
Faculty for Computer Science, Electrical Engineering and Mathematics

CogniCrypt –
The Secure Integration of Cryptographic

Software

Stefan Krüger

Doctoral Thesis
Submitted in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Advisors
Prof. Dr. Eric Bodden
Prof. Dr. Karim Ali

Paderborn, October 15, 2020

Abstract

Prior research has empirically laid bare the widespread misuse of cryptographic APIs in soft-
ware applications. Developers struggle with bad API design and lack of cryptographic knowl-
edge when they attempt to implement cryptographic features into their applications. Several
approaches and tools have been proposed to solve this issue, but all fall short in addressing
developers’ needs in one way or another. This results in a landscape of patchy solutions.

In this thesis, we address the issue of cryptographic misuse more systematically through
CogniCrypt. CogniCrypt integrates different kinds of tool support into a unified approach
in order to lift the burden of needing to know how to use cryptographic APIs from the developer.
Front and center in our approach is CrySL, a specification language for bridging the cognitive
gap between cryptography experts and developers. CrySL enables cryptography experts to
specify the secure usage of the cryptographic APIs they develop. We have implemented a
compiler for CrySL that facilitates building API tool support on top of CrySL specifications.
We have further devised extensive CrySL rule sets for several cryptographic APIs in Java.

As a first type of tool support, we present the context-sensitive and flow-sensitive demand-
driven static analysis CogniCryptsast. CogniCryptsast helps developers by automatically
checking a given application for compliance with the CrySL-encoded rules. We have empirically
evaluated CogniCryptsast by analyzing 10,000 Android apps and 204,788 current Java software
artefacts on Maven Central. Our findings confirm previous results with 95% of apps and 63%
of Maven artefacts containing at least one misuse.

We have further devised CogniCryptgen, a code generator that proactively assists devel-
opers in using Java cryptographic APIs correctly. Prior attempts to address misuses focused on
detecting them after the fact. CogniCryptgen, on the other hand, supports developers avoid-
ing such misuses in the first place and may therefore help significantly reducing development
cost. CogniCryptgen accepts as input a code template and CrySL rules. The code templates
in CogniCryptgen are minimal, only comprising simple glue code. All security-sensitive code
is generated fully automatically from CrySL rules that the templates merely refer to. That
way, generated code is provably correct and secure with respect to CrySL definitions. Cog-
niCryptgen supports the implementation of the most common cryptographic use cases, ranging
from password-based encryption to digital signatures. We have empirically evaluated Cog-
niCryptgen from the perspectives of both cryptographic-API and application developers. Our
results show that CogniCryptgen is fast enough to be used during development. Furthermore,
it requires minimal development and maintenance effort and no further programming-language
skills beyond Java. Real-world developers see CogniCryptgen as significantly simpler to use
than a comparative template-based solution.

We have implemented CogniCrypt as an Eclipse plugin that combines CogniCryptsast
and CogniCryptgen and conducted a controlled experiment to evaluate the tool’s effectiveness.
The study included 24 participants who we asked to implement to short programming tasks,

iii

one with CogniCrypt, and one with a regular Eclipse without CogniCrypt. We measured
the functional correctness and security of participants’ code as well as their completion rate and
time. We also asked participants for their feedback on CogniCrypt’s usability. Our findings
show that study participants fared significantly better in all respects with CogniCrypt than
without. Participants further significantly preferred CogniCrypt over regular Eclipse. These
results provide strong evidence that CogniCrypt does accomplish the aspired goal of this
thesis: Effectively combatting cryptographic misuse by relieving software developers of having
to know how to use cryptographic APIs.

Zusammenfassung

Frühere Studien haben empirisch offenbart, dass Fehlbenutzungen von kryptographischen
APIs in Softwareanwendungen weitverbreitet sind. Dies geschieht vor allem, weil Software-
Entwickler_innen aufgrund schlechten API-Designs und fehlenden Kryptographiewissens Prob-
leme bekommen, wenn sie versuchen kryptographische Features zu implementieren. Die Lit-
eratur liefert mehrere Ansätze und Vorschläge diese Probleme zu lösen, aber alle scheitern
schlussendlich auf die eine oder andere Weise daran die Anforderungen der Entwickler_innen
zu erfüllen. Das Resultat ist eine insgesamt lückenhafte Landschaft verschiedener nur wenig
komplementärer Ansätze.

In dieser Arbeit adressieren wir das Problem kryptographischer Fehlbenutzungen system-
atischer durch CogniCrypt. CogniCrypt integriert verschiedene Arten von Tool Support
in einen gemeinsamen Ansatz, der Entwickler_innen davon befreit wissen zu müssen, wie diese
APIs benutzt werden müssen. Zentral für unseren Ansatz istCrySL, eine Beschreibungssprache,
die die kognitive Lücke zwischen Kryptographie-Expert_innen und Software-Entwickler_innen
überbrückt. CrySL ermöglicht es Kryptographie-Expert_innen zu spezifizeren, wie die APIs,
die sie bereitstellen, richtig benutzt werden. Wir haben einen Compiler für CrySL implemen-
tiert, der es erlaubt auf CrySL-Spezifikationen aufbauenden Tool Support zu entwickeln. Wir
haben weiterhin umfassende CrySL-Regelsätze für mehrere Crypto-APIs in Java erstellt.

Als ersten CrySL-basierten Tool Support präsentieren wir die statische, kontext- und fluss-
sensitive On-demand-ProgrammanalyseCogniCryptsast als Teil dieser Arbeit. CogniCryptsast
unterstützt Entwickler_innen, indem es automatisch eine Anwendung darauf überprüft, ob sie
sich an CrySL-Regeln hält. Wir haben CogniCryptsast durch eine Analyse von 10.000
Android-Apps und 204.788 Java-Programmen auf Maven Central evaluiert. Unsere Ergeb-
nisse sind im Einklang mit früheren Studien: 95% der Android-Apps und 63% der Maven-
Anwendungen beinhalten mindestens eine Fehlbenutzung.

Wir haben außerdem CogniCryptgen entworfen. CogniCryptgen ist ein Code Generator,
der Entwickler_innen proaktiv dabei hilft kryptographische APIs zu nutzen. Frühere Ansätze
haben sich vor allem darauf fokussiert, Fehlbenutzungen zu finden. CogniCryptgen ermöglicht
es Entwickler_innen solche Fehlbenutzungen komplett zu vermeiden und kann dadurch Entwick-
lungskosten signifikant reduzieren. CogniCryptgen verarbeitet ein Java-Code-Template und
CrySL-Regeln. Die Code-Templates in CogniCryptgen sind minimal, da sie lediglich einfach
Glue Code beinhaltet. CogniCryptgen generiert allen sicherheitsrelevanten Code automatisch
aus CrySL-Regeln. Dadurch ist der Code beweisbar korrekt und sicher in Bezug zu CrySL-
Definitionen. CogniCryptgen unterstützt die Implementierung der häufigsten kryptographis-
chen Anwendungsfälle, von passwort-basierter Verschlüsselung bishin zu digitalen Signaturen.
Wir haben CogniCryptgen empirisch sowohl aus Perspektive von Kryptographie-Expert_innen
als auch jener von Software-Entwickler_innen evaluiert. Unsere Ergebnisse zeigen, dass Cog-
niCryptgen schnell genug ist um während alltäglicher Entwicklungsarbeit eingesetzt zu wer-

v

den. Es erfodert auch nur minimalen Entwicklungs- und Wartungsaufwand und keine weiteren
über Java hinausgehenden Programmiersprachenkenntnisse. Entwickler_innen schätzen Cog-
niCryptgen als signifikant nützlicher ein denn eine ähnliche ebenfalls template-basierte Lösung.

Wir habenCogniCrypt schlussendlich als Eclipse-Plugin implementiert, dasCogniCryptgen
und CogniCryptsast kombiniert. Um die Effektivität des Tools zu evaluieren, haben wir
ein kontrolliertes Experiment mit dem Tool durchgeführt. An dem Experiment nahmen 24
Teilnehmer_innen teil, denen wir auftrugen zwei Programmieraufgaben zu absolvieren, eine
mit CogniCrypt, eine mit einem regulären Eclipse. Während der Studie maßen wir sowohl
wie viele Teilnehmer_innen die Aufgaben erfolgreich implementierten und wie lange sie dafür
brauchten als auch die funktionale Korrektheit und Sicherheit der Lösungen der Teilnehmenden.
Wir baten die Teilnehmer_innen auch uns Feedback bezüglich CogniCrypt s Nutzbarkeit zu
geben. Die Ergebnisse des Experiments zeigen, dass Teilnehmende in allen Belangen besser ab-
schnitten, wenn sie CogniCrypt nutzten. Die Teilnehmer_innen bevorzugten CogniCrypt
auch signifikant gegenüber dem regulären Eclipse. Diese Ergebnisse liefern starke Beweise,
dass CogniCrypt es schafft, die Ziele, die wir uns innerhalb dieser Arbeit gesetzt haben zu
erfüllen: Effektiv die Fehlbenutzung kryptographischer APIs zu bekämpfen, indem es Software-
Entwickler_innen die Bürde abnimmt, wissen zu müssen, wie kryptographische APIs sicher
benutzt werden.

Acknowledgements

I would first like to express gratitude to my two advisors Eric Bodden and Karim Ali. Without
them and their support throughout my Ph.D., this thesis would not have been possible. I
have greatly benefited from both their research expertise as well as their striving to provide
a constructive and safe work environment. Eric’s approachability has always been a source of
trust in him for me. Similarly, especially in the beginning, Karim managed to calmly give my
work the structure that it had previously lacked.

I also want to thank my colleagues from Paderborn University and TU Darmstadt. In
particular, I am grateful to Johannes Späth. Without his work on and contributions to this
research, it would not be in nearly as good a shape as it is now. I also very much enjoyed
and sometimes still think back to our seemingly endless discussions when we worked together.
I would further like to thank Lisa Nguyen Quang Do for having been there when it counted.
I have also always appreciated her unbreakable desire to get things right. I am also grateful
to Ben Hermann who I have always enjoyed conversing with and who I have great respect for.
I still hope, we will get the chance to write a follow-up paper to our work for GE. I am also
thankful to Sarah Nadi who I very much enjoyed working with in the beginning of my Ph.D.
To this day, I am impressed by her structured style of working and her writing. Thanks also
to Martin Mory, Philipp Holzinger, Philipp Schubert, Michael Reif, Anna-Katharina Wickert,
Johannes Geismann, Vera Meyer, and Sammy Maniera for their companionship over the past
few years. Special thanks to those among my colleagues who very generously allowed me to use
their showers when mine was broken.

Thanks further to Eric Bodden, Karim Ali, Mira Mezini, Sarah Nadi, Johannes Späth,
Michael Reif, Daniel Demmler, Felix Günther, Christian Weinert, and Florian Göpfert as well
as the members of project group SICS for their contributions to the research that eventually
culminated in this thesis. I would also like to thank all students who have contributed to
the implementation work around CogniCrypt over the years: André Sonntag, Patrick Hill,
Sneha Reddy, Shahrzad Asgharivaskasi, Enri Ozuni, Seena Mathew, Rakshit Krishnappa Ravi,
Sriteja Kummita, Gökçe Karakaya, Anemone Kampkötter, Taslima Akter, Adnan Manzoor, and
Mohammad Zahree. Lastly, thanks also to those who gave insightful and valuable feedback to
my journal, conference, and workshop papers and all participants of my two user studies.

vii

Contents

1 Introduction 1
1.1 A Motivating Example . 2
1.2 A Broader Perspective . 3
1.3 Contributions of the Thesis . 5
1.4 Structure of the thesis . 6

2 Background 7
2.1 Cryptography . 7

2.1.1 Low-level Cryptographic Operations . 7
2.1.2 Transport Layer Security (TLS) . 10
2.1.3 Implementation in Java . 10

2.2 Static Data-Flow Analysis . 12
2.2.1 Types of Analyses . 12
2.2.2 Analysis Configuration . 13

3 CogniCrypt 17
3.1 CogniCrypt in a Nutshell . 17
3.2 Integrated Components . 19

3.2.1 Use Cases . 20
3.2.2 APIs . 22

3.3 Conclusion . 22

4 Related Work 23
4.1 Usability & Re-design of Crypto APIs . 23
4.2 Propping up Libraries . 26
4.3 Fixing Existing Resources for Helping Software Developers 26
4.4 Security Awareness in Organisations . 27
4.5 Conclusion . 28

5 CrySL 29
5.1 Syntax . 29

5.1.1 Design Decisions Behind CrySL . 29
5.1.2 Sections in a CrySL Rule . 31

5.2 CrySL Formal Semantics . 35
5.2.1 Basic Definitions . 37
5.2.2 Runtime Semantics . 37

5.3 Implementation . 40

xi

5.4 Limitations . 43
5.5 Related Work . 44

5.5.1 Languages for Specifying and Checking API Properties 44
5.5.2 Inference/Mining of API-usage Specifications 44

5.6 Conclusion . 45

6 CogniCryptsast 47
6.1 Detecting Misuses of Crypto APIs . 47
6.2 Implementation . 51
6.3 Crypto-API Misuse in Android Apps . 51

6.3.1 Precision and Recall (RQ1) . 52
6.3.2 Types of Misuses (RQ2) . 53
6.3.3 Performance (RQ3) . 54
6.3.4 Comparison to Existing Tools (RQ4) . 55
6.3.5 Threats to Validity . 57

6.4 Crypto-API Misuse in Secruity-critical Android Apps 57
6.4.1 Setup . 57
6.4.2 Results (RQ5– RQ7) . 58
6.4.3 Case Studies . 59

6.5 Crypto-API Misuse in Java Software . 60
6.5.1 Setup . 61
6.5.2 Results (RQ8– RQ10) . 61
6.5.3 Case Studies . 62

6.6 Related Work . 65
6.6.1 Detecting Misuses of Crypto APIs . 65
6.6.2 Repairing Misuses of Crypto APIs . 68

6.7 Conclusion . 69

7 CogniCryptgen 71
7.1 Generating Secure Code From CrySL . 71

7.1.1 Design Considerations . 72
7.1.2 Configuring Solutions with Java Code Templates 72
7.1.3 Generating Secure Code from Templates 74

7.2 Implementation Details . 76
7.3 Evaluation . 77

7.3.1 Implementation of common use cases (RQ11) 77
7.3.2 Performance (RQ12 and RQ13) . 78
7.3.3 Effort of Artefact Creation and Maintenance (RQ14) 79
7.3.4 Usability (RQ15) . 80
7.3.5 Discussion . 81
7.3.6 Threats To Validity . 81

7.4 Related Work . 82
7.4.1 Generating API Usage Code . 82
7.4.2 Generating Secure Code . 82

7.5 Conclusion . 83

xii

8 User Study 85
8.1 Related Work . 85
8.2 Experimental Design . 86

8.2.1 Object of the Experiment and Methodology 86
8.2.2 Participants and Experiment Context . 87
8.2.3 Collected Measurements . 87
8.2.4 Survey Questionnaire . 89
8.2.5 Pre-Testing . 91

8.3 Results . 91
8.3.1 Functionality (RQ16) . 91
8.3.2 Security (RQ17) . 95
8.3.3 Completion Time (RQ18) . 96
8.3.4 Usability (RQ19) . 97
8.3.5 Obstacles (RQ20) . 98

8.4 Discussion . 98
8.5 Threats to Validity . 99
8.6 Conclusion . 100

9 Further Applications of CrySL 101
9.1 CryptoOracle – Wrapper Library with Runtime Checks 101
9.2 CogniCryptfix – Fixing Cryptographic Misuses in Vulnerable Code 102
9.3 CogniCrypttest – Generating Test Suites for APIs 104
9.4 CogniCryptdoc – Generating documentation for hard-to-use APIs 105
9.5 Conclusion . 108

10 Conclusion 109

Bibliography 111

xiii

xiv

Introduction
1

Digital devices are widely used for storing sensitive data. Cryptography is the primary means
to protect such data from eavesdropping or forgery. For this protection to be effective, the
used cryptographic algorithms must first be conceptually secure, that is, there must exist no
attacks to break them. Most algorithms get broken eventually through thorough cryptanalysis or
thanks to advancing computing power, but a wide range of still-secure algorithms is available at
any given time. Moreover, cryptographic algorithms must be implemented securely in the used
programming language. A security-breaking bug in an implementation makes all software that
relies on this implementation vulnerable to the same attack. Patches may fix the vulnerability,
but any version up to the patch may no longer be used and its use must be phased out quickly.
Rolling out such patches is no easy endeavour, even less so when cryptographic implementations
are shipped as part of a programming language’s development kit.

While these problems are indeed still of relevance to contemporary cryptography, another
problem has arisen and it appears to impact the security of actual cryptographic applications
to an even greater extent. Lazar et al. [LCWZ14] investigated 269 cryptography-related vul-
nerabilities and found that only 17% are related to insecure implementations of algorithms. In
stark contrast, 223 of these vulnerabilities (83%) are caused by application developers failing
to integrate cryptographic algorithms into their code. All research investigating this issue con-
cludes that the phenomenon is vast in size [EBFK13, KSA+19b, CNKX16, SDG+14, RXA+19,
MBB18, GWL+19, WLZ+17, LZLG14, Fei19, ZCD+19, Ver17]. The specific reasons behind in-
dividual misuses may be manifold, but the design of cryptographic libraries and their application
programming interfaces (API) appear to take a central role in why the misuse is as widespread
as it is. While some of the APIs have been in active development for a decade or more, their
use is largely still far from straightforward for developers as the following example illustrates.

1

1.1 A Motivating Example

1.1 A Motivating Example

1 public Key generateKey (String pwd) {
2 byte [] salt = {15, -12, 94, 0, 12, 3, -65, 73, -1, -84, -35};
3 PBEKeySpec spec = new PBEKeySpec (pwd. toCharArray (), salt , 100000 , 256);
4
5 SecretKeyFactory skf =

SecretKeyFactory . getInstance (" PBKDF2WithHmacSHA256 ");
6 byte [] keyMaterial = skf. generateSecret (spec). getEncoded ();
7
8 SecretKeySpec cipherKey = new SecretKeySpec (keyMaterial , "AES");
9 return cipherKey ;
10 }
11
12 public byte [] encrypt (byte [] plaintext , Key cipherKey) {
13 Cipher ciph = Cipher . getInstance ("AES");
14 ciph.init(Cipher . ENCRYPT_MODE , cipherKey);
15 return ciph. doFinal (plaintext);
16 }
17
18 public byte [] decrypt (byte [] ciphertext , Key cipherKey) {
19 Cipher ciph = Cipher . getInstance ("AES");
20 ciph.init(Cipher . DECRYPT_MODE , cipherKey);
21 return ciph. doFinal (ciphertext);
22 }

Figure 1.1: An Example Illustrating an Incorrect Implementation of a Password-based Encryp-
tion (PBE) in Java.

For the purpose of password-based data encryption (PBE), the Java Cryptography Architecture
(JCA) [Inc17], the most widely used cryptographic library for Java [NKMB16], offers APIs
PBEKeySpec and Cipher. The former is used for the derivation of a cryptographic key from
a password, the latter for the actual encryption. Figure 1.1 presents a potential use of these
classes that is can be found in numerous real-world applications.

The method generateKey() begins with the setup of the encryption key by creating a
PBEKeySpec object. The constructor of PBEKeySpec expects a password, a salt, an iteration
count, and a key length. The PBEKeySpec object, once created, is passed to a SecretKeyFactory
that uses the password-based key-derivation algorithm PBKDF2 to generate key material (Lines 5–
6). Based on this key material, Line 8 generates a key for the symmetric cipher AES. The
method encrypt() then executes the actual encryption using the class Cipher. Line 13 selects
the encryption algorithm AES to be used. The call to init() at Line 14 puts the Cipher object
in encryption mode and makes it use the previously generated key for the encryption. The last
statement of the method completes the encryption by a call to doFinal(). Method decrypt()
reverses this operation to receive the plaintext.

While the example avoids some common misuses (e.g., using a low iteration count [EBFK13,
KSA+18, BDA+17, SDG+14, CNKX16]), it contains several less trivial misuses that make the
code insecure, three of which are related to PBEKeySpec, two more to Cipher. Three of the
four arguments to the constructor (Line 3) have usage constraints, and the example breaks
two of them. Let us first investigate the parameter that it sets correctly: the iteration count.
There is no general consensus on what a secure iteration count is, but 100,000 is well above
most recommendations [GGF17, fISB17, Nat18]. The first misuse relates to the constant salt
that is passed to the constructor call. Salts should be generated through a cryptographically

2

Chapter 1. Introduction

secure random source to keep them unpredictable [GGF17, fISB17]. The second misuse is for
the argument pwd. The constructor of PBEKeySpec expects the password to be of type char[],
and it does so for a good reason. Passwords should not remain accessible in memory any longer
than absolutely necessary. Unlike arrays, strings are immutable in Java. Whenever a string is
modified, a new string is created, and the old one is kept in memory until garbage-collected. To
limit the password’s lifetime in memory, developers must favour using char[] over String for
passwords and clear the array after passing it to the constructor [Ora19b]. The third misuse
is related to the fact that PBEKeySpec does not automatically clear the password soon after
use. Instead, it expects the developer to call clearPassword() after the object has fulfilled its
purpose, which the code in Figure 1.1 does not do.

Method encrypt() exhibits a common misuse [EBFK13, KSA+19b]. The method Cipher.
getInstance() does not just expect an algorithm, but also a mode of operation and padding
scheme. Block ciphers, such as AES, the algorithm used in the example, require such a mode
and padding scheme as they divide plaintexts into blocks and perform the encryption block-
by block. To get the full ciphertext, such algorithms subsequently re-assemble the ciphertext
blocks and mode of operation and padding scheme configure how this process is handled. If
the developer fails to properly specify these two parameters, like in Line 13, the underlying
library selects them automatically based on the passed algorithm. Unfortunately, the default
JCA provider selects Electronic Code Book mode as mode of operation. This mode is widely
considered insecure [fISB17, GGF17] for plaintexts longer than a single block. Fixing just the
mode will not suffice, though. All other modes of operation require additional outside data (e.g.,
initialization vectors, nonces) for secure re-assembling. The developer may either provide this
data themselves to the init() call in Line 14, or if not, the underlying provider again generates
it for them. In the latter case, they must then retrieve it through a call to Cipher.getIV()
on ciph. In either case, they must append this data to the ciphertext to ensure decryption is
possible.

Although the code contains these security-breaking misuses, it nonetheless runs without
throwing exceptions. Not only must developers make sure to use the API in a functionally
correct way, they also must consider the code’s security properties. This scenario is especially
concerning considering that Java does not provide any tool support to detect insecure uses.

1.2 A Broader Perspective

While the issues the example illustrates may look isolated or cherry-picked at first, they are really
not. As argued above, crypto(graphic) APIs are frequently misused. A huge body of research
on different programming languages backs up this conclusion [EBFK13, KSA+19b, CNKX16,
SDG+14, RXA+19, MBB18, GWL+19, WLZ+17, LZLG14, Fei19, ZCD+19, Ver17]. As a result,
despite the availability of mature, (still-)secure-to-use, and securely-implemented cryptographic
algorithms, the vast majority of cryptographic applications is insecure. These findings highlight
the importance of addressing the source of cryptographic insecurity.

As a first step towards this goal, Nadi et al. [NKMB16] previously triangulated the results
of four empirical studies to investigate the reasons for the misuse. Two of them survey Java
developers familiar with the Java Crypto APIs. The majority of participants (65%) found their
respective Crypto APIs hard to use. When asked why, participants mentioned the API level
of abstraction (35%), insufficient documentation without examples (43%), and an API design
(33%) that makes it difficult to understand how to properly use the API. These results indicate
that participants not only lack the domain knowledge, but also struggle with APIs themselves
and how to use them. When asked what would help them use these APIs, they suggested
better documentation, different API designs, and additional tool support. In terms of API

3

1.2 A Broader Perspective

design, participants used terms such as use cases, task-based, and high-level. These suggestions
indicate that developers struggle with the fact that cryptographic APIs reside on the low level
of a security primitive API [IG17], i.e., they expose cryptographic algorithms directly to the
developer, instead of providing higher-level convenience methods such as encryptFile(). When
it comes to tool support, participants suggested tools such as CryptoDebugger, analysis tools that
find misuses and provide code templates or generate code for common functionality.

The literature offers several approaches to fixing cryptographic misuse that roughly follow the
participants’ suggestions. One particular line of research attempts to improve existing resources
such as nudging people towards secure examples on popular online Q&A forums [FXK+19] or
designing API documentation to be more example-driven [MW18, HZH19]. These attempts
would certainly improve the situation, do have the drawback, however, of having to be adopted
by the official vendor of the forum or API, respectively. Others have attempted the more
long-term solution of redesigning APIs such that they provide easy-to-use interfaces [BPF19,
BLS12, FLW12, Lou, Pytb, Soda, Sodb, Mai, Pyta, Goo, Smi, PTSA+, Cos] or suggesting
what such redesigns should look like [GIW+, ABF+17, MKW18, IG17, GS16, PHR19, WvO08,
vdLRWW18, KLCL18, IKND16]. These endeavours are worth their time as the mistakes made
in the design of many widely used Crypto APIs must not be made again. Discussions on better
designs drive the understanding forward and attempts at re-designing allow for usability testing
to determine if the suggestions actually work [ABF+17, MKW18]. Yet, the badly-designed APIs
do already exist and they are widely used [NKMB16]. Developers are stuck using them for the
time being and cannot force a re-design on their own.

Yet other work has attempted to detect misuses of Crypto APIs through program anal-
ysis [EBFK13, CNKX16, SDG+14, RXA+19, MBB18, GWL+19, WLZ+17, LZLG14, Fei19,
ZCD+19] and program-repair [MLLD16, SZSS19]. While this step offers relief for developers
who use existing APIs, existing approaches are insufficient for several reasons. First, these
approaches implement mostly lightweight syntactic checks, which yield fast analysis times at
the cost of missing a high number of false negatives. Therefore, such analyses fail to warn
about many insecure uses of cryptography, especially non-trivial ones like the ones we dis-
cussed above for Figure 1.1. Moreover, existing tools cannot easily be extended to cover those
rules; instead they have hard coded cryptography-specific usage rules. The JCA offers a plu-
gin design that enables different providers to offer different crypto implementations through
the same API, often imposing slightly different usage requirements on their clients. Hard-
coded rules can hardly reflect this diversity. Such detection and mitigation techniques also
come at a cost when used on their own: developers first must integrate the API insecurely to
then—hopefully, at some point—learn how to fix the integration, a request that seems ques-
tionable when taking into account the results of the study by Nadi et al. [NKMB16] and oth-
ers [EBFK13, GKL+19, PTRV18, TJVW19, NDT+17, NDTS18, NDG+19]. We conclude that
existing work on fixing crypto-API misuse is quite patchy. Several different and independent
approaches in different directions may provide short-term relief for some cryptographic misuse
or a promise for a better future, but there is no comprehensive direct support.

This thesis takes a different approach at addressing cryptographic misuse. We recognize that
application developers require more immediate help. As a result, we design our approach to help
developers while they are working with these APIs right now. From the previous discussion, we
also conclude that developer support should come from different angles. Just a program analysis
or just better documentation do not suffice. Instead, our solution will integrate multiple types
of support into a single unified approach. In summary, our thesis follows this goal:

4

Chapter 1. Introduction

Crypto-API misuse can be effectively combatted through
an integrated approach that relieves the software
developer of having to know how to use the API.

1.3 Contributions of the Thesis

In this thesis, we present CogniCrypt, an integrated approach to addressing misuse of Crypto
APIs. To smoothly integrate into developers’ workflows, we have designed and prototypically
implemented CogniCrypt as a plugin for the IDE Eclipse. For the purpose of this thesis,
we divide CogniCrypt into three individual contributions. At the heart of our approach lies
CrySL, this thesis’ first contribution. CrySL is a textual specification language that enables
domain experts to formally specify how to use an API. By means of CrySL, such experts may
express in which order methods are to be called, mark methods as deprecated and otherwise
forbidden, prohibit no-longer or never-secure algorithms, as well as define requirements for how
two classes may (not) be composed. We have modeled the most commonly used cryptographic
APIs in Java using CrySL. On top of CrySL, different kinds of tool support that aid developers
in using the covered APIs may be built, two of which we further present in this thesis.

The first such tool support is CogniCryptsast, a static program analyzer that checks a
given Java or Android app for compliance with the encoded CrySL rules. To this end, it
translates rules in CrySL into an efficient, yet precise flow-sensitive and context-sensitive static
data-flow analyses. CogniCryptsast goes beyond methods that are useful for general vali-
dation of API usage (e.g., typestate analysis [AAC+05, BA07, NL08, Bod10] and data-flow
checks [ABB+09, ARF+14]) by enabling the check of domain-specific constraints related to
cryptographic algorithms and their parameters. We have evaluated CogniCryptsast in three
studies. First, we have run it on 10,000 randomly selected Android apps. Our study reveals 95%
of Android apps to contain at least one misuse. Second, we have applied the tool to 250 Android
apps from security-critical domains, of which we find 71% to misuse Crypto APIs. In our third
study, we have executed CogniCryptsast on 204,788 artefacts on Maven Central. Across all
analyzed artefacts that use cryptographic APIs, CogniCryptsast finds 24,349 cryptography
misuses in 5,712 Java artefacts. More than 63% of all artefacts that use the JCA contain at
least one misuse.

This thesis further contributes CogniCryptgen, a code generator for secure integrations
of Crypto APIs. The approach operates on a Java project into which it generates code, and
accepts as input a template with interface and glue code, as well as usage rules in CrySL. Our
design of CogniCryptgen simplifies the used code templates by having the vast majority of the
code be generated fully automatically from CrySL. This code is free of syntax errors, type-safe,
and provably correct and secure by construction (assuming a correct and secure specification of
CrySL rules by the domain experts). We have evaluated CogniCryptgen in terms of expres-
siveness, maintainability, and usability. This evaluation shows that CogniCryptgen supports
the most common cryptographic use cases, with significant lower effort for template developers
than in other comparative code generators.

In our final contribution, we evaluate the effectiveness of CogniCrypt. To this end, we
conduct a user study with 24 participants using the Eclipse prototype of CogniCrypt. Par-
ticipants were asked to perform two programming tasks, one with CogniCrypt, one with a
regular Eclipse. At the end, they provided feedback about their experience. Our results show
that, with CogniCrypt, participants produce not only more secure code but are also signifi-
cantly faster at producing functional code. In the post-study survey, participants also indicate
a strong preference for CogniCrypt over plain Eclipse.

5

1.4 Structure of the thesis

1.4 Structure of the thesis
The remainder of this thesis is structured as follows: In Chapter 2, we give an introduction
to concepts necessary to understand the remainder of this thesis, including cryptography and
different forms of static data-flow analysis. Chapter 3 presents a high-level overview of Cog-
niCrypt. In Chapter 4, we discuss CogniCrypt’s related work. Chapter 5 provides an in-
depth discussion of CrySL. To this end, it presents the reasoning behind design decisions made
for CrySL, its syntax, and formal semantics. Chapter 6 discusses CogniCryptsast. In that
chapter, we describe how CogniCryptsast implements CrySL’s formal semantics and our two
large-scale evaluations. In Chapter 7, we present CogniCryptgen. The chapter first describes
how CogniCryptgen transforms CrySL specifications into Java code. Later on, it discusses our
multi-faceted evaluation of CogniCryptgen. Chapter 8 provides a description of a user study
evaluating CogniCrypt in the form of its prototypical implementation as an Eclipse plugin.
In Chapter 9, we discuss further applications of CrySL to illustrate its expressive power. The
thesis concludes with Chapter 10.

The work presented in Chapter 3 has, in parts, been published at the tool track of the 32nd
ACM/IEEE international conference Automated Software Engineering (ASE) [KNR+17]. For
the purpose of this thesis, we have updated the text from that paper with development that has
taken place since publication.

The work in Chapters 5 and 6 has originally been published at the main research track of the
32nd European Conference on Object-oriented Programming (ECOOP) [KSA+18]. This publi-
cation does neither include Section 5.4 nor the studies discussed in Sections 6.4 and 6.5. An ex-
tended version that does include the latter study has been published in the IEEE Transactions on
Software Engineering journal (TSE) [KSA+19b] in 2020. In extension to both these papers, this
thesis provides a more in-depth discussion of CrySL’s limitations, CogniCryptsast’s workflow,
and a study of 250 security-critical Android apps that we conducted with CogniCryptsast.

Chapter 7 has been published at the 2020 Symposium on Code Generation and Optmisation
(CGO) [KAB20].

An extended version of the work presented in Chapter 8 is currently work in progress [KNR+21].

6

Background
2

In this chapter, we briefly introduce the fundamentals of cryptography, how this cryptography
is implemented in Java, and discuss topics on static data flow analysis that are of relevance of
to this thesis.

2.1 Cryptography
For the purpose of this thesis, we provide a brief introduction into a set of cryptographic oper-
ations, this thesis will discuss. We also discuss the foundations of the transport layer security
protocol (TLS). Finally, we introduce how these cryptographic concepts are implemented in
Java.

2.1.1 Low-level Cryptographic Operations

Through cryptography, a number of security properties may be ensured: confidentiality, in-
tegrity, authenticity, and non-repudiation [Buc16]. No single cryptographic operation may en-
sure all properties at the same time. Instead, multiple operations must be combined to achieve
this end.

Encryption

Encryption ensures the confidentiality of data, that is, it guarantees that only certain parties
may access and read it [Buc16]. To this end, it transforms the original data—the plaintext—such
that it is no longer distinguishable from random data. This result of an encryption is a ciphertext.
In order to gain back the plaintext from the ciphertext, the backtransformation decryption can
be applied. In order to perform en- and decryption deterministically, one requires at least one
cryptographic key. Several types of encryption algorithms—orciphers—are distinguished based
on the number of keys involved.

Symmetric Encryption Symmetric or secret-key ciphers use the same key for both en- and
decryption. This setup requires to either store the key between en- and decryption or to transmit
it from the encrypting to the decrypting party. Since encryption aims at ensuring confidentiality
of data, there often is no easily available, secure alternative way to transmit or store keys. If
a channel were available, it could have instead been used to transmit the plaintext to begin
with. The more parties are to be involved, the more aggravated this issue becomes. As a

7

2.1 Cryptography

result, the rather complicated distribution and management of keys is the major drawback of
symmetric encryption. Symmetric ciphers may further be distinguished into stream and block
ciphers [Buc16]. Stream ciphers encrypt plaintext bit by bit by transforming the key into a key
stream. Currently, no stream ciphers are recommended for use [GGF17, fISB17]. In contrast,
block ciphers split the plaintext into blocks of equal length. Subsequently, these blocks are
encrypted into blocks of ciphertext with the same size. The most widely accepted block cipher
is AES [DR98, DR99, Buc16].

For the purpose of this thesis, we look further into block ciphers. Block ciphers require
further configuration along two dimensions. There are first several different options for how in-
dividual plaintext blocks are encrypted and ciphertext blocks are re-assembled into a complete
ciphertext. How a block cipher handles individual blocks is determined by its block cipher mode
of operation. The simplest of these modes is the Electronic Codebook (ECB) mode [Buc16].
When following ECB mode, a block cipher encrypts each plaintext block on its own and subse-
quently concatenates the ciphertext blocks independently of the other blocks. This approach,
however, results in the same plaintext blocks being encrypted into the same ciphertext blocks,
therefore revealing patterns in plaintexts and leaving the ciphertext insecure [GGF17, fISB17].
Various other modes of operation such as Cipher Block Chaining (CBC) [EMST78, Buc16],
Counter Mode (CTR) [DH79, Buc16], Galois/Counter Mode (GCM) [MV04], or Output Feed-
back (OFB) [Buc16] have been suggested to address this shortcoming. Common to all alterna-
tives are two things of relevance for this thesis. First, the encryption of one plaintext blocks is
influenced by encryption of another, usually by XOR-ing the current plaintext block with the
previous ciphertext blocks before encrypting it. Second, they require an initialization vector
(IV) on top of key and plaintext that either needs to be random (CBC, CFB, OFB) or unique
for each plaintext (GCM, CTR) [Buc16]. The second configuration parameter of block ciphers
revolves around block and plaintext lengths. Each block cipher has a fixed block size, that is,
they require each plaintext block to have a certain size. Yet, real-world plaintexts are unlikely
to always be of a length that is divisible by a block cipher’s block size. In consequence, the
final plaintext block may end up short in most real-world scenarios. To encrypt plaintexts of
arbitrary lengths, block ciphers pad the last block of each plaintext to their block size. The
most commonly used padding schemes for block ciphers PKCS5 and PKCS7 [Hou09] append
the number of bytes, which need to be added, as many times as are missing from a complete
block. In other words, a block cipher following PKCS5/PKCS7 padding adds twenty bytes with
the value 20 to a final block that is missing twenty bytes.

Asymmetric Encryption In asymmetric or public-key encryption, two keys are involved.
One of them should be kept private, the other one is considered public [Buc16]. Asymmetric
ciphers encrypt the plaintext with the public key that belongs to the party whom the data is for.
They, in turn, may decrypt the ciphertext using their own private key. This setup gets around the
problem of key distribution symmetric encryption exhibits because the public key can be shared
freely. The practicality of asymmetric ciphers is significantly reduced by their comparatively low
performance. While symmetric ciphers rely on simple shifting and permutation operations, the
security of asymmetric ciphers is largely based on the hardness of their underlying mathematical
operations (e.g., prime factorization [RSA78]), making them generally more computationally
expensive than symmetric ciphers. Often used algorithms include RSA [RSA78, Buc16, fISB17]
and ElGamal [Gam84, Buc16].

Hybrid Encryption To achieve the best of both worlds, symmetric and asymmetric ciphers
are often combined in practice into hybrid approaches. In such approaches, the asymmetric
cipher encrypts the cryptographic key that is employed by the symmetric cipher. The symmetric

8

Chapter 2. Background

cipher’s role is to encrypt the actual data. Through this setup, the main drawbacks of both
symmetric and asymmetric encryption get mitigated. First, thanks to the asymmetric encryption
of the symmetric key, this key does not need to be shared. Instead, only the parties’ public keys
require sharing. Second, the biggest portion of the plaintext is encrypted through the faster
symmetric cipher. As a result, hybrid approaches achieve better performance than asymmetric
ones on their own.

Hashing

Hashing is a cryptographic operation aiming to ensure integrity of the data it is performed
upon [Buc16]. Some data’s integrity is ensured, when it is guaranteed that this data has not
been modified unnoticeably or tampered with. To ensure this guarantee, a hashing operation
maps input data of arbitrary length onto data of a fixed length, often referred to as the hash. In
order for such an operation to be secure, the hashing algorithm has to be a) irreversible and b)
free of collisions [Buc16]. If the former condition is violated and there is a back-transformation,
the hash would reveal the original data. The latter condition is broken if a hash algorithm
produces the same output for two different inputs. No real-world hash algorithm can provably
attain both properties [Buc16]. Instead, for practicality reasons, they are approximated: It
must be practically impossible to retrieve the original data from a hash, find an input that
produces the same hash as a given input, and, lastly, compute the same hash for two different
inputs [fISB17]. The algorithm families SHA-2 and SHA-3 are most commonly recommended
to use [fISB17, GGF17].

In practice, hashes are most often used to provide means for secure password storage for log-
in systems. Since secure hashing algorithms ensure integrity and do not allow for the original
data to be computed from a hash, only password hashes must be stored, not the passwords
themselves. When a user attempts to log into their account, the password they enter is hashed
in the same way and the two hashes can be compared. To circumvent this security measure,
attackers may store the hash values of common passwords in look-up tables. One mitigation
of this line of attack has data be appended to the passwords before hashing. This data —
also called salts — needs to be random and can be stored alongside the password hash. The
purpose of salts is not to introduce an unknowable factor to the hashing process, which is why
they do not need extra protection wherever they are stored. Instead, the random appendix to
each password causes no password to be common anymore, significantly limiting the benefits of
lookup tables.

