
Matthias Artmann

Simulative Performance Evaluation of a
Provably Collision Free Approach for Managing
Autonomous Cars on Urban Intersections

Bachelor Thesis in Computer Science

14 May 2020

Please cite as:
Matthias Artmann, “Simulative Performance Evaluation of a Provably Collision Free Approach for Managing Autonomous
Cars on Urban Intersections,” Bachelor Thesis (Bachelorarbeit), Heinz Nixdorf Institute, Paderborn University, Germany,
May 2020.

Cooperative Mobile Systems
Heinz Nixdorf Institute, Paderborn University, Germany

Fürstenallee 11 · 33102 Paderborn · Germany

http://www.cms-labs.org/

http://www.cms-labs.org/

Simulative Performance Evaluation of a
Provably Collision Free Approach for

Managing Autonomous Cars on Urban
Intersections

Bachelor Thesis in Computer Science

vorgelegt von

Matthias Artmann

geb. am 09. November 1997
in Paderborn

angefertigt in der Fachgruppe

Cooperative Mobile Systems

Heinz Nixdorf Institut
Universität Paderborn

Betreuer: Christoph Sommer
Gutachter: Christoph Sommer

Friedhelm Meyer auf der Heide

Abgabe der Arbeit: 14. Mai 2020

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer

als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als

solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance

from third parties.

I certify that the work has not been submitted in the same or any similar form for

assessment to any other examining body and all references, direct and indirect, are

indicated as such and have been cited accordingly.

(Matthias Artmann)

Paderborn, 14 May 2020

Abstract

In the development of intelligent, autonomously operating vehicles, safety is a

vital property every system design must ensure in order to be considered for real

applications. By enabling autonomous vehicles to communicate with each other,

they gain the opportunity to coordinate their maneuvers and thereby improve their

safety cooperatively. A recent approach to specify vehicle controllers for coordinated

crossing maneuvers at urban intersections, presented by Schwammberger [1], uses

a mathematical formalization of the problem to prove the collision freedom of an

exemplary controller. Because the formalism employs a highly abstract traffic model,

it is unclear how such a controller should be implemented and to what extent its

safety properties translate into a more realistic scenario.

In this thesis, I investigate these questions by implementing the controller in the

vehicular network simulation framework Veins and conducting extensive simulation

studies. I define simulation parameters that introduce realistic communication and

coordination restrictions and I evaluate the controller’s performance in terms of

vehicle safety. The simulation results show that the controller preserves its collision

freedom in the least restricted configurations, confirming that in principal, the safety

property translates to more realistic scenarios. For configurations with more severe

restrictions, however, the coordination fails and vehicles can collide.

By analyzing the reasons for the coordination failures, I conclude that the ex-

ample controller alone is not suitable for more realistic environments in which the

simplifying assumptions of the abstract traffic model do not hold. However, the

controller can most likely be adjusted to handle more realistic environments by

using a more sophisticated communication protocol for the implementation or by

extending its abstract definition directly, which is explicitly supported by the abstract

model because it can be used to specify arbitrary controllers.

iv

Kurzfassung

Bei der Entwicklung intelligenter autonom operierender Fahrzeuge ist die Sicherheit

eine unerlässliche Eigenschaft, die jedes System erfüllen muss, um für reale Anwen-

dungen in Betracht gezogen zu werden. Indem man es den Fahrzeugen ermöglicht,

miteinander zu kommunizieren, gibt man ihnen die Möglichkeit, ihre Manöver zu

koordinieren und somit ihre Sicherheit kooperativ zu verbessern. Ein kürzlich von

Schwammberger [1] vorgestellter Ansatz, Fahrzeugsteuerungen für koordinierte

Kreuzungsmanöver auf städtischen Kreuzungen zu definieren, verwendet eine mathe-

matische Formalisierung des Problems, um die Kollisionsfreiheit einer beispielhaften

Steuerung zu beweisen. Da der Formalismus ein hochgradig abstraktes Verkehrs-

modell verwendet, ist es unklar, wie eine solche Fahrzeugsteuerung implementiert

werden sollte und inwiefern sich ihre Sicherheitseigenschaften auf ein realistischeres

Szenario übertragen.

In dieser Arbeit gehe ich diesen Fragen nach, indem ich die Steuerung im Simu-

lationsframework Veins für vernetzte Fahrzeuge implementiere und umfangreiche

Simulationsstudien durchführe. Ich definiere Simulationsparameter, die die Kom-

munikation und Koordination auf realistische Weise einschränken, und ich bewerte

die Leistung der Fahrzeugsteuerung anhand der Sicherheit der Fahrzeuge. Die Si-

mulationsergebnisse zeigen, dass die Steuerung ihre Kollisionsfreiheit in den am

wenigsten einschränkenden Konfigurationen beibehält, was bestätigt, dass sich die Si-

cherheitseigenschaften prinzipiell auf realistischere Szenarien übertragen lassen. Für

Konfigurationen mit stärkeren Einschränkungen schlägt die Koordination allerdings

fehl und es kann zu Kollisionen zwischen den Fahrzeugen kommen.

Indem ich die Gründe für die fehlschlagende Koordination analysiere, komme

ich zu dem Schluss, dass die beispielhafte Steuerung allein nicht für realistischere

Szenarien, in denen die vereinfachenden Annahmen des abstrakten Modells nicht

gelten, geeignet ist. Allerdings kann die Steuerung höchstwahrscheinlich angepasst

werden, um auch in realistischeren Umgebungen zu funktionieren, indem man für die

Implementierung ein weiter entwickeltes Kommunikationsprotokoll verwendet, oder

indem man ihre abstrakte Definition direkt erweitert. Dies wird vom abstrakten Mo-

v

vi

dell explizit unterstützt, da man es für die Definition beliebiger Fahrzeugsteuerungen

verwenden kann.

Contents

Abstract iv

Kurzfassung v

1 Introduction 1

1.1 Related Work . 3

2 Fundamentals 6

2.1 Abstract Urban Traffic Model . 6

2.2 Crossing Controller . 13

2.3 Simulation Framework . 16

3 Controller Implementation 20

3.1 Controller Design Considerations . 20

3.2 Traffic Model Interface . 23

3.3 Vehicle Controller Application . 32

3.4 Practical Implementation Problems . 38

3.5 Verification and Validation . 42

4 Simulation Setup 46

4.1 Intersection Scenarios . 46

4.2 Traffic Generation . 48

4.3 Simulation Parameters . 51

4.4 Performance Metrics . 56

5 Evaluation 61

5.1 Implementation and Abstraction Level 61

5.2 Simulation Results . 63

6 Conclusion 96

Bibliography 102

vii

Chapter 1

Introduction

Autonomously operating vehicles offer great potential for improving numerous

aspects of future transportation, such as safety, traffic flow efficiency, and ecological

sustainability. By constructing Vehicular Ad Hoc Networks (VANETs) via means of

short-range wireless communication, traffic agents are able to cooperatively solve

complex coordination and optimization problems. For instance, a very active area

of research investigates the use of Cooperative Adaptive Cruise Control (CACC) for

vehicular platooning, where multiple vehicles cooperate to drive at a minimum safety

distance to the preceding and following vehicle and thereby optimize their total air

resistance and road usage [2]. The major benefit of this approach is improved traffic

efficiency in terms of reduced fuel consumption and increased road capacity.

One task essential to the success of autonomous mobility concepts is to guarantee

the safety of all participants in any situation. The scenario of urban intersections

is especially interesting in this regard due to the multitude of interfering driving

directions and the highly heterogeneous street layout, in comparison to motorways

or country roads.

In recent approaches to solving this problem using methods of theoretical com-

puter science, mathematical formalisms for describing and reasoning about traffic

situations from a high-level abstract perspective were introduced and used to imple-

ment provably collision-free vehicle controllers for specific traffic scenarios. Building

on Multi-lane Spatial Logic (MLSL), introduced by Hilscher et al. [3] for a multi-

lane motorway scenario, Hilscher and Schwammberger [4] proposed an extension

of MLSL to Urban Multi-lane Spatial Logic (UMLSL) to cover urban traffic scenar-

ios with intersections. A more refined version of UMLSL was later presented by

Schwammberger [1], extending the formal model and vehicle controller to support

intersections of arbitrary size. Another extension of the controller, also based on the

original version [4], introduced a communication protocol to deal with imperfect

knowledge scenarios [5].

1

1 Introduction 2

Approaching the highly complex problem of coordinating maneuvers of coop-

erative autonomous vehicles from a high level of abstraction allows scientists and

engineers to develop and evaluate new control strategies quickly and independently

of specific vehicle or road network characteristics. The additional possibility to

formally prove that a controller design satisfies the imposed safety and efficiency re-

quirements further motivates the development of suitable mathematical formalisms.

However, it is unclear how well such an abstract control mechanism and its formal

properties translate into a realistic environment and perform in the presence of

influences that are not captured by the formalism.

Although both mentioned extensions of the UMLSL-based approach [4] modify

the vehicle controller to deal with somewhat more realistic scenarios [1], [5], both

versions still rely on strong idealizing assumptions to make their safety proofs possible.

Therefore, the controller cannot be expected to provide the same level of guaranteed

safety under more realistic conditions. This raises the question to what extent the

safety properties of the crossing controller are affected by (partially) lifting the

idealizing assumptions. It is also unclear how this controller that is based on an

abstract, purely spatial formalism can be implemented in software in a sensible and

practicable manner.

In this thesis, I take a simulative approach to investigate both of these ques-

tions. To this end, I develop a suitable implementation of the crossing controller for

arbitrary intersections [1] as an on-board application in the vehicular simulation

framework Veins [6]. The framework provides realistic communication models that

accurately simulate wireless channel characteristics, and a microscopic traffic simu-

lator that can be used to investigate a wide range of traffic scenarios. I document

the implementation process in this environment and report on the major design

challenges. Thereafter, I use the implemented application for extensive simulation

studies to examine the controller’s performance in various intersection scenarios.

Here, I investigate the influence that several parameters introducing an increasing

degree of realism have on the safety of crossing maneuvers. Because the vehicle

controller implements a cooperative coordination policy that requires the vehicles

to exchange information with each other, and since inter-vehicular communication

(IVC) is one of the most challenging research topics in this domain [7], I focus on

realistic communication models and artificial communication impairments as the

main parameters. Especially the impact of limited transmission range and relia-

bility is of interest in the urban intersection scenario due to buildings and other

obstacles blocking the line of sight between vehicles approaching the intersection

from different directions. Additionally, I introduce a message processing delay and

random errors in the perception of other vehicles’ positions to model limitations and

imperfections of the on-board hardware and examine their effects on the crossing

maneuver safety.

1.1 Related Work 3

1.1 Related Work

In the context of the growing relevance of intelligent, autonomous vehicles in re-

cent years, there exists a substantial amount of research dealing with numerous

challenges in all facets of this domain. The urban scenario and intelligent inter-

section management in particular have proven to be demanding areas and various

approaches to address their issues using means of IVC and formal modeling have

been developed [8]–[10].
Dresner and Stone [11] proposed a reservation-based intersection management

system for autonomous vehicles with the goal of optimizing intersection throughput

by modeling the coordination problem as a system of cooperating agents. Their

approach is based on splitting the intersection’s area into a grid of n× n reservation

tiles. Every vehicle that plans to cross the intersection must request a slot in time

and space, expressed as a time interval for each tile it requires. A central intersection

controller responds to all requests and determines whether to accept or reject them

by ensuring that no tile is reserved by more than one vehicle at the same time. A

First Come First Serve policy is employed to determine which vehicles are accepted

first. The reservation system was implemented in a custom simulation environment

and compared to a traffic light and an overpass, the optimal solution in this scenario,

for several intersection sizes and granularity values n. The results show a signif-

icant improvement in average delay over the traffic light policy, approaching the

performance of the overpass.

In later elaborations of this system, more detailed vehicle characteristics, a so-

phisticated communication protocol, and support for mixed traffic consisting of fully

autonomous and human-controlled vehicles were implemented [12]. The advan-

tages of this reservation-based approach over traditional intersection management

systems in terms of efficiency were evaluated thoroughly by simulation studies in

several four-way intersection scenarios. Additionally, the communication protocol

was designed to be robust against message loss to provide a high level of safety, even

under extremely unreliable communication conditions. The intersection manager

was supplemented by means to counter effects of imperfect vehicle sensors and actu-

ators as well as detect crashed vehicles on the intersection and prevent approaching

vehicles from entering.

Another approach was taken by Kowshik, Caveney, and Kumar [13], who de-

signed a hybrid system of a centralized intersection management unit and a dis-

tributed safety control mechanism. In their system, a central intersection manager is

responsible for assigning a time slot to each approaching vehicle during which it may

perform its crossing maneuver. The time slots are selected in such a way that slots

for conflicting maneuvers are always disjoint. However, the vehicles must ensure on

their own that they can adhere to their time slots while keeping a safe distance to

1.1 Related Work 4

each other, relying on periodically updated information on the leading car’s speed

and acceleration. By assuming worst case behavior and acting cautiously, the con-

trol policy can deal with noisy sensor information and delayed or lost coordination

messages, given that maximum error bounds are known.

The authors designed formalisms for all components of their model, which

allowed them to prove the safety and liveness of their approach. Using a degree of

freedom in the intersection manager’s time slot assignment policy, they also improved

the efficiency of their system, which they evaluated for a simulated four-way junction

with a single lane per driving direction. The results showed a significant reduction

of the average travel time compared to a traffic light and a stop sign policy for traffic

loads of up to two vehicles per second.

A more practically oriented application was presented by Hafner et al. [14]. In-

stead of relying on fully autonomous driving for cooperative maneuver coordination,

they focused on collision avoidance by intervention, i.e., their control system only

becomes active in case it detects a potentially dangerous situation. The detection

mechanism is based on a simplified model of the vehicle dynamics and uses a capture

set to describe configurations of vehicle positions and speeds for which no accelera-

tion or brake input can prevent a collision if the vehicles continue following their

current trajectories. It is defined to only consider two vehicles at a time. The vehicles

constantly exchange state information to allow the collision avoidance system to

detect when a configuration in the capture set is approached. As soon as this happens,

the system calculates control inputs for both vehicles in order to prevent a collision.

The authors implemented this application in two test vehicles equipped with the

necessary communication and computing hardware, and evaluated its functionality

experimentally, finding that it can successfully avert collisions in a real-world scenario.

They repeated the experiment later with an improved formal model to deal with

inaccurate sensor information and communication delay, showing similar results

[15].
In an attempt to leverage vehicle platooning to improve the efficiency of coordina-

tion-based intersection management, Bashiri and Fleming [16] designed a novel

coordination policy and compared it to a common stop sign method. Their policy

uses a central intersection management unit that receives crossing requests from

the leading vehicles of platoons approaching the intersection. The request messages

include information on the platoon’s size, speed, and position that allows the man-

agement unit to apply a scheduling algorithm to minimize the average waiting time

or the waiting time’s variance. Using a simulation environment implemented in

Matlab, the authors were able to show that their approach significantly outperforms

the regular stop sign policy in terms of waiting time and reduces the communication

overhead in comparison to a solution without platooning.

1.1 Related Work 5

Later, Bashiri, Jafarzadeh, and Fleming [17] developed this system further by

adding more realistic vehicle dynamics and optimizing their scheduling techniques.

Also by running simulations, they compared the improved system to a traffic light

policy with fixed phases and found that it can increase the intersection’s throughput

while reducing average waiting times and fuel consumption.

It is evident that cooperative intersection management and especially its safety

requirements are a highly active area of research. The majority of coordination

approaches are based on simplifying formal models that are used to reduce the man-

agement problem to scheduling and optimization tasks. These models are frequently

used to prove safety and liveness properties, while the efficiency of the control

strategies is often evaluated using simulations or real-world experiments. Most of

the presented approaches consider the coordination problem at multiple abstraction

levels, e.g. by introducing high-level formalisms to describe their reasoning and

control policies, and implementing their systems in microscopic traffic simulations

with detailed vehicle dynamics and communication protocols.

The performance evaluation on a low abstraction level considering a concrete

implementation of a control system in the presence of imperfect information and

communication is essential for the validation of a system’s safety properties. However,

the abstract intersection coordination protocol presented by Schwammberger [1] is

only defined at a very high level of abstraction and has not been evaluated in this

way yet.

Chapter 2

Fundamentals

The abstract traffic model and vehicle controller presented by Schwammberger [1]
are the main subject of this thesis. Therefore, it is essential to provide sufficient

information on how they work and what concepts and techniques are used to define

them. Their evolutionary development process is spread over several years and

publications [1], [3]–[5], [18], addressing various application scenarios and itera-

tively extending the model to cope with ever more complex traffic environments.

This chapter discusses only a selection of topics in depth and provides superficial

explanations of the remaining aspects, ensuring an intuitive understanding.

To this end, the basic concepts of the abstract urban traffic model and UMLSL

are addressed in Section 2.1, followed by a simplified definition and explanation of

the vehicle controller in Section 2.2.

Section 2.3 provides an overview of the simulation framework Veins. It pays

special attention to the traffic simulator SUMO and the differences between its traffic

representation and the abstract model, which are essential for the implementation

of the vehicle controller.

2.1 Abstract Urban Traffic Model

The abstract traffic model was first introduced by Hilscher et al. [3], only describing

multi-lane motorways, and incrementally extended to country roads with two-way

traffic [18], intersections of two roads with two lanes each [4], and, finally, intersec-

tions of roads with arbitrary lanes [1]. This last stage of development is the basis of

the thesis and subject of this section.

The model comprises two main components: A generic, mathematical formalism

to abstractly describe the topology of urban road networks as well as the vehicles

inside, and a formal logic that can be used to reason about traffic situations, called

Urban Multi-lane Spatial Logic (UMLSL) [1]. On top of this model, a vehicle con-

6

2.1 Abstract Urban Traffic Model 7

troller for safe intersection crossing maneuvers is defined. Using UMLSL to reason

about its behavior, it was shown that if all vehicles in a traffic network are equipped

with this controller, no collisions can occur.

2.1.1 Road Network and Traffic Representation

The abstract traffic model describes urban road networks as graphs with directed

and undirected edges, where the nodes are either lane segments or crossing segments.

Each lane segment represents one lane that connects two intersections and each

crossing segment represents a certain part of an intersection. Lane segments that

belong to the same road, i.e., connect the same intersections, are connected by

undirected edges that define a neighborhood relation; lane changes are only possible

between lanes connected by these edges. Neighboring lanes may have opposing

driving directions, allowing vehicles to perform overtaking maneuvers by temporarily

using a lane of the oncoming traffic.

Crossing segments are only connected to other nodes by directed edges. An edge

between a crossing segment c and a lane segment l means that the intersection

to which c belongs can be entered from, or left via, the lane l, depending on the

direction of the edge. Edges between crossing segments are mainly used to describe

possible paths for crossing maneuvers. Apart from that, each maximal subgraph

of crossing segments, ignoring the direction of the edges, identifies and describes

exactly one intersection in the road network. Figure 2.1 illustrates this structure for

a simple intersection connected to four roads, each having one lane leading towards

the intersection and one leading away from it.

Intersections like this with n lanes on each of the four roads are called n× n

intersections from here on; using this notation, the example shows a 2×2 intersection.

This can be generalized to n × m intersections for the case where only roads on

opposing sides of the intersection have equal numbers of lanes: By convention, n is

the number of lanes on the two horizontal roads and m is the number of lanes on

the vertical roads; the numbers of incoming lanes per road are n
2 and m

2 respectively.

Every segment s in the network has a size ω(s) ∈ R+. For lane segments, the

size directly corresponds to the length of the represented lane. A position on lane

l is a real number p ∈ [0,ω(l)]. The driving direction of l is then defined as the

direction of increasing position value. The size of a crossing segment does not

explicitly describe the shape of the segment; instead, it is used to calculate the

length of crossing maneuver trajectories that incorporate the segment. Accordingly,

a position p ∈ [0,ω(c)] on a crossing segment c can only be interpreted in relation

to a maneuver. The traffic model defines a number of sanity conditions for the

network structure to ensure that there are no dead ends, self loops of edges, or other

2.1 Abstract Urban Traffic Model 8

0 1

3

2

5 4

6

7

(a) Detailed intersection layout

c0 c1

c2c3

l0 l1

l2

l3

l4l5

l6

l7

(b) Abstract graph representation

Figure 2.1 – Intersection representation in the abstract traffic model. Fig-
ure 2.1a shows the layout and shape of a 2×2 intersection in detail. A possible
graph representation of this intersection is shown in Figure 2.1b. The nodes la-
beled with ci are crossing segments and the li are lane segments. The maximal
subgraph of crossing segments marked by the gray box is the representative
of the whole intersection. Its depiction is based on [1, Figure 2].

inconsistencies, and that driving directions of lanes are well defined. However, their

exact formalization is of no interest here.

Vehicles driving in the network are uniquely identified by capital letters A, B, C ,

Typically, variables a, b, c, . . . are used for describing arbitrary vehicles. The vehicle

under consideration is conventionally referred to as ego, which can be seen as a special

vehicle variable. The position description of a vehicle c comprises a lane or crossing

segment s and a real-valued position p on that segment, where p is interpreted as the

position of the vehicle’s rear bumper. Every vehicle follows an individual route that

is represented by an infinite sequence of segments called infinite path pth(c), where

each successive pair of segments (si , si+1) is connected by a directed or undirected

edge. A crossing maneuver in this path is simply defined as a partial sequence of

contiguous crossing segments delimited by the two lane segments through which

the vehicle enters and leaves the intersection.

The area occupied by a vehicle is called its safety envelope and contains the

vehicle’s physical size as well as its current braking distance added in front of the

front bumper. Since lane segments have no notion of width, the safety envelope is

defined to span the whole width of the lane represented by the current lane segment.

Crossing segments, on the other hand, are handled differently: If a vehicle’s safety

envelope extends to a crossing segment, the whole segment is assumed to be occupied

by the corresponding vehicle. This is important for the coordination mechanics used

by the vehicle controller.

2.1 Abstract Urban Traffic Model 9

The abstract traffic model defines a data structure called Traffic Snapshot that

stores information on all vehicles at a given point in time. For example, given a

vehicle C , the Traffic Snapshot of the current time provides the infinite path pth(C),
the index of the current segment curr(C) such that s = pth(C)(curr(C)) is the current

segment, and the position pos(C) on the segment s. Note that this only describes

the position of the vehicle’s rear bumper. The safety envelope typically extends over

several other segments that follow s in pth(C).
The passing of time is modeled by so-called time transitions. A time transition

for a given duration t ∈ R+ can be applied to a Traffic Snapshot to obtain another

Traffic Snapshot where the information on all vehicles is updated to reflect the

situation t time units in the future. Other transition types model actions performed

by the vehicles and do not progress time; vehicles can, for instance, change their

acceleration instantaneously. Apart from the vehicle controller and a number of

sanity conditions, the abstract model does not define rules or even an execution

model to describe when transitions should be applied.

For the purpose of coordination, the abstract model defines the concepts of

claims and reservations. Formally, both claims and reservations are sets of lane

or crossing segments. The abstract model draws a distinction between lane and

crossing segments but for understanding the coordination technique, it suffices to

only address claims and reservations of crossing segments. In a Traffic Snapshot, one

set of claimed segments cclm(c) and one set of reserved segments cres(c) is stored

for each vehicle c. Intuitively, the reserved segments of a vehicle are those segments

that it currently occupies and on which no other vehicle should be driving. The

claimed segments are those segments that the vehicle plans to reserve in the near

future.

Vehicles can modify their claims and reservations by performing the appropriate

actions. The relevant actions are

• cc: Claim all crossing segments that are part of the next crossing maneuver

• wd_cc: Withdraw all claims on crossing segments, i.e., empty the set cclm(ego)

• rc: Reserve all crossing segments that are currently claimed and withdraw

those claims; effectively moves segments from cclm(ego) to cres(ego)

• wd_rc: Withdraw all reservations on crossing segments, i.e., empty the set

cres(ego)

The abstract model differentiates between the actions performed by the vehicle

controller and the transitions that are subsequently applied to Traffic Snapshots.

Again, it suffices here to regard them as one and the same.

Finally, the abstract traffic model defines the concept of views to describe how

vehicles perceive their surroundings. A view is constructed for a certain vehicle

2.1 Abstract Urban Traffic Model 10

at a given moment in time, consists of several lane and crossing segments, and is

bounded by a horizon h ∈ R+ that can be interpreted as the vehicle’s view distance.

In simple terms, a view follows the route of the vehicle, with and against its driving

direction, as far as the horizon h allows it. Its structure can be compared to that

of a safety envelope that stretches over all lanes belonging to the same road and

that follows multiple intersection crossing maneuvers simultaneously. The formal

definition of views and their construction is highly complex and involves several

intermediate constructs that are used to assemble a sufficiently detailed final view

structure. For simplicity, the notation V (c) is used here to denote the entire area a

vehicle c can perceive, without revealing details of the actual view data structure.

In addition to their view, vehicles also have limited access to the current Traffic

Snapshot. What this means becomes clear when looking at how views are utilized.

One of the main purposes of views is the perception of nearby vehicles and,

more importantly, their safety envelopes, claims, and reservations. To this end, every

vehicle is assumed to be equipped with sensors that are capable of perceiving the

full length of other vehicles’ safety envelopes at any given moment. The abstract

model assumes perfect knowledge, i.e., the sensors always provide the exact size of a

safety envelope. All vehicles are able to access the infinite path pth, current segment

index curr, and current position pos of any other vehicle through the current Traffic

Snapshot. Using this information in conjunction with the size of a vehicle’s safety

envelope enables all vehicles to compute the shape of any vehicle’s safety envelope

represented by a set of segments and intervals describing the occupied space on

each segment. However, their perception is limited by the view: A vehicle C can

only perceive the parts of other vehicles’ safety envelopes that are positioned on

lane and crossing segments in its view V (C). Note that parts of another vehicle’s

safety envelope may be visible even if its physical shape is not included in the view.

Claims and reservations can also be accessed through the Traffic Snapshot. Since

claims are a virtual concept only used for coordination, the sets of claimed segments

cclm are always accessible by all vehicles in the network, independent of their views.

Reservations are, however, only perceived for the segments that are visibly occupied

by the reserving vehicle’s safety envelope. This causes reserved crossing segments

s ∈ cres(C) to be perceived as free as soon as C has physically passed the segments

instead of only after C has withdrawn its reservation.

Analogously, this definition implies that reserved crossing segments in front of

the reserving vehicle are also perceived as free if the safety envelope has not yet

reached those segments. It must be mentioned here that although this behavior fits

the formalization in the original publications [1], [4] and the intuitive meaning of

reservations, it does not entirely reflect the authors’ intention: Because reservations

are a key component of the coordination protocol, perceiving a reserved crossing

segment as free before it has been passed by the reserving vehicle can lead to

2.1 Abstract Urban Traffic Model 11

unnecessarily dangerous situations. For example, two vehicles can reserve and

approach the same crossing segment while being unaware of the conflict until the

first vehicle’s safety envelope reaches the segment. This should not be possible

because both vehicles were aware of each other’s intended maneuvers when their

claims were placed; there is no reason to lose this knowledge when the claims

are turned into reservations. A simple solution to this problem could be stretching

the perceived safety envelope of vehicles that have reserved crossing segments so

that it extends at least until the end of the crossing maneuver.1 In the following,

it is assumed that all reserved crossing segments that are within or in front of the

reserving vehicle’s safety envelope are perceived as reserved.

