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SUMMARY

The most fundamental resource in quantum optics is undeniably the photon. Over the years,
the growth of the field has pushed the demand for better, more performant, and tailored single
photon sources that cater to the diverse needs of quantum optics experiments.

This work is centered on spontaneous parametric downconversion (SPDC) sources. To stress
their maturity as practical devices, we use a SPDC source to verify that optical metasurfaces
can be successfully employed in a hybrid quantum photonic system with good performance.
We then devise and experimentally apply a technique that improves the generation rate of
spectrally-filtered sources, without compromising state’s fidelity.

We then explore the concept of source multiplexing (MUX) to overcome the probabilistic
nature of SPDC sources. We detail the interplay between the type of chosen MUX scheme and
the role of losses, stressing how important high quality components are. In order to implement
such MUX schemes, we design and test electro-optic modulators (EOM) to be used in a time
MUX setup. Although the design did not perform sufficiently well, it provides valuable data to
improve our EOMs design and fabrication in general. Finally, we develop a new MUX scheme
based on engineered time-frequency correlations in SPDC sources and fast EOMs, and report on
the characterization of its most important building blocks. This scheme, being a compromise
between speed and compactness, represents a step forward towards the implementation of a
more general purpose MUX source.
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ZUSAMMENFASSUNG

Die grundlegendste Ressource in der Quantenoptik ist unbestreitbar das Photon. Im Laufe der
Jahre hat das Wachstum auf diesem Gebiet die Nachfrage nach besseren, leistungsfähigeren und
maßgeschneiderten Einzelphotonenquellen erhöht, die den unterschiedlichen Anforderungen
quantenoptischer Experimente gerecht werden.

Diese Arbeit konzentriert sich auf Quellen mit spontaner Parametrischer Fluoreszenz
(SPDC). Um ihre Reife als praktische Geräte zu betonen, wird eine SPDC-Quelle verwen-
det, um zu verifizieren, dass optische Metaflächen in einem hybriden quantenphotonischen
System mit guter Leistung erfolgreich eingesetzt werden können. Weiterhin wird eine experi-
mentelle Technik entwickelt und angewendet, die die Erzeugungsrate von spektral gefilterten
Quellen verbessert, ohne die Zustandstreue zu beeinträchtigen.

Das Konzept des Source-Multiplexing (MUX) wird untersucht, um die probabilistische Natur
der SPDC-Quellen zu überwinden. Im Detail wird auf das Zusammenspiel zwischen der Art
des gewählten MUX-Schemas und der Rolle von Verlusten eingegangen und betont, wie wichtig
qualitativ hochwertige Komponenten sind. Um solche MUX-Schemata zu implementieren,
werden elektro-optische Modulatoren (EOM) entworfen und getestet, die in einem Zeit-MUX-
Aufbau verwendet werden. Obwohl das Design nicht ausreichend gut funktioniert hat, liefert
es wertvolle Daten zur Verbesserung des Designs und der Herstellung unserer EOMs im
Allgemeinen. Schließlich wurde ein neues MUX-Schema entwickelt, das auf konstruierten
Zeit-Frequenz-Korrelationen und in SPDC-Quellen und schnellen EOMs basiert, und über
die Charakterisierung seiner wichtigsten Bauelemente berichtet. Dieses Schema, das einen
Kompromiss zwischen Geschwindigkeit und Kompaktheit darstellt, stellt einen Schritt vorwärts
auf dem Weg zur Implementierung einer MUX-Quelle für allgemeinere Zwecke dar.

v





INTRODUCTION

You talk to someone and they are trying to explain to you some idea they have. Something
along the lines of «Suppose we have a single photon. . . » or «Imagine that we have a photon
here. . . ». The idea is intriguing, challenging, and you want to implement it, see what comes
out of it (or write an entire grant’s proposal based on it, depending on the idea) and you start
jotting down a sketch of the possible experiment. And there lies, the first box of your schematic:
“photon source”. That’s usually the case: there is this black box that creates a photon for you
when you want it. Not only that, it creates a photon with well-defined properties that match
the requirements of your experiment.

Producing photons is not hard, really. Flip a switch in a room to turn on the lights and
you’ll be inundated with millions of them every second. Most of the times though, especially in
quantum optics, having some photons is not enough. You want them to be just in the right state.
This is where problems usually arise: we always want to have a well defined state, a “useful”
state, which we can manipulate at will and whose properties can be modified with analytical
precision.

The key here is the fact that we want to manipulate one photon. Not two, not some, but rather
just one. This is where things get complicated or, depending on whom you ask, interesting. A
photon has multiple characteristics that one may be interested in and it turns out that having
complete control on all of them is challenging.

Interest into single-photon sources has seen a steady increase in the last decade. The reason
for this is that photons are the best quantum information carriers one can think of: they are
virtually unaffected by external noise, they do not interact with each other, they travel very
quickly (which is an euphemism) and can be manipulated with ease [1]. Not only as information
carriers, but also as computing platform [2, 3], single-photons have achieved a leading role in
most areas of quantum information technology.

As we said though, the requirements of these sources become more and more stringent.
Many platforms are being explored in order to deterministically produce indistinguishable
photons, from quantum dots [4–7], to color centers in diamonds [8–10], to the focus of this
work: spontaneous parametric downconversion (SPDC) sources in non-linear crystals [11–16].

We start in chapter 1 by studying the underlying mechanism by which an SPDC source
works. This requires us to have both a classical and quantum picture of this process. We will
explain how the material’s polarization can give rise to a plethora of effects and how to tailor
these to our needs. Next we will “go quantum” and introduce a necessary formalism (Schmidt’s
decomposition and the broadband creation operators) to abandon a continuous description of
these processes and instead use a discrete one, which is much easier to handle and which will
give us important insights that we will use later on.

Having an understanding of what SPDC is, we will put it into context in a real world
experiment, underlying the fact that what we have just described is a mature tool in the quantum
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Introduction

toolbox that scientists need for their experiments. This will be described in chapter 2, in which
we show how an SPDC source can be integrated with other technologies, in this case optical
metasurfaces.

Adequate for some tasks, these sources are not without problems [17], although some of
these can be mitigated as we underline in chapter 3. Here, we will show how we can filter a
correlated source, to increase its purity, while at the same time not sacrificing single-photon
generation rate as much.

This is of course a stop-gap measure, and in chapter 4 we will introduce the concept of source
multiplexing [18]. This technique can indeed solve the biggest problem of SPDC based sources,
which is their probabilistic nature [19]. In this chapter we first explore this problem, and later
on analyze various multiplexing schemes, showing that these can come arbitrarily close to a
“true” deterministic single-photon source.

In almost all these schemes, one of the main components is an electro-optic modulator. These
devices allow real-time reconfiguration of an optical setup and are paramount in multiplexing
schemes. In chapter 5 we will briefly touch on two important types of modulators and describe
their working principle: the directional coupler and the integrated polarization converter.

Finally, in chapter 6, we will introduce a new type of multiplexing scheme, which makes
use of both of the components detailed in the previous chapters: an SPDC source and an
electro-optic modulator. We will show the concept of the scheme and the characterization of its
most important building blocks, which all work as intended, leaving only a fast mode selective
detection scheme as a last piece to fully implement the scheme.
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1. SPLITTING PHOTONS: OPTICAL
NONLINEARITIES IN LITHIUM NIOBATE AS
SINGLE-PHOTON SOURCES

Many different options [4, 6, 20, 21] are available when you want to produce single photons,
and the quality of such types of sources improves every year. One such option is the use the
optical nonlinearities present in some crystals. We will focus mainly on such type of sources and
how they can be used for single-photons applications. One of the most used nonlinear crystals
is lithium niobate (LiNbO3), which has a fairly high (in the order of 10 pmV−1) nonlinear
susceptibility, high transparency in a range of optical wavelengths commonly used in the telecom
industry, and other interesting and useful effects, like the electro-optic effect [22].

1.1. NONLINEAR OPTICAL MATERIALS AND PROCESSES

Light in a vacuum is not very interesting. Photons do not interact with each other (one of the
main reasons why light is used as information carrier) and thus they just wander aimlessly until
they come in contact with matter.

1.1.1. NONLINEAR TERMS OF THE POLARIZATION DENSITY

If you go back to the day in which your physics professor introduced this interaction to your
class you may remember the following (or at least similar) reasoning. In a dielectric medium
(as opposed to conductors), electrons are bound to their atoms and an electromagnetic field
traversing this medium will displace these electrons from their equilibrium “position”1. At this
point, the electrons will start oscillating and by this point in your studies you were told that a
moving charge is a source for an EM field.

This charge displacement, where dipoles are formed in some volume of interest, is called
polarization density. Just as a side note, the way polarization density is usually defined is
not unique [23]: since the “volume of interest” is arbitrary, two different quantities for the
polarization density can be constructed and both would be correct. The thing that is important
here is that the physical quantities that we measure everyday do not depend on the value of the
polarization density, but rather on its changes [23].

Assume now that the medium we are studying is homogeneous and isotropic2 and that it
does not have an inherent polarization (like water). This polarization density then, «to a first

1The quotation marks are for the savvy reader who knows that «an electron has a certain probability of occupying
a given volume».

2Which means that we don’t care neither where we are in the medium nor which direction we are considering for
any effect we want to study.
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1. Splitting photons

approximation» 3, is a linear function of the external electric field, i.e.:

~P = εoχ ~E (1.1)

where ε0 is the permittivity of vacuum and χ is the electric susceptibility. The latter is in general
a tensor, but we will simplify our lives with some assumptions (isotropy of the medium, in
this case) and will treat it as a scalar, at which point (1.1) can be studied in its scalar form, by
considering only one of its components.

Considering the relationship between an external field and the polarization density as a linear
one, is an intuitive choice: in a simple Lorentz model with a weak driving force (i.e. field),
Hooke’s law applies and the displacement of the charges is linear with the force applied [24].
But that means that we are disregarding higher order effects.

Every physics student is familiar with the phrase «these are higher order effects which we will
disregard», or something along those lines. At that moment the focus of the lecture is clearly on
more basic or fundamental concepts whose understanding does not benefit from the inclusion
of such details. This makes perfect sense when you are introducing a concept to a new audience.
This work, however, is centered on these details, so we will take from where we left off during
our introductory classes and expand a bit.

The linearity in (1.1) is justified because we are assuming a weak field. However, if we are
using a high-intensity field (say, a laser), this is not necessarily the case anymore and we must
take into account higher order effects. We can then rewrite the polarization density as a generic
function of the field. Now we can analyze this function by slowly incrementing the field
strength, going from a weaker field to stronger one, but still not really comparable to the
internal crystalline/atomic field strength. If you were smelling Taylor expansion since the last
few sentences, you were right. We carry on this expansion then

P (E) =
∞
∑

n=1

1
n!

an E n ≈ a1E +
1
2

a2E2, (1.2)

where we consider this equation on a component-by-component basis and we stop at the first
nonlinear term. Notice that a0 = 0 because for a material without inherent polarization, as is
the one we are considering right now, P = 0⇔ E = 0, thus we start the summation from 1.

The other coefficients are quantities related to the medium itself. It’s easy to identify a1 = ε0χ ,
which is our linear susceptibility. The second coefficient, a2, can be written as 2ε0χ

(2), where
χ (2) is the second-order nonlinear susceptibility4. If in general we redefine

an = n!ε0χ
(n) (1.3)

we have the much clearer equation

P (E) = ε0

�

χ E +χ (2)E2+ · · ·
�

(1.4)

3And it’s a good one most of the times.
4The notation for this Taylor expansion depends on taste, depending on how much the author likes to foreshadow

concepts that can be introduced later on.
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1.1. Nonlinear optical materials and processes

We will focus only on the nonlinear part of (1.4), so it’s useful to define

Pnl = ε0χ
(2)E2 (1.5)

where we have dropped the contributions from terms higher than the second order.
Even if we are interested in second-order nonlinear effects, can we safely disregard higher-

order terms in (1.5)? That depends on the material being used. As an example, LiNbO3 presents
the following second and third order susceptibilities [25]:

χ (2) ≈ 3× 10−11 mV−1

χ (3) ≈ 2× 10−21 m2 V−2

We can estimate what typical field strengths we will encounter in the lab. Assume that on
average the power levels used in our experiments don’t really exceed 10× 10−3 W. We can relate
power to electric field strength if we recall that the latter is tied to the intensity, i.e. power per
unit area. A typical spot size is in the order of 2 mm, but that can be shrunk down to a few
microns easily. Let’s assume that we can shrink down the spot size of a laser beam to a diameter
of 7 µm. The intensity of an electric field is the power per unit area, i.e.

I =
P
πr 2

=
10× 10−3 W

π1.225× 10−11 m2 ≈ 2.6× 108 Wm−2 (1.6)

The intensity of a propagating monochromatic electromagnetic wave is tied to its field
strength [24]

I =
cnεo

2
|E |2⇒ E =

√

√

√
2I

cnε0
(1.7)

where c is the speed of light in vacuum, n the refractive index of the medium and ε0 the
permittivity of vacuum. Considering that in LiNbO3 n ≈ 2 we have that E ≈ 3× 105 Vm−1.
The contribution from such a field in the third term of (1.4) is 6 orders of magnitude weaker
than that in the second term. Disregarding the orders higher than the second is thus a very
good approximation.

If we keep the approximation that the medium where our field propagates is non-magnetic,
homogeneous, non-dispersive and isotropic, then the various susceptibilities are still scalars.
This is usually not the case, especially in this work, where we will take advantage of materials
which are definitely anisotropic (so-called birefringent materials). In general, the susceptibility
of order n is a function of time and space (for dispersive and inhomogeneous media) and is a
tensor of rank n+ 1.

If we consider more than just the linear term in (1.4), it can be shown from Maxwell’s
equations and boring vector identities, that the standard equation of nonlinear optics [26]

∇2 ~E +
n2

c2

∂ 2 ~E
∂ t 2

=− 1
ε0c2

∂ 2 ~PNL

∂ t 2
(1.8)

indicates that the nonlinear part of the polarization density is a source for an electromagnetic
field.
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1. Splitting photons

Let’s give some substance to this last sentence, by considering linearly polarized plane
wave fields traveling along some direction z with the form E (ω, t ) = Re

�

E(ω)e−iωt	 =
1
2

�

E(ω)e−iωt + c.c.
�

, where “c.c.” stands for complex conjugate (we have absorbed the space-
dependent term in the field’s phase in the complex amplitude E(ω)), and suppose that a su-
perposition of two such fields, with frequencies ω1,ω2 propagates inside a medium with a
non-zero χ (2). We have then, substituting in (1.5),

PNL(E) =
ε0χ

(2)

4

�

E(ω1)e
−iω1 t + E(ω2)e

−iω2 t + c.c.
�2

(1.9)

which, when expanded, shows interesting frequency dependencies:

PNL(E) =
ε0χ

(2)

4
(2E(ω1)E

∗(ω1)+ 2E(ω2)E
∗(ω2)+

+ 2E(ω1)E(ω2)e
−i (ω1+ω2)t+

+ 2E(ω1)E(ω2)e
−i (ω1−ω2)t+

+E2(ω1)e
−i 2ω1 t + E2(ω2)e

−i 2ω2 t �

(1.10)

Equation (1.10) has many frequency components, each of which, according to (1.8), is a
source for an EM field at different frequencies. We can see that up to three different frequencies
can be coupled by the nonlinearity of the material, thus the processes here highlighted are
usually called three-wave mixing in the literature. In the most uninspired way, each of these new
fields have an associated name in the literature.

Optical rectification (OR) This is the first two terms of (1.10) and describes a static field.
This means that even though we are using an oscillating field to drive the dipoles in the
material, one of the net effects is the presence of a static electric field, no matter the
frequencies of the driving fields. This can be used with pulsed light to generate THz
radiation [27].

Sum-frequency generation (SFG) The second term presents an overall frequency which is
the sum of the driving fields’ frequencies. This proves to be a great tool in optics and
photonics, making it possible to access optical frequencies which cannot be produce by
conventional lasers. A particular case of SFG, whenω1 =ω2, is called second harmonic
generation (or SHG) and it’s the most common way to produce green (532 nm) light from
a Nd:YAG 1064 nm laser.

Difference-frequency generation (DFG) Analogously to SFG, the third term produces a
wave with a frequency which is the difference of the input fields. This also has multiple
uses is photonics, in particular in the development of optical parametric amplifiers and
oscillators (OPA and OPO, respectively).

Before going further, let us generalize our definition of nonlinear polarization density. De-
pending on the material, a field with a well defined polarization can stimulate the generation of
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1.1. Nonlinear optical materials and processes

a field in a different polarization. This means that in general, polarization density and incoming
fields are related by the following equation

Pi (ωn +ωm) =
ε0

4

∑

j ,k

∑

(mn)

χ (2)
i j k (ωn +ωm ;ωn ,ωm)E j (ωn , t )Ek (ωm , t ) (1.11)

which is one cartesian component of the polarization density field at frequencyωn +ωm . The
sum over (nm) is carried over all possible permutations of the mentioned two indices, extended
to both positive and negative values. This paints a pretty grim picture for those who would like
to brave the calculation of the complete χ (2). Each Latin index can independently assume three
distinct values, and for each distinct triplet of indices, there are twelve possible permutations
of the frequency components. This leads us to 324 complex numbers if we want to completely
describe the interaction [26]. However, all the processes that are treated in this work will involve
optical frequencies which are significantly smaller than the resonant frequencies of the material
in which they take place. In this case, the χ (2)

i j k
are essentially independent of frequency, and

they obey certain symmetries which greatly reduce the number of independent components
that we need to consider. This condition is known as Kleinman’s symmetry and it amounts
to being able to freely permute the Latin indices of the nonlinear tensor without changing its
value.

Handling this tensor is still rather cumbersome. It’s customary at this point to introduce5

another tensor [26]

di j k =
χ (2)

i j k

2
(1.12)

which is symmetric in its i and j indices in the case of Kleinman’s symmetry. Because of this,
this tensor can be rewritten as a 3× 6 matrix, di l , by associating the indices j , k to l as laid out
in Table 1.1.

j , k: 11 22 33 23,32 31,13 12,21
l : 1 2 3 4 5 6

Table 1.1.: d -tensor index in contracted notation.

Thanks again to Kleinman’s symmetry, there are only ten independent components int the
d -tensor out of eighteen, which is just a boring puzzle of mixing and matching all the indices
in (1.12) according to Table 1.1. As an example, notice that d12 = d122 = d212 = d26, and a
similar reasoning can be applied to all elements of the d -tensor.

This lets us immediately link each of the components of the polarization density to all fields

5In an absolutely arbitrary fashion.
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1. Splitting photons

components that influence it, as laid out in the following matrix expression:





Px (ω3)
Py (ω3)
Pz (ω3)



= ε0





d11 d12 d13 d14 d15 d16
d16 d22 d23 d24 d14 d12
d15 d24 d33 d23 d13 d14



·



















Ex (ω1)Ex (ω2)
Ey (ω1)Ey (ω2)
Ez (ω1)Ez (ω2)

Ey (ω1)Ez (ω2)+ Ez (ω1)Ey (ω2)
Ex (ω1)Ez (ω2)+ Ez (ω1)Ey (ω2)
Ex (ω1)Ey (ω2)+ Ey (ω1)Ex (ω2)



















(1.13)

Scientists love to classify phenomena, and nonlinear optical effects are not untouched by this.
We have classified already these processes by the way the involved wavelengths are combined
(e.g. SHG vs. DFG), but we can also classify them in terms of what the polarization of each
field is:

Type 0 All fields involved have the same polarization.

