
Hadi Razzaghi Kouchaksaraei

Orchestrating Network Services Using
Multi-domain, Heterogeneous Resources

Dissertation

submitted to the

Faculty of Electrical Engineering,
Computer Science, and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

Paderborn, August 2020

mailto:hadi.razzaghi@uni-paderborn.de

Referees:
Prof. Dr. Holger Karl, University of Paderborn, Germany
Asst. Prof. Dr. Panagiotis Papadimitriou, University of Macedonia, Greece

Additional committee members:
Prof. Dr. Stefan Böttcher, University of Paderborn, Germany
Prof. Dr. Christian Scheideler, University of Paderborn, Germany
Jun. Prof. Dr. Sevag Gharibian, University of Paderborn, Germany

Submission: August 2020
Examination: 28.09.2020

Abstract

Network Function Virtualization (NFV) has emerged to improve the flexibility and
agility of networks and reduce the capital and operational expenditures of network
providers. This is achieved by softwarising network functions and automating
their management. To automate management, the European Telecommunication
Standards Institute (ETSI) NFV group proposed a reference architecture of a
framework called Management and Orchestration (MANO). A MANO framework
is responsible for managing the NFV infrastructure and the lifecycle of network
functions as well as orchestrating services as a whole.

To have a full-fledge MANO framework, however, we are facing multiple chal-
lenges. In this dissertation, I explore some of these challenges and introduce
concepts and solutions to mitigate them. To this end, first, I investigate flexibility
and programmability of MANO framework. I introduce a concept called Specific
Management (SM) that allows to customise the MANO framework on the fly.
Using a simulation-based approach, I evaluate the SM concept by comparing it
with a rigid solution. Also, by experimental evaluation, I analyse the management
overhead caused by employing the SM concept in a MANO framework.

The second challenge that I address in this thesis is the scalability and agility
of MANO frameworks. In this regard, I introduce a benchmarking framework to
quantify the performance of MANO frameworks in terms of resource consumption
and service deployment time. I also quantify the effect of topological distance on
service deployment time using Amazon Web Service (AWS) resources.

Supporting heterogeneous resources is the third challenge that I address. I
introduce a multi-domain NFV MANO framework that supports heterogeneous
resources by unifying resources from different domains and jointly orchestrating
them.

The last challenge is the dynamic deployment of services over heterogeneous
resources. I introduce multi-version services, a concept that realises services on
multiple versions based on virtualization environments (virtual machine and con-
tainer) and compute resources (General Purpose Processor (GPP), Graphics Pro-
cessing Unit (GPU), Field Programmable Gate Array (FPGA)). I integrated this
concept into a MANO framework and analysed different aspects of the concept.

With these contributions in place, the programmability of MANO frameworks
is improved, scalable MANO framework can be realised, and network services can
be dynamically provisioned over heterogeneous resources.

Zusammenfassung

Network Function Virtualization (NFV) wurde entwickelt, um die Flexibilität und
Agilität von Netzen zu verbessern und die Investitionen und Betriebsausgaben von
Netzanbietern zu reduzieren. Dies wird durch die “Softwarisierung” von Netzfunk-
tionen und die Automatisierung ihrer Verwaltung erreicht. Für diese Automati-
sierung schlug die European Telecommunication Standards Institute (ETSI) NFV
Gruppe eine Referenzarchitektur mit dem Namen Management and Orchestrati-
on (MANO) vor. Das darin beschriebene MANO-Framework ist für die Verwal-
tung der NFV Infrastruktur und des Lebenszyklus von Netzfunktionen sowie für
die Orchestrierung von Diensten als Ganzes verantwortlich.

Für ein vollwertiges MANO-Framework müssen jedoch mehrere Herausforde-
rungen gemeistert werden. In dieser Dissertation untersuche ich einige dieser Her-
ausforderungen und stelle entsprechende Konzepte und Lösungen vor. Ich unter-
suche zunächst das Problem der Flexibilität und Programmierbarkeit des MANO-
Frameworks. Ich stelle ein Konzept namens Specific Management (SM) vor, mit
dem dasMANO-Framework im laufenden Betrieb angepasst werden kann. Mit
einem simulationsbasierten Ansatz bewerte ich das SM-Konzept, indem ich es
mit einer statischen Lösung vergleiche. Außerdem analysiere ich experimentell
den Verwaltungsaufwand, der durch die Verwendung des SM-Konzepts in einem
MANO-Framework verursacht wird.

Die zweite Herausforderung ist die Skalierbarkeit und Agilität von MANO-
Frameworks. In diesem Zusammenhang stelle ich ein Benchmarking-Framework
vor, mit dem die Leistung von MANO-Frameworks in Bezug auf Ressourcenver-
brauch und Servicebereitstellungszeit quantifiziert wird. Ich quantifiziere auch den
Effekt der topologischen Entfernung in der Servicebereitstellungszeit mithilfe von
Amazon Web Service (AWS)-Ressourcen.

Die Unterstützung heterogener Ressourcen ist die dritte Herausforderung, die
ich in dieser Arbeit anspreche. Zu diesem Zweck stelle ich ein Multi-Domain-NFV-
MANO-Framework vor, das heterogene Ressourcen unterstützt, indem Ressourcen
aus verschiedenen Domänen vereinheitlicht und gemeinsam orchestriert werden.

Die letzte Herausforderung in dieser Dissertation ist die dynamische Bereitstel-
lung von Diensten über heterogene Ressourcen. In diesem Zusammenhang stel-
le ich Dienste mit mehreren Versionen vor; ein Konzept, das Dienste in mehre-
ren Versionen basierend auf Virtualisierungsumgebungen (virtuelle Maschine und
Container) und Rechenressourcen (General Purpose Processor (GPP), Graphics
Processing Unit (GPU), Field Programmable Gate Array (FPGA)) realisiert. Ich
habe dieses Konzept in ein MANO-Framework integriert und verschiedene Aspek-
te des Konzepts analysiert.

Mit diesen Beiträgen wird die Programmierbarkeit von MANO-Frameworks ver-
bessert, ein skalierbares MANO-Framework realisiert und Netzwerkdienste können
dynamisch über heterogene Ressourcen bereitgestellt werden.

Acknowledgements

I would like to express my very great appreciation to Prof. Dr. Holger Karl for
his support throughout my research. Your valuable advice, constructive criticism,
and encouragement made this dissertation possible. I would also like to extend
my deepest gratitude to Prof. Dr. Panagiotis Papadimitrou for leading me to this
journey. Without your support, this journey could not have started.

Many thanks to my dear colleagues in the computer network group for all the
interesting discussions and close collaboration. In particular, I wish to thank
Manuel, Sevil, Stefan, and Marvin for the joint work and fruitful discussions that
have enriched my dissertation. I am also grateful to have the opportunity to be
part of SONATA and 5G-PICTURE projects in which I met and worked with
many bright colleagues.

My friends Maryam, Hassan & Maryam, and Mohammad: I cannot thank you
enough for all the supports you have given to me during this time. Without having
you on my back in my life’s ups and downs, this step could not be achievable for
me.

I am deeply indebted to my parents Baba and Maman, my siblings Komail
and Hoda, and my sister-in-law Akram for believing in me and supporting all the
decisions I made in my life. Your unconditional love and support is the main
reason for my achievements.

Contents

1 Introduction 3
1.1 Challenges in NFV MANO frameworks 5

1.1.1 Supporting Diverse Service Requirements 5
1.1.2 Scalability and Agility of MANO frameworks 5
1.1.3 Supporting Heterogeneous Resources 6
1.1.4 Dynamic Provisioning of Services over Heterogeneous Resources 6

1.2 Contributions . 7
1.3 Structure of the Thesis . 8

2 Technical Background 11
2.1 Network Function Virtualization . 12
2.2 Management and Orchestration Framework 13

2.2.1 Data Repositories . 13
2.2.2 Functional Blocks Belonging to NFV MANO 14
2.2.3 Functional Blocks Interacting with NFV MANO 15

2.3 Descriptors . 15
2.4 Virtualized Infrastructure Manager 16

2.4.1 OpenStack . 16
2.4.2 Kubernetes . 17
2.4.3 Amazon Web Service . 18

2.5 Service Function Chaining . 18
2.5.1 Software-defined Networking 19

2.6 NFV Service Deployment Workflow 21
2.7 SONATA . 22

3 Programmable Management and Orchestration of Network Services 25
3.1 Introduction . 26
3.2 Specific Management . 27

3.2.1 Function-Specific Managers 28
3.2.2 Service-Specific Managers . 29

3.3 Specific Manager Platform . 29
3.3.1 Requirements . 30
3.3.2 Design and Implementation 31

3.3.2.1 SM Message Broker 32
3.3.2.2 Executive Plugin . 32
3.3.2.3 Specific Manager Registry (SMR) 33

3.3.3 Deployment Workflow . 33

vii

Contents

3.4 Evaluation . 34

3.4.1 Programmability Improvement 34

3.4.1.1 Specific Managers vs. Single-Objective Placement . . 35

3.4.1.2 Specific Managers vs. Multiple-Objective Placement . 36

3.4.2 Management and Resource Overhead 37

3.4.2.1 Management Overhead Analysis 37

3.4.2.2 Resource Overhead Analysis 38

3.5 Related Work . 39

3.6 Conclusion . 41

4 Scalable and Agile Management and Orchestration of Network Ser-
vices 43
4.1 Introduction . 44

4.2 MANO Benchmarking Framework 45

4.2.1 Requirements . 45

4.2.2 Design and Implementation 46

4.2.2.1 Request Generator 46

4.2.2.2 MANO Wrapper . 47

4.2.2.3 MANO Frameworks 48

4.2.2.4 VIM Mock-up . 48

4.2.2.5 Data Fetcher . 49

4.2.2.6 Data Plotter . 49

4.3 Analysis . 49

4.3.1 Software-based Limitation Analysis 49

4.3.2 Topological Distance Analysis 53

4.4 Related Work . 56

4.5 Conclusion . 57

5 Multi-domain Management and Orchestration of Network Services 59
5.1 Introduction . 60

5.2 Pishahang . 61

5.2.1 Requirements . 61

5.2.2 Design and Implementation 62

5.2.2.1 Service Descriptors 63

5.2.2.2 Infrastructure Adaptor 64

5.2.2.3 Cross-domain Service Chaining 66

5.3 Pishahang in 5G-PICTURE . 67

5.3.1 5G Operating System . 67

5.3.2 Pishahang in 5G Operating System 67

5.3.3 Pishahang in 5G-PICTURE Demonstration 69

5.3.3.1 Network Service . 70

5.3.3.2 Evaluation Results 71

5.4 Related Work . 71

5.5 Conclusion . 72

viii

Contents

6 Dynamic Management and Orchestration of Network Services 75
6.1 Introduction . 76
6.2 Multi-version Services . 77

6.2.1 Multi-Version Network Function (MVNF) 77
6.2.1.1 MVNFs Available for Multiple Virtualization Techniques 78
6.2.1.2 MVNFs with Multiple Hardware Implementations . . 78

6.2.2 Multi-Version Network Service (MVNS) 78
6.3 Multi-version Services Analysis . 79

6.3.1 Performance Analysis . 79
6.3.2 Cost Analysis . 82

6.4 Multi-version Services Orchestration 84
6.4.1 Requirements . 84
6.4.2 Design and Implementation 85

6.4.2.1 Multi-version Service Descriptors 85
6.4.2.2 Multi-version Service Manager 85

6.4.3 Evaluation . 87
6.5 Related Work . 92
6.6 Conclusion . 93

7 Final Thoughts 95
7.1 Summary . 95
7.2 Conclusion . 96
7.3 Future research . 97

Acronyms 99

Bibliography 103

ix

List of Figures

1.1 The stakeholders involved in providing network services 4

2.1 The ETSI NFV MANO reference architectural framework [15] 13
2.2 The OpenStack architectural framework 16
2.3 An example of service function chaining 19
2.4 The architectural framework of Software-defined Networking 20
2.5 The high-level architecture of the SONATA MANO framework 23

3.1 Monolithic vs. Microservices architectures for MANO frameworks . . 28
3.2 The Specific Manager infrastructure in the SONATA MANO framework 32
3.3 Results of service deployment using MANO frameworks with different

placement approaches on different network background loads based on
the first scenario . 35

3.4 Results of service deployment using MANO frameworks with different
placement approaches on different network background loads based on
the second scenario . 36

3.5 Results of the service deployment time evaluation 38
3.6 Results of the CPU utilization evaluation 39
3.7 Results of the memory utilization evaluation 39

4.1 The high-level architecture of MANO benchmarking framework . . . 47
4.2 The test-bed setup used in software-based limitation analysis 50
4.3 The average CPU and memory used by Pishahang and Open Source

MANO (OSM) MANO frameworks over a range of Requests Per Min-
utes (RPM) . 51

4.4 The average deployment time of services over a range of RPM 51
4.5 The average number of lost service deployment requests over a range

of RPM . 52
4.6 The average CPU and Memory utilization of OSM individual microservices 52
4.7 The average CPU and Memory utilization of Pishahang individual mi-

croservices . 53
4.8 The test-bed setup used for the topological distance analysis 54
4.9 The deployment time of services over a range of RPM 55

5.1 The high-level architecture of Pishahang 64
5.2 The descriptor model in Pishahang 64
5.3 An example of complex infrastructure template 66
5.4 The high-level architecture of 5G Operating System [12] 68
5.5 The high-level architecture of the test-bed used for 5G OS validation

and evaluation [8] . 69

xi

List of Figures

5.6 The test-bed facilities used for evaluation of 5G Operating System . . 69
5.7 The provisioning time of Long Term Evolution (LTE) and Wireless

Fidelity (WiFi) services deployed by Pishahang 70
5.8 The high-level architecture of the network service 71
5.9 The provisioning and termination time of CN-based services deployed

by Pishahang . 71

6.1 Different types of multi-version network functions (MVNFs) 77
6.2 An example of multi-version network services (MVNSs) 79
6.3 The test-bed set-up used for the evaluation 80
6.4 Transcoding processing time for videos with different resolutions (with

95 % confidence interval - error bars are too small) 81
6.5 Transcoding CPU utilization for videos with different resolutions (with

95 % confidence interval) . 82
6.6 Memory usage of GPU-assisted vTC for videos with different resolutions

(with 95 % confidence interval - error bars are too small) 82
6.7 Cost of running different versions of virtual Transcoder (vTC) on AWS

resources for one hour . 83
6.8 The multi-version services descriptor model 86
6.9 The high-level architecture of Pishahang containing the Multi-version

Service Management (MVSM) plugin to support multi-version services 87
6.10 The workflow of the MVSM plugin and its interactions with other

microservices in the Pishahang framework 88
6.11 The test-bed set-up used for the evaluation 89
6.12 The high-level architecture of virtual transcoder 89
6.13 The time required to switch between CN-based Accelerated (CNA) to

CNA, CNA to CN-based COTS (CNC), and VM-based COTS (VMC)
to CNA versions of the virtual transcoder 90

6.14 The time required to switch between CNA to VMC and CNC to VMC
versions of the virtual transcoder 91

6.15 The time required by the Service Function Chaining Management (SFCM)
to generate a new forwarding graph for redirecting the traffic to the
new version . 91

xii

List of Tables

4.1 Request generator’s configurable parameters 48

1

1
Introduction

1.1 Challenges in NFV MANO frameworks 5

1.1.1 Supporting Diverse Service Requirements 5

1.1.2 Scalability and Agility of MANO frameworks 5

1.1.3 Supporting Heterogeneous Resources 6

1.1.4 Dynamic Provisioning of Services over Heterogeneous
Resources . 6

1.2 Contributions . 7

1.3 Structure of the Thesis 8

Cloud computing has revolutionised the Information Technology (IT) infras-
tructure by transforming the way resources are provided. Technologies that have
been developed for cloud computing (e.g., virtualisation) allow companies to re-
duce the capital and operational costs of their IT infrastructure and reduce time-
to-market of new services. Cloud computing also boosts innovation by allowing
new ideas to be implemented with significantly less upfront cost. Leveraging this
opportunity, applications such as WhatsApp and Telegram have emerged. These
applications have cannibalised the classical communication services such as Short
Message Service (SMS) and telephony. This has significantly hampered the con-
ventional revenue flow of incumbent network providers, and, as a result, they are
seeking new business opportunities and revenue streams.

One potential new revenue stream for network providers is supporting new ver-
ticals such as connected vehicles, Internet of Things (IoT), remote surgery, and
smart manufacturing (industry 4.0). Realising such new verticals requires excel-
lent network connectivity, which can be provided by network providers. Specifi-
cally, these verticals require network connectivity with ultra-high data rate, ultra-
low latency, and high dependability. To fulfil these requirements, however, net-
work providers need to improve the flexibility, programmability, and agility of
their networks [46]. Adding a new network service in legacy networks is very
time-consuming and inefficient. This is because today, network services are pro-
vided on proprietary appliances and deploying them involves manual operations.

3

1 Introduction

To solve this issue, network providers followed the path of cloud computing.
They opted to softwarise network elements, which allows network services to be
offered on-demand. Network softwarization not only improves the flexibility of
the network but also reduces the capital and operational expenditures of network
providers.

Network softwarization is enabled using two main technologies, namely Network
Function Virtualization (NFV) and Software-Defined Network (SDN). These two
technologies transform the rigid and fully hardware-based legacy network to a flex-
ible software-based network that is automated using a centralised control entity.
The SDN and NFV technologies are explained in detail in Chapter 2.

Multiple stakeholders are involved in providing a network service. As it is
shown in Fig. 1.1, a service provider, on the top, provides the network service
artefacts that can be, for example, service descriptors and images. Using service
artefacts, a network provider deploys and manages the network services over an
infrastructure, that is provided by infrastructure operator. The network services
are, then, provided to service tenants, which can be verticals. The services are
eventually used by the end-users of the service tenants who want to access the
tenant’s services (e.g., to access a web service).

Compute Network Storage

Network
Operator

Service
Provider

Infrastructure
Operator

Physical Resources

Virtual Resources

Management and Orchestration Framework

Service artefacts

Resource

Provides Owns Interacts Service Flow Service
 package

Virtual Network
Function

Service
Tenant

Network Service

End-users

Servers

Deployed
services

Figure 1.1: The stakeholders involved in providing network services

To automate the deployment and management of network services, the Eu-
ropean Telecommunication Standards Institute (ETSI) NFV has introduced a
reference software architecture called Management and Orchestration (MANO)
Framework. A MANO framework manages the lifecycle of network services. The

4

1.1 Challenges in NFV MANO frameworks

lifecycle of a network service, usually, includes on-boarding, instantiation, con-
figuration, start, stop, update, and termination of the service. This dissertation
addresses some of the challenges concerning MANO frameworks, which are ex-
plained in the next section.

1.1 Challenges in NFV MANO frameworks

To have a full-fledged MANO framework, we need to overcome some challenges.
Examples of these challenges that will be addressed by this dissertation are spec-
ified in the following.

1.1.1 Supporting Diverse Service Requirements

Supporting the wide variety of network services’ management and orchestration
requirements is one of the main challenges that NFV is dealing with. While general
management requirements such as Virtualized Network Function (VNF) resource
requirements can be specified by the service developers using service descriptors
(See Chapter 2), specific management operations like VNF-specific configuration
cannot be performed by these descriptors. On the other hand, it is inefficient and
also very challenging for MANO frameworks to provide all specific-management
operations for every individual network service and their constituent VNFs. I
address this challenge in Chapter 3 by implementing and evaluating the Specific
Management (SM) concept. SM allows customizing an NFV MANO framework to
support service requirements that are not natively supported by such a framework.

1.1.2 Scalability and Agility of MANO frameworks

In some situations, MANO frameworks should handle a large number of service
deployment requests. For example, in scenarios like IoT where MANO frameworks
are used to deploy IoT-related NFV services, hundreds of service instantiation
requests might be sent to a MANO framework over a short time frame [27].To
handle such scenarios, MANO frameworks need to be scalable.

Moreover, in some scenarios, MANO frameworks need to deal with Network
Function Virtual Infrastructure (NFVI)s that are spread across a large geograph-
ical area (e.g., country or continental). An example of these scenarios is the 5G
network in which NFV plays a vital role [1]. The 5G network leverages highly-
distributed NFVIs to meet the 1 ms round trip latency [4]. In these scenarios,
the topological distance between the NFV MANO and NFVIs affects the NFV
services deployment time and consequently, the agility of MANO frameworks in
deploying new services.

Scaling out and scaling up of MANO frameworks are known scaling strategies
that can be used to support the specific deployment time of an NFV service when
the load suddenly increases. Also, placing MANO instances close to Virtualized
Infrastructure Manager (VIM)s where the services will be running is a viable
solution to improve the agility of service deployment. Although these solutions

5

1 Introduction

sound promising in theory, there is no real-word analysis and data about the
current MANO frameworks to be used when deciding how to scale a MANO
framework’s components. Chapter 4 addresses this problem and provide analysis
on software-based limitation of MANO frameworks and the effect of topological
distance on the service deployment time.

1.1.3 Supporting Heterogeneous Resources

NFV infrastructures consist of heterogeneous resources that are utilised for dif-
ferent purposes. For example, acceleration resources such as Field Programmable
Gate Array (FPGA)s are used to improve the performance of VNFs [36]. Also, dif-
ferent virtualisation environments can be used to host VNFs. For example, Virtual
Machine (VM)s are used to host security-critical VNFs, and Container (CN)s are
used when performance and deployment agility is in a higher priority [45]. There-
fore, a MANO framework must support heterogeneous resource (i.e., I consider
virtualisation environments as resources as well).

In the NFV orchestrator, Cloud Management System (CMS)s such as Open-
Stack 1 and Kubernetes 2 are used as VIMs. In a single-domain (i.e., a domain here
refers to a cluster of resources that is managed by a specific CMS) MANO frame-
work, the MANO is limited to a particular type of resources that are supported
by its CMS. For example, using OpenStack limits the system in VMs that can
run on General Purpose Processor (GPP)s and Graphics Processing Unit (GPU),
and no other resources can be supported. In another example, using Kubernetes,
resources such as containers, GPPs, GPUs can be supported, but it is not possible
to run VMs and deploy VNFs on FPGAs. Public cloud solutions such as Amazon
Web Service (AWS) can provide a wider range of heterogeneous resources (includ-
ing FPGAs), but, being closed-source, AWS is not suitable for managing in-house
resources.

To support all resources mentioned above, in Chapter 5, I implemented and
evaluated an NFV MANO that deploys services across multiple domains. The
NFV MANO framework implemented in that chapter has been used as the main
framework in the EU project 5G-PICTURE 3.

1.1.4 Dynamic Provisioning of Services over Heterogeneous
Resources

To reduce the cost and enhance the flexibility of network functions, VNFs are
deployed on Commercial Off-The-Shelf (COTS) resources instead of specialized
hardware. This, however, downgrades the performance of network functions. To
mitigate this issue, leveraging acceleration hardware such as GPU and FPGA has
been suggested [36]. This is because accelerators provide better parallelization
and pipelining for compute- and network-intensive VNFs. However, studies show

1https://www.openstack.org/, accessed June 2020
2https://kubernetes.io/, accessed June 2020
3https://www.5g-picture-project.eu, accessed June 2020

6

https://www.openstack.org/
https://kubernetes.io/
https://www.5g-picture-project.eu

1.2 Contributions

that using accelerators are not beneficial for all cases [24]. One of the reasons
is that accelerators are expensive resources, possibly increasing the service cost.
Consequently, the use of accelerators needs to be decided for each situation indi-
vidually.

In Chapter 6, I address this problem by implementing and evaluating a frame-
work that dynamically deploys services over heterogeneous resources. In this
framework, a service is implemented in different versions based on the compute
resource and the virtualization environment it is intended to run over. Having dif-
ferent versions of the service, the framework dynamically deploys the right version
based on the service demand.

1.2 Contributions

This work has been done throughout my PhD study from May 2016 to April
2020. During this time, I contributed to the open-source project SONATA and
also created an open-source project called Pishahang. I supervised three student
project groups, three bachelor theses and one master thesis. At the time of writing
this thesis, my publications have been cited 119 times. I published six papers as
first author in peer-reviewed conferences and co-authored five other conference
papers – all are listed in the following.

� H. R. Kouchaksaraei, A. P. S. Venkatesh, A. Churi, M. Illian, and H. Karl.
Dynamic Provisioning of Network Services on Heterogeneous Resources. In
2020 European Conference on Networks and Communications (EuCNC),
June 2020.

� H. R. Kouchaksaraei and Holger Karl. Quantitative Analysis of Dynamically
Provisioned Heterogeneous Network Services. In Proceedings of the 15th
International Conference on Network and Service Management, CNSM ’19.
IFIP, 2019.

� H. R. Kouchaksaraei and Holger Karl. Service Function Chaining Across
OpenStack and Kubernetes Domains. In Proceedings of the 13th ACM In-
ternational Conference on Distributed and Event-based Systems, DEBS ’19,
pages 240–243, New York, NY, USA, 2019. ACM.

� H. R. Kouchaksaraei, T. Dierich, and H. Karl. Pishahang: Joint Orches-
tration of Network Function Chains and Distributed Cloud Applications.
In 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 344–346, June 2018.

� H. R. Kouchaksaraei, S. Dräxler, M. Peuster, and H. Karl. Programmable
and Flexible Management and Orchestration of Virtualized Network Func-
tions. In 2018 European Conference on Networks and Communications (Eu-
CNC), pages 1–9, June 2018.

7

1 Introduction

� H. R. Kouchaksaraei and Holger Karl. Joint Orchestration of Cloud-Based
Microservices and Virtual Network Functions. In The Ninth International
Conference on Cloud Computing, GRIDs, and Virtualization CLOUD COM-
PUTING, pages 153–154, February 2018.

� D. Camps-Mur, F. Canellas, A. Machwe, J. Paracuellos, K. Choumas, D. Gi-
atsios, T. Korakis, and H. R. Kouchaksaraei. 5GOS: Demonstrating Multi-
domain Orchestration of End-to-end Virtual RAN Services. In 2020 6th
IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE,
2020.

� S. Dräxler, H. Karl, H. R. Kouchaksaraei, A. Machwe, C. Dent-Young,
K. Katsalis, and K. Samdanis. 5G OS: Control and Orchestration of Ser-
vices on Multi-Domain Heterogeneous 5G Infrastructures. In 2018 European
Conference on Networks and Communications (EuCNC), pages 1–9, June
2018.