2.1.2 Urban Multi-Lane Spatial Logic

For reasoning about traffic situations in a road network of the abstract traffic model,

the formal logic Urban Multi-lane Spatial Logic (UMLSL) is used. It is a purely spatial

logic, which means that only positional and structural properties of traffic situations

at single points in time are considered; the logic cannot express the order in which

different situations occur or the duration over which a certain property holds. UMLSL

formulas are evaluated over the views of individual vehicles in conjunction with the

current Traffic Snapshot. Thereby, they can be used to reason about traffic situations

from the perspective of a single vehicle rather than the whole traffic network.

Since UMLSL formulas only evaluate to either true or false, they are best used to

check whether a specific property holds in the current view. For example, a UMLSL

formula can be used by the ego vehicle to check if any other vehicle C that is visible

in ego’s view is currently driving on the same lane as ego. But finding out which

vehicles satisfy this condition is not achievable by that formula alone; it can, however,

be used as an effective tool to define the set of such vehicles easily: Let sl(a, b) be a

UMLSL formula that is true if and only if the vehicles identified by the variables a and

b drive on the same lane, and V denote the set of all vehicles in the network. The set

of vehicles driving on the same lane as ego can then be defined as {c ∈ V | sl(ego, c)},
assuming that sl is evaluated over the view V (ego).

One of the intended applications of UMLSL formulas is the definition of vehicle

controllers. While the actions that were mentioned above serve to describe the

active behavior of a vehicle, the perceptual capabilities are modeled with the help

of appropriate UMLSL formulas that are evaluated over the vehicle’s view. This is

demonstrated with the controller for safe intersection crossing maneuvers that is

presented in Section 2.2.

1This discrepancy between the formalization and the intended behavior as well as the possible solution
have been verified by Maike Schwammberger, the author of [1].

2.1 Abstract Urban Traffic Model 12

UMLSL can also be used to formally prove properties of the controllers using it in

their definition. The safety of the controller for intersection maneuvers, for instance,

is formalized and proven with the use of a safety property expressed in UMLSL.

This formula, called Safe, is satisfied if and only if there exists no pair of vehicles

whose safety envelopes overlap on any lane or crossing segment in the network. It

suffices to evaluate the formula over the local views of all vehicles because it can

be assumed that each vehicle perceives its own safety envelope and, thereby, any

other vehicles’ safety envelopes that might overlap with it. The proof itself begins

with the assumption that the initial traffic situation satisfies Safe, and proceeds with

showing that every possible transition, applied to a safe state, preserves the safety

property. By the principle of induction, this proves that every thereby reachable

traffic situation satisfies Safe. Using UMLSL both for the definition of the controller

and the safety property makes the chain of arguments concise and easy to follow.

Before presenting how the vehicle controller works, the UMLSL formulas used for

its definition should be explained. The controller requires only five relatively simple

formulas; their intuition is easy enough to understand that no formal definitions are

needed. Each of the formulas is evaluated over the view of the ego vehicle.

1. col(ego) (Collision check): This formula is a local version of the safety property

Safe used for the safety proof. It is satisfied if ego’s reservation overlaps with

the reservation of any other vehicle.

2. ca(ego) (Crossing ahead check): The crossing ahead check is satisfied if and only

if ego is driving on a lane segment, the distance between its reservation and

the next intersection is less than a constant dc , and there is no other vehicle

in between. Intuitively, the ego vehicle does not need to care about crossing

maneuver coordination as long as the formula is not satisfied. The constant

dc is set to a value that ensures sufficient space to react to an approaching

intersection but avoids unnecessary actions while driving on a lane segment.

3. pc(c) (Potential collision check): If ego has an active claim, it can use the

potential collision check to find out whether it is safe to keep the claim to turn

it into a reservation later. The formula is satisfied if and only if ego’s claim

overlaps with the claim or the visible reservation of the vehicle c. In this case,

ego should withdraw the claim to avoid a collision. This check is crucial for

the controller’s coordination procedure.

4. lc(ego) (Lane change check): The lane change check is satisfied while ego per-

forms a lane change maneuver. Due to the way such maneuvers are executed

in the abstract model, with ego holding reservations on two parallel lanes at

the same time, no vehicle should commence a crossing maneuver during a

lane change.

2.2 Crossing Controller 13

5. oc(ego) (On crossing check): This formula is satisfied if and only if any part of

ego’s reservation is situated on a crossing segment. It is useful to determine

when a crossing maneuver starts or ends.

2.2 Crossing Controller

The abstract traffic model defines a vehicle controller to enable coordinated inter-

section crossing maneuvers. But this controller alone does not suffice to ensure a

safe driving behavior of the vehicles under all circumstances. Therefore, the whole

vehicle control system comprises two additional controllers: A distance controller

that maintains a safety distance to vehicles in front and ensures that an intersection

is not entered before the required segments are reserved, and a lane change controller

that coordinates maneuvers on lane segments, such as lane changes, as long as no

intersection is nearby. The latter is based on the controller for the country road

scenario presented by Hilscher, Linker, and Olderog [18]. However, neither of the

additional controllers is presented in detail because the crossing controller is the

main focus; it is just assumed that the distance and lane change controllers work as

intended and cause no unsafe situations. Unless stated otherwise, the term (vehicle)

controller refers specifically to the crossing controller for the remainder of the thesis.

The coordination protocol is based on the same idea as the controller’s prede-

cessors for the motorway [3] and country road [18] scenarios. There, the goal is to

perform a safe lane change maneuver by coordinating with nearby vehicles. The

ego vehicle first places a claim on the neighboring lane segment it plans to drive

on, which is similar to setting the turn indicator. The claim has the same extension

as its safety envelope and can be used to check for potential collisions with other

safety envelopes using an MLSL formula similar to the potential collision check pc of

UMLSL. If there is no potential collision, the ego vehicle will turn its claim into a

reservation and then physically perform the lane change maneuver. Otherwise, it

will withdraw its claim and try the same approach again later.

The same basic procedure is used for the coordination of crossing maneuvers

by the crossing controller. However, due to the vastly different network layout of

an intersection compared to two parallel lanes, some adjustments are necessary.

Most importantly, a vehicle must claim all required crossing segments at once to

avoid deadlocks; the cc action is defined to meet this requirement. The analogy to a

deadlock, a problem that is commonly found in concurrent programming scenarios,

emphasizes the intuition of crossing segments serving as a shared resource with a

mutual exclusion condition.

This is enforced by the definition of safety envelopes on crossing segments: As

discussed in Section 2.1.1, reserved crossing segments are always occupied entirely,

independent of the actual extension of the reserving vehicle’s safety envelope. This

2.2 Crossing Controller 14

causes any potential collision check performed by another claiming vehicle to detect

a collision if one of the claimed segments is already reserved, regardless of the exact

position of the reserving vehicle. The only exception to this are segments that have

already been crossed; these segments are safe to be used by other vehicles even

though they might still be marked as reserved in the current Traffic Snapshot.

For the formalization of the crossing controller, the concept of timed automata [19]
is extended to incorporate UMLSL and the defined actions that vehicles can perform

to change the traffic situation. Timed automata are an extension of the common finite

automata used to describe the behavior of systems with time constraints. The main

contribution of this concept are clock variables that can be used by an automaton to

monitor and react to the passing of time. A clock variable x is a real-valued variable

that can be used by an automaton in two ways: When used in a transition guard, the

variable can be part of an expression like x < 3 that specifies a condition that must

be satisfied for the transition to be available. As part of a transition action, clock

variables can be reset to zero (x := 0). This is the only way the value of a clock

variable can be changed actively. When a specific amount t of time elapses, all clock

variables of the automaton are increased by t.

The abstract traffic model extends this concept to define Automotive-Controlling

Timed Automata (ACTA). Transition guards of an ACTA are extended to allow Boolean

expressions of clock constraints and UMLSL formulas, while the transition actions

additionally allow for the claim and reservation actions defined in section 2.1, now

called controller actions. The new syntax of transition labels is

ϕ/a; c, (2.1)

where ϕ is the transition guard, a ∈ {cc,rc,wd_cc,wd_rc} is the controller action,

and c is a list of clock variable resets of the form x := 0. Additionally, each state of

an ACTA has a state invariant expressing a condition that must be satisfied while

the state is active. Transition guards and state invariants can have the same type of

expressions. State invariants can therefore block or force transitions based on clock

variables and UMLSL formulas.

The formal definition of the crossing controller as an ACTA is depicted in Figure

2.2. It uses one clock variable x and has five states q0, . . . , q4, each with a clear

intuition of the current situation of the controlled vehicle ego provided by the state

invariants. Each vehicle must start in a safe situation, which is expressed by the state

invariant ¬col(ego) of the initial state q0. As soon as ego approaches an intersection,

the formula ca(ego) is satisfied and the transition to q1 is available. The states q1,

q2, and q3 all specify this as part of their invariant, meaning that the vehicle must

stay in front of the intersection as long as one of these states is active. The next

transition to q2 has no guard and performs the cc action. Hence, the vehicle will

2.2 Crossing Controller 15

place its claim on the required crossing segments immediately after detecting the

intersection.

q0 : ¬col(ego) q1 : ca(ego) q2 : ca(ego)

q3 :
ca(ego)

∧¬∃c : pc(c)
∧x ≤ tc

q4 :
x ≤ tcr
∧oc(ego)

ca(ego)
cc

∃c : pc(c)/wd_cc

¬∃c : pc(c)
/x := 0x ≥ tc

∨∃c : pc(c)
/wd_cc

¬∃c : pc(c)∧¬lc(ego)
/rc; x := 0

x ≥ tcr/
wd_rc

Figure 2.2 – ACTA definition of the crossing controller used in the abstract
traffic model. This is a slightly simplified copy of the automaton shown in [1,
Figure 8].

In the next state q2, both outgoing transitions have the formula ∃c : pc(c) in

their guard, but one is negated. This means that after the claim was placed, the

vehicle will perform a potential collision check for every visible vehicle and initiate a

transition to either q1 or q3 based on the result. If a potential collision is detected,

the transition to q1 will be taken and the wd_cc action will withdraw the vehicle’s

claim; the same process will repeat itself until no potential collision is found. Once

this is the case, the controller transitions to q3 and resets the clock variable x , which

can be interpreted as starting a timer. In state q3, the formula ∃c : pc(c) is, again,

used in the guards of all outgoing transitions and additionally in the state invariant.

This models the vehicle repeatedly verifying that its claim does not overlap with any

other vehicle’s claim or reservation. If a potential collision is detected in this state,

the vehicle will withdraw its claim and return to q1, just as before in q2. The same

transition is also triggered if the clock variable x exceeds the predefined constant tc .

This is a time threshold limiting the duration a claim can be active before it must

be withdrawn or turned into a reservation. It is implemented in the controller as a

precaution to avoid deadlocks.

The transition from q3 to q4 is only available if the claim is still safe and ego

is not performing a lane change maneuver. If the vehicle is not changing lanes or

manages to finish the maneuver in time, it may perform the transition and reserve

the claimed crossing segments, initiating the crossing maneuver. This will also

2.3 Simulation Framework 16

reset the clock variable to start a timer again. State q4 is active while the vehicle

performs the crossing maneuver and some part of its reservation occupies a crossing

segment, as indicated by the UMLSL formula oc(ego) in the invariant. As soon as

the maneuver is finished or the timer exceeds the time threshold tcr , the controller

makes a transition back to the initial state q0, withdrawing the reservation. The

constant tcr is assumed to be the longest time a crossing maneuver performed by any

vehicle on any intersection in the network can take. Just like tc , it is a precaution to

ensure that the crossing reservation is withdrawn properly and timely.

Note that this controller does not provide any information on more detailed

vehicle controls, such as throttle and brake levels or steering angle. This task is

delegated to the mentioned distance controller and additional control systems on a

lower abstraction level.

2.3 Simulation Framework

The simulation part of this thesis (Chapters 4,5) employs the Open Source vehicular

network simulation framework Veins [6]. Veins couples the discrete event simulation

engine OMNeT++ [20] with the microscopic traffic simulator SUMO [21] and

provides a basis for the development of applications for intelligent vehicles as well

as simulations for evaluating their performance. This thesis uses Veins version 5.0,

running in OMNeT++ 5.5.1 and with SUMO 1.2.0.

From a high-level perspective, OMNeT++ models a communication network

as a set of modules that can exchange messages among each other. The process

of sending and receiving a message can be customized to implement arbitrary,

highly detailed communication models. For example, it is possible to model perfect

communication, where every sent message is received and processed instantly, as

well as highly realistic wireless communication taking into account physical effects of

radio transmission, antenna properties, environmental conditions, and other factors

that can influence communication delay and reception probability.

Veins incorporates facilities that leverage this functionality to implement realistic

wireless communication models at the level of the physical layer of an IVC protocol

stack. By representing every vehicle in a SUMO traffic simulation as a module in

a parallel OMNeT++ network simulation, it enables the vehicles to communicate

with each other. Developers can write programs at the application layer to control

the communication as well as the driving behavior of each individual vehicle. This

bidirectional coupling of the two simulations is the main feature of Veins and the

foundation for implementing the crossing controller from the abstract traffic model.

2.3 Simulation Framework 17

Before moving on to the implementation in Chapter 3, however, it is important

to discuss the basics of SUMO’s road network and traffic representation in more

detail and compare them to the abstract model.

2.3.1 Traffic Representation in SUMO

SUMO (Simulation of Urban MObility) is a microscopic traffic simulator developed

by the Institute of Transportation Systems at the German Aerospace Center. It can

be used to accurately model road networks, define highly detailed traffic and vehicle

characteristics, and run city-scale simulations with a plethora of parameters and

performance metrics.

Road networks in SUMO are represented by directed graphs. In contrast to

the abstract traffic model, however, SUMO uses the edges to describe roads, and

intersections are represented by single nodes. Both nodes and edges have more

detailed information attached to them; directed edges, for example, represent a set

of individual, parallel lanes that lead in the same direction, and each of them has

its own set of properties describing the physical shape, maximum speed, supported

vehicle types, and more.

Nodes that represent intersections have even more complex information on the

intersection’s layout and right of way rules. The shape of an intersection is described

by a polygon in the two-dimensional plane that represents the network’s ground

area. Every physical object in the simulation has a position and shape in this plane.

Possible turning maneuvers of intersections are represented by so-called connections.

A connection stores the identifiers of one incoming and one outgoing lane as well as

the turning direction, which can be straight, left, right, or U-turn.

Compared to the abstract model’s intersection representation, the existence of

a connection from lane l0 to l1 in SUMO can be interpreted as the existence of a

directed path of crossing segments between the two lane segments that represent l0
and l1 in the abstract network graph. For example, the left-turning maneuver from

lane 1 to lane 6 in Figure 2.1a could be represented by a connection with the content

(1, 6, ”left”) in SUMO, while the abstract network graph shown in Figure 2.1b allows

this maneuver implicitly through the existence of the directed path (l1, c1, c2, c3, l6).
Observe that the abstract model has no notion of a turning direction and generally

allows more turning maneuvers. The directed paths between incoming and outgoing

lane segments are not necessarily unique and the implicit definition of permitted

maneuvers is less restrictive than SUMO’s explicit method; the network graph in

Figure 2.1b would require a significantly different structure if the intersection did

not allow U-turn maneuvers, while in SUMO removing the respective connections

would suffice.

2.3 Simulation Framework 18

To specify the exact trajectories of vehicles performing a crossing maneuver,

SUMO assigns an internal lane to each connection. Internal lanes are structurally

identical to the regular lanes between intersections. Each lane in the network has a

unique identifier and a shape. The shape of a lane l is a list of points in the plane

Pl = {p0, . . . , pn} ⊂ R2 that describe the lane’s center line. This list is always ordered

in driving direction and it starts and ends with the exact start and end points p0, pn of

the lane. The length len(l) of a lane is defined as the total length of all line segments

between two consecutive points pi , pi+1, which can be computed as the Euclidean

distance d(pi , pi+1):

len(l) :=
n−1
∑

i=0

d(pi , pi+1) (2.2)

Therefore, every real value in [0, len(l)] identifies a position on the lane l that

is situated on one of the line segments. Figure 2.3a shows the layout of a small

intersection and two of its internal lanes.

p0

li

p1

p2

p3
p4

d
0

d
1

d
2

d3

(a) Intersection shape with internal lanes

f

r

a

b

(b) Schematic vehicle shape computation

Figure 2.3 – Intersection shape and computation of vehicle shapes. Figure
2.3a shows the polygon describing the shape of an intersection in gray and
two internal lanes with their center line points. The internal lane li has length
len(li) = d0 + . . .+ d3. In Figure 2.3b, the orientation calculation of a vehicle
is illustrated. The real-valued position p of the vehicle identifies the point f .
Using the vehicle’s length l, the point r at position p− l is obtained by moving
backwards along the line segments (a+ b = l). The dotted line runs through
f and r and is used to position the vehicle’s final shape, represented by the
dashed rectangle.

These positions are used to describe the current locations of vehicles: Every

vehicle in the network has a current lane and a real-valued position on that lane

describing the center point of its front bumper. Note that the abstract model describes

positions in a similar way but uses the rear bumper instead. The shape of a vehicle

2.3 Simulation Framework 19

is a rectangle whose length and width are specified by the vehicle’s type. Thus, all

vehicles of the same type have the same shape, but there can be multiple vehicle

types of varying shapes.

Given the length and position of a vehicle, its orientation in the network is

computed as follows: First, the length is subtracted from the position of the front

bumper, yielding another position that is possibly on one of the previous line segments

or even another lane. The angle of the line through the two positions is calculated

and used as the orientation angle of the vehicle. The final vehicle position is then

obtained by placing the rectangle that describes the shape so that it fits the vehicle’s

front bumper position and the orientation angle. A schematic view of this process is

depicted in Figure 2.3b.

The purpose of SUMO’s internal lanes is solely the spatial description of the

trajectories that are followed by the vehicles performing the respective crossing

maneuvers. In the abstract traffic model, the trajectory of a crossing maneuver

is described by a sequence of crossing segments. Because the abstract model is

inherently less specific about vehicle positions, the crossing segments do not provide

the same level of spatial information as an internal lane describing the same maneuver.

However, crossing segments additionally define all possible crossing maneuvers as

well as their incoming and outgoing lanes through their directed edges, i.e., they

incorporate the information that SUMO represents separately as connections. On

top of that, they constitute the shared resource that is essential for the coordination

protocol. Although at a first glance, SUMO’s internal lanes and the abstract model’s

crossing segments appear to be similar concepts, their applications are vastly different

and they reveal one of the most significant differences between the abstract traffic

model and SUMO.

Apart from the structure of the road network, SUMO offers various ways of

specifying traffic characteristics. A straightforward method that is also very similar

to the abstract model is defining the route of each vehicle individually. A route is

usually specified as a list of contiguous edges, much like the infinite sequence of lane

and crossing segments that specifies a path in the abstract traffic model. Unlike the

infinite sequences, however, routes in SUMO are usually finite and will cause a vehicle

to spawn at a certain time, follow its route, and then exit the simulation. If only

the start position and target edge of a route are provided, the vehicle will generate

its route based on the road network and various routing parameters. In general,

vehicles can intelligently determine their own routes, find the correct lanes that

are required for their crossing maneuvers, and reroute dynamically to avoid traffic

jams. SUMO also provides suitable car-following models for controlling the vehicles’

behavior on a smaller scale as well. They can be used to ensure realistic acceleration

and deceleration rates, safe lane change maneuvers, and safety distances, which fits

the purpose of the abstract model’s distance and lane change controllers perfectly.

Chapter 3

Controller Implementation

The evaluation of the vehicle controller’s performance in a more realistic environment

requires a suitable implementation in the simulation framework. This chapter

presents the development of such an implementation.

Running traffic simulations to investigate the controller’s performance in the

presence of various possibly deteriorating effects is the main purpose of the developed

implementation. However, the implementation process itself and the entailing design

considerations may provide valuable insights into the advantages and disadvantages

of the abstract approach to controller specification.

To provide a holistic view of this process, I will first address general, theoretical

design considerations (Section 3.1), before moving on to more detailed descrip-

tions of the individual design problems and the implemented solutions. The main

challenges to be discussed are bringing together the abstract model’s and SUMO’s

traffic and coordination concepts (Section 3.2), and the technical realization of the

vehicle control system (Section 3.3). In Section 3.4, I will present a number of

practical problems that occur when using the implementation without additional

adjustments, enabling a first assessment of the abstract model’s limitations. Finally,

I will report on the verification and validation methods used to ensure that the

developed implementation functions appropriately in Section 3.5.

3.1 Controller Design Considerations

Capturing the intended behavior of the vehicle controller as precisely as possible is

crucial for the acquisition of valid and meaningful simulation data. Therefore, this

should be the primary goal of the implementation.

The definition of the controller comprises two components: The automaton

describing its behavioral aspects, and the abstract traffic model with UMLSL de-

scribing its environment and how it is perceived. The automaton can be seen as an

20

3.1 Controller Design Considerations 21

active component that requests and processes traffic information from the passive

abstract model, using UMLSL as a query language. It is an obvious and natural de-

sign decision to implement the controller automaton as part of a vehicle application

such that every vehicle is controlled by an individual instance. In order to provide

access to the required traffic information, it is possible to create a separate module

within Veins that acts as an interface between all controller applications and the

simulation framework. This architecture provides full control over the way the traffic

information is represented and accessed, and enables the vehicles to communicate

by using Veins’ communication models.

Thereby, both components of the abstract controller definition have suitable

representations. Each of them can be adjusted wherever it is necessary to achieve a

viable system complexity and performance, as long as the final result is sufficiently

similar to the original.

Because the abstract model’s purpose is not only the abstract representation of

arbitrary urban traffic situations but also the formalization and proof of properties

possessed by vehicle controllers defined within the model, many of its features are

irrelevant for the controller’s behavior and can, therefore, be omitted. The traffic

model and UMLSL are means to represent and reason about vehicle controllers on a

high level of abstraction. This can be leveraged by replacing the abstract concepts

with more convenient and application-specific components, which is one of the main

benefits of using abstraction in general.

In this case, the abstract concepts that carry the most potential for simplifica-

tion, but also require the most care when being replaced, are the abstract model’s

intersection representation and UMLSL as a whole.

The way traffic networks with multi-lane roads and, more importantly, intersec-

tions are represented in the abstract model is designed to be both flexible enough

to support a great variety of network structures, and simple enough to avoid un-

necessary complexity caused by non-essential information. This suggests that the

traffic model is well suited to be used for the implementation without significant

changes. Additionally, the traffic model employed by SUMO is relatively similar in

terms of network structure and vehicle representation, and already provides most

of the required functionality. For example, both models represent traffic networks

using a directed graph structure with additional information on the road length

and number of lanes, but SUMO also provides facilities for network generation and

routing. Such functionalities are not required by the abstract model and would need

to be implemented manually, introducing unnecessary complexity and potential for

errors. Instead, simple translations between the two representations are sufficient to

represent many aspects of SUMO’s traffic model in a way that the vehicle controller

can understand, while retaining the convenience functionalities provided by SUMO.

3.1 Controller Design Considerations 22

However, this is only possible for the general road structure and vehicle positions

outside of intersections. The translation of one intersection representation into

the other must be implemented with great care, since intersections show the most

significant differences between the models and play a role of critical importance for

vehicle coordination. This matter is discussed in more detail in Section 3.2.1.

The idea of replacing components from the abstract model with facilities provided

by the simulation framework can be applied to UMLSL as well, albeit in a somewhat

different manner. The abstract controller definition uses UMLSL formulas for transi-

tion guards and state invariants. However, UMLSL has a complete formal definition

and is supposed to be used for the description of arbitrary vehicle controllers and

proof-carrying as well. This functionality is entirely irrelevant for the controller that

is to be implemented since only a very small number of formulas are actually used

in its definition (cf. Figure 2.2). These formulas have relatively simple and intuitive

semantics and therefore lend themselves to be implemented directly in dedicated

functions.

Considering that, for a more general solution, a kind of formula evaluation system

for UMLSL would be required, only the above alternative seems feasible. It is worth

mentioning, however, that some progress has been made in this area of research: It

was shown by Fränzle, Hansen, and Ody [22] that a subset of MLSL, dealing with a

bounded number of vehicles, is decidable. The presented methodology has, to my

best knowledge, not been extended to UMLSL so far. Although the algorithm was

not designed to be suitable for use in a real-time application, this approach might

provide a viable alternative to direct formula implementations in the future.

This decision is supported by the simulation framework since, as mentioned

above, it provides programmatic access to all required information through SUMO. In

addition to this, implementing UMLSL formulas directly allows the view construction

to be adjusted so that only information relevant to a specific formula is computed.

This also alleviates the task of adapting the intersection model since customizing

the view construction removes some requirements, yielding higher flexibility. Fur-

thermore, implementing only what is necessary for the controller to work reduces

complexity and improves efficiency, which is beneficial in the simulation context

and, presumably, in a real-world scenario too.

From a more technical perspective, the implementation should satisfy several

requirements to ensure good usability regarding simulation studies. For example,

defining a variety of input parameters and output metrics should be a straight-forward

modification, and the system should be transparent enough that any observed effects

can be traced back to their causes easily. Although the simulation framework already

provides most of this functionality, keeping the implementation structured and simple

can help with the elimination of errors and the general understanding of the system.

A high computational complexity should be avoided because it can limit the scope

3.2 Traffic Model Interface 23

and granularity of parameter studies. However, correct controller behavior and

sufficient clarity have a higher priority and should not be sacrificed for efficiency.

In conclusion, the general implementation guidelines that result from the major

theoretical design considerations can be stated as follows:

• The implementation architecture comprises a vehicle application containing

the controller automaton and a separate component in Veins acting as an

interface between the controller and the traffic model.

• Abstract concepts that are not required by the controller definition in their

entirety should be simplified and represented by facilities of the simulation

environment, or omitted completely, if possible.

• None of the adjustments should significantly alter the behavior of the vehicle

controller unless the original behavior is unreasonable within the more realistic

simulation scenario.

• The desired result is an implementation that exhibits the same behavior in

the simulation environment as the original controller shows in its abstract

environment. It should provide the means to define and run simulation studies

with reasonably low effort.

The following sections deal with the main implementation challenges in more

detail. Note that programming-related issues are not discussed and all addressed

challenges and solutions are presented independently of any programming language.

3.2 Traffic Model Interface

Because the vehicle application relies on the functionality provided by the traffic

model interface and provides a greater design flexibility, the traffic interface should

be developed first. Its main purpose is providing all traffic information required

by the controller automaton in the form of queries defined by UMLSL formulas. In

order to implement these formulas adequately, a suitable interpretation of traffic

information from the simulation framework and particularly SUMO is required.