Message Authentication Codes (MAC)

Message Authentication Codes (MAC) are closely related to hashing operations, but additionally
involve one cryptographic key [Buc16]. Thanks to this key, a MAC may not only ensure the
integrity but also the authenticity of the mac-ed data. In practice, MACs are employed when
a sender of a message intends to prove they are the party who has sent a message. The MAC
algorithm computes a tag using a secret key. They then send message, key, and tag to the
receiver. The key has to be kept secret during transmission. When the receiver wants to check
the authenticity, they apply the same MAC algorithm and key to the message. If the tag they
create on their end matches the one they have received from the sender, the message indeed
comes from the sender [Buc16]. Similarly to symmetric-key encryption, the main drawback of
MACs relates to key distribution and management. The confidentiality of the key needs to be
ensured at all times. Once the key is compromised, the receiver can no longer be sure that
the message was not sent by someone else. Commonly, MAC algorithms are based on hashing
algorithms, often then called keyed-hash MACs or HMACs. Alternatively, block ciphers may

9

2.1 Cryptography

also be used to compute MACs. MAC algorithms based on block ciphers are called CMAC.
There is also a MAC algorithm that is based on the mode of operation GCM called GMAC.

Digital Signatures

Digital signatures provide the public-key alternative for data integrity to the secret-key approach
of MACs, that is, two keys are involved in computing and verifying digital signatures [Buc16].
Each party again has a private key, they need to keep secret, and a public one, they can share
openly with everyone. In contrast to asymmetric encryption, the signature algorithm signs the
input data based on the signing party’s private key. The data, along with the signature, may
then be shared with other parties. These, in turn, may verify the signature using the signing
party’s public key. On top of integrity and authenticity of the data, this approach further
guarantees non-repudiation of the sender [Buc16]. Since public keys are public, everyone can
verify their signature on a piece of data, leaving them no option to claim the signature did not
originate from them.

2.1.2 Transport Layer Security (TLS)

Transport Layer Security (TLS) is a cryptographic protocol for secure communication over digital
channels [Res18, fISB19]. TLS is most commonly used on the internet to secure communication
between browsers and web servers. The protocol has originally been suggested under the name
Secure Socket Layer (SSL) protocol and has been released in seven versions (SSL 1.0, 2.0,
3.0 and TLS 1.0, 1.1, 1.2, 1.3). Currently, all TLS versions below TLS 1.2 are considered
insecure [fISB19]. For all less recent versions, practical attacks that break security guarantees
of the protocol exist.

When a client and a server attempt to establish a connection, they perform a handshake [Res18].
In this handshake, they agree on the security parameters of their communication, that is, TLS
protocol as well as the cipher suite used. A cipher suite is a set of three types of cryptographic
algorithms: key agreement, symmetric cipher, and MAC. By combining these three types of al-
gorithms, TLS-secured communications achieve a wide array of security properties. First, before
any messages containing payload may be sent, client and server must agree on a key. During
the key-agreement process, the two parties may also check each other’s identity. Second, client
and server encrypt and compute a MAC for each message they send to each other. This way,
the channel also ensures confidentiality and integrity of messages. Once the two communication
partners have completed the handshake, they can send messages to each other over the TLS
channel.

2.1.3 Implementation in Java

Java Security covers several areas, two of which are of relevance to this thesis: low-level cryp-
tography and secure channels. For both areas, the Java Development Kit (JDK) not only ships
with a set of APIs, but also with a default implementation of these interfaces. Both APIs follow
a provider model. That is, they define interfaces separate from implementations and enable
other implementations (hereafter referred to by their official name providers) to be plugged into
the interfaces. This design facilitates a greater flexibility in terms of which algorithms are im-
plemented as well as which implementation of a given algorithm is used. In the following, we
discuss the two APIs in more detail.

10

Chapter 2. Background

Figure 2.1: Provider-infrastructure-workflow Visualization from JCA Reference Guide [Inc17]

Java Cryptography Architecture (JCA)

The Java Cryptography Architecture (JCA) [Inc17] provides interfaces for low-level crypto-
graphic algorithms. Its interfaces cover a wide range of cryptographic services, including
symmetric and asymmetric encryption, hashing, MACs, digital signatures, key distribution,
and management. The JCA, bootstrapped with the JDK default implementation, is also the
most widely used Java Crypto API [NKMB16]. The main default provider is the SunJCE
provider [Ora20a]. One other often-used provider is BouncyCastle [Leg18]. BouncyCastle may
be used both independently through its own API as well as through the JCA interfaces as a
provider.

We take the example from the official JCA documentation [Inc17] to illustrate idea behind
the provider architecture. We show a call to MessageDigest.getInstance("SHA-256") in Fig-
ure 2.2 and how this call is handled by the JCA in Figure 2.1. During the execution of a Java pro-
gram, the JCA maintains a list of providers. This list contains providers that have registered with
the JCA. All providers in that list offer cryptographic services to the Java program if it uses the
JCA. When a program makes a call like the one to MessageDigest.getInstance("SHA-256"),
the JCA iterates through the providers in the list and requests the algorithm SHA-256 from
each one after another. The JCA selects the implementation of the first provider that confirms
it supports the requested algorithm. When no provider supports an algorithm, the JCA throws
an UnsupportedAlgorithmException.

23 public static void main(String ... args) {
24 MessageDigest md = MessageDigest . getInstance ("SHA -256");
25 }

Figure 2.2: A Call to MessageDigest.getInstance("SHA-256")

11

2.2 Static Data-Flow Analysis

Many APIs in the JCA contain this static factory method getInstance(). Or rather: several
overloads thereof (e.g., Cipher, MessageDigest, MAC, KeyGenerator). The first parameter in
each getInstance() method is the requested algorithm. However, programs may provide a
provider as the second parameter. Doing so allows them to request the implementation of
specific providers.

Java Secure Socket Extension (JSSE)

The Java Secure Socket Extension (JSSE) [Ora19a] provides security services revolving around
TLS. As with the JCA, the JDK not only ships with the APIs of the JSSE, but also comes with
an implementation, i.e., a provider. The default provider is the SUNJSSE provider [Ora20b].

The JSSE provides APIs to establish TLS sockets. When two sockets connect to each
other through a TLS connection, they offer an OutputStream and an InputStream to send
and receive data, respectively. When one socket sends data for the first time, the two sockets
automatically perform the TLS handshake. The JSSE provides a default configuration for TLS
sockets. However, both the list of enabled cipher suites as well as the list of enabled TLS protocols
contain insecure entries [Ora20b, fISB19]. Fortunately, one can configure cipher suites and TLS
protocols manually by calls to setEnabledCipherSuites() and setEnabledTLSProtocols(),
respectively.

2.2 Static Data-Flow Analysis
A static data-flow analysis is a type of program analysis that tracks data through a program
to reason about the program without executing it. Doing so enables an analysis to determine
certain properties about the program. Originally employed for compiler optimization, such
analyses are nowadays more often used to identify security vulnerabilities.

Static data-flow analyses usually transform a program under analysis into an intermediate
representation (IR). IRs generally restrict themselves to a low number of language constructs
an analysis must cover in order to analyse a program. Similarly, some IRs follow three-address
code, that is, they restrict the number of operands per statements to three. This limitation
may require to split nested statements in the original language into several simpler ones, but
still allows the IR to express all language elements. Such restrictions simplify analyses because
they significantly reduce the number of cases an analysis must cover. When all types of loops
are translated to the same (set of) IR constructs, there is no need for an analysis to distinguish
between these types of loops.

Subsequently, analysis tools parse the code in IR into data structures that facilitate further
analysis. To capture the control flow of individual methods, analyses employ control-flow graphs
(CFGs) that represent individual statements as nodes and potential control-flows between them
as edges. Analyses residing on the level of individual methods are called intraprocedural. Anal-
yses that go beyond the boundaries of individual methods by taking into account the effects of
method calls are interprocedural. To model effects of method calls, caller-callee relationships are
recorded in call graphs. Call graphs model methods as nodes and a call from one to another as
an edge between their corresponding nodes. To represent a whole program, analyses sometimes
combine both individual CFGs and the program’s call graph to an interprocedural control-flow
graph (ICFG).

2.2.1 Types of Analyses

Several types of data-flow analysis are used for security purposes, most notably taint analyses
for detecting SQL injections. For the purpose of this thesis, we focus our attention on the two

12

Chapter 2. Background

0start 1 2
PBEKeySpec clearPassword

Figure 2.3: State Machine for Class PBEKeySpec (Without the Implicit Error State).

types of static data-flow analysis that are of relevance for it: typestate and points-to analysis.

Typestate Analysis

A typestate of a given object specifies the operations that may be performed on this object at
a given point in the program [SY86]. A typestate analysis may be used to determine whether
operations on an object are performed in no other than the correct order. To this end, the
analysis holds a usage protocol specification of the typestates of an object, usually in the form
of a finite state machine. The target program is then checked by the typestate analysis for its
compliance with this usage protocol. State machines are enriched with an error state that is
transitioned to when the analysis detects an operation prohibited by the current typestate.

Consider the example of object spec of type PBEKeySpec from Figure 1.1. We display
PBEKeySpec’s state machine in Figure 2.3: one has to first invoke the constructor and, subse-
quently, method clearPassword(). We leave out the error state for simplicity’s sake. For the
invocation of the class’ constructor in Line 3, a typestate analysis transitions the state machine
from state 0 to state 1. If method generateKey() contained a call to clearPassword(), it would
further transition from state 1 to state 2. The latter state is the only accepting state of the state
machine as only after clearPassword() is called, the object has been used correctly. However,
this method is never invoked on spec during its lifetime (i.e., until the end of generateKey()).
As a result, the typestate analysis reports a violation of the usage protocol, still being in state
1. Similarly, if the constructor invocation were followed by a call to a method different from
clearPassword(), the analysis would transition the state machine to the error state.

Points-to analysis

A points-to analysis computes allocation sites of variables in a given target program. For a
program variable, such an analysis compiles a set of allocation sites—also called a points-to
set—this variable can point to [SB15]. Such information may be used to derive alias information
for objects and simplifies most other types of more complex analyses. Points-to analyses hence
often serve as auxiliary analyses for other analyses.

Consider the typestate analysis from above as an example. Assume that we defined a new
local variable specAlias of type PBEKeySpec as an alias of spec in Line 4 in generateKey().
Assume further, we added a call to specAlias.clearPassword() at the end of the method. In
order for the typestate analysis described above to determine that both spec and specAlias
alias, it may compute the points-to sets of both. This computation yields that both variables
can point to objects being created at the same allocation site, so possibly to the same object.

While computing points-to information is not the only way to determine aliases, the informa-
tion supports the typestate analysis. The same analysis without awareness of aliases would treat
spec and specAlias as two distinct objects and conclude that neither is used correctly. The
former because clearPassword() is never called, the latter since no constructor was invoked.

2.2.2 Analysis Configuration

Program analyses may exhibit different sensitivies that impact their precision and scalability.
In the following, we give a brief introduction to the ones relevant to this thesis.

13

2.2 Static Data-Flow Analysis

Flow Sensitivity

Flow sensitivity refers to the ability of a static analysis to determine the order of statements
and the general control flow of a method [SB15]. Most meaningful data-flow analyses are flow
sensitive to be able to track how data flows through a program.

Context Sensitivity

An interprocedural analysis is context-sensitive when it keeps track of calling contexts while
analyzing a method [SB15]. More specifically, that means, such an analysis is capable, after
finishing the analysis of one method, of returning to the particular call-site that originally
caused it to even go to that method.

Field Sensitivity

Field sensitivity refers to how an analysis treats fields. Data-flow analyses model field accesses
through access paths. Such a path generally consists of an object in a base class and a chain
of field accesses. The literature distinguishes three approaches of recognizing fields. Field-
insensitive analyses do not take into account fields whatsoever. Instead, they approximate fields
as their base object. An alternative to field-insensitive analyses that does not ignore fields are
field-based approaches. Here, fields are modelled as the field’s name and its declaring type. Such
approaches may provide better precision, if the program under analysis does not contain many
instances of objects of the same type. However, compared to field-insensitive approaches, they
also lose information about the base object. Both approaches may hence be seen as orthogonal.
Lastly, field-sensitive analyses include the base object in their modelling of a field. They thereby
distinguish different instances of the same field and offer the most precise treatment of fields as
a result. Field-sensitive approaches may however run into scalability issues because access paths
may, by definition, be of infinite length. To approximate such paths, analyses have traditionally
applied k-limiting approaches [Spä19], limiting the number of field accesses that are modelled
to a given k. In more recent years, k-limiting has more and more been replaced by pushdown
systems [RSJ03, Spä19].

Path Sensitivity

A static analysis is path-sensitive when it can distinguish between program paths. Only path-
sensitive analyses can meaningfully reason about the full effects of language constructs that make
a program branch. Path-sensitivity is, however, an undecidable problem statically. Whether or
not an if-condition evaluates to true or false might depend on a multitude of factors that are
hard or impossible to analyse (e.g., user input, other previous if-statements, the result of a
loop). In cases where input from the outside is involved, there is no way at all for the analysis
to determine which path is taken.

On-Demand vs. Whole-Program

Interprocedural analyses have traditionally been used to analyze the whole target program. This
approach, however, is quite resource-intensive, causing many more complex analyses to take
several hours to days and to consume large amounts of memory. In recent years, static analyses
have increasingly been designed in an on-demand manner [Bod18, SDAB16a, SAB17, RXA+19].
In contrast to whole-program analyses, on-demand analyses only analyze what is explicitly
necessary. A demand-driven alias analysis, for instance, does not compute all aliases of all
variables, but only answers an alias query for one particular set of variables at the given program

14

Chapter 2. Background

point. Jaiswal et al. [JKC18] argue that on-demand analyses not only make the analysis more
scalable, but simultaneously also more precise.

15

2.2 Static Data-Flow Analysis

16

CogniCrypt
3

Chapter 1 illustrated common pitfalls when using Crypto APIs, discussed these APIs’ widespread
misuse as a consequence, and motivated our work on fixing this misuse. This chapter introduces
CogniCrypt, our solution to the misuse and the main contribution of this thesis. CogniCrypt
integrates several types of tool support for Crypto APIs into one unified tool. The support
application developers receive from CogniCrypt enables them to use the APIs without first
needing to understand how to correctly and securely use them.

We have prototypically implemented CogniCrypt as an Eclipse plugin that supports Java
developers. As of now, the plugin comprises the two types of tool support we contribute as part
of this thesis:

• CogniCryptgen– Generate secure implementations for common use cases that involve
cryptography (e.g., data encryption).

• CogniCryptsast– Analyze developer code and generate warning messages for misuses of
cryptographic APIs.

A first outline of this research has been given by Arzt et al. [ANA+15] as early as October
2015. In the remainder of this chapter, we will give a high-level description of how a user would
interact with CogniCrypt as a plugin and describe the use cases and APIs the plugin supports.
While the plugin’s support is limited to Java, the concepts we lay out over the course of this
thesis are applicable to other programming languages as well.

3.1 CogniCrypt in a Nutshell
The Eclipse plugin CogniCrypt supports its users — Java application developers — in se-
curely using Java Crypto APIs. In particular, through the code generator CogniCryptgen,
CogniCrypt can support them in implementing PBE as we described it in Chapter 1. To gen-
erate code implementing this use case, a user has to click on the CogniCrypt code-generation
button in the Eclipse tool bar. The dialogue shown in Figure 3.1 pops up and the user has to
select the first icon from the list of use cases on the left. While the icons should give users a
hint regarding what kind of use cases CogniCrypt supports, CogniCrypt provides a more
detailed description of the use case that is selected at any given time. The user then answers
a few high-level questions that do not require deep cryptography knowledge. The answers to
these questions help CogniCrypt generate the appropriate source code. One such question
for PBE is “Which method of communication would you prefer to use for key exchange?” as

17

3.1 CogniCrypt in a Nutshell

Figure 3.1: Dialog for Task Selection.

Figure 3.2: Questions for PBE.

Figure 3.2 shows. Once the user has answered all questions, they have to select a file as depicted
in Figure 3.3. After they hit the Generate button, CogniCrypt generates two code artefacts.
First, it generates code that implements PBE into the package de.cognicrypt.crypto. Second,
CogniCrypt also generates a method templateUsage() into the file the user selected. This
method showcases how the implementation for PBE can be integrated into the user’s project.

In addition to CogniCryptgen, CogniCrypt notifies the user of misuses of Crypto APIs
by running the static analysis CogniCryptsast. Depending on how CogniCrypt is configured,
CogniCryptsast is either run automatically every time the code is compiled or must be triggered

18

Chapter 3. CogniCrypt

Figure 3.3: Selecting the File into Which templateUsage() is Generated.

explicitly by clicking the CogniCrypt analysis button in the Eclipse tool bar. The analysis en-
sures that all usages of cryptographic APIs remain secure, even when the developer modifies the
generated code for better integration into their project or to add some functionality. Moreover,
if the developer uses the cryptographic APIs directly (i.e., without using CogniCryptgen),
running CogniCryptsast ensures secure usage of the APIs. CogniCrypt generates an Eclipse
error marker for each detected misuse of the supported cryptographic APIs. Figure 3.4 depicts
a warning issued by CogniCrypt when the user changes the generated code for PBE to use
the insecure ECB mode.

3.2 Integrated Components

CogniCryptgen provides support for Crypto APIs in a use-case-based manner. In this section,
we first discuss the use cases that CogniCrypt as a plugin currently supports, providing short
conceptual descriptions, how they are implemented, and the decisions users have to make in the
tool. We furthermore discuss the APIs CogniCrypt supports through CogniCryptsast.

19

3.2 Integrated Components

Figure 3.4: Error Marker by CogniCrypt when ECB Mode is Used.

3.2.1 Use Cases

Data Encryption

• Description: Encryption of data as string, byte array, or file. Implemented either through
PBE or hybrid encryption.

• Implementation: Implementations of symmetric block ciphers in SunJCE Provider [Ora20a]
such as AES.

• User Decisions: CogniCrypt asks the user which method of key exchange they prefer
and which type of data their application should be able to encrypt.

Password Storage

• Description: Transformation of passwords such that they can be securely stored (i.e.,
hashing and salting).

• Implementation: Implementations of key derivation functions in SunJCE Provider [Ora20a]
such as PBKDF2.

• User Decisions: CogniCrypt does not need any configuration for this task.

Secure Communication

• Description: A cryptographic channel based on the Transport Layer Security (TLS) pro-
tocol [Res18] for securely transporting data from one endpoint to another. The channel
ensures confidentiality and integrity of the communicated data as well as authenticity of
the communication partners.

• Implementation: Based on the Java TLS implementation in the Java Secure Socket Ex-
tension (JSSE) [Ora19a].

• User Decisions: CogniCrypt first asks the user whether they wish to implement the
client or the server side of a connection, requesting the corresponding internet-address.
It further requests to know which protocol is used for the channel (HTTPS vs. plain
TLS). CogniCrypt then allows the user to select the desired security level, providing
a safe default option for optimal cryptographic protection. In particular, CogniCrypt

20

Chapter 3. CogniCrypt

disables insecure cryptographic parameters (i.e., cipher suites & TLS protocols) as some are
turned on by default. This feature is crucial because TLS has a vast number of parameter
choices, and, in principle, allows to configure insecure cipher suites that, for example, omit
encryption or enable known attacks like RC4 weaknesses [ABP+13].

Signing Data

• Description: Digitally signing data and verifying existing signatures.

• Implementation: Implementations of signature algorithms in SunJCE Provider [Ora20a]
such as SHA256withECDSA.

• User Decisions: CogniCrypt does not need any configuration for this task.

Secure Long-Term Storage

• Description: MoPS [WDV+17] ensures the integrity and authenticity of documents over
long periods of time, since classical protection schemes (e.g., digital signatures) do not
provide everlasting security. MoPS allows users to create customized long-term protec-
tion schemes by combining reusable components extracted from other existing solutions,
improving performance and gaining flexibility.

• Implementation: The reference implementation of MoPS byWeinert et al. [WDV+17] has a
RESTful API for configuring and maintaining file collections on remote systems. Using the
API without proper guidance may lead to a configuration that uses outdated cryptographic
primitives (e.g., SHA-1), performs poorly due to improper component selection, or relies
on inappropriate trust assumptions.

• User Decisions: CogniCrypt asks the user at most four high-level questions (e.g., “Do
you plan to add new files to your collection frequently?”). These questions identify the
required features and the trust assumptions the user is willing to make. It then translates
the user choices into the most suitable component selection based on the recommendations
of Weinert et al. [WDV+17]. Finally, CogniCrypt generates glue code to configure the
MoPS system accordingly and provide methods for securely storing files in the system.

Secure Multi-Party Computation

• Description: ABY [DSZ15] is a framework for mixed-protocol secure two-party computa-
tion (STC). It allows two parties to apply a function to their private inputs and reveal
nothing but the output of the computation. ABY enables developers to implement STC
applications by offering abstractions from the underlying protocols. Furthermore, ABY
can securely convert between different protocol types, improving efficiency.

• Implementation: ABY is written in C/C++ to achieve high efficiency for the underly-
ing primitives (bit operations, symmetric encryption) and has been encapsulated in Java
Native Interface (JNI) wrappers to be used by CogniCrypt.

• User Decisions: CogniCrypt offers the user several STC example applications, e.g., com-
puting the Euclidean Distance between private coordinates. The user can select different
properties, depending on the deployment scenario. In the future, we plan to integrate
custom applications as well.

21

3.3 Conclusion

3.2.2 APIs

CogniCrypt currently supports finding misuses of the JCA [Inc17], the JSSE [Ora19a], Boun-
cyCastle both as a provider and through its own lightweight API [Leg18], as well as Google
Tink [Goo]. The rules for the JCA have been developed by us during the development of
CrySL. Rules for the JSSE and both BouncyCastle APIs have been developed by grad stu-
dents in their job as student assistants with CogniCrypt. Lastly, the Google Tink rules have
been developed by Rodrigo Bonifácio during his research stay at Paderborn University. Support
for further APIs can easily be added through the use of CogniCrypt’s specification language
CrySL (Chapter 5).

3.3 Conclusion
In this chapter, we have given a high-level overview on CogniCrypt as an approach and its
prototypical implementation as an Eclipse plugin. CogniCrypt enables developers to securely
integrate cryptographic components into their Java projects, especially if they have little ex-
perience with cryptography. CogniCrypt smoothly integrates into a developer’s workflow to
generate secure code for cryptographic use cases and detect misuses of Crypto APIs in their
code. The tool is publicly available1 and open-source.2

In the following chapters, we will discuss the underlying concepts and evaluations of the in-
volved individual components, that isCogniCryptsast (Chapter 6) andCogniCryptgen (Chap-
ter 7) in more detail. In Chapter 8, we present an empirical evaluation of the tool. First, how-
ever, we consider other work addressing the same or similar problems as CogniCrypt does in
Section 4.

1www.cognicrypt.org
2www.github.com/eclipse-cognicrypt/cognicrypt

22

www.cognicrypt.org
www.github.com/eclipse-cognicrypt/cognicrypt

Related Work
4

In this chapter, we discuss related work that aims at fixing misuse of cryptographic APIs. We
leave the work more closely related to CogniCryptgen and CogniCryptsast, i.e., work on
code generation and static program analysis to fix cryptographic misuse, to Sections 6.6 and
7.4, respectively. We are not aware of any integrated approach that addresses cryptographic
misuse as systematically as CogniCrypt. However, multiple directions have been explored.

4.1 Usability & Re-design of Crypto APIs

In the discussion of Security- and Crypto-API usability, Wurster and van Oorschot [WvO08]
and Green and Smith [GS16] center the perspective of the application developer, i.e., the API’s
user. Wurster and van Oorschot [WvO08] argue that, due to division of labour in contemporary
software development, the average developer does not have sufficient knowledge to be trusted
with (low-level) Security APIs. To address this issue, they suggest enhancing Security APIs to
limit the decision space of their users and make the APIs more usable to them in the process.
The often-given suggestion to train developers better, they argue, is insufficient. Instead, devel-
opers should be incentivized on multiple levels to use secure options, including through usable
APIs. Green and Smith [GS16] agree with the general sentiment of not expecting the average
developer to be a security or cryptography expert. They argue that especially Crypto APIs
that usually require a remarkable level of cryptographic expertise need undergo a re-design. To
this end, they suggest ten design principles, ranging from close-to-code-level recommendations
like secure defaults and misuse causing visible errors to more abstract ideas such as integrating
cryptographic functionalities into non-cryptographic (i.e., use-case-oriented) APIs or the intro-
duction of a testing mode. Their suggestions have shaped the design processes of a lot of recent
Crypto APIs and usability discussions around them [PHR19, MKW18].

Iacono and Gorski [IG17] introduce some nuance to the discussion by distinguishing two
types of Security APIs. On the one hand, there are Security Primitives APIs that enable their
users to select individual algorithms and configure them. On the other hand, they classify more
high-level task-based APIs as Security Controls APIs. Such APIs do not expose cryptographic
algorithms directly, but instead provide more high-level use-case oriented interfaces. They survey
software developers about their experience with Security APIs. From the results, they conclude
that there is a need for more Security Controls APIs. This is because most existing security
(and therefore cryptographic) APIs classify as Security Primitives APIs and will likely always
remain a playground for those with security expertise, but not reach beyond. This conclusion

23

4.1 Usability & Re-design of Crypto APIs

has reached the state of a consensus in the literature on the usability of Crypto APIs [PFZ17,
IKND16, GS16, NKMB16, ABF+17, KLCL18, vdLRWW18, PHR19] and we share the sentiment
as well. We aim to address the issue not by designing a new API, but through CogniCrypt.

Pierzu et al. [PFZ17] take a different approach by arguing that the problem of Crypto-
API misuse may be mapped onto the problem of the symmetry of ignorance. An application
developer is an expert in the domain of their respective application (e.g., databases, networking),
but not (necessarily) in cryptography. Similarly, a cryptographer designing and implementing a
cryptographic API is unaware of the needs and wants of application developers as their domains
lie outside their own expertise.

Van Linden et al. [vdLRWW18] suggest to take a step back from designing new APIs and
instead first determine a suitable abstraction level for them. They argue, the research community
should first find appropriate metaphors for cryptographic operations that are understood by
developers. Following this notion, they lay out a research agenda, according to which they plan
to conduct an empirical study to come up with new metaphors. Those, they argue, could make
up the user interface for tools such as CogniCrypt’s code generator.

Acar et al. [ABF+17], Mindermann et al. [MKW18], Patnaik et al. [PHR19], Oliveira et
al. [OLR+18], and Nadi et al. [NKMB16] have all empirically investigated the usability of Cryp-
tographic APIs in Python, Rust, and Java, respectively while largely coming to similar conclu-
sions. Acar et al. [ABF+17] conduct an empirical study, in which they ask 256 Python developers
to implement cryptographic use cases with one of five Crypto APIs. Among the sample set of
crypto libraries, there are both low-level as well as more use-case-oriented libraries. They as-
sess functionality and security of participants’ code through manual inspection. The authors
find that task-based APIs do lead to better security due to the reduction of decision space for
API users, but only slightly. Whether or not an API offered good documentation and readily
usable code examples better predicts the security of the code participants produce. Similarly,
supporting a broad range of cryptographic operations such as key management also improves
application-code security. Consequently, they demand from library designers to not only focus
on simplifying APIs, but to also prioritize documentation and providing a full feature set.

Mindermann et al. [MKW18] evaluate two Crypto APIs for Rust in terms of their usability
by having 22 students implement one encryption-related task with either. As APIs, they have
chosen one low-level and one higher-level one. Somewhat surprisingly at first glance, participants
with the higher-level API produce less functional code than with the low-level API with a mixed
picture concerning security. However, their study exhibits two crucial threats to validity. First,
despite randomly assigning participants to a library, they do not end up distributed equally in
terms of experience level. Second, even more importantly, the documentation of the low-level
API contains an example that exactly fits the use case participants are asked to implement.
The authors show that participants who have not used the code example during the study do
not produce more functional code than participants using the more high-level API. On these
grounds, the authors demand to link to an API’s documentation prominently and help with
making configuration choices among other things, but do not advise against high-level APIs.

Oliveira et al. [OLR+18] examine the role of API blindspots. By blindspot, they are referring
to the possibility of using an API in a functionally correct manner, but that still exposes an
application containing this use to vulnerabilities. They do not exclusively target Crypto APIs,
but include several cryptographic examples in their work. To measure the impact such blindspots
have, they conduct an online study with 109 developers. Participants are asked to solve six
short programming tasks, four of which use APIs with a blindspot. Subsequently, they need to
answer questions about the security of the previously worked-on programming task. Oliveira et
al. [OLR+18] find participants are significantly less likely to correctly solve the programming
task, if the used API contains a blindspot. As a result, they recommend removing blindspots

24

Chapter 4. Related Work

from legacy APIs and pilot testing new ones before release to detect blindspots early on.

Nadi et al. [NKMB16] home in on the usability of Java Crypto APIs. They triangulate the
results of four separate studies. First, they investigate the top 100 posts about Java cryptography
on a popular Q&A platform. Second, they survey all users of that platform who have posted on
the platform under said topic in two studies. Lastly, they check 100 randomly Java Github that
use the JCA to determine what developers are actually attempting to implement when using the
JCA. Their results strongly suggest that developers generally agonize over using Crypto APIs
in Java, overwhelmingly the JCA. According to survey participants’ self-reporting, at least 81%
struggle at least occasionally with identifying the correct call-sequence, 75% with identifying the
parameters and 56% with identifying the right crypto concepts. The results support previous
arguments that application developers are not necessarily cryptography experts. However, they
do also underline that Crypto APIs exposing algorithms to their users are too low-level. Survey
participants further request help first and foremost through re-designing APIs, but also by
providing better documentation and tool support. New API designs should be more use-case-
oriented and more high-level. Documentation must contain code examples. The tool support
participants have in mind largely tests programs for their cryptographic correctness and provides
implementations for common cryptographic use cases.

Panaik et al. [PHR19] map concrete violations of the design principles by Green and Smith [GS16]
to usability smells in code that uses the Crypto API. To this end, they first investigate 2,400
posts about cryptographic libraries on a popular Q&A platform to come up with a taxonomy
of usability smells. They recognize that Crypto APIs largely miss proper documentation with
examples and guidance for the developer in the form of error messages in case of security issues.
They further diagnose that Crypto APIs confuse their users causing them to prototype with
different APIs trying to figure out which one is suitable under the given circumstances. This
problem even extends to after the code has been written when it turns out the developer has
used it incorrectly. As a second step, they investigate the prevalence of these smells in three
commonly used Crypto libraries. The authors conclude that the three libraries to varying degree
exhibit all smells they have identified.

Indela et al. [IKND16] propose a new design for Crypto APIs, incorporating a lot of sug-
gestions from other work [GS16, NKMB16]. Their API offers high-level and use-case-based
interfaces for regular software developers as well as more low-level ones to security engineers.
The underlying library enforces the use of high-level interfaces through the mandatory tagging of
all data going through it as sensitive or not. That is, any data that is marked as sensitive must
be passed through one of the high-level interfaces. They also suggest cryptographic libraries
to implement a Regulator design pattern that would enable them to regularly draw the latest
recommendations on cryptographic algorithms from authorities like NIST [GGF17].

This line of research provides necessary steps to move forward. Only if Crypto-API devel-
opers learn from past mistakes, there is a chance the future brings progress. Since usability
problems of cryptographic APIs have first been recognized, several attempts have been made at
fixing them [BPF19, BLS12, FLW12, Lou, Pytb, Soda, Sodb, Mai, Pyta, Goo, Smi, PTSA+, Cos].
Libraries that have been proposed as a result move in the right direction as they improve on
past ones. They also serve as good objects for further usability research allowing the community
to gain deeper insights on which advice actually works and which does not. However, as of
now, many widely used Crypto APIs, especially for Java, are Security Primitives APIs with bad
usability. While new libraries are designed and seek wider adoption, developers rather require
more immediate support like CogniCrypt.

25

4.2 Propping up Libraries

4.2 Propping up Libraries

Gorski et al. [GIW+] approach fixing Crypto-API misuse through improving security-related
warnings and error messages from within the respective API. Their error messages alert to
security-critical misuses of the API and concisely describe the risk involved, provide context,
and offer options for fixes. To empirically evaluate their design, they implement their warnings
for a common Crypto API in Python and conduct an experiment with 53 Python developers.
Participants are asked to implement two programming tasks, either with the enhanced Crypto
API or with the regular one. They find that 27% of submitted solutions of participants with
the regular API to be secure, while the number jumps up to 51% with the enhanced API. They
further observe that 73% of participants adopt suggestions from the security error messages.

As the empirical evaluation shows, the approach has the potential of improving the usability
of existing APIs substantially. Other similar ideas could also be applied (e.g., libraries throwing
exceptions when insecure configurations are used or deprecating of no-longer-secure algorithms).
However, such approaches require to be adopted by API developers. If an API developer is not
aware of them or chooses to not adopt them, the API user is on their own and needs to fall back
to external support. CogniCrypt may provide such support.

4.3 Fixing Existing Resources for Helping Software Developers

When developers reach a road block during everday development, they often default to looking
for code snippets on their search engine or Q&A platform of choice [BC14, TJVW19, ABF+16].
Incidentally, the latter are also appearing among the top results in the former. Past research has
established that much of the code on such platforms is insecure [FBX+17, ABF+16, ASW+17].
As a result, developers seeking help on these platforms introduce vulnerabilities to their projects
they are often not warned about as only few of them cause runtime exceptions to be thrown.
More recent research takes up the task of improving the answers on a popular Q&A platform.
Fischer et al. [FXK+19] discover secure alternatives for 99% of insecure code snippets imple-
menting similar use cases. To detect these alternatives, they employ a learning approach using
neural networks. The authors subsequently re-design the answer pages of the platform with
insecure solutions to convince participants to rather go to threads with more secure answers.
For evaluation, they conduct an experiment for which they have 27 students solve five crypto-
graphic programming tasks. For two of the tasks, the solutions obtained with the re-designed
pages provide significantly more secure code. In the case of the other three, the code is still
more secure, but not enough to be statistically significant for varying reasons.

Huesmann et al. [HZH19] further the discussion of Acar et al.[ABF+17], Mindermann et
al. [MKW18], Patnaik et al.[PHR19], and Nadi et al. [NKMB16] into what good documentation
for Crypto APIs should look like. The authors conduct focus-group-style interviews with 26
seasoned developers. To each focus group, they show multiple forms of documentation and
gather feedback on which ones are more desirable and why. Participants generally request a
mix of different documentation styles. Winning out against everything else are code examples
as they are requested by participants in all focus groups. On top of examples, participants also
request the documentation to be well-structured, contain links to classical references of the code
(e.g., JavaDoc) and provide knowledge on different levels of intricacy.

Mindermann and Wagner [MW18] contribute in a more direct and practical manner by
providing JCA [Inc17] documentation in the form of code examples for the API’s most commonly
used use cases. Thereby, they implement a feature, strongly requested by participants of Nadi
et al.’s survey [NKMB16] and Huesmann et al. [HZH19]’s focus groups. We discuss the examples
again in our evaluation of CogniCryptgen in Section 7.3.

26

Chapter 4. Related Work

These three approaches provide practical support for application developers attempting to
use low-level Crypto APIs. We view our work on CogniCrypt as complementary to all them.
CogniCrypt provides more direct development support through CogniCryptsast and Cog-
niCryptgen and also enhances API documentations through API specifications in CrySL.
Through implementing our suggestion CogniCryptdoc from Section 9.4, one could provide
further documentation.

4.4 Security Awareness in Organisations

Prior work has also examined the lack of experience, awareness, and knowledge of application
developers towards security topics, suggesting increasing awareness may bring about more se-
cure code. In three different studies, Naiakshina et al. investigate whether students [NDT+17,
NDTS18] and professional freelance developers [NDG+19] implement password-storage solutions
securely. Regardless of test subject, they come to broadly the same conclusions. Developers
largely do not appropriately address the security concerns such a programming task requires
when not explicitly requested. To estimate whether salary plays a role in how security is ad-
dressed, they paid participants in their freelancer study different amounts of money ($100 vs.
$200). The better-paid group does produce slightly, but not statistically significantly more se-
cure code. However, they do find statistically significant differences between participants who
are requested to pay attention to security and those who are not. These results, by and large,
support claims that security often comes an afterthought and developers rather rather focus on
functional correctness instead of security. To address this issue, the authors suggest explicitly
prompting developers to care about security.

Tahaei et al. [TJVW19] conduct twenty semi-structured interviews with computer-science
students, ranging from Bachelor to Ph.D. students with broad-branching career aspirations.
They find that interviewees generally do not seem to have a cohesive and meaningful view of
security, appearing to be significantly influenced by media portrayals of the topic. Similar to
Naiakshina et al., they conclude that students’ lack of security awareness significantly contributes
to the widespread insecurity of real-world applications. Compared to Naikshina et al., Tahaei
et al. suggest more far-reaching measures: They propose to synchronize software-engineering
practices with what is being taught in academia.

Lopez et al. [LST+19] expand on this work through semi-structured interviews with seven
professional application developers at one company. The interviewees generally agree that a)
security is vital and they as individuals are responsible for it, b) security is taken seriously by
their employer, c) their company is doing comparatively well, but d) that more can be done.

To a similar end, Haney et al. [HGT17] survey 121 developers from different organisations on
their attitudes towards and practice around Crypto APIs. Their participants first echo earlier
complaints about the usability of Crypto APIs. However, more than a third also mention having
problems with justifying a focus on secure cryptography to their customers. Participants also
report to rely heavily on standards such as FIPS [Lab19], but not use any testing tools to vet
their own cryptographic code. In response to these results, the authors call for more usable
testing tools and standards for cryptography.

Haney et al. [HTAP18] expand on this work by interviewing 21 professional security engi-
neers. Participants report a high awareness for secure cryptography for both themselves and
their respective companies. Companies make a point of achieving secure software products.
Similar to Haney et al. [HGT17], participants declare a high reliance on cryptographic stan-
dards. Opinions on certifications and academic contributions differ. The former are seen as
helpful to show to customers, but too expensive. The latter are often seen as too out-of-touch
from the actual problems the industry face. They also put heavy emphasis on testing and an-

27

4.5 Conclusion

alyzing cryptographic code, but mention difficulties in doing so thoroughly and properly. The
authors consequently demand from the research community to expand their focus to other pop-
ulations and move away from solely individual solutions to what seem to be (also) organisational
problems. The study does not target regular application developers directly, but instead secu-
rity experts. One should thus be careful when drawing direct conclusions as to what needs to
improved for the former group. However, learning more about the environment that produces
security experts may shed light on how organisations might need to re-organise to achieve similar
outcomes.

In none of the three studies [LST+19, HGT17, HTAP18] do the authors evaluate the security
of the companies’ products. However, the research by Tahai et al. [TJVW19] and Naiakshina et
al. [NDT+17, NDTS18, NDG+19] suggests such a security-conscious environment may go a long
way of producing secure software. While most of this work is concerned with security in general,
its results seem applicable to the subdomain of cryptography as well. Adding to the suggestions
made by Naiakshina et al. [NDT+17, NDTS18, NDG+19], Haney et al. [HGT17, HTAP18],
and Tahaei et al. [TJVW19], we propose organisations implementing cryptographic software to
integrate automated tool support such as CogniCrypt into their QA process. Furthermore,
organisational practices are also of limited use to developers working alone or in very small
teams. In such scenarios, our tool CogniCrypt may be of greater help.

