HEINZ NIXDORF INSTITUT

Matthias Artmann

Simulative Performance Evaluation of a
Provably Collision Free Approach for Managing
Autonomous Cars on Urban Intersections

Bachelor Thesis in Computer Science

14 May 2020

Please cite as:

Matthias Artmann, “Simulative Performance Evaluation of a Provably Collision Free Approach for Managing Autonomous
Cars on Urban Intersections,” Bachelor Thesis (Bachelorarbeit), Heinz Nixdorf Institute, Paderborn University, Germany,
May 2020.

Cooperative Mobile Systems
Heinz Nixdorf Institute, Paderborn University, Germany

C M S Furstenallee 11 - 33102 Paderborn - Germany

- http://www.cms-labs.org/

http://www.cms-labs.org/

Simulative Performance Evaluation of a
Provably Collision Free Approach for

Managing Autonomous Cars on Urban
Intersections

Bachelor Thesis in Computer Science
vorgelegt von

Matthias Artmann
geb. am 09. November 1997
in Paderborn

angefertigt in der Fachgruppe

Cooperative Mobile Systems

Heinz Nixdorf Institut
Universitat Paderborn

Betreuer: Christoph Sommer
Gutachter: Christoph Sommer
Friedhelm Meyer auf der Heide

Abgabe der Arbeit: 14. Mai 2020

Erklarung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
dhnlicher Form noch keiner anderen Priifungsbehorde vorgelegen hat und von dieser
als Teil einer Priifungsleistung angenommen wurde.

Alle Ausfiihrungen, die wortlich oder sinngemaf3 {ibernommen wurden, sind als

solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance
from third parties.

I certify that the work has not been submitted in the same or any similar form for
assessment to any other examining body and all references, direct and indirect, are

indicated as such and have been cited accordingly.

(Matthias Artmann)
Paderborn, 14 May 2020

1=
: C

<BUR!
Die Universitit der haft

»
A

Eidesstattliche Versicherung

Nachname Artmann Vorname Matthias
Matrikelnr. 7087806 Studiengang Informatik
(¢ Bachelorarbeit (Masterarbeit

Simulative Performance Evaluation of a Provably Collision Free Approach for Managing Autonomous Cars on Urban

Titel der Arbeit inberactions

O Die elektronische Fassung ist der Abschlussarbeit beigefiigt.

Die elektronische Fassung sende ich an die/den erste/n Priifenden bzw. habe ich an die/den erste/n Priifenden gesendet.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Abschlussarbeit (Ausarbeitung inkl. Tabellen, Zeichnungen, etc.) selbststandig
und ohne unzulassige fremde Hilfe erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wortliche
und sinngemaRe Zitate kenntlich gemacht. Die Abschlussarbeit hat in gleicher oder ahnlicher Form noch keiner Priifungsbehdrde vorgelegen.
Die elektronische Fassung entspricht der gedruckten und gebundenen Fassung.

Belehrung

Wer vorsétzlich gegen eine die Tauschung iiber Priifungsleistungen betreffende Regelung einer Hochschulpriifungsordnung verstoRt, handelt
ordnungswidrig. Die Ordnungswidrigkeit kann mit einer GeldbuRe von bis zu 50.000,00 € geahndet werden. Zustandige Verwaltungsbehérde
fiir die Verfolgung und Ahndung von Ordnungswidrigkeiten ist die Vizeprasidentin / der Vizeprasident fiir Wirtschafts- und Personalverwaltung
der Universitat Paderborn. Im Falle eines mehrfachen oder sonstigen schwerwiegenden Tauschungsversuches kann der Priifling zudem
exmatrikuliert werden. (§ 63 Abs. 5 Hochschulgesetz NRW in der aktuellen Fassung).

Die Universitat Paderbomn wird ggf. eine elektronische Uberpriifung der Abschlussarbeit durchfiihren, um eine Tauschung festzustellen.

Ich habe die oben genannten Belehrungen gelesen und verstanden und bestétige dieses mit meiner Unterschrift.

Ort Paderborn Datum 14.05.2020

Unterschrift /MW /A;jm_

Datenschutzhinweis:

Die 0.g. Daten werden aufgrund der geltenden Priifungsordnung (Paragraph zur Abschlussarbeit) i.V.m. § 63 Abs. 5 Hochschulgesetz NRW erhoben.
Auf Grundlage der (bermittelten Daten (Name, Vorname, Matrikelnummer, Studiengang, Art und Thema der Abschlussarbeit) wird bei Plagiaten bzw.
Tauschung der*die Priifende und der Priifungsausschuss lhres Studienganges iiber Konsequenzen gemal8 Priifungsordnung i.V.m. Hochschulgesetz
NRW entscheiden. Die Daten werden nach Abschluss des Priifungsverfahrens geléscht. Eine Weiterleitung der Daten kann an die*den Priifende*n und
den Priifungsausschuss erfolgen. Falls der Priifungsausschuss entscheidet, eine GeldbuBBe zu verhangen, werden die Daten an die Vizeprésidentin fiir
Wirtschafts- und Personalverwaltung weitergeleitet. Verantwortlich fir die Verarbeitung im reguldren Verfahren ist der Prifungsausschuss lhres
Studiengangs der Universitét Paderborn, fiir die Verfolgung und Ahndung der Geldbule ist die Vizeprasidentin fiir Wirtschafts- und Personalverwaltung.

Abstract

In the development of intelligent, autonomously operating vehicles, safety is a
vital property every system design must ensure in order to be considered for real
applications. By enabling autonomous vehicles to communicate with each other,
they gain the opportunity to coordinate their maneuvers and thereby improve their
safety cooperatively. A recent approach to specify vehicle controllers for coordinated
crossing maneuvers at urban intersections, presented by Schwammberger [1], uses
a mathematical formalization of the problem to prove the collision freedom of an
exemplary controller. Because the formalism employs a highly abstract traffic model,
it is unclear how such a controller should be implemented and to what extent its
safety properties translate into a more realistic scenario.

In this thesis, I investigate these questions by implementing the controller in the
vehicular network simulation framework Veins and conducting extensive simulation
studies. I define simulation parameters that introduce realistic communication and
coordination restrictions and I evaluate the controller’s performance in terms of
vehicle safety. The simulation results show that the controller preserves its collision
freedom in the least restricted configurations, confirming that in principal, the safety
property translates to more realistic scenarios. For configurations with more severe
restrictions, however, the coordination fails and vehicles can collide.

By analyzing the reasons for the coordination failures, I conclude that the ex-
ample controller alone is not suitable for more realistic environments in which the
simplifying assumptions of the abstract traffic model do not hold. However, the
controller can most likely be adjusted to handle more realistic environments by
using a more sophisticated communication protocol for the implementation or by
extending its abstract definition directly, which is explicitly supported by the abstract
model because it can be used to specify arbitrary controllers.

iv

Kurzfassung

Bei der Entwicklung intelligenter autonom operierender Fahrzeuge ist die Sicherheit
eine unerléssliche Eigenschaft, die jedes System erfiillen muss, um fiir reale Anwen-
dungen in Betracht gezogen zu werden. Indem man es den Fahrzeugen erméglicht,
miteinander zu kommunizieren, gibt man ihnen die Moglichkeit, ihre Manéver zu
koordinieren und somit ihre Sicherheit kooperativ zu verbessern. Ein kiirzlich von
Schwammberger [1] vorgestellter Ansatz, Fahrzeugsteuerungen fiir koordinierte
Kreuzungsmanoéver auf stddtischen Kreuzungen zu definieren, verwendet eine mathe-
matische Formalisierung des Problems, um die Kollisionsfreiheit einer beispielhaften
Steuerung zu beweisen. Da der Formalismus ein hochgradig abstraktes Verkehrs-
modell verwendet, ist es unklar, wie eine solche Fahrzeugsteuerung implementiert
werden sollte und inwiefern sich ihre Sicherheitseigenschaften auf ein realistischeres
Szenario iibertragen.

In dieser Arbeit gehe ich diesen Fragen nach, indem ich die Steuerung im Simu-
lationsframework Veins fiir vernetzte Fahrzeuge implementiere und umfangreiche
Simulationsstudien durchfiihre. Ich definiere Simulationsparameter, die die Kom-
munikation und Koordination auf realistische Weise einschranken, und ich bewerte
die Leistung der Fahrzeugsteuerung anhand der Sicherheit der Fahrzeuge. Die Si-
mulationsergebnisse zeigen, dass die Steuerung ihre Kollisionsfreiheit in den am
wenigsten einschrankenden Konfigurationen beibehélt, was bestéatigt, dass sich die Si-
cherheitseigenschaften prinzipiell auf realistischere Szenarien iibertragen lassen. Fiir
Konfigurationen mit starkeren Einschréankungen schlégt die Koordination allerdings
fehl und es kann zu Kollisionen zwischen den Fahrzeugen kommen.

Indem ich die Griinde fiir die fehlschlagende Koordination analysiere, komme
ich zu dem Schluss, dass die beispielhafte Steuerung allein nicht fiir realistischere
Szenarien, in denen die vereinfachenden Annahmen des abstrakten Modells nicht
gelten, geeignet ist. Allerdings kann die Steuerung hochstwahrscheinlich angepasst
werden, um auch in realistischeren Umgebungen zu funktionieren, indem man fiir die
Implementierung ein weiter entwickeltes Kommunikationsprotokoll verwendet, oder
indem man ihre abstrakte Definition direkt erweitert. Dies wird vom abstrakten Mo-

dell explizit unterstiitzt, da man es fiir die Definition beliebiger Fahrzeugsteuerungen
verwenden kann.

Contents

Abstract iv
Kurzfassung A
1 Introduction 1
1.1 Related Work e 3
2 Fundamentals 6
2.1 Abstract Urban TrafficModel 6
2.2 Crossing Controller 13
2.3 Simulation Framework 16
3 Controller Implementation 20
3.1 Controller Design Considerations 20
3.2 Traffic ModelInterface 23
3.3 Vehicle Controller Application 32
3.4 Practical Implementation Problems 38
3.5 Verification and Validation. 42
4 Simulation Setup 46
4.1 Intersection SCENAriOS v v v v vt it e e e e 46
4.2 TrafficGeneration v i i i it e 48
4.3 Simulation Parameters e 51
4.4 Performance MetriCS v v v v v ittt e e e 56
5 Evaluation 61
5.1 Implementation and Abstraction Level 61
5.2 SimulationResults 63
6 Conclusion 96
Bibliography 102

vii

Chapter 1

Introduction

Autonomously operating vehicles offer great potential for improving numerous
aspects of future transportation, such as safety, traffic flow efficiency, and ecological
sustainability. By constructing Vehicular Ad Hoc Networks (VANETSs) via means of
short-range wireless communication, traffic agents are able to cooperatively solve
complex coordination and optimization problems. For instance, a very active area
of research investigates the use of Cooperative Adaptive Cruise Control (CACC) for
vehicular platooning, where multiple vehicles cooperate to drive at a minimum safety
distance to the preceding and following vehicle and thereby optimize their total air
resistance and road usage [2]. The major benefit of this approach is improved traffic
efficiency in terms of reduced fuel consumption and increased road capacity.

One task essential to the success of autonomous mobility concepts is to guarantee
the safety of all participants in any situation. The scenario of urban intersections
is especially interesting in this regard due to the multitude of interfering driving
directions and the highly heterogeneous street layout, in comparison to motorways
or country roads.

In recent approaches to solving this problem using methods of theoretical com-
puter science, mathematical formalisms for describing and reasoning about traffic
situations from a high-level abstract perspective were introduced and used to imple-
ment provably collision-free vehicle controllers for specific traffic scenarios. Building
on Multi-lane Spatial Logic (MLSL), introduced by Hilscher et al. [3] for a multi-
lane motorway scenario, Hilscher and Schwammberger [4] proposed an extension
of MLSL to Urban Multi-lane Spatial Logic (UMLSL) to cover urban traffic scenar-
ios with intersections. A more refined version of UMLSL was later presented by
Schwammberger [1], extending the formal model and vehicle controller to support
intersections of arbitrary size. Another extension of the controller, also based on the
original version [4], introduced a communication protocol to deal with imperfect

knowledge scenarios [5].

1 Introduction 2

Approaching the highly complex problem of coordinating maneuvers of coop-
erative autonomous vehicles from a high level of abstraction allows scientists and
engineers to develop and evaluate new control strategies quickly and independently
of specific vehicle or road network characteristics. The additional possibility to
formally prove that a controller design satisfies the imposed safety and efficiency re-
quirements further motivates the development of suitable mathematical formalisms.
However, it is unclear how well such an abstract control mechanism and its formal
properties translate into a realistic environment and perform in the presence of
influences that are not captured by the formalism.

Although both mentioned extensions of the UMLSL-based approach [4] modify
the vehicle controller to deal with somewhat more realistic scenarios [1], [5], both
versions still rely on strong idealizing assumptions to make their safety proofs possible.
Therefore, the controller cannot be expected to provide the same level of guaranteed
safety under more realistic conditions. This raises the question to what extent the
safety properties of the crossing controller are affected by (partially) lifting the
idealizing assumptions. It is also unclear how this controller that is based on an
abstract, purely spatial formalism can be implemented in software in a sensible and
practicable manner.

In this thesis, I take a simulative approach to investigate both of these ques-
tions. To this end, I develop a suitable implementation of the crossing controller for
arbitrary intersections [1] as an on-board application in the vehicular simulation
framework Veins [6]. The framework provides realistic communication models that
accurately simulate wireless channel characteristics, and a microscopic traffic simu-
lator that can be used to investigate a wide range of traffic scenarios. I document
the implementation process in this environment and report on the major design
challenges. Thereafter, I use the implemented application for extensive simulation
studies to examine the controller’s performance in various intersection scenarios.
Here, I investigate the influence that several parameters introducing an increasing
degree of realism have on the safety of crossing maneuvers. Because the vehicle
controller implements a cooperative coordination policy that requires the vehicles
to exchange information with each other, and since inter-vehicular communication
(IVC) is one of the most challenging research topics in this domain [7], I focus on
realistic communication models and artificial communication impairments as the
main parameters. Especially the impact of limited transmission range and relia-
bility is of interest in the urban intersection scenario due to buildings and other
obstacles blocking the line of sight between vehicles approaching the intersection
from different directions. Additionally, I introduce a message processing delay and
random errors in the perception of other vehicles’ positions to model limitations and
imperfections of the on-board hardware and examine their effects on the crossing

maneuver safety.

1.1 Related Work 3

1.1 Related Work

In the context of the growing relevance of intelligent, autonomous vehicles in re-
cent years, there exists a substantial amount of research dealing with numerous
challenges in all facets of this domain. The urban scenario and intelligent inter-
section management in particular have proven to be demanding areas and various
approaches to address their issues using means of IVC and formal modeling have
been developed [8]-[10].

Dresner and Stone [11] proposed a reservation-based intersection management
system for autonomous vehicles with the goal of optimizing intersection throughput
by modeling the coordination problem as a system of cooperating agents. Their
approach is based on splitting the intersection’s area into a grid of n x n reservation
tiles. Every vehicle that plans to cross the intersection must request a slot in time
and space, expressed as a time interval for each tile it requires. A central intersection
controller responds to all requests and determines whether to accept or reject them
by ensuring that no tile is reserved by more than one vehicle at the same time. A
First Come First Serve policy is employed to determine which vehicles are accepted
first. The reservation system was implemented in a custom simulation environment
and compared to a traffic light and an overpass, the optimal solution in this scenario,
for several intersection sizes and granularity values n. The results show a signif-
icant improvement in average delay over the traffic light policy, approaching the
performance of the overpass.

In later elaborations of this system, more detailed vehicle characteristics, a so-
phisticated communication protocol, and support for mixed traffic consisting of fully
autonomous and human-controlled vehicles were implemented [12]. The advan-
tages of this reservation-based approach over traditional intersection management
systems in terms of efficiency were evaluated thoroughly by simulation studies in
several four-way intersection scenarios. Additionally, the communication protocol
was designed to be robust against message loss to provide a high level of safety, even
under extremely unreliable communication conditions. The intersection manager
was supplemented by means to counter effects of imperfect vehicle sensors and actu-
ators as well as detect crashed vehicles on the intersection and prevent approaching
vehicles from entering.

Another approach was taken by Kowshik, Caveney, and Kumar [13], who de-
signed a hybrid system of a centralized intersection management unit and a dis-
tributed safety control mechanism. In their system, a central intersection manager is
responsible for assigning a time slot to each approaching vehicle during which it may
perform its crossing maneuver. The time slots are selected in such a way that slots
for conflicting maneuvers are always disjoint. However, the vehicles must ensure on
their own that they can adhere to their time slots while keeping a safe distance to

1.1 Related Work 4

each other, relying on periodically updated information on the leading car’s speed
and acceleration. By assuming worst case behavior and acting cautiously, the con-
trol policy can deal with noisy sensor information and delayed or lost coordination
messages, given that maximum error bounds are known.

The authors designed formalisms for all components of their model, which
allowed them to prove the safety and liveness of their approach. Using a degree of
freedom in the intersection manager’s time slot assignment policy, they also improved
the efficiency of their system, which they evaluated for a simulated four-way junction
with a single lane per driving direction. The results showed a significant reduction
of the average travel time compared to a traffic light and a stop sign policy for traffic
loads of up to two vehicles per second.

A more practically oriented application was presented by Hafner et al. [14]. In-
stead of relying on fully autonomous driving for cooperative maneuver coordination,
they focused on collision avoidance by intervention, i.e., their control system only
becomes active in case it detects a potentially dangerous situation. The detection
mechanism is based on a simplified model of the vehicle dynamics and uses a capture
set to describe configurations of vehicle positions and speeds for which no accelera-
tion or brake input can prevent a collision if the vehicles continue following their
current trajectories. It is defined to only consider two vehicles at a time. The vehicles
constantly exchange state information to allow the collision avoidance system to
detect when a configuration in the capture set is approached. As soon as this happens,
the system calculates control inputs for both vehicles in order to prevent a collision.

The authors implemented this application in two test vehicles equipped with the
necessary communication and computing hardware, and evaluated its functionality
experimentally, finding that it can successfully avert collisions in a real-world scenario.
They repeated the experiment later with an improved formal model to deal with
inaccurate sensor information and communication delay, showing similar results
[15].

In an attempt to leverage vehicle platooning to improve the efficiency of coordina-
tion-based intersection management, Bashiri and Fleming [16] designed a novel
coordination policy and compared it to a common stop sign method. Their policy
uses a central intersection management unit that receives crossing requests from
the leading vehicles of platoons approaching the intersection. The request messages
include information on the platoon’s size, speed, and position that allows the man-
agement unit to apply a scheduling algorithm to minimize the average waiting time
or the waiting time’s variance. Using a simulation environment implemented in
Matlab, the authors were able to show that their approach significantly outperforms
the regular stop sign policy in terms of waiting time and reduces the communication

overhead in comparison to a solution without platooning.

1.1 Related Work 5

Later, Bashiri, Jafarzadeh, and Fleming [17] developed this system further by
adding more realistic vehicle dynamics and optimizing their scheduling techniques.
Also by running simulations, they compared the improved system to a traffic light
policy with fixed phases and found that it can increase the intersection’s throughput
while reducing average waiting times and fuel consumption.

It is evident that cooperative intersection management and especially its safety
requirements are a highly active area of research. The majority of coordination
approaches are based on simplifying formal models that are used to reduce the man-
agement problem to scheduling and optimization tasks. These models are frequently
used to prove safety and liveness properties, while the efficiency of the control
strategies is often evaluated using simulations or real-world experiments. Most of
the presented approaches consider the coordination problem at multiple abstraction
levels, e.g. by introducing high-level formalisms to describe their reasoning and
control policies, and implementing their systems in microscopic traffic simulations
with detailed vehicle dynamics and communication protocols.

The performance evaluation on a low abstraction level considering a concrete
implementation of a control system in the presence of imperfect information and
communication is essential for the validation of a system’s safety properties. However,
the abstract intersection coordination protocol presented by Schwammberger [1] is
only defined at a very high level of abstraction and has not been evaluated in this

way yet.

Chapter 2

Fundamentals

The abstract traffic model and vehicle controller presented by Schwammberger [1]
are the main subject of this thesis. Therefore, it is essential to provide sufficient
information on how they work and what concepts and techniques are used to define
them. Their evolutionary development process is spread over several years and
publications [1], [3]-[5], [18], addressing various application scenarios and itera-
tively extending the model to cope with ever more complex traffic environments.
This chapter discusses only a selection of topics in depth and provides superficial
explanations of the remaining aspects, ensuring an intuitive understanding.

To this end, the basic concepts of the abstract urban traffic model and UMLSL
are addressed in Section 2.1, followed by a simplified definition and explanation of
the vehicle controller in Section 2.2.

Section 2.3 provides an overview of the simulation framework Veins. It pays
special attention to the traffic simulator SUMO and the differences between its traffic
representation and the abstract model, which are essential for the implementation

of the vehicle controller.

2.1 Abstract Urban Traffic Model

The abstract traffic model was first introduced by Hilscher et al. [3], only describing
multi-lane motorways, and incrementally extended to country roads with two-way
traffic [18], intersections of two roads with two lanes each [4], and, finally, intersec-
tions of roads with arbitrary lanes [1]. This last stage of development is the basis of
the thesis and subject of this section.

The model comprises two main components: A generic, mathematical formalism
to abstractly describe the topology of urban road networks as well as the vehicles
inside, and a formal logic that can be used to reason about traffic situations, called
Urban Multi-lane Spatial Logic (UMLSL) [1]. On top of this model, a vehicle con-

2.1 Abstract Urban Traffic Model 7

troller for safe intersection crossing maneuvers is defined. Using UMLSL to reason
about its behavior, it was shown that if all vehicles in a traffic network are equipped
with this controller, no collisions can occur.

2.1.1 Road Network and Traffic Representation

The abstract traffic model describes urban road networks as graphs with directed
and undirected edges, where the nodes are either lane segments or crossing segments.
Each lane segment represents one lane that connects two intersections and each
crossing segment represents a certain part of an intersection. Lane segments that
belong to the same road, i.e., connect the same intersections, are connected by
undirected edges that define a neighborhood relation; lane changes are only possible
between lanes connected by these edges. Neighboring lanes may have opposing
driving directions, allowing vehicles to perform overtaking maneuvers by temporarily
using a lane of the oncoming traffic.

Crossing segments are only connected to other nodes by directed edges. An edge
between a crossing segment ¢ and a lane segment [means that the intersection
to which ¢ belongs can be entered from, or left via, the lane [, depending on the
direction of the edge. Edges between crossing segments are mainly used to describe
possible paths for crossing maneuvers. Apart from that, each maximal subgraph
of crossing segments, ignoring the direction of the edges, identifies and describes
exactly one intersection in the road network. Figure 2.1 illustrates this structure for
a simple intersection connected to four roads, each having one lane leading towards
the intersection and one leading away from it.

Intersections like this with n lanes on each of the four roads are called n x n
intersections from here on; using this notation, the example shows a 2 x 2 intersection.
This can be generalized to n x m intersections for the case where only roads on
opposing sides of the intersection have equal numbers of lanes: By convention, n is
the number of lanes on the two horizontal roads and m is the number of lanes on
the vertical roads; the numbers of incoming lanes per road are 5 and 5 respectively.

Every segment s in the network has a size w(s) € R*. For lane segments, the
size directly corresponds to the length of the represented lane. A position on lane
[is a real number p € [0, w(1)]. The driving direction of [is then defined as the
direction of increasing position value. The size of a crossing segment does not
explicitly describe the shape of the segment; instead, it is used to calculate the
length of crossing maneuver trajectories that incorporate the segment. Accordingly,
a position p € [0, w(c)] on a crossing segment ¢ can only be interpreted in relation
to a maneuver. The traffic model defines a number of sanity conditions for the

network structure to ensure that there are no dead ends, self loops of edges, or other

2.1 Abstract Urban Traffic Model 8

4

i

e

Q

5 =, ()
¥ 2 ()L

0 1

(a) Detailed intersection layout (b) Abstract graph representation

o

)

v]

‘?‘i
()

Q

I

Figure 2.1 - Intersection representation in the abstract traffic model. Fig-
ure 2.1a shows the layout and shape of a 2 x 2 intersection in detail. A possible
graph representation of this intersection is shown in Figure 2.1b. The nodes la-
beled with c; are crossing segments and the [; are lane segments. The maximal
subgraph of crossing segments marked by the gray box is the representative
of the whole intersection. Its depiction is based on [1, Figure 2].

inconsistencies, and that driving directions of lanes are well defined. However, their
exact formalization is of no interest here.

Vehicles driving in the network are uniquely identified by capital letters A, B, C,
Typically, variables a, b, c, ... are used for describing arbitrary vehicles. The vehicle
under consideration is conventionally referred to as ego, which can be seen as a special
vehicle variable. The position description of a vehicle ¢ comprises a lane or crossing
segment s and a real-valued position p on that segment, where p is interpreted as the
position of the vehicle’s rear bumper. Every vehicle follows an individual route that
is represented by an infinite sequence of segments called infinite path pth(c), where
each successive pair of segments (s;,s;,1) is connected by a directed or undirected
edge. A crossing maneuver in this path is simply defined as a partial sequence of
contiguous crossing segments delimited by the two lane segments through which
the vehicle enters and leaves the intersection.

The area occupied by a vehicle is called its safety envelope and contains the
vehicle’s physical size as well as its current braking distance added in front of the
front bumper. Since lane segments have no notion of width, the safety envelope is
defined to span the whole width of the lane represented by the current lane segment.
Crossing segments, on the other hand, are handled differently: If a vehicle’s safety
envelope extends to a crossing segment, the whole segment is assumed to be occupied
by the corresponding vehicle. This is important for the coordination mechanics used

by the vehicle controller.

2.1 Abstract Urban Traffic Model 9

The abstract traffic model defines a data structure called Traffic Snapshot that
stores information on all vehicles at a given point in time. For example, given a
vehicle C, the Traffic Snapshot of the current time provides the infinite path pth(C),
the index of the current segment curr(C) such that s = pth(C)(curr(C)) is the current
segment, and the position pos(C) on the segment s. Note that this only describes
the position of the vehicle’s rear bumper. The safety envelope typically extends over
several other segments that follow s in pth(C).

The passing of time is modeled by so-called time transitions. A time transition
for a given duration t € R™ can be applied to a Traffic Snapshot to obtain another
Traffic Snapshot where the information on all vehicles is updated to reflect the
situation ¢t time units in the future. Other transition types model actions performed
by the vehicles and do not progress time; vehicles can, for instance, change their
acceleration instantaneously. Apart from the vehicle controller and a number of
sanity conditions, the abstract model does not define rules or even an execution
model to describe when transitions should be applied.

For the purpose of coordination, the abstract model defines the concepts of
claims and reservations. Formally, both claims and reservations are sets of lane
or crossing segments. The abstract model draws a distinction between lane and
crossing segments but for understanding the coordination technique, it suffices to
only address claims and reservations of crossing segments. In a Traffic Snapshot, one
set of claimed segments cclm(c) and one set of reserved segments cres(c) is stored
for each vehicle c. Intuitively, the reserved segments of a vehicle are those segments
that it currently occupies and on which no other vehicle should be driving. The
claimed segments are those segments that the vehicle plans to reserve in the near
future.

