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Zusammenfassung
In dieser Arbeit geht es um ein bestimmtes Problem der Kantenperkolati-
on des Produktgraphen G × Z. Wobei G ein endlicher zusammenhängender
Graph ist (häufig in der Arbeit ist G der Kreisgraph Ck) und Z ist der Graph
mit den Knoten Z und den Kanten, die die Knoten mit dem Abstand 1 ver-
binden. Kantenperkolation bedeutet, dass eine Kante mit Wahrscheinlichkeit
p vorhanden ist, unabhängig von den anderen Kanten. Es wird vorausgesetzt,
dass 0 ein Knoten von G ist. Die Fragestellung, die diese Arbeit motiviert,
ist die Frage, ob für alle natürlichen Zahlen m,n mit m < n und alle Knoten
a von G (und alle p ∈ (0, 1)) es wahrscheinlicher ist, dass (0, 0) mit (a,m)
verbunden ist als (0, 0) mit (a, n). Die Frage wird hier positiv beantwortet,
wenn m,n groß genug sind und man noch eine zusätzliche Eigenschaft an
G stellt. Hier wird sogar die Monotonie des Auftretens sogenannter Muster
untersucht. Ein Muster auf einer Ebene gibt an, welche Knoten mit dem
Knoten (0, 0) verbunden sind und welche Knoten miteinander auf einer Ebe-
ne verbunden sind. (die n-te Ebene des Graphen G × Z ist die Menge der
Knoten der Form (x, n)). Es wird gezeigt, dass ab einer bestimmten Höhe
die Wahrscheinlichkeit für das Auftreten eines vorgegebenen Musters (wel-
ches mindestens einen Knoten hat, der mit dem Knoten (0, 0) verbunden
ist) auf einer Ebene monoton abnimmt. Auch wird auf Zusammenhänge zu
bekannten und noch nicht komplett gelösten Problemen (Bunkbed-Graph
Vermutung, Monotonie der Verbindungsfunktion bei Z2) eingegangen.
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Abstract
This work is about a specific problem of the bond percolation on the product
graph G × Z. Here G is a finite and connected graph (here G is often the
cycle graph Ck) and Z is the graph with die vertices Z and the edges which
connect the endpoints with a distance of 1. Bond percolation means, that an
edge exists with probability p ∈ (0, 1) independent of the other edges. It is
assumed, that 0 is a vertex of G. The question that motivates this work is
the question, if for all natural numbers n,m with m < n and all vertices a of
G (and all p ∈ (0, 1)), it is more likely, that (0, 0) is connected with (a,m)
than (0, 0) is connected with (a, n). The question is answered positively here,
if m,n are big enough and if G has an additional property. More precisely
it will be here even studied the monotonicity of occurrences of patterns. A
pattern on a level n means, which vertices are connected to the vertex (0, 0)
and which vertices are connected with each other. (the level n is the set
of the vertices of the form (x, n)) . It will be shown, that a bound exists,
so after that the likelihood that a particular special pattern will occur is
monotonically decreasing. Also, relations will be shown with other well known
and only partially solved problems (bunkbed-graph conjecture,monotonicity
of the connection function of the graph Z2).
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Vorwort

In dieser Arbeit geht es um spezielle Fragen im Bereich der Perkolation. Als
mathematisches Model wurde die Perkolation ab den 1950-er Jahren betrach-
tet (als Veröffentlichung, die das Thema der Perkolation begründet hat, gilt
der Artikel [BH57] aus dem Jahre 1957 von Broadbent und Hammersley).

In dem Perkolationsmodell, welches hier betrachtet werden soll (es gibt
relativ viele Varianten des Modells), hat man einen ungerichteten Graphen,
dessen Kanten jeweils einen zufälligen Zustand haben.1 Entweder ist eine
Kante mit einer Wahrscheinlichkeit p ∈ (0, 1) offen oder die Kante ist mit
Wahrscheinlichkeit 1 − p geschlossen. Dabei ist der Zustand der jeweiligen
Kanten stochastisch unabhängig voneinander. Offen bedeutet hier anschau-
lich, dass die Kante vorhanden oder nutzbar ist und geschlossen bedeutet,
dass die Kante nicht vorhanden oder nicht nutzbar in dem Graphen ist. Die
offenen Kanten bilden einen zufälligen Teilgraphen des ursprünglichen Gra-
phen. Bei der Perkolationstheorie geht es darum, Aussagen und Eigenschaften
über den (zufälligen) offenen Teilgraphen zu erhalten.

Es gibt verschiedene physikalische Vorgänge, die man mit Hilfe der Perko-
lationstheorie interpretieren kann. Hier soll nur eine Anwendung angegeben
werden, wie sie schon in [BH57] erwähnt worden ist: Man hat einen porösen
Festkörper (ein Körper aus einem Material, in dem sich Hohlräume bilden
können). Man kann sich nun die Frage stellen, wie wahrscheinlich ist es,
dass ein Gas, welches sich an der Oberfläche befindet, ins Innere des Kör-
pers eindringt. Man kann den Festkörper durch Punkte diskretisieren und
diese Punkte als Knoten eines Graphen betrachten. Zwei benachbarte Punk-
te (bzw. Knoten) haben genau dann eine Kante, wenn es einen Hohlraum
gibt, der groß genug ist für die Gasmoleküle. Indem man die Hohlräume als
zufällig betrachtet, die mit einer Wahrscheinlichkeit p auftreten, hat man ein
Perkolationsmodell für das betrachtete physikalische Problem.

Ein häufiger Graph, der untersucht wurde, ist der Z2. Dabei ist Z2 der

1Es gibt auch das Perkolationsmodell, in dem die Knoten zufällig sind und die Kanten
fest. Das hier betrachtete Modell heißt auch Kantenperkolation. Auch beschränkt man
sich hier auf ungerichtete Kanten.
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Graph, dessen Knoten die Elemente von Z2 und dessen Kanten alle Verbin-
dungen zwischen den benachbarten Punkten (zwei Punkte sind benachbart,
wenn der euklidische Abstand 1 beträgt) sind. Eine der ersten Fragestellun-
gen war, die bei diesem Graphen (eine analoge Fragestellung kann man auch
bei anderen unendlichen Graphen finden) aufgetreten ist, für welche p ist
die Wahrscheinlichkeit größer 0, dass der Knoten (0, 0) durch offene Pfade
(ein offener Pfad ist ein Pfad, der nur offene Kanten benutzt) mit unendlich
vielen Knoten verbunden ist. In [Kes80] beantwortetet Kesten für Graphen
Z2, dass genau dann die Wahrscheinlichkeit größer als 0 ist, wenn p > 1

2 ist.
Für viele Graphen ist die genaue Schranke für das Problem noch unbekannt.

Weitere Resultate befassen sich mit Clustern, die bei der Perkolation ent-
stehen. Dabei ist ein Cluster eine Äquivalenzklasse von Knoten bezüglich der
Relation, dass zwei Knoten durch einen offenen Pfad miteinander verbunden
sind. Ein wichtiges Resultat ist die von [AKN87] bewiesene Tatsache, dass
es bei einer großen Klasse von Graphen nur maximal ein unendlich großes
Cluster gibt (mit Wahrscheinlichkeit 1).

Es sollen nun noch ein paar untersuchte Probleme erwähnt werden, die
näher an dem in dieser Arbeit untersuchten Problem liegen:

Schon [Ham57] zeigte für den Graphen Zd 2 (bzw. sogar in allgemeineren
Graphen) im Falle, dass die Wahrscheinlichkeit gleich 0 ist, dass der (0, . . . , 0)
mit unendlich vielen Knoten durch offene Pfade verbunden ist, folgendes
Resultat: Die Wahrscheinlichkeit, dass der Knoten (0, . . . , 0) mit dem Knoten
(0, . . . , 0, n) durch einen offenen Pfad im Graphen Z2 verbunden ist, kann
durch eine gegen 0 exponentiell fallende Schranke in n → ∞ beschränkt
werden. (Es wurde sogar gezeigt, dass man so die Wahrscheinlichkeit, dass der
Knoten (0, , . . . , 0) mit einem Knoten mit dem Kantenabstand n verbunden
ist, exponentiell gegen 0 fällt für n→∞.)

In [CCC91] wurde sogar eine asymptotische Formel (sogar mit Angabe
der Konvergenzgeschwindigkeit) für die Wahrscheinlichkeit, dass der Knoten
(0, . . . , 0) mit dem Knoten (0, . . . , n) mit einem offenen Pfad verbunden ist,
angegeben, wenn n→∞ geht.

Daran anschließend kann man eine Frage stellen, die schon nahe an der
in dieser Arbeit untersuchten Fragestellung ist (siehe unten): Ist die Wahr-
scheinlichkeit immer kleiner, dass der Knoten (0, . . . , 0) mit dem Knoten
(0, . . . , 0, n) verbunden ist, als die Wahrscheinlichkeit, dass der Knoten (0, . . . , 0)
mit dem Knoten (0, , . . . , 0,m) verbunden ist, wenn n > m ist? Bisher gibt
es hier nur partielle Resultate für die Fragestellung in [LPS15], welches die
Frage positiv beantwortet, wenn p sehr klein ist.

Erwähnt werden soll hier auch das Bunkbed-Problem: Einen Bunkbed-
2der Graph ist analog zu Z2 definiert
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Graphen eines Graphen erhält man, wenn man einen Graphen kopiert und
jeden ursprünglichen Knoten mit einer Kante mit dem neuen kopierten Kno-
ten verbindet. Man hat also einen Graphen mit zwei Ebenen (eine Ebene ist
der ursprüngliche Graph, die andere Ebene der kopierte Graph). Nun stellt
sich die Frage, wenn man zwei Knoten u und v auf einer Ebene nimmt, ob
diese wahrscheinlicher miteinander verbunden sind als der Knoten u und der
Knoten v′, welcher dem Knoten v auf der anderen Ebene entspricht. Selbst
diese Fragestellung wurde nur für spezielle Klassen endlicher Graphen be-
antwortet. (z.B. in [Lin11] und [HL19]). Für alle endlichen Graphen ist das
Problem immer noch offen.

In dieser Arbeit sollen spezielle Graphen betrachtet werden, die eine ge-
wisse Ähnlichkeit zu den Bunkbed-Graphen haben. Für diese Graphen kann
man dann auch eine Verbindung zu dem Graphen Z2 und dessen Monotonie-
problem herstellen:

Hauptsächlich wird in dieser Arbeit der Produktgraph G×Z betrachtet,
wobei G ein endlicher zusammenhängender Graph ist (wie z.B. ein Kreis-
graph oder ein vollständiger Graph). G × Z ist also im Prinzip wie der
Bunkbed-Graph konstruiert, außer, dass man nun abzählbar unendlich viele
Ebenen hat. Man interessiert sich unter anderem für die Frage, ob es für
x, y ∈ V (G) und n,m ∈ N mit n < m wahrscheinlicher ist, dass der Kno-
ten (x, 0) mit dem (y, n) verbunden ist als die Wahrscheinlichkeit, dass der
Knoten (x, 0) mit dem Knoten (y,m) verbunden ist. Um sich dieser Frage
zu nähern, wird auch ein verwandtes Problem betrachtet. Man betrachtet
bestimmte Muster auf jeder Ebene. Dabei drückt ein Muster aus, welche
Knoten auf einer Ebene mit dem Knoten (0, 0) verbunden sind und wie die
Knoten auf einer Ebene miteinander verbunden sind. Die Fragestellung, die
man sich stellen kann, ist nun, ob (ab einer gewissen Ebene) die Wahrschein-
lichkeit für das Auftreten eines Musters monoton abnimmt. Eine große Hilfe
beim Behandeln dieses Problem ist es, dies als eine Markovkette zu betrach-
ten.

Diese Arbeit gliedert sich wie folgt:
Im ersten Kapitel werden die grundlegenden Begriffe der Perkolation,

die für die Arbeit benötigt werden, eingeführt. Ebenfalls werden bekann-
te Problemstellungen für das Monotonieproblem bei Zd und das Bunkbed-
Problem genauer vorgestellt. Weiter wird der Graph G×Z und die in dieser
Arbeit betrachteten Begriffe eingeführt. Insbesondere wird erklärt, was hier
mit einem Muster gemeint ist und die in dieser Arbeit betrachteten Proble-
me vorgestellt. Außerdem wird ein Zusammenhang zwischen den bekannten
Problemen bei bestimmten Graphen und den in dieser Arbeit betrachteten
Graphen mit den zugehörigen Problemen hergestellt.
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Im zweiten Kapitel werden Resultate zum Vergleich der Verbundenheit
von zwei Knoten bei speziellen Graphen, wie den Zd oder speziellen Bunkbed-
Graphen, aus der Literatur vorgestellt.

Im dritten Kapitel wird hauptsächlich ein aus der Literatur bekann-
tes Resultat zu Markovketten vorgestellt, das man später zum Beweis des
Hauptresultats dieser Arbeit verwenden wird.

Das vierte Kapitel bildet den Hauptteil der Arbeit und besteht aus
neuen Resultaten zum Graphen G× Z. Zum einen wird betrachtet, wie sich
die durchschnittliche Anzahl von Knoten im Teilgraphen G×{n} mit n ∈ N,
die mit einem speziellen Knoten verbunden sind, entwickelt. Anschließend
wird noch für spezielle Graphen G mit wenigen Knoten betrachtet, dass die
Wahrscheinlichkeit, dass zwei Knoten miteinander verbunden sind, kleiner
wird, wenn die beiden Knoten weiter voneinander entfernt sind. Abschließend
wird für G×Z, wobei man an G noch eine Einschränkung vornimmt, gezeigt,
dass auch hier die Wahrscheinlichkeit immer monoton kleiner wird ab einer
bestimmten Schranke.



Kapitel 1

Setting

In diesem Kapitel sollen die grundlegenden Begriffe eingeführt und die in der
Arbeit betrachteten Probleme vorgestellt werden.

5
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1.1 Graphen

Hier werden nur Graphen betrachtet, die eine endliche oder abzählbare un-
endliche Anzahl von Knoten haben. Weiter sind alle Graphen ungerichtete
Graphen ohne Mehrfachkanten oder Schleifen. Auch soll immer vorausgesetzt
werden, dass der Graph G einen endlichen maximalen Grad hat (d.h. es gibt
ein d ∈ N, sodass kein Knoten einen Grad größer als d hat). Die Knoten eines
Graphen G werden hier mit V (G) bezeichnet und die Kanten von G sollen
hier mit E(G) bezeichnet werden.

Es gibt folgende spezielle Graphen, die wir besonders bezeichnen und die
noch später eine Rolle spielen:

• Mit Ck bezeichnen wir den Kreisgraphen mit k Knoten, d.h. V (Ck) =
{0, . . . , k−1} und E(Ck) := {{0, 1}, {1, 2}, . . . , {k−2, k−1}, {k−1, 0}}

• Mit Kk bezeichnet man den vollständigen Graphen mit k Knoten, d.h.
V (Kk) = {0, 1, . . . , k − 1} und E(Kk) := {{i, j} : i, j ∈ V (Kk), i 6= j}

• Mit Km,n bezeichnen wir den vollständigen bipartiten Graphen zwi-
schen einer m und n einelementigen Menge, daher ist V (Km.n) =
{1, 2, . . . ,m + n} und E(Km,n) := {{i, j} : i ∈ {1, . . . ,m}, j ∈ {n +
1, . . . ,m+ n}}

• Mit Zd bezeichnet man den Gittergraphen mit den Knoten aus Zd. D.h.
V (Zd) := Zd und E(Zd) = {{i, j} : i, j ∈ Zk, ||i − j||1 = 1}, dabei ist
||i− j||1 = ∑k

l=1 |il − jl|. Für d = 1 schreibt man auch Z statt Z1

• Allgemeiner meinen wir für eine Teilmenge A ⊆ Zd immer den Graphen
mit Knoten V (A) := A und Kanten E(A) = {{i, j} : i, j ∈ A, ||i−j||1 =
1}. Insbesondere betrachten wir die Teilmengen {x ∈ Z : x ≤ n}, {x ∈
Z : k ≤ x ≤ n} und {x ∈ Z : n ≤ x}. Anstatt {. . . ,−1, 0, 2, . . . , n},
{k, . . . , n} und {n, n+1, . . . } schreiben wir auch ((−∞, n]], [[k, n]] und
[[n,∞)).
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Abbildung 1.1: Die Graphen C7, K7 und Z2

Auch kann man mit Hilfe des Kreuzproduktes neue Graphen erhalten:
Seien G1 = (V1, E1) und G2 = (V2, E2) Graphen, dann soll mit G1 × G2 =
(V ′, E ′) der Graph mit V ′ = V1 × V2 = {(v1, v2)|v1 ∈ V1, v2 ∈ V2} und E ′ =
{{(v1, v2), (v′1, v2)}|{v1, v

′
1} ∈ E1, v2 ∈ V2} ∪ {{(v1, v2), (v1, v

′
2)}|{v2, v

′
2} ∈

E2, v1 ∈ V1} bezeichnet werden. Wichtige Graphen, die wir später behandeln,
sind die Bunkbed-Graphen G × K2 (wobei G ein endlicher Graph ist) und
Ck × Z.

Wir nennen x1, . . . , xn einen Pfad von x1 nach xn, wenn jeweils die Kanten
{x1, x2}, {x2, x3}, . . . , {xn−1, xn} im Graphen vorhanden sind. Ein Pfad heißt
selbstvermeidender Pfad, wenn alle Knoten verschieden sind (d.h. #{x1, . . . ,
xn} = n).
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1.2 Kantenperkolation

1.2.1 Grundlegende Definitionen
In diesem Unterabschnitt soll definiert werden, was unter Kantenperkola-
tion zu verstehen ist (gute Einführungen sind z.B. [Gri99] oder [BR06]).
Im Folgenden sei G = (V,E) ein endlicher oder ein abzählbar unendli-
cher (ungerichteter) Graph mit endlichem Grad. Sei µ die Bernoullivertei-
lung mit dem Parameter p ∈ (0, 1) (µ ist die Verteilung auf {0, 1} mit
µ(1) = 1 − µ(0) = p). Wir betrachten das Wahrscheinlichkeitsmaß Pp, das
definiert ist als Pp := ⊗

e∈E µ . Insbesondere ist Pp ein Wahrscheinlichkeits-
maß auf Ω := {0, 1}E mit σ−Algebra ⊗e∈E{∅, {0}, {1}, {0, 1}} der von den
Zylindermengen erzeugten σ-Algebra. Ist ω ∈ Ω, so sei ω(e) die Projektion
auf die Koordinate der Kante e. Wir sagen, eine Kante e ist offen in ω ∈ Ω,
wenn ω(e) = 1 ist und sonst heißt eine Kante geschlossen. Teilweise wird für
die betrachtete Verteilung auch P statt Pp geschrieben.

Man schreibt v ∼ w, wenn v, w ∈ V ist, für das Ereignis, dass es eine
Kante zwischen v und w gibt und diese offen ist. Man schreibt v 6∼ w für
das Ereignis, dass es keine offene Kante zwischen v und w gibt. Ist C eine
Menge von Knoten, so schreiben wir v ∼ C für das Ereignis, dass es eine
offene Kante zwischen v und einem Knoten aus C gibt. Analog v 6∼ C, wenn
es keine solche Kante gibt.

Wir sagen, zwei Knoten x, y ∈ V sind verbunden, wenn das Ereignis ein-
tritt, dass es einen offenen Pfad zwischen den beiden Knoten gibt. Dabei
ist ein offener Pfad eine Menge von Knoten v1 = x, v2, v3, . . . , vn−1, vn = y,
sodass die Kanten {vi, vi+1} für alle i ∈ {1, . . . , n−1} offen (und vorhanden)
sind. Wir schreiben für das Ereignis, dass x und y mit einem offenen Pfad
verbunden sind, x↔ y. Also ist v↔w, wenn es Kanten v1, . . . , vk ∈ V mit
v1 = v und vk = w gibt, sodass v1 ∼ v2, . . . , vk−1 ∼ vk. Teilweise schreiben
wir↔G statt↔, um zu verdeutlichen, auf welchen Graphen wir uns beziehen.

Im Folgenden soll mit C(x) := {y ∈ V : x↔ y} die Menge aller Knoten
bezeichnet werden, die mit dem Knoten x durch einen offenen Pfad verbun-
den sind. Wir nennen C(x) auch den Cluster von x. Man beachte, dass bei
einem zusammenhängenden Graphen mit endlichem Grad für alle x, y ∈ V
P(|C(x)| = ∞) > 0 genau dann ist, wenn auch P(|C(y)| = ∞) > 0 gilt.
Deshalb ist die Definition von folgendem wichtigen Wert immer eindeutig:

pc(G) := sup{p ∈ [0, 1] : Pp(|C(x)| =∞) = 0}
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Im Fall p < pc(G) sprechen wir vom subkritischen Fall, im Falle p > pc(G)
sprechen wir vom superkritischen Fall. Im Folgenden soll sich nur mit dem
subkritischen Fall beschäftigt werden (bei den meisten betrachteten Graphen
in den folgenden Kapiteln ist pc = 1). Sei Φ(p) die Wahrscheinlichkeit, dass
es einen unendlich großen Cluster gibt, d.h. Φ(p) = Pp(∃x ∈ V : |C(x)| =
∞). Es gilt dann (siehe z.B. [Gri99]) das im subkritischen Fall (p < pc(G))
Φ(p) = 0 und im superkritischen Fall p > pc(G) Φ(p) = 1 (man beweist dies
mit dem 0-1-Gesetz von Kolmogorow).

Ist der Graph vom endlichen Typ 1 und ist der Graph zugänglich 2, so gibt
es entweder Pp-f.s. keinen unendlichen Cluster oder genau einen unendlichen
Cluster. (siehe z.B. [BR06]) Ein Beispiel für einen solchen Graphen ist der
Zd für d ∈ N.

1.2.2 Verbindungsfunktion
τ p(x, y) := Pp(x↔ y) heißt die Verbindungsfunktion von x und y. Je nach
Graph sind verschiedene Eigenschaften der Verbindungsfunktion bekannt.
Man beachte, dass die Verbindungsfunktion symmetrisch ist. Es ist klar,
dass die Verbindungsfunktion bei endlichem Graph für feste x und y in p
stetig ist. Auch wurde in [AKN87] gezeigt, dass die Verbindungsfunktion in
p stetig für den Graphen Zd ist. Dieses Resultat kann man nach [AKN87]
auch für andere Gittergraphen erweitern. Im Wesentlichen wurde für den
Beweis benutzt, dass der unendliche Cluster (wenn existent) eindeutig ist.

1Zwei Knoten eines Graphen sind äquivalent, wenn es einen Automorphismus gibt, der
x auf y abbildet. Gibt es nur endlich viele Äquivalenzklassen bezüglich dieser Relation, so
sagen wir, dass ein Graph vom endlichen Typ ist.

2Sei Bn(x) die Menge aller Knoten des ursprünglichen Graphen, die einen Kantenab-
stand kleiner oder gleich n zum Knoten x haben und sei δBn(x) die Menge aller Knoten,
die den Kantenabstand von genau n zu dem Knoten x haben. Dann heißt ein unendlicher
Graph zugänglich, wenn limn→∞

|δBn(X)|
|Bn(X)| → 0 ist
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1.3 Monotonieeigenschaften der Kantenper-
kolation

1.3.1 Problemstellung
Da man im Allgemeinen den Wert der Verbindungsfunktion nicht exakt aus-
rechnen kann, würde man wenigstens gerne eine Aussage darüber machen, ob
für x, y, z ∈ V τ p(x, y) < τ p(x, z), τ p(x, y) > τ p(x, z) oder τ p(x, y) = τ p(x, z)
gilt. Schon bei relativ einfach strukturierten Graphen sind bis heute keine
Beweise bekannt (siehe spätere Kapitel), obwohl es häufig so aussieht, dass
eine dieser Aussagen offensichtlich ist.
Für kleine p reicht es aber häufig aus, den Kantenabstand von Knoten zu be-
trachten, um die Verbindungsfunktionen zu vergleichen. Der Kantenabstand
von zwei Knoten x und y ist definiert als die Länge des minimalen Pfades
des nicht perkolierten Graphen zwischen den Knoten x und y.

Sei der Grad von dem Graphen höchstens d : Ist der Kantenabstand
von x und y gleich n, so ist τ p(x, y) ≥ pn. Weiter gibt es von einem Knoten
ausgehend nur maximal dk Pfade, die die Länge k haben. Damit ist τ p(x, y) ≤∑∞
k=n d

kpk. Somit ist τ p(x, y) = Θ(pn) für p → 0 . Dabei bedeutet diese
Schreibweise wie üblich, dass 0 < lim infp→0

τp(x,y)
pn

und lim supp→0
τp(x,y)
pn

<
∞. Seien x, y und z drei Knoten, sodass der Kantenabstand von x und y
kleiner als der Kantenabstand von x und z ist, dann gibt es ein p′ > 0,
sodass für alle p < p′ τ p(x, y) > τ p(x, z) gilt. Dass der Kantenabstand kein
hinreichendes Kriterium für alle p für den Vergleich der Verbindungsfunktion
ist, sieht man anhand des folgenden Beispiels:

0

1

2

3 4

Wir haben bei diesem Graphen:

τ p(0, 1)− τ p(0, 2) = Pp(0↔ 1)− Pp(0↔ 2)
= Pp(0↔ 1, 1 6∼ 2) + Pp(0↔ 1, 1 ∼ 2)− Pp(0↔ 2, 1 ∼ 2)︸ ︷︷ ︸

=0

−Pp(0↔ 2, 1 6∼ 2)

= Pp(0↔ 1, 1 6∼ 2)− Pp(0↔ 2, 1 6∼ 2)
= p(1− p)−

(
p2 + (1− p2)p2

)
(1− p) =

(
p3 − 2p+ 1

)
p(1− p)

Somit sieht man, dass für p > −1/2 +
√

5/2 ≈ 0.62 τ p(0, 1) < τ p(0, 2).
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Auch sollte man beachten, dass es nicht klar ist (für unendliche Gra-
phen), ob man immer ein p′ > 0 finden kann, sodass für alle p < p′ und alle
x, y, z ∈ V , wobei x und y einen kleineren Kantenabstand als x und z haben,
gilt τ p(x, y) > τ p(x, z). In den folgenden Kapiteln bzw. Abschnitten geht es
darum, Bedingungen aufzustellen, wann eine Verbindungsfunktion kleiner als
eine andere Verbindungsfunktion ist.

1.3.2 Bunkbed-Vermutung
In diesem Abschnitt soll sich mit der Perkolation von Bunkbed-Graphen
beschäftigt werden. Dabei ist ein Bunkbed-Graph wie folgt definiert:
Definition 1.1 Sei G ein Graph und K2 der vollständige Graph mit den
zwei Knoten 0 und 1. Dann bezeichne mit BB(G) den Graphen G × K2.
BB(G) nennt man den Bunkbed-Graphen von G.

Anschaulich ist der entsprechende Bunkbed-Graph eines Graphen G der
Graph, der aus G entsteht, wenn man diesen kopiert und die jeweils entspre-
chenden Knoten durch eine Kante verbindet.

Abbildung 1.2: Ein Graph und der zugehörige Bunkbed-Graph

Folgendes bekannte Problem stellt sich bei den Bunkbed-Graphen, wel-
ches nach [BK01] auf P. W. Kasteleyn aus dem Jahre 1985 zurückgeht (dort
etwas allgemeiner formuliert):
Vermutung 1.1 Seien zwei Knoten u, v aus G, dann gilt:

Pp((u, 0)↔BB(G)(v, 0)) ≥ Pp((u, 0)↔BB(G)(v, 1))

Obwohl es sehr plausibel ist, dass diese Vermutung gilt, so hat man bis-
her die Vermutung nur für spezielle Graphen beweisen können. So wurde
in [Lin11] die Vermutung für Outerplane-Graphen bewiesen. (vgl. Unterab-
schnitt 2.1.2). In [HL19] wurde gezeigt, dass die Vermutung für vollständige
Graphen gilt (in [Buy16] und [Buy18] wurden schon Spezialfälle für p = 1

2
und p ≥ 1

2 behandelt). Vergleiche hierzu Unterabschnitt 2.1.3.
Auf die Beweise aus [Lin11] und [HL19] wird später noch kurz einge-

gangen. Bei beiden Arbeiten wurde die etwas allgemeinere Vermutung für
spezielle Graphen bewiesen:
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Vermutung 1.2 Seien T ⊆ V (G) und sei AT := {∀x ∈ T : (x, 0) ∼ (x, 1)}∩
{∀x 6∈ T : (x, 0) 6∼ (x, 1)} (d.h. das Ereignis, dass die vertikalen Kanten nur
an den Stellen T auftreten). Dann gilt:

Pp((u, 0)↔(v, 0)|AT ) ≥ Pp((u, 0)↔(v, 1)|AT ) (1.1)

Klar ist, dass wegen

Pp((u, 0)↔BB(G)(v, e)) =
∑

T⊆V (G)
Pp((u, 0)↔BB(G)(v, e)|AT )P (AT )

für alle e ∈ {0, 1} die Vermutung 1.1 folgt.
Wir führen noch kurz folgende Verallgemeinerung des Bunkbed-Graphen

ein:

Definition 1.2 Sei G ein Graph und T ⊆ V (G). Dann bezeichne mit BBT (G)
den Graphen mit den Knoten V (G)×{0, 1} und den Kanten {{(x, y), (z, y)} :
{x, z} ∈ E(G), y ∈ {0, 1}} ∪ {{(x, 0), (x, 1)} : x ∈ T}.

Man kann mit dieser Definition auch eine Variante der Bunkbed-Vermutung
aufstellen:

Vermutung 1.3 Seien T ⊆ V (G). Dann gilt:

Pp((u, 0)↔BBT (G)(v, 0)) ≥ Pp((u, 0)↔BBT (G)(v, 1)) (1.2)

Die Vermutung 1.3 ist eine Verallgemeinerung von Vermutung 1.1, da
durch Wahl von T = V man Vermutung 1.1 erhält. Man beachte, mit dem
gleichen Argument wie oben folgt die Vermutung 1.3 wieder aus Vermu-
tung 1.2. Diese Variante wird hier nur erwähnt, da es sich im Unterab-
schnitt 1.4.2 mit dieser leichter arbeiten lässt als mit Vermutung 1.2.

In [Lin11] wurde eine Variante der Bunkbed-Vermutung vorgestellt, wel-
che für den Beweis bei Outerplane-Graphen benutzt wurde:

Vermutung 1.4 Seien T ⊆ V (G) und sei AT := {∀x ∈ T : (x, 0) ∼ (x, 1)}∩
{∀x 6∈ T : (x, 1) 6∼ (x, 2)}. Weiter sei B das Ereignis, dass für alle {x, y} ∈
E(G) genau eine der Kante {(x, 0), (y, 0)} oder {(x, 1), (y, 1)} offen ist. Dann
ist

P((u, 0)↔BB(G)(v, 0)|AT , B) ≥ P((u, 0)↔BB(G)(v, 1)|AT , B) (1.3)

Man beachte, dass das Bedingen auf das Ereignis B bedeutet, dass mit Wahr-
scheinlichkeit 1

2 nur die obere bzw. nur die untere Kante offen ist. Insbeson-
dere hängt die Gültigkeit der Vermutung nicht von p ab.

Auf einen Zusammenhang zwischen Vermutung 1.2 und Vermutung 1.4
wird noch in Unterabschnitt 2.1.1 eingegangen,
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1.3.3 Gitter Zd

Im Folgenden soll sich nur mit dem subkritischen Fall des Graphen Zd be-
schäftigt werden. Eine wichtige Konstante in diesem Zusammenhang ist ξ(p),
welches definiert ist durch (hier 0 ∈ Zd−1):

1
ξ(p) = lim

n→∞
− 1
n

log P((0, 0)↔Zd(0, n))

Die Existenz des obigen Limes wurde z.B. in [Gri99, Kapitel 6.2] gezeigt.
Dazu wurde mit der FKG-Ungleichung 3 gezeigt, dass P((0, 0)↔Zd(0, n)) ≥(
P((0, 0)↔Zd(0, 1))

)n
. Anschließend wurde der Logarithmus auf beiden Sei-

ten angewendet und mit dem Subadditiv-Limit-Theorem 4 die Existenz ge-
zeigt. Für Details siehe [Gri99, Kapitel 6.2].

Bei dem Gitter Zd kann man sich die Frage stellen, ob die Verbindungs-
funktion sogar monoton abnimmt, wenn man sich weiter vom Ursprung ent-
fernt. Insbesondere hat man folgende Vermutung:

Vermutung 1.5 Sei 0 < p < pc(Zd), dann gilt für alle n ≥ 0 und alle
a ∈ Zd−1:

Pp((0, 0)↔Zd(a, n)) > Pp((0, 0)↔Zd(a, n+ 1))

In [LPS15] wurde die Aussage für hinreichend kleine p’s bewiesen (zwar
nur für a = 0 formuliert, aber der dort angegebene Beweis benutzt diese
Einschränkung nicht). In Abschnitt 2.2 wird noch darauf eingegangen.

3 Die FKG-Ungleichung sagt in dem vorliegenden Setting folgendes aus: Sei G ein
Graph. Eine Zufallsvariable Y heißt monoton wachsend auf {0, 1}E(G), wenn für alle
Konfigurationen ω und ω′ gilt, dass, wenn ω ≤ ω′ (dies bedeutet für jede Kante e ist
ω(e) ≤ ω′(e)) auch Y (ω) ≤ Y (ω′) ist. Sind Y und Y ′ zwei monoton wachsende Zufallsva-
riablen mit E[Y 2],E[Y ′2] <∞, so gilt

E[Y Y ′] ≥ E[Y ]E[Y ′]

4Eine Folge (an)n∈N ist subadditiv, wenn für alle m,m′ ∈ N gilt am+m′ ≤ am + am′ .
Das Subadditiv-Limit-Theorem sagt aus, wenn eine Folge (an)n∈N subadditiv ist, dann
existiert der Grenzwert limn→∞

1
nan, wobei als Grenzwert auch −∞ zugelassen ist.



14 KAPITEL 1. SETTING

1.4 Monotonieeigenschaften im Graphen G×Z

1.4.1 Wichtige Bezeichnungen im Zusammenhang des
G×Z

In diesem Abschnitt soll sich mit dem Graphen G×Z beschäftigt werden, wo-
bei G ein zusammenhängender Graph ist und Z ∈ {Z, ((−∞,m]], [[m1,m2]] :
m > 0,m1 < 0 < m2}. Fast immer wird an G die Voraussetzung gestellt,
dass G endlich ist. (Häufig wird G = Ck sein) Also im Prinzip geht es um
eine Art von Bunkbed-Graphen mit mehreren (potenziell unendlich vielen)
Ebenen.

Dazu führen wir einige Bezeichnungen ein: Für n ∈ Z bezeichnet man
mit En := {(x, n) : x ∈ G} die Knoten der n-ten Ebene von dem Graphen
G×Z. Kanten, deren beide Endpunkte in der gleichen Ebene liegen, sollen als
horizontale Kanten bezeichnet werden. Die anderen Kanten sollen als verti-
kale Kanten bezeichnet werden. Mit K(En) bezeichnen wir alle horizontalen
Kanten der Ebene und alle (eventuell vorhandenen) Kanten, die vertikal die
Ebene mit der darunterliegenden Ebene verbinden. Genauer für n, n−1 ∈ Z
sei K(En) := {{(x, n), (y, n)} : x, y ∈ G} ∪ {{(x, n), (x, n− 1)} : x ∈ G} und
für n ∈ Z, n− 1 6∈ Z sei K(En) := {{(x, n), (y, n)} : x, y ∈ G}.

Abbildung 1.3: Der Graph C6 × Z

Klar ist, wenn G endlich ist, dass bei dem Graphen G × Z mit Wahr-
scheinlichkeit 1 kein Knoten in einem unendlich großen Cluster liegt: Würde
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ein Knoten in einem unendlichen Cluster liegen, so müsste entweder immer
ein Knoten in jeder Ebene über dem Knoten mit dem Knoten verbunden
sein oder in jeder Ebene darunter (da G endlich ist). Damit müsste in jeder
Ebene darüber oder darunter mindestens eine der vertikalen Kanten vorhan-
den sein. Da die Wahrscheinlichkeit für dieses Ereignis für jede Ebene gleich
1− (1− p)k ist (falls G k Knoten hat), folgt, dass kein Knoten in einem un-
endlichen Cluster liegt. Insbesondere ist dann pc(G×Z) = 1, wenn G endlich
ist.