4.5 Conclusion
In this chapter, we have discussed work related to CogniCrypt that is not focussed on program
analysis or code generation. Most work does improve the situation either through suggesting new
designs (Section 4.1), fixing weakspots in cryptographic libraries (Section 4.2), improving exist-
ing resources (Section 4.3), or providing measures to increase security awareness (Section 4.4).
However, our discussion also reveals, there currently is no other approach that addresses cryp-
tographic misuse as systematically as CogniCrypt does. Most work we discuss in this chapter
may rather be seen as complementary to CogniCrypt.

28

CrySL
5

In this chapter, we present CrySL. CrySL is a specification language that enables cryptography
experts to specify the secure usage of their Crypto APIs. CrySL serves as the foundation of
CogniCrypt, although it remains invisible to users of the Eclipse plugin CogniCrypt’.

We designed CrySL for (and with the help of) cryptography experts. The language’s
lightweight special-purpose syntax is one result of that process. CrySL is meant to serve
as a building block for different kinds of tool support, including documentation, patch gen-
eration, or use-case-based code generation as well as program analysis. Thanks to CrySL,
addressing cryptographic misuse may go beyond methods that are useful for the general val-
idation of API usage (e.g., typestate analysis [AAC+05, BA07, NL08, Bod10] and data-flow
checks [ABB+09, ARF+14]) by enabling one to express domain-specific constraints related to
cryptographic algorithms and their parameters.

5.1 Syntax

As we discuss in Section 5.5.2, mining API properties for Crypto APIs is extremely challenging,
if possible at all, due to the overwhelming number of misuses one finds in actual applications.
Hence, instead of relying on the security of existing usages and examples, we here follow an
approach in which cryptography experts define correct API usages manually in a special-purpose
language, CrySL. In this section, we give an overview of the CrySL syntax elements. A formal
treatment of the CrySL semantics is presented in Section 5.2.

5.1.1 Design Decisions Behind CrySL

We designed CrySL specifically with crypto experts in mind, and in fact with the help of
crypto experts. This work was carried out in the context of the large collaborative research
center CROSSING1 that involves more than a dozen research groups involved in cryptography
research. As a result of the domain research conducted within this center, we made the following
design decisions when designing CrySL.

White listing. During our domain analysis, we observed that, for the given Crypto APIs, there
are many ways they can be misused, but only comparatively few that correspond to correct
and secure usages. To obtain concise usage specifications, we decided to design CrySL to

1www.crossing.tu-darmstadt.de/crc_1119/

29

www.crossing.tu-darmstadt.de/crc_1119/

5.1 Syntax

use white listing in most parts of a specification (i.e., defining secure uses explicitly, while
implicitly assuming all deviations from this norm to be insecure).

Typestate and data flow. When reviewing potential misuses, we observed that many of them
are related to data flows and typestate properties [SY86]. Such misuses occur because
developers call the wrong methods on the API objects at hand, call them in an incorrect
order or miss to call the methods entirely. Data-flow properties are important when
reasoning about how certain data is being used (e.g., passwords, keys, or seed material).

String and integer constraints. In the crypto domain, string and integer parameters are
ubiquitously used to select or parametrize specific cryptography algorithms. Strings are
widely used, because they are easy to recognize, configure and exchange. However, spec-
ifying an incorrect string parameter may result in the selection of an insecure algorithm
or algorithm combination. Many APIs also use strings for user credentials. Those creden-
tials, passwords in particular, should not be hard-coded into the program’s bytecode. A
precise specification of correct crypto uses must therefore comprise constraints over string
and integer parameters.

Tool-independent semantics. We equipped CrySL with a tool-independent semantics (Sec-
tion 5.2). In the future, this semantics will enable us and others to build other or more
effective tools for working with CrySL. On top of the two we present as part of this thesis
— CogniCryptsast and CogniCryptgen—, we discuss four more CrySL-based tools in
Chapter 9. Furthermore, a dynamic checker to identify and mitigate CrySL violations at
runtime is currently being developed.

Our desire to allow crypto experts to easily express secure crypto uses also precludes us from
using existing generic definition languages such as Datalog or QL. Such languages, or minor
extensions thereof, might have sufficient expressive power. However, following discussions with
crypto developers, we had to acknowledge that they are often unfamiliar with those languages’
concepts. CrySL thus deliberately only includes concepts familiar to those developers, hence
supporting an easy understanding.

The resulting language is not, per se, limited to expressing usage constraints on Crypto APIs.
While there are certain elements in CrySL, such as the integer and String constraints, that are
more essential to cryptographic than to other APIs, we do assume the language to be capable
of covering those other APIs as well. We nonetheless view CrySL as domain-specific because
we tailored it to the domain of cryptography through our extensive domain analysis, which
resulted in, among other things, the aforementioned language elements. We have, however, not
conducted an in-depth investigation into CrySL’s applicability to other APIs of other domains.

Rules in CrySL are split into multiple sections as a means to follow the separation-of-
concerns paradigm. This way, required method calls are defined independently of forbidden ones,
constraints on an object may be specified separately from assigning this object a role as method
argument or return object of a method, and the correct order of method calls is defined without
interference from object definitions or declarations of forbidden method calls. These separations
improve readability and, as described further below, facilitate reuse of elements within a single
rule. In early discussions of CrySL with domain experts, this design was received positively.
We next explain the individual elements that a typical CrySL rule comprises by means of
Figure 5.1, which shows an abbreviated CrySL rule for javax.crypto.Cipher for which we
discussed an extensive example in Section 1.1.

30

Chapter 5. CrySL

5.1.2 Sections in a CrySL Rule

To provide simple and reusable constructs, a CrySL rule is defined on the level of individual
classes. Therefore, the rule starts off by stating the class or interface that it seeks to specify.

In Figure 5.1, the OBJECTS section defines several objects2 to be used in later sections of
the rule (e.g., the object transformation of type String). These objects are typically used as
parameters or return values in the EVENTS section.

The EVENTS section defines all methods that may contribute to the successful use of a Cipher
object, including two method event patterns (Lines 37–38). The first pattern matches calls
to getInstance(String algorithm), but the second pattern actually matches calls to two
overloaded getInstance() methods:

• getInstance(String algorithm, Provider provider)

• getInstance(String algorithm, String provider)

The first parameter of all three methods is a String object whose value states the transformation
used for encryption. This parameter is represented by the previously defined transfomation
object. Two of the getInstance() methods are overloaded with two parameters. Since there
is no need to specify the second parameter in either method, CrySL allows one to substitute
it with an underscore that serves as a placeholder in one combined pattern definition (Line 38).
This concept of method event patterns is similar to pointcuts in aspect-oriented programming
languages such as AspectJ [KHH+01]. For CrySL, we resort to a more lightweight and restricted
syntax as we found full-fledged pointcuts to be unnecessarily complex. Subsequently, the rule
defines patterns for the various init() methods that set the proper parameter values (e.g.,
keysize), update() methods that encrypt parts of the plaintext and doFinal() methods that
complete the encryption and return the ciphertext.

Line 53 defines a usage pattern for Cipher using the keyword ORDER. The usage pattern is a
regular expression of method event patterns that are defined in EVENTS. Although each method
pattern defines a label to simplify referencing related events (e.g., g1 or i1), it is tedious and
error-prone to require listing all those labels again in the ORDER section. Therefore, CrySL
allows defining aggregates. An aggregate represents a disjunction of multiple patterns by means
of their labels. Line 39 defines an aggregate Instances that groups the two getInstance
patterns. Using aggregates, the usage pattern for Cipher reads: there must be exactly one
call to one of the getInstance() methods, which must be followed by a call to an init()
method, which may optionally be followed by one or several calls to update(). The encryption
is completed through a call to doFinal(). Methods update() to doFinal() may be called
multiple times.

Following the keyword CONSTRAINTS, Lines 57–59 define the constraints for objects listed un-
der OBJECTS and used as parameters or return values in the EVENTS section. In the abbreviated
CrySL rule in Figure 5.1, the first such parameter constraint limits the encryption algorithm
of transformation to "AES" or "RSA". To this end, the rule employs one of CrySL’s built-
in function: alg. To obtain the required expressiveness, we have enriched CrySL with some
simple built-in auxiliary functions. The function alg extracts the encryption algorithm from
transformation. This function is necessary because, as mentioned above, transformation
actually consists of three parameters: algorithm, mode of operation, and padding scheme. For
instance, alg would extract "AES" from "AES/GCM" or from "AES/CBC/PKCS5Padding". Ta-
ble 5.1 lists all functions.

We have further equipped CrySL with built-in predicates in Table 5.2 that facilitate en-
suring auxiliary properties on objects or methods. Note the last two predicates callTo and

2As the example shows, in CrySL, OBJECTS also comprise primitive values.

31

5.1 Syntax

26 SPEC javax. crypto . Cipher
27
28 OBJECTS
29 int encmode ;
30 java. security .Key key;
31 java.lang. String transformation ;
32 byte [] plainText ;
33 byte [] cipherText ;
34 ...
35
36 EVENTS
37 g1: getInstance (transformation);
38 g2: getInstance (transformation , _);
39 Instances : g1 | g2;
40
41 i1: init(encmode , key);
42 ...
43 Inits: i1 | ...
44
45 ...
46 Updates : ...
47
48 f1: cipherText = doFinal (plainText);
49 ...
50 Finals : f1 | ...
51
52 ORDER
53 Instances , (Init , (Updates *, Finals)+)+
54
55
56 CONSTRAINTS
57 alg(transformation) in {"AES", "RSA"};
58 alg(transformation) in {"AES"} => mode(transformation) in {"CBC", "CTR"};
59 encmode in {1 ,2 ,3 ,4} // Numbers stand for constants Cipher .{ ENCRYPT_MODE ,

DECRYPT_MODE , WRAP_MODE , UNWRAP_MODE }
60 ...
61
62 REQUIRES
63 generatedKey [key , algorithm];
64
65 ENSURES
66 encrypted [cipherText , plainText];

Figure 5.1: CrySL Rule for Using javax.crypto.Cipher.

Table 5.1: Helper Functions in CrySL.

Function Purpose
alg(transformation) Extract algorithm/mode/padding

from transformation parameter
of Cipher.getInstance call.

mode(transformation)
padding(transformation)

length(object) Retrieve length of object

32

Chapter 5. CrySL

Table 5.2: Built-in Predicates in CrySL.

Function Purpose
instanceof(object, type)* Object must be of type type or one of its subtypes
neverTypeOf(object, type) Forbid object to be of type
notHardCoded(object)* Object must not be hardcoded
callTo(method) Require call to method
noCallTo(method) Forbid call to method

noCallTo may seem redundant to sections ORDER and FORBIDDEN because they appear to fulfil
the same purpose of requiring or prohibiting certain method calls. However, these two predicates
go beyond that because they allow for the specification of conditional forbidden and required
methods. Since the original publication of CrySL, we have further enhanced it through two
new built-in predicates that are marked with an asterisk in Table 5.2. First, we have added
predicate instanceof when implementing CogniCryptgen. We refer to 7.2 for a more detailed
discussion of the predicate’s purpose. We have, after the fact, also extended CogniCryptsast to
support the predicate, too. Second, we have implemented support for predicate notHardCoded.
This predicate enables forbidding the hard-coding of the object that is passed to it.

The ENSURES section is the final construct in a CrySL rule most rules should implement.
It allows CrySL to support rely/guarantee reasoning on how classes should be composed. The
section specifies custom and rule-specific predicates to govern interactions between different
classes. The ENSURES section specifies what a class guarantees, presuming that the object is
used properly. For example, the Cipher CrySL rule in Figure 5.1 ends with the definition of a
predicate encrypted with the cipherText object and its corresponding plaintext as parameters.
This predicate may be required (i.e., relied on) by another rule through the keyword REQUIRES
that requires some data to be encrypted.

Similarly, this keyword is also used by the CrySL rule for Cipher itself. For the encryption
a Cipher object performs to be secure, the object requires the key it takes in method init()
to have been generated securely and with the correct algorithm. In Line 63, the corresponding
CrySL rule thus defines a predicate generatedKey under the keyword REQUIRES.

CrySL rules can contain several other sections that may not appear so often. We showcase
them in the following through the CrySL rule for PBEKeySpec. In Figure 5.2, the FORBIDDEN
section specifies methods that must not be called, because calling them is always insecure. As
explained above, PBEKeySpec should use a random salt for deriving a cryptographic key from a
password. However, the constructor PBEKeySpec(char[] password) does not allow for a salt to
be passed, and the implementation in the default provider does not generate one. Therefore, this
constructor should not be called, and any call to it should be flagged. Consequently, the CrySL
rule for PBEKeySpec lists it in the FORBIDDEN section (Line 87). In the case of PBEKeySpec, there
is an alternative secure constructor (Line 76). For such cases, CrySL allows one to specify an
alternative method event pattern using the arrow notation(⇒) shown in Line 87. Depending
on the tool support, these alternatives may either be used for constructive error messages and
documentation, or automated fix generation. With FORBIDDEN events, CrySL’s language design
deviates a bit from its usual white-listing approach. We made this choice deliberately to keep
specifications concise. Without explicit FORBIDDEN events, one would have to simulate their
effect by explicitly listing all events defined on a given type except the one that ought to be
forbidden. This would significantly increase the size of CrySL specifications.

In general, predicates are generated for a particular usage whenever it does not use any
FORBIDDEN events, its regular EVENTS follow the usage pattern defined in the ORDER section, and if

33

5.1 Syntax

67 SPEC javax. crypto .spec. PBEKeySpec
68
69 OBJECTS
70 char [] passwordd ;
71 byte [] salt;
72 int iterationCount ;
73 int keylength ;
74
75 EVENTS
76 create : PBEKeySpec (password , salt , iterationCount , keylength);
77 clear: clearPassword ();
78
79 ORDER
80 create , clear
81
82 CONSTRAINTS
83 iterationCount >= 10000;
84 neverTypeOf (password , java.lang. String);
85
86 FORBIDDEN
87 PBEKeySpec (char []) => create ;
88 ...
89
90 REQUIRES
91 randomized [salt];
92
93 ENSURES
94 speccedKey [this , keylength] after create ;
95
96 NEGATES
97 speccedKey [this , _];

Figure 5.2: Abbreviated CrySL rule for javax.crypto.spec.PBEKeySpec.

34

Chapter 5. CrySL

METHOD :=
methname(PARAMETERS)

PARAMETERS :=
varname , PARAMETERS
varname

TYPES :=
QualifiedClassName , TYPES
TYPE

CONSTANTLIST :=
constant , CONSTANTLIST
constant

AGGREGATE :=
label | AGGREGATE
label ;

EVENT :=
AGGREGATE
label : METHOD
label : varname = METHOD A: B = C(D) — a single event with

label A consisting of method C, its
parameter D, and return object B

PREDICATE :=
predname(PARAMETERS)
predname(PARAMETERS) after EVENT

PREDICATES :=
PREDICATE ; PREDICATES

Figure 5.3: Basic CrySL Syntax Elements.

the usage fulfils all constraints in the CONSTRAINTS section of its corresponding rule. PBEKeySpec,
however, deviates from that standard. The class contains a constructor that receives a user-
provided password, but the method clearPassword deletes that password later, making it no
longer accessible to other objects that might use the key-spec. Consequently, a PBEKeySpec
object fulfils its role after calling the constructor but only until clearPassword() is called.

To model this usage precisely, CrySL allows one to specify a method-event pattern using
the keyword after (Line 94). Usually, a predicate is supposed to be generated, when an object
of the given type has successfully and fully followed the call pattern given in its ORDER section.
However, with the after keyword, a predicate is generated right after the respective method is
called. Furthermore, CrySL supports invalidating an existing predicate in the NEGATES section
(Line 97). The last call to be made on a PBEKeySpec object is the call to clearPassword()
(Line 80). Additionally, the rule lists the predicate keySpec[this,_] within the NEGATES block.
Semantically, negating a predicate means the following: a final event in the ORDER pattern, in
this case a call to clearPassword(), invalidates the previously generated keyspec predicate(s)
for this. Only existing predicates can be invalidated. Negating a predicate that does not exist
(yet or anymore) is not possible. Section 5.2.2 presents the formal semantics of predicates.

For reference, we provide the basic syntactic elements of CrySL and the full syntax in
Figures 5.3 and 5.4, respectively.

5.2 CrySL Formal Semantics

CrySL may serve as a basis for multple kinds of tool support. In this section, we therefore
present a formal semantics of the language that is tool-independent.

35

5.2 CrySL Formal Semantics

SPEC TYPE;

OBJECTS
OBJECTS :=

OBJECT ; OBJECTS A ; B — a list of objects A and B
OBJECT ; A — a list of the single object A

OBJECT :=
TYPE varname A B — object B of Java type A

EVENTS
EVENTS :=

EVENT ; EVENTS A ; B — a list of events A and B
EVENT ; A — a list of the single event A

FORBIDDEN
FMETHODS :=

FMETHOD ; FMETHODS A ; B — a list of forbidden A and B
FMETHOD ; A — a list of the single forbidden method A

FMETHOD :=
methname(TYPES) => label A(B) => C — a forbidden method named A

with parameter of Type B and replacement C

ORDER
USAGEPATTERN :=

USAGEPATTERN , USAGEPATTERN A , B — A followed by B
USAGEPATTERN | USAGEPATTERN A | B — A or B
USAGEPATTERN ? A? — A is optional
USAGEPATTERN * A* — 0 or more As
USAGEPATTERN + A+ — 1 or more As
(USAGEPATTERN) (A) — grouping
AGGREGATE

CONSTRAINTS
CONSTRAINTS :=

CONSTRAINT ; CONSTRAINTS
CONSTRAINT => CONSTRAINT A => B — A implies B
CONSTRAINT

CONSTRAINT :=
varname in { CONSTANTLIST } A in {1, 2} — A should be 1 or 2

REQUIRES
REQ_PREDICATES :=

PREDICATES

ENSURES
ENS_PREDICATES :=

PREDICATES

NEGATES
NEG_PREDICATES :=

PREDICATES

Figure 5.4: CrySL Rule Syntax in Extended Backus-Naur Form (EBNF) [BBG+63].

36

Chapter 5. CrySL

5.2.1 Basic Definitions

A CrySL rule consists of several sections. The OBJECTS section comprises a set of typed variable
declarations V. In the syntax in Figure 5.4, each declaration v ∈ V is represented by the syntax
element TYPE varname. M is the set of all resolved method signatures, where each signature
includes the method name and argument types. The EVENTS section contains elements of the
form (m, v), wherem ∈M and v ∈ V∗. We denote the set of all methods referenced in EVENTS by
M . The FORBIDDEN section lists a set of methods from M denoted by their signatures; forbidden
events cannot bind any variables. The ORDER section specifies the usage pattern in terms of
a regular expression of labels or aggregates that are in M , i.e., over the defined EVENTS. We
express this regular expression formally by the equivalent non-deterministic finite automaton
(Q,M, δ, q0, F) over the alphabet M , where Q is a set of states, q0 is its initial state, F is the
set of accepting states, and δ : Q×M → P(Q) is the state transition function.

The CONSTRAINTS section is a subset of C := (V → O ∪ V) → B (i.e., each constraint is a
boolean function), where the argument is itself a function that maps variable names in V to
objects in O or values with primitive types in V.

A CrySL rule is a tuple (T,F ,A, C), where T is the reference type specified by the SPEC
keyword, F ⊆ M is the set of forbidden events, A = (Q,M, δ, q0, F) ∈ A is the automaton
induced by the regular expression of the ORDER section, and C ⊆ C is the set of CONSTRAINTS
that the rule lists. We refer to the set of all CrySL rules as SPEC.

Our formal definition of a CrySL rule does not contain the sections REQUIRES, ENSURES,
and NEGATES. Those sections reason about the interaction of predicates, whose formal treatment
we discuss in Section 5.2.2.

5.2.2 Runtime Semantics

Each CrySL rule encodes usage constraints to be validated for all runtime objects of the refer-
ence type T stated in its SPEC section. We define the semantics of a CrySL rule in terms of an
evaluation over a runtime program trace that records all relevant runtime objects and values, as
well as all events specified within the rule.

Definition 1 (Event). Let O be the set of all runtime objects and V the set of all primitive-
typed runtime values. An event is a tuple (m, e) ∈ E of a method signature m ∈ M and an
environment e (i.e., a mapping V→ O∪V of the parameter variable names to concrete runtime
objects and values). If the environment e holds a concrete object for the this value, then it is
called the event’s base object.

Definition 2 (Runtime Trace). A runtime trace τ ∈ E∗ is a finite sequence of events τ0 . . . τn.

Definition 3 (Object Trace). For any τ ∈ E∗, a subsequence τi1 ...τin is called an object trace
if i1 < ... < in and all base objects of τij are identical.

Lines 13–14 in Figure 1.1 result in an object trace that has two events:

(m0, {algorithm 7→ "AES", this 7→ ociph})
(m1, {algorithm 7→ "AES", encmode 7→ 1,

key 7→ cipherKey, this 7→ ociph})

where m0 and m1 are the signatures of the getInstance() and init() methods of the
Cipher class. For static factory methods such as getInstance(), we assume that this is
bound to the returned object. We use ociph to denote that the object o is bound to the variable
ciph at runtime.

37

5.2 CrySL Formal Semantics

sato : E∗ × SPEC→ B
[τ o, (T o,Fo,Ao, Co)]→ satoF (τ o,Fo) ∧

satoA(τ o,Ao) ∧
satoC(τ o, Co)

Figure 5.5: Function sato Verifies an Individual Object Trace for Object o.

The decision whether a runtime trace τ satisfies a set of CrySL rules involves two steps. In
the first step, individual object traces are evaluated independently of one another. Yet, different
runtime objects may still interact with each other. CrySL rules capture this interaction by
means of rely/guarantee reasoning, implemented through predicates that a rule ensures on a
runtime object. These interactions between different objects are checked against the specification
in a second step by considering the predicates they require and ensure. We first discuss individual
object traces in more detail.

Individual Object Traces

The sections FORBIDDEN, ORDER, and CONSTRAINTS are evaluated on individual object traces.
Figure 5.5 defines the function sato that is true if and only if a given trace τ o for a runtime
object o satisfies its CrySL rule. This definition of sato ignores interactions with other object
traces. We will discuss later how such interactions are resolved. In the following, we assume the
trace τ o = τ o

0 , ..., τ
o
n, where τ o

i = (mo
i , e

o
i). To illustrate the computation, we will also refer to

method encrypt() from our example in Figure 1.1 and the involved CrySL rule for Cipher in
Figure 5.1. The function sato is composed of three sub-functions:

Forbidden Events (satoF) Given a trace τ o and a set of forbidden events F , sato ensures
that none of the trace events is forbidden.

satoF (τ o,Fo) :=
∧

i=0...n

mo
i /∈ Fo

The CrySL rule for Cipher does not list any forbidden methods. Hence, sato trivially
evaluates to true for object ciph in Figure 1.1.

Order Errors (satoA) The second function checks that the trace object is used in compliance
with the specified usage pattern (i.e., all methods in the rule are invoked in no other than
the specified order). Formally, the sequence of method signatures of the object trace mo :=
mo

0, . . . ,m
o
n (i.e., the projection onto the method signatures) must be an element of the language

L(Ao) that the automaton Ao = (Q,M, δ, q0, F) of the ORDER section induces. Therefore, it is

satoA(τ o,Ao) := mo ∈ L(Ao).

By definition of language containment, after the last observed signature of the trace mo
n, the

corresponding state of the automaton must be an accepting state s ∈ F . This definition ignores
any variable bindings. They are evaluated in the second step.

Figure 5.6 displays the automaton created for Cipher using the aggregate names as labels.
State 0 is the initial state, and state 4 is the only accepting state. Following the code in
Figure 1.1 for the object ciph of type Cipher, the automaton transitions from state 0 to 1

38

Chapter 5. CrySL

0start 1 2 3 4
Instances Init Updates

Updates

Finals

Finals

Init

Figure 5.6: State Machine for the CrySL Rule in Figure 5.1 (Without the Implicit Error State).

at the call to getInstance() (Line 13). With the calls to init() (Line 14) and doFinal()
(Line 15), the automaton first moves to state 2 and finally to state 4. Therefore, function satoA
evaluates to true for this example.

Constraints (satoC) The validity check of constraints ensures that all parameter constraints
of C are satisfied. This check requires the sequence of environments (eo

0, ..., e
o
n) of the trace τ o.

All objects that are bound to the variables along the trace must satisfy the constraints of the
rule.

satoC(τ o, Co) :=
∧

c∈Co,i=0...n

c(eo
i)

To compute satoC for the Cipher object ciph at the call to getInstance() in Line 13,
only the first two parameter constraints have to be checked. This is because the corresponding
environment eo

13 holds a value only for transformation, and the third constraint references the
variable encmode. The evaluation function c returns true if the algorithm of transformation
assumes either “AES” or “RSA” as its value, which is the case in Figure 1.1. However, the
second constraint (Line 58) does not evluate to true. As the algorithm of transformation in
the example is “AES”, the mode of operation must be either “CBC” or “CTR”. Since the mode is
not specified explicitly in the code, “ECB” is selected automatically. Therefore, this parameter
constraint is not satisfied and object ciph should be considered insecure. To gather all violations
of the CrySL rule, we do not abort here, but carry on with the evaluation of the example. The
computation of satoC for Lines 14–15 works similarly.

Interaction of Object Traces

To define interactions between individual object traces, the REQUIRES, ENSURES, and NEGATES
sections allow individual CrySL rules to reference one another. For a rule for one object to
hold at any given point in an execution trace, all predicates that its REQUIRES section lists must
have been both previously ensured (by other specifications) and not negated. Predicates are
ensured (i.e., generated) and negated (i.e., killed) by certain events. Formally, a predicate is an
element of P := {(name, args) | args ∈ V∗} (i.e., a pair of a predicate name and a sequence of
variable names). Predicates are generated in specific states. Each CrySL rule induces a function
G : S → P(P) that maps each state of its automaton to the predicate(s) the state generates.

The predicates listed in the ENSURES and NEGATES sections may be followed by the term
after n, where n is a method event pattern label or aggregate. The states that follow the event
or aggregate n in the automaton generate the respective predicate. If the term after is not used

39

5.3 Implementation

for a predicate, the accepting states of the automaton generate (or negate) that predicate (i.e.,
we interpret it as after n, where n is an event or aggregate that leads to a accepting state).

In addition to states selected as predicate-generating, the predicate is also ensured if the
object resides in any state that transitively follows the selected state, unless the states are
explicitly (de-)selected for the same predicate within the NEGATES section. At any state that
generates a predicate, the event driving the automaton into this state binds the variable names
to the values that the specification previously collected along its object trace.

Formally, an event no = (mo, eo) ∈ E of a rule r and for an object o ensures a predicate
p = (predName, args) ∈ P on the objects eo ∈ O if:

1. The methodmo of the event leads to a state s of the automaton that generates the predicate
p (i.e., p ∈ G(s)).

2. The runtime trace of the event’s base object o satisfies the function sato.

3. All relevant REQUIRES predicates of the rule are satisfied at execution of event no.

For the Cipher object ciph in Figure 1.1, a predicate is not generated at Line 14. As
discussed in this section so far, two object-internal requirements are fulfilled in that (1) its
automaton transitions to its only predicate-generating state (state 4 of the automaton in Fig-
ure 5.6) and (2) satoF evaluates to true for lack of any forbidden methods that could be called.
However, first, as discussed above, satoC evaluates to false because ECB mode is used and the
second constraint in the CrySL rule for Cipher prohibits this mode.

On top of this constraint violation, one of the required predicates is missing. As we described
in Chapter 1, class PBEKeySpec is misused in several different ways in method generateKey()
in the example in Figure 1.1. Hence, the object spec does not receive a predicate. This lack of
a predicate for spec is propagated to all objects spec flows to, even transitively. Consequently,
the SecretKeySpec object at the end of method generateKey() does not ensure its predicate
generatedKey either. When this object now flows into the call to init() of object ciph, it can
also not generate a predicate.

In summary, no predicate is generated for ciph, because it violates one parameter constraints
and the object cipherKey does not hold a generatedKey predicate.

5.3 Implementation

We have implemented a CrySL compiler on top of Xtext [Xte20], an open-source framework
for developing domain-specific languages. Given the CrySL grammar, Xtext provides a parser,
type checker, and syntax highlighter for the language. When supplied with a type-safe CrySL
rule, Xtext outputs the corresponding AST. We have further developed a parser that translates
CrySL rules into an object model that may be consumed by any tool support building on top
of CrySL, and is indeed used by CogniCryptsast and CogniCryptgen.

Rule Set for the JCA

We have developed the most comprehensive set of usage rules for Crypto APIs in Java to date.
Our rule set compasses rules of the JCA, the JSSE, BouncyCastle, BouncyCastle as a JCA
provider, and Google Tink. In the following, we discuss the rule set for the JCA, which, for
the remainder of the thesis, we will refer to as Rulesetfull, in more detail. It comprises all
relevant classes and interfaces. In an iterative specification process, we first worked through
the JCA documentation to produce a set of rules and then refined these rules through selective

40

Chapter 5. CrySL

discussions with cryptographers and searching security blogs and forums. In total, we have
devised 23 rules. Apart from the rules we have discussed for PBEKeySpec and Cipher, the full
rule set encompasses CrySL specifications that specify correct uses of all JCA classes, which
offer various cryptographic services. In the following, we describe these services with their
respective classes and briefly summarize important usage constraints. All mentioned classes are
defined in the JCA packages javax.crypto and java.security.

Asymmetric Key Generation Asymmetric and symmetric cryptography requires different
key formats. Asymmetric cryptography uses pairs of public and private keys. While one of
the keys encrypts plaintexts to ciphertexts, the second key decrypts the ciphertext. The JCA
models a key pair as class KeyPair whose instances are generated by KeyPairGenerator.

Symmetric Key Generation Symmetric cryptography uses the same key for encryption and
decryption. The JCAmodels symmetric keys as type SecretKey, generated by a SecretKeyFactory
or KeyGenerator. The SecretKeyFactory also enables password-based cryptography using
PBEParameterSpec or PBEKeySpec.

Signing and Verification of Data The class Signature of the JCA allows one to digitally
sign data and verify a signature based on a private/public key pair. A Signature requires the
key pair to be correctly generated, hence the rule for Signature REQUIRES a predicate from the
asymmetric-key generation task.

Generation of Initialization Vectors Initialization vectors (IVs) are used to add entropy
to ciphertexts of encryptions. An IV must have enough randomness and must be properly
generated. The JCA class IvParameterSpec wraps a byte array as an IV and it is required for
the array to be randomized by SecureRandom. The CrySL rule for IvParameterSpec REQUIRES
a predicate randomized.

Encryption and Decryption The key component of the JCA is represented by the class
Cipher, which implements functionality to encrypt or decrypt data. Depending on the used
algorithms, modes and paddings must be selected and keys and initialization vectors must be
properly generated. Hence, the complete CrySL rule for Cipher requires many other crypto-
graphic services to be executed securely earlier and list them in its respective REQUIRES clause.

Hashing & MACs There are two forms of cryptographic hash functions. A MAC is an
authenticated hash that requires a symmetric key, but there are also keyless hash functions such
as MD5 or SHA-256. The JCA’s class Mac implements functionality for mac-ing, while keyless
hashes are computed by MessageDigest.

Persisting Keys Securely storing key material is an important cryptographic task for confi-
dentiality and integrity of the encrypted data. The JCA class KeyStore supports developers in
this task and stores the key material.

Cryptographically Secure Random-Number Generation Randomness is vital in all as-
pects of cryptography. Java offers cryptographically secure pseudo-random number generators
through SecureRandom. As discussed for PBEKeySpec, SecureRandom often acts as a helper and
therefore many rules list the randomized predicate in their own REQUIRES section.

41

5.3 Implementation

RSAKeyGenParameterSpec

KeyPair

Signature

SecretKey

PBEKeySpec

MessageDigestMac

KeyStore KeyPairGeneratorKeyGenerator

IvParameterSpecHMACParameterSpec GCMParameterSpec

Cipher

SecureRandom

SecretKeyFactory

SecretKeySpec Public-/PrivateKey

Cryptographic Service Layers

Figure 5.7: Dependency Layers in JCA.

Combination of Different Cryptographic Services In practice, cryptographic services
are often combined to achieve more security goals than one primitive could offer on its own.
One often-used example is authenticated encryption that achieves not only confidentiality, but
also authenticity and integrity on the original plaintext. To this end, MACs and encryption are
combined. While there are multiple ways to combine the two, only first encrypting the plaintext
and then computing the MAC on the ciphertext is recommended (“encrypt-then-mac”) [fISB17].
As such combinations of different cryptographic services are implemented through source code as
well, we have explicitly encoded secure combinations in the rules of participating classes through
predicates.

Dependencies between Rules When developing the rule set, we noticed dependencies be-
tween different rules that are expressed through predicates forming the structure in Figure 5.7.
That is, there are five distinct layers of classes with relations not within any given layer but only
across them. The three layers on grey background provide cryptographic services, the other two
comprise data holders. At the top, there is SecureRandom that supplies randomization services
for all other layers. The second layer from the top involves classes for parameters of crypto-
graphic operations (e.g., key specifications, initialization vectors). They do not provide any
cryptographic operations themselves, but rather represent helper objects that are required for
such functionality. The third layer exclusively revolves around key generation and management,
with the fourth layer containing the keys generated by the third layer. The bottom layer con-
tains all classes that provide cryptographic functionality to end-users (e.g., encryption, signing,
hashing).

Structural Overview All 23 rules define a usage pattern. Some classes (e.g. IvParameterSpec)
contain one call to a constructor only, while others (e.g., Cipher) involve almost ten elements
with several layers of nesting. Fifteen rules come with parameter constraints, eight of which
contain limitations on cryptographic algorithms. The eight rules without parameter constraints

42

Chapter 5. CrySL

are mostly related to classes whose purpose is to set up parameters for specific encryptions (e.g.,
GCMParameterSpec). All rules define at least one ENSURES predicate, while only eleven require
predicates from other rules. Across all rules, we have only declared two methods forbidden. We
do not find this low number surprising as such methods are always insecure and should not at
all be part of any security API. If at all, two forbidden methods is too high a number. All rules
are available at https://github.com/CROSSINGTUD/Crypto-API-Rules.

5.4 Limitations

CrySL comes with certain limitations in terms of expressiveness. By design, the usage con-
straints defined by a CrySL rule are tied to the API and how it may be used. More high-level
properties that are not directly enforceable through the API under specification may therefore
not be expressible through CrySL. That may in particular relate to temporal properties such
as regular re-keying or prohibiting the re-using of nonces. For APIs such as the JCA that pro-
vide no means to ensure such properties, the corresponding CrySL rules may not express them
either.

Further imprecision may result from CrySL’s white-listing approach. Specifications, es-
pecially when they are manually crafted, are almost necessarily incomplete. In the case of
black-listing specifications, that usually means that incorrect uses of an API are accepted as
correct. White-listing approaches, on the other hand, rather prohibit uses that should be con-
sidered correct. We minimized this problem by designing CrySL such that methods that are
not defined in the EVENTS section have no impact on whether or not an object is used correctly.
This restriction also saves specification effort, the overall problem still persists, however.

The issue is slightly aggravated by CrySL’s binary notion of security: An algorithm, a
keysize, a chain of method calls is either secure or not. This restriction does not allow for
more nuanced distinction that some algorithms may not be entirely insecure, but may only be
used under circumstances (e.g., ECB when only one block of plaintext is encrypted [fISB17]
or CBC/PKCS5Padding when attackers cannot gather information about whether or not a
ciphertext they have is correctly padded (i.e., in the absence of a padding oracle) [fISB17]). It
further ignores the application context in which algorithms may be used. The hashing algorithm
MD5 should no longer be used for security purposes, but can be — and often is — used for file
hashing. In each case, we had to decide whether we would allow a use or not.

In the context of cryptography, we view this limitation as an acceptable trade-off. Cryptog-
raphy is likely being used in sensitive circumstances. Being incorrectly warned about a correct
usage, to us, appears preferable to missing one and, by extension, making an application insecure.
That said, when devising CrySL rules, we have carefully read the official API documentation
to minimize such imprecision. For other domains, mileage may also vary. We leave it to future
work to measure the effects overly restrictive rules have in practice.

CrySL further suffers from lacking any awareness of the environment an API is used in. This
lack of awareness becomes an issue when, like with SecureRandom, the selection of algorithms
that are available for a cryptographic operation depends on the operating system. Windows
machines have other PRNG algorithms available than Unix machines [Ora19c]. In certain Java
versions, class CipherInputStream exhibits a vulnerability when used in the context of authen-
ticated encryption that causes the encryption to no longer guarantee integrity [Hec14]. Neither
example can currently be appropriately expressed in CrySL. Extending CrySL to support
environment variables would solve these problems.

The latter example may also be fixed by introducing rules for different Java versions. In
the CrySL rules for the corresponding version, the respective method could be marked as
FORBIDDEN. However, as presented in this thesis, CrySL does not have a module system. Instead,

43

https://github.com/CROSSINGTUD/Crypto-API-Rules

5.5 Related Work

one would have to write all rules manually. A module system is in the works and should be
presented around Summer 2020.

5.5 Related Work
While we are not aware of any specification languages with CrySL’s purpose, other API-
specification languages do exist. Some work has also attempted to mine usage rules for Crypto APIs.
Our review of these approaches shows that existing specification languages are not optimally
suited for defining misuses of Crypto APIs. Similarly, we have also investigated approaches that
attempt automated inference of correct uses of Crypto APIs. Based on our findings, we conclude
that this goal is hard to achieve.

5.5.1 Languages for Specifying and Checking API Properties

There is a significant body of research on textual specification languages that ensure API prop-
erties. Tracematches [AAC+05] were designed to check typestate properties defined by reg-
ular expressions over runtime objects. Bodden et al. [Bod10, BLH12] as well as Naeem and
Lhoták [NL08] present algorithms to (partially) evaluate state matches prior to program execu-
tion, using static analysis.

Martin et al. [MLL05] present Program Query Language (PQL) that enables a developer to
specify patterns of event sequences that constitute potentially defective behaviour. A dynamic
analysis (i.e., tracematches optimized by a static pre-analysis) matches the patterns against a
given program run. A pattern may include a fix that is applied to each match by dynamic instru-
mentation. PQL has been applied to detecting security-related vulnerabilities such as memory
leaks [MLL05], SQL injection, and cross-site scripting [LL05]. Compared to tracematches, PQL
captures a greater variety of pattern specifications, at the disadvantage of only flow-insensitive
static optimizations. PQL serves as the main inspiration for CrySL’s syntax. Other languages
that pursue similar goals include PTQL [GOA05], PDL [MVW07], SLIC [BR01, BR02] and
TS4J [Bod14].

We investigated tracematches and PQL in detail, yet found them insufficiently equipped
for the task at hand. First, both systems follow a black-list approach by defining and finding
incorrect program behaviour. We initially followed this approach for crypto-usage mistakes,
but quickly discovered that it would lead to long, repetitive, and convoluted misuse-definitions.
Consequently, CrySL defines desired behaviour, which, in the case of Crypto APIs, leads to
more compact specifications. Second, the above languages are general-purpose languages for
bug finding, which causes them to miss features essential to define secure usages of Crypto APIs
in particular (e.g., White listing, constraints on String objects and integers). The strong focus of
CrySL on cryptography allows us to cover a greater portion of cryptography-related problems in
CrySL compared to other languages, while at the same time keeping CrySL relatively simple.
Third, thanks to its white-listing approach, CrySL facilitates various kinds of tool support to be
built on top of it. The other languages discussed in this section remain on the level of providing
bug specifications that program-analysis tools may check for.