As described in Chapter 2, the intersection structure employed by SUMO displays

the most significant difference to the abstract traffic model, while the roads outside

of intersections are represented in very similar ways. It is not obvious how an

intersection described in one of the models can be translated into the other without

losing or altering – or having to devise – too much information. In order to represent

a SUMO intersection in terms of the abstract model, one would have to define a

set of crossing segments with directed edges such that every possible maneuver

has a corresponding directed path of the correct length and each pair of conflicting

3.2 Traffic Model Interface 24

maneuvers shares at least one segment. It would also be desirable for maneuvers

to share segments only if they are in conflict to avoid unnecessary waiting times.

Figure 3.1 illustrates this problem for a small example.

0 1

3

2

5 4

6

7

A

B

(a) Detailed maneuver trajectories

c0 c1

c2c3

l0 l1

A

l2

l3
B

l4l5

l6

l7

(b) Segment paths of maneuvers

Figure 3.1 – Comparison of maneuver representations. Figure 3.1a shows a
left turn maneuver of a vehicle A and a right turn of vehicle B on the 2× 2
intersection from Figure 2.1. Figure 3.1b shows the corresponding segment
sequences in the abstract network graph. The maneuvers share crossing
segment c2 although the real trajectories are not in conflict. It is unclear what
size each crossing segment should have and how the graph should be changed
to model the real situation more accurately.

This applies to the vehicles crossing the intersection as well: The description

of a maneuver depends on the representation of the underlying road structure.

Consequently, a maneuver represented within one model of the road structure may

have no or multiple equivalent representations in the other model. This is especially

problematic because a proper representation of intersection crossing maneuvers is

crucial for the coordination protocol to operate correctly.

However, it is not necessary to represent an intersection and its crossing ma-

neuvers in exact accordance with the abstract model in order to create sensible

implementations of the controller queries. A closer inspection of the crossing seg-

ments and their uses leads to an alternative that combines SUMO’s detailed trajectory

description and the coordination features required by the crossing controller.

3.2.1 Intersection Model Adaptation

The most visible function of the crossing segments is defining the layout and area

of an intersection. The connections between the segments and the road network

clearly define the incoming and outgoing lanes, and the directed edges between

the segments provide information on their placement within the intersection. As

3.2 Traffic Model Interface 25

mentioned previously, the segment shapes are not defined precisely. But the number

of segments and their sizes can be used to get a rough estimation of the size and

shape of an intersection and the crossing maneuvers.

The possible turning directions and shapes of the maneuvers are also defined by

the directed edges. However, their definition is rather implicit and their correct usage

depends entirely on how the vehicle paths are defined. In addition to that, the paths

do not describe the exact trajectories followed by the vehicles, but rather possible

connections between incoming and outgoing lanes. For example, the abstract model

can describe a regular 2× 2 intersection and a roundabout connecting the same

roads with the same graph structure [1, Figure 4], although the real trajectories of

the vehicles are very different.

Finally, the most important purpose of the crossing segments for the vehicle

controller is serving as a shared resource for coordination. By enforcing mutual

exclusion on the segment reservations of the vehicles, the controller ensures the

safety of all maneuvers. Therefore, it is crucial to construct a suitable representation

of this functionality in the new model.

In short, the crossing segments serve three main purposes:

1. Describe the high-level layout of the intersection.

2. Define connections between incoming and outgoing lanes and the segments

required by each maneuver.

3. Serve as a shared resource for coordination.

These purposes are only loosely related to each other; the intersection layout gives

no indication of permitted maneuvers, the segment paths defining the maneuvers

exist on a much lower level than the rough intersection layout, and the coordina-

tion functionality does not depend on either of the two whatsoever. Observe that

both the intersection layout (1) and the possible crossing maneuvers (2) are not

required by the controller: The layout is not used at all apart from the coarse route

definitions of the vehicles. Because the routes are predefined and the controller

cannot change them, there is no need to couple this information so tightly with the

crossing maneuvers. The same applies to the definition of possible maneuvers by

connections of incoming and outgoing lanes. Since all of this information is already

directly accessible through SUMO, it is not necessary to consider these aspects for

the new intersection model design.

The coordination functionality of the crossing segments (3) is the only aspect

that has no direct counterpart in SUMO. Therefore, it is necessary to design a new

system based on the available information. It is helpful to make several observations

on the abstract model that can simplify this problem: First, every intersection has a

relatively small number of possible crossing maneuvers. It is reasonable to assume

3.2 Traffic Model Interface 26

that every vehicle that performs a specific maneuver chooses the same trajectory

and, in terms of the abstract model, the same path of crossing segments. Thus,

each possible maneuver has a uniquely defined set of crossing segments that can be

determined statically. Because of this, it suffices to have the controller consider only

sets of segments instead of individual segments for coordination.

Secondly, there is no need to check whether two maneuvers intersect at run

time: Given two sets of crossing segments, they either have at least one segment

in common or they are disjoint. Using the first observation, this major part of the

coordination protocol can also be determined statically. Transferring this concept

to SUMO, the information whether two maneuvers, or internal lanes, conflict with

each other is static and can be computed as such. As the collision check used for the

coordination protocol is mainly based on checking whether a set of claimed crossing

segments intersects with another set of segments, this information is useful for the

vehicle controller. More importantly, however, it can be computed for internal lanes

without the use of segments by using the lanes’ physical shapes instead. This result

can be considered to be a solution to the problem of matching crossing segments

with internal lanes that was discussed previously.

Before moving on to details on how this can be calculated, a critical question

must be answered: Is this approach valid, i.e., does it produce behavior equivalent

to the abstract model? To find the answer, consider an arbitrary intersection with

two vehicles, each trying to perform a crossing maneuver. If the internal lanes

describing the trajectories do not overlap, a collision will be impossible and the

vehicles can perform their maneuvers without any coordination. When using the new

intersection model, the claims and reservations of the vehicles do not overlap since

these conflicts are computed directly using the lanes’ shapes. In the abstract model,

it is not guaranteed that the two sets of crossing segments describing the maneuvers

do not intersect. However, both cases are acceptable: If the sets are disjoint, the

vehicles will perform their maneuvers without being disturbed, as before. If the

sets do intersect, the vehicles will have to coordinate and cross one after the other;

in this case, the abstract model is just unnecessarily restrictive. It is reasonable to

assume that this is an effect of applying the abstract model to a realistic intersection

and does not reflect the intended purpose of the segments.

If, on the other hand, the trajectories overlap, a collision will be possible and

the vehicles must not cross the intersection simultaneously. By definition, the new

model detects this conflict and causes the vehicles to behave appropriately. If the

sets of segments from the abstract model intersect, the vehicles will do the same. If

for some reason, the sets are disjoint, the vehicles will be unable to actively avoid a

collision even though the abstract safety property is not violated.

This shows that, in terms of crossing maneuver safety, the new intersection model

is equivalent to the abstract model. However, due to the lost maneuver granularity

3.2 Traffic Model Interface 27

that was provided by the crossing segments, this model alters the vehicle behavior:

Since vehicles only place claims and reservations on whole internal lanes instead

of sets of multiple segments, reservations stay active for the whole duration of the

maneuver. In the abstract model, a vehicle’s position, as perceived in the view of

another vehicle, is used to determine whether a reserved segment is free again after

the reserving vehicle has passed it. By implementing the view interpretation and

evaluation of UMLSL formulas appropriately, this behavior can be restored to the

new model. As mentioned in Section 3.1, UMLSL formulas will be implemented

directly and require no explicit view model. Therefore, a similar, static solution is

possible by combining the trajectory shape and implicit view information: Given

two internal lanes l1, l2 whose shapes intersect and a vehicle driving on l2, there

exists a position p on l2 at which the vehicle leaves the conflict zone of the two

lanes. The part of the trajectory that remains when the vehicle reaches p does not

intersect with l1 any more. Another vehicle can safely claim and reserve lane l1 once

the first vehicle has reached p. Since these positions can be computed statically, just

like conflicts of lane shapes, and vehicles can use their perception of other vehicles’

positions to determine when it is safe to place a claim again, the new intersection

model can accommodate this functionality.

With this problem solved as well, the new intersection model is complete. Its

major design aspects and functionalities can be summarized as follows:

• The intersection structure of SUMO is used directly. Internal lanes and their

physical shapes serve as coarse representations of the vehicles’ real trajectories.

What is defined by directed edges between segments in the abstract model is

represented by connections between incoming and outgoing lanes in the new

model.

• Claims and reservations are placed on internal lanes instead of crossing seg-

ments. Each crossing maneuver can be represented by a fixed set of segments;

two maneuvers conflict with each other if their respective sets intersect. The

same inquiry amounts to intersecting the shapes of internal lanes in the new

model. In both cases, the information is static and can be computed as such.

• Gradual reservation clearance is enabled by providing the exit positions

of conflict zones. For each pair of intersecting internal lanes, the two lane

positions at which the zone of conflict with the respective other lane is passed

are computed statically.

3.2.2 Static Data Structure Calculation

To provide more details on how the new intersection model is implemented, the

techniques used to calculate and store the static information are explained in the

3.2 Traffic Model Interface 28

following. The running example for this section is a simple 2× 2 intersection as

computed by SUMO. Its shape and internal lanes are depicted in Figure 3.2. On each

of the four incoming lanes, it is permitted to drive straight, turn left, or turn right.

This leads to a total of 12 internal lanes which are numbered 0 . . . 11; the numbering

starts with lanes coming from the North, moving clockwise around the intersection,

and numbering first right-turning lanes, then straight, and then left-turning lanes

for each direction. The width of the internal lanes is set to w = 2.5m. For simplicity,

each lane only has five points describing its center line. SUMO automatically uses

only two points to describe the straight internal lanes.

012

3
4
5

678

9
10
11

1 m

Figure 3.2 – Example 2× 2 intersection from SUMO with 12 internal lanes.

To start with, the shapes of all internal lanes must be intersected to determine

which maneuvers are in conflict. Due to the structure of this information, it is stored

in a matrix-like data structure that is henceforth called the foe matrix F . The foe

matrix needs to store one Boolean value for each pair of internal lanes. Therefore, it

is a matrix of the format F ∈ {0,1}12×12. Because it is symmetrical, only half of its

values actually need to be computed and stored; for simplicity, it is treated as a full

matrix here.

It should be mentioned that the employed version of SUMO also computes

foe information for every intersection to realize its built-in management policies.

However, this is based on heuristics for right of way rules and generally produces

different results than intersecting the internal lanes.

To compute the entries of the foe matrix, the shapes of all internal lanes are

used. For these computations, the lane shapes are approximated by widening the

center lines to the specified width w. This ensures that possible maneuver conflicts

can be detected even if the center lines do not intersect, given that w does not

3.2 Traffic Model Interface 29

under-approximate the real maneuver shapes. Additionally, the lane shapes can be

reused to compute conflict zone entry and exit positions later.

Let l ∈ {0, . . . , 11} be an internal lane and Pl = {p0, . . . , pn} ⊂ R2 the list of points

describing its center line. Pl contains two or five points in this scenario (n ∈ {1, 4}),
depending on whether the internal lane l is a straight or a turning lane. For each

pair of consecutive points pi , pi+1, we construct a rectangle Ri such that one side has

a length of w and the other side is parallel to the line that connects pi and pi+1, as

depicted in Figure 3.3b. This yields n rectangles R0, . . . , Rn−1, where Ri is based on

the line connecting pi and pi+1. For n> 1, it is likely that consecutive rectangles are

positioned at an angle to each other, leading to gaps between them. These gaps can

be filled using triangles Ti,1, Ti,2, one on each side of the point pi that Ri−1 and Ri

have in common. This step is illustrated in Figure 3.3c.

p0

p1

p2

p3
p4

(a) Center line points

R0

R1

R2

R3

(b) Rectangles added

T1,2

T1,1

T2,2

T2,1

T3,2

T3,1

(c) Triangles added to fill gaps

Figure 3.3 – The process of computing the approximate shapes of internal
lanes as sets of polygons for the left-turning lane with index 8.

3.2 Traffic Model Interface 30

Finally, the shape of the internal lane is approximated by the set of rectangles

and triangles

S(l) := {R0, . . . , Rn−1} ∪ {T1, j , . . . , Tn−1, j | j ∈ {1, 2}}. (3.1)

These simple polygons can be computed efficiently and suffice for approximating

the crossing maneuver’s required area, especially when using a larger number of

points for the center line. Additionally, they enable the application of an efficient

algorithm for polygon intersection which is necessary for the foe matrix computation.

Let Intersect(p, q) ∈ {0,1} denote the output of a Boolean function that deter-

mines whether polygons p and q as constructed above, intersect. Having constructed

the set of polygons S(l) for each internal lane l, determining whether two approx-

imate shapes overlap is as simple as intersecting each pair of polygons from their

respective sets: Let l1, l2 ∈ {0, . . . , 11} be two internal lanes, then

l1 overlaps with l2 :⇐⇒ ∃p ∈ S(l1), q ∈ S(l2) : Intersect(p, q) = 1. (3.2)

The foe matrix can be computed using this information as shown in Algorithm 3.1.

To illustrate the intuition, Figure 3.4 depicts the relation between overlapping shapes

of internal lanes and entries of the foe matrix using a small example.

Input: Set of internal lanes L = {l0, . . . , ln−1} with shape approximations

Output: Foe matrix F ∈ {0, 1}n×n based on overlapping lanes

1: F ← n× n matrix filled with 0s

2: for i = 0, . . . , n− 1 do

3: Fi,i ← 1 // Lane overlaps with itself

4: for j = i + 1, . . . , n− 1 do

5: x ←







1 if li and l j overlap

0 otherwise

6: Fi, j ← x

7: F j,i ← x // Matrix is symmetrical

8: end for

9: end for

10: return F

Algorithm 3.1 – Foe matrix computation using approximate shapes of internal
lanes.

3.2 Traffic Model Interface 31

1

3

8

(a) Overlapping shapes of internal lanes

· · · 1 · · · 3 · · · 8 · · ·
























































...

1 1 0 1
...

3 0 1 0
...

8 1 0 1
...

(b) Resulting entries in foe matrix

Figure 3.4 – Example of foe matrix entries for three internal lanes. Lanes 1
and 8 overlap while lane 3 has no conflict with either of the two. Note that
each lane obviously also overlaps with itself.

The exit positions of conflict zones to be used for gradual reservation clearance

(in the following called clearance positions) are computed and stored in a similar way.

For each pair of overlapping internal lanes (li , l j), the clearance position marks the

point that a vehicle traveling on l j must have reached so that another vehicle may

safely claim and reserve li . This shortens the waiting time of vehicles and mimics

the effect of reserved crossing segments in the abstract model that become free to

claim and reserve as soon as the reserving vehicle has passed them.

To compute these positions, the shapes of the internal lanes can be used again.

However, due to the way vehicles are positioned on internal lanes in SUMO, the

polygons and center line points of a lane shape are not accurate enough to determine

the clearance position on the lane itself. Instead, the rectangular shape of a vehicle

performing a crossing maneuver is simulated and intersected with the approximate

shape of the foe lane. Given the internal lanes (li , l j), the vehicle positions on l j can

be iterated in small steps and in reverse order until the vehicle shape overlaps with

the approximate shape of li . The previous position is then stored in another matrix

C ∈ Rn×n, where n is the number of internal lanes, at position (i, j). In general, it

is possible that the first vehicle placement already intersects with the foe lane. In

this case, the vehicle is moved forward instead and the clearance position is the first

where no overlap is determined. This position is located on the outgoing lane of the

maneuver. Figure 3.5 illustrates this computation for a single pair of internal lanes

where the vehicle is moved backwards with a relatively large step size.

3.3 Vehicle Controller Application 32

0.0

14.2

7.2
8.2

Figure 3.5 – Computation of the reservation clearance position for the internal
lanes 6 and 8. The length of lane 8 is 14.2 m and the step size is 1 m. The
vehicle’s rectangular shape is 2 m wide and 4 m long. Position 7.2 is the first
position at which the vehicle’s shape overlaps with the approximate shape of
lane 6. Therefore, the previous position is the resulting clearance position:
C6,8 = 8.2. As soon as a vehicle on lane 8 has reached this position, it does
not prevent other vehicles from using lane 6 any more.

3.3 Vehicle Controller Application

Building on the newly constructed intersection model, this section discusses the

implementation of the vehicle controller as a Veins application. To this end, I will first

present the way vehicles perceive and represent their environment in comparison

to the universally accessible data used in the abstract model. This includes the

introduction of a minimal communication protocol to transfer the coordination

mechanics from the global Traffic Snapshots to purely local vehicle interactions.

Afterwards, I will outline how the controller automaton is realized in software and

how the necessary UMLSL formulas are integrated. Finally, I will explain how the

application exerts control over its vehicle based on the controller actions.

In the abstract traffic model, vehicles get information on the traffic situation from

two different sources: The current Traffic Snapshot and their local view. The Traffic

Snapshot contains the relative lane positions, claims and reservations of all vehicles

while the view of a vehicle provides more detailed information on the vehicles that

are perceived by the vehicle’s sensors, such as their safety envelope. Both are used to

evaluate the UMLSL formulas that serve as transition guards of the vehicle controller.

Therefore, vehicles must have access to all traffic information the controller requires.

3.3 Vehicle Controller Application 33

However, the Traffic Snapshots in the abstract model are virtual, globally syn-

chronized data structures that are accessible by all vehicles. Such data structures

do not exist in a realistic scenario and, thus, they should not exist in the simula-

tion as well. Instead, each vehicle has an internal traffic model that contains all

necessary information and is kept up to date by the vehicle itself. It is reasonable

to assume that vehicles are equipped with on-board sensors that are able to gather

all necessary physical information. To model this in the controller application, it

suffices to query the simulation framework. If inaccuracies and errors in the sensor

data are of interest, they can be applied to the real data easily. However, claims and

reservations are virtual properties that must be acquired by other means. Since the

vehicles are able to communicate via wireless channels, it is obvious to utilize this

ability for coordination by synchronizing the vehicles’ internal information on claims

and reservations. Natural opportunities to send synchronization messages are the

controller actions that change claims or reservations. Because the vehicles will only

need to coordinate for crossing maneuvers, the relevant controller actions are cc,

wd_cc, rc, and wd_rc. Since the new intersection model uses internal lanes instead

of crossing segments as coordination resource, claims and reservations only have to

apply to single internal lanes. Using this information, the messages that represent

the four controller actions can all have a similar structure and carry a small amount

of data:

• The message type

• The identifier of the sending vehicle

• The identifier of the affected internal lane (only cc and rc)

All vehicles will send the corresponding message when one of these controller actions

is performed. When a vehicle receives a message of this type, it can update its internal

traffic model accordingly. These are the only messages required for coordination.

To keep the semantics of controller actions as clear as possible, the vehicles apply

the changes implied by a received message immediately and without any validation.

For example, when a vehicle A receives a message of the type rc for lane l from

vehicle B, A must update its internal model to reflect that B now holds a reservation

on l and does not have a claim any more (since reservation actions remove claims

automatically), regardless of whether B held a claim or reservation on l or any other

lane before. Because all vehicles are equipped with the same controller and follow

the same coordination protocol in the simulation scenario, it is safe to rely on this

simple model.

The next task is the realization of the vehicle controller automaton. As described

in Section 2.2, the abstract specification uses an extended timed automaton, or

Automotive-Controlling Timed Automaton (ACTA), to define the behavioral aspect

3.3 Vehicle Controller Application 34

of the controller. It is a straightforward task to implement the basic structure of a

finite automaton in software; evaluating the transition guards and performing the

transition actions is, however, more involved. Before these operations are imple-

mented, it should be established when they are executed, i.e., when the automaton

is triggered. The semantics of automata demand that transitions are made as soon as

a transition guard evaluates to true. State invariants affect this behavior by forcing

(blocking) a transition when the invariant of the current (next) state is false. These

conditions can be interpreted as extensions of the regular transition guards and are

therefore treated similarly.

In the simulation environment, time passes in discrete but irregular time steps

and the state of the traffic situation over which transition guards are evaluated can

change with each step. By evaluating the transition guards in each time step, the

automaton could function with the highest accuracy possible. However, this would

tie the vehicle behavior to the inner workings of the simulation framework and,

most likely, cause many unnecessary evaluations because not all simulation events

affect the relevant vehicle properties. Furthermore, it would imply that the vehicles’

sensors and on-board computers can react with arbitrary precision and latency, which

is highly unrealistic. Instead, the vehicle controller automaton is triggered at fixed,

regular intervals that can be configured to be small enough that the vehicles retain a

sufficient and realistic reaction time without causing performance issues. Each time

the automaton is triggered, the guards of possible transitions are evaluated and the

corresponding transition and action are performed based on the result.

The only exception to the regular executions are violated time constraints: Re-

setting a clock variable schedules a simulation event at the time this variable will

exceed its threshold. If the variable is relevant to the automaton’s current state when

the event occurs, the automaton is triggered immediately.

Having specified when the automaton is triggered, it is time to define more

precisely what happens at each trigger event. There are only four relevant controller

actions (cc, wd_cc, rc, and wd_rc), and their definition is straightforward: Each

action places or withdraws either a claim or a reservation on an internal lane. The

executing vehicle therefore modifies its internal traffic model correspondingly and

broadcasts the respective message, causing the same modification to the internal

models of all receiving vehicles. Only the rc action has an additional effect as it

also removes all claims of the reserving vehicle due to the action’s semantics. These

actions are executed every time the respective transition is made.

Deciding when a transition occurs requires the transition guards and state invari-

ants to be evaluated. Since all of them are defined by UMLSL formulas and clock

variables, it suffices to implement these constituents and then construct the final

formulas using logical operators. As already discussed above, clock variables are

represented by special timer events. The controller automaton uses only one clock

3.3 Vehicle Controller Application 35

q0 : ¬col(ego) q1 : ca(ego) q2 : ca(ego)

q3 :
ca(ego)

∧¬∃c : pc(c)
∧x ≤ tc

q4 :
x ≤ tcr
∧oc(ego)

ca(ego)
cc

∃c : pc(c)/wd_cc

¬∃c : pc(c)
/x := 0x ≥ tc

∨∃c : pc(c)
/wd_cc

¬∃c : pc(c)∧¬lc(ego)
/rc; x := 0

x ≥ tcr/
wd_rc

Figure 3.6 – Crossing controller ACTA definition (Copy of Figure 2.2 for ease
of reading).

variable x , but two different thresholds tc and tcr . Each time the timer is reset, timer

events for both thresholds are scheduled in the simulation framework. The timer

variable will then be smaller than the threshold until the respective event occurs;

for the controller trigger caused by the event, it will be equal to the threshold, and

afterwards, it will be larger until the timer is reset again. This leaves only the UMLSL

formulas to be implemented. In the following, the implementation of each of the

five formulas used by the automaton is presented.

(1) col(ego): This formula is only used by the controller as state invariant for q0. Its

main purpose is ensuring that each vehicle starts in a safe situation, which can

be assumed to be satisfied by the simulation environment since SUMO will only

spawn vehicles in positions where immediate collisions can be ruled out. Apart

from that, the formula is irrelevant for the transition from q4 to q0 because

the transition action wd_rc does not affect the vehicle’s driving beyond the

intersection and, if the state invariant does not hold, the controller has already

failed its purpose and a transition to q0 cannot change that. Therefore, it is

not necessary to implement this formula at all.

(2) ca(ego): This formula checks whether the vehicle is currently approaching an

intersection, the distance is smaller than some constant dc , and there is no

other vehicle in between. It is used as transition guard for q0→ q1 and as state

invariant in all states that are responsible for the coordination procedure (q1,

q2, and q3). It is reasonable to assume that a vehicle that intends to cross an

intersection and to follow the coordination protocol will not turn away from

3.3 Vehicle Controller Application 36

the intersection or change lanes once it starts with coordination. Therefore, the

only relevant application of the formula is guarding the transition that initiates

the coordination. The identifier i and length l of the current lane, the vehicle’s

position p, and its braking distance dbrake can be acquired from the simulation

framework. Suitable representations of these properties are provided by the

traffic interface. It is also used to check that no other vehicle is driving on the

same lane between the ego vehicle and the intersection. The formula then

only evaluates to true if i meets an intersection and l − p+ dbrake < dc holds,

which is trivial to implement.

(3) pc(c): The check for potential collisions is the main component of the coordi-

nation protocol. All states that can be active while the vehicle has placed its

claim (q2 and q3) use it to decide whether it is safe to continue or the claim

must be withdrawn. Since all occurrences of the formula are bound by an

existential quantifier ∃c : pc(c), it can be integrated into the implementation.

As discussed in Section 3.2.1, all vehicles have access to the foe matrix F

and the reservation clearance positions C through the traffic model interface.

Additionally, a vehicle can perceive the positions of the relevant other vehicles

with its sensors; again, the traffic interface provides a suitable representation

of this information. In conjunction with the vehicle’s internal traffic model,

the collision check can be performed as shown in Algorithm 3.2.

Input: Claimed lane l, foe matrix F , clearance positions C , and ego’s internal claim
and reservation information
Output: true if ego’s claim overlaps with another vehicle’s claim or reservation, false
otherwise

1: for each internal lane c claimed by another vehicle do
2: if Fl,c = 1 then // l and c are foes
3: return true // Collision with other claim
4: end if
5: end for
6: for each internal lane r reserved by another vehicle B do
7: if Fl,r = 1 then // l and r are foes
8: p← position of B // Maybe B is far enough
9: if p < Cl,r then

10: return true // Not far enough: collision with B’s reservation
11: end if
12: end if
13: end for
14: return false // No collision found

Algorithm 3.2 – Implementation of potential collision check ∃c : pc(c).

3.3 Vehicle Controller Application 37

(4) lc(ego): This formula checks whether the ego vehicle is currently performing a

lane change maneuver and is used to ensure that an intersection is not entered

while changing lanes. Since in the employed lane change model of SUMO,

lane changes happen instantaneously, this check is not necessary. Apart from

that, vehicles should not change lanes after placing a claim anyway because

this would completely change their trajectory and invalidate the coordination

procedure.

(5) oc(ego): The on crossing check holds as long as the ego vehicle is driving on the

intersection, i.e., occupying a part of an internal lane with its safety envelope.

It is used by the automaton as state invariant of q4 and helps detecting when

the reservation can be withdrawn. Similar to the crossing ahead check ca(ego),
only sensory information is required to evaluate this formula. The traffic

interface provides all information that is required to track the extension of

the ego car’s safety envelope and check if any part of it is located on the

intersection.

All of the formula implementations, timer events and automaton trigger mecha-

nisms described above are used to realize the vehicle controller application. Every

vehicle spawned into the simulation has its individual traffic model and controller

with the automaton starting in the initial state q0.

There is one more aspect of the controller application that needs to be discussed.