Wir gehen im Folgenden davon aus, dass ein Knoten aus G mit 0 bezeich-
net wird. Mit 0 soll immer der Knoten (0, 0) bezeichnet werden.

Definition 1.3 Ein Knoten aus G× Z soll infiziert genannt werden, wenn
dieser mit dem Knoten 0 verbunden ist. Sonst heißt der Knoten uninfiziert.

Definition 1.4 Wir bezeichnen mit ZG×Z
n die Anzahl der mit (0, 0) verbun-

denen Knoten in der Ebene En eines Graphen G× Z. Genauer ist ZG×Z
n =

#{0↔(x, n) : x ∈ G} für n ∈ Z, wobei zugelassen wird, dass Zn = ∞ ist.
Wenn klar ist, um welchen Graphen es sich handelt, schreiben wir Zn anstatt
ZG×Z
n

Es scheint anschaulich so zu sein, wenn man den Graphen G×Z betrach-
tet, dass folgende Vermutung richtig ist:

Vermutung 1.6 Für alle n ∈ N ist im Fall p < pc(G× Z)

E[Zn] > E[Zn+1]

Im Abschnitt 4.1 wird die Vermutung noch genauer betrachtet.
Anstatt nur die Anzahl der verbundenen Knoten auf einer Ebene zu be-

trachten, kann man auch die Verbindungsfunktion betrachten. Aufgrund der
Struktur des Graphen kann man folgende Vermutung äußern:

Vermutung 1.7 Betrachte den Graphen G×Z. Für n ∈ N0 und a ∈ G gilt

Pp((0, 0)↔G×Z(a, n)) > Pp((0, 0)↔G×Z(a, n+ 1))

In der obigen Allgemeinheit wird es hier nicht bewiesen, aber es wird später
gezeigt (für bestimmte endliche Graphen G), wenn n groß genug ist, dann gilt
die obige Vermutung. Die Vermutung bedeutet, dass die Wahrscheinlichkeit,
dass ein Knoten mit dem entsprechenden Knoten in einer weiter entfernten
Ebene verbunden ist, abnimmt, je weiter die Knoten voneinander entfernt
sind. Wir haben also eine Art von Monotonie der Verbindungsfunktion.

Wie man am folgenden Lemma sieht, kann man offensichtlich aus Ver-
mutung 1.7 Vermutung 1.6 erhalten:
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Lemma 1.5 Sei G ein Graph und sei p < pc(G × Z). Weiter sei n ∈ N0,
sodass für alle a ∈ G gilt:

Pp((0, 0)↔G×Z(a, n)) > Pp((0, 0)↔G×Z(a, n+ 1))

Dann ist auch
E[Zn] > E[Zn+1]

Beweis
Man hat für n ∈ N0:

E[Zn] =
∑
x∈G

P(0↔G×Z(x, n)) >
∑
x∈G

P(0↔G×Z(x, n+ 1)) = E[Zn+1] �

Um sich Vermutung 1.6 später zu nähern, betrachten wir ein anderes Pro-
blem, welches damit verwandt ist. Dafür führen wir den Begriff des Musters
einer Ebene ein (ab jetzt setzen wir für den Rest des Abschnittes G endlich
voraus):

Definition 1.6 Sei G ein endlicher zusammenhängender Graph und n ∈ N0:

- Sei l ∈ N0 und A,B1, . . . Bl ⊆ V (G). Wir nennen ein Tupel M =
(A, {B1, . . . , Bl}) ein (Ebenen-)Muster von G, wenn A,B1, . . . , Bl eine
Partition von den Knoten von G ist, wobei wir zulassen, dass A = ∅
oder l = 0 ist. D.h. A∪B1 ∪ · · · ∪Bl = V (G) und Bi 6= ∅ A∩Bi = ∅,
Bi ∩Bj = ∅ für i 6= j.

- Sei Z ∈ {Z, ((−∞,m]], [[m1,m2]] : m > 0,m1 < 0 < m2}. Wir
sagen auf einer Ebene n ≥ 0 des Graphen G × Z liegt das (einsei-
tige) Muster M = (A, {B1, . . . , Bl}) vor, wenn in dem Teilgraphen
G × {. . . , 0, 1, . . . , n} (bzw. im Teilgraphen G × {m1, . . . , 0, 1, . . . , n}
für Z = [[m1,m2]]) folgendes gilt: Alle Knoten aus A × {n} sind mit
dem Knoten (0, 0) über einen offenen Pfad verbunden und alle Knoten
aus Bi × {n} sind über einen offenen Pfad miteinander verbunden für
jedes i. Darüber hinaus gilt für i, j mit i 6= j, dass kein Knoten aus
Bi × {n} mit einem Knoten aus Bj × {n} verbunden ist und für alle i
ist kein Knoten aus A×{n} mit einem Knoten aus Bi×{n} verbunden.

- Es soll das (einseitige) Muster auf Ebene n mit XG×Z
n bezeichnet wer-

den. Falls klar ist, welcher Graph gemeint ist, wird auch Xn statt XG×Z
n

geschrieben.
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Beispiel 1.1

(0,−2)

(1,−2)

(2,−2)

(3,−2)

Ebene −2

(0,−1)

(1,−1)

(2,−1)

(3,−1)

Ebene −1

(0, 0)

(1, 0)

(2, 0)

(3, 0)

Ebene 0

(0, 1)

(1, 1)

(2, 1)

(3, 1)

Ebene 1

(0, 2)

(1, 2)

(2, 2)

(3, 2)

Ebene 2

(0, 3)

(1, 3)

(2, 3)

(3, 3)

Ebene 3

In der linken Kantenperkolation des Graphen C4 × Z
hat man z.B. folgende Muster:
Auf Ebene 0 ist das Muster ({0, 3}, {{1, 2}})
Auf Ebene 1 ist das Muster ({0, 1, 2}, {{3}})
Auf Ebene 2 ist das Muster ({1, 2, 3}, {{0}})
Auf Ebene 3 ist das Muster ({3}, {{0}, {1, 2}})

Man beachte, dass nicht alle Muster auftreten können. Z.B. für den Gra-
phen C4×Z kann das Muster ({0, 2}, {{1, 3}}) nicht auftreten. Denn hier sind
die Knoten 0 und 2 und die Knoten 1 und 3 im Graphen G×{. . . , 0, 1, . . . , n}
miteinander verbunden. Aufgrund der Struktur des Graphen müssten sich
die beiden Pfade schneiden, die die jeweiligen beiden Knoten verbinden. Dies
hätte zur Folge, dass alle Knoten miteinander verbunden wären. Deshalb ist
folgende Definition sinnvoll:

Definition 1.7 Sei wieder G ein endlicher zusammenhängender Graph.

- Wir nennen M ein gültiges (einseitiges) Ebenenmuster, wenn es eine
Kantenkonfiguration des Graphen G×Z und eine Ebene n ≥ 0 gibt, so-
dass auf Ebene n das (einseitige) Ebenenmuster M vorliegt. Die Menge
aller gültigen Ebenenmuster bezeichnen wir mit M(G).

- Weiter bezeichnen wir M0(G) = {(A, {B1, . . . , Bl}) ∈M (G) : A = ∅}
(also alle gültigen Muster, die keinen Knoten mit dem Knoten (0, 0)
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verbunden haben) und M1(G) = M (G)\M0(G). Wenn von infizierten
Mustern gesprochen wird, sollen immer die Muster aus M1(G) gemeint
sein. Mit uninfizierten Mustern sind die Muster aus M0(G) gemeint.

Man beachte, sollte M ein gültiges Ebenenmuster sein, welches auf der
Ebene n vorkommen kann, dann kann das Muster auch auf jeder Ebene
darüber vorkommen: Sind nämlich in K(En+1) keine horizontalen Kanten
vorhanden und alle vertikalen Kanten vorhanden, so gibt es auf der Ebene n
und n+ 1 das gleiche Muster.

Ist n groß genug, so müsste mit sehr großer Wahrscheinlichkeit auf der
Ebene n ein Muster aus M0(G) auftreten. Es soll sich aber jetzt eher mit
den Mustern aus M1(G) beschäftigt werden. Folgende Vermutung scheint
sinnvoll zu sein (bewiesen wird diese Vermutung im Unterabschnitt 4.3.5 mit
einer Einschränkung an den Graphen G), die eine Art von Monotonie des
Vorhandenseins von Mustern auf verschiedenen Ebenen zeigt:
Vermutung 1.8 Für einen endlichen zusammenhängenden Graphen G gilt:
Es gibt ein n0 ∈ N, sodass für alle n ≥ n0 und M ∈M1(G) und p ∈ (0, 1):

Pp(XG×Z
n = M) > Pp(XG×Z

n+1 = M)

Dass diese Aussage nicht für alle n gilt, liegt daran, dass bestimmte Muster
erst ab einer bestimmten Ebene auftreten können. Z.B. haben auf der 0-ten
Ebene alle Muster den Knoten 0 infiziert. In Abschnitt 4.2 und Abschnitt 4.3
wird sich mit dieser Vermutung befasst. Dann wird auch für den Graphen
Ck × Z eine Abschätzung für das n angegeben.

Falls Vermutung 1.8 gilt, so gilt Vermutung 1.7 für n groß genug, wie man
später an Lemma 1.13 und Lemma 1.14 sieht.

Man erhält schon für relativ einfache Graphen sehr viele (gültige) Muster.
Für den Graphen C3×Z ist z.B. (für diesen Graphen sind alle Muster gültig,
wie man jeweils leicht sieht):
M (C3) ={({}, {{0}, {1}, {2}}), ({}, {{0, 1}, {2}}), ({}, {{0, 2}, {1}}), ({},

{{1, 2}, {0}}), ({}, {{0, 1, 2}}), ({0}, {{1, 2}}), ({0}, {{1}, {2}}),
({1}, {{0, 2}}), ({1}, {{0}, {2}}), ({2}, {{0, 1}}), ({2}, {{0}, {1}}),
({0, 1}, {{2}}), ({0, 2}, {{1}}), ({1, 2}, {{0}}), ({0, 1, 2}, {{}})}

In Abhängigkeit der Anzahl der Knoten von G kann man die Anzahl der
gültigen Muster abschätzen:
Proposition 1.8 Sei G ein endlicher zusammenhängender Graph mit #V (G) =
k. Dann gilt:

2k ≤ #M (G) ≤ 1
e

∞∑
l=0

lk+1

l! (1.4)
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Beweis
Eine Obergrenze ist die Anzahl aller Muster (also die Anzahl aller gültigen
und ungültigen Muster.). Sei ∆ irgendein Symbol mit ∆ 6∈ V (G). Es soll nun
eine Bijektion zwischen den Partitionen von V (G) ∪ {∆} und den Mustern
von G angegeben werden. Sei {B1, . . . , Bm} eine Partition von V (G) ∪ {∆}.
Sei Bj die Menge, die ∆ enthält. Dann ordne der Partition das Muster (Bj \
{∆}, {B1, . . . , Bj−1, Bj+1, . . . , Bm}) zu. Offensichtlich ist dies eine bijektive
Abbildung zwischen den Partitionen einer k+1 elementigen Menge und allen
Mustern. Sei Bk+1 die Anzahl von Partitionen einer k+1 elementigen Menge.
(Bk+1 heißt Bellsche Zahl). Nach der Dobiński-Formel ist Bk+1 = 1

e

∑∞
l=0

lk+1

l!
(siehe z.B. [Rot64])). Damit erhält man die obere Schranke.

Als eine triviale Untergrenze für die Anzahl von gültigen Mustern macht
man sich klar, dass für jede Teilmenge A von V (G) das Muster M = (A,B)
mit B := {{b} : b ∈ V (G) \ A} ein gültiges Muster ist. Dies erhält man
dadurch, dass bei K(E1) alle Kanten vorhanden sind und bei K(E2) genau
die Kanten {(x, 2), (x, 1)} mit x ∈ A vorhanden sind. Damit ist 2k eine untere
Grenze für #M (G). �

Bemerkung 1.9 Für den vollständigen Graphen Kk gilt, dass für #M(Kk)
die obere Schranke aus Proposition 1.8 angenommen wird, da alle Muster
gültig sind. (siehe dazu auch die später folgende Bemerkung 4.42 im Unter-
abschnitt 4.3.1). Im Abschnitt 4.2 wird für den Graphen Ck für k-klein die
genaue Anzahl gültiger Muster angegeben.

Damit man den Rechenaufwand für Rechnungen mit dem Computer bzw.
CAS reduziert, werden wir teilweise mehrere Muster als äquivalent auffassen
und somit muss man nur weniger Muster untersuchen. Was hier unter äqui-
valenten Mustern zu verstehen ist, soll nun erklärt werden.

Zur Erinnerung: Ein Graphautomorphismus eines Graphen G ist eine
bijektive Abbildung Φ von V (G) nach V (G), sodass für alle u, v ∈ V (G)
{u, v} ∈ E(G) genau dann, wenn {Φ(u),Φ(v)} ∈ E(G) ist. Damit können
wir definieren, was wir unter äquivalenten Mustern verstehen:

Definition 1.10 Sei G ein endlicher zusammenhängender Graph.

- Zwei MusterM1 = (A, {B1, . . . , Bl}),M2 sind äquivalent, wenn es einen
Automorphismus Φ auf G gibt, sodassM2 = (Φ(A), {Φ(B1), . . . ,Φ(Bl)})
ist. Dabei ist für C = {c1, . . . , cm} ⊆ V (G), Φ(C) = {Φ(c1), . . . ,Φ(cm)}.

- Bezeichne mit [M ] die Äquivalenzklasse eines Musters und mit [M (G)]
die Menge aller Äquivalenzklassen aller gültigen Muster. Entsprechend
bezeichne mit [M1(G)] und [M0(G)] die zugehörigen Mengen der Äqui-
valenzklassen zur Menge M1(G) und M0(G).
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Aufgrund der Definition ist die Mächtigkeit von M (G) gleich oder kleiner
als die Mächtigkeit von [M(G)] mal der Anzahl der Automorphismen von
G. Für M1(G) und M0(G) gelten die analogen Aussagen. So ist z.B.

[M(C3)] ={[({}, {{0}, {1}, {2}})], [({}, {{0, 1}, {2}})], [({}, {{0, 1, 2}})],
[({0}, {{1, 2}})], [({0}, {{1}, {2}})], [({0, 1}, {{2}})], [({0, 1, 2}, {{}})]}

Also hat man #[M(C3)] = 7, aber #M(C3) = 15 (vgl. die Auflistung von
M (C3) oben).

Für den Graphen Ck×Z wären die äquivalenten Ebenenmuster genau die
Ebenenmuster, die durch Drehung und Spiegelung entstehen. (Daher sind es
die Graphenautomorphismen der Form x 7→ x + m mod k und x 7→ −x +
m mod k mit m ∈ {0, . . . , k − 1})

Natürlich kann man auch eine zu Vermutung 1.8 analoge Vermutung für
[M1(G)] aufstellen:

Vermutung 1.9 Für einen endlichen zusammenhängenden Graphen G gilt:
Es gibt ein n0 ∈ N, sodass für alle n ≥ n0 und [M ] ∈ [M1(G)] und p ∈ (0, 1):

Pp(XG×Z
n ∈ [M ]) > Pp(XG×Z

n+1 ∈ [M ])

Klar ist es, dass das n0 aus Vermutung 1.9 kleiner oder gleich dem n0 aus
Vermutung 1.8 ist.

Es soll noch kurz eine andere Art von Mustern eingeführt werden, die den
ganzen Graphen berücksichtigen (also auch die Kanten über der Ebene) und
somit die Verbindungen einer Ebene unter Beachtung des ganzen Graphen
beschreiben:

Definition 1.11 Sei G ein endlicher zusammenhängender Graph, sei Z ∈
{Z, ((−∞,m]], [[m1,m2]] : m > 0,m1 < 0 < m2} und n ∈ Z:

- Wir sagen auf einer Ebene n des Graphen G×Z liegt das zweiseitige
Muster M = (A, {B1, . . . , Bl}) vor, wenn in dem Graphen G × Z fol-
gendes gilt: Alle Knoten aus A× {n} sind mit dem Knoten (0, 0) über
einen offenen Pfad verbunden und alle Knoten aus Bi × {n} sind über
einen offenen Pfad miteinander verbunden für jedes i. Darüber hinaus
gilt für i, j mit i 6= j, dass kein Knoten aus Bi×{n} mit einem Knoten
aus Bj ×{n} verbunden ist und für alle i ist kein Knoten aus A×{n}
mit einem Knoten aus Bi × {n} verbunden.

- Es soll das zweiseitige Muster auf Ebene n mit X̃G×Z
n bezeichnet werden.

Falls klar ist, welcher Graph gemeint ist, wird auch X̃n statt X̃G×Z
n

geschrieben.
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- Wir nennen M ein gültiges zweiseitiges Ebenenmuster, wenn es
eine Kantenkonfiguration und Ebene n im Graphen G× Z gibt, sodass
M auf Ebene n als zweiseitiges Ebenenmuster vorliegt. Die Menge aller
gültigen zweiseitigen Ebenenmuster bezeichnen wir mit M̃ (G).

- Weiter bezeichnen wir M̃
0(G) = {(A, {B1, . . . , Bl}) ∈ M̃ (G) : A =

∅} (also alle gültigen zweiseitigen Muster, die keinen Knoten mit dem
Knoten (0, 0) verbunden haben) und M̃

1(G) = M̃(G) \ M̃
0(G).

Bemerkung 1.12 Im Gegensatz zu einseitigen Mustern ist hier n ∈ Z an-
statt n ∈ N. Denn im Gegensatz zu einseitigen Mustern macht die Betrach-
tung n < 0 Sinn.

Es wird noch darauf hingewiesen, dass jedes gültige einseitige Ebenenmuster
auch ein gültiges zweiseitiges Ebenenmuster ist. Wenn in dem Graphen G×Z
ein einseitiges Ebenenmuster auf Ebene n auftritt, tritt dieses auf der Ebene n
auch als ein zweiseitiges Ebenenmuster auf, wenn man die Kantenperkolation
des Graphen G×Z so abändert, sodass alle Kanten aus K(En+1) geschlossen
sind.

Dass es nicht nur gleich viele, sondern im Allgemeinen mehr gültige zwei-
seitige Ebenenmuster gibt als einseitige Ebenenmuster, kann man z.B. bei
dem Graphen C4 × Z sehen. Das Muster ({0, 2}, {{1, 3}}) ist ein zweifa-
ches Ebenenmuster von C4×Z, aber nicht ein einseitiges Ebenenmuster von
C4 × Z. Die Begründung dafür, dass dies kein einseitiges Muster ist, wurde
oben schon gegeben. In folgender Kantenperkolation tritt dieses Muster als
zweiseitiges Muster auf Ebene 1 auf:
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(0,−1)

(1,−1)

(2,−1)

(3,−1)

Ebene −1

(0, 0)

(1, 0)

(2, 0)

(3, 0)

Ebene 0

(0, 1)

(1, 1)

(2, 1)

(3, 1)

Ebene 1

(0, 2)

(1, 2)

(2, 2)

(3, 2)

Ebene 2

(0, 3)

(1, 3)

(2, 3)

(3, 3)

Ebene 3

Die obere und die untere Schranke aus (1.4) für einseitige Ebenenmuster
gelten auch für zweiseitige Ebenenmuster.

Natürlich kann man analog zur Vermutung 1.8 folgende Vermutung auf-
stellen:

Vermutung 1.10 Sei G ein endlicher zusammenhängender Graph G. Dann
gibt es ein n0 ∈ N, sodass für alle n ≥ n0 und M ∈ M̃

1(G) und p ∈ (0, 1):

Pp(X̃G×Z
n = M) > Pp(X̃G×Z

n+1 = M)

Man kann direkt aus Vermutung 1.8 Vermutung 1.10 erhalten, wie man
an dem folgenden Lemma sieht:

Lemma 1.13 Sei G ein endlicher zusammenhängender Graph und sei p ∈
(0, 1). Gibt es n ∈ N0, sodass für alle M ∈M1(G):

Pp(XG×Z
n = M) > Pp(XG×Z

n+1 = M),

dann gilt auch für alle M ∈ M̃
1(G):

Pp(X̃G×Z
n = M) > Pp(X̃G×Z

n+1 = M)
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Beweis
Sei M ∈ M̃ (G), p ∈ (0, 1) und n ∈ N0, dann hat man:

Pp(X̃G×Z
n+1 = M) =

∑
M ′∈M1(G)

Pp(X̃G×Z
n+1 = M |XG×Z

n+1 = M ′) Pp(XG×Z
n+1 = M ′)

<
∑

M ′∈M1(G)
Pp(X̃G×Z

n = M |XG×Z
n = M ′) Pp(XG×Z

n = M ′) = Pp(X̃G×Z
n = M)

Dabei gilt Pp(X̃G×Z
n+1 = M |XG×Z

n+1 = M ′) = Pp(X̃G×Z
n = M |XG×Z

n = M ′),
da Pp(X̃G×Z

n+1 = ·|XG×Z
n+1 = M ′) nur von dem Zustand von ⋃∞

i=n+1K(Ei)
und Pp(X̃G×Z

n = ·|XG×Z
n+1 = M ′) nur von dem Zustand von ⋃∞

i=nK(Ei) ab-
hängt. Der Graph mit den Knoten ⋃∞i=n+1 Ei und den Kanten ⋃∞i=n+1K(Ei)
ist isomorph zu dem Graphen mit den Knoten ⋃∞

i=n+1Ei und den Kanten⋃∞
i=n+1K(Ei). Aufgrund der Translationsinvarianz von Pp erreicht man die

gewünschte Gleichheit. �

Wenn Vermutung 1.10 richtig ist, dann ist auch Vermutung 1.7 für große
n richtig, wie man am folgenden Lemma sieht:

Lemma 1.14 Gilt Vermutung 1.10 für einen endlichen zusammenhängen-
den Graphen G, so gibt es ein n0 ∈ N, sodass für alle n ≥ n0 und a ∈ G
gilt:

Pp((0, 0)↔G×Z(a, n)) > Pp((0, 0)↔G×Z(a, n+ 1))

Beweis
Es gilt:

Pp((0, 0)↔G×Z(a, n)) =
∑

M∈M̃
1(G):M=(A,... ) mit a∈A

Pp(X̃G×Z
n = M)

>
∑

M∈M̃
1(G):M=(A,... ) mit a∈A

Pp(X̃G×Z
n+1 = M)

= Pp((0, 0)↔G×Z(a, n+ 1)) �

1.4.2 Beziehung zwischen den Problemen
Wir betrachten zuerst Zusammenhänge zwischen der Vermutung für Bunkbed-
Graphen und den Graphen G× Z:

Proposition 1.15 Sei die Vermutung 1.3 für alle endlichen (zusammenhän-
genden) Graphen richtig und sei G ein zusammenhängender endlicher Graph,
dann gilt
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(a) für alle m ≥ n ≥ 0:

Pp((0, 0)↔G×[[n−m,n+1+m]](a, n)) ≥ Pp((0, 0)↔G×[[n−m,n+1+m]](a, n+1))

(b)
Pp((0, 0)↔G×Z(a, n)) ≥ Pp((0, 0)↔G×Z(a, n+ 1))

Beweis
(a) Sei G′ := G× [[n−m,n]]. Der Graph BBT (G′) mit T := {(x, n) : x ∈ G}
ist isomorph zu dem Graphen G×[[n−m,n+1+m]]: Man ordnet den Knoten
((x, y), 0) aus dem Graphen BBT (G′) den Knoten (x, y) und ((x, y), 1) aus
dem Graphen BBT (G′) den Knoten (x, 2n+ 1− y) zu.

Somit ist

Pp((0, 0)↔BBT (G′)((a, n), 0)) = Pp((0, 0)↔G×[[n−m,n+1+m]](a, n))

und

Pp((0, 0)↔BBT (G′)((a, n), 1)) = Pp((0, 0)↔G×[[n−m,n+1+m]](a, n+ 1)).

Aus Vermutung 1.3 folgt nun die Behauptung.
(b) Sei Am := {(0, 0)↔G×[[n−m,n+1+m]](a, n)} und Bm := {(0, 0)↔G×[[n−m,n+1+m]](a, n+

1)} . Nach dem ersten Teil ist (für 0 ≤ n ≤ m) Pp(Am) ≥ Pp(Bm). Da
Am ↑ {(0, 0)↔G×Z(a, n)} und Bm ↑ {(0, 0)↔G×Z(a, n+1)} für m→∞ folgt
aus der σ-Stetigkeit von Pp

Pp((0, 0)↔G×Z(a, n))− Pp((0, 0)↔G×Z(a, n+ 1))
= lim

m→∞
Pp((0, 0)↔G×[[n−m,n+1+m]](a, n))− Pp((0, 0)↔G×[[n−m,n+1+m]](a, n+ 1))

≥ 0

Damit folgt die Behauptung. �

Anstatt bei den Graphen G × Z Knoten in der Vertikalen zu verglei-
chen, kann man aus den Bunkbed-Vermutungen auch eine Aussage für den
Vergleich der Knoten von G× Z in der Horizontalen herleiten:

Proposition 1.16 Sei Vermutung 1.3 richtig, k ∈ N und x ∈ {0, . . . , k−1},

(a) und darüber hinaus sei m1,m2 ∈ N mit m1 ≤ 0 ≤ m2. Wir betrachten
den Graphen C2k × [[m1,m2]]. Dann gilt für n ∈ N mit m1 ≤ n ≤ m2:

Pp((0, 0)↔C2k×[[m1,m2]](x, n)) ≥ Pp((0, 0)↔C2k×[[m1,m2]](x+ 1, n))
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(b) dann gilt für den Graphen C2k × Z und für n ∈ N:

Pp((0, 0)↔C2k×Z(x, n)) ≥ Pp((0, 0)↔C2k×Z(x+ 1, n))

Beweis
(a) Wir definieren den Graphen G′ := [[0, k − 1]] × [[m1,m2]]. Weiter sei
T := {(0,m) : m ∈ {m1, . . . ,m2}} ∪ {(k − 1,m) : m ∈ {m1, . . . ,m2}}. Dann
ist der Bunkbed-Graph BBT (G′) isomorph zu dem Graphen C2k × [[0,m]]:
Denn man kann den Knoten ((x, n), 0) von BBT (G′) dem Knoten (x, n) und
den Knoten ((x, n), 1) von BBT (G′) dem Knoten (2k − x − 1, n) zuordnen.
Somit folgt die Behauptung aus Vermutung 1.3 .

(b) Sei Am1,m2 := {(0, 0)↔C2k×[[m1,m2]](x, n)} und Bm1,m2 := {(0, 0)↔C2k×[[m1,m2]](x+
1, n)}. Nach dem ersten Teil ist (für m1 ≤ 0 ≤ n ≤ m2) Pp(Am1,m2) ≥
Pp(Bm1,m2). Da Am1,m2 ↑ {(0, 0)↔C2k×Z(x, n)} und Bm1,m2 ↑ {(0, 0)↔C2k×Z(x+
1, n)} für m1 → −∞ und m2 →∞ folgt aus der σ-Stetigkeit von Pp

Pp((0, 0)↔C2k×Z(x, n))− Pp((0, 0)↔C2k×Z(x+ 1, n))
= lim

m1→−∞
lim

m2→∞
Pp((0, 0)↔C2k×[[m1,m2]](x, n))− Pp((0, 0)↔C2k×[[m1,m2]](x+ 1, n)) ≥ 0

Damit folgt die Behauptung. �

Man beachte, dass für k = 1, 2 der Graph G′ ein Outerplane-Graph ist
und nach einem in Unterabschnitt 2.1.2 vorgestellten bekannten Resultat die
Aussage für C2 × [[0,m]] und C4 × [[0,m]] gilt.

Natürlich könnte man, wie man in den vorigen Beweisen sieht, auch aus
Aussagen über Graphen G × [[m1,m2]] Aussagen über spezielle Bunkbed-
Graphen erhalten.

Ebenfalls kann man durch Grenzwertbetrachtung des Graphen [[0, k]]×Z
oder Ck×Z für k →∞ einen Zusammenhang zu dem Graphen Z2 herstellen.
Würde die Vermutung 1.7 gelten, dann hätte man auch Vermutung 1.5 für
den Fall d = 2. (unter Umständen mit ≤ statt <) Es soll nun ein Beweis
angegeben werden für den Fall Ck. Der Fall [[0, k]]× Z geht analog.

Satz 1.17 Sei 0 < p < pc(Z2) und a, n ∈ N0:
Gilt für alle k ≥ a

Pp((0, 0)↔Ck×Z(a, n)) ≥ Pp((0, 0)↔Ck×Z(a, n+ 1))

Dann gilt:

Pp((0, 0)↔Z2(a, n)) ≥ Pp((0, 0)↔Z2(a, n+ 1))
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Beweis
Sei Am das Ereignis, dass im Graphen Z2 der Cluster C(0) von (0, 0) im
Teilgraphen [[−m,m]] × Z liegt. Weiter sei Bm das Ereignis, dass im Gra-
phen C2m+2 × Z der Cluster von (0, 0) eine Teilmenge von {(x, z) : x ∈
{0, . . . ,m} ∪ {2m + 1, 2m, . . . ,m + 2}, z ∈ Z} ist (also der Cluster enthält
keinen Knoten mit m + 1 in der ersten Komponente, bzw. der Cluster liegt
im Teilgraphen (C2m+2 \ {m+ 1})× Z). Nach Wahl von Am und Bm ist für
alle n ∈ N Pp((0, 0)↔Z2(0, n) ∩ Am) = Pp((0, 0)↔C2m+2(0, n) ∩Bm) (da der
Graph [[−m,m]] und der Teilgraph C2m+2\{m+1} isomorph sind) und somit
ist

lim sup
m∈N

|Pp((0, 0)↔Z2(a, n))− Pp((0, 0)↔C2m+2×Z(a, n))|

= lim sup
m∈N

|Pp({(0, 0)↔Z2(a, n)} ∩ Acm)− Pp({(0, 0)↔C2m+2×Z(a, n)} ∩Bc
m)|

≤ lim sup
m∈N

Pp(Acm) + Pp(Bc
m) = lim sup

m∈N
2 Pp(Acm) = 0

Man beachte, dass Pp(Bc
m) = Pp(Acm) und wegen p < pc(Z2) P(Acm)→ 0.

Analog kann man zeigen, dass

lim sup
m∈N

|Pp((0, 0)↔Z2(a, n+ 1))− Pp((0, 0)↔C2m+2×Z(a, n+ 1))| = 0.

Somit folgt die Behauptung aus der Voraussetzung. �

Bemerkung 1.18 Man sieht auch, dass aus Proposition 1.15 und Satz 1.17
folgt, wenn die Vermutung 1.3 für alle endlichen (zusammenhängenden) Gra-
phen richtig ist, dann gilt auch die Vermutung 1.5 für d = 2.



Kapitel 2

Bekannte Resultate

In diesem Kapitel soll auf bekannte Resultate über die Monotonie der Ver-
bindungsfunktion eingegangen werden. Die Beweise der einzelnen Resultate
sollen nur skizzenhaft in unterschiedlicher Ausführlichkeit vorgestellt werden,
da man die Beweisideen später nicht mehr aufgreift. Die kompletten Beweise
findet man in den angebenden Literaturquellen.

27
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2.1 Bunkbed-Graphen

2.1.1 Hilfsmittel für die Bunkbed-Vermutung
Es gilt folgender Satz, der zeigt, dass man eigentlich nur Vermutung 1.4
zeigen muss:

Satz 2.1 [Lin11] Angenommen, die Vermutung 1.4 gilt für alle Minoren 1

G′ von G und alle T ⊂ V (G′), dann gilt die Vermutung 1.2 für alle p ∈ [0, 1]
und T ⊂ V (G).

Die grobe Beweisidee von Satz 2.1 ist es, für jede Kante darauf zu be-
dingen, ob die Kante auf beiden Ebenen, überhaupt nicht oder nur an einer
Stelle (also nur oben oder unten) auftritt. Im Falle, dass die Kante überhaupt
nicht auftritt, kann man die Kante auf dem Graphen entfernen. Sollte die
Kante sowohl oben als auch unten auftreten, so kann man die beiden End-
punkte der Kante zu einem Knoten vereinigen. Insgesamt erhält man also
einen Graphen, der nur Kanten entweder oben oder unten hat. Für Details
siehe [Lin11].

2.1.2 Outerplane-Graph
Ein Outerplane-Graph ist ein planarer Graph2, dessen Knoten alle an der
Außenregion angrenzen (aber nicht unbedingt alle Kanten). Nach [CH67] ist
ein Graph genau dann ein Outerplane-Graph, wenn der Graph keinen zu K4
oder K2,3 homomorphen Teilgraphen enthält.

In diesem Abschnitt soll der Beweis der Vermutung 1.2 für Outerplane-
Graphen aus [Lin11] grob nachvollzogen werden. Hier soll nur ein kurzer
Überblick gegeben werden und die Beweisideen vorgestellt werden. Insbeson-
dere werden hier nicht Multigraphen berücksichtigt, die bei einer Kantenkon-
traktion auftreten können. Der Beweis basiert darauf, die Vermutung 1.4 zu
zeigen. D.h.

Pp((u, 0)↔BB(G)(v, 0)|AT , B) ≥ Pp((u, 0)↔(v, 1)|AT , B)

für Outerplane-Graphen zu zeigen. Nach Satz 2.1 gilt dann die Vermutung 1.2
für Outerplane-Graphen (da jeder Minor von einem Outerplane-Graphen

1Minoren sind Graphen, die aus einem Graphen entstehen, wenn man Kanten weglässt
oder zwei verbundene Knoten zu einem neuen Knoten vereinigt. Dabei wird die verbundene
Kante entfernt und der neue Knoten ist mit allen anderen Knoten verbunden, womit auch
die beiden ursprünglichen Knoten verbunden waren (auch Kantenkontraktion genannt).

2Dabei ist ein planarer Graph ein Graph, den man in der Ebene zeichnen kann, ohne
dass sich zwei Kanten kreuzen.
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auch ein Outerplane-Graph ist). Der Beweis in [Lin11] ist ein Widerspruchs-
beweis und basiert auf der Angabe eines minimalen Gegenbeispiels und der
daraus folgenden Konstruktion eines noch kleineren Graphen. Dabei ist ein
minimales Gegenbeispiel ein Graph G, für den es eine Menge T gibt, sodass
die Vermutung nicht gilt, aber für alle Minoren von G die Vermutung für alle
möglichen T gilt. (Hier wird nicht darauf eingegangen, dass auch Multigra-
phen entstehen können.)

Um einen kleineren Graphen zu konstruieren, der ebenfalls ein Gegenbei-
spiel darstellt, werden unter anderem folgende drei Operationen benutzt:

1. Sind zwei Knoten x, y ∈ V (G) beide in T und miteinander verbun-
den, so würde es egal sein, ob die Kante {(x, 0), (y, 0)} oder die Kante
{(x, 1), (y, 1)} vorhanden ist. Somit kann man x und y zu einem neuen
Knoten vereinigen (und der vereinigte Knoten ist auch in T ).

2. Sei x ∈ V (G) nicht gleich u oder v und auch nicht in T und deg(x) = 2.
Den Knoten x kann man dann nur für einen Weg zwischen (u, 0)
und (v, e) (e ∈ {0, 1}) benutzen, wenn die beiden Kanten von x im
Bunkbed-Graph entweder beide oben oder unten vorhanden sind. Also
ist auch der Graph ohne x und den zugehörigen Kanten ein Gegenbei-
spiel (Fall: beide Kanten sind nicht oben oder unten) oder der Graph,
der aus einer Kantenkontraktion mit einer Kante von x hervorgeht.
(Fall: beide Kanten oben oder unten)

3. Die dritte Operation ist etwas komplexer, da man sogar zu vier ver-
schiedenen Graphen reduziert, wovon mindestens ein Graph ein Ge-
genbeispiel ist. Bei dieser Operation hat man im Graphen drei Knoten
x, y, z ∈ V (G), die jeweils paarweise eine gemeinsame Kante im Gra-
phen G haben (d.h. die Knoten x, y, z bilden ein Dreieck im Graphen
G) und deg(z) = 2. Dann vereinigt man zwei Knoten davon zu einem
Knoten (Fall: wenn nicht alle drei Kanten oben oder alle drei Kanten
unten im Bunkbed-Graphen sind) oder entfernt den Knoten z mit den
zugehörigen Kanten (Fall: alle drei Kanten sind oben oder alle drei
Kanten sind unten im Bunkbed-Graphen).