Vehicles can modify their claims and reservations by performing the appropriate

actions. The relevant actions are
* cc: Claim all crossing segments that are part of the next crossing maneuver
* wd_cc: Withdraw all claims on crossing segments, i.e., empty the set cclm(ego)

* rc: Reserve all crossing segments that are currently claimed and withdraw

those claims; effectively moves segments from cclm(ego) to cres(ego)

* wd_rc: Withdraw all reservations on crossing segments, i.e., empty the set
cres(ego)

The abstract model differentiates between the actions performed by the vehicle
controller and the transitions that are subsequently applied to Traffic Snapshots.
Again, it suffices here to regard them as one and the same.

Finally, the abstract traffic model defines the concept of views to describe how

vehicles perceive their surroundings. A view is constructed for a certain vehicle

2.1 Abstract Urban Traffic Model 10

at a given moment in time, consists of several lane and crossing segments, and is
bounded by a horizon h € R" that can be interpreted as the vehicle’s view distance.
In simple terms, a view follows the route of the vehicle, with and against its driving
direction, as far as the horizon h allows it. Its structure can be compared to that
of a safety envelope that stretches over all lanes belonging to the same road and
that follows multiple intersection crossing maneuvers simultaneously. The formal
definition of views and their construction is highly complex and involves several
intermediate constructs that are used to assemble a sufficiently detailed final view
structure. For simplicity, the notation V(c) is used here to denote the entire area a
vehicle ¢ can perceive, without revealing details of the actual view data structure.
In addition to their view, vehicles also have limited access to the current Traffic
Snapshot. What this means becomes clear when looking at how views are utilized.

One of the main purposes of views is the perception of nearby vehicles and,
more importantly, their safety envelopes, claims, and reservations. To this end, every
vehicle is assumed to be equipped with sensors that are capable of perceiving the
full length of other vehicles’ safety envelopes at any given moment. The abstract
model assumes perfect knowledge, i.e., the sensors always provide the exact size of a
safety envelope. All vehicles are able to access the infinite path pth, current segment
index curr, and current position pos of any other vehicle through the current Traffic
Snapshot. Using this information in conjunction with the size of a vehicle’s safety
envelope enables all vehicles to compute the shape of any vehicle’s safety envelope
represented by a set of segments and intervals describing the occupied space on
each segment. However, their perception is limited by the view: A vehicle C can
only perceive the parts of other vehicles’ safety envelopes that are positioned on
lane and crossing segments in its view V(C). Note that parts of another vehicle’s
safety envelope may be visible even if its physical shape is not included in the view.

Claims and reservations can also be accessed through the Traffic Snapshot. Since
claims are a virtual concept only used for coordination, the sets of claimed segments
cclm are always accessible by all vehicles in the network, independent of their views.
Reservations are, however, only perceived for the segments that are visibly occupied
by the reserving vehicle’s safety envelope. This causes reserved crossing segments
s € cres(C) to be perceived as free as soon as C has physically passed the segments
instead of only after C has withdrawn its reservation.

Analogously, this definition implies that reserved crossing segments in front of
the reserving vehicle are also perceived as free if the safety envelope has not yet
reached those segments. It must be mentioned here that although this behavior fits
the formalization in the original publications [1], [4] and the intuitive meaning of
reservations, it does not entirely reflect the authors’ intention: Because reservations
are a key component of the coordination protocol, perceiving a reserved crossing

segment as free before it has been passed by the reserving vehicle can lead to

2.1 Abstract Urban Traffic Model 11

unnecessarily dangerous situations. For example, two vehicles can reserve and
approach the same crossing segment while being unaware of the conflict until the
first vehicle’s safety envelope reaches the segment. This should not be possible
because both vehicles were aware of each other’s intended maneuvers when their
claims were placed; there is no reason to lose this knowledge when the claims
are turned into reservations. A simple solution to this problem could be stretching
the perceived safety envelope of vehicles that have reserved crossing segments so
that it extends at least until the end of the crossing maneuver.! In the following,
it is assumed that all reserved crossing segments that are within or in front of the

reserving vehicle’s safety envelope are perceived as reserved.

2.1.2 Urban Multi-Lane Spatial Logic

For reasoning about traffic situations in a road network of the abstract traffic model,
the formal logic Urban Multi-lane Spatial Logic (UMLSL) is used. It is a purely spatial
logic, which means that only positional and structural properties of traffic situations
at single points in time are considered; the logic cannot express the order in which
different situations occur or the duration over which a certain property holds. UMLSL
formulas are evaluated over the views of individual vehicles in conjunction with the
current Traffic Snapshot. Thereby, they can be used to reason about traffic situations
from the perspective of a single vehicle rather than the whole traffic network.

Since UMLSL formulas only evaluate to either true or false, they are best used to
check whether a specific property holds in the current view. For example, a UMLSL
formula can be used by the ego vehicle to check if any other vehicle C that is visible
in ego’s view is currently driving on the same lane as ego. But finding out which
vehicles satisfy this condition is not achievable by that formula alone; it can, however,
be used as an effective tool to define the set of such vehicles easily: Let sl(a, b) be a
UMLSL formula that is true if and only if the vehicles identified by the variables a and
b drive on the same lane, and V denote the set of all vehicles in the network. The set
of vehicles driving on the same lane as ego can then be defined as {c € V | sl(ego, c)},
assuming that sl is evaluated over the view V(ego).

One of the intended applications of UMLSL formulas is the definition of vehicle
controllers. While the actions that were mentioned above serve to describe the
active behavior of a vehicle, the perceptual capabilities are modeled with the help
of appropriate UMLSL formulas that are evaluated over the vehicle’s view. This is
demonstrated with the controller for safe intersection crossing maneuvers that is
presented in Section 2.2.

I This discrepancy between the formalization and the intended behavior as well as the possible solution
have been verified by Maike Schwammberger, the author of [1].

2.1 Abstract Urban Traffic Model 12

UMLSL can also be used to formally prove properties of the controllers using it in
their definition. The safety of the controller for intersection maneuvers, for instance,
is formalized and proven with the use of a safety property expressed in UMLSL.
This formula, called Safe, is satisfied if and only if there exists no pair of vehicles
whose safety envelopes overlap on any lane or crossing segment in the network. It
suffices to evaluate the formula over the local views of all vehicles because it can
be assumed that each vehicle perceives its own safety envelope and, thereby, any
other vehicles’ safety envelopes that might overlap with it. The proof itself begins
with the assumption that the initial traffic situation satisfies Safe, and proceeds with
showing that every possible transition, applied to a safe state, preserves the safety
property. By the principle of induction, this proves that every thereby reachable
traffic situation satisfies Safe. Using UMLSL both for the definition of the controller
and the safety property makes the chain of arguments concise and easy to follow.

Before presenting how the vehicle controller works, the UMLSL formulas used for
its definition should be explained. The controller requires only five relatively simple
formulas; their intuition is easy enough to understand that no formal definitions are

needed. Each of the formulas is evaluated over the view of the ego vehicle.

1. col(ego) (Collision check): This formula is a local version of the safety property
Safe used for the safety proof. It is satisfied if ego’s reservation overlaps with

the reservation of any other vehicle.

2. ca(ego) (Crossing ahead check): The crossing ahead check is satisfied if and only
if ego is driving on a lane segment, the distance between its reservation and
the next intersection is less than a constant d., and there is no other vehicle
in between. Intuitively, the ego vehicle does not need to care about crossing
maneuver coordination as long as the formula is not satisfied. The constant
d, is set to a value that ensures sufficient space to react to an approaching

intersection but avoids unnecessary actions while driving on a lane segment.

3. pc(c) (Potential collision check): If ego has an active claim, it can use the
potential collision check to find out whether it is safe to keep the claim to turn
it into a reservation later. The formula is satisfied if and only if ego’s claim
overlaps with the claim or the visible reservation of the vehicle c. In this case,
ego should withdraw the claim to avoid a collision. This check is crucial for
the controller’s coordination procedure.

4. Ic(ego) (Lane change check): The lane change check is satisfied while ego per-
forms a lane change maneuver. Due to the way such maneuvers are executed
in the abstract model, with ego holding reservations on two parallel lanes at
the same time, no vehicle should commence a crossing maneuver during a
lane change.

2.2 Crossing Controller 13

5. oc(ego) (On crossing check): This formula is satisfied if and only if any part of
ego’s reservation is situated on a crossing segment. It is useful to determine
when a crossing maneuver starts or ends.

2.2 Crossing Controller

The abstract traffic model defines a vehicle controller to enable coordinated inter-
section crossing maneuvers. But this controller alone does not suffice to ensure a
safe driving behavior of the vehicles under all circumstances. Therefore, the whole
vehicle control system comprises two additional controllers: A distance controller
that maintains a safety distance to vehicles in front and ensures that an intersection
is not entered before the required segments are reserved, and a lane change controller
that coordinates maneuvers on lane segments, such as lane changes, as long as no
intersection is nearby. The latter is based on the controller for the country road
scenario presented by Hilscher, Linker, and Olderog [18]. However, neither of the
additional controllers is presented in detail because the crossing controller is the
main focus; it is just assumed that the distance and lane change controllers work as
intended and cause no unsafe situations. Unless stated otherwise, the term (vehicle)
controller refers specifically to the crossing controller for the remainder of the thesis.

The coordination protocol is based on the same idea as the controller’s prede-
cessors for the motorway [3] and country road [18] scenarios. There, the goal is to
perform a safe lane change maneuver by coordinating with nearby vehicles. The
ego vehicle first places a claim on the neighboring lane segment it plans to drive
on, which is similar to setting the turn indicator. The claim has the same extension
as its safety envelope and can be used to check for potential collisions with other
safety envelopes using an MLSL formula similar to the potential collision check pc of
UMLSL. If there is no potential collision, the ego vehicle will turn its claim into a
reservation and then physically perform the lane change maneuver. Otherwise, it
will withdraw its claim and try the same approach again later.

The same basic procedure is used for the coordination of crossing maneuvers
by the crossing controller. However, due to the vastly different network layout of
an intersection compared to two parallel lanes, some adjustments are necessary.
Most importantly, a vehicle must claim all required crossing segments at once to
avoid deadlocks; the cc action is defined to meet this requirement. The analogy to a
deadlock, a problem that is commonly found in concurrent programming scenarios,
emphasizes the intuition of crossing segments serving as a shared resource with a
mutual exclusion condition.

This is enforced by the definition of safety envelopes on crossing segments: As
discussed in Section 2.1.1, reserved crossing segments are always occupied entirely,

independent of the actual extension of the reserving vehicle’s safety envelope. This

2.2 Crossing Controller 14

causes any potential collision check performed by another claiming vehicle to detect
a collision if one of the claimed segments is already reserved, regardless of the exact
position of the reserving vehicle. The only exception to this are segments that have
already been crossed; these segments are safe to be used by other vehicles even
though they might still be marked as reserved in the current Traffic Snapshot.

For the formalization of the crossing controller, the concept of timed automata [19]
is extended to incorporate UMLSL and the defined actions that vehicles can perform
to change the traffic situation. Timed automata are an extension of the common finite
automata used to describe the behavior of systems with time constraints. The main
contribution of this concept are clock variables that can be used by an automaton to
monitor and react to the passing of time. A clock variable x is a real-valued variable
that can be used by an automaton in two ways: When used in a transition guard, the
variable can be part of an expression like x < 3 that specifies a condition that must
be satisfied for the transition to be available. As part of a transition action, clock
variables can be reset to zero (x := 0). This is the only way the value of a clock
variable can be changed actively. When a specific amount ¢ of time elapses, all clock
variables of the automaton are increased by t.

The abstract traffic model extends this concept to define Automotive-Controlling
Timed Automata (ACTA). Transition guards of an ACTA are extended to allow Boolean
expressions of clock constraints and UMLSL formulas, while the transition actions
additionally allow for the claim and reservation actions defined in section 2.1, now

called controller actions. The new syntax of transition labels is
¢/asc, 2.1

where ¢ is the transition guard, a € {cc,rc,wd_cc,wd_rc} is the controller action,
and c is a list of clock variable resets of the form x := 0. Additionally, each state of
an ACTA has a state invariant expressing a condition that must be satisfied while
the state is active. Transition guards and state invariants can have the same type of
expressions. State invariants can therefore block or force transitions based on clock
variables and UMLSL formulas.

The formal definition of the crossing controller as an ACTA is depicted in Figure
2.2. It uses one clock variable x and has five states q,...,q,, each with a clear
intuition of the current situation of the controlled vehicle ego provided by the state
invariants. Each vehicle must start in a safe situation, which is expressed by the state
invariant —col(ego) of the initial state g,. As soon as ego approaches an intersection,
the formula ca(ego) is satisfied and the transition to g, is available. The states q;,
g,, and g5 all specify this as part of their invariant, meaning that the vehicle must
stay in front of the intersection as long as one of these states is active. The next
transition to q, has no guard and performs the cc action. Hence, the vehicle will

2.2 Crossing Controller 15

place its claim on the required crossing segments immediately after detecting the
intersection.

ccC

ca(ego)
qo : —col(ego) q; : ca(ego) ‘ qs : ca(ego)

dc : pe(c)/wd_cc

—3c : pc(c)
/x:=0

x>t/
wd_rc

X =t
vic : pce(c)
/wd_cc

ca(ego)
qs: A—dc:pe(c)
Ax <t

xm

Aoc(ego)

Qs :
* =3c : pc(c) A —lc(ego)

/rc;x:=0

Figure 2.2 — ACTA definition of the crossing controller used in the abstract
traffic model. This is a slightly simplified copy of the automaton shown in [1,
Figure 8].

In the next state q,, both outgoing transitions have the formula 3¢ : pc(c) in
their guard, but one is negated. This means that after the claim was placed, the
vehicle will perform a potential collision check for every visible vehicle and initiate a
transition to either g, or q; based on the result. If a potential collision is detected,
the transition to q; will be taken and the wd_cc action will withdraw the vehicle’s
claim; the same process will repeat itself until no potential collision is found. Once
this is the case, the controller transitions to q; and resets the clock variable x, which
can be interpreted as starting a timer. In state g5, the formula 3c : pc(c) is, again,
used in the guards of all outgoing transitions and additionally in the state invariant.
This models the vehicle repeatedly verifying that its claim does not overlap with any
other vehicle’s claim or reservation. If a potential collision is detected in this state,
the vehicle will withdraw its claim and return to q,, just as before in g,. The same
transition is also triggered if the clock variable x exceeds the predefined constant t..
This is a time threshold limiting the duration a claim can be active before it must
be withdrawn or turned into a reservation. It is implemented in the controller as a
precaution to avoid deadlocks.

The transition from g5 to g, is only available if the claim is still safe and ego
is not performing a lane change maneuver. If the vehicle is not changing lanes or
manages to finish the maneuver in time, it may perform the transition and reserve
the claimed crossing segments, initiating the crossing maneuver. This will also

2.3 Simulation Framework 16

reset the clock variable to start a timer again. State g, is active while the vehicle
performs the crossing maneuver and some part of its reservation occupies a crossing
segment, as indicated by the UMLSL formula oc(ego) in the invariant. As soon as
the maneuver is finished or the timer exceeds the time threshold t.,, the controller
makes a transition back to the initial state q,, withdrawing the reservation. The
constant t, is assumed to be the longest time a crossing maneuver performed by any
vehicle on any intersection in the network can take. Just like t,, it is a precaution to
ensure that the crossing reservation is withdrawn properly and timely.

Note that this controller does not provide any information on more detailed
vehicle controls, such as throttle and brake levels or steering angle. This task is
delegated to the mentioned distance controller and additional control systems on a

lower abstraction level.

2.3 Simulation Framework

The simulation part of this thesis (Chapters 4,5) employs the Open Source vehicular
network simulation framework Veins [6]. Veins couples the discrete event simulation
engine OMNeT++ [20] with the microscopic traffic simulator SUMO [21] and
provides a basis for the development of applications for intelligent vehicles as well
as simulations for evaluating their performance. This thesis uses Veins version 5.0,
running in OMNeT++ 5.5.1 and with SUMO 1.2.0.

From a high-level perspective, OMNeT++ models a communication network
as a set of modules that can exchange messages among each other. The process
of sending and receiving a message can be customized to implement arbitrary,
highly detailed communication models. For example, it is possible to model perfect
communication, where every sent message is received and processed instantly, as
well as highly realistic wireless communication taking into account physical effects of
radio transmission, antenna properties, environmental conditions, and other factors
that can influence communication delay and reception probability.

Veins incorporates facilities that leverage this functionality to implement realistic
wireless communication models at the level of the physical layer of an IVC protocol
stack. By representing every vehicle in a SUMO traffic simulation as a module in
a parallel OMNeT++ network simulation, it enables the vehicles to communicate
with each other. Developers can write programs at the application layer to control
the communication as well as the driving behavior of each individual vehicle. This
bidirectional coupling of the two simulations is the main feature of Veins and the
foundation for implementing the crossing controller from the abstract traffic model.

2.3 Simulation Framework 17

Before moving on to the implementation in Chapter 3, however, it is important
to discuss the basics of SUMOQ’s road network and traffic representation in more
detail and compare them to the abstract model.

2.3.1 Traffic Representation in SUMO

SUMO (Simulation of Urban MObility) is a microscopic traffic simulator developed
by the Institute of Transportation Systems at the German Aerospace Center. It can
be used to accurately model road networks, define highly detailed traffic and vehicle
characteristics, and run city-scale simulations with a plethora of parameters and
performance metrics.

Road networks in SUMO are represented by directed graphs. In contrast to
the abstract traffic model, however, SUMO uses the edges to describe roads, and
intersections are represented by single nodes. Both nodes and edges have more
detailed information attached to them; directed edges, for example, represent a set
of individual, parallel lanes that lead in the same direction, and each of them has
its own set of properties describing the physical shape, maximum speed, supported
vehicle types, and more.

Nodes that represent intersections have even more complex information on the
intersection’s layout and right of way rules. The shape of an intersection is described
by a polygon in the two-dimensional plane that represents the network’s ground
area. Every physical object in the simulation has a position and shape in this plane.
Possible turning maneuvers of intersections are represented by so-called connections.
A connection stores the identifiers of one incoming and one outgoing lane as well as
the turning direction, which can be straight, left, right, or U-turn.

Compared to the abstract model’s intersection representation, the existence of
a connection from lane [, to [; in SUMO can be interpreted as the existence of a
directed path of crossing segments between the two lane segments that represent [
and [; in the abstract network graph. For example, the left-turning maneuver from
lane 1 to lane 6 in Figure 2.1a could be represented by a connection with the content
(1, 6,”1eft”) in SUMO, while the abstract network graph shown in Figure 2.1b allows
this maneuver implicitly through the existence of the directed path (1;, ¢;, ¢y, ¢3, lg)-
Observe that the abstract model has no notion of a turning direction and generally
allows more turning maneuvers. The directed paths between incoming and outgoing
lane segments are not necessarily unique and the implicit definition of permitted
maneuvers is less restrictive than SUMQ’s explicit method; the network graph in
Figure 2.1b would require a significantly different structure if the intersection did
not allow U-turn maneuvers, while in SUMO removing the respective connections

would suffice.

2.3 Simulation Framework 18

To specify the exact trajectories of vehicles performing a crossing maneuver,
SUMO assigns an internal lane to each connection. Internal lanes are structurally
identical to the regular lanes between intersections. Each lane in the network has a
unique identifier and a shape. The shape of a lane [is a list of points in the plane
P, ={py,.--,Pn} C R? that describe the lane’s center line. This list is always ordered
in driving direction and it starts and ends with the exact start and end points py, p,, of
the lane. The length len(l) of a lane is defined as the total length of all line segments
between two consecutive points p;, p;41, which can be computed as the Euclidean

distance d(p;, pi+1):

n—1

len(l) := > d(pi, pis1) (2:2)

i=0
Therefore, every real value in [0,len(l)] identifies a position on the lane [that
is situated on one of the line segments. Figure 2.3a shows the layout of a small

intersection and two of its internal lanes.

(a) Intersection shape with internal lanes (b) Schematic vehicle shape computation

Figure 2.3 - Intersection shape and computation of vehicle shapes. Figure
2.3a shows the polygon describing the shape of an intersection in gray and
two internal lanes with their center line points. The internal lane [; has length
len(l;) =d, + ...+ ds. In Figure 2.3b, the orientation calculation of a vehicle
is illustrated. The real-valued position p of the vehicle identifies the point f.
Using the vehicle’s length [, the point r at position p —! is obtained by moving
backwards along the line segments (a + b =1). The dotted line runs through
f and r and is used to position the vehicle’s final shape, represented by the
dashed rectangle.

These positions are used to describe the current locations of vehicles: Every
vehicle in the network has a current lane and a real-valued position on that lane
describing the center point of its front bumper. Note that the abstract model describes

positions in a similar way but uses the rear bumper instead. The shape of a vehicle

2.3 Simulation Framework 19

is a rectangle whose length and width are specified by the vehicle’s type. Thus, all
vehicles of the same type have the same shape, but there can be multiple vehicle
types of varying shapes.

Given the length and position of a vehicle, its orientation in the network is
computed as follows: First, the length is subtracted from the position of the front
bumper, yielding another position that is possibly on one of the previous line segments
or even another lane. The angle of the line through the two positions is calculated
and used as the orientation angle of the vehicle. The final vehicle position is then
obtained by placing the rectangle that describes the shape so that it fits the vehicle’s
front bumper position and the orientation angle. A schematic view of this process is
depicted in Figure 2.3b.

The purpose of SUMO’s internal lanes is solely the spatial description of the
trajectories that are followed by the vehicles performing the respective crossing
maneuvers. In the abstract traffic model, the trajectory of a crossing maneuver
is described by a sequence of crossing segments. Because the abstract model is
inherently less specific about vehicle positions, the crossing segments do not provide
the same level of spatial information as an internal lane describing the same maneuver.
However, crossing segments additionally define all possible crossing maneuvers as
well as their incoming and outgoing lanes through their directed edges, i.e., they
incorporate the information that SUMO represents separately as connections. On
top of that, they constitute the shared resource that is essential for the coordination
protocol. Although at a first glance, SUMO?’s internal lanes and the abstract model’s
crossing segments appear to be similar concepts, their applications are vastly different
and they reveal one of the most significant differences between the abstract traffic
model and SUMO.

Apart from the structure of the road network, SUMO offers various ways of
specifying traffic characteristics. A straightforward method that is also very similar
to the abstract model is defining the route of each vehicle individually. A route is
usually specified as a list of contiguous edges, much like the infinite sequence of lane
and crossing segments that specifies a path in the abstract traffic model. Unlike the
infinite sequences, however, routes in SUMO are usually finite and will cause a vehicle
to spawn at a certain time, follow its route, and then exit the simulation. If only
the start position and target edge of a route are provided, the vehicle will generate
its route based on the road network and various routing parameters. In general,
vehicles can intelligently determine their own routes, find the correct lanes that
are required for their crossing maneuvers, and reroute dynamically to avoid traffic
jams. SUMO also provides suitable car-following models for controlling the vehicles’
behavior on a smaller scale as well. They can be used to ensure realistic acceleration
and deceleration rates, safe lane change maneuvers, and safety distances, which fits

the purpose of the abstract model’s distance and lane change controllers perfectly.

Chapter 3

Controller Implementation

The evaluation of the vehicle controller’s performance in a more realistic environment
requires a suitable implementation in the simulation framework. This chapter
presents the development of such an implementation.

Running traffic simulations to investigate the controller’s performance in the
presence of various possibly deteriorating effects is the main purpose of the developed
implementation. However, the implementation process itself and the entailing design
considerations may provide valuable insights into the advantages and disadvantages
of the abstract approach to controller specification.

To provide a holistic view of this process, I will first address general, theoretical
design considerations (Section 3.1), before moving on to more detailed descrip-
tions of the individual design problems and the implemented solutions. The main
challenges to be discussed are bringing together the abstract model’s and SUMO’s
traffic and coordination concepts (Section 3.2), and the technical realization of the
vehicle control system (Section 3.3). In Section 3.4, I will present a number of
practical problems that occur when using the implementation without additional
adjustments, enabling a first assessment of the abstract model’s limitations. Finally,
I will report on the verification and validation methods used to ensure that the
developed implementation functions appropriately in Section 3.5.

3.1 Controller Design Considerations

Capturing the intended behavior of the vehicle controller as precisely as possible is
crucial for the acquisition of valid and meaningful simulation data. Therefore, this
should be the primary goal of the implementation.

The definition of the controller comprises two components: The automaton
describing its behavioral aspects, and the abstract traffic model with UMLSL de-
scribing its environment and how it is perceived. The automaton can be seen as an

20

3.1 Controller Design Considerations 21

active component that requests and processes traffic information from the passive
abstract model, using UMLSL as a query language. It is an obvious and natural de-
sign decision to implement the controller automaton as part of a vehicle application
such that every vehicle is controlled by an individual instance. In order to provide
access to the required traffic information, it is possible to create a separate module
within Veins that acts as an interface between all controller applications and the
simulation framework. This architecture provides full control over the way the traffic
information is represented and accessed, and enables the vehicles to communicate
by using Veins’ communication models.

Thereby, both components of the abstract controller definition have suitable
representations. Each of them can be adjusted wherever it is necessary to achieve a
viable system complexity and performance, as long as the final result is sufficiently
similar to the original.

Because the abstract model’s purpose is not only the abstract representation of
arbitrary urban traffic situations but also the formalization and proof of properties
possessed by vehicle controllers defined within the model, many of its features are
irrelevant for the controller’s behavior and can, therefore, be omitted. The traffic
model and UMLSL are means to represent and reason about vehicle controllers on a
high level of abstraction. This can be leveraged by replacing the abstract concepts
with more convenient and application-specific components, which is one of the main
benefits of using abstraction in general.

In this case, the abstract concepts that carry the most potential for simplifica-
tion, but also require the most care when being replaced, are the abstract model’s
intersection representation and UMLSL as a whole.

The way traffic networks with multi-lane roads and, more importantly, intersec-
tions are represented in the abstract model is designed to be both flexible enough
to support a great variety of network structures, and simple enough to avoid un-
necessary complexity caused by non-essential information. This suggests that the
traffic model is well suited to be used for the implementation without significant
changes. Additionally, the traffic model employed by SUMO is relatively similar in
terms of network structure and vehicle representation, and already provides most
of the required functionality. For example, both models represent traffic networks
using a directed graph structure with additional information on the road length
and number of lanes, but SUMO also provides facilities for network generation and
routing. Such functionalities are not required by the abstract model and would need
to be implemented manually, introducing unnecessary complexity and potential for
errors. Instead, simple translations between the two representations are sufficient to
represent many aspects of SUMO’s traffic model in a way that the vehicle controller

can understand, while retaining the convenience functionalities provided by SUMO.

3.1 Controller Design Considerations 22

However, this is only possible for the general road structure and vehicle positions
outside of intersections. The translation of one intersection representation into
the other must be implemented with great care, since intersections show the most
significant differences between the models and play a role of critical importance for
vehicle coordination. This matter is discussed in more detail in Section 3.2.1.

The idea of replacing components from the abstract model with facilities provided
by the simulation framework can be applied to UMLSL as well, albeit in a somewhat
different manner. The abstract controller definition uses UMLSL formulas for transi-
tion guards and state invariants. However, UMLSL has a complete formal definition
and is supposed to be used for the description of arbitrary vehicle controllers and
proof-carrying as well. This functionality is entirely irrelevant for the controller that
is to be implemented since only a very small number of formulas are actually used
in its definition (cf. Figure 2.2). These formulas have relatively simple and intuitive
semantics and therefore lend themselves to be implemented directly in dedicated
functions.

