FAKULTAT FUR
ELEKTROTECHNIK,

IL(‘ UNIVERSITAT PADERBORN INFORMATIK UND

Die Universitit der Informationsgesellschaft MATHEMATIK

Control of Mobile Robots Moving in
Cluttered Environments

Von der Fakultat fir Elektrotechnik, Informatik und Mathematik
der Universitat Paderborn

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.))

genehmigte Dissertation
von

MSc-Eng. Muhannad Abdallah Shaker Mujahed

Erster Gutachter: Prof. Dr.-Ing. Barbel Mertsching
Zweiter Gutachter: Prof. Dr.-Ing. Dietrich Paulus

Tag der mundlichen Prifung: 30.10.2020
Paderborn 2020

Diss. EIM-E/352

Dedication

This thesis is dedicated to my beloved parents, who have raised me

to be the person I am today;

Wife and kids, who have been with me every step of the way
through good times and bad;

Wonderful grandmother, for her love and support;

Sister and brothers, for their encouragement;

Thank you all, I love you!

Declaration

I hereby declare that I have completed the work on this PhD dissertation with
my own efforts and no part of this work or documentation has been copied from
any other source. It is also assured that this work is not submitted to any other

institution for award of any degree or certificate.

Paderborn, November 9, 2020

Muhannad Mujahed

FAKULTAT FUR
ELEKTROTECHNIK,

IL(‘ UNIVERSITAT PADERBORN INFORMATIK UND

Die Universitit der Informationsgesellschaft MATHEMATIK

Zusammenfassung der Dissertation

Control of Mobile Robots Moving in Cluttered Environments
Des Herrn Muhannad Mujahed

Wahrend der letzten Jahrzehnte hat die Entwicklung mobiler Roboter viel Aufmerksamkeit
erfahren, besonders bei den Entwicklungen in den Anwendungsbereichen Exploration, Su-
chen, Bergen und Haushalt. Der Bau solcher Roboter erfordert die Bewaltigung verschie-
denster Anforderungen wie Wahrnehmen, Verfolgen und Kartieren. Ungeachtet der zu erfil-
lenden Aufgabe oder des Anwendungsgebiets muss ein Roboter dennoch in der Lage sein,
seine eigene Bewegung zu planen. Die Bewegungssteuerung ist daher Kern der Roboter-
technik und wurde seit der Entwicklung des ersten mobilen Roboters eingehend betrachtet.
In der Regel miissen reale Umgebungen als unbekannt und zeitlich veranderlich angekom-
men werden. Herkémmliche Bewegungsplanungsverfahren, die auf vorgefertigte Karten an-
gewiesen sind, funktionieren daher in solchen Umgebungen nicht mehr zuverléssig. Reakti-
ve Kollisionsvermeidungsverfahren gehen dieses Problem an, in dem sie sensorische Wahr-
nehmungen in das Regelungssystem einbeziehen und damit die Liicke zwischen Planen
eines Pfades und Ausfiihren der Bewegung schlieBen. Der GroBteil dieser Methoden unter-
liegt jedoch klassischen Problemen, die ihre Leistungsféhigkeit in undbersichtlichen Umge-
bungen begrenzt; dazugehdren Anfalligkeit fur Oszillationen, Fehlfunktion beim Steuern des
Roboters durch enge Passagen, Nichtberiicksichtigung der Einschrankungen des Roboters,
sowie die Tendenz langere Pfade und héhere Ausflihrungszeiten zu generieren.

Die vorgestellte Arbeit ziel darauf ab, die oben genannten Probleme anzugehen. Dazu wurde
ein neuartiger Ansatz zur Kollisionsvermeidung entwickelt. Die Schlilsselidee ist eine Analy-
se der Umgebungsstruktur, um die vielversprechendste Liicke zu finden und ein Subziel in
einen kollisionsfreien Bereich zu legen, so dass der Offnungswinkel der Liicke beriicksichtigt
wird und ein sicherer, glatterer Ubergang zwischen Kollisionsvermeidung und dem Erreichen
des Ziels vorhanden ist. Dies hat auch kiirzere Pfade und kleinere Ausfihrungszeiten zur
Folge. Dieser vorgeschlagene Ansatz ist durch Berlicksichtigung des Abstandes zu Hinder-
nissen verbessert worden, in dem alle umgebenen Hindernisse in die Berechnung des Lenk-
winkels einflieBen. Dies wurde mdglich durch die Einflihrung und Integration von zwei Kon-
zepten, namlich ,tangential navigation“ und ,gap flow navigation®. Ein weiterer Beitrag liegt
in der Berechnung von Steuerbefehlen derart, dass das System garantiert Ljapunow-stabil
ist. Des Weiteren wird ein neues Konzept, genannt ,admissible gap®, vorgestellt, das sich
mit der Frage befasst, ob eine gegebene Liicke durchfahrbar ist, in dem eine zuléssige, kol-
lisionsfreie Bewegungsregelung ausgefihrt wird. Dieses Konzept ist erfolgreich eingesetzt
worden, um ein Kollisionsvermeidungsverfahren zu entwickeln, das direkt die Fahrzeugein-
schrankungen bericksichtigt, ohne eine holonome Lésung anzupassen. Ein weiterer Beitrag
ist die Entwicklung einer neuen Strategie zur Liickensuche, die Oszillationsmdglichkeiten re-
duziert und die Stabilitat der Navigation verbessert. Zum Abschluss werden experimentelle
Ergebnisse zusammen mit einer Leistungsbewertung flir hochkomplexe Szenarien vorge-
stellt, um zu verifizieren, dass das vorgestellte Verfahren andere aktuell libliche Techniken
in Bezug auf GleichmaBigkeit, Effizienz, Zuverlassigkeit und Sicherheit Ubertrifft.

FAKULTAT FUR
L‘ . ELEKTROTECHNIK,
A\ UNIVERSITAT PADERBORN INFORMATIK UND
Die Universitit der Informationsgesellschaft MATHEMATIK
Abstract

Control of Mobile Robots Moving in Cluttered Environments
Mr. Muhannad Mujahed

Over the past few decades, mobile robots have gained a lot of attention, particularly with the
evolution of application fields such as search and rescue, cleaning, and exploration. Devel-
oping such robots requires to cope with different challenges such as perception, tracking,
and mapping. Nevertheless, regardless of the mission to be performed or the application do-
main, robots must be able to plan their own motion. Hence, motion planning is at the heart
of robotics and has been thoroughly addressed since the first mobile robot was developed.
Usually, real-world environments are unknown and change over time. Therefore, traditional
path planning methods that build upon a previously known map fail to work properly in these
environments. Reactive collision avoidance approaches tackle this problem by incorporating
the perceived information into the control system, bridging the gap between planning a path
and executing a motion. Unfortunately, the majority of these methods undergo some clas-
sical drawbacks limiting their performance in cluttered environments. These include being
prone to oscillations, failure of guiding a robot through narrow spaces, neglect of the robot
constraints, and the tendency to generate longer paths and higher execution times.

The work presented in this thesis aims to cope with the above mentioned problems. To
this end, a novel collision avoidance approach was developed and implemented. The key
idea is to analyze the environmental structure and find out the most promising gap, once
determined, a subgoal is located in a collision-free area. It is located in such a way that
the opening angle of the selected gap is considered, providing a safer and smoother bridge
between collision avoidance and target approach. This also leads to shorter paths and less
execution times. The proposed approach has been improved by considering the clearance to
obstacles and by computing the steering angle in such a way that all surrounding obstacles
are taken into account. This has been possible by introducing and integrating two concepts,
called “tangential” and “gap flow” navigation. Another contribution is the computation of the
motion command in such a way that the stability of the system is guaranteed in the Lya-
punov sense. Furthermore, this work presents a new concept, the “admissible gap”, which
addresses the question of whether a given gap is traversable by performing an admissible
collision-free motion control. This concept has been successfully employed to develop a col-
lision avoidance approach, that directly respects the vehicle constraints rather than adapting
a holonomic-based solution. Another contribution is the development of a new strategy for
extracting gaps, which reduces the possibility of oscillation and improves the stability of nav-
igation. Finally, experimental results along with performance assessment in highly cluttered
scenarios are presented to verify that the proposed approaches outperform state-of-the-art
techniques in terms of smoothness, efficiency, reliability, and safety.

Acknowledgements

First of all, praise and thanks be to Allah who enabled me to reach this level of
academic achievement. Secondly, I would like to express my greatest gratitude
to the following people for helping me to turn a dream into reality, be it through
scientific and technical discussions, through moral support during periods of
stress and doubt, or by providing the possibility of participating in the adventures
of mobile robotics. Without their guidance, help, and love, the work presented

in this thesis would not have been possible.

The first person that comes to mind is my principal adviser Prof. Dr.-Ing. Bérbel
Mertsching, who believed in me from the very beginning and allowed me to
develop professionally as well as individually. With here patience, guidance,
deep vision, support, constant encouragement, now I am at the end of this long
way. I would also like to thank here for giving me the opportunity to visit GET
Lab in 2009 as an internship student. At that time, I was assigned to a team
preparing the participation of GET Lab in the SICK Robot Day 2009. Since

then, my interest in mobile robotics has grown and it continues to evolve.

Obviously, the research work presented in thesis could not have been possible
without the great team in our lab. Thank you all for the nice time we have had
together. In particular, I owe my gratitude to Dirk Fischer, whose knowledge
about all kinds of mechanical and electrical equipments has been reflected by
amazing hours discussing the different possibilities of configuring our robot. Dirk
was my supervisor at the time of my visit to GET Lab in 2009. His guidance
at that time was extremely helpful. Although I have had little experience in
the field of robotics, he helped me to step ahead and overcome all difficulties.
I also present my sincere thanks to Mahmoud A. Mohamed, who was always

there. I am also grateful to Markus Hennig, Musa Kazmi, Jan Tiinnermann,

and Daniel Nickchen for their support, suggestions, and positive discussion. I
also have good memories from colleagues that were in GETLab in the past, in
particular from Irtiza Ali, Mohamed Shafik, Hossein Mirabdollah, Zaheer Aziz,
Tobias Kotthduser, Shakeel Ahmad, and Zubair Kamran.

I would also like to thank my friends for making my stay in Germany a wonderful
time. In particular, many thanks goes to Hamzah, Yahia, Husam, Muhannad,
Majde, Abdelruham, Adnan, and Asad who have made life easier and interesting
at the same time. Thanks to my friends from Palestine; Hammam, Muhannad,
Anan, Safwat, and Ala; they simply never forget me and I never forget them.
My sincere thanks goes to Prof. Hussein Jaddu and Prof. Karim Tahboub, the
advisor and external examiner of my master’s thesis. They have always supported

me and provided the best research advice with a high human quality.

This research has been sponsored by the German Academic Exchange Service
(DAAD). The funding is gratefully acknowledged. I am very fortunate to have
had the opportunity to participate in several conferences and events worldwide,
especially the RoboCup German Open 2012 - 2015 competitions and the World
Robocup 2016. It is worth to remember all researchers whom I came across at
those events and conferences; I would like to thank you all for making each trip

an enriching experience.

Above all, T wish to thank my parents, wife, kids, sister, and brothers, who have
always remained a reliable anchor providing love, support, and understanding. I
am forever indebted to my mom; the older I get the more I realize and appreciate
what you have given me. You always pray for me and wish all the best and success
throughout my life. Without your love and emotions I would not be in such a
position. Thanks mom. My dad spent his life helping and encouraging me for
education and I will always be grateful to him. I am endlessly grateful to my wife
Fida, my daughter Aseel, and my sons Obadah and Adam, who have suffered
my unlimited working hours at days and nights. Fida has always encouraged
me when I was feeling unsure of my next steps. Obadah and Adam have been
a constant source of joy and wonder. Their smile has always brighten my day,
giving me renewed energy to push on. Aseel missed me a lot during the last

couple of years and she always used to ask: why don’t you stay with us, dad?

Contents

1 Introduction 1
1.1 Motivation and Goals 2
1.2 Contributions of this Work 4
1.3 Thesis Outline 7

2 Autonomous Mobile Robot Navigation 9
2.1 Introduction L 9
2.2 Basic Conceptso o 11

2.2.1 Configuration Space 11
2.2.2 Configuration Space Obstacle 12
2.2.3 Notion of a Path and a Trajectory 13
2.2.4 Non-holonomic Mobile Robots 14
2.2.5 Lyapunov Stability Theory 17
226 SensorData., 19
2.3 Path Planning Techniques 21
2.3.1 Roadmap Path Planning 21
2.3.2 Graph and Grid based Methods 22
2.3.3 Safe Interval Path Planning 23
2.3.4 Probabalistic Roadmap 24
2.3.5 Rapidly-exploring Random Tree 25
2.4 Reactive Navigation Techniques 26
24.1 Bug Algorithms 0. 27
2.4.2 Artificial Potential Fields 29
2.4.3 Virtual Force Field 31
2.4.4 Vector Field Histogram 32
2.4.5 Dynamic Window Approach 33
2.4.6 Velocity Obstacles 36
2.4.7 Nearness-Diagram Navigation 38

3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution 41

3.1 The Reactive Navigation Strategy 42
3.1.1 Preliminary Definitions and Notations 43
3.1.2 Selecting the Direction of Motion 45

3.1.3 Extracting Gaps 47

3.1.4 Locating the Subgoal 49

3.1.5 Determining Motion Commands 54
3.2 Simulation Results 56
3.2.1 Scenario 1 Simulations 57
3.2.2 Scenario 2 Simulations 58
3.3 Experimental Results. L. 61
3.4 Conclusions 62

4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic So-

lution 63
4.1 Motion Situations and Corresponding Actions 64
4.1.1 Gap Rotation Angle 66
4.1.2 Tangential Rotation Angle. 67
4.1.3 Gap Flow Rotation Angle 69
4.1.4 Tangential Gap Flow Rotation Angle 74

4.2 Determining Motion Commands 80
4.2.1 Limiting Speed o 82
4.2.2 Stability Analysis 83

4.3 Experimental Results. 84
4.3.1 Experimental Results for ND+ and CG 84
4.3.2 Experimental Results for SG and TGF 85

4.4 Conclusions 87
5 Evaluation of the Holonomic Solutions 89
5.1 Experimental Setup 0oL 90
5.2 Experiments. 90
5.2.1 Experiment 1 91
5.2.2 Experiment 2 L 91
5.2.3 Experiment 3 92
5.2.4 Experiment4 oL 94
5.2.5 Experiment b5 L Lo L. 96
5.2.6 Experiment6 0L 96
5.2.7 Experiment 7 Lo 98

5.3 Performance Measures 99
5.3.1 Efficiency Metrics 101
5.3.2 Oscillation Metrics 102
5.3.3 Smoothness Metrics 103
5.3.4 Physics-based Metricso 104
5.3.5 Security Metrics Lo 105

5.4 Evaluation and Discussion 105

6 Under-constrained Reactive Collision Avoidance Navigation 113

6.1 Preliminary Definitions. 115

6.2 Detecting Gaps 116
6.2.1 Spatial Discontinuities 116

6.2.2 GapsSearch. 117

6.2.3 Gaps Reduction oL 121

6.3 Admissible Gap Lo 123
6.3.1 Kinematic Constraints 123

6.3.2 Traversing Gapso 126

6.3.3 Checking Admissibility 129

6.4 AG Obstacle Avoidance Method 132
6.4.1 Goal Navigability Check 132

6.4.2 Gap Navigability Check 134

6.4.3 Setting Motion Commands 138

6.5 Experimental Results. 139
6.5.1 Experiment 1 L. 140

6.5.2 Experiment 2 0 0oL 140

6.5.3 Experiment 3 oL 141

6.5.4 Experiment4 oL 143

6.5.5 Experiment b 145

6.5.6 Experiment 6 L. 146

6.5.7 Experiment 7 oo 148

6.6 Evaluation and Discussion 150
6.7 Conclusions e 154

7 Conclusions and Future Work 155
7.1 Conclusionso 155
7.2 Future Work 158
Bibliography 159
List of Notations 183
List of Abbreviations 189
List of Tables 191
List of Figures 203

List of Publications 203

1 Introduction

We humans have long been fascinated by our capabilities to sense the environ-
ment, interact with the physical world, make decisions, and react to what is
happening around us. This fascination has been expressed by directly trying
to create smart machines being able to mimic the human behavior. In 1921,
Karel Capek, a Czech novelist, wrote his satirical drama RUR-Rossum’s Univer-
sal Robots, in which the term robot first appeared describing artificially-created
workers smart enough to replace a human in any job. Since then, the term
robot has caught on among both the scientific community and the general pub-
lic, and is often used to describe any intelligent machine performing the work
of humans. Nowadays, robots are becoming increasingly involved in every as-
pect of the modern life stepping a head towards mimicking nature and creating

human-like helpers, turning the dream of Capek into reality.

Autonomous mobile robots have proven to be a powerful and very effective tool
in many real-world applications [MFM18]. Perhaps the most intriguing feature
of an autonomous robot is its ability to accomplish tasks under conditions where
human presence is hard, unsafe, or impossible [SRD " 17]; most humans would not
be able to perform hazardous waste cleanup, examine an active volcano, explore
the surface of planets over a long period of time, or walk through high-risk areas

hit by natural disasters searching for survivors and/or rescuing them.

Designing mobile robots capable of autonomously performing tasks requires to
cope with many problems; object detection, perception, control, decision making,
just to name a few. Nevertheless, regardless of the mission to be executed or the
application domain, at some point, the robot needs to navigate. Hence, motion
planning is the heart of any robotic system. It reflects the robot’s ability to

generate and execute a motion so that a prescribed target is reached as efficiently

2 1 Introduction

(optimal solution) and as safely (avoid collisions) as possible. This topic is,

broadly speaking, the subject of the research work presented in this thesis.

1.1 Motivation and Goals

Driven by the dream of creating systems that would accomplish tasks under con-
ditions where human existence is impossible or unsafe, robotics has gained an
increasing attention in the last few decades. This research domain has been moti-
vated by different real-world challenges, such as mining, cleaning, search and res-
cue, and military [MFM15]. Usually, real-world environments are unknown, un-
structured, and change with time. Furthermore, unforeseen objects may obstruct
the precomputed trajectories when executing tasks. This raises a wide range of

challenges for introducing a robust motion planning approach [MFM16].

Traditional motion planning methods [Lat91] [LaV06] rely on accurate and static
models of the environment, dealing with the navigation problem on a larger scale
in which a predefined map is used to generate an efficient free path. This path is
computed off-line with previously known obstacles. Therefore, these techniques

often fail to function properly in dynamically changing environments.

To overcome this limitation, it is crucial to integrate the data acquired by sensors
into the control system, bridging the gap between trajectory computation and
motion execution. This helps in detecting dynamic changes that may occur
during navigation, thus reacting to unexpected obstacles. These challenges are
addressed by local reactive navigation (collision avoidance) techniques, where
only a small portion of the environmental model is employed, thus achieving fast

obstacle avoidance with low computational complexity [MFM15].

The majority of reactive navigation approaches present limited performance in
dense, complex, and cluttered environments (as the one shown in figure 1.1). This
is owing to the fact that these techniques are prone to some classical drawbacks
[MMO04] [MLL16] [MFM16] such as computational complexity, experiencing a
local minima, difficulties of driving a robot towards obstacles (when necessary),

failure of navigating a robot through narrow spaces, and the tedious parameter

1.1 Motivation and Goals 3

Figure 1.1: Our mobile robot, GETbot, moving through a cluttered environment.

tuning. It is still an open research problem to find an efficient technique that

enables robots to safely move in such environments.

Over the past years, researchers have distinguished between approaches that gen-
erate a direction of the robot to head for and approaches that perform a search in
the velocity space, selecting a steering command rather than a motion direction.
The former, referred to as “directional approaches”, solve the motion problem in
two stages; first, a direction solution is found by analyzing the sensory informa-
tion. Second, motion commands are computed in such a away that the robot
navigates towards the determined direction [MFMJ10]. The latter, referred to as
“velocity space approaches”, map the constraints stemming from physical restric-
tions and obstacle information into the velocity space, and then select the speed

that fulfills these constraints and optimizes an objective function [MFM15].

Velocity space approaches may allow to drive a robot at higher speeds and show
a smoother behavior. Moreover, they consider the dynamic constraints of the
vehicle. The Curvature Velocity Method [Sim96] [SWY10] and the Dynamic
Window Approach [FBT97] [LV16] are typical representatives of this category.
Unfortunately, these methods may fail to drive a robot through tight passages

in dense environments. Furthermore, they are prone to local minima.

The directional approaches such as the Artificial Potential Field [Kha86] [VT12]
[KST*16] and the Virtual Force Field [BK89] [NTK™11] are simple to imple-

ment and consume less computational load than velocity space methods. More-

4 1 Introduction

over, experiments demonstrated that navigation in dense and cluttered environ-
ments has been successfully achieved using the Nearness-Diagram (ND) Navi-
gation [MMO04] [MFMJ10], that belongs to this category of approaches. ND-
based methods avoid the limitations of most obstacle avoidance techniques men-
tioned above. However, they are prone to oscillations and instability, which in
turn may cause a significant reduction in speed and can be unsafe in narrow
spaces [MFM16]. Furthermore, ND-based methods are likely to cause deviations
towards free regions, increasing the total time and distance needed to perform
an assigned task. Hence, the first goal of this work is to develop a new collision
avoidance approach thats avoids the aforementioned limitations of the ND-based
techniques. In other words, our first goal is to propose a collision avoidance
approach that safely guides a mobile robot through cluttered and dense environ-
ments, while enhancing the efficiency (execution time and path length), smooth-
ness, and stability of the trajectories generated by the ND-based methods.

An additional yet significant limitation of the ND-based methods is the assump-
tion of a holonomic disc shaped robot, which may not be valid in real-world
scenarios. Neglecting the actual robot shape and its kinematics may hinder find-
ing feasible motions or lead to collisions [MM17] [MFM18]. Considering these
constraints is especially critical for robots operating in highly cluttered environ-

ments. Addressing this issue is the second goal of this thesis.

1.2 Contributions of this Work

A new reactive obstacle avoidance approach for autonomous mobile robots was
developed and implemented. The proposed approach, called “Safe Gap” (SG)
navigation, computes the motion commands based on the current sensor data
rather than using a predefined/generated map. By employing the SG approach,
it has been possible to steer a mobile robot in unknown, dynamic, and dense
environments. The SG method follows the “closest gap” concept, that we have
proposed in [MFMJ10], as a methodology to analyze the environmental structure
and find out the most promising gap (opening) for navigation. Collision avoid-
ance is carried out in such a way that the location of obstacle points between the

current robot configuration and the chosen gap is taken into account, creating a

1.2 Contributions of this Work 5

subgoal in a collision-free area. This subgoal is determined based on the position
of the goal and the opening angle of the gap. By this means, a smoother and
safer bridge between collision avoidance and goal approach is achieved. More-
over, unreasonable deviations towards free regions are avoided, reducing the total
time and distance needed to complete the mission [MFM13a] [MFM15].

In addition, the performance of the SG method has been enhanced by performing
the avoidance trajectory in such a way that the configuration of all obstacles are
considered, not simply the nearest one. Moreover, the distance to obstacles on
both sides of the heading direction is taken into account. By this means, the
smoothness and stability of the robot’s motion are increased, especially in un-
structured narrow spaces. This has been possible by introducing and integrating
two concepts, called “tangential” and “gap flow” navigation. Using the “tangen-
tial navigation”, the robot moves tangential to the obstacles boundary. With the
“gap flow navigation”, the robot safely and smoothly navigates in-between closely
spaced obstacles. In both concepts, avoiding collisions and approaching the target
are simultaneously performed. Another important contribution is the computa-
tion of the motion controller, that drives a mobile robot towards a given goal, in
such away that the stability of the system is proved in the Lyapunov sense. The
enhanced approach, entitled “Tangential Gap Flow” (TGF) navigation, safely
guides a mobile robot through cluttered environments with smoother and more

efficient trajectories when compared to state-of-the-art techniques [MFM16].

Moreover, this work presents a new concept, the “Admissible Gap” (AG), which
addresses the question of whether a given gap is traversable by performing a
collision-free motion control that respects the shape and vehicle constraints.
The AG concept has been successfully employed to develop a collision avoid-
ance approach, that achieves an outstanding performance in cluttered scenarios.
This has been possible by directly respecting the vehicle constraints rather than
adapting a holonomic-based solution. A key idea of AG is the creation of an
“admissible gap”, which serves as a bridge obeying the vehicle constraints, once
traversed, the robot makes progress towards the target [MM17]. To this end,
a new methodology for traversing gaps has been proposed in such a way that
the vehicle constraints are respected. This methodology provides a compromise

between safety and efficiency. Unlike existing methods, AG is directly applied

6 1 Introduction

to the workspace without having to construct an abstraction layer. Another im-
portant contribution of the AG approach is the development of a new procedure
for finding out gaps. The method can be applied to full or limited field of view
sensors. Moreover, it discards useless gaps, reducing the possibility of oscillation

and improving the stability of navigation [MFM18].

Finally, various experiments are provided in cluttered, dense, and complex envi-
ronments, utilizing our rescue mobile robot GETbot. A performance evaluation
is also carried out to quantitatively assess the effectiveness of the proposed ap-
proaches. Additionally, a discussion and comparison with existing state-of-the-
art techniques is conducted on the basis of the limitations mentioned in section
1.1. In addition to the experiments presented in this thesis, the proposed ap-
proaches were extensively tested while preparing for and participating in the
Robocup Rescue Robot League competitions [rob19]. In these competitions,
robots developed by international research teams operate in a replicated disaster
environment, how it could appear after an earthquake or a terror attack. In such
scenarios, it is of high priority to quickly explore the terrain and identify and
locate injured people, so that they can be evacuated immediately. Since 2012 the
navigation algorithms proposed in this thesis have been used as the reactive layer
on our rescue mobile robots, contributing to the success of the team GETbots.
During these years several honors have been achieved: third place in the over-
all competition at the RoboCup German Open 2012, “Best in Class Mobility”
award in the RoboCup German Open competitions 2013 and 2014, and “Best in
Class Manipulation” award in the RoboCup German Open 2015. However, the
greatest success was the outstanding 3rd place (best European team) in our first
participation at the 2016 RoboCup world championship. In this competition,
employing the AG approach, proposed in chapter 6, had the greatest impact on
the performance of the team. This is due to the fact that the scores of the given

tasks were multiplied by two, once they were performed autonomously.

Partial results of the work presented in this thesis have been previously published
in nine different peer-reviewed international conference proceedings and journals.
More specifically, partial results of the “Safe Gap” (SG), “Tangential Gap Flow”
(TGF), and “Admissible Gap” (AG) navigation approaches presented in chapters
3 - 6 have been published in [MFM13b] [MFM13a], [MJFM13] [MFM15] [MFM16]

1.3 Thesis Outline 7

[MFM17], and [MM16] [MM17] [MFM18], respectively. It is worth mentioning
that all published papers were co-authored with Béirbel Mertsching. Additionally,
papers [MFM13b] [MFM15] [MFM13a] [MJFM13] [MFM16] [MFM17] [MFM18]
were co-authored with Dirk Fischer. Finally, [MJFM13] was co-authored with
Hussein Jaddu. In all cases, the key ideas, main contributions, experimental

setups, data analysis, and writing were performed by the author of this thesis.

1.3 Thesis Outline

The remaining chapters of this thesis are structured as follows:

Chapter 2 discusses the problem of autonomous mobile robot navigation and re-
views some of the basic concepts used throughout the robotics literature and this
thesis. In addition, a literature survey on mobile robot navigation is presented,
classifying the existing techniques into path planning (global) and reactive nav-
igation (local). At first, a brief overview of the path planning approaches is
introduced. Following this presentation, we shed the light on the most popular
reactive navigation approaches that motivated us to formulate this work, showing

their advantages and drawbacks.

Chapter 3 introduces the “Safe Gap” (SG) navigation approach for autonomous
mobile robots navigating in unknown dense environments. It presents a proce-
dure to check if there is a safe way towards the goal. Otherwise, the robot will
be directed to another location, referred to as a subgoal. This chapter also intro-
duces a methodology for analyzing the structure of obstacles to locate the list
of surroundings openings. It is also described how subgoals are located within
free areas by making use of the gap analysis. Moreover, it is shown how to
determine the steering command that drives a mobile robot towards the goal
(resp. subgoal). Finally, this chapter shows different simulations and experi-

ments, demonstrating the strength of the proposed SG navigation approach.

Chapter 4 discusses the “Tangential Gap Flow” (TGF) navigation approach that
is an evolution of the SG method. At first, it describes the criteria employed
to characterize the current motion situation and its corresponding action. Sub-

sequently, the concept of “tangential navigation” is introduced, considering only

8 1 Introduction

one obstacle point. The concept of “gap flow navigation” is also presented which,
together with the tangential navigation, provide a foundation of the TGF ap-
proach. This chapter also explains how both concepts are integrated and how
the avoidance angle is computed based on all detected obstacles. In addition, in
this chapter, it is described how to set the control commands that guide a robot
towards a given target. Experimental results are also introduced to demonstrate

the power of the proposed TGF approach.

Chapter 5 introduces a performance evaluation to assess the significance of the
developed approaches over their counterparts. Moreover, this chapter presents
additional experiments using the implementation of the TGF approach in addi-
tion to three state-of-the-art methods; CG [MFMJ10], SND [DB08], and ND+
[MMO04]. The TGF method has been selected since it outperforms the SG method
and inherits its advantages. Before presenting these experiments, the experimen-
tal setup is shown. This chapter also describes the performance metrics that are
employed to evaluate the execution of the proposed methods. Finally, this chap-

ter discusses and compares the behavior of all discussed methods.

Chapter 6 presents an approach that considers the exact robot shape and kine-
matic constraints. It introduces a new procedure of finding out gaps which works
for both full and limited field of view sensors. The “admissible gap” concept is
then presented, where a new methodology for traversing gaps is also introduced.
Moreover, this chapter shows how this concept has been successfully employed
to develop a collision avoidance approach, that obeys the vehicle constraints. It
also shows how to compute the control commands, which guide a mobile robot
towards its goal in a kinematically constrained manner. Finally, experimen-
tal results including a discussion and comparison with existing state-of-the-art

methods are introduced.

Chapter 7 draws the conclusions of this thesis and presents recommendations for

future work in this field of research.

2 Autonomous Mobile Robot Navigation

2.1 Introduction

Some of the major, yet critical issues confronting robotics researchers lie in the
context of navigation. In most cases, autonomous navigation determines the
success of the complete mission and any failure in this module may have fatal
consequences upon the robot and the environment. It is interesting to notice that
this research domain has been initiated in the late 1960s with the appearance
of mobile robots [MLLOS]; the first navigation systems were based on seminal
ideas initially published in the first International Joint Conferences on Artificial
Intelligence (LJCAI) founded in California, 1969.

The general navigation methodology for any robotic system is a typical feedback
process [Cao04]: the robot perceives the environment through sensors provid-
ing information to the controller, which is analyzed to understand the current
environmental situation. Then, the controller sends out commands to the ma-
nipulator to carry out behaviors accordingly. As the robot moves from one place
to another, the working environment keeps changing, and therefore, sensors con-
tinuously receive new information providing it to the controller and the process
repeats. Several constraints may affect the robot’s behavior and make it harder
to develop a robust navigation algorithm [Sin97], such as: the computational
power (prohibits us from achieving real-time performance), the presence of ob-
stacles (may be dynamic ones), the inaccuracy of the perception system, and the

errors caused by the robot mechanical system.

It turns out from the above mentioned constraints that autonomous navigation
is a challenging and complex problem. However, the complexity of navigation

can be reduced by dividing it into smaller portions (modules) to deal with them

10 2 Autonomous Mobile Robot Navigation

"Position"
Global Map

Environment Model Path
Local Map
1

P X Real World
erception Environment

Figure 2.1: Main stages of the navigation process (originally from [SN04]).

independently and then combine the solutions. In an early development stage,
Lenoard and Durrant [LDW91] explained the problem of robot navigation by
three questions: “where am I1?”, “where am I going?”, and “how should I get
there?”. These questions correspond to the following three problems, respec-
tively: robot localization; determining own current position in an environment,
cognition; deciding what actions are necessary to reach a target based on its
specifications, and motion planning; generating a continuous path between an
initial position and a prescribed goal location. Along such a path, the robot
must avoid collision with obstacles. Solving the above mentioned problems re-
quires the robot’s ability to acquire information about its environment, which
is usually known as robot perception. This defines the fourth portion of the

navigation process as stated in [SN04] (see figure 2.1).

The third problem (motion planning) is the core of this work and will be the
subject of the next sections. A discussion of the other problems is out of the
scope of this thesis, and the reader may refer to [SN04] for more description.
Motion planning has been thoroughly investigated in the literature and has been
traditionally addressed from two distinct perspectives, the global and local mo-
tion planning. Global planners, also known as path planning methods, are based
on a priori information, where an optimal path that connects a robot to a target
location is computed. Local planners, on the other hand, compute one action at
each time step using the information available from sensors. These algorithms,
known as reactive or obstacle avoidance methods, are more realistic in real-time
implementation and consists of a direct mapping between the sensor data and
the motion control [Ark98].

2.2 Basic Concepts 11

In Section 2.2, a few basic concepts that are necessary for designing a navigation
technique are discussed. Following this presentation, a brief overview of the path
planning approaches is introduced in section 2.3. Finally, in section 2.4 we shed
the light on the most popular reactive navigation approaches that motivated us

to formulate this work, showing their advantages and drawbacks.

2.2 Basic Concepts

In this section, some of the basic concepts used throughout the robotics literature
and this thesis are discussed; these include: configuration space, configuration
space obstacle, notion of a path and a trajectory, non-holonomic motion planning,

Lyapunov stability theory, and sensory data.

2.2.1 Configuration Space

In order to plan a safe motion for a robot, we must be able to identify its location
with respect to the working environment. In the context of motion planning, a
key concept for specifying the location of every point on a robotic system is
known as a configuration g [CLHT05]. For instance, the configuration of a disc-
shaped robot which is only able to translate (no rotation) in a two-dimensional
Euclidean space (known as workspace), can be described by the location of its
center of gravity (z,y). If we know the robot’s radius, we can easily identify the
position of all points occupied by the robot from the configuration of its center.
For a polygonal robot which is able to rotate and translate in a two-dimensional
workspace, at least 3 parameters are required to represent its configuration; the
location of a point on the robot and the orientation 6 of the robot’s coordinate

system relative to a fixed coordinate system in the workspace.

The configuration space (Cspace) Of a robotic system is described as the space
of all possible robot configurations [CLH"05]. Therefore, a configuration ¢ can
be seen as a point in Cspace. For the non-rotating robot described above, the
workspace and the configuration space can be both represented by R?. However,

for the rotating mobile robot the workspace is two dimensional R?, whereas the

12 2 Autonomous Mobile Robot Navigation

configuration space is three dimensional R® or more specifically R? x S', where
S' is the unit circle. Indeed, the dimension of the configuration space equals the

number of degrees of freedom of the robotic system.

2.2.2 Configuration Space Obstacle

A key concept for motion planing is the configuration space obstacle which is
described by the set of all locations in the workspace at which an intersection
between the robot and an obstacle may exist [CLHT05]. Thus, an obstacle in
the workspace maps in Cspace to the configuration space obstacle. More formally,
let W = R™ be the workspace, O € W the set of obstacles, and A(q) the region
of W covered by the robot at configuration g. A configuration space obstacle,
denoted by CO;, that corresponds to obstacle O; € O is defined as follows:

COi ={q € Cspace | Alq) N Oi # ¢}
The configuration space obstacles is the union of all CO;:

q
Cobstacles - U Coz

i=1

The free configuration space is the relative complement of Cobstacies it Cspace (1-€

locations at which no intersection between the robot and obstacles O exists):

(i) -

As an example, look at figure 2.2 which shows a triangular mobile robot that is

Ctree = Cspacc \Cobstacles = {q S Cspacc

allowed to translate in a two-dimensional workspace W = R? without rotation.
In such a case, the configuration space is also R? as we have pointed out in
section 2.2.1. Cobstacles 1S Obtained by moving the robot along the boundary
of each object, figuring out the constraints the obstacle causes on the robot’s

configuration. In other words, the location of a reference point on the robot is

2.2 Basic Concepts 13

workspace configuration
space

ket k4 VO
A "
e 410
47 s 9
Lot
Fu ‘

)
1
]
7919 Cob
= H obstacles

r bl
44 71
[71|
‘0 71
4.) L.}

Figure 2.2: A triangular mobile robot A (left image) that is allowed to trans-
late freely in a two-dimensional space at a fixed orientation. The
reference point of A is marked as a small circle. The configuration
space obstacles Cobstacles (Tight image) is obtained by enlarging the
workspace W (hatched area) by the shape of A (middle image) (orig-
inally from [Lat91]).

marked along the boundary of each obstacle, which results in enlarging O by the

shape of the robot as shown in figure 2.2.

2.2.3 Notion of a Path and a Trajectory

With the configuration space concept introduced above, the motion planning
problem is turned out from finding a collision-free path in W for a complex-
shaped robot to finding a path 7 in Cspace for a point-like robot. Hence, a path
is transformed from swept volume to a one-dimensional curve (see figure 2.3). A
path from an initial configuration gstart to a goal configuration ggoa is defined as

a continuous mapping [Lat91]:

T [07 1] — Cspa067 with: T(O) = (start, T(l) = Qgoal-

For a mobile robot that is a allowed to translate and rotate freely in the space
(free-flying robot), any path defined above is feasible if the configuration space is
free from obstacles. A path 7(s) € [0,1] is a collision-free path if for all s € [0, 1],
7(8) € Cree-

14 2 Autonomous Mobile Robot Navigation

(S}

Workspace co, co,
02 "
O1 o) B ve)
Oy d
03
y
“C
A robot e robot space
Path is swept volume Path is 1D curve

Figure 2.3: Path planning for a triangular robot that is allowed to translate and
rotate in a two-dimensional space. The configuration space in such a
case is R? x S8', where S' is the unit circle. Planning a path for the
triangular-shaped robot in the workspace (left image) is equivalent
to planning a path for a point-like robot in the configuration space
(right image) (originally from [Plal0]).

While a path is a pure geometric description of motion, a trajectory specifies a
timing law on a path [SSV09], and therefore the velocity and/or acceleration at

each point is described.

2.2.4 Non-holonomic Mobile Robots

Every mobile robot is subject to a variety of constraints which may limit its
motion. Traditionally, these constraints are classified into integrable and non-
integrable. An integrable constraint, referred to as holonomic, only depends on
the position and time and can be expressed as a configuration constraint. A

holonomic equality constraint can be written in the following form [Lat91]:
F(a,t) = F(q1, .o, gm, 1) =0 (2.1)

where F' is a smooth function with non-zero derivative.

A mobile robot subject to holonomic constraints, called a holonomic mobile

robot, can move to any location following any direction (i.e. it can move for-

2.2 Basic Concepts 15

ward, backward, or sideway). Therefore, no change to the basic motion planning
problem (which assumes a free flying behavior) is required. An example of a holo-
nomic system is a person walking on the ground who can instantly go towards

the left or right, as well as moving forwards or backwards.

The non-integrable constraints, referred to as non-holonomic, cannot be ex-
pressed as a functional relationship between the configurations as in Eq. (2.1).
This is due to the fact that these constraints depend on the velocity of the robot.

A non-holonomic equality constraint takes the following form [Lat91]:

F(q7 q7t) = F(qlv "'aqmaqla aq’m7t) = 0 (22)

where F' is a non-integrable smooth function. Notice that a constraint defined
by Eq. (2.2) can be formulated similar to Eq. (2.1) if all velocity parameters

(¢1,...,gm) can be eliminated (i.e. if it is integrable).

Non-holonomic constraints reduce the dimension of the velocity space, but not
that of the configuration space (a constraint on velocity does not mean a con-
straint on configuration). Therefore, a mobile robot subject to non-holonomic
constraints, named a non-holonomic mobile robot, can reach any configuration,
but not following any trajectory [MLLO08]. An example of a non-holonomic robot
is a car-like mobile robot that can move forwards or backwards, and can make
turns. Such a robot cannot move freely in the workspace since no direct trans-
lation to either of its sides is possible. However, it can reach any location in the
workspace. Another example is a differential-drive mobile robot which may turn
on spot (zero turning radius) and can only move perpendicular to the wheels
axis, see figure 2.4. It has been shown in the literature that the motion of these
robots is constrained by [LSL9S]:

— &sinf + ycosh =0 (2.3)

where (z,y,0) represents the robot’s configuration (location and orientation)

relative to the world coordinates.

In order to describe the configuration of a non-holonomic robot, at least three

parameters are required (e.g. the location of the center of the robot, and the

16 2 Autonomous Mobile Robot Navigation

Yy
v
& A 0
Yr
Z
Z, T

Figure 2.4: A differential-drive mobile robot, which can only move perpendicular
to the wheels axis.

angle between its z-axis and the z-axis of a fixed coordinates system (global)
in the workspace). However, at a specific configuration, the robot’s motion is
described by only two parameters (e.g. linear and angular speeds). For instance,
the kinematic model of the differential-drive robot shown in figure 2.4 can be

expressed by the following equation:

T cos 6 0
y| = |sinf| v+ [0 w (2.4)
6 0 1

where v and w are the translational and rotational velocities.

Planning a motion between two configurations for a non-holonomic robot is a
hard task even in the absence of obstacles. The problem of motion planning for
these robots can be described in the following [MLLOS8]: given a mobile robot sub-
ject to non-holonomic constraints, starting and goal locations, and a geometric
description of the robot and obstacles, compute an admissible continuous se-
quence of collision-free robot configurations that connect the starting to the goal
locations. Solving this problem requires to consider two types of constraints;
constraints due to the existence of obstacles and constraints due to the non-
holonomicity. The former are represented in the configuration space, whereas

the latter are expressed in the velocity (tangent) space.

2.2 Basic Concepts 17

2.2.5 Lyapunov Stability Theory

Stability is the base and most important requirement of any control system, since
an unstable system is normally of no use and probably risky. Loosely speaking,
“a system is described as stable if starting the system somewhere near a desired
operating point implies that it will stay around the point ever after” as stated
in [SL91]. A powerful and generic methodology for checking the stability of
nonlinear control systems is the theory proposed by Alexandr Lyapunov in the
late 19th century . It includes two methods; the so-called linearization method
(indirect) and the direct method. Lyapunov’s indirect method is based on the
assumption that, for small motions, the behavior of nonlinear control systems is
similar to their linearized approximations. In this regard, a stable design of the
linearized control system implies the stability of the original system locally. The
direct Lyapunov method determines the stability characteristics of nonlinear sys-
tems by examining the variation of an energy-like function (Lyapunov function)
over time without explicitly solving the differential equation. In the following,
some basic definitions from the literature are introduced, followed by the main
stability result of the Lyapunov theory. For more details, the interested reader
can refer to a standard text, such as [SL91] [Khald4].

Throughout this section, a nonlinear dynamical system is described as follows:
i = f(a,1) (2.5)

where f(.) : R™ — R™ and z represents a state space vector. A solution z(t)
to Eq. (2.5) is represented by a curve in the state space, referred to as state
or system trajectory. It is assumed that f(zx,t) satisfy the conditions needed to
guarantee the existence and uniqueness of solutions, such as f(z,t) is Lipschitz
continuous with respect to x [Oeg03]. The points of interest in the context of

stability analysis are the so-called equilibrium points.

Definition 2.1 (Equilibrium Point) A state x* is called an equilibrium point
of Eq. (2.5) if once the condition x(t) = z* is fulfilled, it never changes (z(t)
stays equal to T ever after):

fa™,t)=0

18 2 Autonomous Mobile Robot Navigation

We now go further by studying the stability properties of a given equilibrium
state. Since it is possible to move an equilibrium point to the origin by a simple

coordinate transformation, we will assume x* = 0 throughout this section.

Definition 2.2 (Equilibrium Point Stability) An equilibrium state x* = 0
is described as a stable point at t = to if a § > 0 exists for any o > 0 such that:

z(to)|| <6 = |lz(t)|| < o,Vt > to
else, the equilibrium point is described as unstable.

Definition 2.3 (Asymptotic Stability) An equilibrium point of Eq. (2.5) is
described as an asymptotically stable point at t = to if it is convergent and fulfills

definition 2.2 (stable), where an equilibrium point is said to be convergent if:

|lz(to)]| < 6 = lim |lz(¢)||=0
t—o0

In robotics, we are almost interested in asymptotically stable equilibria, since our

objective is to move a robot to a given goal point, not merely remain nearby.

Definition 2.4 (Locally Positive Semi-definite Function) A continuous func-
tion V(x) : De — R is described as locally positive semi-definite in De if

(1) V(0) =0

(i) V(z) >0, Vo € De,x #0

where D. = {z € R" :|z||< €} represents an open and connected subset of R™

centered at the origin.

Definition 2.5 (Locally Positive Definite Function) A continuous function
V(x) : De — R s described as locally positive definite in De if condition (i) in
definition 2.4 is replaced by: V(z) > 0, Vo € De,x # 0

Definition 2.6 (Negative Definite Functions) A continuous function V (z) :
D. — R is described as locally negative definite (resp. semi-definite) in D. if
(=V(x)) s locally positive definite (resp. semi-definite) in D..

2.2 Basic Concepts 19

Theorem 2.1 (Lyapunov Stability Theorem) Suppose that z* = 0 is an
equilibrium point of the differential system defined in Eq. (2.5), and suppose that

V(z) : De = R is a continuously differentiable function, where:
(i) V(z) is locally positive definite in De.
(i) The derivative of V(z) is locally negative semi-definite in De.

thus, the equilibrium point x* = 0 is described as stable.

Theorem 2.2 (Lyapunov Asymptotic Stability Theorem) Considering the
same conditions of the above theorem (theorem 2.1), if V(z) is locally negative

definite, x* = 0 is said to be asymptotically stable.

The function V(z) in both theorems above is called a Lyapunov function.

