfolgeurteile können ebenfalls mit Multi-
Element Displays Kombiniert werden (Donk & Soesman,
2011) Diese Arbeiten gehen jedoch nicht modellbasiert vor,
nicht einmal mit einem der klassischen psychometrischen
Modelle.

Bayessche Statistik

Die Bayessche Statistik lässt sich am besten im Kontrast zu
der frequentierte Statistik einführen. Den beiden Formen
von Statistik liegt dabei ein unterschiedliches Wahrschein-
lichkeitskonzept zugrunde. Dies bedeutet, dass es sich bei
beiden Wahrscheinlichkeitskonzepten um Wahrscheinlich-
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keiten im mathematischen Sinne handelt, sprich sie den
mathematischen Anforderungen an einer Wahrscheinlich-
keit genüge tun, jedoch in der Welt etwas anderes bedeuten.
Dies lässt sich am besten mit einem konkreten Beispiel er-
läutern: Überlegen sie, wo sie ihr Auto abgestellt haben
oder wo Sie es abstellen würden. In der frequentistischen
Denkweise gibt es nun nur 2 Möglichkeiten für die Position
ihres Autos: Entweder das Auto steht noch an dem von Ih-
nen ausgewählten Ort oder es steht an einem anderen Ort.
In der Bayesianischen Denkweise können Sie im Gegen-
satz dazu eine Wahrscheinlichkeit dafür angeben, dass die
Proposition “Mein Auto steht an Ort X.” wahr ist. Dieser
Unterschied ist darin begründet, dass in der Bayesschen
Statistik für jede Proposition eine Wahrscheinlichkeit per
Definition angegeben werden kann, während in der fre-
quentistischen Denkweise ein Kollektiv gebildet werden
muss, für das dann eine Wahrscheinlichkeit berechnet wer-
den kann. Diese Unterschiede können, obwohl sie erst ein-
mal oberflächlich scheinen, tiefgreifende Folgen haben. In-
teressanterweise führen die epistemisch unterschiedlichen
Ansätze für viele konkrete Statistikproblem zum selben
Ergebnis (855 t-tests paper). Eine gute Einführung in die
induktive Logik und somit den Erkenntnistheoretischen-
teil bietet Hecking an. Eine gute praktische Einführung
findet man Kruschke (2014) und einen Vergleich beider
Methoden für die Psychologische Forschung bei Dienes
(2011).

Für die vorliegende Arbeit ist verkürzt gesagt relevant,
dass die Bayesische Statistik empfohlen wird, wenn man
bereits einige Modellanahmen hat. Während die frequentis-
tische Statistik empfohlen wird in Fällen, in denen es wenig
bis kein Vorwissen ober die Wirkmechanismen gibt (Little,
2006; Efron, 2005). Neben dieser Empfehlung bietet die Ba-
se Statistik viele praktische Vorteile, wenn man die Lücke
zwischen Theorie und Daten mittels einem Modell schlie-
ßen möchte. Diese Überlegungen habe ich auf Basis von
Bailer-Jones (2009) Buch über Modelle in der Wissenschaft
in Artikel 3 verschriftlicht.

Um die Ergebnisse dieser Arbeit zu verstehen, müssen ei-
nige grundlegende Ideen der Bayessche Statistik eingeführt
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werden. So ergibt eine Parameterschätzung immer eine Ver-
teilung statt eines einzigen konkreten Wertes. Diese Vertei-
lung spiegelt die Unsicherheit über diesen Wert wieder: Ist
sie verhältnismäßig breit, besteht große Unsicherheit; Ist sie
verhältnismäßig schmal, besteht geringe Unsicherheit über
den gesuchten Wert. Diese Information fasst das highest-
density interval (HDI) zusammen. Das HDI beschreibt das
Intervall, in dem sich 95% der wahrscheinlichen Parame-
ter befinden. Da die Bayessche Statistik für alle möglichen
Propositionen eine Wahrscheinlichkeit angeben kann, steht
und fällt die Sinnhaftigkeit einer Parameterschätzung mit
der Sinnhaftigkeit des verwendeten Modells. Die Quali-
tät der Modelle die hier vorgestellt und gerechnet werden
ist zum einen durch deren theoretische Herleitung abge-
sichert, zum anderen aber auch durch deren empirische
Überprüfung, zum Beispiel durch Vergleiche mit anderen
ebenfalls theoretisch hergeleiteten Modellen oder Vergleich
von vorhergesagten und beobachteten Daten.

