
Control of Mobile Robots Moving in
Cluttered Environments

Von der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.))

genehmigte Dissertation

von

MSc-Eng. Muhannad Abdallah Shaker Mujahed

Erster Gutachter: Prof. Dr.-Ing. Bärbel Mertsching
Zweiter Gutachter: Prof. Dr.-Ing. Dietrich Paulus

Tag der mündlichen Prüfung: 30.10.2020

Paderborn 2020

Diss. EIM-E/352





Dedication

This thesis is dedicated to my beloved parents, who have raised me

to be the person I am today;

Wife and kids, who have been with me every step of the way

through good times and bad;

Wonderful grandmother, for her love and support;

Sister and brothers, for their encouragement;

Thank you all, I love you!





Declaration

I hereby declare that I have completed the work on this PhD dissertation with

my own efforts and no part of this work or documentation has been copied from

any other source. It is also assured that this work is not submitted to any other

institution for award of any degree or certificate.

Paderborn, November 9, 2020

Muhannad Mujahed





Zusammenfassung der Dissertation

Control of Mobile Robots Moving in Cluttered Environments
Des Herrn Muhannad Mujahed

Während der letzten Jahrzehnte hat die Entwicklung mobiler Roboter viel Aufmerksamkeit
erfahren, besonders bei den Entwicklungen in den Anwendungsbereichen Exploration, Su-
chen, Bergen und Haushalt. Der Bau solcher Roboter erfordert die Bewältigung verschie-
denster Anforderungen wie Wahrnehmen, Verfolgen und Kartieren. Ungeachtet der zu erfül-
lenden Aufgabe oder des Anwendungsgebiets muss ein Roboter dennoch in der Lage sein,
seine eigene Bewegung zu planen. Die Bewegungssteuerung ist daher Kern der Roboter-
technik und wurde seit der Entwicklung des ersten mobilen Roboters eingehend betrachtet.
In der Regel müssen reale Umgebungen als unbekannt und zeitlich veränderlich angekom-
men werden. Herkömmliche Bewegungsplanungsverfahren, die auf vorgefertigte Karten an-
gewiesen sind, funktionieren daher in solchen Umgebungen nicht mehr zuverlässig. Reakti-
ve Kollisionsvermeidungsverfahren gehen dieses Problem an, in dem sie sensorische Wahr-
nehmungen in das Regelungssystem einbeziehen und damit die Lücke zwischen Planen
eines Pfades und Ausführen der Bewegung schließen. Der Großteil dieser Methoden unter-
liegt jedoch klassischen Problemen, die ihre Leistungsfähigkeit in unübersichtlichen Umge-
bungen begrenzt; dazugehören Anfälligkeit für Oszillationen, Fehlfunktion beim Steuern des
Roboters durch enge Passagen, Nichtberücksichtigung der Einschränkungen des Roboters,
sowie die Tendenz längere Pfade und höhere Ausführungszeiten zu generieren.

Die vorgestellte Arbeit ziel darauf ab, die oben genannten Probleme anzugehen. Dazu wurde
ein neuartiger Ansatz zur Kollisionsvermeidung entwickelt. Die Schlüsselidee ist eine Analy-
se der Umgebungsstruktur, um die vielversprechendste Lücke zu finden und ein Subziel in
einen kollisionsfreien Bereich zu legen, so dass der Öffnungswinkel der Lücke berücksichtigt
wird und ein sicherer, glatterer Übergang zwischen Kollisionsvermeidung und dem Erreichen
des Ziels vorhanden ist. Dies hat auch kürzere Pfade und kleinere Ausführungszeiten zur
Folge. Dieser vorgeschlagene Ansatz ist durch Berücksichtigung des Abstandes zu Hinder-
nissen verbessert worden, in dem alle umgebenen Hindernisse in die Berechnung des Lenk-
winkels einfließen. Dies wurde möglich durch die Einführung und Integration von zwei Kon-
zepten, nämlich „tangential navigation“ und „gap flow navigation“. Ein weiterer Beitrag liegt
in der Berechnung von Steuerbefehlen derart, dass das System garantiert Ljapunow-stabil
ist. Des Weiteren wird ein neues Konzept, genannt „admissible gap“, vorgestellt, das sich
mit der Frage befasst, ob eine gegebene Lücke durchfahrbar ist, in dem eine zulässige, kol-
lisionsfreie Bewegungsregelung ausgeführt wird. Dieses Konzept ist erfolgreich eingesetzt
worden, um ein Kollisionsvermeidungsverfahren zu entwickeln, das direkt die Fahrzeugein-
schränkungen berücksichtigt, ohne eine holonome Lösung anzupassen. Ein weiterer Beitrag
ist die Entwicklung einer neuen Strategie zur Lückensuche, die Oszillationsmöglichkeiten re-
duziert und die Stabilität der Navigation verbessert. Zum Abschluss werden experimentelle
Ergebnisse zusammen mit einer Leistungsbewertung für hochkomplexe Szenarien vorge-
stellt, um zu verifizieren, dass das vorgestellte Verfahren andere aktuell übliche Techniken
in Bezug auf Gleichmäßigkeit, Effizienz, Zuverlässigkeit und Sicherheit übertrifft.
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Control of Mobile Robots Moving in Cluttered Environments
Mr. Muhannad Mujahed

Over the past few decades, mobile robots have gained a lot of attention, particularly with the
evolution of application fields such as search and rescue, cleaning, and exploration. Devel-
oping such robots requires to cope with different challenges such as perception, tracking,
and mapping. Nevertheless, regardless of the mission to be performed or the application do-
main, robots must be able to plan their own motion. Hence, motion planning is at the heart
of robotics and has been thoroughly addressed since the first mobile robot was developed.
Usually, real-world environments are unknown and change over time. Therefore, traditional
path planning methods that build upon a previously known map fail to work properly in these
environments. Reactive collision avoidance approaches tackle this problem by incorporating
the perceived information into the control system, bridging the gap between planning a path
and executing a motion. Unfortunately, the majority of these methods undergo some clas-
sical drawbacks limiting their performance in cluttered environments. These include being
prone to oscillations, failure of guiding a robot through narrow spaces, neglect of the robot
constraints, and the tendency to generate longer paths and higher execution times.

The work presented in this thesis aims to cope with the above mentioned problems. To
this end, a novel collision avoidance approach was developed and implemented. The key
idea is to analyze the environmental structure and find out the most promising gap, once
determined, a subgoal is located in a collision-free area. It is located in such a way that
the opening angle of the selected gap is considered, providing a safer and smoother bridge
between collision avoidance and target approach. This also leads to shorter paths and less
execution times. The proposed approach has been improved by considering the clearance to
obstacles and by computing the steering angle in such a way that all surrounding obstacles
are taken into account. This has been possible by introducing and integrating two concepts,
called “tangential” and “gap flow” navigation. Another contribution is the computation of the
motion command in such a way that the stability of the system is guaranteed in the Lya-
punov sense. Furthermore, this work presents a new concept, the “admissible gap”, which
addresses the question of whether a given gap is traversable by performing an admissible
collision-free motion control. This concept has been successfully employed to develop a col-
lision avoidance approach, that directly respects the vehicle constraints rather than adapting
a holonomic-based solution. Another contribution is the development of a new strategy for
extracting gaps, which reduces the possibility of oscillation and improves the stability of nav-
igation. Finally, experimental results along with performance assessment in highly cluttered
scenarios are presented to verify that the proposed approaches outperform state-of-the-art
techniques in terms of smoothness, efficiency, reliability, and safety.
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Tobias Kotthäuser, Shakeel Ahmad, and Zubair Kamran.

I would also like to thank my friends for making my stay in Germany a wonderful

time. In particular, many thanks goes to Hamzah, Yahia, Husam, Muhannad,

Majde, Abdelruham, Adnan, and Asad who have made life easier and interesting

at the same time. Thanks to my friends from Palestine; Hammam, Muhannad,

Anan, Safwat, and Ala; they simply never forget me and I never forget them.

My sincere thanks goes to Prof. Hussein Jaddu and Prof. Karim Tahboub, the

advisor and external examiner of my master’s thesis. They have always supported

me and provided the best research advice with a high human quality.

This research has been sponsored by the German Academic Exchange Service

(DAAD). The funding is gratefully acknowledged. I am very fortunate to have

had the opportunity to participate in several conferences and events worldwide,

especially the RoboCup German Open 2012 - 2015 competitions and the World

Robocup 2016. It is worth to remember all researchers whom I came across at

those events and conferences; I would like to thank you all for making each trip

an enriching experience.

Above all, I wish to thank my parents, wife, kids, sister, and brothers, who have

always remained a reliable anchor providing love, support, and understanding. I

am forever indebted to my mom; the older I get the more I realize and appreciate

what you have given me. You always pray for me and wish all the best and success

throughout my life. Without your love and emotions I would not be in such a

position. Thanks mom. My dad spent his life helping and encouraging me for

education and I will always be grateful to him. I am endlessly grateful to my wife

Fida, my daughter Aseel, and my sons Obadah and Adam, who have suffered

my unlimited working hours at days and nights. Fida has always encouraged

me when I was feeling unsure of my next steps. Obadah and Adam have been

a constant source of joy and wonder. Their smile has always brighten my day,

giving me renewed energy to push on. Aseel missed me a lot during the last

couple of years and she always used to ask: why don’t you stay with us, dad?



Contents

1 Introduction 1
1.1 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Autonomous Mobile Robot Navigation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Configuration Space . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Configuration Space Obstacle . . . . . . . . . . . . . . . . 12
2.2.3 Notion of a Path and a Trajectory . . . . . . . . . . . . . 13
2.2.4 Non-holonomic Mobile Robots . . . . . . . . . . . . . . . 14
2.2.5 Lyapunov Stability Theory . . . . . . . . . . . . . . . . . 17
2.2.6 Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Path Planning Techniques . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Roadmap Path Planning . . . . . . . . . . . . . . . . . . . 21
2.3.2 Graph and Grid based Methods . . . . . . . . . . . . . . . 22
2.3.3 Safe Interval Path Planning . . . . . . . . . . . . . . . . . 23
2.3.4 Probabalistic Roadmap . . . . . . . . . . . . . . . . . . . 24
2.3.5 Rapidly-exploring Random Tree . . . . . . . . . . . . . . 25

2.4 Reactive Navigation Techniques . . . . . . . . . . . . . . . . . . . 26
2.4.1 Bug Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Artificial Potential Fields . . . . . . . . . . . . . . . . . . 29
2.4.3 Virtual Force Field . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Vector Field Histogram . . . . . . . . . . . . . . . . . . . 32
2.4.5 Dynamic Window Approach . . . . . . . . . . . . . . . . . 33
2.4.6 Velocity Obstacles . . . . . . . . . . . . . . . . . . . . . . 36
2.4.7 Nearness-Diagram Navigation . . . . . . . . . . . . . . . . 38

3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution 41
3.1 The Reactive Navigation Strategy . . . . . . . . . . . . . . . . . 42

3.1.1 Preliminary Definitions and Notations . . . . . . . . . . . 43
3.1.2 Selecting the Direction of Motion . . . . . . . . . . . . . . 45
3.1.3 Extracting Gaps . . . . . . . . . . . . . . . . . . . . . . . 47



3.1.4 Locating the Subgoal . . . . . . . . . . . . . . . . . . . . . 49
3.1.5 Determining Motion Commands . . . . . . . . . . . . . . 54

3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Scenario 1 Simulations . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Scenario 2 Simulations . . . . . . . . . . . . . . . . . . . . 58

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic So-
lution 63
4.1 Motion Situations and Corresponding Actions . . . . . . . . . . . 64

4.1.1 Gap Rotation Angle . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Tangential Rotation Angle . . . . . . . . . . . . . . . . . . 67
4.1.3 Gap Flow Rotation Angle . . . . . . . . . . . . . . . . . . 69
4.1.4 Tangential Gap Flow Rotation Angle . . . . . . . . . . . . 74

4.2 Determining Motion Commands . . . . . . . . . . . . . . . . . . 80
4.2.1 Limiting Speed . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Experimental Results for ND+ and CG . . . . . . . . . . 84
4.3.2 Experimental Results for SG and TGF . . . . . . . . . . . 85

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Evaluation of the Holonomic Solutions 89
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.6 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.7 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.1 Efficiency Metrics . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 Oscillation Metrics . . . . . . . . . . . . . . . . . . . . . . 102
5.3.3 Smoothness Metrics . . . . . . . . . . . . . . . . . . . . . 103
5.3.4 Physics-based Metrics . . . . . . . . . . . . . . . . . . . . 104
5.3.5 Security Metrics . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . 105

6 Under-constrained Reactive Collision Avoidance Navigation 113



6.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Detecting Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Spatial Discontinuities . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Gaps Search . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.3 Gaps Reduction . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Admissible Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.1 Kinematic Constraints . . . . . . . . . . . . . . . . . . . . 123
6.3.2 Traversing Gaps . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.3 Checking Admissibility . . . . . . . . . . . . . . . . . . . . 129

6.4 AG Obstacle Avoidance Method . . . . . . . . . . . . . . . . . . 132
6.4.1 Goal Navigability Check . . . . . . . . . . . . . . . . . . . 132
6.4.2 Gap Navigability Check . . . . . . . . . . . . . . . . . . . 134
6.4.3 Setting Motion Commands . . . . . . . . . . . . . . . . . 138

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.5.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.6 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5.7 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . 150
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusions and Future Work 155
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 159

List of Notations 183

List of Abbreviations 189

List of Tables 191

List of Figures 203

List of Publications 203





1 Introduction

We humans have long been fascinated by our capabilities to sense the environ-

ment, interact with the physical world, make decisions, and react to what is

happening around us. This fascination has been expressed by directly trying

to create smart machines being able to mimic the human behavior. In 1921,

Karel Capek, a Czech novelist, wrote his satirical drama RUR-Rossum’s Univer-

sal Robots, in which the term robot first appeared describing artificially-created

workers smart enough to replace a human in any job. Since then, the term

robot has caught on among both the scientific community and the general pub-

lic, and is often used to describe any intelligent machine performing the work

of humans. Nowadays, robots are becoming increasingly involved in every as-

pect of the modern life stepping a head towards mimicking nature and creating

human-like helpers, turning the dream of Capek into reality.

Autonomous mobile robots have proven to be a powerful and very effective tool

in many real-world applications [MFM18]. Perhaps the most intriguing feature

of an autonomous robot is its ability to accomplish tasks under conditions where

human presence is hard, unsafe, or impossible [SRD+17]; most humans would not

be able to perform hazardous waste cleanup, examine an active volcano, explore

the surface of planets over a long period of time, or walk through high-risk areas

hit by natural disasters searching for survivors and/or rescuing them.

Designing mobile robots capable of autonomously performing tasks requires to

cope with many problems; object detection, perception, control, decision making,

just to name a few. Nevertheless, regardless of the mission to be executed or the

application domain, at some point, the robot needs to navigate. Hence, motion

planning is the heart of any robotic system. It reflects the robot’s ability to

generate and execute a motion so that a prescribed target is reached as efficiently
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(optimal solution) and as safely (avoid collisions) as possible. This topic is,

broadly speaking, the subject of the research work presented in this thesis.

1.1 Motivation and Goals

Driven by the dream of creating systems that would accomplish tasks under con-

ditions where human existence is impossible or unsafe, robotics has gained an

increasing attention in the last few decades. This research domain has been moti-

vated by different real-world challenges, such as mining, cleaning, search and res-

cue, and military [MFM15]. Usually, real-world environments are unknown, un-

structured, and change with time. Furthermore, unforeseen objects may obstruct

the precomputed trajectories when executing tasks. This raises a wide range of

challenges for introducing a robust motion planning approach [MFM16].

Traditional motion planning methods [Lat91] [LaV06] rely on accurate and static

models of the environment, dealing with the navigation problem on a larger scale

in which a predefined map is used to generate an efficient free path. This path is

computed off-line with previously known obstacles. Therefore, these techniques

often fail to function properly in dynamically changing environments.

To overcome this limitation, it is crucial to integrate the data acquired by sensors

into the control system, bridging the gap between trajectory computation and

motion execution. This helps in detecting dynamic changes that may occur

during navigation, thus reacting to unexpected obstacles. These challenges are

addressed by local reactive navigation (collision avoidance) techniques, where

only a small portion of the environmental model is employed, thus achieving fast

obstacle avoidance with low computational complexity [MFM15].

The majority of reactive navigation approaches present limited performance in

dense, complex, and cluttered environments (as the one shown in figure 1.1). This

is owing to the fact that these techniques are prone to some classical drawbacks

[MM04] [MLL16] [MFM16] such as computational complexity, experiencing a

local minima, difficulties of driving a robot towards obstacles (when necessary),

failure of navigating a robot through narrow spaces, and the tedious parameter
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Figure 1.1: Our mobile robot, GETbot, moving through a cluttered environment.

tuning. It is still an open research problem to find an efficient technique that

enables robots to safely move in such environments.

Over the past years, researchers have distinguished between approaches that gen-

erate a direction of the robot to head for and approaches that perform a search in

the velocity space, selecting a steering command rather than a motion direction.

The former, referred to as “directional approaches”, solve the motion problem in

two stages; first, a direction solution is found by analyzing the sensory informa-

tion. Second, motion commands are computed in such a away that the robot

navigates towards the determined direction [MFMJ10]. The latter, referred to as

“velocity space approaches”, map the constraints stemming from physical restric-

tions and obstacle information into the velocity space, and then select the speed

that fulfills these constraints and optimizes an objective function [MFM15].

Velocity space approaches may allow to drive a robot at higher speeds and show

a smoother behavior. Moreover, they consider the dynamic constraints of the

vehicle. The Curvature Velocity Method [Sim96] [SWY10] and the Dynamic

Window Approach [FBT97] [LV16] are typical representatives of this category.

Unfortunately, these methods may fail to drive a robot through tight passages

in dense environments. Furthermore, they are prone to local minima.

The directional approaches such as the Artificial Potential Field [Kha86] [VT12]

[KST+16] and the Virtual Force Field [BK89] [NTK+11] are simple to imple-

ment and consume less computational load than velocity space methods. More-
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over, experiments demonstrated that navigation in dense and cluttered environ-

ments has been successfully achieved using the Nearness-Diagram (ND) Navi-

gation [MM04] [MFMJ10], that belongs to this category of approaches. ND-

based methods avoid the limitations of most obstacle avoidance techniques men-

tioned above. However, they are prone to oscillations and instability, which in

turn may cause a significant reduction in speed and can be unsafe in narrow

spaces [MFM16]. Furthermore, ND-based methods are likely to cause deviations

towards free regions, increasing the total time and distance needed to perform

an assigned task. Hence, the first goal of this work is to develop a new collision

avoidance approach thats avoids the aforementioned limitations of the ND-based

techniques. In other words, our first goal is to propose a collision avoidance

approach that safely guides a mobile robot through cluttered and dense environ-

ments, while enhancing the efficiency (execution time and path length), smooth-

ness, and stability of the trajectories generated by the ND-based methods.

An additional yet significant limitation of the ND-based methods is the assump-

tion of a holonomic disc shaped robot, which may not be valid in real-world

scenarios. Neglecting the actual robot shape and its kinematics may hinder find-

ing feasible motions or lead to collisions [MM17] [MFM18]. Considering these

constraints is especially critical for robots operating in highly cluttered environ-

ments. Addressing this issue is the second goal of this thesis.

1.2 Contributions of this Work

A new reactive obstacle avoidance approach for autonomous mobile robots was

developed and implemented. The proposed approach, called “Safe Gap” (SG)

navigation, computes the motion commands based on the current sensor data

rather than using a predefined/generated map. By employing the SG approach,

it has been possible to steer a mobile robot in unknown, dynamic, and dense

environments. The SG method follows the “closest gap” concept, that we have

proposed in [MFMJ10], as a methodology to analyze the environmental structure

and find out the most promising gap (opening) for navigation. Collision avoid-

ance is carried out in such a way that the location of obstacle points between the

current robot configuration and the chosen gap is taken into account, creating a
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subgoal in a collision-free area. This subgoal is determined based on the position

of the goal and the opening angle of the gap. By this means, a smoother and

safer bridge between collision avoidance and goal approach is achieved. More-

over, unreasonable deviations towards free regions are avoided, reducing the total

time and distance needed to complete the mission [MFM13a] [MFM15].

In addition, the performance of the SG method has been enhanced by performing

the avoidance trajectory in such a way that the configuration of all obstacles are

considered, not simply the nearest one. Moreover, the distance to obstacles on

both sides of the heading direction is taken into account. By this means, the

smoothness and stability of the robot’s motion are increased, especially in un-

structured narrow spaces. This has been possible by introducing and integrating

two concepts, called “tangential” and “gap flow” navigation. Using the “tangen-

tial navigation”, the robot moves tangential to the obstacles boundary. With the

“gap flow navigation”, the robot safely and smoothly navigates in-between closely

spaced obstacles. In both concepts, avoiding collisions and approaching the target

are simultaneously performed. Another important contribution is the computa-

tion of the motion controller, that drives a mobile robot towards a given goal, in

such away that the stability of the system is proved in the Lyapunov sense. The

enhanced approach, entitled “Tangential Gap Flow” (TGF) navigation, safely

guides a mobile robot through cluttered environments with smoother and more

efficient trajectories when compared to state-of-the-art techniques [MFM16].

Moreover, this work presents a new concept, the “Admissible Gap” (AG), which

addresses the question of whether a given gap is traversable by performing a

collision-free motion control that respects the shape and vehicle constraints.

The AG concept has been successfully employed to develop a collision avoid-

ance approach, that achieves an outstanding performance in cluttered scenarios.

This has been possible by directly respecting the vehicle constraints rather than

adapting a holonomic-based solution. A key idea of AG is the creation of an

“admissible gap”, which serves as a bridge obeying the vehicle constraints, once

traversed, the robot makes progress towards the target [MM17]. To this end,

a new methodology for traversing gaps has been proposed in such a way that

the vehicle constraints are respected. This methodology provides a compromise

between safety and efficiency. Unlike existing methods, AG is directly applied
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to the workspace without having to construct an abstraction layer. Another im-

portant contribution of the AG approach is the development of a new procedure

for finding out gaps. The method can be applied to full or limited field of view

sensors. Moreover, it discards useless gaps, reducing the possibility of oscillation

and improving the stability of navigation [MFM18].

Finally, various experiments are provided in cluttered, dense, and complex envi-

ronments, utilizing our rescue mobile robot GETbot. A performance evaluation

is also carried out to quantitatively assess the effectiveness of the proposed ap-

proaches. Additionally, a discussion and comparison with existing state-of-the-

art techniques is conducted on the basis of the limitations mentioned in section

1.1. In addition to the experiments presented in this thesis, the proposed ap-

proaches were extensively tested while preparing for and participating in the

Robocup Rescue Robot League competitions [rob19]. In these competitions,

robots developed by international research teams operate in a replicated disaster

environment, how it could appear after an earthquake or a terror attack. In such

scenarios, it is of high priority to quickly explore the terrain and identify and

locate injured people, so that they can be evacuated immediately. Since 2012 the

navigation algorithms proposed in this thesis have been used as the reactive layer

on our rescue mobile robots, contributing to the success of the team GETbots.

During these years several honors have been achieved: third place in the over-

all competition at the RoboCup German Open 2012, “Best in Class Mobility”

award in the RoboCup German Open competitions 2013 and 2014, and “Best in

Class Manipulation” award in the RoboCup German Open 2015. However, the

greatest success was the outstanding 3rd place (best European team) in our first

participation at the 2016 RoboCup world championship. In this competition,

employing the AG approach, proposed in chapter 6, had the greatest impact on

the performance of the team. This is due to the fact that the scores of the given

tasks were multiplied by two, once they were performed autonomously.

Partial results of the work presented in this thesis have been previously published

in nine different peer-reviewed international conference proceedings and journals.

More specifically, partial results of the “Safe Gap” (SG), “Tangential Gap Flow”

(TGF), and “Admissible Gap” (AG) navigation approaches presented in chapters

3 - 6 have been published in [MFM13b] [MFM13a], [MJFM13] [MFM15] [MFM16]
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[MFM17], and [MM16] [MM17] [MFM18], respectively. It is worth mentioning

that all published papers were co-authored with Bärbel Mertsching. Additionally,

papers [MFM13b] [MFM15] [MFM13a] [MJFM13] [MFM16] [MFM17] [MFM18]

were co-authored with Dirk Fischer. Finally, [MJFM13] was co-authored with

Hussein Jaddu. In all cases, the key ideas, main contributions, experimental

setups, data analysis, and writing were performed by the author of this thesis.

1.3 Thesis Outline

The remaining chapters of this thesis are structured as follows:

Chapter 2 discusses the problem of autonomous mobile robot navigation and re-

views some of the basic concepts used throughout the robotics literature and this

thesis. In addition, a literature survey on mobile robot navigation is presented,

classifying the existing techniques into path planning (global) and reactive nav-

igation (local). At first, a brief overview of the path planning approaches is

introduced. Following this presentation, we shed the light on the most popular

reactive navigation approaches that motivated us to formulate this work, showing

their advantages and drawbacks.

Chapter 3 introduces the “Safe Gap” (SG) navigation approach for autonomous

mobile robots navigating in unknown dense environments. It presents a proce-

dure to check if there is a safe way towards the goal. Otherwise, the robot will

be directed to another location, referred to as a subgoal. This chapter also intro-

duces a methodology for analyzing the structure of obstacles to locate the list

of surroundings openings. It is also described how subgoals are located within

free areas by making use of the gap analysis. Moreover, it is shown how to

determine the steering command that drives a mobile robot towards the goal

(resp. subgoal). Finally, this chapter shows different simulations and experi-

ments, demonstrating the strength of the proposed SG navigation approach.

Chapter 4 discusses the “Tangential Gap Flow” (TGF) navigation approach that

is an evolution of the SG method. At first, it describes the criteria employed

to characterize the current motion situation and its corresponding action. Sub-

sequently, the concept of “tangential navigation” is introduced, considering only
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one obstacle point. The concept of “gap flow navigation” is also presented which,

together with the tangential navigation, provide a foundation of the TGF ap-

proach. This chapter also explains how both concepts are integrated and how

the avoidance angle is computed based on all detected obstacles. In addition, in

this chapter, it is described how to set the control commands that guide a robot

towards a given target. Experimental results are also introduced to demonstrate

the power of the proposed TGF approach.

Chapter 5 introduces a performance evaluation to assess the significance of the

developed approaches over their counterparts. Moreover, this chapter presents

additional experiments using the implementation of the TGF approach in addi-

tion to three state-of-the-art methods; CG [MFMJ10], SND [DB08], and ND+

[MM04]. The TGF method has been selected since it outperforms the SG method

and inherits its advantages. Before presenting these experiments, the experimen-

tal setup is shown. This chapter also describes the performance metrics that are

employed to evaluate the execution of the proposed methods. Finally, this chap-

ter discusses and compares the behavior of all discussed methods.

Chapter 6 presents an approach that considers the exact robot shape and kine-

matic constraints. It introduces a new procedure of finding out gaps which works

for both full and limited field of view sensors. The “admissible gap” concept is

then presented, where a new methodology for traversing gaps is also introduced.

Moreover, this chapter shows how this concept has been successfully employed

to develop a collision avoidance approach, that obeys the vehicle constraints. It

also shows how to compute the control commands, which guide a mobile robot

towards its goal in a kinematically constrained manner. Finally, experimen-

tal results including a discussion and comparison with existing state-of-the-art

methods are introduced.

Chapter 7 draws the conclusions of this thesis and presents recommendations for

future work in this field of research.



2 Autonomous Mobile Robot Navigation

2.1 Introduction

Some of the major, yet critical issues confronting robotics researchers lie in the

context of navigation. In most cases, autonomous navigation determines the

success of the complete mission and any failure in this module may have fatal

consequences upon the robot and the environment. It is interesting to notice that

this research domain has been initiated in the late 1960s with the appearance

of mobile robots [MLL08]; the first navigation systems were based on seminal

ideas initially published in the first International Joint Conferences on Artificial

Intelligence (IJCAI) founded in California, 1969.

The general navigation methodology for any robotic system is a typical feedback

process [Cao04]: the robot perceives the environment through sensors provid-

ing information to the controller, which is analyzed to understand the current

environmental situation. Then, the controller sends out commands to the ma-

nipulator to carry out behaviors accordingly. As the robot moves from one place

to another, the working environment keeps changing, and therefore, sensors con-

tinuously receive new information providing it to the controller and the process

repeats. Several constraints may affect the robot’s behavior and make it harder

to develop a robust navigation algorithm [Sin97], such as: the computational

power (prohibits us from achieving real-time performance), the presence of ob-

stacles (may be dynamic ones), the inaccuracy of the perception system, and the

errors caused by the robot mechanical system.

It turns out from the above mentioned constraints that autonomous navigation

is a challenging and complex problem. However, the complexity of navigation

can be reduced by dividing it into smaller portions (modules) to deal with them
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Figure 2.1: Main stages of the navigation process (originally from [SN04]).

independently and then combine the solutions. In an early development stage,

Lenoard and Durrant [LDW91] explained the problem of robot navigation by

three questions: “where am I?”, “where am I going?”, and “how should I get

there?”. These questions correspond to the following three problems, respec-

tively: robot localization; determining own current position in an environment,

cognition; deciding what actions are necessary to reach a target based on its

specifications, and motion planning; generating a continuous path between an

initial position and a prescribed goal location. Along such a path, the robot

must avoid collision with obstacles. Solving the above mentioned problems re-

quires the robot’s ability to acquire information about its environment, which

is usually known as robot perception. This defines the fourth portion of the

navigation process as stated in [SN04] (see figure 2.1).

The third problem (motion planning) is the core of this work and will be the

subject of the next sections. A discussion of the other problems is out of the

scope of this thesis, and the reader may refer to [SN04] for more description.

Motion planning has been thoroughly investigated in the literature and has been

traditionally addressed from two distinct perspectives, the global and local mo-

tion planning. Global planners, also known as path planning methods, are based

on a priori information, where an optimal path that connects a robot to a target

location is computed. Local planners, on the other hand, compute one action at

each time step using the information available from sensors. These algorithms,

known as reactive or obstacle avoidance methods, are more realistic in real-time

implementation and consists of a direct mapping between the sensor data and

the motion control [Ark98].
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In Section 2.2, a few basic concepts that are necessary for designing a navigation

technique are discussed. Following this presentation, a brief overview of the path

planning approaches is introduced in section 2.3. Finally, in section 2.4 we shed

the light on the most popular reactive navigation approaches that motivated us

to formulate this work, showing their advantages and drawbacks.

2.2 Basic Concepts

In this section, some of the basic concepts used throughout the robotics literature

and this thesis are discussed; these include: configuration space, configuration

space obstacle, notion of a path and a trajectory, non-holonomic motion planning,

Lyapunov stability theory, and sensory data.

2.2.1 Configuration Space

In order to plan a safe motion for a robot, we must be able to identify its location

with respect to the working environment. In the context of motion planning, a

key concept for specifying the location of every point on a robotic system is

known as a configuration q [CLH+05]. For instance, the configuration of a disc-

shaped robot which is only able to translate (no rotation) in a two-dimensional

Euclidean space (known as workspace), can be described by the location of its

center of gravity (x, y). If we know the robot’s radius, we can easily identify the

position of all points occupied by the robot from the configuration of its center.

For a polygonal robot which is able to rotate and translate in a two-dimensional

workspace, at least 3 parameters are required to represent its configuration; the

location of a point on the robot and the orientation θ of the robot’s coordinate

system relative to a fixed coordinate system in the workspace.

The configuration space (Cspace) of a robotic system is described as the space

of all possible robot configurations [CLH+05]. Therefore, a configuration q can

be seen as a point in Cspace. For the non-rotating robot described above, the

workspace and the configuration space can be both represented by R2. However,

for the rotating mobile robot the workspace is two dimensional R2, whereas the
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configuration space is three dimensional R3 or more specifically R2 × S1, where

S1 is the unit circle. Indeed, the dimension of the configuration space equals the

number of degrees of freedom of the robotic system.

2.2.2 Configuration Space Obstacle

A key concept for motion planing is the configuration space obstacle which is

described by the set of all locations in the workspace at which an intersection

between the robot and an obstacle may exist [CLH+05]. Thus, an obstacle in

the workspace maps in Cspace to the configuration space obstacle. More formally,

let W = Rm be the workspace, O ∈ W the set of obstacles, and A(q) the region

of W covered by the robot at configuration q. A configuration space obstacle,

denoted by COi, that corresponds to obstacle Oi ∈ O is defined as follows:

COi = {q ∈ Cspace | A(q) ∩ Oi 6= φ}

The configuration space obstacles is the union of all COi:

Cobstacles =

q⋃
i=1

COi

The free configuration space is the relative complement of Cobstacles in Cspace (i.e

locations at which no intersection between the robot and obstacles O exists):

Cfree = Cspace \ Cobstacles =

{
q ∈ Cspace

∣∣∣∣∣ A(q) ∩

(
q⋃
i=1

Oi

)
= φ

}

As an example, look at figure 2.2 which shows a triangular mobile robot that is

allowed to translate in a two-dimensional workspace W = R2 without rotation.

In such a case, the configuration space is also R2 as we have pointed out in

section 2.2.1. Cobstacles is obtained by moving the robot along the boundary

of each object, figuring out the constraints the obstacle causes on the robot’s

configuration. In other words, the location of a reference point on the robot is
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Figure 2.2: A triangular mobile robot A (left image) that is allowed to trans-
late freely in a two-dimensional space at a fixed orientation. The
reference point of A is marked as a small circle. The configuration
space obstacles Cobstacles (right image) is obtained by enlarging the
workspace W (hatched area) by the shape of A (middle image) (orig-
inally from [Lat91]).

marked along the boundary of each obstacle, which results in enlarging O by the

shape of the robot as shown in figure 2.2.

2.2.3 Notion of a Path and a Trajectory

With the configuration space concept introduced above, the motion planning

problem is turned out from finding a collision-free path in W for a complex-

shaped robot to finding a path τ in Cspace for a point-like robot. Hence, a path

is transformed from swept volume to a one-dimensional curve (see figure 2.3). A

path from an initial configuration qstart to a goal configuration qgoal is defined as

a continuous mapping [Lat91]:

τ : [0, 1]→ Cspace, with: τ(0) = qstart, τ(1) = qgoal.

For a mobile robot that is a allowed to translate and rotate freely in the space

(free-flying robot), any path defined above is feasible if the configuration space is

free from obstacles. A path τ(s) ∈ [0, 1] is a collision-free path if for all s ∈ [0, 1],

τ(s) ∈ Cfree.
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Workspace

Path is swept volume Path is 1D curve

Figure 2.3: Path planning for a triangular robot that is allowed to translate and
rotate in a two-dimensional space. The configuration space in such a
case is R2 × S1, where S1 is the unit circle. Planning a path for the
triangular-shaped robot in the workspace (left image) is equivalent
to planning a path for a point-like robot in the configuration space
(right image) (originally from [Pla10]).

While a path is a pure geometric description of motion, a trajectory specifies a

timing law on a path [SSV09], and therefore the velocity and/or acceleration at

each point is described.

2.2.4 Non-holonomic Mobile Robots

Every mobile robot is subject to a variety of constraints which may limit its

motion. Traditionally, these constraints are classified into integrable and non-

integrable. An integrable constraint, referred to as holonomic, only depends on

the position and time and can be expressed as a configuration constraint. A

holonomic equality constraint can be written in the following form [Lat91]:

F (q, t) = F (q1, ..., qm, t) = 0 (2.1)

where F is a smooth function with non-zero derivative.