5.5.2 Inference/Mining of API-usage Specifications

As an alternative to specifying API-usage properties manually, one can attempt to infer them
from existing program code. Robillard et al. [RBK+13] survey over 60 approaches to API
property inference. As this survey shows, all but two of the surveyed approaches infer patterns
from client code (i.e., from applications that use the API in question). Crypto APIs, however,
are misused often, making the raw mining of their uses fairly pointless.

44

Chapter 5. CrySL

To infer Crypto-API rules, Paletov et al. [PTRV18] thus follow a different approach: instead
of mining client code directly, they mine code changes related to Crypto APIs. Subsequently,
the authors cluster these changes and derive a usage rule from each cluster. While the work is a
first step towards inferring Crypto-API rules, it also shows the challenges involved. For instance,
a closer observation of the inferred rules reveals that many of them are overly simplistic and lack
context. For instance their rule R4 states “SecureRandom with getInstanceStrong() should be
avoided” although this is only true “on server-side code running on Solaris/Linux/MacOS”—in
most other cases, calling getInstanceStrong() is actually recommended and avoids security
pitfalls. The approach also lacks recall: the paper states 13 usage rules only, while our rule set
for the JCA alone compactly encodes hundreds of individual usage rules. Nonetheless, it would
be interesting to see if the authors’ approach can be used to infer at least partial CrySL rules.
Furthermore, for their experiments, Paletov et al. did not automate the actual generation of
machine-checkable rules but instead derived appropriate static checks by hand. This manual
step reduces the practicality of their approach.

Gao et al. [GKL+19] follow a similar approach. They formulate the basic assumption un-
derlying their mining approach as “Developers update API usage instances to fix misuses”. To
this end, they apply CogniCryptsast bootstrapped with the JCA rule set on almost 40,000
Android apps. For each of them, they have at least ten different versions, resulting in 600,000
apk files being analyzed. Through tracking code changes over multiple versions, they aim to
mine fixes and, by extension, correct uses of Crypto APIs. Unfortunately, their results show
that only about half of code updates addressing Crypto APIs fix a previously introduced misuse.
Their basic assumption is therefore proven wrong and no rules can be mined.

Another idea that appears sensible at first sight is to infer rules from posts on developer
portal. Braga and Dahab [BD16] mine misuses from three forums often trafficked by Java
developers. They manage to compile quite a comprehensive set of common JCA misuses. Un-
fortunately, their mining process relies on manual analysis of these posts. We do not expect the
amount of work going into developing CrySL rules for an API to be much greater than for this
kind of analysis. To yield the full potential of rule inference, the approach should be automated.
In contrast, learning correct uses is likely even more challenging because studies show the “solu-
tions” posted on these portals often include insecure code [FBX+17, ABF+16, ASW+17]. More
recent research by Fischer et al. [FXK+19] that we discussed in depth in Section 4.3 may be
promising in overcoming these issues, but, so far, it has not been applied to rule inference.

In result, we conclude that automated mining of API-usage specifications is very challenging
for Crypto APIs. We leave to future work to investigate the feasibility of a semi-automated
approach in which at least partial CrySL rules are inferred automatically, to then be refined
and completed by security experts.

5.6 Conclusion

In this chapter, we have proposed API-usage-specification language CrySL. Each CrySL rule is
specific to one class, and it may include usage pattern definitions and constraints on parameters.
Predicates model the interactions between classes. For example, a rule may generate a predicate
on an object if it is used successfully, and another rule may require that predicate from an object
it uses.

CrySL is the first step to systematically addressing cryptographic misuse. CrySL enables
cryptography experts to specify how to correctly use a Crypto API. By means of CrySL, we thus
extract usage specifications into their own language. This flexibility facilitates several things.
First, CrySL comes with its own tool-independent semantics. Hence, in contrast to other
specification languages, it is not tied to one particular tool support for Crypto APIs. Instead,

45

5.6 Conclusion

specifications in CrySLmay serve as building blocks for multiple kinds of tool support, including
but not limited to program analysis, code generator or program repair. To facilitate this flexible
use further, we also provide an extra parser that translates CrySL rules into a CrySL object
model more suitable for Java-based tool support. Second, updating rules is not left to the expert
of the given tool support (e.g., the static analyzer) because they are not hard-coded into the tool.
Instead, crypto experts may make theses changes themselves. Third, when this aspect leads to
greater security when some cryptographic algorithm becomes broken or some API is found to
implement digital signatures insecurely. Cryptography experts are likely to be more aware of the
latest cryptography research than the software engineers who have built one particular checking
tool that may have been abandoned a few years ago.

We see several avenues for future work. First, one should address the limitations we have
discussed. CrySL would particularly benefit from support for a more nuanced and contextual
understanding as well as environment variables. In our work, we have applied CrySL to crypto-
graphic APIs in Java. Yet, the concepts of the approach are not specific to Java. Exploring the
application of CrySL to other languages may therefore prove an interesting venture. Similarly,
there are other kinds of APIs, including other security APIs, that might benefit from CrySL
specifications. Future work should also model more APIs and potentially extend the language
to suit these APIs’ needs. Lastly, a wide variety of CrySL-based tool support is possible. In
the next two chapters, we show only two options out of many.

46

CogniCryptsast

6
In this chapter, we present our first CrySL-based tool support: CogniCryptsast. It uses the
CrySL compiler that parses and type-checks CrySL rules and translates them into the CrySL
object model. CogniCryptsast then transforms the rules in the CrySL object model into an
efficient, yet precise flow-sensitive and context-sensitive static data-flow analysis. The analysis
automatically checks a given Java or Android app for compliance with the encoded CrySL rules.

To evaluate CogniCryptsast, we use it—bootstrapped with our JCA rule set—to conduct
three studies, two of which on large application corpora. First, we scan 10,000 Android apps.
We have also modelled the existing hard-coded rules by Egele et al. [EBFK13] in CrySL and
compared the findings of the generated static analysis to those of CogniCryptsast for the
10,000 Android apps. Our more comprehensive rule set reports three times more violations,
most of which are true warnings. With such comprehensive rules, CogniCryptsast finds at
least one misuse in 95% of the apps. CogniCryptsast is also highly efficient: for more than
75% of the apps, the analysis finishes in under three minutes per app, where most of the time
is spent in Android-specific call graph construction.

In the second study, we run CogniCryptsast on 250 security-critical apps. With this
study, we aim to investigate a more specific domain of Android apps, of which we would expect
significantly less misuse. Our findings reveal the number of apps containing misuses indeed to
be lower, with 71% of apps misusing Crypto APIs at least once. However, 71% is still too large
a number for this domain.

Lastly, we apply CogniCryptsast to all 204,788 software artefacts on Maven Central, the
world’s largest Java code repository, and present the first comprehensive study of misuses of
crypto APIs in Java. This study facilitates an investigation into whether there is a difference
between average developers for Java and Android in terms of how securely they use cryptographic
APIs. We find this matter worthy of investigation as we would assume regular Java code to
contain significantly fewer misuses due to the relative maturity of Java as a language and breadth
of application fields. Across all analyzed artefacts, CogniCryptsast finds 24,349 cryptography
misuses in 5,712 Java artefacts. More than 63% of all artefacts that use the JCA contain at
least one misuse. We, therefore, conclude that Java code is indeed less insecure, but overall still
not secure.

6.1 Detecting Misuses of Crypto APIs
Please note: Throughout this section, we remain on the level of a workflow description for
CogniCryptsast. More in-depth discussion of the underlying analysis, including a presentation

47

6.1 Detecting Misuses of Crypto APIs

Abstract
Crypto

Objects

Parse
CrySL

CrySL
Rules

Predicates

Target
Program

Pre-Analysis

Each abstract
object individually

Parse
Program

Program
in IR

ICFG

Type State
Analysis

Constraint
Resolution

Predicate
Resolution

Internal
Constraints

State
Machine

Specified
Classes

Forbidden
Methods

Constraint
Violations

Typestate
violations

Missing
Predicates

Object
Results

1

2

5

3

4

NotizCrypto
Misuses

Figure 6.1: The General Workflow of CogniCryptsast.

98 boolean isPrime = isPrime (66); // some non - trivial predicate returning false
99 byte [] input = " Message ". getBytes ("UTF -8");

100
101 String alg = "SHA -256";
102 if (isPrime) alg = "MD5";
103 MessageDigest md = MessageDigest . getInstance (alg);
104
105 if (input.size () > 0) md. update (input);
106 byte [] digest = md. digest ();

Figure 6.2: An Example Illustrating the Usage of java.security.MessageDigest in Java.

of its flow functions, can be found in the Ph.D. thesis [Spä19] of co-author on both the original
ECOOP publication as well as the extended version published at TSE Johannes Späth.

To detect all violations of CrySL rules, CogniCryptsast approximates the evaluation func-
tion sato (Section 5.2.2) using a static data-flow analysis. In the following, we will explain how
CogniCryptsast does so by means of Figure 6.1. We will also discuss where CogniCryptsast
deviates from sato and why certain approximations are required, using the example in Figure 6.2.
We will show later in Section 6.3 that, in practice, our analysis is highly precise and that the
chosen approximations rarely actually lead to false warnings.

Let us first briefly discuss the code example in Figure 6.2 that implements a hashing opera-
tion. By default, the code uses SHA-256. However, if the condition isPrime evaluates to true,
MD5 is chosen instead (Line 102). The CrySL rule for MessageDigest, displayed in Figure 6.3,
does not allow the usage of MD5 though, because it is no longer secure [fISB17].

The update() operation is performed only on non-empty input (Line 105). Otherwise, the
call to update() is skipped and only the call to digest() is executed without any input. A hash
function used without any input does not comply with the CrySL rule for MessageDigest; it
is most likely a programming error as no content is being hashed.

To analyze this piece of code, CogniCryptsast parses the CrySL rules made available
to it, including the one for java.security.MessageDigest and transforms them into several
different artefacts 1 . First, it assembles a list of the Java classes it has received CrySL
rules for. Second, CogniCryptsast collects forbidden methods from the rules. Third, for each

48

Chapter 6. CogniCryptsast

107 SPEC java. security . MessageDigest
108
109 OBJECTS
110 java.lang. String algorithm ;
111 byte [] input;
112 int offset ;
113 int length ;
114 byte [] hash;
115 ...
116
117 EVENTS
118 g1: getInstance (algorithm);
119 g2: getInstance (algorithm , _);
120 Gets := g1 | g2;
121 ...
122 Updates := ...;
123
124 d1: output = digest ();
125 d2: output = digest (input);
126 d3: digest (hash , offset , length);
127 Digests := d1 | d2 | d3;
128
129 r: reset ();
130
131 ORDER
132 Gets , ((Updates *, r) |(d2 | (Updates +, Digests)))+
133
134 CONSTRAINTS
135 algorithm in {"SHA -256", "SHA -384", "SHA -512"};
136
137 ENSURES
138 digested [hash , ...];
139 digested [hash , input];

Figure 6.3: CrySL Rule for java.security.MessageDigest.

49

6.1 Detecting Misuses of Crypto APIs

rule, CogniCryptsast further creates a) a state machine, b) parameter constraints, and c)
its predicates. Those artefacts map onto the sections ORDER, CONSTRAINTS, and ENSURES of
the corresponding CrySL rules, respectively. As a second step, CogniCryptsast parses the
program into a program-analysis IR and ICFG 2 .

To determine which objects must be analyzed further, i.e., which objects are of types Cog-
niCryptsast has a CrySL rule for, CogniCryptsast conducts a pre-analysis 3 . To this end,
CogniCryptsast models each runtime object o by its allocation site. In the pre-analysis, Cog-
niCryptsast considers all new expressions and static calls to getInstance() that return an
object of a relevant type as relevant allocation sites. The pre-analysis returns a list of abstract
crypto objects (ACO). Each ACO represents an allocation site, the calls made on this allocation
site in the target program as well as potential runtime values of parameters in these calls. To
determine the latter, CogniCryptsast iterates through the calls along the ICFG. This step also
facilitates the detection of forbidden calls along the way and, thereby, approximate satoF on all
ACOs. Depending on the precision of the ICFG, the analysis may find calls to forbidden meth-
ods that cannot be reached at runtime. However, since the CrySL rule for MessageDigest does
not define any forbidden calls, CogniCryptsast does not report any for the example regardless.

After the pre-analysis, CogniCryptsast moves on to analyzing each ACO individually 4 .
For each ACO, CogniCryptsast first approximates satoA by evaluating the state machine associ-
ated with the type of the corresponding allocation site using a typestate analysis. Any deviation
from the state machine specified in the corresponding CrySL rule results in CogniCryptsast
reporting a misuse. However, there is potential for imprecision. CogniCryptsast’s typestate
analysis abstracts runtime traces by program paths. If the typestate analysis is path-insensitive,
at branch points it always assumes that both sides of the branch may execute. In our contrived
example in Figure 6.2, this feature leads to a false positive: although the condition in Line 105 al-
ways evaluates to true, and the call to update() is never actually skipped, the analysis considers
that this may happen and thus reports a rule violation.

CogniCryptsast next approximates satoC by means of a constraint solver. The constraint
solver first filters out all irrelevant constraints. A constraint is irrelevant if it refers to one
or more variables CogniCryptsast has not found in the code when constructing the ACOs
and has, therefore, not extracted any potential runtime values for. As per Figure 6.3, the
rule for MessageDigest only includes one parameter constraint—on variable algorithm. If
we added a new parameter constraint to the rule about the variable offset, the constraint
solver would filter it out as irrelevant when analyzing the code in Figure 6.2, because the only
method this variable is associated with (digest() labelled d3) is never called. CogniCryptsast
distinguishes between a variable not being in the source code and not being able to extract values
for a variable. With the same rule and code snippet, if the analysis fails to extract the value for
algorithm, the constraint evaluates to false because CogniCryptsast could not prove that it
holds. Collecting potential values of a variable over all possible program paths of an allocation
site may lead to further imprecision. In our example, CogniCryptsast cannot statically rule
out that algorithm may be MD5. The rule forbids the usage of MD5. Therefore, the analysis
reports a misuse.

Handling predicates in our analysis follows the formal description very closely 5 . If sato
evaluates to true for a given allocation site, the analysis checks whether all required predicates for
the allocation site have been ensured earlier in the program. In the trivial case, when no predicate
is required, CogniCryptsast immediately ensures the predicate defined in the ENSURES section.
CogniCryptsast constantly maintains a list of all ensured predicates, including the statements
in the program that a given predicate can be ensured for. If the allocation site under analysis
requires predicates from other allocation sites, the analysis consults the list of ensured predicates
and checks whether the required predicate, with matching names and arguments, exists at the

50

Chapter 6. CogniCryptsast

given statement. If the analysis finds all required predicates, it ensures the predicate(s) specified
in the ENSURES section of the rule.

6.2 Implementation

CogniCryptsast first employs the CrySL parser to parse a set of CrySL rules into the CrySL
object model. To conduct the program analysis, it further consists of several extensions to
the program analysis framework Soot [VGH+00, LBLH11]. Soot transforms a given Java pro-
gram into the intermediate representation Jimple, which facilitates executing intra- and inter-
procedural static analyses. The framework provides standard static analyses such as call-graph
construction. Additionally, Soot can analyze a given Android app intra-procedurally. Further
extensions by FlowDroid [ARF+14] enable the construction of Android-specific call graphs nec-
essary to constrcut the ICFG and perform inter-procedural analysis.

Validating the ORDER section in a CrySL rule requires solving the typestate check satoA. To
this end, we use IDEal, a framework for efficient inter-procedural data-flow analysis [SAB17],
to instantiate a typestate analysis. The analysis defines the finite-state machine Ao to check
against, and the allocation sites to start the analysis from. From those allocation sites, IDEal

performs a flow-, field-, and context-sensitive typestate analysis.
The constraints and the predicates require knowledge about objects and values associated

with rule variables at given execution points in the program. The typestate analysis in Cog-
niCryptsast extracts the primitive values and objects on the fly, where the latter are abstracted
by allocation sites. When the typestate analysis encounters a call site that is referred to in an
event definition, and the respective rule requires the object or value of an argument to the call,
CogniCryptsast triggers an on-the-fly backward analysis to extract the objects or values that
may participate in the call. This on-the-fly analysis yields comparatively high performance and
scalability, because many of the arguments of interest are values of type String and int. Thus,
using an on-demand computation avoids having to propagate all strings and integers through
the program. For the on-the-fly backward analysis, CogniCryptsast uses an extended version
of the on-demand pointer analysis Boomerang [SDAB16b] to propagate both allocation sites
and primitive values. Once the typestate analysis is completed, and all required queries to
Boomerang are computed, CogniCryptsast solves the parameter constraints and predicates
using our own custom-made solvers.

Apart from being integrated into CogniCrypt, CogniCryptsast may also be operated as
a standalone command-line tool. This way, it takes a program as input and produces an error
report detailing misuses and their locations.

6.3 Crypto-API Misuse in Android Apps

We first evaluate CogniCryptsast by addressing the following research questions:

RQ1 What are precision and recall of CogniCryptsast?

RQ2 What types of misuses does CogniCryptsast find in Android apps?

RQ3 How fast does CogniCryptsast run?

RQ4 How does CogniCryptsast compare to the state of the art?

To answer these questions, we apply the static analysis CogniCryptsast to 10,000 An-
droid apps from the AndroZoo dataset [ABKT16], using our full CrySL rule set for the JCA

51

6.3 Crypto-API Misuse in Android Apps

Rulesetfull (Section 5.3). We run our experiments on a Debian virtual machine with six-
teen cores and 64 GB RAM. We run CogniCryptsast once per application and cap the time
of each run to 30 minutes. We choose apps that are available in the official Google Play
Store and received an update in 2017. This restriction ensures that we do not report on
outdated usages of Crypto APIs. We make available all artefacts at this Github repository:
https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts.

6.3.1 Precision and Recall (RQ1)

Setup

To compute precision and recall, we manually check 50 randomly selected apps from our dataset
for typestate errors and violations of parameter constraints. To collect this random sample, we
implement a Java program that generates random numbers using SecureRandom and retrieve
the apps from the corresponding lines in the spreadsheet containing the results of analysing the
10,000 apps. We did not check for unsatisfied predicates or forbidden events because these are
hard to detect manually—while it may seem simple to check for calls to forbidden events, it is
non-trivial to determine whether or not such calls reside in dead code. We compare the results
of our manual analysis to those reported by CogniCryptsast. The goal of this evaluation
is to compute precision and recall of the analysis implementation in CogniCryptsast, not the
quality of ourCrySL rules. We discuss the latter in Section 6.3.4. Consequently, we define a false
positive to be a warning that should not be reported according to the specified rule, irrespective
of that rule’s semantic correctness. Similarly, a false negative would arise if CogniCryptsast
missed to report a misuse that, according to the CrySL rule, does exist in the analyzed program.

Results

In the 50 apps we inspected, CogniCryptsast detects 228 usages of JCA classes. Table 6.1 lists
the misuses that CogniCryptsast finds (156 misuses in total). In particular, CogniCryptsast
issues 27 typestate-related warnings, with only 2 false positives. Both arise because the analysis
is path-insensitive (Section 6.2). We further found 4 false negatives that are caused by initializing
a MessageDigest or a MAC object without completing the operation. CogniCryptsast fails to
find these typestate errors because the supporting off-the-shelf alias analysis Boomerang times
out, causing CogniCryptsast to abort the typestate analysis without reporting a warning for
the object at hand. A larger timeout or future improvements to the alias analysis Boomerang
would avoid this problem.

The automated analysis finds 129 constraint violations. We were able to confirm 110 of them.
In the other 19 cases, highly obfuscated code causes the analysis to fail to extract possible runtime
values statically. For such values, the constraint solver reports the corresponding constraint
as violated. A better handling of such highly obfuscated code can be enabled by techniques
complementary to ours. For instance, one could augment CogniCryptsast with the hybrid
analysis Harvester [RAMB16]. We have also checked the apps for missed constraint violations
(false negatives), but we were unable to find any.

RQ1: In our manual assessment, the typestate analysis achieves high precision (92.6%) and
recall (86.2%). The constraint resolution has a precision of 85.3% and a recall of 100%.

52

https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts

Chapter 6. CogniCryptsast

Table 6.1: Correctness of CogniCryptsast warnings.

Total Warnings False Positives False Negatives
Typestate 27 2 4
Constraints 129 19 0

Total 156 21 4

Table 6.2: Types of API Misuses reported by CogniCryptsast for Android Apps that use the
JCA.

API Misuse Type # Warnings # Apps
Incorrect calling sequences 4,708 (23.0%) 2,896
Incorrect parameter values 11,178 (54.7%) 3,955
Calls to forbidden methods 97 (0.5%) 62
Insecure compositions 4,443 (21.8%) 1,367

Total 20,426 4,143

6.3.2 Types of Misuses (RQ2)

Setup

We report findings obtained by analyzing all our 10,000 Android apps from AndroZoo [ABKT16].
Based on the results of our manual analysis (Section 6.3.1), we discuss and draw hypotheses
about our findings on the large scale.

CogniCryptsast detects the usage of at least one JCA class in 8,422 apps. Further investiga-
tion unveils that many of these usages originate from the same common libraries included in the
applications. To avoid counting the same crypto usages twice, and to prevent over-counting, we
exclude usages within packages com.android, com.facebook.ads, com.google or com.unity3d
from the analysis.

Results

Excluding the findings in common libraries, CogniCryptsast detects the usage of at least one
JCA class in 4,349 apps (43% of the analyzed apps). Most of these apps (95%) contain at least
one misuse. We detail CogniCryptsast’s findings on apps that do contain misuses in Table 6.2.
Across all apps, CogniCryptsast started its analysis for a total of 40,295 allocation sites (i.e.,
abstract crypto objects). Of these, a total of 20,426 individual object traces violate at least one
part of the specified rule patterns in 4,143 apps. As an app can contain multiple errors and,
by extension, multiple types of errors, the total number of apps that contain misuses is not the
sum of apps that contain certain misuse types.

CogniCryptsast reports typestate errors (ORDER section in the rule) for 4,708 objects, and
reports a total of 4,443 objects to have unsatisfied predicates (i.e., object expected a predicate
from another object as per the REQUIRES block of a rule). The analysis also discovered 97
reachable call sites that call forbidden events. The majority of object traces that violate at least
one part of a CrySL rule (54.7%) contradict a parameter constraint of a rule.

Approximately 86% of constraint violations are related to MessageDigest. In our manual
analysis (see RQ1), 89 of the 110 found constraint violations originated from usages of MD5
and SHA-1. We expect a similar fraction to also hold for the 11,178 constraint contradictions

53

6.3 Crypto-API Misuse in Android Apps

reported over all 10,000 apps. Many developers still use MD5 and SHA-1, although both are
no longer recommended by security experts [fISB17]. CogniCryptsast identifies 1,228 (10.9%)
constraint violations related to Cipher usages. In our manual analysis, all misuses of the Cipher
class are due to using the insecure algorithm DES or the ECB mode of operation. This result is
in line with the findings of prior studies [EBFK13, SDG+14, CNKX16].

More than 75% of the typestate errors that CogniCryptsast issues are caused by misuses
of MessageDigest. Our manual analysis attributes this high number to incorrect usages of the
method reset(). In addition to misusing MessageDigest, misuses of Cipher contribute 766
typestate errors. Finally, CogniCryptsast detects 157 typestate errors related to PBEKeySpec.
The ORDER section of the CrySL rule for PBEKeySpec requires calling clearPassword() at the
end of the lifetime of a PBEKeySpec object. We manually inspected 3 of the misuses and observed
that the call to clearPassword() is missing in all of them.

Predicates are unsatisfied when CogniCryptsast expects the interaction of multiple object
traces, but is not able to prove their correct interaction. With 4,443 unsatisfied predicates
reported, the number may seem relatively large, yet one must keep in mind that unsatisfied
predicates accumulate transitively. For example, if CogniCryptsast cannot ensure a predi-
cate for a usage of IVParameterSpec, it will not generate a predicate for the key object that
KeyGenerator generates using the IVParameterSpec object. Transitively, CogniCryptsast
reports an unsatisfied predicate also for Cipher objects that rely on the generated key object.

CogniCryptsast also found 97 calls to forbidden methods. Since only two JCA classes
require the definition of forbidden methods in our CrySL rule set (PBEKeySpec and Cipher),
we do not find this low number surprising. A manual analysis of a handful of reports suggests
that most of the reported forbidden methods originate from calling the insecure PBEKeySpec
constructors, as we explained in Section 1.1.

From the 4,349 apps that use at least one JCA Crypto API, 2,896 apps (66.6%) contain
at least one typestate error, 1,367 apps (31.4%) lack required predicates, 62 apps (1.4%) call
at least one forbidden method, and 3,955 apps (90.9%) violate at least one internal constraint.
Ignoring the class MessageDigest, and hereby excluding MD5 and SHA-1 constraints, 874 apps
still violate at least one constraint in other classes.

RQ2: Approximately 95% of apps misuse at least one Crypto API. Violating the constraints of
MessageDigest is the most common type of misuse.

6.3.3 Performance (RQ3)

Setup

During the analysis of our dataset, we measure the execution time that CogniCryptsast spent
in each of its four main phases: It constructs (1) a call graph using FlowDroid [ARF+14] and
then runs the actual analysis, which (2) calls the typestate analysis and (3) constraint analysis
as required, attempting to (4) resolve all declared predicates.

In Section 6.3.2, we report that CogniCryptsast finds usages of the JCA in 4,349 of all
10,000 apps in our dataset. If we include in the reporting those usages that arise from misuses
within the common libraries previously excluded (see Section 6.3.2), this number rises to 8,422.
We include the analysis of the libraries in this part of the evaluation because it helps evaluate
the general performance of the analysis in the worst case when whole applications are analyzed.

54

Chapter 6. CogniCryptsast

0.1 1 10 100 1000
Constraints
Typestate
Predicate
Call Graph
Total Time

Analysis Time (seconds)

Figure 6.4: Analysis Time (in log scale) of the Individual Phases of CogniCryptsast when
Running on the Apps that use the JCA.

Results

Figure 6.4 summarizes the distribution of analysis times for the four phases and the total analysis
time across these 8,422 apps. For each phase, the box plot highlights the median, the 25% and
75% quartiles, and the minimal and maximal values of the distribution.

Across the apps in our dataset, there is a large variation in the reported execution time (10
seconds to 28.6 minutes). We attribute this variation to the following reasons. The analyzed
apps have varying sizes—the number of reachable methods in the call graph varies between 116
and 16,219 (median: 3,125 methods). The majority of the total analysis time (83%) is spent on
call-graph construction. For the remaining three phases of the analysis, the distribution is as
follows. Across all apps, the resolution of all declared predicates takes approximately a median
of 50 milliseconds, and the typestate-analysis phase takes a median of 500 milliseconds. The
median for the constraint phase is 350 milliseconds. Therefore, the major bottleneck for the
analysis is call-graph construction, a problem orthogonal to the one we address in this work.
Our analysis itself is efficient and the overall analysis time is clearly dominated by the runtime
of the call-graph construction.

RQ3: On average, CogniCryptsast analyzes an app in 101 seconds, with call-graph construc-
tion taking most of the time (83%).

6.3.4 Comparison to Existing Tools (RQ4)

Setup

We compare CogniCryptsast to CryptoLint [EBFK13], the most closely related tool (Sec-
tion 6.6.1). Unfortunately, despite contacting the authors we were unable to obtain access to
CryptoLint’s implementation. We thus resort to reimplementing the original rules that are
hard-coded in CryptoLint as CrySL rules. All CryptoLint rules can be modelled in CrySL.
This rule set, however, still only covers a fraction of what CogniCryptsast’s default CrySL
rule set covers. This fact alone shows CrySL’s superior expressiveness.

In this section, Rulesetcl denotes the set of CrySL rules we developed to model the Cryp-
toLint rules and CogniCryptcl the analysis equipped with those rules. We keep referring to
CogniCryptsast as the analysis with the full rule set Rulesetfull.

Rulesetfull consists of 23 rules, one for each class of the JCA. Rulesetcl comprises only
six individual rules, and they only use the sections ENSURES, REQUIRES and CONSTRAINTS. In
other words, the original hard-codedCryptoLint rules do neither comprise typestate properties
nor forbidden methods. For three out of six rules, we manage to exactly capture the semantics
of the hard-coded CryptoLint rule in a respective CrySL rule. The remaining three rules (3,

55

6.3 Crypto-API Misuse in Android Apps

4, and 6 of the original CryptoLint rules) cannot be perfectly expressed as a CrySL rule, and
our CrySL-based rules over-approximate them instead.

CryptoLint rule 4, for instance, requires salts in PBEKeySpec to be non-constant. In
CrySL, such a relationship is expressed through predicates. Predicates in CrySL, however,
follow a white-listing approach and therefore only model correct behaviour. Therefore, in CrySL
we model the CryptoLint rule for PBEKeySpec in a stricter manner, requiring the salt to be not
just non-constant but truly random, i.e., returned from a proper random generator. We followed
a similar approach with the other two CryptoLint rules that we model in CrySL. In result,
Rulesetcl is stricter than the original implementation of CryptoLint, producing more correct
warnings. In the comparison against CogniCryptsast, this setup favours CryptoLint because
we assume that these additional findings to be true positives. Both rule sets are available at
https://github.com/CROSSINGTUD/Crypto-API-Rules. Note that we have extended CrySL
since the original publication of this study [KSA+18] with the built-in predicate hardCoded
(Section 5.1.2) facilitating expressing this constraint as originally in CryptoLint. As the setup
as described here favours CryptoLint, however, remodelling the corresponding CrySL rules
in Rulesetcl such that they use the predicate would not change this study’s general outcome.

Results

CogniCryptcl detects usages of JCA classes in 1,866 Android apps. For these apps, Cog-
niCryptcl reports 5,507 misuses, only a third of the 20,426 misuses that CogniCryptsast
identifies using Rulesetfull, our more comprehensive rule set.

Using CogniCryptcl, all reported warnings are related to 6 classes, compared to 23 classes
that are specified in Rulesetfull. CryptoLint does not specify any typestate properties or for-
bidden methods. Hence, CogniCryptcl does not find the 4,805 warnings thatCogniCryptsast
identifies in these categories using Rulesetfull. Furthermore, while CogniCryptsast reports
11,178 constraint violations with the standard rules, CogniCryptcl reports only 1,177 con-
straint violations. Of the 11,178 constraint violations, 9,958 are due to the rule specification for
the class MessageDigest. CryptoLint does not model this class. If we remove these violations,
CogniCryptsast still reports1,609 violations, a total of 432 more than by CogniCryptcl.

We compare our findings to the study by Egele et al. [EBFK13] that identifies the use of
ECB mode as a common misuse of cryptography. In that study, 7,656 apps use ECB (65.2%
of apps that use Crypto APIs). In contrast, in our study, CogniCryptcl identifies 663 uses
of ECB mode in 35.5% of apps that use Crypto APIs. Although a high number of apps still
exhibit this basic misuse, there is a considerable decrease (from 65.2% to 35.5%) compared to the
previous study by Egele et al. [EBFK13]. We see two possible explanations that may contribute
to the lower number. First, given that all apps in our study must have received an update in
2017, we believe that the decrease of misuses reflects taking software security more seriously in
today’s app development. Second, due to our more extensive rule set, a far greater number of
apps actually counts as using cryptography, even those that do not even use Cipher. Hence,
the ratio of crypto apps in our findings that do use Cipher is necessarily much smaller than
for CryptoLint’s original evaluation, pushing down the ratio of apps possibly containing this
particular misuse.

Based on the high precision (92.6%) and recall (96.2%) values discussed in RQ1, we argue
that CogniCryptsast provides an analysis with a much higher recall than CryptoLint. Al-
though the larger and more comprehensive rule set, Rulesetfull, detects more complex misuses,
the precise analysis keeps the false-positive rate at a low percentage.

56

https://github.com/CROSSINGTUD/Crypto-API-Rules

Chapter 6. CogniCryptsast

RQ4: The more comprehensive Rulesetfull detects 3× as many misuses as CryptoLint in
almost 4× more JCA classes.

6.3.5 Threats to Validity

Our ruleset Rulesetfull is mainly based on the documentation of the JCA [Inc17]. Although
we have accumulated significant domain expertise, our CrySL-rule specifications for the JCA
are only as correct as the JCA documentation. Our static-analysis toolchain depends on multiple
external components and despite an extensive set of test cases, of course, we cannot fully rule
out bugs in the implementation.

Java allows a developer to programmatically select a non-default cryptographic service
provider. When we ran the study, CogniCryptsast did not detect such customizations but
instead assumed that the default provider is used. This behaviour may lead to imprecise results
because our rules forbid certain default values that are insecure for the default provider, but
may be secure if a different one is chosen.

6.4 Crypto-API Misuse in Secruity-critical Android Apps
We also apply CogniCryptsast to apps from security-critical domains. By focusing the study
on this type of apps, we want to validate whether the findings by previous studies [EBFK13,
CNKX16, SDG+14, KSA+18] on randomly selected Android apps apply more security-critical
domains, too. Specifically, the study answers the following research questions:

RQ5 To what extent does CogniCryptsast find misuses also in apps from domains with high
security requirements?

RQ6 What types of misuses does CogniCryptsast find in these apps?

RQ7 How do those findings compare to those reported on randomly selected apps?

6.4.1 Setup

To answer these questions, we apply CogniCryptsast, configured with Rulesetfull (Sec-
tion 5.3), to 250 Android apps from the domains banking, health, and password-management.
On March 28th 2018, we used a Python API for the Google Play Store API1 to compile a list
of the top 50 grossing, free most-downloaded, paid most-downloaded, and trending apps from
the store categories “Banking” and “Health and Fitness”. Due to overlap between different top
lists in each category, the merged lists amount to 162 apps. We further include into the study
88 password-manage apps. To compile popular password-management apps, we placed a search
query ‘password’ using the same API and collected the top 88 apps on the same day as above.

We run our experiments on a 16-core virtual machine with a total of 32 GB RAM and 2 TB
of disk space. For the analysis of each Android app, we grant a maximum of 8 GB of heap space.
Once the call graph is constructed, verification of uses in compliance with the CrySL rule set
is fast.

Many Android applications ship with similar libraries. To avoid over-reporting, we exclude
findings discovered in these libraries. To this end, we restrict the reporting of errors to errors
that have the same package prefix as the actual Android apk file.

After obtaining the results for the 250 apps, we manually analyze 25 randomly selected error
reports to check for potential false positives. We collect a handful of interesting misuse examples,

1Python API for the Google Play Store, https://github.com/NoMore201/googleplay-api

57

https://github.com/NoMore201/googleplay-api

6.4 Crypto-API Misuse in Secruity-critical Android Apps

Table 6.3: Types of API Misuses reported by CogniCryptsast for 250 Android apps from
security-critical domains.

API Misuse Type # Warnings # Apps
Incorrect calling sequences 477 (35.3%) 112
Incorrect parameter values 524 (38.7%) 157
Calls to forbidden methods 17 (1.3%) 13
Insecure compositions 335 (24.8%) 105

Total 1,353 172

two of which we discuss in Section 6.4.3. We validate these findings by manually inspecting a
decompiled version of the bytecode.

6.4.2 Results (RQ5 – RQ7)

In total, CogniCryptsast finds that 241 out of the 250 apps actually use the JCA. In those
apps, CogniCryptsast detects 1,353 vulnerabilities, where 172 apps (71%) contain at least one
misuse. Table 6.3 reports, per misuse type, the number of apps that contain at least one instance
of that misuse.

RQ5: For Android apps with high security demands, CogniCryptsast finds an average of more
than 5 misuses per app, with at least one misuse in 71% of all apps.

CogniCryptsast detects 477 incorrect calling sequences in 112 apps. In particular, 127
warnings are due to deviations from the specified usage protocol. The remaining 350 are caused
by applications that fail to use an object to completion. For instance, a Cipher is set up
and initialized by a call to Cipher.getInstance() and Cipher.init(), but there is no call
to Cipher.doFinal() to complete the encryption. The most commonly misused classes are
MessageDigest and Cipher, with 217 and 177 findings, respectively.

Furthermore, CogniCryptsast finds 524 parameter-constraint violations, again with the
classes MessageDigest and Cipher contributing the most misuses with 341 and 106 findings,
respectively. Our manual investigation of the 25 app reports revealed that most constraint errors
in relation to MessageDigest originate from uses of MD5 and SHA-1. For the class Cipher, most
violations are related to uses of DES and ECB mode. This part of our study confirms results from
our previous study in 6.3 as well as other studies [EBFK13, BDA+17, SDG+14, CNKX16].

CogniCryptsast encounters only a total of 17 calls to forbidden methods in 13 apps. This
low number is not surprising though, given that across all CrySL rules, only a handful methods
are declared as forbidden. Of the 17 findings, 10 were insecure PBEKeySpec constructors. The
remaining ones relate to certain init() methods of the Cipher class. We will examine an
init()-example more closely in a case study in Section 6.5.3.

Lastly, in 335 cases, CogniCryptsast reports insecure predicate-related misuses. This num-
ber may seem high, but, as stated before, it has to be taken with a grain of salt, because, in
CogniCryptsast, these insecure compositions are propagated along a chain of inter-connected
uses. This propagation is reflected in the numbers for classes that are typically at the end of such
chains (e.g., Cipher, Mac). Such classes generally have a higher number of reported insecure
compositions than classes that are mostly used at the beginning of a use-chain. We see this as
a sensible way to report these misuses because each of the uses is actually insecure, even if all

58

Chapter 6. CogniCryptsast

errors can be corrected by one single fix. Yet, for the same reason, the number of root causes is
actually lower than the reported number suggests.

RQ6: Across all analyzed Android apps, 40% of the detected misuses are due to parameter-
constraint violations, while 35% are caused by incorrect calling sequences.

Discussion Regarding RQ7, one can draw the following conclusions: Only 71% of apps with
high security demands misuse a JCA interface, compared to 95% of randomly selected apps.
Yet, those apps that contain misuses, contain more than 5 misuses on average, which makes
it likely that they are highly insecure. For RQ4, we have already shown that previous black-
listing-based approaches would have detected only about one third of those misuses. This shows
that the white-listing approach is really necessary to conduct a study as comprehensive as ours.

RQ7: While fewer apps with high security demands contain crypto misuses (71% compared to
95% in a random selection), those apps contain more than 5 misuses on average, rendering them
highly insecure.

6.4.3 Case Studies

The aforementioned manual analysis of 25 app reports has revealed a number of vulnerabilities
that CogniCryptsast is able to find due to both the comprehensive specification approach as
well as state-of-the-art analysis algorithms it employs. In the following, we give two interesting
examples chosen to highlight the kinds of misuses that our study reveals on top of previous ones.

Banking App

Figure 6.5 depicts a simplified code snippet from the banking app VR-Banking by Fiducia &
GAD IT AG. At the time of our study, the app had been downloaded from the Google Play
Store more than 1,000,000 times. In the example, CogniCryptsast finds three vulnerabilities,
all related to the definition of a PBEKeySpec object (Line 147). The misuses are fairly similar to
our motivating example in Section 1.1. One misuse that most other checkers [EBFK13, SDG+14,
BDA+17] detect as well is the low iteration count of 20. As previously explained, there is no
consensus on an appropriate number, but even the lowest suggestions are four-digit numbers.
The second misuse is related to the salt passed to the constructor call. The salt is defined as
a constant field in the same class (Line 142), although it should be random. CogniCryptsast
is capable of detecting this issue thanks to its inter-procedural, field-sensitive analysis. Lastly,
CogniCryptsast issues a warning for passing pass to the constructor as password because it
is of type String. We have reported the misuses in a coordinated-disclosure process and they
have been fixed.

