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Zusammenfassung

In dieser Arbeit geht es um ein bestimmtes Problem der Kantenperkolati-
on des Produktgraphen G' x Z. Wobei G ein endlicher zusammenhéangender
Graph ist (héufig in der Arbeit ist G der Kreisgraph Cy) und Z ist der Graph
mit den Knoten Z und den Kanten, die die Knoten mit dem Abstand 1 ver-
binden. Kantenperkolation bedeutet, dass eine Kante mit Wahrscheinlichkeit
p vorhanden ist, unabhéngig von den anderen Kanten. Es wird vorausgesetzt,
dass 0 ein Knoten von G ist. Die Fragestellung, die diese Arbeit motiviert,
ist die Frage, ob fiir alle natiirlichen Zahlen m,n mit m < n und alle Knoten
a von G (und alle p € (0,1)) es wahrscheinlicher ist, dass (0,0) mit (a,m)
verbunden ist als (0,0) mit (a,n). Die Frage wird hier positiv beantwortet,
wenn m,n grofl genug sind und man noch eine zusatzliche Eigenschaft an
G stellt. Hier wird sogar die Monotonie des Auftretens sogenannter Muster
untersucht. Ein Muster auf einer Ebene gibt an, welche Knoten mit dem
Knoten (0,0) verbunden sind und welche Knoten miteinander auf einer Ebe-
ne verbunden sind. (die n-te Ebene des Graphen G x Z ist die Menge der
Knoten der Form (x,n)). Es wird gezeigt, dass ab einer bestimmten Hohe
die Wahrscheinlichkeit fiir das Auftreten eines vorgegebenen Musters (wel-
ches mindestens einen Knoten hat, der mit dem Knoten (0,0) verbunden
ist) auf einer Ebene monoton abnimmt. Auch wird auf Zusammenhénge zu
bekannten und noch nicht komplett gelosten Problemen (Bunkbed-Graph
Vermutung, Monotonie der Verbindungsfunktion bei Z*) eingegangen.

il



Abstract

This work is about a specific problem of the bond percolation on the product
graph G x Z. Here G is a finite and connected graph (here G is often the
cycle graph Cy) and Z is the graph with die vertices Z and the edges which
connect the endpoints with a distance of 1. Bond percolation means, that an
edge exists with probability p € (0,1) independent of the other edges. It is
assumed, that 0 is a vertex of GG. The question that motivates this work is
the question, if for all natural numbers n, m with m < n and all vertices a of
G (and all p € (0,1)), it is more likely, that (0,0) is connected with (a,m)
than (0, 0) is connected with (a,n). The question is answered positively here,
if m,n are big enough and if G has an additional property. More precisely
it will be here even studied the monotonicity of occurrences of patterns. A
pattern on a level n means, which vertices are connected to the vertex (0, 0)
and which vertices are connected with each other. (the level n is the set
of the vertices of the form (z,n)) . It will be shown, that a bound exists,
so after that the likelihood that a particular special pattern will occur is
monotonically decreasing. Also, relations will be shown with other well known
and only partially solved problems (bunkbed-graph conjecture,monotonicity
of the connection function of the graph Z?).
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Vorwort

In dieser Arbeit geht es um spezielle Fragen im Bereich der Perkolation. Als
mathematisches Model wurde die Perkolation ab den 1950-er Jahren betrach-
tet (als Veroffentlichung, die das Thema der Perkolation begriindet hat, gilt
der Artikel [BH57] aus dem Jahre 1957 von Broadbent und Hammersley).

In dem Perkolationsmodell, welches hier betrachtet werden soll (es gibt
relativ viele Varianten des Modells), hat man einen ungerichteten Graphen,
dessen Kanten jeweils einen zufilligen Zustand haben.! Entweder ist eine
Kante mit einer Wahrscheinlichkeit p € (0,1) offen oder die Kante ist mit
Wahrscheinlichkeit 1 — p geschlossen. Dabei ist der Zustand der jeweiligen
Kanten stochastisch unabhéngig voneinander. Offen bedeutet hier anschau-
lich, dass die Kante vorhanden oder nutzbar ist und geschlossen bedeutet,
dass die Kante nicht vorhanden oder nicht nutzbar in dem Graphen ist. Die
offenen Kanten bilden einen zufélligen Teilgraphen des urspriinglichen Gra-
phen. Bei der Perkolationstheorie geht es darum, Aussagen und Eigenschaften
tiber den (zufélligen) offenen Teilgraphen zu erhalten.

Es gibt verschiedene physikalische Vorgéange, die man mit Hilfe der Perko-
lationstheorie interpretieren kann. Hier soll nur eine Anwendung angegeben
werden, wie sie schon in [BH57] erwdhnt worden ist: Man hat einen pordsen
Festkorper (ein Korper aus einem Material, in dem sich Hohlrdume bilden
kénnen). Man kann sich nun die Frage stellen, wie wahrscheinlich ist es,
dass ein Gas, welches sich an der Oberfliche befindet, ins Innere des Kor-
pers eindringt. Man kann den Festkorper durch Punkte diskretisieren und
diese Punkte als Knoten eines Graphen betrachten. Zwei benachbarte Punk-
te (bzw. Knoten) haben genau dann eine Kante, wenn es einen Hohlraum
gibt, der grof} genug ist fiir die Gasmolekiile. Indem man die Hohlrdume als
zufillig betrachtet, die mit einer Wahrscheinlichkeit p auftreten, hat man ein
Perkolationsmodell fir das betrachtete physikalische Problem.

Ein haufiger Graph, der untersucht wurde, ist der Z?. Dabei ist Z* der

1Es gibt auch das Perkolationsmodell, in dem die Knoten zufillig sind und die Kanten
fest. Das hier betrachtete Modell heifit auch Kantenperkolation. Auch beschriankt man
sich hier auf ungerichtete Kanten.
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Graph, dessen Knoten die Elemente von Z* und dessen Kanten alle Verbin-
dungen zwischen den benachbarten Punkten (zwei Punkte sind benachbart,
wenn der euklidische Abstand 1 betrdgt) sind. Eine der ersten Fragestellun-
gen war, die bei diesem Graphen (eine analoge Fragestellung kann man auch
bei anderen unendlichen Graphen finden) aufgetreten ist, fiir welche p ist
die Wahrscheinlichkeit grofer 0, dass der Knoten (0,0) durch offene Pfade
(ein offener Pfad ist ein Pfad, der nur offene Kanten benutzt) mit unendlich
vielen Knoten verbunden ist. In [Kes80] beantwortetet Kesten fiir Graphen
72, dass genau dann die Wahrscheinlichkeit grofier als 0 ist, wenn p > % ist.
Fiir viele Graphen ist die genaue Schranke fiir das Problem noch unbekannt.

Weitere Resultate befassen sich mit Clustern, die bei der Perkolation ent-
stehen. Dabei ist ein Cluster eine Aquivalenzklasse von Knoten beziiglich der
Relation, dass zwei Knoten durch einen offenen Pfad miteinander verbunden
sind. Ein wichtiges Resultat ist die von [AKN87] bewiesene Tatsache, dass
es bei einer groflen Klasse von Graphen nur maximal ein unendlich grofies
Cluster gibt (mit Wahrscheinlichkeit 1).

Es sollen nun noch ein paar untersuchte Probleme erwéhnt werden, die
ndher an dem in dieser Arbeit untersuchten Problem liegen:

Schon [Ham57] zeigte fiir den Graphen Z* 2 (bzw. sogar in allgemeineren
Graphen) im Falle, dass die Wahrscheinlichkeit gleich 0 ist, dass der (0, ..., 0)
mit unendlich vielen Knoten durch offene Pfade verbunden ist, folgendes
Resultat: Die Wahrscheinlichkeit, dass der Knoten (0, ..., 0) mit dem Knoten
(0,...,0,n) durch einen offenen Pfad im Graphen Z? verbunden ist, kann
durch eine gegen 0 exponentiell fallende Schranke in n — oo beschrinkt
werden. (Es wurde sogar gezeigt, dass man so die Wahrscheinlichkeit, dass der
Knoten (0,,...,0) mit einem Knoten mit dem Kantenabstand n verbunden
ist, exponentiell gegen 0 fallt fir n — oco.)

In [CCCI1] wurde sogar eine asymptotische Formel (sogar mit Angabe
der Konvergenzgeschwindigkeit) fiir die Wahrscheinlichkeit, dass der Knoten
(0,...,0) mit dem Knoten (0,...,n) mit einem offenen Pfad verbunden ist,
angegeben, wenn n — co geht.

Daran anschliefend kann man eine Frage stellen, die schon nahe an der
in dieser Arbeit untersuchten Fragestellung ist (siche unten): Ist die Wahr-
scheinlichkeit immer kleiner, dass der Knoten (0,...,0) mit dem Knoten
(0,...,0,n) verbunden ist, als die Wahrscheinlichkeit, dass der Knoten (0, ..., 0)
mit dem Knoten (0,,...,0,m) verbunden ist, wenn n > m ist? Bisher gibt
es hier nur partielle Resultate fiir die Fragestellung in [LPS15], welches die
Frage positiv beantwortet, wenn p sehr klein ist.

Erwéahnt werden soll hier auch das Bunkbed-Problem: Einen Bunkbed-

2der Graph ist analog zu Z* definiert
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Graphen eines Graphen erhélt man, wenn man einen Graphen kopiert und
jeden urspriinglichen Knoten mit einer Kante mit dem neuen kopierten Kno-
ten verbindet. Man hat also einen Graphen mit zwei Ebenen (eine Ebene ist
der urspriingliche Graph, die andere Ebene der kopierte Graph). Nun stellt
sich die Frage, wenn man zwei Knoten u und v auf einer Ebene nimmt, ob
diese wahrscheinlicher miteinander verbunden sind als der Knoten v und der
Knoten v', welcher dem Knoten v auf der anderen Ebene entspricht. Selbst
diese Fragestellung wurde nur fiir spezielle Klassen endlicher Graphen be-
antwortet. (z.B. in [Linll] und [HL19]). Fir alle endlichen Graphen ist das
Problem immer noch offen.

In dieser Arbeit sollen spezielle Graphen betrachtet werden, die eine ge-
wisse Ahnlichkeit zu den Bunkbed-Graphen haben. Fiir diese Graphen kann
man dann auch eine Verbindung zu dem Graphen Z* und dessen Monotonie-
problem herstellen:

Hauptséachlich wird in dieser Arbeit der Produktgraph G x Z betrachtet,
wobei G ein endlicher zusammenhédngender Graph ist (wie z.B. ein Kreis-
graph oder ein vollstindiger Graph). G x Z ist also im Prinzip wie der
Bunkbed-Graph konstruiert, aufler, dass man nun abzéhlbar unendlich viele
Ebenen hat. Man interessiert sich unter anderem fiir die Frage, ob es fir
z,y € V(G) und n,m € N mit n < m wahrscheinlicher ist, dass der Kno-
ten (x,0) mit dem (y,n) verbunden ist als die Wahrscheinlichkeit, dass der
Knoten (z,0) mit dem Knoten (y,m) verbunden ist. Um sich dieser Frage
zu nahern, wird auch ein verwandtes Problem betrachtet. Man betrachtet
bestimmte Muster auf jeder Ebene. Dabei driickt ein Muster aus, welche
Knoten auf einer Ebene mit dem Knoten (0,0) verbunden sind und wie die
Knoten auf einer Ebene miteinander verbunden sind. Die Fragestellung, die
man sich stellen kann, ist nun, ob (ab einer gewissen Ebene) die Wahrschein-
lichkeit fir das Auftreten eines Musters monoton abnimmt. Eine grofie Hilfe
beim Behandeln dieses Problem ist es, dies als eine Markovkette zu betrach-
ten.

Diese Arbeit gliedert sich wie folgt:

Im ersten Kapitel werden die grundlegenden Begriffe der Perkolation,
die fiir die Arbeit benotigt werden, eingefithrt. Ebenfalls werden bekann-
te Problemstellungen fiir das Monotonieproblem bei Z¢ und das Bunkbed-
Problem genauer vorgestellt. Weiter wird der Graph G x Z und die in dieser
Arbeit betrachteten Begriffe eingefiithrt. Insbesondere wird erklért, was hier
mit einem Muster gemeint ist und die in dieser Arbeit betrachteten Proble-
me vorgestellt. Aufferdem wird ein Zusammenhang zwischen den bekannten
Problemen bei bestimmten Graphen und den in dieser Arbeit betrachteten
Graphen mit den zugehorigen Problemen hergestellt.
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Im zweiten Kapitel werden Resultate zum Vergleich der Verbundenheit
von zwei Knoten bei speziellen Graphen, wie den Z? oder speziellen Bunkbed-
Graphen, aus der Literatur vorgestellt.

Im dritten Kapitel wird hauptsachlich ein aus der Literatur bekann-
tes Resultat zu Markovketten vorgestellt, das man spater zum Beweis des
Hauptresultats dieser Arbeit verwenden wird.

Das vierte Kapitel bildet den Hauptteil der Arbeit und besteht aus
neuen Resultaten zum Graphen G x Z. Zum einen wird betrachtet, wie sich
die durchschnittliche Anzahl von Knoten im Teilgraphen G x {n} mit n € N,
die mit einem speziellen Knoten verbunden sind, entwickelt. Anschliefend
wird noch fiir spezielle Graphen G mit wenigen Knoten betrachtet, dass die
Wahrscheinlichkeit, dass zwei Knoten miteinander verbunden sind, kleiner
wird, wenn die beiden Knoten weiter voneinander entfernt sind. AbschlieSend
wird fiir G x Z, wobei man an GG noch eine Einschrdnkung vornimmt, gezeigt,
dass auch hier die Wahrscheinlichkeit immer monoton kleiner wird ab einer
bestimmten Schranke.



Kapitel 1

Setting

In diesem Kapitel sollen die grundlegenden Begriffe eingefithrt und die in der
Arbeit betrachteten Probleme vorgestellt werden.
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1.1 Graphen

Hier werden nur Graphen betrachtet, die eine endliche oder abzahlbare un-
endliche Anzahl von Knoten haben. Weiter sind alle Graphen ungerichtete
Graphen ohne Mehrfachkanten oder Schleifen. Auch soll immer vorausgesetzt
werden, dass der Graph G einen endlichen maximalen Grad hat (d.h. es gibt
ein d € N, sodass kein Knoten einen Grad grofier als d hat). Die Knoten eines
Graphen G werden hier mit V(G) bezeichnet und die Kanten von G sollen
hier mit £(G) bezeichnet werden.

Es gibt folgende spezielle Graphen, die wir besonders bezeichnen und die
noch spater eine Rolle spielen:

e Mit C} bezeichnen wir den Kreisgraphen mit & Knoten, d.h. V(Cy) =
{0,...,k—=1} und E(Cy) == {{0,1},{1,2},... , {k—2,k—1},{k—1,0}}

e Mit K} bezeichnet man den vollstandigen Graphen mit & Knoten, d.h.

e Mit K,,, bezeichnen wir den vollstandigen bipartiten Graphen zwi-
schen einer m und n einelementigen Menge, daher ist V(K,,,) =
{1,2,...,m+n} und E(K,,,) = {{i,j} : i € {1,...,m},j € {n +
1,...,m+n}}

o Mit Z? bezeichnet man den Gittergraphen mit den Knoten aus Z¢. D.h.
V(Z) .= 7 wnd E(Z%) = {{i,j} : i,j € ZF,||i — j||, = 1}, dabei ist
i — 4]l = X5, |i — ji|. Fiir d = 1 schreibt man auch Z statt Z'

e Allgemeiner meinen wir fiir eine Teilmenge A C Z% immer den Graphen
mit Knoten V(A) := Aund Kanten E(A) = {{i,5} :4,5 € A, ||i—j||1 =
1}. Insbesondere betrachten wir die Teilmengen {z € Z : < n}, {z €
Z:k<x<n}und {x € Z:n < x}. Anstatt {...,—1,0,2,...,n},
{k,...,n}und {n,n+1,...} schreiben wir auch ((—oo,n|], [[k, n]] und

[n, 00)).
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Abbildung 1.1: Die Graphen C;, K7 und Z?

Auch kann man mit Hilfe des Kreuzproduktes neue Graphen erhalten:
Seien G = (Vi, Ey) und Gy = (V4, Ey) Graphen, dann soll mit G; x Gy =
(V' E') der Graph mit V' = V] x V5 = {(vy,v)|v1 € V1,09 € Vo} und E' =
{{(vi, v2), (v1, v2)}[{vr, 01} € Ervp € Va} U {{(v1,v2), (v1,09)}[{ve, 03} €
Es5,v1 € V1 } bezeichnet werden. Wichtige Graphen, die wir spater behandeln,
sind die Bunkbed-Graphen G x K, (wobei G ein endlicher Graph ist) und
Ck X 7.

Wir nennen z4, ..., x, einen Pfad von z; nach x,,, wenn jeweils die Kanten
{z1, 20}, {22, 23}, ..., {xn_1, 2.} im Graphen vorhanden sind. Ein Pfad heif}t
selbstvermeidender Pfad, wenn alle Knoten verschieden sind (d.h. #{xz, ...,

T} =n).
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1.2 Kantenperkolation

1.2.1 Grundlegende Definitionen

In diesem Unterabschnitt soll definiert werden, was unter Kantenperkola-
tion zu verstehen ist (gute Einfihrungen sind z.B. [Gri99] oder [BRO6]).
Im Folgenden sei G = (V,FE) ein endlicher oder ein abzéhlbar unendli-
cher (ungerichteter) Graph mit endlichem Grad. Sei u die Bernoullivertei-
lung mit dem Parameter p € (0,1) (p ist die Verteilung auf {0,1} mit
(1) =1 — u(0) = p). Wir betrachten das Wahrscheinlichkeitsma88 P, das
definiert ist als P, := ®.cx 1t . Insbesondere ist P, ein Wahrscheinlichkeits-
maf auf Q := {0, 1}¥ mit o—Algebra ® {2, {0}, {1},{0,1}} der von den
Zylindermengen erzeugten o-Algebra. Ist w € €2, so sei w(e) die Projektion
auf die Koordinate der Kante e. Wir sagen, eine Kante e ist offen in w € €2,
wenn w(e) = 1 ist und sonst heifit eine Kante geschlossen. Teilweise wird fiir
die betrachtete Verteilung auch P statt P, geschrieben.

Man schreibt v ~ w, wenn v,w € V ist, fiir das Ereignis, dass es eine
Kante zwischen v und w gibt und diese offen ist. Man schreibt v % w fiir
das Ereignis, dass es keine offene Kante zwischen v und w gibt. Ist C eine
Menge von Knoten, so schreiben wir v ~ C' fiir das Ereignis, dass es eine
offene Kante zwischen v und einem Knoten aus C' gibt. Analog v % C, wenn
es keine solche Kante gibt.

Wir sagen, zwei Knoten z,y € V sind verbunden, wenn das Ereignis ein-
tritt, dass es einen offenen Pfad zwischen den beiden Knoten gibt. Dabei
ist ein offener Pfad eine Menge von Knoten vy = x,v9,v3,...,0,_1,0, = ¥,
sodass die Kanten {v;, v;41} fir allei € {1,...,n—1} offen (und vorhanden)
sind. Wir schreiben fiir das Ereignis, dass x und y mit einem offenen Pfad
verbunden sind, x <> y. Also ist v <> w, wenn es Kanten vq,..., v, € V mit
vy = v und v, = w gibt, sodass vy ~ vg,...,vs_1 ~ V. Teilweise schreiben
wir <+¢ statt <>, um zu verdeutlichen, auf welchen Graphen wir uns beziehen.

Im Folgenden soll mit C(z) := {y € V : <>y} die Menge aller Knoten
bezeichnet werden, die mit dem Knoten x durch einen offenen Pfad verbun-
den sind. Wir nennen C(z) auch den Cluster von z. Man beachte, dass bei
einem zusammenhéngenden Graphen mit endlichem Grad fir alle z,y € V
P(|C(z)| = o0) > 0 genau dann ist, wenn auch P(|C(y)| = oo) > 0 gilt.
Deshalb ist die Definition von folgendem wichtigen Wert immer eindeutig:

pe(G) = sup{p € [0, 1] : P,(|C(z)| = 00) = 0}
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Im Fall p < p.(G) sprechen wir vom subkritischen Fall, im Falle p > p.(G)
sprechen wir vom superkritischen Fall. Im Folgenden soll sich nur mit dem
subkritischen Fall beschéftigt werden (bei den meisten betrachteten Graphen
in den folgenden Kapiteln ist p. = 1). Sei ®(p) die Wahrscheinlichkeit, dass
es einen unendlich grofien Cluster gibt, d.h. ®(p) = P,(3z € V : |C(x)| =
00). Es gilt dann (siehe z.B. [Gri99]) das im subkritischen Fall (p < p.(G))
®(p) = 0 und im superkritischen Fall p > p.(G) ®(p) = 1 (man beweist dies
mit dem 0-1-Gesetz von Kolmogorow).

Ist der Graph vom endlichen Typ ! und ist der Graph zuganglich 2, so gibt
es entweder P,-f.s. keinen unendlichen Cluster oder genau einen unendlichen
Cluster. (siehe z.B. [BR06]) Ein Beispiel fiir einen solchen Graphen ist der
Z4 fiir d € N.

1.2.2 Verbindungsfunktion

T,(x,y) := Py(x <> y) heiBt die Verbindungsfunktion von = und y. Je nach
Graph sind verschiedene Eigenschaften der Verbindungsfunktion bekannt.
Man beachte, dass die Verbindungsfunktion symmetrisch ist. Es ist klar,
dass die Verbindungsfunktion bei endlichem Graph fiir feste  und y in p
stetig ist. Auch wurde in [AKNS87| gezeigt, dass die Verbindungsfunktion in
p stetig fiir den Graphen Z? ist. Dieses Resultat kann man nach [AKNS87]
auch fiir andere Gittergraphen erweitern. Im Wesentlichen wurde fiir den
Beweis benutzt, dass der unendliche Cluster (wenn existent) eindeutig ist.

1Zwei Knoten eines Graphen sind dquivalent, wenn es einen Automorphismus gibt, der
x auf y abbildet. Gibt es nur endlich viele Aquivalenzklassen beziiglich dieser Relation, so
sagen wir, dass ein Graph vom endlichen Typ ist.

2Sei B, (z) die Menge aller Knoten des urspriinglichen Graphen, die einen Kantenab-
stand kleiner oder gleich n zum Knoten x haben und sei 6 B, (z) die Menge aller Knoten,
die den Kantenabstand von genau n zu dem Knoten x haben. Dann heifit ein unendlicher

|6 B (X)| :
B ()] — 0 ist

Graph zugénglich, wenn lim,,_,
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1.3 Monotonieeigenschaften der Kantenper-
kolation

1.3.1 Problemstellung

Da man im Allgemeinen den Wert der Verbindungsfunktion nicht exakt aus-
rechnen kann, wiirde man wenigstens gerne eine Aussage dartiber machen, ob
fir z,y,z € V 1,(x,y) < 7p(x, 2), 7p(x,y) > 7p(2, 2) oder 7,(x,y) = 7,(x, 2)
gilt. Schon bei relativ einfach strukturierten Graphen sind bis heute keine
Beweise bekannt (siehe spatere Kapitel), obwohl es hdufig so aussieht, dass
eine dieser Aussagen offensichtlich ist.

Fiir kleine p reicht es aber haufig aus, den Kantenabstand von Knoten zu be-
trachten, um die Verbindungsfunktionen zu vergleichen. Der Kantenabstand
von zwei Knoten x und y ist definiert als die Lange des minimalen Pfades
des nicht perkolierten Graphen zwischen den Knoten x und y.

Sei der Grad von dem Graphen hochstens d : Ist der Kantenabstand
von z und y gleich n, so ist 7,(x,y) > p”. Weiter gibt es von einem Knoten
ausgehend nur maximal d* Pfade, die die Lange k haben. Damit ist 7,(z, y) <
S, dPpP. Somit ist T,(x,y) = O(p") fir p — 0 . Dabei bedeutet diese
Schreibweise wie tiblich, dass 0 < liminf, o @9 ynd lim SUp, 0 T”;i’y) <
0o. Seien x,y und z drei Knoten, sodass der Kantenabstand von x und y
kleiner als der Kantenabstand von z und z ist, dann gibt es ein p’ > 0,
sodass fiir alle p < p’ 7,(x,y) > 7,(x, 2) gilt. Dass der Kantenabstand kein
hinreichendes Kriterium fiir alle p fiir den Vergleich der Verbindungsfunktion
ist, sieht man anhand des folgenden Beispiels:

eé)@e

Wir haben bei diesem Graphen:

75(0,1) — 7,(0,2) = P, (045 1) — P,(0 <> 2)
=P, (061,142 +P, (01,1 ~2)—Py(0<2,1~2)—P,(0<2,1+£2)
=0

— P04 1,1£2) =P, (042,14 2)
=p(l—p) = (1" + (=P W) (1—p) = (1* =20 +1) p(1 - p)

Somit sieht man, dass fir p > —1/2 4 /5/2 ~ 0.62 7,(0,1) < 7,,(0,2).
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Auch sollte man beachten, dass es nicht klar ist (fir unendliche Gra-
phen), ob man immer ein p’ > 0 finden kann, sodass fiir alle p < p’ und alle
x,1y,z € V, wobei x und y einen kleineren Kantenabstand als x und z haben,
gilt 7,(x,y) > 7,(z, 2). In den folgenden Kapiteln bzw. Abschnitten geht es
darum, Bedingungen aufzustellen, wann eine Verbindungsfunktion kleiner als
eine andere Verbindungsfunktion ist.

1.3.2 Bunkbed-Vermutung

In diesem Abschnitt soll sich mit der Perkolation von Bunkbed-Graphen
beschéaftigt werden. Dabei ist ein Bunkbed-Graph wie folgt definiert:

Definition 1.1 Sei G ein Graph und Ky der vollstindige Graph mit den
zwei Knoten 0 und 1. Dann bezeichne mit BB(G) den Graphen G x K.
BB(G) nennt man den Bunkbed-Graphen von G.

Anschaulich ist der entsprechende Bunkbed-Graph eines Graphen G der
Graph, der aus G entsteht, wenn man diesen kopiert und die jeweils entspre-
chenden Knoten durch eine Kante verbindet.

Abbildung 1.2: Ein Graph und der zugehorige Bunkbed-Graph

Folgendes bekannte Problem stellt sich bei den Bunkbed-Graphen, wel-
ches nach [BKO1] auf P. W. Kasteleyn aus dem Jahre 1985 zuriickgeht (dort
etwas allgemeiner formuliert):

Vermutung 1.1 Seien zwei Knoten u,v aus G, dann gilt:
Py ((u,0) 75D (v, 0)) = Py((u, 0) 77 (v,1))

Obwohl es sehr plausibel ist, dass diese Vermutung gilt, so hat man bis-
her die Vermutung nur fiir spezielle Graphen beweisen konnen. So wurde
in [Linll1] die Vermutung fiir Outerplane-Graphen bewiesen. (vgl. Unterab-
schnitt 2.1.2). In [HL19] wurde gezeigt, dass die Vermutung fiir vollstandige
Graphen gilt (in [Buy16] und [Buy18] wurden schon Spezialfélle fir p = 3
und p > % behandelt). Vergleiche hierzu Unterabschnitt 2.1.3.

Auf die Beweise aus [Linll] und [HL19] wird spéter noch kurz einge-
gangen. Bei beiden Arbeiten wurde die etwas allgemeinere Vermutung fiir
spezielle Graphen bewiesen:
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Vermutung 1.2 SeienT C V(G) und sei Ay :=={¥Vx € T : (2,0) ~ (z,1)}N
Ve g T: (x,0) o (x,1)} (d.-h. das Ereignis, dass die vertikalen Kanten nur
an den Stellen T' auftreten). Dann gilt:

Pp((u,0) <(v,0)|Ar) = Pp((u, 0) (v, 1)| A7) (1.1)
Klar ist, dass wegen

PP((UJ O) HBB(G)(”? 6)) = Z Pp((”? 0) HBB(G) (U7 e)lAT)P(AT>
TCV(@)

fir alle e € {0, 1} die Vermutung 1.1 folgt.
Wir fithren noch kurz folgende Verallgemeinerung des Bunkbed-Graphen
ein:

Definition 1.2 Sei G ein Graph und T C V(G). Dann bezeichne mit BBT (G)
den Graphen mit den Knoten V(G) x{0,1} und den Kanten {{(z,v), (z,y)} :

{z,2} € E(G),y € {0,1}} U{{(2,0),(z, 1)} : x € T}.

Man kann mit dieser Definition auch eine Variante der Bunkbed-Vermutung
aufstellen:

Vermutung 1.3 Seien T' C V(G). Dann gilt:
Py((u,0) 77D (0, 0)) > Py((u, 0) 77D (v,1) (1.2)

Die Vermutung 1.3 ist eine Verallgemeinerung von Vermutung 1.1, da
durch Wahl von 7" = V man Vermutung 1.1 erhélt. Man beachte, mit dem
gleichen Argument wie oben folgt die Vermutung 1.3 wieder aus Vermu-
tung 1.2. Diese Variante wird hier nur erwahnt, da es sich im Unterab-
schnitt 1.4.2 mit dieser leichter arbeiten lasst als mit Vermutung 1.2.

In [Lin11] wurde eine Variante der Bunkbed-Vermutung vorgestellt, wel-
che fiir den Beweis bei Outerplane-Graphen benutzt wurde:

Vermutung 1.4 SeienT C V(G) und sei Ay :={Vz € T : (,0) ~ (z,1)}N
{Ve & T : (x,1) # (x,2)}. Weiter sei B das Ereignis, dass fir alle {z,y} €
E(G) genau eine der Kante {(x,0), (y,0)} oder {(x, 1), (y, 1)} offen ist. Dann
15t

P((u,0) <22 (v,0)|Ar, B) > P((u,0) <25 (v, 1)|Ar, B) (1.3)

Man beachte, dass das Bedingen auf das Ereignis B bedeutet, dass mit Wahr-
scheinlichkeit % nur die obere bzw. nur die untere Kante offen ist. Insbeson-
dere héngt die Giiltigkeit der Vermutung nicht von p ab.

Auf einen Zusammenhang zwischen Vermutung 1.2 und Vermutung 1.4
wird noch in Unterabschnitt 2.1.1 eingegangen,
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1.3.3 Gitter Z¢

Im Folgenden soll sich nur mit dem subkritischen Fall des Graphen Z? be-
schéftigt werden. Eine wichtige Konstante in diesem Zusammenhang ist £(p),
welches definiert ist durch (hier 0 € Z%):

g(lp) _ Jgg}o—ilogp((o,O) 2(0,n))

Die Existenz des obigen Limes wurde z.B. in [Gri99, Kapitel 6.2] gezeigt.
Dazu wurde mit der FKG-Ungleichung ® gezeigt, dass P((0,0) <+%*(0,n)) >
(P((O, 0) %0, 1)))n Anschliefend wurde der Logarithmus auf beiden Sei-
ten angewendet und mit dem Subadditiv-Limit-Theorem * die Existenz ge-
zeigt. Fir Details siehe [Gri99, Kapitel 6.2].

Bei dem Gitter Z¢ kann man sich die Frage stellen, ob die Verbindungs-
funktion sogar monoton abnimmt, wenn man sich weiter vom Ursprung ent-
fernt. Insbesondere hat man folgende Vermutung:

Vermutung 1.5 Sei 0 < p < p(Z%), dann gilt fir alle n > 0 und alle
acZ%t: ) )
Pp((07 0) HZ (G;, n)) > Pp((07 0) HZ (a’7n + 1))

In [LPS15] wurde die Aussage fiir hinreichend kleine p’s bewiesen (zwar
nur fir a = 0 formuliert, aber der dort angegebene Beweis benutzt diese
Einschréankung nicht). In Abschnitt 2.2 wird noch darauf eingegangen.