Nun zum Beweis: Zuerst wird gezeigt, dass so ein Minimalbeispiel eines Gra-
phen 2-fach zusammenhängend ist. 3 Hierfür wird gezeigt, falls es einen Kno-

32-fach zusammenhängend bedeutet, wenn man einen Knoten aus dem Graphen ent-
fernt, dieser immer noch zusammenhängend ist.
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ten x ∈ G gibt, sodass G \ x 4 nicht zusammenhängend ist, ist einer der
beiden entstehenden Graphen auch ein Gegenbeispiel für die Vermutung.

Dadurch, dass G 2-fach zusammenhängend ist, gibt es zwei disjunkte
Pfade zwischen u und v, die nur Kanten, die am Außengebiet angrenzen,
benutzen (insbesondere ist dann der Grad von u größer oder gleich 2).

Mit einer Sehne von G ist eine Kante gemeint, die nicht an das Außen-
gebiet angrenzt. Nun zeigt man, dass es keine zwei Knoten x und y in G
gibt, sodass gilt: {x, y} ist eine Sehne von G und wenn man diese beiden
Knoten aus dem Graphen entfernt, dass dann u und v in unterschiedlichen
Komponenten liegen. (Insbesondere zeigt dies, dass keine Sehne u oder v als
Endknoten hat.) Dies wird bewiesen, indem man das Gegenteil annimmt,
d.h. es gibt eine Sehne {x, y}, deren Knoten x, y auf einem Pfad zwischen u
und v liegen, der nur Kanten aus dem Außengebiet benutzt. Seien z1, . . . , zm
die Knoten, die zwischen x und y auf diesem Pfad liegen (man kann auch
deg(zi) = 2 voraussetzen). Wenn ein zi 6∈ T , kann man die 2. Operation be-
nutzen, um ein Gegenbeispiel zu konstruieren. Wäre m > 1 und {z1, . . . , zm},
so kann man mit der 1. Operation ein Gegenbeispiel konstruieren. Bei m = 1
und {z1, . . . , zm} kann man die dritte Operation benutzen, um ein Gegen-
beispiel zu konstruieren. Also kann man davon ausgehen, dass es eine solche
Sehne nicht gibt.

Eine direkte Konsequenz aus dem nicht Vorhandensein einer Sehne mit
den obigen Eigenschaften ist es, dass bei dem Graphen der Grad von u 2 ist.

Nun betrachtet man die beiden Knoten xu und yu, die mit u verbunden
sind. Man kann nun bei der Kante {u, xu} bedingen, ob diese im Bunkbed-
Graphen nur oben oder unten vorhanden ist. Da der Grad von u gleich 2
ist, würde man im Fall, dass die Kante nur oben vorhanden ist, die Kante
{u, xu} nicht benutzen können (man kann sich leicht überlegen, dass u 6∈ T
ist). Also kann man annehmen, dass {u, xu} nur unten vorhanden ist, da man
im Falle, dass die Kante nur oben vorhanden ist, einfach die Kante streichen
kann und somit einen kleineren Graphen erhält. Analog kann man davon
ausgehen, dass {u, yu} nur unten vorhanden ist.

Wäre {xu, yu} 6∈ E(G), so folgt aus der Outerplanität des Graphen und
der obigen Nichtexistenz einer Sehne, deren Entfernung zu einem Graphen
führt, bei dem u und v in unterschiedlichen Komponenten liegen, dass ent-
weder der Knoten xu oder yu den Grad 2 hat und man kann, indem man
diesen Knoten mit u vereinigt, ein kleineres Gegenbeispiel konstruieren.

Im Falle {x, y} ∈ E(G) würde man ebenfalls darauf bedingen, ob {x, y}
nur oben oder unten vorhanden ist und wieder die Aussage über die Sehne

4Mit G \ x ist der Graph gemeint, der aus dem Graphen G entsteht, indem man den
Knoten x und alle zugehörigen Kanten entfernt.
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benutzen, um einen kleineren Graphen zu konstruieren, der ein Gegenbeispiel
darstellt.

2.1.3 Vollständiger Graph
Wir vollziehen den Beweis in [HL19] von Vermutung 1.2 für den Kn+1 nach:
Man wählt O.B.d.A v = n. Klar ist, wenn u ∈ T oder v ∈ T , dann ist
Pp((u, 0)↔(v, 0)) = Pp((u, 0)↔(v, 1)). Ist u ∈ T so folgt dies aus der Sym-
metrie des Bunkbed-Graphen. Im anderen Fall ist (v, 0)↔(v, 1) und somit
sind entweder beide Ereignisse erfüllt oder nicht.
Da man auch offensichtlich annehmen kann, dass u 6= v, kann man aufgrund
der Symmetrie des Kn+1 davon ausgehen, dass man u zufällig (gleichverteilt
und unabhängig von der Kantenperkolation) aus {0, . . . , n−1}\T auswählt.
Wegen Pp((u, 0)↔(v, 0)|AT ) = Pp((u, 0)↔(v, 1)|AT ) für u ∈ T kann man
sogar davon ausgehen, dass man u zufällig (gleichverteilt und unabhängig
von der Kantenperkolation) in {0, . . . , n− 1} wählt.

Also reicht es, Vermutung 1.2 zu zeigen für v = n und u wird zufällig
(gleichverteilt) in {0, . . . , n− 1} gewählt und (v, 0) 6∼ (v, 1) (d.h. v 6∈ T ).

Sei O eine Konfiguration auf {{(x, e), (y, e)} : x, y ∈ {0, . . . , n − 1}, e ∈
{0, 1}} (d.h. auf alle horizontalen Kanten ohne Endpunkte in n). Ohne das es
Verwirrung stiftet, soll mit O auch das Ereignis ausgedrückt werden, dass auf
den horizontalen Kanten (ohne Endpunkt n) die Konfiguration O vorliegt.
Somit ist die zu zeigende Aussage (Gleichung (1.1)) äquivalent zu:∑
O

Pp((u, 0)↔(v, 0)|AT , O) P(O|AT ) ≥
∑
O

Pp((u, 0)↔(v, 1)|AT , O) Pp(O|AT )

Sei A := {(u, 0)↔(v, 0)} und B := {(u, 0)↔(v, 1)}. Weiter sei {c1, . . . , cn}
die Cluster von O bzgl. des Teilgraphen ohne die Knoten (v, 0) und (v, 1).

Man beachte

Pp(A|AT , O)− P (B|AT , O)
= Pp((u, 0)=(v, 1), (v, 0)=(v, 1)|AT , O)− Pp((u, 0)=(v, 0), (v, 0)=(v, 1)|AT , O),

da im Falle (v, 0)↔(v, 1) entweder sowohl A und B eintreten oder beide
Ereignisse nicht eintreten und {(u, 0)=(v, 1)} = Bc, {(u, 0)=(v, 0)} = Ac.
Man beachte, dass (u, 0)=(v, 1) bedeutet, dass (v, 1) keine offene Kante zum
Cluster von (u, 0) hat. Weiter bedeutet (v, 0)=(v, 1), dass es keinen Cluster
aus O gibt mit dem sowohl der Knoten (v, 0) als auch (v, 1) verbunden sind
(beachte v 6∈ T ). Das bedeutet, dass z.B. (u, 0)=(v, 1), (v, 0)=(v, 1) genau
dann auftritt, wenn es ein i gibt, sodass (u, 0) ∈ ci und der Knoten (v, 1)
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nicht mit ci verbunden ist und für alle i 6= j sind (v, 0) und (v, 1) nicht
gleichzeitig mit cj verbunden. Damit ist:

Pp(A|AT , O)− Pp(B|AT , O)
=
∑
i

Pp((u, 0) ∈ ci|AT , O)(Pp((v, 1) 6∼ ci|AT , O)− Pp((v, 0) 6∼ ci|AT , O))

· Pp(¬∃i 6= j : (v, 0) ∼ cj ∼ (v, 1)|AT , O)

Nun reicht es zu zeigen, dass dieser Ausdruck größer als 0 ist. Da aufgrund
der Symmetrie sich die Wahrscheinlichkeit nicht ändert, wenn man simultan
(u, 0) mit (u, 1) vertauscht und (v, 0) mit (v, 1) hat man:

Pp(A|AT )− Pp(B|AT )

= 1
2
∑
O

(
∑
i

P((u, 0) ∈ ci|AT , O)− Pp((u, 1) ∈ ci|AT , O))(Pp((v, 1) 6∼ ci|AT , O)

− Pp((v, 0) 6∼ ci|AT , O)) Pp(¬∃i 6= j : (v, 0) ∼ cj ∼ (v, 1)|AT , O)
Pp(O|AT )

Sei #eci die Anzahl der Knoten aus ci auf Ebene e. (insbesondere #1ci +
#2ci = #ci)

Man beachte, dass die Wahrscheinlichkeit, dass der Knoten (u, e) in ci
liegt, gleich #eci

n
ist. Weiter ist die Wahrscheinlichkeit, dass der Knoten (v, e)

mit dem Cluster ci nicht verbunden ist, gleich (1− p)#eci . Somit hat man

Pp((u, 0) ∈ ci|AT , O)− Pp((u, 1) ∈ ci|AT , O))(Pp((v, 1) 6∼ ci|AT , O)− Pp((v, 0) 6∼ ci|AT , O))

= (#1ci
n
− #2ci

n
)((1− p)#2ci − (1− p)#1ci)

Man erkennt leicht, dass dieser Ausdruck immer größer gleich 0 ist . Damit
folgt auch nach oben Pp(A|AT )− Pp(B|AT ) ≥ 0.
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2.2 Gitter Zd

Dass die Verbindungsfunktion bei dem Graphen Zd asymptotisch exponenti-
ell fällt, zeigt folgender Satz aus [CCC91]:

Satz 2.2 Sei p < pc(Zd). Dann existieren zwei Konstanten K(p) ≥ 1 und
α(p) > 0, sodass für alle a ∈ Zd−1 mit ||a||∞ ≤ n

3
4−ε (wobei ε > 0) gilt:

Pp((0, 0)↔(a, n)) = K(p) 1
(α(p)πn) d−1

2
exp(− n

ξ(p) −
a2

α(p)n)(1 +O(max{ 1
n
,

1
n4ε}))

Dabei ist ||·||∞ die Maximumsnorm und a2 das Skalarprodukt von dem Vektor
a mit sich selbst.

Der (umfangreiche) Beweis, der hier nur grob angedeutet wird, baut dar-
auf auf, dass man analog zur Verbindungsfunktion andere Arten von Ver-
bindungen betrachtet, die sich asymptotisch ähnlich verhalten (im subkriti-
schen Fall). El soll die Menge aller Knoten sein, dessen letzte Koordinate
l ist. D.h. El := {(x1, . . . , xd) ∈ Zd : xd = l}. Bezeichne mit C die Men-
ge aller Knoten, die über einem offenen Pfad mit 0 verbunden sind, dessen
Knoten (des Pfades) nur Knoten benutzt, deren letzte Komponente nur Ein-
träge zwischen 0 und n hat. D.h. C := {y ∈ Zd : 0↔

⋃n

l=0 El y}. Sei y ∈ Em
mit m > 0. Betrachte die Ereignisse hy = {E0 ∩ C = {0}, Em ∩ C = {y}}
und cy = {E0 ∩ C = {0}, Em ∩ C = {y},∀0 < l < n : El ∩ C ≥ 2} (im
Wesentlichen sind es die Ereignisse, die nur Verbindungen in einem Streifen
betrachten und bei der ersten und letzten Ebene nur ein Knoten (im Streifen)
mit 0 verbunden ist. Dabei fordert man bei cy noch zusätzlich, dass bei jeder
Ebene (außer der ersten und letzten Ebene) immer mindestens zwei Knoten
im Streifen mit dem Ursprung verbunden sind. Dann wird ausgenutzt, dass
zwischen den beiden Ereignissen die Beziehung

P(h(a,n)) = (1− p)−2(d−1)
n∑
i=1

∑
(b,i)∈Ei

P(c(b,i)) P(h(a−b,n−i))

gilt. Aus diesem Zusammenhang kann man eine Integraldarstellung von P (h(a,n))
herleiten:

Pp(h(a,n)) = (1−p)2(d−1) 1
2πi

∮ dz

zn+1

∫
[−π,π]d−1

1
1− ĉ(z,k; p) exp(−ik·a) dk

(2π)d−1

Dabei ist

ĉ(z,k; p) := (1− p)−2(d−1) ∑
a∈Zd−1,n∈N

Pp(c(a,n))zn exp(ik · a) (2.1)
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eine Transformation von Pp(c(a,n)). Mit dieser Integraldarstellung leitet man
eine zu Satz 2.2 ähnliche Asymptotik für P(h(a,n)) her, wobei man die analyti-
schen Eigenschaften von ĉ(z,k; p) benutzt. Indem man analog zu (2.1) Trans-
formation ĥ(z,k; p) und τ̂(z,k; p) von Pp(h(a,n)) bzw. von Pp((0, 0)↔(a, n))
definiert, kann man zwei Funktionen mit gewissen analytischen Eigenschaf-
ten finden, sodass

τ̂(z,k; p) = A1(z,k; p) + A2(z,k, p)ĥ(z,k; p)

gilt. Bei der Herleitung werden noch andere Arten von Verbindungen als hy
betrachtet. Indem man diesen Zusammenhang ausnutzt, kann man Satz 2.2
herleiten.

Mit Hilfe von Satz 2.2 hat [LPS15] folgenden Spezialfall von Vermu-
tung 1.5 bewiesen:

Satz 2.3 Es existiert ein p′(d), sodass für alle p < p′(d) und n ∈ N:

P((0, 0)↔Zd(0, n)) > P((0, 0)↔Zd(0, n+ 1))

Der Beweis besteht aus zwei Teilen. Zum einen wird gezeigt, dass es ein
n0 ∈ N und p0 ∈ (0, 1) gibt, sodass die Gleichung 2.3 für alle n ≥ n0 und
p ≤ p0 gilt. Dazu wird mit Satz 2.2 der Quotient von P((0, 0)↔(0, n)) und
P((0, 0)↔(0, n+ 1)) gebildet und gezeigt, dass dieser für ein p ≤ p0 und n ≥
n0 kleiner als 1 ist. Dann wird für n < n0 eine Schranke für die p’s bestimmt,
sodass die Aussage für diese n’s gilt. Dazu wird eine Ungleichung benutzt,
die im Wesentlichen darauf basiert, dass für p→ 0 P((0, 0)↔(0, n)) = pn +
O(pn+3) (es gibt nur einen Weg der Länge n und alle anderen Pfade sind
mindestens n+ 3 lang und die Anzahl der Pfade wachsen nur exponentiell in
der Länge).



Kapitel 3

Quasi-Stationäre Verteilungen

In diesem Abschnitt soll auf ein Ergebnis aus der Literatur zu Markovketten
eingegangen werden, welches später benutzt wird (in Unterabschnitt 4.3.3),
um einen Teil des Beweises von Vermutung 1.8 zu führen.

35
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3.1 Totalvariation
In diesem Abschnitt sollen ein paar bekannte Definitionen und Eigenschaften
eingeführt werden, die man später benutzt.

Definition 3.1 (siehe z.B. [Kle13]) Sei µ ein signiertes Maß auf (Ω,A). Die
Totalvariationsnorm von µ ist dann

||µ||TV := sup{µ(A)− µ(Ac) : A ∈ A}.

Bemerkung 3.2 Man sollte beachten, dass in der Literatur (insbesondere,
wenn man Wahrscheinlichkeitsmaße betrachtet und an der entsprechenden
Metrik interessiert ist) (z.B. in [LP17, Kapitel 4.1]) häufig die Totalvariati-
onsnorm als genau halb so groß definiert wird, wie sie hier definiert wurde.

Hat man diskrete Wahrscheinlichkeitsmaße, so kann man die zugehöri-
ge Metrik der Totalvariationsnorm wie folgt darstellen: (siehe z.B. [LP17,
Kapitel 4.1])

Lemma 3.3 Seien ν und ν ′ zwei diskrete Wahrscheinlichkeitsmaße auf (Ω,A)
und sei A := {x ∈ Ω : ν(x) > ν ′(x)}. Dann gilt:

||ν − ν ′||TV =
∑
x∈Ω
|ν(x)− ν(x)| = 2

∑
x∈A

ν(x)− ν ′(x) = 2
∑
x∈Ac

ν ′(x)− ν(x)

Beweis
Sei B ⊆ Ω, dann gilt:

ν(A)− ν ′(A)− (ν(Ac)− ν ′(Ac)) =
∑
x∈A

(ν(x)− ν ′(x))−
∑
x∈Ac

(ν(x)− ν ′(x))

≥
∑
x∈B

(ν(x)− ν ′(x))−
∑
x∈Bc

(ν(x)− ν ′(x)) = ν(B)− ν ′(B)− (ν(Bc)− ν ′(Bc))

Damit folgt wegen

ν(A)− ν ′(A)− (ν(Ac)− ν ′(Ac)) =
∑
x∈A

(ν(x)− ν ′(x))−
∑
x∈Ac

(ν(x)− ν ′(x))

=
∑
x∈Ω
|ν(x)− ν ′(x)|

das erste Gleichheitszeichen der Behauptung. Die anderen beiden Gleichheits-
zeichen folgen direkt aus der Tatsache, dass ν und ν ′ Wahrscheinlichkeits-
maße sind. �
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Für einen Beweis im nächsten Abschnitt wird noch ein Resultat ge-
braucht, welches aus der Literatur bekannt ist (siehe z.B. [LP17, Kapitel
4.2]).

Lemma 3.4 Seien µ1 und µ2 zwei diskrete Wahrscheinlichkeitsmaße auf
dem gleichen Raum Ω. Dann ist µ mit

µ(x, y) =

min(µ1(x), µ2(x)), x = y
(µ1(x)−min{µ1(x),µ2(x)})(µ2(y)−min{µ1(y),µ2(y)})

1
2 ||µ1−µ2||TV

, x 6= y

eine Kopplung von µ1 und µ2 (d.h.: µ ist ein Wahrscheinlichkeitsmaß auf
Ω× Ω und µ hat die beiden Randverteilungen µ1 und µ2). Weiter ist

1
2 ||µ1 − µ2||TV =

∑
x,y∈Ω,x 6=y

µ(x, y).

Beweis
Sei A := {x ∈ Ω : µ1(x) > µ2(x)}. Man beachte für x ∈ Ac und x 6= y ist
µ(x, y) = 0. Analog ist für y ∈ A und x 6= y ist µ(x, y) = 0. Damit ist wegen
Lemma 3.3∑

x,y∈Ω,x 6=y
µ(x, y) =

∑
x∈A

∑
y∈Ac

µ(x, y)

= 1
1
2 ||µ1 − µ2||TV

∑
x∈A

∑
y∈Ac

(µ1(x)− µ2(x))(µ2(y)− µ1(y))

=
∑
x∈A

(µ1(x)− µ2(x)) = 1
2 ||µ1 − µ2||TV

Somit ist die letzte Aussage gezeigt. Da ebenfalls wegen Lemma 3.3∑
x∈Ω

µ(x, x) =
∑
x∈Ω

min(µ1(x), µ2(x)) =
∑
x∈A

µ2(x) +
∑
x∈Ac

µ1(x)

= 1−
∑
x∈Ac

(µ2(x)− µ1(x)) = 1− 1
2 ||µ1 − µ2||TV

ist mit der vorigen Gleichung µ ein Wahrscheinlichkeitsmaß.
Für x ∈ A ist∑

y∈Ω
µ(x, y) = µ(x, x) +

∑
y∈Ω,x 6=y

µ(x, y)

= µ2(x) +
∑
y∈Ac

(µ1(x)− µ2(x))(µ2(y)− µ1(y))
1
2 ||µ1 − µ2||TV

= µ2(x) + µ1(x)− µ2(x) = µ1(x)
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und für x ∈ Ac:∑
y∈Ω

µ(x, y) = µ(x, x) +
∑

y∈Ω,x 6=y
µ(x, y) = µ1(x) +

∑
y∈Ω,x 6=y

0 = µ1(x)

Also hat µ die Randverteilung µ1 und analog behandelt man die Randvertei-
lung µ2. �



3.2. QUASI-STATIONÄRE VERTEILUNGEN 39

3.2 Quasi-Stationäre Verteilungen

Es soll sich in diesem Abschnitt auf Markovketten in diskreter Zeit mit end-
lichem Zustandsraum beschränkt werden, da für den weiteren Verlauf nur
solche Markovketten betrachtet werden. Die Aussagen in diesem Abschnitt
gelten auch fast immer allgemeiner, wie man in den zitierten Quellen nach-
lesen kann. Die Definition einer Markovkette wird als bekannt vorausgesetzt
wie sie z.B. in [Kle13] zu finden ist.

Ist X0, X1, . . . eine Markovkette mit Zustandsraum E, so bezeichne für
x ∈ E bzw. für ein Wahrscheinlichkeitsmaß µ auf E mit Px(·) bzw. Pµ das
Wahrscheinlichkeitsmaß P(·|X0 = x) bzw. ∑x∈E µ(x) P(·|X0 = x).

Wichtig ist noch der Begriff quasi-stationäre Verteilung einer Markovket-
te, die wie folgt definiert ist (siehe z.B. [CMM13]):

Definition 3.5 Sei eine Markovkette X0, X1, X2, . . . mit einem endlichen
Zustandsraum E ∪ {∞} gegeben, dabei ist ∞ ein absorbierender Zustand.
(d.h. P(Xn+1 =∞|Xn =∞) = 1) Sei Z := inf{n : Xn =∞}.

(a) Eine Verteilung ν auf E heißt quasi-stationäre Verteilung, wenn für
alle t ∈ N und alle A ⊆ E gilt:

Pν(Xt ∈ A|Z > t) = ν(A)

(b) Existiert eine Verteilung α auf E und gilt für jedes x ∈ E:

lim
n→∞

Px(Xn ∈ ·|Z > n) = α(·)

so heißt α der Yaglom-Limes von X0, X1, . . . .

Ein wichtiger Zusammenhang zwischen der quasi-stationären Verteilung
und dem Yaglom-Limes zeigt folgendes Lemma (siehe z.B. auch [MV12]):

Lemma 3.6 Sei eine Markovkette X0, X1, . . . mit einem endlichen Zustands-
raum E ∪ {∞}, wobei ∞ ein absorbierender Zustand ist und α der Yaglom-
Limes von X1, X2, . . . , dann ist α auch die eindeutige quasi-stationäre Ver-
teilung von X0, X1, . . . .
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Beweis
Man kann dies einfach nachrechnen

α(x) = lim
n→∞

Px(Xn+t = x|Z > n+ t) = lim
n→∞

Px(Xn+t = x)
Px(Z > n+ t)

= lim
n→∞

∑
y Px(Xn = y) Py(Xt = x)∑
y Px(Xn = y) Py(Z > t) = lim

n→∞

∑
y Px(Xn = y|Z > n) Py(Xt = x)∑
y Px(Xn = y|Z > n) Py(Z > t)

=
∑
y α(y) Py(Xt = x)∑
y α(y) Py(Z > t)

= Pα(Xt = x)
Pα(Z > t)

Also ist α eine quasi-stationäre Verteilung. Angenommen, β ist eine quasi-
stationäre Verteilung, dann gilt

β(x) = lim
t→∞

β(x) = lim
t→∞

Pβ(Xt = x|Z > t)

= lim
t→∞

Pβ(Xt = x)
Pβ(Z > t)

= lim
t→∞

∑
y β(y) Py(Xt = x)∑
y β(y) Py(Z > t)

= lim
t→∞

∑
y β(y) Py(Xt = x|Z > t) Py(Z > t)∑

y β(y) Py(Z > t)

= lim
t→∞

∑
y β(y)α(x) Py(Z > t)∑

y β(y) Py(Z > t) = α(x)

Also gibt es nur eine quasi-stationäre Verteilung. �

Folgende Aussage gilt nach [CV16] (dort nur für stetige Markovketten
formuliert, aber der Beweis gilt analog auch für diskrete Markovketten).

Satz 3.7 Sei eine Markovkette X1, X2, . . . mit einem endlichen Zustands-
raum E ∪ {∞} gegeben, dabei ist ∞ ein absorbierender Zustand. Sei Z :=
inf{n : Xn = ∞}, t0 ∈ N, c ∈ (0, 1] und ν eine Verteilung auf E. Weiter
gelte für alle x ∈ E, A ⊆ E und t ≥ t0

Px(Xt0 ∈ A|Z > t) ≥ cν(A) (3.1)

Dann existiert eine Verteilung α, sodass für alle Wahrscheinlichkeitsvertei-
lungen µ auf E und t ∈ N:

||Pµ(Xt ∈ ·|Z > t)− α(·)||TV ≤ 2(1− c)b
t
t0
c (3.2)

gilt. Die Verteilung α ist sogar die eindeutig bestimmte quasi-stationäre Ver-
teilung der Markovkette.
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Beweis
Es wird größtenteils der angepasste Beweis von [CV16] wiedergegeben mit
Modifikationen, da es teilweise etwas einfacher in diskreter als in stetiger
Zeit geht. Der Beweis wird in mehreren Schritten geführt:

Zuerst der Zusatz der Eindeutigkeit:
Sei α so gewählt, dass diese die Ungleichung (3.2) für jedes Wahrschein-
lichkeitsmaß µ auf E erfüllt. Somit gilt für alle x ∈ E und A ⊂ E:

|Px(Xt ∈ A)− α(A)| ≤ ||P x(Xt ∈ ·|Z > t)− α(·)||TV ≤ 2(1− c)b
t
t0
c

Wegen c ∈ (0, 1] ist α ein Yaglom-Limes und nach Lemma 3.6 ist α die
eindeutige quasi-stationäre Verteilung.
Deshalb reicht es, im Folgenden nur die Existenz von α in Ungleichung
(3.2) zu zeigen.

1. Schritt: Zeige, dass man O.B.d.A. t0 = 1 annehmen kann: Sei Yk :=
Xkt0. Somit gelten die Voraussetzungen des Satzes für Yk (mit zugehö-
riger Variable Z ′ := inf{k : Yk = ∞} = inf{k : Xkt0 = ∞} = inf{k :
Z ≤ kt0}) für t0 = 1, denn Yk ist eine Markovkette und

Px(Y1 ∈ A|Z ′ > t) = Px(Xt0 ∈ A|Z > t0t) ≥ cν(A)

Wenn der Satz für t0 = 1 gilt, dann gibt es eine Verteilung α auf E für
(Yt)t∈N mit

||Pµ(Yt ∈ ·|Z ′ > t)− α(·)||TV ≤ 2(1− c)t.

Damit gilt für t = kt0 + l mit 0 ≤ l < t0 und y ∈ E:

Pµ(Xt = y|Z > t) = Pµ(Xt = y)
Pµ(Z > t)

=
∑
b Pµ(Xt = y|Xl = b) Pµ(Xl = b)∑
b Pµ(Z > t|Xl = b) Pµ(Xl = b) =

∑
b Pb(Yk = y) Pµ(Xl = b)∑
b Pb(Z ′ > k) Pµ(Xl = b)

=
∑
b Pb(Yk = y) Pµ(Xl=b)

1−Pµ(Xl=∞)∑
b Pb(Z ′ > k) Pµ(Xl=b)

1−Pµ(Xl=∞)

= Pµl(Yk = y)
Pµl(Z ′ > k)

= Pµl(Yk = y|Z ′ > k)

(3.3)

wobei µl eine Verteilung auf E ist mit µl(b) := Pµ(Xl=b)
1−Pµ(Xl=∞) für b ∈ E.

Daraus folgt für t = kt0 + l mit 0 ≤ l < t0:

||Pµ(Xt ∈ ·|Z > t)−α(·)||TV = ||Pµl(Yk ∈ ·|Z ′ > k)−α(·)||TV ≤ 2(1−c)k

und da k = b t
t0
c folgt die Behauptung.
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2. Schritt: Zeige, dass für alle Wahrscheinlichkeitsmaße µ1 und
µ2 auf E und alle t ∈ N gilt:

||Pµ1(X1 ∈ ·|Z > t)− Pµ2(X1 ∈ ·|Z > t)||TV ≤ 2(1− c) (3.4)

Aus der Voraussetzung (3.1) folgt für alle t ∈ N und alle Verteilungen
µ auf E:

Pµ(X1 ∈ ·|Z > t) = Pµ(X1 ∈ ·, Z > t)
Pµ(Z > t) =

∑
x∈E µ(x) Px(X1 ∈ ·, Z > t)∑

x∈E µ(x) Px(Z > t)

=
∑
x∈E µ(x) Px(X1 ∈ ·|Z > t) Px(Z > t)∑

x∈E µ(x) Px(Z > t) ≥
∑
x∈E µ(x)cν(·) Px(Z > t)∑

x∈E µ(x) Px(Z > t)
= cν(·)

Somit gilt für t ∈ N:

||Pµ1(X1 ∈ ·|Z > t)− Pµ2(X1 ∈ ·|Z > t)||TV
≤ ||Pµ1(X1 ∈ ·|Z > t)− cν(·)||TV + ||Pµ2(X1 ∈ ·|Z > t)− cν(·)||TV
≤ 2(1− c)

Dabei hat man verwendet, dass nach (3.1) Pµi(Xt ∈ ·|Z > t)− cν(·) ≥
0 ist und somit nach Definition von ||TV ist ||Pµi(X1 ∈ ·|Z > t) −
cν(·)||TV = 1− c. (da Pµi(Xt ∈ A|Z > t)− cν(A) am größten ist, wenn
A = Ω ist)

3. Schritt: Zeige, dass für alle Wahrscheinlichkeitsmaße µ1 und
µ2 auf E und alle t ∈ N gilt

||Pµ1(Xt ∈ ·|Z > t)− Pµ2(Xt ∈ ·|Z > t)||TV ≤ 2(1− c)t (3.5)

Definiere pTs,t(µ, y) = Pµ(Xt−s = y|Z > T−s), wobei µ ein Wahrschein-
lichkeitsmaß auf E ist und y ∈ E, s ∈ N0 und t, T ∈ N mit s ≤ t ≤ T .
Man beachte, dass wegen der Markov-Eigenschaft für s ≤ t ≤ u ≤ T
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folgendes gilt:∑
y∈E

pTs,t(µ, y)pTt,u(δy, z)

=
∑
y∈E

Pµ(Xt−s = y, Z > T − s)
Pµ(Z > T − s)

Py(Xu−t = z, Z > T − t)
Py(Z > T − t)

=
∑
y∈E

Pµ(Xt−s = y) Py(Z > T − t)
Pµ(Z > T − s)

Py(Xu−t = z, Z > T − t)
Py(Z > T − t)

=
∑
y∈E

Pµ(Xt−s = y)
Pµ(Z > T − s)Py(Xu−t = z, Z > T − t)

=
∑
y∈E

Pµ(Xt−s = y,Xu−s = z, Z > T − s)
Pµ(Z > T − s) = pTs,u(µ, z)

(3.6)

Seien µ1, µ2 zwei beliebige Wahrscheinlichkeitsmaße auf E und 0 ≤ t ≤
T . Dann ist mit Lemma 3.3:

||pT0,t(µ1, ·)− pT0,t(µ2, ·)||TV =
∑
z∈E
|pT0,t(µ1, z)− pT0,t(µ2, z)|

Durch Verwendung von (3.6) erhält man:

=
∑
z∈E
|
∑
y∈E

pT0,t−1(µ1, y)pTt−1,t(δy, z)−
∑
y∈E

pT0,t−1(µ2, y)pTt−1,t(δy, z)|

Nun setzt man λi(y) := pT0,t−1(µi, y) und λ sei die Kopplung aus Lem-
ma 3.4 von λ1 und λ2, dann erhält man:

=
∑
z∈E
|
∑

y1,y2∈E
λ(y1, y2)pTt−1,t(δy1 , z)−

∑
y1,y2∈E

λ(y1, y2)pTt−1,t(δy2 , z)|

=
∑

y1,y2∈E
λ(y1, y2)

∑
z∈E
|pTt−1,t(δy1 , z)− pTt−1,t(δy2 , z)|

=
∑

y1,y2∈E,y1 6=y2

λ(y1, y2)
∑
z∈E
|pTt−1,t(δy1 , z)− pTt−1,t(δy2 , z)|

Wieder mit Lemma 3.3, Lemma 3.4 und (3.4) und nach Wahl von λ
erhält man:

=
∑

y1,y2∈E,y1 6=y2

λ(y1, y2)||(pTt−1,t(δy1 , ·)− pTt−1,t(δy2 , ·)||TV

≤
∑

y1,y2∈E,y1 6=y2

λ(y1, y2)2(1− c) = ||pT0,t−1(µ1, ·)− pT0,t−1(µ2, ·)||TV (1− c)
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Nun erhält man damit und nach (3.4) induktiv die Ungleichung (3.5):

||Pµ1(XT ∈ ·|Z > T )− Pµ2(XT ∈ ·|Z > T )||TV
= ||pT0,T (µ1, ·)− pT0,T (µ2, ·)||TV
≤ ||pT0,T−1(µ1, ·), pT0,T−1(µ2, ·)||TV (1− c)
≤ ||pT0,T−2(µ1, ·)− pT0,T−2(µ2, ·)||TV (1− c)2

≤ · · · ≤ ||pT0,1(µ1, ·)− pT0,1(µ2, ·)||TV (1− c)T−1 ≤ 2(1− c)T

Abschluss
Man beachte, dass analog zu (3.3) ist

Px(Xt+s ∈ ·|Z > t+ s) = Pµx,s(Xt ∈ ·|Z > t)

mit passendem µx,s. Also hat man nach (3.5):

||Px(Xt ∈ ·|Z > t)− Px(Xt+s ∈ ·|Z > t+ s)||TV
= ||Px(Xt ∈ ·|Z > t)− Pµx,s(Xt ∈ ·|Z > t)||TV ≤ 2(1− c)t

Somit bildet Px(Xt ∈ ·|Z > t) für t → ∞ eine Cauchyfolge. Damit
existiert ein αx(·) := limt→∞ P

x(Xt ∈ ·|Z > t). Man beachte αx ist
wieder ein Wahrscheinlichkeitsmaß. Wieder folgt aus (3.5):

||αx − αy||TV = || lim
t→∞

Px(Xt ∈ ·|Z > t)− lim
t→∞

Py(Xt ∈ ·|Z > t)||TV
= lim

t→∞
||Px(Xt ∈ ·|Z > t)− Py(Xt ∈ ·|Z > t)||TV ≤ lim

t→∞
2(1− c)t = 0

Also ist αx = αy und α := αx ein Yaglom-Limes. Also nach Lemma 3.6
eine quasi-stationäre Verteilung. Damit ist nach (3.5)

||Pµ1(Xt ∈ ·|Z > t)− α|| = ||Pµ1(Xt ∈ ·|Z > t)− Pα(Xt ∈ ·|Z > t)||
≤ 2(1− c)t �



Kapitel 4

Ck × Z und verwandte Graphen

In diesem Kapitel geht es darum, den Graphen Ck × Z (und ähnliche Gra-
phen) genauer zu untersuchen. Im ersten Abschnitt werden Ungleichungen
zwischen der erwarteten Anzahl von infizierten Knoten auf den einzelnen
Ebenen hergeleitet. Im zweiten und dritten Abschnitt werden Aussagen über
das Monotonieverhalten der Muster auf den einzelnen Ebenen gemacht. Da-
bei wird im zweiten Abschnitt für kleine Graphen u.a. mit Hilfe des Compu-
ters das Monotonieverhalten der Muster auf den einzelnen Ebenen überprüft.
Im dritten Abschnitt wird u.a. ein Beweis von Vermutung 1.8 für die Graphen
Ck × Z (und ähnliche Graphen) angegeben.