Password-management App

Figure 6.6 depicts a redacted code snippet from the password-safe app Norton Identity Safe
by Symantec. According to the Google Play Store, the app had been downloaded more than
500,000 times when we conducted the study. The class in the snippet contains a method enc()
that implements an encryption using Java’s Cipher class. The method employs CBC as mode of
operation (Line 162), which requires a random initialization vector (IV) to be used. In the code
snippet, however, the IV is defined as a hard-coded field (Line 154). CogniCryptsast detects

59

6.5 Crypto-API Misuse in Java Software

140 public class PBEExample {
141
142 private final byte [] salt = { -4, 118, -128, -82, -3, -126, -66, -18 };
143 private SecretKey sk;
144 private SecretKeyFactory skf;
145
146 public String setupKey (String pass) {
147 PBEKeySpec pbe = new PBEKeySpec (pass. toCharArray (), this.salt , 20);
148 sk = this.skf. generateSecret (pbe);
149 ...
150 }
151 }

Figure 6.5: Insecure setup of password-based encryption in a major banking app with >1 million
downloads.

152 public final class ClassIVExample {
153 private SecretKey secretKey ;
154 private byte [] IV;
155
156 public ClassIVExample () {
157 this.IV = new byte []{(byte) -57, (byte) 115, (byte) 33, (byte)

-116, (byte) 126, (byte) -56, (byte) -18, (byte) -103, (byte)
33, (byte) -121, (byte) 60, (byte) -56, (byte) 67, (byte) 101,
(byte) 77, (byte) -119};

158 this. secretKey = ...;
159 }
160
161 public byte [] String enc(String plain) {
162 Cipher cipher = Cipher . getInstance ("AES/CBC/ PKCS5Padding ");
163 cipher .init (1, this.secretKey , new IvParameterSpec (this.IV));
164 return cipher . doFinal (plain. getBytes ("UTF -8"));
165 }
166 }

Figure 6.6: Using a constant IV, found in the password-management app Norton Identity Sage
with >500,000 downloads.

this misuse through Boomerang [SDAB16a], its precise field-sensitive pointer analysis. We have
reported the misuse to Symantec in a coordinated-disclosure process. Symantec have since fixed
the vulnerability and documented it as CVE-2018-12240 [BKS+18].

Summary These two examples are no isolated cases. In fact, we found the two patterns
in at least a dozen apps (out of only 250 apps). Many of the tools we discuss in 6.6 fail to
find either one or both types of misuses. Hence, these tools would find fewer misuses than
CogniCryptsast.

6.5 Crypto-API Misuse in Java Software

In this section, we present a large-scale study of misuses of Crypto APIs in Java applications.
With the study, we wish to answer the following research questions:

RQ8 How prevalent are misuses of Crypto APIs in Java software?

60

Chapter 6. CogniCryptsast

Table 6.4: Types of API Misuses Reported by CogniCryptsast for Maven Central Artefacts
that use the JCA.

API Misuse Type # Warnings # Apps
Incorrect calling sequences 8,860 (39.1%) 2,408
Incorrect parameter values 6,827 (30.1%) 3,656
Calls to forbidden methods 203 (0.9%) 130
Insecure compositions 6,774 (29.8%) 1,737

Total 22,664 7,287

RQ9 What types of misuses are present in Java software?

RQ10 How do Java and Android software compare in terms of Crypto APIs misuses?

6.5.1 Setup

To have a representative sample set of Java applications, we collect the latest versions of all
artefacts on Maven Central, the world’s largest code repository for Java applications. In May
2018, the index of Maven Central lists a total of 2,768,263 JAR files. We restrict our analysis
to the latest version of each individual software artefact, resulting in a dataset of 204,788 JAR
files that we run CogniCryptsast on with Rulesetfull.

We run the study on a 32-core machine with 128 GB RAM and 2 TB of disk space. We
analyze 10 artefacts at a time in parallel, and grant each analysis a maximum of 10 GB of
heap space. Most of the artefacts on Maven Central are libraries, which makes it difficult to
pre-compute a call graph [REH+16] for an artefact. We rely on the call graph algorithm Class
Hierarchy Analysis (CHA) [DGC95] that constructs an imprecise but efficient call graph that
is well suited for libraries. For the artefacts that contain uses of the JCA, it takes a median of
5.4 seconds to construct the call graph and 7.3 seconds to run CogniCryptsast per application.
In total, the analysis took six days to complete for the whole dataset. To answer RQ10, we
compare the results from our study on Maven Central to those for RQ2.

6.5.2 Results (RQ8 – RQ10)

Table 6.4 summarizes the results of the study. CogniCryptsast finds 7,287 Java artefacts that
use the JCA. Of those, 4,929 artefacts (63.0%) produce at least one warning. In total, these
artefacts contain 22,664 misuses, an average of 3.1 misuses per artefact.

RQ8: CogniCryptsast finds an average of 3.1 misuses per artefact, with at least one misuse
in 63% of all artefacts, resulting in an overall lower average than in our Android study.

A more detailed analysis of the results reveals that roughly 39.1% of the misuses are parameter-
constraint violations. Similar to our Android study, class MessageDigest is the biggest source
of constraint violations (4,462 misuses). The only other class that sticks out is, again, Cipher
with 1,262 misuses. Although we have not manually analyzed a representative number of vul-
nerability reports from CogniCryptsast for this dataset, given the results from our manual
analyses for RQ1, RQ5, and RQ6, we assume most of the misuses related to these two classes
come from uses of MD5, SHA-1, DES, and ECB.

61

6.5 Crypto-API Misuse in Java Software

CogniCryptsast further observes 8,860 incorrect calling sequences, one third stemming from
incorrect calls (3,085) and two thirds from incomplete uses (5,775). Again, MessageDigest and
Cipher produce most of these misuses, with 4,491 and 2,193, respectively. In all 7,287 Maven
artefacts that use the JCA, CogniCryptsast has encountered 203 calls to forbidden methods.
Lastly, CogniCryptsast detects 6,774 insecure compositions.

RQ9: In contrast to our evaluation of Android apps, across all studied Java artefacts on Maven
Central, insecure calling sequences (39.1%) contribute the most to the detected misuses, followed
by insecure parameters(30.1%).

In Section 6.3, we conclude that out of the 4,071 apps that contain uses of the JCA, 95%
misuse it at least once. Our results here indicate that the rate of insecure Java applications
is 63% (i.e., 32 percentage points lower). CogniCryptsast has also found a lower average of
misuses per application for our sample set. For Android, CogniCryptsast found 4.8 misuses per
app, while here we saw an average of 3.1 misuses per app. Therefore, in terms of overall misuse,
Java applications appear to contain fewer misuses, but are still somewhat insecure overall. The
distribution of misuse types overall is rather similar but exhibits one remarkable difference. That
is, CogniCryptsast finds many more applications with incorrect parameters for Android apps
(93.7% vs. 50.1%). For the rest, the numbers are closer to each other. There are slightly more
with insecure compositions (26.5% vs. 23.8%) and incorrect calling sequences (43% vs. 33.0%),
as well as slightly fewer calls to forbidden methods (1.3% vs. 1.7%).

RQ10: Comparing our answers to RQ8 and RQ9 with those to RQ2, we first observe a 34%
lower rate of crypto-misusing artefacts in Maven Central than crypto-misusing Android apps in
the Google Play Store. The distribution is generally rather similar, only the much lower number
of apps with parameter-constraint errors is notable.

6.5.3 Case Studies

We next take a closer look at three vulnerabilities that CogniCryptsast detects. These cases
CogniCryptsast is only able to uncover thanks to its white-list approach and extensive analysis.
We have encountered these examples when cross-checking some of the findings.

Kerberos Application

We first discuss an example from an artefact implementing the kerberos protocol developed by a
widely known vendor. The code snippet in Figure 6.7 contains two misuses. First, a Cipher ob-
ject is instantiated for an encryption with the broken algorithm RC4 (Line 168). Second, Line 181
in the method calculateIntegrity() defines a MAC object. This statement is followed by a
call to Mac.doFinal(). When executed, this method will throw an IllegalStateException
because any MAC object must be initialized by a call to init() before calling doFinal() on
it. This misuse not only makes the code non-functional, but also insecure as a security-critical
operation, namely mac-ing of data, can never be performed.

Application Server

Figure 6.8 depicts another interesting example from a popular application-server artefact. The
method getStore() defines a KeyStore object and subsequently calls load() on it. The method

62

Chapter 6. CogniCryptsast

167 public byte [] processCipher (boolean isEncrypt , byte [] data , byte []
keyBytes) {

168 Cipher cipher = Cipher . getInstance (" ARCFOUR ");
169 SecretKey key = new SecretKeySpec (keyBytes , " ARCFOUR ");
170
171 if (isEncrypt) {
172 cipher .init(Cipher . ENCRYPT_MODE , key);
173 } else {
174 cipher .init(Cipher . DECRYPT_MODE , key);
175 }
176 return cipher . doFinal (data);
177 }
178
179 public byte [] calculateIntegrity (byte [] data , byte [] key , KeyUsage usage) {
180 try {
181 Mac digester = Mac. getInstance (" HmacMD5 ");
182 return digester . doFinal (data);
183 } catch (NoSuchAlgorithmException nsae) {
184 return null;
185 }
186 }

Figure 6.7: An Example Illustrating the Use of the Insecure RC4 and Missing the Initialization
of a MAC Object.

KeyStore.load() receives a password as char[]. This password should not be of type String,
but in the code snippet it is. However, what is interesting about this example is what Cog-
niCryptsast finds in addition to the wrong type for the password. The method getStore()
is called by the method getTrustStore() (Line 197), which in turn retrieves the password by
calling getTrustStorePassword() (Line 195). This method attempts to read the password
from a configuration file and, if that fails, from a system property. If both attempts fail, the
method calls yet another method: getKeyStorePassword() (Line 219). Within this method,
the same config file is read twice in an attempt to retrieve the password. If both also fail,
the hard-coded string "changeit" is returned as the password. Putting all of this together,
under certain circumstances, the password used to load the keystore may not only be of type
String, while it should not, but it may be a hard-coded string. CogniCryptsast finds this mis-
use, primarily because of its comprehensive CrySL rule set. On top of that, CogniCryptsast
displays the password in the respective vulnerability report. This behaviour is mostly due to
Boomerang [SDAB16a] that enables CogniCryptsast to retrieve the original allocation site of
the password even across several methods.

Data-Visualization Application

Lastly, we discuss a misuse in the code snippet in Figure 6.9. As mentioned before, CrySL
mostly follows a white-listing approach, except that it also allows for the declaration of for-
bidden methods. Certain init() methods of class Cipher are one instance of those forbidden
methods. These init() methods do not allow one to pass IVs or similar extra parameters, which
are, however, necessary if one wishes to use a mode of operation other than ECB. Since the proper
generation of an IV can be tricky, the standard provider SunJCE can automatically prepare an IV
for the developer in case of an encryption. In turn, the developer has to retrieve the IV after the
encryption and supply it to the Cipher object responsible for the decryption by calling an ap-
propriate init() method. If no IV is provided, the statement throws an InvalidKeyException
and is, therefore, not even executed successfully. In summary, should another mode than ECB be

63

6.5 Crypto-API Misuse in Java Software

187 private KeyStore getStore (String type , String path , String pass) {
188 KeyStore ks = KeyStore . getInstance (type);
189 ks.load(istream , pass. toCharArray ());
190 return ks;
191 }
192
193 protected KeyStore getTrustStore () {
194 [...]
195 String truststorePassword = getTruststorePassword ();
196 if ((truststore != null) && (truststorePassword != null)) {
197 ts = getStore (truststoreType , truststore , truststorePassword);
198 }
199 return ts;
200 }
201
202 protected String getKeystorePassword () {
203 String keyPass = (String) attributes .get(" keypass ");
204 if (keyPass == null) {
205 keyPass = " changeit ";
206 }
207 String keystorePass = (String) attributes .get(" keystorePass ");
208 if (keystorePass == null) {
209 keystorePass = keyPass ;
210 }
211 return keystorePass ;
212 }
213
214 protected String getTruststorePassword () {
215 String truststorePassword = (String) attributes .get(" truststorePass ");
216 if (truststorePassword == null) {
217 truststorePassword =

System . getProperty ("javax.net.ssl. trustStorePassword ");
218 if (truststorePassword == null) {
219 truststorePassword = getKeystorePassword ();
220 }
221 }
222 return truststorePassword ;
223 }

Figure 6.8: A Hard-coded Password ("changeit", Line 205) Flows to the KeyStore.load()
Call in Line 189.

64

Chapter 6. CogniCryptsast

224 public Cipher decrypt (byte [] secure , ExternalContext ctx) {
225 SecretKey secretKey = (SecretKey) getSecret (ctx);
226 String algorithm = findAlgorithm (ctx);
227 String algorithmParams = findAlgorithmParams (ctx);
228 byte [] iv = findInitializationVector (ctx);
229
230 Cipher cipher = Cipher . getInstance (algorithm + "/" + algorithmParams);
231 if (iv != null) {
232 IvParameterSpec ivSpec = new IvParameterSpec (iv);
233 cipher .init(Cipher . DECRYPT_MODE , secretKey , ivSpec);
234 } else {
235 cipher .init(Cipher . DECRYPT_MODE , secretKey);
236 }
237
238 [...]
239 return cipher . doFinal (secure , ...);
240 }

Figure 6.9: An Example Illustrating an Incorrect Call to Cipher.init().

used for a decryption with a symmetric block cipher, one must not call Cipher.init() methods
that do not take an IV. However, the code snippet in Figure 6.9 does exactly that.

Lines 225–228 retrieve a secret key, an algorithm, a mode of operation, padding scheme, and
an IV from an external context. CogniCryptsast fails to determine the values precisely, so it
considers all possibilities. Line 230 creates a Cipher object configured with the algorithm and
other transformation parameters. In the subsequent lines, the method checks whether the IV is
null. If not, the correct init() method is called to initialize the Cipher object into decryption
mode using the IV. However, if it is null, the method calls an init() method that does not
require an IV to be passed. The way this code is set up leaves room for two insecure situations
only. First, in some cases, the transformation parameters specify ECB as mode of operation,
which is insecure. Second, ECB and the else branch may rather be thought of as a What if
fall-back solution. Then, this call may occur for modes that do require an IV, which may lead
to the statement throwing a runtime exception. In both cases, the decrypt() method contains
insecure or non-functional code.

6.6 Related Work

We now contrast CogniCryptsast with other approaches for detecting and studies on misuses
of Crypto APIs. We also relate our work to two program-repair tools targeting Crypto APIs.
We conclude that existing tools for detecting and repairing misuses of Crypto APIs largely are
limited mainly because they have hard-coded rule sets, and support for the most part lightweight
syntactic analyses.

6.6.1 Detecting Misuses of Crypto APIs

Java and Android

More than half a dozen approaches address the detection of misuses of Crypto APIs, specifically.
CryptoLint [EBFK13] performs a lightweight syntactic analysis to detect violations of exactly
six hard-coded usage rules for the JCA in Android apps. Those six rules, while important to
obey for security, resemble only a tiny fraction of the rule set we provide in this work. It is
also hard to specify and validate new rules using CryptoLint, because they would have to be

65

6.6 Related Work

hard-coded. Unlike CryptoLint, CrySL is designed to allow crypto experts to also express
comprehensive and complex rules with ease. In Section 6.3, we have extensively compared our
tool CogniCryptsast to CryptoLint empirically.

Another tool that finds misuses of Crypto APIs is Crypto Misuse Analyzer (CMA) [SDG+14].
Similar to CryptoLint, CMA’s rules are hard-coded, and its static analysis is rather basic.
Many of CMA’s hard-coded rules are also contained in the CrySL rule set that we provide.
Unlike CogniCryptsast, CMA has been evaluated on a small dataset of only 45 apps.

Chatzikonstantinou et al. [CNKX16] manually identified misuses of Crypto APIs in 49 apps
and then verified their findings using a dynamic checker. All three studies concluded that at
least 88% of the studied apps misuse at least one Crypto API.

Nguyen et al. [NWA+17] present Fixdroid. The static-analysis plugin for Android Studio
comes equipped with 13 rules related to security APIs. In terms of Crypto APIs, it also covers
about the same rules as CryptoLint.

Rahaman et al. [RXA+19] develop the static-analysis tool CryptoGuard. Through demand-
driven program slicing, a context- and flow-sensitive data-flow analysis and a number of results
refinements, CryptoGuard manages to efficiently detect Crypto-API misuses. The authors have
also created a benchmark to test their tool and compare it to CogniCryptsast. In particu-
lar in terms of memory consumption and performance, CryptoGuard trumps CogniCryptsast.
However, the tool’s hard-coded rule set is again rather limited with a list of fifteen misuses.
While it covers four types of misuses CogniCryptsast does not, it also misses a large vari-
ety. As CogniCryptsast—within their study—reports several false positives and misses actual
misuses, we have investigated the benchmark and added the test cases to our test suite for
CogniCryptsast2 or plan to do so for issues we deem less practically relevant.3 While inves-
tigating the benchmark, we came to the conclusion that it is in large parts not representative
of what is found in practice, based on the experience of real-word cryptographic applications
the author of this thesis has accumulated in both the studies for this work (Sections 6.3 – 6.5)
as well as previous work [NKMB16, NK16]. The authors report a number of false positives
for CogniCryptsast, but those appear to largely emerge from test cases that seem not rel-
evant, including some that use obscure data structures such as maps to store passwords and
seeds. The authors also make multiple false claims about CogniCrypt and CrySL. First, they
claim CogniCrypt was mainly designed for the purpose of a user study, which is false. Their
claim originates from two misunderstandings. The authors do not distinguish between Cog-
niCryptsast and CrySL, one being the analysis, the other being a specification language. They
also do not make the connection of CogniCrypt and CogniCryptsast being related although
we describe their relationship in the implementation section of the original paper [KSA+18].
Second, they claim the CrySL rules prohibiting a password from having any data flows from
a String object would prevent CogniCryptsast from detecting hard-coded passwords. These
two rules are, however, orthogonal. Our CrySL rule set covers both types of misuses. Third,
they claim that CogniCryptsast does not detect insecure uses of pseudo-random number gen-
erators, but it does. This misconception likely stems from a test case that appears to flag
all uses of java.util.Random, instead of just those in crypto contexts.4 Fourth, they claim
CogniCryptsast reports non-crypto issues like unused variables. CogniCryptsast does not.

Muslukhov et al. [MBB18] shed light on the issue of over-reporting Crypto-API misuse in
Android. To this end, they develop the tool BinSight, a static analyzer that finds the same six
misuses as CryptoLint [EBFK13], however, also identifies whether a misuses occurs in one of

2https://github.com/CROSSINGTUD/CryptoAnalysis/issues/134
3https://github.com/CROSSINGTUD/CryptoAnalysis/issues/165
4https://github.com/CryptoGuardOSS/cryptoapi-bench/blob/master/src/main/java/org/cryptoapi/

bench/untrustedprng/UntrustedPRNGCase1.java

66

https://github.com/CROSSINGTUD/CryptoAnalysis/issues/134
https://github.com/CROSSINGTUD/CryptoAnalysis/issues/165
https://github.com/CryptoGuardOSS/cryptoapi-bench/blob/master/src/main/java/org/cryptoapi/bench/untrustedprng/UntrustedPRNGCase1.java
https://github.com/CryptoGuardOSS/cryptoapi-bench/blob/master/src/main/java/org/cryptoapi/bench/untrustedprng/UntrustedPRNGCase1.java

Chapter 6. CogniCryptsast

the libraries an app is using or in app code itself. BinSight detects third-party code through
namespace mapping. It counts any namespace not matching the app’s name as third-party code.
Surprisingly, package-name obfuscation only poses insurmountable problems in 2.5% of cases.
The authors apply BinSight to around 132,000 apps and find that at least 70% of misuses stem
from libraries misusing Crypto APIs rather than the apps themselves. In contrast to their work,
in our large-scale Android analysis, we have resorted to excluding results from a list of common
packages since these included the vast majority of the third-party-code findings we could identify.
However, given Muslukhov et al.’s [MBB18] results, future work should investigate how many
of CogniCryptsast’s findings also reside in library rather than app code. Apart from that, we
note that CogniCryptsast, again, covers a wider variety of misuses than BinSight. Nonetheless,
they were able to also observe a significant decrease of uses of ECB mode since CryptoLint’s
publication [EBFK13].

Braga et al. [BDA+17] present a comparative survey of free static analyzers that check
for misuses of crypto APIs. The studied tools include FindSecBugs [Art18], VisualCodeGrep-
per [NCC18], Xanitizer [Rig], sonar-scanner [Son17], and Yasca [Sco18]. To evaluate these tools,
the authors compile a benchmark of 384 test cases, 202 of which contain crypto misuses. When
applying each tool to their benchmark, they find the general coverage of crypto misuses to be
rather low. Xanitizer—the best among the selected—only finds 68 misuses while producing 40
false positives. The tools mostly cover simple misuses such as outdated algorithms or ECB
mode, but fail on more complex cases like detecting improper IVs.

Other work has investigated other kinds of security APIs. Fahl et al. [FHM+12] analyzed
13,500 Android apps with their static checker Mallodroid. Mallodroid evaluates apps in terms of
insufficient validation of TLS certificates. From their sample set, 1,074 apps do prove to fall short
in that regard, leaving them vulnerable to person-in-the-middle attacks. Similarly, Georgiev et
al. [GIJ+12] achieve similar results in an in-depth analysis of how a number of high-profile apps
handle TLS-certificate validation.

Other Languages

Some work has also targeted Crypto APIs in languages other than Java. Li et al. [LZLG14]
develop iCryptoTracer, a hybrid analysis for finding misuses of Crypto APIs in Objective-C.
iCryptoTracer supports three misuses relating to symmetric encryption. They evaluation on 98
iOS apps reveals 64 to contain at least one misuse.

Feichtner [Fei19] presents the first study directly comparing cryptographic misuse on iOS and
Android. To this end, they select 775 apps that are available on both platforms to investigate
whether both versions contain the same or similar misuses. They also check for the six rules
defined by Egele et al. [EBFK13]. For Android, they implement a custom static analyzer that
uses program slicing to identify relevant lines in the code. For their iOS analysis, they employ an
analyzer for finding misuses of Crypto APIs by the Institute of Applied Information Processing
and Communications (IAIK) in Graz [oAIPI]. Results show that 78% of iOS and 69% of Android
apps exhibit misuses.

Gu et al. [GWL+19] conduct a manual in-depth investigation on 830 misuses of Crypto APIs
in Open-Source C programs. They find that almost all bugs only spread over at most ten lines.
Using the results of their manual analysis as a ground truth, they also compare three static
checkers. They find that all three find different misuse types, but not one finds all. The tools
also generally tend to skew conservative in their analysis in favour of higher precision and to the
detriment of recall.

Zhang et al. [ZCD+19] identify misuse of Crypto APIs on iot devices. Due to the diverse
nature of iot devices, their analyzer CryptoREX is able to transform binary code of multiple
architecture into a common IR. It then identifies relevant API calls and tracks their inputs

67

6.6 Related Work

through the program in a backward taint analysis. In a last step, CryptoREX is checking the
inputs for the same violations as Egele et al. [EBFK13]. Their evaluation on 521 state-of-the-art
iot firmware shows that about 24% of firmware images misuse Crypto APIs.

Wang et al. [WLZ+17] present NativeSpeaker, a tool that checks for crypto misuses in native
code. The tool can detect two kinds of crypto uses. First, it detects when native code calls the
JCA (whose interfaces are implemented in plain Java). Second, it applies heuristics comprising
filters on an operation’s type and name to find cryptography within the native code itself. For
each use found, it checks for a number of misuse types related to symmetric encryption only. In
this context, NativeSpeaker finds uses of outdated crypto algorithms, uses of ECB mode, and
improper key material.

Mitchell and Kinder [MK19]’s approach to detect misuses of Crypto APIs allows for an-
notating JavaScript Crypto libraries. These annotations lead the library to report to its user
when it is being misused. They provide a proof-of-concept implementation of a Crypto library
in JavaScript.

Leuer [Leu19] proposes Sharper Crypto-API Analysis, an analyzer reports misuses of C#
Crypto APIs. To this end, the author first analyzes extensively both the requirements for such
a tool as well as the environment that C# and, by proxy, .Net offer in terms of cryptography.
Sharper Crypto API Analysis covers a list of twelve hard-coded misuses, ranging from low
iteration count for PBE, insufficient salt, and the use of ECB mode or insecure cryptographic
algorithms. Leuer has integrated Sharper Crypto-API Analysis into Visual Studio.

Summary

None of the previous approaches facilitate rule creation by means of a higher-level specification
language. Instead, the rules are hard-coded into each tool’s code, making it hard for non-experts
in static analysis to extend or alter the rule set. Consequently, the tools are not completely
incapable of supporting CogniCryptsast’s broad range of misuses, but extending one to do
so requires a) intricate knowledge of the respective tool and its code and b) a lot of repetitive
manual implementation work. This limitation also makes it impossible to share rules among
tools. Moreover, such hard-coded rules are quite restricted, causing the tools to have a very
low recall (i.e., missing many actual API misuses). Thanks to CrySL, on the other hand,
CogniCryptsast can cover a much wider range of violations. By defining crypto-usage rules in
CrySL instead of hard-coding them, non-experts can easily configure CogniCryptsast. The
rules aso become reusable in other contexts. This flexibility further becomes important when
confronted with different APIs, multiple versions of an API, or standards one wants to check
a program for compliance with. NIST [GGF17], the BSI [fISB17], FIPS [Lab19], and other
cryptographic standards may overlap in certain requirements, but they also differ in others.
Such variability can hardly be supported by analysis tools with hard-coded rules.

6.6.2 Repairing Misuses of Crypto APIs

Two tools go beyond detecting misuses and attempt to fix them as well. CDRep [MLLD16]
applies a by-one-rule-extended version of CryptoLint to a target program. For each of the
seven kinds of misuses CryptoLint finds, the authors have devised a fix template. In a second
phase, CDRep applies this fix by instrumenting the program’s bytecode. In an evaluation on
8,592 Android apps, the tool manages to repair around 95% of the misuses it has detected.
FireBugs [SZSS19] pursues a similar goal. The tool’s authors have defined code patterns that
contain API misuses. Bootstrapped with these patterns, FireBugs analyzes a target program
through program slicing, and repairs it using a series of AST operations. To finally apply a
patch, FireBugs employs aspect-oriented programming to weave it into the target program.

68

Chapter 6. CogniCryptsast

In contrast, CogniCryptsast does not repair the target program, but only analyzes it.
There is however ongoing work on such a program-repair tool on top of CrySL and Cog-
niCryptsast that combines CrySL’s large coverage, CogniCryptsast’s precise analysis, and
a means to repair vulnerable software automatically. We discuss further the ideas behind this
tool in Section 9.2, the approach itself is, however, beyond the scope of this thesis.

6.7 Conclusion
In this chapter, we have presented CogniCryptsast, a static analysis checking for compliance
of a target program with a set of CrySL rules. Bootstrapped with the Rulesetfull CrySL
rule set, this approach is capable of detecting misuses of Crypto APIs in Java programs. To this
end, CogniCryptsast employs efficient and precise state-of-the-art data-flow analysis. Applying
CogniCryptsast, the analysis for our extensive ruleset Rulesetfull, to 10,000 Android apps,
we found 20,426 misuses spread over 95% of the 4,349 apps using the JCA. Similarly, we applied
CogniCryptsast to 2,700,000 artefacts on Maven and it detected misuses in 63% of the artefacts
that use cryptography. CogniCryptsast is also highly efficient: it analyzed all of Maven Central
in under a week and for more than 75% of the apps the analysis finishes in under 3 minutes,
where most of the time is spent call graph construction. When analyzing more security-critical
apps, we unfortunately found there to still be many misuses (1,353 misuses in 172 apps) and
many apps with misuses (71%).

There are several ways forward for CogniCryptsast. The issue of over-reporting raised by
Muslukhov et al. [MBB18] should be investigated and addressed. The valid imprecision issues
raised by Rahaman et al. [RXA+19] deserve addressing as well. Lastly, future work should
also explore evaluating CogniCryptsast’s reports. If users fail to understand the warnings
CogniCryptsast reports to them, the tool serves little purpose.

69

6.7 Conclusion

70

CogniCryptgen

7
In this chapter, we present CogniCryptgen. Previous attempts at solving cryptographic misuse
have largely focused on misuse detection (Section 6.6) or less direct means than tool support
(Chapter 4). Java developers do, however, also request more direct support [NKMB16]. By
presenting CogniCryptgen, our second tool support built on top of CrySL, we fill this gap.
CogniCryptgen is a code generator for secure integrations of Crypto APIs. The tool operates
on a Java project into which it generates code and accepts as input a template with interface
and glue code, as well as usage rules in CrySL. Our design of CogniCryptgen simplifies the
used code templates, causing the vast majority of the code to be generated fully automatically
from CrySL definitions. This code is provably correct by construction and secure (assuming a
correct and secure specification of CrySL rules by domain experts).

We evaluate CogniCryptgen along four different dimensions. First, to determine its ex-
pressiveness, we implement templates for eleven common cryptographic use cases in Cog-
niCryptgen. Second, we measure runtime performance and memory consumption of Cog-
niCryptgen on all those use cases. We then compare CogniCryptgen to CogniCryptold-gen,
CogniCryptgen’s predecessor within the context of CogniCrypt’s prototypical implementa-
tion as an Eclipse plugin. We describe CogniCryptold-gen in much more detail in Sections
7.3 and 7.4. In this context, we compare the effort to create and maintain the artefacts for the
eight use cases that CogniCryptold-gen and CogniCryptgen have in common in terms of the
artefacts that are required to implement them in each of the two code generators. Lastly, we
investigate the usability of CogniCryptgen for a Crypto-API developer, i.e., a domain expert
who may integrate new use cases or modify existing ones. To this end, we conduct a user study
with 16 participants, for which we ask them to perform a series of modifications to artefacts
of existing use-case implementations. In conclusion, we manage to implement all common use
cases we find in CogniCryptgen. CogniCryptgen further outperforms CogniCryptold-gen
in terms of usability and maintainability, while showing negligible memory overhead and fast
performance results of below ten seconds.

7.1 Generating Secure Code From CrySL

In this section, we present CogniCryptgen. First, we discuss the goals and considerations of
our design. We then go further into its API, the code templates that interface CogniCryptgen,
and the underlying code-generation algorithm.

71

7.1 Generating Secure Code From CrySL

241 public SecretKey generateKey (char [] pwd) {
242 byte [] salt = new byte [32];
243 javax. crypto . SecretKey encryptionKey = null;
244
245 CrySLCodeGenerator . getInstance ().
246 includeClass ("java. security . SecureRandom "). addParameter (salt ,"salt").
247 includeClass ("java. security . PBEKeySpec "). addParameter (pwd ," password ").
248 includeClass ("javax. crypto . SecretKeyFactory ").
249 includeClass ("java. security . SecretKey ").
250 includeClass ("javax. crypto . SecretKeySpec "). addReturnObject (encryptionKey).
251 generate ();
252 return encryptionKey ;
253 }

Figure 7.1: CogniCryptgen Template that Generates a Correct Java Implementation for PBE
from Figure 1.1.

7.1.1 Design Considerations

CogniCryptgen targets a very practical problem: solving the widespread misuse of Crypto APIs
through code generation. To this end, we put usability at the center of the design effort.
Usability first and foremost refers to usability for regular Java developers. To truly help those
developers, CogniCryptgen must support the most common cryptographic use cases. It must
also integrate into the development workflow of a regular developer, which puts limitations
on the running time of CogniCryptgen. On top of these aspects, prioritizing usability, for
us, also means to have a usable development and maintenance process of the artefacts in the
backend of CogniCryptgen (i.e., CrySL rules and code templates). The target audience of
CogniCryptgen’s backend are crypto experts who have either developed a library that they
want to integrate into CogniCryptgen or have some experience with one. To keep things
simple, we opt for Java code templates as opposed to other template languages that Java crypto
experts are not likely familiar with. Since CrySL also has a Java-like syntax, developers are
not required to familiarize themselves with the syntax of other languages. While CrySL is
an additional artefact that may not be needed by other template engines in particular, or
code-generation approaches in general, developing rules in CrySL comes with the additional
advantage of gaining other tool support from the CogniCrypt ecosystem. The result of our
design is a code generator combining code templates with CrySL rules.

7.1.2 Configuring Solutions with Java Code Templates

CogniCryptgen’s code templates are regular Java classes. They allow crypto experts to (1) in-
clude use-case-specific boilerplate code, (2) specify CrySL rules that make up the given use case,
and (3) pass objects from the boilerplate code to CogniCryptgen. Figure 7.1 shows the code
template for implementing the PBE example from Figure 1.1 correctly and securely. Figure 7.2
shows how the generated code uses this template. Line 242 in the template defines a salt. This
explicit definition is necessary because the involved APIs require a byte array, but do not create
one themselves. The line after, Line 243, defines a cryptographic key called encryptionKey,
which the generated code uses to store the generated key (Line 268 in Figure 7.2).

Starting at Line 245, the template calls CrySL rules and instantiates their parameters using
a fluent API [Fow05]. The call to getInstance() instantiates the code generator. Line 246
includes the class java.security.SecureRandom into the code generation through a call to
includeClass(). In the next line, the call to addParameter() associates the byte array salt
in the template with the variable salt in the CrySL rule for SecureRandom. Lines 246–247

72

Chapter 7. CogniCryptgen

255 public class TemplateClass {
256 public SecretKey generateKey (char [] pwd) {
257 byte [] salt = new byte [32];
258 SecretKey encryptionKey = null;
259
260 SecureRandom secureRandom = SecureRandom . getInstance (" SHA1PRNG ");
261 secureRandom . nextBytes (salt);
262 PBEKeySpec pBEKeySpec = new PBEKeySpec (pwd , salt , 27799 , 128);
263
264 SecretKeyFactory secretKeyFactory = SecretKeyFactory . getInstance
265 (" PBEWithHmacSHA512AndAES_128 ");
266 SecretKey secretKey = secretKeyFactory . generateSecret (pBEKeySpec);
267 byte [] keyMaterial = secretKey . getEncoded ();
268 encryptionKey = new SecretKeySpec (keyMaterial , "AES");
269
270 pBEKeySpec . clearPassword ();
271 return encryptionKey ;
272 }
273 }
274
275 public class OutputClass {
276 public void templateUsage (char [] pwd) {
277 TemplateClass tc = new TemplateClass ();
278 SecretKey key = tc. generateKey (pwd);
279 }
280 }

Figure 7.2: The Code that CogniCryptgen Generates Using the Template from Figure 7.1.

Complete
Statements

Parse

CrySL
Rules

Method
path

Predicate
Path

CrySL
Variables

Involved
CrySL
Rules

Return
Objects

Code
Template

Generated
Code

Resolve
Parameter

Values

Method
Sequence
Selection

Pairwise
Predicate
Matching

Generate
Statements

Input Output
For Each Rule

1

2

3

4 5

Figure 7.3: The General Workflow of CogniCryptgen.

73

7.1 Generating Secure Code From CrySL

properly randomize salt before using it during key generation. Lines 247–250 then create a
java.security.PBEKeySpec key and transform it into a javax.crypto.SecretKeySpec key.
Finally, the call to addReturnObject() assigns encryptionKey the role of a return object.
During the generation, the return value of the constructor of javax.crypto.SecretKeySpec is
stored in encryptionKey. CogniCryptgen selects the constructor because it is the last method
of that class that needs to be called according to the CrySL rule. The password-based key is
thus assigned to encryptionKey. Line 252 returns the key as part of the boilerplate code.

7.1.3 Generating Secure Code from Templates

Figure 7.3 shows the workflow of CogniCryptgen. In the following, we describe how it
works and will refer to the individual steps using their corresponding numbers in the fig-
ure. For each call to the code-generator API in a template, CogniCryptgen first collects
all rules and their parameters from an API call chain 1 . The chain in Line 245 in method
generateKey() requires rules for java.security.SecureRandom, java.security.PBEKeySpec,
javax.crypto.SecretKeyFactory, and javax.crypto.SecretKeySpec. In addition, theCrySL
rules for java.security.SecureRandom and java.code.PBEKeySpec get attached the objects
salt and pwd to their in-rule variables salt and password, respectively. Lastly, the rule for
SecretKeySpec yields the object encryptionKey as a return object.

CogniCryptgen then iterates through the rules to assemble a list of predicates that link
rules to one another 2 . These links form a path that CogniCryptgen uses to select ap-
propriate method sequences for a given class 3 . If two classes are connected through a
predicate, CogniCryptgen may, for the class that should ensure the predicate, only select
method sequences that eventually grant this predicate. Similarly, for the class that requires
the predicate, CogniCryptgen picks method sequences that make use of the predicate. For
the PBE example in Figure 7.1, PBEKeySpec can generate the predicate speccedKey on itself.
SecretKeyFactory, in turn, requires this predicate on the key specification object that it uses to
generate a key. Hence, CogniCryptgen connects both rules using the predicate speccedKey on
the PBEKeySpec object. If CogniCryptgen were unable to establish a path between PBEKeySpec
and SecretKeyFactory, it would not have taken the former into account when generating code
for the latter.

Next, CogniCryptgen iterates through all rules again to assemble the code, which includes
both generating method calls 3 for all involved classes and finding appropriate values for their
parameters 4 . For each CrySL rule, CogniCryptgen first compiles a list of correct paths
of method calls according to the specified usage pattern in the ORDER section 3 . To this end,
CogniCryptgen translates a rule’s pattern into a finite state machine. The tool then classifies
any path of method calls that leads to an acceptable state in the state machine as correct.
When assembling such paths, CogniCryptgen has to deal with methods that, according to the
state machine, may be called multiple times. CogniCryptgen translates such methods into
two different paths: one where the method is not called and one where it is. CogniCryptgen
does not currently support repeated calls. However, in our experiments with the JCA, this lack
of support has not proven to be a problem. In scenarios where more than one correct path is
found, CogniCryptgen applies a set of filters to reduce the number of sequences. Paths that
do not include objects required by the code template through calls to addParameter() cannot
implement the use case and are, therefore, eliminated. For PBEKeySpec, its CrySL rule in
Figure 5.2 prescribes one specific constructor (create) and the method clearPassword() to be
called in that order. Therefore, for this class, CogniCryptgen finds only this one possible path
to an accepting state. Similarly, CogniCryptgen discards paths that may lead to predicates
different than the ones associated with it. In the case of PBEKeySpec, the only possible path
grants the correct predicate speccedKey. Consequently, CogniCryptgen does not remove this

74

Chapter 7. CogniCryptgen

path from the list of possible paths to take. Instead, CogniCryptgen generates the call to the
PBEKeySpec constructor in Line 262 of Figure 7.2.

The second call, the call to clearPassword(), CogniCryptgen appends to the block of
API statements in Line 270 before the return statement because the method invalidates the
speccedKey predicate of the object. Instead of generating calls to such invalidating methods
directly, CogniCryptgen collects them and generates them at the end of the method.