Type I Both input (e.g. SHG) fields or both output (e.g. DFG) fields have the same polarization.

Type II The input (e.g. SHG) fields or output (e.g. DFG) fields have the orthogonal polariza-
tion.

To simplify things, each crystalline structure has some additional limits on which of the
di j can be non-zero, so usually this tensor further simplifies. Since we are going to work with
LiNbO3 and potassium titanyl-phosphate (KTP) during the course of our discussion, we will
show the d tensor structure for these two crystals as an example [26].

LiNbO3=





0 0 0 0 d15 d16
d16 d22 0 d24 0 0
d15 d24 d33 0 0 0



 KTP=





0 0 0 0 d15 0
0 0 0 d24 0 0

d15 d24 d33 0 0 0





(1.14)
This also implicates that a given material only allows a subset of all possible processes listed

earlier, because some polarization combinations are not possible.

1.1.2. PHASE-MATCHING

At this point in our discussion, it looks like nonlinear optics is a cornucopia of possibilities,
enabling us to exploit such materials to produce whatever frequency combination our heart
desires. We made the mistake of getting too comfortable in our assumptions guiding us here
and it’s now time to revisit them, before we come to woefully wrong conclusions.

First, the material we are considering is dispersionless. Well, that cannot physically be true,
since no process is truly instantaneous, so we have dispersion, which basically means that the
refractive index at time t depends on the value of the refractive index at time t−dt . A dispersive
material has a frequency-dependent refractive index (i.e. linear susceptibility), which means that
different frequencies will travel at different speeds and will accumulate different spatial phases
along the same path.
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1.1. Nonlinear optical materials and processes

Second, we are also considering materials which are isotropic. While isotropy is not uncom-
mon in materials used in optics (e.g. glasses), this work will focus on material which exhibit a
particular kind of anisotropy, birefringence, as previously mentioned.

Recall that we have “hidden” the spatial dependency of the fields into their complex amplitudes
E(ω). If we take this into account, we might notice something which is crucial in understanding
these processes. The complete field expression is then

~E(~r ,ω, t ) = ~A(~r ,ω, t )e−i
�

ωt−~k(ω,~r )·~r
�

(1.15)

where ~A is a complex vector describing the polarization state of the field, ~k(~r ,ω, ) is the wave
vector6 which has the form

~k(~r ,ω) =
~n(~r ,ω)ω

c
(1.16)

which, for simplicity, we will often shorten to simply ~k and finally ~n is the refractive index
vector.

This means two things: one, each dipole will be driven with a different initial phase which is
space dependent; two, while the driving fields will propagate with a wave vector ~k(~r ,ω), the
generated fields will propagate with a different one, which depends on the specific process
we are considering (e.g. for the case of SHG, ~k(~r , 2ω)). In order to measure any of the fields
described by (1.10), the wave vectors must be matched in order for the fields radiated by the
various dipoles to build up constructively along the interaction volume. This is called, with a
rather daring imagination, phase-matching. It is not a simple topic by any metric and it is not
the focus of this work, but it is nonetheless important to understand the underlying ideas and
how they fit in the following chapters.

First, let’s simplify our work. We are interested in a semi-quantitative approach here, so
we will make some assumptions that do not hold in general but give nonetheless a fairly
accurate description of the basic ideas of nonlinear processes. To do this, we will assume that
we are treating linearly polarized monochromatic plane fields. We will choose a frame of
reference in which the z axis is aligned with the propagation direction of the field and one of the
crystallographic axes of the crystal and, for example, the y axis is aligned with the polarization
direction, also along a specific crystallographic axis. This will reduce the general expression for
our fields (1.15) to

E(z,ω, t ) =A(z,ω, t )e−i(ωt−k z). (1.17)

We will also assume that the change in amplitude over a distance of the order of an optical
wavelength is much smaller than unity (an approximation called slow-varying amplitude or
SVA approximation). This greatly reduces our math-gymnastics needs, and we can directly
plug (1.17) into (1.8) and (1.11) to obtain the so-called coupled-wave equations, whose form
depends on the type of process we are interested in. This work is all about generating single
photons, so we will shift our focus on the process of DFG. The reason for this will be explained
soon.

6Sometimes also called propagation constant and indicated with β.
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1. Splitting photons

The coupled-wave equations for the DFG process read [26]


















dA1(z)
dz

=
8πiω1deffA3

n(ω1)c
A∗2(z)e

i∆k z

dA2(z)
dz

=
8πiω2deffA3

n(ω2)c
A∗1(z)e

i∆k z
(1.18)

where deff is the effective value of the d tensor for a fixed geometry and crystal class [28] and
n(ω) is the refractive index of the material relative to the polarization direction of the field
currently considered. Here, a strong field atω3 interacts with a second field atω1 to generate
the DFG field at ω2 = ω3 −ω1. An important factor in these equations is the wavevector
mismatch

∆k = k3− k1− k2. (1.19)

As we previously mentioned, the three interacting field must be phase matched in order to
interfere constructively during propagation. This is achieved only when∆k = 0.

This work is about neither the intricacies of the math behind the analytical solutions to such
type of equations (which can be readily found in the literature [26, 29, 30]) nor the study of
all possible cases that these equations might cover. We want to instead have an idea about the
general physics behind these processes, for which we need not to care about the mathematical
details, rather only the final result and how this relates to experimental results. To get a general
idea of what happens, we assume that the seed and pump fields do not change significantly
during the propagation in the crystal, and we will treat them essentially as constants. We will
also assume that there is no DFG field at the beginning of the crystal, so that A2(0) = 0. We
can then integrate the second equation of (1.18) from 0 to L, the latter being the propagation
length, and calculating the intensity of the field (which is the quantity actually measured)

I2(L) = L2 |γ |2 |A∗1(0)|
2 sinc2

�

∆k
2

L
�

(1.20)

which is plotted in Figure 1.1 and where

sinc(x) :=
sin(x)

x
(1.21)

is the sinus cardinalis. To simplify the notation, we have hidden all multiplicative factors in γ .
By looking at the intensity profile, the reason why∆k is an important parameter should be

clear. The intensity has a maximum for∆k = 0, which is known as phase-matching condition.
This quantity depends on the material through which the fields propagate, the frequencies
of said fields and their propagation and polarization directions. It’s paramount then that we
choose our material with care so that the phase-matching condition is satisfied, while also
having good overall optical qualities, like a high nonlinear susceptibility and transparency in
the frequency window of interest. One of the most common materials used for such tasks is
lithium niobate, which has great transparency in the most common telecom windows, high
nonlinearity and also good electro-optical properties (so that high-speed electro-optic devices
can be easily manufactured).
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1.1. Nonlinear optical materials and processes
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Figure 1.1.: The intensity (or phase-matching) profile of the generated DFG field.

Achieving phase-matching conditions is not an easy task and most of the time is plainly not
possible in most materials. The simplest example is collinear Type-0 SHG in a material with
normal dispersion7. Assume then that our driving field atω is traveling along the z direction,
just as the produced SHG field. Then the equation for the phase mismatch can be regarded as a
scalar one and by virtue of (1.16) it simplifies to

n(2ω) = n(ω) (1.22)

which has no solution for a material with normal dispersion. A solution would be to use
birefringent materials (like LiNbO3), where the refractive index is a function of the polarization
state. This is aptly called birefringent phase-matching, but of course gives us very little freedom
in the number of possible processes.

In the case of interest of this work (i.e. nonlinear processes in LiNbO3), if we assume a DFG
process where the seeding field and the difference field are orthogonally polarized and centered
around 1550 nm8, calculating∆k yields nothing close to 0 (Figure 1.2).

These results underline the fact that we need to compensate the additional relative phase
that the three fields accumulate per unit length, somehow. Since (1.19) depends mostly on
wavelengths involved and the refractive index of the material, we can do one of two things:

7Normal dispersion means that the derivative of the refractive index with respect to the wavelength is negative.
8The choice of wavelength range is not random. One of the most common transmission windows in the telecom

industry is the so-called “C” band (1530 nm to 1565 nm). Here, optical fibers have extremely low losses of about
0.3 dBkm−1.
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Figure 1.2.: Phase mismatch for a Type-II DFG process in lithium niobate, with a fixed pump
at 775 nm.

change the target wavelengths of the process in order to find a tuple that satisfies (1.19) or we
choose a different crystal that has the necessary refractive index to allow our process. As we
have seen, depending on the process we are interested in, this might just not be possible at all,
depending on the process one is interested in.

The solution is to actually modify the material we are so interested in with a technique called
periodic poling. It boils down to periodically changing the orientation of the d tensor in a way
that modifies the wave-vector mismatch. Since we are talking about a period change, you can
write the tensor d as a Fourier series

d (x, y, z) =
∞
∑

n
i

2d
(2n+ 1)π

e i 2π(2n+1)z/Λ (1.23)

where Λ is the period of this inversion. This would modify (1.18) so that integrating along z
now introduces an additional factor in the wave-vector mismatch, which is precisely

∆k→∆k ± 2π
Λ

(1.24)

if we choose the first order in the Fourier expansion. This technique opens up a wealth of
possibilities, because we can customize Λ to our needs.

We now know roughly how to tailor a given nonlinear process, so it’s time to make some
photons. Before doing that, we want to address the elephant in the room.
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1.2. Creating photon pairs

The discussion that we have had up until this point has completely disregarded the quantum
nature of light. Everything has been treated as a classical field, because for a general overview
of these processes, that’s what suffices. If we now want to deal with single photons, clearly we
need to be more precise, which is exactly what we are going to address in the next sections.

1.2. CREATING PHOTON PAIRS

Consider (1.20). What happens if there is no input field atω1? There should not be any field at
ω2, right? Wrong.

Remember that the vacuum in quantum mechanics is never really “empty”. Vacuum fluc-
tuations could interact with the incoming strong pumping field and stimulate the process of
DFG at any possible frequencies that satisfy energy conservation. However, this is not the only
relationship that a process needs to obey, as we have seen from our previous discussion. We also
need to respect the phase-matching condition, i.e. (1.19) must be (close to) 0 for constructive
interference to take place. If you want to see this from a particle point of view, it means that
we need to also satisfy momentum conservation. The combination of wavelengths for which
both conditions hold is the only one which will coherently build up and which can be detected
at the output of the crystal. This is typically called spontaneous parametric down-conversion
(SPDC), and it results in a process in which a single pump photon decays into a pair of lower
energy photons, usually called signal and idler photons.

1.2.1. RENAMING DFG TO SPDC

Before trying to justify the new name we have given to our DFG process, we need to re-develop
our calculations and turn them “quantum”. This means two things. First, in order to describe
the evolution of a quantum system, we need to know its Hamiltonian. This means that we
need to calculate the energy of the system, which brings us to the next step: quantizing the
fields involved [31, 32], turning the field distributions into quantum operators.

Let us set the stage for where these process takes place. We are restricting ourselves to a
nonlinear process which happens in a single spatial mode in the transverse direction and along a
nonlinear material of length L. This is the case we are concerned with, which is an interaction
taking place in weakly pumped waveguide structures in LiNbO3. We are also dealing with
Type-II SPDC throughout this work, so that we will always consider the signal and idler photons
as orthogonally polarized. Furthermore, we are concerned with processes whose intensities is
far lower than the pumping field’s, so that we can treat the latter as a fully classical one. Lastly,
we will assume a low enough pump power and efficiencies so that we can ignore time-ordering
effects [33].

As it is usually the case, here we are not really interested in the evolution of the entire system.
We are more interested in the interaction between the fields involved. To focus our attention,
we can divide the total Hamiltonian into two parts [34]: one that describes the free evolution
of each field, independently from the others, and one that describes the interaction among
them. It is the latter that describes the nonlinear processes that we want to investigate. It can be
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1. Splitting photons

shown [35] that this interaction Hamiltonian can be written as

ĤSPDC =B
∫

dωs dωi f (ωs ,ωi )â
†(ωs )b̂

†(ωi )+ c.c. (1.25)

whereB hides all the constants that arise from the quantization of the electric fields, depends
on the pump power and the overlap integral between the spatial distributions of the fields in
the waveguide. The suffixes s and i denote the signal and idler field which we have mentioned
earlier, respectively. The operators â†(ωs ) and b̂ †(ωi ) are the creation operators for the signal
and idler modes at frequenciesωs andωi .

We don’t need to concern ourselves with the mathematical details of such formulation, just
what’s the physics behind it9. By reading the Hamiltonian in (1.25) we notice two things: a
pump photon always decays into two lower energy photons and their spectral properties are
completely described by the function

f (ωs ,ωi ) = α(ωs +ωi )φ(ωs ,ωi ) (1.26)

where α(ωs +ωi ) describes the pump spectrum and φ(ωs ,ωi ) is the phase-matching profile
that we have derived earlier. This is the joint spectral amplitude (JSA) function, and its shape can
tell us a great deal about the type of source we are dealing with.

Let’s try to put things in perspective. What does this function really look like? As we said at
the very beginning of this chapter, LiNbO3 is extensively used to create photon sources, so let’s
plug in its characteristics into (1.26). If we pump a 3.5 cm long LiNbO3 waveguide which has
been periodically poled with a period of 9.21 µm with a pulsed laser centered at 775 nm and a
7 nm bandwidth, we obtain the simulated data of Figure 1.3. There, we have plotted the joint
spectral intensity, because that’s the quantity that can be actually measured in the lab.

Due to the shape of the phase-matching function and the requirement for energy conservation,
we can see that the resulting photon pairs generated by this process are strongly anti-correlated in
frequency. This means that the detection of a photon at a certain frequency tells us the frequency
at which the second photon will be found, resulting in a pair of entangled photons. While
some practical applications in quantum optics do rely on such correlations [36], others require
photons with no correlations at all [37–39], so it’s important to have a clear understanding of
the spectral properties of the state that we want to use or manipulate.

1.2.2. DISCRETIZING THE SPECTRAL MODES OF A SPDC PROCESS.

How do we distinguish between a correlated and an uncorrelated JSA? Clearly, we need some-
thing more rigorous than our intuitions arising from looking at a plot. A requirement needed
for the JSA to be uncorrelated is that it must be factorable into two function h(ωs ) and g (ωi )
that only depend on the frequency of the signal and the idler, respectively. To assess if the
JSA satisfies this requirement, we can use the so-called Schmidt’s decomposition [40, 41], which
enables us to rewrite (1.26) into

f (ωs ,ωi ) =
∑

k

γk hk (ωs )gk (ωi ), (1.27)

9Some might say that the mathematics behind is the physics. We agree to disagree.
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Figure 1.3.: Top: simulated JSI for a SPDC process where a 3.5 cm LiNbO3 sample is pumped
by a 7 nm broad pump pulse centered at 775 nm. Bottom left: pump envelope
function. Bottom right: phase-matching profile. In order to enhance the contrast
between the central peak and the side lobes of the phase-matching function, we
have plotted the fourth root of the JSI. This allows us to clearly see how the pump
spectrum is responsible for “selecting” the final spectral characteristics of the JSI.
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1. Splitting photons

where hk (ωs ) and gk (ωi ) are two sets of orthonormal functions and where the coefficients γk
satisfy the normalization condition

∑

k

|γk |
2 = 1. (1.28)

The condition for which the JSA is uncorrelated is then that

γ0 = 1, (1.29)

i.e. the decomposition is made up of only one pair of functions.
We can use (1.27) to define the following broadband creation operators

Â†
k
=
∫

dω gk (ω)â
†(ω) (1.30)

B̂†
k
=
∫

dωhk (ω)b̂
†(ω) (1.31)

and finally rewriting our Hamiltonian as

ĤSPDC =B
∑

k

γkÂ†
k
B̂†

k
+ c.c. (1.32)

To understand what happens to our initial state, we need to let it evolve by using the Hamilto-
nian we have calculated. We will restrict ourselves to a case in which the bright pump field is
not strong enough to make time-ordering effects relevant [33]. In this case, our output state, is

|ψout〉= exp

�

∑

k

�

ζ ∗k Âk B̂k − ζkÂ†
k
B̂†

k

�

�

|ψin〉=

=
⊗

k

exp
��

ζ ∗k Âk B̂k − ζkÂ†
k
B̂†

k

��

|ψin〉

=
⊗

k

Ŝk (ζk ) |ψin〉

(1.33)

where we have defined
Ŝk (ζk ) = exp

��

ζ ∗k Âk B̂k − ζkÂ†
k
B̂†

k

��

(1.34)

as the squeezing operator [32] and where the squeezing parameter ζk is proportional to the
Schmidt’s coefficient γk . In switching the sum inside the exponential to a product of exponentials
we did not cheat. We are allowed to do this because the broadband operators that we have
defined commute with each other, because the underlying functions that make them up are
orthonormal.

This is quite an achievement: we changed our perspective and we can now deal with discrete
orthogonal modes instead of a continuum of frequencies. Equation 1.33 is telling us something
important, which will be exploited throughout this work: we can treat an SPDC process as
being made up of independent squeezers, and we can only have an uncorrelated JSA if we have
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Figure 1.4.: Result of the Schmidt’s decomposition of the JSA of Figure 1.3. Here we show the
first few modes of the Schmidt’s decomposition, with the respective coefficients γk .

a single one. This begs the question “how many squeezers (or Schmidt’s modes) are there in our
previous example?”.

In the case of low pump power, we can define as the effective Schmidt’s mode number K as
the number of mode pairs necessary to describe the generated state, and it’s defined as

K =
�

∑

k

|γk |
4

�−1

. (1.35)

This is also linked to the purity of the state of each individual photon in the pair. We recover
the state of one of the two photons by taking the partial trace over the subsystem of the other
(e.g. we trace over the idler)

ρs =Tri ρSPDC =Tri |ψout〉〈ψout| (1.36)

and we can calculate its purity Ps =Trρ2
s , obtaining

Ps =Trρ2
s =

∑

k

|γk |
4 = 1/K . (1.37)

1.3. SPDC PROCESSES AS SINGLE PHOTONS SOURCES

When we described the Hamiltonian of a SPDC process, we focused on its spectral properties
and we managed to wrestle free from a continuous description, adopting a more manageable
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discrete one. We put aside a very important feature, however: the Hamiltonian of (1.25) clearly
says that a pump photon decays into two output ones. If we separate these two photons—by
means of a polarization-dependent beam splitter (PBS)—then we are sure that if one photon is
detected at one of the ports of the PBS there will be another one at the other port (as depicted
in Figure 1.5). This is the basic principle on which heralded single-photon sources (HSPS) operate,
which have been demonstrated in various platforms [13, 42, 43]. The name comes from the fact
that the detection even of one photon heralds the presence of a second one in the other mode.

SPDC

PBS

Click detector

To experiment

Figure 1.5.: Typical setup used for a HSPS. The two photons being generated by the SPDC can
be separated by different means, depending on the process type (i.e. Type-I, II or
0). We are dealing with Type-II SPDC, which produces orthogonally polarized
photons, so a PBS is enough to deterministically separate the two photons. Once one
of these two photon is detected, we are sure that a twin photon has gone through
the other port. We can use this knowledge to either process experimental data
accordingly or (in more complex setups) adjust the configuration of the experiment
in real-time.

The name heralded single-photon sources is misleading, however. While it is true that each
pump can decay into two photons that satisfy momentum and energy conservation, the crucial
point is that it can. There is no guarantee that it will. This makes these sources probabilistic,
which is definitely a bug, not a feature.