2.2.6 Sensor Data

An important task of a mobile robot is to get knowledge about itself and its
surroundings. This is achieved by extracting useful information from the mea-
surements provided by sensors. There are various types of sensors used in mobile
robots ranging from those used to measure simple values like wheel load to more
sophisticated sensors like those used for perceiving the environment. Generally
speaking, sensors can be classified to proprioceptive and exteroceptive [SNO4].
Proprioceptive sensors are used to get information about the current state of the
robot itself, like its location, speed, battery voltage, etc. On the other hand,
exteroceptive sensors acquire data from the outside world, such as color, dis-
tance to an obstacle, global position, etc. In the following, we briefly discuss the
most common sensors used in the context of mobile robot navigation. For more

information about other sensor types, the reader can refer to [LMD"98].

2.2.6.1 Shaft Encoders

Shaft encoders provide information about the distance traveled by a mobile robot

based on measuring the number of revolutions of its wheels. The robot uses the

20 2 Autonomous Mobile Robot Navigation

output of the shaft encoders to estimate its current position relative to a starting
location, a method called odometry. However, this method is prone to errors due
to the wheels slippage, sampling of the encoders, and the integration of velocity
measurements over time. Obtaining a better position estimation requires to
combine information from shaft encoders and an exteroceptive sensor, such as a

camera or a laser rangefinder.

2.2.6.2 Vision-based Sensors

Vision is the most powerful sense due to the rich amount of data that can be
extracted from an image [And08]. Recently, a considerable improvement in accu-
racy, resolution, and frame rate of vision sensors (e.g. camera) has been shown.
Robots are using either global or local vision. In global vision, a camera sen-
sor is placed externally to the robot in such a way that the robot (maybe more
than one robot) and the entire environment are covered by the camera’s field
of view (FOV). In local vision, a camera is attached to the robot so that the
area in front of it is captured. By this means, regions that are occluded from
the global camera can be discovered. Despite the fact that vision-based sensors
provide detailed information about an environment (which may not be available
using combinations of other types of sensors [DK02]), unfortunately, obtaining
accurate range information in real-time for successful obstacle avoidance does

not seem to be currently possible [Hoy14].

2.2.6.3 Range Sensors

Range sensors are used to measure distances to objects surrounding the robot
by making use of the propagation speed of a transmitted signal [Kuc06]. The
emitted signal can be sound as in ultrasonic (sonar) sensors or light as in LIDAR
(Light Detection and Ranging) . The basic principle of ultrasonic (resp. LiDAR)
sensors is to emit ultrasonic pressure waves (resp. laser light beams) and calculate
the time it takes to reflect and get back to the receiver. With the speed of sound
(resp. light) known, the distance to the reflected surface follows immediately. A

major disadvantage of an ultrasonic sensor is the inability to determine the exact

2.3 Path Planning Techniques 21

location of an obstacle. It only tells us that an obstacle is located within the
area of the measurement cone. The LiDAR outperforms the ultrasonic sensor in
terms of resolution, accuracy, and cost, owing to the use of laser light instead of
sound waves [SNO4]. Therefore, it is the most common sensor used for mobile

robot navigation and obstacle avoidance.

2.3 Path Planning Techniques

Path planning is a relatively well studied research area. It is defined as a priori
determination of the motion strategy based on a perfect model of the robot and
a complete knowledge of the environment (i.e. a map). This problem has been
motivated by the industrial use of manipulator arm robots operating via an end
effector that can freely move in a known environment. In mobile robots operating
in real-world scenarios, the a priori knowledge of an environment is mostly partial
or absent [Rib05]. Moreover, it has been shown that path planning algorithms
are computationally expensive, limiting their use in applications requiring real-
time performance [PJK12]. In addition, incorrect data or unexpected changes in
the environment (e.g. dynamic obstacles) may affect the performance since, in

such a case, it is essential to recompute the path.

In this section, we review the main path planning strategies that have been
developed over the past years. For a thorough description of basic methods, the
reader can refer to [Lat91] [PCY*16].

2.3.1 Roadmap Path Planning

Roadmap path planning approaches capture the connectivity of the unoccupied
space into a network of one dimensional curves or lines [SN04], named roadmaps.
Once a roadmap is constructed, the path planner attempts to connect a starting
configuration of the robot to the roadmap. Similarly, a given goal configuration
is connected to the roadmap. Then, the roadmap is searched for a series of
roads from the starting configuration to the goal. In a roadmap, the shape of

an obstacle is represented as a polygon. There are several variations that follow

22 2 Autonomous Mobile Robot Navigation

this strategy which differ mainly in the way the roadmap is constructed. Next,

we describe two approaches, namely visibility graph and Voronoi diagram.

2.3.1.1 Visibility graph

Such a graph consists of edges connecting all visible vertices of obstacles (there
exists a line of sight between both vertices) including both the start and goal
configurations [KJIF06]. The shortest path from the initial location to the goal
along the roads of the visibility graph is then calculated using any graph searching
technique. This algorithm provides an optimal solution to the path planning
problem. However, it takes the robot as close as possible to obstacles [SN04].
Moreover, it does not generalize to higher dimensions, nor it scale well with the

number of obstacles.

2.3.1.2 Voronoi diagram

The Voronoi diagram consists of lines and parabolic segments that are equidis-
tant from the two nearest obstacles, called Voronoi edges. Similar to the visi-
bility graph method, a graph searching technique is used to compute the best
path along the Voronoi edges that connect the start configuration to the goal.
Although the distance between the robot and obstacles is maximized along the
way to the goal, this method is usually far from optimal in the sense of total
path length [SNO4].

2.3.2 Graph and Grid based Methods

A common approach to global path planning is based on graph search, where
the configuration space is discretized into a regular grid. Each cell of this grid
is considered a node and each connection between two cells is an edge. The
obstacle-free portion of the grid is searched for the shortest path that connects
the robot’s initial location to the goal. The standard graph-based techniques
are the Dijkstra’s search [Dij59] and A* algorithm [HNR68] [Ota09] [DTMD10].
While Dijkstra’s method uses a depth-first search strategy, A* employs a heuristic

2.3 Path Planning Techniques 23

function to perform a best-first search. This function helps in selecting the most
promising node by estimating the distance to the goal. Hence, A* is more efficient
than Dijkstra, particularly if the size of the grid is large. The solution found by
A* is optimal if the heuristic function is optimistic, i.e. it never overestimates

the actual path cost (e.g. Euclidean or Manhattan distance).

Grid-based methods are considered computationally expensive, especially in com-
plex and large environments. This is due to the grid representation of the
map. Moreover, when the goal position is modified or when a dynamic ob-
stacle obstructs the robot’s working area, it is necessary to re-plan the entire
path [PJK12]. However, many variants to A* have been introduced to make
the searching process faster, such as Incremental A* [KL02], ARA* [LGT03],
D* [Ste95], D* Lite [KL05], and Anytime D* [LFG108]. The main idea behind
these extensions is to maintain dependency information so that the previous
search results are modified locally when environmental changes occur. In this

regard, no need to explore the entire space at each re-planning stage.

Another problem of grid-based techniques is that the resultant path is basically
aligned to the grid structure (could be 4 or 8 connected grid), which is unnatural
and sub-optimal in a continuous sense. It has been shown that a path can be
up to 8% longer than optimal in case of an 8 connected grid. A variant of D*,
named Field D*, has been proposed in [FS06] to address this problem. Field
D* modifies the search graph by assigning nodes to the corners of the grid cells
rather than their centers. In this regard, edges connecting two adjacent nodes
will have the same traversal cost. The path cost along any point of an edge is
estimated using a linear combination (interpolation) between the nodes of the
edge. Thus, in cases where the cost variation is not linear between nodes, this
heuristic may fail. However, it has been shown that Field D* works quite well in
practice [FS06].

2.3.3 Safe Interval Path Planning

The existence of dynamic obstacles adds a new dimension (time) to the search

space, and thus increases the computational overhead of the planning problem. A

24 2 Autonomous Mobile Robot Navigation

common approach to deal with the increase in the dimensionality of the planning
problem is to assume that all objects are stationary and re-plan continuously as
objects move (e.g. [LFG108] [RFS09]). However, this approach scarifies com-
pleteness and optimality. Another strategy is to plan in the complete search
space as has been addressed by Silver [Sil05]. By this methodology, plans can
be out of time before applying them due to the increased number of states to
be processed. This problem was the motivation behind developing the Safe In-
terval Path Planning (SIPP) approach [PL11]. The time dimension in the SIPP
path planner is represented by intervals rather than time steps. A safe inter-
val corresponding to a configuration of a robot is a period of time consisting of
a group of contiguous time steps, during which the associated configuration is
collision-free. The planner uses states defined by configurations, together with
their corresponding safe intervals to construct a search-space. For planning, a
modified A* algorithm is used, incorporating the time needed to attain a node.
Due to the fact that the number of SIPP intervals is less than that of the time
steps for each configuration, SIPP is faster and requires smaller memory as com-

pared with those approaches that use time steps for planning.

Anytime version of SIPP [NPL12] has also been developed integrating SIPP with
ARA™ [LGTO03]. The integrated method introduces an optimal time horizon,
after which the time dimension is dropped. Thus, the path planner considers only
spatial coordinates for states having a time stamp exceeding the time horizon. As
reported in [Sebl14], theoretically, “it is shown that in the absence of time horizon,
this planner can provide guarantees on completeness as well as bounds on the

sub-optimality of the solution with respect to the original space-time graph”.

2.3.4 Probabalistic Roadmap

Some of the most widely used path planners are those based on the concept of
a Probabilistic Roadmap (PRM) [KSLO96]. It has been shown that PRM is
a successful approach to robot path planning in high-dimensional configuration
spaces, which naturally arise when we control the motion of high degrees-of-
freedom robots. Basically, PRM methods work in two main phases, namely a

“roadmap construction phase” and a “query phase” [KSLO96]. The roadmap

2.3 Path Planning Techniques 25

construction phase captures the connectivity of the unoccupied space by first
randomly sampling the configuration space and identifying those samples that
lie in the free space, referred to as free samples. Then, nearby free samples are
connected using a local planner (i.e. they are connected if there is a feasible
motion command between them). The output of this stage is a graph whose
vertices are the free samples and whose edges are the successful local plans.
In the query phase, the start and goal locations are connected to the graph.
For these two configurations, the nearby nodes are determined and edges are
connected using a local planner as in the roadmap construction phase. Once the
complete graph is created, a graph search algorithm (e.g. A™) is used to find the

path on the graph that connects the initial and goal configurations.

The PRM approach is flexible owing to the fact that each of its main compo-
nents (sampling method, roadmap construction strategy, and the local planner
used) can be modified while maintaining its basic capabilities. Thus, many PRM
variants have been introduced during the last two decades. For example, some
variants extended the problem to non-holonomic path planning using special lo-
cal planners (e.g. [SO97]). Other variants focused on speeding up the nearest
neighbor search by using an approximation method (e.g. [AI08] [ML09] [RJ15]).
The motivation behind developing these approaches was the fact that the near-
est neighbor search is considered as a crucial part of PRM planners, since each
time a new node is connected to the roadmap the planner must find the set of
nearest neighbor nodes. Lately, several variants have been developed to pro-
vide probabilistic completeness guarantees in the sense that the probability of
finding a solution, if one exists, goes to one as the number of samples goes to
infinity [KF11] [JSCP15].

2.3.5 Rapidly-exploring Random Tree

Rapidly-exploring Random Trees (RRT) [LaV98] [LKO01] [KFT108] are random-
ized planning methods that incrementally construct a search tree and attempt
to quickly explore the state space. This enables them to find feasible paths in
higher-dimensional search spaces more efficiently, but with less-strict optimality

and completeness guarantees than search-based planners. The RRT planner is

26 2 Autonomous Mobile Robot Navigation

similar in spirits to the PRM approach, but instead of constructing a complete
topological graph (roadmap), a tree is grown incrementally staring from an ini-
tial configuration. It is constructed by randomly selecting a new sample at each
iteration and then determining the nearest neighbor in the already created tree.
A new vertex is then added to the tree by extending the nearest neighbor towards
the selected sample. This procedure is repeated until having reached the goal.
At the end, the nodes of the tree represent the explored locations and the edges
represent the control inputs required to proceed from a node to another. Thus,
the tree is constructed by a random exploration towards unexplored areas biased
by motion towards the goal configuration. The efficiency of the search can be
enhanced by employing a bidirectional search where the tree is extended from
both the initial and goal configurations [KL00].

Several recent variants, referred to as RRT*, initially proposed in [KF11] [KF10],
guarantee convergence toward optimal solutions as the number of samples grows
[PPK"12] [GPPK13] [KF13]. Other variants build their analysis based on the
notion of convergence in probability which provides mathematical flexibility al-
lowing for convergence rate bounds [SJP15] [JSCP15]. Another recent vari-
ant [Haul5] attempts to speed up the sampling-based motion planners by using
a lazy collision checking strategy. However, RRT-based methods are mostly lim-
ited to static environments [PPM13]. Moreover, their computed paths are post-
processed to reduce the effect of randomization [DSS*13]. Although there are
attempts to extend RRT-based planners to handle dynamic scenes (e.g. [PF05]
[KRSV10] [Haul2]), local-reactive and control-coupled approaches are still more

desirable, particularly in highly cluttered and dynamic environments.

2.4 Reactive Navigation Techniques

Besides the extensive developments in path planning, efforts were devoted to-
wards making mobile robots operate out of the artificially created environments,
so that they can share the same workspace with humans. The high computational
time required to plan a path, inaccurate modeling of the environment, and the
unforeseen dynamic obstacles made researchers aware of the gap between path

planning and motion execution [MLLO§|. This has motivated authors to develop

2.4 Reactive Navigation Techniques 27

schemes fast enough so that robots can react to the environment and avoid col-
lision with obstacles. These approaches goes under many names such as reactive
navigation, obstacle avoidance, local navigation, and sensor-based control. Re-
active navigation techniques are based on a perception-action process [MMO02],
where actions are generated iteratively (at each control cycle) using up-to-date
model of the world. Typically, the model of the world is constructed based on
feedback sensors (e.g. laser rangefinder). These approaches are computationally
more efficient as compared to path planning algorithms since only a part of the
world model is required, and therefore relatively less information needs to be
processed at each time step. Thus, robots can respond on time to obstacles, and
behave especially well in unknown environments. It is worth to mention that the

work presented in this thesis belongs to this group of approaches.

One could not hope to cover all techniques that have been proposed. Hence,
the focus is limited to some representative methods, including those that have

proved popular across the years and those that have been introduced lately.

2.4.1 Bug Algorithms

The Bug algorithm and its variants (e.g. [LS86], [KR97], [MSZ09], [MHS13],
and [MLB15]) are among the simplest and earliest reactive navigation techniques
[MFM18]. The main idea of these methods is to steer the robot towards the
target unless an object is met, in which case, the robot moves unidirectionally
along the boundary of the object until navigation towards the target is once
again possible [CLHT05] (fulfilling a leaving condition). Switching the motion
mode (from boundary following to goal pursuit and vice versa) follows a globally
convergent criterion [YP09]. Many variants of the basic Bug algorithm have been
proposed, but essentially all these methods differ in defining the rule under which
the transition between both motion modes is triggered . A detailed comparison

of several Bug algorithms is carried out in [NBO7].

With the Bug 1 algorithm [LS86], the robot moves along the straight line con-
necting the robot to the goal until it encounters an obstacle at a point, referred

to as a hit point H; (see points H; and Hs in figure 2.5). Then, the robot fully

28 2 Autonomous Mobile Robot Navigation

Figure 2.5: Bug 1 algorithm with (Hi, H2) described as hit points, and (L1, L2)
described as leave points (from [SN04]).

circumnavigates the obstacle and keeps track of the obstacle point closest to the
goal, referred to as a leave point L;. From this point, the robot leaves the obstacle

and resumes the progress towards the goal again.

With the Bug 2 algorithm [LS86], the robot begins to follows the contour of the
obstructed obstacle until the line to the target is crossed at a point closer to the
goal than the hit point. At this point, the robot resumes the progress along the
line to the goal. In general, this algorithm leads to shorter paths than Bug 1 (see
figure 2.6). However, one can still face scenarios in which the path generated by

Bug 2 is longer than that corresponding to Bug 1 [SN04].

Some Bug variants are classified as tangent-based (e.g. [KRR98], [LB99], [SH13]),
in the sense that they consider motion towards the tangents of objects. These
methods build a graph, called local tangent graph (LTG), of the robot’s envi-
ronment utilizing a ray-based sensor system. With the help of LTG, the robot
can make a shortcut while following the contour of objects, switching back to

the goal pursuit mode earlier. In this regard, a shorter path can be achieved.

Bug algorithms enable vehicles to navigate in unforeseen surroundings with guar-
anteed global convergence (if the goal is reachable). However, these methods are
sensitive to the accuracy of the sensor and represent the robot by a point in the
workspace. Furthermore, they were not examined in dynamic scenarios which is

often the case in real-world applications.

2.4 Reactive Navigation Techniques 29

Figure 2.6: Bug 2 algorithm with (H1, H2) described as hit points, and (L1, L2)
described as leave points (from [SNO04]).

2.4.2 Artificial Potential Fields

A wide variety of reactive navigation methods (e.g. [MA97], [GCO02], [FNAO09],
[RA12], [KSTT16], [BGPG17], [MCL"17], [RBAM18]) are based on the concept
of Artificial Potential Field (APF), firstly developed in [Kha86]. Under this
concept, the robot is a particle influenced by a gravitational force field, where an
attractive force is acted by the goal and a repulsive force is acted by obstacles (see
figure 2.7a). The attraction towards the goal and the repulsion from obstacles are
represented by positive and negative forces, respectively. The resultant vector
sum of these forces determines the control input applied to the robot. More
formally, let the attractive potential to the goal be described by the following

quadratic function:)
Uate(pr) = Shkallpr — Pyl (2.6)

where kq > 0, and p, and py are the robot and goal locations.

Analogously, for each obstacle, the associated repulsive potential is defined as:

1 1 142 .
§kr(ri - E) > if ry <rs

Uf‘ep(pr) = { (27)

0, otherwise

where k, > 0, r; the distance from p, to obstacle p;, and rs the range of influence
of the obstacles.

30 2 Autonomous Mobile Robot Navigation

The value of the function representing the potential can be considered as an
energy and therefore its negative gradient is a force. Hence, the attractive and

repulsive forces resulting from U, (pr) and Ufep(pr) can be defined as:

Fatt (Pr) = _ka(pr - pg) (28)
Fiep(Pr) = A=)V s (2.9)
e 0, otherwise .

Notice that the value of Fait (pr) converges to zero when the location of the robot
pr approaches py. The value of Fiep(pr) is zero if the distance to the obstacle is
greater than rs and tends to infinity as the obstacle is approached. The resultant
force field is then defined by:

F(p) = Faw(pr) + Y Fiep(Pr) (2.10)

i=1
where n is the number of obstacles.

Potential field methods are efficient in terms of computational complexity and
the time needed to complete a mission. Moreover, they are easy for implementa-
tion. However, with these techniques the robot is prone to oscillations in narrow
spaces and may experience a deadlock due to local minima [KB91]. Figure 2.7b
shows a situation where the robot experiences a local minimum while approach-
ing a U-shaped obstacle, leading to a deadlock. This is due to the fact that,
at a particular position within the obstacle, the attractive force gets symmet-
ric to the repulsive force (i.e. F(p,) = 0). There have been several attempts
to address this drawback, such as [BL91] by utilizing a “random walk” mech-
anism, [RK92] [Masl2] by incorporating an extra APF function, or [HE02] by
borrowing ideas from electro magnetics. This problem has also been addressed
in [VITMLOO], by incorporating the artificial intelligence, and in [WIN15] by
considering the robot’s direction of motion and the front-face obstacle informa-
tion. Other efforts were devoted towards achieving a smoother navigation, such
as [RMPO06], by utilizing an adaptation of Newton’s method, or [Pan14] [HP16]
by making use of two dimensional “smooth vector fields”. Adapting the APF

to accommodate robots of unicycle type and obstacles of arbitrary shape can

2.4 Reactive Navigation Techniques 31

N Robot path .Pr ®

Py

Local minimum

(b)

Figure 2.7: Artificial Potential Field. (a) Typical potential fields; an attractive
force is acted by the goal and a repulsive force is acted by obstacles
(from [Kum15]). (b) A robot experiences a local minimum while ap-
proaching a U-shaped obstacle. This problem occures if the attractive
force gets symmetric to the repulsive force (originally from [Rib05]).

also be found in [RMPO08], [VT12], and [WCO00]. Despite the fact that these
approaches may resolve the above mentioned APF problems, they are compu-
tationally inefficient, restricted to specific environments, or build upon strong
assumptions as stated in [CML™15]. For example, the performance of the algo-
rithm presented in [VTMLOQ] is still limited by the basic model of the potential
field function. Moreover, it only considers obstacles of equal sizes. The methods
proposed in [WIN15], [Panl4], and [HP16] assume a point-like or a disc-shaped
mobile robot and discard the motion constraints. Additionally, the techniques
introduced in [BL91] and [RK92] often need long time to escape from the local

minima in complex environments [CML" 15].

2.4.3 Virtual Force Field

The Virtual Force Field (VFF) [BK89] is a collision avoidance method that con-
sists of integrating two concepts; the Certainty Grid [Elf86] [MES5] for obstacle
representation and the Artificial Potential Field for navigation. The certainty

grid is a probabilistic representation of obstacles in a grid-like world model, es-

32 2 Autonomous Mobile Robot Navigation

pecially designed to accommodate the inaccuracy of sensor data. Each cell in
the grid contains a certainty value denoting the probability that an obstacle is
located in this cell. The VFF method uses a similar analogy, but updating the
world model, referred to as a histogram grid, is carried out in a different way;
only one cell is required to be incremented for each new sensor reading creating a
probability distribution with small computational overhead. As the robot moves,
it keeps track of a window overlying a zone of the histogram grid, called active
window, where a repulsive force acts between the robot and each cell in this
zone (named active cell). Obviously, there is a direct proportional relationship
between this repulsive force and the certainty value. Additionally, an inverse pro-
portional relationship exists between the force and the distance to the cell. In a

way similar to the APF method, the resultant force vector is then calculated.

As compared with the APF approach, the VFF method reduces the sensor un-
certainties due to its probabilistic nature and provides more stable motion. Sev-
eral methods build on the concept of VFF (e.g. [I002] [LLLHO8] [NTK™11]).
However, neither the VFF method nor these variants are able to avoid the short-

comings inherited from the APF concept, summarized in [BL91].

2.4.4 Vector Field Histogram

The Vector Field Histogram (VFH) [BK91] constructs a 2D histogram grid using
information from onboard sensors, similar to the VFF method. Then, the motion
control is computed by employing two data reduction steps. In a first step, the
active window of the grid is mapped into a 1D polar histogram surrounding the
current location of the robot (see figure 2.8). This histogram comprises angular
sectors, where each sector defines a polar direction relative to the center of the
vehicle. In a second step, a steering direction is calculated by analyzing the polar
histogram to determine open areas and then choosing the passage that optimizes
a cost function. Setting this function is based on the robot’s previous orientation,
the target direction, and the wheels angle. The speed is then calculated as a

function of the distance to obstacles.

An improved version of the VFH method [UB98], takes into account the robot’s

shape and kinematic limitations by enlarging obstacles so that all kinematically

2.4 Reactive Navigation Techniques 33

H\H} HHHHHHHHHMACtlveWIndOW

]
l

Sector k f—

bl

Gri¢
[T
|

[Active cells

Figure 2.8: Mapping of active cells onto the polar histogram (originally from
[BK91]).

blocked trajectories are avoided, an additional stage called masked polar his-
togram. The enhanced method, entitled VFH+, can generate smoother robot tra-
jectories with greater reliability. This approach was further improved in [UB0O]
by introducing a lookahead procedure, thus allowing the robot to avoid the local
minima problem. In addition to these two improvements, several variants have
been developed during the last two decades (e.g. [AW04] [Ye07] [JXK10]). A com-
parison of these variants showing their pros and cons is carried out in [BDD'14].
Although the VFH approach is less likely to fall in local minima and produces
smoother behavior, it presents the difficulty to drive the robot in narrow pas-
sages or corridors. Moreover, it is limited by the use of arbitrary heuristics which

greatly influence the behavior of the system.

2.4.5 Dynamic Window Approach

In the mid-1990s, many research efforts were devoted towards integrating the
vehicle kinematics and dynamics into the collision avoidance problem, directly
determining a motion control instead of a direction solution. The result of these
efforts was the evolution of several techniques, later described as wvelocity space
approaches. These include: the Steering Angle Field (SAF) [FBL94|, Curva-
ture Velocity Method (CVM) [Sim96], and its enhanced variant Lane-Curvature

34 2 Autonomous Mobile Robot Navigation

VS\

90 cm/sec

left wall corrido

right wall]

Va

90 deg/sec 90 deg/sec

Figure 2.9: Velocity space (from [FBT97]).

Method (LCM) [KSRS98], just to name a few. However, it has been the Dynamic
Window Approach (DWA) [SP07] [LV14] [LV16] [BUVRJ17], initially introduced
by Fox [FBT97], that has proved popular within the robotics community. As-
sume a known current robot’s state, the DWA models the reactive navigation
problem as a constraint optimization in the tangent space (velocity space): the
space of all possible sets of translational and rotational robot velocities (v,w).
Therefore, it can be characterized as a planning algorithm with a prediction hori-
zon of a single time step [OL05]. The original DWA [FBT97] was designed for a

synchro-drive robot, which can be summarized in two steps:

Search space: The DWA builds upon the assumption that the robot’s velocity
is kept constant at each time step (piecewise constant velocities). Under this
assumption, the trajectory of a synchro-drive mobile robot can be approximated
by a series of circular arcs, referred to as curvatures [FBT97]. By this means, the
search space is reduced into a 2D velocity search space. The set of all possible
velocities is denoted by Vi (see figure 2.9). The method only considers the
admissible velocities which guarantee collision-free motion (denoted as V,). In
figure 2.9, the velocities that may cause collision with obstacles (non-admissible)
are visualized by dark gray. For instance, velocities in the region labeled as “right

wall IT” result in a hard right turn and hence may cause collision with the wall.

Due to the limited accelerations, the search space is further restricted to a small

window, referred to as a dynamic window (labeled Vy in figure 2.10). It includes

2.4 Reactive Navigation Techniques 35

Vs N 90 cm/sec
dynamic window V] | 2
—/
h L]
2
Vi |
dctdal velocity|
Va .
-90 deg/sec 90 deg/sec

Figure 2.10: Dynamic window (from [FBT97]).

those velocities that can be reached within the acceleration limits over the next
control cycle. The above mentioned constraints limit the search space into a

region denoted by V, (the white area) within the dynamic window:

Ve =VinVanVy (2.11)

Optimization: After having determined the resultant search space V., a motion

control is determined by optimizing an objective function [FBT97]:
G(v,w) = o(a - heading(v,w) + B - distance(v,w) + 7 - velocity (v,w)) (2.12)

This function provides a weighted sum of heading(v,w), that favors progress
towards the goal, distance(v,w), that prefers to keep large distances to obstacles,

and velocity(v,w), which favors high speed.

The dynamic window approach has been extended to other robot shapes and
models (e.g. [Sch98]). Moreover, the employment of a “navigation function” has
led to optimal paths, see e.g. [BK99], [OL05], [KT12], and [MSKT13]. Some vari-
ants use information about the predicted obstacles’ trajectories to better handle
dynamic environments (e.g [SMPO05], [SP07]). Other variants consider differ-
ent trajectory shapes, where the differences in performance are mainly heuris-
tic [FSBD04] [SWY10]. By utilizing the DWA, the efficiency and smoothness of

36 2 Autonomous Mobile Robot Navigation

the robot’s trajectories are enhanced. However, a failure may occur while driving
a robot through narrow regions in dense environments. Moreover, the DWA is

limited by the model construction as well as the parameters tuning [Pet08].

2.4.6 Velocity Obstacles

The concept of Velocity Obstacles (VO), initially proposed in [FS98], has been
widely used by robotic researchers, see e.g. [SS07] [GSR09] [WHI12] [KO16]
[LJO17] [RGM17] [BSAP18]. Within this concept, the velocity of moving ob-
stacles can be explicitly considered in determining the avoidance maneuver. A
VO is essentially the set of velocity controls leading to collision with obstacles at
a later time, once specified, a velocity beyond this set is picked out. A concept
similar in spirits to VO, the Inevitable Collision States (ICS), was introduced
in [FA04] and [LNWB14]. Compared to VO, ICS reasons over an infinite time

horizon and discards the colliding states rather that the velocity controls.

More formally, let v, be a given robot velocity and v; the velocity of obstacle
O;. The set of colliding relative velocities between the robot and obstacle O;,

referred to as collision cone, is defined as follows:
CC; = {'Ur,i |)\'r,i NCO; 75 O} (2.13)

where v, ; = v — v;, Ar; is the line of v, ;, and CO; is the result of mapping O;

into the configuration space (enlarging O; by the radius of the robot).

The wvelocity obstacle associated with obstacle O; is obtained by adding its ve-

locity to each relative velocity in CC; (to get absolute robot velocities):
VO; =CC; ®v; (2.14)

where @ represents the Minkowski vector sum.

The union of all velocity obstacles (associated with each ;) defines the set of

forbidden robot velocities (see figure 2.11):

vo = Jvo; (2.15)

1=1

2.4 Reactive Navigation Techniques 37

Figure 2.11: The set of forbidden robot velocities (v1 Uvz). In order to guarantee
a safe motion, a control velocity must be chosen outside of this set.
(originally from [MLLOS]).

where n is the number of obstacles.

The computation of the VO builds upon the assumption that the velocity of
obstacles is maintained at future time, which is not realistic in real-world scenar-
ios. In [SLSO01] and [LLS05], this drawback has been addressed proposing a new
concept, Non Linear Velocity Obstacles (NLVO), to deal with obstacles whose
trajectory is nonlinear or arbitrary (but known). However, it has been shown that
computing NLVO is computationally expensive [Wanl4]|. Some variants take into
account the non-holonmic constraints of the obstacles (e.g. [OMO05] [OMO6]), but
assuming that the path can be approximated by a series of short line segments.
Moreover, the shape of obstacles are assumed to be either circles or polygons. The
concept of velocity obstacles has been extended to multiple robot navigation and
called Reciprocal Velocity Obstacles [BLMO8] [BB15]. This has been possible by
implicitly assuming that the other robots make a similar obstacle avoidance rea-
soning. Although VO-based approaches explicitly incorporate the velocity of ob-
stacles into the motion control, they require a perfect understanding of the scene
including an exact estimation of the obstacles motion. However, in real-world
scenarios, it is difficult to estimate the future of the scene [JKWG15]. Moreover,
it is of great importance in VO-based techniques to choose an appropriate time

horizon which is often hard in cluttered and dense environments [SS12].

38 2 Autonomous Mobile Robot Navigation

2.4.7 Nearness-Diagram Navigation

It is a challenging problem to safely drive an autonomous robot in cluttered,
dense, and complex environments, which is usually the case in most robotic ap-
plications [Min02]. Good results in such environments have been reported using
the Nearness-Diagram Navigation (ND) approach [MMO04], that might be de-
scribed as a methodology of designing collision avoidance algorithms rather than
a method in itself [MLLO8]. It is similar to the earlier developed Vector Field
Histogram method presented in section 2.4.4 but solves many of its shortcomings,
especially in narrow spaces. The key idea of this approach is to utilize a divide
and conquer methodology performing a high-level information description of the
environment, following the behavior-based situated activity paradigm [Ark98].
A predefined set of conditions is used to characterize all potential navigational
states and their associated motion control. At each time step, the current situ-
ation is determined from onboard sensors and its associated action is executed.
The original ND method [MMO04] divides the navigation behavior into five situ-
ations. Afterwards, the motion laws were reformulated by adding another situa-
tion, leading to the ND+ method [MOMO04]. In the following, we briefly discuss

these situations and their corresponding actions:

Situations: The set of situations is represented using a binary decision tree
whose inputs are the robot and goal locations and the set of obstacle config-
urations. The criteria for determining these situations is based on high-level
navigation entities like a motion region, environmental characteristics, and a
safety level between the robot and the obstacles (security zone). For example,
one criterion is whether the security zone is free from obstacles or not. Another
is whether the goal is located within the motion region or not. The result is only
one situation owing to the fact that the set of situations must be complete and

exclusive (it is represented by a binary decision tree), see figure 2.12.

Actions: For each situation, an associated action is executed that computes
a suitable motion law. Generally speaking, an action describes the behavior
required for each situation [MLLOS]. For instance, one of the situations is when
the goal is located within the motion region and the security zone is free from
obstacles (HSGR). The action in this case is to drive the robot towards the

2.4 Reactive Navigation Techniques 39

target. A second situation is when the security zone is free from obstacles, and
the motion region is wide enough and does not include the target (HSWR). The
action in this case is to drive the robot towards the side of the motion region

while keeping a safe area to obstacles (see figure 2.12).

A global reasoning based on a workspace representation was added to the ap-
proach in [MMSAOQ1]. Moreover, the performance of ND+ in wide areas has
been improved in [Min05]. Another ND variant, the Smooth Nearness-Diagram
(SND) [DBO08], proposes a single motion control regardless of the distribution of
obstacles. By this means, the resultant trajectory depends on the configuration
of all obstacle points, and thus a smoother behavior is achieved. However, SND
may fail to guide a robot through a tight opening if the density of obstacles
on one side is much higher than the other. The Closest Gap (CG) [MFMJ10]
Navigation [DB08] was then developed addressing this drawback by respecting
the percentage of threats' on each side of the desired heading and by applying
a higher avoidance against an obstacle as it gets closer to the robot’s bound-
ary. Furthermore, a novel methodology for characterizing the environmental
structure was proposed, enhancing smoothness and reducing computational over-
head. An approach similar in spirits to the ND-based methods is introduced
in [SG12] [DS17] [OS17], where the field of view constraint is also considered.

The Nearness-Diagram Navigation overcomes several drawbacks of the collision
avoidance approaches [MMO04], such as experiencing a local minima (e.g. U-
shaped obstacle), difficulty of driving a robot towards obstacles (when neces-
sary), being prone to oscillations, and the tedious parameter tuning (see [MMO04]
for more details). Experiments demonstrated that navigation in environments
cluttered with obstacles has been successfully achieved using the ND-based meth-
ods [Fra07]. However, they are prone to oscillations and instability, which in turn
may reduce the speed and can be unsafe in narrow spaces. Furthermore, ND-
based methods are likely to cause deviations towards free regions, increasing the
path length and execution time. Another drawback is the assumption that the
robot is circular and holonomic. In order to achieve a safer behavior, it is neces-
sary to consider both the shape and kinematic constraints. Addressing all these

drawbacks is the motivation of the research work presented in this dissertation.

LA threat is an obstacle point that falls within a predefined security zone around the robot.

40 2 Autonomous Mobile Robot Navigation

Situations Actions

Decision tree

Goal -
in motion
[egion Motion
-

commands
(v, w)

Goal location

bstacles’
in security
zone

Obstacle |y
information

Goal
in motion
region

Robot location

(a)
Target
9

Obstacles

&

(b)

Figure 2.12: Overview of the Nearness-Diagram (ND) navigation approach (orig-
inally from [MLLOS8]). (a) Diagram showing the design of the ND
method [MMO04] following the situated-activity paradigm. Based on
the sensor readings and the locations of the robot and the goal, one
situation is chosen and the associated motion law is computed. (b)
An example shows how to determine the motion direction. First, the
situation is identified: the security zone is obstacle-free, the motion
region is wide, and the target does not fall within the motion region.
In this case, the situation is HSWR. Second, the suitable action is
executed computing the most promising motion direction 6so.

3 A New Gap-based Collision Avoidance

Approach - A Holonomic Solution

This chapter introduces a new obstacle avoidance approach for mobile robots
navigating in dense environments. As we have pointed out in chapter 2, the ma-
jority of reactive navigation approaches present limited performance in cluttered
environments. This is owing to the fact that these techniques are prone to some
classical drawbacks [MMO04] [MLL16] [MFM16] such as computational complex-
ity, experiencing a local minima, difficulties of driving a robot towards obstacles
(when necessary), failure of navigating a robot through narrow spaces, and the
tedious parameter tuning. Driving robots in such scenarios while avoiding these
drawbacks has been successfully achieved by the Nearness Diagram (ND) Navi-
gation [MMO04]. During the last decades, many ND variants have been proposed
like the Smooth Nearness-Diagram [DBO08], Obstacle-Restriction [Min05], and
Closest Gap [MFMJ10] navigation methods. The main differences in behavior

between these variants have been discussed in chapter 2.

In general, all ND variants assume static obstacles and work as follows. The data
coming from sensors is analyzed to find potential free openings (referred to as
gaps) surrounding the robot, once determined, the closest to the goal is selected
for navigation. The robot is then driven towards the selected opening unless
the clearance to obstacles gets less than a security zone (safe distance), in which
case, the robot’s trajectory is adjusted building upon the Artificial Potential
Field (APF) concept [Kha86]. Avoiding obstacles based on APF is prone to
oscillations and instability, which in turn may reduce the speed of the robot and
can be unsafe in narrow spaces [MFM16]. Moreover, defining the boundaries of
the security zone is not straightforward and has a big effect on the performance of

the robot [MFM15]. Furthermore, adjusting the robot’s trajectory only depends

42 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

on the distance to nearby obstacles, neglecting the location and field of view of
the selected gap (opening angle). This may cause deviations towards free regions,

increasing the total time and distance needed to perform a given task.

This chapter introduces a new reactive obstacle avoidance approach that ad-
dresses the aforementioned problems. A key idea of the proposed approach,
entitled “Safe Gap (SG) Navigation”, is to further analyze the environmental
structure and virtually create a gap between the current robot configuration and
the selected opening. This gap, referred to as a “safe gap”, is determined in such
a way that its opening angle (as seen by the sensors) is wide enough, maximiz-
ing the clearance to obstacles. Consequently, the safety and smoothness of the
robot’s motion are enhanced compared to the ND variants. Moreover, unrea-
sonable deviations towards free regions are avoided, reducing the total time and
distance needed to complete the mission. Unlike the ND-based obstacle avoid-
ance techniques, the SG method does not require the safe distance parameter,
and thus saves the parameter tuning overhead [MFM13b] [MFM13a].

This chapter introduces the SG obstacle avoidance method design in section 3.1.
In sections 3.2 and 3.3, the simulation as well as the experimental results are

shown. Finally, section 3.4 draws the conclusions from this study.

3.1 The Reactive Navigation Strategy

This section presents the “Safe Gap” (SG) reactive collision avoidance approach
for autonomous robots navigating in dense and cluttered environments. The SG
method acts as a reactive layer in a navigation system, following a “perception-
action” procedure executed at a high frequency rate. The key idea is described
in the following. At each time step, the sensor information is checked to find
out if there is a safe way towards the goal. Otherwise, the robot will be directed
to another location, referred to as a subgoal, as discussed in section 3.1.2. The
location of the subgoal is defined depending on analyzing the environmental
structure. The main aspect in this analysis is to determine the set of surrounding
gaps. A description of our methodology for extracting gaps is introduced in

section 3.1.3, and subsequently, an illustration of how subgoals are located within

3.1 The Reactive Navigation Strategy 43

free areas is presented in section 3.1.4. In section 3.1.5, it is shown how to set
the motion commands that steer a robot towards the goal (resp. subgoal). This

process is repeated at each sensor update.

3.1.1 Preliminary Definitions and Notations

This section presents several definitions and notations that are utilized to clarify
the proposed method. Some of these definitions have been used in our publica-
tions [MFM13b] [MFM15] [MFM16] [MM16] [MFM17] [MM17] [MFM183].

The locations of the goal and the robot are denoted by py and p., respectively.
The radius of the robot is denoted by R and it represents the radius of a disc

virtually wraps around the entire robot.

The local z axis is aligned along the longitudinal direction and the local y axis

is perpendicular to it, with +x points forward and 4y points to the left side.

Angles relative to the robot coordinate system can be positive (towards the left

side) or negative (towards the right side) with a maximum absolute value of 7.

Performing calculations may result in an angle § whose absolute value exceeds

m. This angle can be mapped into [—m, 7| using the following function:

proj(0) = ((6 +7) mod 27) — 7 (3.1)

Sometimes, it is necessary to restrict a quantity within a certain range, say from

a to b where a < b. For this purpose, the following function is employed:

a, ifz<a
satiqp)(z) = =, ifa<az<b (3.2)
b, ifz>b

Let S' be a unit circle whose center coincides with the robot’s origin, and ¢, and

¢ be two angles in S', the minimum angular difference between them is:

Z(¢a,) = min(ZL(¢a = ¢v), £(¢p = da)) (3.3)

44 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

where
Z(¢a = ¢p) = (o — ¢p) mod 27 (3.4)

For generality, it is assumed that the sensory information is given as scan (depth)
points; it is possible to transform the data returned by the majority of sensors
to points. The depth points list is represented by S = {pf7 e pi} It is sorted
counterclockwise relative to the sensor frame. The Cartesian and polar coordi-
nates of a point p$ are denoted by (zf,%5) and (5, 67), respectively. Addition-

ally, "max denotes the maximum range of the sensor.

A gap is a potentially open area between obstacles through which the robot can
fit. As will be explained in section 3.1.3, each gap g is created by two obstacles.
The angle towards one of them is less than the other. The obstacle with the bigger
angle creates the left side of the gap. Obviously, the other obstacle creates the
right side. Similarly, the distance to one obstacle is less than the other. This

obstacle forms the closer side of the gap while the other forms the farther side.

The locations of the left side, right side, closer side, and farther side of a particular
gap g are denoted by pi(g), pr(g), Per(g), and pw(g), respectively. Similarly,
referring to the polar coordinates of a specific side requires to replace p by r

(resp. 0), e.g. r&(g) represents the distance to the farther side of g.

The width of a particular gap g is represented by w(g) and equals to the Euclidean
distance between its both sides: w(g) = ||pi(g) — p:(g)]l-

The robot moves towards a gap g in such a way that a proper distance ds(g) is
preserved between pe:(g) and the robot’s footprint. The value of ds(g) is deter-
mined based on the Euclidean distance between both gap sides (gap width); for a
short distance, ds(g) is set to half of the gap width, but for a large distance, ds(g)

is restricted to R + dsafe, where dsafe > 0 is a desired clearance to obstacles:

) (3.5)

d () o R + dsafe, if ’lU(g) > 2(R + dsafe)
e 5“’(%)7 otherwise

Notice that dsafe provides a trade-off between efficiency and safety. A value of
2R was used in our experiments. In principle, ds(g) can be set to %w(g) always,

but this may lead to a longer path if the gap is too wide.

3.1 The Reactive Navigation Strategy 45

In order to drive a robot through a gap g, an instantaneous subgoal, denoted
by ps(g), is assigned and the robot is directed towards it (in section 3.1.5, it is
described how to define the exact location of a subgoal). The polar coordinates
of ps(g) are denoted by (rs(g), 6s(g)).

For a better visibility, superscripts are eliminated from figures (sz becomes p;).

Finally, the Euclidean distance between two points, p5 and p?, in the workspace
is denoted by d(p$, p;q‘)

3.1.2 Selecting the Direction of Motion

If it is unsafe to directly head the robot from its current location p, towards
the goal py, it is essential to locate a subgoal as an intermediate step and drive
the robot towards it. Motion towards the goal is resumed once the “direct path”
from p, to pgy is collision free. In [MFM13b], we have defined a “direct path”
towards a given position p, as the path followed by a robot to attain p, by
executing a single motion control . Determining whether this path is collision
free or not depends on the obstacle distribution, the vehicle constraints, and the
robot’s footprint. This section presents an algorithm (previously published in
[MFM13b]) to check this condition for a free-flying (holonomic) mobile robot.

The algorithm extracts the set of obstacle points Oconision : [Pr — P=z] that may
cause collision with the robot while driving it along the direct path towards p..
Obviously, a holonomic mobile robot follows a path made up of straight segments
to reach p,. Assume that the robot’s footprint can be represented by a polygon
whose edges are denoted by E;, where i = 1,...,m. Also, let I;sz> be the vector
that connects p, to p, called “base vector” in [MFM13b]. For each p§ € S, it
is checked if any of the robot edges intersects the line that passes through p?
and parallel to the base vector. If no intersection exists, p$ is collision-free, and
hence it is discarded. Otherwise, we do the following: assume that p. represents
the point in the robot’s boundary, at which the intersection occurs. Whenever
point p. is reached, the coordinates of p. with respect to the current robot
coordinate system can be expressed as p, = pe—l—m. If p$ is located on the line

segment p.p~, it causes collision, and hence it is added to Ocoliision : [Pr — Pz)-

46 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

OL; 7

Figure 3.1: Collision check along the “direct path” towards two locations, p, and
py- Line OL; that passes through p; intersects E; in p;. Obstacle p;
causes collision with the direct path towards p. since it is located on
the dark red line segment p;p}. Line OL2 that goes through p; hits
E4 in p2. Obstacle p; is collision-free while traveling towards py since
it is not located on p2p,. None of the robot edges intersects OLs, so
Pr is collision-free while traveling towards p,. The path towards py
is free, while the path towards p. is in collision with the red obstacle
points (adapted from [MFM13b] with permission from IEEE).

Otherwise, p? is collision-free, thus discarded. Apparently, the collision check
can be reduced to one step if the robot’s boundary can be represented by one

equation (e.g. an eclipse) rather than approximating it by a polygonal shape.

Figure 3.1 shows an example where the task is to extract the set of obstacle
points that may cause collision with the “direct path” towards two locations pg
and py. The robot has a polygonal shape and consists of 12 edges. It is apparent
that line OL;, which is parallel to B—Vl> (the base vector) and passes through p;,
intersects edge E; in p1. Also, line OL2, which goes through p; and parallel to
B—Vz) hits edge E4 in p2. Obstacle p; is located on p1p}, while p; is not located
on prg Therefore, the direct path towards p, is in collision with p;, but the
direct path towards p, is collision-free with p;. Apparently, obstacle py is not in
collision with the direct path towards ps, since none of the robot edges intersects
OLs; || B—V1> In summary, the path towards p, is collision-free, while the path

towards pz is in collision with the 6 obstacle points visualized by red.