For each method call on the remaining paths, CogniCryptgen applies several heuristics
to resolve possible parameter values 4 . First, it attempts to match parameters required by
the template through calls to addParameter() to a given parameter in a method call. Two
objects match when the CrySL variable mapped to an object in the addParameter() call in the
template is the one used in the method call. At Line 262 of Figure 7.2, CogniCryptgen matches
password, the first parameter in the constructor create of PBEKeySpec, to the argument pwd
of the method generateKey(). It does so because the call to addParameter() maps pwd to the
CrySL variable password in PBEKeySpec (Line 247). In case of no match, CogniCryptgen
further attempts to match a parameter to objects in the generated code that have received a
matching predicate. For the PBE example, CogniCryptgen generates code for SecureRandom
that ensures the predicate randomized for salt. CogniCryptgen then matches the second
parameter in the call to the PBEKeySpec constructor to this salt object because it has the
same type and requires the same predicate. CogniCryptgen conducts one further step to
resolve remaining method parameters that may not be matched to any existing objects from
the code template or the generated code. For those, it queries constraints from the respective
CrySL rule and fetches secure values from the first appropriate constraint that it finds. For
value constraints of the form var in {Literal1, ..., LiteralN}, it selects the first option
Literal1. This type of constraint usually comes into play for algorithms and key sizes (e.g., in
KeyGenerator or Cipher [KSA+19a]). From a security perspective, since all values in a CrySL
rule ought to be correct, it does not matter which value CogniCryptgen chooses. Another
type of constraints becomes relevant for the third parameter of the PBEKeySpec constructor.
According to the rule in Figure 5.2, the iteration count must be ≥ 10,000. CogniCryptgen
generates the closest value that satisfies this constraint, which is 10,000 (Line 262 in Figure 7.2).

For cases in which this attempt to resolve the parameter fails as well, we decided to prioritize
compilability of the generated source code over completeness. That is, CogniCryptgen adds the
unresolvable parameter to the wrapper method that the call belongs to. During the development
of our code templates, this feature has proven useful for debugging. We have first specified
which CrySL rules should be included in the generation and after running CogniCryptgen,
the generated code showed which parameters needed additional specification. We believe this
feature will also help crypto experts in similar situations. For the final code template, however,
this step is meant as a fallback solution because it changes the wrapper method as defined in the
code template and de-facto complicates the use of the method. In practice, CogniCryptgen
does not have to take this final step for any of the use cases we have implemented.

If, at the end of this process, CogniCryptgen needs to choose between multiple method
paths with fully-resolvable parameters, it selects the shortest one. That is, CogniCryptgen opts
for the method path with the fewest method calls as well as the smallest number of parameters.
When all calls are selected and all parameter objects have been assigned values, CogniCryptgen
generates the produced code into the target program 5 . This process is then repeated for all
calls to CogniCryptgen’s fluent API within a given template. Once CogniCryptgen has
processed a template, it also generates a method that showcases the usage of the generated
code. To this end, it creates a new class and method, in which it first instantiates an object of
the template class. For our running example, Line 276 in Figure 7.2 marks the first statement
of the corresponding method. In that method, CogniCryptgen iterates through all methods

75

7.2 Implementation Details

of the template class that contains calls to the fluent API and generates calls for them. For
generateKey() in the template, the generated call is at Line 278. Other methods are assumed
to be internal helper methods. CogniCryptgen further attempts to match parameters by
checking if a given parameter’s type matches that of any return values of previous calls. To
ensure compilability, CogniCryptgen pushes up parameters where no matching is possible,
e.g., pwd of generateKey(), to become parameters of method templateUsage(). For pwd, this
refactoring produces indeed the correct result, as the password should be an input rather than
a hard-coded value. In conclusion, we view this method as useful for developers, because they
do not need to engage with the generated code, but only with this summary method. We drew
inspiration for this feature from CogniCrypt’s previous code-generator CogniCryptold-gen,
in which such a method is hard-coded into the tool’s templates.

7.2 Implementation Details
We developed CogniCryptgen on top of the existing infrastructure for CogniCrypt. We
had to first modify CrySL with respect to the initial design. For encryption, the JCA offers
one API for both asymmetric and symmetric encryption: Cipher. Until our work on Cog-
niCryptgen, the rule for Cipher had included one long list of secure algorithms indiscriminately
of whether they are performing the former or the latter. For the purpose of CogniCryptsast’s
program analysis, such a distinction does not need to be made. However, implementing use
cases involving hybrid encryption (Section 7.3) requires differentiating between them. For that
purpose, we introduced a new built-in predicate instanceof(cryslVariable, javaType). By
means of this predicate, the CrySL rule for Cipher now only allows symmetric-encryption algo-
rithms when a key used for encryption is of type SecretKey or subtypes (i.e., instanceof(key,
java.security.SecretKey). Asymmetric encryption algorithms may only be used when the key
is either a private or a public key, indicating that the Cipher object implements an asymmetric
encryption. After finishing our work on CogniCryptgen, we have extended CogniCryptsast
to support this predicate as well1 because it may improve its recall as the tool no longer considers
certain incorrect combinations of symmetric key and asymmetric cipher (or vice versa) secure.

We further needed to modify the existing JCA rule set in the following ways. For some rules
(e.g., Signature and KeyGenerator), we changed the position of arguments in the constraints
var in {Literal1, ..., LiteralN} to better reflect the preferences in algorithm selection
that CogniCryptgen should follow [GGF17, fISB17, Nat18]. We have also added a new pa-
rameter to some predicates (e.g., Signature), where the first parameter was not the return
value of a cryptographic operation (e.g., the boolean return value of Signature.verify()). In
all respective cases, CogniCryptgen requires the return value to store it in the correct variable
as assigned in the template through a call to addReturnObject().

To parse rules, we also use the CrySL parser. To parse templates, traverse rules, and modify
code, we implemented our own custom solution. This solution builds on top of the Eclipse Java
Development Toolkit (JDT). To parse the templates and apply changes to them in the target
project, we have followed a visitor pattern using the JDT’s abstract-syntax-tree (AST) APIs.

Prior to our work on CogniCryptgen, in the initial phase of CogniCrypt, we had imple-
mentedCogniCryptold-gen as a code generator forCogniCrypt [KNR+17]. CogniCryptold-gen
uses XSL templates to define use-case specific code and points of variability. An algorithm model
in the variability-modelling language Clafer [JSM+19] supplies correct values (i.e., algorithms)
based on user input [NK16]. We further compare CogniCryptgen to CogniCryptold-gen in
Sections 7.3 and 7.4. After finishing the development of CogniCryptgen, we have replaced
CogniCryptold-gen with CogniCryptgen which implements the eight JCA use cases that

1Extension in commit 0971fa8 in the CogniCryptsast repository on Github.

76

https://github.com/CROSSINGTUD/CryptoAnalysis/commit/0971fa83535dd349b340ef3545d123be6f4ab98c

Chapter 7. CogniCryptgen

CogniCrypt supports: password-based encryption for the data types (1) file, (2) string, and
(3) byte array, hybrid encryption for the data types (4) file, (5) string, and (6) byte array, (7)
digital signing, and (8) secure password storage.

7.3 Evaluation
To evaluate CogniCryptgen, we aim to answer the following research questions:

RQ11 Can CogniCryptgen implement common cryptographic use cases?

RQ12 Does CogniCryptgen produce code quickly enough to be used in everyday software
development?

RQ13 What is the memory consumption of CogniCryptgen?

RQ14 What is the effort to create and maintain the artefacts for CogniCryptgen to implement
common cryptographic use cases?

RQ15 Do contributors to CogniCryptgen perceive a usability gain compared to a state-of-the-
art solution using XSL?

With the first three research questions, we aim to determine whether CogniCryptgen may
actually support developers. If CogniCryptgen is incapable of implementing the most common
cryptographic use cases (RQ11), it cannot meaningfully reduce cryptographic misuse. Similarly,
if its memory consumption and runtime exceed the average capabilities of workstations (RQ12
and RQ13), application developers will not use it. RQ14 and RQ15 then focus on crypto
developers who wish to implement use cases for their own APIs. If CogniCryptgen requires
too much effort (RQ14) or developers do not find it intuitive to use (RQ15), it is unlikely that
a crypto developer will integrate their APIs with CogniCryptgen, even if they get access to
other tool support in CogniCrypt.

7.3.1 Implementation of common use cases (RQ11)

Setup

To answer RQ11, we have first gathered common cryptographic use cases from multiple sources.
We then attempted to implement them with CogniCryptgen. To check the validity of the
generated code with respect to compilability and security, we have further run the Java compiler
and CogniCryptsast on them.

Results

We collected eleven use cases from three different sources. Table 7.1 shows all use cases that
CogniCryptgen supports as well as their respective sources. We first identified eight of eleven
cryptographic use cases that CogniCryptold-gen [KNR+17] supports and that use the JCA. We
discard the three remaining ones. No sufficiently advanced CrySL rules exist for these use cases
because they are not based on the JCA. In their study, Nadi et al. [NKMB16] compiled a list of
common usage scenarios by (1) analyzing the implemented use cases of 100 randomly selected
GitHub projects that implement Java cryptography and (2) asking participants for cryptographic
programming tasks that they commonly have to implement. We have also collected the responses
often found in projects and popular with participants. Lastly, Mindermann and Wagner [MW18]
have collected an online repository that aims at providing secure implementations for common
cryptographic use cases. We have included this repository’s use cases into our list as well.

77

7.3 Evaluation

Table 7.1: Common Cryptographic Use Cases

Use Case Source Runtime in
CCgen (s)

Memory Consumption
in CCgen (MB)

1 PBE on Files [KNR+17] 7.0 14.1
2 PBE on Strings [KNR+17], [MW18] 6.7 13.5
3 PBE on Byte-Arrays [KNR+17] 7.1 66.6
4 Symmetric-Key Encryption [MW18], [NKMB16] 6.8 6.0

5 Hybrid File Encryption [KNR+17] 6.7 2.5
6 Hybrid String Encryption [KNR+17] 6.6 4.2
7 Hybrid Byte-Array Encryption [KNR+17] 6.9 56.7
8 Asymmetric String Encryption [MW18] 6.8 34.1

9 Secure User-Password Storage [KNR+17], [MW18] 8.1 22.7
10 Digital Signing of Strings [KNR+17], [MW18], [NKMB16] 7.5 7.1
11 Hashing of Strings [MW18] 6.7 14.2

We have successfully implemented all eleven use cases. The implementations of use cases 1–3
are virtually the same in CogniCryptgen, because they involve the same classes, which leads
to having the exact same calls to CogniCryptgen’s fluent API . Only the wrapper code around
the fluent-API calls changes depending on the data type (i.e., File, String, or Byte Array) that
is encrypted. The same is true for use cases 5–7, which all deal with hybrid encryption but on
different data types. None of the generated code snippets cause compiler errors or true misuses
identified by CogniCryptsast. They do cause CogniCryptsast to report a handful of false
positives that are hard to avoid but can be circumvented in the context of CogniCrypt.2

7.3.2 Performance (RQ12 and RQ13)

Setup

To answer RQ12, we measure the average running time for each use case in Table 7.1. We ran
each use case ten times, collect the measurements using java.lang.System.currentTimeMillis(),
and computed the average of the measurements.

To answer RQ13, we ran CogniCryptgen for each task again. We capture the memory
consumption of the Eclipse process through the system memory monitor both before and during
CogniCryptgen’s run. We then subtract the before-value from the highest value during the
run. Please note, in pre-experiments, we ran several use cases multiple times, but found the
fluctuation in memory usage as negligible (within half a megabyte). We hence decided to measure
the memory consumption from only a single run.

We ran the experiments on a Windows 10 machine with four Intel Core i7-5600U CPUs
running at 2.6GHz and 16 GB of RAM. We executed all runs on an Eclipse 2019-06 for RCP
and RAP developers using Java 1.8.0_161 and gave the JVM 8 GB of RAM.

Results

We list the results for RQ12 and RQ13 in the last two columns of Table 7.1. CogniCryptgen
takes between 6.6 and 8.1 seconds. Therefore, all runs are well below ten seconds, making
CogniCryptgen easily integrable into a developer’s programming workflow.

2https://github.com/CROSSINGTUD/CryptoAnalysis/issues/80

78

https://github.com/CROSSINGTUD/CryptoAnalysis/issues/80

Chapter 7. CogniCryptgen

Table 7.2: Comparing the Required Lines of Code (LOC) to Implement the Use Cases of Cog-
niCryptold-gen in Both CogniCryptold-gen and CogniCryptgen.

LOC in LOC in
CogniCryptold-gen CogniCryptgen

XSL Clafer Java
1 140 117 57
2 138 117 57
3 111 117 51
5 158 90 74
6 156 90 74
7 129 90 68
9 139 67 55
10 115 43 40

In terms of memory consumption, CogniCryptgen consumes between 2.5 and 66.6 MB on
top of the regular Eclipse process. During our experiments, the latter oscillated between 900 MB
and 1.2 GB of RAM. We conclude that CogniCryptgen’s memory overhead is negligible.

7.3.3 Effort of Artefact Creation and Maintenance (RQ14)

Setup

To approximate the effort of rule creation and maintenance, we compare the artefacts needed to
implement the eight cryptographic use cases in CogniCryptold-gen to their implementations
in CogniCryptgen. In particular, we compare the total number of lines of code a crypto expert
would have to write as well as the language skills required by a developer to implement a use
case using both code generators.

We have only investigated artefacts that are specific to the respective code generator. That
is, for CogniCryptold-gen, we looked at Clafer model and XSL code templates. For Cog-
niCryptgen, on the other hand, we only investigated the code templates, not the involved
CrySL rules, because they are not CogniCryptgen specific, but are instead developed to re-
ceive general support for an API by CogniCrypt.

Results

Table 7.2 shows the sizes of the different artefacts for the eight use cases thatCogniCryptold-gen
supports. Overall, a developer needs to write at least 115 lines of XSL code and 43 lines of Clafer
model to support any of those use cases in CogniCryptold-gen, with the same use case only
requiring 40 lines in Java for CogniCryptgen. On average, each use case implements 136 lines
of code in XSL and 91 lines in Clafer. In contrast, a developer needs to write an average of only
60 lines of Java code in CogniCryptgen to implement those use cases. CogniCryptgen thus
has two advantages. First, artefact maintainers need to only keep track of around 25% of the
lines of code. Second, crypto experts who have implemented a library in Java do not need to
learn extra languages (i.e., Clafer and XSL) to implement their use cases in CogniCryptgen.
Instead, they may define their security code entirely in Java, a language they need to be famil-
iar with to implement their cryptographic library in the same language. When defining code
templates in an IDE such as Eclipse, the crypto experts receive the more advanced development
support for Java (e.g., type checking and auto-compiling) compared to what editors or IDEs

79

7.3 Evaluation

provide for XSL or Clafer. Those advantages carry over to scenarios where experts may use
CrySL in domains other than cryptography.

7.3.4 Usability (RQ15)

Setup

To answer RQ15, we conducted a small-scale user study with 16 participants. We recruited
participants among graduate students at our local university. Each participant is given two
programming tasks we describe below, both of which we based on common cryptographic use
cases in Table 7.1, one with CogniCryptgen and one with CogniCryptold-gen.

We choose to compare againstCogniCryptold-gen for two reasons. First, it is the tool whose
goal and purpose is closer to CogniCryptgen’s than any other. Second, XSL, as an approach
to template-based code generation, provides the ideal setting to compare against. Templates
are defined in an extra language with extra features, but still providing a way to write Java
code directly. Domain experts might find the additional layer of abstraction this extra language
provides useful because it produces a clear cut between code template and generated code.
We, however, assume this to not be the case, at least for cryptographers because, from our
prior experience working with cryptographers, we can report that they often do not know any
template languages. If participants of our study who by and large also lack experience with
template languages nonetheless preferred CogniCryptold-gen despite the extra language, we
would expect domain experts to also favour the old code generator rather than the new one.

Consequently, we designed the tasks such that they rely heavily on modifying code templates,
instead of Clafer models and CrySL rules. Task 1, based on use case ten in Table 7.1, asks
participants to (1) change a solution that hashes strings to one that hashes files and (2) fix
the name of the chosen algorithm that the code generator produces. Task 2, based on use case
four in Table 7.1, asks participants to (1) add proper randomization of an initialization vector
for symmetric encryption and (2) prohibit the code generator from using an outdated algorithm.
To avoid learning and other carry-over effects, we follow a latin-square approach [Gao05] when
randomly assigning tasks and code generators to participants. We give participants 30 minutes
to complete each task. Before participants start solving the tasks, the respective instructor gives
a 25-minute introduction to both code-generation tools performing the same two modifications
on use case eleven in Table 7.1. After participants have completed their work on the tasks, we
ask them to fill a short survey about the perceived usability of the two approaches. We also
conducted 5-minute post-study interviews with participants.

To determine the effectiveness of both code generators, we measure the time that participants
need to complete each task. To measure preference for one approach over the other, we employ
the System Usability Scale (SUS) [Bro96] and Net Promoter Score (NPS) [Rei03]. The former
determines usability, while the latter measures user satisfaction with a system. Both scales
transform answers to a questionnaire given by users of a system into a single number.

In SUS, a system receives a score between 0 and 100 such that higher values indicate higher
usability. Tools that surpass 68 are seen as usable [Bro96]. NPS may range from -100 to +100.
Systems that score below 0 are considered unsatisfactory, while results above 50 are viewed as
having excellent satisfaction [Rei03]. By means of the post-study survey, we collected more direct
feedback and suggestions for improvements for both CogniCryptgen and CogniCryptold-gen.

Results

All 16 participants successfully completed both tasks in the given time window. On average,
the encryption task was completed 38% more slowly with CogniCryptgen than with Cog-

80

Chapter 7. CogniCryptgen

niCryptold-gen. In contrast, participants were 63.2% faster to complete the hashing task using
CogniCryptgen than CogniCryptold-gen. Investigating the overall completion times, we
found no statistical significance with a Wilcoxon signed-rank test for paired data (p > 0.05).
Initially, the mixed results came as a surprise to us. However, after evaluating the post-study
interviews, we are able to attribute them to the steep learning curve for CogniCryptgen.
Seven out of 16 participants mentioned this issue unprompted, all of whom explained that they
had not remembered all details from the introduction for either tool. However, since Cog-
niCryptold-gen requires more hard-coding, they managed to get faster into implementing the
requested changes. For CogniCryptgen on the other hand, they had to re-read the respec-
tive existing code to remember the underlying concepts. All seven participants mentioned that
a written example-driven documentation that covered what was discussed in the introduction
would likely solve this issue.

In terms of usability, CogniCryptgen fares significantly better (SUS: 76.3 and NPS: 56.3)
compared to CogniCryptold-gen (SUS: 50.8 and NS: -43.7). Applying a Wilcoxon signed-rank
test, we found the differences between CogniCryptgen and CogniCryptold-gen in both SUS
and NPS to be statistically significant (p = 0.005). Overall, participants appreciated the purpose
and design of CogniCryptgen. In particular, participants enjoyed being able to develop code
templates in Java and the structural clarity of CrySL. In the post-study interview, all but
one participant preferred CogniCryptgen over CogniCryptold-gen. This preference further
reflects how significantly more usable CogniCryptgen is compared to CogniCryptold-gen.

Although participants generally enjoyed using CogniCryptgen, there is still some room for
improvement—something that is underlined by the post-study interviews. Participants proposed
several enhancements to the CogniCryptgen API (e.g., abandoning the call-chain design of
fluent APIs, shortening the API method names, and providing content assist for class names in
the includeClass() call). Three participants also suggested to give the code template a different
name from the generated class and to add a comment to templateUsage() that indicates it was
generated.

7.3.5 Discussion

Putting everything together, CogniCryptgen proves to fulfil the goals we set in the design
phase. With CogniCryptgen, we were capable of implementing eleven common cryptographic
use cases, all of which are more compact than with CogniCryptold-gen. Our experiments have
shown that CogniCryptgen does not take longer than ten seconds for any of the eleven use cases
with negligible memory overhead. Our user-study participants appreciated CogniCryptgen
significantly more than CogniCryptold-gen, but requested more proper documentation and
made several suggestions to further improve the tool’s usability.

7.3.6 Threats To Validity

Our experiments exhibit threats to validity. Since we selected graduate students as study par-
ticipants, the internal validity of the study is threatened as students are not necessarily cryp-
tography experts. Therefore, they may take longer for a given task, because they lack the
knowledge for a particular cryptographic API and not as a result of the code generator. We
mitigated this threat in two ways. First, the task descriptions included the cryptographic APIs
and methods that participants were supposed to use. Participants were only asked to imple-
ment this solution into the given code generator. Second, we also asked participants to rate
their cryptography experience on a 1–10 scale. On average, participants rated themselves at
5.2, with the median self-ascribed experience level of 5. While self-ratings come with their own

81

7.4 Related Work

caveats [Nor97, Mah16, ASLRD99, HCP+95], we did not find statistically significant differences
between participants who rated themselves higher than average with those lower than average.

The unequal familiarity of participants with CrySL and XSL threatens the internal validity
of the study results as well. When asked to self-rate their experience with each on a 1–10 scale,
CrySL scored an average of 5.2, while XSL only reached 1.3. To mitigate this threat, we (1)
gave each participant an introduction to both code generators in the very beginning of the study
(as participants had to self-assess their familiarity with XSL and CrySL at the end of the study,
we asked for the familarity they had before our introduction) and (2) designed the study tasks
such that the involvement of CrySL was minimal and modifications to CrySL could be made
by anyone who had followed the introduction part of the study. Indeed, we found no significant
correlation between the knowledge of CrySL and liking CogniCryptgen or being more effective
and efficient with it.

In terms of external validity, the relatively low number of participants poses a threat. We
addressed this threat by choosing participants from diverse backgrounds regarding experience
with Java, Eclipse, and cryptography. We have, in addition, chosen statistical tests appropriate
for the number of participants that indeed showed statistical significance.

7.4 Related Work
Apart from CogniCryptold-gen, no previous work aims at avoiding cryptographic misuses by
generating secure implementations of cryptographic use cases. However, there is indeed work
that has attempted to generate either (1) API usage or (2) secure code based on specifications.

7.4.1 Generating API Usage Code

Various prior work generates usage code for APIs [BW12, MBP+15, KRZ14, KLHK10], however,
they rely on mining syntactically correct usages of the respective APIs, which is not a viable
approach for cryptographic APIs for reasons in Section 5.5.

7.4.2 Generating Secure Code

Code generators aiming to produce secure code amount to a huge body of research. There are, for
example, code-generation approaches for implementations of cryptographic algorithms [HG14],
security controllers [MM12], and security protocols [PSD04, NVLC11]. However, only two ap-
proaches address cryptographic misuse specifically. Garcia et al. [GTM14] present an Eclipse
plugin Crypto-Assistant. Crypto-Assistant guides developers through the configuration of a
database encryption by means of a GUI. The tool hooks into an existing plugin that provides
support for configuring relational databases. When a user opts in the GUI for something to be
encrypted, Crypto-Assistant generates a config file for the database-configuration plugin that
(1) makes sure the data is encrypted and (2) the encryption is secure. The tool is limited to
this one use case.

Kane et al. [KLCL18], on the other hand, do not devise and implement a use-case-based
code generator like CogniCryptgen. Instead, they implement several high-level cryptographic
protocols such as Kerberos or TLS on top of existing low-level cryptographic APIs in Python.
Effectively, their protocol implementations are wrapper code similar to what CogniCryptgen
generates. The two approaches differ in (1) the use cases they support (high-level protocols vs.
common cryptographic use cases) and (2) the way use cases may be implemented (hard-coded
vs. generated through declarative specifications).

CogniCryptold-gen is the tool most closely related toCogniCryptgen. CogniCryptold-gen
combines an algorithm model in the variability-modelling language Clafer [JSM+19] with hard-

82

Chapter 7. CogniCryptgen

coded XSL templates. Using a constraint solver, CogniCryptold-gen fetches secure algorithms
from the model. Through a wizard in the Eclipse plugin CogniCrypt, users may configure
solutions for the eight supported cryptographic use cases. CogniCryptold-gen writes this user
input as well as the selected algorithms into an XML file that, along with the corresponding
XSL template, are passed to an XSL transformer that generates the Java code by filling variabil-
ity points in the code template with values from the XML file. In contrast, CogniCryptgen,
as our experiments in Section 7.3 show, trumps CogniCryptold-gen in terms of usability by
facilitating code templates to be in Java. The code templates are also smaller and, by construc-
tion, provably secure with respect to CrySL specifications, which is a property that hard-coded
templates cannot provide. However, our study also revealed a steeper learning curve due to a
fluent API to specify crypto code compared to using hard-coded XSL templates.

7.5 Conclusion
In this chapter, we have presented CogniCryptgen, a code-generation tool based on CrySL.
Through code templates and CrySL rules, CogniCryptgen can generate secure implementa-
tions for the most common use cases of cryptographic APIs. We have, as our evaluation shows,
designed CogniCryptgen such that it executes in a few seconds regardless of the use case and
can easily run on a typical developer workstation. Our evaluation also revealed low mainte-
nance effort and generally high usability ratings from participants of our user study, especially
compared to an XSL-based solution that implements similar use cases.

Future work should address the usability issues of the fluent API in CogniCryptgen revealed
by the user study. Participants criticised that class names that are passed as parameters to API
calls have to be specified using strings instead of, for example, enumerations. They have also
suggested to use shorter API-method names and requested more proper documentation. We are
grateful for their insights and intend to improve CogniCryptgen, accordingly. Implementing
more use cases of other APIs in CogniCryptgen to evaluate further and, if necessary, extend
its expressiveness is another interesting line of research.

83

7.5 Conclusion

84

User Study
8

In this chapter, we empirically evaluate the effectiveness of CogniCrypt’s prototypical imple-
mentation by conducting a controlled experiment. With this experiment, we aim to answer the
question we posed in the thesis statement: Does CogniCrypt’s integrative approach that re-
lieves the application developer from having to know how to use Crypto APIs effectively address
cryptographic misuse? To gain more specific insights, we design the study such that we can
address the following for research questions:

RQ16 Does CogniCrypt impact the functional correctness of cryptography application code?
We are interested to see if participants who use CogniCrypt end up producing more
functional code for a given task. We measure functionality by manually assessing partic-
ipants’ code for functionality based on a functionality score sheet we developed.

RQ17 Does CogniCrypt impact the security of cryptography application code? Given the main
claims of CogniCrypt, we are interested to see if participants who use CogniCrypt
do end up producing more secure code. We measure security in terms of how many
cryptographic API misuses they make.

RQ18 Does CogniCrypt impact the time taken to write cryptography application code? Given
its task-based nature, CogniCrypt is supposed to save the time needed to research and
understand the various details of cryptography APIs. We are interested to see if this
indeed holds where participants using CogniCrypt end up finishing the cryptography
tasks faster.

RQ19 Do developers perceive CogniCrypt to be more usable than plain Eclipse? Since the
usability of any tool impacts its long-term adoption, we are also interested to evaluate
participants’ perception of CogniCrypt. We measure usability through NPS [Rei03] and
direct written feedback by participants.

RQ20 What obstacles do developers still face with CogniCrypt? When users face roadblocks
while using a tool, they might stop using it, even if they consider it otherwise usable.
From their written feedback, we therefore also derive obstacles participants still face.

8.1 Related Work
Our experiments expand on previous empirical research on the effectiveness of countermeasures
against software insecurity. Prior work has investigated several aspects relating to software

85

8.2 Experimental Design

security: the role of a security-focused development process [TTCL18, AC18], the content,
length, and desired structure of security warnings [GIW+], the role of resources for security
knowledge [FBX+17, ASW+17, ABF+16] as well as the effect of explicitly requesting developers
towards writing secure code (i.e., priming) on its security [NDG+19, NDTS18, NDT+17].

Our study most closely resembles, in design and goal, that of Nguyen et al. [NWA+17]. The
main difference lies in the object of evaluation. CogniCrypt combines a static misuse detector
with a code generation, supports Java, and is integrated into Eclipse, while Fixdroid is only
equipped with an analysis, is limited to Android, and integrates with Android Studio. Fixdroid
further only checks for a few hard-coded misuses, whereas CogniCrypt’s analysis component
may be parametrized by usage specifications in CrySL. However, in contrast to CogniCrypt,
Fixdroid supports IDE-integrated fixes that are selectable by users.

8.2 Experimental Design

In this section, we describe the controlled experiment we designed to address this study’s goal.

8.2.1 Object of the Experiment and Methodology

To measure CogniCrypt’s effectiveness and answer our five research questions, we compare
the cryptography code software developers write with and without CogniCrypt. To this end,
we designed the experiment such that each participant is asked to implement two programming
tasks that involve cryptography. For one of them, they are allowed to use CogniCrypt, for
the other one they use a regular Eclipse. We compare against a regular Eclipse to most closely
resemble an everyday working environment of application developers. In the following, we will
refer to the environments as “CC” (for CogniCrypt) and “EC” (for EClipse).

We follow a within-subjects design to ensure that we can observe the effect of CogniCrypt
per participant and avoid possible biases or population differences caused by the distribution of
participants among two separate groups [CGK12]. A within-subjects design allows us to run the
experiment with a smaller number of participants than would have been needed for a between-
subjects design. It is also resilient towards variability in individual skill level since it compares
scores of one participant in one condition with the scores of the same participant in a different
condition. This design further provides a better chance of observing any statistical differences
between the two tested environments EC and CC. To avoid learning/practice effects as well as
fatigue effects that might influence the solutions, we follow a latin-square design [Gao05] where
the order of the tasks and environments presented to the participants is assigned in a way such
that each task appears in each sequential position an equal number of times. In other words, an
equal number of participants receive each possible ordering of tasks and environments.

Before each task, we ask participants to read through a tutorial consisting of a handful of
lines of text and some screenshots on the environment they would be using in the next task.
The experiment instructor asks them to make use of the features mentioned and explained
in the tutorial as much as possible while working on the task. We have, however, avoided to
provide any particular in-depth documentation on CogniCryptgen and CogniCryptsast. This
decision—if anything— puts CogniCrypt at a disadvantage as participants are more likely to
be familiar with regular Eclipse than with CogniCrypt and every tool comes with a learning
curve. However, we did not want to unnecessarily bias participants and assumed that the
more documentation we would provide the clearer it would be which of the two tools was ours.
Such bias would severely limit the value of the feedback participants give us on CogniCrypt’s
feedback in the survey.

While solving the tasks, participants are allowed to use any online resources they want to,

86

Chapter 8. User Study

Table 8.1: Tasks for Participants

Name Goal Program Stub

FE Encrypt a file Reads file and writes it back to disk

TLS Send specific message to a
server via TLS connection Message that should be sent is defined

apart from email and chat applications. We also prime participants by enhancing task descrip-
tions with requests to participants to pay extra attention to security while implementing the task.
We do so to account for previous research that strongly suggests that developers, in the context
of user studies, do not bother with security concerns unless explicitly requested [NDG+19].

We design the two tasks shown in Table 8.1. For the tasks, we implemented two small Java
program stubs (involving 1–3 classes) that participants had to modify during the experiment.
For each task, the participant needs to add certain security functionality to the existing program
stub. Task FE requires the participant to implement a secure file encryption using a password.
The program stub we provided reads the file into a string and then stores that string into a file
again. In task TLS, we expect participants to implement a TLS client whose server runs locally
on their machine at port 9999. For this task, the stub defines the message that should be sent.
It also contains a key-store file that stores the certificate the TLS connections must use when
connecting to the server. The task description pointed participants to this file.

With each stub, we provide several unit tests, each covering one requirement for functional
correctness. The task descriptions explain that a task is completed once all unit tests pass.
They also point participants to the exact method stubs to implement, such that they can run
the unit test before submitting their code. We have further enhanced the program stubs with
todo-comments at the program locations that require participants’ extensions.

In summary, this study design leaves us with four different conditions. Condition 1 has
the participant start with task FE using the regular Eclipse and then go on to implementing
task TLS with CogniCrypt (FE/EC –> TLS/CC). In condition 2, the order is swapped (TL-
S/CC –> FE/EC). For condition 3, a participant first works on task TLS in regular Eclipse and
subsequently continues with task FE in CogniCrypt (TLS/EC –> FE/CC). Condition 4 once
again switches the order of configurations from condition 3.

8.2.2 Participants and Experiment Context

We recruited 32 graduate students at two universities to participate in the experiment. All
students were either currently taking a course including Java development tasks or had completed
such a course already, e.g., a course for which they had implemented several static program
analyses in Java. We considered this experience sufficient in terms of Java programming skills.
We did not filter based on students’ knowledge of cryptography. In fact, we did not mention
cryptography during recruiting to not bias our sample set towards students who have more
experience with cryptography.

8.2.3 Collected Measurements

To answer RQ16 and RQ17, we have compiled a score sheet of requirements that the the
implementation of each task needs to exhibit in order to count as functionally correct or secure,
respectively. Table 8.2 shows the criteria for both tasks. The test cases we enhanced each stub
with also covered requirements for functional correctness that we were able to cover through a
unit test case. We mark the requirements that correspond to a test case in a stub by ‘(test)’

87

8.2 Experimental Design

Table 8.2: Functionality and Secuity Requirements for Study Tasks

Name Functionality Security

FE

Write of ciphertext file was successful (test)
Ciphertext file existence (test)
Ciphertext file is not empty (test)
Ciphertext file is not equal to plaintext file (test)
Password used for key generation
Using some kind of encryption
Encrypting the whole plaintext

Using secure encryption configuration
Using secure key deriviation
Password has never been a String
Using secure hashing algorithm
Random salt of at least 16 byte
Secure preparation of encryption

TLS

Correct message (test)
4x Incorrect Message (test)
Using provided parameters
Setting correct key store
Flushing of write channel
Closing Connection

Using TLS
Using secure SSL socket factory provider
Using secure cipher suites
Using secure tls protocols

in Table 8.2. We measure correctness and security of each participant by first running the
test cases on their code and subsequently manually checking the compliance with the remaining
functionality as well as the security criteria. The percentage of items covered are the functionality
and security score of each task, respectively.

For an implementation of the FE task to be considered correct, a ciphertext file must exist
that is different from the plaintext file, but not empty. The password provided through the stub
must also be used to generate a cryptographic key. Finally, some form of encryption must be
used—even if it is a self-implemented one—that encrypts the whole plaintext. Security-wise, the
encryption configuration must be secure. That is, no insecure algorithms (e.g., DES) or block
modes (e.g., ECB) must be used. The key must be derived securely from the password. That
requires (1) the password to be used, (2) the key derivation to be conducted through PBEKeySpec,
and (3) the PBEKeySpec to be used securely (Section 1.1). In addition, the encryption must be
prepared securely. That is, depending on the cipher mode the participant uses, they may need
to provide an IV.

To implement task TLS correctly, the client must be able to send a message and receive
the server’s answer. When it sends the correct message, it should also handle the appropriate
response from the server. The client must use the correct IP and port, set the correct key store,
flush the write channel, and close the connection at the end. From a security perspective, we
require the implementation to actually use TLS. The TLS connection must also be set up using
an appropriate socket, e.g., through the JSSE. Lastly, the TLS connection must be configured
to use secure cipher suites and only enable secure TLS protocols. A default configuration of a
TLS connection set up through the JSSE allows both insecure cipher suites and TLS protocols
(Section 2.1.3). Participants therefore have to configure these themselves. Participants who
cannot use CogniCrypt for this task therefore have to not only discover on their own that the
default configuration is insecure, they also have to figure out how to enable secure cipher suites
and TLS protocols only.

To answer RQ18, we also measure the time participants take to complete the task. We
consider completion time as the time from when a participant starts to read the task description
until they close the development environment. We intentionally include any time spent outside
the IDE looking at online resources as we believe this is part of the time taken to complete the

88

Chapter 8. User Study

task. In other words, we do not pause the timer if the IDE loses focus.

8.2.4 Survey Questionnaire

To answer RQ19 and RQ20, we want to understand the steps developers take to solve a task.
However, to ensure a natural work setting and to avoid inaccuracies in measuring the time a
participant takes to “think aloud” approach, we do not follow that design. Instead, we ask
participants to fill out questionnaires after each task. In these questionnaires, we ask about the
perceived difficulty of the task, the clarity of the task description, and their experience with the
environment. For each task, the questionnaire includes the following questions:

Q1/8: This task was difficult.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q2/9: This task was fun.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q3/10: I think I solved this task correctly.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q4/11: I think I solved this task securely.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q5/12: Have you written or seen code for tasks similar to this one before? For example, maybe
you worked on a project that included a similar task, but someone else wrote that portion code.

– Type: Single-answer question.
– Possible choices: [I have written similar code; I have seen similar code, but have not written

it myself; No, neither; I don’t know; I prefer not to say.]

Q6/13: Based on the last task, please how likely you would recommend the coding environment
to a fellow programmer.

– Type: Scale 0 to 10.

Q7/14: Please provide additional feedback about what you found useful or not useful in the
coding environment. Please provide concrete examples when possible.

– Type: Free-text field.

We also provide another questionnaire at the end of the experiment (i.e., after finishing both
tasks) that asks participants about their programming experience Q15 –Q20, security expertise
Q21 – Q26, general demographics Q27 – Q31, and more general comments on their experience
Q32. This final questionnaire includes the following questions:

Q15: How many years have you been programming in Java?

– Type: Free-text field.

Q16: How many years have you been coding in general?

– Type: Free-text field.

89

8.2 Experimental Design

Q17: How did you learn to code?

– Type: Multiple-answers question.
– Possible choices: [Self-taught, Online class, College, On-the-job training, coding, other]

Q18: Which coding environment do you primarily use (name of the IDE or text editor)?

– Type: Free-text field.

Q19: Are you currently using the Eclipse IDE?

– Type: Single-answers question.
– Possible choices: [Yes, No]

Q20: How long have you been using the Eclipse IDE (in years)?

– Type: Free-text field.

Q21: Do you have an IT-security background?

– Type: Single-answers question.
– Possible choices: [Yes, No, Prefer not to say]

Q22: If you answered yes in the previous question, please specify.

– Type: Free-text field.

Q23: Which of the following options do describe your experience with cryptography best?

– Type: Single-answers question.
– Possible choices: [I have never used cryptography during software devlopment, I invented

my own cryptographic algorithm or protocol, I implemented a cryptographic algorithm or
protocol, I occasionally use cryptographic APIs or libraries during software development,
I don’t know, Prefer not to say]

Q24: Have you taken a computer-security class or course in the last five years?

– Type: Single-answers question.
– Possible choices: [Yes, No, Prefer not to say]

Q25: If you answerd yes in the previous question, please specify.

– Type: Free-text field.

Q26: Please tell us your highest degree of education.

– Single-answer question.
– Possible choices: [Less than high school, High school, Some college, Bachelor’s degree,

Master’s degree, Professional degree, Ph.D., Prefer not to say.]

Q27: Please tell us your gender. ("na" for "prefer not to say")

– Type: Free-text field.

Q28: How old are you?

90

Chapter 8. User Study

– Type: Free-text field.

Q29: What country to you live in?

– Type: Free-text field.

Q30: What is your native language?

– Type: Free-text field.

Q31: What other languages are you fluent in (if any)?

– Type: Free-text field.

Q32: Please provide any additional feedback for the study you have.

– Type: Free-text field.

All three questionnaires were created using Google Forms.

8.2.5 Pre-Testing

We first conducted a pilot study with five test participants. For the purpose of the pilot study,
we followed the same study design as described above, apart from one aspect: We aimed at
receiving feedback from participants of the pilot study to refine our study design if necessary
and were not attempting to take exact time measures. As a result, we did follow the “think
aloud” approach for the pilot study.

Participants informed us of ambiguities in the task descriptions and confusing oddities in
some UI elements of CogniCrypt. For the final study, we revised the formulations in questions
and re-designed the respective UI elements. All pilot-study participants finished both tasks,
including questionnaires, within 45 to 60 minutes. In the final experiment, we hence told par-
ticipants to finish within an hour. After half the time, we reminded them to move on to the
second task if they had not already. From the results we report in this thesis, none have been
gained from the pilot study.