So far, the only effects of the controller on the vehicle are sending coordination

messages and updating the internal traffic model. Without additional changes,

the vehicles will follow SUMO’s default driving behavior and intersection policy

since the implementation lacks a way for the controller application to exert control

over the vehicle. In the abstract model, the intersection controller is accompanied

by a distance controller maintaining safety distances and safe speeds, and a lane

change controller that employs a reservation-based coordination protocol for safe

lane change maneuvers. It is not necessary to implement these controllers manually

because SUMO already provides systems to perform these tasks. To make the vehicles

behave as the intersection controller demands, the existing control systems can be

reconfigured so that only a few direct steering commands are required.

First, the vehicle controls can be adjusted to ignore intersection policies like

traffic lights or right of way rules. This causes vehicles to maintain a safe speed

during crossing maneuvers and the safety distance to other vehicles on the same lane

but perform crossing maneuvers as if no other vehicles were using the intersection.

The lane change behavior is unaffected by this adjustment.

Next, the vehicles need to stop and wait at an intersection until the controller has

managed to place a reservation on the required internal lane. SUMO provides a stop

command that can be used to make a vehicle stop at a certain position for a specific

3.4 Practical Implementation Problems 38

duration. It is intended to be used for bus stops and taxis, or to artificially create

traffic jams, and causes a smooth, realistic deceleration similar to a vehicle slowing

down to stop at a red light. The stop command is used by the vehicle controller

application as follows: Each vehicle that enters a lane meeting an intersection

receives the command to stop at the end of this lane for an unlimited duration. As

soon as the controller reserves the required internal lane, i.e., the automaton enters

state q4, the stop is canceled and the vehicle proceeds to cross the intersection.

In addition to waiting at intersections, vehicles must be prevented from changing

lanes after selecting an internal lane for their crossing maneuver. This can be enforced

by another small adjustment that reconfigures the lane change controller to stay on

the current lane as soon as the first claim is placed.

These features suffice to make the vehicles behave in accordance with the con-

troller application. However, this basic implementation has a number of inherent

problems that cause unintended behavior and necessitate further adjustments in

order to make the system viable for simulation studies.

3.4 Practical Implementation Problems

The controller implementation developed in the previous sections aims to capture the

intended behavior of the original abstract controller as precisely as possible. However,

when used in simulations for validation, it displays some unexpected phenomena

that may have various causes; most likely, the abstraction level introducing some

freedom for interpretation is among the main reasons. Since these problems occur

frequently, impede the simulation process, and are, presumably, not part of the

intended behavior, they must be examined and resolved. They also serve as basis

for an evaluation of the disadvantages imposed by the highly abstract controller

definition, as they can indicate design problems that must be considered for a real

implementation. This topic is discussed in Chapter 5.

The most apparent problem manifests itself in a total blockade of an intersec-

tion due to a livelock of two or more vehicles trying to claim their respective lanes.

To illustrate the emergence of such a situation, consider two vehicles A and B ap-

proaching an intersection from different directions and having conflicting maneuvers.

According to the controller automaton, a claim is placed with the transition from

q1 to q2, and the check for potential collisions using the formula pc(c) is performed

only in the subsequent states. If a potential collision is detected, the claim will be

withdrawn; otherwise, it is kept and turned into a reservation after another collision

check in state q3. Combined with the fact that due to the same trigger frequency,

the vehicles’ controllers are always triggered in the same order, this behavior leads

3.4 Practical Implementation Problems 39

to an infinite loop of both vehicles placing and withdrawing claims, as illustrated in

Figure 3.7.

State Claim placed
t A B A B Action
0 q1 q1 - -
1 q2 q1 X - A places claim
2 q2 q2 X X B places claim
3 q1 q2 - X A checks for collision - withdraws claim
4 q1 q3 - X B checks for collision - keeps claim
5 q2 q3 X X A places claim
6 q2 q1 X - B checks for collision - withdraws claim
7 q3 q1 X - A checks for collision - keeps claim
8 q3 q2 X X B places claim
9 q1 q2 - X A checks for collision - withdraws claim
...

...
... Infinite loop

Figure 3.7 – Livelock caused by two vehicles A, B with conflicting maneuvers.
Both vehicles start in state q1 and approach the intersection at the same time
from different directions. Their controllers are always triggered in the same
order. The state sequence from time steps 3 to 8 will repeat itself indefinitely
as long as no exterior influence disturbs the system.

Analyzing this problem, the main cause becomes fairly obvious: The coordination

technique uses internal lanes as a shared resource with a partial mutual exclusion

condition. If two lanes overlap, only one of them may be reserved at a time. By

claiming the required lane and checking for a potential collision, a vehicle can check

whether the lane is currently in use. However, while the claim is active, other vehicles

can detect it as a potential collision although the vehicle that placed it is also just

checking for collisions. The reason for this unintuitive behavior is that by placing

a claim, a vehicle already uses the lane, and that a whole trigger interval passes

before it performs the collision check. From another perspective, this resembles a

well known problem in computer science; multiple agents access a shared resource

concurrently and the operation that tries to acquire the resource is not atomic. To

fix this, the operation of claiming a lane, checking for potential collisions, and then

withdrawing or keeping the claim must be made atomic. This can be realized by

forcing the automaton to leave state q2 immediately, i.e., within the same simulation

time step. By doing so, at the end of the time step, the vehicle will either remain in

q1 without a claim or have an active claim in q3 without any potential collisions. To

avoid unnecessary messages, sending the cc message can be moved to the transition

from q2 to q3, and the wd_cc message at the transition from q2 to q1 can be removed

completely. This effectively makes the claim and potential collision check atomic

and thereby solves the livelock problem.

3.4 Practical Implementation Problems 40

Note that this adjustment lies completely within the scope of free design decisions

because the abstract model does not define an execution model for the controller au-

tomaton. It does not violate any theoretical obligations or assumptions and externally

displays a behavior that is consistent with its internal actions due to the adjusted

messages. Therefore, it is not detrimental to the validity of the implementation.

The next problem that occurs when using the controller implementation without

further changes is related to the oc(ego) formula and the way vehicles approach

intersections. Examining the automaton transition from state q3 to q4 closely, a

peculiar timing behavior becomes obvious: The formula oc(ego) is part of the state

invariant of q4 and must therefore hold immediately after the transition actions

are performed. One of these actions is rc, i.e., placing the reservation. However,

the formal definition of oc(ego) demands that a part of the ego vehicle’s safety

envelope is already present on the intersection. In the abstract model, this is not

a problem because vehicles are technically allowed to start their maneuver before

the reservation is placed. But the way SUMO’s stop command is used to make

vehicles wait in front of an intersection as long as no reservation is placed makes

this impossible. Therefore, no vehicle is able to perform the transition and start its

crossing maneuver.

Simply ignoring the state invariant for the transition does not solve the problem: If

a vehicle places its reservation long before entering the intersection, the formula will

detect that it is not driving on the intersection in the next step, since it has not even

entered it yet, and force a transition to q0, withdrawing the reservation prematurely.

This behavior can, however, be prevented by modifying the implementation of

oc(ego) so that it also evaluates to true if the vehicle is in front of the intersection

and has placed its reservation.

This adjustment causes reservations to be placed earlier. However, by enabling

this behavior, vehicles can approach intersections without having to slow down if

they are able to place a reservation quickly enough. It also should not change the

order in which vehicles perform their maneuvers because the time at which claims

are placed is unaffected and the rc action only becomes relevant when a claim is

already established. The only noticeable implication is that the crossing maneuvers

can last slightly longer due to the added travel distance; this must be taken into

account when selecting a value for the crossing time threshold tcr .

The next two problems occur when introducing simulation parameters for unre-

liable communication. Only the loss of messages and communication delay are of

interest here. The complete list of simulation parameters is presented in Chapter 4.

A major feature of the controller and traffic model implementation is that vehi-

cles have to synchronize their internal traffic information by exchanging messages.

Because the consequences of lost or delayed information are of interest for eval-

uating the controller’s performance, these effects were introduced artificially by

3.4 Practical Implementation Problems 41

implementing suitable simulation parameters. However, when verifying their correct

functionality in test simulations, they frequently caused intersections to be blocked,

similar to the livelock problem discussed above. Since this behavior makes reason-

able simulation studies impossible, further adjustments to resolve these issues were

necessary. Again, the implications of these problems are evaluated in Chapter 5.

When a message delay is introduced, a certain time passes before received mes-

sages are processed. This can lead to asynchronous internal traffic models, causing

decisions of the vehicle controllers based on outdated information. For example, it

is possible that two vehicles try to place their claims on conflicting lanes at almost

the same time, so that neither of the claim messages is processed before the other

message is sent. The result is that both vehicles will have to withdraw their claims

the next time their controllers are triggered. Afterwards, it is likely that the same

process happens again since the controllers have the same trigger interval.

A related problem occurs when message loss is introduced, i.e., some messages

are not received at all. Losing messages of the type cc or rc can lead to collisions:

The potential collision check of a vehicle that misses some claim or reservation

information may find no collision and cause the vehicle to reserve a lane that

overlaps with another reserved lane. However, losing a wd_cc or wd_rc message

can be much more problematic in the simulation scenario because it can prevent

vehicles from ever reserving their required lane. This applies especially to wd_rc

messages since they are, in general, only sent once per intersection.

Both of these problems can be characterized as faults of the communication

protocol. It is likely that a more sophisticated method with techniques for detecting

message loss and ensuring a generally more reliable exchange of information can

solve them. However, designing a reliable communication protocol is not a goal of

this thesis; investigating the effects of unreliable communication on the controller’s

performance, on the other hand, is. Therefore, the solution to these communica-

tion issues should only serve to allow for stable and reliable simulations without

blocked intersections. It should not affect the ability to systematically introduce

communication errors through simulation parameters.

The implemented solutions to both mentioned problems utilize time stamps. To

start with, messages of the type cc are extended by a time stamp field storing the

time at which the sender placed the claim. Because it is highly unlikely that two

vehicles with conflicting maneuvers place their claims at the exact same time, this

information can be used to prioritize the claim of the vehicle that placed it first. The

reaction to receiving a claim message is adjusted accordingly: If the vehicle has

no active claim or the claimed internal lanes do not overlap, it will only update its

internal traffic information as before. However, if a potential collision is detected,

there are two possible cases: (1) the other vehicle’s claim is older than the receiving

vehicle’s, or (2) it is newer.

3.5 Verification and Validation 42

In case (1), the claim of the receiving vehicle has lower priority and must be

withdrawn immediately. This is achieved by updating the internal traffic model with

the new claim and causing an immediate trigger of the controller automaton.

In case the other claim is newer (2), the receiving vehicle has higher priority and

the other vehicle should withdraw its claim. In order to keep the communication

protocol simple, the claim with lower priority is just ignored in this case. Since all

vehicles are equipped with the same controller, the other vehicle can be assumed to

behave accordingly.

The second problem mentioned above arises when messages are lost and the

internal traffic information of a vehicle does not reflect the real situation. Since only

the case where wd_xx messages are lost and claim or reservation information is left

in the internal traffic model is detrimental to the simulation, the solution focuses on

this problem. As described in Chapter 2, the abstract traffic model specifies two time

thresholds tc and tcr for the time that passes between placing a claim and turning it

into a reservation, and the time between placing the reservation and withdrawing

it, respectively. Consequently, a claim can never be active longer than tc and no

reservation can be active longer than tcr . It is therefore safe to delete information on

claims and reservations that is older than these time thresholds. This is accomplished

by storing claims and reservations in the internal traffic model together with the

time the message containing the information was processed. Every time this data is

accessed, the expired entries are removed.

With these fixes in place, the controller implementation is complete. It should be

mentioned here that all of the adjustments discussed in this section only marginally

alter the behavior of the vehicles and serve to improve the simulation quality and

reliability. Given that the abstract model cannot provide solutions to all of these

minor problems due to its high level of abstraction, some small changes to the

exact behavior that leave the overall intuition of the coordination protocol intact are

acceptable.

3.5 Verification and Validation

Due to the lack of a reference implementation and execution model for the abstract

traffic model and crossing controller, validating the implemented application is

particularly challenging. Additionally, the controller implementation and adapted

intersection model do not portray the abstract traffic model directly, but rather

a concrete instantiation of its abstract concepts in a more realistic environment.

This is a structural difference to usual validation scenarios because the original

system does not provide an exact specification of the features the developed model

and implementation require; the modeled system is usually less abstract than the

3.5 Verification and Validation 43

implementation to validate. For instance, the abstract traffic model has no mechanism

to assert liveness, i.e., ensuring that every vehicle eventually reaches its destination.

It also does not specify a communication model, speed limits, or concrete values

for any of the declared constants. All of these aspects need to be considered by the

implementation to ensure sensible simulations with a high degree of realism.

This discrepancy between the original model and the developed system makes

a traditional validation based on experimentation data infeasible. Instead, the

controller validation is conducted on the basis of behavioral predictions and manual

observation.

The verification, on the other hand, is more straightforward, and the implemented

architecture can be divided into three components whose correct functionality can

be verified individually: The computation of the foe matrix and clearance positions,

as discussed in Section 3.2.2, the crossing controller automaton (cf. Section 3.3),

and its integration into the vehicle control system that is responsible for sending

coordination messages and controlling the vehicle.

To start with, the calculation of the foe matrix and clearance positions lends itself

to graphical verification. Since all involved calculations deal with simple geometrical

shapes in a two-dimensional plane, their correctness is easy to confirm visually by

generating appropriate result illustrations comparable to Figures 3.4a and 3.5. Due

to the relatively small size of the data structures, verifying them manually for each

intersection layout that was selected for simulations was a simple task.

The implementation of the crossing controller automaton can be verified directly

by tracing its states, transitions, and actions through a number of scenarios with

predefined sequences of events for which the controller’s behavior can be predicted

using the automaton’s formal semantics. Because the automaton only has a total

of five states, a relatively small number of scenarios suffices to cover all possible

transitions and state configurations. By decoupling the automaton from the vehicle

control system, this process was carried out independently of the traffic simulation

environment, removing any external effects it might introduce.

A similar approach was followed to verify that the rest of the vehicle control

system that complements the automaton works correctly. This includes managing

the data structures that represent the internal traffic model and evaluating the

UMLSL formulas correctly, executing controller actions, reacting to received messages

and timer events, and triggering the controller at the correct intervals. Most of

these aspects can be verified independently of the traffic simulation just like the

automaton using standard software development techniques like unit tests. To test

the vehicle control functionalities, however, it was helpful to run minimal simulations

and record vehicle traces and communication traffic, and observe the behavior in

SUMO’s graphical interface. By testing the controller application in such simulations

3.5 Verification and Validation 44

with various ordinary and degenerate parameter settings continuously during the

implementation process, the correct functionality of all its components is assured.

While the verification process asserts that the implemented system works as

expected, appropriate validation is required to ensure that it correctly reflects the

vehicle behavior and, more specifically, the coordination protocol defined by the

abstract traffic model. As outlined above, however, validating this consistency is

only possible to a certain extent since the simulation environment is more specific

than the abstract model and not all of its features have suitable counterparts for

validation. Therefore, the validation process is based heavily on running simulations

and manually checking whether the observed behavior matches the abstract model’s

specifications.

For instance, a vehicle that approaches a clear intersection is expected to visit each

state of the automaton exactly once and place or withdraw its claim and reservation

accordingly:

q0→ q1
cc
→ q2→ q3
︸ ︷︷ ︸

Claim active

rc
→ q4

︸︷︷︸

Reservation active

wd_rc
→ q0 (3.3)

This simple case can be validated by recording states, transitions, and actions in

a basic simulation scenario with one vehicle and one intersection. If the recorded

state sequence is different, there must be an error in the controller application or the

simulation scenario. A simulation like this revealed the problem with the on crossing

check oc that was discussed in Section 3.4: The vehicle would not enter state q4 nor

start its crossing maneuver although it had already entered q3; it would only return

to q2 after the time threshold tc was exceeded, and then repeat this process. The

described solution fixed this behavior, validating that the controller works correctly

in the most basic case.

Generalizing this experiment to many vehicles approaching the same intersection

on conflicting paths, only a few of them should be able to execute their crossing

maneuver immediately and follow the state sequence 3.3. Instead, most vehicles

should repeatedly place and withdraw their claims due to failing potential collision

checks:

q0→ q1
cc
→ q2

�

[→ q3]
wd_cc
→ q1

cc
→ q2

�∗

︸ ︷︷ ︸

As long as ∃c:pc(c) is true

→ q3
rc
→ q4

wd_rc
→ q0 (3.4)

Recording the state sequence of each simulated vehicle in a structured format enables

a simple, automatic way to ensure that this pattern is never violated without the

need for manual observation. It should be mentioned here that the adjustment

solving the livelock problem that was discussed in Section 3.4 does not affect this

sequence for individual vehicles; it only affects how the state sequences of multiple

vehicles intertwine (cf. Figure 3.7). As a matter of fact, the livelock problem was

first detected using this technique. Moreover, this example shows why the validation

3.5 Verification and Validation 45

of the controller application with respect to the abstract traffic model is problematic:

The behavior that causes a livelock and thereby blocks the intersection does not

technically violate the abstract model’s specifications. It is rather an artifact of

implementing an execution model that triggers the controller automata of the vehicles

at regular intervals in combination with the non-atomic operation of placing a claim

and performing a potential collision check.

Another aspect that is crucial for the coordination protocol and closely related to

the sequence of states and actions is the management of claims and reservations. A

straightforward approach to validating the correct management is tracing the current

claims and reservations of all vehicles through a simulation and checking whether the

traces match the occurrences of the controller actions and their semantics. However,

to ensure that the coordination protocol is followed by all vehicles, the mutual

exclusion condition of reservations must be considered as well. The formal safety

property of the abstract model requires that no space on a crossing or lane segment

is reserved by more than one vehicle at the same time. Because the car-following

model of SUMO can be expected to take care of the safety on all lane segments,

considering only crossing segments is sufficient. With the new intersection model

presented in Section 3.2.1 in place, the safety property can be expressed in terms of

internal lanes and clearance positions:

Safe∗ ≡ 6 ∃ci , c j : ∃li ∈ cres(ci), l j ∈ cres(c j) : (3.5)

Fi, j = 1∧ pos(c j)< Ci, j ∧ pos(ci)< C j,i (3.6)

The equation defines the adapted safety property Safe∗ to hold if and only if there

exist no two vehicles ci , c j with respective reserved lanes li , l j (3.5) such that li and

l j overlap and both vehicles have not yet reached their respective clearance positions

(3.6). This property can be checked automatically and must hold at all times and

in all scenarios without additional parameters that introduce more realistic effects.

Running simulations in the least realistic configurations showed that with all the

presented fixes in place, the crossing controller implementation works as intended.

Having validated that the implemented system satisfies the safety property for this

basic case, it can be used as a baseline for further simulation studies.

Chapter 4

Simulation Setup

The simulative approach to evaluating the performance of the crossing controller

offers a plethora of possible traffic scenarios, simulation parameters, and performance

metrics to investigate. Because the abstract traffic model promises safety in arbitrary

intersection scenarios, a great variety of different layouts and traffic configurations

should be covered. As the main subject of this thesis is the safety performance of the

controller in a realistic environment where many assumptions of perfect information

and communication do not hold, a suitable selection of parameters and metrics must

be defined to enable a thorough evaluation.

In this chapter, I present the setup of the simulation studies that were conducted

for this performance evaluation. Section 4.1 deals with the definition of intersection

scenarios and introduces a simple notation for the identification of the employed

layouts. Building on this, the process of generating traffic is described in Section 4.2,

along with details of the individual vehicle characteristics. Finally, Sections 4.3

and 4.4 define the simulation parameters and performance metrics, focusing on

the introduction of imperfections encountered in a realistic environment and the

assessment of the controller’s safety properties.

4.1 Intersection Scenarios

Each simulation scenario comprises one intersection with limited sections of its

incoming and outgoing lanes. This simplifies the analysis of simulation results and

provides full control over the intersection’s structure and the incoming traffic. The

main design aspects of intersections that are considered here are the number of

intersecting roads, the number of their lanes, and the presence of dedicated turning

lanes.

SUMO provides tooling for generating road networks from simple descriptions of

nodes and edges. Individual edges and intersections can be defined with additional

46

4.1 Intersection Scenarios 47

information such as the number of lanes and the connections describing the possible

crossing maneuvers. The basic structure of every scenario is defined by a node at

position (0, 0) representing the intersection under consideration and four additional

nodes with coordinates (±d, 0) and (0,±d), where d defines the distance of the outer

nodes from the intersection node. The outer nodes are connected to the intersection

node by edges in both directions, creating a network with four roads that meet in

the middle and resemble a four-way intersection with 90° angles. Each of the four

roads has a length of approximately d and a configurable number of lanes. Given

just this information, SUMO computes the intersection shape with all internal lanes

as well as the lanes of the incoming and outgoing edges.

(0, 0)

d

d

d d
(a) Simple network description

d

d

d d
(b) Detailed intersection in SUMO network

Figure 4.1 – Intersection definition and generation with SUMO for a 2× 4
scenario. Figure 4.1a shows the five nodes at their respective positions in the
plane. Figure 4.1b shows the generated intersection and roads in the SUMO
network. The road lengths are measured from the center of the intersection,
so they are slightly smaller than the node distance d.

This procedure is used to generate simulation scenarios for arbitrary n × m

intersections. Only even numbers for n and m are supported so that the number of

incoming and outgoing lanes per road is equal. By omitting one of the outer nodes

and adjusting the lane connections, T-junction versions with only three roads can

be obtained. It suffices to consider only the removal of one specific node, e.g. the

one at position (0, d), because all other cases can be created by rotating a suitable

network where only this node was removed.

The connections describing possible maneuvers are defined so that driving

straight is allowed on all lanes and turning left or right is permitted only on the

leftmost and rightmost lanes of a road, respectively. Turning directions on T-junctions

are defined similarly for the two roads with matching directions, except that the

connections to the missing road must be omitted. The lanes on the single, perpen-

dicular road are split into left- and right-turning lanes in the middle; if the number

of lanes is odd, the middle lane can be configured individually. In case a road has

4.2 Traffic Generation 48

only one lane, all three crossing maneuvers are possible. For roads with more than

one lane, dedicated left-turning lanes can be assigned by removing the possibility of

driving straight on the leftmost lane. U-turn maneuvers are not supported.

To simplify the notation of specific intersection configurations, I introduce a

straightforward naming scheme: Regular n×m intersections, i.e., those with four

roads and no dedicated left-turning lanes, are denoted by nxm. For example, an

unmodified 4×6 intersection scenario is uniquely identified by the name 4x6. For the

T-junction version of an intersection, the suffix _T is appended to its name. Similarly,

the version with left-turning lanes is indicated by the suffix _L. Using this notation, a

6×6 T-junction is identified by the name 6x6_T, a 4×6 intersection with left-turning

lanes is called 4x6_L, and a 6× 8 T-junction with left-turning lanes has the unique

name 6x8_T_L.

There are some scenario generation parameters that have the same value for all

scenarios used for the simulation studies. Most of them are required by SUMO for

generating detailed traffic network descriptions with concrete shapes for all network

elements. Starting with parameters affecting these physical shapes, all lanes of

incoming and outgoing roads have the default width of 3.2 m. A distance value of

d = 175 m is used to ensure that all vehicles can accelerate to the maximum allowed

speed before starting the coordination procedure. The center lines of internal lanes

are generated with 100 points so that the shape approximations used for the static

data structure calculation are sufficiently precise (cf. Section 3.2.2). The width w

of the internal lanes is set to 2.5 m. This value is sufficient to contain the exact

maneuver shapes while avoiding unnecessary conflicts between internal lanes. For

the computation of clearance positions, a step size of 0.05 m is used.

SUMO also defines speed limits for all lanes. For the incoming and outgoing

roads, a maximum speed of 13.89 m/s (≈50 km/h) is used, fitting the urban scenario.

The speed limits on internal lanes for turning maneuvers are reduced automatically

by SUMO to enforce realistically safe driving. The values are based on the turning

radius and, therefore, differ between scenarios and even individual lanes. To give

an example, the permitted turning speeds for a 4x4 intersection are 9.29 m/s for all

left turns and 6.53 m/s for all right turns.

4.2 Traffic Generation

For a given intersection scenario, traffic is generated by scheduling a certain number

of vehicles and assigning an individual route to each vehicle. The life cycle of a

vehicle is defined as follows: SUMO spawns the vehicle into the simulation as soon

as the scheduled start time is reached and there is enough room at the beginning

of its start lane that it can be inserted without causing a collision. Every vehicle

4.2 Traffic Generation 49

starts with an initial speed of 0 m/s. The first controller trigger is scheduled one

trigger interval after the insertion time and the controller will thereafter be triggered

continuously with this interval for the entire life cycle. The vehicle then approaches

the intersection according to SUMO’s default control systems, keeping a safe distance

to the surrounding vehicles and driving as quickly as possible and permitted. As soon

as the crossing controller has managed to place a reservation, the vehicle performs

its crossing maneuver and continues driving on the outgoing target lane. When it

reaches the end of this lane, the vehicle is removed from the simulation. Its trip

time is then defined as the time that has passed since the actual insertion time.

The simulation ends after all vehicles have left the scenario or when a time limit is

exceeded. This constitutes one simulation run.

As the vehicle life cycle shows, the route definition of each vehicle comprises only

the minimum insertion time as well as a start and target lane that uniquely identify

the crossing maneuver. These routes are generated randomly and are based on the

intersection structure and two traffic generation parameters: The traffic demand D

and the insertion time frame T . The traffic demand parameter D controls the vehicle

insertion rate and is specified as the number of vehicles entering the simulation per

hour and per lane (veh/(h lane)). The insertion time frame T controls the duration

over which the vehicle’s insertion times are distributed in seconds. Given the number

ni of incoming lanes in the scenario, the total number of vehicles N is computed as

N =
�

D
3600

· T · ni

�

. (4.1)

The minimal insertion times of all N vehicles are distributed uniformly at random

in the interval [0, D]. Note that a simulation run will always simulate at least D

seconds plus the minimum trip time of a vehicle, unless a time limit is reached

first. Similarly, each vehicle is randomly assigned one of the ni incoming lanes as

its start lane. Once the start lane of a vehicle is fixed, the set of possible target

lanes depends on the permitted crossing maneuvers defined by the intersection

structure. If the lane only allows one maneuver, the target lane of this maneuver

is the only choice. If multiple crossing maneuvers are permitted, the target lane is

again selected randomly. However, the probabilities for all turning directions can

be configured for each combination of possible maneuvers. For example, incoming

lanes that allow driving straight and turning left could have a probability of 20 %

for turning, while lanes that allow driving straight and turning right could have a

30 % chance of turning. This provides limited control over the overall distribution

of turning maneuvers in the generated traffic.

Table 4.1 provides several example configurations of the probabilities assigned

to each turning combination and the resulting absolute turning probabilities among

all vehicles. The maneuver directions straight, left, and right are denoted by the

4.2 Traffic Generation 50

letters s, l, and r. For a given combination c of possible directions, the probability

to select the turning direction d is called P(d | c). Observe that for the unique slr

combination, two probabilities must be defined.