A mobile robot subject to holonomic constraints, called a holonomic mobile

robot, can move to any location following any direction (i.e. it can move for-
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ward, backward, or sideway). Therefore, no change to the basic motion planning

problem (which assumes a free flying behavior) is required. An example of a holo-

nomic system is a person walking on the ground who can instantly go towards

the left or right, as well as moving forwards or backwards.

The non-integrable constraints, referred to as non-holonomic, cannot be ex-

pressed as a functional relationship between the configurations as in Eq. (2.1).

This is due to the fact that these constraints depend on the velocity of the robot.

A non-holonomic equality constraint takes the following form [Lat91]:

F (q, q̇, t) = F (q1, ..., qm, q̇1, ..., q̇m, t) = 0 (2.2)

where F is a non-integrable smooth function. Notice that a constraint defined

by Eq. (2.2) can be formulated similar to Eq. (2.1) if all velocity parameters

(q̇1, ..., q̇m) can be eliminated (i.e. if it is integrable).

Non-holonomic constraints reduce the dimension of the velocity space, but not

that of the configuration space (a constraint on velocity does not mean a con-

straint on configuration). Therefore, a mobile robot subject to non-holonomic

constraints, named a non-holonomic mobile robot, can reach any configuration,

but not following any trajectory [MLL08]. An example of a non-holonomic robot

is a car-like mobile robot that can move forwards or backwards, and can make

turns. Such a robot cannot move freely in the workspace since no direct trans-

lation to either of its sides is possible. However, it can reach any location in the

workspace. Another example is a differential-drive mobile robot which may turn

on spot (zero turning radius) and can only move perpendicular to the wheels

axis, see figure 2.4. It has been shown in the literature that the motion of these

robots is constrained by [LSL98]:

− ẋ sin θ + ẏ cos θ = 0 (2.3)

where (x, y, θ) represents the robot’s configuration (location and orientation)

relative to the world coordinates.

In order to describe the configuration of a non-holonomic robot, at least three

parameters are required (e.g. the location of the center of the robot, and the
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Figure 2.4: A differential-drive mobile robot, which can only move perpendicular
to the wheels axis.

angle between its x-axis and the x-axis of a fixed coordinates system (global)

in the workspace). However, at a specific configuration, the robot’s motion is

described by only two parameters (e.g. linear and angular speeds). For instance,

the kinematic model of the differential-drive robot shown in figure 2.4 can be

expressed by the following equation:ẋẏ
θ̇

 =

cos θ

sin θ

0

 v +

0

0

1

w (2.4)

where v and ω are the translational and rotational velocities.

Planning a motion between two configurations for a non-holonomic robot is a

hard task even in the absence of obstacles. The problem of motion planning for

these robots can be described in the following [MLL08]: given a mobile robot sub-

ject to non-holonomic constraints, starting and goal locations, and a geometric

description of the robot and obstacles, compute an admissible continuous se-

quence of collision-free robot configurations that connect the starting to the goal

locations. Solving this problem requires to consider two types of constraints;

constraints due to the existence of obstacles and constraints due to the non-

holonomicity. The former are represented in the configuration space, whereas

the latter are expressed in the velocity (tangent) space.



2.2 Basic Concepts 17

2.2.5 Lyapunov Stability Theory

Stability is the base and most important requirement of any control system, since

an unstable system is normally of no use and probably risky. Loosely speaking,

“a system is described as stable if starting the system somewhere near a desired

operating point implies that it will stay around the point ever after” as stated

in [SL91]. A powerful and generic methodology for checking the stability of

nonlinear control systems is the theory proposed by Alexandr Lyapunov in the

late 19th century . It includes two methods; the so-called linearization method

(indirect) and the direct method. Lyapunov’s indirect method is based on the

assumption that, for small motions, the behavior of nonlinear control systems is

similar to their linearized approximations. In this regard, a stable design of the

linearized control system implies the stability of the original system locally. The

direct Lyapunov method determines the stability characteristics of nonlinear sys-

tems by examining the variation of an energy-like function (Lyapunov function)

over time without explicitly solving the differential equation. In the following,

some basic definitions from the literature are introduced, followed by the main

stability result of the Lyapunov theory. For more details, the interested reader

can refer to a standard text, such as [SL91] [Kha14].

Throughout this section, a nonlinear dynamical system is described as follows:

ẋ = f(x, t) (2.5)

where f(.) : Rn → Rn and x represents a state space vector. A solution x(t)

to Eq. (2.5) is represented by a curve in the state space, referred to as state

or system trajectory. It is assumed that f(x, t) satisfy the conditions needed to

guarantee the existence and uniqueness of solutions, such as f(x, t) is Lipschitz

continuous with respect to x [Oeg03]. The points of interest in the context of

stability analysis are the so-called equilibrium points.

Definition 2.1 (Equilibrium Point) A state x∗ is called an equilibrium point

of Eq. (2.5) if once the condition x(t) = x∗ is fulfilled, it never changes (x(t)

stays equal to x∗ ever after):

f(x∗, t) = 0
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We now go further by studying the stability properties of a given equilibrium

state. Since it is possible to move an equilibrium point to the origin by a simple

coordinate transformation, we will assume x∗ = 0 throughout this section.

Definition 2.2 (Equilibrium Point Stability) An equilibrium state x∗ = 0

is described as a stable point at t = t0 if a δ > 0 exists for any σ > 0 such that:

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < σ, ∀t ≥ t0

else, the equilibrium point is described as unstable.

Definition 2.3 (Asymptotic Stability) An equilibrium point of Eq. (2.5) is

described as an asymptotically stable point at t = t0 if it is convergent and fulfills

definition 2.2 (stable), where an equilibrium point is said to be convergent if:

‖x(t0)‖ < δ =⇒ lim
t→∞

‖x(t)‖ = 0

In robotics, we are almost interested in asymptotically stable equilibria, since our

objective is to move a robot to a given goal point, not merely remain nearby.

Definition 2.4 (Locally Positive Semi-definite Function) A continuous func-

tion V (x) : Dε → R is described as locally positive semi-definite in Dε if

(i) V (0) = 0

(ii) V (x) ≥ 0, ∀x ∈ Dε, x 6= 0

where Dε = {x ∈ Rn :‖x ‖< ε} represents an open and connected subset of Rn

centered at the origin.

Definition 2.5 (Locally Positive Definite Function) A continuous function

V (x) : Dε → R is described as locally positive definite in Dε if condition (ii) in

definition 2.4 is replaced by: V (x) > 0, ∀x ∈ Dε, x 6= 0

Definition 2.6 (Negative Definite Functions) A continuous function V (x) :

Dε → R is described as locally negative definite (resp. semi-definite) in Dε if

(−V (x)) is locally positive definite (resp. semi-definite) in Dε.
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Theorem 2.1 (Lyapunov Stability Theorem) Suppose that x∗ = 0 is an

equilibrium point of the differential system defined in Eq. (2.5), and suppose that

V (x) : Dε → R is a continuously differentiable function, where:

(i) V (x) is locally positive definite in Dε.

(ii) The derivative of V (x) is locally negative semi-definite in Dε.

thus, the equilibrium point x∗ = 0 is described as stable.

Theorem 2.2 (Lyapunov Asymptotic Stability Theorem) Considering the

same conditions of the above theorem (theorem 2.1), if V̇ (x) is locally negative

definite, x∗ = 0 is said to be asymptotically stable.

The function V (x) in both theorems above is called a Lyapunov function.

2.2.6 Sensor Data

An important task of a mobile robot is to get knowledge about itself and its

surroundings. This is achieved by extracting useful information from the mea-

surements provided by sensors. There are various types of sensors used in mobile

robots ranging from those used to measure simple values like wheel load to more

sophisticated sensors like those used for perceiving the environment. Generally

speaking, sensors can be classified to proprioceptive and exteroceptive [SN04].

Proprioceptive sensors are used to get information about the current state of the

robot itself, like its location, speed, battery voltage, etc. On the other hand,

exteroceptive sensors acquire data from the outside world, such as color, dis-

tance to an obstacle, global position, etc. In the following, we briefly discuss the

most common sensors used in the context of mobile robot navigation. For more

information about other sensor types, the reader can refer to [LMD+98].

2.2.6.1 Shaft Encoders

Shaft encoders provide information about the distance traveled by a mobile robot

based on measuring the number of revolutions of its wheels. The robot uses the
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output of the shaft encoders to estimate its current position relative to a starting

location, a method called odometry. However, this method is prone to errors due

to the wheels slippage, sampling of the encoders, and the integration of velocity

measurements over time. Obtaining a better position estimation requires to

combine information from shaft encoders and an exteroceptive sensor, such as a

camera or a laser rangefinder.

2.2.6.2 Vision-based Sensors

Vision is the most powerful sense due to the rich amount of data that can be

extracted from an image [And08]. Recently, a considerable improvement in accu-

racy, resolution, and frame rate of vision sensors (e.g. camera) has been shown.

Robots are using either global or local vision. In global vision, a camera sen-

sor is placed externally to the robot in such a way that the robot (maybe more

than one robot) and the entire environment are covered by the camera’s field

of view (FOV). In local vision, a camera is attached to the robot so that the

area in front of it is captured. By this means, regions that are occluded from

the global camera can be discovered. Despite the fact that vision-based sensors

provide detailed information about an environment (which may not be available

using combinations of other types of sensors [DK02]), unfortunately, obtaining

accurate range information in real-time for successful obstacle avoidance does

not seem to be currently possible [Hoy14].

2.2.6.3 Range Sensors

Range sensors are used to measure distances to objects surrounding the robot

by making use of the propagation speed of a transmitted signal [Kuc06]. The

emitted signal can be sound as in ultrasonic (sonar) sensors or light as in LiDAR

(Light Detection and Ranging) . The basic principle of ultrasonic (resp. LiDAR)

sensors is to emit ultrasonic pressure waves (resp. laser light beams) and calculate

the time it takes to reflect and get back to the receiver. With the speed of sound

(resp. light) known, the distance to the reflected surface follows immediately. A

major disadvantage of an ultrasonic sensor is the inability to determine the exact
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location of an obstacle. It only tells us that an obstacle is located within the

area of the measurement cone. The LiDAR outperforms the ultrasonic sensor in

terms of resolution, accuracy, and cost, owing to the use of laser light instead of

sound waves [SN04]. Therefore, it is the most common sensor used for mobile

robot navigation and obstacle avoidance.

2.3 Path Planning Techniques

Path planning is a relatively well studied research area. It is defined as a priori

determination of the motion strategy based on a perfect model of the robot and

a complete knowledge of the environment (i.e. a map). This problem has been

motivated by the industrial use of manipulator arm robots operating via an end

effector that can freely move in a known environment. In mobile robots operating

in real-world scenarios, the a priori knowledge of an environment is mostly partial

or absent [Rib05]. Moreover, it has been shown that path planning algorithms

are computationally expensive, limiting their use in applications requiring real-

time performance [PJK12]. In addition, incorrect data or unexpected changes in

the environment (e.g. dynamic obstacles) may affect the performance since, in

such a case, it is essential to recompute the path.

In this section, we review the main path planning strategies that have been

developed over the past years. For a thorough description of basic methods, the

reader can refer to [Lat91] [PCY+16].

2.3.1 Roadmap Path Planning

Roadmap path planning approaches capture the connectivity of the unoccupied

space into a network of one dimensional curves or lines [SN04], named roadmaps.

Once a roadmap is constructed, the path planner attempts to connect a starting

configuration of the robot to the roadmap. Similarly, a given goal configuration

is connected to the roadmap. Then, the roadmap is searched for a series of

roads from the starting configuration to the goal. In a roadmap, the shape of

an obstacle is represented as a polygon. There are several variations that follow
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this strategy which differ mainly in the way the roadmap is constructed. Next,

we describe two approaches, namely visibility graph and Voronoi diagram.

2.3.1.1 Visibility graph

Such a graph consists of edges connecting all visible vertices of obstacles (there

exists a line of sight between both vertices) including both the start and goal

configurations [KJIF06]. The shortest path from the initial location to the goal

along the roads of the visibility graph is then calculated using any graph searching

technique. This algorithm provides an optimal solution to the path planning

problem. However, it takes the robot as close as possible to obstacles [SN04].

Moreover, it does not generalize to higher dimensions, nor it scale well with the

number of obstacles.

2.3.1.2 Voronoi diagram

The Voronoi diagram consists of lines and parabolic segments that are equidis-

tant from the two nearest obstacles, called Voronoi edges. Similar to the visi-

bility graph method, a graph searching technique is used to compute the best

path along the Voronoi edges that connect the start configuration to the goal.

Although the distance between the robot and obstacles is maximized along the

way to the goal, this method is usually far from optimal in the sense of total

path length [SN04].

2.3.2 Graph and Grid based Methods

A common approach to global path planning is based on graph search, where

the configuration space is discretized into a regular grid. Each cell of this grid

is considered a node and each connection between two cells is an edge. The

obstacle-free portion of the grid is searched for the shortest path that connects

the robot’s initial location to the goal. The standard graph-based techniques

are the Dijkstra’s search [Dij59] and A∗ algorithm [HNR68] [Ota09] [DTMD10].

While Dijkstra’s method uses a depth-first search strategy, A∗ employs a heuristic
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function to perform a best-first search. This function helps in selecting the most

promising node by estimating the distance to the goal. Hence, A∗ is more efficient

than Dijkstra, particularly if the size of the grid is large. The solution found by

A∗ is optimal if the heuristic function is optimistic, i.e. it never overestimates

the actual path cost (e.g. Euclidean or Manhattan distance).

Grid-based methods are considered computationally expensive, especially in com-

plex and large environments. This is due to the grid representation of the

map. Moreover, when the goal position is modified or when a dynamic ob-

stacle obstructs the robot’s working area, it is necessary to re-plan the entire

path [PJK12]. However, many variants to A∗ have been introduced to make

the searching process faster, such as Incremental A∗ [KL02], ARA∗ [LGT03],

D∗ [Ste95], D∗ Lite [KL05], and Anytime D∗ [LFG+08]. The main idea behind

these extensions is to maintain dependency information so that the previous

search results are modified locally when environmental changes occur. In this

regard, no need to explore the entire space at each re-planning stage.

Another problem of grid-based techniques is that the resultant path is basically

aligned to the grid structure (could be 4 or 8 connected grid), which is unnatural

and sub-optimal in a continuous sense. It has been shown that a path can be

up to 8% longer than optimal in case of an 8 connected grid. A variant of D∗,

named Field D∗, has been proposed in [FS06] to address this problem. Field

D∗ modifies the search graph by assigning nodes to the corners of the grid cells

rather than their centers. In this regard, edges connecting two adjacent nodes

will have the same traversal cost. The path cost along any point of an edge is

estimated using a linear combination (interpolation) between the nodes of the

edge. Thus, in cases where the cost variation is not linear between nodes, this

heuristic may fail. However, it has been shown that Field D∗ works quite well in

practice [FS06].

2.3.3 Safe Interval Path Planning

The existence of dynamic obstacles adds a new dimension (time) to the search

space, and thus increases the computational overhead of the planning problem. A



24 2 Autonomous Mobile Robot Navigation

common approach to deal with the increase in the dimensionality of the planning

problem is to assume that all objects are stationary and re-plan continuously as

objects move (e.g. [LFG+08] [RFS09]). However, this approach scarifies com-

pleteness and optimality. Another strategy is to plan in the complete search

space as has been addressed by Silver [Sil05]. By this methodology, plans can

be out of time before applying them due to the increased number of states to

be processed. This problem was the motivation behind developing the Safe In-

terval Path Planning (SIPP) approach [PL11]. The time dimension in the SIPP

path planner is represented by intervals rather than time steps. A safe inter-

val corresponding to a configuration of a robot is a period of time consisting of

a group of contiguous time steps, during which the associated configuration is

collision-free. The planner uses states defined by configurations, together with

their corresponding safe intervals to construct a search-space. For planning, a

modified A∗ algorithm is used, incorporating the time needed to attain a node.

Due to the fact that the number of SIPP intervals is less than that of the time

steps for each configuration, SIPP is faster and requires smaller memory as com-

pared with those approaches that use time steps for planning.

Anytime version of SIPP [NPL12] has also been developed integrating SIPP with

ARA∗ [LGT03]. The integrated method introduces an optimal time horizon,

after which the time dimension is dropped. Thus, the path planner considers only

spatial coordinates for states having a time stamp exceeding the time horizon. As

reported in [Seb14], theoretically, “it is shown that in the absence of time horizon,

this planner can provide guarantees on completeness as well as bounds on the

sub-optimality of the solution with respect to the original space-time graph”.

2.3.4 Probabalistic Roadmap

Some of the most widely used path planners are those based on the concept of

a Probabilistic Roadmap (PRM) [KSLO96]. It has been shown that PRM is

a successful approach to robot path planning in high-dimensional configuration

spaces, which naturally arise when we control the motion of high degrees-of-

freedom robots. Basically, PRM methods work in two main phases, namely a

“roadmap construction phase” and a “query phase” [KSLO96]. The roadmap
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construction phase captures the connectivity of the unoccupied space by first

randomly sampling the configuration space and identifying those samples that

lie in the free space, referred to as free samples. Then, nearby free samples are

connected using a local planner (i.e. they are connected if there is a feasible

motion command between them). The output of this stage is a graph whose

vertices are the free samples and whose edges are the successful local plans.

In the query phase, the start and goal locations are connected to the graph.

For these two configurations, the nearby nodes are determined and edges are

connected using a local planner as in the roadmap construction phase. Once the

complete graph is created, a graph search algorithm (e.g. A∗) is used to find the

path on the graph that connects the initial and goal configurations.

The PRM approach is flexible owing to the fact that each of its main compo-

nents (sampling method, roadmap construction strategy, and the local planner

used) can be modified while maintaining its basic capabilities. Thus, many PRM

variants have been introduced during the last two decades. For example, some

variants extended the problem to non-holonomic path planning using special lo-

cal planners (e.g. [SO97]). Other variants focused on speeding up the nearest

neighbor search by using an approximation method (e.g. [AI08] [ML09] [RJ15]).

The motivation behind developing these approaches was the fact that the near-

est neighbor search is considered as a crucial part of PRM planners, since each

time a new node is connected to the roadmap the planner must find the set of

nearest neighbor nodes. Lately, several variants have been developed to pro-

vide probabilistic completeness guarantees in the sense that the probability of

finding a solution, if one exists, goes to one as the number of samples goes to

infinity [KF11] [JSCP15].

2.3.5 Rapidly-exploring Random Tree

Rapidly-exploring Random Trees (RRT) [LaV98] [LK01] [KFT+08] are random-

ized planning methods that incrementally construct a search tree and attempt

to quickly explore the state space. This enables them to find feasible paths in

higher-dimensional search spaces more efficiently, but with less-strict optimality

and completeness guarantees than search-based planners. The RRT planner is
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similar in spirits to the PRM approach, but instead of constructing a complete

topological graph (roadmap), a tree is grown incrementally staring from an ini-

tial configuration. It is constructed by randomly selecting a new sample at each

iteration and then determining the nearest neighbor in the already created tree.

A new vertex is then added to the tree by extending the nearest neighbor towards

the selected sample. This procedure is repeated until having reached the goal.

At the end, the nodes of the tree represent the explored locations and the edges

represent the control inputs required to proceed from a node to another. Thus,

the tree is constructed by a random exploration towards unexplored areas biased

by motion towards the goal configuration. The efficiency of the search can be

enhanced by employing a bidirectional search where the tree is extended from

both the initial and goal configurations [KL00].

Several recent variants, referred to as RRT*, initially proposed in [KF11] [KF10],

guarantee convergence toward optimal solutions as the number of samples grows

[PPK+12] [GPPK13] [KF13]. Other variants build their analysis based on the

notion of convergence in probability which provides mathematical flexibility al-

lowing for convergence rate bounds [SJP15] [JSCP15]. Another recent vari-

ant [Hau15] attempts to speed up the sampling-based motion planners by using

a lazy collision checking strategy. However, RRT-based methods are mostly lim-

ited to static environments [PPM13]. Moreover, their computed paths are post-

processed to reduce the effect of randomization [DSS+13]. Although there are

attempts to extend RRT-based planners to handle dynamic scenes (e.g. [PF05]

[KRSV10] [Hau12]), local-reactive and control-coupled approaches are still more

desirable, particularly in highly cluttered and dynamic environments.

2.4 Reactive Navigation Techniques

Besides the extensive developments in path planning, efforts were devoted to-

wards making mobile robots operate out of the artificially created environments,

so that they can share the same workspace with humans. The high computational

time required to plan a path, inaccurate modeling of the environment, and the

unforeseen dynamic obstacles made researchers aware of the gap between path

planning and motion execution [MLL08]. This has motivated authors to develop
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schemes fast enough so that robots can react to the environment and avoid col-

lision with obstacles. These approaches goes under many names such as reactive

navigation, obstacle avoidance, local navigation, and sensor-based control. Re-

active navigation techniques are based on a perception-action process [MM02],

where actions are generated iteratively (at each control cycle) using up-to-date

model of the world. Typically, the model of the world is constructed based on

feedback sensors (e.g. laser rangefinder). These approaches are computationally

more efficient as compared to path planning algorithms since only a part of the

world model is required, and therefore relatively less information needs to be

processed at each time step. Thus, robots can respond on time to obstacles, and

behave especially well in unknown environments. It is worth to mention that the

work presented in this thesis belongs to this group of approaches.

One could not hope to cover all techniques that have been proposed. Hence,

the focus is limited to some representative methods, including those that have

proved popular across the years and those that have been introduced lately.

2.4.1 Bug Algorithms

The Bug algorithm and its variants (e.g. [LS86], [KR97], [MSZ09], [MHS13],

and [MLB15]) are among the simplest and earliest reactive navigation techniques

[MFM18]. The main idea of these methods is to steer the robot towards the

target unless an object is met, in which case, the robot moves unidirectionally

along the boundary of the object until navigation towards the target is once

again possible [CLH+05] (fulfilling a leaving condition). Switching the motion

mode (from boundary following to goal pursuit and vice versa) follows a globally

convergent criterion [YP09]. Many variants of the basic Bug algorithm have been

proposed, but essentially all these methods differ in defining the rule under which

the transition between both motion modes is triggered . A detailed comparison

of several Bug algorithms is carried out in [NB07].

With the Bug 1 algorithm [LS86], the robot moves along the straight line con-

necting the robot to the goal until it encounters an obstacle at a point, referred

to as a hit point Hi (see points H1 and H2 in figure 2.5). Then, the robot fully
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Figure 2.5: Bug 1 algorithm with (H1, H2) described as hit points, and (L1, L2)
described as leave points (from [SN04]).

circumnavigates the obstacle and keeps track of the obstacle point closest to the

goal, referred to as a leave point Li. From this point, the robot leaves the obstacle

and resumes the progress towards the goal again.

With the Bug 2 algorithm [LS86], the robot begins to follows the contour of the

obstructed obstacle until the line to the target is crossed at a point closer to the

goal than the hit point. At this point, the robot resumes the progress along the

line to the goal. In general, this algorithm leads to shorter paths than Bug 1 (see

figure 2.6). However, one can still face scenarios in which the path generated by

Bug 2 is longer than that corresponding to Bug 1 [SN04].

Some Bug variants are classified as tangent-based (e.g. [KRR98], [LB99], [SH13]),

in the sense that they consider motion towards the tangents of objects. These

methods build a graph, called local tangent graph (LTG), of the robot’s envi-

ronment utilizing a ray-based sensor system. With the help of LTG, the robot

can make a shortcut while following the contour of objects, switching back to

the goal pursuit mode earlier. In this regard, a shorter path can be achieved.

Bug algorithms enable vehicles to navigate in unforeseen surroundings with guar-

anteed global convergence (if the goal is reachable). However, these methods are

sensitive to the accuracy of the sensor and represent the robot by a point in the

workspace. Furthermore, they were not examined in dynamic scenarios which is

often the case in real-world applications.
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Figure 2.6: Bug 2 algorithm with (H1, H2) described as hit points, and (L1, L2)
described as leave points (from [SN04]).

2.4.2 Artificial Potential Fields

A wide variety of reactive navigation methods (e.g. [MA97], [GC02], [FNA09],

[RA12], [KST+16], [BGPG17], [MCL+17], [RBAM18]) are based on the concept

of Artificial Potential Field (APF), firstly developed in [Kha86]. Under this

concept, the robot is a particle influenced by a gravitational force field, where an

attractive force is acted by the goal and a repulsive force is acted by obstacles (see

figure 2.7a). The attraction towards the goal and the repulsion from obstacles are

represented by positive and negative forces, respectively. The resultant vector

sum of these forces determines the control input applied to the robot. More

formally, let the attractive potential to the goal be described by the following

quadratic function:

Uatt(pr) =
1

2
ka‖pr − pg‖2 (2.6)

where ka > 0, and pr and pg are the robot and goal locations.

Analogously, for each obstacle, the associated repulsive potential is defined as:

Ui
rep(pr) =

{
1
2
kr(

1
ri
− 1

rs
)
2
, if ri ≤ rs

0, otherwise
(2.7)

where kr > 0, ri the distance from pr to obstacle pi, and rs the range of influence

of the obstacles.



30 2 Autonomous Mobile Robot Navigation

The value of the function representing the potential can be considered as an

energy and therefore its negative gradient is a force. Hence, the attractive and

repulsive forces resulting from Uatt(pr) and Ui
rep(pr) can be defined as:

Fatt(pr) = −ka(pr − pg) (2.8)

Firep(pr) =

{
kr
r2i

( 1
ri
− 1

rs
)∇ri, if ri ≤ rs

0, otherwise
(2.9)

Notice that the value of Fatt(pr) converges to zero when the location of the robot

pr approaches pg. The value of Firep(pr) is zero if the distance to the obstacle is

greater than rs and tends to infinity as the obstacle is approached. The resultant

force field is then defined by:

F(pr) = Fatt(pr) +

n∑
i=1

Firep(pr) (2.10)

where n is the number of obstacles.

Potential field methods are efficient in terms of computational complexity and

the time needed to complete a mission. Moreover, they are easy for implementa-

tion. However, with these techniques the robot is prone to oscillations in narrow

spaces and may experience a deadlock due to local minima [KB91]. Figure 2.7b

shows a situation where the robot experiences a local minimum while approach-

ing a U-shaped obstacle, leading to a deadlock. This is due to the fact that,

at a particular position within the obstacle, the attractive force gets symmet-

ric to the repulsive force (i.e. F(pr) = 0). There have been several attempts

to address this drawback, such as [BL91] by utilizing a “random walk” mech-

anism, [RK92] [Mas12] by incorporating an extra APF function, or [HE02] by

borrowing ideas from electro magnetics. This problem has also been addressed

in [VTML00], by incorporating the artificial intelligence, and in [WIN15] by

considering the robot’s direction of motion and the front-face obstacle informa-

tion. Other efforts were devoted towards achieving a smoother navigation, such

as [RMP06], by utilizing an adaptation of Newton’s method, or [Pan14] [HP16]

by making use of two dimensional “smooth vector fields”. Adapting the APF

to accommodate robots of unicycle type and obstacles of arbitrary shape can
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(a)

Robot path
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Figure 2.7: Artificial Potential Field. (a) Typical potential fields; an attractive
force is acted by the goal and a repulsive force is acted by obstacles
(from [Kum15]). (b) A robot experiences a local minimum while ap-
proaching a U-shaped obstacle. This problem occures if the attractive
force gets symmetric to the repulsive force (originally from [Rib05]).

also be found in [RMP08], [VT12], and [WC00]. Despite the fact that these

approaches may resolve the above mentioned APF problems, they are compu-

tationally inefficient, restricted to specific environments, or build upon strong

assumptions as stated in [CML+15]. For example, the performance of the algo-

rithm presented in [VTML00] is still limited by the basic model of the potential

field function. Moreover, it only considers obstacles of equal sizes. The methods

proposed in [WIN15], [Pan14], and [HP16] assume a point-like or a disc-shaped

mobile robot and discard the motion constraints. Additionally, the techniques

introduced in [BL91] and [RK92] often need long time to escape from the local

minima in complex environments [CML+15].

2.4.3 Virtual Force Field

The Virtual Force Field (VFF) [BK89] is a collision avoidance method that con-

sists of integrating two concepts; the Certainty Grid [Elf86] [ME85] for obstacle

representation and the Artificial Potential Field for navigation. The certainty

grid is a probabilistic representation of obstacles in a grid-like world model, es-
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pecially designed to accommodate the inaccuracy of sensor data. Each cell in

the grid contains a certainty value denoting the probability that an obstacle is

located in this cell. The VFF method uses a similar analogy, but updating the

world model, referred to as a histogram grid, is carried out in a different way;

only one cell is required to be incremented for each new sensor reading creating a

probability distribution with small computational overhead. As the robot moves,

it keeps track of a window overlying a zone of the histogram grid, called active

window, where a repulsive force acts between the robot and each cell in this

zone (named active cell). Obviously, there is a direct proportional relationship

between this repulsive force and the certainty value. Additionally, an inverse pro-

portional relationship exists between the force and the distance to the cell. In a

way similar to the APF method, the resultant force vector is then calculated.

As compared with the APF approach, the VFF method reduces the sensor un-

certainties due to its probabilistic nature and provides more stable motion. Sev-

eral methods build on the concept of VFF (e.g. [IO02] [LLLH08] [NTK+11]).

However, neither the VFF method nor these variants are able to avoid the short-

comings inherited from the APF concept, summarized in [BL91].

2.4.4 Vector Field Histogram

The Vector Field Histogram (VFH) [BK91] constructs a 2D histogram grid using

information from onboard sensors, similar to the VFF method. Then, the motion

control is computed by employing two data reduction steps. In a first step, the

active window of the grid is mapped into a 1D polar histogram surrounding the

current location of the robot (see figure 2.8). This histogram comprises angular

sectors, where each sector defines a polar direction relative to the center of the

vehicle. In a second step, a steering direction is calculated by analyzing the polar

histogram to determine open areas and then choosing the passage that optimizes

a cost function. Setting this function is based on the robot’s previous orientation,

the target direction, and the wheels angle. The speed is then calculated as a

function of the distance to obstacles.

An improved version of the VFH method [UB98], takes into account the robot’s

shape and kinematic limitations by enlarging obstacles so that all kinematically
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Figure 2.8: Mapping of active cells onto the polar histogram (originally from
[BK91]).

blocked trajectories are avoided, an additional stage called masked polar his-

togram. The enhanced method, entitled VFH+, can generate smoother robot tra-

jectories with greater reliability. This approach was further improved in [UB00]

by introducing a lookahead procedure, thus allowing the robot to avoid the local

minima problem. In addition to these two improvements, several variants have

been developed during the last two decades (e.g. [AW04] [Ye07] [JXK10]). A com-

parison of these variants showing their pros and cons is carried out in [BDD+14].

Although the VFH approach is less likely to fall in local minima and produces

smoother behavior, it presents the difficulty to drive the robot in narrow pas-

sages or corridors. Moreover, it is limited by the use of arbitrary heuristics which

greatly influence the behavior of the system.

2.4.5 Dynamic Window Approach

In the mid-1990s, many research efforts were devoted towards integrating the

vehicle kinematics and dynamics into the collision avoidance problem, directly

determining a motion control instead of a direction solution. The result of these

efforts was the evolution of several techniques, later described as velocity space

approaches. These include: the Steering Angle Field (SAF) [FBL94], Curva-

ture Velocity Method (CVM) [Sim96], and its enhanced variant Lane-Curvature
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Figure 2.9: Velocity space (from [FBT97]).

Method (LCM) [KSRS98], just to name a few. However, it has been the Dynamic

Window Approach (DWA) [SP07] [LV14] [LV16] [BUVRJ17], initially introduced

by Fox [FBT97], that has proved popular within the robotics community. As-

sume a known current robot’s state, the DWA models the reactive navigation

problem as a constraint optimization in the tangent space (velocity space): the

space of all possible sets of translational and rotational robot velocities (v, ω).

Therefore, it can be characterized as a planning algorithm with a prediction hori-

zon of a single time step [OL05]. The original DWA [FBT97] was designed for a

synchro-drive robot, which can be summarized in two steps:

Search space: The DWA builds upon the assumption that the robot’s velocity

is kept constant at each time step (piecewise constant velocities). Under this

assumption, the trajectory of a synchro-drive mobile robot can be approximated

by a series of circular arcs, referred to as curvatures [FBT97]. By this means, the

search space is reduced into a 2D velocity search space. The set of all possible

velocities is denoted by Vs (see figure 2.9). The method only considers the

admissible velocities which guarantee collision-free motion (denoted as Va). In

figure 2.9, the velocities that may cause collision with obstacles (non-admissible)

are visualized by dark gray. For instance, velocities in the region labeled as “right

wall II” result in a hard right turn and hence may cause collision with the wall.

Due to the limited accelerations, the search space is further restricted to a small

window, referred to as a dynamic window (labeled Vd in figure 2.10). It includes
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Figure 2.10: Dynamic window (from [FBT97]).

those velocities that can be reached within the acceleration limits over the next

control cycle. The above mentioned constraints limit the search space into a

region denoted by Vr (the white area) within the dynamic window:

Vr = Vs ∩ Va ∩ Vd (2.11)

Optimization: After having determined the resultant search space Vr, a motion

control is determined by optimizing an objective function [FBT97]:

G(v, ω) = σ(α · heading(v, ω) + β · distance(v, ω) + γ · velocity(v, ω)) (2.12)

This function provides a weighted sum of heading(v, ω), that favors progress

towards the goal, distance(v, ω), that prefers to keep large distances to obstacles,

and velocity(v, ω), which favors high speed.

The dynamic window approach has been extended to other robot shapes and

models (e.g. [Sch98]). Moreover, the employment of a “navigation function” has

led to optimal paths, see e.g. [BK99], [OL05], [KT12], and [MSKT13]. Some vari-

ants use information about the predicted obstacles’ trajectories to better handle

dynamic environments (e.g [SMP05], [SP07]). Other variants consider differ-

ent trajectory shapes, where the differences in performance are mainly heuris-

tic [FSBD04] [SWY10]. By utilizing the DWA, the efficiency and smoothness of
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the robot’s trajectories are enhanced. However, a failure may occur while driving

a robot through narrow regions in dense environments. Moreover, the DWA is

limited by the model construction as well as the parameters tuning [Pet08].

2.4.6 Velocity Obstacles

The concept of Velocity Obstacles (VO), initially proposed in [FS98], has been

widely used by robotic researchers, see e.g. [SS07] [GSR09] [WH12] [KO16]

[LJO17] [RGM17] [BSAP18]. Within this concept, the velocity of moving ob-

stacles can be explicitly considered in determining the avoidance maneuver. A

VO is essentially the set of velocity controls leading to collision with obstacles at

a later time, once specified, a velocity beyond this set is picked out. A concept

similar in spirits to VO, the Inevitable Collision States (ICS), was introduced

in [FA04] and [LNWB14]. Compared to VO, ICS reasons over an infinite time

horizon and discards the colliding states rather that the velocity controls.

More formally, let vr be a given robot velocity and vi the velocity of obstacle

Oi. The set of colliding relative velocities between the robot and obstacle Oi,
referred to as collision cone, is defined as follows:

CCi = {vr,i | λr,i ∩ COi 6= 0} (2.13)

where vr,i = vr − vi, λr,i is the line of vr,i, and COi is the result of mapping Oi

into the configuration space (enlarging Oi by the radius of the robot).

The velocity obstacle associated with obstacle Oi is obtained by adding its ve-

locity to each relative velocity in CCi (to get absolute robot velocities):

VOi = CCi ⊕ vi (2.14)

where ⊕ represents the Minkowski vector sum.