3.1 The Reactive Navigation Strategy 47

If there is a direct free path towards pg (i.e. Ocolision : [Pr — Pg] = @), the
robot is directly driven towards it. Otherwise, a subgoal is located in a collision
free area and the robot is directed towards it. In the next sections, it is shown

how to identify the position of this subgoal.

3.1.3 Extracting Gaps

As mentioned previously, the main aspect in analyzing the environmental struc-
ture is the determination of the set of surrounding gaps. For this purpose, our
strategy developed in [MFMJ10] and utilized in [MFM16] is followed. This strat-
egy is performed in two steps: in a first step, all gaps that can be seen from the
current robot’s view are found out. In a second step, useless or unnecessary gaps
are identified and discarded. The major part in extracting gaps is the detection

of spatial discontinuities in the sensor data, which can be of two types:

“Edge discontinuity”: takes place if there is a spatial distance between two adja-

cent scan measurements more than the diameter of the robot, i.e.

d(pr,p}) — d(pr,p}) > 2R (3.6)

“Max-range discontinuity”: takes place if one of two adjacent scan measurements

returns the maximum range of the sensor, i.e.

d(ph pJS) = Tmax N\ d(pr, p?) < Tmax (37)

If T]S- > rP a “rising discontinuity” takes place at i; else, a “descending discontinu-
ity” occurs at j. The condition of an “edge discontinuity” is checked before that
of a “max-range discontinuity” (has a higher priority). In the following, these

definitions are utilized to explain our strategy.

Step 1: Seeking for gaps: in a first step, a “forward search” from the first (1)
to the final (n) scan measurements is performed. In a second step, a “backward
search” is carried out in the reverse order (from n to 1). In the forward search,
the depth measurement at which a rising discontinuity is detected creates the

“first side” of a gap (for instance, at points A and D in figure 3.2). Assume that 3

48 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

is the index of the measurement creating the first side. Determining the “second

side” is based on the type of the discontinuity:

1) For a discontinuity of type edge: Let ST = {pf,1,...,p}} be the list of scan
points coming after pS. The second side is created by the obstacle point (assume
p;q‘) closest to p$ and contained in S* such that the angular difference between

both sides is less than 7 (as an example, see point B in figure 3.2).

d(py,p}) < d(p},pi) A £(07 = 67) <, Vpiest (3.8)

2) For a discontinuity of type max-range: The second side is created by the scan
measurement (assume j) forming the initial descending discontinuity that comes

after the first side. e.g. point I in figure 3.2.

Seeking for the remaining gaps is performed starting from index j. The forward

search produces gaps 1 - 4 in figure 3.2.

In the backward search, the second side of a gap occurs at the depth measurement
creating a descending discontinuity (e.g. points F and I in figure 3.2). Let j be

the index of this depth measurement, the first side is determined as follows:

1) For an edge discontinuity: Let ST = {pjs-,l, ey p%} be the list of scan points
coming before point p]S-. The first side is created by the obstacle point (assume
p?) falling in S~ and closest to p]S- such that the angular difference between both

sides is less than 7 (for example, see point G in figure 3.2).

d(p?,pj) < d(PR,P}) A Z(05 = 67) <m, VppeS (3.9)

2) For a max-range discontinuity: The first side is created by the scan measure-
ment (assume 3) forming the initial rising discontinuity that comes before the

second side. See point H in figure 3.2.

Seeking for the remaining gaps is performed starting from index i. The backward

search generates gaps 5 - 8 in figure 3.2.

Step 2: The result of performing both searches (forward and backward) is the

set of all surrounding gaps, denoted as G. Among the assembled gaps, we remove

3.1 The Reactive Navigation Strategy 49

= > G EA< T Pyx
g ™ @ 3
@\ %}
I Scan i D—
flu AN
H1©) Seanj | ___
i @ N/ @ (©)]
| A B
16
iy 1 L. 6k
J-_(Z)

Figure 3.2: Finding out gaps. Firstly, the gaps marked as 1 - 4 and visualized
by green arrows are found out by the “forward search” and the gaps
marked as 5 - 8 and visualized by red arrows are extracted by the
“backward search”. Secondly, gaps 1, 4, and 6 are discarded as they are
located within gaps 8, 5, and 3, respectively. Gap 5 is also discarded
since its width is less than 2R. Then, the closest gap (gap 8) is selected
for navigation (adapted from [MFMJ10] with permission from IEEE).

those falling within other gaps and denote the set of remaining ones as G’ (e.g.
gaps 1, 4, and 6 in figure 3.2 are removed). Let ps(g) represents the first side
and ps(g) be the second side of a gap g € G, G’ is then determined as follows:

G'=G\A, A={z|zeGyeGa#y0(zr)>0:(y) 0:(x) <0:(y)} (3.10)

where 0¢(g) and 0,(g) are the angles towards ps(g) and ps(g), respectively.

The final step is to discard each gap having a width (Euclidean distance between
both sides) less than the diameter of the robot (e.g. gap 5 in figure 3.2). We
denote the list of remaining gaps by G”:

G"=G'\B, B={g|ge G, w(g) <2R} (3.11)

3.1.4 Locating the Subgoal

Once the set of gaps seen from the current robot’s view (G”) is determined, the

closest to the goal is picked out. This gap, called “closest gap”, must satisfy two

50 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

conditions [MFM16]: first, the angular difference between one of its sides and
the goal must be the minimum compared to that of the other gaps. Second, it
has to be navigable *. All gaps are checked for both conditions until the closest
gap is detected, or it is decided that no closest gap exists. The closest gap in

figure 3.2 is labeled 8, where the side closest to the goal takes place at point C.

Then, a another gap is virtually created between the closest gap and the robot,
referred to as a “safe gap”. As pointed out in section 3.1.1, a subgoal is assigned
to each gap and the robot is directed towards it. The safe gap is created in such
away that the direct path towards its corresponding subgoal is collision-free. In
the following, we show how to locate the safe gap based on investigating the

environmental structure between the closest gap and the robot’s location.

Before presenting details, it is useful to classify each gap based on two criteria:
its position with respect to the current robot’s location and its angular width
with respect to the current robot’s view [MFM13b].

“Gap location state”: This criterion is concerned with specifying the location
of gaps, relative to the current robot’s position: if the angular distance between
both sides of a gap g exceeds 7, it is called a “rear gap”. Otherwise, it will be a
“front gap”. Notice that the angular distance is measured here counterclockwise,
i.e. from the right to the left of g. In figure 3.3, gaps 1 - 3 are front gaps, while

gap 4 is a rear gap. The following function distinguishes front from rear gaps:

1, if Oi(g) —0:(g) <7
P(g) = (&)~ 0:(e) (312
1, otherwise

“Gap vision state”: With this criterion, the angular width of gaps with respect
to the current robot’s view is measured, reflecting the safety of navigation. If a
given gap g is wide enough, it has a “good vision state”. Otherwise, it will have a
“weak vision state”. The vision state of g is determined as follows: let GL be the
line segment that connects both sides of g, and ? the line that passes through
the robot’s origin and orthogonal to GL. If ? goes through GL, the distance

!To determine the navigability status of a given gap, we do the following: if the goal is
located in between both sides of the gap, we investigate whether there is a path towards
the goal or not, following [MMO04]. Otherwise, the path to be checked is towards the gap
center, i.e. towards the point between its both sides.

3.1 The Reactive Navigation Strategy 51

P4
2)
P3 I —

04:.03 P2
02
O Pz| 1,
01
P1
I

06 P74 P8

07 Ly 8

Scan .., n-1,n| “Scan 1,2, ...

Figure 3.3: Classifying gaps based on their location and angular width. Gaps 1-3
are front gaps, whereas gap 4 is a rear gap. Gaps 1 and 4 are in a good
vision state, while gaps 2 and 3 are in a weak vision state (adapted
from [MFM13b] with permission from IEEE).

between pec:r(g) and the intersection point is checked. If it is more than ds(g), g
—
has a good vision state. But, if it is less than ds(g) or if L does not intersect

GL, g will have a weak vision state. The condition to be checked is defined as:

(T NGL # 6) A (Ipe — Per ()| > ds(2)) (3.13)

s _
where p, is the point at which L intersects GL and e is any small value. g has

a good vision state if Eq. (3.13) is met. Else, it will have a weak vision state.

As an example, look at figure 3.3 which shows an environmental structure consists

of 4 gaps, labeled 1 - 4. The line segments that connect both sides of these gaps

are labeled p1p2, P3P4, P5Ps, and prps. Line ﬁ) is orthogonal to pip2, P3P4,
and pspe, whereas line ﬁ: is orthogonal to p7ps. The points of intersection
associated with gaps 1, 3, and 4 are marked respectively as p., py, and p.. Let
dsafe in Eq. (3.5) equals to R. In this case, w(gl) > 4R, and hence, ds(gl) = 2R.
It can be seen that ||pz — p1|] > ds(gl), which implies that the vision state of
gap 1 is good. The same is true for gap 4, having in mind that ds(g2) = w(g2)/2.
When it comes to gaps 3 and 2, the distance between p, and ps is small, and

ﬁ does not pass through psps. So, they both have a weak vision state.

52 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

Let C and S denote the closest gap and the safe gap, respectively. Determining
the “closer side” of S, per(S), is based on checking the “direct path” towards C:
assume that Ocolision : [Pr — Ps(C)] represents the set of obstacle points that
may cause collision with the direct path towards ps(C). If this set is empty,
Per(S) is set to the closer side of C. Otherwise, it is set to the obstacle point
belonging to Ocoltision : [Pr — Ps(C)] and closest to the robot [MFM13b]:

Per C 5 if Ocollision L \Pr — Ps C = d)
Pz, otherwise
with:
Pz = a]rgmianlS — prl (3.15)

pf

where pis € Ocoliision : [Pr —= Ps(C)].

Figure 3.4 shows an example where only one gap C is detected, and hence it is
the closest gap. As will be explained in section 3.1.5, the subgoal associated with
C, ps(C), is located at the center point between its both sides. The direct path
towards ps(C) is checked by applying the algorithm presented in section 3.1.2. It
is clear that all obstacles lying between p, and ps(C), visualized by dark gray, are
included in the set of colliding obstacle points Ocottision : [Pr — Ps(C)]. Among
these points, the closest to the robot (labeled p, in figure 3.4) defines pc:(S).

The farther side pu(S) is determined in two steps: in a first step, we identify
the most appropriate obstacle point to locate pg(S), denoted by p. Then, the
location of this point is adjusted if the opening angle (angular width) between

p. and p. is small with respect to the current robot’s view.

Stage 1: The workspace is divided into two regions; one to the left and the other
to the right of the line that connects ps(C) to p,. They are denoted by W+ and
W7, respectively, as visualized in figure 3.4. Assume that r and [represent
the indexes of the obstacle points forming the right and left sides of C. Also,
let ST = {pfﬁ,pf_l, ...,p?} and St = {pls,plsﬂ, ...,pf;} be the lists of obstacle
points falling to the right and left of C, respectively. (i.e. St € S and S~ C S,
where 657 > 6,(C) and 65 < 6,(C) for all i € S*, j € S7). In figure 3.4, S~ and

3.1 The Reactive Navigation Strategy 53

Ocollision : [pr — pS(C)]

scan ..., n-1,n (>scan 1,2,..

Figure 3.4: Determining the safe gap. The closest gap and the safe gap are de-
noted by C and S. The robot is driven towards S rather than C, en-
suring a safer behavior and providing a gradual change in the steering
angle (adapted from [MFM13b] with permission from IEEE).

ST are composed of the obstacles visualized by red and blue colors, respectively.

We refer to the list located in the region that does not contain p, as S':

+ .f —_
S’_{S’ it ps €W (3.16)

ST, otherwise

For an empty S’, we set the required obstacle point p, to the farther side of
C (i.e. py := pu(C)). Otherwise, S’ is searched for p, sequentially until the
angular distance between the accessed element and p. gets more than 7. Among

the visited points in S’, the closest to the robot is selected (see figure 3.4):

(Ip% = pall < [P = pel) A (¢ <), B} €8 (3.17)

where (is defined as:

/Pl — /Pa, if /pPa < 05
C:{ Py — £Px, if Zps < 65(C) (3.18)

/ps — ZPy, otherwise

where /p, and Zpl, represent the direction towards p, and p., respectively.

54 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

Stage 2: A virtual gap V is constructed whose sides are set to p, and p, (i.e.
Per(V) := P, per(V) := p.’). Then, the opening angle of V is checked following
the “gap vision state” criterion. If it has a wide opening angle (i.e. in a good
vision state), the farther side of S is set to py, (pu(S) := pj). Otherwise, it is

set in such a way that the resultant S has a good vision state (see figure 3.4):

0 (S) = { proj (6x(V) = 9), if e (V) 2 01 (V) (3.19)
proj (6e: (V) +9), otherwise

11:(8) = rer(S) . (5) (3.20)

cos (7)

where 9, v, and 8 are defined as:

— arcsin d:(V)
B= <rcr(v)) (3.21)
v = atan2 (w (V) — ds(V), re:(V) cos (8)) (3.22)
9=TV). B+ (3.23)

It can be deduced from the above equations that S is created by rotating V around
per(V), so that its vision state gets good (the angle of rotation is) [MFM13b].
Driving the robot towards S provides a safer and smoother bridge to the goal.
This is because the subgoal corresponding to S is located within a free area
and provides a gradual change in the steering angle while progressing towards C.
Using the ND variants, on the other hand, the robot is directly driven towards C,
and only if the clearance to obstacles gets small the trajectory is adjusted based

on the APF. This may lead to sudden turns which is unsafe in tight spaces.

3.1.5 Determining Motion Commands

Up to now, we have seen how to determine the most appropriate gap (S) for
navigation. As pointed out in section 3.1.1, a gap g is traversed by assigning
a subgoal ps(g) and driving the robot towards it. In the following, we show
how to compute the exact location of ps(g). Let GL be the line segment that

connects both sides of g. In order to achieve a safe navigation, ps(g) is located

3.1 The Reactive Navigation Strategy 55

v Pir®
T'fr
0,
AN T's g
g
r cr iz
Pcer 2 P,
X

Figure 3.5: Determining the subgoal corresponding to gap g. For clarity, the
notation representing the gap, (g), is dropped, e.g. 75(g) becomes 7.

at a distance of ds(g) from per(g) (the closer side of g). Therefore, the polar
coordinates of ps(g) are computed as follows (see figure 3.5) [MFM13b]:

ro(®) =\ (de(@)® + (rer(g))? — 20(@) rer(e) - coslp) (3.24)

_) proj(fc(g) —a), if 0u(g) > On(g)
b:(8) = { proj (0cr(g) + @), otherwise (8.25)

where ¢ and « are defined as:
(W) (@)~ (@)’

o = arcos (L ZafE) S relE)) (320

— arecos [T2(@)° + (rer(8))® — (ds(2))* |
o = arccos < 2ra(e) - 1o (E)) I'(g) (3.27)

where I'(g) is used to direct the robot to the right direction (that leads to g).

The SG method considers controlling the robot’s speed based on the clearance to
obstacles, achieving a safer behavior. This is achieved by specifying viimis which
is set in such a way that the robot slows down as it gets close to obstacles, coming
to a full stop once a collision occurs [MFMJ10] [MFM13b] [MFM15] [MFM16]:

D — Tmin
Vlimit = <\/1 — Sat[oJ] <USDT)> - Umax (328)

56 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

where rmin is the distance to the closest obstacle, vmax the maximum limit of the
linear speed, and Dy a parameter, which we refer to in [MFM15] as a “velocity
safe distance”. The value of D.s defines the size of a zone around the robot in
which the velocity is limited. A higher D.g increases safety but reduces speed.
The sat operator in Eq. (3.28) caps the velocity at vmax if all obstacles are
outside D, and at 0 if the robot ever touches an obstacle. Obviously, there is
a direct proportional relationship between the value of viimit and the distance to
the obstacle that falls within Dy and closest to the robot.

After having the current target (goal or subgoal) determined, we can compute
the motion control which drives a mobile robot towards its location. For the sake
of a fair comparison in sections 3.2 and 3.3, we use the same equations proposed
in [MMO04] (also used in [DB08] and [MFMJ10]):

4 — 9 raj
v = sat(o,1) (%) - Vlimit (3.29)
w = sat etmj 3.30
- [—1,1] 7T/2 « Wmax (.)

where 0raj can be 0 or 65(S) based on investigating the “direct path” towards

Py (see section 3.1.2), and wmax the maximum limit of the rotational speed.

3.2 Simulation Results

This section demonstrates the differences in behavior between the ND variants
and the proposed SG method. Two different scenarios are shown; the objective
of the first scenario, previously presented in [MFM13b], is to verify the increased
safety and smoothness of the trajectories generated by the SG method compared
to those generated by the ND variants. Here, the behavior of the SG method
is compared to one ND variant, the Closest Gap (CG) [MFMJ10]. The second
scenario shows how irrational robot’s deflections towards free spaces occurring in
the ND variants have been avoided by applying the SG method. In this scenario,
the behavior of the SG method is compared to the ND+ [MMO04], SND [DB0S],
and CG techniques [MFMJ10]. All discussed methods have been implemented
using the well-known Robot Operating System (ROS) [QCG™09].

3.2 Simulation Results 57

3.2.1 Scenario 1 Simulations

For this scenario, the map shown in figure 3.6 was created, where the task was to
successfully drive a mobile robot from a start to a goal location. Our objective
was to verify the impact of employing the safe gap, introduced in section 3.1.4, in
enhancing the robot’s trajectory. The simulated robot has a rectangular shape
with a width of 0.48 m and a length of 0.52m and works in a differential-driven
mode. The sensing system is a laserscanner which delivers 1024 measurements
over 360° and covers a range of 10m. The maximum limits of the linear and
rotational speeds were set to 0.5m/s and 0.5rad/s, respectively, whereas the
velocity safe distance (Dys) was set to 0.7 m. In the CG technique, the parameters
defining the safe distance D, and the weight of deflection associated with nearby

obstacles (k) were set to 0.7m and 1.0, respectively.

The path generated by the CG approach is visualized in figure 3.6a, where the
progress of the robot is depicted by drawing red rectangles at uniform time
intervals. It can be deduced from the density of these rectangles that CG suffers
from rapid changes in the direction of motion 6i:aj. By employing SG, the route
is safely and smoothly traversed as can be seen from figure 3.6b. Figures 3.6d
- 3.6g show snapshots of the simulation taken at successive time stamps. With
the CG approach, the robot is directly driven towards the closest gap C unless
the clearance to obstacles gets less than the security zone Ds, in which case,
the robot’s trajectory is re-planned, resulting is sharp trajectory changes. For
instance, at the starting location the distance to obstacles is greater than D;.
Therefore, the robot is directly driven towards C, although the direct path is
occupied by obstacles. Whenever point 1 is reached (figure 3.6a), the distance
to the obstacles marked as A gets less than Dg, and hence, the direction of
motion is adjusted by an angle Dy [MFMJ10]. The SG approach, on the other
hand, employs a safer and smoother bridge (the safe gap S) between both cases
(existence or absence of obstacles within Ds). It can be deduced from figures
3.6d - 3.6g that subgoals generated within safe gaps provide a gradual change
in the steering angle while traversing the open starting region. Once the robot
travels through the area between the points labeled 2 and 3, CG and SG behave

fairly similar. This is because the direct path towards C is collision-free and D

58 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

wouw

V (ms)

66 o090 66 oc¢

wow

W (rad's)

Time (s)

Figure 3.6: Scenario 1 simulations. (a) Path generated by the CG method, where
rapid changes in the direction of motion occurs. (b) Smoother path
generated by SG. (c) Speed profile of the CG method. (d-g) Snap-
shots of the SG simulation. The goal and obstacles are visualized by
magenta circle and black lines, respectively. The closest gap C and the
safe gap S are shown by green and blue line segments, where subgoals
are represented by small circles on the center of gaps. The obstacle
points in collision with the direct path towards C are visualized by red
color. (h) Speed profile of the SG method (reprinted from [MFM13b)]
with permission from IEEE).

is always occupied by the A obstacles (figures 3.6f, 3.6g). Similar improvements
in performance can be seen looking at the trajectory next to the points labeled
3 - 6. We confirm our visualization by recording the translational and rotational

speeds and plotting them versus time in figures 3.6¢ and 3.6h.

3.2.2 Scenario 2 Simulations

For this scenario, an environmental structure with tight passages was created
(the width of the passages is within [0.75 — 1.15]m). It is shown in figure 3.7,
where the initial and goal configurations are also visualized. In order to reach the
assigned goal, the robot had to negotiate several curvy roads. The main objective

of this scenario was to verify the capability of the SG method to achieve better

3.2 Simulation Results 59

safety, efficiency, and smoothness compared to the ND-based variants. Another
objective was to show how SG avoids irrational deflections towards free spaces.
The simulated robot is a differential drive whose shape is rectangular. Its length
and width are 0.53m and 0.49m, respectively. The linear and angular speeds
were limited to the ranges [—0.5,0.5] and [—1.0, 1.0], respectively. The adopted
laser scanner delivers 683 scan points and covers a range of 5.6 m with a field
of view of 240°. The parameter which determines the speed limit D,s is set to
1m. The security zone in the ND variants and the weight of deflection in the

CG method were set to Ds = 1m and k = 1, respectively.

3.2.2.1 Simulations for ND+, SND and CG

Figures 3.7a - 3.7c show the trajectories generated by the ND+, SND and CG
techniques, respectively. The robot managed to reach the goal in 135 seconds
by applying the SND Approach. By employing ND+ and CG, the robot was
faster as it reached the goal in 129 seconds. Figures 3.7e, 3.7f, and 3.7g show the
robot velocities visualized against the time for ND+, SND and CG, respectively.
ND+ suffers from suddenly changing the angular speed (see the large spikes in
figure 3.7e). According to the SNG and CG methods, no real differences in
behavior can be seen except at one location where, using the SND method, the
robot almost touched the obstacle creating the side marked as D. A common
behavior for all these methods is the unnecessary deflection of the robot towards
unoccupied regions while making progress towards the target, see for example
the locations labeled 1-6 in figures 3.7b and 3.7c, and the locations labeled 1-3
in figure 3.7a. The reason behind this drawback is the usage of the artificial
potential field concept, where repulsive forces are exerted onto the robot from
nearby obstacles. Another reason is the determination of the avoidance trajectory

without respecting the location and field of view of the closest gap.

3.2.2.2 Simulation for SG

The path generated by running the SG method is visualized in figure 3.7d. The
time required by the robot to reach the goal was only 94 seconds. At the starting

60 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

Figure 3.7: Scenario 2 simulations. (a-d) Paths generated using the implemen-
tation of ND+, SND, CG, and SG, respectively. (e-h) Linear and
angular velocities visualized against the time elapsed for ND+, SND,
CG, and SG, respectively.

location, the gap closest to the goal is created by A and B obstacles (labeled G1),
where the direct path towards it is unoccupied by obstacles. In such a case, the
safe gap is identical to the closest gap, and therefore the robot moves directly
towards the subgoal corresponding to G1 (located at the center of G1 here). As
soon as the robot navigates through G1, the closest gap gets G2 that is created
by B and C obstacles. At that moment, the direct path towards G2 is occupied
by obstacles, and thus the robot smoothly and safely navigates towards the safe
gap created by the closest obstacle (on the side labeled B here). This procedure
continues until having moved through all passages and eventually having attained
the target. It is obvious from the path next to G3 that the SG method avoids
the drawback of approaching the wall having less density of obstacle points,
occurring in SND. Additionally, it can be deduced from the density of the red

rectangles that the SG method enhances the safety, efficiency, and smoothness

3.3 Experimental Results 61

of the trajectories generated by the above discussed ND variants. Looking at the

velocity profile in figure 3.7h supports our visualization.

3.3 Experimental Results

The improved performance of the SG method has been demonstrated utilizing
our Pioneer 3-AT mobile robot GETbot, whose dimensions are (0.52 x 0.48 m).
GETbot works in a skid-steering mode and subject to nonholonomic constraints.
It is controlled using a 2.6 GHz Intel core i7-620M CPU and equipped with a
Hokuyo-UTM-30LX laserscanner. The maximum speeds of GETbot are (vmax =
0.7m/s, Wmax = 2.4rad/s). While performing the experiments, these velocities
were restricted to (vmax = 0.5m/s, Wmax = 0.57ad/s). In this section we show
one of our experiments (figure 3.8), which was previously published in [MFM13b].
For the sake of comparison, this experiment was executed using SG and CG. The

values of D and k in the CG method were set to 0.7m and 1.0, respectively.

Figures 3.8b and 3.8c show the paths generated by CG and SG, respectively. It
can be deduced from these figures that, in terms of smoothness, the difference
between both methods is roughly similar to that presented in section 3.2.1. How-
ever, when it comes to safety the difference becomes clearer as the robot requires
time for deceleration and turning once obstacles appear inside Ds. This can be
depicted from figure 3.8b where the CG-controlled GETbot almost touched the
obstacle marked as A. The improved safety of SG over CG can be clearly seen
from figure 3.8c. The speed profiles for both methods are shown in figures 3.8d
and 3.8e. After performing several experiments, it was observed that the safety
of CG can be improved by decreasing the value of vmax or increasing the value of
Ds. However, decreasing vmax is unfavorable, especially in environments having
a mixture of wide and narrow passages. In these environments, it is desirable to
use the maximum possible velocity. Increasing the value of D causes another
problem that is the failure of guiding the robot through a tight opening if the
density of obstacles on one side is much higher than the other. This problem can
be reduced by increasing the value of k. However, tuning k is not straightfor-
ward; increasing its value leads to oscillations and unstable behavior. Decreasing

its value, on the other hand, leads to collision. In summary, with SG this tedious

62 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

- 03—/_m/\/“ + 03%
£ £
< 03] < 03]
0 20 30 40 : 0 220 30 40
& 09 & 09
7 g Ow\/\,—
= -03) =03
£ BN
10 2 30 40 50 10 20 30 40 50
Time (s) Time (s)

(d) (e)

Figure 3.8: Experiments (reprinted from [MFM13b] with permission from IEEE).
(a) Environment setup (b) Path generated by applying the CG ap-
proach, where the robot almost touched the obstacle marked as A.
(c) Path generated by SG achieving smoother and safer behavior. (d)
Speed profile for CG. (e) Speed profile for SG.

parameter tuning (vmax, Ds, or k) is avoided either in wide or in tight spaces.
Additionally, SG improves the safety, smoothness, and efficiency of the robot’s
motion. Notice that the next chapters include additional experiments where the

performance of the discussed methods is quantitatively estimated.

3.4 Conclusions

In this chapter, the “Safe Gap” (SG) approach for reactive collision avoidance
has been addressed. With SG, the smoothness and safety of the robot’s motion
have been improved compared to the ND-based variants. This has been achieved
by incorporating an additional step in analyzing the sensory data, locating a
virtual gap in a collision-free area, referred to as a “safe gap”. The location of
this gap is determined based on its opening angle and the configuration of the
goal, providing a smoother and safer bridge between obstacle avoidance and goal
approach. This also helps in evading unreasonable deviations towards free spaces,
reducing the total time and distance required to complete the mission. Unlike
the ND-based obstacle avoidance techniques, the SG method does not require
the safe distance parameter, and thus saves the parameter tuning overhead. An
additional, yet important aspect of the SG approach is the simplicity of the

problem formulation and implementation.

4 Smooth Navigation in Unstructured Narrow

Spaces - A Holonomic Solution

In chapter 3, we have seen how the trajectories generated by the ND navigation
methods have been enhanced by introducing a safer and smoother bridge between
collision avoidance and target approach. This bridge, referred to as a “safe gap”,
is determined by analyzing the environmental structure and extracting the set
of obstacle points in collision with the “gap trajectory” (the trajectory followed
by the robot to reach the closest gap [MFM15]). Among these points, only the
closest to the robot is utilized to create the safe gap. In real-world scenarios,
the sensor measurements are prone to instability and uncertainty. Moreover, the
robot environments are often unstructured and subject to changes. In this regard,
the location of the closest obstacle creating the safe gap may vary rapidly over
time. This can lead to oscillatory motion, especially at relatively higher speeds.
Another yet significant drawback occurs in narrow spaces, in which the obstacle
creating the safe gap may rapidly alternate between being located to the right or
left of the direction of motion. These sudden changes cause successive right and

left turns, which in turn may lead to oscillations and instability [MFM16].

The “Tangential Gap Flow” (TGF) navigation presented in this chapter is spe-
cially developed to cope with the above mentioned limitations. The key idea of
the TGF method is the computation of the motion control based on the configu-
ration of all obstacles causing collision with the “gap trajectory”, not simply the
nearest one. Moreover, the clearance to obstacles on both sides of the heading
direction is taken into account. Adjusting the gap trajectory is, in general, based
on two concepts, namely “tangential” and “gap flow” navigation [MFM16]. Using
the “tangential navigation”, the robot moves tangential to the obstacles boundary.

With the “gap flow navigation”, the robot safely and smoothly navigates among

64 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

closely spaced obstacles. In both concepts, avoiding collisions and approaching
the target are simultaneously performed. By employing these enhancements, the
smoothness of the generated trajectories is increased. Furthermore, a much more
reliable yet stable motion is achieved. Last but not least, the motion commands,
that drive a mobile robot towards a given target, is computed in such a way that

the stability of the system is guaranteed in the Lyapunov sense.

In a nutshell, the TGF approach can be described in the following: in a first step,
the data coming from sensors is analyzed to characterize the distribution of sur-
rounding obstacles and identify the current motion situation. Once determined,
an action is carried out as explained in section 4.1. With this step, the desired
heading direction that guarantees both collision avoidance and target approach
is computed. Section 4.2 describes how to set the motion control which drives
a robot towards the desired heading. This process is repeated at each sensor
update. Experimental results including a discussion and comparison with the
SG method as well as with existing ND variants are introduced in section 4.3.
In section 4.4, our conclusions are highlighted. Notice that the definitions and

notations introduced in section 3.1.1 are also used here.

4.1 Motion Situations and Corresponding Actions

In order to avoid the risk of collision with obstacles, it is essential to adjust the
direction of motion based on the distribution of surrounding obstacles. Hence,
once an obstacle obstructs the robot’s path, a temporary rotation for the goal
position is performed until the risk is passed. As we have reported in [MFM16]
[MJFM13] [Muj10], the degree of rotation is determined based on two criteria:

Criterion 1: “Path-to-goal”. This criterion considers two situations: “Free-path”
and “Dangerous-path”. For determining which situation is currently active, the
configuration space is created and the holonomic path towards the goal is checked
for collision. If it is collision-free, the situation is a “Free-path”. Otherwise, it is
a “Dangerous-path”. The former situation does not require any action as can be
depicted from figure 4.1a, while the latter imposes a rotation to the goal position

by an angle W, referred to as a “gap rotation angle”. This rotation heads the

4.1 Motion Situations and Corresponding Actions 65

Subgoal Goal/Subgoal % Virtual-goal

Goal
+

(@ (b) ©

Figure 4.1: Visualization of three motion situations based on the “Path-to-goal”
and “Safety” criteria. (a) “Free-path” and “High-safety”: this situa-
tion does not require any action. (b) “Dangerous-path” and “High-
safety”: in this case, a rotation to the goal position is performed,
driving the robot towards a subgoal within the closest gap. (c) “Low-
safety”: a temporary rotation to the goal (resp. subgoal) position is
performed so that the robot avoids collisions with obstacles (adapted
from [Muj10] and from [MJFM13] with permission from IEEE).

robot towards a subgoal within the closest gap as visualized in figure 4.1b. For

constructing the closest gap, see section 3.1.3 from chapter 3.

Criterion 2: “Safety”. This criterion considers two situations: “High-safety”
and “Low-safety”. Determining the currently active situation is dependent on
the existence (Low-safety) or absence (High-safety) of a potential threat from
obstacles. Traditionally, an obstacle is considered a threat if the distance to
it measured from the robot’s boundary is less than a predefined safe distance
D, as visualized in figure 4.1. However, the proposed TGF method considers an
obstacle as a threat if it causes collision with the robot’s boundary while traveling
directly towards the goal/subgoal (see section 3.1.2), i.e. an obstacle point p§ is

a threat if the following condition is fulfilled:
p’LS S Ocollision : [pr — pt] (41)

where p; can be the given goal or the computed subgoal based on investigating
the “Path-to-goal” situations. This definition is more reasonable and eliminates

the need for the D, parameter.

66 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

Hence, to determine the current situation, the “direct path” towards p; is checked
for collision. If it is collision-free (i.e. Ocolision : [Pr — Pt] = ¢), the situation
is a “High-safety”. Otherwise, it is a “Low-safety”. The former situation does
not require any action, while the latter imposes a rotation to the goal/subgoal
location by an angle W, referred to as a “collision avoidance rotation angle”.
The result of this rotation is a new goal location, called a “virtual-goal”, as shown
in figure 4.1c. The actions associated with the Path-to-goal criterion are executed

before those associated with the safety criterion (they have a higher priority).

At first, the computation of the “gap rotation angle” Wy, is described in section
4.1.1. Then, in section 4.1.2 the “tangential navigation” concept is introduced
and employed to determine the “collision avoidance rotation angle” Wy,. Sub-
sequently, in section 4.1.3 the “gap flow navigation” concept is explained, where
W, is computed in such a way that the clearance to obstacles on both sides of the
heading direction is considered. Both concepts compute the rotation angle con-
sidering only one obstacle point (to simplify understanding). Later, in section
4.1.4, the smoothness of the generated trajectories is increased by integrating

both concepts and by considering all threats surrounding the robot.

4.1.1 Gap Rotation Angle

The first step in determining Wy, is to extract the set of surrounding gaps and
identify the navigable one closest to the goal. For this purpose, the procedure
presented in section 3.1.3 is followed. The outcome of this step is the closest gap
C. Setting W, is, in principle, based on the goal location and the angular distance
between both sides of C, as we have proposed in [MFM16] [MJFM13] [Muj10]; if
the goal falls within C, Uy, is set to zero, since the objective is to drive the robot
towards the goal and it is inappropriate to drive it somewhere else. Otherwise,

U, is computed based on the angular width of C (look at figure 4.2).

Qmi _07 fé 6(: 70mi Z ec 7escs
q,:{ a=0g, i £(0cs(C), Omia) < £(0cs(C), bucs) (42)

Oscs — Oy, otherwise

where 6, is the angle towards the goal, 6.¢(C) the direction towards the side of
C closer to the goal, and Omiq and fscs are defined as (originally from [DBO0S]):

4.1 Motion Situations and Corresponding Actions 67

Subgoal

Goal

Figure 4.2: Computing the gap rotation angle Ws,. The closest gap C is assumed
narrow. Therefore, Wy, is determined in such a way that the robot
passes through the gap center C.

0cg (C)— 05 (C) .
o] bute) - OO g () > 04(0) ws)
0. (C) + M, otherwise
o fcg (C) — arcsin % . if 0eg(C) > 0(C) w4
" 0ce(C) + arcsin T':}za)fe , otherwise .

where 7.4 (C) is the distance to the side peg(C) of gap C closer to the goal, 8¢ (C)
the direction towards the side of C farther from the goal, and dsafe a desired
clearance to obstacles as defined in section 3.1.1. It can be deduced from Eq.
(4.2) that, for a narrow C, the robot passes through the gap center. However, if

C is wide, dsafe is preserved between peg(C) and the robot’s footprint.

4.1.2 Tangential Rotation Angle

Up to now, we have seen how the instantaneous goal® is determined based on

analyzing the holonomic path towards the goal. For brevity, from now on the

IThe instantaneous goal can be the goal or the subgoal based on investigating the “Path-
to-goal” criterion (criterion 1).

68 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

instantaneous goal is named the target and denoted by p:. As mentioned pre-
viously, for a “Low-safety” situation, TGF considers rotating p: by an angle,
referred to as a “collision avoidance rotation angle” ¥,,. Within the “tangential
navigation” concept, previously published in [MFM16] [MJFM13] [Mujl10], Uy,
is computed in such a way that the robot navigates tangential to the boundary

of the closest obstacle (considered as a threat) in the direction of the target:

sgn(6)5 — 7, if |7 < 7 Asen(6) # sen(6.)
—sgn(0.)3x — , if > 7 Asgn sgn (6.

Ty = gn(be) 5 — v, if|y = gn(6:) # sgn(0.) (4.5)
—sgn(fc) 5 —, if |6c] > |6:] Asgn(f:) = sgn(6e)
+sgn(0c) 5 — v, if [0c| < [0:] A sgn(6:) = sgn(0e)

where 0; is the angle towards p¢, 0. the direction towards p. (the obstacle point
closest to the robot), and v = 0; — 0..

The Tangential Escape (TE) approach [FPV*08] builds upon a similar concept.
However, this method can only work properly in simple environments, as the
TE-controlled robot always seeks the goal without considering the environmental
structure (creating subgoals within free gaps). It has been shown in [MJFM13]
that, by employing the TE method, the robot can get stuck in different scenarios
(e.g U-shaped obstacles). Furthermore, it is not stated in [FPV*08] how naviga-
tion towards the goal is resumed after following the contour of an obstacle and
when it is necessary to circumnavigate the boundary of a different obstacle, i.e.
setting a leaving condition. By creating subgoals in free areas (gaps), the “tan-

gential navigation” determines W, so that local trap situations are avoided.

In figure 4.3 different scenarios are shown, where the virtual target (the result
of rotating the target p: by W¥.g) is marked as pvg. The corresponding collision
avoidance rotation angle W, for each scenario is also visualized. By implement-
ing the TE approach [FPVT08], the robot may move far away from p;. For
instance, the dashed red arrows in figures 4.3b, 4.3e, and 4.3f show the directions
towards which the robot is driven using TE. The proposed “tangential navigation”
concept avoids this limitation by creating subgoals within free areas, guiding the

robot towards the direction leading to the goal.

4.1 Motion Situations and Corresponding Actions 69

Figure 4.3: Computing ¥, based on the tangential navigation concept for differ-
ent cases. (a, b) sgn(6:) # sgn(f.) where |y| < 7w for (a) and |y| > 7
for (b). (c, d): sgn(6;) = sgn(f.) and |0:| > |0:] where 6. < 0 for
(c) and 6. > 0 for (d). (e, f): sgn(f;) = sgn(f.) and |0.] < |6
where 6. > 0 for (e) and 6. < 0 for (f). (adapted from [Muj10] and
from [MFM16] [MJFM13] with permissions from Elsevier and IEEE).

The leaving condition is met if the angular distance between 6. and 6; exceeds

™

i.e. The value of Wy, calculated above is set to zero if Z(6:,0.) > 5.

us
29

4.1.3 Gap Flow Rotation Angle

In section 4.1.2, we have seen how the collision avoidance rotation angle W, is
computed in such a way that the robot navigates tangential to the contour of the
closest obstacle i.e. the angular difference between the direction of motion and

the closest obstacle Z(0¢,6.) is maintained at 90°. In this regard, approaching

70 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

one side of a narrow passage causes the robot to do a sharp turn so that it moves
parallel to this side (regardless of the location of obstacles on the other side). As
soon as the robot starts to turn, there is a big chance that it gets closer to the
other side of the passage causing a sharp turn towards the opposite direction,
and the process repeats. These sudden turn changes may lead to oscillations and
instability. Figure 4.4 shows an example where the robot is supposed to pass
through the narrow gap created by obstacles (sides) A and B. Let us assume
that the current situation according to criteria 1 and 2 is a “Dangerous-path” and
“Low-safety”. Since we have only one gap, it will be the closest gap and the target
p: (subgoal here) is located between its both sides. At the starting point (marked
as 1 in figure 4.4a), the obstacle point closest to the robot is located on side A.
This imposes a rotation to p; by ¥ and the robot navigates tangential to side A
accordingly. Whenever the location labeled 3 in figure 4.4b is reached, the robot
gets closer to side B. At that point, the new rotation angle causes the robot to
move tangential to side B instead. Once location 4 is approached, the robot gets
closer to side A again, moving tangential to it as can be depicted from figure
4.4c. As soon as the angular distance between the closer side (here side B) and
p: approaches 7 (figure 4.4d), the leaving condition is fulfilled, guiding the robot
directly towards p;. It is worth to mention that for a wide gap, these oscillatory

transitions are reduced as the leaving condition may be fulfilled earlier.

The “gap flow navigation” concept, previously published in [MFM16] [MFM15],
addresses this limitation by performing the avoidance maneuver in such a way
that the clearance to obstacles on both sides of p: is taken into account. In
the following, it is shown how to compute the avoidance trajectory associated
with any threat p$, using this concept. In order to enhance the readability, the

superscript S is removed (i.e. p$ is abbreviated p;).

Let p, be the location of the robot’s origin and Isz the line segment representing
the holonomic path towards p;. The workspace is divided into two parts; one to
the right (R~) and the other to the left (R™) of p,p;. Let p; be any threat and
R* the region that does not include p;. The avoidance trajectory is determined
in such a way that the clearance between p; and the obstacles falling on R* is
considered. Among the obstacle points located in R*, the closest to p;, denoted

by p;, is selected. Since our objective is to drive the robot towards p:, we exclude

4.1 Motion Situations and Corresponding Actions 71

(b) (c) (d)

Figure 4.4: Oscillations that may occur in a tight passage by employing the “tan-
gential navigation” concept. (a) The closest obstacle point is located
on side A. This imposes a rotation to p: by W, and the robot navi-
gates tangential to A accordingly. (b) The robot gets closer to side B.
At that point, the new W, causes the robot to move tangential to B.
(c¢) The robot gets closer to side A again, moving tangential to it. (d)
Fulfilling the leaving condition, and in turn guiding the robot directly
towards p: (adapted from [MFM16] with permission from Elsevier).

all obstacles making an angular distance more than 7 with p;, traveling in the
direction of p;. This is due to the fact that these obstacles do not pose a collision
risk, as they are located behind the robot while driving it towards p; [MFM15]:

p; = argmin|[px — pifl, B<a <7 (4.6)
PLES

with # and « given by:

proj (6; — 0:) — proj (07 — 6;), if p; is located in R™ (47)
o= '
proj (8] — 6,) — proj (6; — 6;), otherwise
j(0; —6), if p; is located in RT
5= proj (' t) if p 1s. ocated in (45)
—proj (6; — 6;), otherwise

where 6] is the angle towards p;.

As an example, look at figure 4.5, where p; is located in the left region R,
and therefore R* = R~. The obstacle points visualized by red are excluded as

they are not falling in R* (they violate the condition @ > 8 from Eq. (4.6)).

72 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

proj (0 — 6;)
p;

Figure 4.5: Considering the clearance to both sides of a target p; while computing
the avoidance trajectory. The line towards p: divides the workspace
into two regions, R and R™. It is obvious that p; is located in R™.
Hence, while computing ¥, associated with p; the clearance between
p; and the obstacles located in R~ (visualized by green and orange)
is considered. Since our objective is to drive the robot towards p:, all
obstacles making an angular distance > 7 with p; are excluded (such
as those visualized by orange). Among the remaining obstacles, the
closest to p; is selected (denoted p; and visualized by dark green).

Additionally, the orange obstacle points are excluded as they make an angular
distance more than 7 with p; (they violate the condition o < 7 from Eq. (4.6)).
The remaining obstacle points are visualized by green. Among these valid points,

p; is set to the closest to p; (visualized by dark green in figure 4.5).

We now introduce an angle, referred to as “gap flow angle” A(p;) that defines
the angular distance between a threat p; and the desired avoidance trajectory
associated with it [MFM16]. Notice that this angle is maintained at 90° by using
the tangential navigation concept, discussed in section 4.1.2. Our objective here

is to restrict this angle, so that the obstacles located in R* are considered.

Let Ocenter be the angle towards the center point between p; and pj, i.e.:

ecenter = atan2 < 9 s D)

where (x;,y;) and (z7,y;) denote the Cartesian coordinates of p; and p;.

4.1 Motion Situations and Corresponding Actions 73

The “gap flow angle” corresponding to p; is defined as follows:

1 A* 477 -DB?
A(pi) = arccos (5 . %) (4.10)
where r; is the distance to pi, and B and A are given by:
B min (%le —pf||,dsafe) , if ry <=7 (4.11)
min (| r; sin (£ (05, Ocenter))| , dsafe) , otherwise
A= \/B2+ri2—2B.n-. cos (g —é(@iﬁcemer)) (4.12)

where 7 is the distance to p;. It is obvious from Eq. (4.10) that A(p;) distin-
guishes two cases based on whichever of p; and p; is closer to the robot; if p;
is closer (ri <= r}), A(p:) points the robot so that %|p; — p;|| is maintained
to pi, see figure 4.6a. For a large distance between p; and p;, the maintained
clearance is limited to dsafe, see figure 4.6b. On the other hand, if r; > r;, A(p;)
points the robot towards the center point between p; and p;, see figure 4.7a.
Similarly, if this makes the clearance to p; relatively large, the distance between
the robot and p; is capped to dsafe, see figure 4.7b. Having in mind all A(p;) on
both regions (R and R ™), the avoidance trajectories associated with all p; can
be visualized as vector flow fields between all p; and p}, where the flow direction
points towards the target (could be the “closest gap” or the goal based on inves-
tigating the “Path-to-Goal” criterion) and an appropriate distance to obstacles
is maintained. That is why A(p;) is called the “gap flow angle” [MFM16].

With this, we can now define the rotation angle imposed on p: to avoid p; as:

T T

\I/vg = F(pz) [7A(pz) + sat[07A<pi>] (Z (Qt, 91))} S [*5, 5[(4.13)
where I'(p;) is given by:

0. —0), if|0:— 6 <
r(pi)={ Fogn (6 =00, |0~ Of<m (4.14)

—sgn (0; — 6¢), otherwise

Notice that I'(p;) in Eq. (4.13) is used to point the robot towards the direction
closer to p: rather than using the 4 cases in Eq. (4.5).