1.3.1. FROM NUMBER OF MODES TO NUMBER OF PHOTONS

To understand the physical reason for this, let’s get back to our description of the SPDC
state (1.33). Let’s assume for simplicity that we are dealing with an uncorrelated source, which
has a single Schmidt’s mode. Through thoroughly unexciting math tricks [32], we can rewrite
the SPDC state as

|ψ〉SPDC =
Æ

1− |λ|2
∞
∑

n=0
λn |n, n〉 (1.38)

where we have defined
λ=−e iφ tanh r (1.39)
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and
ζ = r e iφ, r,φ ∈R. (1.40)

Tracing over one of the two output modes, the probability of measuring n photons in the
other is

p(n) =
�

1− |λ|2
�

|λ|2n , (1.41)

which is a thermal (or Bose-Einstein) distribution in disguise. To see this, we need to calculate
the expected mean photon number of the selected mode, which is

〈n〉= sinh2 r (1.42)

which lets us re-write (1.41) as

p(n) =
�

〈n〉
〈n〉+ 1

�n 1
〈n〉+ 1

. (1.43)

The photon statistics for a correlated source is not the same as the one presented for a single-
mode source. In fact, determining the probability of having produced n photons in one of the
two subsystems (either of the idler or of the signal) only accounts to summing the probability
of having a certain distribution of the n photons in k modes, which is a convolution of the
statistics of the various single squeezers into which we have decomposed our source. In the
limit of having a large number of modes, this approximates a Poissonian distribution.

1.4. CONCLUSION

It is time to delve into what are the consequences of the concepts laid out in this chapter. What
do you do with this knowledge? We have the proper theoretical tools to describe the SPDC
processes and we have seen how these can be exploited to construct single-photon sources. What
we are missing are actual applications of such concepts.

In the next two chapters (taken and adapted from Refs. [44, 45]), we will show how such a
single-photon source can be further integrated with other technologies, and how to overcome
the problem of “purifying” correlated HSPS while maintaining high single-photon generation
rates.
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2. USING PHOTONS: SPDC SOURCES AS
QUANTUM TESTBENCHES

Up until now, we have described SPDC sources seemingly in a vacuum1. While the study of
the fundamental aspects of such sources is worthy in and of itself, many experiments only
require these sources to have certain performances and characteristics, regardless of how these
are achieved. The more times go on, the more experiments require a simple black box that
“emits photons”, whose state is specified on the datasheet of the box.

In this chapter—taken and adapted from Ref. [44], of which I’m author—we use an SPDC
source as a test-bed to certify that other technologies (in this case, optical metasurfaces) are
“quantum-ready”, so to say. That is, we show that optical metasurfaces can be employed in a
hybrid quantum photonics system with good performance, enabling highly integrated hybrid
systems for applications requiring high-dimensionality, such as imaging, sensing, and computing.

2.1. COMBINING QUANTUM SOURCES WITH OPTICAL

METASURFACES

State-of-the-art metasurfaces achieve essentially any kind of manipulation of light wavefronts
for applications like ultra-flat lenses for imaging [46, 47], vector beam generation [48, 49],
optical holography [50] and even nonlinear phase manipulation [51, 52]. While all these
concepts solely rely on the classical electromagnetic description, the potential of metasurfaces
for quantum applications is still widely unexplored. However, as versatile optical elements
for locally altering the amplitude, phase, and polarization of light [53–55], metasurfaces can
provide new functionalities to miniaturized quantum systems.

Recently, few initiatives have been taken to investigate the potential of metasurfaces in
quantum optics. Jha et al. theoretically proposed that a metasurface can induce quantum inter-
ference between orthogonal radiative transition states of atoms [56] and quantum entanglement
between two qubits [56]. Later, it was demonstrated that entanglement of spin and orbital
angular momentum of a single photon can be generated via a metasurface [57] also, metasurface
can provide a compact solution for quantum state reconstruction [58]. However, so far, there
is only limited experimental evidence whether metasurfaces are suited for state manipulation
in quantum optical experiments. If the current technology of metasurfaces can be directly
applied to practical quantum applications, they can offer advanced solutions for quantum
imaging [59, 60], sensing [61] and computing [3].

Here, we demonstrate entanglement and disentanglement of two-photon states using an all
dielectric metasurface. Our metasurface allows the generation of path-entangled NOON states

1Yes, clearly the pun is intended.
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Figure 2.1.: Left: If a single photon pair with orthogonal linear polarization is inserted into the
metasurface, it is divided into its circular polarization components. Since the inser-
ted quantum state is a two-photon NOON state in the circular polarization basis,
both photons will always choose the same output channel, and spatial entanglement
is obtained. Right: The situation reverses for the insertion of a spatially entangled
NOON state into the metasurface. The quantum interference leads to a projection
back to the original orthogonal linear polarization states, and the photon pair is
spatially disentangled.

with circular polarization due to the quantum interference effect. We observe a photon bunching
within two spatially distinct output channels of the metasurface. Passing the same metasurface
the second time, the generated path-entangled two-photon spin state can be disentangled,
without introducing additional phase information. Our experiments indicate that metasurfaces
are perfectly suited to provide large-scale and high-dimensional quantum functionalities with
properties that go far beyond the conventional optical elements. Thus, hybrid integration of
quantum optical elements together with metasurfaces offers the promise for delivering robust
multi-photon entanglement and high dimensional quantum applications [62].

2.2. ENTANGLEMENT AND DISENTANGLEMENT

Precise control and preparation of multi-photon entanglement are of fundamental interest for
quantum technologies. With the accurate manipulation of the single photons wavefront by
a metasurface, spatial and polarization-based entanglement can be achieved. In our case, the
metasurface is designed to spatially separate the generated circular polarization states of light and
thus enforces a quantum states representation in that particular basis, as sketched in Figure 2.1.

The operation of the metasurface in use is two-fold: first, it converts a circularly polarized
state into its cross-polarization equivalent and then spatially separates left and right polarization
states. Now, remember what a SPDC state looks like from (1.38). We assume that we are using
such a low pump power that λ� λn for n > 1, so that we can ignore all high-order pairs. This
brings us to consider as our input state, after post-selecting on two photon events to ignore
vacuum contributions, simply

|ψ〉i = â†
Hâ†

V |0〉 (2.1)

where we use the indices H and V for the horizontal and vertical polarization states and L and
R for the left and right circular polarization states, and the suffix i stands for input. We are also
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2.2. Entanglement and disentanglement

assuming that the two photons are completely indistinguishable except for their polarization
state.

Given the operation applied by the metasurface, it’s more convenient to switch bases from
linear to circular polarization. Keeping in mind that the relationship between the two is

â†
R =

1
p

2

�

â†
H− i â†

V

�

(2.2)

â†
L =

1
p

2

�

â†
H+ i â†

V

�

(2.3)

we can plug the inverse relationship into (2.1) to obtain

|ψ〉i =
1
p

2

�

â†
Lâ†

L− â†
Râ†

R

�

|0〉 , (2.4)

where we have dropped a global phase factor of −i .
This looks like an entangled state, but it’s not, because entanglement is a physical property

of a system, not a mathematical artifact (e.g. a base choice). After propagation through the
metasurface though, the state is also spatially separated and cannot be decomposed into two
single-photon states and is therefore path-entangled. We can write our output state, after the
metasurface, as

|ψ〉o =
1
p

2

�

â†
L+â†

L+− â†
R−â†

R−
�

|0〉 (2.5)

where the new suffixes + and − denote the spatial mode.
The form of (2.5) is known in the literature as NOON state: in general, NOON states

are entangled N-photon quantum states, which are commonly used for quantum metrology.
Formally, these states can be written as a superposition of two quantum states with all photons
allocated in only one of the two channels [63]:

|NOON〉= 1
p

2
(|N 〉 |0〉+ |0〉 |N 〉). (2.6)

Interestingly, the same metasurface can be used in the reverse process, in which the circular
polarization states are spatially recombined to disentangle the generated state. We utilize the
polarization basis change functionality to build a metasurface-based interferometer, in which
the balanced beamsplitters (BS) of a standard Mach-Zender type interferometer are replaced
by two equal metasurfaces as we have described. By tuning the phase delay ϕ between the two
arms of the interferometer, we obtain the quantum state (which we will fully derive later in this
chapter)

|ψ〉o =
�

1
2

â†
Hâ†

V

�

e−i 2ϕ + 1
�

− 1
4

i
�

â†
Hâ†

H− â†
Vâ†

V

�

�

e−i 2ϕ − 1
�

�

|0〉 (2.7)

in which we can distinguish two cases. For ϕ = (n+ 1/2)π, with n ∈Z

|ψ〉o =
1
2

�

â†
Hâ†

H− â†
Vâ†

V

�

|0〉 (2.8)
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which is a path-entangled NOON state, up to a global phase factor, while for ϕ = nπ, with
n ∈Z

|ψ〉o = â†
Hâ†

V |0〉 (2.9)

which is the same as our input state. We will investigate both the NOON state generation
capabilities of a single metasurface sample and also the tunability of the generated entanglement
in a Mach-Zender type interferometry experiment.

2.3. METASURFACE DESIGN AND FUNCTIONALITY

For the experiments, we partnered with the group of Prof. Dr. Thomas Zentgraf, which
designed, produced, and tested the metasurface. The metasurface sample is designed to deflect
the incident light into two different output directions under angles of ±10◦. The deflection is
obtained by using a space-variant Pancharatnam-Berry-phase that results from the polarization
conversion for the transmitted light [64]. As a platform for the metasurface, we use silicon
nanofin structures. They act as local half-wave plates, which convert the circular polarization
states into their cross polarization and add a spatial phase term based on their orientation angle.
For our design, we choose a linear phase gradient, which diffracts the incoming light under the
desired angle. We note that the sign of the phase gradient explicitly depends on the helicity
of the circularly polarized light, which effectively makes our metasurface essentially a spatial
separator for the circular polarization states.

2.4. GENERATING NOON SPIN STATES

First, we investigate the NOON-state generation at the metasurface. A key quantum feature
of the NOON state is its photon bunching characteristics, i.e. we expect that both photons
will always choose the same metasurface output channel after inserting the quantum state (2.1).
To demonstrate this bunching effect, we use the setup shown in Figure 2.2. It contains four
logical parts: a two-photon source for the generation of the initial quantum state, a Michelson
interferometer to adjust the time delay between these two photons, a metasurface as a quantum
interference device, and a single-photon detection system. To control the time delay between
the two photons, we use a modified Michelson interferometer with a PBS and two quarter-wave
plates (QWP). Since the time delay directly influences the temporal overlap between both
photons, we utilize it to enable (τ = 0) and disable (τ→∞) the quantum interference effect at
the metasurface. In the case of no interference, the two photons will choose either output with
a 50% chance, while in the case of perfect interference, both photons will always choose the
same random output port.

To characterize the generated quantum state, we perform two different coincidence meas-
urements for various time delays τ. First, we measure the number of coincidences between
both output channels of the metasurface. The generated NOON state should not contribute to
the number of registered coincidences, ideally leading to zero coincidence counts. However,
when the initial |HV 〉 photons do not arrive simultaneously at the metasurface, we expect a
50% coincidence probability per inserted photon pair (without losses). Thus, as we vary the
time delay τ, we expect the well-known Hong-Ou-Mandel (HOM) correlation dip. Note that
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Figure 2.2.: Top: scanning electron microscopy images at 45° (left) and the top view (right) for
a small area of the fabricated silicon metasurface (scale bar: 1 µm). Bottom: the two-
photon source creates a photon pair with orthogonal linear polarizations by SPDC.
The two photons are temporally delayed relative to each other by τ with a Michelson
interferometer containing a PBS and QWPs. The photon pair passes through the
metasurface where the NOON state is generated. The spatially entangled state is
then analyzed by a coincidence measurement system in two different configurations
with single photon detectors (Dn). PMF polarization-maintaining fiber, SMF single
mode fiber, M mirror, PC polarization controller, TDC time-digital converter.
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2. Using photons

a visibility higher than 50% verifies the quantum character of interference for these HOM
experiments [40].

Second, we measure the number of coincidences between the two outputs of a 50:50 BS that
has been placed in one of the output channels of the metasurface. Coincidence counts for this
measurement can be obtained only when both photons choose the same output channel of the
metasurface. Since the probability for this event is twice as large in the case of interference,
we expect a 2:1 ratio in the coincidence counts between τ = 0 and τ→∞. Both coincidence
measurements are performed simultaneously by using three superconducting nanowire single-
photon detectors. One of these detectors (D3) is directly connected to one of the metasurface
output channels, while the other two detectors (D1 and D2) are placed behind an integrated BS
(a 3-dB fiber coupler), which is connected to the second metasurface output channel. In this
configuration, the first coincidence measurement between the two metasurface channels can be
calculated as C13+C23, where Ci j refers to the coincidence rate between the detectors Di and
D j .

The coincidences show a clear dip at zero-time delay with a high visibility of (86± 4)%
(Figure 2.3, top). Note that the visibility clearly exceeds the limit of 50%, which can be achieved
with classical coherent light. At the same time, the second coincidence measurement (C12)
shows a clear coincidence peak (“anti”-HOM peak) at τ = 0, which confirms that the two
photons are always bunched together in one output channel (Figure 2.3, bottom). In the case
of interference, both measurements show that the probability of at least one photon in each
output channel decreases (first measurement), while the probability of at least two photons in
one output channel increases (second measurement). Thus, photon bunching occurs.

To put the performance of the metasurface in perspective, we carry out a calibration experi-
ment for the SPDC source on its own. This experiment is inspired by [40] and allows us to
determine an upper bound on the achievable HOM visibility. Here, we use a half-wave plate
(QWP) to rotate the linear polarization states to the diagonal (D) and anti-diagonal (A) bases
creating the quantum state

â†
Dâ†

A |0〉=
1
2

�

â†
Hâ†

H− â†
Vâ†

V

�

|0〉 (2.10)

where we have defined
â†

D =
1
p

2

�

â†
H+ â†

V

�

â†
A =

1
p

2

�

â†
H− â†

V

�

.
(2.11)

This state is then inserted into a fiber PBS, where the two photons interfere creating once
again a two-photon NOON state. This “reference” experiment shows a visibility of (89± 5)%,
which is in agreement for the value found for the case in which the metasurface is used.

2.5. METASURFACE-BASED INTERFEROMETER

Next, we study whether the metasurface also preserves the quantum coherence of the generated
state, i.e. the phase relations between the components of the superposition are fixed and not

26



2.5. Metasurface-based interferometer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
.c

oi
nc

.

Visibility = 0.86±0.04

−20 −10 0 10 20
Time delay (ps)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
.c

oi
nc

.

Metasurface Reference

Figure 2.3.: Top: normalized coincidence counts (C13+C23) between the two output channels
of the metasurface for a variation of the initial photon time delay. The high visibility
beyond the classical limit of 50% confirms the expected quantum interference effect.
The reference is obtained for a standard (HOM) experiment with a standard BS to
characterize the quality of the photon source. Bottom: normalized coincidence
counts C12 between detectors D1 and D2 for the measurement with the polarization
BS in one output channel of the metasurface. The peak in the coincidence counts
of the “anti”-HOM measurement confirms that the two photons always take the
same output channel.
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Figure 2.4.: Schematic representation of a MBI and the relationship between the input modes
1 and 2 (left side, H and V ) and the outputs 3 and 4 (right side, H and V ). The
transformation M= B∗ ·F ·B is here laid out by labeling each component with its
respective transformation matrix. Black rectangles are mirrors, blue rectangle is a
phase-shifter.

randomly redistributed. Such coherence is important in quantum metrology applications,
where phase measurements play a key role. For that, we realized a folded metasurface-based
interferometer (MBI) in which the photons pass through the metasurface twice (Figure 2.4). By
tilting a 130 µm-thick glass plate in one of the two arms of the interferometer, we introduce a
phase difference between the two optical paths. The final state is then separated and analyzed at
a PBS.

2.5.1. MATHEMATICAL DESCRIPTION OF THE MBI

To better understand the discussion that follows, it’s best to describe in general how the MBI
acts on a single photon entering it from either input mode, which will also justify the form
of (2.7). We are looking for a transformation M which expresses the input modes 1 and 2 in term
of the output modes 3 and 4 (Figure 2.4). This will be handy when we calculate expectation
values on those modes, so we will start our construction of such transformation “backwards”,
i.e. starting from the last metasurface in the MBI. In what follows, keep in mind that we are
going to assume no losses, since they don’t play an interesting role.

The transformation we are seeking for just a single metasurface is

B=
1
p

2

�

1 i
1 −i

�

(2.12)

which is the inverse transformation from (2.5) to |HV 〉. Next, the matrix that introduces a
phase between the two arms of the interferometer is

F=
�

e−iϕ 0
0 1

�

. (2.13)

Finally, we need to invert (2.12) in order to perform the initial transformation of the interfero-
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meter, leading us to the final transformation

M= B∗ ·F ·B= 1
2

�

e−iϕ + 1 i
�

e−iϕ − 1
�

−i
�

e−iϕ − 1
�

e−iϕ + 1

�

(2.14)

We will consider two cases in what follows: Fock and coherent input states. The reason for
that is that coherent states are the hallmark of “classicality” in quantum optics, while Fock states
are “truly” quantum. You can argue (and you would find me agreeing) that classical is quantum
plus some assumptions, and this forced “border” between quantum and classical worlds is at best
misleading. On the other hand, it is hard (and sometimes counterproductive) to avoid accepted
conventions, so we will follow the vast amount of literature that makes this distinction.

First let’s deal with a coherent (classical) input in one arm of the interferometer and the
vacuum in the other. Our derivation of the full transformation M has been done in terms of
single-photon creation operators, so it’s much more convenient expressing our coherent state
in the number basis

|α〉= e
|α|2

2

∞
∑

0

αn
p

n!
|0〉= e

|α|2
2 eαâ† |0〉 . (2.15)

We know how one input mode is transformed by the MBI because we have derived its matrix
M, which links inputs and outputs as

�
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â†
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�

(2.16)

and we are assuming that vacuum is in mode number two, hence at the MBI output

|ψα〉= e
|α|2

2 eαâ†
1 |0〉= e

|α|2
2 e
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2

�

e−iϕ+1
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â†
3 e i α2

�
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�

â†
4 |0〉 (2.17)

We can now calculate what we expect as single count rates at each output mode of them
MBI and coincidence rates, as a function of the relative phase between the two arms of the
interferometer. If we define the coincidence counts as

C = 〈ψ|n̂3n̂4|ψ〉 , (2.18)

where |ψ〉 is the input state, we obtain

C =
|α| 2

4
sin2(ϕ). (2.19)

On the other hand, calculating the average number of photons collected at either detector
yields

N3 = |α|
2 cos2

�ϕ

2

�

N4 = |α|
2 sin2

�ϕ

2

�

.
(2.20)

This shows that we expect the number of coincidences to oscillate twice as fast with respect to
the single counts in each arm. This makes sense intuitively, because the maximum rate at which
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Figure 2.5.: Interference pattern due to the propagation of a weak coherent state through the
MBI. We can see that, as predicted by (2.19) and (2.20), the coincidence count
rates oscillate twice as fast as the single count rates. This can be interpreted as the
coincidences being the product of the single counts.

we are going to detect two photons simultaneously is when the same number of photons reaches
each detector. When the phase is such that either detector has the highest intensity, it also means
that the other has no photons at all impinging on it, hence there can be no coincidences.

The situation changes drastically if we use single photons as input state, i.e. |ψ〉= â†
Hâ†

V |0〉.
Calculating the expected coincidence rates yields

C = cos2(ϕ) (2.21)

while for the single count rates

N3 = 1
N4 = 1.