The union of all velocity obstacles (associated with each Oi) defines the set of

forbidden robot velocities (see figure 2.11):

VO =
n⋃
i=1

VOi (2.15)
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Figure 2.11: The set of forbidden robot velocities (v1 ∪ v2). In order to guarantee
a safe motion, a control velocity must be chosen outside of this set.
(originally from [MLL08]).

where n is the number of obstacles.

The computation of the VO builds upon the assumption that the velocity of

obstacles is maintained at future time, which is not realistic in real-world scenar-

ios. In [SLS01] and [LLS05], this drawback has been addressed proposing a new

concept, Non Linear Velocity Obstacles (NLVO), to deal with obstacles whose

trajectory is nonlinear or arbitrary (but known). However, it has been shown that

computing NLVO is computationally expensive [Wan14]. Some variants take into

account the non-holonmic constraints of the obstacles (e.g. [OM05] [OM06]), but

assuming that the path can be approximated by a series of short line segments.

Moreover, the shape of obstacles are assumed to be either circles or polygons. The

concept of velocity obstacles has been extended to multiple robot navigation and

called Reciprocal Velocity Obstacles [BLM08] [BB15]. This has been possible by

implicitly assuming that the other robots make a similar obstacle avoidance rea-

soning. Although VO-based approaches explicitly incorporate the velocity of ob-

stacles into the motion control, they require a perfect understanding of the scene

including an exact estimation of the obstacles motion. However, in real-world

scenarios, it is difficult to estimate the future of the scene [JKWG15]. Moreover,

it is of great importance in VO-based techniques to choose an appropriate time

horizon which is often hard in cluttered and dense environments [SS12].
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2.4.7 Nearness-Diagram Navigation

It is a challenging problem to safely drive an autonomous robot in cluttered,

dense, and complex environments, which is usually the case in most robotic ap-

plications [Min02]. Good results in such environments have been reported using

the Nearness-Diagram Navigation (ND) approach [MM04], that might be de-

scribed as a methodology of designing collision avoidance algorithms rather than

a method in itself [MLL08]. It is similar to the earlier developed Vector Field

Histogram method presented in section 2.4.4 but solves many of its shortcomings,

especially in narrow spaces. The key idea of this approach is to utilize a divide

and conquer methodology performing a high-level information description of the

environment, following the behavior-based situated activity paradigm [Ark98].

A predefined set of conditions is used to characterize all potential navigational

states and their associated motion control. At each time step, the current situ-

ation is determined from onboard sensors and its associated action is executed.

The original ND method [MM04] divides the navigation behavior into five situ-

ations. Afterwards, the motion laws were reformulated by adding another situa-

tion, leading to the ND+ method [MOM04]. In the following, we briefly discuss

these situations and their corresponding actions:

Situations: The set of situations is represented using a binary decision tree

whose inputs are the robot and goal locations and the set of obstacle config-

urations. The criteria for determining these situations is based on high-level

navigation entities like a motion region, environmental characteristics, and a

safety level between the robot and the obstacles (security zone). For example,

one criterion is whether the security zone is free from obstacles or not. Another

is whether the goal is located within the motion region or not. The result is only

one situation owing to the fact that the set of situations must be complete and

exclusive (it is represented by a binary decision tree), see figure 2.12.

Actions: For each situation, an associated action is executed that computes

a suitable motion law. Generally speaking, an action describes the behavior

required for each situation [MLL08]. For instance, one of the situations is when

the goal is located within the motion region and the security zone is free from

obstacles (HSGR). The action in this case is to drive the robot towards the
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target. A second situation is when the security zone is free from obstacles, and

the motion region is wide enough and does not include the target (HSWR). The

action in this case is to drive the robot towards the side of the motion region

while keeping a safe area to obstacles (see figure 2.12).

A global reasoning based on a workspace representation was added to the ap-

proach in [MMSA01]. Moreover, the performance of ND+ in wide areas has

been improved in [Min05]. Another ND variant, the Smooth Nearness-Diagram

(SND) [DB08], proposes a single motion control regardless of the distribution of

obstacles. By this means, the resultant trajectory depends on the configuration

of all obstacle points, and thus a smoother behavior is achieved. However, SND

may fail to guide a robot through a tight opening if the density of obstacles

on one side is much higher than the other. The Closest Gap (CG) [MFMJ10]

Navigation [DB08] was then developed addressing this drawback by respecting

the percentage of threats1 on each side of the desired heading and by applying

a higher avoidance against an obstacle as it gets closer to the robot’s bound-

ary. Furthermore, a novel methodology for characterizing the environmental

structure was proposed, enhancing smoothness and reducing computational over-

head. An approach similar in spirits to the ND-based methods is introduced

in [SG12] [DS17] [OS17], where the field of view constraint is also considered.

The Nearness-Diagram Navigation overcomes several drawbacks of the collision

avoidance approaches [MM04], such as experiencing a local minima (e.g. U-

shaped obstacle), difficulty of driving a robot towards obstacles (when neces-

sary), being prone to oscillations, and the tedious parameter tuning (see [MM04]

for more details). Experiments demonstrated that navigation in environments

cluttered with obstacles has been successfully achieved using the ND-based meth-

ods [Fra07]. However, they are prone to oscillations and instability, which in turn

may reduce the speed and can be unsafe in narrow spaces. Furthermore, ND-

based methods are likely to cause deviations towards free regions, increasing the

path length and execution time. Another drawback is the assumption that the

robot is circular and holonomic. In order to achieve a safer behavior, it is neces-

sary to consider both the shape and kinematic constraints. Addressing all these

drawbacks is the motivation of the research work presented in this dissertation.

1A threat is an obstacle point that falls within a predefined security zone around the robot.
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Figure 2.12: Overview of the Nearness-Diagram (ND) navigation approach (orig-
inally from [MLL08]). (a) Diagram showing the design of the ND
method [MM04] following the situated-activity paradigm. Based on
the sensor readings and the locations of the robot and the goal, one
situation is chosen and the associated motion law is computed. (b)
An example shows how to determine the motion direction. First, the
situation is identified: the security zone is obstacle-free, the motion
region is wide, and the target does not fall within the motion region.
In this case, the situation is HSWR. Second, the suitable action is
executed computing the most promising motion direction θsol.



3 A New Gap-based Collision Avoidance

Approach - A Holonomic Solution

This chapter introduces a new obstacle avoidance approach for mobile robots

navigating in dense environments. As we have pointed out in chapter 2, the ma-

jority of reactive navigation approaches present limited performance in cluttered

environments. This is owing to the fact that these techniques are prone to some

classical drawbacks [MM04] [MLL16] [MFM16] such as computational complex-

ity, experiencing a local minima, difficulties of driving a robot towards obstacles

(when necessary), failure of navigating a robot through narrow spaces, and the

tedious parameter tuning. Driving robots in such scenarios while avoiding these

drawbacks has been successfully achieved by the Nearness Diagram (ND) Navi-

gation [MM04]. During the last decades, many ND variants have been proposed

like the Smooth Nearness-Diagram [DB08], Obstacle-Restriction [Min05], and

Closest Gap [MFMJ10] navigation methods. The main differences in behavior

between these variants have been discussed in chapter 2.

In general, all ND variants assume static obstacles and work as follows. The data

coming from sensors is analyzed to find potential free openings (referred to as

gaps) surrounding the robot, once determined, the closest to the goal is selected

for navigation. The robot is then driven towards the selected opening unless

the clearance to obstacles gets less than a security zone (safe distance), in which

case, the robot’s trajectory is adjusted building upon the Artificial Potential

Field (APF) concept [Kha86]. Avoiding obstacles based on APF is prone to

oscillations and instability, which in turn may reduce the speed of the robot and

can be unsafe in narrow spaces [MFM16]. Moreover, defining the boundaries of

the security zone is not straightforward and has a big effect on the performance of

the robot [MFM15]. Furthermore, adjusting the robot’s trajectory only depends
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on the distance to nearby obstacles, neglecting the location and field of view of

the selected gap (opening angle). This may cause deviations towards free regions,

increasing the total time and distance needed to perform a given task.

This chapter introduces a new reactive obstacle avoidance approach that ad-

dresses the aforementioned problems. A key idea of the proposed approach,

entitled “Safe Gap (SG) Navigation”, is to further analyze the environmental

structure and virtually create a gap between the current robot configuration and

the selected opening. This gap, referred to as a “safe gap”, is determined in such

a way that its opening angle (as seen by the sensors) is wide enough, maximiz-

ing the clearance to obstacles. Consequently, the safety and smoothness of the

robot’s motion are enhanced compared to the ND variants. Moreover, unrea-

sonable deviations towards free regions are avoided, reducing the total time and

distance needed to complete the mission. Unlike the ND-based obstacle avoid-

ance techniques, the SG method does not require the safe distance parameter,

and thus saves the parameter tuning overhead [MFM13b] [MFM13a].

This chapter introduces the SG obstacle avoidance method design in section 3.1.

In sections 3.2 and 3.3, the simulation as well as the experimental results are

shown. Finally, section 3.4 draws the conclusions from this study.

3.1 The Reactive Navigation Strategy

This section presents the “Safe Gap” (SG) reactive collision avoidance approach

for autonomous robots navigating in dense and cluttered environments. The SG

method acts as a reactive layer in a navigation system, following a “perception-

action” procedure executed at a high frequency rate. The key idea is described

in the following. At each time step, the sensor information is checked to find

out if there is a safe way towards the goal. Otherwise, the robot will be directed

to another location, referred to as a subgoal, as discussed in section 3.1.2. The

location of the subgoal is defined depending on analyzing the environmental

structure. The main aspect in this analysis is to determine the set of surrounding

gaps. A description of our methodology for extracting gaps is introduced in

section 3.1.3, and subsequently, an illustration of how subgoals are located within
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free areas is presented in section 3.1.4. In section 3.1.5, it is shown how to set

the motion commands that steer a robot towards the goal (resp. subgoal). This

process is repeated at each sensor update.

3.1.1 Preliminary Definitions and Notations

This section presents several definitions and notations that are utilized to clarify

the proposed method. Some of these definitions have been used in our publica-

tions [MFM13b] [MFM15] [MFM16] [MM16] [MFM17] [MM17] [MFM18].

The locations of the goal and the robot are denoted by pg and pr, respectively.

The radius of the robot is denoted by R and it represents the radius of a disc

virtually wraps around the entire robot.

The local x axis is aligned along the longitudinal direction and the local y axis

is perpendicular to it, with +x points forward and +y points to the left side.

Angles relative to the robot coordinate system can be positive (towards the left

side) or negative (towards the right side) with a maximum absolute value of π.

Performing calculations may result in an angle θ whose absolute value exceeds

π. This angle can be mapped into [−π, π[ using the following function:

proj(θ) = ((θ + π) mod 2π)− π (3.1)

Sometimes, it is necessary to restrict a quantity within a certain range, say from

a to b where a < b. For this purpose, the following function is employed:

sat[a,b](x) =


a, if x ≤ a
x, if a < x < b

b, if x ≥ b
(3.2)

Let S1 be a unit circle whose center coincides with the robot’s origin, and φa and

φb be two angles in S1, the minimum angular difference between them is:

∠(φa, φb) = min(∠(φa → φb),∠(φb → φa)) (3.3)
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where

∠(φa → φb) = (φa − φb) mod 2π (3.4)

For generality, it is assumed that the sensory information is given as scan (depth)

points; it is possible to transform the data returned by the majority of sensors

to points. The depth points list is represented by S =
{
pS

1 , ...,p
S
n

}
. It is sorted

counterclockwise relative to the sensor frame. The Cartesian and polar coordi-

nates of a point pS
i are denoted by (xS

i , y
S
i ) and (rS

i , θ
S
i ), respectively. Addition-

ally, rmax denotes the maximum range of the sensor.

A gap is a potentially open area between obstacles through which the robot can

fit. As will be explained in section 3.1.3, each gap g is created by two obstacles.

The angle towards one of them is less than the other. The obstacle with the bigger

angle creates the left side of the gap. Obviously, the other obstacle creates the

right side. Similarly, the distance to one obstacle is less than the other. This

obstacle forms the closer side of the gap while the other forms the farther side.

The locations of the left side, right side, closer side, and farther side of a particular

gap g are denoted by pl(g), pr(g), pcr(g), and pfr(g), respectively. Similarly,

referring to the polar coordinates of a specific side requires to replace p by r

(resp. θ), e.g. rfr(g) represents the distance to the farther side of g.

The width of a particular gap g is represented by w(g) and equals to the Euclidean

distance between its both sides: w(g) = ‖pl(g)− pr(g)‖.

The robot moves towards a gap g in such a way that a proper distance ds(g) is

preserved between pcr(g) and the robot’s footprint. The value of ds(g) is deter-

mined based on the Euclidean distance between both gap sides (gap width); for a

short distance, ds(g) is set to half of the gap width, but for a large distance, ds(g)

is restricted to R+ dsafe, where dsafe > 0 is a desired clearance to obstacles:

ds(g) =

{
R+ dsafe, if w(g) > 2(R+ dsafe)
1
2
w(g), otherwise

(3.5)

Notice that dsafe provides a trade-off between efficiency and safety. A value of

2R was used in our experiments. In principle, ds(g) can be set to 1
2
w(g) always,

but this may lead to a longer path if the gap is too wide.
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In order to drive a robot through a gap g, an instantaneous subgoal, denoted

by ps(g), is assigned and the robot is directed towards it (in section 3.1.5, it is

described how to define the exact location of a subgoal). The polar coordinates

of ps(g) are denoted by (rs(g), θs(g)).

For a better visibility, superscripts are eliminated from figures (pS
i becomes pi).

Finally, the Euclidean distance between two points, pS
i and pS

j , in the workspace

is denoted by d(pS
i ,p

S
j ).

3.1.2 Selecting the Direction of Motion

If it is unsafe to directly head the robot from its current location pr towards

the goal pg, it is essential to locate a subgoal as an intermediate step and drive

the robot towards it. Motion towards the goal is resumed once the “direct path”

from pr to pg is collision free. In [MFM13b], we have defined a “direct path”

towards a given position px as the path followed by a robot to attain px by

executing a single motion control . Determining whether this path is collision

free or not depends on the obstacle distribution, the vehicle constraints, and the

robot’s footprint. This section presents an algorithm (previously published in

[MFM13b]) to check this condition for a free-flying (holonomic) mobile robot.

The algorithm extracts the set of obstacle points Ocollision : [pr → px] that may

cause collision with the robot while driving it along the direct path towards px.

Obviously, a holonomic mobile robot follows a path made up of straight segments

to reach px. Assume that the robot’s footprint can be represented by a polygon

whose edges are denoted by Ei, where i = 1, ...,m. Also, let −−−→prpx be the vector

that connects pr to px, called “base vector” in [MFM13b]. For each pS
i ∈ S, it

is checked if any of the robot edges intersects the line that passes through pS
i

and parallel to the base vector. If no intersection exists, pS
i is collision-free, and

hence it is discarded. Otherwise, we do the following: assume that pe represents

the point in the robot’s boundary, at which the intersection occurs. Whenever

point px is reached, the coordinates of pe with respect to the current robot

coordinate system can be expressed as p′e = pe+
−−−→prpx. If pS

i is located on the line

segment pep′e, it causes collision, and hence it is added to Ocollision : [pr → px].
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Figure 3.1: Collision check along the “direct path” towards two locations, px and
py. Line OL1 that passes through pi intersects E1 in p1. Obstacle pi
causes collision with the direct path towards px since it is located on
the dark red line segment p1p′1. Line OL2 that goes through pj hits
E4 in p2. Obstacle pj is collision-free while traveling towards py since
it is not located on p2p′2. None of the robot edges intersects OL3, so
pk is collision-free while traveling towards px. The path towards py
is free, while the path towards px is in collision with the red obstacle
points (adapted from [MFM13b] with permission from IEEE).

Otherwise, pS
i is collision-free, thus discarded. Apparently, the collision check

can be reduced to one step if the robot’s boundary can be represented by one

equation (e.g. an eclipse) rather than approximating it by a polygonal shape.

Figure 3.1 shows an example where the task is to extract the set of obstacle

points that may cause collision with the “direct path” towards two locations px

and py. The robot has a polygonal shape and consists of 12 edges. It is apparent

that line OL1, which is parallel to
−−→
BV1 (the base vector) and passes through pi,

intersects edge E1 in p1. Also, line OL2, which goes through pj and parallel to
−−→
BV2 hits edge E4 in p2. Obstacle pi is located on p1p′1, while pj is not located

on p2p′2. Therefore, the direct path towards px is in collision with pi, but the

direct path towards py is collision-free with pj . Apparently, obstacle pk is not in

collision with the direct path towards px, since none of the robot edges intersects

OL3 ‖
−−→
BV1. In summary, the path towards py is collision-free, while the path

towards px is in collision with the 6 obstacle points visualized by red.
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If there is a direct free path towards pg (i.e. Ocollision : [pr → pg] = φ), the

robot is directly driven towards it. Otherwise, a subgoal is located in a collision

free area and the robot is directed towards it. In the next sections, it is shown

how to identify the position of this subgoal.

3.1.3 Extracting Gaps

As mentioned previously, the main aspect in analyzing the environmental struc-

ture is the determination of the set of surrounding gaps. For this purpose, our

strategy developed in [MFMJ10] and utilized in [MFM16] is followed. This strat-

egy is performed in two steps: in a first step, all gaps that can be seen from the

current robot’s view are found out. In a second step, useless or unnecessary gaps

are identified and discarded. The major part in extracting gaps is the detection

of spatial discontinuities in the sensor data, which can be of two types:

“Edge discontinuity”: takes place if there is a spatial distance between two adja-

cent scan measurements more than the diameter of the robot, i.e.

d(pr,p
S
j )− d(pr,p

S
i ) > 2R (3.6)

“Max-range discontinuity”: takes place if one of two adjacent scan measurements

returns the maximum range of the sensor, i.e.

d(pr,p
S
j ) = rmax ∧ d(pr,p

S
i ) < rmax (3.7)

If rS
j > rS

i a “rising discontinuity” takes place at i; else, a “descending discontinu-

ity” occurs at j. The condition of an “edge discontinuity” is checked before that

of a “max-range discontinuity” (has a higher priority). In the following, these

definitions are utilized to explain our strategy.

Step 1: Seeking for gaps: in a first step, a “forward search” from the first (1)

to the final (n) scan measurements is performed. In a second step, a “backward

search” is carried out in the reverse order (from n to 1). In the forward search,

the depth measurement at which a rising discontinuity is detected creates the

“first side” of a gap (for instance, at points A and D in figure 3.2). Assume that i
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is the index of the measurement creating the first side. Determining the “second

side” is based on the type of the discontinuity:

1) For a discontinuity of type edge: Let S+ = {pS
i+1, ...,p

S
n} be the list of scan

points coming after pS
i . The second side is created by the obstacle point (assume

pS
j ) closest to pS

i and contained in S+ such that the angular difference between

both sides is less than π (as an example, see point B in figure 3.2).

d(pS
i ,p

S
j ) ≤ d(pS

i ,p
S
k) ∧ ∠(θS

j → θS
i ) ≤ π, ∀pS

k ∈ S+ (3.8)

2) For a discontinuity of type max-range: The second side is created by the scan

measurement (assume j) forming the initial descending discontinuity that comes

after the first side. e.g. point I in figure 3.2.

Seeking for the remaining gaps is performed starting from index j. The forward

search produces gaps 1 - 4 in figure 3.2.

In the backward search, the second side of a gap occurs at the depth measurement

creating a descending discontinuity (e.g. points F and I in figure 3.2). Let j be

the index of this depth measurement, the first side is determined as follows:

1) For an edge discontinuity: Let S− = {pS
j−1, ...,p

S
1} be the list of scan points

coming before point pS
j . The first side is created by the obstacle point (assume

pS
i ) falling in S− and closest to pS

j such that the angular difference between both

sides is less than π (for example, see point G in figure 3.2).

d(pS
i ,p

S
j ) ≤ d(pS

k,p
S
j ) ∧ ∠(θS

j → θS
i ) ≤ π, ∀pS

k ∈ S− (3.9)

2) For a max-range discontinuity: The first side is created by the scan measure-

ment (assume i) forming the initial rising discontinuity that comes before the

second side. See point H in figure 3.2.

Seeking for the remaining gaps is performed starting from index i. The backward

search generates gaps 5 - 8 in figure 3.2.

Step 2: The result of performing both searches (forward and backward) is the

set of all surrounding gaps, denoted as G. Among the assembled gaps, we remove
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Figure 3.2: Finding out gaps. Firstly, the gaps marked as 1 - 4 and visualized
by green arrows are found out by the “forward search” and the gaps
marked as 5 - 8 and visualized by red arrows are extracted by the
“backward search”. Secondly, gaps 1, 4, and 6 are discarded as they are
located within gaps 8, 5, and 3, respectively. Gap 5 is also discarded
since its width is less than 2R. Then, the closest gap (gap 8) is selected
for navigation (adapted from [MFMJ10] with permission from IEEE).

those falling within other gaps and denote the set of remaining ones as G′ (e.g.

gaps 1, 4, and 6 in figure 3.2 are removed). Let pf (g) represents the first side

and ps(g) be the second side of a gap g ∈ G, G′ is then determined as follows:

G′ = G \A, A = {x | x ∈ G, y ∈ G, x 6= y, θf (x) ≥ θf (y), θs(x) ≤ θs(y)} (3.10)

where θf (g) and θs(g) are the angles towards pf (g) and ps(g), respectively.

The final step is to discard each gap having a width (Euclidean distance between

both sides) less than the diameter of the robot (e.g. gap 5 in figure 3.2). We

denote the list of remaining gaps by G′′:

G′′ = G′ \ B, B =
{

g
∣∣ g ∈ G′, w(g) < 2R

}
(3.11)

3.1.4 Locating the Subgoal

Once the set of gaps seen from the current robot’s view (G′′) is determined, the

closest to the goal is picked out. This gap, called “closest gap”, must satisfy two
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conditions [MFM16]: first, the angular difference between one of its sides and

the goal must be the minimum compared to that of the other gaps. Second, it

has to be navigable 1. All gaps are checked for both conditions until the closest

gap is detected, or it is decided that no closest gap exists. The closest gap in

figure 3.2 is labeled 8, where the side closest to the goal takes place at point C.

Then, a another gap is virtually created between the closest gap and the robot,

referred to as a “safe gap”. As pointed out in section 3.1.1, a subgoal is assigned

to each gap and the robot is directed towards it. The safe gap is created in such

away that the direct path towards its corresponding subgoal is collision-free. In

the following, we show how to locate the safe gap based on investigating the

environmental structure between the closest gap and the robot’s location.

Before presenting details, it is useful to classify each gap based on two criteria:

its position with respect to the current robot’s location and its angular width

with respect to the current robot’s view [MFM13b].

“Gap location state”: This criterion is concerned with specifying the location

of gaps, relative to the current robot’s position: if the angular distance between

both sides of a gap g exceeds π, it is called a “rear gap”. Otherwise, it will be a

“front gap”. Notice that the angular distance is measured here counterclockwise,

i.e. from the right to the left of g. In figure 3.3, gaps 1 - 3 are front gaps, while

gap 4 is a rear gap. The following function distinguishes front from rear gaps:

Γ(g) =

{
1, if θl(g)− θr(g) ≤ π
−1, otherwise

(3.12)

“Gap vision state”: With this criterion, the angular width of gaps with respect

to the current robot’s view is measured, reflecting the safety of navigation. If a

given gap g is wide enough, it has a “good vision state”. Otherwise, it will have a

“weak vision state”. The vision state of g is determined as follows: let GL be the

line segment that connects both sides of g, and
←→
L the line that passes through

the robot’s origin and orthogonal to GL. If
←→
L goes through GL, the distance

1To determine the navigability status of a given gap, we do the following: if the goal is
located in between both sides of the gap, we investigate whether there is a path towards
the goal or not, following [MM04]. Otherwise, the path to be checked is towards the gap
center, i.e. towards the point between its both sides.
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Figure 3.3: Classifying gaps based on their location and angular width. Gaps 1-3
are front gaps, whereas gap 4 is a rear gap. Gaps 1 and 4 are in a good
vision state, while gaps 2 and 3 are in a weak vision state (adapted
from [MFM13b] with permission from IEEE).

between pcr(g) and the intersection point is checked. If it is more than ds(g), g

has a good vision state. But, if it is less than ds(g) or if
←→
L does not intersect

GL, g will have a weak vision state. The condition to be checked is defined as:

(
←→
L ∩GL 6= φ) ∧ (‖px − pcr(g)‖ ≥ ds(g)) (3.13)

where px is the point at which
←→
L intersects GL and ε is any small value. g has

a good vision state if Eq. (3.13) is met. Else, it will have a weak vision state.

As an example, look at figure 3.3 which shows an environmental structure consists

of 4 gaps, labeled 1 - 4. The line segments that connect both sides of these gaps

are labeled p1p2, p3p4, p5p6, and p7p8. Line
←→
L1 is orthogonal to p1p2, p3p4,

and p5p6, whereas line
←→
L2 is orthogonal to p7p8. The points of intersection

associated with gaps 1, 3, and 4 are marked respectively as px, py, and pz. Let

dsafe in Eq. (3.5) equals to R. In this case, w(g1) > 4R, and hence, ds(g1) = 2R.

It can be seen that ‖px − p1‖ > ds(g1), which implies that the vision state of

gap 1 is good. The same is true for gap 4, having in mind that ds(g2) = w(g2)/2.

When it comes to gaps 3 and 2, the distance between py and p5 is small, and
←→
L1 does not pass through p3p4. So, they both have a weak vision state.
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Let C and S denote the closest gap and the safe gap, respectively. Determining

the “closer side” of S, pcr(S), is based on checking the “direct path” towards C:
assume that Ocollision : [pr → ps(C)] represents the set of obstacle points that

may cause collision with the direct path towards ps(C). If this set is empty,

pcr(S) is set to the closer side of C. Otherwise, it is set to the obstacle point

belonging to Ocollision : [pr → ps(C)] and closest to the robot [MFM13b]:

pcr(S) =

{
pcr(C), if Ocollision : [pr → ps(C)] = φ

px, otherwise
(3.14)

with:

px = argmin
pS
i

‖pS
i − pr‖ (3.15)

where pS
i ∈ Ocollision : [pr → ps(C)].

Figure 3.4 shows an example where only one gap C is detected, and hence it is

the closest gap. As will be explained in section 3.1.5, the subgoal associated with

C, ps(C), is located at the center point between its both sides. The direct path

towards ps(C) is checked by applying the algorithm presented in section 3.1.2. It

is clear that all obstacles lying between pr and ps(C), visualized by dark gray, are

included in the set of colliding obstacle points Ocollision : [pr → ps(C)]. Among

these points, the closest to the robot (labeled px in figure 3.4) defines pcr(S).

The farther side pfr(S) is determined in two steps: in a first step, we identify

the most appropriate obstacle point to locate pfr(S), denoted by p′x. Then, the

location of this point is adjusted if the opening angle (angular width) between

p′x and px is small with respect to the current robot’s view.

Stage 1: The workspace is divided into two regions; one to the left and the other

to the right of the line that connects ps(C) to pr. They are denoted by W+ and

W−, respectively, as visualized in figure 3.4. Assume that r and l represent

the indexes of the obstacle points forming the right and left sides of C. Also,

let S− =
{
pS
r ,p

S
r−1, ...,p

S
1

}
and S+ =

{
pS
l ,p

S
l+1, ...,p

S
n

}
be the lists of obstacle

points falling to the right and left of C, respectively. (i.e. S+ ⊂ S and S− ⊂ S,

where θS+

i ≥ θl(C) and θS−
j ≤ θr(C) for all i ∈ S+, j ∈ S−). In figure 3.4, S− and
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scan 1, 2, ...scan ..., n-1, n

Figure 3.4: Determining the safe gap. The closest gap and the safe gap are de-
noted by C and S. The robot is driven towards S rather than C, en-
suring a safer behavior and providing a gradual change in the steering
angle (adapted from [MFM13b] with permission from IEEE).

S+ are composed of the obstacles visualized by red and blue colors, respectively.

We refer to the list located in the region that does not contain px as S′:

S′ =

{
S+, if px ∈ W−

S−, otherwise
(3.16)

For an empty S′, we set the required obstacle point p′x to the farther side of

C (i.e. p′x := pfr(C)). Otherwise, S′ is searched for p′x sequentially until the

angular distance between the accessed element and px gets more than π. Among

the visited points in S′, the closest to the robot is selected (see figure 3.4):

(‖p′x − px‖ ≤ ‖pS′
i − px‖) ∧ (ζ ≤ π), pS′

i ∈ S′ (3.17)

where ζ is defined as:

ζ =

{
∠p′x − ∠px, if ∠px < θs(C)
∠px − ∠p′x, otherwise

(3.18)

where ∠px and ∠p′x represent the direction towards px and p′x, respectively.
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Stage 2: A virtual gap V is constructed whose sides are set to px and p′x (i.e.

pcr(V) := px, pfr(V) := px
′). Then, the opening angle of V is checked following

the “gap vision state” criterion. If it has a wide opening angle (i.e. in a good

vision state), the farther side of S is set to p′x (pfr(S) := p′x). Otherwise, it is

set in such a way that the resultant S has a good vision state (see figure 3.4):

θfr(S) =

{
proj (θcr(V)− ϑ) , if θcr(V) ≥ θfr(V)

proj (θcr(V) + ϑ) , otherwise
(3.19)

rfr(S) = rcr(S) .
cos (β)

cos (γ)
(3.20)

where ϑ, γ, and β are defined as:

β = arcsin

(
ds(V)

rcr(V)

)
(3.21)

γ = atan2 (w (V)− ds(V), rcr(V) cos (β)) (3.22)

ϑ = Γ (V) . (β + γ) (3.23)

It can be deduced from the above equations that S is created by rotating V around

pcr(V), so that its vision state gets good (the angle of rotation is ϑ) [MFM13b].

Driving the robot towards S provides a safer and smoother bridge to the goal.

This is because the subgoal corresponding to S is located within a free area

and provides a gradual change in the steering angle while progressing towards C.
Using the ND variants, on the other hand, the robot is directly driven towards C,
and only if the clearance to obstacles gets small the trajectory is adjusted based

on the APF. This may lead to sudden turns which is unsafe in tight spaces.

3.1.5 Determining Motion Commands

Up to now, we have seen how to determine the most appropriate gap (S) for

navigation. As pointed out in section 3.1.1, a gap g is traversed by assigning

a subgoal ps(g) and driving the robot towards it. In the following, we show

how to compute the exact location of ps(g). Let GL be the line segment that

connects both sides of g. In order to achieve a safe navigation, ps(g) is located
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Figure 3.5: Determining the subgoal corresponding to gap g. For clarity, the
notation representing the gap, (g), is dropped, e.g. rs(g) becomes rs.

at a distance of ds(g) from pcr(g) (the closer side of g). Therefore, the polar

coordinates of ps(g) are computed as follows (see figure 3.5) [MFM13b]:

rs(g) =

√
(ds(g))2 + (rcr(g))2 − 2ds(g) . rcr(g) . cos(ϕ) (3.24)

θs(g) =

{
proj (θcr(g)− α) , if θcr(g) ≥ θfr(g)

proj (θcr(g) + α) , otherwise
(3.25)

where ϕ and α are defined as:

ϕ = arccos

(
(w (g))2 + (rcr(g))2 − (rfr(g))2

2w (g) · rcr(g)

)
(3.26)

α = arccos

(
(rs(g))2 + (rcr(g))2 − (ds(g))2

2rs(g) · rcr(g)

)
· Γ(g) (3.27)

where Γ(g) is used to direct the robot to the right direction (that leads to g).

The SG method considers controlling the robot’s speed based on the clearance to

obstacles, achieving a safer behavior. This is achieved by specifying vlimit which

is set in such a way that the robot slows down as it gets close to obstacles, coming

to a full stop once a collision occurs [MFMJ10] [MFM13b] [MFM15] [MFM16]:

vlimit =

(√
1− sat[0,1]

(
Dvs − rmin

Dvs

))
. vmax (3.28)
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where rmin is the distance to the closest obstacle, vmax the maximum limit of the

linear speed, and Dvs a parameter, which we refer to in [MFM15] as a “velocity

safe distance”. The value of Dvs defines the size of a zone around the robot in

which the velocity is limited. A higher Dvs increases safety but reduces speed.

The sat operator in Eq. (3.28) caps the velocity at vmax if all obstacles are

outside Dvs and at 0 if the robot ever touches an obstacle. Obviously, there is

a direct proportional relationship between the value of vlimit and the distance to

the obstacle that falls within Dvs and closest to the robot.

After having the current target (goal or subgoal) determined, we can compute

the motion control which drives a mobile robot towards its location. For the sake

of a fair comparison in sections 3.2 and 3.3, we use the same equations proposed

in [MM04] (also used in [DB08] and [MFMJ10]):

v = sat[0,1]

(
π/4− |θtraj|

π/4

)
. vlimit (3.29)

ω = sat[−1,1]

(
θtraj

π/2

)
. wmax (3.30)

where θtraj can be θg or θs(S) based on investigating the “direct path” towards

pg (see section 3.1.2), and ωmax the maximum limit of the rotational speed.

3.2 Simulation Results

This section demonstrates the differences in behavior between the ND variants

and the proposed SG method. Two different scenarios are shown; the objective

of the first scenario, previously presented in [MFM13b], is to verify the increased

safety and smoothness of the trajectories generated by the SG method compared

to those generated by the ND variants. Here, the behavior of the SG method

is compared to one ND variant, the Closest Gap (CG) [MFMJ10]. The second

scenario shows how irrational robot’s deflections towards free spaces occurring in

the ND variants have been avoided by applying the SG method. In this scenario,

the behavior of the SG method is compared to the ND+ [MM04], SND [DB08],

and CG techniques [MFMJ10]. All discussed methods have been implemented

using the well-known Robot Operating System (ROS) [QCG+09].
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3.2.1 Scenario 1 Simulations

For this scenario, the map shown in figure 3.6 was created, where the task was to

successfully drive a mobile robot from a start to a goal location. Our objective

was to verify the impact of employing the safe gap, introduced in section 3.1.4, in

enhancing the robot’s trajectory. The simulated robot has a rectangular shape

with a width of 0.48m and a length of 0.52m and works in a differential-driven

mode. The sensing system is a laserscanner which delivers 1024 measurements

over 360◦ and covers a range of 10m. The maximum limits of the linear and

rotational speeds were set to 0.5m/s and 0.5 rad/s, respectively, whereas the

velocity safe distance (Dvs) was set to 0.7m. In the CG technique, the parameters

defining the safe distance Ds and the weight of deflection associated with nearby

obstacles (k) were set to 0.7m and 1.0, respectively.

The path generated by the CG approach is visualized in figure 3.6a, where the

progress of the robot is depicted by drawing red rectangles at uniform time

intervals. It can be deduced from the density of these rectangles that CG suffers

from rapid changes in the direction of motion θtraj. By employing SG, the route

is safely and smoothly traversed as can be seen from figure 3.6b. Figures 3.6d

- 3.6g show snapshots of the simulation taken at successive time stamps. With

the CG approach, the robot is directly driven towards the closest gap C unless

the clearance to obstacles gets less than the security zone Ds, in which case,

the robot’s trajectory is re-planned, resulting is sharp trajectory changes. For

instance, at the starting location the distance to obstacles is greater than Ds.