� S. Van Rossem, M. Peuster, L. Conceicao, H. R. Kouchaksaraei, W. Tav-
ernier, D. Colle, M. Pickavet, and P. Demeester. A Network Service De-
velopment Kit Supporting the End-to-end Lifecycle of NFV-based Telecom
Services. In 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pages 1–2, Nov 2017.

� M. Peuster, S. Dräxler, H. R. Kouchaksaraei, S. v. Rossem, W. Tavernier,
and H. Karl. A Flexible Multi-pop Infrastructure Emulator for Carrier-
grade MANO Systems. In 2017 IEEE Conference on Network Softwarization
(NetSoft), pages 1–3, July 2017.

� S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel, J. Less-
mann, T. Soenen, W. Tavernier, S. Mendel-Brin, and G. Xilouris. SONATA:
Service Programming and Orchestration for Virtualized Software Networks.
In 2017 IEEE International Conference on Communications Workshops (ICC
Workshops), pages 973–978, May 2017.

The content of this thesis is mostly based on the papers that I published as
first author. Some of the figures and verbatim used in this thesis are copied from
the corresponding publications. To ease the flow of reading, such copies from my
own publications are not explicitly marked, but all sources are mentioned at the
beginning of each chapter. Parts of these publications mentioned above, in which
I did not have a significant contribution, are excluded from this dissertation.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2: Technical Background
In this chapter, I explain the technical background required for the following
chapters.

8

1.3 Structure of the Thesis

• Chapter 3: Programmable Management and Orchestration of Net-
work Services
In this chapter, I introduce the concept of SM. SM improves the flexi-
bility of MANO frameworks and allows the service developers to program
the management and orchestration of their services. I implemented the SM
platform and integrated it into the SONATA MANO framework. Using a
simulation-based approach, I evaluated the SM concept by comparing it with
rigid solutions. Also, by experimental evaluation, I analysed the manage-
ment overhead caused by employing the SM concept in a MANO framework.
This chapter is based on [22].

• Chapter 4: Scalable and Agile Management and Orchestration of
Network Services
The second NFV MANO challenge that I address in this dissertation is the
agility and scalability of MANO frameworks. In this chapter, I introduce
a benchmarking framework that is used to evaluate MANO frameworks.
Using the benchmarking framework, I analysed the scalability and agility of
MANO frameworks. The benchmarking framework has been developed by
a student project group, called SCRAMBLE4, under my supervision.

• Chapter 5: Multi-domain Management and Orchestration of Net-
work Services
Another challenge concerning the MANO frameworks is to support the wide
variety of heterogeneous resources. To this end, I implemented an open-
source multi-domain MANO, called Pishahang. Pishahang supports het-
erogeneous resources by a multi-domain approach where resources from do-
mains are jointly orchestrated. In this chapter, I describe the design and
implementation of Pishahang and also explain how it was used in the 5G-
PICTURE project to support 5G services.

This chapter is based on four papers, namely [23], [25], [21], and [8]. Tobias
Dierich contributed to the development of Kubernetes adaptor as part of his
Bachelor thesis [10]. Also, Dennis Meier contributed to the development of
the AWS adaptor as part of his Bachelor thesis [33]. The project group EN-
TANGLE5 also contributed to integrating the adaptors and also developing
the OpenStack adaptor.

• Chapter 6: Dynamic Management and Orchestration of Network
Services
The last NFV MANO challenge that I address is the dynamic deployment
of services over heterogeneous resources. In this regard, I introduce multi-
version services and classify the services that can benefit from dynamic de-
ployment. In this chapter, I analysed an example of multi-version service in
terms of performance and cost. Also, I extended Pishahang MANO frame-
work to support multi-version services. Using the extension, I analysed

4https://github.com/CN-UPB/pg-scrambLe, accessed July 2020
5https://bit.ly/3jSI34q, accessed July 2020

9

https://github.com/CN-UPB/pg-scrambLe
https://bit.ly/3jSI34q

1 Introduction

the management overhead that multi-version services impose to the MANO
framework. This chapter is based on two papers, namely [24] and [26].

• Chapter 7: Final Thoughts
In this final chapter, I conclude the work presented in previous chapters and
give an outlook on further research directions.

10

2
Technical Background

2.1 Network Function Virtualization 12

2.2 Management and Orchestration Framework 13

2.2.1 Data Repositories 13

2.2.2 Functional Blocks Belonging to NFV MANO 14

2.2.3 Functional Blocks Interacting with NFV MANO . . 15

2.3 Descriptors . 15

2.4 Virtualized Infrastructure Manager 16

2.4.1 OpenStack . 16

2.4.2 Kubernetes . 17

2.4.3 Amazon Web Service 18

2.5 Service Function Chaining 18

2.5.1 Software-defined Networking 19

2.6 NFV Service Deployment Workflow 21

2.7 SONATA . 22

In this chapter, I introduce concepts and technologies on which my work is
based. Network Function Virtualization (NFV) and Software-Defined Network
(SDN) are the two major concepts that are discussed in this chapter.

11

2 Technical Background

2.1 Network Function Virtualization

Telecommunication service providers had been long suffered from the rigidity of
middleboxes. Middleboxes are hardware appliances that provide functionalities
such as inspection, transformation, filtering, and manipulation of networking traf-
fic. These functionalities are called Network Function (NF)s and, mainly, are
used to improve network security and performance. Examples of NFs are Fire-
wall, Network Address Translation (NAT), Deep Packet Inspection (DPI), and
Load Balancers. In middleboxes, NFs are coupled to dedicated hardware. This
causes multiple challenges such as the following:

• High capital expenses: Employing middleboxes increases the capital ex-
penditure as they are expensive appliances.

• High operational expenses: Using middleboxes also increases the opera-
tional costs of networks. Examples of operational costs are power consump-
tion and manpower to configure and manage middleboxes.

• Rigid to scale up/down and upgrade: Scaling up and down in mid-
dleboxes mean adding and removing new appliances, respectively. This is
difficult to achieve as it is an expensive and time-consuming process. The
same holds for upgrading the middleboxes.

• Fixed location: They are fixed to one location, and moving them around
to, for example, keep them close to the service users is infeasible.

• Long time-to-market of new NFs: Launching a new NF is a tedious
process that includes development, shipping, and adopting a new appliance.
This is a long process and can take months until the NF becomes production-
ready.

• Limited innovation: development and testing new NFs and features will
be expensive as new appliances need to be manufactured. This increases the
cost of innovation that requires continues development and testing.

Inspired by Could computing, NFV is proposed by the European Telecommu-
nication Standards Institute (ETSI) to address the above-mentioned challenges.
In NFV, using virtualization technologies, NFs are decoupled from their hardware
and offered as software products running on Commercial Off-The-Shelf (COTS)
devices. These software products are called Virtualized Network Function (VNF)s.
Using NFV, the capital expenditures are reduced as VNFs run on COTS resources
that are cheaper than proprietary hardware used in middleboxes. Virtualization
provides better resource utilization as it enables resource sharing. This reduces
operational expenditures, such as power consumption. As proved in cloud com-
puting, virtualization also allows to scale up/down the NFs by simply allocating
more/less virtual resources to VNFs, respectively. In NFV, VNFs are portable and
can run on any location that virtual resources are provided (e.g., data centres).

12

2.2 Management and Orchestration Framework

NFV also reduces the time-to-market of VNFs as there is no shipping and adopt-
ing involved and development of new VNFs is significantly faster (i.e., enabled
by DevOps). NFV also lowers the cost of innovation as deploying new innovative
services as VNFs do not need to run on expensive resources.

In NFV, multiple VNFs are chained together to deliver an NFV service. To
accelerate time-to-market of NFV services, deployment and lifecycle management
of NFV services are automated by NFV Management and Orchestration (MANO)
framework. In the next section, NFV MANO is described in detail.

2.2 Management and Orchestration Framework

NFV MANO is a framework consisting of multiple functional blocks that handle
the tasks required to manage and orchestrate NFV services. ETSI NFV has
introduced a reference architecture [15] for NFV MANO that is shown in Fig. 2.1.
The architecture can be described in three parts: part 1) data repositories, part
2) functional blocks belonging to NFV MANO, and part 3) functional blocks
interacting with NFV MANO. In the following, I describe these parts in detail.

OSS/BSS NFV Orchestrator (NFVO)

EM

VNF

NFVI

NS
Catalogue

VNF
Catalogue

NFV
Instances

NFVI
Resources

VNF
Manager (VNFM)

Virtualised
Infrastructure

Manager
(VIM)

Os-MA-vnfo

Vn-Nf

Ve-Vnfm-em

Ve-Vnfm-vnf

Vi-Vnfm

Nf-Vi

Or-Vi

Or-Vnfm

NFV-MANO

Execution reference points Other reference points Main reference points

Part 3

Part 1

Part 2

Figure 2.1: The ETSI NFV MANO reference architectural framework [15]

2.2.1 Data Repositories

This part of NFV MANO consists of repositories that are used to store metadata
and artefacts. It includes four main repositories as follows.

13

2 Technical Background

• Network Service (NS) Catalogue: It stores all on-boarded network ser-
vices and supports creation and management of Network Service Descrip-
tor (NSD), Virtual Link Descriptor (VLD), and VNF Forwarding Graph
Descriptor (VNFFGD).

• VNF Catalogue: It stores all on-boarded VNF packages and supports
creation and management of the VNF package, which includes VNF artefacts
such as Virtual Network Function Descriptor (VNFD), software images, and
manifest files.

• NFV Instances Repository: It holds VNF and network service metadata.
VNFs and network service instances are represented by VNF and network
records, respectively. These records are updated during the lifecycle of in-
stances and stored in the NFV instances repository.

• Network Function Virtual Infrastructure (NFVI) Resources Repos-
itory: It holds NFVI resource metadata. Information about available, re-
served, and allocated NFVI resources are stored in NFV resource repository
which is used, for example, for VNF placement.

2.2.2 Functional Blocks Belonging to NFV MANO

This is the main part of the MANO framework; it includes function blocks that
are responsible for the management of VNFs and orchestration of NFV services.
These functional blocks are as follows.

• VNF Manager (VNFM): It is responsible for managing the lifecycle of
VNF instances. It may manage a single VNF instance or multiple instances
of the same type. Some of the VNFM tasks are VNF instance instantiation,
software update/upgrade, scaling up/down out/in, and termination. VNFM
manages VNF instances based on the deployment and operational behaviour
described in VNFD.

• NFV Orchestrator (NFVO): It has two main responsibility, namely
orchestration of NFVI resources across multiple Virtualized Infrastructure
Manager (VIM)s and lifecycle management of network services. Some of the
NFVO tasks are network service instantiation and managing the lifecycle of
network service instances, validation and authorisation of NFVI resources,
managing the topology of network service instances such as creating, updat-
ing, and deletion of VNF forwarding graphs. The operation and deployment
behaviour of NFVO is described in NSD.

• VIM: It manages NFV resources and provides northbound interfaces to
be used by the NFVO. Some of the VIM’s tasks are allocation, upgrade,
release, and reclamation of resources, supporting the management of VNF
forwarding graph, and supporting NFVO in retrieving available resources.
Cloud Management System (CMS) are used as VIM to manage NFV infras-
tructure. In section 2.4, I will introduce some of the CMSs that are currently
used as VIM in NFV.

14

2.3 Descriptors

2.2.3 Functional Blocks Interacting with NFV MANO

This part includes functional blocks that exchange information with NFV MANO.
These functional blocks are as follows.

• VNF: It is a softwarised version of the middleboxes. VNFs run in virtual-
ization environments such as Virtual Machine (VM)s and Container (CN)s.

• Element Manager (EM): It is responsible for fault, configuration, ac-
counting, performance, and security (FCAPS) management of VNFs. The
EM interacts with the VNF Manager of NFV MANO.

• NFVI: It consists of physical compute, network and storage resources that
are managed by a VIM such as OpenStack.

• Operations/Business Support System (OSS/BSS): It provides oper-
ator’s operations that is not realised in NFV MANO and need to exchange
information with NFV-MANO. For example, OSS/BSS may provide man-
agement for legacy systems and interacts with MANO to provide an end-to-
end orchestration.

2.3 Descriptors

NFV services have specific resource and operational requirements that need to
be provided to the MANO framework. To express these requirements, the ETSI
NFV has defined a set of descriptors, which are as the following.

• VNFD: Using a VNFD, service providers describe the requirements of a
VNF in terms of deployment and operational behaviour. It includes informa-
tion about the VNF resource, connectivity, interface and Key Performance
Indicator (KPI) requirements.

• VLD: This descriptor is used to specify the resource requirements that are
needed for connecting VNFs to one another and endpoints of the NS.

• VNFFGD: It is a deployment template used to express the topology of a
NS. Using the VNFFGD, service providers can specify how to chain VNFs
of a NS.

• NSD: It describes the service as a whole. NSD is a deployment template
that references all other descriptors (e.g., VNFD, VNFFGD) involved in a
NS.

These descriptors are created by the service providers and delivered to the
MANO framework along with the other service artefacts (e.g., VNF images). The
MANO framework uses the information specified in the descriptors to assign vir-
tual resources and perform lifecycle management operations.

15

2 Technical Background

2.4 Virtualized Infrastructure Manager

VIMs work as NFVI operating systems and control a pool of compute, storage and
networking resources. VIMs create virtual resources on top of the resource pool,
which will be used to run NFV services. These virtual resources can be managed
by northbound Application Programming Interface (API)s that are provided by
VIMs. Using northbound APIs, virtual resources such as virtual machines and
virtual links can be created, updated, scaled up/down or out/in, and deleted.
As VIM operational requirements are similar to cloud management systems that
manage cloud infrastructure, they have been used as a baseline for VIMs. Exam-
ples of management solutions used in NFV MANO are OpenStack, Kubernetes
and Amazon Web Service (AWS), which are explained in the following.

2.4.1 OpenStack

OpenStack 1 is the most popular open-source software solution for building and
managing both public and private cloud infrastructures. OpenStack is backed by
major IT companies (e.g., AT&T, Intel, Red Hat) as well as individual commu-
nity members. OpenStack provides functionalities such as service provisioning,
lifecycle automation, billing, and orchestration. To virtualize resources, Open-
Stack leverages hypervisors like VMware vSphere 2 and KVM 3. Fig. 2.2 shows
the architectural framework of OpenStack; it consists of multiple components,
each of which has been implemented for different purposes. The following are the
NFV-relevant components of OpenStack.

Dashboard
(Horizon)

Identity
(Keystone)

Compute
(Nova)

Image
Service
(Glance)

Networking
(Neutron)

Orchestration
(Heat)

Service
Chaining

(netowrking-
sfc)

Figure 2.2: The OpenStack architectural framework

• Nova: It is the OpenStack compute resource manager. This is the compo-
nent that spins up virtual machines to handle computing tasks. It provides
on-demand compute resources on a large scale.

• Neutron: It is the OpenStack solution for providing network as a service.
It is based on SDN network and provides connectivity between interface
devices such as Virtual Network Interface Card (vNIC)s.

1https://www.openstack.org/, accessed July 2020
2https://www.vmware.com/, accessed July 2020
3https://www.linux-kvm.org/, accessed July 2020

16

https://www.openstack.org/
https://www.vmware.com/
https://www.linux-kvm.org/

2.4 Virtualized Infrastructure Manager

• Keystone: It provides identity management. Keystone performs client
authentication, service discovery and multi-tenant authorization.

• Glance: It is the OpenStack component responsible for storing and re-
trieving virtual machine images. Glance allows storing images in different
locations like filesystems and object-storage systems.

• Heat: It creates an engine that orchestrates deployment of multi-component
applications. The applications can be described using Heat Orchestration
Template (HOT)s that are text-based templates based on the YAML Ain’t
Markup Language (YAML) format. NFV services that consist of multiple
compute and networking components can be deployed by Heat.

• Networking-sfc: It is implemented for NFV services. Networking-sfc pro-
vides service chaining for VNFs running in OpenStack domain.

OpenStack is used in Chapter 5 as a virtual infrastructure manager to orches-
trate VM-based VNFs.

2.4.2 Kubernetes

As mentioned before, VNFs can also be realised on containers. Containers are
gaining momentum because of the remarkable benefits that they provide compared
to virtual machines. Containers are lighter than VMs as they include only the
components required to run an application and do not need a full Operating
System (OS). This makes containers faster to spin up and deploy. Also, containers
provide native performance (whereas VMs usually incur a performance penalty)
and require less memory.

These benefits cannot be gained without a proper orchestration solution to come
up with challenges such as service discovery, load balancing, storage orchestration,
rollouts and rollbacks automation, and secret and configuration management. To
address these challenges, Kubernetes has been introduced by Google; Kubernetes
is an open-source container-orchestration system. There are three main compo-
nents in a Kubernetes cluster:

• Pod: It is the smallest execution unit in Kubernetes that encapsulates an
application container. A Pod can run a single or multiple container(s).
Kubernetes manages the Pod rather than the containers directly.

• Worker Node: It is a physical or virtual machine that provides services
to run pods. Worker nodes are managed and controlled by the Kubernetes
control plane.

• Master Node: It runs the Kubernetes control plane. The control plane
is responsible for making global decisions such as scheduling, healing, and
scaling of the containers. The control plane is also composed of multiple
components such as (i) kube-apiserver, the entry point of Kubernetes’ con-
trol plane. It provides an API through which Kubernetes resources (e.g,

17

2 Technical Background

pod) can be managed. (ii) etcd, which stores all cluster data. It is a con-
sistent and highly-available key/value storage. And last but not least, (iii)
kube-scheduler, which assigns newly created Pods to Nodes. The assign-
ments are based on different criteria, such as pod resource requirements.

Kubernetes is used in Chapter 5 as a virtual infrastructure manager to orches-
trate container-based VNFs.

2.4.3 Amazon Web Service

AWS is the most popular public cloud provider, having 33 per cent of the market
share in 2019 4. It provides the largest variety of services in the market, which
is one of its key successes. AWS can also be used as a VIM in NFV. The wide
distribution of AWS Point of Presence (PoP)s allows NFV MANO to place ser-
vices at locations that are not supported by private cloud infrastructures. Also,
AWS provides unique services that can be leveraged by NFV to improve the per-
formance of VNFs. For example, AWS F1 provides Field Programmable Gate
Array (FPGA) as services. Using this service, VNFs can be deployed on FPGA
to get better performance.

AWS is used in Chapter 5 as a virtual infrastructure manager to orchestrate
FPGA-based VNFs.

2.5 Service Function Chaining

As mentioned earlier, in NFV, usually, multiple VNFs are grouped to deliver a
service. That means incoming traffic (e.g., user traffic) to the network will be
redirected to a set of VNFs to be processed. The order of VNFs in the group
is important as moving them around might change the behaviour of the service.
To this end, VNFs are chained together, which means the incoming traffic will
be traversed through a specific order of VNFs. Such chaining of VNFs is called
Service Function Chaining (SFC). Fig. 2.3 shows an example of SFC, where the
service is provided by three example VNFs. To realise an SFC like in the example,
four concepts are involved, explained below.

• Connection Point (CP): CPs are the VNF external interfaces that are
used to expose VNFs to send and receive traffic. CPs can be virtual or
physical ports, virtual or physical Network Interface Card (NIC) addresses
or the endpoint of an IP Virtual Private Network (VPN).

• Virtual Link (VL): VL connects CPs to one another to provide connec-
tivity between VNFs. VLs can have different types, such as E-Line, E-LAN,
or E-Tree.

• Network Function Path (NFP): NFP is a specific path in the service
chain. It includes an order of CPs that are connected by VLs.

4https://www.statista.com/, accessed July 2020

18

https://www.statista.com/

2.5 Service Function Chaining

VNF3VNF2VNF1

CP11 CP12 CP13 CP21 CP31 CP32 CP33

CP01 CP02

VL1
VL2

VL3

VL4

CP: connection point, VL = Virtual Link, NFP = Network Forwarding Path, VNF-FG = VNF Forwarding Graph

Network Service

NFP
1

NFP2

NFP
3

VNF-FG

Incoming
traffics

SFC
Classifier

Figure 2.3: An example of service function chaining

• VNF Forwarding Graph (VNF-FG): It is used to describe the service
chain. Using VNF-FGs, we can specify which VNFs are involved in the
chain in what order. For each service chain, we can have multiple NFPs
to steer the traffics through. This is because the same service chain can be
used by multiple service users who might have different requirements (e.g.,
one user might want a fast path and another a cheap path).

• SFC Classifier: is used to classify the incoming network traffics. The clas-
sification is done usually based on the x-tuple and then assigned to different
paths in the chain.

To apply SFC, we need to have control over the network that connects the
VNFs to one another. A technology that provides such control over the network
is SDN, which is described in the next section.

2.5.1 Software-defined Networking

The network control needs to be automated to support the fast-growing network
usage and demand [44]. Automation of traditional networks is difficult as the
decision-making engines are distributed and tied to switching and routing devices.
To mitigate this challenge, SDN has been introduced. SDN decouples the control
plane from hardware and delegates it to a centralised management system. In the
SDN framework, routing devices work only as traffic forwarders and are configured
externally by a controller through interfaces such as OpenFlow. Fig. 2.4 shows
the SDN architectural framework. It consists of the following layers.

• Applications Layer: It consists of applications that define the decision
making logic for the underlying network. These applications collect infor-
mation from the SDN controller and construct an abstract view of the net-
work. Using such network information, SDN applications instruct the SDN
controller to (re)configure the SDN devices.

19

2 Technical Background

Application Layer

Control Layer

Infrastructure Layer

Network ServicesNetwork ServicesNetwork Services

Network ServicesNetwork ServicesBusiness Application

SD
N

 c
on

tro
lle

r
So

ftw
ar

e

Northbound Interface

Southbound Interface

Figure 2.4: The architectural framework of Software-defined Networking

• Control Layer: It includes the SDN controller that works as an intermedi-
ate entity between SDN applications and devices. The controller translates
the network instructions and requirements to forwarding rules and installs
them on the SDN devices. The interface between the controller and de-
vices can work based on different protocols such as OpenFlow [31] and Net-
Conf [14].

• Infrastructure Layer: It consists of SDN devices such as OpenFlow switches.
This layer is responsible for forwarding the packets based on the instructions
sent by the upper layers.

The design of SDN controllers has been given a lot of attention from open-
source communities from which many solutions have been implemented. Exam-
ples of these solutions are OpenDaylight 5 and Open Network Operating Sys-
tem (ONOS) 6, which are complex and designed to be used in large-scale produc-
tion environments. Other solutions also exist such as POX 7 and Ryu 8, which are
simple to use and are suitable for prototyping and development environments.

5https://www.opendaylight.org/, accessed July 2020
6https://www.opennetworking.org/onos/, accessed July 2020
7https://github.com/noxrepo/pox, accessed July 2020
8https://ryu-sdn.org/, accessed July 2020

20

https://www.opendaylight.org/
https://www.opennetworking.org/onos/
https://github.com/noxrepo/pox
https://ryu-sdn.org/

2.6 NFV Service Deployment Workflow

SDN enables NFV to provide service chaining. With SDN, networks can be
dynamically configured to add and remove service chains and steer the traffic
through VNFs as intended by an NFV orchestrator. In this thesis, I used the
SDN concept to provide service chaining for services deployed across different
domains. I used Ryu as an SDN controller and physical OpenFlow switches in
the infrastructure layer. This work is described in Chapter 5.

2.6 NFV Service Deployment Workflow

Now that we know about the fundamental concepts and technologies used to realise
NFV, let’s look into an example NFV service deployment and see how different
components described above work together to deploy a service. Consider a scenario
in which we have a service that consists of three VNFs; all to be deployed on one
PoP. The workflow that is described next is a typical deployment workflow. It can
change depending on the NFV MANO and SDN controller used for deployment.

First of all, we need to create descriptors. Depending on which NFV MANO
is used, we need to create at least four descriptors; three VNF descriptors to de-
scribe individual regiments of each VNF and one NS descriptor to describe the
requirements of the service as a whole. In the NS descriptor, we can specify the
service name, constituent VNFs, virtual links between VNFs, and the forwarding
graph. In the VNF descriptors, we specify requirements such as VNF name, de-
ployment units, connection points, and VNF image. When all the descriptors are
ready, we package the descriptors with other service artefacts such as VNF images
and then, we on-board the package to NFV MANO. The package on-boarding
is done usually using either a Graphical User Interface (GUI) or Command Line
Interface (CLI) provided by the MANO framework.

Once the service package is on-boarded, we can deploy the service. Like the
package on-boarding, this is also usually done through either a GUI or CLI. Ini-
tiating the deployment, NFVO receives the deployment request and contacts the
VIMs to find a suitable location (i.e., a PoP) for the VNFs. Then, NFVO con-
tacts the VNFM to deploy the VNFs separately. Once the VNFs are deployed,
VNF records are collected by the VNFM and then stored in the repository. The
VNFM also notifies the NFVO about the status of the deployment. If the VNF
deployment succeeded, NFVO contacts the SDN controller to connect the VNFs.

In the SDN controller, using an or several SDN applications, forwarding graphs
sent by the NFVO are translated to OpenFlow forwarding rules. These rules are,
then, installed on the OpenFlow switches, which creates the chain between the
three VNFs. The SDN controller then notifies the NFVO about the status of the
service chain deployment. Receiving the deployment status, NFVO collects the
service records and stores them in the repository.

21

2 Technical Background

2.7 SONATA

Multiple MANO frameworks have been implemented to support management and
orchestration of NFV services. SONATA [13] is an example of these MANO
frameworks. In this section, I describe the overall architecture and constituent
microservices of the SONATA MANO framework. SONATA has been used in
Chapter3 as a MANO framework to realise and evaluate the SM concept.

The SONATA MANO framework is based on the microservices architecture in
which the MANO tasks (service deployment, management, placement, etc.) are
implemented in container-based microservices. These microservices are called plu-
gins. Fig 2.5 shows the high-level architecture of the SONATA MANO framework
with the main plugins that are explained below.

• Gate Keeper (GK) is the main entry point of the MANO framework that
secures the MANO framework and provides northbound APIs.

• Function Lifecycle Management (FLM) is the SONATA plugin for
managing the lifecycle of individual VNFs.