45
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4.1 Erwartungswert der Anzahl infizierter Kno-
ten

Im Folgenden betrachten wir den Graphen G × Z, wobei wir häufig für G
sowohl Ck als auch Zd−1 zulassen.

In diesem Abschnitt soll die Anzahl der mit 0 verbundenen Knoten auf
den verschiedenen Ebenen verglichen werden. (vgl. Vermutung 1.6)

Damit man die Ergebnisse, die in diesem Abschnitt folgen, für etwas all-
gemeinere Graphen als Ck×Z oder Zd formulieren kann, führen wir folgenden
aus der Literatur bekannten Begriff (siehe z.B. [Nor94]) ein:

Definition 4.1 Ein Graph heißt (knoten-)transitiv, wenn es für alle x, y ∈
V (G) einen Graphautomorphismus Φ gibt mit Φ(x) = y.

Wenn im Folgenden von transitiven Graphen gesprochen wird, sind immer
knoten-transitive Graphen gemeint.

Beispiel 4.1 Man sieht leicht, dass die Graphen Ck, Kk und Zd−1 transitive
Graphen sind.

Bemerkung 4.2

1. Im Prinzip bedeutet Definition 4.1, dass bei einem transitiven Graph,
der Graph von jedem Knoten ausgehend gleich aussieht. Insbesondere
verändern sich Aussagen über die Verbundenheit mit einem bestimm-
ten Knoten für die Graphen nicht, wenn wir einen anderen Knoten
betrachten.

2. Wir halten noch eine Eigenschaft von transitiven Graphen fest, welche
gleich im Beweis von Satz 4.3 benutzt wird: Bei transitiven Graphen
gibt es für alle x, y, y′ ∈ V (G) genauso viele Automorphismen, die x
auf y abbilden, wie Automorphismen, die x auf y′ abbilden. Denn sind
Φ und Φ′ zwei unterschiedliche Automorphismen, die x auf y abbilden
und ist Ψ ein Automorphismus, der y auf y′ abbildet, dann sind Φ ◦Ψ
und Φ′◦Ψ zwei unterschiedliche Automorphismen, die x auf y′ abbilden.

Zuallererst wird gezeigt, dass es im Durchschnitt immer mehr Knoten auf
der Ebene 0 gibt als auf jeder anderen Ebene. Später wird Vermutung 1.6
für kleine p gezeigt, wobei das p natürlich von dem Graphen G abhängt.

Zur Erinnerung: Zi ist die Zufallsvariable aus Definition 1.4. Wir haben
folgenden Satz:
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Satz 4.3 Sei G ein zusammenhängender transitiver Graph, dann ist für p <
pc(G× Z):

E[Zn] < E[Z0],∀n > 0

und

E
[
Zn
Z0

]
< 1,∀n > 0

Beweis
Um den Beweis durchzuführen, führen wir folgende Begriffe ein:

Im Folgenden soll eine (endliche) Komponente eine Menge von Knoten
eines endlichen zusammenhängenden nicht leeren Teilgraphen von G×Z sein.
Sei Aut(G) die Menge der Graphautomorphismen auf G. Wir definieren auf
der Menge der Komponenten folgende Äquivalenzrelation ∼:

K ∼ K ′ ⇔ ∃Φ ∈ Aut(G), b ∈ Z mit ((x, y) ∈ K ⇔ (Φ(x), y + b) ∈ K ′)

Mit einer Komponentenform bezeichnen wir eine Äquivalenzklasse bezüglich
∼. Die zu einem Komponenten K gehörige Komponentenform (Äquivalenz-
klasse) wird mit [K] bezeichnet.
Wir sagen, in einem Graphen mit Kantenperkolation liegt im Knoten x die
Komponentenform [K] vor, falls es ein K ′ ∈ [K] gibt, sodass C(x) = K ′.

Bezeichne mit C die Komponentenform im Punkt 0. Da p < pc(G × Z)
ist, ist die Wahrscheinlichkeit, dass es einen unendlichen Cluster gibt, gleich
0 und somit hat man

E[Zi] =
∑
[K]

E [Zi|C = [K]] P(C = [K]) (4.1)

Für jede Komponente K definieren wir eine Folge (cl)l∈N0 wie folgt. Wähle
aus [K] eine Komponente K ′ aus, die einen Knoten aus E0 hat, aber keinen
Knoten aus E−1. Definiere dann cl := #(El ∩ K ′) (cl ist also die Anzahl
von Knoten der Komponenten in der l-ten Zeile, wobei fast alle ci gleich 0
sind). Sei T so gewählt, dass es ein Φ ∈ AutG gibt mit C(0) = {(x, y) ∈
G × Z : (Φ(x), y + T ) ∈ K ′}, also die Zeile des Clusters von 0, in der der
Nullpunkt liegt. Aufgrund der Invarianz des Wahrscheinlichkeitsmaßes Pp,
ist bei gegebenem C = [K] die Position der 0 in C gleichverteilt (siehe auch
Bemerkung 4.2), d.h. Pp(T = m|C = [K]) = cm∑∞

i=0 ci
. Liegt der Knoten 0 in

Zeile m, so gibt es cm+n Knoten auf Ebene n. Somit hat man:



48 KAPITEL 4. CK × Z UND VERWANDTE GRAPHEN

E[Zn|C = [K]] =
∞∑
m=0

E [Zn|C = [K], T = m] P(T = m|C = [K])

=
∞∑
m=0

cm+n ·
cm∑
ci

= 1∑
ci

∞∑
m=0

cm+n · cm ≤
1∑
ci

√√√√( ∞∑
m=0

c2
m+n

)
·
( ∞∑
m=0

c2
m

)

≤ 1∑
ci

∞∑
m=0

c2
m =

∞∑
m=0

cm ·
cm∑
ci

= E[Z0|C = [K]]

Dabei haben wir bei der ersten Ungleichung die Cauchy-Schwarz Ungleichung
benutzt. Da es natürlich auch Komponentenformen gibt, für die sogar die
echte Ungleichung gilt (z.B.: Für K = {0} ist E[Z0|C = [K]] = 1, aber
E [Zn|C = [K]] = 0 für n > 0), erhält man aus (4.1) insgesamt E[Zn] <
E[Z0].

Nun betrachten wir die zweite Ungleichung: Mit der fast gleichen Argu-
mentation wie oben erhält man:

E
[
Zn
Z0
|C = [K]

]
=

∞∑
m=0

cm+n

cm

cm∑
ci

=
∞∑
m=0

cm+n∑
ci
≤ 1

und E[Zn
Z0

] = ∑E[Zn
Z0
|C = [K]] P(C = [K]) < 1 �

Bemerkung 4.4 Leider lässt sich der Beweis nicht auf den Vergleich ande-
rer Ebenen erweitern, da im Allgemeinen E[Zn+1|C = [K]] 6≤ E[Zn|C = [K]]
ist, wie man z.B für G = C3 und K = {(0, 0), (1, 0), (2, 0), (1, 1), (0, 2), (1, 2)}
sehen kann: Z2 ist unter der Bedingung C = [K] nur ungleich 0, wenn der
Nullpunkt in der untersten Zeile der Komponente K liegt. Da in der unters-
ten Zeile 3 der 6 Knoten liegen und in der zweiten Zeile 2 Knoten liegen, hat
man:

E[Z2|C = [K]] = 3
62 = 1

Z1 ist unter der Bedingung C = [K] nur ungleich 0, wenn der Nullpunkt in
einer der beiden unteren Zeilen liegt. Damit hat man:

E[Z1|C = [K]] = 3
61 + 1

62 = 5
6

Somit ist hier E[Z2|C = [K]] > E[Z1|C = [K]].

Es sollen nun die einzelnen Ebenen verglichen werden. Dazu wird eine
Aussage, wie sie in [CCC91] zu finden ist, benutzt, die aber schon als Variante
in [Ham57] auftaucht:
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Proposition 4.5 Sei G ein zusammenhängender transitiver Graph, dann
gilt im Falle p < pc(G× Z):

(a) E[Zn]E[Z1] ≥ E[Zn+1]

(b) pE[Zn]E[Z0] ≥ E[Zn+1]

In [CCC91] wurde (a) (für Zd) mit der Hammersley-Simon-Ungleichung
bewiesen, welche meistens mit der BK-Ungleichung bewiesen wird. Hier wird
ein etwas anderer Beweis angegeben, der die BK-Ungleichung nicht benutzt:

Beweis
Sei Yn die Menge der mit dem Knoten 0 durch einen offenen Pfad, der kom-
plett in G× ((−∞, n]] liegt, verbundenen Knoten. D.h. Yn = {x ∈ V (G×Z) :
x↔G×((−∞,n]] 0}. Man beachte, dass Yn fast sicher nur abzählbar viele Werte
annimmt. (Fast sicher ist der Cluster von 0 endlich. Für jedes m ∈ N0 gibt
es nur endlich viele Möglichkeiten, sodass genau m Knoten mit dem Punkt
0 verbunden sind )

Für A ⊂ V (G × Z) und a ∈ A soll mit Ga,A der Teilgraph von G × Z
mit den Knoten aus V (G × Z) \ A ∪ {a} und allen Kanten aus E(G × Z),
die keinen Knoten in A \ {a} haben (d.h. E(Ga,A) := {{u, v} ∈ E(G × Z) :
u, v ∈ V (G× Z) \ A ∪ {a}}) bezeichnet werden.

Man beachte, wenn Yn = A ist, dann geht jeder Pfad, der einen Knoten
auf der Ebene n+1 mit dem Punkt 0 verbindet, durch einen Knoten aus An :=
A ∩ En. Sei Ua mit a ∈ An die Anzahl der mit dem Knoten a verbundenen
Knoten auf der Ebene En+1 im Graphen Ga,A. Da E[Ua|Yn = A] kleiner
gleich E[Z1] ist(da man einen kleineren Graphen betrachtet und der Graph
symmetrisch in der Höhe ist und G ein transitiver Graph ist), hat man:

E[Zn+1|Yn = A] ≤
∑
a∈An

E[Ua|Yn = A] ≤ #An E[Z1] (4.2)

Sei U ′a für a = (x, n) ∈ An die Anzahl mit dem Knoten (x, n+1) verbundenen
Knoten auf der Ebene En+1 im Graphen G(x,n+1),Yn. Analog ist E[U ′a|Yn = A]
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kleiner gleich E[Z0] (da man ebenfalls einen kleineren Graphen betrachtet)

E[Zn+1|Yn = A] ≤
∑

(x,n)∈An
E[U ′(x,n)1{(x,n)∼(x,n+1)}|Yn = A]

=
∑

(x,n)∈An

E[U ′(x,n)1{(x,n)∼(x,n+1)}1{Yn=A}]
P(Yn = A)

=
∑

(x,n)∈An

E[1{(x,n)∼(x,n+1)}]E[U ′(x,n)1{Yn=A}]
P(Yn = A)

=
∑

(x,n)∈An
P((x, n) ∼ (x, n+ 1))E[U ′(x,n)|Yn = A]

≤ #AnpE[Z0]

(4.3)

Dabei wurde beim zweiten Gleichheitszeichen benutzt, dass U ′(x,n)1{Yn=A} und
1{(x,n)∼(x,n+1)} unabhängig sind, da U ′(x,n)1{Yn=A} nicht vom Zustand der Kan-
te {(x, n), (x, n + 1)} abhängt. (Yn hängt nur vom Zustand der Kanten des
Graphen G× ((−∞, n]] und U ′(x,n) nur vom Zustand der Kanten im Graphen
G(x,n+1),Yn, der im Fall (x, n) ∈ Yn nicht die Kante {(x, n), (x, n+1)} enthält,
ab.)

Sei Z̃n := Yn∩En die Anzahl der Knoten auf Ebene n, die mit dem Knoten
0 in dem Graphen G × ((−∞, n]] verbundenen sind. Mit (4.2) erhält man
Aussage (a):

E[Zn+1] =
∞∑
i=0

∑
A,#An=i

E[Zn+1|Yn = A] P(Yn = A)

≤
∞∑
i=0

∑
A,#An=i

iE[Z1] P(Yn = A)

= E[Z1]E[Z̃n] ≤ E[Z1]E[Zn]

Wobei bei der letzten Ungleichung verwendet wurde, dass Z̃n ≤ Zn, da Zn
sogar die Anzahl aller mit dem Knoten 0 verbundenen Knoten auf Ebene En
und nicht nur die Anzahl der verbundenen Knoten im Graphen G×((−∞, n]]
auf Ebene En ist. Analog erhält man mit (4.3) auf die gleiche Weise Aussage
(b). �

Bemerkung 4.6 Die Aussage gilt auch, wenn man statt Zn die im Beweis
eingeführte ZV Z̃n betrachtet.

Wir nutzen nun dies, um ein p0 zu bestimmen, sodass Vermutung 1.6
für alle p ≤ p0 gilt. Dazu wird folgende Abkürzung eingeführt, die man im
Beweis des nächsten Satzes verwendet:
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Definition 4.7 Sei ηG(m) die Anzahl der selbstvermeidenden Pfade (also
alle Pfade, die jeden Knoten nur einmal enthalten) des Graphen G × Z der
Länge m, die in 0 starten und in E1 enden.

Es gibt folgende Möglichkeit die Zn’s zu vergleichen:

Satz 4.8 Sei G ein zusammenhängender transitiver Graph mit maximalem
Grad d, dann gilt für den Graphen G× Z und p < 1

d+1 :

E[Zn+1] < (d+ 2)p
2− 2(d+ 1)p E[Zn]

Insbesondere ist für p ≤ 2
3d+4 :

E[Zn+1] < E[Zn]

Ist G ein endlicher Graph mit k Knoten, dann gilt auch:

E[Zn+1] ≤ pk E[Zn]

und für p < 1
k

E[Zn+1] < E[Zn]

Beweis
Sei G ein transitiver Graph mit maximalem Grad d. Dann hat der Graph
G× Z einen maximalen Grad d+ 2.

Es ist ηG(m) ≤ (d + 2) · (d + 1)m−1/2 (Man hat im ersten Schritt d + 2
Möglichkeiten für den ersten Knoten des Pfades, danach maximal (d + 1)
Möglichkeiten für den nächsten Knoten des Pfades. Man kann es noch durch
2 teilen, da aus Symmetriegründen genauso viele Pfade in E−1 wie in E1
enden.) Man beachte für m > 4 gilt sogar die echte Ungleichung (da dann
nicht jeder Pfad ein selbstvermeidender Pfad ist). Da die Wahrscheinlichkeit
für einen offenen Pfad der Länge n pn ist, und die Anzahl der auf E1 infi-
zierten Knoten kleiner gleich der Anzahl der vorhandenen Pfade ist, die in
E1 enden, hat man für p < 1

d+1 :

E[Z1] ≤
∞∑
m=1

ηG(m)pm <
d+ 2
2d+ 2

∞∑
m=1

((d+ 1)p)m = d+ 2
2d+ 2

(d+ 1)p
1− (d+ 1)p

= (d+ 2)p
2− 2(d+ 1)p
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Mit der Proposition 4.5 (a) (E[Zn+1] ≤ E[Zn]E[Z1]) folgt nun die erste Aus-
sage (mit dem gleichen Argument, wie oben E[Z1] <∞, sieht man auch, dass
pc(G× Z) ≤ 1

d+1 ist). Da

(d+ 2)p
2− 2(d+ 1)p ≤ 1⇔ (3d+ 4)p ≤ 2⇔ p ≤ 2

3d+ 4

und somit E[Z1] ≤ 1 für p ≤ 2
3d+4 hat man in diesem Fall E[Zn+1] < E[Zn].

Ist G ein endlicher Graph mit k Knoten, dann kann man Proposition 4.5
(b) verwenden und erhält (da Z0 ≤ k)

E[Z1+n] ≤ pE[Zn]E[Z0] ≤ pE[Zn]k

Somit ist offensichtlich auch für p < 1
k
: E[Zn+1] < E[Zn] �

Bemerkung 4.9 Für endliche Graphen sollte man überprüfen, welche der
möglichen Abschätzungen besser ist. So erhält man z.B. für Ck die Unglei-
chung E[Zn] > E[Zn+1] mit der ersten Abschätzung für p ≤ 1

5 und mit der
zweiten Abschätzung für p ≤ 1

k
. Daher ist in diesem Fall für k ≤ 4 die zweite

Abschätzung besser und für k > 5 die erste Abschätzung.

Man kann noch für etwas größere p (mit dem Computer) zeigen, dass
E[Zn+1] < E[Zn]. Wir zeigen dies am Beispiel des Graphen Z2 = Z×Z. Das
gezeigte Verfahren lässt sich aber analog für alle transitiven zusammenhän-
genden Graphen mit maximalem endlichen Grad übertragen. Sei

f(m) :=
m−1∑
n=1

ηZ(n)pn, g(m) :=
∞∑
n=m

ηZ(n)pn

Nach dem obigen Beweis gilt E[Z1] ≤ f(m) + g(m). Wir wollen nun f(m)
und g(m) abschätzen: Mit dem Computer kann man Werte von ηZ(n) für
kleine n bestimmen (den Quelltext findet man im Anhang): Dazu wurden
mit einer Breitensuche alle selbstvermeidenden Pfade der Länge n berechnet
und geschaut, ob diese in einem Punkt von E1 enden.

In der folgenden Tabelle sind die berechneten Werte aufgeführt:
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n ηZ(n)
1 1
2 4
3 8
4 16
5 38
6 96
7 236
8 588
9 1468
10 3732
11 9398

n ηZ(n)
12 24052
13 60974
14 156936
15 399892
16 1032920
17 2642676
18 6844452
19 17567752
20 45593776
21 117334038
22 305018140

Somit kann man für kleine m f(m) konkret ausrechnen. Sei σ(n) die
Anzahl der selbstvermeidenden Pfade der Länge n des Graphen Z2. Da σ(n)
nicht nur größer als ηZ(n) ist, sondern da man sogar die Hälfte der Pfade
wieder aus Symmetriegründen ignorieren kann, hat man ηZ(n) ≤ σ2(n)/2.
Offensichtlich besteht ein selbstvermeidender Pfad der Länge n1 + n2 aus
einem selbstvermeidenden Pfad der Länge n1 und die restlichen n2 Knoten
werden jeweils aus maximal 3 möglichen Knoten ausgewählt. Damit σ2(n1 +
n2) ≤ σ2(n1)3n2 . Damit gilt für g(m):

g(m) ≤
∞∑
n=m

ηZ(n)pn ≤
∞∑
n=m

σ2(m)3n−m
2 pn = σ2(m)pm

2
1

1− 3p (4.4)

Da σ2(23) = 17266613812 (siehe z.B. [OEI19]), erhält man mit dem Com-
puter, dass für p ≤ 0.2721 f2(23) + g2(23) ≤ 1 ist. Somit ist für p ≤ 0.2721
E[Zn] ≥ E[Zn+1], welches eine deutlich bessere Schranke ist als die Schranke
aus 0.2 aus Satz 4.8.

Eine andere Möglichkeit, eine bessere Abschätzung zu erhalten, ist fol-
gende: Sei Y ≤m die Anzahl von Punkten auf E1, die mit 0 mit einem offenen
Pfad der Länge m oder kleiner verbunden sind und Y >m die Anzahl der Kno-
ten auf E1, die mit einem offenen Pfad der Länge größer als m verbunden
sind (aber nicht mit einem offenen Pfad kleiner oder gleich m). Es gilt:

Ep[Z1] = Ep[Y ≤m] + Ep[Y >m]

In folgender Tabelle ist E[Y ≤m] für kleine m ausgerechnet (leider ist dies
aufwendiger als ηZ2(n) auszurechnen, deshalb sind nur die ersten 6 Werte
aufgelistet):
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m E[Y ≤m]
1 p
2 p+ 4p2 − 2p4

3 p+ 4p2 + 8p3 − 4p4 − 4p5 − 3p6 + 3p7

4 p+ 4p2 + 8p3 + 12p4 − 12p5 − 17p6 + 7p7 − 6p8 + 20p9 − 10p10

5 p+ 4p2 + 8p3 + 12p4 + 26p5 − 49p6 − 21p7 − 22p8 + 68p9 − 23p10

+51p11 − 7p12 − 101p13 + 46p14 + 48p15 − 40p16 + 8p17

6 p+ 4p2 + 8p3 + 12p4 + 26p5 + 47p6 − 117p7 − 142p8 + 132p9 − 21p10

+243p11 − 141p12 + 207p13 − 318p14 − 272p15 + 14p16 + 856p17

−320p18 − 444p19 − 42p20 + 628p21 − 484p22 + 152p23 − 18p24

Die Tabelle wurde wie folgt mit Hilfe eines Programms erstellt. Das kom-
plette Programm befindet sich im Anhang, hier soll nur die Funktionsweise
erläutert werden:

Sei Ai das Ereignis, dass es einen Pfad der Länge ≤ n gibt, der in (i, 1)
endet. Man berechnet P(Ai) für i ∈ {−(n − 1), . . . , n − 1} und erhält dann
damit E[Y ≤n] = P(A−n+1) + . . .P(An−1). P(Ai) kann man einfach mit der
Siebformel von Poincaré und Sylvester ausrechnen:

Dazu berechnet man alle selbstvermeidenden Pfade der Länge ≤ n, die
in (i, 1) enden. (Dazu macht man eine Breitensuche und speichert alle Pfade,
die in maximal n Schritten in (i, 1) enden) Angenommen, es gibt mi Pfade
der Länge ≤ n, die in (i, n) enden . Sei dann Bi,j das Ereignis, dass der j
te Pfad offen ist. Es ist Ai = ⋃mi

j=1Bi,j. Um P(Ai) nun mit der Siebformel
auszurechnen, muss man wissen, welchen Wert P(⋂j∈C Bi,j) für jedes C ⊆
{1, . . . ,mi} hat. Es gilt P(⋂j∈C Bi,j) = pa, wenn die Anzahl der gemeinsamen
Kanten von den Pfaden a ist.

Schätzt man E[Y >6] wie in (4.4) durch σ(7)p7

2
1

1−3p ab, so erhält man (nach
[OEI19] ist σ(7) = 2172) E[Z1] = E[Y ≤6] + E[Y >6] ≤ 1 sicherlich, wenn
p < 0.252. Dieses Ergebnis ist etwas schlechter als das vorige Ergebnis, aber
man hat auch nur Pfade der Länge ≤ 6 genau betrachtet.

Wir erwähnen noch in diesem Abschnitt, dass (für beliebige endliche zu-
sammenhängende Graphen) man relativ leicht zeigen kann, dass die Anzahl
der mit dem Nullpunkt verbundenen Knoten auf einer Ebene bei zwei be-
nachbarten Ebenen sich nicht so stark unterscheidet (für große p). Dies ist
auch im Hinblick der vorigen Betrachtung interessant, die nur sinnvolle Aus-
sagen für kleine p macht.

Proposition 4.10 Sei G ein Graph mit k ∈ N>1 Knoten, n ∈ N0 und Z ∈
{Z, ((−∞,m]], [[m,∞))} (wobei m im zweiten Fall größer als n + 1 und im
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dritten Fall kleiner oder gleich 0 ist) mit p ∈ (0, 1), dann gilt:

1
pk

Ep[ZG×Z
n+1 ] > Ep[ZG×Z

n ] > Ep[ZG×Z
n+1 ]pk

Beweis
Sei An das Ereignis, dass zwischen der n-ten und n + 1-ten Ebene alle ver-
tikalen Kanten offen sind. Trivialerweise ist dann Zn1An = Zn+11An, denn,
wenn An eintritt, ist jeder Knoten von G auf der n-ten Ebene mit dem ent-
sprechenden Knoten auf der n+ 1-ten Ebene verbunden.

Sei Z∗n+1 die Anzahl der auf der Ebene n + 1 mit dem Knoten 0 ver-
bundenen Knoten, wenn alle vertikalen Knoten zwischen der Ebene n und
n+ 1 offen wären. Insbesondere ist Z∗n+1 unabhängig von An (da die Zufalls-
variable und das Ereignis auf unterschiedlichen Kanten definiert sind)und
Z∗n+1 ≥ Zn+1 und nach Definition von Z∗n+1 ist Z∗n+11An = Zn+11An. Damit
hat man insgesamt:

Ep[Zn] > Ep[Zn1An ] = Ep[Zn+11An ]
= Ep[Z∗n+11An ] = Ep[Z∗n+1] Pp(An)
≥ Ep[Zn+1] Pp(An) = Ep[Zn+1]pk

Die erste Ungleichung ist eine echte Ungleichung, da k > 1 ist. Analog erhält
man Ep[Zn+1] > Ep[Zn]pk �

Alternativ hätte man den Beweis auch mit der FKG-Ungleichung (siehe
Fußnote auf Seite 13) führen können, welche in unserem Fall direkt Ep[Zn+1] ≥
Ep[Zn+1]Ep[1An ] geliefert hätte.

Weiter sollte noch erwähnt werden, würde man nicht nur die Anzahl der
Knoten, die mit dem Nullpunkt auf einer Ebene verbunden sind, betrach-
ten, sondern die Anzahl der Knoten auf einer Ebene, die mit der Nullebene
verbunden ist, so ist die Frage der Monotonie einfach zu beantworten:

Definition 4.11 Sei Ẑn die Anzahl der auf der Ebene n mit der Ebene 0
verbundenen Knoten. D.h. Ẑn := #{x ∈ En|∃y ∈ E0 : x↔ y}.

Satz 4.12 Sei G ein endlicher oder unendlicher Graph und p < pc(G× Z),
dann gilt für den Graphen G× Z:

Ep[Ẑn] > Ep[Ẑn+1]

Ist G ein endlicher Graph mit k Knoten (wobei k > 1 ist), so gilt sogar:

Ep[Ẑn](1− (1− p)k) > Ep[Ẑn+1]
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Beweis
Sei Bx

i := {(x, 0) ↔ Ei} (also das Ereignis, dass der Knoten (x, 0) mit der
i-ten Ebene verbunden ist.). Tritt das Ereignis Bx

n+1 ein, so gibt es einen
offenen Pfad von (x, 0) nach der n+ 1-ten Ebene. Damit gibt es auch einen
offenen Pfad von (x, 0) nach der Ebene der Höhe n. Somit ist Bx

n+1 ⊂ Bx
n

und damit auch Pp(Bx
n+1) < Pp(Bx

n). Definiere nun Axi := {(x, i) ↔ E0}
(also das Ereignis, ob der Knoten x auf Ebene i mit der 0-ten Ebene ver-
bunden ist). Da das Wahrscheinlichkeitsmaß Pp unter Spiegelungen und ver-
tikalen Verschiebungen invariant ist, folgt Pp(Axi ) = Pp(Bx

i ). Somit ist auch
Pp(Axn+1) < Pp(Axn) und damit

Ep[Ẑn] =
∑

x∈V (G)
Pp(Axn) >

∑
x∈V (G)

Pp(Axn+1) = Ep[Ẑn+1]

Für endliche Graphen mit k Knoten kann man dies noch besser abschät-
zen: Sei Cn das Ereignis, dass zwischen der n-ten und n+1-ten Ebene mindes-
tens eine vertikale Kante offen ist. Man beachte, dass Pp(Cn) = 1− (1− p)k.
Die Ereignisse Bx

n und Cn sind unabhängig, da diese auf unterschiedlichen
Kantenmengen definiert sind. Damit ist

Pp(Bx
n+1) < Pp(Bx

n ∩ Cn) = Pp(Bx
n) Pp(Cn) = Pp(Bx

n)(1− (1− p)k)

Wobei die Ungleichung eine echte Ungleichung ist, da das Ereignis möglich
ist, dass nur ein Knoten auf der n-ten Ebene mit dem Knoten (x, 0) verbun-
den ist und es nur eine vertikale Kante zwischen der n-ten und n + 1-ten
Ebene gibt, dessen Endknoten auf der n-ten Ebene ein anderer Knoten als
der auf der Ebene n verbundene Knoten ist. Damit ist auch (siehe oben)
Pp(Axn+1) < Pp(Axn)(1− (1− p)k) und Ep[Ẑn] > Ep[Ẑn+1](1− (1− p)k) �

Bemerkung 4.13 Für alle Graphen G×Z gilt offensichtlich Ep[Zn] ≤ Ep[Ẑn].
Man beachte, dass für Ck × Z (oder auch für alle endliche Graphen wie in
Definition 4.1) trivialerweise die erwartete Anzahl von verbundenen Knoten
auf einer Ebene mit einem bestimmten Knoten auf der 0-ten Ebene gleich
ist, egal, welchen Knoten man betrachtet. Somit ist Ep[Ẑn] ≤ k Ep[Zn] und
insgesamt

Ep[Zn] ≤ Ep[Ẑn] ≤ k Ep[Zn]

Zum Abschluss dieses Abschnittes soll noch angemerkt werden, dass auch
eine Aussage analog zu Proposition 4.10 für die Zufallsvariablen Ẑn gilt:
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Proposition 4.14 Sei G ein Graph mit k ∈ N>1 Knoten und Z ∈ {Z,
((−∞,m]], [[m,∞))} (wobei m im zweiten Fall größer als n+1 und im dritten
Fall kleiner oder gleich 0 ist) mit p ∈ (0, 1), dann gilt:

1
pk

Ep[Ẑn+1] > Ep[Ẑn]

Der Beweis funktioniert genauso wie in Proposition 4.10. Man beachte
auch, dass man mit Satz 4.12 Ep[Ẑn] nach unten mit 1

1−(1−p)k Ep[Ẑn+1] ab-
schätzen kann.
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4.2 Ck × Z für kleine k
In diesem Abschnitt geht es darum, für kleine Graphen die Vermutung 1.8
zu zeigen. Dies soll in diesem Abschnitt hauptsächlich durch Berechnung
mit dem Computer gezeigt werden. Im nächsten Abschnitt wollen wir ein
Ergebnis ohne Hilfe eines Computerprogramms für alle Graphen mit einer
bestimmten Eigenschaft erhalten.

Man beachte, dass man für den Graphen C2 × Z sehr leicht die Verbin-
dungsfunktionen aller Knoten mit dem Knoten 0 vergleichen kann:

Proposition 4.15 Für p ∈ (0, 1) gilt:

P(0↔C2×Z (1, n+ 1)) < P(0↔C2×Z (0, n+ 1))
< P(0↔C2×Z (1, n)) < P(0↔C2×Z (0, n))

Beweis
Definiere Ω(a,m),(b,n) := {0↔ (a,m),0 6↔ (b, n)} die Menge aller Konfigura-
tionen, die den Punkt 0 mit (a,m) verbinden, aber nicht den Punkt 0 und
(b, n) verbinden.

Wir zeigen die Ungleichung P((0, 0)↔ (1, n)) > P(0↔ (0, n+ 1)): Dabei
reicht es, die Ungleichung P((0, 0)↔ (0, n+ 1), (0, 0) 6↔ (1, n)) < P((0, 0)↔
(1, n), (0, 0) 6↔ (0, n+ 1)) zu zeigen. Wir geben nun eine injektive Abbildung
von Ω(0,n+1),(1,n) nach Ω(1,n),(0,n+1) an, die zwei Kanten austauscht: Sei ω ∈
Ω(0,n+1),(1,n). Es gilt ω({(1, n), (0, n)}) = 0 und ω({(0, n), (0, n+ 1)}) = 1.
Definiere nun

ω′({(i, l), (j,m)}) =


1 {(i, l), (j,m)} = {(0, n), (1, n)}
0 {(i, l), (j,m)} = {(0, n), (0, n+ 1)}
ω({(i, l), (j,m)}) sonst

Damit ist ω′ ∈ Ω(1,n),(0,n+1). Da ω → ω′ eine injektive Abbildung ist und es
auch Konfigurationen in Ω(1,n),(0,n+1) gibt, die nicht im Bild liegen, gilt die
Ungleichung.

Für die anderen beiden Ungleichungen reicht es zu zeigen, dass P(0 ↔
(1, n), 0 6↔ (0, n)) < P(0 ↔ (0, n), 0 6↔ (1, n)): Sei ω ∈ Ω(1,n),(0,n). Dann
muss ω eine horizontale offene Kante auf einer Ebene kleiner als n haben,
die mit dem Punkt 0 verbunden ist.

Definiere mω = max({k < n : ω{(0,k),(1,k)} = 1}) . Setze

ω′({(i, l), (j,m)}) =

ω′({(1− i, l), (1− i,m)}) i ≥ mω, i = j

ω({(i, l), (j,m)}) sonst
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Man beachte, dass ω′ eine Art von Spiegelung über der horizontalen Kante
{(0,m), (1,m)} ist. Damit ist ω′ ∈ Ω(0,n),(1,n). Wieder ist dies eine maßerhal-
tende injektive Funktion und damit gilt die Ungleichung. �

Leider nutzt dieser obige Beweis besonders aus, dass C2 nur zwei Knoten
auf einer Ebene hat. Auch gibt es keine quantitative Aussage für den Ver-
gleich von Knoten. Deshalb geben wir im Folgenden ein Verfahren an, das
eine quantitative Aussage erlaubt. Später werden wir dieses Verfahren über-
tragen, um rechnerische Ergebnisse für C3 und C4 zu bekommen und somit
Teilantworten für Vermutung 1.8 erhalten. Leider steigt der Rechenaufwand
dann relativ stark.

Bevor wir quantitativ P(0↔C2×Z(0, n)) und P(0↔C2×Z(1, n)) verglei-
chen, brauchen wir noch ein Lemma (und eine Definition, um das Lemma zu
formulieren):

Definition 4.16 Sei G ein Graph mit der Knotenmenge V und der Kanten-
menge E und sei n ∈ N. Mit G× ((−∞, n)) bezeichnen wir den Graphen mit
den Knoten {(v1, i)|v1 ∈ V, i ∈ {. . . ,−3,−2, . . . , n− 1, n}} und den Kanten

{{(v1, i), (v′1, i)}|{v1, v
′
1} ∈ E, i ∈ {. . . ,−2, . . . , n− 2, n− 1}}

∪ {{(v1, i− 1), (v1, i)}|i ∈ {. . . ,−2,−1, . . . , n− 1, n}, v1 ∈ V }.

Analog sei G× ((n,∞)) der Graph mit Knoten {(v1, v2)|v1 ∈ V, v2 ∈ {n, n+
1, n+ 2, . . . }} und den Kanten

{{(v1, i), (v′1, i)}|{v1, v
′
1} ∈ E, i ∈ {. . . ,−2, . . . , n− 2, n− 1}}

∪ {{(v1, i− 1), (v1, i)}|i ∈ {n+ 1, n+ 2, . . . }, v1 ∈ V }

Bemerkung 4.17 Also entspricht G×((−∞, n)) dem Graphen G×((−∞, n]],
in dem alle horizontalen Kanten auf der Ebene n fehlen und der Graph
G× ((n,∞)) entspricht dem Graphen G× [[n,∞)), in dem alle horizontalen
Kanten auf der Ebene n fehlen.