Therefore, the robot is directly driven towards C, although the direct path is

occupied by obstacles. Whenever point 1 is reached (figure 3.6a), the distance

to the obstacles marked as A gets less than Ds, and hence, the direction of

motion is adjusted by an angle Dnet [MFMJ10]. The SG approach, on the other

hand, employs a safer and smoother bridge (the safe gap S) between both cases

(existence or absence of obstacles within Ds). It can be deduced from figures

3.6d - 3.6g that subgoals generated within safe gaps provide a gradual change

in the steering angle while traversing the open starting region. Once the robot

travels through the area between the points labeled 2 and 3, CG and SG behave

fairly similar. This is because the direct path towards C is collision-free and Ds



58 3 A New Gap-based Collision Avoidance Approach - A Holonomic Solution

(a) (b)

0 20 40 60 80
-0.6

-0.3

0

0.3

0.6

Time (s)

V 
(m

/s
)

0 20 40 60 80
-0.6

-0.3

0

0.3

0.6

Time (s)

W
 (r

ad
/s

)

(c)

(d) (e) (f) (g)

0 20 40 60 80
-0.6

-0.3

0

0.3

0.6

Time (s)

V 
(m

/s
)

0 20 40 60 80
-0.6

-0.3

0

0.3

0.6

Time (s)

W
 (r

ad
/s

)

(h)

Figure 3.6: Scenario 1 simulations. (a) Path generated by the CG method, where
rapid changes in the direction of motion occurs. (b) Smoother path
generated by SG. (c) Speed profile of the CG method. (d-g) Snap-
shots of the SG simulation. The goal and obstacles are visualized by
magenta circle and black lines, respectively. The closest gap C and the
safe gap S are shown by green and blue line segments, where subgoals
are represented by small circles on the center of gaps. The obstacle
points in collision with the direct path towards C are visualized by red
color. (h) Speed profile of the SG method (reprinted from [MFM13b]
with permission from IEEE).

is always occupied by the A obstacles (figures 3.6f, 3.6g). Similar improvements

in performance can be seen looking at the trajectory next to the points labeled

3 - 6. We confirm our visualization by recording the translational and rotational

speeds and plotting them versus time in figures 3.6c and 3.6h.

3.2.2 Scenario 2 Simulations

For this scenario, an environmental structure with tight passages was created

(the width of the passages is within [0.75 − 1.15]m). It is shown in figure 3.7,

where the initial and goal configurations are also visualized. In order to reach the

assigned goal, the robot had to negotiate several curvy roads. The main objective

of this scenario was to verify the capability of the SG method to achieve better
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safety, efficiency, and smoothness compared to the ND-based variants. Another

objective was to show how SG avoids irrational deflections towards free spaces.

The simulated robot is a differential drive whose shape is rectangular. Its length

and width are 0.53m and 0.49m, respectively. The linear and angular speeds

were limited to the ranges [−0.5, 0.5] and [−1.0, 1.0], respectively. The adopted

laser scanner delivers 683 scan points and covers a range of 5.6m with a field

of view of 240◦. The parameter which determines the speed limit Dvs is set to

1m. The security zone in the ND variants and the weight of deflection in the

CG method were set to Ds = 1m and k = 1, respectively.

3.2.2.1 Simulations for ND+, SND and CG

Figures 3.7a - 3.7c show the trajectories generated by the ND+, SND and CG

techniques, respectively. The robot managed to reach the goal in 135 seconds

by applying the SND Approach. By employing ND+ and CG, the robot was

faster as it reached the goal in 129 seconds. Figures 3.7e, 3.7f, and 3.7g show the

robot velocities visualized against the time for ND+, SND and CG, respectively.

ND+ suffers from suddenly changing the angular speed (see the large spikes in

figure 3.7e). According to the SNG and CG methods, no real differences in

behavior can be seen except at one location where, using the SND method, the

robot almost touched the obstacle creating the side marked as D. A common

behavior for all these methods is the unnecessary deflection of the robot towards

unoccupied regions while making progress towards the target, see for example

the locations labeled 1-6 in figures 3.7b and 3.7c, and the locations labeled 1-3

in figure 3.7a. The reason behind this drawback is the usage of the artificial

potential field concept, where repulsive forces are exerted onto the robot from

nearby obstacles. Another reason is the determination of the avoidance trajectory

without respecting the location and field of view of the closest gap.

3.2.2.2 Simulation for SG

The path generated by running the SG method is visualized in figure 3.7d. The

time required by the robot to reach the goal was only 94 seconds. At the starting
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Figure 3.7: Scenario 2 simulations. (a-d) Paths generated using the implemen-
tation of ND+, SND, CG, and SG, respectively. (e-h) Linear and
angular velocities visualized against the time elapsed for ND+, SND,
CG, and SG, respectively.

location, the gap closest to the goal is created by A and B obstacles (labeled G1),

where the direct path towards it is unoccupied by obstacles. In such a case, the

safe gap is identical to the closest gap, and therefore the robot moves directly

towards the subgoal corresponding to G1 (located at the center of G1 here). As

soon as the robot navigates through G1, the closest gap gets G2 that is created

by B and C obstacles. At that moment, the direct path towards G2 is occupied

by obstacles, and thus the robot smoothly and safely navigates towards the safe

gap created by the closest obstacle (on the side labeled B here). This procedure

continues until having moved through all passages and eventually having attained

the target. It is obvious from the path next to G3 that the SG method avoids

the drawback of approaching the wall having less density of obstacle points,

occurring in SND. Additionally, it can be deduced from the density of the red

rectangles that the SG method enhances the safety, efficiency, and smoothness
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of the trajectories generated by the above discussed ND variants. Looking at the

velocity profile in figure 3.7h supports our visualization.

3.3 Experimental Results

The improved performance of the SG method has been demonstrated utilizing

our Pioneer 3-AT mobile robot GETbot, whose dimensions are (0.52× 0.48 m).

GETbot works in a skid-steering mode and subject to nonholonomic constraints.

It is controlled using a 2.6 GHz Intel core i7-620M CPU and equipped with a

Hokuyo-UTM-30LX laserscanner. The maximum speeds of GETbot are (vmax =

0.7m/s, wmax = 2.4 rad/s). While performing the experiments, these velocities

were restricted to (vmax = 0.5m/s, wmax = 0.5 rad/s). In this section we show

one of our experiments (figure 3.8), which was previously published in [MFM13b].

For the sake of comparison, this experiment was executed using SG and CG. The

values of Ds and k in the CG method were set to 0.7m and 1.0, respectively.

Figures 3.8b and 3.8c show the paths generated by CG and SG, respectively. It

can be deduced from these figures that, in terms of smoothness, the difference

between both methods is roughly similar to that presented in section 3.2.1. How-

ever, when it comes to safety the difference becomes clearer as the robot requires

time for deceleration and turning once obstacles appear inside Ds. This can be

depicted from figure 3.8b where the CG-controlled GETbot almost touched the

obstacle marked as A. The improved safety of SG over CG can be clearly seen

from figure 3.8c. The speed profiles for both methods are shown in figures 3.8d

and 3.8e. After performing several experiments, it was observed that the safety

of CG can be improved by decreasing the value of vmax or increasing the value of

Ds. However, decreasing vmax is unfavorable, especially in environments having

a mixture of wide and narrow passages. In these environments, it is desirable to

use the maximum possible velocity. Increasing the value of Ds causes another

problem that is the failure of guiding the robot through a tight opening if the

density of obstacles on one side is much higher than the other. This problem can

be reduced by increasing the value of k. However, tuning k is not straightfor-

ward; increasing its value leads to oscillations and unstable behavior. Decreasing

its value, on the other hand, leads to collision. In summary, with SG this tedious
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Figure 3.8: Experiments (reprinted from [MFM13b] with permission from IEEE).
(a) Environment setup (b) Path generated by applying the CG ap-
proach, where the robot almost touched the obstacle marked as A.
(c) Path generated by SG achieving smoother and safer behavior. (d)
Speed profile for CG. (e) Speed profile for SG.

parameter tuning (vmax, Ds, or k) is avoided either in wide or in tight spaces.

Additionally, SG improves the safety, smoothness, and efficiency of the robot’s

motion. Notice that the next chapters include additional experiments where the

performance of the discussed methods is quantitatively estimated.

3.4 Conclusions

In this chapter, the “Safe Gap” (SG) approach for reactive collision avoidance

has been addressed. With SG, the smoothness and safety of the robot’s motion

have been improved compared to the ND-based variants. This has been achieved

by incorporating an additional step in analyzing the sensory data, locating a

virtual gap in a collision-free area, referred to as a “safe gap”. The location of

this gap is determined based on its opening angle and the configuration of the

goal, providing a smoother and safer bridge between obstacle avoidance and goal

approach. This also helps in evading unreasonable deviations towards free spaces,

reducing the total time and distance required to complete the mission. Unlike

the ND-based obstacle avoidance techniques, the SG method does not require

the safe distance parameter, and thus saves the parameter tuning overhead. An

additional, yet important aspect of the SG approach is the simplicity of the

problem formulation and implementation.



4 Smooth Navigation in Unstructured Narrow

Spaces - A Holonomic Solution

In chapter 3, we have seen how the trajectories generated by the ND navigation

methods have been enhanced by introducing a safer and smoother bridge between

collision avoidance and target approach. This bridge, referred to as a “safe gap”,

is determined by analyzing the environmental structure and extracting the set

of obstacle points in collision with the “gap trajectory” (the trajectory followed

by the robot to reach the closest gap [MFM15]). Among these points, only the

closest to the robot is utilized to create the safe gap. In real-world scenarios,

the sensor measurements are prone to instability and uncertainty. Moreover, the

robot environments are often unstructured and subject to changes. In this regard,

the location of the closest obstacle creating the safe gap may vary rapidly over

time. This can lead to oscillatory motion, especially at relatively higher speeds.

Another yet significant drawback occurs in narrow spaces, in which the obstacle

creating the safe gap may rapidly alternate between being located to the right or

left of the direction of motion. These sudden changes cause successive right and

left turns, which in turn may lead to oscillations and instability [MFM16].

The “Tangential Gap Flow” (TGF) navigation presented in this chapter is spe-

cially developed to cope with the above mentioned limitations. The key idea of

the TGF method is the computation of the motion control based on the configu-

ration of all obstacles causing collision with the “gap trajectory”, not simply the

nearest one. Moreover, the clearance to obstacles on both sides of the heading

direction is taken into account. Adjusting the gap trajectory is, in general, based

on two concepts, namely “tangential” and “gap flow” navigation [MFM16]. Using

the“tangential navigation”, the robot moves tangential to the obstacles boundary.

With the “gap flow navigation”, the robot safely and smoothly navigates among
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closely spaced obstacles. In both concepts, avoiding collisions and approaching

the target are simultaneously performed. By employing these enhancements, the

smoothness of the generated trajectories is increased. Furthermore, a much more

reliable yet stable motion is achieved. Last but not least, the motion commands,

that drive a mobile robot towards a given target, is computed in such a way that

the stability of the system is guaranteed in the Lyapunov sense.

In a nutshell, the TGF approach can be described in the following: in a first step,

the data coming from sensors is analyzed to characterize the distribution of sur-

rounding obstacles and identify the current motion situation. Once determined,

an action is carried out as explained in section 4.1. With this step, the desired

heading direction that guarantees both collision avoidance and target approach

is computed. Section 4.2 describes how to set the motion control which drives

a robot towards the desired heading. This process is repeated at each sensor

update. Experimental results including a discussion and comparison with the

SG method as well as with existing ND variants are introduced in section 4.3.

In section 4.4, our conclusions are highlighted. Notice that the definitions and

notations introduced in section 3.1.1 are also used here.

4.1 Motion Situations and Corresponding Actions

In order to avoid the risk of collision with obstacles, it is essential to adjust the

direction of motion based on the distribution of surrounding obstacles. Hence,

once an obstacle obstructs the robot’s path, a temporary rotation for the goal

position is performed until the risk is passed. As we have reported in [MFM16]

[MJFM13] [Muj10], the degree of rotation is determined based on two criteria:

Criterion 1: “Path-to-goal”. This criterion considers two situations: “Free-path”

and “Dangerous-path”. For determining which situation is currently active, the

configuration space is created and the holonomic path towards the goal is checked

for collision. If it is collision-free, the situation is a “Free-path”. Otherwise, it is

a “Dangerous-path”. The former situation does not require any action as can be

depicted from figure 4.1a, while the latter imposes a rotation to the goal position

by an angle Ψsg, referred to as a “gap rotation angle”. This rotation heads the
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Goal  

(a)

Goal

Subgoal

(b)

 

Goal/Subgoal Virtual-goal

(c)

Figure 4.1: Visualization of three motion situations based on the “Path-to-goal”
and “Safety” criteria. (a) “Free-path” and “High-safety”: this situa-
tion does not require any action. (b) “Dangerous-path” and “High-
safety”: in this case, a rotation to the goal position is performed,
driving the robot towards a subgoal within the closest gap. (c) “Low-
safety”: a temporary rotation to the goal (resp. subgoal) position is
performed so that the robot avoids collisions with obstacles (adapted
from [Muj10] and from [MJFM13] with permission from IEEE).

robot towards a subgoal within the closest gap as visualized in figure 4.1b. For

constructing the closest gap, see section 3.1.3 from chapter 3.

Criterion 2: “Safety”. This criterion considers two situations: “High-safety”

and “Low-safety”. Determining the currently active situation is dependent on

the existence (Low-safety) or absence (High-safety) of a potential threat from

obstacles. Traditionally, an obstacle is considered a threat if the distance to

it measured from the robot’s boundary is less than a predefined safe distance

Ds, as visualized in figure 4.1. However, the proposed TGF method considers an

obstacle as a threat if it causes collision with the robot’s boundary while traveling

directly towards the goal/subgoal (see section 3.1.2), i.e. an obstacle point pS
i is

a threat if the following condition is fulfilled:

pS
i ∈ Ocollision : [pr → pt] (4.1)

where pt can be the given goal or the computed subgoal based on investigating

the “Path-to-goal” situations. This definition is more reasonable and eliminates

the need for the Ds parameter.
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Hence, to determine the current situation, the“direct path”towards pt is checked

for collision. If it is collision-free (i.e. Ocollision : [pr → pt] = φ), the situation

is a “High-safety”. Otherwise, it is a “Low-safety”. The former situation does

not require any action, while the latter imposes a rotation to the goal/subgoal

location by an angle Ψvg, referred to as a “collision avoidance rotation angle”.

The result of this rotation is a new goal location, called a “virtual-goal”, as shown

in figure 4.1c. The actions associated with the Path-to-goal criterion are executed

before those associated with the safety criterion (they have a higher priority).

At first, the computation of the “gap rotation angle” Ψsg is described in section

4.1.1. Then, in section 4.1.2 the “tangential navigation” concept is introduced

and employed to determine the “collision avoidance rotation angle” Ψvg. Sub-

sequently, in section 4.1.3 the “gap flow navigation” concept is explained, where

Ψvg is computed in such a way that the clearance to obstacles on both sides of the

heading direction is considered. Both concepts compute the rotation angle con-

sidering only one obstacle point (to simplify understanding). Later, in section

4.1.4, the smoothness of the generated trajectories is increased by integrating

both concepts and by considering all threats surrounding the robot.

4.1.1 Gap Rotation Angle

The first step in determining Ψsg is to extract the set of surrounding gaps and

identify the navigable one closest to the goal. For this purpose, the procedure

presented in section 3.1.3 is followed. The outcome of this step is the closest gap

C. Setting Ψsg is, in principle, based on the goal location and the angular distance

between both sides of C, as we have proposed in [MFM16] [MJFM13] [Muj10]; if

the goal falls within C, Ψsg is set to zero, since the objective is to drive the robot

towards the goal and it is inappropriate to drive it somewhere else. Otherwise,

Ψsg is computed based on the angular width of C (look at figure 4.2).

Ψsg =

{
θmid − θg, if ∠(θcg(C), θmid) < ∠(θcg(C), θscs)

θscs − θg, otherwise
(4.2)

where θg is the angle towards the goal, θcg(C) the direction towards the side of

C closer to the goal, and θmid and θscs are defined as (originally from [DB08]):
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Goal

Subgoal

Figure 4.2: Computing the gap rotation angle Ψsg. The closest gap C is assumed
narrow. Therefore, Ψsg is determined in such a way that the robot
passes through the gap center C.

θmid =

 θcg(C)− (θcg(C)−θfg(C))
2

, if θcg(C) > θfg(C)

θcg(C) +
(θfg(C)−θcg(C))

2
, otherwise

(4.3)

θscs =

 θcg(C)− arcsin
(
R+ dsafe
rcg(C)

)
, if θcg(C) > θfg(C)

θcg(C) + arcsin
(
R+ dsafe
rcg(C)

)
, otherwise

(4.4)

where rcg(C) is the distance to the side pcg(C) of gap C closer to the goal, θfg(C)
the direction towards the side of C farther from the goal, and dsafe a desired

clearance to obstacles as defined in section 3.1.1. It can be deduced from Eq.

(4.2) that, for a narrow C, the robot passes through the gap center. However, if

C is wide, dsafe is preserved between pcg(C) and the robot’s footprint.

4.1.2 Tangential Rotation Angle

Up to now, we have seen how the instantaneous goal1 is determined based on

analyzing the holonomic path towards the goal. For brevity, from now on the

1The instantaneous goal can be the goal or the subgoal based on investigating the “Path-
to-goal” criterion (criterion 1).
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instantaneous goal is named the target and denoted by pt. As mentioned pre-

viously, for a “Low-safety” situation, TGF considers rotating pt by an angle,

referred to as a “collision avoidance rotation angle” Ψvg. Within the “tangential

navigation” concept, previously published in [MFM16] [MJFM13] [Muj10], Ψvg

is computed in such a way that the robot navigates tangential to the boundary

of the closest obstacle (considered as a threat) in the direction of the target:

Ψvg =



−sgn(θc)π
2
− γ, if |γ| < π ∧ sgn(θt) 6= sgn(θc)

−sgn(θc) 3π
2
− γ, if |γ| ≥ π ∧ sgn(θt) 6= sgn(θc)

−sgn(θc)π
2
− γ, if |θc| ≥ |θt| ∧ sgn(θt) = sgn(θc)

+sgn(θc)π
2
− γ, if |θc| < |θt| ∧ sgn(θt) = sgn(θc)

(4.5)

where θt is the angle towards pt, θc the direction towards pc (the obstacle point

closest to the robot), and γ = θt − θc.

The Tangential Escape (TE) approach [FPV+08] builds upon a similar concept.

However, this method can only work properly in simple environments, as the

TE-controlled robot always seeks the goal without considering the environmental

structure (creating subgoals within free gaps). It has been shown in [MJFM13]

that, by employing the TE method, the robot can get stuck in different scenarios

(e.g U-shaped obstacles). Furthermore, it is not stated in [FPV+08] how naviga-

tion towards the goal is resumed after following the contour of an obstacle and

when it is necessary to circumnavigate the boundary of a different obstacle, i.e.

setting a leaving condition. By creating subgoals in free areas (gaps), the “tan-

gential navigation” determines Ψvg so that local trap situations are avoided.

In figure 4.3 different scenarios are shown, where the virtual target (the result

of rotating the target pt by Ψvg) is marked as pvg. The corresponding collision

avoidance rotation angle Ψvg for each scenario is also visualized. By implement-

ing the TE approach [FPV+08], the robot may move far away from pt. For

instance, the dashed red arrows in figures 4.3b, 4.3e, and 4.3f show the directions

towards which the robot is driven using TE. The proposed“tangential navigation”

concept avoids this limitation by creating subgoals within free areas, guiding the

robot towards the direction leading to the goal.
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Figure 4.3: Computing Ψvg based on the tangential navigation concept for differ-
ent cases. (a, b) sgn(θt) 6= sgn(θc) where |γ| < π for (a) and |γ| ≥ π
for (b). (c, d): sgn(θt) = sgn(θc) and |θc| ≥ |θt| where θc < 0 for
(c) and θc > 0 for (d). (e, f): sgn(θt) = sgn(θc) and |θc| < |θt|
where θc > 0 for (e) and θc < 0 for (f). (adapted from [Muj10] and
from [MFM16] [MJFM13] with permissions from Elsevier and IEEE).

The leaving condition is met if the angular distance between θc and θt exceeds
π
2

, i.e. The value of Ψvg calculated above is set to zero if ∠(θt, θc) > π
2

.

4.1.3 Gap Flow Rotation Angle

In section 4.1.2, we have seen how the collision avoidance rotation angle Ψvg is

computed in such a way that the robot navigates tangential to the contour of the

closest obstacle i.e. the angular difference between the direction of motion and

the closest obstacle ∠(θt, θc) is maintained at 90◦. In this regard, approaching
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one side of a narrow passage causes the robot to do a sharp turn so that it moves

parallel to this side (regardless of the location of obstacles on the other side). As

soon as the robot starts to turn, there is a big chance that it gets closer to the

other side of the passage causing a sharp turn towards the opposite direction,

and the process repeats. These sudden turn changes may lead to oscillations and

instability. Figure 4.4 shows an example where the robot is supposed to pass

through the narrow gap created by obstacles (sides) A and B. Let us assume

that the current situation according to criteria 1 and 2 is a “Dangerous-path” and

“Low-safety”. Since we have only one gap, it will be the closest gap and the target

pt (subgoal here) is located between its both sides. At the starting point (marked

as 1 in figure 4.4a), the obstacle point closest to the robot is located on side A.

This imposes a rotation to pt by Ψvg and the robot navigates tangential to side A

accordingly. Whenever the location labeled 3 in figure 4.4b is reached, the robot

gets closer to side B. At that point, the new rotation angle causes the robot to

move tangential to side B instead. Once location 4 is approached, the robot gets

closer to side A again, moving tangential to it as can be depicted from figure

4.4c. As soon as the angular distance between the closer side (here side B) and

pt approaches π
2

(figure 4.4d), the leaving condition is fulfilled, guiding the robot

directly towards pt. It is worth to mention that for a wide gap, these oscillatory

transitions are reduced as the leaving condition may be fulfilled earlier.

The “gap flow navigation” concept, previously published in [MFM16] [MFM15],

addresses this limitation by performing the avoidance maneuver in such a way

that the clearance to obstacles on both sides of pt is taken into account. In

the following, it is shown how to compute the avoidance trajectory associated

with any threat pS
i , using this concept. In order to enhance the readability, the

superscript S is removed (i.e. pS
i is abbreviated pi).

Let pr be the location of the robot’s origin and−−→prpt the line segment representing

the holonomic path towards pt. The workspace is divided into two parts; one to

the right (R−) and the other to the left (R+) of −−→prpt. Let pi be any threat and

R∗ the region that does not include pi. The avoidance trajectory is determined

in such a way that the clearance between pi and the obstacles falling on R∗ is

considered. Among the obstacle points located in R∗, the closest to pi, denoted

by p∗i , is selected. Since our objective is to drive the robot towards pt, we exclude
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Figure 4.4: Oscillations that may occur in a tight passage by employing the “tan-
gential navigation” concept. (a) The closest obstacle point is located
on side A. This imposes a rotation to pt by Ψvg and the robot navi-
gates tangential to A accordingly. (b) The robot gets closer to side B.
At that point, the new Ψvg causes the robot to move tangential to B.
(c) The robot gets closer to side A again, moving tangential to it. (d)
Fulfilling the leaving condition, and in turn guiding the robot directly
towards pt (adapted from [MFM16] with permission from Elsevier).

all obstacles making an angular distance more than π with pi, traveling in the

direction of pt. This is due to the fact that these obstacles do not pose a collision

risk, as they are located behind the robot while driving it towards pt [MFM15]:

p∗i = argmin
pk∈S

‖pk − pi‖, β < α < π (4.6)

with β and α given by:

α =

{
proj (θi − θt)− proj (θ∗i − θt), if pi is located in R+

proj (θ∗i − θt)− proj (θi − θt), otherwise
(4.7)

β =

{
proj (θi − θt), if pi is located in R+

−proj (θi − θt), otherwise
(4.8)

where θ∗i is the angle towards p∗i .

As an example, look at figure 4.5, where pi is located in the left region R+,

and therefore R∗ = R−. The obstacle points visualized by red are excluded as

they are not falling in R∗ (they violate the condition α > β from Eq. (4.6)).
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Figure 4.5: Considering the clearance to both sides of a target pt while computing
the avoidance trajectory. The line towards pt divides the workspace
into two regions, R+ and R−. It is obvious that pi is located in R+.
Hence, while computing Ψvg associated with pi the clearance between
pi and the obstacles located in R− (visualized by green and orange)
is considered. Since our objective is to drive the robot towards pt, all
obstacles making an angular distance > π with pi are excluded (such
as those visualized by orange). Among the remaining obstacles, the
closest to pi is selected (denoted p∗i and visualized by dark green).

Additionally, the orange obstacle points are excluded as they make an angular

distance more than π with pi (they violate the condition α < π from Eq. (4.6)).

The remaining obstacle points are visualized by green. Among these valid points,

p∗i is set to the closest to pi (visualized by dark green in figure 4.5).

We now introduce an angle, referred to as “gap flow angle” ∆(pi) that defines

the angular distance between a threat pi and the desired avoidance trajectory

associated with it [MFM16]. Notice that this angle is maintained at 90◦ by using

the tangential navigation concept, discussed in section 4.1.2. Our objective here

is to restrict this angle, so that the obstacles located in R∗ are considered.

Let θcenter be the angle towards the center point between pi and p∗i , i.e.:

θcenter = atan2

(
yi + y∗i

2
,
xi + x∗i

2

)
(4.9)

where (xi, yi) and (x∗i , y
∗
i ) denote the Cartesian coordinates of pi and p∗i .
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The “gap flow angle” corresponding to pi is defined as follows:

∆(pi) = arccos

(
1

2
.
A2 + r2

i −B2

A . ri

)
(4.10)

where ri is the distance to pi, and B and A are given by:

B =

{
min

(
1
2
‖pi − p∗i ‖,dsafe

)
, if ri <= r∗i

min (| ri sin (∠ (θi, θcenter))| , dsafe) , otherwise
(4.11)

A =

√
B2 + r2

i − 2B . ri . cos
(π

2
− ∠ (θi, θcenter)

)
(4.12)

where r∗i is the distance to p∗i . It is obvious from Eq. (4.10) that ∆(pi) distin-

guishes two cases based on whichever of pi and p∗i is closer to the robot; if pi

is closer (ri <= r∗i ), ∆(pi) points the robot so that 1
2
‖pi − p∗i ‖ is maintained

to pi, see figure 4.6a. For a large distance between pi and p∗i , the maintained

clearance is limited to dsafe, see figure 4.6b. On the other hand, if ri > r∗i , ∆(pi)

points the robot towards the center point between pi and p∗i , see figure 4.7a.

Similarly, if this makes the clearance to pi relatively large, the distance between

the robot and pi is capped to dsafe, see figure 4.7b. Having in mind all ∆(pi) on

both regions (R+ and R−), the avoidance trajectories associated with all pi can

be visualized as vector flow fields between all pi and p∗i , where the flow direction

points towards the target (could be the “closest gap” or the goal based on inves-

tigating the “Path-to-Goal” criterion) and an appropriate distance to obstacles

is maintained. That is why ∆(pi) is called the “gap flow angle” [MFM16].

With this, we can now define the rotation angle imposed on pt to avoid pi as:

Ψvg = Γ(pi)
[
−∆(pi) + sat[0,∆(pi)] (∠ (θt, θi))

]
∈ [−π

2
,
π

2
[ (4.13)

where Γ(pi) is given by:

Γ(pi) =

{
+sgn (θi − θt) , if |θi − θt| ≤ π
−sgn (θi − θt) , otherwise

(4.14)

Notice that Γ(pi) in Eq. (4.13) is used to point the robot towards the direction

closer to pt rather than using the 4 cases in Eq. (4.5).
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(a)

(b)

Figure 4.6: Computing ∆(pi). pi is closer to pr than p∗i . Hence, ∆(pi) is set
such that 1

2
‖pi − p∗i ‖ is maintained to pi as visualized in (a). If

‖pi −p∗i ‖ is high, the maintained distance is limited to dsafe, see (b).

4.1.4 Tangential Gap Flow Rotation Angle

As mentioned at the beginning of this chapter, the“Tangential Gap Flow (TGF)”

navigation determines the motion control based on the configuration of all sur-

rounding threats, achieving a better performance in unstructured environments.

Next, we show how the “tangential” and “gap flow” navigation concepts are em-

ployed to achieve this goal, following our work in [MFM15] [MFM16] [MFM17].

The foundation of TGF is the determination of the collision risk acted by each

of the surrounding obstacles. It consists of the following steps. In a first step,

we extract all obstacle points (threats) that may cause collision with the robot
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(a)

(b)

Figure 4.7: Computing ∆(pi). p∗i is closer to pr than pi: ∆(pi) is set such that
the robot moves towards the center point between pi and p∗i , see (a).
If ‖pi − p∗i ‖ is high, the maintained distance is set to dsafe, see (b).

while guiding it towards pt. In a second step, the rotation angle ψi associated

with each of these threats is computed. The “weighted average rotation angle”

Ψvg is then calculated based on the degree of risk posed by each threat.

For determining the set of threats, we perform the following steps. First, the

current situation is determined according to criterion 1. If it is a “Free-path”

situation, no action is required. Otherwise, pt is translated to a safer location

within C (figure 4.8). The distance rt to the new location of pt is computed as:

rt =

 d (pr,pg) , if Ψsg = 0

rcg(C) sin(ζ)

sin(π−(ζ+η))
, otherwise

(4.15)
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New

Old

Figure 4.8: The target pt is translated to a safer location between both sides of
the closest gap C if the holonomic path towards pt is unsafe. This step
is necessary to determine the set of obstacles that may cause collision
with the robot while guiding it towards pt. For clarity, the notation
representing the closest gap (C) is removed, e.g. θcg(C) is abbreviated
as θcg (adapted from [MFM16] with permission from Elsevier).

where ζ and η are given by:

ζ = arccos

(
w2(C) + r2

cg(C)− r2
fg(C)

2w(C)rcg(C)

)
(4.16)

η =

{
∠ (θcg(C)→ θt) , if θcg(C) > θfg(C)
∠ (θt → θcg(C)) , otherwise

(4.17)

where rfg(C) is the distance to the side pfg(C) of gap C farther from the goal and

w(C) the width of C.

In a second step, the “direct path” from pr to pt is checked for collision, following

the algorithm presented in section 3.1.2. The outcome N = Ocollision : [pr → pt]
2

is the set of obstacles that may cause collision with the robot while driving it

from its current location towards pt.

In a third step, a virtual reference frame, named “robot-target” frame (denoted

by Frt), is created by performing a rotation to the robot coordinate system so

that it points towards pt (performing a rotation by θt) [MFM16]. Throughout

2Notice that the direct path can rapidly change between being free or occupied. To provide
a smoother and safer transition between both states, we enlarge the robot’s footprint to
both sides of −−−→prpt while extracting Ocollision : [pr → pt]. In our experiments, the robot’s
footprint was inflated by a value of 2R.
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this section, the Cartesian coordinates of an obstacle point pS
i with respect to

the “robot-target” frame Frt is denoted by (T (xS
i ), T (yS

i )):

T (xS
i ) = xS

i cos(−θt)− yS
i sin(−θt) (4.18)

T (yS
i ) = xS

i sin(−θt) + yS
i cos(−θt) (4.19)

With the “robot-target” frame Frt, the list of colliding obstacle points (N) is

divided into two sublists; one contains those obstacles lying to the left of Frt
(to the left of its x-axis) while the other includes those obstacles located to the

right. The first is called a left-sublist and represented by NL, whereas the other

is called a right-sublist and represented by NR :

NR =
{

pS
i ∈ N

∣∣∣ T (yS
i ) < 0

}
(4.20)

NL =
{

pS
i ∈ N

∣∣∣ T (yS
i ) > 0

}
(4.21)

In order to avoid unreasonable deviations towards free regions, threats located

within U-shaped objects are discarded. For this purpose, we eliminate from

both sublists each obstacle point whose absolute y-coordinate (relative to Frt)
is more than that of the closest to the robot. By this means, the efficiency and

safety of the generated trajectories are enhanced. Let pNR
c be the obstacle point

belonging to NR and closest to the robot. Similarly, pNL
c represents the obstacle

point included in NL and closest to the robot:

pNR
c = argmin

pS
j

‖pS
j − pr‖, pS

j ∈ NR (4.22)

pNL
c = argmin

pS
j

‖pS
j − pr‖, pS

j ∈ NL (4.23)

The modified right (N̂R) and left (N̂L) subsets are then defined as follows:

N̂R = NR \
{

pS
i ∈ NR :

∣∣∣T (yS
i )
∣∣∣ > ∣∣∣T (yNR

c )
∣∣∣} (4.24)

N̂L = NL \
{

pS
i ∈ NL :

∣∣∣T (yS
i )
∣∣∣ > ∣∣∣T (yNL

c )
∣∣∣} (4.25)

where yNR
c and yNL

c are the y-coordinates of pNR
c and pNL

c , respectively.
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Each obstacle point pS
i included in either NL or NR imposes a rotation to the

target pt by an angle, denoted as ψi. Setting ψi is based on the tangential and

gap flow navigation concepts. Let H represents the sublist including threat pS
i

and H∗ the other sublist3. Also, denote threat pS
i by pH

i and the threat closest

to pS
i and contained in H∗ by pH∗

i :

pH∗
i = argmin

pS
j

‖pS
j − pH

i ‖, pS
j ∈ H∗ (4.26)

The rotation angle imposed by pH
i is defined as follows:

ψi = Γ(pH
i )
[
−λ+ sat[0,λ]

(
∠
(
θt, θ

H
i

))]
∈ [−π

2
,
π

2
[ (4.27)

where θH
i is the angle towards pH

i , and Γ(pH
i ) and λ are given by:

Γ(pH
i ) =

{
+sgn

(
θH
i − θt

)
, if

∣∣θH
i − θt

∣∣ ≤ π
−sgn

(
θH
i − θt

)
, otherwise

(4.28)

λ =

{
π
2
, if H∗ = φ

∆(pH
i ), otherwise

(4.29)

In Eq. (4.27), we distinguish two cases based on whether H∗ is empty or not. If it

is empty, ψi is set in such a way that the robot moves tangential to pH
i (“tangential

navigation”). In such a case, if pH
i is the threat closest to the robot, the result

of Eq. (4.27) is equivalent to Eq. (4.5). However, if H∗ is not empty (there

are threats on the other side of the “robot-target” frame), ψi is determined such

that the angular distance between pH
i and its avoidance trajectory is maintained

at the “gap flow angle” ∆(pH
i ) (“gap flow navigation”). Notice that Eq. (4.27)

already includes the leaving condition; whenever the angular distance between pt

and pH
i gets greater than π

2
(for a tangential navigation) or ∆(pH

i ) (for a gap flow

navigation), the value of ψi is capped at 0 (using the sat operator), and therefore,

the robot is directly driven towards pt. By this means, a larger clearance to pH
i

is maintained. Moreover, avoiding pH
i and making progress towards the target

pt are simultaneously considered [MFM16] [MFM17].

3The left-sublist if pS
i ∈ N̂R and the right-sublist if pS

i ∈ N̂L.
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As mentioned above, it is required to compute the degree of risk posed by each

pH
i . This is reflected by the relative proximity of pH

i to the robot and can be

expressed as:

wi =

sat[0,1]

(
rt +R− rH

i

)(
rt +R− rN̂

c

)
2

(4.30)

where rH
i is the distance to pH

i and rN̂
c the distance to the obstacle posing the

highest risk (the closest to the robot and included in N̂ = N̂R ∪ N̂L). The risk

measure wi is the maximum (1) if pH
i is the closest threat and the minimum (0)

if rH
i ≥ rt+R, where rt+R is the largest possible distance to a threat belonging

to N̂ . Notice that wi gets higher as the distance to the threat gets smaller.