3 Die FKG-Ungleichung sagt in dem vorliegenden Setting folgendes aus: Sei G ein
Graph. Eine Zufallsvariable Y heifit monoton wachsend auf {0,1}%(%) wenn fiir alle
Konfigurationen w und w’ gilt, dass, wenn w < w’ (dies bedeutet fiir jede Kante e ist
w(e) < w'(e)) auch Y(w) < Y (') ist. Sind Y und Y’ zwei monoton wachsende Zufallsva-
riablen mit E[Y?], E[Y"?] < oo, so gilt

E[YY'] > E[Y]E[Y’]
4Eine Folge (ay,)nen ist subadditiv, wenn fiir alle m,m’ € N gilt apmim < Gm + A

Das Subadditiv-Limit-Theorem sagt aus, wenn eine Folge (a,)nen subadditiv ist, dann
existiert der Grenzwert lim,, ., %an, wobei als Grenzwert auch —oo zugelassen ist.
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1.4 Monotonieeigenschaften im Graphen G x Z

1.4.1 Wichtige Bezeichnungen im Zusammenhang des
Gx2Z

In diesem Abschnitt soll sich mit dem Graphen G x Z beschaftigt werden, wo-
bei G ein zusammenhéngender Graph ist und Z € {Z, ((—oo, m]], [[m1, ma]] :
m > 0,m; < 0 < msy}. Fast immer wird an G die Voraussetzung gestellt,
dass G endlich ist. (Haufig wird G = C} sein) Also im Prinzip geht es um
eine Art von Bunkbed-Graphen mit mehreren (potenziell unendlich vielen)
Ebenen.

Dazu fithren wir einige Bezeichnungen ein: Fir n € Z bezeichnet man
mit £, := {(z,n) : © € G} die Knoten der n-ten Ebene von dem Graphen
G x Z. Kanten, deren beide Endpunkte in der gleichen Ebene liegen, sollen als
horizontale Kanten bezeichnet werden. Die anderen Kanten sollen als verti-
kale Kanten bezeichnet werden. Mit K (E,,) bezeichnen wir alle horizontalen
Kanten der Ebene und alle (eventuell vorhandenen) Kanten, die vertikal die
Ebene mit der darunterliegenden Ebene verbinden. Genauer fir n,n—1¢€ Z
sei K(E,) = {{(z,n),(y,n)} :z,y € G} U{{(z,n),(x,n—1)} : . € G} und
firne Zn—-—1¢ Zsei K(E,) :={{(x,n),(y,n)}:z,y € G}.

Abbildung 1.3: Der Graph Cy x Z

Klar ist, wenn G endlich ist, dass bei dem Graphen G x Z mit Wahr-
scheinlichkeit 1 kein Knoten in einem unendlich groflen Cluster liegt: Wiirde



1.4. MONOTONIEEIGENSCHAFTEN IM GRAPHEN G x Z 15

ein Knoten in einem unendlichen Cluster liegen, so miisste entweder immer
ein Knoten in jeder Ebene iiber dem Knoten mit dem Knoten verbunden
sein oder in jeder Ebene darunter (da G endlich ist). Damit miisste in jeder
Ebene dariiber oder darunter mindestens eine der vertikalen Kanten vorhan-
den sein. Da die Wahrscheinlichkeit fiir dieses Ereignis fiir jede Ebene gleich
1 — (1 —p)*ist (falls G k Knoten hat), folgt, dass kein Knoten in einem un-
endlichen Cluster liegt. Insbesondere ist dann p.(G X Z) = 1, wenn G endlich
ist.

Wir gehen im Folgenden davon aus, dass ein Knoten aus G mit 0 bezeich-
net wird. Mit 0 soll immer der Knoten (0,0) bezeichnet werden.

Definition 1.3 Fin Knoten aus G x Z soll infiziert genannt werden, wenn
dieser mit dem Knoten O verbunden ist. Sonst heifit der Knoten uninfiziert.

Definition 1.4 Wir bezeichnen mit Z$*# die Anzahl der mit (0,0) verbun-
denen Knoten in der Ebene E, eines Graphen G x Z. Genauer ist ZS*% =
#{0(z,n) : x € G} firn € Z, wobei zugelassen wird, dass Z, = oo ist.

Wenn klar ist, um welchen Graphen es sich handelt, schreiben wir Z,, anstatt
ZSXZ

Es scheint anschaulich so zu sein, wenn man den Graphen G x Z betrach-
tet, dass folgende Vermutung richtig ist:

Vermutung 1.6 Fir alle n € N ist im Fall p < p.(G X 7Z)
E[Z,] > E[Z,11]

Im Abschnitt 4.1 wird die Vermutung noch genauer betrachtet.

Anstatt nur die Anzahl der verbundenen Knoten auf einer Ebene zu be-
trachten, kann man auch die Verbindungsfunktion betrachten. Aufgrund der
Struktur des Graphen kann man folgende Vermutung auflern:

Vermutung 1.7 Betrachte den Graphen G X Z. Firn € Ny und a € G gilt
P,((0,0) »%*%(a,n)) > P,((0,0) *%(a,n + 1))

In der obigen Allgemeinheit wird es hier nicht bewiesen, aber es wird spéter
gezeigt (fiir bestimmte endliche Graphen GG), wenn n grofl genug ist, dann gilt
die obige Vermutung. Die Vermutung bedeutet, dass die Wahrscheinlichkeit,
dass ein Knoten mit dem entsprechenden Knoten in einer weiter entfernten
Ebene verbunden ist, abnimmt, je weiter die Knoten voneinander entfernt
sind. Wir haben also eine Art von Monotonie der Verbindungsfunktion.

Wie man am folgenden Lemma sieht, kann man offensichtlich aus Ver-
mutung 1.7 Vermutung 1.6 erhalten:
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Lemma 1.5 Sei G ein Graph und sei p < p.(G x Z). Weiter sei n € Ny,
sodass fur alle a € G gilt:

P,((0,0) <*%(a,n)) > P,((0,0) <“*%(a,n + 1))

Dann ist auch

E[Z,] > E[Z,11]

Beweis
Man hat fiir n € Ny:

E[Z,) =Y P09 (z,n) > Y PO (2,n+1) =E[Z,11] O

zeG zeG

Um sich Vermutung 1.6 spéater zu ndhern, betrachten wir ein anderes Pro-

blem, welches damit verwandt ist. Dafiir fithren wir den Begriff des Musters
einer Ebene ein (ab jetzt setzen wir fiir den Rest des Abschnittes G' endlich
voraus):

Definition 1.6 Sei G ein endlicher zusammenhdingender Graph undn € Ny:

- Seil € Ng und A, Byq,...B; C V(G). Wir nennen ein Tupel M =
(A, {B1, ..., B}) ein (Ebenen-)Muster von G, wenn A, By, ..., B, eine
Partition von den Knoten von G ist, wobei wir zulassen, dass A = &
oderl =0 ist. D.h. AUB1U---UB, =V (G) und B; # @ ANB; = &,
B,NB; =@ firi#j.

- Sei Z € {Z,((—oo,m]],[[m1,ma]] : m > 0,my < 0 < mo}. Wir
sagen auf einer Ebene n > 0 des Graphen G x Z liegt das (einsei-
tige) Muster M = (A,{Bi,...,B;}) vor, wenn in dem Teilgraphen
G x{...,0,1,...,n} (bzw. im Teilgraphen G x {my,...,0,1,...,n}
fiir Z = [[mq1,ms]]) folgendes gilt: Alle Knoten aus A x {n} sind mit
dem Knoten (0,0) tber einen offenen Pfad verbunden und alle Knoten
aus B; X {n} sind iber einen offenen Pfad miteinander verbunden fir
jedes i. Dariber hinaus gilt fir i,7 mit i # j, dass kein Knoten aus
B; x {n} mit einem Knoten aus B; x {n} verbunden ist und fir alle i
ist kein Knoten aus Ax{n} mit einem Knoten aus B; x {n} verbunden.

- Es soll das (einseitige) Muster auf Ebene n mit X% bezeichnet wer-
den. Falls klar ist, welcher Graph gemeint ist, wird auch X,, statt X&*%
geschrieben.
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Beispiel 1.1

In der linken Kantenperkolation des Graphen Cy X Z
hat man z.B. folgende Muster:

(3,0) Auf Ebene 0 ist das Muster ({0,3},{{1,2}})
00 o 0. olo Auf Ebene 1 ist das Muster ({0,1,2},{{3}})
' 1o e Auf Ebene 2 ist das Muster ({1,2,3},{{0}})
\.) Auf Ebene 3 ist das Muster ({3}, {{0},{1,2}})
(3~, 71)
-1 g ] 0.}
1,-1) /.
6.F2)
(2%: (0,-2)

Man beachte, dass nicht alle Muster auftreten konnen. Z.B. fir den Gra-
phen Cy xZ kann das Muster ({0, 2}, {{1, 3}}) nicht auftreten. Denn hier sind
die Knoten 0 und 2 und die Knoten 1 und 3 im Graphen G x{...,0,1,...,n}
miteinander verbunden. Aufgrund der Struktur des Graphen miissten sich
die beiden Pfade schneiden, die die jeweiligen beiden Knoten verbinden. Dies
hétte zur Folge, dass alle Knoten miteinander verbunden wéaren. Deshalb ist
folgende Definition sinnvoll:

Definition 1.7 Sei wieder G ein endlicher zusammenhdingender Graph.

- Wir nennen M ein giltiges (einseitiges) Ebenenmuster, wenn es eine
Kantenkonfiguration des Graphen G X Z und eine Ebene n > 0 gibt, so-
dass auf Ebene n das (einseitige) Ebenenmuster M wvorliegt. Die Menge
aller giiltigen Ebenenmuster bezeichnen wir mit M (G).

- Weiter bezeichnen wir M°(G) = {(A,{Bx,...,Bi}) € M(G) : A= o}
(also alle giltigen Muster, die keinen Knoten mit dem Knoten (0,0)
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verbunden haben) und M*(G) = M (G)\M°(G). Wenn von infizierten
Mustern gesprochen wird, sollen immer die Muster aus M*(G) gemeint
sein. Mit uninfizierten Mustern sind die Muster aus M°%(G) gemeint.

Man beachte, sollte M ein giiltiges Ebenenmuster sein, welches auf der
Ebene n vorkommen kann, dann kann das Muster auch auf jeder Ebene
dariiber vorkommen: Sind namlich in K(F, 1) keine horizontalen Kanten
vorhanden und alle vertikalen Kanten vorhanden, so gibt es auf der Ebene n
und n + 1 das gleiche Muster.

Ist n grofl genug, so miisste mit sehr grofler Wahrscheinlichkeit auf der
Ebene n ein Muster aus M°(G) auftreten. Es soll sich aber jetzt eher mit
den Mustern aus M*(G) beschiftigt werden. Folgende Vermutung scheint
sinnvoll zu sein (bewiesen wird diese Vermutung im Unterabschnitt 4.3.5 mit
einer Einschrdnkung an den Graphen G), die eine Art von Monotonie des
Vorhandenseins von Mustern auf verschiedenen Ebenen zeigt:

Vermutung 1.8 Fiir einen endlichen zusammenhdngenden Graphen G gilt:
FEs gibt ein ng € N, sodass fiir alle n > ny und M € M*(G) und p € (0,1):

PP(XSXZ = M) > Pp<Xr?+Xlz = M)

Dass diese Aussage nicht fiir alle n gilt, liegt daran, dass bestimmte Muster
erst ab einer bestimmten Ebene auftreten konnen. Z.B. haben auf der O-ten
Ebene alle Muster den Knoten 0 infiziert. In Abschnitt 4.2 und Abschnitt 4.3
wird sich mit dieser Vermutung befasst. Dann wird auch fiir den Graphen
Cy X Z eine Abschatzung fiir das n angegeben.

Falls Vermutung 1.8 gilt, so gilt Vermutung 1.7 fiir n grof genug, wie man
spater an Lemma 1.13 und Lemma 1.14 sieht.

Man erhélt schon fiir relativ einfache Graphen sehr viele (giiltige) Muster.
Fiir den Graphen C3 x Z ist z.B. (fiir diesen Graphen sind alle Muster giiltig,
wie man jeweils leicht sieht):

M (Cs) ={({}, {{03, {1}, {2}}), ({}, {10, 13, {2} 1), ({3, {{0, 2}, {1}}), ({3,
{1,23,{0}}), ({3, {{0, 1, 2}}), ({0}, {{1, 2}}), ({0}, {1}, {2}}),
({1}, 140, 233), ({1}, {103, {2} 1), ({2} {{0, 1}1}), (123, {{0}, {1} });
({0, 13, {{2}}), ({0, 2}, {{1}}), ({1, 2}, {{0}}), ({0, 1, 2}, {{} })}

In Abhéngigkeit der Anzahl der Knoten von G kann man die Anzahl der
gliltigen Muster abschétzen:

Proposition 1.8 Sei G ein endlicher zusammenhdangender Graph mit #V (G) =

k. Dann gilt:
1> llc+1
<HM(G) <>

: (1.4)
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Beweis

Fine Obergrenze ist die Anzahl aller Muster (also die Anzahl aller giltigen
und unguiltigen Muster.). Sei A irgendein Symbol mit A ¢ V(G). Es soll nun
eine Bijektion zwischen den Partitionen von V(G) U {A} und den Mustern
von G angegeben werden. Sei {By, ..., By} eine Partition von V(G) U {A}.
Sei B; die Menge, die A enthdlt. Dann ordne der Partition das Muster (B;\
{A},{B1,...,Bj_1,Bji1,...,Bn}) zu. Offensichtlich ist dies eine bijektive
Abbildung zwischen den Partitionen einer k+1 elementigen Menge und allen
Mustern. Sei Byy1 die Anzahl von Partitionen einer k+1 elementigen Menge.
(Bit1 heifit Bellsche Zahl). Nach der Dobiriski-Formel ist Byy1 = £ 3272, 11%1
(siehe z.B. [Rot64])). Damit erhdlt man die obere Schranke.

Als eine triviale Untergrenze fiir die Anzahl von giiltigen Mustern macht
man sich klar, dass fir jede Teilmenge A von V(G) das Muster M = (A, B)
mit B := {{b} : b € V(G) \ A} ein giiltiges Muster ist. Dies erhdlt man
dadurch, dass bei K(E1) alle Kanten vorhanden sind und bei K(Es) genau
die Kanten {(x,2), (x,1)} mitx € A vorhanden sind. Damit ist 2% eine untere
Grenze fir #M (G). d

Bemerkung 1.9 Fir den vollstindigen Graphen Ky, gilt, dass fir #M (Ky,)
die obere Schranke aus Proposition 1.8 angenommen wird, da alle Muster
gultig sind. (siehe dazu auch die spdter folgende Bemerkung 4.42 im Unter-
abschnitt 4.5.1). Im Abschnitt 4.2 wird fir den Graphen Cj fir k-klein die
genaue Anzahl giiltiger Muster angegeben.

Damit man den Rechenaufwand fiir Rechnungen mit dem Computer bzw.
CAS reduziert, werden wir teilweise mehrere Muster als dquivalent auffassen
und somit muss man nur weniger Muster untersuchen. Was hier unter aqui-
valenten Mustern zu verstehen ist, soll nun erklirt werden.

Zur Erinnerung: Ein Graphautomorphismus eines Graphen G ist eine
bijektive Abbildung ® von V(G) nach V(G), sodass fir alle u,v € V(G)
{u,v} € E(G) genau dann, wenn {®(u), ®(v)} € E(G) ist. Damit kénnen
wir definieren, was wir unter dquivalenten Mustern verstehen:

Definition 1.10 Sei G ein endlicher zusammenhdngender Graph.

- Zwei Muster My = (A, {Bs, ..., Bi}), My sind dquivalent, wenn es einen
Automorphismus © auf G gibt, sodass My = (P(A), {P(By),...,P(B)})
ist. Dabei ist fir C' = {cy1,...,cn} CV(G), ®(C) = {P(c1),...,P(cm)}-

- Bezeichne mit [M] die Aquivalenzklasse eines Musters und mit [M (G)]
die Menge aller Aquivalenzklassen aller giiltigen Muster. Entsprechend
bezeichne mit [M*(G)] und [M°(QG)] die zugehérigen Mengen der Aqui-
valenzklassen zur Menge M*(G) und M°(G).
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Aufgrund der Definition ist die Méchtigkeit von M (G) gleich oder kleiner
als die Méachtigkeit von [M(G)] mal der Anzahl der Automorphismen von
G. Fir M*(G) und M°(G) gelten die analogen Aussagen. So ist z.B.

(M (Cs)] ={ ({13, {05, {11 {23 )] [ {0, 11 {23 )] ({3 {0, 1,23 1))
[({0}, {41, 23 DI, [0}, {{13, {23 D1 [(H0, 13, {23 )], [({0, 1, 23, {{} DI}

Also hat man #[M (C3)] = 7, aber #M (C3) = 15 (vgl. die Auflistung von
M (C3) oben).

Fiir den Graphen C}, x Z waren die dquivalenten Ebenenmuster genau die
Ebenenmuster, die durch Drehung und Spiegelung entstehen. (Daher sind es
die Graphenautomorphismen der Form x — = + m mod k und z — —z +
m mod k mit m € {0,...,k—1})

Natiirlich kann man auch eine zu Vermutung 1.8 analoge Vermutung fiir

[M*(G)] aufstellen:

Vermutung 1.9 Fir einen endlichen zusammenhdngenden Graphen G gilt:
Es gibt ein ng € N, sodass fiir alle n > ng und [M] € [M*(G)] und p € (0,1):
P, (X" € [M]) > Py (X725 € [M])

Klar ist es, dass das ng aus Vermutung 1.9 kleiner oder gleich dem ny aus
Vermutung 1.8 ist.

Es soll noch kurz eine andere Art von Mustern eingefithrt werden, die den
ganzen Graphen beriicksichtigen (also auch die Kanten tiber der Ebene) und
somit die Verbindungen einer Ebene unter Beachtung des ganzen Graphen
beschreiben:

Definition 1.11 Sei G ein endlicher zusammenhdngender Graph, sei Z €
{Z, ((—o00,m]], [[m1,ma]] :m >0,m; <0< ms} undn e Z:

- Wir sagen auf einer Ebene n des Graphen G x Z liegt das zweiseitige
Muster M = (A,{Bx,...,B;}) vor, wenn in dem Graphen G x Z fol-
gendes gilt: Alle Knoten aus A x {n} sind mit dem Knoten (0,0) uber
einen offenen Pfad verbunden und alle Knoten aus B; x {n} sind iber
einen offenen Pfad miteinander verbunden fiir jedes i. Dariber hinaus
gilt fiir i, j mit i # j, dass kein Knoten aus B; x {n} mit einem Knoten
aus B; x {n} verbunden ist und fir alle i ist kein Knoten aus A x {n}
mit einem Knoten aus B; x {n} verbunden.

- Es soll das zweiseitige Muster auf Ebene n mit XSXZ bezeichnet werden.
Falls klar ist, welcher Graph gemeint ist, wird auch X, statt XS*%
geschrieben.
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- Wir nennen M ein giiltiges zweiseitiges Ebenenmuster, wenn es
eine Kantenkonfiguration und Ebene n im Graphen G X Z gibt, sodass
M auf Ebene n als zweiseitiges Ebenenmuster vorliegt. Die Menge aller
giltigen zweiseitigen Ebenenmuster bezeichnen wir mit M (G).

- Weiter bezeichnen wir MO(G) = {(A,{By,...,B)}) € M(G) : A =
@} (also alle giiltigen zweiseitigen Muster, die keinen Knoten mit dem

Knoten (0,0) verbunden haben) und Ml(G) = M(G) \ MO(G).

Bemerkung 1.12 Im Gegensatz zu einseitigen Mustern ist hier n € Z an-
statt n € N. Denn im Gegensatz zu einseitigen Mustern macht die Betrach-
tung n < 0 Sinn.

Es wird noch darauf hingewiesen, dass jedes giiltige einseitige Ebenenmuster
auch ein giiltiges zweiseitiges Ebenenmuster ist. Wenn in dem Graphen G X Z
ein einseitiges Ebenenmuster auf Ebene n auftritt, tritt dieses auf der Ebene n
auch als ein zweiseitiges Ebenenmuster auf, wenn man die Kantenperkolation
des Graphen G x Z so abéndert, sodass alle Kanten aus K (£, 1) geschlossen
sind.

Dass es nicht nur gleich viele, sondern im Allgemeinen mehr giiltige zwei-
seitige Ebenenmuster gibt als einseitige Ebenenmuster, kann man z.B. bei
dem Graphen Cj x Z sehen. Das Muster ({0,2},{{1,3}}) ist ein zweifa-
ches Ebenenmuster von C)y X Z, aber nicht ein einseitiges Ebenenmuster von
Cy X Z. Die Begriindung dafiir, dass dies kein einseitiges Muster ist, wurde
oben schon gegeben. In folgender Kantenperkolation tritt dieses Muster als
zweiseitiges Muster auf Ebene 1 auf:
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(3,3)

(]
(2.3) Ebene 3 (0.3)

(173)

Ebene 0
(£,0)

([
(2,-1) Ebene —1 (0,-1)

(1171)
{

Die obere und die untere Schranke aus (1.4) fiir einseitige Ebenenmuster
gelten auch fiir zweiseitige Ebenenmuster.

Natiirlich kann man analog zur Vermutung 1.8 folgende Vermutung auf-
stellen:

Vermutung 1.10 Sei G ein endlicher zusammenhdngender Graph G. Dann
gibt es ein ng € N, sodass fir alle n > ng und M € Ml(G) und p € (0,1):

PP(XSXZ = M) > Pp<XnG+XlZ = M)

Man kann direkt aus Vermutung 1.8 Vermutung 1.10 erhalten, wie man
an dem folgenden Lemma sieht:

Lemma 1.13 Sei G ein endlicher zusammenhdngender Graph und sei p €
(0,1). Gibt es n € Ny, sodass fiir alle M € M*(G):

P,(X*% = M) > P,(X7F = M),
dann gilt auch fir alle M € Ml(G) :

Py(X5" = M) > Py(X 7 = M)
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Beweis
Sei M € M(G), p € (0,1) und n € Ny, dann hat man:

PARSE=M)= Y PuREHE = MIXGE = M) P(XEE = M)
M'eMY(G)
< Z PP(XSXZ — M‘X’I’?XZ — M/) Pp<XS><Z _ M’) _ PP(X—SXZ _ M)
M'eM*(G)

Dabei gilt Pp(XZXE = M|IXGE = M) = P(XS$*2 = M|XS*E = M),
da P,(XEE = | XGXE = M') nur von dem Zustand von U2, ., K(E;)
und P(XG*% = | XEE = M') nur von dem Zustand von U2, K(E;) ab-
hingt. Der Graph mit den Knoten U2, | E; und den Kanten U2, K(E;)
ist isomorph zu dem Graphen mit den Knoten U2, ., E; und den Kanten

2 i1 K(E;). Aufgrund der Translationsinvarianz von P, erreicht man die
gewiinschte Gleichheit. U

Wenn Vermutung 1.10 richtig ist, dann ist auch Vermutung 1.7 fiir grofle
n richtig, wie man am folgenden Lemma sieht:

Lemma 1.14 Gilt Vermutung 1.10 fir einen endlichen zusammenhdangen-
den Graphen G, so gibt es ein ng € N, sodass fiir alle n > ng und a € G
gilt:

Pp((0,0) *%(a,n)) > Py((0,0) % (a,n + 1))

Beweis
Es gilt:
P, ((0,0) +“**(a,n)) = > Py (X% = M)
MeM" (G):M=(A,...) mit a€A
> > P, (X = M)
MeM" (G):M=(A,...) mit acA
= P,((0,0) =“*(a,n + 1)) O

1.4.2 Beziehung zwischen den Problemen

Wir betrachten zuerst Zusammenhange zwischen der Vermutung fiir Bunkbed-
Graphen und den Graphen G x Z:

Proposition 1.15 Sei die Vermutung 1.3 fir alle endlichen (zusammenhdn-
genden) Graphen richtig und sei G ein zusammenhdngender endlicher Graph,
dann gilt
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(a) fir alle m >n > 0:

Pp((O, 0) (_>G><[[n—m,n+1+m]](a, n)) > Pp((O, 0) <_>G><[[n—m,n+1+m]](a’ n+1>)

(b)
P,((0,0) +>%*%(a,n)) > P,((0,0) -%%(a,n + 1))

Beweis
(a) Sei G’ := G x [[n—m,n]]. Der Graph BB'(G") mit T := {(x,n) : x € G}
ist isomorph zu dem Graphen G X [[n—m,n+1+m]|: Man ordnet den Knoten
((x,y),0) aus dem Graphen BBY(G") den Knoten (z,y) und ((z,7),1) aus
dem Graphen BBT (G') den Knoten (x,2n + 1 —y) zu.

Somit ist

P,((0,0) BB ) ((a,n),0)) = P,((0,0) ¢ Cxlnmmmtlemliq py)
und
P,((0,0) BB ((a,n),1)) = P,((0,0) s> lIn=mmttimll(q p 4 1)),

Aus Vermutung 1.3 folgt nun die Behauptung.
(b) Sei A, == {(0,0) «Ex[n=mntitmll(q )} und B,, := {(0,0) <Ex[n=mntitmlq pni
1)} . Nach dem ersten Teil ist (fir 0 < n < m) P,(A,) > Py(Bn). Da
A 1{(0,0) «%Z(a,n)} und B, 1 {(0,0) «<*Z(a,n+1)} fiirm — oo folgt
aus der o-Stetigkeit von P,

Pp((0,0) %% (a,n)) = Py((0,0) *(a,n + 1))
— nll_{%o Pp((o, 0) <_>G><[[nfm,nJrler]](a7 n)) _ P,,((O, O) <_>G><[[nfm,n+1+m}]<a7 n 4+ 1))

>0
Damit folgt die Behauptung. OJ

Anstatt bei den Graphen G x Z Knoten in der Vertikalen zu verglei-
chen, kann man aus den Bunkbed-Vermutungen auch eine Aussage fiir den
Vergleich der Knoten von G x Z in der Horizontalen herleiten:

Proposition 1.16 Sei Vermutung 1.3 richtig, k € N und xz € {0,..., k—1},

(a) und dariber hinaus sei mi,ms € N mit my < 0 < mo. Wir betrachten
den Graphen Cay X [[my, ms]]. Dann gilt fir n € N mit my <n < my:

P,((0,0) <»C2xxlmumall (g )y > P ((0,0) ¢ Corxlmimall (g 1 p))
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(b) dann gilt fir den Graphen Coy, X Z und fir n € N:

Py((0,0) “*%(z,n)) > Pp((0,0) % (z +1,n))

Beweis

(a) Wir definieren den Graphen G' := [[0,k — 1]] X [[m1, ms]]. Weiter sei
T:={0,m):me{my,....my}}U{(k—1,m):me {my,...,ma}}. Dann
ist der Bunkbed-Graph BB (G") isomorph zu dem Graphen Cay x [[0,m]]:
Denn man kann den Knoten ((x,n),0) von BB"(G") dem Knoten (x,n) und
den Knoten ((z,n),1) von BBT(G') dem Knoten (2k —x — 1,n) zuordnen.
Somit folgt die Behauptung aus Vermutung 1.5 .

(b) Sei Ay 1= {(0,0) «Corxlmumall(a p)} und By, ny i= {(0,0) «C2nx[mamall (54
1,n)}. Nach dem ersten Teil ist (fir my < 0 < n < mg) Pp(Am,m,) >
Py(Bos ) D Ay 1 {(0,0) 6555, )} und By, ey 1 4(0,0) 6207 (o
1,n)} fir m;y — —oo und my — 0o folgt aus der o-Stetigkeit von P,

P,((0,0) <% (2, n)) — Py((0,0) =%z + 1,n))
= lim_lim_P,((0,0) <@=lmmell(z n)) — Py ((0,0) ¢ mmal(e 41,n)) > 0

mi1——00 M2

Damit folgt die Behauptung. O

Man beachte, dass fiir £ = 1,2 der Graph G’ ein Outerplane-Graph ist
und nach einem in Unterabschnitt 2.1.2 vorgestellten bekannten Resultat die
Aussage fiir Cy x [[0,m]] und Cy x [[0,m]] gilt.

Natiirlich kénnte man, wie man in den vorigen Beweisen sieht, auch aus
Aussagen tiber Graphen G X [[my, ms]] Aussagen tber spezielle Bunkbed-
Graphen erhalten.

Ebenfalls kann man durch Grenzwertbetrachtung des Graphen [[0, k]] X Z
oder C}, X Z fiir k — 0o einen Zusammenhang zu dem Graphen Z? herstellen.
Wiirde die Vermutung 1.7 gelten, dann hétte man auch Vermutung 1.5 fir
den Fall d = 2. (unter Umstdnden mit < statt <) Es soll nun ein Beweis
angegeben werden fiir den Fall Cy. Der Fall [[0, k]] x Z geht analog.

Satz 1.17 Sei 0 < p < p.(Z*) und a,n € Ny:
Gilt fur alle k > a

P, ((0,0) “**(a,n)) > P,((0,0) =*%(a,n + 1))
Dann gilt:

P,((0,0) % (a,n)) > P,((0,0) % (a,n + 1))
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Beweis

Sei A,, das Ereignis, dass im Graphen Z* der Cluster C'(0) von (0,0) im
Teilgraphen [[—m,m|| X Z liegt. Weiter sei B,, das Ereignis, dass im Gra-
phen Copio X Z der Cluster von (0,0) eine Teilmenge von {(z,z) : = €
{0,....m}U{2m + 1,2m,...,m + 2}, z € Z} ist (also der Cluster enthdlt
keinen Knoten mit m + 1 in der ersten Komponente, bzw. der Cluster liegt
im Teilgraphen (Copia \ {m + 1}) X Z). Nach Wahl von A,, und B,, ist fir
alle n € N P,((0,0) <% (0,n) N Ap) = P,((0,0) «%>m+2(0,n) N B,,) (da der
Graph [[—m,m]| und der Teilgraph Cop, 1o \{m-+1} isomorph sind) und somit
18t

limsup | P,((0,0) &% (a,n)) — P,((0,0) <> +2X2(q n))|

meN

= lim sup | Pp({(0,0) ¢+ (a,n)} N A7) = P,({(0,0) >%+2*%(a,n)} N By, )|

<limsup P,(45,) + P,(B;,) = limsup2P,(A4;,) =0
meN meN

Man beachte, dass P,(BE,) = P,(AS) und wegen p < p.(Z*) P(AS,) — 0.
Analog kann man zeigen, dass

lim sup | P,((0,0) <% (a,n + 1)) — P,((0,0) :%2+2*%(q n + 1))| = 0.
meN

Somit folgt die Behauptung aus der Voraussetzung. 0

Bemerkung 1.18 Man sieht auch, dass aus Proposition 1.15 und Satz 1.17
folgt, wenn die Vermutung 1.3 fir alle endlichen (zusammenhdngenden) Gra-
phen richtig ist, dann gilt auch die Vermutung 1.5 fiir d = 2.



Kapitel 2

Bekannte Resultate

In diesem Kapitel soll auf bekannte Resultate iiber die Monotonie der Ver-
bindungsfunktion eingegangen werden. Die Beweise der einzelnen Resultate
sollen nur skizzenhaft in unterschiedlicher Ausfiihrlichkeit vorgestellt werden,
da man die Beweisideen spéter nicht mehr aufgreift. Die kompletten Beweise
findet man in den angebenden Literaturquellen.

27
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2.1 Bunkbed-Graphen

2.1.1 Hilfsmittel fiir die Bunkbed-Vermutung

Es gilt folgender Satz, der zeigt, dass man eigentlich nur Vermutung 1.4
zeigen muss:

Satz 2.1 [Lin11] Angenommen, die Vermutung 1.4 gilt fiir alle Minoren
G’ von G und alle T C V(G'), dann gilt die Vermutung 1.2 fir alle p € [0,1]
und T C V(G).

Die grobe Beweisidee von Satz 2.1 ist es, fiir jede Kante darauf zu be-
dingen, ob die Kante auf beiden Ebenen, iiberhaupt nicht oder nur an einer
Stelle (also nur oben oder unten) auftritt. Im Falle, dass die Kante tiberhaupt
nicht auftritt, kann man die Kante auf dem Graphen entfernen. Sollte die
Kante sowohl oben als auch unten auftreten, so kann man die beiden End-
punkte der Kante zu einem Knoten vereinigen. Insgesamt erhilt man also
einen Graphen, der nur Kanten entweder oben oder unten hat. Fiir Details
siche [Lin11].