Configured probabilities Absolute probabilities
P(l | sl) P(r | sr) P(l/r | slr) P(s) P(l) P(r)

0 0 0/0 1 0 0
1 1 0.5/0.5 0 0.5 0.5
1 0 1/0 0.3 0.6 0

0.1 0.1 0.05/0.05 0.9 0.05 0.05
0.2 0.3 0.2/0.3 0.6 0.13 0.2

Table 4.1 – Distribution of turning maneuvers in a 2x4 scenario for different
probability configurations. The 2x4 scenario has two lanes for each of the
combinations sl, sr, and slr (cf. Figure 4.1b). This enables a configuration like
the one shown in row 2, where all vehicles perform turning maneuvers and
none drive straight. Note that it is not possible to make all vehicles turn in
the same direction, e.g. left, because the traffic is distributed evenly over all
lanes and the two sr lanes do not allow turning left (cf. row 3). The setting
P(l | sl) = 1 effectively turns the intersection into the 2x4_L version.

To calculate the absolute probability of a vehicle performing a crossing maneuver

in direction d, let C denote the set of direction combinations that include d, and

nc for c ∈ C denote the number of lanes in the scenario that permit exactly the

combination c. The absolute probability is then calculated as

P(d) =
∑

c∈C

nc

ni
· P(d | c). (4.2)

For example, the probability to turn right for the configuration shown in the last row

of Table 4.1 is

P(r) =
2
6
· P(r | sr) +

2
6
· P(r | slr) =

2
6
· 0.3+

2
6
· 0.3= 0.2, (4.3)

with C = {sr, slr}, nsr = nslr = 2, and ni = 6.

Just like the intersection scenario generation, the definition of simulated traffic

requires a number of additional parameters and settings that are independent of

the way individual routes are scheduled and that always have the same values.

Most importantly, the vehicle type needs to be specified. For all simulations, every

vehicle has the default vehicle type of the used SUMO version, which has a maximum

acceleration of 2.6 m/s2, a maximum deceleration of 4.5 m/s2, and a rectangular

shape that is 5 m long and 1.8 m wide. Because the speed limit on all lanes in every

network is at most 13.89 m/s, this is used as the maximum speed of the vehicles.

Another important simulation setting is the car-following model used by SUMO

to control the desired speed, safety gap, and acceleration of each vehicle in each

4.3 Simulation Parameters 51

time step. Here, SUMO’s standard system that implements the car-following model

presented by Krauß [23] is used. The exact implementation differs slightly from the

original specification because the developers of SUMO applied slight modifications

in order to preserve its safety properties in the simulation environment.

Finally, the definition of seeds for the random number generator that is used for

traffic generation (in the following called traffic seeds) should be mentioned. It is

designed to be independent of the seed used by the simulation framework at runtime

to allow for multiple repetitions of the same simulation settings with the same traffic

for different runtime seeds. The reason for this is that the traffic seed generally has

a much larger impact on the outcome of the simulation because two different traffic

seeds lead to completely different routes that could potentially interact in vastly

different ways.

4.3 Simulation Parameters

Veins offers a multitude of configuration options to simulate the different aspects

of communicating vehicles at various levels of detail and realism. Especially the

modeling of the wireless communication can have a great influence on the simulation

outcome since the coordination protocol relies on the vehicles having sufficient

knowledge about the traffic situation at the intersection. Apart from that, certain

idealizing assumptions can be broken by introducing random errors and deviations

in order to simulate the vehicle behavior under less than perfect conditions.

This section presents the main simulation parameters used to control the realism

aspects of the performance evaluation. Additionally, it provides an overview of the

remaining parameters that are relevant for analyzing the simulation results.

Communication Model

As outlined in the introduction to the simulation framework (Section 2.3), the

network simulator OMNeT++ provides mechanisms for sending messages via highly

customizable channels, and Veins provides several models for simulating wireless

communication using this functionality. These facilities are used to define a number

of communication models that simulate different levels of realism.

The most basic communication model does not use any of the aforementioned

features. Instead, it simulates perfect communication without errors, delay, or loss of

information, i.e., messages arrive in the same simulation time step in which they

are sent. This model is used for validation purposes and serves as a baseline for

evaluating more realistic models.

The perfect communication model is a special case of the unit disk model. The

unit disk communication model has an additional communication range parameter r

4.3 Simulation Parameters 52

that specifies the maximum range at which two vehicles can communicate in meters.

The distance between two vehicles is measured as the distance between the center

points of the rectangles that represent their shapes. Whenever a broadcast message

is sent, all vehicles with a distance ≤ r to the sender receive the message instantly

and without errors, just as before. All other vehicles do not receive the message.

The perfect communication model can be seen as a unit disk model with r =∞.

This model is useful for simulating a limited communication range that could be

caused by attenuation effects on wireless signals, for example.

Veins provides the simple path loss communication model that utilizes the simu-

lated wireless communication stack and implements a free-space path loss model

with additional pass loss exponent α. A value of α= 2 corresponds to the regular

Friis path loss formula, larger values lead to stronger attenuation, and smaller values

to less attenuation. Typical values for modeling outdoor environments range from

α = 2 to α = 4. The effects of this model are a signal attenuation that increases

with the square of the distance between the sending and receiving vehicles and

a small delay simulating the time that a message requires to reach the receiving

vehicle when traveling at the speed of light. The attenuation is used by Veins to

calculate probabilities for losing messages; naturally, the probability for not receiving

a strongly attenuated signal is larger.

Another wireless model from Veins is the obstacle shadowing model. It was

introduced by Sommer et al. [24] to model attenuation effects of obstacles such as

buildings in the line of sight between the sending and the receiving vehicle. The

model was developed to work with the Veins IVC stack and was validated against

measurements from real-world experiments. In the simulation, buildings are simple

polygons and the attenuation strength is calculated based on the number of times

a signal passes through the walls of buildings and the distance it travels inside of

the buildings. These two factors are parameterized so that the simulation can be

configured to model multiple building types with different attenuation characteristics.

However, this is meant to be used for calibrating the model for very specific

buildings and it is difficult to define suitable settings for a wide range of general

obstacle conditions. Instead, the obstacle shadowing model is adopted for the

simulations as follows: The attenuation parameters are configured such that buildings

block all messages that travel through them. The intersection scenario generation is

extended to add a square-shaped building between each pair of neighboring roads,

as depicted in Figure 4.2. Instead of using a configurable attenuation strength, the

distance dB between the buildings and the roads is used as a simulation parameter to

control the influence that buildings have on the communication. With a side length

of 100 m, the buildings are large enough that even for small values of dB, vehicles at

the outer ends of neighboring lanes cannot communicate.

4.3 Simulation Parameters 53

dB

dB
100 m

100 m

Figure 4.2 – Placement of buildings in the simulation scenario. Buildings are
placed the same way on all four sides of the intersection. The dotted line shows
the line of sight between two vehicles whose communication is blocked by the
building. The vehicles connected by the dashed line can exchange messages
without being affected by the building.

Both the simple path loss and the obstacle shadowing model use the simulated

IVC stack implementation of Veins. This means that both introduce a propagation

delay proportional to the transmission distance, and a small processing delay that

simulates the time required by the lower communication layers to perform the

transmission on the sending and receiving vehicles. Because of the small size of

the coordination messages and the relatively small communication distances in

the simulation scenarios, these effects usually amount to delays of less than 1 ms

between the vehicle applications of the sender and receiver sending and processing

the message, respectively. Nevertheless, they contribute to the realistic simulation

of wireless communication. Veins also allows to use both of these models at the

same time so that messages that are not blocked by a building are still affected by

attenuation from free space path loss. This is the most realistic configuration of the

communication model parameters.

Processing Delay

The implemented communication protocol, consisting of only four messages which

are always broadcast and neither validated nor answered, is extremely simplistic.

Because a reliable communication is generally essential for the safety of a distributed

coordination system, real implementations of such applications feature sophisticated

communication protocols to ensure maximum reliability. Such protocols typically

have to meet various requirements and accomplish this by exchanging more in-

4.3 Simulation Parameters 54

formation, sending messages more frequently, and forming flexible networks as

communication infrastructure [25]. Common techniques for ensuring high reliability

are acknowledgment messages and repeat requests, while other requirements like

security, for example, are met with more protocol adjustments like mechanisms for

authentication and encryption. All of these additional factors contribute to commu-

nication and processing overhead, ultimately leading to a larger communicational

delay.

To take this into account in the simulations, a processing delay parameter t is

introduced. It is implemented by making the vehicle application wait t seconds before

processing a received message. The application is not aware of any messages that are

currently being processed because this would require significant modifications of the

controller implementation that would likely cause changes of the vehicle behavior

and obscure the effects of the processing delay. Note that this delay is only applied

after a message was successfully received. This means that all delay introduced by

the communication model, i.e., the simple path loss and obstacle shadowing models,

still occurs if one of these models is used, even if the processing delay is set to t = 0.

Sensor Error

The intersection coordination protocol uses positional information of other vehicles

to decide whether a planned maneuver is safe. More specifically, the potential

collision check pc uses the lane positions of vehicles on conflicting lanes to detect

potential collisions (see Section 3.3). Therefore, the way this information is acquired

is relevant to the safety of the protocol.

The implemented traffic model interface provides direct access to the positions of

other vehicles, just like the assumption of perfect sensor information in the abstract

model suggests. In reality, however, on-board sensors of vehicles cannot be expected

to display such accuracy. Because the lane positions of other vehicles are perceived

directly through the ego vehicle’s sensors instead of being communicated like the

claims and reservations, this aspect is not affected by the communication model and

processing delay parameters. To simulate the inaccuracy of the sensor information,

a sensor error parameter e is introduced. Whenever the vehicle application requests

positional information of another vehicle, a random error is added to the real value by

the traffic model interface. The error value is normally distributed with mean 0 and

standard deviation e. A standard deviation of e = 0 denotes the perfect information

setting. Thereby, over- and underestimations of the actual vehicle positions are

equally possible and small errors are more probable than large errors, which are

reasonable properties to assume.

4.3 Simulation Parameters 55

Artificial Message Loss

In addition to the realistic wireless communication models that can already cause

the loss of messages, a separate, artificial message loss parameter p is introduced.

Here, p simply specifies the probability for ignoring a message that was received

successfully. A setting of p = 0 has no effect while p = 1 leads to all messages being

blocked, effectively eliminating all communication possibilities of the vehicles. The

purpose of this parameter is mainly the isolated investigation of the effect that missing

information has on the controller’s safety performance. In this regard, its advantage

over the realistic communication models is that it is completely independent of the

relative vehicle positions and the structure of the simulation scenario.

Other Parameters

There are several other relevant simulation parameters that are not as interesting

for the performance evaluation but should be addressed nevertheless. First of all,

the simulation step size of SUMO is set to 0.1 s. Thereby, all vehicle positions are

updated ten times per simulated second. This value is small enough that the vehicles’

trajectories appear smooth and their microscopic behavior can be analyzed, but not

so small that it significantly decreases the simulation speed. Note that OMNeT++
still simulates all events at their own, arbitrary time scales; vehicles just do not

change their positions between two SUMO time steps.

Unless stated otherwise, the controller trigger interval is also set to 0.1 s. This is a

reasonable rate of sending coordination messages because safety-critical information

should be exchanged frequently and modern hardware can offer the necessary

performance. Real implementations of communication protocols often demand even

higher frequencies around 50 Hz [25] and experiments show that state information

updates at the order of 10 Hz can suffice for successful collision avoidance [14], [15].
However, a trigger frequency that is higher than the frequency of position updates is

not really sensible because it would lead to multiple triggers for the same vehicle

positions.

The crossing controller uses three constants dc , tc , and tcr that affect the vehicles’

behavior and require appropriate values. dc specifies the distance to the intersection

at which a vehicle starts the coordination procedure and is used by the crossing

ahead check ca(ego). Given that the vehicle characteristics and scenario structure are

known, a value of dc = 30 m seems reasonable: The maximum allowed speed on the

intersection’s incoming lanes is 13.89 m/s. Assuming that the vehicle continues to

travel at this speed when it comes within coordination range, it still has 30/13.89≈
2.16 seconds before its safety envelope would enter the intersection and it would be

forced to brake if it did not place a reservation by that time. This time should be more

than sufficient to negotiate a maneuver because the controller is triggered at least 20

4.4 Performance Metrics 56

times and usually requires at most 4 triggers to place a reservation if no other vehicles

cause potential collisions. If, however, no reservation can be placed, the vehicle will

have to slow down. In this case, there is still enough room to do so using the regular,

smooth deceleration rather than applying the full brake power. Furthermore, at

maximum speed, the braking distance is approximately (13.89)2/(4.5 · 2)≈ 21.4 m

(recall that the maximum deceleration is 4.5 m/s2). This means that vehicles will be

within 30+ 21.4= 51.4 m of the intersection when sending their first coordination

message, which keeps the communication range requirement relatively low.

Finding suitable values for the time thresholds tc and tcr is more straightforward.

tc specifies the maximum time a claim can be active until it must be turned into a

reservation or withdrawn if the former is not possible. It was originally introduced as

a precaution to avoid deadlocks [1] and is used in the implementation for the same

purpose by deleting outdated traffic information after some time in case an rc or

wd_cc message is not received. To give the vehicle that sent this message sufficient

time to finish its maneuver, a value of tc = 5 s is used. This value is large enough

that many controller triggers can occur and vehicles can move significant distances

so that it is safe to delete the claim information.

Similarly, tcr specifies the maximum time a reservation may be active before it

has to be withdrawn. It has the same purpose and is implemented the same way as

tc . However, this value can be determined more accurately by calculating the worst-

case duration of a crossing maneuver because all lengths of internal lanes, speed

limits, and the maximum acceleration value are accessible. Simulating a vehicle

that performs the longest possible crossing maneuver, starting at the maximum

distance from the intersection according to dc and accelerating from 0 m/s, yields a

reasonably accurate estimation of the maximum crossing maneuver duration. Among

the investigated simulation scenarios, no crossing maneuver takes significantly more

time than 6 s. Therefore, a threshold of tcr = 7.5 s seems to be a reasonable upper

bound. Note that increasing this threshold should not be detrimental to the safety of

the protocol because it only makes vehicles that have not received a relevant wd_rc

message wait a few seconds longer.

4.4 Performance Metrics

To assess the performance of the crossing controller by analyzing the simulation

output, suitable metrics are required. These metrics are focused on the safety aspects

because safety is the main promise of the controller and, therefore, the measure by

which it is evaluated. Other metrics for indicating efficiency are also considered to

gain a better understanding of the simulated system.

4.4 Performance Metrics 57

Collision Count

The collision count is the most straightforward safety metric. It is determined by

counting the physical collisions that occur during a simulation run. Collisions are

found by overlapping the vehicles’ rectangular shapes in each SUMO time step. If a

collision between the same vehicles is detected in multiple consecutive time steps,

it is only counted once. Recall that no further coordination actions are taken by

vehicles that have already started their crossing maneuver; colliding vehicles will

simply pass through each other and finish their maneuver as if nothing happened.

The total collision count can be averaged over the number of vehicles to obtain a

relative collision rate. This is useful for comparing simulation runs with different

traffic demand parameters.

Note that if the crossing controller works as intended, there should not be any

collisions at all. Therefore, this metric is most useful for finding simulation parameter

thresholds at which the first collisions occur and estimating the impact of parameter

values beyond these thresholds. The occurrence of the first collision is the point at

which the controller is definitely not working properly and cannot provide the same

level of safety as in the abstract model.

Relative Velocity

When a collision is detected, the relative velocity of the colliding vehicles can be

determined. To this end, the velocity of each vehicle is represented by a two-

dimensional vector that points in the vehicle’s driving direction and whose length

is the vehicle’s current speed. The relative crash velocity is then computed as the

length of the difference between the two vehicles’ velocity vectors, as illustrated in

Figure 4.3.

In order to increase the impact of high-speed collisions on the metric’s value,

each recorded relative velocity can be squared. This is reasonable to do because

the kinetic energy of a moving object is proportional to the square of its velocity,

making it feasible to use this metric as a measure of crash severity. The squared and

accumulated crash velocity was also used by Dresner and Stone [12] to evaluate the

effect of their safety measures in their simulations. Similar to the collision count, the

accumulated relative velocity can also be divided by the number of vehicles to obtain

a quantity that is comparable across simulation runs. and can be interpreted as a

kind of risk for each vehicle. Taking the average (squared) velocity over all collisions

instead provides another perspective that is independent of the number of vehicles

and estimates the overall severity of collisions in the scenario more generally.

The relative velocity metric is only useful if there are collisions to begin with.

However, it is more informative than the plain number of collisions and can be used

to gain a deeper understanding of the collision characteristics, enabling a better

4.4 Performance Metrics 58

A

vA

B

vB

vA

vB

−vB

vA− vB

Figure 4.3 – Determining the relative velocity of a collision. Vehicles A and
B collide while driving at speeds ‖vA‖2 and ‖vB‖2, respectively. The relative
velocity is then determined as ‖vA− vB‖2. This calculation is performed in the
first time step the collision is detected.

evaluation of the coordination protocol’s weaknesses and their causes. Additionally,

it might be useful for comparing simulation results where the total collision counts

are very similar.

Reservation Conflicts

For evaluating the controller’s performance without the need for actual collisions,

the reservation conflict metric is used. Basically, a reservation conflict occurs when

two vehicles have active reservations on conflicting internal lanes at the same time.

It can be detected in the time step in which the second vehicle places its reservation

and it exists until the first vehicle withdraws its reservation. During this time, the

vehicles may or may not collide; outside of it, however, collisions are impossible

by definition of the foe matrix that specifies the lane conflicts. Therefore, fewer

reservation conflicts generally imply fewer opportunities for collisions.

However, the metric can be differentiated further to provide more meaningful

information: The coordination protocol allows reservation conflicts to occur when

one of the vehicles has passed its respective clearance position. In this case, a

collision is impossible and it is safe for the second vehicle to place its reservation and

start the crossing maneuver. This is classified as a weak reservation conflict. Weak

conflicts do not threaten the safety of the involved vehicles; on the contrary, they

4.4 Performance Metrics 59

can be indicative of a precise, well-timed coordination and reduce the waiting times

of the vehicles.

If, on the other hand, both vehicles are still ahead of their respective clearance

positions, a collision cannot be ruled out and a strong reservation conflict is registered.

The occurrence of a strong conflict is evidence that the coordination protocol does

not work as intended because it is a direct violation of the safety property Safe∗ as

defined in Equation 3.5. This is convenient and extremely useful for the evaluation

because it directly corresponds to the safety property that was proven to hold for

the abstract controller.

Using these concepts for safety estimation yields various interesting metrics,

especially when they are used in combination. For example, the relative frequency

of weak/strong conflicts among all reservation conflicts can indicate how precisely

crossing maneuvers are coordinated, while the total number of strong conflicts shows

how often the protocol is violated. Relating the number of strong conflicts to the

number of collisions can provide an estimation of how dangerous such conflicts

are; if the risk for a collision in case of a strong conflict is very high, this could be

a serious weakness of the coordination protocol. All of this is possible because of

the hierarchical ordering of the safety metrics: If no reservation conflicts occur, all

maneuvers are perfectly safe. Occurring conflicts are categorized into weak and

strong conflicts, of which only strong conflicts allow collisions. Detected collisions

can, in turn, be evaluated and compared by analyzing the (squared) relative velocity.

Other Metrics

In addition to the safety metrics, a number of other simulation outputs that are

mainly related to efficiency are considered. They provide useful information for

finding the causes of specific effects introduced by the simulation parameters and

understanding the overall vehicle behavior.

To start with, the trip times of all vehicles in a simulation run are recorded.

Because the exact lengths of the routes of all vehicles are different, the individual

times and their average value are not really meaningful; the average trip time can

only serve as a rough estimation of the intersection efficiency. However, the minimum

and maximum times as well as the standard deviation can be useful for detecting

irregular behavior and profiling the trip characteristics.

For observing the communication behavior, all sent and received coordination

messages are logged. Message traffic is an important efficiency metric because in

VANET research, keeping the wireless traffic low to avoid channel congestion and

interference is typically one of the major challenges. Again, statistic values like the

minimum and maximum number of sent or received messages are likely to be more

useful than individual values. The coordination messages are more directly related

4.4 Performance Metrics 60

to the vehicle controller behavior than trip times and can provide more detailed

information on the controller’s reaction to imperfect conditions.

Chapter 5

Evaluation

Both the controller implementation process and the subsequent simulation studies

reveal various advantages and disadvantages of the abstract approach. While the

findings of the implementation process show that the abstract controller definition

makes it very adaptable but also introduces its own challenges, the simulations

focus more on the influence of realism aspects and indicate that lifting the idealizing

assumptions has a negative effect on the controller’s safety.

In this chapter, I present and discuss these results in detail, focusing on the

simulation studies. Section 5.1 provides a summary of the practical problems en-

countered during the implementation process and draws conclusions about their

implications. Section 5.2 presents the simulation studies and analyzes their results

to assess the impact of the parameters on the controller’s performance. This is the

main part of the chapter.

5.1 Implementation and Abstraction Level

The implementation of the crossing controller and its traffic interface revealed a

number of design challenges and practical problems that are not only relevant for

the simulations but also in the context of a real-world implementation.

The abstract nature of the controller definition leaves a large amount of design

freedom as it does not specify execution rules, a communication protocol, or actual

vehicle control inputs. The coordination protocol and controller behavior, however,

are rather clear and intuitive. This makes it easy to design a control system and adapt

the controller to work with existing components, facilitating a flexible, modular

architecture.

But the abstraction level in combination with the precise, mathematical formal-

ization of the system also introduces some intricacies that can cause problems when

they are not detected and dealt with. For the set of concrete implementation design

61

5.1 Implementation and Abstraction Level 62

decisions made in this thesis, these problems manifest themselves mostly in blocked

intersections, as presented in Section 3.4. It is likely that a different set of decisions

in another application scenario would lead to other problems having different effects.

However, the practical problems discussed here are representative of a possibly

larger group of similar complications that reveal some inherent weaknesses of the

abstract controller definition.

Starting with the livelock problem that was caused by non-atomic access to the

crossing segments, the first of these weaknesses becomes obvious. It is clear that

this behavior is closely related to the implemented execution model and would have

occurred less frequently or not at all if a different model had been implemented. In

this case, the design freedom is actually problematic because depending on the deci-

sion made in the implementation process, the controller may not work as expected,

even if the employed execution model handles the automaton semantics correctly.

Therefore, the lack of an execution model in the abstract controller definition, which

is the reason for the design freedom, represents a major disadvantage of the abstract

model.

Furthermore, this is part of a more general problem: Because there is no concrete

execution model defined, the safety property of the controller formally holds for

any model that adheres to the automaton semantics. Thus, it is impossible to detect

problems such as the aforementioned livelock within the abstract model, where

the vehicle controller is originally defined. This shows that additional properties

besides safety, such as liveness, are not only favorable but necessary in order to take

advantage of the benefits of the abstract specification approach.

The on crossing check oc(ego) also caused an implementation problem that has a

similar origin. In addition to the execution model, the precise formalization of the

UMLSL formulas and their interpretation are involved here. Recall that the problem

with the on crossing check was caused by the formula oc(ego) being a condition

for placing a reservation but also requiring the ego vehicle to have entered the

intersection to be satisfied. Because in the simulation environment, vehicles have to

place their reservations before entering the intersection, the requirements formed a

cyclic condition that could never be satisfied.

In the abstract model, a dedicated distance controller is responsible for setting

vehicle control inputs and ensuring that vehicles do not enter an intersection without

a reservation. However, it is not defined explicitly and just assumed to work properly;

its behavior in this specific situation is not obvious but can be assumed to allow

entering the intersection the moment the reservation is about to be placed. This

is an intricacy of the mathematical formalization that does not translate well into

less abstract situations with a concrete execution model. The problem with the on

crossing check itself is not very serious and was fixed in the implementation easily,

5.2 Simulation Results 63

but it represents another group of problems to be aware of when implementing a

controller defined in the abstract model.

The two last problems discussed in Section 3.4 occurred when coordination

messages were received with a delay or were lost completely. Obviously, the lack of

a communication model and mechanisms for dealing with unreliable information

is the main reason why such events cause problems. Here, it is the developers’ job

to implement a suitable communication protocol that ensures timely and reliable

traffic updates. This freedom of choosing a communication protocol and designing

an appropriate representation of the relevant traffic and coordination information

is a very useful property of the abstract model and can, evidently, be used to solve

these two problems. However, defining such mechanisms is essential because the

controller itself is very susceptible to delayed or missing information; in both cases,

the observed result was a completely blocked intersection.

To summarize this discussion, one can say that the great freedom in designing

the components of a concrete implementation of the controller has both positive

and negative effects. In general, the high level of abstraction facilitates a modular

design that is easy to understand and can incorporate already existing solutions for

specific tasks, such as a communication protocol. However, the abstract model has

its intricacies that can cause problems if they are not considered. Especially the lack

of an execution model for the controller automaton can be problematic to the point

where the automaton itself has to be adjusted in order to make it work properly. In

most of these cases, though, it is possible to find a solution that is still reasonably

close to the original abstract definition.

5.2 Simulation Results

Having discussed and resolved the implementation issues, the controller’s perfor-

mance can be evaluated through simulations. To this end, I conducted extensive

simulation studies to investigate the effects of the previously introduced parameters.

The results of these simulations are presented and evaluated in this section, starting

with a baseline configuration that represents the least realistic scenario and that was

also used for validation purposes. Afterwards, each of the parameters is studied indi-

vidually in order to assess their impact independently of each other and of possible

interactions. Finally, combinations of selected parameter settings are investigated to

find such interactions and compare the severity of individual effects.

5.2.1 Individual Parameters

First of all, an appropriate selection of simulation scenarios must be defined. Because

urban intersections are highly diverse, these scenarios should cover a wide range

5.2 Simulation Results 64

of intersection layouts. The simulation scenarios in most related studies focus on

symmetrical four-way intersections without dedicated turning lanes [11]–[13], [16],
[17]; the majority of these consider intersection sizes between 2×2 and 6×6. Using

the scenario generation method described in Section 4.1, it is possible to create

arbitrary n×m intersections with optional left-turning lanes as well as their T-junction

variations. Additionally, the probabilities for turning maneuvers can be configured

to some extent. In the related studies that allow turning maneuvers and provide

turning probabilities, the absolute probabilities are specified as 90 %/5 %/5 %[12],
66.6 %/16.6 %/16.6 %[13], and 70 %/20 %/10 %[17] for driving straight/right/left,

respectively. Assuming that these probabilities represent somewhat realistic urban

traffic behavior, the simulation scenarios here are configured to use similar turning

probabilities. A list of all scenarios with relative and absolute probabilities is provided

in Table 5.1.