Kumulative Artikel der Dissertation

Dieses kumulative Dissertation besteht insgesamt aus 4
einzelnen Artikeln sowie eine Reihe von Experimenten,
die bisher in keinem Artikel zusammengefasst wurden.
Während sich drei der Artikel ganz direkt mit der Quanti-
fizierung von visueller Salienz beschäftigen, verfolgt der
letzte Artikel ein anderes Ziel. Von einer Vogelperspektive
aus wird das Arbeiten mit Modellen betrachtet, insbeson-
dere wie Modelldaten und Theorie zu einer quantitativen
Erklärung verbinden. Dieser Artikel nimmt aus mehreren
Gründen eine Sonderstellung ein: Einerseits hat er, wie
bereits erwähnt, einen anderen Blickwinkel, andererseits
wurde dieser Artikel auch in Kooperation mit anderen
Autoren geschrieben, sodass er als ein Zusatz zu dieser
Promotion anzusehen ist, auch wenn bei diesem gemeinsa-
men Schreiben eine klare Trennung von Aufgaben erfolgt
ist.

Der erste Artikel befasst sich mit dem Versuch, zeitli-
che Reihenfolgeurteile, Salienz und die TVA Modellierung
von Tünnermann zusammenzubringen. Der Artikel zeigt
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ein Experimentaldesign, mit dem dies gelingt. Der zweite
Artikel untersucht genauer, wie physische Kontraste und
Aufmerksamkeitsparameter quantitativ zusammenhängen.
Auch wird ein Salienzmaß auf Basis von (Nordfang u. a.,
2013) eingeführt, welches erlaubt einzele saliente Eigen-
schaften mit Kombinationen von salienten Eigenschaften
zu vergleichen. Dieser Artikel zeigt, dass eine quantitative
Schätzung von Salienz innerhalb einer Art von Kontrast
sowie übergreifend für eine Kombination mehrerer Arten
von Kontrast möglich ist. Der dritte Artikel zum Thema
Salienzmessung beschäftigt sich mit einer besonderen Ei-
genschaft der Salienz, nämlich der, dass sie zeitlich nicht
stabil ist. Stattdessen gibt es eine Phase im Bereich von 50
bis 200 Millisekunden, in der Salienz eine starke Wirkung
auf die Aufmerksamkeit hat. Diese Variation der Salienz-
stärke über die Zeit wurde ebenfalls durch das vorgestellte
Modell ermittelt. Dieser Artikel liefert ein überraschendes
Ergebnis, indem deutlich wird, dass die visuelle Verarbei-
tungskapazität stärker variiert als die Aufmerksamkeit und
somit der Verdacht nahe liegt, dass die frühe Aufmerksam-
keitsmessung im Bereich unter 150 ms möglicherweise mit
einem anderen kognitiven Prozess konfundiert ist.

Artikel 1

Artikel 1 dokumentiert den Versuch die TVA-basierte Mo-
dellierung von TOJ mit Multi-Element-Salienzdisplays zu
kombinieren. Dazu wird zunächst auf die Theorie einge-
gangen, die bereits auf den vorangegangenen Seiten dieser
Zusammenfassung erörtert wurde. Kernstück der Arbeit
sind die vier Experimente. Das Ergebnis ist einerseits, dass
gezeigt wird, welche Formen des TOJs für diese Kombina-
tion Aufmerksamkeit messbar machen und welche nicht,
andererseits wird bereits durch die vierstufige Salienzma-
nipulation klar, dass das physischer Kontrast und Aufmerk-
samkeitsgewicht nicht linear zusammenhängen.

Experiment 1 basiert darauf, dass das TOJ über einen
Onset realisiert wird. Konkret wurde ein Multi-Element
Display eingeblendet, viele kleine Balken auf einen imagi-
nären Gitter, die die selbe Orientierung hatten. Rechts und
links des Fixationskreuzes blieben zwei Lücken im Gitter.



144 erweiterte deutsche zusammenfassung

An diesen Positionen wurden der Probe- und Referenzreiz
eingeblendet. Die Einblendung erfolgte entsprechend eines
SOAs. Der Probereiz war potentiell salient. Es gab vier Stu-
fen für die Salienzmanipulation. Die erste Stufe wies keinen
Unterschied zu den benachbarten Reizen oder dem Refe-
renzreiz auf. Alle Reize hatten so die selbe Orientierung.
In den folgenden drei Stufen wurde der Orientierungskon-
trast erhöht, indem der Probereiz eine andere, in Stufen
extremere, Abweichung von der Orientierung seines Um-
feldes hatte.