(2.22)

This is in stark contrast with the coherent case: while in that case we had an oscillating behavior
for the single count rates, here we see a constant detection rate. This is due exclusively to the
input state’s nature.
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2.5.2. EXPERIMENTAL REALIZATION

Let’s now implement experimentally what we have just discussed. First, we use a strongly
attenuated laser as a weak coherent input state. For the input state

|ψ〉= |αH 0V 〉 , (2.23)

i.e. a coherent state in one input and vacuum in the other, the count rates in both output ports
of the MBI show an oscillating behavior (Figure 2.5). At the same time, the coincidences show
an oscillating behavior with double the frequency, following a sin2(ϕ) function. This behavior
can be understood from a classical point of view, where the coincidence corresponds to the
product of the single counts. Note that ϕ corresponds to the introduced total phase by passing
twice through the tilted glass plate. This is the same behavior that we were expecting according
to (2.20) and (2.19).

Next, we launch one photon per input mode |HV 〉 by using the photon pairs from the SPDC
source. We observe that the counts at each individual MBI output channel will be constant
regardless of the introduced phase ϕ (Figure 2.6). This is due to the first-order correlation
between two MBI outputs being independent of ϕ. However, when we determine the coin-
cidences between the two outputs, we observe the same double frequency oscillation from
the coherent case, which is now phase shifted accordingly. When two orthogonally polarized
photons arrive at the metasurface simultaneously, there is no coincidence contribution in the
HOM experiment due to the photon bunching effect. In this scenario, path-entangled photon
pairs are generated at the metasurface. Thus, the visibility of interference fringes from the MBI
is (86.8± 1.1)%. In addition, further experiments for various time delays between the initial
two photons show a reduced visibility of the coincidence rate. When one photon is delayed
by 3 ps, the normalized HOM coincidence rate of approximately 50% tells us that the two
photons still overlap partially in time. For this partial overlap, the visibility of the interference
fringes is (67± 2)%. If one photon is delayed by more than 17 ps, they arrive at the MBI one
after the other, with negligible overlap. Correspondingly, no path entanglement is generated
inside the MBI. This is in good agreement with our experimental visibility of (45± 5)% for
the coincidence rate. The high visibility of the interference fringes in the coincidences rate
is higher than the violation limit of Bells inequalities (70.7%) [65]. This underlines how the
quantum nature of the state manipulated by the MBI is retained, given that such result cannot
be explained with a classical theory.

In contrast to the coherent case, the coincidence counts can no longer be perceived as the
product of the single counts. This pure non-classical effect is a key feature of quantum interfero-
metry that is closely related to photon entanglement. The peaks in the coincidences result from
the second-order correlation of the entangled NOON spin state with circular polarization,
which is generated after passing through the metasurface the first time. Passing through the
entire MBI, the entangled NOON spin state is disentangled into the original two-photon state
â†

Hâ†
V |0〉 if there is no phase difference between two MBI arms (first term in (2.7)). After splitting

the state at a PBS, the two photons arrive at the two detectors simultaneously, which causes the
maximum coincidence rates. On the other hand, the minima in the coincidences result from
the second-order correlation of the entangled NOON state with linear polarizations (second
term in (2.7)). For phase differences of ϕ = (n+ 1/2)π with n ∈ Z, the output of the MBI is
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Figure 2.6.: Experimental results for the two-photon state with three different time delays τ
after passing through the MBI. The count rates at both detectors are independent of
the introduced phase ϕ and the time delay τ. The measured coincidence rates show
an oscillatory behavior with lower visibility at higher delay times. The obtained
visibility values are (86.8± 1.1)% for the case of no time delay (top), (67± 2)% for
a delay of 3 ps (middle) and (44± 5)% for 17.7 ps (bottom).
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2.6. Conclusion

solely determined by the second term of (2.7). The two photons are either in the H or V path,
but they cannot be in both paths simultaneously. Hence, there is no coincidence contribution,
similar to the HOM effect, as shown in Figure 2.3.

2.6. CONCLUSION

Integrated photonic quantum experiments are routinely performed using large-scale optical
components such as directional couplers and BSs. With our experiments, we demonstrate the
preparation of spatial entanglement and disentanglement based on a metasurface in a more
compact setting. The results are especially remarkable since the metasurface consists of spa-
tially distributed nanostructured elements with slightly different scattering properties. The
experiments confirm that quantum entanglement and interference take place at our dielectric
metasurface, while phase-sensitive effects (quantum coherence) are preserved. Our findings
demonstrate that metasurfaces can achieve an interference performance similar to that of tradi-
tional optical components and are indeed viable candidates for integrated quantum nanosensors
and quantum interferometry.

Here, we focused on a metasurface for entanglement and interference and therefore for state
manipulation purposes. This metasurface operates as one of the basic building blocks of typical
photonic quantum circuits, which splits and recombines optical modes in nested interfero-
meters. However, metasurfaces have enormous potential in quantum optics. Their ability to
fully control the wavefronts of light can be used to generate multiphoton and high-dimensional
entanglement with different spin-OAM. Combining multiple optical functionalities into a single
metasurface as an efficient and compact quantum optical device might dramatically improve the
performance and even lead to new concepts for practical quantum applications. Since metasur-
faces can be used directly at waveguides and fiber-end facets, these hybrid nanophotonics systems
for arbitrary basis transformation can be used for robust integrated quantum technologies, from
sensor arrays to quantum simulators. In this context, future research has to show whether
metasurfaces can directly generate quantum states, such as single photon pairs, in a well-defined
and efficient way without the need for an additional source.

This is one example of the maturity of SPDC sources. But the transition from research interest
to practical instruments means also that now we need to care more about the performance of
such sources. This is what we are going to focus on in the next chapter, where we explore the
requirements of having a spectrally decorrelated source with high generation rates.
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3. HERALDING PHOTONS: CATCHING
FALSE-POSITIVES WHEN FILTERING SPDC
SOURCES

SPDC photon-pair sources are routinely used in quantum optics experiments and, as we have
described in the previous chapter, can be used with other technologies to further drive down
the required footprint of the overall experiment.

Of course, different experiments require different parameters and the SPDC must be tailored
to provide the best performance possible based on those parameters. One example is experiments
in which we require not only single photons, but also pure photons [66–72]. This chapter is
taken and adapted from Ref. [45], of which I’m author.

3.1. THE PROBLEM WITH PROBABILITIES

We have seen in subsection 1.3.1 that even a source described by a single Schmidt’s mode can
generate multiple photon pairs at a time. This is of course not a violation of energy conservation,
each photon pair will always require the annihilation of a pump photon! The point is that we
are dealing with pump pulses which contain millions of photon each, so we can basically treat
them as an “infinite” reservoir of pump photons. But even so, experiments involving SPDC
tend to keep the mean photon number generated per pulse fairly low [13].

Why is that so? Since we don’t live in a theoretical world, where our instruments are the most
convenient projection operator possible, we need to use imperfect solutions and compromises.
The biggest one is to drop the possibility of actually counting how many photons we have
in a single mode. In the discrete variable world, the most widespread type of detector is the
so-called “bucket” or “click” detector (the technology on which they are based is irrelevant for
our discussion). The reason they are called like that is because the only feedback they give is
if a photon triggered their detection mechanism, but this mechanism becomes insensitive to
further stimulation as soon as it fires. That means that if n > 0 photons are impinging on the
detectors, the signal we receive is a simple 0 (no detection) or 1 (detection), regardless of how
many photons were actually there. There is ongoing work to develop true photon-number
resolving detectors [73, 74] or so-called pseudo-number-resolving detectors, by multiplexing
click-type ones [75, 76]. Both of these approaches are promising, but far from being a common
tool in quantum optics experiments.

Since we have to live with such limitations (for now, at least), and our objective is still to
produce single photons, any pump pulse that produces more than one photon pair is detrimental
for our purposes and we will regard it as noise. Since the detectors that we use can’t distinguish
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between one or more photons, it’s important to reduce as much as possible these additional
contributions.

If we start from a correlated source, the simplest tool at our disposal is of course spectral
filtering [77]. This gives us the necessary purity that our experiment requires, but at the cost of
limited generation rate of “useful” event, since most of them will be suppressed by the filter
itself. A naïve solution is simply to increase the average power per pulse to recover the lost
generation rate. But filtering happens after the SPDC process and thus it does not change the
photon statistics of the single mode it selects. This means that increasing the pump power is
not a viable strategy if we want to still keep the single-photon character of the source. Since
our detectors cannot count photons, we need to keep the overall probability of generating
more than one photon negligible (as in the plot on the bottom left of Figure 4.1) so that if our
detector clicks, we are fairly sure that it was because of a single photon.

To improve the single photon generation rate of these sources while keeping the noise low,
multiple strategies can be used. A difficult but promising approach is multiplexing (detailed
later in this work), where multiple sources are combined together with feed-forward switching
to improve the rate of single photon generation without increasing the noise. Common schemes
are spatial multiplexing [78, 79], time multiplexing [80] and frequency multiplexing [81, 82].

While these are encouraging results, they usually come with a large hardware overhead
and additional setup complexity and losses when compared to single sources. To avoid these
drawbacks other methods can be used to achieve better performance in certain metrics from a
single SPDC source. For example, a combination of high pump repetition rate and spectral
filtering has been used [83] to increase the generation rate of single-photons. Alternatively,
photon-number-resolving detection can be used to eliminate higher order photon contributions,
decreasing the multi-photon noise [84, 85].

Note however, when the herald photon is filtered, many unheralded photons are sent to the
heralded arm. Some systems cannot rely on post-processing alone to eliminate these unheralded
photons, due to their sensitivity on incoming photon flux (e.g. detection systems based on
transition edge sensors [74]). In this case, active feed-forward and electro-optical switches
provide a solution, only opening the path to the heralded detector after the herald photon has
been detected [86–88]. This approach uses off-the-shelf telecom equipment and thus relies on
proven, cost-effective technology only.

In this chapter, we present a scheme which ensures high spectral and photon-number purity
of the generated state by conditioning on heralding events both within and outside the filter
bandwidth, and add to this an active feed-forward strategy that physically removes unwanted
photons. Our method does not pollute the heralded arm of the SPDC state with noise photons
and constrains the photon flux to a minimum for single-photon sensitive applications. We
compare our scheme with the case of standard passive spectral filtering and measure the reduction
in the noise due to our removal of higher order photon number contributions. A measure of
this noise is given by the heralded second order correlation function (g (2)

h
(0)) and we register a

maximum improvement of 21%, limited by losses in the heralding arm.
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3.2. THEORY

For the best heralding efficiency, often only the heralding photon is filtered. This can still
project the heralded photon into a single spectral mode as long as the filter is tight enough [89].
A problem arises if the modes which the filter removes in the heralding arm are still present in
the heralded arm, leading to uncorrelated noise. In particular highly multi-mode SPDC states
with strong spectral correlations, which are typical for standard waveguide sources, require
significant filtering to achieve spectral purity and are strongly affected by this pollution. To
counteract this shortcoming we introduce the concept of extended heralding (Figure 3.1). Here,
we take the idler output of a SPDC source and we filter it in order to increase the purity. We
exploit the additional information gained by detecting not only the transmitted light of filter in
the heralding arm, but also the rejected part of the spectrum which is normally discarded. We
use the additional information present in the reflected heralding mode to improve the photon
statistics of the heralded mode, namely by discounting events where a photon is detected in
both transmitted and reflected ports, reducing multi-photon events. A field-programmable gate
array (FPGA) closes an electro-optic switch only when a photon is detected at the transmission
port of the filter, and no photon is present at the reflected port. We can then analyze the photon
statistics via a time-to-digital converter (TDC).

We follow the description of Ref. [85] with the addition of filtering and extended heralding,
comparing the fidelity of the heralded state to a single photon in a single spectral mode, versus
the probability of heralding. Here we take the fidelity of the heralded state before any losses,
which is thus an upper limit to the fidelity achievable in practice.

3.2.1. EFFECT OF FILTERING ON FIDELITY

We begin with a SPDC state with a certain distribution of spectral modes given by the Schmidt
decomposition of the total state, where we assume the pump power is low enough to neglect
time-ordering effects [33]. The state in terms of these broadband modes is [85]

|ψ〉=
∞
⊗

k=0

sech(qk )
∞
∑

n=0
tanhn(qk )

�

�

�n(s)k
, n(i)

k

¶

. (3.1)

This means, for each spectral-temporal Schmidt mode k in the tensor product, there is a sum
in photon number from 0 to∞, with a thermal distribution. The squeezing parameters are
defined as qk = Bλk , where B is an overall pump power factor, and λk are the eigenvalues of
the Schmidt decomposition of the joint spectral amplitude. In practice the tensor product and
sum need not be carried to infinity; we use a maximum of 20 spectral modes and 6 photons in
simulation.

The spectral filter in the heralding (signal) arm rearranges the spectral modes. It suffices to
take new (pseudo-) Schmidt decompositions of the joint spectral amplitudes transmitted and
reflected by the filter [90, 91], without renormalizing. Then the state, with components now
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labeled t for transmitted through the filter and r for reflected, is

|ψ〉=
∞
⊗

kt=0

sech(qkt
)
∞
∑

n=0
tanhn(qkt

)
�
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�n(s)kt
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)
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E

, (3.2)

where now the squeezing parameters are qkt
= Btλkt

and qkr
= Brλkr

, and Br and Bt come
from the relative intensities of the transmitted and reflected modes.

We can sort the terms according to photon number as
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and continuing with higher number terms. Then we apply a detector (insensitive to the spectral-
temporal modes) on the heralding (transmitted) mode, given by the heralding projector

Π̂t = c0 |0〉 〈0|+ c1

∑

kt

�

�

�1kt

¶¬

1kt

�

�

�+ c2

∑

kt≤k ′t

�

�

�1kt
, 1k ′t

¶¬

1kt
, 1k ′t

�

�

�+ . . . , (3.4)

where cnt
= 1− (1−ηt )

nt is the click probability given nt photons for detection efficiency ηt .

The extended heralding (reflected mode) projector is then Π̂r = 1̂− Π̂t . This is equivalent to Π̂t ,
with the detection probabilities cnt

replaced by the probabilities of no click, cnr
= (1−ηr )

nr .
Dark counts can be added to either detector with a constant term in the cn .

Projecting the transmitted and reflected modes with their respective heralding and extended
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heralding detectors returns the (normalized) heralded signal state
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∏
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The probabilities of heralding and extended heralding (i.e. getting a click in the transmitted
arm, and no click in the reflected arm, respectively) are

pherald =
∏

kt

sech2(qkt
)
�

c0t
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and
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∏
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Normally, we herald the presence of a signal photon by a successful detection event at the
transmission port of the filter in the idler arm, disregarding the state of the reflected port.
Extended heralding, i.e. the knowledge of whether a photon was present in the reflected port of
the filter or not, gives us a more complete picture, and the combination of the two is what will
give us an advantage. If our goal is to prepare single photons, then extended heralding will give
us the necessary information to reject what would have otherwise been false positives.

Finally, the fidelity of the heralded state to a single photon in the first spectral mode and
vacuum in all other modes is

F =
¬

10t

�

�

�⊗〈0r |ρ
�

�

�10t

¶

⊗ |0r 〉
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)
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). (3.8)
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τ
Source

FPGA

Filter

EO-Switch

TDC
trans.

refl.

BS

Extended heralding

Figure 3.1.: Representation of the proposed scheme. Light coming from both transmission
and reflection port of a frequency filter is analyzed by fast electronics (FPGA).
The FPGA closes an electro-optic switch when a photon is present only in the
transmission port. The statistics of the prepared state is then analyzed with a
Time-to-Digital Converter (TDC).

This is the fidelity of the heralded single photon before it is subjected to losses, upper bounding
the possible performance of the source. This fidelity is plotted in Figure 3.2, which shows the
progression from an unfiltered, spectrally multimode state (with JSI matching our experiment),
to filtered but contaminated with multiphoton events, to finally a high-fidelity state. An
ideal photon source has simultaneously high heralding probability and fidelity, but without
multiplexing heralded single photon sources are limited to the yellow region. Of course, one still
wants to operate the sources as close to the upper right corner as possible. Here the unfiltered
state shows consistently low fidelity, which can be increased by filtering, in our case to 50 GHz
bandwidth. Without losses, the extended heralding case maintains high fidelity for significantly
higher heralding probability than the standard filtered case, approaching the theoretical limit
much more closely, as shown in the right plot of Figure 3.2. We can see that by using the
proposed scheme, we can obtain a source of equal performance in terms of fidelity, but with
four times the heralding rate, if we use a fidelity of F = 0.92 as our target. This maximal
improvement depends of course on the actual spectral characteristics of the source at hand.

It is unfortunately not possible to access this fidelity experimentally due to the difficulty
of projecting on the vacuum and single photons in single spectral modes with realistic losses.
The source quality can still be accessed, however, via the spectral purity P and heralded g (2)

h
(0).

Fidelity F = 1 corresponds to P = 1 and g (2)
h
(0) = 0. Here the purity is controlled by spec-

tral filtering, which increases the g (2)
h
(0) from pollution from other spectral modes, which is

subsequently reduced by heralding plus feed-forward.
We now make a few approximations to express the fidelity (3.8) in terms of these experiment-

ally accessible quantities. First, we assume all qkt
and qkr

are small such that tanh(qk )≈ qk and
sech(qk )≈ 1. Then we neglect filtering (dropping the subscripts t ), resulting in a fidelity

F ≈
c1q2

0

pherald
. (3.9)

We then assume low overall generation probability and no dark counts, such that we can truncate
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Figure 3.2.: Left plot: theoretical fidelity versus heralding probability, with and without spectral
filtering and extended heralding. Each curve is produced by varying the initial
(before filtering) mean photon number over [10−2, 2]. After filtering and extended
heralding, the state reaches and remains in the high-fidelity region for a range of
pump powers. Right plot: Detail of the aforementioned range in which the fidelity
is consistently higher than both unfiltered and heralded case.

pherald to second order, giving

pherald ≈ c1

∑

k

(qk )
2+ c2

∑

k≤k ′
(qk )

2(qk ′)
2. (3.10)

We expand the fidelity in a Taylor series about 0 in the second term of pherald (i.e. 1/(a+ x)≈
1/a− x/a2), giving

F ≈
q2

0
∑

k (qk )2

�

1−
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∑

k≤k ′(qk )
2(qk ′)

2
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(3.11)

The spectral purity is given in [92] as

P ≈
∑

k (qk )
4

(
∑

k (qk )2)
2 ≈

q4
0

(
∑

k (qk )2)
2 , (3.12)

where we assumed that the first Schmidt mode dominates, i.e. q4
0 � q4

k>0. Then we can identify
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this purity with the square of the first term in our approximate fidelity, resulting in
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We similarly approximate and truncate the heralded state ((3.5)) to give
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The heralded g (2)
h
(0) is given for multimode states [92] with broadband mode operators Ak by
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h
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which when substituting ρs results in

g (2)
h
(0)≈

2c2 pherald
∑

k≤k ′(qk )
2(qk ′)

2

(c1
∑

k (qk )2)
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We then keep pherald only to first order, allowing to identify the second term of our approx-
imate fidelity with g (2)

h
(0)/2, resulting in

F ≈
p

P



1−
g (2)

h
(0)

2



 . (3.17)

For the filtered case, with and without extended heralding, the derivation is similar, and it
shows that the same result as (3.17) apply. Again, we assume all qkt

and qkr
are small such that

tanh(qk )≈ qk and sech(qk )≈ 1. Then the fidelity is

F ≈
c1t

c0r
q2

0t

pherald pext
. (3.18)

We then assume low overall generation probability and no dark counts, such that we can truncate
pherald to second order, giving

pherald ≈ c1t

∑

kt

(qkt
)2+ c2t
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(qkt
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and pext to first order as
pext ≈ c0r

+ c1r

∑

kr

(qkr
)2. (3.20)
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We also neglect the third-order term in the product pherald pext, giving fidelity
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We then expand the fidelity in a Taylor series about 0 in the second two terms of the denominator
(1/(a+ x)≈ 1/a− x/a2), giving
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The spectral purity is the same as before [92]
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We now include the reflected modes in the truncated heralded state ((3.5)) to give
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The heralded g (2)
h
(0) is given for multimode states [92] with broadband mode operators Ak by

g (2)
h
(0) =

¬�

∑

j ,m A†
j A

†
mAj Am

�¶

¬

∑

j A†
k
A
¶2 . (3.25)

Substituting ρs and neglecting the reflected modes in the denominator results in
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The factor 2 comes from the annihilation operators themselves when they act on the same
mode (i.e. j = m = kt = k ′t ), and from the two equivalent arrangements of annihilation
operators when they act on different modes (e.g. j = kt , m = kr ; or j = kr , m = kt ). We then
keep pherald only to first order and assume negligible dark counts such that c0r

→ 1, allowing

to identify the second term of our approximate fidelity with g (2)
h
(0)/2, resulting in the same

fidelity as without filtering, namely

F ≈
p

P


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 . (3.27)
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Figure 3.3.: Experimental setup. Black thin lines represent electrical connections, while thick
blue lines are single-mode fibers. The electro-optic switch (EO-Switch) is a 2×2
device whose unused ports are not depicted. The Time-To-Digital converter is
connected to a computer for data storage (not depicted).