Considering that, for a more general solution, a kind of formula evaluation system
for UMLSL would be required, only the above alternative seems feasible. It is worth
mentioning, however, that some progress has been made in this area of research: It
was shown by Franzle, Hansen, and Ody [22] that a subset of MLSL, dealing with a
bounded number of vehicles, is decidable. The presented methodology has, to my
best knowledge, not been extended to UMLSL so far. Although the algorithm was
not designed to be suitable for use in a real-time application, this approach might
provide a viable alternative to direct formula implementations in the future.

This decision is supported by the simulation framework since, as mentioned
above, it provides programmatic access to all required information through SUMO. In
addition to this, implementing UMLSL formulas directly allows the view construction
to be adjusted so that only information relevant to a specific formula is computed.
This also alleviates the task of adapting the intersection model since customizing
the view construction removes some requirements, yielding higher flexibility. Fur-
thermore, implementing only what is necessary for the controller to work reduces
complexity and improves efficiency, which is beneficial in the simulation context
and, presumably, in a real-world scenario too.

From a more technical perspective, the implementation should satisfy several
requirements to ensure good usability regarding simulation studies. For example,
defining a variety of input parameters and output metrics should be a straight-forward
modification, and the system should be transparent enough that any observed effects
can be traced back to their causes easily. Although the simulation framework already
provides most of this functionality, keeping the implementation structured and simple
can help with the elimination of errors and the general understanding of the system.

A high computational complexity should be avoided because it can limit the scope

3.2 Traffic Model Interface 23

and granularity of parameter studies. However, correct controller behavior and
sufficient clarity have a higher priority and should not be sacrificed for efficiency.

In conclusion, the general implementation guidelines that result from the major
theoretical design considerations can be stated as follows:

* The implementation architecture comprises a vehicle application containing
the controller automaton and a separate component in Veins acting as an
interface between the controller and the traffic model.

* Abstract concepts that are not required by the controller definition in their
entirety should be simplified and represented by facilities of the simulation

environment, or omitted completely, if possible.

* None of the adjustments should significantly alter the behavior of the vehicle
controller unless the original behavior is unreasonable within the more realistic

simulation scenario.

* The desired result is an implementation that exhibits the same behavior in
the simulation environment as the original controller shows in its abstract
environment. It should provide the means to define and run simulation studies

with reasonably low effort.

The following sections deal with the main implementation challenges in more
detail. Note that programming-related issues are not discussed and all addressed
challenges and solutions are presented independently of any programming language.

3.2 Traffic Model Interface

Because the vehicle application relies on the functionality provided by the traffic
model interface and provides a greater design flexibility, the traffic interface should
be developed first. Its main purpose is providing all traffic information required
by the controller automaton in the form of queries defined by UMLSL formulas. In
order to implement these formulas adequately, a suitable interpretation of traffic
information from the simulation framework and particularly SUMO is required.

As described in Chapter 2, the intersection structure employed by SUMO displays
the most significant difference to the abstract traffic model, while the roads outside
of intersections are represented in very similar ways. It is not obvious how an
intersection described in one of the models can be translated into the other without
losing or altering — or having to devise — too much information. In order to represent
a SUMO intersection in terms of the abstract model, one would have to define a
set of crossing segments with directed edges such that every possible maneuver

has a corresponding directed path of the correct length and each pair of conflicting

3.2 Traffic Model Interface 24

maneuvers shares at least one segment. It would also be desirable for maneuvers
to share segments only if they are in conflict to avoid unnecessary waiting times.
Figure 3.1 illustrates this problem for a small example.

(a) Detailed maneuver trajectories (b) Segment paths of maneuvers

Figure 3.1 — Comparison of maneuver representations. Figure 3.1a shows a
left turn maneuver of a vehicle A and a right turn of vehicle B on the 2 x 2
intersection from Figure 2.1. Figure 3.1b shows the corresponding segment
sequences in the abstract network graph. The maneuvers share crossing
segment c, although the real trajectories are not in conflict. It is unclear what
size each crossing segment should have and how the graph should be changed
to model the real situation more accurately.

This applies to the vehicles crossing the intersection as well: The description
of a maneuver depends on the representation of the underlying road structure.
Consequently, a maneuver represented within one model of the road structure may
have no or multiple equivalent representations in the other model. This is especially
problematic because a proper representation of intersection crossing maneuvers is
crucial for the coordination protocol to operate correctly.

However, it is not necessary to represent an intersection and its crossing ma-
neuvers in exact accordance with the abstract model in order to create sensible
implementations of the controller queries. A closer inspection of the crossing seg-
ments and their uses leads to an alternative that combines SUMO’s detailed trajectory
description and the coordination features required by the crossing controller.

3.2.1 Intersection Model Adaptation

The most visible function of the crossing segments is defining the layout and area
of an intersection. The connections between the segments and the road network
clearly define the incoming and outgoing lanes, and the directed edges between
the segments provide information on their placement within the intersection. As

3.2 Traffic Model Interface 25

mentioned previously, the segment shapes are not defined precisely. But the number
of segments and their sizes can be used to get a rough estimation of the size and
shape of an intersection and the crossing maneuvers.

The possible turning directions and shapes of the maneuvers are also defined by
the directed edges. However, their definition is rather implicit and their correct usage
depends entirely on how the vehicle paths are defined. In addition to that, the paths
do not describe the exact trajectories followed by the vehicles, but rather possible
connections between incoming and outgoing lanes. For example, the abstract model
can describe a regular 2 x 2 intersection and a roundabout connecting the same
roads with the same graph structure [1, Figure 4], although the real trajectories of
the vehicles are very different.

Finally, the most important purpose of the crossing segments for the vehicle
controller is serving as a shared resource for coordination. By enforcing mutual
exclusion on the segment reservations of the vehicles, the controller ensures the
safety of all maneuvers. Therefore, it is crucial to construct a suitable representation
of this functionality in the new model.

In short, the crossing segments serve three main purposes:
1. Describe the high-level layout of the intersection.

2. Define connections between incoming and outgoing lanes and the segments

required by each maneuver.
3. Serve as a shared resource for coordination.

These purposes are only loosely related to each other; the intersection layout gives
no indication of permitted maneuvers, the segment paths defining the maneuvers
exist on a much lower level than the rough intersection layout, and the coordina-
tion functionality does not depend on either of the two whatsoever. Observe that
both the intersection layout (1) and the possible crossing maneuvers (2) are not
required by the controller: The layout is not used at all apart from the coarse route
definitions of the vehicles. Because the routes are predefined and the controller
cannot change them, there is no need to couple this information so tightly with the
crossing maneuvers. The same applies to the definition of possible maneuvers by
connections of incoming and outgoing lanes. Since all of this information is already
directly accessible through SUMO, it is not necessary to consider these aspects for
the new intersection model design.

The coordination functionality of the crossing segments (3) is the only aspect
that has no direct counterpart in SUMO. Therefore, it is necessary to design a new
system based on the available information. It is helpful to make several observations
on the abstract model that can simplify this problem: First, every intersection has a
relatively small number of possible crossing maneuvers. It is reasonable to assume

3.2 Traffic Model Interface 26

that every vehicle that performs a specific maneuver chooses the same trajectory
and, in terms of the abstract model, the same path of crossing segments. Thus,
each possible maneuver has a uniquely defined set of crossing segments that can be
determined statically. Because of this, it suffices to have the controller consider only
sets of segments instead of individual segments for coordination.

Secondly, there is no need to check whether two maneuvers intersect at run
time: Given two sets of crossing segments, they either have at least one segment
in common or they are disjoint. Using the first observation, this major part of the
coordination protocol can also be determined statically. Transferring this concept
to SUMO, the information whether two maneuvers, or internal lanes, conflict with
each other is static and can be computed as such. As the collision check used for the
coordination protocol is mainly based on checking whether a set of claimed crossing
segments intersects with another set of segments, this information is useful for the
vehicle controller. More importantly, however, it can be computed for internal lanes
without the use of segments by using the lanes’ physical shapes instead. This result
can be considered to be a solution to the problem of matching crossing segments
with internal lanes that was discussed previously.

Before moving on to details on how this can be calculated, a critical question
must be answered: Is this approach valid, i.e., does it produce behavior equivalent
to the abstract model? To find the answer, consider an arbitrary intersection with
two vehicles, each trying to perform a crossing maneuver. If the internal lanes
describing the trajectories do not overlap, a collision will be impossible and the
vehicles can perform their maneuvers without any coordination. When using the new
intersection model, the claims and reservations of the vehicles do not overlap since
these conflicts are computed directly using the lanes’ shapes. In the abstract model,
it is not guaranteed that the two sets of crossing segments describing the maneuvers
do not intersect. However, both cases are acceptable: If the sets are disjoint, the
vehicles will perform their maneuvers without being disturbed, as before. If the
sets do intersect, the vehicles will have to coordinate and cross one after the other;
in this case, the abstract model is just unnecessarily restrictive. It is reasonable to
assume that this is an effect of applying the abstract model to a realistic intersection
and does not reflect the intended purpose of the segments.

If, on the other hand, the trajectories overlap, a collision will be possible and
the vehicles must not cross the intersection simultaneously. By definition, the new
model detects this conflict and causes the vehicles to behave appropriately. If the
sets of segments from the abstract model intersect, the vehicles will do the same. If
for some reason, the sets are disjoint, the vehicles will be unable to actively avoid a
collision even though the abstract safety property is not violated.

This shows that, in terms of crossing maneuver safety, the new intersection model

is equivalent to the abstract model. However, due to the lost maneuver granularity

3.2 Traffic Model Interface 27

that was provided by the crossing segments, this model alters the vehicle behavior:
Since vehicles only place claims and reservations on whole internal lanes instead
of sets of multiple segments, reservations stay active for the whole duration of the
maneuver. In the abstract model, a vehicle’s position, as perceived in the view of
another vehicle, is used to determine whether a reserved segment is free again after
the reserving vehicle has passed it. By implementing the view interpretation and
evaluation of UMLSL formulas appropriately, this behavior can be restored to the
new model. As mentioned in Section 3.1, UMLSL formulas will be implemented
directly and require no explicit view model. Therefore, a similar, static solution is
possible by combining the trajectory shape and implicit view information: Given
two internal lanes [, [, whose shapes intersect and a vehicle driving on [,, there
exists a position p on [, at which the vehicle leaves the conflict zone of the two
lanes. The part of the trajectory that remains when the vehicle reaches p does not
intersect with [; any more. Another vehicle can safely claim and reserve lane [; once
the first vehicle has reached p. Since these positions can be computed statically, just
like conflicts of lane shapes, and vehicles can use their perception of other vehicles’
positions to determine when it is safe to place a claim again, the new intersection
model can accommodate this functionality.

With this problem solved as well, the new intersection model is complete. Its

major design aspects and functionalities can be summarized as follows:

* The intersection structure of SUMO is used directly. Internal lanes and their
physical shapes serve as coarse representations of the vehicles’ real trajectories.
What is defined by directed edges between segments in the abstract model is
represented by connections between incoming and outgoing lanes in the new

model.

* Claims and reservations are placed on internal lanes instead of crossing seg-
ments. Each crossing maneuver can be represented by a fixed set of segments;
two maneuvers conflict with each other if their respective sets intersect. The
same inquiry amounts to intersecting the shapes of internal lanes in the new
model. In both cases, the information is static and can be computed as such.

* Gradual reservation clearance is enabled by providing the exit positions
of conflict zones. For each pair of intersecting internal lanes, the two lane
positions at which the zone of conflict with the respective other lane is passed
are computed statically.

3.2.2 Static Data Structure Calculation

To provide more details on how the new intersection model is implemented, the

techniques used to calculate and store the static information are explained in the

3.2 Traffic Model Interface 28

following. The running example for this section is a simple 2 x 2 intersection as
computed by SUMO. Its shape and internal lanes are depicted in Figure 3.2. On each
of the four incoming lanes, it is permitted to drive straight, turn left, or turn right.
This leads to a total of 12 internal lanes which are numbered 0... 11; the numbering
starts with lanes coming from the North, moving clockwise around the intersection,
and numbering first right-turning lanes, then straight, and then left-turning lanes
for each direction. The width of the internal lanes is set to w = 2.5 m. For simplicity,
each lane only has five points describing its center line. SUMO automatically uses
only two points to describe the straight internal lanes.

012

3
- 4
5
11
10 >
9
A
H
1m 876

Figure 3.2 — Example 2 x 2 intersection from SUMO with 12 internal lanes.

To start with, the shapes of all internal lanes must be intersected to determine
which maneuvers are in conflict. Due to the structure of this information, it is stored
in a matrix-like data structure that is henceforth called the foe matrix F. The foe
matrix needs to store one Boolean value for each pair of internal lanes. Therefore, it
is a matrix of the format F € {0,1}'2*12, Because it is symmetrical, only half of its
values actually need to be computed and stored; for simplicity; it is treated as a full
matrix here.

It should be mentioned that the employed version of SUMO also computes
foe information for every intersection to realize its built-in management policies.
However, this is based on heuristics for right of way rules and generally produces
different results than intersecting the internal lanes.

To compute the entries of the foe matrix, the shapes of all internal lanes are
used. For these computations, the lane shapes are approximated by widening the
center lines to the specified width w. This ensures that possible maneuver conflicts
can be detected even if the center lines do not intersect, given that w does not

3.2 Traffic Model Interface 29

under-approximate the real maneuver shapes. Additionally, the lane shapes can be
reused to compute conflict zone entry and exit positions later.

Letl €{0,...,11} be an internal lane and P, = {p,,, ..., p,} C R? the list of points
describing its center line. P; contains two or five points in this scenario (n € {1,4}),
depending on whether the internal lane [is a straight or a turning lane. For each
pair of consecutive points p;, p;;1, We construct a rectangle R; such that one side has
a length of w and the other side is parallel to the line that connects p; and p;,,, as
depicted in Figure 3.3b. This yields n rectangles Ry, ...,R,_;, where R; is based on
the line connecting p; and p,,,. For n > 1, it is likely that consecutive rectangles are
positioned at an angle to each other, leading to gaps between them. These gaps can
be filled using triangles T; 1, T; ,, one on each side of the point p; that R;,_; and R;

have in common. This step is illustrated in Figure 3.3c.

P3
P2
P1
Po
(a) Center line points (b) Rectangles added

() Triangles added to fill gaps

Figure 3.3 — The process of computing the approximate shapes of internal
lanes as sets of polygons for the left-turning lane with index 8.

3.2 Traffic Model Interface 30

Finally, the shape of the internal lane is approximated by the set of rectangles

and triangles
S(D):=A{Rg,---,Ry1}U{Tyj,..., Tpqj | j €{1,2}}. 3.1

These simple polygons can be computed efficiently and suffice for approximating
the crossing maneuver’s required area, especially when using a larger number of
points for the center line. Additionally, they enable the application of an efficient
algorithm for polygon intersection which is necessary for the foe matrix computation.

Let Intersect(p, q) € {0, 1} denote the output of a Boolean function that deter-
mines whether polygons p and g as constructed above, intersect. Having constructed
the set of polygons S(1) for each internal lane [, determining whether two approx-
imate shapes overlap is as simple as intersecting each pair of polygons from their
respective sets: Let [;,1, € {0,...,11} be two internal lanes, then

[, overlaps with [, : &= dp € S(l;),q € S(L,) : Intersect(p,q) = 1. 3.2)

The foe matrix can be computed using this information as shown in Algorithm 3.1.
To illustrate the intuition, Figure 3.4 depicts the relation between overlapping shapes

of internal lanes and entries of the foe matrix using a small example.

Input: Set of internal lanes L = {l,...,[,_;} with shape approximations
Output: Foe matrix F € {0, 1}"™" based on overlapping lanes

1: F « n x n matrix filled with Os

2: fori=0,...,n—1do

3: F;; <1 // Lane overlaps with itself

4. forj=i+1,...,n—1do

1 if; and [; overlap

5: X
0 otherwise
6: Fi,j — X
7: F;; < x // Matrix is symmetrical

8: end for
9: end for
10: return F

Algorithm 3.1 - Foe matrix computation using approximate shapes of internal
lanes.

3.2 Traffic Model Interface 31

1 3 8
1 1 0 1
3 0 1 0
8 1 0 1
. \ J
(a) Overlapping shapes of internal lanes (b) Resulting entries in foe matrix

Figure 3.4 — Example of foe matrix entries for three internal lanes. Lanes 1
and 8 overlap while lane 3 has no conflict with either of the two. Note that
each lane obviously also overlaps with itself.

The exit positions of conflict zones to be used for gradual reservation clearance
(in the following called clearance positions) are computed and stored in a similar way.

For each pair of overlapping internal lanes (I;,[;), the clearance position marks the

j
point that a vehicle traveling on [; must have reached so that another vehicle may
safely claim and reserve [;. This shortens the waiting time of vehicles and mimics
the effect of reserved crossing segments in the abstract model that become free to
claim and reserve as soon as the reserving vehicle has passed them.

To compute these positions, the shapes of the internal lanes can be used again.
However, due to the way vehicles are positioned on internal lanes in SUMO, the
polygons and center line points of a lane shape are not accurate enough to determine
the clearance position on the lane itself. Instead, the rectangular shape of a vehicle
performing a crossing maneuver is simulated and intersected with the approximate
shape of the foe lane. Given the internal lanes (I;,[;), the vehicle positions on [; can
be iterated in small steps and in reverse order until the vehicle shape overlaps with
the approximate shape of [;. The previous position is then stored in another matrix
C € R™" where n is the number of internal lanes, at position (i, j). In general, it
is possible that the first vehicle placement already intersects with the foe lane. In
this case, the vehicle is moved forward instead and the clearance position is the first
where no overlap is determined. This position is located on the outgoing lane of the
maneuver. Figure 3.5 illustrates this computation for a single pair of internal lanes
where the vehicle is moved backwards with a relatively large step size.

3.3 Vehicle Controller Application 32

14.2

Figure 3.5 — Computation of the reservation clearance position for the internal
lanes 6 and 8. The length of lane 8 is 14.2m and the step size is 1 m. The
vehicle’s rectangular shape is 2 m wide and 4 m long. Position 7.2 is the first
position at which the vehicle’s shape overlaps with the approximate shape of
lane 6. Therefore, the previous position is the resulting clearance position:
Ces = 8.2. As soon as a vehicle on lane 8 has reached this position, it does
not prevent other vehicles from using lane 6 any more.

3.3 Vehicle Controller Application

Building on the newly constructed intersection model, this section discusses the
implementation of the vehicle controller as a Veins application. To this end, I will first
present the way vehicles perceive and represent their environment in comparison
to the universally accessible data used in the abstract model. This includes the
introduction of a minimal communication protocol to transfer the coordination
mechanics from the global Traffic Snapshots to purely local vehicle interactions.
Afterwards, I will outline how the controller automaton is realized in software and
how the necessary UMLSL formulas are integrated. Finally, I will explain how the
application exerts control over its vehicle based on the controller actions.

In the abstract traffic model, vehicles get information on the traffic situation from
two different sources: The current Traffic Snapshot and their local view. The Traffic
Snapshot contains the relative lane positions, claims and reservations of all vehicles
while the view of a vehicle provides more detailed information on the vehicles that
are perceived by the vehicle’s sensors, such as their safety envelope. Both are used to
evaluate the UMLSL formulas that serve as transition guards of the vehicle controller.

Therefore, vehicles must have access to all traffic information the controller requires.

3.3 Vehicle Controller Application 33

However, the Traffic Snapshots in the abstract model are virtual, globally syn-
chronized data structures that are accessible by all vehicles. Such data structures
do not exist in a realistic scenario and, thus, they should not exist in the simula-
tion as well. Instead, each vehicle has an internal traffic model that contains all
necessary information and is kept up to date by the vehicle itself. It is reasonable
to assume that vehicles are equipped with on-board sensors that are able to gather
all necessary physical information. To model this in the controller application, it
suffices to query the simulation framework. If inaccuracies and errors in the sensor
data are of interest, they can be applied to the real data easily. However, claims and
reservations are virtual properties that must be acquired by other means. Since the
vehicles are able to communicate via wireless channels, it is obvious to utilize this
ability for coordination by synchronizing the vehicles’ internal information on claims
and reservations. Natural opportunities to send synchronization messages are the
controller actions that change claims or reservations. Because the vehicles will only
need to coordinate for crossing maneuvers, the relevant controller actions are cc,
wd_cc, rc, and wd_rc. Since the new intersection model uses internal lanes instead
of crossing segments as coordination resource, claims and reservations only have to
apply to single internal lanes. Using this information, the messages that represent
the four controller actions can all have a similar structure and carry a small amount
of data:

* The message type
* The identifier of the sending vehicle
* The identifier of the affected internal lane (only cc and rc)

All vehicles will send the corresponding message when one of these controller actions
is performed. When a vehicle receives a message of this type, it can update its internal
traffic model accordingly. These are the only messages required for coordination.

To keep the semantics of controller actions as clear as possible, the vehicles apply
the changes implied by a received message immediately and without any validation.
For example, when a vehicle A receives a message of the type rc for lane [from
vehicle B, A must update its internal model to reflect that B now holds a reservation
on [and does not have a claim any more (since reservation actions remove claims
automatically), regardless of whether B held a claim or reservation on [or any other
lane before. Because all vehicles are equipped with the same controller and follow
the same coordination protocol in the simulation scenario, it is safe to rely on this
simple model.

The next task is the realization of the vehicle controller automaton. As described
in Section 2.2, the abstract specification uses an extended timed automaton, or
Automotive-Controlling Timed Automaton (ACTA), to define the behavioral aspect

3.3 Vehicle Controller Application 34

of the controller. It is a straightforward task to implement the basic structure of a
finite automaton in software; evaluating the transition guards and performing the
transition actions is, however, more involved. Before these operations are imple-
mented, it should be established when they are executed, i.e., when the automaton
is triggered. The semantics of automata demand that transitions are made as soon as
a transition guard evaluates to true. State invariants affect this behavior by forcing
(blocking) a transition when the invariant of the current (next) state is false. These
conditions can be interpreted as extensions of the regular transition guards and are
therefore treated similarly.

In the simulation environment, time passes in discrete but irregular time steps
and the state of the traffic situation over which transition guards are evaluated can
change with each step. By evaluating the transition guards in each time step, the
automaton could function with the highest accuracy possible. However, this would
tie the vehicle behavior to the inner workings of the simulation framework and,
most likely, cause many unnecessary evaluations because not all simulation events
affect the relevant vehicle properties. Furthermore, it would imply that the vehicles’
sensors and on-board computers can react with arbitrary precision and latency, which
is highly unrealistic. Instead, the vehicle controller automaton is triggered at fixed,
regular intervals that can be configured to be small enough that the vehicles retain a
sufficient and realistic reaction time without causing performance issues. Each time
the automaton is triggered, the guards of possible transitions are evaluated and the
corresponding transition and action are performed based on the result.

The only exception to the regular executions are violated time constraints: Re-
setting a clock variable schedules a simulation event at the time this variable will
exceed its threshold. If the variable is relevant to the automaton’s current state when
the event occurs, the automaton is triggered immediately.

Having specified when the automaton is triggered, it is time to define more
precisely what happens at each trigger event. There are only four relevant controller
actions (cc, wd_cc, rc, and wd_rc), and their definition is straightforward: Each
action places or withdraws either a claim or a reservation on an internal lane. The
executing vehicle therefore modifies its internal traffic model correspondingly and
broadcasts the respective message, causing the same modification to the internal
models of all receiving vehicles. Only the rc action has an additional effect as it
also removes all claims of the reserving vehicle due to the action’s semantics. These
actions are executed every time the respective transition is made.

Deciding when a transition occurs requires the transition guards and state invari-
ants to be evaluated. Since all of them are defined by UMLSL formulas and clock
variables, it suffices to implement these constituents and then construct the final
formulas using logical operators. As already discussed above, clock variables are

represented by special timer events. The controller automaton uses only one clock

3.3 Vehicle Controller Application 35

ccC

ca(ego)
qo : —col(ego) qs : ca(ego)

dc : pe(c)/wd_cc

—3c : pc(c)
/x:=0

x=te/
wd_rc

X =t
vic : pc(c)
/wd_cc

ca(ego)
qs: A—dc:pe(c)
AX < t,

xm

Aoc(ego)

Qs :
* =3c : pc(c) A —lc(ego)

/rc;x:=0

Figure 3.6 — Crossing controller ACTA definition (Copy of Figure 2.2 for ease
of reading).

variable x, but two different thresholds t, and ¢.,.. Each time the timer is reset, timer

events for both thresholds are scheduled in the simulation framework. The timer

variable will then be smaller than the threshold until the respective event occurs;

for the controller trigger caused by the event, it will be equal to the threshold, and
afterwards, it will be larger until the timer is reset again. This leaves only the UMLSL

formulas to be implemented. In the following, the implementation of each of the

five formulas used by the automaton is presented.

(1) col(ego): This formula is only used by the controller as state invariant for g,. Its

main purpose is ensuring that each vehicle starts in a safe situation, which can
be assumed to be satisfied by the simulation environment since SUMO will only
spawn vehicles in positions where immediate collisions can be ruled out. Apart
from that, the formula is irrelevant for the transition from g, to q, because
the transition action wd_rc does not affect the vehicle’s driving beyond the
intersection and, if the state invariant does not hold, the controller has already
failed its purpose and a transition to q, cannot change that. Therefore, it is
not necessary to implement this formula at all.

(2) ca(ego): This formula checks whether the vehicle is currently approaching an

intersection, the distance is smaller than some constant d., and there is no
other vehicle in between. It is used as transition guard for g, — g, and as state
invariant in all states that are responsible for the coordination procedure (q;,
g5, and qs). It is reasonable to assume that a vehicle that intends to cross an

intersection and to follow the coordination protocol will not turn away from

3.3 Vehicle Controller Application 36

3

the intersection or change lanes once it starts with coordination. Therefore, the
only relevant application of the formula is guarding the transition that initiates
the coordination. The identifier i and length [of the current lane, the vehicle’s
position p, and its braking distance d,, can be acquired from the simulation
framework. Suitable representations of these properties are provided by the
traffic interface. It is also used to check that no other vehicle is driving on the
same lane between the ego vehicle and the intersection. The formula then
only evaluates to true if i meets an intersection and [— p + d}, 4, < d. holds,

which is trivial to implement.

) pc(c): The check for potential collisions is the main component of the coordi-
nation protocol. All states that can be active while the vehicle has placed its
claim (g, and g3) use it to decide whether it is safe to continue or the claim
must be withdrawn. Since all occurrences of the formula are bound by an
existential quantifier 3¢ : pc(c), it can be integrated into the implementation.
As discussed in Section 3.2.1, all vehicles have access to the foe matrix F
and the reservation clearance positions C through the traffic model interface.
Additionally, a vehicle can perceive the positions of the relevant other vehicles
with its sensors; again, the traffic interface provides a suitable representation
of this information. In conjunction with the vehicle’s internal traffic model,

the collision check can be performed as shown in Algorithm 3.2.

Input: Claimed lane [, foe matrix F, clearance positions C, and ego’s internal claim
and reservation information

Output: true if ego’s claim overlaps with another vehicle’s claim or reservation, false
otherwise

1

10:
11:
12:
13:
14:

2
3
4
5
6:
7
8
9

: for each internal lane ¢ claimed by another vehicle do
if ;. =1then //land c are foes
return true // Collision with other claim
end if
: end for
for each internal lane r reserved by another vehicle B do
if ;. =1then // I and r are foes
p < position of B // Maybe B is far enough
if p <, then
return true // Not far enough: collision with B’s reservation
end if
end if
end for
return false // No collision found

Algorithm 3.2 - Implementation of potential collision check 3c : pc(c).