Durch einen einfachen Onset konnte jedoch keine Auf-
merksamkeitsveränderung auf Basis des Orientierungs-
kontrastes gemessen werden. Dies ist wahrscheinlich darin
begründet, dass zunächst beide Löcher im Muster, in denen
Probe und Referenz eingeblendet werden, gleich salient
sind. Im Moment, in dem das Rennen zwischen den bei-
den Onsets stattfindet, sind die Aufmerksamkeitsgewichte
noch auf Basis des vorherigen Bildes mit den zwei freien
Stellen verteilt.

Das Experiment hat außerdem eine kleine methodische
Schwäche enthüllt: Während der Probereiz zeitlich um den
Referenzreiz variierte, wurde der Referenzreiz immer zum
selben Zeitpunkt ab Trialstart gezeigt. Entsprechend der
Arbeit von Vangkilde u. a. (2012) kann man mit der TVA
auch die Aufmerksamkeitseffekte von zeitlicher Erwartung
messen. Ein solcher kleiner, aber über alle Experimente kon-
stanter Effekt von zeitlicher Erwartung zeigt sich in dem
sehr geringen Aufmerksamkeitsvorteil des Referenzreizes.
In späteren Experimenten wurde ein Zufallsintervall zwi-
schen Trialstart und TOJ verwendet, um diese Einflüsse
auszuschließen. Dieser kleine Mangel am Design enthüllt
jedoch auch eine Stärke der theoriebasierten Analyse, da
die Größe des Einflusses quantitativ bestimmt werden kann
und im Vergleich zu dem Einfluss von Salienz auf Aufmerk-
samkeit aus Experiment 3 und 4 deutlich kleiner ausfällt.

Experiment 2 befasste sich mit die Idee, statt des Onsets
einen Offset von Reizen für das TOJ zu verwenden, wie es
beispielsweise bei Vingilis-Jaremko u. a. (2008) vorkommt.
Dies bedeutet, dass zu Beginn des Trials alle Reize, Hinter-
grundelemente sowie Probe und Referenz, angezeigt wur-
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den. Entsprechend des SOAs wurden dann Probe und Refe-
renz ausgeblendet. Dieses Design führte zu einem deutlich
messbaren Unterschied im Aufmerksamkeitsgewicht, je-
doch in genau der umgekehrten Richtung, wie erwartet.
Der Offset des auffälligen Reizes wurde später und nicht
früher als der Offset des nicht auffälligen Reizes wahrge-
nommen. Eine mögliche Post-hoc-Erklärungen wäre, dass
das Auflösen der Bindung von Verarbeitungsressourcen
für saliente Reize länger dauert. Jedoch handelt es sich
dabei um eine Vermutung, die durch weitere empirische
Forschung abgesichert werden müsste. Für das Messen von
Salienz ist ein reduziertes Aufmerksamkeitsgewicht durch
physischen Kontrast in jedem Fall nicht überzeugend.

Experiment 3 stellt den Versuch dar, das Multi-Element-
Salienz-Display möglichst konstant zu halten. Dazu wer-
den weder dauerhaft Elemente ein noch ausgeblendet. Zu
den vom SOA bestimmten Zeitpunkten wird stattdessen
der entsprechende Reiz kurz aus- und 80 ms später wieder
eingeblendet. Bei diesen Ereignissen handelt es sich um
klar detektierbare Ereignisse, die aber keine dauerhafte
Änderung am Bild erfordern. Die Ergebnisse zeigen, dass
dieses Design ein klaren Aufmerksamkeitsgewichtsvorteil
für den salienten Reiz zeitigt und dies in Abhängigkeit der
Salienzstärke, wie es theoretisch zu erwarten ist, geschieht.
Ebenfalls zeigt das Experiment, dass Salienz nicht linear
mit physischem Kontrast wächst.

Experiment 4 versucht die Methode auf eine andere Kon-
trastart anzuwenden. Dazu wurde die Orientierung bei
allen Balken konstant gehalten. Salienz wurde durch einen
Helligkeitsunterschied zwischen Probe und Umgebung in
vergleichbaren vier Stufen erzeugt. Auch hier lassen sich
mit dem sogenannten Flicker, kurzer Off- und Onset von
Reizen, Aufmerksamkeitsvorteile anhängig vom Kontrast
messen.