The “weighted average rotation angle” Ψvg is determined for the left and right

sides (sublists) separately. By this means, the net Ψvg will not be affected by

the number of threats in each sublist [MFM16]. As a consequence, the computed

trajectory will not be biased towards the side having the least number of threats

(for more details about this issue, the reader may refer to [MFMJ10]). Let TR

be the total number of obstacle points included in the right sublist N̂R, we define

the“weighted average rotation angle”caused by these obstacles (called“right-side

rotation angle”) as the weighted sum of their corresponding rotation angles:

ΨR =
1

WR

TR∑
i=1

wiψi ∈ [−π
2
,
π

2
[, pS

i ∈ N̂R (4.31)

where WR is the total weight corresponding to the obstacles contained in N̂R:

WR =

TR∑
i=1

wi, pS
i ∈ N̂R (4.32)

Analogously, the “left-side rotation angle” ΨL is computed. Both ΨR and ΨL are

weighted, reflecting the relative risk posed by each side. The weight correspond-

ing to ΨR can be expressed as [MFM15] [MFM16]:

W(ΨR) = wR
max︸ ︷︷ ︸

left-term

.

(
1− Ψmax − |ΨR|

Ψmax

)
︸ ︷︷ ︸

right-term

(4.33)
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where wR
max is the weight corresponding to the obstacle (pN̂R

c ) closest to the robot

among those contained in NR and Ψmax the maximum absolute rotation angle

among both ΨR and ΨL (Ψmax = max (|ΨR|, |ΨL|)). It is apparent that the value

of W(ΨR) depends on two factors: first, the distance between pN̂R
c and the robot

reflected by the maximum weight wR
max (left-term). Notice that pN̂R

c is considered

among those contained in N̂R as it poses the highest threat. The second factor is

expressed by the relative difference between Ψmax and |ΨR| (right-term). With

this factor, more weight is given to the side imposing a higher rotation to pt. For

instance, if |ΨR| is greater than |ΨL|, the right term evaluates to 1. Otherwise,

its value depends on the difference between |ΨR| and |ΨL|: it increases as |ΨR|
get closer to |ΨL|. The idea here is to make the side imposing a larger rotation

angle (posing a higher risk) the dominant side. This term reduces successive

turn changes (oscillations) occurring as a result of changing the dominant side

between being left ΨL or right ΨR , resulting in a smooth variation of Ψvg. The

weight associated with ΨL, W(ΨL), is calculated in the same manner.

Finally, the net rotation angle corresponding to all pS
i ∈ N̂ (“tangential gap flow”

rotation angle Ψvg) can be expressed as the weighted average of ΨR and ΨL:

Ψvg =
W(ΨR)ΨR + W(ΨL)ΨL

W(ΨR) + W(ΨL)
∈ [−π

2
,
π

2
[ (4.34)

4.2 Determining Motion Commands

Up to now, we have determined both angles of rotation, Ψsg and Ψvg. As we

have pointed out in section 4.1, The goal location is rotated by these angles to

achieve a collision free motion, while progressing towards the goal. Therefore, at

each sensor update, the instantaneous goal location is computed as [MFM16]:

p̂g =

[
cos(Ψ) sin(Ψ)

− sin(Ψ) cos(Ψ)

]
pg (4.35)

where Ψ = Ψsg + Ψvg is the total rotation angle.

Next, we show how to determine the motion control that guides a mobile robot

towards p̂g. A unicycle type mobile robot is considered whose control inputs are
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Figure 4.9: A robot navigates towards a given goal location (adapted from
[MJFM13] with permission from IEEE).

the linear and angular velocities (v and ω). Its configuration with respect to the

global (world) coordinate frame is illustrated in figure 4.9. It has been shown

in the literature that this robot obeys the following kinematic model (given in

polar coordinates) [ACBB95] [PSV11]:

ρ̇ = −v cos (α) (4.36)

α̇ = −w + v
sin (α)

ρ
(4.37)

ϑ̇ = −v sin (α)

ρ
(4.38)

where ρ is the distance to the goal p̂g, α the angle towards p̂g (orientation error),

and ϑ the angular distance between the horizontal axis and the line connecting

p̂g to the robot’s origin. Notice that the values of α̇ and ϑ̇ are indefinite in case

that ρ in Eq. (4.37) and Eq. (4.38) is zero. Therefore, it is assumed that the

robot reaches p̂g if the value of ρ gets below a small threshold ε.

The goal is to determine a state dependent controller which guarantees that both

α and ρ asymptotically go to zero. For this system, the following control inputs,

previously published in [MFM16] [MJFM13] [Muj10], are proposed:

v = kbvlimit cos (α) , kb > 0 (4.39)

ω = kmα+
v sin (α)

ρ
, km > 0 (4.40)
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This final pose controller is adapted from [FPV+08]. If the current situation

according to criterion 1 is a “Free-path”, the value of kb in Eq. (4.39) is set to

tanh(ρ). Otherwise, it is set 1. This helps in achieving smooth breaking whenever

the distance to pg approaches zero. The parameter km in Eq. (4.40) is utilized

to restrict ω to its maximum limit. It is set to km = 2ωmax
π

in the experiments

presented in this thesis. Next, we describe how to control the speed of the robot

(determine vlimit), and subsequently, we analyze the stability of the system.

4.2.1 Limiting Speed

The TGF method considers limiting the robot’s speed based on the distance to

nearby obstacles, similar to the SG method presented in chapter 3. This has been

addressed by specifying vlimit (Eq. (3.28)) whose value is based on two factors;

the distance to the closest obstacle and a parameter Dvs, named “velocity safe

distance”. The value of this parameter defines the size of a region around the

robot in which the velocity is restricted. Here, we propose to determine the value

of Dvs based on the physical and dynamical properties of the robot. For this

purpose, we utilize the work in [MLO+98], which proposes a lookahead distance

dl for assessing the performance requirements of range sensors and for measuring

the quality of obstacle detection algorithms. One of those requirements is the

ability of range sensors to detect an obstacle with sufficient resolution at the

proposed distance. Mainly, the lookahead distance is composed of three terms:

dl = db︸︷︷︸
first-term

+ vi(2tc + ta)︸ ︷︷ ︸
second-term

+ v2
i /(2µĝ)︸ ︷︷ ︸

third-term

(4.41)

The first term is a buffer distance which accounts for the distance between the

sensor and the robot’s boundary plus any desired safety margin from obstacles.

The second term is a reaction distance which is the distance traveled by the robot

before the obstacle avoidance maneuver starts; it is based on the initial velocity

vi, the computation time tc, and the actuation latency time ta. The third term

is the breaking distance, which is the distance the robot travels before coming to

a full stop once the brake is engaged. µ and ĝ denote the coefficient of friction

and the gravitational acceleration, respectively.
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For our mobile robot, the values of the buffer distance, the combined reaction

time, and the coefficient of friction are set experimentally to 0.5m, 0.5 s, and 0.7,

respectively. In case of hills, the coefficient of friction is reduced by a function

of the slope angle [MLO+98].

With this, we define the value of vlimit as follows:

vlimit =

√1− sat[0,1]

(
Dvs − rN̂

c

Dvs

) vmax (4.42)

where Dvs = 0.5 + 0.5 |vi|+ 0.073v2
i .

4.2.2 Stability Analysis

In order to investigate the stability of the proposed final pose controller, the

following Lyapunov function candidate is considered:

V =
1

2
α2 +

1

2
ρ2 (4.43)

It is apparent that V is a positive definite. Its time derivative is:

V̇ = αα̇+ ρρ̇ (4.44)

Now, by substituting the values of ρ̇ and α̇ from Eq. (4.36) and Eq. (4.37) into

Eq. (4.44), we obtain:

V̇ = α

(
−w + v

sin (α)

ρ

)
− ρv cos(α) (4.45)

Finally, by replacing v and ω from Eq. (4.39) and Eq. (4.40) into Eq. (4.45), V̇

can be rewritten in the following form:

V̇ = −kmα2 − kbvlimitρ cos2(α) (4.46)

It is obvious from Eq. (4.46) that V̇ is a negative definite, thus demonstrating the

asymptotic stability of the proposed controller (i.e. [α ρ]→ [0 0] as t→∞).



84 4 Smooth Navigation in Unstructured Narrow Spaces - A Holonomic Solution

4.3 Experimental Results

Several experiments were conducted using our mobile robot GETbot. The objec-

tive of these experiments was to demonstrate the improved stability and smooth-

ness of TGF and to compare its performance to that of the ND variants as well

as SG. In the following, three experiments are presented. These experiments

were performed using the implementation of two ND variants (ND+ [MM04]

and CG [MFMJ10]) in addition to the proposed SG and TGF methods. The

experimental setup is introduced in chapter 5, where additional experiments in-

cluding a performance evaluation are also provided.

In experiment 1, it was supposed to drive GETbot through relatively tight gaps

made up of boxes and chairs as can be seen in figure 4.10a. Experiment 2 (figure

4.11a) had two challenges: first, the robot had to avoid obstacles forming a U-

like shape to reach the goal. Second, the obstacle course included tight openings

having one side with higher density of obstacles compared to the other (see, for

instance, passages P2 and P4). The environmental structure of experiment 3

consisted of various narrow gaps where the available clearance at some locations

did not exceed 5 cm to both robot sides (figure 4.12a). The value of Ds in the ND

variants was set to “0.7m” in experiments 1 and 3 and to “1.0m” in experiment

2. According to the “weight strength” k in CG, it was set to “0.6”, “0.3”, “0.4”

in experiments 1, 2, and 3, respectively. The translational and rotational speeds

were limited to “0.5m/s” and “1.0 rad/s” while carrying out all experiments.

It is important to mention that the ND variants as well as the SG method guide

the robot towards a goal using a motion controller (called ND-controller) different

from that introduced in section 4.2 (called TGF-controller). For the sake of a fair

comparison, the presented experiments were performed using the ND-controller.

A comparison of both motion controllers is then presented in chapter 5.

4.3.1 Experimental Results for ND+ and CG

The trajectories generated by ND+ in experiments 1 - 3 are shown in figures

4.10b, 4.11b, and 4.12b, respectively. The robot successfully passed through the



4.3 Experimental Results 85

obstacle structure of experiments 1 and 2 in 56 s and 90 s, respectively. In the

last experiment, the robot failed to reach the goal as it pushed over the obstacle

labeled E after hitting/touching obstacles A, B and C. With the CG technique,

the routes of the first and second experiments were traversed in 56 seconds and

86 seconds, respectively (see figures 4.10c and 4.11c). However, in experiment

2, the robot touched obstacle A and collided with the thin obstacles marked as

C. In the last experiment, the mission was aborted after touching obstacle A,

colliding with obstacle B, and finally overturning obstacle D (see figure 4.12c).

It can be deduced from the generated trajectories that both methods (especially

ND+) were prone to oscillations as a result of unreasonable deviations towards

free regions and rapid changes in the direction of motion. For instance, see the

trajectory while passing through the openings marked as P1 - P3 in figures 4.11b

and 4.11c and the openings labeled P1 and P2 in figures 4.12b and 4.12c. The

reason behind this behavior is the computation of the avoidance trajectory only

based on the distance to threats (obstacles falling within the security zone) re-

gardless of the location and field of view of the closest gap. This visualization has

been supported by recording the translational and rotational speeds and plotting

them against the elapsed time. Figures 4.10f, 4.10g, 4.11f, 4.11g, 4.12f, and 4.12g

show these speeds using ND+ and CG for experiments 1 - 3, respectively4.

4.3.2 Experimental Results for SG and TGF

By employing SG, GETbot was successfully navigated through the obstacle struc-

ture of experiments 1 - 3 in 48 seconds, 72 seconds, and 76 seconds, respectively

(see figures 4.10d, 4.11d, and 4.12d). However, the robot moved close to the

obstacles labeled A and B in figures 4.10d and 4.11d, and touched the obstacle

marked as F in figure 4.12d. The speed profiles of experiments 1 - 3 are shown in

figures 4.10h, 4.11h, and 4.12h, respectively. It can be deduced that the perfor-

mance of the “SG method” is better than that of the ND+ and CG techniques.

Despite this fact, however, rapid changes in the direction of motion can be seen

along the trajectories generated by SG, especially at tight spaces. For example,

while passing through passage P1 in experiment 3, GETbot smoothly traversed

4Videos of all experiments presented in this chapter are available at: “http://getwww.
uni-paderborn.de/research/videos/tgf-conf”

http://getwww.uni-paderborn.de/research/videos/tgf-conf
http://getwww.uni-paderborn.de/research/videos/tgf-conf
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Figure 4.10: Test 1. (a) Experimental setup. (b-e) Paths generated by (b) ND+,
(c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f) ND+, (g) CG,
(h) SG and (i) TGF (from [MFM15] with permission from IEEE).

the wide starting area, but it began to oscillate once the relatively tight end of P1

was reached. A similar behavior can be seen in experiments 1 and 2 (e.g. while

passing through passages P1 and P3 in figures 4.10d and 4.11d, respectively). As

pointed out in section 1, these rapid changes in the direction of motion is a result

of creating the “safe gap” based only on the obstacle point closest to the robot.

In narrow spaces, the location of this point varies rapidly over time and may

frequently alternate between being on the right or left of the heading direction.

The TGF method avoided this limitation by integrating the tangential and gap

flow navigation concepts (Eq. (4.27)) and by computing Ψvg based on all threats

belonging to Ocollision : [pr → pt], while still emphasizing the available clearance

to both sides of −−→prpt (Eq. (4.29)), the closest obstacle on each side (Eq. (4.30),

Eq. (4.33)), and the location of the target (Eq. (4.28)) [MFM15]. The trajec-

tories shown in figures 4.10e, 4.11e, and 4.12e, and the corresponding velocity

profiles (figures 4.10i, 4.11i, and 4.12i) verify the improved stability and smooth-
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Figure 4.11: Test 2. (a) Experimental setup. (b-e) Paths generated by (b) ND+,
(c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f) ND+, (g) CG,
(h) SG and (i) TGF (from [MFM15] with permission from IEEE).

ness of the proposed “TGF approach”. Moreover, the time required to reach

the goal was less than that corresponding to all discussed methods (45 seconds,

63 seconds, and 66 seconds in experiments 1 - 3, respectively).

4.4 Conclusions

This chapter presents the “Tangential Gap Flow” (TGF) navigation approach for

reactive collision avoidance. TGF improves the navigation performance in nar-

row, unstructured, and cluttered environments. This is reflected by generating

smoother and more stable avoidance maneuvers and by avoiding turn changes in

tight gaps (occurs as a result of switching between circumnavigating/avoiding ob-

stacles located to the right or left of the heading direction). This improvement is a

result of computing the motion control based on the configuration of all obstacles
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Figure 4.12: Test 3. (a) Experimental setup. (b-e) Paths generated by (b) ND+,
(c) CG, (d) SG and (e) TGF. (f-i) Speed profiles for (f) ND+, (g) CG,
(h) SG and (i) TGF (from [MFM15] with permission from IEEE).

causing collision with the “gap trajectory”, while still accounting for the available

clearance to obstacles on both sides of the heading direction [MFM15]. Perform-

ing the avoidance maneuver is based on two concepts; the “tangential” and “gap

flow”navigation. A key idea of both concepts is to make use of the data extracted

from the environmental structure in computing the avoidance maneuver. The

“tangential navigation” drives the robot tangential to the obstacles boundary.

With the “gap flow navigation” the robot safely and smoothly navigates among

closely spaced obstacles. In both concepts, avoiding collisions and approaching

the target are simultaneously performed. Finally, the motion commands, that

drive a mobile robot towards a given target, is computed in such a way that the

stability of the system is guaranteed in the Lyapunov sense [MFM16].
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We have seen how a mobile robot can be successfully driven through unknown

dense environments by employing the “SG” and “TGF” approaches presented in

chapters 3 and 4, respectively. It has been shown that both methods improve the

robot’s behavior when compared with the Nearness-Diagram (ND) Navigation

variants, which are especially developed to accommodate these environments.

It has also been shown that the trajectories generated by the TGF method,

presented in chapter 4, are smoother and much more stable than those generated

by the SG method, presented in chapter 3.

Several experiments were carried out and presented in chapter 3 where the dif-

ferences in execution between the ND variants, the SG method, and the TGF

approach have been subjectively discussed. In this chapter, we introduce a per-

formance evaluation to quantitatively assess the effectiveness of the developed

approaches over their counterparts. Moreover, we present additional experi-

ments which were carried out using the TGF method and three ND variants;

ND+ [MM04], SND [DB08], and CG [MFMJ10]. The TGF approach was se-

lected as it outperforms the SG method and inherits its advantages.

The aim of these experiments (partially published in [MFM16]) is to demonstrate

that the proposed “TGF approach” fulfills the major objective of this work: to

successfully guide an autonomous robot through unknown dense environments,

while enhancing the efficiency (execution time and path length), smoothness,

safety, and stability of the trajectories generated by state-of-the-art methods. The

experiments are presented in section 5.2 while the experimental setup is described

in section 5.1. Section 5.3 introduces the performance metrics that are utilized to

evaluate the execution of the proposed approaches. Finally, section 5.4 discusses

and compares the behavior of all discussed methods.
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5.1 Experimental Setup

The proposed methods were tested using our Pioneer 3-AT mobile robot GETbot,

whose length and width are 0.52m and 0.48m, respectively. GETbot works in

a skid-steering mode and subject to nonholonomic constraints. A 2.6 GHz Intel

core i5-3320M CPU laptop is placed on top of the robot, which fills in the role

of a main controller. According to the sensing system, it consists of two laser

scanners; one is placed on the front of the robot and the other is attached to

the back. The front laser scanner is a Hokuyo UTM-30LX having a resolution of

0.25◦ and covering a range of 30m over 270◦ field of view. The rear laser scanner

is a Hokuyo URG-04LX having a resolution of 0.35◦ and covering a range of 5.6m

over 240◦ field of view. The information acquired by both laser scanners were

fused, creating a virtual laser rangefinder having a full (360◦) field of view. The

maximum speeds of GETbot are v = 0.7m/s and ω = 2.4 rad/s.

5.2 Experiments

This section presents seven experiments1 performed in very dense scenarios where

the robot did not have any previous knowledge about the obstacle distribution

(Experiments 1 - 5 have been previously presented in [MFM16]). In order to

compare the behavior of TGF to that of the ND techniques, each experiment

(except experiment 7) was additionally performed using the implementation

of ND+ [MM04], SND [DB08], and CG [MFMJ10]. While performing these

experiments, the maximum robot speeds (v, ω) were restricted to (“0.4m/s”,

“0.8 rad/s”) in experiment 1 and to (“0.5m/s”, “1.0 rad/s”) in the other exper-

iments. The reason behind this restriction was the limited ability of the ND

methods to generate a collision-free motion at high speed (see section 5.4). Ac-

cording to the Ds parameter of the ND variants, it was set to “1m”. The CG

approach has two additional parameters, Dvs and k. The value of Dvs was set

to “0.9m”, while k in experiments 1 - 6 was respectively set to “0.9”, “0.5”, “0.6”,

“0.8”, “0.8”, and “0.5”. In order to determine the appropriate parameter value,

1Videos of these experiments can be found at: “http://getwww.uni-paderborn.de/research/
videos/tgf”

http://getwww.uni-paderborn.de/research/videos/tgf
http://getwww.uni-paderborn.de/research/videos/tgf
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each experiment was performed using various parameter settings. Notice that all

tested methods are pure reactive, and hence they are prone to cyclic loops. To

deal with this issue, gaps lying ahead of the robot were assigned higher priorities

than those located to the rear. ROS [QCG+09] [ros19] was used as a middle-

ware for implementation. For the sake of visualization, maps of the surroundings

were created by employing an open source SLAM system [Gc10]. As mentioned

in chapter 4, for having a fair comparison, the presented experiments were exe-

cuted utilizing the ND-controller. Comparing the execution of the ND-controller

to that of the TGF-controller is then presented in section 5.4.

5.2.1 Experiment 1

In this experiment, it was supposed to guide GETbot through an environmental

structure made up of boxes, as depicted in figure 5.1a. The paths generated

by all implemented techniques are visualized in figures 5.1b - 5.1e. Figure 5.1b

demonstrates that ND+ suffered from rapid changes in the direction of motion,

leading to oscillations (e.g. see the trajectory near the points marked as 1 - 7). By

running SND and CG, GETbot got close to obstacles while navigating through

tight spaces. For instance, see the path near the obstacles labeled A - C in figures

5.1c and 5.1d. By employing TGF, GETbot safely and smoothly traversed the

obstacle course as shown in figure 5.1e. The translational and rotational speeds

(v and ω) were recorded and plotted against the elapsed time. Figures 5.1f, 5.1g,

5.1h, and 5.1i show these speeds for ND+, SND, CG, and TGF, respectively.

5.2.2 Experiment 2

The environmental structure of this experiment consisted of different sized ob-

stacles forming a large U-like shape, as shown in figure 5.2a. GETbot had to

pass through an obstacle course including various narrow gaps where the avail-

able clearance at some locations did not exceed 10 cm to both robot sides. By

employing CG, GETbot moved close to obstacles like those labeled A - D in fig-

ure 5.2d. Furthermore, a touch with the obstacle marked as F occurred by using

both ND+ and CG (see figures 5.2b and 5.2d). By applying SND, GETbot failed
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Figure 5.1: Scenario 1 (reprinted from [MFM16], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ND+, (c)
SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f) ND+, (g)
SND, (h) CG, and (i) TGF.

to reach the goal as it collided with obstacle D and then ran over the tight gap

formed by obstacles E and A (see figure 5.2c). Figures 5.2b - 5.2d demonstrate

that the ND variants were prone to rapid changes in the direction of motion and

unreasonable deviations towards free regions (e.g. see the points marked as 1 -

3). It can be deduced from figure 5.2e that TGF was able to drive GETbot with

improved efficiency, safety, and smoothness compared the ND methods. This has

been confirmed by plotting the velocity profiles in figures 5.2f - 5.2i.

5.2.3 Experiment 3

This experiment had three challenges (see figure 5.3a). First, the obstacle course

consisted of several consecutive tight and curvy passages (e.g. P2, P3, and P4).

Second, some tight gaps had one side with higher density of obstacles compared to
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Figure 5.2: Scenario 2 (reprinted from [MFM16], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ND+, (c)
SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f) ND+, (g)
SND, (h) CG, and (i) TGF.

the other (e.g. P1 and P2). Finally, the traversed route included many openings

through which the robot did not fit (between each two obstacles). The goal was

successfully reached by using both ND+ and TGF (figure 5.3b and figure 5.3e).

However, with ND+ oscillations occurred along the traversed route and the chair

marked as A was touched as can be seen from figure 5.3b. Moreover, the motion

was unstable while traversing the first passage (marked as 1 in figure 5.3b). By

employing CG and SND, GETbot pushed over the thin obstacles located to the

right side of passage 1, coming to a full stop after 68 s and 26 s, respectively.

Furthermore, the robot’s movement was oscillatory and unstable as shown in

figures 5.3c and 5.3d. Although the environment was very complex and contained

several tight passages, the TGF approach managed to safely and smoothly guide

GETbot towards the goal as shown in figure 5.3e. Figures 5.3f - 5.3i depict the

recorded speeds plotted versus the elapsed time for all techniques.
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Figure 5.3: Scenario 3 (reprinted from [MFM16], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ND+, (c)
SND, (d) CG, and (e) TGF. (f-i) Speed profiles for (f) ND+, (g)
SND, (h) CG, and (i) TGF.

5.2.4 Experiment 4

In this experiment, it was supposed to guide GETbot through two obstacle struc-

tures. Both structures were created in GET Lab; one in the entrance corridor

(see figure 5.4a) and the other inside P 1.6.18, one of GET Lab rooms (see figure

5.4d). The major challenge in this experiment was the existence of consecutive

passages with large difference in width between them (e.g. P1 and P2, P3 and

P4). In such a situation, a considerable reduction in speed was necessary to

achieve safe navigation while driving GETbot towards a relatively narrow pas-

sage, coming from a wide opening. An additional challenge was the presence

of obstacles forming U-like shapes (e.g. see the large U-shape obstacle in figure

5.4d). The goal was reached by employing all techniques, as can be seen from

figures 5.4b, 5.4c, 5.4e, and 5.4f. Similar to experiments 1 - 3, the ND meth-

ods were prone to rapid changes in the direction of motion (oscillations). For
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Figure 5.4: Scenario 4 (reprinted from [MFM16], with permission from Elsevier).
(a, d) Environmental setup. (b, c, e, and f) Paths generated by (b)
ND+, (c) SND, (e) CG, and (f) TGF. (g-j) Speed profiles for (g)
ND+, (h) SND, (i) CG, and (j) TGF.

instance, see the generated paths near points 1 - 8 in figures 5.4b - 5.4e, as well

as the large spikes in figures 5.4g - 5.4i. Moreover, by applying ND+, successive

turn changes occurred while driving GETbot through the passage labeled P5, as

can be deduced from figure 5.4b. By employing CG, GETbot got close to the

obstacle marked as E and overturned obstacle D. With the SND technique, the
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performance was worse as GETbot ran over the obstacles marked as D, E, and

F and moved close to obstacles A - C. Figures 5.4f, and 5.4j demonstrate the

improved performance of the proposed TGF method.

5.2.5 Experiment 5

The objective of this experiment was to test the behavior of TGF in the existence

of moving objects. At the start of the mission, two boxes were located in front

of the robot, as shown in figure 5.5a. At that moment, the gap labeled G1

was detected and selected to navigate through. Once the line marked as L was

crossed, three boxes were pushed across the path towards G1. Notice that line L

was approximately 50 cm away from the boxes at that time (figure 5.5b). It was

recognized that the path towards G1 was blocked and a new gap was created

between the cupboard and the boxes, denoted as G2 in figure 5.5b. At that

moment, the robot turned sharply to avoid collision with the boxes and then

smoothly proceeded towards gap G2. The trajectory and the speed profile are

shown in figures 5.5f and 5.5j, respectively. The ND variates were tested using

the same setup. However, it was impossible to replicate the same scenario with

each method, pushing the boxes at the exact time, velocity, and orientation.

Furthermore, with each algorithm line L was reached with different velocity and

heading. For example, by running ND+, SND, CG, and TGF, the robot’s velocity

was 0.11m/s, 0.045m/s, 0.033m/s, and 0.21m/s, respectively. Therefore, the

performance of the tested methods cannot be fairly compared. Nevertheless,

just to give an impression about the behavior of the ND variants, the generated

paths and the speed profiles for ND+, SND, and CG are visualized in figures 5.5c

- 5.5e and 5.5g - 5.5i, respectively. Although with TGF line L was reached at a

speed higher than that of the ND variants, GETbot was able to avoid collision

on time and smoothly proceed towards the goal.

5.2.6 Experiment 6

The route chosen for this experiment consisted of three obstacle courses as shown

in figures 5.6a - 5.6c. The robot had to pass through the door labeled D1 in figure
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Figure 5.5: Scenario 5 (reprinted from [MFM16], with permission from Elsevier).
(a, b) Environmental setup where (a) Depicts the start of the mission
at which two boxes were located in front of the robot and (b) Mimics
the moment at which three boxes were pushed towards the corridor
once line L was crossed. (c-e) Paths generated by (c) ND+, (d) SND,
and (e) CG, where oscillations in motion can be observed. (f) TGF
avoided collision on time and smoothly proceeded towards the goal.
(g-j) Speed profiles for (g) ND+, (h) SND, (i) CG, and (j) TGF.

5.6a, navigate towards the door marked as D2 in figure 5.6b, and finally reach

the goal location shown in figure 5.6c. The obstacle courses were constructed in

such a way that, at each time step, the robot may have multiple solutions (more

than one navigable gap) and it had to decide which one to consider. For example,

at the starting location, six navigable gaps were detected, the gaps labeled 1 - 6

in figure 5.6a. Similarly, at the locations labeled P1 and P2, the navigable gaps

7 - 9 and 10 - 12 were detected, see figures 5.6b and 5.6c. As expected, the robot

selected the gap closest to the goal in each case (gaps 1, 7, and 12, respectively).

The paths generated by ND+, SND, CG, and TGF are shown in figures 5.6d -

5.6g. Similar to the previous experiments, oscillation in motion can be observed

along the paths taken by the ND variants (for instance, see the generated path
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Figure 5.6: Scenario 6. (a-c) Environmental setup. (d-g) Paths generated by (d)
ND+, (e) SND, (f) CG, and (g) TGF. (h-k) Speed profiles for (h)
ND+, (i) SND, (j) CG, and (k) TGF.

at the points labeled 1 - 5 in figures 5.6d - 5.6f). We confirm our visualization

by plotting the recorded velocities versus time in figures 5.6h - 5.6k.

5.2.7 Experiment 7

The objective of this experiment was to verify the capability of the TGF method

to drive a mobile robot in unknown environments occupied by a crowd of moving
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persons. The experiment was carried out in the ME building at the university of

Paderborn2. This area is always crowded by students at the launch time. That

is why we conducted the experiment at around 12:00 noon. The mission was

started in front of the ”Mensa” as shown in figure 5.7a. It was planned that the

robot moves through the connection between buildings ME and B to reach the

goal given near the elevator of building B. The connection and the location of

the goal are shown in figures 5.7b and 5.7c, respectively. At the beginning of

the mission, it was detected that the door labeled D1 in figure 5.7d is free, and

therefore the robot moved directly towards it. Once the location shown in figure

5.7e is reached, some students wanted to pass through the door, closing the way

of the robot. The situation was detected on-line, and therefore the robot decided

to move towards the free area to the right-hand side, as shown in figure 5.7f.

However, the students suddenly changed their decision and moved towards the

door marked as D2 in figure 5.7g, freeing the D1 door. At that moment, the robot

decided to pass through door D1 again, proceeding towards the free gap labeled

G1 in figure 5.7g. In a similar situation, whenever the robot reached the location

shown in figure 5.7h, a student closed the path planned across the door marked

as D3. As result, gap G2 was selected to navigate through instead. However, the

student kept moving, closing this gap as well, see figure 5.7i. At that moment,

the robot escaped towards the free area to the left-hand side as shown in figure

5.7j. While moving towards that direction, another student stepped in front of

the robot, leaving the D3 door behind him free, see figure 5.7k. Hence, the robot

decided to pass through door D3 again, progressing towards the goal location

as depicted in figure 5.7l. The trajectory followed by the robot and the velocity

profiles are visualized in figure 5.8.

5.3 Performance Measures

Performance evaluation of robot motion planning techniques is a challenging

issue, since assessing a method is often based on the application where it is

being used. Furthermore, the robot motion is active, in the sense that the action

2A video of this experiment can be found at: https://getwww.uni-paderborn.de/research/
videos/dynamic-obstacles

https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles
https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles
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Figure 5.7: Scenario 7. (a-c) Environmental setup. (d-g) Snapshots of the ex-
periment taken whenever the robot passed through door D1, at which
several students closed the robot’s path for a while. (h-i) Snapshots
of the experiment show how the robot navigated through door D3.

performed affects the world state, e.g. the robot’s configuration and speed. That

is why it is not possible to produce benchmarking datasets of log-files, such as

those used for testing localization and mapping algorithms [CN09].
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Figure 5.8: Visualization corresponding to Experiment 7. (a) Trajectory gener-
ated by the robot applying the TGF method. (c,d) Recorded motion
commands plotted against the time elapsed.

Several aspects should be considered while evaluating a motion system, such as

the robot’s behavior along the trajectory, the time needed to accomplish the

task, what kind of risk the robot faces during execution, etc. In the last years,

some efforts have been devoted towards finding common performance metrics of

a robotic navigation system (e.g. [GW03], [MVL07], [CN09], and [YAT10]). In

general, those metrics can be classified into five groups: efficiency, oscillation,

smoothness, physics-based, and security.

5.3.1 Efficiency Metrics

The efficiency or effectiveness of the vehicle is one of the most important measures

to be considered when evaluating the performance of a motion system. It can be
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reflected by the time and space dimensions of the trajectory. Loosely speaking,

the least the zig-zag and curved motion, the higher the efficiency of the vehicle.

The most commonly used metrics for assessing the efficiency of a navigation

system are described in the following.

Total execution time Ttot [s]: The total amount of time it takes a robot to

fulfill a given task [CN09] (time to reach a target). For a better performance, it

is desirable to have a low execution time.

Path length Plen [m]: The total distance traveled by a robot from an initial

location to a goal. This metric is useful for tasks in which the power consumption

is of great concern. Apparently, a shorter path is preferable for achieving a better

performance. Assume that a trajectory is given by y = f(x) in the X − Y plane

and (xi, f(xi), (xt, f(xt)) denote the initial and target locations, the total path

length Plen is defined according to [MVL07]:

Plen =

∫ xt

xi

(1 + (f ′(x))2)
1
2 dx (5.1)

where f ′(x) is the derivative of f(x) with respect to x.

5.3.2 Oscillation Metrics

The measures introduced in this and in the following sections, reflect the robot’s

behavior during the whole task execution. In particular, this section presents the

metrics that are helpful to detect oscillations along the trajectory. As we have

pointed out in chapters 3 and 4, oscillations may occur as a result of successive

turn changes while passing through narrow passages or due to deflections towards

free areas. Notice that these metrics also provide a measure of smoothness, since

the less the oscillations the smoother the trajectory.

Curvature change Cchg [rad/m]: The curvature change is useful for detect-

ing oscillations and unstable motion along the trajectory. Given the linear and

angular robot velocities (v(t), ω(t)), the curvature can be defined as [CN09]:

k(t) =

∣∣∣∣ω(t)

v(t)

∣∣∣∣ (5.2)
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The curvature change is then computed as:

Cchg =

∫ Ttot

0

∣∣k′(t)∣∣ dt (5.3)

The lower the value of Cchg, the less oscillations occur.

For a better comparison, an average curvature change is computed by dividing

the value of Cchg by the total execution time Ttot.

Number of zero crossings along the curve of rotational speed Zω: This

metric, that we proposed in [MFM16], measures the amount of variations in the

heading direction (number of times a robot turns from one direction to another).

Hence, it gives an impression about the degree of oscillations in a trajectory.

Having less Zω is desirable and indicates more stable control commands.

5.3.3 Smoothness Metrics

The smoothness of a trajectory reflects the energy and time consumption and

can be related to the system integrity [CN09]. It also indicates the consistency in

decision-making and shows the ability of the system to anticipate events [Ros97].

Moreover, a robot that navigates in a smooth way is socially more acceptable,

particularly if it shares spaces with humans. In order to measure the smoothness

of a trajectory, we use the following two measures.

Accumulated linear and rotational jerks, Jacc [m2/s5] and ζacc [rad2/s5]:

Jerk (defined as the time derivative of acceleration) is correlated with abrupt

variations in the actuator forces [Fre12]. Therefore, it is possible to quantify

smoothness in both steering and speed as a function of jerk [Ros97].

Given the linear and rotational robot velocities (v(t), ω(t)), we have defined the

accumulated jerk costs (linear and rotational) in [MFM16] as:

Jacc =
1

Ttot

∫ Ttot

0

[v̈(t)]2 dt (5.4)

ζacc =
1

Ttot

∫ Ttot

0

[ω̈(t)]2 dt (5.5)
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For a smoother behavior, trajectories that minimize both the linear and rota-

tional jerk costs are desirable.

5.3.4 Physics-based Metrics

In this section, we describe the metrics that are related to the stability of the

motion and the dynamics of the vehicle itself. Therefore, they are useful for

evaluating the performance of those systems where the dynamics of the robot

have to be considered. Basically, These metrics are defined in terms of the

inertial forces acting on the robot along the trajectory. However, they consider

a unit-mass robot, i.e. the mass of the robot is neglected. In the following, we

present the most commonly used physics-based metrics.