Lemma 4.18 Es gilt für n ∈ Z

P((0, n)↔C2×((n,∞))(1, n)) = P((0, n)↔C2×((−∞,n))(1, n)) = p3

1− p2(1− p)

und

P((0, n)↔C2×((−∞,n]](1, n)) = P((0, n)↔C2×[[n,∞))(1, n)) = p

1− p2(1− p)
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Beweis
Es reicht P((0, n)↔C2×((−∞,n]](1, n)) = p

1−p2(1−p) zu zeigen, da

P((0, n)↔C2×((−∞,n]](1, n)) = P((0, n) ∼ (1, n), (0, n)↔C2×((−∞,n]](1, n))
+ P((0, n) 6∼ (1, n), (0, n)↔C2×((−∞,n]](1, n))
= P((0, n) ∼ (1, n)) + P((0, n) 6∼ (1, n)) P((0, n)↔C2×((−∞,n))(1, n))
= p+ (1− p) P((0, n)↔C2×((−∞,n))(1, n))

ist, folgt aus der zweiten Gleichung die erste Gleichung. Wobei

P((0, n)↔C2×[[n,∞))(1, n)) = P((0, n)↔C2×((−∞,n]](1, n))

und
P((0, n)↔C2×((n,∞))(1, n)) = P((0, n)↔C2×((∞,n))(1, n))

aus Symmetriegründen gelten.
Man beachte, dass die beiden Knoten (0, n) und (1, n) genau dann in C2×

((−∞, n]] verbunden sind, wenn es ein z ∈ {n, n−1, n−2, . . . } gibt, sodass die
Kante zwischen (0, z) und (1, z) offen ist und alle vertikalen Kanten zwischen
(e, s) und (e, s+ 1) für z ≤ s < n und e ∈ {0, 1} offen sind. Wir bezeichnen
mit Qz das Ereignis, dass die Kante zwischen (0, z) und (1, z) offen ist und
alle Kanten zwischen (e, s) und (e, s+ 1) für z ≤ s < n und e ∈ {0, 1} offen
sind, aber für alle r mit z < r ≤ n ist die Kante zwischen (0, r) und (1, r)
nicht offen. Damit erhält man

P((0, n)↔C2×((−∞,n]](1, n)) =
−∞∑
z=0

P(Qz) =
∞∑
i=0

(1− p)ip2ip = p

1− p2(1− p)�

Bemerkung 4.19 Alternativ kann man dies auch mit Hilfe des späteren
Lemma 4.27 zeigen, wie wir es auch für andere Ck machen werden. Siehe
dazu auch die Bemerkung nach Lemma 4.27.

Mit Lemma 4.18 erhält man einen quantitativen Vergleich für C2 × Z:

Proposition 4.20 Für den Graphen C2 × Z gilt:

P(0↔C2×Z(0, n))− P(0↔C2×Z(1, n)) = (p− p2)n(1− p)3(p+ 1)2

(p3 − p2 + 1)2
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Beweis
Sei A das Ereignis, dass eine offene horizontale Kante zwischen der 0-ten
und n-ten Ebene existiert, B sei das Ereignis, dass (0, n) und (1, n) im Gra-
phen ((−∞, 0)) verbunden sind und C sei das Ereignis, dass (0, n) und (1, n)
im Graphen ((n,∞)) verbunden sind. Offensichtlich ist P({0↔C2×Z(1, n)}∩
A) = P({0↔C2×Z(0, n)} ∩ A) (aus Symmetriegründen ist wegen der offenen
horizontalen Kante die Wahrscheinlichkeit gleich). Ebenfalls aus Symmetrie-
gründen hat man P({0↔C2×Z(1, n)}∩Ac∩B) = P({0↔C2×Z(0, n)}∩Ac∩B).
Weiter ist auch P({0↔C2×Z(1, n)} ∩ Ac ∩ Bc ∩ C) = P({0↔C2×Z(0, n)} ∩
Ac ∩ Bc ∩ C) (wenn C oder ein Teilereignis von C eintritt, dann treten
sowohl {0↔C2×Z(0, n)} als auch {0↔C2×Z(1, n)} ein oder keines der bei-
den Ereignisse tritt ein). Damit ist P({0↔C2×Z(1, n)} ∩ (A ∪ B ∪ C)) =
P({0↔C2×Z(0, n)} ∩ (A ∪B ∪ C)) und somit ist

P(0↔C2×Z(0, n))− P(0↔C2×Z(1, n))
= P({0↔C2×Z(0, n)} ∩ (A ∪B ∪ C)) + P({0↔C2×Z(0, n)} ∩ Ac ∩Bc ∩ Cc)
−
(
P({0↔C2×Z(1, n)} ∩ (A ∪B ∪ C)) + P({0↔C2×Z(1, n)}Ac ∩Bc ∩ Cc)

)
= P({0↔C2×Z(0, n)} ∩ Ac ∩Bc ∩ Cc)− P({0↔C2×Z(1, n)} ∩ Ac ∩Bc ∩ Cc)

Da offensichtlich P({0↔C2×Z(1, n)} ∩ Ac ∩Bc ∩ Cc) = 0 erhält man:

= P({0↔C2×Z(0, n)} ∩ Ac ∩Bc ∩ Cc)

Sei D das Ereignis, dass alle vertikalen Kanten {(0, s), (0, s+1)} für 0 ≤ s <
n vorhanden sind. Da {0↔C2×Z(0, n)} unter Ac ∩ Bc ∩ Cc nur dann genau
auftreten kann, wenn das Ereignis D eintritt, hat man:

= P(D ∩ Ac ∩Bc ∩ Cc)

Es ist offensichtlich P(Ac) = (1−p)n+1, P(D) = pn und nach Lemma 4.18
ist P(Bc) = P(Cc) =

(
1− p3

1−p2(1−p)

)
. Außerdem sind A, B, C und D unab-

hängig, da diese auf unterschiedlichen Kantenmengen definiert sind. Somit
erhält man:

P(0↔C2×Z(0, n))− P(0↔C2×Z(1, n)) = P(D) P(Ac) P(Bc) P(Cc)

= (p− p2)n(1− p)3(p+ 1)2

(p3 − p2 + 1)2 �
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Bemerkung 4.21 Ist G ein endlicher zusammenhängender Graph mit k
Knoten, bekommt man wenigsten relativ leicht (ähnlich zu dem vorigen Be-
weis) eine obere Schranke für |P(0↔(x, n))− P(0↔(y, n))| (x, y ∈ G). Sei
Am das Ereignis, dass alle Knoten auf der m-ten Ebene jeweils mit einem
offenen Pfad im Graphen G× [[m,m]] miteinander verbunden sind (d.h. im
Graphen G× [[m,m]] gibt es einen Spannbaum, der aus offenen Kanten be-
steht). Definiere A := ∪nm=0Am. Aus Symmetriegründen ist P({0↔(x, n)} ∩
A) = P({0↔(y, n)}∩A). Somit ist wegen der Unabhängigkeit von A0, A1, . . . , An

|P(0↔G×Z(x, n))− P(0↔G×Z(y, n))| ≤ P(Ac). = P(Ac0)n+1

. Da jeder Spannbaum eines Graphen mit k Knoten k − 1 Kanten hat, ist
P(Am) ≥ pk−1. Also ist für jeden zusammenhängenden Graphen mit k Knoten

|P(0↔G×Z(x, n))− P(0↔G×Z(y, n))| ≤ (1− pk−1)n+1.

Insbesondere wird der Unterschied zwischen den beiden Knoten auf einer Ebe-
ne exponentiell geringer, je weiter man sich von dem Ursprung entfernt.

Es soll im Folgenden für den Graphen C2 × Z P((0, 0)↔(e, n)) für e ∈
{0, 1} und n ∈ N bestimmt werden. Später wird das Verfahren übertragen,
um mit dem Computer die Monotonie der Verbindungsfunktion des Graphen
Ck × Z für k klein zu beweisen. Aber zuerst zu C2 × Z:

Proposition 4.22 Es gilt für n ∈ N:

P((0, 0)↔C2×Z(0, n)) =−a(p) (λn2 − λn3 ) (2p3 − p2 + 1)− (λn2 − λn3 ) c(p)
8
√
a(p) (p3 − p2 + 1)2

+
2
√
a(p) ((λn2 + λn3 ) d(p)− 2λn1 (p− 1)3(p+ 1)2)

8
√
a(p) (p3 − p2 + 1)2

und

P((0, 0)↔C2×Z(1, n)) =−a(p) (λn2 − λn3 ) (2p3 − p2 + 1)− (λn2 − λn3 ) c(p)
8
√
a(p) (p3 − p2 + 1)2

+
2
√
a(p) ((λn2 + λn3 ) d(p) + 2λn1 (p− 1)3(p+ 1)2)

8
√
a(p) (p3 − p2 + 1)2

mit a(p) = 4p4−8p3+4p2+1, λ1 := p−p2, λ2 = 1
2

(
−2p3 + 2p2 + p− p

√
a(p)

)
und λ3 = 1

2

(
−2p3 + 2p2 + p+ p

√
a(p)

)
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Beweis
Zur Erinnerung Xn ist das einseitige Muster auf Ebene n (siehe Definiti-
on 1.6). Zuerst soll nun P(Xn = M) für alle M ∈M1(C2) bestimmt werden
und daraus P((0, 0)↔(a, n)) berechnet werden. Man beachte, dass (Xn)n∈N
eine Markovkette mit einer Startverteilung, die wir weiter unten bestimmen
werden, ist. Wir fassen die beiden Zustände aus M0(C2) = {({}, {0, 1}),
({}, {{0}, {1}}) zu einem Zustand ∞ zusammen und betrachten (Xn)n∈N als
eine Markovkette auf M0(C2)∪{∞} (dass man hier einen anderen Zustands-
raum betrachtet als in Definition 1.6, sollte zu keiner Verwirrung führen).
Dadurch erhält man eine Übergangsmatrix der Zustände ∞, ({0}, {{1}}),
({1}, {{0}}), ({0, 1}, {}):

A :=


1 0 0 0

1− p p(1− p) 0 p2

1− p 0 p(1− p) p2

(1− p)2 p(1− p)2 p(1− p)2 p2 + 2p2(1− p)



Dabei erhält man die Einträge durch Betrachtung der verschiedenen Konfi-
gurationen von K(En). Z.B. den Eintrag in der vierten Zeile und 2. Spalte:
Der Übergang von ({0, 1}, {}) nach ({0}, {{1}}) in Ebene n nach Ebene n+1
kann nur auftreten, wenn im Graphen C2 × {n, n + 1} (0, n) ∼ (0, n + 1),
(1, n) 6∼ (1, n+ 1) und (0, n+ 1) 6∼ (1, n+ 1) ist. Für dieses Ereignis ist die
Wahrscheinlichkeit p(1− p)2. Analog erhält man die anderen Einträge.

Als nächstes soll die Startverteilung α der Markovkette ausgerechnet wer-
den (d.h. die Verteilung von X0) Man beachte, dass nach Lemma 4.18:

P((0, 0)↔C2×((−∞,0]](1, 0)) = p

1− p2(1− p)

Damit erhalten wir sofort folgende Startverteilung für die Markovkette
(Xn) (man beachte per Definition ist der Knoten (0, 0) immer infiziert):

α = (0, 1− p

1− p2(1− p) , 0,
p

1− p2(1− p))

Wir setzen a(p) := 4p4 − 8p3 + 4p2 + 1 und b(p) := −2p3 + 2p2 + p
als Abkürzung. Die Eigenwerte von A sind λ0 := 1, λ1 := p − p2, λ2 :=
1
2

(
b(p)− p

√
a(p)

)
, λ3 := 1

2

(
b(p) + p

√
a(p)

)
mit den zugehörigen Eigenvek-
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toren

(1, 1, 1, 1), (0,−1, 1, 0),

(0,− 2p
2p2 − 4p+

√
a(p) + 1

,− 2p
2p2 − 4p+

√
a(p) + 1

, 1),

(0,− 2p
2p2 − 4p−

√
a(p) + 1

,− 2p
2p2 − 4p−

√
a(p) + 1

, 1).

Bilde nun die Matrix, die die Eigenvektoren als Spalten hat:

B :=


1 0 0 0
1 −1 − 2p

2p2−4p+
√
a(p)+1

− 2p
2p2−4p−

√
a(p)+1

1 1 − 2p
2p2−4p+

√
a(p)+1

− 2p
2p2−4p−

√
a(p)+1

1 0 1 1


Dann ist

B−1 =


1 0 0 0
0 − 1

2
1
2 0(

−2p2+2p+
√

a(p)−1
)(

2p2−4p+
√

a(p)+1
)

4
√

a(p)p

(
2p2−4p+1

)2
−a(p)

8
√

a(p)p

(
2p2−4p+1

)2
−a(p)

8
√

a(p)p

2p2−4p+
√

a(p)+1
2
√

a(p)

−

(
−2p2+4p+

√
a(p)−1

)(
2p2−2p+

√
a(p)+1

)
4
√

a(p)p

a(p)−
(

2p2−4p+1
)2

8
√

a(p)p

a(p)−
(

2p2−4p+1
)2

8
√

a(p)p

−2p2+4p+
√

a(p)−1
2
√

a(p)



Nach der Linearen Algebra ist A = B


1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

B−1. Dann kann

man auf diese Weise An ausrechnen (wir schreiben ∗ an den Stellen der
Matrix, an denen uns die Werte nicht interessieren):

An = B


1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3


n

B−1

=



1 0 0 0
∗ m1 m2

(λn3−λn2 )p√
a(p)

∗ m2 m1
(λn3−λn2 )p√

a(p)

∗ m3 m3

(
2p2−4p+

√
a(p)+1

)
λn2 +λn3

(
−2p2+4p+

√
a(p)−1

)
2
√
a(p)


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Wobei

m1 =

√
a(p) (2λn1 + λn2 + λn3 )− (λn2 − λn3 ) (2p2 − 4p+ 1)

4
√
a(p)

m2 =

√
a(p) (−2λn1 + λn2 + λn3 )− (λn2 − λn3 ) (2p2 − 4p+ 1)

4
√
a(p)

m3 = −
(λn2 − λn3 )

(
−2p2 + 4p+

√
a(p)− 1

) (
2p2 − 4p+

√
a(p) + 1

)
8
√
a(p)p

Mit oben kann man nun P(Xn = M) bestimmen, indem man aus der
Matrix αAn die passenden Werte abliest.

Nach Lemma 4.18 ist:

P((0, n+ 1)↔C2×((n,∞))(1, n+ 1)) = p3

1− p2(1− p)

Damit können wir nun P((0, 0)↔(e, n)) ausrechnen (mit ani,j bezeichnen
wir Einträge aus An), dabei ist c(p) := 8p8−28p7 + 36p6−14p5−6p4 + 6p3−
3p2 + 2p+ 1 und d(p) := 2p6 − 3p5 + p4 + 2p3 − 2p2 + p+ 1:

P((0, 0)↔(0, n))
= P(Xn = ({0}, {{1}})) + P(Xn ∈ ({0, 1}, {{}}))
+ P(Xn = ({1}, {{0}})) P((0, n+ 1)↔C2×((n,∞))(1, n+ 1))

= α2a
n
2,2 + α4a

n
4,2 + α2a

n
2,4 + α4a

n
4,4 + (α2a

n
2,3 + α4a

n
4,3) p3

1− p2(1− p)

= −a(p) (λn2 − λn3 ) (2p3 − p2 + 1)− (λn2 − λn3 ) c(p)
8
√
a(p) (p3 − p2 + 1)2

+
2
√
a(p) ((λn2 + λn3 ) d(p)− 2λn1 (p− 1)3(p+ 1)2)

8
√
a(p) (p3 − p2 + 1)2
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und

P((0, 0)↔(1, n))
= P(Xn = ({1}, {{0}})) + P(Xn = ({0, 1}, {{}}))
+ P(Xn = ({0}, {{1}})) P((0, n+ 1)↔C2×((n,∞))(1, n+ 1))

= α2a
n
2,3 + α4a

n
4,3 + α2a

n
2,4 + α4a

n
4,4 + (α2a

n
2,2 + α4a

n
4,2) p3

1− p2(1− p)

= −a(p) (λn2 − λn3 ) (2p3 − p2 + 1)− (λn2 − λn3 ) c(p)
8
√
a(p) (p3 − p2 + 1)2

+
2
√
a(p) ((λn2 + λn3 ) d(p) + 2λn1 (p− 1)3(p+ 1)2)

8
√
a(p) (p3 − p2 + 1)2 �

Bemerkung 4.23 Wir erhalten hiermit wie bei Proposition 4.20 sogar wie-
der den Vergleich von 0↔(0, n) und 0↔(1, n):

P(0↔(0, n))− P(0↔(1, n)) = λ1
n(1− p)3(p+ 1)2

(p3 − p2 + 1)2 = (p− p2)n(1− p)3(p+ 1)2

(p3 − p2 + 1)2

Wir wollen uns nun den Graphen Ck × Z zuwenden und Vermutung 1.8
für k klein mit Hilfe des Computers zeigen. Wir geben dabei ein n0 explizit
an. Dabei wird ähnlich vorgegangen wie bei C2. Wobei es dann nicht mehr so
leicht ist, die Werte für die Verbindungsfunktion für alle n explizit anzugeben.
Deshalb zeigen wir zuerst folgendes Lemma, womit es reicht, eine Ebene zu
finden, in der die Vermutung 1.8 gilt:

Lemma 4.24 Sei G ein endlicher zusammenhängender Graph. Gilt für ein
n0 ∈ N und alle M ∈M1(G):

Pp(XG×Z
n0 = M) > Pp(XG×Z

n0+1 = M)

so ist auch für alle n ≥ n0

Pp(XG×Z
n = M) > Pp(XG×Z

n+1 = M)

und für alle M ′ ∈ M̃
1(Ck) und n ≥ n0:

Pp(X̃G×Z
n = M ′) > Pp(X̃G×Z

n+1 = M ′)

Insbesondere gilt dann Vermutung 1.8 und Vermutung 1.10 für den Graphen
G× Z.
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Beweis
Es gilt wegen der Markov-Eigenschaft für alle n ≥ n0:

Pp(XG×Z
n+1 = M) =

∑
M ′∈M1(Ck)

Pp(XG×Z
n+1 = M |XG×Z

n0+1 = M ′)︸ ︷︷ ︸
=Pp(XG×Z

n =M |XG×Z
n0 =M ′)

Pp(XG×Z
n0+1 = M ′)

<
∑

M ′∈M1(Ck)
Pp(XG×Z

n = M |XG×Z
n0 = M ′) Pp(XG×Z

n0 = M ′) = Pp(XG×Z
n = M)

Die Aussage für X̃G×Z
n folgt aus Lemma 1.13. �

Es soll nun ein Verfahren vorgestellt werden, das ein n0 findet mit Pp(XG×Z
n0 =

M) > Pp(XG×Z
n0+1 = M) für alle M ∈ M1(Ck) und p ∈ (0, 1). Das Verfahren

basiert teilweise auf den obigen Rechnungen für C2 × Z. Im Folgenden wird
immer symbolisch gerechnet mit der Variable p, die die Wahrscheinlichkeit,
dass eine Kante offen ist, angibt. Das zugehörige Computer-Programm findet
man im Anhang.

Zuallererst werden alle (gültigen) Muster berechnet. Dazu wird mit dem
Muster ({0, . . . , k − 1},∅) (also alle infiziert) gestartet und alle Muster be-
rechnet, die man aus diesem Muster in mehreren Schritten erhält: (Dass man
alle gültigen Muster so erhält, wird noch im später folgendem Lemma 4.37 be-
gründet) Für jedes Muster werden alle möglichen Muster der nächsten Ebene
berechnet, indem man alle möglichen Kantenkonfigurationen zwischen zwei
Ebenen betrachtet. Dies führt man solange durch, bis man kein neues Muster
erhält.

Es werden alle Muster als Zustand ∞ zusammengefasst, die keine infi-
zierten Knoten enthalten. Anschließend wird die Übergangsmatrix auf dem
Zustandsraum M1(Ck) ∪ {∞} berechnet: Dazu wird in zwei Schritten vor-
gegangen (um den Rechenaufwand zu reduzieren), indem man zuerst die
Übergangsmatrix berechnet, wenn man nur die vertikalen Kanten betrach-
tet (also, wenn alle horizontalen Kanten auf der nächsten Ebene nicht offen
sind). Anschließend wird die Übergangsmatrix berechnet, die die horizon-
talen Kanten hinzufügt. Wenn man die beiden Matrizen nun multipliziert,
erhält man die eigentliche Übergangsmatrix. Die beiden Matrizen werden da-
bei berechnet, indem man für jedes Muster und jede Kantenperkolation das
erhaltene Muster betrachtet.

Jetzt wird noch die Startverteilung ausgerechnet. Dazu wird eine Über-
gangsmatrix (wie oben) aufgestellt, die nur Muster aus M0(Ck) betrachtet.
Aus deren stationärer Verteilung kann man die Startverteilung von der Mar-
kovkette (Xn) berechnen, indem man für jedes Muster M aus M1(Ck) das
entsprechende Muster M̄ betrachtet, das die Knoten als uninfiziert ansieht.
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Dass das Vorgehen richtig ist, sieht man an dem gleich folgenden Lemma,
wozu zuerst eine Definition (ähnlich zu Definition 1.6) notwendig ist, um das
Lemma zu formulieren:

Definition 4.25 Sei G ein endlicher zusammenhängender Graph. Wir sa-
gen auf einer Ebene n ∈ Z des Graphen G × Z liegt das (einseitige) ent-
sprechende uninfizierte Muster M = (∅, {B1, . . . , Bl}) vor, wenn in dem
Teilgraphen G× ((−∞, n]] folgendes gilt: Alle Knoten aus Bi×{n} sind über
einen offenen Pfad miteinander verbunden für jedes i. Darüber hinaus gilt
für i, j mit i 6= j, dass kein Knoten aus Bi × {n} mit einem Knoten aus
Bj × {n} verbunden ist.

Mit Yn, n ∈ Z bezeichne das entsprechende uninfizierte Muster auf Ebene
n.

Bemerkung 4.26 Offensichtlich ist (Yn)n≥m für jedes m ∈ Z eine Markov-
kette auf M0(G) und bei Yn betrachtet man nicht, ob irgendwelche Kno-
ten infiziert sind. Ist für n ∈ N0 Xn = (A, {B1, . . . , Bl}), so ist Yn =
(∅, {A,B1, . . . , Bl}) für A 6= ∅ und Yn = (∅, {B1, . . . , Bl}) für A = ∅.

Man beachte auch, dass in der 0-ten Ebene immer der Knoten 0 infiziert
ist und somit X0 immer durch die Angabe von Y0 eindeutig bestimmt ist.

Nun soll gezeigt werden, wie man aus der stationären Verteilung von Yn
die Startverteilung von Xn bekommt:

Lemma 4.27 Sei G ein endlicher zusammenhängender Graph und sei die
stationäre Verteilung der Markovkette Yn β. Sei für M = (A, {B1, . . . , Bl}) ∈
M1(G), das Muster M̄ ∈M0(G) definiert durch M̄ := (∅, {A,B1, . . . , Bl})
(also das entsprechende uninfizierte Muster). Dann ist die folgende Vertei-
lung α auf M (G) mit α(M) = β(M̄) für M = (A, . . . ) ∈M1(G) mit 0 ∈ A
und α(M) = 0 sonst, die Startverteilung (also die Verteilung von X0) der
Markovkette (Xn).

Beweis
Man beachte, der Wert von Yn hängt nur von den Kanten des Graphen G×
((−∞, n]] ab. Da für n,m ∈ Z die beiden Graphen G × ((−∞, n]] und G ×
((−∞,m]] isomorph sind, hat Yn die gleiche Verteilung wie Ym. Damit ist von
jedem Yn die Verteilung die stationäre Verteilung β. Damit gilt insbesondere
mit der obigen Bemerkung für M ∈M1(G) mit M = (A, . . . ) ∈M1(G) mit
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0 ∈ A:

P(X0 = M) =
∑

M ′∈M1(Ck)
P(X0 = M |Y0 = M ′) P(Y0 = M ′)

=
∑

M ′∈M1(Ck)
P(X0 = M |Y0 = M ′)β(M ′)

=
∑

M ′∈M1(Ck)
β(M ′)

1, falls M ′ = M̄ und M = (A, . . . ) mit 0 ∈ A
0, sonst

= β(M̄)

Da auf Ebene 0 immer mindestens ein Knoten infiziert ist (der Knoten 0),
folgt P(X0 = M) = 0 für M ∈ M0(G) oder M = (A, . . . ) ∈ M1(G) mit
0 6∈ A. �

Bemerkung 4.28 Damit hätte man auch Lemma 4.18 beweisen können:
Wir betrachten (Yn) bzgl. des Graphen C2 × Z. Der Zustandsraum besteht
aus ({}, {{0}, {1}}) und ({}, {{0, 1}). Als Übergangsmatrix haben wir dann,
wie man leicht ausrechnet:(

1− p p
(1− p)(1− p2) p2 + p− p3

)

Als stationäre Verteilung von (Yn) erhält man 1
1−p2+p3 (p3−p2−p+ 1, p). Mit

Lemma 4.27 ist dann P((0, n)↔((−∞,n]](1, n)) = P((0, 0)↔((−∞,0]](1, 0)) =
P(X0 = ({0, 1},∅)) = p

1−p2(1−p) .

Also wird wie oben die Startverteilung berechnet. Sei A die Übergangs-
matrix der Markovkette (Xn), wobei man alle nicht infizierten Zustände zu-
sammenfasst und α die entsprechende Startverteilung ist.

Anschließend wird für n = 0, 1, 2 . . . αAn−αAn+1 so lange berechnet, bis
alle Einträge (außer dem Eintrag für den Zustand ∞) für 0 < p < 1 positiv
sind. Hat man so ein n gefunden, so ist man fertig und hat ein optimales n0
aus Vermutung 1.8 für den Graphen bestimmt. (siehe auch Lemma 4.24) Es
soll nun beschrieben werden, wie man untersuchen kann, ob ein Eintrag von
αAn − αAn+1 positiv für alle p ∈ (0, 1) ist.
Dazu wird die Sturmsche Kette aus der reellen Algebra benutzt (siehe z.B.
[Rol07]), welche auf dem Euklidischen Algorithmus basiert und die Anzahl
der Nullstellen eines Polynoms in einem Intervall [a, b) berechnet (der Al-
gorithmus ist auch in manchen CAS hinterlegt). Der Vollständigkeit halber
geben wir den Algorithmus hier an: Zuerst konstruiert man Polynome, die
man die Sturmsche Kette nennt:
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Definition 4.29 Sei f ein reelles Polynom vom Grad mindestens 1. Dann
definiere g0 := f

ggT(f,f ′) (dabei ist f ′ die Ableitung von f). Setze g1 := −g′0
und bestimme ausgehend von den Polynomen g0, g1 mit einer Variante des
Euklidischen Algorithmus rekursiv neue Polynome aus folgender Gleichung:

gi+1 = qigi − gi−1, (4.5)

Dabei ist qi ein reelles Polynom und gi+1 ein reelles Polynom mit deg(gi) >
deg(gi+1). Dies führt man, solange gi+1 6= 0 ist, durch und erhält Polynome
g0, . . . , gm (insbesondere ist gm 6= 0). Die Polynome g0, . . . , gm nennt man
Sturmsche-Kette.

Bemerkung 4.30 Natürlich kann nach der Definition ein reelles Polynom
f mehrere verschiedene Sturmsche Ketten haben.

Bis auf das Vorzeichen entspricht es dem bekannten Euklidischen Algorith-
mus. Daher ist gm der größte gemeinsame Teiler von g0 und g1 (bzw. von
g0 und g′0). Bekanntlich hat das Polynom g0 und f die gleichen (komplexen)
Nullstellen und darüber hinaus hat g0 keine mehrfachen (komplexen) Null-
stellen und somit hat gm überhaupt keine (komplexe) Nullstelle und somit
ist gm ∈ R \ {0}.

Bevor man damit die Anzahl der Nullstellen im Intervall [a, b) bestimmen
kann, braucht man noch folgenden Begriff:
Definition 4.31 Hat man eine endliche Folge von Polynomen g0, . . . , gm,
dann sind Anzahl der Vorzeichenwechsel an der Stelle x wie folgt definiert:
Man bestimmt g0(x), . . . , gm(x) und streicht in dieser Folge alle Werte mit
0. Dann zählt man, wie viele der verbleibenden Folgeglieder ein anderes Vor-
zeichen haben als das vorausgegangene Folgenglied. Diese Zahl nennt man
Vorzeichenwechsel der Polynome g0, . . . , gm an der Stelle x. Im Folgenden
bezeichnet man mit w(x) diese Zahl.

Nach der Vorarbeit, kann man folgendes Lemma formulieren, welches die
Anzahl der Nullstellen eines reelles Polynoms im Intervall [a, b) einfach be-
stimmt:
Lemma 4.32 Sei a, b ∈ R mit a < b. Sei f ein reelles Polynom. Dann hat
in [a, b) genau w(b)− w(a) reelle Nullstellen. Dabei ist w(x) die Anzahl der
Vorzeichenwechsel einer Sturmschen Kette von f an der Stelle x.
Beweis
Der Beweis ist im Wesentlichen aus [Rol07] entnommen: Der Beweis baut auf
der Tatsache auf, wie sich w(x) bei verändertem x ändert. Seien x1, x2, . . . , xl
die Nullstellen von f im Intervall [a, b). Es soll zuerst angemerkt werden,
wenn man folgende zwei Aussagen zeigt, dann ist die Aussage bewiesen:
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1. Es ist w(xj − h) = w(xj) = w(xj + h)− 1 für jedes hinreichend kleines
h > 0 .

2. Für jedes hinreichend kleines h > 0 ist w(x − h) = w(x) = w(x + h),
wenn x keine Nullstelle von f ist (insbesondere ist dann w(xj−1 +h) =
w(xj − h), da es im Intervall [xj−1 + h, xj + h] keine Nullstelle gibt).

Ist dies gezeigt, dann ist w auf den Intervallen w(b) − w(a) die Anzahl der
Nullstellen:

w(b)− w(a) = w(x1)− w(a)︸ ︷︷ ︸
=0

+
l∑

j=2

w(xj)− w(xj−1)︸ ︷︷ ︸
=1

+ w(b)− w(xm)︸ ︷︷ ︸
=1

= l

Nun sollen die beiden Punkte gezeigt werden. Aufgrund der Stetigkeit von gj
reicht es zu betrachten, was passiert, wenn ein gi eine Nullstelle hat. Dazu
wird i > 0 und i = 0 betrachtet.

Fall i > 0: Sei i ∈ {1, . . . ,m} mit gi(z) = 0. Es gilt, dass i < m ist, da
gm ∈ R\{0}. Auch gilt, dass aus gi(z) = 0 folgt wegen (4.5), dass gi−1(z) und
gi+1(z) unterschiedliche Vorzeichen haben (und auch ungleich 0, sonst wäre es
eine Nullstelle von gm und damit eine gemeinsame von g0 und g1). Aufgrund
der Stetigkeit gibt es ein ε > 0, sodass für alle h ∈ (−ε, ε) gi−1(z) das gleiche
Vorzeichen wie gi−1(z+h) und gi+1(z) das gleiche Vorzeichen wie gi+1(z+h)
hat. Egal, welches Vorzeichen gi(z + h) hat, es gibt für alle h ∈ (−ε, ε) bei
gi−1(z + h), gi(z + h) und gi+1(z + h) genau einen Vorzeichenwechsel (da
gi−1(z + h) und gi+1(z + h) unterschiedliche Vorzeichen haben). Insgesamt
folgt daraus Punkt 2.

Fall i = 0: Sei z eine Nullstelle von g0, daher g0(z) = 0. Nach Wahl von
g1 ist g1(z) 6= 0 (da g0 nur einfache Nullstellen hat und g1 = −g′0). Wegen
g1 = −g′0 haben auch für alle hinreichend kleine h > 0 die Zahlen g0(z − h),
g1(z − h), g1(z) und g1(z + h) das gleiche Vorzeichen und g0(z + h) hat ein
anderes Vorzeichen. Somit hat die Teilfolge g0, g1 an der Stelle z + h einen
Vorzeichenwechsel mehr als an den Stellen z und z−h. Daher folgt mit dem
Fall i > 0 (woanders ändert sich nicht die Anzahl der Vorzeichenwechsel)
zusammen der Punkt 1 (w(a− h) = w(a) = w(a+ h)− 1). �

Man beachte, dass die Startverteilung α unserer betrachteten Markovkette
(Xn)n nur rationale Funktionen als Einträge hat (betrachtet als Funktion in
p).

Proposition 4.33 Für die Startverteilung α der Markovkette (Xn)n gilt,
dass diese nur rationale Funktionen als Einträge hat.
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Beweis
Sei B die Übergangsmatrix von Yn und Dx

M die Menge aller Konfiguratio-
nen auf K(E1), sodass man, wenn man das Muster x auf der 0-ten Ebe-
ne hat, das Muster M auf der ersten Ebene erhält. Für d ∈ Dx

M sei ed
die Anzahl der offenen Kanten der Konfiguration d in K(E1). Damit ist
Px(Y1 = M) = ∑

d∈DxM p
ed(1 − p)2k−ed (für k ≥ 3, analog für k = 1, 2).

Insbesondere sind alle Einträge von B polynomiell in p. Daher gilt für die
stationäre Verteilung β von (Yn), dass diese als Lösung des Gleichungssys-
tems β(B− I) = 0 (dabei ist I die Einheitsmatrix und 0 die Nullmatrix) nur
rationale Funktionen als Einträge hat (sieht man z.B. durch das Gaußsche
Eliminationsverfahren). Mit Lemma 4.27 hat auch die Startverteilung α von
(Xn) nur rationale Funktionen als Einträge. �

Durch eine Skalierung von α mit einem geeigneten Polynom h(p) (z.B.
das kleinste gemeinsame Vielfache der Divisoren der Einträge), welches keine
Nullstelle in (0, 1) hat (da α eine Verteilung ist, haben die Divisoren der Ein-
träge keine Nullstellen), ist h(p)α ein Polynom. Dann ist h(p)(αAn−αAn+1)
eine Matrix mit nur Polynomen als Einträge und den gleichen Nullstellen wie
αAn − αAn+1.

Man beachte, dass alle Einträge von αAn − αAn+1 natürlich eine Null-
stelle bei p = 0 haben für n > 0. Bei p = 0 und n = 0 sind die Einträge
positiv bei Einträgen, in denen α ungleich 0 ist und sonst sind diese auch
0 (außer beim Zustand ∞). Offensichtlich ist bei p = 0 α auf den Zustand
({0}, {{1}, . . . , {k − 1}}) konzentriert. Damit ist das Problem, dass ein Ein-
trag für alle p ∈ (0, 1) von αAn − αAn+1 (außer dem Eintrag für ∞) für ein
bestimmtes n > 0 positiv sind, äquivalent zu der Aussage, dass es genau eine
Nullstelle im Intervall [0, 1) gibt und an einer beliebigen Stelle im Intervall
(0, 1) ist der Wert positiv. Für n = 0 ist die Aussage äquivalent, dass es für
den Eintrag von ({0}, {{1}, . . . , {k − 1}}) genau 0 Nullstellen im Intervall
[0, 1) gibt und für alle anderen Einträge genau eine Nullstelle in [0, 1) und
in beiden Fällen mindestens für ein p positiv ist. (Eigentlich muss man die
0-te Ebene nicht prüfen, da bestimmte gültige Muster auf Ebene 0 die Wahr-
scheinlichkeit 0 haben (alle Muster, bei denen die 0 nicht infiziert ist).) Mit
Lemma 4.32, angewendet auf das Polynom h(p)(αAn − αAn+1), kann man
dies ausrechnen. (Man sieht auch, dass man nicht α ausrechnen muss, son-
dern es reicht ein beliebiges positives Vielfaches auszurechnen, welches den
Rechenaufwand etwas senkt)

Auf diese Weise kann man ein minimales n0 berechnen, sodass für alle
p ∈ (0, 1), alle n ≥ n0 und alle M ∈ M1(Ck) Pp(Xn0 = M) > Pp(Xn0+1 =
M) ist.

Zusammenfassend soll der Algorithmus zum Berechnen des minimalen n0,
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welches Pp(Xn0 = M) > Pp(Xn0+1 = M) für alle M ∈ M1(Ck) berechnet,
skizzenhaft aufgeführt werden:
Berechne Übergangsmatr ix A der Markovkette (Xn) .
Berechne Übergangsmatr ix B von (Yn) .
Berechne d i e s t a t i o n ä re Ver te i lung β von B .
Berechne d i e S t a r t v e r t e i l u n g von (Xn) α aus β .
Berechne so lange αAn − αAn+1 b i s a l l e Eintr äge

( auß er be i ∞) p o s i t i v s ind .
Dazu benutze d i e Sturmsche−Kette .