74 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

(=12 (‘917 ecenter)

B = i|lp; — p}]l

(a)

&= Z(0;,0center)

(b)

Figure 4.6: Computing A(p;). p: is closer to p, than p;. Hence, A(p;) is set
such that 1|lp; — p;|| is maintained to p; as visualized in (a). If
|lp: — pi | is high, the maintained distance is limited to dsafe, see (b).

4.1.4 Tangential Gap Flow Rotation Angle

As mentioned at the beginning of this chapter, the “Tangential Gap Flow (TGF)”
navigation determines the motion control based on the configuration of all sur-
rounding threats, achieving a better performance in unstructured environments.
Next, we show how the “tangential” and “gap flow” navigation concepts are em-
ployed to achieve this goal, following our work in [MFM15] [MFM16] [MFM17].

The foundation of TGF is the determination of the collision risk acted by each
of the surrounding obstacles. It consists of the following steps. In a first step,

we extract all obstacle points (threats) that may cause collision with the robot

4.1 Motion Situations and Corresponding Actions 75

§=2~ (017 gcenter)

R+
R-
(a)
&= Z (i, center)
p. RF
X KR

cemer
> Ve)

i

&)

(b)

Figure 4.7: Computing A(p;). p; is closer to p, than p;: A(p;) is set such that
the robot moves towards the center point between p; and p;, see (a).
If |p; — p; | is high, the maintained distance is set to dsafe, see (b).

while guiding it towards p:. In a second step, the rotation angle 1; associated
with each of these threats is computed. The “weighted average rotation angle”

W, is then calculated based on the degree of risk posed by each threat.

For determining the set of threats, we perform the following steps. First, the
current situation is determined according to criterion 1. If it is a “Free-path”
situation, no action is required. Otherwise, p: is translated to a safer location

within C (figure 4.8). The distance 7: to the new location of p; is computed as:

d(pmpg)a if \I/sg =0

reg(C) sin(¢)
sin(m—({+n))’

(4.15)

Tt =
otherwise

76 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

Figure 4.8: The target p: is translated to a safer location between both sides of
the closest gap C if the holonomic path towards p; is unsafe. This step
is necessary to determine the set of obstacles that may cause collision
with the robot while guiding it towards p:. For clarity, the notation
representing the closest gap (C) is removed, e.g. 6.4 (C) is abbreviated
as 0., (adapted from [MFM16] with permission from Elsevier).

where ¢ and 7 are given by:

(20
_ { Z(0s(C) = 0,), if acg(c.) > 0(C) 417
Z (0 — 0.4(C)), otherwise

where 74 (C) is the distance to the side pg(C) of gap C farther from the goal and
w(C) the width of C.

In a second step, the “direct path” from p, to p: is checked for collision, following
the algorithm presented in section 3.1.2. The outcome N = Ocoision : [Pr — Pt)?
is the set of obstacles that may cause collision with the robot while driving it

from its current location towards p:.

In a third step, a virtual reference frame, named “robot-target” frame (denoted
by Frt), is created by performing a rotation to the robot coordinate system so

that it points towards p; (performing a rotation by 6;) [MFM16]. Throughout

2Notice that the direct path can rapidly change between being free or occupied. To provide
a smoother and safer transition between both states, we enlarge the robot’s footprint to
both sides of ﬁ while extracting Ogollision : [Pr — Pt]. In our experiments, the robot’s
footprint was inflated by a value of 2R.

4.1 Motion Situations and Corresponding Actions 77

this section, the Cartesian coordinates of an obstacle point p$ with respect to
the “robot-target” frame F; is denoted by (T'(z%), T'(y$)):

T(z5) = 2 cos(—0;) — y? sin(—0;) (4.18)
T(yf) = a7 sin(—0;) + y? cos(—6;) (4.19)

With the “robot-target” frame Fy ¢, the list of colliding obstacle points (V) is
divided into two sublists; one contains those obstacles lying to the left of Fy.
(to the left of its x-axis) while the other includes those obstacles located to the
right. The first is called a left-sublist and represented by Ni,, whereas the other
is called a right-sublist and represented by Ng :

N = {pf eEN ‘ () < 0} (4.20)

Ny = {p? eEN ‘ TGS > o} (4.21)

In order to avoid unreasonable deviations towards free regions, threats located
within U-shaped objects are discarded. For this purpose, we eliminate from
both sublists each obstacle point whose absolute y-coordinate (relative to Frt)
is more than that of the closest to the robot. By this means, the efficiency and
safety of the generated trajectories are enhanced. Let pf R be the obstacle point

L

belonging to Ngr and closest to the robot. Similarly, pcN represents the obstacle

point included in Ny, and closest to the robot:

plc\IR = argmin||p§’ —prll, p]S, € Nr (4.22)
pj

pt = argrsnian]S —pl, pjeM (4.23)
Pj

The modified right (Ng) and left (Ni.) subsets are then defined as follows:

N = Ne\ {pf € Nu: [T(4)

> IT(yER)’} (4.24)

N =N\ {pP € Mo+ [T) } (4:25)

> [T

where yo® and yo'* are the y-coordinates of po® and ph*, respectively.

78 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

Each obstacle point p$ included in either Ny or Ng imposes a rotation to the
target p: by an angle, denoted as ;. Setting 1; is based on the tangential and
gap flow navigation concepts. Let H represents the sublist including threat p$
and H* the other sublist®. Also, denote threat p? by pi and the threat closest
to p$ and contained in H* by pI :

pi’ = argmin|p} — pi'l|, p5ecH" (4.26)

S
Pj

The rotation angle imposed by p} is defined as follows:

¥ = T(p!) [—A +satyo) (4 (ot, 9{‘))] c [—g, g[(4.27)

where 0 is the angle towards p!l, and F(p?) and A are given by:

o1 — 6 if |01 — 6] <
rpiy = { P 0) T s (4.28)
—sgn (Qi — Qt) , otherwise
z if H* =
A= B i ¢ (4.29)
A(pi), otherwise

In Eq. (4.27), we distinguish two cases based on whether H* is empty or not. If it
is empty, 1; is set in such a way that the robot moves tangential to pi! (“tangential
navigation”). In such a case, if pt is the threat closest to the robot, the result
of Eq. (4.27) is equivalent to Eq. (4.5). However, if H* is not empty (there
are threats on the other side of the “robot-target” frame), 1); is determined such
that the angular distance between pi and its avoidance trajectory is maintained
at the “gap flow angle” A(pf') (“gap flow navigation”). Notice that Eq. (4.27)
already includes the leaving condition; whenever the angular distance between p:
and p;' gets greater than Z (for a tangential navigation) or A(p;') (for a gap flow
navigation), the value of v; is capped at 0 (using the sat operator), and therefore,
the robot is directly driven towards p:. By this means, a larger clearance to p!
is maintained. Moreover, avoiding p!! and making progress towards the target
p: are simultaneously considered [MFM16] [MFM17].

3The left-sublist if p§ € Ng and the right-sublist if p$ € Ny,.

4.1 Motion Situations and Corresponding Actions 79

As mentioned above, it is required to compute the degree of risk posed by each
pi. This is reflected by the relative proximity of pf' to the robot and can be

expressed as:
2

(4.30)

where rf is the distance to pt and r§ the distance to the obstacle posing the
highest risk (the closest to the robot and included in N = NR U NL) The risk
measure w; is the maximum (1) if p¥ is the closest threat and the minimum (0)
if rf > r, 4+ R, where r, 4+ R is the largest possible distance to a threat belonging
to N. Notice that w; gets higher as the distance to the threat gets smaller.

The “weighted average rotation angle” W, is determined for the left and right
sides (sublists) separately. By this means, the net W,z will not be affected by
the number of threats in each sublist [MFM16]. As a consequence, the computed
trajectory will not be biased towards the side having the least number of threats
(for more details about this issue, the reader may refer to [MFMJ10]). Let Tr
be the total number of obstacle points included in the right sublist NR, we define
the “weighted average rotation angle” caused by these obstacles (called “right-side

rotation angle”) as the weighted sum of their corresponding rotation angles:
1 &
™ T S &
VR = 5 Wi € [—=, 5[P €M 4.31
R = g s €551 B e N (131)

where Wr is the total weight corresponding to the obstacles contained in Nrg:

Tr

Wr=> w;, p;€Nr (4.32)

=1

Analogously, the “left-side rotation angle” ¥y, is computed. Both ¥y and ¥y, are
weighted, reflecting the relative risk posed by each side. The weight correspond-
ing to g can be expressed as [MFM15] [MFM16]:
W(TR) = whay - (1 - (4.33)
——

left-term

\Ilmax - ‘\IIR|
Wnax

right-term

80 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

where wi,,. is the weight corresponding to the obstacle (pCNR) closest to the robot
among those contained in Nr and V.« the maximum absolute rotation angle
among both Ug and ¥y, (¥max = max (|¥Ur|, |¥L])). It is apparent that the value
of W(¥Rr) depends on two factors: first, the distance between pEIR and the robot
reflected by the maximum weight wZ,, (left-term). Notice that pCNR is considered
among those contained in Ny as it poses the highest threat. The second factor is
expressed by the relative difference between Upnax and |Ug| (right-term). With
this factor, more weight is given to the side imposing a higher rotation to p+. For
instance, if |Ugr| is greater than |¥y|, the right term evaluates to 1. Otherwise,
its value depends on the difference between |Ugr| and |Ur|: it increases as |¥r|
get closer to |¥r|. The idea here is to make the side imposing a larger rotation
angle (posing a higher risk) the dominant side. This term reduces successive
turn changes (oscillations) occurring as a result of changing the dominant side
between being left Wy, or right ¥g , resulting in a smooth variation of ¥,,. The

weight associated with Wy, W(¥y,), is calculated in the same manner.

Finally, the net rotation angle corresponding to all p§ € N (“tangential gap flow”

rotation angle W.g) can be expressed as the weighted average of ¥r and Uy:

W — W(\I/R)\I/R + W(\IJL)\I/L
T W(Tr) + W(UL)

€l-=,=1 (4.34)

4.2 Determining Motion Commands

Up to now, we have determined both angles of rotation, ¥y, and W,e. As we
have pointed out in section 4.1, The goal location is rotated by these angles to
achieve a collision free motion, while progressing towards the goal. Therefore, at

each sensor update, the instantaneous goal location is computed as [MFM16]:

cos(¥) sin(¥)

—sin(¥) cos(¥) P (4.35)

by =

where ¥ = WUy, + W, is the total rotation angle.

Next, we show how to determine the motion control that guides a mobile robot

towards Ppg. A unicycle type mobile robot is considered whose control inputs are

4.2 Determining Motion Commands 81

Yg

Yr

Ty Lg X

Figure 4.9: A robot navigates towards a given goal location (adapted from
[MJFM13] with permission from IEEE).

the linear and angular velocities (v and w). Its configuration with respect to the
global (world) coordinate frame is illustrated in figure 4.9. It has been shown
in the literature that this robot obeys the following kinematic model (given in
polar coordinates) [ACBB95] [PSV11]:

p = —vcos(a) (4.36)
a=-w+ vSin () (4.37)
- _vsin (@)

9 = ; (4.38)

where p is the distance to the goal Pg, « the angle towards P, (orientation error),
and ¢ the angular distance between the horizontal axis and the line connecting
P to the robot’s origin. Notice that the values of & and ¥ are indefinite in case
that p in Eq. (4.37) and Eq. (4.38) is zero. Therefore, it is assumed that the

robot reaches pPg if the value of p gets below a small threshold e.

The goal is to determine a state dependent controller which guarantees that both
« and p asymptotically go to zero. For this system, the following control inputs,
previously published in [MFM16] [MJFM13] [Muj10], are proposed:

v = kpUlimit cos (), ky >0 (4.39)

vsin («)

w=kna+ , km >0 (4.40)

82 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

This final pose controller is adapted from [FPV*08]. If the current situation
according to criterion 1 is a “Free-path”, the value of k; in Eq. (4.39) is set to
tanh(p). Otherwise, it is set 1. This helps in achieving smooth breaking whenever
the distance to pgy approaches zero. The parameter kn, in Eq. (4.40) is utilized
to restrict w to its maximum limit. It is set to k., = 2“’% in the experiments
presented in this thesis. Next, we describe how to control the speed of the robot

(determine wviimit), and subsequently, we analyze the stability of the system.

4.2.1 Limiting Speed

The TGF method considers limiting the robot’s speed based on the distance to
nearby obstacles, similar to the SG method presented in chapter 3. This has been
addressed by specifying vimit (Eq. (3.28)) whose value is based on two factors;
the distance to the closest obstacle and a parameter Dys, named “velocity safe
distance”. The value of this parameter defines the size of a region around the
robot in which the velocity is restricted. Here, we propose to determine the value
of Dys based on the physical and dynamical properties of the robot. For this
purpose, we utilize the work in [MLO™'98], which proposes a lookahead distance
d, for assessing the performance requirements of range sensors and for measuring
the quality of obstacle detection algorithms. One of those requirements is the
ability of range sensors to detect an obstacle with sufficient resolution at the

proposed distance. Mainly, the lookahead distance is composed of three terms:

di= dy +0i(2e+ta)+07/(2u8) (4.41)
first-term second-term third-term

The first term is a buffer distance which accounts for the distance between the
sensor and the robot’s boundary plus any desired safety margin from obstacles.
The second term is a reaction distance which is the distance traveled by the robot
before the obstacle avoidance maneuver starts; it is based on the initial velocity
v;, the computation time t., and the actuation latency time ¢,. The third term
is the breaking distance, which is the distance the robot travels before coming to
a full stop once the brake is engaged. p and g denote the coefficient of friction

and the gravitational acceleration, respectively.

4.2 Determining Motion Commands 83

For our mobile robot, the values of the buffer distance, the combined reaction
time, and the coefficient of friction are set experimentally to 0.5m, 0.5 s, and 0.7,
respectively. In case of hills, the coefficient of friction is reduced by a function
of the slope angle [MLO*98].

With this, we define the value of viimit as follows:

Dvs - N
Vlimit = \/1 — Sa.t[o,l] (DTC>> Umax (442)

where Dys = 0.5 + 0.5 |v;| + 0.07302.

4.2.2 Stability Analysis

In order to investigate the stability of the proposed final pose controller, the

following Lyapunov function candidate is considered:
1o 1,
V== = 4.43
50 T 5P (4.43)

It is apparent that V is a positive definite. Its time derivative is:

V = ad + pp (4.44)
Now, by substituting the values of p and & from Eq. (4.36) and Eq. (4.37) into
Eq. (4.44), we obtain:

V=a (—w + Usmp(a)

) — pvcos(a) (4.45)

Finally, by replacing v and w from Eq. (4.39) and Eq. (4.40) into Eq. (4.45), V/

can be rewritten in the following form:

V = —kma® — kyUlimiep cos” (a) (4.46)

It is obvious from Eq. (4.46) that Visa negative definite, thus demonstrating the
asymptotic stability of the proposed controller (i.e. [p] — [0 0] as t — 0).

84 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

4.3 Experimental Results

Several experiments were conducted using our mobile robot GETbot. The objec-
tive of these experiments was to demonstrate the improved stability and smooth-
ness of TGF and to compare its performance to that of the ND variants as well
as SG. In the following, three experiments are presented. These experiments
were performed using the implementation of two ND variants (ND+ [MMO04]
and CG [MFMJ10]) in addition to the proposed SG and TGF methods. The
experimental setup is introduced in chapter 5, where additional experiments in-

cluding a performance evaluation are also provided.

In experiment 1, it was supposed to drive GETbot through relatively tight gaps
made up of boxes and chairs as can be seen in figure 4.10a. Experiment 2 (figure
4.11a) had two challenges: first, the robot had to avoid obstacles forming a U-
like shape to reach the goal. Second, the obstacle course included tight openings
having one side with higher density of obstacles compared to the other (see, for
instance, passages P2 and P4). The environmental structure of experiment 3
consisted of various narrow gaps where the available clearance at some locations
did not exceed 5 ¢m to both robot sides (figure 4.12a). The value of D, in the ND
variants was set to “0.7m” in experiments 1 and 3 and to “1.0m” in experiment
2. According to the “weight strength” k in CG, it was set to “0.6”, “0.3”, “0.4”
in experiments 1, 2, and 3, respectively. The translational and rotational speeds

were limited to “0.5m/s” and “1.0 rad/s” while carrying out all experiments.

It is important to mention that the ND variants as well as the SG method guide
the robot towards a goal using a motion controller (called ND-controller) different
from that introduced in section 4.2 (called TGF-controller). For the sake of a fair
comparison, the presented experiments were performed using the ND-controller.

A comparison of both motion controllers is then presented in chapter 5.

4.3.1 Experimental Results for ND+ and CG

The trajectories generated by ND+ in experiments 1 - 3 are shown in figures
4.10b, 4.11b, and 4.12b, respectively. The robot successfully passed through the

4.3 Experimental Results 85

obstacle structure of experiments 1 and 2 in 56s and 90s, respectively. In the
last experiment, the robot failed to reach the goal as it pushed over the obstacle
labeled E after hitting/touching obstacles A, B and C. With the CG technique,
the routes of the first and second experiments were traversed in 56 seconds and
86 seconds, respectively (see figures 4.10c and 4.11c). However, in experiment
2, the robot touched obstacle A and collided with the thin obstacles marked as
C. In the last experiment, the mission was aborted after touching obstacle A,
colliding with obstacle B, and finally overturning obstacle D (see figure 4.12c).
It can be deduced from the generated trajectories that both methods (especially
ND+) were prone to oscillations as a result of unreasonable deviations towards
free regions and rapid changes in the direction of motion. For instance, see the
trajectory while passing through the openings marked as P1 - P3 in figures 4.11b
and 4.11c and the openings labeled P1 and P2 in figures 4.12b and 4.12c. The
reason behind this behavior is the computation of the avoidance trajectory only
based on the distance to threats (obstacles falling within the security zone) re-
gardless of the location and field of view of the closest gap. This visualization has
been supported by recording the translational and rotational speeds and plotting
them against the elapsed time. Figures 4.10f, 4.10g, 4.11f, 4.11g, 4.12f, and 4.12g
show these speeds using ND+ and CG for experiments 1 - 3, respectively?.

4.3.2 Experimental Results for SG and TGF

By employing SG, GETbot was successfully navigated through the obstacle struc-
ture of experiments 1 - 3 in 48 seconds, 72 seconds, and 76 seconds, respectively
(see figures 4.10d, 4.11d, and 4.12d). However, the robot moved close to the
obstacles labeled A and B in figures 4.10d and 4.11d, and touched the obstacle
marked as F in figure 4.12d. The speed profiles of experiments 1 - 3 are shown in
figures 4.10h, 4.11h, and 4.12h, respectively. It can be deduced that the perfor-
mance of the “SG method” is better than that of the ND+ and CG techniques.
Despite this fact, however, rapid changes in the direction of motion can be seen
along the trajectories generated by SG, especially at tight spaces. For example,
while passing through passage P1 in experiment 3, GETbot smoothly traversed

4Videos of all experiments presented in this chapter are available at: “http://getwww.
uni-paderborn.de/research/videos/tgf-conf”

http://getwww.uni-paderborn.de/research/videos/tgf-conf
http://getwww.uni-paderborn.de/research/videos/tgf-conf

86 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

20 40
Time (s) Time (s) Time (s) Time (s)

) () (h) 0]

Figure 4.10: Test 1. (a) Experimental setup. (b-e) Paths generated by (b) ND+,
(c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f) ND+, (g) CG,
(h) SG and (i) TGF (from [MFM15] with permission from IEEE).

the wide starting area, but it began to oscillate once the relatively tight end of P1
was reached. A similar behavior can be seen in experiments 1 and 2 (e.g. while
passing through passages P1 and P3 in figures 4.10d and 4.11d, respectively). As
pointed out in section 1, these rapid changes in the direction of motion is a result
of creating the “safe gap” based only on the obstacle point closest to the robot.
In narrow spaces, the location of this point varies rapidly over time and may
frequently alternate between being on the right or left of the heading direction.
The TGF method avoided this limitation by integrating the tangential and gap
flow navigation concepts (Eq. (4.27)) and by computing ¥, based on all threats
belonging to Ocoiision : [Pr — P¢|, while still emphasizing the available clearance
to both sides of p,p; (Eq. (4.29)), the closest obstacle on each side (Eq. (4.30),
Eq. (4.33)), and the location of the target (Eq. (4.28)) [MFM15]. The trajec-
tories shown in figures 4.10e, 4.11e, and 4.12e, and the corresponding velocity

profiles (figures 4.10i, 4.11i, and 4.12i) verify the improved stability and smooth-

4.4 Conclusions 87

0 0
N L T Ty P T e T S POy ST PP ol LA OV ISP O P R
£ £ 9 € 9 € 9
S 03] S 03] S -03) S 03
° 20 40 60 80 o 20 40 60 80 20 40 60 80 : 20 40 60 80

W (radis)
2o&
W (rads)
s§
W (rad’s)
5 o
2o
W (rads)
5 o
u;m

20 40 60 80) 20 40 60 80) 20 40 60 80 : 20
Time (s) Time (s) Time (s) Time (s)

(f) (g) (h) (i)

Figure 4.11: Test 2. (a) Experimental setup. (b-e) Paths generated by (b) ND+,
(c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f) ND+, (g) CG,
(h) SG and (i) TGF (from [MFM15] with permission from IEEE).

ness of the proposed “T'GF approach”. Moreover, the time required to reach
the goal was less than that corresponding to all discussed methods (45 seconds,

63 seconds, and 66 seconds in experiments 1 - 3, respectively).

4.4 Conclusions

This chapter presents the “Tangential Gap Flow” (TGF) navigation approach for
reactive collision avoidance. TGF improves the navigation performance in nar-
row, unstructured, and cluttered environments. This is reflected by generating
smoother and more stable avoidance maneuvers and by avoiding turn changes in
tight gaps (occurs as a result of switching between circumnavigating/avoiding ob-
stacles located to the right or left of the heading direction). This improvement is a

result of computing the motion control based on the configuration of all obstacles

88 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

40 40 40 40
Time (s) Time () Time (s) Time (s)

G () (h) 0]

Figure 4.12: Test 3. (a) Experimental setup. (b-e) Paths generated by (b) ND+,
(c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f) ND+, (g) CG,
(h) SG and (i) TGF (from [MFM15] with permission from IEEE).

causing collision with the “gap trajectory”, while still accounting for the available
clearance to obstacles on both sides of the heading direction [MFM15]. Perform-
ing the avoidance maneuver is based on two concepts; the “tangential” and “gap
flow” navigation. A key idea of both concepts is to make use of the data extracted
from the environmental structure in computing the avoidance maneuver. The
“tangential navigation” drives the robot tangential to the obstacles boundary.
With the “gap flow navigation” the robot safely and smoothly navigates among
closely spaced obstacles. In both concepts, avoiding collisions and approaching
the target are simultaneously performed. Finally, the motion commands, that
drive a mobile robot towards a given target, is computed in such a way that the

stability of the system is guaranteed in the Lyapunov sense [MFM16].

5 Evaluation of the Holonomic Solutions

We have seen how a mobile robot can be successfully driven through unknown
dense environments by employing the “SG” and “T'GF” approaches presented in
chapters 3 and 4, respectively. It has been shown that both methods improve the
robot’s behavior when compared with the Nearness-Diagram (ND) Navigation
variants, which are especially developed to accommodate these environments.
It has also been shown that the trajectories generated by the TGF method,
presented in chapter 4, are smoother and much more stable than those generated
by the SG method, presented in chapter 3.

Several experiments were carried out and presented in chapter 3 where the dif-
ferences in execution between the ND variants, the SG method, and the TGF
approach have been subjectively discussed. In this chapter, we introduce a per-
formance evaluation to quantitatively assess the effectiveness of the developed
approaches over their counterparts. Moreover, we present additional experi-
ments which were carried out using the TGF method and three ND variants;
ND+ [MMO04], SND [DB08], and CG [MFMJ10]. The TGF approach was se-

lected as it outperforms the SG method and inherits its advantages.

The aim of these experiments (partially published in [MFM16]) is to demonstrate
that the proposed “TGF approach” fulfills the major objective of this work: to
successfully guide an autonomous robot through unknown dense environments,
while enhancing the efficiency (execution time and path length), smoothness,
safety, and stability of the trajectories generated by state-of-the-art methods. The
experiments are presented in section 5.2 while the experimental setup is described
in section 5.1. Section 5.3 introduces the performance metrics that are utilized to
evaluate the execution of the proposed approaches. Finally, section 5.4 discusses

and compares the behavior of all discussed methods.

90 5 Evaluation of the Holonomic Solutions

5.1 Experimental Setup

The proposed methods were tested using our Pioneer 3-AT mobile robot GETbot,
whose length and width are 0.52m and 0.48 m, respectively. GETbot works in
a skid-steering mode and subject to nonholonomic constraints. A 2.6 GHz Intel
core 15-3320M CPU laptop is placed on top of the robot, which fills in the role
of a main controller. According to the sensing system, it consists of two laser
scanners; one is placed on the front of the robot and the other is attached to
the back. The front laser scanner is a Hokuyo UTM-30LX having a resolution of
0.25° and covering a range of 30 m over 270° field of view. The rear laser scanner
is a Hokuyo URG-04LX having a resolution of 0.35° and covering a range of 5.6 m
over 240° field of view. The information acquired by both laser scanners were
fused, creating a virtual laser rangefinder having a full (360°) field of view. The

maximum speeds of GETbot are v = 0.7m/s and w = 2.4rad/s.

5.2 Experiments

This section presents seven experiments' performed in very dense scenarios where
the robot did not have any previous knowledge about the obstacle distribution
(Experiments 1 - 5 have been previously presented in [MFM16]). In order to
compare the behavior of TGF to that of the ND techniques, each experiment
(except experiment 7) was additionally performed using the implementation
of ND+ [MMO04], SND [DBO08], and CG [MFMJ10]. While performing these
experiments, the maximum robot speeds (v,w) were restricted to (“0.4m/s”,
“0.8rad/s”) in experiment 1 and to (“0.5m/s”, “1.0rad/s”) in the other exper-
iments. The reason behind this restriction was the limited ability of the ND
methods to generate a collision-free motion at high speed (see section 5.4). Ac-
cording to the D, parameter of the ND variants, it was set to “1 m”. The CG
approach has two additional parameters, Dys and k. The value of Dys was set
to “0.9m”, while k in experiments 1 - 6 was respectively set to “0.9”, “0.5”; “0.6”,

“0.8”, “0.8”, and “0.5”. In order to determine the appropriate parameter value,

1Videos of these experiments can be found at: “http://getwww.uni-paderborn.de/research/
videos/tgf”

http://getwww.uni-paderborn.de/research/videos/tgf
http://getwww.uni-paderborn.de/research/videos/tgf

5.2 Experiments 91

each experiment was performed using various parameter settings. Notice that all
tested methods are pure reactive, and hence they are prone to cyclic loops. To
deal with this issue, gaps lying ahead of the robot were assigned higher priorities
than those located to the rear. ROS [QCGT09] [ros19] was used as a middle-
ware for implementation. For the sake of visualization, maps of the surroundings
were created by employing an open source SLAM system [Gc10]. As mentioned
in chapter 4, for having a fair comparison, the presented experiments were exe-
cuted utilizing the ND-controller. Comparing the execution of the ND-controller
to that of the TGF-controller is then presented in section 5.4.

5.2.1 Experiment 1

In this experiment, it was supposed to guide GETbot through an environmental
structure made up of boxes, as depicted in figure 5.1a. The paths generated
by all implemented techniques are visualized in figures 5.1b - 5.1e. Figure 5.1b
demonstrates that ND+ suffered from rapid changes in the direction of motion,
leading to oscillations (e.g. see the trajectory near the points marked as 1- 7). By
running SND and CG, GETbot got close to obstacles while navigating through
tight spaces. For instance, see the path near the obstacles labeled A - C in figures
5.1c and 5.1d. By employing TGF, GETbot safely and smoothly traversed the
obstacle course as shown in figure 5.1e. The translational and rotational speeds
(v and w) were recorded and plotted against the elapsed time. Figures 5.1f, 5.1g,
5.1h, and 5.1i show these speeds for ND+, SND, CG, and TGF, respectively.

5.2.2 Experiment 2

The environmental structure of this experiment consisted of different sized ob-
stacles forming a large U-like shape, as shown in figure 5.2a. GETbot had to
pass through an obstacle course including various narrow gaps where the avail-
able clearance at some locations did not exceed 10 cm to both robot sides. By
employing CG, GETbot moved close to obstacles like those labeled A - D in fig-
ure 5.2d. Furthermore, a touch with the obstacle marked as F occurred by using
both ND+ and CG (see figures 5.2b and 5.2d). By applying SND, GETbot failed

92 5 Evaluation of the Holonomic Solutions

_. 03] _. 03] — = 03
2 el I e 2 oA AN | E A
> 03 > 03 > -03 > 03
o 20 40 60 80 100 120 20 40 60 80 100 1. : 20 40 60 80 100 1.) 20 40 60 80 100 120

W (radis)
5 o
ao&
W (rad/s)
5 o
2o
W (rad’s)
s_¢
2o
W (radis)
5 o
2o

20 40 60 8 100 120 20 40 60 8 10 120 0 20 40 60 8 10 120 0 2 40 60 8 10 120
Time (s) Time (s) Time (s) Time (s)

) (8 (h) 0

Figure 5.1: Scenario 1 (reprinted from [MFM16], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ND+, (c)
SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f) ND+, (g)
SND, (h) CG, and (i) TGF.

to reach the goal as it collided with obstacle D and then ran over the tight gap
formed by obstacles E and A (see figure 5.2¢). Figures 5.2b - 5.2d demonstrate
that the ND variants were prone to rapid changes in the direction of motion and
unreasonable deviations towards free regions (e.g. see the points marked as 1 -
3). It can be deduced from figure 5.2e that TGF was able to drive GETbot with
improved efficiency, safety, and smoothness compared the ND methods. This has
been confirmed by plotting the velocity profiles in figures 5.2f - 5.2i.

5.2.3 Experiment 3

This experiment had three challenges (see figure 5.3a). First, the obstacle course
consisted of several consecutive tight and curvy passages (e.g. P2, P3, and P4).

Second, some tight gaps had one side with higher density of obstacles compared to

5.2 Experiments 93

0.
e L U i Lo P e N T
2 7 7 T g A
£ 9 £ 0 € I
> -03 <03 <03 S -03
20 40 60 80 o 20 40 60 20 40 60 20 40 60

W (radis)
2o
W (radis)
a0
W (radis)
5 o
%
W (radis)
5 o
mg

3
&
8
8

20 40 60 80 20 40 60 80 0 20 40 60 8
Time (s) Time (s) Time (s) Time (s)

) (8 (h) (M

Figure 5.2: Scenario 2 (reprinted from [MFM16], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ND+, (c)
SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f) ND+, (g)
SND, (h) CG, and (i) TGF.

the other (e.g. P1 and P2). Finally, the traversed route included many openings
through which the robot did not fit (between each two obstacles). The goal was
successfully reached by using both ND+ and TGF (figure 5.3b and figure 5.3e).
However, with ND+ oscillations occurred along the traversed route and the chair
marked as A was touched as can be seen from figure 5.3b. Moreover, the motion
was unstable while traversing the first passage (marked as 1 in figure 5.3b). By
employing CG and SND, GETbot pushed over the thin obstacles located to the
right side of passage 1, coming to a full stop after 68 s and 26 s, respectively.
Furthermore, the robot’s movement was oscillatory and unstable as shown in
figures 5.3c and 5.3d. Although the environment was very complex and contained
several tight passages, the TGF approach managed to safely and smoothly guide
GETbot towards the goal as shown in figure 5.3e. Figures 5.3f - 5.31 depict the

recorded speeds plotted versus the elapsed time for all techniques.

94 5 Evaluation of the Holonomic Solutions

=% = %3 s % _ 03]
N £ 9 £ 0 e A S
< 03] < -03] > -03) < -03]
P
° 0 60 %9 120 15 180 0 60 % 120 150 180 0 6 % 120 10 18 30 60 9 120 150 180
1 1
71?0'5 7;05 ;05 = 05
i i, i £ iy
< -0 < 05| = -03] < 08}
. = = -1 = o
o 30 60 90 120 150 180 o 30 60 20 120 150 180 [30 60 20 120 150 180 o 30 60 90 120 150 180

Time (s) Time (s) Time (s) Time (s)

() (e) (h) 0]

Figure 5.3: Scenario 3 (reprinted from [MFM16], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ND+, (c)
SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f) ND+, (g)
SND, (h) CG, and (i) TGF.

5.2.4 Experiment 4

In this experiment, it was supposed to guide GETbot through two obstacle struc-
tures. Both structures were created in GET Lab; one in the entrance corridor
(see figure 5.4a) and the other inside P 1.6.18, one of GET Lab rooms (see figure
5.4d). The major challenge in this experiment was the existence of consecutive
passages with large difference in width between them (e.g. P1 and P2, P3 and
P4). In such a situation, a considerable reduction in speed was necessary to
achieve safe navigation while driving GETbot towards a relatively narrow pas-
sage, coming from a wide opening. An additional challenge was the presence
of obstacles forming U-like shapes (e.g. see the large U-shape obstacle in figure
5.4d). The goal was reached by employing all techniques, as can be seen from
figures 5.4b, 5.4c, 5.4e, and 5.4f. Similar to experiments 1 - 3, the ND meth-

ods were prone to rapid changes in the direction of motion (oscillations). For

5.2 Experiments 95

U-shape
4— obstacle

0.
0.3|

; : i _J
0 0 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280 40 80 120 160 200 240 280 40 80 120 160 200 240 280
> 0.5) - 0.5] - 0.5) - 0.5)
£ ol g0 g o 3 °JKVAWM\-W
= -0.5| = 0.5 = -0.5) = -0.5)
o 40 80 120 160 200 240 280 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280 [40 80 120 160 200 240 280
Time (s) Time (s) Time (s) Time (s)
() (h) (0 O]

Figure 5.4: Scenario 4 (reprinted from [MFM16], with permission from Elsevier).
(a, d) Environmental setup. (b, ¢, e, and) Paths generated by (b)
ND+, (¢) SND, (e) CG, and (f) TGF. (g-j) Speed profiles for (g)
ND+, (h) SND, (i) CG, and (j) TGF.

instance, see the generated paths near points 1 - 8 in figures 5.4b - 5.4e, as well
as the large spikes in figures 5.4g - 5.4i. Moreover, by applying ND-+, successive
turn changes occurred while driving GETbot through the passage labeled P5, as
can be deduced from figure 5.4b. By employing CG, GETbot got close to the
obstacle marked as E and overturned obstacle D. With the SND technique, the

96 5 Evaluation of the Holonomic Solutions

performance was worse as GETbot ran over the obstacles marked as D, E, and
F and moved close to obstacles A - C. Figures 5.4f, and 5.4j demonstrate the
improved performance of the proposed TGF method.

5.2.5 Experiment 5

The objective of this experiment was to test the behavior of TGF in the existence
of moving objects. At the start of the mission, two boxes were located in front
of the robot, as shown in figure 5.5a. At that moment, the gap labeled G1
was detected and selected to navigate through. Once the line marked as L. was
crossed, three boxes were pushed across the path towards G1. Notice that line L
was approximately 50 cm away from the boxes at that time (figure 5.5b). It was
recognized that the path towards G1 was blocked and a new gap was created
between the cupboard and the boxes, denoted as G2 in figure 5.5b. At that
moment, the robot turned sharply to avoid collision with the boxes and then
smoothly proceeded towards gap G2. The trajectory and the speed profile are
shown in figures 5.5f and 5.5j, respectively. The ND variates were tested using
the same setup. However, it was impossible to replicate the same scenario with
each method, pushing the boxes at the exact time, velocity, and orientation.
Furthermore, with each algorithm line L. was reached with different velocity and
heading. For example, by running ND+, SND, CG, and TGF, the robot’s velocity
was 0.11m/s, 0.045m/s, 0.033m/s, and 0.21m/s, respectively. Therefore, the
performance of the tested methods cannot be fairly compared. Nevertheless,
just to give an impression about the behavior of the ND variants, the generated
paths and the speed profiles for ND+, SND, and CG are visualized in figures 5.5¢
- 5.5e and 5.5g - 5.51, respectively. Although with TGF line L was reached at a
speed higher than that of the ND variants, GETbot was able to avoid collision

on time and smoothly proceed towards the goal.

5.2.6 Experiment 6

The route chosen for this experiment consisted of three obstacle courses as shown
in figures 5.6a - 5.6¢c. The robot had to pass through the door labeled D1 in figure

5.2 Experiments 97

V (mis)

W (radis)

0 20 30
Time (s)

(e) (h)

Figure 5.5: Scenario 5 (reprinted from [MFM16], with permission from Elsevier).
(a, b) Environmental setup where (a) Depicts the start of the mission
at which two boxes were located in front of the robot and (b) Mimics
the moment at which three boxes were pushed towards the corridor
once line L was crossed. (c-e) Paths generated by (c¢) ND+, (d) SND,
and (e) CG, where oscillations in motion can be observed. (f) TGF
avoided collision on time and smoothly proceeded towards the goal.
(g-j) Speed profiles for (g) ND+, (h) SND, (i) CG, and (j) TGF.

5.6a, navigate towards the door marked as D2 in figure 5.6b, and finally reach
the goal location shown in figure 5.6c. The obstacle courses were constructed in
such a way that, at each time step, the robot may have multiple solutions (more
than one navigable gap) and it had to decide which one to consider. For example,
at the starting location, six navigable gaps were detected, the gaps labeled 1 - 6
in figure 5.6a. Similarly, at the locations labeled P1 and P2, the navigable gaps
7 -9 and 10 - 12 were detected, see figures 5.6b and 5.6¢c. As expected, the robot
selected the gap closest to the goal in each case (gaps 1, 7, and 12, respectively).
The paths generated by ND+, SND, CG, and TGF are shown in figures 5.6d -
5.6g. Similar to the previous experiments, oscillation in motion can be observed

along the paths taken by the ND variants (for instance, see the generated path

98 5 Evaluation of the Holonomic Solutions

(& o
@

T N e e e) R L I A
of 0] 0) 0)
3 3|

V (mis)

03|

5| - 0.5 7 0.5]
“WWWW g9 § ﬂ-\,»’\MmJ‘W'W
-0-5 g-ﬂ-ﬁ E-U:ﬁ

0 40 60 w0 60 40
Time (s) Time (s) Time (5) Time (s)

(h) 0] 0] Q)

W (radis)
5
2o

8 %

W (radls)
°

Figure 5.6: Scenario 6. (a-c) Environmental setup. (d-g) Paths generated by (d)
ND+, (e) SND, (f) CG, and (g) TGF. (h-k) Speed profiles for (h)
ND+, (i) SND, (j) CG, and (k) TGF.

at the points labeled 1 - 5 in figures 5.6d - 5.6f). We confirm our visualization
by plotting the recorded velocities versus time in figures 5.6h - 5.6k.

5.2.7 Experiment 7

The objective of this experiment was to verify the capability of the TGF method

to drive a mobile robot in unknown environments occupied by a crowd of moving

5.3 Performance Measures 99

persons. The experiment was carried out in the ME building at the university of
Paderborn®. This area is always crowded by students at the launch time. That
is why we conducted the experiment at around 12:00 noon. The mission was
started in front of the "Mensa” as shown in figure 5.7a. It was planned that the
robot moves through the connection between buildings ME and B to reach the
goal given near the elevator of building B. The connection and the location of
the goal are shown in figures 5.7b and 5.7c, respectively. At the beginning of
the mission, it was detected that the door labeled D1 in figure 5.7d is free, and
therefore the robot moved directly towards it. Once the location shown in figure
5.7e is reached, some students wanted to pass through the door, closing the way
of the robot. The situation was detected on-line, and therefore the robot decided
to move towards the free area to the right-hand side, as shown in figure 5.7f.
However, the students suddenly changed their decision and moved towards the
door marked as D2 in figure 5.7g, freeing the D1 door. At that moment, the robot
decided to pass through door D1 again, proceeding towards the free gap labeled
G1 in figure 5.7g. In a similar situation, whenever the robot reached the location
shown in figure 5.7h, a student closed the path planned across the door marked
as D3. As result, gap G2 was selected to navigate through instead. However, the
student kept moving, closing this gap as well, see figure 5.7i. At that moment,
the robot escaped towards the free area to the left-hand side as shown in figure
5.7j. While moving towards that direction, another student stepped in front of
the robot, leaving the D3 door behind him free, see figure 5.7k. Hence, the robot
decided to pass through door D3 again, progressing towards the goal location
as depicted in figure 5.71. The trajectory followed by the robot and the velocity

profiles are visualized in figure 5.8.

5.3 Performance Measures

Performance evaluation of robot motion planning techniques is a challenging
issue, since assessing a method is often based on the application where it is

being used. Furthermore, the robot motion is active, in the sense that the action

2 A video of this experiment can be found at: https://getwww.uni-paderborn.de/research/
videos/dynamic-obstacles

https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles
https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles

100 5 Evaluation of the Holonomic Solutions

Building ME_«+
-t %ﬁ;

(b)

(&) W M

Figure 5.7: Scenario 7. (a-c) Environmental setup. (d-g) Snapshots of the ex-
periment taken whenever the robot passed through door D1, at which
several students closed the robot’s path for a while. (h-i) Snapshots
of the experiment show how the robot navigated through door D3.

performed affects the world state, e.g. the robot’s configuration and speed. That
is why it is not possible to produce benchmarking datasets of log-files, such as

those used for testing localization and mapping algorithms [CN09].

5.3 Performance Measures 101

2 i
- S Y
2L Tl g L ! =
= ; /
, <
¢ v] |
A
| — 2 _
(a)
0.6 1
_ 0_3WM%\/‘W - 0.5k
O 3 0
>-0.3' 3_0'5.
0.6 L L L L . o= , , , , , ,
0 20 40 60 8 100 120 0 20 40 60 8 100 120
Time (s) Time (s)

(b) ()

Figure 5.8: Visualization corresponding to Experiment 7. (a) Trajectory gener-
ated by the robot applying the TGF method. (c¢,d) Recorded motion
commands plotted against the time elapsed.

Several aspects should be considered while evaluating a motion system, such as
the robot’s behavior along the trajectory, the time needed to accomplish the
task, what kind of risk the robot faces during execution, etc. In the last years,
some efforts have been devoted towards finding common performance metrics of
a robotic navigation system (e.g. [GWO03], [MVLO07], [CN09], and [YAT10]). In
general, those metrics can be classified into five groups: efficiency, oscillation,

smoothness, physics-based, and security.

5.3.1 Efficiency Metrics

The efficiency or effectiveness of the vehicle is one of the most important measures

to be considered when evaluating the performance of a motion system. It can be

102 5 Evaluation of the Holonomic Solutions

reflected by the time and space dimensions of the trajectory. Loosely speaking,
the least the zig-zag and curved motion, the higher the efficiency of the vehicle.
The most commonly used metrics for assessing the efficiency of a navigation

system are described in the following.

Total execution time Tiot [s]: The total amount of time it takes a robot to
fulfill a given task [CN09] (time to reach a target). For a better performance, it

is desirable to have a low execution time.

Path length Pic, [m]: The total distance traveled by a robot from an initial
location to a goal. This metric is useful for tasks in which the power consumption
is of great concern. Apparently, a shorter path is preferable for achieving a better
performance. Assume that a trajectory is given by y = f(x) in the X —Y plane
and (z;, f(x:), (x¢, f(x+)) denote the initial and target locations, the total path
length Pien is defined according to [MVLOT7]:

Plen = /“(1 +(f(@)?)} da (5.1)

i

where f(x) is the derivative of f(x) with respect to z.

5.3.2 Oscillation Metrics

The measures introduced in this and in the following sections, reflect the robot’s
behavior during the whole task execution. In particular, this section presents the
metrics that are helpful to detect oscillations along the trajectory. As we have
pointed out in chapters 3 and 4, oscillations may occur as a result of successive
turn changes while passing through narrow passages or due to deflections towards
free areas. Notice that these metrics also provide a measure of smoothness, since

the less the oscillations the smoother the trajectory.

Curvature change Ccpg [rad/m|: The curvature change is useful for detect-
ing oscillations and unstable motion along the trajectory. Given the linear and

angular robot velocities (v(t), w(t)), the curvature can be defined as [CN09]:

k(t) =

w(t)
o) ’ (5.2)

5.3 Performance Measures 103

The curvature change is then computed as:
Ttot
Ceng :/ |K'(¢)| dt (5.3)
0

The lower the value of Ceg, the less oscillations occur.

For a better comparison, an average curvature change is computed by dividing

the value of Cecng by the total execution time Tioy.

Number of zero crossings along the curve of rotational speed Z.: This
metric, that we proposed in [MFM16], measures the amount of variations in the
heading direction (number of times a robot turns from one direction to another).
Hence, it gives an impression about the degree of oscillations in a trajectory.

Having less Z,, is desirable and indicates more stable control commands.

5.3.3 Smoothness Metrics

The smoothness of a trajectory reflects the energy and time consumption and
can be related to the system integrity [CN09]. It also indicates the consistency in
decision-making and shows the ability of the system to anticipate events [Ros97].
Moreover, a robot that navigates in a smooth way is socially more acceptable,
particularly if it shares spaces with humans. In order to measure the smoothness

of a trajectory, we use the following two measures.

Accumulated linear and rotational jerks, J.cc [m2/55] and Cacc [radz/ss}:
Jerk (defined as the time derivative of acceleration) is correlated with abrupt
variations in the actuator forces [Frel2]. Therefore, it is possible to quantify

smoothness in both steering and speed as a function of jerk [Ros97].