Lateral stress Slat [N.s]: With the lateral stress, the centrifugal force acing on

the robot is directly measured. The centrifugal force affects the stability of the

robot and can lead to lateral wheel skidding (due to a curved motion). Therefore,

it is desirable to have a lower Slat value. In general, the straighter the generated

path, the lower the value of Slat.

The lateral stress is computed by integrating the centrifugal force along the

trajectory [CN09]:

Slat =

∫ Ttot

0

v(t)2

r(t)
dt (5.6)

where r(t) is the instantaneous curvature radius (i.e. r(t) = 1/k(t)); the recip-

rocal of the curvature .

Tangential stress Stng [N.s]: Similar to the lateral stress, Stng [N.s] is directly

associated with the robot dynamics. It is useful to detect abrupt speed changes

(sudden acceleration and braking) which may cause slipping while turning. The

value of Stng is computed as follows [CN09]:

Stng =

∫ Ttot

0

|a(t)| dt (5.7)

where a(t) is the instantaneous linear acceleration (a(t) = v̇(t)).

Having a lower Stng is preferable for achieving a more stable robot motion.
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5.3.5 Security Metrics

The metrics discussed in this section describe the hazards along the trajectory

in terms of the distance between the robot and obstacles. Notice that there is

a trade-off between path length and security, hence it is up to the algorithm to

decide how far the robot stays away from obstacles

Obstacles risk Robs [m−1]: This metric is concerned with measuring the risk

of obstacles, reflected by their proximity to the robot across the entire task. Let

rmin(t) represents the distance between the robot and the closest obstacle at time

t, Robs can be expressed as [CN09]:

Robs =

∫ Ttot

0

1

rmin(t)
dt (5.8)

Collisions count Ncol: The number of collisions is counted per task [Min08]. A

safe motion requires a collision-free operation along the entire trajectory.

It is worth to mention that while computing Cchg, Slat or Robs, a division by zero

may occur. This problem is avoided by adding a small value ε to the denominator

in Eqs. (5.3), (5.6), and (5.8). In our analysis, ε was set to 0.001.

5.4 Evaluation and Discussion

The aforementioned measures were employed to evaluate the performance of

the “TGF approach” and to compare its behavior to that of the ND variants.

Experiments 1 - 6, presented in section 5.2, yield the results shown in table

5.1. It can be observed that the proposed “TGF approach” presented the best

results in terms of all metrics considered. Significant differences in execution

can be observed looking at the oscillation and smoothness metrics (Cchg, Zω,

Jacc, and ζacc). However, in the first scenario, the lateral stress (Slat) and risk

(Robs) metrics associated with the ND+ method were slightly better than those

associated with TGF. This can be explained by the tendency of ND+ to drive the

robot across the center of openings, regardless of their width. Such a behavior

maximizes the clearance to obstacles, but at the same time increases the distance
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Table 5.1: Performance assessment of the proposed TGF approach for experi-
ments 1 - 6, presented in section 5.2, using the metrics defined in
sections 5.3.1 - 5.3.5 (results of experiments 1 - 4 are reprinted from
[MFM16] with permission from Elsevier).

Exp. Method Ttot Plen Cchg Zω Jacc ζacc Slat Stng Robs Ncol

ND+ 93 10.27 128.25 40 1.42 18.01 0.84 8.16 515.87 0

SND 97 8.75 13.53 46 0.59 4.21 0.99 6.73 1002.15 0

CG 117 10.56 121.83 50 0.61 2.84 1.20 11.02 832.02 0
1

TGF 85 8.96 1.60 10 0.13 0.46 1.05 3.49 579.70 0

ND+ 75 8.19 186.37 52 1.95 15.49 1.11 9.96 669.48 1

SND fail fail fail fail fail fail fail fail fail fail

CG 75 8.04 213.26 54 1.43 9.29 1.00 10.14 924.68 1
2

TGF 52 7.17 2.17 8 0.18 0.86 0.75 2.53 445.84 0

ND+ 184 16.39 160.01 126 1.55 105.54 2.06 18.42 2635.02 1

SND fail fail fail fail fail fail fail fail fail fail

CG fail fail fail fail fail fail fail fail fail fail
3

TGF 131 15.19 12.35 20 0.23 1.66 1.78 6.83 1478.25 0

ND+ 241 36.80 131.90 121 1.50 8.71 4.91 34.41 1193.48 0

SND 232 34.10 82.56 143 0.85 6.41 3.97 24.69 2980.42 3

CG 277 36.04 143.74 215 0.84 9.61 4.49 27.54 41404.00 1
4

TGF 184 33.72 9.41 38 0.26 1.07 2.72 11.09 1008.60 0

ND+ 45 7.66 232.34 20 3.00 10.15 0.98 8.29 170.81 0

SND 41 6.95 55.16 31 1.30 11.13 0.89 5.51 199.36 3

CG 48 7.73 166.53 19 1.75 5.44 1.05 8.14 193.36 1
5

TGF 39 7.52 54.41 5 0.69 1.76 0.94 3.74 158.54 0

ND+ 98 16.51 169.79 52 2.99 9.12 2.28 18.16 475.86 0

SND 85 16.17 71.45 56 2.03 7.75 2.05 11.85 412.28 0

CG 86 16.24 61.40 36 1.80 7.08 2.12 11.30 450.68 0
6

TGF 72 14.16 29.28 26 0.57 2.05 1.19 6.14 411.97 0

traveled (Plen). Additionally, this results in a trajectory consisting of successive

small segments connected by sharp corners, significantly increasing the curvature

change and jerk costs (see figure 5.1b). Another observation from experiments 1

and 5 is that the trajectories created by SND have lower Plen and Slat values than

those generated by TGF. This is a result of driving the robot close to objects

(figures 5.1c and 5.5d). Such a behavior reduces the path length (lower Plen) and

curvature (lower Slat), but at the same time highly increases the value of Robs.

The presented experiments show that all ND variants have in common the draw-

back of experiencing oscillations at passages that suddenly get narrower or at

sharp-turning maneuvers [MFM16]. As an example, see the location marked as

1 in figures 5.3b - 5.3d and the locations labeled 1 - 8 in figures 5.4b, 5.4c, and
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5.4e. The abrupt variation in the width of a passage results in a severe reduction

in the robot’s velocity (may approach zero) followed by a sharp turn. Due to the

speed gained before performing the turn, the robot may experience oscillations

and wheel slippage. This is reflected by the values of Cchg, Zω, ζacc, and Stng. We

attribute this behavior to the usage of the Artificial Potential Field concept in

performing the avoidance maneuver, regardless of the location and field of view

of the traversed opening. In this regard, approaching one side of a tight opening

generates a strong repulsion force, causing a sharp turn that takes the robot

away from obstacles. Apparently, this behavior is repeated with the other side.

Additionally, whenever the robot faces a relatively wide area located between

two narrow passages, it tends to deviate towards the free region performing a

sharp turn, followed by a another sharp turn towards the opposite side trying to

enter the second narrow passage (e.g. see the trajectories near point 6 in figures

5.4b - 5.4e). These sudden turn changes may lead to oscillations and instability,

which can be unsafe if the robot is passing through a narrow passage or if it is

navigating at a relatively high speed. Furthermore, the time required to reach

the goal increases as turn maneuvers are executed at lower speeds [MFM16].

It is worth to compare the discussed ND variants with each other. It can be seen

that ND+ is safer and may negotiate more difficult scenarios. It managed to guide

the robot through all obstacle courses with lower risk value and fewer collisions.

Nevertheless, SND and CG are better in terms of smoothness. See, for instance,

the path while navigating through passage P5 in experiment 4. This can also be

deduced from the corresponding Jacc and ζacc values. CG and SND seem to be

more sensitive to the obstacle distribution [MFM16]. For instance, whenever the

SND-controlled robot passes through a tight gap having more threats on one side

compared to the other, it usually approaches the side having the least number of

threats (e.g. A and C in figure 5.1c, A - C in figure 5.4c), experiences collisions

(e.g. D - F in figure 5.4c), or fails to reach the goal (e.g. experiments 2 and

3). By respecting the percentage of threats on each side, CG was able to drive

GETbot towards the goal in experiment 2, but with more oscillations (larger

Cchg). Furthermore, it experienced collisions as in experiment 3.

Another observation is that the motion behavior of TGF appears more human-

like compared to the ND variants. In [MFM16], we have explained this claim by
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describing the reaction to threats falling in between the robot and the closest gap:

“Using the TGF method, each obstacle generates an avoidance angle which points

directly towards the closest gap or parallel to the obstacle in the direction closer

to the gap. Hence, all these obstacles contribute in heading the robot towards

the closest gap. By using the ND variants, on the other hand, each obstacle

point falling within Ds (ND+ only considers the closest two, whereas SND and

CG consider all) causes an avoidance angle which points directly away from the

obstacle regardless of the direction towards the closest gap. This avoidance angle

is weighted by the relative proximity of the obstacles in the SND and CG methods

(each one uses different weights). The direction of motion is then adjusted by

the total averaged (ND+) or weighted (SND, CG) avoidance angle”.

In order to demonstrate the capability of TGF to safely drive the robot at higher

speeds, experiments 3 and 4 were performed again using higher speed limits

(0.7m/s, 1.3 rad/s). Notice that 0.7m/s is the maximum possible linear velocity

in our robot. Both experiments were carried out using the implementation of

the TGF and ND+ methods3. Among the ND variants, ND+ was selected

as it managed to negotiate harder scenarios. Also, the experimental setup of

experiments 3 and 4 were selected as they were challenging and had several

difficulties as discussed in section 5.2. With the ND+ method, GETbot failed to

reach the goal in experiment 3 and the mission was aborted after 85 s. This is due

to the fact that GETbot collided with the obstacles marked as A - C and finally

overturned obstacle D as depicted in figures 5.9a and 5.9e. By employing TGF,

the goal was successfully reached in 105 s only (see figures 5.9b and 5.9f). In

experiment 4, ND+ was unable to drive GETbot towards the goal as well. This

is owing to the fact that it overturned the obstacle labeled A and the mission

was aborted after 241 s (see figures 5.9c and 5.9g). Furthermore, ND+ was prone

to oscillations and instability as can depicted from the generated trajectory near

points 1 - 4 (see figure 5.9c) Using TGF, GETbot successfully passed through

the obstacle course and the goal was reached in 140 s (figures 5.9d and 5.9h).

It is worth to differentiate the execution of TGF to that of the SG method. For

this purpose, we make use of experiments 1 - 3 from chapter 4, which have been

3Videos of these experiments can be found at: “http://getwww.uni-paderborn.de/research/
videos/tgf2”

http://getwww.uni-paderborn.de/research/videos/tgf2
http://getwww.uni-paderborn.de/research/videos/tgf2
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Figure 5.9: Scenario 3 and 4 from section 5.2, but with (0.7m/s, 1.3 rad/s) speed
limits (reprinted from [MFM16], with permission from Elsevier). (a,
b) Paths generated in experiment 3 using (a) ND+ and (b) TGF. (c,
d) Paths generated in experiment 4 using (c) ND+ and (d) TGF. (e-h)
Speed profiles corresponding to the paths shown in (a-d), respectively.

conducted using the implementation of ND+, CG, SG, and TGF. Table 5.2 shows

the performance of all methods, where it can be deduced that the results of the

TGF approach and both ND variants are roughly similar to those obtained from

the experiments presented in section 5.1 and discussed above. It is also obvious

that the TGF approach outperforms the SG method in all metrics, establishing

a much more stable and reliable navigation approach. In particular, significant

performance improvements can be seen looking at the oscillation and smooth-

ness metrics. We believe that this improvement is the result of integrating the

“tangential” and “gap flow” concepts and determining the avoidance trajectory

based on all surrounding obstacles. Additionally, one can notice from figures 4.10

- 4.12 and from table 5.2 that the narrower the passages the bigger the difference

in performance between the TGF and SG methods. For example, the biggest

difference in performance between both methods occurs in experiment 3 (figure
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Table 5.2: Performance evaluation results for the experiments presented in section
4.3 from chapter 4, using the metrics defined in sections 5.3.1 - 5.3.5.

Exp. Method Ttot Plen Cchg Zω Jacc ζacc Slat Stng Robs Ncol

ND+ 55 6.59 134.65 36 1.41 10.46 0.81 6.39 537.35 0
CG 56 6.79 34.30 42 0.71 4.76 0.75 5.46 588.85 0
SG 48 6.57 18.67 22 0.58 4.48 0.54 3.54 647.58 0

1

TGF 45 6.48 1.66 11 0.21 0.87 0.58 2.59 451.06 0

ND+ 90 10.80 208.45 45 1.91 13.07 1.56 14.07 634.37 0
CG 86 9.88 70.37 83 1.06 10.72 1.26 9.78 1378.00 2
SG 72 10.10 16.15 21 0.67 9.76 1.16 5.02 573.06 0

2

TGF 63 9.83 3.91 7 0.15 0.59 1.06 4.98 594.26 0

ND+ fail fail fail fail fail fail fail fail fail fail
CG fail fail fail fail fail fail fail fail fail fail
SG 76 8.45 80.28 44 0.94 12.26 0.91 7.00 1029.60 1

3

TGF 66 8.26 10.07 12 0.10 0.52 0.77 6.28 770.29 0

4.12), since the environment is composed of very narrow passages. Finally, when

comparing the performance of the SG approach with that of the ND+ and CG

methods, it becomes obvious that the SG method achieves the best results.

As we have pointed out in sections 4.3 and 5.2, the presented experiments were

performed using the ND-controller. It is important to demonstrate the effective-

ness of the TGF-controller (proposed in section 4.2) on the performance of the

robot. For this purpose, experiments 3 and 4 from section 5.2 and experiments

2 and 3 from section 4.3 were repeated, but using the TGF-controller4. These

experiments were carried out using two different speed limits: firstly, by setting

vmax and ωmax to 0.5 m/s and 1 rad/s, similar to the original setup, and then

by limiting them to vmax = 0.4m/s and ωmax = 0.8 rad/s. Using both speed

limits, the time needed to reach the goal was less than that of the ND-controller.

Figures 5.10 and 5.11 show the paths generated and the speed profiles. The per-

formance assessment is also shown in tables 5.3 and 5.4. It can be seen that the

TGF-controller outperforms the ND-controller in terms of Ttot, Cchg, Jacc, and

Stng. As we reported in [MFM16], this improved performance is indeed a result

of directly deriving the TGF-controller from the robot’s kinematic model in such

away that stability of the system is guaranteed in the Lyapunov sense. Compar-

ing the other performance measures does not present significant differences.

4Videos of experiments 3 and 4 from section 5.2 using the TGF-controller can be found at:
“http://getwww.uni-paderborn.de/research/videos/tgf3”

http://getwww.uni-paderborn.de/research/videos/tgf3
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Figure 5.10: Scenarios 3 and 4 from section 5.2 running TGF, but using the TGF-
controller (reprinted from [MFM16] with permission from Elsevier).
(a, c) Paths generated in (a) Scenario 3 and (c) Scenario 4, using
(0.5m/s, 1 rad/s) speed limits . (b, d) Paths generated in (b) Sce-
nario 3 and (d) Scenario 4, using (0.4m/s, 0.8 rad/s) speed limits.
(e-h) Speed profiles corresponding to the paths shown in (a-d).

Table 5.3: Performance assessment of the TGF-controller for scenarios 3 and 4
from section 5.2 (reprinted from [MFM16] with permission from Else-
vier). As a reference, the results of the ND-controller from table 5.1
are listed, too.

Exp. Speeds Ttot Plen Cchg Zω Jacc ζacc Slat Stng Robs Ncol

3 (ND-controller) (0.5, 1.0) 131 15.19 12.35 20 0.23 1.66 1.78 6.83 1478.25 0
3 (TGF-controller) (0.5, 1.0) 100 15.65 1.67 21 0.06 2.47 3.27 3.62 1119.05 0
3 (TGF-controller) (0.4, 0.8) 122 15.46 1.18 7 0.03 1.18 2.42 2.77 1340.76 0

4 (ND-controller) (0.5, 1.0) 184 33.72 9.41 38 0.26 1.07 2.72 11.09 1008.60 0
4 (TGF-controller) (0.5, 1.0) 146 34.05 0.91 30 0.07 2.30 4.59 4.7 803.57 0
4 (TGF-controller) (0.4, 0.8) 178 33.73 0.62 20 0.02 0.88 3.45 3.42 885.50 0
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Figure 5.11: Scenarios 2 and 3 from section 4.3 running TGF, but using the TGF-
controller. (a, c) Paths generated in (a) Scenario 2 and (c) Scenario
3 using (0.5m/s, 1 rad/s) speed limits. (b, d) Paths generated in (b)
Scenario 2 and (d) Scenario 3 using (0.4m/s, 0.8 rad/s) speed limits.
(e-h) Speed profiles corresponding to the paths shown in (a-d).

Table 5.4: Performance assessment of the TGF-controller for scenarios 2 and 3
from section 4.3. As a reference, the results of the ND-controller from
table 5.2 are listed, too.

Exp. Speeds Ttot Plen Cchg Zω Jacc ζacc Slat Stng Robs Ncol

2 (ND-controller) (0.5, 1.0) 63 9.83 3.91 7 0.15 0.59 1.06 4.98 594.26 0
2 (TGF-controller) (0.5, 1.0) 49 9.96 0.78 5 0.06 1.00 1.64 1.77 376.97 0
2 (TGF-controller) (0.4, 0.8) 60 9.88 0.52 5 0.03 0.44 1.29 1.43 459.19 0

3 (ND-controller) (0.5, 1.0) 66 8.26 10.07 12 0.10 0.52 0.77 6.28 770.29 0
3 (TGF-controller) (0.5, 1.0) 54 8.52 1.04 10 0.07 1.09 1.28 2.00 693.57 0
3 (TGF-controller) (0.4, 0.8) 66 8.47 0.85 12 0.03 0.41 1.02 1.58 819.72 0



6 Under-constrained Reactive Collision

Avoidance Navigation

This chapter introduces a novel obstacle avoidance approach for mobile robots

that must perform in highly cluttered environments. The previous chapters

illustrated the limitations of existing techniques when it comes to guiding robots

through narrow gaps in highly cluttered environments. In [MFM13b] [MFM13a]

[MJFM13] [MFM15] [MFM16] [MFM17] we have discussed a group of methods

that, at first sight, seem well equipped to deal with such difficult scenarios. Their

commonality is the employment of some sort of high-level information description

of the environmental structure. In particular, they include the SG and TGF

approaches, as described in chapters 3 and 4, as well as the Nearness-Diagram

(ND) techniques [MM04] [DB08] [MFMJ10]. However, these methods (called

here gap-based methods) rely on a strong assumption which may not be valid in

real-world scenarios; they assume a holonomic disc shaped robot. This ignores

the actual robot shape and its kinematics, which may hinder finding feasible

motions or lead to collisions. Considering these constraints is especially critical

for robots operating in highly cluttered environments [MM17] [MFM18].

The drawbacks mentioned above have been addressed in the literature by mak-

ing use of the holonomic solution to generate motion commands that respect the

robot’s shape and kinematics. Bemporad et al. uses a least squares optimization

to align the robot’s orientation with the holonomic solution [BLOD96], whereas

Minguez and Montano decompose the problem into motion, shape, and kinemat-

ics which are independently solved [MM02]. Because these solutions are based on

discretization of the problem and rely on approximations, such methods present

limited capabilities in environments requiring high maneuverability. A more gen-

eral methodology has been introduced in [MM09] by transforming the workspace
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into ARM, an “Arc Reachable Manifold” that implicitly considers the robot’s

shape and kinematic constraints. Within this method, robots travel along paths

made up of circular segments. While this may provide a smoother motion than

previously mentioned methods, some problems may arise: not all gaps that are

in principle navigable may be reached via such arcs1 and the involved coordinate

transformations make it difficult to search for openings in the first place, which

presents a serious challenge for gap-based navigation techniques [MFM18].

In summary, all existing obstacle avoidance methods either ignore the vehicle

constraints or have limitations in cluttered environments. To deal with this

drawback, in [MM17] [MM16] [MFM18] we have introduced the concept of an

“admissible gap”(AG), which will be discussed in the remainder of this chapter.

A gap is called“admissible” if it is traversable by performing a single motion com-

mand that respects both the shape and kinematic constraints. By employing this

concept, a new collision avoidance method, abbreviated as AG, has been devel-

oped and implemented. AG avoids the above mentioned limitations of existing

gap-based methods, while still being applicable for highly cluttered environments.

This has been possible by directly respecting the vehicle constraints rather than

adapting a holonomic-based solution. The overall approach works as follows:

similar to the holonomic solutions proposed in chapters 3 and 4, the sensor data

is searched for the most promising opening to navigate through. Once deter-

mined, an “admissible gap” is constructed in an iterative manner, which serves

as a bridge to the specified opening and provides a compromise between safety

and efficiency. Our approach is directly applied to the workspace without having

to construct an abstraction layer. Another important contribution of AG is the

development of a new procedure for finding out gaps. The method can be applied

to full or limited field of view sensors. Moreover, it discards useless gaps, hence

reducing oscillations. Outstanding results have been achieved in cluttered envi-

ronments, where the AG approach outperforms existing state-of-the-art methods

in terms of smoothness, safety, efficiency, and robustness [MM17] [MFM18].

This chapter is organized as follows. In section 6.1, some preliminary definitions

are presented. Section 6.2 describes our strategy of finding out gaps, and sub-

1By transforming the workspace into ARM, a gap is navigable only if it coincides with the
circular path that goes through the robot’s origin and tangential to its heading [MFM18].
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sequently, section 6.3 introduces the concept of “admissible gap”. In section 6.4,

we show how this concept is employed to develop a navigation approach. Section

6.5 discusses the experimental results, while section 6.6 evaluates the execution

of AG. Finally, we point out some concluding remarks in section 6.7.

6.1 Preliminary Definitions

The following definitions and assumptions are used to explain the AG approach.

Notice that the definitions introduced in section 3.1.1 are also used here.

As mentioned in section 3.1.1, the list of scan points is denoted by S =
{
pS

1 , ...,p
S
n

}
,

where rmax denotes the maximum range of the sensor.

The rank of an element in S defines its relative location. For instance, the obsta-

cle point pS
i is located to the right of pS

i+1 and pS
i is located to the left of pS

i−1.

Additionally,
{
pS
i−1,p

S
i−2, , ...,p

S
1

}
contains the list of scan points to the right of

pS
i and is denoted by pS−

i . In the same way, pS+
i =

{
pS
i+1,p

S
i+2, , ...,p

S
n

}
denotes

the list of scan points to the left of pS
i . Both lists pS−

i and pS+
i can be extended

beyond pS
1 and pS

n if the adopted sensor has a 360◦ field of view (FFOV). In such

a case, both lists are adjusted as follows: pS−
i =

{
pS
i−1, ...,p

S
1 ,p

S
n,p

S
n−1...,p

S
i+1

}
and pS+

i =
{
pS
i+1, ...,p

S
n,p

S
1 ,p

S
2 , ...,p

S
i−1

}
. It is apparent that, in case of a FFOV

sensor, pS−
i and pS+

i consist of the same elements but with a reversed order.

Each point pS
i has two neighborhoods; one is located to its left denoted by pS

i+

while the other is located to its right denoted by pS
i−. For example, for a FFOV

sensor, the right (resp. left) neighborhood of pS
1 is pS

n (resp. pS
2).

It is important to note that accessing any element in a list (e.g. pS+
i , pS−

i ) is

performed sequentially (the order is respected). For example, point pS
i is accessed

before point pS
i+1.

Assume that F represents a frame centered at point c and rotated by angle θF ,

relative to the robot coordinate system. The position of a point pi, with respect

to frame F is represented as follows:

Fpi = R−1 (pi − c) (6.1)
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where R is defined as:

R =

[
cos(θF ) − sin(θF )

sin(θF ) cos(θF )

]
(6.2)

For a better visualization, superscripts are dropped in figures (for instance, the

depth point pS
j becomes pj).

6.2 Detecting Gaps

This section introduces a new strategy for finding out gaps. Compared to our

earlier work developed in [MFMJ10] (presented in section 3.1.3), the new strategy

avoids improper gaps as explained in section 6.2.3. The major part in locating

a gap is the detection of a spatial discontinuity in the sensor data, as will be

described in section 6.2.1. Generally, the algorithm consists of two steps: first, all

gaps V that can be seen from the current robot’s view are found out, as explained

in section 6.2.2. The second step, presented in section 6.2.3, implies identifying

and discarding useless gaps, reducing V to G. Notice that this algorithm is based

on our paper published in [MFM18]

6.2.1 Spatial Discontinuities

A spatial discontinuity is associated with an area in the workspace which is invis-

ible from pr [MFM18]. Assume that wmin represents the width of the narrowest

opening through which the vehicle may pass. In principle, specifying wmin de-

pends on the shape of the vehicle; if it is rectangular, wmin is set to its minimum

dimension (width). But, for a disc-shaped vehicle, wmin will be its diameter. A

spatial discontinuity takes place between two adjacent scan measurements (e.g.

pS
i and pS

i±1) if any of the following is met:

1) One of the two scan measurements is not an obstacle point (i.e. returns the

maximum range of the sensor):

(rS
i = rmax)⊕ (rS

i±1 = rmax)
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2) There is a spatial distance between both scan points more than wmin:∥∥∥pS
i − pS

i±1

∥∥∥ > wmin

It is apparent that the first discontinuity consists of one end point (an obstacle

point), while the second has two. The former is called a“unilateral discontinuity”,

whilst the latter is “bilateral discontinuity”. Each discontinuity is characterized

by its basis. In case of a “bilateral discontinuity”, the basis is the end point closer

to the robot. For a unilateral discontinuity, the basis is its unique end point.

We classify each discontinuity to left or right based on the location of the invisible

area, as seen by the robot sensors. A discontinuity of type unilateral is called

a “left discontinuity” if its basis is to the left of the non obstacle point. It is

called a “right discontinuity” otherwise. For a discontinuity of type bilateral, it

is characterized as left if its basis is to the left of the other end point. Otherwise,

it is characterized as right.

6.2.2 Gaps Search

The major part in extracting gaps is the detection of spatial discontinuities in the

sensor data. Similar to the procedure presented in section 3.1.3, this is carried

out in two steps: first, we detect discontinuities of type right, traveling from pS
1 to

pS
n (counterclockwise). Second, discontinuities of type left are detected, traveling

from pS
n to pS

1 (clockwise). Both searches are described in the following:

“Counterclockwise search”: For every two adjacent scan points (e.g. pS
i and

pS
i+), it is checked whether a right discontinuity dr exists or not2. If so, the basis

pb(dr) of dr specifies the “right side” pr(g) of a gap g. According to the “left

side” pl(g), it is determined as follows:

1) Let O+ denotes the sequence of obstacles located to the left of pr(g), where

the angular difference between pr(g) and any element in O+ is less than π:

O+ =
{

pS
k ∈ pS+

r (g)
∣∣∣ rS
k 6= rmax, proj(θS

k − θr(g)) > 0
}

(6.3)

2Notice that for a FFOV sensor, the last two scan points are pS
n and pS

1 , but for a sensor

whose field of view is limited (LFOV), they will be pS
n−1 and pS

n.
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where θr(g) represents the angle towards pr(g).

2) Each element pi ∈ O+ is checked for validity to be a left side as follows3. Let

g be a virtual gap created by pi and pr(g). Obstacle pi is valid if g is visible

from pr. Otherwise, it is invalid. Visibility here means that the area defined by

the line segments prpi, prpr(g), and pipr(g) is collision-free. This condition is

violated if the line segment that connects pi to pr(g) passes through an occupied

or an occluded region. To represent this condition mathematically, in [MFM18]

we have defined an angle, named the “visibility angle” of pi with respect to pr(g).

This angle corresponds to each pi ∈ O+ and can be expressed as follows:

prΨpi(g) = arccos

(
r2
r (g) +D2

i − r2
i

2Di rr(g)

)
(6.4)

where rr(g) and ri are the distances to pr(g) and pi, respectively, and Di the

distance from pi to pr(g).

The visibility condition of pi is fulfilled if the following equation holds:

prΨpi(g) < ∧prΨpi−(g)

where ∧prΨpi−(g) is the minimum “visibility angle” among those associated with

all obstacles belonging to O+ and having a rank less than i:

∧ prΨpi−(g) = argmin
pk∈O+

prΨpk (g), k < i (6.5)

3) Let V(O+) be the list of valid obstacle points belonging to O+, the left side

is created by the obstacle point closest to pr(g) and contained in V(O+):

pl(g) = argmin
pk

‖pk − pr(g)‖ , pk ∈ V(O+) (6.6)

Notice that if V(O+) does not contain any element (V(O+) = φ), the left side

pl(g) is created by a virtual point at an angle of θS
r+(g) and a distance of R+dsafe

from pr(g), where θS
r+(g) is the angle towards the “left neighborhood” of pr(g),

pS
r+(g), and dsafe a desired clearance to obstacles.

3Notice that the subscript of pi represents the rank of pi with respect to O+, not to S.
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Figure 6.1: Finding out a gap (g) by the“counterclockwise search”. The light gray
color depicts the area covered by the sensing system. The obstacles
are shown by blue regions, where the list of detected depth points S
are visualized by small colored circles. See the text for explaining how
gap g is detected. For a better visualization, the symbol denoting the
gap (g) and the superscript pr in the “visibility angle” are eliminated
(reprinted from [MFM18], with permission from Elsevier).

Seeking for the remaining gaps is performed starting from point pl(g). We denote

the sequence of gaps detected by the “counterclockwise search” as Vcc.

An example is shown in figure 6.1 where the environmental structure consists of

four obstacles, perceived as 5 lists of points, labeled O1 - O5. Point pr represents

the right side of gap g which is created by the basis of dr. The list of valid and

invalid obstacles in O+ are visualized by green and red colors, respectively, where

O+ = O2 ∪O3 ∪O4 ∪O5. For example, pi is valid because it has the minimum

visibility angle Ψi among those associated with all obstacles belonging to O+

and having a rank less than i (O2 here). Point pj does not satisfy the validity

condition because Ψj 6< ∧Ψj− where, in this example, ∧Ψj− = Ψi. It can be

seen that the line segments between the invalid points and pr (e.g. prpj) pass

through either an obstacle or an occluded region. Among the valid points in O+,

the closest to pr defines the left side of g (marked as pl).



120 6 Under-constrained Reactive Collision Avoidance Navigation

“Clockwise search”: The sensor data is searched for gaps similar to the coun-

terclockwise search, but performed in the reverse order: for every two adjacent

scan points (pS
i , pS

i−), it is checked whether a left discontinuity dl exists or not4.

If yes, the “left side” pl(g) of a gap g is formed by the basis pb(dl) of dl. The

“right side” pr(g) is determined as described in the following.

1) The sequence of obstacles O− located to the right of pl(g) is identified, where

the angular difference between pl(g) and any element in O− is less than π:

O− =
{

pS
k ∈ pS−

l (g)
∣∣∣ rS

k 6= rmax, proj (θS
k − θl(g)) < 0

}
(6.7)

where θl(g) denotes the angle towards the left side.

2) The elements of O− are checked for validity. The outcome is the sequence of

valid obstacles V(O−):

V(O−) =
{
pi ∈ O−

∣∣ plΨpi(g) < ∧plΨpi−(g)
}

(6.8)

where ∧plΨpi−(g) can be expressed as:

∧ plΨpi−(g) = argmin
pk∈O−

plΨpk (g), k < i (6.9)

3) The right side is created by the obstacle point belonging to V(O−) and closest

to pl(g):

pr(g) = argmin
pk

‖pk − pl(g)‖ , pk ∈ V(O−) (6.10)

If V (O−) = φ, the right side is created by a virtual point at an angle of θS
l−(g)

and a distance of R + dsafe from pl(g), where θS
l−(g) is the angle towards the

“right neighborhood” of pl(g), denoted as pS
r−(g).

Seeking for the remaining gaps is performed starting from point pr(g). The

sequence of gaps detected by the “clockwise search” is denoted as Vc.

After performing both searches (counterclockwise and clockwise), the output is

the set of all gaps V = Vcc ∪ Vc that can be seen by the sensing system.

4Notice that for a FFOV sensor, the last two scan points are pS
1 and pS

n, but for a sensor

whose field of view is limited (LFOV), they will be pS
2 and pS

1 .
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6.2.3 Gaps Reduction

As mentioned at the beginning of this chapter, our method discards useless gaps,

reducing V to G. A gap is considered useless if it can be reached by traversing

another gap. This section shows how useless gaps are identified and eliminated.

Every gap g ∈ V is classified based on its position with respect to the sensor

frame. If |θl(g)− θr(g)| ≤ π, g is called a “front gap”. Otherwise, it is a “rear

gap”. A gap gj is reachable from gap gi if two conditions are met: first, both

gaps have the same type. Second, gi includes gj. Fulfilling the second condition is

based on the gap type: if both gi and gj are of type front, the following equation

must hold:

θr(gj) ≥ θr(gi) ∧ θl(gj) ≤ θl(gi)

However, if they are of type rear, the equation to be checked is:

θ̂r(gj) ≥ θ̂r(gi) ∧ θ̂l(gj) ≤ θ̂l(gi)

where θ̂l(g) (resp. θ̂r(g)) is the angle towards the point that makes an angular

difference of π with θl(g) (resp. θr(g)):

θ̂l(g) = proj (θl(g)− π) (6.11)

θ̂r(g) = proj (θr(g)− π) (6.12)

From V , we eliminate those gaps that are reachable by other gaps. The list of

remaining gaps is denoted as G:

G = V \ {gj ∈ V | gj is reachable from gi ∈ V, gi 6= gj} (6.13)

Figure 6.2 shows an example of the “gaps search” procedure. In the “counter-

clockwise search”, the bases of the discontinuities (of type right) labeled AB, HI,

NO, RS, and WX create the “right sides” of the gaps marked as 1, 2, 3, 4, and 5.

Their corresponding “left sides” are, respectively, marked as C, L, Q, V, and Z.

Performing the “clockwise search” results in gaps 6 − 10, whose “left sides” are

formed by the bases of UT, QP, LK, FE, and ZY, and whose “right sides” are
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Figure 6.2: Finding out gaps by the AG method. The green and red arrows vi-
sualize the gaps that are found by the “counterclockwise” and “clock-
wise” searches, respectively. In the “gaps reduction” step, each gap
depicted by a dashed arrow is eliminated (reprinted from [MFM18] ,
with permission from Elsevier).

created by points R, M, G, D, and W, respectively. It is obvious that gaps 2, 3,

6, and 10 can be discarded as they are reachable through gaps 8, 7, 4, and 5.

Remark 1 (Comparison to Other Strategies) The AG approach as well as

the CG technique [MFMJ10] have in common the advantage of reducing the num-

ber of detected gaps compared to those found by the ND methods (e.g. [MM04],

[MOM04], [Min05], and [DB08]). An example is shown in figure 6.3 where the

total number of gaps returned by both AG and CG are 5 and 4 marked as 1 - 5

and i - iv, respectively. For the ND methods, 14 gaps are detected labeled A -

N. When compared to CG, the AG method avoids improper gaps such as gap ii.

It can be seen that gap ii is reachable through either gap 2 or gap 3 which are

even more convenient to be detected here5. Furthermore, gap 5 replaces gaps iii

and iv since the AG method, unlike CG, deals with FFOV sensors. Additionally,

gaps 1 and 4 have been returned rather than gap i, since the angular width of

each gap in AG is limited to a maximum absolute value of π. This is important

to cope with the collision avoidance procedure presented in section 6.4.