Configured probabilities Absolute probabilities
Scenario P(l | sl) P(r | sr) P(l/r | slr) P(s) P(l) P(r)

2x2 - - 0.15/0.15 0.7 0.15 0.15
4x4 0.3 0.3 - 0.7 0.15 0.15
6x6 0.45 0.45 - 0.7 0.15 0.15
8x8 0.6 0.6 - 0.7 0.15 0.15

2x2_T 0.25 0.25 - 0.5 0.25 0.25
4x4_T 0.5 0.5 - 0.5 0.25 0.25

6x6_T_1 0.5 0.5 - 0.5 0.16 0.27
6x6_T_2 0.5 0.5 - 0.5 0.27 0.16
8x8_T 0.75 0.75 - 0.5416 0.22916 0.22916
4x4_L - 0.3 - 0.5 0.35 0.15
6x6_L - 0.45 - 0.516 0.3 0.15
8x8_L - 0.6 - 0.6 0.25 0.15
2x4 0.3 0.3 0.15/0.15 0.7 0.15 0.15
2x6 0.45 0.45 0.15/0.15 0.7 0.15 0.15
2x8 0.6 0.6 0.15/0.15 0.7 0.15 0.15
4x6 0.375 0.375 - 0.7 0.15 0.15
4x8 0.45 0.45 - 0.7 0.15 0.15
6x8 0.525 0.525 - 0.7 0.15 0.15

Table 5.1 – All considered simulation scenarios with their turning probability
settings (see Table 4.1 for an explanation of the notation). There are two
versions of the 6x6_T scenario, one with the middle lane of the single, perpen-
dicular approach turning right, and a second one with this lane turning left.
The 2x2_T scenario is the only one with an lr lane, which is why the column
for P(l | lr) is omitted. Its value for the 2x2_T scenario is 0.5. Note that a
2x2_L scenario does not make sense because all vehicles would have to turn
left. The turning probabilities in all scenarios are defined to be as comparable
as possible.

All of these scenarios were used for validation and for the baseline simulation. In

this simulation, which represents the least realistic configuration, a perfect commu-

5.2 Simulation Results 65

nication model with no additional parameters introducing errors or delay was used.

The only simulation parameter was the traffic demand D, for which values from

200 to 800 veh/(h lane) in steps of 50 were simulated for each intersection scenario.

These demand values are comparable to related work, where the maximum traffic de-

mand ranges between 500 veh/(h lane)[16] and 1200 veh/(h lane)[12]. Note that

most of these simulation studies were focused on efficiency in terms of intersection

throughput and vehicle waiting time, wherefore their management systems could

handle relatively large traffic volumes.

Each simulation run was repeated 200 times; two repetitions with different

runtime seeds for 100 different random traffic seeds. The insertion time frame T

was set to 120 s, i.e., the minimum vehicle insertion times were distributed evenly

over the first two minutes of each simulation run. These were the default settings

for all other simulations as well.

The main result of this simulation is quite simple: In the least realistic con-

figuration, the crossing controller works exactly as intended and provides perfect

safety. There were no recorded strong reservation conflicts or even collisions in any

simulation run and all vehicles were able to perform their crossing maneuver, i.e.,

there were no blocked intersections. Additionally, the number of sent coordination

messages was exactly three for all vehicles: One cc message to place the claim, one

rc message to turn the claim into a reservation, and one wd_rc message to withdraw

the reservation after finishing the crossing maneuver. There was also a relatively

large number of weak reservation conflicts, indicating that the coordination and

communication are precise enough to allow many maneuvers to start as soon as

the respective internal lane is clear, even if another vehicle still has a conflicting

reservation.

Figure 5.1 displays the average number of reservation conflicts per vehicle for

all scenarios. Among the different intersection layouts, there is a general trend

towards a higher number of conflicts for larger numbers of incoming lanes. This is

not surprising because a larger number of conflicts between internal lanes does not

only increase the total number of reservation conflicts (recall that more lanes lead

to a larger total number of vehicles) but also the potential of any individual vehicle

to be involved in multiple conflicts. Comparing the different scenario variations, it

stands out that in all cases, the nxn_L version has a larger number of conflicts than

the basic nxn scenario, while the nxn_T variants have the lowest conflict numbers

among all scenarios. The reason for this is that left-turning maneuvers belong to the

longest internal lanes and have the highest number of foes; both of these properties

increase the potential for weak reservation conflicts involving left turns. On the

contrary, the T-junction variants have a much lower number of conflicts among their

internal lanes. In scenarios with more than one incoming lane per direction (i.e., all

nxn_T scenarios except 2x2_T), many of the straight maneuvers and one right turn

5.2 Simulation Results 66

0.25

0.50

0.75

1.00

1.25

1.50 2x2
2x2_T

2x4
2x6

2x8 4x4
4x4_L

4x4_T
4x6

4x8

200 300 400 500 600 700 800

0.25

0.50

0.75

1.00

1.25

1.50 6x6
6x6_L

6x6_T_1
6x6_T_2

6x8

200 300 400 500 600 700 800

8x8 8x8_L 8x8_T

Traffic demand D [veh/(h lane)]

N
um

be
r

of
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e

Figure 5.1 – Number of reservation conflicts per vehicle in the baseline simu-
lation. Each data point represents the number of conflicts averaged over all
vehicles and the 200 repetitions. The shaded areas around the graphs mark the
95 % confidence intervals. Note that all recorded conflicts are weak conflicts.

have no foes at all, which leads to a large fraction of vehicles that are never involved

in any reservation conflict. The asymmetrical nxm scenarios are generally similar to

the basic nxn versions but seem to cause fewer conflicts if the difference between n

and m is large. This can be explained by the vehicle behavior: Vehicles on the minor

approaches must wait relatively long for an opportunity to cross the intersection

because the major approaches support many simultaneous maneuvers blocking the

way. For example, straight driving vehicles on one of the single-lane approaches

in the 2x8 scenario have to wait at least until all eight internal lanes belonging to

straight maneuvers of the major approaches are clear, whereas the vehicles on these

approaches are far less restricted. Naturally, waiting vehicles are not involved in any

reservation conflicts, leading to a generally lower number of conflicts per vehicle.

This effect is less significant for the 4xX scenarios and vanishes in 6x8 due to the

smaller difference between the approaches.

In all scenarios, the number of reservation conflicts initially increases with the

traffic demand level and stagnates at the higher demand levels. This is because

for low traffic demand, the intersection is sparsely populated with vehicles and the

crossing maneuvers do not occur frequently enough to cause many weak reservation

conflicts. Higher traffic demands have the opposite effect and lead to a saturation that

5.2 Simulation Results 67

prevents any further conflicts, sometimes even reducing the number. The demand

level at which this happens is different for each scenario.

The baseline simulation shows that (1) the implemented controller functions

as intended and (2) that the safety property of the abstract crossing controller

definition translates into a more realistic scenario if the controller is implemented

appropriately. While the first result (1) is mainly relevant for the purpose of validation

and verification, result (2) is rather significant because it means that the abstract

approach to define vehicle controllers with provable properties is viable, at least

to some extent. However, the baseline scenario has the most abstract parameter

configuration possible and it is only halfway between the abstract model and a

highly realistic simulation setting. In order to progress towards such more realistic

configurations, the individual simulation parameters are investigated next. For these

simulations, only a representative subset of the intersection scenarios is considered,

namely the 4x4, 4x4_T, 4x4_L, and the 2x4 scenario.

To start with, the perfect communication model is just a special case of the unit

disk model with unlimited communication range r =∞. By limiting this range,

vehicles lose the ability to communicate and coordinate with other vehicles depending

on the distance between them. It is a highly unrealistic assumption that vehicles can

communicate at arbitrary ranges, especially in the urban scenario where various

obstacles can block the line of sight and the high density of transmitting agents can

cause interference, in addition to attenuation effects in wireless transmissions.

As a first approximation of this, I ran simulations for the communication range pa-

rameter r, ranging from 0 m to 200 m. To investigate different levels of traffic volume,

I repeated the simulations for demand values D of 200, 500, and 800 veh/(h lane).

These values will henceforth be referred to as low, medium, and high traffic demand,

respectively.

Figure 5.2 shows the average number of strong reservation conflicts per vehicle

at medium traffic demand. The plots display a number of distinct steps that can be

explained with several communication range thresholds: For range values r from

0 m to the first threshold at about 20 m, the vehicles cannot communicate sufficiently

to avoid conflicts; they are practically unaware of each other’s maneuvers. After this

first threshold, the number of conflicts decreases rapidly because the vehicles are now

capable of coordinating with other vehicles on neighboring approaches. Until the

third threshold at about 55 m, an increasing number of vehicles on the neighboring

roads gets within range, further decreasing the number of conflicts. Observe that

the rate at which this number decreases varies in distinct phases. This is due to the

individual lanes of the neighboring roads coming within range at slightly different

values of r. The second threshold of about 35 m is roughly halfway between the other

thresholds and marks the range value where all lanes on the neighboring approaches

are at least partially in range. At 55 m, another sharp decline of reservation conflicts

5.2 Simulation Results 68

0 25 50 75 100 125 150 175 200
Maximum communication range r [m]

0.0

0.5

1.0

1.5

2.0

St
ro

ng
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e
20 35 55

4x4
4x4_L

4x4_T
2x4

Figure 5.2 – Average number of strong reservation conflicts per vehicle for
medium traffic demand (D = 500 veh/(h lane)). The solid, dashed, and dotted
vertical lines mark the communication range thresholds at 20 m, 35 m, and
55 m, respectively.

20 m 35 m 55 m

Figure 5.3 – Visualization of the rough communication range thresholds in
the 4x4 scenario (not to scale). The solid, dashed, and dotted arcs correspond
to the vertical lines in Figure 5.2.

is visible. This is the range at which it is possible to communicate with vehicles

on the opposite side of the intersection. The number of conflicts then decreases

until about 120 m, where it reaches zero. Because the required communication

range strongly depends on the positions of the sending and receiving vehicles, these

5.2 Simulation Results 69

threshold values are only representatives of intervals in which smooth transitions

between the aforementioned phases occur. Figure 5.3 depicts the 4x4 intersection

with the approximate communication range thresholds.

For the other traffic demand levels, the overall results are very similar. However,

the communication range at which no more conflicts occur is larger for low traffic

demand and smaller for high demand, as shown in Figure 5.4. The reason for this

is that for higher traffic demand, the intersection tends to fill up even if only a few

vehicles manage to coordinate their maneuvers, leading to many waiting vehicles.

These vehicles then require a significantly lower communication range in order to

coordinate effectively so that even more vehicles wait at the intersection and the

number of strong reservation conflicts becomes comparatively small.

0 50 100 150 200
Maximum communication range r [m]

0.0

0.2

0.4

0.6

0.8

1.0

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(a) D = 200 veh/(h lane)

0 50 100 150 200
Maximum communication range r [m]

0

1

2

3

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(b) D = 800 veh/(h lane)

Figure 5.4 – Strong reservation conflicts per vehicle – Comparison of low and
high traffic demand.

Another interesting aspect is that the required communication range for safe

coordination is well below its theoretical upper bound: The largest possible commu-

nication range requirement occurs when two vehicles A, B approach the intersection

from opposite directions and travel at the maximum speed of 13.89 m/s. As outlined

previously, the distance between the front bumper of a vehicle and the intersection

in this situation is about 51.4 m; adding the offset of 2.5 m to the center point of the

vehicle yields a distance of 53.9 m between A’s center and the holding line of the

intersection. The diameter of the intersection is roughly 20 m. In the worst case, the

second vehicle B places its reservation very shortly before A finishes its maneuver.

Note that this is only the worst case for a strong reservation conflict and a collision

is very unlikely in this scenario. Assuming that A requires about 6 s for its crossing

maneuver, B can travel at most 6 · 13.89 = 83.34 m after the first reservation is

placed. If B places its reservation at the first opportunity, i.e., 53.9 m from its holding

line, it was at most 53.9+ 83.34= 137.24 m away from the intersection when the

first reservation was placed. Combining these distances results in a total distance of

53.9+ 20+ 137.24= 211.14 m. Therefore, A requires a communication range that

5.2 Simulation Results 70

covers at most this distance for B to receive the reservation message. The simulation

results, however, suggest that even a range of about 125 m is already sufficient for

safe coordination.

These first results show that the coordination protocol requires a certain mini-

mum communication range to function reliably. The more vehicles with conflicting

maneuvers are within range, the fewer reservation conflicts and collisions occur.

The necessary range depends indirectly on the intersection dimensions, the traffic

demand, and the permitted speed; starting the coordination procedure at a smaller

distance to the intersection naturally lowers the required range. This could also be

influenced by lowering the value of the dc constant but this would eventually force

the vehicles to slow down before entering the intersection, even if there is no need

for coordination.

The simple path loss model of Veins calculates the free-space path loss according to

the transmission distance and the path loss exponent α. In the Veins IVC stack model,

packets are lost if the received transmission power falls below a certain threshold.

Therefore, the simple path loss model effectively limits the communication range of

vehicles in a similar way to the unit disk model because the received power decreases

with increasing distance. However, it also introduces a propagation and processing

delay and provides a much more realistic model of real wireless communication

technology than the simple unit disk model which does not use the IVC stack.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Path loss exponent α

0.0

0.5

1.0

1.5

2.0

St
ro

ng
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e

4x4
4x4_L

4x4_T
2x4

Figure 5.5 – Strong reservation conflicts per vehicle for different path loss
exponents α at medium traffic demand.

5.2 Simulation Results 71

To investigate its effects, I ran simulations for α values between 1 and 5 with the

same remaining settings as before. As can be seen in Figure 5.5, the influence of the

path loss exponent on the number of strong reservation conflicts is almost identical

to that of the communication range parameter r in the unit disk model. The same

applies to all other recorded metrics and traffic demand levels, which emphasizes

that the path loss exponent is essentially just another way to specify a maximum

communication range. Furthermore, the simulated delay seems to have no notable

consequences whatsoever.

Comparing these simulation results to those of the unit disk model, one can

observe that a communication range of about 80 m roughly corresponds to a path

loss exponent of α = 3 and the sufficient communication range of about 120 m is

comparable to a value of α = 2.3. Relating this to the common interpretation of

the exponent yields another interesting result: If a regular, but still very simplified,

free-space path loss with α= 2 is used to model wireless signal attenuation, the re-

sulting communication range is sufficient for the coordination protocol to ensure safe

crossing maneuvers. The protocol only starts to produce collisions for values greater

than about α = 2.7, which is a suitable value to describe outdoor environments with

weak attenuation effects [26]. Therefore, the controller performs reasonably well

under communication conditions that are less than perfect, but it shows increasingly

unsafe behavior if the effective communication range decreases further. Again, a

lower dc value or even a more sophisticated communication protocol could most

likely alleviate this issue.

After having studied the effects of a limited communication range, it is interesting

to investigate the situation where messages are blocked by obstacles in the line of

sight between two vehicles but the communication range is effectively unlimited if

the line of sight is unobstructed. When using the obstacle shadowing communication

model of Veins in combination with obstacles at the roadside, the area in which a

vehicle is able to communicate does not have a fixed, uniform shape but changes

dynamically with the vehicle’s position relative to the obstacles. This models the

situation at urban intersections with buildings and other obstacles more realistically

than the unit disk or simple path loss model. The most realistic configuration would

be a combination of the two models such that messages are lost if they are blocked

by obstacles or experience too high path loss. However, it is important to investigate

the obstacle shadowing model alone first.

To this end, I ran simulations for the dB parameter that specifies the distance

between the buildings and the incoming and outgoing roads in the scenario as

illustrated in Figure 4.2. I chose 2 m as the minimum distance to simulate the case

where the buildings almost reach into the intersection, modeling the worst case

scenario. Using a geometrical construction for the case where two vehicles approach

the intersection on neighboring roads and at their respective maximum distance and

5.2 Simulation Results 72

speed (see communication range parameter), a sufficient building distance of about

dB = 40 m can be determined, which is why I chose a maximum distance slightly

above this value.

0 10 20 30 40
Building distance dB [m]

0.0

0.2

0.4

0.6

0.8

St
ro

ng
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e

4x4
4x4_L

4x4_T
2x4

(a) Strong reservation conflicts

0 10 20 30 40
Building distance dB [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
um

be
r

of
co

lli
si

on
s

pe
r

ve
hi

cl
e

4x4
4x4_L

4x4_T
2x4

(b) Collisions

Figure 5.6 – Strong reservation conflicts and collisions per vehicle for medium
traffic demand.

Figure 5.6 displays the numbers of strong reservation conflicts and collisions per

vehicle for a traffic demand of D = 500 veh/(h lane). Similarly to the communication

range parameters, there is a value for the building distance at which the vehicles

can communicate and coordinate without restrictions. In this scenario, it is at just

above 30 m, which is, again, well below the theoretical upper bound. Apart from

that, the plots show two more interesting results: First, increasing the building

distance just slightly above the minimum value of 2 m drastically decreases the

number of conflicts and collisions. The reason for this is that with a very small

distance, even vehicles that are waiting at the intersection have a highly limited field

of view and their communication with other vehicles on the neighboring approaches

is thereby almost completely obstructed. This prevents effective coordination with

those vehicles in the majority of cases, leading to a relatively large number of strong

reservation conflicts. Due to the intersection geometry and building placement,

however, moving the buildings a small distance further away from the intersection

increases the field of view by a significant amount, as illustrated by Figure 5.7.

After this initial drop, the numbers of conflicts and collisions decrease more

slowly until they reach zero at around 30 m. Taking a closer look at the curve, a

distinct change of slope at about 22 m becomes obvious, which leads to the next

interesting result. Moving the buildings further away from the intersection generally

improves the chances of successful coordination for an increasing amount of vehicles,

which explains the relatively steady, monotonic decrease of conflicts. However, the

first vehicles that enter the simulation scenario can only coordinate effectively for

large dB values because they send their claim and reservation messages as soon as

5.2 Simulation Results 73

2 m 2 m

5 m 5 m

Figure 5.7 – Effect of increasing the building distance close to its minimum
value. The dashed gray lines mark a building at the minimum distance of dB =
2 m and the corresponding limits of the ego vehicle’s field of view. The solid
black lines indicate the same for a building that is placed 3 m further away
from the roads. Even this small increase leads to a much larger field of view.

their distance to the intersection falls below the threshold value dc . The following

vehicles must wait until their leaders have entered the intersection, due to the

definition of the crossing ahead check ca(ego). If the distance between the first and

the following vehicles is small enough, the followers will start their coordination

procedure at a closer distance to the intersection and, therefore, have better chances

to coordinate successfully. This means that for building distance values between 5

and 22 m, the majority of the reservation conflicts and collisions is caused by the

very first vehicles in the simulation. Plotting the time stamps of strong reservation

conflicts that occurred across all simulation runs in a histogram confirms this, as

Figure 5.8 illustrates using the 4x4 scenario as an example. As a consequence, the

number of conflicts decreases more rapidly as soon as these first vehicles start to

communicate effectively, which happens at a building distance value dB of around

22 m.

Combining these two results, it becomes clear that the effects of obstacles that

prevent successful communication vary greatly depending on the obstacles’ position-

ing and the positions at which the vehicles start to send coordination messages. In

general, the impact of the obstacles decreases when their distance to the intersection

increases. Leaving enough room that vehicles close to the intersection have a line of

sight to large parts the neighboring approaches already prevents most reservation

conflicts in this configuration, but a relatively large distance is required to ensure

the safety of all vehicles.

It must be mentioned here that this result strongly depends on the design deci-

sions made for the controller implementation: The main reasons for the problematic

5.2 Simulation Results 74

11.0 23.4 35.8 48.2 60.6 73.0 85.5 97.9 110.3 122.7 135.1
Time stamps of strong reservation conflicts [s]

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

dB = 5.0

dB = 11.0

dB = 17.0

Figure 5.8 – Distribution of strong reservation conflict times in the 4x4 scenario
at medium traffic demand. Each triple of bars specifies the total number of
time stamps between the two enclosing simulation time values that occurred
across all 200 repetitions.

coordination between the first vehicles in the simulation are the early placement

of reservations and the missing possibility to update traffic information and abort

the maneuver at a later point in time. Interpreting the controller automaton differ-

ently or using a more reliable technique for synchronizing traffic information could

improve the situation significantly. Therefore, the relatively low level of safety in

the presence of communication-blocking obstacles can be attributed to the simpli-

fied communication protocol used for this implementation and is not necessarily a

weakness of the crossing controller itself.

Apart from that, the simulation results allow some additional observations that

have not been discussed yet. All the above findings are based on a medium traffic

demand value of D = 500 veh/(h lane). Considering the low and high demand

values as well reveals another interesting effect. As illustrated by Figure 5.9, a low

traffic demand of 200 veh/(h lane) leads to a significantly smaller initial drop and

a generally much larger number of reservation conflicts per vehicle, whereas the

high traffic demand value of 800 veh/(h lane) produces fewer conflicts overall. This

corresponds exactly to the observation that the distance between the first vehicles and

their followers affects the required building distance for effective communication:

If the traffic demand is low, these distances will be larger because the vehicles

are inserted at a lower frequency. Conversely, a higher demand leads to smaller

5.2 Simulation Results 75

0 10 20 30 40
Building distance dB [m]

0.0

0.2

0.4

0.6

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(a) D = 200 veh/(h lane)

0 10 20 30 40
Building distance dB [m]

0.0

0.1

0.2

0.3

0.4

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(b) D = 800 veh/(h lane)

Figure 5.9 – Strong reservation conflicts per vehicle – Comparison of low and
high traffic demand.

distances and, therefore, more effective coordination and fewer conflicts. Relating

the maximum metric values of about 0.8 and 0.4 for the medium and high traffic

demand to the difference between the demand values 500 and 800 veh/(h lane)

leads to rough values of 0.8 · 500= 400 and 0.4 · 800= 320 conflicts per hour and

per lane, confirming that the lower ratio of conflicts in the high demand scenario is

not only caused by the larger total number of vehicles. If these numbers were similar,

it would mean that the initial phase of the simulation causes an equal number of

conflicts for both traffic demands.

Furthermore, the results can be compared to the effects of a limited communi-

cation range, as introduced by the unit disk or simple path loss model. The most

significant difference is that the overall number of strong reservation conflicts per

vehicle is much lower for the building distance parameter than for the communica-

tion range (cf. Figure 5.5, where all scenarios exceed 1 conflict per vehicle), even at

the minimum values of both parameters. This is due to the fact that in the obstacle

shadowing scenario, the communication between vehicles on opposite sides of the

intersection is not restricted, preventing roughly half of all reservation conflicts

and collisions. The impact of this is so large because it not only prevents strong

conflicts between these vehicles, but it also forces some of them to stop and wait at

the intersection, which allows them to communicate better with the neighboring

approaches and, additionally, it gives the following vehicles a chance to close the gap

and improve their coordination as well. This effect is even more prominent in the

4x4_L scenario with the left-turning lanes because vehicles performing a turn to the

left naturally have a higher potential for conflicts with the opposing traffic, causing

both sides to wait more frequently than in the regular 4x4 scenario. That is why

there is a significant difference between the two scenarios in the obstacle shadowing

configuration but not in the unit disk and simple path loss settings. Comparing the

5.2 Simulation Results 76

average trip times in the 4x4 and 4x4_L scenarios confirms this, as can be seen in

Figure 5.10.

0 10 20 30 40
Building distance dB [m]

40

45

50

55

60

65

70

A
ve

ra
ge

tr
ip

ti
m

e
[s
]

4x4 4x4_L

Figure 5.10 – Average trip times in the 4x4 and 4x4_L scenarios at medium
traffic demand.

In contrast, the asymmetrical 2x4 scenario performs worse than before because

the vehicles on the two smaller approaches with only a single lane tend to have much

fewer potential conflicts with each other and, therefore, slow down less frequently.

The 4x4_T variation appears to perform equally well in both the settings with limited

communication range and obstacle shadowing.

This shows that in the presence of obstacles limiting the vehicles’ ability to

communicate based on their relative positions, the intersection structure and the

traffic characteristics can have both positive and negative effects on the controller’s

safety performance. More generally, the purely range-based unit disk and simple

path loss communication models show significant differences to the more realistic,

line of sight-based obstacle shadowing model. In both cases, however, it is likely

that suitable modifications of the communication protocol can solve most of the

occurring coordination problems.

The communication parameters discussed so far only have deterministic effects; a

message is either received by another vehicle or not, depending solely on the relative

positions of the vehicles and obstacles. However, the probability for successfully

receiving a wireless message in reality depends on a multitude of additional factors,

many of which are far less predictable. Apart from that, it is interesting to investigate

5.2 Simulation Results 77

the probability for message loss itself independently to view the impact of unreliable,

asynchronous traffic information from another perspective. The artificial message

loss parameter enables this by introducing the probability p for dropping a received

message as a simulation parameter.

To get a complete view on the effects of this parameter, I ran simulations for the

whole range of probability values from 0 to 1. Because the parameter implementation

uses the random number generator at runtime, unlike the traffic generation that

applies randomness independently of simulation runs, I repeated each run with four

different runtime seeds for 50 random traffic seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Message loss probability p

0.0

0.5

1.0

1.5

2.0

St
ro

ng
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e

4x4
4x4_L

4x4_T
2x4

Figure 5.11 – Strong reservation conflicts per vehicle at medium traffic de-
mand.

Figures 5.11 and 5.12 display the number of strong reservation conflicts and

collisions per vehicle for a medium traffic demand value. The graphs show relatively

clear exponential curves for all intersection scenarios. This may have various causes

that are difficult to differentiate and analyze because of multiple interacting factors

including probabilities for vehicles to execute conflicting maneuvers, the duration of

each crossing maneuver, the type of messages that are lost, and the temporal offset

between vehicle insertions. However, some of these factors can provide at least a

basic understanding of what is happening at the intersection.

To start with, consider two vehicles A, B that plan conflicting crossing maneuvers

and approach the intersection at roughly the same time. The minimal number of

coordination messages that must get lost for a strong reservation conflict to occur

5.2 Simulation Results 78

0.0 0.2 0.4 0.6 0.8 1.0
Message loss probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30
N

um
be

r
of

co
lli

si
on

s
pe

r
ve

hi
cl

e
4x4
4x4_L

4x4_T
2x4

Figure 5.12 – Collisions per vehicle at medium traffic demand.

is two: It can be assumed without loss of generality that vehicle A sends its claim

message cc first. If B receives this message, it will detect the conflict and wait until A

has finished its maneuver before placing its own claim. Therefore, A’s claim message

is the first one that must get lost. The same logic applies to A’s reservation message

rc because A will also be the first vehicle to place its reservation and receiving the

message would cause B to withdraw its claim, again preventing a conflict. Thus, at

least these two messages must be lost; the probability for this is p2.

Adding more vehicles to this scenario makes it much more complicated because it

creates more possibilities for conflicting maneuvers and introduces more constraints

on messages that must get lost for certain conflicts to occur. However, the probability

for any specific combination of conflicting maneuvers will be a polynomial of p whose

degree increases with the number of constraints. Since p is always≤ 1, simultaneous

conflicts of many vehicles are generally less likely to occur than simple conflicts of,

for example, just two vehicles.