Given the linear and rotational robot velocities (v(t), w(t)), we have defined the

accumulated jerk costs (linear and rotational) in [MFM16] as:

1 Ttot . 9
Jace = - [’U(t)] dt (54)
Ttot 0

1 Tot .
Cace = m/O [co(t)]? dt (5.5)

104 5 Evaluation of the Holonomic Solutions

For a smoother behavior, trajectories that minimize both the linear and rota-

tional jerk costs are desirable.

5.3.4 Physics-based Metrics

In this section, we describe the metrics that are related to the stability of the
motion and the dynamics of the vehicle itself. Therefore, they are useful for
evaluating the performance of those systems where the dynamics of the robot
have to be considered. Basically, These metrics are defined in terms of the
inertial forces acting on the robot along the trajectory. However, they consider
a unit-mass robot, i.e. the mass of the robot is neglected. In the following, we

present the most commonly used physics-based metrics.

Lateral stress Sia¢ [N.s]: With the lateral stress, the centrifugal force acing on
the robot is directly measured. The centrifugal force affects the stability of the
robot and can lead to lateral wheel skidding (due to a curved motion). Therefore,
it is desirable to have a lower Si,¢ value. In general, the straighter the generated

path, the lower the value of Sjat.

The lateral stress is computed by integrating the centrifugal force along the

trajectory [CN09]: . ,
tot 'U(t)

Sla :/ dt 5.6

=l >0

where r(t) is the instantaneous curvature radius (i.e. r(t) = 1/k(¢)); the recip-

rocal of the curvature .

Tangential stress Sing [IV.s]: Similar to the lateral stress, Seng [V.s] is directly
associated with the robot dynamics. It is useful to detect abrupt speed changes
(sudden acceleration and braking) which may cause slipping while turning. The

value of Siug is computed as follows [CN09]:

Ttot
Stng = / la(t)] dt (5.7)
0

where a(t) is the instantaneous linear acceleration (a(t) = 0(¢)).

Having a lower S¢y,g is preferable for achieving a more stable robot motion.

5.4 Evaluation and Discussion 105

5.3.5 Security Metrics

The metrics discussed in this section describe the hazards along the trajectory
in terms of the distance between the robot and obstacles. Notice that there is
a trade-off between path length and security, hence it is up to the algorithm to

decide how far the robot stays away from obstacles

Obstacles risk Robs [m_l}: This metric is concerned with measuring the risk
of obstacles, reflected by their proximity to the robot across the entire task. Let
Tmin (t) Tepresents the distance between the robot and the closest obstacle at time
t, Robs can be expressed as [CN09|:

Ttot 1
Robs :/ dt 5.8
“ =y e® 49

Collisions count Ncoi: The number of collisions is counted per task [Min08]. A

safe motion requires a collision-free operation along the entire trajectory.

It is worth to mention that while computing Cchg, Siat Or Robs, a division by zero
may occur. This problem is avoided by adding a small value € to the denominator
in Egs. (5.3), (5.6), and (5.8). In our analysis, ¢ was set to 0.001.

5.4 Evaluation and Discussion

The aforementioned measures were employed to evaluate the performance of
the “TGF approach” and to compare its behavior to that of the ND variants.
Experiments 1 - 6, presented in section 5.2, yield the results shown in table
5.1. It can be observed that the proposed “TGF approach” presented the best
results in terms of all metrics considered. Significant differences in execution
can be observed looking at the oscillation and smoothness metrics (Cehg, Z,
Jace, and (acc). However, in the first scenario, the lateral stress (Siat) and risk
(Robs) metrics associated with the ND+ method were slightly better than those
associated with TGF. This can be explained by the tendency of ND+ to drive the
robot across the center of openings, regardless of their width. Such a behavior

maximizes the clearance to obstacles, but at the same time increases the distance

106 5 Evaluation of the Holonomic Solutions

Table 5.1: Performance assessment of the proposed TGF approach for experi-
ments 1 - 6, presented in section 5.2, using the metrics defined in
sections 5.3.1 - 5.3.5 (results of experiments 1 - 4 are reprinted from
[MFM16] with permission from Elsevier).

Exp. Method Tiot Plen Ceng Zw Jace Gace Slat Stug Robs ~ Neol
ND+ 93 10.27 128.25 40 1.42 18.01 0.84 8.16 515.87 0
SND 97 8.75 13.53 46 0.59 4.21 099 6.73 1002.15

TGF 85 8.96 1.60 10 0.13 0.46 1.05 3.49 579.70

0
CG 117 10.56 121.83 50 0.61 2.84 120 11.02 832.02 0
0
1

ND+ 75 8.19 186.37 52 1.95 1549 1.11 9.96 669.48
9 SND fail fail fail fail fail fail fail fail fail fail
CG 75 8.04 213.26 54 143 9.29 1.00 10.14 924.68 1
TGF 52 7.17 2.17 8 0.18 0.86 0.75 2.53 445.84 0
ND+ 184 16.39 160.01 126 1.55 105.54 2.06 18.42 2635.02 1
3 SND fail fail fail ~ fail fail fail fail fail fail fail
CG fail fail fail ~ fail fail fail fail fail fail ~ fail
TGF 131 15.19 12.35 20 0.23 1.66 1.78 6.83 1478.25 0
ND+ 241 36.80 131.90 121 1.50 8.71 491 3441 1193.48 0
4 SND 232 34.10 82.56 143 0.85 6.41 397 24.69 2980.42 3
CG 277 36.04 143.74 215 0.84 9.61 4.49 27.54 41404.00 1
TGF 184 33.72 9.41 38 0.26 1.07 2.72 11.09 1008.60 0
ND+ 45 7.66 232.34 20 3.00 10.15 0.98 8.29 170.81 0
5 SND 41 6.95 55.16 31 1.30 11.13 0.89 5.51 199.36 3
CG 48 7.73 166.53 19 175 544 1.05 8.14 193.36 1
TGF 39 7.52 54.41 5 0.69 1.76 0.94 3.74 158.54 0
ND+ 98 16.51 169.79 52 2.99 9.12 228 18.16 475.86 0
6 SND 85 16.17 71.45 56 2.03 7.75 205 11.85 412.28 0
CG 86 16.24 61.40 36 180 7.08 212 11.30 450.68 0
TGF 72 14.16 29.28 26 0.57 2.05 1.19 6.14 411.97 0

traveled (Plen). Additionally, this results in a trajectory consisting of successive
small segments connected by sharp corners, significantly increasing the curvature
change and jerk costs (see figure 5.1b). Another observation from experiments 1
and 5 is that the trajectories created by SND have lower Plen and Sjat values than
those generated by TGF. This is a result of driving the robot close to objects
(figures 5.1c and 5.5d). Such a behavior reduces the path length (lower Pien) and

curvature (lower Siat), but at the same time highly increases the value of Rops.

The presented experiments show that all ND variants have in common the draw-
back of experiencing oscillations at passages that suddenly get narrower or at
sharp-turning maneuvers [MFM16]. As an example, see the location marked as
1 in figures 5.3b - 5.3d and the locations labeled 1 - 8 in figures 5.4b, 5.4c, and

5.4 Evaluation and Discussion 107

5.4e. The abrupt variation in the width of a passage results in a severe reduction
in the robot’s velocity (may approach zero) followed by a sharp turn. Due to the
speed gained before performing the turn, the robot may experience oscillations
and wheel slippage. This is reflected by the values of Ceng, Zw, Cacc, and S¢ng. We
attribute this behavior to the usage of the Artificial Potential Field concept in
performing the avoidance maneuver, regardless of the location and field of view
of the traversed opening. In this regard, approaching one side of a tight opening
generates a strong repulsion force, causing a sharp turn that takes the robot
away from obstacles. Apparently, this behavior is repeated with the other side.
Additionally, whenever the robot faces a relatively wide area located between
two narrow passages, it tends to deviate towards the free region performing a
sharp turn, followed by a another sharp turn towards the opposite side trying to
enter the second narrow passage (e.g. see the trajectories near point 6 in figures
5.4b - 5.4e). These sudden turn changes may lead to oscillations and instability,
which can be unsafe if the robot is passing through a narrow passage or if it is
navigating at a relatively high speed. Furthermore, the time required to reach

the goal increases as turn maneuvers are executed at lower speeds [MFM16].

It is worth to compare the discussed ND variants with each other. It can be seen
that ND+ is safer and may negotiate more difficult scenarios. It managed to guide
the robot through all obstacle courses with lower risk value and fewer collisions.
Nevertheless, SND and CG are better in terms of smoothness. See, for instance,
the path while navigating through passage P5 in experiment 4. This can also be
deduced from the corresponding Jacc and (ace values. CG and SND seem to be
more sensitive to the obstacle distribution [MFM16]. For instance, whenever the
SND-controlled robot passes through a tight gap having more threats on one side
compared to the other, it usually approaches the side having the least number of
threats (e.g. A and C in figure 5.1c, A - C in figure 5.4c), experiences collisions
(e.g. D - F in figure 5.4c), or fails to reach the goal (e.g. experiments 2 and
3). By respecting the percentage of threats on each side, CG was able to drive
GETbot towards the goal in experiment 2, but with more oscillations (larger

Cchg). Furthermore, it experienced collisions as in experiment 3.

Another observation is that the motion behavior of TGF appears more human-

like compared to the ND variants. In [MFM16], we have explained this claim by

108 5 Evaluation of the Holonomic Solutions

describing the reaction to threats falling in between the robot and the closest gap:
“Using the TGF method, each obstacle generates an avoidance angle which points
directly towards the closest gap or parallel to the obstacle in the direction closer
to the gap. Hence, all these obstacles contribute in heading the robot towards
the closest gap. By using the ND variants, on the other hand, each obstacle
point falling within D, (ND+ only considers the closest two, whereas SND and
CG consider all) causes an avoidance angle which points directly away from the
obstacle regardless of the direction towards the closest gap. This avoidance angle
is weighted by the relative proximity of the obstacles in the SND and CG methods
(each one uses different weights). The direction of motion is then adjusted by
the total averaged (ND+) or weighted (SND, CG) avoidance angle”.

In order to demonstrate the capability of TGF to safely drive the robot at higher
speeds, experiments 3 and 4 were performed again using higher speed limits
(0.7m/s, 1.3 rad/s). Notice that 0.7m/s is the maximum possible linear velocity
in our robot. Both experiments were carried out using the implementation of
the TGF and ND+ methods®. Among the ND variants, ND+ was selected
as it managed to negotiate harder scenarios. Also, the experimental setup of
experiments 3 and 4 were selected as they were challenging and had several
difficulties as discussed in section 5.2. With the ND+ method, GETbot failed to
reach the goal in experiment 3 and the mission was aborted after 85 s. This is due
to the fact that GETbot collided with the obstacles marked as A - C and finally
overturned obstacle D as depicted in figures 5.9a and 5.9e. By employing TGF,
the goal was successfully reached in 105s only (see figures 5.9b and 5.9f). In
experiment 4, ND+ was unable to drive GETbot towards the goal as well. This
is owing to the fact that it overturned the obstacle labeled A and the mission
was aborted after 241 s (see figures 5.9c and 5.9g). Furthermore, ND+ was prone
to oscillations and instability as can depicted from the generated trajectory near
points 1 - 4 (see figure 5.9¢) Using TGF, GETbot successfully passed through
the obstacle course and the goal was reached in 140 s (figures 5.9d and 5.9h).

It is worth to differentiate the execution of TGF to that of the SG method. For

this purpose, we make use of experiments 1 - 3 from chapter 4, which have been

3Videos of these experiments can be found at: “http://getwww.uni-paderborn.de/research/
videos/tgf2”

http://getwww.uni-paderborn.de/research/videos/tgf2
http://getwww.uni-paderborn.de/research/videos/tgf2

5.4 Evaluation and Discussion

109

0.
o E T 5 % 2 Mt
£ 9 B B N
< -04) = 04 < 04 = 04
0. 0. 0.
0 30 60 90 120 150 180 0 30 60 90 120 150 180 0 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280
1 1. 1. 1.
> 0.8] - 0.8 - 0.8 - 0.8
g0 3 °WMWW i 9 3 ofhulrdypily,
= -08) = 08| = 08 < 08}
B i = =
0 30 60 90 120 150 180 0 30 60 90 120 150 180 0 40 80 120 160 200 240 280 (] 40 80 120 160 200 240 280

Time (s)

(¢)

Time (s)

()

Time (s)

(g)

Time (s)

(h)

Figure 5.9: Scenario 3 and 4 from section 5.2, but with (0.7m/s, 1.3 rad/s) speed
limits (reprinted from [MFM16], with permission from Elsevier). (a,
b) Paths generated in experiment 3 using (a) ND+ and (b) TGF. (c,
d) Paths generated in experiment 4 using (¢) ND+ and (d) TGF. (e-h)
Speed profiles corresponding to the paths shown in (a-d), respectively.

conducted using the implementation of ND+, CG, SG, and TGF. Table 5.2 shows
the performance of all methods, where it can be deduced that the results of the
TGF approach and both ND variants are roughly similar to those obtained from
the experiments presented in section 5.1 and discussed above. It is also obvious
that the TGF approach outperforms the SG method in all metrics, establishing
a much more stable and reliable navigation approach. In particular, significant
performance improvements can be seen looking at the oscillation and smooth-
ness metrics. We believe that this improvement is the result of integrating the
“tangential” and “gap flow” concepts and determining the avoidance trajectory
based on all surrounding obstacles. Additionally, one can notice from figures 4.10
- 4.12 and from table 5.2 that the narrower the passages the bigger the difference
in performance between the TGF and SG methods. For example, the biggest

difference in performance between both methods occurs in experiment 3 (figure

110 5 Evaluation of the Holonomic Solutions

Table 5.2: Performance evaluation results for the experiments presented in section
4.3 from chapter 4, using the metrics defined in sections 5.3.1 - 5.3.5.

Exp. Method Tiot Pilen Cehg Zw Jace Cacc Slat Stng Robs Neot

ND+ 55 6.59 134.65 36 141 1046 0.81 6.39 537.35 0
CG 56 6.79 3430 42 071 4.76 0.75 5.46 588.85

SG 48 6.57 18.67 22 0.58 448 0.54 3.54 647.58

TGF 45 6.48 1.66 11 0.21 0.87 0.58 2.59 451.06

0
0
0
ND+ 90 10.80 208.45 45 191 13.07 1.56 14.07 634.37 0
2
0
0

9 CG 86 9.88 70.37 8 1.06 10.72 1.26 9.78 1378.00
SG 72 10.10 16.15 21 0.67 9.76 1.16 5.02 573.06
TGF 63 9.83 3.91 7 015 0.59 1.06 4.98 594.26
ND+ fail fail fail ~ fail fail fail fail fail fail fail
3 CG fail fail fail fail fail fail fail fail fail fail
SG 76 8.45 80.28 44 094 1226 091 7.00 1029.60 1

TGF 66 8.26 10.07 12 0.10 0.52 0.77 6.28 770.29 0

4.12), since the environment is composed of very narrow passages. Finally, when
comparing the performance of the SG approach with that of the ND+ and CG

methods, it becomes obvious that the SG method achieves the best results.

As we have pointed out in sections 4.3 and 5.2, the presented experiments were
performed using the ND-controller. It is important to demonstrate the effective-
ness of the TGF-controller (proposed in section 4.2) on the performance of the
robot. For this purpose, experiments 3 and 4 from section 5.2 and experiments
2 and 3 from section 4.3 were repeated, but using the TGF-controller*. These
experiments were carried out using two different speed limits: firstly, by setting
Umax and wmax to 0.5 m/s and 1rad/s, similar to the original setup, and then
by limiting them t0 vmax = 0.4m/s and wmax = 0.87ad/s. Using both speed
limits, the time needed to reach the goal was less than that of the ND-controller.
Figures 5.10 and 5.11 show the paths generated and the speed profiles. The per-
formance assessment is also shown in tables 5.3 and 5.4. It can be seen that the
TGF-controller outperforms the ND-controller in terms of Tiot, Cehg, Jace, and
Stng. As we reported in [MFM16], this improved performance is indeed a result
of directly deriving the TGF-controller from the robot’s kinematic model in such
away that stability of the system is guaranteed in the Lyapunov sense. Compar-

ing the other performance measures does not present significant differences.

4Videos of experiments 3 and 4 from section 5.2 using the TGF-controller can be found at:
“http://getwww.uni-paderborn.de/research/videos/tgf3”

http://getwww.uni-paderborn.de/research/videos/tgf3

5.4 Evaluation and Discussion 111

V (mis)
V (m/s)
V(mis)

0 30 60 9 120 150 180 0 3 60 9 120 150 180 0 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280

oAy

"o 30 60 EY 120 150 180 "o 30 60 90 120 150 180 "o 40 80 120 160 200 240 280 o 40 80 120 160 200 240 280
Time (s) Time (s) Time (s) Time (s)

(e)) () (h)

W (radis)
2o
W (radis)
2o
W (radis)
5 o
2o
W (radis)
5 o
2 0@

Figure 5.10: Scenarios 3 and 4 from section 5.2 running TGF, but using the TGF-
controller (reprinted from [MFM16] with permission from Elsevier).
(a, c) Paths generated in (a) Scenario 3 and (c) Scenario 4, using
(0.5m/s,1rad/s) speed limits . (b, d) Paths generated in (b) Sce-
nario 3 and (d) Scenario 4, using (0.4m/s,0.8rad/s) speed limits.
(e-h) Speed profiles corresponding to the paths shown in (a-d).

Table 5.3: Performance assessment of the TGF-controller for scenarios 3 and 4
from section 5.2 (reprinted from [MFM16] with permission from Else-
vier). As a reference, the results of the ND-controller from table 5.1
are listed, too.

Exp. Speeds Tt Pien Cehg Zo Jace Cace Sias Stng Robs Neol
3 (ND-controller) (0.5, 131 1519 1235 20 0.23 1.66 1.78 6.83 1478.25
3 (TGF-controller) (0.5, 100 15.65 1.67 21 0.06 247 3.27 3.62 1119.05

122 15.46 1.18 7 003 118 242 2.77 1340.76
184 33.72 941 38 026 1.07 272 11.09 1008.60
146 34.05 091 30 0.07 230 4.59 4.7 803.57
178 33.73 0.62 20 0.02 0.88 3.45 3.42 885.50

1.0)
1.0)
TGF-controller) (0.4, 0.8)
ND-controller) (0.5, 1.0)
TGF-controller) (0.5, 1.0)
TGF-controller) (0.4, 0.8)

[=ji el Rel e i el

112 5 Evaluation of the Holonomic Solutions

0.
O = 3 O P ey
2 of 2 £ 0
< -03) S - <03
© 20 40 60 80 20 40 60
2 08 . 5 08
3 ox,\/\ﬂ/\w g 5 °"”“”\“WWN
= -0.5) = = -0.5]
= H Ele
o 20 40 60 80 80 o 20 40 60 80
Time (s) Time (s)
(e) (h)

Figure 5.11: Scenarios 2 and 3 from section 4.3 running TGF, but using the TGF-
controller. (a, ¢) Paths generated in (a) Scenario 2 and (c¢) Scenario
3 using (0.5m/s,1rad/s) speed limits. (b, d) Paths generated in (b)
Scenario 2 and (d) Scenario 3 using (0.4m/s, 0.8 rad/s) speed limits.
(e-h) Speed profiles corresponding to the paths shown in (a-d).

Table 5.4: Performance assessment of the TGF-controller for scenarios 2 and 3
from section 4.3. As a reference, the results of the ND-controller from
table 5.2 are listed, too.

Exp. Speeds Tiot Plen Ceng Zo Jace Cace Siat Stng Robs Neol

ND-controller) (0.5, 1.0) 63 9.83 3.91 7 015 059 1.06 4.98 594.26
TGF-controller) (0.5, 1.0) 49 9.96 0.78 5 0.06 1.00 1.64 1.77 376.97
TGF-controller) (0.4, 0.8) 60 9.88 0.52 5 003 044 129 143 459.19

2 (
2 (
2 (
3 (ND-controller) ~ (0.5,1.0) 66 826 10.07 12 010 052 0.77 628 770.29
3 (
3 (

TGF-controller) (0.5, 1.0) 54 8.52 1.04 10 0.07 1.09 1.28 2.00 693.57
TGF-controller) (0.4, 0.8) 66 8.47 0.85 12 0.03 041 1.02 1.58 819.72

[=NeBel ool =]

6 Under-constrained Reactive Collision

Avoidance Navigation

This chapter introduces a novel obstacle avoidance approach for mobile robots
that must perform in highly cluttered environments. The previous chapters
illustrated the limitations of existing techniques when it comes to guiding robots
through narrow gaps in highly cluttered environments. In [MFM13b] [MFM13a]
[MJFM13] [MFM15] [MFM16] [MFM17] we have discussed a group of methods
that, at first sight, seem well equipped to deal with such difficult scenarios. Their
commonality is the employment of some sort of high-level information description
of the environmental structure. In particular, they include the SG and TGF
approaches, as described in chapters 3 and 4, as well as the Nearness-Diagram
(ND) techniques [MMO04] [DB08] [MFMJ10]. However, these methods (called
here gap-based methods) rely on a strong assumption which may not be valid in
real-world scenarios; they assume a holonomic disc shaped robot. This ignores
the actual robot shape and its kinematics, which may hinder finding feasible
motions or lead to collisions. Considering these constraints is especially critical
for robots operating in highly cluttered environments [MM17] [MFM18].

The drawbacks mentioned above have been addressed in the literature by mak-
ing use of the holonomic solution to generate motion commands that respect the
robot’s shape and kinematics. Bemporad et al. uses a least squares optimization
to align the robot’s orientation with the holonomic solution [BLOD96], whereas
Minguez and Montano decompose the problem into motion, shape, and kinemat-
ics which are independently solved [MMO02]. Because these solutions are based on
discretization of the problem and rely on approximations, such methods present
limited capabilities in environments requiring high maneuverability. A more gen-

eral methodology has been introduced in [MMO09] by transforming the workspace

114 6 Under-constrained Reactive Collision Avoidance Navigation

into ARM, an “Arc Reachable Manifold” that implicitly considers the robot’s
shape and kinematic constraints. Within this method, robots travel along paths
made up of circular segments. While this may provide a smoother motion than
previously mentioned methods, some problems may arise: not all gaps that are
in principle navigable may be reached via such arcs' and the involved coordinate
transformations make it difficult to search for openings in the first place, which

presents a serious challenge for gap-based navigation techniques [MFM18].

In summary, all existing obstacle avoidance methods either ignore the vehicle
constraints or have limitations in cluttered environments. To deal with this
drawback, in [MM17] [MM16] [MFM18] we have introduced the concept of an
“admissible gap” (AG), which will be discussed in the remainder of this chapter.

A gap is called “admissible” if it is traversable by performing a single motion com-
mand that respects both the shape and kinematic constraints. By employing this
concept, a new collision avoidance method, abbreviated as AG, has been devel-
oped and implemented. AG avoids the above mentioned limitations of existing
gap-based methods, while still being applicable for highly cluttered environments.
This has been possible by directly respecting the vehicle constraints rather than
adapting a holonomic-based solution. The overall approach works as follows:
similar to the holonomic solutions proposed in chapters 3 and 4, the sensor data
is searched for the most promising opening to navigate through. Once deter-
mined, an “admissible gap” is constructed in an iterative manner, which serves
as a bridge to the specified opening and provides a compromise between safety
and efficiency. Our approach is directly applied to the workspace without having
to construct an abstraction layer. Another important contribution of AG is the
development of a new procedure for finding out gaps. The method can be applied
to full or limited field of view sensors. Moreover, it discards useless gaps, hence
reducing oscillations. Outstanding results have been achieved in cluttered envi-
ronments, where the AG approach outperforms existing state-of-the-art methods
in terms of smoothness, safety, efficiency, and robustness [MM17] [MFM18].

This chapter is organized as follows. In section 6.1, some preliminary definitions

are presented. Section 6.2 describes our strategy of finding out gaps, and sub-

1By transforming the workspace into ARM, a gap is navigable only if it coincides with the
circular path that goes through the robot’s origin and tangential to its heading [MFM18].

6.1 Preliminary Definitions 115

sequently, section 6.3 introduces the concept of “admissible gap”. In section 6.4,
we show how this concept is employed to develop a navigation approach. Section
6.5 discusses the experimental results, while section 6.6 evaluates the execution

of AG. Finally, we point out some concluding remarks in section 6.7.

6.1 Preliminary Definitions

The following definitions and assumptions are used to explain the AG approach.

Notice that the definitions introduced in section 3.1.1 are also used here.

As mentioned in section 3.1.1, the list of scan points is denoted by S = {pf, upd },

where rmax denotes the maximum range of the sensor.

The rank of an element in S defines its relative location. For instance, the obsta-
cle point p$ is located to the right of pZSH and p$ is located to the left of p5_;.
Additionally, {pf,l, PS5 o), p%} contains the list of scan points to the right of
p? and is denoted by pf_. In the same way, pz.s+ = {p§’+17 p§+2, Yy pi} denotes
the list of scan points to the left of p$. Both lists p:?* and pf”L can be extended
beyond p§ and p$ if the adopted sensor has a 360° field of view (FFOV). In such
a case, both lists are adjusted as follows: pisf = {pis,l, s p?,pi,p,sl,l...,plsﬂ}
and p§+ = {pf’H, upS pl.ps, ..,,pf,l}. It is apparent that, in case of a FFOV

sensor, pz-s_ and pf+ consist of the same elements but with a reversed order.

Each point p$ has two neighborhoods; one is located to its left denoted by p§+
while the other is located to its right denoted by p$_. For example, for a FFOV
sensor, the right (resp. left) neighborhood of pf is pS (resp. p3).

It is important to note that accessing any element in a list (e.g. pf+, pZ-S_) is
performed sequentially (the order is respected). For example, point p? is accessed

before point p§+1.

Assume that F represents a frame centered at point ¢ and rotated by angle 0,
relative to the robot coordinate system. The position of a point p;, with respect

to frame F is represented as follows:

"pi=R"(pi—0) (6.1)

116 6 Under-constrained Reactive Collision Avoidance Navigation

where R is defined as:

R= (6.2)

cos(0r) —sin(0r)
sin(0r) cos(0r)

For a better visualization, superscripts are dropped in figures (for instance, the

depth point pj becomes p;).

6.2 Detecting Gaps

This section introduces a new strategy for finding out gaps. Compared to our
earlier work developed in [MFMJ10] (presented in section 3.1.3), the new strategy
avoids improper gaps as explained in section 6.2.3. The major part in locating
a gap is the detection of a spatial discontinuity in the sensor data, as will be
described in section 6.2.1. Generally, the algorithm consists of two steps: first, all
gaps V that can be seen from the current robot’s view are found out, as explained
in section 6.2.2. The second step, presented in section 6.2.3, implies identifying
and discarding useless gaps, reducing V' to G. Notice that this algorithm is based
on our paper published in [MFM1§]

6.2.1 Spatial Discontinuities

A spatial discontinuity is associated with an area in the workspace which is invis-
ible from p, [MFM18]. Assume that wmin represents the width of the narrowest
opening through which the vehicle may pass. In principle, specifying wmin de-
pends on the shape of the vehicle; if it is rectangular, wmin is set to its minimum
dimension (width). But, for a disc-shaped vehicle, wmin will be its diameter. A
spatial discontinuity takes place between two adjacent scan measurements (e.g.

p5 and pisil) if any of the following is met:

1) One of the two scan measurements is not an obstacle point (i.e. returns the

maximum range of the sensor):

(T'L'S = Tmax) ® (T'Lsil = rmax)

6.2 Detecting Gaps 117

2) There is a spatial distance between both scan points more than wmin:

It is apparent that the first discontinuity consists of one end point (an obstacle

S S
P: — Pit1|| > Wmin

point), while the second has two. The former is called a “unilateral discontinuity”,
whilst the latter is “bilateral discontinuity”. Each discontinuity is characterized
by its basis. In case of a “bilateral discontinuity”, the basis is the end point closer

to the robot. For a unilateral discontinuity, the basis is its unique end point.

We classify each discontinuity to left or right based on the location of the invisible
area, as seen by the robot sensors. A discontinuity of type unilateral is called
a “left discontinuity” if its basis is to the left of the non obstacle point. It is
called a “right discontinuity” otherwise. For a discontinuity of type bilateral, it
is characterized as left if its basis is to the left of the other end point. Otherwise,

it is characterized as right.

6.2.2 Gaps Search

The major part in extracting gaps is the detection of spatial discontinuities in the
sensor data. Similar to the procedure presented in section 3.1.3, this is carried
out in two steps: first, we detect discontinuities of type right, traveling from p$ to
pS (counterclockwise). Second, discontinuities of type left are detected, traveling

from pS to p} (clockwise). Both searches are described in the following:

“Counterclockwise search”: For every two adjacent scan points (e.g. p$ and
p§+), it is checked whether a right discontinuity d, exists or not®. If so, the basis
pv(dr) of d; specifies the “right side” p.(g) of a gap g. According to the “left

side” pi(g), it is determined as follows:
1) Let O" denotes the sequence of obstacles located to the left of p.(g), where
the angular difference between p.(g) and any element in O™ is less than =

0% = {bi € P (8) | ¥ # rmax, Proj(6 — 0:(2) >0} (63)

2Notice that for a FFOV sensor, the last two scan points are pi and pf, but for a sensor
whose field of view is limited (LFOV), they will be p5_; and pS.

118 6 Under-constrained Reactive Collision Avoidance Navigation

where 0. (g) represents the angle towards p.(g).

2) Each element p; € O™ is checked for validity to be a left side as follows®. Let
g be a virtual gap created by p; and p.(g). Obstacle p; is valid if g is visible
from p,. Otherwise, it is invalid. Visibility here means that the area defined by

the line segments P, p;, p-p:(g), and p;p:(g) is collision-free. This condition is
violated if the line segment that connects p; to pr(g) passes through an occupied
or an occluded region. To represent this condition mathematically, in [MFM18]
we have defined an angle, named the “visibility angle” of p; with respect to p:(g).

This angle corresponds to each p; € OT and can be expressed as follows:

r?(g)+D?fr?>

2D; () (6.4)

Py, (g) = arccos (
where 7,(g) and r; are the distances to p:(g) and p;, respectively, and D; the
distance from p; to p:(g).

The visibility condition of p; is fulfilled if the following equation holds:
Pr¥p, (8) < AP"Wp,_(g)

where AP*W,,. (g) is the minimum “visibility angle” among those associated with

all obstacles belonging to O and having a rank less than i:

APy, (g) = argminP Wy, (g), k< i (6.5)

pr€OTt

3) Let V(O™) be the list of valid obstacle points belonging to O, the left side
is created by the obstacle point closest to p:(g) and contained in V(O™):

pi(g) = argmin [[pr. — p:(g)ll, prx € V(OT) (6.6)

Pk

Notice that if V(O') does not contain any element (V(O1) = ¢), the left side
pi(g) is created by a virtual point at an angle of 9§+ (g) and a distance of R+ dsafe
from p.(g), where 62, (g) is the angle towards the “left neighborhood” of p,(g),

prs+ (g), and dgsafe a desired clearance to obstacles.

3Notice that the subscript of p; represents the rank of p; with respect to O, not to S.

6.2 Detecting Gaps 119

Ot =05U03U04UO5
V(0OT) =0, U {p;}

S
0000000000000000)

Os o
ﬂ ! B Ii‘.’ Pk

P

vty Pn | Pl .- O,

Figure 6.1: Finding out a gap (g) by the “counterclockwise search”. The light gray
color depicts the area covered by the sensing system. The obstacles
are shown by blue regions, where the list of detected depth points S
are visualized by small colored circles. See the text for explaining how
gap g is detected. For a better visualization, the symbol denoting the
gap (g) and the superscript p: in the “visibility angle” are eliminated
(reprinted from [MFM18], with permission from Elsevier).

Seeking for the remaining gaps is performed starting from point pi(g). We denote

the sequence of gaps detected by the “counterclockwise search” as Vec.

An example is shown in figure 6.1 where the environmental structure consists of
four obstacles, perceived as 5 lists of points, labeled O; - Os. Point p, represents
the right side of gap g which is created by the basis of d,. The list of valid and
invalid obstacles in O™ are visualized by green and red colors, respectively, where
Ot =0, U03U04UO;5. For example, p; is valid because it has the minimum
visibility angle ¥; among those associated with all obstacles belonging to O
and having a rank less than i (O2 here). Point p; does not satisfy the validity
condition because ¥; £ AW,_ where, in this example, A¥;- = ¥;. It can be
seen that the line segments between the invalid points and p; (e.g. PrP;) pass
through either an obstacle or an occluded region. Among the valid points in O™,

the closest to p, defines the left side of g (marked as p).

120 6 Under-constrained Reactive Collision Avoidance Navigation

“Clockwise search”: The sensor data is searched for gaps similar to the coun-
terclockwise search, but performed in the reverse order: for every two adjacent
scan points (pis, pis,), it is checked whether a left discontinuity d; exists or not?.
If yes, the “left side” pi(g) of a gap g is formed by the basis py(di) of di. The
“right side” pr(g) is determined as described in the following.

1) The sequence of obstacles O~ located to the right of pi(g) is identified, where

the angular difference between pi(g) and any element in O~ is less than 7

0~ = {pf €p{ (&) | ¥ # rmwx PROJ (O — 1(2)) <O} (6.7)
where 601(g) denotes the angle towards the left side.

2) The elements of O~ are checked for validity. The outcome is the sequence of
valid obstacles V(O™):

V(Oi) = {Pi eO™ | pl\IjPi (g) < /\pl‘l/pif (g)} (6'8)
where AP'W,,, (g) can be expressed as:

APy, (g) = argmin® Wy, (g), k < i (6.9)
pPLEO™

3) The right side is created by the obstacle point belonging to V(O ™) and closest
to pi(g):

p:(g) = argmin Ipx = pi(@)ll, pr€V(O7) (6.10)
If V(O7) = ¢, the right side is created by a virtual point at an angle of 65 (g)
and a distance of R + dsate from pi(g), where 67 (g) is the angle towards the
“right neighborhood” of py(g), denoted as pS_(g).

Seeking for the remaining gaps is performed starting from point p:(g). The

sequence of gaps detected by the “clockwise search” is denoted as V..

After performing both searches (counterclockwise and clockwise), the output is

the set of all gaps V' = V.. U V. that can be seen by the sensing system.

4Notice that for a FFOV sensor, the last two scan points are p? and p,SL7 but for a sensor
whose field of view is limited (LFOV), they will be p5 and p5.

6.2 Detecting Gaps 121

6.2.3 Gaps Reduction

As mentioned at the beginning of this chapter, our method discards useless gaps,
reducing V' to G. A gap is considered useless if it can be reached by traversing

another gap. This section shows how useless gaps are identified and eliminated.

Every gap g € V is classified based on its position with respect to the sensor
frame. If |6i(g) — 0:(g)| < m, g is called a “front gap”. Otherwise, it is a “rear
gap”. A gap g; is reachable from gap g; if two conditions are met: first, both
gaps have the same type. Second, g; includes gj. Fulfilling the second condition is
based on the gap type: if both g; and gj are of type front, the following equation
must hold:

Ox(g5) > Oc(gi) A O1(g5) < Oi(gi)

However, if they are of type rear, the equation to be checked is:

0:(g5) > 0:(g1) A Oi(g) < Oi(g)

where 6(g) (resp. 6:(g)) is the angle towards the point that makes an angular
difference of © with 6i(g) (resp. 6:(g)):

61(g) = proj (61(g) —) (6.11)

0:(g) = proj (6:(g) — m) (6.12)

From V', we eliminate those gaps that are reachable by other gaps. The list of

remaining gaps is denoted as G:

G =V \{g €V |gjis reachable from g; € V, g; # g;} (6.13)

Figure 6.2 shows an example of the “gaps search” procedure. In the “counter-
clockwise search”, the bases of the discontinuities (of type right) labeled AB, HI,
NO, RS, and WX create the “right sides” of the gaps marked as 1, 2, 3, 4, and 5.
Their corresponding “left sides” are, respectively, marked as C, L, Q, V, and Z.
Performing the “clockwise search” results in gaps 6 — 10, whose “left sides” are
formed by the bases of UT, QP, LK, FE, and ZY, and whose “right sides” are

122 6 Under-constrained Reactive Collision Avoidance Navigation

P 3) 0 F (9 D
3\ Q N/
M
7|R A () C
e
W7 B
T A) | (10) y
o e Py
W Z
X . Pn-1,P >PA-P2 Y

Figure 6.2: Finding out gaps by the AG method. The green and red arrows vi-
sualize the gaps that are found by the “counterclockwise” and “clock-
wise” searches, respectively. In the “gaps reduction” step, each gap
depicted by a dashed arrow is eliminated (reprinted from [MFM18] ,
with permission from Elsevier).

created by points R, M, G, D, and W, respectively. It is obvious that gaps 2, 3,
6, and 10 can be discarded as they are reachable through gaps 8, 7, 4, and 5.

Remark 1 (Comparison to Other Strategies) The AG approach as well as
the CG technique [MFMJ10] have in common the advantage of reducing the num-
ber of detected gaps compared to those found by the ND methods (e.g. [MMO04],
[MOMO04], [Min05], and [DB08]). An example is shown in figure 6.8 where the
total number of gaps returned by both AG and CG are 5 and 4 marked as 1 - 5
and i - v, respectively. For the ND methods, 14 gaps are detected labeled A -
N. When compared to CG, the AG method avoids improper gaps such as gap ii.
It can be seen that gap ii is reachable through either gap 2 or gap 3 which are
even more convenient to be detected here®. Furthermore, gap 5 replaces gaps iii
and iv since the AG method, unlike CG, deals with FFOV sensors. Additionally,
gaps 1 and 4 have been returned rather than gap i, since the angular width of
each gap in AG is limited to a mazimum absolute value of w. This is important

to cope with the collision avoidance procedure presented in section 6.4.

5Despite the fact that the robot may pass through gap 4, the navigability check algorithm
proposed in [MOMO04] considers this gap as non navigable because the line segment be-
tween the center of 74 and the robot’s origin intersects an obstacle. AG avoids detecting
such a gap by examining the validity of obstacles in the “gaps search” process.

6.3 Admissible Gap 123

- R:“Fdsafe
¢ @
sl rl el o
H

()

w3 Pn P1 - —
5 Q)
N N) v Ax

Figure 6.3: Extracting gaps by different methodologies, including the proposed
AG approach. The total number of gaps returned by AG and CG
[MFMJ10] are 5 (marked as 1 - 5) and 4 (labeled i - iv), depicted by
green and red arrows, respectively. For the ND methods (e.g [MMO04]
and [DBO08]), 14 gaps are detected, marked as A - N (reprinted from
[MFM18], with permission from Elsevier).

6.3 Admissible Gap

This section introduces the “Admissible gap” (AG) concept, providing a basis
for developing our collision avoidance approach. Generally speaking, a gap is
admissible if it is traversable by performing a motion command that respects the
vehicle constraints. Section 6.3.1 reviews the kinematic constraints and describes
important characteristics of the vehicle’s path, which will be used to explain the
AG concept. In section 6.3.2, a new methodology for traversing gaps is pre-
sented. Section 6.3.3 shows how this methodology, which respects the kinematic
constraints, is utilized to identify the admissibility status of a specific gap. For
a better visualization the symbol denoting the gap (g) is omitted in this section.

For example, p.(g) is replaced by pr.

6.3.1 Kinematic Constraints

The motion of any robotic system undergoes some constraints imposed by phys-

ical limitations. Here, we consider a differential-drive robot that navigates on an

124 6 Under-constrained Reactive Collision Avoidance Navigation

even surface and subject to “rolling without slipping” velocity constraints. As
discussed in chapter 2, the motion of this robot can be described by [LSLI8]:

—&sinf 4+ ycosd =0 (6.14)

where (z,y,0) denotes the position and orientation of the robot with respect to

the global coordinate system.

This non-holonomic equality constraint reduces by one the dimension of the
velocity space. Therefore, at a specific configuration, the robot’s motion is de-

scribed by only two parameters (linear and angular velocity).

As pointed out in chapter 2, the kinematic model of a differential-drive mobile

robot is given as follows:

T cos 0 0
y| = |sinf|v+ |0 w (6.15)
0 0 1

Fox et al. [FBT97] showed that any mobile robot whose model is described by
Eq. (6.15) travels along trajectories made up of arc segments. In [MMS06], it
has been shown that, at each control cycle, the robot’s path is characterized by
a circle whose center lies at the robot’s y-axis. Assume that p; represents any
point in the workspace. The circular path followed by the robot to reach p; is
referred to as 7;. The radius of this path is denoted by r; and expressed as:

r; = M7 r; € |—00, 00| (6.16)

2y;

where (x;, y;) denotes the location of p; relative to the robot’s reference frame.
The instantaneous center of curvature ¢; of the circular path 7; is given by (0,7;).

Notice that r; can be positive or negative based on the sign of y;.

Whenever the robot reaches p;, it will be tangential to 7;, i.e. its heading is:

arccos | “Yi) if sgn(zx;) = sgn(y;
0; = (i) () () (6.17)

— arccos (”;—yl) , otherwise
i

6.3 Admissible Gap 125

XM
0
£, p1 n W
51 ro *“p3(72)
Y aN' gl e .
< -1 >
1
2 92 P2

Figure 6.4: Visualization of the paths followed by a kinematically constrained
robot. Circles 71 and T2 describe the paths followed by the robot
to reach points pi1 and p2. Whenever p; (resp. p2) is reached, the
robot’s orientation is 61 (resp. 62) and the distance traversed is s;
(resp. s2). The point closest to ps and falling on 72 is denoted by
p3(72) (reprinted from [MM17], with permission from IEEE).

An example is shown in figure 6.4 which visualizes two points in the workspace
marked as p1 and p2. These points are reached by traveling along circles 71
and Tz. The radii and centers of 71 and Tz are (r1,c1) and (12, c2), respectively.

Angles 61 and 62 denote the robot’s orientation when p; and p2 are reached.

The distance traversed by the robot to reach p; is the length s; of the arc along
T; which connects the robot’s origin to p; (in figure 6.4, s1 and s2 represent the

distances traveled by the robot to reach p1 and p2):

i if y; =
o= Il ify: =0 (6.18)
|0; - 7], otherwise

Let pi be a point whose Cartesian coordinates are (xk, yx), the point closest to
pr and falling on 7; is given by (in figure 6.4, p3(72) is the closest to ps):

Pr(Ti) = (0,7:) + dp - |74] (6.19)

where U, = t_;/ ‘E;‘ represents the unit direction vector of b= (Thy Y — 74).

126 6 Under-constrained Reactive Collision Avoidance Navigation

6.3.2 Traversing Gaps

There are several ways in which a robot navigates though a gap g € G, for
instance, it may pass through the gap center or it may circumnavigate its side
closer to pg. Our methodology is to achieve a compromise between safety and
efficiency while driving the robot through g. The key idea is to assign a subgoal
to g, referred to as ps. The location of ps is determined in such a way that the
robot circumnavigates one side of g, denoted as pnav. While circumnavigating
Pnav, progress towards g is made and a proper distance ds is maintained to the
obstacle point creating it. The value of ds depends on the width of g and has
been previously defined in section 3.1.1 (see Eq. (3.5)).

Determining pnay depends on the position of the gap with respect to the robot
and goal locations. Let pm be the gap center (i.e. the point equidistant from p,
and pi1). Since the main objective is to drive the robot towards the goal pg, we
set Pnav to the side pcg of gap g closer to py. However, if this makes the distance
to either side of g gets less than ds, pnav is set to the closer side of g along T,

denoted as per (7rm is the circular path that the robot follows to reach pm):

(6.20)

ry = 1 Pe® if [[p1(Tm) — P1ll > ds A [[Pr(Tm) — Prfl > ds
ne Per, Otherwise

where pi(7m) (resp. p:(7m)) is the point closest to p; (resp. p:) and falling on
Tm (defined in Eq. (6.19)). Point pe: is expressed by the following equation:

i <
Por = { P1, if 31(7;\) = Sr(ﬁn) (621)

Pr, otherwise

where $1(Tm) and s:(7m) are the distances traversed along 7Tm to reach pi(7Tm)
and p:(Tm), respectively (defined in Eq. (6.18)).

Assume that S represents a circle whose center is pnay and whose radius is ds.
The subgoal ps is placed at the “tangent point” p; between S and 7; (the circular
path that leads to p:). In principle, S and 7; are “mutually tangent” if:

22+ (Ynav — m)z = (re] £ ds)2 (6.22)

6.3 Admissible Gap 127

where 7, is the radius of 7; and (Znav, Ynav) the Cartesian coordinates of pnav

with respect to the robot coordinate system .

It can be deduced from Eq. (6.22) that two circles are tangential to S. The radii

of both circles are:
2 2 42
Tnav + Ynav — dg

= 6.23
" 2(ynav + ds) ()
With this, we can define p: in terms of r; as follows:
nav 0 3 if =
p={ (w00 nre= o (6.24)
(0,7¢) + Uy - |1, otherwise

where U, = V/ |V|, V = (Znav, Ynav — 7t). Notice that if ynav = —ds in Eq. (6.23),

the value of r; is co. In this case, 7; represents a line rather than a circle.

Solving Egs. (6.23) and (6.24) results in two tangent points, p:1 and pt2; only one
of them is located in the direction leading to g, and it is apparently necessary to
characterize the direction of travel to determine which one it is. Let p; be a point
in the workspace, 7; can be uniquely described by a tangent direction [MMO09]:

arctan (%) , ifx; >0

Xi = (6.25)

sgn (y;) - ™ — arctan (%) , otherwise

This definition represents the direction towards p; for a kinematically constrained
mobile robot (the direction along 7;). Notice that a positive x; indicates a

forward motion, while a negative x; indicates a backward motion.