5Despite the fact that the robot may pass through gap ii, the navigability check algorithm
proposed in [MOM04] considers this gap as non navigable because the line segment be-
tween the center of ii and the robot’s origin intersects an obstacle. AG avoids detecting
such a gap by examining the validity of obstacles in the “gaps search” process.
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Figure 6.3: Extracting gaps by different methodologies, including the proposed
AG approach. The total number of gaps returned by AG and CG
[MFMJ10] are 5 (marked as 1 - 5) and 4 (labeled i - iv), depicted by
green and red arrows, respectively. For the ND methods (e.g [MM04]
and [DB08]), 14 gaps are detected, marked as A - N (reprinted from
[MFM18], with permission from Elsevier).

6.3 Admissible Gap

This section introduces the “Admissible gap” (AG) concept, providing a basis

for developing our collision avoidance approach. Generally speaking, a gap is

admissible if it is traversable by performing a motion command that respects the

vehicle constraints. Section 6.3.1 reviews the kinematic constraints and describes

important characteristics of the vehicle’s path, which will be used to explain the

AG concept. In section 6.3.2, a new methodology for traversing gaps is pre-

sented. Section 6.3.3 shows how this methodology, which respects the kinematic

constraints, is utilized to identify the admissibility status of a specific gap. For

a better visualization the symbol denoting the gap (g) is omitted in this section.

For example, pr(g) is replaced by pr.

6.3.1 Kinematic Constraints

The motion of any robotic system undergoes some constraints imposed by phys-

ical limitations. Here, we consider a differential-drive robot that navigates on an
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even surface and subject to “rolling without slipping” velocity constraints. As

discussed in chapter 2, the motion of this robot can be described by [LSL98]:

− ẋ sin θ + ẏ cos θ = 0 (6.14)

where (x, y, θ) denotes the position and orientation of the robot with respect to

the global coordinate system.

This non-holonomic equality constraint reduces by one the dimension of the

velocity space. Therefore, at a specific configuration, the robot’s motion is de-

scribed by only two parameters (linear and angular velocity).

As pointed out in chapter 2, the kinematic model of a differential-drive mobile

robot is given as follows: ẋẏ
θ̇

 =

cos θ

sin θ

0

 v +

0

0

1

w (6.15)

Fox et al. [FBT97] showed that any mobile robot whose model is described by

Eq. (6.15) travels along trajectories made up of arc segments. In [MMS06], it

has been shown that, at each control cycle, the robot’s path is characterized by

a circle whose center lies at the robot’s y-axis. Assume that pi represents any

point in the workspace. The circular path followed by the robot to reach pi is

referred to as Ti. The radius of this path is denoted by ri and expressed as:

ri =
x2
i + y2

i

2yi
, ri ∈ ]−∞,∞[ (6.16)

where (xi, yi) denotes the location of pi relative to the robot’s reference frame.

The instantaneous center of curvature ci of the circular path Ti is given by (0, ri).

Notice that ri can be positive or negative based on the sign of yi.

Whenever the robot reaches pi, it will be tangential to Ti, i.e. its heading is:

θi =

 arccos
(
ri−yi
ri

)
, if sgn(xi) = sgn(yi)

− arccos
(
ri−yi
ri

)
, otherwise

(6.17)
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Figure 6.4: Visualization of the paths followed by a kinematically constrained
robot. Circles T1 and T2 describe the paths followed by the robot
to reach points p1 and p2. Whenever p1 (resp. p2) is reached, the
robot’s orientation is θ1 (resp. θ2) and the distance traversed is s1

(resp. s2). The point closest to p3 and falling on T2 is denoted by
p3(T2) (reprinted from [MM17], with permission from IEEE).

An example is shown in figure 6.4 which visualizes two points in the workspace

marked as p1 and p2. These points are reached by traveling along circles T1

and T2. The radii and centers of T1 and T2 are (r1, c1) and (r2, c2), respectively.

Angles θ1 and θ2 denote the robot’s orientation when p1 and p2 are reached.

The distance traversed by the robot to reach pi is the length si of the arc along

Ti which connects the robot’s origin to pi (in figure 6.4, s1 and s2 represent the

distances traveled by the robot to reach p1 and p2):

si =

{
|xi| , if yi = 0

|θi · ri| , otherwise
(6.18)

Let pk be a point whose Cartesian coordinates are (xk, yk), the point closest to

pk and falling on Ti is given by (in figure 6.4, p3(T2) is the closest to p3):

pk(Ti) = 〈0, ri〉+ ~ub · |ri| (6.19)

where ~ub = ~b/
∣∣∣~b∣∣∣ represents the unit direction vector of ~b = 〈xk, yk − ri〉.
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6.3.2 Traversing Gaps

There are several ways in which a robot navigates though a gap g ∈ G, for

instance, it may pass through the gap center or it may circumnavigate its side

closer to pg. Our methodology is to achieve a compromise between safety and

efficiency while driving the robot through g. The key idea is to assign a subgoal

to g, referred to as ps. The location of ps is determined in such a way that the

robot circumnavigates one side of g, denoted as pnav. While circumnavigating

pnav, progress towards g is made and a proper distance ds is maintained to the

obstacle point creating it. The value of ds depends on the width of g and has

been previously defined in section 3.1.1 (see Eq. (3.5)).

Determining pnav depends on the position of the gap with respect to the robot

and goal locations. Let pm be the gap center (i.e. the point equidistant from pr

and pl). Since the main objective is to drive the robot towards the goal pg, we

set pnav to the side pcg of gap g closer to pg. However, if this makes the distance

to either side of g gets less than ds, pnav is set to the closer side of g along Tm,

denoted as pcr (Tm is the circular path that the robot follows to reach pm):

pnav =

{
pcg, if ‖pl(Tm)− pl‖ > ds ∧ ‖pr(Tm)− pr‖ > ds

pcr, otherwise
(6.20)

where pl(Tm) (resp. pr(Tm)) is the point closest to pl (resp. pr) and falling on

Tm (defined in Eq. (6.19)). Point pcr is expressed by the following equation:

pcr =

{
pl, if sl(Tm) ≤ sr(Tm)

pr, otherwise
(6.21)

where sl(Tm) and sr(Tm) are the distances traversed along Tm to reach pl(Tm)

and pr(Tm), respectively (defined in Eq. (6.18)).

Assume that S represents a circle whose center is pnav and whose radius is ds.

The subgoal ps is placed at the “tangent point”pt between S and Tt (the circular

path that leads to pt). In principle, S and Tt are “mutually tangent” if:

x2
nav + (ynav − rt)2 = (|rt| ± ds)

2 (6.22)
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where rt is the radius of Tt and (xnav, ynav) the Cartesian coordinates of pnav

with respect to the robot coordinate system .

It can be deduced from Eq. (6.22) that two circles are tangential to S. The radii

of both circles are:

rt =
x2

nav + y2
nav − d2

s

2(ynav ± ds)
(6.23)

With this, we can define pt in terms of rt as follows:

pt =

{
〈xnav, 0〉, if rt =∞
〈0, rt〉+ ~uv · |rt| , otherwise

(6.24)

where ~uv = ~v/ |~v|, ~v = 〈xnav, ynav − rt〉. Notice that if ynav = −ds in Eq. (6.23),

the value of rt is ∞. In this case, Tt represents a line rather than a circle.

Solving Eqs. (6.23) and (6.24) results in two tangent points, pt1 and pt2; only one

of them is located in the direction leading to g, and it is apparently necessary to

characterize the direction of travel to determine which one it is. Let pi be a point

in the workspace, Ti can be uniquely described by a tangent direction [MM09]:

χi =

 arctan
(

1
ri

)
, if xi ≥ 0

sgn (yi) · π − arctan
(

1
ri

)
, otherwise

(6.25)

This definition represents the direction towards pi for a kinematically constrained

mobile robot (the direction along Ti). Notice that a positive xi indicates a

forward motion, while a negative xi indicates a backward motion.

The subgoal ps is placed at the “tangent point” pt that lies in the direction of g,

which is apparently the point that satisfies the following condition:

proj (χt − χnav) ·Υ < 0 (6.26)

where χnav and χt denote the tangent directions corresponding to Tnav (the

circular path that lead to pnav) and Tt. The value of Υ is given by:

Υ =

{
+1, if pnav is a left side

−1, if pnav is a right side
(6.27)
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Figure 6.5: Assigning a subgoal ps to a gap g in such a way that the robot circum-
navigates one of its sides pnav while obeying the kinematic constraints.
First, we identify circle S whose center is pnav and whose radius is
ds. This circle is mutually tangent to two circular paths (Tt1 and
Tt2), each of which lies on the y-axis. The tangent points are labeled
pt1 and pt2. We locate the subgoal at pt1 as it leads to g (reprinted
from [MM17], with permission from IEEE).

Figure 6.5 visualizes how a subgoal ps associated with a gap g is located. It can

be seen that S is mutually tangent to two circular paths; Tt1 at pt1 and Tt2 at

pt2. Notice that ps is located at pt1 as it lies in the direction that leads to g.

Remark 2 (Oscillation Removal) The procedure presented above locates ps

at the tangent point on circle S. By this means, a proper distance ds is preserved

to pnav, thus increasing the safety of navigation. However, if the origin of the

robot’s reference frame is touching circle S (i.e. ‖pr − pnav‖ = ds), the coordi-

nates of ps will be (0, 0). In this regard, the robot experiences oscillations and

may turn on spot. Additionally, while moving along (circumnavigating) pnav, the

robot may get inside circle S (i.e. ‖pr − pnav‖ < ds). In this case, the new ps

takes the robot outside S. Apparently, this behavior is repeated if the robot comes

inside S once again. Next, we propose a solution that has shown the ability to

avoid this drawback. Let N be a circle whose radius is rnav = ‖pr − pnav‖ and

whose center is pnav. As soon as the distance between pr and pnav gets less than

or equal to ds, we locate ps on N rather than on S. Accordingly, the current
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distance between pr and pnav is preserved, until having traversed the gap. Notice

that ps can be located at any distance (drs) from pr (drs is the arc length between

pr and ps, not the Euclidean distance between them). In our experiments, drs

was set to (rnav · π4 ). It is clear that two points can be located on N , such that

the distance between either of them and pr equals to drs. Obviously, we select the

point that lies in the direction of the gap, following Eq. (6.26).

6.3.3 Checking Admissibility

Reactive navigation consists of computing one action at each control cycle, such

that collisions are avoided and progress towards the goal is guaranteed. This

results in a series of collision-free motion controls, that guides a mobile robot

from its starting position towards a given goal. Within this context, it is of

interest to study the path that results from performing a single motion control.

It has been shown in section 6.3.2 that the execution of a single motion command

u = (v, w) causes the robot to travel along a circular path. Assume that this path

goes through ps; it is characterized by circle Ts in section 6.3.2. Assume also that

τ [pr → ps] represents the arc segment which connects (0, 0) to ps along Ts. A

gap g is “admissible” (denoted as AG [pr → g]) iff the robot does not collide with

obstacles while driving it along τ [pr → ps], i.e. τ [pr → ps] is collision-free:

AG [pr → g] ⇐⇒ T [pr → ps] ∩
n⋃
i=1

pS
i = φ

where T [pr → ps] represents the area that the robot occupies while traveling

from (0, 0) to ps (i.e. traveling along τ [pr → ps]).

In the following, we propose an algorithm for checking the admissibility state of

gaps in such a way that the shape of the robot is taken into account. The output

is the list of all obstacles that may cause collision while driving the robot from

pr towards ps (i.e. along τ [pr → ps]), referred to as Ocollision [pr → ps].

Assume that the robot’s footprint can be represented by a polygon whose edges

are Pe, e = 1, ...,m. For each pS
i ∈ S, it is checked if any of the robot edges

intersects circle C(cs,pS
i ) that goes through pS

i and centered at cs = (0, rs); the
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instantaneous center of curvature leading to the subgoal6. If no intersection

occurs, pS
i is collision-free, and therefore it is discarded. Otherwise, we do the

following: assume that pe represents the point at which circle C(cs,pS
i ) intersects

the robot, say at edge Pe. Whenever ps is reached (moving a long τ [pr → ps]),

the coordinates of pe with respect to the current robot’s frame is given by:

p∗e =

{
pe + ps, if ys = 0

Rpe + t, otherwise
(6.28)

where R and t are given by:

R =

[
K −L
L K

]
, t =

[
xs

ys

]
(6.29)

where xs and ys are the x and y locations of ps, and K and L are given by:

K =
x2

s − y2
s

x2
s + y2

s

(6.30)

L =
2xsys

x2
s + y2

s

(6.31)

Given pS
i , pe, and p∗e all located on circle C(cs,pS

i ), we check whether pS
i falls on

the arc that connects pe with p∗e , traveling along τ [pr → ps]. If yes, pS
i causes

collision. Otherwise, it is collision-free. This condition is checked as follows: let

F be a frame (shown in figure 6.6 by dark blue) centered at cs and heads towards

pe, i.e. rotated by θF :

θF = atan2 (ye − rs, xe) (6.32)

where (xe, ye) represents the location of pe, relative to the robot’s frame.

Let Fθ∗e and
F
θS
i be the angles towards p∗e and pS

i with respect to frame F ,

respectively, pS
i falls on the arc that connects pe with p∗e , and hence added to

Ocollision [pr → ps], if the following condition is fulfilled:

(∆ · FθS
i ) mod 2π ≤ (∆ · Fθ∗e) mod 2π

6Notice that if Ts is a line rather than a circle (ps lies on the x axis of the robot’s reference
frame), it is checked if any of the robot edges intersects the line that is parallel to −−−→prps

and goes through the obstacle point pS
i .
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Figure 6.6: Collision checking along τ [pr → ps]; the path followed to reach ps.
This example consists of three obstacles p1 - p3. The circles that pass
through them and centered at cs are C(cs,p1) and C(cs,p3). Circle
C(cs,p1) hits Pe in pe, where p1 lies on the arc between pe and p∗e ,
but p2 doesn’t. Therefore, p1 is in collision, but p2 is not. None of
the robot edges intersects C(cs,p3), thus p3 is collision-free (reprinted
from [MM17], with permission from IEEE).

where ∆ is defined as follows:

∆ =

{
+1, if sgn(xs) = sgn(ys)

−1, otherwise
(6.33)

Notice that if ys = 0 (i.e. τ [pr → ps] represents a line segment rather than a

circle) the condition to be checked (Eq.) is replaced by:

sgn(xs)xe ≤ sgn(xs)x
S
i ≤ sgn(xs)(x

∗
e) (6.34)

where x∗e represents the x location of p∗e , with respect to the robot’s frame.

Figure 6.6 shows how to check whether τ [pr → ps] (depicted by a dark blue arc)

is collision free or not, given 3 obstacles labeled p1 - p3. It is apparent that circle

C(cs,p1), which goes through both p1 and p2, hits edge Pe in pe. The arc that

connects pe to p∗e , while moving along τ [pr → ps], is visualized by dark red. It
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can be seen that p1 lies on this arc, but p2 doesn’t. Therefore, the former is in

collision with the robot, but the latter is not. For obstacle p3, none of the robot

edges intersects circle C(cs,p3), and thus it is collision-free.

Notice that the above mentioned steps are applied for each edge of the polygon

representing the robot Pe. Apparently, the collision check can be reduced to one

step if the robot’s boundary can be represented by one equation (e.g. an eclipse)

rather than approximating it by a polygonal shape.

6.4 AG Obstacle Avoidance Method

After having explained the concept of “admissible gap”, we show how it can be

used to drive a mobile robot in unknown cluttered scenarios, such that the shape

and kinematic constraints are respected. The overall idea is described in the

following. At each time step, the data coming from sensors is analyzed to find

out if there is a navigable path towards the goal (section 6.4.1). If no such path

exists, the robot will be driven towards a gap instead (similar to the holonomic

solutions proposed in chapters 3 and 4). For determining the set of surrounding

gaps, our strategy presented in section 6.2 is followed. Among the assembled list

of gaps G, the closest to the goal (called “closest gap” in chapter 3) is selected.

This gap must satisfy two conditions: first, the Euclidean distance between one

of its sides and the goal must be the minimum compared to that of the other

gaps. Second, it has to be navigable as described in section 6.4.2. All gaps are

checked for both conditions until the closest gap is detected, or it is decided that

no closest gap exists. Section 6.4.3 describes how the AG method computes the

motion control which drives a robot towards the goal (resp. gap).

6.4.1 Goal Navigability Check

There are two cases in which the goal pg is navigable from the current robot’s

location, either directly or using a virtual gap which we refer to as a goal bridge.

Nevertheless, In both cases the goal should be visible from pr (a direct line

of sight to the goal exists). Let τ [pr → pg] be the arc the robot follows to



6.4 AG Obstacle Avoidance Method 133

reach pg, the goal is directly navigable if τ [pr → pg] is a collision-free path (i.e.

Ocollision [pr → pg] = φ). However, if there are obstacles causing collision, a goal

bridge B is constructed between the robot and the goal. The idea behind the

goal bridge is to maintain a safe trajectory while approaching the goal.

The first side of the goal bridge B, denoted as pf(B), is created by the obstacle

point falling in Ocollision [pr → pg] and closest to the circular path the robot

follows to reach pg, Tg:

pf(B) = argmin
pS
i

‖pS
i − pS

i (Tg)‖ (6.35)

where pS
i ∈ Ocollision [pr → pg] and pS

i (Tg) denotes the point on Tg closest to pS
i

(see Eq. (6.19)).

Assume that the vector connecting the robot’s origin to the goal −−−→prpg divides

the workspace into two regions; one to its left and the other to its right (R+

and R−). Denote the region that does not include pf(B) by R∗. The other side,

denoted as po(B), is created by the obstacle point contained in R∗ and closest

to pf(B). The angular distance between both sides, in the direction of the goal,

must not exceed π. This is necessary to guarantee that traversing B directs the

robot towards the direction leading to the goal. i.e:

po(B) = argmin
pS
i ∈R

∗
‖pS

i − pf(B)‖, α < π (6.36)

where α is defined by:

α =

{
proj(θf(B)− θg)− proj(θS

i − θg), if pf(B) ∈ R+

proj(θS
i − θg)− proj(θf(B)− θg), otherwise

(6.37)

where θf(B) and θg are the angles toward pf(B) and pg, respectively.

Notice that if R∗ does not contain any obstacle, po(B) is set to a virtual point

in such a way that pg is the center point between pf(B) and po(B):

po(B) = (2xg − xf(B), 2yg − yf(B)) (6.38)

where (xg, yg) and (xf(B), yf(B)) are the Cartesian coordinates of pg and pf(B).
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Once gap B is constructed, it is checked for navigability using the algorithm

explained hereinafter in section 6.4.2. If it is navigable, the robot is directed to-

wards it. Otherwise, we search about a navigable gap in G as explained above.

6.4.2 Gap Navigability Check

In general, a gap g is considered “navigable” if it can be traversed by performing

a sequence of collision-free motion controls. This condition is fulfilled if there

exists a list of “virtual gaps” g∗k, k = 1, ..., L, where g∗1 is “admissible” from pr, g∗2

is “admissible” from g∗1 , ..., g∗k is “admissible” from g∗k−1, ..., g is “admissible” from

g∗L. Nevertheless, in terms of reactive navigation, it is enough to find one gap g∗

that satisfies two conditions: first, g∗ is admissible from pr. Second, g can be

reached by traversing g∗. By transforming the workspace into ARM in [MM09],

only “admissible” gaps are considered “navigable”. In the following, an algorithm

is proposed that determines the position of g∗, if it exists. The inputs are the

scan points list S and the gap g to be checked. The output of the algorithm g∗ is

initially set to g and computed by performing the following 2 steps iteratively:

Step 1: We split the set of scan points S into two subsets; one is denoted by Sin

and referred to as the “interior” of g∗. It consists of those points that lie between

both sides of g∗, with respect to the current robot’s view (i.e. Sin = {pr(g
∗),

pS
r+(g∗), ...,pS

l−(g∗), pl(g
∗)}). Apparently, the second subset is the set difference

of S and Sin. It is denoted by Sex and called the “exterior” of g∗. Let Oin and

Oex be the set of obstacle points contained in Sin and Sex, respectively (i.e. non

obstacle points are discarded). We exclude from Oex all obstacles making an

angular difference (traveling in the direction of g∗) greater than π with either

side of g∗. The resultant set of obstacles is referred to as O′ex:

O′ex = O+
ex ∪O−ex (6.39)

where O−ex and O+
ex are defined by:

O+
ex =

{
pS
i ∈ Oex

∣∣∣ proj (θS
i − θr(g

∗)) > 0
}

(6.40)

O−ex =
{

pS
i ∈ Oex

∣∣∣ proj (θS
i − θl(g

∗)) < 0
}

(6.41)
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where θl(g
∗) and θr(g

∗) denote the angles towards the left pl(g
∗) and right pr(g

∗)

sides of gap g∗, respectively.

All obstacles belonging to O′ex are checked for collision with τ [pr → ps(g
∗)]; the

path followed to reach the subgoal ps(g
∗) corresponding to g∗. The collision check

is preformed using the algorithm presented in section 6.3.3, where the outcome is

denoted byO′ex [pr → ps(g
∗)]. Apparently, g∗ violates the admissibility condition

if O′ex [pr → ps(g
∗)] 6= φ. Nevertheless, a new gap g∗∗ can be created in this case,

such that traversing it leads to g∗. The location of g∗∗ is determined in step 2

of the algorithm. If the collision set O′ex [pr → ps(g
∗)] is empty, on the other

hand, Oin is checked for collision similar to O′ex and the algorithm is terminated.

Obviously, if the outcome of this collision check is empty, g∗ is admissible and

hence the algorithm returns the current g∗. Otherwise, the output will be NULL,

which implies that g∗ is not navigable. It is worth to mention that the obstacles

eliminated from Oex lie behind the robot while driving it towards ps(g
∗). That

is why we exclude them from the collision check.

Step 2: This step consists of creating a new “virtual gap” g∗∗, given the current

one g∗ and the collision set O′ex [pr → ps(g
∗)]. Similar to the goal bridge gap,

the “first side”pf(g
∗∗) of g∗∗ is set to the obstacle belonging to O′ex [pr → ps(g

∗)]

and closest to the circular path Ts(g
∗) the robot follows to reach ps(g

∗):

pf(g
∗∗) = argmin

pS
i

‖pS
i − pS

i (Ts(g
∗))‖ (6.42)

where pS
i ∈ O′ex [pr → ps(g

∗)] and pS
i (Ts(g

∗)) denote the point closest to pS
i and

falling on Ts(g
∗) (defined in Eq. (6.19)).

Assume that pm(g∗) represents the center of g∗ (i.e. the point equidistant from

pr(g
∗) and pl(g

∗)). Assume also that M denotes a frame centered at pr and

heads towards pm(g∗). The workspace is divided into two regions; one to the

right and the other to the left of the x-axis. They are denoted by W− and

W+, respectively. Let O−g = {pr(g
∗),pr−1(g∗), ...} denotes the set of scan points

falling to the right of g∗. Similarly, O+
g = {pl(g

∗),pl+1(g∗), ...} denotes the set

of scan points falling to the left of g∗. We search about the other side po(g∗∗) in

O−g if pf(g
∗∗) lies inW+ or in O+

g if pf(g
∗∗) lies inW−, where the obstacle point
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closest to the first side is chosen. Notice that the search process is performed

sequentially until the angular distance between the accessed element and pf(g
∗∗)

gets more than π. This is to guarantee that g∗ is reachable from g∗∗:

po(g∗∗) = argmin
pS
i ∈Õex

‖pS
i − pf(g

∗∗)‖, γ ≤ β < π (6.43)

where Õex = Oex ∪ pr(g
∗) ∪ pl(g

∗), and β and γ are given by:

β =

{
Mθf(g

∗∗)−MθS
i , if pf(g

∗∗) ∈ W+

M
θS
i −Mθf(g

∗∗), otherwise
(6.44)

γ =

{
Mθf(g

∗∗)−Mθr(g
∗), if pf(g

∗∗) ∈ W+

Mθl(g
∗)−Mθf(g

∗∗), otherwise
(6.45)

where Mθl(g
∗), Mθr(g

∗),
M
θS
i , and Mθf(g

∗∗) are the angles towards pl(g
∗),

pr(g
∗), pS

i , and pf(g
∗∗) with respect to frame M, respectively.

After having determined g∗∗, it is assigned to g∗ and step 1 is once again per-

formed. Apparently, the procedure terminates because at each iteration the total

number of elements contained in the exterior of g∗ is decreased by at least one.

If the algorithm returns a valid virtual gap g∗, then g satisfies the navigability

condition. But if it returns NULL, g is considered as non-navigable.

An example of the algorithm is shown in figure 6.7, in which a robot navigates

towards a given goal pg. Obviously, only two gaps (g1, g2) can be detected by the

robot, where g1 is the closest to the goal. The“interior” (Oin) of g1 consists of the

dark blue obstacle points in addition to the left pl(g1) and right pr(g1) sides of

g1 (visualized by red and violate). Apparently, the “exterior” (Oex) of g1 consists

of the remaining obstacle points. Notice that, in this example, O′ex = Oex since

non of the elements contained in Oex makes an angular difference more than π

with either side of g1. It can be seen that the path towards ps(g1) is in collision

with the obstacle point shown by orange in addition to the dark green points

(denoted by O′ex [pr → ps(g1)]). Hence, a virtual gap is constructed whose first

side pf(g
∗
1) is created by the point contained in O′ex [pr → ps(g1)] and closest to

Ts(g1), which is obviously the orange point. Searching about the other side starts

from pl(g1) and proceeds counterclockwise until the angular distance measured
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Figure 6.7: Checking navigability. The robot detects two gaps; g1 and g2. It is ob-
vious that the closest gap (g1) is non-admissible, since τ [pr → ps(g1)]
is in collision with the obstacle points shown by orange and dark green
dots. But, g1 is navigable because it is possible to create an admis-
sible gap (g∗1) that leads to g1. See the text for more information on
constructing g∗1 (reprinted from [MM17], with permission from IEEE).

from pf(g
∗
1) gets more than π. This includes the obstacles visualized by light

blue in addition to pl(g1). Among these obstacles, po(g∗1) is set to the closest to

pf(g
∗
1), which is clearly pl(g1). It can be observed that the path towards ps(g

∗
1)

is collision free. Hence, the iterations are terminated and g∗1 is returned.

Remark 3 (Safety Improvement) The collision check algorithm considers the

exact region that the robot occupies while traveling along τ [pr → ps(g
∗)]. By this

means, the distance to obstacles may get very small, causing the robot to be stuck

somewhere. A straightforward solution to this issue is to perform the collision

check after enlarging the robot’s boundary by some threshold. But, this solution is

a trade-off between completeness and safety (e.g. a gap may appear non naviga-

ble although it is not). Next, we introduce a better methodology to cope with this

drawback. In a first step, the robot’s boundary is enlarged by a proper clearance (a

value of ds(g
∗)−wmin was used in our experiments). Then, the algorithm is ap-

plied and at each iteration the obstacle point belonging to Ocollision [pr → ps(g
∗)]

and closest to T [pr → ps(g
∗)] is registered. After having terminated the algo-
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rithm, the “virtual gap” g∗opt that yields the maximum clearance is identified. In

a second step, the algorithm is applied again, but starting from g∗opt (instead of

g) and considering the exact robot size (i.e. without enlargement).

6.4.3 Setting Motion Commands

In sections 6.4.1 and 6.4.2, we have seen how to identify the instantaneous target

p̂g, which can be the goal itself pg or a subgoal corresponding to a navigable

gap (either a goal bridge B or a virtual gap g∗). Next, we explain how the AG

approach computes the motion control that drives a robot towards p̂g.

In section 6.3, it has been shown that, at each control cycle, the robot’s path can

be described by a circular arc. Hence, the motion control is determined in such

a way that the radius of curvature is maintained. Assume that the path followed

by the robot to reach p̂g has a radius of r̂g (defined in Eq. (6.16)). Apparently,

a valid motion control must satisfy v = wr̂g. This condition can be seen as a

line Lv in the control space whose slope is r̂−1
g (see figure 6.8) [MMS06]. So,

any point on Lv can be a valid motion control. Here, we consider controlling the

velocity based on the clearance to obstacles, and hence Slimit is defined as:

Slimit =

(√
1− sat[0,1]

(
Dvs − rmin

Dvs

))
. Smax (6.46)

where rmin is the distance to the closest obstacle, Dvs a parameter that defines

the size of a zone around the robot in which the velocity is limited (see chapter 4

for determining the value of Dvs based on the physical and dynamic properties of

the robot), and Smax the distance from (0, 0) to the point at which the boundary

of the maximum speeds intersects line Lv (coordinates are relative to the control

space). The “sat” function caps Slimit at 0 if an obstacle is touched by the robot

and at Smax if no obstacle lies within Dvs.

The motion control can now be defined as (originally from [MMS06]):

v = sgn(x̂g) · Slimit · cos(ζ̂g) (6.47)

ω = sgn(x̂g) · Slimit · sin(ζ̂g) (6.48)
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Figure 6.8: Determining the motion control in such a way that the radius of curva-
ture r̂g is maintained and the maximum possible velocity is respected.
Any point on Lv can be a valid motion control as it satisfies v = wr̂g.
Here, we specify Slimit so that the velocity of the robot is controlled
based on the clearance to obstacles (originally from [MMS06]).

where ζ̂g = arctan(r̂−1
g ) and x̂g denotes the x-coordinate of p̂g. A positive x̂g

indicates a forward motion, while a negative x̂g indicates a backward motion.

6.5 Experimental Results

The reliability of the proposed method has been validated using our robotic plat-

form GETbot, adopting the same setup presented in section 5.1. The following

subsections provide the outcome of seven experiments executed in different sce-

narios7 (Experiments 1 - 6 have been previously presented in [MFM18]). Notice

that the only prior information available were the sensor data and the goal. The

results are presented and compared with two state of the art methods which

are ARM-ND+ [MM09] and the open source “robot navigation stack” DWA-

A* [MBF+10]. Moreover, the results are checked against the TGF approach

[MFM16], presented in chapter 4. ARM-ND+ is an extension of ND+ [MOM04]

that considers the robot shape and kinematics by transforming the workspace

into ARM [MM09]. Since ND+ only computes forward motions, a change of co-

ordinates was necessary [MMS06]. DWA-A* uses a costmap to look for a path,

utilizing A* search, and employs the DWA method [FBT97] to track the gener-

ated path. For the sake of accuracy, only the front laserscanner was used to build

7Videos of these experiments can be found at: “http://getwww.uni-paderborn.de/research/
videos/ag”

http://getwww.uni-paderborn.de/research/videos/ag
http://getwww.uni-paderborn.de/research/videos/ag
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the costmap. In order to ensure safe navigation through tight passages, the max-

imum robot speeds were restricted to (v = 0.5m/s, ω = 1.0 rad/s). The robot

operating system (ROS) has been employed to implement and test the afore-

mentioned approaches. Maps of the environment were created by employing an

available open source SLAM system [Gc10] implemented in ROS.

6.5.1 Experiment 1

This experiment consisted of a relatively simple scenario where GETbot was

supposed to traverse an arena in which boxes were distributed as shown in figure

6.9a. The robot managed to reach the given goal using all of the aforementioned

approaches. The generated trajectories are visualized in figures 6.9b, 6.9c, 6.9d,

and 6.9e. Using ARM-ND+, oscillations occurred along the traversed route, see

for example the trajectory near the locations labeled 1 - 3 in figure 6.9b. This is

attributed to the limitations inherited from ND+ [MM04] as discussed in chapter

4. By running DWA-A*, GETbot got close to the A and B obstacles as shown

in figure 6.9c. This is due to the fact that DWA-A* follows a path generated

by A* planner. It can be seen that the trajectories followed by both TGF and

AG are quite similar. They were able to drive GETbot with improved safety

and smoothness compared to ARM-ND+ and DWA-A*. The robot speeds were

recorded and plotted against the elapsed time as shown in figures 6.9f - 6.9i.

6.5.2 Experiment 2

In this experiment, the difficulty of navigation was increased by placing obstacles

in such a way that a large U-shape is formed as shown in figure 6.10a. Addition-

ally, GETbot had to negotiate a narrow curved passage (P) made up of obstacles

with different shapes and sizes. It can be seen from figure 6.10b that ARM-ND+

was prone to oscillations (e.g. see the path next to points 1 - 4). Moreover, GET-

bot navigated close to obstacles (e.g. A and D), causing a considerable reduction

in speed. By applying DWA-A+, GETbot was able to move at a relatively high

speed, but ended up getting very close to obstacles, such as those labeled B, C,

and E in figure 6.10c. Furthermore, once GETbot reached the starting area of
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Figure 6.9: Scenario 1 (reprinted from [MFM18], with permission from Elsevier).
(a) Environmental setup. (b-e) Paths generated by (b) ARM-ND+,
(c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed profiles for (f) ARM-
ND+, (g) DWA-A*, (h) TGF, and (i) AG.

passage P, it turned in-place for a while before it could move forward again. The

in-place rotation was due to the execution of a recovery behavior [Epp16] which

was invoked since DWA was unable to find a feasible control at that time. Using

this behavior, the robot eventually got unstuck after clearing out space. The

performance of TGF was relatively good (see figure 6.10d), however, in terms of

smoothness, the generated trajectory could still be enhanced, particularly near

points 1 - 3. This was possible by employing AG, as shown in figure 6.10e. We

attribute this improvement in behavior to the consideration of the robot shape

and kinematics. Figures 6.10f - 6.10i show the speed profiles for all methods.

6.5.3 Experiment 3

This experiment had three different complexities; first, several consecutive tight

and curvy routes had to be negotiated to reach the goal, see figure 6.11a. Sec-
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Figure 6.10: Scenario 2 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b-e) Paths generated by (b) ARM-
ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed profiles for
(f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG.

ond, the obstacle course included small plastic/wooden poles with narrow gaps

between them, through which GETbot could not fit. Finally, GETbot had to

avoid obstacles forming a U-like shape during its course of navigation. By run-

ning ARM-ND+, the mission was aborted after reaching a certain point at which

GETbot just kept on rotating right and left, as shown in figure 6.11b. It was

discovered that these turn changes was a result of transforming the workspace

into ARM, in which the navigable gap G1 vanished and the non-navigable gap

G2 appeared. At that particular situation, GETbot rotated towards G2 until

it was realized that G1 was free and G2 was blocked. This caused the robot to

rotate back towards G1 but only to get caught again in this repetitive loop of

failure. Using DWA-A*, GETbot navigated smoothly until it reached the start-

ing area of passage P2, after which it rotated and navigated back across passage

P1. This behavior was due to unexpected change in the costmap, which blocked

the path planned towards P2, and thus, a new path was generated backwards.
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Figure 6.11: Scenario 3 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b-e) Paths generated by (b) ARM-
ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed profiles for
(f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG.

The costmap is re-computed once GETbot reached point 1 (see figure 6.11c). Ac-

cordingly, the obstructed region appeared free again, which caused GETbot to

turn and proceed towards the target. Similar to the previous scenarios, GETbot

came close to obstacles at different points (e.g. A - C). Figures 6.11d and 6.11e

show that TGF and AG managed to safely and smoothly drive GETbot towards

the goal with roughly similar performance. However, a closer look at the paths

next to points 2 - 4 verifies that, in terms of smoothness, AG was better than

TGF. The speed profiles of all approaches are shown in figures 6.11f - 6.11i.