• Service Lifecycle Management (SLM) manages and orchestrates ser-
vices as a whole.

• Placement Management (PLM) places generic VNFs.

• Scaling Management (SCM) scales generic VNFs.

• Repositories is a group of databases to store metadata such as service,
VNF, and request records.

• Infrastructure Adaptor (IA) enables SONATA to communicate with
VIMs such as OpenStack.

• Message Broker is a RabbitMQ9-based message-queueing system used by
MANO plugins to communicate with one another.

To instantiate a service using the SONATA MANO framework, first, the service
descriptors will be uploaded into the repository through the APIs provided by the
GK. Then, by triggering the service instantiation, GK sends an instantiation
request to the SLM. The instantiation request contains the service and VNF
descriptors. Receiving the descriptors, SLM sends a placement request to the
PLM to find out where the VNFs of the service should be deployed. PLM maps
the VNFs to the VIMs based on the service resource requirements and available
resources on the VIMs. The decision is, then, sent to the SLM. Now that SLM
knows where each VNF should be deployed, it sends a VNF deployment request
to the FLM. FLM, then, communicates with IA and deploys the VNF on the
corresponding VIM. Once the VNF is deployed, metadata gathered by the VIM
is sent up to the FLM and SLM. Based on this metadata, FLM and SLM create

9https://www.rabbitmq.com/, accessed July 2020

22

https://www.rabbitmq.com/

2.7 SONATA

M
es
sa
ge
	B
ro
ke
r

Service	Lifecycle
Management

(SLM)

Function	Lifecycle
Management

(FLM)

Placement
Management

(PLM)

Scaling
Management

(SCM)

Infrastructure	Adaptor	(IA)	 M
on
ito
rin
g

Se
rv
ic
es

VN
Fs

Gate	Keeper	(GK)

R
ep
os
it
or
ie
s

Figure 2.5: The high-level architecture of the SONATA MANO framework

the VNF and service records, accordingly, and store them in the corresponding
databases. If service chaining or Wide Area Network (WAN) connectivity is also
required for the service, then, SLM triggers the corresponding workflow; otherwise,
the results of service instantiation requests are sent up to the GK.

SONATA plugins communicate with each other through a message bus in the
publish/subscribe fashion. To this end, APIs are defined for each task, which
can be subscribed by plugins to send and receive requests and response messages,
respectively. For example, the service placement API is subscribed by PLM and
SLM. The SLM plugin publishes placement requests to this API, and, on the
other side, the PLM plugin, which is listening to this API, receives the request,
reacts accordingly, and sends the response back to the same API to be received
by SLM. This enables plugins to be loosely coupled, which provides a high level
of flexibility.

23

3
Programmable Management and
Orchestration of Network Services

3.1 Introduction . 26

3.2 Specific Management 27

3.2.1 Function-Specific Managers 28

3.2.2 Service-Specific Managers 29

3.3 Specific Manager Platform 29

3.3.1 Requirements . 30

3.3.2 Design and Implementation 31

3.3.3 Deployment Workflow 33

3.4 Evaluation . 34

3.4.1 Programmability Improvement 34

3.4.2 Management and Resource Overhead 37

3.5 Related Work . 39

3.6 Conclusion . 41

25

3 Programmable Management and Orchestration of Network Services

This chapter is about a mechanism that improves the programmability of NFV
MANO frameworks. The idea, Specific Manager, that is discussed in this chap-
ter has been proposed by SONATA consortium. I evaluated the idea and pub-
lished the results in [22]. Moreover, I implemented a platform to support Specific
Managers in the MANO framework. This platform has been integrated into the
SONATA MANO framework.

3.1 Introduction

Managing the lifecycle of network services and orchestrating them are critical
challenges on the way to Network Function Virtualization (NFV). These chal-
lenges come from the wide diversity of operational and deployment requirements
of network services, which need to be supported by network operators.

It is crucial to have comprehensive lifecycle management in NFV as it affects
service performance and also resource consumption. Using a generic management
process for managing all network services and ignoring their specific management
requirements (e.g., service-specific placement) make the network services ineffi-
cient (see Section 3.4). Therefore, network operators need to manage services
based on their specific requirements and that requires these operators to fully
understand the specific requirements of all individual network services.

Service descriptors are used to describe the requirements of services, which are
provided by the service providers. This communicates how to run the service from
service providers to network operators. These descriptors are shipped, along with
other service artefacts, to network operators. Using these descriptors, the network
operator’s Management and Orchestration (MANO) framework can manage and
orchestrate network services considering individual network service requirements.

Descriptors can be used by service providers to specify general requirements
of services such as the resource requirements of a Virtualized Network Func-
tion (VNF) or the service graph of a network service. Although these descrip-
tors simplify network service management (see Section3.4), anything outside the
predefined semantics of the descriptor cannot be realised; examples are service-
specific management and orchestration operations like service placement with a
specific optimisation goal.

In principle, it might be possible to have a very broad, comprehensive seman-
tic of descriptors. However, supporting such descriptors is very challenging for
the MANO framework. For example, it might be possible to extend the seman-
tic of descriptors to specify service requirements like VNF-specific configuration.
Still, a MANO framework cannot configure each VNF individually as each VNF
might have a very specific configuration process that cannot be foreseen and pre-
implemented in the MANO framework. Therefore, the orchestration process also
needs to be programmable, just like the network itself has become programmable.

To realise such programmability for the management and orchestration process,
the use of Specific Management (SM)s inside an orchestration framework is pro-
posed. SMs are management programs that are developed by service providers
and are transmitted along with other service artefacts (e.g., software containers

26

3.2 Specific Management

for the actual functions) to the network operators. Using these programs, ser-
vice providers can customize the management and orchestration of network ser-
vices and also extend the capability of MANO frameworks to support complicated
management scenarios. Architecturally, this evolves so-far monolithic orchestra-
tion platforms into a microservice-based system design, reaping all the known
benefits of this architecture pattern [51] over other concepts.

The chapter reminder is as follows. First, in Section 3.2, I discuss the SM
concept in more detail. Then, in Section 3.3 I introduce the SM platform which
has been implemented to support SMs in the SONATA MANO framework. In
Section 3.4, first, using the network service chains placement as a test case, I
showcase the benefits of programmable MANO frameworks, and then I evaluate
the overhead imposed by SM concept to the MANO framework. In Section 3.5, I
review the related work and, finally, in Section 3.6, I highlight the conclusions.

3.2 Specific Management

Two most popular software architectures that can be considered for implementing
a MANO framework are monolithic and microservices. In monolithic architec-
tures, all the functions are realised in one functional block that runs entirely on
one machine (i.e., it can be a physical or virtual machine). Extending, scaling, and
testing one single function in monolithic applications requires extending, scaling,
and testing the entire application as all the functions are tied up in one func-
tional block. This is not efficient, especially for large applications, since it makes
the aforementioned operations tedious. Monolithic applications are also not re-
silient since the failure of one function can bring the whole application down.
Another problem with monolithic applications is that they are rigid in their de-
sign and technology, meaning that the initial technology selected to develop the
application cannot be upgraded without significant effort. If one single part of the
application needed to be upgraded, the entire application should be redesigned
and implemented from scratch. A flexible architecture is important for the MANO
framework that needs to be programmable (see Section 3.4). As a result, mono-
lithic architecture is not a suitable solution for implementing a MANO framework.

Microservices are proposed to mitigate the issues associated with monolithic
applications. Unlike the monolithic architecture, in the microservice architec-
ture, applications are broken down into multiple microservices. Microservices are
loosely-coupled functional blocks that communicate with each other, for example,
using message brokers. Microservices can run in different machines (physical or
virtual machines, containers); therefore, a failure in one machine will not affect
the operation of other microservices. This, in turn, increases the dependability of
applications. The distributed nature of microservices increases the flexibility of an
application. It makes it possible to add new features by simply adding and inte-
grating new microservices. This improves costly and time-consuming testing and
reconfiguring of an entire application. These benefits make microservices architec-
ture a viable option for implementing the MANO framework. Fig. 3.1a and 3.1b
show the difference between monolithic and microservices architecture of the

27

3 Programmable Management and Orchestration of Network Services

MANO framework. For simplicity, these figures contain only four primary func-
tions of the MANO framework.

Service
Manager

Function
Manager

VIM Adaptor

Northbound APIs

(a) Monolithic architecture

Message
Broker

Function
Manager

VIM
Adaptor

Service
Manager

Northbound
APIs

(b) Microservices architecture

Figure 3.1: Monolithic vs. Microservices architectures for MANO frameworks

Although flexibility is provided by microservices, programmability is an impor-
tant feature for MANO frameworks, that is not directly realised by microservices.
To this end, we propose SMs that allow new features to be added to the MANO
framework, even during the framework runtime. SMs deliver a specific design of
microservices architecture that provides programmability for MANO frameworks.
SMs are developed by service providers for a specific service or function. They are
container-based programs that are shipped along with other service artefacts in
a service package to the MANO framework. These programs are then integrated
into the MANO framework and replace the MANO framework’s generic and pre-
implemented lifecycle managers. Using SMs, a MANO framework can support
any specific management scenario that is not natively supported.

SMs are provided for two levels: function and service. SMs on function level are
called Function-Specific Management (FSM) and service level are called Service-
Specific Management (SSM)s – explained as follows.

3.2.1 Function-Specific Managers

FSMs are microservices that are developed to deal with specific requirements
of individual VNFs. FSMs extend a MANO framework’s VNF-specific lifecycle
management. The following shows some use cases of FSMs.

• Configuration FSM: The VNF developer can provide specific configuration
operations to be triggered during VNF runtime. For example, start or stop
some VNF functionalities at a particular event (e.g., when it is required by
the other VNF in the service chain or based on monitoring triggering) or
run specific commands (e.g., installing rules in a virtualised firewall to drop
some packets during the runtime) in the VNF.

28

3.3 Specific Manager Platform

• Monitoring FSM: It specifies monitoring metrics of a particular VNF. Mon-
itoring FSM can communicate with the main monitoring component of the
MANO framework, request particular monitoring data, and react accord-
ingly.

• Scaling FSM: It defines how to scale a specific VNF. For example, a devel-
oper can specify how many instances of a particular VNF should be instan-
tiated at a certain event during VNF runtime.

• Multi-versioning FSM: FSMs can also be used to change the deployment
version of a VNF on the fly. For example, to optimise the cost and per-
formance of a VNF, it might be offered in two versions, like Commercial
Off-The-Shelf (COTS)-based and Acceleration-based. Depending on the
service demand, an FSM can choose between the two versions on the fly
(see Chapter 6).

3.2.2 Service-Specific Managers

SSMs are service-specific microservices that provide specific orchestration require-
ments of network services. SSMs improve a MANO framework’s programmability
for orchestrating network services as a whole. The followings are some of the use
cases of SSMs.

• Placement SSM: It maps functions to resources. For example, a developer
can provide a sophisticated placement algorithm with optimisation goals
that are not supported by the MANO framework (see Section 3.4).

• Scaling SSM: It customises the scaling of network services. Scaling of a
single VNF of a network service can impact the other VNFs involved in
the same network service. To deal with consequences of scaling, a scaling
SSM can be used. Scaling SSM can provide all the required service-specific
orchestration functionalities caused by scaling one VNF (e.g., triggering the
scaling of another VNF in the service chain).

• Service chaining SSM: Another use case of SSMs is to take care of changes
in the service graph during the service runtime, e.g., compensating for the
failure of a VNF in a service chaining SSM.

• Multi-versioning SSM: Multi-versioning can be provided on service levels as
well. Using an SSM, MANO framework can change between different set of
VNFs on the fly as the service demand and other parameters change (see
Chapter 6).

3.3 Specific Manager Platform

In this section, I describe the requirements of integrating the SM concept into the
SONATA MANO framework and, then, I explain the SM platform that has been
implemented to fulfil the requirements.

29

3 Programmable Management and Orchestration of Network Services

3.3.1 Requirements

SMs are service-developer-made plugins. Integrating these plugins into the MANO
framework can have unwanted consequences. For example, a developer can use
the SMs to access sensitive data that are exchanged in the MANO framework.
To mitigate this issue, I have defined six security requirements for SM integration
into the MANO framework. These six requirements are the followings.

• Req. 1: SMs should not have direct access to the MANO framework
message broker. This requirement prevents SMs to eavesdrop or manipulate
messages exchanged in the MANO framework.

• Req. 2: SMs’ messages belonging to a service must be isolated from other
services. This requirement prevents SMs from manipulating messages of
other services.

• Req. 3: SMs’ identity should be confirmed by the SM platform, possibly
using a credential. This requirement blocks the access of unauthorised SMs
to the message broker.

• Req. 4: SMs must not be allowed to impose workflows that violate the
MANO framework’s global policies or requirements. This requirement pre-
vents SMs to inject malicious operations to the MANO framework.

• Req. 5: SMs’ resource consumptions should be limited and monitored
periodically and SMs with unusual resource consumption should be stopped.
This requirement reduces the risk of fork bomb 1 attack on the machine that
runs MANO’s crucial operational code.

• Req. 6: Sensitive MANO data must not be exposed to SMs. Examples
of these data are the detail resource information and the topology of the
underlying Network Function Virtual Infrastructure (NFVI)s.

I also defined four operational requirements that are described below.

• Req. 7: SMs have some specifications that need to be described and
shipped to the MANO framework. These specifications are, for example,
the name of the SM, the Uniform Resource Locator (URL) of the docker
registry where the SM image is stored, and the type of operation it performs
(e.g., placement, scaling).

• Req. 8: SMs are plugins that live as long as their corresponding services
live; therefore, there should be a mechanism to manage the lifecycle of SMs.
The SM lifecycle manager should be able to pull the SM container images
into the MANO framework, start the containers, and terminate them when-
ever needed.

1It is a type of denial-of-service attack that continuously replicates a process to deplete available
resources. This results in slowing down or crashing the system due to resources starvation.

30

3.3 Specific Manager Platform

• Req. 9: SMs should be able to access their corresponding Application
Programming Interface (API)s in the MANO framework. For example, an
SM that customizes the placement of a service should be able to access the
placement-related APIs of the MANO framework.

• Req. 10: SMs must run isolated from one another. This is because, for
example, they might desire to be written in different programming languages
and have different runtime environment requirements.

3.3.2 Design and Implementation

There are two leading technologies that can be used to host SMs and fulfil Req. 10.
These technologies are Virtual Machine (VM)s and containers. We have opted to
use docker containers [34] to host SMs. This is because Docker containers provide a
lightweight and agile runtime environment for SMs. Also, as SONATA plugins run
on docker containers, using this type of containers for SMs eases the integration
of SMs into the SONATA MANO framework.

To fulfil Req. 7, the schema of SONATA’s Network Service Descriptor (NSD)
and Virtual Network Function Descriptor (VNFD) has been extended. In the NSD
and VNFD schema, a new element has been added that allows service developers
to describe the specification of SSMs and FSMs, respectively. These specifications
are: (i) id: a name assigned to the SM, (ii) description: a descriptions of what the
SM does, (iii) image: the URL where the SM can be downloaded from, and (iv)
type: this element determines which MANO framework task will be customised
with the SM. The value of “type” can be placement, scaling, configuration, mon-
itoring, start, stop, and lifecycle. Using placement and scaling SMs, the service
developer can customise the placement and scaling of services. Using a configura-
tion SM, the developer can run a specific script in the VNF to (re)configure the
VNF after deployment. Using a monitoring SM, specific metrics can be monitored
with different time intervals. With start and stop SMs, a specific operation inside
theVNF can be started and stopped, respectively. Finally, by lifecycle SM, the
lifecycle of services or VNFs can be customised. Using this type, the service devel-
oper can decide which SM should be triggered when. For example, the developer
can define the start FSM to be triggered right after the service deployment or
after the configuration FSM is done with the VNF configuration. It also allows
to provide SM types that are not already supported. To do so, first, we create
a lifecycle FSM to provide the unsupported type. Then, using a lifecycle SSM,
we trigger the lifecycle FSM whenever needed. An example of SM descriptor is
shown below.

function_specific_managers:

- id: "sonfsmvcdnvcccss1"

description: "FSM to do a first FSM test"

image: "sonatanfv/vcdn-vcc-fsm-css"

options:

- key: "type"

value: "start"

31

3 Programmable Management and Orchestration of Network Services

The rest of the requirements are provided by the SM platform shown in Fig. 3.2.
In the SM platform, there are three main plugins as follows.

M
es
sa
ge
	B
ro
ke
r

Service	Lifecycle
Management

(SLM)

Function	Lifecycle
Management

(FLM)

Placement
Management

(PLM)

Scaling
Management

(SCM)

Infrastructure	Adaptor	(IA)	

M
on
ito
rin
g

Se
rv
ic
es

VN
Fs

Gate	Keeper	(GK)

R
ep
os
it
or
ie
s

S1	-	virtual	host S2	-	virtual	host S(n)	-	virtual	host

S1-	SSM

S1-
FSM1

S1-
FSM2

S2-	SSM

S2-
FSM1

S2-
FSM2

S(n)-	SSM

S(n)-
FSM1

S(n)-
FSM2

SM
sSpecific	Manager	Registry	(SMR)

SM
Message
Broker	

Executive	Plugin

Figure 3.2: The Specific Manager infrastructure in the SONATA MANO frame-
work

3.3.2.1 SM Message Broker

Message broker has been implemented to keep SM messages out of the MANO
framework and satisfy Req 1.

3.3.2.2 Executive Plugin

It is the SM plugin connector to the MANO framework plugins. On the one side,
Executive plugin subscribes to all the MANO framework APIs; on the other side, it
subscribes to the SM APIs. For the SM to MANO framework direction, Executive
plugin, first, detects to which MANO framework plugin API the message belongs
to – this is done based on the SM API the message is received from – (fulfilling
Req. 9). Then, it inspects the message and checks if the workflow complies with
the MANO framework’s global policies and requirements. To do so, the request is
checked against a list of operations that are allowed to be enforced. Examples of
these operations are getting available resources or starting a particular VNF. The
requested operation is identified from the SM API that the message is sent from.

32

3.3 Specific Manager Platform

If the message satisfies the requirements, it will be forwarded to the respective
API; otherwise, it will be dropped (fulfilling Req. 4). On the MANO framework
plugins to SMs direction, Executive plugin transforms the data to the right level
of abstraction (e.g., by removing sensitive information not related to the service)
using the solution described in [47] and provides it to the target SMs (fulfilling
Req. 6).

3.3.2.3 Specific Manager Registry (SMR)

This plugin is responsible for managing the lifecycle of SMs. It uploads SM images
into the SM platform, starts the SM container and terminates them whenever
requested, which fulfils Req. 8. SMR performs two other tasks as well. During
the SM start phase, SMR, first, creates a virtual host in the message broker and
generates a key that will be used by SMs to access the virtual host. Next, it starts
the SM container and passes the virtual host name and the key to the container
by environment variables. Using the host name and the key, SM can register itself
to the SM platform and access the SM message broker (fulfilling Req. 3).

Based on the SM specification in the descriptor and the service ID, SMR creates
a RbbitMQ topic (API) specific to the SM. This topic is, then, used by SM
and the Executive plugin to exchange messages to get information or enforce an
operation. The messages are based on JavaScript Object Notation (JSON) format
and parameters included in the message are aligned with SONATA APIs that are
intended to call, mentioned in [7]. The RabbitMQ topic has the following format:

sm.[type].[service id]

The field ”type” is filled by SM type (e.g., placement, scaling). The ”service
id” is the id of the service that the SM belongs to. This topic is, then, communi-
cated to the SM and Executive plugin, which enables them to communicate with
each other. This isolates SM messages belonging to a service from other services
(fulfilling Req 2). For each service, SMR creates a topic with the type internal
which is used for internal communication of SMs belonging to a service. SMR also
monitors the resource consumptions of SMs and stops them if they have unusual
consumption to fulfil Req. 5.

3.3.3 Deployment Workflow

The SM deployment workflow and interaction of SM and MANO frameworks dur-
ing the service deployment is as follows. It starts with Service Lifecycle Manage-
ment (SLM) sending an SM on-boarding request to SMR. The request contains
the descriptor which allows SMR to identify from where the SM images should be
pulled (it will be extracted from image element of the descriptor, explained above).
Once the images are successfully pulled, SLM will be notified. Then, SLM sends
an SM instantiation request to SMR. SMR, then, starts the SM containers and
handles the networking as explained before. By successful instantiation, SMR
stores a record of SM into the SM repository. All SMs, belonging to a service, are

33

3 Programmable Management and Orchestration of Network Services

deployed during the service deployment at once and will be triggered later on by
their associated events (e.g., when placement is triggered).

Using the SM platform, the SM concept has been integrated into the SONATA
MANO framework. In the next section, first, I evaluate the benefit of SM concept
compared to rigid solutions and, then, I evaluate the management and resources
overhead caused by the SM platform.

3.4 Evaluation

In this section, I assess two aspects of the SM concept. First, I evaluate the main
benefit of SMs – making MANO frameworks programmable – and in the second
part, I evaluate the management overhead that it causes.

3.4.1 Programmability Improvement

To evaluate the benefits of programmability that SMs can bring to a MANO
framework, I compare an SM-enabled MANO framework with others, using plac-
ing network service chains as a test case. Conventional MANO frameworks em-
ploy pre-implemented placement algorithms that cannot be modified or extended
to support specific requirements of individual network services. Therefore, all ser-
vices – no matter what requirements they have – are placed in the same way, with
the same optimisation algorithms and objectives. For example, latency-sensitive
network services cannot be efficiently deployed using a MANO framework that
does not support VNF placements minimising total latencies.

To support this claim, we designed three MANO frameworks that place net-
work services using different approaches. Utilising these MANO frameworks, we
deployed two services with contradicting optimisation goals on a network with
12 nodes and 42 edges based on the Abilene network from SNDlib [37]. Services
are manually created in the form of a deployment request as explained in [32]
and deployed in different network background loads. The network load is the
percentage of network nodes’ and links’ capacity that is being used. We chose
services based on the European Telecommunication Standards Institute (ETSI)
NFV use cases [15], including fixed access and mobile core networks. According
to the requirements mentioned in [15], we defined the services’ optimisation goals
as follows.

• Fixed Access Network: minimising the number of used nodes as the primary
objective and minimising total latencies as the secondary objective.

• Mobile Core Network: minimising total latencies as the primary objective
and minimising the number of used nodes as the secondary objective.

Having this scenario, we compared SM-enabled MANO frameworks with others
as follows. Each test was performed five times with different service source/destination
nodes, and the average results are shown in the figures.

34

3.4 Evaluation

3.4.1.1 Specific Managers vs. Single-Objective Placement

The placement approaches used in the first comparison for each MANO framework
are as follows.

• MANO #1: minimises the number of used network nodes when placing
services.

• MANO #2: minimises total latencies when placing services.

• MANO #3: minimises a service’s desired objective (based on SM).

We evaluated the resulting service placements based on the two natural metrics,
the number of used nodes to deploy the services and the total latency of the
services. Fig. 3.3a and Fig. 3.3b show the number of used network nodes and
total latencies that we obtained for each service, respectively. The results show
that while MANO #1 can meet the primary optimisation requirement of the
fixed access network the best in all network loads, it is inadequate for providing
the secondary optimisation requirement. The same happens for the mobile core
network service when MANO #2 is used for deployment. Considering the results
obtained for both metrics, however, MANO #3 performs the best as services
deployed by MANO #3 use a low number of network nodes plus having low
latencies. This is because MANO #3 places the services based on their specific
requirements.

0 20 40 60 80 100
Background loads (percentage)

4

6

8

10

12

Nu
m

be
r o

f u
se

d
no

de
s

Fixed access network deployed by MANO #1
Fixed access network deployed by MANO #2
Fixed access network deployed by MANO #3

(a) Number of used nodes by the fixed
access network service

0 20 40 60 80 100
Background loads (percentage)

0

10

20

30

40

50

60

70

80

To
ta

l L
at

en
cie

s (
se

co
nd

s)

Mobile core network deployed by MANO #1
Mobile core network deployed by MANO #2
Mobile core network deployed by MANO #3

(b) Total latency of the mobile core
network service

Figure 3.3: Results of service deployment using MANO frameworks with different
placement approaches on different network background loads based on
the first scenario

In high background load, the number of used nodes become almost the same for
the fixed access network service deployed by all MANOs. This is to be expected as
there are not many free nodes, and the placement algorithm does not have many
choices to place the services. On the other hand, for the mobile core network
service, MANO #1 results in the worst performance even in high background

35

3 Programmable Management and Orchestration of Network Services

load. This is because MANO #1 does not consider the service latency and just
tries to decrease the number of nodes in all network loads. This results in choosing
the nodes that generate higher latencies.

3.4.1.2 Specific Managers vs. Multiple-Objective Placement

In the second comparison, we changed the optimisation objectives used in MANO
frameworks number one and two as follows, making them smarter and closer in
behaviour to our SM-based MANO system.

• MANO #1: minimises the number of used network nodes when placing
services, use total latency as a tiebreaker.

• MANO #2: minimises total latencies when placing services, use number of
used nodes as a tiebreaker.

• MANO #3: minimises a service’s desired objective (based on SM) – as
above.

Like the first comparison, we have two metrics, including the number of used
network nodes to deploy services and the total latency of the services to eval-
uate the placement performed by different MANO frameworks. Comparing the
results illustrated in Fig. 3.4a and 3.4b, we can see that the SM-enabled MANO
framework is the only framework that gives the best results for both services in
all background loads. Although MANO #1 performs the same as MANO #3 for
deploying the fixed-access network service, it is the framework performing worst
for deploying the mobile core network service. On the other hand, MANO #2
gives the worst results for deploying the fixed access network service. This is as
expected, given MANO and service characteristics.