3.3. EXPERIMENTAL SETUP

The experimental setup is shown in Figure 3.3. We use a type-II SPDC source based on a
periodically-poled titanium-indiffused lithium niobate waveguide. The source is fiber-pigtailed
and is engineered to produce single photon pairs at 1560 nm when pumped at 780 nm and
kept at room temperature [13]. However, in this experiment the source is kept at around 50
°C, to shift the degeneracy point of the source into a range that fits the window of the fiber
Bragg-Grating (FBG) filter used for heralding.

A pulsed laser system (Spectra Physics Tsunami) with a 2 ps bandwidth and centered at 777.24
nm with a repetition rate of 500 kHz pumps the SPDC and acts as the system clock. In order
to control power and polarization of the pump, a half-wave plate, a polarizing beam-splitter,
and a second half-wave plate, are placed just before light is coupled into the SPDC source. The
pump is then coupled into a polarization maintaining fiber directly pigtailed to one of the end
facets of the lithium niobate chip. Photon pairs are then collected at the output end facet by
another polarization maintaining fiber. The output fiber is fusion-spliced to a fiber polarizing
beam-splitter to separate the two outputs of the source (typically called “signal” and “idler”).
The outputs of the fiber PBS are then also spliced to two fiber isolators per arm to suppress the
residual pump light. In our case, the signal arm is the one being filtered and the idler is the arm
being analyzed.

The signal arm is connected to an FBG filter (AOS Manual FBG) centered at 1554.5 nm and
with 0.25 nm bandwidth. The two outputs of the filter correspond to the selected portion of
the spectrum we want to use for heralding (“add” or transmitted) and the extended-heralding
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one (“drop” or reflected).
To implement the schemes described above, we monitor both outputs of the filter and apply

two different heralding criteria. In the first case, which we will use as benchmark and label
simply “heralding”, the heralding signal is taken to be a click in the transmitted arm of the
filter. In the second case, labeled extended heralding, the heralding signal is a combination of
two events: a click in the transmitted arm and no clicks in the reflected arm. Additionally,
in this second case the extended heralding signal is used to close an electro-optic switch. This
means that we are physically removing unheralded photons from the system instead of simply
discarding such events during data-analysis, a feature which proves crucial in light sensitive
applications.

In both cases, the signal arm photons are detected with a superconducting nanowire single-
photon detector (SNSPD, PhotonSpot). The generated outputs are amplified to TTL levels and
redirected to the FPGA (Xilinx Spartan 6) which produces the final heralding signal, depending
on the condition set. This signal is then fed to a TDC (AIT TTM8000) for analysis.

The idler arm is routed to a fiber loop which introduces a delay of approximately 1 µs. This
gives enough time for the electronics to generate the appropriate heralding signal as described
above. This then is used to close an electro-optic switch, which is normally open (i.e. blocking
transmission of the light). The output of the switch is then coupled to a non-polarizing beam-
splitter, whose outputs are finally connected to two SNSPDs. Their outputs are analyzed by the
TDC, which registers the timestamps of each detector click and saves them onto a computer.

3.4. ANALYSIS AND DISCUSSION

To characterize the efficacy of extended heralding in the presence of realistic spectral mode
distributions, losses, and higher-order photon states, we performed numerical simulations using
QuTiP [93]. We calculate the two-photon joint spectral amplitude of our photon pair source,
perform a Schmidt decomposition to find the relative strengths of the involved squeezers, then
normalize the overall pump power to give the appropriate total mean photon pair number.
Next idealized (square, lossless) filters are applied to the heralding arm, and detector operations
are applied to the transmitted and reflected arms, and we calculate the fidelity from (3.8). We
also analyze the spectral purity and photon statistics via the g (2)

h
(0) in order to compare with

experiment. Finally we introduce the heralded single-photon fitness FH S , so named because it
captures two important aspects of a heralded single photon source: the presence of one photon
in a single spectral mode upon heralding, and the absence of photons without heralding. The
former is improved here by extended heralding, and the latter by using feed-forward to control
a physical switch on the heralded mode. The contributions of these terms are weighted by their
likelihood. We define the heralded single-photon fitness as

FH S = pheraldF +(1− pherald)Pnoclick

≈ pherald

p
P



1−
g (2)

h
(0)

2



+(1− pherald)Pnoclick (3.28)
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where Pnoclick is the probability of getting no detection in the heralded mode given that there
was no heralding signal. This probability is also scaled to take into account losses in the setup,
i.e.

Pnoclick = 1−
Pclick

η
(3.29)

where η is the heralded photon’s Klyshko efficiency, which gives the probability of producing
no photon inside the source.

As stated before, filtering is the simplest way to improve the purity of a source with a
correlated spectrum. This comes at a cost, namely a reduction in the generation rate of single-
photons. To counteract this effect, the natural answer would be to increase the pump power
used, but if we look at Figure 3.2, increasing the pump power means moving from left to right
along the curves. That means that trying to recover the generation rate leads to lower fidelities,
so we need to find a compromise.

To show this behavior, we record the g (2)
h
(0) value at different power levels when using the

heralding signal from the transmitted FBG port. We show the data as a function of heralding
probability as only the photons which have been heralded are usable. As summarized by Fig-
ure 3.4, the g (2)

h
(0) captures the undesired increase of the multiphoton-component contribution

as the heralding probability increases. The g (2)
h
(0) value is calculated according to

g (2)
h
(0) =

C
S1S2

H , (3.30)

where C is the number of heralded coincidences at the end of the non-polarizing beam-splitter,
S1 and S2 are the heralded counts at each output, respectively, and H is the number of heralding
signals in the experiment.

If we now take into account the reflected port of the FBG filter to generate the extended
heralding signal, we can see that, for the same value of heralding probability, we have decreased
the g (2)

h
(0) value, indicating that we effectively mitigated the spurious contributions of multiple

pairs. Additionally, the data is in good agreement with our theoretical model, which allows us
to extrapolate the best possible improvement when sourcing components with lower losses.

The data in Figure 3.4 show the measured values of the g (2)
h
(0) and the fidelity, with the

respective theoretical models. We can see that in each case theory and experiment are in
good agreement, particularly for the solid lines, which directly implement in simulation the
approximations made in the approximate fidelity (3.17). An additional consideration is that this
scheme is more effective the harder the source is pumped, e.g. reaching a maximum improvement
in g (2)

h
(0) of 21%, or for the same g (2)

h
(0), an improvement in the count rate of 1.2 times.

The performance of extended heralding is mainly limited by the losses in the experimental
setup, as can be seen in the significant difference in the simulated curves with and without losses.
Fiber-to-fiber connections, the FBG itself and the network connecting the source to the detection
system all amount to an estimated 30% total transmission. Sourcing better components could
increase the improvement obtained with this scheme over simple heralding to a more than 80%
reduction in the g (2)

h
(0).
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3.5. Conclusion

In the previous two measurements, it is not necessary to implement feed-forward, as the same
result can be achieved with post-selection. However, active gating is of importance when the
total light flux reaching the experimental setup must be kept to a minimum, as it allows only
correctly heralded photons to pass. The source fitness parameter FH S as introduced in (3.28)
directly captures this improvement, which cannot be achieved with post-selection, and gives us
a quantitative measure of the noise reduction achieved thanks to this scheme. In contrast to the
improvement in fidelity, here the increase in photon fitness is more significant for higher losses,
as more losses in the heralding arm mean more unheralded events make it to the detectors
without feed-forward. As seen in Figure 3.5, the source fitness after extended heralding and
feed-forward is nearly perfect, with a maximum improvement of 53%.

Another parameter used to characterize active sources is the output noise factor (ONF) [86].
Given a heralding probability of 0.0037, optical switch on-time of 200 ns and optical switch
extinction ratio of 20 dB, we calculated a ONF of (2.4± 2.0)%.

3.5. CONCLUSION

We have introduced and implemented a scheme called extended heralding, aimed at improving
the standard filtering used to increase the spectral purity of photon pair sources with a correlated
joint spectrum. A significant improvement is found when compared to a passive filter, especially
when care is taken to minimize losses throughout the setup. This scheme is also easy to
implement on top of an existing HSPS, requiring no modification of the existing setup. Finally,
we have demonstrated a significant reduction in unwanted incident light through the use of
active feed-forward, which is important in practical light-sensitive scenarios.

As much as this solution does improve the performance of a HSPS, there is only so much
one can do. In the next part of this work, we will introduce an alternative set of tools to tackle
the problem of deterministically generating pure single photon from SPDC sources.
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Figure 3.4.: Effect of normal and extended heralding. The two figures, top and bottom, represent
equations (3.30) and (3.17), respectively. Error bars are statistical errors with 1-sigma
confidence interval calculated over ten repetitions of the experiment, each with an
integration time of 120 seconds. Solid lines represent our theoretical models, taking
into account the experimental parameters. Dashed lines represent the same model
in the case of lossless components throughout the setup.
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components.
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PART II.

ALL SOURCES FOR ONE PHOTON
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4. MULTIPLEXING PHOTONS: A
WORKAROUND FOR HSPSS’ LIMITATIONS

We have discussed in the last part how HSPSs can be used in conjunction with other technologies
and how we can avoid some inconveniences when tailoring these sources to our needs. As much
as we would like to improve things, there is only so much we can do. Some limitations of these
type of sources can’t simply be ignored or disregarded and we must either face the music or we
need to think outside the box.

In this chapter, we will discuss the concept of source multiplexing, and how it will help us
against the probabilistic nature of SPDC sources. But first we need to understand why we need
multiplexing and how it relates with the concepts laid out in the first chapter of this work.

4.1. THE IDEAL HSPS IS NOT NEARLY ENOUGH

Figure 4.1 highlights the difference in photon number statistics between a correlated and
uncorrelated source. It is clear that we are fighting an uphill battle when we say that we want to
generate single photons with SPDC sources, because our objective is to generate a single photon,
not at least one photon.

Let’s have a look at the performance of one of the simplest sources we can think of: a
single-mode HSPS. We defined in (1.38) the state generated by such a source as

|ψSPDC〉=
Æ

1− |λ|2
∞
∑

n=0
λn |n, n〉 . (4.1)

We need to define how we are going to herald the photons generated by this source, so we
need to define how our detectors act on the state (4.1). We define in general a set of POVMs

Π̂(n) =
∞
∑

N=n
pd (n|N ) |N 〉〈N | , (4.2)

which define a measurement of the outcome n, and where pd (n|N ) is the conditional probability
of detecting n photons when N are actually present at the input of the detector. Based on this,
we can define two types of detectors. We have already encountered one, the “bucket” or “click”
detector, in chapter 2 and chapter 3, which has only two outcomes, “click” or “no-click”. We
assume that the efficiency of such detector is ηd , i.e. a single photon has a probability ηd of
triggering the detector, and we obtain

pB (“no-click”|N ) = (1−ηd )
N (4.3)

pB (“click”|N ) = 1− pB (“no-click”|N ) (4.4)
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Figure 4.1.: Photon number statistics overview for both correlated (gray) and uncorrelated (red)
sources. Top row: probability of generating n ∈ {0,1,2,3} photons as a function
of the mean photon number per pulse. The dashed lines mark the 〈n̂〉= 0.1 level
under which HSPSs are usually operated. Bottom row: probability of generating n
photons assuming a fixed mean photon number per pump pulse.
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4.1. The ideal HSPS is not nearly enough

where the suffix B indicates a bucket detector.
On the other hand, if we are lucky enough to have a photon-number resolving detector

(PNRD), using basic probability theory we can calculate what’s the probability of detecting n
photons given that N where present as

pR(n|N ) =
�

N
n

�

ηn
d (1−ηd )

N−n , (4.5)

where we have assumed that our PNRD has an efficiency ηd of detecting a single photon. The
suffix R stands for “resolving”.

Having a description for our detectors, we can now ask two questions: what is the probability
of heralding the presence of a single photon and what does the heralded state look like. A
heralding event is of course one where we detect a single photon in one of the two modes of
our state in (4.1). The heralding probability is

pH = 〈ψSPDC|Π(1) |ψSPDC〉=
�

1−λ2�
∞
∑

n,n′,N

λn′λn pd (1|N )



n′, n′
�

� |N 〉〈N | |n, n〉

=
�

1−λ2�
∞
∑

n,n′,N

λn′λn pd (1|N )δn,n′δn′,NδN ,n

=
�

1−λ2�
∞
∑

n=1
λ2n pd (1|n)

(4.6)

where we have assumed that λ is real [19]. The reduced heralded state is found by tracing over
the heralding sub-space, i.e.

ρ̂H =
Tr{Π(1)ρ̂SPDC}

pH
=
∑∞

n λ2n pd (1|n) |n〉〈n|
∑∞

n λ2n pd (1|n)
. (4.7)

All that’s left is to calculate the fidelity to the single photon Fock state, defined as

F = 〈1|ρ̂H |1〉=
λ2 pd (1|1)

∑∞
n λ2n pd (1|n)

. (4.8)

With equations (4.6) and (4.8) we are now able to shed some light on the problem of wanting
both a fast and deterministic single photon source. For the case of a multimode source, we refer
the reader to [19], from which this analysis is inspired. Looking at Figure 4.2, it’s clear that
HSPSs are not fit to be pure, deterministic, single-photon source, because in that case, we should
be able to reach the top right corner of the plots of the first row, where both the heralding
probability and the fidelity are 1. This is not a technical limitation. Even with perfect (ηd = 1)
number-resolving single photon detectors, the intrinsic nature of these sources simply does not
allow us to reach our goal. There is hope though, as we stated at the beginning of this chapter.
Clearly one source is not enough for our needs, but it turns out that combining multiple sources
into a single one does get rid of the limitation that we have just described [18]. This is what we
called source multiplexing, and it’s going to be focus of the rest of this chapter.
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Figure 4.2.: Top row: comparison between the fidelity to single-photon Fock state of a HSPS
and its heralding probability. These are parametric plots in the mean photon
number. Plotting the fidelity against the heralding probability serves to underline
the inherent problems related to wanting to maximize one or the other. Our goal
is to reach the top-right corner of these plots, but the intrinsic behavior of these
sources hinders us. Bottom row: functional dependence of the heralding probability
and the fidelity on the average photon number. Left column: click detectors; right
column: PNRDs.
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4.2. Spatial multiplexing
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Figure 4.3.: Schematic representation of spatial multiplexing. Multiple identical sources are
triggered all at the same time and their heralding (idler, i ) outputs are all checked for
photons. If one of the sources has effectively produced a photon, then that source’s
heralded signal (s ) will be routed through the network to the output mode, ready
to be further manipulated.

4.2. SPATIAL MULTIPLEXING

Multiplexing comes in different “varieties”, depending on which degree of freedom in your
system you are leveraging, each of which has its pros and cons. One of the most straightforward
cases is spatial multiplexing.

The main idea is as follows: a single-mode perfect HSPS has a 25% chance that it will actually
produce a single photon. If we put N together and we trigger them all at the same time, then
the probability that at least one will produce a single photon will be higher than the single one,
namely

pMUX = 1− (1− ps )
N , (4.9)

where ps is the probability of our source generating a single photon. We can estimate from this
that we would “only” need 17 sources [19] to achieve >99% probability of producing a single
photon. After we record a successful heralding event, we can then route the generated photon
into a predefined spatial mode through a switching network triggered by some logic controller.
We buffer each HSPS output signal with an optical delay so that the logic controller has enough
time to set up the switching network accordingly.

This is of course in an ideal world, but we need to keep our feet down. Seventeen sources
are not a small amount and each of them comes with associated hardware necessary to herald
one photon of the pair and route the other one down to the output. Let’s calculate what’s
the impact of losses in this type of setup. We will assume that all components involved are
identical for simplicity. We will call ηi and ηs the collection efficiencies of the signal and idler
arm, respectively (not accounting for detector losses), ηn the efficiency of the entire switching
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Figure 4.4.: Schematic representation of the loss model described in this chapter. Each photon
has a certain probability η of being transmitted. We ignore the ones which get
reflected (with probability 1−η) and only care about mode 3 of the BS, regardless
of the state of mode 4, thus having a mixed state as output.

network, ηd the efficiency of the detectors and η` the efficiency of the buffering optical loops.
If we want to multiplex N sources, then we need S = dlog2(N )e optical switches to route

one of the sources’ outputs to the main one. This is called multiplexing depth (i.e. how many
switches the selected photon will go through) and it amounts to a total loss of

ηn = η`σ
S (4.10)

where σ is the efficiency of a single switch (including input and output routing elements, like
mirrors or fibers).

What’s the chance that we are actually going to detect a heralded single photon at the output?
The emphasis on “heralded” is not put there at random: we are not interested in the overall
probability of having some photon at the output, we want to be sure that there is going to be one
(otherwise, why would we use HSPSs at all?). To answer this question we need three elements:
the probability that we successfully herald a single photon; the probability that this is actually a
single photon and not a multi-photon event which our detectors could not discriminate—which
is the case for bucket detectors giving out false-positives even with perfect efficiency; and lastly
the probability that this certified single photon does not get lost in the switching network. We
follow the analysis of [94], with the difference that here we arrive at more general results. For
simplicity, we disregard the role of dark counts in our analysis.

We will model a lossy component as a non-polarizing BS with transmission η followed by a
perfect component (Figure 4.4). A BS with transmission η transforms its input modes â†

1 , â†
2

into the outputs

â†
1 =
p
ηâ†

3 +
p

1−ηâ†
4

â†
2 =

p

1−ηâ†
3 −
p
ηâ†

4

(4.11)
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4.2. Spatial multiplexing

so any input Fock state can be rewritten in terms of the output states of the BS accordingly

|n, m〉=

�

â†
1

�n

p
n!