Observe that one pair of vehicles can only cause a single reservation conflict

and the number of conflicts in which a specific vehicle is involved is bounded by

a relatively small constant; for instance, the 4x4 scenario has only eight incoming

lanes and most of its internal lanes have an even smaller number of foes. Therefore,

the number of reservation conflicts per vehicle can only exceed 0.5 if many vehicles

are involved in more than one conflict. A possible cause for this could be chains of

conflicts, where the temporal offset between vehicles A, B is relatively large and as

5.2 Simulation Results 79

soon as A finishes its maneuver, another vehicle C has a conflict with B, followed by

a conflict of C and D after B has left the intersection, and so on. Figure 5.11 shows

that the number of conflicts per vehicle only exceeds 0.5 for values of p ≥ 0.6, which

supports these considerations because losing more than half of all messages already

causes extremely unreliable coordination information.

Finally, the number of possible conflict combinations for a set of n vehicles is

roughly equal to the number of subsets of a set with n elements that have a size ≥ 2,

which is 2n−n−1, and the number of such subsets of size exactly k ≤ n is the binomial

coefficient
�n

k

�

. Both of these terms grow rapidly with increasing n. Although these

are only rough approximations of the real number of reservation conflicts that can

possibly occur, they indicate that there is a huge potential for different kinds of

conflicts that may occur if the coordination of the vehicles is unreliable enough. All

of these considerations are major factors causing the exponential behavior displayed

by the graphs.

0.0 0.2 0.4 0.6 0.8 1.0
Message loss probability p

30

40

50

60

70

80

90

100

A
ve

ra
ge

tr
ip

ti
m

e
[s
]

4x4
4x4_L

4x4_T
2x4

Figure 5.13 – Average trip times at medium traffic demand.

Moving on, there is an interesting artifact in Figure 5.12 that also needs to be

discussed: The number of collisions per vehicle does not continue on its exponential

trajectory until the maximum value of p = 1, but shows a much slower increase,

or even a slight decrease, after about p = 0.9. This behavior can be explained by

considering the extreme situation at p = 1: Here, no coordination messages are

received and the vehicles are thereby almost completely unaware of each other. Each

vehicle only keeps its safety distance to the leading vehicle and waits until it has

5.2 Simulation Results 80

entered the intersection until it starts its own crossing maneuver. Therefore, the

vehicles rarely slow down and perform their maneuvers at the maximum possible

speed. This is clearly visible when plotting the average trip times, as can be seen in

Figure 5.13, where the average trip times in all scenarios reach a global minimum

at p = 1. As a consequence, the vehicles spend relatively little time in the conflict

zones of the intersection.

Changing the situation by decreasing the probability for losing messages to 0.95

causes a small fraction of the vehicles to wait after receiving a claim or reservation

message. Those vehicles will then have to accelerate again for their crossing maneu-

ver, increasing the time spent on the intersection. This also slows down all following

vehicles and thereby increases the density of vehicles at the intersection. In turn, the

probability for colliding with one of the vehicles that did not wait increases for at

least the first of the waiting vehicles. Looking at the squared relative velocity of the

collisions confirms this: As illustrated by Figure 5.14, the squared relative collision

velocity differs significantly between p = 0.9 and p = 1. Decreasing the message

loss probability further, however, suffices to make the coordination more effective

and leads to fewer conflicts and collisions.

0.2 0.4 0.6 0.8 1.0
Message loss probability p

125

150

175

200

225

250

275

300

325

A
ve

ra
ge

sq
ua

re
d

re
la

ti
ve

co
lli

si
on

ve
lo

ci
ty
[m

2 /
s2] 4x4

4x4_L
4x4_T
2x4

Figure 5.14 – Average squared relative collision velocity at medium traffic
demand. Note that there are no collisions for p = 1.

To conclude this discussion, it can be said that the loss of coordination messages

is not quite as problematic as could be expected, but causes a tremendous risk of

collisions if very few messages are received. A loss probability below 0.2 only causes

5.2 Simulation Results 81

a small number of reservation conflicts and very few collisions. At this point, message

loss has a greater influence on the average trip time than on the safety of the vehicles.

However, for larger values, its effects can become much more dramatic because a

malfunctioning coordination protocol can lead to many vehicles starting conflicting

maneuvers at the same time. Viewing this from the opposite side, though, receiving

just 20 % of all messages already reduces the risk for a collision significantly. In reality,

sophisticated communication protocols can easily avoid most loss of information

caused by unpredictable effects like random loss of messages.

Comparing this parameter to the previously discussed communication models

and their parameters, the most obvious difference is that the coordination only

provides perfect safety for the minimum message loss probability p = 0. All previous

parameters have a threshold value such that the protocol works without problems

for all values beyond the threshold. This has to do with the direct nature and the

independence of the message loss parameter: Because every single coordination

message is potentially affected, there is nothing to limit the influence of the param-

eter on the effectiveness of the communication. For example, vehicles waiting at

the intersection previously had better chances at communicating successfully; the

message loss parameter is completely independent of the vehicles’ positions and

affects them all the same.

Apart from the communication models and parameters that directly influence

the vehicles’ ability to communicate, there are two more simulation parameters

with different effects. To start with, the sensor error parameter e introduces random

errors to the perception of other vehicles’ positions which are used in the potential

collision check pc to determine whether or not it is safe to place or keep a claim. The

value e specifies the standard deviation of the normally distributed error value that

is determined randomly and added to the perceived position of another vehicle every

time this position is requested by the ego vehicle. This mimics random noise in the

output of the vehicle’s on-board sensors.

I conducted simulations for error values between 0 m and 5 m to also include

unrealistically large errors. Similar to the message loss parameter, which also gener-

ates random numbers at runtime, I used 50 random traffic seeds and repeated each

run four times with different runtime seeds.

As depicted by Figure 5.15, the number of strong reservation conflicts per vehicle

increases linearly with e for values of e ≥ 1 in all scenarios and for low, medium,

and high traffic demand levels. For higher traffic demand, the number of conflicts is

generally larger; this can be explained by the higher density of vehicles that causes

crossing maneuvers to be executed more frequently. A more interesting result is that

across all simulation runs, only a negligible number of collisions occurred, and only

for large parameter values of e > 3. Especially compared to the previous parameters,

this means that strong reservation conflicts have an extremely low risk of actually

5.2 Simulation Results 82

0 1 2 3 4 5
Sensor error e [m]

0.00

0.05

0.10

0.15

0.20
St

ro
ng

co
nfl

ic
ts

pe
r

ve
hi

cl
e 4x4

4x4_L
4x4_T
2x4

(a) D = 200 veh/(h lane)

0 1 2 3 4 5
Sensor error e [m]

0.0

0.1

0.2

0.3

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(b) D = 500 veh/(h lane)

0 1 2 3 4 5
Sensor error e [m]

0.0

0.1

0.2

0.3

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(c) D = 800 veh/(h lane)

Figure 5.15 – Strong reservation conflicts per vehicle for low, medium, and
high traffic demand.

leading to collisions. The reason for this is that the circumstances that could allow a

collision are far less likely to occur than strong reservation conflicts in general: Two

vehicles must place their claims and reservations on conflicting internal lanes when

their distances to the intersection are roughly equal. This means that at least one of

these vehicles must have positive sensor errors large enough that the other vehicle

appears to have already passed its clearance position. Moreover, such an error must

occur in at least two time steps because the potential collision check is performed

several times before a reservation is eventually placed. On the other hand, a strong

reservation conflict can also occur when one of the vehicles is already very close to

its clearance position, in which case only a small sensor error is required. A collision,

however, is almost impossible at this point because this vehicle will have left the

conflict zone before it is reached by the second vehicle. Since the sensor error is

normally distributed, the risk of collisions is extremely small, even though strong

reservation conflicts occur frequently.

Furthermore, the introduced errors are centered around zero, which makes

negative errors that move the perceived vehicle position backwards just as likely as

positive errors. This can cause the opposite effect of vehicles detecting a potential

collision although the vehicle on the foe lane has already passed its clearance position.

5.2 Simulation Results 83

0 1 2 3 4 5
Sensor error e [m]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

N
um

be
r

of
se

nt
m

es
sa

ge
s

pe
r

ve
hi

cl
e 4x4

4x4_L
4x4_T
2x4

(a) Comparison of intersection scenarios

0 1 2 3 4 5
Sensor error e [m]

5

10

15

20

25

30

35

N
um

be
r

of
se

nt
m

es
sa

ge
s

pe
r

ve
hi

cl
e 4x4

Global min.

Global max.

(b) Details of 4x4 scenario

Figure 5.16 – Average number of sent coordination messages per vehicle. The
global minimum and maximum in Figure 5.16b specify the minimum and
maximum number that occurred across all vehicles in all repetitions.

One consequence of this is that vehicles generally have to send more coordination

messages, as illustrated by Figure 5.16. The exact process that causes this behavior

only requires a vehicle to perceive its desired internal lane as free for one time step

and to detect a potential collision in the next step, so that it sends a claim message

only to withdraw the claim one trigger interval later. Each of these events can be

caused by small random errors when all foe vehicles are close to their clearance

positions. They also do not have to occur at a specific time because the potential

collision check is performed in each time step as long as the reservation is not placed.

Together, this explains why the number of sent messages already increases for values

of e < 1, that is, before strong reservation conflicts occur.

Intuitively, one might think that this behavior causes vehicles to slow down and

wait more often because it takes more coordination messages to finally negotiate a

maneuver and place the reservation. As Figure 5.17 shows, however, the average

trip times do not increase at all; in fact, they even decrease slightly. This is the

case because on average, the vehicles are still able to place their reservation quickly

enough that there is no need to slow down or the trip time is not affected significantly.

Looking at Figure 5.16 again, the average number of sent messages is relatively

small: Every vehicle must send at least three messages (cc, rc, and wd_rc), and

the number of messages increases by two (wd_cc and cc again) every time a placed

claim must be withdrawn due to the event described above. Because the vehicle

controller sends one of these messages and performs the corresponding action every

time it is triggered, even withdrawing a claim three times only adds six trigger

intervals to the total time until the reservation is placed, which correspond to 0.6 s.

As this effect is relatively small, and since the trip times of vehicles involved in a

5.2 Simulation Results 84

0 1 2 3 4 5
Sensor error e [m]

40

45

50

55

60

65

70

75

80
A

ve
ra

ge
tr

ip
ti

m
e
[s
]

4x4
4x4_L

4x4_T
2x4

Figure 5.17 – Average trip times at medium traffic demand.

strong reservation conflict are shorter than they would be without the conflict, the

average trip time does not increase.

This is a remarkable difference to the previous parameters, where information

was lost completely instead of just altered by random errors: For example, a message

loss probability of 0.5 caused the average trip time to increase tremendously because

vehicles would frequently miss withdrawal messages and have to wait until their

internal information could be safely deleted, which means a delay of at least tc =
5 s or tcr = 7.5 s, depending on the type of the lost message. With the sensor error

parameter, however, the internal information is always up to date and only the

additionally required sensor information is sometimes unreliable. While the former

significantly increases both the trip time and the risk of collisions, the latter only

leads to effectively harmless violations of the coordination protocol. An extremely

large error value is required here to cause any collisions at all. The only noticeable

effect of the sensor error that negatively affects the controller’s performance is the

increased communication effort, which could be the cause of further problems in a

more realistic scenario or in combination with other parameters.

Finally, the last parameter to be discussed individually is the processing delay.

Its value t specifies a delay between the time a coordination message is received

and the time it is processed, i.e., the receiving vehicle’s internal traffic information

is updated. It mimics the combined effects of communication overhead that could

5.2 Simulation Results 85

be caused by more sophisticated protocols and the computation time required to

interpret and process a message’s content.

Because in reality, this delay value is unlikely to regularly exceed 1 s, I ran

simulations for values between 0 s and 1 s. Each run was repeated for 100 different

random traffic seeds and 2 runtime seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay t [s]

0.00

0.05

0.10

0.15

0.20

0.25

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(a) D = 200 veh/(h lane)

0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay t [s]

0.0

0.2

0.4

0.6

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(b) D = 500 veh/(h lane)

0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay t [s]

0.0

0.2

0.4

0.6

0.8

1.0

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e 4x4
4x4_L

4x4_T
2x4

(c) D = 800 veh/(h lane)

0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay t [s]

0.0

0.1

0.2

0.3

N
um

be
r

of
co

lli
si

on
s

pe
r

ve
hi

cl
e 4x4

4x4_L
4x4_T
2x4

(d) Collisions for D = 500 veh/(h lane)

Figure 5.18 – Strong reservation conflicts and collisions per vehicle – Com-
parison of low, medium, and high traffic demand.

As can be seen in Figure 5.18, the number of strong reservation conflicts per

vehicle increases with the processing delay and also with the traffic demand level.

The same is true for the number of collisions, which shows a relatively high risk

per reservation conflict. However, no conflicts occur for delay values t ≤ 0.1 s. It is

no coincidence that this is exactly the controller trigger interval, as the sequence

diagram in Figure 5.19 illustrates. It shows an exemplary communication between

two vehicles A, B with conflicting maneuvers, where A sends its claim message first.

Due to the processing delay of t1 or t2, B is unaware of this claim the next time

its controller is triggered and it places its own claim, sending the corresponding

message. This message has no effect on A because A’s claim was placed first, giving

it higher priority. Depending on the delay value, B will either withdraw its claim or

not: For a relatively small value like t1, A’s cc message is processed before the next

trigger of B, causing an immediate withdrawal. If, however, t is large enough that B

5.2 Simulation Results 86

τ

τ

τ

τ

δ

A B

cc
cc

wd_cc

rc
rc

t1

t2

Figure 5.19 – Communication sequence diagram of vehicles A, B. Controller
triggers are marked by the thick, horizontal lines on the two vertical axes.
τ denotes the trigger interval and δ is the offset between the two vehicles’
controllers. t1 is a relatively small processing delay, indicated by the dashed,
black lines, that is smaller than τ and causes no serious problems. t2, indicated
by dotted, black lines, is an alternative, larger delay that is greater than τ
and can cause strong reservation conflicts. Only the processing time of the
first cc message is drawn. The propagation delay of messages is only drawn
for completeness and is exaggerated to be visible (without a communication
model, it is 0 s).

is triggered a second time before the message is processed, e.g. t = t2, B will place

its reservation, leading to a strong conflict since A places its own reservation either

way.

This can only occur if the time between receiving and processing a message can

include two controller triggers, i.e., if t ≥ τ. If this does not hold, the worst-case

effect is the withdrawal of a claim, as the example t1 shows. Note that in case the

trigger of B happened before the claim message of A is received, the vehicles would

simply switch their roles due to the negligible propagation delay. As Figure 5.20

clearly shows, increasing the trigger interval also increases the tolerance for larger

processing delay values. This emphasizes the relation between the two parameters.

Naturally, the probability for strong reservation conflicts increases with the processing

delay because events as illustrated for t2 in Figure 5.19 become less restricted in the

time at which the first claim message is sent.

5.2 Simulation Results 87

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Controller trigger interval τ [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

es
sa

ge
pr

oc
es

si
ng

de
la

y
t
[s
]

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.16 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.22 0.17 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.25 0.19 0.07 0.01 0.00 0.00 0.00 0.00 0.00

0.41 0.34 0.29 0.19 0.09 0.01 0.00 0.00 0.00 0.00

0.49 0.43 0.38 0.29 0.20 0.10 0.01 0.00 0.00 0.00

0.58 0.52 0.45 0.39 0.31 0.18 0.11 0.01 0.00 0.00

0.66 0.61 0.53 0.46 0.37 0.24 0.12 0.10 0.01 0.00

0.71 0.67 0.61 0.56 0.47 0.34 0.23 0.18 0.09 0.02

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

St
ro

ng
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e

Figure 5.20 – Strong reservation conflicts for different combinations of trigger
interval τ and processing delay t at medium traffic demand. The diagonal
cells in which t equals τ are marked with boxes. They clearly indicate that
strong reservation conflicts only occur if t ≥ τ holds.

0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay t [s]

4

6

8

10

12

14

16

N
um

be
r

of
se

nt
m

es
sa

ge
s

pe
r

ve
hi

cl
e

4x4
Global min.

Global max.

Figure 5.21 – Average and min./max. number of sent coordination messages
per vehicle at medium traffic demand.

5.2 Simulation Results 88

The other effect, caused by delay values like t1 in the sequence diagram, has an

influence on the number of sent coordination messages per vehicle. As Figure 5.21

displays, the average number only increases marginally, but a small amount of

vehicles requires significantly more messages than the minimum value of three. It

also shows that the communication is already affected for delay values t ≤ 0.1, unlike

the strong reservation conflicts. The number of messages peaks at exactly t = 0.1,

which is the largest value at which strong conflicts are still extremely unlikely. For

larger delays, the conflicts start to make the traffic situation more chaotic and the

relatively tight conditions for the processing delay causing only the withdrawal of a

claim are met less frequently.

Concluding the discussion of this parameter, it can be said that the controller is

actually quite resistant to processing delay because the delay value must exceed a

directly controllable threshold in order to have serious, negative effects. However, if

this threshold is exceeded frequently, the effects pose a significant threat to the safety

of crossing maneuvers. Additionally, even delay values below the threshold can have

negative effects on the efficiency of the communication because they can lead to

vehicles placing claims prematurely and having to withdraw the claim immediately

afterwards. Again, it is important to note that these problems can be attributed

to the communication protocol and certain implementation decisions that are not

forced by the abstract controller definition.

5.2.2 Parameter Combinations

Having discussed each simulation parameter individually, the next logical step is

to investigate combinations of multiple parameters. The motivation for this is that

in reality, of course, the effects simulated by the parameters occur simultaneously,

and there might be interactions between them which could amplify or weaken their

impact on the controller’s safety. It is not possible to select any particular parameter

configuration as representative of the most realistic setting possible because there are

no reference values, the simulation setting is still very simplified, and the conditions

in reality are highly diverse. However, it is likely that somewhat realistic parameter

values lie between the thresholds where the controller works without any problems

and where the coordination breaks completely. It is also not feasible to simulate all

possible combinations of the previously discussed parameter values. Therefore, in

this section, I will focus on the most interesting combinations, introducing a number

of constraints to limit the parameter space and working towards a reasonably realistic

scenario.

Because the most significant differences between the intersection scenarios have

already been discussed, only the 4x4 scenario is considered here. The message

loss parameter was introduced to study the effects of randomly losing information

5.2 Simulation Results 89

independently. This is an artificial effect and in reality, message loss usually has

clearly identifiable causes and is not purely random. In order to compensate for

some of the effects that are not covered by the communication model parameters,

the message loss probability is fixed to p = 0.005 for all following simulations. It is

not studied any further because the other parameters are better suited for modeling

a realistic scenario. Due to the greater variability of the simulation results caused

by using more parameters, each simulation was repeated for 100 random traffic

seeds and 4 runtime seeds, leading to a total of 400 repetitions per run to achieve

statistical significance.

To start with, the simple path loss and obstacle shadowing communication models

have the most severe impact on the safety at moderate parameter values that are not

too unrealistic. For example, a distance of 20 m between the roads and the closest

building or a path loss approximated by an exponent of α= 3 might occur in a real

traffic situation and can already lead to strong reservation conflicts and collisions.

In contrast, position sensor errors of more than 1 m and a regular processing delay

above 0.1 s can be considered to be exceptions.

2.50 2.75 3.00 3.25 3.50 3.75 4.00
Path loss exponent α

2

6

10

14

18

22

26

30

B
ui

ld
in

g
di

st
an

ce
d B
[m
]

0.65 0.75 0.78 0.84 0.90 0.99 1.02

0.54 0.68 0.75 0.84 0.90 0.99 1.02

0.48 0.62 0.72 0.84 0.90 0.99 1.02

0.41 0.57 0.70 0.84 0.90 0.99 1.02

0.35 0.50 0.70 0.84 0.90 0.99 1.02

0.25 0.39 0.71 0.84 0.90 0.99 1.02

0.12 0.28 0.71 0.84 0.90 0.99 1.02

0.03 0.28 0.71 0.84 0.90 0.99 1.02

0.0

0.5

1.0

1.5

2.0

2.5

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e

(a) D = 200 veh/(h lane)

2.50 2.75 3.00 3.25 3.50 3.75 4.00
Path loss exponent α

2

6

10

14

18

22

26

30

B
ui

ld
in

g
di

st
an

ce
d B
[m
]

0.76 0.89 1.17 1.45 1.71 2.09 2.22

0.18 0.26 0.53 1.27 1.62 2.08 2.22

0.13 0.19 0.42 1.23 1.62 2.08 2.22

0.10 0.15 0.39 1.22 1.62 2.08 2.21

0.07 0.12 0.38 1.23 1.64 2.08 2.22

0.05 0.09 0.38 1.24 1.62 2.08 2.22

0.02 0.06 0.38 1.23 1.62 2.07 2.22

0.01 0.06 0.37 1.23 1.63 2.08 2.22

0.0

0.5

1.0

1.5

2.0

2.5

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e

(b) D = 500 veh/(h lane)

2.50 2.75 3.00 3.25 3.50 3.75 4.00
Path loss exponent α

2

6

10

14

18

22

26

30

B
ui

ld
in

g
di

st
an

ce
d B
[m
]

0.29 0.35 0.46 0.61 0.87 1.74 2.62

0.10 0.14 0.21 0.45 0.73 1.68 2.63

0.07 0.11 0.17 0.44 0.73 1.68 2.60

0.06 0.09 0.15 0.44 0.73 1.68 2.59

0.05 0.07 0.15 0.44 0.73 1.68 2.62

0.04 0.06 0.15 0.43 0.73 1.70 2.61

0.01 0.03 0.15 0.44 0.71 1.68 2.61

0.00 0.03 0.15 0.44 0.73 1.68 2.61

0.0

0.5

1.0

1.5

2.0

2.5

St
ro

ng
co

nfl
ic

ts
pe

r
ve

hi
cl

e

(c) D = 800 veh/(h lane)

Figure 5.22 – Strong reservation conflicts per vehicle for combinations of the
path loss exponent α and the building distance dB .

Both communication models simulate limitations of the area in which a vehicle

can communicate with other vehicles. In reality, this area is affected both by obstacles

5.2 Simulation Results 90

in the line of sight and by the distance between the sending and the receiving vehicle,

so it is interesting to investigate whether one of these effects dominates the other

and if there are interactions that affect the controller’s performance. To this end, I

ran simulations for combinations of the most relevant parameter values and for low,

medium, and high traffic demand, as depicted in Figure 5.22.

The plots show distinct differences between the columns, while the values inside

one column show very little variation. Effects of the building distance are only visible

in the first columns, i.e., in situations where the communication range is relatively

large. This clearly shows that the communication range is the dominant factor. The

reason for this is quite intuitive: By interpreting the obstacle shadowing model as

a more complicated, dynamic form of range limitation, it becomes clear that the

range at which a vehicle is able to communicate with other vehicles in any given

direction is either limited by an obstacle or by the maximum range implied by the

path loss, depending on which one is more restrictive. Because the buildings next

to the intersection never restrict the communication between vehicles on opposite

approaches, the path loss even has an impact if the smallest building distance is used.

For sufficiently large α values, this also prevents many vehicles from braking and

waiting at the intersection; recall that with the obstacle shadowing model, vehicles

on opposite approaches often cause each other to wait, slowing down all following

vehicles and thereby reducing their required communication area. This is the main

reason why the simple path loss model is dominant. The effect that vehicles closely

following their leaders have better chances to coordinate, however, is common to

both models. That is why an increasing traffic demand still improves the overall

situation by causing a higher density of vehicles, as Figure 5.22c illustrates. Because

the extreme values of α practically prevent communication at any range, their effect

is also extreme and not influenced by the obstacle shadowing model at all.

The remaining parameters are the sensor error and processing delay. Both of

them have a threshold value at which strong reservation conflicts occur but they

also influence the communication efficiency before these values are reached. In

order to investigate interactions between these parameters and the communication

models, they are discussed separately before combining them into a configuration

that features all parameters. Because their threshold values are relatively high

compared to what could be expected in a realistic scenario, only a small part of their

previous range is considered. In order to prevent an explosion of the parameter

space, the remaining parameters are restricted as follows: Only the medium traffic

demand of D = 500 veh/(h lane) is used; recall that the effects of both the sensor

error and the processing delay parameter increase with the demand value but have

no notable further interactions. Additionally, the communication model parameters

are limited to three values each. These values are α ∈ {2.5, 3.0, 3.5} for the simple

path loss model and dB ∈ {2,16,30} for the building distance. They are selected

5.2 Simulation Results 91

such that each model has a low, a medium, and a high value which capture the most

relevant impact levels and do not lie completely outside of a realistic range.

Starting with the sensor error parameter, I ran simulations for values between

e = 0 and e = 2 in order to include values beyond the threshold e = 1 at which

strong reservation conflicts occur. Figure 5.23 displays the resulting numbers of

strong conflicts per vehicle for all nine combinations of the selected values for α and

dB.

0.00

0.05

0.10
α= 2.5

d B
=

30

0.2

0.4

0.6

α= 3.0

1.0

1.5

2.0

α= 3.5

0.0

0.1

0.2

d B
=

16

0.2

0.4

0.6

1.0

1.5

2.0

0.0 1.0 2.0

0.5

1.0

d B
=

2

0.0 1.0 2.0
0.5

1.0

1.5

0.0 1.0 2.0
1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

Sensor error e [m]

0.0

0.2

0.4

0.6

0.8

1.0

St
ro

ng
re

se
rv

at
io

n
co

nfl
ic

ts
pe

r
ve

hi
cl

e

Figure 5.23 – Strong reservation conflicts per vehicle for nine combinations
of the path loss exponent α and the building distance dB , and several different
sensor errors e. The simulation results for each of the nine combinations are
presented as box plots. Each box has a horizontal line specifying the mean
value and the box itself extends to the first and third quartiles. The whiskers
extend to the most distant data points that are not further than 1.5 times the
inter-quartile range away from the box. The dashed, horizontal lines depict
the mean values of e = 0 and e = 2 for easier comparison.

The plots show that for most of the combinations, the additional sensor error

does not have any notable effect. Its characteristic behavior that was discussed

previously is most visible for the combination of α = 2.5 and dB = 30, where the

communication models have the lowest impact. As their influence on the number of

conflicts increases, the effects of the sensor error vanish almost completely. Moreover,

in the individual discussion of this parameter, the simulation results showed that

at an error value of e = 2 and at medium traffic demand, it leads to roughly 0.05

strong reservation conflicts per vehicle in the 4x4 scenario (cf. Figure 5.15b), which

is confirmed again by the combination α = 2.5, dB = 30. Although this is a relatively

5.2 Simulation Results 92

small number, it should make a visible difference if the sensor error’s effects are still

present for the other combinations. However, the horizontal lines in Figure 5.23 and

the computed differences both show that the total difference made by the sensor

error becomes negligible for combinations where at least one of the communication

model parameters is at its highest value. This indicates that the effects of the sensor

error parameter are not only shadowed by the larger impact of the communication

models but many reservation conflicts that could be caused by sensor errors are

actually prevented, either because the same conflicts occur earlier due to insufficient

communication possibilities or because the more chaotic traffic dynamics produce

fewer situations susceptible to sensor errors.

Furthermore, the simulation results also show that the sensor error has no impact

on the number of collisions per vehicle whatsoever. This is not surprising because

the sensor error alone already did not cause collisions, but it confirms that there are

no interactions with the communication models.