0 20 40 60 80 100
Background loads (percentage)

4

6

8

10

12

Nu
m

be
r o

f u
se

d
no

de
s

Fixed access network deployment by MANO #1
Fixed access network deployment by MANO #2
Fixed access network deployment by MANO #3

(a) Number of used nodes by the fixed
access network service

0 20 40 60 80 100
Background loads (percentage)

0

2

4

6

8

10

12

14

16

To
ta

l L
at

en
cie

s (
se

co
nd

s)

Mobile core network deployment by MANO #1
Mobile core network deployment by MANO #2
Mobile core network deployment by MANO #3

(b) Total latency of the mobile core
network service

Figure 3.4: Results of service deployment using MANO frameworks with different
placement approaches on different network background loads based on
the second scenario

36

3.4 Evaluation

A significant difference between the results from different MANO frameworks
can be seen at medium network loads. This is because, in low network load, the
placement algorithm has plenty of options to accurately map the services on the
resources. Therefore, a good result can be achieved even without a sophisticated
optimisation algorithm. On the other hand, when the network is highly loaded,
the placement algorithm has little manoeuvring space. Therefore, the results of
any placement algorithm will be the same. The use of a service-specific placement
becomes advantageous when the network operates at medium background load.
But as this is indeed a practically relevant operational regime (networks should be
reasonably utilised but not overloaded to be commercially feasible), our SM-based
approach shines when it matters.

3.4.2 Management and Resource Overhead

In this section, we evaluate and quantify the management and resource overhead
that is caused by having the SM concept in the MANO framework. As explained
in Section 3.3, I have implemented a platform that supports management of SMs
in the SONATA MANO framework. This platform is evaluated by three metrics:
(i) deployment time, (i) CPU utilization, and (ii) Memory utilization. The first
metric shows how much management overhead is imposed by the SM platform
and the other two metrics allow quantifying the resources overhead brought by
SM platform.

For this evaluation, I implemented three services: (i) No-SM service: it consists
of one VNF with no SM, therefore, it doesn’t use the SM platform for deployment,
(ii) One-SM service: it consists of one VNF with one FSM and uses SM platform
to deploy the FSM, and (iii) Three-SM service: this service includes one SSM and
one VNF with two FSMs. Like the One-SM service, it also uses the SM platform
during the service deployment. As for the parameter for the evaluation, we used
RPM. Requests Per Minutes (RPM) is the number of service deployment requests
that are sent in one minute.

The test-bed consists of two virtual machines. One of them is used to host SM
and SONATA service platforms and the other hosts the Virtualized Infrastructure
Manager (VIM). Both virtual machines are equipped with 8 CPU cores of Intel(R)
Xeon(R) CPU E5-2695 v3 @ 2.30GHz and 15 GB of RAM.

3.4.2.1 Management Overhead Analysis

As mentioned earlier, the deployment time was taken as a metric to analyse the
management overhead of SM platform. Fig. 3.5 shows the results of the service
deployment time evaluation. For this evaluation, only the times consumed by
SM and SONATA service platforms are evaluated and the time that is consumed
by VIM is excluded as it is not relevant to this evaluation. Fig. 3.5a shows the
average deployment time of the three services over a range of RPM. As expected,
the average deployment time increases as the number of RPM increases. Larger
RPMs not only put more stress on SM and SONATA service platforms by sending
requests in shorter time intervals but also increases the number of SMs to be

37

3 Programmable Management and Orchestration of Network Services

deployed. For example, in 100 RPM, for One-SM service, 100 services with 100
SMs are deployed. For Three-SM service, 100 services with 300 SMs are deployed.
So, clearly, using SMs has an impact on service deployment time. However, the
interesting results can be seen in Fig. 3.5b where the deployment time overhead of
One-SM and Three-SM services compared to No-SM service is shown over a range
of RPMs. As you can see, the deployment time overhead of services with SMs
decreases as the number of RPM (consequently, the number of SMs) increases.
For example, considering the overhead of the One-SM service over the No-SM
service, we can see the deployment time overhead is more than 15 times for 20
RPM. However, this number decreases to less than five times for 100 RPM. The
same happens in the deployment time overhead of the Three-SM service over the
One-SM service. While Three-SM deployment time overhead is more than 33
times for 20 RPM, it is just less than seven times for 100 RPM. These results
show the more load we have on the MANO framework, the less deployment time
overhead we will get by having the SM concept in the MANO framework.

20 40 60 80 100
Requests per minute (RPM)

0

100

200

300

400

500

600

Av
e.

 d
ap

lo
ym

en
t t

im
e

(s
)

No-SM service
One-SM service
Three-SM service

(a) Average deployment time of No-SM,
On-SM, and Three-SM services over

different RPMs

20 30 40 50 60 70 80 90 100
Requests Per Minute (RPM)

5

10

15

20

25

30

35

De
pl

oy
m

en
t t

im
e

ov
er

he
ad

 (t
im

es
)

One-SM vs. No-SM
Three-SM vs. No-SM

(b) Deployment time overhead of
One-SM and Three-SM services

compared to No-SM service

Figure 3.5: Results of the service deployment time evaluation

3.4.2.2 Resource Overhead Analysis

Fig. 3.6a and 3.7a shows the average CPU and memory utilization of the MANO
framework during the deployment of services over a range of RPMs. Like the
deployment time evaluation results, we can see that the CPU and memory uti-
lization of services with SMs are more than services without SMs. The resource
utilization also increases as the number of SMs grows. This is expected as higher
number of SMs means higher number of containers, and that needs more resources
to run. However, you can see in Fig. 3.6b and 3.7b that the resource overhead of
the services with SMs are negligible. This is because containers are light-weight
execution environments that do not impose a huge overhead on the host machine.

It is also interesting to see in Fig. 3.6b and 3.7b that the CPU overhead of One-
SM and Three-SM services compared to No-SM service decrease as the number of

38

3.5 Related Work

20 40 60 80 100
Requests per minute (RPM)

0

5

10

15

20

25

30

35

Av
e.

 C
PU

 u
til

iza
tio

n
(M

iB
)

No-SM service
One-SM service
Three-SM service

(a) Average CPU utilization of No-SM,
On-SM, and Three-SM services

services over different RPMs

20 30 40 50 60 70 80 90 100
Requests Per Minute (RPM)

1.0

1.2

1.4

1.6

1.8

CP
U

ov
er

he
ad

 (t
im

es
)

One-SM vs. No-SM
Three-SM vs. No-SM

(b) CPU overhead of One-SM and Three
SM services compared to No-SM

service

Figure 3.6: Results of the CPU utilization evaluation

RPM increases. However, this is different for memory overhead, as the trend shows
that the memory overhead increases by growing the number of RPM (consequently
SMs).

20 40 60 80 100
Requests per minute (RPM)

0

2000

4000

6000

8000

Av
e.

 m
em

or
y

ut
iliz

at
io

n
(M

iB
) No-SM service

One-SM service
Three-SM service

(a) Average memory utilization of
No-SM, On-SM, and Three-SM

services services over different RPMs

20 30 40 50 60 70 80 90 100
Requests Per Minute (RPM)

1.2

1.4

1.6

1.8

2.0

2.2

M
em

or
y

ov
er

he
ad

 (t
im

es
)

One-SM vs. No-SM
Three-SM vs. No-SM

(b) Memory overhead of One-SM and
Three-SM services compared to

No-SM service

Figure 3.7: Results of the memory utilization evaluation

3.5 Related Work

Following the definition of the ETSI architecture, various MANO frameworks have
emerged for managing and orchestrating network services. In the following, we
review some of these frameworks and discuss their capabilities to support per-
VNF/service management and orchestration.

39

3 Programmable Management and Orchestration of Network Services

Tacker2, the OpenStack NFV platform, has a policy-based approach for network
service management and orchestration. For example, to scale and place network
services, Tacker uses a monitoring component that triggers scaling based on strate-
gies (e.g., CPU usage threshold) defined for each VNF or network service. On the
other hand, each VNF/service has its specific policies (e.g., max/min number of
instances for scaling out/in) specified in the VNF/service descriptor that describes
how the scaling/placement should be performed. Although with this approach,
the general VNF/service requirements can be considered, the pre-implemented
lifecycle management modules (e.g., scaling and placement) are fixed and cannot
be extended/programmed to support service-specific lifecycle management oper-
ations (e.g., VNF configuration during the runtime) of VNFs/services.

T-NOVA3 is an NFV platform that provides a MANO framework to manage and
orchestrate network services over virtualised infrastructures. T-NOVA’s MANO
framework employs a dedicated resource mapping module that is responsible for
network service scaling and placement. This module contains some generic optimi-
sation algorithms, which includes minimising mapping cost, maximising provider’s
revenue, and maximising the acceptance rate of NFV service requests. It is fea-
sible for service operators to integrate new optimisation algorithms with different
objectives into this module. However, service providers cannot influence the al-
gorithms of the resource mapping module, and all network services are limited to
the predefined resource mapping optimisation.

Open Network Automation Platform (ONAP)’s4 solution for providing per-
VNF/service management is POLICY. POLICY is the ONAP subsystem that
maintains, distributes, and applies a set of rules to ONAP’s underlying control,
orchestration, and management functions. Service developers can create a set of
policies for each VNF/service during service creation. These rules are then injected
into the MANO framework to customise the management of network services.
Although ONAP’s POLICY can support per-service management to some extent,
its expressiveness is limited to the given policy language and does not allow a
service developer to actually program the MANO framework. POLICY uses the
YAML Ain’t Markup Language (YAML) language to describe the policies, which
does not provide any programming capability to extend the MANO framework
for supporting complicated management scenarios.

Open Source MANO (OSM)5 employs Topology and Orchestration Specification
for Cloud Applications (TOSCA)-based templates [52] for describing both service
and VNF requirements. To perform per-VNF management, OSM uses Juju6,
which enables service developers to write scripts for configuring/reconfiguring
their VNFs based on their specific needs. However, OSM misses a strategy for
providing per-service orchestration on the service level, which makes customising
orchestration tasks such as service placement or scaling rather challenging.

2https://wiki.openstack.org/wiki/Tacker, accessed Jan. 27, 2020
3http://www.t-nova.eu/, accessed Jan. 27, 2020
4https://www.onap.org/, accessed Jan. 27, 2020
5https://osm.etsi.org/, accessed Jan. 27, 2020
6https://jaas.ai/, accessed Jan. 27, 2020

40

3.6 Conclusion

Cloudify7 uses the blueprint, a TOSCA-based template, to describe service re-
quirements. In the blueprint, lifecycle events are described in a YAML format,
which is inflexible as in the other platforms. In Cloudify, developers can use work-
flows to customise the management of VNFs. Workflows are described in Python
and use dedicated API’s to communicate with other components of the MANO
framework. But workflows can only customise the management of VNFs and are
unable to customise the orchestration of network services. Also, workflows have
to be written in Python and cannot be implemented in any other programming
language.

In another project, Unify [49], a framework has been implemented that aims
at unifying cloud and career network resources. It uses a closed source MANO
framework, called ESCAPE [48], to orchestrate services over multiple Point of
Presence (PoP)s. In Unify, to support function-specific management require-
ments, a program, called Ctrl APP, is installed on VNFs. Ctrl APP provides
a direct interface between VNFs and orchestrator [41] and handles tasks like Key
Performance Indicator (KPI) monitoring, topology change triggering and VNFs
configuration [42]. Like SMs, Ctrl Apps are also provided by the service providers
who develop the VNFs. Unlike SMs, Ctrl Apps cannot customise the orchestra-
tion of services. This is because they are tied to VNFs and do not have a holistic
view of all resources and VNFs.

3.6 Conclusion

In this chapter, I have presented an innovative method to perform per-service
management and orchestration for NFV services. The proposed method is to inject
microservices that can perform service-specific management and orchestration into
a MANO framework. These microservices are instantiated by MANO frameworks
in conjunction with their corresponding services and replace the generic lifecycle
management components of MANO frameworks.

Evaluating this method, I showed that SM-enabled MANO frameworks are
advantageous over rigid MANO frameworks for both service users and providers
as it improves service performance, better utilizes resources, and consequently
reduces the cost of NFV services.

I also evaluated the management and resource overhead of having such a concept
in a MANO framework. The results show that SM concept can increase the
overhead of the MANO framework. However, the overhead is not a game-changer,
especially when the MANO framework is dealing with a higher number of requests
per minute.

7https://osm.etsi.org/, accessed Jan. 27, 2020

41

4
Scalable and Agile Management and
Orchestration of Network Services

4.1 Introduction . 44

4.2 MANO Benchmarking Framework 45

4.2.1 Requirements . 45

4.2.2 Design and Implementation 46

4.3 Analysis . 49

4.3.1 Software-based Limitation Analysis 49

4.3.2 Topological Distance Analysis 53

4.4 Related Work . 56

4.5 Conclusion . 57

43

4 Scalable and Agile Management and Orchestration of Network Services

In this chapter, I analyse the scalability and agility of Management and Or-
chestration (MANO) frameworks. To do the analysis, I used a tool called MANO
Benchmarking1 that has been implemented in a project group under my supervi-
sion, called SCRAMBLE2.

4.1 Introduction

Network Function Virtualization (NFV) employs a MANO framework to manage
and orchestrate services. In some situations, MANO frameworks should han-
dle a large number of service deployment requests. For example, in scenarios
like Internet of Things (IoT) where MANO frameworks are used to deploy IoT-
related NFV services, hundreds of service instantiation requests might be sent
to a MANO framework over a short time frame. An example of such services
is the smart drive-assistant service which is an IoT/Machine to Machine Com-
munication (M2M) service that provides safety and stress-free driving [27]. To
provide this service, various control information needs to be fetched from sensors
embedded in the car and roadside units. This information, then, will be analysed
to make real-time decisions. The data analysis and decision making can be per-
formed by Virtualized Network Function (VNF)s deployed on mobile edge servers.
Considering the number of sensors embedded in a car (60–100 sensors), in a traffic
jam or accident situation where hundreds of vehicles will be stuck in an area, the
number of NFV services to be instantiated will be enormous. Therefore, the NFV
MANO should be scalable to be able to instantiate hundreds of services that are
required for real-time decision making.

Other than the large number of service requests, in some scenarios, MANO
frameworks need to deal with Network Function Virtual Infrastructure (NFVI)s
that are spread across a large geographical area (e.g., country or continental). An
example of these scenarios is the 5G network in which NFV plays an important
role[1]. The 5G network leverages highly-distributed NFVIs to meet the 1 ms
round trip latency [4]. In these scenarios, the topological distance between the
NFV MANO and NFVIs affects the NFV services deployment time and conse-
quently, the agility of MANO frameworks in deploying new services.

Scaling out and scaling up of MANO frameworks are known scaling strategies
that can be used to support the deployment of a large number of services. Also,
placing MANO instances close to Virtual Infrastructure Managers (VIMs) where
the services will be running is a viable solution to improve the agility of service
deployment. Although these solutions sound promising in theory, there is no
real-word analysis and data on performance of the current MANO frameworks at
scale in terms of number of requests and topological distance to be used when
deciding how to scale a MANO framework’s components. To address this issue,
in this chapter, I analyse the software-based scalability limitations of MANO
frameworks using Open Source MANO (OSM) and Pishahang as case studies.
Also, the idea of having MANO instances close to the VIM for increasing the

1https://github.com/CN-UPB/MANO-Benchmarking-Framework, accessed July 2020
2https://github.com/CN-UPB/pg-scrambLe, accessed July 2020

44

https://github.com/CN-UPB/MANO-Benchmarking-Framework
https://github.com/CN-UPB/pg-scrambLe

4.2 MANO Benchmarking Framework

agility of service deployment is evaluated using Pishahang as a case study and
Amazon Web Services (AWS) as real-word resources.

For this analysis, we implemented a tool called MANO benchmarking frame-
work. The MANO benchmarking framework consists of multiple microservices
in three tiers that facilitate the testing and analysis of MANO frameworks. It
generates test services, monitors the resource utilisation of MANO frameworks,
provides a MANO wrapper to access northbound Application Programming Inter-
face (API)s of OSM and Pishahang MANO frameworks, provides VIM mock-up
to handle a large number of service deployment without using actual resources,
and data fetcher and plotter to gather and analyse the data.

Note that this work is focused on the scalability of the MANO framework itself,
not the scalability network services. The remainder of this chapter is as follows.
In Section 4.2, the benchmarking framework is explained in detail. In Section 4.3,
the scalability of MANO frameworks is evaluated. The related work is reviewed
in Section 4.4 and finally the chapter is concluded in Section 4.5.

4.2 MANO Benchmarking Framework

The MANO benchmarking framework has been implemented to support testing
and benchmarking MANO frameworks. In this section, first, I describe the re-
quirements of such a framework and then explain microservices that have been
implemented to satisfy these requirements.

4.2.1 Requirements

To facilitate the evaluation of MANO frameworks, a benchmarking framework
should fulfil the following requirements.

• Req. 1: In MANO frameworks, usually, a Graphical User Interface (GUI)
or Command Line Interface (CLI) is used for deployment of services. Using
GUI and CLI, a user can on-board and deploy services one by one, which is
not the most efficient way especially for testing the scalability as multiple
service deployment request should be sent to the MANO in a short period.
Therefore, a benchmarking framework should provide a solution for sending
a batch of deployment request with different time intervals.

• Req. 2: The most obvious requirement of a Benchmarking framework is to
have means to monitor different performance metrics of MANO frameworks
such as CPU or memory usage.

• Req. 3: To evaluate the scalability of MANO frameworks, a large number
of services should be tested. Deploying a large number of services requires
NFVIs to have a huge amount of resources available. Usually, it is not
possible to provide that amount of resources for testing. Therefore, the
benchmarking framework should provide a solution to test a large number
of services without needing actual resources.

45

4 Scalable and Agile Management and Orchestration of Network Services

• Req. 4: The monitoring information might need to be fetched in differ-
ent time intervals and for different resources. Therefore, the benchmarking
framework should provide mechanisms for users to choose what monitoring
information in what time intervals to be fetched. The data should also be
stored in a database to be available for later usage.

• Req. 5: To analyse the data, the benchmarking framework should also have
means to plot data in different types of graphs.

4.2.2 Design and Implementation

The MANO benchmarking framework has been implemented based on the require-
ments mentioned above. The high-level architecture of the MANO framework is
shown in Fig. 4.1. It consists of four tiers. The first tier on the top is the Pre/post
deployment, which consists of three microservices handling the pre-service de-
ployment operations such as generating deployment requests and post service
deployment operations such as fetching data and plotting them. The second tier
abstracts northbound APIs of the MANO frameworks and allows pre/post de-
ployment microservices to communicate with MANO frameworks. The third tier
is the monitoring tier. This tier includes the actual MANO frameworks, currently
supporting OSM and Pishahang MANO frameworks. Along with each MANO
framework, a Netdata (see Section 4.2.2.3) instance is running that monitors the
performance of the MANO frameworks. The last tier on the bottom is the Vir-
tualized Infrastructure Manager (VIM) mock-up tier. This tier includes the VIM
mock-up implemented for the two MANO frameworks. It allows deployment of
services at scale with little resources – only to run the VIM mock-up.

Each tier can be used independently from the others. For example, VIM mock-
up can be used just to test the deployment of a particular service without using
the other two tiers. Also, the Pre/post deployment tire can be used independently
just to send example services to a particular MANO that uses real infrastructure
underneath. In the following, the microservices are explained in detail.

4.2.2.1 Request Generator

To address the problem with issuing a batch of deployment requests and fulfill-
ing Req 1, we implemented Request Generator. Request Generator is responsible
for on-boarding a large number of descriptors and generating service instantia-
tion requests. There are multiple parameters that can be configured in Request
Generator, which are listed in Table 4.1.

The first two parameters that must be configured are “NSD” and “VNFD”.
Using these two parameters, we can import one or multiple Network Service De-
scriptor (NSD)(s) and Virtual Network Function Descriptor (VNFD)(s) into the
MANO frameworks. Each descriptor is represented by a Uniform Resource Iden-
tifier (URI), pointing to where the descriptor can be accessed – the descriptor can
be downloaded from the internet or imported from the local machine.

46

4.2 MANO Benchmarking Framework

			Request	
		generator

MANO	wrapper

				Data	
				plotter

			Data	
			fetcher DB

Pre/Post
Deployment

Pishahang
VIM	mock-up

OSM
	VIM	mock-up

VIM	Mock-up

Monitoring

Abstraction

Figure 4.1: The high-level architecture of MANO benchmarking framework

It might be desired to include multiple services in one experiment. To address
that, Request Generator provides the “service” parameter which specifies the list
of services that should be deployed in one experiment. The services are identified
by their Universal Unique Identifier (UUID); therefore, the list must contain a list
of service UUIDs.

Request generator also allows to repeat an experiment multiple times. This can
be configured by the “number of experiment” parameter. Also, the delay between
experiments can be configured by the “Inter-experiment delay” parameter.

In case of errors in the service deployment, some times, the experiment goes to
infinite loop and never ends. This can be prevented by setting the “skip experi-
ment error” parameter to “TRUE”.

Request Generator interacts with MANO frameworks using MANO wrapper
that is explained in the next section.

4.2.2.2 MANO Wrapper

MANO Wrapper has been implemented to provide connectivity between the Pre/post
deployment microservices and MANO frameworks. It wraps the north-bound APIs
of OSM and Pishahang MANO frameworks in a Python library. MANO Wrapper
not only allows Pre/post deployment microservices to communicate with MANO

47

4 Scalable and Agile Management and Orchestration of Network Services

Table 4.1: Request generator’s configurable parameters

Parameter Data type Mandatory

NSD List Yes
VNFD List Yes

Services List Yes
Request per minute Integer Yes

Number of experiment Integer No
Inter-experiment delay Decimal No
Skip experiment error Boolean No

frameworks but also allows multiple instances of a MANO framework to commu-
nicate with each other (explained in detail in Section 4.3.2).

MANO Wrapper covers all MANO reference APIs standardised by the European
Telecommunication Standards Institute (ETSI) [19]. It supports northbound APIs
of OSM and Pishahang and consists of three groups of APIs: (1) APIs specific
to Pishhang, (2) APIs specific to OSM, and (3) blueprint APIs. The first and
second groups are the groups of the ETSI standardised APIs that are currently
supported by Pishahang and OSM, respectively. The blueprint APIs, however, are
those APIs that are specified in the ETSI document but not currently supported
by any of these two MANO frameworks. These APIs are provided as blueprints
based on python Abstract Class3, enforcing ETSI standards in future extension
to the wrapper. In the first two groups, functionalities such as start or terminate
a service instance are supported. An example of blueprint APIs is starting a
Physical Network Function (PNF).

4.2.2.3 MANO Frameworks

The benchmarking framework currently supports two MANO frameworks, namely
Pishahang and OSM. The MANO framework runs in a dedicated machine (e.g.,
Virtual Machine (VM)) to avoid the effect of any non-MANO processes on the
MANO framework. To monitor the performance of the MANO framework, Net-
data4 is used. Netdata allows real-time collecting of system and application per-
formance metrics. Using Netdata, the benchmarking framework can, for exam-
ple, monitor the CPU and memory utilisation of MANO frameworks which fulfils
Req. 2. Netdata is a very lightweight monitoring tool with a maximum CPU usage
of 8 % and RAM usage of 62 MB5.

4.2.2.4 VIM Mock-up

To solve the resource issue mentioned in Req. 3, we implemented the VIM mock-up.
VIM mock-up fakes all northbound APIs of OpenStack and generates an arbitrary

3https://docs.python.org/3/library/abc.html, accessed Huly 2020
4https://www.netdata.cloud/, accessed July 2020
5shorturl.at/owMN6, accessed July 2020

48

https://docs.python.org/3/library/abc.html
https://www.netdata.cloud/
shorturl.at/owMN6

4.3 Analysis

response to the requests. The VIM mock-up can cope with any number of services
that a MANO can handle. Unlike other similar tools such as VIM-EMU [39], it
replies immediately to all requests it receives from the MANO frameworks.

4.2.2.5 Data Fetcher

The data gathered by Netdata needs to be fetched and stored for further analysis.
To do so, the data fetcher has been implemented to constantly fetch the monitoring
data collected by the Netdata running in the MANO framework machine. This
data is then stored in a database that will be used by the data plotter described
next. The Data fetcher can be configured to fetch different metrics such as CPU
and memory usage. It also allows fetching the data related to a specific period of
time. Features provided in this microservice satisfies Req. 4.

4.2.2.6 Data Plotter

The final step in the benchmarking framework is to plot the results of the mea-
surement. To this end, the data plotter has been implemented. Results Plotter is
based on Python Matplotlib library6 and automatically plots the dataset stored in
the database. The results can be plotted in different types, which fulfils Req. 5.

4.3 Analysis

In this section, using experimental evaluation, I analyse scalability limitations of
MANO frameworks. First, I evaluate the software-based limitations to find an
acceptable load for a MANO framework, in terms of the number of requests per
minute. Then, I quantify the effect of topological distance between a MANO
framework and its NFVIs. With the later evaluation, I examine how much adding
new instances of MANO frameworks close to the VIM can improve the deployment
time and, consequently, agility of MANO frameworks in deploying new services.

4.3.1 Software-based Limitation Analysis

We analyse the software-based limitation of MANO frameworks to explore how
much load a MANO framework can handle. This study helps to find out on which
load level new MANO instances should be employed to fulfil a specific MANO per-
formance requirement (e.g., to support a specific number of deployment requests
or a specific deployment time for a service). Also, by evaluating individual com-
ponents of the MANO frameworks, we explore which components are bottlenecks
in the deployment of services.

We studied the performance of two MANO frameworks, namely Pishahang and
OSM. The metrics evaluated in this experiment are CPU and memory utilisation,
deployment time, and the number of lost requests. As for the parameter, we used

6https://matplotlib.org/, accessed July 2020

49

https://matplotlib.org/

4 Scalable and Agile Management and Orchestration of Network Services

Requests Per Minutes (RPM), which is the number of service deployment requests
sent to the MANO framework per minute.

We conducted the evaluation using the benchmarking framework. The test-bed
shown in Fig. 4.2 is used to perform the evaluation. This test-bed consists of four
virtual machines, each equipped with 16 CPU cores of Intel(R) Xeon(R) CPU
E5-2695 v3 @ 2.30GHz and 32 GB of RAM. On the Pre/post deployment VM,
we on-boarded the service descriptors to the MANO frameworks. The network
service that is used in the evaluation is a single-VNF service that is connected to a
virtual network. The VNF used in the service is a mock-up VM-based VNF that
is intended to run on OpenStack. During the evaluation, the request generator
creates deployment requests and sent them to the MANO frameworks according
to the RPM configured for each round of the experiment. For example, setting the
RPM to ten, the request generator sends ten service deployment requests to the
MANO framework in one minute. Then, the services will be deployed on the VIM
mock-up by the MANO frameworks. An actual OpenStack instance has not been
used for this evaluation because of two reasons: (i) it is not possible to provide
resources (e.g., compute resources) to deploy that many services in our test-bed
and (ii) we are not concerned with the VIM time in this evaluation as we want to
analyse the scalability of MANO frameworks only.