Artikel 2

Artikel 2 verbessert die Modellierung, sodass nicht nicht
der Aufmerksamkeitsvorteil gemessen werden kann, son-
dern direkt der Salienzwert in Anlehnung an Nordfang u. a.
(2013). Im empirischen Teil der Arbeit geht es darum, zu
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erfassen, wie Salienz in Abhängigkeit von einer Kontrastart,
zunächst Orientierungsdifferenz, steigt, wenn dieser Kon-
trast sukzessive ansteigt. Während Experiment 1 die Ergeb-
nisse aus Artikel 1 Experiment 2 mit dem neuen Modell
repliziert, wurde in Experiment 2 zusätzliche Stufen der
unabhängigen Variable hinzugefügt, um einen klareren
Blick auf deren Verhalten zu ermöglichen. Modellverglei-
che zeigen, dass eine Potenzfunktion ein gutes Modell (das
Beste unter den getesteten) darstellt, um das Wachstum
von Salienz in Abhängigkeit von Kontrast auszudrücken.
Die Modellierung ist dabei Stevens Power Law entlehnt
und beinhaltet zwei freie Parameter. Zu den alternativen
Modellen zählte ein ein-parametriges logarithmisches Mo-
dell und ein Modell, welches keinen Zusammenhang zwi-
schen den Experimentalbedingungen annimmt, also einen
freien Parameter pro Bedingung besitzt. Die daraus resul-
tierenden Modellvergleiche zeigen, dass es — gegeben die
Daten — sinnvoller ist, von einem systematischen Zusam-
menhang auszugehen als von nicht zusammenhängenden
Salienzwerten. Für sich genommen erscheint dieses Ergeb-
nis trivial, jedoch möchte ich damit klar argumentieren,
warum genau es vernünftig ist eine Funktion zwischen den
physikalischen Kontrasten und dem Salienzwert anzuneh-
men. Weiterhin konnte gezeigt werden, dass der visuell
logarithmisch wirkende Verlauf besser durch eine Potenz-
funktion beschrieben werden kann als durch ein simpleres
Modell. So kann es nach der Analyse immer noch sein,
dass das Potenzfunktionsmodell nur das Beste unter drei
schlechten Modellen ist. Jedoch ist es durch die Analysen si-
chergestellt, dass es sinnvoller ist, als einen auf dem ersten
visuellen Eindruck basierenden logarithmischen Zusam-
menhang oder gar keinen funktionalen Zusammenhang
anzunehmen.

Eine weitere Art von Kontrast, der Luminanzkontrast,
wurde in Experiment 3 untersucht. Luminanzkontraste
können, anders als Orientierungskontrast, durch höhere
Intensität beim salienten Reiz (heller als Umgebung) oder
durch niedrigere Intensität beim salienten Reiz (dunkler als
Umgebung) erzeugt werden. Zumindestens für die durch
einen Reiz mit höherer Intensität als Umgebung verursach-
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ten Salienzwerte, passt die Potenzfunktion zur Beschrei-
bung des Salienzwachstums. Daher ist es ein Ergebnis die-
ser Doktorarbeit, dass Salienz innerhalb einer Kontrastart
entsprechend einer Potenzfunktion5 wächst. 5Der Begriff power law mag

einem in den Sinn kommen. Da
jedoch Cummins (2000) gut dar-
gelegt hat, welche Tücken der Be-
griff des Gesetzes für die Spezi-
alwissenschaften mit sich bringt,
möchte ich lieber vom einem Mo-
dell sprechen.

Experiment 4 führt beide Modellierungen zusammen,
indem die in der Literatur widersprüchlich beantworte-
te Frage diskutiert wird, wie gut sich Kontrastarten zur
Gesamtsalienz ergänzen. Eine Schwierigkeit bei der Litera-
turrecherche ist, dass es nur wenige Publikationen gibt, die
sich für die genaue Stärke von Salienz interessieren — häu-
figer wird mittels eines Tests die Existenz von Salienz un-
tersucht. Die wenigen Untersuchungen, die Salienzstärke
von verschiedenen Kontrastarten kombinieren sind jedoch
wenig vergleichbar und insbesondere die umfangreiche
Untersuchung von Nothdurft (2000) und das Ergebniss
von Koene und Zhaoping (2007) scheinen sich im Bezug
darauf zu widersprechen, wie effektiv sich verschiedene
Salienzarten kombinieren lassen.