Der Rechenaufwand ist relativ groß aufgrund der vielen Zustände der
Markovketten (Xn) und (Yn). Fasst man die Zustände so zusammen, in-
dem man aus allen äquivalenten Mustern jeweils einen Zustand macht und
betrachtet man dann bei den entsprechenden modifizierten Markovketten
von (Xn) bzw. (Yn) (die sind dann Markovketten auf [M1(Ck)] ∪ ∞ und
[M0(Ck)]) funktioniert das obige Verfahren genauso analog. Auf diese Wei-
se kann man dann Pp(Xn0 ∈ [M ]) > Pp(Xn0+1 ∈ [M ]) überprüfen bzw.
Pp(Xn ∈ [M ]) und Pp(Y0 ∈ [M ]) ausrechnen, welches aufgrund der geringen
Anzahl von Zuständen schneller erfolgt.

Man kann noch eine Optimierung im Fall der nicht äquivalenten Muster
durchführen: Man berechnet die stationäre Verteilung β′ für den äquivalenten
Fall und überträgt den mit Hilfe der Symmetrie auf den nicht äquivalenten
Fall, um β zu erhalten:

Proposition 4.34 Sei der Graph Ck gegeben und sei Y ′n die zu Yn entspre-
chende Zufallsvariable für äquivalente Muster d.h. Y ′n = [M ] genau dann,
wenn Yn ∈ [M ]. Sei weiter β′ die stationäre Verteilung von Y ′n 1, dann gilt:

β(M) = 1
#[M ]β

′([M ])

Beweis
Seien M,M ′ ∈ M0(Ck) und Φ ein Graphenautomorphismus von Ck. Dann
gilt offensichtlich für alle n ∈ Z P(Yn = M |Yn−1 = M ′) = P(Yn = Φ(M)|Yn−1 =
Φ(M ′)) (vgl. Definition 1.10). Somit hat man aus Symmetriegründen β(M) =
β(Φ(M)) und

β′([M ]) = P(Y ′n = [M ]) =
∑

M ′∈[M ]
P(Yn = M ′)

=
∑

M ′∈[M ]
β(M ′) =

∑
M ′∈[M ]

β(M) = #[M ]β(M)

�
1Mit dem gleichen Argument wie im Beweis von Lemma 4.27 ist β′ auch die Verteilung

von Y ′n für alle n ∈ Z
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Damit reduziert man die sehr aufwendige Berechnung der stationären Ver-
teilung von Yn deutlich, da man nur noch im Wesentlichen die stationäre
Verteilung von Y ′n ausrechnen muss.

In folgender Tabelle sind sowohl das optimale n0 für den äquivalenten
und nicht äquivalenten Fall für Ck aufgelistet:

Graph Minimales n0 äquivalente Muster Minimales n0 nicht äquivalente Muster
C2 0 2
C3 2 2
C4 2 4

Um eine Vorstellung vom Rechenaufwand zu bekommen, sind in folgender
Tabelle die Anzahl der gültigen (infizierten/uninfizierten) Muster von Ck für
kleine k angegeben, die ebenfalls mit dem Computer berechnet worden sind
(siehe Anhang):

k #M (Ck) # M0(Ck) #M1(Ck) #[M(Ck)] # [M0(Ck)] #[M1(Ck)]
2 5 2 3 4 2 2
3 15 5 10 7 3 4
4 49 14 35 15 6 9
5 168 42 126 31 10 21
6 594 132 462 80 24 56
7 2145 429 1716 204 49 155
8 7865 1430 6435 599 130 469

Dass die obige Anzahl von Mustern teilweise bekannten Folgen entspricht,
sieht man in Bemerkung 4.40.

Es soll noch der Funktionsgraph von p → Pp(Xn = M) für zwei be-
stimmte Muster und Ebenen beispielhaft angeschaut werden. Zuerst soll für
das Muster ({0}, {{1}, {2}}) im Graphen C3 in der Ebene 2 und 3 der Funk-
tionsgraph angegeben werden, der den typischen Verlauf hat, wie man ihn
für die meisten Muster und Ebenen erwartet:
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0.0 0.2 0.4 0.6 0.8 1.0
p

0.000

0.005

0.010

0.015

0.020

0.025

Graphen von
Pp(XC3

1 = ({0}, {{1}, {2}}))
und

Pp(XC3
2 = ({0}, {{1}, {2}}))

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Graph von
Pp(XC3

2 = ({0, }, {{1}, {2}}))− Pp(XC3
3 =

({0}, {{1}, {2}}))

Es kann auch sein, dass für ein bestimmtes Muster M ∈ M1(C3) und
ein n ∈ N die Ungleichung Pp(Xn = M) < Pp(Xn+1 = M) für alle p ∈ (0, 1)
erfüllt ist (das ist insbesondere der Fall, wenn das Muster nicht auf allen
Ebenen auftreten kann, wie das Muster ({2}, {{0, 1}})), welches nicht auf
der Ebene 0 eintritt, aber auf allen Ebenen, die größer als 0 sind.

Ebenfalls kann es vorkommen, dass für ein bestimmtes Muster M ∈
M1(Ck) und ein n ∈ N für bestimmte p ∈ (0, 1) die Ungleichung Pp(Xn =
M) < Pp(Xn+1 = M) und für bestimmte p ∈ (0, 1) die Ungleichung Pp(Xn =
M) > Pp(Xn+1 = M) erfüllt ist. Dies ist z.B. für C3 und dem Muster
({2}, {{0, 1}}) und n = 1 der Fall. Die folgenden Bilder stellen die Diffe-
renz von Pp(X1 = ({2}, {{0, 1}})) und Pp(X2 = ({2}, {{0, 1}})) und jeweils
die beiden Graphen für p ∈ (0, 1) dar:

0.0 0.2 0.4 0.6 0.8 1.0
p

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Graphen von
Pp(XC3

1 = ({2}, {{0, 1}}))
und

Pp(XC3
2 = ({2}, {{0, 1}}))

0.0 0.2 0.4 0.6 0.8 1.0
p0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Graph von
Pp(XC3

1 = ({2}, {{0, 1}}))− Pp(XC3
2 = ({2}, {{0, 1}}))

Natürlich kann man die Vermutung 1.7 für Ck für kleine k nachweisen,
wenn man das obige Verfahren noch ergänzt:

Man führt das obige Verfahren durch und bestimmt ein n0, sodass Pp(Xn0 =
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M) > Pp(Xn0+1 = M) gilt. Wegen Lemma 1.13 und Lemma 1.14 gilt
Pp((0, 0)↔(a, n)) > Pp((0, 0)↔(a, n + 1)) für n ≥ n0. Daher muss man
Pp((0, 0)↔(a, n)) > Pp((0, 0)↔(a, n + 1)) nur noch für n < n0 nachweisen.
Da

Pp((0, 0)↔(a, n)) =
∑

M=(A,{B1,...,Bl})∈M̃
1(Ck),a∈A

Pp(X̃n = M)

muss man nur Pp(X̃n = M) für endlich viele n und alle M ∈ M̃
1(Ck)

bestimmen.
Pp(X̃n = M) kann man einfach aus αAn und β, welche die stationäre

Verteilung von Yn ist, bestimmen:

Proposition 4.35 Sei β die stationäre Verteilung von (Yn). SeiM = (AM , {BM
1 , . . . ,

BM
lM
}) ∈ M1(Ck) und M ′ = (∅, {BM ′

1 , . . . , BM ′
lM′
}) ∈ M0(Ck) und D ⊆

{0, . . . , k − 1}. Betrachte folgende Äquivalenzrelation auf V (G): Sei x ∼ y
genau dann, wenn für ein t ∈ N es Mengen F1, . . . , Ft ∈ {AM , BM

1 , . . . , B
M
lM
}

und G1, . . . , Gt−1 ∈ {AM
′
, BM ′

1 , . . . , BM ′
lM′
} gibt, sodass x ∈ F1 und y ∈ Ft und

für alle i ∈ {1, . . . , t− 1} ist Fi ∩D ∩Gi 6= ∅ und Gi ∩D ∩ Fi+1 6= ∅.
Mit r(M,M ′, D) ist das Muster (A, {B1, . . . , Bl}) gemeint für das AM ⊆

A und A,B1, . . . , Bl die Äquivalenzklassen bezüglich ∼ sind.
Dann ist

Pp(X̃n = M̃) =
∑

M∈M1(Ck),M ′∈M0(Ck),D⊆{0,...,k−1}
mit r(M,M ′,D)=M̃

Pp(Xn = M)p#D(1−p)k−#Dβ(M ′)

Beweis
Den Graphen Ck × Z kann man in die Graphen Ck × ((−∞, n]], Ck × [[n +
1,∞)) und Ck×((n, n+1)) 2 zerlegen (im Prinzip eine Partition bezüglich der
Kanten). Der Graph Ck× [[n+1,∞)) ist isomorph zu Ck× ((−∞, n+1]]. Da
Yn+1 die Verteilung β hat, gibt β an, welche Knoten auf der n+ 1-ten Ebene
im Graphen Ck×((−∞, n+1]] miteinander verbunden sind, also auch welche
Knoten auf der n + 1-ten Ebene im Graphen Ck × [[n + 1,∞)) miteinander
verbunden sind. Xn gibt an, welche Knoten auf der n-ten Ebene im Graphen
Ck × ((−∞, n]] miteinander verbunden sind und welche infiziert sind. Wenn
man also Xn kennt und weiß, welche vertikalen Kanten zwischen der n-ten
und n + 1-ten Ebene offen sind und weiß, welche Knoten auf der n + 1-
ten Ebene im Graphen Ck × [[n + 1,∞)) miteinander durch einen offenen

2Mit dem Graphen Ck × ((n, n+ 1)) ist analog zu Definition 4.16, der Graph gemeint,
dessen Knoten {(v1, v2)|v1 ∈ Ck, v2 ∈ {n, n+1}} und dessen Kanten {{(v, n), (v, n+1)}|v ∈
Ck} sind. Damit ist Ck × ((n, n + 1)) der Graph, der nur aus den Kanten zwischen der
n-ten und n+ 1-ten Ebene besteht.
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Pfad verbunden sind, dann kennt man auch das zweiseitige Muster auf der
n-ten Ebene. Genauer, wenn Xn = M und genau von den vertikalen Kanten
zwischen der n-ten und n + 1-ten die Kanten{(d, n), (d, n + 1)} für d ∈ D
offen sind und im Graphen Ck× [[n+1,∞)) genau die Knoten auf der n+1-
ten Ebene so verbunden sind, wie es dem Muster M ′ entspricht, hat man
auf der n-ten Ebene das Muster r(M,M ′, D). Denn die Äquivalenzrelation ∼
entspricht dann der Aussage (x, n)↔Ck×Z(y, n).

Da die Wahrscheinlichkeit, dass von k Kanten genau die Kanten {(d, n),
(d, n + 1)} für d ∈ D offen sind, ist p#D(1− p)k−#D die Wahrscheinlichkeit
für die offenen vertikalen Kanten zwischen den beiden Ebenen. Damit folgt
die Behauptung. �

Da man die Äquivalenzklassen leicht ausrechnen kann, ist es möglich, für
kleine k Vermutung 1.7 zu zeigen:

Proposition 4.36 Für k = 2, 3, 4 gilt für den Graphen Ck:

Pp((0, 0)↔Ck×Z(a, n)) > Pp((0, 0)↔Ck×Z(a, n+ 1))

Mit dem im Anhang verfügbaren Computerprogramm wurde die Propo-
sition nachgerechnet. Dabei hat man wieder die Sturmsche Ketten benutzt,
um zu überprüfen, ob Pp((0, 0)↔Ck×Z(a, n))−Pp((0, 0)↔Ck×Z(a, n+1)) > 0
ist.
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4.3 Ck × Z für beliebige k
In diesem Abschnitt betrachten wir das Gitter Ck × Z und beweisen Ver-
mutung 1.8 für Ck × Z. Dabei wird der Beweis in drei Teile zerlegt, indem
wir zum einen p nahe bei 0, p nahe bei 1 und p etwas entfernt von 0 und 1
betrachten. Die Beweise funktionieren fast genauso für die meisten Graphen
G× Z mit G endlich und zusammenhängend. Dazu muss man eine zusätzli-
che Einschränkung an G machen, die die meisten Graphen erfüllen. Für alle
drei Fälle ist es wichtig, etwas mehr über Muster zu erfahren. Deshalb zuerst
etwas Vorarbeit, die in allen drei Fällen hilfreich ist.

4.3.1 Vorbemerkung zu Mustern
Mit Xn ist wieder das (einseitige) Muster auf der n-ten Ebene bezeichnet.
(siehe Definition 1.6)

Zuerst sollen die gültigen Muster von Ck charakterisiert werden:

Lemma 4.37 Ein EbenenmusterM ist genau dann gültig (also aus M (Ck)),
wenn für alle x1, x2, x3, x4 ∈ Ck gilt: Sind bzgl. M x1 und x2 verbunden
und x3 und x4 verbunden, aber x1 und x3 sind nicht verbunden, so folgt,
dass es in Ck disjunkte Pfade gibt, die x1 und x2 verbinden und x3 und x4
verbinden. Anschaulich bedeutet dies, dass es keinen Rundweg auf Ck gibt, in
dem abwechselnd in der Reihenfolge x1, x3, x2 und x4 auftreten.

Zusätzlich gilt sogar, dass es für alle Muster x ∈M1(Ck) und y ∈M(Ck)
ein n ≤ k+2

2 gibt, sodass
Px(Xn = y) > 0

Ist x ∈M(Ck) und y ∈M0(Ck) so gibt es ein n ≤ k+1
2 , sodass

Px(Xn = y) > 0

Beweis
SeiM ein gültiges Muster und sei eine Kantenperkolation auf Ck×Z gegeben,
die auf Ebene n des Graphen das Muster M hat. Wäre x1, x2, x3, x4 ∈ Ck,
sodass es in Ck keine disjunkten Pfade gibt, die x1 und x2 verbinden und x3
und x4 verbinden und jeweils (x1, n) mit (x2, n) und (x3, n) mit (x4, n) durch
einen offenen Pfad in Ck× ((−∞, n]] verbunden sind, dann wäre dies in dem
betrachteten Graphen nur möglich, wenn sich die Pfade schneiden, also wäre
auch x1 mit x3 verbunden. Damit erfüllt M die geforderte Eigenschaft.

Sei nun M ein Muster mit den Eigenschaften aus dem Lemma. Nun soll
gezeigt werden, dass dieses Muster gültig ist. Es wird sogar gezeigt, dass wir
das Muster M von jedem anderen gültigen Muster aus M1(Ck) in maximal
k+2

2 Schritten erreichen können.
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Abbildung 4.1: Beispiel für den Fall k = 6 und das zu konstruierende Muster
({1, 2}, {{0, 3}, {4, 5}}). Hier ist F1 = {1, 2}, F2 = {0, 3}, F3 = {4, 5} und
A1 = E(C6), A2 = {{0, 5}, {3, 4}, {4, 5}}, A3 = {{4, 5}}

Dazu definieren wir uns zuerst ein paar Hilfsmengen: Wir definieren zu-
erst folgende Teilmengen Aj und Fj von E(Ck) bzw. V (Ck). Sei F1 die Menge
der infizierten Knoten von M und A1 := E(Ck) sei die Menge aller Kan-
ten von Ck. Wir definieren nun die Mengen F1, F2, . . . , Fj ⊆ V (Ck) und
A1, A2, . . . , Aj ⊆ E(Ck) wie folgt rekursiv: Seien Ft−1 und At−1 definiert. Gibt
es keine miteinander verbundenen Knoten (bezüglich M) in V (Ck) \

⋃t−1
i=1 Fi,

so ist man fertig und setze j = t− 1. Anderenfalls betrachte die Komponen-
ten von Ck \

⋃t−1
i=1 Fi D

1
t , . . . , D

s
t . Nach Voraussetzung an M sind Knoten nur

miteinander verbunden (außer den Knoten aus ⋃t−1
i=1 Fi), wenn sie in den glei-

chen Komponenten D1
t , . . . D

s
t liegen . Für jede Komponente Dl

t setze F l
t = ∅,

falls es keine Knoten in Dl
t gibt, die mit einem anderen Knoten verbunden

sind bezüglich des Musters M . Anderenfalls wähle eine Teilmenge F l
t von

Dl
t, sodass alle Knoten aus F l

t verbunden sind (bzgl. M) und kein Knoten
aus Dl

t \ F l
t mit einem Knoten aus F l

t verbunden ist (und F l
t sollte mindes-

tens zwei Elemente haben). Darüber hinaus sollte F l
t so gewählt werden, dass

die Knoten aus Dl
t höchstens dann miteinander verbunden sind, wenn sie in

der gleichen Komponente aus Dl
t \F l

t liegen. Dies ist nach Voraussetzung an
M möglich. Z.B. wenn O.B.d.A. Dl

t = {0, 1, . . . , r} ist, wähle das kleinste
Element e aus {0, 1, . . . , r}, welches mit mindestens einem anderen Knoten
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verbunden ist. Setze als F l
t die Menge alle Knoten, die mit dem Knoten e

(einschließlich) verbunden sind. Wären nun zwei Knoten y1, y2 miteinander
verbunden, die in unterschiedlichen Komponenten von Dl

t \ F l
t liegen, und e′

ein Knoten aus F l
t , der zwischen y1 und y2 liegt, so erfüllen e, e′ und y1, y2

nicht die Voraussetzungen des Musters.
Definiere Ft := ⋃

F l
t . Weiter definiere mit Alt die Menge aller Kanten aus

E(Ck), deren beide Endpunkte in Dl
t liegen und sei At := ⋃

Alt.
Wir konstruieren nun aus jedem Muster in j + 1 Schritten das Muster

M :
Zuerst sehen wir, dass wir durch einen Schritt das Muster erreichen, dass

alle Knoten infiziert sind (einfach alle Kanten offen auf der nächsten Ebe-
ne). Mit einem weiteren Schritt erreicht man das Muster, indem genau die
infizierten Knoten von M infiziert sind und die Knoten aus F l

2 jeweils unter-
einander verbunden sind (nur die vertikalen Kanten mit Endpunkten aus F1
und genau die horizontalen Kanten A2 sind offen). Analog definiere immer
so weiter: Im t-ten Schritt seien nur die vertikalen Kanten aus ∪t−1

i=1Fi of-
fen und die genau horizontalen Kanten At offen. Man sieht im t-ten Schritt
sind F1, . . . , Ft−1 jeweils miteinander verbunden und die Knoten aus F1 sind
genau die infizierten Knoten. Im letzten Schritt sollen genau die vertikalen
Kanten aus ⋃ji=1 Fi offen sein und alle anderen Kanten geschlossen. Somit
erhält man das Muster M .

Man beachte, dass F1, . . . , Fj disjunkte Teilmengen von V (Ck) sind und
damit |F1| + · · · + |Fj| ≤ k ist. Wenn |F1| + · · · + |Fj| = k, dann kann man
sogar den letzten Schritt weglassen (da in diesem Fall im letzten Schritt alle
vertikalen Kanten offen sind). Somit kann man im Falle |F1|+ · · ·+ |Fj| = k
in j Schritten das Muster M konstruieren und im Falle |F1|+ · · ·+ |Fj| < k
in j + 1 Schritten das Muster M konstruieren.

Wir rechnen nun aus, wie viele Schritte man maximal braucht. Man be-
achte, dass F2, . . . , Fj jeweils mindestens die Mächtigkeit 2 haben. Weiter gibt
es k−|F1| uninfizierte Knoten und F2, . . . , Fj sind Teilmengen von V (Ck)\F1.
Somit ist j ≤ (k − |F1|)/2 + 1, wegen |F1| + · · · + |Fj| ≤ k. Mit der obigen
Fallunterscheidung für die Summe von |F1|, . . . , |Fj| erhält man, dass man
im Falle j < (k− |F1|)/2 + 1 höchstens (k− |F1|)/2 + 3

2 Schritte braucht und
im Falle j = (k − |F1|)/2 + 1 höchstens (k − |F1|)/2 + 1 Schritte braucht.
Insgesamt braucht man deshalb höchstens (k − |F1|+ 3)/2 Schritte.

Ist |F1| ≥ 1, so braucht man höchstens (k + 2)/2 Schritte. Wenn wir ein
Muster aus M0(Ck) erreichen wollen, ist |F1| = 0, so könnte man den ersten
Schritt weglassen und hätte insgesamt auch nur maximal (k + 1)/2 Schritte.
Insgesamt folgt die Behauptung.
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Bemerkung 4.38 Die uninfizierten Muster entsprechen den aus der Lite-
ratur bekannten nichtkreuzenden Partitionen (siehe z.B. [Sim00]). Eine Par-
tition A von der Menge {1, . . . , n} heißt nichtkreuzende Partition, wenn für
alle a, b, c, d ∈ {1, . . . , n} mit 1 ≤ a < b < c < d ≤ n gilt, sind a, c und b, d
in einer gemeinsamen Klasse, dann sind auch a, b, c, d in einer gemeinsamen
Klasse. Nach Definition von nichtkreuzenden Partitionen und Lemma 4.37
entsprechen die nichtkreuzenden Partitionen von {1, . . . , k}. den nicht infi-
zierten Mustern von Ck (bis auf die Bezeichnung). Die Anzahl der nichtkreu-
zenden Partitionen einer k-elementigen Menge ist 1

k+1

(
2k
k

)
(siehe [Sim00]).

Damit ist #M0(Ck) = 1
k+1

(
2k
k

)
.

Im Prinzip verwenden wir eigentlich hauptsächlich Lemma 4.37 in Form
von folgendem Korollar:
Korollar 4.39 Für alle n ≥ bk+2

2 c und x, y ∈M1(Ck) (und p > 0) ist
Px(Xn = y) > 0

Beweis
Nach Lemma 4.37 gibt es ein l ≤ k+2

2 , sodass Px(Xl = y) > 0. Da man immer
in dem gleichen Muster bleibt, wenn in der nächsten Ebene alle vertikalen
Kanten offen sind und alle horizontalen Kanten geschlossen sind, erhält man
die Aussage. �

Bemerkung 4.40 Für allgemeine endliche zusammenhängende Graphen G
kann man nicht immer so eine Schranke finden. Betrachte zum Beispiel die
Stern-Graphen V (G) = {0, . . . , k − 1} und E(G) = {(0, 1), (0, 2), (0, 3), . . . ,
(0, k − 1)}. Man kann nicht vom Zustand ({0}, {{1}, {2}, {3}, . . . , {k − 1}})
in den Zustand ({0}, {{1, 2, 3, . . . , k − 1}}) kommen. Wäre dies möglich, so
müsste in jedem Zwischenschritt mindestens ein Knoten infiziert sein. Ist der
Knoten 0 infiziert und die anderen Knoten nicht alle miteinander verbun-
den oder alle anderen Knoten auch infiziert, so erreicht man das gewünschte
Muster nicht im nächsten Schritt. Ist der Knoten 0 nicht infiziert, so ist im
nächsten Schritt mindestens ein Knoten ungleich dem 0 Knoten infiziert und
somit können nicht alle Knoten außer dem 0 Knoten verbunden sein (außer
diese sind infiziert).

Wir wollen nun eine Schranke wie in Lemma 4.37 für alle möglichen Gra-
phen speziell bezeichnen:
Definition 4.41 Für jeden endlichen zusammenhängenden Graphen G be-
zeichnen wir mit mG das minimale n ∈ N, sodass für alle x, y ∈M1(G)

Px(Xn = y) > 0
ist. Sollte es kein solches n geben, so setzen wir mG =∞.
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Im Laufe des Kapitels werden wir uns nur mit Graphen beschäftigen, für
die mG <∞ gilt.

Bemerkung 4.42

1. Natürlich hängt nach Definition mG nicht von p ab und nach Korol-
lar 4.39 ist mCk ≤ k+2

2 .

2. mG kann auch deutlich kleiner sein, da z.B: für G = Kk ist offen-
sichtlich mKk = 2: Es ist mKk > 1, da man z.B. von dem Zustand
({0}, {{1, . . . , k − 1}}) nicht in einem Schritt in den Zustand ({1},
{{0, 2, 3, 4, . . . , k− 1}}) kommen kann (Für den Nachfolgezustand gilt,
dass entweder in einem Schritt der Knoten 0 infiziert ist oder es ist
kein Knoten infiziert.) Dass man in zwei Schritten bei G = Kk jeden
Zustand erreichen kann, ist klar: In einem Schritt erreicht man , dass
alle Knoten infiziert sind und in einem weiteren Schritt erreicht man
die gewünschten infizierten Knoten und die gewünschten Verbindungen
untereinander. Damit sind auch offensichtlich alle Muster gültig für
G = Kk.

3. Es reicht für mG < ∞ nur zu verlangen, dass es für jedes x, y ∈
M1(G) ein nx,y ∈ N mit P x(Xnx,y = y) > 0 gibt. Dann ist mG ≤
maxx,y∈M1(G){nx,y}, da auch Px(Xm = y) > 0 für alle m > nx,y.
(Py(X1 = y) > 0, denn, wenn auf der Ebene alle vertikalen Kan-
ten offen und alle horizontalen Kanten geschlossen sind, bleibt man
im gleichen Zustand).

4. Auch ist klar, wenn G ein Graph mit genau k Knoten ist, dann ist ent-
weder mG ≤ 1

e

∑∞
l=0

lk+1

l! oder mG =∞, da es nach Proposition 1.8 nur
insgesamt höchstens 1

e

∑∞
l=0

lk+1

l! Muster gibt und wenn man von einem
Muster x das Muster y erreichen kann, dann ist es auch möglich von x
aus y zu erreichen, indem man in jedem Übergang (der Markovkette)
ein anderes Muster hat.

Bemerkung 4.43 Ist der Graph G nicht so groß, so kann man mG einfach
ausrechnen. Dazu kann man z.B. die Übergangsmatrix A von (Xn)n aufstel-
len und betrachten, für welche n ∈ N die Matrix An nur Einträge ungleich 0
für Startmuster aus M1(G) hat. (vgl. auch Abschnitt 4.2) In folgender Ta-
belle sind die Werte für mCk für kleine k angegeben (diese wurden mit dem
Programm, welches sich im Anhang befindet, ausgerechnet, dabei muss man
die wirkliche Potenz nicht immer ausrechnen, sondern es reicht bei jedem
Schritt jeden Eintrag, der ungleich 0 ist, 1 zu setzen):
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k mCk

2 2
3 2
4 3
5 3
6 4
7 4

Also sieht man, dass die Abschätzung von mCk , welche man mit Lemma 4.37
erhält, für k ≤ 7 optimal ist.

Bevor man nun mit dem eigentlichen Beweis von Vermutung 1.8 beginnt,
noch ein Lemma, welches eine Variante von Lemma 4.24 ist:

Lemma 4.44 Sei p ∈ (0, 1) und n0 ∈ N0 und G ein endlicher Graph und
x ∈M1(G). Gilt für alle y ∈M1(G)

Px
p(Xn0+1 = y) < Px

p(Xn0 = y),

dann gilt auch für alle n ≥ n0

Px
p(Xn+1 = y) < Px

p(Xn = y).

Beweis
Dies kann man einfach nachrechnen:

Px
p(Xn = y) =

∑
y′∈M1(Ck)

Px
p(Xn0 = y′) Py′

p (Xn−n0 = y)

>
∑

y′∈M1(Ck)
Px
p(Xn0+1 = y′) Py′

p (Xn+1−(n0+1) = y) = Px
p(Xn+1 = y) �

4.3.2 Betrachte p klein
Als Nächstes soll folgende Aussage bewiesen werden, die den Fall p nahe bei
0 betrachtet:

Satz 4.45 Sei G ein endlicher zusammenhängender Graph mit mG < ∞
und genau k Knoten (k > 1) und b Kanten und dem maximalen Grad d. Nun
betrachten wir den Graphen G× Z. Weiter sei 0 < t < 1. Dann gilt für alle

n ≥ 2+2mG(k+b−1)
1−t und alle p ≤ min{

(
1

k(2k+b−2+ k
k−1d)

) 1
t

, 1
d

2+2mG(k+b−1)
1−t e+3

2

} und

x, y ∈M1(G):
Px
p(Xn+1 = y) < Px

p(Xn = y)
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Beweis
Sei n = d2+mG(4k−2)

1−t e.Nach Lemma 4.44 reicht es, die Aussage nur für n zu
zeigen.

Wir bezeichnen im Folgenden die Knoten von G mit 0, . . . , k − 1. Sei Bi

das Ereignis, dass es j ∈ {0, . . . , k − 1} gibt, sodass auf der i-ten und i+ 1-
ten Ebene von den vertikalen Kanten nur die Kanten {(j, i − 1), (j, i)} und
{(j, i), (j, i + 1)} offen und alle anderen vertikalen Kanten geschlossen sind
und darüber hinaus auf der i-ten Ebene alle horizontalen Kanten geschlossen
sind. Definiere An+1 := ⋃bn−1

2 c
i=0 B2i+1.

Mit Hilfe von An+1 soll der Beweis in drei Schritte unterteilt werden.
Im ersten Schritt wird Px

p({Xn+1 = y} ∩ Acn+1) abgeschätzt und im zweiten
Schritt Px

p({Xn+1 = y} ∩ An+1) und jeweils mit Px
p(Xn = y) verglichen. Im

letzten Schritt werden die beiden ersten Schritte kombiniert.
1. Schritt: Sei B′i das Ereignis, dass es einen Pfad von offenen Kanten

von der i−1-ten Ebene zu der i+1-ten Ebene gibt und insgesamt mindestens
3 Kanten der 2k + b Kanten der i-ten Ebene und vertikale Kanten der i+ 1-
ten Ebene offen sind. Insbesondere ist B′i ⊇ {Xn+1 ∈M1(G)} ∩ Bc

i . Es gilt
deshalb, dass

Px
p({Xn+1 = y} ∩ Acn+1) = Px

p({Xn+1 = y} ∩
bn−1

2 c⋂
i=0

Bc
2i+1)

≤ Px
p(
bn−1

2 c⋂
i=0

B′2i+1) =
bn−1

2 c∏
i=0

Px
p(B′2i+1) ≤ Px

p(B′1)n2 .

(4.6)

Dabei hat man berücksichtigt, dass B′1, B′3, . . . , B′2bn−1
2 c+1 unabhängig sind, da

diese auf unterschiedlichen Kantenmengen definiert sind.
Es soll nun Px(B′1) nach oben abgeschätzt werden: Wenn B′1 eintritt, gibt

es entweder einen Pfad der Länge 3 oder länger, der die 0-te Ebene mit der
2-ten Ebene verbindet und nur zwei vertikale Kanten verwendet (die erste
und letzte Kante des Pfades) oder es gibt ein j ∈ {0, . . . , k − 1}, sodass die
Kanten {(j, 0), (j, 1)} und {(j, 1), (j, 2)} offen sind und zusätzlich muss es
mindestens eine offene Kante auf der 1-ten Ebene oder eine offene vertikale
Kante auf der 2-ten Ebene geben. Sei C das Ereignis, dass es einen Pfad gibt,
der mindestens die Länge 3 mit den obigen Eigenschaften hat. Weiter sei C ′
das Ereignis, dass es zwei offene vertikale Kanten übereinander gibt und das
zusätzlich eine offene Kante an einer der entsprechenden Positionen auftritt.

Es gibt höchstens kd(d − 1)m−2 Möglichkeiten für einen Weg der Länge
m, der in der 0-ten Ebene beginnt und in der 2-ten Ebene endet und nur
horizontale Kanten benutzt (außer bei der ersten und letzten Kante). Denn
für die erste Kante hat man k Möglichkeiten und für die zweite Kante d
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Möglichkeiten diese auszuwählen. Für die nächsten Kanten gibt es jeweils
d − 1 Möglichkeiten (alle Kanten außer der vorigen Kante sind möglich)
für die Auswahl der Kanten und die letzte (vertikale) Kante ist eindeutig

bestimmt. Wegen p ≤
(

1
k(2k+b−2+ k

k−1d)

) 1
t

≤ 1
kd

erhält man damit:

Pp(C) ≤ kdp3 + kd(d− 1)p4 + kd(d− 1)2p5 + . . .

≤ kdp3(1 + 1
k

+ (1
k

)2 + . . . ) = kdp3 1
1− 1

k

= kdp3 k

k − 1
Tritt das Ereignis C ′ ein, so gibt es k Möglichkeiten für die beiden ver-

tikalen Kanten und es gibt 2k + b − 2 Möglichkeiten für mindestens eine
zusätzliche offene Kante auf der 1-ten Ebene oder eine vertikale Kante auf
der 2-ten Ebene. Damit ist:

Px
p(C ′) ≤ k(2k + b− 2)p3

Insgesamt ist also

Px
p(B′1) ≤ Px

p(C) + Px
p(C ′) ≤ k(2k + b− 2 + k

k − 1d)p3

Mit (4.6) erhalten wir dann:

Px
p({Xn+1 = y} ∩ Ac) ≤

(
k(2k + b− 2 + k

k − 1d)p3
)n

2

Nun soll Px
p(Xn = y) nach unten abgeschätzt werden: Nach Definition

von mG gilt für alle x, y ∈ M1(G), dass Px
p(XmG = y) > 0 ist. Da man

in mG Schritten von jedem Zustand jeden Zustand erreichen kann und (es

ist p < 1
2 , da

(
1

k(2k+b−2+ k
k−1d)

) 1
t

≤
(

1
k

) 1
t ≤ 1

k
≤ 1

2) für jeden Zustandsüber-
gang die Wahrscheinlichkeit größer ist als pk+b, ist für jedes w ∈ M1(G)
Pw
p (XmG = y) ≥ (pk+b)mG. Ist auf einer Ebene ein Knoten infiziert, dann

ist auch ein Knoten auf l Ebene höher infiziert, wenn die entsprechenden
vertikalen Kanten zwischen diesen beiden Ebenen offen sind. Deshalb ist
Px
p(Xl ∈M1(G)) ≥ pl. Damit hat man für n > mG:

Px
p(Xn = y) =

∑
z∈M1(G)

Px
p(Xn−mG = z) Pz

p(XmG = y)

≥
∑

z∈M1(G)
Px
p(Xn−mG = z) min

w∈M1(G)
Pw
p (XmG = y)

= Px
p(Xn−mG ∈M1(G)) min

w∈M1(G)
Pw
p (XmG = y)

≥ pn−mG(pk+b)mG
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Man beachte, dass n
2 + (1 − k − b)mG ≥ tn2 + 1 genau dann, wenn n ≥

2+2mG(k+b−1)
1−t ist. Somit gilt nach Wahl von n und p:

Px
p(Xn+1 = y, Acn+1)

Px
p(Xn = y) ≤

(
k(2k + b− 2 + k

k−1d)p3
)n

2

pn−mG(pk+b)mG

=
(
k(2k + b− 2 + k

k − 1d)
)n

2

p
n
2 +(1−k−b)mG

≤
(
k(2k + b− 2 + k

k − 1d)
)n

2

pt
n
2 +1

≤
(
k(2k + b− 2 + k

k − 1d)pt
)n

2

p ≤ p

Wobei bei der letzten Ungleichung benutzt wurde, dass nach Voraussetzung
an p die Ungleichung pt ≤ 1

k(2k+b−2+ k
k−1d) gilt.

2. Schritt: Für z, w ∈ M1(G) bezeichne mit Bz,w
i die Teilmenge von

Bi, die auf der i + 1-ten Ebene das Muster w hat und für die beiden offe-
nen vertikalen Kanten {(j, i− 1), (j, i)} und {(j, i), (j, i+ 1)} gilt, dass j ein
infizierter Knoten aus z ist.