2.1.2 Outerplane-Graph

Ein Outerplane-Graph ist ein planarer Graph?, dessen Knoten alle an der
AuBenregion angrenzen (aber nicht unbedingt alle Kanten). Nach [CH67] ist
ein Graph genau dann ein Outerplane-Graph, wenn der Graph keinen zu Ky
oder K33 homomorphen Teilgraphen enthalt.

In diesem Abschnitt soll der Beweis der Vermutung 1.2 fir Outerplane-
Graphen aus [Linll] grob nachvollzogen werden. Hier soll nur ein kurzer
Uberblick gegeben werden und die Beweisideen vorgestellt werden. Insbeson-
dere werden hier nicht Multigraphen berticksichtigt, die bei einer Kantenkon-
traktion auftreten konnen. Der Beweis basiert darauf, die Vermutung 1.4 zu
zeigen. D.h.

PP((U7 0) «PPE) (U, 0)|AT7 B) = PP((“? 0) <_><U’ 1)|AT7 B)

fiir Outerplane-Graphen zu zeigen. Nach Satz 2.1 gilt dann die Vermutung 1.2
fir Outerplane-Graphen (da jeder Minor von einem Outerplane-Graphen

!'Minoren sind Graphen, die aus einem Graphen entstehen, wenn man Kanten weglisst
oder zwei verbundene Knoten zu einem neuen Knoten vereinigt. Dabei wird die verbundene
Kante entfernt und der neue Knoten ist mit allen anderen Knoten verbunden, womit auch
die beiden urspriinglichen Knoten verbunden waren (auch Kantenkontraktion genannt).

2Dabei ist ein planarer Graph ein Graph, den man in der Ebene zeichnen kann, ohne
dass sich zwei Kanten kreuzen.
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auch ein Outerplane-Graph ist). Der Beweis in [Linl1] ist ein Widerspruchs-
beweis und basiert auf der Angabe eines minimalen Gegenbeispiels und der
daraus folgenden Konstruktion eines noch kleineren Graphen. Dabei ist ein
minimales Gegenbeispiel ein Graph G, fir den es eine Menge T' gibt, sodass
die Vermutung nicht gilt, aber fiir alle Minoren von G die Vermutung fiir alle
moglichen T gilt. (Hier wird nicht darauf eingegangen, dass auch Multigra-
phen entstehen kénnen.)

Um einen kleineren Graphen zu konstruieren, der ebenfalls ein Gegenbei-
spiel darstellt, werden unter anderem folgende drei Operationen benutzt:

1. Sind zwei Knoten z,y € V(G) beide in T' und miteinander verbun-
den, so wiirde es egal sein, ob die Kante {(z,0), (y,0)} oder die Kante
{(z,1), (y,1)} vorhanden ist. Somit kann man z und y zu einem neuen
Knoten vereinigen (und der vereinigte Knoten ist auch in 7).

2. Sei x € V(G) nicht gleich u oder v und auch nicht in 7" und deg(x) = 2.
Den Knoten x kann man dann nur fiir einen Weg zwischen (u,0)
und (v,e) (e € {0,1}) benutzen, wenn die beiden Kanten von z im
Bunkbed-Graph entweder beide oben oder unten vorhanden sind. Also
ist auch der Graph ohne z und den zugehoérigen Kanten ein Gegenbei-
spiel (Fall: beide Kanten sind nicht oben oder unten) oder der Graph,
der aus einer Kantenkontraktion mit einer Kante von x hervorgeht.
(Fall: beide Kanten oben oder unten)

3. Die dritte Operation ist etwas komplexer, da man sogar zu vier ver-
schiedenen Graphen reduziert, wovon mindestens ein Graph ein Ge-
genbeispiel ist. Bei dieser Operation hat man im Graphen drei Knoten
x,y,z € V(G), die jeweils paarweise eine gemeinsame Kante im Gra-
phen G haben (d.h. die Knoten z,y, z bilden ein Dreieck im Graphen
G) und deg(z) = 2. Dann vereinigt man zwei Knoten davon zu einem
Knoten (Fall: wenn nicht alle drei Kanten oben oder alle drei Kanten
unten im Bunkbed-Graphen sind) oder entfernt den Knoten z mit den
zugehorigen Kanten (Fall: alle drei Kanten sind oben oder alle drei
Kanten sind unten im Bunkbed-Graphen).

Nun zum Beweis: Zuerst wird gezeigt, dass so ein Minimalbeispiel eines Gra-
phen 2-fach zusammenhéngend ist. * Hierfiir wird gezeigt, falls es einen Kno-

32-fach zusammenhingend bedeutet, wenn man einen Knoten aus dem Graphen ent-
fernt, dieser immer noch zusammenhéngend ist.
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ten x € G gibt, sodass G\ x 4 nicht zusammenhéngend ist, ist einer der
beiden entstehenden Graphen auch ein Gegenbeispiel fiir die Vermutung.

Dadurch, dass G 2-fach zusammenhédngend ist, gibt es zwei disjunkte
Pfade zwischen u und v, die nur Kanten, die am Auflengebiet angrenzen,
benutzen (insbesondere ist dann der Grad von u grofer oder gleich 2).

Mit einer Sehne von G ist eine Kante gemeint, die nicht an das Auflen-
gebiet angrenzt. Nun zeigt man, dass es keine zwei Knoten x und y in G
gibt, sodass gilt: {z,y} ist eine Sehne von G und wenn man diese beiden
Knoten aus dem Graphen entfernt, dass dann u und v in unterschiedlichen
Komponenten liegen. (Insbesondere zeigt dies, dass keine Sehne u oder v als
Endknoten hat.) Dies wird bewiesen, indem man das Gegenteil annimmt,
d.h. es gibt eine Sehne {z,y}, deren Knoten z,y auf einem Pfad zwischen u
und v liegen, der nur Kanten aus dem Auflengebiet benutzt. Seien z1,..., 2,
die Knoten, die zwischen = und y auf diesem Pfad liegen (man kann auch
deg(z;) = 2 voraussetzen). Wenn ein z; € T, kann man die 2. Operation be-
nutzen, um ein Gegenbeispiel zu konstruieren. Ware m > 1 und {z1,..., 2},
so kann man mit der 1. Operation ein Gegenbeispiel konstruieren. Bei m = 1
und {z1,..., 2z, } kann man die dritte Operation benutzen, um ein Gegen-
beispiel zu konstruieren. Also kann man davon ausgehen, dass es eine solche
Sehne nicht gibt.

Eine direkte Konsequenz aus dem nicht Vorhandensein einer Sehne mit
den obigen Eigenschaften ist es, dass bei dem Graphen der Grad von u 2 ist.

Nun betrachtet man die beiden Knoten x, und ¥, die mit u verbunden
sind. Man kann nun bei der Kante {u, x,} bedingen, ob diese im Bunkbed-
Graphen nur oben oder unten vorhanden ist. Da der Grad von w gleich 2
ist, wirde man im Fall, dass die Kante nur oben vorhanden ist, die Kante
{u, x,} nicht benutzen kénnen (man kann sich leicht tiberlegen, dass u ¢ T
ist). Also kann man annehmen, dass {u, x, } nur unten vorhanden ist, da man
im Falle, dass die Kante nur oben vorhanden ist, einfach die Kante streichen
kann und somit einen kleineren Graphen erhélt. Analog kann man davon
ausgehen, dass {u,y,} nur unten vorhanden ist.

Wire {z,,y.} € E(G), so folgt aus der Outerplanitidt des Graphen und
der obigen Nichtexistenz einer Sehne, deren Entfernung zu einem Graphen
fithrt, bei dem u und v in unterschiedlichen Komponenten liegen, dass ent-
weder der Knoten x, oder y, den Grad 2 hat und man kann, indem man
diesen Knoten mit u vereinigt, ein kleineres Gegenbeispiel konstruieren.

Im Falle {z,y} € E(G) wiirde man ebenfalls darauf bedingen, ob {x,y}
nur oben oder unten vorhanden ist und wieder die Aussage iiber die Sehne

4Mit G \ z ist der Graph gemeint, der aus dem Graphen G entsteht, indem man den
Knoten z und alle zugehérigen Kanten entfernt.
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benutzen, um einen kleineren Graphen zu konstruieren, der ein Gegenbeispiel
darstellt.

2.1.3 Vollstandiger Graph

Wir vollziehen den Beweis in [HL19] von Vermutung 1.2 fir den K,,; nach:
Man wahlt O.B.d.A v = n. Klar ist, wenn v € T oder v € T, dann ist
P,((u,0) «+(v,0)) = P,((u,0) +>(v,1)). Ist u € T so folgt dies aus der Sym-
metrie des Bunkbed-Graphen. Im anderen Fall ist (v,0) <>(v,1) und somit
sind entweder beide Ereignisse erfiillt oder nicht.
Da man auch offensichtlich annehmen kann, dass u # v, kann man aufgrund
der Symmetrie des K, ; davon ausgehen, dass man u zuféllig (gleichverteilt
und unabhéngig von der Kantenperkolation) aus {0,...,n—1}\ T auswéhlt.
Wegen P,((u,0) <>(v,0)|Ar) = P,((u,0)<>(v,1)|Ar) fir v € T kann man
sogar davon ausgehen, dass man u zufillig (gleichverteilt und unabhéngig
von der Kantenperkolation) in {0,...,n — 1} wahlt.

Also reicht es, Vermutung 1.2 zu zeigen fiir v = n und u wird zufillig
(gleichverteilt) in {0,...,n — 1} gewahlt und (v,0) % (v,1) (d.h. v & T).

Sei O eine Konfiguration auf {{(x,e), (y,e)} : v,y € {0,...,n —1},e €
{0,1}} (d.h. auf alle horizontalen Kanten ohne Endpunkte in 7). Ohne das es
Verwirrung stiftet, soll mit O auch das Ereignis ausgedriickt werden, dass auf
den horizontalen Kanten (ohne Endpunkt n) die Konfiguration O vorliegt.
Somit ist die zu zeigende Aussage (Gleichung (1.1)) aquivalent zu:

XO: Pp((4,0) (v, 0)[Ar, O) P(O]Ar) > ZO: Pp((u,0) (v, 1)[ Az, O) P, (O] Ar)

Sei A := {(u,0)«>(v,0)} und B := {(u,0) «>(v,1)}. Weiter sei {c1,...,c,}
die Cluster von O bzgl. des Teilgraphen ohne die Knoten (v,0) und (v, 1).
Man beachte

P,(A|Ar,0) — P(B|Az,O)
- PP<<U’ 0) <+><Uv 1)7 (U’ 0) <+><U7 1)|AT7 O) - PP((”? 0) Hﬁ(vv O)v (U7 0) <+><U7 1)’AT7 0)7

da im Falle (v,0)<>(v,1) entweder sowohl A und B eintreten oder beide
Ereignisse nicht eintreten und {(u,0) «»(v,1)} = B¢, {(u,0) <+»(v,0)} = A°.

Man beachte, dass (u, 0) «»(v, 1) bedeutet, dass (v, 1) keine offene Kante zum
Cluster von (u,0) hat. Weiter bedeutet (v,0) <»(v, 1), dass es keinen Cluster
aus O gibt mit dem sowohl der Knoten (v, 0) als auch (v, 1) verbunden sind
(beachte v & T'). Das bedeutet, dass z.B. (u,0) <»(v, 1), (v,0) <»(v, 1) genau
dann auftritt, wenn es ein ¢ gibt, sodass (u,0) € ¢; und der Knoten (v, 1)
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nicht mit ¢; verbunden ist und fiir alle ¢« # j sind (v,0) und (v, 1) nicht
gleichzeitig mit ¢; verbunden. Damit ist:

Pp(AlAr, O) — Py(B|Ar, O)
= ZPP((uv O) S Ci|AT’ O)(PP((Uv 1) 74 CZ'|AT7 O) - P;D((U’ O) 76 Ci‘ATa O))
-Pp(=3i #j: (v,0) ~c¢j~ (v,1)|Ar, O)

Nun reicht es zu zeigen, dass dieser Ausdruck grofler als 0 ist. Da aufgrund
der Symmetrie sich die Wahrscheinlichkeit nicht d&ndert, wenn man simultan
(u,0) mit (u, 1) vertauscht und (v,0) mit (v, 1) hat man:

Pp(AlAzr) — Py (B|Ar)

= ;ZO: ((Z P((u,0) € ¢i|Ar, O) = Pp((u, 1) € ci|Ar, O))(Pp((v, 1) % ¢;|Ar, O)
= Pp((0,0) % ci| Az, 0)) Pyp(=3i # 7 : (v,0) ~ ¢ ~ (v, 1)|AT,O)) Py (O]Ar)

Sei #°c; die Anzahl der Knoten aus ¢; auf Ebene e. (insbesondere #'c; +
#2ci = #ci)

Man beachte, dass die Wahrscheinlichkeit, dass der Knoten (u,e) in ¢;
liegt, gleich £ ist. Weiter ist die Wahrscheinlichkeit, dass der Knoten (v, €)
mit dem Cluster ¢; nicht verbunden ist, gleich (1 — p)#“¢. Somit hat man

P((10) € A7, 0) — Py((ws 1) € ez, O)(Pul(v,1) # A7, 0) ~ Pyl(0,0) # ci Az, 0)
= EE Sy -

n n

Man erkennt leicht, dass dieser Ausdruck immer groBer gleich 0 ist . Damit
folgt auch nach oben P,(A|Ar) — P,(B|Ar) > 0.
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2.2 Gitter Z¢

Dass die Verbindungsfunktion bei dem Graphen Z¢ asymptotisch exponenti-
ell fallt, zeigt folgender Satz aus [CCCI1]:

Satz 2.2 Sei p < p.(Z%). Dann existieren zwei Konstanten K(p) > 1 und
a(p) > 0, sodass fir alle a € Z4" mit ||al|os < nT~¢ (wobei e > 0) gilt:

2 1

n4e

1 n a
P,((0,0) <+(a,n)) = K(p)W eXP(—@ - m

)1+ O(max{ -, 1)

Dabei ist ||| die Mazimumsnorm und a? das Skalarprodukt von dem Vektor
a mit sich selbst.

Der (umfangreiche) Beweis, der hier nur grob angedeutet wird, baut dar-
auf auf, dass man analog zur Verbindungsfunktion andere Arten von Ver-
bindungen betrachtet, die sich asymptotisch dhnlich verhalten (im subkriti-
schen Fall). E; soll die Menge aller Knoten sein, dessen letzte Koordinate
list. D.h. By := {(xy,...,2q) € Z% : 14 = I}. Bezeichne mit C' die Men-
ge aller Knoten, die iiber einem offenen Pfad mit 0 verbunden sind, dessen
Knoten (des Pfades) nur Knoten benutzt, deren letzte Komponente nur Ein-
trage zwischen 0 und n hat. D.h. C' := {y € 740U B y}. Sei y € E,,
mit m > 0. Betrachte die Ereignisse h, = {Ey N C = {0}, E,, N C = {y}}
und ¢, = {E,NC = {0}, E,NC ={y},VO <l <n:ENC > 2} (im
Wesentlichen sind es die Ereignisse, die nur Verbindungen in einem Streifen
betrachten und bei der ersten und letzten Ebene nur ein Knoten (im Streifen)
mit 0 verbunden ist. Dabei fordert man bei ¢, noch zusétzlich, dass bei jeder
Ebene (aufler der ersten und letzten Ebene) immer mindestens zwei Knoten
im Streifen mit dem Ursprung verbunden sind. Dann wird ausgenutzt, dass
zwischen den beiden Ereignissen die Beziehung

P(ham) = (1=p) 2“3 3 Plewy) P(habni)
i=1 (bi)e B,

gilt. Aus diesem Zusammenhang kann man eine Integraldarstellung von P(han))
herleiten:
1 dz 1 dk
S N B s——
p( ( s )) ( p) 27TZ Zn+1 [_W,W]d71 1 - 6(27 k’p) eXp( ] a) (27T>d_1
Dabei ist

&z, k;p) == (1 —p)~ 21 > Pulcam)z" exp(ik - a) (2.1)

acZ% ! neN
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eine Transformation von Pp(c(an)). Mit dieser Integraldarstellung leitet man
eine zu Satz 2.2 dhnliche Asymptotik fiir P(h(a ) her, wobei man die analyti-
schen Eigenschaften von é(z, k; p) benutzt. Indem man analog zu (2.1) Trans-
formation h(z, k;p) und 7(z, k; p) von P, (h(an)) bzw. von P,((0,0) <>(a,n))
definiert, kann man zwei Funktionen mit gewissen analytischen Eigenschaf-
ten finden, sodass

gilt. Bei der Herleitung werden noch andere Arten von Verbindungen als h,,
betrachtet. Indem man diesen Zusammenhang ausnutzt, kann man Satz 2.2
herleiten.

Mit Hilfe von Satz 2.2 hat [LPS15] folgenden Spezialfall von Vermu-
tung 1.5 bewiesen:

Satz 2.3 Es existiert ein p'(d), sodass fir alle p < p/(d) und n € N:
P((0,0) % (0,n)) > P((0,0) ™ (0.n +1))

Der Beweis besteht aus zwei Teilen. Zum einen wird gezeigt, dass es ein
no € N und py € (0,1) gibt, sodass die Gleichung 2.3 fiir alle n > ng und
p < po gilt. Dazu wird mit Satz 2.2 der Quotient von P((0,0) <+(0,n)) und
P((0,0) <>(0,n+1)) gebildet und gezeigt, dass dieser fiir ein p < py und n >
ng kleiner als 1 ist. Dann wird fiir n < ng eine Schranke fiir die p’s bestimmt,
sodass die Aussage fiir diese n’s gilt. Dazu wird eine Ungleichung benutzt,
die im Wesentlichen darauf basiert, dass fir p — 0 P((0,0) <»(0,n)) = p" +
O(p"™3) (es gibt nur einen Weg der Lénge n und alle anderen Pfade sind
mindestens n + 3 lang und die Anzahl der Pfade wachsen nur exponentiell in
der Lénge).



Kapitel 3

Quasi-Stationare Verteilungen

In diesem Abschnitt soll auf ein Ergebnis aus der Literatur zu Markovketten
eingegangen werden, welches spater benutzt wird (in Unterabschnitt 4.3.3),
um einen Teil des Beweises von Vermutung 1.8 zu fiithren.
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3.1 Totalvariation

In diesem Abschnitt sollen ein paar bekannte Definitionen und Eigenschaften
eingefiihrt werden, die man spéter benutzt.

Definition 3.1 (siche z.B. [Kle13]) Sei u ein signiertes Maf auf (2, A). Die
Totalvariationsnorm von v ist dann

|lullry = sup{p(A) — p(A°) : A € A}.

Bemerkung 3.2 Man sollte beachten, dass in der Literatur (insbesondere,
wenn man Wahrscheinlichkeitsmafle betrachtet und an der entsprechenden
Metrik interessiert ist) (z.B. in [LP17, Kapitel 4.1]) hdufig die Totalvariati-
onsnorm als genau halb so grof§ definiert wird, wie sie hier definiert wurde.

Hat man diskrete Wahrscheinlichkeitsmafle, so kann man die zugehori-
ge Metrik der Totalvariationsnorm wie folgt darstellen: (sieche z.B. [LP17,
Kapitel 4.1])

Lemma 3.3 Seien v und V' zwei diskrete Wahrscheinlichkeitsmafie auf (2, A)
und sei A :={x € Q:v(zx) >V (x)}. Dann gilt:

lv = Vllrv =3 (@) —v(@)| =23 v(z) -V (z) =2 ) v(z) - v(z)

e T€EA TEA®

Beweis
Sei B C ), dann gilt:

v(A) = V'(A) = ((A°) = V(A%) = D_(v(x) = V() = D (v(z) —V/(2))

Damit folgt wegen

v(A) = V'(A) = (W(A°) = V(A%) = D_(w(x) = V/(x)) = D (v(z) —/(x))

T€EA TEAC

das erste Gleichheitszeichen der Behauptung. Die anderen beiden Gleichheits-
zeichen folgen direkt aus der Tatsache, dass v und V' Wahrscheinlichkeits-
mafle sind. O
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Fiir einen Beweis im néchsten Abschnitt wird noch ein Resultat ge-
braucht, welches aus der Literatur bekannt ist (siehe z.B. [LP17, Kapitel
4.2]).

Lemma 3.4 Seien g und pe zwei diskrete Wahrscheinlichkeitsmafie auf
dem gleichen Raum ). Dann ist p mit

min(p (), (7)), T=y
P, Y) =\ (o) minfr ()12 @) (w2 )—min s (o@D Ly

Y

Sl —pellrv

eine Kopplung von py und po (d.h.: p ist ein Wahrscheinlichkeitsmafl auf
Q x Q und p hat die beiden Randverteilungen py und ps). Weiter ist

1
sl = paflry = > wlz,y).
T, YyeN,rHy

Beweis
Sei A= {x € Q: p(x) > pue(x)}. Man beachte fir v € A° und x # y ist

w(x,y) = 0. Analog ist fir y € A und x # y ist u(x,y) = 0. Damit ist wegen
Lemma 3.3

dooowlzy) =Y wlx,y)

z,y€QzAY €A ycAc
= Y () — o)) () — ()

%HILL1 - ILL2HTV xeAyeAc

= 3 (a(a) — ea(2) = 5l = gl
€A

Somit ist die letzte Aussage gezeigt. Da ebenfalls wegen Lemma 3.3

S e, x) = 3 min(u (@), pale) = 3 pale) + Y pue)

z€eQ z€Q €A rEA®

=1— Z (po(x) — pi(z)) =1— ;HM — pol|rv
rEAC

ist mit der vorigen Gleichung p ein Wahrscheinlichkeitsmaf.
Firxz e A ist

You(zy) = plzz)+ Y plz,y)

yen yeQzty
— (r (1) = pa()) (p2(y) — pa(v))
= #al )+y§c %||M1—M2||Tv

= p2() + pa () — po(x) = pu(2)
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und fiir v € A

dowzy) = plzx)+ D plzy) =m@)+ D, 0= pm(x)

yeQ yeQ,z#y yeQ,z#y

Also hat p die Randverteilung iy und analog behandelt man die Randvertei-
lung ps. O



3.2. QUASI-STATIONARE VERTEILUNGEN 39

3.2 Quasi-Stationare Verteilungen

Es soll sich in diesem Abschnitt auf Markovketten in diskreter Zeit mit end-
lichem Zustandsraum beschrinkt werden, da fir den weiteren Verlauf nur
solche Markovketten betrachtet werden. Die Aussagen in diesem Abschnitt
gelten auch fast immer allgemeiner, wie man in den zitierten Quellen nach-
lesen kann. Die Definition einer Markovkette wird als bekannt vorausgesetzt
wie sie z.B. in [Klel3] zu finden ist.

Ist Xo, X1,... eine Markovkette mit Zustandsraum FE, so bezeichne fiir
x € E bzw. fiir ein Wahrscheinlichkeitsmafl p auf £ mit P*(-) bzw. P das
Wabhrscheinlichkeitsmafl P(-| Xy = x) bzw. Y, cp p(z) P(-|Xo = 2).

Wichtig ist noch der Begriff quasi-stationdre Verteilung einer Markovket-
te, die wie folgt definiert ist (siehe z.B. [CMM13]):

Definition 3.5 Sei eine Markovkette Xy, X1, Xo,... mit einem endlichen
Zustandsraum E U {oo} gegeben, dabei ist oo ein absorbierender Zustand.
(d.h. P(X;41 = 00| X, =00) =1) Sei Z :=inf{n: X,, = co}.

(a) Eine Verteilung v auf E heifit quasi-stationdre Verteilung, wenn fiir
allet € N und alle A C E gilt:

PY(X, € A|Z > t) = v(A)

(b) Ezistiert eine Verteilung o auf E und gilt fir jedes x € E:

lim P*(X,, € -|Z >n)=a()

n—o0

so heifit o der Yaglom-Limes von X, X1, .. ..

Ein wichtiger Zusammenhang zwischen der quasi-stationéren Verteilung
und dem Yaglom-Limes zeigt folgendes Lemma (siehe z.B. auch [MV12]):

Lemma 3.6 Sei eine Markovkette Xy, X1, ... mit einem endlichen Zustands-
raum E U {00}, wobei co ein absorbierender Zustand ist und o der Yaglom-
Limes von X1, Xs, ..., dann ist o auch die eindeutige quasi-stationdre Ver-
teilung von Xo, Xq,....
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Beweis
Man kann dies einfach nachrechnen

. PY(X, ., =
ax) = lim P (Xppt=2x|Z >n+t) = Tim Px(<Z >+tn . t))
2y P*(X, = y) PY(X; = z) L 2y PY(X, =y|Z >n)PY(X; = x)

Tasee v PH(X, =) PY(Z > ) noe 5, PU(X, = y|Z > n) PY(Z > 1)
_ Xy a(y) PYX = x)
>y aly) PYUZ > 1)
_ PYX, = 2)
- PYZ >1t)

Also ist a eine quasi-stationdre Verteilung. Angenommen, [ ist eine quasi-
stationdre Verteilung, dann gilt

Blz) = lim f(x) = lim P(X, = z|Z > t)

o e =0) 5 By PUX = )
twoo PA(Z > 1) it 3, B(y) PY(Z > t)

iy 2B PUXe = 2|2 > ) PY(Z > 1)

e =, BW) PY(Z > 1)

_ i 2 S W) PIZ > 1) = a(z)
twoo 30, By) PY(Z > t)

Also gibt es nur eine quasi-stationdre Verteilung. 0

Folgende Aussage gilt nach [CV16] (dort nur fir stetige Markovketten
formuliert, aber der Beweis gilt analog auch fiir diskrete Markovketten).

Satz 3.7 Sei eine Markovkette X1, Xs,... mit einem endlichen Zustands-
raum E U {oo} gegeben, dabei ist oo ein absorbierender Zustand. Sei Z =
inf{n : X,, = oo}, ty € N, ¢ € (0,1] und v eine Verteilung auf E. Weiter
gelte fir allex € E, AC FE undt >ty

P*( Xy, € AlZ > t) > cv(A) (3.1)

Dann existiert eine Verteilung o, sodass fir alle Wahrscheinlichkeitsvertei-
lungen p auf E und t € N:

IPH(X, €12 > t) — (")l < 2(1— o)\ (3.2)

qilt. Die Verteilung « ist sogar die eindeutig bestimmte quasi-stationdre Ver-
tetlung der Markovkette.
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Beweis

Es wird gréfitenteils der angepasste Beweis von [CV16] wiedergegeben mit
Modifikationen, da es teilweise etwas einfacher in diskreter als in stetiger
Zeit geht. Der Beweis wird in mehreren Schritten gefihrt:

Zuerst der Zusatz der Eindeutigkeit:
Sei « so gewdhlt, dass diese die Ungleichung (3.2) fir jedes Wahrschein-
lichkeitsmaf$ p auf E erfillt. Somit gilt fir alle x € E und A C E:
[P*(X; € A) = a(A)| < [[P/(X1 €12 > 1) = a()||rv < 2(1 - )%
Wegen ¢ € (0,1] ist « ein Yaglom-Limes und nach Lemma 3.6 ist o die
eindeutige quasi-stationdre Verteilung.
Deshalb reicht es, im Folgenden nur die Fxistenz von o in Ungleichung

(3.2) zu zeigen.

1. Schritt: Zeige, dass man O.B.d.A. t; = 1 annehmen kann: SeiY) :=
Xty Somit gelten die Voraussetzungen des Satzes fir Yy, (mit zugeho-
riger Variable Z' = inf{k : Yy = oo} = inf{k : Xy, = oo} = inf{k :
7 < kto}) firto =1, denn Yy ist eine Markovkette und

P(Y;, € A|Z' > t) = P*(X,, € A|Z > tot) > cv(A)

Wenn der Satz fiir to = 1 gilt, dann gibt es eine Verteilung o auf E fiir
(Yt)teN mit

IPA(Y; € 12" > 1) — a(llrv < 21 - o).

Damit gilt fiirt =kto+1 mit 0 <l <ty undy € E:

PH(X, =
PY, =312 > 0) =
_ S PM(X =y X = b)) PH(X = b) PV =y) PH(X; =b)

YW PHZ >t Xi=0)PH(Xi=b)  ¥,PYZ > k)P*(X;=b)
D P M=y ey P (Yi=v)

— PV, = y|Z' > k)

S PUZ > k)L PY(Z > k)
(3.3)
wobei p' eine Verteilung auf E ist mit pt(b) := % fiir b € E.

Daraus folgt firt =kto+1 mit 0 <1 < ty:
| PH(X; € |2 > t)—a()llzv = || P* (Vi € |2’ > k)—a()llzv < 2(1—c)*
und da k = L%J folgt die Behauptung.
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2. Schritt: Zeige, dass fiir alle Wahrscheinlichkeitsmafle 1, und
o auf E und alle t € N gilt:

|| PF(Xy €-]Z >t) —P"(Xy €|Z > t)|lrv <2(1—¢) (3.4)

Aus der Voraussetzung (3.1) folgt fir alle t € N und alle Verteilungen
woauf E:

PHX1 e, Z>t PY(X, €2 >t
PH(X, €-|Z > 1) (X1€2>1)  Yiepn(@)P(X1€-,2>1)

PHZ>1)  Seer @) P(Z > 1)
 Yaep (@) PU(X1 €2 > ) PU(Z > 1) _ Sep px)er() P7(Z > 1)
Swcr 1(x) PT(Z > 1) = e (@) PU(Z > 1)

= ()

Somit gilt fiirt € N:

||P“1(X1 € |Z > t) —PM2(X1 c |Z > t)”TV

<|[P(Xy €2 > 1) —ev()llrv +[[P*(X0 € ]2 > 1) = ev()]lrv
<2(1-¢)

Dabei hat man verwendet, dass nach (3.1) P*(X; € |Z > t) —cv () >
0 ist und somit nach Definition von ||7y ist ||P*(Xy, € -|Z > t) —

cv()|lrv =1—c. (da P*(X; € A|Z > t)—cv(A) am grofsten ist, wenn
A=Q ist)

3. Schritt: Zeige, dass fiir alle Wahrscheinlichkeitsmafle p, und
o auf E und alle t € N gilt

||PM(X; € -|Z >t)—P*(X, €-|Z > t)||lrv <2(1 =) (3.5)
Definiere pL, (11, y) = PM(Xi—s = y|Z > T—3s), wobei ji ein. Wahrschein-

lichkeitsmafl auf E ist und y € B, s € Ng und t, T € N mit s <t <T.
Man beachte, dass wegen der Markov-Figenschaft fir s <t < u < T
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folgendes gilt:

S oL y)pe(6y, 2)

yek

-y

M Xpy=y,Z>T —8)PXyy=2,2>T—1)

yeE PYZ >T —s) PUZ >T—1)
=> PUXy s=y)PY(Z>T - )P/(Xy y=2,Z>T—1)
ey PYZ >T —s) PYZ >T —1)
Xt s—Y )
= Z PUXy v =2,Z>T—1)
yeEP”Z>T—S)
(X s=y,Xus=2,2Z2>T—5) T
- :pSu(M’Z)
y%:E PYZ >T —s) ’

(3.6)

Seien puy, e zwei beliebige Wahrscheinlichkeitsmafle auf E und 0 <t <
T'. Dann ist mit Lemma 3.3:

g (prs ) — oy (b2 v = D 106 (115 2) — Ph 4 (12, 2)]
zeFE

Durch Verwendung von (3.6) erhdlt man:

= Z ‘ Z p[:;t—l(,ula y)p;r_u((sy, z) — Z pg:t—l(“27y)p?—1,t(5y7 z)|

zeE yelkE yer

Nun setzt man \i(y) == p§,_, (i, y) und X\ sei die Kopplung aus Lem-
ma 3.4 von A1 und X\o, dann erhdlt man:

:Z| Z )\(191,?/2)]7?—1,1:(53/172)— Z A(y17y2)p?—l,t(5y27z)|

z€E y1,y2€E y1,y2€ L

= Z Ay, yo Z ’pt 1t Oy s 2 pt 1t(5y273)‘
Y1,y2€E zeE

= Z A1, y2) Z ‘pzll,t«;yla z) — pzll,t<5y27 z)|
y1,y2€E,y1#y2 2€E

Wieder mit Lemma 3.3, Lemma 3.4 und (3.4) und nach Wahl von A
erhdlt man:

= Z )‘<ylay2>H(ptTfl,t(5y17') _pg;lt< Y2 ')HTV

y1,92€E,y17y2

<Y My we)2(1 —¢) = Ipge— (11, ) = Py (p2, )| lv (1 —¢)
Y1,Y2E€E,y17Yy2
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Nun erhdlt man damit und nach (3.4) induktiv die Ungleichung (3.5):

| PM( Xy €-|Z>T)—P"*(Xr€-|Z>T)|rv

= |lpor (11, ) = por(h2, lrv

< Hpg,:r—ﬂ/ila ')>pg:T—1(:u2a MNrv(1=c)

< ||pg,T—2(Mla ) — pE)F,T—z(M% v (1 — 0)2

< < lpga (s ) = poa(pz, v (L= )7 < 2(1— o)

Abschluss
Man beachte, dass analog zu (3.3) ist
P (X, €-1Z>t+5s) =P (X, €-|Z>t)

mit passendem p**. Also hat man nach (3.5):

=||PY(X; €|Z>t) =P (X, €-1Z > t)|]rv < 2(1 —¢)f
Somit bildet P*(X; € |Z > t) fir t — oo eine Cauchyfolge. Damit
existiert ein o*(-) = limy_,o P*(X; € +|Z > t). Man beachte o® ist
wieder ein Wahrscheinlichkeitsmaj. Wieder folgt aus (3.5):
lo® = a¥llzy = || Jim PE(X, €12 > £) - lim PY(X, €12 > )y
= tllm [|PY(X; € |Z >t)—PYX; €|Z>1)]|lrv < tlim 2(1—¢)' =0

Also ist o = oY und o := o® ein Yaglom-Limes. Also nach Lemma 3.6
eine quasi-stationdre Verteilung. Damit ist nach (3.5)

[|PM(X; €-|Z >t)—al|=||P"(X, €-Z >t) — P(X; € -|Z > t)]|
<2(1—2¢)f n



Kapitel 4

(1. X Z und verwandte Graphen

In diesem Kapitel geht es darum, den Graphen Cj x Z (und &hnliche Gra-
phen) genauer zu untersuchen. Im ersten Abschnitt werden Ungleichungen
zwischen der erwarteten Anzahl von infizierten Knoten auf den einzelnen
Ebenen hergeleitet. Im zweiten und dritten Abschnitt werden Aussagen iiber
das Monotonieverhalten der Muster auf den einzelnen Ebenen gemacht. Da-
bei wird im zweiten Abschnitt fiir kleine Graphen u.a. mit Hilfe des Compu-
ters das Monotonieverhalten der Muster auf den einzelnen Ebenen tiberpriift.
Im dritten Abschnitt wird u.a. ein Beweis von Vermutung 1.8 fiir die Graphen
Cy X Z (und dhnliche Graphen) angegeben.
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4.1 Erwartungswert der Anzahl infizierter Kno-
ten

Im Folgenden betrachten wir den Graphen G x Z, wobei wir haufig fiir G
sowohl O}, als auch Z4~! zulassen.