Pre/post Deployment
 + Abstraction

VIM
MOCK-UP

Figure 4.2: The test-bed setup used in software-based limitation analysis

Fig. 4.3 shows the average CPU and memory utilization of Pishahang and OSM
MANO fretworks over a range of RPMs. The results show different resource uti-
lization for the two MANO frameworks. For example, to support 300 RPM, Pisha-
hang utilizes about 6 % of CPU capacity, which means one CPU core would be
enough for Pishahang to handle 300 deployment requests initiated in one minute.
This number for OSM is more than 25 % which means OSM needs more than 4
CPU cores to handle 300 RPM. For the Memory usage, while we see a gradual
growth in Pishahang bars, OSM bars remain almost the same for all RPMs. While
Pishahang needs between 4 to 6 GiB of memory, OSM needs more than 10 GiB
for all different RPMs.

Other than resource utilization, we need to know the deployment time of services
at different RPMs. This helps to fulfil MANO service deployment time require-

50

4.3 Analysis

50 100 150 200 250 300
Requests per minute (RPM)

0

5

10

15

20

25

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
(%

) Pishahang
OSM

(a) The average CPU utilization

50 100 150 200 250 300
Requests per minute (RPM)

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 m
em

or
y

ut
ili

za
tio

n
(M

iB
)

Pishahang
OSM

(b) The average memory utilization

Figure 4.3: The average CPU and memory used by Pishahang and OSM MANO
frameworks over a range of RPM

ments that might be requested for a particular service. Fig. 4.4 shows the average
time spent in the MANO frameworks to deploy services on Pishahang and OSM
MANO frameworks over 50 to 300 RPMs. This result shows that, for example,
to keep the average deployment time under 200 seconds, no more than 150 RPMs
should be sent to the OSM MANO framework. We can also see that Pishahang
can support up to 200 RPM while keeping the average deployment time under
100 seconds. We also evaluated the number of lost requests over 50 to 300 RPMs,
which is shown in Fig. 4.5. This result shows we need to keep the RPM under 100
for OSM and under 200 for Pishahang to prevent any loss of deployment requests.

50 100 150 200 250 300
Requests per minute (RPM)

0

100

200

300

400

A
ve

ra
ge

 d
ep

lo
ym

en
t t

im
e

(s
) Pishahang

OSM

Figure 4.4: The average deployment time of services over a range of RPM

We also evaluated the CPU and memory utilisation of individual microservices
of OSM and Pishahang, shown in Fig. 4.6 and 4.7, respectively. These results will
help to understand which microservices consume the most resources and act as a

51

4 Scalable and Agile Management and Orchestration of Network Services

50 100 150 200 250 300
Requests per minute (RPM)

0

50

100

150

200

250

300

A
ve

ra
ge

 n
um

be
r o

f l
os

t r
eq

ue
st

s

Pishahang
OSM

Figure 4.5: The average number of lost service deployment requests over a range
of RPM

bottleneck in the service deployment process. For the OSM MANO framework,
MySQL and monitoring microservices are the top two CPU consumers, which in
total use more than 140 %. This means two CPU cores are used to handle these
tasks; one is fully utilised, and the other is 40 % utilised. As for memory, Kafka
(a message broker) consumes the most memory with about 1200 MiB. Looking at
the results of Pishahang, we can see that VIM-adaptor is on top for both CPU
and memory utilisation. Service lifecycle management, RabbitMQ (Pishahang’s
message broker), and OpenStack lifecycle management microservices follow the
VIM-adaptor in using CPU. For the memory usage, Keyclock (authentication
manager) and catalogue repository microservices are the second and third most
memory consumers in the Pishahang MANO framework.

0 20 40 60 80
Average CPU utilization(%)

User-interface
Policy-management

MongoDB
Prometheus-cadvisor

Kafka
Northbound-interface

Lifecycle-management
Resource-orchestration

Monitoring
MySQL

M
ic

ro
se

rv
ic

es

(a) The average CPU utilization

0 200 400 600 800 1000 1200
Average memory utilization (MiB)

Prometheus
Lifecycle-management

Prometheus-cadvisor
User-interface

MongoDB
Monitoring

MySQL
Zookeeper

Keystone
Kafka

M
ic

ro
se

rv
ic

es

(b) The average memory utilization

Figure 4.6: The average CPU and Memory utilization of OSM individual microser-
vices

52

4.3 Analysis

0 5 10 15 20
Average CPU utilization(%)

Northbound-interface
Kubernetes-lifecycle-management

Keycloak
Placement-plugin

Catalogue-repository
Postgres

OpenStack-lifecycle-management
RabbitMQ

Service-lifecycle-management
VIM-adaptor

M
ic

ro
se

rv
ic

es

(a) The average CPU utilization

0 200 400 600 800 1000 1200
Average memory utilization (MiB)

Placement-plugin
Kubernetes-lifecycle-management
OpenStack-lifecycle-management

Service-lifecycle-management
Postgres

Northbound-interface
RabbitMQ

Catalogue-repository
Keycloak

VIM-adaptor

M
ic

ro
se

rv
ic

es

(b) The average memory utilization

Figure 4.7: The average CPU and Memory utilization of Pishahang individual
microservices

4.3.2 Topological Distance Analysis

To analyse the impact of topological distance between MANO frameworks and
their NFVIs on the performance of a MANO framework, particularly on the de-
ployment time of services, we conducted an experimental evaluation using Amazon
Web Service (AWS) resources. The case study MANO framework for this eval-
uation is Pishahang as it allows distributing MANO framework instances over
different geographical locations and having a peer-to-peer or hierarchical manage-
ment over the MANO instances.

One of the components that enables such management of MANO instances in
Pishahang is the MANO wrapper that allows MANO instances to communicate
with each other. Regardless of what management approach – in the case of having
new instances – is taken (i.e., hierarchy or peer-to-peer), different instances need
to communicate with each other. This is needed for outsourcing service requests
to their child or peer instances and also to get some metadata about the services
(e.g., service health) running under child or peer MANO instances. In the case
of hierarchical management, MANOs need to communicate with child instances
through their southbound interfaces and, in the case of peer-to-peer management,
eastbound/westbound interfaces should handle such communication.

MANO wrapper supports both management approaches. In the case of hier-
archical management, MANO wrapper works as a southbound interface enabling
communication of parent MANO with child instances and, for the peer-to-peer
model, it works as eastbound/westbound interface enabling the communication of
a MANO with its peer MANOs.

Utilising the MANO wrapper, Pishahang framework can fully or partially out-
source the management and orchestration of services to their child or peer in-
stances. For example, a parent MANO can fully outsource the service manage-
ment by uploading the service package into the child instance. Having the service
package, the child MANO can, for example, start, stop, monitor, and scale the
service and its constituent VNFs. For partial management, the parent MANO
can outsource only the service or VNF descriptor to the child MANO and handle
start and stop of the service while monitoring and scaling are taken care of by the
child MANO.

For this evaluation, MANO wrapper is used next to the Kubernetes wrapper

53

4 Scalable and Agile Management and Orchestration of Network Services

which covers two cases: (i) deploying services directly into a Kubernetes cluster
and (ii) deploying services through a hierarchy of Pishahang instances into a Ku-
bernetes cluster.To generate deployment requests, the benchmarking framework is
used. As for VIM, we used Amazon Web Service (AWS) Elastic Kubernetes Ser-
vice (EKS) with a range of one to five worker nodes. The number of worker nodes
is dynamically adjusted by the number of VNF deployment requests. We used
AW“St3.medium” instances for the Kubernetes worker nodes and benchmarking
frameworks. Also, AWS “m5.4xlarg” instances are used to host Pishahang in-
stances. We also used two different AWS regions for this evaluation, namely the
US East (N. Virginia) and Asia Pacific (Sydney). Fig. 4.8 shows the test-bed we
set up for this evaluation. In this test-bed, we have two instances of Pishahang;
one is placed in Virginia and the other in Sydney. The Kubernetes cluster is also
placed in Virginia. There is another VM in the Sydney region that hosts the
MANO benchmarking for generating and forwarding service deployment requests.

Amazon EKS

Amazon EC2

EC2 EC2 EC2 EC2

Amazon EC2

Interactions in both
Scenarios

Interactions in Multiple
MANO Scenario

Virginia Region Sydney Region

Amazon EC2

MANO benchmarking framework
Pre/post deployment + Abstraction

Interactions in Single
MANO Scenario

Figure 4.8: The test-bed setup used for the topological distance analysis

The number of RPM is again used as a parameter and service deployment time
as a metric. The service deployment time has been evaluated in two scenarios as
follows.

• Single MANO instance: In this scenario, the Pishahang instance placed in

54

4.3 Analysis

Sydney directly communicates with the VIM placed in Virginia to deploy
the services.

• Multiple MANO instances: In this scenario, the Pishahang instance of Syd-
ney delegates some parts of the service deployment process to the Pishahang
instance of Virginia. The MANO instance in Virginia takes care of any re-
quired communication with the VIM, handles the workflow locally, and send
the result back to the Pishahang instance in Sydney.

The VNF used in this evaluation is a container-based VNF. This is because, as
opposed to VMs, containers are lightweight virtualization solutions which allow
us to test a higher number of VNFs with less cost in AWS.

During the deployment, after spinning up the containers/VMs, the VNFs needs
to be configured to make the service available. To make sure that the configuration
time is also included in our evaluation, we programmed the VNFs to expose an API
after deployment. This API will be called by the MANO framework to run a series
of VNF configuration scripts on the VNF container. Therefore, the deployment
time includes the time that is consumed by EKS to spin up the container, add a
load balancer to the VNF, and make the VNF API available for external accesses.
This workflow is the same for both scenarios.

Fig. 4.9 shows the deployment time of services over a range of RPMs for both
scenarios. The results show that using multiple instances of a MANO framework
can reduce the deployment time of services. The time saving also becomes higher
as the number of requests per minutes increases. At the highest RPM, the de-
ployment time can be reduced 5.69 times by using an instance of MANO close to
the VIM. This is a remarkable time saving which shows placing MANO instances
close to the VIM is a valid approach with remarkable benefit.

5 10 15 20
Requests per minute (RPM)

0

200

400

600

800

1000

1200

1400

1600

Da
pl

oy
m

en
t t

im
e

(s
)

Multiple MANO instances
Single MANO instance

Figure 4.9: The deployment time of services over a range of RPM

55

4 Scalable and Agile Management and Orchestration of Network Services

4.4 Related Work

There are some papers that have been published in the context of scalable MANO
frameworks and testing frameworks for MANOs. For example, Chen et al. [9]
proposed a scalable, Kubernetes-enabled NFV MANO architecture. The authors
leveraged Tacker as MANO framework and used OpenStack and Kubernetes as
VIMs. In their architecture, they have a master node in the VNF management
that monitors the CPU usage of the VNFs on OpenStack and Kubernetes domains
to identify when services should be scaled. This work is mostly focussed on how
to scale the services, not the MANO itself. Although it analyses the time required
to scale out or in a service, it does not analyse scaling the MANO framework.

Sahhaf et al. [43] proposed a scalable orchestration architecture of network
function chains. This work mostly focuses on the VNF placement problem and
provides service models and algorithms to support VNF placement at scale. The
proposed solution has been implemented in a closed source MANO called ES-
CAPE [48], which is not available for testing. Also, no evaluation has been per-
formed in the context of service deployment time and resource utilisation.

In another work, Abu-Lebdeh et al. [2] proposed a solution for minimising the
operational cost of running MANO framework without violating the performance
requirements. The proposed solution uses a hierarchical approach to distribute
the VNF management (one of the components of the MANO framework) across
different regions. An algorithm is proposed in this study to find the best place
for VNF management so that the operational cost will be reduced. This work
is mostly focused on optimising the cost and does not provide analysis of the
deployment time of services in large-scale MANO deployment scenarios.

Abu-lebadeh et al., in their other work [3], provided an integer linear program-
ming formulation of the problem of placing NFVO and VNFM in large-scale and
geo-distributed NFV infrastructure and proposed a two-step placement algorithm
to solve it. Using the solution, they analysed the effect of the number of NFVOs
on the communication delay between NFVO and VIMs and the number of VNFM
on the communication delay between NFVO and VNFM as well as VNFM and
VNFs. The solution provided in this work, however, is based on simulation and
does not use any of the current MANO frameworks. This, consequently, does
not quantify the benefit of using multiple instances of MANO frameworks in a
real-word setup.

As for the testing framework, Peuster et al. [40] implemented an emulation-
based testing framework that emulates OpenStack VIM and allows service to be
deployed and tested as containers. Using this emulation framework, the authors
analysed the deployment time of services that are deployed by different versions
of OSM MANO framework across multiple PoPs. Using this testing framework,
however, only the OSM MANO framework can be evaluated, and the performed
evaluation includes resource utilisation evaluation neither for overall MANO com-
ponents nor individual components of the MANO. In another work, Yilma et
al. [54] defined MANO-specific Key Performance Indicators (KPIs) from which
they compared OSM and ONAP MANO frameworks. Examples of the KPIs anal-
ysed in this work are the on-boarding process delay and the deployment process

56

4.5 Conclusion

delay. The evaluation in this work has been performed for a couple of services;
however, it lacks evaluation of MANOs at scale.

4.5 Conclusion

In this chapter, we evaluated two MANO frameworks in terms of software-based
scalability limitations. Also, we evaluated the effect of topological distance be-
tween a MANO framework and its NFVIs on the deployment time. The evaluation
has been conducted using an open-source benchmarking framework that has been
implemented in this study.

The results achieved in this work shows that, in general, OSM not only requires
more resources to deploy and manage services but also requires a longer time to
deploy services compared to Pishahang. Also, we realised that to prevent losing
requests, the number of deployment requests sent to OSM should be less than 100
per minute and less than 150 for Pishahang (i.e., for the configuration used in
the evaluation). These numbers can be used to decide under what load situation
these two MANO frameworks should be scaled out or in.

We also found out that, in OSM, MySQL, monitoring, and resource orchestra-
tion microservices use more CPU resource compared to the other microservices.
There is a different story, however, for memory usage as Kafka (the message bro-
ker) and Keystone (the authentication system) are the most memory consumers
microservices in OSM. In Pishahang, VIM-adaptor – the counterpart of resource
orchestration in OSM – along with service lifecycle management are the two most
CPU consumers. For the memory usage, Keyclock – the counterpart of keystone
in OSM – is one of the top two memory consumers. On the top, however, unlike in
OSM, VIM-adaptor also uses the most memory among Pishhang’s microservices.
These results are useful for solutions that scale out individual microservices, which
is superior to scaling out the entire MANO framework.

The topological distance analysis shows that using instances of MANO frame-
works close to the NFVIs where the services are running is a valid approach as it
can reduce the deployment time of services up to 5.69 times. This, consequently,
improves the agility of MANO frameworks in deploying new services.

57

5
Multi-domain Management and
Orchestration of Network Services

5.1 Introduction . 60

5.2 Pishahang . 61

5.2.1 Requirements . 61

5.2.2 Design and Implementation 62

5.3 Pishahang in 5G-PICTURE 67

5.3.1 5G Operating System 67

5.3.2 Pishahang in 5G Operating System 67

5.3.3 Pishahang in 5G-PICTURE Demonstration 69

5.4 Related Work . 71

5.5 Conclusion . 72

59

5 Multi-domain Management and Orchestration of Network Services

In this chapter, I describe my contribution to the realisation of management
and orchestration of services across multiple domains (i.e., a domain refers to an
Network Function Virtual Infrastructure (NFVI) managed by a specific Cloud
Management System (CMS)). This work has been done in the context of 5G-
PICTURE 1 project, which is an EU-founded project under Horizon 2020. The
results of this work have been demonstrated in 5G-PICTURE review meetings in
Jan. 2019 in Athens, Nov. 2019 in Barcelona, and March 2020 in Bristol. Two
demo papers, [21] and [25], have been published out of this work in NetSoft 2018
and DEBS 2019, respectively, as well as a regular paper [8] in NetSoft 2020. Parts
of the implementation that will be described in this chapter have been done by
Tobias Dietrich [10] and Dennis Meier [33] in the context of bachelor theses under
my supervision. The project group ENTANGLE2 also contributed to this work
under my supervision.

5.1 Introduction

Network Function Virtualization (NFV) infrastructures consist of heterogeneous
resources that are used for different purposes. For example, utilising acceler-
ation resources such as Graphics Processing Unit (GPU)s or Field Field Pro-
grammable Gate Array (FPGA)s is proposed to improve the performance of
Virtualized Network Function (VNF)s [36]. Also, different virtualisation environ-
ments are suggested to host VNFs. For example, it is recommended to use Virtual
Machine (VM)s when security is essential and Container (CN)s when performance
and deployment agility is in a higher priority [45]. Therefore, it is crucial for a
Management and Orchestration (MANO) framework to support heterogeneous
resources.

In the NFV orchestrator, CMSs such as OpenStack and Kubernetes are used
as Virtualized Infrastructure Manager (VIM)s. In a single-domain (i.e., a domain
here refers to a cluster of resources that is managed by a specific CMS) MANO
framework, the MANO is limited to a particular type of resources that are sup-
ported by its CMS. For example, using OpenStack limits the system to VMs that
can run on General Purpose Processor (GPP)s and GPUs (i.e., GPUs are not fully
supported), and no other resources can be supported. In another example, using
Kubernetes, resources such as containers, GPPs, GPUs can be supported, but it
is not possible to run VMs and deploy VNFs on FPGAs. Public cloud solutions
such as Amazon Web Service (AWS) can provide most of the resources mentioned
above – including FPGAs – however, begin closed-source, AWS is not suitable for
managing in-house resources.

To solve this issue, I propose leveraging multiple domains in the MANO frame-
work. Utilising multiple domains allows a MANO framework to support a wider
range of resources. For example, leveraging Kubernetes, OpenStack, and AWS in
a MANO framework allows to support VMs, CNs, GPPs, GPUs, and FPGAs.

1https://www.5g-picture-project.eu/, accessed June 2020
2https://bit.ly/3jSI34q, accessed July 2020

60

https://www.5g-picture-project.eu/
https://bit.ly/3jSI34q

5.2 Pishahang

To realise this idea, we implemented a MANO framework called Pishahang. It
supports a wide range of heterogeneous resources by leveraging multiple CMSs
as VIMs. Pishahang can deploy services across different domains and provides
inter-domain service chaining. Pishahang is used as the main orchestrator in
the 5G-PICTURE project. 5G-PICTURE is an EU-founded project aiming at
converging disaggregated network and compute resources.

The remainder of this chapter is as follows. In Section 5.2, first, the requirements
of a multi-domain orchestrator are defined, and then, the design and implementa-
tion of Pishahang are described. In Section 5.3, I describe how Pishahang has been
used in the 5G-PICTURE project and explain the evaluation results. Section 5.4
reviews the related work and Section 5.5 concludes the chapter.

5.2 Pishahang

In this section, I describe how the management and orchestration of services across
multiple clouds and Software-Defined Network (SDN) domains are supported by
Pishahang. To this end, first, I describe the requirements of such a system and
then discuss the design and implementation of the solution.

5.2.1 Requirements

As mention in Section 5.1, this work is mostly focused on supporting heterogeneous
resources by a multi-domain orchestrator. Having that as the main objective, I
have defined the following requirements.

• Req. 1: The system should support multiple compute resources such as
GPP, GPU, and FPGA.

While acceleration resources such as GPUs and FPGAs can improve the
performance of VNFs [36], GPPs are more cost-efficient. Being able to
choose from these resources, we can optimise the cost and performance of
the VNFs.

• Req. 2: The system must support VM-based and CN-based domains.

Although containers are better solutions than VMs in terms of performance
and deployment agility, VMs provide more secure environments [29]. There-
fore, to utilise the benefits of both virtualisation solutions in a system, both
VM- and CN-based solutions must be supported.

• Req. 3: The system must enable usage of resources from different domains
in the same service.

This is an important requirement as, without such support, the system will
still be limited to one domain and unable to deploy services over heteroge-
neous resources.

61

5 Multi-domain Management and Orchestration of Network Services

• Req. 4: The system must provide chaining across different domains.

In such multi-domain infrastructures, as the VNFs are distributed across
different domains, the system is required to provide not just intra-domain
(i.e., usually provided by domain manger) but also inter-domain chaining.

• Req. 5: The system must be able to support running containers on bare
metal [20] via its VIMs. Running containers on bare metal gives a better
performance compared to running them on virtual machines (i.e., all public
clouds such as AWS and Google Cloud Platform (GCP) run their Kubernetes
cluster and containers on virtual machines).

5.2.2 Design and Implementation

I have tried to use existing solutions where it was possible to design the Pishahang
framework. This avoids reinventing the wheel and also accelerates implementa-
tion. To this end, I based Pishahang on the SONATA MANO framework intro-
duced in Chapter 3. SONATA has been selected as the base MANO framework
over its competitors (e.g., Open Source MANO (OSM)) mainly because of two
reasons: (i) SONATA follows a microservice-based architecture that allows new
functionalities to be added simply by creating and integrating a new microservice
(i.e., this makes extending the MANO system much easier) and (ii) it also allows
network services to bring their own orchestration code along with other service
artefacts by the concept of Service-Specific Management (i.e., introduced in Chap-
ter 3), which increases the flexibility of the MANO framework to meet the service
requirements that are not natively supported.

To support the container orchestration, I opted to use Kubernetes over its ma-
jor competitor Docker Swarm. I chose Kubernetes as it provides an easy service
organisation with pods, it is open-sourced and modular, and most importantly,
it is battle-tested as it has been used in production environments already for
some years. Kubernetes is used as a VIM in the Pishahang MANO framework.
Pishahang is also designed to use Kubernetes clusters that are based on both
bare metal and virtual machines. In other words, Pishahnag can work with Ku-
bernetes clusters running on a public cloud such as AWS and GCP and also
Kubernetes clusters that run on bare-metal, in-house resources. To run Kuber-
netes on bare metal, Pishahang leverages third-party solutions such as Weave3 to
provide networking for Kubernetes cluster and Metallb4 to provide load balancer
for Kubernetes services.

For the VM orchestration, OpenStack is used as VIM in Pishahang. The major
competitor of OpenStack is VMware. OpenStack has been chosen, mainly, because
it is open-source and can be extended or modified as needed. While everything is
free for OpenStack, VMware has a license and maintenance fee. Both OpenStack
and Kubernetes support managing GPPs and to some extend GPUs. However,
none of them supports the management of FPGAs. To support FPGAs, Pishahang

3https://www.weave.works/oss/net/, accessed July 2020
4https://metallb.universe.tf/, accessed July 2020

62

https://www.weave.works/oss/net/
https://metallb.universe.tf/

5.2 Pishahang

uses AWS as a VIM. AWS F1 service provides FPGA as a service which allows
running VNFs on FPGA resources.

Although currently, Pishahang supports these three cloud domains, the frame-
work is designed to be easily extendable. This is realised using Terraform, which
provides infrastructure as code and supports all major cloud management tools.
More detail on this comes in Section 5.2.2.2.

Fig. 5.1 shows the Pishahang architecture with its main components. As men-
tioned earlier, it has been built on top of SONATA. Service Lifecycle Management,
Placement Plugin, Message broker, and repositories are the SONATA compo-
nents that have been extended, and the rest of the components are built en-
tirely for Pishahang (i.e., SONATA’s base libraries have been used to imple-
ment Pishahang’s plugins). Like any other NFV orchestrator, Pishahang uses
descriptors to specify service and VNF-specific requirements. Pishahang descrip-
tors are the extended version of SONATA descriptors (discussed in detail in Sec-
tions 5.2.2.1). OpenStack Lifecycle Management (OLM), Kubernetes Lifecycle
Management (KLM), and AWS Lifecycle Management (ALM) have been imple-
mented in Pishahang to manage the lifecycle of VNFs that run in OpenStack,
Kubernetes, and AWS, respectively. They are responsible for tasks such as instan-
tiation, starting, stopping and termination of VNFs running on their respective
domains. The workflow of these plugins can also be customised using the Specific
Management that has been introduced in Chapter 3. Service Function Chaining
Management (SFCM) is responsible for providing inter-domain service chaining,
explained in detail in Section 5.2.2.3. To provide the multi-domain orchestration,
I have redesigned the SONATA Infrastructure Adaptor (IA). IA in SONATA only
supports OpenStack, and it uses Heat templates to deploy services, which is not
a good solution for multi-domain orchestration – more detail on this comes in
Section 5.2.2.2. In the following, I discuss implementation details of Pishahang’s
major components.

5.2.2.1 Service Descriptors

There are two levels of descriptors, namely service and VNF descriptors – shown
in Fig. 5.2. The service descriptors allow describing the service requirements as
a whole. In the service descriptor, we can, for example, describe what VNFs are
included in the services, to which cloud domain (OpenStack, Kubernetes, AWS)
the VNFs belong to, and how the VNFs should be chained. On the VNF levels,
VNF-specific requirements are described. Examples are type, image, and Virtual
Deployment Unit (VDU)s. In Pishahang, there are three types of VNF descriptors:
(i) OpenStack descriptor, (ii) Kubernetes descriptor, and (iii) AWS descriptor. As
VNFs running in different cloud domains have different requirements, we designed
different schema for them. An example of such domain-specific requirements is
the service type in Kubernetes-based VNFs. The services in Kubernetes can be
described as ClusterIP, NodePort, and LoadBalancer. This is a requirement that
does not exist in other domains.