3.3 Vehicle Controller Application 37

(4) lc(ego): This formula checks whether the ego vehicle is currently performing a
lane change maneuver and is used to ensure that an intersection is not entered
while changing lanes. Since in the employed lane change model of SUMO,
lane changes happen instantaneously, this check is not necessary. Apart from
that, vehicles should not change lanes after placing a claim anyway because
this would completely change their trajectory and invalidate the coordination
procedure.

(5) oc(ego): The on crossing check holds as long as the ego vehicle is driving on the
intersection, i.e., occupying a part of an internal lane with its safety envelope.
It is used by the automaton as state invariant of q, and helps detecting when
the reservation can be withdrawn. Similar to the crossing ahead check ca(ego),
only sensory information is required to evaluate this formula. The traffic
interface provides all information that is required to track the extension of
the ego car’s safety envelope and check if any part of it is located on the

intersection.

All of the formula implementations, timer events and automaton trigger mecha-
nisms described above are used to realize the vehicle controller application. Every
vehicle spawned into the simulation has its individual traffic model and controller
with the automaton starting in the initial state qy.

There is one more aspect of the controller application that needs to be discussed.
So far, the only effects of the controller on the vehicle are sending coordination
messages and updating the internal traffic model. Without additional changes,
the vehicles will follow SUMO’s default driving behavior and intersection policy
since the implementation lacks a way for the controller application to exert control
over the vehicle. In the abstract model, the intersection controller is accompanied
by a distance controller maintaining safety distances and safe speeds, and a lane
change controller that employs a reservation-based coordination protocol for safe
lane change maneuvers. It is not necessary to implement these controllers manually
because SUMO already provides systems to perform these tasks. To make the vehicles
behave as the intersection controller demands, the existing control systems can be
reconfigured so that only a few direct steering commands are required.

First, the vehicle controls can be adjusted to ignore intersection policies like
traffic lights or right of way rules. This causes vehicles to maintain a safe speed
during crossing maneuvers and the safety distance to other vehicles on the same lane
but perform crossing maneuvers as if no other vehicles were using the intersection.
The lane change behavior is unaffected by this adjustment.

Next, the vehicles need to stop and wait at an intersection until the controller has
managed to place a reservation on the required internal lane. SUMO provides a stop

command that can be used to make a vehicle stop at a certain position for a specific

3.4 Practical Implementation Problems 38

duration. It is intended to be used for bus stops and taxis, or to artificially create
traffic jams, and causes a smooth, realistic deceleration similar to a vehicle slowing
down to stop at a red light. The stop command is used by the vehicle controller
application as follows: Each vehicle that enters a lane meeting an intersection
receives the command to stop at the end of this lane for an unlimited duration. As
soon as the controller reserves the required internal lane, i.e., the automaton enters
state g,, the stop is canceled and the vehicle proceeds to cross the intersection.

In addition to waiting at intersections, vehicles must be prevented from changing
lanes after selecting an internal lane for their crossing maneuver. This can be enforced
by another small adjustment that reconfigures the lane change controller to stay on
the current lane as soon as the first claim is placed.

These features suffice to make the vehicles behave in accordance with the con-
troller application. However, this basic implementation has a number of inherent
problems that cause unintended behavior and necessitate further adjustments in
order to make the system viable for simulation studies.

3.4 Practical Implementation Problems

The controller implementation developed in the previous sections aims to capture the
intended behavior of the original abstract controller as precisely as possible. However,
when used in simulations for validation, it displays some unexpected phenomena
that may have various causes; most likely, the abstraction level introducing some
freedom for interpretation is among the main reasons. Since these problems occur
frequently, impede the simulation process, and are, presumably, not part of the
intended behavior, they must be examined and resolved. They also serve as basis
for an evaluation of the disadvantages imposed by the highly abstract controller
definition, as they can indicate design problems that must be considered for a real
implementation. This topic is discussed in Chapter 5.

The most apparent problem manifests itself in a total blockade of an intersec-
tion due to a livelock of two or more vehicles trying to claim their respective lanes.
To illustrate the emergence of such a situation, consider two vehicles A and B ap-
proaching an intersection from different directions and having conflicting maneuvers.
According to the controller automaton, a claim is placed with the transition from
g, to g5, and the check for potential collisions using the formula pc(c) is performed
only in the subsequent states. If a potential collision is detected, the claim will be
withdrawn; otherwise, it is kept and turned into a reservation after another collision
check in state q;. Combined with the fact that due to the same trigger frequency,
the vehicles’ controllers are always triggered in the same order, this behavior leads

3.4 Practical Implementation Problems 39

to an infinite loop of both vehicles placing and withdrawing claims, as illustrated in

Figure 3.7.
State | Claim placed
t|A B |A B Action
Olqr qi | - -
11q, q | X - A places claim
21¢q g | X X B places claim
3|lqg1 g | - X A checks for collision - withdraws claim
41q; q3 | - X B checks for collision - keeps claim
51q, g3 | X X A places claim
6lq, q | X - B checks for collision - withdraws claim
71q3 q | X - A checks for collision - keeps claim
8l1q3 ¢ | X X B places claim
91 q¢1 q | - X A checks for collision - withdraws claim
: Infinite loop

Figure 3.7 — Livelock caused by two vehicles A, B with conflicting maneuvers.
Both vehicles start in state g, and approach the intersection at the same time
from different directions. Their controllers are always triggered in the same
order. The state sequence from time steps 3 to 8 will repeat itself indefinitely
as long as no exterior influence disturbs the system.

Analyzing this problem, the main cause becomes fairly obvious: The coordination
technique uses internal lanes as a shared resource with a partial mutual exclusion
condition. If two lanes overlap, only one of them may be reserved at a time. By
claiming the required lane and checking for a potential collision, a vehicle can check
whether the lane is currently in use. However, while the claim is active, other vehicles
can detect it as a potential collision although the vehicle that placed it is also just
checking for collisions. The reason for this unintuitive behavior is that by placing
a claim, a vehicle already uses the lane, and that a whole trigger interval passes
before it performs the collision check. From another perspective, this resembles a
well known problem in computer science; multiple agents access a shared resource
concurrently and the operation that tries to acquire the resource is not atomic. To
fix this, the operation of claiming a lane, checking for potential collisions, and then
withdrawing or keeping the claim must be made atomic. This can be realized by
forcing the automaton to leave state g, immediately, i.e., within the same simulation
time step. By doing so, at the end of the time step, the vehicle will either remain in
g, without a claim or have an active claim in g; without any potential collisions. To
avoid unnecessary messages, sending the cc message can be moved to the transition
from g, to g5, and the wd_cc message at the transition from g, to g; can be removed
completely. This effectively makes the claim and potential collision check atomic

and thereby solves the livelock problem.

3.4 Practical Implementation Problems 40

Note that this adjustment lies completely within the scope of free design decisions
because the abstract model does not define an execution model for the controller au-
tomaton. It does not violate any theoretical obligations or assumptions and externally
displays a behavior that is consistent with its internal actions due to the adjusted
messages. Therefore, it is not detrimental to the validity of the implementation.

The next problem that occurs when using the controller implementation without
further changes is related to the oc(ego) formula and the way vehicles approach
intersections. Examining the automaton transition from state g5 to g, closely, a
peculiar timing behavior becomes obvious: The formula oc(ego) is part of the state
invariant of q, and must therefore hold immediately after the transition actions
are performed. One of these actions is rc, i.e., placing the reservation. However,
the formal definition of oc(ego) demands that a part of the ego vehicle’s safety
envelope is already present on the intersection. In the abstract model, this is not
a problem because vehicles are technically allowed to start their maneuver before
the reservation is placed. But the way SUMO’s stop command is used to make
vehicles wait in front of an intersection as long as no reservation is placed makes
this impossible. Therefore, no vehicle is able to perform the transition and start its
crossing maneuver.

Simply ignoring the state invariant for the transition does not solve the problem: If
a vehicle places its reservation long before entering the intersection, the formula will
detect that it is not driving on the intersection in the next step, since it has not even
entered it yet, and force a transition to q,, withdrawing the reservation prematurely.
This behavior can, however, be prevented by modifying the implementation of
oc(ego) so that it also evaluates to true if the vehicle is in front of the intersection
and has placed its reservation.

This adjustment causes reservations to be placed earlier. However, by enabling
this behavior, vehicles can approach intersections without having to slow down if
they are able to place a reservation quickly enough. It also should not change the
order in which vehicles perform their maneuvers because the time at which claims
are placed is unaffected and the rc action only becomes relevant when a claim is
already established. The only noticeable implication is that the crossing maneuvers
can last slightly longer due to the added travel distance; this must be taken into
account when selecting a value for the crossing time threshold t.,.

The next two problems occur when introducing simulation parameters for unre-
liable communication. Only the loss of messages and communication delay are of
interest here. The complete list of simulation parameters is presented in Chapter 4.

A major feature of the controller and traffic model implementation is that vehi-
cles have to synchronize their internal traffic information by exchanging messages.
Because the consequences of lost or delayed information are of interest for eval-

uating the controller’s performance, these effects were introduced artificially by

3.4 Practical Implementation Problems 41

implementing suitable simulation parameters. However, when verifying their correct
functionality in test simulations, they frequently caused intersections to be blocked,
similar to the livelock problem discussed above. Since this behavior makes reason-
able simulation studies impossible, further adjustments to resolve these issues were
necessary. Again, the implications of these problems are evaluated in Chapter 5.

When a message delay is introduced, a certain time passes before received mes-
sages are processed. This can lead to asynchronous internal traffic models, causing
decisions of the vehicle controllers based on outdated information. For example, it
is possible that two vehicles try to place their claims on conflicting lanes at almost
the same time, so that neither of the claim messages is processed before the other
message is sent. The result is that both vehicles will have to withdraw their claims
the next time their controllers are triggered. Afterwards, it is likely that the same
process happens again since the controllers have the same trigger interval.

A related problem occurs when message loss is introduced, i.e., some messages
are not received at all. Losing messages of the type cc or rc can lead to collisions:
The potential collision check of a vehicle that misses some claim or reservation
information may find no collision and cause the vehicle to reserve a lane that
overlaps with another reserved lane. However, losing a wd_cc or wd_rc message
can be much more problematic in the simulation scenario because it can prevent
vehicles from ever reserving their required lane. This applies especially to wd_rc
messages since they are, in general, only sent once per intersection.

Both of these problems can be characterized as faults of the communication
protocol. It is likely that a more sophisticated method with techniques for detecting
message loss and ensuring a generally more reliable exchange of information can
solve them. However, designing a reliable communication protocol is not a goal of
this thesis; investigating the effects of unreliable communication on the controller’s
performance, on the other hand, is. Therefore, the solution to these communica-
tion issues should only serve to allow for stable and reliable simulations without
blocked intersections. It should not affect the ability to systematically introduce
communication errors through simulation parameters.

The implemented solutions to both mentioned problems utilize time stamps. To
start with, messages of the type cc are extended by a time stamp field storing the
time at which the sender placed the claim. Because it is highly unlikely that two
vehicles with conflicting maneuvers place their claims at the exact same time, this
information can be used to prioritize the claim of the vehicle that placed it first. The
reaction to receiving a claim message is adjusted accordingly: If the vehicle has
no active claim or the claimed internal lanes do not overlap, it will only update its
internal traffic information as before. However, if a potential collision is detected,
there are two possible cases: (1) the other vehicle’s claim is older than the receiving

vehicle’s, or (2) it is newer.

3.5 Verification and Validation 42

In case (1), the claim of the receiving vehicle has lower priority and must be
withdrawn immediately. This is achieved by updating the internal traffic model with
the new claim and causing an immediate trigger of the controller automaton.

In case the other claim is newer (2), the receiving vehicle has higher priority and
the other vehicle should withdraw its claim. In order to keep the communication
protocol simple, the claim with lower priority is just ignored in this case. Since all
vehicles are equipped with the same controller, the other vehicle can be assumed to
behave accordingly.

The second problem mentioned above arises when messages are lost and the
internal traffic information of a vehicle does not reflect the real situation. Since only
the case where wd_xx messages are lost and claim or reservation information is left
in the internal traffic model is detrimental to the simulation, the solution focuses on
this problem. As described in Chapter 2, the abstract traffic model specifies two time
thresholds t, and t., for the time that passes between placing a claim and turning it
into a reservation, and the time between placing the reservation and withdrawing
it, respectively. Consequently, a claim can never be active longer than t. and no
reservation can be active longer than t.,.. It is therefore safe to delete information on
claims and reservations that is older than these time thresholds. This is accomplished
by storing claims and reservations in the internal traffic model together with the
time the message containing the information was processed. Every time this data is
accessed, the expired entries are removed.

With these fixes in place, the controller implementation is complete. It should be
mentioned here that all of the adjustments discussed in this section only marginally
alter the behavior of the vehicles and serve to improve the simulation quality and
reliability. Given that the abstract model cannot provide solutions to all of these
minor problems due to its high level of abstraction, some small changes to the
exact behavior that leave the overall intuition of the coordination protocol intact are

acceptable.

3.5 Verification and Validation

Due to the lack of a reference implementation and execution model for the abstract
traffic model and crossing controller, validating the implemented application is
particularly challenging. Additionally, the controller implementation and adapted
intersection model do not portray the abstract traffic model directly, but rather
a concrete instantiation of its abstract concepts in a more realistic environment.
This is a structural difference to usual validation scenarios because the original
system does not provide an exact specification of the features the developed model

and implementation require; the modeled system is usually less abstract than the

3.5 Verification and Validation 43

implementation to validate. For instance, the abstract traffic model has no mechanism
to assert liveness, i.e., ensuring that every vehicle eventually reaches its destination.
It also does not specify a communication model, speed limits, or concrete values
for any of the declared constants. All of these aspects need to be considered by the
implementation to ensure sensible simulations with a high degree of realism.

This discrepancy between the original model and the developed system makes
a traditional validation based on experimentation data infeasible. Instead, the
controller validation is conducted on the basis of behavioral predictions and manual
observation.

The verification, on the other hand, is more straightforward, and the implemented
architecture can be divided into three components whose correct functionality can
be verified individually: The computation of the foe matrix and clearance positions,
as discussed in Section 3.2.2, the crossing controller automaton (cf. Section 3.3),
and its integration into the vehicle control system that is responsible for sending
coordination messages and controlling the vehicle.

To start with, the calculation of the foe matrix and clearance positions lends itself
to graphical verification. Since all involved calculations deal with simple geometrical
shapes in a two-dimensional plane, their correctness is easy to confirm visually by
generating appropriate result illustrations comparable to Figures 3.4a and 3.5. Due
to the relatively small size of the data structures, verifying them manually for each
intersection layout that was selected for simulations was a simple task.

The implementation of the crossing controller automaton can be verified directly
by tracing its states, transitions, and actions through a number of scenarios with
predefined sequences of events for which the controller’s behavior can be predicted
using the automaton’s formal semantics. Because the automaton only has a total
of five states, a relatively small number of scenarios suffices to cover all possible
transitions and state configurations. By decoupling the automaton from the vehicle
control system, this process was carried out independently of the traffic simulation
environment, removing any external effects it might introduce.

A similar approach was followed to verify that the rest of the vehicle control
system that complements the automaton works correctly. This includes managing
the data structures that represent the internal traffic model and evaluating the
UMLSL formulas correctly, executing controller actions, reacting to received messages
and timer events, and triggering the controller at the correct intervals. Most of
these aspects can be verified independently of the traffic simulation just like the
automaton using standard software development techniques like unit tests. To test
the vehicle control functionalities, however, it was helpful to run minimal simulations
and record vehicle traces and communication traffic, and observe the behavior in

SUMO’s graphical interface. By testing the controller application in such simulations

3.5 Verification and Validation 44

with various ordinary and degenerate parameter settings continuously during the
implementation process, the correct functionality of all its components is assured.

While the verification process asserts that the implemented system works as
expected, appropriate validation is required to ensure that it correctly reflects the
vehicle behavior and, more specifically, the coordination protocol defined by the
abstract traffic model. As outlined above, however, validating this consistency is
only possible to a certain extent since the simulation environment is more specific
than the abstract model and not all of its features have suitable counterparts for
validation. Therefore, the validation process is based heavily on running simulations
and manually checking whether the observed behavior matches the abstract model’s
specifications.

For instance, a vehicle that approaches a clear intersection is expected to visit each
state of the automaton exactly once and place or withdraw its claim and reservation

accordingly:
cc rc wd_rc
qo 2491 42 —q3 — 44 — 4o (3.3)
— ~—~—
Claim active Reservation active

This simple case can be validated by recording states, transitions, and actions in
a basic simulation scenario with one vehicle and one intersection. If the recorded
state sequence is different, there must be an error in the controller application or the
simulation scenario. A simulation like this revealed the problem with the on crossing
check oc that was discussed in Section 3.4: The vehicle would not enter state q, nor
start its crossing maneuver although it had already entered q5; it would only return
to g, after the time threshold t, was exceeded, and then repeat this process. The
described solution fixed this behavior, validating that the controller works correctly
in the most basic case.

Generalizing this experiment to many vehicles approaching the same intersection
on conflicting paths, only a few of them should be able to execute their crossing
maneuver immediately and follow the state sequence 3.3. Instead, most vehicles
should repeatedly place and withdraw their claims due to failing potential collision
checks:

wd_rc

wd_cc

QO_"hc_c"h([—’%] - ‘hc_c"h) —q3 =45 = qo 3.4

As long as Jc:pc(c) is true

Recording the state sequence of each simulated vehicle in a structured format enables
a simple, automatic way to ensure that this pattern is never violated without the
need for manual observation. It should be mentioned here that the adjustment
solving the livelock problem that was discussed in Section 3.4 does not affect this
sequence for individual vehicles; it only affects how the state sequences of multiple
vehicles intertwine (cf. Figure 3.7). As a matter of fact, the livelock problem was

first detected using this technique. Moreover, this example shows why the validation

3.5 Verification and Validation 45

of the controller application with respect to the abstract traffic model is problematic:
The behavior that causes a livelock and thereby blocks the intersection does not
technically violate the abstract model’s specifications. It is rather an artifact of
implementing an execution model that triggers the controller automata of the vehicles
at regular intervals in combination with the non-atomic operation of placing a claim
and performing a potential collision check.

Another aspect that is crucial for the coordination protocol and closely related to
the sequence of states and actions is the management of claims and reservations. A
straightforward approach to validating the correct management is tracing the current
claims and reservations of all vehicles through a simulation and checking whether the
traces match the occurrences of the controller actions and their semantics. However,
to ensure that the coordination protocol is followed by all vehicles, the mutual
exclusion condition of reservations must be considered as well. The formal safety
property of the abstract model requires that no space on a crossing or lane segment
is reserved by more than one vehicle at the same time. Because the car-following
model of SUMO can be expected to take care of the safety on all lane segments,
considering only crossing segments is sufficient. With the new intersection model
presented in Section 3.2.1 in place, the safety property can be expressed in terms of
internal lanes and clearance positions:

Safe" = Ac;,c; : 31; € cres(c;),l; € cres(c;) : (3.5
F;j=1Apos(c;) <C;j Apos(c;) < Cj; (3.6)

The equation defines the adapted safety property Safe* to hold if and only if there
exist no two vehicles c;, ¢; with respective reserved lanes [;, [; (3.5) such that [; and
L; overlap and both vehicles have not yet reached their respective clearance positions
(3.6). This property can be checked automatically and must hold at all times and
in all scenarios without additional parameters that introduce more realistic effects.
Running simulations in the least realistic configurations showed that with all the
presented fixes in place, the crossing controller implementation works as intended.
Having validated that the implemented system satisfies the safety property for this

basic case, it can be used as a baseline for further simulation studies.

Chapter 4

Simulation Setup

The simulative approach to evaluating the performance of the crossing controller
offers a plethora of possible traffic scenarios, simulation parameters, and performance
metrics to investigate. Because the abstract traffic model promises safety in arbitrary
intersection scenarios, a great variety of different layouts and traffic configurations
should be covered. As the main subject of this thesis is the safety performance of the
controller in a realistic environment where many assumptions of perfect information
and communication do not hold, a suitable selection of parameters and metrics must
be defined to enable a thorough evaluation.

In this chapter, I present the setup of the simulation studies that were conducted
for this performance evaluation. Section 4.1 deals with the definition of intersection
scenarios and introduces a simple notation for the identification of the employed
layouts. Building on this, the process of generating traffic is described in Section 4.2,
along with details of the individual vehicle characteristics. Finally, Sections 4.3
and 4.4 define the simulation parameters and performance metrics, focusing on
the introduction of imperfections encountered in a realistic environment and the

assessment of the controller’s safety properties.

4.1 Intersection Scenarios

Each simulation scenario comprises one intersection with limited sections of its
incoming and outgoing lanes. This simplifies the analysis of simulation results and
provides full control over the intersection’s structure and the incoming traffic. The
main design aspects of intersections that are considered here are the number of
intersecting roads, the number of their lanes, and the presence of dedicated turning
lanes.

SUMO provides tooling for generating road networks from simple descriptions of
nodes and edges. Individual edges and intersections can be defined with additional

46

4.1 Intersection Scenarios 47

information such as the number of lanes and the connections describing the possible
crossing maneuvers. The basic structure of every scenario is defined by a node at
position (0, 0) representing the intersection under consideration and four additional
nodes with coordinates (£d, 0) and (0, +d), where d defines the distance of the outer
nodes from the intersection node. The outer nodes are connected to the intersection
node by edges in both directions, creating a network with four roads that meet in
the middle and resemble a four-way intersection with 90° angles. Each of the four
roads has a length of approximately d and a configurable number of lanes. Given
just this information, SUMO computes the intersection shape with all internal lanes

as well as the lanes of the incoming and outgoing edges.

d d

4k L
i “+
0,0) A

NS] 4

d d 1 d |

I I N I I N
2 2

f (]
(b) Detailed intersection in SUMO network

K
(a) Simple network description

Figure 4.1 - Intersection definition and generation with SUMO for a 2 x 4
scenario. Figure 4.1a shows the five nodes at their respective positions in the
plane. Figure 4.1b shows the generated intersection and roads in the SUMO
network. The road lengths are measured from the center of the intersection,
so they are slightly smaller than the node distance d.

This procedure is used to generate simulation scenarios for arbitrary n x m
intersections. Only even numbers for n and m are supported so that the number of
incoming and outgoing lanes per road is equal. By omitting one of the outer nodes
and adjusting the lane connections, T-junction versions with only three roads can
be obtained. It suffices to consider only the removal of one specific node, e.g. the
one at position (0, d), because all other cases can be created by rotating a suitable
network where only this node was removed.

The connections describing possible maneuvers are defined so that driving
straight is allowed on all lanes and turning left or right is permitted only on the
leftmost and rightmost lanes of a road, respectively. Turning directions on T-junctions
are defined similarly for the two roads with matching directions, except that the
connections to the missing road must be omitted. The lanes on the single, perpen-
dicular road are split into left- and right-turning lanes in the middle; if the number

of lanes is odd, the middle lane can be configured individually. In case a road has

4.2 Traffic Generation 48

only one lane, all three crossing maneuvers are possible. For roads with more than
one lane, dedicated left-turning lanes can be assigned by removing the possibility of
driving straight on the leftmost lane. U-turn maneuvers are not supported.

To simplify the notation of specific intersection configurations, I introduce a
straightforward naming scheme: Regular n x m intersections, i.e., those with four
roads and no dedicated left-turning lanes, are denoted by nxm. For example, an
unmodified 4 x 6 intersection scenario is uniquely identified by the name 4x6. For the
T-junction version of an intersection, the suffix _T is appended to its name. Similarly,
the version with left-turning lanes is indicated by the suffix _L. Using this notation, a
6 x 6 T-junction is identified by the name 6x6_T, a 4 x 6 intersection with left-turning
lanes is called 4x6_L, and a 6 x 8 T-junction with left-turning lanes has the unique
name 6x8_T_L.

There are some scenario generation parameters that have the same value for all
scenarios used for the simulation studies. Most of them are required by SUMO for
generating detailed traffic network descriptions with concrete shapes for all network
elements. Starting with parameters affecting these physical shapes, all lanes of
incoming and outgoing roads have the default width of 3.2 m. A distance value of
d = 175 m is used to ensure that all vehicles can accelerate to the maximum allowed
speed before starting the coordination procedure. The center lines of internal lanes
are generated with 100 points so that the shape approximations used for the static
data structure calculation are sufficiently precise (cf. Section 3.2.2). The width w
of the internal lanes is set to 2.5m. This value is sufficient to contain the exact
maneuver shapes while avoiding unnecessary conflicts between internal lanes. For
the computation of clearance positions, a step size of 0.05 m is used.

SUMO also defines speed limits for all lanes. For the incoming and outgoing
roads, a maximum speed of 13.89 m/s (~50 km/h) is used, fitting the urban scenario.
The speed limits on internal lanes for turning maneuvers are reduced automatically
by SUMO to enforce realistically safe driving. The values are based on the turning
radius and, therefore, differ between scenarios and even individual lanes. To give
an example, the permitted turning speeds for a 4x4 intersection are 9.29 m/s for all

left turns and 6.53 m/s for all right turns.

4.2 Traffic Generation

For a given intersection scenario, traffic is generated by scheduling a certain number
of vehicles and assigning an individual route to each vehicle. The life cycle of a
vehicle is defined as follows: SUMO spawns the vehicle into the simulation as soon
as the scheduled start time is reached and there is enough room at the beginning

of its start lane that it can be inserted without causing a collision. Every vehicle

4.2 Traffic Generation 49

starts with an initial speed of 0 m/s. The first controller trigger is scheduled one
trigger interval after the insertion time and the controller will thereafter be triggered
continuously with this interval for the entire life cycle. The vehicle then approaches
the intersection according to SUMO’s default control systems, keeping a safe distance
to the surrounding vehicles and driving as quickly as possible and permitted. As soon
as the crossing controller has managed to place a reservation, the vehicle performs
its crossing maneuver and continues driving on the outgoing target lane. When it
reaches the end of this lane, the vehicle is removed from the simulation. Its trip
time is then defined as the time that has passed since the actual insertion time.
The simulation ends after all vehicles have left the scenario or when a time limit is
exceeded. This constitutes one simulation run.

As the vehicle life cycle shows, the route definition of each vehicle comprises only
the minimum insertion time as well as a start and target lane that uniquely identify
the crossing maneuver. These routes are generated randomly and are based on the
intersection structure and two traffic generation parameters: The traffic demand D
and the insertion time frame T. The traffic demand parameter D controls the vehicle
insertion rate and is specified as the number of vehicles entering the simulation per
hour and per lane (veh/(hlane)). The insertion time frame T controls the duration
over which the vehicle’s insertion times are distributed in seconds. Given the number

n; of incoming lanes in the scenario, the total number of vehicles N is computed as

Nz{?):ﬁ-T-niJ. (4.1)

The minimal insertion times of all N vehicles are distributed uniformly at random
in the interval [0,D]. Note that a simulation run will always simulate at least D
seconds plus the minimum trip time of a vehicle, unless a time limit is reached
first. Similarly, each vehicle is randomly assigned one of the n; incoming lanes as
its start lane. Once the start lane of a vehicle is fixed, the set of possible target
lanes depends on the permitted crossing maneuvers defined by the intersection
structure. If the lane only allows one maneuver, the target lane of this maneuver
is the only choice. If multiple crossing maneuvers are permitted, the target lane is
again selected randomly. However, the probabilities for all turning directions can
be configured for each combination of possible maneuvers. For example, incoming
lanes that allow driving straight and turning left could have a probability of 20 %
for turning, while lanes that allow driving straight and turning right could have a
30 % chance of turning. This provides limited control over the overall distribution
of turning maneuvers in the generated traffic.