In diesem Abschnitt soll die Anzahl der mit 0 verbundenen Knoten auf
den verschiedenen Ebenen verglichen werden. (vgl. Vermutung 1.6)

Damit man die Ergebnisse, die in diesem Abschnitt folgen, fiir etwas all-
gemeinere Graphen als Cj, x Z oder Z® formulieren kann, fithren wir folgenden
aus der Literatur bekannten Begriff (siche z.B. [Nor94]) ein:

Definition 4.1 FEin Graph heifit (knoten-)transitiv, wenn es fir alle x,y €
V(Q) einen Graphautomorphismus ® gibt mit ®(x) = y.

Wenn im Folgenden von transitiven Graphen gesprochen wird, sind immer
knoten-transitive Graphen gemeint.

Beispiel 4.1 Man sieht leicht, dass die Graphen Cy, Kj, und Z%' transitive
Graphen sind.

Bemerkung 4.2

1. Im Prinzip bedeutet Definition 4.1, dass bei einem transitiven Graph,
der Graph von jedem Knoten ausgehend gleich aussieht. Insbesondere
verdndern sich Aussagen tber die Verbundenheit mit einem bestimm-
ten Knoten fiir die Graphen nicht, wenn wir einen anderen Knoten
betrachten.

2. Wir halten noch eine Eigenschaft von transitiven Graphen fest, welche
gleich im Beweis von Satz 4.3 benutzt wird: Bei transitiven Graphen
gibt es fir alle x,y,y € V(G) genauso viele Automorphismen, die x
auf y abbilden, wie Automorphismen, die x auf iy’ abbilden. Denn sind
® und O zwei unterschiedliche Automorphismen, die x auf y abbilden
und ist U ein Automorphismus, der y auf iy’ abbildet, dann sind ® o ¥
und ®' oW zwei unterschiedliche Automorphismen, die x aufy’ abbilden.

Zuallererst wird gezeigt, dass es im Durchschnitt immer mehr Knoten auf
der Ebene 0 gibt als auf jeder anderen Ebene. Spéater wird Vermutung 1.6
fiir kleine p gezeigt, wobei das p natiirlich von dem Graphen G abhangt.

Zur Erinnerung: Z; ist die Zufallsvariable aus Definition 1.4. Wir haben
folgenden Satz:
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Satz 4.3 Sei G ein zusammenhdngender transitiver Graph, dann ist fir p <

pe(G X Z):
E[Z,] < E[Zo],¥n > 0

und

7
El=2 <1,V¥n>0
[ZJ Y

Beweis
Um den Beweis durchzufiihren, fihren wir folgende Begriffe ein:

Im Folgenden soll eine (endliche) Komponente eine Menge von Knoten
eines endlichen zusammenhdngenden nicht leeren Teilgraphen von G X7 sein.
Sei Aut(G) die Menge der Graphautomorphismen auf G. Wir definieren auf
der Menge der Komponenten folgende Aquivalenzrelation ~:

K~ K' & 3% € Aut(G),b € Z mit((z,y) € K & (®(z),y +b) € K')

Mit einer Komponentenform bezeichnen wir eine Aquivalenzklasse beziiglich
~. Die zu einem Komponenten K gehérige Komponentenform (Aquivalenz-
klasse) wird mit [K| bezeichnet.
Wir sagen, in einem Graphen mit Kantenperkolation liegt im Knoten x die
Komponentenform [K| vor, falls es ein K’ € [K| gibt, sodass C(z) = K'.
Bezeichne mit C' die Komponentenform im Punkt 0. Da p < p.(G X Z)
ist, ist die Wahrscheinlichkeit, dass es einen unendlichen Cluster gibt, gleich
0 und somit hat man

E[Z] = [X%E[Zi‘c = [K]]P(C = [K]) (4.1)

Fiir jede Komponente K definieren wir eine Folge (¢;)ien, wie folgt. Wihle
aus [ K] eine Komponente K' aus, die einen Knoten aus Eqy hat, aber keinen
Knoten aus E_,. Definiere dann ¢, == #(E, N K') (¢ ist also die Anzahl
von Knoten der Komponenten in der l-ten Zeile, wobei fast alle c; gleich O
sind). Sei T so gewdhlt, dass es ein ® € Autg gibt mit C(0) = {(z,y) €
GXZ:(Px),y+T) e K'}, also die Zeile des Clusters von 0, in der der
Nullpunkt liegt. Aufgrund der Invarianz des Wahrscheinlichkeitsmafes P,
ist bei gegebenem C = [K] die Position der 0 in C gleichverteilt (siehe auch
Bemerkung 4.2), d.h. P,(T = m|C = [K]) = % Liegt der Knoten 0 in

Zeile m, so gibt es ¢y Knoten auf Ebene n. Somit hat man:
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o0

E[Z,|C = ZOIE [Z,|C = [K], T =m|P(T =m|C = [K])
e e B sy (5e) (59)
Seo e mzo n- S = ElZ0lC = K]

Dabei haben wir bei der ersten Ungleichung die Cauchy-Schwarz Ungleichung
benutzt. Da es natirlich auch Komponentenformen gibt, fir die sogar die
echte Ungleichung gilt (2.B.: Fir K = {0} ist E[Zy|C = [K]] = 1, aber
E[Z,|C =[K]] = 0 fir n > 0), erhdlt man aus (4.1) insgesamt E[Z,] <
E[Z].

Nun betrachten wir die zweite Ungleichung: Mit der fast gleichen Argu-
mentation wie oben erhdlt man:

é - o > Cm+n Cm o > Cm+n
E{Zow_[K]} _mz::O Cm .G mz:o C; =1
und E[2] = Y E[2:|C = [K]] P(C = [K]) < 1 0

Bemerkung 4.4 Leider ldsst sich der Beweis nicht auf den Vergleich ande-
rer Ebenen erweitern, da im Allgemeinen E[Z,1|C = [K]] £ E[Z,|C = [K]]
ist, wie man 2.B fir G = Cs und K = {(0,0), (1,0),(2,0), (1,1),(0,2), (1,2)}
sehen kann: Zy ist unter der Bedingung C = [K| nur ungleich 0, wenn der
Nullpunkt in der untersten Zeile der Komponente K liegt. Da in der unters-
ten Zeile 3 der 6 Knoten liegen und in der zweiten Zeile 2 Knoten liegen, hat
man:

E[Z,|C = [K]] = 22 _1

7 ist unter der Bedingung C' = [K| nur ungleich 0, wenn der Nullpunkt in
einer der beiden unteren Zeilen liegt. Damit hat man:
3 1 5
ElZ,|C =[K]|]==14+=-2= -
Zlo= K] =14 2=
Somit ist hier E[Z,|C = [K]] > E[Z,|C = [K]].

Es sollen nun die einzelnen Ebenen verglichen werden. Dazu wird eine
Aussage, wie sie in [CCC91] zu finden ist, benutzt, die aber schon als Variante
in [Hamb57] auftaucht:
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Proposition 4.5 Sei G ein zusammenhdngender transitiver Graph, dann
gilt im Falle p < p.(G X Z):

(a) E[Zn] E[Zl] > E[Zn—i-l]

(b) pE[Z,]E[Zo] = E[Zp 1]

In [CCCI1] wurde (a) (fiir Z%) mit der Hammersley-Simon-Ungleichung
bewiesen, welche meistens mit der BK-Ungleichung bewiesen wird. Hier wird
ein etwas anderer Beweis angegeben, der die BK-Ungleichung nicht benutzt:

Beweis

Sei Y, die Menge der mit dem Knoten O durch einen offenen Pfad, der kom-
plett in G x ((—oo, n]] liegt, verbundenen Knoten. D.h. Y, = {x € V(G X Z) :
x (ool Y Man beachte, dassY,, fast sicher nur abzihlbar viele Werte
annimmt. (Fast sicher ist der Cluster von 0 endlich. Fir jedes m € Ny gibt
es nur endlich viele Moglichkeiten, sodass genau m Knoten mit dem Punkt
0 verbunden sind )

Fir A C V(G xZ) und a € A soll mit G, 4 der Teilgraph von G X Z
mit den Knoten aus V(G x Z)\ AU {a} und allen Kanten aus E(G x 7Z),
die keinen Knoten in A\ {a} haben (d.h. E(G4a) = {{u,v} € E(G X Z) :
u,v € V(G x Z)\ AU{a}}) bezeichnet werden.

Man beachte, wenn Y, = A ist, dann geht jeder Pfad, der einen Knoten
auf der Ebene n+1 mit dem Punkt 0 verbindet, durch einen Knoten aus A,, :=
ANE,. SeiU, mit a € A, die Anzahl der mit dem Knoten a verbundenen
Knoten auf der Ebene E,.1 im Graphen Gqa. Da E[U,|Y,, = A] kleiner
gleich E[Z,] ist(da man einen kleineren Graphen betrachtet und der Graph
symmetrisch in der Héhe ist und G ein transitiver Graph ist), hat man:

ElZulYa = A1 < Y EULY, = A] < #A,E[Z)] (4.2)

aGAn

Sei U. fiira = (x,n) € A, die Anzahl mit dem Knoten (x,n+1) verbundenen
Knoten auf der Ebene E, 1 im Graphen Gz n41)y, - Analog ist E[U.|Y, = A]
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kleiner gleich E[Zy] (da man ebenfalls einen kleineren Graphen betrachtet)

(z,n)EA,

= Z E[U(Im,n)1{(Ifn)N(mfn+1)}1{Y”:A}]

()ed P(Y, = A)
S E[1 et U 0y Liva=a}] (4.3)
a (e P(Y, = A)
= > P(n)~ (z,n+1)E[U,,,) |V, = A
(z,n)€A,
< #A.pE[Z]

Dabei wurde beim zweiten Gleichheitszeichen benutzt, dass U ]_{y —ay und
L{@n)~(@n+1)} unabhdngig sind, da U(;m)l{y —ay nicht vom Zustand der Kan-
te {(z,n), (x,n + 1)} abhdngt. (Y, hingt nur vom Zustand der Kanten des
Graphen G x ((—oo, n]] und Uy, ) nur vom Zustand der Kanten im Graphen
Gon+1),y,, derim Fall (x,n) € Y,, nicht die Kante {(z,n), (z,n+1)} enthdlt,
ab.)

Sei Z,, .= Y,NE,, die Anzahl der Knoten auf Ebene n, die mit dem Knoten
0 in dem Graphen G x ((—oo,n]] verbundenen sind. Mit (4.2) erhdlt man
Aussage (a):

n+1 Z Z E n+1|Y A] (Yn:A)

1= OA#An 7

<ZZ P(Y, = A)

i=0 A #An=i
= E[Z1) E[Z,] < E[Z:]) E[Z,]

Wobei bei der letzten Ungleichung verwendet wurde, dass Z, < Z,, da Z,
sogar die Anzahl aller mit dem Knoten 0 verbundenen Knoten auf Ebene E,
und nicht nur die Anzahl der verbundenen Knoten im Graphen G x ((—o0,n]]
auf Ebene E,, ist. Analog erhalt man mit (4.3) auf die gleiche Weise Aussage

(b). O

Bemerkung 4.6 Die Aussage gill auch, wenn man statt Z,, die im Beweis
eingefihrte ZV Z, betrachtet.

Wir nutzen nun dies, um ein py zu bestimmen, sodass Vermutung 1.6
fir alle p < pp gilt. Dazu wird folgende Abkiirzung eingefiihrt, die man im
Beweis des nédchsten Satzes verwendet:
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Definition 4.7 Sei ng(m) die Anzahl der selbstvermeidenden Pfade (also
alle Pfade, die jeden Knoten nur einmal enthalten) des Graphen G X Z der
Linge m, die in 0 starten und in E; enden.

Es gibt folgende Moglichkeit die Z,,’s zu vergleichen:

Satz 4.8 Sei G ein zusammenhdngender transitiver Graph mit mazximalem
Grad d, dann gilt fir den Graphen G X Z und p < -~

d+1”
(d+2)p
E[Z, ———— E[Z,
Insbesondere ist fir p < ﬁ:
E[Z,.1] < E[Z,]

Ist G ein endlicher Graph mit k Knoten, dann gilt auch:
E[Z, 1] < pkE[Z,]

und fiir p < %
E[Z,.1] < E[Z,]

Beweis
Sei G ein transitiver Graph mit mazximalem Grad d. Dann hat der Graph
G x Z einen mazimalen Grad d + 2.

Es ist ng(m) < (d+2) - (d+1)™"1/2 (Man hat im ersten Schritt d + 2
Modglichkeiten fir den ersten Knoten des Pfades, danach mazimal (d + 1)
Moaglichkeiten fiir den ndchsten Knoten des Pfades. Man kann es noch durch
2 teilen, da aus Symmetriegrinden genauso viele Pfade in E_y wie in E;
enden.) Man beachte fir m > 4 gilt sogar die echte Ungleichung (da dann
nicht jeder Pfad ein selbstvermeidender Pfad ist). Da die Wahrscheinlichkeit
fiir einen offenen Pfad der Linge n p™ ist, und die Anzahl der auf Ey infi-
zierten Knoten kleiner gleich der Anzahl der vorhandenen Pfade ist, die in
E. enden, hat man fir p < —:

dr1-
0 d+2 & d+2 (d+1)p
< m "=
(d+2)p

T 2-2(d+1)p
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Mit der Proposition 4.5 (a) (E[Z,41]) < E[Z,]|E[Z1]) folgt nun die erste Aus-
sage (mit dem gleichen Argument, wie oben E[Z,] < oo, sieht man auch, dass

pc(G X Z) S ﬁ ’L.St). Da

(d+2)p 2
— = <1 d+4)p <2 < —
Yoty SO BIrIrs2eps oy

und somit E[Z,] <1 fir p < 32 hat man in diesem Fall B[Z,,1] < E[Z,].

Ist G ein endlicher Graph mit k Knoten, dann kann man Proposition 4.5
(b) verwenden und erhdlt (da Zy < k)

ElZ110] < pE[Z,]E[Z] < pE[Z,]k

Somit ist offensichtlich auch fir p < +: E[Z,41] < E[Z,] O

Bemerkung 4.9 Fir endliche Graphen sollte man tberprifen, welche der
maglichen Abschdtzungen besser ist. So erhdlt man z.B. fir Cy die Unglei-
chung E[Z,] > E[Z,.1] mit der ersten Abschitzung fir p < + und mit der
zweiten Abschdatzung fiir p < % Daher ist in diesem Fall fiir k < 4 die zweite
Abschdtzung besser und fiir k > 5 die erste Abschdtzung.

Man kann noch fir etwas grofere p (mit dem Computer) zeigen, dass
E[Z,41] < E[Z,]. Wir zeigen dies am Beispiel des Graphen Z* = Z x Z. Das
gezeigte Verfahren lasst sich aber analog fiir alle transitiven zusammenhan-
genden Graphen mit maximalem endlichen Grad iibertragen. Sei

m—1 o0
flm) =3 m(n)p",  g(m):= > nz(n)p"

n=1 n=m
Nach dem obigen Beweis gilt E[Z;] < f(m) + g(m). Wir wollen nun f(m)
und g(m) abschéitzen: Mit dem Computer kann man Werte von nz(n) fir
kleine n bestimmen (den Quelltext findet man im Anhang): Dazu wurden
mit einer Breitensuche alle selbstvermeidenden Pfade der Lénge n berechnet
und geschaut, ob diese in einem Punkt von F; enden.

In der folgenden Tabelle sind die berechneten Werte aufgefiihrt:
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~n | mz(n) n | nz(n)

1] 1 12 [ 24052

2| 4 13| 60974

3| 8 14 | 156936
4 16 15 | 399892
5| 38 16 | 1032920
6| 96 17 | 2642676
7 | 236 18 | 6844452
8 | 588 19 | 17567752
9 | 1468 20 | 45593776
10 | 3732 21 | 117334038
11 | 9398 22 | 305018140

Somit kann man fiir kleine m f(m) konkret ausrechnen. Sei o(n) die
Anzahl der selbstvermeidenden Pfade der Lénge n des Graphen Z2. Da o(n)
nicht nur grofler als nz(n) ist, sondern da man sogar die Halfte der Pfade
wieder aus Symmetriegriinden ignorieren kann, hat man nz(n) < os(n)/2.
Offensichtlich besteht ein selbstvermeidender Pfad der Lange n; + ns aus
einem selbstvermeidenden Pfad der Lange n; und die restlichen n, Knoten
werden jeweils aus maximal 3 moglichen Knoten ausgewéhlt. Damit oy(ng +
nge) < o9(nq)3". Damit gilt fir g(m):

> n = 02(m)3"T™ - og(m)p™ 1
sy < o < 5 P Ay

Da 09(23) = 17266613812 (siche z.B. [OEI19]), erhilt man mit dem Com-
puter, dass fiir p < 0.2721 f5(23) + g2(23) < 1 ist. Somit ist fiir p < 0.2721
E[Z,] > E[Z,+1], welches eine deutlich bessere Schranke ist als die Schranke
aus 0.2 aus Satz 4.8.

Eine andere Moglichkeit, eine bessere Abschétzung zu erhalten, ist fol-
gende: Sei Y=™ die Anzahl von Punkten auf £, die mit 0 mit einem offenen
Pfad der Lange m oder kleiner verbunden sind und Y~ die Anzahl der Kno-
ten auf E;, die mit einem offenen Pfad der Lange grofler als m verbunden
sind (aber nicht mit einem offenen Pfad kleiner oder gleich m). Es gilt:

Ep[Zl] = Ep[ygm] + EP[Y>m]

In folgender Tabelle ist E[Y="] fiir kleine m ausgerechnet (leider ist dies
aufwendiger als 7,2(n) auszurechnen, deshalb sind nur die ersten 6 Werte
aufgelistet):
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E[Y=m]|

p

p+ 4p* — 2p

p + 4p? + 8p® — 4p* — 4p® — 3pb + 3p”

p+4p? + 8p® + 12p* — 12p° — 17p% + Tp” — 6p% + 20p° — 10p'°

p + 4p? + 8p® + 12p* + 26p° — 49p° — 21p” — 22p8 + 68p” — 23p!°
_|_51p11 _ 7p12 _ 101p13 + 46p14 + 48]915 _ 40p16 + 8p17

6 | p+4p? + 8p® + 12p* + 26p° + 47p° — 117p" — 142p8 + 132p° — 21p'°
+243ptt — 141p'2 + 207p" — 318p't — 272p'® 4 14pt® + 856p'7
—320p'8 — 444p™° — 42p?° + 628p?! — 484p?% + 152p?3 — 18p**

T W N B

Die Tabelle wurde wie folgt mit Hilfe eines Programms erstellt. Das kom-
plette Programm befindet sich im Anhang, hier soll nur die Funktionsweise
erlautert werden:

Sei A; das Ereignis, dass es einen Pfad der Lénge < n gibt, der in (i, 1)
endet. Man berechnet P(A;) fir i € {—(n —1),...,n — 1} und erhilt dann
damit E[Y="] = P(A_,41) + ... P(4,_1). P(A4;) kann man einfach mit der
Siebformel von Poincaré und Sylvester ausrechnen:

Dazu berechnet man alle selbstvermeidenden Pfade der Léange < n, die
in (7,1) enden. (Dazu macht man eine Breitensuche und speichert alle Pfade,
die in maximal n Schritten in (i,1) enden) Angenommen, es gibt m; Pfade
der Lange < n, die in (i,n) enden . Sei dann B;; das Ereignis, dass der j
te Pfad offen ist. Es ist A; = Uj%; B;;. Um P(A;) nun mit der Siebformel
auszurechnen, muss man wissen, welchen Wert P(N;cc B ;) fiir jedes C' C
{1,...,m;} hat. Es gilt P(N;cc Bi,j) = p®, wenn die Anzahl der gemeinsamen
Kanten von den Pfaden a ist.

Schétzt man E[Y %] wie in (4.4) durch (’(77)’7@ ab, so erhilt man (nach
[OEI19] ist o(7) = 2172) E[Z,] = E[Y=¢] + E[Y>%] < 1 sicherlich, wenn
p < 0.252. Dieses Ergebnis ist etwas schlechter als das vorige Ergebnis, aber

man hat auch nur Pfade der Lange < 6 genau betrachtet.

Wir erwahnen noch in diesem Abschnitt, dass (fiir beliebige endliche zu-
sammenhéngende Graphen) man relativ leicht zeigen kann, dass die Anzahl
der mit dem Nullpunkt verbundenen Knoten auf einer Ebene bei zwei be-
nachbarten Ebenen sich nicht so stark unterscheidet (fir grofie p). Dies ist
auch im Hinblick der vorigen Betrachtung interessant, die nur sinnvolle Aus-
sagen fiir kleine p macht.

Proposition 4.10 Sei G ein Graph mit k € Ny Knoten, n € Ny und Z €
{Z, ((—o0,m]], [[m,00))} (wobei m im zweiten Fall gréfier als n+ 1 und im
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dritten Fall kleiner oder gleich 0 ist) mit p € (0,1), dann gilt:

1
E [ZGXZ] S E [ZGXZ] S E [ZGxZ] k

pk n+1 n+1
Beweis
Sei A, das Ereignis, dass zwischen der n-ten und n + 1-ten Ebene alle ver-
tikalen Kanten offen sind. Trivialerweise ist dann Z,14, = Zn111a4,, denn,

wenn A, eintritt, ist jeder Knoten von G auf der n-ten Ebene mit dem ent-
sprechenden Knoten auf der n + 1-ten Ebene verbunden.

Sei Zy ., die Anzahl der auf der Ebene n + 1 mit dem Knoten 0 ver-
bundenen Knoten, wenn alle vertikalen Knoten zwischen der Ebene n und
n+ 1 offen wdren. Insbesondere ist Z) ., unabhdingig von A, (da die Zufalls-
variable und das Ereignis auf unterschiedlichen Kanten definiert sind)und
Zn iy 2 Zngr und nach Definition von 27 ist Z} 14, = Zyip1la,. Damit
hat man insgesamt:

B2 > B k] = B il
- E [ n+1 ] ]E [ n+1]P (ATL)
> EP[ZnJrl] ( ) [ n+1]pk

Die erste Ungleichung ist eine echte Ungleichung, da k > 1 ist. Analog erhdlt
man E,[Z, 1] > E,|Z,]p* O

Alternativ hdtte man den Beweis auch mit der FKG-Ungleichung (siehe
Fufinote auf Seite 13) fithren konnen, welche in unserem Fall direkt E,,[Z,,11] >
E,[Zn41] Ep[la,] geliefert hatte.

Weiter sollte noch erwahnt werden, wiirde man nicht nur die Anzahl der
Knoten, die mit dem Nullpunkt auf einer Ebene verbunden sind, betrach-
ten, sondern die Anzahl der Knoten auf einer Ebene, die mit der Nullebene
verbunden ist, so ist die Frage der Monotonie einfach zu beantworten:

Definition 4.11 Sei Z, die Anzahl der auf der Ebene n mit der Ebene 0
verbundenen Knoten. D.h. Z, = #{x € E,|Jy € Ey : © > y}.

Satz 4.12 Sei G ein endlicher oder unendlicher Graph und p < p.(G x Z),
dann gilt fir den Graphen G X Z:

Ey[Zn] > EplZns1]
Ist G ein endlicher Graph mit k Knoten (wobei k > 1 ist), so gilt sogar:
Ey[Z)(1 — (1= p)*) > Byl Zns]
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Beweis

Sei BY := {(z,0) <> E;} (also das Ereignis, dass der Knoten (x,0) mit der
i-ten Ebene verbunden ist.). Tritt das Ereignis By, | ein, so gibt es einen
offenen Pfad von (z,0) nach der n + 1-ten Ebene. Damit gibt es auch einen
offenen Pfad von (x,0) nach der Ebene der Héhe n. Somit ist BL,, C BZ
und damit auch Py(Br, ) < P,(BE). Definiere nun A? = {(x,i) < Ep}
(also das Ereignis, ob der Knoten x auf Ebene i mit der 0-ten Ebene ver-
bunden ist). Da das Wahrscheinlichkeitsmafl P, unter Spiegelungen und ver-
tikalen Verschiebungen invariant ist, folgt P,(A¥) = P,(BY). Somit ist auch
P,(A?. 1) < P,(A}) und damit

A

= 2 P4 > ) Pp(Any) = Ep[Zn]

zeV(Q) zeV(G)

Fiir endliche Graphen mit k Knoten kann man dies noch besser abschdt-
zen: Sei C,, das Ereignis, dass zwischen der n-ten und n+1-ten Ebene mindes-
tens eine vertikale Kante offen ist. Man beachte, dass P,(C,) =1— (1 —p)*.
Die Ereignisse B und C,, sind unabhdngig, da diese auf unterschiedlichen
Kantenmengen definiert sind. Damit ist

P (Bz-i-l) < Pp(Bﬁ Nne,) = Pp<Bz) Pp(Cn) = Pp(Bﬁxl - (1~ p)k)

Wobei die Ungleichung eine echte Ungleichung ist, da das Ereignis moglich
ist, dass nur ein Knoten auf der n-ten Ebene mit dem Knoten (x,0) verbun-
den ist und es nur eine vertikale Kante zwischen der n-ten und n + 1-ten
Ebene gibt, dessen Endknoten auf der n-ten Ebene ein anderer Knoten als
der auf der Ebene n verbundene Knoten ist. Damit ist auch (siehe oben)

Py(Af) < Pp(A0) (L — (1 = p)*) und By[Z,] > Ep[Zpna](1 — (1 —p)¥) O

Bemerkung 4.13 Fiir alle Graphen GxZ gilt offensichtlich B[ Z,] < E,[Z,).
Man beachte, dass fir Cy x Z (oder auch fir alle endliche Graphen wie in
Definition 4.1) trivialerweise die erwartete Anzahl von verbundenen Knoten
auf einer Ebene mit einem bestimmten Knoten auf der O0-ten FEbene gleich
ist, egal, welchen Knoten man betrachtet. Somit ist B[Z,] < kE,[Z,] und
msgesamt

E,|Z,) < E,[Z] < kE,[Z,]

Zum Abschluss dieses Abschnittes soll noch angemerkt werden, dass auch
eine Aussage analog zu Proposition 4.10 fir die Zufallsvariablen Z,, gilt:
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Proposition 4.14 Sei G ein Graph mit k € Ns; Knoten und Z € {Z,
((—o0,m]], [[m,00))} (wobei m im zweiten Fall grofer als n+1 und im dritten
Fall kleiner oder gleich 0 ist) mit p € (0,1), dann gilt:

1 A A
— Ep[Znia] > EpZ]

p

Der Beweis funktioniert genauso wie in Proposition 4.10. Man beachte

auch, dass man mit Satz 4.12 E,[Z,] nach unten mit ﬁEp[ZnH] ab-
schétzen kann.



58 KAPITEL 4. Ck x Z UND VERWANDTE GRAPHEN

4.2 () x Z fiir kleine k

In diesem Abschnitt geht es darum, fiir kleine Graphen die Vermutung 1.8
zu zeigen. Dies soll in diesem Abschnitt hauptsidchlich durch Berechnung
mit dem Computer gezeigt werden. Im néchsten Abschnitt wollen wir ein
Ergebnis ohne Hilfe eines Computerprogramms fiir alle Graphen mit einer
bestimmten Eigenschaft erhalten.

Man beachte, dass man fiir den Graphen Cy x Z sehr leicht die Verbin-
dungsfunktionen aller Knoten mit dem Knoten 0 vergleichen kann:

Proposition 4.15 Fir p € (0,1) gilt:

P(0 <% (1,n+ 1)) < P(0 <% (0,n + 1))
< P(0 9% (1,n)) < P(0 <% (0,n))

Beweis

Definiere Qqmy,n) = {0 <+ (a,m), 0 ¢ (b,n)} die Menge aller Konfigura-
tionen, die den Punkt O mit (a,m) verbinden, aber nicht den Punkt O und
(b,n) verbinden.

Wir zeigen die Ungleichung P((0,0) <> (1,n)) > P(0 <> (0,n+1)): Dabei
reicht es, die Ungleichung P((0,0) <> (0,n+1),(0,0) ¢ (1,n)) < P((0,0) <>
(1,n),(0,0) ¢ (0,n + 1)) zu zeigen. Wir geben nun eine injektive Abbildung
Vo1 $d(0.nt1),(1,n) NAch Q) 0mt1) an, die zwei Kanten austauscht: Sei w €
Qont1),an)- Ls gilt w({(1,n),(0,n)}) = 0 und w({(0,n),(0,n+1)}) = 1.
Definiere nun

1 {(27l>>(]7m)} = {(O,n),(l,n)}
w/({(i7l)’ (]7 m)}) =40 {(Zvl)’ (]7 m)} = {(O,TL), (07n+ 1>}
w({(4,1),(j,m)}) sonst

Damit ist W' € Qan)0n41). Da w — W' eine injektive Abbildung ist und es
auch Konfigurationen in 5 on+1) gibt, die nicht im Bild liegen, gilt die
Ungleichung.

Fiir die anderen beiden Ungleichungen reicht es zu zeigen, dass P(0 <>
(1,n),0 # (0,n)) < P(0 <+ (0,n),0 ¢ (1,n)): Sei w € Q)00 Dann
muss w eine horizontale offene Kante auf einer Ebene kleiner als n haben,
die mit dem Punkt O verbunden ist.