3.0

3.5

4.0

α= 2.5

d B
=

30

α= 3.0 α= 3.5

3.0

3.5

4.0

d B
=

16

0.0 1.0 2.0
3.0

3.5

4.0

d B
=

2

0.0 1.0 2.0 0.0 1.0 2.00.0 0.2 0.4 0.6 0.8 1.0

Sensor error e [m]

0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

co
or

di
na

ti
on

m
es

sa
ge

s
pe

r
ve

hi
cl

e

Figure 5.24 – Average number of sent coordination messages per vehicle in
the combined sensor error simulation.

Apart from reservation conflicts and collisions, the other effect of the sensor error

parameter that was discussed previously was the increased number of coordination

messages sent by each vehicle. Figure 5.24 clearly shows that the parameter has the

same effect for all combinations of α and dB, but increasing either of the communi-

cation model parameters significantly reduces its magnitude. The reason for this is

that sensor errors can only cause the ego vehicle to withdraw a claim if it is aware

5.2 Simulation Results 93

of the reservation of another vehicle; otherwise it will not even request positional

information. The communication models can prevent the vehicle from receiving rc

messages, leading to much fewer situations in which vehicles have to withdraw their

claim and, as a consequence, reducing the number of sent messages.

In summary, the sensor error parameter is dominated by both communication

models although it is only indirectly related to the communication itself. Its effects

generally become less significant for larger values of α and dB, but the strong reser-

vation conflicts caused by sensor errors vanish completely, whereas the number

of sent coordination messages is still affected to some extent for all investigated

combinations.

I conducted a similar simulation for the processing delay parameter, using values

between t = 0 and t = 0.2. Figure 5.25 shows the average number of collisions per

vehicle for all communication model parameter combinations.

0.0

0.1

0.2

0.3

α= 2.5

d B
=

30

α= 3.0 α= 3.5

0.0

0.1

0.2

0.3

d B
=

16

0.0 0.1 0.2
0.0

0.1

0.2

0.3

d B
=

2

0.0 0.1 0.2 0.0 0.1 0.20.0 0.2 0.4 0.6 0.8 1.0

Message processing delay t [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r

of
co

lli
si

on
s

pe
r

ve
hi

cl
e

Figure 5.25 – Average number of collisions per vehicle in the combined pro-
cessing delay simulation.

The simulation results are very similar to the results for the sensor error parameter,

apart from the fact that the processing delay also affects the number of collisions; this

was the major difference between the parameters in their individual discussions. In

addition to that, the processing delay parameter generally shows a more significant

impact on the safety for all parameter combinations so that its effects are even

noticeable for the combination α= 3.5, dB = 30 where the communication models

completely dominate the sensor error. Conversely, the processing delay affects

5.2 Simulation Results 94

the number of sent messages slightly less than the sensor error parameter. These

results make sense because they perfectly reflect the findings of discussing each

parameter individually: While the sensor error significantly increases the number

of sent coordination messages and only causes strong reservation conflicts without

collisions, the processing delay parameter leads to reservation conflicts with a high

risk for collisions and increases the number of coordination messages only marginally.

Both parameters are dominated by the communication models because their effects

can only cause reservation conflicts under relatively restricted conditions which are

met less frequently if the communication possibilities are too limited.

Having discussed these two parameters in combination with the communication

models, the final step is combining all parameters in one simulation. To this end,

I limited the granularity of both the sensor error and processing delay parameters

but used the same value ranges as before, i.e., e = 0 to e = 2 and t = 0 to t = 0.2,

respectively. Figures 5.26 and 5.27 display the simulation results for the number of

strong reservation conflicts and sent coordination messages per vehicle.

0.00

0.05

0.10

0.15

0.20

0.01 0.01 0.01 0.02 0.05

0.01 0.01 0.01 0.02 0.05

0.01 0.01 0.01 0.03 0.05

0.05 0.05 0.06 0.09 0.12

0.08 0.08 0.08 0.09 0.13

α= 2.5

d B
=

30

0.37 0.38 0.38 0.39 0.41

0.37 0.38 0.37 0.39 0.40

0.38 0.37 0.37 0.38 0.40

0.42 0.43 0.42 0.43 0.45

0.47 0.46 0.45 0.46 0.47

α= 3.0
1.63 1.62 1.63 1.63 1.64

1.61 1.62 1.62 1.61 1.63

1.63 1.62 1.61 1.61 1.63

1.65 1.63 1.64 1.63 1.65

1.67 1.66 1.65 1.65 1.64

α= 3.5

0.00

0.05

0.10

0.15

0.20

0.08 0.09 0.09 0.10 0.13

0.08 0.08 0.09 0.10 0.12

0.08 0.09 0.09 0.10 0.13

0.13 0.13 0.14 0.16 0.20

0.16 0.16 0.16 0.17 0.20

d B
=

16

0.37 0.38 0.38 0.39 0.41

0.38 0.38 0.37 0.39 0.40

0.38 0.38 0.38 0.39 0.41

0.43 0.42 0.42 0.43 0.45

0.47 0.46 0.45 0.46 0.48

1.61 1.61 1.62 1.62 1.63

1.61 1.63 1.62 1.62 1.64

1.62 1.63 1.61 1.63 1.63

1.64 1.65 1.63 1.63 1.65

1.67 1.67 1.65 1.65 1.65

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

0.15

0.20

0.76 0.76 0.76 0.77 0.80

0.75 0.76 0.74 0.76 0.77

0.75 0.75 0.74 0.75 0.78

0.79 0.80 0.79 0.79 0.80

0.82 0.83 0.81 0.81 0.84

d B
=

2

0.0 0.5 1.0 1.5 2.0

1.17 1.16 1.17 1.17 1.18

1.17 1.16 1.16 1.16 1.18

1.16 1.17 1.16 1.16 1.18

1.20 1.19 1.18 1.18 1.21

1.22 1.22 1.21 1.22 1.24

0.0 0.5 1.0 1.5 2.0

1.71 1.71 1.71 1.71 1.71

1.70 1.70 1.69 1.69 1.71

1.71 1.71 1.70 1.70 1.72

1.72 1.73 1.71 1.72 1.72

1.74 1.75 1.73 1.74 1.74

0.02

0.04

0.06

0.08

0.10

0.12

0.10

0.12

0.14

0.16

0.18

0.20

0.74

0.76

0.78

0.80

0.82

0.84

0.38

0.40

0.42

0.44

0.46

0.38

0.40

0.42

0.44

0.46

1.16

1.18

1.20

1.22

1.61

1.62

1.63

1.64

1.65

1.66

1.62

1.63

1.64

1.65

1.66

1.70

1.71

1.72

1.73

1.74

1.75

0.0 0.2 0.4 0.6 0.8 1.0

Sensor error e [m]

0.0

0.2

0.4

0.6

0.8

1.0

M
es

sa
ge

pr
oc

es
si

ng
de

la
y

t
[s
]
Strong

reservation
conflicts

per
vehicle

Figure 5.26 – Strong reservation conflicts per vehicle in the combined sensor
error and processing delay simulation.

For the smaller values of α and dB, the plots show the same results as discussed

above, namely that the processing delay parameter has a stronger impact on the

safety, i.e., strong reservation conflicts, and the sensor error has greater influence

on the number of sent messages, while both are dominated by the communication

5.2 Simulation Results 95

model parameters. For the strong reservation conflicts in Figure 5.26, the pro-

cessing delay threshold at a value of t = 0.1 is clearly visible in all combinations.

However, the threshold e = 1 of the sensor error parameter does not stand out as

much. For Figure 5.27, the opposite is true. The processing delay and sensor error

parameters relate to each other in a different way than the simple path loss and

obstacle shadowing communication models: There are no obvious interactions that

amplify or weaken their combined effects and one does not dominate the other,

but they complement each other in the sense that if one of them is at its maximum

value, increasing the other parameter will generally increase their impact further.

Because they are relatively similar in terms of their requirements for causing strong

reservation conflicts, however, their combined effects are not simply the sum of

their individual effects; every traffic situation in which two vehicles are planning

conflicting maneuvers can potentially lead to a strong reservation conflict due to

one of the parameters, but never both at the same time.

0.00

0.05

0.10

0.15

0.20

3.00 3.06 3.35 3.65 3.95

3.10 3.24 3.57 3.95 4.33

3.14 3.24 3.62 4.00 4.35

3.12 3.23 3.67 4.02 4.36

3.14 3.21 3.58 3.96 4.31

α= 2.5

d B
=

30

3.00 3.05 3.27 3.51 3.75

3.06 3.12 3.40 3.68 3.94

3.11 3.17 3.46 3.77 4.04

3.09 3.18 3.49 3.79 4.08

3.11 3.16 3.44 3.75 4.03

α= 3.0
3.00 3.02 3.14 3.27 3.39

3.02 3.04 3.18 3.32 3.45

3.03 3.06 3.19 3.35 3.49

3.02 3.07 3.22 3.36 3.51

3.02 3.05 3.19 3.35 3.50

α= 3.5

0.00

0.05

0.10

0.15

0.20

3.00 3.06 3.33 3.63 3.91

3.07 3.18 3.55 3.92 4.22

3.14 3.23 3.59 3.96 4.29

3.12 3.24 3.61 3.99 4.31

3.14 3.21 3.56 3.93 4.27

d B
=

16

3.00 3.05 3.27 3.52 3.76

3.06 3.12 3.40 3.69 3.95

3.11 3.17 3.46 3.76 4.04

3.09 3.19 3.50 3.81 4.08

3.10 3.16 3.45 3.75 4.02

3.00 3.03 3.14 3.27 3.38

3.02 3.04 3.18 3.32 3.45

3.03 3.06 3.20 3.34 3.48

3.02 3.06 3.22 3.37 3.51

3.03 3.05 3.19 3.35 3.49

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

0.15

0.20

3.00 3.05 3.27 3.51 3.74

3.04 3.10 3.37 3.63 3.88

3.08 3.14 3.41 3.69 3.96

3.07 3.16 3.48 3.75 4.01

3.08 3.13 3.40 3.70 3.95

d B
=

2

0.0 0.5 1.0 1.5 2.0

3.00 3.04 3.21 3.40 3.58

3.03 3.07 3.27 3.49 3.67

3.05 3.09 3.29 3.52 3.72

3.04 3.10 3.31 3.56 3.75

3.05 3.09 3.30 3.52 3.72

0.0 0.5 1.0 1.5 2.0

3.00 3.03 3.13 3.25 3.37

3.01 3.04 3.16 3.30 3.41

3.02 3.05 3.17 3.31 3.43

3.02 3.05 3.21 3.35 3.47

3.02 3.04 3.17 3.31 3.44

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

3.00

3.25

3.50

3.75

4.00

4.25

0.0 0.2 0.4 0.6 0.8 1.0

Sensor error e [m]

0.0

0.2

0.4

0.6

0.8

1.0

M
es

sa
ge

pr
oc

es
si

ng
de

la
y

t
[s
]

Sent
coordination

m
essages

per
vehicle

Figure 5.27 – Average number of sent coordination messages per vehicle in
the combined sensor error and processing delay simulation.

Chapter 6

Conclusion

In this thesis, I implemented the vehicle controller for provably safe crossing maneu-

vers at urban intersections, which was introduced by Schwammberger [1], in the

vehicular network simulation framework Veins. The main goal was the evaluation of

the controller’s performance in terms of safety under more realistic conditions than

the highly abstract traffic model in which the controller is defined. To reach this

goal, I implemented various mechanisms for introducing imperfections that vehicles

are commonly exposed to in reality and conducted extensive simulation studies

for a variety of intersection layouts, investigating numerous safety performance

metrics. I documented the implementation process to report on design problems and

discussed the simulation results in great detail to provide appropriate explanations

of all findings.

The main result is that the crossing controller works as intended and satisfies the

promised safety property in the most abstract simulation setting, which is already

much more realistic than the abstract traffic model. Although the implementation

process revealed a small number of design problems related to the discrepancy

between the high level of abstraction and the concrete implementation details, I was

able to leverage the abstraction level to solve these problems without significantly

altering the controller’s semantics. The most problematic aspect of the controller defi-

nition in this regard was the lack of an execution model: As the abstract traffic model

and the formal logic UMLSL only allow for spatial reasoning, it is the responsibility

of the developer to design the temporal component of the control system. While the

abstraction level and the relatively simple controller definition facilitate a modular

architecture that supports the usage of already existing components, they can also

be the cause of ambiguities and unexpected problems such as blocked intersections.

The simulations showed that effects like limited communication possibilities,

random errors in the perception of other vehicles’ positions, and communication

delays can compromise the controller’s safety property and lead to collisions. A

96

6 Conclusion 97

variety of additional factors such as the intersection layout, the amount of traffic,

and the distance to the intersection at which the vehicles start their coordination pro-

cedure can greatly affect the severity of these effects, both positively and negatively.

However, I found suitable explanations for most of these relations by using multiple

performance metrics and a simple communication model that is easy to reason about.

More importantly, all of the safety problems introduced by the simulation parameters

can be attributed to this communication protocol or other implementation design

decisions that are not enforced by the controller definition itself. This means that a

more sophisticated communication protocol or execution model could increase the

robustness and reliability of the controller significantly.

All of these findings lead to the conclusion that the crossing controller, as defined

in the abstract traffic model, cannot fully transfer its safety property into a realistic

environment in which the simplifying, idealizing assumptions about the world do

not hold, but it provides all the necessary potential to be the basis for a concrete

implementation that does possess the same level of guaranteed safety. The abstract

traffic model and UMLSL are meant to be used as tools for defining arbitrary vehicle

controllers and formally proving that they satisfy the desired properties. Their high

level of abstraction also provides the opportunity to refine a control system by adding

components like communication protocols and proving more properties like liveness

or fairness until the controller meets its requirements and can be implemented more

easily.

As an example for this, the version of the crossing controller that was extended

by a communication protocol to handle imperfect information [5] could be evaluated

in future work similar to this thesis. Alternatively, it could be interesting to extend

the crossing controller implementation I presented here by an already existing com-

munication protocol or vehicular networking infrastructure to investigate to what

extent this would improve the controller’s performance. Additionally, there are

various ways to further increase the degree of realism in the simulation scenarios.

For example, multiple vehicle types with different acceleration values and individ-

ual communication ranges, sensor errors, and processing delays could be used to

model the diversity of real traffic, which was not considered in this thesis. Similarly,

the scenarios themselves could be extended to include multiple intersections with

connection roads, or they could even be modeled after real traffic networks using

geographical data in order to investigate large-scale city scenarios.

List of Abbreviations

ACTA Automotive-Controlling Timed Automaton

CACC Cooperative Adaptive Cruise Control

IVC inter-vehicular communication

MLSL Multi-lane Spatial Logic

UMLSL Urban Multi-lane Spatial Logic

VANET Vehicular Ad Hoc Network

98

List of Figures

2.1 Abstract intersection representation . 8

2.2 Crossing controller automaton . 15

2.3 Vehicle chape computation in SUMO . 18

3.1 Comparison of maneuver representations 24

3.2 Example intersection from SUMO . 28

3.3 Computing internal lane shapes . 29

3.4 Foe matrix entries for overlapping internal lanes 31

3.5 Computation of reservation clearance positions 32

3.7 Livelock example with two vehicles . 39

4.1 Scenario generation with SUMO . 47

4.2 Placement of buildings in the simulation scenario 53

4.3 Relative crash velocity calculation . 58

5.1 Baseline simulation overview . 66

5.2 Strong reservation conflicts in unit disk model (medium traffic demand) 68

5.3 Communication range visualization . 68

5.4 Strong reservation conflicts in unit disk model (low and high traffic

demand) . 69

5.5 Strong reservation conflicts in simple path loss model (medium traffic

demand) . 70

5.6 Strong reservation conflicts and collisions in obstacle shadowing

model (medium traffic demand) . 72

5.7 Increasing the building distance – visualization 73

5.8 Strong reservation conflict time stamps in obstacle shadowing model 74

5.9 Strong reservation conflicts in obstacle shadowing model (low and

high traffic demand) . 75

5.10 Trip times in obstacle shadowing model (medium traffic demand) . . 76

99

List of Figures 100

5.11 Strong reservation conflicts for message loss parameter (medium

traffic demand) . 77

5.12 Collisions for message loss parameter (medium traffic demand) . . . 78

5.13 Trip times for message loss parameter (medium traffic demand) . . . 79

5.14 Squared relative crash velocity for message loss parameter (medium

traffic demand) . 80

5.15 Strong reservation conflicts with sensor error parameter (all traffic

demands) . 82

5.16 Sent messages with sensor error parameter (medium traffic demand) 83

5.17 Trip times for sensor error parameter (medium traffic demand) 84

5.18 Strong reservation conflicts and collisions with processing delay (all

traffic demands) . 85

5.19 Processing delay sequence diagram . 86

5.20 Relation between controller trigger interval and processing delay . . 87

5.21 Sent coordination messages with processing delay (medium traffic

demand) . 87

5.22 Strong reservation conflicts with simple path loss and obstacle shad-

owing model (all traffic demands) . 89

5.23 Strong reservation conflicts in combined sensor error simulation . . . 91

5.24 Sent messages in combined sensor error simulation 92

5.25 Collisions in combined processing delay simulation 93

5.26 Strong reservation conflicts in combined simulation of all parameters 94

5.27 Sent coordination messages in combined simulation of all parameters 95

List of Tables

4.1 Turning maneuver probability distribution 50

5.1 Simulation scenario overview . 64

101

Bibliography

[1] M. Schwammberger, “An abstract model for proving safety of autonomous

urban traffic,” Elsevier Theoretical Computer Science, vol. 744, pp. 143–169,

Oct. 2018. DOI: 10.1016/j.tcs.2018.05.028.

[2] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A Survey on Platoon-Based

Vehicular Cyber-Physical Systems,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 1, pp. 263–284, 2016. DOI: 10.1109/COMST.2015.2410831.

[3] M. Hilscher, S. Linker, E.-R. Olderog, and A. P. Ravn, “An Abstract Model

for Proving Safety of Multi-lane Traffic Manoeuvres,” in 13th International

Conference on Formal Engineering Methods (ICFEM 2011), Durham, United

Kingdom: Springer, Oct. 2011, pp. 404–419. DOI: 10.1007/978-3-642-

24559-6_28.

[4] M. Hilscher and M. Schwammberger, “An Abstract Model for Proving Safety

of Autonomous Urban Traffic,” in 13th International Colloquium on Theoretical

Aspects of Computing (ICTAC 2016), Taipei, Taiwan: Springer, Oct. 2016,

pp. 274–292. DOI: 10.1007/978-3-319-46750-4_16.

[5] M. Schwammberger, “Imperfect Knowledge in Autonomous Urban Traffic

Manoeuvres,” in 1st Workshop on Formal Verification of Autonomous Vehicles

(FVAV@iFM 2017), vol. 257, Turin, Italy: Open Publishing Association, Sep.

2017, pp. 59–74. DOI: 10.4204/eptcs.257.7.

[6] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network

and Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on

Mobile Computing, vol. 10, no. 1, pp. 3–15, Jan. 2011. DOI: 10.1109/TMC.

2010.133.

[7] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and

T. Weil, “Vehicular Networking: A Survey and Tutorial on Requirements,

Architectures, Challenges, Standards and Solutions,” IEEE Communications

Surveys & Tutorials, vol. 13, no. 4, pp. 584–616, Nov. 2011. DOI: 10.1109/

SURV.2011.061411.00019.

102

https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1109/COMST.2015.2410831
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.4204/eptcs.257.7
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/SURV.2011.061411.00019
https://doi.org/10.1109/SURV.2011.061411.00019

Bibliography 103

[8] L. Chen and C. Englund, “Cooperative Intersection Management: A Survey,”

IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 570–

586, Feb. 2016. DOI: 10.1109/TITS.2015.2471812.

[9] E. Namazi, J. Li, and C. Lu, “Intelligent Intersection Management Systems

Considering Autonomous Vehicles: A Systematic Literature Review,” IEEE

Access, vol. 7, pp. 91 946–91 965, Jul. 2019. DOI: 10.1109/ACCESS.2019.

2927412.

[10] J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson, “Collision Avoidance:

A Literature Review on Threat-Assessment Techniques,” IEEE Transactions on

Intelligent Vehicles, vol. 4, no. 1, pp. 101–113, Mar. 2019. DOI: 10.1109/TIV.

2018.2886682.

[11] K. Dresner and P. Stone, “Multiagent Traffic Management: A Reservation-

Based Intersection Control Mechanism,” in 3rd International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 2, New

York City, NY: IEEE Computer Society, Jul. 2004, pp. 530–537. DOI: 10.

1109/AAMAS.2004.10121.

[12] ——, “A Multiagent Approach to Autonomous Intersection Management,”

Journal of Artificial Intelligence Research (JAIR), vol. 31, no. 1, pp. 591–656,

Jan. 2008. DOI: 10.1613/jair.2502.

[13] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable Systemwide Safety in

Intelligent Intersections,” IEEE Transactions on Vehicular Technology, vol. 60,

no. 3, pp. 804–818, Mar. 2011. DOI: 10.1109/TVT.2011.2107584.

[14] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Automated

Vehicle-to-Vehicle Collision Avoidance at Intersections,” in 18th World Congress

on Intelligent Transport Systems (ITS 2011), Orlando, FL, Oct. 2011.

[15] ——, “Cooperative Collision Avoidance at Intersections: Algorithms and

Experiments,” IEEE Transactions on Intelligent Transportation Systems (TITS),

vol. 14, no. 3, pp. 1162–1175, Sep. 2013. DOI: 10.1109/TITS.2013.

2252901.

[16] M. Bashiri and C. H. Fleming, “A platoon-based intersection management

system for autonomous vehicles,” in IEEE Intelligent Vehicles Symposium (IV)

2017, Redondo Beach, CA: Institute of Electrical and Electronics Engineers

(IEEE), Jun. 2017, pp. 667–672. DOI: 10.1109/IVS.2017.7995794.

[17] M. Bashiri, H. Jafarzadeh, and C. H. Fleming, “PAIM: Platoon-based Au-

tonomous Intersection Management,” in 21st International Conference on

Intelligent Transportation Systems (ITSC 2018), Maui, HI: Institute of Elec-

trical and Electronics Engineers (IEEE), Nov. 2018, pp. 374–380. DOI: 10.

1109/ITSC.2018.8569782.

https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/ACCESS.2019.2927412
https://doi.org/10.1109/ACCESS.2019.2927412
https://doi.org/10.1109/TIV.2018.2886682
https://doi.org/10.1109/TIV.2018.2886682
https://doi.org/10.1109/AAMAS.2004.10121
https://doi.org/10.1109/AAMAS.2004.10121
https://doi.org/10.1613/jair.2502
https://doi.org/10.1109/TVT.2011.2107584
https://doi.org/10.1109/TITS.2013.2252901
https://doi.org/10.1109/TITS.2013.2252901
https://doi.org/10.1109/IVS.2017.7995794
https://doi.org/10.1109/ITSC.2018.8569782
https://doi.org/10.1109/ITSC.2018.8569782

Bibliography 104

[18] M. Hilscher, S. Linker, and E.-R. Olderog, “Proving Safety of Traffic Manoeu-

vres on Country Roads,” in Theories of Programming and Formal Methods:

Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, Z. Liu, J.

Woodcock, and H. Zhu, Eds. Shanghai, China: Springer, Sep. 2013, pp. 196–

212. DOI: 10.1007/978-3-642-39698-4_12.

[19] R. Alur and D. L. Dill, “A theory of timed automata,” Elsevier Theoretical

Computer Science, vol. 126, no. 2, pp. 183–235, Apr. 1994. DOI: 10.1016/

0304-3975(94)90010-8.

[20] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation En-

vironment,” in 1st ACM/ICST International Conference on Simulation Tools

and Techniques for Communications, Networks and Systems (SIMUTools 2008),

Marseille, France: Association for Computing Machinery (ACM), Mar. 2008.

[21] P. Alvarez Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,

R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic

Traffic Simulation using SUMO,” in 21st IEEE International Conference on

Intelligent Transportation Systems (ITSC 2018), Maui, HI: Institute of Electrical

and Electronics Engineers (IEEE), Nov. 2018, pp. 2575–2582. DOI: 10.1109/

ITSC.2018.8569938.

[22] M. Fränzle, M. R. Hansen, and H. Ody, “No Need Knowing Numerous Neigh-

bours,” in Correct System Design, Proceedings of the Symposium in Honor

of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, R. Meyer,

A. Platzer, and H. Wehrheim, Eds., vol. 9360 of LNCS, Oldenburg, Germany:

Springer, Sep. 2015, pp. 152–171. DOI: 10.1007/978-3-319-23506-6_11.

[23] S. Krauß, “Microscopic Modeling of Traffic Flow: Investigation of Collision

Free Vehicle Dynamics,” PhD Thesis, Mathematical Institute, Köln, Germany,

Apr. 1998.

[24] C. Sommer, D. Eckhoff, R. German, and F. Dressler, “A Computationally

Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing in Urban

Environments,” in 8th IEEE/IFIP Conference on Wireless On demand Network

Systems and Services (WONS 2011), Bardonecchia, Italy: Institute of Electrical

and Electronics Engineers (IEEE), Jan. 2011, pp. 84–90. DOI: 10.1109/

WONS.2011.5720204.

[25] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk, “A Survey of Inter-Vehicle

Communication Protocols and Their Applications,” IEEE Communications

Surveys & Tutorials, vol. 11, no. 2, pp. 3–20, Jun. 2009. DOI: 10.1109/SURV.

2009.090202.

https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1109/WONS.2011.5720204
https://doi.org/10.1109/WONS.2011.5720204
https://doi.org/10.1109/SURV.2009.090202
https://doi.org/10.1109/SURV.2009.090202

Bibliography 105

[26] J. Miranda, R. Abrishambaf, T. Gomes, J. Cabral, A. Tavares, and J. Monteiro,

“Path Loss Exponent Analysis in Wireless Sensor Networks: Experimental

Evaluation,” in 11th IEEE International Conference on Industrial Informatics

(INDIN), Bochum, Germany: Institute of Electrical and Electronics Engineers

(IEEE), Jul. 2013, pp. 54–58. DOI: 10.1109/INDIN.2013.6622857.

https://doi.org/10.1109/INDIN.2013.6622857

	Abstract
	Kurzfassung
	1 Introduction
	1.1 Related Work

	2 Fundamentals
	2.1 Abstract Urban Traffic Model
	2.2 Crossing Controller
	2.3 Simulation Framework

	3 Controller Implementation
	3.1 Controller Design Considerations
	3.2 Traffic Model Interface
	3.3 Vehicle Controller Application
	3.4 Practical Implementation Problems
	3.5 Verification and Validation

	4 Simulation Setup
	4.1 Intersection Scenarios
	4.2 Traffic Generation
	4.3 Simulation Parameters
	4.4 Performance Metrics

	5 Evaluation
	5.1 Implementation and Abstraction Level
	5.2 Simulation Results

	6 Conclusion
	Bibliography