The subgoal ps is placed at the “tangent point” p; that lies in the direction of g,
which is apparently the point that satisfies the following condition:

proj (xt = Xnav) - ¥ <0 (6.26)

where xnav and x: denote the tangent directions corresponding to Tnav (the

circular path that lead to pnayv) and T¢. The value of T is given by:

Y { +1, if pnav is a left side (6.27)

-1, if pnav is a right side

128 6 Under-constrained Reactive Collision Avoidance Navigation

’_<A

Tt1

Figure 6.5: Assigning a subgoal ps to a gap g in such a way that the robot circum-
navigates one of its sides pnay While obeying the kinematic constraints.
First, we identify circle S whose center is pnay and whose radius is
ds. This circle is mutually tangent to two circular paths (7¢1 and
Tz2), each of which lies on the y-axis. The tangent points are labeled
p+1 and p2. We locate the subgoal at ps1 as it leads to g (reprinted
from [MM17], with permission from IEEE).

Figure 6.5 visualizes how a subgoal ps associated with a gap g is located. It can
be seen that S is mutually tangent to two circular paths; 71 at pi1 and Ti2 at

p:2. Notice that ps is located at p¢1 as it lies in the direction that leads to g.

Remark 2 (Oscillation Removal) The procedure presented above locates ps
at the tangent point on circle S. By this means, a proper distance ds is preserved
to Pnav, thus increasing the safety of navigation. However, if the origin of the
robot’s reference frame is touching circle S (i.e. ||pr — Pnav| = ds), the coordi-
nates of ps will be (0, 0). In this regard, the robot experiences oscillations and
may turn on spot. Additionally, while moving along (circumnavigating) Pnav, the
robot may get inside circle S (i.e. ||pr — Pnav|| < ds). In this case, the new ps
takes the robot outside S. Apparently, this behavior is repeated if the robot comes
inside S once again. Next, we propose a solution that has shown the ability to
avoid this drawback. Let N be a circle whose radius is Tnav = ||pr — Pnav| and
whose center is Pnav. As soon as the distance between p, and pnav gets less than

or equal to ds, we locate ps on N rather than on S. Accordingly, the current

6.3 Admissible Gap 129

distance between pr and Pnav 1S preserved, until having traversed the gap. Notice
that ps can be located at any distance (dvs) from pr (dvs is the arc length between
p- and ps, not the Fuclidean distance between them). In our experiments, dys
was set to (Tnav - %) It is clear that two points can be located on N, such that
the distance between either of them and p, equals to dys. Obviously, we select the

point that lies in the direction of the gap, following Eq. (6.26).

6.3.3 Checking Admissibility

Reactive navigation consists of computing one action at each control cycle, such
that collisions are avoided and progress towards the goal is guaranteed. This
results in a series of collision-free motion controls, that guides a mobile robot
from its starting position towards a given goal. Within this context, it is of

interest to study the path that results from performing a single motion control.

It has been shown in section 6.3.2 that the execution of a single motion command
u = (v, w) causes the robot to travel along a circular path. Assume that this path
goes through ps; it is characterized by circle 7 in section 6.3.2. Assume also that
T [Pr — Ps] represents the arc segment which connects (0,0) to ps along 7s. A
gap g is “admissible” (denoted as AG [p» — g]) iff the robot does not collide with

obstacles while driving it along 7 [p, — ps], i.e. 7 [pr — Ps] is collision-free:

n
s
AG[pr =gl <= Tlpr»pJn|{Jpi=¢
=1
where T [pr — ps] represents the area that the robot occupies while traveling

from (0,0) to ps (i.e. traveling along 7 [p, — ps]).

In the following, we propose an algorithm for checking the admissibility state of
gaps in such a way that the shape of the robot is taken into account. The output
is the list of all obstacles that may cause collision while driving the robot from

p- towards ps (i.e. along 7 [pr — ps]), referred to as Ocoltision [Pr — Ps)-

Assume that the robot’s footprint can be represented by a polygon whose edges
are Pe,e = 1,...,m. For each p$ € S, it is checked if any of the robot edges
intersects circle C(cs, p5) that goes through p$ and centered at c¢; = (0,7s); the

130 6 Under-constrained Reactive Collision Avoidance Navigation

instantaneous center of curvature leading to the subgoal®. If no intersection
occurs, p; is collision-free, and therefore it is discarded. Otherwise, we do the
following: assume that p. represents the point at which circle C(cs, pzs) intersects
the robot, say at edge P.. Whenever ps is reached (moving a long 7 [pr — ps]),

the coordinates of p. with respect to the current robot’s frame is given by:

e Sy f s:O
. { P+ P if y (6.28)

Pe = .
¢ R pe +t, otherwise

where R and ¢ are given by:

R =
L K

= {x] (6.29)
Ys

where x5 and ys are the x and y locations of ps, and K and L are given by:

2 2
Ts — Ys
K= T (6.30)
2xsYs
=it (6.31)

Given p$, pe, and p; all located on circle C(cs, p;-s), we check whether p? falls on
the arc that connects p. with pJ, traveling along 7 [p, — ps]. If yes, p$ causes
collision. Otherwise, it is collision-free. This condition is checked as follows: let
F be a frame (shown in figure 6.6 by dark blue) centered at ¢; and heads towards
Pe, i.e. rotated by 0r:

0F = atan2 (ye — rs, Te) (6.32)

where (z., ye) represents the location of pe, relative to the robot’s frame.

Let 707 and 791-5 be the angles towards p and pS with respect to frame F,
respectively, p$ falls on the arc that connects p. with p?, and hence added to
Ocoliision [Pr — Ps], if the following condition is fulfilled:

(A }-9?) mod 27 < (A -762) mod 27

SNotice that if 7% is a line rather than a circle (ps lies on the x axis of the robot’s reference
frame), it is checked if any of the robot edges intersects the line that is parallel to p,ps
and goes through the obstacle point p?

6.3 Admissible Gap 131

Ps X

Figure 6.6: Collision checking along 7 [p, — ps]; the path followed to reach ps.
This example consists of three obstacles p1 - ps. The circles that pass
through them and centered at ¢s are C(cs,p1) and C(cs, p3). Circle
C(cs,p1) hits Pe in pe, where p; lies on the arc between p. and p},
but p2 doesn’t. Therefore, p; is in collision, but ps is not. None of
the robot edges intersects C(cs, p3), thus ps is collision-free (reprinted
from [MM17], with permission from IEEE).

where A is defined as follows:

A_{ +1, if sgn(as) = sgn(ys) (6.33)

-1, otherwise

Notice that if ys = 0 (i.e. 7[pr — Ps] represents a line segment rather than a

circle) the condition to be checked (Eq.) is replaced by:
sgn(zs)ze < sgn(zs)zd < sgn(as)(z)) (6.34)
where z represents the x location of p}, with respect to the robot’s frame.

Figure 6.6 shows how to check whether 7 [p, — ps] (depicted by a dark blue arc)
is collision free or not, given 3 obstacles labeled p; - p3. It is apparent that circle
C(cs,p1), which goes through both p; and p2, hits edge Pe in p.. The arc that

connects pe to pgs, while moving along 7 [p» — ps], is visualized by dark red. It

132 6 Under-constrained Reactive Collision Avoidance Navigation

can be seen that pi lies on this arc, but p2 doesn’t. Therefore, the former is in
collision with the robot, but the latter is not. For obstacle ps, none of the robot

edges intersects circle C(cs, p3), and thus it is collision-free.

Notice that the above mentioned steps are applied for each edge of the polygon
representing the robot P.. Apparently, the collision check can be reduced to one
step if the robot’s boundary can be represented by one equation (e.g. an eclipse)

rather than approximating it by a polygonal shape.

6.4 AG Obstacle Avoidance Method

After having explained the concept of “admissible gap”, we show how it can be
used to drive a mobile robot in unknown cluttered scenarios, such that the shape
and kinematic constraints are respected. The overall idea is described in the
following. At each time step, the data coming from sensors is analyzed to find
out if there is a navigable path towards the goal (section 6.4.1). If no such path
exists, the robot will be driven towards a gap instead (similar to the holonomic
solutions proposed in chapters 3 and 4). For determining the set of surrounding
gaps, our strategy presented in section 6.2 is followed. Among the assembled list
of gaps G, the closest to the goal (called “closest gap” in chapter 3) is selected.
This gap must satisfy two conditions: first, the Euclidean distance between one
of its sides and the goal must be the minimum compared to that of the other
gaps. Second, it has to be navigable as described in section 6.4.2. All gaps are
checked for both conditions until the closest gap is detected, or it is decided that
no closest gap exists. Section 6.4.3 describes how the AG method computes the

motion control which drives a robot towards the goal (resp. gap).

6.4.1 Goal Navigability Check

There are two cases in which the goal pg is navigable from the current robot’s
location, either directly or using a virtual gap which we refer to as a goal bridge.
Nevertheless, In both cases the goal should be visible from p, (a direct line

of sight to the goal exists). Let 7[pr» — pg] be the arc the robot follows to

6.4 AG Obstacle Avoidance Method 133

reach pg, the goal is directly navigable if 7 [p, — py] is a collision-free path (i.e.
Ocoliision [Pr — Pg] = ¢). However, if there are obstacles causing collision, a goal
bridge B is constructed between the robot and the goal. The idea behind the

goal bridge is to maintain a safe trajectory while approaching the goal.

The first side of the goal bridge B, denoted as p:(B), is created by the obstacle
point falling in Oconision [Pr — Pg] and closest to the circular path the robot
follows to reach pgy, Tg:

p:(B) = argmin|[p; — p (75) (6.35)

P}

where plS € Ogoliision [Pr — Pg] and pf’ (T4) denotes the point on T4 closest to pis
(see Eq. (6.19)).

Assume that the vector connecting the robot’s origin to the goal m divides
the workspace into two regions; one to its left and the other to its right (R*
and R7). Denote the region that does not include ps(B) by R*. The other side,
denoted as po(B), is created by the obstacle point contained in R* and closest
to ps(B). The angular distance between both sides, in the direction of the goal,
must not exceed w. This is necessary to guarantee that traversing B directs the

robot towards the direction leading to the goal. i.e:

Po(B) = argmin|[p; — ps(B)[l, o <= (6.36)
pyeR*

where « is defined by:

oo { proj(6:(B) — 6,) — proj(6; — 6y), if pr(B) € R* (6.37)

proj(65 — 6,) — proj(6:(B) — 8,), otherwise
where 0¢(B) and 0, are the angles toward ps(B) and pg, respectively.

Notice that if R* does not contain any obstacle, po(B) is set to a virtual point

in such a way that pg is the center point between p¢(B) and po(B):
Po(B) = (2zg — 2¢(B), 2y, — ys(B)) (6.38)

where (z4,v4) and (z¢(B), y¢ (B)) are the Cartesian coordinates of py and p¢(B).

134 6 Under-constrained Reactive Collision Avoidance Navigation

Once gap B is constructed, it is checked for navigability using the algorithm
explained hereinafter in section 6.4.2. If it is navigable, the robot is directed to-

wards it. Otherwise, we search about a navigable gap in GG as explained above.

6.4.2 Gap Navigability Check

In general, a gap g is considered “navigable” if it can be traversed by performing
a sequence of collision-free motion controls. This condition is fulfilled if there
exists a list of “virtual gaps” gy, k = 1, ..., L, where g] is “admissible” from p,, g5
is “admissible” from g7, ..., g; is “admissible” from g;_1, ..., g is “admissible” from
g7. Nevertheless, in terms of reactive navigation, it is enough to find one gap g*
that satisfies two conditions: first, g* is admissible from p,. Second, g can be
reached by traversing g*. By transforming the workspace into ARM in [MMO09],
only “admissible” gaps are considered “navigable”. In the following, an algorithm
is proposed that determines the position of g*, if it exists. The inputs are the
scan points list S and the gap g to be checked. The output of the algorithm g* is
initially set to g and computed by performing the following 2 steps iteratively:

Step 1: We split the set of scan points S into two subsets; one is denoted by Sin
and referred to as the “interior” of g*. It consists of those points that lie between
both sides of g*, with respect to the current robot’s view (i.e. Sin = {p:(g"),
prs+ (g"), ..., pt_(g%), p1 (g*)}). Apparently, the second subset is the set difference
of S and Sin. It is denoted by Sex and called the “exterior” of g*. Let O;, and
Oecx be the set of obstacle points contained in Sin and Sex, respectively (i.e. non
obstacle points are discarded). We exclude from Oex all obstacles making an
angular difference (traveling in the direction of g*) greater than 7 with either

side of g*. The resultant set of obstacles is referred to as OLy:
Otx = 0 U 05 (6.39)
where O, and OF are defined by:

Oz—x = {p'LS € OGX

proj (65 — 6:(g")) > o} (6.40)

On = {p§ € Oex | proj (65 — 1(g7)) < o} (6.41)

6.4 AG Obstacle Avoidance Method 135

where 6)(g") and 6,(g") denote the angles towards the left pi(g*) and right p.(g*)

sides of gap g, respectively.

All obstacles belonging to O, are checked for collision with 7 [p, — ps(g*)]; the
path followed to reach the subgoal ps(g*) corresponding to g*. The collision check
is preformed using the algorithm presented in section 6.3.3, where the outcome is
denoted by O, [pr — ps(g*)]. Apparently, g* violates the admissibility condition
if Ol [Pr — Ps(g*)] # ¢. Nevertheless, a new gap g** can be created in this case,
such that traversing it leads to g*. The location of g** is determined in step 2
of the algorithm. If the collision set OL, [pr — Ps(g*)] is empty, on the other
hand, Oj, is checked for collision similar to O, and the algorithm is terminated.
Obviously, if the outcome of this collision check is empty, g* is admissible and
hence the algorithm returns the current g*. Otherwise, the output will be NULL,
which implies that g* is not navigable. It is worth to mention that the obstacles
eliminated from Oex lie behind the robot while driving it towards ps(g*). That

is why we exclude them from the collision check.

Step 2: This step consists of creating a new “virtual gap” g**, given the current
one g" and the collision set O, [pr — pPs(g*)]. Similar to the goal bridge gap,
the “first side” pe(g**) of g** is set to the obstacle belonging to O¢, [pr — Ps(g”)]
and closest to the circular path 75(g*) the robot follows to reach ps(g*):

pe(g™) = argr;ﬂinllmS - Py (Ta(g")l (6.42)

P

where p € O, [pr — ps(g*)] and pf(T:(g*)) denote the point closest to p$ and
falling on 75(g*) (defined in Eq. (6.19)).

Assume that pm(g*) represents the center of g* (i.e. the point equidistant from
p-(g*) and pi(g*)). Assume also that M denotes a frame centered at p, and
heads towards pm(g*). The workspace is divided into two regions; one to the
right and the other to the left of the z-axis. They are denoted by W™ and
WT, respectively. Let Og ={p:(g"),pr-1(g"), ...} denotes the set of scan points
falling to the right of g*. Similarly, Of = {pi(g*), Pi+1(g*), ...} denotes the set
of scan points falling to the left of g*. We search about the other side po(g**) in
Oy if pg(g™™) lies in WT or in Og if ps(g**) lies in W™, where the obstacle point

136 6 Under-constrained Reactive Collision Avoidance Navigation

closest to the first side is chosen. Notice that the search process is performed
sequentially until the angular distance between the accessed element and p¢(g*™)

gets more than . This is to guarantee that g* is reachable from g**:

Po(g™*) = argmin||p} — pe(g™)|l, y<B< 7 (6.43)
p,LSGOex

where Oex = Oex U p:(g*) Upi(g*), and B and + are given by:

3= Mo (g7) — 65, if pr(g*) € W (6.44)
M9§ - Mef(g**), otherwise :

y = Mog(g) = MO(g"), if pe(g™) eWT (6.45)
Moi(g*) — Mo (g™), otherwise ’

where Mﬂl(g*), MHr(g*), MHZ-S, and M@f(g**) are the angles towards pi(g”),
p:(g"), p%, and ps(g**) with respect to frame M, respectively.

After having determined g**, it is assigned to g* and step 1 is once again per-
formed. Apparently, the procedure terminates because at each iteration the total
number of elements contained in the exterior of g* is decreased by at least one.
If the algorithm returns a valid virtual gap g*, then g satisfies the navigability

condition. But if it returns NULL, g is considered as non-navigable.

An example of the algorithm is shown in figure 6.7, in which a robot navigates
towards a given goal py. Obviously, only two gaps (g1, g2) can be detected by the
robot, where g; is the closest to the goal. The “interior” (Oin) of g1 consists of the
dark blue obstacle points in addition to the left pi(g1) and right p.(g1) sides of
g1 (visualized by red and violate). Apparently, the “exterior” (Oex) of g1 consists
of the remaining obstacle points. Notice that, in this example, Ol = Oex since
non of the elements contained in Oe.x makes an angular difference more than
with either side of gi. It can be seen that the path towards ps(g1) is in collision
with the obstacle point shown by orange in addition to the dark green points
(denoted by O, [pr — ps(g1)]). Hence, a virtual gap is constructed whose first
side pr(gT) is created by the point contained in Oy, [pr — ps(g1)] and closest to
Ts(g1), which is obviously the orange point. Searching about the other side starts

from pi(g1) and proceeds counterclockwise until the angular distance measured

6.4 AG Obstacle Avoidance Method 137

S

¥

X Il \
. polgi) =pi(g1) .

Figure 6.7: Checking navigability. The robot detects two gaps; g1 and gz. It is ob-
vious that the closest gap (g1) is non-admissible, since 7 [p» — ps(g1)]
is in collision with the obstacle points shown by orange and dark green
dots. But, g1 is navigable because it is possible to create an admis-
sible gap (gI) that leads to gi. See the text for more information on
constructing g (reprinted from [MM17], with permission from IEEE).

from p¢(g]) gets more than 7. This includes the obstacles visualized by light
blue in addition to pi(g1). Among these obstacles, po(g]) is set to the closest to
pe(gl), which is clearly pi(g1). It can be observed that the path towards ps(g7)
is collision free. Hence, the iterations are terminated and g] is returned.

Remark 3 (Safety Improvement) The collision check algorithm considers the
ezact region that the robot occupies while traveling along T [pr — ps(g™)]. By this
means, the distance to obstacles may get very small, causing the robot to be stuck
somewhere. A straightforward solution to this issue is to perform the collision
check after enlarging the robot’s boundary by some threshold. But, this solution is
a trade-off between completeness and safety (e.g. a gap may appear non naviga-
ble although it is not). Next, we introduce a better methodology to cope with this
drawback. In a first step, the robot’s boundary is enlarged by a proper clearance (a
value of ds(g*) — wmin was used in our experiments). Then, the algorithm is ap-

plied and at each iteration the obstacle point belonging to Oconision [Pr — Ps(g")]

and closest to T [pr — ps(g")] is registered. After having terminated the algo-

138 6 Under-constrained Reactive Collision Avoidance Navigation

rithm, the “virtual gap” g",,, that yields the mazimum clearance is identified. In
a second step, the algorithm is applied again, but starting from g* . (instead of

g) and considering the exact robot size (i.e. without enlargement).

6.4.3 Setting Motion Commands

In sections 6.4.1 and 6.4.2, we have seen how to identify the instantaneous target
Py, which can be the goal itself py or a subgoal corresponding to a navigable
gap (either a goal bridge B or a virtual gap g*). Next, we explain how the AG

approach computes the motion control that drives a robot towards pg.

In section 6.3, it has been shown that, at each control cycle, the robot’s path can
be described by a circular arc. Hence, the motion control is determined in such
a way that the radius of curvature is maintained. Assume that the path followed
by the robot to reach p, has a radius of 74 (defined in Eq. (6.16)). Apparently,
a valid motion control must satisfy v = w#y. This condition can be seen as a
line L, in the control space whose slope is 7, ' (see figure 6.8) [MMS06]. So,
any point on L, can be a valid motion control. Here, we consider controlling the

velocity based on the clearance to obstacles, and hence Simit is defined as:

Slimit = <\/1 - sat[o,l] (Dvsl)_rmm>> . Smax (646)

where rnin is the distance to the closest obstacle, D,s a parameter that defines

the size of a zone around the robot in which the velocity is limited (see chapter 4
for determining the value of D,s based on the physical and dynamic properties of
the robot), and Smax the distance from (0, 0) to the point at which the boundary
of the maximum speeds intersects line L, (coordinates are relative to the control
space). The “sat” function caps Simit at 0 if an obstacle is touched by the robot

and at Smax if no obstacle lies within D,s.
The motion control can now be defined as (originally from [MMS06]):

v = sgn(ig)) Slimit . COS(&g) (647)
g

w = sgn(£g) - Stimit - sin(¢y) (6.48)

6.5 Experimental Results 139

w!nax Srﬂax
A2 (v, w)
Slimit/‘
0 L'u
—Umax 2ARC = arctan(fg’l) Umax

Figure 6.8: Determining the motion control in such a way that the radius of curva-
ture 74 is maintained and the maximum possible velocity is respected.
Any point on L, can be a valid motion control as it satisfies v = wr.
Here, we specify Sumit so that the velocity of the robot is controlled
based on the clearance to obstacles (originally from [MMSO06]).

where (, = arctan(7; ') and #, denotes the z-coordinate of py. A positive 2,

indicates a forward motion, while a negative Z, indicates a backward motion.

6.5 Experimental Results

The reliability of the proposed method has been validated using our robotic plat-
form GETbot, adopting the same setup presented in section 5.1. The following
subsections provide the outcome of seven experiments executed in different sce-
narios” (Experiments 1 - 6 have been previously presented in [MFM18]). Notice
that the only prior information available were the sensor data and the goal. The
results are presented and compared with two state of the art methods which
are ARM-ND+ [MMO09] and the open source “robot navigation stack” DWA-
A* [MBF'10]. Moreover, the results are checked against the TGF approach
[MFM16], presented in chapter 4. ARM-ND+ is an extension of ND+ [MOMO04]
that considers the robot shape and kinematics by transforming the workspace
into ARM [MMO09]. Since ND+ only computes forward motions, a change of co-
ordinates was necessary [MMS06]. DWA-A* uses a costmap to look for a path,
utilizing A* search, and employs the DWA method [FBT97] to track the gener-

ated path. For the sake of accuracy, only the front laserscanner was used to build

“Videos of these experiments can be found at: “http://getwww.uni-paderborn.de/research/
videos/ag”

http://getwww.uni-paderborn.de/research/videos/ag
http://getwww.uni-paderborn.de/research/videos/ag

140 6 Under-constrained Reactive Collision Avoidance Navigation

the costmap. In order to ensure safe navigation through tight passages, the max-
imum robot speeds were restricted to (v = 0.5m/s, w = 1.07rad/s). The robot
operating system (ROS) has been employed to implement and test the afore-
mentioned approaches. Maps of the environment were created by employing an

available open source SLAM system [Gcl0] implemented in ROS.

6.5.1 Experiment 1

This experiment consisted of a relatively simple scenario where GETbot was
supposed to traverse an arena in which boxes were distributed as shown in figure
6.9a. The robot managed to reach the given goal using all of the aforementioned
approaches. The generated trajectories are visualized in figures 6.9b, 6.9¢, 6.9d,
and 6.9e. Using ARM-ND+, oscillations occurred along the traversed route, see
for example the trajectory near the locations labeled 1 - 3 in figure 6.9b. This is
attributed to the limitations inherited from ND+ [MMO04] as discussed in chapter
4. By running DWA-A* GETbot got close to the A and B obstacles as shown
in figure 6.9c. This is due to the fact that DWA-A* follows a path generated
by A* planner. It can be seen that the trajectories followed by both TGF and
AG are quite similar. They were able to drive GETbot with improved safety
and smoothness compared to ARM-ND+ and DWA-A*. The robot speeds were

recorded and plotted against the elapsed time as shown in figures 6.9f - 6.9i.

6.5.2 Experiment 2

In this experiment, the difficulty of navigation was increased by placing obstacles
in such a way that a large U-shape is formed as shown in figure 6.10a. Addition-
ally, GETbot had to negotiate a narrow curved passage (P) made up of obstacles
with different shapes and sizes. It can be seen from figure 6.10b that ARM-ND+
was prone to oscillations (e.g. see the path next to points 1 - 4). Moreover, GET-
bot navigated close to obstacles (e.g. A and D), causing a considerable reduction
in speed. By applying DWA-A+, GETbot was able to move at a relatively high
speed, but ended up getting very close to obstacles, such as those labeled B, C,
and E in figure 6.10c. Furthermore, once GETbot reached the starting area of

6.5 Experimental Results 141

V (mis)

W (radls)
o &
W (rads)
3§
(rad/s)
5 o
u%
W (radis)
5 o
m\%n

-0.5]

10 20 30 40 0 10 20 30 w0 10 20 30 20 o 10 20 30 40
Time (s) Time (s) Time (s) Time (s)

Q) (e) (h) 0]

Figure 6.9: Scenario 1 (reprinted from [MFM18], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ARM-ND+,
(c) DWA-A* (d) TGF, and (e) AG. (f-i) Speed profiles for (f) ARM-
ND+, (g) DWA-A*, (h) TGF, and (i) AG.

passage P, it turned in-place for a while before it could move forward again. The
in-place rotation was due to the execution of a recovery behavior [Epp16] which
was invoked since DWA was unable to find a feasible control at that time. Using
this behavior, the robot eventually got unstuck after clearing out space. The
performance of TGF was relatively good (see figure 6.10d), however, in terms of
smoothness, the generated trajectory could still be enhanced, particularly near
points 1 - 3. This was possible by employing AG, as shown in figure 6.10e. We
attribute this improvement in behavior to the consideration of the robot shape

and kinematics. Figures 6.10f - 6.10i show the speed profiles for all methods.

6.5.3 Experiment 3

This experiment had three different complexities; first, several consecutive tight

and curvy routes had to be negotiated to reach the goal, see figure 6.11a. Sec-

142 6 Under-constrained Reactive Collision Avoidance Navigation

Time (s) Time (s)

0

Figure 6.10: Scenario 2 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b-e) Paths generated by (b) ARM-
ND+, (c) DWA-A* (d) TGF, and (e) AG. (f-i) Speed profiles for
(f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG.

ond, the obstacle course included small plastic/wooden poles with narrow gaps
between them, through which GETbot could not fit. Finally, GETbot had to
avoid obstacles forming a U-like shape during its course of navigation. By run-
ning ARM-ND+, the mission was aborted after reaching a certain point at which
GETbot just kept on rotating right and left, as shown in figure 6.11b. It was
discovered that these turn changes was a result of transforming the workspace
into ARM, in which the navigable gap G1 vanished and the non-navigable gap
G2 appeared. At that particular situation, GETbot rotated towards G2 until
it was realized that G1 was free and G2 was blocked. This caused the robot to
rotate back towards G1 but only to get caught again in this repetitive loop of
failure. Using DWA-A* GETbot navigated smoothly until it reached the start-
ing area of passage P2, after which it rotated and navigated back across passage
P1. This behavior was due to unexpected change in the costmap, which blocked

the path planned towards P2, and thus, a new path was generated backwards.

6.5 Experimental Results 143

U-shaped
obstacle

W (radis)
3?{30‘
(rad's)
;za
W (rad's)
5 o
g
W (radis)
5 o
u?

0 20 30 40 50 0 20 30 40 s 0 20 % 4 s 0 20 3 40
Time (s) Time (s) Time (s) Time (s)

(f) (g) (h) (i)

Figure 6.11: Scenario 3 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b-e) Paths generated by (b) ARM-
ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed profiles for
(f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG.

The costmap is re-computed once GETbot reached point 1 (see figure 6.11c). Ac-
cordingly, the obstructed region appeared free again, which caused GETbot to
turn and proceed towards the target. Similar to the previous scenarios, GETbot
came close to obstacles at different points (e.g. A - C). Figures 6.11d and 6.11e
show that TGF and AG managed to safely and smoothly drive GETbot towards
the goal with roughly similar performance. However, a closer look at the paths
next to points 2 - 4 verifies that, in terms of smoothness, AG was better than

TGF. The speed profiles of all approaches are shown in figures 6.11f - 6.11i.

6.5.4 Experiment 4

For this scenario, we created the environmental structure shown in figure 6.12a,

which resembles a Robocup rescue arena [PJK'14]. Notice that an oscillatory

144 6 Under-constrained Reactive Collision Avoidance Navigation

0.
0.3 0.3 0.3 0.3
g MU U 2 o AU LIV T TN (2 7 gheien iy o
E) E E E
= -03] = -03] S 03 S -03
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 h 20 40 60 80 100
,;05 ,‘;05 ;;05 ﬁos
3 OW/\JWN\I\ 2 3 QV\‘/VVW"\'\/\WNV 3 oA
= -05) = -05] = -05 =05
Bl Bl H H
o 20 40 80 100 20 40 60 80 100 20 40 80 100 20 40 80 100

Time (s) Time (s) Time (s) Time (s)

) () (h) 0]

Figure 6.12: Scenario 4 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b-e) Paths generated by (b) ARM-
ND+, (c) DWA-A*, (d) TGF, and (e) AG. (fi) Speed profiles for
(f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG.

motion over ramps may lead to wheel skidding, and hence it was important to
achieve a high degree of smoothness in this experiment. Additionally, fast motion
was hard to accomplish over ramps, especially employing DWA-A*. Hence, the
maximum permitted speeds for this scenario were (v = 0.3m/s, w = 0.6 rad/s).
The goal was reached by employing all techniques, as can be seen from figures
6.12b - 6.12e. However, with ARM-ND+ the robot’s motion was oscillatory, see
for instance the generated trajectory near locations 1 - 5 in figure 6.12b. By using
the DWA-A* algorithm, GETbot almost touched walls A, C and D, and collided
with wall B, as can be seen from figure 6.12c. Furthermore, while entering the
passages labeled P1 and P2, GETbot performed to-and-fro motion momentarily
before it could move forward again. The root cause of this behavior was the
wheel skidding on ramps, which made GETbot move closer to walls instead of
following the planned path. This situation demanded a new path to be generated
so that GETbot moves away from walls. The process of re-planning continued,
until GETbot successfully escaped. It is important to mention that the front

laserscanner was unable to detect wall E at the starting point. Therefore, the

6.5 Experimental Results 145

robot turned and started to move towards the wall before it could discover that
this region was obstructed. According to TGF, it showed smoother motion when
compared to the ARM-ND+ method, but oscillations were not completely gone.
See, for instance, the path next to the locations marked as 1 - 3 in figure 6.12d.
The AG method was able to drive GETbot with improved smoothness and safety
as compared to the other employed approaches. This visualization has been

supported by plotting the speed profiles of all techniques in figures 6.12f - 6.12i.

6.5.5 Experiment 5

This scenario aimed to test the performance of AG in a cluttered environment
occupied by a dynamic obstacle (a pedestrian). At the beginning of the mission,
GETDbot smoothly traversed the expected route through passages P1 and P2 until
the line labeled L3 in figure 6.13a was crossed. At that moment, a pedestrian
suddenly stepped in front of GETbot and blocked passage P2, as shown in figure
6.13b. GETbot reacted to this situation by navigating backwards towards P1,
avoiding collision with the pedestrian. Once line L1 was crossed by the robot, the
pedestrian stepped out of the track, leaving passage P2 free as depicted in figure
6.13c. This new situation was detected by GETbot and the decision was to move
forward again, i.e. towards gap G1. As soon as GETbot reached the line labeled
L2, box B was taken out of the arena, creating a new navigable gap labeled G2
in figure 6.13d. It was recognized that the new created gap was the closest to the
goal, and therefore GETbot decided to pass through it and proceed towards the
goal. The generated trajectory is shown in figure 6.13h. By running ARM-ND+
(figure 6.13¢), GETbot came to a halt and was unable to complete the mission
after the pedestrian stepped in front of it. The root cause was the inability of
ARM-ND+ to detect the rear gap leading to P1. By applying DWA-A* (figure
6.13f), the feet of the pedestrian was touched by GETbot and it took quite some
time to realize that a new gap G2 was created by removing the B box. This is
attributed to the slow reaction of DWA-A* to the dynamic changes. Moreover,
after having blocked passage P2, GETbot turned and navigated towards P1
without recognizing that passage P2 got free again. Moving back towards P2

was resumed only after traversing the entire P1 passage. Furthermore, it was

146 6 Under-constrained Reactive Collision Avoidance Navigation

V (mis)
°
oo
V(mis)
°
209
V (mis)
°
o8
V (mis)
o
208

W (rad’s)
5 o
2ol
W (radis)
5 o
ao&
W (radis)
5 o
ao&
W (radis)
5 o
aob

Time (s) Time () Time (s) Time ()

0] (O] (k) 0

Figure 6.13: Scenario 5 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b) A pedestrian stepped in front of
the robot. (c) The pedestrian stepped out of the track. (d) Box B
was taken out of the arena, creating gap G2. (e-h) Paths generated
by (e) ARM-ND+, (f) DWA-A*, (g) TGF, and (h) AG. (i-]) Speed
profiles for (i) ARM-ND+, (j) DWA-A*, (k) TGF, and (1) AG.

observed that GETbot came close to obstacles at some points like A and C.
By using TGF, GETbot turned on spot to move forwards instead of backwards,
when the pedestrian stepped in and out of the track, see figure 6.13g. Besides
the improved reaction to the pedestrian, AG achieved the best performance in

terms of smoothness, as can be seen from figures 6.13e - 6.13h and 6.13i - 6.13L.

6.5.6 Experiment 6

For this scenario, we created a very complex and challenging arena. Figures

6.14a and 6.14b visualize two images of the arena which were captured from two

6.5 Experimental Results 147

0 15 30 45 60 750 15 30 45 60 750 15 30 45 60 750 15 30 45 60 75
Time (s) Time (s) Time (s) Time (s)

(2 (h) () @

Figure 6.14: Scenario 6 (reprinted from [MFM18], with permission from Else-
vier). (a, b) Environmental setup. (c-f) Paths generated by (c)
ARM-ND+, (d) DWA-A*, (e) TGF, and (f) AG. (g-j) Speed profiles
for (g) ARM-ND+, (h) DWA-A*, (i) TGF, and (j) AG.

different points of view. GETbot had to negotiate very tight and curvy openings,
where at some points the maneuvering space was very limited. For example, gap
G3 in figure 6.14b has a width of 0.63 m, which is less than the robot’s diameter
(evaluates to 0.71m approximately). Additionally, the environmental structure
was made up of obstacles with different shapes and sizes. An additional challenge
was the large difference in width between passages P1 and P2 (at gap G1). The
goal was successfully reached by implementing the AG approach only. Although
the environment was very complex and contained very narrow passages, AG
managed to drive GETbot with a high degree of smoothness, as shown in figure
6.14f. By applying ARM-ND+-, the mission was aborted after GETbot collided
with the wall labeled A, coming to a full stop, as shown in figure 6.14c. The
root cause was the inability of ARM-ND+ to find a navigable gap once GETbot
approached the very narrow opening leading to passage P2 (at gap G1). Because
of the speed gained before this particular situation, GETbot kept on moving until
it crashed into the wall. By running DWA-A* GETbot navigated smoothly until

148 6 Under-constrained Reactive Collision Avoidance Navigation

it reached the starting area of passage P2, after which it kept on rotating and
performing to-and-fro motion (see figure 6.14d). It was recognized that a path
was properly planned across P2, but the DWA approach failed to track it. The
TGF-controlled GETbot managed to traverse most of the route, but ended up
colliding with obstacle B after rotating in-place (see figure 6.14e). This rotation
aimed to drive GEbot back towards passage P1, since at that time TGF was
unable to detect gap G3 whose width was less than the robot’s diameter (TGF
ignores the robot shape and its kinematics). Notice that we limited the value of
R to 0.33 m to get this performance. By using the actual value (R = 0.355 m),
the robot could not even pass through gap G2 since its width was 0.68m < 2R.
It is worth mentioning that, by further decreasing the radius (R < 0.33m), the
robot pushed over the wooden pole creating gap G2 and didn’t complete the

mission. The speed profiles of all approaches are shown in figures 6.14g - 6.14;j.

6.5.7 Experiment 7

In this experiment, we tested the capability of the proposed AG approach to
drive a mobile robot in unknown environments occupied by a crowd of moving
persons. The experiment was conducted in building P1 at the university of
Paderborn, with the help of several students working in our lab®. The students
were informed to randomly move in the working area of the robot, trying to
close its way sometimes. The objective was to resemble real world scenarios
where the robot may share the same environment with humans. The mission
was started at the main entrance of the P1 building and the robot had to pass
through the connection between buildings P1 and P7, see figure 6.15a. The goal
was given at the end of the connection near the entrance to building P7, as shown
in figure 6.15b. We observed that the robot was able to react on time avoiding
the students who stepped in to close its way. For example, in the first part of the
experiment the path to the goal was free, and hence the robot moved directly
towards it, see figure 6.15c. Once the student marked as S1 moved across the
corridor, the robot escaped by moving towards the free gap marked as G1 between
students S1 and S2, see figure 6.15d. Student S1 kept moving and climbed the

8A video of this experiment is available at: https://getwww.uni-paderborn.de/research/
videos/dynamic-obstacles

https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles
https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles

6.5 Experimental Results 149

Figure 6.15: Experiment 7. (a, b) Environmental setup, the robot had to move
through the connection between buildings P1 and P7. (c-1) Snap-
shots of the experiment taken at different locations, showing that the
robot was able to react on time avoiding the students who stepped
in to close its way to the goal.

stairs, while student S2 started to move across the corridor as shown in figure
6.15e. Consequently, the robot modified its orientation and started to move
towards the free area to the left-hand side as shown in figure 6.15e. At a later

time, most of the corridor was occupied by students, and thus the robot escaped

150 6 Under-constrained Reactive Collision Avoidance Navigation

et DL .J‘ L[S A A e memsenamar- - u
()
__02F o4t
2 of K4
£ 3 0
> -0.2F = -0.4F
04 ... = A L
0 3 60 9% 120 150 180 0 30 60 90 120 150 180
Time (s) Time (s)

(b) (c)

Figure 6.16: Trajectory followed by the robot (a) and the recorded motion com-
mands against the time (b, ¢) corresponding to experiment 7.

towards gap G2, the only free gap at that moment (see figure 6.15f). Figure
6.15g shows another situation where the robot was moving towards the right-
hand side, avoiding students S3 and S4. At that time, student S5 approached
the robot from behind. The situation was detected and the orientation of the
robot was modified accordingly, see figure 6.15h. A similar behavior can also
be seen in figures 6.15i and 6.15j, where student S6 approached the robot from
front this time. Figures 6.15k and 6.15] show a situation where students S6 and
S7 were moving to both sides of the robot, but not closing its way to the goal.
Hence, the robot kept moving directly towards its goal. Figure 6.16 shows the

trajectory followed by the robot and the motion commands against the time.

6.6 Evaluation and Discussion

The proposed “AG approach” is evaluated on the basis of the metrics presented
in chapter 5. Moreover, its performance is compared to that of the techniques

discussed in section 6.5. The results obtained from experiments 1 - 6 (presented

6.6 Evaluation and Discussion 151

Table 6.1: Performance assessment results of the proposed “AG approach” for
experiments 1 - 6 from section 6.5 (reprinted from [MFM18], with
permission from Elsevier).

Exp. Method Tiot Pien Ceng Zw Jace Cacc Stat Stng Robs

ARM-ND+ 35.4 5.89 118.62 10 228 1752 0.95 2.90 252.28
DWA-A* 19.0 4.91 0.53 2 4.87 6.00 0.56 2.23 169.34

TGF 20.3 5.26 0.67 2 0.22 0.98 0.91 0.85 134.44
AG 19.8 5.24 0.28 2 0.02 0.89 095 0.55 128.29
ARM-ND+ 68.8 9.81 181.15 18 6.82 16.44 1.92 9.34 543.02
9 DWA-A* 41.3 8.03 161.22 3 11.05 5577 1.16 4.91 375.81
TGF 36.0 9.14 1.29 9 0.10 2.57 2.16 1.65 195.97
AG 33.5 8.71 0.38 3 0.04 1.77 1.71 0.76 194.19
ARM-ND+ fail fail fail fail fail fail fail fail fail
3 DWA-A* 48.4 12.95 51.52 5 14.42 32.78 2.40 8.96 510.24
TGF 49.6 11.45 1.97 10 0.09 2.09 2.25 1.77 273.15
AG 47.5 11.10 0.39 3 0.04 220 1.84 1.32 289.68
ARM-ND+ 77.3 10.40 119.60 32 2.13 12.96 1.42 6.00 340.61
4 DWA-A* 105.4 13.67 103.18 26 7.52 20.69 1.55 11.05 17415.50
TGF 67.3 10.01 31.65 26 1.02 2.40 1.12 4.16 260.22
AG 55.3 9.29 0.67 8 0.03 1.53 1.31 0.86 253.06
ARM-ND+ NC NC NC NC NC NC NC NC NC
5 DWA-A* 57.4 13.92 61.17 6 24.04 39.87 2.60 11.92 940.37
TGF 43.7 8.85 12.39 12 3.55 23.34 2.53 4.49 399.19
AG 37.6 8.24 0.64 5 3.48 4.38 1.16 2.38 209.72
ARM-ND+ fail fail fail fail fail fail fail fail fail
6 DWA-A* fail fail fail ~ fail fail fail fail fail fail
TGF fail fail fail fail fail fail fail fail fail
AG 49.1 9.74 0.76 7 028 3.50 1.84 2.23 681.60

in section 6.5) are shown in table 6.1. It is interesting to notice that the ARM-
ND+ method yields the worst results in all experiments except experiment 4, in
which the DWA-A* approach was the worst. The poor performance of ARM-
ND+ is attributed to two causes: first, transforming the workspace into the
“Arc Reachable Manifold” (ARM) may hinder finding navigable gaps like the
gap labeled G1 in experiments 3 and 6 (only “admissible” gaps are considered
navigable in ARM). Second, ARM-ND+ builds upon the ND+ method which

tends to generate oscillations and instability, as discussed in chapter 5.

In fact, the DWA-A* approach is a hybrid system which employs both local
(DWA) and global (A* algorithm) planners, whereas ARM-ND+, TGF, and AG

are pure reactive methods. Therefore, a direct comparison between DWA-A* and

152 6 Under-constrained Reactive Collision Avoidance Navigation

the other approaches could be unfair. Despite this fact, however, the presented
results show that TGF and AG outperform DWA-A*, especially in terms of the
Cchgs Robs, Jace; Stng, and Cacc metrics. This is attributed to the tendency of the
A* algorithm to generate a path near obstacles. Apparently, following this path
results in a higher Rops value and makes the robot get close to corners, which
in turn may hide some parts of the environment from the local planner (DWA).
At that particular situation, the robot may face unforeseen obstacles, requiring
a rapid change in speed (reflected by high Jacc and Sgng values) and heading
(reflected by high Cehg and Cace values). On the other hand, AG and TGF both
tend to maintain a safe distance between obstacles and the robot’s footprint
(see section 6.3.2). Furthermore, the smoothness of the generated trajectories is
increased by performing collision avoidance based on all obstacles falling between
the robot and the closest gap, achieving a kind of look-ahead. An additional point
which needs to be mentioned here is the fact that DWA-A* is in principle able to
drive the robot at higher speeds with shorter distances. This is attributed to the
usage of A* to look for a path that is often short compared to that of the other
methods. This path is then followed by DWA, which accounts for the dynamics of
the vehicle. However, invoking the recovery behavior and re-planning the path in
experiments 2 and 3 canceled this benefit. The situation was even more difficult
in experiment 4 when the robot slipped towards walls while entering passages P1

and P2 and took quite some time before it could move forward again.

When comparing the performance of AG with that of TGF, it can be observed
that AG achieves better performance, especially in terms of Jacc, Ceng, and Ze,.
More important, AG successfully drove the robot through the obstacle struc-
ture of experiment 6, but TGF did not. The improved performance of the AG
approach is attributed to the consideration of the robot shape and kinematic con-
straints. The TGF method, on the other hand, ignores these constrains, which
may hinder finding feasible motions or reduce performance. In fact, the output
of TGF is a direction solution, with which the robot’s heading must be aligned.
A closer look at figures 6.9 - 6.14 shows that the TGF-controlled robot often had
to reduce speed (approached zero sometimes) and perform a sharp turn (rotated
in-place sometimes) to face the direction it follows. Apparently, this explains the

higher values of Jacc, Ceng, and Z,, compared to those of the AG method. It is

6.6 Evaluation and Discussion 153

significant to note that GETbot is roughly square and works in a skid-steering
mode. If it had a complicated shape or if it was a car-like robot, TGF could
have failed in more experiments or it would have had less performance, particu-
larly in scenarios demanding high maneuverability. It is worth to mention that
implementing the TGF method took a lot of time to achieve this relatively good
performance. This is due to that fact that aligning the robot’s heading with the

holonomic output is not straightforward and based on experimentation.

In addition to the results presented above, we highlight other advantages and
features of the AG approach. First, similar to the TGF method, AG has only
one parameter dsafe that is easy to determine. It specifies how far the robot stays
away from the obstacles’ boundary (as long as there is a free space), providing
a trade-off between efficiency and safety. Hence, it should be seen as a feature
rather than a limitation. In principle, we may totally discard dsase and set ds(g)
in Eq. (3.5) to %w(g) always, but this may lead to a longer path if the gap is too
wide. In all experiments presented in section 6.5, the value of dsate Was set to
2R. ARM-ND+ has another parameter D, which defines a region around the
robot, once occupied, the robot’s trajectory is adjusted building upon the APF
concept. Determining D is not straightforward and has a significant influence
on the performance of the algorithm. According to the DWA-A* approach, it has
many parameters to tune, where finding a good parameter setting is environment

dependent and consumes much time and effort [MFM18].

An additional advantage of the AG approach is its robustness against the envi-
ronmental changes. It managed to successfully drive GETbot in all conducted
tests, either those discussed in section 6.5 or others. Furthermore, each time a
test was repeated, the obtained results were almost the same. The other tested
methods presented different degrees of sensitivity to the environmental struc-
ture. For example, ARM-ND+ managed to drive GETbot in simple scenarios
only. The DWA-A*_controlled GETbot generated a different path each time a
test was repeated. TGF showed better robustness than DWA-A* and ARM-ND+
as it successfully drove GETbot in most of the scenarios. However, each time
an experiment was repeated, the differences in results were higher than those
corresponding to the AG method. Perhaps, finding scenarios where these three

methods succeed was the most time consuming and frustrating part of the exper-

154 6 Under-constrained Reactive Collision Avoidance Navigation

iments. Notice that the complexity of the environment in experiments 1, 2, and

5 was reduced, so that the expected route could be traversed by all techniques.