Definiere m,, = max({k < n : wyor,arn = 1}) . Setze

V(=3 0),(1—i,m)}) i >my,,i=7j

W' ({(4,0), (j,m)}) = {w({(l, 0),(j,m)}) sonst
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Man beachte, dass w' eine Art von Spiegelung tiber der horizontalen Kante
{(0,m), (1,m)} ist. Damit ist W' € Qo) 1,0). Wieder ist dies eine mafSerhal-
tende injektive Funktion und damit gilt die Ungleichung. O

Leider nutzt dieser obige Beweis besonders aus, dass C5 nur zwei Knoten
auf einer Ebene hat. Auch gibt es keine quantitative Aussage fiir den Ver-
gleich von Knoten. Deshalb geben wir im Folgenden ein Verfahren an, das
eine quantitative Aussage erlaubt. Spater werden wir dieses Verfahren tiber-
tragen, um rechnerische Ergebnisse fiir C3 und Cy zu bekommen und somit
Teilantworten fiir Vermutung 1.8 erhalten. Leider steigt der Rechenaufwand
dann relativ stark.

Bevor wir quantitativ P(0<+“2*%(0,n)) und P(0<“2*%(1,n)) verglei-
chen, brauchen wir noch ein Lemma (und eine Definition, um das Lemma zu
formulieren):

Definition 4.16 Sei G ein Graph mit der Knotenmenge V' und der Kanten-
menge E und sein € N. Mit G x ((—oo,n)) bezeichnen wir den Graphen mit
den Knoten {(v1,i)|lvy € Viie{...,=3,—=2,...,n—1,n}} und den Kanten

(v, 1), (v}, ) H{v,vi} e Eyie{...,=2,...,n—2,n—1}}
U{{(v1,i—1),(v1,))}ie{...,—2,—1,...,n—1,n},v; € V}.

Analog sei G x ((n,00)) der Graph mit Knoten {(vy,ve)|vy € V vy € {n,n+
L,n+2,...}} und den Kanten

{{(v1, 1), (v}, ) }H{v,v1} e Eyie{...,=2,...,n—2,n—1}}
U{{(v,i=1),(v,))}lie {n+1,n+2,...},v; €V}

Bemerkung 4.17 Also entspricht Gx((—oo,n)) dem Graphen G ((—o0o,n]],
in dem alle horizontalen Kanten auf der Ebene n fehlen und der Graph

G % ((n,00)) entspricht dem Graphen G X [[n,0)), in dem alle horizontalen
Kanten auf der Ebene n fehlen.

Lemma 4.18 Es gilt firn € Z

P((0, 1) <X () (1 1)) = P((0, n) C2x((oom) (1 )y = — P
((0,n) (1,n)) ((0,n) (1,n)) = 21— p)
und
P((0,n) <>2*(—==nll(1 n)) = P((0,n) <2 (1)) = N
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Beweis
Es reicht P((0,n) «¢2x((moonll(1 n)) = TR U zeigen, da

P((0,n) =1, ) = P((0,n) ~ (1,n), (0,n) > Cnl(1 )

P((0,n) 2 (1,n), (0,n) > (1))

= P((0,n) ~ (1,n)) + P((0,) # (1,0)) P((0,n) () (1, )
)

=p+ (1= p) P((0,n) (= (1 n)

+

ist, folgt aus der zweiten Gleichung die erste Gleichung. Wobei
P((0,n) XN (1, n)) = P((0,n) (ol (1, n)

und

P((0,n) <2 (=) (1 n)) = P((0,n) «2* (™) (1 p))

aus Symmetriegrinden gelten.

Man beachte, dass die beiden Knoten (0,n) und (1,n) genau dann in Cy X
((—o0, n]] verbunden sind, wenn es ein z € {n,n—1,n—2,...} gibt, sodass die
Kante zwischen (0, z) und (1, z) offen ist und alle vertikalen Kanten zwischen
(e,s) und (e,s+ 1) fir z < s <mn und e € {0,1} offen sind. Wir bezeichnen
mit Q, das Ereignis, dass die Kante zwischen (0,z) und (1,z) offen ist und
alle Kanten zwischen (e, s) und (e,s + 1) fir z < s <n und e € {0,1} offen
sind, aber fir alle r mit z < r < n ist die Kante zwischen (0,7) und (1,r)
nicht offen. Damit erhdlt man

3% ((—oo,m, N _5 in2ip = b
P((0,n) +2x((oonll(] ) = ;}P(Qz) = ;(1 —p)'p'p = m'ﬂ

Bemerkung 4.19 Alternativ kann man dies auch mit Hilfe des spdteren
Lemma 4.27 zeigen, wie wir es auch fir andere Cy machen werden. Siehe
dazu auch die Bemerkung nach Lemma 4.27.

Mit Lemma 4.18 erhélt man einen quantitativen Vergleich fir Cy x Z:

Proposition 4.20 Fir den Graphen Cy X Z gilt:

X B axz() )y — PP (1=pP(p+1)?
P(0-“7%(0,n)) — P(0<“**%(1,n)) = 1)
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Beweis

Sei A das FEreignis, dass eine offene horizontale Kante zwischen der 0-ten
und n-ten Ebene existiert, B sei das Ereignis, dass (0,n) und (1,n) im Gra-
phen ((—o0,0)) verbunden sind und C' sei das Ereignis, dass (0,n) und (1,n)
im Graphen ((n,00)) verbunden sind. Offensichtlich ist P({0+<“*2(1,n)} N
A) =P({0+72(0,n)} N A) (aus Symmetriegriinden ist wegen der offenen
horizontalen Kante die Wahrscheinlichkeit gleich). Ebenfalls aus Symmetrie-
griinden hat man P({0°>*2(1,n)}NA°NB) = P({0<°2*%(0,n) }NA°NB).
Weiter ist auch P({0+>*Z(1,n)} N AN BN C) = P{0+2(0,n)} N
AN BN C) (wenn C oder ein Teilereignis von C eintritt, dann treten
sowohl {02*2(0,n)} als auch {0+°>*%(1,n)} ein oder keines der bei-
den Ereignisse tritt ein). Damit ist P({0+°*2(1,n)} N (AU BU(C)) =
P{0+%*2(0,n)} N (AU BUCQC)) und somit ist

P(0°*%(0,n)) — P(0-°*%(1,n))

=P{0<="2%0,n)} N (AUBUC)) + P({O+*%(0,n)} N A°N BN C°)
— (P{O=%(1,n)} N (AUBUC)) + P{0+%%(1,n)}A°N BN C°))

= P{0<9%(0,n)} N A°N BN C°) — P{0+2*%(1,n)} N A°N BN C°)

Da offensichtlich P({0+“2*2(1,n)} N A°N BN C¢) = 0 erhdlt man:
= P{0<9%(0,n)} N A°N B°N C°)

Sei D das Ereignis, dass alle vertikalen Kanten {(0,s),(0,s+1)} fir0 <s <
n vorhanden sind. Da {0+“2*%(0,n)} unter A°N BN C¢ nur dann genau
auftreten kann, wenn das Ereignis D eintritt, hat man:

=P(DNA°NB°NCY

Es ist offensichtlich P(A¢) = (1—p)"*™!, P(D) = p" und nach Lemma 4.18
ist P(B®) = P(C°) = (1 — %) Auflerdem sind A, B, C und D unab-
hingig, da diese auf unterschiedlichen Kantenmengen deﬁmert sind. Somit
erhalt man:

P(0-2%%2(0,n)) — P(0+“2*%(1,n)) = P(D) P(A°) P(B°) P(C°)
_ (=)' -p’+1)
(p® —p*+1)°
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Bemerkung 4.21 Ist G ein endlicher zusammenhdngender Graph mit k
Knoten, bekommt man wenigsten relativ leicht (Ghnlich zu dem vorigen Be-
weis) eine obere Schranke fir |P(0<(x,n)) — P(0<+(y,n))| (v,y € G). Sei
A, das Ereignis, dass alle Knoten auf der m-ten Ebene jeweils mit einem
offenen Pfad im Graphen G x [[m, m]] miteinander verbunden sind (d.h. im
Graphen G X [[m,m]] gibt es einen Spannbaum, der aus offenen Kanten be-
steht). Definiere A := U!'_A,,. Aus Symmetriegrinden ist P({0<(z,n)} N
A) =P({ 0+ (y,n)NA). Somit ist wegen der Unabhdngigkeit von Ay, Ay, ..., Ay

[P(0<F%(x,n)) = P(0F(y,n))| < P(A). = P(45)""

. Da jeder Spannbaum eines Graphen mit k Knoten k — 1 Kanten hat, ist
P(A,,) > p* L. Also ist fiir jeden zusammenhdingenden Graphen mit k Knoten

[P(0<F%(2,n)) = P(O-(y,n)| < (1-p" )"

Insbesondere wird der Unterschied zwischen den beiden Knoten auf einer Ebe-
ne exponentiell geringer, je weiter man sich von dem Ursprung entfernt.

Es soll im Folgenden fiir den Graphen Cy x Z P((0,0) <>(e,n)) fir e €
{0,1} und n € N bestimmt werden. Spater wird das Verfahren tibertragen,
um mit dem Computer die Monotonie der Verbindungsfunktion des Graphen
C). X Z fir k klein zu beweisen. Aber zuerst zu Cy X Z:

Proposition 4.22 FEs gilt fiir n € N:

(p) (N5 =A%) (2p° — p* + 1) — (X5 — A5) c(p)

8\/alp) (p® —p? +1)°
. 2y/a(p) (N5 +A3)d(p) — 2M\T(p — 1)*(p + 1)?)

8\/a(p) (p® — p* +1)°

P((0,0) ¢C22(0,n)) ==

und
—a(p) (N5 — A5) (2p° —p* +1) — (A5 — A\}) c(p)
8\/a(p) (p® — p> +1)°
2y/a(p) (A5 +A5) d(p) + 2\ (p — 1)*(p + 1)?)
_.l_
8\/a(p) (p* — p* +1)°
mit a(p) = 4p* —8p*+4p>+1, Ay == p—p*, o = § (=20° + 2> + p — p\Ja(p))
und Az = % (—21?3 +2p°+p + Py a@))

P((0,0) <“2*%(1,n)) =
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Beweis

Zur Erinnerung X, ist das einseitige Muster auf Ebene n (siehe Definiti-
on 1.6). Zuerst soll nun P(X,, = M) fir alle M € M*(Cy) bestimmt werden
und daraus P((0,0) «<>(a,n)) berechnet werden. Man beachte, dass (X, )nen
eine Markovkette mit einer Startverteilung, die wir weiter unten bestimmen
werden, ist. Wir fassen die beiden Zustinde aus M°(Cy) = {({},{0,1}),
({},{{0},{1}}) zu einem Zustand oo zusammen und betrachten (X, )nen als
eine Markovkette auf M°(Cy)U{oo} (dass man hier einen anderen Zustands-
raum betrachtet als in Definition 1.6, sollte zu keiner Verwirrung fihren).
Dadurch erhilt man eine Ubergangsmatriz der Zustinde oo, ({0}, {{1}}),

({1}, {{03}), ({0, 1}, {})-

1 0 0 0
A—| 1=p p(-p) 0 I
1—p 0 p(1—p) P’

(1-p)? p(1=p)? p(1-p)* p*+2p*(1—p)

Dabei erhdlt man die Fintrige durch Betrachtung der verschiedenen Konfi-
gurationen von K(E,). Z.B. den Eintrag in der vierten Zeile und 2. Spalte:
Der Ubergang von ({0,1},{}) nach ({0}, {{1}}) in Ebene n nach Ebene n+1
kann nur auftreten, wenn im Graphen Cy x {n,n + 1} (0,n) ~ (0,n + 1),
(Ln) % (1,n+1) und (0,n+ 1) & (1,n+ 1) ist. Fir dieses Ereignis ist die
Wahrscheinlichkeit p(1 — p)?. Analog erhdlt man die anderen Eintrige.

Als ndchstes soll die Startverteilung o der Markovkette ausgerechnet wer-
den (d.h. die Verteilung von X,) Man beachte, dass nach Lemma 4.18:

2% ((—o0, _ p
P((0,0) 0”(170))—m

Damit erhalten wir sofort folgende Startverteilung fir die Markovkette
(X,) (man beachte per Definition ist der Knoten (0,0) immer infiziert):

p p
a=(0,1- 0,
( 1—p*(1=p) 1—292(1—29))
Wir setzen a(p) = 4p* — 8p> + 4p* + 1 und b(p) = —2p* + 2p* + p

als Abkiirzung. Die Figenwerte von A sind Ny = 1,\| = p — p?, Xy =

3 (b(p) — p\/a(p)) A3 = % (b(p) —|—p\/a(p)) mit den zugehorigen Eigenvek-
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toren

(]-7 17 17 1)a (Oa _]-a 170)7
(0 2p 2p 1)
L2 —dptyfalp)+1 202 —dp+ \Ja(p) +1 7
2p 2p

0,— , — ,1).
( 2p? —4p — \Ja(p) +1  2p? —4dp —\/a(p) + 1 )

Bilde nun die Matriz, die die Figenvektoren als Spalten hat:

10 0 0
1 -1 — 2p — 2p
B = 2p%—dp++/a(p)+1 2p%—dp—+/a(p)+1
I I O 2 — 2
2p2—dp+y/a(p)+1 2p2—dp—y/a(p)+1
10 1 1
Dann st
1 0 0 0
0 -3 3 0
2 2 2 2 2 2
B_1 _ (*217 +2p+\/a(p)*1) (2p 74p+\/a(p)+1) (2;7 74p+1) —a(p) (2p 74p+1) —a(p) 292 —4pt/a(P)+1
4v/a(p)p 8va(p)p 5 8va(p)p 5 2va(p)
(—2p2+4p+\/a(p>—1) (2p2—2p+\/a(p>+1) a(p)—(2p2—4p+1) a(p)— (2p2—4p+1) Cop? fapt a1
B 4v/a(p)p 8v/a(p)p 8v/a(p)p 2v/a(p)

10 0 O

Nach der Linearen Algebra ist A = B B~'. Dann kann
00 X O
00 0 A3

man auf diese Weise A™ ausrechnen (wir schreiben x an den Stellen der
Matriz, an denen uns die Werte nicht interessieren):

n

A" =B B!

0
0
A2 0O
A

S OO

N\

2p% —4p+ a(p)+1) AG+AY (—2p2+4p+\ / a(p)—l)

24/ a(p)
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Wobei

Vap) AT+ X5 +25) — (A5 — A3) (2p* —4p + 1)

my = 4\/@
_ Valp) (=2X7 + X5 +A3) — (A3 =A%) (207 — dp + 1)

4\/@
m :_()\3—)\?) (—2p2+4p+\/@_1) (2p2—4p—0—\/@+1>
3 8\/@29

Mit oben kann man nun P(X, = M) bestimmen, indem man aus der
Matriz « A™ die passenden Werte abliest.

Nach Lemma 4.18 ist:

3

p
P((O,TL + 1) <_>Cz><((n,oo))(1’n+ 1)) -
1—p*(1—p)

Damit kénnen wir nun P((0,0) <>(e,n)) ausrechnen (mit a;'; bezeichnen
wir Eintrige aus A™), dabei ist c¢(p) := 8p® — 28p™ + 36p°® — 14p® — 6p* + 6p> —
3p? +2p+ 1 und d(p) := 2p° — 3p° + p* +2p> — 20 + p + 1:

P((0,0) «(0,n))
= P(X, = ({0}, {{1}})) + P(Xn € ({0, 1}, {{}}))
+P (X = ({1}, {{0}}) P((0, + 1) 22D (1, n 4 1))

p3

n n n n n n
= a2a272 + Oé4a472 + a2a274 + 04401474 + (CM26L273 + Oé4a473)—1 p2(1 p)

_ —a(p) (A3 = A5) (2p° — p* + 1) — (A3 — A3) e(p)
8\/a(p) (0* — p* +1)°
2\/a(p) (A3 + A3) d(p) — 2A¢(p — 1)*(p + 1)?)
+
8y/a(p) (7 — p> +1)°
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und

P((0,0) «>(1,n))
= P(X, = ({1}, {{0}})) + P(X,, = ({0, 1}, {{}}))
+P(X,, = ({0}, {{1}})) P((0,n + 1) =*(>D(1,n 4 1))

pS

= Qpay 5 + uay 3 + apay 4 + agay, + (anay o + 044(12,2)m
_ —alp) (A3 — A5) (2p° — p* + 1) — (A3 — A%) e(p)

8y/alp) (b — p? + 1)’
L 2yalp) (A8 + X5) dlp) + 21 (p — *(p+1))

8\/a(p) (p* —p> +1)°

Bemerkung 4.23 Wir erhalten hiermit wie bei Proposition 4.20 sogar wie-
der den Vergleich von 0<+(0,n) und 0<>(1,n):

AN =pPe+1)? ()" (1-p)Pp+1)

(» —p*+1)° (»—p2+1)°

P(0(0,n)) — P(0(1, 7))

Wir wollen uns nun den Graphen Cj x Z zuwenden und Vermutung 1.8
fiir £ klein mit Hilfe des Computers zeigen. Wir geben dabei ein ng explizit
an. Dabei wird dhnlich vorgegangen wie bei C5. Wobei es dann nicht mehr so
leicht ist, die Werte fiir die Verbindungsfunktion fiir alle n explizit anzugeben.
Deshalb zeigen wir zuerst folgendes Lemma, womit es reicht, eine Ebene zu
finden, in der die Vermutung 1.8 gilt:

Lemma 4.24 Sei G ein endlicher zusammenhdngender Graph. Gilt fir ein
no € N und alle M € M*(G):
P,(XS*% = M) > P, (X% = M)

no+1

so ist auch fiir alle n > ng

Py(X% = M) > Py(X 7 = M)
und fiir alle M’ € Ml(Ck) und n > ng:

Py (X% = M) > Py(X7T = M)

Insbesondere gilt dann Vermutung 1.8 und Vermutung 1.10 fir den Graphen
G X 7.
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Beweis
Es gilt wegen der Markov-FEigenschaft fir alle n > ng:

Py(X=M)= > P(X70F = MIX7T = M) Py(X75 = M)
M’'eM(Cy)

=Py (X7 F=M| X F=M")

< Y PUXTP = MIXGE = M) Py(XSXP = M') = Py(X77F = M)
M'eM*(Cy)

Die Aussage fiir XEXZ folgt aus Lemma 1.135. O

Es soll nun ein Verfahren vorgestellt werden, das ein ng findet mit P,(X$*% =
M) > P,(XS¥% = M) fiir alle M € M*(Cy) und p € (0,1). Das Verfahren
basiert teilweise auf den obigen Rechnungen fiir C5 x Z. Im Folgenden wird
immer symbolisch gerechnet mit der Variable p, die die Wahrscheinlichkeit,
dass eine Kante offen ist, angibt. Das zugehorige Computer-Programm findet
man im Anhang.

Zuallererst werden alle (giiltigen) Muster berechnet. Dazu wird mit dem
Muster ({0,...,k — 1}, @) (also alle infiziert) gestartet und alle Muster be-
rechnet, die man aus diesem Muster in mehreren Schritten erhélt: (Dass man
alle giiltigen Muster so erhélt, wird noch im spéter folgendem Lemma 4.37 be-
grindet) Fiir jedes Muster werden alle moglichen Muster der nachsten Ebene
berechnet, indem man alle moglichen Kantenkonfigurationen zwischen zwei
Ebenen betrachtet. Dies fithrt man solange durch, bis man kein neues Muster
erhélt.

Es werden alle Muster als Zustand oo zusammengefasst, die keine infi-
zierten Knoten enthalten. AnschlieBend wird die Ubergangsmatrix auf dem
Zustandsraum M*(C}) U {oo} berechnet: Dazu wird in zwei Schritten vor-
gegangen (um den Rechenaufwand zu reduzieren), indem man zuerst die
Ubergangsmatrix berechnet, wenn man nur die vertikalen Kanten betrach-
tet (also, wenn alle horizontalen Kanten auf der néchsten Ebene nicht offen
sind). Anschliefend wird die Ubergangsmatrix berechnet, die die horizon-
talen Kanten hinzufiigt. Wenn man die beiden Matrizen nun multipliziert,
erhilt man die eigentliche Ubergangsmatrix. Die beiden Matrizen werden da-
bei berechnet, indem man fiir jedes Muster und jede Kantenperkolation das
erhaltene Muster betrachtet.

Jetzt wird noch die Startverteilung ausgerechnet. Dazu wird eine Uber-
gangsmatrix (wie oben) aufgestellt, die nur Muster aus M°(C},) betrachtet.
Aus deren stationédrer Verteilung kann man die Startverteilung von der Mar-
kovkette (X,) berechnen, indem man fiir jedes Muster M aus M*(C}) das
entsprechende Muster M betrachtet, das die Knoten als uninfiziert ansieht.
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Dass das Vorgehen richtig ist, sieht man an dem gleich folgenden Lemma,
wozu zuerst eine Definition (dhnlich zu Definition 1.6) notwendig ist, um das
Lemma zu formulieren:

Definition 4.25 Sei G ein endlicher zusammenhdngender Graph. Wir sa-
gen auf einer Ebene n € 7 des Graphen G x Z liegt das (einseitige) ent-
sprechende uninfizierte Muster M = (&,{B,...,B;}) vor, wenn in dem
Teilgraphen G x ((—oo, n]] folgendes gilt: Alle Knoten aus B; x {n} sind diber
einen offenen Pfad miteinander verbunden fir jedes i. Dariiber hinaus gilt
fir i,5 mit i # j, dass kein Knoten aus B; x {n} mit einem Knoten aus
B; x {n} verbunden ist.

Mit'Y,, n € Z bezeichne das entsprechende uninfizierte Muster auf Ebene

Bemerkung 4.26 Offensichtlich ist (Y, )n>m fir jedes m € Z eine Markov-
kette auf MO®(G) und bei Y, betrachtet man nicht, ob irgendwelche Kno-
ten infiziert sind. Ist fir n € Ny X,, = (A,{Bi,...,Bi}), so ist Y, =
(@,{A,By,...,B}) fir A%+ @ und Y, = (,{B,...,B}) fir A=2.

Man beachte auch, dass in der 0-ten Ebene immer der Knoten 0 infiziert
ist und somit Xy immer durch die Angabe von Yy eindeutig bestimmt ist.

Nun soll gezeigt werden, wie man aus der stationdaren Verteilung von Y,
die Startverteilung von X,, bekommt:

Lemma 4.27 Sei G ein endlicher zusammenhdngender Graph und sei die
stationdare Verteilung der Markovkette Y,, 5. Sei fir M = (A,{B,...,Bi}) €
M (G), das Muster M € M°(G) definiert durch M := (@,{A, By, ..., B})
(also das entsprechende uninfizierte Muster). Dann ist die folgende Vertei-
lung a auf M(G) mit (M) = (M) fir M = (A,...) € M*(G) mit0 € A
und a(M) = 0 sonst, die Startverteilung (also die Verteilung von X,) der
Markovkette (X,,).

Beweis

Man beachte, der Wert von Y, hdngt nur von den Kanten des Graphen G X
((—oo,n]] ab. Da fir n,m € Z die beiden Graphen G x ((—oo,n]] und G x
((—o0, m]] isomorph sind, hat'Y,, die gleiche Verteilung wie Y,,. Damit ist von
jedem 'Y, die Verteilung die stationdre Verteilung 3. Damit gilt insbesondere
mit der obigen Bemerkung fiir M € M*(G) mit M = (A,...) € M*(G) mit
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0De A
P(Xo=M)= >  P(Xo=M[Yy=M)P(Yy=M)
M'eM* (Cy)
= > PXo=MY,=M)EM)
M/eM*(Cy)
1, falls M/ = M und M = (A,...) mit0 € A
~ = onl]
M’GMl(Ck) 9 Sonst
= B(M)

Da auf Ebene 0 immer mindestens ein Knoten infiziert ist (der Knoten 0),
folgt P(Xog = M) = 0 fir M € M°(G) oder M = (A,...) € MY(G) mit
0¢&A. O

Bemerkung 4.28 Damit hdtte man auch Lemma 4.18 beweisen kénnen:
Wir betrachten (Y,) bzgl. des Graphen Cy X Z. Der Zustandsraum besteht
aus ({},{{0}, {1}}) und ({},{{0,1}). Als Ubergangsmatriz haben wir dann,
wie man leicht ausrechnet:

L—p p
<(1 -p)(1=p*) p*+p— p3>
Als stationdgre Verteilung von (Y,,) erhdlt man ﬁ(p?’ —p?>—p+1,p). Mit
Lemma 4.27 ist dann P((0,n) <((=nl(1 n)) = P((0,0) «<(==0(1,0)) =
P(XO = ({O’ 1}7 @)) = #El_p)

Also wird wie oben die Startverteilung berechnet. Sei A die Ubergangs-
matrix der Markovkette (X,,), wobei man alle nicht infizierten Zustéande zu-
sammenfasst und « die entsprechende Startverteilung ist.

AnschlieBend wird firn = 0,1,2... aA™ —aA""! so lange berechnet, bis

alle Eintrége (aufler dem Eintrag fir den Zustand oo) fiir 0 < p < 1 positiv
sind. Hat man so ein n gefunden, so ist man fertig und hat ein optimales ng
aus Vermutung 1.8 fiir den Graphen bestimmt. (siche auch Lemma 4.24) Es
soll nun beschrieben werden, wie man untersuchen kann, ob ein Eintrag von
aA" — a A" positiv fiir alle p € (0, 1) ist.
Dazu wird die Sturmsche Kette aus der reellen Algebra benutzt (siche z.B.
[Rol07]), welche auf dem Euklidischen Algorithmus basiert und die Anzahl
der Nullstellen eines Polynoms in einem Intervall [a,b) berechnet (der Al-
gorithmus ist auch in manchen CAS hinterlegt). Der Vollstandigkeit halber
geben wir den Algorithmus hier an: Zuerst konstruiert man Polynome, die
man die Sturmsche Kette nennt:
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Definition 4.29 Sei f ein reelles Polynom vom Grad mindestens 1. Dann
definiere gg := m (dabei ist f' die Ableitung von f). Setze g1 := —g
und bestimme ausgehend von den Polynomen go, g1 mit einer Variante des

Euklidischen Algorithmus rekursiv neue Polynome aus folgender Gleichung:

9i+1 = 4i9i — Gi—1, (4-5>

Dabei ist q; ein reelles Polynom und g; 41 ein reelles Polynom mit deg(g;) >
deg(gi+1). Dies fihrt man, solange g;+1 # 0 ist, durch und erhdlt Polynome
9o, - - > gm (insbesondere ist g,, # 0). Die Polynome qq,...,gm nennt man
Sturmsche-Kette.

Bemerkung 4.30 Natirlich kann nach der Definition ein reelles Polynom
f mehrere verschiedene Sturmsche Ketten haben.

Bis auf das Vorzeichen entspricht es dem bekannten FEuklidischen Algorith-
mus. Daher ist g, der grofite gemeinsame Teiler von go und g; (bzw. von
go und gf). Bekanntlich hat das Polynom gq und f die gleichen (komplexen)
Nullstellen und dartiber hinaus hat gy keine mehrfachen (komplexen) Null-
stellen und somit hat g, iiberhaupt keine (komplexe) Nullstelle und somit
ist g, € R\ {0}.

Bevor man damit die Anzahl der Nullstellen im Intervall [a, b) bestimmen
kann, braucht man noch folgenden Begriff:

Definition 4.31 Hat man eine endliche Folge von Polynomen qo, ..., Gm,
dann sind Anzahl der Vorzeichenwechsel an der Stelle x wie folgt definiert:
Man bestimmt go(x), ..., gm(x) und streicht in dieser Folge alle Werte mit
0. Dann zahlt man, wie viele der verbleibenden Folgeglieder ein anderes Vor-
zeichen haben als das vorausgegangene Folgenglied. Diese Zahl nennt man
Vorzeichenwechsel der Polynome qq, ..., gmn an der Stelle x. Im Folgenden
bezeichnet man mit w(x) diese Zahl.

Nach der Vorarbeit, kann man folgendes Lemma formulieren, welches die
Anzahl der Nullstellen eines reelles Polynoms im Intervall [a,b) einfach be-
stimmt:

Lemma 4.32 Seia,b € R mit a < b. Sei f ein reelles Polynom. Dann hat
in [a,b) genau w(b) —w(a) reelle Nullstellen. Dabei ist w(x) die Anzahl der
Vorzeichenwechsel einer Sturmschen Kette von f an der Stelle x.

Beweis
Der Beweis ist im Wesentlichen aus [Rol07] entnommen: Der Beweis baut auf
der Tatsache auf, wie sich w(x) bei verandertem x dndert. Seien xq, s, ..., x;

die Nullstellen von f im Intervall [a,b). Es soll zuerst angemerkt werden,
wenn man folgende zwei Aussagen zeigt, dann ist die Aussage bewiesen:
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1. Esistw(x; —h) = w(zr;) = w(z; +h) — 1 fir jedes hinreichend kleines
h>0.

2. Fir jedes hinreichend kleines h > 0 ist w(x — h) = w(z) = w(x + h),
wenn x keine Nullstelle von f ist (insbesondere ist dann w(xj_1 +h) =
w(z; — h), da es im Intervall [x;—y + h,z; + h] keine Nullstelle gibt).

Ist dies gezeigt, dann ist w auf den Intervallen w(b) — w(a) die Anzahl der
Nullstellen:

w(b) —w(a) = w(xy) — w(a)+ ZQ (w(xj) — w(le)) +w(b) — w(zy)

=1

Nun sollen die beiden Punkte gezeigt werden. Aufgrund der Stetigkeit von g;
reicht es zu betrachten, was passiert, wenn ein g; eine Nullstelle hat. Dazu
wird 1 > 0 und 1 = 0 betrachtet.

Fall i > 0: Seii € {1,...,m} mit g;(z) = 0. Es gilt, dass i < m ist, da
gm € R\{0}. Auch gilt, dass aus g;(z) = 0 folgt wegen (4.5), dass g;—1(z) und
gi+1(2) unterschiedliche Vorzeichen haben (und auch ungleich 0, sonst wére es
eine Nullstelle von g,, und damit eine gemeinsame von gy und g;). Aufgrund
der Stetigkeit gibt es ein € > 0, sodass fir alle h € (—¢,€) g;—1(z) das gleiche
Vorzeichen wie g;—1(z+h) und g;+1(z) das gleiche Vorzeichen wie g;11(z+h)
hat. Egal, welches Vorzeichen g;(z + h) hat, es gibt fir alle h € (—¢,¢€) bei
gi—1(z + h), gi(z + h) und gi11(z + h) genau einen Vorzeichenwechsel (da
gi—1(z + h) und g;41(z + h) unterschiedliche Vorzeichen haben). Insgesamt
folgt daraus Punkt 2.

Fall i = 0: Sei z eine Nullstelle von go, daher go(z) = 0. Nach Wahl von
g1 ist g1(z) # 0 (da go nur einfache Nullstellen hat und g = —g;,). Wegen
g1 = —gi, haben auch fiir alle hinreichend kleine h > 0 die Zahlen go(z — h),
g1(z — h), q1(2) und g1(z + h) das gleiche Vorzeichen und go(z + h) hat ein
anderes Vorzeichen. Somit hat die Teilfolge gy, g1 an der Stelle z + h einen
Vorzeichenwechsel mehr als an den Stellen z und z — h. Daher folgt mit dem
Fall i > 0 (woanders dndert sich nicht die Anzahl der Vorzeichenwechsel)
zusammen der Punkt 1 (w(a —h) = w(a) = w(a+h)—1). O

Man beachte, dass die Startverteilung o unserer betrachteten Markovkette
(X,)n nur rationale Funktionen als Eintrdge hat (betrachtet als Funktion in

).