Table 4.1 provides several example configurations of the probabilities assigned
to each turning combination and the resulting absolute turning probabilities among
all vehicles. The maneuver directions straight, left, and right are denoted by the

4.2 Traffic Generation 50

letters s, 1, and r. For a given combination c of possible directions, the probability
to select the turning direction d is called P(d | ¢). Observe that for the unique slr

combination, two probabilities must be defined.

Configured probabilities Absolute probabilities
P(1|sl) P(r|sr) P(A/r|slr) | P(s) P() P(r)
0 0 0/0 1 0 0
1 1 0.5/0.5 0 0.5 0.5
1 0 1/0 0.3 06 0
0.1 0.1 0.05/0.05 | 0.9 0.05 0.05
0.2 0.3 02/03 | 0.6 013 02

Table 4.1 — Distribution of turning maneuvers in a 2x4 scenario for different
probability configurations. The 2x4 scenario has two lanes for each of the
combinations sl, st, and slr (cf. Figure 4.1b). This enables a configuration like
the one shown in row 2, where all vehicles perform turning maneuvers and
none drive straight. Note that it is not possible to make all vehicles turn in
the same direction, e.g. left, because the traffic is distributed evenly over all
lanes and the two sr lanes do not allow turning left (cf. row 3). The setting
P(1| sl) =1 effectively turns the intersection into the 2x4_L version.

To calculate the absolute probability of a vehicle performing a crossing maneuver
in direction d, let C denote the set of direction combinations that include d, and
n. for ¢ € C denote the number of lanes in the scenario that permit exactly the

combination c. The absolute probability is then calculated as

n
P(d)=>_=P(d]c). 4.2)
n:
ceC 1
For example, the probability to turn right for the configuration shown in the last row
of Table 4.1 is

2 2 2 2
P(r)= 3 -P(r|sr)+ 3 -P(r|slr) = G -0.3+ 3 -0.3=0.2, (4.3)
with C = {sr, slr}, ny, = ny, = 2, and n; = 6.

Just like the intersection scenario generation, the definition of simulated traffic
requires a number of additional parameters and settings that are independent of
the way individual routes are scheduled and that always have the same values.
Most importantly, the vehicle type needs to be specified. For all simulations, every
vehicle has the default vehicle type of the used SUMO version, which has a maximum
acceleration of 2.6 m/s?, a maximum deceleration of 4.5 m/s?, and a rectangular
shape that is 5m long and 1.8 m wide. Because the speed limit on all lanes in every
network is at most 13.89 m/s, this is used as the maximum speed of the vehicles.

Another important simulation setting is the car-following model used by SUMO
to control the desired speed, safety gap, and acceleration of each vehicle in each

4.3 Simulation Parameters 51

time step. Here, SUMO’s standard system that implements the car-following model
presented by Kraul? [23] is used. The exact implementation differs slightly from the
original specification because the developers of SUMO applied slight modifications
in order to preserve its safety properties in the simulation environment.

Finally, the definition of seeds for the random number generator that is used for
traffic generation (in the following called traffic seeds) should be mentioned. It is
designed to be independent of the seed used by the simulation framework at runtime
to allow for multiple repetitions of the same simulation settings with the same traffic
for different runtime seeds. The reason for this is that the traffic seed generally has
a much larger impact on the outcome of the simulation because two different traffic
seeds lead to completely different routes that could potentially interact in vastly
different ways.

4.3 Simulation Parameters

Veins offers a multitude of configuration options to simulate the different aspects
of communicating vehicles at various levels of detail and realism. Especially the
modeling of the wireless communication can have a great influence on the simulation
outcome since the coordination protocol relies on the vehicles having sufficient
knowledge about the traffic situation at the intersection. Apart from that, certain
idealizing assumptions can be broken by introducing random errors and deviations
in order to simulate the vehicle behavior under less than perfect conditions.

This section presents the main simulation parameters used to control the realism
aspects of the performance evaluation. Additionally, it provides an overview of the

remaining parameters that are relevant for analyzing the simulation results.

Communication Model

As outlined in the introduction to the simulation framework (Section 2.3), the
network simulator OMNeT++ provides mechanisms for sending messages via highly
customizable channels, and Veins provides several models for simulating wireless
communication using this functionality. These facilities are used to define a number
of communication models that simulate different levels of realism.

The most basic communication model does not use any of the aforementioned
features. Instead, it simulates perfect communication without errors, delay, or loss of
information, i.e., messages arrive in the same simulation time step in which they
are sent. This model is used for validation purposes and serves as a baseline for
evaluating more realistic models.

The perfect communication model is a special case of the unit disk model. The

unit disk communication model has an additional communication range parameter r

4.3 Simulation Parameters 52

that specifies the maximum range at which two vehicles can communicate in meters.
The distance between two vehicles is measured as the distance between the center
points of the rectangles that represent their shapes. Whenever a broadcast message
is sent, all vehicles with a distance < r to the sender receive the message instantly
and without errors, just as before. All other vehicles do not receive the message.
The perfect communication model can be seen as a unit disk model with r = co.
This model is useful for simulating a limited communication range that could be
caused by attenuation effects on wireless signals, for example.

Veins provides the simple path loss communication model that utilizes the simu-
lated wireless communication stack and implements a free-space path loss model
with additional pass loss exponent a. A value of a = 2 corresponds to the regular
Friis path loss formula, larger values lead to stronger attenuation, and smaller values
to less attenuation. Typical values for modeling outdoor environments range from
a = 2 to a = 4. The effects of this model are a signal attenuation that increases
with the square of the distance between the sending and receiving vehicles and
a small delay simulating the time that a message requires to reach the receiving
vehicle when traveling at the speed of light. The attenuation is used by Veins to
calculate probabilities for losing messages; naturally, the probability for not receiving
a strongly attenuated signal is larger.

Another wireless model from Veins is the obstacle shadowing model. It was
introduced by Sommer et al. [24] to model attenuation effects of obstacles such as
buildings in the line of sight between the sending and the receiving vehicle. The
model was developed to work with the Veins IVC stack and was validated against
measurements from real-world experiments. In the simulation, buildings are simple
polygons and the attenuation strength is calculated based on the number of times
a signal passes through the walls of buildings and the distance it travels inside of
the buildings. These two factors are parameterized so that the simulation can be
configured to model multiple building types with different attenuation characteristics.

However, this is meant to be used for calibrating the model for very specific
buildings and it is difficult to define suitable settings for a wide range of general
obstacle conditions. Instead, the obstacle shadowing model is adopted for the
simulations as follows: The attenuation parameters are configured such that buildings
block all messages that travel through them. The intersection scenario generation is
extended to add a square-shaped building between each pair of neighboring roads,
as depicted in Figure 4.2. Instead of using a configurable attenuation strength, the
distance dy between the buildings and the roads is used as a simulation parameter to
control the influence that buildings have on the communication. With a side length
of 100 m, the buildings are large enough that even for small values of dj, vehicles at

the outer ends of neighboring lanes cannot communicate.

4.3 Simulation Parameters 53

100m

100m ,

dB /I

Figure 4.2 — Placement of buildings in the simulation scenario. Buildings are
placed the same way on all four sides of the intersection. The dotted line shows
the line of sight between two vehicles whose communication is blocked by the
building. The vehicles connected by the dashed line can exchange messages
without being affected by the building.

Both the simple path loss and the obstacle shadowing model use the simulated
IVC stack implementation of Veins. This means that both introduce a propagation
delay proportional to the transmission distance, and a small processing delay that
simulates the time required by the lower communication layers to perform the
transmission on the sending and receiving vehicles. Because of the small size of
the coordination messages and the relatively small communication distances in
the simulation scenarios, these effects usually amount to delays of less than 1 ms
between the vehicle applications of the sender and receiver sending and processing
the message, respectively. Nevertheless, they contribute to the realistic simulation
of wireless communication. Veins also allows to use both of these models at the
same time so that messages that are not blocked by a building are still affected by
attenuation from free space path loss. This is the most realistic configuration of the

communication model parameters.

Processing Delay

The implemented communication protocol, consisting of only four messages which
are always broadcast and neither validated nor answered, is extremely simplistic.
Because a reliable communication is generally essential for the safety of a distributed
coordination system, real implementations of such applications feature sophisticated
communication protocols to ensure maximum reliability. Such protocols typically

have to meet various requirements and accomplish this by exchanging more in-

4.3 Simulation Parameters 54

formation, sending messages more frequently, and forming flexible networks as
communication infrastructure [25]. Common techniques for ensuring high reliability
are acknowledgment messages and repeat requests, while other requirements like
security, for example, are met with more protocol adjustments like mechanisms for
authentication and encryption. All of these additional factors contribute to commu-
nication and processing overhead, ultimately leading to a larger communicational
delay.

To take this into account in the simulations, a processing delay parameter t is
introduced. It is implemented by making the vehicle application wait t seconds before
processing a received message. The application is not aware of any messages that are
currently being processed because this would require significant modifications of the
controller implementation that would likely cause changes of the vehicle behavior
and obscure the effects of the processing delay. Note that this delay is only applied
after a message was successfully received. This means that all delay introduced by
the communication model, i.e., the simple path loss and obstacle shadowing models,

still occurs if one of these models is used, even if the processing delay is set to t = 0.

Sensor Error

The intersection coordination protocol uses positional information of other vehicles
to decide whether a planned maneuver is safe. More specifically, the potential
collision check pc uses the lane positions of vehicles on conflicting lanes to detect
potential collisions (see Section 3.3). Therefore, the way this information is acquired
is relevant to the safety of the protocol.

The implemented traffic model interface provides direct access to the positions of
other vehicles, just like the assumption of perfect sensor information in the abstract
model suggests. In reality, however, on-board sensors of vehicles cannot be expected
to display such accuracy. Because the lane positions of other vehicles are perceived
directly through the ego vehicle’s sensors instead of being communicated like the
claims and reservations, this aspect is not affected by the communication model and
processing delay parameters. To simulate the inaccuracy of the sensor information,
a sensor error parameter e is introduced. Whenever the vehicle application requests
positional information of another vehicle, a random error is added to the real value by
the traffic model interface. The error value is normally distributed with mean 0 and
standard deviation e. A standard deviation of e = 0 denotes the perfect information
setting. Thereby, over- and underestimations of the actual vehicle positions are
equally possible and small errors are more probable than large errors, which are
reasonable properties to assume.

4.3 Simulation Parameters 55

Artificial Message Loss

In addition to the realistic wireless communication models that can already cause
the loss of messages, a separate, artificial message loss parameter p is introduced.
Here, p simply specifies the probability for ignoring a message that was received
successfully. A setting of p = 0 has no effect while p = 1 leads to all messages being
blocked, effectively eliminating all communication possibilities of the vehicles. The
purpose of this parameter is mainly the isolated investigation of the effect that missing
information has on the controller’s safety performance. In this regard, its advantage
over the realistic communication models is that it is completely independent of the

relative vehicle positions and the structure of the simulation scenario.

Other Parameters

There are several other relevant simulation parameters that are not as interesting
for the performance evaluation but should be addressed nevertheless. First of all,
the simulation step size of SUMO is set to 0.1s. Thereby, all vehicle positions are
updated ten times per simulated second. This value is small enough that the vehicles’
trajectories appear smooth and their microscopic behavior can be analyzed, but not
so small that it significantly decreases the simulation speed. Note that OMNeT++
still simulates all events at their own, arbitrary time scales; vehicles just do not
change their positions between two SUMO time steps.

Unless stated otherwise, the controller trigger interval is also set to 0.1 s. This is a
reasonable rate of sending coordination messages because safety-critical information
should be exchanged frequently and modern hardware can offer the necessary
performance. Real implementations of communication protocols often demand even
higher frequencies around 50 Hz [25] and experiments show that state information
updates at the order of 10 Hz can suffice for successful collision avoidance [14], [15].
However, a trigger frequency that is higher than the frequency of position updates is
not really sensible because it would lead to multiple triggers for the same vehicle
positions.

The crossing controller uses three constants d., t., and t., that affect the vehicles’
behavior and require appropriate values. d, specifies the distance to the intersection
at which a vehicle starts the coordination procedure and is used by the crossing
ahead check ca(ego). Given that the vehicle characteristics and scenario structure are
known, a value of d. = 30 m seems reasonable: The maximum allowed speed on the
intersection’s incoming lanes is 13.89 m/s. Assuming that the vehicle continues to
travel at this speed when it comes within coordination range, it still has 30/13.89 ~
2.16 seconds before its safety envelope would enter the intersection and it would be
forced to brake if it did not place a reservation by that time. This time should be more
than sufficient to negotiate a maneuver because the controller is triggered at least 20

4.4 Performance Metrics 56

times and usually requires at most 4 triggers to place a reservation if no other vehicles
cause potential collisions. If, however, no reservation can be placed, the vehicle will
have to slow down. In this case, there is still enough room to do so using the regular,
smooth deceleration rather than applying the full brake power. Furthermore, at
maximum speed, the braking distance is approximately (13.89)%/(4.5-2) ~ 21.4 m
(recall that the maximum deceleration is 4.5 m/s?). This means that vehicles will be
within 30 + 21.4 = 51.4 m of the intersection when sending their first coordination
message, which keeps the communication range requirement relatively low.

Finding suitable values for the time thresholds t, and ¢., is more straightforward.
t. specifies the maximum time a claim can be active until it must be turned into a
reservation or withdrawn if the former is not possible. It was originally introduced as
a precaution to avoid deadlocks [1] and is used in the implementation for the same
purpose by deleting outdated traffic information after some time in case an rc or
wd_cc message is not received. To give the vehicle that sent this message sufficient
time to finish its maneuver, a value of t. = 5s is used. This value is large enough
that many controller triggers can occur and vehicles can move significant distances
so that it is safe to delete the claim information.

Similarly, t., specifies the maximum time a reservation may be active before it
has to be withdrawn. It has the same purpose and is implemented the same way as
t.. However, this value can be determined more accurately by calculating the worst-
case duration of a crossing maneuver because all lengths of internal lanes, speed
limits, and the maximum acceleration value are accessible. Simulating a vehicle
that performs the longest possible crossing maneuver, starting at the maximum
distance from the intersection according to d, and accelerating from Om/s, yields a
reasonably accurate estimation of the maximum crossing maneuver duration. Among
the investigated simulation scenarios, no crossing maneuver takes significantly more
time than 6s. Therefore, a threshold of t.,. = 7.5 s seems to be a reasonable upper
bound. Note that increasing this threshold should not be detrimental to the safety of
the protocol because it only makes vehicles that have not received a relevant wd_rc
message wait a few seconds longer.

4.4 Performance Metrics

To assess the performance of the crossing controller by analyzing the simulation
output, suitable metrics are required. These metrics are focused on the safety aspects
because safety is the main promise of the controller and, therefore, the measure by
which it is evaluated. Other metrics for indicating efficiency are also considered to
gain a better understanding of the simulated system.

4.4 Performance Metrics 57

Collision Count

The collision count is the most straightforward safety metric. It is determined by
counting the physical collisions that occur during a simulation run. Collisions are
found by overlapping the vehicles’ rectangular shapes in each SUMO time step. If a
collision between the same vehicles is detected in multiple consecutive time steps,
it is only counted once. Recall that no further coordination actions are taken by
vehicles that have already started their crossing maneuver; colliding vehicles will
simply pass through each other and finish their maneuver as if nothing happened.
The total collision count can be averaged over the number of vehicles to obtain a
relative collision rate. This is useful for comparing simulation runs with different
traffic demand parameters.

Note that if the crossing controller works as intended, there should not be any
collisions at all. Therefore, this metric is most useful for finding simulation parameter
thresholds at which the first collisions occur and estimating the impact of parameter
values beyond these thresholds. The occurrence of the first collision is the point at
which the controller is definitely not working properly and cannot provide the same
level of safety as in the abstract model.

Relative Velocity

When a collision is detected, the relative velocity of the colliding vehicles can be
determined. To this end, the velocity of each vehicle is represented by a two-
dimensional vector that points in the vehicle’s driving direction and whose length
is the vehicle’s current speed. The relative crash velocity is then computed as the
length of the difference between the two vehicles’ velocity vectors, as illustrated in
Figure 4.3.

In order to increase the impact of high-speed collisions on the metric’s value,
each recorded relative velocity can be squared. This is reasonable to do because
the kinetic energy of a moving object is proportional to the square of its velocity,
making it feasible to use this metric as a measure of crash severity. The squared and
accumulated crash velocity was also used by Dresner and Stone [12] to evaluate the
effect of their safety measures in their simulations. Similar to the collision count, the
accumulated relative velocity can also be divided by the number of vehicles to obtain
a quantity that is comparable across simulation runs. and can be interpreted as a
kind of risk for each vehicle. Taking the average (squared) velocity over all collisions
instead provides another perspective that is independent of the number of vehicles
and estimates the overall severity of collisions in the scenario more generally.

The relative velocity metric is only useful if there are collisions to begin with.
However, it is more informative than the plain number of collisions and can be used
to gain a deeper understanding of the collision characteristics, enabling a better

4.4 Performance Metrics 58

Va

Vg

Figure 4.3 — Determining the relative velocity of a collision. Vehicles A and
B collide while driving at speeds ||v4||, and ||vz]|,, respectively. The relative
velocity is then determined as ||v, — vg||,. This calculation is performed in the
first time step the collision is detected.

evaluation of the coordination protocol’s weaknesses and their causes. Additionally,
it might be useful for comparing simulation results where the total collision counts

are very similar.

Reservation Conflicts

For evaluating the controller’s performance without the need for actual collisions,
the reservation conflict metric is used. Basically, a reservation conflict occurs when
two vehicles have active reservations on conflicting internal lanes at the same time.
It can be detected in the time step in which the second vehicle places its reservation
and it exists until the first vehicle withdraws its reservation. During this time, the
vehicles may or may not collide; outside of it, however, collisions are impossible
by definition of the foe matrix that specifies the lane conflicts. Therefore, fewer
reservation conflicts generally imply fewer opportunities for collisions.

However, the metric can be differentiated further to provide more meaningful
information: The coordination protocol allows reservation conflicts to occur when
one of the vehicles has passed its respective clearance position. In this case, a
collision is impossible and it is safe for the second vehicle to place its reservation and
start the crossing maneuver. This is classified as a weak reservation conflict. Weak
conflicts do not threaten the safety of the involved vehicles; on the contrary, they

4.4 Performance Metrics 59

can be indicative of a precise, well-timed coordination and reduce the waiting times
of the vehicles.

If, on the other hand, both vehicles are still ahead of their respective clearance
positions, a collision cannot be ruled out and a strong reservation conflict is registered.
The occurrence of a strong conflict is evidence that the coordination protocol does
not work as intended because it is a direct violation of the safety property Safe* as
defined in Equation 3.5. This is convenient and extremely useful for the evaluation
because it directly corresponds to the safety property that was proven to hold for
the abstract controller.

Using these concepts for safety estimation yields various interesting metrics,
especially when they are used in combination. For example, the relative frequency
of weak/strong conflicts among all reservation conflicts can indicate how precisely
crossing maneuvers are coordinated, while the total number of strong conflicts shows
how often the protocol is violated. Relating the number of strong conflicts to the
number of collisions can provide an estimation of how dangerous such conflicts
are; if the risk for a collision in case of a strong conflict is very high, this could be
a serious weakness of the coordination protocol. All of this is possible because of
the hierarchical ordering of the safety metrics: If no reservation conflicts occur, all
maneuvers are perfectly safe. Occurring conflicts are categorized into weak and
strong conflicts, of which only strong conflicts allow collisions. Detected collisions
can, in turn, be evaluated and compared by analyzing the (squared) relative velocity.

Other Metrics

In addition to the safety metrics, a number of other simulation outputs that are
mainly related to efficiency are considered. They provide useful information for
finding the causes of specific effects introduced by the simulation parameters and
understanding the overall vehicle behavior.

To start with, the trip times of all vehicles in a simulation run are recorded.
Because the exact lengths of the routes of all vehicles are different, the individual
times and their average value are not really meaningful; the average trip time can
only serve as a rough estimation of the intersection efficiency. However, the minimum
and maximum times as well as the standard deviation can be useful for detecting
irregular behavior and profiling the trip characteristics.

For observing the communication behavior, all sent and received coordination
messages are logged. Message traffic is an important efficiency metric because in
VANET research, keeping the wireless traffic low to avoid channel congestion and
interference is typically one of the major challenges. Again, statistic values like the
minimum and maximum number of sent or received messages are likely to be more

useful than individual values. The coordination messages are more directly related

4.4 Performance Metrics 60

to the vehicle controller behavior than trip times and can provide more detailed

information on the controller’s reaction to imperfect conditions.

Chapter 5

Evaluation

Both the controller implementation process and the subsequent simulation studies
reveal various advantages and disadvantages of the abstract approach. While the
findings of the implementation process show that the abstract controller definition
makes it very adaptable but also introduces its own challenges, the simulations
focus more on the influence of realism aspects and indicate that lifting the idealizing
assumptions has a negative effect on the controller’s safety.

In this chapter, I present and discuss these results in detail, focusing on the
simulation studies. Section 5.1 provides a summary of the practical problems en-
countered during the implementation process and draws conclusions about their
implications. Section 5.2 presents the simulation studies and analyzes their results
to assess the impact of the parameters on the controller’s performance. This is the

main part of the chapter.

5.1 Implementation and Abstraction Level

The implementation of the crossing controller and its traffic interface revealed a
number of design challenges and practical problems that are not only relevant for
the simulations but also in the context of a real-world implementation.

The abstract nature of the controller definition leaves a large amount of design
freedom as it does not specify execution rules, a communication protocol, or actual
vehicle control inputs. The coordination protocol and controller behavior, however,
are rather clear and intuitive. This makes it easy to design a control system and adapt
the controller to work with existing components, facilitating a flexible, modular
architecture.

But the abstraction level in combination with the precise, mathematical formal-
ization of the system also introduces some intricacies that can cause problems when
they are not detected and dealt with. For the set of concrete implementation design

61

5.1 Implementation and Abstraction Level 62

decisions made in this thesis, these problems manifest themselves mostly in blocked
intersections, as presented in Section 3.4. It is likely that a different set of decisions
in another application scenario would lead to other problems having different effects.
However, the practical problems discussed here are representative of a possibly
larger group of similar complications that reveal some inherent weaknesses of the
abstract controller definition.

Starting with the livelock problem that was caused by non-atomic access to the
crossing segments, the first of these weaknesses becomes obvious. It is clear that
this behavior is closely related to the implemented execution model and would have
occurred less frequently or not at all if a different model had been implemented. In
this case, the design freedom is actually problematic because depending on the deci-
sion made in the implementation process, the controller may not work as expected,
even if the employed execution model handles the automaton semantics correctly.
Therefore, the lack of an execution model in the abstract controller definition, which
is the reason for the design freedom, represents a major disadvantage of the abstract
model.

Furthermore, this is part of a more general problem: Because there is no concrete
execution model defined, the safety property of the controller formally holds for
any model that adheres to the automaton semantics. Thus, it is impossible to detect
problems such as the aforementioned livelock within the abstract model, where
the vehicle controller is originally defined. This shows that additional properties
besides safety, such as liveness, are not only favorable but necessary in order to take
advantage of the benefits of the abstract specification approach.

The on crossing check oc(ego) also caused an implementation problem that has a
similar origin. In addition to the execution model, the precise formalization of the
UMLSL formulas and their interpretation are involved here. Recall that the problem
with the on crossing check was caused by the formula oc(ego) being a condition
for placing a reservation but also requiring the ego vehicle to have entered the
intersection to be satisfied. Because in the simulation environment, vehicles have to
place their reservations before entering the intersection, the requirements formed a
cyclic condition that could never be satisfied.

In the abstract model, a dedicated distance controller is responsible for setting
vehicle control inputs and ensuring that vehicles do not enter an intersection without
a reservation. However, it is not defined explicitly and just assumed to work properly;
its behavior in this specific situation is not obvious but can be assumed to allow
entering the intersection the moment the reservation is about to be placed. This
is an intricacy of the mathematical formalization that does not translate well into
less abstract situations with a concrete execution model. The problem with the on
crossing check itself is not very serious and was fixed in the implementation easily,

5.2 Simulation Results 63

but it represents another group of problems to be aware of when implementing a
controller defined in the abstract model.

The two last problems discussed in Section 3.4 occurred when coordination
messages were received with a delay or were lost completely. Obviously, the lack of
a communication model and mechanisms for dealing with unreliable information
is the main reason why such events cause problems. Here, it is the developers’ job
to implement a suitable communication protocol that ensures timely and reliable
traffic updates. This freedom of choosing a communication protocol and designing
an appropriate representation of the relevant traffic and coordination information
is a very useful property of the abstract model and can, evidently, be used to solve
these two problems. However, defining such mechanisms is essential because the
controller itself is very susceptible to delayed or missing information; in both cases,
the observed result was a completely blocked intersection.

To summarize this discussion, one can say that the great freedom in designing
the components of a concrete implementation of the controller has both positive
and negative effects. In general, the high level of abstraction facilitates a modular
design that is easy to understand and can incorporate already existing solutions for
specific tasks, such as a communication protocol. However, the abstract model has
its intricacies that can cause problems if they are not considered. Especially the lack
of an execution model for the controller automaton can be problematic to the point
where the automaton itself has to be adjusted in order to make it work properly. In
most of these cases, though, it is possible to find a solution that is still reasonably

close to the original abstract definition.

5.2 Simulation Results

Having discussed and resolved the implementation issues, the controller’s perfor-
mance can be evaluated through simulations. To this end, I conducted extensive
simulation studies to investigate the effects of the previously introduced parameters.
The results of these simulations are presented and evaluated in this section, starting
with a baseline configuration that represents the least realistic scenario and that was
also used for validation purposes. Afterwards, each of the parameters is studied indi-
vidually in order to assess their impact independently of each other and of possible
interactions. Finally, combinations of selected parameter settings are investigated to
find such interactions and compare the severity of individual effects.

5.2.1 Individual Parameters

First of all, an appropriate selection of simulation scenarios must be defined. Because

urban intersections are highly diverse, these scenarios should cover a wide range

5.2 Simulation Results 64

of intersection layouts. The simulation scenarios in most related studies focus on
symmetrical four-way intersections without dedicated turning lanes [11]-[13], [16],
[17]; the majority of these consider intersection sizes between 2 x 2 and 6 x 6. Using
the scenario generation method described in Section 4.1, it is possible to create
arbitrary n x m intersections with optional left-turning lanes as well as their T-junction
variations. Additionally, the probabilities for turning maneuvers can be configured
to some extent. In the related studies that allow turning maneuvers and provide
turning probabilities, the absolute probabilities are specified as 90 %/5 %/5 %[12],
66.6%/16.6%/16.6%[13], and 70 %/20 %/10 %[17] for driving straight/right/left,
respectively. Assuming that these probabilities represent somewhat realistic urban
traffic behavior, the simulation scenarios here are configured to use similar turning
probabilities. A list of all scenarios with relative and absolute probabilities is provided
in Table 5.1.