Another yet important feature of the “AG approach” is the simplicity of the
problem formulation and implementation. For example, unlike TGF, it is easy
to replicate the presented experiments by directly implementing the algorithm
without the need to adapt the output to cope with the vehicle constraints. Addi-
tionally, unlike ARM-ND+, it is not necessary to map the workspace into a new
manifold, which is not trivial to model and can be computationally expensive.
Last but not least, unlike DWA, AG is able to guide a robot through complex and
tight passages without integrating it with a path planner. A higher-level planner

is only necessary to avoid cyclic loops or global trap situations [MFM18].

6.7 Conclusions

We have presented a new concept, the “admissible gap” (AG), which addresses the
question of whether a given gap is traversable by performing a collision-free mo-
tion control, that respects the shape and vehicle constraints. By employing this
concept, a new collision avoidance method has been developed and implemented.
Compared to existing techniques, the new approach achieves an outstanding per-
formance in cluttered scenarios. This has been possible by directly obeying the
vehicle constraints rather than adapting a holonomic-based solution. A key idea
of the AG approach is the creation of an “admissible gap”, which serves as a
bridge to the opening closest to the goal (the closest gap). To this end, a new
methodology for traversing gaps has been proposed in such a way that the vehi-
cle constraints are respected. This methodology provides a compromise between
safety and efficiency. Our approach is directly applied to the workspace without
having to construct an abstraction layer. Additionally, this chapter introduces a
new procedure for finding out gaps. The method can be applied to full or limited
field of view sensors. Moreover, it discards useless gaps, reducing the possibility
of oscillation and improving the stability of navigation. Experimental results
along with performance assessment in highly cluttered scenarios demonstrate
that the proposed AG approach outperforms existing state-of-the-art methods in

terms of smoothness, safety, efficiency, and robustness.

7 Conclusions and Future Work

In this chapter, the contributions of the research work presented in this thesis are
summarized, pointing out some concluding remarks, and subsequently, several

issues that could be investigated in future research are discussed.

7.1 Conclusions

The work presented in this thesis contributes to the field of autonomous mobile
robot navigation. In particular, it addresses the problem of reactive collision
avoidance in very dense, complex, and cluttered environments which is one of
the most significant and challenging problems in mobile robotics. Among the
wide variety of reactive collision avoidance techniques, the Nearness-Diagram
(ND) Navigation is a well-known and effective approach that deals with this
problem. However, experiments demonstrated that ND-based navigation is prone
to several problems, namely oscillatory motion, risk of collision in narrow spaces,
unreasonable deviations towards free areas, and the tendency to generate slower
trajectories and longer paths. The first objective of this work was to develop
a new reactive collision avoidance approach that avoids the above mentioned
limitations. To this end, two methods have been proposed, the “Safe Gap” (SG)
and the “Tangential Gap Flow” (TGF) navigation. The second objective of this
work was to account for the exact shape and kinematic constraints, improving the
navigation performance. For this purpose, another approach has been proposed
building upon a new concept, called the “admissible gap” (AG). In the following,

we discuss the main features and contributions of these methods.

The SG method improves the robot’s behavior in dense and cluttered environ-

ments by generating smoother, faster, and safer avoidance maneuvers and by

156 7 Conclusions and Future Work

avoiding irrational deflections towards free spaces. The key idea behind this
improvement is the incorporation of an additional step in analyzing the sensory
data, locating a virtual gap in a collision free area, called a “safe gap” [MFM13b].
The location of this gap is determined based on its opening angle and the con-
figuration of the goal, providing a smoother and safer bridge between obstacle
avoidance and goal approach. Unlike the ND-based methods, SG does not require

the safe distance parameter, and thus saves the parameter tuning overhead.

The TGF approach generates smoother and much more stable trajectories com-
pared to those generated by the SG method, especially in unstructured narrow
spaces. Moreover, TGF helps in reducing turn changes occurring in tight gaps,
where the robot may switch between avoiding obstacles located to the right or
left of the heading direction. This has been possible by considering the clearance
to obstacles on both sides of the heading direction and by computing the steering
angle in such a way that all surrounding threats are taken into account, not sim-
ply the nearest one. Obstacle avoidance is, in general, based on two concepts; the
“tangential” and “gap flow” navigation [MJFM13] [MFM15] [MFM16] [MFM17].
The key idea behind both concepts is the usage of the data acquired from the
environmental structure in computing the avoidance trajectory. Using the “tan-
gential navigation”, the robot moves tangential to the obstacles boundary. The
“gap flow navigation” smoothly points the robot towards the free area between
obstacles. In both concepts, avoiding collisions and approaching the target are
simultaneously performed. An additional contribution of TGF is the develop-
ment of motion commands that drive a mobile robot towards a given target in

such away that the stability of the system is guaranteed in the Lyapunov sense.

The AG concept addresses the question of whether a given gap is traversable
by performing a collision-free motion control that respects the shape and vehicle
constraints [MFM18]. This concept has been successfully employed to develop a
collision avoidance approach, that achieves an outstanding performance in clut-
tered scenarios. Unlike existing methods, AG is directly applied to the workspace
and considers the exact shape and kinematics, achieving a safer and more accu-
rate solution. A key idea is the creation of an “admissible gap”, which serves as a
bridge obeying the vehicle constraints, once traversed, the robot makes progress

towards the target [MM17]. To this end, a new methodology for traversing gaps

7.1 Conclusions 157

has been proposed in such a way that the vehicle constraints are respected. This
methodology provides a compromise between safety and efficiency. Additionally,
AG proposes a new strategy for extracting gaps which works for both full and
limited FOV sensors. Within this strategy, useless gaps are discarded, reducing

the possibility of oscillation and improving the stability of navigation.

In order to verify that the proposed approaches comply with the goals of this
work, several simulations and experiments in very dense and complex environ-
ments were conducted. Moreover, the performance of the proposed approaches
was evaluated and compared to that of existing state-of-the-art methods based
on the aforementioned drawbacks. In addition to the experiments presented
here, many tests were carried out while preparing for and participating in several
RoboCup Rescue Robot League competitions (2012- 2016). Up to our knowledge,
there is no other method in the literature that provides experimental results in

very hard scenarios similar to those presented in this thesis.

Our experience showed that the performance of the proposed approaches is stable
against changes of the environmental structure. The ND-based methods, on the
other hand, seem to be more sensitive to the obstacle distribution. For instance,
whenever a robot navigates through a relatively wide area that is located between
two narrow passages, it tends to deviate towards the free space performing a
sharp turn, followed by another turn towards the opposite side trying to enter the
second narrow passage. These sudden turn changes may lead to oscillations and
instability, which can be unsafe if the robot is passing through a narrow passage
or if it is navigating at a relatively high speed. Furthermore, this behavior makes
the robot follow longer paths owing to the unnecessary deflection towards the free
space. The main reason behind this drawback is the computation of the avoidance
trajectory regardless of the gap selected for navigation. Another example could
be observed in narrow corridors, where the robot usually performs successive
turn changes. This problem is basically inherited from the APF concept; within
this concept, approaching one side of a tight opening generates a strong repulsion
force, causing a sharp turn that takes the robot away from obstacles. Apparently,
this behavior is repeated with the other side. It is worth to mention that this
problem was clearly visible during our participation in the RoboCup Rescue
Robot League 2012. At that time, we were using an ND variant [MFMJ10] to

158 7 Conclusions and Future Work

control our robot GETbot, where the motion was unstable due to turn changes,

leading to wheel slippage over ramps and eventually a collision.

It is worth mentioning that the work presented in this thesis does not address
the commonality in features between the proposed approaches and the ND-based
navigation. These commonalities include the computational efficiency, avoiding
the tedious parameter tuning, and the ability to drive a robot towards obstacles
when necessary. For more information about these features and their effect on
the performance of the system, the reader is directed to [MMO04] and [MLLO0S].

It can be noticed that, in this thesis, the navigation problem has been addressed
based on the information obtained from the current sensor readings only. This
may arise some problems due to locality (e.g. a cyclic motion). To deal with this
issue, the proposed solutions are incorporated into a hybrid system including a
planner, as has been addressed in [MMSAOQ1] and [SB02]. By this means, locality

problems are avoided while still being able to achieve real-time performance.

7.2 Future Work

The work carried out in this thesis could be further extended in different direc-

tions, some of which are presented next.

The proposed navigation methods have been developed assuming a flat arena. It
is of interest to consider the geometric properties of the terrain. One possibility
could be to improve the gap analysis so that the gap that ensures safer navigation
is selected rather than the one closest to the goal. In addition, the motion
commands should be adapted by considering the slope and roughness of the
terrain. To this end, a 3D map is necessary to model the environment, which
can be obtained by a 3D SLAM module.

Another extension could be to consider the future trajectory of obstacles in per-
forming the avoidance maneuver. For this purpose, a module detecting and
tracking all visible objects in the scene is required (scene understanding). In
the context of reactive navigation, one possibility could be to incorporate the

concept of Inevitable Collision States [FA04] in the admissible gap concept.

Bibliography

[ACBBYS]

[AT08]

[Ando0g]

[Ark98]

[AW04]

[BB15]

[BDD*14]

AICARDI, Michele; CAsALINO, Giuseppe; BICCHI, Antonio;
BALESTRINO, Aldo: Closed Loop Steering of Unicycle-like Vehi-
cles via Lyapunov Techniques. In: IEEE Robotics and Automation
Magazine, vol. 2, 1995, pp. 27-35

ANDONI, Alexandr; INDYK, Piotr: Near-optimal Hashing Algo-
rithms for Approximate Nearest Neighbor in High Dimensions. In:
Commununication of the ACM, vol. 51, 2008, no. 1, pp. 117-122

ANDREASSON, Henrik: Local Visual Feature based Localisation and
Mapping by Mobile Robots, Orebro University, Diss., 2008

ARKIN, Ronald C.: Behavior-based Robotics. Cambridge, London :
The MIT Press, 1998 (Intelligent Robots and Autonomous Agents)

AN, Dong; WANG, Hong: VPH: A New Laser Radar Based Obstacle
Avoidance Method for Intelligent Mobile Robots. In: Proceedings
of the 5th World Congress on Intelligent Control and Automation.
Hangzhou, China, 2004, pp. 4681-4685

BARrEIss, Daman; BERG, Jur: Generalized Reciprocal Collision
Avoidance. In: The International Journal of Robotics Research,
vol. 34, 2015, April, no. 12, pp. 1501 — 1514

BABINEC, Andrej; DUCHON, Frantisek; DEKAN, Martin; PAszTO,
Peter; KELEMEN, Michal: VFH*TDT (VFH* with Time Dependent
Tree): A New Laser Rangefinder Based Obstacle Avoidance Method
Designed for Environment with Non-static Obstacles. In: Robotics
and Autonomous Systems, vol. 62, 2014, no. 8, pp. 1098-1115

160

Bibliography

[BGPG17]

[BK89]

[BKY1]

[BK99]

[BLO1]

[BLMOS]

[BLODYG]

[BSAP18]

Bounini, Farid; GINGRAS, Denis; POLLART, Herve; GRUYER, Do-
minique: Modified artificial potential field method for online path
planning applications. In: IEEE Intelligent Vehicles Symposium
(IV). Los Angeles, CA, USA, 2017, pp. 180-185

BORENSTEIN, Johann; KOREN, Yorem: Real-Time Obstacle Avoid-
ance for Fast Mobile Robots. In: IEEE Transactions on Systems,
Man and Cybernetics, vol. 19, 1989, September, no. 5, pp. 1179-1187

BORENSTEIN, Johann; KOREN, Yoram: The Vector Field Histogram
- Fast Obstacle Avoidance For Mobile Robots. In: IEEE Trans-
actions on Robotics and Automation, vol. 7, 1991, June, no. 3, pp.
278-288

BRrRoCK, Oliver; KHATIB, Oussama: High-Speed Navigation using
the Global Dynamic Window Approach. In: IEEE International
Conference on Robotics and Automation (ICRA). Detroit, MI, USA,
May 1999, pp. 341-346

BARRAQUAND, Jerime; LATOMBE, Jean C.: Robot Motion Plan-
ning: A Distributed Representation Approach. In: The Interna-
tional Journal of Robotics Research, vol. 10, 1991, no. 6, pp. 628-649

BERG, Jur; LiN, Ming C.; MANOCHA, Dinesh: Reciprocal Velocity
Obstacles for Real-Time Multi-Agent Navigation. In: IEEFE Interna-
tional Conference on Robotics and Automation (ICRA). Pasadena,
CA, May 2008, pp. 1928 — 1935

BEMPORAD, Alberto; Luca, Alessandro D.; ORIOLO, Giuseppe; DE,
Alessandro: Local Incremental Planning for a Car-Like Robot Nav-
igating Among Obstacles. In: IEEE International Conference on
Robotics and Automation (ICRA). Minneapolis, Minnesota, April
1996, pp. 1205-1211

BALDI, Tommaso L.; SCHEGGI, Stefano; AGGRAVI, Marco; PRAT-
TICHIZZO, Domenico: Haptic Guidance in Dynamic Environments
Using Optimal Reciprocal Collision Avoidance. In: IEEE Robotics
and Automation Letters, vol. 3, 2018, no. 1, pp. 265-272

Bibliography 161

[BUVRJ17] BALLESTEROS, Joaquin; URDIALES, Cristina; VELASCO, Antonio
B. M.; RAMOS-JIMENEZ, Gonzalo: A Biomimetical Dynamic Win-
dow Approach to Navigation for Collaborative Control. In: IEEE
Transactions on Human-Machine Systems, vol. 47, 2017, no. 6, pp.
1123-1133

[Cao04] CAo0, Peter M.: Autonomous Runway Soil Survey System with the
Fusion Of Global and Local Navigation Mechanism, University of
Cincinnati, Diss., March 2004

[CLH'05] CHoser, Howie; LyNcH, Kevin M.; HUTCHINSON, Seth; KANTOR,
George A.; BURGARD, Wolfram; KAVRAKI, Lydia E.; THRUN, Se-
bastian: Principles of Robot Motion: Theory, Algorithms, and Im-
plementations. Cambridge, MA : MIT Press, 2005

[CML*15] CHIANG, Hao; MALONE, Nick; LESSER, Kendra; OisHI, Meeko;
TAP1A, Lydia: Path-Guided Artificial Potential Fields with Stochas-
tic Reachable Sets for Motion Planning in Highly Dynamic Environ-
ments. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). Seattle, USA, May 2015, pp. 2347 — 2354

[CNO09] Cauisl, Daniele; NARDI, Daniele: Performance Evaluation of Pure-
motion Tasks for Mobile Robots with Respect to World Models. In:
Autonomous Robots, vol. 27, 2009, September, no. 4, pp. 465-481

[DBO08] DurHAM, Joseph W.; BuLLO, Francesco: Smooth Nearness-
Diagram Navigation. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). France, September 2008,

pp. 690-695

[Dij59] DuKSTRA, E. W.: A Note on Two Problems in Connexion with
Graphs. In: Numerische Mathematik, vol. 1, 1959, no. 1, pp. 269—
271

[DK02] DeESouzA, Guilherme N.; KAK, Avinash C.: Vision for Mobile

Robot Navigation: A Survey. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, 2002, no. 2, pp. 237-267

162

Bibliography

[DS17]

[DSS13)

[DTMD10]

[E1£86]

[Epp16]

[FA04]

[FBL94|

[FBT97]

DEMIR, Mustafa; SEZER, Volkan: Improved Follow the Gap Method
for obstacle avoidance. In: IEEE International Conference on Ad-
vanced Intelligent Mechatronics (AIM). Munich, Germany, July
2017, pp. 1435-1440

DakuLovic, Marija; SPRUNK, Christoph; SPINELLO, Luciano;
PETROVIC, Ivan; BURGARD, Wolfram: Efficient Navigation for
Anyshape Holonomic Mobile Robots in Dynamic Environments. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Tokyo, Japan, November 2013, pp. 2644-2649

Dorcov, Dmitri; THRUN, Sebastian; MONTEMERLO, Michael;
DiIEBEL, James: Path Planning for Autonomous Vehicles in Un-
known Semi-structured Environments. In: The International Jour-
nal of Robotics Research, vol. 29, 2010, no. 5, pp. 485501

ELFES, Alberto: A Sonar-Based Mapping and Navigation System.
In: [EEE International Conference on Robotics and Automation
(ICRA). San Francisco, CA USA, April 1986, pp. 1151-1156

EPPSTEIN, Eitan: Rotate Recovery.
http://wiki.ros.org/rotate_recovery/ (accessed: 28.05.2019),
January 2016

FRAICHARD, Thierry; ASAMA, Hajime: Inevitable Collision States -
a Step Towards Safer Robots? In: Advanced Robotics, vol. 18, 2004,
no. 10, pp. 1001-1024

FEITEN, Wendelin; BAUER, Rudolf; LAwITZKY, Gisbert: Ro-
bust Obstacle Avoidance in Unknown and Cramped Environments.
In: [EEE International Conference on Robotics and Automation
(ICRA). San Diego, CA, USA, May 1994, pp. 2412-2417

Fox, Dieter; BURGARD, Wolfram; THRUN, Sebastian: The Dynamic
Window Approach to Collision Avoidance. In: IEEE Robotics and
Automation Magazine, vol. 4, 1997, no. 1, pp. 23-33

Bibliography 163

[FNA09] FanaiMi, Farbod; NATARAJ, C.; ASHRAFIUON, Hashem: Real-time
Obstacle Avoidance for Multiple Mobile Robots. In: Robotica, vol.
27, 2009, no. 2, pp. 189-198

[FPV*08] FERREIRA, Andre; PEREIRA, Flavio G.; VAssaLLO, Raquel F.;
FiLHO, Teodiano Freire B.; FiLHO, Mario S.: An Approach to Avoid
Obstacles in Mobile Robot Navigation: The Tangential Escape. In:
SBA. Sociedade Brasileira de Automatica, vol. 19, 2008, no. 4, pp.
395-405

[Fra07] FRrAICHARD, Thierry: A Short Paper About Motion Safety. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Roma, Italy, May 2007, pp. 1140 — 1145

[Frel2] FREEMAN, Philip: Minimum Jerk Trajectory Planning for Trajec-
tory Constrained Redundant Robots, Washington University in St.
Louis, Diss., May 2012

[FS98] F10RrINI, Paolo; SHILLER, Zvi: Motion Planning in Dynamic Envi-
ronments using Velocity Obstacles. In: The International Journal
of Robotics Research, vol. 17, 1998, July, no. 7, pp. 760-772

[FS06] FERGUSON, Dave; STENTZ, Anthony: Using Interpolation to Im-
prove Path Planning: The Field D* Algorithm. In: Journal of Field
Robotics, vol. 23, 2006, February, no. 2, pp. 79-101

[FSBD04] FERNANDEZ, J. L.; SANZ, R.; BENAYAS, J. A.; DIAGUEZ, A. R.: Im-
proving Collision Avoidance for Mobile Robots in Partially Known
Environments: the Beam Curvature Method. In: Robotics and Au-
tonomous Systems, vol. 46, 2004, no. 4, pp. 205219

[GCO02] GE, S. S.; Cul, Y. J.: Dynamic Motion Planning for Mobile Robots
using Potential Field Method. In: Autonomous Robots, vol. 13, 2002,
pp. 207-222

[Gcl0] GERKEY, Brian; CONTRIBUTORS: Karto Mapping Library.

http://wiki.ros.org/karto/ (accessed: 28.05.2019), April 2010

164

Bibliography

[GPPK13]

[GSROY]

[GWO3]

[Haul2]

[Haul5]

[HE02]

[HNR68]

[Hoy14]

GORETKIN, Gustavo; PEREZ, Alejandro; PLATT, Robert;
KoONIDARIS, George: Optimal Sampling-based Planning for Linear-
quadratic Kinodynamic Systems. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). Germany, May 2013, pp.
2429-2436

GAL, Oren; SHILLER, Zvi; RIMON, Elon: Efficient and Safe On-line
Motion Planning in Dynamic Environments. In: IEEFE International
Conference on Robotics and Automation (ICRA). Kobe, Japan, May
2009, pp. 88-93

GUO, Zhihua Qu Y.; WANG, Jing: A New Performance-Based Mo-
tion Planner for Nonholonomic Mobile Robots. In: Proc. of Inter-
national Workshop on Performance Metrics for Intelligent Systems
Workshop (PerMIS). Gaithersburg, MD, September 2003, pp. 1-8

HAUsSER, Kris: On Responsiveness, Safety, and Completeness in
Real-time Motion Planning. In: Autonomous Robots, vol. 32, 2012,
no. 1, pp. 3548

HAUSER, Kris: Lazy Collision Checking in Asymptotically-optimal
Motion Planning. In: IEEE International Conference on Robotics
and Automation (ICRA). Seattle, USA, May 2015, pp. 2951 — 2957

HusseIN, Abdulla M.; ELNAGAR, Ashraf: Motion Planning using
Maxwell’s Equations. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Lausanne, Switzerland, Oc-
tober 2002, pp. 2347-2352

HART, Peter; NILSSON, Nils; RAPHAEL, Bertram: A formal Basis
for the Heuristic Determination of Minimum Cost Paths. In: IEEE
Transactions on Systems Science and Cybernetics, vol. SSC-4, 1968,
no. 2, pp. 100-107

Hov, Michael C.: Methods for Collision-Free Navigation of Multiple
Mobile Robots in Unknown Cluttered Environments, Cornell Univer-

sity, Diss., January 2014

Bibliography 165

[HP16] HEGDE, Rashmi; PANAGOU, Dimitra: Multi-Agent Motion Planning
and Coordination in Polygonal Environments using Vector Fields
and Model Predictive Control. In: FEuropean Control Conference
(ECC). Aalborg, Denmark, June 2016, pp. 1-6

[1002] Im, Kwang-Young; OH, Se-Young: An Extended Virtual Force Field
Based Behavioral Fusion with Neural Networks and Evolutionary
Programming for Mobile Robot Navigation. In: IEEE Transactions
on Evolutionary Computation, vol. 6, 2002, no. 4, pp. 413419

[JKWG15] JiN, Jingfu; KiMm, Yoon; WEE, Sung; GANs, Nicholas: Decentral-
ized Cooperative Mean Approach to Collision Avoidance for Non-
holonomic Mobile Robots. In: IEEE International Conference on
Robotics and Automation (ICRA). USA, May 2015, pp. 35 — 41

[JSCP15] JANSON, Lucas; SCHMERLING, Edward; CLARK3, Ashley; PAVONE,
Marco: Fast marching tree: A Fast Marching Sampling-based
Method for Optimal Motion Planning in Many Dimensions. In:
The International Journal of Robotics Research, vol. 34, 2015, no.
7, pp. 883-921

[JXK10] JIE, Dong; XUEMING, Ma; KAIXIANG, Peng: IVFH*: Real-time
Dynamic Obstacle Avoidance for Mobile Robots. In: International
Conference on Control, Automation, Robotics and Vision. Singa-
pore, December 2010, pp. 844-847

[KB91] KOREN, Yoram; BORENSTEIN, Johann: Potential Field Meth-
ods and Their Inherent Limitations for Mobile Robot Navigation.
In: IEEE International Conference on Robotics and Automation
(ICRA). Sacramento, CA, April 1991, pp. 1398-1404

[KF10] KARAMAN, Sertac; FrRAzzOLI, Emilio: Optimal Kinodynamic Mo-
tion Planning using Incremental Sampling-based Methods. In: 49th
IEEE Conference on Decision and Control. Atlanta, GA, USA, De-
cember 2010, pp. 7681-7687

166

Bibliography

[KF11]

[KF13]

[KFT08]

[Kha86]

[Khal4]

[KJIFO6]

[KLOO]

[KLO02]

KARAMAN, Sertac; FrRAzzOLI, Emilio: Sampling-based Algorithms
for Optimal Motion Planning. In: The International Journal of
Robotics Research, vol. 30, 2011, June, no. 7, pp. 846-894

KARAMAN, Sertac; FRAZZOLI, Emilio: Sampling-based Optimal Mo-
tion Planning for Non-holonomic Dynamical Systems. In: IEEFE In-
ternational Conference on Robotics and Automation (ICRA). Karl-
sruhe, Germany, May 2013, pp. 5041-5047

Kuwata, Yoshiaki; FIORE, Gaston A.; TEO, Justin; FRAZZOLI,
Emilio; How, Jonathan P.: Motion Planning for Urban Driving
using RRT. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Nice, France, September 2008, pp.
1681-1686

KHATIB, Oussama: Real-Time Obstacle Avoidance for Manipulators
and Mobile Robots. In: International Journal of Robotics Research,
vol. 5, 1986, April, no. 1, pp. 90-98

KHALIL, Hassan K.: Nonlinear Control. Pearson Education, 2014

KUNCHEV, Voemir; JAIN, Lakhmi C.; IVANCEVIC, Vladimir; FINN,
Anthony: Path Planning and Obstacle Avoidance for Autonomous
Mobile Robots: A Review. In: Proceedings of the 10th interna-
tional conference on Knowledge-Based Intelligent Information and
Engineering Systems Bd. 4252, Springer, 2006 (Lecture Notes in
Computer Science), pp. 537-544

KUFFNER, James J.; LAVALLE, Steven M.: RRT-Connect: An Effi-
cient Approach to Single-query Path Planning. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). San Fran-
cisco, CA, USA, April 2000, pp. 995-1001

KOENIG, S.; LIKHACHEV, M.: Incremental A*. In: Proceedings of
the Neural Information Processing Systems, MIT Press, 2002, pp.
1539-1546

Bibliography 167

[KLO5] KOENIG, Sven; LIKHACHEV, Maxim: Fast Replanning for Navigation
in Unknown Terrain. In: IEEE Transactions on Robotics, vol. 21,
2005, June, no. 3, pp. 354-363

[KO16] KiMm, Mingeuk; OH, Jun-Ho: Study on Optimal Velocity Selection
using Velocity Obstacle (OVVO) in Dynamic and Crowded Environ-
ment. In: Autonomous Robots, vol. 40, 2016, no. 8, pp. 1459-1470

[KR97] KAMON, Ishay; RIVLIN, Ehud: Sensory-based Motion Planning with
Global Proofs. In: IEEFE Transactions on Robotics and Automation,
vol. 13, 1997, no. 6, pp. 814-822

[KRR9S] Kamon, Ishay; RiMoN, Elon; RIvLIN, Ehud: TangentBug: A
Range-Sensor-Based Navigation Algorithm. In: International Jour-
nal of Robotics Research, vol. 17, 1998, no. 9, pp. 934-953

[KRSV10] Kunz, Tobias; REISER, Ulrich; STILMAN, Mike; VERL, Alexan-
der: Real-time Path Planning for a Robot Arm in Changing En-
vironments. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Taipei, Taiwan, October 2010, pp.
59065911

[KSLO96] KAVRAKI, Lydia; SVESTKA, Petr; LATOMBE, Jean claude; OVER-
MARS, Mark: Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces. In: IEEFE International Confer-
ence on Robotics and Automation (ICRA). Minneapolis, MN, USA,
April 1996, pp. 566-580

[KSRS98] Ko, Nak Y.; SIMMONS, Reid; REID, Ko; SIMMONS, G.: The Lane-
Curvature Method for Local Obstacle Avoidance. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Victoria, Canada, October 1998, pp. 1615-1621

[KSTT16] Kovacs, Bence; SZAYER, Geza; TAJTI, Ferenc; BURDELIS, Mauricio;
KoORONDI, Peter: A Novel Potential Field Method for Path Plan-
ning of Mobile Robots by Adapting Animal Motion Attributes. In:
Robotics and Autonomous Systems, vol. 82, 2016, pp. 24-34

168

Bibliography

[KT12]

[Kuc06]

[Kum15]

[Lat91]

[LaVvog]

[LaVoe]

[LB9Y]

[LDWO1]

[LFGT08]

[LGTO3]

Kiss, Domokos; TEVESZ, Gabor: Advanced Dynamic Window
Based Navigation Approach using Model Predictive Control. In:
Proceedings of 17th International Conference on Methods and Mod-
els in Automation and Robotics (MMAR). Miedzyzdrojie, Poland,
2012, pp. 148-153

KUCSERA, Peter: Sensors For Mobile Robot Systems. In: Academic
and Applied Research in Military Science, vol. 5, 2006, pp. 645-658

KUMAR, Vikrant: Dynamic Path Planning.
http://www.slideshare.net/dare2kreate/dynamic-path-planning
(accessed: 28.05.2019), 2015

LATOMBE, Jean-Claude: Robot Motion Planning. Kluwer Academic
Publishers, 1991

LAVALLE, Steven M.: Rapidly-exploring Random Trees: A new
Tool for Path Planning. Report No. 98-11 / Computer Science De-
partment, lowa State University. 1998. — Technical Report

LAVALLE, Steven M.: Planning Algorithms. Cambridge University
Press, 2006

LAUBACH, Sharon L.; BURDICK, Joel W.: An Autonomous Sensor-
Based Path-Planner for Planetary Microrovers. In: IEEFE Interna-
tional Conference on Robotics and Automation (ICRA). Detroit,
Michigan, May 1999, pp. 347-354

LEONARD, John J.; DURRANT-WHYTE, Hugh F.: Mobile Robot Lo-
calization by Tracking Geometric Beacons. In: IEEE Transactions
on Robotics and Automation, vol. 7, 1991, no. 3, pp. 376-382

LIKHACHEV, Maxim; FERGUSON, Dave; GORDON, Geoff; STENTZ,
Anthony; THRUN, Sebastian: Anytime Search in Dynamic Graphs.
In: Artificial Intelligence, vol. 172, 2008, May, no. 14, pp. 1613-1643

LIKHACHEV, Maxim; GORDON, Geoff; THRUN, Sebastian: ARA*:
Anytime A* Search with Provable Bounds on Sub-Optimality. In:

Bibliography 169

Advances in Neural Information Processing Systems (NIPS), MIT
Press, 2003, pp. 767-774

[LJO17] LEE, Beom H.; JEON, Jae D.; OH, Jung H.: Velocity obstacle based
local collision avoidance for a holonomic elliptic robot. In: Au-
tonomous Robots, vol. 41, 2017, August, no. 6, pp. 1347-1363

[LKO1] LAVALLE, Steven M.; KUFFNER, James J.: Randomized Kinody-
namic Planning. In: The International Journal of Robotics Research,
vol. 20, 2001, no. 5, pp. 378-400

[LLLHO8] LipDY, Tommie; Lu, Tien-Fu; Lozo, Peter; HARVEY, David: Ob-
stacle Avoidance using Complex Vector Fields. In: Australasian

Conference on Robotics and Automation, 2008, pp. 1-7

[LLS05] LARGE, Frederic; LAUGIER, Christian; SHILLER, Zvi: Navigation
Among Moving Obstacles using the NLVO: Principles and Applica-
tions to Intelligent Vehicles. In: Autonomous Robots, vol. 19, 2005,
no. 2, pp. 159-171

[LMD'%98] LoBo, Jorge; MARQUES, Lino; Dias, Jorge; NUNES, Urbano;
ALMEIDA, Anibal: Sensors for Mobile Robot Navigation. In: Au-
tonomous Robotic Systems, vol. 236, 1998, pp. 50-81

[LNWB14] LAWITZKY, Andreas; NICKLAS, Anselm; WOLLHERR, Dirk; Buss,
Martin: Determining States of Inevitable Collision using Reachabil-
ity Analysis. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Chicago, USA, September 2014, pp.
4142 — 4147

[LS86] LuMELSKY, Vladimir J.; STEPANOV, Alexander A.: Dynamic Path
Planning for a Mobile Automaton with Limited Information on the
Environment. In: IEEE Transactions on Automatic Control, vol.
31, 1986, no. 5, pp. 1058-1069

[LSL9g] LAUMOND, Jean paul; SEKHAVAT, S.; LAMIRAUX, F.: Guidelines
in Nonholonomic Motion Planning for Mobile Robots. In: Robot
Motion Planning and Control, vol. 229, 1998, pp. 1-53

170

Bibliography

[LV14]

[LV16]

[MAO7]

[Mas12]

[MBF*10]

[MCL™17]

[MES85]

LimA, Danilo A.; VICTORINO, Alessandro C.: An Image Based Dy-
namic Window Approach for Local Navigation of an Autonomous
Vehicle in Urban Environments. In: ITEEE ICRA Workshop on Mod-
elling, Estimation, Perception and Control of All Terrain Mobile
Robots (WMEPC). Hong Kong, China, May 2014, pp. 1-6

Lima, Danilo A.; VICTORINO, Alessandro C.: A Hybrid Controller
for Vision-based Navigation of Autonomous Vehicles in Urban En-
vironments. In: IEEFE Transactions on Intelligent Transportation
Systems, vol. 17, 2016, no. 8, pp. 23102323

MONTANO, Luis; ASENSIO, Jose R.: Real-time Robot Navigation
in Unstructured Environments using a 3D Laser Rangefinder. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Grenoble, France, September 1997, pp. 526 — 532

MasouD, Ahmad A.: A Harmonic Potential Approach for Simulta-
neous Planning and Control of a Generic UAV Platform. In: Journal
of Intelligent and Robotic Systems, vol. 65, 2012, no. 1-4, pp. 153—
173

MARDER-EPPSTEIN, Eitan; BERGER, Eric; FOOTE, Tully; GERKEY,
Brian P.; KONOLIGE, Kurt: The Office Marathon: Robust Navi-
gation in an Indoor Office Environment. In: IEEE International
Conference on Robotics and Automation ICRA. Alaska, USA, May
2010, pp. 300-307

MALONE, Nick; CHIANG, Hao-Tien; LESSER, Kendra; O1sHI, Meeko;
TAPIA, Lydia: Hybrid Dynamic Moving Obstacle Avoidance Us-
ing a Stochastic Reachable Set-Based Potential Field. In: IEEFE
Transactions on Robotics, vol. 33, 2017, no. 5, pp. 1124-1138

MoRAVEC, Hans P.; ELFES, Alberto: High Resolution Maps from
Wide Angle Sonar. In: IEEE International Conference on Robotics
and Automation (ICRA). MO USA, March 1985, pp. 116-121

Bibliography 171

[MFM13a] MUJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Birbel: Ro-
bust Navigation in Complex Environments. In: European Naviga-
tion Conference (ENC). Vienna, Austria, April 2013, pp. 1 — 7

[MFM13b] MUJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Bérbel: Safe
Gap Based (SG) Reactive Navigation for Mobile Robots. In: Euro-
pean Conference on Mobile Robots (ECMR). Barcelona, Spain, June
2013, pp. 325 - 330

[MFM15] MuJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Birbel:
Smooth Reactive Collision Avoidance in Difficult Environments. In:
IEEE Conference on Robotics and Biomimetics (ROBIO). Zhuhali,
China, December 2015, pp. 1471 — 1476

[MFM16] MUJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Bérbel: Tan-
gential Gap Flow (TGF) navigation: A new reactive obstacle avoid-
ance approach for highly cluttered environments. In: Journal of
Robotics and Autonomous Systems, vol. 84, 2016, pp. 15-30

[MFM17] MuJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Birbel: Ro-
bust Collision Avoidance for Autonomous Mobile Robots in Un-
known Environments. In: RoboCup 2016: Robot World Cup XX
Bd. 9776, Springer Lecture Notes in Computer Science, November
2017, pp. 327-338

[MFM18] MUJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Béirbel: Ad-
missible Gap Navigation: A New Collision Avoidance Approach. In:
Journal of Robotics and Autonomous Systems, vol. 103, 2018, pp.
93-110

[MFMJ10] MUJAHED, Muhannad; FISCHER, Dirk; MERTSCHING, Birbel,
JADDU, Hussein: Closest Gap Based (CG) Reactive Obstacle Avoid-
ance Navigation for Highly Cluttered Environments. In: JEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Taipei, Taiwan, October 2010, pp. 1805 — 1812

172

Bibliography

[MHS13]

[Min02]

[Min05]

[Min0g]

[MJFM13]

[MLO9]

[MLB15]

MATVEEV, A. S.; Hoy, M. C.; SAVKIN, A. V.: A Method for Reac-
tive Navigation of Nonholonomic Under-actuated Robots in Maze-
like Environments. In: Automatica, vol. 49, 2013, May, no. 5, pp.
1268-1274

MINGUEZ, Javier: Robot Shape, Kinematics, and Dynamics in
Sensor-Based Motion Planning, Universidad de Zaragoza, Espana,
Diss., July 2002

MINGUEZ, Javier: The Obstacle-Restriction Method for Robot Ob-
stacle Avoidance in Difficult Environments. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). Ed-
monton, Canada, August 2005, pp. 2284-2290

MINGUEZ, Javier: Robot Obstacle Avoidance Papers using Experi-
ments / Robotics European Robotics Research Network (EURON).
2008. — Technical Report

MuJAHED, Muhannad; JAaDDU, Hussein; FISCHER, Dirk;
MERTSCHING, Birbel: Tangential Closest Gap Based (TCG)
Reactive Obstacle Avoidance Navigation for Cluttered Environ-
ments. In: IEEFE International Symposium on Safety, Security, and
Rescue Robotics (SSRR). Linkdping, Sweden - best paper award,
October 2013, pp. 1 — 6

MuJa, Marius; LOWE, David G.: Fast Approximate Nearest Neigh-
bors with Automatic Algorithm Configuration. In: International
Conference on Computer Vision Theory and Applications, 2009, pp.
331-340

MARAvVALL, Dario; LOPE, Javier de; BREA, Juan Pablo F.. Vi-
sual Bug Algorithm for Simultaneous Robot Homing and Obsta-
cle Avoidance using Visual Topological Maps in an Unmanned
Ground Vehicle. In: Bioinspired Computation in Artificial Systems
- IWINAC, Part II, LNCS 9108. Switzerland, 2015, pp. 301-310

Bibliography 173

[MLLO0§] MINGUEZ, Javier; LAMIRAUX, Florent; LAUMOND, Jean-Paul: Mo-
tion Planning and Obstacle Avoidance. In: Springer Handbook of
Robotics. 2008, pp. 827-852

[MLL16] MINGUEZ, Javier; LAMIRAUX, Florent; LAUMOND, Jean-Paul: Mo-
tion Planning and Obstacle Avoidance. In: Springer Handbook of
Robotics. 2016, pp. 1177-1202

[MLO'98] MATTHIES, Larry; LITwiN, Todd; OWENs, Ken; RANKIN, Art; MUR-
pHY, Karl; CooMBs, David; GILSINN, Jim; HONG, Tsai; LEGOWIK,
Steven; NASHMAN, Marilyn; YosHiMl, Billibon: Performance Eval-
uation of UGV Obstacle Detection with CCD/FLIR Stereo Vision
and LADAR. In: Intelligent Control (ISIC), held jointly with IEEE
International Symposium on Computational Intelligence in Robotics
and Automation (CIRA), Intelligent Systems and Semiotics (ISAS).
Gaithersburg, MD, September 1998, pp. 658-670

[MMO2] MINGUEZ, Javier; MONTANO, Luis: Robot Navigation in very Com-
plex, Dense, and Cluttered Indoor/Outdoor Evironments. In: 15th
IFAC World Congress. Barcelona, Spain, 2002, pp. 1-6

[MMO04] MINGUEZ, Javier; MONTANO, Luis: Nearness Diagram (ND) Nav-
igation: Collision Avoidance in Troublesome Scenarios. In: IEEFE
Trans. Rob. Autom, vol. 20, 2004, no. 1, pp. 45-59

[MMO09] MINGUEZ, Javier; MONTANO, Luis: Extending Collision Avoidance
Methods to Consider the Vehicle Shape, Kinematics, and Dynamics
of a Mobile Robot. In: IEEE Transactions on Robotics, vol. 25,
2009, no. 2, pp. 367-381

[MM16] MuJAHED, Muhannad; MERTSCHING, Birbel: A New Gap-based
Collision Avoidance Method for Mobile Robots. In: IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR).
Lausanne, Switzerland, October 2016, pp. 1 — 7

[MM17] MUJAHED, Muhannad; MERTSCHING, Bérbel: The Admissible Gap
(AG) Method for Reactive Collision Avoidance. In: IEEE Interna-

174

Bibliography

[MMS06]

[MMSAO1]

[MOMO4]

[MSKT13]

[MSZ09)]

[Muj10]

[MVLO7]

tional Conference on Robotics and Automation (ICRA). Singapore,
May 2017, pp. 1916 — 1921

MINGUEZ, Javier; MONTANO, Luis; SANTOS-VICTOR, Jose: Ab-
stracting Vehicle Shape and Kinematic Constraints from Obstacle
Avoidance Methods. In: Auton. Robots, vol. 20, 2006, no. 1, pp.
43-59

MINGUEZ, Javier; MONTANO, Luis; SIMEON, Thierry; ALAMI,
Rachid: Global Nearness Diagram Navigation (GND). In: IEEFE In-
ternational Conference on Robotics and Automation (ICRA). Seoul,
Korea, May 2001, pp. 33-39

MINGUEZ, Javier; OSUNA, Javier; MONTANO, Luis: A ”Divide and
Conquer” Strategy based on Situations to Achieve Reactive Colli-
sion Avoidance in Troublesome Scenarios. In: IEEFE International
Conference on Robotics and Automation (ICRA). New Orleans, LA,
USA, April 2004, pp. 38553862

MAROTI, Arpad; SzZALOKI, David; Kiss, Domokos; TEVESzZ, Gabor:
Investigation of Dynamic Window Based Navigation Algorithms on
a Real Robot. In: Proceedings of IEEE 11th International Sym-
posium on Applied Machine Intelligence and Informatics (SAMI),
2013, pp. 95-100

MASTROGIOVANNI, Fulvio; SGORBISSA, Antonio; ZACCARIA, Renato:
Robust Navigation in an Unknown Environment with Minimal Sens-
ing and Representation. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B, vol. 39, 2009, no. 1, pp. 212-229

MuJAHED, Muhannad: A Reactive Obstacle Avoidance Method for
Autonomous Mobile Robots, AL-Quds University, Jerusalem, Pales-
tine, Diplomarbeit, June 2010

Munoz, Nelson; VALENCIA, Jaime; LONDONO, N.: Evaluation of
Navigation of an Autonomous Mobile Robot. In: International
Workshop on Performance Metrics for Intelligent Systems Work-
shop (PerMIS), 2007, pp. 15-21

Bibliography 175

[NBOT7] Ng, James; BRAUNL, Thomas: Performance Comparison of Bug
Navigation Algorithms. In: Journal of Intelligent and Robotic Sys-
tems, vol. 50, 2007, no. 1, pp. 73-84

[NPL12] NARAYANAN, Venkatraman; PHILLIPS, Mike; ; LIKHACHEV, Maxim:
Anytime Safe Interval Path Planning for Dynamic Environments.
In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Vilamoura, Algarve, Portugal, October 2012, pp.
4708-4715

[NTK*™11] Nia, D N,; TANG, H S.; Karasri, B; MoTLacH, O R E.; KiT, A C.:
Virtual Force Field Algorithm for a Behaviour-based Autonomous
Robot in Unknown Environments. In: Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 225, 2011, no. 1, pp. 51-62

[Oeg03] OEGREN, Petter: Formations and Obstacle Avoidance in Mobile
Robot Control, Royal Institute of Technology, Stockholm, Sweden,
Diss., June 2003

[OL05] OGREN, Petter; LEONARD, Naomi E.: A convergent Dynamic Win-
dow Approach to Obstacle Avoidance. In: IEEE Transactions on
Robotics, vol. 21, 2005, no. 2, pp. 188-195

[OMO5] OWEN, Eduardo; MONTANO, Luis: Motion Planning in Dynamic En-
vironments using the Velocity Space. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Edmonton,
Canada, August 2005, pp. 2833-2838

[OMO6] OWEN, Eduardo; MONTANO, Luis: A Robocentric Motion Planner
for Dynamic Environments using the Velocity Space. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Beijing, China, October 2006, pp. 4368-4374

[0S17] OEZDEMIR, Aykut; SEZER, Volkan: A Hybrid Obstacle Avoid-
ance Method: Follow the Gap with Dynamic Window Approach.
In: IEEE International Conference on Robotic Computing (IRC).
Taichung, Taiwan, April 2017, pp. 257-262

176

Bibliography

[Ota09]

[Pan14]

[PCY*16]

[Pet08)

[PFO5]

[PJK12]

[PJK™14]

[PL11]

OTtA, Jun: Rearrangement Planning of Multiple Movable Objects
by a Mobile Robot. In: Advanced Robotics, vol. 23, 2009, no. 1-2,
pp. 1-18

PaNAGoOU, Dimitra: Motion Planning and Collision Avoidance using
Navigation Vector Fields. In: IEEE International Conference on
Robotics and Automation (ICRA). Hong Kong, China, May 2014,
pp. 2513-2518

PADEN, Brian; CAP, Michal; YONG, Sze Z.; YERSHOV, Dmitry S.;
FrazzoLi, Emilio: A Survey of Motion Planning and Control Tech-
niques for Self-driving Urban Vehicles. In: IEEE Transactions on
Intelligent Vehicles, vol. 1, 2016, no. 1, pp. 33-55

PETTI, Stephane R.: Safe Navigation within Dynamic Environ-
ments: a Partial Motion Planning Approach, Ecole des Mines de
Paris, Diss., April 2008

PETTI, Stephane; FRAICHARD, Thierry: Safe Motion Planning in
Dynamic Environments. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Edmonton, Canada, Au-
gust 2005, pp. 2210-2215

PARK, Jong J.; JOHNSON, Collin; KUIPERS, Benjamin: Robot
Navigation with Model Predictive Equilibrium Point Control. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. Vilamoura, Algarve, Portugal, October 2012, pp. 4945-4952

PELLENZ, Johannes; JACOFF, Adam; KIMURA, Tetsuya; MI-
HANKHAH, Ehsan; SHEH, Raymond; SUTHAKORN, Jackrit: RoboCup
Rescue Robot League. In: RoboCup 2014: Robot World Cup XVIII
Brazil, July 2014, pp. 673-685