8.3 Results
From originally 32 participants, we had to exclude the results of eight because they neither
executed CogniCryptgen nor CogniCryptsast throughout the whole study. For the remaining
24 (P01 – P24), we show the participant distribution among the conditions in Table 8.3. We
only manually analyzed of the participants’ code and their survey answers for the remaining 24
participants, too. The manual analysis was conducted by the author of this thesis and a co-
author of the research paper this chapter is based upon. The agreement ratio for functionality
and security score are 92% and 90%, respectively. For all differences in rating, the two raters
negotiated until they reached a compromise. Table 8.4 provides a complete overview of all results
of the 24 participants.

8.3.1 Functionality (RQ16)

For each solution, we first investigate whether it actually implemented the task completely. To
this end, we first run the test cases. In the following, we will distinguish between running and
broken solutions. For us to consider a solution running, all the provided unit test cases must
terminate without exception, even if they fail. We consider a solution broken, on the other

91

8.3 Results

Table 8.3: Conditions & Participants

Condition Particpants

EC/FE -> CC/TLS 7
CC/TLS -> EC/FE 4
EC/TLS -> CC/FE 7
CC/FE -> EC/TLS 6

hand, when at least one of its test cases throws an exception. We make this distinction because
non-running programs are distinctly non-functional in comparison to a program that does not
implement all functionality, but at least terminates. To appropriately account for this, we award
all non-running programs zero functionality points regardless of the state of their implementation
and discard them from the remainder of this discussion.

Our results indicate that there is a noticeable difference between the running/broken ratios
of solutions that have been implemented using CogniCrypt and those without. Without
CogniCrypt, participants only produced running code for the FE task in six out of eleven
cases. For task TLS, only two participants managed to get the test cases working. Two further
participants succeeded at establishing a connection, but failed at sending data, causing the test
cases to hang. Everyone else but two participants did not manage to establish a connection to
begin with. In contrast, with CogniCrypt, participants produced running code for all but one
case for both task FE (twelve out of thirteen) and task TLS (ten out of eleven).

Participant P07 who did not manage to complete task FE with CogniCrypt did use Cog-
niCryptgen and had it generate the templateUsage() method into the correct class. However,
they subsequently ignored the generated code, attempted to implement a custom solution that
throws an exception when the test cases are run. Participant P15 failed to implement task TLS
for a similar reason. They also used CogniCryptgen to generate code, but for the encryption
use case. They subsequently tried to manually set up the TLS connection and used the gener-
ated templateUsage() only to encrypt the message. As their code does not compile, the test
cases cannot be executed.

As mentioned above, we will limit the following discussion to solutions that can be run.
Figure 8.1 shows the functionality scores across all four combinations of environment/program-
ming task. The score is shown in percentages, that is, a score of 2 out 4 is shown as 0.50. In
our following discussion, when we justify scorings, we refer to individual points instead of the
percentages.

FE For task FE, three of the six participants who completed the task without CogniCrypt
achieve a full functionality score, resulting in a mean functional score of 1. We deducted one
point from the other three solutions because they all failed to derive the encryption key from
the password. From the twelve participants who implemented task FE successfully with Cog-
niCrypt, eight did so with a full functionality score. Participant P23 generated code for the
wrong use case (”Secure Password Storage”) and then attempted to use it in a custom-made
encryption. The remaining three participants did manage to run CogniCryptgen, but then
failed to integrate the generated code in one way or another. P02 completed the implementa-
tion of the encryption, but did not manage to store the result of the encryption in the variable
the stub writes into the ciphertext file. Hence, the ciphertext file has the same content as the
plaintext, although the encryption itself was implemented in a functionally correct manner. P01
ignored the generated code. They even went so far as to delete the method templateUsage()
from the Java file they coded in, but left the other generated code untouched. Instead, they

92

Chapter 8. User Study

Table 8.4: Participants Overview

Participant Condition Score Task 1 Score Task 2
Task 1 Task 2 CogniCrypt Functionality Security CogniCrypt Functionality Security

P01 TLS FE # 0/9 0/4 4/7 0/6
P02 FE TLS 5/7 5/6 # 0/9 0/4
P03 FE TLS # 6/7 1/6 9/9 2/4
P04 TLS FE # 0/9 0/4 7/7 6/6
P05 FE TLS 7/7 6/6 # 0/9 0/4
P06 FE TLS # 6/7 1/6 9/9 4/4
P07 TLS FE # 0/9 0/4 0/7 0/6
P08 FE TLS # 7/7 6/6 9/9 4/4
P09 TLS FE # 0/9 0/4 6/7 6/6
P10 FE TLS # 0/7 0/6 9/9 4/4
P11 TLS FE 9/9 4/4 # 0/7 0/6
P12 FE TLS 7/7 6/6 # 0/9 0/4
P13 FE TLS 7/7 6/6 # 0/9 0/4
P14 FE TLS # 7/7 1/6 9/9 4/4
P15 TLS FE 0/9 0/4 # 0/7 0/6
P16 TLS FE # 0/9 0/4 7/7 5/6
P17 TLS FE 9/9 4/4 # 6/7 1/6
P18 TLS FE 9/9 4/4 # 0/7 0/6
P19 FE TLS # 7/7 4/6 9/9 4/4
P20 TLS FE # 0/9 0/4 7/7 6/6
P21 FE TLS 7/7 6/6 # 3/9 2/4
P22 FE TLS # 0/7 0/6 9/9 4/4
P23 TLS FE # 2/9 2/4 7/7 6/6
P24 FE TLS 4/7 1/6 # 0/9 0/4

 indicates that the task was performed with CogniCrypt and # without, respectively.

93

8.3 Results

0.25

0.50

0.75

1.00

Encryption TLS
Task

F
un

ct
io

na
l S

co
re

CogniCrypt Eclipse

Figure 8.1: Box Plot Showing the Functionality Score for Tasks FE and TLS in Environments
CogniCrypt and Regular Eclipse.

implemented a custom solution that they did not manage to finish. Lastly, P09 only made use
of the key-generation code and attempted to implement a custom encryption solution for the
data using CipherOutputStream. However, this solution does not encrypt the whole plaintext.

TLS For task TLS, the results are much clearer than for task FE. First, as mentioned above,
only two participants who did not use CogniCrypt for the task, did actually produce running
code. Those two received two (P23) and three (P21) out of nine points on the functionality
score, respectively. In neither submission do any of the test cases pass nor do they set the
correct keystore. P23, in addition, fails to flush the channel to the server. In contrast to that,
all ten participants who implemented task TLS using CogniCrypt received full points on the
functionality score. They all generated code using CogniCryptgen and integrated it properly
into the program stub.

Summary In conclusion, for the eight participants who implemented task FE with Cog-
niCrypt and received full points on the functionality score, CogniCrypt worked as intended.
Some participants did, however, face problems. In one case, the participant was not clear about
which use case they need to pick. For the remaining three, CogniCrypt failed at properly com-
municating that and how they need to integrate the generated code into their own application
code. On the other hand, all but two participants attempting to implement task TLS without
CogniCrypt failed to so, while all but one who did use CogniCrypt succeeded. For both
tasks, we found participants achieved statistically significant better scores using a Wilcoxon
signed-rank test for paired data (p < 0.05).

We have also checked for correlations of functionality score and self-reported experience in
programming (Q15–Q17), Eclipse (Q18–Q20), security or cryptography (Q21–Q25) or general
demographics (Q26–Q32), but were not able to find any. Similarly, we have not found any
correlations between functionality score and order of task or tool.

94

Chapter 8. User Study

0.00

0.25

0.50

0.75

1.00

Encryption TLS
Task

S
ec

ur
ity

 S
co

re

CogniCrypt Eclipse

Figure 8.2: Box Plot Showing the Security Score for Environments CogniCrypt and Regular
Eclipse and Tasks FE and TLS.

8.3.2 Security (RQ17)

We also observe similar trends for the security score. We show the distribution over the four
environment/task combinations in the box plot in Figure 8.2.

FE For task FE, similar to the functional score, we find again somewhat ambiguous results,
although much less so than for the functional score. Only one of the six participants who
implemented task FE without CogniCrypt achieved a full security score. Participant P19
achieved four out of six security points, only lacking a random salt and choosing an insecure
iteration count. The remaining four participants all received one out of six points. From the
twelve participants who did use CogniCrypt, eight received a perfect score. We removed one
point each for participants P02 and P16 because they transformed the password from a char
array into a String. Neither of the two ended up using the String password variable, making
it effectively dead code and likely to be optimized away by the Java compiler. We also assume
this code would have been cleaned up in any real-world setting, but decided to remove the
point nonetheless because the code as-is is insecure. P01 and P23 ’s custom solutions, which we
already discussed above, do not hold any security guarantees. While, for instance, P01 generates
a cryptographic key from the password (which is why they get a point on the functional score
for this requirement), they do so using a number of String, hashing and array-copy operations.
The code also transforms the password into a String. In total, P01 ’s solution receives zero
points.

TLS Participants who implemented task TLS with CogniCrypt all received a perfect security
score. This is because the code generated through CogniCrypt only enables secure cipher
suites and TLS protocols. The two participants who implemented at least a running program
for task TLS without CogniCrypt achieved zero (P023) and two points (P021), respectively.
We removed two points for participant P021 because they neglected to configure the connection
in terms of cipher suites and TLS protocols.

We also checked the security of the broken solutions for task TLS developed without Cog-
niCrypt to provide at least some kind of evaluation. None of the ten participants would receive
more than two points because they display the same problem as P21 ’s solution. For the reasons
we explained above, we do not include this data into the box plot, however.

95

8.3 Results

Summary In summary, participants fare better in terms of security for both tasks when using
CogniCrypt, compared to when they try it without. As with the functionality score, we were
able to show a statistically significant improvement with CogniCrypt, through a Wilcoxon
signed-rank test for paired data (p < 0.05). For participants using CogniCrypt, the only points
detracted were for failing to clean up the code and for complete custom-made solutions. We
have again checked for correlations with any of the forms of experience we surveyed participants
about in the questionnaire as well as the order of tasks and tools, but could not find any.

8.3.3 Completion Time (RQ18)

We report the distribution of completion time in Table 8.3. As with functional and security score,
we only report completion times for non-broken solutions. We first note that completion times
for participants using CogniCrypt spread comparatively widely. For task TLS, P18 finished
in six minutes and thirty-two seconds, whereas it took P11 about 39 minutes and 30 seconds.
The fastest successful participant for task FE completed their work in not even two minutes.
In stark contrast, the participant who took the longest needed about 42 minutes. We attribute
this wide range to two behaviours we observed while conducting the study when walking around
the room and watching participants over the shoulder. Many participants, when they had
CogniCrypt available, first attempted to finish the task without using either CogniCryptgen
or CogniCryptsast. Most eventually gave up, resorting to either launching CogniCryptgen’s
wizard or triggering CogniCryptsast. Second, some participants took longer than others to
generate code for the correct solution using CogniCrypt. Some appeared to struggle when
having to answer questions in CogniCryptgen’s wizard. Others even generated code for an
incorrect use case at first.

FE When comparing the two plots for completion time with task FE directly, participants
generally seem faster with CogniCrypt. However, the slowest participant with CogniCrypt
seems slower by several minutes than the slowest participant without CogniCrypt. The di-
agram presents a somewhat skewed picture, however, because more participants managed to
finish when using CogniCrypt compared to when not using it (twelve of thirteen vs. six out of
eleven). We find it likely that participants who took longer with CogniCrypt would not have
finished if they had not had it at their disposal.

TLS For task TLS, the median completion time lies at around fourteen minutes when using
CogniCrypt. The two participants who finished TLS without CogniCrypt completed their
work faster. However, as both the functional and security scores of the two indicate, their
solutions are far from being actually complete and secure. On top of that, we also argue again
that many participants who took longer with CogniCrypt would not have produce running
code without it. The high number of participants who did not produce running code without
CogniCrypt serves as a strong indicator for this claim. Given these two observations, we
conclude that CogniCrypt improves the completion time for this task.

Summary We conclude that participants are significantly faster with CogniCrypt. We
come to this conclusion because of (a) the higher completion rates in a setting with limited
time available and (b) the lower median completion times for the solutions that were completed.
Where CogniCrypt seems to be slower than regular Eclipse, we assume the slower speed to be
more indicative of more people being enabled to finish a task to begin with.

96

Chapter 8. User Study

500

1000

1500

2000

2500

Encryption TLS
Task

C
om

pl
et

io
n

T
im

e
(s

ec
)

CogniCrypt Eclipse

Figure 8.3: Box Plot Showing the Completion Time for EnvironmentsCogniCrypt and Regular
Eclipse and Tasks FE and TLS.

8.3.4 Usability (RQ19)

Participants generally expressed positive views on CogniCrypt’s usability, but provided crit-
icism relating to the integration with Eclipse of both CogniCryptgen and CogniCryptsast.
In contrast, regular Eclipse overall received substantially worse reviews by participants. These
results are reflected in the both tools’ NPS values. As explained in Section 7.3.4, NPS generally
measures user satisfaction and ranges from -100 to 100, whereas any value above 50 is considered
excellent and values below 0 are considered bad [Rei03]. CogniCrypt receives an NPS value
of 33.33, a result that is generally considered good, but not excellent [Rei03]. Regular Eclipse,
on the other hand, receives an NPS of -54.17.

When asked for more concrete feedback (Q7/Q14), participants especially praised Cog-
niCryptgen (P02 – P07, P09, P11, P12, P16, P19, P21). P02 notes that they "have never
worked on encryption before in Java." However, they would "strongly say that [CogniCrypt]
will be very helpful with prior knowledge [of the tool]." P05 adds they found CogniCryptgen
useful and that it was "easy to choose input and generate the encryption function by the tool. It
was very user friendly for developer since there was no further need to read about the encryp-
tion function and security/authenticity of that encryption library". Both aspects highlighted by
P05—the high effectiveness for developers with low experience and that CogniCrypt lifts a
burden off a developer because it takes care of security features—are also shared by other partic-
ipants. P19, for instance, finds CogniCryptgen "very helpful" because they could "assume[...]
that [the] generated code [was] secure, which saved a lot of time searching for documentation on
security requirements". UPB18 also highlights the usefulness for cryptography novices: "Since
I have never worked on anything similar before, the code generator ([for task TLS]) was very
helpful for me to get an idea about what I have to do. It was easy to use, since every single
configuration was asked." P12 agrees as they "haven’t worked that much with encryption so far,
which is why the code generation was especially helpful." P04 highlights the effort that is saved
through CogniCryptgen, because they do not "have to search the web for the right and required
classes to get the job done." P03 goes so far as considering code generators like CogniCryptgen
necessary for "secure software engineering", because "we can be sure our code is almost secure."

P06 appreciates CogniCryptsast as helpful because it detected their use of an inappropriate
block cipher mode for the call Cipher.getInstance("AES"). P13 tested CogniCryptsast by
purposefully introducing misuses to the code and enjoyed that it found them.

P23 praised CogniCrypt to be "well integrated" and P20 found it generally "easier to use".

97

8.4 Discussion

8.3.5 Obstacles (RQ20)

One obstacle several participants clearly faced was the integration of generated code into their
project. This obstacle is, on the one hand, demonstrated by the three participants we described
above who had CogniCryptgen generate code for task FE, but then failed to properly call that
code. However, participants have also mentioned CogniCrypt’s shortcomings in that respect in
their feedback. P21 comments that "it was difficult to find where the autmomatic generated code
is located". P01 requests the "comments should be improved for auto-generated code", because
it took them "a while to understand what the generated code says and to identify which part of
the code is generated when [they] already have [their] own code in the class. So there should
be clear way to separate automatic generated code from [their] own code." P08 encountered the
same problem as they needed time to understand which classes CogniCryptgen had generated
for them to implement task TLS. When implementing task FE, P13 struggled to identify, if the
generated code would already derive the key from the password or if they had to implement
that themselves. In the end, they did not implement it themselves, because the tests passed.

One further problem with CogniCryptgen in particular appears to be the usability of
its wizard. As we noted above, several participants had to go through multiple attempts of
generating code. The issue is also highlighted by P22 who criticises that they at first "didn’t
notice the first screen of the wizard provided a choice, [they instead] mistook it for an introductory
page and just clicked ’continue’[, and were] then confused that the code generated didn’t suit my
needs".

The warning messages by CogniCryptsast provided another major obstacle participants
reported on. P13 rightly complains that it "was confusing [...] that the autogenerated code
throws errors (in [CogniCryptsast]), which on further inspection are only in the decryption
case and not applicable." P02 ran into the same issue when they were "getting a[n] error at
[the encryption] method at line number 67. Which [they] could not understand that what is
exactly the problem." The warnings the two participants report of relate to long-known false
positives in CogniCryptsast that have been addressed since conducting the study. P07 raises
a further issue with CogniCryptsast’s reporting: "But when we are using functions with more
than two arguments it is only returning problem saying the parameter is not properly generated,
additionally it should also return info about how to correct it or some possible description for
the developer to enhance the code for better efficency." The warnings, both P02 and P07 refer
to, CogniCryptsast displays for predicate violations. We have indeed been struggling to find
a good wording for these kinds of violations and have been editing CogniCryptsast warning
messages for such misuses upon feedback by users several times since CogniCryptsast’s original
publication [KSA+18]. This comment shows there is still work to be done regarding this matter.

Lastly, P01 criticizes that CogniCryptgen and CogniCryptsast "lack documentations,
tooltips which detail the options they provide." This point is valid for the study, its applicability
in practice, however, may be limited. As mentioned before, we intentionally kept the documen-
tation limited to not unnecessarily bias participants. In real-world contexts, users would have
the documentation available on CogniCrypt’s website1, which provides extensive introductions
to all its components.

8.4 Discussion

Our controlled experiment has shown CogniCrypt to be effective. Participants were signifi-
cantly faster in implementing application code that requires using cryptography concepts. The
code they produced was significantly more functional and secure than when only using Eclipse.

1www.cognicrypt.org

98

www.cognicrypt.org

Chapter 8. User Study

Participants generally judge CogniCrypt to be a useful and usable tool as its NPS score under-
lines. Our results therefore allow us to conclude for RQ16 to RQ18 that CogniCrypt has a
significant positive impact on all three. In addition, we can answer RQ19 such that developers
do indeed seem to view CogniCrypt as more usable than plain Eclipse.

However, there is still room for improvement. In response to RQ20, we can report two
main findings. First, when it comes to integrating code by CogniCryptgen into their applica-
tion, a large subset of participants struggled because they had trouble understanding what is
happening in their IDE when CogniCryptgen generated code. To help with the situation, we
plan to have CogniCryptgen inform users better. CogniCryptgen should enhance method
templateUsage() with a comment describing which pieces of code have been generated, what
their purposes are, and where they each can be found. A second issue raised by participants
revolves around the error messages produced by CogniCryptsast, in particular error messages
on predicate-related misuses. We have refined predicate error messages several times, each
time reducing the knowledge of CrySL and understanding of predicates in CrySL required to
understand them. However, we still do not seem to be where we should be in terms of compre-
hensibility. Participants find the warning messages too abstract. They also criticize that they
are not actionable, that is, they do not provide help as to how to resolve them. In future work,
we might explore more focused usability testing for CogniCryptsast’s error messages to A/B
test alternative phrasings or even not showing transitive predicate warnings at all.

8.5 Threats to Validity

Our sample set poses an internal threat to the experiment’s validity because it only consisted
of graduate students from two universities. That sample set is likely not representative of the
whole Java developer community. However, we argue that students are more likely to be less
experienced in programming, especially programming in a specific language, than the average
developer. We further assume grad students are only, if at all, slightly unrepresentative in
terms of security knowledge. If CogniCrypt manages to support the demographic of students
effectively, we expect it to fare even better with professional developers as they will likely have
more experience with IDE-integrated code generators and program analysers. Recent work by
Naiakshina et al. [NDGS20] supports this assumption empirically.

As far as external validity is concerned, the experiment’s relatively low number of participants
may pose a threat. To address this threat, we have employed the appropriate statistical means
to check for correlations.

Our experiment lastly exhibits an ecological threat, too. Although we tried to come up
with seemingly realistic tasks, both the task descriptions and the stubs are fairly unlikely to be
found in practice exactly like that. The former rather resemble assignments in a programming
course, the latter are comparatively tiny. It is further questionable as to how far the regular-
Eclipse condition can be claimed to simulate an authentic environment for everyday development.
Developers often configure their editor and IDEs to their liking. They also use a wide range of
editors and IDEs to develop in Java and some participants had no experience in Eclipse. To
mitigate that threat, we asked the participants for their experience level with Eclipse and found
no statistically significant correlation with their scores or completion rates in the study. On top
of that, these restrictions apply to lab studies in general and our study does not display stronger
limitations than other comparative ones. As a result, we do not believe the setting albeit not
necessarily representative of developers’ work environment to cause the study’s results to be of
less significance.

99

8.6 Conclusion

8.6 Conclusion
Through this user study, we have demonstrated CogniCrypt’s effectiveness. The tool signif-
icantly improves how fast, functional, and secure developers code cryptography applications.
Participants’ criticism where they mentioned it related mostly to implementation details that
can and should be addressed, but that also in no way threaten the validity of the concept
underlying CogniCrypt—or even its concrete prototypical implementation.

Our results therefore do not require us to falsify our thesis statement. The evidence we
have collected in this user study heavily suggests that CogniCrypt does meaningfully combat
cryptographic misuse by relieving the software developer of knowing to how use Crypto APIs.

100

Further Applications of CrySL
9

In Chapter 5, where we introduce CrySL, we argue CrySL rules may serve as a building block
for various kinds of tool support. Chapters 6 and 7 then discuss two types of tool support that
are part of the core contribution of this thesis. In this chapter, we aim to demonstrate that our
claim about CrySL’s expressive power and flexibility is not unfounded. To this end, we discuss
more types of tool support that (could) build on top of CrySL than the two previous ones. We
first present one other application CrySL has already been used for: CryptoOracle [Hol19].
CryptoOracle is a library that performs runtime checks for misuses of the JCA.

Subsequently, we also sketch designs for three not-yet-implemented tools that may be built
on top of CrySL. Their design and implementation is not part of this thesis’ contribution. For
the purpose of this discussion, we move past the most obvious candidates such as a dynamic
or hybrid program analysis. The development of either would certainly be worthwhile to patch
up CogniCryptsast’s shortcomings, in particular the tool’s false positives. Such tools would
come with their own challenges, however, as far as the integration of CrySL rules is concerned,
they would work fairly similarly to CogniCryptsast. We hence do not see many immediate
CrySL-related conceptual challenges arising from their design and focus our discussion on other
ideas. In particular, we discuss the program-repair tool CogniCryptfix, the test-case generator
CogniCrypttest, as well as a documentation generator CogniCryptdoc, all of which are based
on CrySL. The three approaches are in the process of being fully designed and implemented by
André Sonntag, Rakshit Krishnappa Ravi, and Ritika Singh in their respective master theses.

9.1 CryptoOracle – Wrapper Library with Runtime Checks

We first discuss CryptoOracle [Hol19]. CryptoOracle is a CrySL-based library that,
bootstrapped with the Rulesetfull rule set, applies runtime checks to detect misuses of the
API. This way, developers may test their application for misuses by simply running it. Whenever
a runtime check encounters a misuse, it throws an exception.

CryptoOracle first and foremost aims to provide a direct means of support for using the
JCA that is independent of external resources such as program analyzers or documentation.
One further goal of CryptoOracle is to keep the overhead for application developers – the
library’s target audience – comparatively low. Consequently, CryptoOracle does not require
developers to install a new provider or to use an entirely new API or library. Instead, the
library conducts checks on a running application that uses the JCA for its compliance with
Rulesetfull. In order to receive support from CryptoOracle, a developer must only add

101

9.2 CogniCryptfix – Fixing Cryptographic Misuses in Vulnerable Code

the library as a dependency to their application, re-compile the program, and execute it. When
the developer runs the application, CryptoOracle hooks into uses of the JCA and weaves its
checks around them. To this end, the library makes use of AspectJ [KHH+01], a framework for
Aspect-Oriented Programming (AOP) [KLM+97] in Java. AOP is a programming paradigm that
facilitates the implementation of distinct features that are of cross-cutting concern into different
modules. In practice, AOP has often been used to implement logging and other non-fuctional
features. This way, logging-related code is not spread across the whole program and clogs up
the code for functional features as is the case in regular object-oriented programming. In the
context of CryptoOracle, Hollmann uses AOP for runtime checks for misuses of the JCA.
CryptoOracle first detects when a class from the JCA is used and then weaves its correctness
check around the use of that class. If it finds the class to be misused, CryptoOracle produces
an exception akin to the error messages of CogniCryptsast.

Hollmann [Hol19] conducted an evaluation of CryptoOracle on 46 Java projects from
GitHub that use the JCA. He first compared compile times of the applications with and without
CryptoOracle. He found compile-time overheads ranging from 23% up to 171%, but was un-
able to identify the exact causes for the overhead. Subsequently, Hollmann executed the projects
and found 55% of them to contain at least one misuse. These findings provide evidence that
CryptoOracle does indeed effectively support developers in finding misuses of Crypto APIs.

9.2 CogniCryptfix – Fixing Cryptographic Misuses in Vulnera-
ble Code

As the first of three hypothetical tools, we suggest CogniCryptfix. CogniCryptfix would be
a program-repair tool that accepts CrySL rules and a target program and fixes all violations of
the former in the latter. Such a tool may support developers who struggle to fix warnings raised
by CogniCryptsast (or a similar program analysis). Problems with understanding program an-
alyzers’ error messages are widespread [JSMB13] and, evidently, also occur for CogniCryptsast
(RQ20 in Section 8.4). Such problems may be mitigated through a tool like CogniCryptfix
that automatically fixes the misuses its accompanying analysis tool finds.

CogniCryptfix would run in several iterations over a target program until a fixed point is
reached. Either all misuses have been resolved or the tool is not able to fix any further issues.
CogniCryptfix would only apply a fix for a misuse when its fix does not produce compiler
errors. Otherwise, it would discard the fix. For the purpose of the following discussion, we
assume CogniCryptfix to operate on source-code level. A similar program-repair system that
works on byte-code level would work similarly.

We display CogniCryptfix’s workflow in Figure 9.1. As a first step, CogniCryptfix would
apply a program analysis tool that finds cryptographic misuses to the target program 1 . For
simplicity’s sake, we henceforth assume this analysis to be CogniCryptsast. CogniCryptsast
reports the four error types we discussed in Section 6.1. When fixing misuses, CogniCryptfix
would address misuse types separately one after the other. To fix violations, CogniCryptfix
would maintain a list of CrySL rules involved in the violation. From these, it may fetch
information such as a class’ state machine, constraints, or forbidden methods.

CogniCryptfix may fix forbidden methods 2 in one of two ways. If the CrySL rule
specifies an alternative, CogniCryptfix may replace the forbidden call through its alterna-
tive. Parameters that are common to both the forbidden and the alternative call are merely
adopted. If the alternative does not include a parameter the forbidden method comes with,
CogniCryptfix would ignore it. It would, however, not delete the object from the code. In the
case of the alternative needing new parameters, CogniCryptfix may take a similar approach to
the one by CogniCryptgen (Section 7.1). In case no alternative call is offered, CogniCryptfix

102

Chapter 9. Further Applications of CrySL

CogniCryptSAST
Fixed

program

Forbidden
Methods

Constraint
Violations

Typestate
violations

Missing
Predicates

Replace or
Delete

Fill in

Reduce
and

Complete

Generate
for

Predicate

Output

Input

1

CrySL
Rules

Target Program

2

3

4

5

Figure 9.1: The General Workflow of CogniCryptfix.

would remove the call altogether.

For parameter-constraint errors 3 , CogniCryptfix would retrieve a correct value from the
constraint that is violated. When choosing a correct value, it may again follow an approach
similar to CogniCryptgen’s for selecting parameter values (Section 7.1).

There are two types of typestate-related misuses CogniCryptfix may need to fix 4 . First,
an object may miss certain calls in order for it be used securely. In this case, CogniCryptfix
would generate calls until the object’s respective state machine reaches an accepting state,
following CogniCryptgen’s approach. Second, CogniCryptsast has encountered one call on
an object where it expected a different one according to the corresponding CrySL rule’s state
machine. In this scenario, CogniCryptfix would reduce the problem to the previous case, that
is, it would remove all subsequent calls on the object after the last one it expected according
to the object’s state machine. Following CogniCryptgen’s approach, CogniCryptfix would
generate appropriate calls one after another. To simplify the resolution of method parameters
for the calls CogniCryptfix has to generate, it may also store the calls it deletes from the
program. Equipped with this information, CogniCryptfix may retrieve the parameters for a
new call, if it existed in the original source code as well.

CogniCryptfix would only fix predicate-related misuses 5 when all others have been ad-
dressed or abandoned. Predicate errors are often of transitive nature, that is, they often originate
from misuses in other objects (e.g., a key being generated insecurely, causing the encryption that
is using the key to receive a predicate error). By fixing other issues first, CogniCryptfix would
avoid generating code where it is not necessary. For the predicate errors that are left, Cog-
niCryptfix may generate code that ensures the missing predicate. As with the other misuse
types, CogniCryptfix could adopt the generation approach of CogniCryptgen to do so.

After addressing all issues, CogniCryptfix would return the fixed program in Java source
code. CogniCryptfix should also generate a report of which errors it did fix and which it
had to leave in the code. If it were to be integrated with the Eclipse plugin CogniCrypt,
CogniCryptfix could provide Eclipse quick fixes. This integration would also significantly
increase the usability of CogniCryptsast within the plugin’s context.

103

9.3 CogniCrypttest – Generating Test Suites for APIs

9.3 CogniCrypttest – Generating Test Suites for APIs

We further propose CogniCrypttest. CogniCrypttest would generate test suites for an API
based on the CrySL rules for this API. Such a test suite is useful from multiple perspectives.
First, it provides a comprehensive suite of valid examples for how to use the API. Many APIs
often lack such examples although they would provide great support for novices and, conse-
quently, are often requested by users [NKMB16, HZH19]. Second, the test suite may serve as a
test for the CrySL rules themselves. If CogniCrypttest generates a test case, i.e., a sample
use, for an API that constitutes an invalid use of it, this test case reveals a mistake in the
CrySL rule. (Or in CogniCrypttest, of course.) Lastly, the test suite may be used to test
program-analysis tools such as CogniCryptsast. Any misclassification of a test as either using
an API securely when it is not or the other way around reveals false negatives or positives of
the analysis, respectively.

We focus the following discussion on generating test cases from CrySL rules on CrySL-
related features (e.g., if an analysis catches all deviations from an object’s defined usage pattern).
However, one could easily modify CogniCrypttest to also account for more technical features
of analyses (e.g., treatment of method calls or fields, precision, scalability). In this fashion,
CogniCrypttest may be used as a benchmark generator for individual APIs. CogniCrypttest
would likely not benefit Eclipse users a lot.

There are multiple test-case generation strategies CogniCrypttest could take, depending
on the aspired use case. We focus our discussion on generating all possible test cases from a
given CrySL rule. We do so because we do not aim to maximize any specific metric such as
test coverage or efficiency, but instead aim to show that CogniCrypttest can indeed generate a
comprehensive test suite for an API based on that API’s CrySL rules. Other strategies include
generating test cases randomly, aiming to maximize some metrics of coverage, following a genetic
algorithm, or using learning approaches.

For the purpose of this discussion, we distinguish between aiming at generating test cases
with and without misuses. To approach the discussion more systematically, we also discuss
how CogniCrypttest would treat the different sections of a CrySL rule separately from each
other. Figure 9.2 summarizes CogniCrypttest’s workflow. The tool would take as input a set
of CrySL rules for an API and first parse them 1 . This step leaves CogniCrypttest with
forbidden methods, constraints, state machine, and predicates for any object for whose type
CogniCrypttest has a CrySL rule for.

Forbidden methods are straightforward to address with CogniCrypttest 2 . For a correct
test case, CogniCrypttest would ignore forbidden methods. For a test case that should contain
a misuse, CogniCrypttest would generate a call to such a method.

To fill parameter values 3 , CogniCrypttest could fetch values from the CONSTRAINTS
section of the CrySL rule under test. If the test case should implement an incorrect use
because of an incorrect parameter value, CogniCrypttest may generate random data of the
appropriate data type.

To generate method calls 4 , CogniCrypttest would navigate through the state machine.
To generate correct test cases, CogniCrypttest would transform paths through the state ma-
chine that lead to accepting states into code. Any path, on the other hand, that ends in the
error state may be transformed into a test cases with such a misuse.

If two classes CogniCryptfix has CrySL rules for should be composed, i.e., the test case
must generate an object with a valid predicate that is consumed by another object in the test
case 5 , CogniCrypttest may generate code following the same approach as CogniCryptgen
(Section 7.1). For test cases with invalid predicates, CogniCrypttest may follow one of three
strategies. First, if an object requires several calls to be used properly, CogniCrypttest

104

Chapter 9. Further Applications of CrySL

Parse
CrySL

Test
Cases

Forbidden
Methods

Constraint
Violations

Typestate
violations

Forbidden
Methods

Compose
(In-)Security

Traverse to
Valid or

Invalid State

Fetch or Fuzz

Introduce or
Avoid

Output

Input

1

CrySL
Rules

5

4

3

2

Figure 9.2: The General Workflow of CogniCrypttest.

would select the first call in the corresponding usage pattern (e.g., getInstance(String) for
KeyGenerator). It would, however, stop there and not continue generating the remaining calls
on that object. As a result, that object does not receive the predicate. Second, if an object
does only require one call, but calling another method does kill the predicate (e.g. PBEKeySpec
in Figure 5.2), CogniCrypttest generates that call, too. Third, should this step fail as well,
but the first call on the object, which should ensure the predicate, contain any parameters with
constraints on them, CogniCrypttest would generate an object into the test case that does not
fulfil its constraint. This way, the object, which should ensure the predicate, does not get one.
By supporting the three aforementioned strategies, CogniCrypttest covers all classes in our
JCA rule set. We leave it to future work that actually implements CogniCrypttest to explore
other rule sets and determine whether or not these three strategies suffice or more are needed.

By following the outlined approach, CogniCrypttest can generate example uses for all
CrySL rules it is given. To transform them into test cases, CogniCryptfix would annotate
them with expected test results. That is, it marks any test case that, for instance, contains a
forbidden call as incorrect for containing that forbidden call. As CogniCrypttest generates
the example uses to begin with and is hence aware of which example uses are incorrect for which
reasons, it can on-the-fly generate the annotations along with them.

9.4 CogniCryptdoc – Generating documentation for hard-to-use
APIs

Our final suggestion is CogniCryptdoc. CogniCryptdoc addresses the issue of insufficient
documentation raised and discussed in a lot of work on the usability of Crypto APIs. Many
developers are overwhelmed by both the complexity of and the domain knowledge required to
understand Crypto APIs [ABF+17, MKW18, PHR19, NKMB16, HZH19]. While CrySL rules
themselves may serve as documentation, most people likely prefer running text in the form of
manuals akin to the JCA Reference Guide [Inc17] or method documentation (e.g., JavaDoc)

105

9.4 CogniCryptdoc – Generating documentation for hard-to-use APIs

Parse
CrySL

CrySL
Rules

Documentation

State
Machine

Input

Compose

Output

Constraints

Forbidden
Methods

Predicates

Documentation
Templates

1

2

5

4

3

Figure 9.3: The General Workflow of CogniCryptdoc.

over specifications. As Huesmann et al. [HZH19] point out, having multiple media that target
different groups is beneficial in any case. CogniCryptdoc may generate such documentation
from a CrySL rule.

In the following, we illustrate CogniCryptdoc’s workflow in Figure 9.3 by discussing how
CogniCryptdoc would generate full-fledged manuals instead of other kinds of documentation
such as method documentation. To this end, we return to PBEKeySpec from the JCA, we have
used throughout this thesis as an example. The official documentation of each class in the JCA
contains a few paragraphs of introduction, followed by method documentation of all methods
in the class. The introduction for PBEKeySpec [Ora19b], which we show in Figure 9.4, briefly
describes what the class’ purpose is and refers to a few adjacent cryptographic standards. It
also lays out the reasoning for not storing the password object as a String, but instead a char
array. The introduction does not, however, link any of this explanation to the class’ methods.
It also does not discuss any of the other parameters of PBEKeySpec’s constructors beyond the
password. We aim with CogniCryptdoc to generate an extension to the introduction akin to
what is shown in Figure 9.5 that accomplishes to discuss these two things.

CogniCryptdoc would receive a set of CrySL rules, including the one for PBEKeySpec
(Figure 5.2) as well as documentation text templates as input that provide the boilerplate text
CogniCryptdoc uses to generate the full documentation. CogniCryptdoc would come with
one template for each language construct in CrySL so that the templates are not class-specific.
Templates contain placeholders, though that must be filled with information from the CrySL
rules. All italic words in the text in Figure 9.5 represent former placeholders CogniCryptdoc
has replaced with information from PBEKeySpec’s CrySL rule during the generation process.
CogniCryptdoc would traverse a given CrySL rule from top to bottom. To generate Line 290,
CogniCryptdoc would take the boilerplate text from Figure 9.6 and replace the two placehold-
ers $number and $class_name with two—the number of defined methods in the rule’s EVENTS
section—and PBEKeySpec—the class’ name—respectively.

To document the two required methods of PBEKeySpec (Lines 291–292), CogniCryptdoc

106

Chapter 9. Further Applications of CrySL

A user - chosen password that can be used with password -based encryption (PBE).

The password can be viewed as some kind of raw key material , from which the
encryption mechanism that uses it derives a cryptographic key.

Different PBE mechanisms may consume different bits of each password character .
For example , the PBE mechanism defined in PKCS #5 looks at only the low order 8
bits of each character , whereas PKCS #12 looks at all 16 bits of each character .

You convert the password characters to a PBE key by creating an instance of the
appropriate secret -key factory . For example , a secret -key factory for PKCS #5
will construct a PBE key from only the low order 8 bits of each password
character , whereas a secret -key factory for PKCS #12 will take all 16 bits of
each character .

Also note that this class stores passwords as char arrays instead of String
objects (which would seem more logical), because the String class is immutable
and there is no way to overwrite its internal value when the password stored in
it is no longer needed . Hence , this class requests the password as a char
array , so it can be overwritten when done.

Figure 9.4: Introduction to Official PBEKeySpec Documentation in JDK 13[Ora19b]

290 There are two methods in PBEKeySpec that may be called to use the class
correctly .

291 First , method PBEKeySpec(char[], byte[], int, int) must be called exactly once.
292 Last , method clearPassword() must be called exactly once.
293
294 Three parameters of method PBEKeySpec(char[] password, byte[] salt, int, int) are

constrained in one way or another .
295 Any data that is part of char[] password must never be a String at any point

in the program .
296 The parameter Byte[] salt must be randomized .
297 The parameter int iterationCount must be at least 10,000 .
298
299 Do not use method PBEKeySpec(char[]) . Instead use method PBEKeySpec(char[], byte[],

int, int) .
300
301 The class ensures that its own instance can be used as a specced Key after

PBEKeySpec(char[], byte[], int, int) . This is no longer ensured after method
clearPassword() is called .

Figure 9.5: Result for PBEKeySpec

There are $number methods in $class_name that may be called to use the class correctly.

Figure 9.6: Text Template for Required Method Calls

107

9.5 Conclusion

$Position, method $method_name $must_may be called $restriction $cardinality.

Figure 9.7: Text Template for Required Method Calls

would navigate through PBEKeySpec’s state machine and apply the template in Figure 9.7 to
each transition. In case the state machine branches, CogniCryptdoc would make use of specific
templates that account for all available branches.