Proposition 4.33 Fir die Startverteilung o der Markovkette (X,), gilt,
dass diese nur rationale Funktionen als Fintrdge hat.
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Beweis

Sei B die Ubergangsmatriz von Y, und D%, die Menge aller Konfiguratio-
nen auf K(E), sodass man, wenn man das Muster x auf der 0-ten Ebe-
ne hat, das Muster M auf der ersten Ebene erhdlt. Fir d € D3, sei eq
die Anzahl der offenen Kanten der Konfiguration d in K(E;). Damit ist
P*(Y1 = M) = Ygepe, (1 — p)¥=ea (fiir k > 3, analog fiir k = 1,2).
Insbesondere sind alle Eintrage von B polynomiell in p. Daher gilt fir die
stationdre Verteilung B von (Y,), dass diese als Losung des Gleichungssys-
tems B(B — 1) =0 (dabei ist I die Einheitsmatriz und 0 die Nullmatriz) nur
rationale Funktionen als Eintrige hat (sieht man z.B. durch das Gaufsche
Eliminationsverfahren). Mit Lemma 4.27 hat auch die Startverteilung o von
(X,) nur rationale Funktionen als Eintrdge. O

Durch eine Skalierung von « mit einem geeigneten Polynom h(p) (z.B.
das kleinste gemeinsame Vielfache der Divisoren der Eintriage), welches keine
Nullstelle in (0, 1) hat (da « eine Verteilung ist, haben die Divisoren der Ein-
trige keine Nullstellen), ist /(p)a ein Polynom. Dann ist h(p)(aA™ — aA™1)
eine Matrix mit nur Polynomen als Eintrage und den gleichen Nullstellen wie
aA™” — a AL

Man beachte, dass alle Eintrage von aA™ — a A" natiirlich eine Null-
stelle bei p = 0 haben fiir n > 0. Bei p = 0 und n = 0 sind die Eintrage
positiv bei Eintragen, in denen a ungleich 0 ist und sonst sind diese auch
0 (auBer beim Zustand oo). Offensichtlich ist bei p = 0 « auf den Zustand
({0}, {{1},...,{k — 1}}) konzentriert. Damit ist das Problem, dass ein Ein-
trag fiir alle p € (0,1) von aA™ — a A" (auBer dem Eintrag fiir 0o) fiir ein
bestimmtes n > 0 positiv sind, dquivalent zu der Aussage, dass es genau eine
Nullstelle im Intervall [0,1) gibt und an einer beliebigen Stelle im Intervall
(0,1) ist der Wert positiv. Fir n = 0 ist die Aussage dquivalent, dass es fur
den Eintrag von ({0}, {{1},...,{k — 1}}) genau 0 Nullstellen im Intervall
[0,1) gibt und fiir alle anderen Eintrdge genau eine Nullstelle in [0,1) und
in beiden Féllen mindestens fiir ein p positiv ist. (Eigentlich muss man die
0-te Ebene nicht priifen, da bestimmte giiltige Muster auf Ebene 0 die Wahr-
scheinlichkeit 0 haben (alle Muster, bei denen die 0 nicht infiziert ist).) Mit
Lemma 4.32, angewendet auf das Polynom h(p)(aA™ — aA™™), kann man
dies ausrechnen. (Man sieht auch, dass man nicht « ausrechnen muss, son-
dern es reicht ein beliebiges positives Vielfaches auszurechnen, welches den
Rechenaufwand etwas senkt)

Auf diese Weise kann man ein minimales ng berechnen, sodass fiir alle
p € (0,1), alle n > ng und alle M € M*(Cy) Pp(X,, = M) > Pp(Xppi1 =
M) ist.

Zusammenfassend soll der Algorithmus zum Berechnen des minimalen ny,
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welches P(X,, = M) > P,(X,,11 = M) fir alle M € M*(C}) berechnet,
skizzenhaft aufgefithrt werden:
Berechne Ubergangsmatrix A der Markovkette (X,).
Berechne Ubergangsmatrix B von (V).
Berechne die stationdre Verteilung S von B.
Berechne die Startverteilung von (X,) a aus f3.
Berechne solange aA™ —aA™!' bis alle Eintrage
(auBler bei oco) positiv sind.
Dazu benutze die Sturmsche—Kette.

Der Rechenaufwand ist relativ grof§ aufgrund der vielen Zustdnde der
Markovketten (X,) und (Y;,). Fasst man die Zustidnde so zusammen, in-
dem man aus allen aquivalenten Mustern jeweils einen Zustand macht und
betrachtet man dann bei den entsprechenden modifizierten Markovketten
von (X,,) bzw. (Y,,) (die sind dann Markovketten auf [M?*(C})] U co und
[MP°(C})]) funktioniert das obige Verfahren genauso analog. Auf diese Wei-
se kann man dann P,(X,, € [M]) > P,(X,,+1 € [M]) tberpriifen bzw.
P,(X, € [M]) und P,(Yy € [M]) ausrechnen, welches aufgrund der geringen
Anzahl von Zustdnden schneller erfolgt.

Man kann noch eine Optimierung im Fall der nicht aquivalenten Muster
durchfithren: Man berechnet die stationdre Verteilung ' fiir den 4quivalenten
Fall und tibertragt den mit Hilfe der Symmetrie auf den nicht dquivalenten
Fall, um S zu erhalten:

Proposition 4.34 Sei der Graph Cy gegeben und sei Y, die zu'Y,, entspre-
chende Zufallsvariable fir dquivalente Muster d.h. Y, = [M] genau dann,
wenn Y, € [M]. Sei weiter 3’ die stationdre Verteilung von Y, ', dann gilt:

1

YO0 = g

A([M])
Beweis
Seien M, M' € M°(C},) und ® ein Graphenautomorphismus von Cy. Dann
gilt offensichtlich fir allen € ZP(Y, = M|Y,—1 = M') =P(Y, = ®(M)|Y,—1
O(M")) (vgl. Definition 1.10). Somit hat man aus Symmetriegrinden B(M) =
B(®(M)) und

(M) =P, =[M)= > PY,=M)

M'e[M)]

= > BM)= > B(M)=#M]B(M)

M'e[M] M'e[M]
U

IMit dem gleichen Argument wie im Beweis von Lemma 4.27 ist 3’ auch die Verteilung
von Y, fiir alle n € Z
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Damit reduziert man die sehr aufwendige Berechnung der stationdren Ver-
teilung von Y, deutlich, da man nur noch im Wesentlichen die stationére
Verteilung von Y, ausrechnen muss.

In folgender Tabelle sind sowohl das optimale ng fiir den dquivalenten
und nicht aquivalenten Fall fiir C) aufgelistet:

Graph | Minimales ny aquivalente Muster | Minimales ny nicht dquivalente Muster
Cs 0 2
Cs 2 2
Cy 2 4

Um eine Vorstellung vom Rechenaufwand zu bekommen, sind in folgender
Tabelle die Anzahl der giiltigen (infizierten/uninfizierten) Muster von Cj, fiir
kleine k angegeben, die ebenfalls mit dem Computer berechnet worden sind
(siche Anhang):

F [ #M(Cy) | # M°(Cy) | #MY(Cr) | #IM(CW] | # [MP(Co)] | #IMT(Cy)
2 5 2 3 4 2 2
3 15 5 10 7 3 4
4 49 14 35 15 6 9
5 168 42 126 31 10 21
6 594 132 462 80 24 56
7 2145 429 1716 204 49 155
8 7865 1430 6435 599 130 469

Dass die obige Anzahl von Mustern teilweise bekannten Folgen entspricht,
sieht man in Bemerkung 4.40.

Es soll noch der Funktionsgraph von p — P,(X,, = M) fiir zwei be-
stimmte Muster und Ebenen beispielhaft angeschaut werden. Zuerst soll fiir
das Muster ({0}, {{1},{2}}) im Graphen Cj in der Ebene 2 und 3 der Funk-
tionsgraph angegeben werden, der den typischen Verlauf hat, wie man ihn
fiir die meisten Muster und Ebenen erwartet:
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0.0175 -

0.025 4
0.0150
0.020 4 0.0125 4
0.015 4 0.0100
0.0075 A
0.010 A
0.0050
0.005 4 0.0025 1
0.000 0.0000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p P
Graphen von Graph von
C C: C,
Pp(Xy% = ({0}, {{1},{2}}) Pp(Xy, % = ({0,},{{1},{2}})) — Pp(X3?® =

({0}, {{1}, {23}))
Pp(XQ 8 = ({0}, {1}, {2}})

Es kann auch sein, dass fiir ein bestimmtes Muster M € M?*(C3) und
ein n € N die Ungleichung P,(X,, = M) < P,(X,41 = M) fir alle p € (0,1)
erfillt ist (das ist insbesondere der Fall, wenn das Muster nicht auf allen
Ebenen auftreten kann, wie das Muster ({2},{{0,1}})), welches nicht auf
der Ebene 0 eintritt, aber auf allen Ebenen, die groler als 0 sind.

Ebenfalls kann es vorkommen, dass fiir ein bestimmtes Muster M €
M*'(Cy) und ein n € N fir bestimmte p € (0,1) die Ungleichung P,(X,, =
M) < P,(X,41 = M) und fiir bestimmte p € (0,1) die Ungleichung P,(X,, =
M) > P,(X,4s1 = M) erfiillt ist. Dies ist z.B. fir C5 und dem Muster
({2},{{0,1}}) und n = 1 der Fall. Die folgenden Bilder stellen die Diffe-
renz von P,(X; = ({2}, {{0,1}})) und P (X2 = ({2}, {{0,1}})) und jeweils
die beiden Graphen fiur p € (0,1) dar:

0.0147 0.0030 4
0.0121 0.0025 1
0.010 A 0.0020
0.008 0.0015 A
0.006 0.0010 1
0.004 1 0.0005 7
0.0000
0.002 - 0/0 0.2 0.4 0.6 0.8 1.0
—0.0005 1 P
0.000
0.0 0.2 0.4 0.6 0.8 1.0
P
Graphen von Graph von
C: C C
Pp(X® = ({2} {{0,1}})) Pp(X3 = ({2}, {{0,1}})) — Pp(X, 3 = ({2}, {{0,1}}))

P (’f 8 = ({2}, {{0,1}}))

Natiirlich kann man die Vermutung 1.7 fiir C}, fir kleine k£ nachweisen,
wenn man das obige Verfahren noch erganzt:
Man fithrt das obige Verfahren durch und bestimmt ein ng, sodass P, (X, =
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M) > Pp(Xpy+1 = M) gilt. Wegen Lemma 1.13 und Lemma 1.14 gilt
P,((0,0) <»(a,n)) > P,((0,0)¢+(a,n + 1)) fir n > ng. Daher muss man
P,((0,0) <>(a,n)) > P,((0,0) <>(a,n + 1)) nur noch fir n < ny nachweisen.
Da

PP((070) <—>(a,n)) = Z Pp(Xn = M)
M=(A{By,..B})eM" (C}),acA

muss man nur P,(X, = M) fiir endlich viele n und alle M € M 1(C'k)
bestimmen.

Pp(Xn = M) kann man einfach aus @A™ und [, welche die stationire
Verteilung von Y, ist, bestimmen:

Proposition 4.35 Sei 3 die stationdre Verteilung von (Y,,). Sei M = (AM {BM ...,
BMY) € MY(Cy) und M’ = (2,{B)",...,BM'}) € M°(Cy) und D C
{0,...,k — 1}. Betrachte folgende Aquivalenzrelation auf V(G): Sei x ~ y
genau dann, wenn fir eint € N es Mengen Fy, ..., Fy € {AM BM . . Bl]\fl}
und G1,...,Gy_1 € {AM' BM' .. ,B%:} gibt, sodass v € F, undy € F, und
firalleie {1,....t =1} ist ENDNG; # S und G;N DN Fq # 9.

Mit r(M, M', D) ist das Muster (A,{By,...,B;}) gemeint fiir das AM C
A und A, By, ..., B die Aquivalenzklassen beziiglich ~ sind.

Dann ist
P,(X, = M) = > P (X, = M)p™P (1-p)* 7P B(M")
MeM?(Cy),M'eMP°(Cy,),DCH0,....k—1}
mit r(M,M’,D)=M
Beweis

Den Graphen Cy x Z kann man in die Graphen Cy x ((—oo,n]], Ck x [[n +
1,00)) und Cy x ((n,n+1)) ? zerlegen (im Prinzip eine Partition beziglich der
Kanten). Der Graph Cy x [[n+1,00)) ist isomorph zu Cy, X ((—oo,n+1]]. Da
Y, 1 die Verteilung 8 hat, gibt 5 an, welche Knoten auf der n+ 1-ten Ebene
im Graphen Cy X ((—oo, n+1]] miteinander verbunden sind, also auch welche
Knoten auf der n + 1-ten Ebene im Graphen Cy, X [[n + 1,00)) miteinander
verbunden sind. X,, gibt an, welche Knoten auf der n-ten Ebene im Graphen
C X ((—00,n]] miteinander verbunden sind und welche infiziert sind. Wenn
man also X,, kennt und weifs, welche vertikalen Kanten zwischen der n-ten
und n + 1-ten FEbene offen sind und weifS, welche Knoten auf der n + 1-
ten Ebene im Graphen Ci X [[n + 1,00)) miteinander durch einen offenen

2Mit dem Graphen Cj x ((n,n + 1)) ist analog zu Definition 4.16, der Graph gemeint,
dessen Knoten {(v1, v2)|v1 € Ck,va € {n,n+1}} und dessen Kanten {{(v,n), (v,n+1)}|v €
C} sind. Damit ist C x ((n,n + 1)) der Graph, der nur aus den Kanten zwischen der
n-ten und n + 1-ten Ebene besteht.
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Pfad verbunden sind, dann kennt man auch das zweiseitige Muster auf der
n-ten Ebene. Genauer, wenn X,, = M und genau von den vertikalen Kanten
zwischen der n-ten und n + 1-ten die Kanten{(d,n),(d,n + 1)} fir d € D
offen sind und im Graphen Cy X [[n+1,00)) genau die Knoten auf der n+ 1-
ten Ebene so verbunden sind, wie es dem Muster M’ entspricht, hat man
auf der n-ten Ebene das Muster r(M, M', D). Denn die Aquivalenzrelation ~
entspricht dann der Aussage (x,n) <>*Z(y,n).

Da die Wahrscheinlichkeit, dass von k Kanten genau die Kanten {(d,n),
(d,n+ 1)} fiird € D offen sind, ist p?P(1 — p)*~#P die Wahrscheinlichkeit
fur die offenen vertikalen Kanten zwischen den beiden Ebenen. Damit folgt
die Behauptung. U

Da man die Aquivalenzklassen leicht ausrechnen kann, ist es moglich, fiir
kleine £ Vermutung 1.7 zu zeigen:

Proposition 4.36 Fir k = 2,3,4 gilt fir den Graphen Cy:
P,((0,0) %*%(a,n)) > P,((0,0) %(a,n +1))

Mit dem im Anhang verfiigbaren Computerprogramm wurde die Propo-
sition nachgerechnet. Dabei hat man wieder die Sturmsche Ketten benutzt,
um zu iiberpriifen, ob P,((0,0) «+>“*%(a,n)) —P,((0,0) +>“**%Z(a,n+1)) > 0
ist.
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4.3 C} x Z fir beliebige k

In diesem Abschnitt betrachten wir das Gitter C) x Z und beweisen Ver-
mutung 1.8 fiir C x Z. Dabei wird der Beweis in drei Teile zerlegt, indem
wir zum einen p nahe bei 0, p nahe bei 1 und p etwas entfernt von 0 und 1
betrachten. Die Beweise funktionieren fast genauso fiir die meisten Graphen
G X Z mit G endlich und zusammenhangend. Dazu muss man eine zusétzli-
che Einschrankung an G machen, die die meisten Graphen erfiillen. Fir alle
drei Falle ist es wichtig, etwas mehr iiber Muster zu erfahren. Deshalb zuerst
etwas Vorarbeit, die in allen drei Fallen hilfreich ist.

4.3.1 Vorbemerkung zu Mustern

Mit X,, ist wieder das (einseitige) Muster auf der n-ten Ebene bezeichnet.
(siche Definition 1.6)
Zuerst sollen die giiltigen Muster von C} charakterisiert werden:

Lemma 4.37 Ein Ebenenmuster M ist genau dann giltig (also aus M (Cy)),
wenn fir alle x1,x9, 23,24 € Cy gilt: Sind bzgl. M x1 und xo verbunden
und x3 und xy verbunden, aber x1 und xs sind nicht verbunden, so folgt,
dass es in Cy disjunkte Pfade gibt, die x1 und xo verbinden und xs und x4
verbinden. Anschaulich bedeutet dies, dass es keinen Rundweg auf Cy, gibt, in
dem abwechselnd in der Reihenfolge x1, x3, x5 und x4 auftreten.

Zusdtzlich gilt sogar, dass es fiir alle Muster v € M*(Cy) undy € M(C},)
ein n < X2 gibt, sodass

2
P*(X,=y)>0

Ist x € M(Cy) und y € M°(Cy) so gibt es einn < 1 sodass

Beweis

Sei M ein giiltiges Muster und sei eine Kantenperkolation auf Cy, X Z gegeben,
die auf Ebene n des Graphen das Muster M hat. Ware x1,x9,x3, 14 € Cl,
sodass es in Cy keine disjunkten Pfade gibt, die x1 und xo verbinden und 3
und x4 verbinden und jeweils (x1,n) mit (ro,n) und (x3,n) mit (xg,n) durch
einen offenen Pfad in Cy, x ((—oo, n]] verbunden sind, dann wdre dies in dem
betrachteten Graphen nur moglich, wenn sich die Pfade schneiden, also wdre
auch x1 mit x3 verbunden. Damit erfillt M die geforderte Eigenschaft.

Sei nun M ein Muster mit den Eigenschaften aus dem Lemma. Nun soll
gezeigt werden, dass dieses Muster giiltig ist. Es wird sogar gezeigt, dass wir
das Muster M wvon jedem anderen giiltigen Muster aus M*(Cy) in mazimal
% Schritten erreichen kénnen.
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Abbildung 4.1: Beispiel fiir den Fall £ = 6 und das zu konstruierende Muster
({1,2},{{0,3},{4,5}}). Hier ist F} = {1,2}, F;, = {0,3}, F5 = {4,5} und
A= E(CG)’ Ay = {{07 5}7 {374}7 {47 5}}a Az = {{47 5}}

Dazu definieren wir uns zuerst ein paar Hilfsmengen: Wir definieren zu-
erst folgende Teilmengen A; und F; von E(Cy) bzw. V(Cy). Sei Fy die Menge
der infizierten Knoten von M und A, := E(Cy) sei die Menge aller Kan-
ten von Cy. Wir definieren nun die Mengen Fy,F,,...,F; C V(Cy) und
Ay, Ay, A C E(Cy) wie folgt rekursiv: Seien Fy_y und A,y definiert. Gibt
es keine miteinander verbundenen Knoten (beziglich M ) in V (Cy) \ U] F;,
so ist man fertig und setze j =t — 1. Anderenfalls betrachte die Komponen-
ten von Cy \ Uf;} F; Dtl, ..., Dj. Nach Voraussetzung an M sind Knoten nur
miteinander verbunden (aufler den Knoten aus U!Z1 F;), wenn sie in den glei-
chen Komponenten D}, ... D; liegen . Fiir jede Komponente D! setze F} = @,
falls es keine Knoten in D! gibt, die mit einem anderen Knoten verbunden
sind beziiglich des Musters M. Anderenfalls wihle eine Teilmenge F! von
D!, sodass alle Knoten aus F! verbunden sind (bzgl. M) und kein Knoten
aus DL\ F! mit einem Knoten aus F} verbunden ist (und F} sollte mindes-
tens zwei Elemente haben). Dariiber hinaus sollte F} so gewdhlt werden, dass
die Knoten aus D! hichstens dann miteinander verbunden sind, wenn sie in
der gleichen Komponente aus D!\ F} liegen. Dies ist nach Voraussetzung an
M mdglich. Z.B. wenn O.B.d.A. D! = {0,1,...,r} ist, wihle das kleinste
Element e aus {0,1,...,r}, welches mit mindestens einem anderen Knoten
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verbunden ist. Setze als F} die Menge alle Knoten, die mit dem Knoten e
(einschliefllich) verbunden sind. Waren nun zwei Knoten vy, ys miteinander
verbunden, die in unterschiedlichen Komponenten von DL\ F} liegen, und €’
ein Knoten aus F}, der zwischen y, und vy, liegt, so erfiillen e, e’ und yi,yo
nicht die Voraussetzungen des Musters.

Definiere Fy := \J F}. Weiter definiere mit Al die Menge aller Kanten aus
E(Cy,), deren beide Endpunkte in D! liegen und sei Ay := J AL

Wir konstruieren nun aus jedem Muster in j + 1 Schritten das Muster
M:

Zuerst sehen wir, dass wir durch einen Schritt das Muster erreichen, dass
alle Knoten infiziert sind (einfach alle Kanten offen auf der ndchsten Ebe-
ne). Mit einem weiteren Schritt erreicht man das Muster, indem genau die
infizierten Knoten von M infiziert sind und die Knoten aus F} jeweils unter-
einander verbunden sind (nur die vertikalen Kanten mit Endpunkten aus Fy
und genau die horizontalen Kanten Ay sind offen). Analog definiere immer
so weiter: Im t-ten Schritt seien nur die vertikalen Kanten aus UL_}F; of-
fen und die genau horizontalen Kanten A; offen. Man sieht im t-ten Schritt
sind FY, ..., Fy_q jeweils miteinander verbunden und die Knoten aus F sind
genau die infizierten Knoten. Im letzten Schritt sollen genau die vertikalen
Kanten aus ngl F; offen sein und alle anderen Kanten geschlossen. Somit
erhalt man das Muster M.

Man beachte, dass Fy,...,F; disjunkte Teilmengen von V(Cy) sind und
damit |Fy| + -+ + |Fj| < k ist. Wenn |Fy| + --- + |Fj| = k, dann kann man
sogar den letzten Schritt weglassen (da in diesem Fall im letzten Schritt alle
vertikalen Kanten offen sind). Somit kann man im Falle |Fy|+-- -+ |F;| =k
in j Schritten das Muster M konstruieren und im Falle |Fy|+ -+ |F;| < k
in j+ 1 Schritten das Muster M konstruieren.

Wir rechnen nun aus, wie viele Schritte man mazimal braucht. Man be-
achte, dass Iy, ..., Fj jeweils mindestens die Mdchtigkeit 2 haben. Weiter gibt
es k—|Fy| uninfizierte Knoten und F, . .., F; sind Teilmengen von V (Cy)\ F.
Somit ist j < (k — |F1|)/2 + 1, wegen |Fy| + --- + |F;| < k. Mit der obigen
Fallunterscheidung fir die Summe von |Fy|,...,|F;| erhdlt man, dass man
im Falle j < (k—|Fy|)/2+1 héchstens (k — |F1])/2+ 2 Schritte braucht und
im Falle j = (k — |F1|)/2 4+ 1 hdchstens (k — |Fi|)/2 + 1 Schritte braucht.
Insgesamt braucht man deshalb hichstens (k — |Fy| 4+ 3)/2 Schritte.

Ist |Fi| > 1, so braucht man hdchstens (k + 2)/2 Schritte. Wenn wir ein
Muster aus M°(Cy,) erreichen wollen, ist |Fy| = 0, so kénnte man den ersten
Schritt weglassen und hdtte insgesamt auch nur mazimal (k+ 1)/2 Schritte.
Insgesamt folgt die Behauptung.
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Bemerkung 4.38 Die uninfizierten Muster entsprechen den aus der Lite-
ratur bekannten nichtkreuzenden Partitionen (siehe z.B. [Sim00]). Eine Par-
tition A von der Menge {1,...,n} heifst nichtkreuzende Partition, wenn fir
alle a,bye,d € {1,...,n} mit 1 <a<b<c<d<n gil, sinda,c und b,d
in einer gemeinsamen Klasse, dann sind auch a,b, c,d in einer gemeinsamen
Klasse. Nach Definition von nichtkreuzenden Partitionen und Lemma 4.37
entsprechen die nichtkreuzenden Partitionen von {1,... k}. den nicht infi-
zierten Mustern von Cy, (bis auf die Bezeichnung). Die Anzahl der nichtkreu-

zenden Partitionen einer k-elementigen Menge ist L(Qkk:) (siehe [STm00]).

Rt
Damit ist #MP°(C},) = #1(2:)

Im Prinzip verwenden wir eigentlich hauptsachlich Lemma 4.37 in Form
von folgendem Korollar:

Korollar 4.39 Fir allen > |*22] und x,y € M*(Cy) (und p > 0) ist
P*(X,=y)>0

Beweis

Nach Lemma 4.37 gibt es ein | < 52 sodass P*(X; = y) > 0. Da man immer

in dem gleichen Muster bleibt, wenn in der ndchsten Ebene alle vertikalen

Kanten offen sind und alle horizontalen Kanten geschlossen sind, erhdlt man
die Aussage. O

Bemerkung 4.40 Fir allgemeine endliche zusammenhdngende Graphen G
kann man nicht immer so eine Schranke finden. Betrachte zum Beispiel die
Stern-Graphen V(G) = {0,...,k — 1} und E(G) = {(0,1),(0,2),(0,3), ...,
(0,k —1)}. Man kann nicht vom Zustand ({0}, {{1},{2},{3},...,{k —1}})
in den Zustand ({0},{{1,2,3,...,k — 1}}) kommen. Wire dies maoglich, so
misste in jedem Zwischenschritt mindestens ein Knoten infiziert sein. Ist der
Knoten 0 infiziert und die anderen Knoten nicht alle miteinander verbun-
den oder alle anderen Knoten auch infiziert, so erreicht man das gewiinschte
Muster nicht im ndchsten Schritt. Ist der Knoten 0 nicht infiziert, so ist im
ndachsten Schritt mindestens ein Knoten ungleich dem 0 Knoten infiziert und
somit kénnen nicht alle Knoten aufler dem 0 Knoten verbunden sein (aufer
diese sind infiziert).

Wir wollen nun eine Schranke wie in Lemma 4.37 fiir alle moglichen Gra-
phen speziell bezeichnen:

Definition 4.41 Fliir jeden endlichen zusammenhdngenden Graphen G be-
zeichnen wir mit mg das minimale n € N, sodass fiir alle x,y € M*(G)

P*(X, =y) >0

ist. Sollte es kein solches n geben, so setzen wir mg = 0.



82 KAPITEL 4. Ck x Z UND VERWANDTE GRAPHEN

Im Laufe des Kapitels werden wir uns nur mit Graphen beschéftigen, fiir
die mg < oo gilt.

Bemerkung 4.42

1. Natiirlich hdngt nach Definition mg nicht von p ab und nach Korol-
lar 4.39 ist me, < 2.

2. mqg kann auch deutlich kleiner sein, da z.B: fir G = Ky ist offen-
sichtlich mg, = 2: Es ist mg, > 1, da man 2.B. von dem Zustand
({0}, {{1,...,k — 1}}) nicht in einem Schritt in den Zustand ({1},
{{0,2,3,4,...,k—1}}) kommen kann (Fir den Nachfolgezustand gilt,
dass entweder in einem Schritt der Knoten 0 infiziert ist oder es ist
kein Knoten infiziert.) Dass man in zwei Schritten bei G = K} jeden
Zustand erreichen kann, ist klar: In einem Schritt erreicht man , dass
alle Knoten infiziert sind und in einem weiteren Schritt erreicht man
die gewtinschten infizierten Knoten und die gewtinschten Verbindungen
untereinander. Damit sind auch offensichtlich alle Muster giiltig fir

G = K.

3. Es reicht fiir mg < oo nur zu verlangen, dass es fir jedes x,y €
M'(G) ein ng, € N mit P*(X,,, = y) > 0 gibt. Dann ist mg <
max, e pt()inay ), da auch P*(X,, = y) > 0 fir alle m > ng,.
(PY(X1 = y) > 0, denn, wenn auf der Ebene alle vertikalen Kan-
ten offen und alle horizontalen Kanten geschlossen sind, bleibt man
im gleichen Zustand).

4. Auch ist klar, wenn G ein Graph mit genau k Knoten ist, dann ist ent-

weder mg < %Z[’io lkl—Tl oder mg = 00, da es nach Proposition 1.8 nur
insgesamt hochstens %Zfio lkTTl Muster gibt und wenn man von einem
Muster x das Muster y erreichen kann, dann ist es auch maoglich von x
aus y zu erreichen, indem man in jedem Ubergang (der Markovkette)

ein anderes Muster hat.

Bemerkung 4.43 Ist der Graph G nicht so grofi, so kann man mg einfach
ausrechnen. Dazu kann man z B. die Ubergangsmatriz A von (X,,), aufstel-
len und betrachten, fir welche n € N die Matriz A™ nur Eintrdge ungleich 0
fiir Startmuster aus M*(G) hat. (vgl. auch Abschnitt 4.2) In folgender Ta-
belle sind die Werte fiir me, fir kleine k angegeben (diese wurden mit dem
Programm, welches sich im Anhang befindet, ausgerechnet, dabei muss man
die wirkliche Potenz nicht immer ausrechnen, sondern es reicht bei jedem
Schritt jeden Eintrag, der ungleich 0 ist, 1 zu setzen):
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| o] o] o] ]

Also sieht man, dass die Abschdtzung von me, , welche man mit Lemma 4.37
erhdlt, fir k <7 optimal ist.

Bevor man nun mit dem eigentlichen Beweis von Vermutung 1.8 beginnt,
noch ein Lemma, welches eine Variante von Lemma 4.24 ist:

Lemma 4.44 Sei p € (0,1) und ny € Ng und G ein endlicher Graph und
r € MYG). Gilt fiir alley € M*(G)

P;(Xno+1 = y) < Pi(Xno = y)>
dann gilt auch fir alle n > ng
P (Xnt1 =y) <Pp(Xn=1y).

Beweis
Dies kann man einfach nachrechnen:

Pg(Xn =y) = Z Pg(Xno =) Pg’(Xn—no =y)
y'eM* (Cy)

> Z PZ(Xno-H =) Pg/ (Xn+1f(no+1) =y) = PZ(Xn-i-l =y) O
y' €M (Cr)

4.3.2 Betrachte p klein

Als Néchstes soll folgende Aussage bewiesen werden, die den Fall p nahe bei
0 betrachtet:

Satz 4.45 Sei G ein endlicher zusammenhdngender Graph mit mg < oo
und genau k Knoten (k > 1) und b Kanten und dem maximalen Grad d. Nun
betrachten wir den Graphen G x Z. Weiter sei 0 <t < 1. Dann gilt fir alle

2+2me (k+b—1) . 1 i 1
> =c- - <
n > - und alle p < min{ ET ) |_2+2mcl;7£kt+bfl)-‘+3} und

2

z,y € MY(G):
P;(XnJrl = y) < P;(Xn = y)
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Beweis
Sein = [M1 Nach Lemma 4.44 reicht es, die Aussage nur fir n zu
zeigen.

Wir bezeichnen im Folgenden die Knoten von G mit 0,..., k— 1. Sei B;
das Ereignis, dass es j € {0,...,k — 1} gibt, sodass auf der i-ten und i + 1-
ten Ebene von den vertikalen Kanten nur die Kanten {(j,i — 1), (j,4)} und
{(4,7), (4, + 1)} offen und alle anderen vertikalen Kanten geschlossen sind

und dariiber hinaus auf der i-ten Ebene alle horizontalen Kanten geschlossen
n—lj

sind. Definiere A, 1 = UZL:? Boiy1.

Mit Hilfe von A,.1 soll der Beweis in drei Schritte unterteilt werden.
Im ersten Schritt wird P,({X,11 = y} N A5,,) abgeschitzt und im zweiten
Schritt Py ({ Xny1 = y} N Any1) und jeweils mit Pp(X,, = y) verglichen. Im
letzten Schritt werden die beiden ersten Schritte kombiniert.

1. Schritt: Sei B! das Ereignis, dass es einen Pfad von offenen Kanten
von der i —1-ten Ebene zu der i+ 1-ten Ebene gibt und insgesamt mindestens
3 Kanten der 2k +b Kanten der i-ten Ebene und vertikale Kanten der i+ 1-
ten Ebene offen sind. Insbesondere ist B, 2O {X, 11 € M*(G)} N B¢. Es gilt
deshalb, dass

1254
({Xn+1 =yt NAL,) = Px({XTHI =y}n ﬂ Bgit1)
ot B =0 (4.6)

<PI ﬂ BQerl H PﬂC 22+1 <Pz(81)%

Dabei hat man bericksichtigt, dass B}, Bj, . . ., B;L"T’IJH unabhdngig sind, da
diese auf unterschiedlichen Kantenmengen definiert sind.