63

5 Multi-domain Management and Orchestration of Network Services

M
es
sa
ge
	B
ro
ke
r

Service	Lifecycle	Management	(SLM)

OpenStack	
Lifecycle

Management	(OLM)

Placement	Management	(PLM)

M
on
ito
rin
g

Se
rv
ic
es

VN
Fs

Gate	Keeper	(GK)

R
ep
os
it
or
ie
sKubernetes	

Lifecycle
Management	(KLM)

AWS	
Lifecycle

Management	(ALM)

Service
	Function	Chaining	
Manager	(SFCM)

Graphical	User	Interface	(GUI)

											Infrastructure	Adaptor	(IA)

Figure 5.1: The high-level architecture of Pishahang

Service Descriptor

Kubernetes
Descriptor

OpenStack
Descriptor

AWS
DescriptorKubernetes

DescriptorKubernetes
Descriptor

OpenStack
DescriptorOpenStack

Descriptor

AWS
DescriptorAWS

Descriptor

Figure 5.2: The descriptor model in Pishahang

5.2.2.2 Infrastructure Adaptor

IA is the key plugin in Pishahang for creating complex infrastructures to run
Pishahang’s services. Complex infrastructure here means a group of resources
unified from different compute domains to run a service. For example, consider a
service composed of a VM-, a CN- and an FPGA-based VNF. For such a service,
we need a VM from OpenStack to run the VM-based VNF, a Pod from Kubernetes
to run the CN-based VNF, and an AWS F1 to run the FPGA-based VNF. Such a
group of resources, which I call complex infrastructure, is created by the IA plugin
in Pishahang.

There are multiple options for creating such complex infrastructures. For exam-

64

5.2 Pishahang

ple, Heat5, the OpenStack plugin for service orchestration, allows infrastructures
to be described in code. In OpenStack Heat, infrastructures can be described us-
ing YAML Ain’t Markup Language (YAML)-based Heat templates. The problem
with a Heat template is that it is specific to the OpenStack domain and cannot
be used to create infrastructure in other domains. The counterpart of Heat in
AWS is CloudFormation, which works the same as Heat but is specific to AWS
and cannot be used for other domains. For the Kubernetes domain, Kubernetes
Manifest can be used to describe the resources needed to run an application. Like
OpenStack Heat and AWS CloudFormation, Kubernetes manifest is also specific
to a single domain.

One solution here would be to integrate Heat, Manifest, and CloudForma-
tion into an IA and manage each domain separately. Employing this solution,
three plugins need to be implemented to translate service descriptors to heat
and CloudFormtation templates and Kubernetes manifest. The state of the cre-
ated resources/infrastructure then needs to be managed by each plugin separately.
However, in Pishahahng, a better solution, called Terraform6, has been used. Ter-
raform allows infrastructure to be described as code in a Terraform template. It
supports all compute domains and also has a built-in state management solution.
In Terraform, infrastructures are created in three stages, namely init, plan, and
apply. In the init stage, a workspace is created and then configured using the
information provided in the template (e.g., Terraform providers, credential). In
the plan stage, an execution plan is prompted that shows what changes will be
made on the infrastructure (e.g., what resources are created, deleted, or updated)
compared to the last state. Finally, at the apply stage, changes specified in the
Terraform templates will be applied to the actual infrastructure.

We integrated Terraform into IA. IA translates service descriptors to Terraform
templates, which then will be used by Terraform to create the infrastructure. IA
creates two levels of Terraform templates, namely complex infrastructure and
domain levels. The complex infrastructure template consists of information about
the constituent domains. For example, it specifies Terraform providers (AWS,
OpenStack, Kubernetes), hostname/IP addresses of the domains, and credentials
to access domain’s Application Programming Interface (API)s (i.e., credentials
can also be retrieved from secret management tools such as Vault7). Fig. 5.3
shows an example of a complex infrastructure template. The domain template,
however, has three types of templates, one each for OpenStack, Kubernetes, and
AWS. They are used to describe the resources that are needed to run VNFs in a
specific domain. To some extent, the domain template is the translation of VNF
descriptors to Terraform templates. The main difference is that VNF descriptors
describe the specification of only one VNF in a domain, but domain templates
describe the requirements of all VNFs of a domain.

5https://wiki.openstack.org/wiki/Heat, accessed July 2020
6https://www.terraform.io/, accessed July 2020
7https://www.vaultproject.io/, accessed July 2020

65

https://wiki.openstack.org/wiki/Heat
https://www.terraform.io/
https://www.vaultproject.io/

5 Multi-domain Management and Orchestration of Network Services

Figure 5.3: An example of complex infrastructure template

5.2.2.3 Cross-domain Service Chaining

Now that the deployment of services across different compute domains is provided,
we need to chain these VNFs. To support such chaining, I extended the Pisha-
hang MANO framework with a new plugin called SFCM. SFCM plugin works
as an adaptor and enables the communication between the Pishahang MANO
framework and the SDN controller. It translates forwarding graphs, described in
the Network Service Descriptor (NSD), to a sequence of MAC/IP addresses and
forwards it to the SDN controller along with a Virtual LAN (VLAN) id. The
VLAN id is used to classify the flows belonging to a forwarding path.

To create the sequence, SFCM plugin, first extracts the VNF Connection Point
(CP)s, that should be included in the inter-domain chain, from the NSD. Then, it
retrieves the MAC/IP addresses of these CPs from their corresponding VIMs. The
SFCM plugin retrieves the MAC and IP addresses after the successful deployment
of the VNFs. On the OpenStack domain, the SDN plugin retrieves the floating
IP address associated with the VNF and, on the AWS domain, the public IP
address of the VNF is retrieved. On the Kubernetes domain, however, it is more
complicated as Kubernetes does not provide a fixed IP address for Pods. The
IP addresses of Pods change when pods get restarted, for example, due to a
failure. To solve this issue, MetalLB8 is used in the Kubernetes cluster. MetalLB
is a Google project that provides a network load balancer implementation for
bare-metal clusters. Its services (like address allocation) allow providing fixed
IP addresses for Pods. IP addresses allocated by MetalLB can also be accessed

8https://metallb.universe.tf/, accessed June 24, 2020

66

https://metallb.universe.tf/

5.3 Pishahang in 5G-PICTURE

externally. This completes the last puzzle in chaining VNFs across these three
domains. SFCM plugin retrieves the IP and MAC addresses allocated by MetalLb
to the VNFs in Kubernetes domains. The MAC/IP sequence is, then, created
based on the sequence specified the forwarding path. Finally, SFCM generates a
unique id which will be assigned to the path by the SDN controller as VLAN id.

As for the SDN controller, in Pishahang, we use Ryu9 because of its simplic-
ity. The Ryu controller is responsible for translating the MAC/IP sequence to
forwarding rules and installing them on OpenFlow switches. The SDN controller
creates two types of forwarding rules, classifier and forwarder. The classifier rules
embed a VLAN tag to the packets and then forward them to the next hop. The
forwarder rules, however, only forward the packets. Forwarding the packets is
based the MAC/IP, ingress port number and the VLAN id.

5.3 Pishahang in 5G-PICTURE

Pishahang has been widely used in the 5G-PICTURE10 project for different pur-
poses. In this section, I describe how Pishahang is used in the context of the
5G-PICTURE project and for what purposes.

5.3.1 5G Operating System

One of the main goals of the 5G-PICTURE project was to design and implement
a 5G Operating System (OS) [12]. 5G OS works as an umbrella over differ-
ent management frameworks of 5G resources. It covers functionalities such as
NFV orchestrators, SDN controllers, End To End (E2E) slice management, Busi-
ness Support System (BSS), and Operations Support Systems (OSS). Integrating
these functionalities, 5G OS aims at automating the deployment and lifecycle
management of 5G services that run over a multi-domain, heterogeneous 5G in-
frastructure. To this end, the 5G OS architecture, shown in Fig. 5.4, has been
designed; it consists of boxes representing different functionalities provided by the
5G OS and the high-level interfaces among them. In this context, Pishahang has
been used as an NFV MANO that manages and orchestrates VM- and CN-based
VNFs.

5.3.2 Pishahang in 5G Operating System

5G OS has been validated and evaluated in the project, leveraging a test-bed
spread across Germany, Spain, Greece, and the UK. The high-level architecture
of the test-bed is shown in Fig. 5.5. It consists of multiple technological domains,
namely compute, Radio Access Network (RAN), and transport network domains.
All these domains are managed by a centralised management entity called Multi
Domain Orchestrator (MDO) that has been implemented in the 5G-PICTURE
project. Each domain, then, uses different tools to manage the resources. For

9https://ryu-sdn.org/, accessed July 2020
10https://www.5g-picture-project.eu/, accessed June 17, 2020

67

https://ryu-sdn.org/
https://www.5g-picture-project.eu/

5 Multi-domain Management and Orchestration of Network Services

5G OS

DomainDomainDomain

VNFVNFMulti-Domain Orchestrator

Service
Management

VNFVNFDomain Orchestrator

VNFVNF
Domain

Controller

Service Portal

Domain Resources

OSS/BSS

1

23
4

5

7

11

9

10 12

6 8

13

VNFVNF
NFV

MANO

Figure 5.4: The high-level architecture of 5G Operating System [12]

example, the domain at Paderborn University (UPB) has been used as a core
network for Wireless Fidelity (WiFi) and Long Term Evolution (LTE). The UPB
domain employs Pishahang to manage services over compute resources. In this
section, I only describe the UPB domain, where Pishahang has been evaluated
and validated. The results of this work have been published in NetSoft 2020 [8].
The paper includes a full description of the conducted evaluation.

In the evaluation, the service provisioning time has been taken as a metric and
two services, namely LTE and WiFi, have been used as case studies. For the
LTE service, a virtual OpenAirInterface (OAI) is deployed on the core network
managed by Pishahang. The virtual OAI is a VM-based VNF that runs on an
OpenStack cluster. For the WiFi service, however, a Dynamic Host Configuration
Protocol (DHCP) server is deployed on the core network using Pishahang. The
DHCP server is a container-based VNF that runs on Kubernetes cluster.

The Pishahang cluster shown in Fig. 5.6 consists of two compute nodes and a
VM. The VM is used to run the Pishahang orchestrator and equipped with 16
CPU cores of Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz and 32 GB of RAM.
The single-node-cluster Kubernetes is provided in a workstation equipped with
eight cores of Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz, 16 GB of RAM. The
OpenStack cluster also includes a single node, which is a workstation equipped
with 20 cores of Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz and 64 GB of RAM.

Fig. 5.7a and 5.7b shows the Cumulative Distribution Function (CDF) of virtual
OAI and DHCP server provisioning time, respectively. As we can see in the figures,
the virtual OAI requires up to 2 minutes to prevision. On the other hand, the
DHCP server can be provisioned in less than 5 seconds. This is as expected
because the OAI is based on a virtual machine that is slow to provision compared
to the container that is used to run the DHCP server.

68

5.3 Pishahang in 5G-PICTURE

Figure 5.5: The high-level architecture of the test-bed used for 5G OS validation
and evaluation [8]

Figure 5.6: The test-bed facilities used for evaluation of 5G Operating System

5.3.3 Pishahang in 5G-PICTURE Demonstration

Pishahang has also been used in the 5G-PICTURE final demonstration. The
aim of the demonstration was to show the capability of the 5G OS in managing
network slices and deploying connectivity services dynamically over a stadium
infrastructure. This has been shown by creating two network slices: (i) low-
priority slice to be used as a baseline and (ii) high-priority slice to be used by
spectators to share videos during a match in the stadium. In this context, I have

69

5 Multi-domain Management and Orchestration of Network Services

70 80 90 100 110
Provisioning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Provisioning time of the VM-based
virtual OAI)

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
Provisioning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Provisioning time of the CN-based
DHCP server

Figure 5.7: The provisioning time of LTE and WiFi services deployed by Pisha-
hang

implemented a network service that can detect the need to handover between
different slices to improve the Quality of Experience (QoE). This network service
runs on the edge compute resources (i.e., located at the stadium), which are
managed by Pishahang. Like Section 5.3.2, this section also focuses on the part
of the demonstration that Pishahang has been leveraged. In the following, I
describe the network service that has been implemented for this demonstration
and the evaluation results.

5.3.3.1 Network Service

Fig. 5.8 shows the architecture of the network service. It follows the microservice-
based architecture and consists of four microservices: (i) packet sniffer to inspect
the traffic, (ii) database to store the extracted data from traffic for further anal-
ysis, (iii) endpoint that allows accessing the data stored in the database, and
(iv) message broker that allows microservices to exchange messages with one an-
other.

As mentioned before, this network service allows 5G OS to detect the need to
switch to the high-priority slice. This is done by inspecting the incoming traffic,
identifying the Watchity11 application (i.e., the application is used to share videos)
traffic, extracting the IP and MAC addresses of these flows and storing them along
with a timestamp in a database. The IP and MAC are then used to identify which
user should be given the higher-priority slice to improve QoE. The microservices
are realised on containers and run under the Kubernetes cluster. Pishahang on
top of Kubernetes manages the lifecycle of this network service.

11https://www.watchity.com/, accessed June 23, 2020

70

https://www.watchity.com/

5.4 Related Work

Message Broker

DataBase

Packet Sniffer Endpoints

Figure 5.8: The high-level architecture of the network service

5.3.3.2 Evaluation Results

The provisioning and termination time of the network are measured and are shown
in Fig. 5.9. As shown in the figure, the provisioning time of 4 microservices
involved in this service takes less than 6 seconds. Also, to terminate this service,
Pishahang requires less than 5 seconds.

5.0 5.2 5.4 5.6 5.8
Provisioning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Provisioning time

4.62 4.63 4.64 4.65 4.66 4.67 4.68
Termination time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Termination time

Figure 5.9: The provisioning and termination time of CN-based services deployed
by Pishahang

5.4 Related Work

The European Telecommunication Standards Institute (ETSI) NFV Group has
proposed a specification of the NFV MANO framework to manage the lifecycle
of VNFs and orchestrate network services. Based on these specifications, MANO
frameworks such as OSM and SONATA have been developed. Irrespective of all
their pros and cons, none of them can manage or orchestrate the wide range of

71

5 Multi-domain Management and Orchestration of Network Services

resources that are supported by Pishahang. In the following, we mention some of
these MANO frameworks and discuss their capabilities to manage heterogeneous
resources.

OSM12, an NFV MANO framework, supports separate infrastructure adaptors
for OpenVIM, OpenStack, VMware vCloud, AWS, and Kubernetes. The infras-
tructure adaptors use these platforms’ APIs to provision and manage services. It
uses infrastructure-platform-independent descriptors to describe service require-
ments. Although OSM supports multiple CMSs, it does not support the deploy-
ment of services across multiple domains. Moreover, OSM AWS adaptor does not
support AWS F1 services, which provide FPGA as a service.

Cloudify13, a native cloud management system, utilises ARIA14 to orchestrate
VNFs and provides a plugin that allows operators to deploy services on an existing
Kubernetes cluster. It also supports the orchestration of VM- and CN-based VNFs
by allowing service developers to use multiple infrastructure provider plugins per
service definition (so-called blueprints). However, it is not possible to chain VNFs
across different domains. Moreover, Cloudify’s blueprints depend on the specific
infrastructure platform (AWS, Azure, etc.), thus forcing developers to re-write
their service blueprints when switching infrastructure platforms.

SONATA15 supports Kubernetes in its latest version. However, like OSM,
SONATA does not support the orchestration of services across different domains.
SONATA is also limited to OpenStack and Kubernetes and does not support any
other CMSs.

Open Network Automation Platform (ONAP)16 is another MANO framework
that supports a wide range of CMSs and also chaining across different domains.
However, ONAP does not support AWS F1 service, missing the support for
FPGAs.

Pishahang is superior to all aforementioned MANO frameworks in term of sup-
porting heterogeneous resources as it supports the largest variety of resources.

5.5 Conclusion

In this chapter, supporting heterogeneous resources using an NFV MANO frame-
work has been addressed. To this end, Pishahang MANO framework has been
implemented, which orchestrates services across domains that are managed by
different CMSs. Having multiple domains as such allows supporting a wide range
of heterogeneous resources.

Pishahang creates logical complex infrastructures out of the underlying do-
mains. Complex infrastructures are composed of heterogeneous resources from
different domains which can be used to host services that need to run on heteroge-
neous resources. The complex infrastructures are realised by employing Terraform

12https://osm.etsi.org/, accessed July 2020
13https://cloudify.co/, accessed July 2020
14https://ariatosca.incubator.apache.org/, accessed July 2020
15https://www.sonata-nfv.eu/,accessedJuly2020
16https://www.onap.org/, accessed July 2020

72

https://osm.etsi.org/
https://cloudify.co/
https://ariatosca.incubator.apache.org/
https://www.sonata-nfv.eu/, accessed July 2020
https://www.onap.org/

5.5 Conclusion

as VIM adaptor. Terraform supports a long list of CMSs17 which also significantly
simplifies the integration of new domains into Pishahang.

Pishahang also chains VNFs across different domains. Intra-domain chaining,
however, is still not fully supported, specifically for Kubernetes and AWS domains.
This is basically because these two domains do not provide production-ready so-
lutions for service chaining.

Pishahang has been validated and tested in the 5G-PICTURE project. Using
Pishahang, we deployed VM- and CN-based services across different domains on
clusters equipped with GPPs and GPUs. Pishahang has also been benchmarked in
5G-PICTURE and the provisioning time of different services have been presented
in this chapter.

17https://www.terraform.io/docs/providers/index.html, accessed July 2020

73

https://www.terraform.io/docs/providers/index.html

6
Dynamic Management and
Orchestration of Network Services

6.1 Introduction . 76

6.2 Multi-version Services 77

6.2.1 Multi-Version Network Function (MVNF) 77

6.2.2 Multi-Version Network Service (MVNS) 78

6.3 Multi-version Services Analysis 79

6.3.1 Performance Analysis 79

6.3.2 Cost Analysis . 82

6.4 Multi-version Services Orchestration 84

6.4.1 Requirements . 84

6.4.2 Design and Implementation 85

6.4.3 Evaluation . 87

6.5 Related Work . 92

6.6 Conclusion . 93

75

6 Dynamic Management and Orchestration of Network Services

This chapter is about dynamically managing and orchestrating network services
over heterogeneous resources. This work has been done in the context of 5G-
PICTURE1 project. The results of this work have been demonstrated in 5G-
PICTURE review meetings in Nov. 2019 in Barcelona. Two regular papers, [24]
and [26], have been published out of this work in CNSM 2019 and EuCNC 2020,
respectively.

6.1 Introduction

Network Function Virtualization (NFV) services have a variety of requirements
that can change during the lifecycle of services. These requirements can be, for
example, different data rates, latencies, and cost. To meet these requirements, var-
ious hardware resources or software structures have been suggested [36] [16] [35].
As usual, there are trade-offs between different hardware resources or software
structures to realise a service, and there is no one single solution that can meet all
requirements and optimise all metrics. For example, to improve the performance
of compute- and network-intensive Network Function (NF)s, using acceleration
hardware such as Graphics Processing Unit (GPU) or Field Programmable Gate
Array (FPGA) is proposed [50] [36]. Nevertheless, as acceleration hardware is
expensive, they increase the cost of services; this might not be desirable for a par-
ticular service user or a load level that can be handled by cheaper resources. This
problem can be solved by dynamically provisioning network services: we switch
to a different service implementation on the fly as service requirements change.
This can provide service performance most suitable to the given requirements.
For example, consider two versions of a Deep Packet Inspection (DPI) NF: v1 is
a CPU-based, v2 an FPGA-based implementation. On the one hand, deploying
v1 would perform well and be cheap when the input data rate is low, but it would
not perform well for high data rates. On the other hand, v2 performs better at
high data rate but is too expensive at low data rates [36]. To decide between these
two DPI versions, a service package consisting of both versions can be used that
allows us to deploy the right version and then switch between them on the fly as
the input data rate changes. This type of services is called multi-version services,
a concept that is proposed in [11]. While the idea looks appealing in theory, an
experimental evaluation of such a service provisioning approach is still missing.

In this chapter, I describe my contribution to the dynamic provisioning of net-
work services that are realised on heterogeneous resources based on different re-
quirements. To this end, first, I classify multi-version services based on types of
resources (i.e., compute and virtualisation resources) and management levels (i.e.,
function and service levels). Then, I quantify the trade-off between cost and per-
formance of an example multi-version service. I used a virtual Transcoder (vTC)
as a case study and implemented a Commercial Off-The-Shelf (COTS)-based and
a GPU-assisted virtual transcoder. I evaluated these vTC versions by metrics such
as resource utilisation and processing time. Based on this evaluation, I analysed

1https://www.5g-picture-project.eu/, accessed June 2020

76

https://www.5g-picture-project.eu/

6.2 Multi-version Services

the cost of vTCs running on cloud-based COTS and acceleration resources. I, fur-
ther, extended Pishahang Management and Orchestration (MANO) framework
(introduced in Chapter 5) to support the orchestration of multi-version services.
Using Pishahang, I then evaluated the management overhead of dynamic service
deployment.

The remainder of this chapter is structured as follows. In Section 6.2, I elaborate
on the concept of multi-version services. In Section 6.3, I present an analysis of
multi-version services in terms of performance and cost. An orchestration solution
for multi-version services is described and evaluated in section 6.4. Section 6.5
highlights the related work and Section 6.6 concludes the chapter.

6.2 Multi-version Services

For dynamic, situation-based provisioning of Virtualized Network Function (VNF)s
over heterogeneous resources, VNFs need to be provided in different versions. This
is because, for example, a VNF implemented to run on a GPU cannot be used to
run on an FPGA. Versioning can be provided on two levels: (1) on the level of in-
dividual VNFs, which I call Multi-version Network Function (MVNF)s and (2) on
the level of network services, which I call Multi-version Network Service (MVNS)s.
In multi-version VNFs, each version is an implementation of a VNF for specific
hardware (e.g., GPU, FPGA) or virtualization environment (e.g., Virtual Ma-
chine (VM), Container (CN)). In the multi-version services, each version includes
a specific combination of VNFs that run on heterogeneous resources. I elaborate
on these two levels of versioning in the following.

6.2.1 Multi-Version Network Function (MVNF)

MVNF is a function package consisting of multiple implementation versions of a
network function. As illustrated in Fig. 6.1, MVNFs can be categorised into two
types: (1) MVNFs with different virtualization techniques, and (2) MVNFs with
different hardware implementations. Below, I explain each of these types in detail.

Hardware implementations

Virtualization techniques

VM-based CN-based

COTS GPU-assisted FPGA-assisted

Figure 6.1: Different types of multi-version network functions (MVNFs)

77

6 Dynamic Management and Orchestration of Network Services

6.2.1.1 MVNFs Available for Multiple Virtualization Techniques

MVNF implementations can be categorised based on virtualisation techniques.
As mentioned in Chapter 5, there are two main virtualisation techniques, namely
VM and CN. While VMs provide better isolation and security, CNs provide bet-
ter resources utilisation (i.e., consequently cheaper technology) and higher agility
[6][17]. To balance these requirements (e.g., security and cost), VNFs can be pro-
vided in CN- and VM-based versions. This allows to alternate them on the fly as
requirements change.

6.2.1.2 MVNFs with Multiple Hardware Implementations

As mentioned before, when it comes to using acceleration resource (e.g., GPU,
FPGA), we need to consider the trade-off between cost and performance. This
is because acceleration hardware can increase the cost in some scenarios without
improving the performance (i.e., this claim is evaluated in Section 6.3 for an
example VNF). To balance between the cost and performance of MVNFs, we can
provide them with multiple hardware implementations. This enables us to switch
between different versions on the fly according to service requirements.

6.2.2 Multi-Version Network Service (MVNS)

MVNS is a network service that consists of multiple deployment versions of a
network service chain. Each deployment version can have different VNF types.
As an example, shown in Fig. 6.2, a chain consisting of DPI, Firewall, and
Network Address Translation (NAT) VNFs is used in the data centre between the
data centre router and the servers to provide value-added services [30]. This chain
can be offered in multiple versions to provide different levels of performance, cost
and security. All the three VNFs involved in this chain can be versioned based on
hardware implementation (i.e., FPGA and COTS) and virtualisation technique
(i.e., VM and CN). This gives us at least four versions that can be alternate
depending on service requirements. For example, we can deploy version 1 when
we want the service to be cheap and secure. Version 2 can be used when we want
the service to be cheap and performant. Version 3 can be used when the service is
required to be performant and secure. Finally, version 4 can be deployed when the
service needs to be performant and can tolerate a lower level of security compared
to version 3 to be agile and cheaper.

78

6.3 Multi-version Services Analysis

VM-based COTSVM-based COTS VM-based COTS

CN-based COTSCN-based COTS CN-based COTS

VM-based FPGAVM-based FPGA VM-based FPGA

CN-based FPGACN-based FPGA CN-based FPGA

MVNF: DPI MVNF: NATMVNF: FW

MVNS: v1

MVNS: v2

MVNS: v3

MVNS: v4

Figure 6.2: An example of multi-version network services (MVNSs)

6.3 Multi-version Services Analysis

The use of multi-version services will be beneficial if there are trade-offs between
using different versions of a service. Without such trade-offs, there would not be
any need to have multiple versions of a service, but simply scaling a single version
of service up and down would be all that is needed for optimal performance. To
find out if there are such trade-offs, I have conducted an experimental evaluation
and quantified the cost and performance of different versions of an example service
to see if there is any trade-off between different versions.

In this evaluation, vTC has been used as a case study as it consists of compute-
intensive processes that can be offloaded to acceleration hardware. A transcoder
provides functionalities such as converting video encoding format and spatial res-
olution, video transposing, and video transcasting. These functionalities are pro-
vided to adjust the original video to the viewer’s network data rate, device resolu-
tion, frame rate and so on. Transcoder is used in both Video On Demand (VOD)
(e.g., Youtube, Netflix) and live-streaming services to provide high-quality video
streaming experience for the viewers [28]. Employing vTC as an example, I have
analysed performance and cost of multi-version services, which is discussed in the
following.

6.3.1 Performance Analysis

To analyse performance, I have implemented two versions of a vTC: (v1) a COTS-
based vTC that is designed to only utilise CPU for video processing and (v2)
a GPU-assisted vTC that offloads compute-intensive processes to GPU. Both

79

6 Dynamic Management and Orchestration of Network Services

versions are based on FFmpeg2, which is a software-based transcoder providing
a wide range of transcoding functionalities. To emulate the NFV environment, I
have deployed vTCs on KVM-based virtual machines. Fig. 6.3 shows the test-bed
set-up used for the evaluation. It consists of four VMs: VM #1 hosts a packet
generator that breaks down videos to Group of Pictures (GOP) [28] and embeds
them into Real-Time Transport Protocol (RTP) packet payloads to be sent to
vTCs, VM #2 runs the COTS-based vTC, VM #3 hosts the GPU-assisted vTC,
and VM #4 receives the transcoded videos from vTCs and display them using
a video player. All VMs were running on a server equipped with an Intel(R)
Xeon(R) W-2123 CPU at 3.60GHz (8 Processors), 8 GB DDR4 RAM, and an
Nvidia GeForce RTX 2080 GPU.