PuiLLips, Mike; LIKHACHEV, Maxim: SIPP: Safe Interval Path
Planning for Dynamic Environments. In: IEEE International Con-
ference in Robotics and Automation (ICRA). Shanghai, China, May
2011, pp. 5628-5635

Bibliography 177

[Plal0] PLAKU, Erion: Algorithms for Sensor-based Robotics, Artifi-
cial Intelligence. http://courses.csail.mit.edu/6.034s/ (accessed:
28.05.2019), 2010

[PPK"12] PEREZ, Alejandro; PLATT, Robert; KONIDARIS, George; KAEL-
BLING, Leslie P.; LozANO-PEREZ, Tomas: LQR-RRT*: Optimal
Sampling-based Motion Planning with Automatically Derived Ex-
tension Heuristics. In: IEEE International Conference on Robotics
and Automation (ICRA). Minneapolis, MN USA, May 2012, pp.
2537-2542

[PPM13] PARK, Chonhyon; PAN, Jia; MANOCHA, Dinesh: Real-time
Optimization-based Planning in Dynamic Environments using
GPUs. In: IEEFE International Conference on Robotics and Au-
tomation (ICRA). Karlsruhe, Germany, May 2013, pp. 4090-4097

[PSV11] PEREIRA, Flavio G.; SANTOS, Milton Cesar P.; VASSALLO,
Raquel F.: A Nonlinear Controller for People Guidance Based on
Omnidirectional Vision. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). San Francisco, USA,
September 2011, pp. 3620-3625

[QCGT09] QUIGLEY, Morgan; CONLEY, Ken; GERKEY, Brian P.; FAusT, Josh;
Footg, Tully; LEIBS, Jeremy; WHEELER, Rob; NG, Andrew Y.:
ROS: An Open-source Robot Operating System. In: ICRA Work-
shop on Open Source Software. Kobe, Japan, May 2009, pp. 1-6

[RA12] REZAEE, Hamed; ABDOLLAHI, Farzaneh: Adaptive Artificial Poten-
tial Field Approach for Obstacle Avoidance of Unmanned Aircrafts.
In: IEEE/ASME International Conference on Advanced Intelligent
Mechatronics. Kachsiung, Taiwan, July 2012, pp. 1-6

[RBAMI18] RODRICGUES, Romulo T.; BASIRI, Meysam; AGUIAR, A. P.; MI-
RALDO, Pedro: Feature Based Potential Field for Low-Level Active
Visual Navigation. In: ROBOT 2017: Third Iberian Robotics Con-
ference. Advances in Intelligent Systems and Computing, vol 693,
Springer, Cham, 2018, pp. 791-800

178

Bibliography

[RFS09]

[RGM17]

[Rib05]

[RJ15]

[RK92]

[RMPO6]

[RMPOS]

[rob19]

[Ros97]

RuUFLI, Martin; FERGUSON, Dave; SIEGWART, Roland: Smooth Path
Planning in Constrained Environments. In: IEEE International
Conference on Robotics and Automation (ICRA). Kobe, Japan,
May 2009, pp. 3780-3785

ROELOFSEN, Steven; GILLET, Denis; MARTINOLI, Alcherio: Colli-
sion avoidance with limited field of view sensing: A velocity obstacle
approach. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). Singapore, June 2017, pp. 1922-1927

RIBEIRO, Maria I.: Obstacle avoidance / Institute for Systems and
Robotics, ISR-Lisboa. 2005. — Technical Report

RANTANEN, Mika T.; JUHOLA, Martti: Speeding up Probabilistic
Roadmap Planners with Locality-sensitive Hashing. In: Robotica,
vol. 33, 2015, no. 7, pp. 1491-1506

RiMmoN, Elon; KobpITSCHEK, Daniel E.: Exact Robot Navigation
using Artificial Potential Functions. In: IEEE Transactions on
Robotics and Automation, vol. 8, 1992, October, no. 5, pp. 501 —
518

REN, Jing; MclsaAc, Kenneth A.; PATEL, Rajni V.: Modified
Newton’s Method Applied to Potential Field-Based Navigation for
Mobile Robots. In: IEEE Transactions on Robotics, vol. 22, 2006,
no. 2, pp. 384-391

REN, Jing; MclIsaac, Kenneth A.; PATEL, Rajni V.: Modified
Newtons Method Applied to Potential Field Based Navigation for
Nonholonomic Robots in Dynamic Environments. In: Robotica, vol.
26, 2008, pp. 117-127

RoboCup Federation. available online: http://www.robocup.org/
(accessed: 28.05.2019), 2019

ROSENBLATT, Julio: DAMN: A Distributed Architecture for Mobile
Navigation, Robotics Institute, Carnegie Mellon University, Diss.,
January 1997

Bibliography 179

[ros19] Robot Operating system (ROS). available online:
http://www.ros.org/ (accessed: 28.05.2019), 2019

[SB02] StacHNISS, Cyrill; BURGARD, Wolfram: An Integrated Approach to
Goal-directed Obstacle Avoidance under Dynamic Constraints for
Dynamic Environments. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Switzerland, October
2002, pp. 508 — 513

[Sch9g] SCHLEGEL, Christian: Fast Local Obstacle Avoidance under Kine-
matic and Dynamic Constraints for a Mobile Robot. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Victoria, Canada, October 1998, pp. 594-599

[Seb14] SEBBANE, Yasmina B.: Planning and Decision Making for Aerial
Robots. Springer International Publishing Switzerland, 2014

[SG12] SEZER, Volkan; GOKASAN, Metin: A Novel Obstacle Avoidance
Algorithm: "Follow the Gap Method”. In: Robotics and Autonomous
Systems, vol. 60, 2012, no. 9, pp. 1123-1134

[SH13] SAVKIN, Andrey V.; Hoy, Michael: Reactive and the Shortest Path
Navigation of a Wheeled Mobile Robot in Cluttered Environments.
In: Robotica, vol. 31, 2013, no. 2, pp. 323-330

[Sil05] SILVER, David: Cooperative Pathfinding. In: Proceedings of the
First Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE). California, USA, June 2005, pp. 117-122

[Sim96] SIMMONS, Reid: The Curvature-Velocity Method for Local Obstacle
Avoidance. In: IEEE International Conference on Robotics and
Automation (ICRA). Minnosota, USA, April 1996, pp. 3375-3382

[Sin97] SINGHAL, Amit: Issues in Autonomous Mobile Robot Navigation
/ Computer Science Department University of Rochester. 1997. —
Technical Report

[SJP15] SCHMERLING, Edward; JANSON, Lucas; PAVONE, Marco: Optimal

Sampling-based Motion Planning under Differential Constraints:

180

Bibliography

[SL91]

[SLS01]

[SMPO5]

[SN04]

[S097]

[SPO7]

[SRD*17]

The Driftless Case. In: IFEFE International Conference on Robotics
and Automation (ICRA). WA, USA, May 2015, pp. 2368-2375

SLOTINE, Jean-Jacques; LI, Weiping: Applied Nonlinear Control.
Upper Saddle River, NJ : Pearson, 1991

SHILLER, Zvi; LARGE, Frederic; SEKHAVAT, Sepanta: Motion Plan-
ning in Dynamic Environments: Obstacles Moving along Arbitrary
Trajectories. In: IEEE International Conference on Robotics and
Automation (ICRA) Bd. 4. Seoul, Korea, May 2001, pp. 3716-3721

SEDER, Marija; MACEK, Kristijan; ; PETROVIC, Ivan: An Integrated
Approach to Real-time Mobile Robot Control in Partially Known
Indoor Environments. In: Proceedings of the 31st Annual Conference
of IEEE Industrial Electronics Society (IECON), 2005, pp. 1785
1790

SIEGWART, Roland; NOURBAKHSH, Illah R.: Introduction to Au-
tonomous Mobile Robots. Cambridge (Mass.) : MIT Press, 2004

SVESTKA, Petr; OVERMARS, Mark H.: Motion Planning for Car-like
Robots using a Probabilistic Learning Approach. In: The Interna-
tional Journal of Robotics Research, vol. 16, 1997, no. 2, pp. 119-143

SEDER, Marija; PETROVIC, Ivan: Dynamic Window Based Ap-
proach to Mobile Robot Motion Control in the Presence of Mov-
ing Obstacles. In: IEEFE International Conference on Robotics and
Automation (ICRA). Roma, Italy, April 2007, pp. 1986-1991

SCHWARZ, Max; RODEHUTSKORS, Tobias; DROESCHEL, David;
BEUL, Marius; SCHREIBER, Michael; ARASLANOV, Nikita; IVANOV,
Ivan; LENZ, Christian; RAzLAW, Jan; SCHULLER, Sebastian;
SCHWARZ, David; TOPALIDOU-KYNIAZOPOULOU, Angeliki; BEHNKE,
Sven: NimbRo Rescue: Solving Disaster-response Tasks with the
Mobile Manipulation Robot Momaro. In: Journal of Field Robotics,
vol. 34, 2017, no. 2, pp. 400425

Bibliography 181

[SS07] SHIM, David H.; SASTRY, Shankar: An Evasive Maneuvering Algo-
rithm for UAVs in See-and-Avoid Situations. In: American Conitrol
Conference. New York, NY, July 2007, pp. 3886-3891

[SS12] SHILLER, Zvi; SHARMA, Sanjeev: High Speed on-line Motion Plan-
ning in Cluttered Environments. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Vilamoura, Por-
tugal, October 2012, pp. 596-601

[SSV09] SICILIANO, Bruno; Sciavicco, Lorenzo; VILLANI, Luigi: Robotics
: Modelling, Planning and Control. London : Springer, 2009 (Ad-

vanced Textbooks in Control and Signal Processing)

[Ste95] STENTZ, Anthony: The Focussed D* Algorithm for Real-Time Re-
planning. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI) Bd. 2. San Francisco, CA, USA, Au-
gust 1995, pp. 1652-1659

[SWY10] SHi, Chaoxia; WANG, Yanqging; YANG, Jingyu: A Local Obstacle
Avoidance Method for Mobile Robots in Partially Known Environ-
ment. In: Robotics and Autonomous Systems, vol. 58, 2010, may,
no. 5, pp. 425-434

[UB9S] ULRICH, Iwan; BORENSTEIN, Johann: VFH+: Reliable Obstacle
Avoidance for Fast Mobile Robots. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). Leuven, Belgium, May
1998, pp. 1572-1577

[UBO0O] ULRICH, Iwan; BORENSTEIN, Johann: VFH*: Local Obstacle Avoid-
ance with Look-Ahead Verification. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). San Francisco, CA, USA,
April 2000, pp. 2505-2511

[VT12] VALBUENA, Luis; TANNER, Herbert G.: Hybrid Potential Field
Based Control of Differential Drive Mobile Robots. In: Journal of
Intelligent and Robotic Systems, vol. 68, 2012, no. 3-4, pp. 307-322

182

Bibliography

[VTMLO0]

[Wan14]

[WC00]

[WH12]

[WIN15]

[YAT10]

[Ye07]

[YP09)]

VADAKKEPAT, Prahlad; TAN, Kay; MING-L1ANG, Wang: Evolution-
ary Artificial Potential Fields and Their Application in Real Time
Robot Path Planning. In: Proceedings of the 2000 Congress on
Evolutionary Computation. La Jolla, CA, USA, July 2000, pp. 1-8

WANG, Chao: Collision Free Autonomous Navigation and Forma-
tion Building for Non-holonomic Ground Robots, Cornell University,
Diss., February 2014

WANG, Yunfeng; CHIRIKJIAN, Gregory S.: A new potential field
method for robot path planning. In: IEEFE International Conference
on Robotics and Automation (ICRA). San Francisco, CA, USA,
September 2000, pp. 977-982

Wu, Albert; How, Jonathan P.: Guaranteed Infinite Horizon
Avoidance of Unpredictable, Dynamically Constrained Obstacles.
In: Autonomous Robots, vol. 32, 2012, no. 3, pp. 227-242

WEERAKOON, Tharindu; IsHIl, Kazuo; NASSIRAEL, Amir Ali F.: An
Artificial Potential Field Based Mobile Robot Navigation Method To
Prevent From Deadlock. In: Journal of Artificial Intelligence and
Soft Computing Researc (JAISCR), vol. 5, 2015, no. 3, pp. 189-203

YUSTE, Hector; ARMESTO, Leopoldo; TORNERO, Josep: Bench-
mark Tools for Evaluating AGVs at Industrial Environments. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Taipei, Taiwan, October 2010, pp. 2657-2662

YE, Cang: Navigating a Mobile Robot by a Traversability Field His-
togram. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part B, vol. 37, 2007, no. 2, pp. 361-372

YUFKA, Alpaslan; PARLAKTUNA, Osman: Performance Comparison
of Bug Algorithms for Mobile Robots. In: International Advanced
Technologies Symposium. Karabuk, Turkey, May 2009, pp. 1-5

List of Notations

Notation Explanation

A(q) Region of the workspace W occupied by the robot at
configuration ¢

Z(¢a — ¢p) | The angular distance between ¢, and ¢ traveling
from ¢4 to ¢

L(a, dv) The minimum angular distance from ¢, to ¢y

B Goal bridge B constructed between the robot and the goal

C Closest gap

Ceng Curvature Change

Ctree Free configuration space

Cobstacles

Configuration space obstacles

Cspace Configuration space

CC; Set of colliding relative velocities between the robot
and obstacle O;, collision cone

Xi Tangent direction associated with 7;

CO; Configuration space obstacle

d(pa, Ps) Euclidean distance between points p, and ps

dp Buffer distance

D, An open and connected subset of R™ centered at the origin

d; Lookahead distance

Dy Safe distance around the robot

ds(g) Suitable distance to the sides creating gap g

dsafe Desired clearance to obstacles

Dys A parameter used to limit the speed

1) Any value greater than 0

Gap flow angle corresponding to p;

184 List of Notations
Notation Explanation
A(pih) Gap flow angle corresponding to p!
Fatt (pr) Attractive force resulting from U, (pr)
Fiop(Pr) Repulsive force resulting from U, (pr)
G List of assembled gaps
g Represents a gap: a potentially open area among
obstacles through which the vehicle may pass
g Gravitational acceleration
¥ Angle used to compute Wy, and equals v = 6; — 6.
I'(p:) Function used to head the robot to p;. It is set
to 1 or -1 based on location of p; relative to p:
H Subset (left or right) containing threat p!
H* Subset (left or right) that does not contain pi’
Jace Linear Jerk Cost
k(t) Curvature
A Evaluates to 7 if H* is empty or A(pf) otherwise
MG'Z-S Angle towards p$ relative to frame M
Mo (g) Angle towards pi(g) relative to frame M
Mo, (g) Angle towards p.(g) relative to frame M
I3 Coeflicient of friction
N Union of subsets NR and NL
N Set of obstacles in collision while traveling to p:
Neol Number of Collisions
N N1, excluding threats satisfying !T(y§)| > ‘T(ny)
Ny, Left-subset: threats located to the right of p,pt
Nr Nr excluding threats satisfying |T(y§)| > ‘T(y?"‘)'
Nr Right-subset: threats located to the right of m
O Set of obstacles in the workspace
Ocoltision : [Pr = Ps(C)] | Obstacles in collision with the boundary of

the robot while traveling directly towards ps(C)

Ocollision . [p'l‘ — pz]

Obstacles in collision with the boundary of

the robot while traveling directly towards px

List of Notations

185

Notation | Explanation
o+ List of obstacles falling to the left of p.(g), such that
the angular distance traveled does not exceed m
w Angular or rotational velocity
Wmax Maximum angular speed
Pc Obstacle stoint closest to the robot
pCN L Obstacle point closest to the robot and contained in NL,
pCN R Obstacle point closest to the robot and contained in Ny
pcN L Obstacle point closest to the robot and falling in N
Pee(8) Scan point creating the gap g side closer to the goal
Per(g) Scan point creating the gap g side closer to the robot
P (g) Scan point creating the gap g side farther from the goal
p(g) Scan point creating the gap g side farther from the robot
Py Location of the goal
Py Instantaneous location of the goal
P: An obstacle point
p Right neighborhood of point pS
pH Any threat contained in H
iH* The threat closest to pi' and contained in H*
P Obstacle point closest to p; and located in R*
pS A laser scan point
pisf Sequence of points located to the right of pS
pf‘+ Sequence of points located to the left of p$
p?_,_ Left neighborhood of point pf
pi(g) Scan point creating the left side of gap g
Pien Path Length
Pnav Side of the selected gap that the robot circumnavigates
P Location of the robot
p:(g) Scan point creating the right side of gap g
Pry, (g) | Visibility angle of p; with respect to p:(g)
ps(g) An instantaneous subgoal within gap g
Pt Target which can be the goal or the subgoal based on

checking the path to the goal cerriterion.

186 List of Notations

Notation | Explanation

Pvg Target location after rotating it by Wy,

proj(6) A function normalizes 6 to the range [—m, 7]

v Total rotation angle (¥sg + Uyg)

i Rotation angle corresponding to threat ps.

vy, Weighted average rotation angle caused by threats in N
WU ohax The larger absolute value among both ¥y, and Wr
Ug Weighted average rotation angle caused by threats in Nr
W Gap rotation angle

Wy Collision avoidance rotation angle

q A robot’s configuration

R Real number set

R Robot radius

ry Distance to the closest threat that is contained in N
rg(C) Distance to the side of C farther from py.

reg(C) Distance to the side of C closer to py.

(r4,05) Polar coordinates of p;

rH Distance to pi

Ty Distance to p;

rd Distance to scan point p$

Tmax Maximum range of the laser scanner

Tmin Distance to the obstacle point closest to the robot boundary
Robs Risk with Respect to Obstacles

re(g) Distance to p:(g)

rs(g) Distance to ps(g)

T Distance to p¢

r=(g) Distance to point pz(g)

R~ Region of the workspace located to the right of p;
R* Region of the workspace that does not include pc
R Region of the workspace located to the left of p:

S List of laser scan points

S Safe gap

Stat Lateral Stress

List of Notations

187

Notation | Explanation

Stng Tangential Stress

st Unit circle

sat[qp)(x) | A function limits x between a and b

t Time

T(:c;q’) X coordinate of p$ relative to the robot-target frame

T(yzs) Y coordinate of p$ relative to the robot-target frame

ta Latency time

te Computation time

T Circular path that the robot follows to reach point p;

TL Total number of threats contained in NL

Tr Total number of threats contained in NR,

Tiot Total Execution Time

0 Orientation of the robot relative to a global
coordinate system

0. Angle towards pc

Ocenter Angle towards the center point between p; and p;

0cg (C) Angle towards the side of C closer to py.

0t (C) Angle towards the side of C farther from p,.

04 Angle towards the goal

91-H* Angle towards p?*

03 Angle towards scan point p$

07 Angle towards p;

Omia Angle towards the center of the gap.

0:(g) Angle towards p.(g)

0s(g) Angle towards ps(g)

0s(S) Angle towards the subgoal associated with gap S

Oscs Angle towards C keeping a safe distance to peg(C)

0 Angle towards p:

Otraj Trajectory angle

0:(g) Angle towards point p,(g)

Uatt (pr)

Attractive potential to the goal

188 List of Notations

Notation | Explanation

Uiep(pT) Repulsive potential corresponding to obstacle p;

T Function evaluates to 1 or —1 based on the location of the

gap side that the robot circumnavigates

v Linear velocity
Va Set of admissible velocities in the DWA approach
Va Dynamic window in the DWA approach
Vi Initial velocity
Vlimit Speed limit based on the distance to nearby obstacles
VUmax Maximum linear speed
Vi Area of considered velocities within the dynamic window
Vs Set of all possible velocities in the DWA approach
VO, Velocity obstacle associated with obstacle O;
w Workspace
w(g) Width of gap g, i.e. w(g) = [Ipi(g) — P:(g)ll
W(¥y,) Weight associated with Uy,
W(¥g) Weight associated with Uy
w; Weight corresponding to ;
WL Total weight associated with threats falling in NL
W Maximum weight assigned to threats located on N
Tq x coordinate of pgy
(zi,yi) Cartesian coordinates of p;
(z7,y7) Cartesian coordinates of p;
(@$,35) Cartesian Coordinates of scan point p
(z,9) Position of the robot relative to a global
coordinate system
y(IjL Y-coordinate of pIC\IL
yi\f R Y-coordinate of pIC\IR
Zw Zero Crossings
Cace Rotational Jerk Cost

fg Angle to line L, in the velocity space from figure 6.8

List of Abbreviations

Abbreviation | Explanation

AG Admissible Gap

APF Artificial Potential Field

ARM Arc Reachable Manifold

CG Closest Gap Navigation

CVM Curvature Velocity Method
DWA Dynamic Window Approach
FFOV Full Field of View

GND Global Nearness-Diagram

1CS Inevitable Collision States

LCM Lan-Curvature Method

LFOV Limited Field of View

LTG Local Tangent Graph

ND Nearness-Diagram Navigation
ND+ Nearness-Diagram Navigation Plus
NLVO Non Linear Velocity Obstacles
PRM Probabalistic Roadmap

RRT Rapidly-Exploring Random Tree
RVO Reciprocal Velocity Obstacles
SG Safe Gap Navigation

SIPP Safe Interval Path Planning
SND Smooth Nearness-Diagram

TGF Tangential Gap Flow Navigation
VFF Virtual Force Field

VFH Vector Field Histogram

VO Velocity Obstacles

190 List of Abbreviations

List of Tables

5.1

5.2

5.3

5.4

6.1

Performance assessment of the proposed TGF approach for exper-
iments 1 - 6, presented in section 5.2, using the metrics defined
in sections 5.3.1 - 5.3.5 (results of experiments 1 - 4 are reprinted
from [MFM16] with permission from Elsevier).
Performance evaluation results for the experiments presented in
section 4.3 from chapter 4, using the metrics defined in sections
5.3.1-53.5. . . . e
Performance assessment of the TGF-controller for scenarios 3 and
4 from section 5.2 (reprinted from [MFM16] with permission from
Elsevier). As a reference, the results of the ND-controller from
table 5.1 are listed, too. L oo
Performance assessment of the TGF-controller for scenarios 2 and
3 from section 4.3. As a reference, the results of the ND-controller

from table 5.2 are listed, too. L.

Performance assessment results of the proposed “AG approach”
for experiments 1 - 6 from section 6.5 (reprinted from [MFM18§],

with permission from Elsevier).

110

151

192 List of Tables

List of Figures

1.1

2.1
2.2

2.3

2.4

2.5

2.6

Our mobile robot, GETbot, moving through a cluttered environ-

ment. e e e e e e e e e e e e

Main stages of the navigation process (originally from [SN04]).

A triangular mobile robot A (left image) that is allowed to trans-
late freely in a two-dimensional space at a fixed orientation. The
reference point of A is marked as a small circle. The configuration
space obstacles Cobstacles (right image) is obtained by enlarging
the workspace W (hatched area) by the shape of A (middle im-
age) (originally from [Lat91]).
Path planning for a triangular robot that is allowed to translate
and rotate in a two-dimensional space. The configuration space
in such a case is R? x S', where S! is the unit circle. Planning
a path for the triangular-shaped robot in the workspace (left im-
age) is equivalent to planning a path for a point-like robot in the
configuration space (right image) (originally from [Plal0]).
A differential-drive mobile robot, which can only move perpendic-
ular to the wheels axis.
Bug 1 algorithm with (Hq, Hz) described as hit points, and (L1,
L) described as leave points (from [SNO4]).
Bug 2 algorithm with (Hq, Hz) described as hit points, and (L,
L2) described as leave points (from [SNO4]).

194

List of Figures

2.7

2.8

2.9

2.10

2.11

2.12

Artificial Potential Field. (a) Typical potential fields; an attractive
force is acted by the goal and a repulsive force is acted by obstacles
(from [Kum15]). (b) A robot experiences a local minimum while
approaching a U-shaped obstacle. This problem occures if the
attractive force gets symmetric to the repulsive force (originally
from [Rib05]). 31

Mapping of active cells onto the polar histogram (originally from
[BKOIL]). . . o oo o o 33

Velocity space (from [FBTI7]). 34

Dynamic window (from [FBT97]). 35

The set of forbidden robot velocities (v1 U vz2). In order to guar-
antee a safe motion, a control velocity must be chosen outside of
this set. (originally from [MLLOS]). 37

Overview of the Nearness-Diagram (ND) navigation approach (orig-
inally from [MLLO8]). (a) Diagram showing the design of the ND
method [MMO04] following the situated-activity paradigm. Based
on the sensor readings and the locations of the robot and the goal,
one situation is chosen and the associated motion law is computed.
(b) An example shows how to determine the motion direction.
First, the situation is identified: the security zone is obstacle-free,
the motion region is wide, and the target does not fall within the
motion region. In this case, the situation is HSWR. Second, the
suitable action is executed computing the most promising motion
direction Oso1. 40

List of Figures

195

3.1

3.2

3.3

3.4

3.5

Collision check along the “direct path” towards two locations, ps
and p,. Line OL; that passes through p; intersects E; in p;. Ob-

stacle p; causes collision with the direct path towards p. since it

is located on the dark red line segment p1p}. Line OLs that goes
through p; hits E4 in p2. Obstacle p; is collision-free while trav-
eling towards p, since it is not located on p2pj. None of the robot
edges intersects OLs, so P« is collision-free while traveling towards
P=. The path towards py is free, while the path towards p, is in
collision with the red obstacle points (adapted from [MFM13Db]
with permission from IEEE).

Finding out gaps. Firstly, the gaps marked as 1 - 4 and visualized
by green arrows are found out by the “forward search” and the
gaps marked as 5 - 8 and visualized by red arrows are extracted
by the “backward search”. Secondly, gaps 1, 4, and 6 are discarded
as they are located within gaps 8, 5, and 3, respectively. Gap 5
is also discarded since its width is less than 2R. Then, the closest
gap (gap 8) is selected for navigation (adapted from [MFMJ10]
with permission from IEEE).

Classifying gaps based on their location and angular width. Gaps
1-3 are front gaps, whereas gap 4 is a rear gap. Gaps 1 and 4 are
in a good vision state, while gaps 2 and 3 are in a weak vision
state (adapted from [MFM13b] with permission from IEEE).

Determining the safe gap. The closest gap and the safe gap are
denoted by C and S. The robot is driven towards S rather than
C, ensuring a safer behavior and providing a gradual change in

the steering angle (adapted from [MFM13b] with permission from

Determining the subgoal corresponding to gap g. For clarity, the
notation representing the gap, (g), is dropped, e.g. rs(g) becomes

TSe o e e e e e e e e e e e e

51

196

List of Figures

3.6

3.7

3.8

4.1

4.2

Scenario 1 simulations. (a) Path generated by the CG method,
where rapid changes in the direction of motion occurs. (b) Smoother
path generated by SG. (c) Speed profile of the CG method. (d-
¢) Snapshots of the SG simulation. The goal and obstacles are
visualized by magenta circle and black lines, respectively. The
closest gap C and the safe gap S are shown by green and blue line
segments, where subgoals are represented by small circles on the
center of gaps. The obstacle points in collision with the direct
path towards C are visualized by red color. (h) Speed profile of
the SG method (reprinted from [MFM13b] with permission from

Scenario 2 simulations. (a-d) Paths generated using the implemen-
tation of ND+, SND, CG, and SG, respectively. (e-h) Linear and
angular velocities visualized against the time elapsed for ND+,
SND, CG, and SG, respectively.

Experiments (reprinted from [MFM13b] with permission from IEEE).

(a) Environment setup (b) Path generated by applying the CG ap-
proach, where the robot almost touched the obstacle marked as A.
(c) Path generated by SG achieving smoother and safer behavior.
(d) Speed profile for CG. (e) Speed profile for SG.

Visualization of three motion situations based on the “Path-to-
goal” and “Safety” criteria. (a) “Free-path” and “High-safety”: this
situation does not require any action. (b) “Dangerous-path” and
“High-safety”: in this case, a rotation to the goal position is per-
formed, driving the robot towards a subgoal within the closest
gap. (c) “Low-safety”: a temporary rotation to the goal (resp.
subgoal) position is performed so that the robot avoids collisions
with obstacles (adapted from [Mujl0] and from [MJFM13] with

permission from IEEE). L.

Computing the gap rotation angle Wgs,. The closest gap C is as-
sumed narrow. Therefore, U, is determined in such a way that

the robot passes through the gap center C.

58

List of Figures

197

4.3

4.4

4.5

4.6

4.7

Computing W,z based on the tangential navigation concept for
different cases. (a, b) sgn(f:) # sgn(f.) where |y| < 7 for (a)
and |y| > 7 for (b). (c, d): sgn(f:) = sgn(f.) and |0c| > |0
where 0. < 0 for (c) and 6. > 0 for (d). (e, f): sgn(f:) = sgn(be)
and |6.] < |6:| where 8. > 0 for (e) and 6. < 0 for (f). (adapted
from [Muj10] and from [MFM16] [MJFM13] with permissions from
Elsevier and IEEE).
Oscillations that may occur in a tight passage by employing the
“tangential navigation” concept. (a) The closest obstacle point is
located on side A. This imposes a rotation to p: by ¥yg and the
robot navigates tangential to A accordingly. (b) The robot gets
closer to side B. At that point, the new W,, causes the robot to
move tangential to B. (c¢) The robot gets closer to side A again,
moving tangential to it. (d) Fulfilling the leaving condition, and in
turn guiding the robot directly towards p; (adapted from [MFM16]
with permission from Elsevier).
Considering the clearance to both sides of a target p: while com-
puting the avoidance trajectory. The line towards p: divides the
workspace into two regions, RT and R~. It is obvious that p;
is located in RT. Hence, while computing ¥, associated with
p: the clearance between p; and the obstacles located in R~ (vi-
sualized by green and orange) is considered. Since our objective
is to drive the robot towards p:, all obstacles making an angu-
lar distance > 7 with p; are excluded (such as those visualized
by orange). Among the remaining obstacles, the closest to p; is
selected (denoted p; and visualized by dark green).
Computing A(p;). p; is closer to p- than p;. Hence, A(p;) is set
such that ||p; — pi|| is maintained to p; as visualized in (a). If
lpi — p; | is high, the maintained distance is limited to dsafe, see
(B).
Computing A(p;). p; is closer to p, than p;: A(p;) is set such
that the robot moves towards the center point between p; and p;,
see (a). If ||p; —pj || is high, the maintained distance is set to dsate,
see (b). . ..

69

71

72

74

198

List of Figures

4.8

4.9

4.10

4.11

4.12

5.1

5.2

5.3

The target p: is translated to a safer location between both sides
of the closest gap C if the holonomic path towards p: is unsafe.
This step is necessary to determine the set of obstacles that may
cause collision with the robot while guiding it towards p:. For
clarity, the notation representing the closest gap (C) is removed,
e.g. 0. (C) is abbreviated as 6., (adapted from [MFM16] with
permission from Elsevier). 00
A robot navigates towards a given goal location (adapted from
[MJFM13] with permission from IEEE).
Test 1. (a) Experimental setup. (b-e¢) Paths generated by (b)
ND+, (c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f)
ND+, (g) CG, (h) SG and (i) TGF (from [MFM15] with permis-
sion from IEEE).
Test 2. (a) Experimental setup. (b-e) Paths generated by (b)
ND+, (c¢) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f)
ND+, (g) CG, (h) SG and (i) TGF (from [MFM15] with permis-
sion from IEEE). Lo
Test 3. (a) Experimental setup. (b-e¢) Paths generated by (b)
ND+, (c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f)
ND+, (g) CG, (h) SG and (i) TGF (from [MFM15] with permis-
sion from IEEE).

Scenario 1 (reprinted from [MFM16], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ND+, (c) SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f)
ND+, (g) SND, (h) CG, and (i) TGF. . . . oo ..
Scenario 2 (reprinted from [MFM16], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ND+, (c) SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f)
ND+, (g) SND, (h) CG, and (i) TGF.
Scenario 3 (reprinted from [MFM16], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ND+, (c) SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f)
ND+, (g) SND, (h) CG, and (i) TGF.

81

86

87

88

List of Figures

199

5.4

5.5

5.6

5.7

5.8

5.9

Scenario 4 (reprinted from [MFM16], with permission from Else-
vier). (a, d) Environmental setup. (b, ¢, e, and f) Paths generated
by (b) ND+, (c) SND, (e) CG, and (f) TGF. (g-j) Speed profiles
for (g) ND+, (h) SND, (i) CG, and (j) TGF.

Scenario 5 (reprinted from [MFM16], with permission from Else-
vier). (a, b) Environmental setup where (a) Depicts the start of
the mission at which two boxes were located in front of the robot
and (b) Mimics the moment at which three boxes were pushed to-
wards the corridor once line L was crossed. (c-e) Paths generated
by (c) ND+, (d) SND, and (e) CG, where oscillations in motion
can be observed. (f) TGF avoided collision on time and smoothly
proceeded towards the goal. (g-j) Speed profiles for (g) ND+, (h)
SND, (i) CG, and (j) TGF.

Scenario 6. (a-c) Environmental setup. (d-g) Paths generated by
(d) ND+, (e) SND, (f) CG, and (g) TGF. (h-k) Speed profiles for
(h) ND+, (i) SND, (j) CG, and (k) TGF.

Scenario 7. (a-c) Environmental setup. (d-g) Snapshots of the
experiment taken whenever the robot passed through door D1, at
which several students closed the robot’s path for a while. (h-
i) Snapshots of the experiment show how the robot navigated
through door D3. Lo

Visualization corresponding to Experiment 7. (a) Trajectory gen-
erated by the robot applying the TGF method. (c,d) Recorded

motion commands plotted against the time elapsed.

Scenario 3 and 4 from section 5.2, but with (0.7m/s,1.3rad/s)
speed limits (reprinted from [MFM16], with permission from El-
sevier). (a, b) Paths generated in experiment 3 using (a) ND+
and (b) TGF. (c, d) Paths generated in experiment 4 using (c)
ND+ and (d) TGF. (e-h) Speed profiles corresponding to the paths

shown in (a-d), respectively.

95

97

98

100

101

200

List of Figures

5.10 Scenarios 3 and 4 from section 5.2 running TGF, but using the

5.11

6.1

6.2

6.3

TGF-controller (reprinted from [MFM16] with permission from
Elsevier). (a, c) Paths generated in (a) Scenario 3 and (c¢) Scenario
4, using (0.5m/s, 1rad/s) speed limits . (b, d) Paths generated in
(b) Scenario 3 and (d) Scenario 4, using (0.4m/s,0.8 rad/s) speed
limits. (e-h) Speed profiles corresponding to the paths shown in
(a=d). .« .o

Scenarios 2 and 3 from section 4.3 running TGF, but using the
TGF-controller. (a, c) Paths generated in (a) Scenario 2 and (c)
Scenario 3 using (0.5m/s, 1rad/s) speed limits. (b, d) Paths gen-
erated in (b) Scenario 2 and (d) Scenario 3 using (0.4m/s,0.8 rad/s)
speed limits. (e-h) Speed profiles corresponding to the paths

shownin (a-d). L L

Finding out a gap (g) by the “counterclockwise search”. The light
gray color depicts the area covered by the sensing system. The
obstacles are shown by blue regions, where the list of detected
depth points S are visualized by small colored circles. See the text
for explaining how gap g is detected. For a better visualization,
the symbol denoting the gap (g) and the superscript pr in the
“visibility angle” are eliminated (reprinted from [MFM18], with

permission from Elsevier). L.

Finding out gaps by the AG method. The green and red arrows
visualize the gaps that are found by the “counterclockwise” and
“clockwise” searches, respectively. In the “gaps reduction” step,
each gap depicted by a dashed arrow is eliminated (reprinted from

[MFM18] , with permission from Elsevier).

Extracting gaps by different methodologies, including the pro-
posed AG approach. The total number of gaps returned by AG
and CG [MFMJ10] are 5 (marked as 1 - 5) and 4 (labeled i - iv),
depicted by green and red arrows, respectively. For the ND meth-
ods (e.g [MMO04] and [DBO08]), 14 gaps are detected, marked as A
- N (reprinted from [MFM18], with permission from Elsevier). . .

123

List of Figures

201

6.4

6.5

6.6

6.7

6.8

Visualization of the paths followed by a kinematically constrained
robot. Circles 71 and 72 describe the paths followed by the robot
to reach points p1 and p2. Whenever p1 (resp. p2) is reached, the
robot’s orientation is 61 (resp. 62) and the distance traversed is
s1 (resp. s2). The point closest to ps and falling on 73 is denoted
by ps(72) (reprinted from [MM17], with permission from IEEE).

Assigning a subgoal ps to a gap g in such a way that the robot
circumnavigates one of its sides pnay While obeying the kinematic
constraints. First, we identify circle S whose center is pnay and
whose radius is ds. This circle is mutually tangent to two circular
paths (71 and Tz2), each of which lies on the y-axis. The tangent
points are labeled p:1 and p:2. We locate the subgoal at p:1 as it
leads to g (reprinted from [MM17], with permission from IEEE).

Collision checking along 7 [pr — ps]; the path followed to reach ps.
This example consists of three obstacles p1 - ps. The circles that
pass through them and centered at ¢, are C(cs,p1) and C(cs, p3).
Circle C(cs,p1) hits P in pe, where p1 lies on the arc between
pe and p;, but p2 doesn’t. Therefore, p1 is in collision, but p2

is not. Nomne of the robot edges intersects C(cs, p3), thus ps is

125

128

collision-free (reprinted from [MM17], with permission from IEEE).131

Checking navigability. The robot detects two gaps; g1 and g2.
It is obvious that the closest gap (gi) is non-admissible, since
7 [pr — Ps(g1)] is in collision with the obstacle points shown by
orange and dark green dots. But, g1 is navigable because it is
possible to create an admissible gap (g7) that leads to gi1. See
the text for more information on constructing gi (reprinted from
[MM17], with permission from IEEE).

Determining the motion control in such a way that the radius of
curvature 74 is maintained and the maximum possible velocity is
respected. Any point on L, can be a valid motion control as it
satisfies v = wry. Here, we specify Siimit so that the velocity of the
robot is controlled based on the clearance to obstacles (originally
from [MMSO06]). o

137

202

List of Figures

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Scenario 1 (reprinted from [MFM18], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ARM-ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed pro-
files for (f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG. . . .
Scenario 2 (reprinted from [MFM18], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ARM-ND+, (c) DWA-A* (d) TGF, and (e) AG. (f-i) Speed pro-
files for (f) ARM-ND+, (g) DWA-A* (h) TGF, and (i) AG. . . .
Scenario 3 (reprinted from [MFM18], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ARM-ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed pro-
files for (f) ARM-ND+, (g) DWA-A* (h) TGF, and (i) AG. . . .
Scenario 4 (reprinted from [MFM18], with permission from El-
sevier). (a) Environmental setup. (b-e) Paths generated by (b)
ARM-ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed pro-
files for (f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG. . . .
Scenario 5 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b) A pedestrian stepped in front
of the robot. (c) The pedestrian stepped out of the track. (d)
Box B was taken out of the arena, creating gap G2. (e-h) Paths
generated by (e) ARM-ND+, (f) DWA-A*, (g) TGF, and (h) AG.
(i-1) Speed profiles for (i) ARM-ND+, (j) DWA-A*, (k) TGF, and
D) AG. . . o
Scenario 6 (reprinted from [MFM18], with permission from El-
sevier). (a, b) Environmental setup. (c-f) Paths generated by
(c) ARM-ND+, (d) DWA-A*, (e) TGF, and (f) AG. (g-j) Speed
profiles for (g) ARM-ND+, (h) DWA-A*, (i) TGF, and (j) AG. .
Experiment 7. (a, b) Environmental setup, the robot had to move
through the connection between buildings P1 and P7. (c-1) Snap-
shots of the experiment taken at different locations, showing that
the robot was able to react on time avoiding the students who
stepped in to close its way to thegoal.
Trajectory followed by the robot (a) and the recorded motion com-

mands against the time (b, ¢) corresponding to experiment 7. . .

141

142

143

144

147

List of Publications

The work presented in this thesis has been published in the following peer-

reviewed international conference proceedings and journals:

1]

M. Mujahed, D. Fischer, and B. Mertsching, "Admissible Gap Naviga-
tion: A New Collision Avoidance Approach,” Journal of Robotics and Au-
tonomous Systems, vol. 103, pp. 93 - 110, May 2018.

M. Mujahed and B. Mertsching, "The Admissible Gap (AG) Method for Re-
active Collision Avoidance,” in IEEE International Conference on Robotics
and Automation (ICRA), (Marina Bay Sands, Singapore), pp. 1916 - 1921,
May 2017.

M. Mujahed, D. Fischer, and B. Mertsching, "Robust Collision Avoidance
for Autonomous Mobile Robots in Unknown Environments,” in RoboCup
2016: Robot World Cup XX, Springer Lecture Notes in Computer Science,
vol. 9776, November 2017.

M. Mujahed and B. Mertsching, "A New Gap-based Collision Avoidance
Method for Mobile Robots,” in IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), (Lausanne, Switzerland), pp. 220 -
226, October 2016.

M. Mujahed, D. Fischer, and B. Mertsching, "Tangential Gap Flow (TGF)
Navigation: A New Reactive Obstacle Avoidance Approach for Highly Clut-
tered Environments,” Journal of Robotics and Autonomous Systems, vol. 84,
pp. 15 - 30, July 2016.

M. Mujahed, D. Fischer, and B. Mertsching, "Smooth Reactive Collision

Avoidance in Difficult Environments,” in IEEE international Conference

204

List of Publications

on Robotics and Biomimetics (ROBIO), (Zhuhai, China), Best paper fi-
nalist, pp. 1471 - 1476, December 2015.

M. Mujahed, H. Jaddu, D. Fischer, and B. Mertsching, "Tangential Closest
Gap Based (TCG) Reactive Obstacle Avoidance Navigation for Cluttered
Environments,” in IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), (Linkdping, Sweden), Best paper award prize,
pp- 1 - 6, October 2013.

M. Mujahed, D. Fischer, and B. Mertsching, "Safe Gap based (SG) Reactive
Navigation for Mobile Robots,” in Furopean Conference on Mobile Robots
(ECMR), (Barcelona, Spain), pp. 325 - 330, September 2013.

M. Mujahed, D. Fischer, and B. Mertsching, "Robust Navigation in Com-
plex Environments,” in European Navigation Conference 2018 (ENC 2013),
(Vienna, Austria), pp. 1 -7, April 2013.

Lebenslauf

Name

Vorname

Wohnort
Geburtsdatum/-ort
Nationalitat

Familienstand
Schulbildung
09/1985-06/1994
09/1994-07/1997

Studium
09/1997-07/2002

09/2007-07/2010
Wissenschaftliche
Téatigkeit
09/2002-09/2011
09/2010-02/2011
10/2011-03/2017
Beruf

Seit 04/2017

Sprachkenntnisse

Ort, Datum

Unterschrift

Mujahed

Muhannad Abdallah Shaker
Wuppertal

25.09.1980, Hebron, Palédstina
Jordanisch

verheiratet

Grundschule

Gymnasium

»,Bachelor Degree in Computer Systems Engineering®
Palestine Polytechnic University (PPU), Paléstina
»Master Degree in Electronic and Computer Engineering*
Al-Quds University, Palédstina

Hebron Fachhochschule
Al-Quds Open University
Universitat Paderborn

Forscher - Entwicklung autonom fahrender Autos,
APTIV Services Deutschland GmbH

Arabisch
Englisch
Deutsch

Paderborn, 28.05.2019

Drei Stichworter fiir den Deutschen Fakultdtentag zur Dissertation:

- Mobiler Roboter
- Kollisionsvermeidung

- Sensorbasierte Bewegungsplanung

	Introduction
	Motivation and Goals
	Contributions of this Work
	Thesis Outline

	Autonomous Mobile Robot Navigation
	Introduction
	Basic Concepts
	Configuration Space
	Configuration Space Obstacle
	Notion of a Path and a Trajectory
	Non-holonomic Mobile Robots
	Lyapunov Stability Theory
	Sensor Data

	Path Planning Techniques
	Roadmap Path Planning
	Graph and Grid based Methods
	Safe Interval Path Planning
	Probabalistic Roadmap
	Rapidly-exploring Random Tree

	Reactive Navigation Techniques
	Bug Algorithms
	Artificial Potential Fields
	Virtual Force Field
	Vector Field Histogram
	Dynamic Window Approach
	Velocity Obstacles
	Nearness-Diagram Navigation

	A New Gap-based Collision Avoidance Approach - A Holonomic Solution
	The Reactive Navigation Strategy
	Preliminary Definitions and Notations
	Selecting the Direction of Motion
	Extracting Gaps
	Locating the Subgoal
	Determining Motion Commands

	Simulation Results
	Scenario 1 Simulations
	Scenario 2 Simulations

	Experimental Results
	Conclusions

	Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution
	Motion Situations and Corresponding Actions
	Gap Rotation Angle
	Tangential Rotation Angle
	Gap Flow Rotation Angle
	Tangential Gap Flow Rotation Angle

	Determining Motion Commands
	Limiting Speed
	Stability Analysis

	Experimental Results
	Experimental Results for ND+ and CG
	Experimental Results for SG and TGF

	Conclusions

	Evaluation of the Holonomic Solutions
	Experimental Setup
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

	Performance Measures
	Efficiency Metrics
	Oscillation Metrics
	Smoothness Metrics
	Physics-based Metrics
	Security Metrics

	Evaluation and Discussion

	Under-constrained Reactive Collision Avoidance Navigation
	Preliminary Definitions
	Detecting Gaps
	Spatial Discontinuities
	Gaps Search
	Gaps Reduction

	Admissible Gap
	Kinematic Constraints
	Traversing Gaps
	Checking Admissibility

	AG Obstacle Avoidance Method
	Goal Navigability Check
	Gap Navigability Check
	Setting Motion Commands

	Experimental Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

	Evaluation and Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	List of Notations
	List of Abbreviations
	List of Tables
	List of Figures
	List of Publications