Da bei den sehr unterschiedlichen experimentellen Me-
thoden nicht alle Hilfsannahmen ausformuliert sind, ist
es sehr schwer zusagen, in wie weit sich die Ergebnisse
stützen oder widersprechen. Diese Situation bringt mich in
den Zwiespalt, dass ich einerseits einen ebenfalls das The-
ma bearbeiten möchte, andererseits eine weitere wiederum
neue Methode die Divergenz weiter vergrößert. Jedoch
ist es Kerngedanke dieser Doktorarbeit, dass ein aus der
Theorie hergeleitetes explizites formales Modell noch nicht
alle Widersprüche beseitigt, wohl aber transparent macht,
wo diese Widersprüche entstehen können. So kann der
kritische Leser, die kritische Leserin direkt auf die Stelle
in der Formel zeigen, an der man widersprechen möch-
te. Ein Beispiel kommt aus der TVA -Forschung selber, in
der die ortsspezifische Aufmerksamkeit zusätzlich zu der
eigenschaftsbezogenen Aufmerksamkeit modelliert wur-
de. Noch greifbarer ist es, wenn man sich über Salienz —
stimulusgetriebene Aufmerksamkeit — und Aufgabenrele-
vanz unterhält. Durch die TVA-Formeln kann viel klarer
gemacht werden, wo genau sich eine entsprechende Ma-
nipulation auswirkt und was genau eine Konstanthaltung
zur Folge hat.



148 erweiterte deutsche zusammenfassung

Um wieder auf die Kombination verschiedener salienter
Kontraste zurückzukommen, wurde ein Modell entwickelt,
das die in der Literatur verbreitete Idee realisiert, dass es ei-
nen pauschalen prozentualen Abzug an Salienz gibt, wenn
Kontraste kombiniert werden (Huang & Pashler, 2005; Not-
hdurft, 2000). Entsprechend des vorher festgestellten Zu-
sammenhangs von Kontrast innerhalb einer Kontrastart,
müssten also die beiden entsprechend der Potenzfunkti-
on ermittelten Werte pro Kontrastart addiert werden und
ein prozentualer Wert davon abgezogen werden. Genau
dies wurde in einem formalen Modell realisiert, in dem
die Größe des prozentualen Abzugs als zusätzlicher freier
Parameter modelliert wurde.

Dieses Modell wurde eingesetzt, um die Daten aus einem
zweifaktoriellen Design — Luminanzkontrast und Orien-
tierungskontrast — mit jeweils vier Stufen— 0%, 25%, 50%,
100% des maximalen Kontrasts—zu analysieren. Die Sali-
enzwerte in Abhängigkeit von den beiden Faktoren lassen
sich in einem dreidimensionalen Plot als Ebene darstellen.
Dieses Modell hat aufgrund der hierarchischen Struktur
bereits eine erhebliche Komplexität, sodass die vom Mo-
dell für jede Versuchsperson vorhergesagten Werte mit den
tatsächlichen Werten abgeglichen wurden, um zu beurtei-
len, ob das Modell auch tatsächlich die Daten angemessen
abbildet. Die Ergebnisse sind im Anhang von Artikel 2 ver-
öffentlicht und zeigen, dass die Datenmuster durch das
Modell nachgebildet werden.

Die modellbasierte Analyse zeigt, dass weder ein pau-
schaler Abzug noch ein pauschaler Salienzgewinn entsteht,
wenn Orientierungskontrast und Luminanzkontrast kombi-
niert werden. Diese Arbeit gibt damit eine weitere Antwort
auf die Frage nach der Kombination von Salienz durch
verschiedene Kontrastarten. Durch die explizite Model-
lierung der in der Literatur vermuteten Beziehung und
das aus der Theorie hergeleitete Modell sollen jedoch alle
Annahmen transparent gemacht werden sowie eine formal-
theoretische Erklärung der Befunde ermöglicht werden.
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Artikel 3

Artikel 3 ist im Vergleich zu den anderen drei Publikationen
eine Ausnahme, da er sich aus einer Vogelperspektive den
Einsatz von Modellen und Analysen in der Psychologie be-
trachtet. Ein besonderer Fokus liegt dabei auf quantitativen
Erklärungen. Kernthese ist dabei, dass eine Hierarchie von
Modellen die Kluft zwischen Theorie und beobachtbaren
Daten überbrückt. Diese Kluft entsteht, da die Theorien
möglichst losgelöst von konkreten Situationen formuliert
werden, um ein Maximum an Generalisierbarkeit zu ermög-
lichen. Angewandt auf konkrete Fälle müssen jedoch Hilfs-
annahmen gemacht werden und eine Passung zwischen
konkreter Situation und theoretischer Konzeptualisierung
hergestellt werden.