VM #1:
Packet generator

VM #2:
COTS-based vTC

VM #4:
Video player

VM #3:
GPU-assisted vTC

Figure 6.3: The test-bed set-up used for the evaluation

We have considered two metrics, namely the video transcoding processing time
for the entire video and CPU/GPU utilization. These two metrics are considered
as processing time can affect the total latency of video streaming services and
CPU/GPU utilization is an indicator of the service cost. Parameters of the eval-
uation are the video bitrate and resolution. For a range of video resolutions, we
have measured the performance of vTCs. For each video resolution, we ran the
test for a range of input bitrates. Both transcoders convert the incoming video
format to H.264 format. Also, the Big Buck Bunny3 video has been used as the
input video.

The video processing time results, illustrated in Fig. 6.4, show that the GPU-
assisted vTC processes the videos much faster than the COTS-based vTC when
the video has a high resolution and bitrate. Fig. 6.4e shows that the processing
time difference can reach up to 40 seconds for videos with 1080p resolution and 1.6
MB/s Bitrate, which is indeed a remarkable difference. However, the processing
time difference decreases as the video resolution gets lower. For example, looking
at processing times for videos with 240p resolution (Fig. 6.4b), we see that the
processing time difference goes down up to 1 second and, for 120p resolution
videos (Fig. 6.4a), the COTS-based vTC even outperforms the GPU-assisted vTC.
This is because, in the case of GPU-assisted vTC, there is an extra CPU and
GPU communication overhead that does not exist in the COTS-based vTC. This

2https://ffmpeg.org/, accessed May 18, 2019
3http://bbb3d.renderfarming.net/download.html, accessed May 27, 2019

80

https://ffmpeg.org/
http://bbb3d.renderfarming.net/download.html

6.3 Multi-version Services Analysis

increases the total processing time of the GPU-assisted vTCs; however, as this
overhead is very low, it has no significant impact on the processing time of high-
resolution videos.

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

2

4

Pr
oc

es
sin

g
tim

e
[s

]

GPU-assisted vTC
COTS-based vTC

(a) Input video with 120p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

2

4

6

Pr
oc

es
sin

g
tim

e
[s

]

GPU-assisted vTC
COTS-based vTC

(b) Input video with 240p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

5

10

15

Pr
oc

es
sin

g
tim

e
[s

]

GPU-assisted vTC
COTS-based vTC

(c) Input video with 480p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

5

10

15

20

Pr
oc

es
sin

g
tim

e
[s

]

GPU-assisted vTC
COTS-based vTC

(d) Input video with 720p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

20

40

Pr
oc

es
sin

g
tim

e
[s

]

GPU-assisted vTC
COTS-based vTC

(e) Input video with
1080p resolution

Figure 6.4: Transcoding processing time for videos with different resolutions (with
95 % confidence interval - error bars are too small)

The CPU utilization evaluation results are depicted in Fig. 6.5. As expected, the
trend is the same as what we got in the video processing time evaluation. While
the GPU-assisted vTCs utilizes less CPU for high-resolution videos (Fig. 6.5e),
COTS-based vTC uses less CPU to process low-resolution videos. This is because
there is no processing associated with exchanging data between CPU and GPU
in the COTS-based vTC. Looking at the results, the CPU utilization of GPU-
assisted vTC remains between 30 % to 50 % for all video resolutions; however,
COTS-based vTC utilization varies from 20 % for the 120p resolution (Fig. 6.5a)
to 250 % for 1080p resolution (Fig. 6.5e). 250 % CPU utilization means at least
3 CPU cores are needed for the process in which 2 of them are fully utilized and
the other is 50 % utilized.

We have also measured the GPU memory utilisation of GPU-assisted vTC.
The results are shown in Fig. 6.6. Performing this evaluation, we observed that
changing the input bitrate does not change the GPU utilisation, and it always
remains constant. However, the GPU utilisation increases, as the input video
resolution gets larger.

Based on the processing time and resource usage evaluation, we observe that
there is a trade-off between using COTS-based and GPU-assisted vTCs. Although
using GPUs can improve the processing time of vTC in some cases, in some other
cases, it is not a suitable implementation option as it increases the resource usage
while not providing any performance improvement.

81

6 Dynamic Management and Orchestration of Network Services

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

25

50

75

100

CP
U

ut
ilis

at
io

n
[%

]

GPU-assisted vTC
COTS-based vTC

(a) Input video with 120p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

50

100

CP
U

ut
ilis

at
io

n
[%

]

GPU-assisted vTC
COTS-based vTC

(b) Input video with 240p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

100

200

CP
U

ut
ilis

at
io

n
[%

]

GPU-assisted vTC
COTS-based vTC

(c) Input video with 480p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

100

200

300
CP

U
ut

ilis
at

io
n

[%
]

GPU-assisted vTC
COTS-based vTC

(d) Input video with 720p
resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

100

200

300

CP
U

ut
ilis

at
io

n
[%

]

GPU-assisted vTC
COTS-based vTC

(e) Input video with
1080p resolution

Figure 6.5: Transcoding CPU utilization for videos with different resolutions (with
95 % confidence interval)

120 240 480 720 1080
Video resolution [p]

0

20

40

60

80

100

120

140

160

GP
U

ut
iliz

at
io

n
[M

iB
]

Figure 6.6: Memory usage of GPU-assisted vTC for videos with different resolu-
tions (with 95 % confidence interval - error bars are too small)

6.3.2 Cost Analysis

We have also analysed the cost of running COTS-based and GPU-assisted vTCs.
In the performance analysis, we observed how much CPU core and GPU memory
are needed to run COTS-based and GPU-assisted vTCs, respectively. Having
these data, we have looked at Amazon’s EC2 price list4 to see how much it costs

4https://aws.amazon.com/ec2/pricing/on-demand/, accessed May 20, 2019

82

https://aws.amazon.com/ec2/pricing/on-demand/

6.3 Multi-version Services Analysis

to provide these resources in a virtualized cloud environment. In our analysis,
Amazon’s general-purpose “t2” instances are considered as possible instances to
provide required resources for vTCs. For the GPU case, we consider the price of
elastic graphics instances “eg1”5 that allows GPU to be attached to EC2 instances.

The results of the cost analysis are illustrated in Fig. 6.6. It shows the cost of
providing resources for different versions of the vTC for one hour. While the costs
of GPU-assisted vTC remains constant for all video resolutions, the cost of COTS-
based vTC shows an increasing trend as the video resolution increases. These
results show that the use of COTS-based vTC for video with 1080p resolutions
is inefficient both performance-wise and cost-wise. The same holds true for using
GPU-assisted vTC to process videos with 120p and 240p resolutions. For the
video with 480p and 720p resolutions, although GPU-based vTC performs better,
it costs more compared to COTS-based vTC.

120 240 480 720 1080
Video resolution [p]

0.00

0.05

0.10

0.15

0.20

Co
st

 [$
]

COTS-based vTC
GPU-assisted vTC

Figure 6.7: Cost of running different versions of vTC on Amazon Web Service
(AWS) resources for one hour

From these results, we observe that GPUs are beneficial both performance-
wise and cost-wise only when high-resolution or high-bitrate videos should be
processed. When the input videos to the transcoder have low resolution or low
bitrate, using GPUs is beneficial neither performance-wise nor cost-wise. Conse-
quently, the use of GPU needs to be decided for each situation individually. This
backs up the idea of multi-version services and dynamical service provisioning as
using the right vTC version for the given input video can significantly improve
performance and reduce cost.

Now that we know there are services that can benefit from multi-versioning,
we need to see how we can orchestrate such services in an NFV environment and

5https://aws.amazon.com/ec2/elastic-graphics/, accessed May 20, 2019

83

https://aws.amazon.com/ec2/elastic-graphics/

6 Dynamic Management and Orchestration of Network Services

what is the orchestration overhead of supporting multi-version services in NFV.
In the next section, I address these points.

6.4 Multi-version Services Orchestration

To support management and orchestration of multi-version services, I extended
Pishahang [21], a multi-domain NFV MANO framework, introduced in Chapter 5.
Pishahang is based on a microservice architecture in which all functionalities that
should be handled by the MANO framework are implemented using a set of loosely
coupled microservices that are realised in containers. This simplifies extending
Pishahang with new functionalities; this can be achieved by adding and integrating
a new microservice (container) into the existing framework [13]. As mentioned
in Chapter 5, Pishahang supports a wide range of heterogeneous resources on
different domains. This is a valuable feature for multi-version services as it allows
services to be offered in a large variety of versions. Although provisioning multiple
versions of a VNF is already supported by Pishahang, it still lacks support for on-
the-fly multi-version services. To be exact, it cannot switch to different versions of
a service/VNF on the fly, while the service/VNF is in use. Therefore, Pishahang
needs to be extended to support the management of multi-version services.

6.4.1 Requirements

The following requirements need to be met to manage and orchestrate multi-
version services in Pishahang.

• Req. 1: The descriptor schema needs to be extended to support specific
requirements of multi-version services. These requirements are, for example,
constituent versions of a VNF, metrics to be monitored for a specific version,
metrics thresholds to trigger version switching and the default version of a
VNF or service.

• Req. 2: An algorithm is required to decide which version is best to deploy
according to available resources, version requirements, and services demand
(e.g., data rate).

• Req. 3: A monitoring system to gather metrics from running VNFs. Using
these metrics (e.g., data rate), the service demand is measured.

• Req. 4: A new plugin needs to be implemented to manage multi-version
services. This plugin should handle the communication between the moni-
toring system, the version selector algorithm, and other Pishahang plugins.

• Req. 5: Pishahang Service Lifecycle Management (SLM) needs (i.e., intro-
duced in Chapter 3) to be extended to identify multi-version services and
redirect respective requests to multi-version services manager.

84

6.4 Multi-version Services Orchestration

6.4.2 Design and Implementation

To add orchestration support for multi-version services to Pishahang, I used exist-
ing solutions as much as possible. For example, to satisfy Req. 2, I employed the
algorithm implemented by Dräxler et al. in [11]. They have implemented both the
optimisation and the heuristic approaches as Python programs that optimise the
cost and performance of multi-version services. I embedded the algorithm into the
Multi-version Service Management (MVSM) plugin (see Section 6.4.2.2). Also, to
meet Req. 3, I used Netdata 6. Netdata is an open-source, real-time monitoring
system that can be used to monitor the performance of systems and applications.
It can be used to monitor physical and virtual servers plus containers. Netdata
is fast and efficient and does not disrupt the performance of the core application.
Compared to other solutions such as Prometheus 7 and Grafana 8, Netdata pro-
vides system metrics at a higher sampling rate, which allows to react faster to the
changes in service demand. In the followings, I describe the extensions provided
to Pishahang to support multi-version services.

6.4.2.1 Multi-version Service Descriptors

To meet Req. 1, I extended the descriptor model of Pishahang. As shown in
Fig. 6.8, there are three main descriptors in the multi-version service descrip-
tor model: (1) Multi-version Service (MVS) descriptor, (2) VNF descriptors and
(3) Version descriptor. The MVS descriptor includes the high-level information
of multi-version services such as the constituent VNFs, constituent service ver-
sions, and forwarding graph. Each service version in the MVS is represented by
a forwarding graph. On lower layer, VNF descriptors are used to describe the
high-level requirements of each VNF such as constituent VNF versions, their Vir-
tualized Infrastructure Manager (VIM) type (OpenStack, Kubernetes, and AWS),
and version switching information (e.g., default version, threshold values). Each
version is then described using a version descriptor that includes the VNF require-
ments such as Version types (COTS, accelerated), deployment units, resources,
and images.

6.4.2.2 Multi-version Service Manager

To meet Req. 4, I extended Pishahang with a new plugin, called MVSM plugin.
This microservice decides when a service/VNF should be switched to which ver-
sion. As it is illustrated in Fig. 6.10, the MVSM plugin consists of three main
modules, including message handler, version selector, and monitoring. The mes-
sage handler module takes care of the communication of MVSM plugin modules
with other Pishahang microservices such as SLM. It processes the incoming mes-
sages to the MVSM plugin and hands them over to the respective module. The
version selector module includes an algorithm taken from [11] that determines

6https://www.netdata.cloud/, accessed Jan. 22, 2020
7https://prometheus.io/, accessed July 2020
8https://grafana.com/, accessed July 2020

85

https://www.netdata.cloud/
https://prometheus.io/
https://grafana.com/

6 Dynamic Management and Orchestration of Network Services

MVS descriptor

VNF descriptor

Version descriptor Version descriptor

VNF descriptor

Version descriptor Version descriptor

Figure 6.8: The multi-version services descriptor model

which version of the service/VNF should be used based on the service require-
ments, available resources, and service demand. Last but not least, the monitor-
ing module, which is based on Netdata 9, monitors the performance of deployed
VNFs along with the service demand.

Fig. 6.10 shows the workflow of the MVSM plugin and its interactions with
other microservices in the Pishahang framework. The initial multi-version ser-
vice request is sent to the MVSM plugin by SLM. The payload of this request
includes the service descriptors (Network Service (NS) and VNF descriptors) and
the available resources (e.g., CPU, GPU, Memory). The message is received by
the message handler and then forwarded to the version selector. The version se-
lector decides which version should be initially deployed based on the information
given in the descriptors and available resources. Then, the selected version will
be communicated with SLM by MVSM. SLM deploys the selected version and
informs MVSM about the result of the deployment. Once the selected version
is successfully deployed, the message handler sends a request to the monitoring
module containing the VNF records (e.g., name, IP address), monitoring metrics
(e.g., data rate, CPU), and the metrics threshold. Then, the monitoring mod-
ule starts fetching monitoring data and sends an alert to the message handler
whenever a threshold is reached. The message handler, then, forwards the new
monitoring data to the version selector and notifies SLM if the version selector
decides to switch the version. If the decision is to switch the service version, SLM
deploys the new version, redirects the packets to the new version, and removes
the old version.

SLM has been extended to identify requests related to multi-version services
(meeting Req. 5). SLM identifies multi-version services based on the type of the
descriptors included in the service requests and redirects the requests to MVSM.
The orchestration of service requests containing regular service (i.e., regular ser-
vices are single-version services) descriptors is taken care of by the SLM itself. This
separates the orchestration of multi-version services from regular services. With
this separation of orchestration, the regular services will still be fully supported
as before.

9https://www.netdata.cloud/, accessed Jan. 22, 2020

86

https://www.netdata.cloud/

6.4 Multi-version Services Orchestration

M
es
sa
ge
	B
ro
ke
r

Service	Lifecycle	Management	(SLM)

OpenStack	
Lifecycle

Management	(OLM)

Placement	Management	(PLM)

M
on
ito
rin
g

Se
rv
ic
es

VN
Fs

Gate	Keeper	(GK)

R
ep
os
it
or
ie
s

Kubernetes	
Lifecycle

Management	(KLM)

AWS	
Lifecycle

Management	(ALM)

Service
	Function	Chaining	
Manager	(SFCM)

Graphical	User	Interface	(GUI)

											Infrastructure	Adaptor	(IA)

Multi-version	Service
Management	(MVSM)

Figure 6.9: The high-level architecture of Pishahang containing the MVSM plugin
to support multi-version services

6.4.3 Evaluation

I experimentally evaluated the switching time of different versions of multi-version
services. Fig. 6.11 shows the set-up of our testbed. In this set-up, the extended
version of Pishahang was running on a virtual machine equipped with 16 CPU
cores of Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz and 32 GB of RAM. A
single-node-cluster Kubernetes was used for CN-based NFs. This cluster includes
a workstation equipped with eight cores of Intel(R) Xeon(R) W-2123 CPU @
3.60GHz, 16 GB of RAM, and a GeForce RTX 2080 GPU. The OpenStack cluster
also includes a single node, which is a workstation equipped with 20 cores of
Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz and 64 GB of RAM. Moreover, a Ryu
controller 10 along with a Zodiac FX OpenFlow switch was used to redirect the
traffic to the intended service version on the fly.

For this evaluation, I also implemented an example multi-version service. This
service consists of three versions of a vTC. This is an extended version of the
vTC introduced in 6.3. The three versions of the vTC consist of two COTS

10https://osrg.github.io/ryu/, accessed Jan. 22, 2020

87

https://osrg.github.io/ryu/

6 Dynamic Management and Orchestration of Network Services

Service Lifecycle
Management

(SLM)
VIM

1. MV-service
instantiation request

2. Service request +
available resources

3. Selects version

4. Selected version

5. Deploy the selected
version

6. Deployment response

7. Deployment response

8. Configure
Monitoring threshold

9. Start Monitoring

11. If threshold reached,
send monitoring data

12. Service descriptors +
new monitoring data

10. Fetch monitoring data

Message
Handler

Version
Selector Monitoring

MVS Manager

13. Selects version

14. Selected version - if
different version is selected

15. Deploy new version

Figure 6.10: The workflow of the MVSM plugin and its interactions with other
microservices in the Pishahang framework

versions, namely a VM-based COTS (VMC) vTC and a CN-based COTS (CNC)
vTC. These two versions only use CPUs for all processes. The third version is an
accelerated vTC that runs on a CN and offloads the compute-intensive processes
to the GPU. This version is called CN-based Accelerated (CNA) vTC.

Fig. 6.12 depicts the high-level architecture of the vTC. It is composed of
three FFmpeg 11 components. FFmpeg is an open-source solution for recording,
converting and streaming audio and video. The first component on the left is Test-
src, which generates test pattern video frames to mimic a live streaming source.
Testsrc runs on CPU on all vTC versions and provides raw videos with different
bitrates and resolutions for the second component, the encoder. The encoder con-
verts the video format to H.264. This is the main component of the vTC. For

11https://www.ffmpeg.org/, accessed Jan. 22, 2020

88

https://www.ffmpeg.org/

6.4 Multi-version Services Orchestration

CN-based
Accelerated vTC

VM-based
COTS vTC

CN-based
COTS vTC

Figure 6.11: The test-bed set-up used for the evaluation

Encoder
Testsrc HLS Muxer

Figure 6.12: The high-level architecture of virtual transcoder

the COTS vTC, no matter VM or CN, the encoder runs entirely on CPU; for the
accelerated vTC, however, the encoder offloads its compute-intensive processes
to GPU. The final component is the HTTP Live Streaming (HLS) Muxer that
includes the output of encoder into the Moving Picture Experts Group (MPEG)
transport stream to be transmitted over the network. Like Testsrc, HLS Muxer
also runs only on CPU in all vTC versions.

In the test-bed, I also used a virtual machine as a vTC user. This user
sends requests to the vTC for different video resolutions and bitrates, which are
the main metrics used by version selector in MVSM to switch between differ-
ent versions. These two metrics have been chosen based on the results in Sec-
tion 6.3: the accelerator-based vTC not only processes high resolution/bitrate
videos faster than COTS-based vTC but also cheaper as it requires fewer resources.
On the other hand, the CPU-based vTC is not only cheaper to process the resolu-

89

6 Dynamic Management and Orchestration of Network Services

tion/bitrate videos but, in this case, also faster compared to an accelerator-based
vTC. In this evaluation, I measured the time required to switch from one version
to another. Having three versions of vTC, we had 6 cases of switching time, each
of which was measured a hundred times. The switching time is the time between
initiating the switching request in the version selector and receiving the switching
response by the message handler in MVSM. This time includes the deployment
of the new version, starting monitoring the new version, and termination of the
old version.

Fig. 6.13 shows the Cumulative Distribution Function (CDF) of the time to
switch from VMC to CNA, CNC to CNA, CNA to CNC, and VMC to CNC
versions of vTC. These results show that the switching to CN-based VNFs takes
mostly between 3.2 and 4 seconds. The switching time from VM-based to CN-
based vTCs is longer than CN-based to CN-based vTCs. This is because the
termination of VM-based vTCs takes longer than CN-based vTC.

3.0 3.5 4.0 4.5 5.0 5.5
Switching Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

VMC to CNA
VMC to CNC
CNC to CNA
CNA to CNC

Figure 6.13: The time required to switch between CNA to CNA, CNA to CNC,
and VMC to CNA versions of the virtual transcoder

Fig. 6.14 shows the CDF of switching time from CNA to VMC and CNC to VMC
versions of vTC. These results show that the switching to VM-based VNFs takes
mostly between 64 to 100 seconds, which is much longer than switching to CN-
based vTCs. Most of the VM switching time is consumed for the deployment of
the VMs in OpenStack, which is significantly higher compared to the deployment
of CNs in Kubernetes. From Fig. 6.13 and 6.14, we observe that the deployment
time of CNAs is slightly shorter than CNCs. Breaking down the results, I noticed
that the difference comes from the time required by Kubernetes to deploy CNAs
and CNCs. Surprisingly, Kubernetes handles the deployment of CNAs faster than
CNCs.

Another action involved in version switching is the redirection of the traffic to
the new version. To this end, I have measured the time required by Pishahang
to generate a new forwarding graph and redirect vTC incoming traffic to the new

90

6.4 Multi-version Services Orchestration

80 100 120 140 160
Switching Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CNC to VMC
CNA to VMC

Figure 6.14: The time required to switch between CNA to VMC and CNC to
VMC versions of the virtual transcoder

version. Fig. 6.15 illustrates the results of this evaluation. From these results, we
observe that the packet redirection time also plays an important role in the case
of switching to CN-based vTCs, which should not be overlooked, as it increases
the switching time by up to 0.49%.

0.9 1.0 1.1 1.2
Switching Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

sdn-plugin

Figure 6.15: The time required by the Service Function Chaining Management
(SFCM) to generate a new forwarding graph for redirecting the traffic
to the new version

91

6 Dynamic Management and Orchestration of Network Services

6.5 Related Work

Studies in the context of dynamic service provisioning and multi-version services
can be categorised into (i) studies related to evaluating VNFs realised with dif-
ferent implementation options and (ii) studies related to analysing the dynamic
deployment of multi-version services. The former category supports the idea of
the multi-version services as it can prove that there are trade-offs between us-
ing different implementation options of VNFs. The latter category analyses the
overhead generated by dynamically service provisioning, which is more associated
with the management and orchestration of these services.

There are multiple studies in the first category. For example, Araújo et al. [5]
studied the use of GPUs to assist packet processing in DPIs. To this end, they
implemented and evaluated a CPU-based and a GPU-assisted DPI. Both DPIs
are based on the Snort Intrusion Detection System (IDS)12, with the GPU-assisted
DPI adapted to execute on a GPU. They evaluated the DPIs based on metrics such
as processing time, resource utilisation. The results presented in this study shows
that GPU-assisted DPI performs well in high-traffic conditions and processes the
packets up to 19 times faster than CPU-based DPI. On the other hand, CPU-
based DPI has significantly less overall processing time in low-traffic conditions.
This shows that dynamically using these two versions based on the traffic condition
can improve the performance of DPIs. What is missing in this study is a cost
analysis which is an important factor when employing acceleration resources.

In another work, Han et al. proposed PacketShader[18], a framework that en-
ables offloading computation and memory-intensive operations to GPUs. In this
study, a softwarised GPU-assisted OpenFlow switch has been implemented and
tested against a softwarised COTS-based switch to quantify the gain of using
GPU as an accelerator for packet processing. The OpenFlow switch implemented
in this study captures the packets and extracts the flow keys from the packet
header and matches them against the exact-match entries in the hash table. The
COTS-based OpenFlow switch runs all tasks including the flow key extraction,
hash value calculation and lookup for exact entries, linear search for wildcard
matching and follow-up actions in CPU. In the GPU-assisted switch, however,
hash value calculation and the wildcard matching tasks are offloaded to a GPU.
For the evaluation, the throughput of switches was measured with the flow ta-
ble size as a parameter. The results show that a GPU-assisted OpenFlow switch
can have up to 10 times better throughput than the COTS-based one. Their
evaluation results also show that the highest throughput improvement is achieved
when the number of flow entries is high (1 M of exact entries and 1 k of wildcard
entries), but in the opposite situation, when the number of flow entries is low,
the throughput improvement is negligible. This indicates that, in the case of low
number of flow entries, COTS-based switch can keep up well and provide cheaper
switches than the GPU-assisted switch. Like [5], this work also lacks quantifying
the cost of using these two implementation options based on different workload.

Nobach et al. [36] studied the performance of COTS-based DPI versus FPGA-

12https://www.snort.org/ accessed, May 20, 2019

92

https://www.snort.org/

6.6 Conclusion

based DPI. In this work, they implemented a DPI that uses COTS resources for
all its tasks and another one that offloads network-intensive tasks onto FPGA
resources. They have evaluated the throughput and latency of these DPIs having
the size of input packets as a parameter. The results of their evaluation show that
FPGA-based DPI can improve the throughput up to 124 times for packet sizes up
to 512 bytes. Also, it can improve the latency up to 6 times. However, in the case
that packet sizes are bigger than 512 bytes, the performance improvement becomes
negligible. With that, we can observe that the use of FPGA-based DPI is not a
proper solution for large packets as it costs more than COTS-based DPI without
having a significant performance improvement. Therefore, dynamical employment
of these two implementation options based on the packet size can balance the cost
and performance of DPIs. This paper also provides cost analysis; however, it is
based on some assumptions and does not represent real-world cost ranges.

For the second category, however, there have not been many studies. Dräxler
et al., [11] have evaluated dynamically deployment of multi-version services using
simulation. While the results presented in the study validates the idea of multi-
version services in theory, an experimental evaluation of such a service provisioning
approach is still missing.

This chapter extends the literature on the first category by quantifying the
performance and cost of deploying network function over heterogeneous resources
and the second category by an experimental analysis on the management overhead
of multi-version services.

About the orchestration framework, as mentioned in Section 5.4, multiple MANO
frameworks support the orchestration of heterogeneous resources; however, none
of them supports the orchestration of multi-version services.

6.6 Conclusion

In this chapter, we analysed the dynamic provisioning of NFV services over het-
erogeneous resources. To this end, we realised services in multiple versions based
on hardware and virtualisation technologies and called them multi-version ser-
vices. By alternating between different versions on the fly based on the service
requirements (e.g., data rate), we can trade-off different metrics such as cost and
performance.