Configured probabilities Absolute probabilities
Scenario | P(1|sl) P(r|sr) P(/r]|slr) P(s) P(D) P(r)
2x2 - - 0.15/0.15 0.7 0.15 0.15
4x4 0.3 0.3 - 0.7 0.15 0.15
6x6 0.45 0.45 - 0.7 0.15 0.15
8x8 0.6 0.6 - 0.7 0.15 0.15
2x2 T 0.25 0.25 - 0.5 0.25 0.25
4x4 T 0.5 0.5 - 0.5 0.25 0.25
6x6_T_1 0.5 0.5 - 0.5 0.16 0.27
6x6_T_2 | 0.5 0.5 - 0.5 0.27 0.16
8x8_T 0.75 0.75 - 0.5416 0.22916 0.22916
4x4 L - 0.3 - 0.5 0.35 0.15
6x6_L - 0.45 - 0.516 0.3 0.15
8x8_L - 0.6 - 0.6 0.25 0.15
2x4 0.3 0.3 0.15/0.15 0.7 0.15 0.15
2x6 0.45 0.45 0.15/0.15 0.7 0.15 0.15
2x8 0.6 0.6 0.15/0.15 0.7 0.15 0.15
4x6 0.375 0.375 - 0.7 0.15 0.15
4x8 0.45 0.45 - 0.7 0.15 0.15
6x8 0.525 0.525 - 0.7 0.15 0.15

Table 5.1 — All considered simulation scenarios with their turning probability
settings (see Table 4.1 for an explanation of the notation). There are two
versions of the 6x6_T scenario, one with the middle lane of the single, perpen-
dicular approach turning right, and a second one with this lane turning left.
The 2x2_T scenario is the only one with an Ir lane, which is why the column
for P(1| Ir) is omitted. Its value for the 2x2_T scenario is 0.5. Note that a
2x2_L scenario does not make sense because all vehicles would have to turn
left. The turning probabilities in all scenarios are defined to be as comparable
as possible.

All of these scenarios were used for validation and for the baseline simulation. In

this simulation, which represents the least realistic configuration, a perfect commu-

5.2 Simulation Results 65

nication model with no additional parameters introducing errors or delay was used.
The only simulation parameter was the traffic demand D, for which values from
200 to 800 veh/(hlane) in steps of 50 were simulated for each intersection scenario.
These demand values are comparable to related work, where the maximum traffic de-
mand ranges between 500 veh/(hlane)[16] and 1200 veh/(hlane)[12]. Note that
most of these simulation studies were focused on efficiency in terms of intersection
throughput and vehicle waiting time, wherefore their management systems could
handle relatively large traffic volumes.

Each simulation run was repeated 200 times; two repetitions with different
runtime seeds for 100 different random traffic seeds. The insertion time frame T
was set to 120s, i.e., the minimum vehicle insertion times were distributed evenly
over the first two minutes of each simulation run. These were the default settings
for all other simulations as well.

The main result of this simulation is quite simple: In the least realistic con-
figuration, the crossing controller works exactly as intended and provides perfect
safety. There were no recorded strong reservation conflicts or even collisions in any
simulation run and all vehicles were able to perform their crossing maneuver, i.e.,
there were no blocked intersections. Additionally, the number of sent coordination
messages was exactly three for all vehicles: One cc message to place the claim, one
rc message to turn the claim into a reservation, and one wd_rc message to withdraw
the reservation after finishing the crossing maneuver. There was also a relatively
large number of weak reservation conflicts, indicating that the coordination and
communication are precise enough to allow many maneuvers to start as soon as
the respective internal lane is clear, even if another vehicle still has a conflicting
reservation.

Figure 5.1 displays the average number of reservation conflicts per vehicle for
all scenarios. Among the different intersection layouts, there is a general trend
towards a higher number of conflicts for larger numbers of incoming lanes. This is
not surprising because a larger number of conflicts between internal lanes does not
only increase the total number of reservation conflicts (recall that more lanes lead
to a larger total number of vehicles) but also the potential of any individual vehicle
to be involved in multiple conflicts. Comparing the different scenario variations, it
stands out that in all cases, the nxn_L version has a larger number of conflicts than
the basic nxn scenario, while the nxn_T variants have the lowest conflict numbers
among all scenarios. The reason for this is that left-turning maneuvers belong to the
longest internal lanes and have the highest number of foes; both of these properties
increase the potential for weak reservation conflicts involving left turns. On the
contrary, the T-junction variants have a much lower number of conflicts among their
internal lanes. In scenarios with more than one incoming lane per direction (i.e., all

nxn_T scenarios except 2x2_T), many of the straight maneuvers and one right turn

5.2 Simulation Results 66

1.501 —&— 2x2 —— 2x4 —*— 2x8 —6— 4x4 —&— 4x4. T —*— 4x8
—B- 2x2_T —*— 2x6 —<— 4x4_L —*— 4x6
1.25

1.00

—6— 6x6 —B— 6x6_T_1 —*— 6x8 —6— 8x8 —<— 8x8_L —B— 8x8_T

—<— 6x6_L —— 6x6_T_2
1.25 /AWW
1.00 W

W
0.75 5 gm;

050 W S8 —e—e—t-—a - o _ n
0.25 M

200 300 400 500 600 700 800 200 300 400 500 600 700 800
Traffic demand D [veh/(hlane)]

Number of reservation conflicts per vehicle
—
w1
o

Figure 5.1 — Number of reservation conflicts per vehicle in the baseline simu-
lation. Each data point represents the number of conflicts averaged over all
vehicles and the 200 repetitions. The shaded areas around the graphs mark the
95 % confidence intervals. Note that all recorded conflicts are weak conflicts.

have no foes at all, which leads to a large fraction of vehicles that are never involved
in any reservation conflict. The asymmetrical nxm scenarios are generally similar to
the basic nxn versions but seem to cause fewer conflicts if the difference between n
and m is large. This can be explained by the vehicle behavior: Vehicles on the minor
approaches must wait relatively long for an opportunity to cross the intersection
because the major approaches support many simultaneous maneuvers blocking the
way. For example, straight driving vehicles on one of the single-lane approaches
in the 2x8 scenario have to wait at least until all eight internal lanes belonging to
straight maneuvers of the major approaches are clear, whereas the vehicles on these
approaches are far less restricted. Naturally, waiting vehicles are not involved in any
reservation conflicts, leading to a generally lower number of conflicts per vehicle.
This effect is less significant for the 4xX scenarios and vanishes in 6x8 due to the
smaller difference between the approaches.

In all scenarios, the number of reservation conflicts initially increases with the
traffic demand level and stagnates at the higher demand levels. This is because
for low traffic demand, the intersection is sparsely populated with vehicles and the
crossing maneuvers do not occur frequently enough to cause many weak reservation
conflicts. Higher traffic demands have the opposite effect and lead to a saturation that

5.2 Simulation Results 67

prevents any further conflicts, sometimes even reducing the number. The demand
level at which this happens is different for each scenario.

The baseline simulation shows that (1) the implemented controller functions
as intended and (2) that the safety property of the abstract crossing controller
definition translates into a more realistic scenario if the controller is implemented
appropriately. While the first result (1) is mainly relevant for the purpose of validation
and verification, result (2) is rather significant because it means that the abstract
approach to define vehicle controllers with provable properties is viable, at least
to some extent. However, the baseline scenario has the most abstract parameter
configuration possible and it is only halfway between the abstract model and a
highly realistic simulation setting. In order to progress towards such more realistic
configurations, the individual simulation parameters are investigated next. For these
simulations, only a representative subset of the intersection scenarios is considered,
namely the 4x4, 4x4_T, 4x4_L, and the 2x4 scenario.

To start with, the perfect communication model is just a special case of the unit
disk model with unlimited communication range r = 00. By limiting this range,
vehicles lose the ability to communicate and coordinate with other vehicles depending
on the distance between them. It is a highly unrealistic assumption that vehicles can
communicate at arbitrary ranges, especially in the urban scenario where various
obstacles can block the line of sight and the high density of transmitting agents can
cause interference, in addition to attenuation effects in wireless transmissions.

As a first approximation of this, I ran simulations for the communication range pa-
rameter r, ranging from 0 m to 200 m. To investigate different levels of traffic volume,
I repeated the simulations for demand values D of 200, 500, and 800 veh/(h lane).
These values will henceforth be referred to as low, medium, and high traffic demand,
respectively.

Figure 5.2 shows the average number of strong reservation conflicts per vehicle
at medium traffic demand. The plots display a number of distinct steps that can be
explained with several communication range thresholds: For range values r from
0 m to the first threshold at about 20 m, the vehicles cannot communicate sufficiently
to avoid conflicts; they are practically unaware of each other’s maneuvers. After this
first threshold, the number of conflicts decreases rapidly because the vehicles are now
capable of coordinating with other vehicles on neighboring approaches. Until the
third threshold at about 55 m, an increasing number of vehicles on the neighboring
roads gets within range, further decreasing the number of conflicts. Observe that
the rate at which this number decreases varies in distinct phases. This is due to the
individual lanes of the neighboring roads coming within range at slightly different
values of r. The second threshold of about 35 m is roughly halfway between the other
thresholds and marks the range value where all lanes on the neighboring approaches

are at least partially in range. At 55 m, another sharp decline of reservation conflicts

5.2 Simulation Results

68

Strong reservation conflicts per vehicle

2.01

1.5

1.0

0.51

0.0

—o— 4x4

T

|

1 H

| —— 4x4_L
: i

1

1

\

—8— 4x4_T

—— 2x4

50 75 100 125 150 175 200

Maximum communication range r [m]

0 25

Figure 5.2 — Average number of strong reservation conflicts per vehicle for
medium traffic demand (D = 500 veh/(hlane)). The solid, dashed, and dotted
vertical lines mark the communication range thresholds at 20 m, 35m, and
55 m, respectively.

. N
- —
P N
% -
Y a— \
/ \
/ \
/ \
/ \
1/ \
! \
! \
! \
1 |
I | .
: |E| 20m' 35m' 55m

Figure 5.3 — Visualization of the rough communication range thresholds in
the 4x4 scenario (not to scale). The solid, dashed, and dotted arcs correspond
to the vertical lines in Figure 5.2.

is visible. This is the range at which it is possible to communicate with vehicles

on the opposite side of the intersection. The number of conflicts then decreases

until about 120 m, where it reaches zero. Because the required communication

range strongly depends on the positions of the sending and receiving vehicles, these

5.2 Simulation Results 69

threshold values are only representatives of intervals in which smooth transitions
between the aforementioned phases occur. Figure 5.3 depicts the 4x4 intersection
with the approximate communication range thresholds.

For the other traffic demand levels, the overall results are very similar. However,
the communication range at which no more conflicts occur is larger for low traffic
demand and smaller for high demand, as shown in Figure 5.4. The reason for this
is that for higher traffic demand, the intersection tends to fill up even if only a few
vehicles manage to coordinate their maneuvers, leading to many waiting vehicles.
These vehicles then require a significantly lower communication range in order to
coordinate effectively so that even more vehicles wait at the intersection and the
number of strong reservation conflicts becomes comparatively small.

—e— 4x4 —8— 4x4_T
—— 2x4

—— 4x4 —8— 4x4_T
—<— 4x4_L —— 2x4

=
(=}
w

o
©

e
o
)

1
IS
—

o
o

Strong conflicts per vehicle
Strong conflicts per vehicle

0.0 SeerssascanEag 0
0 50 100 150 200 0 50 100 150 200
Maximum communication range r [m] Maximum communication range r [m]
(a) D = 200veh/(hlane) (b) D = 800veh/(hlane)

Figure 5.4 - Strong reservation conflicts per vehicle - Comparison of low and
high traffic demand.

Another interesting aspect is that the required communication range for safe
coordination is well below its theoretical upper bound: The largest possible commu-
nication range requirement occurs when two vehicles A, B approach the intersection
from opposite directions and travel at the maximum speed of 13.89 m/s. As outlined
previously, the distance between the front bumper of a vehicle and the intersection
in this situation is about 51.4 m; adding the offset of 2.5 m to the center point of the
vehicle yields a distance of 53.9 m between A’s center and the holding line of the
intersection. The diameter of the intersection is roughly 20 m. In the worst case, the
second vehicle B places its reservation very shortly before A finishes its maneuver.
Note that this is only the worst case for a strong reservation conflict and a collision
is very unlikely in this scenario. Assuming that A requires about 6 for its crossing
maneuver, B can travel at most 6 - 13.89 = 83.34 m after the first reservation is
placed. If B places its reservation at the first opportunity, i.e., 53.9 m from its holding
line, it was at most 53.9 + 83.34 = 137.24 m away from the intersection when the
first reservation was placed. Combining these distances results in a total distance of
53.9+4+ 20+ 137.24 = 211.14 m. Therefore, A requires a communication range that

5.2 Simulation Results 70

covers at most this distance for B to receive the reservation message. The simulation
results, however, suggest that even a range of about 125 m is already sufficient for
safe coordination.

These first results show that the coordination protocol requires a certain mini-
mum communication range to function reliably. The more vehicles with conflicting
maneuvers are within range, the fewer reservation conflicts and collisions occur.
The necessary range depends indirectly on the intersection dimensions, the traffic
demand, and the permitted speed; starting the coordination procedure at a smaller
distance to the intersection naturally lowers the required range. This could also be
influenced by lowering the value of the d, constant but this would eventually force
the vehicles to slow down before entering the intersection, even if there is no need
for coordination.

The simple path loss model of Veins calculates the free-space path loss according to
the transmission distance and the path loss exponent a. In the Veins IVC stack model,
packets are lost if the received transmission power falls below a certain threshold.
Therefore, the simple path loss model effectively limits the communication range of
vehicles in a similar way to the unit disk model because the received power decreases
with increasing distance. However, it also introduces a propagation and processing
delay and provides a much more realistic model of real wireless communication
technology than the simple unit disk model which does not use the IVC stack.

2.0

1.5

1.0

0.57

Strong reservation conflicts per vehicle

0.01

1.0 15 2.0 25 3.0 35 4.0 45 5.0
Path loss exponent a

Figure 5.5 — Strong reservation conflicts per vehicle for different path loss
exponents a at medium traffic demand.

5.2 Simulation Results 71

To investigate its effects, I ran simulations for a values between 1 and 5 with the
same remaining settings as before. As can be seen in Figure 5.5, the influence of the
path loss exponent on the number of strong reservation conflicts is almost identical
to that of the communication range parameter r in the unit disk model. The same
applies to all other recorded metrics and traffic demand levels, which emphasizes
that the path loss exponent is essentially just another way to specify a maximum
communication range. Furthermore, the simulated delay seems to have no notable
consequences whatsoever.

Comparing these simulation results to those of the unit disk model, one can
observe that a communication range of about 80 m roughly corresponds to a path
loss exponent of a = 3 and the sufficient communication range of about 120 m is
comparable to a value of a = 2.3. Relating this to the common interpretation of
the exponent yields another interesting result: If a regular, but still very simplified,
free-space path loss with a = 2 is used to model wireless signal attenuation, the re-
sulting communication range is sufficient for the coordination protocol to ensure safe
crossing maneuvers. The protocol only starts to produce collisions for values greater
than about a = 2.7, which is a suitable value to describe outdoor environments with
weak attenuation effects [26]. Therefore, the controller performs reasonably well
under communication conditions that are less than perfect, but it shows increasingly
unsafe behavior if the effective communication range decreases further. Again, a
lower d, value or even a more sophisticated communication protocol could most
likely alleviate this issue.

After having studied the effects of a limited communication range, it is interesting
to investigate the situation where messages are blocked by obstacles in the line of
sight between two vehicles but the communication range is effectively unlimited if
the line of sight is unobstructed. When using the obstacle shadowing communication
model of Veins in combination with obstacles at the roadside, the area in which a
vehicle is able to communicate does not have a fixed, uniform shape but changes
dynamically with the vehicle’s position relative to the obstacles. This models the
situation at urban intersections with buildings and other obstacles more realistically
than the unit disk or simple path loss model. The most realistic configuration would
be a combination of the two models such that messages are lost if they are blocked
by obstacles or experience too high path loss. However, it is important to investigate
the obstacle shadowing model alone first.

To this end, I ran simulations for the d; parameter that specifies the distance
between the buildings and the incoming and outgoing roads in the scenario as
illustrated in Figure 4.2. I chose 2m as the minimum distance to simulate the case
where the buildings almost reach into the intersection, modeling the worst case
scenario. Using a geometrical construction for the case where two vehicles approach

the intersection on neighboring roads and at their respective maximum distance and

5.2 Simulation Results 72

speed (see communication range parameter), a sufficient building distance of about
dg = 40 m can be determined, which is why I chose a maximum distance slightly

above this value.

ot

©
e
=
IS

—e— 4x4 —e— 4x4_T
—<— 4x4_L —— 2x4

e
=
N

o
)
o
o
o

o
o
@

1

'S
o
=
s

e

S
o
o
=

Number of collisions per vehicle
o
1)
N

Strong reservation conflicts per vehicle

o
=)
o
=)
S

30 40

40 20
Building distance dg [m]

(=}

10

o

20 30 10
Building distance d [m]

(a) Strong reservation conflicts (b) Collisions

Figure 5.6 — Strong reservation conflicts and collisions per vehicle for medium
traffic demand.

Figure 5.6 displays the numbers of strong reservation conflicts and collisions per
vehicle for a traffic demand of D = 500 veh/(h lane). Similarly to the communication
range parameters, there is a value for the building distance at which the vehicles
can communicate and coordinate without restrictions. In this scenario, it is at just
above 30 m, which is, again, well below the theoretical upper bound. Apart from
that, the plots show two more interesting results: First, increasing the building
distance just slightly above the minimum value of 2m drastically decreases the
number of conflicts and collisions. The reason for this is that with a very small
distance, even vehicles that are waiting at the intersection have a highly limited field
of view and their communication with other vehicles on the neighboring approaches
is thereby almost completely obstructed. This prevents effective coordination with
those vehicles in the majority of cases, leading to a relatively large number of strong
reservation conflicts. Due to the intersection geometry and building placement,
however, moving the buildings a small distance further away from the intersection
increases the field of view by a significant amount, as illustrated by Figure 5.7.

After this initial drop, the numbers of conflicts and collisions decrease more
slowly until they reach zero at around 30 m. Taking a closer look at the curve, a
distinct change of slope at about 22 m becomes obvious, which leads to the next
interesting result. Moving the buildings further away from the intersection generally
improves the chances of successful coordination for an increasing amount of vehicles,
which explains the relatively steady, monotonic decrease of conflicts. However, the
first vehicles that enter the simulation scenario can only coordinate effectively for

large dy values because they send their claim and reservation messages as soon as

5.2 Simulation Results 73

Figure 5.7 — Effect of increasing the building distance close to its minimum
value. The dashed gray lines mark a building at the minimum distance of dy =
2m and the corresponding limits of the ego vehicle’s field of view. The solid
black lines indicate the same for a building that is placed 3 m further away
from the roads. Even this small increase leads to a much larger field of view.

their distance to the intersection falls below the threshold value d.. The following
vehicles must wait until their leaders have entered the intersection, due to the
definition of the crossing ahead check ca(ego). If the distance between the first and
the following vehicles is small enough, the followers will start their coordination
procedure at a closer distance to the intersection and, therefore, have better chances
to coordinate successfully. This means that for building distance values between 5
and 22 m, the majority of the reservation conflicts and collisions is caused by the
very first vehicles in the simulation. Plotting the time stamps of strong reservation
conflicts that occurred across all simulation runs in a histogram confirms this, as
Figure 5.8 illustrates using the 4x4 scenario as an example. As a consequence, the
number of conflicts decreases more rapidly as soon as these first vehicles start to
communicate effectively, which happens at a building distance value d; of around
22m.

Combining these two results, it becomes clear that the effects of obstacles that
prevent successful communication vary greatly depending on the obstacles’ position-
ing and the positions at which the vehicles start to send coordination messages. In
general, the impact of the obstacles decreases when their distance to the intersection
increases. Leaving enough room that vehicles close to the intersection have a line of
sight to large parts the neighboring approaches already prevents most reservation
conflicts in this configuration, but a relatively large distance is required to ensure
the safety of all vehicles.

It must be mentioned here that this result strongly depends on the design deci-
sions made for the controller implementation: The main reasons for the problematic

5.2 Simulation Results 74

1200 1

1000

800 1

600 1

Frequency

400 1

200

0,
11.0 23.4 358 48.2 606 73.0 855 97.9 110.3 122.7 135.1
Time stamps of strong reservation conflicts [s]

Figure 5.8 — Distribution of strong reservation conflict times in the 4x4 scenario
at medium traffic demand. Each triple of bars specifies the total number of
time stamps between the two enclosing simulation time values that occurred
across all 200 repetitions.

coordination between the first vehicles in the simulation are the early placement
of reservations and the missing possibility to update traffic information and abort
the maneuver at a later point in time. Interpreting the controller automaton differ-
ently or using a more reliable technique for synchronizing traffic information could
improve the situation significantly. Therefore, the relatively low level of safety in
the presence of communication-blocking obstacles can be attributed to the simpli-
fied communication protocol used for this implementation and is not necessarily a
weakness of the crossing controller itself.

Apart from that, the simulation results allow some additional observations that
have not been discussed yet. All the above findings are based on a medium traffic
demand value of D = 500veh/(hlane). Considering the low and high demand
values as well reveals another interesting effect. As illustrated by Figure 5.9, a low
traffic demand of 200 veh/(hlane) leads to a significantly smaller initial drop and
a generally much larger number of reservation conflicts per vehicle, whereas the
high traffic demand value of 800 veh/(hlane) produces fewer conflicts overall. This
corresponds exactly to the observation that the distance between the first vehicles and
their followers affects the required building distance for effective communication:
If the traffic demand is low, these distances will be larger because the vehicles

are inserted at a lower frequency. Conversely, a higher demand leads to smaller

5.2 Simulation Results 75

1N
'S

—— 4x4 —8— 4x4_T
—<— 4x4_L —— 2x4

—e— 4x4 —8— 4x4_T
—<— 4x4_L —— 2x4

o
o

1

'S
e
W

o
o

Strong conflicts per vehicle
(=] (=]
= o

Strong conflicts per vehicle

o
=)
o
o

30 40

40 0 10 20
Building distance dg [m]

o

10 20 30
Building distance dg [m]

(a) D = 200veh/(hlane) (b) D = 800veh/(hlane)

Figure 5.9 - Strong reservation conflicts per vehicle - Comparison of low and
high traffic demand.

distances and, therefore, more effective coordination and fewer conflicts. Relating
the maximum metric values of about 0.8 and 0.4 for the medium and high traffic
demand to the difference between the demand values 500 and 800 veh/(hlane)
leads to rough values of 0.8 - 500 = 400 and 0.4 - 800 = 320 conflicts per hour and
per lane, confirming that the lower ratio of conflicts in the high demand scenario is
not only caused by the larger total number of vehicles. If these numbers were similar,
it would mean that the initial phase of the simulation causes an equal number of
conflicts for both traffic demands.

Furthermore, the results can be compared to the effects of a limited communi-
cation range, as introduced by the unit disk or simple path loss model. The most
significant difference is that the overall number of strong reservation conflicts per
vehicle is much lower for the building distance parameter than for the communica-
tion range (cf. Figure 5.5, where all scenarios exceed 1 conflict per vehicle), even at
the minimum values of both parameters. This is due to the fact that in the obstacle
shadowing scenario, the communication between vehicles on opposite sides of the
intersection is not restricted, preventing roughly half of all reservation conflicts
and collisions. The impact of this is so large because it not only prevents strong
conflicts between these vehicles, but it also forces some of them to stop and wait at
the intersection, which allows them to communicate better with the neighboring
approaches and, additionally, it gives the following vehicles a chance to close the gap
and improve their coordination as well. This effect is even more prominent in the
4x4_L scenario with the left-turning lanes because vehicles performing a turn to the
left naturally have a higher potential for conflicts with the opposing traffic, causing
both sides to wait more frequently than in the regular 4x4 scenario. That is why
there is a significant difference between the two scenarios in the obstacle shadowing
configuration but not in the unit disk and simple path loss settings. Comparing the

5.2 Simulation Results 76

average trip times in the 4x4 and 4x4_L scenarios confirms this, as can be seen in
Figure 5.10.

701

9] (o) (o))
9] o 921

Average trip time [s]

[*]
o

45 1

—O— 4x4 —< 4x4_L

40- - ! . .
0 10 20 30 40
Building distance dg [m]

Figure 5.10 — Average trip times in the 4x4 and 4x4_L scenarios at medium
traffic demand.

In contrast, the asymmetrical 2x4 scenario performs worse than before because
the vehicles on the two smaller approaches with only a single lane tend to have much
fewer potential conflicts with each other and, therefore, slow down less frequently.
The 4x4 _T variation appears to perform equally well in both the settings with limited
communication range and obstacle shadowing.

This shows that in the presence of obstacles limiting the vehicles’ ability to
communicate based on their relative positions, the intersection structure and the
traffic characteristics can have both positive and negative effects on the controller’s
safety performance. More generally, the purely range-based unit disk and simple
path loss communication models show significant differences to the more realistic,
line of sight-based obstacle shadowing model. In both cases, however, it is likely
that suitable modifications of the communication protocol can solve most of the
occurring coordination problems.

The communication parameters discussed so far only have deterministic effects; a
message is either received by another vehicle or not, depending solely on the relative
positions of the vehicles and obstacles. However, the probability for successfully
receiving a wireless message in reality depends on a multitude of additional factors,
many of which are far less predictable. Apart from that, it is interesting to investigate

5.2 Simulation Results 77

the probability for message loss itself independently to view the impact of unreliable,
asynchronous traffic information from another perspective. The artificial message
loss parameter enables this by introducing the probability p for dropping a received
message as a simulation parameter.

To get a complete view on the effects of this parameter, I ran simulations for the
whole range of probability values from O to 1. Because the parameter implementation
uses the random number generator at runtime, unlike the traffic generation that
applies randomness independently of simulation runs, I repeated each run with four
different runtime seeds for 50 random traffic seeds.

2.0

1.5

1.0

0.51

Strong reservation conflicts per vehicle

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Message loss probability p

Figure 5.11 — Strong reservation conflicts per vehicle at medium traffic de-
mand.

Figures 5.11 and 5.12 display the number of strong reservation conflicts and
collisions per vehicle for a medium traffic demand value. The graphs show relatively
clear exponential curves for all intersection scenarios. This may have various causes
that are difficult to differentiate and analyze because of multiple interacting factors
including probabilities for vehicles to execute conflicting maneuvers, the duration of
each crossing maneuver, the type of messages that are lost, and the temporal offset
between vehicle insertions. However, some of these factors can provide at least a
basic understanding of what is happening at the intersection.

To start with, consider two vehicles A, B that plan conflicting crossing maneuvers
and approach the intersection at roughly the same time. The minimal number of

coordination messages that must get lost for a strong reservation conflict to occur

5.2 Simulation Results 78

0.307

0.251

0.201

0.151

0.101

Number of collisions per vehicle

0.051

0.001

0.0 0.2 0.4 0.6 0.8 1.0
Message loss probability p

Figure 5.12 - Collisions per vehicle at medium traffic demand.

is two: It can be assumed without loss of generality that vehicle A sends its claim
message cc first. If B receives this message, it will detect the conflict and wait until A
has finished its maneuver before placing its own claim. Therefore, A’s claim message
is the first one that must get lost. The same logic applies to A’s reservation message
rc because A will also be the first vehicle to place its reservation and receiving the
message would cause B to withdraw its claim, again preventing a conflict. Thus, at
least these two messages must be lost; the probability for this is p2.