Die Arbeit beruht zu einem erheblichen Teil auf Bailer-
Jones (2009) Arbeit zu Modellen in den Naturwissenschaf-
ten. In dieser Arbeit wird das Thema historisch aufgear-
beitet. So galten Modelle lange als eine Art unterkomplexe,
unvollständige Theorie. Eine Theorie, so die Denkweise,
würde ein Modell vollkommen obsolet machen. Besonders
die Arbeit von Suppes (1966) zeigt jedoch auf, dass das
Anwenden von Theorie auf konkrete Ergebnisse großen
Interpretationsspielraum bietet und Objektivität nur durch
Offenlegen dieser Interpretationen erreicht werden kann.

Der Artikel vergleicht eine Kombination von Modellie-
rung und Bayesscher Statistik mit Nullhypothesentests ei-
nerseits und maschinellem Lernen andererseits (für eine
Übersicht zu ML in Psychologie siehe Yarkoni und Westfall
(2017). Das Ergebnis ist, dass Modellierung und Bayessche
Statistik im Vergleich zu den beiden Alternativen einerseits
eine hohe Passung zwischen Daten und modelliertem Ver-
halten erzielen kann (im Vergleich zu Nullhypothesentests,
was sich z.B. in der Voraussage von Daten zeigt); anderer-
seits bleiben die Modelle immer erklärbar und anpassbar
— im Vergleich zu festen ML-Methoden, die sozusagen bei
Design die Datenanalyse nicht von den Prozessen abhän-
gig machen, die die Daten tatsächlich verursacht haben
(Breiman, 2001).

Zusammenfassend kann man sagen, dass der Psycho-
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logie durch ML, klassische Nullhypothesentests, Bayesia-
nische Statistik und Modellierungsmethoden viele Ana-
lysewerkzeuge zur Verfügung stehen, sodass statistisches
Denken (Gigerenzer, 2018) erforderlich ist, um die Methode
auszuwählen, die für eine Forschungsfrage den höchsten
Erkenntnisgewinn verspricht. Für eine quantitative Erklä-
rung, die eine explizite Verbindung zu den zur Erklärung
herangezogenen Theorien hat, ergibt die im Artikel 3 vor-
gestellte Argumentation, dass die Bayessche Statistik und
Modellierung die Methode mit der höchsten Passung zu
diesen Zielen ist.

Artikel 4

Artikel 4 beschäftigt sich mit dem zeitlichen Verlauf von
Salienz. Artikel 1 und Artikel 2 zeigen, dass ein Modell
abgeleitet aus der TVA die Schätzung von Salienzwerten—
abhängig von physische Kontrast—mit klarer theoretischer
Bedeutung ermöglicht. Ungeklärt ist jedoch, ob ebenfalls
der zeitliche Verlauf von Salienz in der selben Weise erfasst
werden kann. Daher ist die unabhängige Variable in den
beiden Experiment von Artikel 4 die Zeit zwischen Onset
des Multi-Element-Displays und des TOJs. Da bisherige Un-
tersuchungen besonders im Bereich von 50 bis 150 ms einen
starken Einfluss von Salienz auf. Daher wurden die Inter-
valle der unabhängigen Variable in folgenden Schritten
gewählt: 50, 100, 200, 400 und 800 ms. Die modellbasierte
Analyse entspricht der Salienzmessung für unabhängige
Bedingungen aus Artikel 2.