�

â†
2

�m

p
m!
|0〉=

�p
ηâ†

3 +
p

1−ηâ†
4

�n

p
n!

�

p

1−ηâ†
3 −
p
ηâ†

4

�m

p
m!

|0〉 . (4.12)

As we did previously with the case of the perfect HSPS setup, we will deal with one or the
other sub-system of our collective state, so it’s more convenient to work in terms of density
matrices. For this, we need to understand how the BS transformation (4.12) affects each matrix
element

�

�n
�


n′
�

� of the Fock space. By applying the transformation, we obtain

�

�n
�


n′
�

�=
n
∑

k

n′
∑

k ′=0

γ nn′
kk ′ (η)

�

�n− k , k
�


n′− k ′, k ′
�

� , (4.13)

in which the second mode in each ket (i.e. k and k ′) represents the “loss” mode and where we
defined

γ nn′
kk ′ (η) = B n

k B n′
k ′

p

(n− k)!k!
p

(n′− k ′)!k ′!
p

n!
p

n′!

p
ηn+n′−k−k ′p1−ηk+k ′

, (4.14)

B n
k being the binomial coefficient.
The density matrix of our SPDC state reads

ρ̂SPDC =
�

1−λ2�
∞
∑

n

∞
∑

n′
λn+n′ �

�n, n
�


n′, n′
�

�=

=
�

1−λ2�
∞
∑

n

∞
∑

n′
λn+n′ �

�n
�


n′
�

�⊗
�

�n
�


n′
�

�

(4.15)

where we can substitute
�

�n
�


n′
�

� with (4.13), obtaining

ρ̂SPDC =
�

1−λ2�
∞
∑

n

∞
∑

n′
λn+n′

n
∑

k=0

n′
∑

k ′=0

γ nn′
kk ′ (ηs )

�

�n− k , k
�


n′− k ′, k ′
�

�

⊗
n
∑

`=0

n′
∑

`′=0

γ nn′
``′ (ηi )

�

�n− `,`
�


n′− `′,`′
�

� .

(4.16)

We are clearly not interested in the loss modes, so we can trace them out, yielding

ρ̂L
SPDC =

�

1−λ2�
∞
∑

n

∞
∑

n′
λn+n′

n
∑

k=0

n
∑

`=0

γ nn′
kk (ηs )γ

nn′
`` (ηs )

�

�n− k , n− `
�


n′− k , n′− `
�

� . (4.17)

While we made the assumption in (4.6) that we were dealing with a perfect setup, now we
have the necessary details to drop this assumption, and check what’s going on when we have
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4. Multiplexing photons

real components. The heralding probability, assuming that our heralding mode is the idler one,
is

pH (ηi ,ηd ) =Tr
�

ρ̂L
SPDCΠ(1)

	

=

=
�

1−λ2�
∞
∑

n

∞
∑

n′
λn+n′

n
∑

k=0

n
∑

`=0

∞
∑

N=1

γ nn′
kk (ηs )γ

nn′
`` (ηi )pd (1|N )×

×
∞
∑

m,m′




m, m′
�

� |N 〉〈N |
�

�n− k , n− `
�


n′− k , n′− `
�

�

�

�m, m′
�

(4.18)

which is just a cornucopia of Kronecker deltas, i.e. δi j = 0 if i 6= j . These amount to n = n′

and n− `=N , infinite sums of geometric series and binomial expansions, like most of the rest
of this section will be. Together with the previous constraint that `= `′, this let’s us simplify
the factors γ nn′

``′
(ηi ) to

γ nn′
``′ (ηi ) = B n

n−N B n
n−N
(n−N )!N !

n!
ηN

i (1−ηi )
n−N = B n

n−Nη
N
i (1−ηi )

n−N = γ n
N (ηi ). (4.19)

The factors γ nn′
kk ′ also undergo a similar transformation, taking into account also that k = k ′

γ nn′
kk ′ (ηs ) = B n

k η
n−k
s (1−ηs )

k = γ n
k (ηs ). (4.20)

Taking a closer look at (4.18), we can see that the sum over k is independent of N , and it
amounts to one. It’s the polynomial expansion of (ηs +(1−ηs ))

n , which is 1 independent of ηs .
This makes intuitively sense, because the heralding probability cannot depend on the collection
efficiency of the signal arm. The sum over N looks the same, but care must be taken to check
the limits of the sum. The sum over N starts at one, and this restricts also the sum in n to start
at one. This is because n,`,N ∈N0 and as we said n−`=N , but if the minimum value of N is
1, then it must be that the minimum value of n is also 1. Lastly, the upper bound of the sum
over N must be n, so that the factorials in γ n

N (ηi ) are defined. This leaves us with

pH (ηi ,ηd ) =
�

1−λ2�
∞
∑

n=1
λ2n

n
∑

N=1

γ n
N (ηi )pd (1|N ) (4.21)

which, for ηi = 1, is the same as (4.6).
To move forward, we need to choose which type of detector we are going to use, so that we

can plug the appropriate form of pd (1|N ). If we use a bucket detector, we can extend the sum
over N to 0, since (1− (1−ηd )

0 = 0), leading us to

pB
H (ηH ) =

�

1−λ2�
∞
∑

n=1
λ2n

n
∑

N=0

γ n
N (ηi )

�

1− (1−ηd )
N �=

=
�

1−λ2�
∞
∑

n=1
λ2n(1− (1−ηiηd )

n) =

=
�

1−λ2�
�

1
1−λ2

− 1
1−λ2(1−ηH )

�

=

=
λ2ηH

1−λ2(1−ηH )

(4.22)
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4.2. Spatial multiplexing

where ηH = ηdηi is the overall heralding efficiency of the idler arm. A sanity check confirms
that for pB

H (ηH = 0) = 0 and pB
H (ηH = 1) = λ2.

The reduced heralded state ρ̂H is found by tracing over the subspace of the idler and renor-
malizing:

ρ̂B
H =

Tr
�

ρ̂L
SPDCΠ(1)

	

s

pB
H (ηH )

=

=
1−λ2

pB
H (ηH )

∞
∑

n

∞
∑

n′
λn+n′

n
∑

k=0

n
∑

`=0

∞
∑

N=1

γ nn′
kk (ηs )γ

nn′
`` (ηi )pB (1|N )×

×
∞
∑

m
〈m| |N 〉〈N |

�

�n− k , n− `
�


n′− k , n′− `
�

� |m〉 .

(4.23)

We can make the same arguments for the case of (4.18) to simplify the equation, realizing that
this lead us to n = n′ and `= n−N :

ρ̂B
H =

1−λ2

pB
H (ηH )

∞
∑

n=1
λ2n

n
∑

k=0

n
∑

N=1

γ n
k (ηs )γ

n
N (ηi )pB (1|N ) |n− k〉〈n− k| . (4.24)

The sum over N , is independent of the rest and can be carried out immediately, obtaining

1− (1−ηH )
n . (4.25)

This is nothing more than (4.4), in which the detector efficiency has been modified from ηd to
ηdηi = ηH .

Finding the fidelity F to the photon state |m〉 is straightforward, and follows the same
reasoning and algebraic tricks used to obtain pB

H :

F B
m(ηH ,ηs ) = 〈m|ρ̂

B
H |m〉=

=

�

1−λ2
�

λ2mηm
s

pB
H (ηH )

�

1

(1−λ2(1−ηs ))
m+1 −

(1−ηH )
m

(1−λ2(1−ηH )(1−ηs ))
m+1

�

(4.26)

The case for PNRDs is similar, and we will spare the details: the whole point of the math-
rollercoaster of the previous paragraphs was exactly to explain the methods used to get to the
results once. We will only directly give the probability of heralding a single photon

pR
H (ηH ) =

�

1−λ2
�

λ2ηH

(1−λ2(1−ηH ))
2 (4.27)

and the corresponding probability that the heralded state contains m photons:

F R
m(ηH ,ηs ) =

�

1−λ2
�

λ2mηm
s ηH (1−ηH )

m−1

pR
H

m+λ2(1−ηH )(1−ηs )

(1−λ2(1−ηH )(1−ηs ))
m+2 (4.28)
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This last result is obtained “by noticing that”1

∞
∑

n=m

nn!xn−m

(n−m)!
= m!

m+ x
(1− x)m+2

(4.29)

and also, regarding the validity of such closed sums, remembering what my university professor
of statistical mechanics said during a lecture: we don’t check if we can swap a sum and an
integral, or if a series converges, we just assume we can, otherwise reality would not exist2.

Finally, we can calculate the probability that our N multiplexed sources produce a single
photon. This equals the probability that at least one source fires successfully times the probability
that that heralded source actually produced p photons but p − 1 were lost in the switching
network because of losses. We obtain

pB
M =

�

1−
�

1− pB
H (ηH )

�N �
∞
∑

p=1
F B

p (ηH ,ηs )pηn(1−ηn)
p−1 (4.30)

for bucket detectors, and

pR
M =

�

1−
�

1− pR
H (ηH )

�N �
∞
∑

p=1
F R

p (ηH ,ηs )pηn(1−ηn)
p−1 (4.31)

for PNRDs. These become increasingly tedious to solve analytically but a closed form can still
be found. We won’t describe all the steps to close the sums because, again, there is nothing new
with respect to the previous results: it’s always infinite geometric series.

To conveniently write these closed forms, we define two sets of quantities for the case of
PNRDs and bucket detectors, with suffixes R and B , respectively. Starting with bucket detectors,
we define

AB =

�

1−λ2
�

λ2ηsηn

pB
H

(4.32)

DB = 1−λ2(1−ηH )(1−ηs ) (4.33)

dB = 1−λ2(1−ηs ) (4.34)

gB =
λ2ηs (1−ηn)

dB
(4.35)

GB =
λ2ηs (1−ηn)(1−ηH )

DB
(4.36)

so we can rewrite

∞
∑

p=1
F B

p (ηH ,ηs )pηn(1−ηn)
p−1 =AB

�

1

d 2
B (1− gB )

2 −
1−ηH

D2
B (1−GB )

2

�

= F B . (4.37)

1At least, my symbolic calculator did.
2I want to stress anyway that we did check the requirements for closing the sums, and they are respected.
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For PNRDs, instead, we have

kR = λ
2(1−ηH )(1−ηs ) (4.38)

DR = 1− kR (4.39)

AR =
(1−λ2)ηH

pR
H D2

R(1−ηH )
(4.40)

x =
λ2ηs (1−ηH )

DR
(4.41)

γ = (1−ηn)x (4.42)

and we use all of these to rewrite

∞
∑

p=1
F R

p (ηH ,ηs )pηn(1−ηn)
p−1 =ARxηn

�

2γ

(1− γ )3
+

k + 1

(1− γ )2

�

= F R. (4.43)

Equations (4.37) and (4.43) are the total fidelities of the heralded state, accounting for all possible
ways in which we can actually get a single photon, because they account for all possible ways of
a false-positive decaying into a single-photon state due to losses.

If we want to understand the merits of multiplexing, we should focus on its building blocks,
i.e. the switching network and the number of sources used. To do this, we assume that we
have perfect detectors (ηH = 1) and that the optical loops and routing optics of the signal arm
are lossless (η` = ηs = 1). This leaves us with three variables: the type of detector used, the
efficiency of each single switch in the network—with the additional assumption that all switches
are identical—and the number of sources being multiplexed.

Figure 4.5 gives an overview of how multiplexing affects the performance of a single photon
source. The first thing we notice is that we can indeed approach the case in which both the
fidelity and the heralding probability tend to 1. This depends on many factors of course, first of
all on the type of detector used. As we increase the pump power, of course bucket detectors will
allow through more noise due to multi-photon components, driving down the fidelity. On the
other hand, a perfect PNRD will of course give us a perfect fidelity, independently on how many
sources we multiplex: for a perfect detection scheme and maximal single-photon generation
probability of each source (which, for thermal sources, happens when 〈n̂〉 = 1), the fidelity
of each heralded state is identically 1, hence why the fidelity does not change neither with
pump power nor with number of multiplexed sources (and why the top right plot of Figure 4.5
seems strangely empty). Nonetheless, it’s good to keep in mind that the fidelity is of course
also dependent on the losses of the system before the detector, in general.

Another aspect that depends on the choice of detectors is the probability that a single photon
will be delivered at the output. When maximizing the probability that a single source will emit
a single photon, the maximum fidelity and heralding probability are both upper-bound to 50%
each in the case of bucket detectors. We need to use a lower mean photon number in order
to keep down the noise due to multi-photon components. This limitation is not present in
the case of PNRDs, but here is evident that the losses of each switch in the network plays a
fundamental role as the number of sources increases. What these results underline is the need
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Figure 4.5.: Top row: comparison of heralding probability and single-photon state fidelity for
a multiplexed system, with a varying number of multiplexed sources. The curves
are parametric in the mean photon number of the source, and we have assumed
no losses. Bottom row: multiplexed probability of generating a single photon for
different number of sources a function of the efficiency of a single switch, with
〈n̂〉 = 0.1 when using bucket detector, and 〈n̂〉 = 1 when using PNRDs. Left
column: bucket detectors. Right column: PNRDs. For details, see text.
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4.3. Time multiplexing

for low-loss switches used in the network, since they are the bottleneck of this scheme when it
comes to increase the number of sources to be multiplexed.

We would like to point out that the results in the top row of Figure 4.2 do not depend on
the particular architecture of the multiplexing scheme. There is no reference here on how the
different sources are brought together. Rather, these results depend exclusively on the fidelity
of a single HSPS and the fact that we are waiting for at least one of them to fire. As we will show
later in another example of multiplexing architecture in section 4.3, the multiplexed heralding
probability has the same form, without references on the details of the implementation.

We have seen here that in ideal circumstances, we still need a hefty number of sources in order
to achieve high fidelity and high heralding probability. Sixteen sources might not mean much,
but when we start adding losses in the rest of the system, the number of sources starts to rapidly
increase. Another point of view is the efficiency of the switch itself: typical insertion losses
for off-the-shelf fiber-integrated switches range from 1 dB to 2 dB, which is pretty high and
limits the number of sources that can be multiplexed. Lastly, each source requires a detection
system—ideally a PNRD—that adds to the cost of the entire multiplexed source. However, one
big advantage of spatial multiplexing is that this type of multiplexed sources are fast, because
each single source in the system will be pumped synchronously, so that we can scale up the
number of sources without increasing the wait time between successive events. Of course, if
the rest of the hardware allows it.

4.3. TIME MULTIPLEXING

What we described as of now looks a bit daunting. Strict efficiency requirements and hardware
overhead make spatial multiplexing look like a good idea on paper, and indeed there are experi-
mental realizations of such setups [78, 95]. However, spatial multiplexing is not the only way
to orchestrate multiple sources to provide a single output photon, and one other scheme that
fixes some of the drawbacks of the spatial multiplexing one is time multiplexing (Figure 4.6).

One of the many drawbacks of spatial multiplexing is the ever-increasing hardware require-
ments that come with increasing number of sources. Time multiplexing fixes this by using a
single HSPS which gets pumped multiple times, up to N . Each time a pulse triggers a successful
heralding event, we store the generated output photon into an optical loop, whose length is
such that the time it takes for the photon to complete matches the period at which the source
is pumped. After the N pump pulses have been delivered, we release the photon stored in the
loop and we start over.

This has the clear advantage that the hardware required to implement the scheme is fixed and
does not depend on the number of multiplexed sources. This greatly improves compactness
and drives down the cost of the overall setup. The main drawback is, of course, that the rate at
which we can deliver triggered single photon at the output is now scaled down by the number
of sources we want to multiplex, because we need to wait those many pump cycles before we
release the generated photon.

Of course, this setup is also not really “symmetric”, because the losses experienced by the
photon we stored will depend on when it was generated. Worst-case scenario, if we manage to
generate a single photon on the first pulse and we store it, that photon will “see” the losses in
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S

DH

i

×

Stored

s
Output

Figure 4.6.: Depiction of a time multiplexing scheme. The source S is pumped periodically
with a burst of N pulses, each of which has a certain probability of generating an
idler i and signal s photon. If the heralding detector is triggered by the idler, then
the coupler switches in a photon. If no photon gets detected at the next pulse in the
burst, the coupler is kept in its original state, keeping the stored photon in the loop.
At the end of the burst, the stored photon is released.

our loop and routing elements N times. This is not great but can do better. Instead of taking the
first photon that we generate, it makes much more sense to take the last generated photon and
discard all the others. This minimizes the losses seen by the output photon and will increase
our chance of actually routing it to the target output mode.

The treatment to obtain the necessary figures of merit for the case of time multiplexing is
not much different from the case of spatial multiplexing. Clearly, the probability that a single
HSPS on its own delivers a single photon is independent of the scheme in use. The multiplexing
probability is also unchanged, since it’s the probability that at least one pulse generates an
heralding event. The different degree of freedom is irrelevant in shaping the functional form of
this quantity. What will change is the fidelity to the single photon state of the entire source.
This is because in the case of spatial multiplexing (with identical switches in the network) each
source would see the same amount of loss. In the case at hand here instead, each source (i.e. time
bin) will see a different amount of loss, due to the fact that it will pass through the loop and
switch a different number of times, depending on which source triggers.

The basic components of interest of our scheme are: an optical loop with efficiency η`; a
switch capable of routing a photon in or out of the loop, with an insertion loss of σ ; our choice
of detection scheme, either bucket detectors or PNRDs. We will follow the treatment of [96].

Assume that we generate a photon in the time bin t out of the total N . The losses seen by
this photon are

ηt = η
N−t
`

σN−t+1 (4.44)

since the photon will pass once through the switch, and then N − t times through both the
loop and again the switch. The fidelity of the heralded photon in the time bin t , to the single
photon state, is taken by summing over all possible events in which n photons were produced,
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Figure 4.7.: Probability that our time-multiplexed source will emit a single photon as a function
of switch loss and for growing number of time bins used. Left: bucket detectors,
〈n̂〉= 0.1. Right: PNRDs, 〈n̂〉= 1. All other sources of loss have been removed.
For details, see main text.

but only one made it through, as it was the case for spatial multiplexing, namely

Ft =
∞
∑

p=1
F D

p pηt (1−ηt )
p−1, (4.45)

where D labels the chosen type of detector, and F D
p is one of (4.26) or (4.28).

This describes the probability that a single photon will come out of the t -th time bin,
discarding all possible previous ones, and assuming that no further heralding events will trigger.
The complete fidelity is going to be the average of such fidelities, weighted with the probability
that no further heralding event will be triggered. Since F0 = 0, we have

F D
TMUX = pD

H

N
∑

t=1
Ft (1− pD

H )
N−t . (4.46)

Figure 4.7 shows the performance of our multiplexing scheme as a function of the two most
important parameters, number of multiplexed time bins and efficiency of the switch. Here
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Figure 4.8.: Comparison between single-photon generation probabilities of time and spatial
multiplexing, with different types of detectors, as a function of switch losses. Details
in the main text.

is also evident that, all other components being the best money can buy, it’s paramount that
we use a highly efficient switch. Perhaps even more interesting is a direct comparison of time
and spatial multiplexing (Figure 4.8). All parameters being equal, time multiplexing has an
advantage with respect to spatial multiplexing in terms of efficiency, when PNRDs are used,
but the situation is reversed in the case of bucket detectors. This can be understood in terms
of how much loss each HSPS experiences in each scheme. In spatial multiplexing, it does not
matter which source triggers: the number of components in the path of the heralded photon
will always be the same. In the case of time multiplexing, on average, the generated photon
will experience less losses, because now the amount of loss seen by the generated photon does
depend on which source fired, while the probability that each pulse triggers the HSPS is the
same regardless of the time bin. The problem here arises because of the inability of bucket
detectors effectively distinguish between one or more photons triggering the detector at the
same time. This means that a higher number of false positives are let through, and some of these
might decay to a single-photon state due to the losses in the setup. Since in time multiplexing
the losses of the effective network are less on average, the generated multiphoton state has a
lower probability of decaying into a single-photon one, thus having a lower fidelity.