Mit B̂z,w
i bezeichnen wir folgende Obermenge von Bz,w

i : B̂z,w
i ist das Er-

eignis, dass für ein j ∈ {0, . . . , k − 1}, wobei j ein infizierter Knoten aus
z ist, auf der i + 1-ten Ebene von den vertikalen Kanten nur die Kanten
{(j, i), (j, i + 1)} offen und alle anderen vertikalen Kanten geschlossen sind
und darüber hinaus es auf der i+1-ten Ebene das Muster w gibt. Anschaulich
unterscheiden sich Bz,w

i und B̂z,w
i dadurch, dass man bei B̂z,w

i die i-te Ebene
nicht betrachtet. Insbesondere ist also

Pp(Bz,w
i ) = p(1− p)k+b−1 Pp(B̂z,w

i ) < pPp(B̂z,w
i ). (4.7)

Wenn das Ereignis An+1 eintritt, muss es ein i mit 0 ≤ i ≤ bn−1
2 c geben,

sodass das Ereignis B2i+1 eintritt. Deshalb gilt:

Px
p({Xn+1 = y} ∩ An+1) ≤

bn−1
2 c∑
i=0

Px
p({Xn+1 = y} ∩B2i+1)

=
bn−1

2 c∑
i=0

∑
z,w∈M1(G)

Px
p({Xn+1 = y} ∩Bz,w

2i+1 ∩ {X2i = z,X2i+2 = w})
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Es soll nun betrachtet werden, was dies auf den unterschiedlichen Kanten-
mengen ⋃2i

j=0Ej,
⋃2i+2
j=2i+1Ej und

⋃n+1
j=2i+3Ej bedeutet:

=
bn−1

2 c∑
i=0

∑
z,w∈M1(G)

Px
p(X2i = z) Pp(Bz,w

2i+1) Pw
p (Xn+1−(2i+2) = y)

Unter Verwendung von (4.7) erhält man:

< p

bn−1
2 c∑
i=0

∑
z,w∈M1(G)

Px
p(X2i = z) Pp(B̂z,w

2i+1)︸ ︷︷ ︸
=Pp(B̂z,w2i )

Pw
p (Xn−(2i+1) = y)

Betrachtet man dies wieder als Ereignisse auf unterschiedlichen Kantenmen-
gen, so erhält man:

= p

bn−1
2 c∑
i=0

∑
z,w∈M1(G)

Px
p({Xn = y} ∩ B̂z,w

2i ∩ {X2i = z,X2i+1 = w})

≤ p

bn−1
2 c∑
i=0

Px
p(Xn = y)

= p(bn+ 1
2 c) Px

p(Xn = y)

3. Schritt: Kombiniert man Schritt 1 und 2, so erhält man nach Wahl
von n und p:

Px
p(Xn+1 = y) = Px

p({Xn+1 = y} ∩ An) + Px
p({Xn+1 = y} ∩ Acn)

< (p+ pbn+ 1
2 c)) Px

p(Xn = y) ≤ p(1 + n+ 1
2 ) Px

p(Xn = y)

≤ p(3
2 +
d2+2mG(k+b−1)

1−t e
2 ) Px

p(Xn = y) ≤ Px
p(Xn = y)

In der letzten Ungleichung wurde verwendet, dass p ≤ 1
d

2+2mG(k+b−1)
1−t e+3

2
ist. �

Bemerkung 4.46

1. Man sieht, wenn man Schranke an n möglichst klein wählen möchte,
dann muss man t nahe bei 0 wählen, hat aber dann den Nachteil, dass
die Schranke an p sehr klein wird.
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2. Da
(

1
k(2k+b−2+ k

k−1d)

) 1
t

monoton wächst und 1
d

2+2mG(k+b−1)
1−t e+3

2

monoton

fällt in t, gilt die Aussage für möglichst große p’s, wenn
(

1
k(d−1)(2k+b−2)

) 1
t =

1
d

2+2mG(k+b−1)
1−t e+3

2

ist. Natürlich ist dann n relativ groß.

Man beachte, dass der Graph Ck genau k Knoten und k Kanten (für
k ≥ 3, für k = 2 hat man genau 1 Kante) hat. Somit erhalten wir folgendes
Korollar:

Korollar 4.47 Man kann in Satz 4.45 für G = Ck mit k > 1

n ≥ 2 +mCk(4k − 2)
1− t

und

p ≤ min{
(

1
k(3k − 2 + k

k−12)

) 1
t

,
1

d
2+mCk (4k−2)

1−t e+3
2

}

wählen.

4.3.3 Betrachte p in der Mitte
Betrachte das Gitter G × Z. Im Folgenden ist immer Z der Zeitpunkt, an
dem der Prozess ausstirbt. Genauer:

Definition 4.48 Betrachte die Kantenperkolation im Gitter G×Z . Im Fol-
genden ist ZG×Z definiert durch

ZG×Z := min{n ∈ N |0=(x, n) für alle x ∈ G}

Wieder schreibe Z statt ZG×Z, wenn klar ist, auf welchen Graphen man sich
bezieht.

Man beachte, dass der Prozess mit Wahrscheinlichkeit 1 ausstirbt und somit
die Definition sinnvoll ist.

Wir benutzen für den Fall, dass p nicht nahe bei 0 oder 1 ist, den Satz 3.7.
Dazu werden wir zuerst die quasi-stationäre Verteilung von X1, X2, . . . be-
züglich Z für jedes Muster aus M1(G) nach unten beschränken, falls es
eine quasi-stationäre Verteilung gibt. (später wird gezeigt, dass es genau eine
quasi-stationäre Verteilung gibt):
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Lemma 4.49 Sei G ein endlicher zusammenhängender Graph mit mG <∞
und genau k Knoten und b Kanten und αG×Z eine quasi-stationäre Verteilung
von X1, X2, . . . . Es gilt für alle x ∈M1(G), dass

αG×Z(x) ≥

(pk+b)mG 1
(1−(1−p)k)mG , für p ≤ 1

2

pmG((1− p)k+b−1)mG 1
(1−(1−p)k)mG für p ≥ 1

2

ist.
Beweis
Nach der Definition der quasi-stationären Verteilung gilt:

α(y) = Pα(XmG = y)
Pα(Z > mG) (4.8)

Es soll nun Pα(XmG = y) nach unten und Pα(Z > mG) nach oben abgeschätzt
werden. Da das Ereignis {Z > mG} nur eintritt, wenn es auf jeder Ebene
mindestens eine offene vertikale Kante gibt (dafür ist die Wahrscheinlichkeit
1− (1− p)k), ist

Pα(Z > mG) ≤ (1− (1− p)k)mG (4.9)

Man kommt nur von einem Muster aus M1(G) zu einem Muster M1(G)
in einem Schritt, wenn mindestens eine vertikale Kante offen ist. Jeder Über-
gang mit einer offenen Kante hat für p ≤ 1

2 mindestens die Wahrscheinlich-
keit pk+b und für p ≥ 1

2 mindestens p(1−p)k+b−1 (es ist mindestens eine Kan-
te offen und für p < 1

2 sind die Konfigurationen mit vielen offenen Kanten
unwahrscheinlicher, für p > 1

2 die Konfigurationen mit vielen geschlossenen
Kanten). Deshalb folgt für Px(X1 = x′) > 0:

Px(X1 = x′) ≥

pk+b, für p ≤ 1
2

p(1− p)k+b−1, für p ≥ 1
2

(4.10)

Setze t(p) := pk+b für p ≤ 1
2 und t(p) := p(1−p)k+b−1 für p > 1

2 . Da für x, y ∈
M1(G) Px(XmG = y) > 0 ist, gibt es xx,y0 = x, xx,y1 , xx,y2 , . . . , xmG−1, x

x,y
mG

=
yx,y ∈M1(G) mit Pxx,yi−1(X1 = xx,yi ) > 0. Deshalb gilt mit (4.10):

Pα(XmG = y) ≥
∑

x∈M1(G)
α(x)

mG−1∏
i=0

Pxx,yi (X1 = xx,yi+1) ≥
∑

x∈M1(G)
α(x)(t(p))mG = (t(p))mG

Insgesamt folgt nun damit aus (4.8), (4.9) die Behauptung. �

Bemerkung 4.50
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1. Beachte das limp→0(pk+b)mG 1
(1−(1−p)k)mG = 0, da wegen der Rechenregel

von l’Hopital gilt

lim
p→0

pk+b

1− (1− p)k = lim
p→0

d
dp
pk+b

d
dp

1− (1− p)k
= lim

p→0

(k + b)pk+b−1

k(1− p)k−1 = 0

und limp→1 p
m((1−p)k+b−1)mG 1

(1−(1−p)k)mG = 0 (dies gilt offensichtlich).
Damit ist die Abschätzung nahe bei 0 und 1 fast trivial. Dies ist auch
der Grund, dass wir die Fälle p nahe bei 0 und p nahe bei 1 gesondert
behandeln müssen.

2. Man sollte auch beachten, dass (pk+b)mG 1
(1−(1−p)k)mG monoton wachsend

auf p ∈ (0, 0.5) und pmG((1 − p)k+b−1)mG 1
(1−(1−p)k)mG monoton fallend

auf p ∈ (0.5, 1) ist:

Die Funktion x 7→ 1
(xk−(x−1)k) hat die Ableitung k(x−1)k−1−kxk−1

(xk−(x−1)k)2 , welche

offensichtlich kleiner als 0 für x ≥ 1 (und k ∈ N) ist. Also ist die
Funktion für x ≥ 1 monoton fallend und somit ist die Funktion p 7→

1
(1/p)k−(1/p−1)k monoton wachsend auf (0, 0.5). Da

(pk+b) 1
1− (1− p)k = pb

1
(1/p)k − (1/p− 1)k

gilt die erste Aussage, da auch pb monoton wachsend auf (0, 0.5) ist.
Die zweite Aussage ist klar, da 1

(1−(1−p)k) monoton fällt und auch p(1−
p) auf (0.5, 1) monoton fällt (mit der ersten Ableitung sieht man es
sofort) und somit auch p(1 − p)k+b−1 und schlussendlich auch p((1 −
p)k+b−1) 1

1−(1−p)k monoton fällt auf (0.5, 1).

Deshalb ist die untere Abschätzung bei Lemma 4.49 besonders bei p = 1
2

relativ weit weg von 0.

Mit der obigen Aussage kann man eine Abschätzung gleichmäßig für p ∈
[ε, 1− ε] ε > 0 für die quasi-stationäre Verteilung angeben.

Lemma 4.51 Sei G ein zusammenhängender endlicher Graph mit k Knoten
und b Kanten. Dann gibt es für die Markovkette XG×Z

n genau eine quasi-
stationäre Verteilung αG×Z (auf M1(G)) und für alle x ∈ M1(G) und p ∈
(0, 1) gibt es ein cG(p) ∈ (0, 1), sodass gilt:

||Px
p(XG×Z

n ∈ ·|Z > n)− αG×Z(·)||TV ≤ 2 (1− cG(p))n
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Wenn die Knoten von G mit 0, . . . , k − 1 bezeichnet werden, kann man
cG(p) = minx∈M1(G) Px

p(XG×Z
1 = ({0, . . . , k − 1}, {})|Z > 1) (also das Mini-

mum von jedem gültigen Zustand in einem Schritt den Zustand zu erreichen,
dass alle Knoten infiziert sind) setzen. Weiter gilt dann

cG(p) ≥ pk

1− (1− p)k

und speziell für den Graphen Ck mit k > 2 und Kk hat man

cCk(p) ≥
kpk(1− p) + pk+1

1− (1− p)k

und
cKk(p) ≥

p
∏k−1
i=1 (1− (1− p)i)
1− (1− p)k

Beweis
Der Beweis basiert darauf, Satz 3.7 anzuwenden.

Sei M0 das Muster aus M1(G), bei dem alle Knoten infiziert sind. (Man
kann O.B.d.A. davon ausgehen, dass die Knoten von G mit 0, . . . , k − 1
bezeichnet werden. Dann ist M0 := ({0, . . . , k − 1}, {}))

Setze cG(p) := minx∈M1(G) Px
p(X1 = M0|Z > 1). Es soll nun gezeigt

werden, dass für alle x ∈M1(G) gilt:

Px
p(X1 = M0|Z > n) ≥ cG(p) (4.11)

Wegen (man beachte, dass es umso wahrscheinlicher ist auf der n−1-ten Ebe-
ne einen infizierten Knoten zu haben, je mehr Knoten auf der 0-ten Ebene in-
fiziert sind und somit PM0

p (Z > n− 1) ≥ Px
p(Z > n− 1) für alle x ∈M1(G))

Px
p(Z > n)

PM0
p (Z > n− 1)

=
∑
y∈M1(G) Px

p(X1 = y) Py
p(Z > n− 1)

PM0(Z > n− 1)
≤

∑
y∈M1(G)

Px
p(X1 = y) = Px

p(Z > 1)

gilt (4.11):

Px
p(X1 = M0|Z > n) =

Px
p(X1 = M0) PM0

p (Z > n− 1)
Px
p(Z > n)

≥
Px
p(X1 = M0)
Px
p(Z > 1) = Px

p(X1 = M0|Z > 1) ≥ cG(p)
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Wähle als ν die Verteilung auf M1(G), die nur das Muster M0 annimmt.
Daher ν(M0) = 1. Somit gilt der erste Teil der Aussage aufgrund von (4.11),
wenn wir Satz 3.7 mit cG(p) und ν anwenden.

Nun soll noch cG(p) abgeschätzt werden:
Für alle x ∈M1(G) ist

Px
p(XG×Z

1 = M0|Z > 1) =
Px
p(X1 = M0)
Px
p(Z > 1)

und trivialerweise ist P x
p (Z > 1) ≤ 1 − (1 − p)k (mindestens eine vertikale

Kante ist offen). Somit ist, wenn man tG(p) := minx∈M1(G) Px
p(X1 = M0)

setzt,

cG(p) ≥ tG(p)
1− (1− p)k .

Im Folgenden wird jetzt tG(p) abgeschätzt, um die einzelnen Abschätzungen
für cG(p) zu erhalten:

Wenn man mit einem beliebigen infizierten Zustand startet, dann hat man
im nächsten Schritt alle Knoten infiziert, wenn eine bestimmte vertikale Kan-
te offen ist und die horizontalen Kanten einen offenen Spannbaum von allen
Knoten auf der nächsten Ebene enthalten. Also ist, da ein Spannbaum von k
Knoten k − 1 Kanten enthält,

tG(p) = min
x∈M1(G)

Px
p(X1 = ({0, . . . , k − 1}, {})) ≥ pk

Für den Fall G = Ck mit k > 2 betrachten wir P x(X1 = ({0, . . . , k −
1}, {})): Wenn eine bestimmte vertikale Kante offen ist und k−1 horizontale
Kanten offen sind, dann sind auf der nächsten Ebene alle Knoten infiziert.
Also ist

tCk(p) = min
x∈M1(G)

Px
p(X

Ck×Z
1 = ({0, . . . , k − 1}, {})) ≥ kpk(1− p) + pk+1.

Ist G = Kk, so kann man tG(p) dadurch nach unten abschätzen, indem
man den Fall betrachtet, dass eine bestimmte vertikale Kante offen ist und
alle Knoten auf der Ebene nur durch Pfade, die nur aus horizontalen Kanten
bestehen, miteinander verbunden sind. Daher ist eine untere Schranke für
die Wahrscheinlichkeit p mal der Wahrscheinlichkeit, dass eine Kantenper-
kolation im Graphen Kk alle Knoten verbindet. Den letzten Teil kann man
wieder durch die Wahrscheinlichkeit abschätzen, dass folgende Konstrukti-
on einen selbstvermeidenden Pfad in der Kantenperkolation im Graphen Kk

konstruiert, der in 0 startet und alle Knoten besucht:
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Man startet im Knoten 0 und falls es eine offene Kante am Knoten 0 gibt,
wähle eine aus und nehme als zweiten Knoten des Pfades den entsprechen-
den Knoten. Nun gehe wie folgt vor, bis man alle Knoten besucht hat (oder
man nicht weiterkommt). Nehme eine offene Kante von diesem Knoten zu
einem Knoten, den man bisher noch nicht besucht hat, als neuen Knoten.
Im ersten Schritt ist die Wahrscheinlichkeit, dass der Knoten 0 eine offene
Kante hat 1 − (1 − p)k−1. Wenn man schon i Knoten besucht hat, dann ist
die Wahrscheinlichkeit, dass der Knoten eine offene Kante zu einem neuen
Knoten hat 1− (1− p)k−i. Insgesamt ist also

tKk(p) = min
x∈M1(G)

Px
p(X

Kk×Z
1 = ({0, . . . , k − 1}, {})) ≥ p

k−1∏
i=1

(1− (1− p)i)�

Bemerkung 4.52 In [Gil59] findet man eine kompliziertere Abschätzung
(als im vorigen Beweis verwendet) für die Wahrscheinlichkeit, dass bei ei-
ner Perkolation im Graphen Kk alle Knoten miteinander verbunden sind.
Dort wurde gezeigt, dass die Wahrscheinlichkeit größer oder gleich

1− (1− p)k−1
((

1 + (1− p)
k−2

2
)k−1

− (1− p)(k−2)(k−1)/2
)

− (1− p)k/2
(
(1 + (1− p)(k−2)/2)k−1 − 1

)
ist.

Nun können wir zum eigentlichen Resultat aus diesem Unterabschnitt
kommen:

Satz 4.53 Sei G ein zusammenhängender endlicher Graph mit k Knoten
und b Kanten und mG < ∞. Weiter sei 0 < ε < 1

2 . Dann existiert ein
n0 ∈ N, sodass für alle n ≥ n0, x, y ∈M1(G) und p ∈ [ε, 1− ε] gilt:

Px
p(Xn+1 = y) < Px

p(Xn = y)

Man kann n0 := (k+(k+b)mG) log(ε)−log(2)
log(1−εk) wählen.

Speziell für G = Ck kann man n0 := (k+2kmCk ) log(ε)−log(2)
log(1−(k+1)ε1+k) und für G = Kk

kann man n0 := (k(mG+1)+2(k2)) log(ε)−log(2)

log(1−p
∏k−1
i=1 (1−(1−ε)i))

wählen.

Beweis
Sei p ∈ [ε, 1− ε].
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Man beachte, dass gilt

Px
p(Xn+1 = y)
Px
p(Xn = y) < 1⇔

Px
p(Xn+1 = y|Z > n+ 1)

Px
p(Xn = y|Z > n) <

Px
p(Z > n)

Px
p(Z > n+ 1) (4.12)

Wir haben:

Px
p(Z > n+ 1)
Px
p(Z > n) = Px

p(Z > n+ 1|Z > n) ≤ 1− (1− p)k

Dabei wurde verwendet, dass, wenn man die Höhe n erreicht hat, mindes-
tens eine vertikale Kante offen sein muss, um die nächste Ebene zu erreichen.
Somit folgt, wenn

Px
p(Xn+1 = y|Z > n+ 1)

Px
p(Xn = y|Z > n) <

1
1− (1− p)k ,

dass
Px
p(Xn+1 = y) < Px

p(Xn = y)

ist. Sei αp(·) die eindeutige quasi-stationäre Verteilung von X1, X2, . . . und
g(p) ∈ (0, 1) so gewählt, dass

||Px
p(Xn ∈ ·|Z > n)− αp(·)||TV ≤ 2g(p)n (4.13)

(nach Lemma 4.51 existiert so ein g(p) und die quasi-stationäre Verteilung
ist eindeutig). Damit gilt für αp(y) > g(p)n:

Px
p(Xn+1 = y|Z > n+ 1)

Px
p(Xn = y|Z > n) ≤ αp(y) + g(p)n+1

αp(y)− g(p)n <
αp(y) + g(p)n
αp(y)− g(p)n

Da 1
1−(1−p)k ≥

1
1−εk ist, reicht es zu zeigen, dass für αp(y) > g(p)n

αp(y) + g(p)n
αp(y)− g(p)n ≤

1
1− εk .

Dies ist äquivalent zu

1− αp(y)− g(p)n
αp(y) + g(p)n ≤ εk ⇔ 2g(p)n

αp(y) + g(p)n ≤ εk.

Damit gilt die Aussage sicherlich, wenn 2 g(p)
n

αp(y) ≤ εk (also insbesondere auch
αp(y) > g(p)n) bzw. n ≥ k log(ε)+log(αp(y))−log(2)

log(g(p)) .
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Nach Lemma 4.49 ist für alle p ∈ [ε, 1 − ε] αp(y) ≥ (εk+b)mG und nach
Lemma 4.51 kann man in (4.13) g(p) := 1−pk ≤ 1− εk wählen. (der Nenner
1−(1−p)k in Lemma 4.51 wurde mit 1 abgeschätzt) So folgt die Behauptung.

Für G = Ck folgt die Behauptung ebenfalls aus Lemma 4.51, da man
g(p) := 1− kpk(1− p)− pk+1 ≤ 1− (k + 1)εk+1 wählen kann und es ist nach
Lemma 4.49 αp(y) ≥ (ε2k)mCk . Damit gilt für

n ≥ k log(ε) + log(αp(y))− log(2)
log(g(p)) ≥ k log(ε) + log((ε2k)mCk )− log(2)

log(1− (k + 1)εk+1)

die Gleichung (4.12) und somit auch die Behauptung.
Bei G = Kk kann man verwenden, dass man nach Lemma 4.51

g(p) := 1− p
k−1∏
i=1

(1− (1− p)i)

wählen kann. Wegen Lemma 4.49 und der Tatsache, dass ein vollständiger
Graph b =

(
k
2

)
Kanten hat und nach Bemerkung 4.42 istmKk = 2, ist αp(y) ≥(

εk+(k2)
)2

. Damit folgt die Behauptung für

n ≥ k log(ε) + log(α(p))− log(2)
log(g(p)) ≥ k log(ε) + log((εk+(k2))2)− log(2)

log(1−∏k−1
i=1 (1− (1− p)i))

�

Bemerkung 4.54 Es soll noch einmal ein kurzer Blick auf (4.12) geworfen
werden. Man beachte, dass Px

p(Z > n + 1|Z > n) für alle n ungefähr p
für p → 0 ist (gilt {Z > n} für kleine p’s, so ist höchstwahrscheinlich nur
ein Knoten auf der Ebene n infiziert). Da ebenfalls, heuristisch gesehen, für
p→ 0 Pxp(Xn+1=y|Z>n+1)

Pxp(Xn=y|Z>n) gegen 1 konvergiert, so scheint es auch ohne Satz 4.45
klar zu sein, dass die Aussage auf ganz (0, 1−ε] erweitert werden kann. Später
wird für die Erweiterung auf (0, 1− ε] Satz 4.45 verwendet.

4.3.4 p nahe bei 1

Der Beweis für p nahe bei 1 hat etwas Ähnlichkeit zum Beweis nahe bei 0.
Hier unterscheiden wir die Fälle, ob es eine Ebene gibt, in der alle Kanten
offen sind. (Im Gegensatz zu dem Fall p nahe 0 haben wir betrachtet, ob es
eine Ebene mit nur einer Kante gibt)
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Satz 4.55 Sei G ein Graph mit k Knoten und b Kanten und mG < ∞.
Es gibt ein p′ < 1 und ein n0, sodass für alle n ≥ n0 und p ∈ [p′, 1) und
x, y ∈M1(G) gilt

Px
p(Xn = y) > Px

p(Xn+1 = y)

Man kann n0 := 2((k + b − 1)mG + k) wählen, wobei man p′ := 2k−1
√

2k−1
2k

setzen kann.

Beweis
Sei Tn die größte Ebene i zwischen der Ebene 1 und n, in der alle vertikalen
Kanten offen sind und die Knoten der Ebene einen offenen Spannbaum in
dem Teilgraphen G×{i} bilden. Gibt es keine solche Ebene, dann setze Tn =
∞. Man beachte im Falle Tn = m mit m ∈ {1, . . . , n} sind die Knoten aus
Em−1 ∪ Em im Graphen G× ((m− 1,m]]3 miteinander verbunden.

Wir haben

Px
p(Xn+1 = y) = Px

p(Xn+1 = y, Tn+1 = 1)
+ Px

p(Xn+1 = y, 1 < Tn+1 ≤ n+ 1) + Px
p(Xn+1 = y, Tn+1 =∞)

Man beachte, dass ein Spannbaum eines Graphen mit k Knoten k−1 Kanten
hat und jede Ebene k vertikale Kanten hat. Somit ist p2k−1 die Wahrschein-
lichkeit, dass auf der i-ten Ebene alle vertikalen Kanten offen sind und es
einen offenen Spannbaum im Graphen G × {i} gibt. Damit ist (1 − p2k−1)n
die Wahrscheinlichkeit, dass es zwischen der 2. (einschließlich) und n+1-ten
(einschließlich) Ebene keine Ebene gibt, sodass alle vertikalen Kanten offen
sind und die offenen horizontalen Kanten einen Spannbaum aller Knoten der
Ebene enthält. Damit hat man

Px
p(Xn+1 = y, Tn+1 = 1) + Px

p(Xn+1 = y, Tn+1 =∞)
= 1− Px

p(Xn+1 = y, 1 < Tn ≤ n+ 1)
< 1− Px

p(1 < Tn ≤ n+ 1) = (1− p2k−1)n
(4.14)

Ist ω eine Konfiguration aus {Tn+1 = m,Xn+1 = y} mit 1 < m ≤ n + 1,
so erhalten wir eine Konfiguration ω′ aus {Tn = m− 1, Xn = y}, indem wir
die m−1-te Ebene komplett entfernen (einschließlich der vertikalen Kanten)
und diese wieder zwischen der n+ 1-ten Ebene und n+ 2-ten Ebene (von ω)

3Mit dem Graphen G × ((m − 1,m]] ist der Graph mit den Knoten Em−1 ∪ Em und
den Kanten {{(v, n), (v′, n)}|{v, v′} ∈ E(G)} ∪ {{(v, n− 1), (v, n)}|v ∈ V (G)} gemeint.
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einfügen. Genauer bildet man ω auf ω′ mit der Abbildungsvorschrift

ω′({(i, j), (k, l)}) =



ω({(i, j), (k, l)}), j, l < m− 1 oder j > n+ 1
oder l > n+ 1

ω({(i,m− 1), (k,m− 1)}), j = l = n+ 1
ω({(i,m− 2), (k,m− 1)}), j = n und l = n+ 1
ω({(i,m− 1), (k,m− 2)}), j = n+ 1 und l = n

ω({(i, j + 1), (k, l + 1)}), sonst

ab. Man beachte, da im Graphen G × ((m − 1,m]] bei ω alle Knoten durch
offene Pfade miteinander verbunden sind und somit ist Xm−1 bei ω′ das Mus-
ter, dass alle Knoten infiziert sind, da es bei ω eine Verbindung vom Kno-
ten (0, 0) zu der m − 2-ten Ebene gibt (wie auch bei ω′) und im Graphen
G× ((m− 2,m− 1]] alle Knoten bei ω′ miteinander durch offene Pfade ver-
bunden sind. Die offenen Kanten von K(Em) bis K(En+1) bei ω entsprechen
den offenen Kanten von K(Em−1) bis K(En) bei ω′. Somit ist Xn bei ω′ das
Muster y, da sowohl Xm bei ω als auch Xm−1 bei ω′ das Muster, welches alle
Knoten infiziert hat, ist.

Man sollte berücksichtigen, dass auf der m− 1-ten Ebene bei ω mindes-
tens eine vertikale Kante offen ist und somit bei ω′ eine vertikale Kante auf
der n+ 1-ten Ebene offen ist. Insbesondere hat man eine injektive Abbildung
von {Tn+1 = m,Xn+1 = y} nach {Tn = m− 1, Xn = y} ∩ An+1, wobei An+1
das Ereignis ist, dass mindestens eine vertikale Kante auf der n+1-ten Ebene
offen ist. Also ist aufgrund der Invarianz von Pp:

Px
p(Xn+1 = y, Tn+1 = m) ≤ Px

p({Xn = y, Tn = m− 1} ∩ An+1)
= Px

p(Xn = y, Tn = m− 1) Pp(An+1).

Dabei hat man bei der Gleichung berücksichtigt, dass An+1 und {Xn = y, Tn =
m − 1} auf unterschiedlichen Kanten definiert sind und somit unabhängig
sind.

Die Wahrscheinlichkeit, dass mindestens eine vertikale Kante offen ist,
liegt bei 1− (1− p)k. Also ist P(An+1) = 1− (1− p)k. Somit ist:

Px
p(Xn+1 = y, 1 < Tn+1 ≤ n+ 1) =

n+1∑
m=2

Px
p(Xn+1 = y, Tn+1 = m)

≤
n+1∑
m=2

Px
p(Xn = y, Tn = m− 1) Pp(An+1)

≤ Px
p(Xn = y, 1 ≤ Tn ≤ n)(1− (1− p)k)

(4.15)



98 KAPITEL 4. CK × Z UND VERWANDTE GRAPHEN

Wäre

(1− p2k−1)n < (1− p)k Px
p(Xn = y) (4.16)

so folgt nach (4.14) und (4.15):

Px
p(Xn+1 = y) < (1− p2k−1)n + (1− (1− p)k) Px

p(Xn = y, 1 ≤ Tn ≤ n)
≤ Px

p(Xn = y)

Also reicht es (4.16) zu zeigen.
Da gilt Px

p(XmG = y) > 0 für alle x, y ∈ M , hat man für alle x, y ∈
M1(G) Px

p(XmG = y) ≥ (p(1− p)k+b−1)mG (Es muss mindestens eine verti-
kale Kante auf jeder Ebene offen sein. Darüber hinaus ist p > 1 − p, wegen
p ≥ k+b

√
k+b
k+b+1 > 1

2 und somit sind Konfigurationen unwahrscheinlicher je
mehr geschlossene Kanten sie haben ).

Auch gilt Px
p(Xn−mG ∈M1(G)) ≥ pn−mG, da, wenn die nächsten n−mG

vertikalen Kanten offen sind, die über einem infizierten Knoten der 0-ten
Ebene liegen, dann ist die n−mG-te Ebene mit einem infizierten Knoten auf
der 0-ten Ebene verbunden. Damit gilt für n > mG:

Px
p(Xn = y) ≥ Px

p(Xn−mG ∈M1(G)) min
z∈M1(G)

Pz
p(XmG = y) ≥ pn((1−p)k+b−1)mG

Somit gilt für alle n > mG die Ungleichung (4.16), wenn:

(1− p2k−1)n < pn((1− p)k+b−1)mG(1− p)k (4.17)

Setze n0 := 2((k + b− 1)mG + k). Falls

(1− p2k−1) < p
√

1− p (4.18)

gilt, hat man für alle n ≥ n0 (da (1− p) < 1)

(1− p2k−1)n < pn
(√

1− p
)n
≤ pn

(√
1− p

)2((k+b−1)mG+k)

und somit ist (4.17) und damit dann auch (4.16) erfüllt.
Die Ungleichung (4.18) ist äquivalent dazu, dass

(1− p2k−1)(1 + p+ p2 + · · ·+ p2k−2) < p2

Da (1 + p + p2 + · · · + p2k−2) < 2k − 1 gilt die Ungleichung erst recht,
wenn

2k − 1 ≤ p2 + (2k − 1)p2k−1

Da p2 ≥ p2k−1 gilt (man kann O.B.d.A. annehmen, dass k > 1, da der Satz
für k = 1 sogar für alle p ∈ (0, 1) richtig ist, wie man leicht sieht) die
Ungleichung, wenn 2k − 1 ≤ p2k−12k ist. Damit folgt, dass für p2k−1 ≥ 2k−1

2k
die Ungleichung (4.16) erfüllt ist und somit gilt die Behauptung. �
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Offensichtlich gilt deshalb:

Korollar 4.56 Sei G = Ck und p′ := 2k−1
√

2k−1
2k . Dann gilt für alle n ≥

2((2k − 1)mCk + k) und p ∈ [p′, 1] und x, y ∈M1(Ck)

Px
p(XCk×Z

n = y) > Px
p(X

Ck×Z
n+1 = y)

4.3.5 Zusammengefasst: Schranke n
In diesem Abschnitt soll nun gezeigt werden, dass Vermutung 1.8 fürmG <∞
gilt und für bestimmte Graphen (die Graphen Ck) geben wir ein konkretes
n an.

Satz 4.57 Sei k ∈ N und δ ∈ (0, 1) so gewählt, dass 1
(1−δ) ≤ 2k 2

δ
−2 (die

Existenz eines solchen δ ist klar 4). Dann gilt für n ≥
(

(4k2)
1
δ

)k+2
(k + 3)

und für alle x, y ∈M1(Ck)

Px(XCk×Z
n = y) > Px(XCk×Z

n+1 = y)

Beweis
Wir setzen im ganzen Beweis voraus, dass k ≥ 3 ist. Man kombiniert alle 3
Lemmas für p klein, p in der Mitte und p groß. Setze ε := 1

(4k2)1/δ . Zeige, die
Aussage gilt für p ∈ (0, ε) bzw. p ∈ [ε, 1− ε] und p ∈ (1− ε, 1):

Für p ∈ (0, ε): Setzt man im Korollar 4.47 t = δ, so hat man wegen(
k(3k − 2 + k

k − 12)
)1/δ

≤ (k(3k − 2 + 3))1/δ =
(
4k2

) 1
δ

und (beachte Lemma 4.37 zu mCk)

d2+mCk (4k−2)
1−δ e+ 3

2 ≤
2+mCk (4k−2)

1−δ + 4
2 ≤

(
k+2

2

)
(4k − 2) + 6

2(1− δ)

=
(k + 2) (k − 1

2) + 3
(1− δ) =

k2 + 3
2k + 2

(1− δ) ≤ k2 + k2

(1− δ) ≤ 4k 2
δ

für alle p < ε und alle n ≥ 2+mCk (4k−2)
1−δ die Aussage P x(Xn = y) > P x(Xn+1 =

y). Da (vgl. obige Rechnung)

2 +mCk(4k − 2)
1− δ ≤ 2 + (k + 2)(2k − 1)

1− δ ≤ 3k2

1− δ ≤ 6k 2
δ <

((
4k2

) 1
δ

)k+2
(k+3)

4Denn die linke Seite geht für δ → 0 gegen 1 und die rechte Seite geht für δ → 0 gegen
∞.
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ist die Aussage für p ∈ (0, ε) gezeigt.
Für p ∈ [ε, 1 − ε]: Da (dabei wird verwendet, dass log(x) ≤ x − 1 für

x > 0 und Lemma 4.37):

(k + 2kmCk) log(ε)− log(2)
log(1− (k + 1)εk+1) =

(k + 2kmCk) log(1
ε
) + log(2)

− log(1− (k + 1)εk+1)

≤
(k + 2kmCk)(1

ε
− 1) + log(2)

(k + 1)εk+1 ≤ k + 2kmCk

(k + 1)εk+2 ≤
1 + 2mCk

εk+2

≤ k + 3
εk+2 =

((
4k2

) 1
δ

)k+2
(k + 3)

folgt die Behauptung direkt aus Satz 4.53.
Für p ∈ (1 − ε, 1): Man beachte, dass nach der Bernoulli-Ungleichung

gilt:

(
1− 1

4k2

)2k−1
≥
(

1− 1
(2k − 1)2k

)2k−1

≥ 1− 2k − 1
(2k − 1)2k = 2k − 1

2k

Damit hat man
2k−1

√
2k − 1

2k ≤ 1− 1
4k2 ≤ 1− ε

Damit folgt aus Satz 4.55, dass für alle p > 1−ε und n ≥ 2((2k−1)mCk +k),
dass Px(Xn = y) > Px(Xn+1 = y). Da mit Lemma 4.37 gilt, dass

2((2k − 1)mCk + k) ≤ (2k − 1)(k + 2) + 2k ≤ 2k(k + 3) ≤
(
4k 2

δ

)k+2
(k + 3)

ist, folgt die Aussage. �

Bemerkung 4.58

1. Man sieht, dass man δ beliebig nahe an 1 wählen kann, wenn k →∞.
Da 1

1−0.5 = 2 ≤ 2k 2
δ
−2 gilt, wäre z.B. δ = 0.5 eine Wahl, die für alle

k ∈ N gilt. Genauer kann man einfach numerisch für ein bestimmtes
(oder ab einer bestimmten Größe) k ein besseres δ ausrechnen.

2. Natürlich könnte man die Abschätzungen etwas genauer durchführen
(besonders für k groß), doch würde sich an der Größenordnung nichts
Qualitatives ändern.