Entgegen der Hypothese zeigte sich in Experiment 1,
dass die visuelle Verarbeitungskapazität deutlich stärker
und in einem klar erkennbaren Muster variiert: In den Be-
dingungen mit kurzem Intervall, 50 und 100 ms, ist die Ver-
arbeitungsrate jeweils halbiert im Vergleich zum nächst län-
geren Intervall. Neben entweder dem Aufmerksamkeitsge-
wicht oder dem Salienzparameter, genannt κ, ist die gesam-
te Verarbeitungsrate der zweite Parameter, der die Form der
benutzten psychometrischen Funktion bestimmt. Bisher
wurde dieser Parameter nicht weiter erwähnt, da er theo-
retisch wie praktisch nicht variieren sollte. In Experiment
1 konnte keine systematische Varianz der Aufmerksamkeit
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beobachtet werden—es wäre sehr gut möglich gewesen,
dass auch beide Parameter einen klaren Verlauf zeigen. Da
das Ergebnis so nicht hypothesenkonform ist, haben wir
uns für eine Replikation entschieden.

Experiment 2 repliziert die Ergebnisse aus Experiment
1. Der einzige Unterschied ist, dass statt des voll rando-
misierten Designs ein geblocktes Design gewählt wurde,
um mit anderen Studien (Donk & Soesman, 2011, z.B.,) im
Bezug auf das Design besser vergleichbar zu sein. Dabei
wurde erwartet, dass die Salienz deutlicher zwischen den
Bedingungen variiert. Außerdem wurde erwartet, dass die
deutliche Kapazitätsveränderung replizierbar ist.

Die Ergebnisse zeigen dabei — wie erwartet — mehr
Varianz im Salienzparameter zwischen den Bedingungen
und der deutliche Kapazitätsunterschied in den ersten bei-
den Bedingungen wurde ebenfalls repliziert. Eine genauere
Erklärung der Parameter und dazu, wie ihr Zusammenwir-
ken die psychometrische Funktion ergibt ,findet sich im
Abschnitt 6.

Diese Ergebnisse zeigen einerseits, dass man mit Inter-
vallen unter 150 ms bei der Salienzmessung vorsichtig
sein muss, da möglicherweise auch ein anderer kognitiver
Prozess involviert ist, der über das Bestimmen der TVA-
Aufmerksamkeitsgewichte in der ersten Verarbeitungswel-
le hinaus geht. Andererseits zeigt sich, dass das Anwen-
den eines Modells ermöglicht, Abweichungen von theo-
retischen Erwartungen sichtbar zumachen und sogar zu
quantifizieren.

Schlussfolgerung

Wie bei jedem Ansatz gibt es auch bei dem hier vorge-
stellten Stärken und Schwächen. Eine Stärke ist, dass viel
Vorwissen und Annahmen explizit und teilweise formal
verwendet werden. Eine Schwäche ist, dass mit dem Ansatz
keine große inhaltliche Frage der kognitiven Psychologie
geklärt wird. Stattdessen zeigt die Arbeit, wie konkret mit
der Idee einer allgemeinen Aufmerksamkeitswährung für
Salienz verfahren werden kann, die schon früher vermu-
tet wurde (Treue, 2003). Insofern bleibt diese Lösung eine
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mögliche Lösung. Besonders in der kognitiven Psychologie
zeichnet sich jedoch ein Trend ab, der von Rodgers (2010)
sogar als stille Revolution bezeichnet und gut in die Überle-
gungen von Taagepera (2008) passt, die dafür plädieren, die
Logik der Prozesse, die unsere Daten erzeugen, in unseren
Analysen abzubilden. Klassische Methoden können vermit-
teln, dass dasselbe Ergebnis leichter erzielt werden kann
(Rouder, Morey, Verhagen u. a., 2016) oder dass andere Me-
thoden zu einer Subjektivierung von Ergebnissen führen
(Rouder, Morey & Wagenmakers, 2016). Jedoch ist es am
Beispiel der Physik zu erkennen, dass rein verbale Theo-
rien über einen gewissen Wissensstand hinaus nur noch
bedingt helfen. Gerade in der Forschung zur visuellen Auf-
merksamkeit gibt es so viele empirische Ergebnisse,dass
eine übergeordnete Theoriebildung immer unwahrscheinli-
cher erscheint. Mangelnde Theorie kann jedoch nicht durch
Empirie ausgeglichen werden, da dann ein Maßstab für
das fehlt, was als gesichert betrachtet werden sollte und
das was aufgrund seiner Neuheit Replikationen bedarf
(Muthukrishna & Henrich, 2019). Es ist meine Hoffnung,
dass diese Arbeit — mit der vorgestellten Verbindung von
Theorie und Daten — in dieser Hinsicht zeitgemäß ist.
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