CogniCryptdoc may apply similar templates to all constraints of the rule and predi-
cates parameter objects in the rule require, leading to Lines 294–297. Take the parameter
iterationCount that must be, according to Line 83 of PBEKeySpec’s CrySL rule in Figure 5.2,
greater than or equal to 10,000. CogniCryptdoc would insert, for the purpose of generating
the documentation, the variable name iterationCount and the restriction on it into the corre-
sponding text template. This insertion leads to the explanation in Line 296. CogniCryptdoc
would support for each type of constraint with specific templates (e.g., required predicate in
Line 296 or built-in predicate neverTypeOf in Line 295).

PBEKeySpec’s CrySL rule also defines a constructor as forbidden (Line 87 in Figure 5.2).
For the documentation, CogniCryptdoc would generate Line 299 to warn of the constructor’s
use. As the CrySL rule suggests an alternative, CogniCryptdoc generates the second sentence
in the line recommending to use this alternative instead.

Finally, for predicates the class ensures or negates, CogniCryptdoc would generate Line 301
in the example. To this end, it applies the variable the predicate is ensured upon, in the case of
PBEKeySpec that is this, the name of the predicate speccedKey and the method after which this
predicate is ensured to a predicate text template. In the case of speccedKey, the after keyword
is used to define the method after whose call the predicate should hold. CogniCryptdoc would
hence insert the name of this method into the documentation. For rules, where the keyword
after is not used, CogniCryptdoc may instead use the names of methods that lead to an
accepting state in the finite state machine.

Following this approach, CogniCryptdoc is capable of providing documentation that does
actually explain how to use a class. The design we present here can easily be extended to also
address composition with other classes or to include correct usage examples generated with
CogniCryptgen. We also believe that CogniCrypt users would benefit from an integration of
CogniCryptdoc into the plugin such that it display CogniCryptdoc-provided documentation.

9.5 Conclusion
In this chapter, we have discussed four applications of CrySL that go beyond CogniCryptsast
and CogniCryptgen. The first one – CryptoOracle – provides developers direct support in
their use of cryptographic APIs, independent of any tools. The other three are rather design
sketches of yet unrealized types of tool support, built on top of CrySL. We have presented
only rough sketches of each of the three approaches and did not cover each and every edge
case. This is because we wanted to illustrate the ideas underlying each of the three approaches,
not provide detailed plans for their implementations. All four application ideas demonstrate
the expressive power of CrySL. Although originally designed as a basis of CogniCryptsast,
CrySL’s expressiveness suffices to serve as a building block for API tool support that goes
beyond the well-trodden path of program analysis.

108

Conclusion
10

Cryptography can help secure sensitive data, but only if applications use cryptographic compo-
nents securely. The cryptography domain comprises a wide range of algorithms, each can be
configured in multiple ways. On top of that, developers need to keep in mind even more complex
requirements such as that certain keys may not be proper for certain operations or how keys are
properly and securely derived from a password. All this becomes an issue for developers with
little or no experience in cryptography and prior research shows that this setup does not work.

In this thesis, we have presented CogniCrypt, an integrated approach to addressing this
issue. With CogniCrypt, we support application developers in using cryptographic APIs by
relieving them of having to know how to use an API. Our first contribution, the API-usage
specification language CrySL, lies at the core of this effort. The target audience of CrySL are
cryptography experts. Using CrySL, they can specify how their APIs should be used. To show
CrySL’s practicality, we have modelled the most popular Crypto API, the Java Cryptography
Architecture (JCA), in CrySL. Over the course of our work, other APIs have been modelled in
CrySL as well.

CogniCryptsast, the second contribution of this thesis, transformsCrySL rules into a static
program analysis. Bootstrapped with the JCA rule set, we have conducted three empirical
evaluations. We found CogniCryptsast to be very precise. We were also able to confirm
previous studies’ results on cryptographic misuse in Android and were the first to analyze the
entirety of Maven Central for Crypto misuses within just a handful of days.

Third, we contribute another type of CrySL-based tool support as part of this thesis: the
code generator for cryptographic use cases CogniCryptgen. On top of CrySL rules, Cog-
niCryptgen consumes Java code templates. These templates implement non-security-critical
wrapper code for a cryptographic use case and further encode what cryptographic code should
be generated how from CrySL rules. Our empirical evaluation revealed CogniCryptgen to be
very usable and its artefacts compact and maintainable.

In our fourth contribution, we empirically evaluated CogniCrypt as a whole. In particular,
our experiment examined whether or not CogniCrypt keeps its promise to effectively help
developers in avoiding cryptographic misuse. We have implemented CogniCrypt as an Eclipse
plugin consisting of both CogniCryptsast and CogniCryptgen, integrated with the Eclipse
plugin framework. We asked 18 participants to implement small cryptographic tasks with and
without CogniCrypt. Our results reveal that CogniCrypt facilitates faster, more functional,
and more secure development of cryptographic code. The experiment provides evidence that
CogniCrypt does indeed combat cryptographic misuse effectively.

Finally, we have closed out the thesis by outlining four other approaches that build on top

109

of CrySL, three of which have yet to be implemented. All four approaches help application
developers further when interacting with Crypto APIs. However, there are more directions than
these four approaches CogniCrypt ought to be taken. One such direction targets CrySL’s
relation to other specification languages that cover subsets of CrySL. When two languages
overlap in the properties they can express, specifying the same issue in both languages to receive
their accompanying tool support is redundant. To save specification overhead when developing
rules in each of those languages, one could develop adapters between them that transform
specifications in one language into specifications of the other. This way, one could specify
something in one language and have it automatically transformed into the other. The most
straightforward concern, however, is coverage in several dimensions. First, there are still other
Crypto APIs that have not yet been modelled with CrySL. Second, there are also non-crypto
APIs that are hard to use and that one might attempt to model in CrySL as well. Just because
CrySL was originally targeted at Crypto APIs does not mean, the language may not be applied
to other APIs as well. Third, CogniCrypt and CrySL may be ported to other popular
programming languages (e.g., C++ or Python). An approach as effective as CogniCrypt
in addressing API misuse should not only be maintained for the settings it has already been
developed for, but should actively be expanded. That would allow other platforms to reap the
same benefits CogniCrypt brings to Java Crypto APIs already.

110

Bibliography

[AAC+05] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren,
Sascha Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittam-
palam, and Julian Tibble. Adding trace matching with free variables to aspectj. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2005, October
16-20, 2005, San Diego, CA, USA, pages 345–364, 2005.

[ABB+09] Dima Alhadidi, Amine Boukhtouta, Nadia Belblidia, Mourad Debbabi, and Pra-
bir Bhattacharya. The dataflow pointcut: a formal and practical framework. In
Proceedings of the 8th International Conference on Aspect-Oriented Software De-
velopment, AOSD 2009, Charlottesville, Virginia, USA, March 2-6, 2009, pages
15–26, 2009.

[ABF+16] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek,
and Christian Stransky. You get where you’re looking for: The impact of infor-
mation sources on code security. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 289–305, 2016.

[ABF+17] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L. Garfinkel, Doowon Kim,
Michelle L. Mazurek, and Christian Stransky. Comparing the usability of crypto-
graphic apis. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 154–171, 2017.

[ABKT16] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. An-
drozoo: collecting millions of android apps for the research community. In Pro-
ceedings of the 13th International Conference on Mining Software Repositories,
MSR 2016, Austin, TX, USA, May 14-22, 2016, pages 468–471, 2016.

[ABP+13] Nadhem AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-
tering, and Jacob C. N. Schuldt. On the security of RC4 in TLS. In USENIX
Security Symposium, pages 305–320, 2013.

[AC18] Hala Assal and Sonia Chiasson. Security in the software development lifecycle. In
Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018, Baltimore,
MD, USA, August 12-14, 2018., pages 281–296, 2018.

[ANA+15] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and Mira
Mezini. Towards secure integration of cryptographic software. In SIGPLAN Sym-
posium on New Ideas in Programming and Reflections on Software at SPLASH
(Onward!), 2015.

111

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel.
Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, pages 259–269, 2014.

[Art18] Philippe Arteau. Findsecbugs, 2018.

[ASLRD99] Alyce S. Adams, Stephen B. Soumerai, Jonathan Lomas, and Dennis Ross-
Degnan. Evidence of self-report bias in assessing adherence to guidelines. In-
ternational Journal for Quality in Health Care, 11(3):187–192, 06 1999.

[ASW+17] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L.
Mazurek, and Sascha Fahl. Developers need support, too: A survey of security
advice for software developers. In SecDev, pages 22–26. IEEE Computer Society,
2017.

[BA07] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased ob-
jects. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007,
October 21-25, 2007, Montreal, Quebec, Canada, pages 301–320, 2007.

[BBG+63] John W. Backus, Friedrich L. Bauer, Julien Green, C. Katz, John Mc-
Carthy, Alan J. Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois,
Joseph Henry Wegstein, Adriaan van Wijngaarden, Michael Woodger, and Peter
Naur. Revised report on the algorithm language ALGOL 60. Communications
of the ACM, 6(1):1–17, 1963.

[BC14] Rebecca Balebako and Lorrie Faith Cranor. Improving app privacy: Nudging
app developers to protect user privacy. IEEE Security & Privacy, 12(4):55–58,
2014.

[BD16] Alexandre Melo Braga and Ricardo Dahab. Mining cryptography misuse in online
forums. In 2016 IEEE International Conference on Software Quality, Reliability
and Security, QRS 2016, Companion, Vienna, Austria, August 1-3, 2016, pages
143–150, 2016.

[BDA+17] Alexandre Melo Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and
Marco Vieira. Practical evaluation of static analysis tools for cryptography:
Benchmarking method and case study. In 28th IEEE International Symposium on
Software Reliability Engineering, ISSRE 2017, Toulouse, France, October 23-26,
2017, pages 170–181, 2017.

[BKS+18] Eric Bodden, Stefan Krueger, Johannes Spaeth, Karim Ali, and Mira Mezini.
CVE-2018-12240. Available from Symantec, CVE-ID CVE-2018-12240., August 3
2018.

[BLH12] Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-state
runtime monitors ahead of time. ACM Transactions on Programming Languages
and Systems (TOPLAS), 34(2):7:1–7:52, June 2012.

112

Chapter 10. Conclusion

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. In Progress in Cryptology - LATINCRYPT 2012 -
2nd International Conference on Cryptology and Information Security in Latin
America, Santiago, Chile, October 7-10, 2012. Proceedings, pages 159–176, 2012.

[Bod10] Eric Bodden. Efficient hybrid typestate analysis by determining continuation-
equivalent states. In ICSE ’10: International Conference on Software Engineer-
ing, pages 5–14, New York, NY, USA, May 2010. ACM.

[Bod14] Eric Bodden. TS4J: a fluent interface for defining and computing typestate anal-
yses. In Proceedings of the 3rd ACM SIGPLAN International Workshop on the
State Of the Art in Java Program analysis, SOAP 2014, Edinburgh, UK, Co-
located with PLDI 2014, June 12, 2014, pages 1:1–1:6, 2014.

[Bod18] Eric Bodden. The secret sauce in efficient and precise static analysis: the beauty
of distributive, summary-based static analyses (and how to master them). In
Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA 2018,
Amsterdam, Netherlands, July 16-21, 2018, pages 85–93, 2018.

[BPF19] Maximilian Blochberger, Tom Petersen, and Hannes Federrath. Mitigating cryp-
tographic mistakes by design. In Mensch und Computer 2019 - Workshopband,
Hamburg, Germany, September 8-11, 2019, 2019.

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Model Checking Software, 8th International SPIN
Workshop, Toronto, Canada, May 19-20, 2001, Proceedings, pages 103–122, 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system
software via static analysis. In Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Port-
land, OR, USA, January 16-18, 2002, pages 1–3, 2002.

[Bro96] John Brooke. SUS-A quick and dirty usability scale. Usability Evaluation in
Industry, 189(194):4–7, 1996.

[Buc16] Johannes A. Buchmann. Einführung in die Kryptographie, 6. Auflage. Springer,
2016.

[BW12] Raymond P. L. Buse and Westley Weimer. Synthesizing API usage examples. In
International Conference on Software Engineering (ICSE), pages 782–792, 2012.

[CGK12] Gary Charness, Uri Gneezy, and Michael A Kuhn. Experimental methods:
Between-subject and within-subject design. Journal of Economic Behavior &
Organization, 81(1):1–8, 2012.

[CNKX16] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and
Christos Xenakis. Evaluation of cryptography usage in android applications.
In International Conference on Bio-inspired Information and Communications
Technologies, pages 83–90, 2016.

[Cos] Cossack Labs. Themis. https://www.cossacklabs.com/themis/.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP’95 - Object-Oriented

113

https://www.cossacklabs.com/themis/

Programming, 9th European Conference, Århus, Denmark, August 7-11, 1995,
Proceedings, pages 77–101, 1995.

[DH79] Whitfield Diffie and Martin E Hellman. Privacy and authentication: An intro-
duction to cryptography. Proceedings of the IEEE, 67(3):397–427, 1979.

[DR98] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In CARDIS, volume
1820 of Lecture Notes in Computer Science, pages 277–284. Springer, 1998.

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework
for efficient mixed-protocol secure two-party computation. In NDSS. The Internet
Society, 2015.

[EBFK13] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
An empirical study of cryptographic misuse in android applications. In ACM
Conference on Computer and Communications Security, pages 73–84, 2013.

[EMST78] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L Tuchman. Mes-
sage verification and transmission error detection by block chaining, February 14
1978. US Patent 4,074,066.

[FBX+17] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages
121–136, 2017.

[Fei19] Johannes Feichtner. A comparative study of misapplied crypto in android and
ios applications. In Proceedings of the 16th International Joint Conference on e-
Business and Telecommunications, ICETE 2019 - Volume 2: SECRYPT, Prague,
Czech Republic, July 26-28, 2019, pages 96–108, 2019.

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars Baumgärt-
ner, and Bernd Freisleben. Why Eve and Mallory love Android: an Analysis of
Android SSL (In)security. In ACM Conference on Computer and Communica-
tions Security, pages 50–61, 2012.

[fISB17] German Federal Office for Information Security (BSI). Cryptographic mecha-
nisms: Recommendations and key lengths. Technical Report BSI TR-02102-1,
BSI, January 2017.

[fISB19] German Federal Office for Information Security (BSI). Cryptographic mecha-
nisms: Recommendations and key lengths. Technical Report BSI TR-02102-2,
BSI, February 2019.

[FLW12] Christian Forler, Stefan Lucks, and Jakob Wenzel. Designing the API for a
cryptographic library - A misuse-resistant application programming interface. In
Reliable Software Technologies - Ada-Europe 2012 - 17th Ada-Europe Interna-
tional Conference on Reliable Software Technologies, Stockholm, Sweden, June
11-15, 2012. Proceedings, pages 75–88, 2012.

[Fow05] Martin Fowler. FluentInterface, 2005. https://martinfowler.com/bliki/
FluentInterface.html.

114

https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html

Chapter 10. Conclusion

[FXK+19] Felix Fischer, Huang Xiao, Ching-yu Kao, Yannick Stachelscheid, Benjamin John-
son, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin Böttinger, Paul
Muntean, and Jens Grossklags. Stack overflow considered helpful! deep learning
security nudges towards stronger cryptography. In 28th USENIX Security Sym-
posium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,
pages 339–356, 2019.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In CRYPTO, volume 196 of Lecture Notes in Computer
Science, pages 10–18. Springer, 1984.

[Gao05] Lei Gao. Latin squares in experimental design. 2005.

[GGF17] Paul Grassi, Michael Garcia, and James Fenton. Digital identity guidelines. Tech-
nical report, National Institute of Standards and Technology, 2017.

[GIJ+12] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,
and Vitaly Shmatikov. The most dangerous code in the world: Validating SSL
certificates in non-browser software. In Conference on Computer and Communi-
cations Security (CCS), pages 38–49, 2012.

[GIW+] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Se-
bastian Möller, Yasemin Acar, and Sascha Fahl. Developers deserve security
warnings, too: On the effect of integrated security advice on cryptographic API
misuse. In Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018,
Baltimore, MD, USA, August 12-14, 2018, pages 265–281.

[GKL+19] Jun Gao, Pingfan Kong, Li Li, Tegawendé F. Bissyandé, and Jacques Klein.
Negative results on mining crypto-api usage rules in android apps. In Proceedings
of the 16th International Conference on Mining Software Repositories, MSR 2019,
26-27 May 2019, Montreal, Canada, pages 388–398, 2019.

[GOA05] Simon Goldsmith, Robert O’Callahan, and Alexander Aiken. Relational queries
over program traces. In Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 385–402, 2005.

[Goo] Google LLC. Google tink. https://github.com/google/tink.

[GS16] Matthew Green and Matthew Smith. Developers are not the enemy!: The need
for usable security apis. IEEE Security & Privacy, 14(5):40–46, 2016.

[GTM14] Ricardo Rodriguez Garcia, Julie Thorpe, and Miguel Vargas Martin. Crypto-
assistant: Towards facilitating developer’s encryption of sensitive data. In
2014 Twelfth Annual International Conference on Privacy, Security and Trust,
Toronto, ON, Canada, July 23-24, 2014, pages 342–346, 2014.

[GWL+19] Zuxing Gu, Jiecheng Wu, Jiaxiang Liu, Min Zhou, and Ming Gu. An empirical
study on api-misuse bugs in open-source C programs. In 43rd IEEE Annual
Computer Software and Applications Conference, COMPSAC 2019, Milwaukee,
WI, USA, July 15-19, 2019, Volume 1, pages 11–20, 2019.

115

https://github.com/google/tink

[HCP+95] James R Hebert, Lynn Clemow, Lori Pbert, Ira S Ockene, and Judith K Ock-
ene. Social desirability bias in dietary self-report may compromise the validity
of dietary intake measures. International journal of epidemiology, 24(2):389–398,
1995.

[Hec14] Philipp C. Heckel. CipherInputStream for AEAD modes is insecure in JDK7
(GCM, EAX, etc.), 2014.

[HG14] Ekawat Homsirikamol and Kris Gaj. Can high-level synthesis compete against a
hand-written code in the cryptographic domain? A case study. In 2014 Inter-
national Conference on ReConFigurable Computing and FPGAs, ReConFig14,
Cancun, Mexico, December 8-10, 2014, pages 1–8, 2014.

[HGT17] Julie M. Haney, Simson L. Garfinkel, and Mary Frances Theofanos. Organiza-
tional practices in cryptographic development and testing. In 2017 IEEE Con-
ference on Communications and Network Security, CNS 2017, Las Vegas, NV,
USA, October 9-11, 2017, pages 1–9, 2017.

[Hol19] Malte Hollmann. From CrySL to an Advanced Crypto Library. Master’s thesis,
Paderborn University, 2019.

[Hou09] Russell Housley. Cryptographic message syntax (CMS). RFC, 5652:1–56, 2009.

[HTAP18] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman.
"we make it a big deal in the company": Security mindsets in organizations that
develop cryptographic products. In Fourteenth Symposium on Usable Privacy
and Security, SOUPS 2018, Baltimore, MD, USA, August 12-14, 2018, pages
357–373, 2018.

[HZH19] Rolf Huesmann, Alexander Zeier, and Andreas Heinemann. Eigenschaften opti-
mierter api-dokumentationen im entwicklungsprozess sicherer software. In Men-
sch und Computer 2019 - Workshopband, Hamburg, Germany, September 8-11,
2019, 2019. In German.

[IG17] Luigi Lo Iacono and Peter Leo Gorski. I do and i understand. not yet true for
security apis. so sad. In Proceedings 2nd European Workshop on Usable Security.
Internet Society. https://doi. org/10.14722/eurousec, 2017.

[IKND16] Soumya Indela, Mukul Kulkarni, Kartik Nayak, and Tudor Dumitras. Toward
semantic cryptography apis. In IEEE Cybersecurity Development, SecDev 2016,
Boston, MA, USA, November 3-4, 2016, pages 9–14, 2016.

[Inc17] Oracle Inc. Java cryptography architecture (JCA), 2017. https://docs.oracle.
com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.

[JKC18] Swati Jaiswal, Uday P. Khedker, and Supratik Chakraborty. Demand-driven alias
analysis : Formalizing bidirectional analyses for soundness and precision. CoRR,
abs/1802.00932, 2018.

[JSM+19] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,
Krzysztof Czarnecki, and Andrzej Wasowski. Clafer: Lightweight modeling of
structure, behaviour, and variability. Programming Journal, 3(1):2, 2019.

116

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

Chapter 10. Conclusion

[JSMB13] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. Why don’t software developers use static analysis tools to find bugs? In
ICSE, pages 672–681. IEEE Computer Society, 2013.

[KAB20] Stefan Krüger, Karim Ali, and Eric Bodden. CogniCryptGEN - Generating Code
for the Secure Usage of Crypto APIs. In Internationl Symposium on Code Gen-
eration and Optimization (CGO), 2020.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold. An overview of aspectj. ECOOP 2001—Object-Oriented Pro-
gramming, pages 327–354, 2001.

[KLCL18] Christopher Kane, Bo Lin, Saksham Chand, and Yanhong A. Liu. High-level
cryptographic abstractions. CoRR, abs/1810.09065, 2018.

[KLHK10] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. Towards an
intelligent code search engine. 2010.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer, 1997.

[KNR+17] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and Ram
Kamath. CogniCrypt: Supporting Developers in Using Cryptography. In Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017,
pages 931–936, 2017.

[KNR+21] Stefan Krüger, Sarah Nadi, Michael Reif, Anna-Katharina Wickert, Rodrigo
Bonifácio, Karim Ali, Sascha Fahl, Yasemine Acar, Eric Bodden, and Mira
Mezini. The Effects of Use-Case Based Code Generation on Security Code. In
International Conference on Software Engineering (ICSE), 2021.

[KRZ14] Iman Keivanloo, Juergen Rilling, and Ying Zou. Spotting working code exam-
ples. In International Conference on Software Engineering (ICSE), pages 664–
675, 2014.

[KSA+18] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini.
CrySL: An Extensible Approach to Validating the Correct Usage of Cryp-
tographic APIs. In European Conference on Object-Oriented Programming
(ECOOP), 2018.

[KSA+19a] Stefan Krueger, Johannes Spaeth, Karim Ali, Eric Bodden, and Mira
Mezini. CrySL Rule Set for JCA, 2019. https://github.com/CROSSINGTUD/
Crypto-API-Rules.

[KSA+19b] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini.
CrySL: An Extensible Approach to Validating the Correct Usage of Crypto-
graphic APIs. In IEEE Transactions on Software Engineering (TSE), 2019.

[Lab19] Information Technology Laboratory. FIPS 140-2, annex a: Approved security
functions for fips pub 140-2, security requirements for cryptographic modules,
2019.

117

https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules

[LBLH11] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot frame-
work for Java program analysis: a retrospective. In Cetus Users and Compiler
Infrastructure Workshop (CETUS 2011), October 2011.

[LCWZ14] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does cryp-
tographic software fail?: a case study and open problems. In ACM Asia-Pacific
Workshop on Systems (APSys), pages 7:1–7:7, 2014.

[Leg18] Legion of the Bouncy Castle Inc. BouncyCastle, 2018. https://www.
bouncycastle.org/java.html.

[Leu19] Sebastian Leuer. Sharper Crypto-API Analysis: Entwicklung eines integrierten
Plugins zur statischen Code-Analyse der Nutzung von Krypto-APIs in C#. Mas-
ter’s thesis, Hochschule Düsseldorf, 2019.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java
applications with static analysis. In Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, July 31 - August 5, 2005, 2005.

[Lou] Loup Vaillant. Monocypher. https://monocypher.org/.

[LST+19] Tamara Lopez, Helen Sharp, Thein Than Tun, Arosha K. Bandara, Mark Levine,
and Bashar Nuseibeh. "hopefully we are mostly secure": views on secure code
in professional practice. In Proceedings of the 12th International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE@ICSE 2019,
Montréal, QC, Canada, 27 May 2019, pages 61–68, 2019.

[LZLG14] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. icryptotracer: Dynamic
analysis on misuse of cryptography functions in ios applications. In Network and
System Security - 8th International Conference, NSS 2014, Xi’an, China, October
15-17, 2014, Proceedings, pages 349–362, 2014.

[Mah16] Khalid Mahmood. Do people overestimate their information literacy skills? a
systematic review of empirical evidence on the dunning-kruger effect. Communi-
cations in Information Literacy, 10(2):3, 2016.

[Mai] MaidSafe. Rust sodium. https://github.com/maidsafe/rust_sodium.

[MBB18] Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source attribution
of cryptographic API misuse in android applications. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, AsiaCCS 2018,
Incheon, Republic of Korea, June 04-08, 2018, pages 133–146, 2018.

[MBP+15] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drian Marcus. How can I use this method? In International Conference on
Software Engineering (ICSE), pages 880–890, 2015.

[MK19] Duncan Mitchell and Johannes Kinder. A formal model for checking crypto-
graphic API usage in javascript. In Computer Security - ESORICS 2019 - 24th
European Symposium on Research in Computer Security, Luxembourg, September
23-27, 2019, Proceedings, Part I, pages 341–360, 2019.

[MKW18] Kai Mindermann, Philipp Keck, and Stefan Wagner. How usable are rust cryp-
tography apis? In 2018 IEEE International Conference on Software Quality,

118

https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://monocypher.org/
https://github.com/maidsafe/rust_sodium

Chapter 10. Conclusion

Reliability and Security, QRS 2018, Lisbon, Portugal, July 16-20, 2018, pages
143–154, 2018.

[MLL05] Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. Finding ap-
plication errors and security flaws using PQL: a program query language. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2005, October
16-20, 2005, San Diego, CA, USA, pages 365–383, 2005.

[MLLD16] Siqi Ma, David Lo, Teng Li, and Robert H. Deng. Cdrep: Automatic repair of
cryptographic misuses in android applications. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, pages 711–722, 2016.

[MM12] Fabio Martinelli and Ilaria Matteucci. A framework for automatic generation of
security controller. Softw. Test., Verif. Reliab., 22(8):563–582, 2012.

[MV04] David McGrew and John Viega. The galois/counter mode of operation (gcm).
submission to NIST Modes of Operation Process, 20, 2004.

[MVW07] Clint Morgan, Kris De Volder, and Eric Wohlstadter. A static aspect lan-
guage for checking design rules. In Proceedings of the 6th International Confer-
ence on Aspect-Oriented Software Development, AOSD 2007, Vancouver, British
Columbia, Canada, March 12-16, 2007, pages 63–72, 2007.

[MW18] Kai Mindermann and Stefan Wagner. Usability and security effects of code exam-
ples on crypto apis. In 16th Annual Conference on Privacy, Security and Trust,
PST 2018, Belfast, Northern Ireland, Uk, August 28-30, 2018, pages 1–2, 2018.

[Nat18] National Cyber Security Centre. Password administration for system owners.
Technical report, National Cyber Security Centre, 2018.

[NCC18] NCCGroup. Visualcodegrepper, 2018.

[NDG+19] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz, and
Matthew Smith. "if you want, I can store the encrypted password": A password-
storage field study with freelance developers. page 140, 2019.

[NDGS20] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith.
On Conducting Security Developer Studies with CS Students: Examining a
Password-Storage Study with CS Students, Freelancers, and Company Devel-
opers. In CHI. ACM, 2020. To appear.

[NDT+17] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. Why do developers get password storage wrong?:
A qualitative usability study. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 311–328, 2017.

[NDTS18] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith.
Deception task design in developer password studies: Exploring a student sam-
ple. In Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018,
Baltimore, MD, USA, August 12-14, 2018., pages 297–313, 2018.

119

[NK16] Sarah Nadi and Stefan Krüger. Variability modeling of cryptographic compo-
nents: Clafer experience report. In Proceedings of the Tenth International Work-
shop on Variability Modelling of Software-intensive Systems, Salvador, Brazil,
January 27 - 29, 2016, pages 105–112, 2016.

[NKMB16] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through
hoops: why do Java developers struggle with cryptography APIs? In Interna-
tional Conference on Software Engineering (ICSE), pages 935–946, 2016.

[NL08] Nomair A. Naeem and Ondrej Lhoták. Typestate-like analysis of multiple inter-
acting objects. In Proceedings of the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2008, October 19-23, 2008, Nashville, TN, USA, pages 347–366, 2008.

[Nor97] David A Northrup. The problem of the self-report in survey research. Institute
for Social Research, York University, 1997.

[NVLC11] Rick Nunes-Vaz, Steven Lord, and Jolanta Ciuk. A more rigorous framework for
security-in-depth. Journal of Applied Security Research, 6(3):372–393, 2011.

[NWA+17] Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. A stitch in time: Supporting android developers in writ-
ing secure code. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1065–1077, 2017.

[oAIPI] Institute of Applied Information Processing and Communications (IAIK). Auto-
mated binary analysis on ios.

[OLR+18] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad,
Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois DeLong, Justin Cappos, and
Yuriy Brun. API blindspots: Why experienced developers write vulnerable code.
In Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018, Balti-
more, MD, USA, August 12-14, 2018, pages 315–328, 2018.

[Ora19a] Oracle. Java Secure Socket Extension (JSSE) Reference Guide, 2019.

[Ora19b] Oracle. PBEKeySpec Documentation, 2019.

[Ora19c] Oracle. SecureRandom Implementations in JCA Providers, 2019.

[Ora20a] Oracle. SunJCE Provider Documentation, 2020.

[Ora20b] Oracle. SunJSSE Provider Documentation, 2020.

[PFZ17] Olgierd Pieczul, Simon N. Foley, and Mary Ellen Zurko. Developer-centered
security and the symmetry of ignorance. In Proceedings of the 2017 New Security
Paradigms Workshop, NSPW 2017, Santa Cruz, CA, USA, October 01-04, 2017,
pages 46–56, 2017.

[PHR19] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Usability smells: An analysis
of developers’ struggle with crypto libraries. In Fifteenth Symposium on Usable
Privacy and Security, SOUPS 2019, Santa Clara, CA, USA, August 11-13, 2019,
2019.

120

Chapter 10. Conclusion

[PSD04] Davide Pozza, Riccardo Sisto, and Luca Durante. Spi2java: Automatic cryp-
tographic protocol java code generation from spi calculus. In 18th International
Conference on Advanced Information Networking and Applications (AINA 2004),
29-31 March 2004, Fukuoka, Japan, pages 400–405, 2004.

[PTRV18] Rumen Paletov, Petar Tsankov, Veselin Raychev, and Martin T. Vechev. Inferring
crypto API rules from code changes. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, pages 450–464, 2018.

[PTSA+] Chus Picos, Hoki Torres, Iván García Sáinz-Aja, Steven Coco, Marcos Muíño Gar-
cía, Grégory Joseph, Frank Mena, Carlos Fernández, Éamonn Linehan, Patrick J.
Maloney, Soraya Sánchez, Suresh Jaganathan, and Eamonn Dunne. Jasypt: Java
simplified encryption. http://www.jasypt.org/.

[Pyta] Python Cryptographic Architecture. Cryptography. https://cryptography.
io/en/latest/.

[Pytb] Python Cryptographic Authority. Pynacl. https://github.com/pyca/pynacl/.

[RAMB16] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvest-
ing runtime values in android applications that feature anti-analysis techniques.
In Network and Distributed System Security Symposium (NDSS), February 2016.

[RBK+13] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. Automated API property inference techniques. IEEE Transactions
on Software Engineering (TSE), 39:613–637, 2013.

[REH+16] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
Call graph construction for java libraries. In SIGSOFT FSE, pages 474–486.
ACM, 2016.

[Rei03] Frederick F Reichheld. The one number you need to grow. Harvard Business
Review, 81(12):46–55, 2003.

[Res18] Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC,
8446:1–160, 2018.

[Rig] RigsIT. Xanitizer.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[RSJ03] Thomas W. Reps, Stefan Schwoon, and Somesh Jha. Weighted pushdown systems
and their application to interprocedural dataflow analysis. In SAS, volume 2694
of Lecture Notes in Computer Science, pages 189–213. Springer, 2003.

[RXA+19] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles
Frantz, Murat Kantarcioglu, and Danfeng (Daphne) Yao. Cryptoguard: High pre-
cision detection of cryptographic vulnerabilities in massive-sized java projects. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019, pages 2455–2472,
2019.

121

http://www.jasypt.org/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://github.com/pyca/pynacl/

[SAB17] Johannes Späth, Karim Ali, and Eric Bodden. Ideal: Efficient and precise alias-
aware dataflow analysis. In 2017 International Conference on Object-Oriented
Programming, Languages and Applications (OOPSLA/SPLASH). ACM Press,
October 2017. To appear.

[SB15] Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations and
Trends in Programming Languages, 2(1):1–69, 2015.

[Sco18] Michael Scovetta. Yasca, 2018.

[SDAB16a] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden.
Boomerang: Demand-driven flow- and context-sensitive pointer analysis for java.
In 30th European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy, pages 22:1–22:26, 2016.

[SDAB16b] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden.
Boomerang: Demand-driven flow- and context-sensitive pointer analysis for java.
In 30th European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy, pages 22:1–22:26, 2016.

[SDG+14] Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang, and Chenjie Shi. Modelling
analysis and auto-detection of cryptographic misuse in Android applications. In
nternational Conference on Dependable, Autonomic and Secure Computing, pages
75–80, 2014.

[Smi] Brian Smith. Ring: Safe, fast, small crypto using rust. https://briansmith.
org/rustdoc/ring/.

[Soda] Sodium. Sodium - a modern, portable, easy to use crypto library. https://
libsodium.org/.

[Sodb] Sodium Oxide. Sodium oxide: Fast cryptographic library for rust. https://
github.com/sodiumoxide/sodiumoxide.

[Son17] SonarSource. Sonarqube, 2017.

[Spä19] Johannes Späth. Synchronized pushdown systems for pointer and data-flow anal-
ysis. PhD thesis, University of Paderborn, Germany, 2019.

[SY86] Robert E. Strom and Shaula Yemini. Typestate: A programming language con-
cept for enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171,
1986.

[SZSS19] Larry Singleton, Rui Zhao, Myoungkyu Song, and Harvey P. Siy. Firebugs: find-
ing and repairing bugs with security patterns. In Proceedings of the 6th In-
ternational Conference on Mobile Software Engineering and Systems, MOBILE-
Soft@ICSE 2019, Montreal, QC, Canada, May 25, 2019, pages 30–34, 2019.

[TJVW19] Mohammad Tahaei, Adam Jenkins, Kaim Vaniea, and Maria Wolters. "i don’t
know too much about it": On the security mindsets of future software creators.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education, Aberdeen, Scotland, UK, July 15-17, 2019, page
350, 2019.

122

https://briansmith.org/rustdoc/ring/
https://briansmith.org/rustdoc/ring/
https://libsodium.org/
https://libsodium.org/
https://github.com/sodiumoxide/sodiumoxide
https://github.com/sodiumoxide/sodiumoxide

Chapter 10. Conclusion

[TTCL18] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. Security
during application development: an application security expert perspective. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Sys-
tems, CHI 2018, Montreal, QC, Canada, April 21-26, 2018, page 262, 2018.

[vdLRWW18] Dirk van der Linden, Awais Rashid, Emma Williams, and Bogdan Warinschi.
Safe cryptography for all: towards visual metaphor driven cryptography building
blocks. In Proceedings of the 1st International Workshop on Security Awareness
from Design to Deployment, SEAD@ICSE 2018, Gothenburg, Sweden, May 27,
2018, pages 41–44, 2018.

[Ver17] VeraCode. State of software security 2017. https://info.veracode.com/
report-state-of-software-security.html, 2017.

[VGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Optimizing java bytecode using the soot frame-
work: Is it feasible? In Compiler Construction, pages 18–34, 2000.

[WDV+17] Christian Weinert, Denise Demirel, Martín Vigil, Matthias Geihs, and Johannes
Buchmann. MoPS: A Modular Protection Scheme for Long-Term Storage. pages
436–448, 2017.

[WLZ+17] Qing Wang, Juanru Li, Yuanyuan Zhang, Hui Wang, Yikun Hu, Bodong Li,
and Dawu Gu. Nativespeaker: Identifying crypto misuses in android native code
libraries. In Information Security and Cryptology - 13th International Conference,
Inscrypt 2017, Xi’an, China, November 3-5, 2017, Revised Selected Papers, pages
301–320, 2017.

[WvO08] Glenn Wurster and Paul C. van Oorschot. The developer is the enemy. In
Proceedings of the 2008 Workshop on New Security Paradigms, Lake Tahoe, CA,
USA, September 22-25, 2008, pages 89–97, 2008.

[Xte20] Xtext. XText Website. http://www.eclipse.org/Xtext/, 2020.

[ZCD+19] Li Zhang, Jiongyi Chen, Wenrui Diao, Shanqing Guo, Jian Weng, and Kehuan
Zhang. Cryptorex: Large-scale analysis of cryptographic misuse in iot devices. In
22nd International Symposium on Research in Attacks, Intrusions and Defenses,
RAID 2019, Chaoyang District, Beijing, China, September 23-25, 2019, pages
151–164, 2019.

123

https://info.veracode.com/report-state-of-software-security.html
https://info.veracode.com/report-state-of-software-security.html
http://www.eclipse.org/Xtext/

	Introduction
	A Motivating Example
	A Broader Perspective
	Contributions of the Thesis
	Structure of the thesis

	Background
	Cryptography
	Low-level Cryptographic Operations
	Transport Layer Security (TLS)
	Implementation in Java

	Static Data-Flow Analysis
	Types of Analyses
	Analysis Configuration

	CogniCrypt
	CogniCrypt in a Nutshell
	Integrated Components
	Use Cases
	APIs

	Conclusion

	Related Work
	Usability & Re-design of Crypto APIs
	Propping up Libraries
	Fixing Existing Resources for Helping Software Developers
	Security Awareness in Organisations
	Conclusion

	CrySL
	Syntax
	Design Decisions Behind CrySL
	Sections in a CrySL Rule

	CrySL Formal Semantics
	Basic Definitions
	Runtime Semantics

	Implementation
	Limitations
	Related Work
	Languages for Specifying and Checking API Properties
	Inference/Mining of API-usage Specifications

	Conclusion

	CogniCryptsast
	Detecting Misuses of Crypto APIs
	Implementation
	Crypto-API Misuse in Android Apps
	Precision and Recall (RQ1)
	Types of Misuses (RQ2)
	Performance (RQ3)
	Comparison to Existing Tools (RQ4)
	Threats to Validity

	Crypto-API Misuse in Secruity-critical Android Apps
	Setup
	Results (RQ5 – RQ7)
	Case Studies

	Crypto-API Misuse in Java Software
	Setup
	Results (RQ8 – RQ10)
	Case Studies

	Related Work
	Detecting Misuses of Crypto APIs
	Repairing Misuses of Crypto APIs

	Conclusion

	CogniCryptgen
	Generating Secure Code From CrySL
	Design Considerations
	Configuring Solutions with Java Code Templates
	Generating Secure Code from Templates

	Implementation Details
	Evaluation
	Implementation of common use cases (RQ11)
	Performance (RQ12 and RQ13)
	Effort of Artefact Creation and Maintenance (RQ14)
	Usability (RQ15)
	Discussion
	Threats To Validity

	Related Work
	Generating API Usage Code
	Generating Secure Code

	Conclusion

	User Study
	Related Work
	Experimental Design
	Object of the Experiment and Methodology
	Participants and Experiment Context
	Collected Measurements
	Survey Questionnaire
	Pre-Testing

	Results
	Functionality (RQ16)
	Security (RQ17)
	Completion Time (RQ18)
	Usability (RQ19)
	Obstacles (RQ20)

	Discussion
	Threats to Validity
	Conclusion

	Further Applications of CrySL
	CryptoOracle – Wrapper Library with Runtime Checks
	CogniCryptfix – Fixing Cryptographic Misuses in Vulnerable Code
	CogniCrypttest – Generating Test Suites for APIs
	CogniCryptdoc – Generating documentation for hard-to-use APIs
	Conclusion

	Conclusion
	Bibliography