Adding more vehicles to this scenario makes it much more complicated because it
creates more possibilities for conflicting maneuvers and introduces more constraints
on messages that must get lost for certain conflicts to occur. However, the probability
for any specific combination of conflicting maneuvers will be a polynomial of p whose
degree increases with the number of constraints. Since p is always < 1, simultaneous
conflicts of many vehicles are generally less likely to occur than simple conflicts of,
for example, just two vehicles.

Observe that one pair of vehicles can only cause a single reservation conflict
and the number of conflicts in which a specific vehicle is involved is bounded by
a relatively small constant; for instance, the 4x4 scenario has only eight incoming
lanes and most of its internal lanes have an even smaller number of foes. Therefore,
the number of reservation conflicts per vehicle can only exceed 0.5 if many vehicles
are involved in more than one conflict. A possible cause for this could be chains of

conflicts, where the temporal offset between vehicles A, B is relatively large and as

5.2 Simulation Results 79

soon as A finishes its maneuver, another vehicle C has a conflict with B, followed by
a conflict of C and D after B has left the intersection, and so on. Figure 5.11 shows
that the number of conflicts per vehicle only exceeds 0.5 for values of p > 0.6, which
supports these considerations because losing more than half of all messages already
causes extremely unreliable coordination information.

Finally, the number of possible conflict combinations for a set of n vehicles is
roughly equal to the number of subsets of a set with n elements that have a size > 2,
which is 2"—n—1, and the number of such subsets of size exactly k < n is the binomial
coefficient (Z) Both of these terms grow rapidly with increasing n. Although these
are only rough approximations of the real number of reservation conflicts that can
possibly occur, they indicate that there is a huge potential for different kinds of
conflicts that may occur if the coordination of the vehicles is unreliable enough. All
of these considerations are major factors causing the exponential behavior displayed

by the graphs.

1001
—©— 4x4 —H— 4x4_T

—— 2x4

901

801

70

60 1

Average trip time [s]

501

401

301

0.0 0.2 0.4 0.6 0.8 1.0
Message loss probability p

Figure 5.13 — Average trip times at medium traffic demand.

Moving on, there is an interesting artifact in Figure 5.12 that also needs to be
discussed: The number of collisions per vehicle does not continue on its exponential
trajectory until the maximum value of p = 1, but shows a much slower increase,
or even a slight decrease, after about p = 0.9. This behavior can be explained by
considering the extreme situation at p = 1: Here, no coordination messages are
received and the vehicles are thereby almost completely unaware of each other. Each
vehicle only keeps its safety distance to the leading vehicle and waits until it has

5.2 Simulation Results 80

entered the intersection until it starts its own crossing maneuver. Therefore, the
vehicles rarely slow down and perform their maneuvers at the maximum possible
speed. This is clearly visible when plotting the average trip times, as can be seen in
Figure 5.13, where the average trip times in all scenarios reach a global minimum
at p = 1. As a consequence, the vehicles spend relatively little time in the conflict
zones of the intersection.

Changing the situation by decreasing the probability for losing messages to 0.95
causes a small fraction of the vehicles to wait after receiving a claim or reservation
message. Those vehicles will then have to accelerate again for their crossing maneu-
ver, increasing the time spent on the intersection. This also slows down all following
vehicles and thereby increases the density of vehicles at the intersection. In turn, the
probability for colliding with one of the vehicles that did not wait increases for at
least the first of the waiting vehicles. Looking at the squared relative velocity of the
collisions confirms this: As illustrated by Figure 5.14, the squared relative collision
velocity differs significantly between p = 0.9 and p = 1. Decreasing the message
loss probability further, however, suffices to make the coordination more effective

and leads to fewer conflicts and collisions.

325
—©— 4x4 —H— 4x4_T

—+ 4x4_L —— 2x4

w
o
o

275

2501

2251

200

1751

150+

Average squared relative collision velocity [m?/s?]

—_
N
9]

0.2 0.4 0.6 0.8 1.0
Message loss probability p

Figure 5.14 — Average squared relative collision velocity at medium traffic
demand. Note that there are no collisions for p = 1.

To conclude this discussion, it can be said that the loss of coordination messages
is not quite as problematic as could be expected, but causes a tremendous risk of

collisions if very few messages are received. A loss probability below 0.2 only causes

5.2 Simulation Results 81

a small number of reservation conflicts and very few collisions. At this point, message
loss has a greater influence on the average trip time than on the safety of the vehicles.
However, for larger values, its effects can become much more dramatic because a
malfunctioning coordination protocol can lead to many vehicles starting conflicting
maneuvers at the same time. Viewing this from the opposite side, though, receiving
just 20 % of all messages already reduces the risk for a collision significantly. In reality,
sophisticated communication protocols can easily avoid most loss of information
caused by unpredictable effects like random loss of messages.

Comparing this parameter to the previously discussed communication models
and their parameters, the most obvious difference is that the coordination only
provides perfect safety for the minimum message loss probability p = 0. All previous
parameters have a threshold value such that the protocol works without problems
for all values beyond the threshold. This has to do with the direct nature and the
independence of the message loss parameter: Because every single coordination
message is potentially affected, there is nothing to limit the influence of the param-
eter on the effectiveness of the communication. For example, vehicles waiting at
the intersection previously had better chances at communicating successfully; the
message loss parameter is completely independent of the vehicles’ positions and
affects them all the same.

Apart from the communication models and parameters that directly influence
the vehicles’ ability to communicate, there are two more simulation parameters
with different effects. To start with, the sensor error parameter e introduces random
errors to the perception of other vehicles’ positions which are used in the potential
collision check pc to determine whether or not it is safe to place or keep a claim. The
value e specifies the standard deviation of the normally distributed error value that
is determined randomly and added to the perceived position of another vehicle every
time this position is requested by the ego vehicle. This mimics random noise in the
output of the vehicle’s on-board sensors.

I conducted simulations for error values between O m and 5m to also include
unrealistically large errors. Similar to the message loss parameter, which also gener-
ates random numbers at runtime, I used 50 random traffic seeds and repeated each
run four times with different runtime seeds.

As depicted by Figure 5.15, the number of strong reservation conflicts per vehicle
increases linearly with e for values of e > 1 in all scenarios and for low, medium,
and high traffic demand levels. For higher traffic demand, the number of conflicts is
generally larger; this can be explained by the higher density of vehicles that causes
crossing maneuvers to be executed more frequently. A more interesting result is that
across all simulation runs, only a negligible number of collisions occurred, and only
for large parameter values of e > 3. Especially compared to the previous parameters,
this means that strong reservation conflicts have an extremely low risk of actually

5.2 Simulation Results 82

o
o
=)

—o— 4x4 —8— 4x4_T
—<— 4x4_ L —— 2x4

o

=

«a
e
W

e
o

©
o

Strong conflicts per vehicle
=] =)
o —
(92} o

Strong conflicts per vehicle

0.00 0.0 ==
0 1 2 3 4 5 0 1 2 3 4 5
Sensor error e [m] Sensor error e [m]
(a) D = 200veh/(hlane) (b) D = 500veh/(hlane)

o o
o w

Strong conflicts per vehicle
o
=

o
=)

Sensor error e [m]

(¢) D = 800veh/(hlane)

Figure 5.15 - Strong reservation conflicts per vehicle for low, medium, and
high traffic demand.

leading to collisions. The reason for this is that the circumstances that could allow a
collision are far less likely to occur than strong reservation conflicts in general: Two
vehicles must place their claims and reservations on conflicting internal lanes when
their distances to the intersection are roughly equal. This means that at least one of
these vehicles must have positive sensor errors large enough that the other vehicle
appears to have already passed its clearance position. Moreover, such an error must
occur in at least two time steps because the potential collision check is performed
several times before a reservation is eventually placed. On the other hand, a strong
reservation conflict can also occur when one of the vehicles is already very close to
its clearance position, in which case only a small sensor error is required. A collision,
however, is almost impossible at this point because this vehicle will have left the
conflict zone before it is reached by the second vehicle. Since the sensor error is
normally distributed, the risk of collisions is extremely small, even though strong
reservation conflicts occur frequently.

Furthermore, the introduced errors are centered around zero, which makes
negative errors that move the perceived vehicle position backwards just as likely as
positive errors. This can cause the opposite effect of vehicles detecting a potential

collision although the vehicle on the foe lane has already passed its clearance position.

5.2 Simulation Results 83

(]
[

—o— 4x4

—o— 4x4 —8— 4x4_T
—<— 4x4_ L —— 2x4

o
=)

—— Global min.

()
(=]

2 2
]]
= =
(9 (5
= >
5 5.5] —— Global max.
{=¥ [="
8 82>
20 g
g 220
£4.5 =]
£ £15
S s
o = 10
235 2
g g
> 2 5 M
Z3.0] ® Z
0 1 2 3 4 5 0 1 2 3 4 5
Sensor error e [m] Sensor error e [m]
(a) Comparison of intersection scenarios (b) Details of 4x4 scenario

Figure 5.16 — Average number of sent coordination messages per vehicle. The
global minimum and maximum in Figure 5.16b specify the minimum and
maximum number that occurred across all vehicles in all repetitions.

One consequence of this is that vehicles generally have to send more coordination
messages, as illustrated by Figure 5.16. The exact process that causes this behavior
only requires a vehicle to perceive its desired internal lane as free for one time step
and to detect a potential collision in the next step, so that it sends a claim message
only to withdraw the claim one trigger interval later. Each of these events can be
caused by small random errors when all foe vehicles are close to their clearance
positions. They also do not have to occur at a specific time because the potential
collision check is performed in each time step as long as the reservation is not placed.
Together, this explains why the number of sent messages already increases for values
of e < 1, that is, before strong reservation conflicts occur.

Intuitively, one might think that this behavior causes vehicles to slow down and
wait more often because it takes more coordination messages to finally negotiate a
maneuver and place the reservation. As Figure 5.17 shows, however, the average
trip times do not increase at all; in fact, they even decrease slightly. This is the
case because on average, the vehicles are still able to place their reservation quickly
enough that there is no need to slow down or the trip time is not affected significantly.
Looking at Figure 5.16 again, the average number of sent messages is relatively
small: Every vehicle must send at least three messages (cc, rc, and wd_rc), and
the number of messages increases by two (wd_cc and cc again) every time a placed
claim must be withdrawn due to the event described above. Because the vehicle
controller sends one of these messages and performs the corresponding action every
time it is triggered, even withdrawing a claim three times only adds six trigger
intervals to the total time until the reservation is placed, which correspond to 0.6s.

As this effect is relatively small, and since the trip times of vehicles involved in a

5.2 Simulation Results 84

80
754 — 4x4_ L —— 2x4

701 <<
651
601 o0

551

Average trip time [s]
©
D
D
D
0
0
4
g
o
g
D
D
D
q
0
0
D
D
D

501

451

40

Sensor error e [m]

Figure 5.17 — Average trip times at medium traffic demand.

strong reservation conflict are shorter than they would be without the conflict, the
average trip time does not increase.

This is a remarkable difference to the previous parameters, where information
was lost completely instead of just altered by random errors: For example, a message
loss probability of 0.5 caused the average trip time to increase tremendously because
vehicles would frequently miss withdrawal messages and have to wait until their
internal information could be safely deleted, which means a delay of at least t, =
S5sort, = 7.5s, depending on the type of the lost message. With the sensor error
parameter, however, the internal information is always up to date and only the
additionally required sensor information is sometimes unreliable. While the former
significantly increases both the trip time and the risk of collisions, the latter only
leads to effectively harmless violations of the coordination protocol. An extremely
large error value is required here to cause any collisions at all. The only noticeable
effect of the sensor error that negatively affects the controller’s performance is the
increased communication effort, which could be the cause of further problems in a
more realistic scenario or in combination with other parameters.

Finally, the last parameter to be discussed individually is the processing delay.
Its value t specifies a delay between the time a coordination message is received
and the time it is processed, i.e., the receiving vehicle’s internal traffic information
is updated. It mimics the combined effects of communication overhead that could

5.2 Simulation Results 85

be caused by more sophisticated protocols and the computation time required to
interpret and process a message’s content.

Because in reality, this delay value is unlikely to regularly exceed 1s, I ran
simulations for values between Os and 1s. Each run was repeated for 100 different
random traffic seeds and 2 runtime seeds.

I
o
3

—e— 4x4 —8— 4x4_T
—<— 4x4_L —— 2x4

—o— 4x4 —8— 4x4_T
—<s— 4x4_L —— 2x4

o
=

g 2
g g
£0.20 =
> >
1 1
g1 204
g 2
=] =
5 0.10 §
00 ©00.2
§o0.05 5
=] =
w w
0.00{ ==« 0.0 ===
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay ¢ [s] Message processing delay t [s]
(a) D = 200veh/(hlane) (b) D = 500veh/(hlane)
—e— 4x4 —8— 4x4_T

-
=3

—<— 4x4_L —— 2x4

—— 4x4_L

03 —— 4x4 —a— 4X4’TA/_€_</<
’ —— 2x4 o—®

2
o e
g S
ﬁ >
>0.8 o}
: .
SO. 6 S 0.2
5 2
E 5
c 0.4 o
50 0.1
=) P
S0.2 2
: :
0.0 E—=—= Z0.0{ ===
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Message processing delay t [s] Message processing delay t [s]
(¢) D = 800veh/(hlane) (d) Collisions for D = 500 veh/(hlane)

Figure 5.18 — Strong reservation conflicts and collisions per vehicle — Com-
parison of low, medium, and high traffic demand.

As can be seen in Figure 5.18, the number of strong reservation conflicts per
vehicle increases with the processing delay and also with the traffic demand level.
The same is true for the number of collisions, which shows a relatively high risk
per reservation conflict. However, no conflicts occur for delay values t < 0.1s. It is
no coincidence that this is exactly the controller trigger interval, as the sequence
diagram in Figure 5.19 illustrates. It shows an exemplary communication between
two vehicles A, B with conflicting maneuvers, where A sends its claim message first.
Due to the processing delay of t; or t,, B is unaware of this claim the next time
its controller is triggered and it places its own claim, sending the corresponding
message. This message has no effect on A because A’s claim was placed first, giving
it higher priority. Depending on the delay value, B will either withdraw its claim or
not: For a relatively small value like ¢, A’s cc message is processed before the next

trigger of B, causing an immediate withdrawal. If, however, t is large enough that B

5.2 Simulation Results 86

A B
1 T]
;5 . cc L3 TT
\ e,
v :
\
T . |
! |
/
" wd_cc | K i
T T T e t,
T b rc
' \
rc o
TR PP P PR
T .
A v
T
l_ ——

Figure 5.19 - Communication sequence diagram of vehicles A, B. Controller
triggers are marked by the thick, horizontal lines on the two vertical axes.
T denotes the trigger interval and & is the offset between the two vehicles’
controllers. t; is a relatively small processing delay, indicated by the dashed,
black lines, that is smaller than T and causes no serious problems. t,, indicated
by dotted, black lines, is an alternative, larger delay that is greater than 7
and can cause strong reservation conflicts. Only the processing time of the
first cc message is drawn. The propagation delay of messages is only drawn
for completeness and is exaggerated to be visible (without a communication
model, it is 0s).

is triggered a second time before the message is processed, e.g. t = t,, B will place
its reservation, leading to a strong conflict since A places its own reservation either
way.

This can only occur if the time between receiving and processing a message can
include two controller triggers, i.e., if t > 7. If this does not hold, the worst-case
effect is the withdrawal of a claim, as the example t; shows. Note that in case the
trigger of B happened before the claim message of A is received, the vehicles would
simply switch their roles due to the negligible propagation delay. As Figure 5.20
clearly shows, increasing the trigger interval also increases the tolerance for larger
processing delay values. This emphasizes the relation between the two parameters.
Naturally, the probability for strong reservation conflicts increases with the processing
delay because events as illustrated for t, in Figure 5.19 become less restricted in the

time at which the first claim message is sent.

5.2 Simulation Results

87

Message processing delay t [s]

Q
o

Number of sent messages per vehicle

=
o

o
©

o
o3

o
N

o
o

©
5

o
S

e
w

0.14

0.0

161

141

12

10

10.71 0.67 0.61 0.56 0.47 0.34 0.23 0.18 0.09 0.7
1066 0.61 0.53 046 0.37 0.24 0.12 0.10 [0.01| 0.00 0.6
1058 0.52 0.45 0.39 031 0.18 0.11 |0.01| 0.00 0.00 E
1049 0.43 0.38 0.29 0.20 0.10 |0.01| 0.00 0.00 0.00 10.5 %
1041 0.34 0.29 0.19 0.09 |0.01] 0.00 0.00 0.00 0.00 0 4§
10.29 0.25 0.19 0.07 0.00 0.00 0.00 0.00 0.00 . §
10.22 0.17 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.3 .‘é
10.16 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o2 Zéo
1 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 é
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 r0.1 ”
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

—0.0

01 02 03 04 05 06 07 08 09 10
Controller trigger interval 7 [s]

Figure 5.20 - Strong reservation conflicts for different combinations of trigger
interval T and processing delay t at medium traffic demand. The diagonal
cells in which t equals T are marked with boxes. They clearly indicate that
strong reservation conflicts only occur if t > 7 holds.

—©— 4x4
—r— Global min.
—+— Global max.

oo o o O o o o o O o o o o o o o o o o
e e e e e e e e e 4
0.0 0.2 0.4 0.6 0.8 1.0

Message processing delay t [s]

Figure 5.21 - Average and min./max. number of sent coordination messages
per vehicle at medium traffic demand.

5.2 Simulation Results 88

The other effect, caused by delay values like ¢t; in the sequence diagram, has an
influence on the number of sent coordination messages per vehicle. As Figure 5.21
displays, the average number only increases marginally, but a small amount of
vehicles requires significantly more messages than the minimum value of three. It
also shows that the communication is already affected for delay values t < 0.1, unlike
the strong reservation conflicts. The number of messages peaks at exactly t = 0.1,
which is the largest value at which strong conflicts are still extremely unlikely. For
larger delays, the conflicts start to make the traffic situation more chaotic and the
relatively tight conditions for the processing delay causing only the withdrawal of a
claim are met less frequently.

Concluding the discussion of this parameter, it can be said that the controller is
actually quite resistant to processing delay because the delay value must exceed a
directly controllable threshold in order to have serious, negative effects. However, if
this threshold is exceeded frequently, the effects pose a significant threat to the safety
of crossing maneuvers. Additionally, even delay values below the threshold can have
negative effects on the efficiency of the communication because they can lead to
vehicles placing claims prematurely and having to withdraw the claim immediately
afterwards. Again, it is important to note that these problems can be attributed
to the communication protocol and certain implementation decisions that are not

forced by the abstract controller definition.

5.2.2 Parameter Combinations

Having discussed each simulation parameter individually, the next logical step is
to investigate combinations of multiple parameters. The motivation for this is that
in reality, of course, the effects simulated by the parameters occur simultaneously,
and there might be interactions between them which could amplify or weaken their
impact on the controller’s safety. It is not possible to select any particular parameter
configuration as representative of the most realistic setting possible because there are
no reference values, the simulation setting is still very simplified, and the conditions
in reality are highly diverse. However, it is likely that somewhat realistic parameter
values lie between the thresholds where the controller works without any problems
and where the coordination breaks completely. It is also not feasible to simulate all
possible combinations of the previously discussed parameter values. Therefore, in
this section, I will focus on the most interesting combinations, introducing a number
of constraints to limit the parameter space and working towards a reasonably realistic
scenario.

Because the most significant differences between the intersection scenarios have
already been discussed, only the 4x4 scenario is considered here. The message

loss parameter was introduced to study the effects of randomly losing information

5.2 Simulation Results 89

independently. This is an artificial effect and in reality, message loss usually has
clearly identifiable causes and is not purely random. In order to compensate for
some of the effects that are not covered by the communication model parameters,
the message loss probability is fixed to p = 0.005 for all following simulations. It is
not studied any further because the other parameters are better suited for modeling
a realistic scenario. Due to the greater variability of the simulation results caused
by using more parameters, each simulation was repeated for 100 random traffic
seeds and 4 runtime seeds, leading to a total of 400 repetitions per run to achieve
statistical significance.

To start with, the simple path loss and obstacle shadowing communication models
have the most severe impact on the safety at moderate parameter values that are not
too unrealistic. For example, a distance of 20 m between the roads and the closest
building or a path loss approximated by an exponent of @ = 3 might occur in a real
traffic situation and can already lead to strong reservation conflicts and collisions.
In contrast, position sensor errors of more than 1 m and a regular processing delay

above 0.1 s can be considered to be exceptions.

30{0.03 0.28 0.71 0.84 0.90 0.99 1.02 2.5 3010.01 0.06 0.37 1.23 1.63 2.08 2.22 2.5
E.ZG 0.12 0.28 0.71 0.84 0.90 0.99 1.02 20% E 2610.02 0.06 0.38 1.23 1.62 2.07 2.22 2.0%
5 2210.25 0.39 0.71 0.84 0.90 0.99 1.02 z -5 2210.05 0.09 0.38 1.24 1.62 2.08 2.22 z
% 18{0.35 0.50 0.70 0.84 0.90 0.99 1.02 1.5% % 18{0.07 0.12 0.38 1.23 1.64 2.08 2.22 1.5%
% 14{0.41 0.57 0.70 0.84 0.90 0.99 1.02 % g 14{0.10 0.15 0.39 1.22 1.62 2.08 2.21 :1:
-_%O 10{0.48 0.62 0.72 0.84 0.90 0.99 1.02 10§0 _%c 10{0.13 0.19 0.42 1.23 1.62 2.08 2.22 1'02]
E 610.54 0.68 0.75 0.84 0.90 0.99 1.02 0.5§ E 6{0.18 0.26 0.53 1.27 1.62 2.08 2.22 0.55_1

210.65 0.75 0.78 0.84 0.90 0.99 1.02 210.76 0.89 1.17 1.45 1.71 2.09 2.22

2.50 2.75 3.00 3.25 3.50 3.75 4.00 —00 2.50 2.75 3.00 3.25 3.50 3.75 4.00 —00
Path loss exponent a Path loss exponent a
(a) D = 200veh/(hlane) (b) D = 500veh/(hlane)

30/0.00 0.03 0.15 0.44 0.73 1.68 261| [|2.5

526 0.01 0.03 0.15 0.44 0.71 1.68 2.61 2.0%

=5 22{0.04 0.06 0.15 0.43 0.73 1.70 2.61 =

% 18{0.05 0.07 0.15 0.44 0.73 1.68 2.62 1.5%

% 14{0.06 0.09 0.15 0.44 0.73 1.68 2.59 .,—:

;-:Ec 10{0.07 0.11 0.17 0.44 0.73 1.68 2.60 1.0§0

E 6{0.10 0.14 0.21 0.45 0.73 1.68 2.63 o.sg
2{0.29 0.35 0.46 0.61 0.87 1.74 2.62

[
o
S)

2.50 2.75 3.00 3.25 3.50 3.75 4.00
Path loss exponent a

(¢) D = 800veh/(hlane)

Figure 5.22 — Strong reservation conflicts per vehicle for combinations of the
path loss exponent a and the building distance dp.

Both communication models simulate limitations of the area in which a vehicle

can communicate with other vehicles. In reality, this area is affected both by obstacles

5.2 Simulation Results 20

in the line of sight and by the distance between the sending and the receiving vehicle,
so it is interesting to investigate whether one of these effects dominates the other
and if there are interactions that affect the controller’s performance. To this end, I
ran simulations for combinations of the most relevant parameter values and for low,
medium, and high traffic demand, as depicted in Figure 5.22.

The plots show distinct differences between the columns, while the values inside
one column show very little variation. Effects of the building distance are only visible
in the first columns, i.e., in situations where the communication range is relatively
large. This clearly shows that the communication range is the dominant factor. The
reason for this is quite intuitive: By interpreting the obstacle shadowing model as
a more complicated, dynamic form of range limitation, it becomes clear that the
range at which a vehicle is able to communicate with other vehicles in any given
direction is either limited by an obstacle or by the maximum range implied by the
path loss, depending on which one is more restrictive. Because the buildings next
to the intersection never restrict the communication between vehicles on opposite
approaches, the path loss even has an impact if the smallest building distance is used.
For sufficiently large a values, this also prevents many vehicles from braking and
waiting at the intersection; recall that with the obstacle shadowing model, vehicles
on opposite approaches often cause each other to wait, slowing down all following
vehicles and thereby reducing their required communication area. This is the main
reason why the simple path loss model is dominant. The effect that vehicles closely
following their leaders have better chances to coordinate, however, is common to
both models. That is why an increasing traffic demand still improves the overall
situation by causing a higher density of vehicles, as Figure 5.22c illustrates. Because
the extreme values of a practically prevent communication at any range, their effect
is also extreme and not influenced by the obstacle shadowing model at all.

The remaining parameters are the sensor error and processing delay. Both of
them have a threshold value at which strong reservation conflicts occur but they
also influence the communication efficiency before these values are reached. In
order to investigate interactions between these parameters and the communication
models, they are discussed separately before combining them into a configuration
that features all parameters. Because their threshold values are relatively high
compared to what could be expected in a realistic scenario, only a small part of their
previous range is considered. In order to prevent an explosion of the parameter
space, the remaining parameters are restricted as follows: Only the medium traffic
demand of D = 500 veh/(hlane) is used; recall that the effects of both the sensor
error and the processing delay parameter increase with the demand value but have
no notable further interactions. Additionally, the communication model parameters
are limited to three values each. These values are a € {2.5, 3.0, 3.5} for the simple
path loss model and dg € {2,16,30} for the building distance. They are selected

5.2 Simulation Results 91

such that each model has a low, a medium, and a high value which capture the most
relevant impact levels and do not lie completely outside of a realistic range.

Starting with the sensor error parameter, I ran simulations for values between
e = 0 and e = 2 in order to include values beyond the threshold e = 1 at which
strong reservation conflicts occur. Figure 5.23 displays the resulting numbers of
strong conflicts per vehicle for all nine combinations of the selected values for a and
dp.

a=2.5 a=3.0 a=35
0.101
0.6 501
o
[9p]
T 0.4 ﬁ% 15
~q =)
< 2
s éé_% 0.2 1.0
2 0.00 Bro B i EE -F-
g 0.2 061
© = : 2.0
2 g T
g O 4 Hﬁ 1.51
58
E 0.2
1.0
g 00l : ‘ | ‘ | |
g
2
~ S 107 1.5 2.01
]
< 1.01 1.5
0.5
0.51 1.0
0.0 1.0 2.0 0.0 1.0 2.0 0.0 10 20

Sensor error e [m]

Figure 5.23 — Strong reservation conflicts per vehicle for nine combinations
of the path loss exponent a and the building distance dg, and several different
sensor errors e. The simulation results for each of the nine combinations are
presented as box plots. Each box has a horizontal line specifying the mean
value and the box itself extends to the first and third quartiles. The whiskers
extend to the most distant data points that are not further than 1.5 times the
inter-quartile range away from the box. The dashed, horizontal lines depict
the mean values of e = 0 and e = 2 for easier comparison.