Of course, this is offset by one big advantage of time multiplexing, i.e. we get additional
sources “for free”. As long as we manage to obtain or fabricate high quality switches and
components, there is no additional hardware requirement to increase the number of multiplexed
sources. This is a great advantage in the case of bucket detectors, where one needs to drive each
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source at very low level in order not to pollute the output with multi-photon components that
the detectors are not able to distinguish from single-photon ones. The only way to increase
the heralding probability in this case is then to increase the number of sources, which is much
more convenient in the case of time multiplexing.

4.4. CONCLUSIONS

In order to solve the problem of deterministically generating single photon, using HSPSs, we
have introduced the concept of “multiplexing”. This technique has proven quite the revelation,
allowing us to break free of the limits that single HSPS have on their own. By combining
multiple sources together, we can arbitrarily approach both high fidelities to a single-photon
state and almost certainty that at each clock cycle we will obtain our photon. We have compared
two types of multiplexing, temporal and spatial, but we want to mention that these two are
not the only ones in existence. Remember that up until now, we have dealt with a spectrally
pure source, in order to ease the math and capture the essence of multiplexing. But since
multiplexing is really just multiple single sources, i.e. squeezers, we could have used a multi-
mode source and multiplex together its various Schmidt’s modes. Indeed, this is the basis of
frequency multiplexing, but the math behind it is at the end of the day the same as for spatial
multiplexing, thus we did not mention it up until now. Worth noting is also that there are
implementation of each of such schemes [78, 80, 82, 95], underlying the fact that interest in
this area is high, and for good reasons.

But, of course, “all that glitters is not gold”. Indeed, the introduction of multiplexing increases
dramatically the hardware requirements in order to implement the chosen scheme, which is
not only an important economic aspect to consider, but also a problem of added complexity in
general. To be viable, high quality components need to be used and it would be desirable to also
reduce the overall footprint of the components used, so that the added hardware complexity is
offset by the miniaturization of the latters. This is the direction we are going to go in the next
chapter, where we will briefly talk about opto-electronic devices based on LiNbO3 waveguides
and their role in source multiplexing.
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5. SWITCHING PHOTONS: ELECTRO-OPTIC
DEVICES FOR MULTIPLEXED SOURCES

One thing that was consistent in our analysis of multiplexed sources was the ubiquity of devices
that we called “switches”. We have emphasized that these devices play a crucial role in our
setups, and we have based our analysis of the performance of our sources on how efficient these
devices are.

The aim of this chapter is introducing briefly some of the concepts behind electro-optical
devices. This matter can take a lifetime of research (let alone a doctorate) so we will steer clear
of the details and as we have done for the analysis of nonlinearities in crystals, we will highlight
the most important features of these devices in what follows.

5.1. WAVEGUIDES AND COUPLED-MODES THEORY

(1) (2) (3) (4)

Figure 5.1.: Schematic representation of the fabrication process of a Ti-strip waveguide in
LiNbO3. Red: photoresistive film. Gray: titanium layer. Dotted section: LiNbO3
crystal. After depositing a layer of titanium and photoresistive film on top of each
other (1), a predefined pattern is developed out of the photoresistive film thanks to
a photomask and a lithographic process (2). The exposed titanium is etched away,
leaving a stack of photoresistive film and titanium patterned according the mask
(3). The photoresistive film is removed and the titanium is diffused in the crystal in
a high-temperature oven. This produces a refractive index change in the LiNbO3
crystal, creating a waveguiding structure (4).

Let’s start simple and define first of all what a guided mode is. A guiding structure, or
waveguide from now on, is a structure in which the energy of a propagating field flows only
along the structure, not across. Solving the Maxwell’s equations in general in waveguiding
systems is usually not possible analytically, and a slew of numerical methods and software
packages have been developed to tackle this problem. If we assume that ours are weakly guiding
waveguides and they are aligned along the x direction of our reference frame, then we can write
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L

Figure 5.2.: Schematic representation of a direction coupler. The gray regions are waveguides,
which slowly approach each other until settling to a core-to-core distance g . The
length L is the interaction length, in which the presence of one waveguide perturbs
the field distribution in the second one.

the equation for a field ~E = ~E e iωt−βx as [97]

∇t
~E +

�

ω2

c2
n2(y, z)−β2

�

~E = 0 (5.1)

which can be seen as an eigenvalue problem, in which ~E are the eigenfunctions and β2 are the
eigenvalues. As per our definition of guiding structure, the eigenfunctions must vanish expo-
nentially at infinity. This means that our field distributions will have a maximum somewhere.
In the guiding region, the solutions to the wave equations are oscillatory, but they must match
the exponential solutions at infinity. Thus, only a discrete subset of β2 values are allowed in
the guiding region and as many guided modes. There is no need to complicate our discussion,
and we can immediately say that from now on we will only deal with structures which allow
the propagation of a single spatial mode. What’s interesting to our discussion is not an isolated
waveguide, but rather two in proximity with each other. This is the base of what is called a
directional coupler.

Assume that we have two waveguides, a and b which are at infinite distance from each other.
Then (5.1) can be solved separately in each region and independently from the other and it will
yield two solutions ~Eα with α= a, b . When bringing close the two waveguides, the total field
in the combined structure can be expressed as the sum of the single modes, whose amplitudes
varies with x, i.e.

~E =A(x) ~Ea e iωt−βa x +B(x) ~Eb e iωt−βb x . (5.2)

The presence of the second waveguide modifies the spatial distribution of the refractive index
n2(y, z) “seen” by the mode of the first waveguide by a small amount, if the waveguides are
not too close. By solving (5.1) for the complete field ~E , we can arrive [22, 97] to two mutually
dependent (coupled) equations for the amplitudes A(x) and B(x):

dA
dx
=−iγab Be i (βa−βb )x − iγaaA (5.3)

dB
dx
=−iγbaAe i (βa−βb )x − iγb b B (5.4)
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in which we have defined the coupling constants

γab =
ω

4
ε0

∫∫

~E ∗a∆n2
a (y, z) ~Eb dydz (5.5)

γba =
ω

4
ε0

∫∫

~E ∗b∆n2
b (y, z) ~Eadydz (5.6)

γaa =
ω

4
ε0

∫∫

~E ∗a∆n2
b (y, z) ~Eadydz (5.7)

γb b =
ω

4
ε0

∫∫

~E ∗b∆n2
a (y, z) ~Eb dydz, (5.8)

where∆n2
α = n2

α−n2
s , and n2

s is the refractive index of the substrate, away from either waveguide.
The terms in ab , ba are the coupling between the two waveguides, while the terms in aa, b b
modify the propagation constants of the respective modes, due to the presence of the other
waveguide.

Assuming no incoming field in waveguide b and γab = γba = γ , we can solve this system of
equations and get a way of expressing the optical power in the two waveguides as a function of
position:

Pa = P0− Pb (5.9)

Pb = P0
γ 2

δ2+ γ 2
sin2

�

Æ

γ 2+δ2x
�

(5.10)

with P0 the power initially fed into waveguide a and δ = 1
2 (βa+γaa)−

1
2 (βb +γb b ). We can see

that if we assume that the refractive index distributions of the two waveguides are the same and
they guide the same type of mode, δ = 0 and we obtain full power transfer only if the region
in which each waveguide perturbs the mode of the other (interaction length L) has a length of
Lc = (m+ 1/2)π/γ , which we will call critical interaction length. The state in which power is
fully transported into the adjacent waveguide is called cross state, while the state in which there
is no net power transfer, because L= mπ/γ is called bar state.

Of course, devices like these look pretty static, and in fact would serve a very limited amount
of applications. Turns out, in fact, that these devices are best used in an active way. In general,
once you produce such a device, you can’t modify its geometry or composition in a practical
way, short of grinding the device to shorten it. What you can do is take advantage of a class of
devices whose refractive index is significantly affected by an externally applied electric field. If
that’s the case, then this field would be capable of modifying δ and in turn it would be able to
modulate the power being transferred from one waveguide to the other, from cross state to bar
state and back.

5.2. ELECTRO-OPTIC MODULATORS

The electro-optic effect (or Pockels effect) is a linear effect of some crystals, in which an external
field is able to modify the refractive index of the crystal itself. This modifies the impermeability

73



5. Switching photons
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Figure 5.3.: Schematic representation of electrode placement: on top (left) and side-by-side
(right) of the waveguide (pictured in gray). Second waveguide of the coupler not
pictured and sketch not to scale. Black lines in the LiNbO3 substrate are sketches
of the field lines due to the applied voltage on the electrodes.

tensor [97] or equivalently the index ellipsoid. In the absence of an applied field, the index
ellipsoid can be written as

1=
x2

n2
x
+

y2

n2
y
+

z2

n2
z

(5.11)

where x, y, z are the axes of the crystal. An applied field modifies this into

1= x2
�

1
n2

x
+ r1k Ek

�

+y2

�

1
n2

y
+ r2k Ek

�

+z2
�

1
n2

z
+ r3k Ek

�

+2xy r4k Ek+2y z r5k Ek+2x z r6k Ek

(5.12)
where summation over k is implied, and Ek=1,2,3 are the components of the applied field. The
components ri j form the electro-optic tensor. Depending on the crystal and the direction of the
applied field, the net effect can either be a simple stretching of the index ellipsoid or both a
stretch and a rotation. The latter means that the electro-optic tensor can also couple different
polarizations to each other.

What this means for us is that an application of a field on our waveguide has the potential to
modify the refractive index distribution and thus δ in (5.10). The way this is usually done is
by placing electrodes either on top or on the sides of a waveguide (Figure 5.3) depending on
which component of the electro-optic tensor one want to use and the orientation of the crystal
with respect to the electrodes. We can approximate the field distribution made by the pair of
electrodes as a parallel plate capacitor and approximate the field Ek responsible for the change
in refractive index as ΓV /g , where V is the applied voltage, g is the gap between the electrodes
(usually in the order of µm) and Γ is a correction factor taking into account the overlap between
the applied field and the guided mode, obtaining

∆n(V ) =−n3 rV
2g
Γ . (5.13)

5.2.1. SWITCHED DIRECTIONAL COUPLERS

These results are crucial for our applications. For multiplexing, we have seen that we need
a device that acts as switch, either blocking or letting through our signal, and electro-optics
fits the requirements perfectly. Take again (5.10). We start from a situation in which we have
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V V+ V-

Figure 5.4.: Switching diagrams for two types of electrodes topology: lumped and∆β-reversed.
The white lines are an example of combinations of parameters along which we can
move to be constantly in the bar state.

constructed a device in which δ is 0 when no voltage is applied and with an interaction length
of x = Lc . We use a z-cut LiNbO3 crystal in which our waveguides have been fabricated
along the x direction. This means that if we look at Figure 5.3, the crystallographic z-axis is
pointing upwards, and the y-axis rightwards, assuming that we are looking at the output of
the waveguide1. In this configuration, an electrode placed directly on top of the waveguide
will apply a field which will modify the refractive index proportionally to the r33 element of
the electro-optic tensor. We can see that by applying a voltage, we can completely shut off this
power transfer (in the case of an incoming TM field), and switch to the bar state, by applying a
total phase-shift 2δLc =

p
3π. Notice how you can make η= Pb/P0 = 1 by carefully choosing

the appropriate interaction length, but you can’t do that electro-optically, because of the factor
in front of the sine in (5.10), which is inversely proportional to the applied voltage.

You can of course have different electrode topologies, and beside the “lumped” electrode type,
a common alternative is the “∆β-reversed” coupler (Figure 5.4). This applies an additional
degree of freedom in changing β, i.e. space, by periodically reversing the sign of the applied

1Which is very bad for you eye-sight! Please don’t do that.
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voltage. The transfer efficiency η∆β for N alternating section is in this case [22]

η∆β = sin2 (γeffL) (5.14)

where
γeff =

N
L

arcsin
�p
η
�

, η= Pb/P0. (5.15)

Looking at Figure 5.4, if we use lumped electrodes, only when L is an odd numbers of
critical lengths we can achieve maximum transmission, but controlling this parameter is rather
difficult, and once the device is fabricated, it’s fixed. On the other hand, we can see that the
maximum values of transmission in the case of the∆β-reversed electrodes now can be reached
electro-optically, which is a big advantage.

We have developed and characterized such∆β-reversed switches, in the hope of implementing
a multiplexing scheme based on the concepts developed in chapter 4. These samples were
designed to work at 1550 nm, with an interaction length L of 1 cm and a gap g of 7 µm. To
characterize their performance, we couple light (DFB diode laser at 1550 nm) into one of
the waveguides and monitor the two outputs simultaneously with InGaAs photodiodes. A
computer controlled digital-to-analog converter acquisition board (DAQ) takes care of both
controlling the applied voltage and recording the signal from the photodiodes. The low voltage
signal from the DAQ board is amplified by an in-house-built amplifier, with a rise time of 10 µs,
and then applied to the electrodes deposited on the sample via needle probes.

The results are displayed in Figure 5.5. In the colormaps, we plot the output intensity at either
port (cross or bar), normalized by their maximum values, as we want to assess the switching
efficiency (i.e. how close to zero we can really get). Each point (V+,V−) represents a state of
the entire switch, and we can find two of such operation points in which the switch is either in

the bar (V =

+ ,V =

− ) or cross (V
×
+ ,V

×

− ) state. As we can see in the first two plots, we are able
to fully control the signal in either port. The problem that we found, and which is shown
in the second row of the colormaps, is that after some use (in timescales which vary from
minutes to days) the switching map is warped and distorted. When dealing with single-photon
experiments, it’s not uncommon for data acquisition to date hours or days, so this type of
behavior is unsuited for such delicate experiments. This is a problem which is known in the
literature [98] and it involves the buffer layer between the electrodes and the crystal. The buffer
layer is necessary to avoid losses due to the conductive metal being in reach of the guided mode
in the waveguide. At the same time, the charge distribution in this layer can be modified by
high voltages or prolonged application of low voltages, and spurious currents may develop
between the electrodes. This process is not necessarily “elastic”, meaning that if no voltage is
applied for a long time on the sample, the switching map will not be restored. While this means
that these switches can’t be used for our purposes, they have provided invaluable insight into
how to improve our fabrication methods and the overall design of our devices.

5.2.2. ELECTRO-OPTIC POLARIZATION CONTROLLERS

We want to finish this chapter by introducing another type of electro-optic modulator, whose
purpose is to control the polarization state of a field being guided along a waveguide. As we
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5.2. Electro-optic modulators

Figure 5.5.: Example of switch characterization for a particular ∆β-reversed sample. Top:
switching behavior for different voltages V+ and V− applied to the two electrodes
in one of our∆β-reversed samples. Left column: bar state. Right column: cross-
state. First row: initial characterization. Second row: same characterization after
prolonged use of the sample. See text for details.
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Figure 5.6.: A representation of the “Solč” polarization converter. Each of the four diagrams
represents the relationship among the crystal axes (black arrows), index ellipsoid axes
(gray arrow, depicting only the “extraordinary” axis), and field polarization direction
(red arrows). At each diagram, we advance by half period in our periodically-poled
region. At each half period, the sign of the dielectric tensor is inverted by the
periodic poling process, indicated by the plus or minus sign in the diagrams. This
mirrors the index ellipsoid along the z axis. Since each section acts as a λ/2–plate, it
mirrors the polarization direction along the orientation of the extraordinary axis of
the plate. This slowly drives the complete rotation of the polarization of the field.

will see in the next chapter, we will “misuse” this device for other purposes than its intended
one, but it’s good to have a basic understanding of how such device operates.

We will first describe the concept behind this device qualitatively (Figure 5.6). Consider a
waveguide fabricated in a LiNbO3 crystal (a birefringent material) and aligned along the x axis
of our reference frame. In the region that we are examining, assume that there is a periodic
perturbation of the dielectric material which flips the sign of the dielectric tensor at each half
period. Without any applied field, this sign change makes no difference for a field polarized
along one of the crystallographic axes. If we now apply a field along the y axis of the crystal,
we are introducing a rotation of the index ellipsoid, as we described earlier, since we are now
making use of the r51 component of the electro-optic tensor. If the period of the perturbation
is such that each half-period length of the material acts as a λ/2–plate, then the polarization of
the incoming field will be mirrored accordingly, and it will keep on rotating as long as it moves
through the periodic perturbation. This arrangement is known as folded Solč filter [99], and is
depicted in Figure 5.6.

More precisely, the effect of the periodic perturbation is to modify the phase mismatch
between the two polarization modes, and we can tailor such that

∆β=βo −βe −K = 0, K = 2π/Λ (5.16)

where Λ is the poling period and the suffixes o and e indicate the ordinary and extraordinary
propagation constants. This means that in (5.10) δ = 0, so the transfer efficiency becomes

η= sin2 (γL) (5.17)

where
γ ∝ n3 r51

V
g

(5.18)

is the coupling constant between the two polarization modes [22].
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5.3. CONCLUSIONS

We have seen a brief introduction on electro-optical devices, which has given us the basics
to understand why they are so important in realizing multiplexed sources. They satisfy the
fundamental requirement in source multiplexing, which is the fast reconfiguration of the routing
network used to select the output of the chosen HSPS. They are not simple devices by any
means, as we have shown here, and their construction requires careful planning and constant
research efforts to improve their characteristics.

Given the results of our effort for developing electro-optical directional couplers, we went
back to the drawing board to see if we could find an alternative multiplexing scheme. This is
what we will describe in the next chapter, where we present a new multiplexing scheme based
both on time and frequency multiplexing, which uses in a clever way precisely the type of
modulator that we presented here last.
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6. ORCHESTRATING PHOTONS:
TIME-FREQUENCY MULTIPLEXED SINGLE
PHOTON SOURCE

In our quest for a deterministic single photon source, we have explored various types of mul-
tiplexing, weighing their pros and cons. What should be clear by now is that among these
solutions, there is no ultimate one. Each design decision we make brings along advantages and
disadvantages, and the decision on which side of coin to focus on entirely depends on our needs.
If we want to be fast, either spatial or frequency multiplexing is the way to go. Small footprint
and overall cost require time multiplexing, enabling us to reuse the same resources many times
and driving complexity down.

These are not binary decisions though, and if our requirements allow it, we can try to find a
compromise between the full repetition rate speed of spatial multiplexing and the compactness of
time multiplexing. In this chapter, we are going to demonstrate such a compromise, introducing
a hybrid time-frequency multiplexing scheme that tries to maximize the best features of both
individual solutions.

The idea is the following: we transform a single-mode source [12] into a multi-mode one,
by creating ad-hoc time-frequency correlations which can later be accessed via frequency-
resolved heralding, meaning that by heralding a specific frequency mode, we access the temporal
information about the idler. We can multiplex the heralded temporal modes into a single output
mode by means of a single fast electro-optical modulator [100]. This allows us to avoid the
use of a deep switching network, characteristic of a spatially multiplexed source, and the losses
due to its components. Moreover, as opposed to usual time-multiplexing schemes, we operate
on temporal modes whose spacing is three orders of magnitude smaller, so there is no need to
scale down the main system clock by the number of multiplexed modes (in the case of common
laser systems used in research settings, whose repetition rate is of the order of 80 MHz). We
show that we have successfully characterized the necessary state-engineering setup and the
electro-optic modulator involved in this scheme, paving the way to a complete implementation
once a suitable mode-selective detection scheme becomes available.