Es soll nun P*(BY) nach oben abgeschditzt werden: Wenn B} eintritt, gibt
es entweder einen Pfad der Linge 3 oder linger, der die 0-te Ebene mit der
2-ten Ebene verbindet und nur zwei vertikale Kanten verwendet (die erste
und letzte Kante des Pfades) oder es gibt ein j € {0,...,k — 1}, sodass die
Kanten {(5,0),(7,1)} und {(4,1),(j,2)} offen sind und zusdtzlich muss es
mindestens eine offene Kante auf der 1-ten Ebene oder eine offene vertikale
Kante auf der 2-ten Ebene geben. Sei C' das Ereignis, dass es einen Pfad gibt,
der mindestens die Linge 3 mit den obigen Eigenschaften hat. Weiter sei C'
das Ereignis, dass es zwei offene vertikale Kanten tbereinander gibt und das
zusdtzlich eine offene Kante an einer der entsprechenden Positionen auftritt.

Es gibt hichstens kd(d — 1)™2 Méglichkeiten fiir einen Weg der Linge
m, der in der O-ten FEbene beginnt und in der 2-ten Ebene endet und nur
horizontale Kanten benutzt (aufler bei der ersten und letzten Kante). Denn
fur die erste Kante hat man k Maoglichkeiten und fiir die zweite Kante d
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Médglichkeiten diese auszuwdhlen. Fir die ndchsten Kanten gibt es jeweils
d — 1 Maglichkeiten (alle Kanten aufler der vorigen Kante sind mdglich)
fiir die Auswahl der Kanten und die letzte (vertikale) Kante ist eindeutig

1

bestimmt. Wegen p < (k(2k+b—l2+kfld)>t < ﬁ erhdlt man damit:
P,(C) < kdp® + kd(d — 1)p* + kd(d — 1)*p° + ...
1 k

= kdp® ——

11
<Skdp*(L+ -+ (D)7 +.0) = kdp’ k—1
k

k k

Tritt das Ereignis C' ein, so gibt es k Moglichkeiten fiir die beiden ver-

tikalen Kanten und es gibt 2k + b — 2 Maglichkeiten fir mindestens eine

zusdtzliche offene Kante auf der 1-ten Ebene oder eine vertikale Kante auf
der 2-ten Ebene. Damit ist:

P (C") < k(2k + b —2)p

Insgesamt ist also

k
PY(By) <PI(C)+Py(C) < k(k+b—2+ md)p3

Mit (4.6) erhalten wir dann:

k bl
Pr({Xnp =y N A9 < (k(?k +b—2+ k—ld)p3>
Nun soll PJ(X,, = y) nach unten abgeschitzt werden: Nach Definition
von mg gilt fir alle z,y € MY (G), dass Py(Xp, = y) > 0 ist. Da man
in mg Schritten von jedem Zustand jeden Zustand erreichen kann und (es

2k4b—2+755d) | —
gang die Wahrscheinlichkeit gréfer ist als p**®, ist fiir jedes w € M (G)
P (Xmg = y) = (p"0)m6. Ist auf einer Ebene ein Knoten infiziert, dann
ist auch ein Knoten auf | Ebene hoher infiziert, wenn die entsprechenden
vertikalen Kanten zwischen diesen beiden FEbenen offen sind. Deshalb ist
P (X, € MY (G)) > p'. Damit hat man fir n > mg:

P (X, =y) = Z Pr(Xnme = 2) Pp(Xine = )

3 1
istp < %, da (k(l) ‘< (%)t < % < %) fir jeden Zustandsiiber-

2EM(G)
> P! (Xy_-m., =2) min PY(X,,. =y
=3, =
. x 1 : w .
=Py (Xone € MUG) i P (X =)

2 pn—mg (pk—i-b)mG
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n

Man beachte, dass § + (1 —k —b)mg > t§ + 1 genau dann, wenn n >

2+2mg (k+b—1)

T ist. Somit gilt nach Wahl von n und p:

n
2

Py (Xo1 =y Ag) _ (k(Qk b2+ Tfld)pg)
P;(Xn _ y) — pn—ma (pk+b)mG

(k(2k+b—2+kd> p2 H-k=btima

(k(2k:+b—2+kd> pr2tl

(k(2k+b 2+rd) ) p<p

Wobei bei der letzten Ungleichung benutzt wurde, dass nach Voraussetzung

an p die Ungleichung p* < m qgilt.

2. Schritt: Fir z,w € M*(G) bezeichne mit B die Teilmenge von
B;, die auf der i + 1-ten Ebene das Muster w hat und fir die beiden offe-
nen vertikalen Kanten {(j,i—1),(j,4)} und {(4,7), (4,1 + 1)} gilt, dass j ein
infizierter Knoten aus z ist.

Mit BZ" bezeichnen wir folgende Obermenge von B : B> ist das Er-
eignis, dass fir ein j € {0,..., k — 1}, wobei j ein infizierter Knoten aus
z ist, auf der i + 1-ten Ebene von den wvertikalen Kanten nur die Kanten
{(4,1), (4,i + 1)} offen und alle anderen vertikalen Kanten geschlossen sind
und dariber hinaus es auf der i+ 1-ten Ebene das Muster w gibt. Anschaulich
unterscheiden sich B> und BF* dadurch, dass man bei BP" die i-te Ebene

nicht betrachtet. Insbesondere ist also
P,(Bi") = p(1 — p)* ™' P,(BF") < pP,(BF™). (4.7)

Wenn das Ereignis A1 eintritt, muss es ein i mit 0 < i < L%IJ geben,
sodass das Ereignis Bo;yq eintritt. Deshalb gilt:

25
Pr({Xn1=ytNAn) < ' Pr({Xni1 =y} N Baiga)
nQIJ

= > > Pr{Xu =y} N B 0 { Xy =z, Xoipo = w})

=0 zweM(G)

o
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Es soll nun betrachtet werden, was dies auf den unterschiedlichen Kanten-
mengen 3Ly E; U757 1 E; und U2y, 5 E; bedeutet:

L5
=2 > PJ(Xai = 2) Pp(B3Y1) Py (Xn1-it2) = v)
=0 2 weM(G)

Unter Verwendung von (4.7) erhdlt man:

<P Z S Pr(Xai = 2) Py(B3t)) Py (Xa-ainn) = v)

:PP(BS{UJ)

Betrachtet man dies wieder als Ereignisse auf unterschiedlichen Kantenmen-
gen, so erhalt man:

125
=Pp Z Z Pr({X. =y} N B3 N{Xy = 2z, Xoi11 = w})

=0 2 weM(G)

27t

i=0

= p([ LD P X =)

3. Schritt: Kombiniert man Schritt 1 und 2, so erhdlt man nach Wahl
von n und p:

PZ(XH+1 =y) = Pz({XnJrl =ytNA,)+ Pi({XnJrl =yrNAy)
n+1 - n+1, _.
<(p+pl——D)PXa=y) s pl+ ——)P(Xa =)
3 |-2+2mg(k+b—1)‘|

< p(2 + 5

)P;(Xn - y) < P;(Xn - y)

In der letzten Ungleichung wurde verwendet, dass p < [2+2T”G“}+b’”w :
— 1= It

2

1st. O

Bemerkung 4.46

1. Man sieht, wenn man Schranke an n mdglichst klein wdhlen mdchte,
dann muss man t nahe bei O wdahlen, hat aber dann den Nachteil, dass
die Schranke an p sehr klein wird.
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? ..
2. Da (W) monoton wdchst und f2+2m5f£%+b_l>w+3 monoton
2
1
falltint, gilt die Aussage fiir moglichst grofie p’s, wenn (m) !

[2+2mc(,}+b,l>] ; ist. Natirlich ist dann n relativ grofs.
. = A

2

Man beachte, dass der Graph Cj genau k Knoten und k Kanten (fiir
k > 3, fiir £ = 2 hat man genau 1 Kante) hat. Somit erhalten wir folgendes
Korollar:

Korollar 4.47 Man kann in Satz 4.45 fir G = Cy mit k > 1

und

< mi {( 1 ) Ly
min s -
p= k(3k — 2+ %2) ﬁclkijj’“”m

2

wahlen.

4.3.3 Betrachte p in der Mitte

Betrachte das Gitter G x Z. Im Folgenden ist immer Z der Zeitpunkt, an
dem der Prozess ausstirbt. Genauer:

Definition 4.48 Betrachte die Kantenperkolation im Gitter G X Z . Im Fol-
genden ist ZC*7 definiert durch

7% .= min{n € N| 0« (x,n) fir alle x € G}

Wieder schreibe Z statt Z%<%, wenn klar ist, auf welchen Graphen man sich
bezieht.

Man beachte, dass der Prozess mit Wahrscheinlichkeit 1 ausstirbt und somit
die Definition sinnvoll ist.

Wir benutzen fir den Fall, dass p nicht nahe bei 0 oder 1 ist, den Satz 3.7.
Dazu werden wir zuerst die quasi-stationare Verteilung von X, Xs,... be-
ziiglich Z fir jedes Muster aus M*(G) nach unten beschrénken, falls es
eine quasi-stationare Verteilung gibt. (spater wird gezeigt, dass es genau eine
quasi-stationare Verteilung gibt):
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Lemma 4.49 Sei G ein endlicher zusammenhdngender Graph mit mg < oo
und genau k Knoten und b Kanten und o> eine quasi-stationdre Verteilung
von X1, Xs,.... Es gilt fiir alle x € M*(G), dass

k+b\ym 1 - 1
a2y > | P e f““l’ﬁi 1
(=P e firp 2 5

1st.

Beweis
Nach der Definition der quasi-stationdren Verteilung gilt:

a(y) = P (X = y) (4.8)

Pa(Z > mg)
Es soll nun P,(X. = y) nach unten und P,(Z > m¢) nach oben abgeschitzt
werden. Da das Ereignis {Z > m¢g} nur eintritt, wenn es auf jeder Ebene
mindestens eine offene vertikale Kante gibt (dafiir ist die Wahrscheinlichkeit

1—(1—p)k), ist
P*(Z > mg) < (1 — (1 —p)k)me (4.9)

Man kommt nur von einem Muster aus M*(G) zu einem Muster M*(G)
in einem Schritt, wenn mindestens eine vertikale Kante offen ist. Jeder Uber-
gang mit einer offenen Kante hat fir p < % mindestens die Wahrscheinlich-
keit p*+° und firp > % mindestens p(1—p)kt=1 (es ist mindestens eine Kan-
te offen und fir p < % sind die Konfigurationen mit vielen offenen Kanten

unwahrscheinlicher, fir p > % die Konfigurationen mit vielen geschlossenen
Kanten). Deshalb folgt fir P*(X; = 2') > 0:

P*(X, = 2) > {p ’ fiirp < (4.10)

p(L—p)kte=t firp>

D= N[ =

Setze t(p) := p** fiirp < 1 und t(p) := p(1—p)***~! fiirp > 3. Da fiir z,y €
M"Y (G) P" (X = y) > 0 ist, gibt es x5¥ = x, 277, 05Y ... Ty, 250, =
y™v € MY(G) mit PY"1(X, = 2™Y) > 0. Deshalb gilt mit (4.10):

mg—1
P'(Xmg =y) > Y alx) [T P (Xa=aif) > Y a@)(tp)™ =
€M1 (G) =0 €M (G)
Insgesamt folgt nun damit aus (4.8), (4.9) die Behauptung. O

Bemerkung 4.50
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. Man sollte auch beachten, dass (p

KAPITEL 4. Ck x Z UND VERWANDTE GRAPHEN

1. Beachte das lim,,_,o(p" )¢ ——Lore =0, da wegen der Rechenregel

. . (1-Q1-pF)me
von [’Hopital gilt

Y L A ) U
=0l —(L=p)k 0 L1 —(1—p)k  p0 k(1—p)kt

und lim,,_,; pm((l—p)k”*l)mGW = 0 (dies gilt offensichtlich).
Damit ist die Abschdtzung nahe bei 0 und 1 fast trivial. Dies ist auch
der Grund, dass wir die Faille p nahe bei 0 und p nahe bei 1 gesondert

behandeln maissen.

ktbyme monoton wachsend

auf p € (0,0.5) und p™e((1 — p)k“’*l)mc’w monoton fallend
auf p € (0.5,1) ist:

m hat die Ableitung W,
offensichtlich kleiner als O fir x > 1 (und k € N) ist. Also ist die
Funktion fir x > 1 monoton fallend und somit ist die Funktion p —
m monoton wachsend auf (0,0.5). Da

Die Funktion x — welche

1 o 1
—(—pF P/ =/p—1)F

gilt die erste Aussage, da auch p* monoton wachsend auf (0,0.5) ist.

( k—i—b)

Die zweite Aussage ist klar, da m monoton fillt und auch p(1 —

1
p) auf (0.5,1) monoton fillt (mit der ersten Ableitung sieht man es
sofort) und somit auch p(1 — p)***=1 und schlussendlich auch p((1 —

P = monoton fillt auf (0.5,1).

Deshalb ist die untere Abschdtzung bei Lemma 4.49 besonders bei p = %
relativ weit weg von 0.

Mit der obigen Aussage kann man eine Abschéitzung gleichmafig fir p €

[€,1 — €] € > 0 fiir die quasi-stationdre Verteilung angeben.

Lemma 4.51 Sei G ein zusammenhdngender endlicher Graph mit k Knoten
und b Kanten. Dann gibt es fiir die Markovkette XS*% genau eine quasi-
stationdre Verteilung o> (auf MY(G)) und fiir alle v € M*(G) und p €
(0,1) gibt es ein cq(p) € (0,1), sodass gilt:

I PR €42 > n) — a0 )lry <2(1 = ca(p))”
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Wenn die Knoten von G mit 0,..., k — 1 bezeichnet werden, kann man
ca(p) = mingepm g P;(XlGXZ = ({0,....,k—=1},{})|Z > 1) (also das Mini-
mum von jedem giiltigen Zustand in einem Schritt den Zustand zu erreichen,
dass alle Knoten infiziert sind) setzen. Weiter gilt dann

o
> -
o) 2 7= (1—p)*
und speziell fiir den Graphen Cy mit k > 2 und Ky hat man

kp*(1 — p) + pF*

)2 75 (1—p)*
und - i
e (p) = P =)
Beweis

Der Beweis basiert darauf, Satz 3.7 anzuwenden.

Sei My das Muster aus M*(G), bei dem alle Knoten infiziert sind. (Man
kann O.B.d.A. davon ausgehen, dass die Knoten von G mit 0,...,k — 1
bezeichnet werden. Dann ist My := ({0,...,k —1},{}))

Setze ca(p) = mingeppngy Pp(Xy = Mo|Z > 1). Es soll nun gezeigt
werden, dass fir alle x € M*(G) gilt:

P (X, = Mo|Z > n) > ca(p) (4.11)

Wegen (man beachte, dass es umso wahrscheinlicher ist auf der n—1-ten Ebe-
ne einen infizierten Knoten zu haben, je mehr Knoten auf der O-ten Ebene in-
fiziert sind und somit PIJ;/IO(Z >n—1)>P)(Z >n—1) firallex € MY(G))

P;f(Z > n) B ZyEMl(G) P;(Xl =) Pg(Z >n—1)
M - M
PMO(Z > —1) PY(Z >0 — 1)
< Y PiXi=y)=Pi(Z>1)
yeM'(G)

gilt (4.11):

PY(X1 = M) P)°(Z >n—1)
P2 (Z >n)

Pg(Xl = M(])

=P*( X, =MyZ >1)>
PE(Z > 1) 2 (Xq 0olZ > 1) > ca(p)



92 KAPITEL 4. Ck x Z UND VERWANDTE GRAPHEN

Wiahle als v die Verteilung auf M*(G), die nur das Muster My annimmd.
Daher v(My) = 1. Somit gilt der erste Teil der Aussage aufgrund von (4.11),
wenn wir Satz 3.7 mit cc(p) und v anwenden.

Nun soll noch cg(p) abgeschdtzt werden:
Fiir alle v € M*(G) ist

Px(Xl = Mo)
PHXT® = M| Z > 1) = 2 ———
p( 1 0’ ) Pg(Z > 1)
und trivialerweise ist PY(Z > 1) < 1 — (1 — p)* (mindestens eine vertikale
Kante ist offen). Somit ist, wenn man tg(p) = mingeppm e Pp(X1 = Mo)
setzt,
tc(p)
> .

Im Folgenden wird jetzt to(p) abgeschdtzt, um die einzelnen Abschditzungen
fiir ca(p) zu erhalten:

Wenn man mit einem beliebigen infizierten Zustand startet, dann hat man
im ndchsten Schritt alle Knoten infiziert, wenn eine bestimmte vertikale Kan-
te offen ist und die horizontalen Kanten einen offenen Spannbaum von allen
Knoten auf der ndichsten Ebene enthalten. Also ist, da ein Spannbaum von k
Knoten k — 1 Kanten enthdlt,

ta(p) = xefﬂf}ilféG) Pr(Xi=({0,....k=1},{})) > p"

Fir den Fall G = Cy mit k > 2 betrachten wir P*(X; = ({0,...,k —
1},{})): Wenn eine bestimmte vertikale Kante offen ist und k —1 horizontale
Kanten offen sind, dann sind auf der ndchsten Ebene alle Knoten infiziert.
Also ist

te(p) = min PLXTY = ({0, k= 1)) = k(1= p) + 9.

Ist G = Ky, so kann man tg(p) dadurch nach unten abschdtzen, indem
man den Fuall betrachtet, dass eine bestimmte vertikale Kante offen ist und
alle Knoten auf der Ebene nur durch Pfade, die nur aus horizontalen Kanten
bestehen, miteinander verbunden sind. Daher ist eine untere Schranke fiir
die Wahrscheinlichkeit p mal der Wahrscheinlichkeit, dass eine Kantenper-
kolation im Graphen Kj alle Knoten verbindet. Den letzten Teil kann man
wieder durch die Wahrscheinlichkeit abschdtzen, dass folgende Konstrukti-
on einen selbstvermeidenden Pfad in der Kantenperkolation im Graphen Ky
konstruiert, der in 0 startet und alle Knoten besucht:
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Man startet im Knoten 0 und falls es eine offene Kante am Knoten 0 ¢ibt,
wdhle eine aus und nehme als zweiten Knoten des Pfades den entsprechen-
den Knoten. Nun gehe wie folgt vor, bis man alle Knoten besucht hat (oder
man nicht weiterkommt). Nehme eine offene Kante von diesem Knoten zu
etmem Knoten, den man bisher noch nicht besucht hat, als neuen Knoten.
Im ersten Schritt ist die Wahrscheinlichkeit, dass der Knoten 0 eine offene
Kante hat 1 — (1 — p)*=1. Wenn man schon i Knoten besucht hat, dann ist
die Wahrscheinlichkeit, dass der Knoten eine offene Kante zu einem neuen
Knoten hat 1 — (1 — p)*~%. Insgesamt ist also

te(p) = min PE(XF% ({0, k—1}{}) 2 p[[(1- (1 -p))O

1
zeM(G) i=1

Bemerkung 4.52 In [Gil59] findet man eine kompliziertere Abschatzung
(als im wvorigen Beweis verwendet) fir die Wahrscheinlichkeit, dass bei ei-
ner Perkolation im Graphen K alle Knoten miteinander verbunden sind.
Dort wurde gezeigt, dass die Wahrscheinlichkeit grofier oder gleich

L= (1=p (140 =p)F) T = =)
— (=P (A (=R 1)

1st.

Nun koénnen wir zum eigentlichen Resultat aus diesem Unterabschnitt
kommen:

Satz 4.53 Sei G ein zusammenhdangender endlicher Graph mit k Knoten
und b Kanten und mg < oo. Weiter sei 0 < € < % Dann existiert ein
no € N, sodass fiir alle n > ngy, x,y € M*(G) und p € [e,1 — €| gilt:

P (Xn1 =y) <Py (X, =1y)

(k+(k+b)12r;5(:1)io§€()e)flog(2) wéhlen.
(k‘+2kmck ) log(€)—log

log(1—(k+1)eltk)

Man kann ng :=

Speziell fiir G = Cy kann man ng := @ und fir G = K,
(k(mg+1)+2(}4)) log(e) ~log(2)

log(1-p [~ (1-(1-€)%))

kann man ng := wdahlen.

Beweis
Seipele,1—¢€.
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Man beachte, dass gilt

P (Xpi1 =) PY(Xp1=y|Z>n+1)  PYZ>n)

= <l& = < = (4.12)
P (Xn =) Po (X, =y|Z > n) P (Z >n+1)
Wir haben:
P(Z >n+1)
E = P%(Z 112 <1—(1-p)*
bz =TAZ Uz 1= (1)

Dabei wurde verwendet, dass, wenn man die Hohe n erreicht hat, mindes-
tens eine vertikale Kante offen sein muss, um die ndchste Ebene zu erreichen.
Somit folgt, wenn

P (Xp1=ylZ>n+1) _ 1
Py (X =y|Z > n) 1—(1—-pH*
dass
P (X1 = y) < PE(X, = 1)
ist. Sei oy (+) die eindeutige quasi-stationdre Verteilung von Xy, Xo, ... und

g(p) € (0,1) so gewahlt, dass
1Py (X0 €412 > n) — ap()ll2v < 29(p)" (4.13)

(nach Lemma 4.51 existiert so ein g(p) und die quasi-stationdre Verteilung
ist eindeutig). Damit gilt fir a,(y) > g(p)":

PpXnpr=ylZ>n+1) ay(y) +9(0)"" _ aply) +9()"
Po(Xn=ylZ>n) = aly) —g)"  op(y) —g(p)"

Da 17(11720),6 > lfek ist, reicht es zu zeigen, dass fir a,(y) > g(p)"

ap(y) +g(p)" 1
ap(y) — g(p) ST

Dies ist aquivalent zu

29(p)"

ap(y) — g(p)"
ap(y) + g(p)"

ap(y) + 90" =<

1-— <o

Damit gilt die Aussage sicherlich, wenn nyip()yn

n klog(e)+log(a —log(2
a,(y) > g(p)") bzw. n > 8( Hloigg&()y))) 8(2)

< €* (also insbesondere auch

~
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Nach Lemma 4.49 ist fir alle p € [e,1 — €] a,(y) > (€*T0)"¢ und nach
Lemma 4.51 kann man in (4.13) g(p) := 1 —p* < 1—¢€* wihlen. (der Nenner
1—(1—p)* in Lemma 4.51 wurde mit 1 abgeschdtzt) So folgt die Behauptung.

Fir G = Cy folgt die Behauptung ebenfalls aus Lemma 4.51, da man
g(p) :==1—kp*(1 —p) — p" <1 — (k+1)e"™! wihlen kann und es ist nach
Lemma 4.49 a,(y) > (€2¥)™Ck . Damit gilt fir

- klog(e) + log(ay,(y)) — log(2) - klog(e) + log((€**)™ex) — log(2)
log(g(p)) B log(1 — (k + 1)et*1)

n

die Gleichung (4.12) und somit auch die Behauptung.
Bei G = Ky kann man verwenden, dass man nach Lemma 4.51

g(p) =1 —pljl(l —(1-p)")

wdhlen kann. Wegen Lemma 4.49 und der Tatsache, dass ein vollstindiger
Graph b = (g) Kanten hat und nach Bemerkung 4.42 ist my, = 2, ist o, (y) >

i 2
(e’”(?)) . Damit folgt die Behauptung fir

klog(c) + log(a(p)) — log(2) _ klog(c) +log((¢**())?) — log(2)

log(9(»)) 2 g0 —(1—p))

Bemerkung 4.54 FEs soll noch einmal ein kurzer Blick auf (4.12) geworfen
werden. Man beachte, dass Pp(Z > n + 1|Z > n) fir alle n ungefihr p
fiir p — 0 ist (gilt {Z > n} fir kleine p’s, so ist héchstwahrscheinlich nur

ein Knoten auf der Ebene n infiziert). Da ebenfalls, heuristisch gesehen, fir
0 PP (Xnt1=y|Z>n+1)
P = U T Xa=izem

klar zu sein, dass die Aussage auf ganz (0, 1—¢| erweitert werden kann. Spdter
wird fir die Erweiterung auf (0,1 — €] Satz 4.45 verwendet.

gegen 1 konvergiert, so scheint es auch ohne Satz 4.45

4.3.4 p nahe bei 1

Der Beweis fiir p nahe bei 1 hat etwas Ahnlichkeit zum Beweis nahe bei 0.
Hier unterscheiden wir die Falle, ob es eine Ebene gibt, in der alle Kanten
offen sind. (Im Gegensatz zu dem Fall p nahe 0 haben wir betrachtet, ob es
eine Ebene mit nur einer Kante gibt)
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Satz 4.55 Sei G ein Graph mit k Knoten und b Kanten und mg < oo.
Es gibt ein p' < 1 und ein ng, sodass fir alle n > ng und p € [p/,1) und
r,y € MYG) gilt

Man kann ng = 2((k + b — 1)mg + k) wdhlen, wobei man p' := 2’“‘\1/%
setzen kann.

Beweis

Sei T, die gréfite Ebene i zwischen der Ebene 1 und n, in der alle vertikalen
Kanten offen sind und die Knoten der Fbene einen offenen Spannbaum in
dem Teilgraphen G x {i} bilden. Gibt es keine solche Ebene, dann setze T,, =
oo. Man beachte im Falle T,, = m mit m € {1,...,n} sind die Knoten aus
E, 1 U E,, im Graphen G x ((m — 1,m]]®> miteinander verbunden.

Wir haben

P (Xnt1 =y) =P (Xo1 =y, T = 1)
+ Pg(Xn—&-l =Y, 1< Tn+1 S n + 1) + P;(Xn—i-l =Y, Tn-‘rl - OO)

Man beachte, dass ein Spannbaum eines Graphen mit k Knoten k—1 Kanten
hat und jede Ebene k vertikale Kanten hat. Somit ist p**~' die Wahrschein-
lichkeit, dass auf der i-ten Ebene alle vertikalen Kanten offen sind und es
einen offenen Spannbaum im Graphen G x {i} gibt. Damit ist (1 — p*—1)"
die Wahrscheinlichkeit, dass es zwischen der 2. (einschliefllich) und n+1-ten
(einschliefilich) Ebene keine Ebene gibt, sodass alle vertikalen Kanten offen
sind und die offenen horizontalen Kanten einen Spannbaum aller Knoten der

Ebene enthalt. Damit hat man

P;(Xn—l—l =Y, Tn+1 = 1) + P;(Xn—&-l = van—H = OO)
=1-Pl(Xp1=y,1<T,<n+1) (4.14)
<1-Pi(1<T,<n+1)=(1-p* )"

Ist w eine Konfiguration aus {Tpy1 = m, Xp11 =y} mit 1 <m < n+1,
so erhalten wir eine Konfiguration o' aus {T,, = m — 1, X,, = y}, indem wir
die m — 1-te Ebene komplett entfernen (einschliefSlich der vertikalen Kanten)
und diese wieder zwischen der n+ 1-ten Ebene und n + 2-ten Ebene (von w)

3Mit dem Graphen G x ((m — 1,m]] ist der Graph mit den Knoten E,,_1 U E,, und
den Kanten {{(v,n), (v',n)}|{v,v'} € E(G)} U{{(v,n—1),(v,n)}lv € V(G)} gemeint.
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einfigen. Genauer bildet man w auf W' mit der Abbildungsvorschrift

W,({@’j)v (kv l>}) =

w({(2,9), (K, D)}),

w({(i,m = 1), (k,m = 1)}),
w({(i,m =2), (k,m —1)}),
w({(i,m = 1), (k,m —2)}),
w({(@, 5 +1), (k, 1+ 1)}),

7, l<m—1oderj>n+1
oderl >n+1
j=l=n+1
j=nundl=n+1
j=n+lundl=n

sonst

ab. Man beachte, da im Graphen G x ((m — 1,m]] bei w alle Knoten durch
offene Pfade miteinander verbunden sind und somit ist X,,_1 bei w' das Mus-
ter, dass alle Knoten infiziert sind, da es bei w eine Verbindung vom Kno-
ten (0,0) zu der m — 2-ten Ebene gibt (wie auch bei w') und im Graphen
G x ((m —2,m — 1]] alle Knoten bei " miteinander durch offene Pfade ver-
bunden sind. Die offenen Kanten von K(E,,) bis K(E,+1) bei w entsprechen
den offenen Kanten von K(E,,_1) bis K(E,) bei w'. Somit ist X,, bei w' das
Muster y, da sowohl X,, bei w als auch X,,_1 beiw' das Muster, welches alle
Knoten infiziert hat, ist.

Man sollte berticksichtigen, dass auf der m — 1-ten Ebene bei w mindes-
tens eine vertikale Kante offen ist und somit bei ' eine vertikale Kante auf
der n + 1-ten Ebene offen ist. Insbesondere hat man eine injektive Abbildung
von {Tpi1 =m, Xp1 =y} nach {T,, =m —1,X, =y} N A1, wobei A, 4
das Ereignis ist, dass mindestens eine vertikale Kante auf der n+1-ten Ebene
offen ist. Also ist aufgrund der Invarianz von P,:

Pg;(Xn—l—l =Y, Tn+1 = m) < Pg({Xn = nyn =m — 1} N An—H)
= Pz(Xn =Y, Tn =m — 1) Pp<An+1)'

Dabei hat man bei der Gleichung beriicksichtigt, dass Ap+1 und {X,, =y, T, =
m — 1} auf unterschiedlichen Kanten definiert sind und somit unabhdingig
sind.

Die Wahrscheinlichkeit, dass mindestens eine vertikale Kante offen ist,
liegt bei 1 — (1 — p)*. Also ist P(A,41) =1 — (1 — p)*. Somit ist:

n+1
Pz(Xn+1 - y, 1 < Tn+1 S n + 1) - Z P;(Xn+1 = van+1 = m)
m=2

n+1
< Z Pi(Xn =y, T,=m—1) Pp(An-I—l)
m=2

<P (X, =y 1 < T, <n)(1—(1—p))
(4.15)
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Ware
1=p" )" <(1-p)Py(X,=y) (4.16)
so folgt nach (4.14) und (4.15):
Py (X1 =) < (1 =p* )"+ (1= (1 =p)")Py(Xa =y, 1 < T, <n)

Also reicht es (4.16) zu zeigen.

Da gilt P)(Xyne = y) > 0 fir alle v,y € M, hat man fir alle v,y €
MY (G) Py(Xme = y) = (p(1 = p)**P=1)"e (Es muss mindestens eine verti-
kale Kante auf jeder Ebene offen sein. Dariiber hinaus ist p > 1 — p, wegen

p > k*m > % und somit sind Konfigurationen unwahrscheinlicher je

mehr geschlossene Kanten sie haben ).

Auch gilt Py (Xp—me € MY (G)) > p*~™¢, da, wenn die ndchsten n —mg
vertikalen Kanten offen sind, die iiber einem infizierten Knoten der 0-ten
Ebene liegen, dann ist die n — mg-te Ebene mit einem infizierten Knoten auf
der 0-ten Ebene verbunden. Damit gilt fir n > mg:

P(Xn =9) 2 Py (Ko € MUG) _miin) PoXins =9) 2 7(1=p) ™)

Somit gilt fir alle n > m¢ die Ungleichung (4.16), wenn:
(L =p™ )" <p"((1=p)"7)"me(1 - p)* (4.17)
Setze ng == 2((k+b— 1)mg + k). Falls
(L=p*") <pvI—»p (4.18)
gilt, hat man fir alle n > ngy (da (1 —p) <1)
(1= <p (VI—p)" <p" (VI—p)

und somit ist (4.17) und damit dann auch (4.16) erfillt.
Die Ungleichung (4.18) ist dquivalent dazu, dass

((k+b—1)mg+k)

(1=p" DA +p+p*+-- +p7) <p?

Da (1+p+p?+--+p*2) < 2k — 1 gilt die Ungleichung erst recht,
wenn
2k — 1 < p* + (2k — 1)p* 1

Da p* > p?*=1 gilt (man kann O.B.d.A. annehmen, dass k > 1, da der Satz
fir k = 1 sogar fir alle p € (0,1) richtig ist, wie man leicht sieht) die

. _ . . .. _ 2%—1
Ungleichung, wenn 2k — 1 < p**~ 2k ist. Damit folgt, dass fir p**~' > 24
die Ungleichung (4.16) erfillt ist und somit gilt die Behauptung. O



4.3. Ok x Z FUR BELIEBIGE K 99

Offensichtlich gilt deshalb:

Korollar 4.56 Sei G = Cj und p' := 2’“?1/%. Dann gilt fir alle n >
2((2k — \)mg, + k) und p € [p/,1] und z,y € M*(Cy)

Py (X% = y) > PR(X 7 = )

4.3.5 Zusammengefasst: Schranke n

In diesem Abschnitt soll nun gezeigt werden, dass Vermutung 1.8 fiir mg < 0o
gilt und fiir bestimmte Graphen (die Graphen C}) geben wir ein konkretes
n an.