The plots show that for most of the combinations, the additional sensor error
does not have any notable effect. Its characteristic behavior that was discussed
previously is most visible for the combination of & = 2.5 and dz = 30, where the
communication models have the lowest impact. As their influence on the number of
conflicts increases, the effects of the sensor error vanish almost completely. Moreover,
in the individual discussion of this parameter, the simulation results showed that
at an error value of e = 2 and at medium traffic demand, it leads to roughly 0.05
strong reservation conflicts per vehicle in the 4x4 scenario (cf. Figure 5.15b), which
is confirmed again by the combination a = 2.5, d = 30. Although this is a relatively

5.2 Simulation Results 92

small number, it should make a visible difference if the sensor error’s effects are still
present for the other combinations. However, the horizontal lines in Figure 5.23 and
the computed differences both show that the total difference made by the sensor
error becomes negligible for combinations where at least one of the communication
model parameters is at its highest value. This indicates that the effects of the sensor
error parameter are not only shadowed by the larger impact of the communication
models but many reservation conflicts that could be caused by sensor errors are
actually prevented, either because the same conflicts occur earlier due to insufficient
communication possibilities or because the more chaotic traffic dynamics produce
fewer situations susceptible to sensor errors.

Furthermore, the simulation results also show that the sensor error has no impact
on the number of collisions per vehicle whatsoever. This is not surprising because
the sensor error alone already did not cause collisions, but it confirms that there are

no interactions with the communication models.

gézz*%%%%%é% “”%%%%é%%% “‘é%%%%%%
AN %
“E;o_-ﬁ%%% | __;ﬁ%%%%% __J%%%%%%%
: |
) 3:0__1‘{-%%%%%% __;%%’%%%% __ié%%%%éé%

Sensor error e [m]

Figure 5.24 - Average number of sent coordination messages per vehicle in
the combined sensor error simulation.

Apart from reservation conflicts and collisions, the other effect of the sensor error
parameter that was discussed previously was the increased number of coordination
messages sent by each vehicle. Figure 5.24 clearly shows that the parameter has the
same effect for all combinations of a and dg, but increasing either of the communi-
cation model parameters significantly reduces its magnitude. The reason for this is

that sensor errors can only cause the ego vehicle to withdraw a claim if it is aware

5.2 Simulation Results 93

of the reservation of another vehicle; otherwise it will not even request positional
information. The communication models can prevent the vehicle from receiving rc
messages, leading to much fewer situations in which vehicles have to withdraw their
claim and, as a consequence, reducing the number of sent messages.

In summary, the sensor error parameter is dominated by both communication
models although it is only indirectly related to the communication itself. Its effects
generally become less significant for larger values of a and dj, but the strong reser-
vation conflicts caused by sensor errors vanish completely, whereas the number
of sent coordination messages is still affected to some extent for all investigated
combinations.

I conducted a similar simulation for the processing delay parameter, using values
between t =0 and t = 0.2. Figure 5.25 shows the average number of collisions per

vehicle for all communication model parameter combinations.

a=2.5 a=3.0 a=23.5

0.3 1 1
0.2]]
< o 01 : 1

=30

I S 1 X %‘%%%%%%é%"%

T

0.3

0.2

=16
Number of collisions per vehicle

el EEAREEE

T

0.3
N
I 0.2
- N e
= 0.1
0-0 T T T i T T T i T T T
0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

Message processing delay t [s]

Figure 5.25 — Average number of collisions per vehicle in the combined pro-
cessing delay simulation.

The simulation results are very similar to the results for the sensor error parameter,
apart from the fact that the processing delay also affects the number of collisions; this
was the major difference between the parameters in their individual discussions. In
addition to that, the processing delay parameter generally shows a more significant
impact on the safety for all parameter combinations so that its effects are even
noticeable for the combination a = 3.5, dz = 30 where the communication models

completely dominate the sensor error. Conversely, the processing delay affects

5.2 Simulation Results 94

the number of sent messages slightly less than the sensor error parameter. These
results make sense because they perfectly reflect the findings of discussing each
parameter individually: While the sensor error significantly increases the number
of sent coordination messages and only causes strong reservation conflicts without
collisions, the processing delay parameter leads to reservation conflicts with a high
risk for collisions and increases the number of coordination messages only marginally.
Both parameters are dominated by the communication models because their effects
can only cause reservation conflicts under relatively restricted conditions which are
met less frequently if the communication possibilities are too limited.

Having discussed these two parameters in combination with the communication
models, the final step is combining all parameters in one simulation. To this end,
I limited the granularity of both the sensor error and processing delay parameters
but used the same value ranges as before, i.e.,e =0toe=2and t =0to t =0.2,
respectively. Figures 5.26 and 5.27 display the simulation results for the number of
strong reservation conflicts and sent coordination messages per vehicle.

a=2.5 a=3.0 a=3.5
0.00{0.01 001 001 002 0.05| [[012 {037 0.38 0.38 0.39 041 ||o, {1.63 1.62 1.63 1.63 1.64
- 1.66
0.10
o 005{001 001 001 0.02 005 0.37 038 037 039 040 | |lg,, 1161 1.62 162 161 1.63 | ||, .
o™ 0.08
Il 010{0.01 0.01 0.01 0.03 0.05 o, 1038 037 037 0.38 040 | Loy {163 162 161 161 163 | (164
0.0¢ .
= 1.63 N
0.15{0.05 0.05 0.06 0.09 012 |loos {042 043 042 043 045 ||o40 {165 1.63 1.64 1.63 1.65 &
— 162 §
[, 020{0.08 0.08 0.08 009 013 | 002 {047 0.46 045 046 047 ||03s {167 1.66 1.65 1.65 1.64 ¢
= - = Lr1.61 8
> Fto.20 m - @
& 0.00{0.08 0.09 0.09 0.0 0.13 037 038 0.38 039 041 161 1.61 1.62 1.62 1.63 @
3} 046 166 3
o] 0.18 o)
0.05{0.08 0.08 0.09 0.10 0.12 0.38 0.38 0.37 039 0.40 1.61 1.63 1.62 1.62 1.64| |l165 &
© % 0.16 0.44 6 g
B
w
Il % 01010.08 009 0.09 0.0 0.13| | |51, {038 0.38 0.38 039 041 || . {162 163 161 163 1.63| |[1.64 g
mQ =]
™ S 015]013 013 014 016 020| | 012 {043 0.42 0.42 043 045| || . 1164 165 163 163 165| |['® Z=2
o - o)
1.62 o
& 0201016 016 016 017 0.20 |[*10 1047 0.46 0.45 0.46 048| || .. {167 167 165 165 165 g
S . . = I}
2 7084 m prl7s
S 0001076 076 0.76 077 0.80 117 116 117 1.17 1.18 171 171 1.71 171 171 3
0.82 122 174 3,
00510.75 0.76 0.74 0.76 0.77 117 116 116 1.16 1.18 170 1.70 1.69 1.69 1.71 o
0.80 173 ©@
Il 0.10{0.75 0.75 0.74 0.75 0.78 116 117 1.16 116 1.18 1200 1171 171 170 1.70 1.72
o 0.78 1.72
=
015{0.79 0.80 0.79 0.79 0.80 120 119 118 118 121| |t118 {172 173 171 172 1.72| ||,
0.76)
02010.82 083 0.81 0.81 0.84 122 122 121 122 (124 || - {174 175 173 174 174| | (170
0.74 .
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Sensor error e [m]

Figure 5.26 — Strong reservation conflicts per vehicle in the combined sensor
error and processing delay simulation.

For the smaller values of a and dj, the plots show the same results as discussed
above, namely that the processing delay parameter has a stronger impact on the
safety, i.e., strong reservation conflicts, and the sensor error has greater influence

on the number of sent messages, while both are dominated by the communication

5.2 Simulation Results 95

model parameters. For the strong reservation conflicts in Figure 5.26, the pro-
cessing delay threshold at a value of t = 0.1 is clearly visible in all combinations.
However, the threshold e = 1 of the sensor error parameter does not stand out as
much. For Figure 5.27, the opposite is true. The processing delay and sensor error
parameters relate to each other in a different way than the simple path loss and
obstacle shadowing communication models: There are no obvious interactions that
amplify or weaken their combined effects and one does not dominate the other,
but they complement each other in the sense that if one of them is at its maximum
value, increasing the other parameter will generally increase their impact further.
Because they are relatively similar in terms of their requirements for causing strong
reservation conflicts, however, their combined effects are not simply the sum of
their individual effects; every traffic situation in which two vehicles are planning
conflicting maneuvers can potentially lead to a strong reservation conflict due to
one of the parameters, but never both at the same time.

a=2.5 a=3.0 a=3.5

0.00{3.00 3.06 3.35 3.65 3.95 425 13.00 3.05 3.27 3.51 3.75 425 13.00 3.02 3.14 327 3.39 4.25

0.05{3.10 3.24 3.57 3.95 4.3 400 {3.06 3.12 3.40 3.68 3.94 4.00 13,02 3.04 3.18 3.32 345 4.00

30

|| 0107314 324 362 400 435| |[375 1311 3.17 3.46 3.77 4.04| |[375{3.03 3.06 319 335 3.49| |[37°
Q

0.1513.12 3.23 3.67 4.02 4.36 ’ 3.09 3.18 349 3.79 4.08 ’ 3.02 3.07 3.22 336 3.1

o
Y
S
g
HY
IS

3.21 3.58 3.96 4.31 3.11 3.16 3.44 3.75 4.03 3.02 3.05 3.19 3.35 3.50

o
°
=3

3.00 3.06 3.33 3.63 3.91 425 13.00 3.05 3.27 3.52 3.76 425 13.00 3.03 3.14 327 3.38 4.25

3.07 3.18 3.55 3.92 4.22 400 {3.06 3.12 3.40 3.69 3.95 4.00 {3.02 3.04 3.18 3.32 345 4.00

o
o
@

3.14 3.23 3.59 3.96 4.29 3751311 3.17 3.46 3.76 4.04 375 1303 3.06 3.20 3.34 3.48 375

o
&

3.12 3.24 3.61 3.99 431 ’ 3.09 3.19 3.50 3.81 4.08 3.02 3.06 3.22 3.37 3.1

o
9
S
g
H
IS

3.21 3.56 | 3.93 Np27 3.10 3.16 3.45 3.75 4.02 3.03 3.05 3.19 3.35 3.49

0.0043.00 3.05 3.27 3.51 3.74 425 13.00 3.04 3.21 3.40 3.58 425 13.00 3.03 3.13 3.25 3.37 4.25

dg =16
Message processing delay ¢ [s]
9[o1yaA 12d sadessauwl UONBUIPIOOD JUSS

0.05{3.04 3.10 3.37 3.63 3.88 4.00 13.03 3.07 3.27 3.49 3.67 400 13.01 3.04 3.16 3.30 3.41 4.00

Il 0101 3.08 3.14 3.41 3.69 3.96 375 1305 3.09 3.29 352 3.72 375 1302 3.05 317 331 343 375
)

=
0.15{3.07 3.16 3.48 3.75 4.01 330 3.04 3.10 3.31 3.56 3.75 350 3.02 3.05 321 3.35 347 330
3.25 3.25 3.25
0.2013.08 3.13 3.40 3.70 3.95 3.05 3.09 3.30 3.52 3.72 3.02 3.04 3.17 3.31 3.44
—-3.00 —-3.00 —-3.00
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Sensor error e [m]

Figure 5.27 — Average number of sent coordination messages per vehicle in
the combined sensor error and processing delay simulation.

Chapter 6

Conclusion

In this thesis, I implemented the vehicle controller for provably safe crossing maneu-
vers at urban intersections, which was introduced by Schwammberger [1], in the
vehicular network simulation framework Veins. The main goal was the evaluation of
the controller’s performance in terms of safety under more realistic conditions than
the highly abstract traffic model in which the controller is defined. To reach this
goal, I implemented various mechanisms for introducing imperfections that vehicles
are commonly exposed to in reality and conducted extensive simulation studies
for a variety of intersection layouts, investigating numerous safety performance
metrics. I documented the implementation process to report on design problems and
discussed the simulation results in great detail to provide appropriate explanations
of all findings.

The main result is that the crossing controller works as intended and satisfies the
promised safety property in the most abstract simulation setting, which is already
much more realistic than the abstract traffic model. Although the implementation
process revealed a small number of design problems related to the discrepancy
between the high level of abstraction and the concrete implementation details, I was
able to leverage the abstraction level to solve these problems without significantly
altering the controller’s semantics. The most problematic aspect of the controller defi-
nition in this regard was the lack of an execution model: As the abstract traffic model
and the formal logic UMLSL only allow for spatial reasoning, it is the responsibility
of the developer to design the temporal component of the control system. While the
abstraction level and the relatively simple controller definition facilitate a modular
architecture that supports the usage of already existing components, they can also
be the cause of ambiguities and unexpected problems such as blocked intersections.

The simulations showed that effects like limited communication possibilities,
random errors in the perception of other vehicles’ positions, and communication

delays can compromise the controller’s safety property and lead to collisions. A

96

6 Conclusion 97

variety of additional factors such as the intersection layout, the amount of traffic,
and the distance to the intersection at which the vehicles start their coordination pro-
cedure can greatly affect the severity of these effects, both positively and negatively.
However, I found suitable explanations for most of these relations by using multiple
performance metrics and a simple communication model that is easy to reason about.
More importantly, all of the safety problems introduced by the simulation parameters
can be attributed to this communication protocol or other implementation design
decisions that are not enforced by the controller definition itself. This means that a
more sophisticated communication protocol or execution model could increase the
robustness and reliability of the controller significantly.

All of these findings lead to the conclusion that the crossing controller, as defined
in the abstract traffic model, cannot fully transfer its safety property into a realistic
environment in which the simplifying, idealizing assumptions about the world do
not hold, but it provides all the necessary potential to be the basis for a concrete
implementation that does possess the same level of guaranteed safety. The abstract
traffic model and UMLSL are meant to be used as tools for defining arbitrary vehicle
controllers and formally proving that they satisfy the desired properties. Their high
level of abstraction also provides the opportunity to refine a control system by adding
components like communication protocols and proving more properties like liveness
or fairness until the controller meets its requirements and can be implemented more
easily.

As an example for this, the version of the crossing controller that was extended
by a communication protocol to handle imperfect information [5] could be evaluated
in future work similar to this thesis. Alternatively, it could be interesting to extend
the crossing controller implementation I presented here by an already existing com-
munication protocol or vehicular networking infrastructure to investigate to what
extent this would improve the controller’s performance. Additionally, there are
various ways to further increase the degree of realism in the simulation scenarios.
For example, multiple vehicle types with different acceleration values and individ-
ual communication ranges, sensor errors, and processing delays could be used to
model the diversity of real traffic, which was not considered in this thesis. Similarly,
the scenarios themselves could be extended to include multiple intersections with
connection roads, or they could even be modeled after real traffic networks using
geographical data in order to investigate large-scale city scenarios.

List of Abbreviations

ACTA
CACC
IvC
MLSL
UMLSL
VANET

Automotive-Controlling Timed Automaton
Cooperative Adaptive Cruise Control
inter-vehicular communication

Multi-lane Spatial Logic

Urban Multi-lane Spatial Logic

Vehicular Ad Hoc Network

98

List of Figures

2.1 Abstract intersection representation 8
2.2 Crossing controller automaton 15
2.3 Vehicle chape computationin SUMO 18
3.1 Comparison of maneuver representations 24
3.2 Example intersection from SUMO 28
3.3 Computing internal lane shapes 29
3.4 Foe matrix entries for overlapping internal lanes 31
3.5 Computation of reservation clearance positions. 32
3.7 Livelock example with two vehicles 39
4.1 Scenario generation with SUMO 47
4.2 Placement of buildings in the simulation scenario 53
4.3 Relative crash velocity calculation 58
5.1 Baseline simulation overview 66
5.2 Strong reservation conflicts in unit disk model (medium traffic demand) 68
5.3 Communication range visualization 68
5.4 Strong reservation conflicts in unit disk model (low and high traffic
demand) e 69
5.5 Strong reservation conflicts in simple path loss model (medium traffic
demand) e 70
5.6 Strong reservation conflicts and collisions in obstacle shadowing
model (medium trafficdemand) 72
5.7 Increasing the building distance - visualization 73
5.8 Strong reservation conflict time stamps in obstacle shadowing model 74
5.9 Strong reservation conflicts in obstacle shadowing model (low and
high trafficdemand) 75
5.10 Trip times in obstacle shadowing model (medium traffic demand) .. 76

99

List of Figures 100

5.11 Strong reservation conflicts for message loss parameter (medium

trafficdemand) e 77
5.12 Collisions for message loss parameter (medium traffic demand) ... 78
5.13 Trip times for message loss parameter (medium traffic demand) ... 79

5.14 Squared relative crash velocity for message loss parameter (medium

trafficdemand) e 80
5.15 Strong reservation conflicts with sensor error parameter (all traffic
demands) e 82

5.16 Sent messages with sensor error parameter (medium traffic demand) 83
5.17 Trip times for sensor error parameter (medium traffic demand) 84

5.18 Strong reservation conflicts and collisions with processing delay (all

trafficdemands) e 85
5.19 Processing delay sequence diagram 86
5.20 Relation between controller trigger interval and processing delay .. 87

5.21 Sent coordination messages with processing delay (medium traffic
demand) e 87
5.22 Strong reservation conflicts with simple path loss and obstacle shad-

owing model (all trafficdemands) 89
5.23 Strong reservation conflicts in combined sensor error simulation . . . 91
5.24 Sent messages in combined sensor error simulation 92
5.25 Collisions in combined processing delay simulation 93

5.26 Strong reservation conflicts in combined simulation of all parameters 94

5.27 Sent coordination messages in combined simulation of all parameters 95

List of Tables

4.1 Turning maneuver probability distribution

5.1 Simulation scenario overview

101

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

M. Schwammberger, “An abstract model for proving safety of autonomous
urban traffic,” Elsevier Theoretical Computer Science, vol. 744, pp. 143-169,
Oct. 2018. pOI: 10.1016/j.tcs.2018.05.028.

D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A Survey on Platoon-Based
Vehicular Cyber-Physical Systems,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 263-284, 2016. DOI: 10.1109/COMST.2015.2410831.

M. Hilscher, S. Linker, E.-R. Olderog, and A. P Ravn, “An Abstract Model
for Proving Safety of Multi-lane Traffic Manoeuvres,” in 13th International
Conference on Formal Engineering Methods (ICFEM 2011), Durham, United
Kingdom: Springer, Oct. 2011, pp. 404-419. po1: 10.1007/978-3-642-
24559-6_28.

M. Hilscher and M. Schwammberger, “An Abstract Model for Proving Safety
of Autonomous Urban Traffic,” in 13th International Colloquium on Theoretical
Aspects of Computing (ICTAC 2016), Taipei, Taiwan: Springer, Oct. 2016,
pp. 274-292. DOI: 10.1007/978-3-319-46750-4_16.

M. Schwammberger, “Imperfect Knowledge in Autonomous Urban Traffic
Manoeuvres,” in 1st Workshop on Formal Verification of Autonomous Vehicles
(FVAV@iFM 2017), vol. 257, Turin, Italy: Open Publishing Association, Sep.
2017, pp. 59-74. DOI: 10.4204/eptcs.257.7.

C. Sommer, R. German, and E Dressler, “Bidirectionally Coupled Network
and Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on
Mobile Computing, vol. 10, no. 1, pp. 3-15, Jan. 2011. poI: 10.1109/TMC.
2010.133.

G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and
T. Weil, “Vehicular Networking: A Survey and Tutorial on Requirements,
Architectures, Challenges, Standards and Solutions,” IEEE Communications
Surveys & Tutorials, vol. 13, no. 4, pp. 584-616, Nov. 2011. DOI: 10.1109/
SURV.2011.061411.00019.

102

https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1109/COMST.2015.2410831
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.4204/eptcs.257.7
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/SURV.2011.061411.00019
https://doi.org/10.1109/SURV.2011.061411.00019

Bibliography 103

(8]

(9]

(10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

L. Chen and C. Englund, “Cooperative Intersection Management: A Survey,”
IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 570-
586, Feb. 2016. DOI: 10.1109/TITS.2015.2471812.

E. Namazi, J. Li, and C. Lu, “Intelligent Intersection Management Systems
Considering Autonomous Vehicles: A Systematic Literature Review,” IEEE
Access, vol. 7, pp. 91946-91 965, Jul. 2019. pOI: 10.1109/ACCESS.2019.
2927412.

J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson, “Collision Avoidance:
A Literature Review on Threat-Assessment Techniques,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 1, pp. 101-113, Mar. 2019. po1: 10.1109/TIV.
2018.2886682.

K. Dresner and P Stone, “Multiagent Traffic Management: A Reservation-
Based Intersection Control Mechanism,” in 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 2, New
York City, NY: IEEE Computer Society, Jul. 2004, pp. 530-537. pDoI: 10.
1109/AAMAS.2004.10121.

——, “A Multiagent Approach to Autonomous Intersection Management,”
Journal of Artificial Intelligence Research (JAIR), vol. 31, no. 1, pp. 591-656,
Jan. 2008. poI: 10.1613/jair.2502.

H. Kowshik, D. Caveney, and P R. Kumar, “Provable Systemwide Safety in
Intelligent Intersections,” IEEE Transactions on Vehicular Technology, vol. 60,
no. 3, pp. 804-818, Mar. 2011. po1: 10.1109/TVT.2011.2107584.

M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Automated
Vehicle-to-Vehicle Collision Avoidance at Intersections,” in 18th World Congress
on Intelligent Transport Systems (ITS 2011), Orlando, FL, Oct. 2011.

——, “Cooperative Collision Avoidance at Intersections: Algorithms and
Experiments,” IEEE Transactions on Intelligent Transportation Systems (TITS),
vol. 14, no. 3, pp. 1162-1175, Sep. 2013. por: 10.1109/TITS.2013.
2252901.

M. Bashiri and C. H. Fleming, “A platoon-based intersection management
system for autonomous vehicles,” in IEEE Intelligent Vehicles Symposium (IV)
2017, Redondo Beach, CA: Institute of Electrical and Electronics Engineers
(IEEE), Jun. 2017, pp. 667-672. DOI: 10.1109/IVS.2017.7995794.

M. Bashiri, H. Jafarzadeh, and C. H. Fleming, “PAIM: Platoon-based Au-
tonomous Intersection Management,” in 21st International Conference on
Intelligent Transportation Systems (ITSC 2018), Maui, HI: Institute of Elec-
trical and Electronics Engineers (IEEE), Nov. 2018, pp. 374-380. DOI: 10.
1109/ITSC.2018.8569782.

https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/ACCESS.2019.2927412
https://doi.org/10.1109/ACCESS.2019.2927412
https://doi.org/10.1109/TIV.2018.2886682
https://doi.org/10.1109/TIV.2018.2886682
https://doi.org/10.1109/AAMAS.2004.10121
https://doi.org/10.1109/AAMAS.2004.10121
https://doi.org/10.1613/jair.2502
https://doi.org/10.1109/TVT.2011.2107584
https://doi.org/10.1109/TITS.2013.2252901
https://doi.org/10.1109/TITS.2013.2252901
https://doi.org/10.1109/IVS.2017.7995794
https://doi.org/10.1109/ITSC.2018.8569782
https://doi.org/10.1109/ITSC.2018.8569782

Bibliography 104

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

M. Hilscher, S. Linker, and E.-R. Olderog, “Proving Safety of Traffic Manoeu-
vres on Country Roads,” in Theories of Programming and Formal Methods:
Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, Z. Liu, J.
Woodcock, and H. Zhu, Eds. Shanghai, China: Springer, Sep. 2013, pp. 196-
212. po1: 10.1007/978-3-642-39698-4_12.

R. Alur and D. L. Dill, “A theory of timed automata,” Elsevier Theoretical
Computer Science, vol. 126, no. 2, pp. 183-235, Apr. 1994. poI: 10.1016/
0304-3975(94)90010-8.

A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation En-
vironment,” in 1st ACM/ICST International Conference on Simulation Tools
and Techniques for Communications, Networks and Systems (SIMUTools 2008),
Marseille, France: Association for Computing Machinery (ACM), Mar. 2008.

P Alvarez Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P Wagner, and E. Wiel3ner, “Microscopic
Traffic Simulation using SUMO,” in 21st IEEE International Conference on
Intelligent Transportation Systems (ITSC 2018), Maui, HI: Institute of Electrical
and Electronics Engineers (IEEE), Nov. 2018, pp. 2575-2582. po1: 10.1109/
ITSC.2018.8569938.

M. Franzle, M. R. Hansen, and H. Ody, “No Need Knowing Numerous Neigh-
bours,” in Correct System Design, Proceedings of the Symposium in Honor
of Ernst-Riidiger Olderog on the Occasion of His 60th Birthday, R. Meyer,
A. Platzer, and H. Wehrheim, Eds., vol. 9360 of LNCS, Oldenburg, Germany:
Springer, Sep. 2015, pp. 152-171. po1: 10.1007/978-3-319-23506-6_11.

S. Krauf3, “Microscopic Modeling of Traffic Flow: Investigation of Collision
Free Vehicle Dynamics,” PhD Thesis, Mathematical Institute, Kéln, Germany,
Apr. 1998.

C. Sommer, D. Eckhoff, R. German, and E Dressler, “A Computationally
Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing in Urban
Environments,” in 8th IEEE /IFIP Conference on Wireless On demand Network
Systems and Services (WONS 2011), Bardonecchia, Italy: Institute of Electrical
and Electronics Engineers (IEEE), Jan. 2011, pp. 84-90. po1: 10.1109/
WONS.2011.5720204.

T. L. Willke, P Tientrakool, and N. E Maxemchuk, “A Survey of Inter-Vehicle
Communication Protocols and Their Applications,” IEEE Communications
Surveys & Tutorials, vol. 11, no. 2, pp. 3-20, Jun. 2009. poI1: 10.1109/SURV.
2009.090202.

https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1109/WONS.2011.5720204
https://doi.org/10.1109/WONS.2011.5720204
https://doi.org/10.1109/SURV.2009.090202
https://doi.org/10.1109/SURV.2009.090202

Bibliography 105

[26] J. Miranda, R. Abrishambaf, T. Gomes, J. Cabral, A. Tavares, and J. Monteiro,
“Path Loss Exponent Analysis in Wireless Sensor Networks: Experimental
Evaluation,” in 11th IEEE International Conference on Industrial Informatics
(INDIN), Bochum, Germany: Institute of Electrical and Electronics Engineers
(IEEE), Jul. 2013, pp. 54-58. DOI: 10.1109/INDIN.2013.6622857.

https://doi.org/10.1109/INDIN.2013.6622857

	Abstract
	Kurzfassung
	1 Introduction
	1.1 Related Work

	2 Fundamentals
	2.1 Abstract Urban Traffic Model
	2.2 Crossing Controller
	2.3 Simulation Framework

	3 Controller Implementation
	3.1 Controller Design Considerations
	3.2 Traffic Model Interface
	3.3 Vehicle Controller Application
	3.4 Practical Implementation Problems
	3.5 Verification and Validation

	4 Simulation Setup
	4.1 Intersection Scenarios
	4.2 Traffic Generation
	4.3 Simulation Parameters
	4.4 Performance Metrics

	5 Evaluation
	5.1 Implementation and Abstraction Level
	5.2 Simulation Results

	6 Conclusion
	Bibliography