3. Obige Aussage gilt auch für Ck × [[0,∞)), da man im Beweis die kon-
krete Startverteilung nicht benutzt hat, sondern nur Aussagen über die
Markovkette (Xi)i mit einer vorgegebenen (beliebigen) Startverteilung.
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Der vorige Satz gilt analog auch für beliebige Graphen mit mG <∞:

Satz 4.59 Sei G ein zusammenhängender endlicher Graph mit mG <∞, so
gibt es n0 ∈ N, sodass für alle x, y ∈ M1(G), für alle n ≥ n0 und für alle
p ∈ (0, 1) bei dem Graphen G× Z gilt

Px(Xn = y) > Px(Xn+1 = y)

Beweis
Der Beweis funktioniert wieder mit Satz 4.45, Satz 4.53 und Satz 4.55. Nach
Satz 4.45 und Satz 4.55 existieren p′, p′′ und ein n′ ∈ N, sodass für alle n > n′

und alle p ∈ (0, p′) ∪ (p′′, 1), Px(Xn = y) > Px(Xn+1 = y) gilt. Setzt man
ε = min{p′, 1− p′′}, so gibt es nach Satz 4.53 ein n′′, sodass für alle n > n′′

und alle p ∈ [ε, 1 − ε] Px(Xn = y) > Px(Xn+1 = y) gilt. Man setzt nun
n0 := max{n′, n′′}. �

Man hat folgendes Korollar (eigentlich schon ein direktes Korollar von
Satz 4.45), welches eine Abschwächung von Vermutung 1.7 ist:

Korollar 4.60 Sei G ein zusammenhängender endlicher Graph mit mG <
∞, so gibt es ein p′ ∈ (0, 1), sodass für alle p ≤ p′ und a ∈ V (G) gilt:

P(0↔G×Z(a, n)) > P(0↔G×Z(a, n+ 1))

Für G = Ck kann man p′ := 1
4·3a+4k2+6k−1 wählen.

Beweis
Es gibt nach dem Satz ein n0, sodass für alle n ≥ n0 Px(Xn = y) >
Px(Xn+1 = y) gilt. Mit Lemma 1.13 und Lemma 1.14 folgt, dass dann auch
P(0↔G×Z(a, n)) > P(0↔G×Z(a, n+ 1)) gilt.

Für alle n < n0 können wir jeweils ein p(n) ∈ (0, 1) finden, sodass
P(0↔G×Z(a, n)) > P(0↔G×Z(a, n + 1)) gilt (siehe Abschnitt 1.3.1). Damit
erfüllt p′ := min{p(n) : n ≤ n0} die Forderungen.

Für G = Ck setzen wir k ≥ 3 voraus (für k = 1 ist die Aussage trivial,
für k = 2 siehe Abschnitt 4.2). Dann gilt nach Korollar 4.47 mit t = 0.5, da
(vgl. Beweis von Satz 4.57)(

k(3k − 2 + k

k − 12)
)1/0.5

≤ (k(3k + 1))1/0.5 ≤
(
4k2

)2

und

d2+mCk (4k−2)
1−0.8 e+ 3

2 ≤ · · · ≤ k2 + k2

(1− 0.5) = 4k2 ≤
(
4k2

)2
,
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dass für alle n ≥ 2+mCk (4k−2)
1−0.5 und p ≤ 1

(4k2)2

P(0↔Ck×Z(a, n)) > P(0↔Ck×Z(a, n+ 1))

ist. Setze n0 := 4k2+6k = 2+ k+2
2 (4k−2)
1−0.5 ≥ 2+mCk (4k−2)

1−0.5 . Der Kantenabstand von
0 und (a, n) beträgt a+n Kanten. Daher ist pa+n < P(0↔Ck×Z(x, n)). Wenn
es eine Verbindung von 0 zu dem Knoten (a, n+ 1) gibt, muss es mindestens
einen offenen Pfad der Länge a + n + 1, der in 0 startet, geben. Daher ist
pa+n+14 · 3a+n > P(0↔Ck×Z(a, n+ 1)). Also kann man

P(0↔Ck×Z(a, n)) > pa+n ≥ pa+n+14 · 3a+n > P(0↔Ck×Z(a, n+ 1))

für p ≤ p(n) := 1
4·3a+n . Insgesamt hat man daher p′ := 1

4·3a+n0−1 = 1
4·3a+4k2+6k−1

und n < n0: P(0↔Ck×Z(a, n)) > P(0↔Ck×Z(a, n+ 1)). Da(
4k2

)2
≤ 4 · 3k2 ≤ 4 · 3a+4k2+6k−1

folgt die Behauptung für G = Ck. �

Bemerkung 4.61 Man sieht auch an dem Beweis des Korollars, wie man
für einen konkreten Graphen (mit mG < ∞) V ermutung 1.7 für alle p und
n theoretisch beweisen kann. Nach Satz 4.59 gibt es ein n0, sodass für alle
n ≥ n0 die Aussage gilt. Für n < n0 kann man die Aussage mit der Methode
aus Abschnitt 4.2 nachrechnen. Nachdem man nur endlich viele Fälle durch-
gerechnet hat, kann man entscheiden, ob Vermutung 1.7 für diesen Graphen
stimmt. Natürlich ist dann die Schranke an n0 zu groß, um dies effektiv ma-
chen zu können.

Man hat auch folgendes Korollar, welches sich an Fragen anschließt, die
im vorigen Abschnitt betrachtet wurden und Vermutung 1.6 unterstützt:

Korollar 4.62 Sei G ein zusammenhängender endlicher Graph mit mG <
∞, so gibt es n0 ∈ N, sodass für alle n > n0 und alle p ∈ (0, 1) bei dem
Graphen G× Z gilt

Ep[Zn] > Ep[Zn+1]

Beweis
Folgt direkt mit Hilfe von Lemma 1.5. �



Anhang A

Verwendete
Computerprogramme

In diesem Anhang sind alle Computerprogramme aufgeführt, die in dieser
Arbeit verwendet wurden. Die Programme sind alle in Python (https://
www.python.org) geschrieben und verwenden teilweise die CAS-Bibliothek
Sympy (https://www.sympy.org/).
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A.1 Berechnung der Anzahl der selbstvermei-
denden Pfade von Z2, die in E1 enden

’ ’ ’
Berechnet d i e Anzahl der se l b s t ve rme idenden Wege der Länge l , d i e in

der e r s t en Ebene enden und d ie in s t a r t s t a r t e n und d ie Knoten in
v i s i t e d n i ch t benutzen .

’ ’ ’
def anzah l s e lb s t i nE1 ( l , besuchte , s t a r t ) :

(x , y ) = s t a r t
i f l ==0:

i f y==1:
return 1

else :
return 0

anzahl = 0
for i in [ ( x+1,y ) , ( x−1,y ) , ( x , y+1) ,(x , y−1) ] :

i f i in besuchte :
continue

anzahl += anzah l s e l b s t i nE1 ( l −1, besuchte | set ( [ i ] ) , i )
return anzahl

#Erzeugt e ine L i s t e von der Anzahl von den Wegen der Länge 1 b i s 22.
i f __name__ == "__main__" :

besuchte = set ( [ ( 0 , 0 ) ] )
for i in range ( 1 , 2 3 ) :

print ( i , " ␣&␣ " , anzah l s e lb s t i nE1 ( i , besuchte , ( 0 , 0 ) ) , " \\\\ " )

A.2 Berechnung von E[Y ≤m]

’ ’ ’
Berechnet a l l e s e l b s t ve rme idenden Pfade nach po in t von v [−1] der Länge <=k ,
d i e ke ine Knoten aus v benutzen .
’ ’ ’
def calcweg (v , k , po int ) :

l i s tw e g = [ ]
(x , y ) = v [−1]
for r in [ ( x+1,y ) , ( x−1,y ) , ( x , y+1) ,(x , y−1) ] :

i f r==point :
l i s tw e g . extend ( [ tuple ( v+[ po int ] ) ] )

e l i f not ( r in v ) and len ( v ) < k :
l i s tw e g . extend ( calcweg (v+[ r ] , k , po int ) )

return l i s tw e g
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’ ’ ’
Berechnet d i e Wahrsche in l i chke i t von (0 ,0) nach po in t durch einen Pfad
der Länge <=k zu kommen . Rü ckgabe i s t e ine Lis te , d i e man a l s Polynom
in p i n t e r p r e t i e r e n muss .
’ ’ ’
def ca l cprob (k , po int ) :

’ ’ ’
Berechnet d i e Wahrsche in l i chke i t , dass es einen Pfad aus l g i b t
mit der S i eb fo rme l . Da r e k u r s i v berechne t wird , muss beim er s t en
Aufruf kan d i e l e e r e Menge sein , weginkan 0 se in und po ly e ine
ausre ichend lange Lis te , d i e nur aus 0 b e s t e h t . In po ly s t e h t
dann das Ergebnis der Berechnung .
’ ’ ’
def s i e b ( kan , weginkan , l , poly ) :

i f len ( l )==0:
return 0

for i in range (0 , len ( l ) ) :
kannew = set . union ( kan , l [ i ] )
poly [ len ( kannew ) ] += (−1)∗∗weginkan
s i e b (kannew , weginkan+1, l [ i+1 : ] , poly )

a l lwege = [ ] #S o l l e ine Menge von Pfaden en tha l t en , wobei d i e Pfade
#a l s ungeordnete Kanten g e s p e i c h e r t werden .

wege = calcweg ( [ ( 0 , 0 ) ] , k , po int )
for x in wege :

aktweg = set ( [ ] )
for i in range (1 , len ( x ) ) :

e = [ x [ i −1] , x [ i ] ]
e . s o r t ( )
aktweg . add ( tuple ( e ) )

a l lwege . append ( aktweg )
poly = [ 0 ] ∗ (200) #ausre ichend groß
s i e b ( set ( ) , 0 , a l lwege , poly )
return poly

’ ’ ’
Wandelt d i e L i s t e po ly in e ine Po lynomdars te l lung um.
’ ’ ’
def po ly to tx t ( poly ) :

t ex t = " "
for i in range (0 , len ( poly ) ) :

i f t ex t != " " and poly [ i ] > 0 :
t ex t += "+"

i f poly [ i ] == 1 :
t ex t += "p^" + str ( i )

e l i f poly [ i ] != 0 :
t ex t += str ( poly [ i ] ) + " ∗p^" + str ( i )

return t ex t
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’ ’ ’
Berechnet E[Ŷ <=m]
’ ’ ’
def calcEYm(m) :

probg1 = [ 0 ] ∗ (200)
for j in range(−m+1,m) :

r = ca l cprob (m, ( 1 , j ) )
for k in range ( len ( r ) ) :

probg1 [ k]=probg1 [ k]+ r [ k ]
return probg1

#Gibt d i e Berechnung von E[Ŷ <=m] f ür m<= 6 aus
i f __name__ == "__main__" :

for m in [ 1 , 2 , 3 , 4 , 5 , 6 ] :
print (m, ’ : ␣␣ ’ , po ly to tx t ( calcEYm(m) ) )

A.3 Berechnung der gültigen Muster
Der folgende Quellcode enthält Funktionen zum Berechnen der Muster, die
in anderen Programmen benutzt werden.
import i t e r t o o l s as i t
import copy
import f un c t o o l s

’ ’ ’
Gibt b e i e iner Lis te , d i e nur L i s t en enth ä l t d i e Pos i t i on der L i s t e
zurück , d i e e enth ä l t .
’ ’ ’
def ge t lw i th e ( l , e ) :

return next ( ( i for i in range (0 , len ( l ) ) i f e in l [ i ] ) ,−1)

’ ’ ’
Gibt das Muster an , das man aus m erh ä l t , wenn d ie h o r i z o n t a l e n
Kanten aus l vorhanden s ind .
’ ’ ’
def usehoredges (m, l ) :

k=len ( l )
i f (m==[] ) :

return [ ]
#Füge a l l e n ak d i e aus r l verbundenen Knoten hinzu und l ö sche aus r l :
def h( ak , r l ) :

aks=copy . deepcopy ( ak )
while len ( aks )>0:

i=aks . pop ( )
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i f l [ i ]==1:
r=ge t lw i th e ( r l , ( i +1) % k)
i f r !=−1:

ak . extend ( r l [ r ] )
aks . extend ( r l [ r ] )
del r l [ r ]

i f k> 2 and l [ ( i −1) % k]==1:
r=ge t lw i th e ( r l , ( i −1) % k)
i f r !=−1:

ak . extend ( r l [ r ] )
aks . extend ( r l [ r ] )
del r l [ r ]

ak . s o r t ( )

r l=l i s t ( copy . deepcopy (m[ 1 ] ) )
i n f=l i s t ( copy . deepcopy (m[ 0 ] ) )
h( in f , r l )
npart =[ ]
while len ( r l )>0:

a=l i s t ( r l . pop ( ) )
h(a , r l )
npart . append ( a )

npart . s o r t ( )
return [ i n f , npart ]

’ ’ ’
Gibt das Muster an , das man aus m erh ä l t , wenn d ie v e r t i k a l e n
Kanten aus l vorhanden s ind .
’ ’ ’
def useveredges (m, l ) :

i f (m==[] ) :
return [ ]

i n f =[ ]
ver =[ ]
for e in m[ 0 ] :

i f ( l [ e ]==1):
i n f . append ( e )

else :
ver . append ( [ e ] )

for s in m[ 1 ] :
ak=[ ]
for e in s :

i f ( l [ e ]==1):
ak . append ( e )

else :
ver . append ( [ e ] )

i f ( len ( ak ) >0):
ver . append ( ak )

return [ i n f , sorted ( ver ) ]
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’ ’ ’
Gibt f ür Ck das zu m ä q u i v a l e n t e Muster zurück .
Wenn n u l l i d g l e i c h True i s t , dann wird j e d e s u n i n f i z i e r t e Muster
a l s [ ] zurü ckgegeben .
’ ’ ’
def aquiPattern (k ,m, nu l id=True ) :

i f (m==[] ) :
return [ ]

i f nu l id and m[0 ]== [ ] :
return [ ]

ap=[ ]
for s in [ −1 ,1 ] :

#Verschiebung
for i in range (0 , k ) :

np0=[ ]
for x in m[ 0 ] :

np0 . append ( ( s ∗x+i ) % k)
np0 . s o r t ( )

np1=[ ]

for x in m[ 1 ] :
np1ak=[ ]
for y in x :

np1ak . append ( ( s ∗y+i ) % k)
np1ak . s o r t ( )
np1 . append ( np1ak )

np1 . s o r t ( )
ap . append ( [ np0 , np1 ] )

ap . s o r t ( )
return ap [ 0 ]

’ ’ ’
Erzeugt a l l e e i n s e i t i g e n Muster .
Das Programm benu t z t d i e Eigenscha f t , dass man aus dem Muster ,
b e i dem a l l e s i n f i z i e r t i s t , j e d e s gü l t i g e Muster erzeugen kann .
’ ’ ’
@functoo l s . lru_cache ( maxsize=256)
def genPattern (k , aqui=False , n u l l i d=False ) :

def at (m) :
i f aqui :

return aquiPattern (k ,m, nu l l i d )
else :

i f nu l l i d and m!= [ ] and m[0 ]== [ ] :
return [ ]

return m
pattern =[ [ l i s t ( range ( k ) ) , [ ] ] ]
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pr =[ [ l i s t ( range ( k ) ) , [ ] ] ]
while pr :

am=pr . pop ( )
for vk in i t . product ( [ 0 , 1 ] , r epeat=k ) :

mv=at ( useveredges (am, vk ) )
mh=at ( usehoredges (am, vk ) )
i f not mv in pattern :

pattern . append (mv)
pr . append (mv)

i f not mh in pattern :
pattern . append (mh)
pr . append (mh)

return sorted ( pattern )

’ ’ ’
Gibt d i e u n i n f i z i e r t e n Muster zurück .
F a l l s aqui=True , dann werden d ie ä q u i v a l e n t e n
u n i n f i z i e r t e n Muster zurü ckgegeben .
’ ’ ’
@functoo l s . lru_cache ( maxsize=256)
def genPatternun (k , aqui=False ) :

m=genPattern (k , aqui , Fa l se )
return tuple ( x for x in m i f x [ 0 ]==[ ] )
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A.4 Berechnung von demminimalen n für die
Vermutung über die Muster

Benutzt das Programm aus Abschnitt A.3 (hier importiert als genPattern).
from genPattern import genPattern , genPatternun , aquiPattern
from genPattern import useveredges , usehoredges
import i t e r t o o l s as i t
import f un c t o o l s
import sympy as sp

p=sp . Symbol ( ’p ’ , p o s i t i v e = True )

’ ’ ’
Berechnet d i e Übergangsmatr ix .
’ ’ ’
@functoo l s . lru_cache ( maxsize=32)
def createM (k , aqui=True , n u l l i d=True ) :

def at (m) :
i f aqui :

return aquiPattern (k ,m, nu l l i d )
else :

i f nu l l i d and m!= [ ] and m[0 ]== [ ] :
return [ ]

return m
m=genPattern (k , aqui , n u l l i d )
matv=sp . z e ro s ( len (m) , len (m) )
math=sp . z e ro s ( len (m) , len (m) )
for vk in i t . product ( [ 0 , 1 ] , r epeat=k ) :

anzE=vk . count (1 )
wahr=sp . expand (p∗∗anzE ∗ (1−p )∗∗ ( k−anzE ) )

for i in range (0 , len (m) ) :
j=m. index ( at ( useveredges (m[ i ] , vk ) ) )
matv [ i , j ]= matv [ i , j ]+wahr
j=m. index ( at ( usehoredges (m[ i ] , vk ) ) )
math [ i , j ]= math [ i , j ] + wahr

ueb=matv . mult ip ly (math)
return sp . expand ( ueb )

’ ’ ’
Berechnet d i e Übergangsmatr ix f ür u n i n f i z i e r t e Muster .
’ ’ ’
@functoo l s . lru_cache ( maxsize=32)
def createMuni (k , aqui=True ) :

m=genPattern (k , aqui , Fa l se )
mat=createM (k , aqui , Fa l se )
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l i =[ ]
for i in range (0 , len (m) ) :

i f m[ i ] [ 0 ] == [ ] :
l i . append ( i )

return mat [ l i , l i ] . expand ( )

’ ’ ’
i n f i z i e r t den Knoten s im u n i n f i z i e r t e n Muster m
’ ’ ’
def i n fPa r t ( s ,m) :

for i in range (0 , len (m[ 1 ] ) ) :
for j in m[ 1 ] [ i ] :

i f j==s :
return [m[ 1 ] [ i ] ,m[ 1 ] [ : i ]+m[ 1 ] [ i +1 : ] ]

’ ’ ’
Berechnet d i e Anzahl von N u l l s t e l l e n von po ly im I n t e r v a l l [ a , b ) .
’ ’ ’
def countRoots ( pol , a , b ) :

’ ’ ’
Berechnet e ine Sturmsche Kette .
’ ’ ’
def sturm ( poly ) :

i f poly==0:
return [ ]

g=sp . gcd ( poly , sp . d i f f ( poly , p ) )
poly= poly . div ( g ) [ 0 ]
p l=[ poly ]
np=−sp . d i f f ( poly , p)
while np !=0:

p l . append (np)
np=−sp . rem( p l [−2] , np )

return pl
’ ’ ’
Berechnet d i e Anzahl von Vorzeichenwechse ln an der S t e l l e x .
’ ’ ’
def getvorw ( s l , x ) :

l =[e . subs (p , x ) for e in s l ]
l =[v for v in l i f v != 0 ] #a l l e Nul len en t f e rnen
vw=0
for i in range (1 , len ( l ) ) :

i f ( l [ i ]∗ l [ i −1]<0):
vw=vw+1

return vw
s= sturm ( sp . Poly ( pol , p ) ) #Berechnet d i e Sturmsche Kette .
return getvorw ( s , b)−getvorw ( s , a )

’ ’ ’
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Gibt a l l e zu m ä q u i v a l e n t e n Muster zurück f ür Ck .
’ ’ ’
def a l l a qu iPa t t e rn (k ,m) :

a l l p = [ ]
i f k==2:

em=[1]
else :

em=[−1 ,1]
for s in em: #f ür k=2 n i ch t −1 1

for x in range ( k ) :
np1 = [ ( s ∗ i+x ) % k for i in m[ 0 ] ]
np1 . s o r t ( )
np2=[ ]
for j in m[ 1 ] :

a = [ ( s ∗ i+x ) % k for i in j ]
a . s o r t ( )
np2 . append ( a )

np2 . s o r t ( )
a l l p . append ( [ np1 , np2 ] )

return a l l p

’ ’ ’
Die S t a r t v e r t e i l u n g b i s auf Normierung
(Rü ckgabe i s t immer p o s i t i v und ein Polnom)
’ ’ ’
@functoo l s . lru_cache ( maxsize=32)
def berechnepseudoStart (k , aqui=True ) :

ms=createMuni (k , aqui=True )

A=ms . t ranspose ()− sp . eye (ms . c o l s )

l o s=A. nu l l s pa c e ( ) [ 0 ]
l o s=sp . s imp l i f y ( l o s )

b=[ ]
for a in l o s :

b . append ( a . as_numer_denom ( ) [ 1 ] )
den=sp . lcm (b)
l o s=den∗ l o s

# S i c h e r s t e l l e n , dass l o s n i ch t k l e i n e r a l s 0 in (0 ,1) i s t .
for e in l o s . subs (p , sp . Rat iona l ( 1 , 2 ) ) :

i f e<0:
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l o s=−l o s
break

l o s=sp . expand ( l o s )

#Berechnet S t a r t v e r t e l u n g :
mus=genPattern (k , aqui , True )
muuinf=genPatternun (k , aqui=True )
s t a r t =[0]∗ len (mus)

i f aqui :
for i in range (0 , k ) :

for ui in range (0 , len (muuinf ) ) :
t=mus . index ( aquiPattern (k , i n fPa r t ( i , muuinf [ u i ] ) ) )
s t a r t [ t ]= s t a r t [ t ]+ l o s [ u i ] / k

else :
for ui in range (0 , len (muuinf ) ) :

aquiPat=a l l aqu iPa t t e rn (k , muuinf [ u i ] )
for aktp in aquiPat :

t=mus . index ( in fPa r t (0 , aktp ) )
s t a r t [ t ]= s t a r t [ t ]+ l o s [ u i ] / len ( aquiPat )

s t a r t=sp . Matrix ( s t a r t ) . t ranspose ( )
return sp . s imp l i f y ( s t a r t )

’ ’ ’
Berechnet d i e minimale Ebene , ab wann d ie Vermutung f ür d i e Muster g e l t e n .
aqui g i b t an , ob man ä q u i v a l e n t e oder n i ch t ä q u i v a l e n t e Muster b e t r a c h t e t .
’ ’ ’
@functoo l s . lru_cache ( maxsize=32)
def countSchr i t t e (k , aqui ) :

m=createM (k , aqui ) [ 1 : , 1 : ] #Das n i c h t i n f i z i e r t e Muster i s t an S t e l l e 0
#en t f e rne das n i ch t i n f i z i e r t e Muster an S t e l l e 0 .
s t a r t=berechnepseudoStart (k , aqui ) [ 0 , 1 : ]
d i f f =( s t a r t ∗(m∗∗0−m∗∗1 ) ) . expand ( )
i=0
#e r s t e Ebene gesonder t behandeln
for ( j , e ) in enumerate( genPattern (k , aqui , n u l l i d=True ) [ 1 : ] ) :

i f d i f f [ j ] . subs (p , sp . Rat iona l ( 1 , 2 ) ) <= 0 :
i=1

e l i f e == [ [ 0 ] , [ [ j ] for j in range (1 , k ) ] ] :
i f countRoots ( d i f f [ j ] , 0 , 1 ) !=0 :

i=1
e l i f countRoots ( d i f f [ j ] , 0 , 1 ) !=1 :

i=1
i f i ==0:
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return i
else :

d i f f =( d i f f ∗ m) . expand ( )
while True :

r=True
for x in d i f f :

i f x . subs (p , sp . Rat iona l ( 1 , 2 ) ) <= 0 or countRoots (x , 0 , 1 ) !=1 :
d i f f =( d i f f ∗ m) . expand ( )
i=i+1
r=False
break

i f r :
return i

#Berechnet minimale Ebene f ür C2 , C3 und C4 f ür ä q u i v a l e n t e
# und n i ch t ä q u i v a l e n t e Muster :
i f __name__ == "__main__" :

for k in [ 2 , 3 , 4 ] :
print ( ’Minimale␣Ebene␣ f ür ␣C_’ ,k , ’ ␣ i s t ␣ ’ , c ountSchr i t t e (k , aqui=True ) ,
’ ␣ f ür ␣ä qu iva l en t e ␣Muster ’ )
print ( ’Minimale␣Ebene␣ f ür ␣C_’ ,k , ’ ␣ i s t ␣ ’ , c ountSchr i t t e (k , aqui=False ) ,
’ ␣ f ür ␣ n i cht ␣ä qu iva l en t e ␣Muster ’ )
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A.5 Berechnung der Anzahl von Mustern
Benutzt das Programm aus Abschnitt A.3 (hier importiert als genPattern).
from genPattern import genPattern , genPatternun

’ ’ ’
Zä h l t d i e Anzahl von i n f i z i e r t e n / u n i f i z i e r t e n Mustern von Ck .
’ ’ ’
def countPattern (k , aqui=False ) :

gesP=len ( genPattern (k , aqui , n u l l i d=False ) )
i n fPa t t e rn=len ( genPattern (k , aqui , n u l l i d=True))−1
un in fPattern=len ( genPatternun (k , aqui ) )
return ( gesP , uninfPattern , i n fPa t t e rn )

#Gibt d i e Anzahl Muster f ür Ck mit k zwischen 2 und 8 aus .
i f __name__ == "__main__" :

for k in range ( 2 , 9 ) :
(m,m0,m1)=countPattern (k , aqui=False )
(am, am0 , am1)=countPattern (k , aqui=True )
f s 1="#M(C{0})={1} , ␣#M0(C{0})={2} , ␣#M1(C{0})={3} , ␣#[M(C{0})]={4} , "
f s 2= " ␣#[M0(C{0})]={5} , ␣#[M1(C{0})]={6} "
f s=f s 1+f s 2
print ( f s . format (k ,m,m0,m1,am, am0 , am1) )
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A.6 Berechnung der Funktionsgraphen aus Ka-
pitel 4.2

Benutzt das Programm aus Abschnitt A.4 (hier importiert als clacminn).
from calcminn import ∗

’ ’ ’
Berechnet d i e exak t e S t a r t v e r t e i l u n g
’ ’ ’
def berechneStar t (k , aqui=True ) :

s t a r t=berechnepseudoStart (k , aqui )
s t a r t=s t a r t /sum( s t a r t )
return sp . s imp l i f y ( s t a r t )

’ ’ ’
Berechnet d i e Ver t e i l ung auf Ebene eb der e i n s e i t i g e n Muster
’ ’ ’
@functoo l s . lru_cache ( maxsize=64)
def createMatr ixaufEbene (k , eb , aqui=False ) :

s t a r t=berechneStar t (k , aqui )
ma=createM (k , aqui )
muaEm=( s t a r t ∗ma∗∗eb )
return muaEm

’ ’ ’
Gibt d i e Wahrsche in l i chke i t des e i n s e i t i g e n Musters mus auf eb an
’ ’ ’
def wahrMustaufEb (n ,mus , eb , aqui=False ) :

mat=createMatr ixaufEbene (n , eb , aqui )
return mat [ genPattern (n , aqui , n u l l i d=True ) . index (mus ) ]

i f __name__ == "__main__" :
muster1 = [ [ 0 ] , [ [ 1 ] , [ 2 ] ] ]
muster2 = [ [ 2 ] , [ [ 0 , 1 ] ] ]
sp . p l o t (wahrMustaufEb (3 , muster1 ,1)−wahrMustaufEb (3 , muster1 , 2 ) ,
(p , 0 , 1 ) , y l ab e l=’ ’ , l i n e_co l o r=’ blue ’ )
p l1=sp . p l o t (wahrMustaufEb (3 , muster1 , 1 ) , wahrMustaufEb (3 , muster1 , 2 ) ,
(p , 0 , 1 ) , y l ab e l=’ ’ , show=False )
p l1 [ 0 ] . l i n e_co l o r=’ blue ’
p l1 [ 1 ] . l i n e_co l o r=’ red ’
p l1 . show ( )
sp . p l o t (wahrMustaufEb (3 , muster2 ,1)−wahrMustaufEb (3 , muster2 , 2 ) ,
(p , 0 , 1 ) , y l ab e l=’ ’ , l i n e_co l o r=’ blue ’ )
p l2=sp . p l o t (wahrMustaufEb (3 , muster2 , 1 ) , wahrMustaufEb (3 , muster2 , 2 ) ,
(p , 0 , 1 ) , y l ab e l=’ ’ , show=False )
p l2 [ 0 ] . l i n e_co l o r=’ blue ’
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pl2 [ 1 ] . l i n e_co l o r=’ red ’
p l2 . show ( )
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A.7 Überprüfung der restlichen Fälle, um die
Vermutung über die Monotonie der Ver-
bindungsfunktion zu zeigen

Hier werden die Programme aus Abschnitt A.3 und Abschnitt A.4 (als gen-
Pattern und calcminn) benutzt.
from calcminn import ∗
from genPattern import ge t lw i th e
import copy

’ ’ ’
Gibt a l l e i n f i z i e r t e n Knoten an , wenn auf der n−ten Ebene das Muster
m v o r l i e g t und auf der nä chs ten Ebene im Graphen [ n+1, i n f t y )
( umgekehrt gesehen ) das u n i n f i z i e r t e Muster mn l i e g t und es zwischen
den be iden Ebenen e ine Verbindung ü ber d i e Knoten in l g i b t .
’ ’ ’
def in fbdoppe l tMuster (m,mn, l ) :

i f m==[]:
return m

infkn=copy . deepcopy (m[ 0 ] )
akn=copy . deepcopy (m[ 0 ] )

ninfm=copy . deepcopy (m[ 1 ] )
while akn != [ ] :

a=akn . pop ( )
i f l [ a ] !=0 :

iane=mn [ 1 ] [ g e t lw i th e (mn[ 1 ] , a ) ]
for i in i ane :

i f l [ i ] !=0:
j=ge t lw i th e ( ninfm , i )
i f j !=−1:

akn . extend ( ninfm [ j ] )
in fkn . extend ( ninfm [ j ] )
del ninfm [ j ]

return i n fkn

’ ’ ’
Berechnet d i e s t a t i o n ä re Ver t e i l ung der u n i n f i z i e r t e n Muster
b i s auf d i e Normierung .
(Rü ckgabe i s t immer p o s i t i v und ein Polynom )
’ ’ ’
@functoo l s . lru_cache ( maxsize=32)
def ca l cp suedoun in f s t a t (k , aqui ) :

ms=createMuni (k , aqui=True )
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A=ms . t ranspose ()− sp . eye (ms . c o l s )

l o s=A. nu l l s pa c e ( ) [ 0 ]
l o s=sp . s imp l i f y ( l o s )
b=[ ]
for a in l o s :

b . append ( a . as_numer_denom ( ) [ 1 ] )
den=sp . lcm (b)
l o s=den∗ l o s
l o s=l o s . s imp l i f y ( )
# S i c h e r s t e l l e n , dass l o s n i ch t k l e i n e r a l s 0 in (0 ,1) i s t
for e in l o s . subs (p , sp . Rat iona l ( 1 , 2 ) ) :

i f e<0:
l o s=−l o s
break

e l i f e>0:
break

muuinfa=genPatternun (k , aqui=True )
muuinfna=genPatternun (k , aqui=True )
i f aqui :

return l o s
else :

muuinfa=genPatternun (k , aqui=True )
muuinfna=genPatternun (k , aqui=False )
ena=[0]∗ len (muuinfna )
for ui in range (0 , len (muuinfa ) ) :

aquiPat=a l l aqu iPa t t e rn (k , muuinfa [ u i ] )
for aktp in aquiPat :

t=muuinfna . index ( aktp )
ena [ t ]=ena [ t ]+ l o s [ u i ] / len ( aquiPat )

return ena

’ ’ ’
Berechnet d i e Ver t e i l ung der Muster auf der Ebene m.
’ ’ ’
@functoo l s . lru_cache ( maxsize=32)
def pseudovertaufEbene (k ,m) :

i f m==0:
return berechnepseudoStart (k , Fa l se )

else :
return ( pseudovertaufEbene (k ,m−1)∗createM (k , Fa l se ) ) . expand ( )

’ ’ ’
Berechnet d i e Wahrsche in l i chke i t , dass in Ck auf Ebene m der Knoten
a i n f i z i e r t i s t .

’ ’ ’
@functoo l s . lru_cache ( maxsize=512)
def waufpseudoEninf (k ,m, a ) :
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mus=genPattern (k , False , True )
muuinf=genPatternun (k , Fa l se )

muaEm=pseudovertaufEbene (k ,m)
s t a t=ca l cp suedoun in f s t a t (k , Fa l se )

wahr=0
for l in i t . product ( [ 0 , 1 ] , r epeat=k ) :

anzE=l . count (1 )
wp=p∗∗anzE∗(1−p )∗∗ ( k−anzE )
for x in mus :

for y in muuinf :
i f a in in fbdoppe l tMuster (x , y , l ) :

wahr=wahr+muaEm[mus . index (x ) ] ∗wp∗ s t a t [ muuinf . index (y ) ]
return wahr

’ ’ ’
Testet , ob d i e Verb indungs funkt ion von C_k monoton i s t f ür a l l e Ebenen <=m
F a l l s r i c h t i g , i s t d i e Ausgabe True , sons t Fa lse .
’ ’ ’
def t e s t g i l t v e r (k ,m) :

for i in range (m) :
for j in range ( k ) :

x=(waufpseudoEninf (k , i , j )−waufpseudoEninf (k , i +1, j ) )
i f ( x . subs (p , sp . Rat iona l ( 1 , 2 ) ) <= 0 or
( j==0 and i==0 and countRoots (x , 0 , 1 ) !=0 ) or
( ( j !=0 or i >0) and countRoots (x , 0 , 1 ) !=1 ) ) :

return False
return True

#Tes te t d i e Behauptung f ür C_2, C_3 und C_4 f ür d i e ü b r i g g e b l i e b e n e n Fä l l e .
i f __name__ == "__main__" :

for [ k ,m] in [ [ 2 , 2 ] , [ 3 , 2 ] , [ 4 , 4 ] ] :
print ( ’ k=’ ,k , ’ ␣ ’ , t e s t g i l t v e r (k ,m) )
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A.8 Berechnung von mCk

Benutzt das Programm aus Abschnitt A.3 (als genPattern).
from genPattern import ∗

’ ’ ’
Berechnet das mCk.
’ ’ ’
def calcmCk (k ) :

’ ’ ’
Berechnet , an we lcher S t e l l e b e i M u l t i p l i k a t i o n von den zwei
Übergangsmatr i zen ma1 ma2 d ie Werte ung l e i c h 0 s ind .
’ ’ ’
def vm(ma1 ,ma2 ) :

rm= [ [ 0 ] ∗ len (m) for i in range ( len (m) ) ]
for i in range ( len (ma1 ) ) :

for j in range ( len (ma1 ) ) :
i f rm [ i ] [ j ]==0:

for l in range ( len (ma1 ) ) :
i f ma1 [ i ] [ l ]==1 and ma2 [ l ] [ j ]==1:

rm [ i ] [ j ]=1
break

return rm
m=copy . deepcopy ( genPattern (k , aqui=False , n u l l i d=True ) )
m. remove ( [ ] )
matv= [ [ 0 ] ∗ len (m) for i in range ( len (m) ) ]
math= [ [ 0 ] ∗ len (m) for i in range ( len (m) ) ]
for vk in i t . product ( [ 0 , 1 ] , r epeat=k ) :

for i in range (0 , len (m) ) :
uv=useveredges (m[ i ] , vk )
i f uv [ 0 ] != [ ] :

j=m. index (uv )
matv [ i ] [ j ]= 1

uh=usehoredges (m[ i ] , vk )
i f uh [ 0 ] != [ ] :

j=m. index (uh)
math [ i ] [ j ]= 1

mat=vm(matv , math)
r=1
matn=mat
while (True ) :

anzn=0
for i in matn :

for j in i :
i f j==0:

break
anzn=anzn+1

i f anzn==len (m)∗∗2 :
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return r
r=r+1
matn=vm(matn ,mat)

#Gibt minimales mCk f ür k =2. . .7 aus .
i f __name__ == "__main__" :

for k in range ( 2 , 8 ) :
print ( ’mC’ ,k , ’ : ’ , calcmCk (k ) )
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