6.1. MULTIPLEXING SCHEME

Remember that at the end of chapter 4, we hinted at the fact that single mode sources are
definitely not the only way to go, when creating multiplexed setups and we have seen in
chapter 1 that a correlated HSPS can be thought of being composed by some number of pure
sources. This is the starting point of the multiplexing scheme that we are going to detail in this
chapter.

81



6. Orchestrating photons

T
(ω

)

ω

φ
(ω

)

ω

SLM executes both

simultaneously

ω

τ

Frequency shaping Phase shift

KTP waveguide

Spectrometer FPGA

Reference time mode

LiNbO3 EO

polarization controller

Shaped pump

Figure 6.1.: Schematic representation of the multiplexed source. An ultrafast pump pulse
centered around 650 nm is first reshaped into N independent frequency modes
via an SLM. The latter also adds a frequency-dependent phase shift to each of the
N modes in order to separate them in time and creating a one-to-one correlation
between a given frequency and time mode. Detection of a given frequency mode at
the output of the SPDC triggers the activation of a lithium niobate modulator which
compensates the SLM phase shift in the signal arm by rotating its polarization at
one of four locations, introducing a phase shift which is dependent on the difference
between ordinary and extraordinary refractive indices and the path through the
crystal after the switching position.
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6.2. Experimental setup and characterization

Our scheme is based on the source detailed in [12]. It’s a single-mode KTP birefringent
waveguide, with a narrow-bandwidth phasematching, which produces non-degenerate photon
pairs, where the idler has a much narrower bandwidth with respect to the signal (top row
of Figure 6.2). First, we shape the pump spectrum in order to create different frequency modes
in the signal arm, and the narrow-bandwidth and flat phase-matching allows us to this without
introducing frequency correlations. Then, we need to turn this into a multi-mode source.
To accomplish this, we apply a frequency-dependent phase on the pump pulse, which creates
temporal correlations in the generated SPDC state. We can access this multi-mode state by
spectrally resolving the signal arm and projecting the signal photon into a well defined frequency
mode. A detection event for a given frequency mode gives us information about which time
mode the signal is currently occupying. At this point, we can apply the necessary time delay to
the idler photon in order to shift it to a predefined temporal mode, thus eliminating the time
correlations we have introduced earlier.

This scheme effectively combines the advantages often attributed to either spatial and time
multiplexed sources (SMS and TMS from now on, respectively). In our scheme, the selected
photon does not propagate through a logarithmic tree of switching components, which removes
the hardware overhead and the propagation losses which are inherent in spatially multiplexed
sources. At the same time, the temporal separation between the temporal modes in our scheme
needs to be such as to ensure negligible overlap between adjacent modes, which is in the order
of the coherence time of the signal photons (i.e. picoseconds). Common pulsed laser systems
used in research have have repetition rates in the order of 80–70 MHz, i.e. a system clock period
of about 12 ns. This is much longer than the overall separation between first and last temporal
modes used in this scheme, meaning that we can exploit fully the effective system clocks most
commonly available, as opposed to time multiplexed sources. Finally, using a HSPS with a
well defined frequency output mode allows us to avoid strong frequency filtering, as would be
necessary in a frequency-multiplexed source, which would be detrimental to the final generation
rate.

6.2. EXPERIMENTAL SETUP AND CHARACTERIZATION

The experimental implementation of such a scheme is based on two major components: a
spatial light modulator (SLM) which lets us shape the frequency spectrum of the pulse pumping
a KTP birefringent waveguide HSPS and a fast lithium niobate modulator operating as a
polarization controller to introduce the necessary picosecond-scale time compensation. Our
goal is to characterize both each of these components to ensure that they are suitable for the
implementation of the scheme presented earlier.

6.2.1. SPDC SPECTRUM SHAPING

The source we are using is a KTP waveguide using birefringent phase-matching. Comparing
this to usual quasi-phase-matched sources, it means that we are taking advantage of the intrinsic
characteristics of the crystal itself and no additional fabrication is required, besides the devel-
opment of the waveguide itself. The additional advantage is that this source, when pumped
with an appropriate wavelength (650 nm), is a spectrally-decorrelated HSPS. It emits photon
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Figure 6.2.: Top: simulated JSA (left) with associated phase (center), and JTA (right) of the
original SPDC process, showing an uncorrelated JSA. Middle: simulated JSA (left)
with associate phase (center), and JTA (right) of the SPDC process with pump
shaping applied, creating four temporal-frequency modes. Bottom: Idler photon
spectrum acquired with the TOF spectrometer described in the main text. The
reconstructed spectrum’s resolution is limited by the amount of dispersion and the
relatively high jitter (ca. 1 ns) of the SNSPD used.
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6.2. Experimental setup and characterization

pairs at 1273 nm (idler photon) and 1328 nm (signal photon), the former having a 1nm broad
bandwidth while the latter having a 30 nm bandwidth. Indeed, a measurement of the second
order correlation function of the idler photon, after filtering only the residual side lobes, results
in a value of g2(0) = 2.02± 0.05, which is in agreement with the value of 2 expected for a
decorrelated source.

In order for our scheme to work, we need to be able to shape the idler photon so that it
presents N distinct frequency modes and we need to be able to shift these modes in time by a
time τ(ωi ), whereωi is the central wavelength of one of the spectral modes we are generating.
We start from a single pump pulse centered at 650 nm. A grating diffracts this pulse, redirecting
the various frequency components onto an SLM, which acts both as a programmable mirror
and phase shifter. Since the frequency modes are now mapped onto different positions on the
SLM screen, we can select which sections of the spectrum to reflect/refract, effectively turning
the SLM into a filter which creates the necessary frequency modes for the scheme. We can create
efficiently four frequency modes, while keeping a good SNR and ensuring that each mode does
not overlap with its neighbors. This is limited by the pump bandwidth and the phase-matching
bandwidth. The SLM can also apply an arbitrary phase shift to each newly created frequency
mode, enabling us to turn our single-mode source into a multi-mode one (Figure 6.2).

To verify that we are able to shape the SPDC spectra as we need, we first route the signal
(broadband) photon to a time-of-flight (TOF) spectrometer (resolution of roughly 0.5 nm),
which is composed of dispersive single-mode fibers in conjunction with a superconducting
nano-wire single-photon detector (SNSPD, QuantumOpus) and a time-to-digital converter
(TDC) [101]. After applying the necessary reflection pattern on the SLM screen and adjusting
the phase of each frequency component, we register the spectrum given in Figure 6.2. The jitter
of the SNSPDs used compromises the resolution of the spectrometer, but we can nonetheless
clearly see four frequency modes being generated by the source.

Finally, as last characterization step of the source itself, we want to verify that we are able
to also displace in time each of the generated frequency modes. We will measure this time
displacement in an HOM-type [102, 103] interference measurement. To do this, a coherent
reference field centered around the idler photon’s wavelength is prepared. This is accomplished
by propagating this reference field through a 4-f line setup, with which we can match the
reference’s central wavelength and bandwidth to the idler photon’s. Afterwards, the reference
and the idler photons are interfered at a non-polarizing balanced BS and we scan the relative
time of arrival at the BS by changing the optical path length traversed by the reference. The
results of such experiment are shown in Figure 6.3, where we can see that we can introduce
an arbitrary delay to the idler photon depending on its corresponding frequency mode. The
reduction in visibility of the last measurement is due to the setup’s instability during very long
measurements. Nonetheless, this proves that we have the necessary flexibility in shaping the
SPDC output field, which is of crucial importance for our scheme.

6.2.2. PICOSECOND-RANGE DELAY LINE

In our scheme, a detection event in the signal path not only heralds the presence of a twin
photon in the idler path, but also carries information about the time delay of said photon with
respect to a predetermined reference. This information allows us to collapse our output time
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modes into a single one, erasing any time correlations. Here we present how we are able to
achieve such precise time manipulation, which happens on picosecond time scales.

The idea comes from [100]: in birefringent materials light experiences different refractive
indices depending on relative orientation of the polarization axis of the traveling field and the
principal axes of the crystal. This means that two fields traveling with orthogonal polarizations
will experience a temporal walk-off which in this case is not a detrimental effect of the material’s
dispersion, but rather a fundamental one.

A field traveling through such a medium with a linear polarization aligned to the so called
“fast-axis” of the crystal, will traverse it in a time t0. This depends on the length L and absolute
value of the group index ng of the material. If the polarization of the field is changed at a
position x inside the material, then it will take an additional time τ =∆ng (L− x)/c , for the
field to cross the entire crystal. We can exploit this fact to shift the heralded temporal mode
that contains a photon to a reference output mode. To do this, we have produced a lithium
niobate device which hosts four 7 mm long polarization converters placed at regular intervals
of 18.4 mm. A single polarization converter is composed of a periodically poled region on
which gold plated electrodes have been deposited. The two electrodes lie beside the waveguide
underneath, such that the application of an electric field will couple the orthogonally polarized
modes thanks to the mediation of the r51 component of the electro-optic tensor [104], as
described in chapter 5. The device (pictured in Figure 6.4) has been designed to work at a
central wavelength of around 1275 nm. The total length of the sample is about 82 mm, with
internal losses of 0.05 dBcm−1. At these lengths, fabricating homogeneous structures becomes
non-trivial, so we first characterized the conversion spectrum of each section and tuned each
central wavelength to the target one by locally changing the temperature of each section. To
achieve this, the sample rests on four copper block whose temperature can be individually set
via Peltier elements lying underneath. The operation temperature of each section does not
exceed 30 °C and we have found that a 1mm air gap between adjacent sections is enough to
avoid thermal coupling.

To characterize the conversion spectra of each polarization controller, a linearly polarized
broadband pulse is launched into the device. The electrodes on each section have been connected
to independent voltage supplies, in order to individually control each section’s conversion
“strength” (i.e. what fraction of the incoming field gets converted to the orthogonal polarization
mode). A polarizer after the device removes the polarization component parallel to the incoming
field’s, leaving only what has been successfully converted by the device. This is later analyzed
by a spectrometer (Ando Optical Spectrum Analyzer AQ6317B). We sequentially maximize
the conversion of each section and record the respective spectrum, fine tuning the temperature
of each section in order to shift the central wavelength to the target one. An example of such
tuning can be seen in Figure 6.5 where we tune each section individually in a range from 23.5 °C
to 28.5 °C. We find a tunability for the center of the device’s phase-matching of −0.45 nm°C−1

on average.
This leads to the data presented in Figure 6.6, where we have recorded the ratio between

output and input spectrum of the device, after filtering of fast oscillations due to spurious
Fabry-Perot type resonances in our setup. We can see that we are able to overlap all four spectra
to the target wavelength thanks to temperature tuning of the individual sections and achieve
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almost complete conversion.
The last characterization step is measuring the effective relative delay between polarization

modes that each section introduces. We characterize this in the same way we characterized the
phase shift introduced by the SLM, i.e. via an HOM-type interference. We prepare a reference
field in the same fashion and interfere it with the idler output of the SPDC after propagation
through our device. We start by aligning the idler photon to the slow axis of the crystal, so
that each section will rotate it to the fast one. We then scan the relative path lengths of the two
interfering fields when one of the four sections is set to fully convert the polarization state,
while the others are set to have no effect. This leads to the data in Figure 6.7, where we can see
that each section’s activation leads to a different shift in time.

According to data from [105, 106], we expect each section to introduce a delay of about
5.07 ps but our measured section delays do not perfectly agree with this figure. This can be
attributed to the fact that, as previously stated, fabricating long homogeneous samples is difficult
and small imperfections in the waveguide’s geometry influences the effective refractive index
seen by the propagating field, which will inevitably differ from the one in the aforementioned
work. Nevertheless, this does not hinder the application of our scheme, since the pump’s time
profile can be fine-tuned by the SLM to account for such deviations, once they are known.

To complete this scheme, we need a time-selective measurement that rejects the spurious
modes remaining after the selected signal photon has been shifted. One way is of course direct
detection of such time modes. This requires not only extremely fast SNSPDs with a time jitter
lower than the lowest section’s delay [107], but also fast enough data acquisition electronics to
record such events. This proves to be rather difficult, as the electronics required for such timings
lies in the 10–100 GHz range. An easier way would be to rely on time-selective optical processes.
One example would be homodyne detection, which, being mode-selective, lends itself very
well to the task. While good for benchmarking and testing, homodyne detection effectively
destroys the prepared photon, which is not ideal when building a single-photon source. A third
alternative would be to use a device like the quantum pulse gate [108]. This device not only is
mode-selective, but the mode-selection process generates a photon which lies in a fixed temporal
mode, and it’s then available to be used. As a further advantage of this solution is that it is based
on the same platform as the delay device itself, which allows in principle for both components
to be integrated into a single one.

6.3. CONCLUSION

We started this chapter by saying that there is no singular “best” solution when it comes to
multiplexing, and compromises must be reached. This is true also for our implementation,
where there are clear advantages and disadvantages. Our solution uses a source which is spectrally
decorrelated from the start. This removes the problem of reducing the probability of delivering
a photon at the output (i.e. an increased ηs in chapter 4) because no tight filtering is necessary.
Secondly, no loop or photon storage is necessary, unlike time multiplexing, since ours is a
single-pass solution. This avoids additional losses due to the storage of the photon in an optical
delay line, as seen in time multiplexing. Finally, we are able to use a narrower bandwidth for
our modulator, with respect to frequency multiplexing schemes. This is because we can focus
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on the single frequency mode that our HSPS produces as idler photon, another advantage of
using a spectrally pure HSPS.

The limitation of this scheme lies mainly in the phase-matching of the source used. We have
chosen a range of wavelength in which the phase-matching function is rather flat for the idler
photon, but this of course limits the number of modes we can multiplex. If we want to increase
this number, we need to pack more modes in the same frequency range, and this means more
filter and consequently lower generation rates. Also, with each new mode we need to add a
corresponding detector to herald its presence, driving up the hardware overhead.

We have shown that each component in the proposed scheme works as expected and that the
setup is flexible enough to account for fabrication imperfections that can arise in such devices.
It combines advantages from multiple pre-existing solutions in an integrated platform. We
believe that with proper mode-selective filtering and fast detection, it’s possible to create a more
compact and resource-efficient source of single-photons which overcomes the physical limits of
standard HSPSs and can be easily either directly integrated or externally interfaced with other
integrated components, thanks to the efficiency with which devices based on lithium niobate
can be fiber pigtailed [13].
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Figure 6.3.: HOM interference between the idler photon of the SPDC after shaping and a
reference field at 1275 nm. Dots are experimental data, dashed lines are fits to this
data. Each trace represents the interference between the reference field and one of
the aforementioned modes, when the remaining three are not present. The sudden
jumps which are visible in some parts of the traces (e.g. the right side of the third
trace from the top) are due to automatic tuning of the OPO cavity used as seed for
the pump of the SPDC. Instability in ambient temperature in the lab does not allow
us to disable such readjustments, since the cavity would drift too rapidly compared
to the time required for each trace to be acquired.
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Figure 6.4.: Photograph of one of the polarization-based delay chips, and the one whose charac-
terization we describe in the main text. The sample rests on a holder composed of
four thermally isolated sections. Each section holds a Peltier module which is used
to regulate the individual temperature of each controller. The sample is glued onto
the holder with a thermally conductive glue, which enables optimal heat transfer.
We have found that the thermal conductivity from adjacent sections is low enough
that no temperature cross-talk occurs, even if we are modulating the temperature of
a single crystal. Lastly, SMAs connectors can be seen at the bottom of the picture,
which allow us to control the applied voltage to a section
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Figure 6.5.: Tuning of the phase matching for each individual section, from left to right and
from top to bottom. The darker the color, the lower the temperature. The data has
been smoothed to remove spurious Fabry-Perot resonances that would compromise
the readability of the plots.
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Figure 6.6.: Top: schematic representation of the spectral characterization setup. One state of
polarization is coupled into the device and get converted to the orthogonal one by
one of the sections, one at a time. The output polarizer analyzes this converted
field and the latter is registered by the spectrometer. Bottom: the spectra of the
individual polarization controllers, after proper temperature tuning. This shifts
the central wavelength of the individual sections, maximizing the mutual overlap
of all spectra.

92



6.3. Conclusion

Sec. 1 Sec. 2 Sec. 3 Sec. 4

Figure 6.7.: Top: schematic representation of the delay introduced depending on the active
section. By selecting and activating a given polarization controller, we can decide
to shift an incoming pulse to a given output time mode. Bottom: HOM interfer-
ence traces for each section, when only the respective section is active. Points are
experimental data, dashed lines are Gaussian fits to said data.
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The quest for the “perfect” single-photon source is far from over. Over the years more and
more solutions, platforms, materials, and clever setup arrangements dot research journals and
conferences, promising great performances and a bright future. Indeed, this research field is
experiencing a great drive, boosted by the demand of smaller, more efficient and user-friendlier
devices. Integrated single photon sources (be it in LiNbO3, KTP, NV-centers, quantum dots,
or others) have the potential to finally make the much touted “second quantum revolution” a
practical reality.

This works has dealt with the most important aspects of deterministically generating single
photons from spontaneous parametric down-conversion sources. We have described the neces-
sary theoretical background in order to have a solid overview of the processes that we want
to exploit. With this knowledge, we set out to make use of it, by demonstrating how a HSPS
can be used and interfaced with other technologies effortlessly and without compromising its
quantum nature. This further demonstrated how SPDC sources are mature components that
can be used as proper tools or instruments. This also means that investigating the technical
performances (and not just the physics) of such sources is a worthy endeavor, in order to tailor
them to different experimental requirements. To this end, we took as an example the task of
increasing the spectral purity of a correlated source while maintaining high heralding rates. We
have demonstrated how it is possible to modify standard filtering techniques, used to increase
the purity of a correlated SPDC source, in order to improve generation rates, without also
compromising the single-photon character of the source.

We have realized that at a certain point we need to look elsewhere, and cannot rely on
single sources anymore. We have described the concept of source multiplexing and expanded a
theoretical framework for assessing the role of losses in the two most common multiplexing
schemes, space and time multiplexing. We have highlighted how the two schemes compare with
each other and how their performance is not only tied to the quality of the components used,
but also on the detection technique used.

One of the main points that our theoretical analysis underlines is that for these multiplexing
schemes to be viable, we need to have access to high quality components that allow us to
reconfigure our setup on-the-fly. We resorted to the use of electro-optic devices and we have
explored their fundamentals to understand why and how they can unlock the potential of
multiplexed sources. Although the samples produced did not perform well enough to be used in
a practical implementation, they did provide invaluable insight into the design and fabrication
processes involved in their production, allowing us to improve the quality of our devices.

Finally, we have devised a novel multiplexing scheme based on tailored time-frequency
correlations. This scheme aims to be a compromise between the speed of spatially multiplexed
sources and the compactness of time multiplexed ones. We have shown how we are able to
multiplex temporal modes in time scales orders of magnitude smaller than loop-based time
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7. Conclusions

multiplexed setups. Thanks to this it is possible to take advantage of the full repetition rate
of conventional pulsed laser systems, without the need of deep switching networks, which
are on the other hand necessary in spatially multiplexed sources. Also, by using a pure SPDC
source, we are able to use modulators with much smaller spectral bandwidth requirements,
when compared to frequency multiplexed sources, which are much easier to fabricate.
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