To validate the concept of multi-version services, we quantified the trade-off be-
tween using different versions of an example service by experimental evaluation.
In this evaluation, we used vTC as a case study and quantified the resource util-
isation and processing time of COTS-based and GPU-assisted vTCs. Using the
resource utilisation data, we calculated the cost of running vTCs in AWS cloud
infrastructure. By this evaluation, we observe that using GPUs can accelerate
the performance of vTC for high-quality videos while low-quality videos can be
handled better by COTS-based vTCs and be cheaper at the same time.

To support the orchestration of multi-version services, we extended the Pisha-
hang MANO framework with a new plugin called MVSM. This plugin orchestrates
multi-version services based on a reactive approach and handles tasks such as de-

93

6 Dynamic Management and Orchestration of Network Services

ploying multi-version services, identifying the need to switch to a different version,
and switching to the right version of the service on the fly. Using this extension,
we analysed the management overhead due to such dynamic usage of accelerators.
From the results, we observed that the switching time to CN-based versions is
significantly less than the switching time to VM-based versions. Thus, the virtu-
alisation environment type can have a great impact on the management overhead
of multi-version services.

Overall, the results presented in this chapter validates that multi-version ser-
vices are beneficial in practice as they can provide performant services while guar-
anteeing the lowest price. Using CNs as virtualisation environments makes the
multi-version services significantly more agile to respond to changes in service
requirements (e.g., data rate), compared to using VMs as virtualisation environ-
ments. However, this does not rule out employing VMs in multi-version service.
This problem can be mitigated by using a proactive approach for switching to dif-
ferent versions and starting the deployment of VM-based versions ahead of time
to have them ready to serve at the time they are needed.

94

7
Final Thoughts

7.1 Summary . 95

7.2 Conclusion . 96

7.3 Future research . 97

In this final chapter, I, first, summarise the key contributions of my thesis
and, then, draw the conclusions. Finally, I end my thesis with future research
directions.

7.1 Summary

In this thesis, I investigated different challenges concerning Network Function Vir-
tualization (NFV) Management and Orchestration (MANO) frameworks. First,
in Chapter 3, I introduced the concept of Specific Management (SM). SM im-
proves the flexibility of MANO frameworks and allows the service developers to
program the management and orchestration of their services. I implemented the
SM platform and integrated it into the SONATA MANO framework. Using a
simulation-based approach, I evaluated the SM concept by comparing it with
rigid solutions. Also, by experimental evaluation, I analysed the management
overhead caused by employing the SM concept in a MANO framework.

In Chapter 4, I investigated the scalability and agility of MANO frameworks.
To this end, I introduced a benchmarking framework for MANO frameworks.
This framework is used to quantify the resource consumption and deployment
time of two MANO frameworks, namely Pishahang and Open Source MANO
(OSM). Furthermore, using the benchmarking framework, I quantified the effect
of topological distance in service deployment time.

In Chapter 5, I addressed the challenge of supporting heterogeneous resources
in the NFV MANO framework. To this end, I implemented an open-source multi-
domain MANO, called Pishahang. Pishahang supports heterogeneous resources
by a multi-domain approach where resources from multiple domains are jointly
orchestrated. In this chapter, I described the design and implementation of Pisha-

95

7 Final Thoughts

hang and also explained how it was used in the 5G-PICTURE project to support
5G services.

I also investigated the dynamic deployment of NFV services over heterogeneous
resources. In this regard, I introduced multi-version services and classified the
services that can benefit from dynamic deployment. I analysed an example of
multi-version service in terms of performance and cost. Also, I extended the
Pishahang MANO framework to support multi-version services. Using the exten-
sion, I analysed the management overhead that multi-version services impose on
the MANO framework.

7.2 Conclusion

The work presented in Chapter 3 is the first effort at improving the programmabil-
ity of MANO frameworks. The concept is not specific to MANO frameworks and
can be used for other applications that need to be customised on the fly. The SM
platform that I implemented for SONATA MANO framework has been employed
to manage NFV services in the SONATA 1 project’s final demonstration in Gent,
Belgium. The SM platform has also been used and extended in the 5G-Tango 2

project, which shows the platform has been accepted by the community.

The results presented in Chapter 4 can already provide MANO frameworks
that are fully scalable. Both Pishahang and OSM realise their functionalities in
individual containers. Being container-based, they can run in a Kubernetes cluster
which has native scaling solutions for containers. To scale out/in the containers,
Kubernetes needs the resource requirement of the containers. My work provided
this data. Assuming that there is no coordination overhead between containers,
by running Pishahang and OSM under Kubernetes, we can make sure the MANO
framework is fully scalable and can keep up with any sudden increase of load.

Existing NFV orchestrators were limited in supporting heterogeneous resources.
At the time of Pishahang’s first release in Jan. 2018, there were no other NFV
MANO frameworks supporting the orchestration of container-based Virtualized
Network Function (VNF)s. Pishahang is not only the first NFV MANO that
supports container-based VNFs, but also the only NFV MANO that supports
Field Programmable Gate Array (FPGA)-based VNFs. Also, Pishahang has been
widely used in the 5G-PICTURE project as main NFV MANO, which shows that
it has been accepted by the community.

Finally, I took multi-version services from theory to practice. While there had
been some theoretical work on multi-version services [11], I evaluated the concept
in practice and implemented mechanisms to manage and orchestrate them. I not
only published research papers out of this work [24] [26], but I also demonstrated
the multi-version services in the 5G-PICTURE review meeting in Barcelona.

1https://project.sonata-nfv.eu/, accessed July 2020
2https://www.5gtango.eu/, accessed July 2020

96

https://project.sonata-nfv.eu/
https://www.5gtango.eu/

7.3 Future research

7.3 Future research

Specific Managements (SMs) aggregation: As the results in Chapter 3 show,
SMs impose extra overhead on the MANO framework in terms of resource usage
and service deployment time. The overhead increases as the number of containers
used to run SMs increases. To mitigate this issue, multiple SMs can be aggregated
to run in a single container, instead of running each SM on a different container.
This would decrease resource consumption and also the deployment time of the
services. On the other hand, this solution might increase the complexity of the
management of SMs and degrades dependability of individual SMs. As future
work, such solution can be investigated.

Coordination overhead analysis: The study presented in Chapter 4 assumes
that there is no coordination overhead in scaling the MANO microservices. This,
however, may not be true. There may be extra overheads in adding/removing
new replicas of a microservice as the load needs to be constantly distributed
among multiple replicas. An investigation of such coordination overhead of MANO
microservices can complete the last puzzle in the scalability of MANO frameworks
and allow to design fully scalable MANO frameworks.

Intra-domain service chaining: Although Pishahang provides inter-domain
service chaining, intra-domain chaining is not fully supported. For example, in a
Kubernetes domain, although Pods can chain with VNFs running outside of their
cluster, they cannot be chained with other Pods inside the Kubernetes cluster
as required for NFV services. A possible solution for this issue is to integrate
Network Service Mesh (NSM) 3 into Pishahang. NSM provides service function
chaining for containers running in Kubernetes cluster.

Proactive solution for on-the-fly version switching: The solution pro-
vided in this thesis uses a reactive approach to identify the need for switching
to a different version, which is slow to react to changes compared to a proactive
solution. A proactive approach provides a better solution as it allows the right
version to be up exactly when it is needed, not with some delay like in a reac-
tive solution. Such proactive solution can be realised using a machine learning
algorithm to predict the service load.

3https://networkservicemesh.io/, accessed July 2020

97

https://networkservicemesh.io/

Acronyms

IT Information Technology

MANO Management and Orchestration

NFV Network Function Virtualization

VNF Virtualized Network Function

SM Specific Management

SSM Service-Specific Management

FSM Function-Specific Management

COTS Commercial Off-The-Shelf

RPM Requests Per Minutes

VIM Virtualized Infrastructure Manager

ETSI European Telecommunication Standards Institute

TOSCA Topology and Orchestration Specification for Cloud
Applications

OSM Open Source MANO

YAML YAML Ain’t Markup Language

ONAP Open Network Automation Platform

KPI Key Performance Indicator

PoP Point of Presence

IoT Internet of Things

M2M Machine to Machine Communication

SMS Short Message Service

NSM Network Service Mesh

GK Gate Keeper

FLM Function Lifecycle Management

99

Acronyms

SLM Service Lifecycle Management

PLM Placement Management

SCM Scaling Management

IA Infrastructure Adaptor

VM Virtual Machine

NSD Network Service Descriptor

VNFD Virtual Network Function Descriptor

WAN Wide Area Network

URL Uniform Resource Locator

JSON JavaScript Object Notation

SMR Specific Manager Registry

NFVI Network Function Virtual Infrastructure

CLI Command Line Interface

GUI Graphical User Interface

PNF Physical Network Function

URI Uniform Resource Identifier

UUID Universal Unique Identifier

AWS Amazon Web Service

EKS Elastic Kubernetes Service

CMS Cloud Management System

GPP General Purpose Processor

GPU Graphics Processing Unit

FPGA Field Programmable Gate Array

CN Container

GCP Google Cloud Platform

OLM OpenStack Lifecycle Management

KLM Kubernetes Lifecycle Management

ALM AWS Lifecycle Management

100

Acronyms

VDU Virtual Deployment Unit

OS Operating System

E2E End To End

BSS Business Support System

OSS Operations Support Systems

RAN Radio Access Network

MDO Multi Domain Orchestrator

UPB Paderborn University

WiFi Wireless Fidelity

OAI OpenAirInterface

DHCP Dynamic Host Configuration Protocol

CDF Cumulative Distribution Function

SFCM Service Function Chaining Management

CP Connection Point

VLAN Virtual LAN

vTC virtual Transcoder

NF Network Function

MVS Multi-version Service

MVNS Multi-version Network Service

MVNF Multi-version Network Function

MVSM Multi-version Service Management

NAT Network Address Translation

NS Network Service

IDS Intrusion Detection System

VOD Video On Demand

GOP Group of Pictures

RTP Real-Time Transport Protocol

VMC VM-based COTS

101

Acronyms

CNC CN-based COTS

CNA CN-based Accelerated

MPEG Moving Picture Experts Group

SFC Service Function Chaining

VPN Virtual Private Network

VL Virtual Link

NFP Network Function Path

VNF-FG VNF Forwarding Graph

ONOS Open Network Operating System

VNFM VNF Manager

NFVO NFV Orchestrator

NIC Network Interface Card

vNIC Virtual Network Interface Card

HOT Heat Orchestration Template

OSS/BSS Operations/Business Support System

EM Element Manager

VLD Virtual Link Descriptor

VNFFGD VNF Forwarding Graph Descriptor

API Application Programming Interface

DPI Deep Packet Inspection

HLS HTTP Live Streaming

LTE Long Term Evolution

QoE Quality of Experience

SDN Software-Defined Network

URL Uniform Resource Locator

102

Bibliography

[1] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati. Network Function
Virtualization in 5G. IEEE Communications Magazine, 54(4):84–91, 2016.

[2] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. Tchouati. On the placement
of vnf managers in large-scale and distributed nfv systems. IEEE Transac-
tions on Network and Service Management, 14(4):875–889, 2017.

[3] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati. NFV Or-
chestrator Placement for Geo-distributed Systems. In 2017 IEEE 16th Inter-
national Symposium on Network Computing and Applications (NCA), pages
1–5. IEEE, 2017.

[4] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour.
Design Considerations for a 5G Network Architecture. IEEE Communications
Magazine, 52(11):65–75, 2014.

[5] I. M. Araújo, C. Natalino, Á. Santana, and D. L. Cardoso. Accelerating vnf-
based deep packet inspection with the use of gpus. In 2018 20th International
Conference on Transparent Optical Networks (ICTON), pages 1–4. IEEE,
2018.

[6] R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose. Performance Analysis of
Virtual Machines and Containers in Cloud Computing. In 2016 International
Conference on Computing, Communication and Automation (ICCCA), pages
1204–1210, 2016.

[7] J. Bonnet and et al. D4. 3. service platform first operational release and
documentation. SONATA Project Deliverable, 7, 2017.

[8] D. Camps-Mur, F. Canellas, A. Machwe, J. Paracuellos, K. Choumas, D. Gi-
atsios, T. Korakis, and H. R. Kouchaksaraei. 5GOS: Demonstrating Multi-
domain Orchestration of End-to-end Virtual RAN Services. In 2020 6th IEEE
Conference on Network Softwarization and Workshops (NetSoft). IEEE, 2020.

[9] H. Chen and F. J. Lin. Scalable iot/m2m platforms based on kubernetes-
enabled nfv mano architecture. In 2019 International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pages 1106–1111, 2019.

[10] Tobias Dierich. Joint Orchestration of Network Function Chains and General-
Purpose Cloud Services. Bachelor thesis, 2018.

103

Bibliography

[11] S. Dräxler and H. Karl. Spring: Scaling, placement, and routing of heteroge-
neous services with flexible structures. In 2019 IEEE Conference on Network
Softwarization (NetSoft), pages 115–123, June 2019.

[12] S. Dräxler, H. Karl, H. R. Kouchaksaraei, A. Machwe, C. Dent-Young,
K. Katsalis, and K. Samdanis. 5G OS: Control and Orchestration of Ser-
vices on Multi-Domain Heterogeneous 5G Infrastructures. In 2018 European
Conference on Networks and Communications (EuCNC), pages 1–9, June
2018.

[13] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel, J. Less-
mann, T. Soenen, W. Tavernier, S. Mendel-Brin, and G. Xilouris. SONATA:
Service Programming and Orchestration for Virtualized Software Networks.
In 2017 IEEE International Conference on Communications Workshops (ICC
Workshops), pages 973–978, May 2017.

[14] Rob Enns. NETCONF Configuration Protocol. RFC 4741, December 2006.

[15] ETSI NFV ISG. Network Functions Virtualisation (NFV): Architectural
Framework. Group Specification ETSI GS NFV-MAN 001 V1.1.1, ETSI,
Oct. 2013.

[16] N. Ghrada, M. F. Zhani, and Y. Elkhatib. Price and performance of cloud-
hosted virtual network functions: Analysis and future challenges. In 2018
4th IEEE Conference on Network Softwarization and Workshops (NetSoft),
pages 482–487, June 2018.

[17] A. S. Gowri and P. Shanthi Bala. Impact of Virtualization Technologies in the
Development and Management of Cloud Applications. International Journal
of Intelligent Systems and Applications in Engineering, 7(2):104–110, 2019.

[18] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: a
gpu-accelerated software router. ACM SIGCOMM Computer Communication
Review, 41(4):195–206, 2011.

[19] A. Kojukhov and et al. Network Functions Virtualisation (NFV) Release 2;
Protocols and Data Models; VNF Package Specification. GS NFV-SOL 004
V2. 3.1. In ETSI, Group Specification, 2017.

[20] C. G. Kominos, N. Seyvet, and K. Vandikas. Bare-metal, virtual machines
and containers in openstack. In 2017 20th Conference on Innovations in
Clouds, Internet and Networks (ICIN), pages 36–43, 2017.

[21] H. R. Kouchaksaraei, T. Dierich, and H. Karl. Pishahang: Joint Orchestra-
tion of Network Function Chains and Distributed Cloud Applications. In 2018
4th IEEE Conference on Network Softwarization and Workshops (NetSoft),
pages 344–346, June 2018.

104

Bibliography

[22] H. R. Kouchaksaraei, S. Dräxler, M. Peuster, and H. Karl. Programmable and
Flexible Management and Orchestration of Virtualized Network Functions.
In 2018 European Conference on Networks and Communications (EuCNC),
pages 1–9, June 2018.

[23] H. R. Kouchaksaraei and Holger Karl. Joint Orchestration of Cloud-Based
Microservices and Virtual Network Functions. In The Ninth International
Conference on Cloud Computing, GRIDs, and Virtualization CLOUD COM-
PUTING, pages 153–154, February 2018.

[24] H. R. Kouchaksaraei and Holger Karl. Quantitative Analysis of Dynam-
ically Provisioned Heterogeneous Network Services. In Proceedings of the
15th International Conference on Network and Service Management, CNSM
’19. IFIP, 2019.

[25] H. R. Kouchaksaraei and Holger Karl. Service Function Chaining Across
OpenStack and Kubernetes Domains. In Proceedings of the 13th ACM In-
ternational Conference on Distributed and Event-based Systems, DEBS ’19,
pages 240–243, New York, NY, USA, 2019. ACM.

[26] H. R. Kouchaksaraei, A. P. S. Venkatesh, A. Churi, M. Illian, and H. Karl.
Dynamic Provisioning of Network Services on Heterogeneous Resources. In
2020 European Conference on Networks and Communications (EuCNC),
June 2020.

[27] S. Kukliński and et al. D4.1 – scalability-driven management system.
5G!PAGODA Project Deliverable, 2018.

[28] X. Li, Mohsen A. Salehi, Y. Joshi, M. Darwich, B. Landreneau, and M. Bay-
oumi. Performance Analysis and Modeling of Video Transcoding Using Het-
erogeneous Cloud Services. CoRR, abs/1809.06529, 2018.

[29] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. Performance overhead compar-
ison between hypervisor and container based virtualization. In 2017 IEEE
31st International Conference on Advanced Information Networking and Ap-
plications (AINA), pages 955–962, 2017.

[30] W Liu, H Li, O Huang, M Boucadair, N Leymann, Q Fu, Q Sun, C Pham,
C Huang, J Zhu, et al. Service function chaining (sfc) general use cases.
Internet Request for Comments (RFC) Working Draft, IETF Secretariat,
Internet-Draft draft-liu-sfc-use-cases-08, 2014.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March
2008.

[32] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing chains of
virtual network functions. In 2014 IEEE 3rd International Conference on
Cloud Networking (CloudNet), pages 7–13, Oct 2014.

105

Bibliography

[33] Dennis Meier. Management and Orchestration of FPGA-based network func-
tions. Bachelor thesis, 2020.

[34] D. Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239):2, 2014.

[35] L. Nobach and D. Hausheer. Open, elastic provisioning of hardware acceler-
ation in nfv environments. In 2015 International Conference and Workshops
on Networked Systems (NetSys), pages 1–5, March 2015.

[36] L. Nobach, B. Rudolph, and D. Hausheer. Benefits of Conditional FPGA
Provisioning for Virtualized Network Functions. In 2017 International Con-
ference on Networked Systems (NetSys), pages 1–6, March 2017.

[37] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. Sndlib 1.0—surviv-
able network design library. Networks: An International Journal, 55(3):276–
286, 2010.

[38] M. Peuster, S. Dräxler, H. R. Kouchaksaraei, S. v. Rossem, W. Tavernier,
and H. Karl. A Flexible Multi-pop Infrastructure Emulator for Carrier-grade
MANO Systems. In 2017 IEEE Conference on Network Softwarization (Net-
Soft), pages 1–3, July 2017.

[39] M. Peuster, H. Karl, and S. van Rossem. MeDICINE: Rapid Prototyping
of Production-Ready Network Services in Multi-PoP Environments. In 2016
IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pages 148–153, 2016.

[40] M. Peuster, M. Marchetti, de G. Blas, and H. Karl. Automated testing of
nfv orchestrators against carrier-grade multi-pop scenarios using emulation-
based smoke testing. EURASIP Journal on Wireless Communications and
Networking, 2019(1):172, 2019.

[41] S. Van Rossem, X. Cai, I. Cerrato, P. Danielsson, F. Németh, B. Pechenot,
I. Pelle, F. Risso, S .Sharma, and P. Sköldström. NFV Service Dynam-
icity with a DevOps Approach: Insights from a Use-case Realization. In
2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pages 674–679. IEEE, 2017.

[42] S. Van Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet,
and P. Demeester. Deploying Elastic Routing Capability in an SDN/NFV-
enabled Environment. In 2015 IEEE Conference on Network Function Vir-
tualization and Software Defined Network (NFV-SDN), pages 22–24. IEEE,
2015.

[43] S. Sahhaf, W. Tavernier, J. Czentye, B. Sonkoly, P. Sköldström, D. Jocha, and
J. Garay. Scalable Architecture for Service Function Chain Orchestration. In
2015 Fourth European Workshop on Software Defined Networks, pages 19–24.
IEEE, 2015.

106

Bibliography

[44] V. Shamugam, L. Murray, J. Leong, and A. S. Sidhu. Software defined net-
working challenges and future direction: A case study of implementing sdn
features on openstack private cloud. In IOP Conference Series: Materials
Science and Engineering, volume 121, page 012003, 2016.

[45] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and YC Tay. Con-
tainers and Virtual Machines at Scale: A Comparative Study. In Proceedings
of the 17th International Middleware Conference, page 1. ACM, 2016.

[46] T. Shimizu, A. Nakao, and K. Satoh. Network Softwarization View of 5 G
Networks. 5G Networks: Fundamental Requirements, Enabling Technologies,
and Operations Management, pages 499–518, 2018.

[47] T. Soenen, S. Sahhaf, W. Tavernier, P. Sköldström, D. Colle, and M. Pickavet.
A Model to Select the Right Infrastructure Abstraction for Service Function
Chaining. In 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pages 233–239. IEEE, 2016.

[48] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tavernier,
and F. Risso. Multi-domain service orchestration over networks and clouds:
A unified approach. ACM SIGCOMM Computer Communication Review,
45(4):377–378, 2015.

[49] B. Sonkoly, R. Szabo, D. Jocha, J. Czentye, M. Kind, and F. Westphal.
UNIFYing Cloud and Carrier Network Resources: An Architectural View.
In 2015 IEEE Global Communications Conference (GLOBECOM), pages 1–
7. IEEE, 2015.

[50] DRVLB Thambawita, Roshan Ragel, and Dhammika Elkaduwe. To use or
not to use: Graphics processing units (gpus) for pattern matching algorithms.
In 7th International Conference on Information and Automation for Sustain-
ability, pages 1–4. IEEE, 2014.

[51] J. Thönes. Microservices. IEEE Software, 32(1):116–116, Jan 2015.

[52] TOSCA. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0. Technical report, 2013.

[53] S. Van Rossem, M. Peuster, L. Conceicao, H. R. Kouchaksaraei, W. Tavernier,
D. Colle, M. Pickavet, and P. Demeester. A Network Service Development Kit
Supporting the End-to-end Lifecycle of NFV-based Telecom Services. In 2017
IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pages 1–2, Nov 2017.

[54] G. Yilma, F. Yousaf, V. Sciancalepore, and X. Costa-Perez. On the challenges
and kpis for benchmarking open-source nfv mano systems: Osm vs onap.
arXiv preprint arXiv:1904.10697, 2019.

107

	1 Introduction
	1.1 Challenges in NFV MANO frameworks
	1.1.1 Supporting Diverse Service Requirements
	1.1.2 Scalability and Agility of MANO frameworks
	1.1.3 Supporting Heterogeneous Resources
	1.1.4 Dynamic Provisioning of Services over Heterogeneous Resources

	1.2 Contributions
	1.3 Structure of the Thesis

	2 Technical Background
	2.1 Network Function Virtualization
	2.2 Management and Orchestration Framework
	2.2.1 Data Repositories
	2.2.2 Functional Blocks Belonging to NFV MANO
	2.2.3 Functional Blocks Interacting with NFV MANO

	2.3 Descriptors
	2.4 Virtualized Infrastructure Manager
	2.4.1 OpenStack
	2.4.2 Kubernetes
	2.4.3 Amazon Web Service

	2.5 Service Function Chaining
	2.5.1 Software-defined Networking

	2.6 NFV Service Deployment Workflow
	2.7 SONATA

	3 Programmable Management and Orchestration of Network Services
	3.1 Introduction
	3.2 Specific Management
	3.2.1 Function-Specific Managers
	3.2.2 Service-Specific Managers

	3.3 Specific Manager Platform
	3.3.1 Requirements
	3.3.2 Design and Implementation
	3.3.2.1 SM Message Broker
	3.3.2.2 Executive Plugin
	3.3.2.3 SMR

	3.3.3 Deployment Workflow

	3.4 Evaluation
	3.4.1 Programmability Improvement
	3.4.1.1 Specific Managers vs. Single-Objective Placement
	3.4.1.2 Specific Managers vs. Multiple-Objective Placement

	3.4.2 Management and Resource Overhead
	3.4.2.1 Management Overhead Analysis
	3.4.2.2 Resource Overhead Analysis

	3.5 Related Work
	3.6 Conclusion

	4 Scalable and Agile Management and Orchestration of Network Services
	4.1 Introduction
	4.2 MANO Benchmarking Framework
	4.2.1 Requirements
	4.2.2 Design and Implementation
	4.2.2.1 Request Generator
	4.2.2.2 MANO Wrapper
	4.2.2.3 MANO Frameworks
	4.2.2.4 VIM Mock-up
	4.2.2.5 Data Fetcher
	4.2.2.6 Data Plotter

	4.3 Analysis
	4.3.1 Software-based Limitation Analysis
	4.3.2 Topological Distance Analysis

	4.4 Related Work
	4.5 Conclusion

	5 Multi-domain Management and Orchestration of Network Services
	5.1 Introduction
	5.2 Pishahang
	5.2.1 Requirements
	5.2.2 Design and Implementation
	5.2.2.1 Service Descriptors
	5.2.2.2 Infrastructure Adaptor
	5.2.2.3 Cross-domain Service Chaining

	5.3 Pishahang in 5G-PICTURE
	5.3.1 5G Operating System
	5.3.2 Pishahang in 5G Operating System
	5.3.3 Pishahang in 5G-PICTURE Demonstration
	5.3.3.1 Network Service
	5.3.3.2 Evaluation Results

	5.4 Related Work
	5.5 Conclusion

	6 Dynamic Management and Orchestration of Network Services
	6.1 Introduction
	6.2 Multi-version Services
	6.2.1 Multi-Version Network Function (MVNF)
	6.2.1.1 MVNFs Available for Multiple Virtualization Techniques
	6.2.1.2 MVNFs with Multiple Hardware Implementations

	6.2.2 Multi-Version Network Service (MVNS)

	6.3 Multi-version Services Analysis
	6.3.1 Performance Analysis
	6.3.2 Cost Analysis

	6.4 Multi-version Services Orchestration
	6.4.1 Requirements
	6.4.2 Design and Implementation
	6.4.2.1 Multi-version Service Descriptors
	6.4.2.2 Multi-version Service Manager

	6.4.3 Evaluation

	6.5 Related Work
	6.6 Conclusion

	7 Final Thoughts
	7.1 Summary
	7.2 Conclusion
	7.3 Future research

	Acronyms
	Bibliography