6.5.4 Experiment 4

For this scenario, we created the environmental structure shown in figure 6.12a,

which resembles a Robocup rescue arena [PJK+14]. Notice that an oscillatory
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Figure 6.12: Scenario 4 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b-e) Paths generated by (b) ARM-
ND+, (c) DWA-A*, (d) TGF, and (e) AG. (f-i) Speed profiles for
(f) ARM-ND+, (g) DWA-A*, (h) TGF, and (i) AG.

motion over ramps may lead to wheel skidding, and hence it was important to

achieve a high degree of smoothness in this experiment. Additionally, fast motion

was hard to accomplish over ramps, especially employing DWA-A*. Hence, the

maximum permitted speeds for this scenario were (v = 0.3m/s, ω = 0.6 rad/s).

The goal was reached by employing all techniques, as can be seen from figures

6.12b - 6.12e. However, with ARM-ND+ the robot’s motion was oscillatory, see

for instance the generated trajectory near locations 1 - 5 in figure 6.12b. By using

the DWA-A* algorithm, GETbot almost touched walls A, C and D, and collided

with wall B, as can be seen from figure 6.12c. Furthermore, while entering the

passages labeled P1 and P2, GETbot performed to-and-fro motion momentarily

before it could move forward again. The root cause of this behavior was the

wheel skidding on ramps, which made GETbot move closer to walls instead of

following the planned path. This situation demanded a new path to be generated

so that GETbot moves away from walls. The process of re-planning continued,

until GETbot successfully escaped. It is important to mention that the front

laserscanner was unable to detect wall E at the starting point. Therefore, the
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robot turned and started to move towards the wall before it could discover that

this region was obstructed. According to TGF, it showed smoother motion when

compared to the ARM-ND+ method, but oscillations were not completely gone.

See, for instance, the path next to the locations marked as 1 - 3 in figure 6.12d.

The AG method was able to drive GETbot with improved smoothness and safety

as compared to the other employed approaches. This visualization has been

supported by plotting the speed profiles of all techniques in figures 6.12f - 6.12i.

6.5.5 Experiment 5

This scenario aimed to test the performance of AG in a cluttered environment

occupied by a dynamic obstacle (a pedestrian). At the beginning of the mission,

GETbot smoothly traversed the expected route through passages P1 and P2 until

the line labeled L3 in figure 6.13a was crossed. At that moment, a pedestrian

suddenly stepped in front of GETbot and blocked passage P2, as shown in figure

6.13b. GETbot reacted to this situation by navigating backwards towards P1,

avoiding collision with the pedestrian. Once line L1 was crossed by the robot, the

pedestrian stepped out of the track, leaving passage P2 free as depicted in figure

6.13c. This new situation was detected by GETbot and the decision was to move

forward again, i.e. towards gap G1. As soon as GETbot reached the line labeled

L2, box B was taken out of the arena, creating a new navigable gap labeled G2

in figure 6.13d. It was recognized that the new created gap was the closest to the

goal, and therefore GETbot decided to pass through it and proceed towards the

goal. The generated trajectory is shown in figure 6.13h. By running ARM-ND+

(figure 6.13e), GETbot came to a halt and was unable to complete the mission

after the pedestrian stepped in front of it. The root cause was the inability of

ARM-ND+ to detect the rear gap leading to P1. By applying DWA-A* (figure

6.13f), the feet of the pedestrian was touched by GETbot and it took quite some

time to realize that a new gap G2 was created by removing the B box. This is

attributed to the slow reaction of DWA-A* to the dynamic changes. Moreover,

after having blocked passage P2, GETbot turned and navigated towards P1

without recognizing that passage P2 got free again. Moving back towards P2

was resumed only after traversing the entire P1 passage. Furthermore, it was



146 6 Under-constrained Reactive Collision Avoidance Navigation

Goal

L1

L2

L3

P1

P2

G1

B

Start

(a) (b) (c)

G2

(d)

(e)

C

A

(f) (g) (h)

0 25 50
-0.6

-0.3

0

0.3

0.6

Time (s)

V
 (

m
/s

)

0 15 30 45 60
-1

-0.5

0

0.5

1

Time (s)

W
 (

ra
d/

s)

(i)

0 25 50
-0.6

-0.3

0

0.3

0.6

Time (s)

V
 (

m
/s

)

0 15 30 45 60
-1

-0.5

0

0.5

1

Time (s)

W
 (

ra
d/

s)

(j)

0 25 50
-0.6

-0.3

0

0.3

0.6

Time (s)

V
 (

m
/s

)

0 15 30 45 60
-1

-0.5

0

0.5

1

Time (s)

W
 (

ra
d/

s)

(k)

0 25 50
-0.6

-0.3

0

0.3

0.6

Time (s)

V
 (

m
/s

)

0 15 30 45 60
-1

-0.5

0

0.5

1

Time (s)

W
 (

ra
d/

s)

(l)

Figure 6.13: Scenario 5 (reprinted from [MFM18], with permission from Else-
vier). (a) Environmental setup. (b) A pedestrian stepped in front of
the robot. (c) The pedestrian stepped out of the track. (d) Box B
was taken out of the arena, creating gap G2. (e-h) Paths generated
by (e) ARM-ND+, (f) DWA-A*, (g) TGF, and (h) AG. (i-l) Speed
profiles for (i) ARM-ND+, (j) DWA-A*, (k) TGF, and (l) AG.

observed that GETbot came close to obstacles at some points like A and C.

By using TGF, GETbot turned on spot to move forwards instead of backwards,

when the pedestrian stepped in and out of the track, see figure 6.13g. Besides

the improved reaction to the pedestrian, AG achieved the best performance in

terms of smoothness, as can be seen from figures 6.13e - 6.13h and 6.13i - 6.13l.

6.5.6 Experiment 6

For this scenario, we created a very complex and challenging arena. Figures

6.14a and 6.14b visualize two images of the arena which were captured from two
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Figure 6.14: Scenario 6 (reprinted from [MFM18], with permission from Else-
vier). (a, b) Environmental setup. (c-f) Paths generated by (c)
ARM-ND+, (d) DWA-A*, (e) TGF, and (f) AG. (g-j) Speed profiles
for (g) ARM-ND+, (h) DWA-A*, (i) TGF, and (j) AG.

different points of view. GETbot had to negotiate very tight and curvy openings,

where at some points the maneuvering space was very limited. For example, gap

G3 in figure 6.14b has a width of 0.63m, which is less than the robot’s diameter

(evaluates to 0.71m approximately). Additionally, the environmental structure

was made up of obstacles with different shapes and sizes. An additional challenge

was the large difference in width between passages P1 and P2 (at gap G1). The

goal was successfully reached by implementing the AG approach only. Although

the environment was very complex and contained very narrow passages, AG

managed to drive GETbot with a high degree of smoothness, as shown in figure

6.14f. By applying ARM-ND+, the mission was aborted after GETbot collided

with the wall labeled A, coming to a full stop, as shown in figure 6.14c. The

root cause was the inability of ARM-ND+ to find a navigable gap once GETbot

approached the very narrow opening leading to passage P2 (at gap G1). Because

of the speed gained before this particular situation, GETbot kept on moving until

it crashed into the wall. By running DWA-A*, GETbot navigated smoothly until
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it reached the starting area of passage P2, after which it kept on rotating and

performing to-and-fro motion (see figure 6.14d). It was recognized that a path

was properly planned across P2, but the DWA approach failed to track it. The

TGF-controlled GETbot managed to traverse most of the route, but ended up

colliding with obstacle B after rotating in-place (see figure 6.14e). This rotation

aimed to drive GEbot back towards passage P1, since at that time TGF was

unable to detect gap G3 whose width was less than the robot’s diameter (TGF

ignores the robot shape and its kinematics). Notice that we limited the value of

R to 0.33 m to get this performance. By using the actual value (R = 0.355 m),

the robot could not even pass through gap G2 since its width was 0.68m < 2R.

It is worth mentioning that, by further decreasing the radius (R < 0.33m), the

robot pushed over the wooden pole creating gap G2 and didn’t complete the

mission. The speed profiles of all approaches are shown in figures 6.14g - 6.14j.

6.5.7 Experiment 7

In this experiment, we tested the capability of the proposed AG approach to

drive a mobile robot in unknown environments occupied by a crowd of moving

persons. The experiment was conducted in building P1 at the university of

Paderborn, with the help of several students working in our lab8. The students

were informed to randomly move in the working area of the robot, trying to

close its way sometimes. The objective was to resemble real world scenarios

where the robot may share the same environment with humans. The mission

was started at the main entrance of the P1 building and the robot had to pass

through the connection between buildings P1 and P7, see figure 6.15a. The goal

was given at the end of the connection near the entrance to building P7, as shown

in figure 6.15b. We observed that the robot was able to react on time avoiding

the students who stepped in to close its way. For example, in the first part of the

experiment the path to the goal was free, and hence the robot moved directly

towards it, see figure 6.15c. Once the student marked as S1 moved across the

corridor, the robot escaped by moving towards the free gap marked as G1 between

students S1 and S2, see figure 6.15d. Student S1 kept moving and climbed the

8A video of this experiment is available at: https://getwww.uni-paderborn.de/research/
videos/dynamic-obstacles

https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles
https://getwww.uni-paderborn.de/research/videos/dynamic-obstacles
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Figure 6.15: Experiment 7. (a, b) Environmental setup, the robot had to move
through the connection between buildings P1 and P7. (c-l) Snap-
shots of the experiment taken at different locations, showing that the
robot was able to react on time avoiding the students who stepped
in to close its way to the goal.

stairs, while student S2 started to move across the corridor as shown in figure

6.15e. Consequently, the robot modified its orientation and started to move

towards the free area to the left-hand side as shown in figure 6.15e. At a later

time, most of the corridor was occupied by students, and thus the robot escaped
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Figure 6.16: Trajectory followed by the robot (a) and the recorded motion com-
mands against the time (b, c) corresponding to experiment 7.

towards gap G2, the only free gap at that moment (see figure 6.15f). Figure

6.15g shows another situation where the robot was moving towards the right-

hand side, avoiding students S3 and S4. At that time, student S5 approached

the robot from behind. The situation was detected and the orientation of the

robot was modified accordingly, see figure 6.15h. A similar behavior can also

be seen in figures 6.15i and 6.15j, where student S6 approached the robot from

front this time. Figures 6.15k and 6.15l show a situation where students S6 and

S7 were moving to both sides of the robot, but not closing its way to the goal.

Hence, the robot kept moving directly towards its goal. Figure 6.16 shows the

trajectory followed by the robot and the motion commands against the time.

6.6 Evaluation and Discussion

The proposed “AG approach” is evaluated on the basis of the metrics presented

in chapter 5. Moreover, its performance is compared to that of the techniques

discussed in section 6.5. The results obtained from experiments 1 - 6 (presented
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Table 6.1: Performance assessment results of the proposed “AG approach” for
experiments 1 - 6 from section 6.5 (reprinted from [MFM18], with
permission from Elsevier).

Exp. Method Ttot Plen Cchg Zω Jacc ζacc Slat Stng Robs

1

ARM-ND+ 35.4 5.89 118.62 10 2.28 17.52 0.95 2.90 252.28

DWA-A* 19.0 4.91 0.53 2 4.87 6.00 0.56 2.23 169.34

TGF 20.3 5.26 0.67 2 0.22 0.98 0.91 0.85 134.44

AG 19.8 5.24 0.28 2 0.02 0.89 0.95 0.55 128.29

2

ARM-ND+ 68.8 9.81 181.15 18 6.82 16.44 1.92 9.34 543.02

DWA-A* 41.3 8.03 161.22 3 11.05 55.77 1.16 4.91 375.81

TGF 36.0 9.14 1.29 9 0.10 2.57 2.16 1.65 195.97

AG 33.5 8.71 0.38 3 0.04 1.77 1.71 0.76 194.19

3

ARM-ND+ fail fail fail fail fail fail fail fail fail

DWA-A* 48.4 12.95 51.52 5 14.42 32.78 2.40 8.96 510.24

TGF 49.6 11.45 1.97 10 0.09 2.09 2.25 1.77 273.15

AG 47.5 11.10 0.39 3 0.04 2.20 1.84 1.32 289.68

4

ARM-ND+ 77.3 10.40 119.60 32 2.13 12.96 1.42 6.00 340.61

DWA-A* 105.4 13.67 103.18 26 7.52 20.69 1.55 11.05 17415.50

TGF 67.3 10.01 31.65 26 1.02 2.40 1.12 4.16 260.22

AG 55.3 9.29 0.67 8 0.03 1.53 1.31 0.86 253.06

5

ARM-ND+ NC NC NC NC NC NC NC NC NC

DWA-A* 57.4 13.92 61.17 6 24.04 39.87 2.60 11.92 940.37

TGF 43.7 8.85 12.39 12 3.55 23.34 2.53 4.49 399.19

AG 37.6 8.24 0.64 5 3.48 4.38 1.16 2.38 209.72

6

ARM-ND+ fail fail fail fail fail fail fail fail fail

DWA-A* fail fail fail fail fail fail fail fail fail

TGF fail fail fail fail fail fail fail fail fail

AG 49.1 9.74 0.76 7 0.28 3.50 1.84 2.23 681.60

in section 6.5) are shown in table 6.1. It is interesting to notice that the ARM-

ND+ method yields the worst results in all experiments except experiment 4, in

which the DWA-A* approach was the worst. The poor performance of ARM-

ND+ is attributed to two causes: first, transforming the workspace into the

“Arc Reachable Manifold” (ARM) may hinder finding navigable gaps like the

gap labeled G1 in experiments 3 and 6 (only “admissible” gaps are considered

navigable in ARM). Second, ARM-ND+ builds upon the ND+ method which

tends to generate oscillations and instability, as discussed in chapter 5.

In fact, the DWA-A* approach is a hybrid system which employs both local

(DWA) and global (A* algorithm) planners, whereas ARM-ND+, TGF, and AG

are pure reactive methods. Therefore, a direct comparison between DWA-A* and
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the other approaches could be unfair. Despite this fact, however, the presented

results show that TGF and AG outperform DWA-A*, especially in terms of the

Cchg, Robs, Jacc, Stng, and ζacc metrics. This is attributed to the tendency of the

A* algorithm to generate a path near obstacles. Apparently, following this path

results in a higher Robs value and makes the robot get close to corners, which

in turn may hide some parts of the environment from the local planner (DWA).

At that particular situation, the robot may face unforeseen obstacles, requiring

a rapid change in speed (reflected by high Jacc and Stng values) and heading

(reflected by high Cchg and ζacc values). On the other hand, AG and TGF both

tend to maintain a safe distance between obstacles and the robot’s footprint

(see section 6.3.2). Furthermore, the smoothness of the generated trajectories is

increased by performing collision avoidance based on all obstacles falling between

the robot and the closest gap, achieving a kind of look-ahead. An additional point

which needs to be mentioned here is the fact that DWA-A* is in principle able to

drive the robot at higher speeds with shorter distances. This is attributed to the

usage of A* to look for a path that is often short compared to that of the other

methods. This path is then followed by DWA, which accounts for the dynamics of

the vehicle. However, invoking the recovery behavior and re-planning the path in

experiments 2 and 3 canceled this benefit. The situation was even more difficult

in experiment 4 when the robot slipped towards walls while entering passages P1

and P2 and took quite some time before it could move forward again.

When comparing the performance of AG with that of TGF, it can be observed

that AG achieves better performance, especially in terms of Jacc, Cchg, and Zω.

More important, AG successfully drove the robot through the obstacle struc-

ture of experiment 6, but TGF did not. The improved performance of the AG

approach is attributed to the consideration of the robot shape and kinematic con-

straints. The TGF method, on the other hand, ignores these constrains, which

may hinder finding feasible motions or reduce performance. In fact, the output

of TGF is a direction solution, with which the robot’s heading must be aligned.

A closer look at figures 6.9 - 6.14 shows that the TGF-controlled robot often had

to reduce speed (approached zero sometimes) and perform a sharp turn (rotated

in-place sometimes) to face the direction it follows. Apparently, this explains the

higher values of Jacc, Cchg, and Zω compared to those of the AG method. It is
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significant to note that GETbot is roughly square and works in a skid-steering

mode. If it had a complicated shape or if it was a car-like robot, TGF could

have failed in more experiments or it would have had less performance, particu-

larly in scenarios demanding high maneuverability. It is worth to mention that

implementing the TGF method took a lot of time to achieve this relatively good

performance. This is due to that fact that aligning the robot’s heading with the

holonomic output is not straightforward and based on experimentation.

In addition to the results presented above, we highlight other advantages and

features of the AG approach. First, similar to the TGF method, AG has only

one parameter dsafe that is easy to determine. It specifies how far the robot stays

away from the obstacles’ boundary (as long as there is a free space), providing

a trade-off between efficiency and safety. Hence, it should be seen as a feature

rather than a limitation. In principle, we may totally discard dsafe and set ds(g)

in Eq. (3.5) to 1
2
w(g) always, but this may lead to a longer path if the gap is too

wide. In all experiments presented in section 6.5, the value of dsafe was set to

2R. ARM-ND+ has another parameter Ds, which defines a region around the

robot, once occupied, the robot’s trajectory is adjusted building upon the APF

concept. Determining Ds is not straightforward and has a significant influence

on the performance of the algorithm. According to the DWA-A* approach, it has

many parameters to tune, where finding a good parameter setting is environment

dependent and consumes much time and effort [MFM18].

An additional advantage of the AG approach is its robustness against the envi-

ronmental changes. It managed to successfully drive GETbot in all conducted

tests, either those discussed in section 6.5 or others. Furthermore, each time a

test was repeated, the obtained results were almost the same. The other tested

methods presented different degrees of sensitivity to the environmental struc-

ture. For example, ARM-ND+ managed to drive GETbot in simple scenarios

only. The DWA-A*-controlled GETbot generated a different path each time a

test was repeated. TGF showed better robustness than DWA-A* and ARM-ND+

as it successfully drove GETbot in most of the scenarios. However, each time

an experiment was repeated, the differences in results were higher than those

corresponding to the AG method. Perhaps, finding scenarios where these three

methods succeed was the most time consuming and frustrating part of the exper-
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iments. Notice that the complexity of the environment in experiments 1, 2, and

5 was reduced, so that the expected route could be traversed by all techniques.

Another yet important feature of the “AG approach” is the simplicity of the

problem formulation and implementation. For example, unlike TGF, it is easy

to replicate the presented experiments by directly implementing the algorithm

without the need to adapt the output to cope with the vehicle constraints. Addi-

tionally, unlike ARM-ND+, it is not necessary to map the workspace into a new

manifold, which is not trivial to model and can be computationally expensive.

Last but not least, unlike DWA, AG is able to guide a robot through complex and

tight passages without integrating it with a path planner. A higher-level planner

is only necessary to avoid cyclic loops or global trap situations [MFM18].

6.7 Conclusions

We have presented a new concept, the“admissible gap”(AG), which addresses the

question of whether a given gap is traversable by performing a collision-free mo-

tion control, that respects the shape and vehicle constraints. By employing this

concept, a new collision avoidance method has been developed and implemented.

Compared to existing techniques, the new approach achieves an outstanding per-

formance in cluttered scenarios. This has been possible by directly obeying the

vehicle constraints rather than adapting a holonomic-based solution. A key idea

of the AG approach is the creation of an “admissible gap”, which serves as a

bridge to the opening closest to the goal (the closest gap). To this end, a new

methodology for traversing gaps has been proposed in such a way that the vehi-

cle constraints are respected. This methodology provides a compromise between

safety and efficiency. Our approach is directly applied to the workspace without

having to construct an abstraction layer. Additionally, this chapter introduces a

new procedure for finding out gaps. The method can be applied to full or limited

field of view sensors. Moreover, it discards useless gaps, reducing the possibility

of oscillation and improving the stability of navigation. Experimental results

along with performance assessment in highly cluttered scenarios demonstrate

that the proposed AG approach outperforms existing state-of-the-art methods in

terms of smoothness, safety, efficiency, and robustness.



7 Conclusions and Future Work

In this chapter, the contributions of the research work presented in this thesis are

summarized, pointing out some concluding remarks, and subsequently, several

issues that could be investigated in future research are discussed.

7.1 Conclusions

The work presented in this thesis contributes to the field of autonomous mobile

robot navigation. In particular, it addresses the problem of reactive collision

avoidance in very dense, complex, and cluttered environments which is one of

the most significant and challenging problems in mobile robotics. Among the

wide variety of reactive collision avoidance techniques, the Nearness-Diagram

(ND) Navigation is a well-known and effective approach that deals with this

problem. However, experiments demonstrated that ND-based navigation is prone

to several problems, namely oscillatory motion, risk of collision in narrow spaces,

unreasonable deviations towards free areas, and the tendency to generate slower

trajectories and longer paths. The first objective of this work was to develop

a new reactive collision avoidance approach that avoids the above mentioned

limitations. To this end, two methods have been proposed, the “Safe Gap” (SG)

and the “Tangential Gap Flow” (TGF) navigation. The second objective of this

work was to account for the exact shape and kinematic constraints, improving the

navigation performance. For this purpose, another approach has been proposed

building upon a new concept, called the “admissible gap” (AG). In the following,

we discuss the main features and contributions of these methods.

The SG method improves the robot’s behavior in dense and cluttered environ-

ments by generating smoother, faster, and safer avoidance maneuvers and by
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avoiding irrational deflections towards free spaces. The key idea behind this

improvement is the incorporation of an additional step in analyzing the sensory

data, locating a virtual gap in a collision free area, called a “safe gap” [MFM13b].

The location of this gap is determined based on its opening angle and the con-

figuration of the goal, providing a smoother and safer bridge between obstacle

avoidance and goal approach. Unlike the ND-based methods, SG does not require

the safe distance parameter, and thus saves the parameter tuning overhead.

The TGF approach generates smoother and much more stable trajectories com-

pared to those generated by the SG method, especially in unstructured narrow

spaces. Moreover, TGF helps in reducing turn changes occurring in tight gaps,

where the robot may switch between avoiding obstacles located to the right or

left of the heading direction. This has been possible by considering the clearance

to obstacles on both sides of the heading direction and by computing the steering

angle in such a way that all surrounding threats are taken into account, not sim-

ply the nearest one. Obstacle avoidance is, in general, based on two concepts; the

“tangential” and “gap flow” navigation [MJFM13] [MFM15] [MFM16] [MFM17].

The key idea behind both concepts is the usage of the data acquired from the

environmental structure in computing the avoidance trajectory. Using the “tan-

gential navigation”, the robot moves tangential to the obstacles boundary. The

“gap flow navigation” smoothly points the robot towards the free area between

obstacles. In both concepts, avoiding collisions and approaching the target are

simultaneously performed. An additional contribution of TGF is the develop-

ment of motion commands that drive a mobile robot towards a given target in

such away that the stability of the system is guaranteed in the Lyapunov sense.

The AG concept addresses the question of whether a given gap is traversable

by performing a collision-free motion control that respects the shape and vehicle

constraints [MFM18]. This concept has been successfully employed to develop a

collision avoidance approach, that achieves an outstanding performance in clut-

tered scenarios. Unlike existing methods, AG is directly applied to the workspace

and considers the exact shape and kinematics, achieving a safer and more accu-

rate solution. A key idea is the creation of an “admissible gap”, which serves as a

bridge obeying the vehicle constraints, once traversed, the robot makes progress

towards the target [MM17]. To this end, a new methodology for traversing gaps
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has been proposed in such a way that the vehicle constraints are respected. This

methodology provides a compromise between safety and efficiency. Additionally,

AG proposes a new strategy for extracting gaps which works for both full and

limited FOV sensors. Within this strategy, useless gaps are discarded, reducing

the possibility of oscillation and improving the stability of navigation.

In order to verify that the proposed approaches comply with the goals of this

work, several simulations and experiments in very dense and complex environ-

ments were conducted. Moreover, the performance of the proposed approaches

was evaluated and compared to that of existing state-of-the-art methods based

on the aforementioned drawbacks. In addition to the experiments presented

here, many tests were carried out while preparing for and participating in several

RoboCup Rescue Robot League competitions (2012- 2016). Up to our knowledge,

there is no other method in the literature that provides experimental results in

very hard scenarios similar to those presented in this thesis.

Our experience showed that the performance of the proposed approaches is stable

against changes of the environmental structure. The ND-based methods, on the

other hand, seem to be more sensitive to the obstacle distribution. For instance,

whenever a robot navigates through a relatively wide area that is located between

two narrow passages, it tends to deviate towards the free space performing a

sharp turn, followed by another turn towards the opposite side trying to enter the

second narrow passage. These sudden turn changes may lead to oscillations and

instability, which can be unsafe if the robot is passing through a narrow passage

or if it is navigating at a relatively high speed. Furthermore, this behavior makes

the robot follow longer paths owing to the unnecessary deflection towards the free

space. The main reason behind this drawback is the computation of the avoidance

trajectory regardless of the gap selected for navigation. Another example could

be observed in narrow corridors, where the robot usually performs successive

turn changes. This problem is basically inherited from the APF concept; within

this concept, approaching one side of a tight opening generates a strong repulsion

force, causing a sharp turn that takes the robot away from obstacles. Apparently,

this behavior is repeated with the other side. It is worth to mention that this

problem was clearly visible during our participation in the RoboCup Rescue

Robot League 2012. At that time, we were using an ND variant [MFMJ10] to
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control our robot GETbot, where the motion was unstable due to turn changes,

leading to wheel slippage over ramps and eventually a collision.

It is worth mentioning that the work presented in this thesis does not address

the commonality in features between the proposed approaches and the ND-based

navigation. These commonalities include the computational efficiency, avoiding

the tedious parameter tuning, and the ability to drive a robot towards obstacles

when necessary. For more information about these features and their effect on

the performance of the system, the reader is directed to [MM04] and [MLL08].

It can be noticed that, in this thesis, the navigation problem has been addressed

based on the information obtained from the current sensor readings only. This

may arise some problems due to locality (e.g. a cyclic motion). To deal with this

issue, the proposed solutions are incorporated into a hybrid system including a

planner, as has been addressed in [MMSA01] and [SB02]. By this means, locality

problems are avoided while still being able to achieve real-time performance.

7.2 Future Work

The work carried out in this thesis could be further extended in different direc-

tions, some of which are presented next.

The proposed navigation methods have been developed assuming a flat arena. It

is of interest to consider the geometric properties of the terrain. One possibility

could be to improve the gap analysis so that the gap that ensures safer navigation

is selected rather than the one closest to the goal. In addition, the motion

commands should be adapted by considering the slope and roughness of the

terrain. To this end, a 3D map is necessary to model the environment, which

can be obtained by a 3D SLAM module.

Another extension could be to consider the future trajectory of obstacles in per-

forming the avoidance maneuver. For this purpose, a module detecting and

tracking all visible objects in the scene is required (scene understanding). In

the context of reactive navigation, one possibility could be to incorporate the

concept of Inevitable Collision States [FA04] in the admissible gap concept.
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List of Notations

Notation Explanation

A(q) Region of the workspace W occupied by the robot at

configuration q

∠(φa → φb) The angular distance between φa and φb traveling

from φa to φb

∠(φa, φb) The minimum angular distance from φa to φb

B Goal bridge B constructed between the robot and the goal

C Closest gap

Cchg Curvature Change

Cfree Free configuration space

Cobstacles Configuration space obstacles

Cspace Configuration space

CCi Set of colliding relative velocities between the robot

and obstacle Oi, collision cone

χi Tangent direction associated with Ti
COi Configuration space obstacle

d(pa,pb) Euclidean distance between points pa and pb

db Buffer distance

Dε An open and connected subset of Rn centered at the origin

dl Lookahead distance

Ds Safe distance around the robot

ds(g) Suitable distance to the sides creating gap g

dsafe Desired clearance to obstacles

Dvs A parameter used to limit the speed

δ Any value greater than 0

∆(pi) Gap flow angle corresponding to pi
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Notation Explanation

∆(pH
i ) Gap flow angle corresponding to pH

i

Fatt(pr) Attractive force resulting from Uatt(pr)

Firep(pr) Repulsive force resulting from Ui
rep(pr)

G List of assembled gaps

g Represents a gap: a potentially open area among

obstacles through which the vehicle may pass

ĝ Gravitational acceleration

γ Angle used to compute Ψvg and equals γ = θt − θc

Γ(pi) Function used to head the robot to pt. It is set

to 1 or -1 based on location of pi relative to pt

H Subset (left or right) containing threat pH
i

H∗ Subset (left or right) that does not contain pH
i

Jacc Linear Jerk Cost

k(t) Curvature

λ Evaluates to π
2

if H∗ is empty or ∆(pH
i ) otherwise

M
θS
i Angle towards pS

i relative to frame M
Mθl(g) Angle towards pl(g) relative to frame M
Mθr(g) Angle towards pr(g) relative to frame M
µ Coefficient of friction

N̂ Union of subsets N̂R and N̂L

N Set of obstacles in collision while traveling to pt

Ncol Number of Collisions

N̂L NL excluding threats satisfying
∣∣T (yS

i )
∣∣ > ∣∣∣T (yNL

c )
∣∣∣

NL Left-subset: threats located to the right of −−→prpt

N̂R NR excluding threats satisfying
∣∣T (yS

i )
∣∣ > ∣∣∣T (yNR

c )
∣∣∣

NR Right-subset: threats located to the right of −−→prpt

O Set of obstacles in the workspace

Ocollision : [pr → ps(C)] Obstacles in collision with the boundary of

the robot while traveling directly towards ps(C)
Ocollision : [pr → px] Obstacles in collision with the boundary of

the robot while traveling directly towards px
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Notation Explanation

O+ List of obstacles falling to the left of pr(g), such that

the angular distance traveled does not exceed π

ω Angular or rotational velocity

ωmax Maximum angular speed

pc Obstacle stoint closest to the robot

pNL
c Obstacle point closest to the robot and contained in NL

pNR
c Obstacle point closest to the robot and contained in NR

pN̂L
c Obstacle point closest to the robot and falling in N̂L

pcg(g) Scan point creating the gap g side closer to the goal

pcr(g) Scan point creating the gap g side closer to the robot

pfg(g) Scan point creating the gap g side farther from the goal

pfr(g) Scan point creating the gap g side farther from the robot

pg Location of the goal

p̂g Instantaneous location of the goal

pi An obstacle point

pSi− Right neighborhood of point pS
i

pH
i Any threat contained in H

pH∗
i The threat closest to pH

i and contained in H∗

p∗i Obstacle point closest to pi and located in R∗

pS
i A laser scan point

pS−
i Sequence of points located to the right of pS

i

pS+
i Sequence of points located to the left of pS

i

pS
i+ Left neighborhood of point pS

i

pl(g) Scan point creating the left side of gap g

Plen Path Length

pnav Side of the selected gap that the robot circumnavigates

pr Location of the robot

pr(g) Scan point creating the right side of gap g
prΨpi(g) Visibility angle of pi with respect to pr(g)

ps(g) An instantaneous subgoal within gap g

pt Target which can be the goal or the subgoal based on

checking the path to the goal cerriterion.
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Notation Explanation

pvg Target location after rotating it by Ψvg

proj(θ) A function normalizes θ to the range [−π, π[

Ψ Total rotation angle (Ψsg + Ψvg)

ψi Rotation angle corresponding to threat pS
i .

ΨL Weighted average rotation angle caused by threats in N̂L

Ψmax The larger absolute value among both ΨL and ΨR

ΨR Weighted average rotation angle caused by threats in N̂R

Ψsg Gap rotation angle

Ψvg Collision avoidance rotation angle

q A robot’s configuration

R Real number set

R Robot radius

rN̂
c Distance to the closest threat that is contained in N̂

rfg(C) Distance to the side of C farther from pg.

rcg(C) Distance to the side of C closer to pg.

(ri, θi) Polar coordinates of pi

rH
i Distance to pH

i

r∗i Distance to p∗i

rS
i Distance to scan point pS

i

rmax Maximum range of the laser scanner

rmin Distance to the obstacle point closest to the robot boundary

Robs Risk with Respect to Obstacles

rr(g) Distance to pr(g)

rs(g) Distance to ps(g)

rt Distance to pt

rx(g) Distance to point px(g)

R− Region of the workspace located to the right of pt

R∗ Region of the workspace that does not include pc

R+ Region of the workspace located to the left of pt

S List of laser scan points

S Safe gap

Slat Lateral Stress
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Notation Explanation

Stng Tangential Stress

S1 Unit circle

sat[a,b](x) A function limits x between a and b

t Time

T (xS
i ) X coordinate of pS

i relative to the robot-target frame

T (yS
i ) Y coordinate of pS

i relative to the robot-target frame

ta Latency time

tc Computation time

Ti Circular path that the robot follows to reach point pi

TL Total number of threats contained in N̂L

TR Total number of threats contained in N̂R

Ttot Total Execution Time

θ Orientation of the robot relative to a global

coordinate system

θc Angle towards pc

θcenter Angle towards the center point between pi and p∗i

θcg(C) Angle towards the side of C closer to pg.

θfg(C) Angle towards the side of C farther from pg.

θg Angle towards the goal

θH∗
i Angle towards pH∗

i

θS
i Angle towards scan point pS

i

θ∗i Angle towards p∗i

θmid Angle towards the center of the gap.

θr(g) Angle towards pr(g)

θs(g) Angle towards ps(g)

θs(S) Angle towards the subgoal associated with gap S
θscs Angle towards C keeping a safe distance to pcg(C)
θt Angle towards pt

θtraj Trajectory angle

θx(g) Angle towards point px(g)

Uatt(pr) Attractive potential to the goal
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Notation Explanation

Ui
rep(pr) Repulsive potential corresponding to obstacle pi

Υ Function evaluates to 1 or −1 based on the location of the

gap side that the robot circumnavigates

v Linear velocity

Va Set of admissible velocities in the DWA approach

Vd Dynamic window in the DWA approach

vi Initial velocity

vlimit Speed limit based on the distance to nearby obstacles

vmax Maximum linear speed

Vr Area of considered velocities within the dynamic window

Vs Set of all possible velocities in the DWA approach

VOi Velocity obstacle associated with obstacle Oi
W Workspace

w(g) Width of gap g, i.e. w(g) = ‖pl(g)− pr(g)‖
W(ΨL) Weight associated with ΨL

W(ΨR) Weight associated with ΨR

wi Weight corresponding to ψi

WL Total weight associated with threats falling in N̂L

wL
max Maximum weight assigned to threats located on N̂L

x̂g x coordinate of p̂g

(xi, yi) Cartesian coordinates of pi

(x∗i , y
∗
i ) Cartesian coordinates of p∗i

(xS
i , y

S
i ) Cartesian Coordinates of scan point pS

i

(x, y) Position of the robot relative to a global

coordinate system

yNL
c Y-coordinate of pNL

c

yNR
c Y-coordinate of pNR

c

Zw Zero Crossings

ζacc Rotational Jerk Cost

ζ̂g Angle to line Lv in the velocity space from figure 6.8



List of Abbreviations

Abbreviation Explanation

AG Admissible Gap

APF Artificial Potential Field

ARM Arc Reachable Manifold

CG Closest Gap Navigation

CVM Curvature Velocity Method

DWA Dynamic Window Approach

FFOV Full Field of View

GND Global Nearness-Diagram

ICS Inevitable Collision States

LCM Lan-Curvature Method

LFOV Limited Field of View

LTG Local Tangent Graph

ND Nearness-Diagram Navigation

ND+ Nearness-Diagram Navigation Plus

NLVO Non Linear Velocity Obstacles

PRM Probabalistic Roadmap

RRT Rapidly-Exploring Random Tree

RVO Reciprocal Velocity Obstacles

SG Safe Gap Navigation

SIPP Safe Interval Path Planning

SND Smooth Nearness-Diagram

TGF Tangential Gap Flow Navigation

VFF Virtual Force Field

VFH Vector Field Histogram

VO Velocity Obstacles
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