Satz 4.57 Sei k € N und § € (0,1) so gewdhlt, dass (1—:5) < 2ki~2 (die

N
Eristenz eines solchen § ist klar *). Dann gilt fiir n > ((4k2)5) (k +3)
und fir alle x,y € M*(Cy)

PY(XIWE = y) > PY(X 47 = y)

Beweis

Wir setzen im ganzen Beweis voraus, dass k > 3 ist. Man kombiniert alle 3

Lemmas fiir p klein, p in der Mitte und p groff. Setze € := W. Zeige, die

Aussage gilt fiir p € (0,€) bzw. p € [e,1 — €] und p € (1 —¢,1):
Fiir p € (0,¢): Setzt man im Korollar 4.47t = 0, so hat man wegen

L 1/6 5 .
(’f(?”f — 2+ k,_12)> < (k(3k —2+3)"° = (4)°

und (beachte Lemma 4.37 zu me, )

(W1+3< Zme (D 4y (B£2) (k- 2) +6

15 <
2 = 2 = 2(1—0)
_1 243 2 2
:(k+2)(k; 2)—1—3:k +2k;—|—2</<: +k < ap}
(1-19) (1-=9) — (1-=9) —
fur allep < € und allen > Molkf(gk_m die Aussage P*(X,, = y) > P*(X,41 =

y). Da (vgl. obige Rechnung)

2+me, (4k—2) 2+ (k+2)(2k—1) _ 3k? 2 < ) ;)“2
< < < 6ks < | (4k k+3
-5 = I S1.5° (4#)°)  (k+3)
4Denn die linke Seite geht fiir 6 — 0 gegen 1 und die rechte Seite geht fiir § — 0 gegen
0.
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ist die Aussage fiir p € (0,¢€) gezeigt.
Fiir p € [e,1 — €|: Da (dabei wird verwendet, dass log(x) < x — 1 fir
x >0 und Lemma 4.537):

(k + 2kmc, ) log(€) —log(2)  (k+ 2kme,)log(L) + log(2)

log(1 — (k + 1)€ek+1)  —log(1 — (k+ 1)ek+1)

(]{7 + kack)(% — 1) + log(2) < k+ kack < 1+ QTTLCk
= (k + 1)ek+1 = (k+1)ek+2 = ekt2

k+3 23\

folgt die Behauptung direkt aus Satz 4.53.

Fiir p € (1 —¢,1): Man beachte, dass nach der Bernoulli-Ungleichung
qilt:

1\ 2k-1 1 2kl 2% — 1 2% — 1
(1 _ ) >(1- —— >1— —
)2 (2k — 1)2k (2k — 1)2k ok

Damit hat man
2k712k—1 ].
<l——<1-
V "ok =S T 2=

Damit folgt aus Satz 4.55, dass fir allep > 1—¢ und n > 2((2k—1)me, +k),
dass Pp(X, =vy) > Py,(X,41 =vy). Da mit Lemma 4.37 gilt, dass

2((2k — Dyme, + k) < (2k — 1)(k + 2) + 2k < 2k(k +3) < (41@%)“2(1{ +3)
ist, folgt die Aussage. O
Bemerkung 4.58

1. Man sieht, dass man 0 beliebig nahe an 1 wdhlen kann, wenn k — oo.
Da 1_—105 =2 < 2ki? gilt, wdre z.B. 6 = 0.5 eine Wahl, die fir alle
k € N gilt. Genauer kann man einfach numerisch fiir ein bestimmtes
(oder ab einer bestimmten Grifie) k ein besseres § ausrechnen.

2. Natirlich kénnte man die Abschdtzungen etwas genauer durchfiihren

(besonders fir k grofs), doch wiirde sich an der Gréffenordnung nichts
Qualitatives dndern.

3. Obige Aussage gilt auch fir Cy, x [[0,00)), da man im Beweis die kon-
krete Startverteilung nicht benutzt hat, sondern nur Aussagen tiber die
Markovkette (X;); mit einer vorgegebenen (beliebigen) Startverteilung.
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Der vorige Satz gilt analog auch fiir beliebige Graphen mit mg < oo:

Satz 4.59 Sei G ein zusammenhdngender endlicher Graph mit mg < 00, so
gibt es ng € N, sodass fiir alle z,y € M (Q), fir alle n > ng und fiir alle
p € (0,1) bei dem Graphen G x Z gilt

P*(X, =y) > P (X1 =v)

Beweis

Der Beweis funktioniert wieder mit Satz 4.45, Satz 4.53 und Satz 4.55. Nach
Satz 4.45 und Satz 4.55 existieren p', p" und einn' € N, sodass fir allen > n’
und alle p € (0,p') U (p",1), P*(X,, = y) > P"(X,41 = y) gilt. Setzt man
e = min{p’, 1 — p"}, so gibt es nach Satz 4.53 ein n”, sodass fir alle n > n"
und alle p € [e,1 — €] P*(X,, = y) > P*(X,41 = y) gilt. Man setzt nun
no := max{n’,n"}. O

Man hat folgendes Korollar (eigentlich schon ein direktes Korollar von
Satz 4.45), welches eine Abschwéchung von Vermutung 1.7 ist:

Korollar 4.60 Sei G ein zusammenhdngender endlicher Graph mit mg <
00, so gibt es ein p' € (0,1), sodass fir alle p < p' und a € V(G) gilt:

P05 %(a,n)) > P(0%(a,n + 1))

1

1.30+4k2+6k—1 wdahlen.

Fir G = Cy kann man p' =

Beweis

Es gibt nach dem Satz ein ng, sodass fir alle n > ny P*(X, = y) >
P*( X141 = vy) gilt. Mit Lemma 1.13 und Lemma 1.14 folgt, dass dann auch
P(0+%*%(a,n)) > P(0+“Z(a,n + 1)) gilt.

Fiir alle n < ng konnen wir jeweils ein p(n) € (0,1) finden, sodass
P(0+%(a,n)) > P(0+<*%(a,n + 1)) gilt (siche Abschnitt 1.5.1). Damit
erfullt p' := min{p(n) : n < ny} die Forderungen.

Fir G = Cy, setzen wir k > 3 voraus (fiur k = 1 ist die Aussage trivial,
fiir k = 2 siehe Abschnitt 4.2). Dann gilt nach Korollar 4.47 mit t = 0.5, da
(vgl. Beweis von Satz 4.57)

1/0.5
<k(3k — 24 l{;ﬁ12)> < (k(3k + 1))1/0.5 < (4k2)2

und

[2+mlcfé.48k—2)-| +3 k2 n k‘2

> S"'§(1—0.5):4k2§<4k2)2’
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2+m0k (4’4}72)

dass fir alle n > T S @y

P(0-%%*%(a,n)) > P(0<“*%(a,n + 1))

24542 (4k—2)  24me, (

ist. Setze ng := 4k*+6k = s 2 1_0%5#2). Der Kantenabstand von
0 und (a,n) betrigt a+n Kanten. Daher ist p*™™ < P(0+“*>*Z(x,n)). Wenn
es eine Verbindung von 0 zu dem Knoten (a,n+ 1) gibt, muss es mindestens
einen offenen Pfad der Linge a +n + 1, der in O startet, geben. Daher ist

pitntlg . 3etn > P02 (a,n + 1)). Also kann man

P(OHC’“XZ(CL,H)) > paJrn > pa+n+14 . gotn > P(O(—)Ckxz(a,n + 1))

f S 1 A 1 — 1
fiir p < p(n) := gzazm. Insgesamt hat man daher p' = fzems=r = Somerers

und n < ng: P(0<%*%(a,n)) > P(0+<“**2(a,n + 1)). Da

(4k2>2 < 4.3k < g . gataktH6k—1
folgt die Behauptung fiir G = Cy. O

Bemerkung 4.61 Man sieht auch an dem Beweis des Korollars, wie man
fiir einen konkreten Graphen (mit mg < oo) Vermutung 1.7 fir alle p und
n theoretisch beweisen kann. Nach Satz 4.59 gibt es ein ng, sodass fir alle
n > ng die Aussage gilt. Fiir n < ng kann man die Aussage mit der Methode
aus Abschnitt 4.2 nachrechnen. Nachdem man nur endlich viele Fdlle durch-
gerechnet hat, kann man entscheiden, ob Vermutung 1.7 fiir diesen Graphen
stimmt. Natirlich ist dann die Schranke an ng zu grof$, um dies effektiv ma-
chen zu konnen.

Man hat auch folgendes Korollar, welches sich an Fragen anschlieft, die
im vorigen Abschnitt betrachtet wurden und Vermutung 1.6 unterstiitzt:

Korollar 4.62 Sei G ein zusammenhdngender endlicher Graph mit mg <
00, so gibt es ng € N, sodass fir alle n > ng und alle p € (0,1) bei dem
Graphen G X Z gilt

Ep[Zn] > Ep[Zp ]

Beweis
Folgt direkt mit Hilfe von Lemma 1.5. U



Anhang A

Verwendete
Computerprogramme

In diesem Anhang sind alle Computerprogramme aufgefithrt, die in dieser
Arbeit verwendet wurden. Die Programme sind alle in Python (https://
www.python.org) geschrieben und verwenden teilweise die CAS-Bibliothek
Sympy (https://www.sympy.org/).
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A.1 Berechnung der Anzahl der selbstvermei-
denden Pfade von Z*, die in E; enden

200

Berechnet die Anzahl der selbstvermeidenden Wege der Ldnge 1, die in
der ersten FEbene enden und die in start starten und die Knoten in
visited micht benutzen.
def anzahlselbstinE1l (1, besuchte,start):
(x,y) = start
if 1==0:
if y==1:
return 1
else:
return 0
anzahl = 0
for i in [(x+1,y),(x=1,y),(x,y+1),(x,y—1)]:
if i in besuchte:
continue
anzahl += anzahlselbstinE1 (1l —1,besuchte | set ([i]),i)
return anzahl

#Erzeugt eine Liste von der Amnzahl von den Wegen der Linge 1 bis 22.
if  mpame — " main ":
besuchte = set ([(0,0)])
for i in range(1,23):
print (i," &, ", anzahlselbstinE1l (i, besuchte ,(0,0)), "\\\\")

A.2 Berechnung von E[Y="]

200

Berechnet alle selbstvermeidenden Pfade nach point von v[—1] der Linge <=k,
die keine Knoten aus v benutzen.
def calcweg(v,k,point):
listweg = []
(x,y) = v[-1]
for r in [(X+17Y)7(X_1a}7)a(va'i-]-)v(Xay_]-H:
if r=—point:
listweg . extend ([tuple(v+[point])])
elif not(r in v) and len(v) < k :
listweg . extend (calcweg (v+[r],k, point))
return listweg
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PR

Berechnet die Wahrscheinlichkeit von (0,0) nach point durch einen Pfad
der Linge <=k zu kommen. Riickgabe ist eine Liste, die man als Polynom
in p interpretieren mMmMuss.

PR

def calcprob (k, point):
Berechnet die Wahrscheinlichkeit, dass es einen Pfad aus | gibt
mit der Siebformel. Da rekursiv berechmnet wird, muss beim ersten
Aufruf kan die leere Menge sein, weginkan 0 sein und poly eine
ausreichend lange Liste, die nur aus 0 besteht. In poly steht
dann das Ergebnis der Berechnung.
def sieb (kan,weginkan,l poly):
if len(1)==0:
return 0
for i in range(0,len(1l)):
kannew = set.union(kan,1[i])
poly [len (kannew )] 4+= (—1)sxweginkan
sieb (kannew , weginkan+1,1[i+1 :], poly)
allwege = [] #Soll eine Menge von Pfaden enthalten , wobei die Pfade
#als ungeordnete Kanten gespeichert werden.
wege = calcweg ([(0,0)] ,k, point)
for x in wege:
aktweg = set ([])
for i in range(l,len(x)):
e = [x[i-1],x[i]]
e.sort ()
aktweg.add (tuple(e))
allwege . append (aktweg)
poly = [0] % (200) #ausreichend grofs
sieb (set (),0,allwege ,poly)
return poly

PR

Wandelt die Liste poly in eine Polynomdarstellung um.

PR

def polytotxt(poly):

text = "'
for i in range(0,len(poly)):
if text != "" and poly[i] > O0:
text 4+= "4'
if poly[i] = 1:
text += "p~" + str(i)
elif poly[i] != 0:

~1

text += str(poly[i]) + "*p
return text

+ str(i)
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)0

Berechnet E[Y <=m]
def calcEYm (m):
probgl = [0] % (200)
for j in range(—m+1,m):
r = calcprob (m,(1,j))
for k in range(len(r)):
probgl [k]=probgl [k]+r [k]
return probgl

#Gibt die Berechnung von E[Y <=m] fir m<= 6 aus
if mpame — " main ":
for m in [1,2,3,4,5,6]:

[
print (m, *: ., ,polytotxt (calcEYm(m)))
A.3 Berechnung der giiltigen Muster

Der folgende Quellcode enthéalt Funktionen zum Berechnen der Muster, die
in anderen Programmen benutzt werden.

import itertools as it
import copy
import functools

200

Gibt bei einer Liste, die nur Listen enthdlt die Position der Liste
zurick, die e enthdlt.
def getlwithe(l,e):

return next((i for i in range(0,len(l)) if e in 1[i]),—1)

22

Gibt das Muster an, das man aus m erhdlt , wenn die horizontalen
Kanten aus | vorhanden sind.
def usehoredges(m,1):
k=len (1)
if (m=—(]):
return []
#Fige allen ak die aus rl verbundenen Knoten hinzu und lésche aus rl:
def h(ak,rl):
aks=copy .deepcopy (ak)
while len (aks)>0:
i=aks.pop ()
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if 1[i]==1:
r=getlwithe (rl,(i4+1) % k)

if rl=—1:
ak.extend(rl[r])
[r])

aks.extend(rl
del rl[r]
if k> 2 and 1[(i—-1) % k]==1:
r=getlwithe (rl,(i—1) % k)
if rl=—1:
ak.extend(rl[r])
aks.extend (rl[r])
del rl[r]
ak.sort ()

1))
01))

rl=list (copy.deepcopy (m][1
inf=1list (copy.deepcopy (m]
h(inf , rl)
npart =[]
while len(rl)>0:
a=list (rl.pop())
h(a,rl)
npart.append(a)
npart.sort ()
return [inf ,npart]

A

Gibt das Muster an, das man aus m erhdlt , wenn die wvertikalen
Kanten aus | wvorhanden sind.

PR

def useveredges(m,1):

if (m==]]):
return |[]

inf=[]

ver =[]

for e in m[0]:
if(1[e]==1):

inf.append(e)

else:

ver .append ([e])
for s in m[1]:

ak =[]
for e in s:
if(le]==1):
ak.append(e)
else:

ver .append ([e])
if(len(ak)>0):
ver .append (ak)
return [inf  sorted(ver)]
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)0

Gibt fir Ck das zu m dquivalente Muster zurick.
Wenn nullid gleich True ist, dann wird jedes uninfizierte Muster
als [] zuriickgegeben.

22

def aquiPattern(k,m,nulid=True):

if(m==[]):
return |[]

if nulid and m[0]==[]:
return []

ap=|]

for s in [—1,1]:
#Verschiebung
for i in range(0,k):

np0 =]

for x in m[0]:
np0.append ((s*xx+i) % k)
np0.sort ()

npl=(]

for x in m[1]:
nplak =[]
for y in x:
nplak.append ((s*xy+i) % k)
nplak.sort ()
npl.append (nplak)

npl.sort ()
ap.append ([np0,npl])
ap.sort ()

return ap[0]

20

Erzeugt alle einseitigen Muster.

Das Programm benutzt die FEigenschaft, dass man aus dem Muster,
bei dem alles infiziert ist, jedes giultige Muster erzeugen kann.
@functools.lru_cache(maxsize=256)

def genPattern(k,aqui=False ,nullid=False):

def at(m):
if aqui:
return aquiPattern(k,m, nullid)
else:
if nullid and m!=[] and m[0]==]]:
return []
return m

pattern=[[list (range(k)) ,[]]]
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pr=[[list (range(k)) ,[]]]
while pr:
am=pr . pop ()
for vk in it.product ([0,1],repeat=k):
mv=at (useveredges (am, vk))
mh=at (usehoredges (am, vk))
if not mv in pattern:
pattern .append (mv)
pr.append (mv)
if not mh in pattern:
pattern .append (mh)
pr.append (mh)
return sorted (pattern)

)0

Gibt die uninfizierten Muster zurick.
Falls aqui=True, dann werden die dquivalenten
uninfizierten Muster zurtickgegeben .
P
@functools.lru_cache (maxsize=256)
def genPatternun (k,aqui=False):
m=genPattern (k,aqui, False)
return tuple(x for x in m if x[0]==][])

109



110 ANHANG A. VERWENDETE COMPUTERPROGRAMME

A.4 Berechnung von dem minimalen n fiir die
Vermutung iiber die Muster

Benutzt das Programm aus Abschnitt A.3 (hier importiert als genPattern).

from genPattern import genPattern, genPatternun, aquiPattern
from genPattern import useveredges, usehoredges

import itertools as it

import functools

import sympy as sp

p=sp.Symbol(’p’,positive = True)

700

Berechnet die Ubergangsmatriz.

@functools.lru_cache(maxsize=32)
def createM (k,aqui=True, nullid=True):

def at(m):
if aqui:
return aquiPattern(k,m, nullid)
else:
if nullid and m!=[] and m[0]==]]:

return []
return m

m=genPattern (k,aqui,nullid)
matv=sp . zeros (len(m),len (m))
math=sp . zeros (len(m) ,len (m))
for vk in it.product([0,1],repeat=k):

anzE=vk . count (1)

wahr=sp . expand (p**anzE % (1—p)x**(k—anzE))

m
m

for i in range(0,len(m)):
j=m.index (at (useveredges (m[i],vk)))
matv[i,j]= matv[i,j]+wahr
j=m.index (at (usehoredges (m[i],vk)))
math[i,j]= math[i,j] + wahr
ueb=matv. multiply (math)
return sp.expand (ueb)

200

Berechnet die Ubergangsmatriz fir uninfizierte Muster.
@functools.lru_cache(maxsize=32)
def createMuni(k,aqui=True):

m=genPattern (k,aqui, False)

mat=createM (k, aqui , False)
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li =[]
for i in range(0,len(m)):
if m[i][0]==]]:
li .append (i)
return mat[li , li].expand()

2000

infiziert den Knoten s im wuninfizierten Muster m
def infPart(s,m):
for i in range(0,len(m[1])):
for j in m[1][i]:
if j=s:
return [m[1][i] ,m[1][:i]4+m[1][i+1:]]

PR

Berechnet die Anzahl von Nullstellen wvon poly im Intervall [a,b).

def countRoots(pol,a,b):

200

Berechnet eine Sturmsche Kette.
def sturm(poly):
if poly==0:
return []
g=sp.gcd (poly ,sp. diff (poly,p))
poly= poly.div(g)[0]
pl=[poly]
np=sp. diff (poly ,p)
while np!=0:
pl.append (np)
np=-sp .rem(pl[—2],np)
return pl

20

Berechnet die Anzahl von Vorzeichenwechseln an der Stelle .
def getvorw (sl ,x):

l=[e.subs(p,x) for e in sl]

l=[v for v in 1 if v != 0] #alle Nullen entfernen

vw=0

for i in range(l,len(1)):

if(1[i]x1[i—-1]<0):
vw=vw+1

return vw
s= sturm (sp.Poly(pol,p)) #Berechnet die Sturmsche Kette.
return getvorw (s ,b)—getvorw (s, a)
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Gibt alle zu m dquivalenten Muster zurick fir Ck.
def allaquiPattern (k,m):
allp = []
if k==2:
em=[1]
else:
em=[—1,1]
for s in em: #fir k=2 nicht —1 1
for x in range(k):

npl = [(s*xi+x) % k for i in m[0]]
npl.sort ()
np2 =]

for j in m[1]:
a = [(sxi+x) % k for i in j]
a.sort ()
np2.append (a)
np2.sort ()
allp .append ([npl,np2])
return allp

200

Die Startverteilung bis auf Normierung

(Rickgabe ist immer positiv und ein Polnom)

@functools.lru_cache(maxsize=32)

def berechnepseudoStart (k,aqui=True):
ms=createMuni (k, aqui=True)

A=ms. transpose()—sp.eye(ms. cols)

los=A.nullspace ()[0]
los=sp.simplify (los)

b=(]
for a in los:
b.append (a.as_ numer denom ()[1])
den=sp .lcm (b)
los=denxlos

# Sicherstellen , dass los mnicht kleiner als 0 in (0,1) ist.
for e in los.subs(p,sp.Rational(1,2)):
if e<0:
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los=1los
break

los=sp .expand (los)

#Berechnet Startvertelung:
mus=genPattern (k, aqui, True)
muuinf=genPatternun (k, aqui=True)
start =[0]*len (mus)

if aqui:
for i in range(0,k):
for ui in range(0,len(muuinf)):
t=mus. index (aquiPattern (k, infPart (i, muuinf[ui])))
start [t]=start [t]+1los[ui]/k
else:
for ui in range(0,len(muuinf)):
aquiPat=allaquiPattern (k, muuinf[ui])
for aktp in aquiPat:
t=mus.index (infPart (0,aktp))
start [t]=start [t]+1los[ui]/len(aquiPat)
start=sp.Matrix(start ). transpose ()
return sp.simplify (start)

PR

Berechnet die minimale Ebene, ab wann die Vermutung fir die Muster gelten.
aqui gibt an, ob man dquivalente oder nicht dquivalente Muster betrachtet.
@functools.lru_cache(maxsize=32)
def countSchritte (k,aqui):

m=createM (k,aqui)[1:,1:] #Das nichtinfizierte Muster ist an Stelle 0

#entferne das nicht infizierte Muster an Stelle 0.

start=berechnepseudoStart (k,aqui)[0,1:]

diff=(start *(m*0—m=%1)).expand ()

i=0

#erste FEbene gesondert behandeln

for (j,e) in enumerate(genPattern(k,aqui,nullid=True)[1:]):

if diff[j].subs(p,sp.Rational(1,2)) <= 0:

i=1
elif e==[[0],[[j] for j in range(1l,k)]]:
if countRoots(diff[j],0,1)!=0:
i=1
elif countRoots(diff[j],0,1)!=1:
i=1

if i==0:
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return i
else:

diff=(diff * m).expand()
while True:

r=True

for x in diff:
if x.subs(p,sp.Rational(1,2)) <= 0 or countRoots(x,0,1)!=1:

diff=(diff * m).expand()

i=i+1
r=False
break
if r:
return i

#Berechnet minimale FEbene fir C2, C3 und C4 fir dquivalente
# und nicht dquivalente Muster:

[ "o,

if  npname =— " main ":
for k in [2,3,4]:
print (’Minimale Ebene  fir C ’ ,k,’ist,’, countSchritte (k,aqui=True),

"Lfurdquivalente Muster )
print (’Minimale Ebene  fiur C_’,k, ,ist,’, countSchritte (k,aqui=False),

"wfiirgnicht jAquivalente Muster )
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A.5 Berechnung der Anzahl von Mustern

Benutzt das Programm aus Abschnitt A.3 (hier importiert als genPattern).

from genPattern import genPattern, genPatternun

2000

Zihlt die Anzahl von infizierten/unifizierten Mustern von Ck.
def countPattern(k,aqui=False):
gesP=len (genPattern (k,aqui,nullid=False))
infPattern=len (genPattern (k,aqui,nullid=True))—1
uninfPattern=len (genPatternun (k,aqui))
return(gesP ,uninfPattern ,infPattern)

#Gibt die Anzahl Muster fir Ck mit k zwischen 2 und 8 aus.
if  mname =— " main ":
for k in range(2,9):
(m,m0,ml)=countPattern (k,aqui=False)
(am,am0,aml)=countPattern (k,aqui=True)
fs1="#(C{0})={1}, #A0(C{0})={2}, #AML(C{0})={3}, . #M(C{0})]={4},"
fs2= " #MO(C{0})]={5}, #M1(C{0})]={6}"
fs=fs1+fs2
print (fs.format (k,m,m0, ml,am,am0,aml))
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A.6 Berechnung der Funktionsgraphen aus Ka-
pitel 4.2

Benutzt das Programm aus Abschnitt A.4 (hier importiert als clacminn).
from calcminn import *

200

Berechnet die exakte Startverteilung
def berechneStart (k,aqui=True):
start=berechnepseudoStart (k,aqui)
start=start /sum(start)
return sp.simplify (start)

)0

Berechnet die Verteilung auf Ebene eb der einseitigen Muster
@functools.lru_cache(maxsize=64)
def createMatrixaufEbene (k,eb,aqui=False):
start=berechneStart (k,aqui)
ma=createM (k,aqui)
muaEm=(start xmaxxeb)
return muaEm

22

Gibt die Wahrscheinlichkeit des einseitigen Musters mus auf eb an
def wahrMustaufEb(n,mus,eb,aqui=False):

mat=createMatrixaufEbene (n,eb,aqui)

return mat|[genPattern(n,aqui,nullid=True).index (mus)]

n n

if  pname — " main ":
musterl =[[0] ,[[1],[2]]]

muster2 =[[2],[[0,1]]]

sp.plot (wahrMustaufEb (3, musterl,1) —wahrMustaufEb (3, musterl ,2),
(p,0,1), ylabel=’"’ line_color="blue’)

pll=sp.plot (wahrMustaufEb (3 ,musterl 1), wahrMustaufEb (3 ,musterl ,2) ,
(p,0,1), ylabel=’’, ,show=False )

pl1[0].line_color="blue’

pll[1].line_ color="red’

pll.show ()
sp. plot (wahrMustaufEb (3, muster2,1) — wahrMustaufEb (3 , muster2 ,2) ,
(p,0,1), ylabel=’"’,/line_color="blue’)

pl2=sp.plot (wahrMustaufEb (3 ,muster2,1) ,wahrMustaufEb (3, muster2 ,2) ,
(p,0,1), ylabel="" show=False )
pl2 [0].line color="blue’
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pl2[1].line_color="red’
pl2 .show ()
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A.7 Uberpriifung der restlichen Fille, um die
Vermutung iiber die Monotonie der Ver-
bindungsfunktion zu zeigen

Hier werden die Programme aus Abschnitt A.3 und Abschnitt A.4 (als gen-
Pattern und calcminn) benutzt.

from calcminn import x
from genPattern import getlwithe
import copy

700

Gibt alle infizierten Knoten an, wenn auf der n—ten FEbene das Muster
m vorliegt und auf der nichsten FEbene im Graphen [n+1,infty)
(umgekehrt gesehen) das uninfizierte Muster mn liegt und es zwischen
den beiden FEbenen eine Verbindung tber die Knoten in [ gibt.
def infbdoppeltMuster (m,mn,1):

if m==[]:

return m
infkn=copy . deepcopy (m[0])
akn=copy . deepcopy (m[0])

ninfm=copy . deepcopy (m[1])
while akn != []:
a=akn . pop ()
if 1[a]!=0:
iane=mm[1][ getlwithe (mn[1] ,a)]
for i in iane:
if 1[i] !'=0:
j=getlwithe (ninfm , i)
if jl=-—1:
akn.extend (ninfm [j])
infkn . extend (ninfm [j])
del ninfm[j]
return infkn

700

Berechnet die stationdre Verteilung der uninfizierten Muster
bis auf die Normierung.
(Riickgabe ist immer positiv und ein Polynom)
200
@functools.lru_cache(maxsize=32)
def calcpsuedouninfstat (k,aqui):
ms=createMuni (k, aqui=True)
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A=ms. transpose()—sp.eye(ms. cols)

los=A.nullspace ()[0]
los=sp.simplify (los)
b=|]
for a in los:
b.append (a.as_numer_denom ()[1])
den=sp.lem (b)
los=denx*los
los=los.simplify ()
# Sicherstellen , dass los nicht kleiner als 0 in (0,1) ist
for e in los.subs(p,sp.Rational (1,2)):
if e<0:
los=-los
break
elif e>0:
break
muuinfa=genPatternun (k, aqui=True)
muuinfna=genPatternun (k, aqui=True)
if aqui:
return los
else:
muuinfa=genPatternun (k, aqui=True)
muuinfna=genPatternun (k, aqui=False)
ena=[0]*len (muuinfna)
for ui in range(0,len(muuinfa)):
aquiPat=allaquiPattern (k, muuinfa|[ui])
for aktp in aquiPat:
t=muuinfna.index (aktp)
ena[t]=ena[t]+los[ui]/len(aquiPat)
return ena

PR

Berechnet die Verteilung der Muster auf der FEbene m.
@functools.lru_cache(maxsize=32)
def pseudovertaufEbene (k,m):
if m==0:
return berechnepseudoStart (k, False)
else:
return (pseudovertaufEbene (k,m—1)xcreateM (k, False)).expand ()

PR

Berechnet die Wahrscheinlichkeit, dass in Ck auf FEbene m der Knoten
a infiziert ist.

@functools.lru_cache(maxsize=512)

def waufpseudoEninf(k,m,a):
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mus=genPattern (k, False , True)
muuinf=genPatternun (k, False)

muaEm=pseudovertaufEbene (k,m)
stat=calcpsuedouninfstat (k, False)

wahr=0
for 1 in it.product([0,1],repeat=k):

anzE=1. count (1)
wp=px**anzEx(1—p)**(k—anzE)

for x in mus:

for y in muuinf:
if a in infbdoppeltMuster(x,y,1):
wahr=wahr+muaEm|[mus. index (x )] *wp*stat [ muuinf. index (y)]

return wahr

20

Testet, ob die
Falls richtig ,
def testgiltver (k,m):
for i in range(m):
for j in range(k):
x=(waufpseudoEninf(k,i,j)—waufpseudoEninf(k,i+1,j))
if (x.subs(p,sp.Rational(1,2)) <= 0 or
(j==0 and i==0 and countRoots(x,0,1)!=0) or
((j!=0 or i>0) and countRoots(x,0,1)!=1)):

Verbindungsfunktion wvon C_k monoton ist fir alle Ebenen <=m

ist die Ausgabe True, sonst False.

return False

return True

#Testet die Behauptung fir C 2, C 8 und C 4 fir die ibrig gebliebenen Fdlle .

if npname =— " main ":
for [k,m] in [[2,2],[3,2],[4,4]]:

print (k=" ,k,’ 7 ,testgiltver (k,m))
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A.8 Berechnung von mg,

Benutzt das Programm aus Abschnitt A.3 (als genPattern).

from genPattern import x

PR

Berechnet das mCk.

PR

def calemCk(k):

20

Berechnet, an welcher Stelle

Ubergangsmatrizen mal ma2 die Werte ungleich 0 sind.

P

def vm(mal,ma2):

rm=[[0] * len(m) for i in range(len(m))]
for i in range(len(mal)):
for j in range(len(mal)):
if rm[i][j]==0:
for 1 in range(len(mal)):
if mal[i][l]==1 and ma2[l][j]==1:
m[i][j]=1
break

return rm

m=copy . deepcopy (genPattern (k,aqui=False ,nullid=True))

m.remove ([])

matv=[[0] * len(m) for i in range(len(m))]
math=[[0] % len(m) for i in range(len(m))]
for vk in it.product([0,1],repeat=k):
for i in range(0,len(m)):
uv=useveredges (m[i],vk)
if uv[0] != []:
j=m.index (u
matv i ][ j]=
uh=usehoredges (m[i],vk)

if uh[0] != |
j=m. index

math [1][]j]=

mat=vmn (matv , math)
r=1
matn=mat
while (True):
anzn=0
for i in matn:
for j in i:
if j==0:
break

anzn=anzn-+1
if anzn—=—len (m)**2:

V)
1

h)
1

121

Multiplikation wvon den zwei



122 ANHANG A. VERWENDETE COMPUTERPROGRAMME

return r
r=r+1
matn=vm(matn , mat)

#Gibt minimales mCk fir k=2...7 aus.
if  npame =— " main ":
for k in range(2,8):

print ( 'mC’ ,k,’:’  calemCk(k))
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